1//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7/// \file
8//===----------------------------------------------------------------------===//
9//
10
11#include "AMDGPU.h"
12#include "GCNSubtarget.h"
13#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14#include "SIMachineFunctionInfo.h"
15#include "llvm/ADT/DepthFirstIterator.h"
16#include "llvm/CodeGen/MachineFunctionPass.h"
17#include "llvm/CodeGen/MachineOperand.h"
18
19#define DEBUG_TYPE "si-fold-operands"
20using namespace llvm;
21
22namespace {
23
24struct FoldCandidate {
25 MachineInstr *UseMI;
26 union {
27 MachineOperand *OpToFold;
28 uint64_t ImmToFold;
29 int FrameIndexToFold;
30 };
31 int ShrinkOpcode;
32 unsigned UseOpNo;
33 MachineOperand::MachineOperandType Kind;
34 bool Commuted;
35
36 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
37 bool Commuted_ = false,
38 int ShrinkOp = -1) :
39 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
40 Kind(FoldOp->getType()),
41 Commuted(Commuted_) {
42 if (FoldOp->isImm()) {
43 ImmToFold = FoldOp->getImm();
44 } else if (FoldOp->isFI()) {
45 FrameIndexToFold = FoldOp->getIndex();
46 } else {
47 assert(FoldOp->isReg() || FoldOp->isGlobal());
48 OpToFold = FoldOp;
49 }
50 }
51
52 bool isFI() const {
53 return Kind == MachineOperand::MO_FrameIndex;
54 }
55
56 bool isImm() const {
57 return Kind == MachineOperand::MO_Immediate;
58 }
59
60 bool isReg() const {
61 return Kind == MachineOperand::MO_Register;
62 }
63
64 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
65
66 bool needsShrink() const { return ShrinkOpcode != -1; }
67};
68
69class SIFoldOperands : public MachineFunctionPass {
70public:
71 static char ID;
72 MachineRegisterInfo *MRI;
73 const SIInstrInfo *TII;
74 const SIRegisterInfo *TRI;
75 const GCNSubtarget *ST;
76 const SIMachineFunctionInfo *MFI;
77
78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
79 const MachineOperand &OpToFold) const;
80
81 bool updateOperand(FoldCandidate &Fold) const;
82
83 bool canUseImmWithOpSel(FoldCandidate &Fold) const;
84
85 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const;
86
87 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
88 MachineInstr *MI, unsigned OpNo,
89 MachineOperand *OpToFold) const;
90 bool isUseSafeToFold(const MachineInstr &MI,
91 const MachineOperand &UseMO) const;
92 bool
93 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
94 Register UseReg, uint8_t OpTy) const;
95 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI,
96 unsigned UseOpIdx,
97 SmallVectorImpl<FoldCandidate> &FoldList) const;
98 void foldOperand(MachineOperand &OpToFold,
99 MachineInstr *UseMI,
100 int UseOpIdx,
101 SmallVectorImpl<FoldCandidate> &FoldList,
102 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
103
104 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const;
105 bool tryConstantFoldOp(MachineInstr *MI) const;
106 bool tryFoldCndMask(MachineInstr &MI) const;
107 bool tryFoldZeroHighBits(MachineInstr &MI) const;
108 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
109 bool tryFoldFoldableCopy(MachineInstr &MI,
110 MachineOperand *&CurrentKnownM0Val) const;
111
112 const MachineOperand *isClamp(const MachineInstr &MI) const;
113 bool tryFoldClamp(MachineInstr &MI);
114
115 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
116 bool tryFoldOMod(MachineInstr &MI);
117 bool tryFoldRegSequence(MachineInstr &MI);
118 bool tryFoldPhiAGPR(MachineInstr &MI);
119 bool tryFoldLoad(MachineInstr &MI);
120
121 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB);
122
123public:
124 SIFoldOperands() : MachineFunctionPass(ID) {
125 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
126 }
127
128 bool runOnMachineFunction(MachineFunction &MF) override;
129
130 StringRef getPassName() const override { return "SI Fold Operands"; }
131
132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.setPreservesCFG();
134 MachineFunctionPass::getAnalysisUsage(AU);
135 }
136};
137
138} // End anonymous namespace.
139
140INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
141 "SI Fold Operands", false, false)
142
143char SIFoldOperands::ID = 0;
144
145char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
146
147static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI,
148 const TargetRegisterInfo &TRI,
149 const MachineOperand &MO) {
150 const TargetRegisterClass *RC = MRI.getRegClass(Reg: MO.getReg());
151 if (const TargetRegisterClass *SubRC =
152 TRI.getSubRegisterClass(SuperRC: RC, SubRegIdx: MO.getSubReg()))
153 RC = SubRC;
154 return RC;
155}
156
157// Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
158static unsigned macToMad(unsigned Opc) {
159 switch (Opc) {
160 case AMDGPU::V_MAC_F32_e64:
161 return AMDGPU::V_MAD_F32_e64;
162 case AMDGPU::V_MAC_F16_e64:
163 return AMDGPU::V_MAD_F16_e64;
164 case AMDGPU::V_FMAC_F32_e64:
165 return AMDGPU::V_FMA_F32_e64;
166 case AMDGPU::V_FMAC_F16_e64:
167 return AMDGPU::V_FMA_F16_gfx9_e64;
168 case AMDGPU::V_FMAC_F16_t16_e64:
169 return AMDGPU::V_FMA_F16_gfx9_e64;
170 case AMDGPU::V_FMAC_LEGACY_F32_e64:
171 return AMDGPU::V_FMA_LEGACY_F32_e64;
172 case AMDGPU::V_FMAC_F64_e64:
173 return AMDGPU::V_FMA_F64_e64;
174 }
175 return AMDGPU::INSTRUCTION_LIST_END;
176}
177
178// TODO: Add heuristic that the frame index might not fit in the addressing mode
179// immediate offset to avoid materializing in loops.
180bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
181 const MachineOperand &OpToFold) const {
182 if (!OpToFold.isFI())
183 return false;
184
185 const unsigned Opc = UseMI.getOpcode();
186 if (TII->isMUBUF(UseMI))
187 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
188 if (!TII->isFLATScratch(MI: UseMI))
189 return false;
190
191 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
192 if (OpNo == SIdx)
193 return true;
194
195 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
196 return OpNo == VIdx && SIdx == -1;
197}
198
199FunctionPass *llvm::createSIFoldOperandsPass() {
200 return new SIFoldOperands();
201}
202
203bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const {
204 MachineInstr *MI = Fold.UseMI;
205 MachineOperand &Old = MI->getOperand(i: Fold.UseOpNo);
206 const uint64_t TSFlags = MI->getDesc().TSFlags;
207
208 assert(Old.isReg() && Fold.isImm());
209
210 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) ||
211 (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) ||
212 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT)))
213 return false;
214
215 unsigned Opcode = MI->getOpcode();
216 int OpNo = MI->getOperandNo(I: &Old);
217 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType;
218 switch (OpType) {
219 default:
220 return false;
221 case AMDGPU::OPERAND_REG_IMM_V2FP16:
222 case AMDGPU::OPERAND_REG_IMM_V2BF16:
223 case AMDGPU::OPERAND_REG_IMM_V2INT16:
224 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
225 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16:
226 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
227 break;
228 }
229
230 return true;
231}
232
233bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const {
234 MachineInstr *MI = Fold.UseMI;
235 MachineOperand &Old = MI->getOperand(i: Fold.UseOpNo);
236 unsigned Opcode = MI->getOpcode();
237 int OpNo = MI->getOperandNo(I: &Old);
238 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType;
239
240 // If the literal can be inlined as-is, apply it and short-circuit the
241 // tests below. The main motivation for this is to avoid unintuitive
242 // uses of opsel.
243 if (AMDGPU::isInlinableLiteralV216(Literal: Fold.ImmToFold, OpType)) {
244 Old.ChangeToImmediate(ImmVal: Fold.ImmToFold);
245 return true;
246 }
247
248 // Refer to op_sel/op_sel_hi and check if we can change the immediate and
249 // op_sel in a way that allows an inline constant.
250 int ModIdx = -1;
251 unsigned SrcIdx = ~0;
252 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) {
253 ModIdx = AMDGPU::OpName::src0_modifiers;
254 SrcIdx = 0;
255 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) {
256 ModIdx = AMDGPU::OpName::src1_modifiers;
257 SrcIdx = 1;
258 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) {
259 ModIdx = AMDGPU::OpName::src2_modifiers;
260 SrcIdx = 2;
261 }
262 assert(ModIdx != -1);
263 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, NamedIdx: ModIdx);
264 MachineOperand &Mod = MI->getOperand(i: ModIdx);
265 unsigned ModVal = Mod.getImm();
266
267 uint16_t ImmLo = static_cast<uint16_t>(
268 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0));
269 uint16_t ImmHi = static_cast<uint16_t>(
270 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0));
271 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo;
272 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1);
273
274 // Helper function that attempts to inline the given value with a newly
275 // chosen opsel pattern.
276 auto tryFoldToInline = [&](uint32_t Imm) -> bool {
277 if (AMDGPU::isInlinableLiteralV216(Literal: Imm, OpType)) {
278 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1);
279 Old.ChangeToImmediate(ImmVal: Imm);
280 return true;
281 }
282
283 // Try to shuffle the halves around and leverage opsel to get an inline
284 // constant.
285 uint16_t Lo = static_cast<uint16_t>(Imm);
286 uint16_t Hi = static_cast<uint16_t>(Imm >> 16);
287 if (Lo == Hi) {
288 if (AMDGPU::isInlinableLiteralV216(Literal: Lo, OpType)) {
289 Mod.setImm(NewModVal);
290 Old.ChangeToImmediate(ImmVal: Lo);
291 return true;
292 }
293
294 if (static_cast<int16_t>(Lo) < 0) {
295 int32_t SExt = static_cast<int16_t>(Lo);
296 if (AMDGPU::isInlinableLiteralV216(Literal: SExt, OpType)) {
297 Mod.setImm(NewModVal);
298 Old.ChangeToImmediate(ImmVal: SExt);
299 return true;
300 }
301 }
302
303 // This check is only useful for integer instructions
304 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 ||
305 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) {
306 if (AMDGPU::isInlinableLiteralV216(Literal: Lo << 16, OpType)) {
307 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1);
308 Old.ChangeToImmediate(ImmVal: static_cast<uint32_t>(Lo) << 16);
309 return true;
310 }
311 }
312 } else {
313 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi;
314 if (AMDGPU::isInlinableLiteralV216(Literal: Swapped, OpType)) {
315 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0);
316 Old.ChangeToImmediate(ImmVal: Swapped);
317 return true;
318 }
319 }
320
321 return false;
322 };
323
324 if (tryFoldToInline(Imm))
325 return true;
326
327 // Replace integer addition by subtraction and vice versa if it allows
328 // folding the immediate to an inline constant.
329 //
330 // We should only ever get here for SrcIdx == 1 due to canonicalization
331 // earlier in the pipeline, but we double-check here to be safe / fully
332 // general.
333 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16;
334 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16;
335 if (SrcIdx == 1 && (IsUAdd || IsUSub)) {
336 unsigned ClampIdx =
337 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp);
338 bool Clamp = MI->getOperand(i: ClampIdx).getImm() != 0;
339
340 if (!Clamp) {
341 uint16_t NegLo = -static_cast<uint16_t>(Imm);
342 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16);
343 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo;
344
345 if (tryFoldToInline(NegImm)) {
346 unsigned NegOpcode =
347 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16;
348 MI->setDesc(TII->get(NegOpcode));
349 return true;
350 }
351 }
352 }
353
354 return false;
355}
356
357bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const {
358 MachineInstr *MI = Fold.UseMI;
359 MachineOperand &Old = MI->getOperand(i: Fold.UseOpNo);
360 assert(Old.isReg());
361
362 if (Fold.isImm() && canUseImmWithOpSel(Fold)) {
363 if (tryFoldImmWithOpSel(Fold))
364 return true;
365
366 // We can't represent the candidate as an inline constant. Try as a literal
367 // with the original opsel, checking constant bus limitations.
368 MachineOperand New = MachineOperand::CreateImm(Val: Fold.ImmToFold);
369 int OpNo = MI->getOperandNo(I: &Old);
370 if (!TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: &New))
371 return false;
372 Old.ChangeToImmediate(ImmVal: Fold.ImmToFold);
373 return true;
374 }
375
376 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
377 MachineBasicBlock *MBB = MI->getParent();
378 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16);
379 if (Liveness != MachineBasicBlock::LQR_Dead) {
380 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
381 return false;
382 }
383
384 int Op32 = Fold.ShrinkOpcode;
385 MachineOperand &Dst0 = MI->getOperand(i: 0);
386 MachineOperand &Dst1 = MI->getOperand(i: 1);
387 assert(Dst0.isDef() && Dst1.isDef());
388
389 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(RegNo: Dst1.getReg());
390
391 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Reg: Dst0.getReg());
392 Register NewReg0 = MRI->createVirtualRegister(RegClass: Dst0RC);
393
394 MachineInstr *Inst32 = TII->buildShrunkInst(MI&: *MI, NewOpcode: Op32);
395
396 if (HaveNonDbgCarryUse) {
397 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY),
398 Dst1.getReg())
399 .addReg(AMDGPU::VCC, RegState::Kill);
400 }
401
402 // Keep the old instruction around to avoid breaking iterators, but
403 // replace it with a dummy instruction to remove uses.
404 //
405 // FIXME: We should not invert how this pass looks at operands to avoid
406 // this. Should track set of foldable movs instead of looking for uses
407 // when looking at a use.
408 Dst0.setReg(NewReg0);
409 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
410 MI->removeOperand(OpNo: I);
411 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF));
412
413 if (Fold.Commuted)
414 TII->commuteInstruction(*Inst32, false);
415 return true;
416 }
417
418 assert(!Fold.needsShrink() && "not handled");
419
420 if (Fold.isImm()) {
421 if (Old.isTied()) {
422 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opcode: MI->getOpcode());
423 if (NewMFMAOpc == -1)
424 return false;
425 MI->setDesc(TII->get(NewMFMAOpc));
426 MI->untieRegOperand(OpIdx: 0);
427 }
428 Old.ChangeToImmediate(ImmVal: Fold.ImmToFold);
429 return true;
430 }
431
432 if (Fold.isGlobal()) {
433 Old.ChangeToGA(GV: Fold.OpToFold->getGlobal(), Offset: Fold.OpToFold->getOffset(),
434 TargetFlags: Fold.OpToFold->getTargetFlags());
435 return true;
436 }
437
438 if (Fold.isFI()) {
439 Old.ChangeToFrameIndex(Idx: Fold.FrameIndexToFold);
440 return true;
441 }
442
443 MachineOperand *New = Fold.OpToFold;
444 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI);
445 Old.setIsUndef(New->isUndef());
446 return true;
447}
448
449static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
450 const MachineInstr *MI) {
451 return any_of(Range&: FoldList, P: [&](const auto &C) { return C.UseMI == MI; });
452}
453
454static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
455 MachineInstr *MI, unsigned OpNo,
456 MachineOperand *FoldOp, bool Commuted = false,
457 int ShrinkOp = -1) {
458 // Skip additional folding on the same operand.
459 for (FoldCandidate &Fold : FoldList)
460 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
461 return;
462 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
463 << " operand " << OpNo << "\n " << *MI);
464 FoldList.emplace_back(Args&: MI, Args&: OpNo, Args&: FoldOp, Args&: Commuted, Args&: ShrinkOp);
465}
466
467bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
468 MachineInstr *MI, unsigned OpNo,
469 MachineOperand *OpToFold) const {
470 const unsigned Opc = MI->getOpcode();
471
472 auto tryToFoldAsFMAAKorMK = [&]() {
473 if (!OpToFold->isImm())
474 return false;
475
476 const bool TryAK = OpNo == 3;
477 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32;
478 MI->setDesc(TII->get(NewOpc));
479
480 // We have to fold into operand which would be Imm not into OpNo.
481 bool FoldAsFMAAKorMK =
482 tryAddToFoldList(FoldList, MI, OpNo: TryAK ? 3 : 2, OpToFold);
483 if (FoldAsFMAAKorMK) {
484 // Untie Src2 of fmac.
485 MI->untieRegOperand(OpIdx: 3);
486 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1.
487 if (OpNo == 1) {
488 MachineOperand &Op1 = MI->getOperand(i: 1);
489 MachineOperand &Op2 = MI->getOperand(i: 2);
490 Register OldReg = Op1.getReg();
491 // Operand 2 might be an inlinable constant
492 if (Op2.isImm()) {
493 Op1.ChangeToImmediate(ImmVal: Op2.getImm());
494 Op2.ChangeToRegister(Reg: OldReg, isDef: false);
495 } else {
496 Op1.setReg(Op2.getReg());
497 Op2.setReg(OldReg);
498 }
499 }
500 return true;
501 }
502 MI->setDesc(TII->get(Opc));
503 return false;
504 };
505
506 bool IsLegal = TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: OpToFold);
507 if (!IsLegal && OpToFold->isImm()) {
508 FoldCandidate Fold(MI, OpNo, OpToFold);
509 IsLegal = canUseImmWithOpSel(Fold);
510 }
511
512 if (!IsLegal) {
513 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
514 unsigned NewOpc = macToMad(Opc);
515 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
516 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
517 // to fold the operand.
518 MI->setDesc(TII->get(NewOpc));
519 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) &&
520 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel);
521 if (AddOpSel)
522 MI->addOperand(Op: MachineOperand::CreateImm(Val: 0));
523 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold);
524 if (FoldAsMAD) {
525 MI->untieRegOperand(OpIdx: OpNo);
526 return true;
527 }
528 if (AddOpSel)
529 MI->removeOperand(OpNo: MI->getNumExplicitOperands() - 1);
530 MI->setDesc(TII->get(Opc));
531 }
532
533 // Special case for s_fmac_f32 if we are trying to fold into Src2.
534 // By transforming into fmaak we can untie Src2 and make folding legal.
535 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) {
536 if (tryToFoldAsFMAAKorMK())
537 return true;
538 }
539
540 // Special case for s_setreg_b32
541 if (OpToFold->isImm()) {
542 unsigned ImmOpc = 0;
543 if (Opc == AMDGPU::S_SETREG_B32)
544 ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
545 else if (Opc == AMDGPU::S_SETREG_B32_mode)
546 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
547 if (ImmOpc) {
548 MI->setDesc(TII->get(ImmOpc));
549 appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold);
550 return true;
551 }
552 }
553
554 // If we are already folding into another operand of MI, then
555 // we can't commute the instruction, otherwise we risk making the
556 // other fold illegal.
557 if (isUseMIInFoldList(FoldList, MI))
558 return false;
559
560 // Operand is not legal, so try to commute the instruction to
561 // see if this makes it possible to fold.
562 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex;
563 bool CanCommute = TII->findCommutedOpIndices(MI: *MI, SrcOpIdx0&: OpNo, SrcOpIdx1&: CommuteOpNo);
564 if (!CanCommute)
565 return false;
566
567 // One of operands might be an Imm operand, and OpNo may refer to it after
568 // the call of commuteInstruction() below. Such situations are avoided
569 // here explicitly as OpNo must be a register operand to be a candidate
570 // for memory folding.
571 if (!MI->getOperand(i: OpNo).isReg() || !MI->getOperand(i: CommuteOpNo).isReg())
572 return false;
573
574 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo))
575 return false;
576
577 int Op32 = -1;
578 if (!TII->isOperandLegal(MI: *MI, OpIdx: CommuteOpNo, MO: OpToFold)) {
579 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 &&
580 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME
581 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) {
582 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo);
583 return false;
584 }
585
586 // Verify the other operand is a VGPR, otherwise we would violate the
587 // constant bus restriction.
588 MachineOperand &OtherOp = MI->getOperand(i: OpNo);
589 if (!OtherOp.isReg() ||
590 !TII->getRegisterInfo().isVGPR(MRI: *MRI, Reg: OtherOp.getReg()))
591 return false;
592
593 assert(MI->getOperand(1).isDef());
594
595 // Make sure to get the 32-bit version of the commuted opcode.
596 unsigned MaybeCommutedOpc = MI->getOpcode();
597 Op32 = AMDGPU::getVOPe32(Opcode: MaybeCommutedOpc);
598 }
599
600 appendFoldCandidate(FoldList, MI, OpNo: CommuteOpNo, FoldOp: OpToFold, Commuted: true, ShrinkOp: Op32);
601 return true;
602 }
603
604 // Inlineable constant might have been folded into Imm operand of fmaak or
605 // fmamk and we are trying to fold a non-inlinable constant.
606 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) &&
607 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) {
608 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2;
609 MachineOperand &OpImm = MI->getOperand(i: ImmIdx);
610 if (!OpImm.isReg() &&
611 TII->isInlineConstant(MI: *MI, UseMO: MI->getOperand(i: OpNo), DefMO: OpImm))
612 return tryToFoldAsFMAAKorMK();
613 }
614
615 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1.
616 // By changing into fmamk we can untie Src2.
617 // If folding for Src0 happens first and it is identical operand to Src1 we
618 // should avoid transforming into fmamk which requires commuting as it would
619 // cause folding into Src1 to fail later on due to wrong OpNo used.
620 if (Opc == AMDGPU::S_FMAC_F32 &&
621 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) {
622 if (tryToFoldAsFMAAKorMK())
623 return true;
624 }
625
626 // Check the case where we might introduce a second constant operand to a
627 // scalar instruction
628 if (TII->isSALU(Opcode: MI->getOpcode())) {
629 const MCInstrDesc &InstDesc = MI->getDesc();
630 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
631
632 // Fine if the operand can be encoded as an inline constant
633 if (!OpToFold->isReg() && !TII->isInlineConstant(MO: *OpToFold, OpInfo)) {
634 // Otherwise check for another constant
635 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
636 auto &Op = MI->getOperand(i);
637 if (OpNo != i && !Op.isReg() &&
638 !TII->isInlineConstant(MO: Op, OpInfo: InstDesc.operands()[i]))
639 return false;
640 }
641 }
642 }
643
644 appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold);
645 return true;
646}
647
648bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI,
649 const MachineOperand &UseMO) const {
650 // Operands of SDWA instructions must be registers.
651 return !TII->isSDWA(MI);
652}
653
654// Find a def of the UseReg, check if it is a reg_sequence and find initializers
655// for each subreg, tracking it to foldable inline immediate if possible.
656// Returns true on success.
657bool SIFoldOperands::getRegSeqInit(
658 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
659 Register UseReg, uint8_t OpTy) const {
660 MachineInstr *Def = MRI->getVRegDef(Reg: UseReg);
661 if (!Def || !Def->isRegSequence())
662 return false;
663
664 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
665 MachineOperand *Sub = &Def->getOperand(i: I);
666 assert(Sub->isReg());
667
668 for (MachineInstr *SubDef = MRI->getVRegDef(Reg: Sub->getReg());
669 SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
670 !Sub->getSubReg() && TII->isFoldableCopy(MI: *SubDef);
671 SubDef = MRI->getVRegDef(Reg: Sub->getReg())) {
672 MachineOperand *Op = &SubDef->getOperand(i: 1);
673 if (Op->isImm()) {
674 if (TII->isInlineConstant(MO: *Op, OperandType: OpTy))
675 Sub = Op;
676 break;
677 }
678 if (!Op->isReg() || Op->getReg().isPhysical())
679 break;
680 Sub = Op;
681 }
682
683 Defs.emplace_back(Args&: Sub, Args: Def->getOperand(i: I + 1).getImm());
684 }
685
686 return true;
687}
688
689bool SIFoldOperands::tryToFoldACImm(
690 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx,
691 SmallVectorImpl<FoldCandidate> &FoldList) const {
692 const MCInstrDesc &Desc = UseMI->getDesc();
693 if (UseOpIdx >= Desc.getNumOperands())
694 return false;
695
696 if (!AMDGPU::isSISrcInlinableOperand(Desc, OpNo: UseOpIdx))
697 return false;
698
699 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType;
700 if (OpToFold.isImm() && TII->isInlineConstant(MO: OpToFold, OperandType: OpTy) &&
701 TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: &OpToFold)) {
702 UseMI->getOperand(i: UseOpIdx).ChangeToImmediate(ImmVal: OpToFold.getImm());
703 return true;
704 }
705
706 if (!OpToFold.isReg())
707 return false;
708
709 Register UseReg = OpToFold.getReg();
710 if (!UseReg.isVirtual())
711 return false;
712
713 if (isUseMIInFoldList(FoldList, MI: UseMI))
714 return false;
715
716 // Maybe it is just a COPY of an immediate itself.
717 MachineInstr *Def = MRI->getVRegDef(Reg: UseReg);
718 MachineOperand &UseOp = UseMI->getOperand(i: UseOpIdx);
719 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(MI: *Def)) {
720 MachineOperand &DefOp = Def->getOperand(i: 1);
721 if (DefOp.isImm() && TII->isInlineConstant(MO: DefOp, OperandType: OpTy) &&
722 TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: &DefOp)) {
723 UseMI->getOperand(i: UseOpIdx).ChangeToImmediate(ImmVal: DefOp.getImm());
724 return true;
725 }
726 }
727
728 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
729 if (!getRegSeqInit(Defs, UseReg, OpTy))
730 return false;
731
732 int32_t Imm;
733 for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
734 const MachineOperand *Op = Defs[I].first;
735 if (!Op->isImm())
736 return false;
737
738 auto SubImm = Op->getImm();
739 if (!I) {
740 Imm = SubImm;
741 if (!TII->isInlineConstant(MO: *Op, OperandType: OpTy) ||
742 !TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: Op))
743 return false;
744
745 continue;
746 }
747 if (Imm != SubImm)
748 return false; // Can only fold splat constants
749 }
750
751 appendFoldCandidate(FoldList, MI: UseMI, OpNo: UseOpIdx, FoldOp: Defs[0].first);
752 return true;
753}
754
755void SIFoldOperands::foldOperand(
756 MachineOperand &OpToFold,
757 MachineInstr *UseMI,
758 int UseOpIdx,
759 SmallVectorImpl<FoldCandidate> &FoldList,
760 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
761 const MachineOperand *UseOp = &UseMI->getOperand(i: UseOpIdx);
762
763 if (!isUseSafeToFold(MI: *UseMI, UseMO: *UseOp))
764 return;
765
766 // FIXME: Fold operands with subregs.
767 if (UseOp->isReg() && OpToFold.isReg() &&
768 (UseOp->isImplicit() || UseOp->getSubReg() != AMDGPU::NoSubRegister))
769 return;
770
771 // Special case for REG_SEQUENCE: We can't fold literals into
772 // REG_SEQUENCE instructions, so we have to fold them into the
773 // uses of REG_SEQUENCE.
774 if (UseMI->isRegSequence()) {
775 Register RegSeqDstReg = UseMI->getOperand(i: 0).getReg();
776 unsigned RegSeqDstSubReg = UseMI->getOperand(i: UseOpIdx + 1).getImm();
777
778 // Grab the use operands first
779 SmallVector<MachineOperand *, 4> UsesToProcess;
780 for (auto &Use : MRI->use_nodbg_operands(Reg: RegSeqDstReg))
781 UsesToProcess.push_back(Elt: &Use);
782 for (auto *RSUse : UsesToProcess) {
783 MachineInstr *RSUseMI = RSUse->getParent();
784
785 if (tryToFoldACImm(OpToFold: UseMI->getOperand(i: 0), UseMI: RSUseMI,
786 UseOpIdx: RSUseMI->getOperandNo(I: RSUse), FoldList))
787 continue;
788
789 if (RSUse->getSubReg() != RegSeqDstSubReg)
790 continue;
791
792 foldOperand(OpToFold, UseMI: RSUseMI, UseOpIdx: RSUseMI->getOperandNo(I: RSUse), FoldList,
793 CopiesToReplace);
794 }
795 return;
796 }
797
798 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList))
799 return;
800
801 if (frameIndexMayFold(UseMI: *UseMI, OpNo: UseOpIdx, OpToFold)) {
802 // Verify that this is a stack access.
803 // FIXME: Should probably use stack pseudos before frame lowering.
804
805 if (TII->isMUBUF(MI: *UseMI)) {
806 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
807 MFI->getScratchRSrcReg())
808 return;
809
810 // Ensure this is either relative to the current frame or the current
811 // wave.
812 MachineOperand &SOff =
813 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
814 if (!SOff.isImm() || SOff.getImm() != 0)
815 return;
816 }
817
818 // A frame index will resolve to a positive constant, so it should always be
819 // safe to fold the addressing mode, even pre-GFX9.
820 UseMI->getOperand(i: UseOpIdx).ChangeToFrameIndex(Idx: OpToFold.getIndex());
821
822 const unsigned Opc = UseMI->getOpcode();
823 if (TII->isFLATScratch(*UseMI) &&
824 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) &&
825 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) {
826 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opcode: Opc);
827 UseMI->setDesc(TII->get(NewOpc));
828 }
829
830 return;
831 }
832
833 bool FoldingImmLike =
834 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
835
836 if (FoldingImmLike && UseMI->isCopy()) {
837 Register DestReg = UseMI->getOperand(i: 0).getReg();
838 Register SrcReg = UseMI->getOperand(i: 1).getReg();
839 assert(SrcReg.isVirtual());
840
841 const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: SrcReg);
842
843 // Don't fold into a copy to a physical register with the same class. Doing
844 // so would interfere with the register coalescer's logic which would avoid
845 // redundant initializations.
846 if (DestReg.isPhysical() && SrcRC->contains(Reg: DestReg))
847 return;
848
849 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(MRI: *MRI, Reg: DestReg);
850 if (!DestReg.isPhysical()) {
851 if (DestRC == &AMDGPU::AGPR_32RegClass &&
852 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
853 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
854 UseMI->getOperand(i: 1).ChangeToImmediate(ImmVal: OpToFold.getImm());
855 CopiesToReplace.push_back(Elt: UseMI);
856 return;
857 }
858 }
859
860 // In order to fold immediates into copies, we need to change the
861 // copy to a MOV.
862
863 unsigned MovOp = TII->getMovOpcode(DstRC: DestRC);
864 if (MovOp == AMDGPU::COPY)
865 return;
866
867 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
868 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
869 while (ImpOpI != ImpOpE) {
870 MachineInstr::mop_iterator Tmp = ImpOpI;
871 ImpOpI++;
872 UseMI->removeOperand(OpNo: UseMI->getOperandNo(I: Tmp));
873 }
874 UseMI->setDesc(TII->get(MovOp));
875
876 if (MovOp == AMDGPU::V_MOV_B16_t16_e64) {
877 const auto &SrcOp = UseMI->getOperand(i: UseOpIdx);
878 MachineOperand NewSrcOp(SrcOp);
879 MachineFunction *MF = UseMI->getParent()->getParent();
880 UseMI->removeOperand(OpNo: 1);
881 UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // src0_modifiers
882 UseMI->addOperand(Op: NewSrcOp); // src0
883 UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // op_sel
884 UseOpIdx = 2;
885 UseOp = &UseMI->getOperand(i: UseOpIdx);
886 }
887 CopiesToReplace.push_back(Elt: UseMI);
888 } else {
889 if (UseMI->isCopy() && OpToFold.isReg() &&
890 UseMI->getOperand(i: 0).getReg().isVirtual() &&
891 !UseMI->getOperand(i: 1).getSubReg()) {
892 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
893 unsigned Size = TII->getOpSize(MI: *UseMI, OpNo: 1);
894 Register UseReg = OpToFold.getReg();
895 UseMI->getOperand(i: 1).setReg(UseReg);
896 UseMI->getOperand(i: 1).setSubReg(OpToFold.getSubReg());
897 UseMI->getOperand(i: 1).setIsKill(false);
898 CopiesToReplace.push_back(Elt: UseMI);
899 OpToFold.setIsKill(false);
900
901 // Remove kill flags as kills may now be out of order with uses.
902 MRI->clearKillFlags(Reg: OpToFold.getReg());
903
904 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
905 // can only accept VGPR or inline immediate. Recreate a reg_sequence with
906 // its initializers right here, so we will rematerialize immediates and
907 // avoid copies via different reg classes.
908 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
909 if (Size > 4 && TRI->isAGPR(MRI: *MRI, Reg: UseMI->getOperand(i: 0).getReg()) &&
910 getRegSeqInit(Defs, UseReg, OpTy: AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
911 const DebugLoc &DL = UseMI->getDebugLoc();
912 MachineBasicBlock &MBB = *UseMI->getParent();
913
914 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
915 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
916 UseMI->removeOperand(OpNo: I);
917
918 MachineInstrBuilder B(*MBB.getParent(), UseMI);
919 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
920 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
921 for (unsigned I = 0; I < Size / 4; ++I) {
922 MachineOperand *Def = Defs[I].first;
923 TargetInstrInfo::RegSubRegPair CopyToVGPR;
924 if (Def->isImm() &&
925 TII->isInlineConstant(MO: *Def, OperandType: AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
926 int64_t Imm = Def->getImm();
927
928 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
929 BuildMI(MBB, UseMI, DL,
930 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
931 B.addReg(RegNo: Tmp);
932 } else if (Def->isReg() && TRI->isAGPR(MRI: *MRI, Reg: Def->getReg())) {
933 auto Src = getRegSubRegPair(O: *Def);
934 Def->setIsKill(false);
935 if (!SeenAGPRs.insert(X: Src)) {
936 // We cannot build a reg_sequence out of the same registers, they
937 // must be copied. Better do it here before copyPhysReg() created
938 // several reads to do the AGPR->VGPR->AGPR copy.
939 CopyToVGPR = Src;
940 } else {
941 B.addReg(RegNo: Src.Reg, flags: Def->isUndef() ? RegState::Undef : 0,
942 SubReg: Src.SubReg);
943 }
944 } else {
945 assert(Def->isReg());
946 Def->setIsKill(false);
947 auto Src = getRegSubRegPair(O: *Def);
948
949 // Direct copy from SGPR to AGPR is not possible. To avoid creation
950 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
951 // create a copy here and track if we already have such a copy.
952 if (TRI->isSGPRReg(MRI: *MRI, Reg: Src.Reg)) {
953 CopyToVGPR = Src;
954 } else {
955 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
956 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
957 B.addReg(RegNo: Tmp);
958 }
959 }
960
961 if (CopyToVGPR.Reg) {
962 Register Vgpr;
963 if (VGPRCopies.count(Val: CopyToVGPR)) {
964 Vgpr = VGPRCopies[CopyToVGPR];
965 } else {
966 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
967 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
968 VGPRCopies[CopyToVGPR] = Vgpr;
969 }
970 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
971 BuildMI(MBB, UseMI, DL,
972 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
973 B.addReg(RegNo: Tmp);
974 }
975
976 B.addImm(Val: Defs[I].second);
977 }
978 LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
979 return;
980 }
981
982 if (Size != 4)
983 return;
984
985 Register Reg0 = UseMI->getOperand(i: 0).getReg();
986 Register Reg1 = UseMI->getOperand(i: 1).getReg();
987 if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1))
988 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
989 else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1))
990 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
991 else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) &&
992 TRI->isAGPR(*MRI, Reg1))
993 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
994 return;
995 }
996
997 unsigned UseOpc = UseMI->getOpcode();
998 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
999 (UseOpc == AMDGPU::V_READLANE_B32 &&
1000 (int)UseOpIdx ==
1001 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
1002 // %vgpr = V_MOV_B32 imm
1003 // %sgpr = V_READFIRSTLANE_B32 %vgpr
1004 // =>
1005 // %sgpr = S_MOV_B32 imm
1006 if (FoldingImmLike) {
1007 if (execMayBeModifiedBeforeUse(MRI: *MRI,
1008 VReg: UseMI->getOperand(i: UseOpIdx).getReg(),
1009 DefMI: *OpToFold.getParent(),
1010 UseMI: *UseMI))
1011 return;
1012
1013 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
1014
1015 if (OpToFold.isImm())
1016 UseMI->getOperand(i: 1).ChangeToImmediate(ImmVal: OpToFold.getImm());
1017 else
1018 UseMI->getOperand(i: 1).ChangeToFrameIndex(Idx: OpToFold.getIndex());
1019 UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane)
1020 return;
1021 }
1022
1023 if (OpToFold.isReg() && TRI->isSGPRReg(MRI: *MRI, Reg: OpToFold.getReg())) {
1024 if (execMayBeModifiedBeforeUse(MRI: *MRI,
1025 VReg: UseMI->getOperand(i: UseOpIdx).getReg(),
1026 DefMI: *OpToFold.getParent(),
1027 UseMI: *UseMI))
1028 return;
1029
1030 // %vgpr = COPY %sgpr0
1031 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
1032 // =>
1033 // %sgpr1 = COPY %sgpr0
1034 UseMI->setDesc(TII->get(AMDGPU::COPY));
1035 UseMI->getOperand(i: 1).setReg(OpToFold.getReg());
1036 UseMI->getOperand(i: 1).setSubReg(OpToFold.getSubReg());
1037 UseMI->getOperand(i: 1).setIsKill(false);
1038 UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane)
1039 return;
1040 }
1041 }
1042
1043 const MCInstrDesc &UseDesc = UseMI->getDesc();
1044
1045 // Don't fold into target independent nodes. Target independent opcodes
1046 // don't have defined register classes.
1047 if (UseDesc.isVariadic() || UseOp->isImplicit() ||
1048 UseDesc.operands()[UseOpIdx].RegClass == -1)
1049 return;
1050 }
1051
1052 if (!FoldingImmLike) {
1053 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
1054 // Don't fold if OpToFold doesn't hold an aligned register.
1055 const TargetRegisterClass *RC =
1056 TRI->getRegClassForReg(MRI: *MRI, Reg: OpToFold.getReg());
1057 assert(RC);
1058 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
1059 unsigned SubReg = OpToFold.getSubReg();
1060 if (const TargetRegisterClass *SubRC =
1061 TRI->getSubRegisterClass(RC, SubReg))
1062 RC = SubRC;
1063 }
1064
1065 if (!RC || !TRI->isProperlyAlignedRC(RC: *RC))
1066 return;
1067 }
1068
1069 tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold: &OpToFold);
1070
1071 // FIXME: We could try to change the instruction from 64-bit to 32-bit
1072 // to enable more folding opportunities. The shrink operands pass
1073 // already does this.
1074 return;
1075 }
1076
1077
1078 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
1079 const TargetRegisterClass *FoldRC =
1080 TRI->getRegClass(RCID: FoldDesc.operands()[0].RegClass);
1081
1082 // Split 64-bit constants into 32-bits for folding.
1083 if (UseOp->getSubReg() && AMDGPU::getRegBitWidth(RC: *FoldRC) == 64) {
1084 Register UseReg = UseOp->getReg();
1085 const TargetRegisterClass *UseRC = MRI->getRegClass(Reg: UseReg);
1086 if (AMDGPU::getRegBitWidth(RC: *UseRC) != 64)
1087 return;
1088
1089 APInt Imm(64, OpToFold.getImm());
1090 if (UseOp->getSubReg() == AMDGPU::sub0) {
1091 Imm = Imm.getLoBits(numBits: 32);
1092 } else {
1093 assert(UseOp->getSubReg() == AMDGPU::sub1);
1094 Imm = Imm.getHiBits(numBits: 32);
1095 }
1096
1097 MachineOperand ImmOp = MachineOperand::CreateImm(Val: Imm.getSExtValue());
1098 tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold: &ImmOp);
1099 return;
1100 }
1101
1102 tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold: &OpToFold);
1103}
1104
1105static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
1106 uint32_t LHS, uint32_t RHS) {
1107 switch (Opcode) {
1108 case AMDGPU::V_AND_B32_e64:
1109 case AMDGPU::V_AND_B32_e32:
1110 case AMDGPU::S_AND_B32:
1111 Result = LHS & RHS;
1112 return true;
1113 case AMDGPU::V_OR_B32_e64:
1114 case AMDGPU::V_OR_B32_e32:
1115 case AMDGPU::S_OR_B32:
1116 Result = LHS | RHS;
1117 return true;
1118 case AMDGPU::V_XOR_B32_e64:
1119 case AMDGPU::V_XOR_B32_e32:
1120 case AMDGPU::S_XOR_B32:
1121 Result = LHS ^ RHS;
1122 return true;
1123 case AMDGPU::S_XNOR_B32:
1124 Result = ~(LHS ^ RHS);
1125 return true;
1126 case AMDGPU::S_NAND_B32:
1127 Result = ~(LHS & RHS);
1128 return true;
1129 case AMDGPU::S_NOR_B32:
1130 Result = ~(LHS | RHS);
1131 return true;
1132 case AMDGPU::S_ANDN2_B32:
1133 Result = LHS & ~RHS;
1134 return true;
1135 case AMDGPU::S_ORN2_B32:
1136 Result = LHS | ~RHS;
1137 return true;
1138 case AMDGPU::V_LSHL_B32_e64:
1139 case AMDGPU::V_LSHL_B32_e32:
1140 case AMDGPU::S_LSHL_B32:
1141 // The instruction ignores the high bits for out of bounds shifts.
1142 Result = LHS << (RHS & 31);
1143 return true;
1144 case AMDGPU::V_LSHLREV_B32_e64:
1145 case AMDGPU::V_LSHLREV_B32_e32:
1146 Result = RHS << (LHS & 31);
1147 return true;
1148 case AMDGPU::V_LSHR_B32_e64:
1149 case AMDGPU::V_LSHR_B32_e32:
1150 case AMDGPU::S_LSHR_B32:
1151 Result = LHS >> (RHS & 31);
1152 return true;
1153 case AMDGPU::V_LSHRREV_B32_e64:
1154 case AMDGPU::V_LSHRREV_B32_e32:
1155 Result = RHS >> (LHS & 31);
1156 return true;
1157 case AMDGPU::V_ASHR_I32_e64:
1158 case AMDGPU::V_ASHR_I32_e32:
1159 case AMDGPU::S_ASHR_I32:
1160 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
1161 return true;
1162 case AMDGPU::V_ASHRREV_I32_e64:
1163 case AMDGPU::V_ASHRREV_I32_e32:
1164 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1165 return true;
1166 default:
1167 return false;
1168 }
1169}
1170
1171static unsigned getMovOpc(bool IsScalar) {
1172 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1173}
1174
1175static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1176 MI.setDesc(NewDesc);
1177
1178 // Remove any leftover implicit operands from mutating the instruction. e.g.
1179 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1180 // anymore.
1181 const MCInstrDesc &Desc = MI.getDesc();
1182 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() +
1183 Desc.implicit_defs().size();
1184
1185 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1186 MI.removeOperand(OpNo: I);
1187}
1188
1189MachineOperand *
1190SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const {
1191 // If this has a subregister, it obviously is a register source.
1192 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister ||
1193 !Op.getReg().isVirtual())
1194 return &Op;
1195
1196 MachineInstr *Def = MRI->getVRegDef(Reg: Op.getReg());
1197 if (Def && Def->isMoveImmediate()) {
1198 MachineOperand &ImmSrc = Def->getOperand(i: 1);
1199 if (ImmSrc.isImm())
1200 return &ImmSrc;
1201 }
1202
1203 return &Op;
1204}
1205
1206// Try to simplify operations with a constant that may appear after instruction
1207// selection.
1208// TODO: See if a frame index with a fixed offset can fold.
1209bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const {
1210 if (!MI->allImplicitDefsAreDead())
1211 return false;
1212
1213 unsigned Opc = MI->getOpcode();
1214
1215 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1216 if (Src0Idx == -1)
1217 return false;
1218 MachineOperand *Src0 = getImmOrMaterializedImm(Op&: MI->getOperand(i: Src0Idx));
1219
1220 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1221 Opc == AMDGPU::S_NOT_B32) &&
1222 Src0->isImm()) {
1223 MI->getOperand(i: 1).ChangeToImmediate(ImmVal: ~Src0->getImm());
1224 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1225 return true;
1226 }
1227
1228 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1229 if (Src1Idx == -1)
1230 return false;
1231 MachineOperand *Src1 = getImmOrMaterializedImm(Op&: MI->getOperand(i: Src1Idx));
1232
1233 if (!Src0->isImm() && !Src1->isImm())
1234 return false;
1235
1236 // and k0, k1 -> v_mov_b32 (k0 & k1)
1237 // or k0, k1 -> v_mov_b32 (k0 | k1)
1238 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1239 if (Src0->isImm() && Src1->isImm()) {
1240 int32_t NewImm;
1241 if (!evalBinaryInstruction(Opcode: Opc, Result&: NewImm, LHS: Src0->getImm(), RHS: Src1->getImm()))
1242 return false;
1243
1244 bool IsSGPR = TRI->isSGPRReg(MRI: *MRI, Reg: MI->getOperand(i: 0).getReg());
1245
1246 // Be careful to change the right operand, src0 may belong to a different
1247 // instruction.
1248 MI->getOperand(i: Src0Idx).ChangeToImmediate(ImmVal: NewImm);
1249 MI->removeOperand(OpNo: Src1Idx);
1250 mutateCopyOp(*MI, TII->get(getMovOpc(IsScalar: IsSGPR)));
1251 return true;
1252 }
1253
1254 if (!MI->isCommutable())
1255 return false;
1256
1257 if (Src0->isImm() && !Src1->isImm()) {
1258 std::swap(a&: Src0, b&: Src1);
1259 std::swap(a&: Src0Idx, b&: Src1Idx);
1260 }
1261
1262 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1263 if (Opc == AMDGPU::V_OR_B32_e64 ||
1264 Opc == AMDGPU::V_OR_B32_e32 ||
1265 Opc == AMDGPU::S_OR_B32) {
1266 if (Src1Val == 0) {
1267 // y = or x, 0 => y = copy x
1268 MI->removeOperand(OpNo: Src1Idx);
1269 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1270 } else if (Src1Val == -1) {
1271 // y = or x, -1 => y = v_mov_b32 -1
1272 MI->removeOperand(OpNo: Src1Idx);
1273 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1274 } else
1275 return false;
1276
1277 return true;
1278 }
1279
1280 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 ||
1281 Opc == AMDGPU::S_AND_B32) {
1282 if (Src1Val == 0) {
1283 // y = and x, 0 => y = v_mov_b32 0
1284 MI->removeOperand(OpNo: Src0Idx);
1285 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1286 } else if (Src1Val == -1) {
1287 // y = and x, -1 => y = copy x
1288 MI->removeOperand(OpNo: Src1Idx);
1289 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1290 } else
1291 return false;
1292
1293 return true;
1294 }
1295
1296 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 ||
1297 Opc == AMDGPU::S_XOR_B32) {
1298 if (Src1Val == 0) {
1299 // y = xor x, 0 => y = copy x
1300 MI->removeOperand(OpNo: Src1Idx);
1301 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1302 return true;
1303 }
1304 }
1305
1306 return false;
1307}
1308
1309// Try to fold an instruction into a simpler one
1310bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1311 unsigned Opc = MI.getOpcode();
1312 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1313 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1314 return false;
1315
1316 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1317 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1318 if (!Src1->isIdenticalTo(Other: *Src0)) {
1319 auto *Src0Imm = getImmOrMaterializedImm(Op&: *Src0);
1320 auto *Src1Imm = getImmOrMaterializedImm(Op&: *Src1);
1321 if (!Src1Imm->isIdenticalTo(Other: *Src0Imm))
1322 return false;
1323 }
1324
1325 int Src1ModIdx =
1326 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1327 int Src0ModIdx =
1328 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1329 if ((Src1ModIdx != -1 && MI.getOperand(i: Src1ModIdx).getImm() != 0) ||
1330 (Src0ModIdx != -1 && MI.getOperand(i: Src0ModIdx).getImm() != 0))
1331 return false;
1332
1333 LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1334 auto &NewDesc =
1335 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1336 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1337 if (Src2Idx != -1)
1338 MI.removeOperand(OpNo: Src2Idx);
1339 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1340 if (Src1ModIdx != -1)
1341 MI.removeOperand(OpNo: Src1ModIdx);
1342 if (Src0ModIdx != -1)
1343 MI.removeOperand(OpNo: Src0ModIdx);
1344 mutateCopyOp(MI, NewDesc);
1345 LLVM_DEBUG(dbgs() << MI);
1346 return true;
1347}
1348
1349bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1350 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1351 MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1352 return false;
1353
1354 MachineOperand *Src0 = getImmOrMaterializedImm(Op&: MI.getOperand(i: 1));
1355 if (!Src0->isImm() || Src0->getImm() != 0xffff)
1356 return false;
1357
1358 Register Src1 = MI.getOperand(i: 2).getReg();
1359 MachineInstr *SrcDef = MRI->getVRegDef(Reg: Src1);
1360 if (!ST->zeroesHigh16BitsOfDest(Opcode: SrcDef->getOpcode()))
1361 return false;
1362
1363 Register Dst = MI.getOperand(i: 0).getReg();
1364 MRI->replaceRegWith(FromReg: Dst, ToReg: SrcDef->getOperand(i: 0).getReg());
1365 MI.eraseFromParent();
1366 return true;
1367}
1368
1369bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
1370 MachineOperand &OpToFold) const {
1371 // We need mutate the operands of new mov instructions to add implicit
1372 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1373 // this.
1374 SmallVector<MachineInstr *, 4> CopiesToReplace;
1375 SmallVector<FoldCandidate, 4> FoldList;
1376 MachineOperand &Dst = MI.getOperand(i: 0);
1377 bool Changed = false;
1378
1379 if (OpToFold.isImm()) {
1380 for (auto &UseMI :
1381 make_early_inc_range(Range: MRI->use_nodbg_instructions(Reg: Dst.getReg()))) {
1382 // Folding the immediate may reveal operations that can be constant
1383 // folded or replaced with a copy. This can happen for example after
1384 // frame indices are lowered to constants or from splitting 64-bit
1385 // constants.
1386 //
1387 // We may also encounter cases where one or both operands are
1388 // immediates materialized into a register, which would ordinarily not
1389 // be folded due to multiple uses or operand constraints.
1390 if (tryConstantFoldOp(MI: &UseMI)) {
1391 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1392 Changed = true;
1393 }
1394 }
1395 }
1396
1397 SmallVector<MachineOperand *, 4> UsesToProcess;
1398 for (auto &Use : MRI->use_nodbg_operands(Reg: Dst.getReg()))
1399 UsesToProcess.push_back(Elt: &Use);
1400 for (auto *U : UsesToProcess) {
1401 MachineInstr *UseMI = U->getParent();
1402 foldOperand(OpToFold, UseMI, UseOpIdx: UseMI->getOperandNo(I: U), FoldList,
1403 CopiesToReplace);
1404 }
1405
1406 if (CopiesToReplace.empty() && FoldList.empty())
1407 return Changed;
1408
1409 MachineFunction *MF = MI.getParent()->getParent();
1410 // Make sure we add EXEC uses to any new v_mov instructions created.
1411 for (MachineInstr *Copy : CopiesToReplace)
1412 Copy->addImplicitDefUseOperands(MF&: *MF);
1413
1414 for (FoldCandidate &Fold : FoldList) {
1415 assert(!Fold.isReg() || Fold.OpToFold);
1416 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1417 Register Reg = Fold.OpToFold->getReg();
1418 MachineInstr *DefMI = Fold.OpToFold->getParent();
1419 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1420 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1421 continue;
1422 }
1423 if (updateOperand(Fold)) {
1424 // Clear kill flags.
1425 if (Fold.isReg()) {
1426 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1427 // FIXME: Probably shouldn't bother trying to fold if not an
1428 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1429 // copies.
1430 MRI->clearKillFlags(Reg: Fold.OpToFold->getReg());
1431 }
1432 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1433 << static_cast<int>(Fold.UseOpNo) << " of "
1434 << *Fold.UseMI);
1435 } else if (Fold.Commuted) {
1436 // Restoring instruction's original operand order if fold has failed.
1437 TII->commuteInstruction(*Fold.UseMI, false);
1438 }
1439 }
1440 return true;
1441}
1442
1443bool SIFoldOperands::tryFoldFoldableCopy(
1444 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const {
1445 // Specially track simple redefs of m0 to the same value in a block, so we
1446 // can erase the later ones.
1447 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1448 MachineOperand &NewM0Val = MI.getOperand(i: 1);
1449 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(Other: NewM0Val)) {
1450 MI.eraseFromParent();
1451 return true;
1452 }
1453
1454 // We aren't tracking other physical registers
1455 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical())
1456 ? nullptr
1457 : &NewM0Val;
1458 return false;
1459 }
1460
1461 MachineOperand &OpToFold = MI.getOperand(i: 1);
1462 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1463
1464 // FIXME: We could also be folding things like TargetIndexes.
1465 if (!FoldingImm && !OpToFold.isReg())
1466 return false;
1467
1468 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1469 return false;
1470
1471 // Prevent folding operands backwards in the function. For example,
1472 // the COPY opcode must not be replaced by 1 in this example:
1473 //
1474 // %3 = COPY %vgpr0; VGPR_32:%3
1475 // ...
1476 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1477 if (!MI.getOperand(i: 0).getReg().isVirtual())
1478 return false;
1479
1480 bool Changed = foldInstOperand(MI, OpToFold);
1481
1482 // If we managed to fold all uses of this copy then we might as well
1483 // delete it now.
1484 // The only reason we need to follow chains of copies here is that
1485 // tryFoldRegSequence looks forward through copies before folding a
1486 // REG_SEQUENCE into its eventual users.
1487 auto *InstToErase = &MI;
1488 while (MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) {
1489 auto &SrcOp = InstToErase->getOperand(i: 1);
1490 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1491 InstToErase->eraseFromParent();
1492 Changed = true;
1493 InstToErase = nullptr;
1494 if (!SrcReg || SrcReg.isPhysical())
1495 break;
1496 InstToErase = MRI->getVRegDef(Reg: SrcReg);
1497 if (!InstToErase || !TII->isFoldableCopy(MI: *InstToErase))
1498 break;
1499 }
1500
1501 if (InstToErase && InstToErase->isRegSequence() &&
1502 MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) {
1503 InstToErase->eraseFromParent();
1504 Changed = true;
1505 }
1506
1507 return Changed;
1508}
1509
1510// Clamp patterns are canonically selected to v_max_* instructions, so only
1511// handle them.
1512const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1513 unsigned Op = MI.getOpcode();
1514 switch (Op) {
1515 case AMDGPU::V_MAX_F32_e64:
1516 case AMDGPU::V_MAX_F16_e64:
1517 case AMDGPU::V_MAX_F16_t16_e64:
1518 case AMDGPU::V_MAX_F16_fake16_e64:
1519 case AMDGPU::V_MAX_F64_e64:
1520 case AMDGPU::V_MAX_NUM_F64_e64:
1521 case AMDGPU::V_PK_MAX_F16: {
1522 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1523 return nullptr;
1524
1525 // Make sure sources are identical.
1526 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1527 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1528 if (!Src0->isReg() || !Src1->isReg() ||
1529 Src0->getReg() != Src1->getReg() ||
1530 Src0->getSubReg() != Src1->getSubReg() ||
1531 Src0->getSubReg() != AMDGPU::NoSubRegister)
1532 return nullptr;
1533
1534 // Can't fold up if we have modifiers.
1535 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1536 return nullptr;
1537
1538 unsigned Src0Mods
1539 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1540 unsigned Src1Mods
1541 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1542
1543 // Having a 0 op_sel_hi would require swizzling the output in the source
1544 // instruction, which we can't do.
1545 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1546 : 0u;
1547 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1548 return nullptr;
1549 return Src0;
1550 }
1551 default:
1552 return nullptr;
1553 }
1554}
1555
1556// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1557bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1558 const MachineOperand *ClampSrc = isClamp(MI);
1559 if (!ClampSrc || !MRI->hasOneNonDBGUser(RegNo: ClampSrc->getReg()))
1560 return false;
1561
1562 MachineInstr *Def = MRI->getVRegDef(Reg: ClampSrc->getReg());
1563
1564 // The type of clamp must be compatible.
1565 if (TII->getClampMask(MI: *Def) != TII->getClampMask(MI))
1566 return false;
1567
1568 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1569 if (!DefClamp)
1570 return false;
1571
1572 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1573
1574 // Clamp is applied after omod, so it is OK if omod is set.
1575 DefClamp->setImm(1);
1576 MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), ToReg: Def->getOperand(i: 0).getReg());
1577 MI.eraseFromParent();
1578
1579 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1580 // instruction, so we might as well convert it to the more flexible VOP3-only
1581 // mad/fma form.
1582 if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr))
1583 Def->eraseFromParent();
1584
1585 return true;
1586}
1587
1588static int getOModValue(unsigned Opc, int64_t Val) {
1589 switch (Opc) {
1590 case AMDGPU::V_MUL_F64_e64:
1591 case AMDGPU::V_MUL_F64_pseudo_e64: {
1592 switch (Val) {
1593 case 0x3fe0000000000000: // 0.5
1594 return SIOutMods::DIV2;
1595 case 0x4000000000000000: // 2.0
1596 return SIOutMods::MUL2;
1597 case 0x4010000000000000: // 4.0
1598 return SIOutMods::MUL4;
1599 default:
1600 return SIOutMods::NONE;
1601 }
1602 }
1603 case AMDGPU::V_MUL_F32_e64: {
1604 switch (static_cast<uint32_t>(Val)) {
1605 case 0x3f000000: // 0.5
1606 return SIOutMods::DIV2;
1607 case 0x40000000: // 2.0
1608 return SIOutMods::MUL2;
1609 case 0x40800000: // 4.0
1610 return SIOutMods::MUL4;
1611 default:
1612 return SIOutMods::NONE;
1613 }
1614 }
1615 case AMDGPU::V_MUL_F16_e64:
1616 case AMDGPU::V_MUL_F16_t16_e64:
1617 case AMDGPU::V_MUL_F16_fake16_e64: {
1618 switch (static_cast<uint16_t>(Val)) {
1619 case 0x3800: // 0.5
1620 return SIOutMods::DIV2;
1621 case 0x4000: // 2.0
1622 return SIOutMods::MUL2;
1623 case 0x4400: // 4.0
1624 return SIOutMods::MUL4;
1625 default:
1626 return SIOutMods::NONE;
1627 }
1628 }
1629 default:
1630 llvm_unreachable("invalid mul opcode");
1631 }
1632}
1633
1634// FIXME: Does this really not support denormals with f16?
1635// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1636// handled, so will anything other than that break?
1637std::pair<const MachineOperand *, int>
1638SIFoldOperands::isOMod(const MachineInstr &MI) const {
1639 unsigned Op = MI.getOpcode();
1640 switch (Op) {
1641 case AMDGPU::V_MUL_F64_e64:
1642 case AMDGPU::V_MUL_F64_pseudo_e64:
1643 case AMDGPU::V_MUL_F32_e64:
1644 case AMDGPU::V_MUL_F16_t16_e64:
1645 case AMDGPU::V_MUL_F16_fake16_e64:
1646 case AMDGPU::V_MUL_F16_e64: {
1647 // If output denormals are enabled, omod is ignored.
1648 if ((Op == AMDGPU::V_MUL_F32_e64 &&
1649 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1650 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 ||
1651 Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 ||
1652 Op == AMDGPU::V_MUL_F16_fake16_e64) &&
1653 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1654 return std::pair(nullptr, SIOutMods::NONE);
1655
1656 const MachineOperand *RegOp = nullptr;
1657 const MachineOperand *ImmOp = nullptr;
1658 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1659 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1660 if (Src0->isImm()) {
1661 ImmOp = Src0;
1662 RegOp = Src1;
1663 } else if (Src1->isImm()) {
1664 ImmOp = Src1;
1665 RegOp = Src0;
1666 } else
1667 return std::pair(nullptr, SIOutMods::NONE);
1668
1669 int OMod = getOModValue(Opc: Op, Val: ImmOp->getImm());
1670 if (OMod == SIOutMods::NONE ||
1671 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1672 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1673 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1674 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1675 return std::pair(nullptr, SIOutMods::NONE);
1676
1677 return std::pair(RegOp, OMod);
1678 }
1679 case AMDGPU::V_ADD_F64_e64:
1680 case AMDGPU::V_ADD_F64_pseudo_e64:
1681 case AMDGPU::V_ADD_F32_e64:
1682 case AMDGPU::V_ADD_F16_e64:
1683 case AMDGPU::V_ADD_F16_t16_e64:
1684 case AMDGPU::V_ADD_F16_fake16_e64: {
1685 // If output denormals are enabled, omod is ignored.
1686 if ((Op == AMDGPU::V_ADD_F32_e64 &&
1687 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1688 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 ||
1689 Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 ||
1690 Op == AMDGPU::V_ADD_F16_fake16_e64) &&
1691 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1692 return std::pair(nullptr, SIOutMods::NONE);
1693
1694 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1695 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1696 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1697
1698 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1699 Src0->getSubReg() == Src1->getSubReg() &&
1700 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1701 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1702 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1703 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1704 return std::pair(Src0, SIOutMods::MUL2);
1705
1706 return std::pair(nullptr, SIOutMods::NONE);
1707 }
1708 default:
1709 return std::pair(nullptr, SIOutMods::NONE);
1710 }
1711}
1712
1713// FIXME: Does this need to check IEEE bit on function?
1714bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1715 const MachineOperand *RegOp;
1716 int OMod;
1717 std::tie(args&: RegOp, args&: OMod) = isOMod(MI);
1718 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1719 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1720 !MRI->hasOneNonDBGUser(RegOp->getReg()))
1721 return false;
1722
1723 MachineInstr *Def = MRI->getVRegDef(Reg: RegOp->getReg());
1724 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1725 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1726 return false;
1727
1728 // Clamp is applied after omod. If the source already has clamp set, don't
1729 // fold it.
1730 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1731 return false;
1732
1733 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1734
1735 DefOMod->setImm(OMod);
1736 MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), ToReg: Def->getOperand(i: 0).getReg());
1737 MI.eraseFromParent();
1738
1739 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1740 // instruction, so we might as well convert it to the more flexible VOP3-only
1741 // mad/fma form.
1742 if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr))
1743 Def->eraseFromParent();
1744
1745 return true;
1746}
1747
1748// Try to fold a reg_sequence with vgpr output and agpr inputs into an
1749// instruction which can take an agpr. So far that means a store.
1750bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1751 assert(MI.isRegSequence());
1752 auto Reg = MI.getOperand(i: 0).getReg();
1753
1754 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(MRI: *MRI, Reg) ||
1755 !MRI->hasOneNonDBGUse(RegNo: Reg))
1756 return false;
1757
1758 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1759 if (!getRegSeqInit(Defs, UseReg: Reg, OpTy: MCOI::OPERAND_REGISTER))
1760 return false;
1761
1762 for (auto &Def : Defs) {
1763 const auto *Op = Def.first;
1764 if (!Op->isReg())
1765 return false;
1766 if (TRI->isAGPR(MRI: *MRI, Reg: Op->getReg()))
1767 continue;
1768 // Maybe this is a COPY from AREG
1769 const MachineInstr *SubDef = MRI->getVRegDef(Reg: Op->getReg());
1770 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(i: 1).getSubReg())
1771 return false;
1772 if (!TRI->isAGPR(MRI: *MRI, Reg: SubDef->getOperand(i: 1).getReg()))
1773 return false;
1774 }
1775
1776 MachineOperand *Op = &*MRI->use_nodbg_begin(RegNo: Reg);
1777 MachineInstr *UseMI = Op->getParent();
1778 while (UseMI->isCopy() && !Op->getSubReg()) {
1779 Reg = UseMI->getOperand(i: 0).getReg();
1780 if (!TRI->isVGPR(MRI: *MRI, Reg) || !MRI->hasOneNonDBGUse(RegNo: Reg))
1781 return false;
1782 Op = &*MRI->use_nodbg_begin(RegNo: Reg);
1783 UseMI = Op->getParent();
1784 }
1785
1786 if (Op->getSubReg())
1787 return false;
1788
1789 unsigned OpIdx = Op - &UseMI->getOperand(i: 0);
1790 const MCInstrDesc &InstDesc = UseMI->getDesc();
1791 const TargetRegisterClass *OpRC =
1792 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
1793 if (!OpRC || !TRI->isVectorSuperClass(RC: OpRC))
1794 return false;
1795
1796 const auto *NewDstRC = TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg));
1797 auto Dst = MRI->createVirtualRegister(RegClass: NewDstRC);
1798 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1799 TII->get(AMDGPU::REG_SEQUENCE), Dst);
1800
1801 for (unsigned I = 0; I < Defs.size(); ++I) {
1802 MachineOperand *Def = Defs[I].first;
1803 Def->setIsKill(false);
1804 if (TRI->isAGPR(MRI: *MRI, Reg: Def->getReg())) {
1805 RS.add(*Def);
1806 } else { // This is a copy
1807 MachineInstr *SubDef = MRI->getVRegDef(Reg: Def->getReg());
1808 SubDef->getOperand(i: 1).setIsKill(false);
1809 RS.addReg(SubDef->getOperand(i: 1).getReg(), 0, Def->getSubReg());
1810 }
1811 RS.addImm(Defs[I].second);
1812 }
1813
1814 Op->setReg(Dst);
1815 if (!TII->isOperandLegal(MI: *UseMI, OpIdx, MO: Op)) {
1816 Op->setReg(Reg);
1817 RS->eraseFromParent();
1818 return false;
1819 }
1820
1821 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1822
1823 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1824 // in which case we can erase them all later in runOnMachineFunction.
1825 if (MRI->use_nodbg_empty(RegNo: MI.getOperand(i: 0).getReg()))
1826 MI.eraseFromParent();
1827 return true;
1828}
1829
1830/// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and
1831/// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg
1832static bool isAGPRCopy(const SIRegisterInfo &TRI,
1833 const MachineRegisterInfo &MRI, const MachineInstr &Copy,
1834 Register &OutReg, unsigned &OutSubReg) {
1835 assert(Copy.isCopy());
1836
1837 const MachineOperand &CopySrc = Copy.getOperand(i: 1);
1838 Register CopySrcReg = CopySrc.getReg();
1839 if (!CopySrcReg.isVirtual())
1840 return false;
1841
1842 // Common case: copy from AGPR directly, e.g.
1843 // %1:vgpr_32 = COPY %0:agpr_32
1844 if (TRI.isAGPR(MRI, Reg: CopySrcReg)) {
1845 OutReg = CopySrcReg;
1846 OutSubReg = CopySrc.getSubReg();
1847 return true;
1848 }
1849
1850 // Sometimes it can also involve two copies, e.g.
1851 // %1:vgpr_256 = COPY %0:agpr_256
1852 // %2:vgpr_32 = COPY %1:vgpr_256.sub0
1853 const MachineInstr *CopySrcDef = MRI.getVRegDef(Reg: CopySrcReg);
1854 if (!CopySrcDef || !CopySrcDef->isCopy())
1855 return false;
1856
1857 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(i: 1);
1858 Register OtherCopySrcReg = OtherCopySrc.getReg();
1859 if (!OtherCopySrcReg.isVirtual() ||
1860 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister ||
1861 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister ||
1862 !TRI.isAGPR(MRI, OtherCopySrcReg))
1863 return false;
1864
1865 OutReg = OtherCopySrcReg;
1866 OutSubReg = CopySrc.getSubReg();
1867 return true;
1868}
1869
1870// Try to hoist an AGPR to VGPR copy across a PHI.
1871// This should allow folding of an AGPR into a consumer which may support it.
1872//
1873// Example 1: LCSSA PHI
1874// loop:
1875// %1:vreg = COPY %0:areg
1876// exit:
1877// %2:vreg = PHI %1:vreg, %loop
1878// =>
1879// loop:
1880// exit:
1881// %1:areg = PHI %0:areg, %loop
1882// %2:vreg = COPY %1:areg
1883//
1884// Example 2: PHI with multiple incoming values:
1885// entry:
1886// %1:vreg = GLOBAL_LOAD(..)
1887// loop:
1888// %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop
1889// %3:areg = COPY %2:vreg
1890// %4:areg = (instr using %3:areg)
1891// %5:vreg = COPY %4:areg
1892// =>
1893// entry:
1894// %1:vreg = GLOBAL_LOAD(..)
1895// %2:areg = COPY %1:vreg
1896// loop:
1897// %3:areg = PHI %2:areg, %entry, %X:areg,
1898// %4:areg = (instr using %3:areg)
1899bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) {
1900 assert(PHI.isPHI());
1901
1902 Register PhiOut = PHI.getOperand(i: 0).getReg();
1903 if (!TRI->isVGPR(MRI: *MRI, Reg: PhiOut))
1904 return false;
1905
1906 // Iterate once over all incoming values of the PHI to check if this PHI is
1907 // eligible, and determine the exact AGPR RC we'll target.
1908 const TargetRegisterClass *ARC = nullptr;
1909 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1910 MachineOperand &MO = PHI.getOperand(i: K);
1911 MachineInstr *Copy = MRI->getVRegDef(Reg: MO.getReg());
1912 if (!Copy || !Copy->isCopy())
1913 continue;
1914
1915 Register AGPRSrc;
1916 unsigned AGPRRegMask = AMDGPU::NoSubRegister;
1917 if (!isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Copy, OutReg&: AGPRSrc, OutSubReg&: AGPRRegMask))
1918 continue;
1919
1920 const TargetRegisterClass *CopyInRC = MRI->getRegClass(Reg: AGPRSrc);
1921 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask))
1922 CopyInRC = SubRC;
1923
1924 if (ARC && !ARC->hasSubClassEq(RC: CopyInRC))
1925 return false;
1926 ARC = CopyInRC;
1927 }
1928
1929 if (!ARC)
1930 return false;
1931
1932 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass);
1933
1934 // Rewrite the PHI's incoming values to ARC.
1935 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI);
1936 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1937 MachineOperand &MO = PHI.getOperand(i: K);
1938 Register Reg = MO.getReg();
1939
1940 MachineBasicBlock::iterator InsertPt;
1941 MachineBasicBlock *InsertMBB = nullptr;
1942
1943 // Look at the def of Reg, ignoring all copies.
1944 unsigned CopyOpc = AMDGPU::COPY;
1945 if (MachineInstr *Def = MRI->getVRegDef(Reg)) {
1946
1947 // Look at pre-existing COPY instructions from ARC: Steal the operand. If
1948 // the copy was single-use, it will be removed by DCE later.
1949 if (Def->isCopy()) {
1950 Register AGPRSrc;
1951 unsigned AGPRSubReg = AMDGPU::NoSubRegister;
1952 if (isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Def, OutReg&: AGPRSrc, OutSubReg&: AGPRSubReg)) {
1953 MO.setReg(AGPRSrc);
1954 MO.setSubReg(AGPRSubReg);
1955 continue;
1956 }
1957
1958 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on
1959 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try
1960 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which
1961 // is unlikely to be profitable.
1962 //
1963 // Note that V_ACCVGPR_WRITE is only used for AGPR_32.
1964 MachineOperand &CopyIn = Def->getOperand(i: 1);
1965 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) &&
1966 TRI->isSGPRReg(*MRI, CopyIn.getReg()))
1967 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
1968 }
1969
1970 InsertMBB = Def->getParent();
1971 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(I: ++Def->getIterator());
1972 } else {
1973 InsertMBB = PHI.getOperand(i: MO.getOperandNo() + 1).getMBB();
1974 InsertPt = InsertMBB->getFirstTerminator();
1975 }
1976
1977 Register NewReg = MRI->createVirtualRegister(RegClass: ARC);
1978 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(),
1979 TII->get(CopyOpc), NewReg)
1980 .addReg(Reg);
1981 MO.setReg(NewReg);
1982
1983 (void)MI;
1984 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI);
1985 }
1986
1987 // Replace the PHI's result with a new register.
1988 Register NewReg = MRI->createVirtualRegister(RegClass: ARC);
1989 PHI.getOperand(i: 0).setReg(NewReg);
1990
1991 // COPY that new register back to the original PhiOut register. This COPY will
1992 // usually be folded out later.
1993 MachineBasicBlock *MBB = PHI.getParent();
1994 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(),
1995 TII->get(AMDGPU::COPY), PhiOut)
1996 .addReg(NewReg);
1997
1998 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI);
1999 return true;
2000}
2001
2002// Attempt to convert VGPR load to an AGPR load.
2003bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
2004 assert(MI.mayLoad());
2005 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
2006 return false;
2007
2008 MachineOperand &Def = MI.getOperand(i: 0);
2009 if (!Def.isDef())
2010 return false;
2011
2012 Register DefReg = Def.getReg();
2013
2014 if (DefReg.isPhysical() || !TRI->isVGPR(MRI: *MRI, Reg: DefReg))
2015 return false;
2016
2017 SmallVector<const MachineInstr*, 8> Users;
2018 SmallVector<Register, 8> MoveRegs;
2019 for (const MachineInstr &I : MRI->use_nodbg_instructions(Reg: DefReg))
2020 Users.push_back(Elt: &I);
2021
2022 if (Users.empty())
2023 return false;
2024
2025 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
2026 while (!Users.empty()) {
2027 const MachineInstr *I = Users.pop_back_val();
2028 if (!I->isCopy() && !I->isRegSequence())
2029 return false;
2030 Register DstReg = I->getOperand(i: 0).getReg();
2031 // Physical registers may have more than one instruction definitions
2032 if (DstReg.isPhysical())
2033 return false;
2034 if (TRI->isAGPR(MRI: *MRI, Reg: DstReg))
2035 continue;
2036 MoveRegs.push_back(Elt: DstReg);
2037 for (const MachineInstr &U : MRI->use_nodbg_instructions(Reg: DstReg))
2038 Users.push_back(Elt: &U);
2039 }
2040
2041 const TargetRegisterClass *RC = MRI->getRegClass(Reg: DefReg);
2042 MRI->setRegClass(Reg: DefReg, RC: TRI->getEquivalentAGPRClass(SRC: RC));
2043 if (!TII->isOperandLegal(MI, OpIdx: 0, MO: &Def)) {
2044 MRI->setRegClass(Reg: DefReg, RC);
2045 return false;
2046 }
2047
2048 while (!MoveRegs.empty()) {
2049 Register Reg = MoveRegs.pop_back_val();
2050 MRI->setRegClass(Reg, RC: TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg)));
2051 }
2052
2053 LLVM_DEBUG(dbgs() << "Folded " << MI);
2054
2055 return true;
2056}
2057
2058// tryFoldPhiAGPR will aggressively try to create AGPR PHIs.
2059// For GFX90A and later, this is pretty much always a good thing, but for GFX908
2060// there's cases where it can create a lot more AGPR-AGPR copies, which are
2061// expensive on this architecture due to the lack of V_ACCVGPR_MOV.
2062//
2063// This function looks at all AGPR PHIs in a basic block and collects their
2064// operands. Then, it checks for register that are used more than once across
2065// all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from
2066// having to create one VGPR temporary per use, which can get very messy if
2067// these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector
2068// element).
2069//
2070// Example
2071// a:
2072// %in:agpr_256 = COPY %foo:vgpr_256
2073// c:
2074// %x:agpr_32 = ..
2075// b:
2076// %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c
2077// %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c
2078// %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c
2079// =>
2080// a:
2081// %in:agpr_256 = COPY %foo:vgpr_256
2082// %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32
2083// %tmp_agpr:agpr_32 = COPY %tmp
2084// c:
2085// %x:agpr_32 = ..
2086// b:
2087// %0:areg = PHI %tmp_agpr, %a, %x, %c
2088// %1:areg = PHI %tmp_agpr, %a, %y, %c
2089// %2:areg = PHI %tmp_agpr, %a, %z, %c
2090bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) {
2091 // This is only really needed on GFX908 where AGPR-AGPR copies are
2092 // unreasonably difficult.
2093 if (ST->hasGFX90AInsts())
2094 return false;
2095
2096 // Look at all AGPR Phis and collect the register + subregister used.
2097 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>>
2098 RegToMO;
2099
2100 for (auto &MI : MBB) {
2101 if (!MI.isPHI())
2102 break;
2103
2104 if (!TRI->isAGPR(MRI: *MRI, Reg: MI.getOperand(i: 0).getReg()))
2105 continue;
2106
2107 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) {
2108 MachineOperand &PhiMO = MI.getOperand(i: K);
2109 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(x: &PhiMO);
2110 }
2111 }
2112
2113 // For all (Reg, SubReg) pair that are used more than once, cache the value in
2114 // a VGPR.
2115 bool Changed = false;
2116 for (const auto &[Entry, MOs] : RegToMO) {
2117 if (MOs.size() == 1)
2118 continue;
2119
2120 const auto [Reg, SubReg] = Entry;
2121 MachineInstr *Def = MRI->getVRegDef(Reg);
2122 MachineBasicBlock *DefMBB = Def->getParent();
2123
2124 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded
2125 // out.
2126 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front());
2127 Register TempVGPR =
2128 MRI->createVirtualRegister(RegClass: TRI->getEquivalentVGPRClass(SRC: ARC));
2129 MachineInstr *VGPRCopy =
2130 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(),
2131 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR)
2132 .addReg(Reg, /* flags */ 0, SubReg);
2133
2134 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs.
2135 Register TempAGPR = MRI->createVirtualRegister(RegClass: ARC);
2136 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(),
2137 TII->get(AMDGPU::COPY), TempAGPR)
2138 .addReg(TempVGPR);
2139
2140 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy);
2141 for (MachineOperand *MO : MOs) {
2142 MO->setReg(TempAGPR);
2143 MO->setSubReg(AMDGPU::NoSubRegister);
2144 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n");
2145 }
2146
2147 Changed = true;
2148 }
2149
2150 return Changed;
2151}
2152
2153bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
2154 if (skipFunction(F: MF.getFunction()))
2155 return false;
2156
2157 MRI = &MF.getRegInfo();
2158 ST = &MF.getSubtarget<GCNSubtarget>();
2159 TII = ST->getInstrInfo();
2160 TRI = &TII->getRegisterInfo();
2161 MFI = MF.getInfo<SIMachineFunctionInfo>();
2162
2163 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
2164 // correctly handle signed zeros.
2165 //
2166 // FIXME: Also need to check strictfp
2167 bool IsIEEEMode = MFI->getMode().IEEE;
2168 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
2169
2170 bool Changed = false;
2171 for (MachineBasicBlock *MBB : depth_first(G: &MF)) {
2172 MachineOperand *CurrentKnownM0Val = nullptr;
2173 for (auto &MI : make_early_inc_range(Range&: *MBB)) {
2174 Changed |= tryFoldCndMask(MI);
2175
2176 if (tryFoldZeroHighBits(MI)) {
2177 Changed = true;
2178 continue;
2179 }
2180
2181 if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
2182 Changed = true;
2183 continue;
2184 }
2185
2186 if (MI.isPHI() && tryFoldPhiAGPR(PHI&: MI)) {
2187 Changed = true;
2188 continue;
2189 }
2190
2191 if (MI.mayLoad() && tryFoldLoad(MI)) {
2192 Changed = true;
2193 continue;
2194 }
2195
2196 if (TII->isFoldableCopy(MI)) {
2197 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val);
2198 continue;
2199 }
2200
2201 // Saw an unknown clobber of m0, so we no longer know what it is.
2202 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
2203 CurrentKnownM0Val = nullptr;
2204
2205 // TODO: Omod might be OK if there is NSZ only on the source
2206 // instruction, and not the omod multiply.
2207 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(Flag: MachineInstr::FmNsz)) ||
2208 !tryFoldOMod(MI))
2209 Changed |= tryFoldClamp(MI);
2210 }
2211
2212 Changed |= tryOptimizeAGPRPhis(MBB&: *MBB);
2213 }
2214
2215 return Changed;
2216}
2217

source code of llvm/lib/Target/AMDGPU/SIFoldOperands.cpp