1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetOpcodes.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/LaneBitmask.h"
45#include "llvm/MC/MCInstrDesc.h"
46#include "llvm/MC/MCRegisterInfo.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/raw_ostream.h"
53#include <algorithm>
54#include <cassert>
55#include <iterator>
56#include <limits>
57#include <tuple>
58#include <utility>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE "regalloc"
64
65STATISTIC(numJoins , "Number of interval joins performed");
66STATISTIC(numCrossRCs , "Number of cross class joins performed");
67STATISTIC(numCommutes , "Number of instruction commuting performed");
68STATISTIC(numExtends , "Number of copies extended");
69STATISTIC(NumReMats , "Number of instructions re-materialized");
70STATISTIC(NumInflated , "Number of register classes inflated");
71STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74
75static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(Val: true), cl::Hidden);
78
79static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(Val: false), cl::Hidden);
82
83/// Temporary flag to test critical edge unsplitting.
84static cl::opt<bool>
85EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88/// Temporary flag to test global copy optimization.
89static cl::opt<cl::boolOrDefault>
90EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(Val: cl::BOU_UNSET), cl::Hidden);
93
94static cl::opt<bool>
95VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
98
99static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(Val: 100));
107
108static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(Val: 100));
113
114static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(Val: 256));
120
121namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Position and VReg of a PHI instruction during coalescing.
137 struct PHIValPos {
138 SlotIndex SI; ///< Slot where this PHI occurs.
139 Register Reg; ///< VReg the PHI occurs in.
140 unsigned SubReg; ///< Qualifying subregister for Reg.
141 };
142
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap<unsigned, PHIValPos> PHIValToPos;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155
156 /// A LaneMask to remember on which subregister live ranges we need to call
157 /// shrinkToUses() later.
158 LaneBitmask ShrinkMask;
159
160 /// True if the main range of the currently coalesced intervals should be
161 /// checked for smaller live intervals.
162 bool ShrinkMainRange = false;
163
164 /// True if the coalescer should aggressively coalesce global copies
165 /// in favor of keeping local copies.
166 bool JoinGlobalCopies = false;
167
168 /// True if the coalescer should aggressively coalesce fall-thru
169 /// blocks exclusively containing copies.
170 bool JoinSplitEdges = false;
171
172 /// Copy instructions yet to be coalesced.
173 SmallVector<MachineInstr*, 8> WorkList;
174 SmallVector<MachineInstr*, 8> LocalWorkList;
175
176 /// Set of instruction pointers that have been erased, and
177 /// that may be present in WorkList.
178 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
179
180 /// Dead instructions that are about to be deleted.
181 SmallVector<MachineInstr*, 8> DeadDefs;
182
183 /// Virtual registers to be considered for register class inflation.
184 SmallVector<Register, 8> InflateRegs;
185
186 /// The collection of live intervals which should have been updated
187 /// immediately after rematerialiation but delayed until
188 /// lateLiveIntervalUpdate is called.
189 DenseSet<Register> ToBeUpdated;
190
191 /// Record how many times the large live interval with many valnos
192 /// has been tried to join with other live interval.
193 DenseMap<Register, unsigned long> LargeLIVisitCounter;
194
195 /// Recursively eliminate dead defs in DeadDefs.
196 void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr);
197
198 /// LiveRangeEdit callback for eliminateDeadDefs().
199 void LRE_WillEraseInstruction(MachineInstr *MI) override;
200
201 /// Coalesce the LocalWorkList.
202 void coalesceLocals();
203
204 /// Join compatible live intervals
205 void joinAllIntervals();
206
207 /// Coalesce copies in the specified MBB, putting
208 /// copies that cannot yet be coalesced into WorkList.
209 void copyCoalesceInMBB(MachineBasicBlock *MBB);
210
211 /// Tries to coalesce all copies in CurrList. Returns true if any progress
212 /// was made.
213 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
214
215 /// If one def has many copy like uses, and those copy uses are all
216 /// rematerialized, the live interval update needed for those
217 /// rematerializations will be delayed and done all at once instead
218 /// of being done multiple times. This is to save compile cost because
219 /// live interval update is costly.
220 void lateLiveIntervalUpdate();
221
222 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
223 /// has no value defined in the predecessors. If the incoming value is the
224 /// same as defined by the copy itself, the value is considered undefined.
225 bool copyValueUndefInPredecessors(LiveRange &S,
226 const MachineBasicBlock *MBB,
227 LiveQueryResult SLRQ);
228
229 /// Set necessary undef flags on subregister uses after pruning out undef
230 /// lane segments from the subrange.
231 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
232 LaneBitmask PrunedLanes);
233
234 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
235 /// src/dst of the copy instruction CopyMI. This returns true if the copy
236 /// was successfully coalesced away. If it is not currently possible to
237 /// coalesce this interval, but it may be possible if other things get
238 /// coalesced, then it returns true by reference in 'Again'.
239 bool joinCopy(MachineInstr *CopyMI, bool &Again,
240 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs);
241
242 /// Attempt to join these two intervals. On failure, this
243 /// returns false. The output "SrcInt" will not have been modified, so we
244 /// can use this information below to update aliases.
245 bool joinIntervals(CoalescerPair &CP);
246
247 /// Attempt joining two virtual registers. Return true on success.
248 bool joinVirtRegs(CoalescerPair &CP);
249
250 /// If a live interval has many valnos and is coalesced with other
251 /// live intervals many times, we regard such live interval as having
252 /// high compile time cost.
253 bool isHighCostLiveInterval(LiveInterval &LI);
254
255 /// Attempt joining with a reserved physreg.
256 bool joinReservedPhysReg(CoalescerPair &CP);
257
258 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
259 /// Subranges in @p LI which only partially interfere with the desired
260 /// LaneMask are split as necessary. @p LaneMask are the lanes that
261 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
262 /// lanemasks already adjusted to the coalesced register.
263 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
264 LaneBitmask LaneMask, CoalescerPair &CP,
265 unsigned DstIdx);
266
267 /// Join the liveranges of two subregisters. Joins @p RRange into
268 /// @p LRange, @p RRange may be invalid afterwards.
269 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
270 LaneBitmask LaneMask, const CoalescerPair &CP);
271
272 /// We found a non-trivially-coalescable copy. If the source value number is
273 /// defined by a copy from the destination reg see if we can merge these two
274 /// destination reg valno# into a single value number, eliminating a copy.
275 /// This returns true if an interval was modified.
276 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
277
278 /// Return true if there are definitions of IntB
279 /// other than BValNo val# that can reach uses of AValno val# of IntA.
280 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
281 VNInfo *AValNo, VNInfo *BValNo);
282
283 /// We found a non-trivially-coalescable copy.
284 /// If the source value number is defined by a commutable instruction and
285 /// its other operand is coalesced to the copy dest register, see if we
286 /// can transform the copy into a noop by commuting the definition.
287 /// This returns a pair of two flags:
288 /// - the first element is true if an interval was modified,
289 /// - the second element is true if the destination interval needs
290 /// to be shrunk after deleting the copy.
291 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
292 MachineInstr *CopyMI);
293
294 /// We found a copy which can be moved to its less frequent predecessor.
295 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
296
297 /// If the source of a copy is defined by a
298 /// trivial computation, replace the copy by rematerialize the definition.
299 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
300 bool &IsDefCopy);
301
302 /// Return true if a copy involving a physreg should be joined.
303 bool canJoinPhys(const CoalescerPair &CP);
304
305 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
306 /// number if it is not zero. If DstReg is a physical register and the
307 /// existing subregister number of the def / use being updated is not zero,
308 /// make sure to set it to the correct physical subregister.
309 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
310
311 /// If the given machine operand reads only undefined lanes add an undef
312 /// flag.
313 /// This can happen when undef uses were previously concealed by a copy
314 /// which we coalesced. Example:
315 /// %0:sub0<def,read-undef> = ...
316 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
317 /// = use %1:sub1 <-- hidden undef use
318 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
319 MachineOperand &MO, unsigned SubRegIdx);
320
321 /// Handle copies of undef values. If the undef value is an incoming
322 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
323 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
324 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
325 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
326
327 /// Check whether or not we should apply the terminal rule on the
328 /// destination (Dst) of \p Copy.
329 /// When the terminal rule applies, Copy is not profitable to
330 /// coalesce.
331 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
332 /// at least one interference (Dst, Dst2). If Dst is terminal, the
333 /// terminal rule consists in checking that at least one of
334 /// interfering node, say Dst2, has an affinity of equal or greater
335 /// weight with Src.
336 /// In that case, Dst2 and Dst will not be able to be both coalesced
337 /// with Src. Since Dst2 exposes more coalescing opportunities than
338 /// Dst, we can drop \p Copy.
339 bool applyTerminalRule(const MachineInstr &Copy) const;
340
341 /// Wrapper method for \see LiveIntervals::shrinkToUses.
342 /// This method does the proper fixing of the live-ranges when the afore
343 /// mentioned method returns true.
344 void shrinkToUses(LiveInterval *LI,
345 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
346 NumShrinkToUses++;
347 if (LIS->shrinkToUses(li: LI, dead: Dead)) {
348 /// Check whether or not \p LI is composed by multiple connected
349 /// components and if that is the case, fix that.
350 SmallVector<LiveInterval*, 8> SplitLIs;
351 LIS->splitSeparateComponents(LI&: *LI, SplitLIs);
352 }
353 }
354
355 /// Wrapper Method to do all the necessary work when an Instruction is
356 /// deleted.
357 /// Optimizations should use this to make sure that deleted instructions
358 /// are always accounted for.
359 void deleteInstr(MachineInstr* MI) {
360 ErasedInstrs.insert(Ptr: MI);
361 LIS->RemoveMachineInstrFromMaps(MI&: *MI);
362 MI->eraseFromParent();
363 }
364
365 /// Walk over function and initialize the DbgVRegToValues map.
366 void buildVRegToDbgValueMap(MachineFunction &MF);
367
368 /// Test whether, after merging, any DBG_VALUEs would refer to a
369 /// different value number than before merging, and whether this can
370 /// be resolved. If not, mark the DBG_VALUE as being undef.
371 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
372 JoinVals &LHSVals, LiveRange &RHS,
373 JoinVals &RHSVals);
374
375 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
376 LiveRange &RegRange, JoinVals &Vals2);
377
378 public:
379 static char ID; ///< Class identification, replacement for typeinfo
380
381 RegisterCoalescer() : MachineFunctionPass(ID) {
382 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
383 }
384
385 void getAnalysisUsage(AnalysisUsage &AU) const override;
386
387 MachineFunctionProperties getClearedProperties() const override {
388 return MachineFunctionProperties().set(
389 MachineFunctionProperties::Property::IsSSA);
390 }
391
392 void releaseMemory() override;
393
394 /// This is the pass entry point.
395 bool runOnMachineFunction(MachineFunction&) override;
396
397 /// Implement the dump method.
398 void print(raw_ostream &O, const Module* = nullptr) const override;
399 };
400
401} // end anonymous namespace
402
403char RegisterCoalescer::ID = 0;
404
405char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
406
407INITIALIZE_PASS_BEGIN(RegisterCoalescer, "register-coalescer",
408 "Register Coalescer", false, false)
409INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
410INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
411INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
412INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
413INITIALIZE_PASS_END(RegisterCoalescer, "register-coalescer",
414 "Register Coalescer", false, false)
415
416[[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri,
417 const MachineInstr *MI, Register &Src,
418 Register &Dst, unsigned &SrcSub,
419 unsigned &DstSub) {
420 if (MI->isCopy()) {
421 Dst = MI->getOperand(i: 0).getReg();
422 DstSub = MI->getOperand(i: 0).getSubReg();
423 Src = MI->getOperand(i: 1).getReg();
424 SrcSub = MI->getOperand(i: 1).getSubReg();
425 } else if (MI->isSubregToReg()) {
426 Dst = MI->getOperand(i: 0).getReg();
427 DstSub = tri.composeSubRegIndices(a: MI->getOperand(i: 0).getSubReg(),
428 b: MI->getOperand(i: 3).getImm());
429 Src = MI->getOperand(i: 2).getReg();
430 SrcSub = MI->getOperand(i: 2).getSubReg();
431 } else
432 return false;
433 return true;
434}
435
436/// Return true if this block should be vacated by the coalescer to eliminate
437/// branches. The important cases to handle in the coalescer are critical edges
438/// split during phi elimination which contain only copies. Simple blocks that
439/// contain non-branches should also be vacated, but this can be handled by an
440/// earlier pass similar to early if-conversion.
441static bool isSplitEdge(const MachineBasicBlock *MBB) {
442 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
443 return false;
444
445 for (const auto &MI : *MBB) {
446 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
447 return false;
448 }
449 return true;
450}
451
452bool CoalescerPair::setRegisters(const MachineInstr *MI) {
453 SrcReg = DstReg = Register();
454 SrcIdx = DstIdx = 0;
455 NewRC = nullptr;
456 Flipped = CrossClass = false;
457
458 Register Src, Dst;
459 unsigned SrcSub = 0, DstSub = 0;
460 if (!isMoveInstr(tri: TRI, MI, Src, Dst, SrcSub, DstSub))
461 return false;
462 Partial = SrcSub || DstSub;
463
464 // If one register is a physreg, it must be Dst.
465 if (Src.isPhysical()) {
466 if (Dst.isPhysical())
467 return false;
468 std::swap(a&: Src, b&: Dst);
469 std::swap(a&: SrcSub, b&: DstSub);
470 Flipped = true;
471 }
472
473 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
474
475 if (Dst.isPhysical()) {
476 // Eliminate DstSub on a physreg.
477 if (DstSub) {
478 Dst = TRI.getSubReg(Reg: Dst, Idx: DstSub);
479 if (!Dst) return false;
480 DstSub = 0;
481 }
482
483 // Eliminate SrcSub by picking a corresponding Dst superregister.
484 if (SrcSub) {
485 Dst = TRI.getMatchingSuperReg(Reg: Dst, SubIdx: SrcSub, RC: MRI.getRegClass(Reg: Src));
486 if (!Dst) return false;
487 } else if (!MRI.getRegClass(Reg: Src)->contains(Reg: Dst)) {
488 return false;
489 }
490 } else {
491 // Both registers are virtual.
492 const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: Src);
493 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: Dst);
494
495 // Both registers have subreg indices.
496 if (SrcSub && DstSub) {
497 // Copies between different sub-registers are never coalescable.
498 if (Src == Dst && SrcSub != DstSub)
499 return false;
500
501 NewRC = TRI.getCommonSuperRegClass(RCA: SrcRC, SubA: SrcSub, RCB: DstRC, SubB: DstSub,
502 PreA&: SrcIdx, PreB&: DstIdx);
503 if (!NewRC)
504 return false;
505 } else if (DstSub) {
506 // SrcReg will be merged with a sub-register of DstReg.
507 SrcIdx = DstSub;
508 NewRC = TRI.getMatchingSuperRegClass(A: DstRC, B: SrcRC, Idx: DstSub);
509 } else if (SrcSub) {
510 // DstReg will be merged with a sub-register of SrcReg.
511 DstIdx = SrcSub;
512 NewRC = TRI.getMatchingSuperRegClass(A: SrcRC, B: DstRC, Idx: SrcSub);
513 } else {
514 // This is a straight copy without sub-registers.
515 NewRC = TRI.getCommonSubClass(A: DstRC, B: SrcRC);
516 }
517
518 // The combined constraint may be impossible to satisfy.
519 if (!NewRC)
520 return false;
521
522 // Prefer SrcReg to be a sub-register of DstReg.
523 // FIXME: Coalescer should support subregs symmetrically.
524 if (DstIdx && !SrcIdx) {
525 std::swap(a&: Src, b&: Dst);
526 std::swap(a&: SrcIdx, b&: DstIdx);
527 Flipped = !Flipped;
528 }
529
530 CrossClass = NewRC != DstRC || NewRC != SrcRC;
531 }
532 // Check our invariants
533 assert(Src.isVirtual() && "Src must be virtual");
534 assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx");
535 SrcReg = Src;
536 DstReg = Dst;
537 return true;
538}
539
540bool CoalescerPair::flip() {
541 if (DstReg.isPhysical())
542 return false;
543 std::swap(a&: SrcReg, b&: DstReg);
544 std::swap(a&: SrcIdx, b&: DstIdx);
545 Flipped = !Flipped;
546 return true;
547}
548
549bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
550 if (!MI)
551 return false;
552 Register Src, Dst;
553 unsigned SrcSub = 0, DstSub = 0;
554 if (!isMoveInstr(tri: TRI, MI, Src, Dst, SrcSub, DstSub))
555 return false;
556
557 // Find the virtual register that is SrcReg.
558 if (Dst == SrcReg) {
559 std::swap(a&: Src, b&: Dst);
560 std::swap(a&: SrcSub, b&: DstSub);
561 } else if (Src != SrcReg) {
562 return false;
563 }
564
565 // Now check that Dst matches DstReg.
566 if (DstReg.isPhysical()) {
567 if (!Dst.isPhysical())
568 return false;
569 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
570 // DstSub could be set for a physreg from INSERT_SUBREG.
571 if (DstSub)
572 Dst = TRI.getSubReg(Reg: Dst, Idx: DstSub);
573 // Full copy of Src.
574 if (!SrcSub)
575 return DstReg == Dst;
576 // This is a partial register copy. Check that the parts match.
577 return Register(TRI.getSubReg(Reg: DstReg, Idx: SrcSub)) == Dst;
578 } else {
579 // DstReg is virtual.
580 if (DstReg != Dst)
581 return false;
582 // Registers match, do the subregisters line up?
583 return TRI.composeSubRegIndices(a: SrcIdx, b: SrcSub) ==
584 TRI.composeSubRegIndices(a: DstIdx, b: DstSub);
585 }
586}
587
588void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
589 AU.setPreservesCFG();
590 AU.addRequired<AAResultsWrapperPass>();
591 AU.addRequired<LiveIntervals>();
592 AU.addPreserved<LiveIntervals>();
593 AU.addPreserved<SlotIndexes>();
594 AU.addRequired<MachineLoopInfo>();
595 AU.addPreserved<MachineLoopInfo>();
596 AU.addPreservedID(ID&: MachineDominatorsID);
597 MachineFunctionPass::getAnalysisUsage(AU);
598}
599
600void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) {
601 if (Edit) {
602 Edit->eliminateDeadDefs(Dead&: DeadDefs);
603 return;
604 }
605 SmallVector<Register, 8> NewRegs;
606 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
607 nullptr, this).eliminateDeadDefs(Dead&: DeadDefs);
608}
609
610void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
611 // MI may be in WorkList. Make sure we don't visit it.
612 ErasedInstrs.insert(Ptr: MI);
613}
614
615bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
616 MachineInstr *CopyMI) {
617 assert(!CP.isPartial() && "This doesn't work for partial copies.");
618 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
619
620 LiveInterval &IntA =
621 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
622 LiveInterval &IntB =
623 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
624 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
625
626 // We have a non-trivially-coalescable copy with IntA being the source and
627 // IntB being the dest, thus this defines a value number in IntB. If the
628 // source value number (in IntA) is defined by a copy from B, see if we can
629 // merge these two pieces of B into a single value number, eliminating a copy.
630 // For example:
631 //
632 // A3 = B0
633 // ...
634 // B1 = A3 <- this copy
635 //
636 // In this case, B0 can be extended to where the B1 copy lives, allowing the
637 // B1 value number to be replaced with B0 (which simplifies the B
638 // liveinterval).
639
640 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
641 // the example above.
642 LiveInterval::iterator BS = IntB.FindSegmentContaining(Idx: CopyIdx);
643 if (BS == IntB.end()) return false;
644 VNInfo *BValNo = BS->valno;
645
646 // Get the location that B is defined at. Two options: either this value has
647 // an unknown definition point or it is defined at CopyIdx. If unknown, we
648 // can't process it.
649 if (BValNo->def != CopyIdx) return false;
650
651 // AValNo is the value number in A that defines the copy, A3 in the example.
652 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(EC: true);
653 LiveInterval::iterator AS = IntA.FindSegmentContaining(Idx: CopyUseIdx);
654 // The live segment might not exist after fun with physreg coalescing.
655 if (AS == IntA.end()) return false;
656 VNInfo *AValNo = AS->valno;
657
658 // If AValNo is defined as a copy from IntB, we can potentially process this.
659 // Get the instruction that defines this value number.
660 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(index: AValNo->def);
661 // Don't allow any partial copies, even if isCoalescable() allows them.
662 if (!CP.isCoalescable(MI: ACopyMI) || !ACopyMI->isFullCopy())
663 return false;
664
665 // Get the Segment in IntB that this value number starts with.
666 LiveInterval::iterator ValS =
667 IntB.FindSegmentContaining(Idx: AValNo->def.getPrevSlot());
668 if (ValS == IntB.end())
669 return false;
670
671 // Make sure that the end of the live segment is inside the same block as
672 // CopyMI.
673 MachineInstr *ValSEndInst =
674 LIS->getInstructionFromIndex(index: ValS->end.getPrevSlot());
675 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
676 return false;
677
678 // Okay, we now know that ValS ends in the same block that the CopyMI
679 // live-range starts. If there are no intervening live segments between them
680 // in IntB, we can merge them.
681 if (ValS+1 != BS) return false;
682
683 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
684
685 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
686 // We are about to delete CopyMI, so need to remove it as the 'instruction
687 // that defines this value #'. Update the valnum with the new defining
688 // instruction #.
689 BValNo->def = FillerStart;
690
691 // Okay, we can merge them. We need to insert a new liverange:
692 // [ValS.end, BS.begin) of either value number, then we merge the
693 // two value numbers.
694 IntB.addSegment(S: LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
695
696 // Okay, merge "B1" into the same value number as "B0".
697 if (BValNo != ValS->valno)
698 IntB.MergeValueNumberInto(V1: BValNo, V2: ValS->valno);
699
700 // Do the same for the subregister segments.
701 for (LiveInterval::SubRange &S : IntB.subranges()) {
702 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
703 // removed to prevent creating bogus SubRange Segments.
704 LiveInterval::iterator SS = S.FindSegmentContaining(Idx: CopyIdx);
705 if (SS != S.end() && SlotIndex::isSameInstr(A: SS->start, B: SS->end)) {
706 S.removeSegment(S: *SS, RemoveDeadValNo: true);
707 continue;
708 }
709 // The subrange may have ended before FillerStart. If so, extend it.
710 if (!S.getVNInfoAt(Idx: FillerStart)) {
711 SlotIndex BBStart =
712 LIS->getMBBStartIdx(mbb: LIS->getMBBFromIndex(index: FillerStart));
713 S.extendInBlock(StartIdx: BBStart, Kill: FillerStart);
714 }
715 VNInfo *SubBValNo = S.getVNInfoAt(Idx: CopyIdx);
716 S.addSegment(S: LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
717 VNInfo *SubValSNo = S.getVNInfoAt(Idx: AValNo->def.getPrevSlot());
718 if (SubBValNo != SubValSNo)
719 S.MergeValueNumberInto(V1: SubBValNo, V2: SubValSNo);
720 }
721
722 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
723
724 // If the source instruction was killing the source register before the
725 // merge, unset the isKill marker given the live range has been extended.
726 int UIdx =
727 ValSEndInst->findRegisterUseOperandIdx(Reg: IntB.reg(), /*TRI=*/nullptr, isKill: true);
728 if (UIdx != -1) {
729 ValSEndInst->getOperand(i: UIdx).setIsKill(false);
730 }
731
732 // Rewrite the copy.
733 CopyMI->substituteRegister(FromReg: IntA.reg(), ToReg: IntB.reg(), SubIdx: 0, RegInfo: *TRI);
734 // If the copy instruction was killing the destination register or any
735 // subrange before the merge trim the live range.
736 bool RecomputeLiveRange = AS->end == CopyIdx;
737 if (!RecomputeLiveRange) {
738 for (LiveInterval::SubRange &S : IntA.subranges()) {
739 LiveInterval::iterator SS = S.FindSegmentContaining(Idx: CopyUseIdx);
740 if (SS != S.end() && SS->end == CopyIdx) {
741 RecomputeLiveRange = true;
742 break;
743 }
744 }
745 }
746 if (RecomputeLiveRange)
747 shrinkToUses(LI: &IntA);
748
749 ++numExtends;
750 return true;
751}
752
753bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
754 LiveInterval &IntB,
755 VNInfo *AValNo,
756 VNInfo *BValNo) {
757 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
758 // the PHI values.
759 if (LIS->hasPHIKill(LI: IntA, VNI: AValNo))
760 return true;
761
762 for (LiveRange::Segment &ASeg : IntA.segments) {
763 if (ASeg.valno != AValNo) continue;
764 LiveInterval::iterator BI = llvm::upper_bound(Range&: IntB, Value&: ASeg.start);
765 if (BI != IntB.begin())
766 --BI;
767 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
768 if (BI->valno == BValNo)
769 continue;
770 if (BI->start <= ASeg.start && BI->end > ASeg.start)
771 return true;
772 if (BI->start > ASeg.start && BI->start < ASeg.end)
773 return true;
774 }
775 }
776 return false;
777}
778
779/// Copy segments with value number @p SrcValNo from liverange @p Src to live
780/// range @Dst and use value number @p DstValNo there.
781static std::pair<bool,bool>
782addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
783 const VNInfo *SrcValNo) {
784 bool Changed = false;
785 bool MergedWithDead = false;
786 for (const LiveRange::Segment &S : Src.segments) {
787 if (S.valno != SrcValNo)
788 continue;
789 // This is adding a segment from Src that ends in a copy that is about
790 // to be removed. This segment is going to be merged with a pre-existing
791 // segment in Dst. This works, except in cases when the corresponding
792 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
793 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
794 // Recognized such cases, so that the segments can be shrunk.
795 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
796 LiveRange::Segment &Merged = *Dst.addSegment(S: Added);
797 if (Merged.end.isDead())
798 MergedWithDead = true;
799 Changed = true;
800 }
801 return std::make_pair(x&: Changed, y&: MergedWithDead);
802}
803
804std::pair<bool,bool>
805RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
806 MachineInstr *CopyMI) {
807 assert(!CP.isPhys());
808
809 LiveInterval &IntA =
810 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
811 LiveInterval &IntB =
812 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
813
814 // We found a non-trivially-coalescable copy with IntA being the source and
815 // IntB being the dest, thus this defines a value number in IntB. If the
816 // source value number (in IntA) is defined by a commutable instruction and
817 // its other operand is coalesced to the copy dest register, see if we can
818 // transform the copy into a noop by commuting the definition. For example,
819 //
820 // A3 = op A2 killed B0
821 // ...
822 // B1 = A3 <- this copy
823 // ...
824 // = op A3 <- more uses
825 //
826 // ==>
827 //
828 // B2 = op B0 killed A2
829 // ...
830 // B1 = B2 <- now an identity copy
831 // ...
832 // = op B2 <- more uses
833
834 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
835 // the example above.
836 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
837 VNInfo *BValNo = IntB.getVNInfoAt(Idx: CopyIdx);
838 assert(BValNo != nullptr && BValNo->def == CopyIdx);
839
840 // AValNo is the value number in A that defines the copy, A3 in the example.
841 VNInfo *AValNo = IntA.getVNInfoAt(Idx: CopyIdx.getRegSlot(EC: true));
842 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
843 if (AValNo->isPHIDef())
844 return { false, false };
845 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: AValNo->def);
846 if (!DefMI)
847 return { false, false };
848 if (!DefMI->isCommutable())
849 return { false, false };
850 // If DefMI is a two-address instruction then commuting it will change the
851 // destination register.
852 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg: IntA.reg(), /*TRI=*/nullptr);
853 assert(DefIdx != -1);
854 unsigned UseOpIdx;
855 if (!DefMI->isRegTiedToUseOperand(DefOpIdx: DefIdx, UseOpIdx: &UseOpIdx))
856 return { false, false };
857
858 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
859 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
860 // passed to the method. That _other_ operand is chosen by
861 // the findCommutedOpIndices() method.
862 //
863 // That is obviously an area for improvement in case of instructions having
864 // more than 2 operands. For example, if some instruction has 3 commutable
865 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
866 // op#2<->op#3) of commute transformation should be considered/tried here.
867 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
868 if (!TII->findCommutedOpIndices(MI: *DefMI, SrcOpIdx1&: UseOpIdx, SrcOpIdx2&: NewDstIdx))
869 return { false, false };
870
871 MachineOperand &NewDstMO = DefMI->getOperand(i: NewDstIdx);
872 Register NewReg = NewDstMO.getReg();
873 if (NewReg != IntB.reg() || !IntB.Query(Idx: AValNo->def).isKill())
874 return { false, false };
875
876 // Make sure there are no other definitions of IntB that would reach the
877 // uses which the new definition can reach.
878 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
879 return { false, false };
880
881 // If some of the uses of IntA.reg is already coalesced away, return false.
882 // It's not possible to determine whether it's safe to perform the coalescing.
883 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg: IntA.reg())) {
884 MachineInstr *UseMI = MO.getParent();
885 unsigned OpNo = &MO - &UseMI->getOperand(i: 0);
886 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *UseMI);
887 LiveInterval::iterator US = IntA.FindSegmentContaining(Idx: UseIdx);
888 if (US == IntA.end() || US->valno != AValNo)
889 continue;
890 // If this use is tied to a def, we can't rewrite the register.
891 if (UseMI->isRegTiedToDefOperand(UseOpIdx: OpNo))
892 return { false, false };
893 }
894
895 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
896 << *DefMI);
897
898 // At this point we have decided that it is legal to do this
899 // transformation. Start by commuting the instruction.
900 MachineBasicBlock *MBB = DefMI->getParent();
901 MachineInstr *NewMI =
902 TII->commuteInstruction(MI&: *DefMI, NewMI: false, OpIdx1: UseOpIdx, OpIdx2: NewDstIdx);
903 if (!NewMI)
904 return { false, false };
905 if (IntA.reg().isVirtual() && IntB.reg().isVirtual() &&
906 !MRI->constrainRegClass(Reg: IntB.reg(), RC: MRI->getRegClass(Reg: IntA.reg())))
907 return { false, false };
908 if (NewMI != DefMI) {
909 LIS->ReplaceMachineInstrInMaps(MI&: *DefMI, NewMI&: *NewMI);
910 MachineBasicBlock::iterator Pos = DefMI;
911 MBB->insert(I: Pos, MI: NewMI);
912 MBB->erase(I: DefMI);
913 }
914
915 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
916 // A = or A, B
917 // ...
918 // B = A
919 // ...
920 // C = killed A
921 // ...
922 // = B
923
924 // Update uses of IntA of the specific Val# with IntB.
925 for (MachineOperand &UseMO :
926 llvm::make_early_inc_range(Range: MRI->use_operands(Reg: IntA.reg()))) {
927 if (UseMO.isUndef())
928 continue;
929 MachineInstr *UseMI = UseMO.getParent();
930 if (UseMI->isDebugInstr()) {
931 // FIXME These don't have an instruction index. Not clear we have enough
932 // info to decide whether to do this replacement or not. For now do it.
933 UseMO.setReg(NewReg);
934 continue;
935 }
936 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *UseMI).getRegSlot(EC: true);
937 LiveInterval::iterator US = IntA.FindSegmentContaining(Idx: UseIdx);
938 assert(US != IntA.end() && "Use must be live");
939 if (US->valno != AValNo)
940 continue;
941 // Kill flags are no longer accurate. They are recomputed after RA.
942 UseMO.setIsKill(false);
943 if (NewReg.isPhysical())
944 UseMO.substPhysReg(Reg: NewReg, *TRI);
945 else
946 UseMO.setReg(NewReg);
947 if (UseMI == CopyMI)
948 continue;
949 if (!UseMI->isCopy())
950 continue;
951 if (UseMI->getOperand(i: 0).getReg() != IntB.reg() ||
952 UseMI->getOperand(i: 0).getSubReg())
953 continue;
954
955 // This copy will become a noop. If it's defining a new val#, merge it into
956 // BValNo.
957 SlotIndex DefIdx = UseIdx.getRegSlot();
958 VNInfo *DVNI = IntB.getVNInfoAt(Idx: DefIdx);
959 if (!DVNI)
960 continue;
961 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
962 assert(DVNI->def == DefIdx);
963 BValNo = IntB.MergeValueNumberInto(V1: DVNI, V2: BValNo);
964 for (LiveInterval::SubRange &S : IntB.subranges()) {
965 VNInfo *SubDVNI = S.getVNInfoAt(Idx: DefIdx);
966 if (!SubDVNI)
967 continue;
968 VNInfo *SubBValNo = S.getVNInfoAt(Idx: CopyIdx);
969 assert(SubBValNo->def == CopyIdx);
970 S.MergeValueNumberInto(V1: SubDVNI, V2: SubBValNo);
971 }
972
973 deleteInstr(MI: UseMI);
974 }
975
976 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
977 // is updated.
978 bool ShrinkB = false;
979 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
980 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
981 if (!IntA.hasSubRanges()) {
982 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(Reg: IntA.reg());
983 IntA.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: IntA);
984 } else if (!IntB.hasSubRanges()) {
985 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(Reg: IntB.reg());
986 IntB.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: IntB);
987 }
988 SlotIndex AIdx = CopyIdx.getRegSlot(EC: true);
989 LaneBitmask MaskA;
990 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
991 for (LiveInterval::SubRange &SA : IntA.subranges()) {
992 VNInfo *ASubValNo = SA.getVNInfoAt(Idx: AIdx);
993 // Even if we are dealing with a full copy, some lanes can
994 // still be undefined.
995 // E.g.,
996 // undef A.subLow = ...
997 // B = COPY A <== A.subHigh is undefined here and does
998 // not have a value number.
999 if (!ASubValNo)
1000 continue;
1001 MaskA |= SA.LaneMask;
1002
1003 IntB.refineSubRanges(
1004 Allocator, LaneMask: SA.LaneMask,
1005 Apply: [&Allocator, &SA, CopyIdx, ASubValNo,
1006 &ShrinkB](LiveInterval::SubRange &SR) {
1007 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(Def: CopyIdx, VNInfoAllocator&: Allocator)
1008 : SR.getVNInfoAt(Idx: CopyIdx);
1009 assert(BSubValNo != nullptr);
1010 auto P = addSegmentsWithValNo(Dst&: SR, DstValNo: BSubValNo, Src: SA, SrcValNo: ASubValNo);
1011 ShrinkB |= P.second;
1012 if (P.first)
1013 BSubValNo->def = ASubValNo->def;
1014 },
1015 Indexes, TRI: *TRI);
1016 }
1017 // Go over all subranges of IntB that have not been covered by IntA,
1018 // and delete the segments starting at CopyIdx. This can happen if
1019 // IntA has undef lanes that are defined in IntB.
1020 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1021 if ((SB.LaneMask & MaskA).any())
1022 continue;
1023 if (LiveRange::Segment *S = SB.getSegmentContaining(Idx: CopyIdx))
1024 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1025 SB.removeSegment(S: *S, RemoveDeadValNo: true);
1026 }
1027 }
1028
1029 BValNo->def = AValNo->def;
1030 auto P = addSegmentsWithValNo(Dst&: IntB, DstValNo: BValNo, Src: IntA, SrcValNo: AValNo);
1031 ShrinkB |= P.second;
1032 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1033
1034 LIS->removeVRegDefAt(LI&: IntA, Pos: AValNo->def);
1035
1036 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1037 ++numCommutes;
1038 return { true, ShrinkB };
1039}
1040
1041/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1042/// predecessor of BB2, and if B is not redefined on the way from A = B
1043/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1044/// execution goes through the path from BB0 to BB2. We may move B = A
1045/// to the predecessor without such reversed copy.
1046/// So we will transform the program from:
1047/// BB0:
1048/// A = B; BB1:
1049/// ... ...
1050/// / \ /
1051/// BB2:
1052/// ...
1053/// B = A;
1054///
1055/// to:
1056///
1057/// BB0: BB1:
1058/// A = B; ...
1059/// ... B = A;
1060/// / \ /
1061/// BB2:
1062/// ...
1063///
1064/// A special case is when BB0 and BB2 are the same BB which is the only
1065/// BB in a loop:
1066/// BB1:
1067/// ...
1068/// BB0/BB2: ----
1069/// B = A; |
1070/// ... |
1071/// A = B; |
1072/// |-------
1073/// |
1074/// We may hoist B = A from BB0/BB2 to BB1.
1075///
1076/// The major preconditions for correctness to remove such partial
1077/// redundancy include:
1078/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1079/// the PHI is defined by the reversed copy A = B in BB0.
1080/// 2. No B is referenced from the start of BB2 to B = A.
1081/// 3. No B is defined from A = B to the end of BB0.
1082/// 4. BB1 has only one successor.
1083///
1084/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1085/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1086/// colder place, which not only prevent endless loop, but also make sure
1087/// the movement of copy is beneficial.
1088bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1089 MachineInstr &CopyMI) {
1090 assert(!CP.isPhys());
1091 if (!CopyMI.isFullCopy())
1092 return false;
1093
1094 MachineBasicBlock &MBB = *CopyMI.getParent();
1095 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1096 // the predecessor is tricker, and we don't handle it.
1097 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1098 return false;
1099
1100 if (MBB.pred_size() != 2)
1101 return false;
1102
1103 LiveInterval &IntA =
1104 LIS->getInterval(Reg: CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1105 LiveInterval &IntB =
1106 LIS->getInterval(Reg: CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1107
1108 // A is defined by PHI at the entry of MBB.
1109 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: CopyMI).getRegSlot(EC: true);
1110 VNInfo *AValNo = IntA.getVNInfoAt(Idx: CopyIdx);
1111 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1112 if (!AValNo->isPHIDef())
1113 return false;
1114
1115 // No B is referenced before CopyMI in MBB.
1116 if (IntB.overlaps(Start: LIS->getMBBStartIdx(mbb: &MBB), End: CopyIdx))
1117 return false;
1118
1119 // MBB has two predecessors: one contains A = B so no copy will be inserted
1120 // for it. The other one will have a copy moved from MBB.
1121 bool FoundReverseCopy = false;
1122 MachineBasicBlock *CopyLeftBB = nullptr;
1123 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1124 VNInfo *PVal = IntA.getVNInfoBefore(Idx: LIS->getMBBEndIdx(mbb: Pred));
1125 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: PVal->def);
1126 if (!DefMI || !DefMI->isFullCopy()) {
1127 CopyLeftBB = Pred;
1128 continue;
1129 }
1130 // Check DefMI is a reverse copy and it is in BB Pred.
1131 if (DefMI->getOperand(i: 0).getReg() != IntA.reg() ||
1132 DefMI->getOperand(i: 1).getReg() != IntB.reg() ||
1133 DefMI->getParent() != Pred) {
1134 CopyLeftBB = Pred;
1135 continue;
1136 }
1137 // If there is any other def of B after DefMI and before the end of Pred,
1138 // we need to keep the copy of B = A at the end of Pred if we remove
1139 // B = A from MBB.
1140 bool ValB_Changed = false;
1141 for (auto *VNI : IntB.valnos) {
1142 if (VNI->isUnused())
1143 continue;
1144 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(mbb: Pred)) {
1145 ValB_Changed = true;
1146 break;
1147 }
1148 }
1149 if (ValB_Changed) {
1150 CopyLeftBB = Pred;
1151 continue;
1152 }
1153 FoundReverseCopy = true;
1154 }
1155
1156 // If no reverse copy is found in predecessors, nothing to do.
1157 if (!FoundReverseCopy)
1158 return false;
1159
1160 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1161 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1162 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1163 // update IntA/IntB.
1164 //
1165 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1166 // MBB is hotter than CopyLeftBB.
1167 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1168 return false;
1169
1170 // Now (almost sure it's) ok to move copy.
1171 if (CopyLeftBB) {
1172 // Position in CopyLeftBB where we should insert new copy.
1173 auto InsPos = CopyLeftBB->getFirstTerminator();
1174
1175 // Make sure that B isn't referenced in the terminators (if any) at the end
1176 // of the predecessor since we're about to insert a new definition of B
1177 // before them.
1178 if (InsPos != CopyLeftBB->end()) {
1179 SlotIndex InsPosIdx = LIS->getInstructionIndex(Instr: *InsPos).getRegSlot(EC: true);
1180 if (IntB.overlaps(Start: InsPosIdx, End: LIS->getMBBEndIdx(mbb: CopyLeftBB)))
1181 return false;
1182 }
1183
1184 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1185 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1186
1187 // Insert new copy to CopyLeftBB.
1188 MachineInstr *NewCopyMI = BuildMI(BB&: *CopyLeftBB, I: InsPos, MIMD: CopyMI.getDebugLoc(),
1189 MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: IntB.reg())
1190 .addReg(RegNo: IntA.reg());
1191 SlotIndex NewCopyIdx =
1192 LIS->InsertMachineInstrInMaps(MI&: *NewCopyMI).getRegSlot();
1193 IntB.createDeadDef(Def: NewCopyIdx, VNIAlloc&: LIS->getVNInfoAllocator());
1194 for (LiveInterval::SubRange &SR : IntB.subranges())
1195 SR.createDeadDef(Def: NewCopyIdx, VNIAlloc&: LIS->getVNInfoAllocator());
1196
1197 // If the newly created Instruction has an address of an instruction that was
1198 // deleted before (object recycled by the allocator) it needs to be removed from
1199 // the deleted list.
1200 ErasedInstrs.erase(Ptr: NewCopyMI);
1201 } else {
1202 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1203 << printMBBReference(MBB) << '\t' << CopyMI);
1204 }
1205
1206 const bool IsUndefCopy = CopyMI.getOperand(i: 1).isUndef();
1207
1208 // Remove CopyMI.
1209 // Note: This is fine to remove the copy before updating the live-ranges.
1210 // While updating the live-ranges, we only look at slot indices and
1211 // never go back to the instruction.
1212 // Mark instructions as deleted.
1213 deleteInstr(MI: &CopyMI);
1214
1215 // Update the liveness.
1216 SmallVector<SlotIndex, 8> EndPoints;
1217 VNInfo *BValNo = IntB.Query(Idx: CopyIdx).valueOutOrDead();
1218 LIS->pruneValue(LR&: *static_cast<LiveRange *>(&IntB), Kill: CopyIdx.getRegSlot(),
1219 EndPoints: &EndPoints);
1220 BValNo->markUnused();
1221
1222 if (IsUndefCopy) {
1223 // We're introducing an undef phi def, and need to set undef on any users of
1224 // the previously local def to avoid artifically extending the lifetime
1225 // through the block.
1226 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg: IntB.reg())) {
1227 const MachineInstr &MI = *MO.getParent();
1228 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI);
1229 if (!IntB.liveAt(index: UseIdx))
1230 MO.setIsUndef(true);
1231 }
1232 }
1233
1234 // Extend IntB to the EndPoints of its original live interval.
1235 LIS->extendToIndices(LR&: IntB, Indices: EndPoints);
1236
1237 // Now, do the same for its subranges.
1238 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1239 EndPoints.clear();
1240 VNInfo *BValNo = SR.Query(Idx: CopyIdx).valueOutOrDead();
1241 assert(BValNo && "All sublanes should be live");
1242 LIS->pruneValue(LR&: SR, Kill: CopyIdx.getRegSlot(), EndPoints: &EndPoints);
1243 BValNo->markUnused();
1244 // We can have a situation where the result of the original copy is live,
1245 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1246 // the copy appear as an endpoint from pruneValue(), but we don't want it
1247 // to because the copy has been removed. We can go ahead and remove that
1248 // endpoint; there is no other situation here that there could be a use at
1249 // the same place as we know that the copy is a full copy.
1250 for (unsigned I = 0; I != EndPoints.size(); ) {
1251 if (SlotIndex::isSameInstr(A: EndPoints[I], B: CopyIdx)) {
1252 EndPoints[I] = EndPoints.back();
1253 EndPoints.pop_back();
1254 continue;
1255 }
1256 ++I;
1257 }
1258 SmallVector<SlotIndex, 8> Undefs;
1259 IntB.computeSubRangeUndefs(Undefs, LaneMask: SR.LaneMask, MRI: *MRI,
1260 Indexes: *LIS->getSlotIndexes());
1261 LIS->extendToIndices(LR&: SR, Indices: EndPoints, Undefs);
1262 }
1263 // If any dead defs were extended, truncate them.
1264 shrinkToUses(LI: &IntB);
1265
1266 // Finally, update the live-range of IntA.
1267 shrinkToUses(LI: &IntA);
1268 return true;
1269}
1270
1271/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1272/// defining a subregister.
1273static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1274 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1275
1276 for (const MachineOperand &Op : MI.all_defs()) {
1277 if (Op.getReg() != Reg)
1278 continue;
1279 // Return true if we define the full register or don't care about the value
1280 // inside other subregisters.
1281 if (Op.getSubReg() == 0 || Op.isUndef())
1282 return true;
1283 }
1284 return false;
1285}
1286
1287bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1288 MachineInstr *CopyMI,
1289 bool &IsDefCopy) {
1290 IsDefCopy = false;
1291 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1292 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1293 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1294 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1295 if (SrcReg.isPhysical())
1296 return false;
1297
1298 LiveInterval &SrcInt = LIS->getInterval(Reg: SrcReg);
1299 SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI);
1300 VNInfo *ValNo = SrcInt.Query(Idx: CopyIdx).valueIn();
1301 if (!ValNo)
1302 return false;
1303 if (ValNo->isPHIDef() || ValNo->isUnused())
1304 return false;
1305 MachineInstr *DefMI = LIS->getInstructionFromIndex(index: ValNo->def);
1306 if (!DefMI)
1307 return false;
1308 if (DefMI->isCopyLike()) {
1309 IsDefCopy = true;
1310 return false;
1311 }
1312 if (!TII->isAsCheapAsAMove(MI: *DefMI))
1313 return false;
1314
1315 SmallVector<Register, 8> NewRegs;
1316 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this);
1317 if (!Edit.checkRematerializable(VNI: ValNo, DefMI))
1318 return false;
1319
1320 if (!definesFullReg(MI: *DefMI, Reg: SrcReg))
1321 return false;
1322 bool SawStore = false;
1323 if (!DefMI->isSafeToMove(AA, SawStore))
1324 return false;
1325 const MCInstrDesc &MCID = DefMI->getDesc();
1326 if (MCID.getNumDefs() != 1)
1327 return false;
1328 // Only support subregister destinations when the def is read-undef.
1329 MachineOperand &DstOperand = CopyMI->getOperand(i: 0);
1330 Register CopyDstReg = DstOperand.getReg();
1331 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1332 return false;
1333
1334 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1335 // the register substantially (beyond both source and dest size). This is bad
1336 // for performance since it can cascade through a function, introducing many
1337 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1338 // around after a few subreg copies).
1339 if (SrcIdx && DstIdx)
1340 return false;
1341
1342 [[maybe_unused]] const unsigned DefSubIdx = DefMI->getOperand(i: 0).getSubReg();
1343 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, OpNum: 0, TRI, MF: *MF);
1344 if (!DefMI->isImplicitDef()) {
1345 if (DstReg.isPhysical()) {
1346 Register NewDstReg = DstReg;
1347
1348 unsigned NewDstIdx = TRI->composeSubRegIndices(a: CP.getSrcIdx(),
1349 b: DefMI->getOperand(i: 0).getSubReg());
1350 if (NewDstIdx)
1351 NewDstReg = TRI->getSubReg(Reg: DstReg, Idx: NewDstIdx);
1352
1353 // Finally, make sure that the physical subregister that will be
1354 // constructed later is permitted for the instruction.
1355 if (!DefRC->contains(Reg: NewDstReg))
1356 return false;
1357 } else {
1358 // Theoretically, some stack frame reference could exist. Just make sure
1359 // it hasn't actually happened.
1360 assert(DstReg.isVirtual() &&
1361 "Only expect to deal with virtual or physical registers");
1362 }
1363 }
1364
1365 LiveRangeEdit::Remat RM(ValNo);
1366 RM.OrigMI = DefMI;
1367 if (!Edit.canRematerializeAt(RM, OrigVNI: ValNo, UseIdx: CopyIdx, cheapAsAMove: true))
1368 return false;
1369
1370 DebugLoc DL = CopyMI->getDebugLoc();
1371 MachineBasicBlock *MBB = CopyMI->getParent();
1372 MachineBasicBlock::iterator MII =
1373 std::next(x: MachineBasicBlock::iterator(CopyMI));
1374 Edit.rematerializeAt(MBB&: *MBB, MI: MII, DestReg: DstReg, RM, *TRI, Late: false, SubIdx: SrcIdx, ReplaceIndexMI: CopyMI);
1375 MachineInstr &NewMI = *std::prev(x: MII);
1376 NewMI.setDebugLoc(DL);
1377
1378 // In a situation like the following:
1379 // %0:subreg = instr ; DefMI, subreg = DstIdx
1380 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1381 // instead of widening %1 to the register class of %0 simply do:
1382 // %1 = instr
1383 const TargetRegisterClass *NewRC = CP.getNewRC();
1384 if (DstIdx != 0) {
1385 MachineOperand &DefMO = NewMI.getOperand(i: 0);
1386 if (DefMO.getSubReg() == DstIdx) {
1387 assert(SrcIdx == 0 && CP.isFlipped()
1388 && "Shouldn't have SrcIdx+DstIdx at this point");
1389 const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstReg);
1390 const TargetRegisterClass *CommonRC =
1391 TRI->getCommonSubClass(A: DefRC, B: DstRC);
1392 if (CommonRC != nullptr) {
1393 NewRC = CommonRC;
1394
1395 // Instruction might contain "undef %0:subreg" as use operand:
1396 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1397 //
1398 // Need to check all operands.
1399 for (MachineOperand &MO : NewMI.operands()) {
1400 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1401 MO.setSubReg(0);
1402 }
1403 }
1404
1405 DstIdx = 0;
1406 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1407 }
1408 }
1409 }
1410
1411 // CopyMI may have implicit operands, save them so that we can transfer them
1412 // over to the newly materialized instruction after CopyMI is removed.
1413 SmallVector<MachineOperand, 4> ImplicitOps;
1414 ImplicitOps.reserve(N: CopyMI->getNumOperands() -
1415 CopyMI->getDesc().getNumOperands());
1416 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1417 E = CopyMI->getNumOperands();
1418 I != E; ++I) {
1419 MachineOperand &MO = CopyMI->getOperand(i: I);
1420 if (MO.isReg()) {
1421 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1422 assert((MO.getReg().isPhysical() ||
1423 (MO.getSubReg() == 0 && MO.getReg() == DstOperand.getReg())) &&
1424 "unexpected implicit virtual register def");
1425 ImplicitOps.push_back(Elt: MO);
1426 }
1427 }
1428
1429 CopyMI->eraseFromParent();
1430 ErasedInstrs.insert(Ptr: CopyMI);
1431
1432 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1433 // We need to remember these so we can add intervals once we insert
1434 // NewMI into SlotIndexes.
1435 //
1436 // We also expect to have tied implicit-defs of super registers originating
1437 // from SUBREG_TO_REG, such as:
1438 // $edi = MOV32r0 implicit-def dead $eflags, implicit-def $rdi
1439 // undef %0.sub_32bit = MOV32r0 implicit-def dead $eflags, implicit-def %0
1440 //
1441 // The implicit-def of the super register may have been reduced to
1442 // subregisters depending on the uses.
1443
1444 bool NewMIDefinesFullReg = false;
1445
1446 SmallVector<MCRegister, 4> NewMIImplDefs;
1447 for (unsigned i = NewMI.getDesc().getNumOperands(),
1448 e = NewMI.getNumOperands();
1449 i != e; ++i) {
1450 MachineOperand &MO = NewMI.getOperand(i);
1451 if (MO.isReg() && MO.isDef()) {
1452 assert(MO.isImplicit());
1453 if (MO.getReg().isPhysical()) {
1454 if (MO.getReg() == DstReg)
1455 NewMIDefinesFullReg = true;
1456
1457 assert(MO.isImplicit() && MO.getReg().isPhysical() &&
1458 (MO.isDead() ||
1459 (DefSubIdx &&
1460 ((TRI->getSubReg(MO.getReg(), DefSubIdx) ==
1461 MCRegister((unsigned)NewMI.getOperand(0).getReg())) ||
1462 TRI->isSubRegisterEq(NewMI.getOperand(0).getReg(),
1463 MO.getReg())))));
1464 NewMIImplDefs.push_back(Elt: MO.getReg().asMCReg());
1465 } else {
1466 assert(MO.getReg() == NewMI.getOperand(0).getReg());
1467
1468 // We're only expecting another def of the main output, so the range
1469 // should get updated with the regular output range.
1470 //
1471 // FIXME: The range updating below probably needs updating to look at
1472 // the super register if subranges are tracked.
1473 assert(!MRI->shouldTrackSubRegLiveness(DstReg) &&
1474 "subrange update for implicit-def of super register may not be "
1475 "properly handled");
1476 }
1477 }
1478 }
1479
1480 if (DstReg.isVirtual()) {
1481 unsigned NewIdx = NewMI.getOperand(i: 0).getSubReg();
1482
1483 if (DefRC != nullptr) {
1484 if (NewIdx)
1485 NewRC = TRI->getMatchingSuperRegClass(A: NewRC, B: DefRC, Idx: NewIdx);
1486 else
1487 NewRC = TRI->getCommonSubClass(A: NewRC, B: DefRC);
1488 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1489 }
1490 // Remap subranges to new lanemask and change register class.
1491 LiveInterval &DstInt = LIS->getInterval(Reg: DstReg);
1492 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1493 SR.LaneMask = TRI->composeSubRegIndexLaneMask(IdxA: DstIdx, Mask: SR.LaneMask);
1494 }
1495 MRI->setRegClass(Reg: DstReg, RC: NewRC);
1496
1497 // Update machine operands and add flags.
1498 updateRegDefsUses(SrcReg: DstReg, DstReg, SubIdx: DstIdx);
1499 NewMI.getOperand(i: 0).setSubReg(NewIdx);
1500 // updateRegDefUses can add an "undef" flag to the definition, since
1501 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1502 // sure that "undef" is not set.
1503 if (NewIdx == 0)
1504 NewMI.getOperand(i: 0).setIsUndef(false);
1505 // Add dead subregister definitions if we are defining the whole register
1506 // but only part of it is live.
1507 // This could happen if the rematerialization instruction is rematerializing
1508 // more than actually is used in the register.
1509 // An example would be:
1510 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1511 // ; Copying only part of the register here, but the rest is undef.
1512 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1513 // ==>
1514 // ; Materialize all the constants but only using one
1515 // %2 = LOAD_CONSTANTS 5, 8
1516 //
1517 // at this point for the part that wasn't defined before we could have
1518 // subranges missing the definition.
1519 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1520 SlotIndex CurrIdx = LIS->getInstructionIndex(Instr: NewMI);
1521 SlotIndex DefIndex =
1522 CurrIdx.getRegSlot(EC: NewMI.getOperand(i: 0).isEarlyClobber());
1523 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg: DstReg);
1524 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1525 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1526 if (!SR.liveAt(index: DefIndex))
1527 SR.createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1528 MaxMask &= ~SR.LaneMask;
1529 }
1530 if (MaxMask.any()) {
1531 LiveInterval::SubRange *SR = DstInt.createSubRange(Allocator&: Alloc, LaneMask: MaxMask);
1532 SR->createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1533 }
1534 }
1535
1536 // Make sure that the subrange for resultant undef is removed
1537 // For example:
1538 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1539 // %2 = COPY %1
1540 // ==>
1541 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1542 // ; Correct but need to remove the subrange for %2:sub0
1543 // ; as it is now undef
1544 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1545 // The affected subregister segments can be removed.
1546 SlotIndex CurrIdx = LIS->getInstructionIndex(Instr: NewMI);
1547 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(SubIdx: NewIdx);
1548 bool UpdatedSubRanges = false;
1549 SlotIndex DefIndex =
1550 CurrIdx.getRegSlot(EC: NewMI.getOperand(i: 0).isEarlyClobber());
1551 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1552 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1553 if ((SR.LaneMask & DstMask).none()) {
1554 LLVM_DEBUG(dbgs()
1555 << "Removing undefined SubRange "
1556 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1557
1558 if (VNInfo *RmValNo = SR.getVNInfoAt(Idx: CurrIdx.getRegSlot())) {
1559 // VNI is in ValNo - remove any segments in this SubRange that have
1560 // this ValNo
1561 SR.removeValNo(ValNo: RmValNo);
1562 }
1563
1564 // We may not have a defined value at this point, but still need to
1565 // clear out any empty subranges tentatively created by
1566 // updateRegDefUses. The original subrange def may have only undefed
1567 // some lanes.
1568 UpdatedSubRanges = true;
1569 } else {
1570 // We know that this lane is defined by this instruction,
1571 // but at this point it may be empty because it is not used by
1572 // anything. This happens when updateRegDefUses adds the missing
1573 // lanes. Assign that lane a dead def so that the interferences
1574 // are properly modeled.
1575 if (SR.empty())
1576 SR.createDeadDef(Def: DefIndex, VNIAlloc&: Alloc);
1577 }
1578 }
1579 if (UpdatedSubRanges)
1580 DstInt.removeEmptySubRanges();
1581 }
1582 } else if (NewMI.getOperand(i: 0).getReg() != CopyDstReg) {
1583 // The New instruction may be defining a sub-register of what's actually
1584 // been asked for. If so it must implicitly define the whole thing.
1585 assert(DstReg.isPhysical() &&
1586 "Only expect virtual or physical registers in remat");
1587 NewMI.getOperand(i: 0).setIsDead(true);
1588
1589 if (!NewMIDefinesFullReg) {
1590 NewMI.addOperand(Op: MachineOperand::CreateReg(
1591 Reg: CopyDstReg, isDef: true /*IsDef*/, isImp: true /*IsImp*/, isKill: false /*IsKill*/));
1592 }
1593
1594 // Record small dead def live-ranges for all the subregisters
1595 // of the destination register.
1596 // Otherwise, variables that live through may miss some
1597 // interferences, thus creating invalid allocation.
1598 // E.g., i386 code:
1599 // %1 = somedef ; %1 GR8
1600 // %2 = remat ; %2 GR32
1601 // CL = COPY %2.sub_8bit
1602 // = somedef %1 ; %1 GR8
1603 // =>
1604 // %1 = somedef ; %1 GR8
1605 // dead ECX = remat ; implicit-def CL
1606 // = somedef %1 ; %1 GR8
1607 // %1 will see the interferences with CL but not with CH since
1608 // no live-ranges would have been created for ECX.
1609 // Fix that!
1610 SlotIndex NewMIIdx = LIS->getInstructionIndex(Instr: NewMI);
1611 for (MCRegUnit Unit : TRI->regunits(Reg: NewMI.getOperand(i: 0).getReg()))
1612 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1613 LR->createDeadDef(Def: NewMIIdx.getRegSlot(), VNIAlloc&: LIS->getVNInfoAllocator());
1614 }
1615
1616 NewMI.setRegisterDefReadUndef(Reg: NewMI.getOperand(i: 0).getReg());
1617
1618 // Transfer over implicit operands to the rematerialized instruction.
1619 for (MachineOperand &MO : ImplicitOps)
1620 NewMI.addOperand(Op: MO);
1621
1622 SlotIndex NewMIIdx = LIS->getInstructionIndex(Instr: NewMI);
1623 for (MCRegister Reg : NewMIImplDefs) {
1624 for (MCRegUnit Unit : TRI->regunits(Reg))
1625 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1626 LR->createDeadDef(Def: NewMIIdx.getRegSlot(), VNIAlloc&: LIS->getVNInfoAllocator());
1627 }
1628
1629 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1630 ++NumReMats;
1631
1632 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1633 // to describe DstReg instead.
1634 if (MRI->use_nodbg_empty(RegNo: SrcReg)) {
1635 for (MachineOperand &UseMO :
1636 llvm::make_early_inc_range(Range: MRI->use_operands(Reg: SrcReg))) {
1637 MachineInstr *UseMI = UseMO.getParent();
1638 if (UseMI->isDebugInstr()) {
1639 if (DstReg.isPhysical())
1640 UseMO.substPhysReg(Reg: DstReg, *TRI);
1641 else
1642 UseMO.setReg(DstReg);
1643 // Move the debug value directly after the def of the rematerialized
1644 // value in DstReg.
1645 MBB->splice(Where: std::next(x: NewMI.getIterator()), Other: UseMI->getParent(), From: UseMI);
1646 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1647 }
1648 }
1649 }
1650
1651 if (ToBeUpdated.count(V: SrcReg))
1652 return true;
1653
1654 unsigned NumCopyUses = 0;
1655 for (MachineOperand &UseMO : MRI->use_nodbg_operands(Reg: SrcReg)) {
1656 if (UseMO.getParent()->isCopyLike())
1657 NumCopyUses++;
1658 }
1659 if (NumCopyUses < LateRematUpdateThreshold) {
1660 // The source interval can become smaller because we removed a use.
1661 shrinkToUses(LI: &SrcInt, Dead: &DeadDefs);
1662 if (!DeadDefs.empty())
1663 eliminateDeadDefs(Edit: &Edit);
1664 } else {
1665 ToBeUpdated.insert(V: SrcReg);
1666 }
1667 return true;
1668}
1669
1670MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1671 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1672 // removes local variables. When we have a copy like:
1673 //
1674 // %1 = COPY undef %2
1675 //
1676 // We delete the copy and remove the corresponding value number from %1.
1677 // Any uses of that value number are marked as <undef>.
1678
1679 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1680 // CoalescerPair may have a new register class with adjusted subreg indices
1681 // at this point.
1682 Register SrcReg, DstReg;
1683 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1684 if(!isMoveInstr(tri: *TRI, MI: CopyMI, Src&: SrcReg, Dst&: DstReg, SrcSub&: SrcSubIdx, DstSub&: DstSubIdx))
1685 return nullptr;
1686
1687 SlotIndex Idx = LIS->getInstructionIndex(Instr: *CopyMI);
1688 const LiveInterval &SrcLI = LIS->getInterval(Reg: SrcReg);
1689 // CopyMI is undef iff SrcReg is not live before the instruction.
1690 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1691 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SubIdx: SrcSubIdx);
1692 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1693 if ((SR.LaneMask & SrcMask).none())
1694 continue;
1695 if (SR.liveAt(index: Idx))
1696 return nullptr;
1697 }
1698 } else if (SrcLI.liveAt(index: Idx))
1699 return nullptr;
1700
1701 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1702 // then replace it with an IMPLICIT_DEF.
1703 LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
1704 SlotIndex RegIndex = Idx.getRegSlot();
1705 LiveRange::Segment *Seg = DstLI.getSegmentContaining(Idx: RegIndex);
1706 assert(Seg != nullptr && "No segment for defining instruction");
1707 VNInfo *V = DstLI.getVNInfoAt(Idx: Seg->end);
1708
1709 // The source interval may also have been on an undef use, in which case the
1710 // copy introduced a live value.
1711 if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(index: Idx)))) {
1712 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1713 MachineOperand &MO = CopyMI->getOperand(i: i-1);
1714 if (MO.isReg()) {
1715 if (MO.isUse())
1716 CopyMI->removeOperand(OpNo: i - 1);
1717 } else {
1718 assert(MO.isImm() &&
1719 CopyMI->getOpcode() == TargetOpcode::SUBREG_TO_REG);
1720 CopyMI->removeOperand(OpNo: i-1);
1721 }
1722 }
1723
1724 CopyMI->setDesc(TII->get(Opcode: TargetOpcode::IMPLICIT_DEF));
1725 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1726 "implicit def\n");
1727 return CopyMI;
1728 }
1729
1730 // Remove any DstReg segments starting at the instruction.
1731 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1732
1733 // Remove value or merge with previous one in case of a subregister def.
1734 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1735 VNInfo *VNI = DstLI.getVNInfoAt(Idx: RegIndex);
1736 DstLI.MergeValueNumberInto(V1: VNI, V2: PrevVNI);
1737
1738 // The affected subregister segments can be removed.
1739 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(SubIdx: DstSubIdx);
1740 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1741 if ((SR.LaneMask & DstMask).none())
1742 continue;
1743
1744 VNInfo *SVNI = SR.getVNInfoAt(Idx: RegIndex);
1745 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1746 SR.removeValNo(ValNo: SVNI);
1747 }
1748 DstLI.removeEmptySubRanges();
1749 } else
1750 LIS->removeVRegDefAt(LI&: DstLI, Pos: RegIndex);
1751
1752 // Mark uses as undef.
1753 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg: DstReg)) {
1754 if (MO.isDef() /*|| MO.isUndef()*/)
1755 continue;
1756 const MachineInstr &MI = *MO.getParent();
1757 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI);
1758 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubIdx: MO.getSubReg());
1759 bool isLive;
1760 if (!UseMask.all() && DstLI.hasSubRanges()) {
1761 isLive = false;
1762 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1763 if ((SR.LaneMask & UseMask).none())
1764 continue;
1765 if (SR.liveAt(index: UseIdx)) {
1766 isLive = true;
1767 break;
1768 }
1769 }
1770 } else
1771 isLive = DstLI.liveAt(index: UseIdx);
1772 if (isLive)
1773 continue;
1774 MO.setIsUndef(true);
1775 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1776 }
1777
1778 // A def of a subregister may be a use of the other subregisters, so
1779 // deleting a def of a subregister may also remove uses. Since CopyMI
1780 // is still part of the function (but about to be erased), mark all
1781 // defs of DstReg in it as <undef>, so that shrinkToUses would
1782 // ignore them.
1783 for (MachineOperand &MO : CopyMI->all_defs())
1784 if (MO.getReg() == DstReg)
1785 MO.setIsUndef(true);
1786 LIS->shrinkToUses(li: &DstLI);
1787
1788 return CopyMI;
1789}
1790
1791void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1792 MachineOperand &MO, unsigned SubRegIdx) {
1793 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx);
1794 if (MO.isDef())
1795 Mask = ~Mask;
1796 bool IsUndef = true;
1797 for (const LiveInterval::SubRange &S : Int.subranges()) {
1798 if ((S.LaneMask & Mask).none())
1799 continue;
1800 if (S.liveAt(index: UseIdx)) {
1801 IsUndef = false;
1802 break;
1803 }
1804 }
1805 if (IsUndef) {
1806 MO.setIsUndef(true);
1807 // We found out some subregister use is actually reading an undefined
1808 // value. In some cases the whole vreg has become undefined at this
1809 // point so we have to potentially shrink the main range if the
1810 // use was ending a live segment there.
1811 LiveQueryResult Q = Int.Query(Idx: UseIdx);
1812 if (Q.valueOut() == nullptr)
1813 ShrinkMainRange = true;
1814 }
1815}
1816
1817void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1818 unsigned SubIdx) {
1819 bool DstIsPhys = DstReg.isPhysical();
1820 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(Reg: DstReg);
1821
1822 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1823 for (MachineOperand &MO : MRI->reg_operands(Reg: DstReg)) {
1824 unsigned SubReg = MO.getSubReg();
1825 if (SubReg == 0 || MO.isUndef())
1826 continue;
1827 MachineInstr &MI = *MO.getParent();
1828 if (MI.isDebugInstr())
1829 continue;
1830 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: MI).getRegSlot(EC: true);
1831 addUndefFlag(Int: *DstInt, UseIdx, MO, SubRegIdx: SubReg);
1832 }
1833 }
1834
1835 SmallPtrSet<MachineInstr*, 8> Visited;
1836 for (MachineRegisterInfo::reg_instr_iterator
1837 I = MRI->reg_instr_begin(RegNo: SrcReg), E = MRI->reg_instr_end();
1838 I != E; ) {
1839 MachineInstr *UseMI = &*(I++);
1840
1841 // Each instruction can only be rewritten once because sub-register
1842 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1843 // the UseMI operands removes them from the SrcReg use-def chain, but when
1844 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1845 // operands mentioning the virtual register.
1846 if (SrcReg == DstReg && !Visited.insert(Ptr: UseMI).second)
1847 continue;
1848
1849 SmallVector<unsigned,8> Ops;
1850 bool Reads, Writes;
1851 std::tie(args&: Reads, args&: Writes) = UseMI->readsWritesVirtualRegister(Reg: SrcReg, Ops: &Ops);
1852
1853 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1854 // because SrcReg is a sub-register.
1855 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1856 Reads = DstInt->liveAt(index: LIS->getInstructionIndex(Instr: *UseMI));
1857
1858 // Replace SrcReg with DstReg in all UseMI operands.
1859 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1860 MachineOperand &MO = UseMI->getOperand(i: Ops[i]);
1861
1862 // Adjust <undef> flags in case of sub-register joins. We don't want to
1863 // turn a full def into a read-modify-write sub-register def and vice
1864 // versa.
1865 if (SubIdx && MO.isDef())
1866 MO.setIsUndef(!Reads);
1867
1868 // A subreg use of a partially undef (super) register may be a complete
1869 // undef use now and then has to be marked that way.
1870 if (MO.isUse() && !DstIsPhys) {
1871 unsigned SubUseIdx = TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg());
1872 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(VReg: DstReg)) {
1873 if (!DstInt->hasSubRanges()) {
1874 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1875 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(Reg: DstInt->reg());
1876 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1877 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1878 DstInt->createSubRangeFrom(Allocator, LaneMask: UsedLanes, CopyFrom: *DstInt);
1879 // The unused lanes are just empty live-ranges at this point.
1880 // It is the caller responsibility to set the proper
1881 // dead segments if there is an actual dead def of the
1882 // unused lanes. This may happen with rematerialization.
1883 DstInt->createSubRange(Allocator, LaneMask: UnusedLanes);
1884 }
1885 SlotIndex MIIdx = UseMI->isDebugInstr()
1886 ? LIS->getSlotIndexes()->getIndexBefore(MI: *UseMI)
1887 : LIS->getInstructionIndex(Instr: *UseMI);
1888 SlotIndex UseIdx = MIIdx.getRegSlot(EC: true);
1889 addUndefFlag(Int: *DstInt, UseIdx, MO, SubRegIdx: SubUseIdx);
1890 }
1891 }
1892
1893 if (DstIsPhys)
1894 MO.substPhysReg(Reg: DstReg, *TRI);
1895 else
1896 MO.substVirtReg(Reg: DstReg, SubIdx, *TRI);
1897 }
1898
1899 LLVM_DEBUG({
1900 dbgs() << "\t\tupdated: ";
1901 if (!UseMI->isDebugInstr())
1902 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1903 dbgs() << *UseMI;
1904 });
1905 }
1906}
1907
1908bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1909 // Always join simple intervals that are defined by a single copy from a
1910 // reserved register. This doesn't increase register pressure, so it is
1911 // always beneficial.
1912 if (!MRI->isReserved(PhysReg: CP.getDstReg())) {
1913 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1914 return false;
1915 }
1916
1917 LiveInterval &JoinVInt = LIS->getInterval(Reg: CP.getSrcReg());
1918 if (JoinVInt.containsOneValue())
1919 return true;
1920
1921 LLVM_DEBUG(
1922 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1923 return false;
1924}
1925
1926bool RegisterCoalescer::copyValueUndefInPredecessors(
1927 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1928 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1929 SlotIndex PredEnd = LIS->getMBBEndIdx(mbb: Pred);
1930 if (VNInfo *V = S.getVNInfoAt(Idx: PredEnd.getPrevSlot())) {
1931 // If this is a self loop, we may be reading the same value.
1932 if (V->id != SLRQ.valueOutOrDead()->id)
1933 return false;
1934 }
1935 }
1936
1937 return true;
1938}
1939
1940void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1941 Register Reg,
1942 LaneBitmask PrunedLanes) {
1943 // If we had other instructions in the segment reading the undef sublane
1944 // value, we need to mark them with undef.
1945 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1946 unsigned SubRegIdx = MO.getSubReg();
1947 if (SubRegIdx == 0 || MO.isUndef())
1948 continue;
1949
1950 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx);
1951 SlotIndex Pos = LIS->getInstructionIndex(Instr: *MO.getParent());
1952 for (LiveInterval::SubRange &S : LI.subranges()) {
1953 if (!S.liveAt(index: Pos) && (PrunedLanes & SubRegMask).any()) {
1954 MO.setIsUndef();
1955 break;
1956 }
1957 }
1958 }
1959
1960 LI.removeEmptySubRanges();
1961
1962 // A def of a subregister may be a use of other register lanes. Replacing
1963 // such a def with a def of a different register will eliminate the use,
1964 // and may cause the recorded live range to be larger than the actual
1965 // liveness in the program IR.
1966 LIS->shrinkToUses(li: &LI);
1967}
1968
1969bool RegisterCoalescer::joinCopy(
1970 MachineInstr *CopyMI, bool &Again,
1971 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs) {
1972 Again = false;
1973 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1974
1975 CoalescerPair CP(*TRI);
1976 if (!CP.setRegisters(CopyMI)) {
1977 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1978 return false;
1979 }
1980
1981 if (CP.getNewRC()) {
1982 auto SrcRC = MRI->getRegClass(Reg: CP.getSrcReg());
1983 auto DstRC = MRI->getRegClass(Reg: CP.getDstReg());
1984 unsigned SrcIdx = CP.getSrcIdx();
1985 unsigned DstIdx = CP.getDstIdx();
1986 if (CP.isFlipped()) {
1987 std::swap(a&: SrcIdx, b&: DstIdx);
1988 std::swap(a&: SrcRC, b&: DstRC);
1989 }
1990 if (!TRI->shouldCoalesce(MI: CopyMI, SrcRC, SubReg: SrcIdx, DstRC, DstSubReg: DstIdx,
1991 NewRC: CP.getNewRC(), LIS&: *LIS)) {
1992 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1993 return false;
1994 }
1995 }
1996
1997 // Dead code elimination. This really should be handled by MachineDCE, but
1998 // sometimes dead copies slip through, and we can't generate invalid live
1999 // ranges.
2000 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
2001 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
2002 DeadDefs.push_back(Elt: CopyMI);
2003 eliminateDeadDefs();
2004 return true;
2005 }
2006
2007 // Eliminate undefs.
2008 if (!CP.isPhys()) {
2009 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
2010 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
2011 if (UndefMI->isImplicitDef())
2012 return false;
2013 deleteInstr(MI: CopyMI);
2014 return false; // Not coalescable.
2015 }
2016 }
2017
2018 // Coalesced copies are normally removed immediately, but transformations
2019 // like removeCopyByCommutingDef() can inadvertently create identity copies.
2020 // When that happens, just join the values and remove the copy.
2021 if (CP.getSrcReg() == CP.getDstReg()) {
2022 LiveInterval &LI = LIS->getInterval(Reg: CP.getSrcReg());
2023 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
2024 const SlotIndex CopyIdx = LIS->getInstructionIndex(Instr: *CopyMI);
2025 LiveQueryResult LRQ = LI.Query(Idx: CopyIdx);
2026 if (VNInfo *DefVNI = LRQ.valueDefined()) {
2027 VNInfo *ReadVNI = LRQ.valueIn();
2028 assert(ReadVNI && "No value before copy and no <undef> flag.");
2029 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
2030
2031 // Track incoming undef lanes we need to eliminate from the subrange.
2032 LaneBitmask PrunedLanes;
2033 MachineBasicBlock *MBB = CopyMI->getParent();
2034
2035 // Process subregister liveranges.
2036 for (LiveInterval::SubRange &S : LI.subranges()) {
2037 LiveQueryResult SLRQ = S.Query(Idx: CopyIdx);
2038 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
2039 if (VNInfo *SReadVNI = SLRQ.valueIn())
2040 SDefVNI = S.MergeValueNumberInto(V1: SDefVNI, V2: SReadVNI);
2041
2042 // If this copy introduced an undef subrange from an incoming value,
2043 // we need to eliminate the undef live in values from the subrange.
2044 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
2045 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
2046 PrunedLanes |= S.LaneMask;
2047 S.removeValNo(ValNo: SDefVNI);
2048 }
2049 }
2050 }
2051
2052 LI.MergeValueNumberInto(V1: DefVNI, V2: ReadVNI);
2053 if (PrunedLanes.any()) {
2054 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
2055 << PrunedLanes << '\n');
2056 setUndefOnPrunedSubRegUses(LI, Reg: CP.getSrcReg(), PrunedLanes);
2057 }
2058
2059 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
2060 }
2061 deleteInstr(MI: CopyMI);
2062 return true;
2063 }
2064
2065 // Enforce policies.
2066 if (CP.isPhys()) {
2067 LLVM_DEBUG(dbgs() << "\tConsidering merging "
2068 << printReg(CP.getSrcReg(), TRI) << " with "
2069 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
2070 if (!canJoinPhys(CP)) {
2071 // Before giving up coalescing, if definition of source is defined by
2072 // trivial computation, try rematerializing it.
2073 bool IsDefCopy = false;
2074 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2075 return true;
2076 if (IsDefCopy)
2077 Again = true; // May be possible to coalesce later.
2078 return false;
2079 }
2080 } else {
2081 // When possible, let DstReg be the larger interval.
2082 if (!CP.isPartial() && LIS->getInterval(Reg: CP.getSrcReg()).size() >
2083 LIS->getInterval(Reg: CP.getDstReg()).size())
2084 CP.flip();
2085
2086 LLVM_DEBUG({
2087 dbgs() << "\tConsidering merging to "
2088 << TRI->getRegClassName(CP.getNewRC()) << " with ";
2089 if (CP.getDstIdx() && CP.getSrcIdx())
2090 dbgs() << printReg(CP.getDstReg()) << " in "
2091 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2092 << printReg(CP.getSrcReg()) << " in "
2093 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2094 else
2095 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2096 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2097 });
2098 }
2099
2100 ShrinkMask = LaneBitmask::getNone();
2101 ShrinkMainRange = false;
2102
2103 // Okay, attempt to join these two intervals. On failure, this returns false.
2104 // Otherwise, if one of the intervals being joined is a physreg, this method
2105 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2106 // been modified, so we can use this information below to update aliases.
2107 if (!joinIntervals(CP)) {
2108 // Coalescing failed.
2109
2110 // If definition of source is defined by trivial computation, try
2111 // rematerializing it.
2112 bool IsDefCopy = false;
2113 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2114 return true;
2115
2116 // If we can eliminate the copy without merging the live segments, do so
2117 // now.
2118 if (!CP.isPartial() && !CP.isPhys()) {
2119 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2120 bool Shrink = false;
2121 if (!Changed)
2122 std::tie(args&: Changed, args&: Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2123 if (Changed) {
2124 deleteInstr(MI: CopyMI);
2125 if (Shrink) {
2126 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2127 LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
2128 shrinkToUses(LI: &DstLI);
2129 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2130 }
2131 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2132 return true;
2133 }
2134 }
2135
2136 // Try and see if we can partially eliminate the copy by moving the copy to
2137 // its predecessor.
2138 if (!CP.isPartial() && !CP.isPhys())
2139 if (removePartialRedundancy(CP, CopyMI&: *CopyMI))
2140 return true;
2141
2142 // Otherwise, we are unable to join the intervals.
2143 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2144 Again = true; // May be possible to coalesce later.
2145 return false;
2146 }
2147
2148 // Coalescing to a virtual register that is of a sub-register class of the
2149 // other. Make sure the resulting register is set to the right register class.
2150 if (CP.isCrossClass()) {
2151 ++numCrossRCs;
2152 MRI->setRegClass(Reg: CP.getDstReg(), RC: CP.getNewRC());
2153 }
2154
2155 // Removing sub-register copies can ease the register class constraints.
2156 // Make sure we attempt to inflate the register class of DstReg.
2157 if (!CP.isPhys() && RegClassInfo.isProperSubClass(RC: CP.getNewRC()))
2158 InflateRegs.push_back(Elt: CP.getDstReg());
2159
2160 // CopyMI has been erased by joinIntervals at this point. Remove it from
2161 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2162 // to the work list. This keeps ErasedInstrs from growing needlessly.
2163 if (ErasedInstrs.erase(Ptr: CopyMI))
2164 // But we may encounter the instruction again in this iteration.
2165 CurrentErasedInstrs.insert(Ptr: CopyMI);
2166
2167 // Rewrite all SrcReg operands to DstReg.
2168 // Also update DstReg operands to include DstIdx if it is set.
2169 if (CP.getDstIdx())
2170 updateRegDefsUses(SrcReg: CP.getDstReg(), DstReg: CP.getDstReg(), SubIdx: CP.getDstIdx());
2171 updateRegDefsUses(SrcReg: CP.getSrcReg(), DstReg: CP.getDstReg(), SubIdx: CP.getSrcIdx());
2172
2173 // Shrink subregister ranges if necessary.
2174 if (ShrinkMask.any()) {
2175 LiveInterval &LI = LIS->getInterval(Reg: CP.getDstReg());
2176 for (LiveInterval::SubRange &S : LI.subranges()) {
2177 if ((S.LaneMask & ShrinkMask).none())
2178 continue;
2179 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2180 << ")\n");
2181 LIS->shrinkToUses(SR&: S, Reg: LI.reg());
2182 ShrinkMainRange = true;
2183 }
2184 LI.removeEmptySubRanges();
2185 }
2186
2187 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2188 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2189 // is not up-to-date, need to update the merged live interval here.
2190 if (ToBeUpdated.count(V: CP.getSrcReg()))
2191 ShrinkMainRange = true;
2192
2193 if (ShrinkMainRange) {
2194 LiveInterval &LI = LIS->getInterval(Reg: CP.getDstReg());
2195 shrinkToUses(LI: &LI);
2196 }
2197
2198 // SrcReg is guaranteed to be the register whose live interval that is
2199 // being merged.
2200 LIS->removeInterval(Reg: CP.getSrcReg());
2201
2202 // Update regalloc hint.
2203 TRI->updateRegAllocHint(Reg: CP.getSrcReg(), NewReg: CP.getDstReg(), MF&: *MF);
2204
2205 LLVM_DEBUG({
2206 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2207 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2208 dbgs() << "\tResult = ";
2209 if (CP.isPhys())
2210 dbgs() << printReg(CP.getDstReg(), TRI);
2211 else
2212 dbgs() << LIS->getInterval(CP.getDstReg());
2213 dbgs() << '\n';
2214 });
2215
2216 ++numJoins;
2217 return true;
2218}
2219
2220bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2221 Register DstReg = CP.getDstReg();
2222 Register SrcReg = CP.getSrcReg();
2223 assert(CP.isPhys() && "Must be a physreg copy");
2224 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2225 LiveInterval &RHS = LIS->getInterval(Reg: SrcReg);
2226 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2227
2228 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2229
2230 // Optimization for reserved registers like ESP. We can only merge with a
2231 // reserved physreg if RHS has a single value that is a copy of DstReg.
2232 // The live range of the reserved register will look like a set of dead defs
2233 // - we don't properly track the live range of reserved registers.
2234
2235 // Deny any overlapping intervals. This depends on all the reserved
2236 // register live ranges to look like dead defs.
2237 if (!MRI->isConstantPhysReg(PhysReg: DstReg)) {
2238 for (MCRegUnit Unit : TRI->regunits(Reg: DstReg)) {
2239 // Abort if not all the regunits are reserved.
2240 for (MCRegUnitRootIterator RI(Unit, TRI); RI.isValid(); ++RI) {
2241 if (!MRI->isReserved(PhysReg: *RI))
2242 return false;
2243 }
2244 if (RHS.overlaps(other: LIS->getRegUnit(Unit))) {
2245 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(Unit, TRI)
2246 << '\n');
2247 return false;
2248 }
2249 }
2250
2251 // We must also check for overlaps with regmask clobbers.
2252 BitVector RegMaskUsable;
2253 if (LIS->checkRegMaskInterference(LI: RHS, UsableRegs&: RegMaskUsable) &&
2254 !RegMaskUsable.test(Idx: DstReg)) {
2255 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2256 return false;
2257 }
2258 }
2259
2260 // Skip any value computations, we are not adding new values to the
2261 // reserved register. Also skip merging the live ranges, the reserved
2262 // register live range doesn't need to be accurate as long as all the
2263 // defs are there.
2264
2265 // Delete the identity copy.
2266 MachineInstr *CopyMI;
2267 if (CP.isFlipped()) {
2268 // Physreg is copied into vreg
2269 // %y = COPY %physreg_x
2270 // ... //< no other def of %physreg_x here
2271 // use %y
2272 // =>
2273 // ...
2274 // use %physreg_x
2275 CopyMI = MRI->getVRegDef(Reg: SrcReg);
2276 deleteInstr(MI: CopyMI);
2277 } else {
2278 // VReg is copied into physreg:
2279 // %y = def
2280 // ... //< no other def or use of %physreg_x here
2281 // %physreg_x = COPY %y
2282 // =>
2283 // %physreg_x = def
2284 // ...
2285 if (!MRI->hasOneNonDBGUse(RegNo: SrcReg)) {
2286 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2287 return false;
2288 }
2289
2290 if (!LIS->intervalIsInOneMBB(LI: RHS)) {
2291 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2292 return false;
2293 }
2294
2295 MachineInstr &DestMI = *MRI->getVRegDef(Reg: SrcReg);
2296 CopyMI = &*MRI->use_instr_nodbg_begin(RegNo: SrcReg);
2297 SlotIndex CopyRegIdx = LIS->getInstructionIndex(Instr: *CopyMI).getRegSlot();
2298 SlotIndex DestRegIdx = LIS->getInstructionIndex(Instr: DestMI).getRegSlot();
2299
2300 if (!MRI->isConstantPhysReg(PhysReg: DstReg)) {
2301 // We checked above that there are no interfering defs of the physical
2302 // register. However, for this case, where we intend to move up the def of
2303 // the physical register, we also need to check for interfering uses.
2304 SlotIndexes *Indexes = LIS->getSlotIndexes();
2305 for (SlotIndex SI = Indexes->getNextNonNullIndex(Index: DestRegIdx);
2306 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(Index: SI)) {
2307 MachineInstr *MI = LIS->getInstructionFromIndex(index: SI);
2308 if (MI->readsRegister(Reg: DstReg, TRI)) {
2309 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2310 return false;
2311 }
2312 }
2313 }
2314
2315 // We're going to remove the copy which defines a physical reserved
2316 // register, so remove its valno, etc.
2317 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2318 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2319
2320 LIS->removePhysRegDefAt(Reg: DstReg.asMCReg(), Pos: CopyRegIdx);
2321 deleteInstr(MI: CopyMI);
2322
2323 // Create a new dead def at the new def location.
2324 for (MCRegUnit Unit : TRI->regunits(Reg: DstReg)) {
2325 LiveRange &LR = LIS->getRegUnit(Unit);
2326 LR.createDeadDef(Def: DestRegIdx, VNIAlloc&: LIS->getVNInfoAllocator());
2327 }
2328 }
2329
2330 // We don't track kills for reserved registers.
2331 MRI->clearKillFlags(Reg: CP.getSrcReg());
2332
2333 return true;
2334}
2335
2336//===----------------------------------------------------------------------===//
2337// Interference checking and interval joining
2338//===----------------------------------------------------------------------===//
2339//
2340// In the easiest case, the two live ranges being joined are disjoint, and
2341// there is no interference to consider. It is quite common, though, to have
2342// overlapping live ranges, and we need to check if the interference can be
2343// resolved.
2344//
2345// The live range of a single SSA value forms a sub-tree of the dominator tree.
2346// This means that two SSA values overlap if and only if the def of one value
2347// is contained in the live range of the other value. As a special case, the
2348// overlapping values can be defined at the same index.
2349//
2350// The interference from an overlapping def can be resolved in these cases:
2351//
2352// 1. Coalescable copies. The value is defined by a copy that would become an
2353// identity copy after joining SrcReg and DstReg. The copy instruction will
2354// be removed, and the value will be merged with the source value.
2355//
2356// There can be several copies back and forth, causing many values to be
2357// merged into one. We compute a list of ultimate values in the joined live
2358// range as well as a mappings from the old value numbers.
2359//
2360// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2361// predecessors have a live out value. It doesn't cause real interference,
2362// and can be merged into the value it overlaps. Like a coalescable copy, it
2363// can be erased after joining.
2364//
2365// 3. Copy of external value. The overlapping def may be a copy of a value that
2366// is already in the other register. This is like a coalescable copy, but
2367// the live range of the source register must be trimmed after erasing the
2368// copy instruction:
2369//
2370// %src = COPY %ext
2371// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2372//
2373// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2374// defining one lane at a time:
2375//
2376// %dst:ssub0<def,read-undef> = FOO
2377// %src = BAR
2378// %dst:ssub1 = COPY %src
2379//
2380// The live range of %src overlaps the %dst value defined by FOO, but
2381// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2382// which was undef anyway.
2383//
2384// The value mapping is more complicated in this case. The final live range
2385// will have different value numbers for both FOO and BAR, but there is no
2386// simple mapping from old to new values. It may even be necessary to add
2387// new PHI values.
2388//
2389// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2390// is live, but never read. This can happen because we don't compute
2391// individual live ranges per lane.
2392//
2393// %dst = FOO
2394// %src = BAR
2395// %dst:ssub1 = COPY %src
2396//
2397// This kind of interference is only resolved locally. If the clobbered
2398// lane value escapes the block, the join is aborted.
2399
2400namespace {
2401
2402/// Track information about values in a single virtual register about to be
2403/// joined. Objects of this class are always created in pairs - one for each
2404/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2405/// pair)
2406class JoinVals {
2407 /// Live range we work on.
2408 LiveRange &LR;
2409
2410 /// (Main) register we work on.
2411 const Register Reg;
2412
2413 /// Reg (and therefore the values in this liverange) will end up as
2414 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2415 /// CP.SrcIdx.
2416 const unsigned SubIdx;
2417
2418 /// The LaneMask that this liverange will occupy the coalesced register. May
2419 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2420 const LaneBitmask LaneMask;
2421
2422 /// This is true when joining sub register ranges, false when joining main
2423 /// ranges.
2424 const bool SubRangeJoin;
2425
2426 /// Whether the current LiveInterval tracks subregister liveness.
2427 const bool TrackSubRegLiveness;
2428
2429 /// Values that will be present in the final live range.
2430 SmallVectorImpl<VNInfo*> &NewVNInfo;
2431
2432 const CoalescerPair &CP;
2433 LiveIntervals *LIS;
2434 SlotIndexes *Indexes;
2435 const TargetRegisterInfo *TRI;
2436
2437 /// Value number assignments. Maps value numbers in LI to entries in
2438 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2439 SmallVector<int, 8> Assignments;
2440
2441 public:
2442 /// Conflict resolution for overlapping values.
2443 enum ConflictResolution {
2444 /// No overlap, simply keep this value.
2445 CR_Keep,
2446
2447 /// Merge this value into OtherVNI and erase the defining instruction.
2448 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2449 /// values.
2450 CR_Erase,
2451
2452 /// Merge this value into OtherVNI but keep the defining instruction.
2453 /// This is for the special case where OtherVNI is defined by the same
2454 /// instruction.
2455 CR_Merge,
2456
2457 /// Keep this value, and have it replace OtherVNI where possible. This
2458 /// complicates value mapping since OtherVNI maps to two different values
2459 /// before and after this def.
2460 /// Used when clobbering undefined or dead lanes.
2461 CR_Replace,
2462
2463 /// Unresolved conflict. Visit later when all values have been mapped.
2464 CR_Unresolved,
2465
2466 /// Unresolvable conflict. Abort the join.
2467 CR_Impossible
2468 };
2469
2470 private:
2471 /// Per-value info for LI. The lane bit masks are all relative to the final
2472 /// joined register, so they can be compared directly between SrcReg and
2473 /// DstReg.
2474 struct Val {
2475 ConflictResolution Resolution = CR_Keep;
2476
2477 /// Lanes written by this def, 0 for unanalyzed values.
2478 LaneBitmask WriteLanes;
2479
2480 /// Lanes with defined values in this register. Other lanes are undef and
2481 /// safe to clobber.
2482 LaneBitmask ValidLanes;
2483
2484 /// Value in LI being redefined by this def.
2485 VNInfo *RedefVNI = nullptr;
2486
2487 /// Value in the other live range that overlaps this def, if any.
2488 VNInfo *OtherVNI = nullptr;
2489
2490 /// Is this value an IMPLICIT_DEF that can be erased?
2491 ///
2492 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2493 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2494 /// safely erased if they are overlapping a live value in the other live
2495 /// interval.
2496 ///
2497 /// Weird control flow graphs and incomplete PHI handling in
2498 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2499 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2500 /// normal values.
2501 bool ErasableImplicitDef = false;
2502
2503 /// True when the live range of this value will be pruned because of an
2504 /// overlapping CR_Replace value in the other live range.
2505 bool Pruned = false;
2506
2507 /// True once Pruned above has been computed.
2508 bool PrunedComputed = false;
2509
2510 /// True if this value is determined to be identical to OtherVNI
2511 /// (in valuesIdentical). This is used with CR_Erase where the erased
2512 /// copy is redundant, i.e. the source value is already the same as
2513 /// the destination. In such cases the subranges need to be updated
2514 /// properly. See comment at pruneSubRegValues for more info.
2515 bool Identical = false;
2516
2517 Val() = default;
2518
2519 bool isAnalyzed() const { return WriteLanes.any(); }
2520
2521 /// Mark this value as an IMPLICIT_DEF which must be kept as if it were an
2522 /// ordinary value.
2523 void mustKeepImplicitDef(const TargetRegisterInfo &TRI,
2524 const MachineInstr &ImpDef) {
2525 assert(ImpDef.isImplicitDef());
2526 ErasableImplicitDef = false;
2527 ValidLanes = TRI.getSubRegIndexLaneMask(SubIdx: ImpDef.getOperand(i: 0).getSubReg());
2528 }
2529 };
2530
2531 /// One entry per value number in LI.
2532 SmallVector<Val, 8> Vals;
2533
2534 /// Compute the bitmask of lanes actually written by DefMI.
2535 /// Set Redef if there are any partial register definitions that depend on the
2536 /// previous value of the register.
2537 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2538
2539 /// Find the ultimate value that VNI was copied from.
2540 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2541
2542 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2543
2544 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2545 /// Return a conflict resolution when possible, but leave the hard cases as
2546 /// CR_Unresolved.
2547 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2548 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2549 /// The recursion always goes upwards in the dominator tree, making loops
2550 /// impossible.
2551 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2552
2553 /// Compute the value assignment for ValNo in RI.
2554 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2555 /// the stack.
2556 void computeAssignment(unsigned ValNo, JoinVals &Other);
2557
2558 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2559 /// the extent of the tainted lanes in the block.
2560 ///
2561 /// Multiple values in Other.LR can be affected since partial redefinitions
2562 /// can preserve previously tainted lanes.
2563 ///
2564 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2565 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2566 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2567 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2568 ///
2569 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2570 /// entry to TaintedVals.
2571 ///
2572 /// Returns false if the tainted lanes extend beyond the basic block.
2573 bool
2574 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2575 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2576
2577 /// Return true if MI uses any of the given Lanes from Reg.
2578 /// This does not include partial redefinitions of Reg.
2579 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2580
2581 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2582 /// be pruned:
2583 ///
2584 /// %dst = COPY %src
2585 /// %src = COPY %dst <-- This value to be pruned.
2586 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2587 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2588
2589public:
2590 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2591 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2592 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2593 bool TrackSubRegLiveness)
2594 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2595 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2596 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2597 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2598 Vals(LR.getNumValNums()) {}
2599
2600 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2601 /// Returns false if any conflicts were impossible to resolve.
2602 bool mapValues(JoinVals &Other);
2603
2604 /// Try to resolve conflicts that require all values to be mapped.
2605 /// Returns false if any conflicts were impossible to resolve.
2606 bool resolveConflicts(JoinVals &Other);
2607
2608 /// Prune the live range of values in Other.LR where they would conflict with
2609 /// CR_Replace values in LR. Collect end points for restoring the live range
2610 /// after joining.
2611 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2612 bool changeInstrs);
2613
2614 /// Removes subranges starting at copies that get removed. This sometimes
2615 /// happens when undefined subranges are copied around. These ranges contain
2616 /// no useful information and can be removed.
2617 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2618
2619 /// Pruning values in subranges can lead to removing segments in these
2620 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2621 /// the main range also need to be removed. This function will mark
2622 /// the corresponding values in the main range as pruned, so that
2623 /// eraseInstrs can do the final cleanup.
2624 /// The parameter @p LI must be the interval whose main range is the
2625 /// live range LR.
2626 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2627
2628 /// Erase any machine instructions that have been coalesced away.
2629 /// Add erased instructions to ErasedInstrs.
2630 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2631 /// the erased instrs.
2632 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2633 SmallVectorImpl<Register> &ShrinkRegs,
2634 LiveInterval *LI = nullptr);
2635
2636 /// Remove liverange defs at places where implicit defs will be removed.
2637 void removeImplicitDefs();
2638
2639 /// Get the value assignments suitable for passing to LiveInterval::join.
2640 const int *getAssignments() const { return Assignments.data(); }
2641
2642 /// Get the conflict resolution for a value number.
2643 ConflictResolution getResolution(unsigned Num) const {
2644 return Vals[Num].Resolution;
2645 }
2646};
2647
2648} // end anonymous namespace
2649
2650LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2651 const {
2652 LaneBitmask L;
2653 for (const MachineOperand &MO : DefMI->all_defs()) {
2654 if (MO.getReg() != Reg)
2655 continue;
2656 L |= TRI->getSubRegIndexLaneMask(
2657 SubIdx: TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg()));
2658 if (MO.readsReg())
2659 Redef = true;
2660 }
2661 return L;
2662}
2663
2664std::pair<const VNInfo *, Register>
2665JoinVals::followCopyChain(const VNInfo *VNI) const {
2666 Register TrackReg = Reg;
2667
2668 while (!VNI->isPHIDef()) {
2669 SlotIndex Def = VNI->def;
2670 MachineInstr *MI = Indexes->getInstructionFromIndex(index: Def);
2671 assert(MI && "No defining instruction");
2672 if (!MI->isFullCopy())
2673 return std::make_pair(x&: VNI, y&: TrackReg);
2674 Register SrcReg = MI->getOperand(i: 1).getReg();
2675 if (!SrcReg.isVirtual())
2676 return std::make_pair(x&: VNI, y&: TrackReg);
2677
2678 const LiveInterval &LI = LIS->getInterval(Reg: SrcReg);
2679 const VNInfo *ValueIn;
2680 // No subrange involved.
2681 if (!SubRangeJoin || !LI.hasSubRanges()) {
2682 LiveQueryResult LRQ = LI.Query(Idx: Def);
2683 ValueIn = LRQ.valueIn();
2684 } else {
2685 // Query subranges. Ensure that all matching ones take us to the same def
2686 // (allowing some of them to be undef).
2687 ValueIn = nullptr;
2688 for (const LiveInterval::SubRange &S : LI.subranges()) {
2689 // Transform lanemask to a mask in the joined live interval.
2690 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(IdxA: SubIdx, Mask: S.LaneMask);
2691 if ((SMask & LaneMask).none())
2692 continue;
2693 LiveQueryResult LRQ = S.Query(Idx: Def);
2694 if (!ValueIn) {
2695 ValueIn = LRQ.valueIn();
2696 continue;
2697 }
2698 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2699 return std::make_pair(x&: VNI, y&: TrackReg);
2700 }
2701 }
2702 if (ValueIn == nullptr) {
2703 // Reaching an undefined value is legitimate, for example:
2704 //
2705 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2706 // 2 %1 = COPY %0 ;; %1 is defined here.
2707 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2708 // ;; but it's equivalent to "undef".
2709 return std::make_pair(x: nullptr, y&: SrcReg);
2710 }
2711 VNI = ValueIn;
2712 TrackReg = SrcReg;
2713 }
2714 return std::make_pair(x&: VNI, y&: TrackReg);
2715}
2716
2717bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2718 const JoinVals &Other) const {
2719 const VNInfo *Orig0;
2720 Register Reg0;
2721 std::tie(args&: Orig0, args&: Reg0) = followCopyChain(VNI: Value0);
2722 if (Orig0 == Value1 && Reg0 == Other.Reg)
2723 return true;
2724
2725 const VNInfo *Orig1;
2726 Register Reg1;
2727 std::tie(args&: Orig1, args&: Reg1) = Other.followCopyChain(VNI: Value1);
2728 // If both values are undefined, and the source registers are the same
2729 // register, the values are identical. Filter out cases where only one
2730 // value is defined.
2731 if (Orig0 == nullptr || Orig1 == nullptr)
2732 return Orig0 == Orig1 && Reg0 == Reg1;
2733
2734 // The values are equal if they are defined at the same place and use the
2735 // same register. Note that we cannot compare VNInfos directly as some of
2736 // them might be from a copy created in mergeSubRangeInto() while the other
2737 // is from the original LiveInterval.
2738 return Orig0->def == Orig1->def && Reg0 == Reg1;
2739}
2740
2741JoinVals::ConflictResolution
2742JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2743 Val &V = Vals[ValNo];
2744 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2745 VNInfo *VNI = LR.getValNumInfo(ValNo);
2746 if (VNI->isUnused()) {
2747 V.WriteLanes = LaneBitmask::getAll();
2748 return CR_Keep;
2749 }
2750
2751 // Get the instruction defining this value, compute the lanes written.
2752 const MachineInstr *DefMI = nullptr;
2753 if (VNI->isPHIDef()) {
2754 // Conservatively assume that all lanes in a PHI are valid.
2755 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(Lane: 0)
2756 : TRI->getSubRegIndexLaneMask(SubIdx);
2757 V.ValidLanes = V.WriteLanes = Lanes;
2758 } else {
2759 DefMI = Indexes->getInstructionFromIndex(index: VNI->def);
2760 assert(DefMI != nullptr);
2761 if (SubRangeJoin) {
2762 // We don't care about the lanes when joining subregister ranges.
2763 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(Lane: 0);
2764 if (DefMI->isImplicitDef()) {
2765 V.ValidLanes = LaneBitmask::getNone();
2766 V.ErasableImplicitDef = true;
2767 }
2768 } else {
2769 bool Redef = false;
2770 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2771
2772 // If this is a read-modify-write instruction, there may be more valid
2773 // lanes than the ones written by this instruction.
2774 // This only covers partial redef operands. DefMI may have normal use
2775 // operands reading the register. They don't contribute valid lanes.
2776 //
2777 // This adds ssub1 to the set of valid lanes in %src:
2778 //
2779 // %src:ssub1 = FOO
2780 //
2781 // This leaves only ssub1 valid, making any other lanes undef:
2782 //
2783 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2784 //
2785 // The <read-undef> flag on the def operand means that old lane values are
2786 // not important.
2787 if (Redef) {
2788 V.RedefVNI = LR.Query(Idx: VNI->def).valueIn();
2789 assert((TrackSubRegLiveness || V.RedefVNI) &&
2790 "Instruction is reading nonexistent value");
2791 if (V.RedefVNI != nullptr) {
2792 computeAssignment(ValNo: V.RedefVNI->id, Other);
2793 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2794 }
2795 }
2796
2797 // An IMPLICIT_DEF writes undef values.
2798 if (DefMI->isImplicitDef()) {
2799 // We normally expect IMPLICIT_DEF values to be live only until the end
2800 // of their block. If the value is really live longer and gets pruned in
2801 // another block, this flag is cleared again.
2802 //
2803 // Clearing the valid lanes is deferred until it is sure this can be
2804 // erased.
2805 V.ErasableImplicitDef = true;
2806 }
2807 }
2808 }
2809
2810 // Find the value in Other that overlaps VNI->def, if any.
2811 LiveQueryResult OtherLRQ = Other.LR.Query(Idx: VNI->def);
2812
2813 // It is possible that both values are defined by the same instruction, or
2814 // the values are PHIs defined in the same block. When that happens, the two
2815 // values should be merged into one, but not into any preceding value.
2816 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2817 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2818 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2819
2820 // One value stays, the other is merged. Keep the earlier one, or the first
2821 // one we see.
2822 if (OtherVNI->def < VNI->def)
2823 Other.computeAssignment(ValNo: OtherVNI->id, Other&: *this);
2824 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2825 // This is an early-clobber def overlapping a live-in value in the other
2826 // register. Not mergeable.
2827 V.OtherVNI = OtherLRQ.valueIn();
2828 return CR_Impossible;
2829 }
2830 V.OtherVNI = OtherVNI;
2831 Val &OtherV = Other.Vals[OtherVNI->id];
2832 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2833 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2834 // is assigned.
2835 if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1)
2836 return CR_Keep;
2837 // Both sides have been analyzed now.
2838 // Allow overlapping PHI values. Any real interference would show up in a
2839 // predecessor, the PHI itself can't introduce any conflicts.
2840 if (VNI->isPHIDef())
2841 return CR_Merge;
2842 if ((V.ValidLanes & OtherV.ValidLanes).any())
2843 // Overlapping lanes can't be resolved.
2844 return CR_Impossible;
2845 else
2846 return CR_Merge;
2847 }
2848
2849 // No simultaneous def. Is Other live at the def?
2850 V.OtherVNI = OtherLRQ.valueIn();
2851 if (!V.OtherVNI)
2852 // No overlap, no conflict.
2853 return CR_Keep;
2854
2855 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2856
2857 // We have overlapping values, or possibly a kill of Other.
2858 // Recursively compute assignments up the dominator tree.
2859 Other.computeAssignment(ValNo: V.OtherVNI->id, Other&: *this);
2860 Val &OtherV = Other.Vals[V.OtherVNI->id];
2861
2862 if (OtherV.ErasableImplicitDef) {
2863 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2864 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2865 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2866 // technically.
2867 //
2868 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2869 // to erase the IMPLICIT_DEF instruction.
2870 //
2871 // Additionally we must keep an IMPLICIT_DEF if we're redefining an incoming
2872 // value.
2873
2874 MachineInstr *OtherImpDef =
2875 Indexes->getInstructionFromIndex(index: V.OtherVNI->def);
2876 MachineBasicBlock *OtherMBB = OtherImpDef->getParent();
2877 if (DefMI &&
2878 (DefMI->getParent() != OtherMBB || LIS->isLiveInToMBB(LR, mbb: OtherMBB))) {
2879 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2880 << " extends into "
2881 << printMBBReference(*DefMI->getParent())
2882 << ", keeping it.\n");
2883 OtherV.mustKeepImplicitDef(TRI: *TRI, ImpDef: *OtherImpDef);
2884 } else if (OtherMBB->hasEHPadSuccessor()) {
2885 // If OtherV is defined in a basic block that has EH pad successors then
2886 // we get the same problem not just if OtherV is live beyond its basic
2887 // block, but beyond the last call instruction in its basic block. Handle
2888 // this case conservatively.
2889 LLVM_DEBUG(
2890 dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2891 << " may be live into EH pad successors, keeping it.\n");
2892 OtherV.mustKeepImplicitDef(TRI: *TRI, ImpDef: *OtherImpDef);
2893 } else {
2894 // We deferred clearing these lanes in case we needed to save them
2895 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2896 }
2897 }
2898
2899 // Allow overlapping PHI values. Any real interference would show up in a
2900 // predecessor, the PHI itself can't introduce any conflicts.
2901 if (VNI->isPHIDef())
2902 return CR_Replace;
2903
2904 // Check for simple erasable conflicts.
2905 if (DefMI->isImplicitDef())
2906 return CR_Erase;
2907
2908 // Include the non-conflict where DefMI is a coalescable copy that kills
2909 // OtherVNI. We still want the copy erased and value numbers merged.
2910 if (CP.isCoalescable(MI: DefMI)) {
2911 // Some of the lanes copied from OtherVNI may be undef, making them undef
2912 // here too.
2913 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2914 return CR_Erase;
2915 }
2916
2917 // This may not be a real conflict if DefMI simply kills Other and defines
2918 // VNI.
2919 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2920 return CR_Keep;
2921
2922 // Handle the case where VNI and OtherVNI can be proven to be identical:
2923 //
2924 // %other = COPY %ext
2925 // %this = COPY %ext <-- Erase this copy
2926 //
2927 if (DefMI->isFullCopy() && !CP.isPartial() &&
2928 valuesIdentical(Value0: VNI, Value1: V.OtherVNI, Other)) {
2929 V.Identical = true;
2930 return CR_Erase;
2931 }
2932
2933 // The remaining checks apply to the lanes, which aren't tracked here. This
2934 // was already decided to be OK via the following CR_Replace condition.
2935 // CR_Replace.
2936 if (SubRangeJoin)
2937 return CR_Replace;
2938
2939 // If the lanes written by this instruction were all undef in OtherVNI, it is
2940 // still safe to join the live ranges. This can't be done with a simple value
2941 // mapping, though - OtherVNI will map to multiple values:
2942 //
2943 // 1 %dst:ssub0 = FOO <-- OtherVNI
2944 // 2 %src = BAR <-- VNI
2945 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2946 // 4 BAZ killed %dst
2947 // 5 QUUX killed %src
2948 //
2949 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2950 // handles this complex value mapping.
2951 if ((V.WriteLanes & OtherV.ValidLanes).none())
2952 return CR_Replace;
2953
2954 // If the other live range is killed by DefMI and the live ranges are still
2955 // overlapping, it must be because we're looking at an early clobber def:
2956 //
2957 // %dst<def,early-clobber> = ASM killed %src
2958 //
2959 // In this case, it is illegal to merge the two live ranges since the early
2960 // clobber def would clobber %src before it was read.
2961 if (OtherLRQ.isKill()) {
2962 // This case where the def doesn't overlap the kill is handled above.
2963 assert(VNI->def.isEarlyClobber() &&
2964 "Only early clobber defs can overlap a kill");
2965 return CR_Impossible;
2966 }
2967
2968 // VNI is clobbering live lanes in OtherVNI, but there is still the
2969 // possibility that no instructions actually read the clobbered lanes.
2970 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2971 // Otherwise Other.RI wouldn't be live here.
2972 if ((TRI->getSubRegIndexLaneMask(SubIdx: Other.SubIdx) & ~V.WriteLanes).none())
2973 return CR_Impossible;
2974
2975 if (TrackSubRegLiveness) {
2976 auto &OtherLI = LIS->getInterval(Reg: Other.Reg);
2977 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2978 // share the same live range, so we just need to check whether they have
2979 // any conflict bit in their LaneMask.
2980 if (!OtherLI.hasSubRanges()) {
2981 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(SubIdx: Other.SubIdx);
2982 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2983 }
2984
2985 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2986 // impossible to resolve the conflict. Otherwise, we can just replace
2987 // OtherVNI because of no real conflict.
2988 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2989 LaneBitmask OtherMask =
2990 TRI->composeSubRegIndexLaneMask(IdxA: Other.SubIdx, Mask: OtherSR.LaneMask);
2991 if ((OtherMask & V.WriteLanes).none())
2992 continue;
2993
2994 auto OtherSRQ = OtherSR.Query(Idx: VNI->def);
2995 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2996 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2997 return CR_Impossible;
2998 }
2999 }
3000
3001 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
3002 return CR_Replace;
3003 }
3004
3005 // We need to verify that no instructions are reading the clobbered lanes.
3006 // To save compile time, we'll only check that locally. Don't allow the
3007 // tainted value to escape the basic block.
3008 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3009 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(mbb: MBB))
3010 return CR_Impossible;
3011
3012 // There are still some things that could go wrong besides clobbered lanes
3013 // being read, for example OtherVNI may be only partially redefined in MBB,
3014 // and some clobbered lanes could escape the block. Save this analysis for
3015 // resolveConflicts() when all values have been mapped. We need to know
3016 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
3017 // that now - the recursive analyzeValue() calls must go upwards in the
3018 // dominator tree.
3019 return CR_Unresolved;
3020}
3021
3022void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
3023 Val &V = Vals[ValNo];
3024 if (V.isAnalyzed()) {
3025 // Recursion should always move up the dominator tree, so ValNo is not
3026 // supposed to reappear before it has been assigned.
3027 assert(Assignments[ValNo] != -1 && "Bad recursion?");
3028 return;
3029 }
3030 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
3031 case CR_Erase:
3032 case CR_Merge:
3033 // Merge this ValNo into OtherVNI.
3034 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
3035 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
3036 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
3037 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
3038 << LR.getValNumInfo(ValNo)->def << " into "
3039 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
3040 << V.OtherVNI->def << " --> @"
3041 << NewVNInfo[Assignments[ValNo]]->def << '\n');
3042 break;
3043 case CR_Replace:
3044 case CR_Unresolved: {
3045 // The other value is going to be pruned if this join is successful.
3046 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
3047 Val &OtherV = Other.Vals[V.OtherVNI->id];
3048 OtherV.Pruned = true;
3049 [[fallthrough]];
3050 }
3051 default:
3052 // This value number needs to go in the final joined live range.
3053 Assignments[ValNo] = NewVNInfo.size();
3054 NewVNInfo.push_back(Elt: LR.getValNumInfo(ValNo));
3055 break;
3056 }
3057}
3058
3059bool JoinVals::mapValues(JoinVals &Other) {
3060 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3061 computeAssignment(ValNo: i, Other);
3062 if (Vals[i].Resolution == CR_Impossible) {
3063 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
3064 << '@' << LR.getValNumInfo(i)->def << '\n');
3065 return false;
3066 }
3067 }
3068 return true;
3069}
3070
3071bool JoinVals::
3072taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
3073 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
3074 VNInfo *VNI = LR.getValNumInfo(ValNo);
3075 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3076 SlotIndex MBBEnd = Indexes->getMBBEndIdx(mbb: MBB);
3077
3078 // Scan Other.LR from VNI.def to MBBEnd.
3079 LiveInterval::iterator OtherI = Other.LR.find(Pos: VNI->def);
3080 assert(OtherI != Other.LR.end() && "No conflict?");
3081 do {
3082 // OtherI is pointing to a tainted value. Abort the join if the tainted
3083 // lanes escape the block.
3084 SlotIndex End = OtherI->end;
3085 if (End >= MBBEnd) {
3086 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
3087 << OtherI->valno->id << '@' << OtherI->start << '\n');
3088 return false;
3089 }
3090 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3091 << OtherI->valno->id << '@' << OtherI->start << " to "
3092 << End << '\n');
3093 // A dead def is not a problem.
3094 if (End.isDead())
3095 break;
3096 TaintExtent.push_back(Elt: std::make_pair(x&: End, y&: TaintedLanes));
3097
3098 // Check for another def in the MBB.
3099 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3100 break;
3101
3102 // Lanes written by the new def are no longer tainted.
3103 const Val &OV = Other.Vals[OtherI->valno->id];
3104 TaintedLanes &= ~OV.WriteLanes;
3105 if (!OV.RedefVNI)
3106 break;
3107 } while (TaintedLanes.any());
3108 return true;
3109}
3110
3111bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3112 LaneBitmask Lanes) const {
3113 if (MI.isDebugOrPseudoInstr())
3114 return false;
3115 for (const MachineOperand &MO : MI.all_uses()) {
3116 if (MO.getReg() != Reg)
3117 continue;
3118 if (!MO.readsReg())
3119 continue;
3120 unsigned S = TRI->composeSubRegIndices(a: SubIdx, b: MO.getSubReg());
3121 if ((Lanes & TRI->getSubRegIndexLaneMask(SubIdx: S)).any())
3122 return true;
3123 }
3124 return false;
3125}
3126
3127bool JoinVals::resolveConflicts(JoinVals &Other) {
3128 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3129 Val &V = Vals[i];
3130 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3131 if (V.Resolution != CR_Unresolved)
3132 continue;
3133 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3134 << LR.getValNumInfo(i)->def
3135 << ' ' << PrintLaneMask(LaneMask) << '\n');
3136 if (SubRangeJoin)
3137 return false;
3138
3139 ++NumLaneConflicts;
3140 assert(V.OtherVNI && "Inconsistent conflict resolution.");
3141 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3142 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3143
3144 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3145 // join, those lanes will be tainted with a wrong value. Get the extent of
3146 // the tainted lanes.
3147 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3148 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3149 if (!taintExtent(ValNo: i, TaintedLanes, Other, TaintExtent))
3150 // Tainted lanes would extend beyond the basic block.
3151 return false;
3152
3153 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3154
3155 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3156 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: VNI->def);
3157 MachineBasicBlock::iterator MI = MBB->begin();
3158 if (!VNI->isPHIDef()) {
3159 MI = Indexes->getInstructionFromIndex(index: VNI->def);
3160 if (!VNI->def.isEarlyClobber()) {
3161 // No need to check the instruction defining VNI for reads.
3162 ++MI;
3163 }
3164 }
3165 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3166 "Interference ends on VNI->def. Should have been handled earlier");
3167 MachineInstr *LastMI =
3168 Indexes->getInstructionFromIndex(index: TaintExtent.front().first);
3169 assert(LastMI && "Range must end at a proper instruction");
3170 unsigned TaintNum = 0;
3171 while (true) {
3172 assert(MI != MBB->end() && "Bad LastMI");
3173 if (usesLanes(MI: *MI, Reg: Other.Reg, SubIdx: Other.SubIdx, Lanes: TaintedLanes)) {
3174 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3175 return false;
3176 }
3177 // LastMI is the last instruction to use the current value.
3178 if (&*MI == LastMI) {
3179 if (++TaintNum == TaintExtent.size())
3180 break;
3181 LastMI = Indexes->getInstructionFromIndex(index: TaintExtent[TaintNum].first);
3182 assert(LastMI && "Range must end at a proper instruction");
3183 TaintedLanes = TaintExtent[TaintNum].second;
3184 }
3185 ++MI;
3186 }
3187
3188 // The tainted lanes are unused.
3189 V.Resolution = CR_Replace;
3190 ++NumLaneResolves;
3191 }
3192 return true;
3193}
3194
3195bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3196 Val &V = Vals[ValNo];
3197 if (V.Pruned || V.PrunedComputed)
3198 return V.Pruned;
3199
3200 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3201 return V.Pruned;
3202
3203 // Follow copies up the dominator tree and check if any intermediate value
3204 // has been pruned.
3205 V.PrunedComputed = true;
3206 V.Pruned = Other.isPrunedValue(ValNo: V.OtherVNI->id, Other&: *this);
3207 return V.Pruned;
3208}
3209
3210void JoinVals::pruneValues(JoinVals &Other,
3211 SmallVectorImpl<SlotIndex> &EndPoints,
3212 bool changeInstrs) {
3213 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3214 SlotIndex Def = LR.getValNumInfo(ValNo: i)->def;
3215 switch (Vals[i].Resolution) {
3216 case CR_Keep:
3217 break;
3218 case CR_Replace: {
3219 // This value takes precedence over the value in Other.LR.
3220 LIS->pruneValue(LR&: Other.LR, Kill: Def, EndPoints: &EndPoints);
3221 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3222 // instructions are only inserted to provide a live-out value for PHI
3223 // predecessors, so the instruction should simply go away once its value
3224 // has been replaced.
3225 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3226 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3227 OtherV.Resolution == CR_Keep;
3228 if (!Def.isBlock()) {
3229 if (changeInstrs) {
3230 // Remove <def,read-undef> flags. This def is now a partial redef.
3231 // Also remove dead flags since the joined live range will
3232 // continue past this instruction.
3233 for (MachineOperand &MO :
3234 Indexes->getInstructionFromIndex(index: Def)->operands()) {
3235 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3236 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3237 MO.setIsUndef(false);
3238 MO.setIsDead(false);
3239 }
3240 }
3241 }
3242 // This value will reach instructions below, but we need to make sure
3243 // the live range also reaches the instruction at Def.
3244 if (!EraseImpDef)
3245 EndPoints.push_back(Elt: Def);
3246 }
3247 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3248 << ": " << Other.LR << '\n');
3249 break;
3250 }
3251 case CR_Erase:
3252 case CR_Merge:
3253 if (isPrunedValue(ValNo: i, Other)) {
3254 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3255 // We can no longer trust the value mapping computed by
3256 // computeAssignment(), the value that was originally copied could have
3257 // been replaced.
3258 LIS->pruneValue(LR, Kill: Def, EndPoints: &EndPoints);
3259 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3260 << Def << ": " << LR << '\n');
3261 }
3262 break;
3263 case CR_Unresolved:
3264 case CR_Impossible:
3265 llvm_unreachable("Unresolved conflicts");
3266 }
3267 }
3268}
3269
3270// Check if the segment consists of a copied live-through value (i.e. the copy
3271// in the block only extended the liveness, of an undef value which we may need
3272// to handle).
3273static bool isLiveThrough(const LiveQueryResult Q) {
3274 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3275}
3276
3277/// Consider the following situation when coalescing the copy between
3278/// %31 and %45 at 800. (The vertical lines represent live range segments.)
3279///
3280/// Main range Subrange 0004 (sub2)
3281/// %31 %45 %31 %45
3282/// 544 %45 = COPY %28 + +
3283/// | v1 | v1
3284/// 560B bb.1: + +
3285/// 624 = %45.sub2 | v2 | v2
3286/// 800 %31 = COPY %45 + + + +
3287/// | v0 | v0
3288/// 816 %31.sub1 = ... + |
3289/// 880 %30 = COPY %31 | v1 +
3290/// 928 %45 = COPY %30 | + +
3291/// | | v0 | v0 <--+
3292/// 992B ; backedge -> bb.1 | + + |
3293/// 1040 = %31.sub0 + |
3294/// This value must remain
3295/// live-out!
3296///
3297/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3298/// redundant, since it copies the value from %45 back into it. The
3299/// conflict resolution for the main range determines that %45.v0 is
3300/// to be erased, which is ok since %31.v1 is identical to it.
3301/// The problem happens with the subrange for sub2: it has to be live
3302/// on exit from the block, but since 928 was actually a point of
3303/// definition of %45.sub2, %45.sub2 was not live immediately prior
3304/// to that definition. As a result, when 928 was erased, the value v0
3305/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3306/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3307/// providing an incorrect value to the use at 624.
3308///
3309/// Since the main-range values %31.v1 and %45.v0 were proved to be
3310/// identical, the corresponding values in subranges must also be the
3311/// same. A redundant copy is removed because it's not needed, and not
3312/// because it copied an undefined value, so any liveness that originated
3313/// from that copy cannot disappear. When pruning a value that started
3314/// at the removed copy, the corresponding identical value must be
3315/// extended to replace it.
3316void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3317 // Look for values being erased.
3318 bool DidPrune = false;
3319 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3320 Val &V = Vals[i];
3321 // We should trigger in all cases in which eraseInstrs() does something.
3322 // match what eraseInstrs() is doing, print a message so
3323 if (V.Resolution != CR_Erase &&
3324 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3325 continue;
3326
3327 // Check subranges at the point where the copy will be removed.
3328 SlotIndex Def = LR.getValNumInfo(ValNo: i)->def;
3329 SlotIndex OtherDef;
3330 if (V.Identical)
3331 OtherDef = V.OtherVNI->def;
3332
3333 // Print message so mismatches with eraseInstrs() can be diagnosed.
3334 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3335 << '\n');
3336 for (LiveInterval::SubRange &S : LI.subranges()) {
3337 LiveQueryResult Q = S.Query(Idx: Def);
3338
3339 // If a subrange starts at the copy then an undefined value has been
3340 // copied and we must remove that subrange value as well.
3341 VNInfo *ValueOut = Q.valueOutOrDead();
3342 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3343 (V.Identical && V.Resolution == CR_Erase &&
3344 ValueOut->def == Def))) {
3345 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3346 << " at " << Def << "\n");
3347 SmallVector<SlotIndex,8> EndPoints;
3348 LIS->pruneValue(LR&: S, Kill: Def, EndPoints: &EndPoints);
3349 DidPrune = true;
3350 // Mark value number as unused.
3351 ValueOut->markUnused();
3352
3353 if (V.Identical && S.Query(Idx: OtherDef).valueOutOrDead()) {
3354 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3355 // then we can't simply prune V from S. V needs to be replaced
3356 // with V.OtherVNI.
3357 LIS->extendToIndices(LR&: S, Indices: EndPoints);
3358 }
3359
3360 // We may need to eliminate the subrange if the copy introduced a live
3361 // out undef value.
3362 if (ValueOut->isPHIDef())
3363 ShrinkMask |= S.LaneMask;
3364 continue;
3365 }
3366
3367 // If a subrange ends at the copy, then a value was copied but only
3368 // partially used later. Shrink the subregister range appropriately.
3369 //
3370 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3371 // conservatively correct.
3372 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3373 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3374 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3375 << PrintLaneMask(S.LaneMask) << " at " << Def
3376 << "\n");
3377 ShrinkMask |= S.LaneMask;
3378 }
3379 }
3380 }
3381 if (DidPrune)
3382 LI.removeEmptySubRanges();
3383}
3384
3385/// Check if any of the subranges of @p LI contain a definition at @p Def.
3386static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3387 for (LiveInterval::SubRange &SR : LI.subranges()) {
3388 if (VNInfo *VNI = SR.Query(Idx: Def).valueOutOrDead())
3389 if (VNI->def == Def)
3390 return true;
3391 }
3392 return false;
3393}
3394
3395void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3396 assert(&static_cast<LiveRange&>(LI) == &LR);
3397
3398 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3399 if (Vals[i].Resolution != CR_Keep)
3400 continue;
3401 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3402 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, Def: VNI->def))
3403 continue;
3404 Vals[i].Pruned = true;
3405 ShrinkMainRange = true;
3406 }
3407}
3408
3409void JoinVals::removeImplicitDefs() {
3410 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3411 Val &V = Vals[i];
3412 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3413 continue;
3414
3415 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3416 VNI->markUnused();
3417 LR.removeValNo(ValNo: VNI);
3418 }
3419}
3420
3421void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3422 SmallVectorImpl<Register> &ShrinkRegs,
3423 LiveInterval *LI) {
3424 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3425 // Get the def location before markUnused() below invalidates it.
3426 VNInfo *VNI = LR.getValNumInfo(ValNo: i);
3427 SlotIndex Def = VNI->def;
3428 switch (Vals[i].Resolution) {
3429 case CR_Keep: {
3430 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3431 // longer. The IMPLICIT_DEF instructions are only inserted by
3432 // PHIElimination to guarantee that all PHI predecessors have a value.
3433 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3434 break;
3435 // Remove value number i from LR.
3436 // For intervals with subranges, removing a segment from the main range
3437 // may require extending the previous segment: for each definition of
3438 // a subregister, there will be a corresponding def in the main range.
3439 // That def may fall in the middle of a segment from another subrange.
3440 // In such cases, removing this def from the main range must be
3441 // complemented by extending the main range to account for the liveness
3442 // of the other subrange.
3443 // The new end point of the main range segment to be extended.
3444 SlotIndex NewEnd;
3445 if (LI != nullptr) {
3446 LiveRange::iterator I = LR.FindSegmentContaining(Idx: Def);
3447 assert(I != LR.end());
3448 // Do not extend beyond the end of the segment being removed.
3449 // The segment may have been pruned in preparation for joining
3450 // live ranges.
3451 NewEnd = I->end;
3452 }
3453
3454 LR.removeValNo(ValNo: VNI);
3455 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3456 // make it appear like an unused value number.
3457 VNI->markUnused();
3458
3459 if (LI != nullptr && LI->hasSubRanges()) {
3460 assert(static_cast<LiveRange*>(LI) == &LR);
3461 // Determine the end point based on the subrange information:
3462 // minimum of (earliest def of next segment,
3463 // latest end point of containing segment)
3464 SlotIndex ED, LE;
3465 for (LiveInterval::SubRange &SR : LI->subranges()) {
3466 LiveRange::iterator I = SR.find(Pos: Def);
3467 if (I == SR.end())
3468 continue;
3469 if (I->start > Def)
3470 ED = ED.isValid() ? std::min(a: ED, b: I->start) : I->start;
3471 else
3472 LE = LE.isValid() ? std::max(a: LE, b: I->end) : I->end;
3473 }
3474 if (LE.isValid())
3475 NewEnd = std::min(a: NewEnd, b: LE);
3476 if (ED.isValid())
3477 NewEnd = std::min(a: NewEnd, b: ED);
3478
3479 // We only want to do the extension if there was a subrange that
3480 // was live across Def.
3481 if (LE.isValid()) {
3482 LiveRange::iterator S = LR.find(Pos: Def);
3483 if (S != LR.begin())
3484 std::prev(x: S)->end = NewEnd;
3485 }
3486 }
3487 LLVM_DEBUG({
3488 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3489 if (LI != nullptr)
3490 dbgs() << "\t\t LHS = " << *LI << '\n';
3491 });
3492 [[fallthrough]];
3493 }
3494
3495 case CR_Erase: {
3496 MachineInstr *MI = Indexes->getInstructionFromIndex(index: Def);
3497 assert(MI && "No instruction to erase");
3498 if (MI->isCopy()) {
3499 Register Reg = MI->getOperand(i: 1).getReg();
3500 if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3501 ShrinkRegs.push_back(Elt: Reg);
3502 }
3503 ErasedInstrs.insert(Ptr: MI);
3504 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3505 LIS->RemoveMachineInstrFromMaps(MI&: *MI);
3506 MI->eraseFromParent();
3507 break;
3508 }
3509 default:
3510 break;
3511 }
3512 }
3513}
3514
3515void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3516 LaneBitmask LaneMask,
3517 const CoalescerPair &CP) {
3518 SmallVector<VNInfo*, 16> NewVNInfo;
3519 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3520 NewVNInfo, CP, LIS, TRI, true, true);
3521 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3522 NewVNInfo, CP, LIS, TRI, true, true);
3523
3524 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3525 // We should be able to resolve all conflicts here as we could successfully do
3526 // it on the mainrange already. There is however a problem when multiple
3527 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3528 // interferences.
3529 if (!LHSVals.mapValues(Other&: RHSVals) || !RHSVals.mapValues(Other&: LHSVals)) {
3530 // We already determined that it is legal to merge the intervals, so this
3531 // should never fail.
3532 llvm_unreachable("*** Couldn't join subrange!\n");
3533 }
3534 if (!LHSVals.resolveConflicts(Other&: RHSVals) ||
3535 !RHSVals.resolveConflicts(Other&: LHSVals)) {
3536 // We already determined that it is legal to merge the intervals, so this
3537 // should never fail.
3538 llvm_unreachable("*** Couldn't join subrange!\n");
3539 }
3540
3541 // The merging algorithm in LiveInterval::join() can't handle conflicting
3542 // value mappings, so we need to remove any live ranges that overlap a
3543 // CR_Replace resolution. Collect a set of end points that can be used to
3544 // restore the live range after joining.
3545 SmallVector<SlotIndex, 8> EndPoints;
3546 LHSVals.pruneValues(Other&: RHSVals, EndPoints, changeInstrs: false);
3547 RHSVals.pruneValues(Other&: LHSVals, EndPoints, changeInstrs: false);
3548
3549 LHSVals.removeImplicitDefs();
3550 RHSVals.removeImplicitDefs();
3551
3552 LRange.verify();
3553 RRange.verify();
3554
3555 // Join RRange into LHS.
3556 LRange.join(Other&: RRange, ValNoAssignments: LHSVals.getAssignments(), RHSValNoAssignments: RHSVals.getAssignments(),
3557 NewVNInfo);
3558
3559 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3560 << ' ' << LRange << "\n");
3561 if (EndPoints.empty())
3562 return;
3563
3564 // Recompute the parts of the live range we had to remove because of
3565 // CR_Replace conflicts.
3566 LLVM_DEBUG({
3567 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3568 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3569 dbgs() << EndPoints[i];
3570 if (i != n-1)
3571 dbgs() << ',';
3572 }
3573 dbgs() << ": " << LRange << '\n';
3574 });
3575 LIS->extendToIndices(LR&: LRange, Indices: EndPoints);
3576}
3577
3578void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3579 const LiveRange &ToMerge,
3580 LaneBitmask LaneMask,
3581 CoalescerPair &CP,
3582 unsigned ComposeSubRegIdx) {
3583 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3584 LI.refineSubRanges(
3585 Allocator, LaneMask,
3586 Apply: [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3587 if (SR.empty()) {
3588 SR.assign(Other: ToMerge, Allocator);
3589 } else {
3590 // joinSubRegRange() destroys the merged range, so we need a copy.
3591 LiveRange RangeCopy(ToMerge, Allocator);
3592 joinSubRegRanges(LRange&: SR, RRange&: RangeCopy, LaneMask: SR.LaneMask, CP);
3593 }
3594 },
3595 Indexes: *LIS->getSlotIndexes(), TRI: *TRI, ComposeSubRegIdx);
3596}
3597
3598bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3599 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3600 return false;
3601 auto &Counter = LargeLIVisitCounter[LI.reg()];
3602 if (Counter < LargeIntervalFreqThreshold) {
3603 Counter++;
3604 return false;
3605 }
3606 return true;
3607}
3608
3609bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3610 SmallVector<VNInfo*, 16> NewVNInfo;
3611 LiveInterval &RHS = LIS->getInterval(Reg: CP.getSrcReg());
3612 LiveInterval &LHS = LIS->getInterval(Reg: CP.getDstReg());
3613 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(RC: *CP.getNewRC());
3614 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3615 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3616 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3617 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3618
3619 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3620
3621 if (isHighCostLiveInterval(LI&: LHS) || isHighCostLiveInterval(LI&: RHS))
3622 return false;
3623
3624 // First compute NewVNInfo and the simple value mappings.
3625 // Detect impossible conflicts early.
3626 if (!LHSVals.mapValues(Other&: RHSVals) || !RHSVals.mapValues(Other&: LHSVals))
3627 return false;
3628
3629 // Some conflicts can only be resolved after all values have been mapped.
3630 if (!LHSVals.resolveConflicts(Other&: RHSVals) || !RHSVals.resolveConflicts(Other&: LHSVals))
3631 return false;
3632
3633 // All clear, the live ranges can be merged.
3634 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3635 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3636
3637 // Transform lanemasks from the LHS to masks in the coalesced register and
3638 // create initial subranges if necessary.
3639 unsigned DstIdx = CP.getDstIdx();
3640 if (!LHS.hasSubRanges()) {
3641 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3642 : TRI->getSubRegIndexLaneMask(SubIdx: DstIdx);
3643 // LHS must support subregs or we wouldn't be in this codepath.
3644 assert(Mask.any());
3645 LHS.createSubRangeFrom(Allocator, LaneMask: Mask, CopyFrom: LHS);
3646 } else if (DstIdx != 0) {
3647 // Transform LHS lanemasks to new register class if necessary.
3648 for (LiveInterval::SubRange &R : LHS.subranges()) {
3649 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(IdxA: DstIdx, Mask: R.LaneMask);
3650 R.LaneMask = Mask;
3651 }
3652 }
3653 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3654 << '\n');
3655
3656 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3657 unsigned SrcIdx = CP.getSrcIdx();
3658 if (!RHS.hasSubRanges()) {
3659 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3660 : TRI->getSubRegIndexLaneMask(SubIdx: SrcIdx);
3661 mergeSubRangeInto(LI&: LHS, ToMerge: RHS, LaneMask: Mask, CP, ComposeSubRegIdx: DstIdx);
3662 } else {
3663 // Pair up subranges and merge.
3664 for (LiveInterval::SubRange &R : RHS.subranges()) {
3665 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(IdxA: SrcIdx, Mask: R.LaneMask);
3666 mergeSubRangeInto(LI&: LHS, ToMerge: R, LaneMask: Mask, CP, ComposeSubRegIdx: DstIdx);
3667 }
3668 }
3669 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3670
3671 // Pruning implicit defs from subranges may result in the main range
3672 // having stale segments.
3673 LHSVals.pruneMainSegments(LI&: LHS, ShrinkMainRange);
3674
3675 LHSVals.pruneSubRegValues(LI&: LHS, ShrinkMask);
3676 RHSVals.pruneSubRegValues(LI&: LHS, ShrinkMask);
3677 }
3678
3679 // The merging algorithm in LiveInterval::join() can't handle conflicting
3680 // value mappings, so we need to remove any live ranges that overlap a
3681 // CR_Replace resolution. Collect a set of end points that can be used to
3682 // restore the live range after joining.
3683 SmallVector<SlotIndex, 8> EndPoints;
3684 LHSVals.pruneValues(Other&: RHSVals, EndPoints, changeInstrs: true);
3685 RHSVals.pruneValues(Other&: LHSVals, EndPoints, changeInstrs: true);
3686
3687 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3688 // registers to require trimming.
3689 SmallVector<Register, 8> ShrinkRegs;
3690 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, LI: &LHS);
3691 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3692 while (!ShrinkRegs.empty())
3693 shrinkToUses(LI: &LIS->getInterval(Reg: ShrinkRegs.pop_back_val()));
3694
3695 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3696 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3697
3698 // If the RHS covers any PHI locations that were tracked for debug-info, we
3699 // must update tracking information to reflect the join.
3700 auto RegIt = RegToPHIIdx.find(Val: CP.getSrcReg());
3701 if (RegIt != RegToPHIIdx.end()) {
3702 // Iterate over all the debug instruction numbers assigned this register.
3703 for (unsigned InstID : RegIt->second) {
3704 auto PHIIt = PHIValToPos.find(Val: InstID);
3705 assert(PHIIt != PHIValToPos.end());
3706 const SlotIndex &SI = PHIIt->second.SI;
3707
3708 // Does the RHS cover the position of this PHI?
3709 auto LII = RHS.find(Pos: SI);
3710 if (LII == RHS.end() || LII->start > SI)
3711 continue;
3712
3713 // Accept two kinds of subregister movement:
3714 // * When we merge from one register class into a larger register:
3715 // %1:gr16 = some-inst
3716 // ->
3717 // %2:gr32.sub_16bit = some-inst
3718 // * When the PHI is already in a subregister, and the larger class
3719 // is coalesced:
3720 // %2:gr32.sub_16bit = some-inst
3721 // %3:gr32 = COPY %2
3722 // ->
3723 // %3:gr32.sub_16bit = some-inst
3724 // Test for subregister move:
3725 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3726 // If we're moving between different subregisters, ignore this join.
3727 // The PHI will not get a location, dropping variable locations.
3728 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3729 continue;
3730
3731 // Update our tracking of where the PHI is.
3732 PHIIt->second.Reg = CP.getDstReg();
3733
3734 // If we merge into a sub-register of a larger class (test above),
3735 // update SubReg.
3736 if (CP.getSrcIdx() != 0)
3737 PHIIt->second.SubReg = CP.getSrcIdx();
3738 }
3739
3740 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3741 // different VRegs now. Copy old collection of debug instruction numbers and
3742 // erase the old one:
3743 auto InstrNums = RegIt->second;
3744 RegToPHIIdx.erase(I: RegIt);
3745
3746 // There might already be PHIs being tracked in the destination VReg. Insert
3747 // into an existing tracking collection, or insert a new one.
3748 RegIt = RegToPHIIdx.find(Val: CP.getDstReg());
3749 if (RegIt != RegToPHIIdx.end())
3750 RegIt->second.insert(I: RegIt->second.end(), From: InstrNums.begin(),
3751 To: InstrNums.end());
3752 else
3753 RegToPHIIdx.insert(KV: {CP.getDstReg(), InstrNums});
3754 }
3755
3756 // Join RHS into LHS.
3757 LHS.join(Other&: RHS, ValNoAssignments: LHSVals.getAssignments(), RHSValNoAssignments: RHSVals.getAssignments(), NewVNInfo);
3758
3759 // Kill flags are going to be wrong if the live ranges were overlapping.
3760 // Eventually, we should simply clear all kill flags when computing live
3761 // ranges. They are reinserted after register allocation.
3762 MRI->clearKillFlags(Reg: LHS.reg());
3763 MRI->clearKillFlags(Reg: RHS.reg());
3764
3765 if (!EndPoints.empty()) {
3766 // Recompute the parts of the live range we had to remove because of
3767 // CR_Replace conflicts.
3768 LLVM_DEBUG({
3769 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3770 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3771 dbgs() << EndPoints[i];
3772 if (i != n-1)
3773 dbgs() << ',';
3774 }
3775 dbgs() << ": " << LHS << '\n';
3776 });
3777 LIS->extendToIndices(LR&: (LiveRange&)LHS, Indices: EndPoints);
3778 }
3779
3780 return true;
3781}
3782
3783bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3784 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3785}
3786
3787void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3788{
3789 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3790 SmallVector<MachineInstr *, 8> ToInsert;
3791
3792 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3793 // vreg => DbgValueLoc map.
3794 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3795 for (auto *X : ToInsert) {
3796 for (const auto &Op : X->debug_operands()) {
3797 if (Op.isReg() && Op.getReg().isVirtual())
3798 DbgVRegToValues[Op.getReg()].push_back(x: {Slot, X});
3799 }
3800 }
3801
3802 ToInsert.clear();
3803 };
3804
3805 // Iterate over all instructions, collecting them into the ToInsert vector.
3806 // Once a non-debug instruction is found, record the slot index of the
3807 // collected DBG_VALUEs.
3808 for (auto &MBB : MF) {
3809 SlotIndex CurrentSlot = Slots.getMBBStartIdx(mbb: &MBB);
3810
3811 for (auto &MI : MBB) {
3812 if (MI.isDebugValue()) {
3813 if (any_of(Range: MI.debug_operands(), P: [](const MachineOperand &MO) {
3814 return MO.isReg() && MO.getReg().isVirtual();
3815 }))
3816 ToInsert.push_back(Elt: &MI);
3817 } else if (!MI.isDebugOrPseudoInstr()) {
3818 CurrentSlot = Slots.getInstructionIndex(MI);
3819 CloseNewDVRange(CurrentSlot);
3820 }
3821 }
3822
3823 // Close range of DBG_VALUEs at the end of blocks.
3824 CloseNewDVRange(Slots.getMBBEndIdx(mbb: &MBB));
3825 }
3826
3827 // Sort all DBG_VALUEs we've seen by slot number.
3828 for (auto &Pair : DbgVRegToValues)
3829 llvm::sort(C&: Pair.second);
3830}
3831
3832void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3833 LiveRange &LHS,
3834 JoinVals &LHSVals,
3835 LiveRange &RHS,
3836 JoinVals &RHSVals) {
3837 auto ScanForDstReg = [&](Register Reg) {
3838 checkMergingChangesDbgValuesImpl(Reg, OtherRange&: RHS, RegRange&: LHS, Vals2&: LHSVals);
3839 };
3840
3841 auto ScanForSrcReg = [&](Register Reg) {
3842 checkMergingChangesDbgValuesImpl(Reg, OtherRange&: LHS, RegRange&: RHS, Vals2&: RHSVals);
3843 };
3844
3845 // Scan for unsound updates of both the source and destination register.
3846 ScanForSrcReg(CP.getSrcReg());
3847 ScanForDstReg(CP.getDstReg());
3848}
3849
3850void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3851 LiveRange &OtherLR,
3852 LiveRange &RegLR,
3853 JoinVals &RegVals) {
3854 // Are there any DBG_VALUEs to examine?
3855 auto VRegMapIt = DbgVRegToValues.find(Val: Reg);
3856 if (VRegMapIt == DbgVRegToValues.end())
3857 return;
3858
3859 auto &DbgValueSet = VRegMapIt->second;
3860 auto DbgValueSetIt = DbgValueSet.begin();
3861 auto SegmentIt = OtherLR.begin();
3862
3863 bool LastUndefResult = false;
3864 SlotIndex LastUndefIdx;
3865
3866 // If the "Other" register is live at a slot Idx, test whether Reg can
3867 // safely be merged with it, or should be marked undef.
3868 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3869 &LastUndefIdx](SlotIndex Idx) -> bool {
3870 // Our worst-case performance typically happens with asan, causing very
3871 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3872 // result for this edge-case.
3873 if (LastUndefIdx == Idx)
3874 return LastUndefResult;
3875
3876 // If the other range was live, and Reg's was not, the register coalescer
3877 // will not have tried to resolve any conflicts. We don't know whether
3878 // the DBG_VALUE will refer to the same value number, so it must be made
3879 // undef.
3880 auto OtherIt = RegLR.find(Pos: Idx);
3881 if (OtherIt == RegLR.end())
3882 return true;
3883
3884 // Both the registers were live: examine the conflict resolution record for
3885 // the value number Reg refers to. CR_Keep meant that this value number
3886 // "won" and the merged register definitely refers to that value. CR_Erase
3887 // means the value number was a redundant copy of the other value, which
3888 // was coalesced and Reg deleted. It's safe to refer to the other register
3889 // (which will be the source of the copy).
3890 auto Resolution = RegVals.getResolution(Num: OtherIt->valno->id);
3891 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3892 Resolution != JoinVals::CR_Erase;
3893 LastUndefIdx = Idx;
3894 return LastUndefResult;
3895 };
3896
3897 // Iterate over both the live-range of the "Other" register, and the set of
3898 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3899 // slot index. This relies on the DbgValueSet being ordered.
3900 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3901 if (DbgValueSetIt->first < SegmentIt->end) {
3902 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3903 // set it undef.
3904 if (DbgValueSetIt->first >= SegmentIt->start) {
3905 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3906 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3907 if (HasReg && ShouldUndefReg) {
3908 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3909 DbgValueSetIt->second->setDebugValueUndef();
3910 continue;
3911 }
3912 }
3913 ++DbgValueSetIt;
3914 } else {
3915 ++SegmentIt;
3916 }
3917 }
3918}
3919
3920namespace {
3921
3922/// Information concerning MBB coalescing priority.
3923struct MBBPriorityInfo {
3924 MachineBasicBlock *MBB;
3925 unsigned Depth;
3926 bool IsSplit;
3927
3928 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3929 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3930};
3931
3932} // end anonymous namespace
3933
3934/// C-style comparator that sorts first based on the loop depth of the basic
3935/// block (the unsigned), and then on the MBB number.
3936///
3937/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3938static int compareMBBPriority(const MBBPriorityInfo *LHS,
3939 const MBBPriorityInfo *RHS) {
3940 // Deeper loops first
3941 if (LHS->Depth != RHS->Depth)
3942 return LHS->Depth > RHS->Depth ? -1 : 1;
3943
3944 // Try to unsplit critical edges next.
3945 if (LHS->IsSplit != RHS->IsSplit)
3946 return LHS->IsSplit ? -1 : 1;
3947
3948 // Prefer blocks that are more connected in the CFG. This takes care of
3949 // the most difficult copies first while intervals are short.
3950 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3951 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3952 if (cl != cr)
3953 return cl > cr ? -1 : 1;
3954
3955 // As a last resort, sort by block number.
3956 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3957}
3958
3959/// \returns true if the given copy uses or defines a local live range.
3960static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3961 if (!Copy->isCopy())
3962 return false;
3963
3964 if (Copy->getOperand(i: 1).isUndef())
3965 return false;
3966
3967 Register SrcReg = Copy->getOperand(i: 1).getReg();
3968 Register DstReg = Copy->getOperand(i: 0).getReg();
3969 if (SrcReg.isPhysical() || DstReg.isPhysical())
3970 return false;
3971
3972 return LIS->intervalIsInOneMBB(LI: LIS->getInterval(Reg: SrcReg))
3973 || LIS->intervalIsInOneMBB(LI: LIS->getInterval(Reg: DstReg));
3974}
3975
3976void RegisterCoalescer::lateLiveIntervalUpdate() {
3977 for (Register reg : ToBeUpdated) {
3978 if (!LIS->hasInterval(Reg: reg))
3979 continue;
3980 LiveInterval &LI = LIS->getInterval(Reg: reg);
3981 shrinkToUses(LI: &LI, Dead: &DeadDefs);
3982 if (!DeadDefs.empty())
3983 eliminateDeadDefs();
3984 }
3985 ToBeUpdated.clear();
3986}
3987
3988bool RegisterCoalescer::
3989copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3990 bool Progress = false;
3991 SmallPtrSet<MachineInstr *, 4> CurrentErasedInstrs;
3992 for (MachineInstr *&MI : CurrList) {
3993 if (!MI)
3994 continue;
3995 // Skip instruction pointers that have already been erased, for example by
3996 // dead code elimination.
3997 if (ErasedInstrs.count(Ptr: MI) || CurrentErasedInstrs.count(Ptr: MI)) {
3998 MI = nullptr;
3999 continue;
4000 }
4001 bool Again = false;
4002 bool Success = joinCopy(CopyMI: MI, Again, CurrentErasedInstrs);
4003 Progress |= Success;
4004 if (Success || !Again)
4005 MI = nullptr;
4006 }
4007 // Clear instructions not recorded in `ErasedInstrs` but erased.
4008 if (!CurrentErasedInstrs.empty()) {
4009 for (MachineInstr *&MI : CurrList) {
4010 if (MI && CurrentErasedInstrs.count(Ptr: MI))
4011 MI = nullptr;
4012 }
4013 for (MachineInstr *&MI : WorkList) {
4014 if (MI && CurrentErasedInstrs.count(Ptr: MI))
4015 MI = nullptr;
4016 }
4017 }
4018 return Progress;
4019}
4020
4021/// Check if DstReg is a terminal node.
4022/// I.e., it does not have any affinity other than \p Copy.
4023static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
4024 const MachineRegisterInfo *MRI) {
4025 assert(Copy.isCopyLike());
4026 // Check if the destination of this copy as any other affinity.
4027 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(Reg: DstReg))
4028 if (&MI != &Copy && MI.isCopyLike())
4029 return false;
4030 return true;
4031}
4032
4033bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
4034 assert(Copy.isCopyLike());
4035 if (!UseTerminalRule)
4036 return false;
4037 Register SrcReg, DstReg;
4038 unsigned SrcSubReg = 0, DstSubReg = 0;
4039 if (!isMoveInstr(tri: *TRI, MI: &Copy, Src&: SrcReg, Dst&: DstReg, SrcSub&: SrcSubReg, DstSub&: DstSubReg))
4040 return false;
4041 // Check if the destination of this copy has any other affinity.
4042 if (DstReg.isPhysical() ||
4043 // If SrcReg is a physical register, the copy won't be coalesced.
4044 // Ignoring it may have other side effect (like missing
4045 // rematerialization). So keep it.
4046 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
4047 return false;
4048
4049 // DstReg is a terminal node. Check if it interferes with any other
4050 // copy involving SrcReg.
4051 const MachineBasicBlock *OrigBB = Copy.getParent();
4052 const LiveInterval &DstLI = LIS->getInterval(Reg: DstReg);
4053 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(Reg: SrcReg)) {
4054 // Technically we should check if the weight of the new copy is
4055 // interesting compared to the other one and update the weight
4056 // of the copies accordingly. However, this would only work if
4057 // we would gather all the copies first then coalesce, whereas
4058 // right now we interleave both actions.
4059 // For now, just consider the copies that are in the same block.
4060 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
4061 continue;
4062 Register OtherSrcReg, OtherReg;
4063 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
4064 if (!isMoveInstr(tri: *TRI, MI: &Copy, Src&: OtherSrcReg, Dst&: OtherReg, SrcSub&: OtherSrcSubReg,
4065 DstSub&: OtherSubReg))
4066 return false;
4067 if (OtherReg == SrcReg)
4068 OtherReg = OtherSrcReg;
4069 // Check if OtherReg is a non-terminal.
4070 if (OtherReg.isPhysical() || isTerminalReg(DstReg: OtherReg, Copy: MI, MRI))
4071 continue;
4072 // Check that OtherReg interfere with DstReg.
4073 if (LIS->getInterval(Reg: OtherReg).overlaps(other: DstLI)) {
4074 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
4075 << '\n');
4076 return true;
4077 }
4078 }
4079 return false;
4080}
4081
4082void
4083RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
4084 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
4085
4086 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4087 // yet, it might invalidate the iterator.
4088 const unsigned PrevSize = WorkList.size();
4089 if (JoinGlobalCopies) {
4090 SmallVector<MachineInstr*, 2> LocalTerminals;
4091 SmallVector<MachineInstr*, 2> GlobalTerminals;
4092 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4093 // are not inherently easier to resolve, but slightly preferable until we
4094 // have local live range splitting. In particular this is required by
4095 // cmp+jmp macro fusion.
4096 for (MachineInstr &MI : *MBB) {
4097 if (!MI.isCopyLike())
4098 continue;
4099 bool ApplyTerminalRule = applyTerminalRule(Copy: MI);
4100 if (isLocalCopy(Copy: &MI, LIS)) {
4101 if (ApplyTerminalRule)
4102 LocalTerminals.push_back(Elt: &MI);
4103 else
4104 LocalWorkList.push_back(Elt: &MI);
4105 } else {
4106 if (ApplyTerminalRule)
4107 GlobalTerminals.push_back(Elt: &MI);
4108 else
4109 WorkList.push_back(Elt: &MI);
4110 }
4111 }
4112 // Append the copies evicted by the terminal rule at the end of the list.
4113 LocalWorkList.append(in_start: LocalTerminals.begin(), in_end: LocalTerminals.end());
4114 WorkList.append(in_start: GlobalTerminals.begin(), in_end: GlobalTerminals.end());
4115 }
4116 else {
4117 SmallVector<MachineInstr*, 2> Terminals;
4118 for (MachineInstr &MII : *MBB)
4119 if (MII.isCopyLike()) {
4120 if (applyTerminalRule(Copy: MII))
4121 Terminals.push_back(Elt: &MII);
4122 else
4123 WorkList.push_back(Elt: &MII);
4124 }
4125 // Append the copies evicted by the terminal rule at the end of the list.
4126 WorkList.append(in_start: Terminals.begin(), in_end: Terminals.end());
4127 }
4128 // Try coalescing the collected copies immediately, and remove the nulls.
4129 // This prevents the WorkList from getting too large since most copies are
4130 // joinable on the first attempt.
4131 MutableArrayRef<MachineInstr*>
4132 CurrList(WorkList.begin() + PrevSize, WorkList.end());
4133 if (copyCoalesceWorkList(CurrList))
4134 WorkList.erase(CS: std::remove(first: WorkList.begin() + PrevSize, last: WorkList.end(),
4135 value: nullptr), CE: WorkList.end());
4136}
4137
4138void RegisterCoalescer::coalesceLocals() {
4139 copyCoalesceWorkList(CurrList: LocalWorkList);
4140 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4141 if (LocalWorkList[j])
4142 WorkList.push_back(Elt: LocalWorkList[j]);
4143 }
4144 LocalWorkList.clear();
4145}
4146
4147void RegisterCoalescer::joinAllIntervals() {
4148 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4149 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4150
4151 std::vector<MBBPriorityInfo> MBBs;
4152 MBBs.reserve(n: MF->size());
4153 for (MachineBasicBlock &MBB : *MF) {
4154 MBBs.push_back(x: MBBPriorityInfo(&MBB, Loops->getLoopDepth(BB: &MBB),
4155 JoinSplitEdges && isSplitEdge(MBB: &MBB)));
4156 }
4157 array_pod_sort(Start: MBBs.begin(), End: MBBs.end(), Compare: compareMBBPriority);
4158
4159 // Coalesce intervals in MBB priority order.
4160 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4161 for (MBBPriorityInfo &MBB : MBBs) {
4162 // Try coalescing the collected local copies for deeper loops.
4163 if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4164 coalesceLocals();
4165 CurrDepth = MBB.Depth;
4166 }
4167 copyCoalesceInMBB(MBB: MBB.MBB);
4168 }
4169 lateLiveIntervalUpdate();
4170 coalesceLocals();
4171
4172 // Joining intervals can allow other intervals to be joined. Iteratively join
4173 // until we make no progress.
4174 while (copyCoalesceWorkList(CurrList: WorkList))
4175 /* empty */ ;
4176 lateLiveIntervalUpdate();
4177}
4178
4179void RegisterCoalescer::releaseMemory() {
4180 ErasedInstrs.clear();
4181 WorkList.clear();
4182 DeadDefs.clear();
4183 InflateRegs.clear();
4184 LargeLIVisitCounter.clear();
4185}
4186
4187bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4188 LLVM_DEBUG(dbgs() << "********** REGISTER COALESCER **********\n"
4189 << "********** Function: " << fn.getName() << '\n');
4190
4191 // Variables changed between a setjmp and a longjump can have undefined value
4192 // after the longjmp. This behaviour can be observed if such a variable is
4193 // spilled, so longjmp won't restore the value in the spill slot.
4194 // RegisterCoalescer should not run in functions with a setjmp to avoid
4195 // merging such undefined variables with predictable ones.
4196 //
4197 // TODO: Could specifically disable coalescing registers live across setjmp
4198 // calls
4199 if (fn.exposesReturnsTwice()) {
4200 LLVM_DEBUG(
4201 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4202 return false;
4203 }
4204
4205 MF = &fn;
4206 MRI = &fn.getRegInfo();
4207 const TargetSubtargetInfo &STI = fn.getSubtarget();
4208 TRI = STI.getRegisterInfo();
4209 TII = STI.getInstrInfo();
4210 LIS = &getAnalysis<LiveIntervals>();
4211 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4212 Loops = &getAnalysis<MachineLoopInfo>();
4213 if (EnableGlobalCopies == cl::BOU_UNSET)
4214 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4215 else
4216 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4217
4218 // If there are PHIs tracked by debug-info, they will need updating during
4219 // coalescing. Build an index of those PHIs to ease updating.
4220 SlotIndexes *Slots = LIS->getSlotIndexes();
4221 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4222 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4223 Register Reg = DebugPHI.second.Reg;
4224 unsigned SubReg = DebugPHI.second.SubReg;
4225 SlotIndex SI = Slots->getMBBStartIdx(mbb: MBB);
4226 PHIValPos P = {.SI: SI, .Reg: Reg, .SubReg: SubReg};
4227 PHIValToPos.insert(KV: std::make_pair(x: DebugPHI.first, y&: P));
4228 RegToPHIIdx[Reg].push_back(Elt: DebugPHI.first);
4229 }
4230
4231 // The MachineScheduler does not currently require JoinSplitEdges. This will
4232 // either be enabled unconditionally or replaced by a more general live range
4233 // splitting optimization.
4234 JoinSplitEdges = EnableJoinSplits;
4235
4236 if (VerifyCoalescing)
4237 MF->verify(p: this, Banner: "Before register coalescing");
4238
4239 DbgVRegToValues.clear();
4240 buildVRegToDbgValueMap(MF&: fn);
4241
4242 RegClassInfo.runOnMachineFunction(MF: fn);
4243
4244 // Join (coalesce) intervals if requested.
4245 if (EnableJoining)
4246 joinAllIntervals();
4247
4248 // After deleting a lot of copies, register classes may be less constrained.
4249 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4250 // DPR inflation.
4251 array_pod_sort(Start: InflateRegs.begin(), End: InflateRegs.end());
4252 InflateRegs.erase(CS: std::unique(first: InflateRegs.begin(), last: InflateRegs.end()),
4253 CE: InflateRegs.end());
4254 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4255 << " regs.\n");
4256 for (Register Reg : InflateRegs) {
4257 if (MRI->reg_nodbg_empty(RegNo: Reg))
4258 continue;
4259 if (MRI->recomputeRegClass(Reg)) {
4260 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4261 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4262 ++NumInflated;
4263
4264 LiveInterval &LI = LIS->getInterval(Reg);
4265 if (LI.hasSubRanges()) {
4266 // If the inflated register class does not support subregisters anymore
4267 // remove the subranges.
4268 if (!MRI->shouldTrackSubRegLiveness(VReg: Reg)) {
4269 LI.clearSubRanges();
4270 } else {
4271#ifndef NDEBUG
4272 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4273 // If subranges are still supported, then the same subregs
4274 // should still be supported.
4275 for (LiveInterval::SubRange &S : LI.subranges()) {
4276 assert((S.LaneMask & ~MaxMask).none());
4277 }
4278#endif
4279 }
4280 }
4281 }
4282 }
4283
4284 // After coalescing, update any PHIs that are being tracked by debug-info
4285 // with their new VReg locations.
4286 for (auto &p : MF->DebugPHIPositions) {
4287 auto it = PHIValToPos.find(Val: p.first);
4288 assert(it != PHIValToPos.end());
4289 p.second.Reg = it->second.Reg;
4290 p.second.SubReg = it->second.SubReg;
4291 }
4292
4293 PHIValToPos.clear();
4294 RegToPHIIdx.clear();
4295
4296 LLVM_DEBUG(dump());
4297 if (VerifyCoalescing)
4298 MF->verify(p: this, Banner: "After register coalescing");
4299 return true;
4300}
4301
4302void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4303 LIS->print(O, m);
4304}
4305

source code of llvm/lib/CodeGen/RegisterCoalescer.cpp