1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * NET An implementation of the SOCKET network access protocol. |
4 | * |
5 | * Version: @(#)socket.c 1.1.93 18/02/95 |
6 | * |
7 | * Authors: Orest Zborowski, <obz@Kodak.COM> |
8 | * Ross Biro |
9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
10 | * |
11 | * Fixes: |
12 | * Anonymous : NOTSOCK/BADF cleanup. Error fix in |
13 | * shutdown() |
14 | * Alan Cox : verify_area() fixes |
15 | * Alan Cox : Removed DDI |
16 | * Jonathan Kamens : SOCK_DGRAM reconnect bug |
17 | * Alan Cox : Moved a load of checks to the very |
18 | * top level. |
19 | * Alan Cox : Move address structures to/from user |
20 | * mode above the protocol layers. |
21 | * Rob Janssen : Allow 0 length sends. |
22 | * Alan Cox : Asynchronous I/O support (cribbed from the |
23 | * tty drivers). |
24 | * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) |
25 | * Jeff Uphoff : Made max number of sockets command-line |
26 | * configurable. |
27 | * Matti Aarnio : Made the number of sockets dynamic, |
28 | * to be allocated when needed, and mr. |
29 | * Uphoff's max is used as max to be |
30 | * allowed to allocate. |
31 | * Linus : Argh. removed all the socket allocation |
32 | * altogether: it's in the inode now. |
33 | * Alan Cox : Made sock_alloc()/sock_release() public |
34 | * for NetROM and future kernel nfsd type |
35 | * stuff. |
36 | * Alan Cox : sendmsg/recvmsg basics. |
37 | * Tom Dyas : Export net symbols. |
38 | * Marcin Dalecki : Fixed problems with CONFIG_NET="n". |
39 | * Alan Cox : Added thread locking to sys_* calls |
40 | * for sockets. May have errors at the |
41 | * moment. |
42 | * Kevin Buhr : Fixed the dumb errors in the above. |
43 | * Andi Kleen : Some small cleanups, optimizations, |
44 | * and fixed a copy_from_user() bug. |
45 | * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) |
46 | * Tigran Aivazian : Made listen(2) backlog sanity checks |
47 | * protocol-independent |
48 | * |
49 | * This module is effectively the top level interface to the BSD socket |
50 | * paradigm. |
51 | * |
52 | * Based upon Swansea University Computer Society NET3.039 |
53 | */ |
54 | |
55 | #include <linux/bpf-cgroup.h> |
56 | #include <linux/ethtool.h> |
57 | #include <linux/mm.h> |
58 | #include <linux/socket.h> |
59 | #include <linux/file.h> |
60 | #include <linux/splice.h> |
61 | #include <linux/net.h> |
62 | #include <linux/interrupt.h> |
63 | #include <linux/thread_info.h> |
64 | #include <linux/rcupdate.h> |
65 | #include <linux/netdevice.h> |
66 | #include <linux/proc_fs.h> |
67 | #include <linux/seq_file.h> |
68 | #include <linux/mutex.h> |
69 | #include <linux/if_bridge.h> |
70 | #include <linux/if_vlan.h> |
71 | #include <linux/ptp_classify.h> |
72 | #include <linux/init.h> |
73 | #include <linux/poll.h> |
74 | #include <linux/cache.h> |
75 | #include <linux/module.h> |
76 | #include <linux/highmem.h> |
77 | #include <linux/mount.h> |
78 | #include <linux/pseudo_fs.h> |
79 | #include <linux/security.h> |
80 | #include <linux/syscalls.h> |
81 | #include <linux/compat.h> |
82 | #include <linux/kmod.h> |
83 | #include <linux/audit.h> |
84 | #include <linux/wireless.h> |
85 | #include <linux/nsproxy.h> |
86 | #include <linux/magic.h> |
87 | #include <linux/slab.h> |
88 | #include <linux/xattr.h> |
89 | #include <linux/nospec.h> |
90 | #include <linux/indirect_call_wrapper.h> |
91 | #include <linux/io_uring/net.h> |
92 | |
93 | #include <linux/uaccess.h> |
94 | #include <asm/unistd.h> |
95 | |
96 | #include <net/compat.h> |
97 | #include <net/wext.h> |
98 | #include <net/cls_cgroup.h> |
99 | |
100 | #include <net/sock.h> |
101 | #include <linux/netfilter.h> |
102 | |
103 | #include <linux/if_tun.h> |
104 | #include <linux/ipv6_route.h> |
105 | #include <linux/route.h> |
106 | #include <linux/termios.h> |
107 | #include <linux/sockios.h> |
108 | #include <net/busy_poll.h> |
109 | #include <linux/errqueue.h> |
110 | #include <linux/ptp_clock_kernel.h> |
111 | #include <trace/events/sock.h> |
112 | |
113 | #include "core/dev.h" |
114 | |
115 | #ifdef CONFIG_NET_RX_BUSY_POLL |
116 | unsigned int sysctl_net_busy_read __read_mostly; |
117 | unsigned int sysctl_net_busy_poll __read_mostly; |
118 | #endif |
119 | |
120 | static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); |
121 | static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); |
122 | static int sock_mmap(struct file *file, struct vm_area_struct *vma); |
123 | |
124 | static int sock_close(struct inode *inode, struct file *file); |
125 | static __poll_t sock_poll(struct file *file, |
126 | struct poll_table_struct *wait); |
127 | static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
128 | #ifdef CONFIG_COMPAT |
129 | static long compat_sock_ioctl(struct file *file, |
130 | unsigned int cmd, unsigned long arg); |
131 | #endif |
132 | static int sock_fasync(int fd, struct file *filp, int on); |
133 | static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
134 | struct pipe_inode_info *pipe, size_t len, |
135 | unsigned int flags); |
136 | static void sock_splice_eof(struct file *file); |
137 | |
138 | #ifdef CONFIG_PROC_FS |
139 | static void sock_show_fdinfo(struct seq_file *m, struct file *f) |
140 | { |
141 | struct socket *sock = f->private_data; |
142 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
143 | |
144 | if (ops->show_fdinfo) |
145 | ops->show_fdinfo(m, sock); |
146 | } |
147 | #else |
148 | #define sock_show_fdinfo NULL |
149 | #endif |
150 | |
151 | /* |
152 | * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear |
153 | * in the operation structures but are done directly via the socketcall() multiplexor. |
154 | */ |
155 | |
156 | static const struct file_operations socket_file_ops = { |
157 | .owner = THIS_MODULE, |
158 | .read_iter = sock_read_iter, |
159 | .write_iter = sock_write_iter, |
160 | .poll = sock_poll, |
161 | .unlocked_ioctl = sock_ioctl, |
162 | #ifdef CONFIG_COMPAT |
163 | .compat_ioctl = compat_sock_ioctl, |
164 | #endif |
165 | .uring_cmd = io_uring_cmd_sock, |
166 | .mmap = sock_mmap, |
167 | .release = sock_close, |
168 | .fasync = sock_fasync, |
169 | .splice_write = splice_to_socket, |
170 | .splice_read = sock_splice_read, |
171 | .splice_eof = sock_splice_eof, |
172 | .show_fdinfo = sock_show_fdinfo, |
173 | }; |
174 | |
175 | static const char * const pf_family_names[] = { |
176 | [PF_UNSPEC] = "PF_UNSPEC", |
177 | [PF_UNIX] = "PF_UNIX/PF_LOCAL", |
178 | [PF_INET] = "PF_INET", |
179 | [PF_AX25] = "PF_AX25", |
180 | [PF_IPX] = "PF_IPX", |
181 | [PF_APPLETALK] = "PF_APPLETALK", |
182 | [PF_NETROM] = "PF_NETROM", |
183 | [PF_BRIDGE] = "PF_BRIDGE", |
184 | [PF_ATMPVC] = "PF_ATMPVC", |
185 | [PF_X25] = "PF_X25", |
186 | [PF_INET6] = "PF_INET6", |
187 | [PF_ROSE] = "PF_ROSE", |
188 | [PF_DECnet] = "PF_DECnet", |
189 | [PF_NETBEUI] = "PF_NETBEUI", |
190 | [PF_SECURITY] = "PF_SECURITY", |
191 | [PF_KEY] = "PF_KEY", |
192 | [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", |
193 | [PF_PACKET] = "PF_PACKET", |
194 | [PF_ASH] = "PF_ASH", |
195 | [PF_ECONET] = "PF_ECONET", |
196 | [PF_ATMSVC] = "PF_ATMSVC", |
197 | [PF_RDS] = "PF_RDS", |
198 | [PF_SNA] = "PF_SNA", |
199 | [PF_IRDA] = "PF_IRDA", |
200 | [PF_PPPOX] = "PF_PPPOX", |
201 | [PF_WANPIPE] = "PF_WANPIPE", |
202 | [PF_LLC] = "PF_LLC", |
203 | [PF_IB] = "PF_IB", |
204 | [PF_MPLS] = "PF_MPLS", |
205 | [PF_CAN] = "PF_CAN", |
206 | [PF_TIPC] = "PF_TIPC", |
207 | [PF_BLUETOOTH] = "PF_BLUETOOTH", |
208 | [PF_IUCV] = "PF_IUCV", |
209 | [PF_RXRPC] = "PF_RXRPC", |
210 | [PF_ISDN] = "PF_ISDN", |
211 | [PF_PHONET] = "PF_PHONET", |
212 | [PF_IEEE802154] = "PF_IEEE802154", |
213 | [PF_CAIF] = "PF_CAIF", |
214 | [PF_ALG] = "PF_ALG", |
215 | [PF_NFC] = "PF_NFC", |
216 | [PF_VSOCK] = "PF_VSOCK", |
217 | [PF_KCM] = "PF_KCM", |
218 | [PF_QIPCRTR] = "PF_QIPCRTR", |
219 | [PF_SMC] = "PF_SMC", |
220 | [PF_XDP] = "PF_XDP", |
221 | [PF_MCTP] = "PF_MCTP", |
222 | }; |
223 | |
224 | /* |
225 | * The protocol list. Each protocol is registered in here. |
226 | */ |
227 | |
228 | static DEFINE_SPINLOCK(net_family_lock); |
229 | static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; |
230 | |
231 | /* |
232 | * Support routines. |
233 | * Move socket addresses back and forth across the kernel/user |
234 | * divide and look after the messy bits. |
235 | */ |
236 | |
237 | /** |
238 | * move_addr_to_kernel - copy a socket address into kernel space |
239 | * @uaddr: Address in user space |
240 | * @kaddr: Address in kernel space |
241 | * @ulen: Length in user space |
242 | * |
243 | * The address is copied into kernel space. If the provided address is |
244 | * too long an error code of -EINVAL is returned. If the copy gives |
245 | * invalid addresses -EFAULT is returned. On a success 0 is returned. |
246 | */ |
247 | |
248 | int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) |
249 | { |
250 | if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) |
251 | return -EINVAL; |
252 | if (ulen == 0) |
253 | return 0; |
254 | if (copy_from_user(to: kaddr, from: uaddr, n: ulen)) |
255 | return -EFAULT; |
256 | return audit_sockaddr(len: ulen, addr: kaddr); |
257 | } |
258 | |
259 | /** |
260 | * move_addr_to_user - copy an address to user space |
261 | * @kaddr: kernel space address |
262 | * @klen: length of address in kernel |
263 | * @uaddr: user space address |
264 | * @ulen: pointer to user length field |
265 | * |
266 | * The value pointed to by ulen on entry is the buffer length available. |
267 | * This is overwritten with the buffer space used. -EINVAL is returned |
268 | * if an overlong buffer is specified or a negative buffer size. -EFAULT |
269 | * is returned if either the buffer or the length field are not |
270 | * accessible. |
271 | * After copying the data up to the limit the user specifies, the true |
272 | * length of the data is written over the length limit the user |
273 | * specified. Zero is returned for a success. |
274 | */ |
275 | |
276 | static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, |
277 | void __user *uaddr, int __user *ulen) |
278 | { |
279 | int err; |
280 | int len; |
281 | |
282 | BUG_ON(klen > sizeof(struct sockaddr_storage)); |
283 | err = get_user(len, ulen); |
284 | if (err) |
285 | return err; |
286 | if (len > klen) |
287 | len = klen; |
288 | if (len < 0) |
289 | return -EINVAL; |
290 | if (len) { |
291 | if (audit_sockaddr(len: klen, addr: kaddr)) |
292 | return -ENOMEM; |
293 | if (copy_to_user(to: uaddr, from: kaddr, n: len)) |
294 | return -EFAULT; |
295 | } |
296 | /* |
297 | * "fromlen shall refer to the value before truncation.." |
298 | * 1003.1g |
299 | */ |
300 | return __put_user(klen, ulen); |
301 | } |
302 | |
303 | static struct kmem_cache *sock_inode_cachep __ro_after_init; |
304 | |
305 | static struct inode *sock_alloc_inode(struct super_block *sb) |
306 | { |
307 | struct socket_alloc *ei; |
308 | |
309 | ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); |
310 | if (!ei) |
311 | return NULL; |
312 | init_waitqueue_head(&ei->socket.wq.wait); |
313 | ei->socket.wq.fasync_list = NULL; |
314 | ei->socket.wq.flags = 0; |
315 | |
316 | ei->socket.state = SS_UNCONNECTED; |
317 | ei->socket.flags = 0; |
318 | ei->socket.ops = NULL; |
319 | ei->socket.sk = NULL; |
320 | ei->socket.file = NULL; |
321 | |
322 | return &ei->vfs_inode; |
323 | } |
324 | |
325 | static void sock_free_inode(struct inode *inode) |
326 | { |
327 | struct socket_alloc *ei; |
328 | |
329 | ei = container_of(inode, struct socket_alloc, vfs_inode); |
330 | kmem_cache_free(s: sock_inode_cachep, objp: ei); |
331 | } |
332 | |
333 | static void init_once(void *foo) |
334 | { |
335 | struct socket_alloc *ei = (struct socket_alloc *)foo; |
336 | |
337 | inode_init_once(&ei->vfs_inode); |
338 | } |
339 | |
340 | static void init_inodecache(void) |
341 | { |
342 | sock_inode_cachep = kmem_cache_create("sock_inode_cache", |
343 | sizeof(struct socket_alloc), |
344 | 0, |
345 | (SLAB_HWCACHE_ALIGN | |
346 | SLAB_RECLAIM_ACCOUNT | |
347 | SLAB_ACCOUNT), |
348 | init_once); |
349 | BUG_ON(sock_inode_cachep == NULL); |
350 | } |
351 | |
352 | static const struct super_operations sockfs_ops = { |
353 | .alloc_inode = sock_alloc_inode, |
354 | .free_inode = sock_free_inode, |
355 | .statfs = simple_statfs, |
356 | }; |
357 | |
358 | /* |
359 | * sockfs_dname() is called from d_path(). |
360 | */ |
361 | static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) |
362 | { |
363 | return dynamic_dname(buffer, buflen, "socket:[%lu]", |
364 | d_inode(dentry)->i_ino); |
365 | } |
366 | |
367 | static const struct dentry_operations sockfs_dentry_operations = { |
368 | .d_dname = sockfs_dname, |
369 | }; |
370 | |
371 | static int sockfs_xattr_get(const struct xattr_handler *handler, |
372 | struct dentry *dentry, struct inode *inode, |
373 | const char *suffix, void *value, size_t size) |
374 | { |
375 | if (value) { |
376 | if (dentry->d_name.len + 1 > size) |
377 | return -ERANGE; |
378 | memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); |
379 | } |
380 | return dentry->d_name.len + 1; |
381 | } |
382 | |
383 | #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" |
384 | #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) |
385 | #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) |
386 | |
387 | static const struct xattr_handler sockfs_xattr_handler = { |
388 | .name = XATTR_NAME_SOCKPROTONAME, |
389 | .get = sockfs_xattr_get, |
390 | }; |
391 | |
392 | static int sockfs_security_xattr_set(const struct xattr_handler *handler, |
393 | struct mnt_idmap *idmap, |
394 | struct dentry *dentry, struct inode *inode, |
395 | const char *suffix, const void *value, |
396 | size_t size, int flags) |
397 | { |
398 | /* Handled by LSM. */ |
399 | return -EAGAIN; |
400 | } |
401 | |
402 | static const struct xattr_handler sockfs_security_xattr_handler = { |
403 | .prefix = XATTR_SECURITY_PREFIX, |
404 | .set = sockfs_security_xattr_set, |
405 | }; |
406 | |
407 | static const struct xattr_handler * const sockfs_xattr_handlers[] = { |
408 | &sockfs_xattr_handler, |
409 | &sockfs_security_xattr_handler, |
410 | NULL |
411 | }; |
412 | |
413 | static int sockfs_init_fs_context(struct fs_context *fc) |
414 | { |
415 | struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); |
416 | if (!ctx) |
417 | return -ENOMEM; |
418 | ctx->ops = &sockfs_ops; |
419 | ctx->dops = &sockfs_dentry_operations; |
420 | ctx->xattr = sockfs_xattr_handlers; |
421 | return 0; |
422 | } |
423 | |
424 | static struct vfsmount *sock_mnt __read_mostly; |
425 | |
426 | static struct file_system_type sock_fs_type = { |
427 | .name = "sockfs", |
428 | .init_fs_context = sockfs_init_fs_context, |
429 | .kill_sb = kill_anon_super, |
430 | }; |
431 | |
432 | /* |
433 | * Obtains the first available file descriptor and sets it up for use. |
434 | * |
435 | * These functions create file structures and maps them to fd space |
436 | * of the current process. On success it returns file descriptor |
437 | * and file struct implicitly stored in sock->file. |
438 | * Note that another thread may close file descriptor before we return |
439 | * from this function. We use the fact that now we do not refer |
440 | * to socket after mapping. If one day we will need it, this |
441 | * function will increment ref. count on file by 1. |
442 | * |
443 | * In any case returned fd MAY BE not valid! |
444 | * This race condition is unavoidable |
445 | * with shared fd spaces, we cannot solve it inside kernel, |
446 | * but we take care of internal coherence yet. |
447 | */ |
448 | |
449 | /** |
450 | * sock_alloc_file - Bind a &socket to a &file |
451 | * @sock: socket |
452 | * @flags: file status flags |
453 | * @dname: protocol name |
454 | * |
455 | * Returns the &file bound with @sock, implicitly storing it |
456 | * in sock->file. If dname is %NULL, sets to "". |
457 | * |
458 | * On failure @sock is released, and an ERR pointer is returned. |
459 | * |
460 | * This function uses GFP_KERNEL internally. |
461 | */ |
462 | |
463 | struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) |
464 | { |
465 | struct file *file; |
466 | |
467 | if (!dname) |
468 | dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; |
469 | |
470 | file = alloc_file_pseudo(SOCK_INODE(socket: sock), sock_mnt, dname, |
471 | O_RDWR | (flags & O_NONBLOCK), |
472 | &socket_file_ops); |
473 | if (IS_ERR(ptr: file)) { |
474 | sock_release(sock); |
475 | return file; |
476 | } |
477 | |
478 | file->f_mode |= FMODE_NOWAIT; |
479 | sock->file = file; |
480 | file->private_data = sock; |
481 | stream_open(inode: SOCK_INODE(socket: sock), filp: file); |
482 | /* |
483 | * Disable permission and pre-content events, but enable legacy |
484 | * inotify events for legacy users. |
485 | */ |
486 | file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); |
487 | return file; |
488 | } |
489 | EXPORT_SYMBOL(sock_alloc_file); |
490 | |
491 | static int sock_map_fd(struct socket *sock, int flags) |
492 | { |
493 | struct file *newfile; |
494 | int fd = get_unused_fd_flags(flags); |
495 | if (unlikely(fd < 0)) { |
496 | sock_release(sock); |
497 | return fd; |
498 | } |
499 | |
500 | newfile = sock_alloc_file(sock, flags, NULL); |
501 | if (!IS_ERR(ptr: newfile)) { |
502 | fd_install(fd, file: newfile); |
503 | return fd; |
504 | } |
505 | |
506 | put_unused_fd(fd); |
507 | return PTR_ERR(ptr: newfile); |
508 | } |
509 | |
510 | /** |
511 | * sock_from_file - Return the &socket bounded to @file. |
512 | * @file: file |
513 | * |
514 | * On failure returns %NULL. |
515 | */ |
516 | |
517 | struct socket *sock_from_file(struct file *file) |
518 | { |
519 | if (likely(file->f_op == &socket_file_ops)) |
520 | return file->private_data; /* set in sock_alloc_file */ |
521 | |
522 | return NULL; |
523 | } |
524 | EXPORT_SYMBOL(sock_from_file); |
525 | |
526 | /** |
527 | * sockfd_lookup - Go from a file number to its socket slot |
528 | * @fd: file handle |
529 | * @err: pointer to an error code return |
530 | * |
531 | * The file handle passed in is locked and the socket it is bound |
532 | * to is returned. If an error occurs the err pointer is overwritten |
533 | * with a negative errno code and NULL is returned. The function checks |
534 | * for both invalid handles and passing a handle which is not a socket. |
535 | * |
536 | * On a success the socket object pointer is returned. |
537 | */ |
538 | |
539 | struct socket *sockfd_lookup(int fd, int *err) |
540 | { |
541 | struct file *file; |
542 | struct socket *sock; |
543 | |
544 | file = fget(fd); |
545 | if (!file) { |
546 | *err = -EBADF; |
547 | return NULL; |
548 | } |
549 | |
550 | sock = sock_from_file(file); |
551 | if (!sock) { |
552 | *err = -ENOTSOCK; |
553 | fput(file); |
554 | } |
555 | return sock; |
556 | } |
557 | EXPORT_SYMBOL(sockfd_lookup); |
558 | |
559 | static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, |
560 | size_t size) |
561 | { |
562 | ssize_t len; |
563 | ssize_t used = 0; |
564 | |
565 | len = security_inode_listsecurity(inode: d_inode(dentry), buffer, buffer_size: size); |
566 | if (len < 0) |
567 | return len; |
568 | used += len; |
569 | if (buffer) { |
570 | if (size < used) |
571 | return -ERANGE; |
572 | buffer += len; |
573 | } |
574 | |
575 | len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); |
576 | used += len; |
577 | if (buffer) { |
578 | if (size < used) |
579 | return -ERANGE; |
580 | memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); |
581 | buffer += len; |
582 | } |
583 | |
584 | return used; |
585 | } |
586 | |
587 | static int sockfs_setattr(struct mnt_idmap *idmap, |
588 | struct dentry *dentry, struct iattr *iattr) |
589 | { |
590 | int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); |
591 | |
592 | if (!err && (iattr->ia_valid & ATTR_UID)) { |
593 | struct socket *sock = SOCKET_I(inode: d_inode(dentry)); |
594 | |
595 | if (sock->sk) |
596 | sock->sk->sk_uid = iattr->ia_uid; |
597 | else |
598 | err = -ENOENT; |
599 | } |
600 | |
601 | return err; |
602 | } |
603 | |
604 | static const struct inode_operations sockfs_inode_ops = { |
605 | .listxattr = sockfs_listxattr, |
606 | .setattr = sockfs_setattr, |
607 | }; |
608 | |
609 | /** |
610 | * sock_alloc - allocate a socket |
611 | * |
612 | * Allocate a new inode and socket object. The two are bound together |
613 | * and initialised. The socket is then returned. If we are out of inodes |
614 | * NULL is returned. This functions uses GFP_KERNEL internally. |
615 | */ |
616 | |
617 | struct socket *sock_alloc(void) |
618 | { |
619 | struct inode *inode; |
620 | struct socket *sock; |
621 | |
622 | inode = new_inode_pseudo(sb: sock_mnt->mnt_sb); |
623 | if (!inode) |
624 | return NULL; |
625 | |
626 | sock = SOCKET_I(inode); |
627 | |
628 | inode->i_ino = get_next_ino(); |
629 | inode->i_mode = S_IFSOCK | S_IRWXUGO; |
630 | inode->i_uid = current_fsuid(); |
631 | inode->i_gid = current_fsgid(); |
632 | inode->i_op = &sockfs_inode_ops; |
633 | |
634 | return sock; |
635 | } |
636 | EXPORT_SYMBOL(sock_alloc); |
637 | |
638 | static void __sock_release(struct socket *sock, struct inode *inode) |
639 | { |
640 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
641 | |
642 | if (ops) { |
643 | struct module *owner = ops->owner; |
644 | |
645 | if (inode) |
646 | inode_lock(inode); |
647 | ops->release(sock); |
648 | sock->sk = NULL; |
649 | if (inode) |
650 | inode_unlock(inode); |
651 | sock->ops = NULL; |
652 | module_put(module: owner); |
653 | } |
654 | |
655 | if (sock->wq.fasync_list) |
656 | pr_err("%s: fasync list not empty!\n", __func__); |
657 | |
658 | if (!sock->file) { |
659 | iput(SOCK_INODE(socket: sock)); |
660 | return; |
661 | } |
662 | sock->file = NULL; |
663 | } |
664 | |
665 | /** |
666 | * sock_release - close a socket |
667 | * @sock: socket to close |
668 | * |
669 | * The socket is released from the protocol stack if it has a release |
670 | * callback, and the inode is then released if the socket is bound to |
671 | * an inode not a file. |
672 | */ |
673 | void sock_release(struct socket *sock) |
674 | { |
675 | __sock_release(sock, NULL); |
676 | } |
677 | EXPORT_SYMBOL(sock_release); |
678 | |
679 | void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) |
680 | { |
681 | u8 flags = *tx_flags; |
682 | |
683 | if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) |
684 | flags |= SKBTX_HW_TSTAMP_NOBPF; |
685 | |
686 | if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) |
687 | flags |= SKBTX_SW_TSTAMP; |
688 | |
689 | if (tsflags & SOF_TIMESTAMPING_TX_SCHED) |
690 | flags |= SKBTX_SCHED_TSTAMP; |
691 | |
692 | if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) |
693 | flags |= SKBTX_COMPLETION_TSTAMP; |
694 | |
695 | *tx_flags = flags; |
696 | } |
697 | EXPORT_SYMBOL(__sock_tx_timestamp); |
698 | |
699 | INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, |
700 | size_t)); |
701 | INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, |
702 | size_t)); |
703 | |
704 | static noinline void call_trace_sock_send_length(struct sock *sk, int ret, |
705 | int flags) |
706 | { |
707 | trace_sock_send_length(sk, ret, flags: 0); |
708 | } |
709 | |
710 | static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) |
711 | { |
712 | int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, |
713 | inet_sendmsg, sock, msg, |
714 | msg_data_left(msg)); |
715 | BUG_ON(ret == -EIOCBQUEUED); |
716 | |
717 | if (trace_sock_send_length_enabled()) |
718 | call_trace_sock_send_length(sk: sock->sk, ret, flags: 0); |
719 | return ret; |
720 | } |
721 | |
722 | static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) |
723 | { |
724 | int err = security_socket_sendmsg(sock, msg, |
725 | size: msg_data_left(msg)); |
726 | |
727 | return err ?: sock_sendmsg_nosec(sock, msg); |
728 | } |
729 | |
730 | /** |
731 | * sock_sendmsg - send a message through @sock |
732 | * @sock: socket |
733 | * @msg: message to send |
734 | * |
735 | * Sends @msg through @sock, passing through LSM. |
736 | * Returns the number of bytes sent, or an error code. |
737 | */ |
738 | int sock_sendmsg(struct socket *sock, struct msghdr *msg) |
739 | { |
740 | struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; |
741 | struct sockaddr_storage address; |
742 | int save_len = msg->msg_namelen; |
743 | int ret; |
744 | |
745 | if (msg->msg_name) { |
746 | memcpy(&address, msg->msg_name, msg->msg_namelen); |
747 | msg->msg_name = &address; |
748 | } |
749 | |
750 | ret = __sock_sendmsg(sock, msg); |
751 | msg->msg_name = save_addr; |
752 | msg->msg_namelen = save_len; |
753 | |
754 | return ret; |
755 | } |
756 | EXPORT_SYMBOL(sock_sendmsg); |
757 | |
758 | /** |
759 | * kernel_sendmsg - send a message through @sock (kernel-space) |
760 | * @sock: socket |
761 | * @msg: message header |
762 | * @vec: kernel vec |
763 | * @num: vec array length |
764 | * @size: total message data size |
765 | * |
766 | * Builds the message data with @vec and sends it through @sock. |
767 | * Returns the number of bytes sent, or an error code. |
768 | */ |
769 | |
770 | int kernel_sendmsg(struct socket *sock, struct msghdr *msg, |
771 | struct kvec *vec, size_t num, size_t size) |
772 | { |
773 | iov_iter_kvec(i: &msg->msg_iter, ITER_SOURCE, kvec: vec, nr_segs: num, count: size); |
774 | return sock_sendmsg(sock, msg); |
775 | } |
776 | EXPORT_SYMBOL(kernel_sendmsg); |
777 | |
778 | static bool skb_is_err_queue(const struct sk_buff *skb) |
779 | { |
780 | /* pkt_type of skbs enqueued on the error queue are set to |
781 | * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do |
782 | * in recvmsg, since skbs received on a local socket will never |
783 | * have a pkt_type of PACKET_OUTGOING. |
784 | */ |
785 | return skb->pkt_type == PACKET_OUTGOING; |
786 | } |
787 | |
788 | /* On transmit, software and hardware timestamps are returned independently. |
789 | * As the two skb clones share the hardware timestamp, which may be updated |
790 | * before the software timestamp is received, a hardware TX timestamp may be |
791 | * returned only if there is no software TX timestamp. Ignore false software |
792 | * timestamps, which may be made in the __sock_recv_timestamp() call when the |
793 | * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a |
794 | * hardware timestamp. |
795 | */ |
796 | static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) |
797 | { |
798 | return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); |
799 | } |
800 | |
801 | static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) |
802 | { |
803 | bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; |
804 | struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
805 | struct net_device *orig_dev; |
806 | ktime_t hwtstamp; |
807 | |
808 | rcu_read_lock(); |
809 | orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb)); |
810 | if (orig_dev) { |
811 | *if_index = orig_dev->ifindex; |
812 | hwtstamp = netdev_get_tstamp(dev: orig_dev, hwtstamps: shhwtstamps, cycles); |
813 | } else { |
814 | hwtstamp = shhwtstamps->hwtstamp; |
815 | } |
816 | rcu_read_unlock(); |
817 | |
818 | return hwtstamp; |
819 | } |
820 | |
821 | static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, |
822 | int if_index) |
823 | { |
824 | struct scm_ts_pktinfo ts_pktinfo; |
825 | struct net_device *orig_dev; |
826 | |
827 | if (!skb_mac_header_was_set(skb)) |
828 | return; |
829 | |
830 | memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); |
831 | |
832 | if (!if_index) { |
833 | rcu_read_lock(); |
834 | orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb)); |
835 | if (orig_dev) |
836 | if_index = orig_dev->ifindex; |
837 | rcu_read_unlock(); |
838 | } |
839 | ts_pktinfo.if_index = if_index; |
840 | |
841 | ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); |
842 | put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, |
843 | len: sizeof(ts_pktinfo), data: &ts_pktinfo); |
844 | } |
845 | |
846 | /* |
847 | * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) |
848 | */ |
849 | void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
850 | struct sk_buff *skb) |
851 | { |
852 | int need_software_tstamp = sock_flag(sk, flag: SOCK_RCVTSTAMP); |
853 | int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
854 | struct scm_timestamping_internal tss; |
855 | int empty = 1, false_tstamp = 0; |
856 | struct skb_shared_hwtstamps *shhwtstamps = |
857 | skb_hwtstamps(skb); |
858 | int if_index; |
859 | ktime_t hwtstamp; |
860 | u32 tsflags; |
861 | |
862 | /* Race occurred between timestamp enabling and packet |
863 | receiving. Fill in the current time for now. */ |
864 | if (need_software_tstamp && skb->tstamp == 0) { |
865 | __net_timestamp(skb); |
866 | false_tstamp = 1; |
867 | } |
868 | |
869 | if (need_software_tstamp) { |
870 | if (!sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) { |
871 | if (new_tstamp) { |
872 | struct __kernel_sock_timeval tv; |
873 | |
874 | skb_get_new_timestamp(skb, stamp: &tv); |
875 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, |
876 | len: sizeof(tv), data: &tv); |
877 | } else { |
878 | struct __kernel_old_timeval tv; |
879 | |
880 | skb_get_timestamp(skb, stamp: &tv); |
881 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, |
882 | len: sizeof(tv), data: &tv); |
883 | } |
884 | } else { |
885 | if (new_tstamp) { |
886 | struct __kernel_timespec ts; |
887 | |
888 | skb_get_new_timestampns(skb, stamp: &ts); |
889 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, |
890 | len: sizeof(ts), data: &ts); |
891 | } else { |
892 | struct __kernel_old_timespec ts; |
893 | |
894 | skb_get_timestampns(skb, stamp: &ts); |
895 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, |
896 | len: sizeof(ts), data: &ts); |
897 | } |
898 | } |
899 | } |
900 | |
901 | memset(&tss, 0, sizeof(tss)); |
902 | tsflags = READ_ONCE(sk->sk_tsflags); |
903 | if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && |
904 | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || |
905 | skb_is_err_queue(skb) || |
906 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && |
907 | ktime_to_timespec64_cond(kt: skb->tstamp, ts: tss.ts + 0)) |
908 | empty = 0; |
909 | if (shhwtstamps && |
910 | (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && |
911 | (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || |
912 | skb_is_err_queue(skb) || |
913 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && |
914 | !skb_is_swtx_tstamp(skb, false_tstamp)) { |
915 | if_index = 0; |
916 | if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) |
917 | hwtstamp = get_timestamp(sk, skb, if_index: &if_index); |
918 | else |
919 | hwtstamp = shhwtstamps->hwtstamp; |
920 | |
921 | if (tsflags & SOF_TIMESTAMPING_BIND_PHC) |
922 | hwtstamp = ptp_convert_timestamp(hwtstamp: &hwtstamp, |
923 | READ_ONCE(sk->sk_bind_phc)); |
924 | |
925 | if (ktime_to_timespec64_cond(kt: hwtstamp, ts: tss.ts + 2)) { |
926 | empty = 0; |
927 | |
928 | if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && |
929 | !skb_is_err_queue(skb)) |
930 | put_ts_pktinfo(msg, skb, if_index); |
931 | } |
932 | } |
933 | if (!empty) { |
934 | if (sock_flag(sk, flag: SOCK_TSTAMP_NEW)) |
935 | put_cmsg_scm_timestamping64(msg, tss: &tss); |
936 | else |
937 | put_cmsg_scm_timestamping(msg, tss: &tss); |
938 | |
939 | if (skb_is_err_queue(skb) && skb->len && |
940 | SKB_EXT_ERR(skb)->opt_stats) |
941 | put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, |
942 | len: skb->len, data: skb->data); |
943 | } |
944 | } |
945 | EXPORT_SYMBOL_GPL(__sock_recv_timestamp); |
946 | |
947 | #ifdef CONFIG_WIRELESS |
948 | void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
949 | struct sk_buff *skb) |
950 | { |
951 | int ack; |
952 | |
953 | if (!sock_flag(sk, flag: SOCK_WIFI_STATUS)) |
954 | return; |
955 | if (!skb->wifi_acked_valid) |
956 | return; |
957 | |
958 | ack = skb->wifi_acked; |
959 | |
960 | put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, len: sizeof(ack), data: &ack); |
961 | } |
962 | EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); |
963 | #endif |
964 | |
965 | static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, |
966 | struct sk_buff *skb) |
967 | { |
968 | if (sock_flag(sk, flag: SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) |
969 | put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, |
970 | len: sizeof(__u32), data: &SOCK_SKB_CB(skb)->dropcount); |
971 | } |
972 | |
973 | static void sock_recv_mark(struct msghdr *msg, struct sock *sk, |
974 | struct sk_buff *skb) |
975 | { |
976 | if (sock_flag(sk, flag: SOCK_RCVMARK) && skb) { |
977 | /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ |
978 | __u32 mark = skb->mark; |
979 | |
980 | put_cmsg(msg, SOL_SOCKET, SO_MARK, len: sizeof(__u32), data: &mark); |
981 | } |
982 | } |
983 | |
984 | static void sock_recv_priority(struct msghdr *msg, struct sock *sk, |
985 | struct sk_buff *skb) |
986 | { |
987 | if (sock_flag(sk, flag: SOCK_RCVPRIORITY) && skb) { |
988 | __u32 priority = skb->priority; |
989 | |
990 | put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, len: sizeof(__u32), data: &priority); |
991 | } |
992 | } |
993 | |
994 | void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
995 | struct sk_buff *skb) |
996 | { |
997 | sock_recv_timestamp(msg, sk, skb); |
998 | sock_recv_drops(msg, sk, skb); |
999 | sock_recv_mark(msg, sk, skb); |
1000 | sock_recv_priority(msg, sk, skb); |
1001 | } |
1002 | EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); |
1003 | |
1004 | INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, |
1005 | size_t, int)); |
1006 | INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, |
1007 | size_t, int)); |
1008 | |
1009 | static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) |
1010 | { |
1011 | trace_sock_recv_length(sk, ret, flags); |
1012 | } |
1013 | |
1014 | static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, |
1015 | int flags) |
1016 | { |
1017 | int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, |
1018 | inet6_recvmsg, |
1019 | inet_recvmsg, sock, msg, |
1020 | msg_data_left(msg), flags); |
1021 | if (trace_sock_recv_length_enabled()) |
1022 | call_trace_sock_recv_length(sk: sock->sk, ret, flags); |
1023 | return ret; |
1024 | } |
1025 | |
1026 | /** |
1027 | * sock_recvmsg - receive a message from @sock |
1028 | * @sock: socket |
1029 | * @msg: message to receive |
1030 | * @flags: message flags |
1031 | * |
1032 | * Receives @msg from @sock, passing through LSM. Returns the total number |
1033 | * of bytes received, or an error. |
1034 | */ |
1035 | int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) |
1036 | { |
1037 | int err = security_socket_recvmsg(sock, msg, size: msg_data_left(msg), flags); |
1038 | |
1039 | return err ?: sock_recvmsg_nosec(sock, msg, flags); |
1040 | } |
1041 | EXPORT_SYMBOL(sock_recvmsg); |
1042 | |
1043 | /** |
1044 | * kernel_recvmsg - Receive a message from a socket (kernel space) |
1045 | * @sock: The socket to receive the message from |
1046 | * @msg: Received message |
1047 | * @vec: Input s/g array for message data |
1048 | * @num: Size of input s/g array |
1049 | * @size: Number of bytes to read |
1050 | * @flags: Message flags (MSG_DONTWAIT, etc...) |
1051 | * |
1052 | * On return the msg structure contains the scatter/gather array passed in the |
1053 | * vec argument. The array is modified so that it consists of the unfilled |
1054 | * portion of the original array. |
1055 | * |
1056 | * The returned value is the total number of bytes received, or an error. |
1057 | */ |
1058 | |
1059 | int kernel_recvmsg(struct socket *sock, struct msghdr *msg, |
1060 | struct kvec *vec, size_t num, size_t size, int flags) |
1061 | { |
1062 | msg->msg_control_is_user = false; |
1063 | iov_iter_kvec(i: &msg->msg_iter, ITER_DEST, kvec: vec, nr_segs: num, count: size); |
1064 | return sock_recvmsg(sock, msg, flags); |
1065 | } |
1066 | EXPORT_SYMBOL(kernel_recvmsg); |
1067 | |
1068 | static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
1069 | struct pipe_inode_info *pipe, size_t len, |
1070 | unsigned int flags) |
1071 | { |
1072 | struct socket *sock = file->private_data; |
1073 | const struct proto_ops *ops; |
1074 | |
1075 | ops = READ_ONCE(sock->ops); |
1076 | if (unlikely(!ops->splice_read)) |
1077 | return copy_splice_read(in: file, ppos, pipe, len, flags); |
1078 | |
1079 | return ops->splice_read(sock, ppos, pipe, len, flags); |
1080 | } |
1081 | |
1082 | static void sock_splice_eof(struct file *file) |
1083 | { |
1084 | struct socket *sock = file->private_data; |
1085 | const struct proto_ops *ops; |
1086 | |
1087 | ops = READ_ONCE(sock->ops); |
1088 | if (ops->splice_eof) |
1089 | ops->splice_eof(sock); |
1090 | } |
1091 | |
1092 | static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) |
1093 | { |
1094 | struct file *file = iocb->ki_filp; |
1095 | struct socket *sock = file->private_data; |
1096 | struct msghdr msg = {.msg_iter = *to, |
1097 | .msg_iocb = iocb}; |
1098 | ssize_t res; |
1099 | |
1100 | if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
1101 | msg.msg_flags = MSG_DONTWAIT; |
1102 | |
1103 | if (iocb->ki_pos != 0) |
1104 | return -ESPIPE; |
1105 | |
1106 | if (!iov_iter_count(i: to)) /* Match SYS5 behaviour */ |
1107 | return 0; |
1108 | |
1109 | res = sock_recvmsg(sock, &msg, msg.msg_flags); |
1110 | *to = msg.msg_iter; |
1111 | return res; |
1112 | } |
1113 | |
1114 | static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1115 | { |
1116 | struct file *file = iocb->ki_filp; |
1117 | struct socket *sock = file->private_data; |
1118 | struct msghdr msg = {.msg_iter = *from, |
1119 | .msg_iocb = iocb}; |
1120 | ssize_t res; |
1121 | |
1122 | if (iocb->ki_pos != 0) |
1123 | return -ESPIPE; |
1124 | |
1125 | if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
1126 | msg.msg_flags = MSG_DONTWAIT; |
1127 | |
1128 | if (sock->type == SOCK_SEQPACKET) |
1129 | msg.msg_flags |= MSG_EOR; |
1130 | |
1131 | res = __sock_sendmsg(sock, msg: &msg); |
1132 | *from = msg.msg_iter; |
1133 | return res; |
1134 | } |
1135 | |
1136 | /* |
1137 | * Atomic setting of ioctl hooks to avoid race |
1138 | * with module unload. |
1139 | */ |
1140 | |
1141 | static DEFINE_MUTEX(br_ioctl_mutex); |
1142 | static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, |
1143 | void __user *uarg); |
1144 | |
1145 | void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, |
1146 | void __user *uarg)) |
1147 | { |
1148 | mutex_lock(&br_ioctl_mutex); |
1149 | br_ioctl_hook = hook; |
1150 | mutex_unlock(lock: &br_ioctl_mutex); |
1151 | } |
1152 | EXPORT_SYMBOL(brioctl_set); |
1153 | |
1154 | int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) |
1155 | { |
1156 | int err = -ENOPKG; |
1157 | |
1158 | if (!br_ioctl_hook) |
1159 | request_module("bridge"); |
1160 | |
1161 | mutex_lock(&br_ioctl_mutex); |
1162 | if (br_ioctl_hook) |
1163 | err = br_ioctl_hook(net, cmd, uarg); |
1164 | mutex_unlock(lock: &br_ioctl_mutex); |
1165 | |
1166 | return err; |
1167 | } |
1168 | |
1169 | static DEFINE_MUTEX(vlan_ioctl_mutex); |
1170 | static int (*vlan_ioctl_hook) (struct net *, void __user *arg); |
1171 | |
1172 | void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) |
1173 | { |
1174 | mutex_lock(&vlan_ioctl_mutex); |
1175 | vlan_ioctl_hook = hook; |
1176 | mutex_unlock(lock: &vlan_ioctl_mutex); |
1177 | } |
1178 | EXPORT_SYMBOL(vlan_ioctl_set); |
1179 | |
1180 | static long sock_do_ioctl(struct net *net, struct socket *sock, |
1181 | unsigned int cmd, unsigned long arg) |
1182 | { |
1183 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
1184 | struct ifreq ifr; |
1185 | bool need_copyout; |
1186 | int err; |
1187 | void __user *argp = (void __user *)arg; |
1188 | void __user *data; |
1189 | |
1190 | err = ops->ioctl(sock, cmd, arg); |
1191 | |
1192 | /* |
1193 | * If this ioctl is unknown try to hand it down |
1194 | * to the NIC driver. |
1195 | */ |
1196 | if (err != -ENOIOCTLCMD) |
1197 | return err; |
1198 | |
1199 | if (!is_socket_ioctl_cmd(cmd)) |
1200 | return -ENOTTY; |
1201 | |
1202 | if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp)) |
1203 | return -EFAULT; |
1204 | err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout); |
1205 | if (!err && need_copyout) |
1206 | if (put_user_ifreq(ifr: &ifr, arg: argp)) |
1207 | return -EFAULT; |
1208 | |
1209 | return err; |
1210 | } |
1211 | |
1212 | /* |
1213 | * With an ioctl, arg may well be a user mode pointer, but we don't know |
1214 | * what to do with it - that's up to the protocol still. |
1215 | */ |
1216 | |
1217 | static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) |
1218 | { |
1219 | const struct proto_ops *ops; |
1220 | struct socket *sock; |
1221 | struct sock *sk; |
1222 | void __user *argp = (void __user *)arg; |
1223 | int pid, err; |
1224 | struct net *net; |
1225 | |
1226 | sock = file->private_data; |
1227 | ops = READ_ONCE(sock->ops); |
1228 | sk = sock->sk; |
1229 | net = sock_net(sk); |
1230 | if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { |
1231 | struct ifreq ifr; |
1232 | void __user *data; |
1233 | bool need_copyout; |
1234 | if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp)) |
1235 | return -EFAULT; |
1236 | err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout); |
1237 | if (!err && need_copyout) |
1238 | if (put_user_ifreq(ifr: &ifr, arg: argp)) |
1239 | return -EFAULT; |
1240 | } else |
1241 | #ifdef CONFIG_WEXT_CORE |
1242 | if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { |
1243 | err = wext_handle_ioctl(net, cmd, arg: argp); |
1244 | } else |
1245 | #endif |
1246 | switch (cmd) { |
1247 | case FIOSETOWN: |
1248 | case SIOCSPGRP: |
1249 | err = -EFAULT; |
1250 | if (get_user(pid, (int __user *)argp)) |
1251 | break; |
1252 | err = f_setown(filp: sock->file, who: pid, force: 1); |
1253 | break; |
1254 | case FIOGETOWN: |
1255 | case SIOCGPGRP: |
1256 | err = put_user(f_getown(sock->file), |
1257 | (int __user *)argp); |
1258 | break; |
1259 | case SIOCGIFBR: |
1260 | case SIOCSIFBR: |
1261 | case SIOCBRADDBR: |
1262 | case SIOCBRDELBR: |
1263 | case SIOCBRADDIF: |
1264 | case SIOCBRDELIF: |
1265 | err = br_ioctl_call(net, cmd, uarg: argp); |
1266 | break; |
1267 | case SIOCGIFVLAN: |
1268 | case SIOCSIFVLAN: |
1269 | err = -ENOPKG; |
1270 | if (!vlan_ioctl_hook) |
1271 | request_module("8021q"); |
1272 | |
1273 | mutex_lock(&vlan_ioctl_mutex); |
1274 | if (vlan_ioctl_hook) |
1275 | err = vlan_ioctl_hook(net, argp); |
1276 | mutex_unlock(lock: &vlan_ioctl_mutex); |
1277 | break; |
1278 | case SIOCGSKNS: |
1279 | err = -EPERM; |
1280 | if (!ns_capable(ns: net->user_ns, CAP_NET_ADMIN)) |
1281 | break; |
1282 | |
1283 | err = open_related_ns(ns: &net->ns, get_ns: get_net_ns); |
1284 | break; |
1285 | case SIOCGSTAMP_OLD: |
1286 | case SIOCGSTAMPNS_OLD: |
1287 | if (!ops->gettstamp) { |
1288 | err = -ENOIOCTLCMD; |
1289 | break; |
1290 | } |
1291 | err = ops->gettstamp(sock, argp, |
1292 | cmd == SIOCGSTAMP_OLD, |
1293 | !IS_ENABLED(CONFIG_64BIT)); |
1294 | break; |
1295 | case SIOCGSTAMP_NEW: |
1296 | case SIOCGSTAMPNS_NEW: |
1297 | if (!ops->gettstamp) { |
1298 | err = -ENOIOCTLCMD; |
1299 | break; |
1300 | } |
1301 | err = ops->gettstamp(sock, argp, |
1302 | cmd == SIOCGSTAMP_NEW, |
1303 | false); |
1304 | break; |
1305 | |
1306 | case SIOCGIFCONF: |
1307 | err = dev_ifconf(net, ifc: argp); |
1308 | break; |
1309 | |
1310 | default: |
1311 | err = sock_do_ioctl(net, sock, cmd, arg); |
1312 | break; |
1313 | } |
1314 | return err; |
1315 | } |
1316 | |
1317 | /** |
1318 | * sock_create_lite - creates a socket |
1319 | * @family: protocol family (AF_INET, ...) |
1320 | * @type: communication type (SOCK_STREAM, ...) |
1321 | * @protocol: protocol (0, ...) |
1322 | * @res: new socket |
1323 | * |
1324 | * Creates a new socket and assigns it to @res, passing through LSM. |
1325 | * The new socket initialization is not complete, see kernel_accept(). |
1326 | * Returns 0 or an error. On failure @res is set to %NULL. |
1327 | * This function internally uses GFP_KERNEL. |
1328 | */ |
1329 | |
1330 | int sock_create_lite(int family, int type, int protocol, struct socket **res) |
1331 | { |
1332 | int err; |
1333 | struct socket *sock = NULL; |
1334 | |
1335 | err = security_socket_create(family, type, protocol, kern: 1); |
1336 | if (err) |
1337 | goto out; |
1338 | |
1339 | sock = sock_alloc(); |
1340 | if (!sock) { |
1341 | err = -ENOMEM; |
1342 | goto out; |
1343 | } |
1344 | |
1345 | sock->type = type; |
1346 | err = security_socket_post_create(sock, family, type, protocol, kern: 1); |
1347 | if (err) |
1348 | goto out_release; |
1349 | |
1350 | out: |
1351 | *res = sock; |
1352 | return err; |
1353 | out_release: |
1354 | sock_release(sock); |
1355 | sock = NULL; |
1356 | goto out; |
1357 | } |
1358 | EXPORT_SYMBOL(sock_create_lite); |
1359 | |
1360 | /* No kernel lock held - perfect */ |
1361 | static __poll_t sock_poll(struct file *file, poll_table *wait) |
1362 | { |
1363 | struct socket *sock = file->private_data; |
1364 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
1365 | __poll_t events = poll_requested_events(p: wait), flag = 0; |
1366 | |
1367 | if (!ops->poll) |
1368 | return 0; |
1369 | |
1370 | if (sk_can_busy_loop(sk: sock->sk)) { |
1371 | /* poll once if requested by the syscall */ |
1372 | if (events & POLL_BUSY_LOOP) |
1373 | sk_busy_loop(sk: sock->sk, nonblock: 1); |
1374 | |
1375 | /* if this socket can poll_ll, tell the system call */ |
1376 | flag = POLL_BUSY_LOOP; |
1377 | } |
1378 | |
1379 | return ops->poll(file, sock, wait) | flag; |
1380 | } |
1381 | |
1382 | static int sock_mmap(struct file *file, struct vm_area_struct *vma) |
1383 | { |
1384 | struct socket *sock = file->private_data; |
1385 | |
1386 | return READ_ONCE(sock->ops)->mmap(file, sock, vma); |
1387 | } |
1388 | |
1389 | static int sock_close(struct inode *inode, struct file *filp) |
1390 | { |
1391 | __sock_release(sock: SOCKET_I(inode), inode); |
1392 | return 0; |
1393 | } |
1394 | |
1395 | /* |
1396 | * Update the socket async list |
1397 | * |
1398 | * Fasync_list locking strategy. |
1399 | * |
1400 | * 1. fasync_list is modified only under process context socket lock |
1401 | * i.e. under semaphore. |
1402 | * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) |
1403 | * or under socket lock |
1404 | */ |
1405 | |
1406 | static int sock_fasync(int fd, struct file *filp, int on) |
1407 | { |
1408 | struct socket *sock = filp->private_data; |
1409 | struct sock *sk = sock->sk; |
1410 | struct socket_wq *wq = &sock->wq; |
1411 | |
1412 | if (sk == NULL) |
1413 | return -EINVAL; |
1414 | |
1415 | lock_sock(sk); |
1416 | fasync_helper(fd, filp, on, &wq->fasync_list); |
1417 | |
1418 | if (!wq->fasync_list) |
1419 | sock_reset_flag(sk, flag: SOCK_FASYNC); |
1420 | else |
1421 | sock_set_flag(sk, flag: SOCK_FASYNC); |
1422 | |
1423 | release_sock(sk); |
1424 | return 0; |
1425 | } |
1426 | |
1427 | /* This function may be called only under rcu_lock */ |
1428 | |
1429 | int sock_wake_async(struct socket_wq *wq, int how, int band) |
1430 | { |
1431 | if (!wq || !wq->fasync_list) |
1432 | return -1; |
1433 | |
1434 | switch (how) { |
1435 | case SOCK_WAKE_WAITD: |
1436 | if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) |
1437 | break; |
1438 | goto call_kill; |
1439 | case SOCK_WAKE_SPACE: |
1440 | if (!test_and_clear_bit(nr: SOCKWQ_ASYNC_NOSPACE, addr: &wq->flags)) |
1441 | break; |
1442 | fallthrough; |
1443 | case SOCK_WAKE_IO: |
1444 | call_kill: |
1445 | kill_fasync(&wq->fasync_list, SIGIO, band); |
1446 | break; |
1447 | case SOCK_WAKE_URG: |
1448 | kill_fasync(&wq->fasync_list, SIGURG, band); |
1449 | } |
1450 | |
1451 | return 0; |
1452 | } |
1453 | EXPORT_SYMBOL(sock_wake_async); |
1454 | |
1455 | /** |
1456 | * __sock_create - creates a socket |
1457 | * @net: net namespace |
1458 | * @family: protocol family (AF_INET, ...) |
1459 | * @type: communication type (SOCK_STREAM, ...) |
1460 | * @protocol: protocol (0, ...) |
1461 | * @res: new socket |
1462 | * @kern: boolean for kernel space sockets |
1463 | * |
1464 | * Creates a new socket and assigns it to @res, passing through LSM. |
1465 | * Returns 0 or an error. On failure @res is set to %NULL. @kern must |
1466 | * be set to true if the socket resides in kernel space. |
1467 | * This function internally uses GFP_KERNEL. |
1468 | */ |
1469 | |
1470 | int __sock_create(struct net *net, int family, int type, int protocol, |
1471 | struct socket **res, int kern) |
1472 | { |
1473 | int err; |
1474 | struct socket *sock; |
1475 | const struct net_proto_family *pf; |
1476 | |
1477 | /* |
1478 | * Check protocol is in range |
1479 | */ |
1480 | if (family < 0 || family >= NPROTO) |
1481 | return -EAFNOSUPPORT; |
1482 | if (type < 0 || type >= SOCK_MAX) |
1483 | return -EINVAL; |
1484 | |
1485 | /* Compatibility. |
1486 | |
1487 | This uglymoron is moved from INET layer to here to avoid |
1488 | deadlock in module load. |
1489 | */ |
1490 | if (family == PF_INET && type == SOCK_PACKET) { |
1491 | pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", |
1492 | current->comm); |
1493 | family = PF_PACKET; |
1494 | } |
1495 | |
1496 | err = security_socket_create(family, type, protocol, kern); |
1497 | if (err) |
1498 | return err; |
1499 | |
1500 | /* |
1501 | * Allocate the socket and allow the family to set things up. if |
1502 | * the protocol is 0, the family is instructed to select an appropriate |
1503 | * default. |
1504 | */ |
1505 | sock = sock_alloc(); |
1506 | if (!sock) { |
1507 | net_warn_ratelimited("socket: no more sockets\n"); |
1508 | return -ENFILE; /* Not exactly a match, but its the |
1509 | closest posix thing */ |
1510 | } |
1511 | |
1512 | sock->type = type; |
1513 | |
1514 | #ifdef CONFIG_MODULES |
1515 | /* Attempt to load a protocol module if the find failed. |
1516 | * |
1517 | * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user |
1518 | * requested real, full-featured networking support upon configuration. |
1519 | * Otherwise module support will break! |
1520 | */ |
1521 | if (rcu_access_pointer(net_families[family]) == NULL) |
1522 | request_module("net-pf-%d", family); |
1523 | #endif |
1524 | |
1525 | rcu_read_lock(); |
1526 | pf = rcu_dereference(net_families[family]); |
1527 | err = -EAFNOSUPPORT; |
1528 | if (!pf) |
1529 | goto out_release; |
1530 | |
1531 | /* |
1532 | * We will call the ->create function, that possibly is in a loadable |
1533 | * module, so we have to bump that loadable module refcnt first. |
1534 | */ |
1535 | if (!try_module_get(module: pf->owner)) |
1536 | goto out_release; |
1537 | |
1538 | /* Now protected by module ref count */ |
1539 | rcu_read_unlock(); |
1540 | |
1541 | err = pf->create(net, sock, protocol, kern); |
1542 | if (err < 0) { |
1543 | /* ->create should release the allocated sock->sk object on error |
1544 | * and make sure sock->sk is set to NULL to avoid use-after-free |
1545 | */ |
1546 | DEBUG_NET_WARN_ONCE(sock->sk, |
1547 | "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", |
1548 | pf->create, family, type, protocol); |
1549 | goto out_module_put; |
1550 | } |
1551 | |
1552 | /* |
1553 | * Now to bump the refcnt of the [loadable] module that owns this |
1554 | * socket at sock_release time we decrement its refcnt. |
1555 | */ |
1556 | if (!try_module_get(module: sock->ops->owner)) |
1557 | goto out_module_busy; |
1558 | |
1559 | /* |
1560 | * Now that we're done with the ->create function, the [loadable] |
1561 | * module can have its refcnt decremented |
1562 | */ |
1563 | module_put(module: pf->owner); |
1564 | err = security_socket_post_create(sock, family, type, protocol, kern); |
1565 | if (err) |
1566 | goto out_sock_release; |
1567 | *res = sock; |
1568 | |
1569 | return 0; |
1570 | |
1571 | out_module_busy: |
1572 | err = -EAFNOSUPPORT; |
1573 | out_module_put: |
1574 | sock->ops = NULL; |
1575 | module_put(module: pf->owner); |
1576 | out_sock_release: |
1577 | sock_release(sock); |
1578 | return err; |
1579 | |
1580 | out_release: |
1581 | rcu_read_unlock(); |
1582 | goto out_sock_release; |
1583 | } |
1584 | EXPORT_SYMBOL(__sock_create); |
1585 | |
1586 | /** |
1587 | * sock_create - creates a socket |
1588 | * @family: protocol family (AF_INET, ...) |
1589 | * @type: communication type (SOCK_STREAM, ...) |
1590 | * @protocol: protocol (0, ...) |
1591 | * @res: new socket |
1592 | * |
1593 | * A wrapper around __sock_create(). |
1594 | * Returns 0 or an error. This function internally uses GFP_KERNEL. |
1595 | */ |
1596 | |
1597 | int sock_create(int family, int type, int protocol, struct socket **res) |
1598 | { |
1599 | return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); |
1600 | } |
1601 | EXPORT_SYMBOL(sock_create); |
1602 | |
1603 | /** |
1604 | * sock_create_kern - creates a socket (kernel space) |
1605 | * @net: net namespace |
1606 | * @family: protocol family (AF_INET, ...) |
1607 | * @type: communication type (SOCK_STREAM, ...) |
1608 | * @protocol: protocol (0, ...) |
1609 | * @res: new socket |
1610 | * |
1611 | * A wrapper around __sock_create(). |
1612 | * Returns 0 or an error. This function internally uses GFP_KERNEL. |
1613 | */ |
1614 | |
1615 | int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) |
1616 | { |
1617 | return __sock_create(net, family, type, protocol, res, 1); |
1618 | } |
1619 | EXPORT_SYMBOL(sock_create_kern); |
1620 | |
1621 | static struct socket *__sys_socket_create(int family, int type, int protocol) |
1622 | { |
1623 | struct socket *sock; |
1624 | int retval; |
1625 | |
1626 | /* Check the SOCK_* constants for consistency. */ |
1627 | BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); |
1628 | BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); |
1629 | BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); |
1630 | BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); |
1631 | |
1632 | if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1633 | return ERR_PTR(error: -EINVAL); |
1634 | type &= SOCK_TYPE_MASK; |
1635 | |
1636 | retval = sock_create(family, type, protocol, &sock); |
1637 | if (retval < 0) |
1638 | return ERR_PTR(error: retval); |
1639 | |
1640 | return sock; |
1641 | } |
1642 | |
1643 | struct file *__sys_socket_file(int family, int type, int protocol) |
1644 | { |
1645 | struct socket *sock; |
1646 | int flags; |
1647 | |
1648 | sock = __sys_socket_create(family, type, protocol); |
1649 | if (IS_ERR(ptr: sock)) |
1650 | return ERR_CAST(ptr: sock); |
1651 | |
1652 | flags = type & ~SOCK_TYPE_MASK; |
1653 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1654 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1655 | |
1656 | return sock_alloc_file(sock, flags, NULL); |
1657 | } |
1658 | |
1659 | /* A hook for bpf progs to attach to and update socket protocol. |
1660 | * |
1661 | * A static noinline declaration here could cause the compiler to |
1662 | * optimize away the function. A global noinline declaration will |
1663 | * keep the definition, but may optimize away the callsite. |
1664 | * Therefore, __weak is needed to ensure that the call is still |
1665 | * emitted, by telling the compiler that we don't know what the |
1666 | * function might eventually be. |
1667 | */ |
1668 | |
1669 | __bpf_hook_start(); |
1670 | |
1671 | __weak noinline int update_socket_protocol(int family, int type, int protocol) |
1672 | { |
1673 | return protocol; |
1674 | } |
1675 | |
1676 | __bpf_hook_end(); |
1677 | |
1678 | int __sys_socket(int family, int type, int protocol) |
1679 | { |
1680 | struct socket *sock; |
1681 | int flags; |
1682 | |
1683 | sock = __sys_socket_create(family, type, |
1684 | protocol: update_socket_protocol(family, type, protocol)); |
1685 | if (IS_ERR(ptr: sock)) |
1686 | return PTR_ERR(ptr: sock); |
1687 | |
1688 | flags = type & ~SOCK_TYPE_MASK; |
1689 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1690 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1691 | |
1692 | return sock_map_fd(sock, flags: flags & (O_CLOEXEC | O_NONBLOCK)); |
1693 | } |
1694 | |
1695 | SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) |
1696 | { |
1697 | return __sys_socket(family, type, protocol); |
1698 | } |
1699 | |
1700 | /* |
1701 | * Create a pair of connected sockets. |
1702 | */ |
1703 | |
1704 | int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) |
1705 | { |
1706 | struct socket *sock1, *sock2; |
1707 | int fd1, fd2, err; |
1708 | struct file *newfile1, *newfile2; |
1709 | int flags; |
1710 | |
1711 | flags = type & ~SOCK_TYPE_MASK; |
1712 | if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1713 | return -EINVAL; |
1714 | type &= SOCK_TYPE_MASK; |
1715 | |
1716 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1717 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1718 | |
1719 | /* |
1720 | * reserve descriptors and make sure we won't fail |
1721 | * to return them to userland. |
1722 | */ |
1723 | fd1 = get_unused_fd_flags(flags); |
1724 | if (unlikely(fd1 < 0)) |
1725 | return fd1; |
1726 | |
1727 | fd2 = get_unused_fd_flags(flags); |
1728 | if (unlikely(fd2 < 0)) { |
1729 | put_unused_fd(fd: fd1); |
1730 | return fd2; |
1731 | } |
1732 | |
1733 | err = put_user(fd1, &usockvec[0]); |
1734 | if (err) |
1735 | goto out; |
1736 | |
1737 | err = put_user(fd2, &usockvec[1]); |
1738 | if (err) |
1739 | goto out; |
1740 | |
1741 | /* |
1742 | * Obtain the first socket and check if the underlying protocol |
1743 | * supports the socketpair call. |
1744 | */ |
1745 | |
1746 | err = sock_create(family, type, protocol, &sock1); |
1747 | if (unlikely(err < 0)) |
1748 | goto out; |
1749 | |
1750 | err = sock_create(family, type, protocol, &sock2); |
1751 | if (unlikely(err < 0)) { |
1752 | sock_release(sock1); |
1753 | goto out; |
1754 | } |
1755 | |
1756 | err = security_socket_socketpair(socka: sock1, sockb: sock2); |
1757 | if (unlikely(err)) { |
1758 | sock_release(sock2); |
1759 | sock_release(sock1); |
1760 | goto out; |
1761 | } |
1762 | |
1763 | err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); |
1764 | if (unlikely(err < 0)) { |
1765 | sock_release(sock2); |
1766 | sock_release(sock1); |
1767 | goto out; |
1768 | } |
1769 | |
1770 | newfile1 = sock_alloc_file(sock1, flags, NULL); |
1771 | if (IS_ERR(ptr: newfile1)) { |
1772 | err = PTR_ERR(ptr: newfile1); |
1773 | sock_release(sock2); |
1774 | goto out; |
1775 | } |
1776 | |
1777 | newfile2 = sock_alloc_file(sock2, flags, NULL); |
1778 | if (IS_ERR(ptr: newfile2)) { |
1779 | err = PTR_ERR(ptr: newfile2); |
1780 | fput(newfile1); |
1781 | goto out; |
1782 | } |
1783 | |
1784 | audit_fd_pair(fd1, fd2); |
1785 | |
1786 | fd_install(fd: fd1, file: newfile1); |
1787 | fd_install(fd: fd2, file: newfile2); |
1788 | return 0; |
1789 | |
1790 | out: |
1791 | put_unused_fd(fd: fd2); |
1792 | put_unused_fd(fd: fd1); |
1793 | return err; |
1794 | } |
1795 | |
1796 | SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, |
1797 | int __user *, usockvec) |
1798 | { |
1799 | return __sys_socketpair(family, type, protocol, usockvec); |
1800 | } |
1801 | |
1802 | int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, |
1803 | int addrlen) |
1804 | { |
1805 | int err; |
1806 | |
1807 | err = security_socket_bind(sock, address: (struct sockaddr *)address, |
1808 | addrlen); |
1809 | if (!err) |
1810 | err = READ_ONCE(sock->ops)->bind(sock, |
1811 | (struct sockaddr *)address, |
1812 | addrlen); |
1813 | return err; |
1814 | } |
1815 | |
1816 | /* |
1817 | * Bind a name to a socket. Nothing much to do here since it's |
1818 | * the protocol's responsibility to handle the local address. |
1819 | * |
1820 | * We move the socket address to kernel space before we call |
1821 | * the protocol layer (having also checked the address is ok). |
1822 | */ |
1823 | |
1824 | int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) |
1825 | { |
1826 | struct socket *sock; |
1827 | struct sockaddr_storage address; |
1828 | CLASS(fd, f)(fd); |
1829 | int err; |
1830 | |
1831 | if (fd_empty(f)) |
1832 | return -EBADF; |
1833 | sock = sock_from_file(fd_file(f)); |
1834 | if (unlikely(!sock)) |
1835 | return -ENOTSOCK; |
1836 | |
1837 | err = move_addr_to_kernel(uaddr: umyaddr, ulen: addrlen, kaddr: &address); |
1838 | if (unlikely(err)) |
1839 | return err; |
1840 | |
1841 | return __sys_bind_socket(sock, address: &address, addrlen); |
1842 | } |
1843 | |
1844 | SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) |
1845 | { |
1846 | return __sys_bind(fd, umyaddr, addrlen); |
1847 | } |
1848 | |
1849 | /* |
1850 | * Perform a listen. Basically, we allow the protocol to do anything |
1851 | * necessary for a listen, and if that works, we mark the socket as |
1852 | * ready for listening. |
1853 | */ |
1854 | int __sys_listen_socket(struct socket *sock, int backlog) |
1855 | { |
1856 | int somaxconn, err; |
1857 | |
1858 | somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); |
1859 | if ((unsigned int)backlog > somaxconn) |
1860 | backlog = somaxconn; |
1861 | |
1862 | err = security_socket_listen(sock, backlog); |
1863 | if (!err) |
1864 | err = READ_ONCE(sock->ops)->listen(sock, backlog); |
1865 | return err; |
1866 | } |
1867 | |
1868 | int __sys_listen(int fd, int backlog) |
1869 | { |
1870 | CLASS(fd, f)(fd); |
1871 | struct socket *sock; |
1872 | |
1873 | if (fd_empty(f)) |
1874 | return -EBADF; |
1875 | sock = sock_from_file(fd_file(f)); |
1876 | if (unlikely(!sock)) |
1877 | return -ENOTSOCK; |
1878 | |
1879 | return __sys_listen_socket(sock, backlog); |
1880 | } |
1881 | |
1882 | SYSCALL_DEFINE2(listen, int, fd, int, backlog) |
1883 | { |
1884 | return __sys_listen(fd, backlog); |
1885 | } |
1886 | |
1887 | struct file *do_accept(struct file *file, struct proto_accept_arg *arg, |
1888 | struct sockaddr __user *upeer_sockaddr, |
1889 | int __user *upeer_addrlen, int flags) |
1890 | { |
1891 | struct socket *sock, *newsock; |
1892 | struct file *newfile; |
1893 | int err, len; |
1894 | struct sockaddr_storage address; |
1895 | const struct proto_ops *ops; |
1896 | |
1897 | sock = sock_from_file(file); |
1898 | if (!sock) |
1899 | return ERR_PTR(error: -ENOTSOCK); |
1900 | |
1901 | newsock = sock_alloc(); |
1902 | if (!newsock) |
1903 | return ERR_PTR(error: -ENFILE); |
1904 | ops = READ_ONCE(sock->ops); |
1905 | |
1906 | newsock->type = sock->type; |
1907 | newsock->ops = ops; |
1908 | |
1909 | /* |
1910 | * We don't need try_module_get here, as the listening socket (sock) |
1911 | * has the protocol module (sock->ops->owner) held. |
1912 | */ |
1913 | __module_get(module: ops->owner); |
1914 | |
1915 | newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); |
1916 | if (IS_ERR(ptr: newfile)) |
1917 | return newfile; |
1918 | |
1919 | err = security_socket_accept(sock, newsock); |
1920 | if (err) |
1921 | goto out_fd; |
1922 | |
1923 | arg->flags |= sock->file->f_flags; |
1924 | err = ops->accept(sock, newsock, arg); |
1925 | if (err < 0) |
1926 | goto out_fd; |
1927 | |
1928 | if (upeer_sockaddr) { |
1929 | len = ops->getname(newsock, (struct sockaddr *)&address, 2); |
1930 | if (len < 0) { |
1931 | err = -ECONNABORTED; |
1932 | goto out_fd; |
1933 | } |
1934 | err = move_addr_to_user(kaddr: &address, |
1935 | klen: len, uaddr: upeer_sockaddr, ulen: upeer_addrlen); |
1936 | if (err < 0) |
1937 | goto out_fd; |
1938 | } |
1939 | |
1940 | /* File flags are not inherited via accept() unlike another OSes. */ |
1941 | return newfile; |
1942 | out_fd: |
1943 | fput(newfile); |
1944 | return ERR_PTR(error: err); |
1945 | } |
1946 | |
1947 | static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, |
1948 | int __user *upeer_addrlen, int flags) |
1949 | { |
1950 | struct proto_accept_arg arg = { }; |
1951 | struct file *newfile; |
1952 | int newfd; |
1953 | |
1954 | if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
1955 | return -EINVAL; |
1956 | |
1957 | if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
1958 | flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
1959 | |
1960 | newfd = get_unused_fd_flags(flags); |
1961 | if (unlikely(newfd < 0)) |
1962 | return newfd; |
1963 | |
1964 | newfile = do_accept(file, arg: &arg, upeer_sockaddr, upeer_addrlen, |
1965 | flags); |
1966 | if (IS_ERR(ptr: newfile)) { |
1967 | put_unused_fd(fd: newfd); |
1968 | return PTR_ERR(ptr: newfile); |
1969 | } |
1970 | fd_install(fd: newfd, file: newfile); |
1971 | return newfd; |
1972 | } |
1973 | |
1974 | /* |
1975 | * For accept, we attempt to create a new socket, set up the link |
1976 | * with the client, wake up the client, then return the new |
1977 | * connected fd. We collect the address of the connector in kernel |
1978 | * space and move it to user at the very end. This is unclean because |
1979 | * we open the socket then return an error. |
1980 | * |
1981 | * 1003.1g adds the ability to recvmsg() to query connection pending |
1982 | * status to recvmsg. We need to add that support in a way thats |
1983 | * clean when we restructure accept also. |
1984 | */ |
1985 | |
1986 | int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, |
1987 | int __user *upeer_addrlen, int flags) |
1988 | { |
1989 | CLASS(fd, f)(fd); |
1990 | |
1991 | if (fd_empty(f)) |
1992 | return -EBADF; |
1993 | return __sys_accept4_file(fd_file(f), upeer_sockaddr, |
1994 | upeer_addrlen, flags); |
1995 | } |
1996 | |
1997 | SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, |
1998 | int __user *, upeer_addrlen, int, flags) |
1999 | { |
2000 | return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); |
2001 | } |
2002 | |
2003 | SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, |
2004 | int __user *, upeer_addrlen) |
2005 | { |
2006 | return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags: 0); |
2007 | } |
2008 | |
2009 | /* |
2010 | * Attempt to connect to a socket with the server address. The address |
2011 | * is in user space so we verify it is OK and move it to kernel space. |
2012 | * |
2013 | * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to |
2014 | * break bindings |
2015 | * |
2016 | * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and |
2017 | * other SEQPACKET protocols that take time to connect() as it doesn't |
2018 | * include the -EINPROGRESS status for such sockets. |
2019 | */ |
2020 | |
2021 | int __sys_connect_file(struct file *file, struct sockaddr_storage *address, |
2022 | int addrlen, int file_flags) |
2023 | { |
2024 | struct socket *sock; |
2025 | int err; |
2026 | |
2027 | sock = sock_from_file(file); |
2028 | if (!sock) { |
2029 | err = -ENOTSOCK; |
2030 | goto out; |
2031 | } |
2032 | |
2033 | err = |
2034 | security_socket_connect(sock, address: (struct sockaddr *)address, addrlen); |
2035 | if (err) |
2036 | goto out; |
2037 | |
2038 | err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, |
2039 | addrlen, sock->file->f_flags | file_flags); |
2040 | out: |
2041 | return err; |
2042 | } |
2043 | |
2044 | int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) |
2045 | { |
2046 | struct sockaddr_storage address; |
2047 | CLASS(fd, f)(fd); |
2048 | int ret; |
2049 | |
2050 | if (fd_empty(f)) |
2051 | return -EBADF; |
2052 | |
2053 | ret = move_addr_to_kernel(uaddr: uservaddr, ulen: addrlen, kaddr: &address); |
2054 | if (ret) |
2055 | return ret; |
2056 | |
2057 | return __sys_connect_file(fd_file(f), address: &address, addrlen, file_flags: 0); |
2058 | } |
2059 | |
2060 | SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, |
2061 | int, addrlen) |
2062 | { |
2063 | return __sys_connect(fd, uservaddr, addrlen); |
2064 | } |
2065 | |
2066 | /* |
2067 | * Get the local address ('name') of a socket object. Move the obtained |
2068 | * name to user space. |
2069 | */ |
2070 | |
2071 | int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, |
2072 | int __user *usockaddr_len) |
2073 | { |
2074 | struct socket *sock; |
2075 | struct sockaddr_storage address; |
2076 | CLASS(fd, f)(fd); |
2077 | int err; |
2078 | |
2079 | if (fd_empty(f)) |
2080 | return -EBADF; |
2081 | sock = sock_from_file(fd_file(f)); |
2082 | if (unlikely(!sock)) |
2083 | return -ENOTSOCK; |
2084 | |
2085 | err = security_socket_getsockname(sock); |
2086 | if (err) |
2087 | return err; |
2088 | |
2089 | err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); |
2090 | if (err < 0) |
2091 | return err; |
2092 | |
2093 | /* "err" is actually length in this case */ |
2094 | return move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr, ulen: usockaddr_len); |
2095 | } |
2096 | |
2097 | SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, |
2098 | int __user *, usockaddr_len) |
2099 | { |
2100 | return __sys_getsockname(fd, usockaddr, usockaddr_len); |
2101 | } |
2102 | |
2103 | /* |
2104 | * Get the remote address ('name') of a socket object. Move the obtained |
2105 | * name to user space. |
2106 | */ |
2107 | |
2108 | int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, |
2109 | int __user *usockaddr_len) |
2110 | { |
2111 | struct socket *sock; |
2112 | struct sockaddr_storage address; |
2113 | CLASS(fd, f)(fd); |
2114 | int err; |
2115 | |
2116 | if (fd_empty(f)) |
2117 | return -EBADF; |
2118 | sock = sock_from_file(fd_file(f)); |
2119 | if (unlikely(!sock)) |
2120 | return -ENOTSOCK; |
2121 | |
2122 | err = security_socket_getpeername(sock); |
2123 | if (err) |
2124 | return err; |
2125 | |
2126 | err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); |
2127 | if (err < 0) |
2128 | return err; |
2129 | |
2130 | /* "err" is actually length in this case */ |
2131 | return move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr, ulen: usockaddr_len); |
2132 | } |
2133 | |
2134 | SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, |
2135 | int __user *, usockaddr_len) |
2136 | { |
2137 | return __sys_getpeername(fd, usockaddr, usockaddr_len); |
2138 | } |
2139 | |
2140 | /* |
2141 | * Send a datagram to a given address. We move the address into kernel |
2142 | * space and check the user space data area is readable before invoking |
2143 | * the protocol. |
2144 | */ |
2145 | int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, |
2146 | struct sockaddr __user *addr, int addr_len) |
2147 | { |
2148 | struct socket *sock; |
2149 | struct sockaddr_storage address; |
2150 | int err; |
2151 | struct msghdr msg; |
2152 | |
2153 | err = import_ubuf(ITER_SOURCE, buf: buff, len, i: &msg.msg_iter); |
2154 | if (unlikely(err)) |
2155 | return err; |
2156 | |
2157 | CLASS(fd, f)(fd); |
2158 | if (fd_empty(f)) |
2159 | return -EBADF; |
2160 | sock = sock_from_file(fd_file(f)); |
2161 | if (unlikely(!sock)) |
2162 | return -ENOTSOCK; |
2163 | |
2164 | msg.msg_name = NULL; |
2165 | msg.msg_control = NULL; |
2166 | msg.msg_controllen = 0; |
2167 | msg.msg_namelen = 0; |
2168 | msg.msg_ubuf = NULL; |
2169 | if (addr) { |
2170 | err = move_addr_to_kernel(uaddr: addr, ulen: addr_len, kaddr: &address); |
2171 | if (err < 0) |
2172 | return err; |
2173 | msg.msg_name = (struct sockaddr *)&address; |
2174 | msg.msg_namelen = addr_len; |
2175 | } |
2176 | flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
2177 | if (sock->file->f_flags & O_NONBLOCK) |
2178 | flags |= MSG_DONTWAIT; |
2179 | msg.msg_flags = flags; |
2180 | return __sock_sendmsg(sock, msg: &msg); |
2181 | } |
2182 | |
2183 | SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, |
2184 | unsigned int, flags, struct sockaddr __user *, addr, |
2185 | int, addr_len) |
2186 | { |
2187 | return __sys_sendto(fd, buff, len, flags, addr, addr_len); |
2188 | } |
2189 | |
2190 | /* |
2191 | * Send a datagram down a socket. |
2192 | */ |
2193 | |
2194 | SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, |
2195 | unsigned int, flags) |
2196 | { |
2197 | return __sys_sendto(fd, buff, len, flags, NULL, addr_len: 0); |
2198 | } |
2199 | |
2200 | /* |
2201 | * Receive a frame from the socket and optionally record the address of the |
2202 | * sender. We verify the buffers are writable and if needed move the |
2203 | * sender address from kernel to user space. |
2204 | */ |
2205 | int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, |
2206 | struct sockaddr __user *addr, int __user *addr_len) |
2207 | { |
2208 | struct sockaddr_storage address; |
2209 | struct msghdr msg = { |
2210 | /* Save some cycles and don't copy the address if not needed */ |
2211 | .msg_name = addr ? (struct sockaddr *)&address : NULL, |
2212 | }; |
2213 | struct socket *sock; |
2214 | int err, err2; |
2215 | |
2216 | err = import_ubuf(ITER_DEST, buf: ubuf, len: size, i: &msg.msg_iter); |
2217 | if (unlikely(err)) |
2218 | return err; |
2219 | |
2220 | CLASS(fd, f)(fd); |
2221 | |
2222 | if (fd_empty(f)) |
2223 | return -EBADF; |
2224 | sock = sock_from_file(fd_file(f)); |
2225 | if (unlikely(!sock)) |
2226 | return -ENOTSOCK; |
2227 | |
2228 | if (sock->file->f_flags & O_NONBLOCK) |
2229 | flags |= MSG_DONTWAIT; |
2230 | err = sock_recvmsg(sock, &msg, flags); |
2231 | |
2232 | if (err >= 0 && addr != NULL) { |
2233 | err2 = move_addr_to_user(kaddr: &address, |
2234 | klen: msg.msg_namelen, uaddr: addr, ulen: addr_len); |
2235 | if (err2 < 0) |
2236 | err = err2; |
2237 | } |
2238 | return err; |
2239 | } |
2240 | |
2241 | SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, |
2242 | unsigned int, flags, struct sockaddr __user *, addr, |
2243 | int __user *, addr_len) |
2244 | { |
2245 | return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); |
2246 | } |
2247 | |
2248 | /* |
2249 | * Receive a datagram from a socket. |
2250 | */ |
2251 | |
2252 | SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, |
2253 | unsigned int, flags) |
2254 | { |
2255 | return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); |
2256 | } |
2257 | |
2258 | static bool sock_use_custom_sol_socket(const struct socket *sock) |
2259 | { |
2260 | return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); |
2261 | } |
2262 | |
2263 | int do_sock_setsockopt(struct socket *sock, bool compat, int level, |
2264 | int optname, sockptr_t optval, int optlen) |
2265 | { |
2266 | const struct proto_ops *ops; |
2267 | char *kernel_optval = NULL; |
2268 | int err; |
2269 | |
2270 | if (optlen < 0) |
2271 | return -EINVAL; |
2272 | |
2273 | err = security_socket_setsockopt(sock, level, optname); |
2274 | if (err) |
2275 | goto out_put; |
2276 | |
2277 | if (!compat) |
2278 | err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, |
2279 | optval, &optlen, |
2280 | &kernel_optval); |
2281 | if (err < 0) |
2282 | goto out_put; |
2283 | if (err > 0) { |
2284 | err = 0; |
2285 | goto out_put; |
2286 | } |
2287 | |
2288 | if (kernel_optval) |
2289 | optval = KERNEL_SOCKPTR(p: kernel_optval); |
2290 | ops = READ_ONCE(sock->ops); |
2291 | if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) |
2292 | err = sock_setsockopt(sock, level, op: optname, optval, optlen); |
2293 | else if (unlikely(!ops->setsockopt)) |
2294 | err = -EOPNOTSUPP; |
2295 | else |
2296 | err = ops->setsockopt(sock, level, optname, optval, |
2297 | optlen); |
2298 | kfree(objp: kernel_optval); |
2299 | out_put: |
2300 | return err; |
2301 | } |
2302 | EXPORT_SYMBOL(do_sock_setsockopt); |
2303 | |
2304 | /* Set a socket option. Because we don't know the option lengths we have |
2305 | * to pass the user mode parameter for the protocols to sort out. |
2306 | */ |
2307 | int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, |
2308 | int optlen) |
2309 | { |
2310 | sockptr_t optval = USER_SOCKPTR(p: user_optval); |
2311 | bool compat = in_compat_syscall(); |
2312 | struct socket *sock; |
2313 | CLASS(fd, f)(fd); |
2314 | |
2315 | if (fd_empty(f)) |
2316 | return -EBADF; |
2317 | sock = sock_from_file(fd_file(f)); |
2318 | if (unlikely(!sock)) |
2319 | return -ENOTSOCK; |
2320 | |
2321 | return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); |
2322 | } |
2323 | |
2324 | SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, |
2325 | char __user *, optval, int, optlen) |
2326 | { |
2327 | return __sys_setsockopt(fd, level, optname, user_optval: optval, optlen); |
2328 | } |
2329 | |
2330 | INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, |
2331 | int optname)); |
2332 | |
2333 | int do_sock_getsockopt(struct socket *sock, bool compat, int level, |
2334 | int optname, sockptr_t optval, sockptr_t optlen) |
2335 | { |
2336 | int max_optlen __maybe_unused = 0; |
2337 | const struct proto_ops *ops; |
2338 | int err; |
2339 | |
2340 | err = security_socket_getsockopt(sock, level, optname); |
2341 | if (err) |
2342 | return err; |
2343 | |
2344 | if (!compat) |
2345 | copy_from_sockptr(dst: &max_optlen, src: optlen, size: sizeof(int)); |
2346 | |
2347 | ops = READ_ONCE(sock->ops); |
2348 | if (level == SOL_SOCKET) { |
2349 | err = sk_getsockopt(sk: sock->sk, level, optname, optval, optlen); |
2350 | } else if (unlikely(!ops->getsockopt)) { |
2351 | err = -EOPNOTSUPP; |
2352 | } else { |
2353 | if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, |
2354 | "Invalid argument type")) |
2355 | return -EOPNOTSUPP; |
2356 | |
2357 | err = ops->getsockopt(sock, level, optname, optval.user, |
2358 | optlen.user); |
2359 | } |
2360 | |
2361 | if (!compat) |
2362 | err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, |
2363 | optval, optlen, max_optlen, |
2364 | err); |
2365 | |
2366 | return err; |
2367 | } |
2368 | EXPORT_SYMBOL(do_sock_getsockopt); |
2369 | |
2370 | /* |
2371 | * Get a socket option. Because we don't know the option lengths we have |
2372 | * to pass a user mode parameter for the protocols to sort out. |
2373 | */ |
2374 | int __sys_getsockopt(int fd, int level, int optname, char __user *optval, |
2375 | int __user *optlen) |
2376 | { |
2377 | struct socket *sock; |
2378 | CLASS(fd, f)(fd); |
2379 | |
2380 | if (fd_empty(f)) |
2381 | return -EBADF; |
2382 | sock = sock_from_file(fd_file(f)); |
2383 | if (unlikely(!sock)) |
2384 | return -ENOTSOCK; |
2385 | |
2386 | return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, |
2387 | USER_SOCKPTR(p: optval), USER_SOCKPTR(p: optlen)); |
2388 | } |
2389 | |
2390 | SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, |
2391 | char __user *, optval, int __user *, optlen) |
2392 | { |
2393 | return __sys_getsockopt(fd, level, optname, optval, optlen); |
2394 | } |
2395 | |
2396 | /* |
2397 | * Shutdown a socket. |
2398 | */ |
2399 | |
2400 | int __sys_shutdown_sock(struct socket *sock, int how) |
2401 | { |
2402 | int err; |
2403 | |
2404 | err = security_socket_shutdown(sock, how); |
2405 | if (!err) |
2406 | err = READ_ONCE(sock->ops)->shutdown(sock, how); |
2407 | |
2408 | return err; |
2409 | } |
2410 | |
2411 | int __sys_shutdown(int fd, int how) |
2412 | { |
2413 | struct socket *sock; |
2414 | CLASS(fd, f)(fd); |
2415 | |
2416 | if (fd_empty(f)) |
2417 | return -EBADF; |
2418 | sock = sock_from_file(fd_file(f)); |
2419 | if (unlikely(!sock)) |
2420 | return -ENOTSOCK; |
2421 | |
2422 | return __sys_shutdown_sock(sock, how); |
2423 | } |
2424 | |
2425 | SYSCALL_DEFINE2(shutdown, int, fd, int, how) |
2426 | { |
2427 | return __sys_shutdown(fd, how); |
2428 | } |
2429 | |
2430 | /* A couple of helpful macros for getting the address of the 32/64 bit |
2431 | * fields which are the same type (int / unsigned) on our platforms. |
2432 | */ |
2433 | #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) |
2434 | #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) |
2435 | #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) |
2436 | |
2437 | struct used_address { |
2438 | struct sockaddr_storage name; |
2439 | unsigned int name_len; |
2440 | }; |
2441 | |
2442 | int __copy_msghdr(struct msghdr *kmsg, |
2443 | struct user_msghdr *msg, |
2444 | struct sockaddr __user **save_addr) |
2445 | { |
2446 | ssize_t err; |
2447 | |
2448 | kmsg->msg_control_is_user = true; |
2449 | kmsg->msg_get_inq = 0; |
2450 | kmsg->msg_control_user = msg->msg_control; |
2451 | kmsg->msg_controllen = msg->msg_controllen; |
2452 | kmsg->msg_flags = msg->msg_flags; |
2453 | |
2454 | kmsg->msg_namelen = msg->msg_namelen; |
2455 | if (!msg->msg_name) |
2456 | kmsg->msg_namelen = 0; |
2457 | |
2458 | if (kmsg->msg_namelen < 0) |
2459 | return -EINVAL; |
2460 | |
2461 | if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) |
2462 | kmsg->msg_namelen = sizeof(struct sockaddr_storage); |
2463 | |
2464 | if (save_addr) |
2465 | *save_addr = msg->msg_name; |
2466 | |
2467 | if (msg->msg_name && kmsg->msg_namelen) { |
2468 | if (!save_addr) { |
2469 | err = move_addr_to_kernel(uaddr: msg->msg_name, |
2470 | ulen: kmsg->msg_namelen, |
2471 | kaddr: kmsg->msg_name); |
2472 | if (err < 0) |
2473 | return err; |
2474 | } |
2475 | } else { |
2476 | kmsg->msg_name = NULL; |
2477 | kmsg->msg_namelen = 0; |
2478 | } |
2479 | |
2480 | if (msg->msg_iovlen > UIO_MAXIOV) |
2481 | return -EMSGSIZE; |
2482 | |
2483 | kmsg->msg_iocb = NULL; |
2484 | kmsg->msg_ubuf = NULL; |
2485 | return 0; |
2486 | } |
2487 | |
2488 | static int copy_msghdr_from_user(struct msghdr *kmsg, |
2489 | struct user_msghdr __user *umsg, |
2490 | struct sockaddr __user **save_addr, |
2491 | struct iovec **iov) |
2492 | { |
2493 | struct user_msghdr msg; |
2494 | ssize_t err; |
2495 | |
2496 | if (copy_from_user(to: &msg, from: umsg, n: sizeof(*umsg))) |
2497 | return -EFAULT; |
2498 | |
2499 | err = __copy_msghdr(kmsg, msg: &msg, save_addr); |
2500 | if (err) |
2501 | return err; |
2502 | |
2503 | err = import_iovec(type: save_addr ? ITER_DEST : ITER_SOURCE, |
2504 | uvec: msg.msg_iov, nr_segs: msg.msg_iovlen, |
2505 | UIO_FASTIOV, iovp: iov, i: &kmsg->msg_iter); |
2506 | return err < 0 ? err : 0; |
2507 | } |
2508 | |
2509 | static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, |
2510 | unsigned int flags, struct used_address *used_address, |
2511 | unsigned int allowed_msghdr_flags) |
2512 | { |
2513 | unsigned char ctl[sizeof(struct cmsghdr) + 20] |
2514 | __aligned(sizeof(__kernel_size_t)); |
2515 | /* 20 is size of ipv6_pktinfo */ |
2516 | unsigned char *ctl_buf = ctl; |
2517 | int ctl_len; |
2518 | ssize_t err; |
2519 | |
2520 | err = -ENOBUFS; |
2521 | |
2522 | if (msg_sys->msg_controllen > INT_MAX) |
2523 | goto out; |
2524 | flags |= (msg_sys->msg_flags & allowed_msghdr_flags); |
2525 | ctl_len = msg_sys->msg_controllen; |
2526 | if ((MSG_CMSG_COMPAT & flags) && ctl_len) { |
2527 | err = |
2528 | cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, |
2529 | sizeof(ctl)); |
2530 | if (err) |
2531 | goto out; |
2532 | ctl_buf = msg_sys->msg_control; |
2533 | ctl_len = msg_sys->msg_controllen; |
2534 | } else if (ctl_len) { |
2535 | BUILD_BUG_ON(sizeof(struct cmsghdr) != |
2536 | CMSG_ALIGN(sizeof(struct cmsghdr))); |
2537 | if (ctl_len > sizeof(ctl)) { |
2538 | ctl_buf = sock_kmalloc(sk: sock->sk, size: ctl_len, GFP_KERNEL); |
2539 | if (ctl_buf == NULL) |
2540 | goto out; |
2541 | } |
2542 | err = -EFAULT; |
2543 | if (copy_from_user(to: ctl_buf, from: msg_sys->msg_control_user, n: ctl_len)) |
2544 | goto out_freectl; |
2545 | msg_sys->msg_control = ctl_buf; |
2546 | msg_sys->msg_control_is_user = false; |
2547 | } |
2548 | flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
2549 | msg_sys->msg_flags = flags; |
2550 | |
2551 | if (sock->file->f_flags & O_NONBLOCK) |
2552 | msg_sys->msg_flags |= MSG_DONTWAIT; |
2553 | /* |
2554 | * If this is sendmmsg() and current destination address is same as |
2555 | * previously succeeded address, omit asking LSM's decision. |
2556 | * used_address->name_len is initialized to UINT_MAX so that the first |
2557 | * destination address never matches. |
2558 | */ |
2559 | if (used_address && msg_sys->msg_name && |
2560 | used_address->name_len == msg_sys->msg_namelen && |
2561 | !memcmp(p: &used_address->name, q: msg_sys->msg_name, |
2562 | size: used_address->name_len)) { |
2563 | err = sock_sendmsg_nosec(sock, msg: msg_sys); |
2564 | goto out_freectl; |
2565 | } |
2566 | err = __sock_sendmsg(sock, msg: msg_sys); |
2567 | /* |
2568 | * If this is sendmmsg() and sending to current destination address was |
2569 | * successful, remember it. |
2570 | */ |
2571 | if (used_address && err >= 0) { |
2572 | used_address->name_len = msg_sys->msg_namelen; |
2573 | if (msg_sys->msg_name) |
2574 | memcpy(&used_address->name, msg_sys->msg_name, |
2575 | used_address->name_len); |
2576 | } |
2577 | |
2578 | out_freectl: |
2579 | if (ctl_buf != ctl) |
2580 | sock_kfree_s(sk: sock->sk, mem: ctl_buf, size: ctl_len); |
2581 | out: |
2582 | return err; |
2583 | } |
2584 | |
2585 | static int sendmsg_copy_msghdr(struct msghdr *msg, |
2586 | struct user_msghdr __user *umsg, unsigned flags, |
2587 | struct iovec **iov) |
2588 | { |
2589 | int err; |
2590 | |
2591 | if (flags & MSG_CMSG_COMPAT) { |
2592 | struct compat_msghdr __user *msg_compat; |
2593 | |
2594 | msg_compat = (struct compat_msghdr __user *) umsg; |
2595 | err = get_compat_msghdr(msg, msg_compat, NULL, iov); |
2596 | } else { |
2597 | err = copy_msghdr_from_user(kmsg: msg, umsg, NULL, iov); |
2598 | } |
2599 | if (err < 0) |
2600 | return err; |
2601 | |
2602 | return 0; |
2603 | } |
2604 | |
2605 | static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, |
2606 | struct msghdr *msg_sys, unsigned int flags, |
2607 | struct used_address *used_address, |
2608 | unsigned int allowed_msghdr_flags) |
2609 | { |
2610 | struct sockaddr_storage address; |
2611 | struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
2612 | ssize_t err; |
2613 | |
2614 | msg_sys->msg_name = &address; |
2615 | |
2616 | err = sendmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, iov: &iov); |
2617 | if (err < 0) |
2618 | return err; |
2619 | |
2620 | err = ____sys_sendmsg(sock, msg_sys, flags, used_address, |
2621 | allowed_msghdr_flags); |
2622 | kfree(objp: iov); |
2623 | return err; |
2624 | } |
2625 | |
2626 | /* |
2627 | * BSD sendmsg interface |
2628 | */ |
2629 | long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, |
2630 | unsigned int flags) |
2631 | { |
2632 | return ____sys_sendmsg(sock, msg_sys: msg, flags, NULL, allowed_msghdr_flags: 0); |
2633 | } |
2634 | |
2635 | long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
2636 | bool forbid_cmsg_compat) |
2637 | { |
2638 | struct msghdr msg_sys; |
2639 | struct socket *sock; |
2640 | |
2641 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2642 | return -EINVAL; |
2643 | |
2644 | CLASS(fd, f)(fd); |
2645 | |
2646 | if (fd_empty(f)) |
2647 | return -EBADF; |
2648 | sock = sock_from_file(fd_file(f)); |
2649 | if (unlikely(!sock)) |
2650 | return -ENOTSOCK; |
2651 | |
2652 | return ___sys_sendmsg(sock, msg, msg_sys: &msg_sys, flags, NULL, allowed_msghdr_flags: 0); |
2653 | } |
2654 | |
2655 | SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) |
2656 | { |
2657 | return __sys_sendmsg(fd, msg, flags, forbid_cmsg_compat: true); |
2658 | } |
2659 | |
2660 | /* |
2661 | * Linux sendmmsg interface |
2662 | */ |
2663 | |
2664 | int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, |
2665 | unsigned int flags, bool forbid_cmsg_compat) |
2666 | { |
2667 | int err, datagrams; |
2668 | struct socket *sock; |
2669 | struct mmsghdr __user *entry; |
2670 | struct compat_mmsghdr __user *compat_entry; |
2671 | struct msghdr msg_sys; |
2672 | struct used_address used_address; |
2673 | unsigned int oflags = flags; |
2674 | |
2675 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2676 | return -EINVAL; |
2677 | |
2678 | if (vlen > UIO_MAXIOV) |
2679 | vlen = UIO_MAXIOV; |
2680 | |
2681 | datagrams = 0; |
2682 | |
2683 | CLASS(fd, f)(fd); |
2684 | |
2685 | if (fd_empty(f)) |
2686 | return -EBADF; |
2687 | sock = sock_from_file(fd_file(f)); |
2688 | if (unlikely(!sock)) |
2689 | return -ENOTSOCK; |
2690 | |
2691 | used_address.name_len = UINT_MAX; |
2692 | entry = mmsg; |
2693 | compat_entry = (struct compat_mmsghdr __user *)mmsg; |
2694 | err = 0; |
2695 | flags |= MSG_BATCH; |
2696 | |
2697 | while (datagrams < vlen) { |
2698 | if (datagrams == vlen - 1) |
2699 | flags = oflags; |
2700 | |
2701 | if (MSG_CMSG_COMPAT & flags) { |
2702 | err = ___sys_sendmsg(sock, msg: (struct user_msghdr __user *)compat_entry, |
2703 | msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR); |
2704 | if (err < 0) |
2705 | break; |
2706 | err = __put_user(err, &compat_entry->msg_len); |
2707 | ++compat_entry; |
2708 | } else { |
2709 | err = ___sys_sendmsg(sock, |
2710 | msg: (struct user_msghdr __user *)entry, |
2711 | msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR); |
2712 | if (err < 0) |
2713 | break; |
2714 | err = put_user(err, &entry->msg_len); |
2715 | ++entry; |
2716 | } |
2717 | |
2718 | if (err) |
2719 | break; |
2720 | ++datagrams; |
2721 | if (msg_data_left(msg: &msg_sys)) |
2722 | break; |
2723 | cond_resched(); |
2724 | } |
2725 | |
2726 | /* We only return an error if no datagrams were able to be sent */ |
2727 | if (datagrams != 0) |
2728 | return datagrams; |
2729 | |
2730 | return err; |
2731 | } |
2732 | |
2733 | SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, |
2734 | unsigned int, vlen, unsigned int, flags) |
2735 | { |
2736 | return __sys_sendmmsg(fd, mmsg, vlen, flags, forbid_cmsg_compat: true); |
2737 | } |
2738 | |
2739 | static int recvmsg_copy_msghdr(struct msghdr *msg, |
2740 | struct user_msghdr __user *umsg, unsigned flags, |
2741 | struct sockaddr __user **uaddr, |
2742 | struct iovec **iov) |
2743 | { |
2744 | ssize_t err; |
2745 | |
2746 | if (MSG_CMSG_COMPAT & flags) { |
2747 | struct compat_msghdr __user *msg_compat; |
2748 | |
2749 | msg_compat = (struct compat_msghdr __user *) umsg; |
2750 | err = get_compat_msghdr(msg, msg_compat, uaddr, iov); |
2751 | } else { |
2752 | err = copy_msghdr_from_user(kmsg: msg, umsg, save_addr: uaddr, iov); |
2753 | } |
2754 | if (err < 0) |
2755 | return err; |
2756 | |
2757 | return 0; |
2758 | } |
2759 | |
2760 | static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, |
2761 | struct user_msghdr __user *msg, |
2762 | struct sockaddr __user *uaddr, |
2763 | unsigned int flags, int nosec) |
2764 | { |
2765 | struct compat_msghdr __user *msg_compat = |
2766 | (struct compat_msghdr __user *) msg; |
2767 | int __user *uaddr_len = COMPAT_NAMELEN(msg); |
2768 | struct sockaddr_storage addr; |
2769 | unsigned long cmsg_ptr; |
2770 | int len; |
2771 | ssize_t err; |
2772 | |
2773 | msg_sys->msg_name = &addr; |
2774 | cmsg_ptr = (unsigned long)msg_sys->msg_control; |
2775 | msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); |
2776 | |
2777 | /* We assume all kernel code knows the size of sockaddr_storage */ |
2778 | msg_sys->msg_namelen = 0; |
2779 | |
2780 | if (sock->file->f_flags & O_NONBLOCK) |
2781 | flags |= MSG_DONTWAIT; |
2782 | |
2783 | if (unlikely(nosec)) |
2784 | err = sock_recvmsg_nosec(sock, msg: msg_sys, flags); |
2785 | else |
2786 | err = sock_recvmsg(sock, msg_sys, flags); |
2787 | |
2788 | if (err < 0) |
2789 | goto out; |
2790 | len = err; |
2791 | |
2792 | if (uaddr != NULL) { |
2793 | err = move_addr_to_user(kaddr: &addr, |
2794 | klen: msg_sys->msg_namelen, uaddr, |
2795 | ulen: uaddr_len); |
2796 | if (err < 0) |
2797 | goto out; |
2798 | } |
2799 | err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), |
2800 | COMPAT_FLAGS(msg)); |
2801 | if (err) |
2802 | goto out; |
2803 | if (MSG_CMSG_COMPAT & flags) |
2804 | err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
2805 | &msg_compat->msg_controllen); |
2806 | else |
2807 | err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
2808 | &msg->msg_controllen); |
2809 | if (err) |
2810 | goto out; |
2811 | err = len; |
2812 | out: |
2813 | return err; |
2814 | } |
2815 | |
2816 | static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, |
2817 | struct msghdr *msg_sys, unsigned int flags, int nosec) |
2818 | { |
2819 | struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
2820 | /* user mode address pointers */ |
2821 | struct sockaddr __user *uaddr; |
2822 | ssize_t err; |
2823 | |
2824 | err = recvmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, uaddr: &uaddr, iov: &iov); |
2825 | if (err < 0) |
2826 | return err; |
2827 | |
2828 | err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); |
2829 | kfree(objp: iov); |
2830 | return err; |
2831 | } |
2832 | |
2833 | /* |
2834 | * BSD recvmsg interface |
2835 | */ |
2836 | |
2837 | long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, |
2838 | struct user_msghdr __user *umsg, |
2839 | struct sockaddr __user *uaddr, unsigned int flags) |
2840 | { |
2841 | return ____sys_recvmsg(sock, msg_sys: msg, msg: umsg, uaddr, flags, nosec: 0); |
2842 | } |
2843 | |
2844 | long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
2845 | bool forbid_cmsg_compat) |
2846 | { |
2847 | struct msghdr msg_sys; |
2848 | struct socket *sock; |
2849 | |
2850 | if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
2851 | return -EINVAL; |
2852 | |
2853 | CLASS(fd, f)(fd); |
2854 | |
2855 | if (fd_empty(f)) |
2856 | return -EBADF; |
2857 | sock = sock_from_file(fd_file(f)); |
2858 | if (unlikely(!sock)) |
2859 | return -ENOTSOCK; |
2860 | |
2861 | return ___sys_recvmsg(sock, msg, msg_sys: &msg_sys, flags, nosec: 0); |
2862 | } |
2863 | |
2864 | SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, |
2865 | unsigned int, flags) |
2866 | { |
2867 | return __sys_recvmsg(fd, msg, flags, forbid_cmsg_compat: true); |
2868 | } |
2869 | |
2870 | /* |
2871 | * Linux recvmmsg interface |
2872 | */ |
2873 | |
2874 | static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
2875 | unsigned int vlen, unsigned int flags, |
2876 | struct timespec64 *timeout) |
2877 | { |
2878 | int err = 0, datagrams; |
2879 | struct socket *sock; |
2880 | struct mmsghdr __user *entry; |
2881 | struct compat_mmsghdr __user *compat_entry; |
2882 | struct msghdr msg_sys; |
2883 | struct timespec64 end_time; |
2884 | struct timespec64 timeout64; |
2885 | |
2886 | if (timeout && |
2887 | poll_select_set_timeout(to: &end_time, sec: timeout->tv_sec, |
2888 | nsec: timeout->tv_nsec)) |
2889 | return -EINVAL; |
2890 | |
2891 | datagrams = 0; |
2892 | |
2893 | CLASS(fd, f)(fd); |
2894 | |
2895 | if (fd_empty(f)) |
2896 | return -EBADF; |
2897 | sock = sock_from_file(fd_file(f)); |
2898 | if (unlikely(!sock)) |
2899 | return -ENOTSOCK; |
2900 | |
2901 | if (likely(!(flags & MSG_ERRQUEUE))) { |
2902 | err = sock_error(sk: sock->sk); |
2903 | if (err) |
2904 | return err; |
2905 | } |
2906 | |
2907 | entry = mmsg; |
2908 | compat_entry = (struct compat_mmsghdr __user *)mmsg; |
2909 | |
2910 | while (datagrams < vlen) { |
2911 | /* |
2912 | * No need to ask LSM for more than the first datagram. |
2913 | */ |
2914 | if (MSG_CMSG_COMPAT & flags) { |
2915 | err = ___sys_recvmsg(sock, msg: (struct user_msghdr __user *)compat_entry, |
2916 | msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE, |
2917 | nosec: datagrams); |
2918 | if (err < 0) |
2919 | break; |
2920 | err = __put_user(err, &compat_entry->msg_len); |
2921 | ++compat_entry; |
2922 | } else { |
2923 | err = ___sys_recvmsg(sock, |
2924 | msg: (struct user_msghdr __user *)entry, |
2925 | msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE, |
2926 | nosec: datagrams); |
2927 | if (err < 0) |
2928 | break; |
2929 | err = put_user(err, &entry->msg_len); |
2930 | ++entry; |
2931 | } |
2932 | |
2933 | if (err) |
2934 | break; |
2935 | ++datagrams; |
2936 | |
2937 | /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ |
2938 | if (flags & MSG_WAITFORONE) |
2939 | flags |= MSG_DONTWAIT; |
2940 | |
2941 | if (timeout) { |
2942 | ktime_get_ts64(ts: &timeout64); |
2943 | *timeout = timespec64_sub(lhs: end_time, rhs: timeout64); |
2944 | if (timeout->tv_sec < 0) { |
2945 | timeout->tv_sec = timeout->tv_nsec = 0; |
2946 | break; |
2947 | } |
2948 | |
2949 | /* Timeout, return less than vlen datagrams */ |
2950 | if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) |
2951 | break; |
2952 | } |
2953 | |
2954 | /* Out of band data, return right away */ |
2955 | if (msg_sys.msg_flags & MSG_OOB) |
2956 | break; |
2957 | cond_resched(); |
2958 | } |
2959 | |
2960 | if (err == 0) |
2961 | return datagrams; |
2962 | |
2963 | if (datagrams == 0) |
2964 | return err; |
2965 | |
2966 | /* |
2967 | * We may return less entries than requested (vlen) if the |
2968 | * sock is non block and there aren't enough datagrams... |
2969 | */ |
2970 | if (err != -EAGAIN) { |
2971 | /* |
2972 | * ... or if recvmsg returns an error after we |
2973 | * received some datagrams, where we record the |
2974 | * error to return on the next call or if the |
2975 | * app asks about it using getsockopt(SO_ERROR). |
2976 | */ |
2977 | WRITE_ONCE(sock->sk->sk_err, -err); |
2978 | } |
2979 | return datagrams; |
2980 | } |
2981 | |
2982 | int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
2983 | unsigned int vlen, unsigned int flags, |
2984 | struct __kernel_timespec __user *timeout, |
2985 | struct old_timespec32 __user *timeout32) |
2986 | { |
2987 | int datagrams; |
2988 | struct timespec64 timeout_sys; |
2989 | |
2990 | if (timeout && get_timespec64(ts: &timeout_sys, uts: timeout)) |
2991 | return -EFAULT; |
2992 | |
2993 | if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) |
2994 | return -EFAULT; |
2995 | |
2996 | if (!timeout && !timeout32) |
2997 | return do_recvmmsg(fd, mmsg, vlen, flags, NULL); |
2998 | |
2999 | datagrams = do_recvmmsg(fd, mmsg, vlen, flags, timeout: &timeout_sys); |
3000 | |
3001 | if (datagrams <= 0) |
3002 | return datagrams; |
3003 | |
3004 | if (timeout && put_timespec64(ts: &timeout_sys, uts: timeout)) |
3005 | datagrams = -EFAULT; |
3006 | |
3007 | if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) |
3008 | datagrams = -EFAULT; |
3009 | |
3010 | return datagrams; |
3011 | } |
3012 | |
3013 | SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, |
3014 | unsigned int, vlen, unsigned int, flags, |
3015 | struct __kernel_timespec __user *, timeout) |
3016 | { |
3017 | if (flags & MSG_CMSG_COMPAT) |
3018 | return -EINVAL; |
3019 | |
3020 | return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); |
3021 | } |
3022 | |
3023 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3024 | SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, |
3025 | unsigned int, vlen, unsigned int, flags, |
3026 | struct old_timespec32 __user *, timeout) |
3027 | { |
3028 | if (flags & MSG_CMSG_COMPAT) |
3029 | return -EINVAL; |
3030 | |
3031 | return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout32: timeout); |
3032 | } |
3033 | #endif |
3034 | |
3035 | #ifdef __ARCH_WANT_SYS_SOCKETCALL |
3036 | /* Argument list sizes for sys_socketcall */ |
3037 | #define AL(x) ((x) * sizeof(unsigned long)) |
3038 | static const unsigned char nargs[21] = { |
3039 | AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), |
3040 | AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), |
3041 | AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), |
3042 | AL(4), AL(5), AL(4) |
3043 | }; |
3044 | |
3045 | #undef AL |
3046 | |
3047 | /* |
3048 | * System call vectors. |
3049 | * |
3050 | * Argument checking cleaned up. Saved 20% in size. |
3051 | * This function doesn't need to set the kernel lock because |
3052 | * it is set by the callees. |
3053 | */ |
3054 | |
3055 | SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) |
3056 | { |
3057 | unsigned long a[AUDITSC_ARGS]; |
3058 | unsigned long a0, a1; |
3059 | int err; |
3060 | unsigned int len; |
3061 | |
3062 | if (call < 1 || call > SYS_SENDMMSG) |
3063 | return -EINVAL; |
3064 | call = array_index_nospec(call, SYS_SENDMMSG + 1); |
3065 | |
3066 | len = nargs[call]; |
3067 | if (len > sizeof(a)) |
3068 | return -EINVAL; |
3069 | |
3070 | /* copy_from_user should be SMP safe. */ |
3071 | if (copy_from_user(to: a, from: args, n: len)) |
3072 | return -EFAULT; |
3073 | |
3074 | err = audit_socketcall(nargs: nargs[call] / sizeof(unsigned long), args: a); |
3075 | if (err) |
3076 | return err; |
3077 | |
3078 | a0 = a[0]; |
3079 | a1 = a[1]; |
3080 | |
3081 | switch (call) { |
3082 | case SYS_SOCKET: |
3083 | err = __sys_socket(family: a0, type: a1, protocol: a[2]); |
3084 | break; |
3085 | case SYS_BIND: |
3086 | err = __sys_bind(fd: a0, umyaddr: (struct sockaddr __user *)a1, addrlen: a[2]); |
3087 | break; |
3088 | case SYS_CONNECT: |
3089 | err = __sys_connect(fd: a0, uservaddr: (struct sockaddr __user *)a1, addrlen: a[2]); |
3090 | break; |
3091 | case SYS_LISTEN: |
3092 | err = __sys_listen(fd: a0, backlog: a1); |
3093 | break; |
3094 | case SYS_ACCEPT: |
3095 | err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1, |
3096 | upeer_addrlen: (int __user *)a[2], flags: 0); |
3097 | break; |
3098 | case SYS_GETSOCKNAME: |
3099 | err = |
3100 | __sys_getsockname(fd: a0, usockaddr: (struct sockaddr __user *)a1, |
3101 | usockaddr_len: (int __user *)a[2]); |
3102 | break; |
3103 | case SYS_GETPEERNAME: |
3104 | err = |
3105 | __sys_getpeername(fd: a0, usockaddr: (struct sockaddr __user *)a1, |
3106 | usockaddr_len: (int __user *)a[2]); |
3107 | break; |
3108 | case SYS_SOCKETPAIR: |
3109 | err = __sys_socketpair(family: a0, type: a1, protocol: a[2], usockvec: (int __user *)a[3]); |
3110 | break; |
3111 | case SYS_SEND: |
3112 | err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3], |
3113 | NULL, addr_len: 0); |
3114 | break; |
3115 | case SYS_SENDTO: |
3116 | err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3], |
3117 | addr: (struct sockaddr __user *)a[4], addr_len: a[5]); |
3118 | break; |
3119 | case SYS_RECV: |
3120 | err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3], |
3121 | NULL, NULL); |
3122 | break; |
3123 | case SYS_RECVFROM: |
3124 | err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3], |
3125 | addr: (struct sockaddr __user *)a[4], |
3126 | addr_len: (int __user *)a[5]); |
3127 | break; |
3128 | case SYS_SHUTDOWN: |
3129 | err = __sys_shutdown(fd: a0, how: a1); |
3130 | break; |
3131 | case SYS_SETSOCKOPT: |
3132 | err = __sys_setsockopt(fd: a0, level: a1, optname: a[2], user_optval: (char __user *)a[3], |
3133 | optlen: a[4]); |
3134 | break; |
3135 | case SYS_GETSOCKOPT: |
3136 | err = |
3137 | __sys_getsockopt(fd: a0, level: a1, optname: a[2], optval: (char __user *)a[3], |
3138 | optlen: (int __user *)a[4]); |
3139 | break; |
3140 | case SYS_SENDMSG: |
3141 | err = __sys_sendmsg(fd: a0, msg: (struct user_msghdr __user *)a1, |
3142 | flags: a[2], forbid_cmsg_compat: true); |
3143 | break; |
3144 | case SYS_SENDMMSG: |
3145 | err = __sys_sendmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, vlen: a[2], |
3146 | flags: a[3], forbid_cmsg_compat: true); |
3147 | break; |
3148 | case SYS_RECVMSG: |
3149 | err = __sys_recvmsg(fd: a0, msg: (struct user_msghdr __user *)a1, |
3150 | flags: a[2], forbid_cmsg_compat: true); |
3151 | break; |
3152 | case SYS_RECVMMSG: |
3153 | if (IS_ENABLED(CONFIG_64BIT)) |
3154 | err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, |
3155 | vlen: a[2], flags: a[3], |
3156 | timeout: (struct __kernel_timespec __user *)a[4], |
3157 | NULL); |
3158 | else |
3159 | err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, |
3160 | vlen: a[2], flags: a[3], NULL, |
3161 | timeout32: (struct old_timespec32 __user *)a[4]); |
3162 | break; |
3163 | case SYS_ACCEPT4: |
3164 | err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1, |
3165 | upeer_addrlen: (int __user *)a[2], flags: a[3]); |
3166 | break; |
3167 | default: |
3168 | err = -EINVAL; |
3169 | break; |
3170 | } |
3171 | return err; |
3172 | } |
3173 | |
3174 | #endif /* __ARCH_WANT_SYS_SOCKETCALL */ |
3175 | |
3176 | /** |
3177 | * sock_register - add a socket protocol handler |
3178 | * @ops: description of protocol |
3179 | * |
3180 | * This function is called by a protocol handler that wants to |
3181 | * advertise its address family, and have it linked into the |
3182 | * socket interface. The value ops->family corresponds to the |
3183 | * socket system call protocol family. |
3184 | */ |
3185 | int sock_register(const struct net_proto_family *ops) |
3186 | { |
3187 | int err; |
3188 | |
3189 | if (ops->family >= NPROTO) { |
3190 | pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); |
3191 | return -ENOBUFS; |
3192 | } |
3193 | |
3194 | spin_lock(lock: &net_family_lock); |
3195 | if (rcu_dereference_protected(net_families[ops->family], |
3196 | lockdep_is_held(&net_family_lock))) |
3197 | err = -EEXIST; |
3198 | else { |
3199 | rcu_assign_pointer(net_families[ops->family], ops); |
3200 | err = 0; |
3201 | } |
3202 | spin_unlock(lock: &net_family_lock); |
3203 | |
3204 | pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); |
3205 | return err; |
3206 | } |
3207 | EXPORT_SYMBOL(sock_register); |
3208 | |
3209 | /** |
3210 | * sock_unregister - remove a protocol handler |
3211 | * @family: protocol family to remove |
3212 | * |
3213 | * This function is called by a protocol handler that wants to |
3214 | * remove its address family, and have it unlinked from the |
3215 | * new socket creation. |
3216 | * |
3217 | * If protocol handler is a module, then it can use module reference |
3218 | * counts to protect against new references. If protocol handler is not |
3219 | * a module then it needs to provide its own protection in |
3220 | * the ops->create routine. |
3221 | */ |
3222 | void sock_unregister(int family) |
3223 | { |
3224 | BUG_ON(family < 0 || family >= NPROTO); |
3225 | |
3226 | spin_lock(lock: &net_family_lock); |
3227 | RCU_INIT_POINTER(net_families[family], NULL); |
3228 | spin_unlock(lock: &net_family_lock); |
3229 | |
3230 | synchronize_rcu(); |
3231 | |
3232 | pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); |
3233 | } |
3234 | EXPORT_SYMBOL(sock_unregister); |
3235 | |
3236 | bool sock_is_registered(int family) |
3237 | { |
3238 | return family < NPROTO && rcu_access_pointer(net_families[family]); |
3239 | } |
3240 | |
3241 | static int __init sock_init(void) |
3242 | { |
3243 | int err; |
3244 | /* |
3245 | * Initialize the network sysctl infrastructure. |
3246 | */ |
3247 | err = net_sysctl_init(); |
3248 | if (err) |
3249 | goto out; |
3250 | |
3251 | /* |
3252 | * Initialize skbuff SLAB cache |
3253 | */ |
3254 | skb_init(); |
3255 | |
3256 | /* |
3257 | * Initialize the protocols module. |
3258 | */ |
3259 | |
3260 | init_inodecache(); |
3261 | |
3262 | err = register_filesystem(&sock_fs_type); |
3263 | if (err) |
3264 | goto out; |
3265 | sock_mnt = kern_mount(&sock_fs_type); |
3266 | if (IS_ERR(ptr: sock_mnt)) { |
3267 | err = PTR_ERR(ptr: sock_mnt); |
3268 | goto out_mount; |
3269 | } |
3270 | |
3271 | /* The real protocol initialization is performed in later initcalls. |
3272 | */ |
3273 | |
3274 | #ifdef CONFIG_NETFILTER |
3275 | err = netfilter_init(); |
3276 | if (err) |
3277 | goto out; |
3278 | #endif |
3279 | |
3280 | ptp_classifier_init(); |
3281 | |
3282 | out: |
3283 | return err; |
3284 | |
3285 | out_mount: |
3286 | unregister_filesystem(&sock_fs_type); |
3287 | goto out; |
3288 | } |
3289 | |
3290 | core_initcall(sock_init); /* early initcall */ |
3291 | |
3292 | #ifdef CONFIG_PROC_FS |
3293 | void socket_seq_show(struct seq_file *seq) |
3294 | { |
3295 | seq_printf(m: seq, fmt: "sockets: used %d\n", |
3296 | sock_inuse_get(net: seq->private)); |
3297 | } |
3298 | #endif /* CONFIG_PROC_FS */ |
3299 | |
3300 | /* Handle the fact that while struct ifreq has the same *layout* on |
3301 | * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, |
3302 | * which are handled elsewhere, it still has different *size* due to |
3303 | * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, |
3304 | * resulting in struct ifreq being 32 and 40 bytes respectively). |
3305 | * As a result, if the struct happens to be at the end of a page and |
3306 | * the next page isn't readable/writable, we get a fault. To prevent |
3307 | * that, copy back and forth to the full size. |
3308 | */ |
3309 | int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) |
3310 | { |
3311 | if (in_compat_syscall()) { |
3312 | struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; |
3313 | |
3314 | memset(ifr, 0, sizeof(*ifr)); |
3315 | if (copy_from_user(to: ifr32, from: arg, n: sizeof(*ifr32))) |
3316 | return -EFAULT; |
3317 | |
3318 | if (ifrdata) |
3319 | *ifrdata = compat_ptr(uptr: ifr32->ifr_data); |
3320 | |
3321 | return 0; |
3322 | } |
3323 | |
3324 | if (copy_from_user(to: ifr, from: arg, n: sizeof(*ifr))) |
3325 | return -EFAULT; |
3326 | |
3327 | if (ifrdata) |
3328 | *ifrdata = ifr->ifr_data; |
3329 | |
3330 | return 0; |
3331 | } |
3332 | EXPORT_SYMBOL(get_user_ifreq); |
3333 | |
3334 | int put_user_ifreq(struct ifreq *ifr, void __user *arg) |
3335 | { |
3336 | size_t size = sizeof(*ifr); |
3337 | |
3338 | if (in_compat_syscall()) |
3339 | size = sizeof(struct compat_ifreq); |
3340 | |
3341 | if (copy_to_user(to: arg, from: ifr, n: size)) |
3342 | return -EFAULT; |
3343 | |
3344 | return 0; |
3345 | } |
3346 | EXPORT_SYMBOL(put_user_ifreq); |
3347 | |
3348 | #ifdef CONFIG_COMPAT |
3349 | static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) |
3350 | { |
3351 | compat_uptr_t uptr32; |
3352 | struct ifreq ifr; |
3353 | void __user *saved; |
3354 | int err; |
3355 | |
3356 | if (get_user_ifreq(&ifr, NULL, uifr32)) |
3357 | return -EFAULT; |
3358 | |
3359 | if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) |
3360 | return -EFAULT; |
3361 | |
3362 | saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; |
3363 | ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr: uptr32); |
3364 | |
3365 | err = dev_ioctl(net, SIOCWANDEV, ifr: &ifr, NULL, NULL); |
3366 | if (!err) { |
3367 | ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; |
3368 | if (put_user_ifreq(&ifr, uifr32)) |
3369 | err = -EFAULT; |
3370 | } |
3371 | return err; |
3372 | } |
3373 | |
3374 | /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ |
3375 | static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, |
3376 | struct compat_ifreq __user *u_ifreq32) |
3377 | { |
3378 | struct ifreq ifreq; |
3379 | void __user *data; |
3380 | |
3381 | if (!is_socket_ioctl_cmd(cmd)) |
3382 | return -ENOTTY; |
3383 | if (get_user_ifreq(&ifreq, &data, u_ifreq32)) |
3384 | return -EFAULT; |
3385 | ifreq.ifr_data = data; |
3386 | |
3387 | return dev_ioctl(net, cmd, ifr: &ifreq, data, NULL); |
3388 | } |
3389 | |
3390 | static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, |
3391 | unsigned int cmd, unsigned long arg) |
3392 | { |
3393 | void __user *argp = compat_ptr(uptr: arg); |
3394 | struct sock *sk = sock->sk; |
3395 | struct net *net = sock_net(sk); |
3396 | const struct proto_ops *ops; |
3397 | |
3398 | if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) |
3399 | return sock_ioctl(file, cmd, arg: (unsigned long)argp); |
3400 | |
3401 | switch (cmd) { |
3402 | case SIOCWANDEV: |
3403 | return compat_siocwandev(net, uifr32: argp); |
3404 | case SIOCGSTAMP_OLD: |
3405 | case SIOCGSTAMPNS_OLD: |
3406 | ops = READ_ONCE(sock->ops); |
3407 | if (!ops->gettstamp) |
3408 | return -ENOIOCTLCMD; |
3409 | return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, |
3410 | !COMPAT_USE_64BIT_TIME); |
3411 | |
3412 | case SIOCETHTOOL: |
3413 | case SIOCBONDSLAVEINFOQUERY: |
3414 | case SIOCBONDINFOQUERY: |
3415 | case SIOCSHWTSTAMP: |
3416 | case SIOCGHWTSTAMP: |
3417 | return compat_ifr_data_ioctl(net, cmd, u_ifreq32: argp); |
3418 | |
3419 | case FIOSETOWN: |
3420 | case SIOCSPGRP: |
3421 | case FIOGETOWN: |
3422 | case SIOCGPGRP: |
3423 | case SIOCBRADDBR: |
3424 | case SIOCBRDELBR: |
3425 | case SIOCBRADDIF: |
3426 | case SIOCBRDELIF: |
3427 | case SIOCGIFVLAN: |
3428 | case SIOCSIFVLAN: |
3429 | case SIOCGSKNS: |
3430 | case SIOCGSTAMP_NEW: |
3431 | case SIOCGSTAMPNS_NEW: |
3432 | case SIOCGIFCONF: |
3433 | case SIOCSIFBR: |
3434 | case SIOCGIFBR: |
3435 | return sock_ioctl(file, cmd, arg); |
3436 | |
3437 | case SIOCGIFFLAGS: |
3438 | case SIOCSIFFLAGS: |
3439 | case SIOCGIFMAP: |
3440 | case SIOCSIFMAP: |
3441 | case SIOCGIFMETRIC: |
3442 | case SIOCSIFMETRIC: |
3443 | case SIOCGIFMTU: |
3444 | case SIOCSIFMTU: |
3445 | case SIOCGIFMEM: |
3446 | case SIOCSIFMEM: |
3447 | case SIOCGIFHWADDR: |
3448 | case SIOCSIFHWADDR: |
3449 | case SIOCADDMULTI: |
3450 | case SIOCDELMULTI: |
3451 | case SIOCGIFINDEX: |
3452 | case SIOCGIFADDR: |
3453 | case SIOCSIFADDR: |
3454 | case SIOCSIFHWBROADCAST: |
3455 | case SIOCDIFADDR: |
3456 | case SIOCGIFBRDADDR: |
3457 | case SIOCSIFBRDADDR: |
3458 | case SIOCGIFDSTADDR: |
3459 | case SIOCSIFDSTADDR: |
3460 | case SIOCGIFNETMASK: |
3461 | case SIOCSIFNETMASK: |
3462 | case SIOCSIFPFLAGS: |
3463 | case SIOCGIFPFLAGS: |
3464 | case SIOCGIFTXQLEN: |
3465 | case SIOCSIFTXQLEN: |
3466 | case SIOCGIFNAME: |
3467 | case SIOCSIFNAME: |
3468 | case SIOCGMIIPHY: |
3469 | case SIOCGMIIREG: |
3470 | case SIOCSMIIREG: |
3471 | case SIOCBONDENSLAVE: |
3472 | case SIOCBONDRELEASE: |
3473 | case SIOCBONDSETHWADDR: |
3474 | case SIOCBONDCHANGEACTIVE: |
3475 | case SIOCSARP: |
3476 | case SIOCGARP: |
3477 | case SIOCDARP: |
3478 | case SIOCOUTQ: |
3479 | case SIOCOUTQNSD: |
3480 | case SIOCATMARK: |
3481 | return sock_do_ioctl(net, sock, cmd, arg); |
3482 | } |
3483 | |
3484 | return -ENOIOCTLCMD; |
3485 | } |
3486 | |
3487 | static long compat_sock_ioctl(struct file *file, unsigned int cmd, |
3488 | unsigned long arg) |
3489 | { |
3490 | struct socket *sock = file->private_data; |
3491 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
3492 | int ret = -ENOIOCTLCMD; |
3493 | struct sock *sk; |
3494 | struct net *net; |
3495 | |
3496 | sk = sock->sk; |
3497 | net = sock_net(sk); |
3498 | |
3499 | if (ops->compat_ioctl) |
3500 | ret = ops->compat_ioctl(sock, cmd, arg); |
3501 | |
3502 | if (ret == -ENOIOCTLCMD && |
3503 | (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) |
3504 | ret = compat_wext_handle_ioctl(net, cmd, arg); |
3505 | |
3506 | if (ret == -ENOIOCTLCMD) |
3507 | ret = compat_sock_ioctl_trans(file, sock, cmd, arg); |
3508 | |
3509 | return ret; |
3510 | } |
3511 | #endif |
3512 | |
3513 | /** |
3514 | * kernel_bind - bind an address to a socket (kernel space) |
3515 | * @sock: socket |
3516 | * @addr: address |
3517 | * @addrlen: length of address |
3518 | * |
3519 | * Returns 0 or an error. |
3520 | */ |
3521 | |
3522 | int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) |
3523 | { |
3524 | struct sockaddr_storage address; |
3525 | |
3526 | memcpy(&address, addr, addrlen); |
3527 | |
3528 | return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, |
3529 | addrlen); |
3530 | } |
3531 | EXPORT_SYMBOL(kernel_bind); |
3532 | |
3533 | /** |
3534 | * kernel_listen - move socket to listening state (kernel space) |
3535 | * @sock: socket |
3536 | * @backlog: pending connections queue size |
3537 | * |
3538 | * Returns 0 or an error. |
3539 | */ |
3540 | |
3541 | int kernel_listen(struct socket *sock, int backlog) |
3542 | { |
3543 | return READ_ONCE(sock->ops)->listen(sock, backlog); |
3544 | } |
3545 | EXPORT_SYMBOL(kernel_listen); |
3546 | |
3547 | /** |
3548 | * kernel_accept - accept a connection (kernel space) |
3549 | * @sock: listening socket |
3550 | * @newsock: new connected socket |
3551 | * @flags: flags |
3552 | * |
3553 | * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. |
3554 | * If it fails, @newsock is guaranteed to be %NULL. |
3555 | * Returns 0 or an error. |
3556 | */ |
3557 | |
3558 | int kernel_accept(struct socket *sock, struct socket **newsock, int flags) |
3559 | { |
3560 | struct sock *sk = sock->sk; |
3561 | const struct proto_ops *ops = READ_ONCE(sock->ops); |
3562 | struct proto_accept_arg arg = { |
3563 | .flags = flags, |
3564 | .kern = true, |
3565 | }; |
3566 | int err; |
3567 | |
3568 | err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, |
3569 | newsock); |
3570 | if (err < 0) |
3571 | goto done; |
3572 | |
3573 | err = ops->accept(sock, *newsock, &arg); |
3574 | if (err < 0) { |
3575 | sock_release(*newsock); |
3576 | *newsock = NULL; |
3577 | goto done; |
3578 | } |
3579 | |
3580 | (*newsock)->ops = ops; |
3581 | __module_get(module: ops->owner); |
3582 | |
3583 | done: |
3584 | return err; |
3585 | } |
3586 | EXPORT_SYMBOL(kernel_accept); |
3587 | |
3588 | /** |
3589 | * kernel_connect - connect a socket (kernel space) |
3590 | * @sock: socket |
3591 | * @addr: address |
3592 | * @addrlen: address length |
3593 | * @flags: flags (O_NONBLOCK, ...) |
3594 | * |
3595 | * For datagram sockets, @addr is the address to which datagrams are sent |
3596 | * by default, and the only address from which datagrams are received. |
3597 | * For stream sockets, attempts to connect to @addr. |
3598 | * Returns 0 or an error code. |
3599 | */ |
3600 | |
3601 | int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, |
3602 | int flags) |
3603 | { |
3604 | struct sockaddr_storage address; |
3605 | |
3606 | memcpy(&address, addr, addrlen); |
3607 | |
3608 | return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, |
3609 | addrlen, flags); |
3610 | } |
3611 | EXPORT_SYMBOL(kernel_connect); |
3612 | |
3613 | /** |
3614 | * kernel_getsockname - get the address which the socket is bound (kernel space) |
3615 | * @sock: socket |
3616 | * @addr: address holder |
3617 | * |
3618 | * Fills the @addr pointer with the address which the socket is bound. |
3619 | * Returns the length of the address in bytes or an error code. |
3620 | */ |
3621 | |
3622 | int kernel_getsockname(struct socket *sock, struct sockaddr *addr) |
3623 | { |
3624 | return READ_ONCE(sock->ops)->getname(sock, addr, 0); |
3625 | } |
3626 | EXPORT_SYMBOL(kernel_getsockname); |
3627 | |
3628 | /** |
3629 | * kernel_getpeername - get the address which the socket is connected (kernel space) |
3630 | * @sock: socket |
3631 | * @addr: address holder |
3632 | * |
3633 | * Fills the @addr pointer with the address which the socket is connected. |
3634 | * Returns the length of the address in bytes or an error code. |
3635 | */ |
3636 | |
3637 | int kernel_getpeername(struct socket *sock, struct sockaddr *addr) |
3638 | { |
3639 | return READ_ONCE(sock->ops)->getname(sock, addr, 1); |
3640 | } |
3641 | EXPORT_SYMBOL(kernel_getpeername); |
3642 | |
3643 | /** |
3644 | * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) |
3645 | * @sock: socket |
3646 | * @how: connection part |
3647 | * |
3648 | * Returns 0 or an error. |
3649 | */ |
3650 | |
3651 | int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) |
3652 | { |
3653 | return READ_ONCE(sock->ops)->shutdown(sock, how); |
3654 | } |
3655 | EXPORT_SYMBOL(kernel_sock_shutdown); |
3656 | |
3657 | /** |
3658 | * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket |
3659 | * @sk: socket |
3660 | * |
3661 | * This routine returns the IP overhead imposed by a socket i.e. |
3662 | * the length of the underlying IP header, depending on whether |
3663 | * this is an IPv4 or IPv6 socket and the length from IP options turned |
3664 | * on at the socket. Assumes that the caller has a lock on the socket. |
3665 | */ |
3666 | |
3667 | u32 kernel_sock_ip_overhead(struct sock *sk) |
3668 | { |
3669 | struct inet_sock *inet; |
3670 | struct ip_options_rcu *opt; |
3671 | u32 overhead = 0; |
3672 | #if IS_ENABLED(CONFIG_IPV6) |
3673 | struct ipv6_pinfo *np; |
3674 | struct ipv6_txoptions *optv6 = NULL; |
3675 | #endif /* IS_ENABLED(CONFIG_IPV6) */ |
3676 | |
3677 | if (!sk) |
3678 | return overhead; |
3679 | |
3680 | switch (sk->sk_family) { |
3681 | case AF_INET: |
3682 | inet = inet_sk(sk); |
3683 | overhead += sizeof(struct iphdr); |
3684 | opt = rcu_dereference_protected(inet->inet_opt, |
3685 | sock_owned_by_user(sk)); |
3686 | if (opt) |
3687 | overhead += opt->opt.optlen; |
3688 | return overhead; |
3689 | #if IS_ENABLED(CONFIG_IPV6) |
3690 | case AF_INET6: |
3691 | np = inet6_sk(sk: sk); |
3692 | overhead += sizeof(struct ipv6hdr); |
3693 | if (np) |
3694 | optv6 = rcu_dereference_protected(np->opt, |
3695 | sock_owned_by_user(sk)); |
3696 | if (optv6) |
3697 | overhead += (optv6->opt_flen + optv6->opt_nflen); |
3698 | return overhead; |
3699 | #endif /* IS_ENABLED(CONFIG_IPV6) */ |
3700 | default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ |
3701 | return overhead; |
3702 | } |
3703 | } |
3704 | EXPORT_SYMBOL(kernel_sock_ip_overhead); |
3705 |
Definitions
- sysctl_net_busy_read
- sysctl_net_busy_poll
- sock_show_fdinfo
- socket_file_ops
- pf_family_names
- net_family_lock
- net_families
- move_addr_to_kernel
- move_addr_to_user
- sock_inode_cachep
- sock_alloc_inode
- sock_free_inode
- init_once
- init_inodecache
- sockfs_ops
- sockfs_dname
- sockfs_dentry_operations
- sockfs_xattr_get
- sockfs_xattr_handler
- sockfs_security_xattr_set
- sockfs_security_xattr_handler
- sockfs_xattr_handlers
- sockfs_init_fs_context
- sock_mnt
- sock_fs_type
- sock_alloc_file
- sock_map_fd
- sock_from_file
- sockfd_lookup
- sockfs_listxattr
- sockfs_setattr
- sockfs_inode_ops
- sock_alloc
- __sock_release
- sock_release
- __sock_tx_timestamp
- call_trace_sock_send_length
- sock_sendmsg_nosec
- __sock_sendmsg
- sock_sendmsg
- kernel_sendmsg
- skb_is_err_queue
- skb_is_swtx_tstamp
- get_timestamp
- put_ts_pktinfo
- __sock_recv_timestamp
- __sock_recv_wifi_status
- sock_recv_drops
- sock_recv_mark
- sock_recv_priority
- __sock_recv_cmsgs
- call_trace_sock_recv_length
- sock_recvmsg_nosec
- sock_recvmsg
- kernel_recvmsg
- sock_splice_read
- sock_splice_eof
- sock_read_iter
- sock_write_iter
- br_ioctl_mutex
- br_ioctl_hook
- brioctl_set
- br_ioctl_call
- vlan_ioctl_mutex
- vlan_ioctl_hook
- vlan_ioctl_set
- sock_do_ioctl
- sock_ioctl
- sock_create_lite
- sock_poll
- sock_mmap
- sock_close
- sock_fasync
- sock_wake_async
- __sock_create
- sock_create
- sock_create_kern
- __sys_socket_create
- __sys_socket_file
- update_socket_protocol
- __sys_socket
- __sys_socketpair
- __sys_bind_socket
- __sys_bind
- __sys_listen_socket
- __sys_listen
- do_accept
- __sys_accept4_file
- __sys_accept4
- __sys_connect_file
- __sys_connect
- __sys_getsockname
- __sys_getpeername
- __sys_sendto
- __sys_recvfrom
- sock_use_custom_sol_socket
- do_sock_setsockopt
- __sys_setsockopt
- do_sock_getsockopt
- __sys_getsockopt
- __sys_shutdown_sock
- __sys_shutdown
- used_address
- __copy_msghdr
- copy_msghdr_from_user
- ____sys_sendmsg
- sendmsg_copy_msghdr
- ___sys_sendmsg
- __sys_sendmsg_sock
- __sys_sendmsg
- __sys_sendmmsg
- recvmsg_copy_msghdr
- ____sys_recvmsg
- ___sys_recvmsg
- __sys_recvmsg_sock
- __sys_recvmsg
- do_recvmmsg
- __sys_recvmmsg
- nargs
- sock_register
- sock_unregister
- sock_is_registered
- sock_init
- socket_seq_show
- get_user_ifreq
- put_user_ifreq
- compat_siocwandev
- compat_ifr_data_ioctl
- compat_sock_ioctl_trans
- compat_sock_ioctl
- kernel_bind
- kernel_listen
- kernel_accept
- kernel_connect
- kernel_getsockname
- kernel_getpeername
- kernel_sock_shutdown
Improve your Profiling and Debugging skills
Find out more