1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/backing-dev.h>
15#include <linux/mm.h>
16#include <linux/mm_inline.h>
17#include <linux/shm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/syscalls.h>
22#include <linux/capability.h>
23#include <linux/init.h>
24#include <linux/file.h>
25#include <linux/fs.h>
26#include <linux/personality.h>
27#include <linux/security.h>
28#include <linux/hugetlb.h>
29#include <linux/shmem_fs.h>
30#include <linux/profile.h>
31#include <linux/export.h>
32#include <linux/mount.h>
33#include <linux/mempolicy.h>
34#include <linux/rmap.h>
35#include <linux/mmu_notifier.h>
36#include <linux/mmdebug.h>
37#include <linux/perf_event.h>
38#include <linux/audit.h>
39#include <linux/khugepaged.h>
40#include <linux/uprobes.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48#include <linux/sched/mm.h>
49#include <linux/ksm.h>
50#include <linux/memfd.h>
51
52#include <linux/uaccess.h>
53#include <asm/cacheflush.h>
54#include <asm/tlb.h>
55#include <asm/mmu_context.h>
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/mmap.h>
59
60#include "internal.h"
61
62#ifndef arch_mmap_check
63#define arch_mmap_check(addr, len, flags) (0)
64#endif
65
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70#endif
71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75#endif
76
77static bool ignore_rlimit_data;
78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80/* Update vma->vm_page_prot to reflect vma->vm_flags. */
81void vma_set_page_prot(struct vm_area_struct *vma)
82{
83 unsigned long vm_flags = vma->vm_flags;
84 pgprot_t vm_page_prot;
85
86 vm_page_prot = vm_pgprot_modify(oldprot: vma->vm_page_prot, vm_flags);
87 if (vma_wants_writenotify(vma, vm_page_prot)) {
88 vm_flags &= ~VM_SHARED;
89 vm_page_prot = vm_pgprot_modify(oldprot: vm_page_prot, vm_flags);
90 }
91 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
92 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
93}
94
95/*
96 * check_brk_limits() - Use platform specific check of range & verify mlock
97 * limits.
98 * @addr: The address to check
99 * @len: The size of increase.
100 *
101 * Return: 0 on success.
102 */
103static int check_brk_limits(unsigned long addr, unsigned long len)
104{
105 unsigned long mapped_addr;
106
107 mapped_addr = get_unmapped_area(NULL, addr, len, pgoff: 0, MAP_FIXED);
108 if (IS_ERR_VALUE(mapped_addr))
109 return mapped_addr;
110
111 return mlock_future_ok(current->mm, current->mm->def_flags, bytes: len)
112 ? 0 : -EAGAIN;
113}
114
115SYSCALL_DEFINE1(brk, unsigned long, brk)
116{
117 unsigned long newbrk, oldbrk, origbrk;
118 struct mm_struct *mm = current->mm;
119 struct vm_area_struct *brkvma, *next = NULL;
120 unsigned long min_brk;
121 bool populate = false;
122 LIST_HEAD(uf);
123 struct vma_iterator vmi;
124
125 if (mmap_write_lock_killable(mm))
126 return -EINTR;
127
128 origbrk = mm->brk;
129
130#ifdef CONFIG_COMPAT_BRK
131 /*
132 * CONFIG_COMPAT_BRK can still be overridden by setting
133 * randomize_va_space to 2, which will still cause mm->start_brk
134 * to be arbitrarily shifted
135 */
136 if (current->brk_randomized)
137 min_brk = mm->start_brk;
138 else
139 min_brk = mm->end_data;
140#else
141 min_brk = mm->start_brk;
142#endif
143 if (brk < min_brk)
144 goto out;
145
146 /*
147 * Check against rlimit here. If this check is done later after the test
148 * of oldbrk with newbrk then it can escape the test and let the data
149 * segment grow beyond its set limit the in case where the limit is
150 * not page aligned -Ram Gupta
151 */
152 if (check_data_rlimit(rlim: rlimit(RLIMIT_DATA), new: brk, start: mm->start_brk,
153 end_data: mm->end_data, start_data: mm->start_data))
154 goto out;
155
156 newbrk = PAGE_ALIGN(brk);
157 oldbrk = PAGE_ALIGN(mm->brk);
158 if (oldbrk == newbrk) {
159 mm->brk = brk;
160 goto success;
161 }
162
163 /* Always allow shrinking brk. */
164 if (brk <= mm->brk) {
165 /* Search one past newbrk */
166 vma_iter_init(vmi: &vmi, mm, addr: newbrk);
167 brkvma = vma_find(vmi: &vmi, max: oldbrk);
168 if (!brkvma || brkvma->vm_start >= oldbrk)
169 goto out; /* mapping intersects with an existing non-brk vma. */
170 /*
171 * mm->brk must be protected by write mmap_lock.
172 * do_vmi_align_munmap() will drop the lock on success, so
173 * update it before calling do_vma_munmap().
174 */
175 mm->brk = brk;
176 if (do_vmi_align_munmap(vmi: &vmi, vma: brkvma, mm, start: newbrk, end: oldbrk, uf: &uf,
177 /* unlock = */ true))
178 goto out;
179
180 goto success_unlocked;
181 }
182
183 if (check_brk_limits(addr: oldbrk, len: newbrk - oldbrk))
184 goto out;
185
186 /*
187 * Only check if the next VMA is within the stack_guard_gap of the
188 * expansion area
189 */
190 vma_iter_init(vmi: &vmi, mm, addr: oldbrk);
191 next = vma_find(vmi: &vmi, max: newbrk + PAGE_SIZE + stack_guard_gap);
192 if (next && newbrk + PAGE_SIZE > vm_start_gap(vma: next))
193 goto out;
194
195 brkvma = vma_prev_limit(vmi: &vmi, min: mm->start_brk);
196 /* Ok, looks good - let it rip. */
197 if (do_brk_flags(vmi: &vmi, brkvma, addr: oldbrk, request: newbrk - oldbrk, flags: 0) < 0)
198 goto out;
199
200 mm->brk = brk;
201 if (mm->def_flags & VM_LOCKED)
202 populate = true;
203
204success:
205 mmap_write_unlock(mm);
206success_unlocked:
207 userfaultfd_unmap_complete(mm, uf: &uf);
208 if (populate)
209 mm_populate(addr: oldbrk, len: newbrk - oldbrk);
210 return brk;
211
212out:
213 mm->brk = origbrk;
214 mmap_write_unlock(mm);
215 return origbrk;
216}
217
218/*
219 * If a hint addr is less than mmap_min_addr change hint to be as
220 * low as possible but still greater than mmap_min_addr
221 */
222static inline unsigned long round_hint_to_min(unsigned long hint)
223{
224 hint &= PAGE_MASK;
225 if (((void *)hint != NULL) &&
226 (hint < mmap_min_addr))
227 return PAGE_ALIGN(mmap_min_addr);
228 return hint;
229}
230
231bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232 unsigned long bytes)
233{
234 unsigned long locked_pages, limit_pages;
235
236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237 return true;
238
239 locked_pages = bytes >> PAGE_SHIFT;
240 locked_pages += mm->locked_vm;
241
242 limit_pages = rlimit(RLIMIT_MEMLOCK);
243 limit_pages >>= PAGE_SHIFT;
244
245 return locked_pages <= limit_pages;
246}
247
248static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249{
250 if (S_ISREG(inode->i_mode))
251 return MAX_LFS_FILESIZE;
252
253 if (S_ISBLK(inode->i_mode))
254 return MAX_LFS_FILESIZE;
255
256 if (S_ISSOCK(inode->i_mode))
257 return MAX_LFS_FILESIZE;
258
259 /* Special "we do even unsigned file positions" case */
260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261 return 0;
262
263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
264 return ULONG_MAX;
265}
266
267static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 unsigned long pgoff, unsigned long len)
269{
270 u64 maxsize = file_mmap_size_max(file, inode);
271
272 if (maxsize && len > maxsize)
273 return false;
274 maxsize -= len;
275 if (pgoff > maxsize >> PAGE_SHIFT)
276 return false;
277 return true;
278}
279
280/**
281 * do_mmap() - Perform a userland memory mapping into the current process
282 * address space of length @len with protection bits @prot, mmap flags @flags
283 * (from which VMA flags will be inferred), and any additional VMA flags to
284 * apply @vm_flags. If this is a file-backed mapping then the file is specified
285 * in @file and page offset into the file via @pgoff.
286 *
287 * This function does not perform security checks on the file and assumes, if
288 * @uf is non-NULL, the caller has provided a list head to track unmap events
289 * for userfaultfd @uf.
290 *
291 * It also simply indicates whether memory population is required by setting
292 * @populate, which must be non-NULL, expecting the caller to actually perform
293 * this task itself if appropriate.
294 *
295 * This function will invoke architecture-specific (and if provided and
296 * relevant, file system-specific) logic to determine the most appropriate
297 * unmapped area in which to place the mapping if not MAP_FIXED.
298 *
299 * Callers which require userland mmap() behaviour should invoke vm_mmap(),
300 * which is also exported for module use.
301 *
302 * Those which require this behaviour less security checks, userfaultfd and
303 * populate behaviour, and who handle the mmap write lock themselves, should
304 * call this function.
305 *
306 * Note that the returned address may reside within a merged VMA if an
307 * appropriate merge were to take place, so it doesn't necessarily specify the
308 * start of a VMA, rather only the start of a valid mapped range of length
309 * @len bytes, rounded down to the nearest page size.
310 *
311 * The caller must write-lock current->mm->mmap_lock.
312 *
313 * @file: An optional struct file pointer describing the file which is to be
314 * mapped, if a file-backed mapping.
315 * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the
316 * address at which to perform this mapping. See mmap (2) for details. Must be
317 * page-aligned.
318 * @len: The length of the mapping. Will be page-aligned and must be at least 1
319 * page in size.
320 * @prot: Protection bits describing access required to the mapping. See mmap
321 * (2) for details.
322 * @flags: Flags specifying how the mapping should be performed, see mmap (2)
323 * for details.
324 * @vm_flags: VMA flags which should be set by default, or 0 otherwise.
325 * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise.
326 * @populate: A pointer to a value which will be set to 0 if no population of
327 * the range is required, or the number of bytes to populate if it is. Must be
328 * non-NULL. See mmap (2) for details as to under what circumstances population
329 * of the range occurs.
330 * @uf: An optional pointer to a list head to track userfaultfd unmap events
331 * should unmapping events arise. If provided, it is up to the caller to manage
332 * this.
333 *
334 * Returns: Either an error, or the address at which the requested mapping has
335 * been performed.
336 */
337unsigned long do_mmap(struct file *file, unsigned long addr,
338 unsigned long len, unsigned long prot,
339 unsigned long flags, vm_flags_t vm_flags,
340 unsigned long pgoff, unsigned long *populate,
341 struct list_head *uf)
342{
343 struct mm_struct *mm = current->mm;
344 int pkey = 0;
345
346 *populate = 0;
347
348 mmap_assert_write_locked(mm);
349
350 if (!len)
351 return -EINVAL;
352
353 /*
354 * Does the application expect PROT_READ to imply PROT_EXEC?
355 *
356 * (the exception is when the underlying filesystem is noexec
357 * mounted, in which case we don't add PROT_EXEC.)
358 */
359 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
360 if (!(file && path_noexec(path: &file->f_path)))
361 prot |= PROT_EXEC;
362
363 /* force arch specific MAP_FIXED handling in get_unmapped_area */
364 if (flags & MAP_FIXED_NOREPLACE)
365 flags |= MAP_FIXED;
366
367 if (!(flags & MAP_FIXED))
368 addr = round_hint_to_min(hint: addr);
369
370 /* Careful about overflows.. */
371 len = PAGE_ALIGN(len);
372 if (!len)
373 return -ENOMEM;
374
375 /* offset overflow? */
376 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
377 return -EOVERFLOW;
378
379 /* Too many mappings? */
380 if (mm->map_count > sysctl_max_map_count)
381 return -ENOMEM;
382
383 /*
384 * addr is returned from get_unmapped_area,
385 * There are two cases:
386 * 1> MAP_FIXED == false
387 * unallocated memory, no need to check sealing.
388 * 1> MAP_FIXED == true
389 * sealing is checked inside mmap_region when
390 * do_vmi_munmap is called.
391 */
392
393 if (prot == PROT_EXEC) {
394 pkey = execute_only_pkey(mm);
395 if (pkey < 0)
396 pkey = 0;
397 }
398
399 /* Do simple checking here so the lower-level routines won't have
400 * to. we assume access permissions have been handled by the open
401 * of the memory object, so we don't do any here.
402 */
403 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
404 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
405
406 /* Obtain the address to map to. we verify (or select) it and ensure
407 * that it represents a valid section of the address space.
408 */
409 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
410 if (IS_ERR_VALUE(addr))
411 return addr;
412
413 if (flags & MAP_FIXED_NOREPLACE) {
414 if (find_vma_intersection(mm, start_addr: addr, end_addr: addr + len))
415 return -EEXIST;
416 }
417
418 if (flags & MAP_LOCKED)
419 if (!can_do_mlock())
420 return -EPERM;
421
422 if (!mlock_future_ok(mm, flags: vm_flags, bytes: len))
423 return -EAGAIN;
424
425 if (file) {
426 struct inode *inode = file_inode(f: file);
427 unsigned long flags_mask;
428 int err;
429
430 if (!file_mmap_ok(file, inode, pgoff, len))
431 return -EOVERFLOW;
432
433 flags_mask = LEGACY_MAP_MASK;
434 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
435 flags_mask |= MAP_SYNC;
436
437 switch (flags & MAP_TYPE) {
438 case MAP_SHARED:
439 /*
440 * Force use of MAP_SHARED_VALIDATE with non-legacy
441 * flags. E.g. MAP_SYNC is dangerous to use with
442 * MAP_SHARED as you don't know which consistency model
443 * you will get. We silently ignore unsupported flags
444 * with MAP_SHARED to preserve backward compatibility.
445 */
446 flags &= LEGACY_MAP_MASK;
447 fallthrough;
448 case MAP_SHARED_VALIDATE:
449 if (flags & ~flags_mask)
450 return -EOPNOTSUPP;
451 if (prot & PROT_WRITE) {
452 if (!(file->f_mode & FMODE_WRITE))
453 return -EACCES;
454 if (IS_SWAPFILE(file->f_mapping->host))
455 return -ETXTBSY;
456 }
457
458 /*
459 * Make sure we don't allow writing to an append-only
460 * file..
461 */
462 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
463 return -EACCES;
464
465 vm_flags |= VM_SHARED | VM_MAYSHARE;
466 if (!(file->f_mode & FMODE_WRITE))
467 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
468 fallthrough;
469 case MAP_PRIVATE:
470 if (!(file->f_mode & FMODE_READ))
471 return -EACCES;
472 if (path_noexec(path: &file->f_path)) {
473 if (vm_flags & VM_EXEC)
474 return -EPERM;
475 vm_flags &= ~VM_MAYEXEC;
476 }
477
478 if (!file_has_valid_mmap_hooks(file))
479 return -ENODEV;
480 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
481 return -EINVAL;
482 break;
483
484 default:
485 return -EINVAL;
486 }
487
488 /*
489 * Check to see if we are violating any seals and update VMA
490 * flags if necessary to avoid future seal violations.
491 */
492 err = memfd_check_seals_mmap(file, vm_flags_ptr: &vm_flags);
493 if (err)
494 return (unsigned long)err;
495 } else {
496 switch (flags & MAP_TYPE) {
497 case MAP_SHARED:
498 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
499 return -EINVAL;
500 /*
501 * Ignore pgoff.
502 */
503 pgoff = 0;
504 vm_flags |= VM_SHARED | VM_MAYSHARE;
505 break;
506 case MAP_DROPPABLE:
507 if (VM_DROPPABLE == VM_NONE)
508 return -ENOTSUPP;
509 /*
510 * A locked or stack area makes no sense to be droppable.
511 *
512 * Also, since droppable pages can just go away at any time
513 * it makes no sense to copy them on fork or dump them.
514 *
515 * And don't attempt to combine with hugetlb for now.
516 */
517 if (flags & (MAP_LOCKED | MAP_HUGETLB))
518 return -EINVAL;
519 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
520 return -EINVAL;
521
522 vm_flags |= VM_DROPPABLE;
523
524 /*
525 * If the pages can be dropped, then it doesn't make
526 * sense to reserve them.
527 */
528 vm_flags |= VM_NORESERVE;
529
530 /*
531 * Likewise, they're volatile enough that they
532 * shouldn't survive forks or coredumps.
533 */
534 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
535 fallthrough;
536 case MAP_PRIVATE:
537 /*
538 * Set pgoff according to addr for anon_vma.
539 */
540 pgoff = addr >> PAGE_SHIFT;
541 break;
542 default:
543 return -EINVAL;
544 }
545 }
546
547 /*
548 * Set 'VM_NORESERVE' if we should not account for the
549 * memory use of this mapping.
550 */
551 if (flags & MAP_NORESERVE) {
552 /* We honor MAP_NORESERVE if allowed to overcommit */
553 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
554 vm_flags |= VM_NORESERVE;
555
556 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
557 if (file && is_file_hugepages(file))
558 vm_flags |= VM_NORESERVE;
559 }
560
561 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
562 if (!IS_ERR_VALUE(addr) &&
563 ((vm_flags & VM_LOCKED) ||
564 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
565 *populate = len;
566 return addr;
567}
568
569unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
570 unsigned long prot, unsigned long flags,
571 unsigned long fd, unsigned long pgoff)
572{
573 struct file *file = NULL;
574 unsigned long retval;
575
576 if (!(flags & MAP_ANONYMOUS)) {
577 audit_mmap_fd(fd, flags);
578 file = fget(fd);
579 if (!file)
580 return -EBADF;
581 if (is_file_hugepages(file)) {
582 len = ALIGN(len, huge_page_size(hstate_file(file)));
583 } else if (unlikely(flags & MAP_HUGETLB)) {
584 retval = -EINVAL;
585 goto out_fput;
586 }
587 } else if (flags & MAP_HUGETLB) {
588 struct hstate *hs;
589
590 hs = hstate_sizelog(page_size_log: (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
591 if (!hs)
592 return -EINVAL;
593
594 len = ALIGN(len, huge_page_size(hs));
595 /*
596 * VM_NORESERVE is used because the reservations will be
597 * taken when vm_ops->mmap() is called
598 */
599 file = hugetlb_file_setup(HUGETLB_ANON_FILE, size: len,
600 VM_NORESERVE,
601 creat_flags: HUGETLB_ANONHUGE_INODE,
602 page_size_log: (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
603 if (IS_ERR(ptr: file))
604 return PTR_ERR(ptr: file);
605 }
606
607 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
608out_fput:
609 if (file)
610 fput(file);
611 return retval;
612}
613
614SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
615 unsigned long, prot, unsigned long, flags,
616 unsigned long, fd, unsigned long, pgoff)
617{
618 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
619}
620
621#ifdef __ARCH_WANT_SYS_OLD_MMAP
622struct mmap_arg_struct {
623 unsigned long addr;
624 unsigned long len;
625 unsigned long prot;
626 unsigned long flags;
627 unsigned long fd;
628 unsigned long offset;
629};
630
631SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
632{
633 struct mmap_arg_struct a;
634
635 if (copy_from_user(&a, arg, sizeof(a)))
636 return -EFAULT;
637 if (offset_in_page(a.offset))
638 return -EINVAL;
639
640 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
641 a.offset >> PAGE_SHIFT);
642}
643#endif /* __ARCH_WANT_SYS_OLD_MMAP */
644
645/*
646 * Determine if the allocation needs to ensure that there is no
647 * existing mapping within it's guard gaps, for use as start_gap.
648 */
649static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
650{
651 if (vm_flags & VM_SHADOW_STACK)
652 return PAGE_SIZE;
653
654 return 0;
655}
656
657/*
658 * Search for an unmapped address range.
659 *
660 * We are looking for a range that:
661 * - does not intersect with any VMA;
662 * - is contained within the [low_limit, high_limit) interval;
663 * - is at least the desired size.
664 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
665 */
666unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
667{
668 unsigned long addr;
669
670 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
671 addr = unmapped_area_topdown(info);
672 else
673 addr = unmapped_area(info);
674
675 trace_vm_unmapped_area(addr, info);
676 return addr;
677}
678
679/* Get an address range which is currently unmapped.
680 * For shmat() with addr=0.
681 *
682 * Ugly calling convention alert:
683 * Return value with the low bits set means error value,
684 * ie
685 * if (ret & ~PAGE_MASK)
686 * error = ret;
687 *
688 * This function "knows" that -ENOMEM has the bits set.
689 */
690unsigned long
691generic_get_unmapped_area(struct file *filp, unsigned long addr,
692 unsigned long len, unsigned long pgoff,
693 unsigned long flags, vm_flags_t vm_flags)
694{
695 struct mm_struct *mm = current->mm;
696 struct vm_area_struct *vma, *prev;
697 struct vm_unmapped_area_info info = {};
698 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
699
700 if (len > mmap_end - mmap_min_addr)
701 return -ENOMEM;
702
703 if (flags & MAP_FIXED)
704 return addr;
705
706 if (addr) {
707 addr = PAGE_ALIGN(addr);
708 vma = find_vma_prev(mm, addr, pprev: &prev);
709 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
710 (!vma || addr + len <= vm_start_gap(vma)) &&
711 (!prev || addr >= vm_end_gap(vma: prev)))
712 return addr;
713 }
714
715 info.length = len;
716 info.low_limit = mm->mmap_base;
717 info.high_limit = mmap_end;
718 info.start_gap = stack_guard_placement(vm_flags);
719 if (filp && is_file_hugepages(file: filp))
720 info.align_mask = huge_page_mask_align(file: filp);
721 return vm_unmapped_area(info: &info);
722}
723
724#ifndef HAVE_ARCH_UNMAPPED_AREA
725unsigned long
726arch_get_unmapped_area(struct file *filp, unsigned long addr,
727 unsigned long len, unsigned long pgoff,
728 unsigned long flags, vm_flags_t vm_flags)
729{
730 return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
731 vm_flags);
732}
733#endif
734
735/*
736 * This mmap-allocator allocates new areas top-down from below the
737 * stack's low limit (the base):
738 */
739unsigned long
740generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
741 unsigned long len, unsigned long pgoff,
742 unsigned long flags, vm_flags_t vm_flags)
743{
744 struct vm_area_struct *vma, *prev;
745 struct mm_struct *mm = current->mm;
746 struct vm_unmapped_area_info info = {};
747 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
748
749 /* requested length too big for entire address space */
750 if (len > mmap_end - mmap_min_addr)
751 return -ENOMEM;
752
753 if (flags & MAP_FIXED)
754 return addr;
755
756 /* requesting a specific address */
757 if (addr) {
758 addr = PAGE_ALIGN(addr);
759 vma = find_vma_prev(mm, addr, pprev: &prev);
760 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
761 (!vma || addr + len <= vm_start_gap(vma)) &&
762 (!prev || addr >= vm_end_gap(vma: prev)))
763 return addr;
764 }
765
766 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
767 info.length = len;
768 info.low_limit = PAGE_SIZE;
769 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
770 info.start_gap = stack_guard_placement(vm_flags);
771 if (filp && is_file_hugepages(file: filp))
772 info.align_mask = huge_page_mask_align(file: filp);
773 addr = vm_unmapped_area(info: &info);
774
775 /*
776 * A failed mmap() very likely causes application failure,
777 * so fall back to the bottom-up function here. This scenario
778 * can happen with large stack limits and large mmap()
779 * allocations.
780 */
781 if (offset_in_page(addr)) {
782 VM_BUG_ON(addr != -ENOMEM);
783 info.flags = 0;
784 info.low_limit = TASK_UNMAPPED_BASE;
785 info.high_limit = mmap_end;
786 addr = vm_unmapped_area(info: &info);
787 }
788
789 return addr;
790}
791
792#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
793unsigned long
794arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
795 unsigned long len, unsigned long pgoff,
796 unsigned long flags, vm_flags_t vm_flags)
797{
798 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
799 vm_flags);
800}
801#endif
802
803unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
804 unsigned long addr, unsigned long len,
805 unsigned long pgoff, unsigned long flags,
806 vm_flags_t vm_flags)
807{
808 if (test_bit(MMF_TOPDOWN, &mm->flags))
809 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
810 flags, vm_flags);
811 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
812}
813
814unsigned long
815__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
816 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
817{
818 unsigned long (*get_area)(struct file *, unsigned long,
819 unsigned long, unsigned long, unsigned long)
820 = NULL;
821
822 unsigned long error = arch_mmap_check(addr, len, flags);
823 if (error)
824 return error;
825
826 /* Careful about overflows.. */
827 if (len > TASK_SIZE)
828 return -ENOMEM;
829
830 if (file) {
831 if (file->f_op->get_unmapped_area)
832 get_area = file->f_op->get_unmapped_area;
833 } else if (flags & MAP_SHARED) {
834 /*
835 * mmap_region() will call shmem_zero_setup() to create a file,
836 * so use shmem's get_unmapped_area in case it can be huge.
837 */
838 get_area = shmem_get_unmapped_area;
839 }
840
841 /* Always treat pgoff as zero for anonymous memory. */
842 if (!file)
843 pgoff = 0;
844
845 if (get_area) {
846 addr = get_area(file, addr, len, pgoff, flags);
847 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
848 && !addr /* no hint */
849 && IS_ALIGNED(len, PMD_SIZE)) {
850 /* Ensures that larger anonymous mappings are THP aligned. */
851 addr = thp_get_unmapped_area_vmflags(filp: file, addr, len,
852 pgoff, flags, vm_flags);
853 } else {
854 addr = mm_get_unmapped_area_vmflags(current->mm, filp: file, addr, len,
855 pgoff, flags, vm_flags);
856 }
857 if (IS_ERR_VALUE(addr))
858 return addr;
859
860 if (addr > TASK_SIZE - len)
861 return -ENOMEM;
862 if (offset_in_page(addr))
863 return -EINVAL;
864
865 error = security_mmap_addr(addr);
866 return error ? error : addr;
867}
868
869unsigned long
870mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
871 unsigned long addr, unsigned long len,
872 unsigned long pgoff, unsigned long flags)
873{
874 if (test_bit(MMF_TOPDOWN, &mm->flags))
875 return arch_get_unmapped_area_topdown(filp: file, addr, len, pgoff, flags, 0);
876 return arch_get_unmapped_area(filp: file, addr, len, pgoff, flags, vm_flags: 0);
877}
878EXPORT_SYMBOL(mm_get_unmapped_area);
879
880/**
881 * find_vma_intersection() - Look up the first VMA which intersects the interval
882 * @mm: The process address space.
883 * @start_addr: The inclusive start user address.
884 * @end_addr: The exclusive end user address.
885 *
886 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
887 * start_addr < end_addr.
888 */
889struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
890 unsigned long start_addr,
891 unsigned long end_addr)
892{
893 unsigned long index = start_addr;
894
895 mmap_assert_locked(mm);
896 return mt_find(mt: &mm->mm_mt, index: &index, max: end_addr - 1);
897}
898EXPORT_SYMBOL(find_vma_intersection);
899
900/**
901 * find_vma() - Find the VMA for a given address, or the next VMA.
902 * @mm: The mm_struct to check
903 * @addr: The address
904 *
905 * Returns: The VMA associated with addr, or the next VMA.
906 * May return %NULL in the case of no VMA at addr or above.
907 */
908struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
909{
910 unsigned long index = addr;
911
912 mmap_assert_locked(mm);
913 return mt_find(mt: &mm->mm_mt, index: &index, ULONG_MAX);
914}
915EXPORT_SYMBOL(find_vma);
916
917/**
918 * find_vma_prev() - Find the VMA for a given address, or the next vma and
919 * set %pprev to the previous VMA, if any.
920 * @mm: The mm_struct to check
921 * @addr: The address
922 * @pprev: The pointer to set to the previous VMA
923 *
924 * Note that RCU lock is missing here since the external mmap_lock() is used
925 * instead.
926 *
927 * Returns: The VMA associated with @addr, or the next vma.
928 * May return %NULL in the case of no vma at addr or above.
929 */
930struct vm_area_struct *
931find_vma_prev(struct mm_struct *mm, unsigned long addr,
932 struct vm_area_struct **pprev)
933{
934 struct vm_area_struct *vma;
935 VMA_ITERATOR(vmi, mm, addr);
936
937 vma = vma_iter_load(vmi: &vmi);
938 *pprev = vma_prev(vmi: &vmi);
939 if (!vma)
940 vma = vma_next(vmi: &vmi);
941 return vma;
942}
943
944/* enforced gap between the expanding stack and other mappings. */
945unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
946
947static int __init cmdline_parse_stack_guard_gap(char *p)
948{
949 unsigned long val;
950 char *endptr;
951
952 val = simple_strtoul(p, &endptr, 10);
953 if (!*endptr)
954 stack_guard_gap = val << PAGE_SHIFT;
955
956 return 1;
957}
958__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
959
960#ifdef CONFIG_STACK_GROWSUP
961int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
962{
963 return expand_upwards(vma, address);
964}
965
966struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
967{
968 struct vm_area_struct *vma, *prev;
969
970 addr &= PAGE_MASK;
971 vma = find_vma_prev(mm, addr, &prev);
972 if (vma && (vma->vm_start <= addr))
973 return vma;
974 if (!prev)
975 return NULL;
976 if (expand_stack_locked(prev, addr))
977 return NULL;
978 if (prev->vm_flags & VM_LOCKED)
979 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
980 return prev;
981}
982#else
983int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
984{
985 return expand_downwards(vma, address);
986}
987
988struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
989{
990 struct vm_area_struct *vma;
991 unsigned long start;
992
993 addr &= PAGE_MASK;
994 vma = find_vma(mm, addr);
995 if (!vma)
996 return NULL;
997 if (vma->vm_start <= addr)
998 return vma;
999 start = vma->vm_start;
1000 if (expand_stack_locked(vma, address: addr))
1001 return NULL;
1002 if (vma->vm_flags & VM_LOCKED)
1003 populate_vma_page_range(vma, start: addr, end: start, NULL);
1004 return vma;
1005}
1006#endif
1007
1008#if defined(CONFIG_STACK_GROWSUP)
1009
1010#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1011#define vma_expand_down(vma, addr) (-EFAULT)
1012
1013#else
1014
1015#define vma_expand_up(vma,addr) (-EFAULT)
1016#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1017
1018#endif
1019
1020/*
1021 * expand_stack(): legacy interface for page faulting. Don't use unless
1022 * you have to.
1023 *
1024 * This is called with the mm locked for reading, drops the lock, takes
1025 * the lock for writing, tries to look up a vma again, expands it if
1026 * necessary, and downgrades the lock to reading again.
1027 *
1028 * If no vma is found or it can't be expanded, it returns NULL and has
1029 * dropped the lock.
1030 */
1031struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1032{
1033 struct vm_area_struct *vma, *prev;
1034
1035 mmap_read_unlock(mm);
1036 if (mmap_write_lock_killable(mm))
1037 return NULL;
1038
1039 vma = find_vma_prev(mm, addr, pprev: &prev);
1040 if (vma && vma->vm_start <= addr)
1041 goto success;
1042
1043 if (prev && !vma_expand_up(prev, addr)) {
1044 vma = prev;
1045 goto success;
1046 }
1047
1048 if (vma && !vma_expand_down(vma, addr))
1049 goto success;
1050
1051 mmap_write_unlock(mm);
1052 return NULL;
1053
1054success:
1055 mmap_write_downgrade(mm);
1056 return vma;
1057}
1058
1059/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1060 * @mm: The mm_struct
1061 * @start: The start address to munmap
1062 * @len: The length to be munmapped.
1063 * @uf: The userfaultfd list_head
1064 *
1065 * Return: 0 on success, error otherwise.
1066 */
1067int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1068 struct list_head *uf)
1069{
1070 VMA_ITERATOR(vmi, mm, start);
1071
1072 return do_vmi_munmap(vmi: &vmi, mm, start, len, uf, unlock: false);
1073}
1074
1075int vm_munmap(unsigned long start, size_t len)
1076{
1077 return __vm_munmap(start, len, unlock: false);
1078}
1079EXPORT_SYMBOL(vm_munmap);
1080
1081SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1082{
1083 addr = untagged_addr(addr);
1084 return __vm_munmap(start: addr, len, unlock: true);
1085}
1086
1087
1088/*
1089 * Emulation of deprecated remap_file_pages() syscall.
1090 */
1091SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1092 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1093{
1094
1095 struct mm_struct *mm = current->mm;
1096 struct vm_area_struct *vma;
1097 unsigned long populate = 0;
1098 unsigned long ret = -EINVAL;
1099 struct file *file;
1100 vm_flags_t vm_flags;
1101
1102 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1103 current->comm, current->pid);
1104
1105 if (prot)
1106 return ret;
1107 start = start & PAGE_MASK;
1108 size = size & PAGE_MASK;
1109
1110 if (start + size <= start)
1111 return ret;
1112
1113 /* Does pgoff wrap? */
1114 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1115 return ret;
1116
1117 if (mmap_read_lock_killable(mm))
1118 return -EINTR;
1119
1120 /*
1121 * Look up VMA under read lock first so we can perform the security
1122 * without holding locks (which can be problematic). We reacquire a
1123 * write lock later and check nothing changed underneath us.
1124 */
1125 vma = vma_lookup(mm, addr: start);
1126
1127 if (!vma || !(vma->vm_flags & VM_SHARED)) {
1128 mmap_read_unlock(mm);
1129 return -EINVAL;
1130 }
1131
1132 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1133 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1134 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1135
1136 flags &= MAP_NONBLOCK;
1137 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1138 if (vma->vm_flags & VM_LOCKED)
1139 flags |= MAP_LOCKED;
1140
1141 /* Save vm_flags used to calculate prot and flags, and recheck later. */
1142 vm_flags = vma->vm_flags;
1143 file = get_file(f: vma->vm_file);
1144
1145 mmap_read_unlock(mm);
1146
1147 /* Call outside mmap_lock to be consistent with other callers. */
1148 ret = security_mmap_file(file, prot, flags);
1149 if (ret) {
1150 fput(file);
1151 return ret;
1152 }
1153
1154 ret = -EINVAL;
1155
1156 /* OK security check passed, take write lock + let it rip. */
1157 if (mmap_write_lock_killable(mm)) {
1158 fput(file);
1159 return -EINTR;
1160 }
1161
1162 vma = vma_lookup(mm, addr: start);
1163
1164 if (!vma)
1165 goto out;
1166
1167 /* Make sure things didn't change under us. */
1168 if (vma->vm_flags != vm_flags)
1169 goto out;
1170 if (vma->vm_file != file)
1171 goto out;
1172
1173 if (start + size > vma->vm_end) {
1174 VMA_ITERATOR(vmi, mm, vma->vm_end);
1175 struct vm_area_struct *next, *prev = vma;
1176
1177 for_each_vma_range(vmi, next, start + size) {
1178 /* hole between vmas ? */
1179 if (next->vm_start != prev->vm_end)
1180 goto out;
1181
1182 if (next->vm_file != vma->vm_file)
1183 goto out;
1184
1185 if (next->vm_flags != vma->vm_flags)
1186 goto out;
1187
1188 if (start + size <= next->vm_end)
1189 break;
1190
1191 prev = next;
1192 }
1193
1194 if (!next)
1195 goto out;
1196 }
1197
1198 ret = do_mmap(file: vma->vm_file, addr: start, len: size,
1199 prot, flags, vm_flags: 0, pgoff, populate: &populate, NULL);
1200out:
1201 mmap_write_unlock(mm);
1202 fput(file);
1203 if (populate)
1204 mm_populate(addr: ret, len: populate);
1205 if (!IS_ERR_VALUE(ret))
1206 ret = 0;
1207 return ret;
1208}
1209
1210int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1211{
1212 struct mm_struct *mm = current->mm;
1213 struct vm_area_struct *vma = NULL;
1214 unsigned long len;
1215 int ret;
1216 bool populate;
1217 LIST_HEAD(uf);
1218 VMA_ITERATOR(vmi, mm, addr);
1219
1220 len = PAGE_ALIGN(request);
1221 if (len < request)
1222 return -ENOMEM;
1223 if (!len)
1224 return 0;
1225
1226 /* Until we need other flags, refuse anything except VM_EXEC. */
1227 if ((flags & (~VM_EXEC)) != 0)
1228 return -EINVAL;
1229
1230 if (mmap_write_lock_killable(mm))
1231 return -EINTR;
1232
1233 ret = check_brk_limits(addr, len);
1234 if (ret)
1235 goto limits_failed;
1236
1237 ret = do_vmi_munmap(vmi: &vmi, mm, start: addr, len, uf: &uf, unlock: 0);
1238 if (ret)
1239 goto munmap_failed;
1240
1241 vma = vma_prev(vmi: &vmi);
1242 ret = do_brk_flags(vmi: &vmi, brkvma: vma, addr, request: len, flags);
1243 populate = ((mm->def_flags & VM_LOCKED) != 0);
1244 mmap_write_unlock(mm);
1245 userfaultfd_unmap_complete(mm, uf: &uf);
1246 if (populate && !ret)
1247 mm_populate(addr, len);
1248 return ret;
1249
1250munmap_failed:
1251limits_failed:
1252 mmap_write_unlock(mm);
1253 return ret;
1254}
1255EXPORT_SYMBOL(vm_brk_flags);
1256
1257/* Release all mmaps. */
1258void exit_mmap(struct mm_struct *mm)
1259{
1260 struct mmu_gather tlb;
1261 struct vm_area_struct *vma;
1262 unsigned long nr_accounted = 0;
1263 VMA_ITERATOR(vmi, mm, 0);
1264 int count = 0;
1265
1266 /* mm's last user has gone, and its about to be pulled down */
1267 mmu_notifier_release(mm);
1268
1269 mmap_read_lock(mm);
1270 arch_exit_mmap(mm);
1271
1272 vma = vma_next(vmi: &vmi);
1273 if (!vma || unlikely(xa_is_zero(vma))) {
1274 /* Can happen if dup_mmap() received an OOM */
1275 mmap_read_unlock(mm);
1276 mmap_write_lock(mm);
1277 goto destroy;
1278 }
1279
1280 flush_cache_mm(mm);
1281 tlb_gather_mmu_fullmm(tlb: &tlb, mm);
1282 /* update_hiwater_rss(mm) here? but nobody should be looking */
1283 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1284 unmap_vmas(tlb: &tlb, mas: &vmi.mas, start_vma: vma, start: 0, ULONG_MAX, ULONG_MAX, mm_wr_locked: false);
1285 mmap_read_unlock(mm);
1286
1287 /*
1288 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1289 * because the memory has been already freed.
1290 */
1291 set_bit(MMF_OOM_SKIP, addr: &mm->flags);
1292 mmap_write_lock(mm);
1293 mt_clear_in_rcu(mt: &mm->mm_mt);
1294 vma_iter_set(vmi: &vmi, addr: vma->vm_end);
1295 free_pgtables(tlb: &tlb, mas: &vmi.mas, start_vma: vma, FIRST_USER_ADDRESS,
1296 USER_PGTABLES_CEILING, mm_wr_locked: true);
1297 tlb_finish_mmu(tlb: &tlb);
1298
1299 /*
1300 * Walk the list again, actually closing and freeing it, with preemption
1301 * enabled, without holding any MM locks besides the unreachable
1302 * mmap_write_lock.
1303 */
1304 vma_iter_set(vmi: &vmi, addr: vma->vm_end);
1305 do {
1306 if (vma->vm_flags & VM_ACCOUNT)
1307 nr_accounted += vma_pages(vma);
1308 vma_mark_detached(vma);
1309 remove_vma(vma);
1310 count++;
1311 cond_resched();
1312 vma = vma_next(vmi: &vmi);
1313 } while (vma && likely(!xa_is_zero(vma)));
1314
1315 BUG_ON(count != mm->map_count);
1316
1317 trace_exit_mmap(mm);
1318destroy:
1319 __mt_destroy(mt: &mm->mm_mt);
1320 mmap_write_unlock(mm);
1321 vm_unacct_memory(pages: nr_accounted);
1322}
1323
1324/*
1325 * Return true if the calling process may expand its vm space by the passed
1326 * number of pages
1327 */
1328bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1329{
1330 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1331 return false;
1332
1333 if (is_data_mapping(flags) &&
1334 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1335 /* Workaround for Valgrind */
1336 if (rlimit(RLIMIT_DATA) == 0 &&
1337 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1338 return true;
1339
1340 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1341 current->comm, current->pid,
1342 (mm->data_vm + npages) << PAGE_SHIFT,
1343 rlimit(RLIMIT_DATA),
1344 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1345
1346 if (!ignore_rlimit_data)
1347 return false;
1348 }
1349
1350 return true;
1351}
1352
1353void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1354{
1355 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1356
1357 if (is_exec_mapping(flags))
1358 mm->exec_vm += npages;
1359 else if (is_stack_mapping(flags))
1360 mm->stack_vm += npages;
1361 else if (is_data_mapping(flags))
1362 mm->data_vm += npages;
1363}
1364
1365static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1366
1367/*
1368 * Close hook, called for unmap() and on the old vma for mremap().
1369 *
1370 * Having a close hook prevents vma merging regardless of flags.
1371 */
1372static void special_mapping_close(struct vm_area_struct *vma)
1373{
1374 const struct vm_special_mapping *sm = vma->vm_private_data;
1375
1376 if (sm->close)
1377 sm->close(sm, vma);
1378}
1379
1380static const char *special_mapping_name(struct vm_area_struct *vma)
1381{
1382 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1383}
1384
1385static int special_mapping_mremap(struct vm_area_struct *new_vma)
1386{
1387 struct vm_special_mapping *sm = new_vma->vm_private_data;
1388
1389 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1390 return -EFAULT;
1391
1392 if (sm->mremap)
1393 return sm->mremap(sm, new_vma);
1394
1395 return 0;
1396}
1397
1398static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1399{
1400 /*
1401 * Forbid splitting special mappings - kernel has expectations over
1402 * the number of pages in mapping. Together with VM_DONTEXPAND
1403 * the size of vma should stay the same over the special mapping's
1404 * lifetime.
1405 */
1406 return -EINVAL;
1407}
1408
1409static const struct vm_operations_struct special_mapping_vmops = {
1410 .close = special_mapping_close,
1411 .fault = special_mapping_fault,
1412 .mremap = special_mapping_mremap,
1413 .name = special_mapping_name,
1414 /* vDSO code relies that VVAR can't be accessed remotely */
1415 .access = NULL,
1416 .may_split = special_mapping_split,
1417};
1418
1419static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1420{
1421 struct vm_area_struct *vma = vmf->vma;
1422 pgoff_t pgoff;
1423 struct page **pages;
1424 struct vm_special_mapping *sm = vma->vm_private_data;
1425
1426 if (sm->fault)
1427 return sm->fault(sm, vmf->vma, vmf);
1428
1429 pages = sm->pages;
1430
1431 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1432 pgoff--;
1433
1434 if (*pages) {
1435 struct page *page = *pages;
1436 get_page(page);
1437 vmf->page = page;
1438 return 0;
1439 }
1440
1441 return VM_FAULT_SIGBUS;
1442}
1443
1444static struct vm_area_struct *__install_special_mapping(
1445 struct mm_struct *mm,
1446 unsigned long addr, unsigned long len,
1447 unsigned long vm_flags, void *priv,
1448 const struct vm_operations_struct *ops)
1449{
1450 int ret;
1451 struct vm_area_struct *vma;
1452
1453 vma = vm_area_alloc(mm);
1454 if (unlikely(vma == NULL))
1455 return ERR_PTR(error: -ENOMEM);
1456
1457 vma_set_range(vma, start: addr, end: addr + len, pgoff: 0);
1458 vm_flags_init(vma, flags: (vm_flags | mm->def_flags |
1459 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
1460 vma->vm_page_prot = vm_get_page_prot(vm_flags: vma->vm_flags);
1461
1462 vma->vm_ops = ops;
1463 vma->vm_private_data = priv;
1464
1465 ret = insert_vm_struct(mm, vma);
1466 if (ret)
1467 goto out;
1468
1469 vm_stat_account(mm, flags: vma->vm_flags, npages: len >> PAGE_SHIFT);
1470
1471 perf_event_mmap(vma);
1472
1473 return vma;
1474
1475out:
1476 vm_area_free(vma);
1477 return ERR_PTR(error: ret);
1478}
1479
1480bool vma_is_special_mapping(const struct vm_area_struct *vma,
1481 const struct vm_special_mapping *sm)
1482{
1483 return vma->vm_private_data == sm &&
1484 vma->vm_ops == &special_mapping_vmops;
1485}
1486
1487/*
1488 * Called with mm->mmap_lock held for writing.
1489 * Insert a new vma covering the given region, with the given flags.
1490 * Its pages are supplied by the given array of struct page *.
1491 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1492 * The region past the last page supplied will always produce SIGBUS.
1493 * The array pointer and the pages it points to are assumed to stay alive
1494 * for as long as this mapping might exist.
1495 */
1496struct vm_area_struct *_install_special_mapping(
1497 struct mm_struct *mm,
1498 unsigned long addr, unsigned long len,
1499 unsigned long vm_flags, const struct vm_special_mapping *spec)
1500{
1501 return __install_special_mapping(mm, addr, len, vm_flags, priv: (void *)spec,
1502 ops: &special_mapping_vmops);
1503}
1504
1505#ifdef CONFIG_SYSCTL
1506#if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1507 defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1508int sysctl_legacy_va_layout;
1509#endif
1510
1511static const struct ctl_table mmap_table[] = {
1512 {
1513 .procname = "max_map_count",
1514 .data = &sysctl_max_map_count,
1515 .maxlen = sizeof(sysctl_max_map_count),
1516 .mode = 0644,
1517 .proc_handler = proc_dointvec_minmax,
1518 .extra1 = SYSCTL_ZERO,
1519 },
1520#if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1521 defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1522 {
1523 .procname = "legacy_va_layout",
1524 .data = &sysctl_legacy_va_layout,
1525 .maxlen = sizeof(sysctl_legacy_va_layout),
1526 .mode = 0644,
1527 .proc_handler = proc_dointvec_minmax,
1528 .extra1 = SYSCTL_ZERO,
1529 },
1530#endif
1531#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
1532 {
1533 .procname = "mmap_rnd_bits",
1534 .data = &mmap_rnd_bits,
1535 .maxlen = sizeof(mmap_rnd_bits),
1536 .mode = 0600,
1537 .proc_handler = proc_dointvec_minmax,
1538 .extra1 = (void *)&mmap_rnd_bits_min,
1539 .extra2 = (void *)&mmap_rnd_bits_max,
1540 },
1541#endif
1542#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
1543 {
1544 .procname = "mmap_rnd_compat_bits",
1545 .data = &mmap_rnd_compat_bits,
1546 .maxlen = sizeof(mmap_rnd_compat_bits),
1547 .mode = 0600,
1548 .proc_handler = proc_dointvec_minmax,
1549 .extra1 = (void *)&mmap_rnd_compat_bits_min,
1550 .extra2 = (void *)&mmap_rnd_compat_bits_max,
1551 },
1552#endif
1553};
1554#endif /* CONFIG_SYSCTL */
1555
1556/*
1557 * initialise the percpu counter for VM, initialise VMA state.
1558 */
1559void __init mmap_init(void)
1560{
1561 int ret;
1562
1563 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1564 VM_BUG_ON(ret);
1565#ifdef CONFIG_SYSCTL
1566 register_sysctl_init("vm", mmap_table);
1567#endif
1568 vma_state_init();
1569}
1570
1571/*
1572 * Initialise sysctl_user_reserve_kbytes.
1573 *
1574 * This is intended to prevent a user from starting a single memory hogging
1575 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1576 * mode.
1577 *
1578 * The default value is min(3% of free memory, 128MB)
1579 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1580 */
1581static int init_user_reserve(void)
1582{
1583 unsigned long free_kbytes;
1584
1585 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1586
1587 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1588 return 0;
1589}
1590subsys_initcall(init_user_reserve);
1591
1592/*
1593 * Initialise sysctl_admin_reserve_kbytes.
1594 *
1595 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1596 * to log in and kill a memory hogging process.
1597 *
1598 * Systems with more than 256MB will reserve 8MB, enough to recover
1599 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1600 * only reserve 3% of free pages by default.
1601 */
1602static int init_admin_reserve(void)
1603{
1604 unsigned long free_kbytes;
1605
1606 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1607
1608 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1609 return 0;
1610}
1611subsys_initcall(init_admin_reserve);
1612
1613/*
1614 * Reinititalise user and admin reserves if memory is added or removed.
1615 *
1616 * The default user reserve max is 128MB, and the default max for the
1617 * admin reserve is 8MB. These are usually, but not always, enough to
1618 * enable recovery from a memory hogging process using login/sshd, a shell,
1619 * and tools like top. It may make sense to increase or even disable the
1620 * reserve depending on the existence of swap or variations in the recovery
1621 * tools. So, the admin may have changed them.
1622 *
1623 * If memory is added and the reserves have been eliminated or increased above
1624 * the default max, then we'll trust the admin.
1625 *
1626 * If memory is removed and there isn't enough free memory, then we
1627 * need to reset the reserves.
1628 *
1629 * Otherwise keep the reserve set by the admin.
1630 */
1631static int reserve_mem_notifier(struct notifier_block *nb,
1632 unsigned long action, void *data)
1633{
1634 unsigned long tmp, free_kbytes;
1635
1636 switch (action) {
1637 case MEM_ONLINE:
1638 /* Default max is 128MB. Leave alone if modified by operator. */
1639 tmp = sysctl_user_reserve_kbytes;
1640 if (tmp > 0 && tmp < SZ_128K)
1641 init_user_reserve();
1642
1643 /* Default max is 8MB. Leave alone if modified by operator. */
1644 tmp = sysctl_admin_reserve_kbytes;
1645 if (tmp > 0 && tmp < SZ_8K)
1646 init_admin_reserve();
1647
1648 break;
1649 case MEM_OFFLINE:
1650 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1651
1652 if (sysctl_user_reserve_kbytes > free_kbytes) {
1653 init_user_reserve();
1654 pr_info("vm.user_reserve_kbytes reset to %lu\n",
1655 sysctl_user_reserve_kbytes);
1656 }
1657
1658 if (sysctl_admin_reserve_kbytes > free_kbytes) {
1659 init_admin_reserve();
1660 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
1661 sysctl_admin_reserve_kbytes);
1662 }
1663 break;
1664 default:
1665 break;
1666 }
1667 return NOTIFY_OK;
1668}
1669
1670static int __meminit init_reserve_notifier(void)
1671{
1672 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
1673 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
1674
1675 return 0;
1676}
1677subsys_initcall(init_reserve_notifier);
1678
1679/*
1680 * Obtain a read lock on mm->mmap_lock, if the specified address is below the
1681 * start of the VMA, the intent is to perform a write, and it is a
1682 * downward-growing stack, then attempt to expand the stack to contain it.
1683 *
1684 * This function is intended only for obtaining an argument page from an ELF
1685 * image, and is almost certainly NOT what you want to use for any other
1686 * purpose.
1687 *
1688 * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the
1689 * VMA referenced must not be linked in any user-visible tree, i.e. it must be a
1690 * new VMA being mapped.
1691 *
1692 * The function assumes that addr is either contained within the VMA or below
1693 * it, and makes no attempt to validate this value beyond that.
1694 *
1695 * Returns true if the read lock was obtained and a stack was perhaps expanded,
1696 * false if the stack expansion failed.
1697 *
1698 * On stack expansion the function temporarily acquires an mmap write lock
1699 * before downgrading it.
1700 */
1701bool mmap_read_lock_maybe_expand(struct mm_struct *mm,
1702 struct vm_area_struct *new_vma,
1703 unsigned long addr, bool write)
1704{
1705 if (!write || addr >= new_vma->vm_start) {
1706 mmap_read_lock(mm);
1707 return true;
1708 }
1709
1710 if (!(new_vma->vm_flags & VM_GROWSDOWN))
1711 return false;
1712
1713 mmap_write_lock(mm);
1714 if (expand_downwards(vma: new_vma, address: addr)) {
1715 mmap_write_unlock(mm);
1716 return false;
1717 }
1718
1719 mmap_write_downgrade(mm);
1720 return true;
1721}
1722
1723__latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1724{
1725 struct vm_area_struct *mpnt, *tmp;
1726 int retval;
1727 unsigned long charge = 0;
1728 LIST_HEAD(uf);
1729 VMA_ITERATOR(vmi, mm, 0);
1730
1731 if (mmap_write_lock_killable(mm: oldmm))
1732 return -EINTR;
1733 flush_cache_dup_mm(mm: oldmm);
1734 uprobe_dup_mmap(oldmm, newmm: mm);
1735 /*
1736 * Not linked in yet - no deadlock potential:
1737 */
1738 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
1739
1740 /* No ordering required: file already has been exposed. */
1741 dup_mm_exe_file(mm, oldmm);
1742
1743 mm->total_vm = oldmm->total_vm;
1744 mm->data_vm = oldmm->data_vm;
1745 mm->exec_vm = oldmm->exec_vm;
1746 mm->stack_vm = oldmm->stack_vm;
1747
1748 /* Use __mt_dup() to efficiently build an identical maple tree. */
1749 retval = __mt_dup(mt: &oldmm->mm_mt, new: &mm->mm_mt, GFP_KERNEL);
1750 if (unlikely(retval))
1751 goto out;
1752
1753 mt_clear_in_rcu(mt: vmi.mas.tree);
1754 for_each_vma(vmi, mpnt) {
1755 struct file *file;
1756
1757 vma_start_write(vma: mpnt);
1758 if (mpnt->vm_flags & VM_DONTCOPY) {
1759 retval = vma_iter_clear_gfp(vmi: &vmi, start: mpnt->vm_start,
1760 end: mpnt->vm_end, GFP_KERNEL);
1761 if (retval)
1762 goto loop_out;
1763
1764 vm_stat_account(mm, flags: mpnt->vm_flags, npages: -vma_pages(vma: mpnt));
1765 continue;
1766 }
1767 charge = 0;
1768 /*
1769 * Don't duplicate many vmas if we've been oom-killed (for
1770 * example)
1771 */
1772 if (fatal_signal_pending(current)) {
1773 retval = -EINTR;
1774 goto loop_out;
1775 }
1776 if (mpnt->vm_flags & VM_ACCOUNT) {
1777 unsigned long len = vma_pages(vma: mpnt);
1778
1779 if (security_vm_enough_memory_mm(mm: oldmm, pages: len)) /* sic */
1780 goto fail_nomem;
1781 charge = len;
1782 }
1783
1784 tmp = vm_area_dup(orig: mpnt);
1785 if (!tmp)
1786 goto fail_nomem;
1787 retval = vma_dup_policy(src: mpnt, dst: tmp);
1788 if (retval)
1789 goto fail_nomem_policy;
1790 tmp->vm_mm = mm;
1791 retval = dup_userfaultfd(tmp, &uf);
1792 if (retval)
1793 goto fail_nomem_anon_vma_fork;
1794 if (tmp->vm_flags & VM_WIPEONFORK) {
1795 /*
1796 * VM_WIPEONFORK gets a clean slate in the child.
1797 * Don't prepare anon_vma until fault since we don't
1798 * copy page for current vma.
1799 */
1800 tmp->anon_vma = NULL;
1801 } else if (anon_vma_fork(tmp, mpnt))
1802 goto fail_nomem_anon_vma_fork;
1803 vm_flags_clear(vma: tmp, VM_LOCKED_MASK);
1804 /*
1805 * Copy/update hugetlb private vma information.
1806 */
1807 if (is_vm_hugetlb_page(vma: tmp))
1808 hugetlb_dup_vma_private(vma: tmp);
1809
1810 /*
1811 * Link the vma into the MT. After using __mt_dup(), memory
1812 * allocation is not necessary here, so it cannot fail.
1813 */
1814 vma_iter_bulk_store(vmi: &vmi, vma: tmp);
1815
1816 mm->map_count++;
1817
1818 if (tmp->vm_ops && tmp->vm_ops->open)
1819 tmp->vm_ops->open(tmp);
1820
1821 file = tmp->vm_file;
1822 if (file) {
1823 struct address_space *mapping = file->f_mapping;
1824
1825 get_file(f: file);
1826 i_mmap_lock_write(mapping);
1827 if (vma_is_shared_maywrite(vma: tmp))
1828 mapping_allow_writable(mapping);
1829 flush_dcache_mmap_lock(mapping);
1830 /* insert tmp into the share list, just after mpnt */
1831 vma_interval_tree_insert_after(node: tmp, prev: mpnt,
1832 root: &mapping->i_mmap);
1833 flush_dcache_mmap_unlock(mapping);
1834 i_mmap_unlock_write(mapping);
1835 }
1836
1837 if (!(tmp->vm_flags & VM_WIPEONFORK))
1838 retval = copy_page_range(dst_vma: tmp, src_vma: mpnt);
1839
1840 if (retval) {
1841 mpnt = vma_next(vmi: &vmi);
1842 goto loop_out;
1843 }
1844 }
1845 /* a new mm has just been created */
1846 retval = arch_dup_mmap(oldmm, mm);
1847loop_out:
1848 vma_iter_free(vmi: &vmi);
1849 if (!retval) {
1850 mt_set_in_rcu(mt: vmi.mas.tree);
1851 ksm_fork(mm, oldmm);
1852 khugepaged_fork(mm, oldmm);
1853 } else {
1854
1855 /*
1856 * The entire maple tree has already been duplicated. If the
1857 * mmap duplication fails, mark the failure point with
1858 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
1859 * stop releasing VMAs that have not been duplicated after this
1860 * point.
1861 */
1862 if (mpnt) {
1863 mas_set_range(mas: &vmi.mas, start: mpnt->vm_start, last: mpnt->vm_end - 1);
1864 mas_store(mas: &vmi.mas, XA_ZERO_ENTRY);
1865 /* Avoid OOM iterating a broken tree */
1866 set_bit(MMF_OOM_SKIP, addr: &mm->flags);
1867 }
1868 /*
1869 * The mm_struct is going to exit, but the locks will be dropped
1870 * first. Set the mm_struct as unstable is advisable as it is
1871 * not fully initialised.
1872 */
1873 set_bit(MMF_UNSTABLE, addr: &mm->flags);
1874 }
1875out:
1876 mmap_write_unlock(mm);
1877 flush_tlb_mm(oldmm);
1878 mmap_write_unlock(mm: oldmm);
1879 if (!retval)
1880 dup_userfaultfd_complete(&uf);
1881 else
1882 dup_userfaultfd_fail(&uf);
1883 return retval;
1884
1885fail_nomem_anon_vma_fork:
1886 mpol_put(vma_policy(tmp));
1887fail_nomem_policy:
1888 vm_area_free(vma: tmp);
1889fail_nomem:
1890 retval = -ENOMEM;
1891 vm_unacct_memory(pages: charge);
1892 goto loop_out;
1893}
1894

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/mm/mmap.c