1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveInterval.h"
24#include "llvm/CodeGen/LiveIntervals.h"
25#include "llvm/CodeGen/LiveRangeEdit.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineDominators.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachinePassManager.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/RegisterClassInfo.h"
38#include "llvm/CodeGen/RegisterCoalescerPass.h"
39#include "llvm/CodeGen/SlotIndexes.h"
40#include "llvm/CodeGen/TargetInstrInfo.h"
41#include "llvm/CodeGen/TargetOpcodes.h"
42#include "llvm/CodeGen/TargetRegisterInfo.h"
43#include "llvm/CodeGen/TargetSubtargetInfo.h"
44#include "llvm/IR/DebugLoc.h"
45#include "llvm/InitializePasses.h"
46#include "llvm/MC/LaneBitmask.h"
47#include "llvm/MC/MCInstrDesc.h"
48#include "llvm/MC/MCRegisterInfo.h"
49#include "llvm/Pass.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/raw_ostream.h"
55#include <algorithm>
56#include <cassert>
57#include <iterator>
58#include <limits>
59#include <tuple>
60#include <utility>
61#include <vector>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "regalloc"
66
67STATISTIC(numJoins, "Number of interval joins performed");
68STATISTIC(numCrossRCs, "Number of cross class joins performed");
69STATISTIC(numCommutes, "Number of instruction commuting performed");
70STATISTIC(numExtends, "Number of copies extended");
71STATISTIC(NumReMats, "Number of instructions re-materialized");
72STATISTIC(NumInflated, "Number of register classes inflated");
73STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
74STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
75STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
76
77static cl::opt<bool> EnableJoining("join-liveintervals",
78 cl::desc("Coalesce copies (default=true)"),
79 cl::init(Val: true), cl::Hidden);
80
81static cl::opt<bool> UseTerminalRule("terminal-rule",
82 cl::desc("Apply the terminal rule"),
83 cl::init(Val: false), cl::Hidden);
84
85/// Temporary flag to test critical edge unsplitting.
86static cl::opt<bool> EnableJoinSplits(
87 "join-splitedges",
88 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
89
90/// Temporary flag to test global copy optimization.
91static cl::opt<cl::boolOrDefault> EnableGlobalCopies(
92 "join-globalcopies",
93 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
94 cl::init(Val: cl::BOU_UNSET), cl::Hidden);
95
96static cl::opt<bool> VerifyCoalescing(
97 "verify-coalescing",
98 cl::desc("Verify machine instrs before and after register coalescing"),
99 cl::Hidden);
100
101static cl::opt<unsigned> LateRematUpdateThreshold(
102 "late-remat-update-threshold", cl::Hidden,
103 cl::desc("During rematerialization for a copy, if the def instruction has "
104 "many other copy uses to be rematerialized, delay the multiple "
105 "separate live interval update work and do them all at once after "
106 "all those rematerialization are done. It will save a lot of "
107 "repeated work. "),
108 cl::init(Val: 100));
109
110static cl::opt<unsigned> LargeIntervalSizeThreshold(
111 "large-interval-size-threshold", cl::Hidden,
112 cl::desc("If the valnos size of an interval is larger than the threshold, "
113 "it is regarded as a large interval. "),
114 cl::init(Val: 100));
115
116static cl::opt<unsigned> LargeIntervalFreqThreshold(
117 "large-interval-freq-threshold", cl::Hidden,
118 cl::desc("For a large interval, if it is coalesced with other live "
119 "intervals many times more than the threshold, stop its "
120 "coalescing to control the compile time. "),
121 cl::init(Val: 256));
122
123namespace {
124
125class JoinVals;
126
127class RegisterCoalescer : private LiveRangeEdit::Delegate {
128 MachineFunction *MF = nullptr;
129 MachineRegisterInfo *MRI = nullptr;
130 const TargetRegisterInfo *TRI = nullptr;
131 const TargetInstrInfo *TII = nullptr;
132 LiveIntervals *LIS = nullptr;
133 SlotIndexes *SI = nullptr;
134 const MachineLoopInfo *Loops = nullptr;
135 RegisterClassInfo RegClassInfo;
136
137 /// Position and VReg of a PHI instruction during coalescing.
138 struct PHIValPos {
139 SlotIndex SI; ///< Slot where this PHI occurs.
140 Register Reg; ///< VReg the PHI occurs in.
141 unsigned SubReg; ///< Qualifying subregister for Reg.
142 };
143
144 /// Map from debug instruction number to PHI position during coalescing.
145 DenseMap<unsigned, PHIValPos> PHIValToPos;
146 /// Index of, for each VReg, which debug instruction numbers and
147 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
148 /// multiple PHI defs, at different positions.
149 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
150
151 /// Debug variable location tracking -- for each VReg, maintain an
152 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
153 /// identification of whether coalescing may change location validity.
154 using DbgValueLoc = std::pair<SlotIndex, MachineInstr *>;
155 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
156
157 /// A LaneMask to remember on which subregister live ranges we need to call
158 /// shrinkToUses() later.
159 LaneBitmask ShrinkMask;
160
161 /// True if the main range of the currently coalesced intervals should be
162 /// checked for smaller live intervals.
163 bool ShrinkMainRange = false;
164
165 /// True if the coalescer should aggressively coalesce global copies
166 /// in favor of keeping local copies.
167 bool JoinGlobalCopies = false;
168
169 /// True if the coalescer should aggressively coalesce fall-thru
170 /// blocks exclusively containing copies.
171 bool JoinSplitEdges = false;
172
173 /// Copy instructions yet to be coalesced.
174 SmallVector<MachineInstr *, 8> WorkList;
175 SmallVector<MachineInstr *, 8> LocalWorkList;
176
177 /// Set of instruction pointers that have been erased, and
178 /// that may be present in WorkList.
179 SmallPtrSet<MachineInstr *, 8> ErasedInstrs;
180
181 /// Dead instructions that are about to be deleted.
182 SmallVector<MachineInstr *, 8> DeadDefs;
183
184 /// Virtual registers to be considered for register class inflation.
185 SmallVector<Register, 8> InflateRegs;
186
187 /// The collection of live intervals which should have been updated
188 /// immediately after rematerialiation but delayed until
189 /// lateLiveIntervalUpdate is called.
190 DenseSet<Register> ToBeUpdated;
191
192 /// Record how many times the large live interval with many valnos
193 /// has been tried to join with other live interval.
194 DenseMap<Register, unsigned long> LargeLIVisitCounter;
195
196 /// Recursively eliminate dead defs in DeadDefs.
197 void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr);
198
199 /// LiveRangeEdit callback for eliminateDeadDefs().
200 void LRE_WillEraseInstruction(MachineInstr *MI) override;
201
202 /// Coalesce the LocalWorkList.
203 void coalesceLocals();
204
205 /// Join compatible live intervals
206 void joinAllIntervals();
207
208 /// Coalesce copies in the specified MBB, putting
209 /// copies that cannot yet be coalesced into WorkList.
210 void copyCoalesceInMBB(MachineBasicBlock *MBB);
211
212 /// Tries to coalesce all copies in CurrList. Returns true if any progress
213 /// was made.
214 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr *> CurrList);
215
216 /// If one def has many copy like uses, and those copy uses are all
217 /// rematerialized, the live interval update needed for those
218 /// rematerializations will be delayed and done all at once instead
219 /// of being done multiple times. This is to save compile cost because
220 /// live interval update is costly.
221 void lateLiveIntervalUpdate();
222
223 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
224 /// has no value defined in the predecessors. If the incoming value is the
225 /// same as defined by the copy itself, the value is considered undefined.
226 bool copyValueUndefInPredecessors(LiveRange &S, const MachineBasicBlock *MBB,
227 LiveQueryResult SLRQ);
228
229 /// Set necessary undef flags on subregister uses after pruning out undef
230 /// lane segments from the subrange.
231 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
232 LaneBitmask PrunedLanes);
233
234 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
235 /// src/dst of the copy instruction CopyMI. This returns true if the copy
236 /// was successfully coalesced away. If it is not currently possible to
237 /// coalesce this interval, but it may be possible if other things get
238 /// coalesced, then it returns true by reference in 'Again'.
239 bool joinCopy(MachineInstr *CopyMI, bool &Again,
240 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs);
241
242 /// Attempt to join these two intervals. On failure, this
243 /// returns false. The output "SrcInt" will not have been modified, so we
244 /// can use this information below to update aliases.
245 bool joinIntervals(CoalescerPair &CP);
246
247 /// Attempt joining two virtual registers. Return true on success.
248 bool joinVirtRegs(CoalescerPair &CP);
249
250 /// If a live interval has many valnos and is coalesced with other
251 /// live intervals many times, we regard such live interval as having
252 /// high compile time cost.
253 bool isHighCostLiveInterval(LiveInterval &LI);
254
255 /// Attempt joining with a reserved physreg.
256 bool joinReservedPhysReg(CoalescerPair &CP);
257
258 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
259 /// Subranges in @p LI which only partially interfere with the desired
260 /// LaneMask are split as necessary. @p LaneMask are the lanes that
261 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
262 /// lanemasks already adjusted to the coalesced register.
263 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
264 LaneBitmask LaneMask, CoalescerPair &CP,
265 unsigned DstIdx);
266
267 /// Join the liveranges of two subregisters. Joins @p RRange into
268 /// @p LRange, @p RRange may be invalid afterwards.
269 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
270 LaneBitmask LaneMask, const CoalescerPair &CP);
271
272 /// We found a non-trivially-coalescable copy. If the source value number is
273 /// defined by a copy from the destination reg see if we can merge these two
274 /// destination reg valno# into a single value number, eliminating a copy.
275 /// This returns true if an interval was modified.
276 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
277
278 /// Return true if there are definitions of IntB
279 /// other than BValNo val# that can reach uses of AValno val# of IntA.
280 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
281 VNInfo *AValNo, VNInfo *BValNo);
282
283 /// We found a non-trivially-coalescable copy.
284 /// If the source value number is defined by a commutable instruction and
285 /// its other operand is coalesced to the copy dest register, see if we
286 /// can transform the copy into a noop by commuting the definition.
287 /// This returns a pair of two flags:
288 /// - the first element is true if an interval was modified,
289 /// - the second element is true if the destination interval needs
290 /// to be shrunk after deleting the copy.
291 std::pair<bool, bool> removeCopyByCommutingDef(const CoalescerPair &CP,
292 MachineInstr *CopyMI);
293
294 /// We found a copy which can be moved to its less frequent predecessor.
295 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
296
297 /// If the source of a copy is defined by a
298 /// trivial computation, replace the copy by rematerialize the definition.
299 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
300 bool &IsDefCopy);
301
302 /// Return true if a copy involving a physreg should be joined.
303 bool canJoinPhys(const CoalescerPair &CP);
304
305 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
306 /// number if it is not zero. If DstReg is a physical register and the
307 /// existing subregister number of the def / use being updated is not zero,
308 /// make sure to set it to the correct physical subregister.
309 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
310
311 /// If the given machine operand reads only undefined lanes add an undef
312 /// flag.
313 /// This can happen when undef uses were previously concealed by a copy
314 /// which we coalesced. Example:
315 /// %0:sub0<def,read-undef> = ...
316 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
317 /// = use %1:sub1 <-- hidden undef use
318 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
319 MachineOperand &MO, unsigned SubRegIdx);
320
321 /// Handle copies of undef values. If the undef value is an incoming
322 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
323 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
324 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
325 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
326
327 /// Check whether or not we should apply the terminal rule on the
328 /// destination (Dst) of \p Copy.
329 /// When the terminal rule applies, Copy is not profitable to
330 /// coalesce.
331 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
332 /// at least one interference (Dst, Dst2). If Dst is terminal, the
333 /// terminal rule consists in checking that at least one of
334 /// interfering node, say Dst2, has an affinity of equal or greater
335 /// weight with Src.
336 /// In that case, Dst2 and Dst will not be able to be both coalesced
337 /// with Src. Since Dst2 exposes more coalescing opportunities than
338 /// Dst, we can drop \p Copy.
339 bool applyTerminalRule(const MachineInstr &Copy) const;
340
341 /// Wrapper method for \see LiveIntervals::shrinkToUses.
342 /// This method does the proper fixing of the live-ranges when the afore
343 /// mentioned method returns true.
344 void shrinkToUses(LiveInterval *LI,
345 SmallVectorImpl<MachineInstr *> *Dead = nullptr) {
346 NumShrinkToUses++;
347 if (LIS->shrinkToUses(li: LI, dead: Dead)) {
348 /// Check whether or not \p LI is composed by multiple connected
349 /// components and if that is the case, fix that.
350 SmallVector<LiveInterval *, 8> SplitLIs;
351 LIS->splitSeparateComponents(LI&: *LI, SplitLIs);
352 }
353 }
354
355 /// Wrapper Method to do all the necessary work when an Instruction is
356 /// deleted.
357 /// Optimizations should use this to make sure that deleted instructions
358 /// are always accounted for.
359 void deleteInstr(MachineInstr *MI) {
360 ErasedInstrs.insert(Ptr: MI);
361 LIS->RemoveMachineInstrFromMaps(MI&: *MI);
362 MI->eraseFromParent();
363 }
364
365 /// Walk over function and initialize the DbgVRegToValues map.
366 void buildVRegToDbgValueMap(MachineFunction &MF);
367
368 /// Test whether, after merging, any DBG_VALUEs would refer to a
369 /// different value number than before merging, and whether this can
370 /// be resolved. If not, mark the DBG_VALUE as being undef.
371 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
372 JoinVals &LHSVals, LiveRange &RHS,
373 JoinVals &RHSVals);
374
375 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
376 LiveRange &RegRange, JoinVals &Vals2);
377
378public:
379 // For legacy pass only.
380 RegisterCoalescer() {}
381 RegisterCoalescer &operator=(RegisterCoalescer &&Other) = default;
382
383 RegisterCoalescer(LiveIntervals *LIS, SlotIndexes *SI,
384 const MachineLoopInfo *Loops)
385 : LIS(LIS), SI(SI), Loops(Loops) {}
386
387 bool run(MachineFunction &MF);
388};
389
390class RegisterCoalescerLegacy : public MachineFunctionPass {
391public:
392 static char ID; ///< Class identification, replacement for typeinfo
393
394 RegisterCoalescerLegacy() : MachineFunctionPass(ID) {
395 initializeRegisterCoalescerLegacyPass(*PassRegistry::getPassRegistry());
396 }
397
398 void getAnalysisUsage(AnalysisUsage &AU) const override;
399
400 MachineFunctionProperties getClearedProperties() const override {
401 return MachineFunctionProperties().setIsSSA();
402 }
403
404 /// This is the pass entry point.
405 bool runOnMachineFunction(MachineFunction &) override;
406};
407
408} // end anonymous namespace
409
410char RegisterCoalescerLegacy::ID = 0;
411
412char &llvm::RegisterCoalescerID = RegisterCoalescerLegacy::ID;
413
414INITIALIZE_PASS_BEGIN(RegisterCoalescerLegacy, "register-coalescer",
415 "Register Coalescer", false, false)
416INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
417INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
418INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
419INITIALIZE_PASS_END(RegisterCoalescerLegacy, "register-coalescer",
420 "Register Coalescer", false, false)
421
422[[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri,
423 const MachineInstr *MI, Register &Src,
424 Register &Dst, unsigned &SrcSub,
425 unsigned &DstSub) {
426 if (MI->isCopy()) {
427 Dst = MI->getOperand(i: 0).getReg();
428 DstSub = MI->getOperand(i: 0).getSubReg();
429 Src = MI->getOperand(i: 1).getReg();
430 SrcSub = MI->getOperand(i: 1).getSubReg();
431 } else if (MI->isSubregToReg()) {
432 Dst = MI->getOperand(i: 0).getReg();
433 DstSub = tri.composeSubRegIndices(a: MI->getOperand(i: 0).getSubReg(),
434 b: MI->getOperand(i: 3).getImm());
435 Src = MI->getOperand(i: 2).getReg();
436 SrcSub = MI->getOperand(i: 2).getSubReg();
437 } else
438 return false;
439 return true;
440}
441
442/// Return true if this block should be vacated by the coalescer to eliminate
443/// branches. The important cases to handle in the coalescer are critical edges
444/// split during phi elimination which contain only copies. Simple blocks that
445/// contain non-branches should also be vacated, but this can be handled by an
446/// earlier pass similar to early if-conversion.
447static bool isSplitEdge(const MachineBasicBlock *MBB) {
448 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
449 return false;
450
451 for (const auto &MI : *MBB) {
452 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
453 return false;
454 }
455 return true;
456}
457
458bool CoalescerPair::setRegisters(const MachineInstr *MI) {
459 SrcReg = DstReg = Register();
460 SrcIdx = DstIdx = 0;
461 NewRC = nullptr;
462 Flipped = CrossClass = false;
463
464 Register Src, Dst;
465 unsigned SrcSub = 0, DstSub = 0;
466 if (!isMoveInstr(tri: TRI, MI, Src, Dst, SrcSub, DstSub))
467 return false;
468 Partial = SrcSub || DstSub;
469
470 // If one register is a physreg, it must be Dst.
471 if (Src.isPhysical()) {
472 if (Dst.isPhysical())
473 return false;
474 std::swap(a&: Src, b&: Dst);
475 std::swap(a&: SrcSub, b&: DstSub);
476 Flipped = true;
477 }
478
479 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
480 const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: Src);
481
482 if (Dst.isPhysical()) {
483 // Eliminate DstSub on a physreg.
484 if (DstSub) {
485 Dst = TRI.getSubReg(Reg: Dst, Idx: DstSub);
486 if (!Dst)
487 return false;
488 DstSub = 0;
489 }
490
491 // Eliminate SrcSub by picking a corresponding Dst superregister.
492 if (SrcSub) {
493 Dst = TRI.getMatchingSuperReg(Reg: Dst, SubIdx: SrcSub, RC: SrcRC);
494 if (!Dst)
495 return false;
496 } else if (!SrcRC->contains(Reg: Dst)) {
497 return false;
498 }
499 } else {
500 // Both registers are virtual.
501 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: Dst);
502
503 // Both registers have subreg indices.
504 if (SrcSub && DstSub) {
505 // Copies between different sub-registers are never coalescable.
506 if (Src == Dst && SrcSub != DstSub)
507 return false;
508
509 NewRC = TRI.getCommonSuperRegClass(RCA: SrcRC, SubA: SrcSub, RCB: DstRC, SubB: DstSub, PreA&: SrcIdx,
510 PreB&: DstIdx);
511 if (!NewRC)
512 return false;
513 } else if (DstSub) {
514 // SrcReg will be merged with a sub-register of DstReg.
515 SrcIdx = DstSub;
516 NewRC = TRI.getMatchingSuperRegClass(A: DstRC, B: SrcRC, Idx: DstSub);
517 } else if (SrcSub) {
518 // DstReg will be merged with a sub-register of SrcReg.
519 DstIdx = SrcSub;
520 NewRC = TRI.getMatchingSuperRegClass(A: SrcRC, B: DstRC, Idx: SrcSub);
521 } else {
522 // This is a straight copy without sub-registers.
523 NewRC = TRI.getCommonSubClass(A: DstRC, B: SrcRC);
524 }
525
526 // The combined constraint may be impossible to satisfy.
527 if (!NewRC)
528 return false;
529
530 // Prefer SrcReg to be a sub-register of DstReg.
531 // FIXME: Coalescer should support subregs symmetrically.
532 if (DstIdx && !SrcIdx) {
533 std::swap(a&: Src, b&: Dst);
534 std::swap(a&: SrcIdx, b&: DstIdx);
535 Flipped = !Flipped;
536 }
537
538 CrossClass = NewRC != DstRC || NewRC != SrcRC;
539 }
540 // Check our invariants
541 assert(Src.isVirtual() && "Src must be virtual");
542 assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx");
543 SrcReg = Src;
544 DstReg = Dst;
545 return true;
546}
547
548bool CoalescerPair::flip() {
549 if (DstReg.isPhysical())
550 return false;
551 std::swap(a&: SrcReg, b&: DstReg);
552 std::swap(a&: SrcIdx, b&: DstIdx);
553 Flipped = !Flipped;
554 return true;
555}
556
557bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
558 if (!MI)
559 return false;
560 Register Src, Dst;
561 unsigned SrcSub = 0, DstSub = 0;
562 if (!isMoveInstr(tri: TRI, MI, Src, Dst, SrcSub, DstSub))
563 return false;
564
565 // Find the virtual register that is SrcReg.
566 if (Dst == SrcReg) {
567 std::swap(a&: Src, b&: Dst);
568 std::swap(a&: SrcSub, b&: DstSub);
569 } else if (Src != SrcReg) {
570 return false;
571 }
572
573 // Now check that Dst matches DstReg.
574 if (DstReg.isPhysical()) {
575 if (!Dst.isPhysical())
576 return false;
577 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
578 // DstSub could be set for a physreg from INSERT_SUBREG.
579 if (DstSub)
580 Dst = TRI.getSubReg(Reg: Dst, Idx: DstSub);
581 // Full copy of Src.
582 if (!SrcSub)
583 return DstReg == Dst;
584 // This is a partial register copy. Check that the parts match.
585 return Register(TRI.getSubReg(Reg: DstReg, Idx: SrcSub)) == Dst;
586 } else {
587 // DstReg is virtual.
588 if (DstReg != Dst)
589 return false;
590 // Registers match, do the subregisters line up?
591 return TRI.composeSubRegIndices(a: SrcIdx, b: SrcSub) ==
592 TRI.composeSubRegIndices(a: DstIdx, b: DstSub);
593 }
594}
595
596void RegisterCoalescerLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
597 AU.setPreservesCFG();
598 AU.addUsedIfAvailable<SlotIndexesWrapperPass>();
599 AU.addRequired<LiveIntervalsWrapperPass>();
600 AU.addPreserved<LiveIntervalsWrapperPass>();
601 AU.addPreserved<SlotIndexesWrapperPass>();
602 AU.addRequired<MachineLoopInfoWrapperPass>();
603 AU.addPreserved<MachineLoopInfoWrapperPass>();
604 AU.addPreservedID(ID&: MachineDominatorsID);
605 MachineFunctionPass::getAnalysisUsage(AU);
606}
607
608void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) {
609 if (Edit) {
610 Edit->eliminateDeadDefs(Dead&: DeadDefs);
611 return;
612 }
613 SmallVector<Register, 8> NewRegs;
614 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this)
615 .eliminateDeadDefs(Dead&: DeadDefs);
616}
617
618void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
619 // MI may be in WorkList. Make sure we don't visit it.
620 ErasedInstrs.insert(Ptr: MI);
621}
622
623bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
624 MachineInstr *CopyMI) {
625 assert(!CP.isPartial() && "This doesn't work for partial copies.");
626 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
627
628 LiveInterval &IntA =
629 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
630 LiveInterval &IntB =
631 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
632 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
633
634 // We have a non-trivially-coalescable copy with IntA being the source and
635 // IntB being the dest, thus this defines a value number in IntB. If the
636 // source value number (in IntA) is defined by a copy from B, see if we can
637 // merge these two pieces of B into a single value number, eliminating a copy.
638 // For example:
639 //
640 // A3 = B0
641 // ...
642 // B1 = A3 <- this copy
643 //
644 // In this case, B0 can be extended to where the B1 copy lives, allowing the
645 // B1 value number to be replaced with B0 (which simplifies the B
646 // liveinterval).
647
648 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
649 // the example above.
650 LiveInterval::iterator BS = IntB.FindSegmentContaining(Idx: CopyIdx);
651 if (BS == IntB.end())
652 return false;
653 VNInfo *BValNo = BS->valno;
654
655 // Get the location that B is defined at. Two options: either this value has
656 // an unknown definition point or it is defined at CopyIdx. If unknown, we
657 // can't process it.
658 if (BValNo->def != CopyIdx)
659 return false;
660
661 // AValNo is the value number in A that defines the copy, A3 in the example.
662 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(EC: true);
663 LiveInterval::iterator AS = IntA.FindSegmentContaining(Idx: CopyUseIdx);
664 // The live segment might not exist after fun with physreg coalescing.
665 if (AS == IntA.end())
666 return false;
667 VNInfo *AValNo = AS->valno;
668
669 // If AValNo is defined as a copy from IntB, we can potentially process this.
670 // Get the instruction that defines this value number.
671 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(index: AValNo->def);
672 // Don't allow any partial copies, even if isCoalescable() allows them.
673 if (!CP.isCoalescable(MI: ACopyMI) || !ACopyMI->isFullCopy())
674 return false;
675
676 // Get the Segment in IntB that this value number starts with.
677 LiveInterval::iterator ValS =
678 IntB.FindSegmentContaining(Idx: AValNo->def.getPrevSlot());
679 if (ValS == IntB.end())
680 return false;
681
682 // Make sure that the end of the live segment is inside the same block as
683 // CopyMI.
684 MachineInstr *ValSEndInst =
685 LIS->getInstructionFromIndex(index: ValS->end.getPrevSlot());
686 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
687 return false;
688
689 // Okay, we now know that ValS ends in the same block that the CopyMI
690 // live-range starts. If there are no intervening live segments between them
691 // in IntB, we can merge them.
692 if (ValS + 1 != BS)
693 return false;
694
695 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
696
697 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
698 // We are about to delete CopyMI, so need to remove it as the 'instruction
699 // that defines this value #'. Update the valnum with the new defining
700 // instruction #.
701 BValNo->def = FillerStart;
702
703 // Okay, we can merge them. We need to insert a new liverange:
704 // [ValS.end, BS.begin) of either value number, then we merge the
705 // two value numbers.
706 IntB.addSegment(S: LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
707
708 // Okay, merge "B1" into the same value number as "B0".
709 if (BValNo != ValS->valno)
710 IntB.MergeValueNumberInto(V1: BValNo, V2: ValS->valno);
711
712 // Do the same for the subregister segments.
713 for (LiveInterval::SubRange &S : IntB.subranges()) {
714 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
715 // removed to prevent creating bogus SubRange Segments.
716 LiveInterval::iterator SS = S.FindSegmentContaining(Idx: CopyIdx);
717 if (SS != S.end() && SlotIndex::isSameInstr(A: SS->start, B: SS->end)) {
718 S.removeSegment(S: *SS, RemoveDeadValNo: true);
719 continue;
720 }
721 // The subrange may have ended before FillerStart. If so, extend it.
722 if (!S.getVNInfoAt(Idx: FillerStart)) {
723 SlotIndex BBStart =
724 LIS->getMBBStartIdx(mbb: LIS->getMBBFromIndex(index: FillerStart));
725 S.extendInBlock(StartIdx: BBStart, Kill: FillerStart);
726 }
727 VNInfo *SubBValNo = S.getVNInfoAt(Idx: CopyIdx);
728 S.addSegment(S: LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
729 VNInfo *SubValSNo = S.getVNInfoAt(Idx: AValNo->def.getPrevSlot());
730 if (SubBValNo != SubValSNo)
731 S.MergeValueNumberInto(V1: SubBValNo, V2: SubValSNo);
732 }
733
734 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
735
736 // If the source instruction was killing the source register before the
737 // merge, unset the isKill marker given the live range has been extended.
738 int UIdx =
739 ValSEndInst->findRegisterUseOperandIdx(Reg: IntB.reg(), /*TRI=*/nullptr, isKill: true);
740 if (UIdx != -1) {
741 ValSEndInst->getOperand(i: UIdx).setIsKill(false);
742 }
743
744 // Rewrite the copy.
745 CopyMI->substituteRegister(FromReg: IntA.reg(), ToReg: IntB.reg(), SubIdx: 0, RegInfo: *TRI);
746 // If the copy instruction was killing the destination register or any
747 // subrange before the merge trim the live range.
748 bool RecomputeLiveRange = AS->end == CopyIdx;
749 if (!RecomputeLiveRange) {
750 for (LiveInterval::SubRange &S : IntA.subranges()) {
751 LiveInterval::iterator SS = S.FindSegmentContaining(Idx: CopyUseIdx);
752 if (SS != S.end() && SS->end == CopyIdx) {
753 RecomputeLiveRange = true;
754 break;
755 }
756 }
757 }
758 if (RecomputeLiveRange)
759 shrinkToUses(LI: &IntA);
760
761 ++numExtends;
762 return true;
763}
764
765bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
766 LiveInterval &IntB, VNInfo *AValNo,
767 VNInfo *BValNo) {
768 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
769 // the PHI values.
770 if (LIS->hasPHIKill(LI: IntA, VNI: AValNo))
771 return true;
772
773 for (LiveRange::Segment &ASeg : IntA.segments) {
774 if (ASeg.valno != AValNo)
775 continue;
776 LiveInterval::iterator BI = llvm::upper_bound(Range&: IntB, Value&: ASeg.start);
777 if (BI != IntB.begin())
778 --BI;
779 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
780 if (BI->valno == BValNo)
781 continue;
782 if (BI->start <= ASeg.start && BI->end > ASeg.start)
783 return true;
784 if (BI->start > ASeg.start && BI->start < ASeg.end)
785 return true;
786 }
787 }
788 return false;
789}
790
791/// Copy segments with value number @p SrcValNo from liverange @p Src to live
792/// range @Dst and use value number @p DstValNo there.
793static std::pair<bool, bool> addSegmentsWithValNo(LiveRange &Dst,
794 VNInfo *DstValNo,
795 const LiveRange &Src,
796 const VNInfo *SrcValNo) {
797 bool Changed = false;
798 bool MergedWithDead = false;
799 for (const LiveRange::Segment &S : Src.segments) {
800 if (S.valno != SrcValNo)
801 continue;
802 // This is adding a segment from Src that ends in a copy that is about
803 // to be removed. This segment is going to be merged with a pre-existing
804 // segment in Dst. This works, except in cases when the corresponding
805 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
806 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
807 // Recognized such cases, so that the segments can be shrunk.
808 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
809 LiveRange::Segment &Merged = *Dst.addSegment(S: Added);
810 if (Merged.end.isDead())
811 MergedWithDead = true;
812 Changed = true;
813 }
814 return std::make_pair(x&: Changed, y&: MergedWithDead);
815}
816
817std::pair<bool, bool>
818RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
819 MachineInstr *CopyMI) {
820 assert(!CP.isPhys());
821
822 LiveInterval &IntA =
823 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
824 LiveInterval &IntB =
825 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
826
827 // We found a non-trivially-coalescable copy with IntA being the source and
828 // IntB being the dest, thus this defines a value number in IntB. If the
829 // source value number (in IntA) is defined by a commutable instruction and
830 // its other operand is coalesced to the copy dest register, see if we can
831 // transform the copy into a noop by commuting the definition. For example,
832 //
833 // A3 = op A2 killed B0
834 // ...
835 // B1 = A3 <- this copy
836 // ...
837 // = op A3 <- more uses
838 //
839 // ==>
840 //
841 // B2 = op B0 killed A2
842 // ...
843 // B1 = B2 <- now an identity copy
844 // ...
845 // = op B2 <- more uses
846
847 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
848 // the example above.
849 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
850 VNInfo *BValNo = IntB.getVNInfoAt(Idx: CopyIdx);
851 assert(BValNo != nullptr && BValNo->def == CopyIdx);
852
853 // AValNo is the value number in A that defines the copy, A3 in the example.
854 VNInfo *AValNo = IntA.getVNInfoAt(Idx: CopyIdx.getRegSlot(EC: true));
855 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
856 if (AValNo->isPHIDef())
857 return {false, false};
858 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: AValNo->def);
859 if (!DefMI)
860 return {false, false};
861 if (!DefMI->isCommutable())
862 return {false, false};
863 // If DefMI is a two-address instruction then commuting it will change the
864 // destination register.
865 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg: IntA.reg(), /*TRI=*/nullptr);
866 assert(DefIdx != -1);
867 unsigned UseOpIdx;
868 if (!DefMI->isRegTiedToUseOperand(DefOpIdx: DefIdx, UseOpIdx: &UseOpIdx))
869 return {false, false};
870
871 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
872 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
873 // passed to the method. That _other_ operand is chosen by
874 // the findCommutedOpIndices() method.
875 //
876 // That is obviously an area for improvement in case of instructions having
877 // more than 2 operands. For example, if some instruction has 3 commutable
878 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
879 // op#2<->op#3) of commute transformation should be considered/tried here.
880 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
881 if (!TII->findCommutedOpIndices(MI: *DefMI, SrcOpIdx1&: UseOpIdx, SrcOpIdx2&: NewDstIdx))
882 return {false, false};
883
884 MachineOperand &NewDstMO = DefMI->getOperand(i: NewDstIdx);
885 Register NewReg = NewDstMO.getReg();
886 if (NewReg != IntB.reg() || !IntB.Query(Idx: AValNo->def).isKill())
887 return {false, false};
888
889 // Make sure there are no other definitions of IntB that would reach the
890 // uses which the new definition can reach.
891 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
892 return {false, false};
893
894 // If some of the uses of IntA.reg is already coalesced away, return false.
895 // It's not possible to determine whether it's safe to perform the coalescing.
896 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg: IntA.reg())) {
897 MachineInstr *UseMI = MO.getParent();
898 unsigned OpNo = &MO - &UseMI->getOperand(i: 0);
899 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *UseMI);
900 LiveInterval::iterator US = IntA.FindSegmentContaining(Idx: UseIdx);
901 if (US == IntA.end() || US->valno != AValNo)
902 continue;
903 // If this use is tied to a def, we can't rewrite the register.
904 if (UseMI->isRegTiedToDefOperand(UseOpIdx: OpNo))
905 return {false, false};
906 }
907
908 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
909 << *DefMI);
910
911 // At this point we have decided that it is legal to do this
912 // transformation. Start by commuting the instruction.
913 MachineBasicBlock *MBB = DefMI->getParent();
914 MachineInstr *NewMI =
915 TII->commuteInstruction(MI&: *DefMI, NewMI: false, OpIdx1: UseOpIdx, OpIdx2: NewDstIdx);
916 if (!NewMI)
917 return {false, false};
918 if (IntA.reg().isVirtual() && IntB.reg().isVirtual() &&
919 !MRI->constrainRegClass(Reg: IntB.reg(), RC: MRI->getRegClass(Reg: IntA.reg())))
920 return {false, false};
921 if (NewMI != DefMI) {
922 LIS->ReplaceMachineInstrInMaps(MI&: *DefMI, NewMI&: *NewMI);
923 MachineBasicBlock::iterator Pos = DefMI;
924 MBB->insert(I: Pos, MI: NewMI);
925 MBB->erase(I: DefMI);
926 }
927
928 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
929 // A = or A, B
930 // ...
931 // B = A
932 // ...
933 // C = killed A
934 // ...
935 // = B
936
937 // Update uses of IntA of the specific Val# with IntB.
938 for (MachineOperand &UseMO :
939 llvm::make_early_inc_range(Range: MRI->use_operands(Reg: IntA.reg()))) {
940 if (UseMO.isUndef())
941 continue;
942 MachineInstr *UseMI = UseMO.getParent();
943 if (UseMI->isDebugInstr()) {
944 // FIXME These don't have an instruction index. Not clear we have enough
945 // info to decide whether to do this replacement or not. For now do it.
946 UseMO.setReg(NewReg);
947 continue;
948 }
949 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *UseMI).getRegSlot(EC: true);
950 LiveInterval::iterator US = IntA.FindSegmentContaining(Idx: UseIdx);
951 assert(US != IntA.end() && "Use must be live");
952 if (US->valno != AValNo)
953 continue;
954 // Kill flags are no longer accurate. They are recomputed after RA.
955 UseMO.setIsKill(false);
956 if (NewReg.isPhysical())
957 UseMO.substPhysReg(Reg: NewReg, *TRI);
958 else
959 UseMO.setReg(NewReg);
960 if (UseMI == CopyMI)
961 continue;
962 if (!UseMI->isCopy())
963 continue;
964 if (UseMI->getOperand(i: 0).getReg() != IntB.reg() ||
965 UseMI->getOperand(i: 0).getSubReg())
966 continue;
967
968 // This copy will become a noop. If it's defining a new val#, merge it into
969 // BValNo.
970 SlotIndex DefIdx = UseIdx.getRegSlot();
971 VNInfo *DVNI = IntB.getVNInfoAt(Idx: DefIdx);
972 if (!DVNI)
973 continue;
974 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
975 assert(DVNI->def == DefIdx);
976 BValNo = IntB.MergeValueNumberInto(V1: DVNI, V2: BValNo);
977 for (LiveInterval::SubRange &S : IntB.subranges()) {
978 VNInfo *SubDVNI = S.getVNInfoAt(Idx: DefIdx);
979 if (!SubDVNI)
980 continue;
981 VNInfo *SubBValNo = S.getVNInfoAt(Idx: CopyIdx);
982 assert(SubBValNo->def == CopyIdx);
983 S.MergeValueNumberInto(V1: SubDVNI, V2: SubBValNo);
984 }
985
986 deleteInstr(MI: UseMI);
987 }
988
989 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
990 // is updated.
991 bool ShrinkB = false;
992 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
993 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
994 if (!IntA.hasSubRanges()) {
995 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(Reg: IntA.reg());
996 IntA.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: IntA);
997 } else if (!IntB.hasSubRanges()) {
998 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(Reg: IntB.reg());
999 IntB.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: IntB);
1000 }
1001 SlotIndex AIdx = CopyIdx.getRegSlot(EC: true);
1002 LaneBitmask MaskA;
1003 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
1004 for (LiveInterval::SubRange &SA : IntA.subranges()) {
1005 VNInfo *ASubValNo = SA.getVNInfoAt(Idx: AIdx);
1006 // Even if we are dealing with a full copy, some lanes can
1007 // still be undefined.
1008 // E.g.,
1009 // undef A.subLow = ...
1010 // B = COPY A <== A.subHigh is undefined here and does
1011 // not have a value number.
1012 if (!ASubValNo)
1013 continue;
1014 MaskA |= SA.LaneMask;
1015
1016 IntB.refineSubRanges(
1017 Allocator, LaneMask: SA.LaneMask,
1018 Apply: [&Allocator, &SA, CopyIdx, ASubValNo,
1019 &ShrinkB](LiveInterval::SubRange &SR) {
1020 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(Def: CopyIdx, VNInfoAllocator&: Allocator)
1021 : SR.getVNInfoAt(Idx: CopyIdx);
1022 assert(BSubValNo != nullptr);
1023 auto P = addSegmentsWithValNo(Dst&: SR, DstValNo: BSubValNo, Src: SA, SrcValNo: ASubValNo);
1024 ShrinkB |= P.second;
1025 if (P.first)
1026 BSubValNo->def = ASubValNo->def;
1027 },
1028 Indexes, TRI: *TRI);
1029 }
1030 // Go over all subranges of IntB that have not been covered by IntA,
1031 // and delete the segments starting at CopyIdx. This can happen if
1032 // IntA has undef lanes that are defined in IntB.
1033 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1034 if ((SB.LaneMask & MaskA).any())
1035 continue;
1036 if (LiveRange::Segment *S = SB.getSegmentContaining(Idx: CopyIdx))
1037 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1038 SB.removeSegment(S: *S, RemoveDeadValNo: true);
1039 }
1040 }
1041
1042 BValNo->def = AValNo->def;
1043 auto P = addSegmentsWithValNo(Dst&: IntB, DstValNo: BValNo, Src: IntA, SrcValNo: AValNo);
1044 ShrinkB |= P.second;
1045 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1046
1047 LIS->removeVRegDefAt(LI&: IntA, Pos: AValNo->def);
1048
1049 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1050 ++numCommutes;
1051 return {true, ShrinkB};
1052}
1053
1054/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1055/// predecessor of BB2, and if B is not redefined on the way from A = B
1056/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1057/// execution goes through the path from BB0 to BB2. We may move B = A
1058/// to the predecessor without such reversed copy.
1059/// So we will transform the program from:
1060/// BB0:
1061/// A = B; BB1:
1062/// ... ...
1063/// / \ /
1064/// BB2:
1065/// ...
1066/// B = A;
1067///
1068/// to:
1069///
1070/// BB0: BB1:
1071/// A = B; ...
1072/// ... B = A;
1073/// / \ /
1074/// BB2:
1075/// ...
1076///
1077/// A special case is when BB0 and BB2 are the same BB which is the only
1078/// BB in a loop:
1079/// BB1:
1080/// ...
1081/// BB0/BB2: ----
1082/// B = A; |
1083/// ... |
1084/// A = B; |
1085/// |-------
1086/// |
1087/// We may hoist B = A from BB0/BB2 to BB1.
1088///
1089/// The major preconditions for correctness to remove such partial
1090/// redundancy include:
1091/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1092/// the PHI is defined by the reversed copy A = B in BB0.
1093/// 2. No B is referenced from the start of BB2 to B = A.
1094/// 3. No B is defined from A = B to the end of BB0.
1095/// 4. BB1 has only one successor.
1096///
1097/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1098/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1099/// colder place, which not only prevent endless loop, but also make sure
1100/// the movement of copy is beneficial.
1101bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1102 MachineInstr &CopyMI) {
1103 assert(!CP.isPhys());
1104 if (!CopyMI.isFullCopy())
1105 return false;
1106
1107 MachineBasicBlock &MBB = *CopyMI.getParent();
1108 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1109 // the predecessor is tricker, and we don't handle it.
1110 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1111 return false;
1112
1113 if (MBB.pred_size() != 2)
1114 return false;
1115
1116 LiveInterval &IntA =
1117 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1118 LiveInterval &IntB =
1119 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1120
1121 // A is defined by PHI at the entry of MBB.
1122 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: CopyMI).getRegSlot(EC: true);
1123 VNInfo *AValNo = IntA.getVNInfoAt(Idx: CopyIdx);
1124 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1125 if (!AValNo->isPHIDef())
1126 return false;
1127
1128 // No B is referenced before CopyMI in MBB.
1129 if (IntB.overlaps(Start: LIS->getMBBStartIdx(mbb: &MBB), End: CopyIdx))
1130 return false;
1131
1132 // MBB has two predecessors: one contains A = B so no copy will be inserted
1133 // for it. The other one will have a copy moved from MBB.
1134 bool FoundReverseCopy = false;
1135 MachineBasicBlock *CopyLeftBB = nullptr;
1136 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1137 VNInfo *PVal = IntA.getVNInfoBefore(Idx: LIS->getMBBEndIdx(mbb: Pred));
1138 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: PVal->def);
1139 if (!DefMI || !DefMI->isFullCopy()) {
1140 CopyLeftBB = Pred;
1141 continue;
1142 }
1143 // Check DefMI is a reverse copy and it is in BB Pred.
1144 if (DefMI->getOperand(i: 0).getReg() != IntA.reg() ||
1145 DefMI->getOperand(i: 1).getReg() != IntB.reg() ||
1146 DefMI->getParent() != Pred) {
1147 CopyLeftBB = Pred;
1148 continue;
1149 }
1150 // If there is any other def of B after DefMI and before the end of Pred,
1151 // we need to keep the copy of B = A at the end of Pred if we remove
1152 // B = A from MBB.
1153 bool ValB_Changed = false;
1154 for (auto *VNI : IntB.valnos) {
1155 if (VNI->isUnused())
1156 continue;
1157 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(mbb: Pred)) {
1158 ValB_Changed = true;
1159 break;
1160 }
1161 }
1162 if (ValB_Changed) {
1163 CopyLeftBB = Pred;
1164 continue;
1165 }
1166 FoundReverseCopy = true;
1167 }
1168
1169 // If no reverse copy is found in predecessors, nothing to do.
1170 if (!FoundReverseCopy)
1171 return false;
1172
1173 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1174 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1175 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1176 // update IntA/IntB.
1177 //
1178 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1179 // MBB is hotter than CopyLeftBB.
1180 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1181 return false;
1182
1183 // Now (almost sure it's) ok to move copy.
1184 if (CopyLeftBB) {
1185 // Position in CopyLeftBB where we should insert new copy.
1186 auto InsPos = CopyLeftBB->getFirstTerminator();
1187
1188 // Make sure that B isn't referenced in the terminators (if any) at the end
1189 // of the predecessor since we're about to insert a new definition of B
1190 // before them.
1191 if (InsPos != CopyLeftBB->end()) {
1192 SlotIndex InsPosIdx = LIS->getInstructionIndex(Instr: *InsPos).getRegSlot(EC: true);
1193 if (IntB.overlaps(Start: InsPosIdx, End: LIS->getMBBEndIdx(mbb: CopyLeftBB)))
1194 return false;
1195 }
1196
1197 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1198 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1199
1200 // Insert new copy to CopyLeftBB.
1201 MachineInstr *NewCopyMI = BuildMI(BB&: *CopyLeftBB, I: InsPos, MIMD: CopyMI.getDebugLoc(),
1202 MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: IntB.reg())
1203 .addReg(RegNo: IntA.reg());
1204 SlotIndex NewCopyIdx =
1205 LIS->InsertMachineInstrInMaps(MI&: *NewCopyMI).getRegSlot();
1206 IntB.createDeadDef(Def: NewCopyIdx, VNIAlloc&: LIS->getVNInfoAllocator());
1207 for (LiveInterval::SubRange &SR : IntB.subranges())
1208 SR.createDeadDef(Def: NewCopyIdx, VNIAlloc&: LIS->getVNInfoAllocator());
1209
1210 // If the newly created Instruction has an address of an instruction that
1211 // was deleted before (object recycled by the allocator) it needs to be
1212 // removed from the deleted list.
1213 ErasedInstrs.erase(Ptr: NewCopyMI);
1214 } else {
1215 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1216 << printMBBReference(MBB) << '\t' << CopyMI);
1217 }
1218
1219 const bool IsUndefCopy = CopyMI.getOperand(i: 1).isUndef();
1220
1221 // Remove CopyMI.
1222 // Note: This is fine to remove the copy before updating the live-ranges.
1223 // While updating the live-ranges, we only look at slot indices and
1224 // never go back to the instruction.
1225 // Mark instructions as deleted.
1226 deleteInstr(MI: &CopyMI);
1227
1228 // Update the liveness.
1229 SmallVector<SlotIndex, 8> EndPoints;
1230 VNInfo *BValNo = IntB.Query(Idx: CopyIdx).valueOutOrDead();
1231 LIS->pruneValue(LR&: *static_cast<LiveRange *>(&IntB), Kill: CopyIdx.getRegSlot(),
1232 EndPoints: &EndPoints);
1233 BValNo->markUnused();
1234
1235 if (IsUndefCopy) {
1236 // We're introducing an undef phi def, and need to set undef on any users of
1237 // the previously local def to avoid artifically extending the lifetime
1238 // through the block.
1239 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg: IntB.reg())) {
1240 const MachineInstr &MI = *MO.getParent();
1241 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI);
1242 if (!IntB.liveAt(index: UseIdx))
1243 MO.setIsUndef(true);
1244 }
1245 }
1246
1247 // Extend IntB to the EndPoints of its original live interval.
1248 LIS->extendToIndices(LR&: IntB, Indices: EndPoints);
1249
1250 // Now, do the same for its subranges.
1251 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1252 EndPoints.clear();
1253 VNInfo *BValNo = SR.Query(Idx: CopyIdx).valueOutOrDead();
1254 assert(BValNo && "All sublanes should be live");
1255 LIS->pruneValue(LR&: SR, Kill: CopyIdx.getRegSlot(), EndPoints: &EndPoints);
1256 BValNo->markUnused();
1257 // We can have a situation where the result of the original copy is live,
1258 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1259 // the copy appear as an endpoint from pruneValue(), but we don't want it
1260 // to because the copy has been removed. We can go ahead and remove that
1261 // endpoint; there is no other situation here that there could be a use at
1262 // the same place as we know that the copy is a full copy.
1263 for (unsigned I = 0; I != EndPoints.size();) {
1264 if (SlotIndex::isSameInstr(A: EndPoints[I], B: CopyIdx)) {
1265 EndPoints[I] = EndPoints.back();
1266 EndPoints.pop_back();
1267 continue;
1268 }
1269 ++I;
1270 }
1271 SmallVector<SlotIndex, 8> Undefs;
1272 IntB.computeSubRangeUndefs(Undefs, LaneMask: SR.LaneMask, MRI: *MRI,
1273 Indexes: *LIS->getSlotIndexes());
1274 LIS->extendToIndices(LR&: SR, Indices: EndPoints, Undefs);
1275 }
1276 // If any dead defs were extended, truncate them.
1277 shrinkToUses(LI: &IntB);
1278
1279 // Finally, update the live-range of IntA.
1280 shrinkToUses(LI: &IntA);
1281 return true;
1282}
1283
1284/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1285/// defining a subregister.
1286static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1287 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1288
1289 for (const MachineOperand &Op : MI.all_defs()) {
1290 if (Op.getReg() != Reg)
1291 continue;
1292 // Return true if we define the full register or don't care about the value
1293 // inside other subregisters.
1294 if (Op.getSubReg() == 0 || Op.isUndef())
1295 return true;
1296 }
1297 return false;
1298}
1299
1300bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1301 MachineInstr *CopyMI,
1302 bool &IsDefCopy) {
1303 IsDefCopy = false;
1304 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1305 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1306 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1307 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1308 if (SrcReg.isPhysical())
1309 return false;
1310
1311 LiveInterval &SrcInt = LIS->getInterval(Reg: SrcReg);
1312 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI);
1313 VNInfo *ValNo = SrcInt.Query(Idx: CopyIdx).valueIn();
1314 if (!ValNo)
1315 return false;
1316 if (ValNo->isPHIDef() || ValNo->isUnused())
1317 return false;
1318 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: ValNo->def);
1319 if (!DefMI)
1320 return false;
1321 if (DefMI->isCopyLike()) {
1322 IsDefCopy = true;
1323 return false;
1324 }
1325 if (!TII->isAsCheapAsAMove(MI: *DefMI))
1326 return false;
1327
1328 SmallVector<Register, 8> NewRegs;
1329 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this);
1330 if (!Edit.checkRematerializable(VNI: ValNo, DefMI))
1331 return false;
1332
1333 if (!definesFullReg(MI: *DefMI, Reg: SrcReg))
1334 return false;
1335 bool SawStore = false;
1336 if (!DefMI->isSafeToMove(SawStore))
1337 return false;
1338 const MCInstrDesc &MCID = DefMI->getDesc();
1339 if (MCID.getNumDefs() != 1)
1340 return false;
1341
1342 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1343 // the register substantially (beyond both source and dest size). This is bad
1344 // for performance since it can cascade through a function, introducing many
1345 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1346 // around after a few subreg copies).
1347 if (SrcIdx && DstIdx)
1348 return false;
1349
1350 // Only support subregister destinations when the def is read-undef.
1351 MachineOperand &DstOperand = CopyMI->getOperand(i: 0);
1352 Register CopyDstReg = DstOperand.getReg();
1353 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1354 return false;
1355
1356 // In the physical register case, checking that the def is read-undef is not
1357 // enough. We're widening the def and need to avoid clobbering other live
1358 // values in the unused register pieces.
1359 //
1360 // TODO: Targets may support rewriting the rematerialized instruction to only
1361 // touch relevant lanes, in which case we don't need any liveness check.
1362 if (CopyDstReg.isPhysical() && CP.isPartial()) {
1363 for (MCRegUnit Unit : TRI->regunits(Reg: DstReg)) {
1364 // Ignore the register units we are writing anyway.
1365 if (is_contained(Range: TRI->regunits(Reg: CopyDstReg), Element: Unit))
1366 continue;
1367
1368 // Check if the other lanes we are defining are live at the
1369 // rematerialization point.
1370 LiveRange &LR = LIS->getRegUnit(Unit);
1371 if (LR.liveAt(index: CopyIdx))
1372 return false;
1373 }
1374 }
1375
1376 const unsigned DefSubIdx = DefMI->getOperand(i: 0).getSubReg();
1377 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, OpNum: 0, TRI, MF: *MF);
1378 if (!DefMI->isImplicitDef()) {
1379 if (DstReg.isPhysical()) {
1380 Register NewDstReg = DstReg;
1381
1382 unsigned NewDstIdx = TRI->composeSubRegIndices(a: CP.getSrcIdx(), b: DefSubIdx);
1383 if (NewDstIdx)
1384 NewDstReg = TRI->getSubReg(Reg: DstReg, Idx: NewDstIdx);
1385
1386 // Finally, make sure that the physical subregister that will be
1387 // constructed later is permitted for the instruction.
1388 if (!DefRC->contains(Reg: NewDstReg))
1389 return false;
1390 } else {
1391 // Theoretically, some stack frame reference could exist. Just make sure
1392 // it hasn't actually happened.
1393 assert(DstReg.isVirtual() &&
1394 "Only expect to deal with virtual or physical registers");
1395 }
1396 }
1397
1398 LiveRangeEdit::Remat RM(ValNo);
1399 RM.OrigMI = DefMI;
1400 if (!Edit.canRematerializeAt(RM, OrigVNI: ValNo, UseIdx: CopyIdx))
1401 return false;
1402
1403 DebugLoc DL = CopyMI->getDebugLoc();
1404 MachineBasicBlock *MBB = CopyMI->getParent();
1405 MachineBasicBlock::iterator MII =
1406 std::next(x: MachineBasicBlock::iterator(CopyMI));
1407 Edit.rematerializeAt(MBB&: *MBB, MI: MII, DestReg: DstReg, RM, *TRI, Late: false, SubIdx: SrcIdx, ReplaceIndexMI: CopyMI);
1408 MachineInstr &NewMI = *std::prev(x: MII);
1409 NewMI.setDebugLoc(DL);
1410
1411 // In a situation like the following:
1412 // %0:subreg = instr ; DefMI, subreg = DstIdx
1413 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1414 // instead of widening %1 to the register class of %0 simply do:
1415 // %1 = instr
1416 const TargetRegisterClass *NewRC = CP.getNewRC();
1417 if (DstIdx != 0) {
1418 MachineOperand &DefMO = NewMI.getOperand(i: 0);
1419 if (DefMO.getSubReg() == DstIdx) {
1420 assert(SrcIdx == 0 && CP.isFlipped() &&
1421 "Shouldn't have SrcIdx+DstIdx at this point");
1422 const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstReg);
1423 const TargetRegisterClass *CommonRC =
1424 TRI->getCommonSubClass(A: DefRC, B: DstRC);
1425 if (CommonRC != nullptr) {
1426 NewRC = CommonRC;
1427
1428 // Instruction might contain "undef %0:subreg" as use operand:
1429 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1430 //
1431 // Need to check all operands.
1432 for (MachineOperand &MO : NewMI.operands()) {
1433 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1434 MO.setSubReg(0);
1435 }
1436 }
1437
1438 DstIdx = 0;
1439 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1440 }
1441 }
1442 }
1443
1444 // CopyMI may have implicit operands, save them so that we can transfer them
1445 // over to the newly materialized instruction after CopyMI is removed.
1446 SmallVector<MachineOperand, 4> ImplicitOps;
1447 ImplicitOps.reserve(N: CopyMI->getNumOperands() -
1448 CopyMI->getDesc().getNumOperands());
1449 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1450 E = CopyMI->getNumOperands();
1451 I != E; ++I) {
1452 MachineOperand &MO = CopyMI->getOperand(i: I);
1453 if (MO.isReg()) {
1454 assert(MO.isImplicit() &&
1455 "No explicit operands after implicit operands.");
1456 assert((MO.getReg().isPhysical() ||
1457 (MO.getSubReg() == 0 && MO.getReg() == DstOperand.getReg())) &&
1458 "unexpected implicit virtual register def");
1459 ImplicitOps.push_back(Elt: MO);
1460 }
1461 }
1462
1463 CopyMI->eraseFromParent();
1464 ErasedInstrs.insert(Ptr: CopyMI);
1465
1466 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1467 // We need to remember these so we can add intervals once we insert
1468 // NewMI into SlotIndexes.
1469 //
1470 // We also expect to have tied implicit-defs of super registers originating
1471 // from SUBREG_TO_REG, such as:
1472 // $edi = MOV32r0 implicit-def dead $eflags, implicit-def $rdi
1473 // undef %0.sub_32bit = MOV32r0 implicit-def dead $eflags, implicit-def %0
1474 //
1475 // The implicit-def of the super register may have been reduced to
1476 // subregisters depending on the uses.
1477
1478 bool NewMIDefinesFullReg = false;
1479
1480 SmallVector<MCRegister, 4> NewMIImplDefs;
1481 for (unsigned i = NewMI.getDesc().getNumOperands(),
1482 e = NewMI.getNumOperands();
1483 i != e; ++i) {
1484 MachineOperand &MO = NewMI.getOperand(i);
1485 if (MO.isReg() && MO.isDef()) {
1486 assert(MO.isImplicit());
1487 if (MO.getReg().isPhysical()) {
1488 if (MO.getReg() == DstReg)
1489 NewMIDefinesFullReg = true;
1490
1491 assert(MO.isImplicit() && MO.getReg().isPhysical() &&
1492 (MO.isDead() ||
1493 (DefSubIdx &&
1494 ((TRI->getSubReg(MO.getReg(), DefSubIdx) ==
1495 MCRegister((unsigned)NewMI.getOperand(0).getReg())) ||
1496 TRI->isSubRegisterEq(NewMI.getOperand(0).getReg(),
1497 MO.getReg())))));
1498 NewMIImplDefs.push_back(Elt: MO.getReg().asMCReg());
1499 } else {
1500 assert(MO.getReg() == NewMI.getOperand(0).getReg());
1501
1502 // We're only expecting another def of the main output, so the range
1503 // should get updated with the regular output range.
1504 //
1505 // FIXME: The range updating below probably needs updating to look at
1506 // the super register if subranges are tracked.
1507 assert(!MRI->shouldTrackSubRegLiveness(DstReg) &&
1508 "subrange update for implicit-def of super register may not be "
1509 "properly handled");
1510 }
1511 }
1512 }
1513
1514 if (DstReg.isVirtual()) {
1515 unsigned NewIdx = NewMI.getOperand(i: 0).getSubReg();
1516
1517 if (DefRC != nullptr) {
1518 if (NewIdx)
1519 NewRC = TRI->getMatchingSuperRegClass(A: NewRC, B: DefRC, Idx: NewIdx);
1520 else
1521 NewRC = TRI->getCommonSubClass(A: NewRC, B: DefRC);
1522 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1523 }
1524
1525 // Remap subranges to new lanemask and change register class.
1526 LiveInterval &DstInt = LIS->getInterval(Reg: DstReg);
1527 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1528 SR.LaneMask = TRI->composeSubRegIndexLaneMask(IdxA: DstIdx, Mask: SR.LaneMask);
1529 }
1530 MRI->setRegClass(Reg: DstReg, RC: NewRC);
1531
1532 // Update machine operands and add flags.
1533 updateRegDefsUses(SrcReg: DstReg, DstReg, SubIdx: DstIdx);
1534 NewMI.getOperand(i: 0).setSubReg(NewIdx);
1535 // updateRegDefUses can add an "undef" flag to the definition, since
1536 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1537 // sure that "undef" is not set.
1538 if (NewIdx == 0)
1539 NewMI.getOperand(i: 0).setIsUndef(false);
1540
1541 // In a situation like the following:
1542 //
1543 // undef %2.subreg:reg = INST %1:reg ; DefMI (rematerializable),
1544 // ; Defines only some of lanes,
1545 // ; so DefSubIdx = NewIdx = subreg
1546 // %3:reg = COPY %2 ; Copy full reg
1547 // .... = SOMEINSTR %3:reg ; Use full reg
1548 //
1549 // there are no subranges for %3 so after rematerialization we need
1550 // to explicitly create them. Undefined subranges are removed later on.
1551 if (NewIdx && !DstInt.hasSubRanges() &&
1552 MRI->shouldTrackSubRegLiveness(VReg: DstReg)) {
1553 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(Reg: DstReg);
1554 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx: NewIdx);
1555 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1556 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1557 DstInt.createSubRangeFrom(Allocator&: Alloc, LaneMask: UsedLanes, CopyFrom: DstInt);
1558 DstInt.createSubRangeFrom(Allocator&: Alloc, LaneMask: UnusedLanes, CopyFrom: DstInt);
1559 }
1560
1561 // Add dead subregister definitions if we are defining the whole register
1562 // but only part of it is live.
1563 // This could happen if the rematerialization instruction is rematerializing
1564 // more than actually is used in the register.
1565 // An example would be:
1566 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1567 // ; Copying only part of the register here, but the rest is undef.
1568 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1569 // ==>
1570 // ; Materialize all the constants but only using one
1571 // %2 = LOAD_CONSTANTS 5, 8
1572 //
1573 // at this point for the part that wasn't defined before we could have
1574 // subranges missing the definition.
1575 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1576 SlotIndex CurrIdx = LIS->getInstructionIndex(Instr: NewMI);
1577 SlotIndex DefIndex =
1578 CurrIdx.getRegSlot(EC: NewMI.getOperand(i: 0).isEarlyClobber());
1579 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg: DstReg);
1580 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1581 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1582 if (!SR.liveAt(index: DefIndex))
1583 SR.createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1584 MaxMask &= ~SR.LaneMask;
1585 }
1586 if (MaxMask.any()) {
1587 LiveInterval::SubRange *SR = DstInt.createSubRange(Allocator&: Alloc, LaneMask: MaxMask);
1588 SR->createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1589 }
1590 }
1591
1592 // Make sure that the subrange for resultant undef is removed
1593 // For example:
1594 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1595 // %2 = COPY %1
1596 // ==>
1597 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1598 // ; Correct but need to remove the subrange for %2:sub0
1599 // ; as it is now undef
1600 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1601 // The affected subregister segments can be removed.
1602 SlotIndex CurrIdx = LIS->getInstructionIndex(Instr: NewMI);
1603 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(SubIdx: NewIdx);
1604 bool UpdatedSubRanges = false;
1605 SlotIndex DefIndex =
1606 CurrIdx.getRegSlot(EC: NewMI.getOperand(i: 0).isEarlyClobber());
1607 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1608 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1609 if ((SR.LaneMask & DstMask).none()) {
1610 LLVM_DEBUG(dbgs()
1611 << "Removing undefined SubRange "
1612 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1613
1614 if (VNInfo *RmValNo = SR.getVNInfoAt(Idx: CurrIdx.getRegSlot())) {
1615 // VNI is in ValNo - remove any segments in this SubRange that have
1616 // this ValNo
1617 SR.removeValNo(ValNo: RmValNo);
1618 }
1619
1620 // We may not have a defined value at this point, but still need to
1621 // clear out any empty subranges tentatively created by
1622 // updateRegDefUses. The original subrange def may have only undefed
1623 // some lanes.
1624 UpdatedSubRanges = true;
1625 } else {
1626 // We know that this lane is defined by this instruction,
1627 // but at this point it may be empty because it is not used by
1628 // anything. This happens when updateRegDefUses adds the missing
1629 // lanes. Assign that lane a dead def so that the interferences
1630 // are properly modeled.
1631 if (SR.empty())
1632 SR.createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1633 }
1634 }
1635 if (UpdatedSubRanges)
1636 DstInt.removeEmptySubRanges();
1637 }
1638 } else if (NewMI.getOperand(i: 0).getReg() != CopyDstReg) {
1639 // The New instruction may be defining a sub-register of what's actually
1640 // been asked for. If so it must implicitly define the whole thing.
1641 assert(DstReg.isPhysical() &&
1642 "Only expect virtual or physical registers in remat");
1643 NewMI.getOperand(i: 0).setIsDead(true);
1644
1645 if (!NewMIDefinesFullReg) {
1646 NewMI.addOperand(Op: MachineOperand::CreateReg(
1647 Reg: CopyDstReg, isDef: true /*IsDef*/, isImp: true /*IsImp*/, isKill: false /*IsKill*/));
1648 }
1649
1650 // Record small dead def live-ranges for all the subregisters
1651 // of the destination register.
1652 // Otherwise, variables that live through may miss some
1653 // interferences, thus creating invalid allocation.
1654 // E.g., i386 code:
1655 // %1 = somedef ; %1 GR8
1656 // %2 = remat ; %2 GR32
1657 // CL = COPY %2.sub_8bit
1658 // = somedef %1 ; %1 GR8
1659 // =>
1660 // %1 = somedef ; %1 GR8
1661 // dead ECX = remat ; implicit-def CL
1662 // = somedef %1 ; %1 GR8
1663 // %1 will see the interferences with CL but not with CH since
1664 // no live-ranges would have been created for ECX.
1665 // Fix that!
1666 SlotIndex NewMIIdx = LIS->getInstructionIndex(Instr: NewMI);
1667 for (MCRegUnit Unit : TRI->regunits(Reg: NewMI.getOperand(i: 0).getReg()))
1668 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1669 LR->createDeadDef(Def: NewMIIdx.getRegSlot(), VNIAlloc&: LIS->getVNInfoAllocator());
1670 }
1671
1672 NewMI.setRegisterDefReadUndef(Reg: NewMI.getOperand(i: 0).getReg());
1673
1674 // Transfer over implicit operands to the rematerialized instruction.
1675 for (MachineOperand &MO : ImplicitOps)
1676 NewMI.addOperand(Op: MO);
1677
1678 SlotIndex NewMIIdx = LIS->getInstructionIndex(Instr: NewMI);
1679 for (MCRegister Reg : NewMIImplDefs) {
1680 for (MCRegUnit Unit : TRI->regunits(Reg))
1681 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1682 LR->createDeadDef(Def: NewMIIdx.getRegSlot(), VNIAlloc&: LIS->getVNInfoAllocator());
1683 }
1684
1685 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1686 ++NumReMats;
1687
1688 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1689 // to describe DstReg instead.
1690 if (MRI->use_nodbg_empty(RegNo: SrcReg)) {
1691 for (MachineOperand &UseMO :
1692 llvm::make_early_inc_range(Range: MRI->use_operands(Reg: SrcReg))) {
1693 MachineInstr *UseMI = UseMO.getParent();
1694 if (UseMI->isDebugInstr()) {
1695 if (DstReg.isPhysical())
1696 UseMO.substPhysReg(Reg: DstReg, *TRI);
1697 else
1698 UseMO.setReg(DstReg);
1699 // Move the debug value directly after the def of the rematerialized
1700 // value in DstReg.
1701 MBB->splice(Where: std::next(x: NewMI.getIterator()), Other: UseMI->getParent(), From: UseMI);
1702 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1703 }
1704 }
1705 }
1706
1707 if (ToBeUpdated.count(V: SrcReg))
1708 return true;
1709
1710 unsigned NumCopyUses = 0;
1711 for (MachineOperand &UseMO : MRI->use_nodbg_operands(Reg: SrcReg)) {
1712 if (UseMO.getParent()->isCopyLike())
1713 NumCopyUses++;
1714 }
1715 if (NumCopyUses < LateRematUpdateThreshold) {
1716 // The source interval can become smaller because we removed a use.
1717 shrinkToUses(LI: &SrcInt, Dead: &DeadDefs);
1718 if (!DeadDefs.empty())
1719 eliminateDeadDefs(Edit: &Edit);
1720 } else {
1721 ToBeUpdated.insert(V: SrcReg);
1722 }
1723 return true;
1724}
1725
1726MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1727 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1728 // removes local variables. When we have a copy like:
1729 //
1730 // %1 = COPY undef %2
1731 //
1732 // We delete the copy and remove the corresponding value number from %1.
1733 // Any uses of that value number are marked as <undef>.
1734
1735 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1736 // CoalescerPair may have a new register class with adjusted subreg indices
1737 // at this point.
1738 Register SrcReg, DstReg;
1739 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1740 if (!isMoveInstr(tri: *TRI, MI: CopyMI, Src&: SrcReg, Dst&: DstReg, SrcSub&: SrcSubIdx, DstSub&: DstSubIdx))
1741 return nullptr;
1742
1743 SlotIndex Idx = LIS->getInstructionIndex(Instr: *CopyMI);
1744 const LiveInterval &SrcLI = LIS->getInterval(Reg: SrcReg);
1745 // CopyMI is undef iff SrcReg is not live before the instruction.
1746 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1747 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SubIdx: SrcSubIdx);
1748 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1749 if ((SR.LaneMask & SrcMask).none())
1750 continue;
1751 if (SR.liveAt(index: Idx))
1752 return nullptr;
1753 }
1754 } else if (SrcLI.liveAt(index: Idx))
1755 return nullptr;
1756
1757 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1758 // then replace it with an IMPLICIT_DEF.
1759 LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
1760 SlotIndex RegIndex = Idx.getRegSlot();
1761 LiveRange::Segment *Seg = DstLI.getSegmentContaining(Idx: RegIndex);
1762 assert(Seg != nullptr && "No segment for defining instruction");
1763 VNInfo *V = DstLI.getVNInfoAt(Idx: Seg->end);
1764
1765 // The source interval may also have been on an undef use, in which case the
1766 // copy introduced a live value.
1767 if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(index: Idx)))) {
1768 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1769 MachineOperand &MO = CopyMI->getOperand(i: i - 1);
1770 if (MO.isReg()) {
1771 if (MO.isUse())
1772 CopyMI->removeOperand(OpNo: i - 1);
1773 } else {
1774 assert(MO.isImm() &&
1775 CopyMI->getOpcode() == TargetOpcode::SUBREG_TO_REG);
1776 CopyMI->removeOperand(OpNo: i - 1);
1777 }
1778 }
1779
1780 CopyMI->setDesc(TII->get(Opcode: TargetOpcode::IMPLICIT_DEF));
1781 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1782 "implicit def\n");
1783 return CopyMI;
1784 }
1785
1786 // Remove any DstReg segments starting at the instruction.
1787 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1788
1789 // Remove value or merge with previous one in case of a subregister def.
1790 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1791 VNInfo *VNI = DstLI.getVNInfoAt(Idx: RegIndex);
1792 DstLI.MergeValueNumberInto(V1: VNI, V2: PrevVNI);
1793
1794 // The affected subregister segments can be removed.
1795 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(SubIdx: DstSubIdx);
1796 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1797 if ((SR.LaneMask & DstMask).none())
1798 continue;
1799
1800 VNInfo *SVNI = SR.getVNInfoAt(Idx: RegIndex);
1801 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1802 SR.removeValNo(ValNo: SVNI);
1803 }
1804 DstLI.removeEmptySubRanges();
1805 } else
1806 LIS->removeVRegDefAt(LI&: DstLI, Pos: RegIndex);
1807
1808 // Mark uses as undef.
1809 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg: DstReg)) {
1810 if (MO.isDef() /*|| MO.isUndef()*/)
1811 continue;
1812 const MachineInstr &MI = *MO.getParent();
1813 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI);
1814 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubIdx: MO.getSubReg());
1815 bool isLive;
1816 if (!UseMask.all() && DstLI.hasSubRanges()) {
1817 isLive = false;
1818 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1819 if ((SR.LaneMask & UseMask).none())
1820 continue;
1821 if (SR.liveAt(index: UseIdx)) {
1822 isLive = true;
1823 break;
1824 }
1825 }
1826 } else
1827 isLive = DstLI.liveAt(index: UseIdx);
1828 if (isLive)
1829 continue;
1830 MO.setIsUndef(true);
1831 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1832 }
1833
1834 // A def of a subregister may be a use of the other subregisters, so
1835 // deleting a def of a subregister may also remove uses. Since CopyMI
1836 // is still part of the function (but about to be erased), mark all
1837 // defs of DstReg in it as <undef>, so that shrinkToUses would
1838 // ignore them.
1839 for (MachineOperand &MO : CopyMI->all_defs())
1840 if (MO.getReg() == DstReg)
1841 MO.setIsUndef(true);
1842 LIS->shrinkToUses(li: &DstLI);
1843
1844 return CopyMI;
1845}
1846
1847void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1848 MachineOperand &MO, unsigned SubRegIdx) {
1849 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx);
1850 if (MO.isDef())
1851 Mask = ~Mask;
1852 bool IsUndef = true;
1853 for (const LiveInterval::SubRange &S : Int.subranges()) {
1854 if ((S.LaneMask & Mask).none())
1855 continue;
1856 if (S.liveAt(index: UseIdx)) {
1857 IsUndef = false;
1858 break;
1859 }
1860 }
1861 if (IsUndef) {
1862 MO.setIsUndef(true);
1863 // We found out some subregister use is actually reading an undefined
1864 // value. In some cases the whole vreg has become undefined at this
1865 // point so we have to potentially shrink the main range if the
1866 // use was ending a live segment there.
1867 LiveQueryResult Q = Int.Query(Idx: UseIdx);
1868 if (Q.valueOut() == nullptr)
1869 ShrinkMainRange = true;
1870 }
1871}
1872
1873void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1874 unsigned SubIdx) {
1875 bool DstIsPhys = DstReg.isPhysical();
1876 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(Reg: DstReg);
1877
1878 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1879 for (MachineOperand &MO : MRI->reg_operands(Reg: DstReg)) {
1880 if (MO.isUndef())
1881 continue;
1882 unsigned SubReg = MO.getSubReg();
1883 if (SubReg == 0 && MO.isDef())
1884 continue;
1885
1886 MachineInstr &MI = *MO.getParent();
1887 if (MI.isDebugInstr())
1888 continue;
1889 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI).getRegSlot(EC: true);
1890 addUndefFlag(Int: *DstInt, UseIdx, MO, SubRegIdx: SubReg);
1891 }
1892 }
1893
1894 SmallPtrSet<MachineInstr *, 8> Visited;
1895 for (MachineRegisterInfo::reg_instr_iterator I = MRI->reg_instr_begin(RegNo: SrcReg),
1896 E = MRI->reg_instr_end();
1897 I != E;) {
1898 MachineInstr *UseMI = &*(I++);
1899
1900 // Each instruction can only be rewritten once because sub-register
1901 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1902 // the UseMI operands removes them from the SrcReg use-def chain, but when
1903 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1904 // operands mentioning the virtual register.
1905 if (SrcReg == DstReg && !Visited.insert(Ptr: UseMI).second)
1906 continue;
1907
1908 SmallVector<unsigned, 8> Ops;
1909 bool Reads, Writes;
1910 std::tie(args&: Reads, args&: Writes) = UseMI->readsWritesVirtualRegister(Reg: SrcReg, Ops: &Ops);
1911
1912 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1913 // because SrcReg is a sub-register.
1914 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1915 Reads = DstInt->liveAt(index: LIS->getInstructionIndex(Instr: *UseMI));
1916
1917 // Replace SrcReg with DstReg in all UseMI operands.
1918 for (unsigned Op : Ops) {
1919 MachineOperand &MO = UseMI->getOperand(i: Op);
1920
1921 // Adjust <undef> flags in case of sub-register joins. We don't want to
1922 // turn a full def into a read-modify-write sub-register def and vice
1923 // versa.
1924 if (SubIdx && MO.isDef())
1925 MO.setIsUndef(!Reads);
1926
1927 // A subreg use of a partially undef (super) register may be a complete
1928 // undef use now and then has to be marked that way.
1929 if (MO.isUse() && !MO.isUndef() && !DstIsPhys) {
1930 unsigned SubUseIdx = TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg());
1931 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(VReg: DstReg)) {
1932 if (!DstInt->hasSubRanges()) {
1933 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1934 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(Reg: DstInt->reg());
1935 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1936 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1937 DstInt->createSubRangeFrom(Allocator, LaneMask: UsedLanes, CopyFrom: *DstInt);
1938 // The unused lanes are just empty live-ranges at this point.
1939 // It is the caller responsibility to set the proper
1940 // dead segments if there is an actual dead def of the
1941 // unused lanes. This may happen with rematerialization.
1942 DstInt->createSubRange(Allocator, LaneMask: UnusedLanes);
1943 }
1944 SlotIndex MIIdx = UseMI->isDebugInstr()
1945 ? LIS->getSlotIndexes()->getIndexBefore(MI: *UseMI)
1946 : LIS->getInstructionIndex(Instr: *UseMI);
1947 SlotIndex UseIdx = MIIdx.getRegSlot(EC: true);
1948 addUndefFlag(Int: *DstInt, UseIdx, MO, SubRegIdx: SubUseIdx);
1949 }
1950 }
1951
1952 if (DstIsPhys)
1953 MO.substPhysReg(Reg: DstReg, *TRI);
1954 else
1955 MO.substVirtReg(Reg: DstReg, SubIdx, *TRI);
1956 }
1957
1958 LLVM_DEBUG({
1959 dbgs() << "\t\tupdated: ";
1960 if (!UseMI->isDebugInstr())
1961 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1962 dbgs() << *UseMI;
1963 });
1964 }
1965}
1966
1967bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1968 // Always join simple intervals that are defined by a single copy from a
1969 // reserved register. This doesn't increase register pressure, so it is
1970 // always beneficial.
1971 if (!MRI->isReserved(PhysReg: CP.getDstReg())) {
1972 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1973 return false;
1974 }
1975
1976 LiveInterval &JoinVInt = LIS->getInterval(Reg: CP.getSrcReg());
1977 if (JoinVInt.containsOneValue())
1978 return true;
1979
1980 LLVM_DEBUG(
1981 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1982 return false;
1983}
1984
1985bool RegisterCoalescer::copyValueUndefInPredecessors(
1986 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1987 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1988 SlotIndex PredEnd = LIS->getMBBEndIdx(mbb: Pred);
1989 if (VNInfo *V = S.getVNInfoAt(Idx: PredEnd.getPrevSlot())) {
1990 // If this is a self loop, we may be reading the same value.
1991 if (V->id != SLRQ.valueOutOrDead()->id)
1992 return false;
1993 }
1994 }
1995
1996 return true;
1997}
1998
1999void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
2000 Register Reg,
2001 LaneBitmask PrunedLanes) {
2002 // If we had other instructions in the segment reading the undef sublane
2003 // value, we need to mark them with undef.
2004 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
2005 unsigned SubRegIdx = MO.getSubReg();
2006 if (SubRegIdx == 0 || MO.isUndef())
2007 continue;
2008
2009 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx);
2010 SlotIndex Pos = LIS->getInstructionIndex(Instr: *MO.getParent());
2011 for (LiveInterval::SubRange &S : LI.subranges()) {
2012 if (!S.liveAt(index: Pos) && (PrunedLanes & SubRegMask).any()) {
2013 MO.setIsUndef();
2014 break;
2015 }
2016 }
2017 }
2018
2019 LI.removeEmptySubRanges();
2020
2021 // A def of a subregister may be a use of other register lanes. Replacing
2022 // such a def with a def of a different register will eliminate the use,
2023 // and may cause the recorded live range to be larger than the actual
2024 // liveness in the program IR.
2025 LIS->shrinkToUses(li: &LI);
2026}
2027
2028bool RegisterCoalescer::joinCopy(
2029 MachineInstr *CopyMI, bool &Again,
2030 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs) {
2031 Again = false;
2032 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
2033
2034 CoalescerPair CP(*TRI);
2035 if (!CP.setRegisters(CopyMI)) {
2036 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
2037 return false;
2038 }
2039
2040 if (CP.getNewRC()) {
2041 auto SrcRC = MRI->getRegClass(Reg: CP.getSrcReg());
2042 auto DstRC = MRI->getRegClass(Reg: CP.getDstReg());
2043 unsigned SrcIdx = CP.getSrcIdx();
2044 unsigned DstIdx = CP.getDstIdx();
2045 if (CP.isFlipped()) {
2046 std::swap(a&: SrcIdx, b&: DstIdx);
2047 std::swap(a&: SrcRC, b&: DstRC);
2048 }
2049 if (!TRI->shouldCoalesce(MI: CopyMI, SrcRC, SubReg: SrcIdx, DstRC, DstSubReg: DstIdx,
2050 NewRC: CP.getNewRC(), LIS&: *LIS)) {
2051 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
2052 return false;
2053 }
2054 }
2055
2056 // Dead code elimination. This really should be handled by MachineDCE, but
2057 // sometimes dead copies slip through, and we can't generate invalid live
2058 // ranges.
2059 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
2060 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
2061 DeadDefs.push_back(Elt: CopyMI);
2062 eliminateDeadDefs();
2063 return true;
2064 }
2065
2066 // Eliminate undefs.
2067 if (!CP.isPhys()) {
2068 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
2069 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
2070 if (UndefMI->isImplicitDef())
2071 return false;
2072 deleteInstr(MI: CopyMI);
2073 return false; // Not coalescable.
2074 }
2075 }
2076
2077 // Coalesced copies are normally removed immediately, but transformations
2078 // like removeCopyByCommutingDef() can inadvertently create identity copies.
2079 // When that happens, just join the values and remove the copy.
2080 if (CP.getSrcReg() == CP.getDstReg()) {
2081 LiveInterval &LI = LIS->getInterval(Reg: CP.getSrcReg());
2082 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
2083 const SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI);
2084 LiveQueryResult LRQ = LI.Query(Idx: CopyIdx);
2085 if (VNInfo *DefVNI = LRQ.valueDefined()) {
2086 VNInfo *ReadVNI = LRQ.valueIn();
2087 assert(ReadVNI && "No value before copy and no <undef> flag.");
2088 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
2089
2090 // Track incoming undef lanes we need to eliminate from the subrange.
2091 LaneBitmask PrunedLanes;
2092 MachineBasicBlock *MBB = CopyMI->getParent();
2093
2094 // Process subregister liveranges.
2095 for (LiveInterval::SubRange &S : LI.subranges()) {
2096 LiveQueryResult SLRQ = S.Query(Idx: CopyIdx);
2097 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
2098 if (VNInfo *SReadVNI = SLRQ.valueIn())
2099 SDefVNI = S.MergeValueNumberInto(V1: SDefVNI, V2: SReadVNI);
2100
2101 // If this copy introduced an undef subrange from an incoming value,
2102 // we need to eliminate the undef live in values from the subrange.
2103 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
2104 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
2105 PrunedLanes |= S.LaneMask;
2106 S.removeValNo(ValNo: SDefVNI);
2107 }
2108 }
2109 }
2110
2111 LI.MergeValueNumberInto(V1: DefVNI, V2: ReadVNI);
2112 if (PrunedLanes.any()) {
2113 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: " << PrunedLanes
2114 << '\n');
2115 setUndefOnPrunedSubRegUses(LI, Reg: CP.getSrcReg(), PrunedLanes);
2116 }
2117
2118 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
2119 }
2120 deleteInstr(MI: CopyMI);
2121 return true;
2122 }
2123
2124 // Enforce policies.
2125 if (CP.isPhys()) {
2126 LLVM_DEBUG(dbgs() << "\tConsidering merging "
2127 << printReg(CP.getSrcReg(), TRI) << " with "
2128 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
2129 if (!canJoinPhys(CP)) {
2130 // Before giving up coalescing, if definition of source is defined by
2131 // trivial computation, try rematerializing it.
2132 bool IsDefCopy = false;
2133 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2134 return true;
2135 if (IsDefCopy)
2136 Again = true; // May be possible to coalesce later.
2137 return false;
2138 }
2139 } else {
2140 // When possible, let DstReg be the larger interval.
2141 if (!CP.isPartial() && LIS->getInterval(Reg: CP.getSrcReg()).size() >
2142 LIS->getInterval(Reg: CP.getDstReg()).size())
2143 CP.flip();
2144
2145 LLVM_DEBUG({
2146 dbgs() << "\tConsidering merging to "
2147 << TRI->getRegClassName(CP.getNewRC()) << " with ";
2148 if (CP.getDstIdx() && CP.getSrcIdx())
2149 dbgs() << printReg(CP.getDstReg()) << " in "
2150 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2151 << printReg(CP.getSrcReg()) << " in "
2152 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2153 else
2154 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2155 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2156 });
2157 }
2158
2159 ShrinkMask = LaneBitmask::getNone();
2160 ShrinkMainRange = false;
2161
2162 // Okay, attempt to join these two intervals. On failure, this returns false.
2163 // Otherwise, if one of the intervals being joined is a physreg, this method
2164 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2165 // been modified, so we can use this information below to update aliases.
2166 if (!joinIntervals(CP)) {
2167 // Coalescing failed.
2168
2169 // If definition of source is defined by trivial computation, try
2170 // rematerializing it.
2171 bool IsDefCopy = false;
2172 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2173 return true;
2174
2175 // If we can eliminate the copy without merging the live segments, do so
2176 // now.
2177 if (!CP.isPartial() && !CP.isPhys()) {
2178 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2179 bool Shrink = false;
2180 if (!Changed)
2181 std::tie(args&: Changed, args&: Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2182 if (Changed) {
2183 deleteInstr(MI: CopyMI);
2184 if (Shrink) {
2185 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2186 LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
2187 shrinkToUses(LI: &DstLI);
2188 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2189 }
2190 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2191 return true;
2192 }
2193 }
2194
2195 // Try and see if we can partially eliminate the copy by moving the copy to
2196 // its predecessor.
2197 if (!CP.isPartial() && !CP.isPhys())
2198 if (removePartialRedundancy(CP, CopyMI&: *CopyMI))
2199 return true;
2200
2201 // Otherwise, we are unable to join the intervals.
2202 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2203 Again = true; // May be possible to coalesce later.
2204 return false;
2205 }
2206
2207 // Coalescing to a virtual register that is of a sub-register class of the
2208 // other. Make sure the resulting register is set to the right register class.
2209 if (CP.isCrossClass()) {
2210 ++numCrossRCs;
2211 MRI->setRegClass(Reg: CP.getDstReg(), RC: CP.getNewRC());
2212 }
2213
2214 // Removing sub-register copies can ease the register class constraints.
2215 // Make sure we attempt to inflate the register class of DstReg.
2216 if (!CP.isPhys() && RegClassInfo.isProperSubClass(RC: CP.getNewRC()))
2217 InflateRegs.push_back(Elt: CP.getDstReg());
2218
2219 // CopyMI has been erased by joinIntervals at this point. Remove it from
2220 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2221 // to the work list. This keeps ErasedInstrs from growing needlessly.
2222 if (ErasedInstrs.erase(Ptr: CopyMI))
2223 // But we may encounter the instruction again in this iteration.
2224 CurrentErasedInstrs.insert(Ptr: CopyMI);
2225
2226 // Rewrite all SrcReg operands to DstReg.
2227 // Also update DstReg operands to include DstIdx if it is set.
2228 if (CP.getDstIdx())
2229 updateRegDefsUses(SrcReg: CP.getDstReg(), DstReg: CP.getDstReg(), SubIdx: CP.getDstIdx());
2230 updateRegDefsUses(SrcReg: CP.getSrcReg(), DstReg: CP.getDstReg(), SubIdx: CP.getSrcIdx());
2231
2232 // Shrink subregister ranges if necessary.
2233 if (ShrinkMask.any()) {
2234 LiveInterval &LI = LIS->getInterval(Reg: CP.getDstReg());
2235 for (LiveInterval::SubRange &S : LI.subranges()) {
2236 if ((S.LaneMask & ShrinkMask).none())
2237 continue;
2238 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2239 << ")\n");
2240 LIS->shrinkToUses(SR&: S, Reg: LI.reg());
2241 ShrinkMainRange = true;
2242 }
2243 LI.removeEmptySubRanges();
2244 }
2245
2246 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2247 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2248 // is not up-to-date, need to update the merged live interval here.
2249 if (ToBeUpdated.count(V: CP.getSrcReg()))
2250 ShrinkMainRange = true;
2251
2252 if (ShrinkMainRange) {
2253 LiveInterval &LI = LIS->getInterval(Reg: CP.getDstReg());
2254 shrinkToUses(LI: &LI);
2255 }
2256
2257 // SrcReg is guaranteed to be the register whose live interval that is
2258 // being merged.
2259 LIS->removeInterval(Reg: CP.getSrcReg());
2260
2261 // Update regalloc hint.
2262 TRI->updateRegAllocHint(Reg: CP.getSrcReg(), NewReg: CP.getDstReg(), MF&: *MF);
2263
2264 LLVM_DEBUG({
2265 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2266 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2267 dbgs() << "\tResult = ";
2268 if (CP.isPhys())
2269 dbgs() << printReg(CP.getDstReg(), TRI);
2270 else
2271 dbgs() << LIS->getInterval(CP.getDstReg());
2272 dbgs() << '\n';
2273 });
2274
2275 ++numJoins;
2276 return true;
2277}
2278
2279bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2280 Register DstReg = CP.getDstReg();
2281 Register SrcReg = CP.getSrcReg();
2282 assert(CP.isPhys() && "Must be a physreg copy");
2283 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2284 LiveInterval &RHS = LIS->getInterval(Reg: SrcReg);
2285 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2286
2287 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2288
2289 // Optimization for reserved registers like ESP. We can only merge with a
2290 // reserved physreg if RHS has a single value that is a copy of DstReg.
2291 // The live range of the reserved register will look like a set of dead defs
2292 // - we don't properly track the live range of reserved registers.
2293
2294 // Deny any overlapping intervals. This depends on all the reserved
2295 // register live ranges to look like dead defs.
2296 if (!MRI->isConstantPhysReg(PhysReg: DstReg)) {
2297 for (MCRegUnit Unit : TRI->regunits(Reg: DstReg)) {
2298 // Abort if not all the regunits are reserved.
2299 for (MCRegUnitRootIterator RI(Unit, TRI); RI.isValid(); ++RI) {
2300 if (!MRI->isReserved(PhysReg: *RI))
2301 return false;
2302 }
2303 if (RHS.overlaps(other: LIS->getRegUnit(Unit))) {
2304 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(Unit, TRI)
2305 << '\n');
2306 return false;
2307 }
2308 }
2309
2310 // We must also check for overlaps with regmask clobbers.
2311 BitVector RegMaskUsable;
2312 if (LIS->checkRegMaskInterference(LI: RHS, UsableRegs&: RegMaskUsable) &&
2313 !RegMaskUsable.test(Idx: DstReg.id())) {
2314 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2315 return false;
2316 }
2317 }
2318
2319 // Skip any value computations, we are not adding new values to the
2320 // reserved register. Also skip merging the live ranges, the reserved
2321 // register live range doesn't need to be accurate as long as all the
2322 // defs are there.
2323
2324 // Delete the identity copy.
2325 MachineInstr *CopyMI;
2326 if (CP.isFlipped()) {
2327 // Physreg is copied into vreg
2328 // %y = COPY %physreg_x
2329 // ... //< no other def of %physreg_x here
2330 // use %y
2331 // =>
2332 // ...
2333 // use %physreg_x
2334 CopyMI = MRI->getVRegDef(Reg: SrcReg);
2335 deleteInstr(MI: CopyMI);
2336 } else {
2337 // VReg is copied into physreg:
2338 // %y = def
2339 // ... //< no other def or use of %physreg_x here
2340 // %physreg_x = COPY %y
2341 // =>
2342 // %physreg_x = def
2343 // ...
2344 if (!MRI->hasOneNonDBGUse(RegNo: SrcReg)) {
2345 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2346 return false;
2347 }
2348
2349 if (!LIS->intervalIsInOneMBB(LI: RHS)) {
2350 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2351 return false;
2352 }
2353
2354 MachineInstr &DestMI = *MRI->getVRegDef(Reg: SrcReg);
2355 CopyMI = &*MRI->use_instr_nodbg_begin(RegNo: SrcReg);
2356 SlotIndex CopyRegIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
2357 SlotIndex DestRegIdx = LIS->getInstructionIndex(Instr: DestMI).getRegSlot();
2358
2359 if (!MRI->isConstantPhysReg(PhysReg: DstReg)) {
2360 // We checked above that there are no interfering defs of the physical
2361 // register. However, for this case, where we intend to move up the def of
2362 // the physical register, we also need to check for interfering uses.
2363 SlotIndexes *Indexes = LIS->getSlotIndexes();
2364 for (SlotIndex SI = Indexes->getNextNonNullIndex(Index: DestRegIdx);
2365 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(Index: SI)) {
2366 MachineInstr *MI = LIS->getInstructionFromIndex(index: SI);
2367 if (MI->readsRegister(Reg: DstReg, TRI)) {
2368 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2369 return false;
2370 }
2371 }
2372 }
2373
2374 // We're going to remove the copy which defines a physical reserved
2375 // register, so remove its valno, etc.
2376 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2377 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2378
2379 LIS->removePhysRegDefAt(Reg: DstReg.asMCReg(), Pos: CopyRegIdx);
2380 deleteInstr(MI: CopyMI);
2381
2382 // Create a new dead def at the new def location.
2383 for (MCRegUnit Unit : TRI->regunits(Reg: DstReg)) {
2384 LiveRange &LR = LIS->getRegUnit(Unit);
2385 LR.createDeadDef(Def: DestRegIdx, VNIAlloc&: LIS->getVNInfoAllocator());
2386 }
2387 }
2388
2389 // We don't track kills for reserved registers.
2390 MRI->clearKillFlags(Reg: CP.getSrcReg());
2391
2392 return true;
2393}
2394
2395//===----------------------------------------------------------------------===//
2396// Interference checking and interval joining
2397//===----------------------------------------------------------------------===//
2398//
2399// In the easiest case, the two live ranges being joined are disjoint, and
2400// there is no interference to consider. It is quite common, though, to have
2401// overlapping live ranges, and we need to check if the interference can be
2402// resolved.
2403//
2404// The live range of a single SSA value forms a sub-tree of the dominator tree.
2405// This means that two SSA values overlap if and only if the def of one value
2406// is contained in the live range of the other value. As a special case, the
2407// overlapping values can be defined at the same index.
2408//
2409// The interference from an overlapping def can be resolved in these cases:
2410//
2411// 1. Coalescable copies. The value is defined by a copy that would become an
2412// identity copy after joining SrcReg and DstReg. The copy instruction will
2413// be removed, and the value will be merged with the source value.
2414//
2415// There can be several copies back and forth, causing many values to be
2416// merged into one. We compute a list of ultimate values in the joined live
2417// range as well as a mappings from the old value numbers.
2418//
2419// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2420// predecessors have a live out value. It doesn't cause real interference,
2421// and can be merged into the value it overlaps. Like a coalescable copy, it
2422// can be erased after joining.
2423//
2424// 3. Copy of external value. The overlapping def may be a copy of a value that
2425// is already in the other register. This is like a coalescable copy, but
2426// the live range of the source register must be trimmed after erasing the
2427// copy instruction:
2428//
2429// %src = COPY %ext
2430// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2431//
2432// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2433// defining one lane at a time:
2434//
2435// %dst:ssub0<def,read-undef> = FOO
2436// %src = BAR
2437// %dst:ssub1 = COPY %src
2438//
2439// The live range of %src overlaps the %dst value defined by FOO, but
2440// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2441// which was undef anyway.
2442//
2443// The value mapping is more complicated in this case. The final live range
2444// will have different value numbers for both FOO and BAR, but there is no
2445// simple mapping from old to new values. It may even be necessary to add
2446// new PHI values.
2447//
2448// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2449// is live, but never read. This can happen because we don't compute
2450// individual live ranges per lane.
2451//
2452// %dst = FOO
2453// %src = BAR
2454// %dst:ssub1 = COPY %src
2455//
2456// This kind of interference is only resolved locally. If the clobbered
2457// lane value escapes the block, the join is aborted.
2458
2459namespace {
2460
2461/// Track information about values in a single virtual register about to be
2462/// joined. Objects of this class are always created in pairs - one for each
2463/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2464/// pair)
2465class JoinVals {
2466 /// Live range we work on.
2467 LiveRange &LR;
2468
2469 /// (Main) register we work on.
2470 const Register Reg;
2471
2472 /// Reg (and therefore the values in this liverange) will end up as
2473 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2474 /// CP.SrcIdx.
2475 const unsigned SubIdx;
2476
2477 /// The LaneMask that this liverange will occupy the coalesced register. May
2478 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2479 const LaneBitmask LaneMask;
2480
2481 /// This is true when joining sub register ranges, false when joining main
2482 /// ranges.
2483 const bool SubRangeJoin;
2484
2485 /// Whether the current LiveInterval tracks subregister liveness.
2486 const bool TrackSubRegLiveness;
2487
2488 /// Values that will be present in the final live range.
2489 SmallVectorImpl<VNInfo *> &NewVNInfo;
2490
2491 const CoalescerPair &CP;
2492 LiveIntervals *LIS;
2493 SlotIndexes *Indexes;
2494 const TargetRegisterInfo *TRI;
2495
2496 /// Value number assignments. Maps value numbers in LI to entries in
2497 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2498 SmallVector<int, 8> Assignments;
2499
2500public:
2501 /// Conflict resolution for overlapping values.
2502 enum ConflictResolution {
2503 /// No overlap, simply keep this value.
2504 CR_Keep,
2505
2506 /// Merge this value into OtherVNI and erase the defining instruction.
2507 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2508 /// values.
2509 CR_Erase,
2510
2511 /// Merge this value into OtherVNI but keep the defining instruction.
2512 /// This is for the special case where OtherVNI is defined by the same
2513 /// instruction.
2514 CR_Merge,
2515
2516 /// Keep this value, and have it replace OtherVNI where possible. This
2517 /// complicates value mapping since OtherVNI maps to two different values
2518 /// before and after this def.
2519 /// Used when clobbering undefined or dead lanes.
2520 CR_Replace,
2521
2522 /// Unresolved conflict. Visit later when all values have been mapped.
2523 CR_Unresolved,
2524
2525 /// Unresolvable conflict. Abort the join.
2526 CR_Impossible
2527 };
2528
2529private:
2530 /// Per-value info for LI. The lane bit masks are all relative to the final
2531 /// joined register, so they can be compared directly between SrcReg and
2532 /// DstReg.
2533 struct Val {
2534 ConflictResolution Resolution = CR_Keep;
2535
2536 /// Lanes written by this def, 0 for unanalyzed values.
2537 LaneBitmask WriteLanes;
2538
2539 /// Lanes with defined values in this register. Other lanes are undef and
2540 /// safe to clobber.
2541 LaneBitmask ValidLanes;
2542
2543 /// Value in LI being redefined by this def.
2544 VNInfo *RedefVNI = nullptr;
2545
2546 /// Value in the other live range that overlaps this def, if any.
2547 VNInfo *OtherVNI = nullptr;
2548
2549 /// Is this value an IMPLICIT_DEF that can be erased?
2550 ///
2551 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2552 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2553 /// safely erased if they are overlapping a live value in the other live
2554 /// interval.
2555 ///
2556 /// Weird control flow graphs and incomplete PHI handling in
2557 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2558 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2559 /// normal values.
2560 bool ErasableImplicitDef = false;
2561
2562 /// True when the live range of this value will be pruned because of an
2563 /// overlapping CR_Replace value in the other live range.
2564 bool Pruned = false;
2565
2566 /// True once Pruned above has been computed.
2567 bool PrunedComputed = false;
2568
2569 /// True if this value is determined to be identical to OtherVNI
2570 /// (in valuesIdentical). This is used with CR_Erase where the erased
2571 /// copy is redundant, i.e. the source value is already the same as
2572 /// the destination. In such cases the subranges need to be updated
2573 /// properly. See comment at pruneSubRegValues for more info.
2574 bool Identical = false;
2575
2576 Val() = default;
2577
2578 bool isAnalyzed() const { return WriteLanes.any(); }
2579
2580 /// Mark this value as an IMPLICIT_DEF which must be kept as if it were an
2581 /// ordinary value.
2582 void mustKeepImplicitDef(const TargetRegisterInfo &TRI,
2583 const MachineInstr &ImpDef) {
2584 assert(ImpDef.isImplicitDef());
2585 ErasableImplicitDef = false;
2586 ValidLanes = TRI.getSubRegIndexLaneMask(SubIdx: ImpDef.getOperand(i: 0).getSubReg());
2587 }
2588 };
2589
2590 /// One entry per value number in LI.
2591 SmallVector<Val, 8> Vals;
2592
2593 /// Compute the bitmask of lanes actually written by DefMI.
2594 /// Set Redef if there are any partial register definitions that depend on the
2595 /// previous value of the register.
2596 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2597
2598 /// Find the ultimate value that VNI was copied from.
2599 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2600
2601 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2602 const JoinVals &Other) const;
2603
2604 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2605 /// Return a conflict resolution when possible, but leave the hard cases as
2606 /// CR_Unresolved.
2607 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2608 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2609 /// The recursion always goes upwards in the dominator tree, making loops
2610 /// impossible.
2611 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2612
2613 /// Compute the value assignment for ValNo in RI.
2614 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2615 /// the stack.
2616 void computeAssignment(unsigned ValNo, JoinVals &Other);
2617
2618 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2619 /// the extent of the tainted lanes in the block.
2620 ///
2621 /// Multiple values in Other.LR can be affected since partial redefinitions
2622 /// can preserve previously tainted lanes.
2623 ///
2624 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2625 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2626 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2627 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2628 ///
2629 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2630 /// entry to TaintedVals.
2631 ///
2632 /// Returns false if the tainted lanes extend beyond the basic block.
2633 bool
2634 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2635 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2636
2637 /// Return true if MI uses any of the given Lanes from Reg.
2638 /// This does not include partial redefinitions of Reg.
2639 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2640
2641 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2642 /// be pruned:
2643 ///
2644 /// %dst = COPY %src
2645 /// %src = COPY %dst <-- This value to be pruned.
2646 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2647 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2648
2649public:
2650 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2651 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2652 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2653 bool TrackSubRegLiveness)
2654 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2655 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2656 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2657 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2658 Vals(LR.getNumValNums()) {}
2659
2660 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2661 /// Returns false if any conflicts were impossible to resolve.
2662 bool mapValues(JoinVals &Other);
2663
2664 /// Try to resolve conflicts that require all values to be mapped.
2665 /// Returns false if any conflicts were impossible to resolve.
2666 bool resolveConflicts(JoinVals &Other);
2667
2668 /// Prune the live range of values in Other.LR where they would conflict with
2669 /// CR_Replace values in LR. Collect end points for restoring the live range
2670 /// after joining.
2671 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2672 bool changeInstrs);
2673
2674 /// Removes subranges starting at copies that get removed. This sometimes
2675 /// happens when undefined subranges are copied around. These ranges contain
2676 /// no useful information and can be removed.
2677 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2678
2679 /// Pruning values in subranges can lead to removing segments in these
2680 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2681 /// the main range also need to be removed. This function will mark
2682 /// the corresponding values in the main range as pruned, so that
2683 /// eraseInstrs can do the final cleanup.
2684 /// The parameter @p LI must be the interval whose main range is the
2685 /// live range LR.
2686 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2687
2688 /// Erase any machine instructions that have been coalesced away.
2689 /// Add erased instructions to ErasedInstrs.
2690 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2691 /// the erased instrs.
2692 void eraseInstrs(SmallPtrSetImpl<MachineInstr *> &ErasedInstrs,
2693 SmallVectorImpl<Register> &ShrinkRegs,
2694 LiveInterval *LI = nullptr);
2695
2696 /// Remove liverange defs at places where implicit defs will be removed.
2697 void removeImplicitDefs();
2698
2699 /// Get the value assignments suitable for passing to LiveInterval::join.
2700 const int *getAssignments() const { return Assignments.data(); }
2701
2702 /// Get the conflict resolution for a value number.
2703 ConflictResolution getResolution(unsigned Num) const {
2704 return Vals[Num].Resolution;
2705 }
2706};
2707
2708} // end anonymous namespace
2709
2710LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI,
2711 bool &Redef) const {
2712 LaneBitmask L;
2713 for (const MachineOperand &MO : DefMI->all_defs()) {
2714 if (MO.getReg() != Reg)
2715 continue;
2716 L |= TRI->getSubRegIndexLaneMask(
2717 SubIdx: TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg()));
2718 if (MO.readsReg())
2719 Redef = true;
2720 }
2721 return L;
2722}
2723
2724std::pair<const VNInfo *, Register>
2725JoinVals::followCopyChain(const VNInfo *VNI) const {
2726 Register TrackReg = Reg;
2727
2728 while (!VNI->isPHIDef()) {
2729 SlotIndex Def = VNI->def;
2730 MachineInstr *MI = Indexes->getInstructionFromIndex(index: Def);
2731 assert(MI && "No defining instruction");
2732 if (!MI->isFullCopy())
2733 return std::make_pair(x&: VNI, y&: TrackReg);
2734 Register SrcReg = MI->getOperand(i: 1).getReg();
2735 if (!SrcReg.isVirtual())
2736 return std::make_pair(x&: VNI, y&: TrackReg);
2737
2738 const LiveInterval &LI = LIS->getInterval(Reg: SrcReg);
2739 const VNInfo *ValueIn;
2740 // No subrange involved.
2741 if (!SubRangeJoin || !LI.hasSubRanges()) {
2742 LiveQueryResult LRQ = LI.Query(Idx: Def);
2743 ValueIn = LRQ.valueIn();
2744 } else {
2745 // Query subranges. Ensure that all matching ones take us to the same def
2746 // (allowing some of them to be undef).
2747 ValueIn = nullptr;
2748 for (const LiveInterval::SubRange &S : LI.subranges()) {
2749 // Transform lanemask to a mask in the joined live interval.
2750 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(IdxA: SubIdx, Mask: S.LaneMask);
2751 if ((SMask & LaneMask).none())
2752 continue;
2753 LiveQueryResult LRQ = S.Query(Idx: Def);
2754 if (!ValueIn) {
2755 ValueIn = LRQ.valueIn();
2756 continue;
2757 }
2758 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2759 return std::make_pair(x&: VNI, y&: TrackReg);
2760 }
2761 }
2762 if (ValueIn == nullptr) {
2763 // Reaching an undefined value is legitimate, for example:
2764 //
2765 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2766 // 2 %1 = COPY %0 ;; %1 is defined here.
2767 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2768 // ;; but it's equivalent to "undef".
2769 return std::make_pair(x: nullptr, y&: SrcReg);
2770 }
2771 VNI = ValueIn;
2772 TrackReg = SrcReg;
2773 }
2774 return std::make_pair(x&: VNI, y&: TrackReg);
2775}
2776
2777bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2778 const JoinVals &Other) const {
2779 const VNInfo *Orig0;
2780 Register Reg0;
2781 std::tie(args&: Orig0, args&: Reg0) = followCopyChain(VNI: Value0);
2782 if (Orig0 == Value1 && Reg0 == Other.Reg)
2783 return true;
2784
2785 const VNInfo *Orig1;
2786 Register Reg1;
2787 std::tie(args&: Orig1, args&: Reg1) = Other.followCopyChain(VNI: Value1);
2788 // If both values are undefined, and the source registers are the same
2789 // register, the values are identical. Filter out cases where only one
2790 // value is defined.
2791 if (Orig0 == nullptr || Orig1 == nullptr)
2792 return Orig0 == Orig1 && Reg0 == Reg1;
2793
2794 // The values are equal if they are defined at the same place and use the
2795 // same register. Note that we cannot compare VNInfos directly as some of
2796 // them might be from a copy created in mergeSubRangeInto() while the other
2797 // is from the original LiveInterval.
2798 return Orig0->def == Orig1->def && Reg0 == Reg1;
2799}
2800
2801JoinVals::ConflictResolution JoinVals::analyzeValue(unsigned ValNo,
2802 JoinVals &Other) {
2803 Val &V = Vals[ValNo];
2804 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2805 VNInfo *VNI = LR.getValNumInfo(ValNo);
2806 if (VNI->isUnused()) {
2807 V.WriteLanes = LaneBitmask::getAll();
2808 return CR_Keep;
2809 }
2810
2811 // Get the instruction defining this value, compute the lanes written.
2812 const MachineInstr *DefMI = nullptr;
2813 if (VNI->isPHIDef()) {
2814 // Conservatively assume that all lanes in a PHI are valid.
2815 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(Lane: 0)
2816 : TRI->getSubRegIndexLaneMask(SubIdx);
2817 V.ValidLanes = V.WriteLanes = Lanes;
2818 } else {
2819 DefMI = Indexes->getInstructionFromIndex(index: VNI->def);
2820 assert(DefMI != nullptr);
2821 if (SubRangeJoin) {
2822 // We don't care about the lanes when joining subregister ranges.
2823 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(Lane: 0);
2824 if (DefMI->isImplicitDef()) {
2825 V.ValidLanes = LaneBitmask::getNone();
2826 V.ErasableImplicitDef = true;
2827 }
2828 } else {
2829 bool Redef = false;
2830 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2831
2832 // If this is a read-modify-write instruction, there may be more valid
2833 // lanes than the ones written by this instruction.
2834 // This only covers partial redef operands. DefMI may have normal use
2835 // operands reading the register. They don't contribute valid lanes.
2836 //
2837 // This adds ssub1 to the set of valid lanes in %src:
2838 //
2839 // %src:ssub1 = FOO
2840 //
2841 // This leaves only ssub1 valid, making any other lanes undef:
2842 //
2843 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2844 //
2845 // The <read-undef> flag on the def operand means that old lane values are
2846 // not important.
2847 if (Redef) {
2848 V.RedefVNI = LR.Query(Idx: VNI->def).valueIn();
2849 assert((TrackSubRegLiveness || V.RedefVNI) &&
2850 "Instruction is reading nonexistent value");
2851 if (V.RedefVNI != nullptr) {
2852 computeAssignment(ValNo: V.RedefVNI->id, Other);
2853 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2854 }
2855 }
2856
2857 // An IMPLICIT_DEF writes undef values.
2858 if (DefMI->isImplicitDef()) {
2859 // We normally expect IMPLICIT_DEF values to be live only until the end
2860 // of their block. If the value is really live longer and gets pruned in
2861 // another block, this flag is cleared again.
2862 //
2863 // Clearing the valid lanes is deferred until it is sure this can be
2864 // erased.
2865 V.ErasableImplicitDef = true;
2866 }
2867 }
2868 }
2869
2870 // Find the value in Other that overlaps VNI->def, if any.
2871 LiveQueryResult OtherLRQ = Other.LR.Query(Idx: VNI->def);
2872
2873 // It is possible that both values are defined by the same instruction, or
2874 // the values are PHIs defined in the same block. When that happens, the two
2875 // values should be merged into one, but not into any preceding value.
2876 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2877 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2878 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2879
2880 // One value stays, the other is merged. Keep the earlier one, or the first
2881 // one we see.
2882 if (OtherVNI->def < VNI->def)
2883 Other.computeAssignment(ValNo: OtherVNI->id, Other&: *this);
2884 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2885 // This is an early-clobber def overlapping a live-in value in the other
2886 // register. Not mergeable.
2887 V.OtherVNI = OtherLRQ.valueIn();
2888 return CR_Impossible;
2889 }
2890 V.OtherVNI = OtherVNI;
2891 Val &OtherV = Other.Vals[OtherVNI->id];
2892 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2893 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2894 // is assigned.
2895 if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1)
2896 return CR_Keep;
2897 // Both sides have been analyzed now.
2898 // Allow overlapping PHI values. Any real interference would show up in a
2899 // predecessor, the PHI itself can't introduce any conflicts.
2900 if (VNI->isPHIDef())
2901 return CR_Merge;
2902 if ((V.ValidLanes & OtherV.ValidLanes).any())
2903 // Overlapping lanes can't be resolved.
2904 return CR_Impossible;
2905 else
2906 return CR_Merge;
2907 }
2908
2909 // No simultaneous def. Is Other live at the def?
2910 V.OtherVNI = OtherLRQ.valueIn();
2911 if (!V.OtherVNI)
2912 // No overlap, no conflict.
2913 return CR_Keep;
2914
2915 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2916
2917 // We have overlapping values, or possibly a kill of Other.
2918 // Recursively compute assignments up the dominator tree.
2919 Other.computeAssignment(ValNo: V.OtherVNI->id, Other&: *this);
2920 Val &OtherV = Other.Vals[V.OtherVNI->id];
2921
2922 if (OtherV.ErasableImplicitDef) {
2923 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2924 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2925 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2926 // technically.
2927 //
2928 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2929 // to erase the IMPLICIT_DEF instruction.
2930 //
2931 // Additionally we must keep an IMPLICIT_DEF if we're redefining an incoming
2932 // value.
2933
2934 MachineInstr *OtherImpDef =
2935 Indexes->getInstructionFromIndex(index: V.OtherVNI->def);
2936 MachineBasicBlock *OtherMBB = OtherImpDef->getParent();
2937 if (DefMI &&
2938 (DefMI->getParent() != OtherMBB || LIS->isLiveInToMBB(LR, mbb: OtherMBB))) {
2939 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2940 << " extends into "
2941 << printMBBReference(*DefMI->getParent())
2942 << ", keeping it.\n");
2943 OtherV.mustKeepImplicitDef(TRI: *TRI, ImpDef: *OtherImpDef);
2944 } else if (OtherMBB->hasEHPadSuccessor()) {
2945 // If OtherV is defined in a basic block that has EH pad successors then
2946 // we get the same problem not just if OtherV is live beyond its basic
2947 // block, but beyond the last call instruction in its basic block. Handle
2948 // this case conservatively.
2949 LLVM_DEBUG(
2950 dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2951 << " may be live into EH pad successors, keeping it.\n");
2952 OtherV.mustKeepImplicitDef(TRI: *TRI, ImpDef: *OtherImpDef);
2953 } else {
2954 // We deferred clearing these lanes in case we needed to save them
2955 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2956 }
2957 }
2958
2959 // Allow overlapping PHI values. Any real interference would show up in a
2960 // predecessor, the PHI itself can't introduce any conflicts.
2961 if (VNI->isPHIDef())
2962 return CR_Replace;
2963
2964 // Check for simple erasable conflicts.
2965 if (DefMI->isImplicitDef())
2966 return CR_Erase;
2967
2968 // Include the non-conflict where DefMI is a coalescable copy that kills
2969 // OtherVNI. We still want the copy erased and value numbers merged.
2970 if (CP.isCoalescable(MI: DefMI)) {
2971 // Some of the lanes copied from OtherVNI may be undef, making them undef
2972 // here too.
2973 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2974 return CR_Erase;
2975 }
2976
2977 // This may not be a real conflict if DefMI simply kills Other and defines
2978 // VNI.
2979 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2980 return CR_Keep;
2981
2982 // Handle the case where VNI and OtherVNI can be proven to be identical:
2983 //
2984 // %other = COPY %ext
2985 // %this = COPY %ext <-- Erase this copy
2986 //
2987 if (DefMI->isFullCopy() && !CP.isPartial() &&
2988 valuesIdentical(Value0: VNI, Value1: V.OtherVNI, Other)) {
2989 V.Identical = true;
2990 return CR_Erase;
2991 }
2992
2993 // The remaining checks apply to the lanes, which aren't tracked here. This
2994 // was already decided to be OK via the following CR_Replace condition.
2995 // CR_Replace.
2996 if (SubRangeJoin)
2997 return CR_Replace;
2998
2999 // If the lanes written by this instruction were all undef in OtherVNI, it is
3000 // still safe to join the live ranges. This can't be done with a simple value
3001 // mapping, though - OtherVNI will map to multiple values:
3002 //
3003 // 1 %dst:ssub0 = FOO <-- OtherVNI
3004 // 2 %src = BAR <-- VNI
3005 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
3006 // 4 BAZ killed %dst
3007 // 5 QUUX killed %src
3008 //
3009 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
3010 // handles this complex value mapping.
3011 if ((V.WriteLanes & OtherV.ValidLanes).none())
3012 return CR_Replace;
3013
3014 // If the other live range is killed by DefMI and the live ranges are still
3015 // overlapping, it must be because we're looking at an early clobber def:
3016 //
3017 // %dst<def,early-clobber> = ASM killed %src
3018 //
3019 // In this case, it is illegal to merge the two live ranges since the early
3020 // clobber def would clobber %src before it was read.
3021 if (OtherLRQ.isKill()) {
3022 // This case where the def doesn't overlap the kill is handled above.
3023 assert(VNI->def.isEarlyClobber() &&
3024 "Only early clobber defs can overlap a kill");
3025 return CR_Impossible;
3026 }
3027
3028 // VNI is clobbering live lanes in OtherVNI, but there is still the
3029 // possibility that no instructions actually read the clobbered lanes.
3030 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
3031 // Otherwise Other.RI wouldn't be live here.
3032 if ((TRI->getSubRegIndexLaneMask(SubIdx: Other.SubIdx) & ~V.WriteLanes).none())
3033 return CR_Impossible;
3034
3035 if (TrackSubRegLiveness) {
3036 auto &OtherLI = LIS->getInterval(Reg: Other.Reg);
3037 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
3038 // share the same live range, so we just need to check whether they have
3039 // any conflict bit in their LaneMask.
3040 if (!OtherLI.hasSubRanges()) {
3041 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(SubIdx: Other.SubIdx);
3042 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
3043 }
3044
3045 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
3046 // impossible to resolve the conflict. Otherwise, we can just replace
3047 // OtherVNI because of no real conflict.
3048 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
3049 LaneBitmask OtherMask =
3050 TRI->composeSubRegIndexLaneMask(IdxA: Other.SubIdx, Mask: OtherSR.LaneMask);
3051 if ((OtherMask & V.WriteLanes).none())
3052 continue;
3053
3054 auto OtherSRQ = OtherSR.Query(Idx: VNI->def);
3055 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
3056 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
3057 return CR_Impossible;
3058 }
3059 }
3060
3061 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
3062 return CR_Replace;
3063 }
3064
3065 // We need to verify that no instructions are reading the clobbered lanes.
3066 // To save compile time, we'll only check that locally. Don't allow the
3067 // tainted value to escape the basic block.
3068 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3069 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(mbb: MBB))
3070 return CR_Impossible;
3071
3072 // There are still some things that could go wrong besides clobbered lanes
3073 // being read, for example OtherVNI may be only partially redefined in MBB,
3074 // and some clobbered lanes could escape the block. Save this analysis for
3075 // resolveConflicts() when all values have been mapped. We need to know
3076 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
3077 // that now - the recursive analyzeValue() calls must go upwards in the
3078 // dominator tree.
3079 return CR_Unresolved;
3080}
3081
3082void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
3083 Val &V = Vals[ValNo];
3084 if (V.isAnalyzed()) {
3085 // Recursion should always move up the dominator tree, so ValNo is not
3086 // supposed to reappear before it has been assigned.
3087 assert(Assignments[ValNo] != -1 && "Bad recursion?");
3088 return;
3089 }
3090 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
3091 case CR_Erase:
3092 case CR_Merge:
3093 // Merge this ValNo into OtherVNI.
3094 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
3095 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
3096 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
3097 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
3098 << LR.getValNumInfo(ValNo)->def << " into "
3099 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
3100 << V.OtherVNI->def << " --> @"
3101 << NewVNInfo[Assignments[ValNo]]->def << '\n');
3102 break;
3103 case CR_Replace:
3104 case CR_Unresolved: {
3105 // The other value is going to be pruned if this join is successful.
3106 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
3107 Val &OtherV = Other.Vals[V.OtherVNI->id];
3108 OtherV.Pruned = true;
3109 [[fallthrough]];
3110 }
3111 default:
3112 // This value number needs to go in the final joined live range.
3113 Assignments[ValNo] = NewVNInfo.size();
3114 NewVNInfo.push_back(Elt: LR.getValNumInfo(ValNo));
3115 break;
3116 }
3117}
3118
3119bool JoinVals::mapValues(JoinVals &Other) {
3120 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3121 computeAssignment(ValNo: i, Other);
3122 if (Vals[i].Resolution == CR_Impossible) {
3123 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
3124 << '@' << LR.getValNumInfo(i)->def << '\n');
3125 return false;
3126 }
3127 }
3128 return true;
3129}
3130
3131bool JoinVals::taintExtent(
3132 unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
3133 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
3134 VNInfo *VNI = LR.getValNumInfo(ValNo);
3135 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3136 SlotIndex MBBEnd = Indexes->getMBBEndIdx(mbb: MBB);
3137
3138 // Scan Other.LR from VNI.def to MBBEnd.
3139 LiveInterval::iterator OtherI = Other.LR.find(Pos: VNI->def);
3140 assert(OtherI != Other.LR.end() && "No conflict?");
3141 do {
3142 // OtherI is pointing to a tainted value. Abort the join if the tainted
3143 // lanes escape the block.
3144 SlotIndex End = OtherI->end;
3145 if (End >= MBBEnd) {
3146 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
3147 << OtherI->valno->id << '@' << OtherI->start << '\n');
3148 return false;
3149 }
3150 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3151 << OtherI->valno->id << '@' << OtherI->start << " to "
3152 << End << '\n');
3153 // A dead def is not a problem.
3154 if (End.isDead())
3155 break;
3156 TaintExtent.push_back(Elt: std::make_pair(x&: End, y&: TaintedLanes));
3157
3158 // Check for another def in the MBB.
3159 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3160 break;
3161
3162 // Lanes written by the new def are no longer tainted.
3163 const Val &OV = Other.Vals[OtherI->valno->id];
3164 TaintedLanes &= ~OV.WriteLanes;
3165 if (!OV.RedefVNI)
3166 break;
3167 } while (TaintedLanes.any());
3168 return true;
3169}
3170
3171bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3172 LaneBitmask Lanes) const {
3173 if (MI.isDebugOrPseudoInstr())
3174 return false;
3175 for (const MachineOperand &MO : MI.all_uses()) {
3176 if (MO.getReg() != Reg)
3177 continue;
3178 if (!MO.readsReg())
3179 continue;
3180 unsigned S = TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg());
3181 if ((Lanes & TRI->getSubRegIndexLaneMask(SubIdx: S)).any())
3182 return true;
3183 }
3184 return false;
3185}
3186
3187bool JoinVals::resolveConflicts(JoinVals &Other) {
3188 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3189 Val &V = Vals[i];
3190 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3191 if (V.Resolution != CR_Unresolved)
3192 continue;
3193 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3194 << LR.getValNumInfo(i)->def << ' '
3195 << PrintLaneMask(LaneMask) << '\n');
3196 if (SubRangeJoin)
3197 return false;
3198
3199 ++NumLaneConflicts;
3200 assert(V.OtherVNI && "Inconsistent conflict resolution.");
3201 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3202 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3203
3204 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3205 // join, those lanes will be tainted with a wrong value. Get the extent of
3206 // the tainted lanes.
3207 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3208 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3209 if (!taintExtent(ValNo: i, TaintedLanes, Other, TaintExtent))
3210 // Tainted lanes would extend beyond the basic block.
3211 return false;
3212
3213 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3214
3215 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3216 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3217 MachineBasicBlock::iterator MI = MBB->begin();
3218 if (!VNI->isPHIDef()) {
3219 MI = Indexes->getInstructionFromIndex(index: VNI->def);
3220 if (!VNI->def.isEarlyClobber()) {
3221 // No need to check the instruction defining VNI for reads.
3222 ++MI;
3223 }
3224 }
3225 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3226 "Interference ends on VNI->def. Should have been handled earlier");
3227 MachineInstr *LastMI =
3228 Indexes->getInstructionFromIndex(index: TaintExtent.front().first);
3229 assert(LastMI && "Range must end at a proper instruction");
3230 unsigned TaintNum = 0;
3231 while (true) {
3232 assert(MI != MBB->end() && "Bad LastMI");
3233 if (usesLanes(MI: *MI, Reg: Other.Reg, SubIdx: Other.SubIdx, Lanes: TaintedLanes)) {
3234 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3235 return false;
3236 }
3237 // LastMI is the last instruction to use the current value.
3238 if (&*MI == LastMI) {
3239 if (++TaintNum == TaintExtent.size())
3240 break;
3241 LastMI = Indexes->getInstructionFromIndex(index: TaintExtent[TaintNum].first);
3242 assert(LastMI && "Range must end at a proper instruction");
3243 TaintedLanes = TaintExtent[TaintNum].second;
3244 }
3245 ++MI;
3246 }
3247
3248 // The tainted lanes are unused.
3249 V.Resolution = CR_Replace;
3250 ++NumLaneResolves;
3251 }
3252 return true;
3253}
3254
3255bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3256 Val &V = Vals[ValNo];
3257 if (V.Pruned || V.PrunedComputed)
3258 return V.Pruned;
3259
3260 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3261 return V.Pruned;
3262
3263 // Follow copies up the dominator tree and check if any intermediate value
3264 // has been pruned.
3265 V.PrunedComputed = true;
3266 V.Pruned = Other.isPrunedValue(ValNo: V.OtherVNI->id, Other&: *this);
3267 return V.Pruned;
3268}
3269
3270void JoinVals::pruneValues(JoinVals &Other,
3271 SmallVectorImpl<SlotIndex> &EndPoints,
3272 bool changeInstrs) {
3273 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3274 SlotIndex Def = LR.getValNumInfo(ValNo: i)->def;
3275 switch (Vals[i].Resolution) {
3276 case CR_Keep:
3277 break;
3278 case CR_Replace: {
3279 // This value takes precedence over the value in Other.LR.
3280 LIS->pruneValue(LR&: Other.LR, Kill: Def, EndPoints: &EndPoints);
3281 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3282 // instructions are only inserted to provide a live-out value for PHI
3283 // predecessors, so the instruction should simply go away once its value
3284 // has been replaced.
3285 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3286 bool EraseImpDef =
3287 OtherV.ErasableImplicitDef && OtherV.Resolution == CR_Keep;
3288 if (!Def.isBlock()) {
3289 if (changeInstrs) {
3290 // Remove <def,read-undef> flags. This def is now a partial redef.
3291 // Also remove dead flags since the joined live range will
3292 // continue past this instruction.
3293 for (MachineOperand &MO :
3294 Indexes->getInstructionFromIndex(index: Def)->all_defs()) {
3295 if (MO.getReg() == Reg) {
3296 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3297 MO.setIsUndef(false);
3298 MO.setIsDead(false);
3299 }
3300 }
3301 }
3302 // This value will reach instructions below, but we need to make sure
3303 // the live range also reaches the instruction at Def.
3304 if (!EraseImpDef)
3305 EndPoints.push_back(Elt: Def);
3306 }
3307 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3308 << ": " << Other.LR << '\n');
3309 break;
3310 }
3311 case CR_Erase:
3312 case CR_Merge:
3313 if (isPrunedValue(ValNo: i, Other)) {
3314 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3315 // We can no longer trust the value mapping computed by
3316 // computeAssignment(), the value that was originally copied could have
3317 // been replaced.
3318 LIS->pruneValue(LR, Kill: Def, EndPoints: &EndPoints);
3319 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3320 << Def << ": " << LR << '\n');
3321 }
3322 break;
3323 case CR_Unresolved:
3324 case CR_Impossible:
3325 llvm_unreachable("Unresolved conflicts");
3326 }
3327 }
3328}
3329
3330// Check if the segment consists of a copied live-through value (i.e. the copy
3331// in the block only extended the liveness, of an undef value which we may need
3332// to handle).
3333static bool isLiveThrough(const LiveQueryResult Q) {
3334 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3335}
3336
3337/// Consider the following situation when coalescing the copy between
3338/// %31 and %45 at 800. (The vertical lines represent live range segments.)
3339///
3340/// Main range Subrange 0004 (sub2)
3341/// %31 %45 %31 %45
3342/// 544 %45 = COPY %28 + +
3343/// | v1 | v1
3344/// 560B bb.1: + +
3345/// 624 = %45.sub2 | v2 | v2
3346/// 800 %31 = COPY %45 + + + +
3347/// | v0 | v0
3348/// 816 %31.sub1 = ... + |
3349/// 880 %30 = COPY %31 | v1 +
3350/// 928 %45 = COPY %30 | + +
3351/// | | v0 | v0 <--+
3352/// 992B ; backedge -> bb.1 | + + |
3353/// 1040 = %31.sub0 + |
3354/// This value must remain
3355/// live-out!
3356///
3357/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3358/// redundant, since it copies the value from %45 back into it. The
3359/// conflict resolution for the main range determines that %45.v0 is
3360/// to be erased, which is ok since %31.v1 is identical to it.
3361/// The problem happens with the subrange for sub2: it has to be live
3362/// on exit from the block, but since 928 was actually a point of
3363/// definition of %45.sub2, %45.sub2 was not live immediately prior
3364/// to that definition. As a result, when 928 was erased, the value v0
3365/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3366/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3367/// providing an incorrect value to the use at 624.
3368///
3369/// Since the main-range values %31.v1 and %45.v0 were proved to be
3370/// identical, the corresponding values in subranges must also be the
3371/// same. A redundant copy is removed because it's not needed, and not
3372/// because it copied an undefined value, so any liveness that originated
3373/// from that copy cannot disappear. When pruning a value that started
3374/// at the removed copy, the corresponding identical value must be
3375/// extended to replace it.
3376void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3377 // Look for values being erased.
3378 bool DidPrune = false;
3379 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3380 Val &V = Vals[i];
3381 // We should trigger in all cases in which eraseInstrs() does something.
3382 // match what eraseInstrs() is doing, print a message so
3383 if (V.Resolution != CR_Erase &&
3384 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3385 continue;
3386
3387 // Check subranges at the point where the copy will be removed.
3388 SlotIndex Def = LR.getValNumInfo(ValNo: i)->def;
3389 SlotIndex OtherDef;
3390 if (V.Identical)
3391 OtherDef = V.OtherVNI->def;
3392
3393 // Print message so mismatches with eraseInstrs() can be diagnosed.
3394 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3395 << '\n');
3396 for (LiveInterval::SubRange &S : LI.subranges()) {
3397 LiveQueryResult Q = S.Query(Idx: Def);
3398
3399 // If a subrange starts at the copy then an undefined value has been
3400 // copied and we must remove that subrange value as well.
3401 VNInfo *ValueOut = Q.valueOutOrDead();
3402 if (ValueOut != nullptr &&
3403 (Q.valueIn() == nullptr ||
3404 (V.Identical && V.Resolution == CR_Erase && ValueOut->def == Def))) {
3405 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3406 << " at " << Def << "\n");
3407 SmallVector<SlotIndex, 8> EndPoints;
3408 LIS->pruneValue(LR&: S, Kill: Def, EndPoints: &EndPoints);
3409 DidPrune = true;
3410 // Mark value number as unused.
3411 ValueOut->markUnused();
3412
3413 if (V.Identical && S.Query(Idx: OtherDef).valueOutOrDead()) {
3414 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3415 // then we can't simply prune V from S. V needs to be replaced
3416 // with V.OtherVNI.
3417 LIS->extendToIndices(LR&: S, Indices: EndPoints);
3418 }
3419
3420 // We may need to eliminate the subrange if the copy introduced a live
3421 // out undef value.
3422 if (ValueOut->isPHIDef())
3423 ShrinkMask |= S.LaneMask;
3424 continue;
3425 }
3426
3427 // If a subrange ends at the copy, then a value was copied but only
3428 // partially used later. Shrink the subregister range appropriately.
3429 //
3430 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3431 // conservatively correct.
3432 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3433 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3434 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3435 << PrintLaneMask(S.LaneMask) << " at " << Def
3436 << "\n");
3437 ShrinkMask |= S.LaneMask;
3438 }
3439 }
3440 }
3441 if (DidPrune)
3442 LI.removeEmptySubRanges();
3443}
3444
3445/// Check if any of the subranges of @p LI contain a definition at @p Def.
3446static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3447 for (LiveInterval::SubRange &SR : LI.subranges()) {
3448 if (VNInfo *VNI = SR.Query(Idx: Def).valueOutOrDead())
3449 if (VNI->def == Def)
3450 return true;
3451 }
3452 return false;
3453}
3454
3455void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3456 assert(&static_cast<LiveRange &>(LI) == &LR);
3457
3458 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3459 if (Vals[i].Resolution != CR_Keep)
3460 continue;
3461 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3462 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, Def: VNI->def))
3463 continue;
3464 Vals[i].Pruned = true;
3465 ShrinkMainRange = true;
3466 }
3467}
3468
3469void JoinVals::removeImplicitDefs() {
3470 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3471 Val &V = Vals[i];
3472 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3473 continue;
3474
3475 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3476 VNI->markUnused();
3477 LR.removeValNo(ValNo: VNI);
3478 }
3479}
3480
3481void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr *> &ErasedInstrs,
3482 SmallVectorImpl<Register> &ShrinkRegs,
3483 LiveInterval *LI) {
3484 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3485 // Get the def location before markUnused() below invalidates it.
3486 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3487 SlotIndex Def = VNI->def;
3488 switch (Vals[i].Resolution) {
3489 case CR_Keep: {
3490 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3491 // longer. The IMPLICIT_DEF instructions are only inserted by
3492 // PHIElimination to guarantee that all PHI predecessors have a value.
3493 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3494 break;
3495 // Remove value number i from LR.
3496 // For intervals with subranges, removing a segment from the main range
3497 // may require extending the previous segment: for each definition of
3498 // a subregister, there will be a corresponding def in the main range.
3499 // That def may fall in the middle of a segment from another subrange.
3500 // In such cases, removing this def from the main range must be
3501 // complemented by extending the main range to account for the liveness
3502 // of the other subrange.
3503 // The new end point of the main range segment to be extended.
3504 SlotIndex NewEnd;
3505 if (LI != nullptr) {
3506 LiveRange::iterator I = LR.FindSegmentContaining(Idx: Def);
3507 assert(I != LR.end());
3508 // Do not extend beyond the end of the segment being removed.
3509 // The segment may have been pruned in preparation for joining
3510 // live ranges.
3511 NewEnd = I->end;
3512 }
3513
3514 LR.removeValNo(ValNo: VNI);
3515 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3516 // make it appear like an unused value number.
3517 VNI->markUnused();
3518
3519 if (LI != nullptr && LI->hasSubRanges()) {
3520 assert(static_cast<LiveRange *>(LI) == &LR);
3521 // Determine the end point based on the subrange information:
3522 // minimum of (earliest def of next segment,
3523 // latest end point of containing segment)
3524 SlotIndex ED, LE;
3525 for (LiveInterval::SubRange &SR : LI->subranges()) {
3526 LiveRange::iterator I = SR.find(Pos: Def);
3527 if (I == SR.end())
3528 continue;
3529 if (I->start > Def)
3530 ED = ED.isValid() ? std::min(a: ED, b: I->start) : I->start;
3531 else
3532 LE = LE.isValid() ? std::max(a: LE, b: I->end) : I->end;
3533 }
3534 if (LE.isValid())
3535 NewEnd = std::min(a: NewEnd, b: LE);
3536 if (ED.isValid())
3537 NewEnd = std::min(a: NewEnd, b: ED);
3538
3539 // We only want to do the extension if there was a subrange that
3540 // was live across Def.
3541 if (LE.isValid()) {
3542 LiveRange::iterator S = LR.find(Pos: Def);
3543 if (S != LR.begin())
3544 std::prev(x: S)->end = NewEnd;
3545 }
3546 }
3547 LLVM_DEBUG({
3548 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3549 if (LI != nullptr)
3550 dbgs() << "\t\t LHS = " << *LI << '\n';
3551 });
3552 [[fallthrough]];
3553 }
3554
3555 case CR_Erase: {
3556 MachineInstr *MI = Indexes->getInstructionFromIndex(index: Def);
3557 assert(MI && "No instruction to erase");
3558 if (MI->isCopy()) {
3559 Register Reg = MI->getOperand(i: 1).getReg();
3560 if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3561 ShrinkRegs.push_back(Elt: Reg);
3562 }
3563 ErasedInstrs.insert(Ptr: MI);
3564 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3565 LIS->RemoveMachineInstrFromMaps(MI&: *MI);
3566 MI->eraseFromParent();
3567 break;
3568 }
3569 default:
3570 break;
3571 }
3572 }
3573}
3574
3575void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3576 LaneBitmask LaneMask,
3577 const CoalescerPair &CP) {
3578 SmallVector<VNInfo *, 16> NewVNInfo;
3579 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, NewVNInfo,
3580 CP, LIS, TRI, true, true);
3581 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, NewVNInfo,
3582 CP, LIS, TRI, true, true);
3583
3584 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3585 // We should be able to resolve all conflicts here as we could successfully do
3586 // it on the mainrange already. There is however a problem when multiple
3587 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3588 // interferences.
3589 if (!LHSVals.mapValues(Other&: RHSVals) || !RHSVals.mapValues(Other&: LHSVals)) {
3590 // We already determined that it is legal to merge the intervals, so this
3591 // should never fail.
3592 llvm_unreachable("*** Couldn't join subrange!\n");
3593 }
3594 if (!LHSVals.resolveConflicts(Other&: RHSVals) ||
3595 !RHSVals.resolveConflicts(Other&: LHSVals)) {
3596 // We already determined that it is legal to merge the intervals, so this
3597 // should never fail.
3598 llvm_unreachable("*** Couldn't join subrange!\n");
3599 }
3600
3601 // The merging algorithm in LiveInterval::join() can't handle conflicting
3602 // value mappings, so we need to remove any live ranges that overlap a
3603 // CR_Replace resolution. Collect a set of end points that can be used to
3604 // restore the live range after joining.
3605 SmallVector<SlotIndex, 8> EndPoints;
3606 LHSVals.pruneValues(Other&: RHSVals, EndPoints, changeInstrs: false);
3607 RHSVals.pruneValues(Other&: LHSVals, EndPoints, changeInstrs: false);
3608
3609 LHSVals.removeImplicitDefs();
3610 RHSVals.removeImplicitDefs();
3611
3612 assert(LRange.verify() && RRange.verify());
3613
3614 // Join RRange into LHS.
3615 LRange.join(Other&: RRange, ValNoAssignments: LHSVals.getAssignments(), RHSValNoAssignments: RHSVals.getAssignments(),
3616 NewVNInfo);
3617
3618 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) << ' '
3619 << LRange << "\n");
3620 if (EndPoints.empty())
3621 return;
3622
3623 // Recompute the parts of the live range we had to remove because of
3624 // CR_Replace conflicts.
3625 LLVM_DEBUG({
3626 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3627 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3628 dbgs() << EndPoints[i];
3629 if (i != n - 1)
3630 dbgs() << ',';
3631 }
3632 dbgs() << ": " << LRange << '\n';
3633 });
3634 LIS->extendToIndices(LR&: LRange, Indices: EndPoints);
3635}
3636
3637void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3638 const LiveRange &ToMerge,
3639 LaneBitmask LaneMask,
3640 CoalescerPair &CP,
3641 unsigned ComposeSubRegIdx) {
3642 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3643 LI.refineSubRanges(
3644 Allocator, LaneMask,
3645 Apply: [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3646 if (SR.empty()) {
3647 SR.assign(Other: ToMerge, Allocator);
3648 } else {
3649 // joinSubRegRange() destroys the merged range, so we need a copy.
3650 LiveRange RangeCopy(ToMerge, Allocator);
3651 joinSubRegRanges(LRange&: SR, RRange&: RangeCopy, LaneMask: SR.LaneMask, CP);
3652 }
3653 },
3654 Indexes: *LIS->getSlotIndexes(), TRI: *TRI, ComposeSubRegIdx);
3655}
3656
3657bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3658 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3659 return false;
3660 auto &Counter = LargeLIVisitCounter[LI.reg()];
3661 if (Counter < LargeIntervalFreqThreshold) {
3662 Counter++;
3663 return false;
3664 }
3665 return true;
3666}
3667
3668bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3669 SmallVector<VNInfo *, 16> NewVNInfo;
3670 LiveInterval &RHS = LIS->getInterval(Reg: CP.getSrcReg());
3671 LiveInterval &LHS = LIS->getInterval(Reg: CP.getDstReg());
3672 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(RC: *CP.getNewRC());
3673 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3674 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3675 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3676 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3677
3678 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3679
3680 if (isHighCostLiveInterval(LI&: LHS) || isHighCostLiveInterval(LI&: RHS))
3681 return false;
3682
3683 // First compute NewVNInfo and the simple value mappings.
3684 // Detect impossible conflicts early.
3685 if (!LHSVals.mapValues(Other&: RHSVals) || !RHSVals.mapValues(Other&: LHSVals))
3686 return false;
3687
3688 // Some conflicts can only be resolved after all values have been mapped.
3689 if (!LHSVals.resolveConflicts(Other&: RHSVals) || !RHSVals.resolveConflicts(Other&: LHSVals))
3690 return false;
3691
3692 // All clear, the live ranges can be merged.
3693 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3694 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3695
3696 // Transform lanemasks from the LHS to masks in the coalesced register and
3697 // create initial subranges if necessary.
3698 unsigned DstIdx = CP.getDstIdx();
3699 if (!LHS.hasSubRanges()) {
3700 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3701 : TRI->getSubRegIndexLaneMask(SubIdx: DstIdx);
3702 // LHS must support subregs or we wouldn't be in this codepath.
3703 assert(Mask.any());
3704 LHS.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: LHS);
3705 } else if (DstIdx != 0) {
3706 // Transform LHS lanemasks to new register class if necessary.
3707 for (LiveInterval::SubRange &R : LHS.subranges()) {
3708 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(IdxA: DstIdx, Mask: R.LaneMask);
3709 R.LaneMask = Mask;
3710 }
3711 }
3712 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3713 << '\n');
3714
3715 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3716 unsigned SrcIdx = CP.getSrcIdx();
3717 if (!RHS.hasSubRanges()) {
3718 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3719 : TRI->getSubRegIndexLaneMask(SubIdx: SrcIdx);
3720 mergeSubRangeInto(LI&: LHS, ToMerge: RHS, LaneMask: Mask, CP, ComposeSubRegIdx: DstIdx);
3721 } else {
3722 // Pair up subranges and merge.
3723 for (LiveInterval::SubRange &R : RHS.subranges()) {
3724 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(IdxA: SrcIdx, Mask: R.LaneMask);
3725 mergeSubRangeInto(LI&: LHS, ToMerge: R, LaneMask: Mask, CP, ComposeSubRegIdx: DstIdx);
3726 }
3727 }
3728 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3729
3730 // Pruning implicit defs from subranges may result in the main range
3731 // having stale segments.
3732 LHSVals.pruneMainSegments(LI&: LHS, ShrinkMainRange);
3733
3734 LHSVals.pruneSubRegValues(LI&: LHS, ShrinkMask);
3735 RHSVals.pruneSubRegValues(LI&: LHS, ShrinkMask);
3736 } else if (TrackSubRegLiveness && !CP.getDstIdx() && CP.getSrcIdx()) {
3737 LHS.createSubRangeFrom(Allocator&: LIS->getVNInfoAllocator(),
3738 LaneMask: CP.getNewRC()->getLaneMask(), CopyFrom: LHS);
3739 mergeSubRangeInto(LI&: LHS, ToMerge: RHS, LaneMask: TRI->getSubRegIndexLaneMask(SubIdx: CP.getSrcIdx()), CP,
3740 ComposeSubRegIdx: CP.getDstIdx());
3741 LHSVals.pruneMainSegments(LI&: LHS, ShrinkMainRange);
3742 LHSVals.pruneSubRegValues(LI&: LHS, ShrinkMask);
3743 }
3744
3745 // The merging algorithm in LiveInterval::join() can't handle conflicting
3746 // value mappings, so we need to remove any live ranges that overlap a
3747 // CR_Replace resolution. Collect a set of end points that can be used to
3748 // restore the live range after joining.
3749 SmallVector<SlotIndex, 8> EndPoints;
3750 LHSVals.pruneValues(Other&: RHSVals, EndPoints, changeInstrs: true);
3751 RHSVals.pruneValues(Other&: LHSVals, EndPoints, changeInstrs: true);
3752
3753 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3754 // registers to require trimming.
3755 SmallVector<Register, 8> ShrinkRegs;
3756 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, LI: &LHS);
3757 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3758 while (!ShrinkRegs.empty())
3759 shrinkToUses(LI: &LIS->getInterval(Reg: ShrinkRegs.pop_back_val()));
3760
3761 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3762 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3763
3764 // If the RHS covers any PHI locations that were tracked for debug-info, we
3765 // must update tracking information to reflect the join.
3766 auto RegIt = RegToPHIIdx.find(Val: CP.getSrcReg());
3767 if (RegIt != RegToPHIIdx.end()) {
3768 // Iterate over all the debug instruction numbers assigned this register.
3769 for (unsigned InstID : RegIt->second) {
3770 auto PHIIt = PHIValToPos.find(Val: InstID);
3771 assert(PHIIt != PHIValToPos.end());
3772 const SlotIndex &SI = PHIIt->second.SI;
3773
3774 // Does the RHS cover the position of this PHI?
3775 auto LII = RHS.find(Pos: SI);
3776 if (LII == RHS.end() || LII->start > SI)
3777 continue;
3778
3779 // Accept two kinds of subregister movement:
3780 // * When we merge from one register class into a larger register:
3781 // %1:gr16 = some-inst
3782 // ->
3783 // %2:gr32.sub_16bit = some-inst
3784 // * When the PHI is already in a subregister, and the larger class
3785 // is coalesced:
3786 // %2:gr32.sub_16bit = some-inst
3787 // %3:gr32 = COPY %2
3788 // ->
3789 // %3:gr32.sub_16bit = some-inst
3790 // Test for subregister move:
3791 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3792 // If we're moving between different subregisters, ignore this join.
3793 // The PHI will not get a location, dropping variable locations.
3794 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3795 continue;
3796
3797 // Update our tracking of where the PHI is.
3798 PHIIt->second.Reg = CP.getDstReg();
3799
3800 // If we merge into a sub-register of a larger class (test above),
3801 // update SubReg.
3802 if (CP.getSrcIdx() != 0)
3803 PHIIt->second.SubReg = CP.getSrcIdx();
3804 }
3805
3806 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3807 // different VRegs now. Copy old collection of debug instruction numbers and
3808 // erase the old one:
3809 auto InstrNums = RegIt->second;
3810 RegToPHIIdx.erase(I: RegIt);
3811
3812 // There might already be PHIs being tracked in the destination VReg. Insert
3813 // into an existing tracking collection, or insert a new one.
3814 RegIt = RegToPHIIdx.find(Val: CP.getDstReg());
3815 if (RegIt != RegToPHIIdx.end())
3816 llvm::append_range(C&: RegIt->second, R&: InstrNums);
3817 else
3818 RegToPHIIdx.insert(KV: {CP.getDstReg(), InstrNums});
3819 }
3820
3821 // Join RHS into LHS.
3822 LHS.join(Other&: RHS, ValNoAssignments: LHSVals.getAssignments(), RHSValNoAssignments: RHSVals.getAssignments(), NewVNInfo);
3823
3824 // Kill flags are going to be wrong if the live ranges were overlapping.
3825 // Eventually, we should simply clear all kill flags when computing live
3826 // ranges. They are reinserted after register allocation.
3827 MRI->clearKillFlags(Reg: LHS.reg());
3828 MRI->clearKillFlags(Reg: RHS.reg());
3829
3830 if (!EndPoints.empty()) {
3831 // Recompute the parts of the live range we had to remove because of
3832 // CR_Replace conflicts.
3833 LLVM_DEBUG({
3834 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3835 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3836 dbgs() << EndPoints[i];
3837 if (i != n - 1)
3838 dbgs() << ',';
3839 }
3840 dbgs() << ": " << LHS << '\n';
3841 });
3842 LIS->extendToIndices(LR&: (LiveRange &)LHS, Indices: EndPoints);
3843 }
3844
3845 return true;
3846}
3847
3848bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3849 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3850}
3851
3852void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) {
3853 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3854 SmallVector<MachineInstr *, 8> ToInsert;
3855
3856 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3857 // vreg => DbgValueLoc map.
3858 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3859 for (auto *X : ToInsert) {
3860 for (const auto &Op : X->debug_operands()) {
3861 if (Op.isReg() && Op.getReg().isVirtual())
3862 DbgVRegToValues[Op.getReg()].push_back(x: {Slot, X});
3863 }
3864 }
3865
3866 ToInsert.clear();
3867 };
3868
3869 // Iterate over all instructions, collecting them into the ToInsert vector.
3870 // Once a non-debug instruction is found, record the slot index of the
3871 // collected DBG_VALUEs.
3872 for (auto &MBB : MF) {
3873 SlotIndex CurrentSlot = Slots.getMBBStartIdx(mbb: &MBB);
3874
3875 for (auto &MI : MBB) {
3876 if (MI.isDebugValue()) {
3877 if (any_of(Range: MI.debug_operands(), P: [](const MachineOperand &MO) {
3878 return MO.isReg() && MO.getReg().isVirtual();
3879 }))
3880 ToInsert.push_back(Elt: &MI);
3881 } else if (!MI.isDebugOrPseudoInstr()) {
3882 CurrentSlot = Slots.getInstructionIndex(MI);
3883 CloseNewDVRange(CurrentSlot);
3884 }
3885 }
3886
3887 // Close range of DBG_VALUEs at the end of blocks.
3888 CloseNewDVRange(Slots.getMBBEndIdx(mbb: &MBB));
3889 }
3890
3891 // Sort all DBG_VALUEs we've seen by slot number.
3892 for (auto &Pair : DbgVRegToValues)
3893 llvm::sort(C&: Pair.second);
3894}
3895
3896void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3897 LiveRange &LHS,
3898 JoinVals &LHSVals,
3899 LiveRange &RHS,
3900 JoinVals &RHSVals) {
3901 auto ScanForDstReg = [&](Register Reg) {
3902 checkMergingChangesDbgValuesImpl(Reg, OtherRange&: RHS, RegRange&: LHS, Vals2&: LHSVals);
3903 };
3904
3905 auto ScanForSrcReg = [&](Register Reg) {
3906 checkMergingChangesDbgValuesImpl(Reg, OtherRange&: LHS, RegRange&: RHS, Vals2&: RHSVals);
3907 };
3908
3909 // Scan for unsound updates of both the source and destination register.
3910 ScanForSrcReg(CP.getSrcReg());
3911 ScanForDstReg(CP.getDstReg());
3912}
3913
3914void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3915 LiveRange &OtherLR,
3916 LiveRange &RegLR,
3917 JoinVals &RegVals) {
3918 // Are there any DBG_VALUEs to examine?
3919 auto VRegMapIt = DbgVRegToValues.find(Val: Reg);
3920 if (VRegMapIt == DbgVRegToValues.end())
3921 return;
3922
3923 auto &DbgValueSet = VRegMapIt->second;
3924 auto DbgValueSetIt = DbgValueSet.begin();
3925 auto SegmentIt = OtherLR.begin();
3926
3927 bool LastUndefResult = false;
3928 SlotIndex LastUndefIdx;
3929
3930 // If the "Other" register is live at a slot Idx, test whether Reg can
3931 // safely be merged with it, or should be marked undef.
3932 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3933 &LastUndefIdx](SlotIndex Idx) -> bool {
3934 // Our worst-case performance typically happens with asan, causing very
3935 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3936 // result for this edge-case.
3937 if (LastUndefIdx == Idx)
3938 return LastUndefResult;
3939
3940 // If the other range was live, and Reg's was not, the register coalescer
3941 // will not have tried to resolve any conflicts. We don't know whether
3942 // the DBG_VALUE will refer to the same value number, so it must be made
3943 // undef.
3944 auto OtherIt = RegLR.find(Pos: Idx);
3945 if (OtherIt == RegLR.end())
3946 return true;
3947
3948 // Both the registers were live: examine the conflict resolution record for
3949 // the value number Reg refers to. CR_Keep meant that this value number
3950 // "won" and the merged register definitely refers to that value. CR_Erase
3951 // means the value number was a redundant copy of the other value, which
3952 // was coalesced and Reg deleted. It's safe to refer to the other register
3953 // (which will be the source of the copy).
3954 auto Resolution = RegVals.getResolution(Num: OtherIt->valno->id);
3955 LastUndefResult =
3956 Resolution != JoinVals::CR_Keep && Resolution != JoinVals::CR_Erase;
3957 LastUndefIdx = Idx;
3958 return LastUndefResult;
3959 };
3960
3961 // Iterate over both the live-range of the "Other" register, and the set of
3962 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3963 // slot index. This relies on the DbgValueSet being ordered.
3964 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3965 if (DbgValueSetIt->first < SegmentIt->end) {
3966 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3967 // set it undef.
3968 if (DbgValueSetIt->first >= SegmentIt->start) {
3969 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3970 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3971 if (HasReg && ShouldUndefReg) {
3972 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3973 DbgValueSetIt->second->setDebugValueUndef();
3974 continue;
3975 }
3976 }
3977 ++DbgValueSetIt;
3978 } else {
3979 ++SegmentIt;
3980 }
3981 }
3982}
3983
3984namespace {
3985
3986/// Information concerning MBB coalescing priority.
3987struct MBBPriorityInfo {
3988 MachineBasicBlock *MBB;
3989 unsigned Depth;
3990 bool IsSplit;
3991
3992 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3993 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3994};
3995
3996} // end anonymous namespace
3997
3998/// C-style comparator that sorts first based on the loop depth of the basic
3999/// block (the unsigned), and then on the MBB number.
4000///
4001/// EnableGlobalCopies assumes that the primary sort key is loop depth.
4002static int compareMBBPriority(const MBBPriorityInfo *LHS,
4003 const MBBPriorityInfo *RHS) {
4004 // Deeper loops first
4005 if (LHS->Depth != RHS->Depth)
4006 return LHS->Depth > RHS->Depth ? -1 : 1;
4007
4008 // Try to unsplit critical edges next.
4009 if (LHS->IsSplit != RHS->IsSplit)
4010 return LHS->IsSplit ? -1 : 1;
4011
4012 // Prefer blocks that are more connected in the CFG. This takes care of
4013 // the most difficult copies first while intervals are short.
4014 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
4015 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
4016 if (cl != cr)
4017 return cl > cr ? -1 : 1;
4018
4019 // As a last resort, sort by block number.
4020 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
4021}
4022
4023/// \returns true if the given copy uses or defines a local live range.
4024static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
4025 if (!Copy->isCopy())
4026 return false;
4027
4028 if (Copy->getOperand(i: 1).isUndef())
4029 return false;
4030
4031 Register SrcReg = Copy->getOperand(i: 1).getReg();
4032 Register DstReg = Copy->getOperand(i: 0).getReg();
4033 if (SrcReg.isPhysical() || DstReg.isPhysical())
4034 return false;
4035
4036 return LIS->intervalIsInOneMBB(LI: LIS->getInterval(Reg: SrcReg)) ||
4037 LIS->intervalIsInOneMBB(LI: LIS->getInterval(Reg: DstReg));
4038}
4039
4040void RegisterCoalescer::lateLiveIntervalUpdate() {
4041 for (Register reg : ToBeUpdated) {
4042 if (!LIS->hasInterval(Reg: reg))
4043 continue;
4044 LiveInterval &LI = LIS->getInterval(Reg: reg);
4045 shrinkToUses(LI: &LI, Dead: &DeadDefs);
4046 if (!DeadDefs.empty())
4047 eliminateDeadDefs();
4048 }
4049 ToBeUpdated.clear();
4050}
4051
4052bool RegisterCoalescer::copyCoalesceWorkList(
4053 MutableArrayRef<MachineInstr *> CurrList) {
4054 bool Progress = false;
4055 SmallPtrSet<MachineInstr *, 4> CurrentErasedInstrs;
4056 for (MachineInstr *&MI : CurrList) {
4057 if (!MI)
4058 continue;
4059 // Skip instruction pointers that have already been erased, for example by
4060 // dead code elimination.
4061 if (ErasedInstrs.count(Ptr: MI) || CurrentErasedInstrs.count(Ptr: MI)) {
4062 MI = nullptr;
4063 continue;
4064 }
4065 bool Again = false;
4066 bool Success = joinCopy(CopyMI: MI, Again, CurrentErasedInstrs);
4067 Progress |= Success;
4068 if (Success || !Again)
4069 MI = nullptr;
4070 }
4071 // Clear instructions not recorded in `ErasedInstrs` but erased.
4072 if (!CurrentErasedInstrs.empty()) {
4073 for (MachineInstr *&MI : CurrList) {
4074 if (MI && CurrentErasedInstrs.count(Ptr: MI))
4075 MI = nullptr;
4076 }
4077 for (MachineInstr *&MI : WorkList) {
4078 if (MI && CurrentErasedInstrs.count(Ptr: MI))
4079 MI = nullptr;
4080 }
4081 }
4082 return Progress;
4083}
4084
4085/// Check if DstReg is a terminal node.
4086/// I.e., it does not have any affinity other than \p Copy.
4087static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
4088 const MachineRegisterInfo *MRI) {
4089 assert(Copy.isCopyLike());
4090 // Check if the destination of this copy as any other affinity.
4091 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(Reg: DstReg))
4092 if (&MI != &Copy && MI.isCopyLike())
4093 return false;
4094 return true;
4095}
4096
4097bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
4098 assert(Copy.isCopyLike());
4099 if (!UseTerminalRule)
4100 return false;
4101 Register SrcReg, DstReg;
4102 unsigned SrcSubReg = 0, DstSubReg = 0;
4103 if (!isMoveInstr(tri: *TRI, MI: &Copy, Src&: SrcReg, Dst&: DstReg, SrcSub&: SrcSubReg, DstSub&: DstSubReg))
4104 return false;
4105 // Check if the destination of this copy has any other affinity.
4106 if (DstReg.isPhysical() ||
4107 // If SrcReg is a physical register, the copy won't be coalesced.
4108 // Ignoring it may have other side effect (like missing
4109 // rematerialization). So keep it.
4110 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
4111 return false;
4112
4113 // DstReg is a terminal node. Check if it interferes with any other
4114 // copy involving SrcReg.
4115 const MachineBasicBlock *OrigBB = Copy.getParent();
4116 const LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
4117 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(Reg: SrcReg)) {
4118 // Technically we should check if the weight of the new copy is
4119 // interesting compared to the other one and update the weight
4120 // of the copies accordingly. However, this would only work if
4121 // we would gather all the copies first then coalesce, whereas
4122 // right now we interleave both actions.
4123 // For now, just consider the copies that are in the same block.
4124 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
4125 continue;
4126 Register OtherSrcReg, OtherReg;
4127 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
4128 if (!isMoveInstr(tri: *TRI, MI: &Copy, Src&: OtherSrcReg, Dst&: OtherReg, SrcSub&: OtherSrcSubReg,
4129 DstSub&: OtherSubReg))
4130 return false;
4131 if (OtherReg == SrcReg)
4132 OtherReg = OtherSrcReg;
4133 // Check if OtherReg is a non-terminal.
4134 if (OtherReg.isPhysical() || isTerminalReg(DstReg: OtherReg, Copy: MI, MRI))
4135 continue;
4136 // Check that OtherReg interfere with DstReg.
4137 if (LIS->getInterval(Reg: OtherReg).overlaps(other: DstLI)) {
4138 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
4139 << '\n');
4140 return true;
4141 }
4142 }
4143 return false;
4144}
4145
4146void RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
4147 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
4148
4149 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4150 // yet, it might invalidate the iterator.
4151 const unsigned PrevSize = WorkList.size();
4152 if (JoinGlobalCopies) {
4153 SmallVector<MachineInstr *, 2> LocalTerminals;
4154 SmallVector<MachineInstr *, 2> GlobalTerminals;
4155 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4156 // are not inherently easier to resolve, but slightly preferable until we
4157 // have local live range splitting. In particular this is required by
4158 // cmp+jmp macro fusion.
4159 for (MachineInstr &MI : *MBB) {
4160 if (!MI.isCopyLike())
4161 continue;
4162 bool ApplyTerminalRule = applyTerminalRule(Copy: MI);
4163 if (isLocalCopy(Copy: &MI, LIS)) {
4164 if (ApplyTerminalRule)
4165 LocalTerminals.push_back(Elt: &MI);
4166 else
4167 LocalWorkList.push_back(Elt: &MI);
4168 } else {
4169 if (ApplyTerminalRule)
4170 GlobalTerminals.push_back(Elt: &MI);
4171 else
4172 WorkList.push_back(Elt: &MI);
4173 }
4174 }
4175 // Append the copies evicted by the terminal rule at the end of the list.
4176 LocalWorkList.append(in_start: LocalTerminals.begin(), in_end: LocalTerminals.end());
4177 WorkList.append(in_start: GlobalTerminals.begin(), in_end: GlobalTerminals.end());
4178 } else {
4179 SmallVector<MachineInstr *, 2> Terminals;
4180 for (MachineInstr &MII : *MBB)
4181 if (MII.isCopyLike()) {
4182 if (applyTerminalRule(Copy: MII))
4183 Terminals.push_back(Elt: &MII);
4184 else
4185 WorkList.push_back(Elt: &MII);
4186 }
4187 // Append the copies evicted by the terminal rule at the end of the list.
4188 WorkList.append(in_start: Terminals.begin(), in_end: Terminals.end());
4189 }
4190 // Try coalescing the collected copies immediately, and remove the nulls.
4191 // This prevents the WorkList from getting too large since most copies are
4192 // joinable on the first attempt.
4193 MutableArrayRef<MachineInstr *> CurrList(WorkList.begin() + PrevSize,
4194 WorkList.end());
4195 if (copyCoalesceWorkList(CurrList))
4196 WorkList.erase(
4197 CS: std::remove(first: WorkList.begin() + PrevSize, last: WorkList.end(), value: nullptr),
4198 CE: WorkList.end());
4199}
4200
4201void RegisterCoalescer::coalesceLocals() {
4202 copyCoalesceWorkList(CurrList: LocalWorkList);
4203 for (MachineInstr *MI : LocalWorkList) {
4204 if (MI)
4205 WorkList.push_back(Elt: MI);
4206 }
4207 LocalWorkList.clear();
4208}
4209
4210void RegisterCoalescer::joinAllIntervals() {
4211 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4212 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4213
4214 std::vector<MBBPriorityInfo> MBBs;
4215 MBBs.reserve(n: MF->size());
4216 for (MachineBasicBlock &MBB : *MF) {
4217 MBBs.push_back(x: MBBPriorityInfo(&MBB, Loops->getLoopDepth(BB: &MBB),
4218 JoinSplitEdges && isSplitEdge(MBB: &MBB)));
4219 }
4220 array_pod_sort(Start: MBBs.begin(), End: MBBs.end(), Compare: compareMBBPriority);
4221
4222 // Coalesce intervals in MBB priority order.
4223 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4224 for (MBBPriorityInfo &MBB : MBBs) {
4225 // Try coalescing the collected local copies for deeper loops.
4226 if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4227 coalesceLocals();
4228 CurrDepth = MBB.Depth;
4229 }
4230 copyCoalesceInMBB(MBB: MBB.MBB);
4231 }
4232 lateLiveIntervalUpdate();
4233 coalesceLocals();
4234
4235 // Joining intervals can allow other intervals to be joined. Iteratively join
4236 // until we make no progress.
4237 while (copyCoalesceWorkList(CurrList: WorkList))
4238 /* empty */;
4239 lateLiveIntervalUpdate();
4240}
4241
4242PreservedAnalyses
4243RegisterCoalescerPass::run(MachineFunction &MF,
4244 MachineFunctionAnalysisManager &MFAM) {
4245 MFPropsModifier _(*this, MF);
4246 auto &LIS = MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF);
4247 auto &Loops = MFAM.getResult<MachineLoopAnalysis>(IR&: MF);
4248 auto *SI = MFAM.getCachedResult<SlotIndexesAnalysis>(IR&: MF);
4249 RegisterCoalescer Impl(&LIS, SI, &Loops);
4250 if (!Impl.run(MF))
4251 return PreservedAnalyses::all();
4252 auto PA = getMachineFunctionPassPreservedAnalyses();
4253 PA.preserveSet<CFGAnalyses>();
4254 PA.preserve<LiveIntervalsAnalysis>();
4255 PA.preserve<SlotIndexesAnalysis>();
4256 PA.preserve<MachineLoopAnalysis>();
4257 PA.preserve<MachineDominatorTreeAnalysis>();
4258 return PA;
4259}
4260
4261bool RegisterCoalescerLegacy::runOnMachineFunction(MachineFunction &MF) {
4262 auto *LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
4263 auto *Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
4264 auto *SIWrapper = getAnalysisIfAvailable<SlotIndexesWrapperPass>();
4265 SlotIndexes *SI = SIWrapper ? &SIWrapper->getSI() : nullptr;
4266 RegisterCoalescer Impl(LIS, SI, Loops);
4267 return Impl.run(MF);
4268}
4269
4270bool RegisterCoalescer::run(MachineFunction &fn) {
4271 LLVM_DEBUG(dbgs() << "********** REGISTER COALESCER **********\n"
4272 << "********** Function: " << fn.getName() << '\n');
4273
4274 // Variables changed between a setjmp and a longjump can have undefined value
4275 // after the longjmp. This behaviour can be observed if such a variable is
4276 // spilled, so longjmp won't restore the value in the spill slot.
4277 // RegisterCoalescer should not run in functions with a setjmp to avoid
4278 // merging such undefined variables with predictable ones.
4279 //
4280 // TODO: Could specifically disable coalescing registers live across setjmp
4281 // calls
4282 if (fn.exposesReturnsTwice()) {
4283 LLVM_DEBUG(
4284 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4285 return false;
4286 }
4287
4288 MF = &fn;
4289 MRI = &fn.getRegInfo();
4290 const TargetSubtargetInfo &STI = fn.getSubtarget();
4291 TRI = STI.getRegisterInfo();
4292 TII = STI.getInstrInfo();
4293 if (EnableGlobalCopies == cl::BOU_UNSET)
4294 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4295 else
4296 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4297
4298 // If there are PHIs tracked by debug-info, they will need updating during
4299 // coalescing. Build an index of those PHIs to ease updating.
4300 SlotIndexes *Slots = LIS->getSlotIndexes();
4301 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4302 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4303 Register Reg = DebugPHI.second.Reg;
4304 unsigned SubReg = DebugPHI.second.SubReg;
4305 SlotIndex SI = Slots->getMBBStartIdx(mbb: MBB);
4306 PHIValPos P = {.SI: SI, .Reg: Reg, .SubReg: SubReg};
4307 PHIValToPos.insert(KV: std::make_pair(x: DebugPHI.first, y&: P));
4308 RegToPHIIdx[Reg].push_back(Elt: DebugPHI.first);
4309 }
4310
4311 // The MachineScheduler does not currently require JoinSplitEdges. This will
4312 // either be enabled unconditionally or replaced by a more general live range
4313 // splitting optimization.
4314 JoinSplitEdges = EnableJoinSplits;
4315
4316 if (VerifyCoalescing)
4317 MF->verify(LiveInts: LIS, Indexes: SI, Banner: "Before register coalescing", OS: &errs());
4318
4319 DbgVRegToValues.clear();
4320 buildVRegToDbgValueMap(MF&: fn);
4321
4322 RegClassInfo.runOnMachineFunction(MF: fn);
4323
4324 // Join (coalesce) intervals if requested.
4325 if (EnableJoining)
4326 joinAllIntervals();
4327
4328 // After deleting a lot of copies, register classes may be less constrained.
4329 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4330 // DPR inflation.
4331 array_pod_sort(Start: InflateRegs.begin(), End: InflateRegs.end());
4332 InflateRegs.erase(CS: llvm::unique(R&: InflateRegs), CE: InflateRegs.end());
4333 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4334 << " regs.\n");
4335 for (Register Reg : InflateRegs) {
4336 if (MRI->reg_nodbg_empty(RegNo: Reg))
4337 continue;
4338 if (MRI->recomputeRegClass(Reg)) {
4339 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4340 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4341 ++NumInflated;
4342
4343 LiveInterval &LI = LIS->getInterval(Reg);
4344 if (LI.hasSubRanges()) {
4345 // If the inflated register class does not support subregisters anymore
4346 // remove the subranges.
4347 if (!MRI->shouldTrackSubRegLiveness(VReg: Reg)) {
4348 LI.clearSubRanges();
4349 } else {
4350#ifndef NDEBUG
4351 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4352 // If subranges are still supported, then the same subregs
4353 // should still be supported.
4354 for (LiveInterval::SubRange &S : LI.subranges()) {
4355 assert((S.LaneMask & ~MaxMask).none());
4356 }
4357#endif
4358 }
4359 }
4360 }
4361 }
4362
4363 // After coalescing, update any PHIs that are being tracked by debug-info
4364 // with their new VReg locations.
4365 for (auto &p : MF->DebugPHIPositions) {
4366 auto it = PHIValToPos.find(Val: p.first);
4367 assert(it != PHIValToPos.end());
4368 p.second.Reg = it->second.Reg;
4369 p.second.SubReg = it->second.SubReg;
4370 }
4371
4372 PHIValToPos.clear();
4373 RegToPHIIdx.clear();
4374
4375 LLVM_DEBUG(LIS->dump());
4376
4377 if (VerifyCoalescing)
4378 MF->verify(LiveInts: LIS, Indexes: SI, Banner: "After register coalescing", OS: &errs());
4379 return true;
4380}
4381

source code of llvm/lib/CodeGen/RegisterCoalescer.cpp