1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * NET An implementation of the SOCKET network access protocol. |
4 | * |
5 | * Version: @(#)socket.c 1.1.93 18/02/95 |
6 | * |
7 | * Authors: Orest Zborowski, <obz@Kodak.COM> |
8 | * Ross Biro |
9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
10 | * |
11 | * Fixes: |
12 | * Anonymous : NOTSOCK/BADF cleanup. Error fix in |
13 | * shutdown() |
14 | * Alan Cox : verify_area() fixes |
15 | * Alan Cox : Removed DDI |
16 | * Jonathan Kamens : SOCK_DGRAM reconnect bug |
17 | * Alan Cox : Moved a load of checks to the very |
18 | * top level. |
19 | * Alan Cox : Move address structures to/from user |
20 | * mode above the protocol layers. |
21 | * Rob Janssen : Allow 0 length sends. |
22 | * Alan Cox : Asynchronous I/O support (cribbed from the |
23 | * tty drivers). |
24 | * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) |
25 | * Jeff Uphoff : Made max number of sockets command-line |
26 | * configurable. |
27 | * Matti Aarnio : Made the number of sockets dynamic, |
28 | * to be allocated when needed, and mr. |
29 | * Uphoff's max is used as max to be |
30 | * allowed to allocate. |
31 | * Linus : Argh. removed all the socket allocation |
32 | * altogether: it's in the inode now. |
33 | * Alan Cox : Made sock_alloc()/sock_release() public |
34 | * for NetROM and future kernel nfsd type |
35 | * stuff. |
36 | * Alan Cox : sendmsg/recvmsg basics. |
37 | * Tom Dyas : Export net symbols. |
38 | * Marcin Dalecki : Fixed problems with CONFIG_NET="n". |
39 | * Alan Cox : Added thread locking to sys_* calls |
40 | * for sockets. May have errors at the |
41 | * moment. |
42 | * Kevin Buhr : Fixed the dumb errors in the above. |
43 | * Andi Kleen : Some small cleanups, optimizations, |
44 | * and fixed a copy_from_user() bug. |
45 | * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) |
46 | * Tigran Aivazian : Made listen(2) backlog sanity checks |
47 | * protocol-independent |
48 | * |
49 | * This module is effectively the top level interface to the BSD socket |
50 | * paradigm. |
51 | * |
52 | * Based upon Swansea University Computer Society NET3.039 |
53 | */ |
54 | |
55 | #include <linux/bpf-cgroup.h> |
56 | #include <linux/ethtool.h> |
57 | #include <linux/mm.h> |
58 | #include <linux/socket.h> |
59 | #include <linux/file.h> |
60 | #include <linux/splice.h> |
61 | #include <linux/net.h> |
62 | #include <linux/interrupt.h> |
63 | #include <linux/thread_info.h> |
64 | #include <linux/rcupdate.h> |
65 | #include <linux/netdevice.h> |
66 | #include <linux/proc_fs.h> |
67 | #include <linux/seq_file.h> |
68 | #include <linux/mutex.h> |
69 | #include <linux/if_bridge.h> |
70 | #include <linux/if_vlan.h> |
71 | #include <linux/ptp_classify.h> |
72 | #include <linux/init.h> |
73 | #include <linux/poll.h> |
74 | #include <linux/cache.h> |
75 | #include <linux/module.h> |
76 | #include <linux/highmem.h> |
77 | #include <linux/mount.h> |
78 | #include <linux/pseudo_fs.h> |
79 | #include <linux/security.h> |
80 | #include <linux/syscalls.h> |
81 | #include <linux/compat.h> |
82 | #include <linux/kmod.h> |
83 | #include <linux/audit.h> |
84 | #include <linux/wireless.h> |
85 | #include <linux/nsproxy.h> |
86 | #include <linux/magic.h> |
87 | #include <linux/slab.h> |
88 | #include <linux/xattr.h> |
89 | #include <linux/nospec.h> |
90 | #include <linux/indirect_call_wrapper.h> |
91 | #include <linux/io_uring.h> |
92 | |
93 | #include <linux/uaccess.h> |
94 | #include <asm/unistd.h> |
95 | |
96 | #include <net/compat.h> |
97 | #include <net/wext.h> |
98 | #include <net/cls_cgroup.h> |
99 | |
100 | #include <net/sock.h> |
101 | #include <linux/netfilter.h> |
102 | |
103 | #include <linux/if_tun.h> |
104 | #include <linux/ipv6_route.h> |
105 | #include <linux/route.h> |
106 | #include <linux/termios.h> |
107 | #include <linux/sockios.h> |
108 | #include <net/busy_poll.h> |
109 | #include <linux/errqueue.h> |
110 | #include <linux/ptp_clock_kernel.h> |
111 | #include <trace/events/sock.h> |
112 | |
113 | #ifdef CONFIG_NET_RX_BUSY_POLL |
114 | unsigned int sysctl_net_busy_read __read_mostly; |
115 | unsigned int sysctl_net_busy_poll __read_mostly; |
116 | #endif |
117 | |
118 | static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); |
119 | static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); |
120 | static int sock_mmap(struct file *file, struct vm_area_struct *vma); |
121 | |
122 | static int sock_close(struct inode *inode, struct file *file); |
123 | static __poll_t sock_poll(struct file *file, |
124 | struct poll_table_struct *wait); |
125 | static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
126 | #ifdef CONFIG_COMPAT |
127 | static long compat_sock_ioctl(struct file *file, |
128 | unsigned int cmd, unsigned long arg); |
129 | #endif |
130 | static int sock_fasync(int fd, struct file *filp, int on); |
131 | static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
132 | struct pipe_inode_info *pipe, size_t len, |
133 | unsigned int flags); |
134 | static void sock_splice_eof(struct file *file); |
135 | |
136 | #ifdef CONFIG_PROC_FS |
137 | static void sock_show_fdinfo(struct seq_file *m, struct file *f) |
138 | { |
139 | struct socket *sock = f->private_data; |
140 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
141 | |
142 | if (ops->show_fdinfo) |
143 | ops->show_fdinfo(m, sock); |
144 | } |
145 | #else |
146 | #define sock_show_fdinfo NULL |
147 | #endif |
148 | |
149 | /* |
150 | * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear |
151 | * in the operation structures but are done directly via the socketcall() multiplexor. |
152 | */ |
153 | |
154 | static const struct file_operations socket_file_ops = { |
155 | .owner = THIS_MODULE, |
156 | .llseek = no_llseek, |
157 | .read_iter = sock_read_iter, |
158 | .write_iter = sock_write_iter, |
159 | .poll = sock_poll, |
160 | .unlocked_ioctl = sock_ioctl, |
161 | #ifdef CONFIG_COMPAT |
162 | .compat_ioctl = compat_sock_ioctl, |
163 | #endif |
164 | .uring_cmd = io_uring_cmd_sock, |
165 | .mmap = sock_mmap, |
166 | .release = sock_close, |
167 | .fasync = sock_fasync, |
168 | .splice_write = splice_to_socket, |
169 | .splice_read = sock_splice_read, |
170 | .splice_eof = sock_splice_eof, |
171 | .show_fdinfo = sock_show_fdinfo, |
172 | }; |
173 | |
174 | static const char * const pf_family_names[] = { |
175 | [PF_UNSPEC] = "PF_UNSPEC", |
176 | [PF_UNIX] = "PF_UNIX/PF_LOCAL", |
177 | [PF_INET] = "PF_INET", |
178 | [PF_AX25] = "PF_AX25", |
179 | [PF_IPX] = "PF_IPX", |
180 | [PF_APPLETALK] = "PF_APPLETALK", |
181 | [PF_NETROM] = "PF_NETROM", |
182 | [PF_BRIDGE] = "PF_BRIDGE", |
183 | [PF_ATMPVC] = "PF_ATMPVC", |
184 | [PF_X25] = "PF_X25", |
185 | [PF_INET6] = "PF_INET6", |
186 | [PF_ROSE] = "PF_ROSE", |
187 | [PF_DECnet] = "PF_DECnet", |
188 | [PF_NETBEUI] = "PF_NETBEUI", |
189 | [PF_SECURITY] = "PF_SECURITY", |
190 | [PF_KEY] = "PF_KEY", |
191 | [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", |
192 | [PF_PACKET] = "PF_PACKET", |
193 | [PF_ASH] = "PF_ASH", |
194 | [PF_ECONET] = "PF_ECONET", |
195 | [PF_ATMSVC] = "PF_ATMSVC", |
196 | [PF_RDS] = "PF_RDS", |
197 | [PF_SNA] = "PF_SNA", |
198 | [PF_IRDA] = "PF_IRDA", |
199 | [PF_PPPOX] = "PF_PPPOX", |
200 | [PF_WANPIPE] = "PF_WANPIPE", |
201 | [PF_LLC] = "PF_LLC", |
202 | [PF_IB] = "PF_IB", |
203 | [PF_MPLS] = "PF_MPLS", |
204 | [PF_CAN] = "PF_CAN", |
205 | [PF_TIPC] = "PF_TIPC", |
206 | [PF_BLUETOOTH] = "PF_BLUETOOTH", |
207 | [PF_IUCV] = "PF_IUCV", |
208 | [PF_RXRPC] = "PF_RXRPC", |
209 | [PF_ISDN] = "PF_ISDN", |
210 | [PF_PHONET] = "PF_PHONET", |
211 | [PF_IEEE802154] = "PF_IEEE802154", |
212 | [PF_CAIF] = "PF_CAIF", |
213 | [PF_ALG] = "PF_ALG", |
214 | [PF_NFC] = "PF_NFC", |
215 | [PF_VSOCK] = "PF_VSOCK", |
216 | [PF_KCM] = "PF_KCM", |
217 | [PF_QIPCRTR] = "PF_QIPCRTR", |
218 | [PF_SMC] = "PF_SMC", |
219 | [PF_XDP] = "PF_XDP", |
220 | [PF_MCTP] = "PF_MCTP", |
221 | }; |
222 | |
223 | /* |
224 | * The protocol list. Each protocol is registered in here. |
225 | */ |
226 | |
227 | static DEFINE_SPINLOCK(net_family_lock); |
228 | static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; |
229 | |
230 | /* |
231 | * Support routines. |
232 | * Move socket addresses back and forth across the kernel/user |
233 | * divide and look after the messy bits. |
234 | */ |
235 | |
236 | /** |
237 | * move_addr_to_kernel - copy a socket address into kernel space |
238 | * @uaddr: Address in user space |
239 | * @kaddr: Address in kernel space |
240 | * @ulen: Length in user space |
241 | * |
242 | * The address is copied into kernel space. If the provided address is |
243 | * too long an error code of -EINVAL is returned. If the copy gives |
244 | * invalid addresses -EFAULT is returned. On a success 0 is returned. |
245 | */ |
246 | |
247 | int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) |
248 | { |
249 | if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) |
250 | return -EINVAL; |
251 | if (ulen == 0) |
252 | return 0; |
253 | if (copy_from_user(to: kaddr, from: uaddr, n: ulen)) |
254 | return -EFAULT; |
255 | return audit_sockaddr(len: ulen, addr: kaddr); |
256 | } |
257 | |
258 | /** |
259 | * move_addr_to_user - copy an address to user space |
260 | * @kaddr: kernel space address |
261 | * @klen: length of address in kernel |
262 | * @uaddr: user space address |
263 | * @ulen: pointer to user length field |
264 | * |
265 | * The value pointed to by ulen on entry is the buffer length available. |
266 | * This is overwritten with the buffer space used. -EINVAL is returned |
267 | * if an overlong buffer is specified or a negative buffer size. -EFAULT |
268 | * is returned if either the buffer or the length field are not |
269 | * accessible. |
270 | * After copying the data up to the limit the user specifies, the true |
271 | * length of the data is written over the length limit the user |
272 | * specified. Zero is returned for a success. |
273 | */ |
274 | |
275 | static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, |
276 | void __user *uaddr, int __user *ulen) |
277 | { |
278 | int err; |
279 | int len; |
280 | |
281 | BUG_ON(klen > sizeof(struct sockaddr_storage)); |
282 | err = get_user(len, ulen); |
283 | if (err) |
284 | return err; |
285 | if (len > klen) |
286 | len = klen; |
287 | if (len < 0) |
288 | return -EINVAL; |
289 | if (len) { |
290 | if (audit_sockaddr(len: klen, addr: kaddr)) |
291 | return -ENOMEM; |
292 | if (copy_to_user(to: uaddr, from: kaddr, n: len)) |
293 | return -EFAULT; |
294 | } |
295 | /* |
296 | * "fromlen shall refer to the value before truncation.." |
297 | * 1003.1g |
298 | */ |
299 | return __put_user(klen, ulen); |
300 | } |
301 | |
302 | static struct kmem_cache *sock_inode_cachep __ro_after_init; |
303 | |
304 | static struct inode *sock_alloc_inode(struct super_block *sb) |
305 | { |
306 | struct socket_alloc *ei; |
307 | |
308 | ei = alloc_inode_sb(sb, cache: sock_inode_cachep, GFP_KERNEL); |
309 | if (!ei) |
310 | return NULL; |
311 | init_waitqueue_head(&ei->socket.wq.wait); |
312 | ei->socket.wq.fasync_list = NULL; |
313 | ei->socket.wq.flags = 0; |
314 | |
315 | ei->socket.state = SS_UNCONNECTED; |
316 | ei->socket.flags = 0; |
317 | ei->socket.ops = NULL; |
318 | ei->socket.sk = NULL; |
319 | ei->socket.file = NULL; |
320 | |
321 | return &ei->vfs_inode; |
322 | } |
323 | |
324 | static void sock_free_inode(struct inode *inode) |
325 | { |
326 | struct socket_alloc *ei; |
327 | |
328 | ei = container_of(inode, struct socket_alloc, vfs_inode); |
329 | kmem_cache_free(s: sock_inode_cachep, objp: ei); |
330 | } |
331 | |
332 | static void init_once(void *foo) |
333 | { |
334 | struct socket_alloc *ei = (struct socket_alloc *)foo; |
335 | |
336 | inode_init_once(&ei->vfs_inode); |
337 | } |
338 | |
339 | static void init_inodecache(void) |
340 | { |
341 | sock_inode_cachep = kmem_cache_create(name: "sock_inode_cache", |
342 | size: sizeof(struct socket_alloc), |
343 | align: 0, |
344 | flags: (SLAB_HWCACHE_ALIGN | |
345 | SLAB_RECLAIM_ACCOUNT | |
346 | SLAB_ACCOUNT), |
347 | ctor: init_once); |
348 | BUG_ON(sock_inode_cachep == NULL); |
349 | } |
350 | |
351 | static const struct super_operations sockfs_ops = { |
352 | .alloc_inode = sock_alloc_inode, |
353 | .free_inode = sock_free_inode, |
354 | .statfs = simple_statfs, |
355 | }; |
356 | |
357 | /* |
358 | * sockfs_dname() is called from d_path(). |
359 | */ |
360 | static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) |
361 | { |
362 | return dynamic_dname(buffer, buflen, "socket:[%lu]", |
363 | d_inode(dentry)->i_ino); |
364 | } |
365 | |
366 | static const struct dentry_operations sockfs_dentry_operations = { |
367 | .d_dname = sockfs_dname, |
368 | }; |
369 | |
370 | static int sockfs_xattr_get(const struct xattr_handler *handler, |
371 | struct dentry *dentry, struct inode *inode, |
372 | const char *suffix, void *value, size_t size) |
373 | { |
374 | if (value) { |
375 | if (dentry->d_name.len + 1 > size) |
376 | return -ERANGE; |
377 | memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); |
378 | } |
379 | return dentry->d_name.len + 1; |
380 | } |
381 | |
382 | #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" |
383 | #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) |
384 | #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) |
385 | |
386 | static const struct xattr_handler sockfs_xattr_handler = { |
387 | .name = XATTR_NAME_SOCKPROTONAME, |
388 | .get = sockfs_xattr_get, |
389 | }; |
390 | |
391 | static int sockfs_security_xattr_set(const struct xattr_handler *handler, |
392 | struct mnt_idmap *idmap, |
393 | struct dentry *dentry, struct inode *inode, |
394 | const char *suffix, const void *value, |
395 | size_t size, int flags) |
396 | { |
397 | /* Handled by LSM. */ |
398 | return -EAGAIN; |
399 | } |
400 | |
401 | static const struct xattr_handler sockfs_security_xattr_handler = { |
402 | .prefix = XATTR_SECURITY_PREFIX, |
403 | .set = sockfs_security_xattr_set, |
404 | }; |
405 | |
406 | static const struct xattr_handler * const sockfs_xattr_handlers[] = { |
407 | &sockfs_xattr_handler, |
408 | &sockfs_security_xattr_handler, |
409 | NULL |
410 | }; |
411 | |
412 | static int sockfs_init_fs_context(struct fs_context *fc) |
413 | { |
414 | struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); |
415 | if (!ctx) |
416 | return -ENOMEM; |
417 | ctx->ops = &sockfs_ops; |
418 | ctx->dops = &sockfs_dentry_operations; |
419 | ctx->xattr = sockfs_xattr_handlers; |
420 | return 0; |
421 | } |
422 | |
423 | static struct vfsmount *sock_mnt __read_mostly; |
424 | |
425 | static struct file_system_type sock_fs_type = { |
426 | .name = "sockfs", |
427 | .init_fs_context = sockfs_init_fs_context, |
428 | .kill_sb = kill_anon_super, |
429 | }; |
430 | |
431 | /* |
432 | * Obtains the first available file descriptor and sets it up for use. |
433 | * |
434 | * These functions create file structures and maps them to fd space |
435 | * of the current process. On success it returns file descriptor |
436 | * and file struct implicitly stored in sock->file. |
437 | * Note that another thread may close file descriptor before we return |
438 | * from this function. We use the fact that now we do not refer |
439 | * to socket after mapping. If one day we will need it, this |
440 | * function will increment ref. count on file by 1. |
441 | * |
442 | * In any case returned fd MAY BE not valid! |
443 | * This race condition is unavoidable |
444 | * with shared fd spaces, we cannot solve it inside kernel, |
445 | * but we take care of internal coherence yet. |
446 | */ |
447 | |
448 | /** |
449 | * sock_alloc_file - Bind a &socket to a &file |
450 | * @sock: socket |
451 | * @flags: file status flags |
452 | * @dname: protocol name |
453 | * |
454 | * Returns the &file bound with @sock, implicitly storing it |
455 | * in sock->file. If dname is %NULL, sets to "". |
456 | * |
457 | * On failure @sock is released, and an ERR pointer is returned. |
458 | * |
459 | * This function uses GFP_KERNEL internally. |
460 | */ |
461 | |
462 | struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) |
463 | { |
464 | struct file *file; |
465 | |
466 | if (!dname) |
467 | dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; |
468 | |
469 | file = alloc_file_pseudo(SOCK_INODE(socket: sock), sock_mnt, dname, |
470 | O_RDWR | (flags & O_NONBLOCK), |
471 | &socket_file_ops); |
472 | if (IS_ERR(ptr: file)) { |
473 | sock_release(sock); |
474 | return file; |
475 | } |
476 | |
477 | file->f_mode |= FMODE_NOWAIT; |
478 | sock->file = file; |
479 | file->private_data = sock; |
480 | stream_open(inode: SOCK_INODE(socket: sock), filp: file); |
481 | return file; |
482 | } |
483 | EXPORT_SYMBOL(sock_alloc_file); |
484 | |
485 | static int sock_map_fd(struct socket *sock, int flags) |
486 | { |
487 | struct file *newfile; |
488 | int fd = get_unused_fd_flags(flags); |
489 | if (unlikely(fd < 0)) { |
490 | sock_release(sock); |
491 | return fd; |
492 | } |
493 | |
494 | newfile = sock_alloc_file(sock, flags, NULL); |
495 | if (!IS_ERR(ptr: newfile)) { |
496 | fd_install(fd, file: newfile); |
497 | return fd; |
498 | } |
499 | |
500 | put_unused_fd(fd); |
501 | return PTR_ERR(ptr: newfile); |
502 | } |
503 | |
504 | /** |
505 | * sock_from_file - Return the &socket bounded to @file. |
506 | * @file: file |
507 | * |
508 | * On failure returns %NULL. |
509 | */ |
510 | |
511 | struct socket *sock_from_file(struct file *file) |
512 | { |
513 | if (file->f_op == &socket_file_ops) |
514 | return file->private_data; /* set in sock_alloc_file */ |
515 | |
516 | return NULL; |
517 | } |
518 | EXPORT_SYMBOL(sock_from_file); |
519 | |
520 | /** |
521 | * sockfd_lookup - Go from a file number to its socket slot |
522 | * @fd: file handle |
523 | * @err: pointer to an error code return |
524 | * |
525 | * The file handle passed in is locked and the socket it is bound |
526 | * to is returned. If an error occurs the err pointer is overwritten |
527 | * with a negative errno code and NULL is returned. The function checks |
528 | * for both invalid handles and passing a handle which is not a socket. |
529 | * |
530 | * On a success the socket object pointer is returned. |
531 | */ |
532 | |
533 | struct socket *sockfd_lookup(int fd, int *err) |
534 | { |
535 | struct file *file; |
536 | struct socket *sock; |
537 | |
538 | file = fget(fd); |
539 | if (!file) { |
540 | *err = -EBADF; |
541 | return NULL; |
542 | } |
543 | |
544 | sock = sock_from_file(file); |
545 | if (!sock) { |
546 | *err = -ENOTSOCK; |
547 | fput(file); |
548 | } |
549 | return sock; |
550 | } |
551 | EXPORT_SYMBOL(sockfd_lookup); |
552 | |
553 | static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) |
554 | { |
555 | struct fd f = fdget(fd); |
556 | struct socket *sock; |
557 | |
558 | *err = -EBADF; |
559 | if (f.file) { |
560 | sock = sock_from_file(f.file); |
561 | if (likely(sock)) { |
562 | *fput_needed = f.flags & FDPUT_FPUT; |
563 | return sock; |
564 | } |
565 | *err = -ENOTSOCK; |
566 | fdput(fd: f); |
567 | } |
568 | return NULL; |
569 | } |
570 | |
571 | static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, |
572 | size_t size) |
573 | { |
574 | ssize_t len; |
575 | ssize_t used = 0; |
576 | |
577 | len = security_inode_listsecurity(inode: d_inode(dentry), buffer, buffer_size: size); |
578 | if (len < 0) |
579 | return len; |
580 | used += len; |
581 | if (buffer) { |
582 | if (size < used) |
583 | return -ERANGE; |
584 | buffer += len; |
585 | } |
586 | |
587 | len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); |
588 | used += len; |
589 | if (buffer) { |
590 | if (size < used) |
591 | return -ERANGE; |
592 | memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); |
593 | buffer += len; |
594 | } |
595 | |
596 | return used; |
597 | } |
598 | |
599 | static int sockfs_setattr(struct mnt_idmap *idmap, |
600 | struct dentry *dentry, struct iattr *iattr) |
601 | { |
602 | int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); |
603 | |
604 | if (!err && (iattr->ia_valid & ATTR_UID)) { |
605 | struct socket *sock = SOCKET_I(inode: d_inode(dentry)); |
606 | |
607 | if (sock->sk) |
608 | sock->sk->sk_uid = iattr->ia_uid; |
609 | else |
610 | err = -ENOENT; |
611 | } |
612 | |
613 | return err; |
614 | } |
615 | |
616 | static const struct inode_operations sockfs_inode_ops = { |
617 | .listxattr = sockfs_listxattr, |
618 | .setattr = sockfs_setattr, |
619 | }; |
620 | |
621 | /** |
622 | * sock_alloc - allocate a socket |
623 | * |
624 | * Allocate a new inode and socket object. The two are bound together |
625 | * and initialised. The socket is then returned. If we are out of inodes |
626 | * NULL is returned. This functions uses GFP_KERNEL internally. |
627 | */ |
628 | |
629 | struct socket *sock_alloc(void) |
630 | { |
631 | struct inode *inode; |
632 | struct socket *sock; |
633 | |
634 | inode = new_inode_pseudo(sb: sock_mnt->mnt_sb); |
635 | if (!inode) |
636 | return NULL; |
637 | |
638 | sock = SOCKET_I(inode); |
639 | |
640 | inode->i_ino = get_next_ino(); |
641 | inode->i_mode = S_IFSOCK | S_IRWXUGO; |
642 | inode->i_uid = current_fsuid(); |
643 | inode->i_gid = current_fsgid(); |
644 | inode->i_op = &sockfs_inode_ops; |
645 | |
646 | return sock; |
647 | } |
648 | EXPORT_SYMBOL(sock_alloc); |
649 | |
650 | static void __sock_release(struct socket *sock, struct inode *inode) |
651 | { |
652 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
653 | |
654 | if (ops) { |
655 | struct module *owner = ops->owner; |
656 | |
657 | if (inode) |
658 | inode_lock(inode); |
659 | ops->release(sock); |
660 | sock->sk = NULL; |
661 | if (inode) |
662 | inode_unlock(inode); |
663 | sock->ops = NULL; |
664 | module_put(module: owner); |
665 | } |
666 | |
667 | if (sock->wq.fasync_list) |
668 | pr_err("%s: fasync list not empty!\n", __func__); |
669 | |
670 | if (!sock->file) { |
671 | iput(SOCK_INODE(socket: sock)); |
672 | return; |
673 | } |
674 | sock->file = NULL; |
675 | } |
676 | |
677 | /** |
678 | * sock_release - close a socket |
679 | * @sock: socket to close |
680 | * |
681 | * The socket is released from the protocol stack if it has a release |
682 | * callback, and the inode is then released if the socket is bound to |
683 | * an inode not a file. |
684 | */ |
685 | void sock_release(struct socket *sock) |
686 | { |
687 | __sock_release(sock, NULL); |
688 | } |
689 | EXPORT_SYMBOL(sock_release); |
690 | |
691 | void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) |
692 | { |
693 | u8 flags = *tx_flags; |
694 | |
695 | if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { |
696 | flags |= SKBTX_HW_TSTAMP; |
697 | |
698 | /* PTP hardware clocks can provide a free running cycle counter |
699 | * as a time base for virtual clocks. Tell driver to use the |
700 | * free running cycle counter for timestamp if socket is bound |
701 | * to virtual clock. |
702 | */ |
703 | if (tsflags & SOF_TIMESTAMPING_BIND_PHC) |
704 | flags |= SKBTX_HW_TSTAMP_USE_CYCLES; |
705 | } |
706 | |
707 | if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) |
708 | flags |= SKBTX_SW_TSTAMP; |
709 | |
710 | if (tsflags & SOF_TIMESTAMPING_TX_SCHED) |
711 | flags |= SKBTX_SCHED_TSTAMP; |
712 | |
713 | *tx_flags = flags; |
714 | } |
715 | EXPORT_SYMBOL(__sock_tx_timestamp); |
716 | |
717 | INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, |
718 | size_t)); |
719 | INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, |
720 | size_t)); |
721 | |
722 | static noinline void call_trace_sock_send_length(struct sock *sk, int ret, |
723 | int flags) |
724 | { |
725 | trace_sock_send_length(sk, ret, flags: 0); |
726 | } |
727 | |
728 | static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) |
729 | { |
730 | int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, |
731 | inet_sendmsg, sock, msg, |
732 | msg_data_left(msg)); |
733 | BUG_ON(ret == -EIOCBQUEUED); |
734 | |
735 | if (trace_sock_send_length_enabled()) |
736 | call_trace_sock_send_length(sk: sock->sk, ret, flags: 0); |
737 | return ret; |
738 | } |
739 | |
740 | static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) |
741 | { |
742 | int err = security_socket_sendmsg(sock, msg, |
743 | size: msg_data_left(msg)); |
744 | |
745 | return err ?: sock_sendmsg_nosec(sock, msg); |
746 | } |
747 | |
748 | /** |
749 | * sock_sendmsg - send a message through @sock |
750 | * @sock: socket |
751 | * @msg: message to send |
752 | * |
753 | * Sends @msg through @sock, passing through LSM. |
754 | * Returns the number of bytes sent, or an error code. |
755 | */ |
756 | int sock_sendmsg(struct socket *sock, struct msghdr *msg) |
757 | { |
758 | struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; |
759 | struct sockaddr_storage address; |
760 | int save_len = msg->msg_namelen; |
761 | int ret; |
762 | |
763 | if (msg->msg_name) { |
764 | memcpy(&address, msg->msg_name, msg->msg_namelen); |
765 | msg->msg_name = &address; |
766 | } |
767 | |
768 | ret = __sock_sendmsg(sock, msg); |
769 | msg->msg_name = save_addr; |
770 | msg->msg_namelen = save_len; |
771 | |
772 | return ret; |
773 | } |
774 | EXPORT_SYMBOL(sock_sendmsg); |
775 | |
776 | /** |
777 | * kernel_sendmsg - send a message through @sock (kernel-space) |
778 | * @sock: socket |
779 | * @msg: message header |
780 | * @vec: kernel vec |
781 | * @num: vec array length |
782 | * @size: total message data size |
783 | * |
784 | * Builds the message data with @vec and sends it through @sock. |
785 | * Returns the number of bytes sent, or an error code. |
786 | */ |
787 | |
788 | int kernel_sendmsg(struct socket *sock, struct msghdr *msg, |
789 | struct kvec *vec, size_t num, size_t size) |
790 | { |
791 | iov_iter_kvec(i: &msg->msg_iter, ITER_SOURCE, kvec: vec, nr_segs: num, count: size); |
792 | return sock_sendmsg(sock, msg); |
793 | } |
794 | EXPORT_SYMBOL(kernel_sendmsg); |
795 | |
796 | /** |
797 | * kernel_sendmsg_locked - send a message through @sock (kernel-space) |
798 | * @sk: sock |
799 | * @msg: message header |
800 | * @vec: output s/g array |
801 | * @num: output s/g array length |
802 | * @size: total message data size |
803 | * |
804 | * Builds the message data with @vec and sends it through @sock. |
805 | * Returns the number of bytes sent, or an error code. |
806 | * Caller must hold @sk. |
807 | */ |
808 | |
809 | int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, |
810 | struct kvec *vec, size_t num, size_t size) |
811 | { |
812 | struct socket *sock = sk->sk_socket; |
813 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
814 | |
815 | if (!ops->sendmsg_locked) |
816 | return sock_no_sendmsg_locked(sk, msg, len: size); |
817 | |
818 | iov_iter_kvec(i: &msg->msg_iter, ITER_SOURCE, kvec: vec, nr_segs: num, count: size); |
819 | |
820 | return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); |
821 | } |
822 | EXPORT_SYMBOL(kernel_sendmsg_locked); |
823 | |
824 | static bool skb_is_err_queue(const struct sk_buff *skb) |
825 | { |
826 | /* pkt_type of skbs enqueued on the error queue are set to |
827 | * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do |
828 | * in recvmsg, since skbs received on a local socket will never |
829 | * have a pkt_type of PACKET_OUTGOING. |
830 | */ |
831 | return skb->pkt_type == PACKET_OUTGOING; |
832 | } |
833 | |
834 | /* On transmit, software and hardware timestamps are returned independently. |
835 | * As the two skb clones share the hardware timestamp, which may be updated |
836 | * before the software timestamp is received, a hardware TX timestamp may be |
837 | * returned only if there is no software TX timestamp. Ignore false software |
838 | * timestamps, which may be made in the __sock_recv_timestamp() call when the |
839 | * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a |
840 | * hardware timestamp. |
841 | */ |
842 | static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) |
843 | { |
844 | return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); |
845 | } |
846 | |
847 | static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) |
848 | { |
849 | bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; |
850 | struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
851 | struct net_device *orig_dev; |
852 | ktime_t hwtstamp; |
853 | |
854 | rcu_read_lock(); |
855 | orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb)); |
856 | if (orig_dev) { |
857 | *if_index = orig_dev->ifindex; |
858 | hwtstamp = netdev_get_tstamp(dev: orig_dev, hwtstamps: shhwtstamps, cycles); |
859 | } else { |
860 | hwtstamp = shhwtstamps->hwtstamp; |
861 | } |
862 | rcu_read_unlock(); |
863 | |
864 | return hwtstamp; |
865 | } |
866 | |
867 | static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, |
868 | int if_index) |
869 | { |
870 | struct scm_ts_pktinfo ts_pktinfo; |
871 | struct net_device *orig_dev; |
872 | |
873 | if (!skb_mac_header_was_set(skb)) |
874 | return; |
875 | |
876 | memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); |
877 | |
878 | if (!if_index) { |
879 | rcu_read_lock(); |
880 | orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb)); |
881 | if (orig_dev) |
882 | if_index = orig_dev->ifindex; |
883 | rcu_read_unlock(); |
884 | } |
885 | ts_pktinfo.if_index = if_index; |
886 | |
887 | ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); |
888 | put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, |
889 | len: sizeof(ts_pktinfo), data: &ts_pktinfo); |
890 | } |
891 | |
892 | /* |
893 | * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) |
894 | */ |
895 | void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
896 | struct sk_buff *skb) |
897 | { |
898 | int need_software_tstamp = sock_flag(sk, flag: SOCK_RCVTSTAMP); |
899 | int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
900 | struct scm_timestamping_internal tss; |
901 | int empty = 1, false_tstamp = 0; |
902 | struct skb_shared_hwtstamps *shhwtstamps = |
903 | skb_hwtstamps(skb); |
904 | int if_index; |
905 | ktime_t hwtstamp; |
906 | u32 tsflags; |
907 | |
908 | /* Race occurred between timestamp enabling and packet |
909 | receiving. Fill in the current time for now. */ |
910 | if (need_software_tstamp && skb->tstamp == 0) { |
911 | __net_timestamp(skb); |
912 | false_tstamp = 1; |
913 | } |
914 | |
915 | if (need_software_tstamp) { |
916 | if (!sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) { |
917 | if (new_tstamp) { |
918 | struct __kernel_sock_timeval tv; |
919 | |
920 | skb_get_new_timestamp(skb, stamp: &tv); |
921 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, |
922 | len: sizeof(tv), data: &tv); |
923 | } else { |
924 | struct __kernel_old_timeval tv; |
925 | |
926 | skb_get_timestamp(skb, stamp: &tv); |
927 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, |
928 | len: sizeof(tv), data: &tv); |
929 | } |
930 | } else { |
931 | if (new_tstamp) { |
932 | struct __kernel_timespec ts; |
933 | |
934 | skb_get_new_timestampns(skb, stamp: &ts); |
935 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, |
936 | len: sizeof(ts), data: &ts); |
937 | } else { |
938 | struct __kernel_old_timespec ts; |
939 | |
940 | skb_get_timestampns(skb, stamp: &ts); |
941 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, |
942 | len: sizeof(ts), data: &ts); |
943 | } |
944 | } |
945 | } |
946 | |
947 | memset(&tss, 0, sizeof(tss)); |
948 | tsflags = READ_ONCE(sk->sk_tsflags); |
949 | if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && |
950 | ktime_to_timespec64_cond(kt: skb->tstamp, ts: tss.ts + 0)) |
951 | empty = 0; |
952 | if (shhwtstamps && |
953 | (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && |
954 | !skb_is_swtx_tstamp(skb, false_tstamp)) { |
955 | if_index = 0; |
956 | if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) |
957 | hwtstamp = get_timestamp(sk, skb, if_index: &if_index); |
958 | else |
959 | hwtstamp = shhwtstamps->hwtstamp; |
960 | |
961 | if (tsflags & SOF_TIMESTAMPING_BIND_PHC) |
962 | hwtstamp = ptp_convert_timestamp(hwtstamp: &hwtstamp, |
963 | READ_ONCE(sk->sk_bind_phc)); |
964 | |
965 | if (ktime_to_timespec64_cond(kt: hwtstamp, ts: tss.ts + 2)) { |
966 | empty = 0; |
967 | |
968 | if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && |
969 | !skb_is_err_queue(skb)) |
970 | put_ts_pktinfo(msg, skb, if_index); |
971 | } |
972 | } |
973 | if (!empty) { |
974 | if (sock_flag(sk, flag: SOCK_TSTAMP_NEW)) |
975 | put_cmsg_scm_timestamping64(msg, tss: &tss); |
976 | else |
977 | put_cmsg_scm_timestamping(msg, tss: &tss); |
978 | |
979 | if (skb_is_err_queue(skb) && skb->len && |
980 | SKB_EXT_ERR(skb)->opt_stats) |
981 | put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, |
982 | len: skb->len, data: skb->data); |
983 | } |
984 | } |
985 | EXPORT_SYMBOL_GPL(__sock_recv_timestamp); |
986 | |
987 | #ifdef CONFIG_WIRELESS |
988 | void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
989 | struct sk_buff *skb) |
990 | { |
991 | int ack; |
992 | |
993 | if (!sock_flag(sk, flag: SOCK_WIFI_STATUS)) |
994 | return; |
995 | if (!skb->wifi_acked_valid) |
996 | return; |
997 | |
998 | ack = skb->wifi_acked; |
999 | |
1000 | put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, len: sizeof(ack), data: &ack); |
1001 | } |
1002 | EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); |
1003 | #endif |
1004 | |
1005 | static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, |
1006 | struct sk_buff *skb) |
1007 | { |
1008 | if (sock_flag(sk, flag: SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) |
1009 | put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, |
1010 | len: sizeof(__u32), data: &SOCK_SKB_CB(skb)->dropcount); |
1011 | } |
1012 | |
1013 | static void sock_recv_mark(struct msghdr *msg, struct sock *sk, |
1014 | struct sk_buff *skb) |
1015 | { |
1016 | if (sock_flag(sk, flag: SOCK_RCVMARK) && skb) { |
1017 | /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ |
1018 | __u32 mark = skb->mark; |
1019 | |
1020 | put_cmsg(msg, SOL_SOCKET, SO_MARK, len: sizeof(__u32), data: &mark); |
1021 | } |
1022 | } |
1023 | |
1024 | void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
1025 | struct sk_buff *skb) |
1026 | { |
1027 | sock_recv_timestamp(msg, sk, skb); |
1028 | sock_recv_drops(msg, sk, skb); |
1029 | sock_recv_mark(msg, sk, skb); |
1030 | } |
1031 | EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); |
1032 | |
1033 | INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, |
1034 | size_t, int)); |
1035 | INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, |
1036 | size_t, int)); |
1037 | |
1038 | static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) |
1039 | { |
1040 | trace_sock_recv_length(sk, ret, flags); |
1041 | } |
1042 | |
1043 | static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, |
1044 | int flags) |
1045 | { |
1046 | int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, |
1047 | inet6_recvmsg, |
1048 | inet_recvmsg, sock, msg, |
1049 | msg_data_left(msg), flags); |
1050 | if (trace_sock_recv_length_enabled()) |
1051 | call_trace_sock_recv_length(sk: sock->sk, ret, flags); |
1052 | return ret; |
1053 | } |
1054 | |
1055 | /** |
1056 | * sock_recvmsg - receive a message from @sock |
1057 | * @sock: socket |
1058 | * @msg: message to receive |
1059 | * @flags: message flags |
1060 | * |
1061 | * Receives @msg from @sock, passing through LSM. Returns the total number |
1062 | * of bytes received, or an error. |
1063 | */ |
1064 | int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) |
1065 | { |
1066 | int err = security_socket_recvmsg(sock, msg, size: msg_data_left(msg), flags); |
1067 | |
1068 | return err ?: sock_recvmsg_nosec(sock, msg, flags); |
1069 | } |
1070 | EXPORT_SYMBOL(sock_recvmsg); |
1071 | |
1072 | /** |
1073 | * kernel_recvmsg - Receive a message from a socket (kernel space) |
1074 | * @sock: The socket to receive the message from |
1075 | * @msg: Received message |
1076 | * @vec: Input s/g array for message data |
1077 | * @num: Size of input s/g array |
1078 | * @size: Number of bytes to read |
1079 | * @flags: Message flags (MSG_DONTWAIT, etc...) |
1080 | * |
1081 | * On return the msg structure contains the scatter/gather array passed in the |
1082 | * vec argument. The array is modified so that it consists of the unfilled |
1083 | * portion of the original array. |
1084 | * |
1085 | * The returned value is the total number of bytes received, or an error. |
1086 | */ |
1087 | |
1088 | int kernel_recvmsg(struct socket *sock, struct msghdr *msg, |
1089 | struct kvec *vec, size_t num, size_t size, int flags) |
1090 | { |
1091 | msg->msg_control_is_user = false; |
1092 | iov_iter_kvec(i: &msg->msg_iter, ITER_DEST, kvec: vec, nr_segs: num, count: size); |
1093 | return sock_recvmsg(sock, msg, flags); |
1094 | } |
1095 | EXPORT_SYMBOL(kernel_recvmsg); |
1096 | |
1097 | static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
1098 | struct pipe_inode_info *pipe, size_t len, |
1099 | unsigned int flags) |
1100 | { |
1101 | struct socket *sock = file->private_data; |
1102 | const struct proto_ops *ops; |
1103 | |
1104 | ops = READ_ONCE(sock->ops); |
1105 | if (unlikely(!ops->splice_read)) |
1106 | return copy_splice_read(in: file, ppos, pipe, len, flags); |
1107 | |
1108 | return ops->splice_read(sock, ppos, pipe, len, flags); |
1109 | } |
1110 | |
1111 | static void sock_splice_eof(struct file *file) |
1112 | { |
1113 | struct socket *sock = file->private_data; |
1114 | const struct proto_ops *ops; |
1115 | |
1116 | ops = READ_ONCE(sock->ops); |
1117 | if (ops->splice_eof) |
1118 | ops->splice_eof(sock); |
1119 | } |
1120 | |
1121 | static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) |
1122 | { |
1123 | struct file *file = iocb->ki_filp; |
1124 | struct socket *sock = file->private_data; |
1125 | struct msghdr msg = {.msg_iter = *to, |
1126 | .msg_iocb = iocb}; |
1127 | ssize_t res; |
1128 | |
1129 | if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
1130 | msg.msg_flags = MSG_DONTWAIT; |
1131 | |
1132 | if (iocb->ki_pos != 0) |
1133 | return -ESPIPE; |
1134 | |
1135 | if (!iov_iter_count(i: to)) /* Match SYS5 behaviour */ |
1136 | return 0; |
1137 | |
1138 | res = sock_recvmsg(sock, &msg, msg.msg_flags); |
1139 | *to = msg.msg_iter; |
1140 | return res; |
1141 | } |
1142 | |
1143 | static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1144 | { |
1145 | struct file *file = iocb->ki_filp; |
1146 | struct socket *sock = file->private_data; |
1147 | struct msghdr msg = {.msg_iter = *from, |
1148 | .msg_iocb = iocb}; |
1149 | ssize_t res; |
1150 | |
1151 | if (iocb->ki_pos != 0) |
1152 | return -ESPIPE; |
1153 | |
1154 | if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
1155 | msg.msg_flags = MSG_DONTWAIT; |
1156 | |
1157 | if (sock->type == SOCK_SEQPACKET) |
1158 | msg.msg_flags |= MSG_EOR; |
1159 | |
1160 | res = __sock_sendmsg(sock, msg: &msg); |
1161 | *from = msg.msg_iter; |
1162 | return res; |
1163 | } |
1164 | |
1165 | /* |
1166 | * Atomic setting of ioctl hooks to avoid race |
1167 | * with module unload. |
1168 | */ |
1169 | |
1170 | static DEFINE_MUTEX(br_ioctl_mutex); |
1171 | static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, |
1172 | unsigned int cmd, struct ifreq *ifr, |
1173 | void __user *uarg); |
1174 | |
1175 | void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, |
1176 | unsigned int cmd, struct ifreq *ifr, |
1177 | void __user *uarg)) |
1178 | { |
1179 | mutex_lock(&br_ioctl_mutex); |
1180 | br_ioctl_hook = hook; |
1181 | mutex_unlock(lock: &br_ioctl_mutex); |
1182 | } |
1183 | EXPORT_SYMBOL(brioctl_set); |
1184 | |
1185 | int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, |
1186 | struct ifreq *ifr, void __user *uarg) |
1187 | { |
1188 | int err = -ENOPKG; |
1189 | |
1190 | if (!br_ioctl_hook) |
1191 | request_module("bridge"); |
1192 | |
1193 | mutex_lock(&br_ioctl_mutex); |
1194 | if (br_ioctl_hook) |
1195 | err = br_ioctl_hook(net, br, cmd, ifr, uarg); |
1196 | mutex_unlock(lock: &br_ioctl_mutex); |
1197 | |
1198 | return err; |
1199 | } |
1200 | |
1201 | static DEFINE_MUTEX(vlan_ioctl_mutex); |
1202 | static int (*vlan_ioctl_hook) (struct net *, void __user *arg); |
1203 | |
1204 | void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) |
1205 | { |
1206 | mutex_lock(&vlan_ioctl_mutex); |
1207 | vlan_ioctl_hook = hook; |
1208 | mutex_unlock(lock: &vlan_ioctl_mutex); |
1209 | } |
1210 | EXPORT_SYMBOL(vlan_ioctl_set); |
1211 | |
1212 | static long sock_do_ioctl(struct net *net, struct socket *sock, |
1213 | unsigned int cmd, unsigned long arg) |
1214 | { |
1215 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
1216 | struct ifreq ifr; |
1217 | bool need_copyout; |
1218 | int err; |
1219 | void __user *argp = (void __user *)arg; |
1220 | void __user *data; |
1221 | |
1222 | err = ops->ioctl(sock, cmd, arg); |
1223 | |
1224 | /* |
1225 | * If this ioctl is unknown try to hand it down |
1226 | * to the NIC driver. |
1227 | */ |
1228 | if (err != -ENOIOCTLCMD) |
1229 | return err; |
1230 | |
1231 | if (!is_socket_ioctl_cmd(cmd)) |
1232 | return -ENOTTY; |
1233 | |
1234 | if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp)) |
1235 | return -EFAULT; |
1236 | err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout); |
1237 | if (!err && need_copyout) |
1238 | if (put_user_ifreq(ifr: &ifr, arg: argp)) |
1239 | return -EFAULT; |
1240 | |
1241 | return err; |
1242 | } |
1243 | |
1244 | /* |
1245 | * With an ioctl, arg may well be a user mode pointer, but we don't know |
1246 | * what to do with it - that's up to the protocol still. |
1247 | */ |
1248 | |
1249 | static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) |
1250 | { |
1251 | const struct proto_ops *ops; |
1252 | struct socket *sock; |
1253 | struct sock *sk; |
1254 | void __user *argp = (void __user *)arg; |
1255 | int pid, err; |
1256 | struct net *net; |
1257 | |
1258 | sock = file->private_data; |
1259 | ops = READ_ONCE(sock->ops); |
1260 | sk = sock->sk; |
1261 | net = sock_net(sk); |
1262 | if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { |
1263 | struct ifreq ifr; |
1264 | void __user *data; |
1265 | bool need_copyout; |
1266 | if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp)) |
1267 | return -EFAULT; |
1268 | err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout); |
1269 | if (!err && need_copyout) |
1270 | if (put_user_ifreq(ifr: &ifr, arg: argp)) |
1271 | return -EFAULT; |
1272 | } else |
1273 | #ifdef CONFIG_WEXT_CORE |
1274 | if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { |
1275 | err = wext_handle_ioctl(net, cmd, arg: argp); |
1276 | } else |
1277 | #endif |
1278 | switch (cmd) { |
1279 | case FIOSETOWN: |
1280 | case SIOCSPGRP: |
1281 | err = -EFAULT; |
1282 | if (get_user(pid, (int __user *)argp)) |
1283 | break; |
1284 | err = f_setown(filp: sock->file, who: pid, force: 1); |
1285 | break; |
1286 | case FIOGETOWN: |
1287 | case SIOCGPGRP: |
1288 | err = put_user(f_getown(sock->file), |
1289 | (int __user *)argp); |
1290 | break; |
1291 | case SIOCGIFBR: |
1292 | case SIOCSIFBR: |
1293 | case SIOCBRADDBR: |
1294 | case SIOCBRDELBR: |
1295 | err = br_ioctl_call(net, NULL, cmd, NULL, uarg: argp); |
1296 | break; |
1297 | case SIOCGIFVLAN: |
1298 | case SIOCSIFVLAN: |
1299 | err = -ENOPKG; |
1300 | if (!vlan_ioctl_hook) |
1301 | request_module("8021q"); |
1302 | |
1303 | mutex_lock(&vlan_ioctl_mutex); |
1304 | if (vlan_ioctl_hook) |
1305 | err = vlan_ioctl_hook(net, argp); |
1306 | mutex_unlock(lock: &vlan_ioctl_mutex); |
1307 | break; |
1308 | case SIOCGSKNS: |
1309 | err = -EPERM; |
1310 | if (!ns_capable(ns: net->user_ns, CAP_NET_ADMIN)) |
1311 | break; |
1312 | |
1313 | err = open_related_ns(ns: &net->ns, get_ns: get_net_ns); |
1314 | break; |
1315 | case SIOCGSTAMP_OLD: |
1316 | case SIOCGSTAMPNS_OLD: |
1317 | if (!ops->gettstamp) { |
1318 | err = -ENOIOCTLCMD; |
1319 | break; |
1320 | } |
1321 | err = ops->gettstamp(sock, argp, |
1322 | cmd == SIOCGSTAMP_OLD, |
1323 | !IS_ENABLED(CONFIG_64BIT)); |
1324 | break; |
1325 | case SIOCGSTAMP_NEW: |
1326 | case SIOCGSTAMPNS_NEW: |
1327 | if (!ops->gettstamp) { |
1328 | err = -ENOIOCTLCMD; |
1329 | break; |
1330 | } |
1331 | err = ops->gettstamp(sock, argp, |
1332 | cmd == SIOCGSTAMP_NEW, |
1333 | false); |
1334 | break; |
1335 | |
1336 | case SIOCGIFCONF: |
1337 | err = dev_ifconf(net, ifc: argp); |
1338 | break; |
1339 | |
1340 | default: |
1341 | err = sock_do_ioctl(net, sock, cmd, arg); |
1342 | break; |
1343 | } |
1344 | return err; |
1345 | } |
1346 | |
1347 | /** |
1348 | * sock_create_lite - creates a socket |
1349 | * @family: protocol family (AF_INET, ...) |
1350 | * @type: communication type (SOCK_STREAM, ...) |
1351 | * @protocol: protocol (0, ...) |
1352 | * @res: new socket |
1353 | * |
1354 | * Creates a new socket and assigns it to @res, passing through LSM. |
1355 | * The new socket initialization is not complete, see kernel_accept(). |
1356 | * Returns 0 or an error. On failure @res is set to %NULL. |
1357 | * This function internally uses GFP_KERNEL. |
1358 | */ |
1359 | |
1360 | int sock_create_lite(int family, int type, int protocol, struct socket **res) |
1361 | { |
1362 | int err; |
1363 | struct socket *sock = NULL; |
1364 | |
1365 | err = security_socket_create(family, type, protocol, kern: 1); |
1366 | if (err) |
1367 | goto out; |
1368 | |
1369 | sock = sock_alloc(); |
1370 | if (!sock) { |
1371 | err = -ENOMEM; |
1372 | goto out; |
1373 | } |
1374 | |
1375 | sock->type = type; |
1376 | err = security_socket_post_create(sock, family, type, protocol, kern: 1); |
1377 | if (err) |
1378 | goto out_release; |
1379 | |
1380 | out: |
1381 | *res = sock; |
1382 | return err; |
1383 | out_release: |
1384 | sock_release(sock); |
1385 | sock = NULL; |
1386 | goto out; |
1387 | } |
1388 | EXPORT_SYMBOL(sock_create_lite); |
1389 | |
1390 | /* No kernel lock held - perfect */ |
1391 | static __poll_t sock_poll(struct file *file, poll_table *wait) |
1392 | { |
1393 | struct socket *sock = file->private_data; |
1394 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
1395 | __poll_t events = poll_requested_events(p: wait), flag = 0; |
1396 | |
1397 | if (!ops->poll) |
1398 | return 0; |
1399 | |
1400 | if (sk_can_busy_loop(sk: sock->sk)) { |
1401 | /* poll once if requested by the syscall */ |
1402 | if (events & POLL_BUSY_LOOP) |
1403 | sk_busy_loop(sk: sock->sk, nonblock: 1); |
1404 | |
1405 | /* if this socket can poll_ll, tell the system call */ |
1406 | flag = POLL_BUSY_LOOP; |
1407 | } |
1408 | |
1409 | return ops->poll(file, sock, wait) | flag; |
1410 | } |
1411 | |
1412 | static int sock_mmap(struct file *file, struct vm_area_struct *vma) |
1413 | { |
1414 | struct socket *sock = file->private_data; |
1415 | |
1416 | return READ_ONCE(sock->ops)->mmap(file, sock, vma); |
1417 | } |
1418 | |
1419 | static int sock_close(struct inode *inode, struct file *filp) |
1420 | { |
1421 | __sock_release(sock: SOCKET_I(inode), inode); |
1422 | return 0; |
1423 | } |
1424 | |
1425 | /* |
1426 | * Update the socket async list |
1427 | * |
1428 | * Fasync_list locking strategy. |
1429 | * |
1430 | * 1. fasync_list is modified only under process context socket lock |
1431 | * i.e. under semaphore. |
1432 | * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) |
1433 | * or under socket lock |
1434 | */ |
1435 | |
1436 | static int sock_fasync(int fd, struct file *filp, int on) |
1437 | { |
1438 | struct socket *sock = filp->private_data; |
1439 | struct sock *sk = sock->sk; |
1440 | struct socket_wq *wq = &sock->wq; |
1441 | |
1442 | if (sk == NULL) |
1443 | return -EINVAL; |
1444 | |
1445 | lock_sock(sk); |
1446 | fasync_helper(fd, filp, on, &wq->fasync_list); |
1447 | |
1448 | if (!wq->fasync_list) |
1449 | sock_reset_flag(sk, flag: SOCK_FASYNC); |
1450 | else |
1451 | sock_set_flag(sk, flag: SOCK_FASYNC); |
1452 | |
1453 | release_sock(sk); |
1454 | return 0; |
1455 | } |
1456 | |
1457 | /* This function may be called only under rcu_lock */ |
1458 | |
1459 | int sock_wake_async(struct socket_wq *wq, int how, int band) |
1460 | { |
1461 | if (!wq || !wq->fasync_list) |
1462 | return -1; |
1463 | |
1464 | switch (how) { |
1465 | case SOCK_WAKE_WAITD: |
1466 | if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) |
1467 | break; |
1468 | goto call_kill; |
1469 | case SOCK_WAKE_SPACE: |
1470 | if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, addr: &wq->flags)) |
1471 | break; |
1472 | fallthrough; |
1473 | case SOCK_WAKE_IO: |
1474 | call_kill: |
1475 | kill_fasync(&wq->fasync_list, SIGIO, band); |
1476 | break; |
1477 | case SOCK_WAKE_URG: |
1478 | kill_fasync(&wq->fasync_list, SIGURG, band); |
1479 | } |
1480 | |
1481 | return 0; |
1482 | } |
1483 | EXPORT_SYMBOL(sock_wake_async); |
1484 | |
1485 | /** |
1486 | * __sock_create - creates a socket |
1487 | * @net: net namespace |
1488 | * @family: protocol family (AF_INET, ...) |
1489 | * @type: communication type (SOCK_STREAM, ...) |
1490 | * @protocol: protocol (0, ...) |
1491 | * @res: new socket |
1492 | * @kern: boolean for kernel space sockets |
1493 | * |
1494 | * Creates a new socket and assigns it to @res, passing through LSM. |
1495 | * Returns 0 or an error. On failure @res is set to %NULL. @kern must |
1496 | * be set to true if the socket resides in kernel space. |
1497 | * This function internally uses GFP_KERNEL. |
1498 | */ |
1499 | |
1500 | int __sock_create(struct net *net, int family, int type, int protocol, |
1501 | struct socket **res, int kern) |
1502 | { |
1503 | int err; |
1504 | struct socket *sock; |
1505 | const struct net_proto_family *pf; |
1506 | |
1507 | /* |
1508 | * Check protocol is in range |
1509 | */ |
1510 | if (family < 0 || family >= NPROTO) |
1511 | return -EAFNOSUPPORT; |
1512 | if (type < 0 || type >= SOCK_MAX) |
1513 | return -EINVAL; |
1514 | |
1515 | /* Compatibility. |
1516 | |
1517 | This uglymoron is moved from INET layer to here to avoid |
1518 | deadlock in module load. |
1519 | */ |
1520 | if (family == PF_INET && type == SOCK_PACKET) { |
1521 | pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", |
1522 | current->comm); |
1523 | family = PF_PACKET; |
1524 | } |
1525 | |
1526 | err = security_socket_create(family, type, protocol, kern); |
1527 | if (err) |
1528 | return err; |
1529 | |
1530 | /* |
1531 | * Allocate the socket and allow the family to set things up. if |
1532 | * the protocol is 0, the family is instructed to select an appropriate |
1533 | * default. |
1534 | */ |
1535 | sock = sock_alloc(); |
1536 | if (!sock) { |
1537 | net_warn_ratelimited("socket: no more sockets\n"); |
1538 | return -ENFILE; /* Not exactly a match, but its the |
1539 | closest posix thing */ |
1540 | } |
1541 | |
1542 | sock->type = type; |
1543 | |
1544 | #ifdef CONFIG_MODULES |
1545 | /* Attempt to load a protocol module if the find failed. |
1546 | * |
1547 | * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user |
1548 | * requested real, full-featured networking support upon configuration. |
1549 | * Otherwise module support will break! |
1550 | */ |
1551 | if (rcu_access_pointer(net_families[family]) == NULL) |
1552 | request_module("net-pf-%d", family); |
1553 | #endif |
1554 | |
1555 | rcu_read_lock(); |
1556 | pf = rcu_dereference(net_families[family]); |
1557 | err = -EAFNOSUPPORT; |
1558 | if (!pf) |
1559 | goto out_release; |
1560 | |
1561 | /* |
1562 | * We will call the ->create function, that possibly is in a loadable |
1563 | * module, so we have to bump that loadable module refcnt first. |
1564 | */ |
1565 | if (!try_module_get(module: pf->owner)) |
1566 | goto out_release; |
1567 | |
1568 | /* Now protected by module ref count */ |
1569 | rcu_read_unlock(); |
1570 | |
1571 | err = pf->create(net, sock, protocol, kern); |
1572 | if (err < 0) |
1573 | goto out_module_put; |
1574 | |
1575 | /* |
1576 | * Now to bump the refcnt of the [loadable] module that owns this |
1577 | * socket at sock_release time we decrement its refcnt. |
1578 | */ |
1579 | if (!try_module_get(module: sock->ops->owner)) |
1580 | goto out_module_busy; |
1581 | |
1582 | /* |
1583 | * Now that we're done with the ->create function, the [loadable] |
1584 | * module can have its refcnt decremented |
1585 | */ |
1586 | module_put(module: pf->owner); |
1587 | err = security_socket_post_create(sock, family, type, protocol, kern); |
1588 | if (err) |
1589 | goto out_sock_release; |
1590 | *res = sock; |
1591 | |
1592 | return 0; |
1593 | |
1594 | out_module_busy: |
1595 | err = -EAFNOSUPPORT; |
1596 | out_module_put: |
1597 | sock->ops = NULL; |
1598 | module_put(module: pf->owner); |
1599 | out_sock_release: |
1600 | sock_release(sock); |
1601 | return err; |
1602 | |
1603 | out_release: |
1604 | rcu_read_unlock(); |
1605 | goto out_sock_release; |
1606 | } |
1607 | EXPORT_SYMBOL(__sock_create); |
1608 | |
1609 | /** |
1610 | * sock_create - creates a socket |
1611 | * @family: protocol family (AF_INET, ...) |
1612 | * @type: communication type (SOCK_STREAM, ...) |
1613 | * @protocol: protocol (0, ...) |
1614 | * @res: new socket |
1615 | * |
1616 | * A wrapper around __sock_create(). |
1617 | * Returns 0 or an error. This function internally uses GFP_KERNEL. |
1618 | */ |
1619 | |
1620 | int sock_create(int family, int type, int protocol, struct socket **res) |
1621 | { |
1622 | return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); |
1623 | } |
1624 | EXPORT_SYMBOL(sock_create); |
1625 | |
1626 | /** |
1627 | * sock_create_kern - creates a socket (kernel space) |
1628 | * @net: net namespace |
1629 | * @family: protocol family (AF_INET, ...) |
1630 | * @type: communication type (SOCK_STREAM, ...) |
1631 | * @protocol: protocol (0, ...) |
1632 | * @res: new socket |
1633 | * |
1634 | * A wrapper around __sock_create(). |
1635 | * Returns 0 or an error. This function internally uses GFP_KERNEL. |
1636 | */ |
1637 | |
1638 | int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) |
1639 | { |
1640 | return __sock_create(net, family, type, protocol, res, 1); |
1641 | } |
1642 | EXPORT_SYMBOL(sock_create_kern); |
1643 | |
1644 | static struct socket *__sys_socket_create(int family, int type, int protocol) |
1645 | { |
1646 | struct socket *sock; |
1647 | int retval; |
1648 | |
1649 | /* Check the SOCK_* constants for consistency. */ |
1650 | BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); |
1651 | BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); |
1652 | BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); |
1653 | BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); |
1654 | |
1655 | if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1656 | return ERR_PTR(error: -EINVAL); |
1657 | type &= SOCK_TYPE_MASK; |
1658 | |
1659 | retval = sock_create(family, type, protocol, &sock); |
1660 | if (retval < 0) |
1661 | return ERR_PTR(error: retval); |
1662 | |
1663 | return sock; |
1664 | } |
1665 | |
1666 | struct file *__sys_socket_file(int family, int type, int protocol) |
1667 | { |
1668 | struct socket *sock; |
1669 | int flags; |
1670 | |
1671 | sock = __sys_socket_create(family, type, protocol); |
1672 | if (IS_ERR(ptr: sock)) |
1673 | return ERR_CAST(ptr: sock); |
1674 | |
1675 | flags = type & ~SOCK_TYPE_MASK; |
1676 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1677 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1678 | |
1679 | return sock_alloc_file(sock, flags, NULL); |
1680 | } |
1681 | |
1682 | /* A hook for bpf progs to attach to and update socket protocol. |
1683 | * |
1684 | * A static noinline declaration here could cause the compiler to |
1685 | * optimize away the function. A global noinline declaration will |
1686 | * keep the definition, but may optimize away the callsite. |
1687 | * Therefore, __weak is needed to ensure that the call is still |
1688 | * emitted, by telling the compiler that we don't know what the |
1689 | * function might eventually be. |
1690 | */ |
1691 | |
1692 | __bpf_hook_start(); |
1693 | |
1694 | __weak noinline int update_socket_protocol(int family, int type, int protocol) |
1695 | { |
1696 | return protocol; |
1697 | } |
1698 | |
1699 | __bpf_hook_end(); |
1700 | |
1701 | int __sys_socket(int family, int type, int protocol) |
1702 | { |
1703 | struct socket *sock; |
1704 | int flags; |
1705 | |
1706 | sock = __sys_socket_create(family, type, |
1707 | protocol: update_socket_protocol(family, type, protocol)); |
1708 | if (IS_ERR(ptr: sock)) |
1709 | return PTR_ERR(ptr: sock); |
1710 | |
1711 | flags = type & ~SOCK_TYPE_MASK; |
1712 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1713 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1714 | |
1715 | return sock_map_fd(sock, flags: flags & (O_CLOEXEC | O_NONBLOCK)); |
1716 | } |
1717 | |
1718 | SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) |
1719 | { |
1720 | return __sys_socket(family, type, protocol); |
1721 | } |
1722 | |
1723 | /* |
1724 | * Create a pair of connected sockets. |
1725 | */ |
1726 | |
1727 | int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) |
1728 | { |
1729 | struct socket *sock1, *sock2; |
1730 | int fd1, fd2, err; |
1731 | struct file *newfile1, *newfile2; |
1732 | int flags; |
1733 | |
1734 | flags = type & ~SOCK_TYPE_MASK; |
1735 | if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1736 | return -EINVAL; |
1737 | type &= SOCK_TYPE_MASK; |
1738 | |
1739 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1740 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1741 | |
1742 | /* |
1743 | * reserve descriptors and make sure we won't fail |
1744 | * to return them to userland. |
1745 | */ |
1746 | fd1 = get_unused_fd_flags(flags); |
1747 | if (unlikely(fd1 < 0)) |
1748 | return fd1; |
1749 | |
1750 | fd2 = get_unused_fd_flags(flags); |
1751 | if (unlikely(fd2 < 0)) { |
1752 | put_unused_fd(fd: fd1); |
1753 | return fd2; |
1754 | } |
1755 | |
1756 | err = put_user(fd1, &usockvec[0]); |
1757 | if (err) |
1758 | goto out; |
1759 | |
1760 | err = put_user(fd2, &usockvec[1]); |
1761 | if (err) |
1762 | goto out; |
1763 | |
1764 | /* |
1765 | * Obtain the first socket and check if the underlying protocol |
1766 | * supports the socketpair call. |
1767 | */ |
1768 | |
1769 | err = sock_create(family, type, protocol, &sock1); |
1770 | if (unlikely(err < 0)) |
1771 | goto out; |
1772 | |
1773 | err = sock_create(family, type, protocol, &sock2); |
1774 | if (unlikely(err < 0)) { |
1775 | sock_release(sock1); |
1776 | goto out; |
1777 | } |
1778 | |
1779 | err = security_socket_socketpair(socka: sock1, sockb: sock2); |
1780 | if (unlikely(err)) { |
1781 | sock_release(sock2); |
1782 | sock_release(sock1); |
1783 | goto out; |
1784 | } |
1785 | |
1786 | err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); |
1787 | if (unlikely(err < 0)) { |
1788 | sock_release(sock2); |
1789 | sock_release(sock1); |
1790 | goto out; |
1791 | } |
1792 | |
1793 | newfile1 = sock_alloc_file(sock1, flags, NULL); |
1794 | if (IS_ERR(ptr: newfile1)) { |
1795 | err = PTR_ERR(ptr: newfile1); |
1796 | sock_release(sock2); |
1797 | goto out; |
1798 | } |
1799 | |
1800 | newfile2 = sock_alloc_file(sock2, flags, NULL); |
1801 | if (IS_ERR(ptr: newfile2)) { |
1802 | err = PTR_ERR(ptr: newfile2); |
1803 | fput(newfile1); |
1804 | goto out; |
1805 | } |
1806 | |
1807 | audit_fd_pair(fd1, fd2); |
1808 | |
1809 | fd_install(fd: fd1, file: newfile1); |
1810 | fd_install(fd: fd2, file: newfile2); |
1811 | return 0; |
1812 | |
1813 | out: |
1814 | put_unused_fd(fd: fd2); |
1815 | put_unused_fd(fd: fd1); |
1816 | return err; |
1817 | } |
1818 | |
1819 | SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, |
1820 | int __user *, usockvec) |
1821 | { |
1822 | return __sys_socketpair(family, type, protocol, usockvec); |
1823 | } |
1824 | |
1825 | /* |
1826 | * Bind a name to a socket. Nothing much to do here since it's |
1827 | * the protocol's responsibility to handle the local address. |
1828 | * |
1829 | * We move the socket address to kernel space before we call |
1830 | * the protocol layer (having also checked the address is ok). |
1831 | */ |
1832 | |
1833 | int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) |
1834 | { |
1835 | struct socket *sock; |
1836 | struct sockaddr_storage address; |
1837 | int err, fput_needed; |
1838 | |
1839 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
1840 | if (sock) { |
1841 | err = move_addr_to_kernel(uaddr: umyaddr, ulen: addrlen, kaddr: &address); |
1842 | if (!err) { |
1843 | err = security_socket_bind(sock, |
1844 | address: (struct sockaddr *)&address, |
1845 | addrlen); |
1846 | if (!err) |
1847 | err = READ_ONCE(sock->ops)->bind(sock, |
1848 | (struct sockaddr *) |
1849 | &address, addrlen); |
1850 | } |
1851 | fput_light(file: sock->file, fput_needed); |
1852 | } |
1853 | return err; |
1854 | } |
1855 | |
1856 | SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) |
1857 | { |
1858 | return __sys_bind(fd, umyaddr, addrlen); |
1859 | } |
1860 | |
1861 | /* |
1862 | * Perform a listen. Basically, we allow the protocol to do anything |
1863 | * necessary for a listen, and if that works, we mark the socket as |
1864 | * ready for listening. |
1865 | */ |
1866 | |
1867 | int __sys_listen(int fd, int backlog) |
1868 | { |
1869 | struct socket *sock; |
1870 | int err, fput_needed; |
1871 | int somaxconn; |
1872 | |
1873 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
1874 | if (sock) { |
1875 | somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); |
1876 | if ((unsigned int)backlog > somaxconn) |
1877 | backlog = somaxconn; |
1878 | |
1879 | err = security_socket_listen(sock, backlog); |
1880 | if (!err) |
1881 | err = READ_ONCE(sock->ops)->listen(sock, backlog); |
1882 | |
1883 | fput_light(file: sock->file, fput_needed); |
1884 | } |
1885 | return err; |
1886 | } |
1887 | |
1888 | SYSCALL_DEFINE2(listen, int, fd, int, backlog) |
1889 | { |
1890 | return __sys_listen(fd, backlog); |
1891 | } |
1892 | |
1893 | struct file *do_accept(struct file *file, unsigned file_flags, |
1894 | struct sockaddr __user *upeer_sockaddr, |
1895 | int __user *upeer_addrlen, int flags) |
1896 | { |
1897 | struct socket *sock, *newsock; |
1898 | struct file *newfile; |
1899 | int err, len; |
1900 | struct sockaddr_storage address; |
1901 | const struct proto_ops *ops; |
1902 | |
1903 | sock = sock_from_file(file); |
1904 | if (!sock) |
1905 | return ERR_PTR(error: -ENOTSOCK); |
1906 | |
1907 | newsock = sock_alloc(); |
1908 | if (!newsock) |
1909 | return ERR_PTR(error: -ENFILE); |
1910 | ops = READ_ONCE(sock->ops); |
1911 | |
1912 | newsock->type = sock->type; |
1913 | newsock->ops = ops; |
1914 | |
1915 | /* |
1916 | * We don't need try_module_get here, as the listening socket (sock) |
1917 | * has the protocol module (sock->ops->owner) held. |
1918 | */ |
1919 | __module_get(module: ops->owner); |
1920 | |
1921 | newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); |
1922 | if (IS_ERR(ptr: newfile)) |
1923 | return newfile; |
1924 | |
1925 | err = security_socket_accept(sock, newsock); |
1926 | if (err) |
1927 | goto out_fd; |
1928 | |
1929 | err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, |
1930 | false); |
1931 | if (err < 0) |
1932 | goto out_fd; |
1933 | |
1934 | if (upeer_sockaddr) { |
1935 | len = ops->getname(newsock, (struct sockaddr *)&address, 2); |
1936 | if (len < 0) { |
1937 | err = -ECONNABORTED; |
1938 | goto out_fd; |
1939 | } |
1940 | err = move_addr_to_user(kaddr: &address, |
1941 | klen: len, uaddr: upeer_sockaddr, ulen: upeer_addrlen); |
1942 | if (err < 0) |
1943 | goto out_fd; |
1944 | } |
1945 | |
1946 | /* File flags are not inherited via accept() unlike another OSes. */ |
1947 | return newfile; |
1948 | out_fd: |
1949 | fput(newfile); |
1950 | return ERR_PTR(error: err); |
1951 | } |
1952 | |
1953 | static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, |
1954 | int __user *upeer_addrlen, int flags) |
1955 | { |
1956 | struct file *newfile; |
1957 | int newfd; |
1958 | |
1959 | if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1960 | return -EINVAL; |
1961 | |
1962 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1963 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1964 | |
1965 | newfd = get_unused_fd_flags(flags); |
1966 | if (unlikely(newfd < 0)) |
1967 | return newfd; |
1968 | |
1969 | newfile = do_accept(file, file_flags: 0, upeer_sockaddr, upeer_addrlen, |
1970 | flags); |
1971 | if (IS_ERR(ptr: newfile)) { |
1972 | put_unused_fd(fd: newfd); |
1973 | return PTR_ERR(ptr: newfile); |
1974 | } |
1975 | fd_install(fd: newfd, file: newfile); |
1976 | return newfd; |
1977 | } |
1978 | |
1979 | /* |
1980 | * For accept, we attempt to create a new socket, set up the link |
1981 | * with the client, wake up the client, then return the new |
1982 | * connected fd. We collect the address of the connector in kernel |
1983 | * space and move it to user at the very end. This is unclean because |
1984 | * we open the socket then return an error. |
1985 | * |
1986 | * 1003.1g adds the ability to recvmsg() to query connection pending |
1987 | * status to recvmsg. We need to add that support in a way thats |
1988 | * clean when we restructure accept also. |
1989 | */ |
1990 | |
1991 | int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, |
1992 | int __user *upeer_addrlen, int flags) |
1993 | { |
1994 | int ret = -EBADF; |
1995 | struct fd f; |
1996 | |
1997 | f = fdget(fd); |
1998 | if (f.file) { |
1999 | ret = __sys_accept4_file(file: f.file, upeer_sockaddr, |
2000 | upeer_addrlen, flags); |
2001 | fdput(fd: f); |
2002 | } |
2003 | |
2004 | return ret; |
2005 | } |
2006 | |
2007 | SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, |
2008 | int __user *, upeer_addrlen, int, flags) |
2009 | { |
2010 | return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); |
2011 | } |
2012 | |
2013 | SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, |
2014 | int __user *, upeer_addrlen) |
2015 | { |
2016 | return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags: 0); |
2017 | } |
2018 | |
2019 | /* |
2020 | * Attempt to connect to a socket with the server address. The address |
2021 | * is in user space so we verify it is OK and move it to kernel space. |
2022 | * |
2023 | * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to |
2024 | * break bindings |
2025 | * |
2026 | * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and |
2027 | * other SEQPACKET protocols that take time to connect() as it doesn't |
2028 | * include the -EINPROGRESS status for such sockets. |
2029 | */ |
2030 | |
2031 | int __sys_connect_file(struct file *file, struct sockaddr_storage *address, |
2032 | int addrlen, int file_flags) |
2033 | { |
2034 | struct socket *sock; |
2035 | int err; |
2036 | |
2037 | sock = sock_from_file(file); |
2038 | if (!sock) { |
2039 | err = -ENOTSOCK; |
2040 | goto out; |
2041 | } |
2042 | |
2043 | err = |
2044 | security_socket_connect(sock, address: (struct sockaddr *)address, addrlen); |
2045 | if (err) |
2046 | goto out; |
2047 | |
2048 | err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, |
2049 | addrlen, sock->file->f_flags | file_flags); |
2050 | out: |
2051 | return err; |
2052 | } |
2053 | |
2054 | int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) |
2055 | { |
2056 | int ret = -EBADF; |
2057 | struct fd f; |
2058 | |
2059 | f = fdget(fd); |
2060 | if (f.file) { |
2061 | struct sockaddr_storage address; |
2062 | |
2063 | ret = move_addr_to_kernel(uaddr: uservaddr, ulen: addrlen, kaddr: &address); |
2064 | if (!ret) |
2065 | ret = __sys_connect_file(file: f.file, address: &address, addrlen, file_flags: 0); |
2066 | fdput(fd: f); |
2067 | } |
2068 | |
2069 | return ret; |
2070 | } |
2071 | |
2072 | SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, |
2073 | int, addrlen) |
2074 | { |
2075 | return __sys_connect(fd, uservaddr, addrlen); |
2076 | } |
2077 | |
2078 | /* |
2079 | * Get the local address ('name') of a socket object. Move the obtained |
2080 | * name to user space. |
2081 | */ |
2082 | |
2083 | int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, |
2084 | int __user *usockaddr_len) |
2085 | { |
2086 | struct socket *sock; |
2087 | struct sockaddr_storage address; |
2088 | int err, fput_needed; |
2089 | |
2090 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2091 | if (!sock) |
2092 | goto out; |
2093 | |
2094 | err = security_socket_getsockname(sock); |
2095 | if (err) |
2096 | goto out_put; |
2097 | |
2098 | err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); |
2099 | if (err < 0) |
2100 | goto out_put; |
2101 | /* "err" is actually length in this case */ |
2102 | err = move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr, ulen: usockaddr_len); |
2103 | |
2104 | out_put: |
2105 | fput_light(file: sock->file, fput_needed); |
2106 | out: |
2107 | return err; |
2108 | } |
2109 | |
2110 | SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, |
2111 | int __user *, usockaddr_len) |
2112 | { |
2113 | return __sys_getsockname(fd, usockaddr, usockaddr_len); |
2114 | } |
2115 | |
2116 | /* |
2117 | * Get the remote address ('name') of a socket object. Move the obtained |
2118 | * name to user space. |
2119 | */ |
2120 | |
2121 | int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, |
2122 | int __user *usockaddr_len) |
2123 | { |
2124 | struct socket *sock; |
2125 | struct sockaddr_storage address; |
2126 | int err, fput_needed; |
2127 | |
2128 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2129 | if (sock != NULL) { |
2130 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
2131 | |
2132 | err = security_socket_getpeername(sock); |
2133 | if (err) { |
2134 | fput_light(file: sock->file, fput_needed); |
2135 | return err; |
2136 | } |
2137 | |
2138 | err = ops->getname(sock, (struct sockaddr *)&address, 1); |
2139 | if (err >= 0) |
2140 | /* "err" is actually length in this case */ |
2141 | err = move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr, |
2142 | ulen: usockaddr_len); |
2143 | fput_light(file: sock->file, fput_needed); |
2144 | } |
2145 | return err; |
2146 | } |
2147 | |
2148 | SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, |
2149 | int __user *, usockaddr_len) |
2150 | { |
2151 | return __sys_getpeername(fd, usockaddr, usockaddr_len); |
2152 | } |
2153 | |
2154 | /* |
2155 | * Send a datagram to a given address. We move the address into kernel |
2156 | * space and check the user space data area is readable before invoking |
2157 | * the protocol. |
2158 | */ |
2159 | int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, |
2160 | struct sockaddr __user *addr, int addr_len) |
2161 | { |
2162 | struct socket *sock; |
2163 | struct sockaddr_storage address; |
2164 | int err; |
2165 | struct msghdr msg; |
2166 | int fput_needed; |
2167 | |
2168 | err = import_ubuf(ITER_SOURCE, buf: buff, len, i: &msg.msg_iter); |
2169 | if (unlikely(err)) |
2170 | return err; |
2171 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2172 | if (!sock) |
2173 | goto out; |
2174 | |
2175 | msg.msg_name = NULL; |
2176 | msg.msg_control = NULL; |
2177 | msg.msg_controllen = 0; |
2178 | msg.msg_namelen = 0; |
2179 | msg.msg_ubuf = NULL; |
2180 | if (addr) { |
2181 | err = move_addr_to_kernel(uaddr: addr, ulen: addr_len, kaddr: &address); |
2182 | if (err < 0) |
2183 | goto out_put; |
2184 | msg.msg_name = (struct sockaddr *)&address; |
2185 | msg.msg_namelen = addr_len; |
2186 | } |
2187 | flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
2188 | if (sock->file->f_flags & O_NONBLOCK) |
2189 | flags |= MSG_DONTWAIT; |
2190 | msg.msg_flags = flags; |
2191 | err = __sock_sendmsg(sock, msg: &msg); |
2192 | |
2193 | out_put: |
2194 | fput_light(file: sock->file, fput_needed); |
2195 | out: |
2196 | return err; |
2197 | } |
2198 | |
2199 | SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, |
2200 | unsigned int, flags, struct sockaddr __user *, addr, |
2201 | int, addr_len) |
2202 | { |
2203 | return __sys_sendto(fd, buff, len, flags, addr, addr_len); |
2204 | } |
2205 | |
2206 | /* |
2207 | * Send a datagram down a socket. |
2208 | */ |
2209 | |
2210 | SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, |
2211 | unsigned int, flags) |
2212 | { |
2213 | return __sys_sendto(fd, buff, len, flags, NULL, addr_len: 0); |
2214 | } |
2215 | |
2216 | /* |
2217 | * Receive a frame from the socket and optionally record the address of the |
2218 | * sender. We verify the buffers are writable and if needed move the |
2219 | * sender address from kernel to user space. |
2220 | */ |
2221 | int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, |
2222 | struct sockaddr __user *addr, int __user *addr_len) |
2223 | { |
2224 | struct sockaddr_storage address; |
2225 | struct msghdr msg = { |
2226 | /* Save some cycles and don't copy the address if not needed */ |
2227 | .msg_name = addr ? (struct sockaddr *)&address : NULL, |
2228 | }; |
2229 | struct socket *sock; |
2230 | int err, err2; |
2231 | int fput_needed; |
2232 | |
2233 | err = import_ubuf(ITER_DEST, buf: ubuf, len: size, i: &msg.msg_iter); |
2234 | if (unlikely(err)) |
2235 | return err; |
2236 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2237 | if (!sock) |
2238 | goto out; |
2239 | |
2240 | if (sock->file->f_flags & O_NONBLOCK) |
2241 | flags |= MSG_DONTWAIT; |
2242 | err = sock_recvmsg(sock, &msg, flags); |
2243 | |
2244 | if (err >= 0 && addr != NULL) { |
2245 | err2 = move_addr_to_user(kaddr: &address, |
2246 | klen: msg.msg_namelen, uaddr: addr, ulen: addr_len); |
2247 | if (err2 < 0) |
2248 | err = err2; |
2249 | } |
2250 | |
2251 | fput_light(file: sock->file, fput_needed); |
2252 | out: |
2253 | return err; |
2254 | } |
2255 | |
2256 | SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, |
2257 | unsigned int, flags, struct sockaddr __user *, addr, |
2258 | int __user *, addr_len) |
2259 | { |
2260 | return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); |
2261 | } |
2262 | |
2263 | /* |
2264 | * Receive a datagram from a socket. |
2265 | */ |
2266 | |
2267 | SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, |
2268 | unsigned int, flags) |
2269 | { |
2270 | return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); |
2271 | } |
2272 | |
2273 | static bool sock_use_custom_sol_socket(const struct socket *sock) |
2274 | { |
2275 | return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); |
2276 | } |
2277 | |
2278 | int do_sock_setsockopt(struct socket *sock, bool compat, int level, |
2279 | int optname, sockptr_t optval, int optlen) |
2280 | { |
2281 | const struct proto_ops *ops; |
2282 | char *kernel_optval = NULL; |
2283 | int err; |
2284 | |
2285 | if (optlen < 0) |
2286 | return -EINVAL; |
2287 | |
2288 | err = security_socket_setsockopt(sock, level, optname); |
2289 | if (err) |
2290 | goto out_put; |
2291 | |
2292 | if (!compat) |
2293 | err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, |
2294 | optval, &optlen, |
2295 | &kernel_optval); |
2296 | if (err < 0) |
2297 | goto out_put; |
2298 | if (err > 0) { |
2299 | err = 0; |
2300 | goto out_put; |
2301 | } |
2302 | |
2303 | if (kernel_optval) |
2304 | optval = KERNEL_SOCKPTR(p: kernel_optval); |
2305 | ops = READ_ONCE(sock->ops); |
2306 | if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) |
2307 | err = sock_setsockopt(sock, level, op: optname, optval, optlen); |
2308 | else if (unlikely(!ops->setsockopt)) |
2309 | err = -EOPNOTSUPP; |
2310 | else |
2311 | err = ops->setsockopt(sock, level, optname, optval, |
2312 | optlen); |
2313 | kfree(objp: kernel_optval); |
2314 | out_put: |
2315 | return err; |
2316 | } |
2317 | EXPORT_SYMBOL(do_sock_setsockopt); |
2318 | |
2319 | /* Set a socket option. Because we don't know the option lengths we have |
2320 | * to pass the user mode parameter for the protocols to sort out. |
2321 | */ |
2322 | int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, |
2323 | int optlen) |
2324 | { |
2325 | sockptr_t optval = USER_SOCKPTR(p: user_optval); |
2326 | bool compat = in_compat_syscall(); |
2327 | int err, fput_needed; |
2328 | struct socket *sock; |
2329 | |
2330 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2331 | if (!sock) |
2332 | return err; |
2333 | |
2334 | err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); |
2335 | |
2336 | fput_light(file: sock->file, fput_needed); |
2337 | return err; |
2338 | } |
2339 | |
2340 | SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, |
2341 | char __user *, optval, int, optlen) |
2342 | { |
2343 | return __sys_setsockopt(fd, level, optname, user_optval: optval, optlen); |
2344 | } |
2345 | |
2346 | INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, |
2347 | int optname)); |
2348 | |
2349 | int do_sock_getsockopt(struct socket *sock, bool compat, int level, |
2350 | int optname, sockptr_t optval, sockptr_t optlen) |
2351 | { |
2352 | int max_optlen __maybe_unused; |
2353 | const struct proto_ops *ops; |
2354 | int err; |
2355 | |
2356 | err = security_socket_getsockopt(sock, level, optname); |
2357 | if (err) |
2358 | return err; |
2359 | |
2360 | if (!compat) |
2361 | max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); |
2362 | |
2363 | ops = READ_ONCE(sock->ops); |
2364 | if (level == SOL_SOCKET) { |
2365 | err = sk_getsockopt(sk: sock->sk, level, optname, optval, optlen); |
2366 | } else if (unlikely(!ops->getsockopt)) { |
2367 | err = -EOPNOTSUPP; |
2368 | } else { |
2369 | if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, |
2370 | "Invalid argument type")) |
2371 | return -EOPNOTSUPP; |
2372 | |
2373 | err = ops->getsockopt(sock, level, optname, optval.user, |
2374 | optlen.user); |
2375 | } |
2376 | |
2377 | if (!compat) |
2378 | err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, |
2379 | optval, optlen, max_optlen, |
2380 | err); |
2381 | |
2382 | return err; |
2383 | } |
2384 | EXPORT_SYMBOL(do_sock_getsockopt); |
2385 | |
2386 | /* |
2387 | * Get a socket option. Because we don't know the option lengths we have |
2388 | * to pass a user mode parameter for the protocols to sort out. |
2389 | */ |
2390 | int __sys_getsockopt(int fd, int level, int optname, char __user *optval, |
2391 | int __user *optlen) |
2392 | { |
2393 | int err, fput_needed; |
2394 | struct socket *sock; |
2395 | bool compat; |
2396 | |
2397 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2398 | if (!sock) |
2399 | return err; |
2400 | |
2401 | compat = in_compat_syscall(); |
2402 | err = do_sock_getsockopt(sock, compat, level, optname, |
2403 | USER_SOCKPTR(p: optval), USER_SOCKPTR(p: optlen)); |
2404 | |
2405 | fput_light(file: sock->file, fput_needed); |
2406 | return err; |
2407 | } |
2408 | |
2409 | SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, |
2410 | char __user *, optval, int __user *, optlen) |
2411 | { |
2412 | return __sys_getsockopt(fd, level, optname, optval, optlen); |
2413 | } |
2414 | |
2415 | /* |
2416 | * Shutdown a socket. |
2417 | */ |
2418 | |
2419 | int __sys_shutdown_sock(struct socket *sock, int how) |
2420 | { |
2421 | int err; |
2422 | |
2423 | err = security_socket_shutdown(sock, how); |
2424 | if (!err) |
2425 | err = READ_ONCE(sock->ops)->shutdown(sock, how); |
2426 | |
2427 | return err; |
2428 | } |
2429 | |
2430 | int __sys_shutdown(int fd, int how) |
2431 | { |
2432 | int err, fput_needed; |
2433 | struct socket *sock; |
2434 | |
2435 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2436 | if (sock != NULL) { |
2437 | err = __sys_shutdown_sock(sock, how); |
2438 | fput_light(file: sock->file, fput_needed); |
2439 | } |
2440 | return err; |
2441 | } |
2442 | |
2443 | SYSCALL_DEFINE2(shutdown, int, fd, int, how) |
2444 | { |
2445 | return __sys_shutdown(fd, how); |
2446 | } |
2447 | |
2448 | /* A couple of helpful macros for getting the address of the 32/64 bit |
2449 | * fields which are the same type (int / unsigned) on our platforms. |
2450 | */ |
2451 | #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) |
2452 | #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) |
2453 | #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) |
2454 | |
2455 | struct used_address { |
2456 | struct sockaddr_storage name; |
2457 | unsigned int name_len; |
2458 | }; |
2459 | |
2460 | int __copy_msghdr(struct msghdr *kmsg, |
2461 | struct user_msghdr *msg, |
2462 | struct sockaddr __user **save_addr) |
2463 | { |
2464 | ssize_t err; |
2465 | |
2466 | kmsg->msg_control_is_user = true; |
2467 | kmsg->msg_get_inq = 0; |
2468 | kmsg->msg_control_user = msg->msg_control; |
2469 | kmsg->msg_controllen = msg->msg_controllen; |
2470 | kmsg->msg_flags = msg->msg_flags; |
2471 | |
2472 | kmsg->msg_namelen = msg->msg_namelen; |
2473 | if (!msg->msg_name) |
2474 | kmsg->msg_namelen = 0; |
2475 | |
2476 | if (kmsg->msg_namelen < 0) |
2477 | return -EINVAL; |
2478 | |
2479 | if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) |
2480 | kmsg->msg_namelen = sizeof(struct sockaddr_storage); |
2481 | |
2482 | if (save_addr) |
2483 | *save_addr = msg->msg_name; |
2484 | |
2485 | if (msg->msg_name && kmsg->msg_namelen) { |
2486 | if (!save_addr) { |
2487 | err = move_addr_to_kernel(uaddr: msg->msg_name, |
2488 | ulen: kmsg->msg_namelen, |
2489 | kaddr: kmsg->msg_name); |
2490 | if (err < 0) |
2491 | return err; |
2492 | } |
2493 | } else { |
2494 | kmsg->msg_name = NULL; |
2495 | kmsg->msg_namelen = 0; |
2496 | } |
2497 | |
2498 | if (msg->msg_iovlen > UIO_MAXIOV) |
2499 | return -EMSGSIZE; |
2500 | |
2501 | kmsg->msg_iocb = NULL; |
2502 | kmsg->msg_ubuf = NULL; |
2503 | return 0; |
2504 | } |
2505 | |
2506 | static int copy_msghdr_from_user(struct msghdr *kmsg, |
2507 | struct user_msghdr __user *umsg, |
2508 | struct sockaddr __user **save_addr, |
2509 | struct iovec **iov) |
2510 | { |
2511 | struct user_msghdr msg; |
2512 | ssize_t err; |
2513 | |
2514 | if (copy_from_user(to: &msg, from: umsg, n: sizeof(*umsg))) |
2515 | return -EFAULT; |
2516 | |
2517 | err = __copy_msghdr(kmsg, msg: &msg, save_addr); |
2518 | if (err) |
2519 | return err; |
2520 | |
2521 | err = import_iovec(type: save_addr ? ITER_DEST : ITER_SOURCE, |
2522 | uvec: msg.msg_iov, nr_segs: msg.msg_iovlen, |
2523 | UIO_FASTIOV, iovp: iov, i: &kmsg->msg_iter); |
2524 | return err < 0 ? err : 0; |
2525 | } |
2526 | |
2527 | static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, |
2528 | unsigned int flags, struct used_address *used_address, |
2529 | unsigned int allowed_msghdr_flags) |
2530 | { |
2531 | unsigned char ctl[sizeof(struct cmsghdr) + 20] |
2532 | __aligned(sizeof(__kernel_size_t)); |
2533 | /* 20 is size of ipv6_pktinfo */ |
2534 | unsigned char *ctl_buf = ctl; |
2535 | int ctl_len; |
2536 | ssize_t err; |
2537 | |
2538 | err = -ENOBUFS; |
2539 | |
2540 | if (msg_sys->msg_controllen > INT_MAX) |
2541 | goto out; |
2542 | flags |= (msg_sys->msg_flags & allowed_msghdr_flags); |
2543 | ctl_len = msg_sys->msg_controllen; |
2544 | if ((MSG_CMSG_COMPAT & flags) && ctl_len) { |
2545 | err = |
2546 | cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, |
2547 | sizeof(ctl)); |
2548 | if (err) |
2549 | goto out; |
2550 | ctl_buf = msg_sys->msg_control; |
2551 | ctl_len = msg_sys->msg_controllen; |
2552 | } else if (ctl_len) { |
2553 | BUILD_BUG_ON(sizeof(struct cmsghdr) != |
2554 | CMSG_ALIGN(sizeof(struct cmsghdr))); |
2555 | if (ctl_len > sizeof(ctl)) { |
2556 | ctl_buf = sock_kmalloc(sk: sock->sk, size: ctl_len, GFP_KERNEL); |
2557 | if (ctl_buf == NULL) |
2558 | goto out; |
2559 | } |
2560 | err = -EFAULT; |
2561 | if (copy_from_user(to: ctl_buf, from: msg_sys->msg_control_user, n: ctl_len)) |
2562 | goto out_freectl; |
2563 | msg_sys->msg_control = ctl_buf; |
2564 | msg_sys->msg_control_is_user = false; |
2565 | } |
2566 | flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
2567 | msg_sys->msg_flags = flags; |
2568 | |
2569 | if (sock->file->f_flags & O_NONBLOCK) |
2570 | msg_sys->msg_flags |= MSG_DONTWAIT; |
2571 | /* |
2572 | * If this is sendmmsg() and current destination address is same as |
2573 | * previously succeeded address, omit asking LSM's decision. |
2574 | * used_address->name_len is initialized to UINT_MAX so that the first |
2575 | * destination address never matches. |
2576 | */ |
2577 | if (used_address && msg_sys->msg_name && |
2578 | used_address->name_len == msg_sys->msg_namelen && |
2579 | !memcmp(p: &used_address->name, q: msg_sys->msg_name, |
2580 | size: used_address->name_len)) { |
2581 | err = sock_sendmsg_nosec(sock, msg: msg_sys); |
2582 | goto out_freectl; |
2583 | } |
2584 | err = __sock_sendmsg(sock, msg: msg_sys); |
2585 | /* |
2586 | * If this is sendmmsg() and sending to current destination address was |
2587 | * successful, remember it. |
2588 | */ |
2589 | if (used_address && err >= 0) { |
2590 | used_address->name_len = msg_sys->msg_namelen; |
2591 | if (msg_sys->msg_name) |
2592 | memcpy(&used_address->name, msg_sys->msg_name, |
2593 | used_address->name_len); |
2594 | } |
2595 | |
2596 | out_freectl: |
2597 | if (ctl_buf != ctl) |
2598 | sock_kfree_s(sk: sock->sk, mem: ctl_buf, size: ctl_len); |
2599 | out: |
2600 | return err; |
2601 | } |
2602 | |
2603 | static int sendmsg_copy_msghdr(struct msghdr *msg, |
2604 | struct user_msghdr __user *umsg, unsigned flags, |
2605 | struct iovec **iov) |
2606 | { |
2607 | int err; |
2608 | |
2609 | if (flags & MSG_CMSG_COMPAT) { |
2610 | struct compat_msghdr __user *msg_compat; |
2611 | |
2612 | msg_compat = (struct compat_msghdr __user *) umsg; |
2613 | err = get_compat_msghdr(msg, msg_compat, NULL, iov); |
2614 | } else { |
2615 | err = copy_msghdr_from_user(kmsg: msg, umsg, NULL, iov); |
2616 | } |
2617 | if (err < 0) |
2618 | return err; |
2619 | |
2620 | return 0; |
2621 | } |
2622 | |
2623 | static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, |
2624 | struct msghdr *msg_sys, unsigned int flags, |
2625 | struct used_address *used_address, |
2626 | unsigned int allowed_msghdr_flags) |
2627 | { |
2628 | struct sockaddr_storage address; |
2629 | struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
2630 | ssize_t err; |
2631 | |
2632 | msg_sys->msg_name = &address; |
2633 | |
2634 | err = sendmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, iov: &iov); |
2635 | if (err < 0) |
2636 | return err; |
2637 | |
2638 | err = ____sys_sendmsg(sock, msg_sys, flags, used_address, |
2639 | allowed_msghdr_flags); |
2640 | kfree(objp: iov); |
2641 | return err; |
2642 | } |
2643 | |
2644 | /* |
2645 | * BSD sendmsg interface |
2646 | */ |
2647 | long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, |
2648 | unsigned int flags) |
2649 | { |
2650 | return ____sys_sendmsg(sock, msg_sys: msg, flags, NULL, allowed_msghdr_flags: 0); |
2651 | } |
2652 | |
2653 | long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
2654 | bool forbid_cmsg_compat) |
2655 | { |
2656 | int fput_needed, err; |
2657 | struct msghdr msg_sys; |
2658 | struct socket *sock; |
2659 | |
2660 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2661 | return -EINVAL; |
2662 | |
2663 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2664 | if (!sock) |
2665 | goto out; |
2666 | |
2667 | err = ___sys_sendmsg(sock, msg, msg_sys: &msg_sys, flags, NULL, allowed_msghdr_flags: 0); |
2668 | |
2669 | fput_light(file: sock->file, fput_needed); |
2670 | out: |
2671 | return err; |
2672 | } |
2673 | |
2674 | SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) |
2675 | { |
2676 | return __sys_sendmsg(fd, msg, flags, forbid_cmsg_compat: true); |
2677 | } |
2678 | |
2679 | /* |
2680 | * Linux sendmmsg interface |
2681 | */ |
2682 | |
2683 | int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, |
2684 | unsigned int flags, bool forbid_cmsg_compat) |
2685 | { |
2686 | int fput_needed, err, datagrams; |
2687 | struct socket *sock; |
2688 | struct mmsghdr __user *entry; |
2689 | struct compat_mmsghdr __user *compat_entry; |
2690 | struct msghdr msg_sys; |
2691 | struct used_address used_address; |
2692 | unsigned int oflags = flags; |
2693 | |
2694 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2695 | return -EINVAL; |
2696 | |
2697 | if (vlen > UIO_MAXIOV) |
2698 | vlen = UIO_MAXIOV; |
2699 | |
2700 | datagrams = 0; |
2701 | |
2702 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2703 | if (!sock) |
2704 | return err; |
2705 | |
2706 | used_address.name_len = UINT_MAX; |
2707 | entry = mmsg; |
2708 | compat_entry = (struct compat_mmsghdr __user *)mmsg; |
2709 | err = 0; |
2710 | flags |= MSG_BATCH; |
2711 | |
2712 | while (datagrams < vlen) { |
2713 | if (datagrams == vlen - 1) |
2714 | flags = oflags; |
2715 | |
2716 | if (MSG_CMSG_COMPAT & flags) { |
2717 | err = ___sys_sendmsg(sock, msg: (struct user_msghdr __user *)compat_entry, |
2718 | msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR); |
2719 | if (err < 0) |
2720 | break; |
2721 | err = __put_user(err, &compat_entry->msg_len); |
2722 | ++compat_entry; |
2723 | } else { |
2724 | err = ___sys_sendmsg(sock, |
2725 | msg: (struct user_msghdr __user *)entry, |
2726 | msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR); |
2727 | if (err < 0) |
2728 | break; |
2729 | err = put_user(err, &entry->msg_len); |
2730 | ++entry; |
2731 | } |
2732 | |
2733 | if (err) |
2734 | break; |
2735 | ++datagrams; |
2736 | if (msg_data_left(msg: &msg_sys)) |
2737 | break; |
2738 | cond_resched(); |
2739 | } |
2740 | |
2741 | fput_light(file: sock->file, fput_needed); |
2742 | |
2743 | /* We only return an error if no datagrams were able to be sent */ |
2744 | if (datagrams != 0) |
2745 | return datagrams; |
2746 | |
2747 | return err; |
2748 | } |
2749 | |
2750 | SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, |
2751 | unsigned int, vlen, unsigned int, flags) |
2752 | { |
2753 | return __sys_sendmmsg(fd, mmsg, vlen, flags, forbid_cmsg_compat: true); |
2754 | } |
2755 | |
2756 | static int recvmsg_copy_msghdr(struct msghdr *msg, |
2757 | struct user_msghdr __user *umsg, unsigned flags, |
2758 | struct sockaddr __user **uaddr, |
2759 | struct iovec **iov) |
2760 | { |
2761 | ssize_t err; |
2762 | |
2763 | if (MSG_CMSG_COMPAT & flags) { |
2764 | struct compat_msghdr __user *msg_compat; |
2765 | |
2766 | msg_compat = (struct compat_msghdr __user *) umsg; |
2767 | err = get_compat_msghdr(msg, msg_compat, uaddr, iov); |
2768 | } else { |
2769 | err = copy_msghdr_from_user(kmsg: msg, umsg, save_addr: uaddr, iov); |
2770 | } |
2771 | if (err < 0) |
2772 | return err; |
2773 | |
2774 | return 0; |
2775 | } |
2776 | |
2777 | static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, |
2778 | struct user_msghdr __user *msg, |
2779 | struct sockaddr __user *uaddr, |
2780 | unsigned int flags, int nosec) |
2781 | { |
2782 | struct compat_msghdr __user *msg_compat = |
2783 | (struct compat_msghdr __user *) msg; |
2784 | int __user *uaddr_len = COMPAT_NAMELEN(msg); |
2785 | struct sockaddr_storage addr; |
2786 | unsigned long cmsg_ptr; |
2787 | int len; |
2788 | ssize_t err; |
2789 | |
2790 | msg_sys->msg_name = &addr; |
2791 | cmsg_ptr = (unsigned long)msg_sys->msg_control; |
2792 | msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); |
2793 | |
2794 | /* We assume all kernel code knows the size of sockaddr_storage */ |
2795 | msg_sys->msg_namelen = 0; |
2796 | |
2797 | if (sock->file->f_flags & O_NONBLOCK) |
2798 | flags |= MSG_DONTWAIT; |
2799 | |
2800 | if (unlikely(nosec)) |
2801 | err = sock_recvmsg_nosec(sock, msg: msg_sys, flags); |
2802 | else |
2803 | err = sock_recvmsg(sock, msg_sys, flags); |
2804 | |
2805 | if (err < 0) |
2806 | goto out; |
2807 | len = err; |
2808 | |
2809 | if (uaddr != NULL) { |
2810 | err = move_addr_to_user(kaddr: &addr, |
2811 | klen: msg_sys->msg_namelen, uaddr, |
2812 | ulen: uaddr_len); |
2813 | if (err < 0) |
2814 | goto out; |
2815 | } |
2816 | err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), |
2817 | COMPAT_FLAGS(msg)); |
2818 | if (err) |
2819 | goto out; |
2820 | if (MSG_CMSG_COMPAT & flags) |
2821 | err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
2822 | &msg_compat->msg_controllen); |
2823 | else |
2824 | err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
2825 | &msg->msg_controllen); |
2826 | if (err) |
2827 | goto out; |
2828 | err = len; |
2829 | out: |
2830 | return err; |
2831 | } |
2832 | |
2833 | static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, |
2834 | struct msghdr *msg_sys, unsigned int flags, int nosec) |
2835 | { |
2836 | struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
2837 | /* user mode address pointers */ |
2838 | struct sockaddr __user *uaddr; |
2839 | ssize_t err; |
2840 | |
2841 | err = recvmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, uaddr: &uaddr, iov: &iov); |
2842 | if (err < 0) |
2843 | return err; |
2844 | |
2845 | err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); |
2846 | kfree(objp: iov); |
2847 | return err; |
2848 | } |
2849 | |
2850 | /* |
2851 | * BSD recvmsg interface |
2852 | */ |
2853 | |
2854 | long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, |
2855 | struct user_msghdr __user *umsg, |
2856 | struct sockaddr __user *uaddr, unsigned int flags) |
2857 | { |
2858 | return ____sys_recvmsg(sock, msg_sys: msg, msg: umsg, uaddr, flags, nosec: 0); |
2859 | } |
2860 | |
2861 | long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
2862 | bool forbid_cmsg_compat) |
2863 | { |
2864 | int fput_needed, err; |
2865 | struct msghdr msg_sys; |
2866 | struct socket *sock; |
2867 | |
2868 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2869 | return -EINVAL; |
2870 | |
2871 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2872 | if (!sock) |
2873 | goto out; |
2874 | |
2875 | err = ___sys_recvmsg(sock, msg, msg_sys: &msg_sys, flags, nosec: 0); |
2876 | |
2877 | fput_light(file: sock->file, fput_needed); |
2878 | out: |
2879 | return err; |
2880 | } |
2881 | |
2882 | SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, |
2883 | unsigned int, flags) |
2884 | { |
2885 | return __sys_recvmsg(fd, msg, flags, forbid_cmsg_compat: true); |
2886 | } |
2887 | |
2888 | /* |
2889 | * Linux recvmmsg interface |
2890 | */ |
2891 | |
2892 | static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
2893 | unsigned int vlen, unsigned int flags, |
2894 | struct timespec64 *timeout) |
2895 | { |
2896 | int fput_needed, err, datagrams; |
2897 | struct socket *sock; |
2898 | struct mmsghdr __user *entry; |
2899 | struct compat_mmsghdr __user *compat_entry; |
2900 | struct msghdr msg_sys; |
2901 | struct timespec64 end_time; |
2902 | struct timespec64 timeout64; |
2903 | |
2904 | if (timeout && |
2905 | poll_select_set_timeout(to: &end_time, sec: timeout->tv_sec, |
2906 | nsec: timeout->tv_nsec)) |
2907 | return -EINVAL; |
2908 | |
2909 | datagrams = 0; |
2910 | |
2911 | sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed); |
2912 | if (!sock) |
2913 | return err; |
2914 | |
2915 | if (likely(!(flags & MSG_ERRQUEUE))) { |
2916 | err = sock_error(sk: sock->sk); |
2917 | if (err) { |
2918 | datagrams = err; |
2919 | goto out_put; |
2920 | } |
2921 | } |
2922 | |
2923 | entry = mmsg; |
2924 | compat_entry = (struct compat_mmsghdr __user *)mmsg; |
2925 | |
2926 | while (datagrams < vlen) { |
2927 | /* |
2928 | * No need to ask LSM for more than the first datagram. |
2929 | */ |
2930 | if (MSG_CMSG_COMPAT & flags) { |
2931 | err = ___sys_recvmsg(sock, msg: (struct user_msghdr __user *)compat_entry, |
2932 | msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE, |
2933 | nosec: datagrams); |
2934 | if (err < 0) |
2935 | break; |
2936 | err = __put_user(err, &compat_entry->msg_len); |
2937 | ++compat_entry; |
2938 | } else { |
2939 | err = ___sys_recvmsg(sock, |
2940 | msg: (struct user_msghdr __user *)entry, |
2941 | msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE, |
2942 | nosec: datagrams); |
2943 | if (err < 0) |
2944 | break; |
2945 | err = put_user(err, &entry->msg_len); |
2946 | ++entry; |
2947 | } |
2948 | |
2949 | if (err) |
2950 | break; |
2951 | ++datagrams; |
2952 | |
2953 | /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ |
2954 | if (flags & MSG_WAITFORONE) |
2955 | flags |= MSG_DONTWAIT; |
2956 | |
2957 | if (timeout) { |
2958 | ktime_get_ts64(ts: &timeout64); |
2959 | *timeout = timespec64_sub(lhs: end_time, rhs: timeout64); |
2960 | if (timeout->tv_sec < 0) { |
2961 | timeout->tv_sec = timeout->tv_nsec = 0; |
2962 | break; |
2963 | } |
2964 | |
2965 | /* Timeout, return less than vlen datagrams */ |
2966 | if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) |
2967 | break; |
2968 | } |
2969 | |
2970 | /* Out of band data, return right away */ |
2971 | if (msg_sys.msg_flags & MSG_OOB) |
2972 | break; |
2973 | cond_resched(); |
2974 | } |
2975 | |
2976 | if (err == 0) |
2977 | goto out_put; |
2978 | |
2979 | if (datagrams == 0) { |
2980 | datagrams = err; |
2981 | goto out_put; |
2982 | } |
2983 | |
2984 | /* |
2985 | * We may return less entries than requested (vlen) if the |
2986 | * sock is non block and there aren't enough datagrams... |
2987 | */ |
2988 | if (err != -EAGAIN) { |
2989 | /* |
2990 | * ... or if recvmsg returns an error after we |
2991 | * received some datagrams, where we record the |
2992 | * error to return on the next call or if the |
2993 | * app asks about it using getsockopt(SO_ERROR). |
2994 | */ |
2995 | WRITE_ONCE(sock->sk->sk_err, -err); |
2996 | } |
2997 | out_put: |
2998 | fput_light(file: sock->file, fput_needed); |
2999 | |
3000 | return datagrams; |
3001 | } |
3002 | |
3003 | int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
3004 | unsigned int vlen, unsigned int flags, |
3005 | struct __kernel_timespec __user *timeout, |
3006 | struct old_timespec32 __user *timeout32) |
3007 | { |
3008 | int datagrams; |
3009 | struct timespec64 timeout_sys; |
3010 | |
3011 | if (timeout && get_timespec64(ts: &timeout_sys, uts: timeout)) |
3012 | return -EFAULT; |
3013 | |
3014 | if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) |
3015 | return -EFAULT; |
3016 | |
3017 | if (!timeout && !timeout32) |
3018 | return do_recvmmsg(fd, mmsg, vlen, flags, NULL); |
3019 | |
3020 | datagrams = do_recvmmsg(fd, mmsg, vlen, flags, timeout: &timeout_sys); |
3021 | |
3022 | if (datagrams <= 0) |
3023 | return datagrams; |
3024 | |
3025 | if (timeout && put_timespec64(ts: &timeout_sys, uts: timeout)) |
3026 | datagrams = -EFAULT; |
3027 | |
3028 | if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) |
3029 | datagrams = -EFAULT; |
3030 | |
3031 | return datagrams; |
3032 | } |
3033 | |
3034 | SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, |
3035 | unsigned int, vlen, unsigned int, flags, |
3036 | struct __kernel_timespec __user *, timeout) |
3037 | { |
3038 | if (flags & MSG_CMSG_COMPAT) |
3039 | return -EINVAL; |
3040 | |
3041 | return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); |
3042 | } |
3043 | |
3044 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3045 | SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, |
3046 | unsigned int, vlen, unsigned int, flags, |
3047 | struct old_timespec32 __user *, timeout) |
3048 | { |
3049 | if (flags & MSG_CMSG_COMPAT) |
3050 | return -EINVAL; |
3051 | |
3052 | return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout32: timeout); |
3053 | } |
3054 | #endif |
3055 | |
3056 | #ifdef __ARCH_WANT_SYS_SOCKETCALL |
3057 | /* Argument list sizes for sys_socketcall */ |
3058 | #define AL(x) ((x) * sizeof(unsigned long)) |
3059 | static const unsigned char nargs[21] = { |
3060 | AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), |
3061 | AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), |
3062 | AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), |
3063 | AL(4), AL(5), AL(4) |
3064 | }; |
3065 | |
3066 | #undef AL |
3067 | |
3068 | /* |
3069 | * System call vectors. |
3070 | * |
3071 | * Argument checking cleaned up. Saved 20% in size. |
3072 | * This function doesn't need to set the kernel lock because |
3073 | * it is set by the callees. |
3074 | */ |
3075 | |
3076 | SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) |
3077 | { |
3078 | unsigned long a[AUDITSC_ARGS]; |
3079 | unsigned long a0, a1; |
3080 | int err; |
3081 | unsigned int len; |
3082 | |
3083 | if (call < 1 || call > SYS_SENDMMSG) |
3084 | return -EINVAL; |
3085 | call = array_index_nospec(call, SYS_SENDMMSG + 1); |
3086 | |
3087 | len = nargs[call]; |
3088 | if (len > sizeof(a)) |
3089 | return -EINVAL; |
3090 | |
3091 | /* copy_from_user should be SMP safe. */ |
3092 | if (copy_from_user(to: a, from: args, n: len)) |
3093 | return -EFAULT; |
3094 | |
3095 | err = audit_socketcall(nargs: nargs[call] / sizeof(unsigned long), args: a); |
3096 | if (err) |
3097 | return err; |
3098 | |
3099 | a0 = a[0]; |
3100 | a1 = a[1]; |
3101 | |
3102 | switch (call) { |
3103 | case SYS_SOCKET: |
3104 | err = __sys_socket(family: a0, type: a1, protocol: a[2]); |
3105 | break; |
3106 | case SYS_BIND: |
3107 | err = __sys_bind(fd: a0, umyaddr: (struct sockaddr __user *)a1, addrlen: a[2]); |
3108 | break; |
3109 | case SYS_CONNECT: |
3110 | err = __sys_connect(fd: a0, uservaddr: (struct sockaddr __user *)a1, addrlen: a[2]); |
3111 | break; |
3112 | case SYS_LISTEN: |
3113 | err = __sys_listen(fd: a0, backlog: a1); |
3114 | break; |
3115 | case SYS_ACCEPT: |
3116 | err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1, |
3117 | upeer_addrlen: (int __user *)a[2], flags: 0); |
3118 | break; |
3119 | case SYS_GETSOCKNAME: |
3120 | err = |
3121 | __sys_getsockname(fd: a0, usockaddr: (struct sockaddr __user *)a1, |
3122 | usockaddr_len: (int __user *)a[2]); |
3123 | break; |
3124 | case SYS_GETPEERNAME: |
3125 | err = |
3126 | __sys_getpeername(fd: a0, usockaddr: (struct sockaddr __user *)a1, |
3127 | usockaddr_len: (int __user *)a[2]); |
3128 | break; |
3129 | case SYS_SOCKETPAIR: |
3130 | err = __sys_socketpair(family: a0, type: a1, protocol: a[2], usockvec: (int __user *)a[3]); |
3131 | break; |
3132 | case SYS_SEND: |
3133 | err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3], |
3134 | NULL, addr_len: 0); |
3135 | break; |
3136 | case SYS_SENDTO: |
3137 | err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3], |
3138 | addr: (struct sockaddr __user *)a[4], addr_len: a[5]); |
3139 | break; |
3140 | case SYS_RECV: |
3141 | err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3], |
3142 | NULL, NULL); |
3143 | break; |
3144 | case SYS_RECVFROM: |
3145 | err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3], |
3146 | addr: (struct sockaddr __user *)a[4], |
3147 | addr_len: (int __user *)a[5]); |
3148 | break; |
3149 | case SYS_SHUTDOWN: |
3150 | err = __sys_shutdown(fd: a0, how: a1); |
3151 | break; |
3152 | case SYS_SETSOCKOPT: |
3153 | err = __sys_setsockopt(fd: a0, level: a1, optname: a[2], user_optval: (char __user *)a[3], |
3154 | optlen: a[4]); |
3155 | break; |
3156 | case SYS_GETSOCKOPT: |
3157 | err = |
3158 | __sys_getsockopt(fd: a0, level: a1, optname: a[2], optval: (char __user *)a[3], |
3159 | optlen: (int __user *)a[4]); |
3160 | break; |
3161 | case SYS_SENDMSG: |
3162 | err = __sys_sendmsg(fd: a0, msg: (struct user_msghdr __user *)a1, |
3163 | flags: a[2], forbid_cmsg_compat: true); |
3164 | break; |
3165 | case SYS_SENDMMSG: |
3166 | err = __sys_sendmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, vlen: a[2], |
3167 | flags: a[3], forbid_cmsg_compat: true); |
3168 | break; |
3169 | case SYS_RECVMSG: |
3170 | err = __sys_recvmsg(fd: a0, msg: (struct user_msghdr __user *)a1, |
3171 | flags: a[2], forbid_cmsg_compat: true); |
3172 | break; |
3173 | case SYS_RECVMMSG: |
3174 | if (IS_ENABLED(CONFIG_64BIT)) |
3175 | err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, |
3176 | vlen: a[2], flags: a[3], |
3177 | timeout: (struct __kernel_timespec __user *)a[4], |
3178 | NULL); |
3179 | else |
3180 | err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, |
3181 | vlen: a[2], flags: a[3], NULL, |
3182 | timeout32: (struct old_timespec32 __user *)a[4]); |
3183 | break; |
3184 | case SYS_ACCEPT4: |
3185 | err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1, |
3186 | upeer_addrlen: (int __user *)a[2], flags: a[3]); |
3187 | break; |
3188 | default: |
3189 | err = -EINVAL; |
3190 | break; |
3191 | } |
3192 | return err; |
3193 | } |
3194 | |
3195 | #endif /* __ARCH_WANT_SYS_SOCKETCALL */ |
3196 | |
3197 | /** |
3198 | * sock_register - add a socket protocol handler |
3199 | * @ops: description of protocol |
3200 | * |
3201 | * This function is called by a protocol handler that wants to |
3202 | * advertise its address family, and have it linked into the |
3203 | * socket interface. The value ops->family corresponds to the |
3204 | * socket system call protocol family. |
3205 | */ |
3206 | int sock_register(const struct net_proto_family *ops) |
3207 | { |
3208 | int err; |
3209 | |
3210 | if (ops->family >= NPROTO) { |
3211 | pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); |
3212 | return -ENOBUFS; |
3213 | } |
3214 | |
3215 | spin_lock(lock: &net_family_lock); |
3216 | if (rcu_dereference_protected(net_families[ops->family], |
3217 | lockdep_is_held(&net_family_lock))) |
3218 | err = -EEXIST; |
3219 | else { |
3220 | rcu_assign_pointer(net_families[ops->family], ops); |
3221 | err = 0; |
3222 | } |
3223 | spin_unlock(lock: &net_family_lock); |
3224 | |
3225 | pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); |
3226 | return err; |
3227 | } |
3228 | EXPORT_SYMBOL(sock_register); |
3229 | |
3230 | /** |
3231 | * sock_unregister - remove a protocol handler |
3232 | * @family: protocol family to remove |
3233 | * |
3234 | * This function is called by a protocol handler that wants to |
3235 | * remove its address family, and have it unlinked from the |
3236 | * new socket creation. |
3237 | * |
3238 | * If protocol handler is a module, then it can use module reference |
3239 | * counts to protect against new references. If protocol handler is not |
3240 | * a module then it needs to provide its own protection in |
3241 | * the ops->create routine. |
3242 | */ |
3243 | void sock_unregister(int family) |
3244 | { |
3245 | BUG_ON(family < 0 || family >= NPROTO); |
3246 | |
3247 | spin_lock(lock: &net_family_lock); |
3248 | RCU_INIT_POINTER(net_families[family], NULL); |
3249 | spin_unlock(lock: &net_family_lock); |
3250 | |
3251 | synchronize_rcu(); |
3252 | |
3253 | pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); |
3254 | } |
3255 | EXPORT_SYMBOL(sock_unregister); |
3256 | |
3257 | bool sock_is_registered(int family) |
3258 | { |
3259 | return family < NPROTO && rcu_access_pointer(net_families[family]); |
3260 | } |
3261 | |
3262 | static int __init sock_init(void) |
3263 | { |
3264 | int err; |
3265 | /* |
3266 | * Initialize the network sysctl infrastructure. |
3267 | */ |
3268 | err = net_sysctl_init(); |
3269 | if (err) |
3270 | goto out; |
3271 | |
3272 | /* |
3273 | * Initialize skbuff SLAB cache |
3274 | */ |
3275 | skb_init(); |
3276 | |
3277 | /* |
3278 | * Initialize the protocols module. |
3279 | */ |
3280 | |
3281 | init_inodecache(); |
3282 | |
3283 | err = register_filesystem(&sock_fs_type); |
3284 | if (err) |
3285 | goto out; |
3286 | sock_mnt = kern_mount(&sock_fs_type); |
3287 | if (IS_ERR(ptr: sock_mnt)) { |
3288 | err = PTR_ERR(ptr: sock_mnt); |
3289 | goto out_mount; |
3290 | } |
3291 | |
3292 | /* The real protocol initialization is performed in later initcalls. |
3293 | */ |
3294 | |
3295 | #ifdef CONFIG_NETFILTER |
3296 | err = netfilter_init(); |
3297 | if (err) |
3298 | goto out; |
3299 | #endif |
3300 | |
3301 | ptp_classifier_init(); |
3302 | |
3303 | out: |
3304 | return err; |
3305 | |
3306 | out_mount: |
3307 | unregister_filesystem(&sock_fs_type); |
3308 | goto out; |
3309 | } |
3310 | |
3311 | core_initcall(sock_init); /* early initcall */ |
3312 | |
3313 | #ifdef CONFIG_PROC_FS |
3314 | void socket_seq_show(struct seq_file *seq) |
3315 | { |
3316 | seq_printf(m: seq, fmt: "sockets: used %d\n", |
3317 | sock_inuse_get(net: seq->private)); |
3318 | } |
3319 | #endif /* CONFIG_PROC_FS */ |
3320 | |
3321 | /* Handle the fact that while struct ifreq has the same *layout* on |
3322 | * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, |
3323 | * which are handled elsewhere, it still has different *size* due to |
3324 | * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, |
3325 | * resulting in struct ifreq being 32 and 40 bytes respectively). |
3326 | * As a result, if the struct happens to be at the end of a page and |
3327 | * the next page isn't readable/writable, we get a fault. To prevent |
3328 | * that, copy back and forth to the full size. |
3329 | */ |
3330 | int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) |
3331 | { |
3332 | if (in_compat_syscall()) { |
3333 | struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; |
3334 | |
3335 | memset(ifr, 0, sizeof(*ifr)); |
3336 | if (copy_from_user(to: ifr32, from: arg, n: sizeof(*ifr32))) |
3337 | return -EFAULT; |
3338 | |
3339 | if (ifrdata) |
3340 | *ifrdata = compat_ptr(uptr: ifr32->ifr_data); |
3341 | |
3342 | return 0; |
3343 | } |
3344 | |
3345 | if (copy_from_user(to: ifr, from: arg, n: sizeof(*ifr))) |
3346 | return -EFAULT; |
3347 | |
3348 | if (ifrdata) |
3349 | *ifrdata = ifr->ifr_data; |
3350 | |
3351 | return 0; |
3352 | } |
3353 | EXPORT_SYMBOL(get_user_ifreq); |
3354 | |
3355 | int put_user_ifreq(struct ifreq *ifr, void __user *arg) |
3356 | { |
3357 | size_t size = sizeof(*ifr); |
3358 | |
3359 | if (in_compat_syscall()) |
3360 | size = sizeof(struct compat_ifreq); |
3361 | |
3362 | if (copy_to_user(to: arg, from: ifr, n: size)) |
3363 | return -EFAULT; |
3364 | |
3365 | return 0; |
3366 | } |
3367 | EXPORT_SYMBOL(put_user_ifreq); |
3368 | |
3369 | #ifdef CONFIG_COMPAT |
3370 | static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) |
3371 | { |
3372 | compat_uptr_t uptr32; |
3373 | struct ifreq ifr; |
3374 | void __user *saved; |
3375 | int err; |
3376 | |
3377 | if (get_user_ifreq(&ifr, NULL, uifr32)) |
3378 | return -EFAULT; |
3379 | |
3380 | if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) |
3381 | return -EFAULT; |
3382 | |
3383 | saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; |
3384 | ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr: uptr32); |
3385 | |
3386 | err = dev_ioctl(net, SIOCWANDEV, ifr: &ifr, NULL, NULL); |
3387 | if (!err) { |
3388 | ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; |
3389 | if (put_user_ifreq(&ifr, uifr32)) |
3390 | err = -EFAULT; |
3391 | } |
3392 | return err; |
3393 | } |
3394 | |
3395 | /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ |
3396 | static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, |
3397 | struct compat_ifreq __user *u_ifreq32) |
3398 | { |
3399 | struct ifreq ifreq; |
3400 | void __user *data; |
3401 | |
3402 | if (!is_socket_ioctl_cmd(cmd)) |
3403 | return -ENOTTY; |
3404 | if (get_user_ifreq(&ifreq, &data, u_ifreq32)) |
3405 | return -EFAULT; |
3406 | ifreq.ifr_data = data; |
3407 | |
3408 | return dev_ioctl(net, cmd, ifr: &ifreq, data, NULL); |
3409 | } |
3410 | |
3411 | static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, |
3412 | unsigned int cmd, unsigned long arg) |
3413 | { |
3414 | void __user *argp = compat_ptr(uptr: arg); |
3415 | struct sock *sk = sock->sk; |
3416 | struct net *net = sock_net(sk); |
3417 | const struct proto_ops *ops; |
3418 | |
3419 | if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) |
3420 | return sock_ioctl(file, cmd, arg: (unsigned long)argp); |
3421 | |
3422 | switch (cmd) { |
3423 | case SIOCWANDEV: |
3424 | return compat_siocwandev(net, uifr32: argp); |
3425 | case SIOCGSTAMP_OLD: |
3426 | case SIOCGSTAMPNS_OLD: |
3427 | ops = READ_ONCE(sock->ops); |
3428 | if (!ops->gettstamp) |
3429 | return -ENOIOCTLCMD; |
3430 | return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, |
3431 | !COMPAT_USE_64BIT_TIME); |
3432 | |
3433 | case SIOCETHTOOL: |
3434 | case SIOCBONDSLAVEINFOQUERY: |
3435 | case SIOCBONDINFOQUERY: |
3436 | case SIOCSHWTSTAMP: |
3437 | case SIOCGHWTSTAMP: |
3438 | return compat_ifr_data_ioctl(net, cmd, u_ifreq32: argp); |
3439 | |
3440 | case FIOSETOWN: |
3441 | case SIOCSPGRP: |
3442 | case FIOGETOWN: |
3443 | case SIOCGPGRP: |
3444 | case SIOCBRADDBR: |
3445 | case SIOCBRDELBR: |
3446 | case SIOCGIFVLAN: |
3447 | case SIOCSIFVLAN: |
3448 | case SIOCGSKNS: |
3449 | case SIOCGSTAMP_NEW: |
3450 | case SIOCGSTAMPNS_NEW: |
3451 | case SIOCGIFCONF: |
3452 | case SIOCSIFBR: |
3453 | case SIOCGIFBR: |
3454 | return sock_ioctl(file, cmd, arg); |
3455 | |
3456 | case SIOCGIFFLAGS: |
3457 | case SIOCSIFFLAGS: |
3458 | case SIOCGIFMAP: |
3459 | case SIOCSIFMAP: |
3460 | case SIOCGIFMETRIC: |
3461 | case SIOCSIFMETRIC: |
3462 | case SIOCGIFMTU: |
3463 | case SIOCSIFMTU: |
3464 | case SIOCGIFMEM: |
3465 | case SIOCSIFMEM: |
3466 | case SIOCGIFHWADDR: |
3467 | case SIOCSIFHWADDR: |
3468 | case SIOCADDMULTI: |
3469 | case SIOCDELMULTI: |
3470 | case SIOCGIFINDEX: |
3471 | case SIOCGIFADDR: |
3472 | case SIOCSIFADDR: |
3473 | case SIOCSIFHWBROADCAST: |
3474 | case SIOCDIFADDR: |
3475 | case SIOCGIFBRDADDR: |
3476 | case SIOCSIFBRDADDR: |
3477 | case SIOCGIFDSTADDR: |
3478 | case SIOCSIFDSTADDR: |
3479 | case SIOCGIFNETMASK: |
3480 | case SIOCSIFNETMASK: |
3481 | case SIOCSIFPFLAGS: |
3482 | case SIOCGIFPFLAGS: |
3483 | case SIOCGIFTXQLEN: |
3484 | case SIOCSIFTXQLEN: |
3485 | case SIOCBRADDIF: |
3486 | case SIOCBRDELIF: |
3487 | case SIOCGIFNAME: |
3488 | case SIOCSIFNAME: |
3489 | case SIOCGMIIPHY: |
3490 | case SIOCGMIIREG: |
3491 | case SIOCSMIIREG: |
3492 | case SIOCBONDENSLAVE: |
3493 | case SIOCBONDRELEASE: |
3494 | case SIOCBONDSETHWADDR: |
3495 | case SIOCBONDCHANGEACTIVE: |
3496 | case SIOCSARP: |
3497 | case SIOCGARP: |
3498 | case SIOCDARP: |
3499 | case SIOCOUTQ: |
3500 | case SIOCOUTQNSD: |
3501 | case SIOCATMARK: |
3502 | return sock_do_ioctl(net, sock, cmd, arg); |
3503 | } |
3504 | |
3505 | return -ENOIOCTLCMD; |
3506 | } |
3507 | |
3508 | static long compat_sock_ioctl(struct file *file, unsigned int cmd, |
3509 | unsigned long arg) |
3510 | { |
3511 | struct socket *sock = file->private_data; |
3512 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
3513 | int ret = -ENOIOCTLCMD; |
3514 | struct sock *sk; |
3515 | struct net *net; |
3516 | |
3517 | sk = sock->sk; |
3518 | net = sock_net(sk); |
3519 | |
3520 | if (ops->compat_ioctl) |
3521 | ret = ops->compat_ioctl(sock, cmd, arg); |
3522 | |
3523 | if (ret == -ENOIOCTLCMD && |
3524 | (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) |
3525 | ret = compat_wext_handle_ioctl(net, cmd, arg); |
3526 | |
3527 | if (ret == -ENOIOCTLCMD) |
3528 | ret = compat_sock_ioctl_trans(file, sock, cmd, arg); |
3529 | |
3530 | return ret; |
3531 | } |
3532 | #endif |
3533 | |
3534 | /** |
3535 | * kernel_bind - bind an address to a socket (kernel space) |
3536 | * @sock: socket |
3537 | * @addr: address |
3538 | * @addrlen: length of address |
3539 | * |
3540 | * Returns 0 or an error. |
3541 | */ |
3542 | |
3543 | int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) |
3544 | { |
3545 | struct sockaddr_storage address; |
3546 | |
3547 | memcpy(&address, addr, addrlen); |
3548 | |
3549 | return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, |
3550 | addrlen); |
3551 | } |
3552 | EXPORT_SYMBOL(kernel_bind); |
3553 | |
3554 | /** |
3555 | * kernel_listen - move socket to listening state (kernel space) |
3556 | * @sock: socket |
3557 | * @backlog: pending connections queue size |
3558 | * |
3559 | * Returns 0 or an error. |
3560 | */ |
3561 | |
3562 | int kernel_listen(struct socket *sock, int backlog) |
3563 | { |
3564 | return READ_ONCE(sock->ops)->listen(sock, backlog); |
3565 | } |
3566 | EXPORT_SYMBOL(kernel_listen); |
3567 | |
3568 | /** |
3569 | * kernel_accept - accept a connection (kernel space) |
3570 | * @sock: listening socket |
3571 | * @newsock: new connected socket |
3572 | * @flags: flags |
3573 | * |
3574 | * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. |
3575 | * If it fails, @newsock is guaranteed to be %NULL. |
3576 | * Returns 0 or an error. |
3577 | */ |
3578 | |
3579 | int kernel_accept(struct socket *sock, struct socket **newsock, int flags) |
3580 | { |
3581 | struct sock *sk = sock->sk; |
3582 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
3583 | int err; |
3584 | |
3585 | err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, |
3586 | newsock); |
3587 | if (err < 0) |
3588 | goto done; |
3589 | |
3590 | err = ops->accept(sock, *newsock, flags, true); |
3591 | if (err < 0) { |
3592 | sock_release(*newsock); |
3593 | *newsock = NULL; |
3594 | goto done; |
3595 | } |
3596 | |
3597 | (*newsock)->ops = ops; |
3598 | __module_get(module: ops->owner); |
3599 | |
3600 | done: |
3601 | return err; |
3602 | } |
3603 | EXPORT_SYMBOL(kernel_accept); |
3604 | |
3605 | /** |
3606 | * kernel_connect - connect a socket (kernel space) |
3607 | * @sock: socket |
3608 | * @addr: address |
3609 | * @addrlen: address length |
3610 | * @flags: flags (O_NONBLOCK, ...) |
3611 | * |
3612 | * For datagram sockets, @addr is the address to which datagrams are sent |
3613 | * by default, and the only address from which datagrams are received. |
3614 | * For stream sockets, attempts to connect to @addr. |
3615 | * Returns 0 or an error code. |
3616 | */ |
3617 | |
3618 | int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, |
3619 | int flags) |
3620 | { |
3621 | struct sockaddr_storage address; |
3622 | |
3623 | memcpy(&address, addr, addrlen); |
3624 | |
3625 | return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, |
3626 | addrlen, flags); |
3627 | } |
3628 | EXPORT_SYMBOL(kernel_connect); |
3629 | |
3630 | /** |
3631 | * kernel_getsockname - get the address which the socket is bound (kernel space) |
3632 | * @sock: socket |
3633 | * @addr: address holder |
3634 | * |
3635 | * Fills the @addr pointer with the address which the socket is bound. |
3636 | * Returns the length of the address in bytes or an error code. |
3637 | */ |
3638 | |
3639 | int kernel_getsockname(struct socket *sock, struct sockaddr *addr) |
3640 | { |
3641 | return READ_ONCE(sock->ops)->getname(sock, addr, 0); |
3642 | } |
3643 | EXPORT_SYMBOL(kernel_getsockname); |
3644 | |
3645 | /** |
3646 | * kernel_getpeername - get the address which the socket is connected (kernel space) |
3647 | * @sock: socket |
3648 | * @addr: address holder |
3649 | * |
3650 | * Fills the @addr pointer with the address which the socket is connected. |
3651 | * Returns the length of the address in bytes or an error code. |
3652 | */ |
3653 | |
3654 | int kernel_getpeername(struct socket *sock, struct sockaddr *addr) |
3655 | { |
3656 | return READ_ONCE(sock->ops)->getname(sock, addr, 1); |
3657 | } |
3658 | EXPORT_SYMBOL(kernel_getpeername); |
3659 | |
3660 | /** |
3661 | * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) |
3662 | * @sock: socket |
3663 | * @how: connection part |
3664 | * |
3665 | * Returns 0 or an error. |
3666 | */ |
3667 | |
3668 | int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) |
3669 | { |
3670 | return READ_ONCE(sock->ops)->shutdown(sock, how); |
3671 | } |
3672 | EXPORT_SYMBOL(kernel_sock_shutdown); |
3673 | |
3674 | /** |
3675 | * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket |
3676 | * @sk: socket |
3677 | * |
3678 | * This routine returns the IP overhead imposed by a socket i.e. |
3679 | * the length of the underlying IP header, depending on whether |
3680 | * this is an IPv4 or IPv6 socket and the length from IP options turned |
3681 | * on at the socket. Assumes that the caller has a lock on the socket. |
3682 | */ |
3683 | |
3684 | u32 kernel_sock_ip_overhead(struct sock *sk) |
3685 | { |
3686 | struct inet_sock *inet; |
3687 | struct ip_options_rcu *opt; |
3688 | u32 overhead = 0; |
3689 | #if IS_ENABLED(CONFIG_IPV6) |
3690 | struct ipv6_pinfo *np; |
3691 | struct ipv6_txoptions *optv6 = NULL; |
3692 | #endif /* IS_ENABLED(CONFIG_IPV6) */ |
3693 | |
3694 | if (!sk) |
3695 | return overhead; |
3696 | |
3697 | switch (sk->sk_family) { |
3698 | case AF_INET: |
3699 | inet = inet_sk(sk); |
3700 | overhead += sizeof(struct iphdr); |
3701 | opt = rcu_dereference_protected(inet->inet_opt, |
3702 | sock_owned_by_user(sk)); |
3703 | if (opt) |
3704 | overhead += opt->opt.optlen; |
3705 | return overhead; |
3706 | #if IS_ENABLED(CONFIG_IPV6) |
3707 | case AF_INET6: |
3708 | np = inet6_sk(sk: sk); |
3709 | overhead += sizeof(struct ipv6hdr); |
3710 | if (np) |
3711 | optv6 = rcu_dereference_protected(np->opt, |
3712 | sock_owned_by_user(sk)); |
3713 | if (optv6) |
3714 | overhead += (optv6->opt_flen + optv6->opt_nflen); |
3715 | return overhead; |
3716 | #endif /* IS_ENABLED(CONFIG_IPV6) */ |
3717 | default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ |
3718 | return overhead; |
3719 | } |
3720 | } |
3721 | EXPORT_SYMBOL(kernel_sock_ip_overhead); |
3722 |
Definitions
- sysctl_net_busy_read
- sysctl_net_busy_poll
- sock_show_fdinfo
- socket_file_ops
- pf_family_names
- net_family_lock
- net_families
- move_addr_to_kernel
- move_addr_to_user
- sock_inode_cachep
- sock_alloc_inode
- sock_free_inode
- init_once
- init_inodecache
- sockfs_ops
- sockfs_dname
- sockfs_dentry_operations
- sockfs_xattr_get
- sockfs_xattr_handler
- sockfs_security_xattr_set
- sockfs_security_xattr_handler
- sockfs_xattr_handlers
- sockfs_init_fs_context
- sock_mnt
- sock_fs_type
- sock_alloc_file
- sock_map_fd
- sock_from_file
- sockfd_lookup
- sockfd_lookup_light
- sockfs_listxattr
- sockfs_setattr
- sockfs_inode_ops
- sock_alloc
- __sock_release
- sock_release
- __sock_tx_timestamp
- call_trace_sock_send_length
- sock_sendmsg_nosec
- __sock_sendmsg
- sock_sendmsg
- kernel_sendmsg
- kernel_sendmsg_locked
- skb_is_err_queue
- skb_is_swtx_tstamp
- get_timestamp
- put_ts_pktinfo
- __sock_recv_timestamp
- __sock_recv_wifi_status
- sock_recv_drops
- sock_recv_mark
- __sock_recv_cmsgs
- call_trace_sock_recv_length
- sock_recvmsg_nosec
- sock_recvmsg
- kernel_recvmsg
- sock_splice_read
- sock_splice_eof
- sock_read_iter
- sock_write_iter
- br_ioctl_mutex
- br_ioctl_hook
- brioctl_set
- br_ioctl_call
- vlan_ioctl_mutex
- vlan_ioctl_hook
- vlan_ioctl_set
- sock_do_ioctl
- sock_ioctl
- sock_create_lite
- sock_poll
- sock_mmap
- sock_close
- sock_fasync
- sock_wake_async
- __sock_create
- sock_create
- sock_create_kern
- __sys_socket_create
- __sys_socket_file
- update_socket_protocol
- __sys_socket
- __sys_socketpair
- __sys_bind
- __sys_listen
- do_accept
- __sys_accept4_file
- __sys_accept4
- __sys_connect_file
- __sys_connect
- __sys_getsockname
- __sys_getpeername
- __sys_sendto
- __sys_recvfrom
- sock_use_custom_sol_socket
- do_sock_setsockopt
- __sys_setsockopt
- do_sock_getsockopt
- __sys_getsockopt
- __sys_shutdown_sock
- __sys_shutdown
- used_address
- __copy_msghdr
- copy_msghdr_from_user
- ____sys_sendmsg
- sendmsg_copy_msghdr
- ___sys_sendmsg
- __sys_sendmsg_sock
- __sys_sendmsg
- __sys_sendmmsg
- recvmsg_copy_msghdr
- ____sys_recvmsg
- ___sys_recvmsg
- __sys_recvmsg_sock
- __sys_recvmsg
- do_recvmmsg
- __sys_recvmmsg
- nargs
- sock_register
- sock_unregister
- sock_is_registered
- sock_init
- socket_seq_show
- get_user_ifreq
- put_user_ifreq
- compat_siocwandev
- compat_ifr_data_ioctl
- compat_sock_ioctl_trans
- compat_sock_ioctl
- kernel_bind
- kernel_listen
- kernel_accept
- kernel_connect
- kernel_getsockname
- kernel_getpeername
- kernel_sock_shutdown
Improve your Profiling and Debugging skills
Find out more