1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * kernel/workqueue.c - generic async execution with shared worker pool |
4 | * |
5 | * Copyright (C) 2002 Ingo Molnar |
6 | * |
7 | * Derived from the taskqueue/keventd code by: |
8 | * David Woodhouse <dwmw2@infradead.org> |
9 | * Andrew Morton |
10 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> |
11 | * Theodore Ts'o <tytso@mit.edu> |
12 | * |
13 | * Made to use alloc_percpu by Christoph Lameter. |
14 | * |
15 | * Copyright (C) 2010 SUSE Linux Products GmbH |
16 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
17 | * |
18 | * This is the generic async execution mechanism. Work items as are |
19 | * executed in process context. The worker pool is shared and |
20 | * automatically managed. There are two worker pools for each CPU (one for |
21 | * normal work items and the other for high priority ones) and some extra |
22 | * pools for workqueues which are not bound to any specific CPU - the |
23 | * number of these backing pools is dynamic. |
24 | * |
25 | * Please read Documentation/core-api/workqueue.rst for details. |
26 | */ |
27 | |
28 | #include <linux/export.h> |
29 | #include <linux/kernel.h> |
30 | #include <linux/sched.h> |
31 | #include <linux/init.h> |
32 | #include <linux/interrupt.h> |
33 | #include <linux/signal.h> |
34 | #include <linux/completion.h> |
35 | #include <linux/workqueue.h> |
36 | #include <linux/slab.h> |
37 | #include <linux/cpu.h> |
38 | #include <linux/notifier.h> |
39 | #include <linux/kthread.h> |
40 | #include <linux/hardirq.h> |
41 | #include <linux/mempolicy.h> |
42 | #include <linux/freezer.h> |
43 | #include <linux/debug_locks.h> |
44 | #include <linux/lockdep.h> |
45 | #include <linux/idr.h> |
46 | #include <linux/jhash.h> |
47 | #include <linux/hashtable.h> |
48 | #include <linux/rculist.h> |
49 | #include <linux/nodemask.h> |
50 | #include <linux/moduleparam.h> |
51 | #include <linux/uaccess.h> |
52 | #include <linux/sched/isolation.h> |
53 | #include <linux/sched/debug.h> |
54 | #include <linux/nmi.h> |
55 | #include <linux/kvm_para.h> |
56 | #include <linux/delay.h> |
57 | #include <linux/irq_work.h> |
58 | |
59 | #include "workqueue_internal.h" |
60 | |
61 | enum worker_pool_flags { |
62 | /* |
63 | * worker_pool flags |
64 | * |
65 | * A bound pool is either associated or disassociated with its CPU. |
66 | * While associated (!DISASSOCIATED), all workers are bound to the |
67 | * CPU and none has %WORKER_UNBOUND set and concurrency management |
68 | * is in effect. |
69 | * |
70 | * While DISASSOCIATED, the cpu may be offline and all workers have |
71 | * %WORKER_UNBOUND set and concurrency management disabled, and may |
72 | * be executing on any CPU. The pool behaves as an unbound one. |
73 | * |
74 | * Note that DISASSOCIATED should be flipped only while holding |
75 | * wq_pool_attach_mutex to avoid changing binding state while |
76 | * worker_attach_to_pool() is in progress. |
77 | * |
78 | * As there can only be one concurrent BH execution context per CPU, a |
79 | * BH pool is per-CPU and always DISASSOCIATED. |
80 | */ |
81 | POOL_BH = 1 << 0, /* is a BH pool */ |
82 | POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ |
83 | POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ |
84 | POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ |
85 | }; |
86 | |
87 | enum worker_flags { |
88 | /* worker flags */ |
89 | WORKER_DIE = 1 << 1, /* die die die */ |
90 | WORKER_IDLE = 1 << 2, /* is idle */ |
91 | WORKER_PREP = 1 << 3, /* preparing to run works */ |
92 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ |
93 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ |
94 | WORKER_REBOUND = 1 << 8, /* worker was rebound */ |
95 | |
96 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | |
97 | WORKER_UNBOUND | WORKER_REBOUND, |
98 | }; |
99 | |
100 | enum work_cancel_flags { |
101 | WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ |
102 | }; |
103 | |
104 | enum wq_internal_consts { |
105 | NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ |
106 | |
107 | UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ |
108 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ |
109 | |
110 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ |
111 | IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ |
112 | |
113 | MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, |
114 | /* call for help after 10ms |
115 | (min two ticks) */ |
116 | MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ |
117 | CREATE_COOLDOWN = HZ, /* time to breath after fail */ |
118 | |
119 | /* |
120 | * Rescue workers are used only on emergencies and shared by |
121 | * all cpus. Give MIN_NICE. |
122 | */ |
123 | RESCUER_NICE_LEVEL = MIN_NICE, |
124 | HIGHPRI_NICE_LEVEL = MIN_NICE, |
125 | |
126 | WQ_NAME_LEN = 32, |
127 | }; |
128 | |
129 | /* |
130 | * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and |
131 | * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because |
132 | * msecs_to_jiffies() can't be an initializer. |
133 | */ |
134 | #define BH_WORKER_JIFFIES msecs_to_jiffies(2) |
135 | #define BH_WORKER_RESTARTS 10 |
136 | |
137 | /* |
138 | * Structure fields follow one of the following exclusion rules. |
139 | * |
140 | * I: Modifiable by initialization/destruction paths and read-only for |
141 | * everyone else. |
142 | * |
143 | * P: Preemption protected. Disabling preemption is enough and should |
144 | * only be modified and accessed from the local cpu. |
145 | * |
146 | * L: pool->lock protected. Access with pool->lock held. |
147 | * |
148 | * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for |
149 | * reads. |
150 | * |
151 | * K: Only modified by worker while holding pool->lock. Can be safely read by |
152 | * self, while holding pool->lock or from IRQ context if %current is the |
153 | * kworker. |
154 | * |
155 | * S: Only modified by worker self. |
156 | * |
157 | * A: wq_pool_attach_mutex protected. |
158 | * |
159 | * PL: wq_pool_mutex protected. |
160 | * |
161 | * PR: wq_pool_mutex protected for writes. RCU protected for reads. |
162 | * |
163 | * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. |
164 | * |
165 | * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or |
166 | * RCU for reads. |
167 | * |
168 | * WQ: wq->mutex protected. |
169 | * |
170 | * WR: wq->mutex protected for writes. RCU protected for reads. |
171 | * |
172 | * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read |
173 | * with READ_ONCE() without locking. |
174 | * |
175 | * MD: wq_mayday_lock protected. |
176 | * |
177 | * WD: Used internally by the watchdog. |
178 | */ |
179 | |
180 | /* struct worker is defined in workqueue_internal.h */ |
181 | |
182 | struct worker_pool { |
183 | raw_spinlock_t lock; /* the pool lock */ |
184 | int cpu; /* I: the associated cpu */ |
185 | int node; /* I: the associated node ID */ |
186 | int id; /* I: pool ID */ |
187 | unsigned int flags; /* L: flags */ |
188 | |
189 | unsigned long watchdog_ts; /* L: watchdog timestamp */ |
190 | bool cpu_stall; /* WD: stalled cpu bound pool */ |
191 | |
192 | /* |
193 | * The counter is incremented in a process context on the associated CPU |
194 | * w/ preemption disabled, and decremented or reset in the same context |
195 | * but w/ pool->lock held. The readers grab pool->lock and are |
196 | * guaranteed to see if the counter reached zero. |
197 | */ |
198 | int nr_running; |
199 | |
200 | struct list_head worklist; /* L: list of pending works */ |
201 | |
202 | int nr_workers; /* L: total number of workers */ |
203 | int nr_idle; /* L: currently idle workers */ |
204 | |
205 | struct list_head idle_list; /* L: list of idle workers */ |
206 | struct timer_list idle_timer; /* L: worker idle timeout */ |
207 | struct work_struct idle_cull_work; /* L: worker idle cleanup */ |
208 | |
209 | struct timer_list mayday_timer; /* L: SOS timer for workers */ |
210 | |
211 | /* a workers is either on busy_hash or idle_list, or the manager */ |
212 | DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); |
213 | /* L: hash of busy workers */ |
214 | |
215 | struct worker *manager; /* L: purely informational */ |
216 | struct list_head workers; /* A: attached workers */ |
217 | struct list_head dying_workers; /* A: workers about to die */ |
218 | struct completion *detach_completion; /* all workers detached */ |
219 | |
220 | struct ida worker_ida; /* worker IDs for task name */ |
221 | |
222 | struct workqueue_attrs *attrs; /* I: worker attributes */ |
223 | struct hlist_node hash_node; /* PL: unbound_pool_hash node */ |
224 | int refcnt; /* PL: refcnt for unbound pools */ |
225 | |
226 | /* |
227 | * Destruction of pool is RCU protected to allow dereferences |
228 | * from get_work_pool(). |
229 | */ |
230 | struct rcu_head rcu; |
231 | }; |
232 | |
233 | /* |
234 | * Per-pool_workqueue statistics. These can be monitored using |
235 | * tools/workqueue/wq_monitor.py. |
236 | */ |
237 | enum pool_workqueue_stats { |
238 | PWQ_STAT_STARTED, /* work items started execution */ |
239 | PWQ_STAT_COMPLETED, /* work items completed execution */ |
240 | PWQ_STAT_CPU_TIME, /* total CPU time consumed */ |
241 | PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ |
242 | PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ |
243 | PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ |
244 | PWQ_STAT_MAYDAY, /* maydays to rescuer */ |
245 | PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ |
246 | |
247 | PWQ_NR_STATS, |
248 | }; |
249 | |
250 | /* |
251 | * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT |
252 | * of work_struct->data are used for flags and the remaining high bits |
253 | * point to the pwq; thus, pwqs need to be aligned at two's power of the |
254 | * number of flag bits. |
255 | */ |
256 | struct pool_workqueue { |
257 | struct worker_pool *pool; /* I: the associated pool */ |
258 | struct workqueue_struct *wq; /* I: the owning workqueue */ |
259 | int work_color; /* L: current color */ |
260 | int flush_color; /* L: flushing color */ |
261 | int refcnt; /* L: reference count */ |
262 | int nr_in_flight[WORK_NR_COLORS]; |
263 | /* L: nr of in_flight works */ |
264 | bool plugged; /* L: execution suspended */ |
265 | |
266 | /* |
267 | * nr_active management and WORK_STRUCT_INACTIVE: |
268 | * |
269 | * When pwq->nr_active >= max_active, new work item is queued to |
270 | * pwq->inactive_works instead of pool->worklist and marked with |
271 | * WORK_STRUCT_INACTIVE. |
272 | * |
273 | * All work items marked with WORK_STRUCT_INACTIVE do not participate in |
274 | * nr_active and all work items in pwq->inactive_works are marked with |
275 | * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are |
276 | * in pwq->inactive_works. Some of them are ready to run in |
277 | * pool->worklist or worker->scheduled. Those work itmes are only struct |
278 | * wq_barrier which is used for flush_work() and should not participate |
279 | * in nr_active. For non-barrier work item, it is marked with |
280 | * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. |
281 | */ |
282 | int nr_active; /* L: nr of active works */ |
283 | struct list_head inactive_works; /* L: inactive works */ |
284 | struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ |
285 | struct list_head pwqs_node; /* WR: node on wq->pwqs */ |
286 | struct list_head mayday_node; /* MD: node on wq->maydays */ |
287 | |
288 | u64 stats[PWQ_NR_STATS]; |
289 | |
290 | /* |
291 | * Release of unbound pwq is punted to a kthread_worker. See put_pwq() |
292 | * and pwq_release_workfn() for details. pool_workqueue itself is also |
293 | * RCU protected so that the first pwq can be determined without |
294 | * grabbing wq->mutex. |
295 | */ |
296 | struct kthread_work release_work; |
297 | struct rcu_head rcu; |
298 | } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); |
299 | |
300 | /* |
301 | * Structure used to wait for workqueue flush. |
302 | */ |
303 | struct wq_flusher { |
304 | struct list_head list; /* WQ: list of flushers */ |
305 | int flush_color; /* WQ: flush color waiting for */ |
306 | struct completion done; /* flush completion */ |
307 | }; |
308 | |
309 | struct wq_device; |
310 | |
311 | /* |
312 | * Unlike in a per-cpu workqueue where max_active limits its concurrency level |
313 | * on each CPU, in an unbound workqueue, max_active applies to the whole system. |
314 | * As sharing a single nr_active across multiple sockets can be very expensive, |
315 | * the counting and enforcement is per NUMA node. |
316 | * |
317 | * The following struct is used to enforce per-node max_active. When a pwq wants |
318 | * to start executing a work item, it should increment ->nr using |
319 | * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over |
320 | * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish |
321 | * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in |
322 | * round-robin order. |
323 | */ |
324 | struct wq_node_nr_active { |
325 | int max; /* per-node max_active */ |
326 | atomic_t nr; /* per-node nr_active */ |
327 | raw_spinlock_t lock; /* nests inside pool locks */ |
328 | struct list_head pending_pwqs; /* LN: pwqs with inactive works */ |
329 | }; |
330 | |
331 | /* |
332 | * The externally visible workqueue. It relays the issued work items to |
333 | * the appropriate worker_pool through its pool_workqueues. |
334 | */ |
335 | struct workqueue_struct { |
336 | struct list_head pwqs; /* WR: all pwqs of this wq */ |
337 | struct list_head list; /* PR: list of all workqueues */ |
338 | |
339 | struct mutex mutex; /* protects this wq */ |
340 | int work_color; /* WQ: current work color */ |
341 | int flush_color; /* WQ: current flush color */ |
342 | atomic_t nr_pwqs_to_flush; /* flush in progress */ |
343 | struct wq_flusher *first_flusher; /* WQ: first flusher */ |
344 | struct list_head flusher_queue; /* WQ: flush waiters */ |
345 | struct list_head flusher_overflow; /* WQ: flush overflow list */ |
346 | |
347 | struct list_head maydays; /* MD: pwqs requesting rescue */ |
348 | struct worker *rescuer; /* MD: rescue worker */ |
349 | |
350 | int nr_drainers; /* WQ: drain in progress */ |
351 | |
352 | /* See alloc_workqueue() function comment for info on min/max_active */ |
353 | int max_active; /* WO: max active works */ |
354 | int min_active; /* WO: min active works */ |
355 | int saved_max_active; /* WQ: saved max_active */ |
356 | int saved_min_active; /* WQ: saved min_active */ |
357 | |
358 | struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ |
359 | struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ |
360 | |
361 | #ifdef CONFIG_SYSFS |
362 | struct wq_device *wq_dev; /* I: for sysfs interface */ |
363 | #endif |
364 | #ifdef CONFIG_LOCKDEP |
365 | char *lock_name; |
366 | struct lock_class_key key; |
367 | struct lockdep_map lockdep_map; |
368 | #endif |
369 | char name[WQ_NAME_LEN]; /* I: workqueue name */ |
370 | |
371 | /* |
372 | * Destruction of workqueue_struct is RCU protected to allow walking |
373 | * the workqueues list without grabbing wq_pool_mutex. |
374 | * This is used to dump all workqueues from sysrq. |
375 | */ |
376 | struct rcu_head rcu; |
377 | |
378 | /* hot fields used during command issue, aligned to cacheline */ |
379 | unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ |
380 | struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ |
381 | struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ |
382 | }; |
383 | |
384 | /* |
385 | * Each pod type describes how CPUs should be grouped for unbound workqueues. |
386 | * See the comment above workqueue_attrs->affn_scope. |
387 | */ |
388 | struct wq_pod_type { |
389 | int nr_pods; /* number of pods */ |
390 | cpumask_var_t *pod_cpus; /* pod -> cpus */ |
391 | int *pod_node; /* pod -> node */ |
392 | int *cpu_pod; /* cpu -> pod */ |
393 | }; |
394 | |
395 | static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { |
396 | [WQ_AFFN_DFL] = "default", |
397 | [WQ_AFFN_CPU] = "cpu", |
398 | [WQ_AFFN_SMT] = "smt", |
399 | [WQ_AFFN_CACHE] = "cache", |
400 | [WQ_AFFN_NUMA] = "numa", |
401 | [WQ_AFFN_SYSTEM] = "system", |
402 | }; |
403 | |
404 | /* |
405 | * Per-cpu work items which run for longer than the following threshold are |
406 | * automatically considered CPU intensive and excluded from concurrency |
407 | * management to prevent them from noticeably delaying other per-cpu work items. |
408 | * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. |
409 | * The actual value is initialized in wq_cpu_intensive_thresh_init(). |
410 | */ |
411 | static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; |
412 | module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); |
413 | #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT |
414 | static unsigned int wq_cpu_intensive_warning_thresh = 4; |
415 | module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); |
416 | #endif |
417 | |
418 | /* see the comment above the definition of WQ_POWER_EFFICIENT */ |
419 | static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); |
420 | module_param_named(power_efficient, wq_power_efficient, bool, 0444); |
421 | |
422 | static bool wq_online; /* can kworkers be created yet? */ |
423 | static bool wq_topo_initialized __read_mostly = false; |
424 | |
425 | static struct kmem_cache *pwq_cache; |
426 | |
427 | static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; |
428 | static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; |
429 | |
430 | /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ |
431 | static struct workqueue_attrs *wq_update_pod_attrs_buf; |
432 | |
433 | static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ |
434 | static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ |
435 | static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ |
436 | /* wait for manager to go away */ |
437 | static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); |
438 | |
439 | static LIST_HEAD(workqueues); /* PR: list of all workqueues */ |
440 | static bool workqueue_freezing; /* PL: have wqs started freezing? */ |
441 | |
442 | /* PL&A: allowable cpus for unbound wqs and work items */ |
443 | static cpumask_var_t wq_unbound_cpumask; |
444 | |
445 | /* PL: user requested unbound cpumask via sysfs */ |
446 | static cpumask_var_t wq_requested_unbound_cpumask; |
447 | |
448 | /* PL: isolated cpumask to be excluded from unbound cpumask */ |
449 | static cpumask_var_t wq_isolated_cpumask; |
450 | |
451 | /* for further constrain wq_unbound_cpumask by cmdline parameter*/ |
452 | static struct cpumask wq_cmdline_cpumask __initdata; |
453 | |
454 | /* CPU where unbound work was last round robin scheduled from this CPU */ |
455 | static DEFINE_PER_CPU(int, wq_rr_cpu_last); |
456 | |
457 | /* |
458 | * Local execution of unbound work items is no longer guaranteed. The |
459 | * following always forces round-robin CPU selection on unbound work items |
460 | * to uncover usages which depend on it. |
461 | */ |
462 | #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU |
463 | static bool wq_debug_force_rr_cpu = true; |
464 | #else |
465 | static bool wq_debug_force_rr_cpu = false; |
466 | #endif |
467 | module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); |
468 | |
469 | /* to raise softirq for the BH worker pools on other CPUs */ |
470 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], |
471 | bh_pool_irq_works); |
472 | |
473 | /* the BH worker pools */ |
474 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], |
475 | bh_worker_pools); |
476 | |
477 | /* the per-cpu worker pools */ |
478 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], |
479 | cpu_worker_pools); |
480 | |
481 | static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ |
482 | |
483 | /* PL: hash of all unbound pools keyed by pool->attrs */ |
484 | static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); |
485 | |
486 | /* I: attributes used when instantiating standard unbound pools on demand */ |
487 | static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; |
488 | |
489 | /* I: attributes used when instantiating ordered pools on demand */ |
490 | static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; |
491 | |
492 | /* |
493 | * Used to synchronize multiple cancel_sync attempts on the same work item. See |
494 | * work_grab_pending() and __cancel_work_sync(). |
495 | */ |
496 | static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq); |
497 | |
498 | /* |
499 | * I: kthread_worker to release pwq's. pwq release needs to be bounced to a |
500 | * process context while holding a pool lock. Bounce to a dedicated kthread |
501 | * worker to avoid A-A deadlocks. |
502 | */ |
503 | static struct kthread_worker *pwq_release_worker __ro_after_init; |
504 | |
505 | struct workqueue_struct *system_wq __ro_after_init; |
506 | EXPORT_SYMBOL(system_wq); |
507 | struct workqueue_struct *system_highpri_wq __ro_after_init; |
508 | EXPORT_SYMBOL_GPL(system_highpri_wq); |
509 | struct workqueue_struct *system_long_wq __ro_after_init; |
510 | EXPORT_SYMBOL_GPL(system_long_wq); |
511 | struct workqueue_struct *system_unbound_wq __ro_after_init; |
512 | EXPORT_SYMBOL_GPL(system_unbound_wq); |
513 | struct workqueue_struct *system_freezable_wq __ro_after_init; |
514 | EXPORT_SYMBOL_GPL(system_freezable_wq); |
515 | struct workqueue_struct *system_power_efficient_wq __ro_after_init; |
516 | EXPORT_SYMBOL_GPL(system_power_efficient_wq); |
517 | struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; |
518 | EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); |
519 | struct workqueue_struct *system_bh_wq; |
520 | EXPORT_SYMBOL_GPL(system_bh_wq); |
521 | struct workqueue_struct *system_bh_highpri_wq; |
522 | EXPORT_SYMBOL_GPL(system_bh_highpri_wq); |
523 | |
524 | static int worker_thread(void *__worker); |
525 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq); |
526 | static void show_pwq(struct pool_workqueue *pwq); |
527 | static void show_one_worker_pool(struct worker_pool *pool); |
528 | |
529 | #define CREATE_TRACE_POINTS |
530 | #include <trace/events/workqueue.h> |
531 | |
532 | #define assert_rcu_or_pool_mutex() \ |
533 | RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ |
534 | !lockdep_is_held(&wq_pool_mutex), \ |
535 | "RCU or wq_pool_mutex should be held") |
536 | |
537 | #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ |
538 | RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ |
539 | !lockdep_is_held(&wq->mutex) && \ |
540 | !lockdep_is_held(&wq_pool_mutex), \ |
541 | "RCU, wq->mutex or wq_pool_mutex should be held") |
542 | |
543 | #define for_each_bh_worker_pool(pool, cpu) \ |
544 | for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ |
545 | (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ |
546 | (pool)++) |
547 | |
548 | #define for_each_cpu_worker_pool(pool, cpu) \ |
549 | for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ |
550 | (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ |
551 | (pool)++) |
552 | |
553 | /** |
554 | * for_each_pool - iterate through all worker_pools in the system |
555 | * @pool: iteration cursor |
556 | * @pi: integer used for iteration |
557 | * |
558 | * This must be called either with wq_pool_mutex held or RCU read |
559 | * locked. If the pool needs to be used beyond the locking in effect, the |
560 | * caller is responsible for guaranteeing that the pool stays online. |
561 | * |
562 | * The if/else clause exists only for the lockdep assertion and can be |
563 | * ignored. |
564 | */ |
565 | #define for_each_pool(pool, pi) \ |
566 | idr_for_each_entry(&worker_pool_idr, pool, pi) \ |
567 | if (({ assert_rcu_or_pool_mutex(); false; })) { } \ |
568 | else |
569 | |
570 | /** |
571 | * for_each_pool_worker - iterate through all workers of a worker_pool |
572 | * @worker: iteration cursor |
573 | * @pool: worker_pool to iterate workers of |
574 | * |
575 | * This must be called with wq_pool_attach_mutex. |
576 | * |
577 | * The if/else clause exists only for the lockdep assertion and can be |
578 | * ignored. |
579 | */ |
580 | #define for_each_pool_worker(worker, pool) \ |
581 | list_for_each_entry((worker), &(pool)->workers, node) \ |
582 | if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ |
583 | else |
584 | |
585 | /** |
586 | * for_each_pwq - iterate through all pool_workqueues of the specified workqueue |
587 | * @pwq: iteration cursor |
588 | * @wq: the target workqueue |
589 | * |
590 | * This must be called either with wq->mutex held or RCU read locked. |
591 | * If the pwq needs to be used beyond the locking in effect, the caller is |
592 | * responsible for guaranteeing that the pwq stays online. |
593 | * |
594 | * The if/else clause exists only for the lockdep assertion and can be |
595 | * ignored. |
596 | */ |
597 | #define for_each_pwq(pwq, wq) \ |
598 | list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ |
599 | lockdep_is_held(&(wq->mutex))) |
600 | |
601 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
602 | |
603 | static const struct debug_obj_descr work_debug_descr; |
604 | |
605 | static void *work_debug_hint(void *addr) |
606 | { |
607 | return ((struct work_struct *) addr)->func; |
608 | } |
609 | |
610 | static bool work_is_static_object(void *addr) |
611 | { |
612 | struct work_struct *work = addr; |
613 | |
614 | return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); |
615 | } |
616 | |
617 | /* |
618 | * fixup_init is called when: |
619 | * - an active object is initialized |
620 | */ |
621 | static bool work_fixup_init(void *addr, enum debug_obj_state state) |
622 | { |
623 | struct work_struct *work = addr; |
624 | |
625 | switch (state) { |
626 | case ODEBUG_STATE_ACTIVE: |
627 | cancel_work_sync(work); |
628 | debug_object_init(addr: work, descr: &work_debug_descr); |
629 | return true; |
630 | default: |
631 | return false; |
632 | } |
633 | } |
634 | |
635 | /* |
636 | * fixup_free is called when: |
637 | * - an active object is freed |
638 | */ |
639 | static bool work_fixup_free(void *addr, enum debug_obj_state state) |
640 | { |
641 | struct work_struct *work = addr; |
642 | |
643 | switch (state) { |
644 | case ODEBUG_STATE_ACTIVE: |
645 | cancel_work_sync(work); |
646 | debug_object_free(addr: work, descr: &work_debug_descr); |
647 | return true; |
648 | default: |
649 | return false; |
650 | } |
651 | } |
652 | |
653 | static const struct debug_obj_descr work_debug_descr = { |
654 | .name = "work_struct", |
655 | .debug_hint = work_debug_hint, |
656 | .is_static_object = work_is_static_object, |
657 | .fixup_init = work_fixup_init, |
658 | .fixup_free = work_fixup_free, |
659 | }; |
660 | |
661 | static inline void debug_work_activate(struct work_struct *work) |
662 | { |
663 | debug_object_activate(addr: work, descr: &work_debug_descr); |
664 | } |
665 | |
666 | static inline void debug_work_deactivate(struct work_struct *work) |
667 | { |
668 | debug_object_deactivate(addr: work, descr: &work_debug_descr); |
669 | } |
670 | |
671 | void __init_work(struct work_struct *work, int onstack) |
672 | { |
673 | if (onstack) |
674 | debug_object_init_on_stack(addr: work, descr: &work_debug_descr); |
675 | else |
676 | debug_object_init(addr: work, descr: &work_debug_descr); |
677 | } |
678 | EXPORT_SYMBOL_GPL(__init_work); |
679 | |
680 | void destroy_work_on_stack(struct work_struct *work) |
681 | { |
682 | debug_object_free(addr: work, descr: &work_debug_descr); |
683 | } |
684 | EXPORT_SYMBOL_GPL(destroy_work_on_stack); |
685 | |
686 | void destroy_delayed_work_on_stack(struct delayed_work *work) |
687 | { |
688 | destroy_timer_on_stack(timer: &work->timer); |
689 | debug_object_free(addr: &work->work, descr: &work_debug_descr); |
690 | } |
691 | EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); |
692 | |
693 | #else |
694 | static inline void debug_work_activate(struct work_struct *work) { } |
695 | static inline void debug_work_deactivate(struct work_struct *work) { } |
696 | #endif |
697 | |
698 | /** |
699 | * worker_pool_assign_id - allocate ID and assign it to @pool |
700 | * @pool: the pool pointer of interest |
701 | * |
702 | * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned |
703 | * successfully, -errno on failure. |
704 | */ |
705 | static int worker_pool_assign_id(struct worker_pool *pool) |
706 | { |
707 | int ret; |
708 | |
709 | lockdep_assert_held(&wq_pool_mutex); |
710 | |
711 | ret = idr_alloc(&worker_pool_idr, ptr: pool, start: 0, WORK_OFFQ_POOL_NONE, |
712 | GFP_KERNEL); |
713 | if (ret >= 0) { |
714 | pool->id = ret; |
715 | return 0; |
716 | } |
717 | return ret; |
718 | } |
719 | |
720 | static struct pool_workqueue __rcu ** |
721 | unbound_pwq_slot(struct workqueue_struct *wq, int cpu) |
722 | { |
723 | if (cpu >= 0) |
724 | return per_cpu_ptr(wq->cpu_pwq, cpu); |
725 | else |
726 | return &wq->dfl_pwq; |
727 | } |
728 | |
729 | /* @cpu < 0 for dfl_pwq */ |
730 | static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) |
731 | { |
732 | return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), |
733 | lockdep_is_held(&wq_pool_mutex) || |
734 | lockdep_is_held(&wq->mutex)); |
735 | } |
736 | |
737 | /** |
738 | * unbound_effective_cpumask - effective cpumask of an unbound workqueue |
739 | * @wq: workqueue of interest |
740 | * |
741 | * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which |
742 | * is masked with wq_unbound_cpumask to determine the effective cpumask. The |
743 | * default pwq is always mapped to the pool with the current effective cpumask. |
744 | */ |
745 | static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) |
746 | { |
747 | return unbound_pwq(wq, cpu: -1)->pool->attrs->__pod_cpumask; |
748 | } |
749 | |
750 | static unsigned int work_color_to_flags(int color) |
751 | { |
752 | return color << WORK_STRUCT_COLOR_SHIFT; |
753 | } |
754 | |
755 | static int get_work_color(unsigned long work_data) |
756 | { |
757 | return (work_data >> WORK_STRUCT_COLOR_SHIFT) & |
758 | ((1 << WORK_STRUCT_COLOR_BITS) - 1); |
759 | } |
760 | |
761 | static int work_next_color(int color) |
762 | { |
763 | return (color + 1) % WORK_NR_COLORS; |
764 | } |
765 | |
766 | /* |
767 | * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data |
768 | * contain the pointer to the queued pwq. Once execution starts, the flag |
769 | * is cleared and the high bits contain OFFQ flags and pool ID. |
770 | * |
771 | * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() |
772 | * can be used to set the pwq, pool or clear work->data. These functions should |
773 | * only be called while the work is owned - ie. while the PENDING bit is set. |
774 | * |
775 | * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq |
776 | * corresponding to a work. Pool is available once the work has been |
777 | * queued anywhere after initialization until it is sync canceled. pwq is |
778 | * available only while the work item is queued. |
779 | * |
780 | * %WORK_OFFQ_CANCELING is used to mark a work item which is being |
781 | * canceled. While being canceled, a work item may have its PENDING set |
782 | * but stay off timer and worklist for arbitrarily long and nobody should |
783 | * try to steal the PENDING bit. |
784 | */ |
785 | static inline void set_work_data(struct work_struct *work, unsigned long data) |
786 | { |
787 | WARN_ON_ONCE(!work_pending(work)); |
788 | atomic_long_set(v: &work->data, i: data | work_static(work)); |
789 | } |
790 | |
791 | static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, |
792 | unsigned long flags) |
793 | { |
794 | set_work_data(work, data: (unsigned long)pwq | WORK_STRUCT_PENDING | |
795 | WORK_STRUCT_PWQ | flags); |
796 | } |
797 | |
798 | static void set_work_pool_and_keep_pending(struct work_struct *work, |
799 | int pool_id, unsigned long flags) |
800 | { |
801 | set_work_data(work, data: ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | |
802 | WORK_STRUCT_PENDING | flags); |
803 | } |
804 | |
805 | static void set_work_pool_and_clear_pending(struct work_struct *work, |
806 | int pool_id, unsigned long flags) |
807 | { |
808 | /* |
809 | * The following wmb is paired with the implied mb in |
810 | * test_and_set_bit(PENDING) and ensures all updates to @work made |
811 | * here are visible to and precede any updates by the next PENDING |
812 | * owner. |
813 | */ |
814 | smp_wmb(); |
815 | set_work_data(work, data: ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | |
816 | flags); |
817 | /* |
818 | * The following mb guarantees that previous clear of a PENDING bit |
819 | * will not be reordered with any speculative LOADS or STORES from |
820 | * work->current_func, which is executed afterwards. This possible |
821 | * reordering can lead to a missed execution on attempt to queue |
822 | * the same @work. E.g. consider this case: |
823 | * |
824 | * CPU#0 CPU#1 |
825 | * ---------------------------- -------------------------------- |
826 | * |
827 | * 1 STORE event_indicated |
828 | * 2 queue_work_on() { |
829 | * 3 test_and_set_bit(PENDING) |
830 | * 4 } set_..._and_clear_pending() { |
831 | * 5 set_work_data() # clear bit |
832 | * 6 smp_mb() |
833 | * 7 work->current_func() { |
834 | * 8 LOAD event_indicated |
835 | * } |
836 | * |
837 | * Without an explicit full barrier speculative LOAD on line 8 can |
838 | * be executed before CPU#0 does STORE on line 1. If that happens, |
839 | * CPU#0 observes the PENDING bit is still set and new execution of |
840 | * a @work is not queued in a hope, that CPU#1 will eventually |
841 | * finish the queued @work. Meanwhile CPU#1 does not see |
842 | * event_indicated is set, because speculative LOAD was executed |
843 | * before actual STORE. |
844 | */ |
845 | smp_mb(); |
846 | } |
847 | |
848 | static inline struct pool_workqueue *work_struct_pwq(unsigned long data) |
849 | { |
850 | return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); |
851 | } |
852 | |
853 | static struct pool_workqueue *get_work_pwq(struct work_struct *work) |
854 | { |
855 | unsigned long data = atomic_long_read(v: &work->data); |
856 | |
857 | if (data & WORK_STRUCT_PWQ) |
858 | return work_struct_pwq(data); |
859 | else |
860 | return NULL; |
861 | } |
862 | |
863 | /** |
864 | * get_work_pool - return the worker_pool a given work was associated with |
865 | * @work: the work item of interest |
866 | * |
867 | * Pools are created and destroyed under wq_pool_mutex, and allows read |
868 | * access under RCU read lock. As such, this function should be |
869 | * called under wq_pool_mutex or inside of a rcu_read_lock() region. |
870 | * |
871 | * All fields of the returned pool are accessible as long as the above |
872 | * mentioned locking is in effect. If the returned pool needs to be used |
873 | * beyond the critical section, the caller is responsible for ensuring the |
874 | * returned pool is and stays online. |
875 | * |
876 | * Return: The worker_pool @work was last associated with. %NULL if none. |
877 | */ |
878 | static struct worker_pool *get_work_pool(struct work_struct *work) |
879 | { |
880 | unsigned long data = atomic_long_read(v: &work->data); |
881 | int pool_id; |
882 | |
883 | assert_rcu_or_pool_mutex(); |
884 | |
885 | if (data & WORK_STRUCT_PWQ) |
886 | return work_struct_pwq(data)->pool; |
887 | |
888 | pool_id = data >> WORK_OFFQ_POOL_SHIFT; |
889 | if (pool_id == WORK_OFFQ_POOL_NONE) |
890 | return NULL; |
891 | |
892 | return idr_find(&worker_pool_idr, id: pool_id); |
893 | } |
894 | |
895 | /** |
896 | * get_work_pool_id - return the worker pool ID a given work is associated with |
897 | * @work: the work item of interest |
898 | * |
899 | * Return: The worker_pool ID @work was last associated with. |
900 | * %WORK_OFFQ_POOL_NONE if none. |
901 | */ |
902 | static int get_work_pool_id(struct work_struct *work) |
903 | { |
904 | unsigned long data = atomic_long_read(v: &work->data); |
905 | |
906 | if (data & WORK_STRUCT_PWQ) |
907 | return work_struct_pwq(data)->pool->id; |
908 | |
909 | return data >> WORK_OFFQ_POOL_SHIFT; |
910 | } |
911 | |
912 | static void mark_work_canceling(struct work_struct *work) |
913 | { |
914 | unsigned long pool_id = get_work_pool_id(work); |
915 | |
916 | pool_id <<= WORK_OFFQ_POOL_SHIFT; |
917 | set_work_data(work, data: pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING); |
918 | } |
919 | |
920 | static bool work_is_canceling(struct work_struct *work) |
921 | { |
922 | unsigned long data = atomic_long_read(v: &work->data); |
923 | |
924 | return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); |
925 | } |
926 | |
927 | /* |
928 | * Policy functions. These define the policies on how the global worker |
929 | * pools are managed. Unless noted otherwise, these functions assume that |
930 | * they're being called with pool->lock held. |
931 | */ |
932 | |
933 | /* |
934 | * Need to wake up a worker? Called from anything but currently |
935 | * running workers. |
936 | * |
937 | * Note that, because unbound workers never contribute to nr_running, this |
938 | * function will always return %true for unbound pools as long as the |
939 | * worklist isn't empty. |
940 | */ |
941 | static bool need_more_worker(struct worker_pool *pool) |
942 | { |
943 | return !list_empty(head: &pool->worklist) && !pool->nr_running; |
944 | } |
945 | |
946 | /* Can I start working? Called from busy but !running workers. */ |
947 | static bool may_start_working(struct worker_pool *pool) |
948 | { |
949 | return pool->nr_idle; |
950 | } |
951 | |
952 | /* Do I need to keep working? Called from currently running workers. */ |
953 | static bool keep_working(struct worker_pool *pool) |
954 | { |
955 | return !list_empty(head: &pool->worklist) && (pool->nr_running <= 1); |
956 | } |
957 | |
958 | /* Do we need a new worker? Called from manager. */ |
959 | static bool need_to_create_worker(struct worker_pool *pool) |
960 | { |
961 | return need_more_worker(pool) && !may_start_working(pool); |
962 | } |
963 | |
964 | /* Do we have too many workers and should some go away? */ |
965 | static bool too_many_workers(struct worker_pool *pool) |
966 | { |
967 | bool managing = pool->flags & POOL_MANAGER_ACTIVE; |
968 | int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ |
969 | int nr_busy = pool->nr_workers - nr_idle; |
970 | |
971 | return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; |
972 | } |
973 | |
974 | /** |
975 | * worker_set_flags - set worker flags and adjust nr_running accordingly |
976 | * @worker: self |
977 | * @flags: flags to set |
978 | * |
979 | * Set @flags in @worker->flags and adjust nr_running accordingly. |
980 | */ |
981 | static inline void worker_set_flags(struct worker *worker, unsigned int flags) |
982 | { |
983 | struct worker_pool *pool = worker->pool; |
984 | |
985 | lockdep_assert_held(&pool->lock); |
986 | |
987 | /* If transitioning into NOT_RUNNING, adjust nr_running. */ |
988 | if ((flags & WORKER_NOT_RUNNING) && |
989 | !(worker->flags & WORKER_NOT_RUNNING)) { |
990 | pool->nr_running--; |
991 | } |
992 | |
993 | worker->flags |= flags; |
994 | } |
995 | |
996 | /** |
997 | * worker_clr_flags - clear worker flags and adjust nr_running accordingly |
998 | * @worker: self |
999 | * @flags: flags to clear |
1000 | * |
1001 | * Clear @flags in @worker->flags and adjust nr_running accordingly. |
1002 | */ |
1003 | static inline void worker_clr_flags(struct worker *worker, unsigned int flags) |
1004 | { |
1005 | struct worker_pool *pool = worker->pool; |
1006 | unsigned int oflags = worker->flags; |
1007 | |
1008 | lockdep_assert_held(&pool->lock); |
1009 | |
1010 | worker->flags &= ~flags; |
1011 | |
1012 | /* |
1013 | * If transitioning out of NOT_RUNNING, increment nr_running. Note |
1014 | * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask |
1015 | * of multiple flags, not a single flag. |
1016 | */ |
1017 | if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) |
1018 | if (!(worker->flags & WORKER_NOT_RUNNING)) |
1019 | pool->nr_running++; |
1020 | } |
1021 | |
1022 | /* Return the first idle worker. Called with pool->lock held. */ |
1023 | static struct worker *first_idle_worker(struct worker_pool *pool) |
1024 | { |
1025 | if (unlikely(list_empty(&pool->idle_list))) |
1026 | return NULL; |
1027 | |
1028 | return list_first_entry(&pool->idle_list, struct worker, entry); |
1029 | } |
1030 | |
1031 | /** |
1032 | * worker_enter_idle - enter idle state |
1033 | * @worker: worker which is entering idle state |
1034 | * |
1035 | * @worker is entering idle state. Update stats and idle timer if |
1036 | * necessary. |
1037 | * |
1038 | * LOCKING: |
1039 | * raw_spin_lock_irq(pool->lock). |
1040 | */ |
1041 | static void worker_enter_idle(struct worker *worker) |
1042 | { |
1043 | struct worker_pool *pool = worker->pool; |
1044 | |
1045 | if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || |
1046 | WARN_ON_ONCE(!list_empty(&worker->entry) && |
1047 | (worker->hentry.next || worker->hentry.pprev))) |
1048 | return; |
1049 | |
1050 | /* can't use worker_set_flags(), also called from create_worker() */ |
1051 | worker->flags |= WORKER_IDLE; |
1052 | pool->nr_idle++; |
1053 | worker->last_active = jiffies; |
1054 | |
1055 | /* idle_list is LIFO */ |
1056 | list_add(new: &worker->entry, head: &pool->idle_list); |
1057 | |
1058 | if (too_many_workers(pool) && !timer_pending(timer: &pool->idle_timer)) |
1059 | mod_timer(timer: &pool->idle_timer, expires: jiffies + IDLE_WORKER_TIMEOUT); |
1060 | |
1061 | /* Sanity check nr_running. */ |
1062 | WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); |
1063 | } |
1064 | |
1065 | /** |
1066 | * worker_leave_idle - leave idle state |
1067 | * @worker: worker which is leaving idle state |
1068 | * |
1069 | * @worker is leaving idle state. Update stats. |
1070 | * |
1071 | * LOCKING: |
1072 | * raw_spin_lock_irq(pool->lock). |
1073 | */ |
1074 | static void worker_leave_idle(struct worker *worker) |
1075 | { |
1076 | struct worker_pool *pool = worker->pool; |
1077 | |
1078 | if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) |
1079 | return; |
1080 | worker_clr_flags(worker, flags: WORKER_IDLE); |
1081 | pool->nr_idle--; |
1082 | list_del_init(entry: &worker->entry); |
1083 | } |
1084 | |
1085 | /** |
1086 | * find_worker_executing_work - find worker which is executing a work |
1087 | * @pool: pool of interest |
1088 | * @work: work to find worker for |
1089 | * |
1090 | * Find a worker which is executing @work on @pool by searching |
1091 | * @pool->busy_hash which is keyed by the address of @work. For a worker |
1092 | * to match, its current execution should match the address of @work and |
1093 | * its work function. This is to avoid unwanted dependency between |
1094 | * unrelated work executions through a work item being recycled while still |
1095 | * being executed. |
1096 | * |
1097 | * This is a bit tricky. A work item may be freed once its execution |
1098 | * starts and nothing prevents the freed area from being recycled for |
1099 | * another work item. If the same work item address ends up being reused |
1100 | * before the original execution finishes, workqueue will identify the |
1101 | * recycled work item as currently executing and make it wait until the |
1102 | * current execution finishes, introducing an unwanted dependency. |
1103 | * |
1104 | * This function checks the work item address and work function to avoid |
1105 | * false positives. Note that this isn't complete as one may construct a |
1106 | * work function which can introduce dependency onto itself through a |
1107 | * recycled work item. Well, if somebody wants to shoot oneself in the |
1108 | * foot that badly, there's only so much we can do, and if such deadlock |
1109 | * actually occurs, it should be easy to locate the culprit work function. |
1110 | * |
1111 | * CONTEXT: |
1112 | * raw_spin_lock_irq(pool->lock). |
1113 | * |
1114 | * Return: |
1115 | * Pointer to worker which is executing @work if found, %NULL |
1116 | * otherwise. |
1117 | */ |
1118 | static struct worker *find_worker_executing_work(struct worker_pool *pool, |
1119 | struct work_struct *work) |
1120 | { |
1121 | struct worker *worker; |
1122 | |
1123 | hash_for_each_possible(pool->busy_hash, worker, hentry, |
1124 | (unsigned long)work) |
1125 | if (worker->current_work == work && |
1126 | worker->current_func == work->func) |
1127 | return worker; |
1128 | |
1129 | return NULL; |
1130 | } |
1131 | |
1132 | /** |
1133 | * move_linked_works - move linked works to a list |
1134 | * @work: start of series of works to be scheduled |
1135 | * @head: target list to append @work to |
1136 | * @nextp: out parameter for nested worklist walking |
1137 | * |
1138 | * Schedule linked works starting from @work to @head. Work series to be |
1139 | * scheduled starts at @work and includes any consecutive work with |
1140 | * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on |
1141 | * @nextp. |
1142 | * |
1143 | * CONTEXT: |
1144 | * raw_spin_lock_irq(pool->lock). |
1145 | */ |
1146 | static void move_linked_works(struct work_struct *work, struct list_head *head, |
1147 | struct work_struct **nextp) |
1148 | { |
1149 | struct work_struct *n; |
1150 | |
1151 | /* |
1152 | * Linked worklist will always end before the end of the list, |
1153 | * use NULL for list head. |
1154 | */ |
1155 | list_for_each_entry_safe_from(work, n, NULL, entry) { |
1156 | list_move_tail(list: &work->entry, head); |
1157 | if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) |
1158 | break; |
1159 | } |
1160 | |
1161 | /* |
1162 | * If we're already inside safe list traversal and have moved |
1163 | * multiple works to the scheduled queue, the next position |
1164 | * needs to be updated. |
1165 | */ |
1166 | if (nextp) |
1167 | *nextp = n; |
1168 | } |
1169 | |
1170 | /** |
1171 | * assign_work - assign a work item and its linked work items to a worker |
1172 | * @work: work to assign |
1173 | * @worker: worker to assign to |
1174 | * @nextp: out parameter for nested worklist walking |
1175 | * |
1176 | * Assign @work and its linked work items to @worker. If @work is already being |
1177 | * executed by another worker in the same pool, it'll be punted there. |
1178 | * |
1179 | * If @nextp is not NULL, it's updated to point to the next work of the last |
1180 | * scheduled work. This allows assign_work() to be nested inside |
1181 | * list_for_each_entry_safe(). |
1182 | * |
1183 | * Returns %true if @work was successfully assigned to @worker. %false if @work |
1184 | * was punted to another worker already executing it. |
1185 | */ |
1186 | static bool assign_work(struct work_struct *work, struct worker *worker, |
1187 | struct work_struct **nextp) |
1188 | { |
1189 | struct worker_pool *pool = worker->pool; |
1190 | struct worker *collision; |
1191 | |
1192 | lockdep_assert_held(&pool->lock); |
1193 | |
1194 | /* |
1195 | * A single work shouldn't be executed concurrently by multiple workers. |
1196 | * __queue_work() ensures that @work doesn't jump to a different pool |
1197 | * while still running in the previous pool. Here, we should ensure that |
1198 | * @work is not executed concurrently by multiple workers from the same |
1199 | * pool. Check whether anyone is already processing the work. If so, |
1200 | * defer the work to the currently executing one. |
1201 | */ |
1202 | collision = find_worker_executing_work(pool, work); |
1203 | if (unlikely(collision)) { |
1204 | move_linked_works(work, head: &collision->scheduled, nextp); |
1205 | return false; |
1206 | } |
1207 | |
1208 | move_linked_works(work, head: &worker->scheduled, nextp); |
1209 | return true; |
1210 | } |
1211 | |
1212 | static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) |
1213 | { |
1214 | int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; |
1215 | |
1216 | return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; |
1217 | } |
1218 | |
1219 | static void kick_bh_pool(struct worker_pool *pool) |
1220 | { |
1221 | #ifdef CONFIG_SMP |
1222 | /* see drain_dead_softirq_workfn() for BH_DRAINING */ |
1223 | if (unlikely(pool->cpu != smp_processor_id() && |
1224 | !(pool->flags & POOL_BH_DRAINING))) { |
1225 | irq_work_queue_on(work: bh_pool_irq_work(pool), cpu: pool->cpu); |
1226 | return; |
1227 | } |
1228 | #endif |
1229 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
1230 | raise_softirq_irqoff(nr: HI_SOFTIRQ); |
1231 | else |
1232 | raise_softirq_irqoff(nr: TASKLET_SOFTIRQ); |
1233 | } |
1234 | |
1235 | /** |
1236 | * kick_pool - wake up an idle worker if necessary |
1237 | * @pool: pool to kick |
1238 | * |
1239 | * @pool may have pending work items. Wake up worker if necessary. Returns |
1240 | * whether a worker was woken up. |
1241 | */ |
1242 | static bool kick_pool(struct worker_pool *pool) |
1243 | { |
1244 | struct worker *worker = first_idle_worker(pool); |
1245 | struct task_struct *p; |
1246 | |
1247 | lockdep_assert_held(&pool->lock); |
1248 | |
1249 | if (!need_more_worker(pool) || !worker) |
1250 | return false; |
1251 | |
1252 | if (pool->flags & POOL_BH) { |
1253 | kick_bh_pool(pool); |
1254 | return true; |
1255 | } |
1256 | |
1257 | p = worker->task; |
1258 | |
1259 | #ifdef CONFIG_SMP |
1260 | /* |
1261 | * Idle @worker is about to execute @work and waking up provides an |
1262 | * opportunity to migrate @worker at a lower cost by setting the task's |
1263 | * wake_cpu field. Let's see if we want to move @worker to improve |
1264 | * execution locality. |
1265 | * |
1266 | * We're waking the worker that went idle the latest and there's some |
1267 | * chance that @worker is marked idle but hasn't gone off CPU yet. If |
1268 | * so, setting the wake_cpu won't do anything. As this is a best-effort |
1269 | * optimization and the race window is narrow, let's leave as-is for |
1270 | * now. If this becomes pronounced, we can skip over workers which are |
1271 | * still on cpu when picking an idle worker. |
1272 | * |
1273 | * If @pool has non-strict affinity, @worker might have ended up outside |
1274 | * its affinity scope. Repatriate. |
1275 | */ |
1276 | if (!pool->attrs->affn_strict && |
1277 | !cpumask_test_cpu(cpu: p->wake_cpu, cpumask: pool->attrs->__pod_cpumask)) { |
1278 | struct work_struct *work = list_first_entry(&pool->worklist, |
1279 | struct work_struct, entry); |
1280 | p->wake_cpu = cpumask_any_distribute(srcp: pool->attrs->__pod_cpumask); |
1281 | get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; |
1282 | } |
1283 | #endif |
1284 | wake_up_process(tsk: p); |
1285 | return true; |
1286 | } |
1287 | |
1288 | #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT |
1289 | |
1290 | /* |
1291 | * Concurrency-managed per-cpu work items that hog CPU for longer than |
1292 | * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, |
1293 | * which prevents them from stalling other concurrency-managed work items. If a |
1294 | * work function keeps triggering this mechanism, it's likely that the work item |
1295 | * should be using an unbound workqueue instead. |
1296 | * |
1297 | * wq_cpu_intensive_report() tracks work functions which trigger such conditions |
1298 | * and report them so that they can be examined and converted to use unbound |
1299 | * workqueues as appropriate. To avoid flooding the console, each violating work |
1300 | * function is tracked and reported with exponential backoff. |
1301 | */ |
1302 | #define WCI_MAX_ENTS 128 |
1303 | |
1304 | struct wci_ent { |
1305 | work_func_t func; |
1306 | atomic64_t cnt; |
1307 | struct hlist_node hash_node; |
1308 | }; |
1309 | |
1310 | static struct wci_ent wci_ents[WCI_MAX_ENTS]; |
1311 | static int wci_nr_ents; |
1312 | static DEFINE_RAW_SPINLOCK(wci_lock); |
1313 | static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); |
1314 | |
1315 | static struct wci_ent *wci_find_ent(work_func_t func) |
1316 | { |
1317 | struct wci_ent *ent; |
1318 | |
1319 | hash_for_each_possible_rcu(wci_hash, ent, hash_node, |
1320 | (unsigned long)func) { |
1321 | if (ent->func == func) |
1322 | return ent; |
1323 | } |
1324 | return NULL; |
1325 | } |
1326 | |
1327 | static void wq_cpu_intensive_report(work_func_t func) |
1328 | { |
1329 | struct wci_ent *ent; |
1330 | |
1331 | restart: |
1332 | ent = wci_find_ent(func); |
1333 | if (ent) { |
1334 | u64 cnt; |
1335 | |
1336 | /* |
1337 | * Start reporting from the warning_thresh and back off |
1338 | * exponentially. |
1339 | */ |
1340 | cnt = atomic64_inc_return_relaxed(v: &ent->cnt); |
1341 | if (wq_cpu_intensive_warning_thresh && |
1342 | cnt >= wq_cpu_intensive_warning_thresh && |
1343 | is_power_of_2(n: cnt + 1 - wq_cpu_intensive_warning_thresh)) |
1344 | printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", |
1345 | ent->func, wq_cpu_intensive_thresh_us, |
1346 | atomic64_read(&ent->cnt)); |
1347 | return; |
1348 | } |
1349 | |
1350 | /* |
1351 | * @func is a new violation. Allocate a new entry for it. If wcn_ents[] |
1352 | * is exhausted, something went really wrong and we probably made enough |
1353 | * noise already. |
1354 | */ |
1355 | if (wci_nr_ents >= WCI_MAX_ENTS) |
1356 | return; |
1357 | |
1358 | raw_spin_lock(&wci_lock); |
1359 | |
1360 | if (wci_nr_ents >= WCI_MAX_ENTS) { |
1361 | raw_spin_unlock(&wci_lock); |
1362 | return; |
1363 | } |
1364 | |
1365 | if (wci_find_ent(func)) { |
1366 | raw_spin_unlock(&wci_lock); |
1367 | goto restart; |
1368 | } |
1369 | |
1370 | ent = &wci_ents[wci_nr_ents++]; |
1371 | ent->func = func; |
1372 | atomic64_set(v: &ent->cnt, i: 0); |
1373 | hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); |
1374 | |
1375 | raw_spin_unlock(&wci_lock); |
1376 | |
1377 | goto restart; |
1378 | } |
1379 | |
1380 | #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ |
1381 | static void wq_cpu_intensive_report(work_func_t func) {} |
1382 | #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ |
1383 | |
1384 | /** |
1385 | * wq_worker_running - a worker is running again |
1386 | * @task: task waking up |
1387 | * |
1388 | * This function is called when a worker returns from schedule() |
1389 | */ |
1390 | void wq_worker_running(struct task_struct *task) |
1391 | { |
1392 | struct worker *worker = kthread_data(k: task); |
1393 | |
1394 | if (!READ_ONCE(worker->sleeping)) |
1395 | return; |
1396 | |
1397 | /* |
1398 | * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check |
1399 | * and the nr_running increment below, we may ruin the nr_running reset |
1400 | * and leave with an unexpected pool->nr_running == 1 on the newly unbound |
1401 | * pool. Protect against such race. |
1402 | */ |
1403 | preempt_disable(); |
1404 | if (!(worker->flags & WORKER_NOT_RUNNING)) |
1405 | worker->pool->nr_running++; |
1406 | preempt_enable(); |
1407 | |
1408 | /* |
1409 | * CPU intensive auto-detection cares about how long a work item hogged |
1410 | * CPU without sleeping. Reset the starting timestamp on wakeup. |
1411 | */ |
1412 | worker->current_at = worker->task->se.sum_exec_runtime; |
1413 | |
1414 | WRITE_ONCE(worker->sleeping, 0); |
1415 | } |
1416 | |
1417 | /** |
1418 | * wq_worker_sleeping - a worker is going to sleep |
1419 | * @task: task going to sleep |
1420 | * |
1421 | * This function is called from schedule() when a busy worker is |
1422 | * going to sleep. |
1423 | */ |
1424 | void wq_worker_sleeping(struct task_struct *task) |
1425 | { |
1426 | struct worker *worker = kthread_data(k: task); |
1427 | struct worker_pool *pool; |
1428 | |
1429 | /* |
1430 | * Rescuers, which may not have all the fields set up like normal |
1431 | * workers, also reach here, let's not access anything before |
1432 | * checking NOT_RUNNING. |
1433 | */ |
1434 | if (worker->flags & WORKER_NOT_RUNNING) |
1435 | return; |
1436 | |
1437 | pool = worker->pool; |
1438 | |
1439 | /* Return if preempted before wq_worker_running() was reached */ |
1440 | if (READ_ONCE(worker->sleeping)) |
1441 | return; |
1442 | |
1443 | WRITE_ONCE(worker->sleeping, 1); |
1444 | raw_spin_lock_irq(&pool->lock); |
1445 | |
1446 | /* |
1447 | * Recheck in case unbind_workers() preempted us. We don't |
1448 | * want to decrement nr_running after the worker is unbound |
1449 | * and nr_running has been reset. |
1450 | */ |
1451 | if (worker->flags & WORKER_NOT_RUNNING) { |
1452 | raw_spin_unlock_irq(&pool->lock); |
1453 | return; |
1454 | } |
1455 | |
1456 | pool->nr_running--; |
1457 | if (kick_pool(pool)) |
1458 | worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; |
1459 | |
1460 | raw_spin_unlock_irq(&pool->lock); |
1461 | } |
1462 | |
1463 | /** |
1464 | * wq_worker_tick - a scheduler tick occurred while a kworker is running |
1465 | * @task: task currently running |
1466 | * |
1467 | * Called from scheduler_tick(). We're in the IRQ context and the current |
1468 | * worker's fields which follow the 'K' locking rule can be accessed safely. |
1469 | */ |
1470 | void wq_worker_tick(struct task_struct *task) |
1471 | { |
1472 | struct worker *worker = kthread_data(k: task); |
1473 | struct pool_workqueue *pwq = worker->current_pwq; |
1474 | struct worker_pool *pool = worker->pool; |
1475 | |
1476 | if (!pwq) |
1477 | return; |
1478 | |
1479 | pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; |
1480 | |
1481 | if (!wq_cpu_intensive_thresh_us) |
1482 | return; |
1483 | |
1484 | /* |
1485 | * If the current worker is concurrency managed and hogged the CPU for |
1486 | * longer than wq_cpu_intensive_thresh_us, it's automatically marked |
1487 | * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. |
1488 | * |
1489 | * Set @worker->sleeping means that @worker is in the process of |
1490 | * switching out voluntarily and won't be contributing to |
1491 | * @pool->nr_running until it wakes up. As wq_worker_sleeping() also |
1492 | * decrements ->nr_running, setting CPU_INTENSIVE here can lead to |
1493 | * double decrements. The task is releasing the CPU anyway. Let's skip. |
1494 | * We probably want to make this prettier in the future. |
1495 | */ |
1496 | if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || |
1497 | worker->task->se.sum_exec_runtime - worker->current_at < |
1498 | wq_cpu_intensive_thresh_us * NSEC_PER_USEC) |
1499 | return; |
1500 | |
1501 | raw_spin_lock(&pool->lock); |
1502 | |
1503 | worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE); |
1504 | wq_cpu_intensive_report(func: worker->current_func); |
1505 | pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; |
1506 | |
1507 | if (kick_pool(pool)) |
1508 | pwq->stats[PWQ_STAT_CM_WAKEUP]++; |
1509 | |
1510 | raw_spin_unlock(&pool->lock); |
1511 | } |
1512 | |
1513 | /** |
1514 | * wq_worker_last_func - retrieve worker's last work function |
1515 | * @task: Task to retrieve last work function of. |
1516 | * |
1517 | * Determine the last function a worker executed. This is called from |
1518 | * the scheduler to get a worker's last known identity. |
1519 | * |
1520 | * CONTEXT: |
1521 | * raw_spin_lock_irq(rq->lock) |
1522 | * |
1523 | * This function is called during schedule() when a kworker is going |
1524 | * to sleep. It's used by psi to identify aggregation workers during |
1525 | * dequeuing, to allow periodic aggregation to shut-off when that |
1526 | * worker is the last task in the system or cgroup to go to sleep. |
1527 | * |
1528 | * As this function doesn't involve any workqueue-related locking, it |
1529 | * only returns stable values when called from inside the scheduler's |
1530 | * queuing and dequeuing paths, when @task, which must be a kworker, |
1531 | * is guaranteed to not be processing any works. |
1532 | * |
1533 | * Return: |
1534 | * The last work function %current executed as a worker, NULL if it |
1535 | * hasn't executed any work yet. |
1536 | */ |
1537 | work_func_t wq_worker_last_func(struct task_struct *task) |
1538 | { |
1539 | struct worker *worker = kthread_data(k: task); |
1540 | |
1541 | return worker->last_func; |
1542 | } |
1543 | |
1544 | /** |
1545 | * wq_node_nr_active - Determine wq_node_nr_active to use |
1546 | * @wq: workqueue of interest |
1547 | * @node: NUMA node, can be %NUMA_NO_NODE |
1548 | * |
1549 | * Determine wq_node_nr_active to use for @wq on @node. Returns: |
1550 | * |
1551 | * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. |
1552 | * |
1553 | * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. |
1554 | * |
1555 | * - Otherwise, node_nr_active[@node]. |
1556 | */ |
1557 | static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, |
1558 | int node) |
1559 | { |
1560 | if (!(wq->flags & WQ_UNBOUND)) |
1561 | return NULL; |
1562 | |
1563 | if (node == NUMA_NO_NODE) |
1564 | node = nr_node_ids; |
1565 | |
1566 | return wq->node_nr_active[node]; |
1567 | } |
1568 | |
1569 | /** |
1570 | * wq_update_node_max_active - Update per-node max_actives to use |
1571 | * @wq: workqueue to update |
1572 | * @off_cpu: CPU that's going down, -1 if a CPU is not going down |
1573 | * |
1574 | * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is |
1575 | * distributed among nodes according to the proportions of numbers of online |
1576 | * cpus. The result is always between @wq->min_active and max_active. |
1577 | */ |
1578 | static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) |
1579 | { |
1580 | struct cpumask *effective = unbound_effective_cpumask(wq); |
1581 | int min_active = READ_ONCE(wq->min_active); |
1582 | int max_active = READ_ONCE(wq->max_active); |
1583 | int total_cpus, node; |
1584 | |
1585 | lockdep_assert_held(&wq->mutex); |
1586 | |
1587 | if (!wq_topo_initialized) |
1588 | return; |
1589 | |
1590 | if (off_cpu >= 0 && !cpumask_test_cpu(cpu: off_cpu, cpumask: effective)) |
1591 | off_cpu = -1; |
1592 | |
1593 | total_cpus = cpumask_weight_and(srcp1: effective, cpu_online_mask); |
1594 | if (off_cpu >= 0) |
1595 | total_cpus--; |
1596 | |
1597 | for_each_node(node) { |
1598 | int node_cpus; |
1599 | |
1600 | node_cpus = cpumask_weight_and(srcp1: effective, srcp2: cpumask_of_node(node)); |
1601 | if (off_cpu >= 0 && cpu_to_node(cpu: off_cpu) == node) |
1602 | node_cpus--; |
1603 | |
1604 | wq_node_nr_active(wq, node)->max = |
1605 | clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), |
1606 | min_active, max_active); |
1607 | } |
1608 | |
1609 | wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; |
1610 | } |
1611 | |
1612 | /** |
1613 | * get_pwq - get an extra reference on the specified pool_workqueue |
1614 | * @pwq: pool_workqueue to get |
1615 | * |
1616 | * Obtain an extra reference on @pwq. The caller should guarantee that |
1617 | * @pwq has positive refcnt and be holding the matching pool->lock. |
1618 | */ |
1619 | static void get_pwq(struct pool_workqueue *pwq) |
1620 | { |
1621 | lockdep_assert_held(&pwq->pool->lock); |
1622 | WARN_ON_ONCE(pwq->refcnt <= 0); |
1623 | pwq->refcnt++; |
1624 | } |
1625 | |
1626 | /** |
1627 | * put_pwq - put a pool_workqueue reference |
1628 | * @pwq: pool_workqueue to put |
1629 | * |
1630 | * Drop a reference of @pwq. If its refcnt reaches zero, schedule its |
1631 | * destruction. The caller should be holding the matching pool->lock. |
1632 | */ |
1633 | static void put_pwq(struct pool_workqueue *pwq) |
1634 | { |
1635 | lockdep_assert_held(&pwq->pool->lock); |
1636 | if (likely(--pwq->refcnt)) |
1637 | return; |
1638 | /* |
1639 | * @pwq can't be released under pool->lock, bounce to a dedicated |
1640 | * kthread_worker to avoid A-A deadlocks. |
1641 | */ |
1642 | kthread_queue_work(worker: pwq_release_worker, work: &pwq->release_work); |
1643 | } |
1644 | |
1645 | /** |
1646 | * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock |
1647 | * @pwq: pool_workqueue to put (can be %NULL) |
1648 | * |
1649 | * put_pwq() with locking. This function also allows %NULL @pwq. |
1650 | */ |
1651 | static void put_pwq_unlocked(struct pool_workqueue *pwq) |
1652 | { |
1653 | if (pwq) { |
1654 | /* |
1655 | * As both pwqs and pools are RCU protected, the |
1656 | * following lock operations are safe. |
1657 | */ |
1658 | raw_spin_lock_irq(&pwq->pool->lock); |
1659 | put_pwq(pwq); |
1660 | raw_spin_unlock_irq(&pwq->pool->lock); |
1661 | } |
1662 | } |
1663 | |
1664 | static bool pwq_is_empty(struct pool_workqueue *pwq) |
1665 | { |
1666 | return !pwq->nr_active && list_empty(head: &pwq->inactive_works); |
1667 | } |
1668 | |
1669 | static void __pwq_activate_work(struct pool_workqueue *pwq, |
1670 | struct work_struct *work) |
1671 | { |
1672 | unsigned long *wdb = work_data_bits(work); |
1673 | |
1674 | WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); |
1675 | trace_workqueue_activate_work(work); |
1676 | if (list_empty(head: &pwq->pool->worklist)) |
1677 | pwq->pool->watchdog_ts = jiffies; |
1678 | move_linked_works(work, head: &pwq->pool->worklist, NULL); |
1679 | __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); |
1680 | } |
1681 | |
1682 | /** |
1683 | * pwq_activate_work - Activate a work item if inactive |
1684 | * @pwq: pool_workqueue @work belongs to |
1685 | * @work: work item to activate |
1686 | * |
1687 | * Returns %true if activated. %false if already active. |
1688 | */ |
1689 | static bool pwq_activate_work(struct pool_workqueue *pwq, |
1690 | struct work_struct *work) |
1691 | { |
1692 | struct worker_pool *pool = pwq->pool; |
1693 | struct wq_node_nr_active *nna; |
1694 | |
1695 | lockdep_assert_held(&pool->lock); |
1696 | |
1697 | if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) |
1698 | return false; |
1699 | |
1700 | nna = wq_node_nr_active(wq: pwq->wq, node: pool->node); |
1701 | if (nna) |
1702 | atomic_inc(v: &nna->nr); |
1703 | |
1704 | pwq->nr_active++; |
1705 | __pwq_activate_work(pwq, work); |
1706 | return true; |
1707 | } |
1708 | |
1709 | static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) |
1710 | { |
1711 | int max = READ_ONCE(nna->max); |
1712 | |
1713 | while (true) { |
1714 | int old, tmp; |
1715 | |
1716 | old = atomic_read(v: &nna->nr); |
1717 | if (old >= max) |
1718 | return false; |
1719 | tmp = atomic_cmpxchg_relaxed(v: &nna->nr, old, new: old + 1); |
1720 | if (tmp == old) |
1721 | return true; |
1722 | } |
1723 | } |
1724 | |
1725 | /** |
1726 | * pwq_tryinc_nr_active - Try to increment nr_active for a pwq |
1727 | * @pwq: pool_workqueue of interest |
1728 | * @fill: max_active may have increased, try to increase concurrency level |
1729 | * |
1730 | * Try to increment nr_active for @pwq. Returns %true if an nr_active count is |
1731 | * successfully obtained. %false otherwise. |
1732 | */ |
1733 | static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) |
1734 | { |
1735 | struct workqueue_struct *wq = pwq->wq; |
1736 | struct worker_pool *pool = pwq->pool; |
1737 | struct wq_node_nr_active *nna = wq_node_nr_active(wq, node: pool->node); |
1738 | bool obtained = false; |
1739 | |
1740 | lockdep_assert_held(&pool->lock); |
1741 | |
1742 | if (!nna) { |
1743 | /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ |
1744 | obtained = pwq->nr_active < READ_ONCE(wq->max_active); |
1745 | goto out; |
1746 | } |
1747 | |
1748 | if (unlikely(pwq->plugged)) |
1749 | return false; |
1750 | |
1751 | /* |
1752 | * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is |
1753 | * already waiting on $nna, pwq_dec_nr_active() will maintain the |
1754 | * concurrency level. Don't jump the line. |
1755 | * |
1756 | * We need to ignore the pending test after max_active has increased as |
1757 | * pwq_dec_nr_active() can only maintain the concurrency level but not |
1758 | * increase it. This is indicated by @fill. |
1759 | */ |
1760 | if (!list_empty(head: &pwq->pending_node) && likely(!fill)) |
1761 | goto out; |
1762 | |
1763 | obtained = tryinc_node_nr_active(nna); |
1764 | if (obtained) |
1765 | goto out; |
1766 | |
1767 | /* |
1768 | * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs |
1769 | * and try again. The smp_mb() is paired with the implied memory barrier |
1770 | * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either |
1771 | * we see the decremented $nna->nr or they see non-empty |
1772 | * $nna->pending_pwqs. |
1773 | */ |
1774 | raw_spin_lock(&nna->lock); |
1775 | |
1776 | if (list_empty(head: &pwq->pending_node)) |
1777 | list_add_tail(new: &pwq->pending_node, head: &nna->pending_pwqs); |
1778 | else if (likely(!fill)) |
1779 | goto out_unlock; |
1780 | |
1781 | smp_mb(); |
1782 | |
1783 | obtained = tryinc_node_nr_active(nna); |
1784 | |
1785 | /* |
1786 | * If @fill, @pwq might have already been pending. Being spuriously |
1787 | * pending in cold paths doesn't affect anything. Let's leave it be. |
1788 | */ |
1789 | if (obtained && likely(!fill)) |
1790 | list_del_init(entry: &pwq->pending_node); |
1791 | |
1792 | out_unlock: |
1793 | raw_spin_unlock(&nna->lock); |
1794 | out: |
1795 | if (obtained) |
1796 | pwq->nr_active++; |
1797 | return obtained; |
1798 | } |
1799 | |
1800 | /** |
1801 | * pwq_activate_first_inactive - Activate the first inactive work item on a pwq |
1802 | * @pwq: pool_workqueue of interest |
1803 | * @fill: max_active may have increased, try to increase concurrency level |
1804 | * |
1805 | * Activate the first inactive work item of @pwq if available and allowed by |
1806 | * max_active limit. |
1807 | * |
1808 | * Returns %true if an inactive work item has been activated. %false if no |
1809 | * inactive work item is found or max_active limit is reached. |
1810 | */ |
1811 | static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) |
1812 | { |
1813 | struct work_struct *work = |
1814 | list_first_entry_or_null(&pwq->inactive_works, |
1815 | struct work_struct, entry); |
1816 | |
1817 | if (work && pwq_tryinc_nr_active(pwq, fill)) { |
1818 | __pwq_activate_work(pwq, work); |
1819 | return true; |
1820 | } else { |
1821 | return false; |
1822 | } |
1823 | } |
1824 | |
1825 | /** |
1826 | * unplug_oldest_pwq - unplug the oldest pool_workqueue |
1827 | * @wq: workqueue_struct where its oldest pwq is to be unplugged |
1828 | * |
1829 | * This function should only be called for ordered workqueues where only the |
1830 | * oldest pwq is unplugged, the others are plugged to suspend execution to |
1831 | * ensure proper work item ordering:: |
1832 | * |
1833 | * dfl_pwq --------------+ [P] - plugged |
1834 | * | |
1835 | * v |
1836 | * pwqs -> A -> B [P] -> C [P] (newest) |
1837 | * | | | |
1838 | * 1 3 5 |
1839 | * | | | |
1840 | * 2 4 6 |
1841 | * |
1842 | * When the oldest pwq is drained and removed, this function should be called |
1843 | * to unplug the next oldest one to start its work item execution. Note that |
1844 | * pwq's are linked into wq->pwqs with the oldest first, so the first one in |
1845 | * the list is the oldest. |
1846 | */ |
1847 | static void unplug_oldest_pwq(struct workqueue_struct *wq) |
1848 | { |
1849 | struct pool_workqueue *pwq; |
1850 | |
1851 | lockdep_assert_held(&wq->mutex); |
1852 | |
1853 | /* Caller should make sure that pwqs isn't empty before calling */ |
1854 | pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, |
1855 | pwqs_node); |
1856 | raw_spin_lock_irq(&pwq->pool->lock); |
1857 | if (pwq->plugged) { |
1858 | pwq->plugged = false; |
1859 | if (pwq_activate_first_inactive(pwq, fill: true)) |
1860 | kick_pool(pool: pwq->pool); |
1861 | } |
1862 | raw_spin_unlock_irq(&pwq->pool->lock); |
1863 | } |
1864 | |
1865 | /** |
1866 | * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active |
1867 | * @nna: wq_node_nr_active to activate a pending pwq for |
1868 | * @caller_pool: worker_pool the caller is locking |
1869 | * |
1870 | * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. |
1871 | * @caller_pool may be unlocked and relocked to lock other worker_pools. |
1872 | */ |
1873 | static void node_activate_pending_pwq(struct wq_node_nr_active *nna, |
1874 | struct worker_pool *caller_pool) |
1875 | { |
1876 | struct worker_pool *locked_pool = caller_pool; |
1877 | struct pool_workqueue *pwq; |
1878 | struct work_struct *work; |
1879 | |
1880 | lockdep_assert_held(&caller_pool->lock); |
1881 | |
1882 | raw_spin_lock(&nna->lock); |
1883 | retry: |
1884 | pwq = list_first_entry_or_null(&nna->pending_pwqs, |
1885 | struct pool_workqueue, pending_node); |
1886 | if (!pwq) |
1887 | goto out_unlock; |
1888 | |
1889 | /* |
1890 | * If @pwq is for a different pool than @locked_pool, we need to lock |
1891 | * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock |
1892 | * / lock dance. For that, we also need to release @nna->lock as it's |
1893 | * nested inside pool locks. |
1894 | */ |
1895 | if (pwq->pool != locked_pool) { |
1896 | raw_spin_unlock(&locked_pool->lock); |
1897 | locked_pool = pwq->pool; |
1898 | if (!raw_spin_trylock(&locked_pool->lock)) { |
1899 | raw_spin_unlock(&nna->lock); |
1900 | raw_spin_lock(&locked_pool->lock); |
1901 | raw_spin_lock(&nna->lock); |
1902 | goto retry; |
1903 | } |
1904 | } |
1905 | |
1906 | /* |
1907 | * $pwq may not have any inactive work items due to e.g. cancellations. |
1908 | * Drop it from pending_pwqs and see if there's another one. |
1909 | */ |
1910 | work = list_first_entry_or_null(&pwq->inactive_works, |
1911 | struct work_struct, entry); |
1912 | if (!work) { |
1913 | list_del_init(entry: &pwq->pending_node); |
1914 | goto retry; |
1915 | } |
1916 | |
1917 | /* |
1918 | * Acquire an nr_active count and activate the inactive work item. If |
1919 | * $pwq still has inactive work items, rotate it to the end of the |
1920 | * pending_pwqs so that we round-robin through them. This means that |
1921 | * inactive work items are not activated in queueing order which is fine |
1922 | * given that there has never been any ordering across different pwqs. |
1923 | */ |
1924 | if (likely(tryinc_node_nr_active(nna))) { |
1925 | pwq->nr_active++; |
1926 | __pwq_activate_work(pwq, work); |
1927 | |
1928 | if (list_empty(head: &pwq->inactive_works)) |
1929 | list_del_init(entry: &pwq->pending_node); |
1930 | else |
1931 | list_move_tail(list: &pwq->pending_node, head: &nna->pending_pwqs); |
1932 | |
1933 | /* if activating a foreign pool, make sure it's running */ |
1934 | if (pwq->pool != caller_pool) |
1935 | kick_pool(pool: pwq->pool); |
1936 | } |
1937 | |
1938 | out_unlock: |
1939 | raw_spin_unlock(&nna->lock); |
1940 | if (locked_pool != caller_pool) { |
1941 | raw_spin_unlock(&locked_pool->lock); |
1942 | raw_spin_lock(&caller_pool->lock); |
1943 | } |
1944 | } |
1945 | |
1946 | /** |
1947 | * pwq_dec_nr_active - Retire an active count |
1948 | * @pwq: pool_workqueue of interest |
1949 | * |
1950 | * Decrement @pwq's nr_active and try to activate the first inactive work item. |
1951 | * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. |
1952 | */ |
1953 | static void pwq_dec_nr_active(struct pool_workqueue *pwq) |
1954 | { |
1955 | struct worker_pool *pool = pwq->pool; |
1956 | struct wq_node_nr_active *nna = wq_node_nr_active(wq: pwq->wq, node: pool->node); |
1957 | |
1958 | lockdep_assert_held(&pool->lock); |
1959 | |
1960 | /* |
1961 | * @pwq->nr_active should be decremented for both percpu and unbound |
1962 | * workqueues. |
1963 | */ |
1964 | pwq->nr_active--; |
1965 | |
1966 | /* |
1967 | * For a percpu workqueue, it's simple. Just need to kick the first |
1968 | * inactive work item on @pwq itself. |
1969 | */ |
1970 | if (!nna) { |
1971 | pwq_activate_first_inactive(pwq, fill: false); |
1972 | return; |
1973 | } |
1974 | |
1975 | /* |
1976 | * If @pwq is for an unbound workqueue, it's more complicated because |
1977 | * multiple pwqs and pools may be sharing the nr_active count. When a |
1978 | * pwq needs to wait for an nr_active count, it puts itself on |
1979 | * $nna->pending_pwqs. The following atomic_dec_return()'s implied |
1980 | * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to |
1981 | * guarantee that either we see non-empty pending_pwqs or they see |
1982 | * decremented $nna->nr. |
1983 | * |
1984 | * $nna->max may change as CPUs come online/offline and @pwq->wq's |
1985 | * max_active gets updated. However, it is guaranteed to be equal to or |
1986 | * larger than @pwq->wq->min_active which is above zero unless freezing. |
1987 | * This maintains the forward progress guarantee. |
1988 | */ |
1989 | if (atomic_dec_return(v: &nna->nr) >= READ_ONCE(nna->max)) |
1990 | return; |
1991 | |
1992 | if (!list_empty(head: &nna->pending_pwqs)) |
1993 | node_activate_pending_pwq(nna, caller_pool: pool); |
1994 | } |
1995 | |
1996 | /** |
1997 | * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight |
1998 | * @pwq: pwq of interest |
1999 | * @work_data: work_data of work which left the queue |
2000 | * |
2001 | * A work either has completed or is removed from pending queue, |
2002 | * decrement nr_in_flight of its pwq and handle workqueue flushing. |
2003 | * |
2004 | * NOTE: |
2005 | * For unbound workqueues, this function may temporarily drop @pwq->pool->lock |
2006 | * and thus should be called after all other state updates for the in-flight |
2007 | * work item is complete. |
2008 | * |
2009 | * CONTEXT: |
2010 | * raw_spin_lock_irq(pool->lock). |
2011 | */ |
2012 | static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) |
2013 | { |
2014 | int color = get_work_color(work_data); |
2015 | |
2016 | if (!(work_data & WORK_STRUCT_INACTIVE)) |
2017 | pwq_dec_nr_active(pwq); |
2018 | |
2019 | pwq->nr_in_flight[color]--; |
2020 | |
2021 | /* is flush in progress and are we at the flushing tip? */ |
2022 | if (likely(pwq->flush_color != color)) |
2023 | goto out_put; |
2024 | |
2025 | /* are there still in-flight works? */ |
2026 | if (pwq->nr_in_flight[color]) |
2027 | goto out_put; |
2028 | |
2029 | /* this pwq is done, clear flush_color */ |
2030 | pwq->flush_color = -1; |
2031 | |
2032 | /* |
2033 | * If this was the last pwq, wake up the first flusher. It |
2034 | * will handle the rest. |
2035 | */ |
2036 | if (atomic_dec_and_test(v: &pwq->wq->nr_pwqs_to_flush)) |
2037 | complete(&pwq->wq->first_flusher->done); |
2038 | out_put: |
2039 | put_pwq(pwq); |
2040 | } |
2041 | |
2042 | /** |
2043 | * try_to_grab_pending - steal work item from worklist and disable irq |
2044 | * @work: work item to steal |
2045 | * @cflags: %WORK_CANCEL_ flags |
2046 | * @irq_flags: place to store irq state |
2047 | * |
2048 | * Try to grab PENDING bit of @work. This function can handle @work in any |
2049 | * stable state - idle, on timer or on worklist. |
2050 | * |
2051 | * Return: |
2052 | * |
2053 | * ======== ================================================================ |
2054 | * 1 if @work was pending and we successfully stole PENDING |
2055 | * 0 if @work was idle and we claimed PENDING |
2056 | * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry |
2057 | * -ENOENT if someone else is canceling @work, this state may persist |
2058 | * for arbitrarily long |
2059 | * ======== ================================================================ |
2060 | * |
2061 | * Note: |
2062 | * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting |
2063 | * interrupted while holding PENDING and @work off queue, irq must be |
2064 | * disabled on entry. This, combined with delayed_work->timer being |
2065 | * irqsafe, ensures that we return -EAGAIN for finite short period of time. |
2066 | * |
2067 | * On successful return, >= 0, irq is disabled and the caller is |
2068 | * responsible for releasing it using local_irq_restore(*@irq_flags). |
2069 | * |
2070 | * This function is safe to call from any context including IRQ handler. |
2071 | */ |
2072 | static int try_to_grab_pending(struct work_struct *work, u32 cflags, |
2073 | unsigned long *irq_flags) |
2074 | { |
2075 | struct worker_pool *pool; |
2076 | struct pool_workqueue *pwq; |
2077 | |
2078 | local_irq_save(*irq_flags); |
2079 | |
2080 | /* try to steal the timer if it exists */ |
2081 | if (cflags & WORK_CANCEL_DELAYED) { |
2082 | struct delayed_work *dwork = to_delayed_work(work); |
2083 | |
2084 | /* |
2085 | * dwork->timer is irqsafe. If del_timer() fails, it's |
2086 | * guaranteed that the timer is not queued anywhere and not |
2087 | * running on the local CPU. |
2088 | */ |
2089 | if (likely(del_timer(&dwork->timer))) |
2090 | return 1; |
2091 | } |
2092 | |
2093 | /* try to claim PENDING the normal way */ |
2094 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) |
2095 | return 0; |
2096 | |
2097 | rcu_read_lock(); |
2098 | /* |
2099 | * The queueing is in progress, or it is already queued. Try to |
2100 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. |
2101 | */ |
2102 | pool = get_work_pool(work); |
2103 | if (!pool) |
2104 | goto fail; |
2105 | |
2106 | raw_spin_lock(&pool->lock); |
2107 | /* |
2108 | * work->data is guaranteed to point to pwq only while the work |
2109 | * item is queued on pwq->wq, and both updating work->data to point |
2110 | * to pwq on queueing and to pool on dequeueing are done under |
2111 | * pwq->pool->lock. This in turn guarantees that, if work->data |
2112 | * points to pwq which is associated with a locked pool, the work |
2113 | * item is currently queued on that pool. |
2114 | */ |
2115 | pwq = get_work_pwq(work); |
2116 | if (pwq && pwq->pool == pool) { |
2117 | unsigned long work_data; |
2118 | |
2119 | debug_work_deactivate(work); |
2120 | |
2121 | /* |
2122 | * A cancelable inactive work item must be in the |
2123 | * pwq->inactive_works since a queued barrier can't be |
2124 | * canceled (see the comments in insert_wq_barrier()). |
2125 | * |
2126 | * An inactive work item cannot be grabbed directly because |
2127 | * it might have linked barrier work items which, if left |
2128 | * on the inactive_works list, will confuse pwq->nr_active |
2129 | * management later on and cause stall. Make sure the work |
2130 | * item is activated before grabbing. |
2131 | */ |
2132 | pwq_activate_work(pwq, work); |
2133 | |
2134 | list_del_init(entry: &work->entry); |
2135 | |
2136 | /* |
2137 | * work->data points to pwq iff queued. Let's point to pool. As |
2138 | * this destroys work->data needed by the next step, stash it. |
2139 | */ |
2140 | work_data = *work_data_bits(work); |
2141 | set_work_pool_and_keep_pending(work, pool_id: pool->id, flags: 0); |
2142 | |
2143 | /* must be the last step, see the function comment */ |
2144 | pwq_dec_nr_in_flight(pwq, work_data); |
2145 | |
2146 | raw_spin_unlock(&pool->lock); |
2147 | rcu_read_unlock(); |
2148 | return 1; |
2149 | } |
2150 | raw_spin_unlock(&pool->lock); |
2151 | fail: |
2152 | rcu_read_unlock(); |
2153 | local_irq_restore(*irq_flags); |
2154 | if (work_is_canceling(work)) |
2155 | return -ENOENT; |
2156 | cpu_relax(); |
2157 | return -EAGAIN; |
2158 | } |
2159 | |
2160 | struct cwt_wait { |
2161 | wait_queue_entry_t wait; |
2162 | struct work_struct *work; |
2163 | }; |
2164 | |
2165 | static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
2166 | { |
2167 | struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); |
2168 | |
2169 | if (cwait->work != key) |
2170 | return 0; |
2171 | return autoremove_wake_function(wq_entry: wait, mode, sync, key); |
2172 | } |
2173 | |
2174 | /** |
2175 | * work_grab_pending - steal work item from worklist and disable irq |
2176 | * @work: work item to steal |
2177 | * @cflags: %WORK_CANCEL_ flags |
2178 | * @irq_flags: place to store IRQ state |
2179 | * |
2180 | * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer |
2181 | * or on worklist. |
2182 | * |
2183 | * Must be called in process context. IRQ is disabled on return with IRQ state |
2184 | * stored in *@irq_flags. The caller is responsible for re-enabling it using |
2185 | * local_irq_restore(). |
2186 | * |
2187 | * Returns %true if @work was pending. %false if idle. |
2188 | */ |
2189 | static bool work_grab_pending(struct work_struct *work, u32 cflags, |
2190 | unsigned long *irq_flags) |
2191 | { |
2192 | struct cwt_wait cwait; |
2193 | int ret; |
2194 | |
2195 | might_sleep(); |
2196 | repeat: |
2197 | ret = try_to_grab_pending(work, cflags, irq_flags); |
2198 | if (likely(ret >= 0)) |
2199 | return ret; |
2200 | if (ret != -ENOENT) |
2201 | goto repeat; |
2202 | |
2203 | /* |
2204 | * Someone is already canceling. Wait for it to finish. flush_work() |
2205 | * doesn't work for PREEMPT_NONE because we may get woken up between |
2206 | * @work's completion and the other canceling task resuming and clearing |
2207 | * CANCELING - flush_work() will return false immediately as @work is no |
2208 | * longer busy, try_to_grab_pending() will return -ENOENT as @work is |
2209 | * still being canceled and the other canceling task won't be able to |
2210 | * clear CANCELING as we're hogging the CPU. |
2211 | * |
2212 | * Let's wait for completion using a waitqueue. As this may lead to the |
2213 | * thundering herd problem, use a custom wake function which matches |
2214 | * @work along with exclusive wait and wakeup. |
2215 | */ |
2216 | init_wait(&cwait.wait); |
2217 | cwait.wait.func = cwt_wakefn; |
2218 | cwait.work = work; |
2219 | |
2220 | prepare_to_wait_exclusive(wq_head: &wq_cancel_waitq, wq_entry: &cwait.wait, |
2221 | TASK_UNINTERRUPTIBLE); |
2222 | if (work_is_canceling(work)) |
2223 | schedule(); |
2224 | finish_wait(wq_head: &wq_cancel_waitq, wq_entry: &cwait.wait); |
2225 | |
2226 | goto repeat; |
2227 | } |
2228 | |
2229 | /** |
2230 | * insert_work - insert a work into a pool |
2231 | * @pwq: pwq @work belongs to |
2232 | * @work: work to insert |
2233 | * @head: insertion point |
2234 | * @extra_flags: extra WORK_STRUCT_* flags to set |
2235 | * |
2236 | * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to |
2237 | * work_struct flags. |
2238 | * |
2239 | * CONTEXT: |
2240 | * raw_spin_lock_irq(pool->lock). |
2241 | */ |
2242 | static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, |
2243 | struct list_head *head, unsigned int extra_flags) |
2244 | { |
2245 | debug_work_activate(work); |
2246 | |
2247 | /* record the work call stack in order to print it in KASAN reports */ |
2248 | kasan_record_aux_stack_noalloc(ptr: work); |
2249 | |
2250 | /* we own @work, set data and link */ |
2251 | set_work_pwq(work, pwq, flags: extra_flags); |
2252 | list_add_tail(new: &work->entry, head); |
2253 | get_pwq(pwq); |
2254 | } |
2255 | |
2256 | /* |
2257 | * Test whether @work is being queued from another work executing on the |
2258 | * same workqueue. |
2259 | */ |
2260 | static bool is_chained_work(struct workqueue_struct *wq) |
2261 | { |
2262 | struct worker *worker; |
2263 | |
2264 | worker = current_wq_worker(); |
2265 | /* |
2266 | * Return %true iff I'm a worker executing a work item on @wq. If |
2267 | * I'm @worker, it's safe to dereference it without locking. |
2268 | */ |
2269 | return worker && worker->current_pwq->wq == wq; |
2270 | } |
2271 | |
2272 | /* |
2273 | * When queueing an unbound work item to a wq, prefer local CPU if allowed |
2274 | * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to |
2275 | * avoid perturbing sensitive tasks. |
2276 | */ |
2277 | static int wq_select_unbound_cpu(int cpu) |
2278 | { |
2279 | int new_cpu; |
2280 | |
2281 | if (likely(!wq_debug_force_rr_cpu)) { |
2282 | if (cpumask_test_cpu(cpu, cpumask: wq_unbound_cpumask)) |
2283 | return cpu; |
2284 | } else { |
2285 | pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); |
2286 | } |
2287 | |
2288 | new_cpu = __this_cpu_read(wq_rr_cpu_last); |
2289 | new_cpu = cpumask_next_and(n: new_cpu, src1p: wq_unbound_cpumask, cpu_online_mask); |
2290 | if (unlikely(new_cpu >= nr_cpu_ids)) { |
2291 | new_cpu = cpumask_first_and(srcp1: wq_unbound_cpumask, cpu_online_mask); |
2292 | if (unlikely(new_cpu >= nr_cpu_ids)) |
2293 | return cpu; |
2294 | } |
2295 | __this_cpu_write(wq_rr_cpu_last, new_cpu); |
2296 | |
2297 | return new_cpu; |
2298 | } |
2299 | |
2300 | static void __queue_work(int cpu, struct workqueue_struct *wq, |
2301 | struct work_struct *work) |
2302 | { |
2303 | struct pool_workqueue *pwq; |
2304 | struct worker_pool *last_pool, *pool; |
2305 | unsigned int work_flags; |
2306 | unsigned int req_cpu = cpu; |
2307 | |
2308 | /* |
2309 | * While a work item is PENDING && off queue, a task trying to |
2310 | * steal the PENDING will busy-loop waiting for it to either get |
2311 | * queued or lose PENDING. Grabbing PENDING and queueing should |
2312 | * happen with IRQ disabled. |
2313 | */ |
2314 | lockdep_assert_irqs_disabled(); |
2315 | |
2316 | /* |
2317 | * For a draining wq, only works from the same workqueue are |
2318 | * allowed. The __WQ_DESTROYING helps to spot the issue that |
2319 | * queues a new work item to a wq after destroy_workqueue(wq). |
2320 | */ |
2321 | if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && |
2322 | WARN_ON_ONCE(!is_chained_work(wq)))) |
2323 | return; |
2324 | rcu_read_lock(); |
2325 | retry: |
2326 | /* pwq which will be used unless @work is executing elsewhere */ |
2327 | if (req_cpu == WORK_CPU_UNBOUND) { |
2328 | if (wq->flags & WQ_UNBOUND) |
2329 | cpu = wq_select_unbound_cpu(raw_smp_processor_id()); |
2330 | else |
2331 | cpu = raw_smp_processor_id(); |
2332 | } |
2333 | |
2334 | pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); |
2335 | pool = pwq->pool; |
2336 | |
2337 | /* |
2338 | * If @work was previously on a different pool, it might still be |
2339 | * running there, in which case the work needs to be queued on that |
2340 | * pool to guarantee non-reentrancy. |
2341 | */ |
2342 | last_pool = get_work_pool(work); |
2343 | if (last_pool && last_pool != pool) { |
2344 | struct worker *worker; |
2345 | |
2346 | raw_spin_lock(&last_pool->lock); |
2347 | |
2348 | worker = find_worker_executing_work(pool: last_pool, work); |
2349 | |
2350 | if (worker && worker->current_pwq->wq == wq) { |
2351 | pwq = worker->current_pwq; |
2352 | pool = pwq->pool; |
2353 | WARN_ON_ONCE(pool != last_pool); |
2354 | } else { |
2355 | /* meh... not running there, queue here */ |
2356 | raw_spin_unlock(&last_pool->lock); |
2357 | raw_spin_lock(&pool->lock); |
2358 | } |
2359 | } else { |
2360 | raw_spin_lock(&pool->lock); |
2361 | } |
2362 | |
2363 | /* |
2364 | * pwq is determined and locked. For unbound pools, we could have raced |
2365 | * with pwq release and it could already be dead. If its refcnt is zero, |
2366 | * repeat pwq selection. Note that unbound pwqs never die without |
2367 | * another pwq replacing it in cpu_pwq or while work items are executing |
2368 | * on it, so the retrying is guaranteed to make forward-progress. |
2369 | */ |
2370 | if (unlikely(!pwq->refcnt)) { |
2371 | if (wq->flags & WQ_UNBOUND) { |
2372 | raw_spin_unlock(&pool->lock); |
2373 | cpu_relax(); |
2374 | goto retry; |
2375 | } |
2376 | /* oops */ |
2377 | WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", |
2378 | wq->name, cpu); |
2379 | } |
2380 | |
2381 | /* pwq determined, queue */ |
2382 | trace_workqueue_queue_work(req_cpu, pwq, work); |
2383 | |
2384 | if (WARN_ON(!list_empty(&work->entry))) |
2385 | goto out; |
2386 | |
2387 | pwq->nr_in_flight[pwq->work_color]++; |
2388 | work_flags = work_color_to_flags(color: pwq->work_color); |
2389 | |
2390 | /* |
2391 | * Limit the number of concurrently active work items to max_active. |
2392 | * @work must also queue behind existing inactive work items to maintain |
2393 | * ordering when max_active changes. See wq_adjust_max_active(). |
2394 | */ |
2395 | if (list_empty(head: &pwq->inactive_works) && pwq_tryinc_nr_active(pwq, fill: false)) { |
2396 | if (list_empty(head: &pool->worklist)) |
2397 | pool->watchdog_ts = jiffies; |
2398 | |
2399 | trace_workqueue_activate_work(work); |
2400 | insert_work(pwq, work, head: &pool->worklist, extra_flags: work_flags); |
2401 | kick_pool(pool); |
2402 | } else { |
2403 | work_flags |= WORK_STRUCT_INACTIVE; |
2404 | insert_work(pwq, work, head: &pwq->inactive_works, extra_flags: work_flags); |
2405 | } |
2406 | |
2407 | out: |
2408 | raw_spin_unlock(&pool->lock); |
2409 | rcu_read_unlock(); |
2410 | } |
2411 | |
2412 | /** |
2413 | * queue_work_on - queue work on specific cpu |
2414 | * @cpu: CPU number to execute work on |
2415 | * @wq: workqueue to use |
2416 | * @work: work to queue |
2417 | * |
2418 | * We queue the work to a specific CPU, the caller must ensure it |
2419 | * can't go away. Callers that fail to ensure that the specified |
2420 | * CPU cannot go away will execute on a randomly chosen CPU. |
2421 | * But note well that callers specifying a CPU that never has been |
2422 | * online will get a splat. |
2423 | * |
2424 | * Return: %false if @work was already on a queue, %true otherwise. |
2425 | */ |
2426 | bool queue_work_on(int cpu, struct workqueue_struct *wq, |
2427 | struct work_struct *work) |
2428 | { |
2429 | bool ret = false; |
2430 | unsigned long irq_flags; |
2431 | |
2432 | local_irq_save(irq_flags); |
2433 | |
2434 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
2435 | __queue_work(cpu, wq, work); |
2436 | ret = true; |
2437 | } |
2438 | |
2439 | local_irq_restore(irq_flags); |
2440 | return ret; |
2441 | } |
2442 | EXPORT_SYMBOL(queue_work_on); |
2443 | |
2444 | /** |
2445 | * select_numa_node_cpu - Select a CPU based on NUMA node |
2446 | * @node: NUMA node ID that we want to select a CPU from |
2447 | * |
2448 | * This function will attempt to find a "random" cpu available on a given |
2449 | * node. If there are no CPUs available on the given node it will return |
2450 | * WORK_CPU_UNBOUND indicating that we should just schedule to any |
2451 | * available CPU if we need to schedule this work. |
2452 | */ |
2453 | static int select_numa_node_cpu(int node) |
2454 | { |
2455 | int cpu; |
2456 | |
2457 | /* Delay binding to CPU if node is not valid or online */ |
2458 | if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) |
2459 | return WORK_CPU_UNBOUND; |
2460 | |
2461 | /* Use local node/cpu if we are already there */ |
2462 | cpu = raw_smp_processor_id(); |
2463 | if (node == cpu_to_node(cpu)) |
2464 | return cpu; |
2465 | |
2466 | /* Use "random" otherwise know as "first" online CPU of node */ |
2467 | cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); |
2468 | |
2469 | /* If CPU is valid return that, otherwise just defer */ |
2470 | return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; |
2471 | } |
2472 | |
2473 | /** |
2474 | * queue_work_node - queue work on a "random" cpu for a given NUMA node |
2475 | * @node: NUMA node that we are targeting the work for |
2476 | * @wq: workqueue to use |
2477 | * @work: work to queue |
2478 | * |
2479 | * We queue the work to a "random" CPU within a given NUMA node. The basic |
2480 | * idea here is to provide a way to somehow associate work with a given |
2481 | * NUMA node. |
2482 | * |
2483 | * This function will only make a best effort attempt at getting this onto |
2484 | * the right NUMA node. If no node is requested or the requested node is |
2485 | * offline then we just fall back to standard queue_work behavior. |
2486 | * |
2487 | * Currently the "random" CPU ends up being the first available CPU in the |
2488 | * intersection of cpu_online_mask and the cpumask of the node, unless we |
2489 | * are running on the node. In that case we just use the current CPU. |
2490 | * |
2491 | * Return: %false if @work was already on a queue, %true otherwise. |
2492 | */ |
2493 | bool queue_work_node(int node, struct workqueue_struct *wq, |
2494 | struct work_struct *work) |
2495 | { |
2496 | unsigned long irq_flags; |
2497 | bool ret = false; |
2498 | |
2499 | /* |
2500 | * This current implementation is specific to unbound workqueues. |
2501 | * Specifically we only return the first available CPU for a given |
2502 | * node instead of cycling through individual CPUs within the node. |
2503 | * |
2504 | * If this is used with a per-cpu workqueue then the logic in |
2505 | * workqueue_select_cpu_near would need to be updated to allow for |
2506 | * some round robin type logic. |
2507 | */ |
2508 | WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); |
2509 | |
2510 | local_irq_save(irq_flags); |
2511 | |
2512 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
2513 | int cpu = select_numa_node_cpu(node); |
2514 | |
2515 | __queue_work(cpu, wq, work); |
2516 | ret = true; |
2517 | } |
2518 | |
2519 | local_irq_restore(irq_flags); |
2520 | return ret; |
2521 | } |
2522 | EXPORT_SYMBOL_GPL(queue_work_node); |
2523 | |
2524 | void delayed_work_timer_fn(struct timer_list *t) |
2525 | { |
2526 | struct delayed_work *dwork = from_timer(dwork, t, timer); |
2527 | |
2528 | /* should have been called from irqsafe timer with irq already off */ |
2529 | __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work); |
2530 | } |
2531 | EXPORT_SYMBOL(delayed_work_timer_fn); |
2532 | |
2533 | static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, |
2534 | struct delayed_work *dwork, unsigned long delay) |
2535 | { |
2536 | struct timer_list *timer = &dwork->timer; |
2537 | struct work_struct *work = &dwork->work; |
2538 | |
2539 | WARN_ON_ONCE(!wq); |
2540 | WARN_ON_ONCE(timer->function != delayed_work_timer_fn); |
2541 | WARN_ON_ONCE(timer_pending(timer)); |
2542 | WARN_ON_ONCE(!list_empty(&work->entry)); |
2543 | |
2544 | /* |
2545 | * If @delay is 0, queue @dwork->work immediately. This is for |
2546 | * both optimization and correctness. The earliest @timer can |
2547 | * expire is on the closest next tick and delayed_work users depend |
2548 | * on that there's no such delay when @delay is 0. |
2549 | */ |
2550 | if (!delay) { |
2551 | __queue_work(cpu, wq, work: &dwork->work); |
2552 | return; |
2553 | } |
2554 | |
2555 | dwork->wq = wq; |
2556 | dwork->cpu = cpu; |
2557 | timer->expires = jiffies + delay; |
2558 | |
2559 | if (housekeeping_enabled(type: HK_TYPE_TIMER)) { |
2560 | /* If the current cpu is a housekeeping cpu, use it. */ |
2561 | cpu = smp_processor_id(); |
2562 | if (!housekeeping_test_cpu(cpu, type: HK_TYPE_TIMER)) |
2563 | cpu = housekeeping_any_cpu(type: HK_TYPE_TIMER); |
2564 | add_timer_on(timer, cpu); |
2565 | } else { |
2566 | if (likely(cpu == WORK_CPU_UNBOUND)) |
2567 | add_timer_global(timer); |
2568 | else |
2569 | add_timer_on(timer, cpu); |
2570 | } |
2571 | } |
2572 | |
2573 | /** |
2574 | * queue_delayed_work_on - queue work on specific CPU after delay |
2575 | * @cpu: CPU number to execute work on |
2576 | * @wq: workqueue to use |
2577 | * @dwork: work to queue |
2578 | * @delay: number of jiffies to wait before queueing |
2579 | * |
2580 | * Return: %false if @work was already on a queue, %true otherwise. If |
2581 | * @delay is zero and @dwork is idle, it will be scheduled for immediate |
2582 | * execution. |
2583 | */ |
2584 | bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, |
2585 | struct delayed_work *dwork, unsigned long delay) |
2586 | { |
2587 | struct work_struct *work = &dwork->work; |
2588 | bool ret = false; |
2589 | unsigned long irq_flags; |
2590 | |
2591 | /* read the comment in __queue_work() */ |
2592 | local_irq_save(irq_flags); |
2593 | |
2594 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
2595 | __queue_delayed_work(cpu, wq, dwork, delay); |
2596 | ret = true; |
2597 | } |
2598 | |
2599 | local_irq_restore(irq_flags); |
2600 | return ret; |
2601 | } |
2602 | EXPORT_SYMBOL(queue_delayed_work_on); |
2603 | |
2604 | /** |
2605 | * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU |
2606 | * @cpu: CPU number to execute work on |
2607 | * @wq: workqueue to use |
2608 | * @dwork: work to queue |
2609 | * @delay: number of jiffies to wait before queueing |
2610 | * |
2611 | * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, |
2612 | * modify @dwork's timer so that it expires after @delay. If @delay is |
2613 | * zero, @work is guaranteed to be scheduled immediately regardless of its |
2614 | * current state. |
2615 | * |
2616 | * Return: %false if @dwork was idle and queued, %true if @dwork was |
2617 | * pending and its timer was modified. |
2618 | * |
2619 | * This function is safe to call from any context including IRQ handler. |
2620 | * See try_to_grab_pending() for details. |
2621 | */ |
2622 | bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, |
2623 | struct delayed_work *dwork, unsigned long delay) |
2624 | { |
2625 | unsigned long irq_flags; |
2626 | int ret; |
2627 | |
2628 | do { |
2629 | ret = try_to_grab_pending(work: &dwork->work, cflags: WORK_CANCEL_DELAYED, |
2630 | irq_flags: &irq_flags); |
2631 | } while (unlikely(ret == -EAGAIN)); |
2632 | |
2633 | if (likely(ret >= 0)) { |
2634 | __queue_delayed_work(cpu, wq, dwork, delay); |
2635 | local_irq_restore(irq_flags); |
2636 | } |
2637 | |
2638 | /* -ENOENT from try_to_grab_pending() becomes %true */ |
2639 | return ret; |
2640 | } |
2641 | EXPORT_SYMBOL_GPL(mod_delayed_work_on); |
2642 | |
2643 | static void rcu_work_rcufn(struct rcu_head *rcu) |
2644 | { |
2645 | struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); |
2646 | |
2647 | /* read the comment in __queue_work() */ |
2648 | local_irq_disable(); |
2649 | __queue_work(cpu: WORK_CPU_UNBOUND, wq: rwork->wq, work: &rwork->work); |
2650 | local_irq_enable(); |
2651 | } |
2652 | |
2653 | /** |
2654 | * queue_rcu_work - queue work after a RCU grace period |
2655 | * @wq: workqueue to use |
2656 | * @rwork: work to queue |
2657 | * |
2658 | * Return: %false if @rwork was already pending, %true otherwise. Note |
2659 | * that a full RCU grace period is guaranteed only after a %true return. |
2660 | * While @rwork is guaranteed to be executed after a %false return, the |
2661 | * execution may happen before a full RCU grace period has passed. |
2662 | */ |
2663 | bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) |
2664 | { |
2665 | struct work_struct *work = &rwork->work; |
2666 | |
2667 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
2668 | rwork->wq = wq; |
2669 | call_rcu_hurry(head: &rwork->rcu, func: rcu_work_rcufn); |
2670 | return true; |
2671 | } |
2672 | |
2673 | return false; |
2674 | } |
2675 | EXPORT_SYMBOL(queue_rcu_work); |
2676 | |
2677 | static struct worker *alloc_worker(int node) |
2678 | { |
2679 | struct worker *worker; |
2680 | |
2681 | worker = kzalloc_node(size: sizeof(*worker), GFP_KERNEL, node); |
2682 | if (worker) { |
2683 | INIT_LIST_HEAD(list: &worker->entry); |
2684 | INIT_LIST_HEAD(list: &worker->scheduled); |
2685 | INIT_LIST_HEAD(list: &worker->node); |
2686 | /* on creation a worker is in !idle && prep state */ |
2687 | worker->flags = WORKER_PREP; |
2688 | } |
2689 | return worker; |
2690 | } |
2691 | |
2692 | static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) |
2693 | { |
2694 | if (pool->cpu < 0 && pool->attrs->affn_strict) |
2695 | return pool->attrs->__pod_cpumask; |
2696 | else |
2697 | return pool->attrs->cpumask; |
2698 | } |
2699 | |
2700 | /** |
2701 | * worker_attach_to_pool() - attach a worker to a pool |
2702 | * @worker: worker to be attached |
2703 | * @pool: the target pool |
2704 | * |
2705 | * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and |
2706 | * cpu-binding of @worker are kept coordinated with the pool across |
2707 | * cpu-[un]hotplugs. |
2708 | */ |
2709 | static void worker_attach_to_pool(struct worker *worker, |
2710 | struct worker_pool *pool) |
2711 | { |
2712 | mutex_lock(&wq_pool_attach_mutex); |
2713 | |
2714 | /* |
2715 | * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable |
2716 | * across this function. See the comments above the flag definition for |
2717 | * details. BH workers are, while per-CPU, always DISASSOCIATED. |
2718 | */ |
2719 | if (pool->flags & POOL_DISASSOCIATED) { |
2720 | worker->flags |= WORKER_UNBOUND; |
2721 | } else { |
2722 | WARN_ON_ONCE(pool->flags & POOL_BH); |
2723 | kthread_set_per_cpu(k: worker->task, cpu: pool->cpu); |
2724 | } |
2725 | |
2726 | if (worker->rescue_wq) |
2727 | set_cpus_allowed_ptr(p: worker->task, new_mask: pool_allowed_cpus(pool)); |
2728 | |
2729 | list_add_tail(new: &worker->node, head: &pool->workers); |
2730 | worker->pool = pool; |
2731 | |
2732 | mutex_unlock(lock: &wq_pool_attach_mutex); |
2733 | } |
2734 | |
2735 | /** |
2736 | * worker_detach_from_pool() - detach a worker from its pool |
2737 | * @worker: worker which is attached to its pool |
2738 | * |
2739 | * Undo the attaching which had been done in worker_attach_to_pool(). The |
2740 | * caller worker shouldn't access to the pool after detached except it has |
2741 | * other reference to the pool. |
2742 | */ |
2743 | static void worker_detach_from_pool(struct worker *worker) |
2744 | { |
2745 | struct worker_pool *pool = worker->pool; |
2746 | struct completion *detach_completion = NULL; |
2747 | |
2748 | /* there is one permanent BH worker per CPU which should never detach */ |
2749 | WARN_ON_ONCE(pool->flags & POOL_BH); |
2750 | |
2751 | mutex_lock(&wq_pool_attach_mutex); |
2752 | |
2753 | kthread_set_per_cpu(k: worker->task, cpu: -1); |
2754 | list_del(entry: &worker->node); |
2755 | worker->pool = NULL; |
2756 | |
2757 | if (list_empty(head: &pool->workers) && list_empty(head: &pool->dying_workers)) |
2758 | detach_completion = pool->detach_completion; |
2759 | mutex_unlock(lock: &wq_pool_attach_mutex); |
2760 | |
2761 | /* clear leftover flags without pool->lock after it is detached */ |
2762 | worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); |
2763 | |
2764 | if (detach_completion) |
2765 | complete(detach_completion); |
2766 | } |
2767 | |
2768 | /** |
2769 | * create_worker - create a new workqueue worker |
2770 | * @pool: pool the new worker will belong to |
2771 | * |
2772 | * Create and start a new worker which is attached to @pool. |
2773 | * |
2774 | * CONTEXT: |
2775 | * Might sleep. Does GFP_KERNEL allocations. |
2776 | * |
2777 | * Return: |
2778 | * Pointer to the newly created worker. |
2779 | */ |
2780 | static struct worker *create_worker(struct worker_pool *pool) |
2781 | { |
2782 | struct worker *worker; |
2783 | int id; |
2784 | char id_buf[23]; |
2785 | |
2786 | /* ID is needed to determine kthread name */ |
2787 | id = ida_alloc(ida: &pool->worker_ida, GFP_KERNEL); |
2788 | if (id < 0) { |
2789 | pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", |
2790 | ERR_PTR(id)); |
2791 | return NULL; |
2792 | } |
2793 | |
2794 | worker = alloc_worker(node: pool->node); |
2795 | if (!worker) { |
2796 | pr_err_once("workqueue: Failed to allocate a worker\n"); |
2797 | goto fail; |
2798 | } |
2799 | |
2800 | worker->id = id; |
2801 | |
2802 | if (!(pool->flags & POOL_BH)) { |
2803 | if (pool->cpu >= 0) |
2804 | snprintf(buf: id_buf, size: sizeof(id_buf), fmt: "%d:%d%s", pool->cpu, id, |
2805 | pool->attrs->nice < 0 ? "H": ""); |
2806 | else |
2807 | snprintf(buf: id_buf, size: sizeof(id_buf), fmt: "u%d:%d", pool->id, id); |
2808 | |
2809 | worker->task = kthread_create_on_node(threadfn: worker_thread, data: worker, |
2810 | node: pool->node, namefmt: "kworker/%s", id_buf); |
2811 | if (IS_ERR(ptr: worker->task)) { |
2812 | if (PTR_ERR(ptr: worker->task) == -EINTR) { |
2813 | pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", |
2814 | id_buf); |
2815 | } else { |
2816 | pr_err_once("workqueue: Failed to create a worker thread: %pe", |
2817 | worker->task); |
2818 | } |
2819 | goto fail; |
2820 | } |
2821 | |
2822 | set_user_nice(p: worker->task, nice: pool->attrs->nice); |
2823 | kthread_bind_mask(k: worker->task, mask: pool_allowed_cpus(pool)); |
2824 | } |
2825 | |
2826 | /* successful, attach the worker to the pool */ |
2827 | worker_attach_to_pool(worker, pool); |
2828 | |
2829 | /* start the newly created worker */ |
2830 | raw_spin_lock_irq(&pool->lock); |
2831 | |
2832 | worker->pool->nr_workers++; |
2833 | worker_enter_idle(worker); |
2834 | |
2835 | /* |
2836 | * @worker is waiting on a completion in kthread() and will trigger hung |
2837 | * check if not woken up soon. As kick_pool() is noop if @pool is empty, |
2838 | * wake it up explicitly. |
2839 | */ |
2840 | if (worker->task) |
2841 | wake_up_process(tsk: worker->task); |
2842 | |
2843 | raw_spin_unlock_irq(&pool->lock); |
2844 | |
2845 | return worker; |
2846 | |
2847 | fail: |
2848 | ida_free(&pool->worker_ida, id); |
2849 | kfree(objp: worker); |
2850 | return NULL; |
2851 | } |
2852 | |
2853 | static void unbind_worker(struct worker *worker) |
2854 | { |
2855 | lockdep_assert_held(&wq_pool_attach_mutex); |
2856 | |
2857 | kthread_set_per_cpu(k: worker->task, cpu: -1); |
2858 | if (cpumask_intersects(src1p: wq_unbound_cpumask, cpu_active_mask)) |
2859 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); |
2860 | else |
2861 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); |
2862 | } |
2863 | |
2864 | static void wake_dying_workers(struct list_head *cull_list) |
2865 | { |
2866 | struct worker *worker, *tmp; |
2867 | |
2868 | list_for_each_entry_safe(worker, tmp, cull_list, entry) { |
2869 | list_del_init(entry: &worker->entry); |
2870 | unbind_worker(worker); |
2871 | /* |
2872 | * If the worker was somehow already running, then it had to be |
2873 | * in pool->idle_list when set_worker_dying() happened or we |
2874 | * wouldn't have gotten here. |
2875 | * |
2876 | * Thus, the worker must either have observed the WORKER_DIE |
2877 | * flag, or have set its state to TASK_IDLE. Either way, the |
2878 | * below will be observed by the worker and is safe to do |
2879 | * outside of pool->lock. |
2880 | */ |
2881 | wake_up_process(tsk: worker->task); |
2882 | } |
2883 | } |
2884 | |
2885 | /** |
2886 | * set_worker_dying - Tag a worker for destruction |
2887 | * @worker: worker to be destroyed |
2888 | * @list: transfer worker away from its pool->idle_list and into list |
2889 | * |
2890 | * Tag @worker for destruction and adjust @pool stats accordingly. The worker |
2891 | * should be idle. |
2892 | * |
2893 | * CONTEXT: |
2894 | * raw_spin_lock_irq(pool->lock). |
2895 | */ |
2896 | static void set_worker_dying(struct worker *worker, struct list_head *list) |
2897 | { |
2898 | struct worker_pool *pool = worker->pool; |
2899 | |
2900 | lockdep_assert_held(&pool->lock); |
2901 | lockdep_assert_held(&wq_pool_attach_mutex); |
2902 | |
2903 | /* sanity check frenzy */ |
2904 | if (WARN_ON(worker->current_work) || |
2905 | WARN_ON(!list_empty(&worker->scheduled)) || |
2906 | WARN_ON(!(worker->flags & WORKER_IDLE))) |
2907 | return; |
2908 | |
2909 | pool->nr_workers--; |
2910 | pool->nr_idle--; |
2911 | |
2912 | worker->flags |= WORKER_DIE; |
2913 | |
2914 | list_move(list: &worker->entry, head: list); |
2915 | list_move(list: &worker->node, head: &pool->dying_workers); |
2916 | } |
2917 | |
2918 | /** |
2919 | * idle_worker_timeout - check if some idle workers can now be deleted. |
2920 | * @t: The pool's idle_timer that just expired |
2921 | * |
2922 | * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in |
2923 | * worker_leave_idle(), as a worker flicking between idle and active while its |
2924 | * pool is at the too_many_workers() tipping point would cause too much timer |
2925 | * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let |
2926 | * it expire and re-evaluate things from there. |
2927 | */ |
2928 | static void idle_worker_timeout(struct timer_list *t) |
2929 | { |
2930 | struct worker_pool *pool = from_timer(pool, t, idle_timer); |
2931 | bool do_cull = false; |
2932 | |
2933 | if (work_pending(&pool->idle_cull_work)) |
2934 | return; |
2935 | |
2936 | raw_spin_lock_irq(&pool->lock); |
2937 | |
2938 | if (too_many_workers(pool)) { |
2939 | struct worker *worker; |
2940 | unsigned long expires; |
2941 | |
2942 | /* idle_list is kept in LIFO order, check the last one */ |
2943 | worker = list_entry(pool->idle_list.prev, struct worker, entry); |
2944 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; |
2945 | do_cull = !time_before(jiffies, expires); |
2946 | |
2947 | if (!do_cull) |
2948 | mod_timer(timer: &pool->idle_timer, expires); |
2949 | } |
2950 | raw_spin_unlock_irq(&pool->lock); |
2951 | |
2952 | if (do_cull) |
2953 | queue_work(wq: system_unbound_wq, work: &pool->idle_cull_work); |
2954 | } |
2955 | |
2956 | /** |
2957 | * idle_cull_fn - cull workers that have been idle for too long. |
2958 | * @work: the pool's work for handling these idle workers |
2959 | * |
2960 | * This goes through a pool's idle workers and gets rid of those that have been |
2961 | * idle for at least IDLE_WORKER_TIMEOUT seconds. |
2962 | * |
2963 | * We don't want to disturb isolated CPUs because of a pcpu kworker being |
2964 | * culled, so this also resets worker affinity. This requires a sleepable |
2965 | * context, hence the split between timer callback and work item. |
2966 | */ |
2967 | static void idle_cull_fn(struct work_struct *work) |
2968 | { |
2969 | struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); |
2970 | LIST_HEAD(cull_list); |
2971 | |
2972 | /* |
2973 | * Grabbing wq_pool_attach_mutex here ensures an already-running worker |
2974 | * cannot proceed beyong worker_detach_from_pool() in its self-destruct |
2975 | * path. This is required as a previously-preempted worker could run after |
2976 | * set_worker_dying() has happened but before wake_dying_workers() did. |
2977 | */ |
2978 | mutex_lock(&wq_pool_attach_mutex); |
2979 | raw_spin_lock_irq(&pool->lock); |
2980 | |
2981 | while (too_many_workers(pool)) { |
2982 | struct worker *worker; |
2983 | unsigned long expires; |
2984 | |
2985 | worker = list_entry(pool->idle_list.prev, struct worker, entry); |
2986 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; |
2987 | |
2988 | if (time_before(jiffies, expires)) { |
2989 | mod_timer(timer: &pool->idle_timer, expires); |
2990 | break; |
2991 | } |
2992 | |
2993 | set_worker_dying(worker, list: &cull_list); |
2994 | } |
2995 | |
2996 | raw_spin_unlock_irq(&pool->lock); |
2997 | wake_dying_workers(cull_list: &cull_list); |
2998 | mutex_unlock(lock: &wq_pool_attach_mutex); |
2999 | } |
3000 | |
3001 | static void send_mayday(struct work_struct *work) |
3002 | { |
3003 | struct pool_workqueue *pwq = get_work_pwq(work); |
3004 | struct workqueue_struct *wq = pwq->wq; |
3005 | |
3006 | lockdep_assert_held(&wq_mayday_lock); |
3007 | |
3008 | if (!wq->rescuer) |
3009 | return; |
3010 | |
3011 | /* mayday mayday mayday */ |
3012 | if (list_empty(head: &pwq->mayday_node)) { |
3013 | /* |
3014 | * If @pwq is for an unbound wq, its base ref may be put at |
3015 | * any time due to an attribute change. Pin @pwq until the |
3016 | * rescuer is done with it. |
3017 | */ |
3018 | get_pwq(pwq); |
3019 | list_add_tail(new: &pwq->mayday_node, head: &wq->maydays); |
3020 | wake_up_process(tsk: wq->rescuer->task); |
3021 | pwq->stats[PWQ_STAT_MAYDAY]++; |
3022 | } |
3023 | } |
3024 | |
3025 | static void pool_mayday_timeout(struct timer_list *t) |
3026 | { |
3027 | struct worker_pool *pool = from_timer(pool, t, mayday_timer); |
3028 | struct work_struct *work; |
3029 | |
3030 | raw_spin_lock_irq(&pool->lock); |
3031 | raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ |
3032 | |
3033 | if (need_to_create_worker(pool)) { |
3034 | /* |
3035 | * We've been trying to create a new worker but |
3036 | * haven't been successful. We might be hitting an |
3037 | * allocation deadlock. Send distress signals to |
3038 | * rescuers. |
3039 | */ |
3040 | list_for_each_entry(work, &pool->worklist, entry) |
3041 | send_mayday(work); |
3042 | } |
3043 | |
3044 | raw_spin_unlock(&wq_mayday_lock); |
3045 | raw_spin_unlock_irq(&pool->lock); |
3046 | |
3047 | mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INTERVAL); |
3048 | } |
3049 | |
3050 | /** |
3051 | * maybe_create_worker - create a new worker if necessary |
3052 | * @pool: pool to create a new worker for |
3053 | * |
3054 | * Create a new worker for @pool if necessary. @pool is guaranteed to |
3055 | * have at least one idle worker on return from this function. If |
3056 | * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is |
3057 | * sent to all rescuers with works scheduled on @pool to resolve |
3058 | * possible allocation deadlock. |
3059 | * |
3060 | * On return, need_to_create_worker() is guaranteed to be %false and |
3061 | * may_start_working() %true. |
3062 | * |
3063 | * LOCKING: |
3064 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
3065 | * multiple times. Does GFP_KERNEL allocations. Called only from |
3066 | * manager. |
3067 | */ |
3068 | static void maybe_create_worker(struct worker_pool *pool) |
3069 | __releases(&pool->lock) |
3070 | __acquires(&pool->lock) |
3071 | { |
3072 | restart: |
3073 | raw_spin_unlock_irq(&pool->lock); |
3074 | |
3075 | /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ |
3076 | mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INITIAL_TIMEOUT); |
3077 | |
3078 | while (true) { |
3079 | if (create_worker(pool) || !need_to_create_worker(pool)) |
3080 | break; |
3081 | |
3082 | schedule_timeout_interruptible(timeout: CREATE_COOLDOWN); |
3083 | |
3084 | if (!need_to_create_worker(pool)) |
3085 | break; |
3086 | } |
3087 | |
3088 | del_timer_sync(timer: &pool->mayday_timer); |
3089 | raw_spin_lock_irq(&pool->lock); |
3090 | /* |
3091 | * This is necessary even after a new worker was just successfully |
3092 | * created as @pool->lock was dropped and the new worker might have |
3093 | * already become busy. |
3094 | */ |
3095 | if (need_to_create_worker(pool)) |
3096 | goto restart; |
3097 | } |
3098 | |
3099 | /** |
3100 | * manage_workers - manage worker pool |
3101 | * @worker: self |
3102 | * |
3103 | * Assume the manager role and manage the worker pool @worker belongs |
3104 | * to. At any given time, there can be only zero or one manager per |
3105 | * pool. The exclusion is handled automatically by this function. |
3106 | * |
3107 | * The caller can safely start processing works on false return. On |
3108 | * true return, it's guaranteed that need_to_create_worker() is false |
3109 | * and may_start_working() is true. |
3110 | * |
3111 | * CONTEXT: |
3112 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
3113 | * multiple times. Does GFP_KERNEL allocations. |
3114 | * |
3115 | * Return: |
3116 | * %false if the pool doesn't need management and the caller can safely |
3117 | * start processing works, %true if management function was performed and |
3118 | * the conditions that the caller verified before calling the function may |
3119 | * no longer be true. |
3120 | */ |
3121 | static bool manage_workers(struct worker *worker) |
3122 | { |
3123 | struct worker_pool *pool = worker->pool; |
3124 | |
3125 | if (pool->flags & POOL_MANAGER_ACTIVE) |
3126 | return false; |
3127 | |
3128 | pool->flags |= POOL_MANAGER_ACTIVE; |
3129 | pool->manager = worker; |
3130 | |
3131 | maybe_create_worker(pool); |
3132 | |
3133 | pool->manager = NULL; |
3134 | pool->flags &= ~POOL_MANAGER_ACTIVE; |
3135 | rcuwait_wake_up(w: &manager_wait); |
3136 | return true; |
3137 | } |
3138 | |
3139 | /** |
3140 | * process_one_work - process single work |
3141 | * @worker: self |
3142 | * @work: work to process |
3143 | * |
3144 | * Process @work. This function contains all the logics necessary to |
3145 | * process a single work including synchronization against and |
3146 | * interaction with other workers on the same cpu, queueing and |
3147 | * flushing. As long as context requirement is met, any worker can |
3148 | * call this function to process a work. |
3149 | * |
3150 | * CONTEXT: |
3151 | * raw_spin_lock_irq(pool->lock) which is released and regrabbed. |
3152 | */ |
3153 | static void process_one_work(struct worker *worker, struct work_struct *work) |
3154 | __releases(&pool->lock) |
3155 | __acquires(&pool->lock) |
3156 | { |
3157 | struct pool_workqueue *pwq = get_work_pwq(work); |
3158 | struct worker_pool *pool = worker->pool; |
3159 | unsigned long work_data; |
3160 | int lockdep_start_depth, rcu_start_depth; |
3161 | bool bh_draining = pool->flags & POOL_BH_DRAINING; |
3162 | #ifdef CONFIG_LOCKDEP |
3163 | /* |
3164 | * It is permissible to free the struct work_struct from |
3165 | * inside the function that is called from it, this we need to |
3166 | * take into account for lockdep too. To avoid bogus "held |
3167 | * lock freed" warnings as well as problems when looking into |
3168 | * work->lockdep_map, make a copy and use that here. |
3169 | */ |
3170 | struct lockdep_map lockdep_map; |
3171 | |
3172 | lockdep_copy_map(to: &lockdep_map, from: &work->lockdep_map); |
3173 | #endif |
3174 | /* ensure we're on the correct CPU */ |
3175 | WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && |
3176 | raw_smp_processor_id() != pool->cpu); |
3177 | |
3178 | /* claim and dequeue */ |
3179 | debug_work_deactivate(work); |
3180 | hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); |
3181 | worker->current_work = work; |
3182 | worker->current_func = work->func; |
3183 | worker->current_pwq = pwq; |
3184 | if (worker->task) |
3185 | worker->current_at = worker->task->se.sum_exec_runtime; |
3186 | work_data = *work_data_bits(work); |
3187 | worker->current_color = get_work_color(work_data); |
3188 | |
3189 | /* |
3190 | * Record wq name for cmdline and debug reporting, may get |
3191 | * overridden through set_worker_desc(). |
3192 | */ |
3193 | strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); |
3194 | |
3195 | list_del_init(entry: &work->entry); |
3196 | |
3197 | /* |
3198 | * CPU intensive works don't participate in concurrency management. |
3199 | * They're the scheduler's responsibility. This takes @worker out |
3200 | * of concurrency management and the next code block will chain |
3201 | * execution of the pending work items. |
3202 | */ |
3203 | if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) |
3204 | worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE); |
3205 | |
3206 | /* |
3207 | * Kick @pool if necessary. It's always noop for per-cpu worker pools |
3208 | * since nr_running would always be >= 1 at this point. This is used to |
3209 | * chain execution of the pending work items for WORKER_NOT_RUNNING |
3210 | * workers such as the UNBOUND and CPU_INTENSIVE ones. |
3211 | */ |
3212 | kick_pool(pool); |
3213 | |
3214 | /* |
3215 | * Record the last pool and clear PENDING which should be the last |
3216 | * update to @work. Also, do this inside @pool->lock so that |
3217 | * PENDING and queued state changes happen together while IRQ is |
3218 | * disabled. |
3219 | */ |
3220 | set_work_pool_and_clear_pending(work, pool_id: pool->id, flags: 0); |
3221 | |
3222 | pwq->stats[PWQ_STAT_STARTED]++; |
3223 | raw_spin_unlock_irq(&pool->lock); |
3224 | |
3225 | rcu_start_depth = rcu_preempt_depth(); |
3226 | lockdep_start_depth = lockdep_depth(current); |
3227 | /* see drain_dead_softirq_workfn() */ |
3228 | if (!bh_draining) |
3229 | lock_map_acquire(&pwq->wq->lockdep_map); |
3230 | lock_map_acquire(&lockdep_map); |
3231 | /* |
3232 | * Strictly speaking we should mark the invariant state without holding |
3233 | * any locks, that is, before these two lock_map_acquire()'s. |
3234 | * |
3235 | * However, that would result in: |
3236 | * |
3237 | * A(W1) |
3238 | * WFC(C) |
3239 | * A(W1) |
3240 | * C(C) |
3241 | * |
3242 | * Which would create W1->C->W1 dependencies, even though there is no |
3243 | * actual deadlock possible. There are two solutions, using a |
3244 | * read-recursive acquire on the work(queue) 'locks', but this will then |
3245 | * hit the lockdep limitation on recursive locks, or simply discard |
3246 | * these locks. |
3247 | * |
3248 | * AFAICT there is no possible deadlock scenario between the |
3249 | * flush_work() and complete() primitives (except for single-threaded |
3250 | * workqueues), so hiding them isn't a problem. |
3251 | */ |
3252 | lockdep_invariant_state(force: true); |
3253 | trace_workqueue_execute_start(work); |
3254 | worker->current_func(work); |
3255 | /* |
3256 | * While we must be careful to not use "work" after this, the trace |
3257 | * point will only record its address. |
3258 | */ |
3259 | trace_workqueue_execute_end(work, function: worker->current_func); |
3260 | pwq->stats[PWQ_STAT_COMPLETED]++; |
3261 | lock_map_release(&lockdep_map); |
3262 | if (!bh_draining) |
3263 | lock_map_release(&pwq->wq->lockdep_map); |
3264 | |
3265 | if (unlikely((worker->task && in_atomic()) || |
3266 | lockdep_depth(current) != lockdep_start_depth || |
3267 | rcu_preempt_depth() != rcu_start_depth)) { |
3268 | pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" |
3269 | " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", |
3270 | current->comm, task_pid_nr(current), preempt_count(), |
3271 | lockdep_start_depth, lockdep_depth(current), |
3272 | rcu_start_depth, rcu_preempt_depth(), |
3273 | worker->current_func); |
3274 | debug_show_held_locks(current); |
3275 | dump_stack(); |
3276 | } |
3277 | |
3278 | /* |
3279 | * The following prevents a kworker from hogging CPU on !PREEMPTION |
3280 | * kernels, where a requeueing work item waiting for something to |
3281 | * happen could deadlock with stop_machine as such work item could |
3282 | * indefinitely requeue itself while all other CPUs are trapped in |
3283 | * stop_machine. At the same time, report a quiescent RCU state so |
3284 | * the same condition doesn't freeze RCU. |
3285 | */ |
3286 | if (worker->task) |
3287 | cond_resched(); |
3288 | |
3289 | raw_spin_lock_irq(&pool->lock); |
3290 | |
3291 | /* |
3292 | * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked |
3293 | * CPU intensive by wq_worker_tick() if @work hogged CPU longer than |
3294 | * wq_cpu_intensive_thresh_us. Clear it. |
3295 | */ |
3296 | worker_clr_flags(worker, flags: WORKER_CPU_INTENSIVE); |
3297 | |
3298 | /* tag the worker for identification in schedule() */ |
3299 | worker->last_func = worker->current_func; |
3300 | |
3301 | /* we're done with it, release */ |
3302 | hash_del(node: &worker->hentry); |
3303 | worker->current_work = NULL; |
3304 | worker->current_func = NULL; |
3305 | worker->current_pwq = NULL; |
3306 | worker->current_color = INT_MAX; |
3307 | |
3308 | /* must be the last step, see the function comment */ |
3309 | pwq_dec_nr_in_flight(pwq, work_data); |
3310 | } |
3311 | |
3312 | /** |
3313 | * process_scheduled_works - process scheduled works |
3314 | * @worker: self |
3315 | * |
3316 | * Process all scheduled works. Please note that the scheduled list |
3317 | * may change while processing a work, so this function repeatedly |
3318 | * fetches a work from the top and executes it. |
3319 | * |
3320 | * CONTEXT: |
3321 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
3322 | * multiple times. |
3323 | */ |
3324 | static void process_scheduled_works(struct worker *worker) |
3325 | { |
3326 | struct work_struct *work; |
3327 | bool first = true; |
3328 | |
3329 | while ((work = list_first_entry_or_null(&worker->scheduled, |
3330 | struct work_struct, entry))) { |
3331 | if (first) { |
3332 | worker->pool->watchdog_ts = jiffies; |
3333 | first = false; |
3334 | } |
3335 | process_one_work(worker, work); |
3336 | } |
3337 | } |
3338 | |
3339 | static void set_pf_worker(bool val) |
3340 | { |
3341 | mutex_lock(&wq_pool_attach_mutex); |
3342 | if (val) |
3343 | current->flags |= PF_WQ_WORKER; |
3344 | else |
3345 | current->flags &= ~PF_WQ_WORKER; |
3346 | mutex_unlock(lock: &wq_pool_attach_mutex); |
3347 | } |
3348 | |
3349 | /** |
3350 | * worker_thread - the worker thread function |
3351 | * @__worker: self |
3352 | * |
3353 | * The worker thread function. All workers belong to a worker_pool - |
3354 | * either a per-cpu one or dynamic unbound one. These workers process all |
3355 | * work items regardless of their specific target workqueue. The only |
3356 | * exception is work items which belong to workqueues with a rescuer which |
3357 | * will be explained in rescuer_thread(). |
3358 | * |
3359 | * Return: 0 |
3360 | */ |
3361 | static int worker_thread(void *__worker) |
3362 | { |
3363 | struct worker *worker = __worker; |
3364 | struct worker_pool *pool = worker->pool; |
3365 | |
3366 | /* tell the scheduler that this is a workqueue worker */ |
3367 | set_pf_worker(true); |
3368 | woke_up: |
3369 | raw_spin_lock_irq(&pool->lock); |
3370 | |
3371 | /* am I supposed to die? */ |
3372 | if (unlikely(worker->flags & WORKER_DIE)) { |
3373 | raw_spin_unlock_irq(&pool->lock); |
3374 | set_pf_worker(false); |
3375 | |
3376 | set_task_comm(tsk: worker->task, from: "kworker/dying"); |
3377 | ida_free(&pool->worker_ida, id: worker->id); |
3378 | worker_detach_from_pool(worker); |
3379 | WARN_ON_ONCE(!list_empty(&worker->entry)); |
3380 | kfree(objp: worker); |
3381 | return 0; |
3382 | } |
3383 | |
3384 | worker_leave_idle(worker); |
3385 | recheck: |
3386 | /* no more worker necessary? */ |
3387 | if (!need_more_worker(pool)) |
3388 | goto sleep; |
3389 | |
3390 | /* do we need to manage? */ |
3391 | if (unlikely(!may_start_working(pool)) && manage_workers(worker)) |
3392 | goto recheck; |
3393 | |
3394 | /* |
3395 | * ->scheduled list can only be filled while a worker is |
3396 | * preparing to process a work or actually processing it. |
3397 | * Make sure nobody diddled with it while I was sleeping. |
3398 | */ |
3399 | WARN_ON_ONCE(!list_empty(&worker->scheduled)); |
3400 | |
3401 | /* |
3402 | * Finish PREP stage. We're guaranteed to have at least one idle |
3403 | * worker or that someone else has already assumed the manager |
3404 | * role. This is where @worker starts participating in concurrency |
3405 | * management if applicable and concurrency management is restored |
3406 | * after being rebound. See rebind_workers() for details. |
3407 | */ |
3408 | worker_clr_flags(worker, flags: WORKER_PREP | WORKER_REBOUND); |
3409 | |
3410 | do { |
3411 | struct work_struct *work = |
3412 | list_first_entry(&pool->worklist, |
3413 | struct work_struct, entry); |
3414 | |
3415 | if (assign_work(work, worker, NULL)) |
3416 | process_scheduled_works(worker); |
3417 | } while (keep_working(pool)); |
3418 | |
3419 | worker_set_flags(worker, flags: WORKER_PREP); |
3420 | sleep: |
3421 | /* |
3422 | * pool->lock is held and there's no work to process and no need to |
3423 | * manage, sleep. Workers are woken up only while holding |
3424 | * pool->lock or from local cpu, so setting the current state |
3425 | * before releasing pool->lock is enough to prevent losing any |
3426 | * event. |
3427 | */ |
3428 | worker_enter_idle(worker); |
3429 | __set_current_state(TASK_IDLE); |
3430 | raw_spin_unlock_irq(&pool->lock); |
3431 | schedule(); |
3432 | goto woke_up; |
3433 | } |
3434 | |
3435 | /** |
3436 | * rescuer_thread - the rescuer thread function |
3437 | * @__rescuer: self |
3438 | * |
3439 | * Workqueue rescuer thread function. There's one rescuer for each |
3440 | * workqueue which has WQ_MEM_RECLAIM set. |
3441 | * |
3442 | * Regular work processing on a pool may block trying to create a new |
3443 | * worker which uses GFP_KERNEL allocation which has slight chance of |
3444 | * developing into deadlock if some works currently on the same queue |
3445 | * need to be processed to satisfy the GFP_KERNEL allocation. This is |
3446 | * the problem rescuer solves. |
3447 | * |
3448 | * When such condition is possible, the pool summons rescuers of all |
3449 | * workqueues which have works queued on the pool and let them process |
3450 | * those works so that forward progress can be guaranteed. |
3451 | * |
3452 | * This should happen rarely. |
3453 | * |
3454 | * Return: 0 |
3455 | */ |
3456 | static int rescuer_thread(void *__rescuer) |
3457 | { |
3458 | struct worker *rescuer = __rescuer; |
3459 | struct workqueue_struct *wq = rescuer->rescue_wq; |
3460 | bool should_stop; |
3461 | |
3462 | set_user_nice(current, nice: RESCUER_NICE_LEVEL); |
3463 | |
3464 | /* |
3465 | * Mark rescuer as worker too. As WORKER_PREP is never cleared, it |
3466 | * doesn't participate in concurrency management. |
3467 | */ |
3468 | set_pf_worker(true); |
3469 | repeat: |
3470 | set_current_state(TASK_IDLE); |
3471 | |
3472 | /* |
3473 | * By the time the rescuer is requested to stop, the workqueue |
3474 | * shouldn't have any work pending, but @wq->maydays may still have |
3475 | * pwq(s) queued. This can happen by non-rescuer workers consuming |
3476 | * all the work items before the rescuer got to them. Go through |
3477 | * @wq->maydays processing before acting on should_stop so that the |
3478 | * list is always empty on exit. |
3479 | */ |
3480 | should_stop = kthread_should_stop(); |
3481 | |
3482 | /* see whether any pwq is asking for help */ |
3483 | raw_spin_lock_irq(&wq_mayday_lock); |
3484 | |
3485 | while (!list_empty(head: &wq->maydays)) { |
3486 | struct pool_workqueue *pwq = list_first_entry(&wq->maydays, |
3487 | struct pool_workqueue, mayday_node); |
3488 | struct worker_pool *pool = pwq->pool; |
3489 | struct work_struct *work, *n; |
3490 | |
3491 | __set_current_state(TASK_RUNNING); |
3492 | list_del_init(entry: &pwq->mayday_node); |
3493 | |
3494 | raw_spin_unlock_irq(&wq_mayday_lock); |
3495 | |
3496 | worker_attach_to_pool(worker: rescuer, pool); |
3497 | |
3498 | raw_spin_lock_irq(&pool->lock); |
3499 | |
3500 | /* |
3501 | * Slurp in all works issued via this workqueue and |
3502 | * process'em. |
3503 | */ |
3504 | WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); |
3505 | list_for_each_entry_safe(work, n, &pool->worklist, entry) { |
3506 | if (get_work_pwq(work) == pwq && |
3507 | assign_work(work, worker: rescuer, nextp: &n)) |
3508 | pwq->stats[PWQ_STAT_RESCUED]++; |
3509 | } |
3510 | |
3511 | if (!list_empty(head: &rescuer->scheduled)) { |
3512 | process_scheduled_works(worker: rescuer); |
3513 | |
3514 | /* |
3515 | * The above execution of rescued work items could |
3516 | * have created more to rescue through |
3517 | * pwq_activate_first_inactive() or chained |
3518 | * queueing. Let's put @pwq back on mayday list so |
3519 | * that such back-to-back work items, which may be |
3520 | * being used to relieve memory pressure, don't |
3521 | * incur MAYDAY_INTERVAL delay inbetween. |
3522 | */ |
3523 | if (pwq->nr_active && need_to_create_worker(pool)) { |
3524 | raw_spin_lock(&wq_mayday_lock); |
3525 | /* |
3526 | * Queue iff we aren't racing destruction |
3527 | * and somebody else hasn't queued it already. |
3528 | */ |
3529 | if (wq->rescuer && list_empty(head: &pwq->mayday_node)) { |
3530 | get_pwq(pwq); |
3531 | list_add_tail(new: &pwq->mayday_node, head: &wq->maydays); |
3532 | } |
3533 | raw_spin_unlock(&wq_mayday_lock); |
3534 | } |
3535 | } |
3536 | |
3537 | /* |
3538 | * Put the reference grabbed by send_mayday(). @pool won't |
3539 | * go away while we're still attached to it. |
3540 | */ |
3541 | put_pwq(pwq); |
3542 | |
3543 | /* |
3544 | * Leave this pool. Notify regular workers; otherwise, we end up |
3545 | * with 0 concurrency and stalling the execution. |
3546 | */ |
3547 | kick_pool(pool); |
3548 | |
3549 | raw_spin_unlock_irq(&pool->lock); |
3550 | |
3551 | worker_detach_from_pool(worker: rescuer); |
3552 | |
3553 | raw_spin_lock_irq(&wq_mayday_lock); |
3554 | } |
3555 | |
3556 | raw_spin_unlock_irq(&wq_mayday_lock); |
3557 | |
3558 | if (should_stop) { |
3559 | __set_current_state(TASK_RUNNING); |
3560 | set_pf_worker(false); |
3561 | return 0; |
3562 | } |
3563 | |
3564 | /* rescuers should never participate in concurrency management */ |
3565 | WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); |
3566 | schedule(); |
3567 | goto repeat; |
3568 | } |
3569 | |
3570 | static void bh_worker(struct worker *worker) |
3571 | { |
3572 | struct worker_pool *pool = worker->pool; |
3573 | int nr_restarts = BH_WORKER_RESTARTS; |
3574 | unsigned long end = jiffies + BH_WORKER_JIFFIES; |
3575 | |
3576 | raw_spin_lock_irq(&pool->lock); |
3577 | worker_leave_idle(worker); |
3578 | |
3579 | /* |
3580 | * This function follows the structure of worker_thread(). See there for |
3581 | * explanations on each step. |
3582 | */ |
3583 | if (!need_more_worker(pool)) |
3584 | goto done; |
3585 | |
3586 | WARN_ON_ONCE(!list_empty(&worker->scheduled)); |
3587 | worker_clr_flags(worker, flags: WORKER_PREP | WORKER_REBOUND); |
3588 | |
3589 | do { |
3590 | struct work_struct *work = |
3591 | list_first_entry(&pool->worklist, |
3592 | struct work_struct, entry); |
3593 | |
3594 | if (assign_work(work, worker, NULL)) |
3595 | process_scheduled_works(worker); |
3596 | } while (keep_working(pool) && |
3597 | --nr_restarts && time_before(jiffies, end)); |
3598 | |
3599 | worker_set_flags(worker, flags: WORKER_PREP); |
3600 | done: |
3601 | worker_enter_idle(worker); |
3602 | kick_pool(pool); |
3603 | raw_spin_unlock_irq(&pool->lock); |
3604 | } |
3605 | |
3606 | /* |
3607 | * TODO: Convert all tasklet users to workqueue and use softirq directly. |
3608 | * |
3609 | * This is currently called from tasklet[_hi]action() and thus is also called |
3610 | * whenever there are tasklets to run. Let's do an early exit if there's nothing |
3611 | * queued. Once conversion from tasklet is complete, the need_more_worker() test |
3612 | * can be dropped. |
3613 | * |
3614 | * After full conversion, we'll add worker->softirq_action, directly use the |
3615 | * softirq action and obtain the worker pointer from the softirq_action pointer. |
3616 | */ |
3617 | void workqueue_softirq_action(bool highpri) |
3618 | { |
3619 | struct worker_pool *pool = |
3620 | &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; |
3621 | if (need_more_worker(pool)) |
3622 | bh_worker(list_first_entry(&pool->workers, struct worker, node)); |
3623 | } |
3624 | |
3625 | struct wq_drain_dead_softirq_work { |
3626 | struct work_struct work; |
3627 | struct worker_pool *pool; |
3628 | struct completion done; |
3629 | }; |
3630 | |
3631 | static void drain_dead_softirq_workfn(struct work_struct *work) |
3632 | { |
3633 | struct wq_drain_dead_softirq_work *dead_work = |
3634 | container_of(work, struct wq_drain_dead_softirq_work, work); |
3635 | struct worker_pool *pool = dead_work->pool; |
3636 | bool repeat; |
3637 | |
3638 | /* |
3639 | * @pool's CPU is dead and we want to execute its still pending work |
3640 | * items from this BH work item which is running on a different CPU. As |
3641 | * its CPU is dead, @pool can't be kicked and, as work execution path |
3642 | * will be nested, a lockdep annotation needs to be suppressed. Mark |
3643 | * @pool with %POOL_BH_DRAINING for the special treatments. |
3644 | */ |
3645 | raw_spin_lock_irq(&pool->lock); |
3646 | pool->flags |= POOL_BH_DRAINING; |
3647 | raw_spin_unlock_irq(&pool->lock); |
3648 | |
3649 | bh_worker(list_first_entry(&pool->workers, struct worker, node)); |
3650 | |
3651 | raw_spin_lock_irq(&pool->lock); |
3652 | pool->flags &= ~POOL_BH_DRAINING; |
3653 | repeat = need_more_worker(pool); |
3654 | raw_spin_unlock_irq(&pool->lock); |
3655 | |
3656 | /* |
3657 | * bh_worker() might hit consecutive execution limit and bail. If there |
3658 | * still are pending work items, reschedule self and return so that we |
3659 | * don't hog this CPU's BH. |
3660 | */ |
3661 | if (repeat) { |
3662 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
3663 | queue_work(wq: system_bh_highpri_wq, work); |
3664 | else |
3665 | queue_work(wq: system_bh_wq, work); |
3666 | } else { |
3667 | complete(&dead_work->done); |
3668 | } |
3669 | } |
3670 | |
3671 | /* |
3672 | * @cpu is dead. Drain the remaining BH work items on the current CPU. It's |
3673 | * possible to allocate dead_work per CPU and avoid flushing. However, then we |
3674 | * have to worry about draining overlapping with CPU coming back online or |
3675 | * nesting (one CPU's dead_work queued on another CPU which is also dead and so |
3676 | * on). Let's keep it simple and drain them synchronously. These are BH work |
3677 | * items which shouldn't be requeued on the same pool. Shouldn't take long. |
3678 | */ |
3679 | void workqueue_softirq_dead(unsigned int cpu) |
3680 | { |
3681 | int i; |
3682 | |
3683 | for (i = 0; i < NR_STD_WORKER_POOLS; i++) { |
3684 | struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; |
3685 | struct wq_drain_dead_softirq_work dead_work; |
3686 | |
3687 | if (!need_more_worker(pool)) |
3688 | continue; |
3689 | |
3690 | INIT_WORK(&dead_work.work, drain_dead_softirq_workfn); |
3691 | dead_work.pool = pool; |
3692 | init_completion(x: &dead_work.done); |
3693 | |
3694 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
3695 | queue_work(wq: system_bh_highpri_wq, work: &dead_work.work); |
3696 | else |
3697 | queue_work(wq: system_bh_wq, work: &dead_work.work); |
3698 | |
3699 | wait_for_completion(&dead_work.done); |
3700 | } |
3701 | } |
3702 | |
3703 | /** |
3704 | * check_flush_dependency - check for flush dependency sanity |
3705 | * @target_wq: workqueue being flushed |
3706 | * @target_work: work item being flushed (NULL for workqueue flushes) |
3707 | * |
3708 | * %current is trying to flush the whole @target_wq or @target_work on it. |
3709 | * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not |
3710 | * reclaiming memory or running on a workqueue which doesn't have |
3711 | * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to |
3712 | * a deadlock. |
3713 | */ |
3714 | static void check_flush_dependency(struct workqueue_struct *target_wq, |
3715 | struct work_struct *target_work) |
3716 | { |
3717 | work_func_t target_func = target_work ? target_work->func : NULL; |
3718 | struct worker *worker; |
3719 | |
3720 | if (target_wq->flags & WQ_MEM_RECLAIM) |
3721 | return; |
3722 | |
3723 | worker = current_wq_worker(); |
3724 | |
3725 | WARN_ONCE(current->flags & PF_MEMALLOC, |
3726 | "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", |
3727 | current->pid, current->comm, target_wq->name, target_func); |
3728 | WARN_ONCE(worker && ((worker->current_pwq->wq->flags & |
3729 | (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), |
3730 | "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", |
3731 | worker->current_pwq->wq->name, worker->current_func, |
3732 | target_wq->name, target_func); |
3733 | } |
3734 | |
3735 | struct wq_barrier { |
3736 | struct work_struct work; |
3737 | struct completion done; |
3738 | struct task_struct *task; /* purely informational */ |
3739 | }; |
3740 | |
3741 | static void wq_barrier_func(struct work_struct *work) |
3742 | { |
3743 | struct wq_barrier *barr = container_of(work, struct wq_barrier, work); |
3744 | complete(&barr->done); |
3745 | } |
3746 | |
3747 | /** |
3748 | * insert_wq_barrier - insert a barrier work |
3749 | * @pwq: pwq to insert barrier into |
3750 | * @barr: wq_barrier to insert |
3751 | * @target: target work to attach @barr to |
3752 | * @worker: worker currently executing @target, NULL if @target is not executing |
3753 | * |
3754 | * @barr is linked to @target such that @barr is completed only after |
3755 | * @target finishes execution. Please note that the ordering |
3756 | * guarantee is observed only with respect to @target and on the local |
3757 | * cpu. |
3758 | * |
3759 | * Currently, a queued barrier can't be canceled. This is because |
3760 | * try_to_grab_pending() can't determine whether the work to be |
3761 | * grabbed is at the head of the queue and thus can't clear LINKED |
3762 | * flag of the previous work while there must be a valid next work |
3763 | * after a work with LINKED flag set. |
3764 | * |
3765 | * Note that when @worker is non-NULL, @target may be modified |
3766 | * underneath us, so we can't reliably determine pwq from @target. |
3767 | * |
3768 | * CONTEXT: |
3769 | * raw_spin_lock_irq(pool->lock). |
3770 | */ |
3771 | static void insert_wq_barrier(struct pool_workqueue *pwq, |
3772 | struct wq_barrier *barr, |
3773 | struct work_struct *target, struct worker *worker) |
3774 | { |
3775 | static __maybe_unused struct lock_class_key bh_key, thr_key; |
3776 | unsigned int work_flags = 0; |
3777 | unsigned int work_color; |
3778 | struct list_head *head; |
3779 | |
3780 | /* |
3781 | * debugobject calls are safe here even with pool->lock locked |
3782 | * as we know for sure that this will not trigger any of the |
3783 | * checks and call back into the fixup functions where we |
3784 | * might deadlock. |
3785 | * |
3786 | * BH and threaded workqueues need separate lockdep keys to avoid |
3787 | * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} |
3788 | * usage". |
3789 | */ |
3790 | INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, |
3791 | (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); |
3792 | __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); |
3793 | |
3794 | init_completion_map(&barr->done, &target->lockdep_map); |
3795 | |
3796 | barr->task = current; |
3797 | |
3798 | /* The barrier work item does not participate in nr_active. */ |
3799 | work_flags |= WORK_STRUCT_INACTIVE; |
3800 | |
3801 | /* |
3802 | * If @target is currently being executed, schedule the |
3803 | * barrier to the worker; otherwise, put it after @target. |
3804 | */ |
3805 | if (worker) { |
3806 | head = worker->scheduled.next; |
3807 | work_color = worker->current_color; |
3808 | } else { |
3809 | unsigned long *bits = work_data_bits(target); |
3810 | |
3811 | head = target->entry.next; |
3812 | /* there can already be other linked works, inherit and set */ |
3813 | work_flags |= *bits & WORK_STRUCT_LINKED; |
3814 | work_color = get_work_color(work_data: *bits); |
3815 | __set_bit(WORK_STRUCT_LINKED_BIT, bits); |
3816 | } |
3817 | |
3818 | pwq->nr_in_flight[work_color]++; |
3819 | work_flags |= work_color_to_flags(color: work_color); |
3820 | |
3821 | insert_work(pwq, work: &barr->work, head, extra_flags: work_flags); |
3822 | } |
3823 | |
3824 | /** |
3825 | * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing |
3826 | * @wq: workqueue being flushed |
3827 | * @flush_color: new flush color, < 0 for no-op |
3828 | * @work_color: new work color, < 0 for no-op |
3829 | * |
3830 | * Prepare pwqs for workqueue flushing. |
3831 | * |
3832 | * If @flush_color is non-negative, flush_color on all pwqs should be |
3833 | * -1. If no pwq has in-flight commands at the specified color, all |
3834 | * pwq->flush_color's stay at -1 and %false is returned. If any pwq |
3835 | * has in flight commands, its pwq->flush_color is set to |
3836 | * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq |
3837 | * wakeup logic is armed and %true is returned. |
3838 | * |
3839 | * The caller should have initialized @wq->first_flusher prior to |
3840 | * calling this function with non-negative @flush_color. If |
3841 | * @flush_color is negative, no flush color update is done and %false |
3842 | * is returned. |
3843 | * |
3844 | * If @work_color is non-negative, all pwqs should have the same |
3845 | * work_color which is previous to @work_color and all will be |
3846 | * advanced to @work_color. |
3847 | * |
3848 | * CONTEXT: |
3849 | * mutex_lock(wq->mutex). |
3850 | * |
3851 | * Return: |
3852 | * %true if @flush_color >= 0 and there's something to flush. %false |
3853 | * otherwise. |
3854 | */ |
3855 | static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, |
3856 | int flush_color, int work_color) |
3857 | { |
3858 | bool wait = false; |
3859 | struct pool_workqueue *pwq; |
3860 | |
3861 | if (flush_color >= 0) { |
3862 | WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); |
3863 | atomic_set(v: &wq->nr_pwqs_to_flush, i: 1); |
3864 | } |
3865 | |
3866 | for_each_pwq(pwq, wq) { |
3867 | struct worker_pool *pool = pwq->pool; |
3868 | |
3869 | raw_spin_lock_irq(&pool->lock); |
3870 | |
3871 | if (flush_color >= 0) { |
3872 | WARN_ON_ONCE(pwq->flush_color != -1); |
3873 | |
3874 | if (pwq->nr_in_flight[flush_color]) { |
3875 | pwq->flush_color = flush_color; |
3876 | atomic_inc(v: &wq->nr_pwqs_to_flush); |
3877 | wait = true; |
3878 | } |
3879 | } |
3880 | |
3881 | if (work_color >= 0) { |
3882 | WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); |
3883 | pwq->work_color = work_color; |
3884 | } |
3885 | |
3886 | raw_spin_unlock_irq(&pool->lock); |
3887 | } |
3888 | |
3889 | if (flush_color >= 0 && atomic_dec_and_test(v: &wq->nr_pwqs_to_flush)) |
3890 | complete(&wq->first_flusher->done); |
3891 | |
3892 | return wait; |
3893 | } |
3894 | |
3895 | static void touch_wq_lockdep_map(struct workqueue_struct *wq) |
3896 | { |
3897 | #ifdef CONFIG_LOCKDEP |
3898 | if (wq->flags & WQ_BH) |
3899 | local_bh_disable(); |
3900 | |
3901 | lock_map_acquire(&wq->lockdep_map); |
3902 | lock_map_release(&wq->lockdep_map); |
3903 | |
3904 | if (wq->flags & WQ_BH) |
3905 | local_bh_enable(); |
3906 | #endif |
3907 | } |
3908 | |
3909 | static void touch_work_lockdep_map(struct work_struct *work, |
3910 | struct workqueue_struct *wq) |
3911 | { |
3912 | #ifdef CONFIG_LOCKDEP |
3913 | if (wq->flags & WQ_BH) |
3914 | local_bh_disable(); |
3915 | |
3916 | lock_map_acquire(&work->lockdep_map); |
3917 | lock_map_release(&work->lockdep_map); |
3918 | |
3919 | if (wq->flags & WQ_BH) |
3920 | local_bh_enable(); |
3921 | #endif |
3922 | } |
3923 | |
3924 | /** |
3925 | * __flush_workqueue - ensure that any scheduled work has run to completion. |
3926 | * @wq: workqueue to flush |
3927 | * |
3928 | * This function sleeps until all work items which were queued on entry |
3929 | * have finished execution, but it is not livelocked by new incoming ones. |
3930 | */ |
3931 | void __flush_workqueue(struct workqueue_struct *wq) |
3932 | { |
3933 | struct wq_flusher this_flusher = { |
3934 | .list = LIST_HEAD_INIT(this_flusher.list), |
3935 | .flush_color = -1, |
3936 | .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), |
3937 | }; |
3938 | int next_color; |
3939 | |
3940 | if (WARN_ON(!wq_online)) |
3941 | return; |
3942 | |
3943 | touch_wq_lockdep_map(wq); |
3944 | |
3945 | mutex_lock(&wq->mutex); |
3946 | |
3947 | /* |
3948 | * Start-to-wait phase |
3949 | */ |
3950 | next_color = work_next_color(color: wq->work_color); |
3951 | |
3952 | if (next_color != wq->flush_color) { |
3953 | /* |
3954 | * Color space is not full. The current work_color |
3955 | * becomes our flush_color and work_color is advanced |
3956 | * by one. |
3957 | */ |
3958 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); |
3959 | this_flusher.flush_color = wq->work_color; |
3960 | wq->work_color = next_color; |
3961 | |
3962 | if (!wq->first_flusher) { |
3963 | /* no flush in progress, become the first flusher */ |
3964 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
3965 | |
3966 | wq->first_flusher = &this_flusher; |
3967 | |
3968 | if (!flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color, |
3969 | work_color: wq->work_color)) { |
3970 | /* nothing to flush, done */ |
3971 | wq->flush_color = next_color; |
3972 | wq->first_flusher = NULL; |
3973 | goto out_unlock; |
3974 | } |
3975 | } else { |
3976 | /* wait in queue */ |
3977 | WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); |
3978 | list_add_tail(new: &this_flusher.list, head: &wq->flusher_queue); |
3979 | flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color); |
3980 | } |
3981 | } else { |
3982 | /* |
3983 | * Oops, color space is full, wait on overflow queue. |
3984 | * The next flush completion will assign us |
3985 | * flush_color and transfer to flusher_queue. |
3986 | */ |
3987 | list_add_tail(new: &this_flusher.list, head: &wq->flusher_overflow); |
3988 | } |
3989 | |
3990 | check_flush_dependency(target_wq: wq, NULL); |
3991 | |
3992 | mutex_unlock(lock: &wq->mutex); |
3993 | |
3994 | wait_for_completion(&this_flusher.done); |
3995 | |
3996 | /* |
3997 | * Wake-up-and-cascade phase |
3998 | * |
3999 | * First flushers are responsible for cascading flushes and |
4000 | * handling overflow. Non-first flushers can simply return. |
4001 | */ |
4002 | if (READ_ONCE(wq->first_flusher) != &this_flusher) |
4003 | return; |
4004 | |
4005 | mutex_lock(&wq->mutex); |
4006 | |
4007 | /* we might have raced, check again with mutex held */ |
4008 | if (wq->first_flusher != &this_flusher) |
4009 | goto out_unlock; |
4010 | |
4011 | WRITE_ONCE(wq->first_flusher, NULL); |
4012 | |
4013 | WARN_ON_ONCE(!list_empty(&this_flusher.list)); |
4014 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
4015 | |
4016 | while (true) { |
4017 | struct wq_flusher *next, *tmp; |
4018 | |
4019 | /* complete all the flushers sharing the current flush color */ |
4020 | list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { |
4021 | if (next->flush_color != wq->flush_color) |
4022 | break; |
4023 | list_del_init(entry: &next->list); |
4024 | complete(&next->done); |
4025 | } |
4026 | |
4027 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && |
4028 | wq->flush_color != work_next_color(wq->work_color)); |
4029 | |
4030 | /* this flush_color is finished, advance by one */ |
4031 | wq->flush_color = work_next_color(color: wq->flush_color); |
4032 | |
4033 | /* one color has been freed, handle overflow queue */ |
4034 | if (!list_empty(head: &wq->flusher_overflow)) { |
4035 | /* |
4036 | * Assign the same color to all overflowed |
4037 | * flushers, advance work_color and append to |
4038 | * flusher_queue. This is the start-to-wait |
4039 | * phase for these overflowed flushers. |
4040 | */ |
4041 | list_for_each_entry(tmp, &wq->flusher_overflow, list) |
4042 | tmp->flush_color = wq->work_color; |
4043 | |
4044 | wq->work_color = work_next_color(color: wq->work_color); |
4045 | |
4046 | list_splice_tail_init(list: &wq->flusher_overflow, |
4047 | head: &wq->flusher_queue); |
4048 | flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color); |
4049 | } |
4050 | |
4051 | if (list_empty(head: &wq->flusher_queue)) { |
4052 | WARN_ON_ONCE(wq->flush_color != wq->work_color); |
4053 | break; |
4054 | } |
4055 | |
4056 | /* |
4057 | * Need to flush more colors. Make the next flusher |
4058 | * the new first flusher and arm pwqs. |
4059 | */ |
4060 | WARN_ON_ONCE(wq->flush_color == wq->work_color); |
4061 | WARN_ON_ONCE(wq->flush_color != next->flush_color); |
4062 | |
4063 | list_del_init(entry: &next->list); |
4064 | wq->first_flusher = next; |
4065 | |
4066 | if (flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color, work_color: -1)) |
4067 | break; |
4068 | |
4069 | /* |
4070 | * Meh... this color is already done, clear first |
4071 | * flusher and repeat cascading. |
4072 | */ |
4073 | wq->first_flusher = NULL; |
4074 | } |
4075 | |
4076 | out_unlock: |
4077 | mutex_unlock(lock: &wq->mutex); |
4078 | } |
4079 | EXPORT_SYMBOL(__flush_workqueue); |
4080 | |
4081 | /** |
4082 | * drain_workqueue - drain a workqueue |
4083 | * @wq: workqueue to drain |
4084 | * |
4085 | * Wait until the workqueue becomes empty. While draining is in progress, |
4086 | * only chain queueing is allowed. IOW, only currently pending or running |
4087 | * work items on @wq can queue further work items on it. @wq is flushed |
4088 | * repeatedly until it becomes empty. The number of flushing is determined |
4089 | * by the depth of chaining and should be relatively short. Whine if it |
4090 | * takes too long. |
4091 | */ |
4092 | void drain_workqueue(struct workqueue_struct *wq) |
4093 | { |
4094 | unsigned int flush_cnt = 0; |
4095 | struct pool_workqueue *pwq; |
4096 | |
4097 | /* |
4098 | * __queue_work() needs to test whether there are drainers, is much |
4099 | * hotter than drain_workqueue() and already looks at @wq->flags. |
4100 | * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. |
4101 | */ |
4102 | mutex_lock(&wq->mutex); |
4103 | if (!wq->nr_drainers++) |
4104 | wq->flags |= __WQ_DRAINING; |
4105 | mutex_unlock(lock: &wq->mutex); |
4106 | reflush: |
4107 | __flush_workqueue(wq); |
4108 | |
4109 | mutex_lock(&wq->mutex); |
4110 | |
4111 | for_each_pwq(pwq, wq) { |
4112 | bool drained; |
4113 | |
4114 | raw_spin_lock_irq(&pwq->pool->lock); |
4115 | drained = pwq_is_empty(pwq); |
4116 | raw_spin_unlock_irq(&pwq->pool->lock); |
4117 | |
4118 | if (drained) |
4119 | continue; |
4120 | |
4121 | if (++flush_cnt == 10 || |
4122 | (flush_cnt % 100 == 0 && flush_cnt <= 1000)) |
4123 | pr_warn("workqueue %s: %s() isn't complete after %u tries\n", |
4124 | wq->name, __func__, flush_cnt); |
4125 | |
4126 | mutex_unlock(lock: &wq->mutex); |
4127 | goto reflush; |
4128 | } |
4129 | |
4130 | if (!--wq->nr_drainers) |
4131 | wq->flags &= ~__WQ_DRAINING; |
4132 | mutex_unlock(lock: &wq->mutex); |
4133 | } |
4134 | EXPORT_SYMBOL_GPL(drain_workqueue); |
4135 | |
4136 | static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, |
4137 | bool from_cancel) |
4138 | { |
4139 | struct worker *worker = NULL; |
4140 | struct worker_pool *pool; |
4141 | struct pool_workqueue *pwq; |
4142 | struct workqueue_struct *wq; |
4143 | |
4144 | might_sleep(); |
4145 | |
4146 | rcu_read_lock(); |
4147 | pool = get_work_pool(work); |
4148 | if (!pool) { |
4149 | rcu_read_unlock(); |
4150 | return false; |
4151 | } |
4152 | |
4153 | raw_spin_lock_irq(&pool->lock); |
4154 | /* see the comment in try_to_grab_pending() with the same code */ |
4155 | pwq = get_work_pwq(work); |
4156 | if (pwq) { |
4157 | if (unlikely(pwq->pool != pool)) |
4158 | goto already_gone; |
4159 | } else { |
4160 | worker = find_worker_executing_work(pool, work); |
4161 | if (!worker) |
4162 | goto already_gone; |
4163 | pwq = worker->current_pwq; |
4164 | } |
4165 | |
4166 | wq = pwq->wq; |
4167 | check_flush_dependency(target_wq: wq, target_work: work); |
4168 | |
4169 | insert_wq_barrier(pwq, barr, target: work, worker); |
4170 | raw_spin_unlock_irq(&pool->lock); |
4171 | |
4172 | touch_work_lockdep_map(work, wq); |
4173 | |
4174 | /* |
4175 | * Force a lock recursion deadlock when using flush_work() inside a |
4176 | * single-threaded or rescuer equipped workqueue. |
4177 | * |
4178 | * For single threaded workqueues the deadlock happens when the work |
4179 | * is after the work issuing the flush_work(). For rescuer equipped |
4180 | * workqueues the deadlock happens when the rescuer stalls, blocking |
4181 | * forward progress. |
4182 | */ |
4183 | if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) |
4184 | touch_wq_lockdep_map(wq); |
4185 | |
4186 | rcu_read_unlock(); |
4187 | return true; |
4188 | already_gone: |
4189 | raw_spin_unlock_irq(&pool->lock); |
4190 | rcu_read_unlock(); |
4191 | return false; |
4192 | } |
4193 | |
4194 | static bool __flush_work(struct work_struct *work, bool from_cancel) |
4195 | { |
4196 | struct wq_barrier barr; |
4197 | |
4198 | if (WARN_ON(!wq_online)) |
4199 | return false; |
4200 | |
4201 | if (WARN_ON(!work->func)) |
4202 | return false; |
4203 | |
4204 | if (start_flush_work(work, barr: &barr, from_cancel)) { |
4205 | wait_for_completion(&barr.done); |
4206 | destroy_work_on_stack(&barr.work); |
4207 | return true; |
4208 | } else { |
4209 | return false; |
4210 | } |
4211 | } |
4212 | |
4213 | /** |
4214 | * flush_work - wait for a work to finish executing the last queueing instance |
4215 | * @work: the work to flush |
4216 | * |
4217 | * Wait until @work has finished execution. @work is guaranteed to be idle |
4218 | * on return if it hasn't been requeued since flush started. |
4219 | * |
4220 | * Return: |
4221 | * %true if flush_work() waited for the work to finish execution, |
4222 | * %false if it was already idle. |
4223 | */ |
4224 | bool flush_work(struct work_struct *work) |
4225 | { |
4226 | return __flush_work(work, from_cancel: false); |
4227 | } |
4228 | EXPORT_SYMBOL_GPL(flush_work); |
4229 | |
4230 | /** |
4231 | * flush_delayed_work - wait for a dwork to finish executing the last queueing |
4232 | * @dwork: the delayed work to flush |
4233 | * |
4234 | * Delayed timer is cancelled and the pending work is queued for |
4235 | * immediate execution. Like flush_work(), this function only |
4236 | * considers the last queueing instance of @dwork. |
4237 | * |
4238 | * Return: |
4239 | * %true if flush_work() waited for the work to finish execution, |
4240 | * %false if it was already idle. |
4241 | */ |
4242 | bool flush_delayed_work(struct delayed_work *dwork) |
4243 | { |
4244 | local_irq_disable(); |
4245 | if (del_timer_sync(timer: &dwork->timer)) |
4246 | __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work); |
4247 | local_irq_enable(); |
4248 | return flush_work(&dwork->work); |
4249 | } |
4250 | EXPORT_SYMBOL(flush_delayed_work); |
4251 | |
4252 | /** |
4253 | * flush_rcu_work - wait for a rwork to finish executing the last queueing |
4254 | * @rwork: the rcu work to flush |
4255 | * |
4256 | * Return: |
4257 | * %true if flush_rcu_work() waited for the work to finish execution, |
4258 | * %false if it was already idle. |
4259 | */ |
4260 | bool flush_rcu_work(struct rcu_work *rwork) |
4261 | { |
4262 | if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { |
4263 | rcu_barrier(); |
4264 | flush_work(&rwork->work); |
4265 | return true; |
4266 | } else { |
4267 | return flush_work(&rwork->work); |
4268 | } |
4269 | } |
4270 | EXPORT_SYMBOL(flush_rcu_work); |
4271 | |
4272 | static bool __cancel_work(struct work_struct *work, u32 cflags) |
4273 | { |
4274 | unsigned long irq_flags; |
4275 | int ret; |
4276 | |
4277 | do { |
4278 | ret = try_to_grab_pending(work, cflags, irq_flags: &irq_flags); |
4279 | } while (unlikely(ret == -EAGAIN)); |
4280 | |
4281 | if (unlikely(ret < 0)) |
4282 | return false; |
4283 | |
4284 | set_work_pool_and_clear_pending(work, pool_id: get_work_pool_id(work), flags: 0); |
4285 | local_irq_restore(irq_flags); |
4286 | return ret; |
4287 | } |
4288 | |
4289 | static bool __cancel_work_sync(struct work_struct *work, u32 cflags) |
4290 | { |
4291 | unsigned long irq_flags; |
4292 | bool ret; |
4293 | |
4294 | /* claim @work and tell other tasks trying to grab @work to back off */ |
4295 | ret = work_grab_pending(work, cflags, irq_flags: &irq_flags); |
4296 | mark_work_canceling(work); |
4297 | local_irq_restore(irq_flags); |
4298 | |
4299 | /* |
4300 | * Skip __flush_work() during early boot when we know that @work isn't |
4301 | * executing. This allows canceling during early boot. |
4302 | */ |
4303 | if (wq_online) |
4304 | __flush_work(work, from_cancel: true); |
4305 | |
4306 | /* |
4307 | * smp_mb() at the end of set_work_pool_and_clear_pending() is paired |
4308 | * with prepare_to_wait() above so that either waitqueue_active() is |
4309 | * visible here or !work_is_canceling() is visible there. |
4310 | */ |
4311 | set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, flags: 0); |
4312 | |
4313 | if (waitqueue_active(wq_head: &wq_cancel_waitq)) |
4314 | __wake_up(wq_head: &wq_cancel_waitq, TASK_NORMAL, nr: 1, key: work); |
4315 | |
4316 | return ret; |
4317 | } |
4318 | |
4319 | /* |
4320 | * See cancel_delayed_work() |
4321 | */ |
4322 | bool cancel_work(struct work_struct *work) |
4323 | { |
4324 | return __cancel_work(work, cflags: 0); |
4325 | } |
4326 | EXPORT_SYMBOL(cancel_work); |
4327 | |
4328 | /** |
4329 | * cancel_work_sync - cancel a work and wait for it to finish |
4330 | * @work: the work to cancel |
4331 | * |
4332 | * Cancel @work and wait for its execution to finish. This function |
4333 | * can be used even if the work re-queues itself or migrates to |
4334 | * another workqueue. On return from this function, @work is |
4335 | * guaranteed to be not pending or executing on any CPU. |
4336 | * |
4337 | * cancel_work_sync(&delayed_work->work) must not be used for |
4338 | * delayed_work's. Use cancel_delayed_work_sync() instead. |
4339 | * |
4340 | * The caller must ensure that the workqueue on which @work was last |
4341 | * queued can't be destroyed before this function returns. |
4342 | * |
4343 | * Return: |
4344 | * %true if @work was pending, %false otherwise. |
4345 | */ |
4346 | bool cancel_work_sync(struct work_struct *work) |
4347 | { |
4348 | return __cancel_work_sync(work, cflags: 0); |
4349 | } |
4350 | EXPORT_SYMBOL_GPL(cancel_work_sync); |
4351 | |
4352 | /** |
4353 | * cancel_delayed_work - cancel a delayed work |
4354 | * @dwork: delayed_work to cancel |
4355 | * |
4356 | * Kill off a pending delayed_work. |
4357 | * |
4358 | * Return: %true if @dwork was pending and canceled; %false if it wasn't |
4359 | * pending. |
4360 | * |
4361 | * Note: |
4362 | * The work callback function may still be running on return, unless |
4363 | * it returns %true and the work doesn't re-arm itself. Explicitly flush or |
4364 | * use cancel_delayed_work_sync() to wait on it. |
4365 | * |
4366 | * This function is safe to call from any context including IRQ handler. |
4367 | */ |
4368 | bool cancel_delayed_work(struct delayed_work *dwork) |
4369 | { |
4370 | return __cancel_work(work: &dwork->work, cflags: WORK_CANCEL_DELAYED); |
4371 | } |
4372 | EXPORT_SYMBOL(cancel_delayed_work); |
4373 | |
4374 | /** |
4375 | * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish |
4376 | * @dwork: the delayed work cancel |
4377 | * |
4378 | * This is cancel_work_sync() for delayed works. |
4379 | * |
4380 | * Return: |
4381 | * %true if @dwork was pending, %false otherwise. |
4382 | */ |
4383 | bool cancel_delayed_work_sync(struct delayed_work *dwork) |
4384 | { |
4385 | return __cancel_work_sync(work: &dwork->work, cflags: WORK_CANCEL_DELAYED); |
4386 | } |
4387 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
4388 | |
4389 | /** |
4390 | * schedule_on_each_cpu - execute a function synchronously on each online CPU |
4391 | * @func: the function to call |
4392 | * |
4393 | * schedule_on_each_cpu() executes @func on each online CPU using the |
4394 | * system workqueue and blocks until all CPUs have completed. |
4395 | * schedule_on_each_cpu() is very slow. |
4396 | * |
4397 | * Return: |
4398 | * 0 on success, -errno on failure. |
4399 | */ |
4400 | int schedule_on_each_cpu(work_func_t func) |
4401 | { |
4402 | int cpu; |
4403 | struct work_struct __percpu *works; |
4404 | |
4405 | works = alloc_percpu(struct work_struct); |
4406 | if (!works) |
4407 | return -ENOMEM; |
4408 | |
4409 | cpus_read_lock(); |
4410 | |
4411 | for_each_online_cpu(cpu) { |
4412 | struct work_struct *work = per_cpu_ptr(works, cpu); |
4413 | |
4414 | INIT_WORK(work, func); |
4415 | schedule_work_on(cpu, work); |
4416 | } |
4417 | |
4418 | for_each_online_cpu(cpu) |
4419 | flush_work(per_cpu_ptr(works, cpu)); |
4420 | |
4421 | cpus_read_unlock(); |
4422 | free_percpu(pdata: works); |
4423 | return 0; |
4424 | } |
4425 | |
4426 | /** |
4427 | * execute_in_process_context - reliably execute the routine with user context |
4428 | * @fn: the function to execute |
4429 | * @ew: guaranteed storage for the execute work structure (must |
4430 | * be available when the work executes) |
4431 | * |
4432 | * Executes the function immediately if process context is available, |
4433 | * otherwise schedules the function for delayed execution. |
4434 | * |
4435 | * Return: 0 - function was executed |
4436 | * 1 - function was scheduled for execution |
4437 | */ |
4438 | int execute_in_process_context(work_func_t fn, struct execute_work *ew) |
4439 | { |
4440 | if (!in_interrupt()) { |
4441 | fn(&ew->work); |
4442 | return 0; |
4443 | } |
4444 | |
4445 | INIT_WORK(&ew->work, fn); |
4446 | schedule_work(work: &ew->work); |
4447 | |
4448 | return 1; |
4449 | } |
4450 | EXPORT_SYMBOL_GPL(execute_in_process_context); |
4451 | |
4452 | /** |
4453 | * free_workqueue_attrs - free a workqueue_attrs |
4454 | * @attrs: workqueue_attrs to free |
4455 | * |
4456 | * Undo alloc_workqueue_attrs(). |
4457 | */ |
4458 | void free_workqueue_attrs(struct workqueue_attrs *attrs) |
4459 | { |
4460 | if (attrs) { |
4461 | free_cpumask_var(mask: attrs->cpumask); |
4462 | free_cpumask_var(mask: attrs->__pod_cpumask); |
4463 | kfree(objp: attrs); |
4464 | } |
4465 | } |
4466 | |
4467 | /** |
4468 | * alloc_workqueue_attrs - allocate a workqueue_attrs |
4469 | * |
4470 | * Allocate a new workqueue_attrs, initialize with default settings and |
4471 | * return it. |
4472 | * |
4473 | * Return: The allocated new workqueue_attr on success. %NULL on failure. |
4474 | */ |
4475 | struct workqueue_attrs *alloc_workqueue_attrs(void) |
4476 | { |
4477 | struct workqueue_attrs *attrs; |
4478 | |
4479 | attrs = kzalloc(size: sizeof(*attrs), GFP_KERNEL); |
4480 | if (!attrs) |
4481 | goto fail; |
4482 | if (!alloc_cpumask_var(mask: &attrs->cpumask, GFP_KERNEL)) |
4483 | goto fail; |
4484 | if (!alloc_cpumask_var(mask: &attrs->__pod_cpumask, GFP_KERNEL)) |
4485 | goto fail; |
4486 | |
4487 | cpumask_copy(dstp: attrs->cpumask, cpu_possible_mask); |
4488 | attrs->affn_scope = WQ_AFFN_DFL; |
4489 | return attrs; |
4490 | fail: |
4491 | free_workqueue_attrs(attrs); |
4492 | return NULL; |
4493 | } |
4494 | |
4495 | static void copy_workqueue_attrs(struct workqueue_attrs *to, |
4496 | const struct workqueue_attrs *from) |
4497 | { |
4498 | to->nice = from->nice; |
4499 | cpumask_copy(dstp: to->cpumask, srcp: from->cpumask); |
4500 | cpumask_copy(dstp: to->__pod_cpumask, srcp: from->__pod_cpumask); |
4501 | to->affn_strict = from->affn_strict; |
4502 | |
4503 | /* |
4504 | * Unlike hash and equality test, copying shouldn't ignore wq-only |
4505 | * fields as copying is used for both pool and wq attrs. Instead, |
4506 | * get_unbound_pool() explicitly clears the fields. |
4507 | */ |
4508 | to->affn_scope = from->affn_scope; |
4509 | to->ordered = from->ordered; |
4510 | } |
4511 | |
4512 | /* |
4513 | * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the |
4514 | * comments in 'struct workqueue_attrs' definition. |
4515 | */ |
4516 | static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) |
4517 | { |
4518 | attrs->affn_scope = WQ_AFFN_NR_TYPES; |
4519 | attrs->ordered = false; |
4520 | } |
4521 | |
4522 | /* hash value of the content of @attr */ |
4523 | static u32 wqattrs_hash(const struct workqueue_attrs *attrs) |
4524 | { |
4525 | u32 hash = 0; |
4526 | |
4527 | hash = jhash_1word(a: attrs->nice, initval: hash); |
4528 | hash = jhash(cpumask_bits(attrs->cpumask), |
4529 | BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash); |
4530 | hash = jhash(cpumask_bits(attrs->__pod_cpumask), |
4531 | BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash); |
4532 | hash = jhash_1word(a: attrs->affn_strict, initval: hash); |
4533 | return hash; |
4534 | } |
4535 | |
4536 | /* content equality test */ |
4537 | static bool wqattrs_equal(const struct workqueue_attrs *a, |
4538 | const struct workqueue_attrs *b) |
4539 | { |
4540 | if (a->nice != b->nice) |
4541 | return false; |
4542 | if (!cpumask_equal(src1p: a->cpumask, src2p: b->cpumask)) |
4543 | return false; |
4544 | if (!cpumask_equal(src1p: a->__pod_cpumask, src2p: b->__pod_cpumask)) |
4545 | return false; |
4546 | if (a->affn_strict != b->affn_strict) |
4547 | return false; |
4548 | return true; |
4549 | } |
4550 | |
4551 | /* Update @attrs with actually available CPUs */ |
4552 | static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, |
4553 | const cpumask_t *unbound_cpumask) |
4554 | { |
4555 | /* |
4556 | * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If |
4557 | * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to |
4558 | * @unbound_cpumask. |
4559 | */ |
4560 | cpumask_and(dstp: attrs->cpumask, src1p: attrs->cpumask, src2p: unbound_cpumask); |
4561 | if (unlikely(cpumask_empty(attrs->cpumask))) |
4562 | cpumask_copy(dstp: attrs->cpumask, srcp: unbound_cpumask); |
4563 | } |
4564 | |
4565 | /* find wq_pod_type to use for @attrs */ |
4566 | static const struct wq_pod_type * |
4567 | wqattrs_pod_type(const struct workqueue_attrs *attrs) |
4568 | { |
4569 | enum wq_affn_scope scope; |
4570 | struct wq_pod_type *pt; |
4571 | |
4572 | /* to synchronize access to wq_affn_dfl */ |
4573 | lockdep_assert_held(&wq_pool_mutex); |
4574 | |
4575 | if (attrs->affn_scope == WQ_AFFN_DFL) |
4576 | scope = wq_affn_dfl; |
4577 | else |
4578 | scope = attrs->affn_scope; |
4579 | |
4580 | pt = &wq_pod_types[scope]; |
4581 | |
4582 | if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && |
4583 | likely(pt->nr_pods)) |
4584 | return pt; |
4585 | |
4586 | /* |
4587 | * Before workqueue_init_topology(), only SYSTEM is available which is |
4588 | * initialized in workqueue_init_early(). |
4589 | */ |
4590 | pt = &wq_pod_types[WQ_AFFN_SYSTEM]; |
4591 | BUG_ON(!pt->nr_pods); |
4592 | return pt; |
4593 | } |
4594 | |
4595 | /** |
4596 | * init_worker_pool - initialize a newly zalloc'd worker_pool |
4597 | * @pool: worker_pool to initialize |
4598 | * |
4599 | * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. |
4600 | * |
4601 | * Return: 0 on success, -errno on failure. Even on failure, all fields |
4602 | * inside @pool proper are initialized and put_unbound_pool() can be called |
4603 | * on @pool safely to release it. |
4604 | */ |
4605 | static int init_worker_pool(struct worker_pool *pool) |
4606 | { |
4607 | raw_spin_lock_init(&pool->lock); |
4608 | pool->id = -1; |
4609 | pool->cpu = -1; |
4610 | pool->node = NUMA_NO_NODE; |
4611 | pool->flags |= POOL_DISASSOCIATED; |
4612 | pool->watchdog_ts = jiffies; |
4613 | INIT_LIST_HEAD(list: &pool->worklist); |
4614 | INIT_LIST_HEAD(list: &pool->idle_list); |
4615 | hash_init(pool->busy_hash); |
4616 | |
4617 | timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); |
4618 | INIT_WORK(&pool->idle_cull_work, idle_cull_fn); |
4619 | |
4620 | timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); |
4621 | |
4622 | INIT_LIST_HEAD(list: &pool->workers); |
4623 | INIT_LIST_HEAD(list: &pool->dying_workers); |
4624 | |
4625 | ida_init(ida: &pool->worker_ida); |
4626 | INIT_HLIST_NODE(h: &pool->hash_node); |
4627 | pool->refcnt = 1; |
4628 | |
4629 | /* shouldn't fail above this point */ |
4630 | pool->attrs = alloc_workqueue_attrs(); |
4631 | if (!pool->attrs) |
4632 | return -ENOMEM; |
4633 | |
4634 | wqattrs_clear_for_pool(attrs: pool->attrs); |
4635 | |
4636 | return 0; |
4637 | } |
4638 | |
4639 | #ifdef CONFIG_LOCKDEP |
4640 | static void wq_init_lockdep(struct workqueue_struct *wq) |
4641 | { |
4642 | char *lock_name; |
4643 | |
4644 | lockdep_register_key(key: &wq->key); |
4645 | lock_name = kasprintf(GFP_KERNEL, fmt: "%s%s", "(wq_completion)", wq->name); |
4646 | if (!lock_name) |
4647 | lock_name = wq->name; |
4648 | |
4649 | wq->lock_name = lock_name; |
4650 | lockdep_init_map(lock: &wq->lockdep_map, name: lock_name, key: &wq->key, subclass: 0); |
4651 | } |
4652 | |
4653 | static void wq_unregister_lockdep(struct workqueue_struct *wq) |
4654 | { |
4655 | lockdep_unregister_key(key: &wq->key); |
4656 | } |
4657 | |
4658 | static void wq_free_lockdep(struct workqueue_struct *wq) |
4659 | { |
4660 | if (wq->lock_name != wq->name) |
4661 | kfree(objp: wq->lock_name); |
4662 | } |
4663 | #else |
4664 | static void wq_init_lockdep(struct workqueue_struct *wq) |
4665 | { |
4666 | } |
4667 | |
4668 | static void wq_unregister_lockdep(struct workqueue_struct *wq) |
4669 | { |
4670 | } |
4671 | |
4672 | static void wq_free_lockdep(struct workqueue_struct *wq) |
4673 | { |
4674 | } |
4675 | #endif |
4676 | |
4677 | static void free_node_nr_active(struct wq_node_nr_active **nna_ar) |
4678 | { |
4679 | int node; |
4680 | |
4681 | for_each_node(node) { |
4682 | kfree(objp: nna_ar[node]); |
4683 | nna_ar[node] = NULL; |
4684 | } |
4685 | |
4686 | kfree(objp: nna_ar[nr_node_ids]); |
4687 | nna_ar[nr_node_ids] = NULL; |
4688 | } |
4689 | |
4690 | static void init_node_nr_active(struct wq_node_nr_active *nna) |
4691 | { |
4692 | nna->max = WQ_DFL_MIN_ACTIVE; |
4693 | atomic_set(v: &nna->nr, i: 0); |
4694 | raw_spin_lock_init(&nna->lock); |
4695 | INIT_LIST_HEAD(list: &nna->pending_pwqs); |
4696 | } |
4697 | |
4698 | /* |
4699 | * Each node's nr_active counter will be accessed mostly from its own node and |
4700 | * should be allocated in the node. |
4701 | */ |
4702 | static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) |
4703 | { |
4704 | struct wq_node_nr_active *nna; |
4705 | int node; |
4706 | |
4707 | for_each_node(node) { |
4708 | nna = kzalloc_node(size: sizeof(*nna), GFP_KERNEL, node); |
4709 | if (!nna) |
4710 | goto err_free; |
4711 | init_node_nr_active(nna); |
4712 | nna_ar[node] = nna; |
4713 | } |
4714 | |
4715 | /* [nr_node_ids] is used as the fallback */ |
4716 | nna = kzalloc_node(size: sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); |
4717 | if (!nna) |
4718 | goto err_free; |
4719 | init_node_nr_active(nna); |
4720 | nna_ar[nr_node_ids] = nna; |
4721 | |
4722 | return 0; |
4723 | |
4724 | err_free: |
4725 | free_node_nr_active(nna_ar); |
4726 | return -ENOMEM; |
4727 | } |
4728 | |
4729 | static void rcu_free_wq(struct rcu_head *rcu) |
4730 | { |
4731 | struct workqueue_struct *wq = |
4732 | container_of(rcu, struct workqueue_struct, rcu); |
4733 | |
4734 | if (wq->flags & WQ_UNBOUND) |
4735 | free_node_nr_active(nna_ar: wq->node_nr_active); |
4736 | |
4737 | wq_free_lockdep(wq); |
4738 | free_percpu(pdata: wq->cpu_pwq); |
4739 | free_workqueue_attrs(attrs: wq->unbound_attrs); |
4740 | kfree(objp: wq); |
4741 | } |
4742 | |
4743 | static void rcu_free_pool(struct rcu_head *rcu) |
4744 | { |
4745 | struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); |
4746 | |
4747 | ida_destroy(ida: &pool->worker_ida); |
4748 | free_workqueue_attrs(attrs: pool->attrs); |
4749 | kfree(objp: pool); |
4750 | } |
4751 | |
4752 | /** |
4753 | * put_unbound_pool - put a worker_pool |
4754 | * @pool: worker_pool to put |
4755 | * |
4756 | * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU |
4757 | * safe manner. get_unbound_pool() calls this function on its failure path |
4758 | * and this function should be able to release pools which went through, |
4759 | * successfully or not, init_worker_pool(). |
4760 | * |
4761 | * Should be called with wq_pool_mutex held. |
4762 | */ |
4763 | static void put_unbound_pool(struct worker_pool *pool) |
4764 | { |
4765 | DECLARE_COMPLETION_ONSTACK(detach_completion); |
4766 | struct worker *worker; |
4767 | LIST_HEAD(cull_list); |
4768 | |
4769 | lockdep_assert_held(&wq_pool_mutex); |
4770 | |
4771 | if (--pool->refcnt) |
4772 | return; |
4773 | |
4774 | /* sanity checks */ |
4775 | if (WARN_ON(!(pool->cpu < 0)) || |
4776 | WARN_ON(!list_empty(&pool->worklist))) |
4777 | return; |
4778 | |
4779 | /* release id and unhash */ |
4780 | if (pool->id >= 0) |
4781 | idr_remove(&worker_pool_idr, id: pool->id); |
4782 | hash_del(node: &pool->hash_node); |
4783 | |
4784 | /* |
4785 | * Become the manager and destroy all workers. This prevents |
4786 | * @pool's workers from blocking on attach_mutex. We're the last |
4787 | * manager and @pool gets freed with the flag set. |
4788 | * |
4789 | * Having a concurrent manager is quite unlikely to happen as we can |
4790 | * only get here with |
4791 | * pwq->refcnt == pool->refcnt == 0 |
4792 | * which implies no work queued to the pool, which implies no worker can |
4793 | * become the manager. However a worker could have taken the role of |
4794 | * manager before the refcnts dropped to 0, since maybe_create_worker() |
4795 | * drops pool->lock |
4796 | */ |
4797 | while (true) { |
4798 | rcuwait_wait_event(&manager_wait, |
4799 | !(pool->flags & POOL_MANAGER_ACTIVE), |
4800 | TASK_UNINTERRUPTIBLE); |
4801 | |
4802 | mutex_lock(&wq_pool_attach_mutex); |
4803 | raw_spin_lock_irq(&pool->lock); |
4804 | if (!(pool->flags & POOL_MANAGER_ACTIVE)) { |
4805 | pool->flags |= POOL_MANAGER_ACTIVE; |
4806 | break; |
4807 | } |
4808 | raw_spin_unlock_irq(&pool->lock); |
4809 | mutex_unlock(lock: &wq_pool_attach_mutex); |
4810 | } |
4811 | |
4812 | while ((worker = first_idle_worker(pool))) |
4813 | set_worker_dying(worker, list: &cull_list); |
4814 | WARN_ON(pool->nr_workers || pool->nr_idle); |
4815 | raw_spin_unlock_irq(&pool->lock); |
4816 | |
4817 | wake_dying_workers(cull_list: &cull_list); |
4818 | |
4819 | if (!list_empty(head: &pool->workers) || !list_empty(head: &pool->dying_workers)) |
4820 | pool->detach_completion = &detach_completion; |
4821 | mutex_unlock(lock: &wq_pool_attach_mutex); |
4822 | |
4823 | if (pool->detach_completion) |
4824 | wait_for_completion(pool->detach_completion); |
4825 | |
4826 | /* shut down the timers */ |
4827 | del_timer_sync(timer: &pool->idle_timer); |
4828 | cancel_work_sync(&pool->idle_cull_work); |
4829 | del_timer_sync(timer: &pool->mayday_timer); |
4830 | |
4831 | /* RCU protected to allow dereferences from get_work_pool() */ |
4832 | call_rcu(head: &pool->rcu, func: rcu_free_pool); |
4833 | } |
4834 | |
4835 | /** |
4836 | * get_unbound_pool - get a worker_pool with the specified attributes |
4837 | * @attrs: the attributes of the worker_pool to get |
4838 | * |
4839 | * Obtain a worker_pool which has the same attributes as @attrs, bump the |
4840 | * reference count and return it. If there already is a matching |
4841 | * worker_pool, it will be used; otherwise, this function attempts to |
4842 | * create a new one. |
4843 | * |
4844 | * Should be called with wq_pool_mutex held. |
4845 | * |
4846 | * Return: On success, a worker_pool with the same attributes as @attrs. |
4847 | * On failure, %NULL. |
4848 | */ |
4849 | static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) |
4850 | { |
4851 | struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; |
4852 | u32 hash = wqattrs_hash(attrs); |
4853 | struct worker_pool *pool; |
4854 | int pod, node = NUMA_NO_NODE; |
4855 | |
4856 | lockdep_assert_held(&wq_pool_mutex); |
4857 | |
4858 | /* do we already have a matching pool? */ |
4859 | hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { |
4860 | if (wqattrs_equal(a: pool->attrs, b: attrs)) { |
4861 | pool->refcnt++; |
4862 | return pool; |
4863 | } |
4864 | } |
4865 | |
4866 | /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ |
4867 | for (pod = 0; pod < pt->nr_pods; pod++) { |
4868 | if (cpumask_subset(src1p: attrs->__pod_cpumask, src2p: pt->pod_cpus[pod])) { |
4869 | node = pt->pod_node[pod]; |
4870 | break; |
4871 | } |
4872 | } |
4873 | |
4874 | /* nope, create a new one */ |
4875 | pool = kzalloc_node(size: sizeof(*pool), GFP_KERNEL, node); |
4876 | if (!pool || init_worker_pool(pool) < 0) |
4877 | goto fail; |
4878 | |
4879 | pool->node = node; |
4880 | copy_workqueue_attrs(to: pool->attrs, from: attrs); |
4881 | wqattrs_clear_for_pool(attrs: pool->attrs); |
4882 | |
4883 | if (worker_pool_assign_id(pool) < 0) |
4884 | goto fail; |
4885 | |
4886 | /* create and start the initial worker */ |
4887 | if (wq_online && !create_worker(pool)) |
4888 | goto fail; |
4889 | |
4890 | /* install */ |
4891 | hash_add(unbound_pool_hash, &pool->hash_node, hash); |
4892 | |
4893 | return pool; |
4894 | fail: |
4895 | if (pool) |
4896 | put_unbound_pool(pool); |
4897 | return NULL; |
4898 | } |
4899 | |
4900 | static void rcu_free_pwq(struct rcu_head *rcu) |
4901 | { |
4902 | kmem_cache_free(s: pwq_cache, |
4903 | container_of(rcu, struct pool_workqueue, rcu)); |
4904 | } |
4905 | |
4906 | /* |
4907 | * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero |
4908 | * refcnt and needs to be destroyed. |
4909 | */ |
4910 | static void pwq_release_workfn(struct kthread_work *work) |
4911 | { |
4912 | struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, |
4913 | release_work); |
4914 | struct workqueue_struct *wq = pwq->wq; |
4915 | struct worker_pool *pool = pwq->pool; |
4916 | bool is_last = false; |
4917 | |
4918 | /* |
4919 | * When @pwq is not linked, it doesn't hold any reference to the |
4920 | * @wq, and @wq is invalid to access. |
4921 | */ |
4922 | if (!list_empty(head: &pwq->pwqs_node)) { |
4923 | mutex_lock(&wq->mutex); |
4924 | list_del_rcu(entry: &pwq->pwqs_node); |
4925 | is_last = list_empty(head: &wq->pwqs); |
4926 | |
4927 | /* |
4928 | * For ordered workqueue with a plugged dfl_pwq, restart it now. |
4929 | */ |
4930 | if (!is_last && (wq->flags & __WQ_ORDERED)) |
4931 | unplug_oldest_pwq(wq); |
4932 | |
4933 | mutex_unlock(lock: &wq->mutex); |
4934 | } |
4935 | |
4936 | if (wq->flags & WQ_UNBOUND) { |
4937 | mutex_lock(&wq_pool_mutex); |
4938 | put_unbound_pool(pool); |
4939 | mutex_unlock(lock: &wq_pool_mutex); |
4940 | } |
4941 | |
4942 | if (!list_empty(head: &pwq->pending_node)) { |
4943 | struct wq_node_nr_active *nna = |
4944 | wq_node_nr_active(wq: pwq->wq, node: pwq->pool->node); |
4945 | |
4946 | raw_spin_lock_irq(&nna->lock); |
4947 | list_del_init(entry: &pwq->pending_node); |
4948 | raw_spin_unlock_irq(&nna->lock); |
4949 | } |
4950 | |
4951 | call_rcu(head: &pwq->rcu, func: rcu_free_pwq); |
4952 | |
4953 | /* |
4954 | * If we're the last pwq going away, @wq is already dead and no one |
4955 | * is gonna access it anymore. Schedule RCU free. |
4956 | */ |
4957 | if (is_last) { |
4958 | wq_unregister_lockdep(wq); |
4959 | call_rcu(head: &wq->rcu, func: rcu_free_wq); |
4960 | } |
4961 | } |
4962 | |
4963 | /* initialize newly allocated @pwq which is associated with @wq and @pool */ |
4964 | static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, |
4965 | struct worker_pool *pool) |
4966 | { |
4967 | BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); |
4968 | |
4969 | memset(pwq, 0, sizeof(*pwq)); |
4970 | |
4971 | pwq->pool = pool; |
4972 | pwq->wq = wq; |
4973 | pwq->flush_color = -1; |
4974 | pwq->refcnt = 1; |
4975 | INIT_LIST_HEAD(list: &pwq->inactive_works); |
4976 | INIT_LIST_HEAD(list: &pwq->pending_node); |
4977 | INIT_LIST_HEAD(list: &pwq->pwqs_node); |
4978 | INIT_LIST_HEAD(list: &pwq->mayday_node); |
4979 | kthread_init_work(&pwq->release_work, pwq_release_workfn); |
4980 | } |
4981 | |
4982 | /* sync @pwq with the current state of its associated wq and link it */ |
4983 | static void link_pwq(struct pool_workqueue *pwq) |
4984 | { |
4985 | struct workqueue_struct *wq = pwq->wq; |
4986 | |
4987 | lockdep_assert_held(&wq->mutex); |
4988 | |
4989 | /* may be called multiple times, ignore if already linked */ |
4990 | if (!list_empty(head: &pwq->pwqs_node)) |
4991 | return; |
4992 | |
4993 | /* set the matching work_color */ |
4994 | pwq->work_color = wq->work_color; |
4995 | |
4996 | /* link in @pwq */ |
4997 | list_add_tail_rcu(new: &pwq->pwqs_node, head: &wq->pwqs); |
4998 | } |
4999 | |
5000 | /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ |
5001 | static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, |
5002 | const struct workqueue_attrs *attrs) |
5003 | { |
5004 | struct worker_pool *pool; |
5005 | struct pool_workqueue *pwq; |
5006 | |
5007 | lockdep_assert_held(&wq_pool_mutex); |
5008 | |
5009 | pool = get_unbound_pool(attrs); |
5010 | if (!pool) |
5011 | return NULL; |
5012 | |
5013 | pwq = kmem_cache_alloc_node(s: pwq_cache, GFP_KERNEL, node: pool->node); |
5014 | if (!pwq) { |
5015 | put_unbound_pool(pool); |
5016 | return NULL; |
5017 | } |
5018 | |
5019 | init_pwq(pwq, wq, pool); |
5020 | return pwq; |
5021 | } |
5022 | |
5023 | /** |
5024 | * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod |
5025 | * @attrs: the wq_attrs of the default pwq of the target workqueue |
5026 | * @cpu: the target CPU |
5027 | * @cpu_going_down: if >= 0, the CPU to consider as offline |
5028 | * |
5029 | * Calculate the cpumask a workqueue with @attrs should use on @pod. If |
5030 | * @cpu_going_down is >= 0, that cpu is considered offline during calculation. |
5031 | * The result is stored in @attrs->__pod_cpumask. |
5032 | * |
5033 | * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled |
5034 | * and @pod has online CPUs requested by @attrs, the returned cpumask is the |
5035 | * intersection of the possible CPUs of @pod and @attrs->cpumask. |
5036 | * |
5037 | * The caller is responsible for ensuring that the cpumask of @pod stays stable. |
5038 | */ |
5039 | static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, |
5040 | int cpu_going_down) |
5041 | { |
5042 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
5043 | int pod = pt->cpu_pod[cpu]; |
5044 | |
5045 | /* does @pod have any online CPUs @attrs wants? */ |
5046 | cpumask_and(dstp: attrs->__pod_cpumask, src1p: pt->pod_cpus[pod], src2p: attrs->cpumask); |
5047 | cpumask_and(dstp: attrs->__pod_cpumask, src1p: attrs->__pod_cpumask, cpu_online_mask); |
5048 | if (cpu_going_down >= 0) |
5049 | cpumask_clear_cpu(cpu: cpu_going_down, dstp: attrs->__pod_cpumask); |
5050 | |
5051 | if (cpumask_empty(srcp: attrs->__pod_cpumask)) { |
5052 | cpumask_copy(dstp: attrs->__pod_cpumask, srcp: attrs->cpumask); |
5053 | return; |
5054 | } |
5055 | |
5056 | /* yeap, return possible CPUs in @pod that @attrs wants */ |
5057 | cpumask_and(dstp: attrs->__pod_cpumask, src1p: attrs->cpumask, src2p: pt->pod_cpus[pod]); |
5058 | |
5059 | if (cpumask_empty(srcp: attrs->__pod_cpumask)) |
5060 | pr_warn_once("WARNING: workqueue cpumask: online intersect > " |
5061 | "possible intersect\n"); |
5062 | } |
5063 | |
5064 | /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ |
5065 | static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, |
5066 | int cpu, struct pool_workqueue *pwq) |
5067 | { |
5068 | struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); |
5069 | struct pool_workqueue *old_pwq; |
5070 | |
5071 | lockdep_assert_held(&wq_pool_mutex); |
5072 | lockdep_assert_held(&wq->mutex); |
5073 | |
5074 | /* link_pwq() can handle duplicate calls */ |
5075 | link_pwq(pwq); |
5076 | |
5077 | old_pwq = rcu_access_pointer(*slot); |
5078 | rcu_assign_pointer(*slot, pwq); |
5079 | return old_pwq; |
5080 | } |
5081 | |
5082 | /* context to store the prepared attrs & pwqs before applying */ |
5083 | struct apply_wqattrs_ctx { |
5084 | struct workqueue_struct *wq; /* target workqueue */ |
5085 | struct workqueue_attrs *attrs; /* attrs to apply */ |
5086 | struct list_head list; /* queued for batching commit */ |
5087 | struct pool_workqueue *dfl_pwq; |
5088 | struct pool_workqueue *pwq_tbl[]; |
5089 | }; |
5090 | |
5091 | /* free the resources after success or abort */ |
5092 | static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) |
5093 | { |
5094 | if (ctx) { |
5095 | int cpu; |
5096 | |
5097 | for_each_possible_cpu(cpu) |
5098 | put_pwq_unlocked(pwq: ctx->pwq_tbl[cpu]); |
5099 | put_pwq_unlocked(pwq: ctx->dfl_pwq); |
5100 | |
5101 | free_workqueue_attrs(attrs: ctx->attrs); |
5102 | |
5103 | kfree(objp: ctx); |
5104 | } |
5105 | } |
5106 | |
5107 | /* allocate the attrs and pwqs for later installation */ |
5108 | static struct apply_wqattrs_ctx * |
5109 | apply_wqattrs_prepare(struct workqueue_struct *wq, |
5110 | const struct workqueue_attrs *attrs, |
5111 | const cpumask_var_t unbound_cpumask) |
5112 | { |
5113 | struct apply_wqattrs_ctx *ctx; |
5114 | struct workqueue_attrs *new_attrs; |
5115 | int cpu; |
5116 | |
5117 | lockdep_assert_held(&wq_pool_mutex); |
5118 | |
5119 | if (WARN_ON(attrs->affn_scope < 0 || |
5120 | attrs->affn_scope >= WQ_AFFN_NR_TYPES)) |
5121 | return ERR_PTR(error: -EINVAL); |
5122 | |
5123 | ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); |
5124 | |
5125 | new_attrs = alloc_workqueue_attrs(); |
5126 | if (!ctx || !new_attrs) |
5127 | goto out_free; |
5128 | |
5129 | /* |
5130 | * If something goes wrong during CPU up/down, we'll fall back to |
5131 | * the default pwq covering whole @attrs->cpumask. Always create |
5132 | * it even if we don't use it immediately. |
5133 | */ |
5134 | copy_workqueue_attrs(to: new_attrs, from: attrs); |
5135 | wqattrs_actualize_cpumask(attrs: new_attrs, unbound_cpumask); |
5136 | cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask); |
5137 | ctx->dfl_pwq = alloc_unbound_pwq(wq, attrs: new_attrs); |
5138 | if (!ctx->dfl_pwq) |
5139 | goto out_free; |
5140 | |
5141 | for_each_possible_cpu(cpu) { |
5142 | if (new_attrs->ordered) { |
5143 | ctx->dfl_pwq->refcnt++; |
5144 | ctx->pwq_tbl[cpu] = ctx->dfl_pwq; |
5145 | } else { |
5146 | wq_calc_pod_cpumask(attrs: new_attrs, cpu, cpu_going_down: -1); |
5147 | ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, attrs: new_attrs); |
5148 | if (!ctx->pwq_tbl[cpu]) |
5149 | goto out_free; |
5150 | } |
5151 | } |
5152 | |
5153 | /* save the user configured attrs and sanitize it. */ |
5154 | copy_workqueue_attrs(to: new_attrs, from: attrs); |
5155 | cpumask_and(dstp: new_attrs->cpumask, src1p: new_attrs->cpumask, cpu_possible_mask); |
5156 | cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask); |
5157 | ctx->attrs = new_attrs; |
5158 | |
5159 | /* |
5160 | * For initialized ordered workqueues, there should only be one pwq |
5161 | * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution |
5162 | * of newly queued work items until execution of older work items in |
5163 | * the old pwq's have completed. |
5164 | */ |
5165 | if ((wq->flags & __WQ_ORDERED) && !list_empty(head: &wq->pwqs)) |
5166 | ctx->dfl_pwq->plugged = true; |
5167 | |
5168 | ctx->wq = wq; |
5169 | return ctx; |
5170 | |
5171 | out_free: |
5172 | free_workqueue_attrs(attrs: new_attrs); |
5173 | apply_wqattrs_cleanup(ctx); |
5174 | return ERR_PTR(error: -ENOMEM); |
5175 | } |
5176 | |
5177 | /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ |
5178 | static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) |
5179 | { |
5180 | int cpu; |
5181 | |
5182 | /* all pwqs have been created successfully, let's install'em */ |
5183 | mutex_lock(&ctx->wq->mutex); |
5184 | |
5185 | copy_workqueue_attrs(to: ctx->wq->unbound_attrs, from: ctx->attrs); |
5186 | |
5187 | /* save the previous pwqs and install the new ones */ |
5188 | for_each_possible_cpu(cpu) |
5189 | ctx->pwq_tbl[cpu] = install_unbound_pwq(wq: ctx->wq, cpu, |
5190 | pwq: ctx->pwq_tbl[cpu]); |
5191 | ctx->dfl_pwq = install_unbound_pwq(wq: ctx->wq, cpu: -1, pwq: ctx->dfl_pwq); |
5192 | |
5193 | /* update node_nr_active->max */ |
5194 | wq_update_node_max_active(wq: ctx->wq, off_cpu: -1); |
5195 | |
5196 | /* rescuer needs to respect wq cpumask changes */ |
5197 | if (ctx->wq->rescuer) |
5198 | set_cpus_allowed_ptr(p: ctx->wq->rescuer->task, |
5199 | new_mask: unbound_effective_cpumask(wq: ctx->wq)); |
5200 | |
5201 | mutex_unlock(lock: &ctx->wq->mutex); |
5202 | } |
5203 | |
5204 | static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, |
5205 | const struct workqueue_attrs *attrs) |
5206 | { |
5207 | struct apply_wqattrs_ctx *ctx; |
5208 | |
5209 | /* only unbound workqueues can change attributes */ |
5210 | if (WARN_ON(!(wq->flags & WQ_UNBOUND))) |
5211 | return -EINVAL; |
5212 | |
5213 | ctx = apply_wqattrs_prepare(wq, attrs, unbound_cpumask: wq_unbound_cpumask); |
5214 | if (IS_ERR(ptr: ctx)) |
5215 | return PTR_ERR(ptr: ctx); |
5216 | |
5217 | /* the ctx has been prepared successfully, let's commit it */ |
5218 | apply_wqattrs_commit(ctx); |
5219 | apply_wqattrs_cleanup(ctx); |
5220 | |
5221 | return 0; |
5222 | } |
5223 | |
5224 | /** |
5225 | * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue |
5226 | * @wq: the target workqueue |
5227 | * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() |
5228 | * |
5229 | * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps |
5230 | * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that |
5231 | * work items are affine to the pod it was issued on. Older pwqs are released as |
5232 | * in-flight work items finish. Note that a work item which repeatedly requeues |
5233 | * itself back-to-back will stay on its current pwq. |
5234 | * |
5235 | * Performs GFP_KERNEL allocations. |
5236 | * |
5237 | * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). |
5238 | * |
5239 | * Return: 0 on success and -errno on failure. |
5240 | */ |
5241 | int apply_workqueue_attrs(struct workqueue_struct *wq, |
5242 | const struct workqueue_attrs *attrs) |
5243 | { |
5244 | int ret; |
5245 | |
5246 | lockdep_assert_cpus_held(); |
5247 | |
5248 | mutex_lock(&wq_pool_mutex); |
5249 | ret = apply_workqueue_attrs_locked(wq, attrs); |
5250 | mutex_unlock(lock: &wq_pool_mutex); |
5251 | |
5252 | return ret; |
5253 | } |
5254 | |
5255 | /** |
5256 | * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug |
5257 | * @wq: the target workqueue |
5258 | * @cpu: the CPU to update pool association for |
5259 | * @hotplug_cpu: the CPU coming up or going down |
5260 | * @online: whether @cpu is coming up or going down |
5261 | * |
5262 | * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and |
5263 | * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of |
5264 | * @wq accordingly. |
5265 | * |
5266 | * |
5267 | * If pod affinity can't be adjusted due to memory allocation failure, it falls |
5268 | * back to @wq->dfl_pwq which may not be optimal but is always correct. |
5269 | * |
5270 | * Note that when the last allowed CPU of a pod goes offline for a workqueue |
5271 | * with a cpumask spanning multiple pods, the workers which were already |
5272 | * executing the work items for the workqueue will lose their CPU affinity and |
5273 | * may execute on any CPU. This is similar to how per-cpu workqueues behave on |
5274 | * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's |
5275 | * responsibility to flush the work item from CPU_DOWN_PREPARE. |
5276 | */ |
5277 | static void wq_update_pod(struct workqueue_struct *wq, int cpu, |
5278 | int hotplug_cpu, bool online) |
5279 | { |
5280 | int off_cpu = online ? -1 : hotplug_cpu; |
5281 | struct pool_workqueue *old_pwq = NULL, *pwq; |
5282 | struct workqueue_attrs *target_attrs; |
5283 | |
5284 | lockdep_assert_held(&wq_pool_mutex); |
5285 | |
5286 | if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) |
5287 | return; |
5288 | |
5289 | /* |
5290 | * We don't wanna alloc/free wq_attrs for each wq for each CPU. |
5291 | * Let's use a preallocated one. The following buf is protected by |
5292 | * CPU hotplug exclusion. |
5293 | */ |
5294 | target_attrs = wq_update_pod_attrs_buf; |
5295 | |
5296 | copy_workqueue_attrs(to: target_attrs, from: wq->unbound_attrs); |
5297 | wqattrs_actualize_cpumask(attrs: target_attrs, unbound_cpumask: wq_unbound_cpumask); |
5298 | |
5299 | /* nothing to do if the target cpumask matches the current pwq */ |
5300 | wq_calc_pod_cpumask(attrs: target_attrs, cpu, cpu_going_down: off_cpu); |
5301 | if (wqattrs_equal(a: target_attrs, b: unbound_pwq(wq, cpu)->pool->attrs)) |
5302 | return; |
5303 | |
5304 | /* create a new pwq */ |
5305 | pwq = alloc_unbound_pwq(wq, attrs: target_attrs); |
5306 | if (!pwq) { |
5307 | pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", |
5308 | wq->name); |
5309 | goto use_dfl_pwq; |
5310 | } |
5311 | |
5312 | /* Install the new pwq. */ |
5313 | mutex_lock(&wq->mutex); |
5314 | old_pwq = install_unbound_pwq(wq, cpu, pwq); |
5315 | goto out_unlock; |
5316 | |
5317 | use_dfl_pwq: |
5318 | mutex_lock(&wq->mutex); |
5319 | pwq = unbound_pwq(wq, cpu: -1); |
5320 | raw_spin_lock_irq(&pwq->pool->lock); |
5321 | get_pwq(pwq); |
5322 | raw_spin_unlock_irq(&pwq->pool->lock); |
5323 | old_pwq = install_unbound_pwq(wq, cpu, pwq); |
5324 | out_unlock: |
5325 | mutex_unlock(lock: &wq->mutex); |
5326 | put_pwq_unlocked(pwq: old_pwq); |
5327 | } |
5328 | |
5329 | static int alloc_and_link_pwqs(struct workqueue_struct *wq) |
5330 | { |
5331 | bool highpri = wq->flags & WQ_HIGHPRI; |
5332 | int cpu, ret; |
5333 | |
5334 | wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); |
5335 | if (!wq->cpu_pwq) |
5336 | goto enomem; |
5337 | |
5338 | if (!(wq->flags & WQ_UNBOUND)) { |
5339 | for_each_possible_cpu(cpu) { |
5340 | struct pool_workqueue **pwq_p; |
5341 | struct worker_pool __percpu *pools; |
5342 | struct worker_pool *pool; |
5343 | |
5344 | if (wq->flags & WQ_BH) |
5345 | pools = bh_worker_pools; |
5346 | else |
5347 | pools = cpu_worker_pools; |
5348 | |
5349 | pool = &(per_cpu_ptr(pools, cpu)[highpri]); |
5350 | pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); |
5351 | |
5352 | *pwq_p = kmem_cache_alloc_node(s: pwq_cache, GFP_KERNEL, |
5353 | node: pool->node); |
5354 | if (!*pwq_p) |
5355 | goto enomem; |
5356 | |
5357 | init_pwq(pwq: *pwq_p, wq, pool); |
5358 | |
5359 | mutex_lock(&wq->mutex); |
5360 | link_pwq(pwq: *pwq_p); |
5361 | mutex_unlock(lock: &wq->mutex); |
5362 | } |
5363 | return 0; |
5364 | } |
5365 | |
5366 | cpus_read_lock(); |
5367 | if (wq->flags & __WQ_ORDERED) { |
5368 | struct pool_workqueue *dfl_pwq; |
5369 | |
5370 | ret = apply_workqueue_attrs(wq, attrs: ordered_wq_attrs[highpri]); |
5371 | /* there should only be single pwq for ordering guarantee */ |
5372 | dfl_pwq = rcu_access_pointer(wq->dfl_pwq); |
5373 | WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || |
5374 | wq->pwqs.prev != &dfl_pwq->pwqs_node), |
5375 | "ordering guarantee broken for workqueue %s\n", wq->name); |
5376 | } else { |
5377 | ret = apply_workqueue_attrs(wq, attrs: unbound_std_wq_attrs[highpri]); |
5378 | } |
5379 | cpus_read_unlock(); |
5380 | |
5381 | /* for unbound pwq, flush the pwq_release_worker ensures that the |
5382 | * pwq_release_workfn() completes before calling kfree(wq). |
5383 | */ |
5384 | if (ret) |
5385 | kthread_flush_worker(worker: pwq_release_worker); |
5386 | |
5387 | return ret; |
5388 | |
5389 | enomem: |
5390 | if (wq->cpu_pwq) { |
5391 | for_each_possible_cpu(cpu) { |
5392 | struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); |
5393 | |
5394 | if (pwq) |
5395 | kmem_cache_free(s: pwq_cache, objp: pwq); |
5396 | } |
5397 | free_percpu(pdata: wq->cpu_pwq); |
5398 | wq->cpu_pwq = NULL; |
5399 | } |
5400 | return -ENOMEM; |
5401 | } |
5402 | |
5403 | static int wq_clamp_max_active(int max_active, unsigned int flags, |
5404 | const char *name) |
5405 | { |
5406 | if (max_active < 1 || max_active > WQ_MAX_ACTIVE) |
5407 | pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", |
5408 | max_active, name, 1, WQ_MAX_ACTIVE); |
5409 | |
5410 | return clamp_val(max_active, 1, WQ_MAX_ACTIVE); |
5411 | } |
5412 | |
5413 | /* |
5414 | * Workqueues which may be used during memory reclaim should have a rescuer |
5415 | * to guarantee forward progress. |
5416 | */ |
5417 | static int init_rescuer(struct workqueue_struct *wq) |
5418 | { |
5419 | struct worker *rescuer; |
5420 | int ret; |
5421 | |
5422 | if (!(wq->flags & WQ_MEM_RECLAIM)) |
5423 | return 0; |
5424 | |
5425 | rescuer = alloc_worker(NUMA_NO_NODE); |
5426 | if (!rescuer) { |
5427 | pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", |
5428 | wq->name); |
5429 | return -ENOMEM; |
5430 | } |
5431 | |
5432 | rescuer->rescue_wq = wq; |
5433 | rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); |
5434 | if (IS_ERR(ptr: rescuer->task)) { |
5435 | ret = PTR_ERR(ptr: rescuer->task); |
5436 | pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", |
5437 | wq->name, ERR_PTR(ret)); |
5438 | kfree(objp: rescuer); |
5439 | return ret; |
5440 | } |
5441 | |
5442 | wq->rescuer = rescuer; |
5443 | if (wq->flags & WQ_UNBOUND) |
5444 | kthread_bind_mask(k: rescuer->task, mask: wq_unbound_cpumask); |
5445 | else |
5446 | kthread_bind_mask(k: rescuer->task, cpu_possible_mask); |
5447 | wake_up_process(tsk: rescuer->task); |
5448 | |
5449 | return 0; |
5450 | } |
5451 | |
5452 | /** |
5453 | * wq_adjust_max_active - update a wq's max_active to the current setting |
5454 | * @wq: target workqueue |
5455 | * |
5456 | * If @wq isn't freezing, set @wq->max_active to the saved_max_active and |
5457 | * activate inactive work items accordingly. If @wq is freezing, clear |
5458 | * @wq->max_active to zero. |
5459 | */ |
5460 | static void wq_adjust_max_active(struct workqueue_struct *wq) |
5461 | { |
5462 | bool activated; |
5463 | int new_max, new_min; |
5464 | |
5465 | lockdep_assert_held(&wq->mutex); |
5466 | |
5467 | if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { |
5468 | new_max = 0; |
5469 | new_min = 0; |
5470 | } else { |
5471 | new_max = wq->saved_max_active; |
5472 | new_min = wq->saved_min_active; |
5473 | } |
5474 | |
5475 | if (wq->max_active == new_max && wq->min_active == new_min) |
5476 | return; |
5477 | |
5478 | /* |
5479 | * Update @wq->max/min_active and then kick inactive work items if more |
5480 | * active work items are allowed. This doesn't break work item ordering |
5481 | * because new work items are always queued behind existing inactive |
5482 | * work items if there are any. |
5483 | */ |
5484 | WRITE_ONCE(wq->max_active, new_max); |
5485 | WRITE_ONCE(wq->min_active, new_min); |
5486 | |
5487 | if (wq->flags & WQ_UNBOUND) |
5488 | wq_update_node_max_active(wq, off_cpu: -1); |
5489 | |
5490 | if (new_max == 0) |
5491 | return; |
5492 | |
5493 | /* |
5494 | * Round-robin through pwq's activating the first inactive work item |
5495 | * until max_active is filled. |
5496 | */ |
5497 | do { |
5498 | struct pool_workqueue *pwq; |
5499 | |
5500 | activated = false; |
5501 | for_each_pwq(pwq, wq) { |
5502 | unsigned long irq_flags; |
5503 | |
5504 | /* can be called during early boot w/ irq disabled */ |
5505 | raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); |
5506 | if (pwq_activate_first_inactive(pwq, fill: true)) { |
5507 | activated = true; |
5508 | kick_pool(pool: pwq->pool); |
5509 | } |
5510 | raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); |
5511 | } |
5512 | } while (activated); |
5513 | } |
5514 | |
5515 | __printf(1, 4) |
5516 | struct workqueue_struct *alloc_workqueue(const char *fmt, |
5517 | unsigned int flags, |
5518 | int max_active, ...) |
5519 | { |
5520 | va_list args; |
5521 | struct workqueue_struct *wq; |
5522 | size_t wq_size; |
5523 | int name_len; |
5524 | |
5525 | if (flags & WQ_BH) { |
5526 | if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) |
5527 | return NULL; |
5528 | if (WARN_ON_ONCE(max_active)) |
5529 | return NULL; |
5530 | } |
5531 | |
5532 | /* see the comment above the definition of WQ_POWER_EFFICIENT */ |
5533 | if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) |
5534 | flags |= WQ_UNBOUND; |
5535 | |
5536 | /* allocate wq and format name */ |
5537 | if (flags & WQ_UNBOUND) |
5538 | wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); |
5539 | else |
5540 | wq_size = sizeof(*wq); |
5541 | |
5542 | wq = kzalloc(size: wq_size, GFP_KERNEL); |
5543 | if (!wq) |
5544 | return NULL; |
5545 | |
5546 | if (flags & WQ_UNBOUND) { |
5547 | wq->unbound_attrs = alloc_workqueue_attrs(); |
5548 | if (!wq->unbound_attrs) |
5549 | goto err_free_wq; |
5550 | } |
5551 | |
5552 | va_start(args, max_active); |
5553 | name_len = vsnprintf(buf: wq->name, size: sizeof(wq->name), fmt, args); |
5554 | va_end(args); |
5555 | |
5556 | if (name_len >= WQ_NAME_LEN) |
5557 | pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", |
5558 | wq->name); |
5559 | |
5560 | if (flags & WQ_BH) { |
5561 | /* |
5562 | * BH workqueues always share a single execution context per CPU |
5563 | * and don't impose any max_active limit. |
5564 | */ |
5565 | max_active = INT_MAX; |
5566 | } else { |
5567 | max_active = max_active ?: WQ_DFL_ACTIVE; |
5568 | max_active = wq_clamp_max_active(max_active, flags, name: wq->name); |
5569 | } |
5570 | |
5571 | /* init wq */ |
5572 | wq->flags = flags; |
5573 | wq->max_active = max_active; |
5574 | wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); |
5575 | wq->saved_max_active = wq->max_active; |
5576 | wq->saved_min_active = wq->min_active; |
5577 | mutex_init(&wq->mutex); |
5578 | atomic_set(v: &wq->nr_pwqs_to_flush, i: 0); |
5579 | INIT_LIST_HEAD(list: &wq->pwqs); |
5580 | INIT_LIST_HEAD(list: &wq->flusher_queue); |
5581 | INIT_LIST_HEAD(list: &wq->flusher_overflow); |
5582 | INIT_LIST_HEAD(list: &wq->maydays); |
5583 | |
5584 | wq_init_lockdep(wq); |
5585 | INIT_LIST_HEAD(list: &wq->list); |
5586 | |
5587 | if (flags & WQ_UNBOUND) { |
5588 | if (alloc_node_nr_active(nna_ar: wq->node_nr_active) < 0) |
5589 | goto err_unreg_lockdep; |
5590 | } |
5591 | |
5592 | if (alloc_and_link_pwqs(wq) < 0) |
5593 | goto err_free_node_nr_active; |
5594 | |
5595 | if (wq_online && init_rescuer(wq) < 0) |
5596 | goto err_destroy; |
5597 | |
5598 | if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) |
5599 | goto err_destroy; |
5600 | |
5601 | /* |
5602 | * wq_pool_mutex protects global freeze state and workqueues list. |
5603 | * Grab it, adjust max_active and add the new @wq to workqueues |
5604 | * list. |
5605 | */ |
5606 | mutex_lock(&wq_pool_mutex); |
5607 | |
5608 | mutex_lock(&wq->mutex); |
5609 | wq_adjust_max_active(wq); |
5610 | mutex_unlock(lock: &wq->mutex); |
5611 | |
5612 | list_add_tail_rcu(new: &wq->list, head: &workqueues); |
5613 | |
5614 | mutex_unlock(lock: &wq_pool_mutex); |
5615 | |
5616 | return wq; |
5617 | |
5618 | err_free_node_nr_active: |
5619 | if (wq->flags & WQ_UNBOUND) |
5620 | free_node_nr_active(nna_ar: wq->node_nr_active); |
5621 | err_unreg_lockdep: |
5622 | wq_unregister_lockdep(wq); |
5623 | wq_free_lockdep(wq); |
5624 | err_free_wq: |
5625 | free_workqueue_attrs(attrs: wq->unbound_attrs); |
5626 | kfree(objp: wq); |
5627 | return NULL; |
5628 | err_destroy: |
5629 | destroy_workqueue(wq); |
5630 | return NULL; |
5631 | } |
5632 | EXPORT_SYMBOL_GPL(alloc_workqueue); |
5633 | |
5634 | static bool pwq_busy(struct pool_workqueue *pwq) |
5635 | { |
5636 | int i; |
5637 | |
5638 | for (i = 0; i < WORK_NR_COLORS; i++) |
5639 | if (pwq->nr_in_flight[i]) |
5640 | return true; |
5641 | |
5642 | if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) |
5643 | return true; |
5644 | if (!pwq_is_empty(pwq)) |
5645 | return true; |
5646 | |
5647 | return false; |
5648 | } |
5649 | |
5650 | /** |
5651 | * destroy_workqueue - safely terminate a workqueue |
5652 | * @wq: target workqueue |
5653 | * |
5654 | * Safely destroy a workqueue. All work currently pending will be done first. |
5655 | */ |
5656 | void destroy_workqueue(struct workqueue_struct *wq) |
5657 | { |
5658 | struct pool_workqueue *pwq; |
5659 | int cpu; |
5660 | |
5661 | /* |
5662 | * Remove it from sysfs first so that sanity check failure doesn't |
5663 | * lead to sysfs name conflicts. |
5664 | */ |
5665 | workqueue_sysfs_unregister(wq); |
5666 | |
5667 | /* mark the workqueue destruction is in progress */ |
5668 | mutex_lock(&wq->mutex); |
5669 | wq->flags |= __WQ_DESTROYING; |
5670 | mutex_unlock(lock: &wq->mutex); |
5671 | |
5672 | /* drain it before proceeding with destruction */ |
5673 | drain_workqueue(wq); |
5674 | |
5675 | /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ |
5676 | if (wq->rescuer) { |
5677 | struct worker *rescuer = wq->rescuer; |
5678 | |
5679 | /* this prevents new queueing */ |
5680 | raw_spin_lock_irq(&wq_mayday_lock); |
5681 | wq->rescuer = NULL; |
5682 | raw_spin_unlock_irq(&wq_mayday_lock); |
5683 | |
5684 | /* rescuer will empty maydays list before exiting */ |
5685 | kthread_stop(k: rescuer->task); |
5686 | kfree(objp: rescuer); |
5687 | } |
5688 | |
5689 | /* |
5690 | * Sanity checks - grab all the locks so that we wait for all |
5691 | * in-flight operations which may do put_pwq(). |
5692 | */ |
5693 | mutex_lock(&wq_pool_mutex); |
5694 | mutex_lock(&wq->mutex); |
5695 | for_each_pwq(pwq, wq) { |
5696 | raw_spin_lock_irq(&pwq->pool->lock); |
5697 | if (WARN_ON(pwq_busy(pwq))) { |
5698 | pr_warn("%s: %s has the following busy pwq\n", |
5699 | __func__, wq->name); |
5700 | show_pwq(pwq); |
5701 | raw_spin_unlock_irq(&pwq->pool->lock); |
5702 | mutex_unlock(lock: &wq->mutex); |
5703 | mutex_unlock(lock: &wq_pool_mutex); |
5704 | show_one_workqueue(wq); |
5705 | return; |
5706 | } |
5707 | raw_spin_unlock_irq(&pwq->pool->lock); |
5708 | } |
5709 | mutex_unlock(lock: &wq->mutex); |
5710 | |
5711 | /* |
5712 | * wq list is used to freeze wq, remove from list after |
5713 | * flushing is complete in case freeze races us. |
5714 | */ |
5715 | list_del_rcu(entry: &wq->list); |
5716 | mutex_unlock(lock: &wq_pool_mutex); |
5717 | |
5718 | /* |
5719 | * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq |
5720 | * to put the base refs. @wq will be auto-destroyed from the last |
5721 | * pwq_put. RCU read lock prevents @wq from going away from under us. |
5722 | */ |
5723 | rcu_read_lock(); |
5724 | |
5725 | for_each_possible_cpu(cpu) { |
5726 | put_pwq_unlocked(pwq: unbound_pwq(wq, cpu)); |
5727 | RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); |
5728 | } |
5729 | |
5730 | put_pwq_unlocked(pwq: unbound_pwq(wq, cpu: -1)); |
5731 | RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); |
5732 | |
5733 | rcu_read_unlock(); |
5734 | } |
5735 | EXPORT_SYMBOL_GPL(destroy_workqueue); |
5736 | |
5737 | /** |
5738 | * workqueue_set_max_active - adjust max_active of a workqueue |
5739 | * @wq: target workqueue |
5740 | * @max_active: new max_active value. |
5741 | * |
5742 | * Set max_active of @wq to @max_active. See the alloc_workqueue() function |
5743 | * comment. |
5744 | * |
5745 | * CONTEXT: |
5746 | * Don't call from IRQ context. |
5747 | */ |
5748 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) |
5749 | { |
5750 | /* max_active doesn't mean anything for BH workqueues */ |
5751 | if (WARN_ON(wq->flags & WQ_BH)) |
5752 | return; |
5753 | /* disallow meddling with max_active for ordered workqueues */ |
5754 | if (WARN_ON(wq->flags & __WQ_ORDERED)) |
5755 | return; |
5756 | |
5757 | max_active = wq_clamp_max_active(max_active, flags: wq->flags, name: wq->name); |
5758 | |
5759 | mutex_lock(&wq->mutex); |
5760 | |
5761 | wq->saved_max_active = max_active; |
5762 | if (wq->flags & WQ_UNBOUND) |
5763 | wq->saved_min_active = min(wq->saved_min_active, max_active); |
5764 | |
5765 | wq_adjust_max_active(wq); |
5766 | |
5767 | mutex_unlock(lock: &wq->mutex); |
5768 | } |
5769 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); |
5770 | |
5771 | /** |
5772 | * workqueue_set_min_active - adjust min_active of an unbound workqueue |
5773 | * @wq: target unbound workqueue |
5774 | * @min_active: new min_active value |
5775 | * |
5776 | * Set min_active of an unbound workqueue. Unlike other types of workqueues, an |
5777 | * unbound workqueue is not guaranteed to be able to process max_active |
5778 | * interdependent work items. Instead, an unbound workqueue is guaranteed to be |
5779 | * able to process min_active number of interdependent work items which is |
5780 | * %WQ_DFL_MIN_ACTIVE by default. |
5781 | * |
5782 | * Use this function to adjust the min_active value between 0 and the current |
5783 | * max_active. |
5784 | */ |
5785 | void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) |
5786 | { |
5787 | /* min_active is only meaningful for non-ordered unbound workqueues */ |
5788 | if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != |
5789 | WQ_UNBOUND)) |
5790 | return; |
5791 | |
5792 | mutex_lock(&wq->mutex); |
5793 | wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); |
5794 | wq_adjust_max_active(wq); |
5795 | mutex_unlock(lock: &wq->mutex); |
5796 | } |
5797 | |
5798 | /** |
5799 | * current_work - retrieve %current task's work struct |
5800 | * |
5801 | * Determine if %current task is a workqueue worker and what it's working on. |
5802 | * Useful to find out the context that the %current task is running in. |
5803 | * |
5804 | * Return: work struct if %current task is a workqueue worker, %NULL otherwise. |
5805 | */ |
5806 | struct work_struct *current_work(void) |
5807 | { |
5808 | struct worker *worker = current_wq_worker(); |
5809 | |
5810 | return worker ? worker->current_work : NULL; |
5811 | } |
5812 | EXPORT_SYMBOL(current_work); |
5813 | |
5814 | /** |
5815 | * current_is_workqueue_rescuer - is %current workqueue rescuer? |
5816 | * |
5817 | * Determine whether %current is a workqueue rescuer. Can be used from |
5818 | * work functions to determine whether it's being run off the rescuer task. |
5819 | * |
5820 | * Return: %true if %current is a workqueue rescuer. %false otherwise. |
5821 | */ |
5822 | bool current_is_workqueue_rescuer(void) |
5823 | { |
5824 | struct worker *worker = current_wq_worker(); |
5825 | |
5826 | return worker && worker->rescue_wq; |
5827 | } |
5828 | |
5829 | /** |
5830 | * workqueue_congested - test whether a workqueue is congested |
5831 | * @cpu: CPU in question |
5832 | * @wq: target workqueue |
5833 | * |
5834 | * Test whether @wq's cpu workqueue for @cpu is congested. There is |
5835 | * no synchronization around this function and the test result is |
5836 | * unreliable and only useful as advisory hints or for debugging. |
5837 | * |
5838 | * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. |
5839 | * |
5840 | * With the exception of ordered workqueues, all workqueues have per-cpu |
5841 | * pool_workqueues, each with its own congested state. A workqueue being |
5842 | * congested on one CPU doesn't mean that the workqueue is contested on any |
5843 | * other CPUs. |
5844 | * |
5845 | * Return: |
5846 | * %true if congested, %false otherwise. |
5847 | */ |
5848 | bool workqueue_congested(int cpu, struct workqueue_struct *wq) |
5849 | { |
5850 | struct pool_workqueue *pwq; |
5851 | bool ret; |
5852 | |
5853 | rcu_read_lock(); |
5854 | preempt_disable(); |
5855 | |
5856 | if (cpu == WORK_CPU_UNBOUND) |
5857 | cpu = smp_processor_id(); |
5858 | |
5859 | pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); |
5860 | ret = !list_empty(head: &pwq->inactive_works); |
5861 | |
5862 | preempt_enable(); |
5863 | rcu_read_unlock(); |
5864 | |
5865 | return ret; |
5866 | } |
5867 | EXPORT_SYMBOL_GPL(workqueue_congested); |
5868 | |
5869 | /** |
5870 | * work_busy - test whether a work is currently pending or running |
5871 | * @work: the work to be tested |
5872 | * |
5873 | * Test whether @work is currently pending or running. There is no |
5874 | * synchronization around this function and the test result is |
5875 | * unreliable and only useful as advisory hints or for debugging. |
5876 | * |
5877 | * Return: |
5878 | * OR'd bitmask of WORK_BUSY_* bits. |
5879 | */ |
5880 | unsigned int work_busy(struct work_struct *work) |
5881 | { |
5882 | struct worker_pool *pool; |
5883 | unsigned long irq_flags; |
5884 | unsigned int ret = 0; |
5885 | |
5886 | if (work_pending(work)) |
5887 | ret |= WORK_BUSY_PENDING; |
5888 | |
5889 | rcu_read_lock(); |
5890 | pool = get_work_pool(work); |
5891 | if (pool) { |
5892 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
5893 | if (find_worker_executing_work(pool, work)) |
5894 | ret |= WORK_BUSY_RUNNING; |
5895 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
5896 | } |
5897 | rcu_read_unlock(); |
5898 | |
5899 | return ret; |
5900 | } |
5901 | EXPORT_SYMBOL_GPL(work_busy); |
5902 | |
5903 | /** |
5904 | * set_worker_desc - set description for the current work item |
5905 | * @fmt: printf-style format string |
5906 | * @...: arguments for the format string |
5907 | * |
5908 | * This function can be called by a running work function to describe what |
5909 | * the work item is about. If the worker task gets dumped, this |
5910 | * information will be printed out together to help debugging. The |
5911 | * description can be at most WORKER_DESC_LEN including the trailing '\0'. |
5912 | */ |
5913 | void set_worker_desc(const char *fmt, ...) |
5914 | { |
5915 | struct worker *worker = current_wq_worker(); |
5916 | va_list args; |
5917 | |
5918 | if (worker) { |
5919 | va_start(args, fmt); |
5920 | vsnprintf(buf: worker->desc, size: sizeof(worker->desc), fmt, args); |
5921 | va_end(args); |
5922 | } |
5923 | } |
5924 | EXPORT_SYMBOL_GPL(set_worker_desc); |
5925 | |
5926 | /** |
5927 | * print_worker_info - print out worker information and description |
5928 | * @log_lvl: the log level to use when printing |
5929 | * @task: target task |
5930 | * |
5931 | * If @task is a worker and currently executing a work item, print out the |
5932 | * name of the workqueue being serviced and worker description set with |
5933 | * set_worker_desc() by the currently executing work item. |
5934 | * |
5935 | * This function can be safely called on any task as long as the |
5936 | * task_struct itself is accessible. While safe, this function isn't |
5937 | * synchronized and may print out mixups or garbages of limited length. |
5938 | */ |
5939 | void print_worker_info(const char *log_lvl, struct task_struct *task) |
5940 | { |
5941 | work_func_t *fn = NULL; |
5942 | char name[WQ_NAME_LEN] = { }; |
5943 | char desc[WORKER_DESC_LEN] = { }; |
5944 | struct pool_workqueue *pwq = NULL; |
5945 | struct workqueue_struct *wq = NULL; |
5946 | struct worker *worker; |
5947 | |
5948 | if (!(task->flags & PF_WQ_WORKER)) |
5949 | return; |
5950 | |
5951 | /* |
5952 | * This function is called without any synchronization and @task |
5953 | * could be in any state. Be careful with dereferences. |
5954 | */ |
5955 | worker = kthread_probe_data(k: task); |
5956 | |
5957 | /* |
5958 | * Carefully copy the associated workqueue's workfn, name and desc. |
5959 | * Keep the original last '\0' in case the original is garbage. |
5960 | */ |
5961 | copy_from_kernel_nofault(dst: &fn, src: &worker->current_func, size: sizeof(fn)); |
5962 | copy_from_kernel_nofault(dst: &pwq, src: &worker->current_pwq, size: sizeof(pwq)); |
5963 | copy_from_kernel_nofault(dst: &wq, src: &pwq->wq, size: sizeof(wq)); |
5964 | copy_from_kernel_nofault(dst: name, src: wq->name, size: sizeof(name) - 1); |
5965 | copy_from_kernel_nofault(dst: desc, src: worker->desc, size: sizeof(desc) - 1); |
5966 | |
5967 | if (fn || name[0] || desc[0]) { |
5968 | printk("%sWorkqueue: %s %ps", log_lvl, name, fn); |
5969 | if (strcmp(name, desc)) |
5970 | pr_cont(" (%s)", desc); |
5971 | pr_cont("\n"); |
5972 | } |
5973 | } |
5974 | |
5975 | static void pr_cont_pool_info(struct worker_pool *pool) |
5976 | { |
5977 | pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); |
5978 | if (pool->node != NUMA_NO_NODE) |
5979 | pr_cont(" node=%d", pool->node); |
5980 | pr_cont(" flags=0x%x", pool->flags); |
5981 | if (pool->flags & POOL_BH) |
5982 | pr_cont(" bh%s", |
5983 | pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi": ""); |
5984 | else |
5985 | pr_cont(" nice=%d", pool->attrs->nice); |
5986 | } |
5987 | |
5988 | static void pr_cont_worker_id(struct worker *worker) |
5989 | { |
5990 | struct worker_pool *pool = worker->pool; |
5991 | |
5992 | if (pool->flags & WQ_BH) |
5993 | pr_cont("bh%s", |
5994 | pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi": ""); |
5995 | else |
5996 | pr_cont("%d%s", task_pid_nr(worker->task), |
5997 | worker->rescue_wq ? "(RESCUER)": ""); |
5998 | } |
5999 | |
6000 | struct pr_cont_work_struct { |
6001 | bool comma; |
6002 | work_func_t func; |
6003 | long ctr; |
6004 | }; |
6005 | |
6006 | static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) |
6007 | { |
6008 | if (!pcwsp->ctr) |
6009 | goto out_record; |
6010 | if (func == pcwsp->func) { |
6011 | pcwsp->ctr++; |
6012 | return; |
6013 | } |
6014 | if (pcwsp->ctr == 1) |
6015 | pr_cont("%s %ps", pcwsp->comma ? ",": "", pcwsp->func); |
6016 | else |
6017 | pr_cont("%s %ld*%ps", pcwsp->comma ? ",": "", pcwsp->ctr, pcwsp->func); |
6018 | pcwsp->ctr = 0; |
6019 | out_record: |
6020 | if ((long)func == -1L) |
6021 | return; |
6022 | pcwsp->comma = comma; |
6023 | pcwsp->func = func; |
6024 | pcwsp->ctr = 1; |
6025 | } |
6026 | |
6027 | static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) |
6028 | { |
6029 | if (work->func == wq_barrier_func) { |
6030 | struct wq_barrier *barr; |
6031 | |
6032 | barr = container_of(work, struct wq_barrier, work); |
6033 | |
6034 | pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp); |
6035 | pr_cont("%s BAR(%d)", comma ? ",": "", |
6036 | task_pid_nr(barr->task)); |
6037 | } else { |
6038 | if (!comma) |
6039 | pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp); |
6040 | pr_cont_work_flush(comma, func: work->func, pcwsp); |
6041 | } |
6042 | } |
6043 | |
6044 | static void show_pwq(struct pool_workqueue *pwq) |
6045 | { |
6046 | struct pr_cont_work_struct pcws = { .ctr = 0, }; |
6047 | struct worker_pool *pool = pwq->pool; |
6048 | struct work_struct *work; |
6049 | struct worker *worker; |
6050 | bool has_in_flight = false, has_pending = false; |
6051 | int bkt; |
6052 | |
6053 | pr_info(" pwq %d:", pool->id); |
6054 | pr_cont_pool_info(pool); |
6055 | |
6056 | pr_cont(" active=%d refcnt=%d%s\n", |
6057 | pwq->nr_active, pwq->refcnt, |
6058 | !list_empty(&pwq->mayday_node) ? " MAYDAY": ""); |
6059 | |
6060 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
6061 | if (worker->current_pwq == pwq) { |
6062 | has_in_flight = true; |
6063 | break; |
6064 | } |
6065 | } |
6066 | if (has_in_flight) { |
6067 | bool comma = false; |
6068 | |
6069 | pr_info(" in-flight:"); |
6070 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
6071 | if (worker->current_pwq != pwq) |
6072 | continue; |
6073 | |
6074 | pr_cont(" %s", comma ? ",": ""); |
6075 | pr_cont_worker_id(worker); |
6076 | pr_cont(":%ps", worker->current_func); |
6077 | list_for_each_entry(work, &worker->scheduled, entry) |
6078 | pr_cont_work(comma: false, work, pcwsp: &pcws); |
6079 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
6080 | comma = true; |
6081 | } |
6082 | pr_cont("\n"); |
6083 | } |
6084 | |
6085 | list_for_each_entry(work, &pool->worklist, entry) { |
6086 | if (get_work_pwq(work) == pwq) { |
6087 | has_pending = true; |
6088 | break; |
6089 | } |
6090 | } |
6091 | if (has_pending) { |
6092 | bool comma = false; |
6093 | |
6094 | pr_info(" pending:"); |
6095 | list_for_each_entry(work, &pool->worklist, entry) { |
6096 | if (get_work_pwq(work) != pwq) |
6097 | continue; |
6098 | |
6099 | pr_cont_work(comma, work, pcwsp: &pcws); |
6100 | comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); |
6101 | } |
6102 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
6103 | pr_cont("\n"); |
6104 | } |
6105 | |
6106 | if (!list_empty(head: &pwq->inactive_works)) { |
6107 | bool comma = false; |
6108 | |
6109 | pr_info(" inactive:"); |
6110 | list_for_each_entry(work, &pwq->inactive_works, entry) { |
6111 | pr_cont_work(comma, work, pcwsp: &pcws); |
6112 | comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); |
6113 | } |
6114 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
6115 | pr_cont("\n"); |
6116 | } |
6117 | } |
6118 | |
6119 | /** |
6120 | * show_one_workqueue - dump state of specified workqueue |
6121 | * @wq: workqueue whose state will be printed |
6122 | */ |
6123 | void show_one_workqueue(struct workqueue_struct *wq) |
6124 | { |
6125 | struct pool_workqueue *pwq; |
6126 | bool idle = true; |
6127 | unsigned long irq_flags; |
6128 | |
6129 | for_each_pwq(pwq, wq) { |
6130 | if (!pwq_is_empty(pwq)) { |
6131 | idle = false; |
6132 | break; |
6133 | } |
6134 | } |
6135 | if (idle) /* Nothing to print for idle workqueue */ |
6136 | return; |
6137 | |
6138 | pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); |
6139 | |
6140 | for_each_pwq(pwq, wq) { |
6141 | raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); |
6142 | if (!pwq_is_empty(pwq)) { |
6143 | /* |
6144 | * Defer printing to avoid deadlocks in console |
6145 | * drivers that queue work while holding locks |
6146 | * also taken in their write paths. |
6147 | */ |
6148 | printk_deferred_enter(); |
6149 | show_pwq(pwq); |
6150 | printk_deferred_exit(); |
6151 | } |
6152 | raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); |
6153 | /* |
6154 | * We could be printing a lot from atomic context, e.g. |
6155 | * sysrq-t -> show_all_workqueues(). Avoid triggering |
6156 | * hard lockup. |
6157 | */ |
6158 | touch_nmi_watchdog(); |
6159 | } |
6160 | |
6161 | } |
6162 | |
6163 | /** |
6164 | * show_one_worker_pool - dump state of specified worker pool |
6165 | * @pool: worker pool whose state will be printed |
6166 | */ |
6167 | static void show_one_worker_pool(struct worker_pool *pool) |
6168 | { |
6169 | struct worker *worker; |
6170 | bool first = true; |
6171 | unsigned long irq_flags; |
6172 | unsigned long hung = 0; |
6173 | |
6174 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
6175 | if (pool->nr_workers == pool->nr_idle) |
6176 | goto next_pool; |
6177 | |
6178 | /* How long the first pending work is waiting for a worker. */ |
6179 | if (!list_empty(head: &pool->worklist)) |
6180 | hung = jiffies_to_msecs(j: jiffies - pool->watchdog_ts) / 1000; |
6181 | |
6182 | /* |
6183 | * Defer printing to avoid deadlocks in console drivers that |
6184 | * queue work while holding locks also taken in their write |
6185 | * paths. |
6186 | */ |
6187 | printk_deferred_enter(); |
6188 | pr_info("pool %d:", pool->id); |
6189 | pr_cont_pool_info(pool); |
6190 | pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); |
6191 | if (pool->manager) |
6192 | pr_cont(" manager: %d", |
6193 | task_pid_nr(pool->manager->task)); |
6194 | list_for_each_entry(worker, &pool->idle_list, entry) { |
6195 | pr_cont(" %s", first ? "idle: ": ""); |
6196 | pr_cont_worker_id(worker); |
6197 | first = false; |
6198 | } |
6199 | pr_cont("\n"); |
6200 | printk_deferred_exit(); |
6201 | next_pool: |
6202 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
6203 | /* |
6204 | * We could be printing a lot from atomic context, e.g. |
6205 | * sysrq-t -> show_all_workqueues(). Avoid triggering |
6206 | * hard lockup. |
6207 | */ |
6208 | touch_nmi_watchdog(); |
6209 | |
6210 | } |
6211 | |
6212 | /** |
6213 | * show_all_workqueues - dump workqueue state |
6214 | * |
6215 | * Called from a sysrq handler and prints out all busy workqueues and pools. |
6216 | */ |
6217 | void show_all_workqueues(void) |
6218 | { |
6219 | struct workqueue_struct *wq; |
6220 | struct worker_pool *pool; |
6221 | int pi; |
6222 | |
6223 | rcu_read_lock(); |
6224 | |
6225 | pr_info("Showing busy workqueues and worker pools:\n"); |
6226 | |
6227 | list_for_each_entry_rcu(wq, &workqueues, list) |
6228 | show_one_workqueue(wq); |
6229 | |
6230 | for_each_pool(pool, pi) |
6231 | show_one_worker_pool(pool); |
6232 | |
6233 | rcu_read_unlock(); |
6234 | } |
6235 | |
6236 | /** |
6237 | * show_freezable_workqueues - dump freezable workqueue state |
6238 | * |
6239 | * Called from try_to_freeze_tasks() and prints out all freezable workqueues |
6240 | * still busy. |
6241 | */ |
6242 | void show_freezable_workqueues(void) |
6243 | { |
6244 | struct workqueue_struct *wq; |
6245 | |
6246 | rcu_read_lock(); |
6247 | |
6248 | pr_info("Showing freezable workqueues that are still busy:\n"); |
6249 | |
6250 | list_for_each_entry_rcu(wq, &workqueues, list) { |
6251 | if (!(wq->flags & WQ_FREEZABLE)) |
6252 | continue; |
6253 | show_one_workqueue(wq); |
6254 | } |
6255 | |
6256 | rcu_read_unlock(); |
6257 | } |
6258 | |
6259 | /* used to show worker information through /proc/PID/{comm,stat,status} */ |
6260 | void wq_worker_comm(char *buf, size_t size, struct task_struct *task) |
6261 | { |
6262 | int off; |
6263 | |
6264 | /* always show the actual comm */ |
6265 | off = strscpy(buf, task->comm, size); |
6266 | if (off < 0) |
6267 | return; |
6268 | |
6269 | /* stabilize PF_WQ_WORKER and worker pool association */ |
6270 | mutex_lock(&wq_pool_attach_mutex); |
6271 | |
6272 | if (task->flags & PF_WQ_WORKER) { |
6273 | struct worker *worker = kthread_data(k: task); |
6274 | struct worker_pool *pool = worker->pool; |
6275 | |
6276 | if (pool) { |
6277 | raw_spin_lock_irq(&pool->lock); |
6278 | /* |
6279 | * ->desc tracks information (wq name or |
6280 | * set_worker_desc()) for the latest execution. If |
6281 | * current, prepend '+', otherwise '-'. |
6282 | */ |
6283 | if (worker->desc[0] != '\0') { |
6284 | if (worker->current_work) |
6285 | scnprintf(buf: buf + off, size: size - off, fmt: "+%s", |
6286 | worker->desc); |
6287 | else |
6288 | scnprintf(buf: buf + off, size: size - off, fmt: "-%s", |
6289 | worker->desc); |
6290 | } |
6291 | raw_spin_unlock_irq(&pool->lock); |
6292 | } |
6293 | } |
6294 | |
6295 | mutex_unlock(lock: &wq_pool_attach_mutex); |
6296 | } |
6297 | |
6298 | #ifdef CONFIG_SMP |
6299 | |
6300 | /* |
6301 | * CPU hotplug. |
6302 | * |
6303 | * There are two challenges in supporting CPU hotplug. Firstly, there |
6304 | * are a lot of assumptions on strong associations among work, pwq and |
6305 | * pool which make migrating pending and scheduled works very |
6306 | * difficult to implement without impacting hot paths. Secondly, |
6307 | * worker pools serve mix of short, long and very long running works making |
6308 | * blocked draining impractical. |
6309 | * |
6310 | * This is solved by allowing the pools to be disassociated from the CPU |
6311 | * running as an unbound one and allowing it to be reattached later if the |
6312 | * cpu comes back online. |
6313 | */ |
6314 | |
6315 | static void unbind_workers(int cpu) |
6316 | { |
6317 | struct worker_pool *pool; |
6318 | struct worker *worker; |
6319 | |
6320 | for_each_cpu_worker_pool(pool, cpu) { |
6321 | mutex_lock(&wq_pool_attach_mutex); |
6322 | raw_spin_lock_irq(&pool->lock); |
6323 | |
6324 | /* |
6325 | * We've blocked all attach/detach operations. Make all workers |
6326 | * unbound and set DISASSOCIATED. Before this, all workers |
6327 | * must be on the cpu. After this, they may become diasporas. |
6328 | * And the preemption disabled section in their sched callbacks |
6329 | * are guaranteed to see WORKER_UNBOUND since the code here |
6330 | * is on the same cpu. |
6331 | */ |
6332 | for_each_pool_worker(worker, pool) |
6333 | worker->flags |= WORKER_UNBOUND; |
6334 | |
6335 | pool->flags |= POOL_DISASSOCIATED; |
6336 | |
6337 | /* |
6338 | * The handling of nr_running in sched callbacks are disabled |
6339 | * now. Zap nr_running. After this, nr_running stays zero and |
6340 | * need_more_worker() and keep_working() are always true as |
6341 | * long as the worklist is not empty. This pool now behaves as |
6342 | * an unbound (in terms of concurrency management) pool which |
6343 | * are served by workers tied to the pool. |
6344 | */ |
6345 | pool->nr_running = 0; |
6346 | |
6347 | /* |
6348 | * With concurrency management just turned off, a busy |
6349 | * worker blocking could lead to lengthy stalls. Kick off |
6350 | * unbound chain execution of currently pending work items. |
6351 | */ |
6352 | kick_pool(pool); |
6353 | |
6354 | raw_spin_unlock_irq(&pool->lock); |
6355 | |
6356 | for_each_pool_worker(worker, pool) |
6357 | unbind_worker(worker); |
6358 | |
6359 | mutex_unlock(lock: &wq_pool_attach_mutex); |
6360 | } |
6361 | } |
6362 | |
6363 | /** |
6364 | * rebind_workers - rebind all workers of a pool to the associated CPU |
6365 | * @pool: pool of interest |
6366 | * |
6367 | * @pool->cpu is coming online. Rebind all workers to the CPU. |
6368 | */ |
6369 | static void rebind_workers(struct worker_pool *pool) |
6370 | { |
6371 | struct worker *worker; |
6372 | |
6373 | lockdep_assert_held(&wq_pool_attach_mutex); |
6374 | |
6375 | /* |
6376 | * Restore CPU affinity of all workers. As all idle workers should |
6377 | * be on the run-queue of the associated CPU before any local |
6378 | * wake-ups for concurrency management happen, restore CPU affinity |
6379 | * of all workers first and then clear UNBOUND. As we're called |
6380 | * from CPU_ONLINE, the following shouldn't fail. |
6381 | */ |
6382 | for_each_pool_worker(worker, pool) { |
6383 | kthread_set_per_cpu(k: worker->task, cpu: pool->cpu); |
6384 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, |
6385 | pool_allowed_cpus(pool)) < 0); |
6386 | } |
6387 | |
6388 | raw_spin_lock_irq(&pool->lock); |
6389 | |
6390 | pool->flags &= ~POOL_DISASSOCIATED; |
6391 | |
6392 | for_each_pool_worker(worker, pool) { |
6393 | unsigned int worker_flags = worker->flags; |
6394 | |
6395 | /* |
6396 | * We want to clear UNBOUND but can't directly call |
6397 | * worker_clr_flags() or adjust nr_running. Atomically |
6398 | * replace UNBOUND with another NOT_RUNNING flag REBOUND. |
6399 | * @worker will clear REBOUND using worker_clr_flags() when |
6400 | * it initiates the next execution cycle thus restoring |
6401 | * concurrency management. Note that when or whether |
6402 | * @worker clears REBOUND doesn't affect correctness. |
6403 | * |
6404 | * WRITE_ONCE() is necessary because @worker->flags may be |
6405 | * tested without holding any lock in |
6406 | * wq_worker_running(). Without it, NOT_RUNNING test may |
6407 | * fail incorrectly leading to premature concurrency |
6408 | * management operations. |
6409 | */ |
6410 | WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); |
6411 | worker_flags |= WORKER_REBOUND; |
6412 | worker_flags &= ~WORKER_UNBOUND; |
6413 | WRITE_ONCE(worker->flags, worker_flags); |
6414 | } |
6415 | |
6416 | raw_spin_unlock_irq(&pool->lock); |
6417 | } |
6418 | |
6419 | /** |
6420 | * restore_unbound_workers_cpumask - restore cpumask of unbound workers |
6421 | * @pool: unbound pool of interest |
6422 | * @cpu: the CPU which is coming up |
6423 | * |
6424 | * An unbound pool may end up with a cpumask which doesn't have any online |
6425 | * CPUs. When a worker of such pool get scheduled, the scheduler resets |
6426 | * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any |
6427 | * online CPU before, cpus_allowed of all its workers should be restored. |
6428 | */ |
6429 | static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) |
6430 | { |
6431 | static cpumask_t cpumask; |
6432 | struct worker *worker; |
6433 | |
6434 | lockdep_assert_held(&wq_pool_attach_mutex); |
6435 | |
6436 | /* is @cpu allowed for @pool? */ |
6437 | if (!cpumask_test_cpu(cpu, cpumask: pool->attrs->cpumask)) |
6438 | return; |
6439 | |
6440 | cpumask_and(dstp: &cpumask, src1p: pool->attrs->cpumask, cpu_online_mask); |
6441 | |
6442 | /* as we're called from CPU_ONLINE, the following shouldn't fail */ |
6443 | for_each_pool_worker(worker, pool) |
6444 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); |
6445 | } |
6446 | |
6447 | int workqueue_prepare_cpu(unsigned int cpu) |
6448 | { |
6449 | struct worker_pool *pool; |
6450 | |
6451 | for_each_cpu_worker_pool(pool, cpu) { |
6452 | if (pool->nr_workers) |
6453 | continue; |
6454 | if (!create_worker(pool)) |
6455 | return -ENOMEM; |
6456 | } |
6457 | return 0; |
6458 | } |
6459 | |
6460 | int workqueue_online_cpu(unsigned int cpu) |
6461 | { |
6462 | struct worker_pool *pool; |
6463 | struct workqueue_struct *wq; |
6464 | int pi; |
6465 | |
6466 | mutex_lock(&wq_pool_mutex); |
6467 | |
6468 | for_each_pool(pool, pi) { |
6469 | /* BH pools aren't affected by hotplug */ |
6470 | if (pool->flags & POOL_BH) |
6471 | continue; |
6472 | |
6473 | mutex_lock(&wq_pool_attach_mutex); |
6474 | if (pool->cpu == cpu) |
6475 | rebind_workers(pool); |
6476 | else if (pool->cpu < 0) |
6477 | restore_unbound_workers_cpumask(pool, cpu); |
6478 | mutex_unlock(lock: &wq_pool_attach_mutex); |
6479 | } |
6480 | |
6481 | /* update pod affinity of unbound workqueues */ |
6482 | list_for_each_entry(wq, &workqueues, list) { |
6483 | struct workqueue_attrs *attrs = wq->unbound_attrs; |
6484 | |
6485 | if (attrs) { |
6486 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
6487 | int tcpu; |
6488 | |
6489 | for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) |
6490 | wq_update_pod(wq, cpu: tcpu, hotplug_cpu: cpu, online: true); |
6491 | |
6492 | mutex_lock(&wq->mutex); |
6493 | wq_update_node_max_active(wq, off_cpu: -1); |
6494 | mutex_unlock(lock: &wq->mutex); |
6495 | } |
6496 | } |
6497 | |
6498 | mutex_unlock(lock: &wq_pool_mutex); |
6499 | return 0; |
6500 | } |
6501 | |
6502 | int workqueue_offline_cpu(unsigned int cpu) |
6503 | { |
6504 | struct workqueue_struct *wq; |
6505 | |
6506 | /* unbinding per-cpu workers should happen on the local CPU */ |
6507 | if (WARN_ON(cpu != smp_processor_id())) |
6508 | return -1; |
6509 | |
6510 | unbind_workers(cpu); |
6511 | |
6512 | /* update pod affinity of unbound workqueues */ |
6513 | mutex_lock(&wq_pool_mutex); |
6514 | list_for_each_entry(wq, &workqueues, list) { |
6515 | struct workqueue_attrs *attrs = wq->unbound_attrs; |
6516 | |
6517 | if (attrs) { |
6518 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
6519 | int tcpu; |
6520 | |
6521 | for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) |
6522 | wq_update_pod(wq, cpu: tcpu, hotplug_cpu: cpu, online: false); |
6523 | |
6524 | mutex_lock(&wq->mutex); |
6525 | wq_update_node_max_active(wq, off_cpu: cpu); |
6526 | mutex_unlock(lock: &wq->mutex); |
6527 | } |
6528 | } |
6529 | mutex_unlock(lock: &wq_pool_mutex); |
6530 | |
6531 | return 0; |
6532 | } |
6533 | |
6534 | struct work_for_cpu { |
6535 | struct work_struct work; |
6536 | long (*fn)(void *); |
6537 | void *arg; |
6538 | long ret; |
6539 | }; |
6540 | |
6541 | static void work_for_cpu_fn(struct work_struct *work) |
6542 | { |
6543 | struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); |
6544 | |
6545 | wfc->ret = wfc->fn(wfc->arg); |
6546 | } |
6547 | |
6548 | /** |
6549 | * work_on_cpu_key - run a function in thread context on a particular cpu |
6550 | * @cpu: the cpu to run on |
6551 | * @fn: the function to run |
6552 | * @arg: the function arg |
6553 | * @key: The lock class key for lock debugging purposes |
6554 | * |
6555 | * It is up to the caller to ensure that the cpu doesn't go offline. |
6556 | * The caller must not hold any locks which would prevent @fn from completing. |
6557 | * |
6558 | * Return: The value @fn returns. |
6559 | */ |
6560 | long work_on_cpu_key(int cpu, long (*fn)(void *), |
6561 | void *arg, struct lock_class_key *key) |
6562 | { |
6563 | struct work_for_cpu wfc = { .fn = fn, .arg = arg }; |
6564 | |
6565 | INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); |
6566 | schedule_work_on(cpu, work: &wfc.work); |
6567 | flush_work(&wfc.work); |
6568 | destroy_work_on_stack(&wfc.work); |
6569 | return wfc.ret; |
6570 | } |
6571 | EXPORT_SYMBOL_GPL(work_on_cpu_key); |
6572 | |
6573 | /** |
6574 | * work_on_cpu_safe_key - run a function in thread context on a particular cpu |
6575 | * @cpu: the cpu to run on |
6576 | * @fn: the function to run |
6577 | * @arg: the function argument |
6578 | * @key: The lock class key for lock debugging purposes |
6579 | * |
6580 | * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold |
6581 | * any locks which would prevent @fn from completing. |
6582 | * |
6583 | * Return: The value @fn returns. |
6584 | */ |
6585 | long work_on_cpu_safe_key(int cpu, long (*fn)(void *), |
6586 | void *arg, struct lock_class_key *key) |
6587 | { |
6588 | long ret = -ENODEV; |
6589 | |
6590 | cpus_read_lock(); |
6591 | if (cpu_online(cpu)) |
6592 | ret = work_on_cpu_key(cpu, fn, arg, key); |
6593 | cpus_read_unlock(); |
6594 | return ret; |
6595 | } |
6596 | EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); |
6597 | #endif /* CONFIG_SMP */ |
6598 | |
6599 | #ifdef CONFIG_FREEZER |
6600 | |
6601 | /** |
6602 | * freeze_workqueues_begin - begin freezing workqueues |
6603 | * |
6604 | * Start freezing workqueues. After this function returns, all freezable |
6605 | * workqueues will queue new works to their inactive_works list instead of |
6606 | * pool->worklist. |
6607 | * |
6608 | * CONTEXT: |
6609 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
6610 | */ |
6611 | void freeze_workqueues_begin(void) |
6612 | { |
6613 | struct workqueue_struct *wq; |
6614 | |
6615 | mutex_lock(&wq_pool_mutex); |
6616 | |
6617 | WARN_ON_ONCE(workqueue_freezing); |
6618 | workqueue_freezing = true; |
6619 | |
6620 | list_for_each_entry(wq, &workqueues, list) { |
6621 | mutex_lock(&wq->mutex); |
6622 | wq_adjust_max_active(wq); |
6623 | mutex_unlock(lock: &wq->mutex); |
6624 | } |
6625 | |
6626 | mutex_unlock(lock: &wq_pool_mutex); |
6627 | } |
6628 | |
6629 | /** |
6630 | * freeze_workqueues_busy - are freezable workqueues still busy? |
6631 | * |
6632 | * Check whether freezing is complete. This function must be called |
6633 | * between freeze_workqueues_begin() and thaw_workqueues(). |
6634 | * |
6635 | * CONTEXT: |
6636 | * Grabs and releases wq_pool_mutex. |
6637 | * |
6638 | * Return: |
6639 | * %true if some freezable workqueues are still busy. %false if freezing |
6640 | * is complete. |
6641 | */ |
6642 | bool freeze_workqueues_busy(void) |
6643 | { |
6644 | bool busy = false; |
6645 | struct workqueue_struct *wq; |
6646 | struct pool_workqueue *pwq; |
6647 | |
6648 | mutex_lock(&wq_pool_mutex); |
6649 | |
6650 | WARN_ON_ONCE(!workqueue_freezing); |
6651 | |
6652 | list_for_each_entry(wq, &workqueues, list) { |
6653 | if (!(wq->flags & WQ_FREEZABLE)) |
6654 | continue; |
6655 | /* |
6656 | * nr_active is monotonically decreasing. It's safe |
6657 | * to peek without lock. |
6658 | */ |
6659 | rcu_read_lock(); |
6660 | for_each_pwq(pwq, wq) { |
6661 | WARN_ON_ONCE(pwq->nr_active < 0); |
6662 | if (pwq->nr_active) { |
6663 | busy = true; |
6664 | rcu_read_unlock(); |
6665 | goto out_unlock; |
6666 | } |
6667 | } |
6668 | rcu_read_unlock(); |
6669 | } |
6670 | out_unlock: |
6671 | mutex_unlock(lock: &wq_pool_mutex); |
6672 | return busy; |
6673 | } |
6674 | |
6675 | /** |
6676 | * thaw_workqueues - thaw workqueues |
6677 | * |
6678 | * Thaw workqueues. Normal queueing is restored and all collected |
6679 | * frozen works are transferred to their respective pool worklists. |
6680 | * |
6681 | * CONTEXT: |
6682 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
6683 | */ |
6684 | void thaw_workqueues(void) |
6685 | { |
6686 | struct workqueue_struct *wq; |
6687 | |
6688 | mutex_lock(&wq_pool_mutex); |
6689 | |
6690 | if (!workqueue_freezing) |
6691 | goto out_unlock; |
6692 | |
6693 | workqueue_freezing = false; |
6694 | |
6695 | /* restore max_active and repopulate worklist */ |
6696 | list_for_each_entry(wq, &workqueues, list) { |
6697 | mutex_lock(&wq->mutex); |
6698 | wq_adjust_max_active(wq); |
6699 | mutex_unlock(lock: &wq->mutex); |
6700 | } |
6701 | |
6702 | out_unlock: |
6703 | mutex_unlock(lock: &wq_pool_mutex); |
6704 | } |
6705 | #endif /* CONFIG_FREEZER */ |
6706 | |
6707 | static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) |
6708 | { |
6709 | LIST_HEAD(ctxs); |
6710 | int ret = 0; |
6711 | struct workqueue_struct *wq; |
6712 | struct apply_wqattrs_ctx *ctx, *n; |
6713 | |
6714 | lockdep_assert_held(&wq_pool_mutex); |
6715 | |
6716 | list_for_each_entry(wq, &workqueues, list) { |
6717 | if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) |
6718 | continue; |
6719 | |
6720 | ctx = apply_wqattrs_prepare(wq, attrs: wq->unbound_attrs, unbound_cpumask); |
6721 | if (IS_ERR(ptr: ctx)) { |
6722 | ret = PTR_ERR(ptr: ctx); |
6723 | break; |
6724 | } |
6725 | |
6726 | list_add_tail(new: &ctx->list, head: &ctxs); |
6727 | } |
6728 | |
6729 | list_for_each_entry_safe(ctx, n, &ctxs, list) { |
6730 | if (!ret) |
6731 | apply_wqattrs_commit(ctx); |
6732 | apply_wqattrs_cleanup(ctx); |
6733 | } |
6734 | |
6735 | if (!ret) { |
6736 | mutex_lock(&wq_pool_attach_mutex); |
6737 | cpumask_copy(dstp: wq_unbound_cpumask, srcp: unbound_cpumask); |
6738 | mutex_unlock(lock: &wq_pool_attach_mutex); |
6739 | } |
6740 | return ret; |
6741 | } |
6742 | |
6743 | /** |
6744 | * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask |
6745 | * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask |
6746 | * |
6747 | * This function can be called from cpuset code to provide a set of isolated |
6748 | * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold |
6749 | * either cpus_read_lock or cpus_write_lock. |
6750 | */ |
6751 | int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) |
6752 | { |
6753 | cpumask_var_t cpumask; |
6754 | int ret = 0; |
6755 | |
6756 | if (!zalloc_cpumask_var(mask: &cpumask, GFP_KERNEL)) |
6757 | return -ENOMEM; |
6758 | |
6759 | lockdep_assert_cpus_held(); |
6760 | mutex_lock(&wq_pool_mutex); |
6761 | |
6762 | /* Save the current isolated cpumask & export it via sysfs */ |
6763 | cpumask_copy(dstp: wq_isolated_cpumask, srcp: exclude_cpumask); |
6764 | |
6765 | /* |
6766 | * If the operation fails, it will fall back to |
6767 | * wq_requested_unbound_cpumask which is initially set to |
6768 | * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten |
6769 | * by any subsequent write to workqueue/cpumask sysfs file. |
6770 | */ |
6771 | if (!cpumask_andnot(dstp: cpumask, src1p: wq_requested_unbound_cpumask, src2p: exclude_cpumask)) |
6772 | cpumask_copy(dstp: cpumask, srcp: wq_requested_unbound_cpumask); |
6773 | if (!cpumask_equal(src1p: cpumask, src2p: wq_unbound_cpumask)) |
6774 | ret = workqueue_apply_unbound_cpumask(unbound_cpumask: cpumask); |
6775 | |
6776 | mutex_unlock(lock: &wq_pool_mutex); |
6777 | free_cpumask_var(mask: cpumask); |
6778 | return ret; |
6779 | } |
6780 | |
6781 | static int parse_affn_scope(const char *val) |
6782 | { |
6783 | int i; |
6784 | |
6785 | for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { |
6786 | if (!strncasecmp(s1: val, s2: wq_affn_names[i], strlen(wq_affn_names[i]))) |
6787 | return i; |
6788 | } |
6789 | return -EINVAL; |
6790 | } |
6791 | |
6792 | static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) |
6793 | { |
6794 | struct workqueue_struct *wq; |
6795 | int affn, cpu; |
6796 | |
6797 | affn = parse_affn_scope(val); |
6798 | if (affn < 0) |
6799 | return affn; |
6800 | if (affn == WQ_AFFN_DFL) |
6801 | return -EINVAL; |
6802 | |
6803 | cpus_read_lock(); |
6804 | mutex_lock(&wq_pool_mutex); |
6805 | |
6806 | wq_affn_dfl = affn; |
6807 | |
6808 | list_for_each_entry(wq, &workqueues, list) { |
6809 | for_each_online_cpu(cpu) { |
6810 | wq_update_pod(wq, cpu, hotplug_cpu: cpu, online: true); |
6811 | } |
6812 | } |
6813 | |
6814 | mutex_unlock(lock: &wq_pool_mutex); |
6815 | cpus_read_unlock(); |
6816 | |
6817 | return 0; |
6818 | } |
6819 | |
6820 | static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) |
6821 | { |
6822 | return scnprintf(buf: buffer, PAGE_SIZE, fmt: "%s\n", wq_affn_names[wq_affn_dfl]); |
6823 | } |
6824 | |
6825 | static const struct kernel_param_ops wq_affn_dfl_ops = { |
6826 | .set = wq_affn_dfl_set, |
6827 | .get = wq_affn_dfl_get, |
6828 | }; |
6829 | |
6830 | module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); |
6831 | |
6832 | #ifdef CONFIG_SYSFS |
6833 | /* |
6834 | * Workqueues with WQ_SYSFS flag set is visible to userland via |
6835 | * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the |
6836 | * following attributes. |
6837 | * |
6838 | * per_cpu RO bool : whether the workqueue is per-cpu or unbound |
6839 | * max_active RW int : maximum number of in-flight work items |
6840 | * |
6841 | * Unbound workqueues have the following extra attributes. |
6842 | * |
6843 | * nice RW int : nice value of the workers |
6844 | * cpumask RW mask : bitmask of allowed CPUs for the workers |
6845 | * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) |
6846 | * affinity_strict RW bool : worker CPU affinity is strict |
6847 | */ |
6848 | struct wq_device { |
6849 | struct workqueue_struct *wq; |
6850 | struct device dev; |
6851 | }; |
6852 | |
6853 | static struct workqueue_struct *dev_to_wq(struct device *dev) |
6854 | { |
6855 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); |
6856 | |
6857 | return wq_dev->wq; |
6858 | } |
6859 | |
6860 | static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, |
6861 | char *buf) |
6862 | { |
6863 | struct workqueue_struct *wq = dev_to_wq(dev); |
6864 | |
6865 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); |
6866 | } |
6867 | static DEVICE_ATTR_RO(per_cpu); |
6868 | |
6869 | static ssize_t max_active_show(struct device *dev, |
6870 | struct device_attribute *attr, char *buf) |
6871 | { |
6872 | struct workqueue_struct *wq = dev_to_wq(dev); |
6873 | |
6874 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", wq->saved_max_active); |
6875 | } |
6876 | |
6877 | static ssize_t max_active_store(struct device *dev, |
6878 | struct device_attribute *attr, const char *buf, |
6879 | size_t count) |
6880 | { |
6881 | struct workqueue_struct *wq = dev_to_wq(dev); |
6882 | int val; |
6883 | |
6884 | if (sscanf(buf, "%d", &val) != 1 || val <= 0) |
6885 | return -EINVAL; |
6886 | |
6887 | workqueue_set_max_active(wq, val); |
6888 | return count; |
6889 | } |
6890 | static DEVICE_ATTR_RW(max_active); |
6891 | |
6892 | static struct attribute *wq_sysfs_attrs[] = { |
6893 | &dev_attr_per_cpu.attr, |
6894 | &dev_attr_max_active.attr, |
6895 | NULL, |
6896 | }; |
6897 | ATTRIBUTE_GROUPS(wq_sysfs); |
6898 | |
6899 | static void apply_wqattrs_lock(void) |
6900 | { |
6901 | /* CPUs should stay stable across pwq creations and installations */ |
6902 | cpus_read_lock(); |
6903 | mutex_lock(&wq_pool_mutex); |
6904 | } |
6905 | |
6906 | static void apply_wqattrs_unlock(void) |
6907 | { |
6908 | mutex_unlock(lock: &wq_pool_mutex); |
6909 | cpus_read_unlock(); |
6910 | } |
6911 | |
6912 | static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, |
6913 | char *buf) |
6914 | { |
6915 | struct workqueue_struct *wq = dev_to_wq(dev); |
6916 | int written; |
6917 | |
6918 | mutex_lock(&wq->mutex); |
6919 | written = scnprintf(buf, PAGE_SIZE, fmt: "%d\n", wq->unbound_attrs->nice); |
6920 | mutex_unlock(lock: &wq->mutex); |
6921 | |
6922 | return written; |
6923 | } |
6924 | |
6925 | /* prepare workqueue_attrs for sysfs store operations */ |
6926 | static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) |
6927 | { |
6928 | struct workqueue_attrs *attrs; |
6929 | |
6930 | lockdep_assert_held(&wq_pool_mutex); |
6931 | |
6932 | attrs = alloc_workqueue_attrs(); |
6933 | if (!attrs) |
6934 | return NULL; |
6935 | |
6936 | copy_workqueue_attrs(to: attrs, from: wq->unbound_attrs); |
6937 | return attrs; |
6938 | } |
6939 | |
6940 | static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, |
6941 | const char *buf, size_t count) |
6942 | { |
6943 | struct workqueue_struct *wq = dev_to_wq(dev); |
6944 | struct workqueue_attrs *attrs; |
6945 | int ret = -ENOMEM; |
6946 | |
6947 | apply_wqattrs_lock(); |
6948 | |
6949 | attrs = wq_sysfs_prep_attrs(wq); |
6950 | if (!attrs) |
6951 | goto out_unlock; |
6952 | |
6953 | if (sscanf(buf, "%d", &attrs->nice) == 1 && |
6954 | attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) |
6955 | ret = apply_workqueue_attrs_locked(wq, attrs); |
6956 | else |
6957 | ret = -EINVAL; |
6958 | |
6959 | out_unlock: |
6960 | apply_wqattrs_unlock(); |
6961 | free_workqueue_attrs(attrs); |
6962 | return ret ?: count; |
6963 | } |
6964 | |
6965 | static ssize_t wq_cpumask_show(struct device *dev, |
6966 | struct device_attribute *attr, char *buf) |
6967 | { |
6968 | struct workqueue_struct *wq = dev_to_wq(dev); |
6969 | int written; |
6970 | |
6971 | mutex_lock(&wq->mutex); |
6972 | written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n", |
6973 | cpumask_pr_args(wq->unbound_attrs->cpumask)); |
6974 | mutex_unlock(lock: &wq->mutex); |
6975 | return written; |
6976 | } |
6977 | |
6978 | static ssize_t wq_cpumask_store(struct device *dev, |
6979 | struct device_attribute *attr, |
6980 | const char *buf, size_t count) |
6981 | { |
6982 | struct workqueue_struct *wq = dev_to_wq(dev); |
6983 | struct workqueue_attrs *attrs; |
6984 | int ret = -ENOMEM; |
6985 | |
6986 | apply_wqattrs_lock(); |
6987 | |
6988 | attrs = wq_sysfs_prep_attrs(wq); |
6989 | if (!attrs) |
6990 | goto out_unlock; |
6991 | |
6992 | ret = cpumask_parse(buf, dstp: attrs->cpumask); |
6993 | if (!ret) |
6994 | ret = apply_workqueue_attrs_locked(wq, attrs); |
6995 | |
6996 | out_unlock: |
6997 | apply_wqattrs_unlock(); |
6998 | free_workqueue_attrs(attrs); |
6999 | return ret ?: count; |
7000 | } |
7001 | |
7002 | static ssize_t wq_affn_scope_show(struct device *dev, |
7003 | struct device_attribute *attr, char *buf) |
7004 | { |
7005 | struct workqueue_struct *wq = dev_to_wq(dev); |
7006 | int written; |
7007 | |
7008 | mutex_lock(&wq->mutex); |
7009 | if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) |
7010 | written = scnprintf(buf, PAGE_SIZE, fmt: "%s (%s)\n", |
7011 | wq_affn_names[WQ_AFFN_DFL], |
7012 | wq_affn_names[wq_affn_dfl]); |
7013 | else |
7014 | written = scnprintf(buf, PAGE_SIZE, fmt: "%s\n", |
7015 | wq_affn_names[wq->unbound_attrs->affn_scope]); |
7016 | mutex_unlock(lock: &wq->mutex); |
7017 | |
7018 | return written; |
7019 | } |
7020 | |
7021 | static ssize_t wq_affn_scope_store(struct device *dev, |
7022 | struct device_attribute *attr, |
7023 | const char *buf, size_t count) |
7024 | { |
7025 | struct workqueue_struct *wq = dev_to_wq(dev); |
7026 | struct workqueue_attrs *attrs; |
7027 | int affn, ret = -ENOMEM; |
7028 | |
7029 | affn = parse_affn_scope(val: buf); |
7030 | if (affn < 0) |
7031 | return affn; |
7032 | |
7033 | apply_wqattrs_lock(); |
7034 | attrs = wq_sysfs_prep_attrs(wq); |
7035 | if (attrs) { |
7036 | attrs->affn_scope = affn; |
7037 | ret = apply_workqueue_attrs_locked(wq, attrs); |
7038 | } |
7039 | apply_wqattrs_unlock(); |
7040 | free_workqueue_attrs(attrs); |
7041 | return ret ?: count; |
7042 | } |
7043 | |
7044 | static ssize_t wq_affinity_strict_show(struct device *dev, |
7045 | struct device_attribute *attr, char *buf) |
7046 | { |
7047 | struct workqueue_struct *wq = dev_to_wq(dev); |
7048 | |
7049 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", |
7050 | wq->unbound_attrs->affn_strict); |
7051 | } |
7052 | |
7053 | static ssize_t wq_affinity_strict_store(struct device *dev, |
7054 | struct device_attribute *attr, |
7055 | const char *buf, size_t count) |
7056 | { |
7057 | struct workqueue_struct *wq = dev_to_wq(dev); |
7058 | struct workqueue_attrs *attrs; |
7059 | int v, ret = -ENOMEM; |
7060 | |
7061 | if (sscanf(buf, "%d", &v) != 1) |
7062 | return -EINVAL; |
7063 | |
7064 | apply_wqattrs_lock(); |
7065 | attrs = wq_sysfs_prep_attrs(wq); |
7066 | if (attrs) { |
7067 | attrs->affn_strict = (bool)v; |
7068 | ret = apply_workqueue_attrs_locked(wq, attrs); |
7069 | } |
7070 | apply_wqattrs_unlock(); |
7071 | free_workqueue_attrs(attrs); |
7072 | return ret ?: count; |
7073 | } |
7074 | |
7075 | static struct device_attribute wq_sysfs_unbound_attrs[] = { |
7076 | __ATTR(nice, 0644, wq_nice_show, wq_nice_store), |
7077 | __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), |
7078 | __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), |
7079 | __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), |
7080 | __ATTR_NULL, |
7081 | }; |
7082 | |
7083 | static const struct bus_type wq_subsys = { |
7084 | .name = "workqueue", |
7085 | .dev_groups = wq_sysfs_groups, |
7086 | }; |
7087 | |
7088 | /** |
7089 | * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask |
7090 | * @cpumask: the cpumask to set |
7091 | * |
7092 | * The low-level workqueues cpumask is a global cpumask that limits |
7093 | * the affinity of all unbound workqueues. This function check the @cpumask |
7094 | * and apply it to all unbound workqueues and updates all pwqs of them. |
7095 | * |
7096 | * Return: 0 - Success |
7097 | * -EINVAL - Invalid @cpumask |
7098 | * -ENOMEM - Failed to allocate memory for attrs or pwqs. |
7099 | */ |
7100 | static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) |
7101 | { |
7102 | int ret = -EINVAL; |
7103 | |
7104 | /* |
7105 | * Not excluding isolated cpus on purpose. |
7106 | * If the user wishes to include them, we allow that. |
7107 | */ |
7108 | cpumask_and(dstp: cpumask, src1p: cpumask, cpu_possible_mask); |
7109 | if (!cpumask_empty(srcp: cpumask)) { |
7110 | apply_wqattrs_lock(); |
7111 | cpumask_copy(dstp: wq_requested_unbound_cpumask, srcp: cpumask); |
7112 | if (cpumask_equal(src1p: cpumask, src2p: wq_unbound_cpumask)) { |
7113 | ret = 0; |
7114 | goto out_unlock; |
7115 | } |
7116 | |
7117 | ret = workqueue_apply_unbound_cpumask(unbound_cpumask: cpumask); |
7118 | |
7119 | out_unlock: |
7120 | apply_wqattrs_unlock(); |
7121 | } |
7122 | |
7123 | return ret; |
7124 | } |
7125 | |
7126 | static ssize_t __wq_cpumask_show(struct device *dev, |
7127 | struct device_attribute *attr, char *buf, cpumask_var_t mask) |
7128 | { |
7129 | int written; |
7130 | |
7131 | mutex_lock(&wq_pool_mutex); |
7132 | written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n", cpumask_pr_args(mask)); |
7133 | mutex_unlock(lock: &wq_pool_mutex); |
7134 | |
7135 | return written; |
7136 | } |
7137 | |
7138 | static ssize_t wq_unbound_cpumask_show(struct device *dev, |
7139 | struct device_attribute *attr, char *buf) |
7140 | { |
7141 | return __wq_cpumask_show(dev, attr, buf, mask: wq_unbound_cpumask); |
7142 | } |
7143 | |
7144 | static ssize_t wq_requested_cpumask_show(struct device *dev, |
7145 | struct device_attribute *attr, char *buf) |
7146 | { |
7147 | return __wq_cpumask_show(dev, attr, buf, mask: wq_requested_unbound_cpumask); |
7148 | } |
7149 | |
7150 | static ssize_t wq_isolated_cpumask_show(struct device *dev, |
7151 | struct device_attribute *attr, char *buf) |
7152 | { |
7153 | return __wq_cpumask_show(dev, attr, buf, mask: wq_isolated_cpumask); |
7154 | } |
7155 | |
7156 | static ssize_t wq_unbound_cpumask_store(struct device *dev, |
7157 | struct device_attribute *attr, const char *buf, size_t count) |
7158 | { |
7159 | cpumask_var_t cpumask; |
7160 | int ret; |
7161 | |
7162 | if (!zalloc_cpumask_var(mask: &cpumask, GFP_KERNEL)) |
7163 | return -ENOMEM; |
7164 | |
7165 | ret = cpumask_parse(buf, dstp: cpumask); |
7166 | if (!ret) |
7167 | ret = workqueue_set_unbound_cpumask(cpumask); |
7168 | |
7169 | free_cpumask_var(mask: cpumask); |
7170 | return ret ? ret : count; |
7171 | } |
7172 | |
7173 | static struct device_attribute wq_sysfs_cpumask_attrs[] = { |
7174 | __ATTR(cpumask, 0644, wq_unbound_cpumask_show, |
7175 | wq_unbound_cpumask_store), |
7176 | __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL), |
7177 | __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL), |
7178 | __ATTR_NULL, |
7179 | }; |
7180 | |
7181 | static int __init wq_sysfs_init(void) |
7182 | { |
7183 | struct device *dev_root; |
7184 | int err; |
7185 | |
7186 | err = subsys_virtual_register(subsys: &wq_subsys, NULL); |
7187 | if (err) |
7188 | return err; |
7189 | |
7190 | dev_root = bus_get_dev_root(bus: &wq_subsys); |
7191 | if (dev_root) { |
7192 | struct device_attribute *attr; |
7193 | |
7194 | for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) { |
7195 | err = device_create_file(device: dev_root, entry: attr); |
7196 | if (err) |
7197 | break; |
7198 | } |
7199 | put_device(dev: dev_root); |
7200 | } |
7201 | return err; |
7202 | } |
7203 | core_initcall(wq_sysfs_init); |
7204 | |
7205 | static void wq_device_release(struct device *dev) |
7206 | { |
7207 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); |
7208 | |
7209 | kfree(objp: wq_dev); |
7210 | } |
7211 | |
7212 | /** |
7213 | * workqueue_sysfs_register - make a workqueue visible in sysfs |
7214 | * @wq: the workqueue to register |
7215 | * |
7216 | * Expose @wq in sysfs under /sys/bus/workqueue/devices. |
7217 | * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set |
7218 | * which is the preferred method. |
7219 | * |
7220 | * Workqueue user should use this function directly iff it wants to apply |
7221 | * workqueue_attrs before making the workqueue visible in sysfs; otherwise, |
7222 | * apply_workqueue_attrs() may race against userland updating the |
7223 | * attributes. |
7224 | * |
7225 | * Return: 0 on success, -errno on failure. |
7226 | */ |
7227 | int workqueue_sysfs_register(struct workqueue_struct *wq) |
7228 | { |
7229 | struct wq_device *wq_dev; |
7230 | int ret; |
7231 | |
7232 | /* |
7233 | * Adjusting max_active breaks ordering guarantee. Disallow exposing |
7234 | * ordered workqueues. |
7235 | */ |
7236 | if (WARN_ON(wq->flags & __WQ_ORDERED)) |
7237 | return -EINVAL; |
7238 | |
7239 | wq->wq_dev = wq_dev = kzalloc(size: sizeof(*wq_dev), GFP_KERNEL); |
7240 | if (!wq_dev) |
7241 | return -ENOMEM; |
7242 | |
7243 | wq_dev->wq = wq; |
7244 | wq_dev->dev.bus = &wq_subsys; |
7245 | wq_dev->dev.release = wq_device_release; |
7246 | dev_set_name(dev: &wq_dev->dev, name: "%s", wq->name); |
7247 | |
7248 | /* |
7249 | * unbound_attrs are created separately. Suppress uevent until |
7250 | * everything is ready. |
7251 | */ |
7252 | dev_set_uevent_suppress(dev: &wq_dev->dev, val: true); |
7253 | |
7254 | ret = device_register(dev: &wq_dev->dev); |
7255 | if (ret) { |
7256 | put_device(dev: &wq_dev->dev); |
7257 | wq->wq_dev = NULL; |
7258 | return ret; |
7259 | } |
7260 | |
7261 | if (wq->flags & WQ_UNBOUND) { |
7262 | struct device_attribute *attr; |
7263 | |
7264 | for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { |
7265 | ret = device_create_file(device: &wq_dev->dev, entry: attr); |
7266 | if (ret) { |
7267 | device_unregister(dev: &wq_dev->dev); |
7268 | wq->wq_dev = NULL; |
7269 | return ret; |
7270 | } |
7271 | } |
7272 | } |
7273 | |
7274 | dev_set_uevent_suppress(dev: &wq_dev->dev, val: false); |
7275 | kobject_uevent(kobj: &wq_dev->dev.kobj, action: KOBJ_ADD); |
7276 | return 0; |
7277 | } |
7278 | |
7279 | /** |
7280 | * workqueue_sysfs_unregister - undo workqueue_sysfs_register() |
7281 | * @wq: the workqueue to unregister |
7282 | * |
7283 | * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. |
7284 | */ |
7285 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) |
7286 | { |
7287 | struct wq_device *wq_dev = wq->wq_dev; |
7288 | |
7289 | if (!wq->wq_dev) |
7290 | return; |
7291 | |
7292 | wq->wq_dev = NULL; |
7293 | device_unregister(dev: &wq_dev->dev); |
7294 | } |
7295 | #else /* CONFIG_SYSFS */ |
7296 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } |
7297 | #endif /* CONFIG_SYSFS */ |
7298 | |
7299 | /* |
7300 | * Workqueue watchdog. |
7301 | * |
7302 | * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal |
7303 | * flush dependency, a concurrency managed work item which stays RUNNING |
7304 | * indefinitely. Workqueue stalls can be very difficult to debug as the |
7305 | * usual warning mechanisms don't trigger and internal workqueue state is |
7306 | * largely opaque. |
7307 | * |
7308 | * Workqueue watchdog monitors all worker pools periodically and dumps |
7309 | * state if some pools failed to make forward progress for a while where |
7310 | * forward progress is defined as the first item on ->worklist changing. |
7311 | * |
7312 | * This mechanism is controlled through the kernel parameter |
7313 | * "workqueue.watchdog_thresh" which can be updated at runtime through the |
7314 | * corresponding sysfs parameter file. |
7315 | */ |
7316 | #ifdef CONFIG_WQ_WATCHDOG |
7317 | |
7318 | static unsigned long wq_watchdog_thresh = 30; |
7319 | static struct timer_list wq_watchdog_timer; |
7320 | |
7321 | static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; |
7322 | static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; |
7323 | |
7324 | /* |
7325 | * Show workers that might prevent the processing of pending work items. |
7326 | * The only candidates are CPU-bound workers in the running state. |
7327 | * Pending work items should be handled by another idle worker |
7328 | * in all other situations. |
7329 | */ |
7330 | static void show_cpu_pool_hog(struct worker_pool *pool) |
7331 | { |
7332 | struct worker *worker; |
7333 | unsigned long irq_flags; |
7334 | int bkt; |
7335 | |
7336 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
7337 | |
7338 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
7339 | if (task_is_running(worker->task)) { |
7340 | /* |
7341 | * Defer printing to avoid deadlocks in console |
7342 | * drivers that queue work while holding locks |
7343 | * also taken in their write paths. |
7344 | */ |
7345 | printk_deferred_enter(); |
7346 | |
7347 | pr_info("pool %d:\n", pool->id); |
7348 | sched_show_task(p: worker->task); |
7349 | |
7350 | printk_deferred_exit(); |
7351 | } |
7352 | } |
7353 | |
7354 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
7355 | } |
7356 | |
7357 | static void show_cpu_pools_hogs(void) |
7358 | { |
7359 | struct worker_pool *pool; |
7360 | int pi; |
7361 | |
7362 | pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); |
7363 | |
7364 | rcu_read_lock(); |
7365 | |
7366 | for_each_pool(pool, pi) { |
7367 | if (pool->cpu_stall) |
7368 | show_cpu_pool_hog(pool); |
7369 | |
7370 | } |
7371 | |
7372 | rcu_read_unlock(); |
7373 | } |
7374 | |
7375 | static void wq_watchdog_reset_touched(void) |
7376 | { |
7377 | int cpu; |
7378 | |
7379 | wq_watchdog_touched = jiffies; |
7380 | for_each_possible_cpu(cpu) |
7381 | per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; |
7382 | } |
7383 | |
7384 | static void wq_watchdog_timer_fn(struct timer_list *unused) |
7385 | { |
7386 | unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; |
7387 | bool lockup_detected = false; |
7388 | bool cpu_pool_stall = false; |
7389 | unsigned long now = jiffies; |
7390 | struct worker_pool *pool; |
7391 | int pi; |
7392 | |
7393 | if (!thresh) |
7394 | return; |
7395 | |
7396 | rcu_read_lock(); |
7397 | |
7398 | for_each_pool(pool, pi) { |
7399 | unsigned long pool_ts, touched, ts; |
7400 | |
7401 | pool->cpu_stall = false; |
7402 | if (list_empty(head: &pool->worklist)) |
7403 | continue; |
7404 | |
7405 | /* |
7406 | * If a virtual machine is stopped by the host it can look to |
7407 | * the watchdog like a stall. |
7408 | */ |
7409 | kvm_check_and_clear_guest_paused(); |
7410 | |
7411 | /* get the latest of pool and touched timestamps */ |
7412 | if (pool->cpu >= 0) |
7413 | touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); |
7414 | else |
7415 | touched = READ_ONCE(wq_watchdog_touched); |
7416 | pool_ts = READ_ONCE(pool->watchdog_ts); |
7417 | |
7418 | if (time_after(pool_ts, touched)) |
7419 | ts = pool_ts; |
7420 | else |
7421 | ts = touched; |
7422 | |
7423 | /* did we stall? */ |
7424 | if (time_after(now, ts + thresh)) { |
7425 | lockup_detected = true; |
7426 | if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { |
7427 | pool->cpu_stall = true; |
7428 | cpu_pool_stall = true; |
7429 | } |
7430 | pr_emerg("BUG: workqueue lockup - pool"); |
7431 | pr_cont_pool_info(pool); |
7432 | pr_cont(" stuck for %us!\n", |
7433 | jiffies_to_msecs(now - pool_ts) / 1000); |
7434 | } |
7435 | |
7436 | |
7437 | } |
7438 | |
7439 | rcu_read_unlock(); |
7440 | |
7441 | if (lockup_detected) |
7442 | show_all_workqueues(); |
7443 | |
7444 | if (cpu_pool_stall) |
7445 | show_cpu_pools_hogs(); |
7446 | |
7447 | wq_watchdog_reset_touched(); |
7448 | mod_timer(timer: &wq_watchdog_timer, expires: jiffies + thresh); |
7449 | } |
7450 | |
7451 | notrace void wq_watchdog_touch(int cpu) |
7452 | { |
7453 | if (cpu >= 0) |
7454 | per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; |
7455 | |
7456 | wq_watchdog_touched = jiffies; |
7457 | } |
7458 | |
7459 | static void wq_watchdog_set_thresh(unsigned long thresh) |
7460 | { |
7461 | wq_watchdog_thresh = 0; |
7462 | del_timer_sync(timer: &wq_watchdog_timer); |
7463 | |
7464 | if (thresh) { |
7465 | wq_watchdog_thresh = thresh; |
7466 | wq_watchdog_reset_touched(); |
7467 | mod_timer(timer: &wq_watchdog_timer, expires: jiffies + thresh * HZ); |
7468 | } |
7469 | } |
7470 | |
7471 | static int wq_watchdog_param_set_thresh(const char *val, |
7472 | const struct kernel_param *kp) |
7473 | { |
7474 | unsigned long thresh; |
7475 | int ret; |
7476 | |
7477 | ret = kstrtoul(s: val, base: 0, res: &thresh); |
7478 | if (ret) |
7479 | return ret; |
7480 | |
7481 | if (system_wq) |
7482 | wq_watchdog_set_thresh(thresh); |
7483 | else |
7484 | wq_watchdog_thresh = thresh; |
7485 | |
7486 | return 0; |
7487 | } |
7488 | |
7489 | static const struct kernel_param_ops wq_watchdog_thresh_ops = { |
7490 | .set = wq_watchdog_param_set_thresh, |
7491 | .get = param_get_ulong, |
7492 | }; |
7493 | |
7494 | module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, |
7495 | 0644); |
7496 | |
7497 | static void wq_watchdog_init(void) |
7498 | { |
7499 | timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); |
7500 | wq_watchdog_set_thresh(thresh: wq_watchdog_thresh); |
7501 | } |
7502 | |
7503 | #else /* CONFIG_WQ_WATCHDOG */ |
7504 | |
7505 | static inline void wq_watchdog_init(void) { } |
7506 | |
7507 | #endif /* CONFIG_WQ_WATCHDOG */ |
7508 | |
7509 | static void bh_pool_kick_normal(struct irq_work *irq_work) |
7510 | { |
7511 | raise_softirq_irqoff(nr: TASKLET_SOFTIRQ); |
7512 | } |
7513 | |
7514 | static void bh_pool_kick_highpri(struct irq_work *irq_work) |
7515 | { |
7516 | raise_softirq_irqoff(nr: HI_SOFTIRQ); |
7517 | } |
7518 | |
7519 | static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) |
7520 | { |
7521 | if (!cpumask_intersects(src1p: wq_unbound_cpumask, src2p: mask)) { |
7522 | pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", |
7523 | cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); |
7524 | return; |
7525 | } |
7526 | |
7527 | cpumask_and(dstp: wq_unbound_cpumask, src1p: wq_unbound_cpumask, src2p: mask); |
7528 | } |
7529 | |
7530 | static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) |
7531 | { |
7532 | BUG_ON(init_worker_pool(pool)); |
7533 | pool->cpu = cpu; |
7534 | cpumask_copy(dstp: pool->attrs->cpumask, cpumask_of(cpu)); |
7535 | cpumask_copy(dstp: pool->attrs->__pod_cpumask, cpumask_of(cpu)); |
7536 | pool->attrs->nice = nice; |
7537 | pool->attrs->affn_strict = true; |
7538 | pool->node = cpu_to_node(cpu); |
7539 | |
7540 | /* alloc pool ID */ |
7541 | mutex_lock(&wq_pool_mutex); |
7542 | BUG_ON(worker_pool_assign_id(pool)); |
7543 | mutex_unlock(lock: &wq_pool_mutex); |
7544 | } |
7545 | |
7546 | /** |
7547 | * workqueue_init_early - early init for workqueue subsystem |
7548 | * |
7549 | * This is the first step of three-staged workqueue subsystem initialization and |
7550 | * invoked as soon as the bare basics - memory allocation, cpumasks and idr are |
7551 | * up. It sets up all the data structures and system workqueues and allows early |
7552 | * boot code to create workqueues and queue/cancel work items. Actual work item |
7553 | * execution starts only after kthreads can be created and scheduled right |
7554 | * before early initcalls. |
7555 | */ |
7556 | void __init workqueue_init_early(void) |
7557 | { |
7558 | struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; |
7559 | int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; |
7560 | void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, |
7561 | bh_pool_kick_highpri }; |
7562 | int i, cpu; |
7563 | |
7564 | BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); |
7565 | |
7566 | BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); |
7567 | BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); |
7568 | BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); |
7569 | |
7570 | cpumask_copy(dstp: wq_unbound_cpumask, cpu_possible_mask); |
7571 | restrict_unbound_cpumask(name: "HK_TYPE_WQ", mask: housekeeping_cpumask(type: HK_TYPE_WQ)); |
7572 | restrict_unbound_cpumask(name: "HK_TYPE_DOMAIN", mask: housekeeping_cpumask(type: HK_TYPE_DOMAIN)); |
7573 | if (!cpumask_empty(srcp: &wq_cmdline_cpumask)) |
7574 | restrict_unbound_cpumask(name: "workqueue.unbound_cpus", mask: &wq_cmdline_cpumask); |
7575 | |
7576 | cpumask_copy(dstp: wq_requested_unbound_cpumask, srcp: wq_unbound_cpumask); |
7577 | |
7578 | pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); |
7579 | |
7580 | wq_update_pod_attrs_buf = alloc_workqueue_attrs(); |
7581 | BUG_ON(!wq_update_pod_attrs_buf); |
7582 | |
7583 | /* |
7584 | * If nohz_full is enabled, set power efficient workqueue as unbound. |
7585 | * This allows workqueue items to be moved to HK CPUs. |
7586 | */ |
7587 | if (housekeeping_enabled(type: HK_TYPE_TICK)) |
7588 | wq_power_efficient = true; |
7589 | |
7590 | /* initialize WQ_AFFN_SYSTEM pods */ |
7591 | pt->pod_cpus = kcalloc(n: 1, size: sizeof(pt->pod_cpus[0]), GFP_KERNEL); |
7592 | pt->pod_node = kcalloc(n: 1, size: sizeof(pt->pod_node[0]), GFP_KERNEL); |
7593 | pt->cpu_pod = kcalloc(n: nr_cpu_ids, size: sizeof(pt->cpu_pod[0]), GFP_KERNEL); |
7594 | BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); |
7595 | |
7596 | BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); |
7597 | |
7598 | pt->nr_pods = 1; |
7599 | cpumask_copy(dstp: pt->pod_cpus[0], cpu_possible_mask); |
7600 | pt->pod_node[0] = NUMA_NO_NODE; |
7601 | pt->cpu_pod[0] = 0; |
7602 | |
7603 | /* initialize BH and CPU pools */ |
7604 | for_each_possible_cpu(cpu) { |
7605 | struct worker_pool *pool; |
7606 | |
7607 | i = 0; |
7608 | for_each_bh_worker_pool(pool, cpu) { |
7609 | init_cpu_worker_pool(pool, cpu, nice: std_nice[i]); |
7610 | pool->flags |= POOL_BH; |
7611 | init_irq_work(work: bh_pool_irq_work(pool), func: irq_work_fns[i]); |
7612 | i++; |
7613 | } |
7614 | |
7615 | i = 0; |
7616 | for_each_cpu_worker_pool(pool, cpu) |
7617 | init_cpu_worker_pool(pool, cpu, nice: std_nice[i++]); |
7618 | } |
7619 | |
7620 | /* create default unbound and ordered wq attrs */ |
7621 | for (i = 0; i < NR_STD_WORKER_POOLS; i++) { |
7622 | struct workqueue_attrs *attrs; |
7623 | |
7624 | BUG_ON(!(attrs = alloc_workqueue_attrs())); |
7625 | attrs->nice = std_nice[i]; |
7626 | unbound_std_wq_attrs[i] = attrs; |
7627 | |
7628 | /* |
7629 | * An ordered wq should have only one pwq as ordering is |
7630 | * guaranteed by max_active which is enforced by pwqs. |
7631 | */ |
7632 | BUG_ON(!(attrs = alloc_workqueue_attrs())); |
7633 | attrs->nice = std_nice[i]; |
7634 | attrs->ordered = true; |
7635 | ordered_wq_attrs[i] = attrs; |
7636 | } |
7637 | |
7638 | system_wq = alloc_workqueue("events", 0, 0); |
7639 | system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); |
7640 | system_long_wq = alloc_workqueue("events_long", 0, 0); |
7641 | system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, |
7642 | WQ_MAX_ACTIVE); |
7643 | system_freezable_wq = alloc_workqueue("events_freezable", |
7644 | WQ_FREEZABLE, 0); |
7645 | system_power_efficient_wq = alloc_workqueue("events_power_efficient", |
7646 | WQ_POWER_EFFICIENT, 0); |
7647 | system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", |
7648 | WQ_FREEZABLE | WQ_POWER_EFFICIENT, |
7649 | 0); |
7650 | system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); |
7651 | system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", |
7652 | WQ_BH | WQ_HIGHPRI, 0); |
7653 | BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || |
7654 | !system_unbound_wq || !system_freezable_wq || |
7655 | !system_power_efficient_wq || |
7656 | !system_freezable_power_efficient_wq || |
7657 | !system_bh_wq || !system_bh_highpri_wq); |
7658 | } |
7659 | |
7660 | static void __init wq_cpu_intensive_thresh_init(void) |
7661 | { |
7662 | unsigned long thresh; |
7663 | unsigned long bogo; |
7664 | |
7665 | pwq_release_worker = kthread_create_worker(flags: 0, namefmt: "pool_workqueue_release"); |
7666 | BUG_ON(IS_ERR(pwq_release_worker)); |
7667 | |
7668 | /* if the user set it to a specific value, keep it */ |
7669 | if (wq_cpu_intensive_thresh_us != ULONG_MAX) |
7670 | return; |
7671 | |
7672 | /* |
7673 | * The default of 10ms is derived from the fact that most modern (as of |
7674 | * 2023) processors can do a lot in 10ms and that it's just below what |
7675 | * most consider human-perceivable. However, the kernel also runs on a |
7676 | * lot slower CPUs including microcontrollers where the threshold is way |
7677 | * too low. |
7678 | * |
7679 | * Let's scale up the threshold upto 1 second if BogoMips is below 4000. |
7680 | * This is by no means accurate but it doesn't have to be. The mechanism |
7681 | * is still useful even when the threshold is fully scaled up. Also, as |
7682 | * the reports would usually be applicable to everyone, some machines |
7683 | * operating on longer thresholds won't significantly diminish their |
7684 | * usefulness. |
7685 | */ |
7686 | thresh = 10 * USEC_PER_MSEC; |
7687 | |
7688 | /* see init/calibrate.c for lpj -> BogoMIPS calculation */ |
7689 | bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); |
7690 | if (bogo < 4000) |
7691 | thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); |
7692 | |
7693 | pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", |
7694 | loops_per_jiffy, bogo, thresh); |
7695 | |
7696 | wq_cpu_intensive_thresh_us = thresh; |
7697 | } |
7698 | |
7699 | /** |
7700 | * workqueue_init - bring workqueue subsystem fully online |
7701 | * |
7702 | * This is the second step of three-staged workqueue subsystem initialization |
7703 | * and invoked as soon as kthreads can be created and scheduled. Workqueues have |
7704 | * been created and work items queued on them, but there are no kworkers |
7705 | * executing the work items yet. Populate the worker pools with the initial |
7706 | * workers and enable future kworker creations. |
7707 | */ |
7708 | void __init workqueue_init(void) |
7709 | { |
7710 | struct workqueue_struct *wq; |
7711 | struct worker_pool *pool; |
7712 | int cpu, bkt; |
7713 | |
7714 | wq_cpu_intensive_thresh_init(); |
7715 | |
7716 | mutex_lock(&wq_pool_mutex); |
7717 | |
7718 | /* |
7719 | * Per-cpu pools created earlier could be missing node hint. Fix them |
7720 | * up. Also, create a rescuer for workqueues that requested it. |
7721 | */ |
7722 | for_each_possible_cpu(cpu) { |
7723 | for_each_bh_worker_pool(pool, cpu) |
7724 | pool->node = cpu_to_node(cpu); |
7725 | for_each_cpu_worker_pool(pool, cpu) |
7726 | pool->node = cpu_to_node(cpu); |
7727 | } |
7728 | |
7729 | list_for_each_entry(wq, &workqueues, list) { |
7730 | WARN(init_rescuer(wq), |
7731 | "workqueue: failed to create early rescuer for %s", |
7732 | wq->name); |
7733 | } |
7734 | |
7735 | mutex_unlock(lock: &wq_pool_mutex); |
7736 | |
7737 | /* |
7738 | * Create the initial workers. A BH pool has one pseudo worker that |
7739 | * represents the shared BH execution context and thus doesn't get |
7740 | * affected by hotplug events. Create the BH pseudo workers for all |
7741 | * possible CPUs here. |
7742 | */ |
7743 | for_each_possible_cpu(cpu) |
7744 | for_each_bh_worker_pool(pool, cpu) |
7745 | BUG_ON(!create_worker(pool)); |
7746 | |
7747 | for_each_online_cpu(cpu) { |
7748 | for_each_cpu_worker_pool(pool, cpu) { |
7749 | pool->flags &= ~POOL_DISASSOCIATED; |
7750 | BUG_ON(!create_worker(pool)); |
7751 | } |
7752 | } |
7753 | |
7754 | hash_for_each(unbound_pool_hash, bkt, pool, hash_node) |
7755 | BUG_ON(!create_worker(pool)); |
7756 | |
7757 | wq_online = true; |
7758 | wq_watchdog_init(); |
7759 | } |
7760 | |
7761 | /* |
7762 | * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to |
7763 | * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique |
7764 | * and consecutive pod ID. The rest of @pt is initialized accordingly. |
7765 | */ |
7766 | static void __init init_pod_type(struct wq_pod_type *pt, |
7767 | bool (*cpus_share_pod)(int, int)) |
7768 | { |
7769 | int cur, pre, cpu, pod; |
7770 | |
7771 | pt->nr_pods = 0; |
7772 | |
7773 | /* init @pt->cpu_pod[] according to @cpus_share_pod() */ |
7774 | pt->cpu_pod = kcalloc(n: nr_cpu_ids, size: sizeof(pt->cpu_pod[0]), GFP_KERNEL); |
7775 | BUG_ON(!pt->cpu_pod); |
7776 | |
7777 | for_each_possible_cpu(cur) { |
7778 | for_each_possible_cpu(pre) { |
7779 | if (pre >= cur) { |
7780 | pt->cpu_pod[cur] = pt->nr_pods++; |
7781 | break; |
7782 | } |
7783 | if (cpus_share_pod(cur, pre)) { |
7784 | pt->cpu_pod[cur] = pt->cpu_pod[pre]; |
7785 | break; |
7786 | } |
7787 | } |
7788 | } |
7789 | |
7790 | /* init the rest to match @pt->cpu_pod[] */ |
7791 | pt->pod_cpus = kcalloc(n: pt->nr_pods, size: sizeof(pt->pod_cpus[0]), GFP_KERNEL); |
7792 | pt->pod_node = kcalloc(n: pt->nr_pods, size: sizeof(pt->pod_node[0]), GFP_KERNEL); |
7793 | BUG_ON(!pt->pod_cpus || !pt->pod_node); |
7794 | |
7795 | for (pod = 0; pod < pt->nr_pods; pod++) |
7796 | BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); |
7797 | |
7798 | for_each_possible_cpu(cpu) { |
7799 | cpumask_set_cpu(cpu, dstp: pt->pod_cpus[pt->cpu_pod[cpu]]); |
7800 | pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); |
7801 | } |
7802 | } |
7803 | |
7804 | static bool __init cpus_dont_share(int cpu0, int cpu1) |
7805 | { |
7806 | return false; |
7807 | } |
7808 | |
7809 | static bool __init cpus_share_smt(int cpu0, int cpu1) |
7810 | { |
7811 | #ifdef CONFIG_SCHED_SMT |
7812 | return cpumask_test_cpu(cpu: cpu0, cpumask: cpu_smt_mask(cpu: cpu1)); |
7813 | #else |
7814 | return false; |
7815 | #endif |
7816 | } |
7817 | |
7818 | static bool __init cpus_share_numa(int cpu0, int cpu1) |
7819 | { |
7820 | return cpu_to_node(cpu: cpu0) == cpu_to_node(cpu: cpu1); |
7821 | } |
7822 | |
7823 | /** |
7824 | * workqueue_init_topology - initialize CPU pods for unbound workqueues |
7825 | * |
7826 | * This is the third step of three-staged workqueue subsystem initialization and |
7827 | * invoked after SMP and topology information are fully initialized. It |
7828 | * initializes the unbound CPU pods accordingly. |
7829 | */ |
7830 | void __init workqueue_init_topology(void) |
7831 | { |
7832 | struct workqueue_struct *wq; |
7833 | int cpu; |
7834 | |
7835 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_CPU], cpus_share_pod: cpus_dont_share); |
7836 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_SMT], cpus_share_pod: cpus_share_smt); |
7837 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_CACHE], cpus_share_pod: cpus_share_cache); |
7838 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_NUMA], cpus_share_pod: cpus_share_numa); |
7839 | |
7840 | wq_topo_initialized = true; |
7841 | |
7842 | mutex_lock(&wq_pool_mutex); |
7843 | |
7844 | /* |
7845 | * Workqueues allocated earlier would have all CPUs sharing the default |
7846 | * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU |
7847 | * combinations to apply per-pod sharing. |
7848 | */ |
7849 | list_for_each_entry(wq, &workqueues, list) { |
7850 | for_each_online_cpu(cpu) |
7851 | wq_update_pod(wq, cpu, hotplug_cpu: cpu, online: true); |
7852 | if (wq->flags & WQ_UNBOUND) { |
7853 | mutex_lock(&wq->mutex); |
7854 | wq_update_node_max_active(wq, off_cpu: -1); |
7855 | mutex_unlock(lock: &wq->mutex); |
7856 | } |
7857 | } |
7858 | |
7859 | mutex_unlock(lock: &wq_pool_mutex); |
7860 | } |
7861 | |
7862 | void __warn_flushing_systemwide_wq(void) |
7863 | { |
7864 | pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); |
7865 | dump_stack(); |
7866 | } |
7867 | EXPORT_SYMBOL(__warn_flushing_systemwide_wq); |
7868 | |
7869 | static int __init workqueue_unbound_cpus_setup(char *str) |
7870 | { |
7871 | if (cpulist_parse(buf: str, dstp: &wq_cmdline_cpumask) < 0) { |
7872 | cpumask_clear(dstp: &wq_cmdline_cpumask); |
7873 | pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); |
7874 | } |
7875 | |
7876 | return 1; |
7877 | } |
7878 | __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); |
7879 |
Definitions
- worker_pool_flags
- worker_flags
- work_cancel_flags
- wq_internal_consts
- worker_pool
- pool_workqueue_stats
- pool_workqueue
- wq_flusher
- wq_node_nr_active
- workqueue_struct
- wq_pod_type
- wq_affn_names
- wq_cpu_intensive_thresh_us
- wq_cpu_intensive_warning_thresh
- wq_power_efficient
- wq_online
- wq_topo_initialized
- pwq_cache
- wq_pod_types
- wq_affn_dfl
- wq_update_pod_attrs_buf
- wq_pool_mutex
- wq_pool_attach_mutex
- wq_mayday_lock
- manager_wait
- workqueues
- workqueue_freezing
- wq_unbound_cpumask
- wq_requested_unbound_cpumask
- wq_isolated_cpumask
- wq_cmdline_cpumask
- wq_rr_cpu_last
- wq_debug_force_rr_cpu
- bh_pool_irq_works
- bh_worker_pools
- cpu_worker_pools
- worker_pool_idr
- unbound_pool_hash
- unbound_std_wq_attrs
- ordered_wq_attrs
- wq_cancel_waitq
- pwq_release_worker
- system_wq
- system_highpri_wq
- system_long_wq
- system_unbound_wq
- system_freezable_wq
- system_power_efficient_wq
- system_freezable_power_efficient_wq
- system_bh_wq
- system_bh_highpri_wq
- work_debug_descr
- work_debug_hint
- work_is_static_object
- work_fixup_init
- work_fixup_free
- work_debug_descr
- debug_work_activate
- debug_work_deactivate
- __init_work
- destroy_work_on_stack
- destroy_delayed_work_on_stack
- worker_pool_assign_id
- unbound_pwq_slot
- unbound_pwq
- unbound_effective_cpumask
- work_color_to_flags
- get_work_color
- work_next_color
- set_work_data
- set_work_pwq
- set_work_pool_and_keep_pending
- set_work_pool_and_clear_pending
- work_struct_pwq
- get_work_pwq
- get_work_pool
- get_work_pool_id
- mark_work_canceling
- work_is_canceling
- need_more_worker
- may_start_working
- keep_working
- need_to_create_worker
- too_many_workers
- worker_set_flags
- worker_clr_flags
- first_idle_worker
- worker_enter_idle
- worker_leave_idle
- find_worker_executing_work
- move_linked_works
- assign_work
- bh_pool_irq_work
- kick_bh_pool
- kick_pool
- wci_ent
- wci_ents
- wci_nr_ents
- wci_lock
- wci_hash
- wci_find_ent
- wq_cpu_intensive_report
- wq_worker_running
- wq_worker_sleeping
- wq_worker_tick
- wq_worker_last_func
- wq_node_nr_active
- wq_update_node_max_active
- get_pwq
- put_pwq
- put_pwq_unlocked
- pwq_is_empty
- __pwq_activate_work
- pwq_activate_work
- tryinc_node_nr_active
- pwq_tryinc_nr_active
- pwq_activate_first_inactive
- unplug_oldest_pwq
- node_activate_pending_pwq
- pwq_dec_nr_active
- pwq_dec_nr_in_flight
- try_to_grab_pending
- cwt_wait
- cwt_wakefn
- work_grab_pending
- insert_work
- is_chained_work
- wq_select_unbound_cpu
- __queue_work
- queue_work_on
- select_numa_node_cpu
- queue_work_node
- delayed_work_timer_fn
- __queue_delayed_work
- queue_delayed_work_on
- mod_delayed_work_on
- rcu_work_rcufn
- queue_rcu_work
- alloc_worker
- pool_allowed_cpus
- worker_attach_to_pool
- worker_detach_from_pool
- create_worker
- unbind_worker
- wake_dying_workers
- set_worker_dying
- idle_worker_timeout
- idle_cull_fn
- send_mayday
- pool_mayday_timeout
- maybe_create_worker
- manage_workers
- process_one_work
- process_scheduled_works
- set_pf_worker
- worker_thread
- rescuer_thread
- bh_worker
- workqueue_softirq_action
- wq_drain_dead_softirq_work
- drain_dead_softirq_workfn
- workqueue_softirq_dead
- check_flush_dependency
- wq_barrier
- wq_barrier_func
- insert_wq_barrier
- flush_workqueue_prep_pwqs
- touch_wq_lockdep_map
- touch_work_lockdep_map
- __flush_workqueue
- drain_workqueue
- start_flush_work
- __flush_work
- flush_work
- flush_delayed_work
- flush_rcu_work
- __cancel_work
- __cancel_work_sync
- cancel_work
- cancel_work_sync
- cancel_delayed_work
- cancel_delayed_work_sync
- schedule_on_each_cpu
- execute_in_process_context
- free_workqueue_attrs
- alloc_workqueue_attrs
- copy_workqueue_attrs
- wqattrs_clear_for_pool
- wqattrs_hash
- wqattrs_equal
- wqattrs_actualize_cpumask
- wqattrs_pod_type
- init_worker_pool
- wq_init_lockdep
- wq_unregister_lockdep
- wq_free_lockdep
- free_node_nr_active
- init_node_nr_active
- alloc_node_nr_active
- rcu_free_wq
- rcu_free_pool
- put_unbound_pool
- get_unbound_pool
- rcu_free_pwq
- pwq_release_workfn
- init_pwq
- link_pwq
- alloc_unbound_pwq
- wq_calc_pod_cpumask
- install_unbound_pwq
- apply_wqattrs_ctx
- apply_wqattrs_cleanup
- apply_wqattrs_prepare
- apply_wqattrs_commit
- apply_workqueue_attrs_locked
- apply_workqueue_attrs
- wq_update_pod
- alloc_and_link_pwqs
- wq_clamp_max_active
- init_rescuer
- wq_adjust_max_active
- alloc_workqueue
- pwq_busy
- destroy_workqueue
- workqueue_set_max_active
- workqueue_set_min_active
- current_work
- current_is_workqueue_rescuer
- workqueue_congested
- work_busy
- set_worker_desc
- print_worker_info
- pr_cont_pool_info
- pr_cont_worker_id
- pr_cont_work_struct
- pr_cont_work_flush
- pr_cont_work
- show_pwq
- show_one_workqueue
- show_one_worker_pool
- show_all_workqueues
- show_freezable_workqueues
- wq_worker_comm
- unbind_workers
- rebind_workers
- restore_unbound_workers_cpumask
- workqueue_prepare_cpu
- workqueue_online_cpu
- workqueue_offline_cpu
- work_for_cpu
- work_for_cpu_fn
- work_on_cpu_key
- work_on_cpu_safe_key
- freeze_workqueues_begin
- freeze_workqueues_busy
- thaw_workqueues
- workqueue_apply_unbound_cpumask
- workqueue_unbound_exclude_cpumask
- parse_affn_scope
- wq_affn_dfl_set
- wq_affn_dfl_get
- wq_affn_dfl_ops
- wq_device
- dev_to_wq
- per_cpu_show
- max_active_show
- max_active_store
- wq_sysfs_attrs
- apply_wqattrs_lock
- apply_wqattrs_unlock
- wq_nice_show
- wq_sysfs_prep_attrs
- wq_nice_store
- wq_cpumask_show
- wq_cpumask_store
- wq_affn_scope_show
- wq_affn_scope_store
- wq_affinity_strict_show
- wq_affinity_strict_store
- wq_sysfs_unbound_attrs
- wq_subsys
- workqueue_set_unbound_cpumask
- __wq_cpumask_show
- wq_unbound_cpumask_show
- wq_requested_cpumask_show
- wq_isolated_cpumask_show
- wq_unbound_cpumask_store
- wq_sysfs_cpumask_attrs
- wq_sysfs_init
- wq_device_release
- workqueue_sysfs_register
- workqueue_sysfs_unregister
- wq_watchdog_thresh
- wq_watchdog_timer
- wq_watchdog_touched
- wq_watchdog_touched_cpu
- show_cpu_pool_hog
- show_cpu_pools_hogs
- wq_watchdog_reset_touched
- wq_watchdog_timer_fn
- wq_watchdog_touch
- wq_watchdog_set_thresh
- wq_watchdog_param_set_thresh
- wq_watchdog_thresh_ops
- wq_watchdog_init
- bh_pool_kick_normal
- bh_pool_kick_highpri
- restrict_unbound_cpumask
- init_cpu_worker_pool
- workqueue_init_early
- wq_cpu_intensive_thresh_init
- workqueue_init
- init_pod_type
- cpus_dont_share
- cpus_share_smt
- cpus_share_numa
- workqueue_init_topology
- __warn_flushing_systemwide_wq
Improve your Profiling and Debugging skills
Find out more