1//===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the TwoAddress instruction pass which is used
10// by most register allocators. Two-Address instructions are rewritten
11// from:
12//
13// A = B op C
14//
15// to:
16//
17// A = B
18// A op= C
19//
20// Note that if a register allocator chooses to use this pass, that it
21// has to be capable of handling the non-SSA nature of these rewritten
22// virtual registers.
23//
24// It is also worth noting that the duplicate operand of the two
25// address instruction is removed.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/iterator_range.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/CodeGen/LiveInterval.h"
36#include "llvm/CodeGen/LiveIntervals.h"
37#include "llvm/CodeGen/LiveVariables.h"
38#include "llvm/CodeGen/MachineBasicBlock.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineInstr.h"
42#include "llvm/CodeGen/MachineInstrBuilder.h"
43#include "llvm/CodeGen/MachineOperand.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/Passes.h"
46#include "llvm/CodeGen/SlotIndexes.h"
47#include "llvm/CodeGen/TargetInstrInfo.h"
48#include "llvm/CodeGen/TargetOpcodes.h"
49#include "llvm/CodeGen/TargetRegisterInfo.h"
50#include "llvm/CodeGen/TargetSubtargetInfo.h"
51#include "llvm/MC/MCInstrDesc.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/CodeGen.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Target/TargetMachine.h"
59#include <cassert>
60#include <iterator>
61#include <utility>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "twoaddressinstruction"
66
67STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
68STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
69STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
70STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
71STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
72STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
73
74// Temporary flag to disable rescheduling.
75static cl::opt<bool>
76EnableRescheduling("twoaddr-reschedule",
77 cl::desc("Coalesce copies by rescheduling (default=true)"),
78 cl::init(Val: true), cl::Hidden);
79
80// Limit the number of dataflow edges to traverse when evaluating the benefit
81// of commuting operands.
82static cl::opt<unsigned> MaxDataFlowEdge(
83 "dataflow-edge-limit", cl::Hidden, cl::init(Val: 3),
84 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
85 "the benefit of commuting operands"));
86
87namespace {
88
89class TwoAddressInstructionPass : public MachineFunctionPass {
90 MachineFunction *MF = nullptr;
91 const TargetInstrInfo *TII = nullptr;
92 const TargetRegisterInfo *TRI = nullptr;
93 const InstrItineraryData *InstrItins = nullptr;
94 MachineRegisterInfo *MRI = nullptr;
95 LiveVariables *LV = nullptr;
96 LiveIntervals *LIS = nullptr;
97 AliasAnalysis *AA = nullptr;
98 CodeGenOptLevel OptLevel = CodeGenOptLevel::None;
99
100 // The current basic block being processed.
101 MachineBasicBlock *MBB = nullptr;
102
103 // Keep track the distance of a MI from the start of the current basic block.
104 DenseMap<MachineInstr*, unsigned> DistanceMap;
105
106 // Set of already processed instructions in the current block.
107 SmallPtrSet<MachineInstr*, 8> Processed;
108
109 // A map from virtual registers to physical registers which are likely targets
110 // to be coalesced to due to copies from physical registers to virtual
111 // registers. e.g. v1024 = move r0.
112 DenseMap<Register, Register> SrcRegMap;
113
114 // A map from virtual registers to physical registers which are likely targets
115 // to be coalesced to due to copies to physical registers from virtual
116 // registers. e.g. r1 = move v1024.
117 DenseMap<Register, Register> DstRegMap;
118
119 MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB) const;
120
121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
122
123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
124
125 bool isCopyToReg(MachineInstr &MI, Register &SrcReg, Register &DstReg,
126 bool &IsSrcPhys, bool &IsDstPhys) const;
127
128 bool isPlainlyKilled(const MachineInstr *MI, LiveRange &LR) const;
129 bool isPlainlyKilled(const MachineInstr *MI, Register Reg) const;
130 bool isPlainlyKilled(const MachineOperand &MO) const;
131
132 bool isKilled(MachineInstr &MI, Register Reg, bool allowFalsePositives) const;
133
134 MachineInstr *findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
135 bool &IsCopy, Register &DstReg,
136 bool &IsDstPhys) const;
137
138 bool regsAreCompatible(Register RegA, Register RegB) const;
139
140 void removeMapRegEntry(const MachineOperand &MO,
141 DenseMap<Register, Register> &RegMap) const;
142
143 void removeClobberedSrcRegMap(MachineInstr *MI);
144
145 bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg) const;
146
147 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
148 MachineInstr *MI, unsigned Dist);
149
150 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
151 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
152
153 bool isProfitableToConv3Addr(Register RegA, Register RegB);
154
155 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
156 MachineBasicBlock::iterator &nmi, Register RegA,
157 Register RegB, unsigned &Dist);
158
159 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
160
161 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
162 MachineBasicBlock::iterator &nmi, Register Reg);
163 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
164 MachineBasicBlock::iterator &nmi, Register Reg);
165
166 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
167 MachineBasicBlock::iterator &nmi,
168 unsigned SrcIdx, unsigned DstIdx,
169 unsigned &Dist, bool shouldOnlyCommute);
170
171 bool tryInstructionCommute(MachineInstr *MI,
172 unsigned DstOpIdx,
173 unsigned BaseOpIdx,
174 bool BaseOpKilled,
175 unsigned Dist);
176 void scanUses(Register DstReg);
177
178 void processCopy(MachineInstr *MI);
179
180 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
181 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
182
183 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
184 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
185 void eliminateRegSequence(MachineBasicBlock::iterator&);
186 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands);
187
188public:
189 static char ID; // Pass identification, replacement for typeid
190
191 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
192 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
193 }
194
195 void getAnalysisUsage(AnalysisUsage &AU) const override {
196 AU.setPreservesCFG();
197 AU.addUsedIfAvailable<AAResultsWrapperPass>();
198 AU.addUsedIfAvailable<LiveVariables>();
199 AU.addPreserved<LiveVariables>();
200 AU.addPreserved<SlotIndexes>();
201 AU.addPreserved<LiveIntervals>();
202 AU.addPreservedID(ID&: MachineLoopInfoID);
203 AU.addPreservedID(ID&: MachineDominatorsID);
204 MachineFunctionPass::getAnalysisUsage(AU);
205 }
206
207 /// Pass entry point.
208 bool runOnMachineFunction(MachineFunction&) override;
209};
210
211} // end anonymous namespace
212
213char TwoAddressInstructionPass::ID = 0;
214
215char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
216
217INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
218 "Two-Address instruction pass", false, false)
219INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
220INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
221 "Two-Address instruction pass", false, false)
222
223/// Return the MachineInstr* if it is the single def of the Reg in current BB.
224MachineInstr *
225TwoAddressInstructionPass::getSingleDef(Register Reg,
226 MachineBasicBlock *BB) const {
227 MachineInstr *Ret = nullptr;
228 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
229 if (DefMI.getParent() != BB || DefMI.isDebugValue())
230 continue;
231 if (!Ret)
232 Ret = &DefMI;
233 else if (Ret != &DefMI)
234 return nullptr;
235 }
236 return Ret;
237}
238
239/// Check if there is a reversed copy chain from FromReg to ToReg:
240/// %Tmp1 = copy %Tmp2;
241/// %FromReg = copy %Tmp1;
242/// %ToReg = add %FromReg ...
243/// %Tmp2 = copy %ToReg;
244/// MaxLen specifies the maximum length of the copy chain the func
245/// can walk through.
246bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
247 int Maxlen) {
248 Register TmpReg = FromReg;
249 for (int i = 0; i < Maxlen; i++) {
250 MachineInstr *Def = getSingleDef(Reg: TmpReg, BB: MBB);
251 if (!Def || !Def->isCopy())
252 return false;
253
254 TmpReg = Def->getOperand(i: 1).getReg();
255
256 if (TmpReg == ToReg)
257 return true;
258 }
259 return false;
260}
261
262/// Return true if there are no intervening uses between the last instruction
263/// in the MBB that defines the specified register and the two-address
264/// instruction which is being processed. It also returns the last def location
265/// by reference.
266bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
267 unsigned &LastDef) {
268 LastDef = 0;
269 unsigned LastUse = Dist;
270 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
271 MachineInstr *MI = MO.getParent();
272 if (MI->getParent() != MBB || MI->isDebugValue())
273 continue;
274 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI);
275 if (DI == DistanceMap.end())
276 continue;
277 if (MO.isUse() && DI->second < LastUse)
278 LastUse = DI->second;
279 if (MO.isDef() && DI->second > LastDef)
280 LastDef = DI->second;
281 }
282
283 return !(LastUse > LastDef && LastUse < Dist);
284}
285
286/// Return true if the specified MI is a copy instruction or an extract_subreg
287/// instruction. It also returns the source and destination registers and
288/// whether they are physical registers by reference.
289bool TwoAddressInstructionPass::isCopyToReg(MachineInstr &MI, Register &SrcReg,
290 Register &DstReg, bool &IsSrcPhys,
291 bool &IsDstPhys) const {
292 SrcReg = 0;
293 DstReg = 0;
294 if (MI.isCopy()) {
295 DstReg = MI.getOperand(i: 0).getReg();
296 SrcReg = MI.getOperand(i: 1).getReg();
297 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
298 DstReg = MI.getOperand(i: 0).getReg();
299 SrcReg = MI.getOperand(i: 2).getReg();
300 } else {
301 return false;
302 }
303
304 IsSrcPhys = SrcReg.isPhysical();
305 IsDstPhys = DstReg.isPhysical();
306 return true;
307}
308
309bool TwoAddressInstructionPass::isPlainlyKilled(const MachineInstr *MI,
310 LiveRange &LR) const {
311 // This is to match the kill flag version where undefs don't have kill flags.
312 if (!LR.hasAtLeastOneValue())
313 return false;
314
315 SlotIndex useIdx = LIS->getInstructionIndex(Instr: *MI);
316 LiveInterval::const_iterator I = LR.find(Pos: useIdx);
317 assert(I != LR.end() && "Reg must be live-in to use.");
318 return !I->end.isBlock() && SlotIndex::isSameInstr(A: I->end, B: useIdx);
319}
320
321/// Test if the given register value, which is used by the
322/// given instruction, is killed by the given instruction.
323bool TwoAddressInstructionPass::isPlainlyKilled(const MachineInstr *MI,
324 Register Reg) const {
325 // FIXME: Sometimes tryInstructionTransform() will add instructions and
326 // test whether they can be folded before keeping them. In this case it
327 // sets a kill before recursively calling tryInstructionTransform() again.
328 // If there is no interval available, we assume that this instruction is
329 // one of those. A kill flag is manually inserted on the operand so the
330 // check below will handle it.
331 if (LIS && !LIS->isNotInMIMap(Instr: *MI)) {
332 if (Reg.isVirtual())
333 return isPlainlyKilled(MI, LR&: LIS->getInterval(Reg));
334 // Reserved registers are considered always live.
335 if (MRI->isReserved(PhysReg: Reg))
336 return false;
337 return all_of(Range: TRI->regunits(Reg), P: [&](MCRegUnit U) {
338 return isPlainlyKilled(MI, LR&: LIS->getRegUnit(Unit: U));
339 });
340 }
341
342 return MI->killsRegister(Reg, /*TRI=*/nullptr);
343}
344
345/// Test if the register used by the given operand is killed by the operand's
346/// instruction.
347bool TwoAddressInstructionPass::isPlainlyKilled(
348 const MachineOperand &MO) const {
349 return MO.isKill() || isPlainlyKilled(MI: MO.getParent(), Reg: MO.getReg());
350}
351
352/// Test if the given register value, which is used by the given
353/// instruction, is killed by the given instruction. This looks through
354/// coalescable copies to see if the original value is potentially not killed.
355///
356/// For example, in this code:
357///
358/// %reg1034 = copy %reg1024
359/// %reg1035 = copy killed %reg1025
360/// %reg1036 = add killed %reg1034, killed %reg1035
361///
362/// %reg1034 is not considered to be killed, since it is copied from a
363/// register which is not killed. Treating it as not killed lets the
364/// normal heuristics commute the (two-address) add, which lets
365/// coalescing eliminate the extra copy.
366///
367/// If allowFalsePositives is true then likely kills are treated as kills even
368/// if it can't be proven that they are kills.
369bool TwoAddressInstructionPass::isKilled(MachineInstr &MI, Register Reg,
370 bool allowFalsePositives) const {
371 MachineInstr *DefMI = &MI;
372 while (true) {
373 // All uses of physical registers are likely to be kills.
374 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(RegNo: Reg)))
375 return true;
376 if (!isPlainlyKilled(MI: DefMI, Reg))
377 return false;
378 if (Reg.isPhysical())
379 return true;
380 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(RegNo: Reg);
381 // If there are multiple defs, we can't do a simple analysis, so just
382 // go with what the kill flag says.
383 if (std::next(x: Begin) != MRI->def_end())
384 return true;
385 DefMI = Begin->getParent();
386 bool IsSrcPhys, IsDstPhys;
387 Register SrcReg, DstReg;
388 // If the def is something other than a copy, then it isn't going to
389 // be coalesced, so follow the kill flag.
390 if (!isCopyToReg(MI&: *DefMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
391 return true;
392 Reg = SrcReg;
393 }
394}
395
396/// Return true if the specified MI uses the specified register as a two-address
397/// use. If so, return the destination register by reference.
398static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
399 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
400 const MachineOperand &MO = MI.getOperand(i);
401 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
402 continue;
403 unsigned ti;
404 if (MI.isRegTiedToDefOperand(UseOpIdx: i, DefOpIdx: &ti)) {
405 DstReg = MI.getOperand(i: ti).getReg();
406 return true;
407 }
408 }
409 return false;
410}
411
412/// Given a register, if all its uses are in the same basic block, return the
413/// last use instruction if it's a copy or a two-address use.
414MachineInstr *TwoAddressInstructionPass::findOnlyInterestingUse(
415 Register Reg, MachineBasicBlock *MBB, bool &IsCopy, Register &DstReg,
416 bool &IsDstPhys) const {
417 MachineOperand *UseOp = nullptr;
418 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
419 MachineInstr *MI = MO.getParent();
420 if (MI->getParent() != MBB)
421 return nullptr;
422 if (isPlainlyKilled(MI, Reg))
423 UseOp = &MO;
424 }
425 if (!UseOp)
426 return nullptr;
427 MachineInstr &UseMI = *UseOp->getParent();
428
429 Register SrcReg;
430 bool IsSrcPhys;
431 if (isCopyToReg(MI&: UseMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
432 IsCopy = true;
433 return &UseMI;
434 }
435 IsDstPhys = false;
436 if (isTwoAddrUse(MI&: UseMI, Reg, DstReg)) {
437 IsDstPhys = DstReg.isPhysical();
438 return &UseMI;
439 }
440 if (UseMI.isCommutable()) {
441 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
442 unsigned Src2 = UseOp->getOperandNo();
443 if (TII->findCommutedOpIndices(MI: UseMI, SrcOpIdx1&: Src1, SrcOpIdx2&: Src2)) {
444 MachineOperand &MO = UseMI.getOperand(i: Src1);
445 if (MO.isReg() && MO.isUse() &&
446 isTwoAddrUse(MI&: UseMI, Reg: MO.getReg(), DstReg)) {
447 IsDstPhys = DstReg.isPhysical();
448 return &UseMI;
449 }
450 }
451 }
452 return nullptr;
453}
454
455/// Return the physical register the specified virtual register might be mapped
456/// to.
457static MCRegister getMappedReg(Register Reg,
458 DenseMap<Register, Register> &RegMap) {
459 while (Reg.isVirtual()) {
460 DenseMap<Register, Register>::iterator SI = RegMap.find(Val: Reg);
461 if (SI == RegMap.end())
462 return 0;
463 Reg = SI->second;
464 }
465 if (Reg.isPhysical())
466 return Reg;
467 return 0;
468}
469
470/// Return true if the two registers are equal or aliased.
471bool TwoAddressInstructionPass::regsAreCompatible(Register RegA,
472 Register RegB) const {
473 if (RegA == RegB)
474 return true;
475 if (!RegA || !RegB)
476 return false;
477 return TRI->regsOverlap(RegA, RegB);
478}
479
480/// From RegMap remove entries mapped to a physical register which overlaps MO.
481void TwoAddressInstructionPass::removeMapRegEntry(
482 const MachineOperand &MO, DenseMap<Register, Register> &RegMap) const {
483 assert(
484 (MO.isReg() || MO.isRegMask()) &&
485 "removeMapRegEntry must be called with a register or regmask operand.");
486
487 SmallVector<Register, 2> Srcs;
488 for (auto SI : RegMap) {
489 Register ToReg = SI.second;
490 if (ToReg.isVirtual())
491 continue;
492
493 if (MO.isReg()) {
494 Register Reg = MO.getReg();
495 if (TRI->regsOverlap(RegA: ToReg, RegB: Reg))
496 Srcs.push_back(Elt: SI.first);
497 } else if (MO.clobbersPhysReg(PhysReg: ToReg))
498 Srcs.push_back(Elt: SI.first);
499 }
500
501 for (auto SrcReg : Srcs)
502 RegMap.erase(Val: SrcReg);
503}
504
505/// If a physical register is clobbered, old entries mapped to it should be
506/// deleted. For example
507///
508/// %2:gr64 = COPY killed $rdx
509/// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
510///
511/// After the MUL instruction, $rdx contains different value than in the COPY
512/// instruction. So %2 should not map to $rdx after MUL.
513void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) {
514 if (MI->isCopy()) {
515 // If a virtual register is copied to its mapped physical register, it
516 // doesn't change the potential coalescing between them, so we don't remove
517 // entries mapped to the physical register. For example
518 //
519 // %100 = COPY $r8
520 // ...
521 // $r8 = COPY %100
522 //
523 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
524 // destroy the content of $r8, and should not impact SrcRegMap.
525 Register Dst = MI->getOperand(i: 0).getReg();
526 if (!Dst || Dst.isVirtual())
527 return;
528
529 Register Src = MI->getOperand(i: 1).getReg();
530 if (regsAreCompatible(RegA: Dst, RegB: getMappedReg(Reg: Src, RegMap&: SrcRegMap)))
531 return;
532 }
533
534 for (const MachineOperand &MO : MI->operands()) {
535 if (MO.isRegMask()) {
536 removeMapRegEntry(MO, RegMap&: SrcRegMap);
537 continue;
538 }
539 if (!MO.isReg() || !MO.isDef())
540 continue;
541 Register Reg = MO.getReg();
542 if (!Reg || Reg.isVirtual())
543 continue;
544 removeMapRegEntry(MO, RegMap&: SrcRegMap);
545 }
546}
547
548// Returns true if Reg is equal or aliased to at least one register in Set.
549bool TwoAddressInstructionPass::regOverlapsSet(
550 const SmallVectorImpl<Register> &Set, Register Reg) const {
551 for (unsigned R : Set)
552 if (TRI->regsOverlap(RegA: R, RegB: Reg))
553 return true;
554
555 return false;
556}
557
558/// Return true if it's potentially profitable to commute the two-address
559/// instruction that's being processed.
560bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
561 Register RegB,
562 Register RegC,
563 MachineInstr *MI,
564 unsigned Dist) {
565 if (OptLevel == CodeGenOptLevel::None)
566 return false;
567
568 // Determine if it's profitable to commute this two address instruction. In
569 // general, we want no uses between this instruction and the definition of
570 // the two-address register.
571 // e.g.
572 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
573 // %reg1029 = COPY %reg1028
574 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
575 // insert => %reg1030 = COPY %reg1028
576 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
577 // In this case, it might not be possible to coalesce the second COPY
578 // instruction if the first one is coalesced. So it would be profitable to
579 // commute it:
580 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
581 // %reg1029 = COPY %reg1028
582 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
583 // insert => %reg1030 = COPY %reg1029
584 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
585
586 if (!isPlainlyKilled(MI, Reg: RegC))
587 return false;
588
589 // Ok, we have something like:
590 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
591 // let's see if it's worth commuting it.
592
593 // Look for situations like this:
594 // %reg1024 = MOV r1
595 // %reg1025 = MOV r0
596 // %reg1026 = ADD %reg1024, %reg1025
597 // r0 = MOV %reg1026
598 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
599 MCRegister ToRegA = getMappedReg(Reg: RegA, RegMap&: DstRegMap);
600 if (ToRegA) {
601 MCRegister FromRegB = getMappedReg(Reg: RegB, RegMap&: SrcRegMap);
602 MCRegister FromRegC = getMappedReg(Reg: RegC, RegMap&: SrcRegMap);
603 bool CompB = FromRegB && regsAreCompatible(RegA: FromRegB, RegB: ToRegA);
604 bool CompC = FromRegC && regsAreCompatible(RegA: FromRegC, RegB: ToRegA);
605
606 // Compute if any of the following are true:
607 // -RegB is not tied to a register and RegC is compatible with RegA.
608 // -RegB is tied to the wrong physical register, but RegC is.
609 // -RegB is tied to the wrong physical register, and RegC isn't tied.
610 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
611 return true;
612 // Don't compute if any of the following are true:
613 // -RegC is not tied to a register and RegB is compatible with RegA.
614 // -RegC is tied to the wrong physical register, but RegB is.
615 // -RegC is tied to the wrong physical register, and RegB isn't tied.
616 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
617 return false;
618 }
619
620 // If there is a use of RegC between its last def (could be livein) and this
621 // instruction, then bail.
622 unsigned LastDefC = 0;
623 if (!noUseAfterLastDef(Reg: RegC, Dist, LastDef&: LastDefC))
624 return false;
625
626 // If there is a use of RegB between its last def (could be livein) and this
627 // instruction, then go ahead and make this transformation.
628 unsigned LastDefB = 0;
629 if (!noUseAfterLastDef(Reg: RegB, Dist, LastDef&: LastDefB))
630 return true;
631
632 // Look for situation like this:
633 // %reg101 = MOV %reg100
634 // %reg102 = ...
635 // %reg103 = ADD %reg102, %reg101
636 // ... = %reg103 ...
637 // %reg100 = MOV %reg103
638 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
639 // to eliminate an otherwise unavoidable copy.
640 // FIXME:
641 // We can extend the logic further: If an pair of operands in an insn has
642 // been merged, the insn could be regarded as a virtual copy, and the virtual
643 // copy could also be used to construct a copy chain.
644 // To more generally minimize register copies, ideally the logic of two addr
645 // instruction pass should be integrated with register allocation pass where
646 // interference graph is available.
647 if (isRevCopyChain(FromReg: RegC, ToReg: RegA, Maxlen: MaxDataFlowEdge))
648 return true;
649
650 if (isRevCopyChain(FromReg: RegB, ToReg: RegA, Maxlen: MaxDataFlowEdge))
651 return false;
652
653 // Look for other target specific commute preference.
654 bool Commute;
655 if (TII->hasCommutePreference(MI&: *MI, Commute))
656 return Commute;
657
658 // Since there are no intervening uses for both registers, then commute
659 // if the def of RegC is closer. Its live interval is shorter.
660 return LastDefB && LastDefC && LastDefC > LastDefB;
661}
662
663/// Commute a two-address instruction and update the basic block, distance map,
664/// and live variables if needed. Return true if it is successful.
665bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
666 unsigned DstIdx,
667 unsigned RegBIdx,
668 unsigned RegCIdx,
669 unsigned Dist) {
670 Register RegC = MI->getOperand(i: RegCIdx).getReg();
671 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
672 MachineInstr *NewMI = TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: RegBIdx, OpIdx2: RegCIdx);
673
674 if (NewMI == nullptr) {
675 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
676 return false;
677 }
678
679 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
680 assert(NewMI == MI &&
681 "TargetInstrInfo::commuteInstruction() should not return a new "
682 "instruction unless it was requested.");
683
684 // Update source register map.
685 MCRegister FromRegC = getMappedReg(Reg: RegC, RegMap&: SrcRegMap);
686 if (FromRegC) {
687 Register RegA = MI->getOperand(i: DstIdx).getReg();
688 SrcRegMap[RegA] = FromRegC;
689 }
690
691 return true;
692}
693
694/// Return true if it is profitable to convert the given 2-address instruction
695/// to a 3-address one.
696bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
697 Register RegB) {
698 // Look for situations like this:
699 // %reg1024 = MOV r1
700 // %reg1025 = MOV r0
701 // %reg1026 = ADD %reg1024, %reg1025
702 // r2 = MOV %reg1026
703 // Turn ADD into a 3-address instruction to avoid a copy.
704 MCRegister FromRegB = getMappedReg(Reg: RegB, RegMap&: SrcRegMap);
705 if (!FromRegB)
706 return false;
707 MCRegister ToRegA = getMappedReg(Reg: RegA, RegMap&: DstRegMap);
708 return (ToRegA && !regsAreCompatible(RegA: FromRegB, RegB: ToRegA));
709}
710
711/// Convert the specified two-address instruction into a three address one.
712/// Return true if this transformation was successful.
713bool TwoAddressInstructionPass::convertInstTo3Addr(
714 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
715 Register RegA, Register RegB, unsigned &Dist) {
716 MachineInstrSpan MIS(mi, MBB);
717 MachineInstr *NewMI = TII->convertToThreeAddress(MI&: *mi, LV, LIS);
718 if (!NewMI)
719 return false;
720
721 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
722 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
723
724 // If the old instruction is debug value tracked, an update is required.
725 if (auto OldInstrNum = mi->peekDebugInstrNum()) {
726 assert(mi->getNumExplicitDefs() == 1);
727 assert(NewMI->getNumExplicitDefs() == 1);
728
729 // Find the old and new def location.
730 unsigned OldIdx = mi->defs().begin()->getOperandNo();
731 unsigned NewIdx = NewMI->defs().begin()->getOperandNo();
732
733 // Record that one def has been replaced by the other.
734 unsigned NewInstrNum = NewMI->getDebugInstrNum();
735 MF->makeDebugValueSubstitution(std::make_pair(x&: OldInstrNum, y&: OldIdx),
736 std::make_pair(x&: NewInstrNum, y&: NewIdx));
737 }
738
739 MBB->erase(I: mi); // Nuke the old inst.
740
741 for (MachineInstr &MI : MIS)
742 DistanceMap.insert(KV: std::make_pair(x: &MI, y: Dist++));
743 Dist--;
744 mi = NewMI;
745 nmi = std::next(x: mi);
746
747 // Update source and destination register maps.
748 SrcRegMap.erase(Val: RegA);
749 DstRegMap.erase(Val: RegB);
750 return true;
751}
752
753/// Scan forward recursively for only uses, update maps if the use is a copy or
754/// a two-address instruction.
755void TwoAddressInstructionPass::scanUses(Register DstReg) {
756 SmallVector<Register, 4> VirtRegPairs;
757 bool IsDstPhys;
758 bool IsCopy = false;
759 Register NewReg;
760 Register Reg = DstReg;
761 while (MachineInstr *UseMI =
762 findOnlyInterestingUse(Reg, MBB, IsCopy, DstReg&: NewReg, IsDstPhys)) {
763 if (IsCopy && !Processed.insert(Ptr: UseMI).second)
764 break;
765
766 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: UseMI);
767 if (DI != DistanceMap.end())
768 // Earlier in the same MBB.Reached via a back edge.
769 break;
770
771 if (IsDstPhys) {
772 VirtRegPairs.push_back(Elt: NewReg);
773 break;
774 }
775 SrcRegMap[NewReg] = Reg;
776 VirtRegPairs.push_back(Elt: NewReg);
777 Reg = NewReg;
778 }
779
780 if (!VirtRegPairs.empty()) {
781 unsigned ToReg = VirtRegPairs.back();
782 VirtRegPairs.pop_back();
783 while (!VirtRegPairs.empty()) {
784 unsigned FromReg = VirtRegPairs.pop_back_val();
785 bool isNew = DstRegMap.insert(KV: std::make_pair(x&: FromReg, y&: ToReg)).second;
786 if (!isNew)
787 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
788 ToReg = FromReg;
789 }
790 bool isNew = DstRegMap.insert(KV: std::make_pair(x&: DstReg, y&: ToReg)).second;
791 if (!isNew)
792 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
793 }
794}
795
796/// If the specified instruction is not yet processed, process it if it's a
797/// copy. For a copy instruction, we find the physical registers the
798/// source and destination registers might be mapped to. These are kept in
799/// point-to maps used to determine future optimizations. e.g.
800/// v1024 = mov r0
801/// v1025 = mov r1
802/// v1026 = add v1024, v1025
803/// r1 = mov r1026
804/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
805/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
806/// potentially joined with r1 on the output side. It's worthwhile to commute
807/// 'add' to eliminate a copy.
808void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
809 if (Processed.count(Ptr: MI))
810 return;
811
812 bool IsSrcPhys, IsDstPhys;
813 Register SrcReg, DstReg;
814 if (!isCopyToReg(MI&: *MI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
815 return;
816
817 if (IsDstPhys && !IsSrcPhys) {
818 DstRegMap.insert(KV: std::make_pair(x&: SrcReg, y&: DstReg));
819 } else if (!IsDstPhys && IsSrcPhys) {
820 bool isNew = SrcRegMap.insert(KV: std::make_pair(x&: DstReg, y&: SrcReg)).second;
821 if (!isNew)
822 assert(SrcRegMap[DstReg] == SrcReg &&
823 "Can't map to two src physical registers!");
824
825 scanUses(DstReg);
826 }
827
828 Processed.insert(Ptr: MI);
829}
830
831/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
832/// consider moving the instruction below the kill instruction in order to
833/// eliminate the need for the copy.
834bool TwoAddressInstructionPass::rescheduleMIBelowKill(
835 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
836 Register Reg) {
837 // Bail immediately if we don't have LV or LIS available. We use them to find
838 // kills efficiently.
839 if (!LV && !LIS)
840 return false;
841
842 MachineInstr *MI = &*mi;
843 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI);
844 if (DI == DistanceMap.end())
845 // Must be created from unfolded load. Don't waste time trying this.
846 return false;
847
848 MachineInstr *KillMI = nullptr;
849 if (LIS) {
850 LiveInterval &LI = LIS->getInterval(Reg);
851 assert(LI.end() != LI.begin() &&
852 "Reg should not have empty live interval.");
853
854 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(mbb: MBB).getPrevSlot();
855 LiveInterval::const_iterator I = LI.find(Pos: MBBEndIdx);
856 if (I != LI.end() && I->start < MBBEndIdx)
857 return false;
858
859 --I;
860 KillMI = LIS->getInstructionFromIndex(index: I->end);
861 } else {
862 KillMI = LV->getVarInfo(Reg).findKill(MBB);
863 }
864 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
865 // Don't mess with copies, they may be coalesced later.
866 return false;
867
868 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
869 KillMI->isBranch() || KillMI->isTerminator())
870 // Don't move pass calls, etc.
871 return false;
872
873 Register DstReg;
874 if (isTwoAddrUse(MI&: *KillMI, Reg, DstReg))
875 return false;
876
877 bool SeenStore = true;
878 if (!MI->isSafeToMove(AA, SawStore&: SeenStore))
879 return false;
880
881 if (TII->getInstrLatency(ItinData: InstrItins, MI: *MI) > 1)
882 // FIXME: Needs more sophisticated heuristics.
883 return false;
884
885 SmallVector<Register, 2> Uses;
886 SmallVector<Register, 2> Kills;
887 SmallVector<Register, 2> Defs;
888 for (const MachineOperand &MO : MI->operands()) {
889 if (!MO.isReg())
890 continue;
891 Register MOReg = MO.getReg();
892 if (!MOReg)
893 continue;
894 if (MO.isDef())
895 Defs.push_back(Elt: MOReg);
896 else {
897 Uses.push_back(Elt: MOReg);
898 if (MOReg != Reg && isPlainlyKilled(MO))
899 Kills.push_back(Elt: MOReg);
900 }
901 }
902
903 // Move the copies connected to MI down as well.
904 MachineBasicBlock::iterator Begin = MI;
905 MachineBasicBlock::iterator AfterMI = std::next(x: Begin);
906 MachineBasicBlock::iterator End = AfterMI;
907 while (End != MBB->end()) {
908 End = skipDebugInstructionsForward(It: End, End: MBB->end());
909 if (End->isCopy() && regOverlapsSet(Set: Defs, Reg: End->getOperand(i: 1).getReg()))
910 Defs.push_back(Elt: End->getOperand(i: 0).getReg());
911 else
912 break;
913 ++End;
914 }
915
916 // Check if the reschedule will not break dependencies.
917 unsigned NumVisited = 0;
918 MachineBasicBlock::iterator KillPos = KillMI;
919 ++KillPos;
920 for (MachineInstr &OtherMI : make_range(x: End, y: KillPos)) {
921 // Debug or pseudo instructions cannot be counted against the limit.
922 if (OtherMI.isDebugOrPseudoInstr())
923 continue;
924 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
925 return false;
926 ++NumVisited;
927 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
928 OtherMI.isBranch() || OtherMI.isTerminator())
929 // Don't move pass calls, etc.
930 return false;
931 for (const MachineOperand &MO : OtherMI.operands()) {
932 if (!MO.isReg())
933 continue;
934 Register MOReg = MO.getReg();
935 if (!MOReg)
936 continue;
937 if (MO.isDef()) {
938 if (regOverlapsSet(Set: Uses, Reg: MOReg))
939 // Physical register use would be clobbered.
940 return false;
941 if (!MO.isDead() && regOverlapsSet(Set: Defs, Reg: MOReg))
942 // May clobber a physical register def.
943 // FIXME: This may be too conservative. It's ok if the instruction
944 // is sunken completely below the use.
945 return false;
946 } else {
947 if (regOverlapsSet(Set: Defs, Reg: MOReg))
948 return false;
949 bool isKill = isPlainlyKilled(MO);
950 if (MOReg != Reg && ((isKill && regOverlapsSet(Set: Uses, Reg: MOReg)) ||
951 regOverlapsSet(Set: Kills, Reg: MOReg)))
952 // Don't want to extend other live ranges and update kills.
953 return false;
954 if (MOReg == Reg && !isKill)
955 // We can't schedule across a use of the register in question.
956 return false;
957 // Ensure that if this is register in question, its the kill we expect.
958 assert((MOReg != Reg || &OtherMI == KillMI) &&
959 "Found multiple kills of a register in a basic block");
960 }
961 }
962 }
963
964 // Move debug info as well.
965 while (Begin != MBB->begin() && std::prev(x: Begin)->isDebugInstr())
966 --Begin;
967
968 nmi = End;
969 MachineBasicBlock::iterator InsertPos = KillPos;
970 if (LIS) {
971 // We have to move the copies (and any interleaved debug instructions)
972 // first so that the MBB is still well-formed when calling handleMove().
973 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
974 auto CopyMI = MBBI++;
975 MBB->splice(Where: InsertPos, Other: MBB, From: CopyMI);
976 if (!CopyMI->isDebugOrPseudoInstr())
977 LIS->handleMove(MI&: *CopyMI);
978 InsertPos = CopyMI;
979 }
980 End = std::next(x: MachineBasicBlock::iterator(MI));
981 }
982
983 // Copies following MI may have been moved as well.
984 MBB->splice(Where: InsertPos, Other: MBB, From: Begin, To: End);
985 DistanceMap.erase(I: DI);
986
987 // Update live variables
988 if (LIS) {
989 LIS->handleMove(MI&: *MI);
990 } else {
991 LV->removeVirtualRegisterKilled(Reg, MI&: *KillMI);
992 LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *MI);
993 }
994
995 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
996 return true;
997}
998
999/// Return true if the re-scheduling will put the given instruction too close
1000/// to the defs of its register dependencies.
1001bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
1002 MachineInstr *MI) {
1003 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1004 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1005 continue;
1006 if (&DefMI == MI)
1007 return true; // MI is defining something KillMI uses
1008 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(Val: &DefMI);
1009 if (DDI == DistanceMap.end())
1010 return true; // Below MI
1011 unsigned DefDist = DDI->second;
1012 assert(Dist > DefDist && "Visited def already?");
1013 if (TII->getInstrLatency(ItinData: InstrItins, MI: DefMI) > (Dist - DefDist))
1014 return true;
1015 }
1016 return false;
1017}
1018
1019/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1020/// consider moving the kill instruction above the current two-address
1021/// instruction in order to eliminate the need for the copy.
1022bool TwoAddressInstructionPass::rescheduleKillAboveMI(
1023 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
1024 Register Reg) {
1025 // Bail immediately if we don't have LV or LIS available. We use them to find
1026 // kills efficiently.
1027 if (!LV && !LIS)
1028 return false;
1029
1030 MachineInstr *MI = &*mi;
1031 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI);
1032 if (DI == DistanceMap.end())
1033 // Must be created from unfolded load. Don't waste time trying this.
1034 return false;
1035
1036 MachineInstr *KillMI = nullptr;
1037 if (LIS) {
1038 LiveInterval &LI = LIS->getInterval(Reg);
1039 assert(LI.end() != LI.begin() &&
1040 "Reg should not have empty live interval.");
1041
1042 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(mbb: MBB).getPrevSlot();
1043 LiveInterval::const_iterator I = LI.find(Pos: MBBEndIdx);
1044 if (I != LI.end() && I->start < MBBEndIdx)
1045 return false;
1046
1047 --I;
1048 KillMI = LIS->getInstructionFromIndex(index: I->end);
1049 } else {
1050 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1051 }
1052 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1053 // Don't mess with copies, they may be coalesced later.
1054 return false;
1055
1056 Register DstReg;
1057 if (isTwoAddrUse(MI&: *KillMI, Reg, DstReg))
1058 return false;
1059
1060 bool SeenStore = true;
1061 if (!KillMI->isSafeToMove(AA, SawStore&: SeenStore))
1062 return false;
1063
1064 SmallVector<Register, 2> Uses;
1065 SmallVector<Register, 2> Kills;
1066 SmallVector<Register, 2> Defs;
1067 SmallVector<Register, 2> LiveDefs;
1068 for (const MachineOperand &MO : KillMI->operands()) {
1069 if (!MO.isReg())
1070 continue;
1071 Register MOReg = MO.getReg();
1072 if (MO.isUse()) {
1073 if (!MOReg)
1074 continue;
1075 if (isDefTooClose(Reg: MOReg, Dist: DI->second, MI))
1076 return false;
1077 bool isKill = isPlainlyKilled(MO);
1078 if (MOReg == Reg && !isKill)
1079 return false;
1080 Uses.push_back(Elt: MOReg);
1081 if (isKill && MOReg != Reg)
1082 Kills.push_back(Elt: MOReg);
1083 } else if (MOReg.isPhysical()) {
1084 Defs.push_back(Elt: MOReg);
1085 if (!MO.isDead())
1086 LiveDefs.push_back(Elt: MOReg);
1087 }
1088 }
1089
1090 // Check if the reschedule will not break depedencies.
1091 unsigned NumVisited = 0;
1092 for (MachineInstr &OtherMI :
1093 make_range(x: mi, y: MachineBasicBlock::iterator(KillMI))) {
1094 // Debug or pseudo instructions cannot be counted against the limit.
1095 if (OtherMI.isDebugOrPseudoInstr())
1096 continue;
1097 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1098 return false;
1099 ++NumVisited;
1100 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1101 OtherMI.isBranch() || OtherMI.isTerminator())
1102 // Don't move pass calls, etc.
1103 return false;
1104 SmallVector<Register, 2> OtherDefs;
1105 for (const MachineOperand &MO : OtherMI.operands()) {
1106 if (!MO.isReg())
1107 continue;
1108 Register MOReg = MO.getReg();
1109 if (!MOReg)
1110 continue;
1111 if (MO.isUse()) {
1112 if (regOverlapsSet(Set: Defs, Reg: MOReg))
1113 // Moving KillMI can clobber the physical register if the def has
1114 // not been seen.
1115 return false;
1116 if (regOverlapsSet(Set: Kills, Reg: MOReg))
1117 // Don't want to extend other live ranges and update kills.
1118 return false;
1119 if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO))
1120 // We can't schedule across a use of the register in question.
1121 return false;
1122 } else {
1123 OtherDefs.push_back(Elt: MOReg);
1124 }
1125 }
1126
1127 for (Register MOReg : OtherDefs) {
1128 if (regOverlapsSet(Set: Uses, Reg: MOReg))
1129 return false;
1130 if (MOReg.isPhysical() && regOverlapsSet(Set: LiveDefs, Reg: MOReg))
1131 return false;
1132 // Physical register def is seen.
1133 llvm::erase(C&: Defs, V: MOReg);
1134 }
1135 }
1136
1137 // Move the old kill above MI, don't forget to move debug info as well.
1138 MachineBasicBlock::iterator InsertPos = mi;
1139 while (InsertPos != MBB->begin() && std::prev(x: InsertPos)->isDebugInstr())
1140 --InsertPos;
1141 MachineBasicBlock::iterator From = KillMI;
1142 MachineBasicBlock::iterator To = std::next(x: From);
1143 while (std::prev(x: From)->isDebugInstr())
1144 --From;
1145 MBB->splice(Where: InsertPos, Other: MBB, From, To);
1146
1147 nmi = std::prev(x: InsertPos); // Backtrack so we process the moved instr.
1148 DistanceMap.erase(I: DI);
1149
1150 // Update live variables
1151 if (LIS) {
1152 LIS->handleMove(MI&: *KillMI);
1153 } else {
1154 LV->removeVirtualRegisterKilled(Reg, MI&: *KillMI);
1155 LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *MI);
1156 }
1157
1158 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1159 return true;
1160}
1161
1162/// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1163/// given machine instruction to improve opportunities for coalescing and
1164/// elimination of a register to register copy.
1165///
1166/// 'DstOpIdx' specifies the index of MI def operand.
1167/// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1168/// operand is killed by the given instruction.
1169/// The 'Dist' arguments provides the distance of MI from the start of the
1170/// current basic block and it is used to determine if it is profitable
1171/// to commute operands in the instruction.
1172///
1173/// Returns true if the transformation happened. Otherwise, returns false.
1174bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1175 unsigned DstOpIdx,
1176 unsigned BaseOpIdx,
1177 bool BaseOpKilled,
1178 unsigned Dist) {
1179 if (!MI->isCommutable())
1180 return false;
1181
1182 bool MadeChange = false;
1183 Register DstOpReg = MI->getOperand(i: DstOpIdx).getReg();
1184 Register BaseOpReg = MI->getOperand(i: BaseOpIdx).getReg();
1185 unsigned OpsNum = MI->getDesc().getNumOperands();
1186 unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1187 for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1188 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1189 // and OtherOpIdx are commutable, it does not really search for
1190 // other commutable operands and does not change the values of passed
1191 // variables.
1192 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(i: OtherOpIdx).isReg() ||
1193 !TII->findCommutedOpIndices(MI: *MI, SrcOpIdx1&: BaseOpIdx, SrcOpIdx2&: OtherOpIdx))
1194 continue;
1195
1196 Register OtherOpReg = MI->getOperand(i: OtherOpIdx).getReg();
1197 bool AggressiveCommute = false;
1198
1199 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1200 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1201 bool OtherOpKilled = isKilled(MI&: *MI, Reg: OtherOpReg, allowFalsePositives: false);
1202 bool DoCommute = !BaseOpKilled && OtherOpKilled;
1203
1204 if (!DoCommute &&
1205 isProfitableToCommute(RegA: DstOpReg, RegB: BaseOpReg, RegC: OtherOpReg, MI, Dist)) {
1206 DoCommute = true;
1207 AggressiveCommute = true;
1208 }
1209
1210 // If it's profitable to commute, try to do so.
1211 if (DoCommute && commuteInstruction(MI, DstIdx: DstOpIdx, RegBIdx: BaseOpIdx, RegCIdx: OtherOpIdx,
1212 Dist)) {
1213 MadeChange = true;
1214 ++NumCommuted;
1215 if (AggressiveCommute)
1216 ++NumAggrCommuted;
1217
1218 // There might be more than two commutable operands, update BaseOp and
1219 // continue scanning.
1220 // FIXME: This assumes that the new instruction's operands are in the
1221 // same positions and were simply swapped.
1222 BaseOpReg = OtherOpReg;
1223 BaseOpKilled = OtherOpKilled;
1224 // Resamples OpsNum in case the number of operands was reduced. This
1225 // happens with X86.
1226 OpsNum = MI->getDesc().getNumOperands();
1227 }
1228 }
1229 return MadeChange;
1230}
1231
1232/// For the case where an instruction has a single pair of tied register
1233/// operands, attempt some transformations that may either eliminate the tied
1234/// operands or improve the opportunities for coalescing away the register copy.
1235/// Returns true if no copy needs to be inserted to untie mi's operands
1236/// (either because they were untied, or because mi was rescheduled, and will
1237/// be visited again later). If the shouldOnlyCommute flag is true, only
1238/// instruction commutation is attempted.
1239bool TwoAddressInstructionPass::
1240tryInstructionTransform(MachineBasicBlock::iterator &mi,
1241 MachineBasicBlock::iterator &nmi,
1242 unsigned SrcIdx, unsigned DstIdx,
1243 unsigned &Dist, bool shouldOnlyCommute) {
1244 if (OptLevel == CodeGenOptLevel::None)
1245 return false;
1246
1247 MachineInstr &MI = *mi;
1248 Register regA = MI.getOperand(i: DstIdx).getReg();
1249 Register regB = MI.getOperand(i: SrcIdx).getReg();
1250
1251 assert(regB.isVirtual() && "cannot make instruction into two-address form");
1252 bool regBKilled = isKilled(MI, Reg: regB, allowFalsePositives: true);
1253
1254 if (regA.isVirtual())
1255 scanUses(DstReg: regA);
1256
1257 bool Commuted = tryInstructionCommute(MI: &MI, DstOpIdx: DstIdx, BaseOpIdx: SrcIdx, BaseOpKilled: regBKilled, Dist);
1258
1259 // If the instruction is convertible to 3 Addr, instead
1260 // of returning try 3 Addr transformation aggressively and
1261 // use this variable to check later. Because it might be better.
1262 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1263 // instead of the following code.
1264 // addl %esi, %edi
1265 // movl %edi, %eax
1266 // ret
1267 if (Commuted && !MI.isConvertibleTo3Addr())
1268 return false;
1269
1270 if (shouldOnlyCommute)
1271 return false;
1272
1273 // If there is one more use of regB later in the same MBB, consider
1274 // re-schedule this MI below it.
1275 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, Reg: regB)) {
1276 ++NumReSchedDowns;
1277 return true;
1278 }
1279
1280 // If we commuted, regB may have changed so we should re-sample it to avoid
1281 // confusing the three address conversion below.
1282 if (Commuted) {
1283 regB = MI.getOperand(i: SrcIdx).getReg();
1284 regBKilled = isKilled(MI, Reg: regB, allowFalsePositives: true);
1285 }
1286
1287 if (MI.isConvertibleTo3Addr()) {
1288 // This instruction is potentially convertible to a true
1289 // three-address instruction. Check if it is profitable.
1290 if (!regBKilled || isProfitableToConv3Addr(RegA: regA, RegB: regB)) {
1291 // Try to convert it.
1292 if (convertInstTo3Addr(mi, nmi, RegA: regA, RegB: regB, Dist)) {
1293 ++NumConvertedTo3Addr;
1294 return true; // Done with this instruction.
1295 }
1296 }
1297 }
1298
1299 // Return if it is commuted but 3 addr conversion is failed.
1300 if (Commuted)
1301 return false;
1302
1303 // If there is one more use of regB later in the same MBB, consider
1304 // re-schedule it before this MI if it's legal.
1305 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, Reg: regB)) {
1306 ++NumReSchedUps;
1307 return true;
1308 }
1309
1310 // If this is an instruction with a load folded into it, try unfolding
1311 // the load, e.g. avoid this:
1312 // movq %rdx, %rcx
1313 // addq (%rax), %rcx
1314 // in favor of this:
1315 // movq (%rax), %rcx
1316 // addq %rdx, %rcx
1317 // because it's preferable to schedule a load than a register copy.
1318 if (MI.mayLoad() && !regBKilled) {
1319 // Determine if a load can be unfolded.
1320 unsigned LoadRegIndex;
1321 unsigned NewOpc =
1322 TII->getOpcodeAfterMemoryUnfold(Opc: MI.getOpcode(),
1323 /*UnfoldLoad=*/true,
1324 /*UnfoldStore=*/false,
1325 LoadRegIndex: &LoadRegIndex);
1326 if (NewOpc != 0) {
1327 const MCInstrDesc &UnfoldMCID = TII->get(Opcode: NewOpc);
1328 if (UnfoldMCID.getNumDefs() == 1) {
1329 // Unfold the load.
1330 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1331 const TargetRegisterClass *RC =
1332 TRI->getAllocatableClass(
1333 RC: TII->getRegClass(MCID: UnfoldMCID, OpNum: LoadRegIndex, TRI, MF: *MF));
1334 Register Reg = MRI->createVirtualRegister(RegClass: RC);
1335 SmallVector<MachineInstr *, 2> NewMIs;
1336 if (!TII->unfoldMemoryOperand(MF&: *MF, MI, Reg,
1337 /*UnfoldLoad=*/true,
1338 /*UnfoldStore=*/false, NewMIs)) {
1339 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1340 return false;
1341 }
1342 assert(NewMIs.size() == 2 &&
1343 "Unfolded a load into multiple instructions!");
1344 // The load was previously folded, so this is the only use.
1345 NewMIs[1]->addRegisterKilled(IncomingReg: Reg, RegInfo: TRI);
1346
1347 // Tentatively insert the instructions into the block so that they
1348 // look "normal" to the transformation logic.
1349 MBB->insert(I: mi, MI: NewMIs[0]);
1350 MBB->insert(I: mi, MI: NewMIs[1]);
1351 DistanceMap.insert(KV: std::make_pair(x&: NewMIs[0], y: Dist++));
1352 DistanceMap.insert(KV: std::make_pair(x&: NewMIs[1], y&: Dist));
1353
1354 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1355 << "2addr: NEW INST: " << *NewMIs[1]);
1356
1357 // Transform the instruction, now that it no longer has a load.
1358 unsigned NewDstIdx =
1359 NewMIs[1]->findRegisterDefOperandIdx(Reg: regA, /*TRI=*/nullptr);
1360 unsigned NewSrcIdx =
1361 NewMIs[1]->findRegisterUseOperandIdx(Reg: regB, /*TRI=*/nullptr);
1362 MachineBasicBlock::iterator NewMI = NewMIs[1];
1363 bool TransformResult =
1364 tryInstructionTransform(mi&: NewMI, nmi&: mi, SrcIdx: NewSrcIdx, DstIdx: NewDstIdx, Dist, shouldOnlyCommute: true);
1365 (void)TransformResult;
1366 assert(!TransformResult &&
1367 "tryInstructionTransform() should return false.");
1368 if (NewMIs[1]->getOperand(i: NewSrcIdx).isKill()) {
1369 // Success, or at least we made an improvement. Keep the unfolded
1370 // instructions and discard the original.
1371 if (LV) {
1372 for (const MachineOperand &MO : MI.operands()) {
1373 if (MO.isReg() && MO.getReg().isVirtual()) {
1374 if (MO.isUse()) {
1375 if (MO.isKill()) {
1376 if (NewMIs[0]->killsRegister(Reg: MO.getReg(), /*TRI=*/nullptr))
1377 LV->replaceKillInstruction(Reg: MO.getReg(), OldMI&: MI, NewMI&: *NewMIs[0]);
1378 else {
1379 assert(NewMIs[1]->killsRegister(MO.getReg(),
1380 /*TRI=*/nullptr) &&
1381 "Kill missing after load unfold!");
1382 LV->replaceKillInstruction(Reg: MO.getReg(), OldMI&: MI, NewMI&: *NewMIs[1]);
1383 }
1384 }
1385 } else if (LV->removeVirtualRegisterDead(Reg: MO.getReg(), MI)) {
1386 if (NewMIs[1]->registerDefIsDead(Reg: MO.getReg(),
1387 /*TRI=*/nullptr))
1388 LV->addVirtualRegisterDead(IncomingReg: MO.getReg(), MI&: *NewMIs[1]);
1389 else {
1390 assert(NewMIs[0]->registerDefIsDead(MO.getReg(),
1391 /*TRI=*/nullptr) &&
1392 "Dead flag missing after load unfold!");
1393 LV->addVirtualRegisterDead(IncomingReg: MO.getReg(), MI&: *NewMIs[0]);
1394 }
1395 }
1396 }
1397 }
1398 LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *NewMIs[1]);
1399 }
1400
1401 SmallVector<Register, 4> OrigRegs;
1402 if (LIS) {
1403 for (const MachineOperand &MO : MI.operands()) {
1404 if (MO.isReg())
1405 OrigRegs.push_back(Elt: MO.getReg());
1406 }
1407
1408 LIS->RemoveMachineInstrFromMaps(MI);
1409 }
1410
1411 MI.eraseFromParent();
1412 DistanceMap.erase(Val: &MI);
1413
1414 // Update LiveIntervals.
1415 if (LIS) {
1416 MachineBasicBlock::iterator Begin(NewMIs[0]);
1417 MachineBasicBlock::iterator End(NewMIs[1]);
1418 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1419 }
1420
1421 mi = NewMIs[1];
1422 } else {
1423 // Transforming didn't eliminate the tie and didn't lead to an
1424 // improvement. Clean up the unfolded instructions and keep the
1425 // original.
1426 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1427 NewMIs[0]->eraseFromParent();
1428 NewMIs[1]->eraseFromParent();
1429 DistanceMap.erase(Val: NewMIs[0]);
1430 DistanceMap.erase(Val: NewMIs[1]);
1431 Dist--;
1432 }
1433 }
1434 }
1435 }
1436
1437 return false;
1438}
1439
1440// Collect tied operands of MI that need to be handled.
1441// Rewrite trivial cases immediately.
1442// Return true if any tied operands where found, including the trivial ones.
1443bool TwoAddressInstructionPass::
1444collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1445 bool AnyOps = false;
1446 unsigned NumOps = MI->getNumOperands();
1447
1448 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1449 unsigned DstIdx = 0;
1450 if (!MI->isRegTiedToDefOperand(UseOpIdx: SrcIdx, DefOpIdx: &DstIdx))
1451 continue;
1452 AnyOps = true;
1453 MachineOperand &SrcMO = MI->getOperand(i: SrcIdx);
1454 MachineOperand &DstMO = MI->getOperand(i: DstIdx);
1455 Register SrcReg = SrcMO.getReg();
1456 Register DstReg = DstMO.getReg();
1457 // Tied constraint already satisfied?
1458 if (SrcReg == DstReg)
1459 continue;
1460
1461 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1462
1463 // Deal with undef uses immediately - simply rewrite the src operand.
1464 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1465 // Constrain the DstReg register class if required.
1466 if (DstReg.isVirtual()) {
1467 const TargetRegisterClass *RC = MRI->getRegClass(Reg: SrcReg);
1468 MRI->constrainRegClass(Reg: DstReg, RC);
1469 }
1470 SrcMO.setReg(DstReg);
1471 SrcMO.setSubReg(0);
1472 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1473 continue;
1474 }
1475 TiedOperands[SrcReg].push_back(Elt: std::make_pair(x&: SrcIdx, y&: DstIdx));
1476 }
1477 return AnyOps;
1478}
1479
1480// Process a list of tied MI operands that all use the same source register.
1481// The tied pairs are of the form (SrcIdx, DstIdx).
1482void
1483TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1484 TiedPairList &TiedPairs,
1485 unsigned &Dist) {
1486 bool IsEarlyClobber = llvm::any_of(Range&: TiedPairs, P: [MI](auto const &TP) {
1487 return MI->getOperand(TP.second).isEarlyClobber();
1488 });
1489
1490 bool RemovedKillFlag = false;
1491 bool AllUsesCopied = true;
1492 unsigned LastCopiedReg = 0;
1493 SlotIndex LastCopyIdx;
1494 Register RegB = 0;
1495 unsigned SubRegB = 0;
1496 for (auto &TP : TiedPairs) {
1497 unsigned SrcIdx = TP.first;
1498 unsigned DstIdx = TP.second;
1499
1500 const MachineOperand &DstMO = MI->getOperand(i: DstIdx);
1501 Register RegA = DstMO.getReg();
1502
1503 // Grab RegB from the instruction because it may have changed if the
1504 // instruction was commuted.
1505 RegB = MI->getOperand(i: SrcIdx).getReg();
1506 SubRegB = MI->getOperand(i: SrcIdx).getSubReg();
1507
1508 if (RegA == RegB) {
1509 // The register is tied to multiple destinations (or else we would
1510 // not have continued this far), but this use of the register
1511 // already matches the tied destination. Leave it.
1512 AllUsesCopied = false;
1513 continue;
1514 }
1515 LastCopiedReg = RegA;
1516
1517 assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1518
1519#ifndef NDEBUG
1520 // First, verify that we don't have a use of "a" in the instruction
1521 // (a = b + a for example) because our transformation will not
1522 // work. This should never occur because we are in SSA form.
1523 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1524 assert(i == DstIdx ||
1525 !MI->getOperand(i).isReg() ||
1526 MI->getOperand(i).getReg() != RegA);
1527#endif
1528
1529 // Emit a copy.
1530 MachineInstrBuilder MIB = BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(),
1531 MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: RegA);
1532 // If this operand is folding a truncation, the truncation now moves to the
1533 // copy so that the register classes remain valid for the operands.
1534 MIB.addReg(RegNo: RegB, flags: 0, SubReg: SubRegB);
1535 const TargetRegisterClass *RC = MRI->getRegClass(Reg: RegB);
1536 if (SubRegB) {
1537 if (RegA.isVirtual()) {
1538 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1539 SubRegB) &&
1540 "tied subregister must be a truncation");
1541 // The superreg class will not be used to constrain the subreg class.
1542 RC = nullptr;
1543 } else {
1544 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1545 && "tied subregister must be a truncation");
1546 }
1547 }
1548
1549 // Update DistanceMap.
1550 MachineBasicBlock::iterator PrevMI = MI;
1551 --PrevMI;
1552 DistanceMap.insert(KV: std::make_pair(x: &*PrevMI, y&: Dist));
1553 DistanceMap[MI] = ++Dist;
1554
1555 if (LIS) {
1556 LastCopyIdx = LIS->InsertMachineInstrInMaps(MI&: *PrevMI).getRegSlot();
1557
1558 SlotIndex endIdx =
1559 LIS->getInstructionIndex(Instr: *MI).getRegSlot(EC: IsEarlyClobber);
1560 if (RegA.isVirtual()) {
1561 LiveInterval &LI = LIS->getInterval(Reg: RegA);
1562 VNInfo *VNI = LI.getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator());
1563 LI.addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1564 for (auto &S : LI.subranges()) {
1565 VNI = S.getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator());
1566 S.addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1567 }
1568 } else {
1569 for (MCRegUnit Unit : TRI->regunits(Reg: RegA)) {
1570 if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) {
1571 VNInfo *VNI =
1572 LR->getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator());
1573 LR->addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1574 }
1575 }
1576 }
1577 }
1578
1579 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1580
1581 MachineOperand &MO = MI->getOperand(i: SrcIdx);
1582 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1583 "inconsistent operand info for 2-reg pass");
1584 if (isPlainlyKilled(MO)) {
1585 MO.setIsKill(false);
1586 RemovedKillFlag = true;
1587 }
1588
1589 // Make sure regA is a legal regclass for the SrcIdx operand.
1590 if (RegA.isVirtual() && RegB.isVirtual())
1591 MRI->constrainRegClass(Reg: RegA, RC);
1592 MO.setReg(RegA);
1593 // The getMatchingSuper asserts guarantee that the register class projected
1594 // by SubRegB is compatible with RegA with no subregister. So regardless of
1595 // whether the dest oper writes a subreg, the source oper should not.
1596 MO.setSubReg(0);
1597 }
1598
1599 if (AllUsesCopied) {
1600 LaneBitmask RemainingUses = LaneBitmask::getNone();
1601 // Replace other (un-tied) uses of regB with LastCopiedReg.
1602 for (MachineOperand &MO : MI->all_uses()) {
1603 if (MO.getReg() == RegB) {
1604 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
1605 if (isPlainlyKilled(MO)) {
1606 MO.setIsKill(false);
1607 RemovedKillFlag = true;
1608 }
1609 MO.setReg(LastCopiedReg);
1610 MO.setSubReg(0);
1611 } else {
1612 RemainingUses |= TRI->getSubRegIndexLaneMask(SubIdx: MO.getSubReg());
1613 }
1614 }
1615 }
1616
1617 // Update live variables for regB.
1618 if (RemovedKillFlag && RemainingUses.none() && LV &&
1619 LV->getVarInfo(Reg: RegB).removeKill(MI&: *MI)) {
1620 MachineBasicBlock::iterator PrevMI = MI;
1621 --PrevMI;
1622 LV->addVirtualRegisterKilled(IncomingReg: RegB, MI&: *PrevMI);
1623 }
1624
1625 if (RemovedKillFlag && RemainingUses.none())
1626 SrcRegMap[LastCopiedReg] = RegB;
1627
1628 // Update LiveIntervals.
1629 if (LIS) {
1630 SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *MI);
1631 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
1632 LiveRange::Segment *S = LR.getSegmentContaining(Idx: LastCopyIdx);
1633 if (!S)
1634 return true;
1635 if ((LaneMask & RemainingUses).any())
1636 return false;
1637 if (S->end.getBaseIndex() != UseIdx)
1638 return false;
1639 S->end = LastCopyIdx;
1640 return true;
1641 };
1642
1643 LiveInterval &LI = LIS->getInterval(Reg: RegB);
1644 bool ShrinkLI = true;
1645 for (auto &S : LI.subranges())
1646 ShrinkLI &= Shrink(S, S.LaneMask);
1647 if (ShrinkLI)
1648 Shrink(LI, LaneBitmask::getAll());
1649 }
1650 } else if (RemovedKillFlag) {
1651 // Some tied uses of regB matched their destination registers, so
1652 // regB is still used in this instruction, but a kill flag was
1653 // removed from a different tied use of regB, so now we need to add
1654 // a kill flag to one of the remaining uses of regB.
1655 for (MachineOperand &MO : MI->all_uses()) {
1656 if (MO.getReg() == RegB) {
1657 MO.setIsKill(true);
1658 break;
1659 }
1660 }
1661 }
1662}
1663
1664// For every tied operand pair this function transforms statepoint from
1665// RegA = STATEPOINT ... RegB(tied-def N)
1666// to
1667// RegB = STATEPOINT ... RegB(tied-def N)
1668// and replaces all uses of RegA with RegB.
1669// No extra COPY instruction is necessary because tied use is killed at
1670// STATEPOINT.
1671bool TwoAddressInstructionPass::processStatepoint(
1672 MachineInstr *MI, TiedOperandMap &TiedOperands) {
1673
1674 bool NeedCopy = false;
1675 for (auto &TO : TiedOperands) {
1676 Register RegB = TO.first;
1677 if (TO.second.size() != 1) {
1678 NeedCopy = true;
1679 continue;
1680 }
1681
1682 unsigned SrcIdx = TO.second[0].first;
1683 unsigned DstIdx = TO.second[0].second;
1684
1685 MachineOperand &DstMO = MI->getOperand(i: DstIdx);
1686 Register RegA = DstMO.getReg();
1687
1688 assert(RegB == MI->getOperand(SrcIdx).getReg());
1689
1690 if (RegA == RegB)
1691 continue;
1692
1693 // CodeGenPrepare can sink pointer compare past statepoint, which
1694 // breaks assumption that statepoint kills tied-use register when
1695 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back
1696 // to generic tied register handling to avoid assertion failures.
1697 // TODO: Recompute LIS/LV information for new range here.
1698 if (LIS) {
1699 const auto &UseLI = LIS->getInterval(Reg: RegB);
1700 const auto &DefLI = LIS->getInterval(Reg: RegA);
1701 if (DefLI.overlaps(other: UseLI)) {
1702 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0)
1703 << " UseLI overlaps with DefLI\n");
1704 NeedCopy = true;
1705 continue;
1706 }
1707 } else if (LV && LV->getVarInfo(Reg: RegB).findKill(MBB: MI->getParent()) != MI) {
1708 // Note that MachineOperand::isKill does not work here, because it
1709 // is set only on first register use in instruction and for statepoint
1710 // tied-use register will usually be found in preceeding deopt bundle.
1711 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0)
1712 << " not killed by statepoint\n");
1713 NeedCopy = true;
1714 continue;
1715 }
1716
1717 if (!MRI->constrainRegClass(Reg: RegB, RC: MRI->getRegClass(Reg: RegA))) {
1718 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0)
1719 << " to register class of " << printReg(RegA, TRI, 0)
1720 << '\n');
1721 NeedCopy = true;
1722 continue;
1723 }
1724 MRI->replaceRegWith(FromReg: RegA, ToReg: RegB);
1725
1726 if (LIS) {
1727 VNInfo::Allocator &A = LIS->getVNInfoAllocator();
1728 LiveInterval &LI = LIS->getInterval(Reg: RegB);
1729 LiveInterval &Other = LIS->getInterval(Reg: RegA);
1730 SmallVector<VNInfo *> NewVNIs;
1731 for (const VNInfo *VNI : Other.valnos) {
1732 assert(VNI->id == NewVNIs.size() && "assumed");
1733 NewVNIs.push_back(Elt: LI.createValueCopy(orig: VNI, VNInfoAllocator&: A));
1734 }
1735 for (auto &S : Other) {
1736 VNInfo *VNI = NewVNIs[S.valno->id];
1737 LiveRange::Segment NewSeg(S.start, S.end, VNI);
1738 LI.addSegment(S: NewSeg);
1739 }
1740 LIS->removeInterval(Reg: RegA);
1741 }
1742
1743 if (LV) {
1744 if (MI->getOperand(i: SrcIdx).isKill())
1745 LV->removeVirtualRegisterKilled(Reg: RegB, MI&: *MI);
1746 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(Reg: RegB);
1747 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(Reg: RegA);
1748 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks;
1749 DstInfo.AliveBlocks.clear();
1750 for (auto *KillMI : DstInfo.Kills)
1751 LV->addVirtualRegisterKilled(IncomingReg: RegB, MI&: *KillMI, AddIfNotFound: false);
1752 }
1753 }
1754 return !NeedCopy;
1755}
1756
1757/// Reduce two-address instructions to two operands.
1758bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1759 MF = &Func;
1760 const TargetMachine &TM = MF->getTarget();
1761 MRI = &MF->getRegInfo();
1762 TII = MF->getSubtarget().getInstrInfo();
1763 TRI = MF->getSubtarget().getRegisterInfo();
1764 InstrItins = MF->getSubtarget().getInstrItineraryData();
1765 LV = getAnalysisIfAvailable<LiveVariables>();
1766 LIS = getAnalysisIfAvailable<LiveIntervals>();
1767 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1768 AA = &AAPass->getAAResults();
1769 else
1770 AA = nullptr;
1771 OptLevel = TM.getOptLevel();
1772 // Disable optimizations if requested. We cannot skip the whole pass as some
1773 // fixups are necessary for correctness.
1774 if (skipFunction(F: Func.getFunction()))
1775 OptLevel = CodeGenOptLevel::None;
1776
1777 bool MadeChange = false;
1778
1779 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1780 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1781
1782 // This pass takes the function out of SSA form.
1783 MRI->leaveSSA();
1784
1785 // This pass will rewrite the tied-def to meet the RegConstraint.
1786 MF->getProperties()
1787 .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1788
1789 TiedOperandMap TiedOperands;
1790 for (MachineBasicBlock &MBBI : *MF) {
1791 MBB = &MBBI;
1792 unsigned Dist = 0;
1793 DistanceMap.clear();
1794 SrcRegMap.clear();
1795 DstRegMap.clear();
1796 Processed.clear();
1797 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1798 mi != me; ) {
1799 MachineBasicBlock::iterator nmi = std::next(x: mi);
1800 // Skip debug instructions.
1801 if (mi->isDebugInstr()) {
1802 mi = nmi;
1803 continue;
1804 }
1805
1806 // Expand REG_SEQUENCE instructions. This will position mi at the first
1807 // expanded instruction.
1808 if (mi->isRegSequence())
1809 eliminateRegSequence(mi);
1810
1811 DistanceMap.insert(KV: std::make_pair(x: &*mi, y&: ++Dist));
1812
1813 processCopy(MI: &*mi);
1814
1815 // First scan through all the tied register uses in this instruction
1816 // and record a list of pairs of tied operands for each register.
1817 if (!collectTiedOperands(MI: &*mi, TiedOperands)) {
1818 removeClobberedSrcRegMap(MI: &*mi);
1819 mi = nmi;
1820 continue;
1821 }
1822
1823 ++NumTwoAddressInstrs;
1824 MadeChange = true;
1825 LLVM_DEBUG(dbgs() << '\t' << *mi);
1826
1827 // If the instruction has a single pair of tied operands, try some
1828 // transformations that may either eliminate the tied operands or
1829 // improve the opportunities for coalescing away the register copy.
1830 if (TiedOperands.size() == 1) {
1831 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1832 = TiedOperands.begin()->second;
1833 if (TiedPairs.size() == 1) {
1834 unsigned SrcIdx = TiedPairs[0].first;
1835 unsigned DstIdx = TiedPairs[0].second;
1836 Register SrcReg = mi->getOperand(i: SrcIdx).getReg();
1837 Register DstReg = mi->getOperand(i: DstIdx).getReg();
1838 if (SrcReg != DstReg &&
1839 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, shouldOnlyCommute: false)) {
1840 // The tied operands have been eliminated or shifted further down
1841 // the block to ease elimination. Continue processing with 'nmi'.
1842 TiedOperands.clear();
1843 removeClobberedSrcRegMap(MI: &*mi);
1844 mi = nmi;
1845 continue;
1846 }
1847 }
1848 }
1849
1850 if (mi->getOpcode() == TargetOpcode::STATEPOINT &&
1851 processStatepoint(MI: &*mi, TiedOperands)) {
1852 TiedOperands.clear();
1853 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1854 mi = nmi;
1855 continue;
1856 }
1857
1858 // Now iterate over the information collected above.
1859 for (auto &TO : TiedOperands) {
1860 processTiedPairs(MI: &*mi, TiedPairs&: TO.second, Dist);
1861 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1862 }
1863
1864 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1865 if (mi->isInsertSubreg()) {
1866 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1867 // To %reg:subidx = COPY %subreg
1868 unsigned SubIdx = mi->getOperand(i: 3).getImm();
1869 mi->removeOperand(OpNo: 3);
1870 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1871 mi->getOperand(i: 0).setSubReg(SubIdx);
1872 mi->getOperand(i: 0).setIsUndef(mi->getOperand(i: 1).isUndef());
1873 mi->removeOperand(OpNo: 1);
1874 mi->setDesc(TII->get(Opcode: TargetOpcode::COPY));
1875 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1876
1877 // Update LiveIntervals.
1878 if (LIS) {
1879 Register Reg = mi->getOperand(i: 0).getReg();
1880 LiveInterval &LI = LIS->getInterval(Reg);
1881 if (LI.hasSubRanges()) {
1882 // The COPY no longer defines subregs of %reg except for
1883 // %reg.subidx.
1884 LaneBitmask LaneMask =
1885 TRI->getSubRegIndexLaneMask(SubIdx: mi->getOperand(i: 0).getSubReg());
1886 SlotIndex Idx = LIS->getInstructionIndex(Instr: *mi).getRegSlot();
1887 for (auto &S : LI.subranges()) {
1888 if ((S.LaneMask & LaneMask).none()) {
1889 LiveRange::iterator DefSeg = S.FindSegmentContaining(Idx);
1890 if (mi->getOperand(i: 0).isUndef()) {
1891 S.removeValNo(ValNo: DefSeg->valno);
1892 } else {
1893 LiveRange::iterator UseSeg = std::prev(x: DefSeg);
1894 S.MergeValueNumberInto(V1: DefSeg->valno, V2: UseSeg->valno);
1895 }
1896 }
1897 }
1898
1899 // The COPY no longer has a use of %reg.
1900 LIS->shrinkToUses(li: &LI);
1901 } else {
1902 // The live interval for Reg did not have subranges but now it needs
1903 // them because we have introduced a subreg def. Recompute it.
1904 LIS->removeInterval(Reg);
1905 LIS->createAndComputeVirtRegInterval(Reg);
1906 }
1907 }
1908 }
1909
1910 // Clear TiedOperands here instead of at the top of the loop
1911 // since most instructions do not have tied operands.
1912 TiedOperands.clear();
1913 removeClobberedSrcRegMap(MI: &*mi);
1914 mi = nmi;
1915 }
1916 }
1917
1918 return MadeChange;
1919}
1920
1921/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1922///
1923/// The instruction is turned into a sequence of sub-register copies:
1924///
1925/// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1926///
1927/// Becomes:
1928///
1929/// undef %dst:ssub0 = COPY %v1
1930/// %dst:ssub1 = COPY %v2
1931void TwoAddressInstructionPass::
1932eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1933 MachineInstr &MI = *MBBI;
1934 Register DstReg = MI.getOperand(i: 0).getReg();
1935
1936 SmallVector<Register, 4> OrigRegs;
1937 VNInfo *DefVN = nullptr;
1938 if (LIS) {
1939 OrigRegs.push_back(Elt: MI.getOperand(i: 0).getReg());
1940 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1941 OrigRegs.push_back(Elt: MI.getOperand(i).getReg());
1942 if (LIS->hasInterval(Reg: DstReg)) {
1943 DefVN = LIS->getInterval(Reg: DstReg)
1944 .Query(Idx: LIS->getInstructionIndex(Instr: MI))
1945 .valueOut();
1946 }
1947 }
1948
1949 LaneBitmask UndefLanes = LaneBitmask::getNone();
1950 bool DefEmitted = false;
1951 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1952 MachineOperand &UseMO = MI.getOperand(i);
1953 Register SrcReg = UseMO.getReg();
1954 unsigned SubIdx = MI.getOperand(i: i+1).getImm();
1955 // Nothing needs to be inserted for undef operands.
1956 if (UseMO.isUndef()) {
1957 UndefLanes |= TRI->getSubRegIndexLaneMask(SubIdx);
1958 continue;
1959 }
1960
1961 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1962 // might insert a COPY that uses SrcReg after is was killed.
1963 bool isKill = UseMO.isKill();
1964 if (isKill)
1965 for (unsigned j = i + 2; j < e; j += 2)
1966 if (MI.getOperand(i: j).getReg() == SrcReg) {
1967 MI.getOperand(i: j).setIsKill();
1968 UseMO.setIsKill(false);
1969 isKill = false;
1970 break;
1971 }
1972
1973 // Insert the sub-register copy.
1974 MachineInstr *CopyMI = BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(),
1975 MCID: TII->get(Opcode: TargetOpcode::COPY))
1976 .addReg(RegNo: DstReg, flags: RegState::Define, SubReg: SubIdx)
1977 .add(MO: UseMO);
1978
1979 // The first def needs an undef flag because there is no live register
1980 // before it.
1981 if (!DefEmitted) {
1982 CopyMI->getOperand(i: 0).setIsUndef(true);
1983 // Return an iterator pointing to the first inserted instr.
1984 MBBI = CopyMI;
1985 }
1986 DefEmitted = true;
1987
1988 // Update LiveVariables' kill info.
1989 if (LV && isKill && !SrcReg.isPhysical())
1990 LV->replaceKillInstruction(Reg: SrcReg, OldMI&: MI, NewMI&: *CopyMI);
1991
1992 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1993 }
1994
1995 MachineBasicBlock::iterator EndMBBI =
1996 std::next(x: MachineBasicBlock::iterator(MI));
1997
1998 if (!DefEmitted) {
1999 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
2000 MI.setDesc(TII->get(Opcode: TargetOpcode::IMPLICIT_DEF));
2001 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
2002 MI.removeOperand(OpNo: j);
2003 } else {
2004 if (LIS) {
2005 // Force live interval recomputation if we moved to a partial definition
2006 // of the register. Undef flags must be propagate to uses of undefined
2007 // subregister for accurate interval computation.
2008 if (UndefLanes.any() && DefVN && MRI->shouldTrackSubRegLiveness(VReg: DstReg)) {
2009 auto &LI = LIS->getInterval(Reg: DstReg);
2010 for (MachineOperand &UseOp : MRI->use_operands(Reg: DstReg)) {
2011 unsigned SubReg = UseOp.getSubReg();
2012 if (UseOp.isUndef() || !SubReg)
2013 continue;
2014 auto *VN =
2015 LI.getVNInfoAt(Idx: LIS->getInstructionIndex(Instr: *UseOp.getParent()));
2016 if (DefVN != VN)
2017 continue;
2018 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg);
2019 if ((UndefLanes & LaneMask).any())
2020 UseOp.setIsUndef(true);
2021 }
2022 LIS->removeInterval(Reg: DstReg);
2023 }
2024 LIS->RemoveMachineInstrFromMaps(MI);
2025 }
2026
2027 LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
2028 MI.eraseFromParent();
2029 }
2030
2031 // Udpate LiveIntervals.
2032 if (LIS)
2033 LIS->repairIntervalsInRange(MBB, Begin: MBBI, End: EndMBBI, OrigRegs);
2034}
2035

source code of llvm/lib/CodeGen/TwoAddressInstructionPass.cpp