1//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Methods common to all machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/MachineInstr.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/Hashing.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallBitVector.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/MemoryLocation.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineInstrBundle.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/CodeGen/Register.h"
32#include "llvm/CodeGen/StackMaps.h"
33#include "llvm/CodeGen/TargetInstrInfo.h"
34#include "llvm/CodeGen/TargetRegisterInfo.h"
35#include "llvm/CodeGen/TargetSubtargetInfo.h"
36#include "llvm/CodeGenTypes/LowLevelType.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DebugInfoMetadata.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/InlineAsm.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Metadata.h"
45#include "llvm/IR/Module.h"
46#include "llvm/IR/ModuleSlotTracker.h"
47#include "llvm/IR/Operator.h"
48#include "llvm/MC/MCInstrDesc.h"
49#include "llvm/MC/MCRegisterInfo.h"
50#include "llvm/Support/Casting.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/FormattedStream.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetMachine.h"
57#include <algorithm>
58#include <cassert>
59#include <cstdint>
60#include <cstring>
61#include <utility>
62
63using namespace llvm;
64
65static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
66 if (const MachineBasicBlock *MBB = MI.getParent())
67 if (const MachineFunction *MF = MBB->getParent())
68 return MF;
69 return nullptr;
70}
71
72// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
73// it.
74static void tryToGetTargetInfo(const MachineInstr &MI,
75 const TargetRegisterInfo *&TRI,
76 const MachineRegisterInfo *&MRI,
77 const TargetIntrinsicInfo *&IntrinsicInfo,
78 const TargetInstrInfo *&TII) {
79
80 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
81 TRI = MF->getSubtarget().getRegisterInfo();
82 MRI = &MF->getRegInfo();
83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
84 TII = MF->getSubtarget().getInstrInfo();
85 }
86}
87
88void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
89 for (MCPhysReg ImpDef : MCID->implicit_defs())
90 addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpDef, isDef: true, isImp: true));
91 for (MCPhysReg ImpUse : MCID->implicit_uses())
92 addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpUse, isDef: false, isImp: true));
93}
94
95/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
96/// implicit operands. It reserves space for the number of operands specified by
97/// the MCInstrDesc.
98MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
99 DebugLoc DL, bool NoImp)
100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
101 DbgLoc(std::move(DL)), DebugInstrNum(0) {
102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
103
104 // Reserve space for the expected number of operands.
105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
106 MCID->implicit_uses().size()) {
107 CapOperands = OperandCapacity::get(N: NumOps);
108 Operands = MF.allocateOperandArray(Cap: CapOperands);
109 }
110
111 if (!NoImp)
112 addImplicitDefUseOperands(MF);
113}
114
115/// MachineInstr ctor - Copies MachineInstr arg exactly.
116/// Does not copy the number from debug instruction numbering, to preserve
117/// uniqueness.
118MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
121 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
122
123 CapOperands = OperandCapacity::get(N: MI.getNumOperands());
124 Operands = MF.allocateOperandArray(Cap: CapOperands);
125
126 // Copy operands.
127 for (const MachineOperand &MO : MI.operands())
128 addOperand(MF, Op: MO);
129
130 // Replicate ties between the operands, which addOperand was not
131 // able to do reliably.
132 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
133 MachineOperand &NewMO = getOperand(i);
134 const MachineOperand &OrigMO = MI.getOperand(i);
135 NewMO.TiedTo = OrigMO.TiedTo;
136 }
137
138 // Copy all the sensible flags.
139 setFlags(MI.Flags);
140}
141
142void MachineInstr::setDesc(const MCInstrDesc &TID) {
143 if (getParent())
144 getMF()->handleChangeDesc(MI&: *this, TID);
145 MCID = &TID;
146}
147
148void MachineInstr::moveBefore(MachineInstr *MovePos) {
149 MovePos->getParent()->splice(Where: MovePos, Other: getParent(), From: getIterator());
150}
151
152/// getRegInfo - If this instruction is embedded into a MachineFunction,
153/// return the MachineRegisterInfo object for the current function, otherwise
154/// return null.
155MachineRegisterInfo *MachineInstr::getRegInfo() {
156 if (MachineBasicBlock *MBB = getParent())
157 return &MBB->getParent()->getRegInfo();
158 return nullptr;
159}
160
161const MachineRegisterInfo *MachineInstr::getRegInfo() const {
162 if (const MachineBasicBlock *MBB = getParent())
163 return &MBB->getParent()->getRegInfo();
164 return nullptr;
165}
166
167void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
168 for (MachineOperand &MO : operands())
169 if (MO.isReg())
170 MRI.removeRegOperandFromUseList(MO: &MO);
171}
172
173void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
174 for (MachineOperand &MO : operands())
175 if (MO.isReg())
176 MRI.addRegOperandToUseList(MO: &MO);
177}
178
179void MachineInstr::addOperand(const MachineOperand &Op) {
180 MachineBasicBlock *MBB = getParent();
181 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
182 MachineFunction *MF = MBB->getParent();
183 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
184 addOperand(MF&: *MF, Op);
185}
186
187/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
188/// ranges. If MRI is non-null also update use-def chains.
189static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
190 unsigned NumOps, MachineRegisterInfo *MRI) {
191 if (MRI)
192 return MRI->moveOperands(Dst, Src, NumOps);
193 // MachineOperand is a trivially copyable type so we can just use memmove.
194 assert(Dst && Src && "Unknown operands");
195 std::memmove(dest: Dst, src: Src, n: NumOps * sizeof(MachineOperand));
196}
197
198/// addOperand - Add the specified operand to the instruction. If it is an
199/// implicit operand, it is added to the end of the operand list. If it is
200/// an explicit operand it is added at the end of the explicit operand list
201/// (before the first implicit operand).
202void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
203 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
204 "Cannot add more operands.");
205 assert(MCID && "Cannot add operands before providing an instr descriptor");
206
207 // Check if we're adding one of our existing operands.
208 if (&Op >= Operands && &Op < Operands + NumOperands) {
209 // This is unusual: MI->addOperand(MI->getOperand(i)).
210 // If adding Op requires reallocating or moving existing operands around,
211 // the Op reference could go stale. Support it by copying Op.
212 MachineOperand CopyOp(Op);
213 return addOperand(MF, Op: CopyOp);
214 }
215
216 // Find the insert location for the new operand. Implicit registers go at
217 // the end, everything else goes before the implicit regs.
218 //
219 // FIXME: Allow mixed explicit and implicit operands on inline asm.
220 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
221 // implicit-defs, but they must not be moved around. See the FIXME in
222 // InstrEmitter.cpp.
223 unsigned OpNo = getNumOperands();
224 bool isImpReg = Op.isReg() && Op.isImplicit();
225 if (!isImpReg && !isInlineAsm()) {
226 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
227 --OpNo;
228 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
229 }
230 }
231
232 // OpNo now points as the desired insertion point. Unless this is a variadic
233 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
234 // RegMask operands go between the explicit and implicit operands.
235 MachineRegisterInfo *MRI = getRegInfo();
236
237 // Determine if the Operands array needs to be reallocated.
238 // Save the old capacity and operand array.
239 OperandCapacity OldCap = CapOperands;
240 MachineOperand *OldOperands = Operands;
241 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
242 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(N: 1);
243 Operands = MF.allocateOperandArray(Cap: CapOperands);
244 // Move the operands before the insertion point.
245 if (OpNo)
246 moveOperands(Dst: Operands, Src: OldOperands, NumOps: OpNo, MRI);
247 }
248
249 // Move the operands following the insertion point.
250 if (OpNo != NumOperands)
251 moveOperands(Dst: Operands + OpNo + 1, Src: OldOperands + OpNo, NumOps: NumOperands - OpNo,
252 MRI);
253 ++NumOperands;
254
255 // Deallocate the old operand array.
256 if (OldOperands != Operands && OldOperands)
257 MF.deallocateOperandArray(Cap: OldCap, Array: OldOperands);
258
259 // Copy Op into place. It still needs to be inserted into the MRI use lists.
260 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
261 NewMO->ParentMI = this;
262
263 // When adding a register operand, tell MRI about it.
264 if (NewMO->isReg()) {
265 // Ensure isOnRegUseList() returns false, regardless of Op's status.
266 NewMO->Contents.Reg.Prev = nullptr;
267 // Ignore existing ties. This is not a property that can be copied.
268 NewMO->TiedTo = 0;
269 // Add the new operand to MRI, but only for instructions in an MBB.
270 if (MRI)
271 MRI->addRegOperandToUseList(MO: NewMO);
272 // The MCID operand information isn't accurate until we start adding
273 // explicit operands. The implicit operands are added first, then the
274 // explicits are inserted before them.
275 if (!isImpReg) {
276 // Tie uses to defs as indicated in MCInstrDesc.
277 if (NewMO->isUse()) {
278 int DefIdx = MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::TIED_TO);
279 if (DefIdx != -1)
280 tieOperands(DefIdx, UseIdx: OpNo);
281 }
282 // If the register operand is flagged as early, mark the operand as such.
283 if (MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::EARLY_CLOBBER) != -1)
284 NewMO->setIsEarlyClobber(true);
285 }
286 // Ensure debug instructions set debug flag on register uses.
287 if (NewMO->isUse() && isDebugInstr())
288 NewMO->setIsDebug();
289 }
290}
291
292void MachineInstr::removeOperand(unsigned OpNo) {
293 assert(OpNo < getNumOperands() && "Invalid operand number");
294 untieRegOperand(OpIdx: OpNo);
295
296#ifndef NDEBUG
297 // Moving tied operands would break the ties.
298 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
299 if (Operands[i].isReg())
300 assert(!Operands[i].isTied() && "Cannot move tied operands");
301#endif
302
303 MachineRegisterInfo *MRI = getRegInfo();
304 if (MRI && Operands[OpNo].isReg())
305 MRI->removeRegOperandFromUseList(MO: Operands + OpNo);
306
307 // Don't call the MachineOperand destructor. A lot of this code depends on
308 // MachineOperand having a trivial destructor anyway, and adding a call here
309 // wouldn't make it 'destructor-correct'.
310
311 if (unsigned N = NumOperands - 1 - OpNo)
312 moveOperands(Dst: Operands + OpNo, Src: Operands + OpNo + 1, NumOps: N, MRI);
313 --NumOperands;
314}
315
316void MachineInstr::setExtraInfo(MachineFunction &MF,
317 ArrayRef<MachineMemOperand *> MMOs,
318 MCSymbol *PreInstrSymbol,
319 MCSymbol *PostInstrSymbol,
320 MDNode *HeapAllocMarker, MDNode *PCSections,
321 uint32_t CFIType, MDNode *MMRAs) {
322 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
323 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
324 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
325 bool HasPCSections = PCSections != nullptr;
326 bool HasCFIType = CFIType != 0;
327 bool HasMMRAs = MMRAs != nullptr;
328 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
329 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs;
330
331 // Drop all extra info if there is none.
332 if (NumPointers <= 0) {
333 Info.clear();
334 return;
335 }
336
337 // If more than one pointer, then store out of line. Store heap alloc markers
338 // out of line because PointerSumType cannot hold more than 4 tag types with
339 // 32-bit pointers.
340 // FIXME: Maybe we should make the symbols in the extra info mutable?
341 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections ||
342 HasCFIType) {
343 Info.set<EIIK_OutOfLine>(
344 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
345 HeapAllocMarker, PCSections, CFIType, MMRAs));
346 return;
347 }
348
349 // Otherwise store the single pointer inline.
350 if (HasPreInstrSymbol)
351 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
352 else if (HasPostInstrSymbol)
353 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
354 else
355 Info.set<EIIK_MMO>(MMOs[0]);
356}
357
358void MachineInstr::dropMemRefs(MachineFunction &MF) {
359 if (memoperands_empty())
360 return;
361
362 setExtraInfo(MF, MMOs: {}, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
363 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(),
364 MMRAs: getMMRAMetadata());
365}
366
367void MachineInstr::setMemRefs(MachineFunction &MF,
368 ArrayRef<MachineMemOperand *> MMOs) {
369 if (MMOs.empty()) {
370 dropMemRefs(MF);
371 return;
372 }
373
374 setExtraInfo(MF, MMOs, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
375 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(),
376 MMRAs: getMMRAMetadata());
377}
378
379void MachineInstr::addMemOperand(MachineFunction &MF,
380 MachineMemOperand *MO) {
381 SmallVector<MachineMemOperand *, 2> MMOs;
382 MMOs.append(in_start: memoperands_begin(), in_end: memoperands_end());
383 MMOs.push_back(Elt: MO);
384 setMemRefs(MF, MMOs);
385}
386
387void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
388 if (this == &MI)
389 // Nothing to do for a self-clone!
390 return;
391
392 assert(&MF == MI.getMF() &&
393 "Invalid machine functions when cloning memory refrences!");
394 // See if we can just steal the extra info already allocated for the
395 // instruction. We can do this whenever the pre- and post-instruction symbols
396 // are the same (including null).
397 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
398 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
399 getHeapAllocMarker() == MI.getHeapAllocMarker() &&
400 getPCSections() == MI.getPCSections() && getMMRAMetadata() &&
401 MI.getMMRAMetadata()) {
402 Info = MI.Info;
403 return;
404 }
405
406 // Otherwise, fall back on a copy-based clone.
407 setMemRefs(MF, MMOs: MI.memoperands());
408}
409
410/// Check to see if the MMOs pointed to by the two MemRefs arrays are
411/// identical.
412static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
413 ArrayRef<MachineMemOperand *> RHS) {
414 if (LHS.size() != RHS.size())
415 return false;
416
417 auto LHSPointees = make_pointee_range(Range&: LHS);
418 auto RHSPointees = make_pointee_range(Range&: RHS);
419 return std::equal(first1: LHSPointees.begin(), last1: LHSPointees.end(),
420 first2: RHSPointees.begin());
421}
422
423void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
424 ArrayRef<const MachineInstr *> MIs) {
425 // Try handling easy numbers of MIs with simpler mechanisms.
426 if (MIs.empty()) {
427 dropMemRefs(MF);
428 return;
429 }
430 if (MIs.size() == 1) {
431 cloneMemRefs(MF, MI: *MIs[0]);
432 return;
433 }
434 // Because an empty memoperands list provides *no* information and must be
435 // handled conservatively (assuming the instruction can do anything), the only
436 // way to merge with it is to drop all other memoperands.
437 if (MIs[0]->memoperands_empty()) {
438 dropMemRefs(MF);
439 return;
440 }
441
442 // Handle the general case.
443 SmallVector<MachineMemOperand *, 2> MergedMMOs;
444 // Start with the first instruction.
445 assert(&MF == MIs[0]->getMF() &&
446 "Invalid machine functions when cloning memory references!");
447 MergedMMOs.append(in_start: MIs[0]->memoperands_begin(), in_end: MIs[0]->memoperands_end());
448 // Now walk all the other instructions and accumulate any different MMOs.
449 for (const MachineInstr &MI : make_pointee_range(Range: MIs.slice(N: 1))) {
450 assert(&MF == MI.getMF() &&
451 "Invalid machine functions when cloning memory references!");
452
453 // Skip MIs with identical operands to the first. This is a somewhat
454 // arbitrary hack but will catch common cases without being quadratic.
455 // TODO: We could fully implement merge semantics here if needed.
456 if (hasIdenticalMMOs(LHS: MIs[0]->memoperands(), RHS: MI.memoperands()))
457 continue;
458
459 // Because an empty memoperands list provides *no* information and must be
460 // handled conservatively (assuming the instruction can do anything), the
461 // only way to merge with it is to drop all other memoperands.
462 if (MI.memoperands_empty()) {
463 dropMemRefs(MF);
464 return;
465 }
466
467 // Otherwise accumulate these into our temporary buffer of the merged state.
468 MergedMMOs.append(in_start: MI.memoperands_begin(), in_end: MI.memoperands_end());
469 }
470
471 setMemRefs(MF, MMOs: MergedMMOs);
472}
473
474void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
475 // Do nothing if old and new symbols are the same.
476 if (Symbol == getPreInstrSymbol())
477 return;
478
479 // If there was only one symbol and we're removing it, just clear info.
480 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
481 Info.clear();
482 return;
483 }
484
485 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: Symbol, PostInstrSymbol: getPostInstrSymbol(),
486 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(),
487 MMRAs: getMMRAMetadata());
488}
489
490void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491 // Do nothing if old and new symbols are the same.
492 if (Symbol == getPostInstrSymbol())
493 return;
494
495 // If there was only one symbol and we're removing it, just clear info.
496 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497 Info.clear();
498 return;
499 }
500
501 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: Symbol,
502 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(),
503 MMRAs: getMMRAMetadata());
504}
505
506void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
507 // Do nothing if old and new symbols are the same.
508 if (Marker == getHeapAllocMarker())
509 return;
510
511 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
512 HeapAllocMarker: Marker, PCSections: getPCSections(), CFIType: getCFIType(), MMRAs: getMMRAMetadata());
513}
514
515void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
516 // Do nothing if old and new symbols are the same.
517 if (PCSections == getPCSections())
518 return;
519
520 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
521 HeapAllocMarker: getHeapAllocMarker(), PCSections, CFIType: getCFIType(),
522 MMRAs: getMMRAMetadata());
523}
524
525void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
526 // Do nothing if old and new types are the same.
527 if (Type == getCFIType())
528 return;
529
530 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
531 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: Type, MMRAs: getMMRAMetadata());
532}
533
534void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) {
535 // Do nothing if old and new symbols are the same.
536 if (MMRAs == getMMRAMetadata())
537 return;
538
539 setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(),
540 HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), MMRAs);
541}
542
543void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
544 const MachineInstr &MI) {
545 if (this == &MI)
546 // Nothing to do for a self-clone!
547 return;
548
549 assert(&MF == MI.getMF() &&
550 "Invalid machine functions when cloning instruction symbols!");
551
552 setPreInstrSymbol(MF, Symbol: MI.getPreInstrSymbol());
553 setPostInstrSymbol(MF, Symbol: MI.getPostInstrSymbol());
554 setHeapAllocMarker(MF, Marker: MI.getHeapAllocMarker());
555 setPCSections(MF, PCSections: MI.getPCSections());
556 setMMRAMetadata(MF, MMRAs: MI.getMMRAMetadata());
557}
558
559uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
560 // For now, the just return the union of the flags. If the flags get more
561 // complicated over time, we might need more logic here.
562 return getFlags() | Other.getFlags();
563}
564
565uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
566 uint32_t MIFlags = 0;
567 // Copy the wrapping flags.
568 if (const OverflowingBinaryOperator *OB =
569 dyn_cast<OverflowingBinaryOperator>(Val: &I)) {
570 if (OB->hasNoSignedWrap())
571 MIFlags |= MachineInstr::MIFlag::NoSWrap;
572 if (OB->hasNoUnsignedWrap())
573 MIFlags |= MachineInstr::MIFlag::NoUWrap;
574 } else if (const TruncInst *TI = dyn_cast<TruncInst>(Val: &I)) {
575 if (TI->hasNoSignedWrap())
576 MIFlags |= MachineInstr::MIFlag::NoSWrap;
577 if (TI->hasNoUnsignedWrap())
578 MIFlags |= MachineInstr::MIFlag::NoUWrap;
579 }
580
581 // Copy the nonneg flag.
582 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(Val: &I)) {
583 if (PNI->hasNonNeg())
584 MIFlags |= MachineInstr::MIFlag::NonNeg;
585 // Copy the disjoint flag.
586 } else if (const PossiblyDisjointInst *PD =
587 dyn_cast<PossiblyDisjointInst>(Val: &I)) {
588 if (PD->isDisjoint())
589 MIFlags |= MachineInstr::MIFlag::Disjoint;
590 }
591
592 // Copy the exact flag.
593 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(Val: &I))
594 if (PE->isExact())
595 MIFlags |= MachineInstr::MIFlag::IsExact;
596
597 // Copy the fast-math flags.
598 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(Val: &I)) {
599 const FastMathFlags Flags = FP->getFastMathFlags();
600 if (Flags.noNaNs())
601 MIFlags |= MachineInstr::MIFlag::FmNoNans;
602 if (Flags.noInfs())
603 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
604 if (Flags.noSignedZeros())
605 MIFlags |= MachineInstr::MIFlag::FmNsz;
606 if (Flags.allowReciprocal())
607 MIFlags |= MachineInstr::MIFlag::FmArcp;
608 if (Flags.allowContract())
609 MIFlags |= MachineInstr::MIFlag::FmContract;
610 if (Flags.approxFunc())
611 MIFlags |= MachineInstr::MIFlag::FmAfn;
612 if (Flags.allowReassoc())
613 MIFlags |= MachineInstr::MIFlag::FmReassoc;
614 }
615
616 if (I.getMetadata(KindID: LLVMContext::MD_unpredictable))
617 MIFlags |= MachineInstr::MIFlag::Unpredictable;
618
619 return MIFlags;
620}
621
622void MachineInstr::copyIRFlags(const Instruction &I) {
623 Flags = copyFlagsFromInstruction(I);
624}
625
626bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
627 assert(!isBundledWithPred() && "Must be called on bundle header");
628 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
629 if (MII->getDesc().getFlags() & Mask) {
630 if (Type == AnyInBundle)
631 return true;
632 } else {
633 if (Type == AllInBundle && !MII->isBundle())
634 return false;
635 }
636 // This was the last instruction in the bundle.
637 if (!MII->isBundledWithSucc())
638 return Type == AllInBundle;
639 }
640}
641
642bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
643 MICheckType Check) const {
644 // If opcodes or number of operands are not the same then the two
645 // instructions are obviously not identical.
646 if (Other.getOpcode() != getOpcode() ||
647 Other.getNumOperands() != getNumOperands())
648 return false;
649
650 if (isBundle()) {
651 // We have passed the test above that both instructions have the same
652 // opcode, so we know that both instructions are bundles here. Let's compare
653 // MIs inside the bundle.
654 assert(Other.isBundle() && "Expected that both instructions are bundles.");
655 MachineBasicBlock::const_instr_iterator I1 = getIterator();
656 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
657 // Loop until we analysed the last intruction inside at least one of the
658 // bundles.
659 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
660 ++I1;
661 ++I2;
662 if (!I1->isIdenticalTo(Other: *I2, Check))
663 return false;
664 }
665 // If we've reached the end of just one of the two bundles, but not both,
666 // the instructions are not identical.
667 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
668 return false;
669 }
670
671 // Check operands to make sure they match.
672 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
673 const MachineOperand &MO = getOperand(i);
674 const MachineOperand &OMO = Other.getOperand(i);
675 if (!MO.isReg()) {
676 if (!MO.isIdenticalTo(Other: OMO))
677 return false;
678 continue;
679 }
680
681 // Clients may or may not want to ignore defs when testing for equality.
682 // For example, machine CSE pass only cares about finding common
683 // subexpressions, so it's safe to ignore virtual register defs.
684 if (MO.isDef()) {
685 if (Check == IgnoreDefs)
686 continue;
687 else if (Check == IgnoreVRegDefs) {
688 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
689 if (!MO.isIdenticalTo(Other: OMO))
690 return false;
691 } else {
692 if (!MO.isIdenticalTo(Other: OMO))
693 return false;
694 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
695 return false;
696 }
697 } else {
698 if (!MO.isIdenticalTo(Other: OMO))
699 return false;
700 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
701 return false;
702 }
703 }
704 // If DebugLoc does not match then two debug instructions are not identical.
705 if (isDebugInstr())
706 if (getDebugLoc() && Other.getDebugLoc() &&
707 getDebugLoc() != Other.getDebugLoc())
708 return false;
709 // If pre- or post-instruction symbols do not match then the two instructions
710 // are not identical.
711 if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
712 getPostInstrSymbol() != Other.getPostInstrSymbol())
713 return false;
714 // Call instructions with different CFI types are not identical.
715 if (isCall() && getCFIType() != Other.getCFIType())
716 return false;
717
718 return true;
719}
720
721bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
722 if (!isDebugValueLike() || !Other.isDebugValueLike())
723 return false;
724 if (getDebugLoc() != Other.getDebugLoc())
725 return false;
726 if (getDebugVariable() != Other.getDebugVariable())
727 return false;
728 if (getNumDebugOperands() != Other.getNumDebugOperands())
729 return false;
730 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
731 if (!getDebugOperand(Index: OpIdx).isIdenticalTo(Other: Other.getDebugOperand(Index: OpIdx)))
732 return false;
733 if (!DIExpression::isEqualExpression(
734 FirstExpr: getDebugExpression(), FirstIndirect: isIndirectDebugValue(),
735 SecondExpr: Other.getDebugExpression(), SecondIndirect: Other.isIndirectDebugValue()))
736 return false;
737 return true;
738}
739
740const MachineFunction *MachineInstr::getMF() const {
741 return getParent()->getParent();
742}
743
744MachineInstr *MachineInstr::removeFromParent() {
745 assert(getParent() && "Not embedded in a basic block!");
746 return getParent()->remove(I: this);
747}
748
749MachineInstr *MachineInstr::removeFromBundle() {
750 assert(getParent() && "Not embedded in a basic block!");
751 return getParent()->remove_instr(I: this);
752}
753
754void MachineInstr::eraseFromParent() {
755 assert(getParent() && "Not embedded in a basic block!");
756 getParent()->erase(I: this);
757}
758
759void MachineInstr::eraseFromBundle() {
760 assert(getParent() && "Not embedded in a basic block!");
761 getParent()->erase_instr(I: this);
762}
763
764bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
765 if (!isCall(Type))
766 return false;
767 switch (getOpcode()) {
768 case TargetOpcode::PATCHPOINT:
769 case TargetOpcode::STACKMAP:
770 case TargetOpcode::STATEPOINT:
771 case TargetOpcode::FENTRY_CALL:
772 return false;
773 }
774 return true;
775}
776
777bool MachineInstr::shouldUpdateCallSiteInfo() const {
778 if (isBundle())
779 return isCandidateForCallSiteEntry(Type: MachineInstr::AnyInBundle);
780 return isCandidateForCallSiteEntry();
781}
782
783unsigned MachineInstr::getNumExplicitOperands() const {
784 unsigned NumOperands = MCID->getNumOperands();
785 if (!MCID->isVariadic())
786 return NumOperands;
787
788 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
789 const MachineOperand &MO = getOperand(i: I);
790 // The operands must always be in the following order:
791 // - explicit reg defs,
792 // - other explicit operands (reg uses, immediates, etc.),
793 // - implicit reg defs
794 // - implicit reg uses
795 if (MO.isReg() && MO.isImplicit())
796 break;
797 ++NumOperands;
798 }
799 return NumOperands;
800}
801
802unsigned MachineInstr::getNumExplicitDefs() const {
803 unsigned NumDefs = MCID->getNumDefs();
804 if (!MCID->isVariadic())
805 return NumDefs;
806
807 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
808 const MachineOperand &MO = getOperand(i: I);
809 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
810 break;
811 ++NumDefs;
812 }
813 return NumDefs;
814}
815
816void MachineInstr::bundleWithPred() {
817 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
818 setFlag(BundledPred);
819 MachineBasicBlock::instr_iterator Pred = getIterator();
820 --Pred;
821 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
822 Pred->setFlag(BundledSucc);
823}
824
825void MachineInstr::bundleWithSucc() {
826 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
827 setFlag(BundledSucc);
828 MachineBasicBlock::instr_iterator Succ = getIterator();
829 ++Succ;
830 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
831 Succ->setFlag(BundledPred);
832}
833
834void MachineInstr::unbundleFromPred() {
835 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
836 clearFlag(Flag: BundledPred);
837 MachineBasicBlock::instr_iterator Pred = getIterator();
838 --Pred;
839 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
840 Pred->clearFlag(Flag: BundledSucc);
841}
842
843void MachineInstr::unbundleFromSucc() {
844 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
845 clearFlag(Flag: BundledSucc);
846 MachineBasicBlock::instr_iterator Succ = getIterator();
847 ++Succ;
848 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
849 Succ->clearFlag(Flag: BundledPred);
850}
851
852bool MachineInstr::isStackAligningInlineAsm() const {
853 if (isInlineAsm()) {
854 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
855 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
856 return true;
857 }
858 return false;
859}
860
861InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
862 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
863 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
864 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
865}
866
867int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
868 unsigned *GroupNo) const {
869 assert(isInlineAsm() && "Expected an inline asm instruction");
870 assert(OpIdx < getNumOperands() && "OpIdx out of range");
871
872 // Ignore queries about the initial operands.
873 if (OpIdx < InlineAsm::MIOp_FirstOperand)
874 return -1;
875
876 unsigned Group = 0;
877 unsigned NumOps;
878 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
879 i += NumOps) {
880 const MachineOperand &FlagMO = getOperand(i);
881 // If we reach the implicit register operands, stop looking.
882 if (!FlagMO.isImm())
883 return -1;
884 const InlineAsm::Flag F(FlagMO.getImm());
885 NumOps = 1 + F.getNumOperandRegisters();
886 if (i + NumOps > OpIdx) {
887 if (GroupNo)
888 *GroupNo = Group;
889 return i;
890 }
891 ++Group;
892 }
893 return -1;
894}
895
896const DILabel *MachineInstr::getDebugLabel() const {
897 assert(isDebugLabel() && "not a DBG_LABEL");
898 return cast<DILabel>(Val: getOperand(i: 0).getMetadata());
899}
900
901const MachineOperand &MachineInstr::getDebugVariableOp() const {
902 assert((isDebugValueLike()) && "not a DBG_VALUE*");
903 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
904 return getOperand(i: VariableOp);
905}
906
907MachineOperand &MachineInstr::getDebugVariableOp() {
908 assert((isDebugValueLike()) && "not a DBG_VALUE*");
909 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
910 return getOperand(i: VariableOp);
911}
912
913const DILocalVariable *MachineInstr::getDebugVariable() const {
914 return cast<DILocalVariable>(Val: getDebugVariableOp().getMetadata());
915}
916
917const MachineOperand &MachineInstr::getDebugExpressionOp() const {
918 assert((isDebugValueLike()) && "not a DBG_VALUE*");
919 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
920 return getOperand(i: ExpressionOp);
921}
922
923MachineOperand &MachineInstr::getDebugExpressionOp() {
924 assert((isDebugValueLike()) && "not a DBG_VALUE*");
925 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
926 return getOperand(i: ExpressionOp);
927}
928
929const DIExpression *MachineInstr::getDebugExpression() const {
930 return cast<DIExpression>(Val: getDebugExpressionOp().getMetadata());
931}
932
933bool MachineInstr::isDebugEntryValue() const {
934 return isDebugValue() && getDebugExpression()->isEntryValue();
935}
936
937const TargetRegisterClass*
938MachineInstr::getRegClassConstraint(unsigned OpIdx,
939 const TargetInstrInfo *TII,
940 const TargetRegisterInfo *TRI) const {
941 assert(getParent() && "Can't have an MBB reference here!");
942 assert(getMF() && "Can't have an MF reference here!");
943 const MachineFunction &MF = *getMF();
944
945 // Most opcodes have fixed constraints in their MCInstrDesc.
946 if (!isInlineAsm())
947 return TII->getRegClass(MCID: getDesc(), OpNum: OpIdx, TRI, MF);
948
949 if (!getOperand(i: OpIdx).isReg())
950 return nullptr;
951
952 // For tied uses on inline asm, get the constraint from the def.
953 unsigned DefIdx;
954 if (getOperand(i: OpIdx).isUse() && isRegTiedToDefOperand(UseOpIdx: OpIdx, DefOpIdx: &DefIdx))
955 OpIdx = DefIdx;
956
957 // Inline asm stores register class constraints in the flag word.
958 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
959 if (FlagIdx < 0)
960 return nullptr;
961
962 const InlineAsm::Flag F(getOperand(i: FlagIdx).getImm());
963 unsigned RCID;
964 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
965 F.hasRegClassConstraint(RC&: RCID))
966 return TRI->getRegClass(i: RCID);
967
968 // Assume that all registers in a memory operand are pointers.
969 if (F.isMemKind())
970 return TRI->getPointerRegClass(MF);
971
972 return nullptr;
973}
974
975const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
976 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
977 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
978 // Check every operands inside the bundle if we have
979 // been asked to.
980 if (ExploreBundle)
981 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
982 ++OpndIt)
983 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
984 OpIdx: OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
985 else
986 // Otherwise, just check the current operands.
987 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
988 CurRC = getRegClassConstraintEffectForVRegImpl(OpIdx: i, Reg, CurRC, TII, TRI);
989 return CurRC;
990}
991
992const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
993 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
994 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
995 assert(CurRC && "Invalid initial register class");
996 // Check if Reg is constrained by some of its use/def from MI.
997 const MachineOperand &MO = getOperand(i: OpIdx);
998 if (!MO.isReg() || MO.getReg() != Reg)
999 return CurRC;
1000 // If yes, accumulate the constraints through the operand.
1001 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1002}
1003
1004const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1005 unsigned OpIdx, const TargetRegisterClass *CurRC,
1006 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1007 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1008 const MachineOperand &MO = getOperand(i: OpIdx);
1009 assert(MO.isReg() &&
1010 "Cannot get register constraints for non-register operand");
1011 assert(CurRC && "Invalid initial register class");
1012 if (unsigned SubIdx = MO.getSubReg()) {
1013 if (OpRC)
1014 CurRC = TRI->getMatchingSuperRegClass(A: CurRC, B: OpRC, Idx: SubIdx);
1015 else
1016 CurRC = TRI->getSubClassWithSubReg(RC: CurRC, Idx: SubIdx);
1017 } else if (OpRC)
1018 CurRC = TRI->getCommonSubClass(A: CurRC, B: OpRC);
1019 return CurRC;
1020}
1021
1022/// Return the number of instructions inside the MI bundle, not counting the
1023/// header instruction.
1024unsigned MachineInstr::getBundleSize() const {
1025 MachineBasicBlock::const_instr_iterator I = getIterator();
1026 unsigned Size = 0;
1027 while (I->isBundledWithSucc()) {
1028 ++Size;
1029 ++I;
1030 }
1031 return Size;
1032}
1033
1034/// Returns true if the MachineInstr has an implicit-use operand of exactly
1035/// the given register (not considering sub/super-registers).
1036bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1037 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1038 const MachineOperand &MO = getOperand(i);
1039 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1040 return true;
1041 }
1042 return false;
1043}
1044
1045/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1046/// the specific register or -1 if it is not found. It further tightens
1047/// the search criteria to a use that kills the register if isKill is true.
1048int MachineInstr::findRegisterUseOperandIdx(Register Reg,
1049 const TargetRegisterInfo *TRI,
1050 bool isKill) const {
1051 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1052 const MachineOperand &MO = getOperand(i);
1053 if (!MO.isReg() || !MO.isUse())
1054 continue;
1055 Register MOReg = MO.getReg();
1056 if (!MOReg)
1057 continue;
1058 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(RegA: MOReg, RegB: Reg)))
1059 if (!isKill || MO.isKill())
1060 return i;
1061 }
1062 return -1;
1063}
1064
1065/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1066/// indicating if this instruction reads or writes Reg. This also considers
1067/// partial defines.
1068std::pair<bool,bool>
1069MachineInstr::readsWritesVirtualRegister(Register Reg,
1070 SmallVectorImpl<unsigned> *Ops) const {
1071 bool PartDef = false; // Partial redefine.
1072 bool FullDef = false; // Full define.
1073 bool Use = false;
1074
1075 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1076 const MachineOperand &MO = getOperand(i);
1077 if (!MO.isReg() || MO.getReg() != Reg)
1078 continue;
1079 if (Ops)
1080 Ops->push_back(Elt: i);
1081 if (MO.isUse())
1082 Use |= !MO.isUndef();
1083 else if (MO.getSubReg() && !MO.isUndef())
1084 // A partial def undef doesn't count as reading the register.
1085 PartDef = true;
1086 else
1087 FullDef = true;
1088 }
1089 // A partial redefine uses Reg unless there is also a full define.
1090 return std::make_pair(x: Use || (PartDef && !FullDef), y: PartDef || FullDef);
1091}
1092
1093/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1094/// the specified register or -1 if it is not found. If isDead is true, defs
1095/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1096/// also checks if there is a def of a super-register.
1097int MachineInstr::findRegisterDefOperandIdx(Register Reg,
1098 const TargetRegisterInfo *TRI,
1099 bool isDead, bool Overlap) const {
1100 bool isPhys = Reg.isPhysical();
1101 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1102 const MachineOperand &MO = getOperand(i);
1103 // Accept regmask operands when Overlap is set.
1104 // Ignore them when looking for a specific def operand (Overlap == false).
1105 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(PhysReg: Reg))
1106 return i;
1107 if (!MO.isReg() || !MO.isDef())
1108 continue;
1109 Register MOReg = MO.getReg();
1110 bool Found = (MOReg == Reg);
1111 if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1112 if (Overlap)
1113 Found = TRI->regsOverlap(RegA: MOReg, RegB: Reg);
1114 else
1115 Found = TRI->isSubRegister(RegA: MOReg, RegB: Reg);
1116 }
1117 if (Found && (!isDead || MO.isDead()))
1118 return i;
1119 }
1120 return -1;
1121}
1122
1123/// findFirstPredOperandIdx() - Find the index of the first operand in the
1124/// operand list that is used to represent the predicate. It returns -1 if
1125/// none is found.
1126int MachineInstr::findFirstPredOperandIdx() const {
1127 // Don't call MCID.findFirstPredOperandIdx() because this variant
1128 // is sometimes called on an instruction that's not yet complete, and
1129 // so the number of operands is less than the MCID indicates. In
1130 // particular, the PTX target does this.
1131 const MCInstrDesc &MCID = getDesc();
1132 if (MCID.isPredicable()) {
1133 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1134 if (MCID.operands()[i].isPredicate())
1135 return i;
1136 }
1137
1138 return -1;
1139}
1140
1141// MachineOperand::TiedTo is 4 bits wide.
1142const unsigned TiedMax = 15;
1143
1144/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1145///
1146/// Use and def operands can be tied together, indicated by a non-zero TiedTo
1147/// field. TiedTo can have these values:
1148///
1149/// 0: Operand is not tied to anything.
1150/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1151/// TiedMax: Tied to an operand >= TiedMax-1.
1152///
1153/// The tied def must be one of the first TiedMax operands on a normal
1154/// instruction. INLINEASM instructions allow more tied defs.
1155///
1156void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1157 MachineOperand &DefMO = getOperand(i: DefIdx);
1158 MachineOperand &UseMO = getOperand(i: UseIdx);
1159 assert(DefMO.isDef() && "DefIdx must be a def operand");
1160 assert(UseMO.isUse() && "UseIdx must be a use operand");
1161 assert(!DefMO.isTied() && "Def is already tied to another use");
1162 assert(!UseMO.isTied() && "Use is already tied to another def");
1163
1164 if (DefIdx < TiedMax)
1165 UseMO.TiedTo = DefIdx + 1;
1166 else {
1167 // Inline asm can use the group descriptors to find tied operands,
1168 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1169 // but on normal instruction, the tied def must be within the first TiedMax
1170 // operands.
1171 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1172 "DefIdx out of range");
1173 UseMO.TiedTo = TiedMax;
1174 }
1175
1176 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1177 DefMO.TiedTo = std::min(a: UseIdx + 1, b: TiedMax);
1178}
1179
1180/// Given the index of a tied register operand, find the operand it is tied to.
1181/// Defs are tied to uses and vice versa. Returns the index of the tied operand
1182/// which must exist.
1183unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1184 const MachineOperand &MO = getOperand(i: OpIdx);
1185 assert(MO.isTied() && "Operand isn't tied");
1186
1187 // Normally TiedTo is in range.
1188 if (MO.TiedTo < TiedMax)
1189 return MO.TiedTo - 1;
1190
1191 // Uses on normal instructions can be out of range.
1192 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1193 // Normal tied defs must be in the 0..TiedMax-1 range.
1194 if (MO.isUse())
1195 return TiedMax - 1;
1196 // MO is a def. Search for the tied use.
1197 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1198 const MachineOperand &UseMO = getOperand(i);
1199 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1200 return i;
1201 }
1202 llvm_unreachable("Can't find tied use");
1203 }
1204
1205 if (getOpcode() == TargetOpcode::STATEPOINT) {
1206 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1207 // on registers.
1208 StatepointOpers SO(this);
1209 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1210 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1211 unsigned NumDefs = getNumDefs();
1212 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1213 while (!getOperand(i: CurUseIdx).isReg())
1214 CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx);
1215 if (OpIdx == CurDefIdx)
1216 return CurUseIdx;
1217 if (OpIdx == CurUseIdx)
1218 return CurDefIdx;
1219 CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx);
1220 }
1221 llvm_unreachable("Can't find tied use");
1222 }
1223
1224 // Now deal with inline asm by parsing the operand group descriptor flags.
1225 // Find the beginning of each operand group.
1226 SmallVector<unsigned, 8> GroupIdx;
1227 unsigned OpIdxGroup = ~0u;
1228 unsigned NumOps;
1229 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1230 i += NumOps) {
1231 const MachineOperand &FlagMO = getOperand(i);
1232 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1233 unsigned CurGroup = GroupIdx.size();
1234 GroupIdx.push_back(Elt: i);
1235 const InlineAsm::Flag F(FlagMO.getImm());
1236 NumOps = 1 + F.getNumOperandRegisters();
1237 // OpIdx belongs to this operand group.
1238 if (OpIdx > i && OpIdx < i + NumOps)
1239 OpIdxGroup = CurGroup;
1240 unsigned TiedGroup;
1241 if (!F.isUseOperandTiedToDef(Idx&: TiedGroup))
1242 continue;
1243 // Operands in this group are tied to operands in TiedGroup which must be
1244 // earlier. Find the number of operands between the two groups.
1245 unsigned Delta = i - GroupIdx[TiedGroup];
1246
1247 // OpIdx is a use tied to TiedGroup.
1248 if (OpIdxGroup == CurGroup)
1249 return OpIdx - Delta;
1250
1251 // OpIdx is a def tied to this use group.
1252 if (OpIdxGroup == TiedGroup)
1253 return OpIdx + Delta;
1254 }
1255 llvm_unreachable("Invalid tied operand on inline asm");
1256}
1257
1258/// clearKillInfo - Clears kill flags on all operands.
1259///
1260void MachineInstr::clearKillInfo() {
1261 for (MachineOperand &MO : operands()) {
1262 if (MO.isReg() && MO.isUse())
1263 MO.setIsKill(false);
1264 }
1265}
1266
1267void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1268 unsigned SubIdx,
1269 const TargetRegisterInfo &RegInfo) {
1270 if (ToReg.isPhysical()) {
1271 if (SubIdx)
1272 ToReg = RegInfo.getSubReg(Reg: ToReg, Idx: SubIdx);
1273 for (MachineOperand &MO : operands()) {
1274 if (!MO.isReg() || MO.getReg() != FromReg)
1275 continue;
1276 MO.substPhysReg(Reg: ToReg, RegInfo);
1277 }
1278 } else {
1279 for (MachineOperand &MO : operands()) {
1280 if (!MO.isReg() || MO.getReg() != FromReg)
1281 continue;
1282 MO.substVirtReg(Reg: ToReg, SubIdx, RegInfo);
1283 }
1284 }
1285}
1286
1287/// isSafeToMove - Return true if it is safe to move this instruction. If
1288/// SawStore is set to true, it means that there is a store (or call) between
1289/// the instruction's location and its intended destination.
1290bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1291 // Ignore stuff that we obviously can't move.
1292 //
1293 // Treat volatile loads as stores. This is not strictly necessary for
1294 // volatiles, but it is required for atomic loads. It is not allowed to move
1295 // a load across an atomic load with Ordering > Monotonic.
1296 if (mayStore() || isCall() || isPHI() ||
1297 (mayLoad() && hasOrderedMemoryRef())) {
1298 SawStore = true;
1299 return false;
1300 }
1301
1302 if (isPosition() || isDebugInstr() || isTerminator() ||
1303 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1304 isJumpTableDebugInfo())
1305 return false;
1306
1307 // See if this instruction does a load. If so, we have to guarantee that the
1308 // loaded value doesn't change between the load and the its intended
1309 // destination. The check for isInvariantLoad gives the target the chance to
1310 // classify the load as always returning a constant, e.g. a constant pool
1311 // load.
1312 if (mayLoad() && !isDereferenceableInvariantLoad())
1313 // Otherwise, this is a real load. If there is a store between the load and
1314 // end of block, we can't move it.
1315 return !SawStore;
1316
1317 return true;
1318}
1319
1320static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1321 bool UseTBAA, const MachineMemOperand *MMOa,
1322 const MachineMemOperand *MMOb) {
1323 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1324 // operates with MachineMemOperand offset with some important assumptions:
1325 // - LLVM fundamentally assumes flat address spaces.
1326 // - MachineOperand offset can *only* result from legalization and cannot
1327 // affect queries other than the trivial case of overlap checking.
1328 // - These offsets never wrap and never step outside of allocated objects.
1329 // - There should never be any negative offsets here.
1330 //
1331 // FIXME: Modify API to hide this math from "user"
1332 // Even before we go to AA we can reason locally about some memory objects. It
1333 // can save compile time, and possibly catch some corner cases not currently
1334 // covered.
1335
1336 int64_t OffsetA = MMOa->getOffset();
1337 int64_t OffsetB = MMOb->getOffset();
1338 int64_t MinOffset = std::min(a: OffsetA, b: OffsetB);
1339
1340 LocationSize WidthA = MMOa->getSize();
1341 LocationSize WidthB = MMOb->getSize();
1342 bool KnownWidthA = WidthA.hasValue();
1343 bool KnownWidthB = WidthB.hasValue();
1344 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable();
1345
1346 const Value *ValA = MMOa->getValue();
1347 const Value *ValB = MMOb->getValue();
1348 bool SameVal = (ValA && ValB && (ValA == ValB));
1349 if (!SameVal) {
1350 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1351 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1352 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1353 return false;
1354 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1355 return false;
1356 if (PSVa && PSVb && (PSVa == PSVb))
1357 SameVal = true;
1358 }
1359
1360 if (SameVal && BothMMONonScalable) {
1361 if (!KnownWidthA || !KnownWidthB)
1362 return true;
1363 int64_t MaxOffset = std::max(a: OffsetA, b: OffsetB);
1364 int64_t LowWidth = (MinOffset == OffsetA)
1365 ? WidthA.getValue().getKnownMinValue()
1366 : WidthB.getValue().getKnownMinValue();
1367 return (MinOffset + LowWidth > MaxOffset);
1368 }
1369
1370 if (!AA)
1371 return true;
1372
1373 if (!ValA || !ValB)
1374 return true;
1375
1376 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1377 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1378
1379 // If Scalable Location Size has non-zero offset, Width + Offset does not work
1380 // at the moment
1381 if ((WidthA.isScalable() && OffsetA > 0) ||
1382 (WidthB.isScalable() && OffsetB > 0))
1383 return true;
1384
1385 int64_t OverlapA =
1386 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset
1387 : MemoryLocation::UnknownSize;
1388 int64_t OverlapB =
1389 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset
1390 : MemoryLocation::UnknownSize;
1391
1392 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA)
1393 ? WidthA
1394 : LocationSize::precise(Value: OverlapA);
1395 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB)
1396 ? WidthB
1397 : LocationSize::precise(Value: OverlapB);
1398
1399 return !AA->isNoAlias(
1400 LocA: MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1401 LocB: MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1402}
1403
1404bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1405 bool UseTBAA) const {
1406 const MachineFunction *MF = getMF();
1407 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1408 const MachineFrameInfo &MFI = MF->getFrameInfo();
1409
1410 // Exclude call instruction which may alter the memory but can not be handled
1411 // by this function.
1412 if (isCall() || Other.isCall())
1413 return true;
1414
1415 // If neither instruction stores to memory, they can't alias in any
1416 // meaningful way, even if they read from the same address.
1417 if (!mayStore() && !Other.mayStore())
1418 return false;
1419
1420 // Both instructions must be memory operations to be able to alias.
1421 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1422 return false;
1423
1424 // Let the target decide if memory accesses cannot possibly overlap.
1425 if (TII->areMemAccessesTriviallyDisjoint(MIa: *this, MIb: Other))
1426 return false;
1427
1428 // Memory operations without memory operands may access anything. Be
1429 // conservative and assume `MayAlias`.
1430 if (memoperands_empty() || Other.memoperands_empty())
1431 return true;
1432
1433 // Skip if there are too many memory operands.
1434 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1435 if (NumChecks > TII->getMemOperandAACheckLimit())
1436 return true;
1437
1438 // Check each pair of memory operands from both instructions, which can't
1439 // alias only if all pairs won't alias.
1440 for (auto *MMOa : memoperands())
1441 for (auto *MMOb : Other.memoperands())
1442 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1443 return true;
1444
1445 return false;
1446}
1447
1448/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1449/// or volatile memory reference, or if the information describing the memory
1450/// reference is not available. Return false if it is known to have no ordered
1451/// memory references.
1452bool MachineInstr::hasOrderedMemoryRef() const {
1453 // An instruction known never to access memory won't have a volatile access.
1454 if (!mayStore() &&
1455 !mayLoad() &&
1456 !isCall() &&
1457 !hasUnmodeledSideEffects())
1458 return false;
1459
1460 // Otherwise, if the instruction has no memory reference information,
1461 // conservatively assume it wasn't preserved.
1462 if (memoperands_empty())
1463 return true;
1464
1465 // Check if any of our memory operands are ordered.
1466 return llvm::any_of(Range: memoperands(), P: [](const MachineMemOperand *MMO) {
1467 return !MMO->isUnordered();
1468 });
1469}
1470
1471/// isDereferenceableInvariantLoad - Return true if this instruction will never
1472/// trap and is loading from a location whose value is invariant across a run of
1473/// this function.
1474bool MachineInstr::isDereferenceableInvariantLoad() const {
1475 // If the instruction doesn't load at all, it isn't an invariant load.
1476 if (!mayLoad())
1477 return false;
1478
1479 // If the instruction has lost its memoperands, conservatively assume that
1480 // it may not be an invariant load.
1481 if (memoperands_empty())
1482 return false;
1483
1484 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1485
1486 for (MachineMemOperand *MMO : memoperands()) {
1487 if (!MMO->isUnordered())
1488 // If the memory operand has ordering side effects, we can't move the
1489 // instruction. Such an instruction is technically an invariant load,
1490 // but the caller code would need updated to expect that.
1491 return false;
1492 if (MMO->isStore()) return false;
1493 if (MMO->isInvariant() && MMO->isDereferenceable())
1494 continue;
1495
1496 // A load from a constant PseudoSourceValue is invariant.
1497 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1498 if (PSV->isConstant(&MFI))
1499 continue;
1500 }
1501
1502 // Otherwise assume conservatively.
1503 return false;
1504 }
1505
1506 // Everything checks out.
1507 return true;
1508}
1509
1510/// isConstantValuePHI - If the specified instruction is a PHI that always
1511/// merges together the same virtual register, return the register, otherwise
1512/// return 0.
1513unsigned MachineInstr::isConstantValuePHI() const {
1514 if (!isPHI())
1515 return 0;
1516 assert(getNumOperands() >= 3 &&
1517 "It's illegal to have a PHI without source operands");
1518
1519 Register Reg = getOperand(i: 1).getReg();
1520 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1521 if (getOperand(i).getReg() != Reg)
1522 return 0;
1523 return Reg;
1524}
1525
1526bool MachineInstr::hasUnmodeledSideEffects() const {
1527 if (hasProperty(MCFlag: MCID::UnmodeledSideEffects))
1528 return true;
1529 if (isInlineAsm()) {
1530 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
1531 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1532 return true;
1533 }
1534
1535 return false;
1536}
1537
1538bool MachineInstr::isLoadFoldBarrier() const {
1539 return mayStore() || isCall() ||
1540 (hasUnmodeledSideEffects() && !isPseudoProbe());
1541}
1542
1543/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1544///
1545bool MachineInstr::allDefsAreDead() const {
1546 for (const MachineOperand &MO : operands()) {
1547 if (!MO.isReg() || MO.isUse())
1548 continue;
1549 if (!MO.isDead())
1550 return false;
1551 }
1552 return true;
1553}
1554
1555bool MachineInstr::allImplicitDefsAreDead() const {
1556 for (const MachineOperand &MO : implicit_operands()) {
1557 if (!MO.isReg() || MO.isUse())
1558 continue;
1559 if (!MO.isDead())
1560 return false;
1561 }
1562 return true;
1563}
1564
1565/// copyImplicitOps - Copy implicit register operands from specified
1566/// instruction to this instruction.
1567void MachineInstr::copyImplicitOps(MachineFunction &MF,
1568 const MachineInstr &MI) {
1569 for (const MachineOperand &MO :
1570 llvm::drop_begin(RangeOrContainer: MI.operands(), N: MI.getDesc().getNumOperands()))
1571 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1572 addOperand(MF, Op: MO);
1573}
1574
1575bool MachineInstr::hasComplexRegisterTies() const {
1576 const MCInstrDesc &MCID = getDesc();
1577 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1578 return true;
1579 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1580 const auto &Operand = getOperand(i: I);
1581 if (!Operand.isReg() || Operand.isDef())
1582 // Ignore the defined registers as MCID marks only the uses as tied.
1583 continue;
1584 int ExpectedTiedIdx = MCID.getOperandConstraint(OpNum: I, Constraint: MCOI::TIED_TO);
1585 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(OpIdx: I)) : -1;
1586 if (ExpectedTiedIdx != TiedIdx)
1587 return true;
1588 }
1589 return false;
1590}
1591
1592LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1593 const MachineRegisterInfo &MRI) const {
1594 const MachineOperand &Op = getOperand(i: OpIdx);
1595 if (!Op.isReg())
1596 return LLT{};
1597
1598 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1599 return MRI.getType(Reg: Op.getReg());
1600
1601 auto &OpInfo = getDesc().operands()[OpIdx];
1602 if (!OpInfo.isGenericType())
1603 return MRI.getType(Reg: Op.getReg());
1604
1605 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1606 return LLT{};
1607
1608 LLT TypeToPrint = MRI.getType(Reg: Op.getReg());
1609 // Don't mark the type index printed if it wasn't actually printed: maybe
1610 // another operand with the same type index has an actual type attached:
1611 if (TypeToPrint.isValid())
1612 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1613 return TypeToPrint;
1614}
1615
1616#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1617LLVM_DUMP_METHOD void MachineInstr::dump() const {
1618 dbgs() << " ";
1619 print(OS&: dbgs());
1620}
1621
1622LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1623 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1624 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1625 if (Depth >= MaxDepth)
1626 return;
1627 if (!AlreadySeenInstrs.insert(Ptr: this).second)
1628 return;
1629 // PadToColumn always inserts at least one space.
1630 // Don't mess up the alignment if we don't want any space.
1631 if (Depth)
1632 fdbgs().PadToColumn(NewCol: Depth * 2);
1633 print(OS&: fdbgs());
1634 for (const MachineOperand &MO : operands()) {
1635 if (!MO.isReg() || MO.isDef())
1636 continue;
1637 Register Reg = MO.getReg();
1638 if (Reg.isPhysical())
1639 continue;
1640 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1641 if (NewMI == nullptr)
1642 continue;
1643 NewMI->dumprImpl(MRI, Depth: Depth + 1, MaxDepth, AlreadySeenInstrs);
1644 }
1645}
1646
1647LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1648 unsigned MaxDepth) const {
1649 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1650 dumprImpl(MRI, Depth: 0, MaxDepth, AlreadySeenInstrs);
1651}
1652#endif
1653
1654void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1655 bool SkipDebugLoc, bool AddNewLine,
1656 const TargetInstrInfo *TII) const {
1657 const Module *M = nullptr;
1658 const Function *F = nullptr;
1659 if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) {
1660 F = &MF->getFunction();
1661 M = F->getParent();
1662 if (!TII)
1663 TII = MF->getSubtarget().getInstrInfo();
1664 }
1665
1666 ModuleSlotTracker MST(M);
1667 if (F)
1668 MST.incorporateFunction(F: *F);
1669 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1670}
1671
1672void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1673 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1674 bool AddNewLine, const TargetInstrInfo *TII) const {
1675 // We can be a bit tidier if we know the MachineFunction.
1676 const TargetRegisterInfo *TRI = nullptr;
1677 const MachineRegisterInfo *MRI = nullptr;
1678 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1679 tryToGetTargetInfo(MI: *this, TRI, MRI, IntrinsicInfo, TII);
1680
1681 if (isCFIInstruction())
1682 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1683
1684 SmallBitVector PrintedTypes(8);
1685 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1686 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1687 if (!ShouldPrintRegisterTies)
1688 return 0U;
1689 const MachineOperand &MO = getOperand(i: OpIdx);
1690 if (MO.isReg() && MO.isTied() && !MO.isDef())
1691 return findTiedOperandIdx(OpIdx);
1692 return 0U;
1693 };
1694 unsigned StartOp = 0;
1695 unsigned e = getNumOperands();
1696
1697 // Print explicitly defined operands on the left of an assignment syntax.
1698 while (StartOp < e) {
1699 const MachineOperand &MO = getOperand(i: StartOp);
1700 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1701 break;
1702
1703 if (StartOp != 0)
1704 OS << ", ";
1705
1706 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: StartOp, PrintedTypes, MRI: *MRI) : LLT{};
1707 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1708 MO.print(os&: OS, MST, TypeToPrint, OpIdx: StartOp, /*PrintDef=*/false, IsStandalone,
1709 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1710 ++StartOp;
1711 }
1712
1713 if (StartOp != 0)
1714 OS << " = ";
1715
1716 if (getFlag(Flag: MachineInstr::FrameSetup))
1717 OS << "frame-setup ";
1718 if (getFlag(Flag: MachineInstr::FrameDestroy))
1719 OS << "frame-destroy ";
1720 if (getFlag(Flag: MachineInstr::FmNoNans))
1721 OS << "nnan ";
1722 if (getFlag(Flag: MachineInstr::FmNoInfs))
1723 OS << "ninf ";
1724 if (getFlag(Flag: MachineInstr::FmNsz))
1725 OS << "nsz ";
1726 if (getFlag(Flag: MachineInstr::FmArcp))
1727 OS << "arcp ";
1728 if (getFlag(Flag: MachineInstr::FmContract))
1729 OS << "contract ";
1730 if (getFlag(Flag: MachineInstr::FmAfn))
1731 OS << "afn ";
1732 if (getFlag(Flag: MachineInstr::FmReassoc))
1733 OS << "reassoc ";
1734 if (getFlag(Flag: MachineInstr::NoUWrap))
1735 OS << "nuw ";
1736 if (getFlag(Flag: MachineInstr::NoSWrap))
1737 OS << "nsw ";
1738 if (getFlag(Flag: MachineInstr::IsExact))
1739 OS << "exact ";
1740 if (getFlag(Flag: MachineInstr::NoFPExcept))
1741 OS << "nofpexcept ";
1742 if (getFlag(Flag: MachineInstr::NoMerge))
1743 OS << "nomerge ";
1744 if (getFlag(Flag: MachineInstr::NonNeg))
1745 OS << "nneg ";
1746 if (getFlag(Flag: MachineInstr::Disjoint))
1747 OS << "disjoint ";
1748
1749 // Print the opcode name.
1750 if (TII)
1751 OS << TII->getName(Opcode: getOpcode());
1752 else
1753 OS << "UNKNOWN";
1754
1755 if (SkipOpers)
1756 return;
1757
1758 // Print the rest of the operands.
1759 bool FirstOp = true;
1760 unsigned AsmDescOp = ~0u;
1761 unsigned AsmOpCount = 0;
1762
1763 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1764 // Print asm string.
1765 OS << " ";
1766 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1767 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, MRI: *MRI) : LLT{};
1768 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1769 getOperand(i: OpIdx).print(os&: OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1770 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1771 IntrinsicInfo);
1772
1773 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1774 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
1775 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1776 OS << " [sideeffect]";
1777 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1778 OS << " [mayload]";
1779 if (ExtraInfo & InlineAsm::Extra_MayStore)
1780 OS << " [maystore]";
1781 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1782 OS << " [isconvergent]";
1783 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1784 OS << " [alignstack]";
1785 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1786 OS << " [attdialect]";
1787 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1788 OS << " [inteldialect]";
1789
1790 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1791 FirstOp = false;
1792 }
1793
1794 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1795 const MachineOperand &MO = getOperand(i);
1796
1797 if (FirstOp) FirstOp = false; else OS << ",";
1798 OS << " ";
1799
1800 if (isDebugValueLike() && MO.isMetadata()) {
1801 // Pretty print DBG_VALUE* instructions.
1802 auto *DIV = dyn_cast<DILocalVariable>(Val: MO.getMetadata());
1803 if (DIV && !DIV->getName().empty())
1804 OS << "!\"" << DIV->getName() << '\"';
1805 else {
1806 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{};
1807 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1808 MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone,
1809 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1810 }
1811 } else if (isDebugLabel() && MO.isMetadata()) {
1812 // Pretty print DBG_LABEL instructions.
1813 auto *DIL = dyn_cast<DILabel>(Val: MO.getMetadata());
1814 if (DIL && !DIL->getName().empty())
1815 OS << "\"" << DIL->getName() << '\"';
1816 else {
1817 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{};
1818 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1819 MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone,
1820 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1821 }
1822 } else if (i == AsmDescOp && MO.isImm()) {
1823 // Pretty print the inline asm operand descriptor.
1824 OS << '$' << AsmOpCount++;
1825 unsigned Flag = MO.getImm();
1826 const InlineAsm::Flag F(Flag);
1827 OS << ":[";
1828 OS << F.getKindName();
1829
1830 unsigned RCID;
1831 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RC&: RCID)) {
1832 if (TRI) {
1833 OS << ':' << TRI->getRegClassName(Class: TRI->getRegClass(i: RCID));
1834 } else
1835 OS << ":RC" << RCID;
1836 }
1837
1838 if (F.isMemKind()) {
1839 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1840 OS << ":" << InlineAsm::getMemConstraintName(C: MCID);
1841 }
1842
1843 unsigned TiedTo;
1844 if (F.isUseOperandTiedToDef(Idx&: TiedTo))
1845 OS << " tiedto:$" << TiedTo;
1846
1847 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
1848 F.isRegUseKind()) &&
1849 F.getRegMayBeFolded()) {
1850 OS << " foldable";
1851 }
1852
1853 OS << ']';
1854
1855 // Compute the index of the next operand descriptor.
1856 AsmDescOp += 1 + F.getNumOperandRegisters();
1857 } else {
1858 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{};
1859 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1860 if (MO.isImm() && isOperandSubregIdx(OpIdx: i))
1861 MachineOperand::printSubRegIdx(OS, Index: MO.getImm(), TRI);
1862 else
1863 MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone,
1864 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1865 }
1866 }
1867
1868 // Print any optional symbols attached to this instruction as-if they were
1869 // operands.
1870 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1871 if (!FirstOp) {
1872 FirstOp = false;
1873 OS << ',';
1874 }
1875 OS << " pre-instr-symbol ";
1876 MachineOperand::printSymbol(OS, Sym&: *PreInstrSymbol);
1877 }
1878 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1879 if (!FirstOp) {
1880 FirstOp = false;
1881 OS << ',';
1882 }
1883 OS << " post-instr-symbol ";
1884 MachineOperand::printSymbol(OS, Sym&: *PostInstrSymbol);
1885 }
1886 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1887 if (!FirstOp) {
1888 FirstOp = false;
1889 OS << ',';
1890 }
1891 OS << " heap-alloc-marker ";
1892 HeapAllocMarker->printAsOperand(OS, MST);
1893 }
1894 if (MDNode *PCSections = getPCSections()) {
1895 if (!FirstOp) {
1896 FirstOp = false;
1897 OS << ',';
1898 }
1899 OS << " pcsections ";
1900 PCSections->printAsOperand(OS, MST);
1901 }
1902 if (MDNode *MMRA = getMMRAMetadata()) {
1903 if (!FirstOp) {
1904 FirstOp = false;
1905 OS << ',';
1906 }
1907 OS << " mmra ";
1908 MMRA->printAsOperand(OS, MST);
1909 }
1910 if (uint32_t CFIType = getCFIType()) {
1911 if (!FirstOp)
1912 OS << ',';
1913 OS << " cfi-type " << CFIType;
1914 }
1915
1916 if (DebugInstrNum) {
1917 if (!FirstOp)
1918 OS << ",";
1919 OS << " debug-instr-number " << DebugInstrNum;
1920 }
1921
1922 if (!SkipDebugLoc) {
1923 if (const DebugLoc &DL = getDebugLoc()) {
1924 if (!FirstOp)
1925 OS << ',';
1926 OS << " debug-location ";
1927 DL->printAsOperand(OS, MST);
1928 }
1929 }
1930
1931 if (!memoperands_empty()) {
1932 SmallVector<StringRef, 0> SSNs;
1933 const LLVMContext *Context = nullptr;
1934 std::unique_ptr<LLVMContext> CtxPtr;
1935 const MachineFrameInfo *MFI = nullptr;
1936 if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) {
1937 MFI = &MF->getFrameInfo();
1938 Context = &MF->getFunction().getContext();
1939 } else {
1940 CtxPtr = std::make_unique<LLVMContext>();
1941 Context = CtxPtr.get();
1942 }
1943
1944 OS << " :: ";
1945 bool NeedComma = false;
1946 for (const MachineMemOperand *Op : memoperands()) {
1947 if (NeedComma)
1948 OS << ", ";
1949 Op->print(OS, MST, SSNs, Context: *Context, MFI, TII);
1950 NeedComma = true;
1951 }
1952 }
1953
1954 if (SkipDebugLoc)
1955 return;
1956
1957 bool HaveSemi = false;
1958
1959 // Print debug location information.
1960 if (const DebugLoc &DL = getDebugLoc()) {
1961 if (!HaveSemi) {
1962 OS << ';';
1963 HaveSemi = true;
1964 }
1965 OS << ' ';
1966 DL.print(OS);
1967 }
1968
1969 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1970 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1971 (isDebugValueList() && getNumOperands() >= 2) ||
1972 (isDebugRef() && getNumOperands() >= 3)) {
1973 if (getDebugVariableOp().isMetadata()) {
1974 if (!HaveSemi) {
1975 OS << ";";
1976 HaveSemi = true;
1977 }
1978 auto *DV = getDebugVariable();
1979 OS << " line no:" << DV->getLine();
1980 if (isIndirectDebugValue())
1981 OS << " indirect";
1982 }
1983 }
1984 // TODO: DBG_LABEL
1985
1986 if (AddNewLine)
1987 OS << '\n';
1988}
1989
1990bool MachineInstr::addRegisterKilled(Register IncomingReg,
1991 const TargetRegisterInfo *RegInfo,
1992 bool AddIfNotFound) {
1993 bool isPhysReg = IncomingReg.isPhysical();
1994 bool hasAliases = isPhysReg &&
1995 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1996 bool Found = false;
1997 SmallVector<unsigned,4> DeadOps;
1998 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1999 MachineOperand &MO = getOperand(i);
2000 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2001 continue;
2002
2003 // DEBUG_VALUE nodes do not contribute to code generation and should
2004 // always be ignored. Failure to do so may result in trying to modify
2005 // KILL flags on DEBUG_VALUE nodes.
2006 if (MO.isDebug())
2007 continue;
2008
2009 Register Reg = MO.getReg();
2010 if (!Reg)
2011 continue;
2012
2013 if (Reg == IncomingReg) {
2014 if (!Found) {
2015 if (MO.isKill())
2016 // The register is already marked kill.
2017 return true;
2018 if (isPhysReg && isRegTiedToDefOperand(UseOpIdx: i))
2019 // Two-address uses of physregs must not be marked kill.
2020 return true;
2021 MO.setIsKill();
2022 Found = true;
2023 }
2024 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
2025 // A super-register kill already exists.
2026 if (RegInfo->isSuperRegister(RegA: IncomingReg, RegB: Reg))
2027 return true;
2028 if (RegInfo->isSubRegister(RegA: IncomingReg, RegB: Reg))
2029 DeadOps.push_back(Elt: i);
2030 }
2031 }
2032
2033 // Trim unneeded kill operands.
2034 while (!DeadOps.empty()) {
2035 unsigned OpIdx = DeadOps.back();
2036 if (getOperand(i: OpIdx).isImplicit() &&
2037 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2038 removeOperand(OpNo: OpIdx);
2039 else
2040 getOperand(i: OpIdx).setIsKill(false);
2041 DeadOps.pop_back();
2042 }
2043
2044 // If not found, this means an alias of one of the operands is killed. Add a
2045 // new implicit operand if required.
2046 if (!Found && AddIfNotFound) {
2047 addOperand(Op: MachineOperand::CreateReg(Reg: IncomingReg,
2048 isDef: false /*IsDef*/,
2049 isImp: true /*IsImp*/,
2050 isKill: true /*IsKill*/));
2051 return true;
2052 }
2053 return Found;
2054}
2055
2056void MachineInstr::clearRegisterKills(Register Reg,
2057 const TargetRegisterInfo *RegInfo) {
2058 if (!Reg.isPhysical())
2059 RegInfo = nullptr;
2060 for (MachineOperand &MO : operands()) {
2061 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2062 continue;
2063 Register OpReg = MO.getReg();
2064 if ((RegInfo && RegInfo->regsOverlap(RegA: Reg, RegB: OpReg)) || Reg == OpReg)
2065 MO.setIsKill(false);
2066 }
2067}
2068
2069bool MachineInstr::addRegisterDead(Register Reg,
2070 const TargetRegisterInfo *RegInfo,
2071 bool AddIfNotFound) {
2072 bool isPhysReg = Reg.isPhysical();
2073 bool hasAliases = isPhysReg &&
2074 MCRegAliasIterator(Reg, RegInfo, false).isValid();
2075 bool Found = false;
2076 SmallVector<unsigned,4> DeadOps;
2077 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2078 MachineOperand &MO = getOperand(i);
2079 if (!MO.isReg() || !MO.isDef())
2080 continue;
2081 Register MOReg = MO.getReg();
2082 if (!MOReg)
2083 continue;
2084
2085 if (MOReg == Reg) {
2086 MO.setIsDead();
2087 Found = true;
2088 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2089 // There exists a super-register that's marked dead.
2090 if (RegInfo->isSuperRegister(RegA: Reg, RegB: MOReg))
2091 return true;
2092 if (RegInfo->isSubRegister(RegA: Reg, RegB: MOReg))
2093 DeadOps.push_back(Elt: i);
2094 }
2095 }
2096
2097 // Trim unneeded dead operands.
2098 while (!DeadOps.empty()) {
2099 unsigned OpIdx = DeadOps.back();
2100 if (getOperand(i: OpIdx).isImplicit() &&
2101 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2102 removeOperand(OpNo: OpIdx);
2103 else
2104 getOperand(i: OpIdx).setIsDead(false);
2105 DeadOps.pop_back();
2106 }
2107
2108 // If not found, this means an alias of one of the operands is dead. Add a
2109 // new implicit operand if required.
2110 if (Found || !AddIfNotFound)
2111 return Found;
2112
2113 addOperand(Op: MachineOperand::CreateReg(Reg,
2114 isDef: true /*IsDef*/,
2115 isImp: true /*IsImp*/,
2116 isKill: false /*IsKill*/,
2117 isDead: true /*IsDead*/));
2118 return true;
2119}
2120
2121void MachineInstr::clearRegisterDeads(Register Reg) {
2122 for (MachineOperand &MO : operands()) {
2123 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2124 continue;
2125 MO.setIsDead(false);
2126 }
2127}
2128
2129void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2130 for (MachineOperand &MO : operands()) {
2131 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2132 continue;
2133 MO.setIsUndef(IsUndef);
2134 }
2135}
2136
2137void MachineInstr::addRegisterDefined(Register Reg,
2138 const TargetRegisterInfo *RegInfo) {
2139 if (Reg.isPhysical()) {
2140 MachineOperand *MO = findRegisterDefOperand(Reg, TRI: RegInfo, isDead: false, Overlap: false);
2141 if (MO)
2142 return;
2143 } else {
2144 for (const MachineOperand &MO : operands()) {
2145 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2146 MO.getSubReg() == 0)
2147 return;
2148 }
2149 }
2150 addOperand(Op: MachineOperand::CreateReg(Reg,
2151 isDef: true /*IsDef*/,
2152 isImp: true /*IsImp*/));
2153}
2154
2155void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2156 const TargetRegisterInfo &TRI) {
2157 bool HasRegMask = false;
2158 for (MachineOperand &MO : operands()) {
2159 if (MO.isRegMask()) {
2160 HasRegMask = true;
2161 continue;
2162 }
2163 if (!MO.isReg() || !MO.isDef()) continue;
2164 Register Reg = MO.getReg();
2165 if (!Reg.isPhysical())
2166 continue;
2167 // If there are no uses, including partial uses, the def is dead.
2168 if (llvm::none_of(Range&: UsedRegs,
2169 P: [&](MCRegister Use) { return TRI.regsOverlap(RegA: Use, RegB: Reg); }))
2170 MO.setIsDead();
2171 }
2172
2173 // This is a call with a register mask operand.
2174 // Mask clobbers are always dead, so add defs for the non-dead defines.
2175 if (HasRegMask)
2176 for (const Register &UsedReg : UsedRegs)
2177 addRegisterDefined(Reg: UsedReg, RegInfo: &TRI);
2178}
2179
2180unsigned
2181MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2182 // Build up a buffer of hash code components.
2183 SmallVector<size_t, 16> HashComponents;
2184 HashComponents.reserve(N: MI->getNumOperands() + 1);
2185 HashComponents.push_back(Elt: MI->getOpcode());
2186 for (const MachineOperand &MO : MI->operands()) {
2187 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2188 continue; // Skip virtual register defs.
2189
2190 HashComponents.push_back(Elt: hash_value(MO));
2191 }
2192 return hash_combine_range(first: HashComponents.begin(), last: HashComponents.end());
2193}
2194
2195void MachineInstr::emitError(StringRef Msg) const {
2196 // Find the source location cookie.
2197 uint64_t LocCookie = 0;
2198 const MDNode *LocMD = nullptr;
2199 for (unsigned i = getNumOperands(); i != 0; --i) {
2200 if (getOperand(i: i-1).isMetadata() &&
2201 (LocMD = getOperand(i: i-1).getMetadata()) &&
2202 LocMD->getNumOperands() != 0) {
2203 if (const ConstantInt *CI =
2204 mdconst::dyn_extract<ConstantInt>(MD: LocMD->getOperand(I: 0))) {
2205 LocCookie = CI->getZExtValue();
2206 break;
2207 }
2208 }
2209 }
2210
2211 if (const MachineBasicBlock *MBB = getParent())
2212 if (const MachineFunction *MF = MBB->getParent())
2213 return MF->getMMI().getModule()->getContext().emitError(LocCookie, ErrorStr: Msg);
2214 report_fatal_error(reason: Msg);
2215}
2216
2217MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2218 const MCInstrDesc &MCID, bool IsIndirect,
2219 Register Reg, const MDNode *Variable,
2220 const MDNode *Expr) {
2221 assert(isa<DILocalVariable>(Variable) && "not a variable");
2222 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2223 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2224 "Expected inlined-at fields to agree");
2225 auto MIB = BuildMI(MF, MIMD: DL, MCID).addReg(RegNo: Reg);
2226 if (IsIndirect)
2227 MIB.addImm(Val: 0U);
2228 else
2229 MIB.addReg(RegNo: 0U);
2230 return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr);
2231}
2232
2233MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2234 const MCInstrDesc &MCID, bool IsIndirect,
2235 ArrayRef<MachineOperand> DebugOps,
2236 const MDNode *Variable, const MDNode *Expr) {
2237 assert(isa<DILocalVariable>(Variable) && "not a variable");
2238 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2239 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2240 "Expected inlined-at fields to agree");
2241 if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2242 assert(DebugOps.size() == 1 &&
2243 "DBG_VALUE must contain exactly one debug operand");
2244 MachineOperand DebugOp = DebugOps[0];
2245 if (DebugOp.isReg())
2246 return BuildMI(MF, DL, MCID, IsIndirect, Reg: DebugOp.getReg(), Variable,
2247 Expr);
2248
2249 auto MIB = BuildMI(MF, MIMD: DL, MCID).add(MO: DebugOp);
2250 if (IsIndirect)
2251 MIB.addImm(Val: 0U);
2252 else
2253 MIB.addReg(RegNo: 0U);
2254 return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr);
2255 }
2256
2257 auto MIB = BuildMI(MF, MIMD: DL, MCID);
2258 MIB.addMetadata(MD: Variable).addMetadata(MD: Expr);
2259 for (const MachineOperand &DebugOp : DebugOps)
2260 if (DebugOp.isReg())
2261 MIB.addReg(RegNo: DebugOp.getReg());
2262 else
2263 MIB.add(MO: DebugOp);
2264 return MIB;
2265}
2266
2267MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2268 MachineBasicBlock::iterator I,
2269 const DebugLoc &DL, const MCInstrDesc &MCID,
2270 bool IsIndirect, Register Reg,
2271 const MDNode *Variable, const MDNode *Expr) {
2272 MachineFunction &MF = *BB.getParent();
2273 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2274 BB.insert(I, MI);
2275 return MachineInstrBuilder(MF, MI);
2276}
2277
2278MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2279 MachineBasicBlock::iterator I,
2280 const DebugLoc &DL, const MCInstrDesc &MCID,
2281 bool IsIndirect,
2282 ArrayRef<MachineOperand> DebugOps,
2283 const MDNode *Variable, const MDNode *Expr) {
2284 MachineFunction &MF = *BB.getParent();
2285 MachineInstr *MI =
2286 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2287 BB.insert(I, MI);
2288 return MachineInstrBuilder(MF, *MI);
2289}
2290
2291/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2292/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2293static const DIExpression *
2294computeExprForSpill(const MachineInstr &MI,
2295 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2296 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2297 "Expected inlined-at fields to agree");
2298
2299 const DIExpression *Expr = MI.getDebugExpression();
2300 if (MI.isIndirectDebugValue()) {
2301 assert(MI.getDebugOffset().getImm() == 0 &&
2302 "DBG_VALUE with nonzero offset");
2303 Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefBefore);
2304 } else if (MI.isDebugValueList()) {
2305 // We will replace the spilled register with a frame index, so
2306 // immediately deref all references to the spilled register.
2307 std::array<uint64_t, 1> Ops{._M_elems: {dwarf::DW_OP_deref}};
2308 for (const MachineOperand *Op : SpilledOperands) {
2309 unsigned OpIdx = MI.getDebugOperandIndex(Op);
2310 Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: OpIdx);
2311 }
2312 }
2313 return Expr;
2314}
2315static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2316 Register SpillReg) {
2317 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2318 SmallVector<const MachineOperand *> SpillOperands;
2319 for (const MachineOperand &Op : MI.getDebugOperandsForReg(Reg: SpillReg))
2320 SpillOperands.push_back(Elt: &Op);
2321 return computeExprForSpill(MI, SpilledOperands&: SpillOperands);
2322}
2323
2324MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2325 MachineBasicBlock::iterator I,
2326 const MachineInstr &Orig,
2327 int FrameIndex, Register SpillReg) {
2328 assert(!Orig.isDebugRef() &&
2329 "DBG_INSTR_REF should not reference a virtual register.");
2330 const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg);
2331 MachineInstrBuilder NewMI =
2332 BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc());
2333 // Non-Variadic Operands: Location, Offset, Variable, Expression
2334 // Variadic Operands: Variable, Expression, Locations...
2335 if (Orig.isNonListDebugValue())
2336 NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U);
2337 NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr);
2338 if (Orig.isDebugValueList()) {
2339 for (const MachineOperand &Op : Orig.debug_operands())
2340 if (Op.isReg() && Op.getReg() == SpillReg)
2341 NewMI.addFrameIndex(Idx: FrameIndex);
2342 else
2343 NewMI.add(MO: MachineOperand(Op));
2344 }
2345 return NewMI;
2346}
2347MachineInstr *llvm::buildDbgValueForSpill(
2348 MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2349 const MachineInstr &Orig, int FrameIndex,
2350 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2351 const DIExpression *Expr = computeExprForSpill(MI: Orig, SpilledOperands);
2352 MachineInstrBuilder NewMI =
2353 BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc());
2354 // Non-Variadic Operands: Location, Offset, Variable, Expression
2355 // Variadic Operands: Variable, Expression, Locations...
2356 if (Orig.isNonListDebugValue())
2357 NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U);
2358 NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr);
2359 if (Orig.isDebugValueList()) {
2360 for (const MachineOperand &Op : Orig.debug_operands())
2361 if (is_contained(Range&: SpilledOperands, Element: &Op))
2362 NewMI.addFrameIndex(Idx: FrameIndex);
2363 else
2364 NewMI.add(MO: MachineOperand(Op));
2365 }
2366 return NewMI;
2367}
2368
2369void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2370 Register Reg) {
2371 const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg: Reg);
2372 if (Orig.isNonListDebugValue())
2373 Orig.getDebugOffset().ChangeToImmediate(ImmVal: 0U);
2374 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2375 Op.ChangeToFrameIndex(Idx: FrameIndex);
2376 Orig.getDebugExpressionOp().setMetadata(Expr);
2377}
2378
2379void MachineInstr::collectDebugValues(
2380 SmallVectorImpl<MachineInstr *> &DbgValues) {
2381 MachineInstr &MI = *this;
2382 if (!MI.getOperand(i: 0).isReg())
2383 return;
2384
2385 MachineBasicBlock::iterator DI = MI; ++DI;
2386 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2387 DI != DE; ++DI) {
2388 if (!DI->isDebugValue())
2389 return;
2390 if (DI->hasDebugOperandForReg(Reg: MI.getOperand(i: 0).getReg()))
2391 DbgValues.push_back(Elt: &*DI);
2392 }
2393}
2394
2395void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2396 // Collect matching debug values.
2397 SmallVector<MachineInstr *, 2> DbgValues;
2398
2399 if (!getOperand(i: 0).isReg())
2400 return;
2401
2402 Register DefReg = getOperand(i: 0).getReg();
2403 auto *MRI = getRegInfo();
2404 for (auto &MO : MRI->use_operands(Reg: DefReg)) {
2405 auto *DI = MO.getParent();
2406 if (!DI->isDebugValue())
2407 continue;
2408 if (DI->hasDebugOperandForReg(Reg: DefReg)) {
2409 DbgValues.push_back(Elt: DI);
2410 }
2411 }
2412
2413 // Propagate Reg to debug value instructions.
2414 for (auto *DBI : DbgValues)
2415 for (MachineOperand &Op : DBI->getDebugOperandsForReg(Reg: DefReg))
2416 Op.setReg(Reg);
2417}
2418
2419using MMOList = SmallVector<const MachineMemOperand *, 2>;
2420
2421static LocationSize getSpillSlotSize(const MMOList &Accesses,
2422 const MachineFrameInfo &MFI) {
2423 uint64_t Size = 0;
2424 for (const auto *A : Accesses) {
2425 if (MFI.isSpillSlotObjectIndex(
2426 ObjectIdx: cast<FixedStackPseudoSourceValue>(Val: A->getPseudoValue())
2427 ->getFrameIndex())) {
2428 LocationSize S = A->getSize();
2429 if (!S.hasValue())
2430 return LocationSize::beforeOrAfterPointer();
2431 Size += S.getValue();
2432 }
2433 }
2434 return Size;
2435}
2436
2437std::optional<LocationSize>
2438MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2439 int FI;
2440 if (TII->isStoreToStackSlotPostFE(MI: *this, FrameIndex&: FI)) {
2441 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2442 if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI))
2443 return (*memoperands_begin())->getSize();
2444 }
2445 return std::nullopt;
2446}
2447
2448std::optional<LocationSize>
2449MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2450 MMOList Accesses;
2451 if (TII->hasStoreToStackSlot(MI: *this, Accesses))
2452 return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo());
2453 return std::nullopt;
2454}
2455
2456std::optional<LocationSize>
2457MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2458 int FI;
2459 if (TII->isLoadFromStackSlotPostFE(MI: *this, FrameIndex&: FI)) {
2460 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2461 if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI))
2462 return (*memoperands_begin())->getSize();
2463 }
2464 return std::nullopt;
2465}
2466
2467std::optional<LocationSize>
2468MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2469 MMOList Accesses;
2470 if (TII->hasLoadFromStackSlot(MI: *this, Accesses))
2471 return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo());
2472 return std::nullopt;
2473}
2474
2475unsigned MachineInstr::getDebugInstrNum() {
2476 if (DebugInstrNum == 0)
2477 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2478 return DebugInstrNum;
2479}
2480
2481unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2482 if (DebugInstrNum == 0)
2483 DebugInstrNum = MF.getNewDebugInstrNum();
2484 return DebugInstrNum;
2485}
2486
2487std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2488 return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()),
2489 getRegInfo()->getType(Reg: getOperand(i: 1).getReg()));
2490}
2491
2492std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2493 return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()),
2494 getRegInfo()->getType(Reg: getOperand(i: 1).getReg()),
2495 getRegInfo()->getType(Reg: getOperand(i: 2).getReg()));
2496}
2497
2498std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2499 return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()),
2500 getRegInfo()->getType(Reg: getOperand(i: 1).getReg()),
2501 getRegInfo()->getType(Reg: getOperand(i: 2).getReg()),
2502 getRegInfo()->getType(Reg: getOperand(i: 3).getReg()));
2503}
2504
2505std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2506 return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()),
2507 getRegInfo()->getType(Reg: getOperand(i: 1).getReg()),
2508 getRegInfo()->getType(Reg: getOperand(i: 2).getReg()),
2509 getRegInfo()->getType(Reg: getOperand(i: 3).getReg()),
2510 getRegInfo()->getType(Reg: getOperand(i: 4).getReg()));
2511}
2512
2513std::tuple<Register, LLT, Register, LLT>
2514MachineInstr::getFirst2RegLLTs() const {
2515 Register Reg0 = getOperand(i: 0).getReg();
2516 Register Reg1 = getOperand(i: 1).getReg();
2517 return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1,
2518 getRegInfo()->getType(Reg: Reg1));
2519}
2520
2521std::tuple<Register, LLT, Register, LLT, Register, LLT>
2522MachineInstr::getFirst3RegLLTs() const {
2523 Register Reg0 = getOperand(i: 0).getReg();
2524 Register Reg1 = getOperand(i: 1).getReg();
2525 Register Reg2 = getOperand(i: 2).getReg();
2526 return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1,
2527 getRegInfo()->getType(Reg: Reg1), Reg2,
2528 getRegInfo()->getType(Reg: Reg2));
2529}
2530
2531std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2532MachineInstr::getFirst4RegLLTs() const {
2533 Register Reg0 = getOperand(i: 0).getReg();
2534 Register Reg1 = getOperand(i: 1).getReg();
2535 Register Reg2 = getOperand(i: 2).getReg();
2536 Register Reg3 = getOperand(i: 3).getReg();
2537 return std::tuple(
2538 Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1),
2539 Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3));
2540}
2541
2542std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2543 LLT>
2544MachineInstr::getFirst5RegLLTs() const {
2545 Register Reg0 = getOperand(i: 0).getReg();
2546 Register Reg1 = getOperand(i: 1).getReg();
2547 Register Reg2 = getOperand(i: 2).getReg();
2548 Register Reg3 = getOperand(i: 3).getReg();
2549 Register Reg4 = getOperand(i: 4).getReg();
2550 return std::tuple(
2551 Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1),
2552 Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3),
2553 Reg4, getRegInfo()->getType(Reg: Reg4));
2554}
2555
2556void MachineInstr::insert(mop_iterator InsertBefore,
2557 ArrayRef<MachineOperand> Ops) {
2558 assert(InsertBefore != nullptr && "invalid iterator");
2559 assert(InsertBefore->getParent() == this &&
2560 "iterator points to operand of other inst");
2561 if (Ops.empty())
2562 return;
2563
2564 // Do one pass to untie operands.
2565 SmallDenseMap<unsigned, unsigned> TiedOpIndices;
2566 for (const MachineOperand &MO : operands()) {
2567 if (MO.isReg() && MO.isTied()) {
2568 unsigned OpNo = getOperandNo(I: &MO);
2569 unsigned TiedTo = findTiedOperandIdx(OpIdx: OpNo);
2570 TiedOpIndices[OpNo] = TiedTo;
2571 untieRegOperand(OpIdx: OpNo);
2572 }
2573 }
2574
2575 unsigned OpIdx = getOperandNo(I: InsertBefore);
2576 unsigned NumOperands = getNumOperands();
2577 unsigned OpsToMove = NumOperands - OpIdx;
2578
2579 SmallVector<MachineOperand> MovingOps;
2580 MovingOps.reserve(N: OpsToMove);
2581
2582 for (unsigned I = 0; I < OpsToMove; ++I) {
2583 MovingOps.emplace_back(Args&: getOperand(i: OpIdx));
2584 removeOperand(OpNo: OpIdx);
2585 }
2586 for (const MachineOperand &MO : Ops)
2587 addOperand(Op: MO);
2588 for (const MachineOperand &OpMoved : MovingOps)
2589 addOperand(Op: OpMoved);
2590
2591 // Re-tie operands.
2592 for (auto [Tie1, Tie2] : TiedOpIndices) {
2593 if (Tie1 >= OpIdx)
2594 Tie1 += Ops.size();
2595 if (Tie2 >= OpIdx)
2596 Tie2 += Ops.size();
2597 tieOperands(DefIdx: Tie1, UseIdx: Tie2);
2598 }
2599}
2600
2601bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const {
2602 assert(OpId && "expected non-zero operand id");
2603 assert(isInlineAsm() && "should only be used on inline asm");
2604
2605 if (!getOperand(i: OpId).isReg())
2606 return false;
2607
2608 const MachineOperand &MD = getOperand(i: OpId - 1);
2609 if (!MD.isImm())
2610 return false;
2611
2612 InlineAsm::Flag F(MD.getImm());
2613 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind())
2614 return F.getRegMayBeFolded();
2615 return false;
2616}
2617

source code of llvm/lib/CodeGen/MachineInstr.cpp