1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/LivePhysRegs.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineCombinerPattern.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineDominators.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/StackMaps.h"
35#include "llvm/IR/DebugInfoMetadata.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCInst.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetOptions.h"
47#include <optional>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "x86-instr-info"
52
53#define GET_INSTRINFO_CTOR_DTOR
54#include "X86GenInstrInfo.inc"
55
56static cl::opt<bool>
57 NoFusing("disable-spill-fusing",
58 cl::desc("Disable fusing of spill code into instructions"),
59 cl::Hidden);
60static cl::opt<bool>
61 PrintFailedFusing("print-failed-fuse-candidates",
62 cl::desc("Print instructions that the allocator wants to"
63 " fuse, but the X86 backend currently can't"),
64 cl::Hidden);
65static cl::opt<bool>
66 ReMatPICStubLoad("remat-pic-stub-load",
67 cl::desc("Re-materialize load from stub in PIC mode"),
68 cl::init(Val: false), cl::Hidden);
69static cl::opt<unsigned>
70 PartialRegUpdateClearance("partial-reg-update-clearance",
71 cl::desc("Clearance between two register writes "
72 "for inserting XOR to avoid partial "
73 "register update"),
74 cl::init(Val: 64), cl::Hidden);
75static cl::opt<unsigned> UndefRegClearance(
76 "undef-reg-clearance",
77 cl::desc("How many idle instructions we would like before "
78 "certain undef register reads"),
79 cl::init(Val: 128), cl::Hidden);
80
81// Pin the vtable to this file.
82void X86InstrInfo::anchor() {}
83
84X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
85 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
86 : X86::ADJCALLSTACKDOWN32),
87 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
88 : X86::ADJCALLSTACKUP32),
89 X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90 Subtarget(STI), RI(STI.getTargetTriple()) {}
91
92const TargetRegisterClass *
93X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
94 const TargetRegisterInfo *TRI,
95 const MachineFunction &MF) const {
96 auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF);
97 // If the target does not have egpr, then r16-r31 will be resereved for all
98 // instructions.
99 if (!RC || !Subtarget.hasEGPR())
100 return RC;
101
102 if (X86II::canUseApxExtendedReg(Desc: MCID))
103 return RC;
104
105 switch (RC->getID()) {
106 default:
107 return RC;
108 case X86::GR8RegClassID:
109 return &X86::GR8_NOREX2RegClass;
110 case X86::GR16RegClassID:
111 return &X86::GR16_NOREX2RegClass;
112 case X86::GR32RegClassID:
113 return &X86::GR32_NOREX2RegClass;
114 case X86::GR64RegClassID:
115 return &X86::GR64_NOREX2RegClass;
116 case X86::GR32_NOSPRegClassID:
117 return &X86::GR32_NOREX2_NOSPRegClass;
118 case X86::GR64_NOSPRegClassID:
119 return &X86::GR64_NOREX2_NOSPRegClass;
120 }
121}
122
123bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
124 Register &SrcReg, Register &DstReg,
125 unsigned &SubIdx) const {
126 switch (MI.getOpcode()) {
127 default:
128 break;
129 case X86::MOVSX16rr8:
130 case X86::MOVZX16rr8:
131 case X86::MOVSX32rr8:
132 case X86::MOVZX32rr8:
133 case X86::MOVSX64rr8:
134 if (!Subtarget.is64Bit())
135 // It's not always legal to reference the low 8-bit of the larger
136 // register in 32-bit mode.
137 return false;
138 [[fallthrough]];
139 case X86::MOVSX32rr16:
140 case X86::MOVZX32rr16:
141 case X86::MOVSX64rr16:
142 case X86::MOVSX64rr32: {
143 if (MI.getOperand(i: 0).getSubReg() || MI.getOperand(i: 1).getSubReg())
144 // Be conservative.
145 return false;
146 SrcReg = MI.getOperand(i: 1).getReg();
147 DstReg = MI.getOperand(i: 0).getReg();
148 switch (MI.getOpcode()) {
149 default:
150 llvm_unreachable("Unreachable!");
151 case X86::MOVSX16rr8:
152 case X86::MOVZX16rr8:
153 case X86::MOVSX32rr8:
154 case X86::MOVZX32rr8:
155 case X86::MOVSX64rr8:
156 SubIdx = X86::sub_8bit;
157 break;
158 case X86::MOVSX32rr16:
159 case X86::MOVZX32rr16:
160 case X86::MOVSX64rr16:
161 SubIdx = X86::sub_16bit;
162 break;
163 case X86::MOVSX64rr32:
164 SubIdx = X86::sub_32bit;
165 break;
166 }
167 return true;
168 }
169 }
170 return false;
171}
172
173bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
174 if (MI.mayLoad() || MI.mayStore())
175 return false;
176
177 // Some target-independent operations that trivially lower to data-invariant
178 // instructions.
179 if (MI.isCopyLike() || MI.isInsertSubreg())
180 return true;
181
182 unsigned Opcode = MI.getOpcode();
183 using namespace X86;
184 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
185 // However, they set flags and are perhaps the most surprisingly constant
186 // time operations so we call them out here separately.
187 if (isIMUL(Opcode))
188 return true;
189 // Bit scanning and counting instructions that are somewhat surprisingly
190 // constant time as they scan across bits and do other fairly complex
191 // operations like popcnt, but are believed to be constant time on x86.
192 // However, these set flags.
193 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
194 isTZCNT(Opcode))
195 return true;
196 // Bit manipulation instructions are effectively combinations of basic
197 // arithmetic ops, and should still execute in constant time. These also
198 // set flags.
199 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
200 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
201 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
202 isTZMSK(Opcode))
203 return true;
204 // Bit extracting and clearing instructions should execute in constant time,
205 // and set flags.
206 if (isBEXTR(Opcode) || isBZHI(Opcode))
207 return true;
208 // Shift and rotate.
209 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
210 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
211 return true;
212 // Basic arithmetic is constant time on the input but does set flags.
213 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
214 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
215 return true;
216 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
217 if (isANDN(Opcode))
218 return true;
219 // Unary arithmetic operations.
220 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
221 return true;
222 // Unlike other arithmetic, NOT doesn't set EFLAGS.
223 if (isNOT(Opcode))
224 return true;
225 // Various move instructions used to zero or sign extend things. Note that we
226 // intentionally don't support the _NOREX variants as we can't handle that
227 // register constraint anyways.
228 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
229 return true;
230 // Arithmetic instructions that are both constant time and don't set flags.
231 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
232 return true;
233 // LEA doesn't actually access memory, and its arithmetic is constant time.
234 if (isLEA(Opcode))
235 return true;
236 // By default, assume that the instruction is not data invariant.
237 return false;
238}
239
240bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
241 switch (MI.getOpcode()) {
242 default:
243 // By default, assume that the load will immediately leak.
244 return false;
245
246 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
247 // However, they set flags and are perhaps the most surprisingly constant
248 // time operations so we call them out here separately.
249 case X86::IMUL16rm:
250 case X86::IMUL16rmi:
251 case X86::IMUL32rm:
252 case X86::IMUL32rmi:
253 case X86::IMUL64rm:
254 case X86::IMUL64rmi32:
255
256 // Bit scanning and counting instructions that are somewhat surprisingly
257 // constant time as they scan across bits and do other fairly complex
258 // operations like popcnt, but are believed to be constant time on x86.
259 // However, these set flags.
260 case X86::BSF16rm:
261 case X86::BSF32rm:
262 case X86::BSF64rm:
263 case X86::BSR16rm:
264 case X86::BSR32rm:
265 case X86::BSR64rm:
266 case X86::LZCNT16rm:
267 case X86::LZCNT32rm:
268 case X86::LZCNT64rm:
269 case X86::POPCNT16rm:
270 case X86::POPCNT32rm:
271 case X86::POPCNT64rm:
272 case X86::TZCNT16rm:
273 case X86::TZCNT32rm:
274 case X86::TZCNT64rm:
275
276 // Bit manipulation instructions are effectively combinations of basic
277 // arithmetic ops, and should still execute in constant time. These also
278 // set flags.
279 case X86::BLCFILL32rm:
280 case X86::BLCFILL64rm:
281 case X86::BLCI32rm:
282 case X86::BLCI64rm:
283 case X86::BLCIC32rm:
284 case X86::BLCIC64rm:
285 case X86::BLCMSK32rm:
286 case X86::BLCMSK64rm:
287 case X86::BLCS32rm:
288 case X86::BLCS64rm:
289 case X86::BLSFILL32rm:
290 case X86::BLSFILL64rm:
291 case X86::BLSI32rm:
292 case X86::BLSI64rm:
293 case X86::BLSIC32rm:
294 case X86::BLSIC64rm:
295 case X86::BLSMSK32rm:
296 case X86::BLSMSK64rm:
297 case X86::BLSR32rm:
298 case X86::BLSR64rm:
299 case X86::TZMSK32rm:
300 case X86::TZMSK64rm:
301
302 // Bit extracting and clearing instructions should execute in constant time,
303 // and set flags.
304 case X86::BEXTR32rm:
305 case X86::BEXTR64rm:
306 case X86::BEXTRI32mi:
307 case X86::BEXTRI64mi:
308 case X86::BZHI32rm:
309 case X86::BZHI64rm:
310
311 // Basic arithmetic is constant time on the input but does set flags.
312 case X86::ADC8rm:
313 case X86::ADC16rm:
314 case X86::ADC32rm:
315 case X86::ADC64rm:
316 case X86::ADD8rm:
317 case X86::ADD16rm:
318 case X86::ADD32rm:
319 case X86::ADD64rm:
320 case X86::AND8rm:
321 case X86::AND16rm:
322 case X86::AND32rm:
323 case X86::AND64rm:
324 case X86::ANDN32rm:
325 case X86::ANDN64rm:
326 case X86::OR8rm:
327 case X86::OR16rm:
328 case X86::OR32rm:
329 case X86::OR64rm:
330 case X86::SBB8rm:
331 case X86::SBB16rm:
332 case X86::SBB32rm:
333 case X86::SBB64rm:
334 case X86::SUB8rm:
335 case X86::SUB16rm:
336 case X86::SUB32rm:
337 case X86::SUB64rm:
338 case X86::XOR8rm:
339 case X86::XOR16rm:
340 case X86::XOR32rm:
341 case X86::XOR64rm:
342
343 // Integer multiply w/o affecting flags is still believed to be constant
344 // time on x86. Called out separately as this is among the most surprising
345 // instructions to exhibit that behavior.
346 case X86::MULX32rm:
347 case X86::MULX64rm:
348
349 // Arithmetic instructions that are both constant time and don't set flags.
350 case X86::RORX32mi:
351 case X86::RORX64mi:
352 case X86::SARX32rm:
353 case X86::SARX64rm:
354 case X86::SHLX32rm:
355 case X86::SHLX64rm:
356 case X86::SHRX32rm:
357 case X86::SHRX64rm:
358
359 // Conversions are believed to be constant time and don't set flags.
360 case X86::CVTTSD2SI64rm:
361 case X86::VCVTTSD2SI64rm:
362 case X86::VCVTTSD2SI64Zrm:
363 case X86::CVTTSD2SIrm:
364 case X86::VCVTTSD2SIrm:
365 case X86::VCVTTSD2SIZrm:
366 case X86::CVTTSS2SI64rm:
367 case X86::VCVTTSS2SI64rm:
368 case X86::VCVTTSS2SI64Zrm:
369 case X86::CVTTSS2SIrm:
370 case X86::VCVTTSS2SIrm:
371 case X86::VCVTTSS2SIZrm:
372 case X86::CVTSI2SDrm:
373 case X86::VCVTSI2SDrm:
374 case X86::VCVTSI2SDZrm:
375 case X86::CVTSI2SSrm:
376 case X86::VCVTSI2SSrm:
377 case X86::VCVTSI2SSZrm:
378 case X86::CVTSI642SDrm:
379 case X86::VCVTSI642SDrm:
380 case X86::VCVTSI642SDZrm:
381 case X86::CVTSI642SSrm:
382 case X86::VCVTSI642SSrm:
383 case X86::VCVTSI642SSZrm:
384 case X86::CVTSS2SDrm:
385 case X86::VCVTSS2SDrm:
386 case X86::VCVTSS2SDZrm:
387 case X86::CVTSD2SSrm:
388 case X86::VCVTSD2SSrm:
389 case X86::VCVTSD2SSZrm:
390 // AVX512 added unsigned integer conversions.
391 case X86::VCVTTSD2USI64Zrm:
392 case X86::VCVTTSD2USIZrm:
393 case X86::VCVTTSS2USI64Zrm:
394 case X86::VCVTTSS2USIZrm:
395 case X86::VCVTUSI2SDZrm:
396 case X86::VCVTUSI642SDZrm:
397 case X86::VCVTUSI2SSZrm:
398 case X86::VCVTUSI642SSZrm:
399
400 // Loads to register don't set flags.
401 case X86::MOV8rm:
402 case X86::MOV8rm_NOREX:
403 case X86::MOV16rm:
404 case X86::MOV32rm:
405 case X86::MOV64rm:
406 case X86::MOVSX16rm8:
407 case X86::MOVSX32rm16:
408 case X86::MOVSX32rm8:
409 case X86::MOVSX32rm8_NOREX:
410 case X86::MOVSX64rm16:
411 case X86::MOVSX64rm32:
412 case X86::MOVSX64rm8:
413 case X86::MOVZX16rm8:
414 case X86::MOVZX32rm16:
415 case X86::MOVZX32rm8:
416 case X86::MOVZX32rm8_NOREX:
417 case X86::MOVZX64rm16:
418 case X86::MOVZX64rm8:
419 return true;
420 }
421}
422
423int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
424 const MachineFunction *MF = MI.getParent()->getParent();
425 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
426
427 if (isFrameInstr(MI)) {
428 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
429 SPAdj -= getFrameAdjustment(I: MI);
430 if (!isFrameSetup(MI))
431 SPAdj = -SPAdj;
432 return SPAdj;
433 }
434
435 // To know whether a call adjusts the stack, we need information
436 // that is bound to the following ADJCALLSTACKUP pseudo.
437 // Look for the next ADJCALLSTACKUP that follows the call.
438 if (MI.isCall()) {
439 const MachineBasicBlock *MBB = MI.getParent();
440 auto I = ++MachineBasicBlock::const_iterator(MI);
441 for (auto E = MBB->end(); I != E; ++I) {
442 if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall())
443 break;
444 }
445
446 // If we could not find a frame destroy opcode, then it has already
447 // been simplified, so we don't care.
448 if (I->getOpcode() != getCallFrameDestroyOpcode())
449 return 0;
450
451 return -(I->getOperand(i: 1).getImm());
452 }
453
454 // Currently handle only PUSHes we can reasonably expect to see
455 // in call sequences
456 switch (MI.getOpcode()) {
457 default:
458 return 0;
459 case X86::PUSH32r:
460 case X86::PUSH32rmm:
461 case X86::PUSH32rmr:
462 case X86::PUSH32i:
463 return 4;
464 case X86::PUSH64r:
465 case X86::PUSH64rmm:
466 case X86::PUSH64rmr:
467 case X86::PUSH64i32:
468 return 8;
469 }
470}
471
472/// Return true and the FrameIndex if the specified
473/// operand and follow operands form a reference to the stack frame.
474bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
475 int &FrameIndex) const {
476 if (MI.getOperand(i: Op + X86::AddrBaseReg).isFI() &&
477 MI.getOperand(i: Op + X86::AddrScaleAmt).isImm() &&
478 MI.getOperand(i: Op + X86::AddrIndexReg).isReg() &&
479 MI.getOperand(i: Op + X86::AddrDisp).isImm() &&
480 MI.getOperand(i: Op + X86::AddrScaleAmt).getImm() == 1 &&
481 MI.getOperand(i: Op + X86::AddrIndexReg).getReg() == 0 &&
482 MI.getOperand(i: Op + X86::AddrDisp).getImm() == 0) {
483 FrameIndex = MI.getOperand(i: Op + X86::AddrBaseReg).getIndex();
484 return true;
485 }
486 return false;
487}
488
489static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
490 switch (Opcode) {
491 default:
492 return false;
493 case X86::MOV8rm:
494 case X86::KMOVBkm:
495 case X86::KMOVBkm_EVEX:
496 MemBytes = 1;
497 return true;
498 case X86::MOV16rm:
499 case X86::KMOVWkm:
500 case X86::KMOVWkm_EVEX:
501 case X86::VMOVSHZrm:
502 case X86::VMOVSHZrm_alt:
503 MemBytes = 2;
504 return true;
505 case X86::MOV32rm:
506 case X86::MOVSSrm:
507 case X86::MOVSSrm_alt:
508 case X86::VMOVSSrm:
509 case X86::VMOVSSrm_alt:
510 case X86::VMOVSSZrm:
511 case X86::VMOVSSZrm_alt:
512 case X86::KMOVDkm:
513 case X86::KMOVDkm_EVEX:
514 MemBytes = 4;
515 return true;
516 case X86::MOV64rm:
517 case X86::LD_Fp64m:
518 case X86::MOVSDrm:
519 case X86::MOVSDrm_alt:
520 case X86::VMOVSDrm:
521 case X86::VMOVSDrm_alt:
522 case X86::VMOVSDZrm:
523 case X86::VMOVSDZrm_alt:
524 case X86::MMX_MOVD64rm:
525 case X86::MMX_MOVQ64rm:
526 case X86::KMOVQkm:
527 case X86::KMOVQkm_EVEX:
528 MemBytes = 8;
529 return true;
530 case X86::MOVAPSrm:
531 case X86::MOVUPSrm:
532 case X86::MOVAPDrm:
533 case X86::MOVUPDrm:
534 case X86::MOVDQArm:
535 case X86::MOVDQUrm:
536 case X86::VMOVAPSrm:
537 case X86::VMOVUPSrm:
538 case X86::VMOVAPDrm:
539 case X86::VMOVUPDrm:
540 case X86::VMOVDQArm:
541 case X86::VMOVDQUrm:
542 case X86::VMOVAPSZ128rm:
543 case X86::VMOVUPSZ128rm:
544 case X86::VMOVAPSZ128rm_NOVLX:
545 case X86::VMOVUPSZ128rm_NOVLX:
546 case X86::VMOVAPDZ128rm:
547 case X86::VMOVUPDZ128rm:
548 case X86::VMOVDQU8Z128rm:
549 case X86::VMOVDQU16Z128rm:
550 case X86::VMOVDQA32Z128rm:
551 case X86::VMOVDQU32Z128rm:
552 case X86::VMOVDQA64Z128rm:
553 case X86::VMOVDQU64Z128rm:
554 MemBytes = 16;
555 return true;
556 case X86::VMOVAPSYrm:
557 case X86::VMOVUPSYrm:
558 case X86::VMOVAPDYrm:
559 case X86::VMOVUPDYrm:
560 case X86::VMOVDQAYrm:
561 case X86::VMOVDQUYrm:
562 case X86::VMOVAPSZ256rm:
563 case X86::VMOVUPSZ256rm:
564 case X86::VMOVAPSZ256rm_NOVLX:
565 case X86::VMOVUPSZ256rm_NOVLX:
566 case X86::VMOVAPDZ256rm:
567 case X86::VMOVUPDZ256rm:
568 case X86::VMOVDQU8Z256rm:
569 case X86::VMOVDQU16Z256rm:
570 case X86::VMOVDQA32Z256rm:
571 case X86::VMOVDQU32Z256rm:
572 case X86::VMOVDQA64Z256rm:
573 case X86::VMOVDQU64Z256rm:
574 MemBytes = 32;
575 return true;
576 case X86::VMOVAPSZrm:
577 case X86::VMOVUPSZrm:
578 case X86::VMOVAPDZrm:
579 case X86::VMOVUPDZrm:
580 case X86::VMOVDQU8Zrm:
581 case X86::VMOVDQU16Zrm:
582 case X86::VMOVDQA32Zrm:
583 case X86::VMOVDQU32Zrm:
584 case X86::VMOVDQA64Zrm:
585 case X86::VMOVDQU64Zrm:
586 MemBytes = 64;
587 return true;
588 }
589}
590
591static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
592 switch (Opcode) {
593 default:
594 return false;
595 case X86::MOV8mr:
596 case X86::KMOVBmk:
597 case X86::KMOVBmk_EVEX:
598 MemBytes = 1;
599 return true;
600 case X86::MOV16mr:
601 case X86::KMOVWmk:
602 case X86::KMOVWmk_EVEX:
603 case X86::VMOVSHZmr:
604 MemBytes = 2;
605 return true;
606 case X86::MOV32mr:
607 case X86::MOVSSmr:
608 case X86::VMOVSSmr:
609 case X86::VMOVSSZmr:
610 case X86::KMOVDmk:
611 case X86::KMOVDmk_EVEX:
612 MemBytes = 4;
613 return true;
614 case X86::MOV64mr:
615 case X86::ST_FpP64m:
616 case X86::MOVSDmr:
617 case X86::VMOVSDmr:
618 case X86::VMOVSDZmr:
619 case X86::MMX_MOVD64mr:
620 case X86::MMX_MOVQ64mr:
621 case X86::MMX_MOVNTQmr:
622 case X86::KMOVQmk:
623 case X86::KMOVQmk_EVEX:
624 MemBytes = 8;
625 return true;
626 case X86::MOVAPSmr:
627 case X86::MOVUPSmr:
628 case X86::MOVAPDmr:
629 case X86::MOVUPDmr:
630 case X86::MOVDQAmr:
631 case X86::MOVDQUmr:
632 case X86::VMOVAPSmr:
633 case X86::VMOVUPSmr:
634 case X86::VMOVAPDmr:
635 case X86::VMOVUPDmr:
636 case X86::VMOVDQAmr:
637 case X86::VMOVDQUmr:
638 case X86::VMOVUPSZ128mr:
639 case X86::VMOVAPSZ128mr:
640 case X86::VMOVUPSZ128mr_NOVLX:
641 case X86::VMOVAPSZ128mr_NOVLX:
642 case X86::VMOVUPDZ128mr:
643 case X86::VMOVAPDZ128mr:
644 case X86::VMOVDQA32Z128mr:
645 case X86::VMOVDQU32Z128mr:
646 case X86::VMOVDQA64Z128mr:
647 case X86::VMOVDQU64Z128mr:
648 case X86::VMOVDQU8Z128mr:
649 case X86::VMOVDQU16Z128mr:
650 MemBytes = 16;
651 return true;
652 case X86::VMOVUPSYmr:
653 case X86::VMOVAPSYmr:
654 case X86::VMOVUPDYmr:
655 case X86::VMOVAPDYmr:
656 case X86::VMOVDQUYmr:
657 case X86::VMOVDQAYmr:
658 case X86::VMOVUPSZ256mr:
659 case X86::VMOVAPSZ256mr:
660 case X86::VMOVUPSZ256mr_NOVLX:
661 case X86::VMOVAPSZ256mr_NOVLX:
662 case X86::VMOVUPDZ256mr:
663 case X86::VMOVAPDZ256mr:
664 case X86::VMOVDQU8Z256mr:
665 case X86::VMOVDQU16Z256mr:
666 case X86::VMOVDQA32Z256mr:
667 case X86::VMOVDQU32Z256mr:
668 case X86::VMOVDQA64Z256mr:
669 case X86::VMOVDQU64Z256mr:
670 MemBytes = 32;
671 return true;
672 case X86::VMOVUPSZmr:
673 case X86::VMOVAPSZmr:
674 case X86::VMOVUPDZmr:
675 case X86::VMOVAPDZmr:
676 case X86::VMOVDQU8Zmr:
677 case X86::VMOVDQU16Zmr:
678 case X86::VMOVDQA32Zmr:
679 case X86::VMOVDQU32Zmr:
680 case X86::VMOVDQA64Zmr:
681 case X86::VMOVDQU64Zmr:
682 MemBytes = 64;
683 return true;
684 }
685 return false;
686}
687
688Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
689 int &FrameIndex) const {
690 unsigned Dummy;
691 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, MemBytes&: Dummy);
692}
693
694Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
695 int &FrameIndex,
696 unsigned &MemBytes) const {
697 if (isFrameLoadOpcode(Opcode: MI.getOpcode(), MemBytes))
698 if (MI.getOperand(i: 0).getSubReg() == 0 && isFrameOperand(MI, Op: 1, FrameIndex))
699 return MI.getOperand(i: 0).getReg();
700 return 0;
701}
702
703Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
704 int &FrameIndex) const {
705 unsigned Dummy;
706 if (isFrameLoadOpcode(Opcode: MI.getOpcode(), MemBytes&: Dummy)) {
707 unsigned Reg;
708 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
709 return Reg;
710 // Check for post-frame index elimination operations
711 SmallVector<const MachineMemOperand *, 1> Accesses;
712 if (hasLoadFromStackSlot(MI, Accesses)) {
713 FrameIndex =
714 cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue())
715 ->getFrameIndex();
716 return MI.getOperand(i: 0).getReg();
717 }
718 }
719 return 0;
720}
721
722Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
723 int &FrameIndex) const {
724 unsigned Dummy;
725 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, MemBytes&: Dummy);
726}
727
728Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
729 int &FrameIndex,
730 unsigned &MemBytes) const {
731 if (isFrameStoreOpcode(Opcode: MI.getOpcode(), MemBytes))
732 if (MI.getOperand(i: X86::AddrNumOperands).getSubReg() == 0 &&
733 isFrameOperand(MI, Op: 0, FrameIndex))
734 return MI.getOperand(i: X86::AddrNumOperands).getReg();
735 return 0;
736}
737
738Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
739 int &FrameIndex) const {
740 unsigned Dummy;
741 if (isFrameStoreOpcode(Opcode: MI.getOpcode(), MemBytes&: Dummy)) {
742 unsigned Reg;
743 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
744 return Reg;
745 // Check for post-frame index elimination operations
746 SmallVector<const MachineMemOperand *, 1> Accesses;
747 if (hasStoreToStackSlot(MI, Accesses)) {
748 FrameIndex =
749 cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue())
750 ->getFrameIndex();
751 return MI.getOperand(i: X86::AddrNumOperands).getReg();
752 }
753 }
754 return 0;
755}
756
757/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
758static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
759 // Don't waste compile time scanning use-def chains of physregs.
760 if (!BaseReg.isVirtual())
761 return false;
762 bool isPICBase = false;
763 for (const MachineInstr &DefMI : MRI.def_instructions(Reg: BaseReg)) {
764 if (DefMI.getOpcode() != X86::MOVPC32r)
765 return false;
766 assert(!isPICBase && "More than one PIC base?");
767 isPICBase = true;
768 }
769 return isPICBase;
770}
771
772bool X86InstrInfo::isReallyTriviallyReMaterializable(
773 const MachineInstr &MI) const {
774 switch (MI.getOpcode()) {
775 default:
776 // This function should only be called for opcodes with the ReMaterializable
777 // flag set.
778 llvm_unreachable("Unknown rematerializable operation!");
779 break;
780 case X86::IMPLICIT_DEF:
781 // Defer to generic logic.
782 break;
783 case X86::LOAD_STACK_GUARD:
784 case X86::LD_Fp032:
785 case X86::LD_Fp064:
786 case X86::LD_Fp080:
787 case X86::LD_Fp132:
788 case X86::LD_Fp164:
789 case X86::LD_Fp180:
790 case X86::AVX1_SETALLONES:
791 case X86::AVX2_SETALLONES:
792 case X86::AVX512_128_SET0:
793 case X86::AVX512_256_SET0:
794 case X86::AVX512_512_SET0:
795 case X86::AVX512_512_SETALLONES:
796 case X86::AVX512_FsFLD0SD:
797 case X86::AVX512_FsFLD0SH:
798 case X86::AVX512_FsFLD0SS:
799 case X86::AVX512_FsFLD0F128:
800 case X86::AVX_SET0:
801 case X86::FsFLD0SD:
802 case X86::FsFLD0SS:
803 case X86::FsFLD0SH:
804 case X86::FsFLD0F128:
805 case X86::KSET0D:
806 case X86::KSET0Q:
807 case X86::KSET0W:
808 case X86::KSET1D:
809 case X86::KSET1Q:
810 case X86::KSET1W:
811 case X86::MMX_SET0:
812 case X86::MOV32ImmSExti8:
813 case X86::MOV32r0:
814 case X86::MOV32r1:
815 case X86::MOV32r_1:
816 case X86::MOV32ri64:
817 case X86::MOV64ImmSExti8:
818 case X86::V_SET0:
819 case X86::V_SETALLONES:
820 case X86::MOV16ri:
821 case X86::MOV32ri:
822 case X86::MOV64ri:
823 case X86::MOV64ri32:
824 case X86::MOV8ri:
825 case X86::PTILEZEROV:
826 return true;
827
828 case X86::MOV8rm:
829 case X86::MOV8rm_NOREX:
830 case X86::MOV16rm:
831 case X86::MOV32rm:
832 case X86::MOV64rm:
833 case X86::MOVSSrm:
834 case X86::MOVSSrm_alt:
835 case X86::MOVSDrm:
836 case X86::MOVSDrm_alt:
837 case X86::MOVAPSrm:
838 case X86::MOVUPSrm:
839 case X86::MOVAPDrm:
840 case X86::MOVUPDrm:
841 case X86::MOVDQArm:
842 case X86::MOVDQUrm:
843 case X86::VMOVSSrm:
844 case X86::VMOVSSrm_alt:
845 case X86::VMOVSDrm:
846 case X86::VMOVSDrm_alt:
847 case X86::VMOVAPSrm:
848 case X86::VMOVUPSrm:
849 case X86::VMOVAPDrm:
850 case X86::VMOVUPDrm:
851 case X86::VMOVDQArm:
852 case X86::VMOVDQUrm:
853 case X86::VMOVAPSYrm:
854 case X86::VMOVUPSYrm:
855 case X86::VMOVAPDYrm:
856 case X86::VMOVUPDYrm:
857 case X86::VMOVDQAYrm:
858 case X86::VMOVDQUYrm:
859 case X86::MMX_MOVD64rm:
860 case X86::MMX_MOVQ64rm:
861 case X86::VBROADCASTSSrm:
862 case X86::VBROADCASTSSYrm:
863 case X86::VBROADCASTSDYrm:
864 // AVX-512
865 case X86::VPBROADCASTBZ128rm:
866 case X86::VPBROADCASTBZ256rm:
867 case X86::VPBROADCASTBZrm:
868 case X86::VBROADCASTF32X2Z256rm:
869 case X86::VBROADCASTF32X2Zrm:
870 case X86::VBROADCASTI32X2Z128rm:
871 case X86::VBROADCASTI32X2Z256rm:
872 case X86::VBROADCASTI32X2Zrm:
873 case X86::VPBROADCASTWZ128rm:
874 case X86::VPBROADCASTWZ256rm:
875 case X86::VPBROADCASTWZrm:
876 case X86::VPBROADCASTDZ128rm:
877 case X86::VPBROADCASTDZ256rm:
878 case X86::VPBROADCASTDZrm:
879 case X86::VBROADCASTSSZ128rm:
880 case X86::VBROADCASTSSZ256rm:
881 case X86::VBROADCASTSSZrm:
882 case X86::VPBROADCASTQZ128rm:
883 case X86::VPBROADCASTQZ256rm:
884 case X86::VPBROADCASTQZrm:
885 case X86::VBROADCASTSDZ256rm:
886 case X86::VBROADCASTSDZrm:
887 case X86::VMOVSSZrm:
888 case X86::VMOVSSZrm_alt:
889 case X86::VMOVSDZrm:
890 case X86::VMOVSDZrm_alt:
891 case X86::VMOVSHZrm:
892 case X86::VMOVSHZrm_alt:
893 case X86::VMOVAPDZ128rm:
894 case X86::VMOVAPDZ256rm:
895 case X86::VMOVAPDZrm:
896 case X86::VMOVAPSZ128rm:
897 case X86::VMOVAPSZ256rm:
898 case X86::VMOVAPSZ128rm_NOVLX:
899 case X86::VMOVAPSZ256rm_NOVLX:
900 case X86::VMOVAPSZrm:
901 case X86::VMOVDQA32Z128rm:
902 case X86::VMOVDQA32Z256rm:
903 case X86::VMOVDQA32Zrm:
904 case X86::VMOVDQA64Z128rm:
905 case X86::VMOVDQA64Z256rm:
906 case X86::VMOVDQA64Zrm:
907 case X86::VMOVDQU16Z128rm:
908 case X86::VMOVDQU16Z256rm:
909 case X86::VMOVDQU16Zrm:
910 case X86::VMOVDQU32Z128rm:
911 case X86::VMOVDQU32Z256rm:
912 case X86::VMOVDQU32Zrm:
913 case X86::VMOVDQU64Z128rm:
914 case X86::VMOVDQU64Z256rm:
915 case X86::VMOVDQU64Zrm:
916 case X86::VMOVDQU8Z128rm:
917 case X86::VMOVDQU8Z256rm:
918 case X86::VMOVDQU8Zrm:
919 case X86::VMOVUPDZ128rm:
920 case X86::VMOVUPDZ256rm:
921 case X86::VMOVUPDZrm:
922 case X86::VMOVUPSZ128rm:
923 case X86::VMOVUPSZ256rm:
924 case X86::VMOVUPSZ128rm_NOVLX:
925 case X86::VMOVUPSZ256rm_NOVLX:
926 case X86::VMOVUPSZrm: {
927 // Loads from constant pools are trivially rematerializable.
928 if (MI.getOperand(i: 1 + X86::AddrBaseReg).isReg() &&
929 MI.getOperand(i: 1 + X86::AddrScaleAmt).isImm() &&
930 MI.getOperand(i: 1 + X86::AddrIndexReg).isReg() &&
931 MI.getOperand(i: 1 + X86::AddrIndexReg).getReg() == 0 &&
932 MI.isDereferenceableInvariantLoad()) {
933 Register BaseReg = MI.getOperand(i: 1 + X86::AddrBaseReg).getReg();
934 if (BaseReg == 0 || BaseReg == X86::RIP)
935 return true;
936 // Allow re-materialization of PIC load.
937 if (!(!ReMatPICStubLoad && MI.getOperand(i: 1 + X86::AddrDisp).isGlobal())) {
938 const MachineFunction &MF = *MI.getParent()->getParent();
939 const MachineRegisterInfo &MRI = MF.getRegInfo();
940 if (regIsPICBase(BaseReg, MRI))
941 return true;
942 }
943 }
944 break;
945 }
946
947 case X86::LEA32r:
948 case X86::LEA64r: {
949 if (MI.getOperand(i: 1 + X86::AddrScaleAmt).isImm() &&
950 MI.getOperand(i: 1 + X86::AddrIndexReg).isReg() &&
951 MI.getOperand(i: 1 + X86::AddrIndexReg).getReg() == 0 &&
952 !MI.getOperand(i: 1 + X86::AddrDisp).isReg()) {
953 // lea fi#, lea GV, etc. are all rematerializable.
954 if (!MI.getOperand(i: 1 + X86::AddrBaseReg).isReg())
955 return true;
956 Register BaseReg = MI.getOperand(i: 1 + X86::AddrBaseReg).getReg();
957 if (BaseReg == 0)
958 return true;
959 // Allow re-materialization of lea PICBase + x.
960 const MachineFunction &MF = *MI.getParent()->getParent();
961 const MachineRegisterInfo &MRI = MF.getRegInfo();
962 if (regIsPICBase(BaseReg, MRI))
963 return true;
964 }
965 break;
966 }
967 }
968 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
969}
970
971void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
972 MachineBasicBlock::iterator I,
973 Register DestReg, unsigned SubIdx,
974 const MachineInstr &Orig,
975 const TargetRegisterInfo &TRI) const {
976 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
977 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
978 MachineBasicBlock::LQR_Dead) {
979 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
980 // effects.
981 int Value;
982 switch (Orig.getOpcode()) {
983 case X86::MOV32r0:
984 Value = 0;
985 break;
986 case X86::MOV32r1:
987 Value = 1;
988 break;
989 case X86::MOV32r_1:
990 Value = -1;
991 break;
992 default:
993 llvm_unreachable("Unexpected instruction!");
994 }
995
996 const DebugLoc &DL = Orig.getDebugLoc();
997 BuildMI(MBB, I, DL, get(X86::MOV32ri))
998 .add(Orig.getOperand(0))
999 .addImm(Value);
1000 } else {
1001 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig: &Orig);
1002 MBB.insert(I, MI);
1003 }
1004
1005 MachineInstr &NewMI = *std::prev(x: I);
1006 NewMI.substituteRegister(FromReg: Orig.getOperand(i: 0).getReg(), ToReg: DestReg, SubIdx, RegInfo: TRI);
1007}
1008
1009/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1010bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1011 for (const MachineOperand &MO : MI.operands()) {
1012 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
1013 !MO.isDead()) {
1014 return true;
1015 }
1016 }
1017 return false;
1018}
1019
1020/// Check whether the shift count for a machine operand is non-zero.
1021inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1022 unsigned ShiftAmtOperandIdx) {
1023 // The shift count is six bits with the REX.W prefix and five bits without.
1024 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1025 unsigned Imm = MI.getOperand(i: ShiftAmtOperandIdx).getImm();
1026 return Imm & ShiftCountMask;
1027}
1028
1029/// Check whether the given shift count is appropriate
1030/// can be represented by a LEA instruction.
1031inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1032 // Left shift instructions can be transformed into load-effective-address
1033 // instructions if we can encode them appropriately.
1034 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1035 // The SIB.scale field is two bits wide which means that we can encode any
1036 // shift amount less than 4.
1037 return ShAmt < 4 && ShAmt > 0;
1038}
1039
1040static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
1041 MachineInstr &CmpValDefInstr,
1042 const MachineRegisterInfo *MRI,
1043 MachineInstr **AndInstr,
1044 const TargetRegisterInfo *TRI,
1045 bool &NoSignFlag, bool &ClearsOverflowFlag) {
1046 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
1047 CmpInstr.getOpcode() == X86::TEST64rr) &&
1048 !(CmpValDefInstr.getOpcode() == X86::COPY &&
1049 CmpInstr.getOpcode() == X86::TEST16rr))
1050 return false;
1051
1052 // CmpInstr is a TEST16rr/TEST64rr instruction, and
1053 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1054 // registers are identical.
1055 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
1056 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1057 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1058 "same.");
1059
1060 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1061 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1062 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1063 // redundant.
1064 assert(
1065 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
1066 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1067 "is a user of COPY sub16bit.");
1068 MachineInstr *VregDefInstr = nullptr;
1069 if (CmpInstr.getOpcode() == X86::TEST16rr) {
1070 if (!CmpValDefInstr.getOperand(i: 1).getReg().isVirtual())
1071 return false;
1072 VregDefInstr = MRI->getVRegDef(Reg: CmpValDefInstr.getOperand(i: 1).getReg());
1073 if (!VregDefInstr)
1074 return false;
1075 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1076 // size, others 32/64 bit ops would test higher bits which test16rr don't
1077 // want to.
1078 if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1079 VregDefInstr->getOpcode() == X86::AND64ri32) &&
1080 isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1081 return false;
1082 }
1083
1084 if (CmpInstr.getOpcode() == X86::TEST64rr) {
1085 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1086 // typically 0.
1087 if (CmpValDefInstr.getOperand(i: 1).getImm() != 0)
1088 return false;
1089
1090 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1091 // sub_32bit or sub_xmm.
1092 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1093 return false;
1094
1095 VregDefInstr = MRI->getVRegDef(Reg: CmpValDefInstr.getOperand(i: 2).getReg());
1096 }
1097
1098 assert(VregDefInstr && "Must have a definition (SSA)");
1099
1100 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1101 // to simplify the subsequent analysis.
1102 //
1103 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1104 // `CmpValDefInstr.getParent()`, this could be handled.
1105 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1106 return false;
1107
1108 if (X86::isAND(VregDefInstr->getOpcode())) {
1109 // Get a sequence of instructions like
1110 // %reg = and* ... // Set EFLAGS
1111 // ... // EFLAGS not changed
1112 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1113 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1114 // or
1115 // %reg = and32* ...
1116 // ... // EFLAGS not changed.
1117 // %src_reg = copy %reg.sub_16bit:gr32
1118 // test16rr %src_reg, %src_reg, implicit-def $eflags
1119 //
1120 // If subsequent readers use a subset of bits that don't change
1121 // after `and*` instructions, it's likely that the test64rr could
1122 // be optimized away.
1123 for (const MachineInstr &Instr :
1124 make_range(x: std::next(x: MachineBasicBlock::iterator(VregDefInstr)),
1125 y: MachineBasicBlock::iterator(CmpValDefInstr))) {
1126 // There are instructions between 'VregDefInstr' and
1127 // 'CmpValDefInstr' that modifies EFLAGS.
1128 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1129 return false;
1130 }
1131
1132 *AndInstr = VregDefInstr;
1133
1134 // AND instruction will essentially update SF and clear OF, so
1135 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1136 //
1137 // However, the implementation artifically sets `NoSignFlag` to true
1138 // to poison the SF bit; that is to say, if SF is looked at later, the
1139 // optimization (to erase TEST64rr) will be disabled.
1140 //
1141 // The reason to poison SF bit is that SF bit value could be different
1142 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1143 // and is known to be 0 as a result of `TEST64rr`.
1144 //
1145 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1146 // the AND instruction and using the static information to guide peephole
1147 // optimization if possible. For example, it's possible to fold a
1148 // conditional move into a copy if the relevant EFLAG bits could be deduced
1149 // from an immediate operand of and operation.
1150 //
1151 NoSignFlag = true;
1152 // ClearsOverflowFlag is true for AND operation (no surprise).
1153 ClearsOverflowFlag = true;
1154 return true;
1155 }
1156 return false;
1157}
1158
1159bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1160 unsigned Opc, bool AllowSP, Register &NewSrc,
1161 bool &isKill, MachineOperand &ImplicitOp,
1162 LiveVariables *LV, LiveIntervals *LIS) const {
1163 MachineFunction &MF = *MI.getParent()->getParent();
1164 const TargetRegisterClass *RC;
1165 if (AllowSP) {
1166 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1167 } else {
1168 RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1169 }
1170 Register SrcReg = Src.getReg();
1171 isKill = MI.killsRegister(Reg: SrcReg, /*TRI=*/nullptr);
1172
1173 // For both LEA64 and LEA32 the register already has essentially the right
1174 // type (32-bit or 64-bit) we may just need to forbid SP.
1175 if (Opc != X86::LEA64_32r) {
1176 NewSrc = SrcReg;
1177 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1178
1179 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(Reg: NewSrc, RC))
1180 return false;
1181
1182 return true;
1183 }
1184
1185 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1186 // another we need to add 64-bit registers to the final MI.
1187 if (SrcReg.isPhysical()) {
1188 ImplicitOp = Src;
1189 ImplicitOp.setImplicit();
1190
1191 NewSrc = getX86SubSuperRegister(Reg: SrcReg, Size: 64);
1192 assert(NewSrc.isValid() && "Invalid Operand");
1193 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1194 } else {
1195 // Virtual register of the wrong class, we have to create a temporary 64-bit
1196 // vreg to feed into the LEA.
1197 NewSrc = MF.getRegInfo().createVirtualRegister(RegClass: RC);
1198 MachineInstr *Copy =
1199 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1200 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1201 .addReg(SrcReg, getKillRegState(isKill));
1202
1203 // Which is obviously going to be dead after we're done with it.
1204 isKill = true;
1205
1206 if (LV)
1207 LV->replaceKillInstruction(Reg: SrcReg, OldMI&: MI, NewMI&: *Copy);
1208
1209 if (LIS) {
1210 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(MI&: *Copy);
1211 SlotIndex Idx = LIS->getInstructionIndex(Instr: MI);
1212 LiveInterval &LI = LIS->getInterval(Reg: SrcReg);
1213 LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1214 if (S->end.getBaseIndex() == Idx)
1215 S->end = CopyIdx.getRegSlot();
1216 }
1217 }
1218
1219 // We've set all the parameters without issue.
1220 return true;
1221}
1222
1223MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1224 MachineInstr &MI,
1225 LiveVariables *LV,
1226 LiveIntervals *LIS,
1227 bool Is8BitOp) const {
1228 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1229 MachineBasicBlock &MBB = *MI.getParent();
1230 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1231 assert((Is8BitOp ||
1232 RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1233 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1234 "Unexpected type for LEA transform");
1235
1236 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1237 // something like this:
1238 // Opcode = X86::LEA32r;
1239 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1240 // OutRegLEA =
1241 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1242 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1243 if (!Subtarget.is64Bit())
1244 return nullptr;
1245
1246 unsigned Opcode = X86::LEA64_32r;
1247 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1248 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1249 Register InRegLEA2;
1250
1251 // Build and insert into an implicit UNDEF value. This is OK because
1252 // we will be shifting and then extracting the lower 8/16-bits.
1253 // This has the potential to cause partial register stall. e.g.
1254 // movw (%rbp,%rcx,2), %dx
1255 // leal -65(%rdx), %esi
1256 // But testing has shown this *does* help performance in 64-bit mode (at
1257 // least on modern x86 machines).
1258 MachineBasicBlock::iterator MBBI = MI.getIterator();
1259 Register Dest = MI.getOperand(i: 0).getReg();
1260 Register Src = MI.getOperand(i: 1).getReg();
1261 Register Src2;
1262 bool IsDead = MI.getOperand(i: 0).isDead();
1263 bool IsKill = MI.getOperand(i: 1).isKill();
1264 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1265 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1266 MachineInstr *ImpDef =
1267 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1268 MachineInstr *InsMI =
1269 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1270 .addReg(InRegLEA, RegState::Define, SubReg)
1271 .addReg(Src, getKillRegState(B: IsKill));
1272 MachineInstr *ImpDef2 = nullptr;
1273 MachineInstr *InsMI2 = nullptr;
1274
1275 MachineInstrBuilder MIB =
1276 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1277 switch (MIOpc) {
1278 default:
1279 llvm_unreachable("Unreachable!");
1280 case X86::SHL8ri:
1281 case X86::SHL16ri: {
1282 unsigned ShAmt = MI.getOperand(i: 2).getImm();
1283 MIB.addReg(RegNo: 0)
1284 .addImm(Val: 1LL << ShAmt)
1285 .addReg(RegNo: InRegLEA, flags: RegState::Kill)
1286 .addImm(Val: 0)
1287 .addReg(RegNo: 0);
1288 break;
1289 }
1290 case X86::INC8r:
1291 case X86::INC16r:
1292 addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: 1);
1293 break;
1294 case X86::DEC8r:
1295 case X86::DEC16r:
1296 addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: -1);
1297 break;
1298 case X86::ADD8ri:
1299 case X86::ADD8ri_DB:
1300 case X86::ADD16ri:
1301 case X86::ADD16ri_DB:
1302 addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: MI.getOperand(i: 2).getImm());
1303 break;
1304 case X86::ADD8rr:
1305 case X86::ADD8rr_DB:
1306 case X86::ADD16rr:
1307 case X86::ADD16rr_DB: {
1308 Src2 = MI.getOperand(i: 2).getReg();
1309 bool IsKill2 = MI.getOperand(i: 2).isKill();
1310 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1311 if (Src == Src2) {
1312 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1313 // just a single insert_subreg.
1314 addRegReg(MIB, Reg1: InRegLEA, isKill1: true, Reg2: InRegLEA, isKill2: false);
1315 } else {
1316 if (Subtarget.is64Bit())
1317 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1318 else
1319 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1320 // Build and insert into an implicit UNDEF value. This is OK because
1321 // we will be shifting and then extracting the lower 8/16-bits.
1322 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1323 InRegLEA2);
1324 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1325 .addReg(InRegLEA2, RegState::Define, SubReg)
1326 .addReg(Src2, getKillRegState(B: IsKill2));
1327 addRegReg(MIB, Reg1: InRegLEA, isKill1: true, Reg2: InRegLEA2, isKill2: true);
1328 }
1329 if (LV && IsKill2 && InsMI2)
1330 LV->replaceKillInstruction(Reg: Src2, OldMI&: MI, NewMI&: *InsMI2);
1331 break;
1332 }
1333 }
1334
1335 MachineInstr *NewMI = MIB;
1336 MachineInstr *ExtMI =
1337 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1338 .addReg(Dest, RegState::Define | getDeadRegState(B: IsDead))
1339 .addReg(OutRegLEA, RegState::Kill, SubReg);
1340
1341 if (LV) {
1342 // Update live variables.
1343 LV->getVarInfo(Reg: InRegLEA).Kills.push_back(x: NewMI);
1344 if (InRegLEA2)
1345 LV->getVarInfo(Reg: InRegLEA2).Kills.push_back(x: NewMI);
1346 LV->getVarInfo(Reg: OutRegLEA).Kills.push_back(x: ExtMI);
1347 if (IsKill)
1348 LV->replaceKillInstruction(Reg: Src, OldMI&: MI, NewMI&: *InsMI);
1349 if (IsDead)
1350 LV->replaceKillInstruction(Reg: Dest, OldMI&: MI, NewMI&: *ExtMI);
1351 }
1352
1353 if (LIS) {
1354 LIS->InsertMachineInstrInMaps(MI&: *ImpDef);
1355 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(MI&: *InsMI);
1356 if (ImpDef2)
1357 LIS->InsertMachineInstrInMaps(MI&: *ImpDef2);
1358 SlotIndex Ins2Idx;
1359 if (InsMI2)
1360 Ins2Idx = LIS->InsertMachineInstrInMaps(MI&: *InsMI2);
1361 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *NewMI);
1362 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(MI&: *ExtMI);
1363 LIS->getInterval(Reg: InRegLEA);
1364 LIS->getInterval(Reg: OutRegLEA);
1365 if (InRegLEA2)
1366 LIS->getInterval(Reg: InRegLEA2);
1367
1368 // Move the use of Src up to InsMI.
1369 LiveInterval &SrcLI = LIS->getInterval(Reg: Src);
1370 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(Idx: NewIdx);
1371 if (SrcSeg->end == NewIdx.getRegSlot())
1372 SrcSeg->end = InsIdx.getRegSlot();
1373
1374 if (InsMI2) {
1375 // Move the use of Src2 up to InsMI2.
1376 LiveInterval &Src2LI = LIS->getInterval(Reg: Src2);
1377 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(Idx: NewIdx);
1378 if (Src2Seg->end == NewIdx.getRegSlot())
1379 Src2Seg->end = Ins2Idx.getRegSlot();
1380 }
1381
1382 // Move the definition of Dest down to ExtMI.
1383 LiveInterval &DestLI = LIS->getInterval(Reg: Dest);
1384 LiveRange::Segment *DestSeg =
1385 DestLI.getSegmentContaining(Idx: NewIdx.getRegSlot());
1386 assert(DestSeg->start == NewIdx.getRegSlot() &&
1387 DestSeg->valno->def == NewIdx.getRegSlot());
1388 DestSeg->start = ExtIdx.getRegSlot();
1389 DestSeg->valno->def = ExtIdx.getRegSlot();
1390 }
1391
1392 return ExtMI;
1393}
1394
1395/// This method must be implemented by targets that
1396/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1397/// may be able to convert a two-address instruction into a true
1398/// three-address instruction on demand. This allows the X86 target (for
1399/// example) to convert ADD and SHL instructions into LEA instructions if they
1400/// would require register copies due to two-addressness.
1401///
1402/// This method returns a null pointer if the transformation cannot be
1403/// performed, otherwise it returns the new instruction.
1404///
1405MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1406 LiveVariables *LV,
1407 LiveIntervals *LIS) const {
1408 // The following opcodes also sets the condition code register(s). Only
1409 // convert them to equivalent lea if the condition code register def's
1410 // are dead!
1411 if (hasLiveCondCodeDef(MI))
1412 return nullptr;
1413
1414 MachineFunction &MF = *MI.getParent()->getParent();
1415 // All instructions input are two-addr instructions. Get the known operands.
1416 const MachineOperand &Dest = MI.getOperand(i: 0);
1417 const MachineOperand &Src = MI.getOperand(i: 1);
1418
1419 // Ideally, operations with undef should be folded before we get here, but we
1420 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1421 // Without this, we have to forward undef state to new register operands to
1422 // avoid machine verifier errors.
1423 if (Src.isUndef())
1424 return nullptr;
1425 if (MI.getNumOperands() > 2)
1426 if (MI.getOperand(i: 2).isReg() && MI.getOperand(i: 2).isUndef())
1427 return nullptr;
1428
1429 MachineInstr *NewMI = nullptr;
1430 Register SrcReg, SrcReg2;
1431 bool Is64Bit = Subtarget.is64Bit();
1432
1433 bool Is8BitOp = false;
1434 unsigned NumRegOperands = 2;
1435 unsigned MIOpc = MI.getOpcode();
1436 switch (MIOpc) {
1437 default:
1438 llvm_unreachable("Unreachable!");
1439 case X86::SHL64ri: {
1440 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1441 unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2);
1442 if (!isTruncatedShiftCountForLEA(ShAmt))
1443 return nullptr;
1444
1445 // LEA can't handle RSP.
1446 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1447 Src.getReg(), &X86::GR64_NOSPRegClass))
1448 return nullptr;
1449
1450 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1451 .add(Dest)
1452 .addReg(0)
1453 .addImm(1LL << ShAmt)
1454 .add(Src)
1455 .addImm(0)
1456 .addReg(0);
1457 break;
1458 }
1459 case X86::SHL32ri: {
1460 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1461 unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2);
1462 if (!isTruncatedShiftCountForLEA(ShAmt))
1463 return nullptr;
1464
1465 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1466
1467 // LEA can't handle ESP.
1468 bool isKill;
1469 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1470 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, isKill,
1471 ImplicitOp, LV, LIS))
1472 return nullptr;
1473
1474 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1475 .add(Dest)
1476 .addReg(0)
1477 .addImm(1LL << ShAmt)
1478 .addReg(SrcReg, getKillRegState(B: isKill))
1479 .addImm(0)
1480 .addReg(0);
1481 if (ImplicitOp.getReg() != 0)
1482 MIB.add(MO: ImplicitOp);
1483 NewMI = MIB;
1484
1485 // Add kills if classifyLEAReg created a new register.
1486 if (LV && SrcReg != Src.getReg())
1487 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1488 break;
1489 }
1490 case X86::SHL8ri:
1491 Is8BitOp = true;
1492 [[fallthrough]];
1493 case X86::SHL16ri: {
1494 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1495 unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2);
1496 if (!isTruncatedShiftCountForLEA(ShAmt))
1497 return nullptr;
1498 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1499 }
1500 case X86::INC64r:
1501 case X86::INC32r: {
1502 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1503 unsigned Opc = MIOpc == X86::INC64r
1504 ? X86::LEA64r
1505 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1506 bool isKill;
1507 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1508 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, isKill,
1509 ImplicitOp, LV, LIS))
1510 return nullptr;
1511
1512 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1513 .add(Dest)
1514 .addReg(SrcReg, getKillRegState(B: isKill));
1515 if (ImplicitOp.getReg() != 0)
1516 MIB.add(MO: ImplicitOp);
1517
1518 NewMI = addOffset(MIB, Offset: 1);
1519
1520 // Add kills if classifyLEAReg created a new register.
1521 if (LV && SrcReg != Src.getReg())
1522 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1523 break;
1524 }
1525 case X86::DEC64r:
1526 case X86::DEC32r: {
1527 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1528 unsigned Opc = MIOpc == X86::DEC64r
1529 ? X86::LEA64r
1530 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1531
1532 bool isKill;
1533 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1534 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, isKill,
1535 ImplicitOp, LV, LIS))
1536 return nullptr;
1537
1538 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1539 .add(Dest)
1540 .addReg(SrcReg, getKillRegState(B: isKill));
1541 if (ImplicitOp.getReg() != 0)
1542 MIB.add(MO: ImplicitOp);
1543
1544 NewMI = addOffset(MIB, Offset: -1);
1545
1546 // Add kills if classifyLEAReg created a new register.
1547 if (LV && SrcReg != Src.getReg())
1548 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1549 break;
1550 }
1551 case X86::DEC8r:
1552 case X86::INC8r:
1553 Is8BitOp = true;
1554 [[fallthrough]];
1555 case X86::DEC16r:
1556 case X86::INC16r:
1557 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1558 case X86::ADD64rr:
1559 case X86::ADD64rr_DB:
1560 case X86::ADD32rr:
1561 case X86::ADD32rr_DB: {
1562 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1563 unsigned Opc;
1564 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1565 Opc = X86::LEA64r;
1566 else
1567 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1568
1569 const MachineOperand &Src2 = MI.getOperand(i: 2);
1570 bool isKill2;
1571 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(Reg: 0, isDef: false);
1572 if (!classifyLEAReg(MI, Src: Src2, Opc, /*AllowSP=*/false, NewSrc&: SrcReg2, isKill&: isKill2,
1573 ImplicitOp&: ImplicitOp2, LV, LIS))
1574 return nullptr;
1575
1576 bool isKill;
1577 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1578 if (Src.getReg() == Src2.getReg()) {
1579 // Don't call classify LEAReg a second time on the same register, in case
1580 // the first call inserted a COPY from Src2 and marked it as killed.
1581 isKill = isKill2;
1582 SrcReg = SrcReg2;
1583 } else {
1584 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, isKill,
1585 ImplicitOp, LV, LIS))
1586 return nullptr;
1587 }
1588
1589 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1590 if (ImplicitOp.getReg() != 0)
1591 MIB.add(MO: ImplicitOp);
1592 if (ImplicitOp2.getReg() != 0)
1593 MIB.add(MO: ImplicitOp2);
1594
1595 NewMI = addRegReg(MIB, Reg1: SrcReg, isKill1: isKill, Reg2: SrcReg2, isKill2);
1596
1597 // Add kills if classifyLEAReg created a new register.
1598 if (LV) {
1599 if (SrcReg2 != Src2.getReg())
1600 LV->getVarInfo(Reg: SrcReg2).Kills.push_back(x: NewMI);
1601 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1602 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1603 }
1604 NumRegOperands = 3;
1605 break;
1606 }
1607 case X86::ADD8rr:
1608 case X86::ADD8rr_DB:
1609 Is8BitOp = true;
1610 [[fallthrough]];
1611 case X86::ADD16rr:
1612 case X86::ADD16rr_DB:
1613 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1614 case X86::ADD64ri32:
1615 case X86::ADD64ri32_DB:
1616 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1617 NewMI = addOffset(
1618 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1619 MI.getOperand(2));
1620 break;
1621 case X86::ADD32ri:
1622 case X86::ADD32ri_DB: {
1623 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1624 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1625
1626 bool isKill;
1627 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1628 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, isKill,
1629 ImplicitOp, LV, LIS))
1630 return nullptr;
1631
1632 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1633 .add(Dest)
1634 .addReg(SrcReg, getKillRegState(B: isKill));
1635 if (ImplicitOp.getReg() != 0)
1636 MIB.add(MO: ImplicitOp);
1637
1638 NewMI = addOffset(MIB, Offset: MI.getOperand(i: 2));
1639
1640 // Add kills if classifyLEAReg created a new register.
1641 if (LV && SrcReg != Src.getReg())
1642 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1643 break;
1644 }
1645 case X86::ADD8ri:
1646 case X86::ADD8ri_DB:
1647 Is8BitOp = true;
1648 [[fallthrough]];
1649 case X86::ADD16ri:
1650 case X86::ADD16ri_DB:
1651 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1652 case X86::SUB8ri:
1653 case X86::SUB16ri:
1654 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1655 return nullptr;
1656 case X86::SUB32ri: {
1657 if (!MI.getOperand(i: 2).isImm())
1658 return nullptr;
1659 int64_t Imm = MI.getOperand(i: 2).getImm();
1660 if (!isInt<32>(x: -Imm))
1661 return nullptr;
1662
1663 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1664 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1665
1666 bool isKill;
1667 MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false);
1668 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, isKill,
1669 ImplicitOp, LV, LIS))
1670 return nullptr;
1671
1672 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1673 .add(Dest)
1674 .addReg(SrcReg, getKillRegState(B: isKill));
1675 if (ImplicitOp.getReg() != 0)
1676 MIB.add(MO: ImplicitOp);
1677
1678 NewMI = addOffset(MIB, Offset: -Imm);
1679
1680 // Add kills if classifyLEAReg created a new register.
1681 if (LV && SrcReg != Src.getReg())
1682 LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI);
1683 break;
1684 }
1685
1686 case X86::SUB64ri32: {
1687 if (!MI.getOperand(i: 2).isImm())
1688 return nullptr;
1689 int64_t Imm = MI.getOperand(i: 2).getImm();
1690 if (!isInt<32>(x: -Imm))
1691 return nullptr;
1692
1693 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1694
1695 MachineInstrBuilder MIB =
1696 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src);
1697 NewMI = addOffset(MIB, Offset: -Imm);
1698 break;
1699 }
1700
1701 case X86::VMOVDQU8Z128rmk:
1702 case X86::VMOVDQU8Z256rmk:
1703 case X86::VMOVDQU8Zrmk:
1704 case X86::VMOVDQU16Z128rmk:
1705 case X86::VMOVDQU16Z256rmk:
1706 case X86::VMOVDQU16Zrmk:
1707 case X86::VMOVDQU32Z128rmk:
1708 case X86::VMOVDQA32Z128rmk:
1709 case X86::VMOVDQU32Z256rmk:
1710 case X86::VMOVDQA32Z256rmk:
1711 case X86::VMOVDQU32Zrmk:
1712 case X86::VMOVDQA32Zrmk:
1713 case X86::VMOVDQU64Z128rmk:
1714 case X86::VMOVDQA64Z128rmk:
1715 case X86::VMOVDQU64Z256rmk:
1716 case X86::VMOVDQA64Z256rmk:
1717 case X86::VMOVDQU64Zrmk:
1718 case X86::VMOVDQA64Zrmk:
1719 case X86::VMOVUPDZ128rmk:
1720 case X86::VMOVAPDZ128rmk:
1721 case X86::VMOVUPDZ256rmk:
1722 case X86::VMOVAPDZ256rmk:
1723 case X86::VMOVUPDZrmk:
1724 case X86::VMOVAPDZrmk:
1725 case X86::VMOVUPSZ128rmk:
1726 case X86::VMOVAPSZ128rmk:
1727 case X86::VMOVUPSZ256rmk:
1728 case X86::VMOVAPSZ256rmk:
1729 case X86::VMOVUPSZrmk:
1730 case X86::VMOVAPSZrmk:
1731 case X86::VBROADCASTSDZ256rmk:
1732 case X86::VBROADCASTSDZrmk:
1733 case X86::VBROADCASTSSZ128rmk:
1734 case X86::VBROADCASTSSZ256rmk:
1735 case X86::VBROADCASTSSZrmk:
1736 case X86::VPBROADCASTDZ128rmk:
1737 case X86::VPBROADCASTDZ256rmk:
1738 case X86::VPBROADCASTDZrmk:
1739 case X86::VPBROADCASTQZ128rmk:
1740 case X86::VPBROADCASTQZ256rmk:
1741 case X86::VPBROADCASTQZrmk: {
1742 unsigned Opc;
1743 switch (MIOpc) {
1744 default:
1745 llvm_unreachable("Unreachable!");
1746 case X86::VMOVDQU8Z128rmk:
1747 Opc = X86::VPBLENDMBZ128rmk;
1748 break;
1749 case X86::VMOVDQU8Z256rmk:
1750 Opc = X86::VPBLENDMBZ256rmk;
1751 break;
1752 case X86::VMOVDQU8Zrmk:
1753 Opc = X86::VPBLENDMBZrmk;
1754 break;
1755 case X86::VMOVDQU16Z128rmk:
1756 Opc = X86::VPBLENDMWZ128rmk;
1757 break;
1758 case X86::VMOVDQU16Z256rmk:
1759 Opc = X86::VPBLENDMWZ256rmk;
1760 break;
1761 case X86::VMOVDQU16Zrmk:
1762 Opc = X86::VPBLENDMWZrmk;
1763 break;
1764 case X86::VMOVDQU32Z128rmk:
1765 Opc = X86::VPBLENDMDZ128rmk;
1766 break;
1767 case X86::VMOVDQU32Z256rmk:
1768 Opc = X86::VPBLENDMDZ256rmk;
1769 break;
1770 case X86::VMOVDQU32Zrmk:
1771 Opc = X86::VPBLENDMDZrmk;
1772 break;
1773 case X86::VMOVDQU64Z128rmk:
1774 Opc = X86::VPBLENDMQZ128rmk;
1775 break;
1776 case X86::VMOVDQU64Z256rmk:
1777 Opc = X86::VPBLENDMQZ256rmk;
1778 break;
1779 case X86::VMOVDQU64Zrmk:
1780 Opc = X86::VPBLENDMQZrmk;
1781 break;
1782 case X86::VMOVUPDZ128rmk:
1783 Opc = X86::VBLENDMPDZ128rmk;
1784 break;
1785 case X86::VMOVUPDZ256rmk:
1786 Opc = X86::VBLENDMPDZ256rmk;
1787 break;
1788 case X86::VMOVUPDZrmk:
1789 Opc = X86::VBLENDMPDZrmk;
1790 break;
1791 case X86::VMOVUPSZ128rmk:
1792 Opc = X86::VBLENDMPSZ128rmk;
1793 break;
1794 case X86::VMOVUPSZ256rmk:
1795 Opc = X86::VBLENDMPSZ256rmk;
1796 break;
1797 case X86::VMOVUPSZrmk:
1798 Opc = X86::VBLENDMPSZrmk;
1799 break;
1800 case X86::VMOVDQA32Z128rmk:
1801 Opc = X86::VPBLENDMDZ128rmk;
1802 break;
1803 case X86::VMOVDQA32Z256rmk:
1804 Opc = X86::VPBLENDMDZ256rmk;
1805 break;
1806 case X86::VMOVDQA32Zrmk:
1807 Opc = X86::VPBLENDMDZrmk;
1808 break;
1809 case X86::VMOVDQA64Z128rmk:
1810 Opc = X86::VPBLENDMQZ128rmk;
1811 break;
1812 case X86::VMOVDQA64Z256rmk:
1813 Opc = X86::VPBLENDMQZ256rmk;
1814 break;
1815 case X86::VMOVDQA64Zrmk:
1816 Opc = X86::VPBLENDMQZrmk;
1817 break;
1818 case X86::VMOVAPDZ128rmk:
1819 Opc = X86::VBLENDMPDZ128rmk;
1820 break;
1821 case X86::VMOVAPDZ256rmk:
1822 Opc = X86::VBLENDMPDZ256rmk;
1823 break;
1824 case X86::VMOVAPDZrmk:
1825 Opc = X86::VBLENDMPDZrmk;
1826 break;
1827 case X86::VMOVAPSZ128rmk:
1828 Opc = X86::VBLENDMPSZ128rmk;
1829 break;
1830 case X86::VMOVAPSZ256rmk:
1831 Opc = X86::VBLENDMPSZ256rmk;
1832 break;
1833 case X86::VMOVAPSZrmk:
1834 Opc = X86::VBLENDMPSZrmk;
1835 break;
1836 case X86::VBROADCASTSDZ256rmk:
1837 Opc = X86::VBLENDMPDZ256rmbk;
1838 break;
1839 case X86::VBROADCASTSDZrmk:
1840 Opc = X86::VBLENDMPDZrmbk;
1841 break;
1842 case X86::VBROADCASTSSZ128rmk:
1843 Opc = X86::VBLENDMPSZ128rmbk;
1844 break;
1845 case X86::VBROADCASTSSZ256rmk:
1846 Opc = X86::VBLENDMPSZ256rmbk;
1847 break;
1848 case X86::VBROADCASTSSZrmk:
1849 Opc = X86::VBLENDMPSZrmbk;
1850 break;
1851 case X86::VPBROADCASTDZ128rmk:
1852 Opc = X86::VPBLENDMDZ128rmbk;
1853 break;
1854 case X86::VPBROADCASTDZ256rmk:
1855 Opc = X86::VPBLENDMDZ256rmbk;
1856 break;
1857 case X86::VPBROADCASTDZrmk:
1858 Opc = X86::VPBLENDMDZrmbk;
1859 break;
1860 case X86::VPBROADCASTQZ128rmk:
1861 Opc = X86::VPBLENDMQZ128rmbk;
1862 break;
1863 case X86::VPBROADCASTQZ256rmk:
1864 Opc = X86::VPBLENDMQZ256rmbk;
1865 break;
1866 case X86::VPBROADCASTQZrmk:
1867 Opc = X86::VPBLENDMQZrmbk;
1868 break;
1869 }
1870
1871 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1872 .add(Dest)
1873 .add(MI.getOperand(i: 2))
1874 .add(Src)
1875 .add(MI.getOperand(i: 3))
1876 .add(MI.getOperand(i: 4))
1877 .add(MI.getOperand(i: 5))
1878 .add(MI.getOperand(i: 6))
1879 .add(MI.getOperand(i: 7));
1880 NumRegOperands = 4;
1881 break;
1882 }
1883
1884 case X86::VMOVDQU8Z128rrk:
1885 case X86::VMOVDQU8Z256rrk:
1886 case X86::VMOVDQU8Zrrk:
1887 case X86::VMOVDQU16Z128rrk:
1888 case X86::VMOVDQU16Z256rrk:
1889 case X86::VMOVDQU16Zrrk:
1890 case X86::VMOVDQU32Z128rrk:
1891 case X86::VMOVDQA32Z128rrk:
1892 case X86::VMOVDQU32Z256rrk:
1893 case X86::VMOVDQA32Z256rrk:
1894 case X86::VMOVDQU32Zrrk:
1895 case X86::VMOVDQA32Zrrk:
1896 case X86::VMOVDQU64Z128rrk:
1897 case X86::VMOVDQA64Z128rrk:
1898 case X86::VMOVDQU64Z256rrk:
1899 case X86::VMOVDQA64Z256rrk:
1900 case X86::VMOVDQU64Zrrk:
1901 case X86::VMOVDQA64Zrrk:
1902 case X86::VMOVUPDZ128rrk:
1903 case X86::VMOVAPDZ128rrk:
1904 case X86::VMOVUPDZ256rrk:
1905 case X86::VMOVAPDZ256rrk:
1906 case X86::VMOVUPDZrrk:
1907 case X86::VMOVAPDZrrk:
1908 case X86::VMOVUPSZ128rrk:
1909 case X86::VMOVAPSZ128rrk:
1910 case X86::VMOVUPSZ256rrk:
1911 case X86::VMOVAPSZ256rrk:
1912 case X86::VMOVUPSZrrk:
1913 case X86::VMOVAPSZrrk: {
1914 unsigned Opc;
1915 switch (MIOpc) {
1916 default:
1917 llvm_unreachable("Unreachable!");
1918 case X86::VMOVDQU8Z128rrk:
1919 Opc = X86::VPBLENDMBZ128rrk;
1920 break;
1921 case X86::VMOVDQU8Z256rrk:
1922 Opc = X86::VPBLENDMBZ256rrk;
1923 break;
1924 case X86::VMOVDQU8Zrrk:
1925 Opc = X86::VPBLENDMBZrrk;
1926 break;
1927 case X86::VMOVDQU16Z128rrk:
1928 Opc = X86::VPBLENDMWZ128rrk;
1929 break;
1930 case X86::VMOVDQU16Z256rrk:
1931 Opc = X86::VPBLENDMWZ256rrk;
1932 break;
1933 case X86::VMOVDQU16Zrrk:
1934 Opc = X86::VPBLENDMWZrrk;
1935 break;
1936 case X86::VMOVDQU32Z128rrk:
1937 Opc = X86::VPBLENDMDZ128rrk;
1938 break;
1939 case X86::VMOVDQU32Z256rrk:
1940 Opc = X86::VPBLENDMDZ256rrk;
1941 break;
1942 case X86::VMOVDQU32Zrrk:
1943 Opc = X86::VPBLENDMDZrrk;
1944 break;
1945 case X86::VMOVDQU64Z128rrk:
1946 Opc = X86::VPBLENDMQZ128rrk;
1947 break;
1948 case X86::VMOVDQU64Z256rrk:
1949 Opc = X86::VPBLENDMQZ256rrk;
1950 break;
1951 case X86::VMOVDQU64Zrrk:
1952 Opc = X86::VPBLENDMQZrrk;
1953 break;
1954 case X86::VMOVUPDZ128rrk:
1955 Opc = X86::VBLENDMPDZ128rrk;
1956 break;
1957 case X86::VMOVUPDZ256rrk:
1958 Opc = X86::VBLENDMPDZ256rrk;
1959 break;
1960 case X86::VMOVUPDZrrk:
1961 Opc = X86::VBLENDMPDZrrk;
1962 break;
1963 case X86::VMOVUPSZ128rrk:
1964 Opc = X86::VBLENDMPSZ128rrk;
1965 break;
1966 case X86::VMOVUPSZ256rrk:
1967 Opc = X86::VBLENDMPSZ256rrk;
1968 break;
1969 case X86::VMOVUPSZrrk:
1970 Opc = X86::VBLENDMPSZrrk;
1971 break;
1972 case X86::VMOVDQA32Z128rrk:
1973 Opc = X86::VPBLENDMDZ128rrk;
1974 break;
1975 case X86::VMOVDQA32Z256rrk:
1976 Opc = X86::VPBLENDMDZ256rrk;
1977 break;
1978 case X86::VMOVDQA32Zrrk:
1979 Opc = X86::VPBLENDMDZrrk;
1980 break;
1981 case X86::VMOVDQA64Z128rrk:
1982 Opc = X86::VPBLENDMQZ128rrk;
1983 break;
1984 case X86::VMOVDQA64Z256rrk:
1985 Opc = X86::VPBLENDMQZ256rrk;
1986 break;
1987 case X86::VMOVDQA64Zrrk:
1988 Opc = X86::VPBLENDMQZrrk;
1989 break;
1990 case X86::VMOVAPDZ128rrk:
1991 Opc = X86::VBLENDMPDZ128rrk;
1992 break;
1993 case X86::VMOVAPDZ256rrk:
1994 Opc = X86::VBLENDMPDZ256rrk;
1995 break;
1996 case X86::VMOVAPDZrrk:
1997 Opc = X86::VBLENDMPDZrrk;
1998 break;
1999 case X86::VMOVAPSZ128rrk:
2000 Opc = X86::VBLENDMPSZ128rrk;
2001 break;
2002 case X86::VMOVAPSZ256rrk:
2003 Opc = X86::VBLENDMPSZ256rrk;
2004 break;
2005 case X86::VMOVAPSZrrk:
2006 Opc = X86::VBLENDMPSZrrk;
2007 break;
2008 }
2009
2010 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
2011 .add(Dest)
2012 .add(MI.getOperand(i: 2))
2013 .add(Src)
2014 .add(MI.getOperand(i: 3));
2015 NumRegOperands = 4;
2016 break;
2017 }
2018 }
2019
2020 if (!NewMI)
2021 return nullptr;
2022
2023 if (LV) { // Update live variables
2024 for (unsigned I = 0; I < NumRegOperands; ++I) {
2025 MachineOperand &Op = MI.getOperand(i: I);
2026 if (Op.isReg() && (Op.isDead() || Op.isKill()))
2027 LV->replaceKillInstruction(Reg: Op.getReg(), OldMI&: MI, NewMI&: *NewMI);
2028 }
2029 }
2030
2031 MachineBasicBlock &MBB = *MI.getParent();
2032 MBB.insert(I: MI.getIterator(), M: NewMI); // Insert the new inst
2033
2034 if (LIS) {
2035 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *NewMI);
2036 if (SrcReg)
2037 LIS->getInterval(Reg: SrcReg);
2038 if (SrcReg2)
2039 LIS->getInterval(Reg: SrcReg2);
2040 }
2041
2042 return NewMI;
2043}
2044
2045/// This determines which of three possible cases of a three source commute
2046/// the source indexes correspond to taking into account any mask operands.
2047/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2048/// possible.
2049/// Case 0 - Possible to commute the first and second operands.
2050/// Case 1 - Possible to commute the first and third operands.
2051/// Case 2 - Possible to commute the second and third operands.
2052static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
2053 unsigned SrcOpIdx2) {
2054 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2055 if (SrcOpIdx1 > SrcOpIdx2)
2056 std::swap(a&: SrcOpIdx1, b&: SrcOpIdx2);
2057
2058 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2059 if (X86II::isKMasked(TSFlags)) {
2060 Op2++;
2061 Op3++;
2062 }
2063
2064 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2065 return 0;
2066 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2067 return 1;
2068 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2069 return 2;
2070 llvm_unreachable("Unknown three src commute case.");
2071}
2072
2073unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
2074 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
2075 const X86InstrFMA3Group &FMA3Group) const {
2076
2077 unsigned Opc = MI.getOpcode();
2078
2079 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2080 // analysis. The commute optimization is legal only if all users of FMA*_Int
2081 // use only the lowest element of the FMA*_Int instruction. Such analysis are
2082 // not implemented yet. So, just return 0 in that case.
2083 // When such analysis are available this place will be the right place for
2084 // calling it.
2085 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
2086 "Intrinsic instructions can't commute operand 1");
2087
2088 // Determine which case this commute is or if it can't be done.
2089 unsigned Case =
2090 getThreeSrcCommuteCase(TSFlags: MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2091 assert(Case < 3 && "Unexpected case number!");
2092
2093 // Define the FMA forms mapping array that helps to map input FMA form
2094 // to output FMA form to preserve the operation semantics after
2095 // commuting the operands.
2096 const unsigned Form132Index = 0;
2097 const unsigned Form213Index = 1;
2098 const unsigned Form231Index = 2;
2099 static const unsigned FormMapping[][3] = {
2100 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2101 // FMA132 A, C, b; ==> FMA231 C, A, b;
2102 // FMA213 B, A, c; ==> FMA213 A, B, c;
2103 // FMA231 C, A, b; ==> FMA132 A, C, b;
2104 {Form231Index, Form213Index, Form132Index},
2105 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2106 // FMA132 A, c, B; ==> FMA132 B, c, A;
2107 // FMA213 B, a, C; ==> FMA231 C, a, B;
2108 // FMA231 C, a, B; ==> FMA213 B, a, C;
2109 {Form132Index, Form231Index, Form213Index},
2110 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2111 // FMA132 a, C, B; ==> FMA213 a, B, C;
2112 // FMA213 b, A, C; ==> FMA132 b, C, A;
2113 // FMA231 c, A, B; ==> FMA231 c, B, A;
2114 {Form213Index, Form132Index, Form231Index}};
2115
2116 unsigned FMAForms[3];
2117 FMAForms[0] = FMA3Group.get132Opcode();
2118 FMAForms[1] = FMA3Group.get213Opcode();
2119 FMAForms[2] = FMA3Group.get231Opcode();
2120
2121 // Everything is ready, just adjust the FMA opcode and return it.
2122 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2123 if (Opc == FMAForms[FormIndex])
2124 return FMAForms[FormMapping[Case][FormIndex]];
2125
2126 llvm_unreachable("Illegal FMA3 format");
2127}
2128
2129static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
2130 unsigned SrcOpIdx2) {
2131 // Determine which case this commute is or if it can't be done.
2132 unsigned Case =
2133 getThreeSrcCommuteCase(TSFlags: MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2134 assert(Case < 3 && "Unexpected case value!");
2135
2136 // For each case we need to swap two pairs of bits in the final immediate.
2137 static const uint8_t SwapMasks[3][4] = {
2138 {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2139 {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2140 {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2141 };
2142
2143 uint8_t Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm();
2144 // Clear out the bits we are swapping.
2145 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2146 SwapMasks[Case][2] | SwapMasks[Case][3]);
2147 // If the immediate had a bit of the pair set, then set the opposite bit.
2148 if (Imm & SwapMasks[Case][0])
2149 NewImm |= SwapMasks[Case][1];
2150 if (Imm & SwapMasks[Case][1])
2151 NewImm |= SwapMasks[Case][0];
2152 if (Imm & SwapMasks[Case][2])
2153 NewImm |= SwapMasks[Case][3];
2154 if (Imm & SwapMasks[Case][3])
2155 NewImm |= SwapMasks[Case][2];
2156 MI.getOperand(i: MI.getNumOperands() - 1).setImm(NewImm);
2157}
2158
2159// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2160// commuted.
2161static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2162#define VPERM_CASES(Suffix) \
2163 case X86::VPERMI2##Suffix##Z128rr: \
2164 case X86::VPERMT2##Suffix##Z128rr: \
2165 case X86::VPERMI2##Suffix##Z256rr: \
2166 case X86::VPERMT2##Suffix##Z256rr: \
2167 case X86::VPERMI2##Suffix##Zrr: \
2168 case X86::VPERMT2##Suffix##Zrr: \
2169 case X86::VPERMI2##Suffix##Z128rm: \
2170 case X86::VPERMT2##Suffix##Z128rm: \
2171 case X86::VPERMI2##Suffix##Z256rm: \
2172 case X86::VPERMT2##Suffix##Z256rm: \
2173 case X86::VPERMI2##Suffix##Zrm: \
2174 case X86::VPERMT2##Suffix##Zrm: \
2175 case X86::VPERMI2##Suffix##Z128rrkz: \
2176 case X86::VPERMT2##Suffix##Z128rrkz: \
2177 case X86::VPERMI2##Suffix##Z256rrkz: \
2178 case X86::VPERMT2##Suffix##Z256rrkz: \
2179 case X86::VPERMI2##Suffix##Zrrkz: \
2180 case X86::VPERMT2##Suffix##Zrrkz: \
2181 case X86::VPERMI2##Suffix##Z128rmkz: \
2182 case X86::VPERMT2##Suffix##Z128rmkz: \
2183 case X86::VPERMI2##Suffix##Z256rmkz: \
2184 case X86::VPERMT2##Suffix##Z256rmkz: \
2185 case X86::VPERMI2##Suffix##Zrmkz: \
2186 case X86::VPERMT2##Suffix##Zrmkz:
2187
2188#define VPERM_CASES_BROADCAST(Suffix) \
2189 VPERM_CASES(Suffix) \
2190 case X86::VPERMI2##Suffix##Z128rmb: \
2191 case X86::VPERMT2##Suffix##Z128rmb: \
2192 case X86::VPERMI2##Suffix##Z256rmb: \
2193 case X86::VPERMT2##Suffix##Z256rmb: \
2194 case X86::VPERMI2##Suffix##Zrmb: \
2195 case X86::VPERMT2##Suffix##Zrmb: \
2196 case X86::VPERMI2##Suffix##Z128rmbkz: \
2197 case X86::VPERMT2##Suffix##Z128rmbkz: \
2198 case X86::VPERMI2##Suffix##Z256rmbkz: \
2199 case X86::VPERMT2##Suffix##Z256rmbkz: \
2200 case X86::VPERMI2##Suffix##Zrmbkz: \
2201 case X86::VPERMT2##Suffix##Zrmbkz:
2202
2203 switch (Opcode) {
2204 default:
2205 return false;
2206 VPERM_CASES(B)
2207 VPERM_CASES_BROADCAST(D)
2208 VPERM_CASES_BROADCAST(PD)
2209 VPERM_CASES_BROADCAST(PS)
2210 VPERM_CASES_BROADCAST(Q)
2211 VPERM_CASES(W)
2212 return true;
2213 }
2214#undef VPERM_CASES_BROADCAST
2215#undef VPERM_CASES
2216}
2217
2218// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2219// from the I opcode to the T opcode and vice versa.
2220static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2221#define VPERM_CASES(Orig, New) \
2222 case X86::Orig##Z128rr: \
2223 return X86::New##Z128rr; \
2224 case X86::Orig##Z128rrkz: \
2225 return X86::New##Z128rrkz; \
2226 case X86::Orig##Z128rm: \
2227 return X86::New##Z128rm; \
2228 case X86::Orig##Z128rmkz: \
2229 return X86::New##Z128rmkz; \
2230 case X86::Orig##Z256rr: \
2231 return X86::New##Z256rr; \
2232 case X86::Orig##Z256rrkz: \
2233 return X86::New##Z256rrkz; \
2234 case X86::Orig##Z256rm: \
2235 return X86::New##Z256rm; \
2236 case X86::Orig##Z256rmkz: \
2237 return X86::New##Z256rmkz; \
2238 case X86::Orig##Zrr: \
2239 return X86::New##Zrr; \
2240 case X86::Orig##Zrrkz: \
2241 return X86::New##Zrrkz; \
2242 case X86::Orig##Zrm: \
2243 return X86::New##Zrm; \
2244 case X86::Orig##Zrmkz: \
2245 return X86::New##Zrmkz;
2246
2247#define VPERM_CASES_BROADCAST(Orig, New) \
2248 VPERM_CASES(Orig, New) \
2249 case X86::Orig##Z128rmb: \
2250 return X86::New##Z128rmb; \
2251 case X86::Orig##Z128rmbkz: \
2252 return X86::New##Z128rmbkz; \
2253 case X86::Orig##Z256rmb: \
2254 return X86::New##Z256rmb; \
2255 case X86::Orig##Z256rmbkz: \
2256 return X86::New##Z256rmbkz; \
2257 case X86::Orig##Zrmb: \
2258 return X86::New##Zrmb; \
2259 case X86::Orig##Zrmbkz: \
2260 return X86::New##Zrmbkz;
2261
2262 switch (Opcode) {
2263 VPERM_CASES(VPERMI2B, VPERMT2B)
2264 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
2265 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2266 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2267 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
2268 VPERM_CASES(VPERMI2W, VPERMT2W)
2269 VPERM_CASES(VPERMT2B, VPERMI2B)
2270 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2271 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2272 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2273 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2274 VPERM_CASES(VPERMT2W, VPERMI2W)
2275 }
2276
2277 llvm_unreachable("Unreachable!");
2278#undef VPERM_CASES_BROADCAST
2279#undef VPERM_CASES
2280}
2281
2282MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2283 unsigned OpIdx1,
2284 unsigned OpIdx2) const {
2285 auto CloneIfNew = [&](MachineInstr &MI) {
2286 return std::exchange(obj&: NewMI, new_val: false)
2287 ? MI.getParent()->getParent()->CloneMachineInstr(Orig: &MI)
2288 : &MI;
2289 };
2290 MachineInstr *WorkingMI = nullptr;
2291 unsigned Opc = MI.getOpcode();
2292
2293#define CASE_ND(OP) \
2294 case X86::OP: \
2295 case X86::OP##_ND:
2296
2297 switch (Opc) {
2298 // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2299 CASE_ND(SHRD16rri8)
2300 CASE_ND(SHLD16rri8)
2301 CASE_ND(SHRD32rri8)
2302 CASE_ND(SHLD32rri8)
2303 CASE_ND(SHRD64rri8)
2304 CASE_ND(SHLD64rri8) {
2305 unsigned Size;
2306 switch (Opc) {
2307 default:
2308 llvm_unreachable("Unreachable!");
2309#define FROM_TO_SIZE(A, B, S) \
2310 case X86::A: \
2311 Opc = X86::B; \
2312 Size = S; \
2313 break; \
2314 case X86::A##_ND: \
2315 Opc = X86::B##_ND; \
2316 Size = S; \
2317 break; \
2318 case X86::B: \
2319 Opc = X86::A; \
2320 Size = S; \
2321 break; \
2322 case X86::B##_ND: \
2323 Opc = X86::A##_ND; \
2324 Size = S; \
2325 break;
2326
2327 FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16)
2328 FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32)
2329 FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64)
2330#undef FROM_TO_SIZE
2331 }
2332 WorkingMI = CloneIfNew(MI);
2333 WorkingMI->setDesc(get(Opc));
2334 WorkingMI->getOperand(i: 3).setImm(Size - MI.getOperand(i: 3).getImm());
2335 break;
2336 }
2337 case X86::PFSUBrr:
2338 case X86::PFSUBRrr:
2339 // PFSUB x, y: x = x - y
2340 // PFSUBR x, y: x = y - x
2341 WorkingMI = CloneIfNew(MI);
2342 WorkingMI->setDesc(
2343 get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2344 break;
2345 case X86::BLENDPDrri:
2346 case X86::BLENDPSrri:
2347 case X86::VBLENDPDrri:
2348 case X86::VBLENDPSrri:
2349 // If we're optimizing for size, try to use MOVSD/MOVSS.
2350 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2351 unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F;
2352 if ((MI.getOperand(i: 3).getImm() ^ Mask) == 1) {
2353#define FROM_TO(FROM, TO) \
2354 case X86::FROM: \
2355 Opc = X86::TO; \
2356 break;
2357 switch (Opc) {
2358 default:
2359 llvm_unreachable("Unreachable!");
2360 FROM_TO(BLENDPDrri, MOVSDrr)
2361 FROM_TO(BLENDPSrri, MOVSSrr)
2362 FROM_TO(VBLENDPDrri, VMOVSDrr)
2363 FROM_TO(VBLENDPSrri, VMOVSSrr)
2364 }
2365 WorkingMI = CloneIfNew(MI);
2366 WorkingMI->setDesc(get(Opc));
2367 WorkingMI->removeOperand(OpNo: 3);
2368 break;
2369 }
2370#undef FROM_TO
2371 }
2372 [[fallthrough]];
2373 case X86::PBLENDWrri:
2374 case X86::VBLENDPDYrri:
2375 case X86::VBLENDPSYrri:
2376 case X86::VPBLENDDrri:
2377 case X86::VPBLENDWrri:
2378 case X86::VPBLENDDYrri:
2379 case X86::VPBLENDWYrri: {
2380 int8_t Mask;
2381 switch (Opc) {
2382 default:
2383 llvm_unreachable("Unreachable!");
2384 case X86::BLENDPDrri:
2385 Mask = (int8_t)0x03;
2386 break;
2387 case X86::BLENDPSrri:
2388 Mask = (int8_t)0x0F;
2389 break;
2390 case X86::PBLENDWrri:
2391 Mask = (int8_t)0xFF;
2392 break;
2393 case X86::VBLENDPDrri:
2394 Mask = (int8_t)0x03;
2395 break;
2396 case X86::VBLENDPSrri:
2397 Mask = (int8_t)0x0F;
2398 break;
2399 case X86::VBLENDPDYrri:
2400 Mask = (int8_t)0x0F;
2401 break;
2402 case X86::VBLENDPSYrri:
2403 Mask = (int8_t)0xFF;
2404 break;
2405 case X86::VPBLENDDrri:
2406 Mask = (int8_t)0x0F;
2407 break;
2408 case X86::VPBLENDWrri:
2409 Mask = (int8_t)0xFF;
2410 break;
2411 case X86::VPBLENDDYrri:
2412 Mask = (int8_t)0xFF;
2413 break;
2414 case X86::VPBLENDWYrri:
2415 Mask = (int8_t)0xFF;
2416 break;
2417 }
2418 // Only the least significant bits of Imm are used.
2419 // Using int8_t to ensure it will be sign extended to the int64_t that
2420 // setImm takes in order to match isel behavior.
2421 int8_t Imm = MI.getOperand(i: 3).getImm() & Mask;
2422 WorkingMI = CloneIfNew(MI);
2423 WorkingMI->getOperand(i: 3).setImm(Mask ^ Imm);
2424 break;
2425 }
2426 case X86::INSERTPSrr:
2427 case X86::VINSERTPSrr:
2428 case X86::VINSERTPSZrr: {
2429 unsigned Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm();
2430 unsigned ZMask = Imm & 15;
2431 unsigned DstIdx = (Imm >> 4) & 3;
2432 unsigned SrcIdx = (Imm >> 6) & 3;
2433
2434 // We can commute insertps if we zero 2 of the elements, the insertion is
2435 // "inline" and we don't override the insertion with a zero.
2436 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2437 llvm::popcount(Value: ZMask) == 2) {
2438 unsigned AltIdx = llvm::countr_zero(Val: (ZMask | (1 << DstIdx)) ^ 15);
2439 assert(AltIdx < 4 && "Illegal insertion index");
2440 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2441 WorkingMI = CloneIfNew(MI);
2442 WorkingMI->getOperand(i: MI.getNumOperands() - 1).setImm(AltImm);
2443 break;
2444 }
2445 return nullptr;
2446 }
2447 case X86::MOVSDrr:
2448 case X86::MOVSSrr:
2449 case X86::VMOVSDrr:
2450 case X86::VMOVSSrr: {
2451 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2452 if (Subtarget.hasSSE41()) {
2453 unsigned Mask;
2454 switch (Opc) {
2455 default:
2456 llvm_unreachable("Unreachable!");
2457 case X86::MOVSDrr:
2458 Opc = X86::BLENDPDrri;
2459 Mask = 0x02;
2460 break;
2461 case X86::MOVSSrr:
2462 Opc = X86::BLENDPSrri;
2463 Mask = 0x0E;
2464 break;
2465 case X86::VMOVSDrr:
2466 Opc = X86::VBLENDPDrri;
2467 Mask = 0x02;
2468 break;
2469 case X86::VMOVSSrr:
2470 Opc = X86::VBLENDPSrri;
2471 Mask = 0x0E;
2472 break;
2473 }
2474
2475 WorkingMI = CloneIfNew(MI);
2476 WorkingMI->setDesc(get(Opc));
2477 WorkingMI->addOperand(Op: MachineOperand::CreateImm(Val: Mask));
2478 break;
2479 }
2480
2481 WorkingMI = CloneIfNew(MI);
2482 WorkingMI->setDesc(get(X86::SHUFPDrri));
2483 WorkingMI->addOperand(Op: MachineOperand::CreateImm(Val: 0x02));
2484 break;
2485 }
2486 case X86::SHUFPDrri: {
2487 // Commute to MOVSD.
2488 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2489 WorkingMI = CloneIfNew(MI);
2490 WorkingMI->setDesc(get(X86::MOVSDrr));
2491 WorkingMI->removeOperand(OpNo: 3);
2492 break;
2493 }
2494 case X86::PCLMULQDQrri:
2495 case X86::VPCLMULQDQrri:
2496 case X86::VPCLMULQDQYrri:
2497 case X86::VPCLMULQDQZrri:
2498 case X86::VPCLMULQDQZ128rri:
2499 case X86::VPCLMULQDQZ256rri: {
2500 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2501 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2502 unsigned Imm = MI.getOperand(i: 3).getImm();
2503 unsigned Src1Hi = Imm & 0x01;
2504 unsigned Src2Hi = Imm & 0x10;
2505 WorkingMI = CloneIfNew(MI);
2506 WorkingMI->getOperand(i: 3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2507 break;
2508 }
2509 case X86::VPCMPBZ128rri:
2510 case X86::VPCMPUBZ128rri:
2511 case X86::VPCMPBZ256rri:
2512 case X86::VPCMPUBZ256rri:
2513 case X86::VPCMPBZrri:
2514 case X86::VPCMPUBZrri:
2515 case X86::VPCMPDZ128rri:
2516 case X86::VPCMPUDZ128rri:
2517 case X86::VPCMPDZ256rri:
2518 case X86::VPCMPUDZ256rri:
2519 case X86::VPCMPDZrri:
2520 case X86::VPCMPUDZrri:
2521 case X86::VPCMPQZ128rri:
2522 case X86::VPCMPUQZ128rri:
2523 case X86::VPCMPQZ256rri:
2524 case X86::VPCMPUQZ256rri:
2525 case X86::VPCMPQZrri:
2526 case X86::VPCMPUQZrri:
2527 case X86::VPCMPWZ128rri:
2528 case X86::VPCMPUWZ128rri:
2529 case X86::VPCMPWZ256rri:
2530 case X86::VPCMPUWZ256rri:
2531 case X86::VPCMPWZrri:
2532 case X86::VPCMPUWZrri:
2533 case X86::VPCMPBZ128rrik:
2534 case X86::VPCMPUBZ128rrik:
2535 case X86::VPCMPBZ256rrik:
2536 case X86::VPCMPUBZ256rrik:
2537 case X86::VPCMPBZrrik:
2538 case X86::VPCMPUBZrrik:
2539 case X86::VPCMPDZ128rrik:
2540 case X86::VPCMPUDZ128rrik:
2541 case X86::VPCMPDZ256rrik:
2542 case X86::VPCMPUDZ256rrik:
2543 case X86::VPCMPDZrrik:
2544 case X86::VPCMPUDZrrik:
2545 case X86::VPCMPQZ128rrik:
2546 case X86::VPCMPUQZ128rrik:
2547 case X86::VPCMPQZ256rrik:
2548 case X86::VPCMPUQZ256rrik:
2549 case X86::VPCMPQZrrik:
2550 case X86::VPCMPUQZrrik:
2551 case X86::VPCMPWZ128rrik:
2552 case X86::VPCMPUWZ128rrik:
2553 case X86::VPCMPWZ256rrik:
2554 case X86::VPCMPUWZ256rrik:
2555 case X86::VPCMPWZrrik:
2556 case X86::VPCMPUWZrrik:
2557 WorkingMI = CloneIfNew(MI);
2558 // Flip comparison mode immediate (if necessary).
2559 WorkingMI->getOperand(i: MI.getNumOperands() - 1)
2560 .setImm(X86::getSwappedVPCMPImm(
2561 Imm: MI.getOperand(i: MI.getNumOperands() - 1).getImm() & 0x7));
2562 break;
2563 case X86::VPCOMBri:
2564 case X86::VPCOMUBri:
2565 case X86::VPCOMDri:
2566 case X86::VPCOMUDri:
2567 case X86::VPCOMQri:
2568 case X86::VPCOMUQri:
2569 case X86::VPCOMWri:
2570 case X86::VPCOMUWri:
2571 WorkingMI = CloneIfNew(MI);
2572 // Flip comparison mode immediate (if necessary).
2573 WorkingMI->getOperand(i: 3).setImm(
2574 X86::getSwappedVPCOMImm(Imm: MI.getOperand(i: 3).getImm() & 0x7));
2575 break;
2576 case X86::VCMPSDZrri:
2577 case X86::VCMPSSZrri:
2578 case X86::VCMPPDZrri:
2579 case X86::VCMPPSZrri:
2580 case X86::VCMPSHZrri:
2581 case X86::VCMPPHZrri:
2582 case X86::VCMPPHZ128rri:
2583 case X86::VCMPPHZ256rri:
2584 case X86::VCMPPDZ128rri:
2585 case X86::VCMPPSZ128rri:
2586 case X86::VCMPPDZ256rri:
2587 case X86::VCMPPSZ256rri:
2588 case X86::VCMPPDZrrik:
2589 case X86::VCMPPSZrrik:
2590 case X86::VCMPPDZ128rrik:
2591 case X86::VCMPPSZ128rrik:
2592 case X86::VCMPPDZ256rrik:
2593 case X86::VCMPPSZ256rrik:
2594 WorkingMI = CloneIfNew(MI);
2595 WorkingMI->getOperand(i: MI.getNumExplicitOperands() - 1)
2596 .setImm(X86::getSwappedVCMPImm(
2597 Imm: MI.getOperand(i: MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2598 break;
2599 case X86::VPERM2F128rr:
2600 case X86::VPERM2I128rr:
2601 // Flip permute source immediate.
2602 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2603 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2604 WorkingMI = CloneIfNew(MI);
2605 WorkingMI->getOperand(i: 3).setImm((MI.getOperand(i: 3).getImm() & 0xFF) ^ 0x22);
2606 break;
2607 case X86::MOVHLPSrr:
2608 case X86::UNPCKHPDrr:
2609 case X86::VMOVHLPSrr:
2610 case X86::VUNPCKHPDrr:
2611 case X86::VMOVHLPSZrr:
2612 case X86::VUNPCKHPDZ128rr:
2613 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2614
2615 switch (Opc) {
2616 default:
2617 llvm_unreachable("Unreachable!");
2618 case X86::MOVHLPSrr:
2619 Opc = X86::UNPCKHPDrr;
2620 break;
2621 case X86::UNPCKHPDrr:
2622 Opc = X86::MOVHLPSrr;
2623 break;
2624 case X86::VMOVHLPSrr:
2625 Opc = X86::VUNPCKHPDrr;
2626 break;
2627 case X86::VUNPCKHPDrr:
2628 Opc = X86::VMOVHLPSrr;
2629 break;
2630 case X86::VMOVHLPSZrr:
2631 Opc = X86::VUNPCKHPDZ128rr;
2632 break;
2633 case X86::VUNPCKHPDZ128rr:
2634 Opc = X86::VMOVHLPSZrr;
2635 break;
2636 }
2637 WorkingMI = CloneIfNew(MI);
2638 WorkingMI->setDesc(get(Opc));
2639 break;
2640 CASE_ND(CMOV16rr)
2641 CASE_ND(CMOV32rr)
2642 CASE_ND(CMOV64rr) {
2643 WorkingMI = CloneIfNew(MI);
2644 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2645 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(i: OpNo).getImm());
2646 WorkingMI->getOperand(i: OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2647 break;
2648 }
2649 case X86::VPTERNLOGDZrri:
2650 case X86::VPTERNLOGDZrmi:
2651 case X86::VPTERNLOGDZ128rri:
2652 case X86::VPTERNLOGDZ128rmi:
2653 case X86::VPTERNLOGDZ256rri:
2654 case X86::VPTERNLOGDZ256rmi:
2655 case X86::VPTERNLOGQZrri:
2656 case X86::VPTERNLOGQZrmi:
2657 case X86::VPTERNLOGQZ128rri:
2658 case X86::VPTERNLOGQZ128rmi:
2659 case X86::VPTERNLOGQZ256rri:
2660 case X86::VPTERNLOGQZ256rmi:
2661 case X86::VPTERNLOGDZrrik:
2662 case X86::VPTERNLOGDZ128rrik:
2663 case X86::VPTERNLOGDZ256rrik:
2664 case X86::VPTERNLOGQZrrik:
2665 case X86::VPTERNLOGQZ128rrik:
2666 case X86::VPTERNLOGQZ256rrik:
2667 case X86::VPTERNLOGDZrrikz:
2668 case X86::VPTERNLOGDZrmikz:
2669 case X86::VPTERNLOGDZ128rrikz:
2670 case X86::VPTERNLOGDZ128rmikz:
2671 case X86::VPTERNLOGDZ256rrikz:
2672 case X86::VPTERNLOGDZ256rmikz:
2673 case X86::VPTERNLOGQZrrikz:
2674 case X86::VPTERNLOGQZrmikz:
2675 case X86::VPTERNLOGQZ128rrikz:
2676 case X86::VPTERNLOGQZ128rmikz:
2677 case X86::VPTERNLOGQZ256rrikz:
2678 case X86::VPTERNLOGQZ256rmikz:
2679 case X86::VPTERNLOGDZ128rmbi:
2680 case X86::VPTERNLOGDZ256rmbi:
2681 case X86::VPTERNLOGDZrmbi:
2682 case X86::VPTERNLOGQZ128rmbi:
2683 case X86::VPTERNLOGQZ256rmbi:
2684 case X86::VPTERNLOGQZrmbi:
2685 case X86::VPTERNLOGDZ128rmbikz:
2686 case X86::VPTERNLOGDZ256rmbikz:
2687 case X86::VPTERNLOGDZrmbikz:
2688 case X86::VPTERNLOGQZ128rmbikz:
2689 case X86::VPTERNLOGQZ256rmbikz:
2690 case X86::VPTERNLOGQZrmbikz: {
2691 WorkingMI = CloneIfNew(MI);
2692 commuteVPTERNLOG(MI&: *WorkingMI, SrcOpIdx1: OpIdx1, SrcOpIdx2: OpIdx2);
2693 break;
2694 }
2695 default:
2696 if (isCommutableVPERMV3Instruction(Opcode: Opc)) {
2697 WorkingMI = CloneIfNew(MI);
2698 WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opcode: Opc)));
2699 break;
2700 }
2701
2702 if (auto *FMA3Group = getFMA3Group(Opcode: Opc, TSFlags: MI.getDesc().TSFlags)) {
2703 WorkingMI = CloneIfNew(MI);
2704 WorkingMI->setDesc(
2705 get(getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1: OpIdx1, SrcOpIdx2: OpIdx2, FMA3Group: *FMA3Group)));
2706 break;
2707 }
2708 }
2709 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2710}
2711
2712bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2713 unsigned &SrcOpIdx1,
2714 unsigned &SrcOpIdx2,
2715 bool IsIntrinsic) const {
2716 uint64_t TSFlags = MI.getDesc().TSFlags;
2717
2718 unsigned FirstCommutableVecOp = 1;
2719 unsigned LastCommutableVecOp = 3;
2720 unsigned KMaskOp = -1U;
2721 if (X86II::isKMasked(TSFlags)) {
2722 // For k-zero-masked operations it is Ok to commute the first vector
2723 // operand. Unless this is an intrinsic instruction.
2724 // For regular k-masked operations a conservative choice is done as the
2725 // elements of the first vector operand, for which the corresponding bit
2726 // in the k-mask operand is set to 0, are copied to the result of the
2727 // instruction.
2728 // TODO/FIXME: The commute still may be legal if it is known that the
2729 // k-mask operand is set to either all ones or all zeroes.
2730 // It is also Ok to commute the 1st operand if all users of MI use only
2731 // the elements enabled by the k-mask operand. For example,
2732 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2733 // : v1[i];
2734 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2735 // // Ok, to commute v1 in FMADD213PSZrk.
2736
2737 // The k-mask operand has index = 2 for masked and zero-masked operations.
2738 KMaskOp = 2;
2739
2740 // The operand with index = 1 is used as a source for those elements for
2741 // which the corresponding bit in the k-mask is set to 0.
2742 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2743 FirstCommutableVecOp = 3;
2744
2745 LastCommutableVecOp++;
2746 } else if (IsIntrinsic) {
2747 // Commuting the first operand of an intrinsic instruction isn't possible
2748 // unless we can prove that only the lowest element of the result is used.
2749 FirstCommutableVecOp = 2;
2750 }
2751
2752 if (isMem(MI, Op: LastCommutableVecOp))
2753 LastCommutableVecOp--;
2754
2755 // Only the first RegOpsNum operands are commutable.
2756 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2757 // that the operand is not specified/fixed.
2758 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2759 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2760 SrcOpIdx1 == KMaskOp))
2761 return false;
2762 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2763 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2764 SrcOpIdx2 == KMaskOp))
2765 return false;
2766
2767 // Look for two different register operands assumed to be commutable
2768 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2769 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2770 SrcOpIdx2 == CommuteAnyOperandIndex) {
2771 unsigned CommutableOpIdx2 = SrcOpIdx2;
2772
2773 // At least one of operands to be commuted is not specified and
2774 // this method is free to choose appropriate commutable operands.
2775 if (SrcOpIdx1 == SrcOpIdx2)
2776 // Both of operands are not fixed. By default set one of commutable
2777 // operands to the last register operand of the instruction.
2778 CommutableOpIdx2 = LastCommutableVecOp;
2779 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2780 // Only one of operands is not fixed.
2781 CommutableOpIdx2 = SrcOpIdx1;
2782
2783 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2784 // operand and assign its index to CommutableOpIdx1.
2785 Register Op2Reg = MI.getOperand(i: CommutableOpIdx2).getReg();
2786
2787 unsigned CommutableOpIdx1;
2788 for (CommutableOpIdx1 = LastCommutableVecOp;
2789 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2790 // Just ignore and skip the k-mask operand.
2791 if (CommutableOpIdx1 == KMaskOp)
2792 continue;
2793
2794 // The commuted operands must have different registers.
2795 // Otherwise, the commute transformation does not change anything and
2796 // is useless then.
2797 if (Op2Reg != MI.getOperand(i: CommutableOpIdx1).getReg())
2798 break;
2799 }
2800
2801 // No appropriate commutable operands were found.
2802 if (CommutableOpIdx1 < FirstCommutableVecOp)
2803 return false;
2804
2805 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2806 // to return those values.
2807 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2808 CommutableOpIdx2))
2809 return false;
2810 }
2811
2812 return true;
2813}
2814
2815bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2816 unsigned &SrcOpIdx1,
2817 unsigned &SrcOpIdx2) const {
2818 const MCInstrDesc &Desc = MI.getDesc();
2819 if (!Desc.isCommutable())
2820 return false;
2821
2822 switch (MI.getOpcode()) {
2823 case X86::CMPSDrri:
2824 case X86::CMPSSrri:
2825 case X86::CMPPDrri:
2826 case X86::CMPPSrri:
2827 case X86::VCMPSDrri:
2828 case X86::VCMPSSrri:
2829 case X86::VCMPPDrri:
2830 case X86::VCMPPSrri:
2831 case X86::VCMPPDYrri:
2832 case X86::VCMPPSYrri:
2833 case X86::VCMPSDZrri:
2834 case X86::VCMPSSZrri:
2835 case X86::VCMPPDZrri:
2836 case X86::VCMPPSZrri:
2837 case X86::VCMPSHZrri:
2838 case X86::VCMPPHZrri:
2839 case X86::VCMPPHZ128rri:
2840 case X86::VCMPPHZ256rri:
2841 case X86::VCMPPDZ128rri:
2842 case X86::VCMPPSZ128rri:
2843 case X86::VCMPPDZ256rri:
2844 case X86::VCMPPSZ256rri:
2845 case X86::VCMPPDZrrik:
2846 case X86::VCMPPSZrrik:
2847 case X86::VCMPPDZ128rrik:
2848 case X86::VCMPPSZ128rrik:
2849 case X86::VCMPPDZ256rrik:
2850 case X86::VCMPPSZ256rrik: {
2851 unsigned OpOffset = X86II::isKMasked(TSFlags: Desc.TSFlags) ? 1 : 0;
2852
2853 // Float comparison can be safely commuted for
2854 // Ordered/Unordered/Equal/NotEqual tests
2855 unsigned Imm = MI.getOperand(i: 3 + OpOffset).getImm() & 0x7;
2856 switch (Imm) {
2857 default:
2858 // EVEX versions can be commuted.
2859 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2860 break;
2861 return false;
2862 case 0x00: // EQUAL
2863 case 0x03: // UNORDERED
2864 case 0x04: // NOT EQUAL
2865 case 0x07: // ORDERED
2866 break;
2867 }
2868
2869 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2870 // when masked).
2871 // Assign them to the returned operand indices here.
2872 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2873 2 + OpOffset);
2874 }
2875 case X86::MOVSSrr:
2876 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2877 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2878 // AVX implies sse4.1.
2879 if (Subtarget.hasSSE41())
2880 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2881 return false;
2882 case X86::SHUFPDrri:
2883 // We can commute this to MOVSD.
2884 if (MI.getOperand(3).getImm() == 0x02)
2885 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2886 return false;
2887 case X86::MOVHLPSrr:
2888 case X86::UNPCKHPDrr:
2889 case X86::VMOVHLPSrr:
2890 case X86::VUNPCKHPDrr:
2891 case X86::VMOVHLPSZrr:
2892 case X86::VUNPCKHPDZ128rr:
2893 if (Subtarget.hasSSE2())
2894 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2895 return false;
2896 case X86::VPTERNLOGDZrri:
2897 case X86::VPTERNLOGDZrmi:
2898 case X86::VPTERNLOGDZ128rri:
2899 case X86::VPTERNLOGDZ128rmi:
2900 case X86::VPTERNLOGDZ256rri:
2901 case X86::VPTERNLOGDZ256rmi:
2902 case X86::VPTERNLOGQZrri:
2903 case X86::VPTERNLOGQZrmi:
2904 case X86::VPTERNLOGQZ128rri:
2905 case X86::VPTERNLOGQZ128rmi:
2906 case X86::VPTERNLOGQZ256rri:
2907 case X86::VPTERNLOGQZ256rmi:
2908 case X86::VPTERNLOGDZrrik:
2909 case X86::VPTERNLOGDZ128rrik:
2910 case X86::VPTERNLOGDZ256rrik:
2911 case X86::VPTERNLOGQZrrik:
2912 case X86::VPTERNLOGQZ128rrik:
2913 case X86::VPTERNLOGQZ256rrik:
2914 case X86::VPTERNLOGDZrrikz:
2915 case X86::VPTERNLOGDZrmikz:
2916 case X86::VPTERNLOGDZ128rrikz:
2917 case X86::VPTERNLOGDZ128rmikz:
2918 case X86::VPTERNLOGDZ256rrikz:
2919 case X86::VPTERNLOGDZ256rmikz:
2920 case X86::VPTERNLOGQZrrikz:
2921 case X86::VPTERNLOGQZrmikz:
2922 case X86::VPTERNLOGQZ128rrikz:
2923 case X86::VPTERNLOGQZ128rmikz:
2924 case X86::VPTERNLOGQZ256rrikz:
2925 case X86::VPTERNLOGQZ256rmikz:
2926 case X86::VPTERNLOGDZ128rmbi:
2927 case X86::VPTERNLOGDZ256rmbi:
2928 case X86::VPTERNLOGDZrmbi:
2929 case X86::VPTERNLOGQZ128rmbi:
2930 case X86::VPTERNLOGQZ256rmbi:
2931 case X86::VPTERNLOGQZrmbi:
2932 case X86::VPTERNLOGDZ128rmbikz:
2933 case X86::VPTERNLOGDZ256rmbikz:
2934 case X86::VPTERNLOGDZrmbikz:
2935 case X86::VPTERNLOGQZ128rmbikz:
2936 case X86::VPTERNLOGQZ256rmbikz:
2937 case X86::VPTERNLOGQZrmbikz:
2938 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2939 case X86::VPDPWSSDYrr:
2940 case X86::VPDPWSSDrr:
2941 case X86::VPDPWSSDSYrr:
2942 case X86::VPDPWSSDSrr:
2943 case X86::VPDPWUUDrr:
2944 case X86::VPDPWUUDYrr:
2945 case X86::VPDPWUUDSrr:
2946 case X86::VPDPWUUDSYrr:
2947 case X86::VPDPBSSDSrr:
2948 case X86::VPDPBSSDSYrr:
2949 case X86::VPDPBSSDrr:
2950 case X86::VPDPBSSDYrr:
2951 case X86::VPDPBUUDSrr:
2952 case X86::VPDPBUUDSYrr:
2953 case X86::VPDPBUUDrr:
2954 case X86::VPDPBUUDYrr:
2955 case X86::VPDPWSSDZ128r:
2956 case X86::VPDPWSSDZ128rk:
2957 case X86::VPDPWSSDZ128rkz:
2958 case X86::VPDPWSSDZ256r:
2959 case X86::VPDPWSSDZ256rk:
2960 case X86::VPDPWSSDZ256rkz:
2961 case X86::VPDPWSSDZr:
2962 case X86::VPDPWSSDZrk:
2963 case X86::VPDPWSSDZrkz:
2964 case X86::VPDPWSSDSZ128r:
2965 case X86::VPDPWSSDSZ128rk:
2966 case X86::VPDPWSSDSZ128rkz:
2967 case X86::VPDPWSSDSZ256r:
2968 case X86::VPDPWSSDSZ256rk:
2969 case X86::VPDPWSSDSZ256rkz:
2970 case X86::VPDPWSSDSZr:
2971 case X86::VPDPWSSDSZrk:
2972 case X86::VPDPWSSDSZrkz:
2973 case X86::VPMADD52HUQrr:
2974 case X86::VPMADD52HUQYrr:
2975 case X86::VPMADD52HUQZ128r:
2976 case X86::VPMADD52HUQZ128rk:
2977 case X86::VPMADD52HUQZ128rkz:
2978 case X86::VPMADD52HUQZ256r:
2979 case X86::VPMADD52HUQZ256rk:
2980 case X86::VPMADD52HUQZ256rkz:
2981 case X86::VPMADD52HUQZr:
2982 case X86::VPMADD52HUQZrk:
2983 case X86::VPMADD52HUQZrkz:
2984 case X86::VPMADD52LUQrr:
2985 case X86::VPMADD52LUQYrr:
2986 case X86::VPMADD52LUQZ128r:
2987 case X86::VPMADD52LUQZ128rk:
2988 case X86::VPMADD52LUQZ128rkz:
2989 case X86::VPMADD52LUQZ256r:
2990 case X86::VPMADD52LUQZ256rk:
2991 case X86::VPMADD52LUQZ256rkz:
2992 case X86::VPMADD52LUQZr:
2993 case X86::VPMADD52LUQZrk:
2994 case X86::VPMADD52LUQZrkz:
2995 case X86::VFMADDCPHZr:
2996 case X86::VFMADDCPHZrk:
2997 case X86::VFMADDCPHZrkz:
2998 case X86::VFMADDCPHZ128r:
2999 case X86::VFMADDCPHZ128rk:
3000 case X86::VFMADDCPHZ128rkz:
3001 case X86::VFMADDCPHZ256r:
3002 case X86::VFMADDCPHZ256rk:
3003 case X86::VFMADDCPHZ256rkz:
3004 case X86::VFMADDCSHZr:
3005 case X86::VFMADDCSHZrk:
3006 case X86::VFMADDCSHZrkz: {
3007 unsigned CommutableOpIdx1 = 2;
3008 unsigned CommutableOpIdx2 = 3;
3009 if (X86II::isKMasked(TSFlags: Desc.TSFlags)) {
3010 // Skip the mask register.
3011 ++CommutableOpIdx1;
3012 ++CommutableOpIdx2;
3013 }
3014 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3015 CommutableOpIdx2))
3016 return false;
3017 if (!MI.getOperand(i: SrcOpIdx1).isReg() || !MI.getOperand(i: SrcOpIdx2).isReg())
3018 // No idea.
3019 return false;
3020 return true;
3021 }
3022
3023 default:
3024 const X86InstrFMA3Group *FMA3Group =
3025 getFMA3Group(Opcode: MI.getOpcode(), TSFlags: MI.getDesc().TSFlags);
3026 if (FMA3Group)
3027 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
3028 IsIntrinsic: FMA3Group->isIntrinsic());
3029
3030 // Handled masked instructions since we need to skip over the mask input
3031 // and the preserved input.
3032 if (X86II::isKMasked(TSFlags: Desc.TSFlags)) {
3033 // First assume that the first input is the mask operand and skip past it.
3034 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
3035 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
3036 // Check if the first input is tied. If there isn't one then we only
3037 // need to skip the mask operand which we did above.
3038 if ((MI.getDesc().getOperandConstraint(OpNum: Desc.getNumDefs(),
3039 Constraint: MCOI::TIED_TO) != -1)) {
3040 // If this is zero masking instruction with a tied operand, we need to
3041 // move the first index back to the first input since this must
3042 // be a 3 input instruction and we want the first two non-mask inputs.
3043 // Otherwise this is a 2 input instruction with a preserved input and
3044 // mask, so we need to move the indices to skip one more input.
3045 if (X86II::isKMergeMasked(TSFlags: Desc.TSFlags)) {
3046 ++CommutableOpIdx1;
3047 ++CommutableOpIdx2;
3048 } else {
3049 --CommutableOpIdx1;
3050 }
3051 }
3052
3053 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3054 CommutableOpIdx2))
3055 return false;
3056
3057 if (!MI.getOperand(i: SrcOpIdx1).isReg() ||
3058 !MI.getOperand(i: SrcOpIdx2).isReg())
3059 // No idea.
3060 return false;
3061 return true;
3062 }
3063
3064 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3065 }
3066 return false;
3067}
3068
3069static bool isConvertibleLEA(MachineInstr *MI) {
3070 unsigned Opcode = MI->getOpcode();
3071 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3072 Opcode != X86::LEA64_32r)
3073 return false;
3074
3075 const MachineOperand &Scale = MI->getOperand(i: 1 + X86::AddrScaleAmt);
3076 const MachineOperand &Disp = MI->getOperand(i: 1 + X86::AddrDisp);
3077 const MachineOperand &Segment = MI->getOperand(i: 1 + X86::AddrSegmentReg);
3078
3079 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
3080 Scale.getImm() > 1)
3081 return false;
3082
3083 return true;
3084}
3085
3086bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
3087 // Currently we're interested in following sequence only.
3088 // r3 = lea r1, r2
3089 // r5 = add r3, r4
3090 // Both r3 and r4 are killed in add, we hope the add instruction has the
3091 // operand order
3092 // r5 = add r4, r3
3093 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3094 unsigned Opcode = MI.getOpcode();
3095 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3096 return false;
3097
3098 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3099 Register Reg1 = MI.getOperand(i: 1).getReg();
3100 Register Reg2 = MI.getOperand(i: 2).getReg();
3101
3102 // Check if Reg1 comes from LEA in the same MBB.
3103 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg: Reg1)) {
3104 if (isConvertibleLEA(MI: Inst) && Inst->getParent() == MI.getParent()) {
3105 Commute = true;
3106 return true;
3107 }
3108 }
3109
3110 // Check if Reg2 comes from LEA in the same MBB.
3111 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg: Reg2)) {
3112 if (isConvertibleLEA(MI: Inst) && Inst->getParent() == MI.getParent()) {
3113 Commute = false;
3114 return true;
3115 }
3116 }
3117
3118 return false;
3119}
3120
3121int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
3122 unsigned Opcode = MCID.getOpcode();
3123 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode) ||
3124 X86::isCFCMOVCC(Opcode)))
3125 return -1;
3126 // Assume that condition code is always the last use operand.
3127 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
3128 return NumUses - 1;
3129}
3130
3131X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
3132 const MCInstrDesc &MCID = MI.getDesc();
3133 int CondNo = getCondSrcNoFromDesc(MCID);
3134 if (CondNo < 0)
3135 return X86::COND_INVALID;
3136 CondNo += MCID.getNumDefs();
3137 return static_cast<X86::CondCode>(MI.getOperand(i: CondNo).getImm());
3138}
3139
3140X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
3141 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3142 : X86::COND_INVALID;
3143}
3144
3145X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
3146 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3147 : X86::COND_INVALID;
3148}
3149
3150X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
3151 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3152 : X86::COND_INVALID;
3153}
3154
3155X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) {
3156 return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3157 : X86::COND_INVALID;
3158}
3159
3160/// Return the inverse of the specified condition,
3161/// e.g. turning COND_E to COND_NE.
3162X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3163 switch (CC) {
3164 default:
3165 llvm_unreachable("Illegal condition code!");
3166 case X86::COND_E:
3167 return X86::COND_NE;
3168 case X86::COND_NE:
3169 return X86::COND_E;
3170 case X86::COND_L:
3171 return X86::COND_GE;
3172 case X86::COND_LE:
3173 return X86::COND_G;
3174 case X86::COND_G:
3175 return X86::COND_LE;
3176 case X86::COND_GE:
3177 return X86::COND_L;
3178 case X86::COND_B:
3179 return X86::COND_AE;
3180 case X86::COND_BE:
3181 return X86::COND_A;
3182 case X86::COND_A:
3183 return X86::COND_BE;
3184 case X86::COND_AE:
3185 return X86::COND_B;
3186 case X86::COND_S:
3187 return X86::COND_NS;
3188 case X86::COND_NS:
3189 return X86::COND_S;
3190 case X86::COND_P:
3191 return X86::COND_NP;
3192 case X86::COND_NP:
3193 return X86::COND_P;
3194 case X86::COND_O:
3195 return X86::COND_NO;
3196 case X86::COND_NO:
3197 return X86::COND_O;
3198 case X86::COND_NE_OR_P:
3199 return X86::COND_E_AND_NP;
3200 case X86::COND_E_AND_NP:
3201 return X86::COND_NE_OR_P;
3202 }
3203}
3204
3205/// Assuming the flags are set by MI(a,b), return the condition code if we
3206/// modify the instructions such that flags are set by MI(b,a).
3207static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3208 switch (CC) {
3209 default:
3210 return X86::COND_INVALID;
3211 case X86::COND_E:
3212 return X86::COND_E;
3213 case X86::COND_NE:
3214 return X86::COND_NE;
3215 case X86::COND_L:
3216 return X86::COND_G;
3217 case X86::COND_LE:
3218 return X86::COND_GE;
3219 case X86::COND_G:
3220 return X86::COND_L;
3221 case X86::COND_GE:
3222 return X86::COND_LE;
3223 case X86::COND_B:
3224 return X86::COND_A;
3225 case X86::COND_BE:
3226 return X86::COND_AE;
3227 case X86::COND_A:
3228 return X86::COND_B;
3229 case X86::COND_AE:
3230 return X86::COND_BE;
3231 }
3232}
3233
3234std::pair<X86::CondCode, bool>
3235X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
3236 X86::CondCode CC = X86::COND_INVALID;
3237 bool NeedSwap = false;
3238 switch (Predicate) {
3239 default:
3240 break;
3241 // Floating-point Predicates
3242 case CmpInst::FCMP_UEQ:
3243 CC = X86::COND_E;
3244 break;
3245 case CmpInst::FCMP_OLT:
3246 NeedSwap = true;
3247 [[fallthrough]];
3248 case CmpInst::FCMP_OGT:
3249 CC = X86::COND_A;
3250 break;
3251 case CmpInst::FCMP_OLE:
3252 NeedSwap = true;
3253 [[fallthrough]];
3254 case CmpInst::FCMP_OGE:
3255 CC = X86::COND_AE;
3256 break;
3257 case CmpInst::FCMP_UGT:
3258 NeedSwap = true;
3259 [[fallthrough]];
3260 case CmpInst::FCMP_ULT:
3261 CC = X86::COND_B;
3262 break;
3263 case CmpInst::FCMP_UGE:
3264 NeedSwap = true;
3265 [[fallthrough]];
3266 case CmpInst::FCMP_ULE:
3267 CC = X86::COND_BE;
3268 break;
3269 case CmpInst::FCMP_ONE:
3270 CC = X86::COND_NE;
3271 break;
3272 case CmpInst::FCMP_UNO:
3273 CC = X86::COND_P;
3274 break;
3275 case CmpInst::FCMP_ORD:
3276 CC = X86::COND_NP;
3277 break;
3278 case CmpInst::FCMP_OEQ:
3279 [[fallthrough]];
3280 case CmpInst::FCMP_UNE:
3281 CC = X86::COND_INVALID;
3282 break;
3283
3284 // Integer Predicates
3285 case CmpInst::ICMP_EQ:
3286 CC = X86::COND_E;
3287 break;
3288 case CmpInst::ICMP_NE:
3289 CC = X86::COND_NE;
3290 break;
3291 case CmpInst::ICMP_UGT:
3292 CC = X86::COND_A;
3293 break;
3294 case CmpInst::ICMP_UGE:
3295 CC = X86::COND_AE;
3296 break;
3297 case CmpInst::ICMP_ULT:
3298 CC = X86::COND_B;
3299 break;
3300 case CmpInst::ICMP_ULE:
3301 CC = X86::COND_BE;
3302 break;
3303 case CmpInst::ICMP_SGT:
3304 CC = X86::COND_G;
3305 break;
3306 case CmpInst::ICMP_SGE:
3307 CC = X86::COND_GE;
3308 break;
3309 case CmpInst::ICMP_SLT:
3310 CC = X86::COND_L;
3311 break;
3312 case CmpInst::ICMP_SLE:
3313 CC = X86::COND_LE;
3314 break;
3315 }
3316
3317 return std::make_pair(x&: CC, y&: NeedSwap);
3318}
3319
3320/// Return a cmov opcode for the given register size in bytes, and operand type.
3321unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand,
3322 bool HasNDD) {
3323 switch (RegBytes) {
3324 default:
3325 llvm_unreachable("Illegal register size!");
3326#define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3327 case 2:
3328 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm)
3329 : GET_ND_IF_ENABLED(X86::CMOV16rr);
3330 case 4:
3331 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm)
3332 : GET_ND_IF_ENABLED(X86::CMOV32rr);
3333 case 8:
3334 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm)
3335 : GET_ND_IF_ENABLED(X86::CMOV64rr);
3336 }
3337}
3338
3339/// Get the VPCMP immediate for the given condition.
3340unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
3341 switch (CC) {
3342 default:
3343 llvm_unreachable("Unexpected SETCC condition");
3344 case ISD::SETNE:
3345 return 4;
3346 case ISD::SETEQ:
3347 return 0;
3348 case ISD::SETULT:
3349 case ISD::SETLT:
3350 return 1;
3351 case ISD::SETUGT:
3352 case ISD::SETGT:
3353 return 6;
3354 case ISD::SETUGE:
3355 case ISD::SETGE:
3356 return 5;
3357 case ISD::SETULE:
3358 case ISD::SETLE:
3359 return 2;
3360 }
3361}
3362
3363/// Get the VPCMP immediate if the operands are swapped.
3364unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
3365 switch (Imm) {
3366 default:
3367 llvm_unreachable("Unreachable!");
3368 case 0x01:
3369 Imm = 0x06;
3370 break; // LT -> NLE
3371 case 0x02:
3372 Imm = 0x05;
3373 break; // LE -> NLT
3374 case 0x05:
3375 Imm = 0x02;
3376 break; // NLT -> LE
3377 case 0x06:
3378 Imm = 0x01;
3379 break; // NLE -> LT
3380 case 0x00: // EQ
3381 case 0x03: // FALSE
3382 case 0x04: // NE
3383 case 0x07: // TRUE
3384 break;
3385 }
3386
3387 return Imm;
3388}
3389
3390/// Get the VPCOM immediate if the operands are swapped.
3391unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
3392 switch (Imm) {
3393 default:
3394 llvm_unreachable("Unreachable!");
3395 case 0x00:
3396 Imm = 0x02;
3397 break; // LT -> GT
3398 case 0x01:
3399 Imm = 0x03;
3400 break; // LE -> GE
3401 case 0x02:
3402 Imm = 0x00;
3403 break; // GT -> LT
3404 case 0x03:
3405 Imm = 0x01;
3406 break; // GE -> LE
3407 case 0x04: // EQ
3408 case 0x05: // NE
3409 case 0x06: // FALSE
3410 case 0x07: // TRUE
3411 break;
3412 }
3413
3414 return Imm;
3415}
3416
3417/// Get the VCMP immediate if the operands are swapped.
3418unsigned X86::getSwappedVCMPImm(unsigned Imm) {
3419 // Only need the lower 2 bits to distinquish.
3420 switch (Imm & 0x3) {
3421 default:
3422 llvm_unreachable("Unreachable!");
3423 case 0x00:
3424 case 0x03:
3425 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3426 break;
3427 case 0x01:
3428 case 0x02:
3429 // Need to toggle bits 3:0. Bit 4 stays the same.
3430 Imm ^= 0xf;
3431 break;
3432 }
3433
3434 return Imm;
3435}
3436
3437unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) {
3438 if (Info.RegClass == X86::VR128RegClassID ||
3439 Info.RegClass == X86::VR128XRegClassID)
3440 return 128;
3441 if (Info.RegClass == X86::VR256RegClassID ||
3442 Info.RegClass == X86::VR256XRegClassID)
3443 return 256;
3444 if (Info.RegClass == X86::VR512RegClassID)
3445 return 512;
3446 llvm_unreachable("Unknown register class!");
3447}
3448
3449/// Return true if the Reg is X87 register.
3450static bool isX87Reg(unsigned Reg) {
3451 return (Reg == X86::FPCW || Reg == X86::FPSW ||
3452 (Reg >= X86::ST0 && Reg <= X86::ST7));
3453}
3454
3455/// check if the instruction is X87 instruction
3456bool X86::isX87Instruction(MachineInstr &MI) {
3457 // Call defs X87 register, so we special case it here because
3458 // otherwise calls are incorrectly flagged as x87 instructions
3459 // as a result.
3460 if (MI.isCall())
3461 return false;
3462 for (const MachineOperand &MO : MI.operands()) {
3463 if (!MO.isReg())
3464 continue;
3465 if (isX87Reg(Reg: MO.getReg()))
3466 return true;
3467 }
3468 return false;
3469}
3470
3471int X86::getFirstAddrOperandIdx(const MachineInstr &MI) {
3472 auto IsMemOp = [](const MCOperandInfo &OpInfo) {
3473 return OpInfo.OperandType == MCOI::OPERAND_MEMORY;
3474 };
3475
3476 const MCInstrDesc &Desc = MI.getDesc();
3477
3478 // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3479 // instructions (fast case).
3480 if (!X86II::isPseudo(TSFlags: Desc.TSFlags)) {
3481 int MemRefIdx = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags);
3482 if (MemRefIdx >= 0)
3483 return MemRefIdx + X86II::getOperandBias(Desc);
3484#ifdef EXPENSIVE_CHECKS
3485 assert(none_of(Desc.operands(), IsMemOp) &&
3486 "Got false negative from X86II::getMemoryOperandNo()!");
3487#endif
3488 return -1;
3489 }
3490
3491 // Otherwise, handle pseudo instructions by examining the type of their
3492 // operands (slow case). An instruction cannot have a memory reference if it
3493 // has fewer than AddrNumOperands (= 5) explicit operands.
3494 unsigned NumOps = Desc.getNumOperands();
3495 if (NumOps < X86::AddrNumOperands) {
3496#ifdef EXPENSIVE_CHECKS
3497 assert(none_of(Desc.operands(), IsMemOp) &&
3498 "Expected no operands to have OPERAND_MEMORY type!");
3499#endif
3500 return -1;
3501 }
3502
3503 // The first operand with type OPERAND_MEMORY indicates the start of a memory
3504 // reference. We expect the following AddrNumOperand-1 operands to also have
3505 // OPERAND_MEMORY type.
3506 for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) {
3507 if (IsMemOp(Desc.operands()[I])) {
3508#ifdef EXPENSIVE_CHECKS
3509 assert(std::all_of(Desc.operands().begin() + I,
3510 Desc.operands().begin() + I + X86::AddrNumOperands,
3511 IsMemOp) &&
3512 "Expected all five operands in the memory reference to have "
3513 "OPERAND_MEMORY type!");
3514#endif
3515 return I;
3516 }
3517 }
3518
3519 return -1;
3520}
3521
3522const Constant *X86::getConstantFromPool(const MachineInstr &MI,
3523 unsigned OpNo) {
3524 assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) &&
3525 "Unexpected number of operands!");
3526
3527 const MachineOperand &Index = MI.getOperand(i: OpNo + X86::AddrIndexReg);
3528 if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3529 return nullptr;
3530
3531 const MachineOperand &Disp = MI.getOperand(i: OpNo + X86::AddrDisp);
3532 if (!Disp.isCPI() || Disp.getOffset() != 0)
3533 return nullptr;
3534
3535 ArrayRef<MachineConstantPoolEntry> Constants =
3536 MI.getParent()->getParent()->getConstantPool()->getConstants();
3537 const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()];
3538
3539 // Bail if this is a machine constant pool entry, we won't be able to dig out
3540 // anything useful.
3541 if (ConstantEntry.isMachineConstantPoolEntry())
3542 return nullptr;
3543
3544 return ConstantEntry.Val.ConstVal;
3545}
3546
3547bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
3548 switch (MI.getOpcode()) {
3549 case X86::TCRETURNdi:
3550 case X86::TCRETURNri:
3551 case X86::TCRETURNmi:
3552 case X86::TCRETURNdi64:
3553 case X86::TCRETURNri64:
3554 case X86::TCRETURNmi64:
3555 return true;
3556 default:
3557 return false;
3558 }
3559}
3560
3561bool X86InstrInfo::canMakeTailCallConditional(
3562 SmallVectorImpl<MachineOperand> &BranchCond,
3563 const MachineInstr &TailCall) const {
3564
3565 const MachineFunction *MF = TailCall.getMF();
3566
3567 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
3568 // Kernel patches thunk calls in runtime, these should never be conditional.
3569 const MachineOperand &Target = TailCall.getOperand(i: 0);
3570 if (Target.isSymbol()) {
3571 StringRef Symbol(Target.getSymbolName());
3572 // this is currently only relevant to r11/kernel indirect thunk.
3573 if (Symbol.equals(RHS: "__x86_indirect_thunk_r11"))
3574 return false;
3575 }
3576 }
3577
3578 if (TailCall.getOpcode() != X86::TCRETURNdi &&
3579 TailCall.getOpcode() != X86::TCRETURNdi64) {
3580 // Only direct calls can be done with a conditional branch.
3581 return false;
3582 }
3583
3584 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3585 // Conditional tail calls confuse the Win64 unwinder.
3586 return false;
3587 }
3588
3589 assert(BranchCond.size() == 1);
3590 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3591 // Can't make a conditional tail call with this condition.
3592 return false;
3593 }
3594
3595 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3596 if (X86FI->getTCReturnAddrDelta() != 0 ||
3597 TailCall.getOperand(i: 1).getImm() != 0) {
3598 // A conditional tail call cannot do any stack adjustment.
3599 return false;
3600 }
3601
3602 return true;
3603}
3604
3605void X86InstrInfo::replaceBranchWithTailCall(
3606 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3607 const MachineInstr &TailCall) const {
3608 assert(canMakeTailCallConditional(BranchCond, TailCall));
3609
3610 MachineBasicBlock::iterator I = MBB.end();
3611 while (I != MBB.begin()) {
3612 --I;
3613 if (I->isDebugInstr())
3614 continue;
3615 if (!I->isBranch())
3616 assert(0 && "Can't find the branch to replace!");
3617
3618 X86::CondCode CC = X86::getCondFromBranch(MI: *I);
3619 assert(BranchCond.size() == 1);
3620 if (CC != BranchCond[0].getImm())
3621 continue;
3622
3623 break;
3624 }
3625
3626 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3627 : X86::TCRETURNdi64cc;
3628
3629 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(MBBI: I), get(Opc));
3630 MIB->addOperand(TailCall.getOperand(i: 0)); // Destination.
3631 MIB.addImm(0); // Stack offset (not used).
3632 MIB->addOperand(BranchCond[0]); // Condition.
3633 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3634
3635 // Add implicit uses and defs of all live regs potentially clobbered by the
3636 // call. This way they still appear live across the call.
3637 LivePhysRegs LiveRegs(getRegisterInfo());
3638 LiveRegs.addLiveOuts(MBB);
3639 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3640 LiveRegs.stepForward(MI: *MIB, Clobbers);
3641 for (const auto &C : Clobbers) {
3642 MIB.addReg(C.first, RegState::Implicit);
3643 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3644 }
3645
3646 I->eraseFromParent();
3647}
3648
3649// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3650// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3651// fallthrough MBB cannot be identified.
3652static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3653 MachineBasicBlock *TBB) {
3654 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3655 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3656 // and fallthrough MBB. If we find more than one, we cannot identify the
3657 // fallthrough MBB and should return nullptr.
3658 MachineBasicBlock *FallthroughBB = nullptr;
3659 for (MachineBasicBlock *Succ : MBB->successors()) {
3660 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3661 continue;
3662 // Return a nullptr if we found more than one fallthrough successor.
3663 if (FallthroughBB && FallthroughBB != TBB)
3664 return nullptr;
3665 FallthroughBB = Succ;
3666 }
3667 return FallthroughBB;
3668}
3669
3670bool X86InstrInfo::analyzeBranchImpl(
3671 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3672 SmallVectorImpl<MachineOperand> &Cond,
3673 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3674
3675 // Start from the bottom of the block and work up, examining the
3676 // terminator instructions.
3677 MachineBasicBlock::iterator I = MBB.end();
3678 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3679 while (I != MBB.begin()) {
3680 --I;
3681 if (I->isDebugInstr())
3682 continue;
3683
3684 // Working from the bottom, when we see a non-terminator instruction, we're
3685 // done.
3686 if (!isUnpredicatedTerminator(*I))
3687 break;
3688
3689 // A terminator that isn't a branch can't easily be handled by this
3690 // analysis.
3691 if (!I->isBranch())
3692 return true;
3693
3694 // Handle unconditional branches.
3695 if (I->getOpcode() == X86::JMP_1) {
3696 UnCondBrIter = I;
3697
3698 if (!AllowModify) {
3699 TBB = I->getOperand(i: 0).getMBB();
3700 continue;
3701 }
3702
3703 // If the block has any instructions after a JMP, delete them.
3704 MBB.erase(I: std::next(x: I), E: MBB.end());
3705
3706 Cond.clear();
3707 FBB = nullptr;
3708
3709 // Delete the JMP if it's equivalent to a fall-through.
3710 if (MBB.isLayoutSuccessor(MBB: I->getOperand(i: 0).getMBB())) {
3711 TBB = nullptr;
3712 I->eraseFromParent();
3713 I = MBB.end();
3714 UnCondBrIter = MBB.end();
3715 continue;
3716 }
3717
3718 // TBB is used to indicate the unconditional destination.
3719 TBB = I->getOperand(i: 0).getMBB();
3720 continue;
3721 }
3722
3723 // Handle conditional branches.
3724 X86::CondCode BranchCode = X86::getCondFromBranch(MI: *I);
3725 if (BranchCode == X86::COND_INVALID)
3726 return true; // Can't handle indirect branch.
3727
3728 // In practice we should never have an undef eflags operand, if we do
3729 // abort here as we are not prepared to preserve the flag.
3730 if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef())
3731 return true;
3732
3733 // Working from the bottom, handle the first conditional branch.
3734 if (Cond.empty()) {
3735 FBB = TBB;
3736 TBB = I->getOperand(i: 0).getMBB();
3737 Cond.push_back(Elt: MachineOperand::CreateImm(Val: BranchCode));
3738 CondBranches.push_back(Elt: &*I);
3739 continue;
3740 }
3741
3742 // Handle subsequent conditional branches. Only handle the case where all
3743 // conditional branches branch to the same destination and their condition
3744 // opcodes fit one of the special multi-branch idioms.
3745 assert(Cond.size() == 1);
3746 assert(TBB);
3747
3748 // If the conditions are the same, we can leave them alone.
3749 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3750 auto NewTBB = I->getOperand(i: 0).getMBB();
3751 if (OldBranchCode == BranchCode && TBB == NewTBB)
3752 continue;
3753
3754 // If they differ, see if they fit one of the known patterns. Theoretically,
3755 // we could handle more patterns here, but we shouldn't expect to see them
3756 // if instruction selection has done a reasonable job.
3757 if (TBB == NewTBB &&
3758 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3759 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3760 BranchCode = X86::COND_NE_OR_P;
3761 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3762 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3763 if (NewTBB != (FBB ? FBB : getFallThroughMBB(MBB: &MBB, TBB)))
3764 return true;
3765
3766 // X86::COND_E_AND_NP usually has two different branch destinations.
3767 //
3768 // JP B1
3769 // JE B2
3770 // JMP B1
3771 // B1:
3772 // B2:
3773 //
3774 // Here this condition branches to B2 only if NP && E. It has another
3775 // equivalent form:
3776 //
3777 // JNE B1
3778 // JNP B2
3779 // JMP B1
3780 // B1:
3781 // B2:
3782 //
3783 // Similarly it branches to B2 only if E && NP. That is why this condition
3784 // is named with COND_E_AND_NP.
3785 BranchCode = X86::COND_E_AND_NP;
3786 } else
3787 return true;
3788
3789 // Update the MachineOperand.
3790 Cond[0].setImm(BranchCode);
3791 CondBranches.push_back(Elt: &*I);
3792 }
3793
3794 return false;
3795}
3796
3797bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3798 MachineBasicBlock *&TBB,
3799 MachineBasicBlock *&FBB,
3800 SmallVectorImpl<MachineOperand> &Cond,
3801 bool AllowModify) const {
3802 SmallVector<MachineInstr *, 4> CondBranches;
3803 return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3804}
3805
3806static int getJumpTableIndexFromAddr(const MachineInstr &MI) {
3807 const MCInstrDesc &Desc = MI.getDesc();
3808 int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags);
3809 assert(MemRefBegin >= 0 && "instr should have memory operand");
3810 MemRefBegin += X86II::getOperandBias(Desc);
3811
3812 const MachineOperand &MO = MI.getOperand(i: MemRefBegin + X86::AddrDisp);
3813 if (!MO.isJTI())
3814 return -1;
3815
3816 return MO.getIndex();
3817}
3818
3819static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI,
3820 Register Reg) {
3821 if (!Reg.isVirtual())
3822 return -1;
3823 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3824 if (MI == nullptr)
3825 return -1;
3826 unsigned Opcode = MI->getOpcode();
3827 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3828 return -1;
3829 return getJumpTableIndexFromAddr(MI: *MI);
3830}
3831
3832int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const {
3833 unsigned Opcode = MI.getOpcode();
3834 // Switch-jump pattern for non-PIC code looks like:
3835 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3836 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3837 return getJumpTableIndexFromAddr(MI);
3838 }
3839 // The pattern for PIC code looks like:
3840 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3841 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3842 // %2 = ADD64rr %1, %0
3843 // JMP64r %2
3844 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3845 Register Reg = MI.getOperand(i: 0).getReg();
3846 if (!Reg.isVirtual())
3847 return -1;
3848 const MachineFunction &MF = *MI.getParent()->getParent();
3849 const MachineRegisterInfo &MRI = MF.getRegInfo();
3850 MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3851 if (Add == nullptr)
3852 return -1;
3853 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
3854 return -1;
3855 int JTI1 = getJumpTableIndexFromReg(MRI, Reg: Add->getOperand(i: 1).getReg());
3856 if (JTI1 >= 0)
3857 return JTI1;
3858 int JTI2 = getJumpTableIndexFromReg(MRI, Reg: Add->getOperand(i: 2).getReg());
3859 if (JTI2 >= 0)
3860 return JTI2;
3861 }
3862 return -1;
3863}
3864
3865bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3866 MachineBranchPredicate &MBP,
3867 bool AllowModify) const {
3868 using namespace std::placeholders;
3869
3870 SmallVector<MachineOperand, 4> Cond;
3871 SmallVector<MachineInstr *, 4> CondBranches;
3872 if (analyzeBranchImpl(MBB, TBB&: MBP.TrueDest, FBB&: MBP.FalseDest, Cond, CondBranches,
3873 AllowModify))
3874 return true;
3875
3876 if (Cond.size() != 1)
3877 return true;
3878
3879 assert(MBP.TrueDest && "expected!");
3880
3881 if (!MBP.FalseDest)
3882 MBP.FalseDest = MBB.getNextNode();
3883
3884 const TargetRegisterInfo *TRI = &getRegisterInfo();
3885
3886 MachineInstr *ConditionDef = nullptr;
3887 bool SingleUseCondition = true;
3888
3889 for (MachineInstr &MI : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: MBB))) {
3890 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3891 ConditionDef = &MI;
3892 break;
3893 }
3894
3895 if (MI.readsRegister(X86::EFLAGS, TRI))
3896 SingleUseCondition = false;
3897 }
3898
3899 if (!ConditionDef)
3900 return true;
3901
3902 if (SingleUseCondition) {
3903 for (auto *Succ : MBB.successors())
3904 if (Succ->isLiveIn(X86::EFLAGS))
3905 SingleUseCondition = false;
3906 }
3907
3908 MBP.ConditionDef = ConditionDef;
3909 MBP.SingleUseCondition = SingleUseCondition;
3910
3911 // Currently we only recognize the simple pattern:
3912 //
3913 // test %reg, %reg
3914 // je %label
3915 //
3916 const unsigned TestOpcode =
3917 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3918
3919 if (ConditionDef->getOpcode() == TestOpcode &&
3920 ConditionDef->getNumOperands() == 3 &&
3921 ConditionDef->getOperand(i: 0).isIdenticalTo(Other: ConditionDef->getOperand(i: 1)) &&
3922 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3923 MBP.LHS = ConditionDef->getOperand(i: 0);
3924 MBP.RHS = MachineOperand::CreateImm(Val: 0);
3925 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3926 ? MachineBranchPredicate::PRED_NE
3927 : MachineBranchPredicate::PRED_EQ;
3928 return false;
3929 }
3930
3931 return true;
3932}
3933
3934unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3935 int *BytesRemoved) const {
3936 assert(!BytesRemoved && "code size not handled");
3937
3938 MachineBasicBlock::iterator I = MBB.end();
3939 unsigned Count = 0;
3940
3941 while (I != MBB.begin()) {
3942 --I;
3943 if (I->isDebugInstr())
3944 continue;
3945 if (I->getOpcode() != X86::JMP_1 &&
3946 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3947 break;
3948 // Remove the branch.
3949 I->eraseFromParent();
3950 I = MBB.end();
3951 ++Count;
3952 }
3953
3954 return Count;
3955}
3956
3957unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3958 MachineBasicBlock *TBB,
3959 MachineBasicBlock *FBB,
3960 ArrayRef<MachineOperand> Cond,
3961 const DebugLoc &DL, int *BytesAdded) const {
3962 // Shouldn't be a fall through.
3963 assert(TBB && "insertBranch must not be told to insert a fallthrough");
3964 assert((Cond.size() == 1 || Cond.size() == 0) &&
3965 "X86 branch conditions have one component!");
3966 assert(!BytesAdded && "code size not handled");
3967
3968 if (Cond.empty()) {
3969 // Unconditional branch?
3970 assert(!FBB && "Unconditional branch with multiple successors!");
3971 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3972 return 1;
3973 }
3974
3975 // If FBB is null, it is implied to be a fall-through block.
3976 bool FallThru = FBB == nullptr;
3977
3978 // Conditional branch.
3979 unsigned Count = 0;
3980 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3981 switch (CC) {
3982 case X86::COND_NE_OR_P:
3983 // Synthesize NE_OR_P with two branches.
3984 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3985 ++Count;
3986 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3987 ++Count;
3988 break;
3989 case X86::COND_E_AND_NP:
3990 // Use the next block of MBB as FBB if it is null.
3991 if (FBB == nullptr) {
3992 FBB = getFallThroughMBB(MBB: &MBB, TBB);
3993 assert(FBB && "MBB cannot be the last block in function when the false "
3994 "body is a fall-through.");
3995 }
3996 // Synthesize COND_E_AND_NP with two branches.
3997 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3998 ++Count;
3999 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
4000 ++Count;
4001 break;
4002 default: {
4003 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
4004 ++Count;
4005 }
4006 }
4007 if (!FallThru) {
4008 // Two-way Conditional branch. Insert the second branch.
4009 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
4010 ++Count;
4011 }
4012 return Count;
4013}
4014
4015bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
4016 ArrayRef<MachineOperand> Cond,
4017 Register DstReg, Register TrueReg,
4018 Register FalseReg, int &CondCycles,
4019 int &TrueCycles, int &FalseCycles) const {
4020 // Not all subtargets have cmov instructions.
4021 if (!Subtarget.canUseCMOV())
4022 return false;
4023 if (Cond.size() != 1)
4024 return false;
4025 // We cannot do the composite conditions, at least not in SSA form.
4026 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
4027 return false;
4028
4029 // Check register classes.
4030 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4031 const TargetRegisterClass *RC =
4032 RI.getCommonSubClass(MRI.getRegClass(Reg: TrueReg), MRI.getRegClass(Reg: FalseReg));
4033 if (!RC)
4034 return false;
4035
4036 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4037 if (X86::GR16RegClass.hasSubClassEq(RC) ||
4038 X86::GR32RegClass.hasSubClassEq(RC) ||
4039 X86::GR64RegClass.hasSubClassEq(RC)) {
4040 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4041 // Bridge. Probably Ivy Bridge as well.
4042 CondCycles = 2;
4043 TrueCycles = 2;
4044 FalseCycles = 2;
4045 return true;
4046 }
4047
4048 // Can't do vectors.
4049 return false;
4050}
4051
4052void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
4053 MachineBasicBlock::iterator I,
4054 const DebugLoc &DL, Register DstReg,
4055 ArrayRef<MachineOperand> Cond, Register TrueReg,
4056 Register FalseReg) const {
4057 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4058 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4059 const TargetRegisterClass &RC = *MRI.getRegClass(Reg: DstReg);
4060 assert(Cond.size() == 1 && "Invalid Cond array");
4061 unsigned Opc =
4062 X86::getCMovOpcode(RegBytes: TRI.getRegSizeInBits(RC) / 8,
4063 HasMemoryOperand: false /*HasMemoryOperand*/, HasNDD: Subtarget.hasNDD());
4064 BuildMI(MBB, I, DL, get(Opc), DstReg)
4065 .addReg(FalseReg)
4066 .addReg(TrueReg)
4067 .addImm(Cond[0].getImm());
4068}
4069
4070/// Test if the given register is a physical h register.
4071static bool isHReg(unsigned Reg) {
4072 return X86::GR8_ABCD_HRegClass.contains(Reg);
4073}
4074
4075// Try and copy between VR128/VR64 and GR64 registers.
4076static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
4077 const X86Subtarget &Subtarget) {
4078 bool HasAVX = Subtarget.hasAVX();
4079 bool HasAVX512 = Subtarget.hasAVX512();
4080 bool HasEGPR = Subtarget.hasEGPR();
4081
4082 // SrcReg(MaskReg) -> DestReg(GR64)
4083 // SrcReg(MaskReg) -> DestReg(GR32)
4084
4085 // All KMASK RegClasses hold the same k registers, can be tested against
4086 // anyone.
4087 if (X86::VK16RegClass.contains(SrcReg)) {
4088 if (X86::GR64RegClass.contains(DestReg)) {
4089 assert(Subtarget.hasBWI());
4090 return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4091 }
4092 if (X86::GR32RegClass.contains(DestReg))
4093 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4094 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4095 }
4096
4097 // SrcReg(GR64) -> DestReg(MaskReg)
4098 // SrcReg(GR32) -> DestReg(MaskReg)
4099
4100 // All KMASK RegClasses hold the same k registers, can be tested against
4101 // anyone.
4102 if (X86::VK16RegClass.contains(DestReg)) {
4103 if (X86::GR64RegClass.contains(SrcReg)) {
4104 assert(Subtarget.hasBWI());
4105 return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4106 }
4107 if (X86::GR32RegClass.contains(SrcReg))
4108 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4109 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4110 }
4111
4112 // SrcReg(VR128) -> DestReg(GR64)
4113 // SrcReg(VR64) -> DestReg(GR64)
4114 // SrcReg(GR64) -> DestReg(VR128)
4115 // SrcReg(GR64) -> DestReg(VR64)
4116
4117 if (X86::GR64RegClass.contains(DestReg)) {
4118 if (X86::VR128XRegClass.contains(SrcReg))
4119 // Copy from a VR128 register to a GR64 register.
4120 return HasAVX512 ? X86::VMOVPQIto64Zrr
4121 : HasAVX ? X86::VMOVPQIto64rr
4122 : X86::MOVPQIto64rr;
4123 if (X86::VR64RegClass.contains(SrcReg))
4124 // Copy from a VR64 register to a GR64 register.
4125 return X86::MMX_MOVD64from64rr;
4126 } else if (X86::GR64RegClass.contains(SrcReg)) {
4127 // Copy from a GR64 register to a VR128 register.
4128 if (X86::VR128XRegClass.contains(DestReg))
4129 return HasAVX512 ? X86::VMOV64toPQIZrr
4130 : HasAVX ? X86::VMOV64toPQIrr
4131 : X86::MOV64toPQIrr;
4132 // Copy from a GR64 register to a VR64 register.
4133 if (X86::VR64RegClass.contains(DestReg))
4134 return X86::MMX_MOVD64to64rr;
4135 }
4136
4137 // SrcReg(VR128) -> DestReg(GR32)
4138 // SrcReg(GR32) -> DestReg(VR128)
4139
4140 if (X86::GR32RegClass.contains(DestReg) &&
4141 X86::VR128XRegClass.contains(SrcReg))
4142 // Copy from a VR128 register to a GR32 register.
4143 return HasAVX512 ? X86::VMOVPDI2DIZrr
4144 : HasAVX ? X86::VMOVPDI2DIrr
4145 : X86::MOVPDI2DIrr;
4146
4147 if (X86::VR128XRegClass.contains(DestReg) &&
4148 X86::GR32RegClass.contains(SrcReg))
4149 // Copy from a VR128 register to a VR128 register.
4150 return HasAVX512 ? X86::VMOVDI2PDIZrr
4151 : HasAVX ? X86::VMOVDI2PDIrr
4152 : X86::MOVDI2PDIrr;
4153 return 0;
4154}
4155
4156void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
4157 MachineBasicBlock::iterator MI,
4158 const DebugLoc &DL, MCRegister DestReg,
4159 MCRegister SrcReg, bool KillSrc) const {
4160 // First deal with the normal symmetric copies.
4161 bool HasAVX = Subtarget.hasAVX();
4162 bool HasVLX = Subtarget.hasVLX();
4163 bool HasEGPR = Subtarget.hasEGPR();
4164 unsigned Opc = 0;
4165 if (X86::GR64RegClass.contains(DestReg, SrcReg))
4166 Opc = X86::MOV64rr;
4167 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4168 Opc = X86::MOV32rr;
4169 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4170 Opc = X86::MOV16rr;
4171 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4172 // Copying to or from a physical H register on x86-64 requires a NOREX
4173 // move. Otherwise use a normal move.
4174 if ((isHReg(Reg: DestReg) || isHReg(Reg: SrcReg)) && Subtarget.is64Bit()) {
4175 Opc = X86::MOV8rr_NOREX;
4176 // Both operands must be encodable without an REX prefix.
4177 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4178 "8-bit H register can not be copied outside GR8_NOREX");
4179 } else
4180 Opc = X86::MOV8rr;
4181 } else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4182 Opc = X86::MMX_MOVQ64rr;
4183 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
4184 if (HasVLX)
4185 Opc = X86::VMOVAPSZ128rr;
4186 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4187 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4188 else {
4189 // If this an extended register and we don't have VLX we need to use a
4190 // 512-bit move.
4191 Opc = X86::VMOVAPSZrr;
4192 const TargetRegisterInfo *TRI = &getRegisterInfo();
4193 DestReg =
4194 TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4195 SrcReg =
4196 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4197 }
4198 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
4199 if (HasVLX)
4200 Opc = X86::VMOVAPSZ256rr;
4201 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4202 Opc = X86::VMOVAPSYrr;
4203 else {
4204 // If this an extended register and we don't have VLX we need to use a
4205 // 512-bit move.
4206 Opc = X86::VMOVAPSZrr;
4207 const TargetRegisterInfo *TRI = &getRegisterInfo();
4208 DestReg =
4209 TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4210 SrcReg =
4211 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4212 }
4213 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
4214 Opc = X86::VMOVAPSZrr;
4215 // All KMASK RegClasses hold the same k registers, can be tested against
4216 // anyone.
4217 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
4218 Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4219 : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4220 if (!Opc)
4221 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4222
4223 if (Opc) {
4224 BuildMI(MBB, MI, DL, get(Opc), DestReg)
4225 .addReg(SrcReg, getKillRegState(B: KillSrc));
4226 return;
4227 }
4228
4229 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4230 // FIXME: We use a fatal error here because historically LLVM has tried
4231 // lower some of these physreg copies and we want to ensure we get
4232 // reasonable bug reports if someone encounters a case no other testing
4233 // found. This path should be removed after the LLVM 7 release.
4234 report_fatal_error(reason: "Unable to copy EFLAGS physical register!");
4235 }
4236
4237 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
4238 << RI.getName(DestReg) << '\n');
4239 report_fatal_error(reason: "Cannot emit physreg copy instruction");
4240}
4241
4242std::optional<DestSourcePair>
4243X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
4244 if (MI.isMoveReg()) {
4245 // FIXME: Dirty hack for apparent invariant that doesn't hold when
4246 // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4247 // were asserted as 0 are now undef.
4248 if (MI.getOperand(i: 0).isUndef() && MI.getOperand(i: 0).getSubReg())
4249 return std::nullopt;
4250
4251 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
4252 }
4253 return std::nullopt;
4254}
4255
4256static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
4257 if (STI.hasFP16())
4258 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4259 if (Load)
4260 return STI.hasAVX512() ? X86::VMOVSSZrm
4261 : STI.hasAVX() ? X86::VMOVSSrm
4262 : X86::MOVSSrm;
4263 else
4264 return STI.hasAVX512() ? X86::VMOVSSZmr
4265 : STI.hasAVX() ? X86::VMOVSSmr
4266 : X86::MOVSSmr;
4267}
4268
4269static unsigned getLoadStoreRegOpcode(Register Reg,
4270 const TargetRegisterClass *RC,
4271 bool IsStackAligned,
4272 const X86Subtarget &STI, bool Load) {
4273 bool HasAVX = STI.hasAVX();
4274 bool HasAVX512 = STI.hasAVX512();
4275 bool HasVLX = STI.hasVLX();
4276 bool HasEGPR = STI.hasEGPR();
4277
4278 assert(RC != nullptr && "Invalid target register class");
4279 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
4280 default:
4281 llvm_unreachable("Unknown spill size");
4282 case 1:
4283 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4284 if (STI.is64Bit())
4285 // Copying to or from a physical H register on x86-64 requires a NOREX
4286 // move. Otherwise use a normal move.
4287 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4288 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4289 return Load ? X86::MOV8rm : X86::MOV8mr;
4290 case 2:
4291 if (X86::VK16RegClass.hasSubClassEq(RC))
4292 return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4293 : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4294 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4295 return Load ? X86::MOV16rm : X86::MOV16mr;
4296 case 4:
4297 if (X86::GR32RegClass.hasSubClassEq(RC))
4298 return Load ? X86::MOV32rm : X86::MOV32mr;
4299 if (X86::FR32XRegClass.hasSubClassEq(RC))
4300 return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4301 : HasAVX ? X86::VMOVSSrm_alt
4302 : X86::MOVSSrm_alt)
4303 : (HasAVX512 ? X86::VMOVSSZmr
4304 : HasAVX ? X86::VMOVSSmr
4305 : X86::MOVSSmr);
4306 if (X86::RFP32RegClass.hasSubClassEq(RC))
4307 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4308 if (X86::VK32RegClass.hasSubClassEq(RC)) {
4309 assert(STI.hasBWI() && "KMOVD requires BWI");
4310 return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4311 : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4312 }
4313 // All of these mask pair classes have the same spill size, the same kind
4314 // of kmov instructions can be used with all of them.
4315 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4316 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4317 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4318 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4319 X86::VK16PAIRRegClass.hasSubClassEq(RC))
4320 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4321 if (X86::FR16RegClass.hasSubClassEq(RC) ||
4322 X86::FR16XRegClass.hasSubClassEq(RC))
4323 return getLoadStoreOpcodeForFP16(Load, STI);
4324 llvm_unreachable("Unknown 4-byte regclass");
4325 case 8:
4326 if (X86::GR64RegClass.hasSubClassEq(RC))
4327 return Load ? X86::MOV64rm : X86::MOV64mr;
4328 if (X86::FR64XRegClass.hasSubClassEq(RC))
4329 return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4330 : HasAVX ? X86::VMOVSDrm_alt
4331 : X86::MOVSDrm_alt)
4332 : (HasAVX512 ? X86::VMOVSDZmr
4333 : HasAVX ? X86::VMOVSDmr
4334 : X86::MOVSDmr);
4335 if (X86::VR64RegClass.hasSubClassEq(RC))
4336 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4337 if (X86::RFP64RegClass.hasSubClassEq(RC))
4338 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4339 if (X86::VK64RegClass.hasSubClassEq(RC)) {
4340 assert(STI.hasBWI() && "KMOVQ requires BWI");
4341 return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4342 : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4343 }
4344 llvm_unreachable("Unknown 8-byte regclass");
4345 case 10:
4346 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4347 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4348 case 16: {
4349 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4350 // If stack is realigned we can use aligned stores.
4351 if (IsStackAligned)
4352 return Load ? (HasVLX ? X86::VMOVAPSZ128rm
4353 : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4354 : HasAVX ? X86::VMOVAPSrm
4355 : X86::MOVAPSrm)
4356 : (HasVLX ? X86::VMOVAPSZ128mr
4357 : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4358 : HasAVX ? X86::VMOVAPSmr
4359 : X86::MOVAPSmr);
4360 else
4361 return Load ? (HasVLX ? X86::VMOVUPSZ128rm
4362 : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4363 : HasAVX ? X86::VMOVUPSrm
4364 : X86::MOVUPSrm)
4365 : (HasVLX ? X86::VMOVUPSZ128mr
4366 : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4367 : HasAVX ? X86::VMOVUPSmr
4368 : X86::MOVUPSmr);
4369 }
4370 llvm_unreachable("Unknown 16-byte regclass");
4371 }
4372 case 32:
4373 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
4374 // If stack is realigned we can use aligned stores.
4375 if (IsStackAligned)
4376 return Load ? (HasVLX ? X86::VMOVAPSZ256rm
4377 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4378 : X86::VMOVAPSYrm)
4379 : (HasVLX ? X86::VMOVAPSZ256mr
4380 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4381 : X86::VMOVAPSYmr);
4382 else
4383 return Load ? (HasVLX ? X86::VMOVUPSZ256rm
4384 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4385 : X86::VMOVUPSYrm)
4386 : (HasVLX ? X86::VMOVUPSZ256mr
4387 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4388 : X86::VMOVUPSYmr);
4389 case 64:
4390 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4391 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
4392 if (IsStackAligned)
4393 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4394 else
4395 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4396 case 1024:
4397 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
4398 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4399#define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4400 return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
4401 : GET_EGPR_IF_ENABLED(X86::TILESTORED);
4402#undef GET_EGPR_IF_ENABLED
4403 }
4404}
4405
4406std::optional<ExtAddrMode>
4407X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
4408 const TargetRegisterInfo *TRI) const {
4409 const MCInstrDesc &Desc = MemI.getDesc();
4410 int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags);
4411 if (MemRefBegin < 0)
4412 return std::nullopt;
4413
4414 MemRefBegin += X86II::getOperandBias(Desc);
4415
4416 auto &BaseOp = MemI.getOperand(i: MemRefBegin + X86::AddrBaseReg);
4417 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
4418 return std::nullopt;
4419
4420 const MachineOperand &DispMO = MemI.getOperand(i: MemRefBegin + X86::AddrDisp);
4421 // Displacement can be symbolic
4422 if (!DispMO.isImm())
4423 return std::nullopt;
4424
4425 ExtAddrMode AM;
4426 AM.BaseReg = BaseOp.getReg();
4427 AM.ScaledReg = MemI.getOperand(i: MemRefBegin + X86::AddrIndexReg).getReg();
4428 AM.Scale = MemI.getOperand(i: MemRefBegin + X86::AddrScaleAmt).getImm();
4429 AM.Displacement = DispMO.getImm();
4430 return AM;
4431}
4432
4433bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
4434 StringRef &ErrInfo) const {
4435 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MemI: MI, TRI: nullptr);
4436 if (!AMOrNone)
4437 return true;
4438
4439 ExtAddrMode AM = *AMOrNone;
4440 assert(AM.Form == ExtAddrMode::Formula::Basic);
4441 if (AM.ScaledReg != X86::NoRegister) {
4442 switch (AM.Scale) {
4443 case 1:
4444 case 2:
4445 case 4:
4446 case 8:
4447 break;
4448 default:
4449 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
4450 return false;
4451 }
4452 }
4453 if (!isInt<32>(x: AM.Displacement)) {
4454 ErrInfo = "Displacement in address must fit into 32-bit signed "
4455 "integer";
4456 return false;
4457 }
4458
4459 return true;
4460}
4461
4462bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
4463 const Register Reg,
4464 int64_t &ImmVal) const {
4465 Register MovReg = Reg;
4466 const MachineInstr *MovMI = &MI;
4467
4468 // Follow use-def for SUBREG_TO_REG to find the real move immediate
4469 // instruction. It is quite common for x86-64.
4470 if (MI.isSubregToReg()) {
4471 // We use following pattern to setup 64b immediate.
4472 // %8:gr32 = MOV32r0 implicit-def dead $eflags
4473 // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4474 if (!MI.getOperand(i: 1).isImm())
4475 return false;
4476 unsigned FillBits = MI.getOperand(i: 1).getImm();
4477 unsigned SubIdx = MI.getOperand(i: 3).getImm();
4478 MovReg = MI.getOperand(i: 2).getReg();
4479 if (SubIdx != X86::sub_32bit || FillBits != 0)
4480 return false;
4481 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4482 MovMI = MRI.getUniqueVRegDef(Reg: MovReg);
4483 if (!MovMI)
4484 return false;
4485 }
4486
4487 if (MovMI->getOpcode() == X86::MOV32r0 &&
4488 MovMI->getOperand(0).getReg() == MovReg) {
4489 ImmVal = 0;
4490 return true;
4491 }
4492
4493 if (MovMI->getOpcode() != X86::MOV32ri &&
4494 MovMI->getOpcode() != X86::MOV64ri &&
4495 MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri)
4496 return false;
4497 // Mov Src can be a global address.
4498 if (!MovMI->getOperand(i: 1).isImm() || MovMI->getOperand(i: 0).getReg() != MovReg)
4499 return false;
4500 ImmVal = MovMI->getOperand(i: 1).getImm();
4501 return true;
4502}
4503
4504bool X86InstrInfo::preservesZeroValueInReg(
4505 const MachineInstr *MI, const Register NullValueReg,
4506 const TargetRegisterInfo *TRI) const {
4507 if (!MI->modifiesRegister(Reg: NullValueReg, TRI))
4508 return true;
4509 switch (MI->getOpcode()) {
4510 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4511 // X.
4512 case X86::SHR64ri:
4513 case X86::SHR32ri:
4514 case X86::SHL64ri:
4515 case X86::SHL32ri:
4516 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
4517 "expected for shift opcode!");
4518 return MI->getOperand(i: 0).getReg() == NullValueReg &&
4519 MI->getOperand(i: 1).getReg() == NullValueReg;
4520 // Zero extend of a sub-reg of NullValueReg into itself does not change the
4521 // null value.
4522 case X86::MOV32rr:
4523 return llvm::all_of(Range: MI->operands(), P: [&](const MachineOperand &MO) {
4524 return TRI->isSubRegisterEq(RegA: NullValueReg, RegB: MO.getReg());
4525 });
4526 default:
4527 return false;
4528 }
4529 llvm_unreachable("Should be handled above!");
4530}
4531
4532bool X86InstrInfo::getMemOperandsWithOffsetWidth(
4533 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
4534 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
4535 const TargetRegisterInfo *TRI) const {
4536 const MCInstrDesc &Desc = MemOp.getDesc();
4537 int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags);
4538 if (MemRefBegin < 0)
4539 return false;
4540
4541 MemRefBegin += X86II::getOperandBias(Desc);
4542
4543 const MachineOperand *BaseOp =
4544 &MemOp.getOperand(i: MemRefBegin + X86::AddrBaseReg);
4545 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
4546 return false;
4547
4548 if (MemOp.getOperand(i: MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4549 return false;
4550
4551 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4552 X86::NoRegister)
4553 return false;
4554
4555 const MachineOperand &DispMO = MemOp.getOperand(i: MemRefBegin + X86::AddrDisp);
4556
4557 // Displacement can be symbolic
4558 if (!DispMO.isImm())
4559 return false;
4560
4561 Offset = DispMO.getImm();
4562
4563 if (!BaseOp->isReg())
4564 return false;
4565
4566 OffsetIsScalable = false;
4567 // FIXME: Relying on memoperands() may not be right thing to do here. Check
4568 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4569 // there is no use of `Width` for X86 back-end at the moment.
4570 Width =
4571 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
4572 BaseOps.push_back(Elt: BaseOp);
4573 return true;
4574}
4575
4576static unsigned getStoreRegOpcode(Register SrcReg,
4577 const TargetRegisterClass *RC,
4578 bool IsStackAligned,
4579 const X86Subtarget &STI) {
4580 return getLoadStoreRegOpcode(Reg: SrcReg, RC, IsStackAligned, STI, Load: false);
4581}
4582
4583static unsigned getLoadRegOpcode(Register DestReg,
4584 const TargetRegisterClass *RC,
4585 bool IsStackAligned, const X86Subtarget &STI) {
4586 return getLoadStoreRegOpcode(Reg: DestReg, RC, IsStackAligned, STI, Load: true);
4587}
4588
4589static bool isAMXOpcode(unsigned Opc) {
4590 switch (Opc) {
4591 default:
4592 return false;
4593 case X86::TILELOADD:
4594 case X86::TILESTORED:
4595 case X86::TILELOADD_EVEX:
4596 case X86::TILESTORED_EVEX:
4597 return true;
4598 }
4599}
4600
4601void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB,
4602 MachineBasicBlock::iterator MI,
4603 unsigned Opc, Register Reg, int FrameIdx,
4604 bool isKill) const {
4605 switch (Opc) {
4606 default:
4607 llvm_unreachable("Unexpected special opcode!");
4608 case X86::TILESTORED:
4609 case X86::TILESTORED_EVEX: {
4610 // tilestored %tmm, (%sp, %idx)
4611 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4612 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4613 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4614 MachineInstr *NewMI =
4615 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4616 .addReg(Reg, getKillRegState(B: isKill));
4617 MachineOperand &MO = NewMI->getOperand(i: X86::AddrIndexReg);
4618 MO.setReg(VirtReg);
4619 MO.setIsKill(true);
4620 break;
4621 }
4622 case X86::TILELOADD:
4623 case X86::TILELOADD_EVEX: {
4624 // tileloadd (%sp, %idx), %tmm
4625 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4626 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4627 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4628 MachineInstr *NewMI = addFrameReference(
4629 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4630 MachineOperand &MO = NewMI->getOperand(i: 1 + X86::AddrIndexReg);
4631 MO.setReg(VirtReg);
4632 MO.setIsKill(true);
4633 break;
4634 }
4635 }
4636}
4637
4638void X86InstrInfo::storeRegToStackSlot(
4639 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
4640 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4641 const TargetRegisterInfo *TRI, Register VReg) const {
4642 const MachineFunction &MF = *MBB.getParent();
4643 const MachineFrameInfo &MFI = MF.getFrameInfo();
4644 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4645 "Stack slot too small for store");
4646
4647 unsigned Alignment = std::max<uint32_t>(a: TRI->getSpillSize(RC: *RC), b: 16);
4648 bool isAligned =
4649 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4650 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(ObjectIdx: FrameIdx));
4651
4652 unsigned Opc = getStoreRegOpcode(SrcReg, RC, IsStackAligned: isAligned, STI: Subtarget);
4653 if (isAMXOpcode(Opc))
4654 loadStoreTileReg(MBB, MI, Opc, Reg: SrcReg, FrameIdx, isKill);
4655 else
4656 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4657 .addReg(SrcReg, getKillRegState(B: isKill));
4658}
4659
4660void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4661 MachineBasicBlock::iterator MI,
4662 Register DestReg, int FrameIdx,
4663 const TargetRegisterClass *RC,
4664 const TargetRegisterInfo *TRI,
4665 Register VReg) const {
4666 const MachineFunction &MF = *MBB.getParent();
4667 const MachineFrameInfo &MFI = MF.getFrameInfo();
4668 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4669 "Load size exceeds stack slot");
4670 unsigned Alignment = std::max<uint32_t>(a: TRI->getSpillSize(RC: *RC), b: 16);
4671 bool isAligned =
4672 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4673 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(ObjectIdx: FrameIdx));
4674
4675 unsigned Opc = getLoadRegOpcode(DestReg, RC, IsStackAligned: isAligned, STI: Subtarget);
4676 if (isAMXOpcode(Opc))
4677 loadStoreTileReg(MBB, MI, Opc, Reg: DestReg, FrameIdx);
4678 else
4679 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4680 FrameIdx);
4681}
4682
4683bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
4684 Register &SrcReg2, int64_t &CmpMask,
4685 int64_t &CmpValue) const {
4686 switch (MI.getOpcode()) {
4687 default:
4688 break;
4689 case X86::CMP64ri32:
4690 case X86::CMP32ri:
4691 case X86::CMP16ri:
4692 case X86::CMP8ri:
4693 SrcReg = MI.getOperand(i: 0).getReg();
4694 SrcReg2 = 0;
4695 if (MI.getOperand(i: 1).isImm()) {
4696 CmpMask = ~0;
4697 CmpValue = MI.getOperand(i: 1).getImm();
4698 } else {
4699 CmpMask = CmpValue = 0;
4700 }
4701 return true;
4702 // A SUB can be used to perform comparison.
4703 CASE_ND(SUB64rm)
4704 CASE_ND(SUB32rm)
4705 CASE_ND(SUB16rm)
4706 CASE_ND(SUB8rm)
4707 SrcReg = MI.getOperand(i: 1).getReg();
4708 SrcReg2 = 0;
4709 CmpMask = 0;
4710 CmpValue = 0;
4711 return true;
4712 CASE_ND(SUB64rr)
4713 CASE_ND(SUB32rr)
4714 CASE_ND(SUB16rr)
4715 CASE_ND(SUB8rr)
4716 SrcReg = MI.getOperand(i: 1).getReg();
4717 SrcReg2 = MI.getOperand(i: 2).getReg();
4718 CmpMask = 0;
4719 CmpValue = 0;
4720 return true;
4721 CASE_ND(SUB64ri32)
4722 CASE_ND(SUB32ri)
4723 CASE_ND(SUB16ri)
4724 CASE_ND(SUB8ri)
4725 SrcReg = MI.getOperand(i: 1).getReg();
4726 SrcReg2 = 0;
4727 if (MI.getOperand(i: 2).isImm()) {
4728 CmpMask = ~0;
4729 CmpValue = MI.getOperand(i: 2).getImm();
4730 } else {
4731 CmpMask = CmpValue = 0;
4732 }
4733 return true;
4734 case X86::CMP64rr:
4735 case X86::CMP32rr:
4736 case X86::CMP16rr:
4737 case X86::CMP8rr:
4738 SrcReg = MI.getOperand(i: 0).getReg();
4739 SrcReg2 = MI.getOperand(i: 1).getReg();
4740 CmpMask = 0;
4741 CmpValue = 0;
4742 return true;
4743 case X86::TEST8rr:
4744 case X86::TEST16rr:
4745 case X86::TEST32rr:
4746 case X86::TEST64rr:
4747 SrcReg = MI.getOperand(i: 0).getReg();
4748 if (MI.getOperand(i: 1).getReg() != SrcReg)
4749 return false;
4750 // Compare against zero.
4751 SrcReg2 = 0;
4752 CmpMask = ~0;
4753 CmpValue = 0;
4754 return true;
4755 }
4756 return false;
4757}
4758
4759bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4760 Register SrcReg, Register SrcReg2,
4761 int64_t ImmMask, int64_t ImmValue,
4762 const MachineInstr &OI, bool *IsSwapped,
4763 int64_t *ImmDelta) const {
4764 switch (OI.getOpcode()) {
4765 case X86::CMP64rr:
4766 case X86::CMP32rr:
4767 case X86::CMP16rr:
4768 case X86::CMP8rr:
4769 CASE_ND(SUB64rr)
4770 CASE_ND(SUB32rr)
4771 CASE_ND(SUB16rr)
4772 CASE_ND(SUB8rr) {
4773 Register OISrcReg;
4774 Register OISrcReg2;
4775 int64_t OIMask;
4776 int64_t OIValue;
4777 if (!analyzeCompare(MI: OI, SrcReg&: OISrcReg, SrcReg2&: OISrcReg2, CmpMask&: OIMask, CmpValue&: OIValue) ||
4778 OIMask != ImmMask || OIValue != ImmValue)
4779 return false;
4780 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4781 *IsSwapped = false;
4782 return true;
4783 }
4784 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4785 *IsSwapped = true;
4786 return true;
4787 }
4788 return false;
4789 }
4790 case X86::CMP64ri32:
4791 case X86::CMP32ri:
4792 case X86::CMP16ri:
4793 case X86::CMP8ri:
4794 CASE_ND(SUB64ri32)
4795 CASE_ND(SUB32ri)
4796 CASE_ND(SUB16ri)
4797 CASE_ND(SUB8ri)
4798 case X86::TEST64rr:
4799 case X86::TEST32rr:
4800 case X86::TEST16rr:
4801 case X86::TEST8rr: {
4802 if (ImmMask != 0) {
4803 Register OISrcReg;
4804 Register OISrcReg2;
4805 int64_t OIMask;
4806 int64_t OIValue;
4807 if (analyzeCompare(MI: OI, SrcReg&: OISrcReg, SrcReg2&: OISrcReg2, CmpMask&: OIMask, CmpValue&: OIValue) &&
4808 SrcReg == OISrcReg && ImmMask == OIMask) {
4809 if (OIValue == ImmValue) {
4810 *ImmDelta = 0;
4811 return true;
4812 } else if (static_cast<uint64_t>(ImmValue) ==
4813 static_cast<uint64_t>(OIValue) - 1) {
4814 *ImmDelta = -1;
4815 return true;
4816 } else if (static_cast<uint64_t>(ImmValue) ==
4817 static_cast<uint64_t>(OIValue) + 1) {
4818 *ImmDelta = 1;
4819 return true;
4820 } else {
4821 return false;
4822 }
4823 }
4824 }
4825 return FlagI.isIdenticalTo(Other: OI);
4826 }
4827 default:
4828 return false;
4829 }
4830}
4831
4832/// Check whether the definition can be converted
4833/// to remove a comparison against zero.
4834inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4835 bool &ClearsOverflowFlag) {
4836 NoSignFlag = false;
4837 ClearsOverflowFlag = false;
4838
4839 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4840 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4841 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4842 // on the EFLAGS modification of ADD actually happening in the final binary.
4843 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4844 unsigned Flags = MI.getOperand(i: 5).getTargetFlags();
4845 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4846 Flags == X86II::MO_GOTNTPOFF)
4847 return false;
4848 }
4849
4850 switch (MI.getOpcode()) {
4851 default:
4852 return false;
4853
4854 // The shift instructions only modify ZF if their shift count is non-zero.
4855 // N.B.: The processor truncates the shift count depending on the encoding.
4856 CASE_ND(SAR8ri)
4857 CASE_ND(SAR16ri)
4858 CASE_ND(SAR32ri)
4859 CASE_ND(SAR64ri)
4860 CASE_ND(SHR8ri)
4861 CASE_ND(SHR16ri)
4862 CASE_ND(SHR32ri)
4863 CASE_ND(SHR64ri)
4864 return getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2) != 0;
4865
4866 // Some left shift instructions can be turned into LEA instructions but only
4867 // if their flags aren't used. Avoid transforming such instructions.
4868 CASE_ND(SHL8ri)
4869 CASE_ND(SHL16ri)
4870 CASE_ND(SHL32ri)
4871 CASE_ND(SHL64ri) {
4872 unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2);
4873 if (isTruncatedShiftCountForLEA(ShAmt))
4874 return false;
4875 return ShAmt != 0;
4876 }
4877
4878 CASE_ND(SHRD16rri8)
4879 CASE_ND(SHRD32rri8)
4880 CASE_ND(SHRD64rri8)
4881 CASE_ND(SHLD16rri8)
4882 CASE_ND(SHLD32rri8)
4883 CASE_ND(SHLD64rri8)
4884 return getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 3) != 0;
4885
4886 CASE_ND(SUB64ri32)
4887 CASE_ND(SUB32ri)
4888 CASE_ND(SUB16ri)
4889 CASE_ND(SUB8ri)
4890 CASE_ND(SUB64rr)
4891 CASE_ND(SUB32rr)
4892 CASE_ND(SUB16rr)
4893 CASE_ND(SUB8rr)
4894 CASE_ND(SUB64rm)
4895 CASE_ND(SUB32rm)
4896 CASE_ND(SUB16rm)
4897 CASE_ND(SUB8rm)
4898 CASE_ND(DEC64r)
4899 CASE_ND(DEC32r)
4900 CASE_ND(DEC16r)
4901 CASE_ND(DEC8r)
4902 CASE_ND(ADD64ri32)
4903 CASE_ND(ADD32ri)
4904 CASE_ND(ADD16ri)
4905 CASE_ND(ADD8ri)
4906 CASE_ND(ADD64rr)
4907 CASE_ND(ADD32rr)
4908 CASE_ND(ADD16rr)
4909 CASE_ND(ADD8rr)
4910 CASE_ND(ADD64rm)
4911 CASE_ND(ADD32rm)
4912 CASE_ND(ADD16rm)
4913 CASE_ND(ADD8rm)
4914 CASE_ND(INC64r)
4915 CASE_ND(INC32r)
4916 CASE_ND(INC16r)
4917 CASE_ND(INC8r)
4918 CASE_ND(ADC64ri32)
4919 CASE_ND(ADC32ri)
4920 CASE_ND(ADC16ri)
4921 CASE_ND(ADC8ri)
4922 CASE_ND(ADC64rr)
4923 CASE_ND(ADC32rr)
4924 CASE_ND(ADC16rr)
4925 CASE_ND(ADC8rr)
4926 CASE_ND(ADC64rm)
4927 CASE_ND(ADC32rm)
4928 CASE_ND(ADC16rm)
4929 CASE_ND(ADC8rm)
4930 CASE_ND(SBB64ri32)
4931 CASE_ND(SBB32ri)
4932 CASE_ND(SBB16ri)
4933 CASE_ND(SBB8ri)
4934 CASE_ND(SBB64rr)
4935 CASE_ND(SBB32rr)
4936 CASE_ND(SBB16rr)
4937 CASE_ND(SBB8rr)
4938 CASE_ND(SBB64rm)
4939 CASE_ND(SBB32rm)
4940 CASE_ND(SBB16rm)
4941 CASE_ND(SBB8rm)
4942 CASE_ND(NEG8r)
4943 CASE_ND(NEG16r)
4944 CASE_ND(NEG32r)
4945 CASE_ND(NEG64r)
4946 case X86::LZCNT16rr:
4947 case X86::LZCNT16rm:
4948 case X86::LZCNT32rr:
4949 case X86::LZCNT32rm:
4950 case X86::LZCNT64rr:
4951 case X86::LZCNT64rm:
4952 case X86::POPCNT16rr:
4953 case X86::POPCNT16rm:
4954 case X86::POPCNT32rr:
4955 case X86::POPCNT32rm:
4956 case X86::POPCNT64rr:
4957 case X86::POPCNT64rm:
4958 case X86::TZCNT16rr:
4959 case X86::TZCNT16rm:
4960 case X86::TZCNT32rr:
4961 case X86::TZCNT32rm:
4962 case X86::TZCNT64rr:
4963 case X86::TZCNT64rm:
4964 return true;
4965 CASE_ND(AND64ri32)
4966 CASE_ND(AND32ri)
4967 CASE_ND(AND16ri)
4968 CASE_ND(AND8ri)
4969 CASE_ND(AND64rr)
4970 CASE_ND(AND32rr)
4971 CASE_ND(AND16rr)
4972 CASE_ND(AND8rr)
4973 CASE_ND(AND64rm)
4974 CASE_ND(AND32rm)
4975 CASE_ND(AND16rm)
4976 CASE_ND(AND8rm)
4977 CASE_ND(XOR64ri32)
4978 CASE_ND(XOR32ri)
4979 CASE_ND(XOR16ri)
4980 CASE_ND(XOR8ri)
4981 CASE_ND(XOR64rr)
4982 CASE_ND(XOR32rr)
4983 CASE_ND(XOR16rr)
4984 CASE_ND(XOR8rr)
4985 CASE_ND(XOR64rm)
4986 CASE_ND(XOR32rm)
4987 CASE_ND(XOR16rm)
4988 CASE_ND(XOR8rm)
4989 CASE_ND(OR64ri32)
4990 CASE_ND(OR32ri)
4991 CASE_ND(OR16ri)
4992 CASE_ND(OR8ri)
4993 CASE_ND(OR64rr)
4994 CASE_ND(OR32rr)
4995 CASE_ND(OR16rr)
4996 CASE_ND(OR8rr)
4997 CASE_ND(OR64rm)
4998 CASE_ND(OR32rm)
4999 CASE_ND(OR16rm)
5000 CASE_ND(OR8rm)
5001 case X86::ANDN32rr:
5002 case X86::ANDN32rm:
5003 case X86::ANDN64rr:
5004 case X86::ANDN64rm:
5005 case X86::BLSI32rr:
5006 case X86::BLSI32rm:
5007 case X86::BLSI64rr:
5008 case X86::BLSI64rm:
5009 case X86::BLSMSK32rr:
5010 case X86::BLSMSK32rm:
5011 case X86::BLSMSK64rr:
5012 case X86::BLSMSK64rm:
5013 case X86::BLSR32rr:
5014 case X86::BLSR32rm:
5015 case X86::BLSR64rr:
5016 case X86::BLSR64rm:
5017 case X86::BLCFILL32rr:
5018 case X86::BLCFILL32rm:
5019 case X86::BLCFILL64rr:
5020 case X86::BLCFILL64rm:
5021 case X86::BLCI32rr:
5022 case X86::BLCI32rm:
5023 case X86::BLCI64rr:
5024 case X86::BLCI64rm:
5025 case X86::BLCIC32rr:
5026 case X86::BLCIC32rm:
5027 case X86::BLCIC64rr:
5028 case X86::BLCIC64rm:
5029 case X86::BLCMSK32rr:
5030 case X86::BLCMSK32rm:
5031 case X86::BLCMSK64rr:
5032 case X86::BLCMSK64rm:
5033 case X86::BLCS32rr:
5034 case X86::BLCS32rm:
5035 case X86::BLCS64rr:
5036 case X86::BLCS64rm:
5037 case X86::BLSFILL32rr:
5038 case X86::BLSFILL32rm:
5039 case X86::BLSFILL64rr:
5040 case X86::BLSFILL64rm:
5041 case X86::BLSIC32rr:
5042 case X86::BLSIC32rm:
5043 case X86::BLSIC64rr:
5044 case X86::BLSIC64rm:
5045 case X86::BZHI32rr:
5046 case X86::BZHI32rm:
5047 case X86::BZHI64rr:
5048 case X86::BZHI64rm:
5049 case X86::T1MSKC32rr:
5050 case X86::T1MSKC32rm:
5051 case X86::T1MSKC64rr:
5052 case X86::T1MSKC64rm:
5053 case X86::TZMSK32rr:
5054 case X86::TZMSK32rm:
5055 case X86::TZMSK64rr:
5056 case X86::TZMSK64rm:
5057 // These instructions clear the overflow flag just like TEST.
5058 // FIXME: These are not the only instructions in this switch that clear the
5059 // overflow flag.
5060 ClearsOverflowFlag = true;
5061 return true;
5062 case X86::BEXTR32rr:
5063 case X86::BEXTR64rr:
5064 case X86::BEXTR32rm:
5065 case X86::BEXTR64rm:
5066 case X86::BEXTRI32ri:
5067 case X86::BEXTRI32mi:
5068 case X86::BEXTRI64ri:
5069 case X86::BEXTRI64mi:
5070 // BEXTR doesn't update the sign flag so we can't use it. It does clear
5071 // the overflow flag, but that's not useful without the sign flag.
5072 NoSignFlag = true;
5073 return true;
5074 }
5075}
5076
5077/// Check whether the use can be converted to remove a comparison against zero.
5078static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
5079 switch (MI.getOpcode()) {
5080 default:
5081 return X86::COND_INVALID;
5082 CASE_ND(NEG8r)
5083 CASE_ND(NEG16r)
5084 CASE_ND(NEG32r)
5085 CASE_ND(NEG64r)
5086 return X86::COND_AE;
5087 case X86::LZCNT16rr:
5088 case X86::LZCNT32rr:
5089 case X86::LZCNT64rr:
5090 return X86::COND_B;
5091 case X86::POPCNT16rr:
5092 case X86::POPCNT32rr:
5093 case X86::POPCNT64rr:
5094 return X86::COND_E;
5095 case X86::TZCNT16rr:
5096 case X86::TZCNT32rr:
5097 case X86::TZCNT64rr:
5098 return X86::COND_B;
5099 case X86::BSF16rr:
5100 case X86::BSF32rr:
5101 case X86::BSF64rr:
5102 case X86::BSR16rr:
5103 case X86::BSR32rr:
5104 case X86::BSR64rr:
5105 return X86::COND_E;
5106 case X86::BLSI32rr:
5107 case X86::BLSI64rr:
5108 return X86::COND_AE;
5109 case X86::BLSR32rr:
5110 case X86::BLSR64rr:
5111 case X86::BLSMSK32rr:
5112 case X86::BLSMSK64rr:
5113 return X86::COND_B;
5114 // TODO: TBM instructions.
5115 }
5116}
5117
5118/// Check if there exists an earlier instruction that
5119/// operates on the same source operands and sets flags in the same way as
5120/// Compare; remove Compare if possible.
5121bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
5122 Register SrcReg2, int64_t CmpMask,
5123 int64_t CmpValue,
5124 const MachineRegisterInfo *MRI) const {
5125 // Check whether we can replace SUB with CMP.
5126 switch (CmpInstr.getOpcode()) {
5127 default:
5128 break;
5129 CASE_ND(SUB64ri32)
5130 CASE_ND(SUB32ri)
5131 CASE_ND(SUB16ri)
5132 CASE_ND(SUB8ri)
5133 CASE_ND(SUB64rm)
5134 CASE_ND(SUB32rm)
5135 CASE_ND(SUB16rm)
5136 CASE_ND(SUB8rm)
5137 CASE_ND(SUB64rr)
5138 CASE_ND(SUB32rr)
5139 CASE_ND(SUB16rr)
5140 CASE_ND(SUB8rr) {
5141 if (!MRI->use_nodbg_empty(RegNo: CmpInstr.getOperand(i: 0).getReg()))
5142 return false;
5143 // There is no use of the destination register, we can replace SUB with CMP.
5144 unsigned NewOpcode = 0;
5145#define FROM_TO(A, B) \
5146 CASE_ND(A) NewOpcode = X86::B; \
5147 break;
5148 switch (CmpInstr.getOpcode()) {
5149 default:
5150 llvm_unreachable("Unreachable!");
5151 FROM_TO(SUB64rm, CMP64rm)
5152 FROM_TO(SUB32rm, CMP32rm)
5153 FROM_TO(SUB16rm, CMP16rm)
5154 FROM_TO(SUB8rm, CMP8rm)
5155 FROM_TO(SUB64rr, CMP64rr)
5156 FROM_TO(SUB32rr, CMP32rr)
5157 FROM_TO(SUB16rr, CMP16rr)
5158 FROM_TO(SUB8rr, CMP8rr)
5159 FROM_TO(SUB64ri32, CMP64ri32)
5160 FROM_TO(SUB32ri, CMP32ri)
5161 FROM_TO(SUB16ri, CMP16ri)
5162 FROM_TO(SUB8ri, CMP8ri)
5163 }
5164#undef FROM_TO
5165 CmpInstr.setDesc(get(NewOpcode));
5166 CmpInstr.removeOperand(OpNo: 0);
5167 // Mutating this instruction invalidates any debug data associated with it.
5168 CmpInstr.dropDebugNumber();
5169 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5170 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5171 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5172 return false;
5173 }
5174 }
5175
5176 // The following code tries to remove the comparison by re-using EFLAGS
5177 // from earlier instructions.
5178
5179 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5180
5181 // Transformation currently requires SSA values.
5182 if (SrcReg2.isPhysical())
5183 return false;
5184 MachineInstr *SrcRegDef = MRI->getVRegDef(Reg: SrcReg);
5185 assert(SrcRegDef && "Must have a definition (SSA)");
5186
5187 MachineInstr *MI = nullptr;
5188 MachineInstr *Sub = nullptr;
5189 MachineInstr *Movr0Inst = nullptr;
5190 bool NoSignFlag = false;
5191 bool ClearsOverflowFlag = false;
5192 bool ShouldUpdateCC = false;
5193 bool IsSwapped = false;
5194 X86::CondCode NewCC = X86::COND_INVALID;
5195 int64_t ImmDelta = 0;
5196
5197 // Search backward from CmpInstr for the next instruction defining EFLAGS.
5198 const TargetRegisterInfo *TRI = &getRegisterInfo();
5199 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
5200 MachineBasicBlock::reverse_iterator From =
5201 std::next(x: MachineBasicBlock::reverse_iterator(CmpInstr));
5202 for (MachineBasicBlock *MBB = &CmpMBB;;) {
5203 for (MachineInstr &Inst : make_range(x: From, y: MBB->rend())) {
5204 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5205 // %eax = addl ...
5206 // ... // EFLAGS not changed
5207 // testl %eax, %eax // <-- can be removed
5208 if (&Inst == SrcRegDef) {
5209 if (IsCmpZero &&
5210 isDefConvertible(MI: Inst, NoSignFlag, ClearsOverflowFlag)) {
5211 MI = &Inst;
5212 break;
5213 }
5214
5215 // Look back for the following pattern, in which case the
5216 // test16rr/test64rr instruction could be erased.
5217 //
5218 // Example for test16rr:
5219 // %reg = and32ri %in_reg, 5
5220 // ... // EFLAGS not changed.
5221 // %src_reg = copy %reg.sub_16bit:gr32
5222 // test16rr %src_reg, %src_reg, implicit-def $eflags
5223 // Example for test64rr:
5224 // %reg = and32ri %in_reg, 5
5225 // ... // EFLAGS not changed.
5226 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5227 // test64rr %src_reg, %src_reg, implicit-def $eflags
5228 MachineInstr *AndInstr = nullptr;
5229 if (IsCmpZero &&
5230 findRedundantFlagInstr(CmpInstr, CmpValDefInstr&: Inst, MRI, AndInstr: &AndInstr, TRI,
5231 NoSignFlag, ClearsOverflowFlag)) {
5232 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
5233 MI = AndInstr;
5234 break;
5235 }
5236 // Cannot find other candidates before definition of SrcReg.
5237 return false;
5238 }
5239
5240 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
5241 // Try to use EFLAGS produced by an instruction reading %SrcReg.
5242 // Example:
5243 // %eax = ...
5244 // ...
5245 // popcntl %eax
5246 // ... // EFLAGS not changed
5247 // testl %eax, %eax // <-- can be removed
5248 if (IsCmpZero) {
5249 NewCC = isUseDefConvertible(MI: Inst);
5250 if (NewCC != X86::COND_INVALID && Inst.getOperand(i: 1).isReg() &&
5251 Inst.getOperand(i: 1).getReg() == SrcReg) {
5252 ShouldUpdateCC = true;
5253 MI = &Inst;
5254 break;
5255 }
5256 }
5257
5258 // Try to use EFLAGS from an instruction with similar flag results.
5259 // Example:
5260 // sub x, y or cmp x, y
5261 // ... // EFLAGS not changed
5262 // cmp x, y // <-- can be removed
5263 if (isRedundantFlagInstr(FlagI: CmpInstr, SrcReg, SrcReg2, ImmMask: CmpMask, ImmValue: CmpValue,
5264 OI: Inst, IsSwapped: &IsSwapped, ImmDelta: &ImmDelta)) {
5265 Sub = &Inst;
5266 break;
5267 }
5268
5269 // MOV32r0 is implemented with xor which clobbers condition code. It is
5270 // safe to move up, if the definition to EFLAGS is dead and earlier
5271 // instructions do not read or write EFLAGS.
5272 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
5273 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
5274 Movr0Inst = &Inst;
5275 continue;
5276 }
5277
5278 // Cannot do anything for any other EFLAG changes.
5279 return false;
5280 }
5281 }
5282
5283 if (MI || Sub)
5284 break;
5285
5286 // Reached begin of basic block. Continue in predecessor if there is
5287 // exactly one.
5288 if (MBB->pred_size() != 1)
5289 return false;
5290 MBB = *MBB->pred_begin();
5291 From = MBB->rbegin();
5292 }
5293
5294 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5295 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5296 // If we are done with the basic block, we need to check whether EFLAGS is
5297 // live-out.
5298 bool FlagsMayLiveOut = true;
5299 SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate;
5300 MachineBasicBlock::iterator AfterCmpInstr =
5301 std::next(x: MachineBasicBlock::iterator(CmpInstr));
5302 for (MachineInstr &Instr : make_range(x: AfterCmpInstr, y: CmpMBB.end())) {
5303 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5304 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5305 // We should check the usage if this instruction uses and updates EFLAGS.
5306 if (!UseEFLAGS && ModifyEFLAGS) {
5307 // It is safe to remove CmpInstr if EFLAGS is updated again.
5308 FlagsMayLiveOut = false;
5309 break;
5310 }
5311 if (!UseEFLAGS && !ModifyEFLAGS)
5312 continue;
5313
5314 // EFLAGS is used by this instruction.
5315 X86::CondCode OldCC = X86::getCondFromMI(MI: Instr);
5316 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
5317 return false;
5318
5319 X86::CondCode ReplacementCC = X86::COND_INVALID;
5320 if (MI) {
5321 switch (OldCC) {
5322 default:
5323 break;
5324 case X86::COND_A:
5325 case X86::COND_AE:
5326 case X86::COND_B:
5327 case X86::COND_BE:
5328 // CF is used, we can't perform this optimization.
5329 return false;
5330 case X86::COND_G:
5331 case X86::COND_GE:
5332 case X86::COND_L:
5333 case X86::COND_LE:
5334 // If SF is used, but the instruction doesn't update the SF, then we
5335 // can't do the optimization.
5336 if (NoSignFlag)
5337 return false;
5338 [[fallthrough]];
5339 case X86::COND_O:
5340 case X86::COND_NO:
5341 // If OF is used, the instruction needs to clear it like CmpZero does.
5342 if (!ClearsOverflowFlag)
5343 return false;
5344 break;
5345 case X86::COND_S:
5346 case X86::COND_NS:
5347 // If SF is used, but the instruction doesn't update the SF, then we
5348 // can't do the optimization.
5349 if (NoSignFlag)
5350 return false;
5351 break;
5352 }
5353
5354 // If we're updating the condition code check if we have to reverse the
5355 // condition.
5356 if (ShouldUpdateCC)
5357 switch (OldCC) {
5358 default:
5359 return false;
5360 case X86::COND_E:
5361 ReplacementCC = NewCC;
5362 break;
5363 case X86::COND_NE:
5364 ReplacementCC = GetOppositeBranchCondition(CC: NewCC);
5365 break;
5366 }
5367 } else if (IsSwapped) {
5368 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5369 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5370 // We swap the condition code and synthesize the new opcode.
5371 ReplacementCC = getSwappedCondition(CC: OldCC);
5372 if (ReplacementCC == X86::COND_INVALID)
5373 return false;
5374 ShouldUpdateCC = true;
5375 } else if (ImmDelta != 0) {
5376 unsigned BitWidth = TRI->getRegSizeInBits(RC: *MRI->getRegClass(Reg: SrcReg));
5377 // Shift amount for min/max constants to adjust for 8/16/32 instruction
5378 // sizes.
5379 switch (OldCC) {
5380 case X86::COND_L: // x <s (C + 1) --> x <=s C
5381 if (ImmDelta != 1 || APInt::getSignedMinValue(numBits: BitWidth) == CmpValue)
5382 return false;
5383 ReplacementCC = X86::COND_LE;
5384 break;
5385 case X86::COND_B: // x <u (C + 1) --> x <=u C
5386 if (ImmDelta != 1 || CmpValue == 0)
5387 return false;
5388 ReplacementCC = X86::COND_BE;
5389 break;
5390 case X86::COND_GE: // x >=s (C + 1) --> x >s C
5391 if (ImmDelta != 1 || APInt::getSignedMinValue(numBits: BitWidth) == CmpValue)
5392 return false;
5393 ReplacementCC = X86::COND_G;
5394 break;
5395 case X86::COND_AE: // x >=u (C + 1) --> x >u C
5396 if (ImmDelta != 1 || CmpValue == 0)
5397 return false;
5398 ReplacementCC = X86::COND_A;
5399 break;
5400 case X86::COND_G: // x >s (C - 1) --> x >=s C
5401 if (ImmDelta != -1 || APInt::getSignedMaxValue(numBits: BitWidth) == CmpValue)
5402 return false;
5403 ReplacementCC = X86::COND_GE;
5404 break;
5405 case X86::COND_A: // x >u (C - 1) --> x >=u C
5406 if (ImmDelta != -1 || APInt::getMaxValue(numBits: BitWidth) == CmpValue)
5407 return false;
5408 ReplacementCC = X86::COND_AE;
5409 break;
5410 case X86::COND_LE: // x <=s (C - 1) --> x <s C
5411 if (ImmDelta != -1 || APInt::getSignedMaxValue(numBits: BitWidth) == CmpValue)
5412 return false;
5413 ReplacementCC = X86::COND_L;
5414 break;
5415 case X86::COND_BE: // x <=u (C - 1) --> x <u C
5416 if (ImmDelta != -1 || APInt::getMaxValue(numBits: BitWidth) == CmpValue)
5417 return false;
5418 ReplacementCC = X86::COND_B;
5419 break;
5420 default:
5421 return false;
5422 }
5423 ShouldUpdateCC = true;
5424 }
5425
5426 if (ShouldUpdateCC && ReplacementCC != OldCC) {
5427 // Push the MachineInstr to OpsToUpdate.
5428 // If it is safe to remove CmpInstr, the condition code of these
5429 // instructions will be modified.
5430 OpsToUpdate.push_back(Elt: std::make_pair(x: &Instr, y&: ReplacementCC));
5431 }
5432 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5433 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5434 FlagsMayLiveOut = false;
5435 break;
5436 }
5437 }
5438
5439 // If we have to update users but EFLAGS is live-out abort, since we cannot
5440 // easily find all of the users.
5441 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5442 for (MachineBasicBlock *Successor : CmpMBB.successors())
5443 if (Successor->isLiveIn(X86::EFLAGS))
5444 return false;
5445 }
5446
5447 // The instruction to be updated is either Sub or MI.
5448 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
5449 Sub = MI != nullptr ? MI : Sub;
5450 MachineBasicBlock *SubBB = Sub->getParent();
5451 // Move Movr0Inst to the appropriate place before Sub.
5452 if (Movr0Inst) {
5453 // Only move within the same block so we don't accidentally move to a
5454 // block with higher execution frequency.
5455 if (&CmpMBB != SubBB)
5456 return false;
5457 // Look backwards until we find a def that doesn't use the current EFLAGS.
5458 MachineBasicBlock::reverse_iterator InsertI = Sub,
5459 InsertE = Sub->getParent()->rend();
5460 for (; InsertI != InsertE; ++InsertI) {
5461 MachineInstr *Instr = &*InsertI;
5462 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5463 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5464 Movr0Inst->getParent()->remove(I: Movr0Inst);
5465 Instr->getParent()->insert(I: MachineBasicBlock::iterator(Instr),
5466 MI: Movr0Inst);
5467 break;
5468 }
5469 }
5470 if (InsertI == InsertE)
5471 return false;
5472 }
5473
5474 // Make sure Sub instruction defines EFLAGS and mark the def live.
5475 MachineOperand *FlagDef =
5476 Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
5477 assert(FlagDef && "Unable to locate a def EFLAGS operand");
5478 FlagDef->setIsDead(false);
5479
5480 CmpInstr.eraseFromParent();
5481
5482 // Modify the condition code of instructions in OpsToUpdate.
5483 for (auto &Op : OpsToUpdate) {
5484 Op.first->getOperand(i: Op.first->getDesc().getNumOperands() - 1)
5485 .setImm(Op.second);
5486 }
5487 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5488 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
5489 MBB = *MBB->pred_begin()) {
5490 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
5491 if (!MBB->isLiveIn(X86::EFLAGS))
5492 MBB->addLiveIn(X86::EFLAGS);
5493 }
5494 return true;
5495}
5496
5497/// Try to remove the load by folding it to a register
5498/// operand at the use. We fold the load instructions if load defines a virtual
5499/// register, the virtual register is used once in the same BB, and the
5500/// instructions in-between do not load or store, and have no side effects.
5501MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
5502 const MachineRegisterInfo *MRI,
5503 Register &FoldAsLoadDefReg,
5504 MachineInstr *&DefMI) const {
5505 // Check whether we can move DefMI here.
5506 DefMI = MRI->getVRegDef(Reg: FoldAsLoadDefReg);
5507 assert(DefMI);
5508 bool SawStore = false;
5509 if (!DefMI->isSafeToMove(AA: nullptr, SawStore))
5510 return nullptr;
5511
5512 // Collect information about virtual register operands of MI.
5513 SmallVector<unsigned, 1> SrcOperandIds;
5514 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5515 MachineOperand &MO = MI.getOperand(i);
5516 if (!MO.isReg())
5517 continue;
5518 Register Reg = MO.getReg();
5519 if (Reg != FoldAsLoadDefReg)
5520 continue;
5521 // Do not fold if we have a subreg use or a def.
5522 if (MO.getSubReg() || MO.isDef())
5523 return nullptr;
5524 SrcOperandIds.push_back(Elt: i);
5525 }
5526 if (SrcOperandIds.empty())
5527 return nullptr;
5528
5529 // Check whether we can fold the def into SrcOperandId.
5530 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
5531 FoldAsLoadDefReg = 0;
5532 return FoldMI;
5533 }
5534
5535 return nullptr;
5536}
5537
5538/// \returns true if the instruction can be changed to COPY when imm is 0.
5539static bool canConvert2Copy(unsigned Opc) {
5540 switch (Opc) {
5541 default:
5542 return false;
5543 CASE_ND(ADD64ri32)
5544 CASE_ND(SUB64ri32)
5545 CASE_ND(OR64ri32)
5546 CASE_ND(XOR64ri32)
5547 CASE_ND(ADD32ri)
5548 CASE_ND(SUB32ri)
5549 CASE_ND(OR32ri)
5550 CASE_ND(XOR32ri)
5551 return true;
5552 }
5553}
5554
5555/// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5556/// ADD32rr ==> ADD32ri
5557static unsigned convertALUrr2ALUri(unsigned Opc) {
5558 switch (Opc) {
5559 default:
5560 return 0;
5561#define FROM_TO(FROM, TO) \
5562 case X86::FROM: \
5563 return X86::TO; \
5564 case X86::FROM##_ND: \
5565 return X86::TO##_ND;
5566 FROM_TO(ADD64rr, ADD64ri32)
5567 FROM_TO(ADC64rr, ADC64ri32)
5568 FROM_TO(SUB64rr, SUB64ri32)
5569 FROM_TO(SBB64rr, SBB64ri32)
5570 FROM_TO(AND64rr, AND64ri32)
5571 FROM_TO(OR64rr, OR64ri32)
5572 FROM_TO(XOR64rr, XOR64ri32)
5573 FROM_TO(SHR64rCL, SHR64ri)
5574 FROM_TO(SHL64rCL, SHL64ri)
5575 FROM_TO(SAR64rCL, SAR64ri)
5576 FROM_TO(ROL64rCL, ROL64ri)
5577 FROM_TO(ROR64rCL, ROR64ri)
5578 FROM_TO(RCL64rCL, RCL64ri)
5579 FROM_TO(RCR64rCL, RCR64ri)
5580 FROM_TO(ADD32rr, ADD32ri)
5581 FROM_TO(ADC32rr, ADC32ri)
5582 FROM_TO(SUB32rr, SUB32ri)
5583 FROM_TO(SBB32rr, SBB32ri)
5584 FROM_TO(AND32rr, AND32ri)
5585 FROM_TO(OR32rr, OR32ri)
5586 FROM_TO(XOR32rr, XOR32ri)
5587 FROM_TO(SHR32rCL, SHR32ri)
5588 FROM_TO(SHL32rCL, SHL32ri)
5589 FROM_TO(SAR32rCL, SAR32ri)
5590 FROM_TO(ROL32rCL, ROL32ri)
5591 FROM_TO(ROR32rCL, ROR32ri)
5592 FROM_TO(RCL32rCL, RCL32ri)
5593 FROM_TO(RCR32rCL, RCR32ri)
5594#undef FROM_TO
5595#define FROM_TO(FROM, TO) \
5596 case X86::FROM: \
5597 return X86::TO;
5598 FROM_TO(TEST64rr, TEST64ri32)
5599 FROM_TO(CTEST64rr, CTEST64ri32)
5600 FROM_TO(CMP64rr, CMP64ri32)
5601 FROM_TO(CCMP64rr, CCMP64ri32)
5602 FROM_TO(TEST32rr, TEST32ri)
5603 FROM_TO(CTEST32rr, CTEST32ri)
5604 FROM_TO(CMP32rr, CMP32ri)
5605 FROM_TO(CCMP32rr, CCMP32ri)
5606#undef FROM_TO
5607 }
5608}
5609
5610/// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5611/// If MakeChange is true, this function tries to replace Reg by ImmVal in
5612/// UseMI. If MakeChange is false, just check if folding is possible.
5613//
5614/// \returns true if folding is successful or possible.
5615bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI,
5616 Register Reg, int64_t ImmVal,
5617 MachineRegisterInfo *MRI,
5618 bool MakeChange) const {
5619 bool Modified = false;
5620
5621 // 64 bit operations accept sign extended 32 bit immediates.
5622 // 32 bit operations accept all 32 bit immediates, so we don't need to check
5623 // them.
5624 const TargetRegisterClass *RC = nullptr;
5625 if (Reg.isVirtual())
5626 RC = MRI->getRegClass(Reg);
5627 if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5628 (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5629 if (!isInt<32>(x: ImmVal))
5630 return false;
5631 }
5632
5633 if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg())
5634 return false;
5635 // Immediate has larger code size than register. So avoid folding the
5636 // immediate if it has more than 1 use and we are optimizing for size.
5637 if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() &&
5638 !MRI->hasOneNonDBGUse(RegNo: Reg))
5639 return false;
5640
5641 unsigned Opc = UseMI.getOpcode();
5642 unsigned NewOpc;
5643 if (Opc == TargetOpcode::COPY) {
5644 Register ToReg = UseMI.getOperand(i: 0).getReg();
5645 const TargetRegisterClass *RC = nullptr;
5646 if (ToReg.isVirtual())
5647 RC = MRI->getRegClass(Reg: ToReg);
5648 bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5649 (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg));
5650 bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5651 (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg));
5652 bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5653 (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg));
5654
5655 if (ImmVal == 0) {
5656 // We have MOV32r0 only.
5657 if (!GR32Reg)
5658 return false;
5659 }
5660
5661 if (GR64Reg) {
5662 if (isUInt<32>(ImmVal))
5663 NewOpc = X86::MOV32ri64;
5664 else
5665 NewOpc = X86::MOV64ri;
5666 } else if (GR32Reg) {
5667 NewOpc = X86::MOV32ri;
5668 if (ImmVal == 0) {
5669 // MOV32r0 clobbers EFLAGS.
5670 const TargetRegisterInfo *TRI = &getRegisterInfo();
5671 if (UseMI.getParent()->computeRegisterLiveness(
5672 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead)
5673 return false;
5674
5675 // MOV32r0 is different than other cases because it doesn't encode the
5676 // immediate in the instruction. So we directly modify it here.
5677 if (!MakeChange)
5678 return true;
5679 UseMI.setDesc(get(X86::MOV32r0));
5680 UseMI.removeOperand(
5681 OpNo: UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5682 UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true,
5683 /*isImp=*/true,
5684 /*isKill=*/false,
5685 /*isDead=*/true));
5686 Modified = true;
5687 }
5688 } else if (GR8Reg)
5689 NewOpc = X86::MOV8ri;
5690 else
5691 return false;
5692 } else
5693 NewOpc = convertALUrr2ALUri(Opc);
5694
5695 if (!NewOpc)
5696 return false;
5697
5698 // For SUB instructions the immediate can only be the second source operand.
5699 if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5700 NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri ||
5701 NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND ||
5702 NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) &&
5703 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2)
5704 return false;
5705 // For CMP instructions the immediate can only be at index 1.
5706 if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) ||
5707 (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) &&
5708 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1)
5709 return false;
5710
5711 using namespace X86;
5712 if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) ||
5713 isRCL(Opc) || isRCR(Opc)) {
5714 unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
5715 if (RegIdx < 2)
5716 return false;
5717 if (!isInt<8>(x: ImmVal))
5718 return false;
5719 assert(Reg == X86::CL);
5720
5721 if (!MakeChange)
5722 return true;
5723 UseMI.setDesc(get(NewOpc));
5724 UseMI.removeOperand(OpNo: RegIdx);
5725 UseMI.addOperand(Op: MachineOperand::CreateImm(Val: ImmVal));
5726 // Reg is physical register $cl, so we don't know if DefMI is dead through
5727 // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5728 // the dead physical register define instruction.
5729 return true;
5730 }
5731
5732 if (!MakeChange)
5733 return true;
5734
5735 if (!Modified) {
5736 // Modify the instruction.
5737 if (ImmVal == 0 && canConvert2Copy(NewOpc) &&
5738 UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
5739 // %100 = add %101, 0
5740 // ==>
5741 // %100 = COPY %101
5742 UseMI.setDesc(get(TargetOpcode::COPY));
5743 UseMI.removeOperand(
5744 OpNo: UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5745 UseMI.removeOperand(
5746 UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr));
5747 UseMI.untieRegOperand(OpIdx: 0);
5748 UseMI.clearFlag(Flag: MachineInstr::MIFlag::NoSWrap);
5749 UseMI.clearFlag(Flag: MachineInstr::MIFlag::NoUWrap);
5750 } else {
5751 unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5752 unsigned ImmOpNum = 2;
5753 if (!UseMI.getOperand(i: 0).isDef()) {
5754 Op1 = 0; // TEST, CMP, CTEST, CCMP
5755 ImmOpNum = 1;
5756 }
5757 if (Opc == TargetOpcode::COPY)
5758 ImmOpNum = 1;
5759 if (findCommutedOpIndices(MI: UseMI, SrcOpIdx1&: Op1, SrcOpIdx2&: Op2) &&
5760 UseMI.getOperand(i: Op1).getReg() == Reg)
5761 commuteInstruction(UseMI);
5762
5763 assert(UseMI.getOperand(ImmOpNum).getReg() == Reg);
5764 UseMI.setDesc(get(NewOpc));
5765 UseMI.getOperand(i: ImmOpNum).ChangeToImmediate(ImmVal);
5766 }
5767 }
5768
5769 if (Reg.isVirtual() && MRI->use_nodbg_empty(RegNo: Reg))
5770 DefMI->eraseFromBundle();
5771
5772 return true;
5773}
5774
5775/// foldImmediate - 'Reg' is known to be defined by a move immediate
5776/// instruction, try to fold the immediate into the use instruction.
5777bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
5778 Register Reg, MachineRegisterInfo *MRI) const {
5779 int64_t ImmVal;
5780 if (!getConstValDefinedInReg(MI: DefMI, Reg, ImmVal))
5781 return false;
5782
5783 return foldImmediateImpl(UseMI, DefMI: &DefMI, Reg, ImmVal, MRI, MakeChange: true);
5784}
5785
5786/// Expand a single-def pseudo instruction to a two-addr
5787/// instruction with two undef reads of the register being defined.
5788/// This is used for mapping:
5789/// %xmm4 = V_SET0
5790/// to:
5791/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
5792///
5793static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
5794 const MCInstrDesc &Desc) {
5795 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5796 Register Reg = MIB.getReg(Idx: 0);
5797 MIB->setDesc(Desc);
5798
5799 // MachineInstr::addOperand() will insert explicit operands before any
5800 // implicit operands.
5801 MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef);
5802 // But we don't trust that.
5803 assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand");
5804 return true;
5805}
5806
5807/// Expand a single-def pseudo instruction to a two-addr
5808/// instruction with two %k0 reads.
5809/// This is used for mapping:
5810/// %k4 = K_SET1
5811/// to:
5812/// %k4 = KXNORrr %k0, %k0
5813static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
5814 Register Reg) {
5815 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5816 MIB->setDesc(Desc);
5817 MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef);
5818 return true;
5819}
5820
5821static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
5822 bool MinusOne) {
5823 MachineBasicBlock &MBB = *MIB->getParent();
5824 const DebugLoc &DL = MIB->getDebugLoc();
5825 Register Reg = MIB.getReg(Idx: 0);
5826
5827 // Insert the XOR.
5828 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5829 .addReg(Reg, RegState::Undef)
5830 .addReg(Reg, RegState::Undef);
5831
5832 // Turn the pseudo into an INC or DEC.
5833 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5834 MIB.addReg(RegNo: Reg);
5835
5836 return true;
5837}
5838
5839static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
5840 const TargetInstrInfo &TII,
5841 const X86Subtarget &Subtarget) {
5842 MachineBasicBlock &MBB = *MIB->getParent();
5843 const DebugLoc &DL = MIB->getDebugLoc();
5844 int64_t Imm = MIB->getOperand(i: 1).getImm();
5845 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
5846 MachineBasicBlock::iterator I = MIB.getInstr();
5847
5848 int StackAdjustment;
5849
5850 if (Subtarget.is64Bit()) {
5851 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
5852 MIB->getOpcode() == X86::MOV32ImmSExti8);
5853
5854 // Can't use push/pop lowering if the function might write to the red zone.
5855 X86MachineFunctionInfo *X86FI =
5856 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
5857 if (X86FI->getUsesRedZone()) {
5858 MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8
5859 ? X86::MOV32ri
5860 : X86::MOV64ri));
5861 return true;
5862 }
5863
5864 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
5865 // widen the register if necessary.
5866 StackAdjustment = 8;
5867 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
5868 MIB->setDesc(TII.get(X86::POP64r));
5869 MIB->getOperand(i: 0).setReg(getX86SubSuperRegister(Reg: MIB.getReg(Idx: 0), Size: 64));
5870 } else {
5871 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
5872 StackAdjustment = 4;
5873 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
5874 MIB->setDesc(TII.get(X86::POP32r));
5875 }
5876 MIB->removeOperand(OpNo: 1);
5877 MIB->addImplicitDefUseOperands(MF&: *MBB.getParent());
5878
5879 // Build CFI if necessary.
5880 MachineFunction &MF = *MBB.getParent();
5881 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
5882 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
5883 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
5884 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
5885 if (EmitCFI) {
5886 TFL->BuildCFI(
5887 MBB, MBBI: I, DL,
5888 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackAdjustment));
5889 TFL->BuildCFI(
5890 MBB, MBBI: std::next(x: I), DL,
5891 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: -StackAdjustment));
5892 }
5893
5894 return true;
5895}
5896
5897// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
5898// code sequence is needed for other targets.
5899static void expandLoadStackGuard(MachineInstrBuilder &MIB,
5900 const TargetInstrInfo &TII) {
5901 MachineBasicBlock &MBB = *MIB->getParent();
5902 const DebugLoc &DL = MIB->getDebugLoc();
5903 Register Reg = MIB.getReg(Idx: 0);
5904 const GlobalValue *GV =
5905 cast<GlobalValue>(Val: (*MIB->memoperands_begin())->getValue());
5906 auto Flags = MachineMemOperand::MOLoad |
5907 MachineMemOperand::MODereferenceable |
5908 MachineMemOperand::MOInvariant;
5909 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
5910 PtrInfo: MachinePointerInfo::getGOT(MF&: *MBB.getParent()), F: Flags, Size: 8, BaseAlignment: Align(8));
5911 MachineBasicBlock::iterator I = MIB.getInstr();
5912
5913 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg)
5914 .addReg(X86::RIP)
5915 .addImm(1)
5916 .addReg(0)
5917 .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL)
5918 .addReg(0)
5919 .addMemOperand(MMO);
5920 MIB->setDebugLoc(DL);
5921 MIB->setDesc(TII.get(X86::MOV64rm));
5922 MIB.addReg(RegNo: Reg, flags: RegState::Kill).addImm(Val: 1).addReg(RegNo: 0).addImm(Val: 0).addReg(RegNo: 0);
5923}
5924
5925static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
5926 MachineBasicBlock &MBB = *MIB->getParent();
5927 MachineFunction &MF = *MBB.getParent();
5928 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
5929 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
5930 unsigned XorOp =
5931 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
5932 MIB->setDesc(TII.get(Opcode: XorOp));
5933 MIB.addReg(RegNo: TRI->getFrameRegister(MF), flags: RegState::Undef);
5934 return true;
5935}
5936
5937// This is used to handle spills for 128/256-bit registers when we have AVX512,
5938// but not VLX. If it uses an extended register we need to use an instruction
5939// that loads the lower 128/256-bit, but is available with only AVX512F.
5940static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
5941 const TargetRegisterInfo *TRI,
5942 const MCInstrDesc &LoadDesc,
5943 const MCInstrDesc &BroadcastDesc, unsigned SubIdx) {
5944 Register DestReg = MIB.getReg(Idx: 0);
5945 // Check if DestReg is XMM16-31 or YMM16-31.
5946 if (TRI->getEncodingValue(RegNo: DestReg) < 16) {
5947 // We can use a normal VEX encoded load.
5948 MIB->setDesc(LoadDesc);
5949 } else {
5950 // Use a 128/256-bit VBROADCAST instruction.
5951 MIB->setDesc(BroadcastDesc);
5952 // Change the destination to a 512-bit register.
5953 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
5954 MIB->getOperand(i: 0).setReg(DestReg);
5955 }
5956 return true;
5957}
5958
5959// This is used to handle spills for 128/256-bit registers when we have AVX512,
5960// but not VLX. If it uses an extended register we need to use an instruction
5961// that stores the lower 128/256-bit, but is available with only AVX512F.
5962static bool expandNOVLXStore(MachineInstrBuilder &MIB,
5963 const TargetRegisterInfo *TRI,
5964 const MCInstrDesc &StoreDesc,
5965 const MCInstrDesc &ExtractDesc, unsigned SubIdx) {
5966 Register SrcReg = MIB.getReg(Idx: X86::AddrNumOperands);
5967 // Check if DestReg is XMM16-31 or YMM16-31.
5968 if (TRI->getEncodingValue(RegNo: SrcReg) < 16) {
5969 // We can use a normal VEX encoded store.
5970 MIB->setDesc(StoreDesc);
5971 } else {
5972 // Use a VEXTRACTF instruction.
5973 MIB->setDesc(ExtractDesc);
5974 // Change the destination to a 512-bit register.
5975 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
5976 MIB->getOperand(i: X86::AddrNumOperands).setReg(SrcReg);
5977 MIB.addImm(Val: 0x0); // Append immediate to extract from the lower bits.
5978 }
5979
5980 return true;
5981}
5982
5983static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
5984 MIB->setDesc(Desc);
5985 int64_t ShiftAmt = MIB->getOperand(i: 2).getImm();
5986 // Temporarily remove the immediate so we can add another source register.
5987 MIB->removeOperand(OpNo: 2);
5988 // Add the register. Don't copy the kill flag if there is one.
5989 MIB.addReg(RegNo: MIB.getReg(Idx: 1), flags: getUndefRegState(B: MIB->getOperand(i: 1).isUndef()));
5990 // Add back the immediate.
5991 MIB.addImm(Val: ShiftAmt);
5992 return true;
5993}
5994
5995bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
5996 bool HasAVX = Subtarget.hasAVX();
5997 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5998 switch (MI.getOpcode()) {
5999 case X86::MOV32r0:
6000 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
6001 case X86::MOV32r1:
6002 return expandMOV32r1(MIB, *this, /*MinusOne=*/false);
6003 case X86::MOV32r_1:
6004 return expandMOV32r1(MIB, *this, /*MinusOne=*/true);
6005 case X86::MOV32ImmSExti8:
6006 case X86::MOV64ImmSExti8:
6007 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
6008 case X86::SETB_C32r:
6009 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
6010 case X86::SETB_C64r:
6011 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
6012 case X86::MMX_SET0:
6013 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
6014 case X86::V_SET0:
6015 case X86::FsFLD0SS:
6016 case X86::FsFLD0SD:
6017 case X86::FsFLD0SH:
6018 case X86::FsFLD0F128:
6019 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
6020 case X86::AVX_SET0: {
6021 assert(HasAVX && "AVX not supported");
6022 const TargetRegisterInfo *TRI = &getRegisterInfo();
6023 Register SrcReg = MIB.getReg(Idx: 0);
6024 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6025 MIB->getOperand(i: 0).setReg(XReg);
6026 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
6027 MIB.addReg(RegNo: SrcReg, flags: RegState::ImplicitDefine);
6028 return true;
6029 }
6030 case X86::AVX512_128_SET0:
6031 case X86::AVX512_FsFLD0SH:
6032 case X86::AVX512_FsFLD0SS:
6033 case X86::AVX512_FsFLD0SD:
6034 case X86::AVX512_FsFLD0F128: {
6035 bool HasVLX = Subtarget.hasVLX();
6036 Register SrcReg = MIB.getReg(Idx: 0);
6037 const TargetRegisterInfo *TRI = &getRegisterInfo();
6038 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
6039 return Expand2AddrUndef(MIB,
6040 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6041 // Extended register without VLX. Use a larger XOR.
6042 SrcReg =
6043 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6044 MIB->getOperand(i: 0).setReg(SrcReg);
6045 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6046 }
6047 case X86::AVX512_256_SET0:
6048 case X86::AVX512_512_SET0: {
6049 bool HasVLX = Subtarget.hasVLX();
6050 Register SrcReg = MIB.getReg(Idx: 0);
6051 const TargetRegisterInfo *TRI = &getRegisterInfo();
6052 if (HasVLX || TRI->getEncodingValue(RegNo: SrcReg) < 16) {
6053 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6054 MIB->getOperand(i: 0).setReg(XReg);
6055 Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6056 MIB.addReg(RegNo: SrcReg, flags: RegState::ImplicitDefine);
6057 return true;
6058 }
6059 if (MI.getOpcode() == X86::AVX512_256_SET0) {
6060 // No VLX so we must reference a zmm.
6061 unsigned ZReg =
6062 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6063 MIB->getOperand(i: 0).setReg(ZReg);
6064 }
6065 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6066 }
6067 case X86::V_SETALLONES:
6068 return Expand2AddrUndef(MIB,
6069 get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6070 case X86::AVX2_SETALLONES:
6071 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
6072 case X86::AVX1_SETALLONES: {
6073 Register Reg = MIB.getReg(Idx: 0);
6074 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6075 MIB->setDesc(get(X86::VCMPPSYrri));
6076 MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef).addImm(Val: 0xf);
6077 return true;
6078 }
6079 case X86::AVX512_512_SETALLONES: {
6080 Register Reg = MIB.getReg(Idx: 0);
6081 MIB->setDesc(get(X86::VPTERNLOGDZrri));
6082 // VPTERNLOGD needs 3 register inputs and an immediate.
6083 // 0xff will return 1s for any input.
6084 MIB.addReg(RegNo: Reg, flags: RegState::Undef)
6085 .addReg(RegNo: Reg, flags: RegState::Undef)
6086 .addReg(RegNo: Reg, flags: RegState::Undef)
6087 .addImm(Val: 0xff);
6088 return true;
6089 }
6090 case X86::AVX512_512_SEXT_MASK_32:
6091 case X86::AVX512_512_SEXT_MASK_64: {
6092 Register Reg = MIB.getReg(Idx: 0);
6093 Register MaskReg = MIB.getReg(Idx: 1);
6094 unsigned MaskState = getRegState(RegOp: MIB->getOperand(i: 1));
6095 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6096 ? X86::VPTERNLOGQZrrikz
6097 : X86::VPTERNLOGDZrrikz;
6098 MI.removeOperand(OpNo: 1);
6099 MIB->setDesc(get(Opc));
6100 // VPTERNLOG needs 3 register inputs and an immediate.
6101 // 0xff will return 1s for any input.
6102 MIB.addReg(RegNo: Reg, flags: RegState::Undef)
6103 .addReg(RegNo: MaskReg, flags: MaskState)
6104 .addReg(RegNo: Reg, flags: RegState::Undef)
6105 .addReg(RegNo: Reg, flags: RegState::Undef)
6106 .addImm(Val: 0xff);
6107 return true;
6108 }
6109 case X86::VMOVAPSZ128rm_NOVLX:
6110 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
6111 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6112 case X86::VMOVUPSZ128rm_NOVLX:
6113 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
6114 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6115 case X86::VMOVAPSZ256rm_NOVLX:
6116 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
6117 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6118 case X86::VMOVUPSZ256rm_NOVLX:
6119 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
6120 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6121 case X86::VMOVAPSZ128mr_NOVLX:
6122 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
6123 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6124 case X86::VMOVUPSZ128mr_NOVLX:
6125 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
6126 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6127 case X86::VMOVAPSZ256mr_NOVLX:
6128 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
6129 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6130 case X86::VMOVUPSZ256mr_NOVLX:
6131 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
6132 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6133 case X86::MOV32ri64: {
6134 Register Reg = MIB.getReg(Idx: 0);
6135 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6136 MI.setDesc(get(X86::MOV32ri));
6137 MIB->getOperand(i: 0).setReg(Reg32);
6138 MIB.addReg(RegNo: Reg, flags: RegState::ImplicitDefine);
6139 return true;
6140 }
6141
6142 case X86::RDFLAGS32:
6143 case X86::RDFLAGS64: {
6144 unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64;
6145 MachineBasicBlock &MBB = *MIB->getParent();
6146
6147 MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(),
6148 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6149 .getInstr();
6150
6151 // Permit reads of the EFLAGS and DF registers without them being defined.
6152 // This intrinsic exists to read external processor state in flags, such as
6153 // the trap flag, interrupt flag, and direction flag, none of which are
6154 // modeled by the backend.
6155 assert(NewMI->getOperand(2).getReg() == X86::EFLAGS &&
6156 "Unexpected register in operand! Should be EFLAGS.");
6157 NewMI->getOperand(i: 2).setIsUndef();
6158 assert(NewMI->getOperand(3).getReg() == X86::DF &&
6159 "Unexpected register in operand! Should be DF.");
6160 NewMI->getOperand(i: 3).setIsUndef();
6161
6162 MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r));
6163 return true;
6164 }
6165
6166 case X86::WRFLAGS32:
6167 case X86::WRFLAGS64: {
6168 unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64;
6169 MachineBasicBlock &MBB = *MIB->getParent();
6170
6171 BuildMI(MBB, MI, MIB->getDebugLoc(),
6172 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6173 .addReg(MI.getOperand(0).getReg());
6174 BuildMI(MBB, MI, MIB->getDebugLoc(),
6175 get(Is64Bit ? X86::POPF64 : X86::POPF32));
6176 MI.eraseFromParent();
6177 return true;
6178 }
6179
6180 // KNL does not recognize dependency-breaking idioms for mask registers,
6181 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6182 // Using %k0 as the undef input register is a performance heuristic based
6183 // on the assumption that %k0 is used less frequently than the other mask
6184 // registers, since it is not usable as a write mask.
6185 // FIXME: A more advanced approach would be to choose the best input mask
6186 // register based on context.
6187 case X86::KSET0W:
6188 return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
6189 case X86::KSET0D:
6190 return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
6191 case X86::KSET0Q:
6192 return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
6193 case X86::KSET1W:
6194 return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
6195 case X86::KSET1D:
6196 return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
6197 case X86::KSET1Q:
6198 return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
6199 case TargetOpcode::LOAD_STACK_GUARD:
6200 expandLoadStackGuard(MIB, *this);
6201 return true;
6202 case X86::XOR64_FP:
6203 case X86::XOR32_FP:
6204 return expandXorFP(MIB, *this);
6205 case X86::SHLDROT32ri:
6206 return expandSHXDROT(MIB, get(X86::SHLD32rri8));
6207 case X86::SHLDROT64ri:
6208 return expandSHXDROT(MIB, get(X86::SHLD64rri8));
6209 case X86::SHRDROT32ri:
6210 return expandSHXDROT(MIB, get(X86::SHRD32rri8));
6211 case X86::SHRDROT64ri:
6212 return expandSHXDROT(MIB, get(X86::SHRD64rri8));
6213 case X86::ADD8rr_DB:
6214 MIB->setDesc(get(X86::OR8rr));
6215 break;
6216 case X86::ADD16rr_DB:
6217 MIB->setDesc(get(X86::OR16rr));
6218 break;
6219 case X86::ADD32rr_DB:
6220 MIB->setDesc(get(X86::OR32rr));
6221 break;
6222 case X86::ADD64rr_DB:
6223 MIB->setDesc(get(X86::OR64rr));
6224 break;
6225 case X86::ADD8ri_DB:
6226 MIB->setDesc(get(X86::OR8ri));
6227 break;
6228 case X86::ADD16ri_DB:
6229 MIB->setDesc(get(X86::OR16ri));
6230 break;
6231 case X86::ADD32ri_DB:
6232 MIB->setDesc(get(X86::OR32ri));
6233 break;
6234 case X86::ADD64ri32_DB:
6235 MIB->setDesc(get(X86::OR64ri32));
6236 break;
6237 }
6238 return false;
6239}
6240
6241/// Return true for all instructions that only update
6242/// the first 32 or 64-bits of the destination register and leave the rest
6243/// unmodified. This can be used to avoid folding loads if the instructions
6244/// only update part of the destination register, and the non-updated part is
6245/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6246/// instructions breaks the partial register dependency and it can improve
6247/// performance. e.g.:
6248///
6249/// movss (%rdi), %xmm0
6250/// cvtss2sd %xmm0, %xmm0
6251///
6252/// Instead of
6253/// cvtss2sd (%rdi), %xmm0
6254///
6255/// FIXME: This should be turned into a TSFlags.
6256///
6257static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget,
6258 bool ForLoadFold = false) {
6259 switch (Opcode) {
6260 case X86::CVTSI2SSrr:
6261 case X86::CVTSI2SSrm:
6262 case X86::CVTSI642SSrr:
6263 case X86::CVTSI642SSrm:
6264 case X86::CVTSI2SDrr:
6265 case X86::CVTSI2SDrm:
6266 case X86::CVTSI642SDrr:
6267 case X86::CVTSI642SDrm:
6268 // Load folding won't effect the undef register update since the input is
6269 // a GPR.
6270 return !ForLoadFold;
6271 case X86::CVTSD2SSrr:
6272 case X86::CVTSD2SSrm:
6273 case X86::CVTSS2SDrr:
6274 case X86::CVTSS2SDrm:
6275 case X86::MOVHPDrm:
6276 case X86::MOVHPSrm:
6277 case X86::MOVLPDrm:
6278 case X86::MOVLPSrm:
6279 case X86::RCPSSr:
6280 case X86::RCPSSm:
6281 case X86::RCPSSr_Int:
6282 case X86::RCPSSm_Int:
6283 case X86::ROUNDSDri:
6284 case X86::ROUNDSDmi:
6285 case X86::ROUNDSSri:
6286 case X86::ROUNDSSmi:
6287 case X86::RSQRTSSr:
6288 case X86::RSQRTSSm:
6289 case X86::RSQRTSSr_Int:
6290 case X86::RSQRTSSm_Int:
6291 case X86::SQRTSSr:
6292 case X86::SQRTSSm:
6293 case X86::SQRTSSr_Int:
6294 case X86::SQRTSSm_Int:
6295 case X86::SQRTSDr:
6296 case X86::SQRTSDm:
6297 case X86::SQRTSDr_Int:
6298 case X86::SQRTSDm_Int:
6299 return true;
6300 case X86::VFCMULCPHZ128rm:
6301 case X86::VFCMULCPHZ128rmb:
6302 case X86::VFCMULCPHZ128rmbkz:
6303 case X86::VFCMULCPHZ128rmkz:
6304 case X86::VFCMULCPHZ128rr:
6305 case X86::VFCMULCPHZ128rrkz:
6306 case X86::VFCMULCPHZ256rm:
6307 case X86::VFCMULCPHZ256rmb:
6308 case X86::VFCMULCPHZ256rmbkz:
6309 case X86::VFCMULCPHZ256rmkz:
6310 case X86::VFCMULCPHZ256rr:
6311 case X86::VFCMULCPHZ256rrkz:
6312 case X86::VFCMULCPHZrm:
6313 case X86::VFCMULCPHZrmb:
6314 case X86::VFCMULCPHZrmbkz:
6315 case X86::VFCMULCPHZrmkz:
6316 case X86::VFCMULCPHZrr:
6317 case X86::VFCMULCPHZrrb:
6318 case X86::VFCMULCPHZrrbkz:
6319 case X86::VFCMULCPHZrrkz:
6320 case X86::VFMULCPHZ128rm:
6321 case X86::VFMULCPHZ128rmb:
6322 case X86::VFMULCPHZ128rmbkz:
6323 case X86::VFMULCPHZ128rmkz:
6324 case X86::VFMULCPHZ128rr:
6325 case X86::VFMULCPHZ128rrkz:
6326 case X86::VFMULCPHZ256rm:
6327 case X86::VFMULCPHZ256rmb:
6328 case X86::VFMULCPHZ256rmbkz:
6329 case X86::VFMULCPHZ256rmkz:
6330 case X86::VFMULCPHZ256rr:
6331 case X86::VFMULCPHZ256rrkz:
6332 case X86::VFMULCPHZrm:
6333 case X86::VFMULCPHZrmb:
6334 case X86::VFMULCPHZrmbkz:
6335 case X86::VFMULCPHZrmkz:
6336 case X86::VFMULCPHZrr:
6337 case X86::VFMULCPHZrrb:
6338 case X86::VFMULCPHZrrbkz:
6339 case X86::VFMULCPHZrrkz:
6340 case X86::VFCMULCSHZrm:
6341 case X86::VFCMULCSHZrmkz:
6342 case X86::VFCMULCSHZrr:
6343 case X86::VFCMULCSHZrrb:
6344 case X86::VFCMULCSHZrrbkz:
6345 case X86::VFCMULCSHZrrkz:
6346 case X86::VFMULCSHZrm:
6347 case X86::VFMULCSHZrmkz:
6348 case X86::VFMULCSHZrr:
6349 case X86::VFMULCSHZrrb:
6350 case X86::VFMULCSHZrrbkz:
6351 case X86::VFMULCSHZrrkz:
6352 return Subtarget.hasMULCFalseDeps();
6353 case X86::VPERMDYrm:
6354 case X86::VPERMDYrr:
6355 case X86::VPERMQYmi:
6356 case X86::VPERMQYri:
6357 case X86::VPERMPSYrm:
6358 case X86::VPERMPSYrr:
6359 case X86::VPERMPDYmi:
6360 case X86::VPERMPDYri:
6361 case X86::VPERMDZ256rm:
6362 case X86::VPERMDZ256rmb:
6363 case X86::VPERMDZ256rmbkz:
6364 case X86::VPERMDZ256rmkz:
6365 case X86::VPERMDZ256rr:
6366 case X86::VPERMDZ256rrkz:
6367 case X86::VPERMDZrm:
6368 case X86::VPERMDZrmb:
6369 case X86::VPERMDZrmbkz:
6370 case X86::VPERMDZrmkz:
6371 case X86::VPERMDZrr:
6372 case X86::VPERMDZrrkz:
6373 case X86::VPERMQZ256mbi:
6374 case X86::VPERMQZ256mbikz:
6375 case X86::VPERMQZ256mi:
6376 case X86::VPERMQZ256mikz:
6377 case X86::VPERMQZ256ri:
6378 case X86::VPERMQZ256rikz:
6379 case X86::VPERMQZ256rm:
6380 case X86::VPERMQZ256rmb:
6381 case X86::VPERMQZ256rmbkz:
6382 case X86::VPERMQZ256rmkz:
6383 case X86::VPERMQZ256rr:
6384 case X86::VPERMQZ256rrkz:
6385 case X86::VPERMQZmbi:
6386 case X86::VPERMQZmbikz:
6387 case X86::VPERMQZmi:
6388 case X86::VPERMQZmikz:
6389 case X86::VPERMQZri:
6390 case X86::VPERMQZrikz:
6391 case X86::VPERMQZrm:
6392 case X86::VPERMQZrmb:
6393 case X86::VPERMQZrmbkz:
6394 case X86::VPERMQZrmkz:
6395 case X86::VPERMQZrr:
6396 case X86::VPERMQZrrkz:
6397 case X86::VPERMPSZ256rm:
6398 case X86::VPERMPSZ256rmb:
6399 case X86::VPERMPSZ256rmbkz:
6400 case X86::VPERMPSZ256rmkz:
6401 case X86::VPERMPSZ256rr:
6402 case X86::VPERMPSZ256rrkz:
6403 case X86::VPERMPSZrm:
6404 case X86::VPERMPSZrmb:
6405 case X86::VPERMPSZrmbkz:
6406 case X86::VPERMPSZrmkz:
6407 case X86::VPERMPSZrr:
6408 case X86::VPERMPSZrrkz:
6409 case X86::VPERMPDZ256mbi:
6410 case X86::VPERMPDZ256mbikz:
6411 case X86::VPERMPDZ256mi:
6412 case X86::VPERMPDZ256mikz:
6413 case X86::VPERMPDZ256ri:
6414 case X86::VPERMPDZ256rikz:
6415 case X86::VPERMPDZ256rm:
6416 case X86::VPERMPDZ256rmb:
6417 case X86::VPERMPDZ256rmbkz:
6418 case X86::VPERMPDZ256rmkz:
6419 case X86::VPERMPDZ256rr:
6420 case X86::VPERMPDZ256rrkz:
6421 case X86::VPERMPDZmbi:
6422 case X86::VPERMPDZmbikz:
6423 case X86::VPERMPDZmi:
6424 case X86::VPERMPDZmikz:
6425 case X86::VPERMPDZri:
6426 case X86::VPERMPDZrikz:
6427 case X86::VPERMPDZrm:
6428 case X86::VPERMPDZrmb:
6429 case X86::VPERMPDZrmbkz:
6430 case X86::VPERMPDZrmkz:
6431 case X86::VPERMPDZrr:
6432 case X86::VPERMPDZrrkz:
6433 return Subtarget.hasPERMFalseDeps();
6434 case X86::VRANGEPDZ128rmbi:
6435 case X86::VRANGEPDZ128rmbikz:
6436 case X86::VRANGEPDZ128rmi:
6437 case X86::VRANGEPDZ128rmikz:
6438 case X86::VRANGEPDZ128rri:
6439 case X86::VRANGEPDZ128rrikz:
6440 case X86::VRANGEPDZ256rmbi:
6441 case X86::VRANGEPDZ256rmbikz:
6442 case X86::VRANGEPDZ256rmi:
6443 case X86::VRANGEPDZ256rmikz:
6444 case X86::VRANGEPDZ256rri:
6445 case X86::VRANGEPDZ256rrikz:
6446 case X86::VRANGEPDZrmbi:
6447 case X86::VRANGEPDZrmbikz:
6448 case X86::VRANGEPDZrmi:
6449 case X86::VRANGEPDZrmikz:
6450 case X86::VRANGEPDZrri:
6451 case X86::VRANGEPDZrrib:
6452 case X86::VRANGEPDZrribkz:
6453 case X86::VRANGEPDZrrikz:
6454 case X86::VRANGEPSZ128rmbi:
6455 case X86::VRANGEPSZ128rmbikz:
6456 case X86::VRANGEPSZ128rmi:
6457 case X86::VRANGEPSZ128rmikz:
6458 case X86::VRANGEPSZ128rri:
6459 case X86::VRANGEPSZ128rrikz:
6460 case X86::VRANGEPSZ256rmbi:
6461 case X86::VRANGEPSZ256rmbikz:
6462 case X86::VRANGEPSZ256rmi:
6463 case X86::VRANGEPSZ256rmikz:
6464 case X86::VRANGEPSZ256rri:
6465 case X86::VRANGEPSZ256rrikz:
6466 case X86::VRANGEPSZrmbi:
6467 case X86::VRANGEPSZrmbikz:
6468 case X86::VRANGEPSZrmi:
6469 case X86::VRANGEPSZrmikz:
6470 case X86::VRANGEPSZrri:
6471 case X86::VRANGEPSZrrib:
6472 case X86::VRANGEPSZrribkz:
6473 case X86::VRANGEPSZrrikz:
6474 case X86::VRANGESDZrmi:
6475 case X86::VRANGESDZrmikz:
6476 case X86::VRANGESDZrri:
6477 case X86::VRANGESDZrrib:
6478 case X86::VRANGESDZrribkz:
6479 case X86::VRANGESDZrrikz:
6480 case X86::VRANGESSZrmi:
6481 case X86::VRANGESSZrmikz:
6482 case X86::VRANGESSZrri:
6483 case X86::VRANGESSZrrib:
6484 case X86::VRANGESSZrribkz:
6485 case X86::VRANGESSZrrikz:
6486 return Subtarget.hasRANGEFalseDeps();
6487 case X86::VGETMANTSSZrmi:
6488 case X86::VGETMANTSSZrmikz:
6489 case X86::VGETMANTSSZrri:
6490 case X86::VGETMANTSSZrrib:
6491 case X86::VGETMANTSSZrribkz:
6492 case X86::VGETMANTSSZrrikz:
6493 case X86::VGETMANTSDZrmi:
6494 case X86::VGETMANTSDZrmikz:
6495 case X86::VGETMANTSDZrri:
6496 case X86::VGETMANTSDZrrib:
6497 case X86::VGETMANTSDZrribkz:
6498 case X86::VGETMANTSDZrrikz:
6499 case X86::VGETMANTSHZrmi:
6500 case X86::VGETMANTSHZrmikz:
6501 case X86::VGETMANTSHZrri:
6502 case X86::VGETMANTSHZrrib:
6503 case X86::VGETMANTSHZrribkz:
6504 case X86::VGETMANTSHZrrikz:
6505 case X86::VGETMANTPSZ128rmbi:
6506 case X86::VGETMANTPSZ128rmbikz:
6507 case X86::VGETMANTPSZ128rmi:
6508 case X86::VGETMANTPSZ128rmikz:
6509 case X86::VGETMANTPSZ256rmbi:
6510 case X86::VGETMANTPSZ256rmbikz:
6511 case X86::VGETMANTPSZ256rmi:
6512 case X86::VGETMANTPSZ256rmikz:
6513 case X86::VGETMANTPSZrmbi:
6514 case X86::VGETMANTPSZrmbikz:
6515 case X86::VGETMANTPSZrmi:
6516 case X86::VGETMANTPSZrmikz:
6517 case X86::VGETMANTPDZ128rmbi:
6518 case X86::VGETMANTPDZ128rmbikz:
6519 case X86::VGETMANTPDZ128rmi:
6520 case X86::VGETMANTPDZ128rmikz:
6521 case X86::VGETMANTPDZ256rmbi:
6522 case X86::VGETMANTPDZ256rmbikz:
6523 case X86::VGETMANTPDZ256rmi:
6524 case X86::VGETMANTPDZ256rmikz:
6525 case X86::VGETMANTPDZrmbi:
6526 case X86::VGETMANTPDZrmbikz:
6527 case X86::VGETMANTPDZrmi:
6528 case X86::VGETMANTPDZrmikz:
6529 return Subtarget.hasGETMANTFalseDeps();
6530 case X86::VPMULLQZ128rm:
6531 case X86::VPMULLQZ128rmb:
6532 case X86::VPMULLQZ128rmbkz:
6533 case X86::VPMULLQZ128rmkz:
6534 case X86::VPMULLQZ128rr:
6535 case X86::VPMULLQZ128rrkz:
6536 case X86::VPMULLQZ256rm:
6537 case X86::VPMULLQZ256rmb:
6538 case X86::VPMULLQZ256rmbkz:
6539 case X86::VPMULLQZ256rmkz:
6540 case X86::VPMULLQZ256rr:
6541 case X86::VPMULLQZ256rrkz:
6542 case X86::VPMULLQZrm:
6543 case X86::VPMULLQZrmb:
6544 case X86::VPMULLQZrmbkz:
6545 case X86::VPMULLQZrmkz:
6546 case X86::VPMULLQZrr:
6547 case X86::VPMULLQZrrkz:
6548 return Subtarget.hasMULLQFalseDeps();
6549 // GPR
6550 case X86::POPCNT32rm:
6551 case X86::POPCNT32rr:
6552 case X86::POPCNT64rm:
6553 case X86::POPCNT64rr:
6554 return Subtarget.hasPOPCNTFalseDeps();
6555 case X86::LZCNT32rm:
6556 case X86::LZCNT32rr:
6557 case X86::LZCNT64rm:
6558 case X86::LZCNT64rr:
6559 case X86::TZCNT32rm:
6560 case X86::TZCNT32rr:
6561 case X86::TZCNT64rm:
6562 case X86::TZCNT64rr:
6563 return Subtarget.hasLZCNTFalseDeps();
6564 }
6565
6566 return false;
6567}
6568
6569/// Inform the BreakFalseDeps pass how many idle
6570/// instructions we would like before a partial register update.
6571unsigned X86InstrInfo::getPartialRegUpdateClearance(
6572 const MachineInstr &MI, unsigned OpNum,
6573 const TargetRegisterInfo *TRI) const {
6574 if (OpNum != 0 || !hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget))
6575 return 0;
6576
6577 // If MI is marked as reading Reg, the partial register update is wanted.
6578 const MachineOperand &MO = MI.getOperand(i: 0);
6579 Register Reg = MO.getReg();
6580 if (Reg.isVirtual()) {
6581 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
6582 return 0;
6583 } else {
6584 if (MI.readsRegister(Reg, TRI))
6585 return 0;
6586 }
6587
6588 // If any instructions in the clearance range are reading Reg, insert a
6589 // dependency breaking instruction, which is inexpensive and is likely to
6590 // be hidden in other instruction's cycles.
6591 return PartialRegUpdateClearance;
6592}
6593
6594// Return true for any instruction the copies the high bits of the first source
6595// operand into the unused high bits of the destination operand.
6596// Also returns true for instructions that have two inputs where one may
6597// be undef and we want it to use the same register as the other input.
6598static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
6599 bool ForLoadFold = false) {
6600 // Set the OpNum parameter to the first source operand.
6601 switch (Opcode) {
6602 case X86::MMX_PUNPCKHBWrr:
6603 case X86::MMX_PUNPCKHWDrr:
6604 case X86::MMX_PUNPCKHDQrr:
6605 case X86::MMX_PUNPCKLBWrr:
6606 case X86::MMX_PUNPCKLWDrr:
6607 case X86::MMX_PUNPCKLDQrr:
6608 case X86::MOVHLPSrr:
6609 case X86::PACKSSWBrr:
6610 case X86::PACKUSWBrr:
6611 case X86::PACKSSDWrr:
6612 case X86::PACKUSDWrr:
6613 case X86::PUNPCKHBWrr:
6614 case X86::PUNPCKLBWrr:
6615 case X86::PUNPCKHWDrr:
6616 case X86::PUNPCKLWDrr:
6617 case X86::PUNPCKHDQrr:
6618 case X86::PUNPCKLDQrr:
6619 case X86::PUNPCKHQDQrr:
6620 case X86::PUNPCKLQDQrr:
6621 case X86::SHUFPDrri:
6622 case X86::SHUFPSrri:
6623 // These instructions are sometimes used with an undef first or second
6624 // source. Return true here so BreakFalseDeps will assign this source to the
6625 // same register as the first source to avoid a false dependency.
6626 // Operand 1 of these instructions is tied so they're separate from their
6627 // VEX counterparts.
6628 return OpNum == 2 && !ForLoadFold;
6629
6630 case X86::VMOVLHPSrr:
6631 case X86::VMOVLHPSZrr:
6632 case X86::VPACKSSWBrr:
6633 case X86::VPACKUSWBrr:
6634 case X86::VPACKSSDWrr:
6635 case X86::VPACKUSDWrr:
6636 case X86::VPACKSSWBZ128rr:
6637 case X86::VPACKUSWBZ128rr:
6638 case X86::VPACKSSDWZ128rr:
6639 case X86::VPACKUSDWZ128rr:
6640 case X86::VPERM2F128rr:
6641 case X86::VPERM2I128rr:
6642 case X86::VSHUFF32X4Z256rri:
6643 case X86::VSHUFF32X4Zrri:
6644 case X86::VSHUFF64X2Z256rri:
6645 case X86::VSHUFF64X2Zrri:
6646 case X86::VSHUFI32X4Z256rri:
6647 case X86::VSHUFI32X4Zrri:
6648 case X86::VSHUFI64X2Z256rri:
6649 case X86::VSHUFI64X2Zrri:
6650 case X86::VPUNPCKHBWrr:
6651 case X86::VPUNPCKLBWrr:
6652 case X86::VPUNPCKHBWYrr:
6653 case X86::VPUNPCKLBWYrr:
6654 case X86::VPUNPCKHBWZ128rr:
6655 case X86::VPUNPCKLBWZ128rr:
6656 case X86::VPUNPCKHBWZ256rr:
6657 case X86::VPUNPCKLBWZ256rr:
6658 case X86::VPUNPCKHBWZrr:
6659 case X86::VPUNPCKLBWZrr:
6660 case X86::VPUNPCKHWDrr:
6661 case X86::VPUNPCKLWDrr:
6662 case X86::VPUNPCKHWDYrr:
6663 case X86::VPUNPCKLWDYrr:
6664 case X86::VPUNPCKHWDZ128rr:
6665 case X86::VPUNPCKLWDZ128rr:
6666 case X86::VPUNPCKHWDZ256rr:
6667 case X86::VPUNPCKLWDZ256rr:
6668 case X86::VPUNPCKHWDZrr:
6669 case X86::VPUNPCKLWDZrr:
6670 case X86::VPUNPCKHDQrr:
6671 case X86::VPUNPCKLDQrr:
6672 case X86::VPUNPCKHDQYrr:
6673 case X86::VPUNPCKLDQYrr:
6674 case X86::VPUNPCKHDQZ128rr:
6675 case X86::VPUNPCKLDQZ128rr:
6676 case X86::VPUNPCKHDQZ256rr:
6677 case X86::VPUNPCKLDQZ256rr:
6678 case X86::VPUNPCKHDQZrr:
6679 case X86::VPUNPCKLDQZrr:
6680 case X86::VPUNPCKHQDQrr:
6681 case X86::VPUNPCKLQDQrr:
6682 case X86::VPUNPCKHQDQYrr:
6683 case X86::VPUNPCKLQDQYrr:
6684 case X86::VPUNPCKHQDQZ128rr:
6685 case X86::VPUNPCKLQDQZ128rr:
6686 case X86::VPUNPCKHQDQZ256rr:
6687 case X86::VPUNPCKLQDQZ256rr:
6688 case X86::VPUNPCKHQDQZrr:
6689 case X86::VPUNPCKLQDQZrr:
6690 // These instructions are sometimes used with an undef first or second
6691 // source. Return true here so BreakFalseDeps will assign this source to the
6692 // same register as the first source to avoid a false dependency.
6693 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6694
6695 case X86::VCVTSI2SSrr:
6696 case X86::VCVTSI2SSrm:
6697 case X86::VCVTSI2SSrr_Int:
6698 case X86::VCVTSI2SSrm_Int:
6699 case X86::VCVTSI642SSrr:
6700 case X86::VCVTSI642SSrm:
6701 case X86::VCVTSI642SSrr_Int:
6702 case X86::VCVTSI642SSrm_Int:
6703 case X86::VCVTSI2SDrr:
6704 case X86::VCVTSI2SDrm:
6705 case X86::VCVTSI2SDrr_Int:
6706 case X86::VCVTSI2SDrm_Int:
6707 case X86::VCVTSI642SDrr:
6708 case X86::VCVTSI642SDrm:
6709 case X86::VCVTSI642SDrr_Int:
6710 case X86::VCVTSI642SDrm_Int:
6711 // AVX-512
6712 case X86::VCVTSI2SSZrr:
6713 case X86::VCVTSI2SSZrm:
6714 case X86::VCVTSI2SSZrr_Int:
6715 case X86::VCVTSI2SSZrrb_Int:
6716 case X86::VCVTSI2SSZrm_Int:
6717 case X86::VCVTSI642SSZrr:
6718 case X86::VCVTSI642SSZrm:
6719 case X86::VCVTSI642SSZrr_Int:
6720 case X86::VCVTSI642SSZrrb_Int:
6721 case X86::VCVTSI642SSZrm_Int:
6722 case X86::VCVTSI2SDZrr:
6723 case X86::VCVTSI2SDZrm:
6724 case X86::VCVTSI2SDZrr_Int:
6725 case X86::VCVTSI2SDZrm_Int:
6726 case X86::VCVTSI642SDZrr:
6727 case X86::VCVTSI642SDZrm:
6728 case X86::VCVTSI642SDZrr_Int:
6729 case X86::VCVTSI642SDZrrb_Int:
6730 case X86::VCVTSI642SDZrm_Int:
6731 case X86::VCVTUSI2SSZrr:
6732 case X86::VCVTUSI2SSZrm:
6733 case X86::VCVTUSI2SSZrr_Int:
6734 case X86::VCVTUSI2SSZrrb_Int:
6735 case X86::VCVTUSI2SSZrm_Int:
6736 case X86::VCVTUSI642SSZrr:
6737 case X86::VCVTUSI642SSZrm:
6738 case X86::VCVTUSI642SSZrr_Int:
6739 case X86::VCVTUSI642SSZrrb_Int:
6740 case X86::VCVTUSI642SSZrm_Int:
6741 case X86::VCVTUSI2SDZrr:
6742 case X86::VCVTUSI2SDZrm:
6743 case X86::VCVTUSI2SDZrr_Int:
6744 case X86::VCVTUSI2SDZrm_Int:
6745 case X86::VCVTUSI642SDZrr:
6746 case X86::VCVTUSI642SDZrm:
6747 case X86::VCVTUSI642SDZrr_Int:
6748 case X86::VCVTUSI642SDZrrb_Int:
6749 case X86::VCVTUSI642SDZrm_Int:
6750 case X86::VCVTSI2SHZrr:
6751 case X86::VCVTSI2SHZrm:
6752 case X86::VCVTSI2SHZrr_Int:
6753 case X86::VCVTSI2SHZrrb_Int:
6754 case X86::VCVTSI2SHZrm_Int:
6755 case X86::VCVTSI642SHZrr:
6756 case X86::VCVTSI642SHZrm:
6757 case X86::VCVTSI642SHZrr_Int:
6758 case X86::VCVTSI642SHZrrb_Int:
6759 case X86::VCVTSI642SHZrm_Int:
6760 case X86::VCVTUSI2SHZrr:
6761 case X86::VCVTUSI2SHZrm:
6762 case X86::VCVTUSI2SHZrr_Int:
6763 case X86::VCVTUSI2SHZrrb_Int:
6764 case X86::VCVTUSI2SHZrm_Int:
6765 case X86::VCVTUSI642SHZrr:
6766 case X86::VCVTUSI642SHZrm:
6767 case X86::VCVTUSI642SHZrr_Int:
6768 case X86::VCVTUSI642SHZrrb_Int:
6769 case X86::VCVTUSI642SHZrm_Int:
6770 // Load folding won't effect the undef register update since the input is
6771 // a GPR.
6772 return OpNum == 1 && !ForLoadFold;
6773 case X86::VCVTSD2SSrr:
6774 case X86::VCVTSD2SSrm:
6775 case X86::VCVTSD2SSrr_Int:
6776 case X86::VCVTSD2SSrm_Int:
6777 case X86::VCVTSS2SDrr:
6778 case X86::VCVTSS2SDrm:
6779 case X86::VCVTSS2SDrr_Int:
6780 case X86::VCVTSS2SDrm_Int:
6781 case X86::VRCPSSr:
6782 case X86::VRCPSSr_Int:
6783 case X86::VRCPSSm:
6784 case X86::VRCPSSm_Int:
6785 case X86::VROUNDSDri:
6786 case X86::VROUNDSDmi:
6787 case X86::VROUNDSDri_Int:
6788 case X86::VROUNDSDmi_Int:
6789 case X86::VROUNDSSri:
6790 case X86::VROUNDSSmi:
6791 case X86::VROUNDSSri_Int:
6792 case X86::VROUNDSSmi_Int:
6793 case X86::VRSQRTSSr:
6794 case X86::VRSQRTSSr_Int:
6795 case X86::VRSQRTSSm:
6796 case X86::VRSQRTSSm_Int:
6797 case X86::VSQRTSSr:
6798 case X86::VSQRTSSr_Int:
6799 case X86::VSQRTSSm:
6800 case X86::VSQRTSSm_Int:
6801 case X86::VSQRTSDr:
6802 case X86::VSQRTSDr_Int:
6803 case X86::VSQRTSDm:
6804 case X86::VSQRTSDm_Int:
6805 // AVX-512
6806 case X86::VCVTSD2SSZrr:
6807 case X86::VCVTSD2SSZrr_Int:
6808 case X86::VCVTSD2SSZrrb_Int:
6809 case X86::VCVTSD2SSZrm:
6810 case X86::VCVTSD2SSZrm_Int:
6811 case X86::VCVTSS2SDZrr:
6812 case X86::VCVTSS2SDZrr_Int:
6813 case X86::VCVTSS2SDZrrb_Int:
6814 case X86::VCVTSS2SDZrm:
6815 case X86::VCVTSS2SDZrm_Int:
6816 case X86::VGETEXPSDZr:
6817 case X86::VGETEXPSDZrb:
6818 case X86::VGETEXPSDZm:
6819 case X86::VGETEXPSSZr:
6820 case X86::VGETEXPSSZrb:
6821 case X86::VGETEXPSSZm:
6822 case X86::VGETMANTSDZrri:
6823 case X86::VGETMANTSDZrrib:
6824 case X86::VGETMANTSDZrmi:
6825 case X86::VGETMANTSSZrri:
6826 case X86::VGETMANTSSZrrib:
6827 case X86::VGETMANTSSZrmi:
6828 case X86::VRNDSCALESDZr:
6829 case X86::VRNDSCALESDZr_Int:
6830 case X86::VRNDSCALESDZrb_Int:
6831 case X86::VRNDSCALESDZm:
6832 case X86::VRNDSCALESDZm_Int:
6833 case X86::VRNDSCALESSZr:
6834 case X86::VRNDSCALESSZr_Int:
6835 case X86::VRNDSCALESSZrb_Int:
6836 case X86::VRNDSCALESSZm:
6837 case X86::VRNDSCALESSZm_Int:
6838 case X86::VRCP14SDZrr:
6839 case X86::VRCP14SDZrm:
6840 case X86::VRCP14SSZrr:
6841 case X86::VRCP14SSZrm:
6842 case X86::VRCPSHZrr:
6843 case X86::VRCPSHZrm:
6844 case X86::VRSQRTSHZrr:
6845 case X86::VRSQRTSHZrm:
6846 case X86::VREDUCESHZrmi:
6847 case X86::VREDUCESHZrri:
6848 case X86::VREDUCESHZrrib:
6849 case X86::VGETEXPSHZr:
6850 case X86::VGETEXPSHZrb:
6851 case X86::VGETEXPSHZm:
6852 case X86::VGETMANTSHZrri:
6853 case X86::VGETMANTSHZrrib:
6854 case X86::VGETMANTSHZrmi:
6855 case X86::VRNDSCALESHZr:
6856 case X86::VRNDSCALESHZr_Int:
6857 case X86::VRNDSCALESHZrb_Int:
6858 case X86::VRNDSCALESHZm:
6859 case X86::VRNDSCALESHZm_Int:
6860 case X86::VSQRTSHZr:
6861 case X86::VSQRTSHZr_Int:
6862 case X86::VSQRTSHZrb_Int:
6863 case X86::VSQRTSHZm:
6864 case X86::VSQRTSHZm_Int:
6865 case X86::VRCP28SDZr:
6866 case X86::VRCP28SDZrb:
6867 case X86::VRCP28SDZm:
6868 case X86::VRCP28SSZr:
6869 case X86::VRCP28SSZrb:
6870 case X86::VRCP28SSZm:
6871 case X86::VREDUCESSZrmi:
6872 case X86::VREDUCESSZrri:
6873 case X86::VREDUCESSZrrib:
6874 case X86::VRSQRT14SDZrr:
6875 case X86::VRSQRT14SDZrm:
6876 case X86::VRSQRT14SSZrr:
6877 case X86::VRSQRT14SSZrm:
6878 case X86::VRSQRT28SDZr:
6879 case X86::VRSQRT28SDZrb:
6880 case X86::VRSQRT28SDZm:
6881 case X86::VRSQRT28SSZr:
6882 case X86::VRSQRT28SSZrb:
6883 case X86::VRSQRT28SSZm:
6884 case X86::VSQRTSSZr:
6885 case X86::VSQRTSSZr_Int:
6886 case X86::VSQRTSSZrb_Int:
6887 case X86::VSQRTSSZm:
6888 case X86::VSQRTSSZm_Int:
6889 case X86::VSQRTSDZr:
6890 case X86::VSQRTSDZr_Int:
6891 case X86::VSQRTSDZrb_Int:
6892 case X86::VSQRTSDZm:
6893 case X86::VSQRTSDZm_Int:
6894 case X86::VCVTSD2SHZrr:
6895 case X86::VCVTSD2SHZrr_Int:
6896 case X86::VCVTSD2SHZrrb_Int:
6897 case X86::VCVTSD2SHZrm:
6898 case X86::VCVTSD2SHZrm_Int:
6899 case X86::VCVTSS2SHZrr:
6900 case X86::VCVTSS2SHZrr_Int:
6901 case X86::VCVTSS2SHZrrb_Int:
6902 case X86::VCVTSS2SHZrm:
6903 case X86::VCVTSS2SHZrm_Int:
6904 case X86::VCVTSH2SDZrr:
6905 case X86::VCVTSH2SDZrr_Int:
6906 case X86::VCVTSH2SDZrrb_Int:
6907 case X86::VCVTSH2SDZrm:
6908 case X86::VCVTSH2SDZrm_Int:
6909 case X86::VCVTSH2SSZrr:
6910 case X86::VCVTSH2SSZrr_Int:
6911 case X86::VCVTSH2SSZrrb_Int:
6912 case X86::VCVTSH2SSZrm:
6913 case X86::VCVTSH2SSZrm_Int:
6914 return OpNum == 1;
6915 case X86::VMOVSSZrrk:
6916 case X86::VMOVSDZrrk:
6917 return OpNum == 3 && !ForLoadFold;
6918 case X86::VMOVSSZrrkz:
6919 case X86::VMOVSDZrrkz:
6920 return OpNum == 2 && !ForLoadFold;
6921 }
6922
6923 return false;
6924}
6925
6926/// Inform the BreakFalseDeps pass how many idle instructions we would like
6927/// before certain undef register reads.
6928///
6929/// This catches the VCVTSI2SD family of instructions:
6930///
6931/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
6932///
6933/// We should to be careful *not* to catch VXOR idioms which are presumably
6934/// handled specially in the pipeline:
6935///
6936/// vxorps undef %xmm1, undef %xmm1, %xmm1
6937///
6938/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
6939/// high bits that are passed-through are not live.
6940unsigned
6941X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
6942 const TargetRegisterInfo *TRI) const {
6943 const MachineOperand &MO = MI.getOperand(i: OpNum);
6944 if (MO.getReg().isPhysical() && hasUndefRegUpdate(Opcode: MI.getOpcode(), OpNum))
6945 return UndefRegClearance;
6946
6947 return 0;
6948}
6949
6950void X86InstrInfo::breakPartialRegDependency(
6951 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
6952 Register Reg = MI.getOperand(i: OpNum).getReg();
6953 // If MI kills this register, the false dependence is already broken.
6954 if (MI.killsRegister(Reg, TRI))
6955 return;
6956
6957 if (X86::VR128RegClass.contains(Reg)) {
6958 // These instructions are all floating point domain, so xorps is the best
6959 // choice.
6960 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
6961 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
6962 .addReg(Reg, RegState::Undef)
6963 .addReg(Reg, RegState::Undef);
6964 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
6965 } else if (X86::VR256RegClass.contains(Reg)) {
6966 // Use vxorps to clear the full ymm register.
6967 // It wants to read and write the xmm sub-register.
6968 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
6969 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
6970 .addReg(XReg, RegState::Undef)
6971 .addReg(XReg, RegState::Undef)
6972 .addReg(Reg, RegState::ImplicitDefine);
6973 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
6974 } else if (X86::VR128XRegClass.contains(Reg)) {
6975 // Only handle VLX targets.
6976 if (!Subtarget.hasVLX())
6977 return;
6978 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
6979 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
6980 .addReg(Reg, RegState::Undef)
6981 .addReg(Reg, RegState::Undef);
6982 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
6983 } else if (X86::VR256XRegClass.contains(Reg) ||
6984 X86::VR512RegClass.contains(Reg)) {
6985 // Only handle VLX targets.
6986 if (!Subtarget.hasVLX())
6987 return;
6988 // Use vpxord to clear the full ymm/zmm register.
6989 // It wants to read and write the xmm sub-register.
6990 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
6991 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
6992 .addReg(XReg, RegState::Undef)
6993 .addReg(XReg, RegState::Undef)
6994 .addReg(Reg, RegState::ImplicitDefine);
6995 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
6996 } else if (X86::GR64RegClass.contains(Reg)) {
6997 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
6998 // as well.
6999 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
7000 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
7001 .addReg(XReg, RegState::Undef)
7002 .addReg(XReg, RegState::Undef)
7003 .addReg(Reg, RegState::ImplicitDefine);
7004 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
7005 } else if (X86::GR32RegClass.contains(Reg)) {
7006 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
7007 .addReg(Reg, RegState::Undef)
7008 .addReg(Reg, RegState::Undef);
7009 MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true);
7010 }
7011}
7012
7013static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
7014 int PtrOffset = 0) {
7015 unsigned NumAddrOps = MOs.size();
7016
7017 if (NumAddrOps < 4) {
7018 // FrameIndex only - add an immediate offset (whether its zero or not).
7019 for (unsigned i = 0; i != NumAddrOps; ++i)
7020 MIB.add(MO: MOs[i]);
7021 addOffset(MIB, Offset: PtrOffset);
7022 } else {
7023 // General Memory Addressing - we need to add any offset to an existing
7024 // offset.
7025 assert(MOs.size() == 5 && "Unexpected memory operand list length");
7026 for (unsigned i = 0; i != NumAddrOps; ++i) {
7027 const MachineOperand &MO = MOs[i];
7028 if (i == 3 && PtrOffset != 0) {
7029 MIB.addDisp(Disp: MO, off: PtrOffset);
7030 } else {
7031 MIB.add(MO);
7032 }
7033 }
7034 }
7035}
7036
7037static void updateOperandRegConstraints(MachineFunction &MF,
7038 MachineInstr &NewMI,
7039 const TargetInstrInfo &TII) {
7040 MachineRegisterInfo &MRI = MF.getRegInfo();
7041 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
7042
7043 for (int Idx : llvm::seq<int>(Begin: 0, End: NewMI.getNumOperands())) {
7044 MachineOperand &MO = NewMI.getOperand(i: Idx);
7045 // We only need to update constraints on virtual register operands.
7046 if (!MO.isReg())
7047 continue;
7048 Register Reg = MO.getReg();
7049 if (!Reg.isVirtual())
7050 continue;
7051
7052 auto *NewRC = MRI.constrainRegClass(
7053 Reg, RC: TII.getRegClass(MCID: NewMI.getDesc(), OpNum: Idx, TRI: &TRI, MF));
7054 if (!NewRC) {
7055 LLVM_DEBUG(
7056 dbgs() << "WARNING: Unable to update register constraint for operand "
7057 << Idx << " of instruction:\n";
7058 NewMI.dump(); dbgs() << "\n");
7059 }
7060 }
7061}
7062
7063static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
7064 ArrayRef<MachineOperand> MOs,
7065 MachineBasicBlock::iterator InsertPt,
7066 MachineInstr &MI,
7067 const TargetInstrInfo &TII) {
7068 // Create the base instruction with the memory operand as the first part.
7069 // Omit the implicit operands, something BuildMI can't do.
7070 MachineInstr *NewMI =
7071 MF.CreateMachineInstr(MCID: TII.get(Opcode), DL: MI.getDebugLoc(), NoImplicit: true);
7072 MachineInstrBuilder MIB(MF, NewMI);
7073 addOperands(MIB, MOs);
7074
7075 // Loop over the rest of the ri operands, converting them over.
7076 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
7077 for (unsigned i = 0; i != NumOps; ++i) {
7078 MachineOperand &MO = MI.getOperand(i: i + 2);
7079 MIB.add(MO);
7080 }
7081 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands(), N: NumOps + 2))
7082 MIB.add(MO);
7083
7084 updateOperandRegConstraints(MF, NewMI&: *NewMI, TII);
7085
7086 MachineBasicBlock *MBB = InsertPt->getParent();
7087 MBB->insert(I: InsertPt, MI: NewMI);
7088
7089 return MIB;
7090}
7091
7092static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
7093 unsigned OpNo, ArrayRef<MachineOperand> MOs,
7094 MachineBasicBlock::iterator InsertPt,
7095 MachineInstr &MI, const TargetInstrInfo &TII,
7096 int PtrOffset = 0) {
7097 // Omit the implicit operands, something BuildMI can't do.
7098 MachineInstr *NewMI =
7099 MF.CreateMachineInstr(MCID: TII.get(Opcode), DL: MI.getDebugLoc(), NoImplicit: true);
7100 MachineInstrBuilder MIB(MF, NewMI);
7101
7102 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7103 MachineOperand &MO = MI.getOperand(i);
7104 if (i == OpNo) {
7105 assert(MO.isReg() && "Expected to fold into reg operand!");
7106 addOperands(MIB, MOs, PtrOffset);
7107 } else {
7108 MIB.add(MO);
7109 }
7110 }
7111
7112 updateOperandRegConstraints(MF, NewMI&: *NewMI, TII);
7113
7114 // Copy the NoFPExcept flag from the instruction we're fusing.
7115 if (MI.getFlag(Flag: MachineInstr::MIFlag::NoFPExcept))
7116 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
7117
7118 MachineBasicBlock *MBB = InsertPt->getParent();
7119 MBB->insert(I: InsertPt, MI: NewMI);
7120
7121 return MIB;
7122}
7123
7124static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
7125 ArrayRef<MachineOperand> MOs,
7126 MachineBasicBlock::iterator InsertPt,
7127 MachineInstr &MI) {
7128 MachineInstrBuilder MIB = BuildMI(BB&: *InsertPt->getParent(), I: InsertPt,
7129 MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode));
7130 addOperands(MIB, MOs);
7131 return MIB.addImm(Val: 0);
7132}
7133
7134MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
7135 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7136 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7137 unsigned Size, Align Alignment) const {
7138 switch (MI.getOpcode()) {
7139 case X86::INSERTPSrr:
7140 case X86::VINSERTPSrr:
7141 case X86::VINSERTPSZrr:
7142 // Attempt to convert the load of inserted vector into a fold load
7143 // of a single float.
7144 if (OpNum == 2) {
7145 unsigned Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm();
7146 unsigned ZMask = Imm & 15;
7147 unsigned DstIdx = (Imm >> 4) & 3;
7148 unsigned SrcIdx = (Imm >> 6) & 3;
7149
7150 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7151 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7152 unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8;
7153 if ((Size == 0 || Size >= 16) && RCSize >= 16 &&
7154 (MI.getOpcode() != X86::INSERTPSrr || Alignment >= Align(4))) {
7155 int PtrOffset = SrcIdx * 4;
7156 unsigned NewImm = (DstIdx << 4) | ZMask;
7157 unsigned NewOpCode =
7158 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm
7159 : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm
7160 : X86::INSERTPSrm;
7161 MachineInstr *NewMI =
7162 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
7163 NewMI->getOperand(i: NewMI->getNumOperands() - 1).setImm(NewImm);
7164 return NewMI;
7165 }
7166 }
7167 break;
7168 case X86::MOVHLPSrr:
7169 case X86::VMOVHLPSrr:
7170 case X86::VMOVHLPSZrr:
7171 // Move the upper 64-bits of the second operand to the lower 64-bits.
7172 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7173 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7174 if (OpNum == 2) {
7175 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7176 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7177 unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8;
7178 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
7179 unsigned NewOpCode =
7180 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm
7181 : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7182 : X86::MOVLPSrm;
7183 MachineInstr *NewMI =
7184 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
7185 return NewMI;
7186 }
7187 }
7188 break;
7189 case X86::UNPCKLPDrr:
7190 // If we won't be able to fold this to the memory form of UNPCKL, use
7191 // MOVHPD instead. Done as custom because we can't have this in the load
7192 // table twice.
7193 if (OpNum == 2) {
7194 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7195 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7196 unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8;
7197 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
7198 MachineInstr *NewMI =
7199 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
7200 return NewMI;
7201 }
7202 }
7203 break;
7204 }
7205
7206 return nullptr;
7207}
7208
7209static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
7210 MachineInstr &MI) {
7211 if (!hasUndefRegUpdate(Opcode: MI.getOpcode(), OpNum: 1, /*ForLoadFold*/ true) ||
7212 !MI.getOperand(i: 1).isReg())
7213 return false;
7214
7215 // The are two cases we need to handle depending on where in the pipeline
7216 // the folding attempt is being made.
7217 // -Register has the undef flag set.
7218 // -Register is produced by the IMPLICIT_DEF instruction.
7219
7220 if (MI.getOperand(i: 1).isUndef())
7221 return true;
7222
7223 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7224 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(Reg: MI.getOperand(i: 1).getReg());
7225 return VRegDef && VRegDef->isImplicitDef();
7226}
7227
7228unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI,
7229 unsigned Idx1) const {
7230 unsigned Idx2 = CommuteAnyOperandIndex;
7231 if (!findCommutedOpIndices(MI, SrcOpIdx1&: Idx1, SrcOpIdx2&: Idx2))
7232 return Idx1;
7233
7234 bool HasDef = MI.getDesc().getNumDefs();
7235 Register Reg0 = HasDef ? MI.getOperand(i: 0).getReg() : Register();
7236 Register Reg1 = MI.getOperand(i: Idx1).getReg();
7237 Register Reg2 = MI.getOperand(i: Idx2).getReg();
7238 bool Tied1 = 0 == MI.getDesc().getOperandConstraint(OpNum: Idx1, Constraint: MCOI::TIED_TO);
7239 bool Tied2 = 0 == MI.getDesc().getOperandConstraint(OpNum: Idx2, Constraint: MCOI::TIED_TO);
7240
7241 // If either of the commutable operands are tied to the destination
7242 // then we can not commute + fold.
7243 if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2))
7244 return Idx1;
7245
7246 return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1;
7247}
7248
7249static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) {
7250 if (PrintFailedFusing && !MI.isCopy())
7251 dbgs() << "We failed to fuse operand " << Idx << " in " << MI;
7252}
7253
7254MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7255 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7256 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7257 unsigned Size, Align Alignment, bool AllowCommute) const {
7258 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7259 bool isTwoAddrFold = false;
7260
7261 // For CPUs that favor the register form of a call or push,
7262 // do not fold loads into calls or pushes, unless optimizing for size
7263 // aggressively.
7264 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
7265 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
7266 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
7267 MI.getOpcode() == X86::PUSH64r))
7268 return nullptr;
7269
7270 // Avoid partial and undef register update stalls unless optimizing for size.
7271 if (!MF.getFunction().hasOptSize() &&
7272 (hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7273 shouldPreventUndefRegUpdateMemFold(MF, MI)))
7274 return nullptr;
7275
7276 unsigned NumOps = MI.getDesc().getNumOperands();
7277 bool isTwoAddr =
7278 NumOps > 1 && MI.getDesc().getOperandConstraint(OpNum: 1, Constraint: MCOI::TIED_TO) != -1;
7279
7280 // FIXME: AsmPrinter doesn't know how to handle
7281 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7282 if (MI.getOpcode() == X86::ADD32ri &&
7283 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
7284 return nullptr;
7285
7286 // GOTTPOFF relocation loads can only be folded into add instructions.
7287 // FIXME: Need to exclude other relocations that only support specific
7288 // instructions.
7289 if (MOs.size() == X86::AddrNumOperands &&
7290 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
7291 MI.getOpcode() != X86::ADD64rr)
7292 return nullptr;
7293
7294 // Don't fold loads into indirect calls that need a KCFI check as we'll
7295 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7296 if (MI.isCall() && MI.getCFIType())
7297 return nullptr;
7298
7299 MachineInstr *NewMI = nullptr;
7300
7301 // Attempt to fold any custom cases we have.
7302 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
7303 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
7304 return CustomMI;
7305
7306 const X86FoldTableEntry *I = nullptr;
7307
7308 // Folding a memory location into the two-address part of a two-address
7309 // instruction is different than folding it other places. It requires
7310 // replacing the *two* registers with the memory location.
7311 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(i: 0).isReg() &&
7312 MI.getOperand(i: 1).isReg() &&
7313 MI.getOperand(i: 0).getReg() == MI.getOperand(i: 1).getReg()) {
7314 I = lookupTwoAddrFoldTable(RegOp: MI.getOpcode());
7315 isTwoAddrFold = true;
7316 } else {
7317 if (OpNum == 0) {
7318 if (MI.getOpcode() == X86::MOV32r0) {
7319 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
7320 if (NewMI)
7321 return NewMI;
7322 }
7323 }
7324
7325 I = lookupFoldTable(RegOp: MI.getOpcode(), OpNum);
7326 }
7327
7328 if (I != nullptr) {
7329 unsigned Opcode = I->DstOp;
7330 if (Alignment <
7331 Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)))
7332 return nullptr;
7333 bool NarrowToMOV32rm = false;
7334 if (Size) {
7335 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7336 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7337 unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8;
7338 // Check if it's safe to fold the load. If the size of the object is
7339 // narrower than the load width, then it's not.
7340 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7341 if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) {
7342 // If this is a 64-bit load, but the spill slot is 32, then we can do
7343 // a 32-bit load which is implicitly zero-extended. This likely is
7344 // due to live interval analysis remat'ing a load from stack slot.
7345 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
7346 return nullptr;
7347 if (MI.getOperand(i: 0).getSubReg() || MI.getOperand(i: 1).getSubReg())
7348 return nullptr;
7349 Opcode = X86::MOV32rm;
7350 NarrowToMOV32rm = true;
7351 }
7352 // For stores, make sure the size of the object is equal to the size of
7353 // the store. If the object is larger, the extra bits would be garbage. If
7354 // the object is smaller we might overwrite another object or fault.
7355 if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize)
7356 return nullptr;
7357 }
7358
7359 if (isTwoAddrFold)
7360 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
7361 else
7362 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
7363
7364 if (NarrowToMOV32rm) {
7365 // If this is the special case where we use a MOV32rm to load a 32-bit
7366 // value and zero-extend the top bits. Change the destination register
7367 // to a 32-bit one.
7368 Register DstReg = NewMI->getOperand(i: 0).getReg();
7369 if (DstReg.isPhysical())
7370 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
7371 else
7372 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
7373 }
7374 return NewMI;
7375 }
7376
7377 if (AllowCommute) {
7378 // If the instruction and target operand are commutable, commute the
7379 // instruction and try again.
7380 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, Idx1: OpNum);
7381 if (CommuteOpIdx2 == OpNum) {
7382 printFailMsgforFold(MI, Idx: OpNum);
7383 return nullptr;
7384 }
7385 // Attempt to fold with the commuted version of the instruction.
7386 NewMI = foldMemoryOperandImpl(MF, MI, OpNum: CommuteOpIdx2, MOs, InsertPt, Size,
7387 Alignment, /*AllowCommute=*/false);
7388 if (NewMI)
7389 return NewMI;
7390 // Folding failed again - undo the commute before returning.
7391 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
7392 }
7393
7394 printFailMsgforFold(MI, Idx: OpNum);
7395 return nullptr;
7396}
7397
7398MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7399 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7400 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
7401 VirtRegMap *VRM) const {
7402 // Check switch flag
7403 if (NoFusing)
7404 return nullptr;
7405
7406 // Avoid partial and undef register update stalls unless optimizing for size.
7407 if (!MF.getFunction().hasOptSize() &&
7408 (hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7409 shouldPreventUndefRegUpdateMemFold(MF, MI)))
7410 return nullptr;
7411
7412 // Don't fold subreg spills, or reloads that use a high subreg.
7413 for (auto Op : Ops) {
7414 MachineOperand &MO = MI.getOperand(i: Op);
7415 auto SubReg = MO.getSubReg();
7416 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
7417 return nullptr;
7418 }
7419
7420 const MachineFrameInfo &MFI = MF.getFrameInfo();
7421 unsigned Size = MFI.getObjectSize(ObjectIdx: FrameIndex);
7422 Align Alignment = MFI.getObjectAlign(ObjectIdx: FrameIndex);
7423 // If the function stack isn't realigned we don't want to fold instructions
7424 // that need increased alignment.
7425 if (!RI.hasStackRealignment(MF))
7426 Alignment =
7427 std::min(a: Alignment, b: Subtarget.getFrameLowering()->getStackAlign());
7428 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7429 unsigned NewOpc = 0;
7430 unsigned RCSize = 0;
7431 switch (MI.getOpcode()) {
7432 default:
7433 return nullptr;
7434 case X86::TEST8rr:
7435 NewOpc = X86::CMP8ri;
7436 RCSize = 1;
7437 break;
7438 case X86::TEST16rr:
7439 NewOpc = X86::CMP16ri;
7440 RCSize = 2;
7441 break;
7442 case X86::TEST32rr:
7443 NewOpc = X86::CMP32ri;
7444 RCSize = 4;
7445 break;
7446 case X86::TEST64rr:
7447 NewOpc = X86::CMP64ri32;
7448 RCSize = 8;
7449 break;
7450 }
7451 // Check if it's safe to fold the load. If the size of the object is
7452 // narrower than the load width, then it's not.
7453 if (Size < RCSize)
7454 return nullptr;
7455 // Change to CMPXXri r, 0 first.
7456 MI.setDesc(get(NewOpc));
7457 MI.getOperand(i: 1).ChangeToImmediate(ImmVal: 0);
7458 } else if (Ops.size() != 1)
7459 return nullptr;
7460
7461 return foldMemoryOperandImpl(MF, MI, OpNum: Ops[0],
7462 MOs: MachineOperand::CreateFI(Idx: FrameIndex), InsertPt,
7463 Size, Alignment, /*AllowCommute=*/true);
7464}
7465
7466/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7467/// because the latter uses contents that wouldn't be defined in the folded
7468/// version. For instance, this transformation isn't legal:
7469/// movss (%rdi), %xmm0
7470/// addps %xmm0, %xmm0
7471/// ->
7472/// addps (%rdi), %xmm0
7473///
7474/// But this one is:
7475/// movss (%rdi), %xmm0
7476/// addss %xmm0, %xmm0
7477/// ->
7478/// addss (%rdi), %xmm0
7479///
7480static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
7481 const MachineInstr &UserMI,
7482 const MachineFunction &MF) {
7483 unsigned Opc = LoadMI.getOpcode();
7484 unsigned UserOpc = UserMI.getOpcode();
7485 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7486 const TargetRegisterClass *RC =
7487 MF.getRegInfo().getRegClass(Reg: LoadMI.getOperand(i: 0).getReg());
7488 unsigned RegSize = TRI.getRegSizeInBits(RC: *RC);
7489
7490 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
7491 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
7492 Opc == X86::VMOVSSZrm_alt) &&
7493 RegSize > 32) {
7494 // These instructions only load 32 bits, we can't fold them if the
7495 // destination register is wider than 32 bits (4 bytes), and its user
7496 // instruction isn't scalar (SS).
7497 switch (UserOpc) {
7498 case X86::CVTSS2SDrr_Int:
7499 case X86::VCVTSS2SDrr_Int:
7500 case X86::VCVTSS2SDZrr_Int:
7501 case X86::VCVTSS2SDZrr_Intk:
7502 case X86::VCVTSS2SDZrr_Intkz:
7503 case X86::CVTSS2SIrr_Int:
7504 case X86::CVTSS2SI64rr_Int:
7505 case X86::VCVTSS2SIrr_Int:
7506 case X86::VCVTSS2SI64rr_Int:
7507 case X86::VCVTSS2SIZrr_Int:
7508 case X86::VCVTSS2SI64Zrr_Int:
7509 case X86::CVTTSS2SIrr_Int:
7510 case X86::CVTTSS2SI64rr_Int:
7511 case X86::VCVTTSS2SIrr_Int:
7512 case X86::VCVTTSS2SI64rr_Int:
7513 case X86::VCVTTSS2SIZrr_Int:
7514 case X86::VCVTTSS2SI64Zrr_Int:
7515 case X86::VCVTSS2USIZrr_Int:
7516 case X86::VCVTSS2USI64Zrr_Int:
7517 case X86::VCVTTSS2USIZrr_Int:
7518 case X86::VCVTTSS2USI64Zrr_Int:
7519 case X86::RCPSSr_Int:
7520 case X86::VRCPSSr_Int:
7521 case X86::RSQRTSSr_Int:
7522 case X86::VRSQRTSSr_Int:
7523 case X86::ROUNDSSri_Int:
7524 case X86::VROUNDSSri_Int:
7525 case X86::COMISSrr_Int:
7526 case X86::VCOMISSrr_Int:
7527 case X86::VCOMISSZrr_Int:
7528 case X86::UCOMISSrr_Int:
7529 case X86::VUCOMISSrr_Int:
7530 case X86::VUCOMISSZrr_Int:
7531 case X86::ADDSSrr_Int:
7532 case X86::VADDSSrr_Int:
7533 case X86::VADDSSZrr_Int:
7534 case X86::CMPSSrri_Int:
7535 case X86::VCMPSSrri_Int:
7536 case X86::VCMPSSZrri_Int:
7537 case X86::DIVSSrr_Int:
7538 case X86::VDIVSSrr_Int:
7539 case X86::VDIVSSZrr_Int:
7540 case X86::MAXSSrr_Int:
7541 case X86::VMAXSSrr_Int:
7542 case X86::VMAXSSZrr_Int:
7543 case X86::MINSSrr_Int:
7544 case X86::VMINSSrr_Int:
7545 case X86::VMINSSZrr_Int:
7546 case X86::MULSSrr_Int:
7547 case X86::VMULSSrr_Int:
7548 case X86::VMULSSZrr_Int:
7549 case X86::SQRTSSr_Int:
7550 case X86::VSQRTSSr_Int:
7551 case X86::VSQRTSSZr_Int:
7552 case X86::SUBSSrr_Int:
7553 case X86::VSUBSSrr_Int:
7554 case X86::VSUBSSZrr_Int:
7555 case X86::VADDSSZrr_Intk:
7556 case X86::VADDSSZrr_Intkz:
7557 case X86::VCMPSSZrri_Intk:
7558 case X86::VDIVSSZrr_Intk:
7559 case X86::VDIVSSZrr_Intkz:
7560 case X86::VMAXSSZrr_Intk:
7561 case X86::VMAXSSZrr_Intkz:
7562 case X86::VMINSSZrr_Intk:
7563 case X86::VMINSSZrr_Intkz:
7564 case X86::VMULSSZrr_Intk:
7565 case X86::VMULSSZrr_Intkz:
7566 case X86::VSQRTSSZr_Intk:
7567 case X86::VSQRTSSZr_Intkz:
7568 case X86::VSUBSSZrr_Intk:
7569 case X86::VSUBSSZrr_Intkz:
7570 case X86::VFMADDSS4rr_Int:
7571 case X86::VFNMADDSS4rr_Int:
7572 case X86::VFMSUBSS4rr_Int:
7573 case X86::VFNMSUBSS4rr_Int:
7574 case X86::VFMADD132SSr_Int:
7575 case X86::VFNMADD132SSr_Int:
7576 case X86::VFMADD213SSr_Int:
7577 case X86::VFNMADD213SSr_Int:
7578 case X86::VFMADD231SSr_Int:
7579 case X86::VFNMADD231SSr_Int:
7580 case X86::VFMSUB132SSr_Int:
7581 case X86::VFNMSUB132SSr_Int:
7582 case X86::VFMSUB213SSr_Int:
7583 case X86::VFNMSUB213SSr_Int:
7584 case X86::VFMSUB231SSr_Int:
7585 case X86::VFNMSUB231SSr_Int:
7586 case X86::VFMADD132SSZr_Int:
7587 case X86::VFNMADD132SSZr_Int:
7588 case X86::VFMADD213SSZr_Int:
7589 case X86::VFNMADD213SSZr_Int:
7590 case X86::VFMADD231SSZr_Int:
7591 case X86::VFNMADD231SSZr_Int:
7592 case X86::VFMSUB132SSZr_Int:
7593 case X86::VFNMSUB132SSZr_Int:
7594 case X86::VFMSUB213SSZr_Int:
7595 case X86::VFNMSUB213SSZr_Int:
7596 case X86::VFMSUB231SSZr_Int:
7597 case X86::VFNMSUB231SSZr_Int:
7598 case X86::VFMADD132SSZr_Intk:
7599 case X86::VFNMADD132SSZr_Intk:
7600 case X86::VFMADD213SSZr_Intk:
7601 case X86::VFNMADD213SSZr_Intk:
7602 case X86::VFMADD231SSZr_Intk:
7603 case X86::VFNMADD231SSZr_Intk:
7604 case X86::VFMSUB132SSZr_Intk:
7605 case X86::VFNMSUB132SSZr_Intk:
7606 case X86::VFMSUB213SSZr_Intk:
7607 case X86::VFNMSUB213SSZr_Intk:
7608 case X86::VFMSUB231SSZr_Intk:
7609 case X86::VFNMSUB231SSZr_Intk:
7610 case X86::VFMADD132SSZr_Intkz:
7611 case X86::VFNMADD132SSZr_Intkz:
7612 case X86::VFMADD213SSZr_Intkz:
7613 case X86::VFNMADD213SSZr_Intkz:
7614 case X86::VFMADD231SSZr_Intkz:
7615 case X86::VFNMADD231SSZr_Intkz:
7616 case X86::VFMSUB132SSZr_Intkz:
7617 case X86::VFNMSUB132SSZr_Intkz:
7618 case X86::VFMSUB213SSZr_Intkz:
7619 case X86::VFNMSUB213SSZr_Intkz:
7620 case X86::VFMSUB231SSZr_Intkz:
7621 case X86::VFNMSUB231SSZr_Intkz:
7622 case X86::VFIXUPIMMSSZrri:
7623 case X86::VFIXUPIMMSSZrrik:
7624 case X86::VFIXUPIMMSSZrrikz:
7625 case X86::VFPCLASSSSZrr:
7626 case X86::VFPCLASSSSZrrk:
7627 case X86::VGETEXPSSZr:
7628 case X86::VGETEXPSSZrk:
7629 case X86::VGETEXPSSZrkz:
7630 case X86::VGETMANTSSZrri:
7631 case X86::VGETMANTSSZrrik:
7632 case X86::VGETMANTSSZrrikz:
7633 case X86::VRANGESSZrri:
7634 case X86::VRANGESSZrrik:
7635 case X86::VRANGESSZrrikz:
7636 case X86::VRCP14SSZrr:
7637 case X86::VRCP14SSZrrk:
7638 case X86::VRCP14SSZrrkz:
7639 case X86::VRCP28SSZr:
7640 case X86::VRCP28SSZrk:
7641 case X86::VRCP28SSZrkz:
7642 case X86::VREDUCESSZrri:
7643 case X86::VREDUCESSZrrik:
7644 case X86::VREDUCESSZrrikz:
7645 case X86::VRNDSCALESSZr_Int:
7646 case X86::VRNDSCALESSZr_Intk:
7647 case X86::VRNDSCALESSZr_Intkz:
7648 case X86::VRSQRT14SSZrr:
7649 case X86::VRSQRT14SSZrrk:
7650 case X86::VRSQRT14SSZrrkz:
7651 case X86::VRSQRT28SSZr:
7652 case X86::VRSQRT28SSZrk:
7653 case X86::VRSQRT28SSZrkz:
7654 case X86::VSCALEFSSZrr:
7655 case X86::VSCALEFSSZrrk:
7656 case X86::VSCALEFSSZrrkz:
7657 return false;
7658 default:
7659 return true;
7660 }
7661 }
7662
7663 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
7664 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
7665 Opc == X86::VMOVSDZrm_alt) &&
7666 RegSize > 64) {
7667 // These instructions only load 64 bits, we can't fold them if the
7668 // destination register is wider than 64 bits (8 bytes), and its user
7669 // instruction isn't scalar (SD).
7670 switch (UserOpc) {
7671 case X86::CVTSD2SSrr_Int:
7672 case X86::VCVTSD2SSrr_Int:
7673 case X86::VCVTSD2SSZrr_Int:
7674 case X86::VCVTSD2SSZrr_Intk:
7675 case X86::VCVTSD2SSZrr_Intkz:
7676 case X86::CVTSD2SIrr_Int:
7677 case X86::CVTSD2SI64rr_Int:
7678 case X86::VCVTSD2SIrr_Int:
7679 case X86::VCVTSD2SI64rr_Int:
7680 case X86::VCVTSD2SIZrr_Int:
7681 case X86::VCVTSD2SI64Zrr_Int:
7682 case X86::CVTTSD2SIrr_Int:
7683 case X86::CVTTSD2SI64rr_Int:
7684 case X86::VCVTTSD2SIrr_Int:
7685 case X86::VCVTTSD2SI64rr_Int:
7686 case X86::VCVTTSD2SIZrr_Int:
7687 case X86::VCVTTSD2SI64Zrr_Int:
7688 case X86::VCVTSD2USIZrr_Int:
7689 case X86::VCVTSD2USI64Zrr_Int:
7690 case X86::VCVTTSD2USIZrr_Int:
7691 case X86::VCVTTSD2USI64Zrr_Int:
7692 case X86::ROUNDSDri_Int:
7693 case X86::VROUNDSDri_Int:
7694 case X86::COMISDrr_Int:
7695 case X86::VCOMISDrr_Int:
7696 case X86::VCOMISDZrr_Int:
7697 case X86::UCOMISDrr_Int:
7698 case X86::VUCOMISDrr_Int:
7699 case X86::VUCOMISDZrr_Int:
7700 case X86::ADDSDrr_Int:
7701 case X86::VADDSDrr_Int:
7702 case X86::VADDSDZrr_Int:
7703 case X86::CMPSDrri_Int:
7704 case X86::VCMPSDrri_Int:
7705 case X86::VCMPSDZrri_Int:
7706 case X86::DIVSDrr_Int:
7707 case X86::VDIVSDrr_Int:
7708 case X86::VDIVSDZrr_Int:
7709 case X86::MAXSDrr_Int:
7710 case X86::VMAXSDrr_Int:
7711 case X86::VMAXSDZrr_Int:
7712 case X86::MINSDrr_Int:
7713 case X86::VMINSDrr_Int:
7714 case X86::VMINSDZrr_Int:
7715 case X86::MULSDrr_Int:
7716 case X86::VMULSDrr_Int:
7717 case X86::VMULSDZrr_Int:
7718 case X86::SQRTSDr_Int:
7719 case X86::VSQRTSDr_Int:
7720 case X86::VSQRTSDZr_Int:
7721 case X86::SUBSDrr_Int:
7722 case X86::VSUBSDrr_Int:
7723 case X86::VSUBSDZrr_Int:
7724 case X86::VADDSDZrr_Intk:
7725 case X86::VADDSDZrr_Intkz:
7726 case X86::VCMPSDZrri_Intk:
7727 case X86::VDIVSDZrr_Intk:
7728 case X86::VDIVSDZrr_Intkz:
7729 case X86::VMAXSDZrr_Intk:
7730 case X86::VMAXSDZrr_Intkz:
7731 case X86::VMINSDZrr_Intk:
7732 case X86::VMINSDZrr_Intkz:
7733 case X86::VMULSDZrr_Intk:
7734 case X86::VMULSDZrr_Intkz:
7735 case X86::VSQRTSDZr_Intk:
7736 case X86::VSQRTSDZr_Intkz:
7737 case X86::VSUBSDZrr_Intk:
7738 case X86::VSUBSDZrr_Intkz:
7739 case X86::VFMADDSD4rr_Int:
7740 case X86::VFNMADDSD4rr_Int:
7741 case X86::VFMSUBSD4rr_Int:
7742 case X86::VFNMSUBSD4rr_Int:
7743 case X86::VFMADD132SDr_Int:
7744 case X86::VFNMADD132SDr_Int:
7745 case X86::VFMADD213SDr_Int:
7746 case X86::VFNMADD213SDr_Int:
7747 case X86::VFMADD231SDr_Int:
7748 case X86::VFNMADD231SDr_Int:
7749 case X86::VFMSUB132SDr_Int:
7750 case X86::VFNMSUB132SDr_Int:
7751 case X86::VFMSUB213SDr_Int:
7752 case X86::VFNMSUB213SDr_Int:
7753 case X86::VFMSUB231SDr_Int:
7754 case X86::VFNMSUB231SDr_Int:
7755 case X86::VFMADD132SDZr_Int:
7756 case X86::VFNMADD132SDZr_Int:
7757 case X86::VFMADD213SDZr_Int:
7758 case X86::VFNMADD213SDZr_Int:
7759 case X86::VFMADD231SDZr_Int:
7760 case X86::VFNMADD231SDZr_Int:
7761 case X86::VFMSUB132SDZr_Int:
7762 case X86::VFNMSUB132SDZr_Int:
7763 case X86::VFMSUB213SDZr_Int:
7764 case X86::VFNMSUB213SDZr_Int:
7765 case X86::VFMSUB231SDZr_Int:
7766 case X86::VFNMSUB231SDZr_Int:
7767 case X86::VFMADD132SDZr_Intk:
7768 case X86::VFNMADD132SDZr_Intk:
7769 case X86::VFMADD213SDZr_Intk:
7770 case X86::VFNMADD213SDZr_Intk:
7771 case X86::VFMADD231SDZr_Intk:
7772 case X86::VFNMADD231SDZr_Intk:
7773 case X86::VFMSUB132SDZr_Intk:
7774 case X86::VFNMSUB132SDZr_Intk:
7775 case X86::VFMSUB213SDZr_Intk:
7776 case X86::VFNMSUB213SDZr_Intk:
7777 case X86::VFMSUB231SDZr_Intk:
7778 case X86::VFNMSUB231SDZr_Intk:
7779 case X86::VFMADD132SDZr_Intkz:
7780 case X86::VFNMADD132SDZr_Intkz:
7781 case X86::VFMADD213SDZr_Intkz:
7782 case X86::VFNMADD213SDZr_Intkz:
7783 case X86::VFMADD231SDZr_Intkz:
7784 case X86::VFNMADD231SDZr_Intkz:
7785 case X86::VFMSUB132SDZr_Intkz:
7786 case X86::VFNMSUB132SDZr_Intkz:
7787 case X86::VFMSUB213SDZr_Intkz:
7788 case X86::VFNMSUB213SDZr_Intkz:
7789 case X86::VFMSUB231SDZr_Intkz:
7790 case X86::VFNMSUB231SDZr_Intkz:
7791 case X86::VFIXUPIMMSDZrri:
7792 case X86::VFIXUPIMMSDZrrik:
7793 case X86::VFIXUPIMMSDZrrikz:
7794 case X86::VFPCLASSSDZrr:
7795 case X86::VFPCLASSSDZrrk:
7796 case X86::VGETEXPSDZr:
7797 case X86::VGETEXPSDZrk:
7798 case X86::VGETEXPSDZrkz:
7799 case X86::VGETMANTSDZrri:
7800 case X86::VGETMANTSDZrrik:
7801 case X86::VGETMANTSDZrrikz:
7802 case X86::VRANGESDZrri:
7803 case X86::VRANGESDZrrik:
7804 case X86::VRANGESDZrrikz:
7805 case X86::VRCP14SDZrr:
7806 case X86::VRCP14SDZrrk:
7807 case X86::VRCP14SDZrrkz:
7808 case X86::VRCP28SDZr:
7809 case X86::VRCP28SDZrk:
7810 case X86::VRCP28SDZrkz:
7811 case X86::VREDUCESDZrri:
7812 case X86::VREDUCESDZrrik:
7813 case X86::VREDUCESDZrrikz:
7814 case X86::VRNDSCALESDZr_Int:
7815 case X86::VRNDSCALESDZr_Intk:
7816 case X86::VRNDSCALESDZr_Intkz:
7817 case X86::VRSQRT14SDZrr:
7818 case X86::VRSQRT14SDZrrk:
7819 case X86::VRSQRT14SDZrrkz:
7820 case X86::VRSQRT28SDZr:
7821 case X86::VRSQRT28SDZrk:
7822 case X86::VRSQRT28SDZrkz:
7823 case X86::VSCALEFSDZrr:
7824 case X86::VSCALEFSDZrrk:
7825 case X86::VSCALEFSDZrrkz:
7826 return false;
7827 default:
7828 return true;
7829 }
7830 }
7831
7832 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
7833 // These instructions only load 16 bits, we can't fold them if the
7834 // destination register is wider than 16 bits (2 bytes), and its user
7835 // instruction isn't scalar (SH).
7836 switch (UserOpc) {
7837 case X86::VADDSHZrr_Int:
7838 case X86::VCMPSHZrri_Int:
7839 case X86::VDIVSHZrr_Int:
7840 case X86::VMAXSHZrr_Int:
7841 case X86::VMINSHZrr_Int:
7842 case X86::VMULSHZrr_Int:
7843 case X86::VSUBSHZrr_Int:
7844 case X86::VADDSHZrr_Intk:
7845 case X86::VADDSHZrr_Intkz:
7846 case X86::VCMPSHZrri_Intk:
7847 case X86::VDIVSHZrr_Intk:
7848 case X86::VDIVSHZrr_Intkz:
7849 case X86::VMAXSHZrr_Intk:
7850 case X86::VMAXSHZrr_Intkz:
7851 case X86::VMINSHZrr_Intk:
7852 case X86::VMINSHZrr_Intkz:
7853 case X86::VMULSHZrr_Intk:
7854 case X86::VMULSHZrr_Intkz:
7855 case X86::VSUBSHZrr_Intk:
7856 case X86::VSUBSHZrr_Intkz:
7857 case X86::VFMADD132SHZr_Int:
7858 case X86::VFNMADD132SHZr_Int:
7859 case X86::VFMADD213SHZr_Int:
7860 case X86::VFNMADD213SHZr_Int:
7861 case X86::VFMADD231SHZr_Int:
7862 case X86::VFNMADD231SHZr_Int:
7863 case X86::VFMSUB132SHZr_Int:
7864 case X86::VFNMSUB132SHZr_Int:
7865 case X86::VFMSUB213SHZr_Int:
7866 case X86::VFNMSUB213SHZr_Int:
7867 case X86::VFMSUB231SHZr_Int:
7868 case X86::VFNMSUB231SHZr_Int:
7869 case X86::VFMADD132SHZr_Intk:
7870 case X86::VFNMADD132SHZr_Intk:
7871 case X86::VFMADD213SHZr_Intk:
7872 case X86::VFNMADD213SHZr_Intk:
7873 case X86::VFMADD231SHZr_Intk:
7874 case X86::VFNMADD231SHZr_Intk:
7875 case X86::VFMSUB132SHZr_Intk:
7876 case X86::VFNMSUB132SHZr_Intk:
7877 case X86::VFMSUB213SHZr_Intk:
7878 case X86::VFNMSUB213SHZr_Intk:
7879 case X86::VFMSUB231SHZr_Intk:
7880 case X86::VFNMSUB231SHZr_Intk:
7881 case X86::VFMADD132SHZr_Intkz:
7882 case X86::VFNMADD132SHZr_Intkz:
7883 case X86::VFMADD213SHZr_Intkz:
7884 case X86::VFNMADD213SHZr_Intkz:
7885 case X86::VFMADD231SHZr_Intkz:
7886 case X86::VFNMADD231SHZr_Intkz:
7887 case X86::VFMSUB132SHZr_Intkz:
7888 case X86::VFNMSUB132SHZr_Intkz:
7889 case X86::VFMSUB213SHZr_Intkz:
7890 case X86::VFNMSUB213SHZr_Intkz:
7891 case X86::VFMSUB231SHZr_Intkz:
7892 case X86::VFNMSUB231SHZr_Intkz:
7893 return false;
7894 default:
7895 return true;
7896 }
7897 }
7898
7899 return false;
7900}
7901
7902MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7903 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7904 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
7905 LiveIntervals *LIS) const {
7906
7907 // TODO: Support the case where LoadMI loads a wide register, but MI
7908 // only uses a subreg.
7909 for (auto Op : Ops) {
7910 if (MI.getOperand(i: Op).getSubReg())
7911 return nullptr;
7912 }
7913
7914 // If loading from a FrameIndex, fold directly from the FrameIndex.
7915 unsigned NumOps = LoadMI.getDesc().getNumOperands();
7916 int FrameIndex;
7917 if (isLoadFromStackSlot(MI: LoadMI, FrameIndex)) {
7918 if (isNonFoldablePartialRegisterLoad(LoadMI, UserMI: MI, MF))
7919 return nullptr;
7920 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
7921 }
7922
7923 // Check switch flag
7924 if (NoFusing)
7925 return nullptr;
7926
7927 // Avoid partial and undef register update stalls unless optimizing for size.
7928 if (!MF.getFunction().hasOptSize() &&
7929 (hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7930 shouldPreventUndefRegUpdateMemFold(MF, MI)))
7931 return nullptr;
7932
7933 // Determine the alignment of the load.
7934 Align Alignment;
7935 unsigned LoadOpc = LoadMI.getOpcode();
7936 if (LoadMI.hasOneMemOperand())
7937 Alignment = (*LoadMI.memoperands_begin())->getAlign();
7938 else
7939 switch (LoadOpc) {
7940 case X86::AVX512_512_SET0:
7941 case X86::AVX512_512_SETALLONES:
7942 Alignment = Align(64);
7943 break;
7944 case X86::AVX2_SETALLONES:
7945 case X86::AVX1_SETALLONES:
7946 case X86::AVX_SET0:
7947 case X86::AVX512_256_SET0:
7948 Alignment = Align(32);
7949 break;
7950 case X86::V_SET0:
7951 case X86::V_SETALLONES:
7952 case X86::AVX512_128_SET0:
7953 case X86::FsFLD0F128:
7954 case X86::AVX512_FsFLD0F128:
7955 Alignment = Align(16);
7956 break;
7957 case X86::MMX_SET0:
7958 case X86::FsFLD0SD:
7959 case X86::AVX512_FsFLD0SD:
7960 Alignment = Align(8);
7961 break;
7962 case X86::FsFLD0SS:
7963 case X86::AVX512_FsFLD0SS:
7964 Alignment = Align(4);
7965 break;
7966 case X86::FsFLD0SH:
7967 case X86::AVX512_FsFLD0SH:
7968 Alignment = Align(2);
7969 break;
7970 default:
7971 return nullptr;
7972 }
7973 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7974 unsigned NewOpc = 0;
7975 switch (MI.getOpcode()) {
7976 default:
7977 return nullptr;
7978 case X86::TEST8rr:
7979 NewOpc = X86::CMP8ri;
7980 break;
7981 case X86::TEST16rr:
7982 NewOpc = X86::CMP16ri;
7983 break;
7984 case X86::TEST32rr:
7985 NewOpc = X86::CMP32ri;
7986 break;
7987 case X86::TEST64rr:
7988 NewOpc = X86::CMP64ri32;
7989 break;
7990 }
7991 // Change to CMPXXri r, 0 first.
7992 MI.setDesc(get(NewOpc));
7993 MI.getOperand(i: 1).ChangeToImmediate(ImmVal: 0);
7994 } else if (Ops.size() != 1)
7995 return nullptr;
7996
7997 // Make sure the subregisters match.
7998 // Otherwise we risk changing the size of the load.
7999 if (LoadMI.getOperand(i: 0).getSubReg() != MI.getOperand(i: Ops[0]).getSubReg())
8000 return nullptr;
8001
8002 SmallVector<MachineOperand, X86::AddrNumOperands> MOs;
8003 switch (LoadOpc) {
8004 case X86::MMX_SET0:
8005 case X86::V_SET0:
8006 case X86::V_SETALLONES:
8007 case X86::AVX2_SETALLONES:
8008 case X86::AVX1_SETALLONES:
8009 case X86::AVX_SET0:
8010 case X86::AVX512_128_SET0:
8011 case X86::AVX512_256_SET0:
8012 case X86::AVX512_512_SET0:
8013 case X86::AVX512_512_SETALLONES:
8014 case X86::FsFLD0SH:
8015 case X86::AVX512_FsFLD0SH:
8016 case X86::FsFLD0SD:
8017 case X86::AVX512_FsFLD0SD:
8018 case X86::FsFLD0SS:
8019 case X86::AVX512_FsFLD0SS:
8020 case X86::FsFLD0F128:
8021 case X86::AVX512_FsFLD0F128: {
8022 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8023 // Create a constant-pool entry and operands to load from it.
8024
8025 // Large code model can't fold loads this way.
8026 if (MF.getTarget().getCodeModel() == CodeModel::Large)
8027 return nullptr;
8028
8029 // x86-32 PIC requires a PIC base register for constant pools.
8030 unsigned PICBase = 0;
8031 // Since we're using Small or Kernel code model, we can always use
8032 // RIP-relative addressing for a smaller encoding.
8033 if (Subtarget.is64Bit()) {
8034 PICBase = X86::RIP;
8035 } else if (MF.getTarget().isPositionIndependent()) {
8036 // FIXME: PICBase = getGlobalBaseReg(&MF);
8037 // This doesn't work for several reasons.
8038 // 1. GlobalBaseReg may have been spilled.
8039 // 2. It may not be live at MI.
8040 return nullptr;
8041 }
8042
8043 // Create a constant-pool entry.
8044 MachineConstantPool &MCP = *MF.getConstantPool();
8045 Type *Ty;
8046 bool IsAllOnes = false;
8047 switch (LoadOpc) {
8048 case X86::FsFLD0SS:
8049 case X86::AVX512_FsFLD0SS:
8050 Ty = Type::getFloatTy(C&: MF.getFunction().getContext());
8051 break;
8052 case X86::FsFLD0SD:
8053 case X86::AVX512_FsFLD0SD:
8054 Ty = Type::getDoubleTy(C&: MF.getFunction().getContext());
8055 break;
8056 case X86::FsFLD0F128:
8057 case X86::AVX512_FsFLD0F128:
8058 Ty = Type::getFP128Ty(C&: MF.getFunction().getContext());
8059 break;
8060 case X86::FsFLD0SH:
8061 case X86::AVX512_FsFLD0SH:
8062 Ty = Type::getHalfTy(C&: MF.getFunction().getContext());
8063 break;
8064 case X86::AVX512_512_SETALLONES:
8065 IsAllOnes = true;
8066 [[fallthrough]];
8067 case X86::AVX512_512_SET0:
8068 Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()),
8069 NumElts: 16);
8070 break;
8071 case X86::AVX1_SETALLONES:
8072 case X86::AVX2_SETALLONES:
8073 IsAllOnes = true;
8074 [[fallthrough]];
8075 case X86::AVX512_256_SET0:
8076 case X86::AVX_SET0:
8077 Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()),
8078 NumElts: 8);
8079
8080 break;
8081 case X86::MMX_SET0:
8082 Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()),
8083 NumElts: 2);
8084 break;
8085 case X86::V_SETALLONES:
8086 IsAllOnes = true;
8087 [[fallthrough]];
8088 case X86::V_SET0:
8089 case X86::AVX512_128_SET0:
8090 Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()),
8091 NumElts: 4);
8092 break;
8093 }
8094
8095 const Constant *C =
8096 IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty);
8097 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8098
8099 // Create operands to load from the constant pool entry.
8100 MOs.push_back(Elt: MachineOperand::CreateReg(Reg: PICBase, isDef: false));
8101 MOs.push_back(Elt: MachineOperand::CreateImm(Val: 1));
8102 MOs.push_back(Elt: MachineOperand::CreateReg(Reg: 0, isDef: false));
8103 MOs.push_back(Elt: MachineOperand::CreateCPI(Idx: CPI, Offset: 0));
8104 MOs.push_back(Elt: MachineOperand::CreateReg(Reg: 0, isDef: false));
8105 break;
8106 }
8107 case X86::VPBROADCASTBZ128rm:
8108 case X86::VPBROADCASTBZ256rm:
8109 case X86::VPBROADCASTBZrm:
8110 case X86::VBROADCASTF32X2Z256rm:
8111 case X86::VBROADCASTF32X2Zrm:
8112 case X86::VBROADCASTI32X2Z128rm:
8113 case X86::VBROADCASTI32X2Z256rm:
8114 case X86::VBROADCASTI32X2Zrm:
8115 // No instructions currently fuse with 8bits or 32bits x 2.
8116 return nullptr;
8117
8118#define FOLD_BROADCAST(SIZE) \
8119 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \
8120 LoadMI.operands_begin() + NumOps); \
8121 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \
8122 /*AllowCommute=*/true);
8123 case X86::VPBROADCASTWZ128rm:
8124 case X86::VPBROADCASTWZ256rm:
8125 case X86::VPBROADCASTWZrm:
8126 FOLD_BROADCAST(16);
8127 case X86::VPBROADCASTDZ128rm:
8128 case X86::VPBROADCASTDZ256rm:
8129 case X86::VPBROADCASTDZrm:
8130 case X86::VBROADCASTSSZ128rm:
8131 case X86::VBROADCASTSSZ256rm:
8132 case X86::VBROADCASTSSZrm:
8133 FOLD_BROADCAST(32);
8134 case X86::VPBROADCASTQZ128rm:
8135 case X86::VPBROADCASTQZ256rm:
8136 case X86::VPBROADCASTQZrm:
8137 case X86::VBROADCASTSDZ256rm:
8138 case X86::VBROADCASTSDZrm:
8139 FOLD_BROADCAST(64);
8140 default: {
8141 if (isNonFoldablePartialRegisterLoad(LoadMI, UserMI: MI, MF))
8142 return nullptr;
8143
8144 // Folding a normal load. Just copy the load's address operands.
8145 MOs.append(in_start: LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
8146 in_end: LoadMI.operands_begin() + NumOps);
8147 break;
8148 }
8149 }
8150 return foldMemoryOperandImpl(MF, MI, OpNum: Ops[0], MOs, InsertPt,
8151 /*Size=*/0, Alignment, /*AllowCommute=*/true);
8152}
8153
8154MachineInstr *
8155X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI,
8156 unsigned OpNum, ArrayRef<MachineOperand> MOs,
8157 MachineBasicBlock::iterator InsertPt,
8158 unsigned BitsSize, bool AllowCommute) const {
8159
8160 if (auto *I = lookupBroadcastFoldTable(RegOp: MI.getOpcode(), OpNum))
8161 return matchBroadcastSize(Entry: *I, BroadcastBits: BitsSize)
8162 ? FuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this)
8163 : nullptr;
8164
8165 if (AllowCommute) {
8166 // If the instruction and target operand are commutable, commute the
8167 // instruction and try again.
8168 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, Idx1: OpNum);
8169 if (CommuteOpIdx2 == OpNum) {
8170 printFailMsgforFold(MI, Idx: OpNum);
8171 return nullptr;
8172 }
8173 MachineInstr *NewMI =
8174 foldMemoryBroadcast(MF, MI, OpNum: CommuteOpIdx2, MOs, InsertPt, BitsSize,
8175 /*AllowCommute=*/false);
8176 if (NewMI)
8177 return NewMI;
8178 // Folding failed again - undo the commute before returning.
8179 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
8180 }
8181
8182 printFailMsgforFold(MI, Idx: OpNum);
8183 return nullptr;
8184}
8185
8186static SmallVector<MachineMemOperand *, 2>
8187extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8188 SmallVector<MachineMemOperand *, 2> LoadMMOs;
8189
8190 for (MachineMemOperand *MMO : MMOs) {
8191 if (!MMO->isLoad())
8192 continue;
8193
8194 if (!MMO->isStore()) {
8195 // Reuse the MMO.
8196 LoadMMOs.push_back(Elt: MMO);
8197 } else {
8198 // Clone the MMO and unset the store flag.
8199 LoadMMOs.push_back(Elt: MF.getMachineMemOperand(
8200 MMO, Flags: MMO->getFlags() & ~MachineMemOperand::MOStore));
8201 }
8202 }
8203
8204 return LoadMMOs;
8205}
8206
8207static SmallVector<MachineMemOperand *, 2>
8208extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8209 SmallVector<MachineMemOperand *, 2> StoreMMOs;
8210
8211 for (MachineMemOperand *MMO : MMOs) {
8212 if (!MMO->isStore())
8213 continue;
8214
8215 if (!MMO->isLoad()) {
8216 // Reuse the MMO.
8217 StoreMMOs.push_back(Elt: MMO);
8218 } else {
8219 // Clone the MMO and unset the load flag.
8220 StoreMMOs.push_back(Elt: MF.getMachineMemOperand(
8221 MMO, Flags: MMO->getFlags() & ~MachineMemOperand::MOLoad));
8222 }
8223 }
8224
8225 return StoreMMOs;
8226}
8227
8228static unsigned getBroadcastOpcode(const X86FoldTableEntry *I,
8229 const TargetRegisterClass *RC,
8230 const X86Subtarget &STI) {
8231 assert(STI.hasAVX512() && "Expected at least AVX512!");
8232 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
8233 assert((SpillSize == 64 || STI.hasVLX()) &&
8234 "Can't broadcast less than 64 bytes without AVX512VL!");
8235
8236#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \
8237 case TYPE: \
8238 switch (SpillSize) { \
8239 default: \
8240 llvm_unreachable("Unknown spill size"); \
8241 case 16: \
8242 return X86::OP16; \
8243 case 32: \
8244 return X86::OP32; \
8245 case 64: \
8246 return X86::OP64; \
8247 } \
8248 break;
8249
8250 switch (I->Flags & TB_BCAST_MASK) {
8251 default:
8252 llvm_unreachable("Unexpected broadcast type!");
8253 CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8254 VPBROADCASTWZrm)
8255 CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm,
8256 VPBROADCASTDZrm)
8257 CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm,
8258 VPBROADCASTQZrm)
8259 CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8260 VPBROADCASTWZrm)
8261 CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm,
8262 VBROADCASTSSZrm)
8263 CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm,
8264 VBROADCASTSDZrm)
8265 }
8266}
8267
8268bool X86InstrInfo::unfoldMemoryOperand(
8269 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
8270 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8271 const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: MI.getOpcode());
8272 if (I == nullptr)
8273 return false;
8274 unsigned Opc = I->DstOp;
8275 unsigned Index = I->Flags & TB_INDEX_MASK;
8276 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8277 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8278 if (UnfoldLoad && !FoldedLoad)
8279 return false;
8280 UnfoldLoad &= FoldedLoad;
8281 if (UnfoldStore && !FoldedStore)
8282 return false;
8283 UnfoldStore &= FoldedStore;
8284
8285 const MCInstrDesc &MCID = get(Opc);
8286
8287 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8288 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8289 // TODO: Check if 32-byte or greater accesses are slow too?
8290 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8291 Subtarget.isUnalignedMem16Slow())
8292 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8293 // conservatively assume the address is unaligned. That's bad for
8294 // performance.
8295 return false;
8296 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
8297 SmallVector<MachineOperand, 2> BeforeOps;
8298 SmallVector<MachineOperand, 2> AfterOps;
8299 SmallVector<MachineOperand, 4> ImpOps;
8300 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8301 MachineOperand &Op = MI.getOperand(i);
8302 if (i >= Index && i < Index + X86::AddrNumOperands)
8303 AddrOps.push_back(Elt: Op);
8304 else if (Op.isReg() && Op.isImplicit())
8305 ImpOps.push_back(Elt: Op);
8306 else if (i < Index)
8307 BeforeOps.push_back(Elt: Op);
8308 else if (i > Index)
8309 AfterOps.push_back(Elt: Op);
8310 }
8311
8312 // Emit the load or broadcast instruction.
8313 if (UnfoldLoad) {
8314 auto MMOs = extractLoadMMOs(MMOs: MI.memoperands(), MF);
8315
8316 unsigned Opc;
8317 if (I->Flags & TB_BCAST_MASK) {
8318 Opc = getBroadcastOpcode(I, RC, STI: Subtarget);
8319 } else {
8320 unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16);
8321 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8322 Opc = getLoadRegOpcode(DestReg: Reg, RC, IsStackAligned: isAligned, STI: Subtarget);
8323 }
8324
8325 DebugLoc DL;
8326 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
8327 for (const MachineOperand &AddrOp : AddrOps)
8328 MIB.add(MO: AddrOp);
8329 MIB.setMemRefs(MMOs);
8330 NewMIs.push_back(Elt: MIB);
8331
8332 if (UnfoldStore) {
8333 // Address operands cannot be marked isKill.
8334 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8335 MachineOperand &MO = NewMIs[0]->getOperand(i);
8336 if (MO.isReg())
8337 MO.setIsKill(false);
8338 }
8339 }
8340 }
8341
8342 // Emit the data processing instruction.
8343 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, DL: MI.getDebugLoc(), NoImplicit: true);
8344 MachineInstrBuilder MIB(MF, DataMI);
8345
8346 if (FoldedStore)
8347 MIB.addReg(RegNo: Reg, flags: RegState::Define);
8348 for (MachineOperand &BeforeOp : BeforeOps)
8349 MIB.add(MO: BeforeOp);
8350 if (FoldedLoad)
8351 MIB.addReg(RegNo: Reg);
8352 for (MachineOperand &AfterOp : AfterOps)
8353 MIB.add(MO: AfterOp);
8354 for (MachineOperand &ImpOp : ImpOps) {
8355 MIB.addReg(RegNo: ImpOp.getReg(), flags: getDefRegState(B: ImpOp.isDef()) |
8356 RegState::Implicit |
8357 getKillRegState(B: ImpOp.isKill()) |
8358 getDeadRegState(B: ImpOp.isDead()) |
8359 getUndefRegState(B: ImpOp.isUndef()));
8360 }
8361 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8362 switch (DataMI->getOpcode()) {
8363 default:
8364 break;
8365 case X86::CMP64ri32:
8366 case X86::CMP32ri:
8367 case X86::CMP16ri:
8368 case X86::CMP8ri: {
8369 MachineOperand &MO0 = DataMI->getOperand(i: 0);
8370 MachineOperand &MO1 = DataMI->getOperand(i: 1);
8371 if (MO1.isImm() && MO1.getImm() == 0) {
8372 unsigned NewOpc;
8373 switch (DataMI->getOpcode()) {
8374 default:
8375 llvm_unreachable("Unreachable!");
8376 case X86::CMP64ri32:
8377 NewOpc = X86::TEST64rr;
8378 break;
8379 case X86::CMP32ri:
8380 NewOpc = X86::TEST32rr;
8381 break;
8382 case X86::CMP16ri:
8383 NewOpc = X86::TEST16rr;
8384 break;
8385 case X86::CMP8ri:
8386 NewOpc = X86::TEST8rr;
8387 break;
8388 }
8389 DataMI->setDesc(get(NewOpc));
8390 MO1.ChangeToRegister(Reg: MO0.getReg(), isDef: false);
8391 }
8392 }
8393 }
8394 NewMIs.push_back(Elt: DataMI);
8395
8396 // Emit the store instruction.
8397 if (UnfoldStore) {
8398 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
8399 auto MMOs = extractStoreMMOs(MMOs: MI.memoperands(), MF);
8400 unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *DstRC), b: 16);
8401 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8402 unsigned Opc = getStoreRegOpcode(SrcReg: Reg, RC: DstRC, IsStackAligned: isAligned, STI: Subtarget);
8403 DebugLoc DL;
8404 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
8405 for (const MachineOperand &AddrOp : AddrOps)
8406 MIB.add(MO: AddrOp);
8407 MIB.addReg(RegNo: Reg, flags: RegState::Kill);
8408 MIB.setMemRefs(MMOs);
8409 NewMIs.push_back(Elt: MIB);
8410 }
8411
8412 return true;
8413}
8414
8415bool X86InstrInfo::unfoldMemoryOperand(
8416 SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const {
8417 if (!N->isMachineOpcode())
8418 return false;
8419
8420 const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: N->getMachineOpcode());
8421 if (I == nullptr)
8422 return false;
8423 unsigned Opc = I->DstOp;
8424 unsigned Index = I->Flags & TB_INDEX_MASK;
8425 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8426 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8427 const MCInstrDesc &MCID = get(Opc);
8428 MachineFunction &MF = DAG.getMachineFunction();
8429 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8430 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8431 unsigned NumDefs = MCID.NumDefs;
8432 std::vector<SDValue> AddrOps;
8433 std::vector<SDValue> BeforeOps;
8434 std::vector<SDValue> AfterOps;
8435 SDLoc dl(N);
8436 unsigned NumOps = N->getNumOperands();
8437 for (unsigned i = 0; i != NumOps - 1; ++i) {
8438 SDValue Op = N->getOperand(Num: i);
8439 if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands)
8440 AddrOps.push_back(x: Op);
8441 else if (i < Index - NumDefs)
8442 BeforeOps.push_back(x: Op);
8443 else if (i > Index - NumDefs)
8444 AfterOps.push_back(x: Op);
8445 }
8446 SDValue Chain = N->getOperand(Num: NumOps - 1);
8447 AddrOps.push_back(x: Chain);
8448
8449 // Emit the load instruction.
8450 SDNode *Load = nullptr;
8451 if (FoldedLoad) {
8452 EVT VT = *TRI.legalclasstypes_begin(RC: *RC);
8453 auto MMOs = extractLoadMMOs(MMOs: cast<MachineSDNode>(Val: N)->memoperands(), MF);
8454 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8455 Subtarget.isUnalignedMem16Slow())
8456 // Do not introduce a slow unaligned load.
8457 return false;
8458 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8459 // memory access is slow above.
8460
8461 unsigned Opc;
8462 if (I->Flags & TB_BCAST_MASK) {
8463 Opc = getBroadcastOpcode(I, RC, STI: Subtarget);
8464 } else {
8465 unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16);
8466 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8467 Opc = getLoadRegOpcode(DestReg: 0, RC, IsStackAligned: isAligned, STI: Subtarget);
8468 }
8469
8470 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
8471 NewNodes.push_back(Elt: Load);
8472
8473 // Preserve memory reference information.
8474 DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Load), NewMemRefs: MMOs);
8475 }
8476
8477 // Emit the data processing instruction.
8478 std::vector<EVT> VTs;
8479 const TargetRegisterClass *DstRC = nullptr;
8480 if (MCID.getNumDefs() > 0) {
8481 DstRC = getRegClass(MCID, 0, &RI, MF);
8482 VTs.push_back(x: *TRI.legalclasstypes_begin(RC: *DstRC));
8483 }
8484 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
8485 EVT VT = N->getValueType(ResNo: i);
8486 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
8487 VTs.push_back(x: VT);
8488 }
8489 if (Load)
8490 BeforeOps.push_back(x: SDValue(Load, 0));
8491 llvm::append_range(C&: BeforeOps, R&: AfterOps);
8492 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8493 switch (Opc) {
8494 default:
8495 break;
8496 case X86::CMP64ri32:
8497 case X86::CMP32ri:
8498 case X86::CMP16ri:
8499 case X86::CMP8ri:
8500 if (isNullConstant(V: BeforeOps[1])) {
8501 switch (Opc) {
8502 default:
8503 llvm_unreachable("Unreachable!");
8504 case X86::CMP64ri32:
8505 Opc = X86::TEST64rr;
8506 break;
8507 case X86::CMP32ri:
8508 Opc = X86::TEST32rr;
8509 break;
8510 case X86::CMP16ri:
8511 Opc = X86::TEST16rr;
8512 break;
8513 case X86::CMP8ri:
8514 Opc = X86::TEST8rr;
8515 break;
8516 }
8517 BeforeOps[1] = BeforeOps[0];
8518 }
8519 }
8520 SDNode *NewNode = DAG.getMachineNode(Opcode: Opc, dl, ResultTys: VTs, Ops: BeforeOps);
8521 NewNodes.push_back(Elt: NewNode);
8522
8523 // Emit the store instruction.
8524 if (FoldedStore) {
8525 AddrOps.pop_back();
8526 AddrOps.push_back(x: SDValue(NewNode, 0));
8527 AddrOps.push_back(x: Chain);
8528 auto MMOs = extractStoreMMOs(MMOs: cast<MachineSDNode>(Val: N)->memoperands(), MF);
8529 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8530 Subtarget.isUnalignedMem16Slow())
8531 // Do not introduce a slow unaligned store.
8532 return false;
8533 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8534 // memory access is slow above.
8535 unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16);
8536 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8537 SDNode *Store =
8538 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
8539 dl, MVT::Other, AddrOps);
8540 NewNodes.push_back(Elt: Store);
8541
8542 // Preserve memory reference information.
8543 DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Store), NewMemRefs: MMOs);
8544 }
8545
8546 return true;
8547}
8548
8549unsigned
8550X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad,
8551 bool UnfoldStore,
8552 unsigned *LoadRegIndex) const {
8553 const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: Opc);
8554 if (I == nullptr)
8555 return 0;
8556 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8557 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8558 if (UnfoldLoad && !FoldedLoad)
8559 return 0;
8560 if (UnfoldStore && !FoldedStore)
8561 return 0;
8562 if (LoadRegIndex)
8563 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
8564 return I->DstOp;
8565}
8566
8567bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
8568 int64_t &Offset1,
8569 int64_t &Offset2) const {
8570 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
8571 return false;
8572
8573 auto IsLoadOpcode = [&](unsigned Opcode) {
8574 switch (Opcode) {
8575 default:
8576 return false;
8577 case X86::MOV8rm:
8578 case X86::MOV16rm:
8579 case X86::MOV32rm:
8580 case X86::MOV64rm:
8581 case X86::LD_Fp32m:
8582 case X86::LD_Fp64m:
8583 case X86::LD_Fp80m:
8584 case X86::MOVSSrm:
8585 case X86::MOVSSrm_alt:
8586 case X86::MOVSDrm:
8587 case X86::MOVSDrm_alt:
8588 case X86::MMX_MOVD64rm:
8589 case X86::MMX_MOVQ64rm:
8590 case X86::MOVAPSrm:
8591 case X86::MOVUPSrm:
8592 case X86::MOVAPDrm:
8593 case X86::MOVUPDrm:
8594 case X86::MOVDQArm:
8595 case X86::MOVDQUrm:
8596 // AVX load instructions
8597 case X86::VMOVSSrm:
8598 case X86::VMOVSSrm_alt:
8599 case X86::VMOVSDrm:
8600 case X86::VMOVSDrm_alt:
8601 case X86::VMOVAPSrm:
8602 case X86::VMOVUPSrm:
8603 case X86::VMOVAPDrm:
8604 case X86::VMOVUPDrm:
8605 case X86::VMOVDQArm:
8606 case X86::VMOVDQUrm:
8607 case X86::VMOVAPSYrm:
8608 case X86::VMOVUPSYrm:
8609 case X86::VMOVAPDYrm:
8610 case X86::VMOVUPDYrm:
8611 case X86::VMOVDQAYrm:
8612 case X86::VMOVDQUYrm:
8613 // AVX512 load instructions
8614 case X86::VMOVSSZrm:
8615 case X86::VMOVSSZrm_alt:
8616 case X86::VMOVSDZrm:
8617 case X86::VMOVSDZrm_alt:
8618 case X86::VMOVAPSZ128rm:
8619 case X86::VMOVUPSZ128rm:
8620 case X86::VMOVAPSZ128rm_NOVLX:
8621 case X86::VMOVUPSZ128rm_NOVLX:
8622 case X86::VMOVAPDZ128rm:
8623 case X86::VMOVUPDZ128rm:
8624 case X86::VMOVDQU8Z128rm:
8625 case X86::VMOVDQU16Z128rm:
8626 case X86::VMOVDQA32Z128rm:
8627 case X86::VMOVDQU32Z128rm:
8628 case X86::VMOVDQA64Z128rm:
8629 case X86::VMOVDQU64Z128rm:
8630 case X86::VMOVAPSZ256rm:
8631 case X86::VMOVUPSZ256rm:
8632 case X86::VMOVAPSZ256rm_NOVLX:
8633 case X86::VMOVUPSZ256rm_NOVLX:
8634 case X86::VMOVAPDZ256rm:
8635 case X86::VMOVUPDZ256rm:
8636 case X86::VMOVDQU8Z256rm:
8637 case X86::VMOVDQU16Z256rm:
8638 case X86::VMOVDQA32Z256rm:
8639 case X86::VMOVDQU32Z256rm:
8640 case X86::VMOVDQA64Z256rm:
8641 case X86::VMOVDQU64Z256rm:
8642 case X86::VMOVAPSZrm:
8643 case X86::VMOVUPSZrm:
8644 case X86::VMOVAPDZrm:
8645 case X86::VMOVUPDZrm:
8646 case X86::VMOVDQU8Zrm:
8647 case X86::VMOVDQU16Zrm:
8648 case X86::VMOVDQA32Zrm:
8649 case X86::VMOVDQU32Zrm:
8650 case X86::VMOVDQA64Zrm:
8651 case X86::VMOVDQU64Zrm:
8652 case X86::KMOVBkm:
8653 case X86::KMOVBkm_EVEX:
8654 case X86::KMOVWkm:
8655 case X86::KMOVWkm_EVEX:
8656 case X86::KMOVDkm:
8657 case X86::KMOVDkm_EVEX:
8658 case X86::KMOVQkm:
8659 case X86::KMOVQkm_EVEX:
8660 return true;
8661 }
8662 };
8663
8664 if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
8665 !IsLoadOpcode(Load2->getMachineOpcode()))
8666 return false;
8667
8668 // Lambda to check if both the loads have the same value for an operand index.
8669 auto HasSameOp = [&](int I) {
8670 return Load1->getOperand(Num: I) == Load2->getOperand(Num: I);
8671 };
8672
8673 // All operands except the displacement should match.
8674 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
8675 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
8676 return false;
8677
8678 // Chain Operand must be the same.
8679 if (!HasSameOp(5))
8680 return false;
8681
8682 // Now let's examine if the displacements are constants.
8683 auto Disp1 = dyn_cast<ConstantSDNode>(Val: Load1->getOperand(Num: X86::AddrDisp));
8684 auto Disp2 = dyn_cast<ConstantSDNode>(Val: Load2->getOperand(Num: X86::AddrDisp));
8685 if (!Disp1 || !Disp2)
8686 return false;
8687
8688 Offset1 = Disp1->getSExtValue();
8689 Offset2 = Disp2->getSExtValue();
8690 return true;
8691}
8692
8693bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
8694 int64_t Offset1, int64_t Offset2,
8695 unsigned NumLoads) const {
8696 assert(Offset2 > Offset1);
8697 if ((Offset2 - Offset1) / 8 > 64)
8698 return false;
8699
8700 unsigned Opc1 = Load1->getMachineOpcode();
8701 unsigned Opc2 = Load2->getMachineOpcode();
8702 if (Opc1 != Opc2)
8703 return false; // FIXME: overly conservative?
8704
8705 switch (Opc1) {
8706 default:
8707 break;
8708 case X86::LD_Fp32m:
8709 case X86::LD_Fp64m:
8710 case X86::LD_Fp80m:
8711 case X86::MMX_MOVD64rm:
8712 case X86::MMX_MOVQ64rm:
8713 return false;
8714 }
8715
8716 EVT VT = Load1->getValueType(ResNo: 0);
8717 switch (VT.getSimpleVT().SimpleTy) {
8718 default:
8719 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8720 // have 16 of them to play with.
8721 if (Subtarget.is64Bit()) {
8722 if (NumLoads >= 3)
8723 return false;
8724 } else if (NumLoads) {
8725 return false;
8726 }
8727 break;
8728 case MVT::i8:
8729 case MVT::i16:
8730 case MVT::i32:
8731 case MVT::i64:
8732 case MVT::f32:
8733 case MVT::f64:
8734 if (NumLoads)
8735 return false;
8736 break;
8737 }
8738
8739 return true;
8740}
8741
8742bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
8743 const MachineBasicBlock *MBB,
8744 const MachineFunction &MF) const {
8745
8746 // ENDBR instructions should not be scheduled around.
8747 unsigned Opcode = MI.getOpcode();
8748 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8749 Opcode == X86::PLDTILECFGV)
8750 return true;
8751
8752 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
8753}
8754
8755bool X86InstrInfo::reverseBranchCondition(
8756 SmallVectorImpl<MachineOperand> &Cond) const {
8757 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
8758 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
8759 Cond[0].setImm(GetOppositeBranchCondition(CC));
8760 return false;
8761}
8762
8763bool X86InstrInfo::isSafeToMoveRegClassDefs(
8764 const TargetRegisterClass *RC) const {
8765 // FIXME: Return false for x87 stack register classes for now. We can't
8766 // allow any loads of these registers before FpGet_ST0_80.
8767 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
8768 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
8769 RC == &X86::RFP80RegClass);
8770}
8771
8772/// Return a virtual register initialized with the
8773/// the global base register value. Output instructions required to
8774/// initialize the register in the function entry block, if necessary.
8775///
8776/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
8777///
8778unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
8779 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
8780 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8781 if (GlobalBaseReg != 0)
8782 return GlobalBaseReg;
8783
8784 // Create the register. The code to initialize it is inserted
8785 // later, by the CGBR pass (below).
8786 MachineRegisterInfo &RegInfo = MF->getRegInfo();
8787 GlobalBaseReg = RegInfo.createVirtualRegister(
8788 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
8789 X86FI->setGlobalBaseReg(GlobalBaseReg);
8790 return GlobalBaseReg;
8791}
8792
8793// FIXME: Some shuffle and unpack instructions have equivalents in different
8794// domains, but they require a bit more work than just switching opcodes.
8795
8796static const uint16_t *lookup(unsigned opcode, unsigned domain,
8797 ArrayRef<uint16_t[3]> Table) {
8798 for (const uint16_t(&Row)[3] : Table)
8799 if (Row[domain - 1] == opcode)
8800 return Row;
8801 return nullptr;
8802}
8803
8804static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
8805 ArrayRef<uint16_t[4]> Table) {
8806 // If this is the integer domain make sure to check both integer columns.
8807 for (const uint16_t(&Row)[4] : Table)
8808 if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
8809 return Row;
8810 return nullptr;
8811}
8812
8813// Helper to attempt to widen/narrow blend masks.
8814static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
8815 unsigned NewWidth, unsigned *pNewMask = nullptr) {
8816 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
8817 "Illegal blend mask scale");
8818 unsigned NewMask = 0;
8819
8820 if ((OldWidth % NewWidth) == 0) {
8821 unsigned Scale = OldWidth / NewWidth;
8822 unsigned SubMask = (1u << Scale) - 1;
8823 for (unsigned i = 0; i != NewWidth; ++i) {
8824 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
8825 if (Sub == SubMask)
8826 NewMask |= (1u << i);
8827 else if (Sub != 0x0)
8828 return false;
8829 }
8830 } else {
8831 unsigned Scale = NewWidth / OldWidth;
8832 unsigned SubMask = (1u << Scale) - 1;
8833 for (unsigned i = 0; i != OldWidth; ++i) {
8834 if (OldMask & (1 << i)) {
8835 NewMask |= (SubMask << (i * Scale));
8836 }
8837 }
8838 }
8839
8840 if (pNewMask)
8841 *pNewMask = NewMask;
8842 return true;
8843}
8844
8845uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
8846 unsigned Opcode = MI.getOpcode();
8847 unsigned NumOperands = MI.getDesc().getNumOperands();
8848
8849 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8850 uint16_t validDomains = 0;
8851 if (MI.getOperand(i: NumOperands - 1).isImm()) {
8852 unsigned Imm = MI.getOperand(i: NumOperands - 1).getImm();
8853 if (AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4))
8854 validDomains |= 0x2; // PackedSingle
8855 if (AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 4 : 2))
8856 validDomains |= 0x4; // PackedDouble
8857 if (!Is256 || Subtarget.hasAVX2())
8858 validDomains |= 0x8; // PackedInt
8859 }
8860 return validDomains;
8861 };
8862
8863 switch (Opcode) {
8864 case X86::BLENDPDrmi:
8865 case X86::BLENDPDrri:
8866 case X86::VBLENDPDrmi:
8867 case X86::VBLENDPDrri:
8868 return GetBlendDomains(2, false);
8869 case X86::VBLENDPDYrmi:
8870 case X86::VBLENDPDYrri:
8871 return GetBlendDomains(4, true);
8872 case X86::BLENDPSrmi:
8873 case X86::BLENDPSrri:
8874 case X86::VBLENDPSrmi:
8875 case X86::VBLENDPSrri:
8876 case X86::VPBLENDDrmi:
8877 case X86::VPBLENDDrri:
8878 return GetBlendDomains(4, false);
8879 case X86::VBLENDPSYrmi:
8880 case X86::VBLENDPSYrri:
8881 case X86::VPBLENDDYrmi:
8882 case X86::VPBLENDDYrri:
8883 return GetBlendDomains(8, true);
8884 case X86::PBLENDWrmi:
8885 case X86::PBLENDWrri:
8886 case X86::VPBLENDWrmi:
8887 case X86::VPBLENDWrri:
8888 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8889 case X86::VPBLENDWYrmi:
8890 case X86::VPBLENDWYrri:
8891 return GetBlendDomains(8, false);
8892 case X86::VPANDDZ128rr:
8893 case X86::VPANDDZ128rm:
8894 case X86::VPANDDZ256rr:
8895 case X86::VPANDDZ256rm:
8896 case X86::VPANDQZ128rr:
8897 case X86::VPANDQZ128rm:
8898 case X86::VPANDQZ256rr:
8899 case X86::VPANDQZ256rm:
8900 case X86::VPANDNDZ128rr:
8901 case X86::VPANDNDZ128rm:
8902 case X86::VPANDNDZ256rr:
8903 case X86::VPANDNDZ256rm:
8904 case X86::VPANDNQZ128rr:
8905 case X86::VPANDNQZ128rm:
8906 case X86::VPANDNQZ256rr:
8907 case X86::VPANDNQZ256rm:
8908 case X86::VPORDZ128rr:
8909 case X86::VPORDZ128rm:
8910 case X86::VPORDZ256rr:
8911 case X86::VPORDZ256rm:
8912 case X86::VPORQZ128rr:
8913 case X86::VPORQZ128rm:
8914 case X86::VPORQZ256rr:
8915 case X86::VPORQZ256rm:
8916 case X86::VPXORDZ128rr:
8917 case X86::VPXORDZ128rm:
8918 case X86::VPXORDZ256rr:
8919 case X86::VPXORDZ256rm:
8920 case X86::VPXORQZ128rr:
8921 case X86::VPXORQZ128rm:
8922 case X86::VPXORQZ256rr:
8923 case X86::VPXORQZ256rm:
8924 // If we don't have DQI see if we can still switch from an EVEX integer
8925 // instruction to a VEX floating point instruction.
8926 if (Subtarget.hasDQI())
8927 return 0;
8928
8929 if (RI.getEncodingValue(MI.getOperand(i: 0).getReg()) >= 16)
8930 return 0;
8931 if (RI.getEncodingValue(MI.getOperand(i: 1).getReg()) >= 16)
8932 return 0;
8933 // Register forms will have 3 operands. Memory form will have more.
8934 if (NumOperands == 3 &&
8935 RI.getEncodingValue(MI.getOperand(i: 2).getReg()) >= 16)
8936 return 0;
8937
8938 // All domains are valid.
8939 return 0xe;
8940 case X86::MOVHLPSrr:
8941 // We can swap domains when both inputs are the same register.
8942 // FIXME: This doesn't catch all the cases we would like. If the input
8943 // register isn't KILLed by the instruction, the two address instruction
8944 // pass puts a COPY on one input. The other input uses the original
8945 // register. This prevents the same physical register from being used by
8946 // both inputs.
8947 if (MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg() &&
8948 MI.getOperand(i: 0).getSubReg() == 0 &&
8949 MI.getOperand(i: 1).getSubReg() == 0 && MI.getOperand(i: 2).getSubReg() == 0)
8950 return 0x6;
8951 return 0;
8952 case X86::SHUFPDrri:
8953 return 0x6;
8954 }
8955 return 0;
8956}
8957
8958#include "X86ReplaceableInstrs.def"
8959
8960bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8961 unsigned Domain) const {
8962 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
8963 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8964 assert(dom && "Not an SSE instruction");
8965
8966 unsigned Opcode = MI.getOpcode();
8967 unsigned NumOperands = MI.getDesc().getNumOperands();
8968
8969 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8970 if (MI.getOperand(i: NumOperands - 1).isImm()) {
8971 unsigned Imm = MI.getOperand(i: NumOperands - 1).getImm() & 255;
8972 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8973 unsigned NewImm = Imm;
8974
8975 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8976 if (!table)
8977 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8978
8979 if (Domain == 1) { // PackedSingle
8980 AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4, pNewMask: &NewImm);
8981 } else if (Domain == 2) { // PackedDouble
8982 AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 4 : 2, pNewMask: &NewImm);
8983 } else if (Domain == 3) { // PackedInt
8984 if (Subtarget.hasAVX2()) {
8985 // If we are already VPBLENDW use that, else use VPBLENDD.
8986 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8987 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8988 AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4, pNewMask: &NewImm);
8989 }
8990 } else {
8991 assert(!Is256 && "128-bit vector expected");
8992 AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: 8, pNewMask: &NewImm);
8993 }
8994 }
8995
8996 assert(table && table[Domain - 1] && "Unknown domain op");
8997 MI.setDesc(get(table[Domain - 1]));
8998 MI.getOperand(i: NumOperands - 1).setImm(NewImm & 255);
8999 }
9000 return true;
9001 };
9002
9003 switch (Opcode) {
9004 case X86::BLENDPDrmi:
9005 case X86::BLENDPDrri:
9006 case X86::VBLENDPDrmi:
9007 case X86::VBLENDPDrri:
9008 return SetBlendDomain(2, false);
9009 case X86::VBLENDPDYrmi:
9010 case X86::VBLENDPDYrri:
9011 return SetBlendDomain(4, true);
9012 case X86::BLENDPSrmi:
9013 case X86::BLENDPSrri:
9014 case X86::VBLENDPSrmi:
9015 case X86::VBLENDPSrri:
9016 case X86::VPBLENDDrmi:
9017 case X86::VPBLENDDrri:
9018 return SetBlendDomain(4, false);
9019 case X86::VBLENDPSYrmi:
9020 case X86::VBLENDPSYrri:
9021 case X86::VPBLENDDYrmi:
9022 case X86::VPBLENDDYrri:
9023 return SetBlendDomain(8, true);
9024 case X86::PBLENDWrmi:
9025 case X86::PBLENDWrri:
9026 case X86::VPBLENDWrmi:
9027 case X86::VPBLENDWrri:
9028 return SetBlendDomain(8, false);
9029 case X86::VPBLENDWYrmi:
9030 case X86::VPBLENDWYrri:
9031 return SetBlendDomain(16, true);
9032 case X86::VPANDDZ128rr:
9033 case X86::VPANDDZ128rm:
9034 case X86::VPANDDZ256rr:
9035 case X86::VPANDDZ256rm:
9036 case X86::VPANDQZ128rr:
9037 case X86::VPANDQZ128rm:
9038 case X86::VPANDQZ256rr:
9039 case X86::VPANDQZ256rm:
9040 case X86::VPANDNDZ128rr:
9041 case X86::VPANDNDZ128rm:
9042 case X86::VPANDNDZ256rr:
9043 case X86::VPANDNDZ256rm:
9044 case X86::VPANDNQZ128rr:
9045 case X86::VPANDNQZ128rm:
9046 case X86::VPANDNQZ256rr:
9047 case X86::VPANDNQZ256rm:
9048 case X86::VPORDZ128rr:
9049 case X86::VPORDZ128rm:
9050 case X86::VPORDZ256rr:
9051 case X86::VPORDZ256rm:
9052 case X86::VPORQZ128rr:
9053 case X86::VPORQZ128rm:
9054 case X86::VPORQZ256rr:
9055 case X86::VPORQZ256rm:
9056 case X86::VPXORDZ128rr:
9057 case X86::VPXORDZ128rm:
9058 case X86::VPXORDZ256rr:
9059 case X86::VPXORDZ256rm:
9060 case X86::VPXORQZ128rr:
9061 case X86::VPXORQZ128rm:
9062 case X86::VPXORQZ256rr:
9063 case X86::VPXORQZ256rm: {
9064 // Without DQI, convert EVEX instructions to VEX instructions.
9065 if (Subtarget.hasDQI())
9066 return false;
9067
9068 const uint16_t *table =
9069 lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9070 assert(table && "Instruction not found in table?");
9071 // Don't change integer Q instructions to D instructions and
9072 // use D intructions if we started with a PS instruction.
9073 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9074 Domain = 4;
9075 MI.setDesc(get(table[Domain - 1]));
9076 return true;
9077 }
9078 case X86::UNPCKHPDrr:
9079 case X86::MOVHLPSrr:
9080 // We just need to commute the instruction which will switch the domains.
9081 if (Domain != dom && Domain != 3 &&
9082 MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg() &&
9083 MI.getOperand(i: 0).getSubReg() == 0 &&
9084 MI.getOperand(i: 1).getSubReg() == 0 &&
9085 MI.getOperand(i: 2).getSubReg() == 0) {
9086 commuteInstruction(MI, false);
9087 return true;
9088 }
9089 // We must always return true for MOVHLPSrr.
9090 if (Opcode == X86::MOVHLPSrr)
9091 return true;
9092 break;
9093 case X86::SHUFPDrri: {
9094 if (Domain == 1) {
9095 unsigned Imm = MI.getOperand(i: 3).getImm();
9096 unsigned NewImm = 0x44;
9097 if (Imm & 1)
9098 NewImm |= 0x0a;
9099 if (Imm & 2)
9100 NewImm |= 0xa0;
9101 MI.getOperand(i: 3).setImm(NewImm);
9102 MI.setDesc(get(X86::SHUFPSrri));
9103 }
9104 return true;
9105 }
9106 }
9107 return false;
9108}
9109
9110std::pair<uint16_t, uint16_t>
9111X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
9112 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9113 unsigned opcode = MI.getOpcode();
9114 uint16_t validDomains = 0;
9115 if (domain) {
9116 // Attempt to match for custom instructions.
9117 validDomains = getExecutionDomainCustom(MI);
9118 if (validDomains)
9119 return std::make_pair(x&: domain, y&: validDomains);
9120
9121 if (lookup(opcode, domain, ReplaceableInstrs)) {
9122 validDomains = 0xe;
9123 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9124 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9125 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
9126 validDomains = 0x6;
9127 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9128 // Insert/extract instructions should only effect domain if AVX2
9129 // is enabled.
9130 if (!Subtarget.hasAVX2())
9131 return std::make_pair(x: 0, y: 0);
9132 validDomains = 0xe;
9133 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9134 validDomains = 0xe;
9135 } else if (Subtarget.hasDQI() &&
9136 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9137 validDomains = 0xe;
9138 } else if (Subtarget.hasDQI()) {
9139 if (const uint16_t *table =
9140 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9141 if (domain == 1 || (domain == 3 && table[3] == opcode))
9142 validDomains = 0xa;
9143 else
9144 validDomains = 0xc;
9145 }
9146 }
9147 }
9148 return std::make_pair(x&: domain, y&: validDomains);
9149}
9150
9151void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
9152 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9153 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9154 assert(dom && "Not an SSE instruction");
9155
9156 // Attempt to match for custom instructions.
9157 if (setExecutionDomainCustom(MI, Domain))
9158 return;
9159
9160 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9161 if (!table) { // try the other table
9162 assert((Subtarget.hasAVX2() || Domain < 3) &&
9163 "256-bit vector operations only available in AVX2");
9164 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9165 }
9166 if (!table) { // try the FP table
9167 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
9168 assert((!table || Domain < 3) &&
9169 "Can only select PackedSingle or PackedDouble");
9170 }
9171 if (!table) { // try the other table
9172 assert(Subtarget.hasAVX2() &&
9173 "256-bit insert/extract only available in AVX2");
9174 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9175 }
9176 if (!table) { // try the AVX512 table
9177 assert(Subtarget.hasAVX512() && "Requires AVX-512");
9178 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9179 // Don't change integer Q instructions to D instructions.
9180 if (table && Domain == 3 && table[3] == MI.getOpcode())
9181 Domain = 4;
9182 }
9183 if (!table) { // try the AVX512DQ table
9184 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9185 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9186 // Don't change integer Q instructions to D instructions and
9187 // use D instructions if we started with a PS instruction.
9188 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9189 Domain = 4;
9190 }
9191 if (!table) { // try the AVX512DQMasked table
9192 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9193 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9194 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9195 Domain = 4;
9196 }
9197 assert(table && "Cannot change domain");
9198 MI.setDesc(get(table[Domain - 1]));
9199}
9200
9201void X86InstrInfo::insertNoop(MachineBasicBlock &MBB,
9202 MachineBasicBlock::iterator MI) const {
9203 DebugLoc DL;
9204 BuildMI(MBB, MI, DL, get(X86::NOOP));
9205}
9206
9207/// Return the noop instruction to use for a noop.
9208MCInst X86InstrInfo::getNop() const {
9209 MCInst Nop;
9210 Nop.setOpcode(X86::NOOP);
9211 return Nop;
9212}
9213
9214bool X86InstrInfo::isHighLatencyDef(int opc) const {
9215 switch (opc) {
9216 default:
9217 return false;
9218 case X86::DIVPDrm:
9219 case X86::DIVPDrr:
9220 case X86::DIVPSrm:
9221 case X86::DIVPSrr:
9222 case X86::DIVSDrm:
9223 case X86::DIVSDrm_Int:
9224 case X86::DIVSDrr:
9225 case X86::DIVSDrr_Int:
9226 case X86::DIVSSrm:
9227 case X86::DIVSSrm_Int:
9228 case X86::DIVSSrr:
9229 case X86::DIVSSrr_Int:
9230 case X86::SQRTPDm:
9231 case X86::SQRTPDr:
9232 case X86::SQRTPSm:
9233 case X86::SQRTPSr:
9234 case X86::SQRTSDm:
9235 case X86::SQRTSDm_Int:
9236 case X86::SQRTSDr:
9237 case X86::SQRTSDr_Int:
9238 case X86::SQRTSSm:
9239 case X86::SQRTSSm_Int:
9240 case X86::SQRTSSr:
9241 case X86::SQRTSSr_Int:
9242 // AVX instructions with high latency
9243 case X86::VDIVPDrm:
9244 case X86::VDIVPDrr:
9245 case X86::VDIVPDYrm:
9246 case X86::VDIVPDYrr:
9247 case X86::VDIVPSrm:
9248 case X86::VDIVPSrr:
9249 case X86::VDIVPSYrm:
9250 case X86::VDIVPSYrr:
9251 case X86::VDIVSDrm:
9252 case X86::VDIVSDrm_Int:
9253 case X86::VDIVSDrr:
9254 case X86::VDIVSDrr_Int:
9255 case X86::VDIVSSrm:
9256 case X86::VDIVSSrm_Int:
9257 case X86::VDIVSSrr:
9258 case X86::VDIVSSrr_Int:
9259 case X86::VSQRTPDm:
9260 case X86::VSQRTPDr:
9261 case X86::VSQRTPDYm:
9262 case X86::VSQRTPDYr:
9263 case X86::VSQRTPSm:
9264 case X86::VSQRTPSr:
9265 case X86::VSQRTPSYm:
9266 case X86::VSQRTPSYr:
9267 case X86::VSQRTSDm:
9268 case X86::VSQRTSDm_Int:
9269 case X86::VSQRTSDr:
9270 case X86::VSQRTSDr_Int:
9271 case X86::VSQRTSSm:
9272 case X86::VSQRTSSm_Int:
9273 case X86::VSQRTSSr:
9274 case X86::VSQRTSSr_Int:
9275 // AVX512 instructions with high latency
9276 case X86::VDIVPDZ128rm:
9277 case X86::VDIVPDZ128rmb:
9278 case X86::VDIVPDZ128rmbk:
9279 case X86::VDIVPDZ128rmbkz:
9280 case X86::VDIVPDZ128rmk:
9281 case X86::VDIVPDZ128rmkz:
9282 case X86::VDIVPDZ128rr:
9283 case X86::VDIVPDZ128rrk:
9284 case X86::VDIVPDZ128rrkz:
9285 case X86::VDIVPDZ256rm:
9286 case X86::VDIVPDZ256rmb:
9287 case X86::VDIVPDZ256rmbk:
9288 case X86::VDIVPDZ256rmbkz:
9289 case X86::VDIVPDZ256rmk:
9290 case X86::VDIVPDZ256rmkz:
9291 case X86::VDIVPDZ256rr:
9292 case X86::VDIVPDZ256rrk:
9293 case X86::VDIVPDZ256rrkz:
9294 case X86::VDIVPDZrrb:
9295 case X86::VDIVPDZrrbk:
9296 case X86::VDIVPDZrrbkz:
9297 case X86::VDIVPDZrm:
9298 case X86::VDIVPDZrmb:
9299 case X86::VDIVPDZrmbk:
9300 case X86::VDIVPDZrmbkz:
9301 case X86::VDIVPDZrmk:
9302 case X86::VDIVPDZrmkz:
9303 case X86::VDIVPDZrr:
9304 case X86::VDIVPDZrrk:
9305 case X86::VDIVPDZrrkz:
9306 case X86::VDIVPSZ128rm:
9307 case X86::VDIVPSZ128rmb:
9308 case X86::VDIVPSZ128rmbk:
9309 case X86::VDIVPSZ128rmbkz:
9310 case X86::VDIVPSZ128rmk:
9311 case X86::VDIVPSZ128rmkz:
9312 case X86::VDIVPSZ128rr:
9313 case X86::VDIVPSZ128rrk:
9314 case X86::VDIVPSZ128rrkz:
9315 case X86::VDIVPSZ256rm:
9316 case X86::VDIVPSZ256rmb:
9317 case X86::VDIVPSZ256rmbk:
9318 case X86::VDIVPSZ256rmbkz:
9319 case X86::VDIVPSZ256rmk:
9320 case X86::VDIVPSZ256rmkz:
9321 case X86::VDIVPSZ256rr:
9322 case X86::VDIVPSZ256rrk:
9323 case X86::VDIVPSZ256rrkz:
9324 case X86::VDIVPSZrrb:
9325 case X86::VDIVPSZrrbk:
9326 case X86::VDIVPSZrrbkz:
9327 case X86::VDIVPSZrm:
9328 case X86::VDIVPSZrmb:
9329 case X86::VDIVPSZrmbk:
9330 case X86::VDIVPSZrmbkz:
9331 case X86::VDIVPSZrmk:
9332 case X86::VDIVPSZrmkz:
9333 case X86::VDIVPSZrr:
9334 case X86::VDIVPSZrrk:
9335 case X86::VDIVPSZrrkz:
9336 case X86::VDIVSDZrm:
9337 case X86::VDIVSDZrr:
9338 case X86::VDIVSDZrm_Int:
9339 case X86::VDIVSDZrm_Intk:
9340 case X86::VDIVSDZrm_Intkz:
9341 case X86::VDIVSDZrr_Int:
9342 case X86::VDIVSDZrr_Intk:
9343 case X86::VDIVSDZrr_Intkz:
9344 case X86::VDIVSDZrrb_Int:
9345 case X86::VDIVSDZrrb_Intk:
9346 case X86::VDIVSDZrrb_Intkz:
9347 case X86::VDIVSSZrm:
9348 case X86::VDIVSSZrr:
9349 case X86::VDIVSSZrm_Int:
9350 case X86::VDIVSSZrm_Intk:
9351 case X86::VDIVSSZrm_Intkz:
9352 case X86::VDIVSSZrr_Int:
9353 case X86::VDIVSSZrr_Intk:
9354 case X86::VDIVSSZrr_Intkz:
9355 case X86::VDIVSSZrrb_Int:
9356 case X86::VDIVSSZrrb_Intk:
9357 case X86::VDIVSSZrrb_Intkz:
9358 case X86::VSQRTPDZ128m:
9359 case X86::VSQRTPDZ128mb:
9360 case X86::VSQRTPDZ128mbk:
9361 case X86::VSQRTPDZ128mbkz:
9362 case X86::VSQRTPDZ128mk:
9363 case X86::VSQRTPDZ128mkz:
9364 case X86::VSQRTPDZ128r:
9365 case X86::VSQRTPDZ128rk:
9366 case X86::VSQRTPDZ128rkz:
9367 case X86::VSQRTPDZ256m:
9368 case X86::VSQRTPDZ256mb:
9369 case X86::VSQRTPDZ256mbk:
9370 case X86::VSQRTPDZ256mbkz:
9371 case X86::VSQRTPDZ256mk:
9372 case X86::VSQRTPDZ256mkz:
9373 case X86::VSQRTPDZ256r:
9374 case X86::VSQRTPDZ256rk:
9375 case X86::VSQRTPDZ256rkz:
9376 case X86::VSQRTPDZm:
9377 case X86::VSQRTPDZmb:
9378 case X86::VSQRTPDZmbk:
9379 case X86::VSQRTPDZmbkz:
9380 case X86::VSQRTPDZmk:
9381 case X86::VSQRTPDZmkz:
9382 case X86::VSQRTPDZr:
9383 case X86::VSQRTPDZrb:
9384 case X86::VSQRTPDZrbk:
9385 case X86::VSQRTPDZrbkz:
9386 case X86::VSQRTPDZrk:
9387 case X86::VSQRTPDZrkz:
9388 case X86::VSQRTPSZ128m:
9389 case X86::VSQRTPSZ128mb:
9390 case X86::VSQRTPSZ128mbk:
9391 case X86::VSQRTPSZ128mbkz:
9392 case X86::VSQRTPSZ128mk:
9393 case X86::VSQRTPSZ128mkz:
9394 case X86::VSQRTPSZ128r:
9395 case X86::VSQRTPSZ128rk:
9396 case X86::VSQRTPSZ128rkz:
9397 case X86::VSQRTPSZ256m:
9398 case X86::VSQRTPSZ256mb:
9399 case X86::VSQRTPSZ256mbk:
9400 case X86::VSQRTPSZ256mbkz:
9401 case X86::VSQRTPSZ256mk:
9402 case X86::VSQRTPSZ256mkz:
9403 case X86::VSQRTPSZ256r:
9404 case X86::VSQRTPSZ256rk:
9405 case X86::VSQRTPSZ256rkz:
9406 case X86::VSQRTPSZm:
9407 case X86::VSQRTPSZmb:
9408 case X86::VSQRTPSZmbk:
9409 case X86::VSQRTPSZmbkz:
9410 case X86::VSQRTPSZmk:
9411 case X86::VSQRTPSZmkz:
9412 case X86::VSQRTPSZr:
9413 case X86::VSQRTPSZrb:
9414 case X86::VSQRTPSZrbk:
9415 case X86::VSQRTPSZrbkz:
9416 case X86::VSQRTPSZrk:
9417 case X86::VSQRTPSZrkz:
9418 case X86::VSQRTSDZm:
9419 case X86::VSQRTSDZm_Int:
9420 case X86::VSQRTSDZm_Intk:
9421 case X86::VSQRTSDZm_Intkz:
9422 case X86::VSQRTSDZr:
9423 case X86::VSQRTSDZr_Int:
9424 case X86::VSQRTSDZr_Intk:
9425 case X86::VSQRTSDZr_Intkz:
9426 case X86::VSQRTSDZrb_Int:
9427 case X86::VSQRTSDZrb_Intk:
9428 case X86::VSQRTSDZrb_Intkz:
9429 case X86::VSQRTSSZm:
9430 case X86::VSQRTSSZm_Int:
9431 case X86::VSQRTSSZm_Intk:
9432 case X86::VSQRTSSZm_Intkz:
9433 case X86::VSQRTSSZr:
9434 case X86::VSQRTSSZr_Int:
9435 case X86::VSQRTSSZr_Intk:
9436 case X86::VSQRTSSZr_Intkz:
9437 case X86::VSQRTSSZrb_Int:
9438 case X86::VSQRTSSZrb_Intk:
9439 case X86::VSQRTSSZrb_Intkz:
9440
9441 case X86::VGATHERDPDYrm:
9442 case X86::VGATHERDPDZ128rm:
9443 case X86::VGATHERDPDZ256rm:
9444 case X86::VGATHERDPDZrm:
9445 case X86::VGATHERDPDrm:
9446 case X86::VGATHERDPSYrm:
9447 case X86::VGATHERDPSZ128rm:
9448 case X86::VGATHERDPSZ256rm:
9449 case X86::VGATHERDPSZrm:
9450 case X86::VGATHERDPSrm:
9451 case X86::VGATHERPF0DPDm:
9452 case X86::VGATHERPF0DPSm:
9453 case X86::VGATHERPF0QPDm:
9454 case X86::VGATHERPF0QPSm:
9455 case X86::VGATHERPF1DPDm:
9456 case X86::VGATHERPF1DPSm:
9457 case X86::VGATHERPF1QPDm:
9458 case X86::VGATHERPF1QPSm:
9459 case X86::VGATHERQPDYrm:
9460 case X86::VGATHERQPDZ128rm:
9461 case X86::VGATHERQPDZ256rm:
9462 case X86::VGATHERQPDZrm:
9463 case X86::VGATHERQPDrm:
9464 case X86::VGATHERQPSYrm:
9465 case X86::VGATHERQPSZ128rm:
9466 case X86::VGATHERQPSZ256rm:
9467 case X86::VGATHERQPSZrm:
9468 case X86::VGATHERQPSrm:
9469 case X86::VPGATHERDDYrm:
9470 case X86::VPGATHERDDZ128rm:
9471 case X86::VPGATHERDDZ256rm:
9472 case X86::VPGATHERDDZrm:
9473 case X86::VPGATHERDDrm:
9474 case X86::VPGATHERDQYrm:
9475 case X86::VPGATHERDQZ128rm:
9476 case X86::VPGATHERDQZ256rm:
9477 case X86::VPGATHERDQZrm:
9478 case X86::VPGATHERDQrm:
9479 case X86::VPGATHERQDYrm:
9480 case X86::VPGATHERQDZ128rm:
9481 case X86::VPGATHERQDZ256rm:
9482 case X86::VPGATHERQDZrm:
9483 case X86::VPGATHERQDrm:
9484 case X86::VPGATHERQQYrm:
9485 case X86::VPGATHERQQZ128rm:
9486 case X86::VPGATHERQQZ256rm:
9487 case X86::VPGATHERQQZrm:
9488 case X86::VPGATHERQQrm:
9489 case X86::VSCATTERDPDZ128mr:
9490 case X86::VSCATTERDPDZ256mr:
9491 case X86::VSCATTERDPDZmr:
9492 case X86::VSCATTERDPSZ128mr:
9493 case X86::VSCATTERDPSZ256mr:
9494 case X86::VSCATTERDPSZmr:
9495 case X86::VSCATTERPF0DPDm:
9496 case X86::VSCATTERPF0DPSm:
9497 case X86::VSCATTERPF0QPDm:
9498 case X86::VSCATTERPF0QPSm:
9499 case X86::VSCATTERPF1DPDm:
9500 case X86::VSCATTERPF1DPSm:
9501 case X86::VSCATTERPF1QPDm:
9502 case X86::VSCATTERPF1QPSm:
9503 case X86::VSCATTERQPDZ128mr:
9504 case X86::VSCATTERQPDZ256mr:
9505 case X86::VSCATTERQPDZmr:
9506 case X86::VSCATTERQPSZ128mr:
9507 case X86::VSCATTERQPSZ256mr:
9508 case X86::VSCATTERQPSZmr:
9509 case X86::VPSCATTERDDZ128mr:
9510 case X86::VPSCATTERDDZ256mr:
9511 case X86::VPSCATTERDDZmr:
9512 case X86::VPSCATTERDQZ128mr:
9513 case X86::VPSCATTERDQZ256mr:
9514 case X86::VPSCATTERDQZmr:
9515 case X86::VPSCATTERQDZ128mr:
9516 case X86::VPSCATTERQDZ256mr:
9517 case X86::VPSCATTERQDZmr:
9518 case X86::VPSCATTERQQZ128mr:
9519 case X86::VPSCATTERQQZ256mr:
9520 case X86::VPSCATTERQQZmr:
9521 return true;
9522 }
9523}
9524
9525bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
9526 const MachineRegisterInfo *MRI,
9527 const MachineInstr &DefMI,
9528 unsigned DefIdx,
9529 const MachineInstr &UseMI,
9530 unsigned UseIdx) const {
9531 return isHighLatencyDef(opc: DefMI.getOpcode());
9532}
9533
9534bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
9535 const MachineBasicBlock *MBB) const {
9536 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
9537 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
9538
9539 // Integer binary math/logic instructions have a third source operand:
9540 // the EFLAGS register. That operand must be both defined here and never
9541 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9542 // not change anything because rearranging the operands could affect other
9543 // instructions that depend on the exact status flags (zero, sign, etc.)
9544 // that are set by using these particular operands with this operation.
9545 const MachineOperand *FlagDef =
9546 Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
9547 assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?");
9548 if (FlagDef && !FlagDef->isDead())
9549 return false;
9550
9551 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
9552}
9553
9554// TODO: There are many more machine instruction opcodes to match:
9555// 1. Other data types (integer, vectors)
9556// 2. Other math / logic operations (xor, or)
9557// 3. Other forms of the same operation (intrinsics and other variants)
9558bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
9559 bool Invert) const {
9560 if (Invert)
9561 return false;
9562 switch (Inst.getOpcode()) {
9563 CASE_ND(ADD8rr)
9564 CASE_ND(ADD16rr)
9565 CASE_ND(ADD32rr)
9566 CASE_ND(ADD64rr)
9567 CASE_ND(AND8rr)
9568 CASE_ND(AND16rr)
9569 CASE_ND(AND32rr)
9570 CASE_ND(AND64rr)
9571 CASE_ND(OR8rr)
9572 CASE_ND(OR16rr)
9573 CASE_ND(OR32rr)
9574 CASE_ND(OR64rr)
9575 CASE_ND(XOR8rr)
9576 CASE_ND(XOR16rr)
9577 CASE_ND(XOR32rr)
9578 CASE_ND(XOR64rr)
9579 CASE_ND(IMUL16rr)
9580 CASE_ND(IMUL32rr)
9581 CASE_ND(IMUL64rr)
9582 case X86::PANDrr:
9583 case X86::PORrr:
9584 case X86::PXORrr:
9585 case X86::ANDPDrr:
9586 case X86::ANDPSrr:
9587 case X86::ORPDrr:
9588 case X86::ORPSrr:
9589 case X86::XORPDrr:
9590 case X86::XORPSrr:
9591 case X86::PADDBrr:
9592 case X86::PADDWrr:
9593 case X86::PADDDrr:
9594 case X86::PADDQrr:
9595 case X86::PMULLWrr:
9596 case X86::PMULLDrr:
9597 case X86::PMAXSBrr:
9598 case X86::PMAXSDrr:
9599 case X86::PMAXSWrr:
9600 case X86::PMAXUBrr:
9601 case X86::PMAXUDrr:
9602 case X86::PMAXUWrr:
9603 case X86::PMINSBrr:
9604 case X86::PMINSDrr:
9605 case X86::PMINSWrr:
9606 case X86::PMINUBrr:
9607 case X86::PMINUDrr:
9608 case X86::PMINUWrr:
9609 case X86::VPANDrr:
9610 case X86::VPANDYrr:
9611 case X86::VPANDDZ128rr:
9612 case X86::VPANDDZ256rr:
9613 case X86::VPANDDZrr:
9614 case X86::VPANDQZ128rr:
9615 case X86::VPANDQZ256rr:
9616 case X86::VPANDQZrr:
9617 case X86::VPORrr:
9618 case X86::VPORYrr:
9619 case X86::VPORDZ128rr:
9620 case X86::VPORDZ256rr:
9621 case X86::VPORDZrr:
9622 case X86::VPORQZ128rr:
9623 case X86::VPORQZ256rr:
9624 case X86::VPORQZrr:
9625 case X86::VPXORrr:
9626 case X86::VPXORYrr:
9627 case X86::VPXORDZ128rr:
9628 case X86::VPXORDZ256rr:
9629 case X86::VPXORDZrr:
9630 case X86::VPXORQZ128rr:
9631 case X86::VPXORQZ256rr:
9632 case X86::VPXORQZrr:
9633 case X86::VANDPDrr:
9634 case X86::VANDPSrr:
9635 case X86::VANDPDYrr:
9636 case X86::VANDPSYrr:
9637 case X86::VANDPDZ128rr:
9638 case X86::VANDPSZ128rr:
9639 case X86::VANDPDZ256rr:
9640 case X86::VANDPSZ256rr:
9641 case X86::VANDPDZrr:
9642 case X86::VANDPSZrr:
9643 case X86::VORPDrr:
9644 case X86::VORPSrr:
9645 case X86::VORPDYrr:
9646 case X86::VORPSYrr:
9647 case X86::VORPDZ128rr:
9648 case X86::VORPSZ128rr:
9649 case X86::VORPDZ256rr:
9650 case X86::VORPSZ256rr:
9651 case X86::VORPDZrr:
9652 case X86::VORPSZrr:
9653 case X86::VXORPDrr:
9654 case X86::VXORPSrr:
9655 case X86::VXORPDYrr:
9656 case X86::VXORPSYrr:
9657 case X86::VXORPDZ128rr:
9658 case X86::VXORPSZ128rr:
9659 case X86::VXORPDZ256rr:
9660 case X86::VXORPSZ256rr:
9661 case X86::VXORPDZrr:
9662 case X86::VXORPSZrr:
9663 case X86::KADDBrr:
9664 case X86::KADDWrr:
9665 case X86::KADDDrr:
9666 case X86::KADDQrr:
9667 case X86::KANDBrr:
9668 case X86::KANDWrr:
9669 case X86::KANDDrr:
9670 case X86::KANDQrr:
9671 case X86::KORBrr:
9672 case X86::KORWrr:
9673 case X86::KORDrr:
9674 case X86::KORQrr:
9675 case X86::KXORBrr:
9676 case X86::KXORWrr:
9677 case X86::KXORDrr:
9678 case X86::KXORQrr:
9679 case X86::VPADDBrr:
9680 case X86::VPADDWrr:
9681 case X86::VPADDDrr:
9682 case X86::VPADDQrr:
9683 case X86::VPADDBYrr:
9684 case X86::VPADDWYrr:
9685 case X86::VPADDDYrr:
9686 case X86::VPADDQYrr:
9687 case X86::VPADDBZ128rr:
9688 case X86::VPADDWZ128rr:
9689 case X86::VPADDDZ128rr:
9690 case X86::VPADDQZ128rr:
9691 case X86::VPADDBZ256rr:
9692 case X86::VPADDWZ256rr:
9693 case X86::VPADDDZ256rr:
9694 case X86::VPADDQZ256rr:
9695 case X86::VPADDBZrr:
9696 case X86::VPADDWZrr:
9697 case X86::VPADDDZrr:
9698 case X86::VPADDQZrr:
9699 case X86::VPMULLWrr:
9700 case X86::VPMULLWYrr:
9701 case X86::VPMULLWZ128rr:
9702 case X86::VPMULLWZ256rr:
9703 case X86::VPMULLWZrr:
9704 case X86::VPMULLDrr:
9705 case X86::VPMULLDYrr:
9706 case X86::VPMULLDZ128rr:
9707 case X86::VPMULLDZ256rr:
9708 case X86::VPMULLDZrr:
9709 case X86::VPMULLQZ128rr:
9710 case X86::VPMULLQZ256rr:
9711 case X86::VPMULLQZrr:
9712 case X86::VPMAXSBrr:
9713 case X86::VPMAXSBYrr:
9714 case X86::VPMAXSBZ128rr:
9715 case X86::VPMAXSBZ256rr:
9716 case X86::VPMAXSBZrr:
9717 case X86::VPMAXSDrr:
9718 case X86::VPMAXSDYrr:
9719 case X86::VPMAXSDZ128rr:
9720 case X86::VPMAXSDZ256rr:
9721 case X86::VPMAXSDZrr:
9722 case X86::VPMAXSQZ128rr:
9723 case X86::VPMAXSQZ256rr:
9724 case X86::VPMAXSQZrr:
9725 case X86::VPMAXSWrr:
9726 case X86::VPMAXSWYrr:
9727 case X86::VPMAXSWZ128rr:
9728 case X86::VPMAXSWZ256rr:
9729 case X86::VPMAXSWZrr:
9730 case X86::VPMAXUBrr:
9731 case X86::VPMAXUBYrr:
9732 case X86::VPMAXUBZ128rr:
9733 case X86::VPMAXUBZ256rr:
9734 case X86::VPMAXUBZrr:
9735 case X86::VPMAXUDrr:
9736 case X86::VPMAXUDYrr:
9737 case X86::VPMAXUDZ128rr:
9738 case X86::VPMAXUDZ256rr:
9739 case X86::VPMAXUDZrr:
9740 case X86::VPMAXUQZ128rr:
9741 case X86::VPMAXUQZ256rr:
9742 case X86::VPMAXUQZrr:
9743 case X86::VPMAXUWrr:
9744 case X86::VPMAXUWYrr:
9745 case X86::VPMAXUWZ128rr:
9746 case X86::VPMAXUWZ256rr:
9747 case X86::VPMAXUWZrr:
9748 case X86::VPMINSBrr:
9749 case X86::VPMINSBYrr:
9750 case X86::VPMINSBZ128rr:
9751 case X86::VPMINSBZ256rr:
9752 case X86::VPMINSBZrr:
9753 case X86::VPMINSDrr:
9754 case X86::VPMINSDYrr:
9755 case X86::VPMINSDZ128rr:
9756 case X86::VPMINSDZ256rr:
9757 case X86::VPMINSDZrr:
9758 case X86::VPMINSQZ128rr:
9759 case X86::VPMINSQZ256rr:
9760 case X86::VPMINSQZrr:
9761 case X86::VPMINSWrr:
9762 case X86::VPMINSWYrr:
9763 case X86::VPMINSWZ128rr:
9764 case X86::VPMINSWZ256rr:
9765 case X86::VPMINSWZrr:
9766 case X86::VPMINUBrr:
9767 case X86::VPMINUBYrr:
9768 case X86::VPMINUBZ128rr:
9769 case X86::VPMINUBZ256rr:
9770 case X86::VPMINUBZrr:
9771 case X86::VPMINUDrr:
9772 case X86::VPMINUDYrr:
9773 case X86::VPMINUDZ128rr:
9774 case X86::VPMINUDZ256rr:
9775 case X86::VPMINUDZrr:
9776 case X86::VPMINUQZ128rr:
9777 case X86::VPMINUQZ256rr:
9778 case X86::VPMINUQZrr:
9779 case X86::VPMINUWrr:
9780 case X86::VPMINUWYrr:
9781 case X86::VPMINUWZ128rr:
9782 case X86::VPMINUWZ256rr:
9783 case X86::VPMINUWZrr:
9784 // Normal min/max instructions are not commutative because of NaN and signed
9785 // zero semantics, but these are. Thus, there's no need to check for global
9786 // relaxed math; the instructions themselves have the properties we need.
9787 case X86::MAXCPDrr:
9788 case X86::MAXCPSrr:
9789 case X86::MAXCSDrr:
9790 case X86::MAXCSSrr:
9791 case X86::MINCPDrr:
9792 case X86::MINCPSrr:
9793 case X86::MINCSDrr:
9794 case X86::MINCSSrr:
9795 case X86::VMAXCPDrr:
9796 case X86::VMAXCPSrr:
9797 case X86::VMAXCPDYrr:
9798 case X86::VMAXCPSYrr:
9799 case X86::VMAXCPDZ128rr:
9800 case X86::VMAXCPSZ128rr:
9801 case X86::VMAXCPDZ256rr:
9802 case X86::VMAXCPSZ256rr:
9803 case X86::VMAXCPDZrr:
9804 case X86::VMAXCPSZrr:
9805 case X86::VMAXCSDrr:
9806 case X86::VMAXCSSrr:
9807 case X86::VMAXCSDZrr:
9808 case X86::VMAXCSSZrr:
9809 case X86::VMINCPDrr:
9810 case X86::VMINCPSrr:
9811 case X86::VMINCPDYrr:
9812 case X86::VMINCPSYrr:
9813 case X86::VMINCPDZ128rr:
9814 case X86::VMINCPSZ128rr:
9815 case X86::VMINCPDZ256rr:
9816 case X86::VMINCPSZ256rr:
9817 case X86::VMINCPDZrr:
9818 case X86::VMINCPSZrr:
9819 case X86::VMINCSDrr:
9820 case X86::VMINCSSrr:
9821 case X86::VMINCSDZrr:
9822 case X86::VMINCSSZrr:
9823 case X86::VMAXCPHZ128rr:
9824 case X86::VMAXCPHZ256rr:
9825 case X86::VMAXCPHZrr:
9826 case X86::VMAXCSHZrr:
9827 case X86::VMINCPHZ128rr:
9828 case X86::VMINCPHZ256rr:
9829 case X86::VMINCPHZrr:
9830 case X86::VMINCSHZrr:
9831 return true;
9832 case X86::ADDPDrr:
9833 case X86::ADDPSrr:
9834 case X86::ADDSDrr:
9835 case X86::ADDSSrr:
9836 case X86::MULPDrr:
9837 case X86::MULPSrr:
9838 case X86::MULSDrr:
9839 case X86::MULSSrr:
9840 case X86::VADDPDrr:
9841 case X86::VADDPSrr:
9842 case X86::VADDPDYrr:
9843 case X86::VADDPSYrr:
9844 case X86::VADDPDZ128rr:
9845 case X86::VADDPSZ128rr:
9846 case X86::VADDPDZ256rr:
9847 case X86::VADDPSZ256rr:
9848 case X86::VADDPDZrr:
9849 case X86::VADDPSZrr:
9850 case X86::VADDSDrr:
9851 case X86::VADDSSrr:
9852 case X86::VADDSDZrr:
9853 case X86::VADDSSZrr:
9854 case X86::VMULPDrr:
9855 case X86::VMULPSrr:
9856 case X86::VMULPDYrr:
9857 case X86::VMULPSYrr:
9858 case X86::VMULPDZ128rr:
9859 case X86::VMULPSZ128rr:
9860 case X86::VMULPDZ256rr:
9861 case X86::VMULPSZ256rr:
9862 case X86::VMULPDZrr:
9863 case X86::VMULPSZrr:
9864 case X86::VMULSDrr:
9865 case X86::VMULSSrr:
9866 case X86::VMULSDZrr:
9867 case X86::VMULSSZrr:
9868 case X86::VADDPHZ128rr:
9869 case X86::VADDPHZ256rr:
9870 case X86::VADDPHZrr:
9871 case X86::VADDSHZrr:
9872 case X86::VMULPHZ128rr:
9873 case X86::VMULPHZ256rr:
9874 case X86::VMULPHZrr:
9875 case X86::VMULSHZrr:
9876 return Inst.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) &&
9877 Inst.getFlag(Flag: MachineInstr::MIFlag::FmNsz);
9878 default:
9879 return false;
9880 }
9881}
9882
9883/// If \p DescribedReg overlaps with the MOVrr instruction's destination
9884/// register then, if possible, describe the value in terms of the source
9885/// register.
9886static std::optional<ParamLoadedValue>
9887describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
9888 const TargetRegisterInfo *TRI) {
9889 Register DestReg = MI.getOperand(i: 0).getReg();
9890 Register SrcReg = MI.getOperand(i: 1).getReg();
9891
9892 auto Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: {});
9893
9894 // If the described register is the destination, just return the source.
9895 if (DestReg == DescribedReg)
9896 return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcReg, isDef: false), Expr);
9897
9898 // If the described register is a sub-register of the destination register,
9899 // then pick out the source register's corresponding sub-register.
9900 if (unsigned SubRegIdx = TRI->getSubRegIndex(RegNo: DestReg, SubRegNo: DescribedReg)) {
9901 Register SrcSubReg = TRI->getSubReg(Reg: SrcReg, Idx: SubRegIdx);
9902 return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcSubReg, isDef: false), Expr);
9903 }
9904
9905 // The remaining case to consider is when the described register is a
9906 // super-register of the destination register. MOV8rr and MOV16rr does not
9907 // write to any of the other bytes in the register, meaning that we'd have to
9908 // describe the value using a combination of the source register and the
9909 // non-overlapping bits in the described register, which is not currently
9910 // possible.
9911 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9912 !TRI->isSuperRegister(DestReg, DescribedReg))
9913 return std::nullopt;
9914
9915 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
9916 return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcReg, isDef: false), Expr);
9917}
9918
9919std::optional<ParamLoadedValue>
9920X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9921 const MachineOperand *Op = nullptr;
9922 DIExpression *Expr = nullptr;
9923
9924 const TargetRegisterInfo *TRI = &getRegisterInfo();
9925
9926 switch (MI.getOpcode()) {
9927 case X86::LEA32r:
9928 case X86::LEA64r:
9929 case X86::LEA64_32r: {
9930 // We may need to describe a 64-bit parameter with a 32-bit LEA.
9931 if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg))
9932 return std::nullopt;
9933
9934 // Operand 4 could be global address. For now we do not support
9935 // such situation.
9936 if (!MI.getOperand(i: 4).isImm() || !MI.getOperand(i: 2).isImm())
9937 return std::nullopt;
9938
9939 const MachineOperand &Op1 = MI.getOperand(i: 1);
9940 const MachineOperand &Op2 = MI.getOperand(i: 3);
9941 assert(Op2.isReg() &&
9942 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
9943
9944 // Omit situations like:
9945 // %rsi = lea %rsi, 4, ...
9946 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(i: 0).getReg()) ||
9947 Op2.getReg() == MI.getOperand(i: 0).getReg())
9948 return std::nullopt;
9949 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9950 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9951 (Op2.getReg() != X86::NoRegister &&
9952 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9953 return std::nullopt;
9954
9955 int64_t Coef = MI.getOperand(i: 2).getImm();
9956 int64_t Offset = MI.getOperand(i: 4).getImm();
9957 SmallVector<uint64_t, 8> Ops;
9958
9959 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9960 Op = &Op1;
9961 } else if (Op1.isFI())
9962 Op = &Op1;
9963
9964 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9965 Ops.push_back(Elt: dwarf::DW_OP_constu);
9966 Ops.push_back(Elt: Coef + 1);
9967 Ops.push_back(Elt: dwarf::DW_OP_mul);
9968 } else {
9969 if (Op && Op2.getReg() != X86::NoRegister) {
9970 int dwarfReg = TRI->getDwarfRegNum(RegNum: Op2.getReg(), isEH: false);
9971 if (dwarfReg < 0)
9972 return std::nullopt;
9973 else if (dwarfReg < 32) {
9974 Ops.push_back(Elt: dwarf::DW_OP_breg0 + dwarfReg);
9975 Ops.push_back(Elt: 0);
9976 } else {
9977 Ops.push_back(Elt: dwarf::DW_OP_bregx);
9978 Ops.push_back(Elt: dwarfReg);
9979 Ops.push_back(Elt: 0);
9980 }
9981 } else if (!Op) {
9982 assert(Op2.getReg() != X86::NoRegister);
9983 Op = &Op2;
9984 }
9985
9986 if (Coef > 1) {
9987 assert(Op2.getReg() != X86::NoRegister);
9988 Ops.push_back(Elt: dwarf::DW_OP_constu);
9989 Ops.push_back(Elt: Coef);
9990 Ops.push_back(Elt: dwarf::DW_OP_mul);
9991 }
9992
9993 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9994 Op2.getReg() != X86::NoRegister) {
9995 Ops.push_back(Elt: dwarf::DW_OP_plus);
9996 }
9997 }
9998
9999 DIExpression::appendOffset(Ops, Offset);
10000 Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: Ops);
10001
10002 return ParamLoadedValue(*Op, Expr);
10003 }
10004 case X86::MOV8ri:
10005 case X86::MOV16ri:
10006 // TODO: Handle MOV8ri and MOV16ri.
10007 return std::nullopt;
10008 case X86::MOV32ri:
10009 case X86::MOV64ri:
10010 case X86::MOV64ri32:
10011 // MOV32ri may be used for producing zero-extended 32-bit immediates in
10012 // 64-bit parameters, so we need to consider super-registers.
10013 if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg))
10014 return std::nullopt;
10015 return ParamLoadedValue(MI.getOperand(i: 1), Expr);
10016 case X86::MOV8rr:
10017 case X86::MOV16rr:
10018 case X86::MOV32rr:
10019 case X86::MOV64rr:
10020 return describeMOVrrLoadedValue(MI, DescribedReg: Reg, TRI);
10021 case X86::XOR32rr: {
10022 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10023 // super-registers.
10024 if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg))
10025 return std::nullopt;
10026 if (MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg())
10027 return ParamLoadedValue(MachineOperand::CreateImm(Val: 0), Expr);
10028 return std::nullopt;
10029 }
10030 case X86::MOVSX64rr32: {
10031 // We may need to describe the lower 32 bits of the MOVSX; for example, in
10032 // cases like this:
10033 //
10034 // $ebx = [...]
10035 // $rdi = MOVSX64rr32 $ebx
10036 // $esi = MOV32rr $edi
10037 if (!TRI->isSubRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg))
10038 return std::nullopt;
10039
10040 Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: {});
10041
10042 // If the described register is the destination register we need to
10043 // sign-extend the source register from 32 bits. The other case we handle
10044 // is when the described register is the 32-bit sub-register of the
10045 // destination register, in case we just need to return the source
10046 // register.
10047 if (Reg == MI.getOperand(i: 0).getReg())
10048 Expr = DIExpression::appendExt(Expr, FromSize: 32, ToSize: 64, Signed: true);
10049 else
10050 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
10051 "Unhandled sub-register case for MOVSX64rr32");
10052
10053 return ParamLoadedValue(MI.getOperand(i: 1), Expr);
10054 }
10055 default:
10056 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
10057 return TargetInstrInfo::describeLoadedValue(MI, Reg);
10058 }
10059}
10060
10061/// This is an architecture-specific helper function of reassociateOps.
10062/// Set special operand attributes for new instructions after reassociation.
10063void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
10064 MachineInstr &OldMI2,
10065 MachineInstr &NewMI1,
10066 MachineInstr &NewMI2) const {
10067 // Integer instructions may define an implicit EFLAGS dest register operand.
10068 MachineOperand *OldFlagDef1 =
10069 OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10070 MachineOperand *OldFlagDef2 =
10071 OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10072
10073 assert(!OldFlagDef1 == !OldFlagDef2 &&
10074 "Unexpected instruction type for reassociation");
10075
10076 if (!OldFlagDef1 || !OldFlagDef2)
10077 return;
10078
10079 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
10080 "Must have dead EFLAGS operand in reassociable instruction");
10081
10082 MachineOperand *NewFlagDef1 =
10083 NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10084 MachineOperand *NewFlagDef2 =
10085 NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10086
10087 assert(NewFlagDef1 && NewFlagDef2 &&
10088 "Unexpected operand in reassociable instruction");
10089
10090 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10091 // of this pass or other passes. The EFLAGS operands must be dead in these new
10092 // instructions because the EFLAGS operands in the original instructions must
10093 // be dead in order for reassociation to occur.
10094 NewFlagDef1->setIsDead();
10095 NewFlagDef2->setIsDead();
10096}
10097
10098std::pair<unsigned, unsigned>
10099X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
10100 return std::make_pair(x&: TF, y: 0u);
10101}
10102
10103ArrayRef<std::pair<unsigned, const char *>>
10104X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
10105 using namespace X86II;
10106 static const std::pair<unsigned, const char *> TargetFlags[] = {
10107 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10108 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10109 {MO_GOT, "x86-got"},
10110 {MO_GOTOFF, "x86-gotoff"},
10111 {MO_GOTPCREL, "x86-gotpcrel"},
10112 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
10113 {MO_PLT, "x86-plt"},
10114 {MO_TLSGD, "x86-tlsgd"},
10115 {MO_TLSLD, "x86-tlsld"},
10116 {MO_TLSLDM, "x86-tlsldm"},
10117 {MO_GOTTPOFF, "x86-gottpoff"},
10118 {MO_INDNTPOFF, "x86-indntpoff"},
10119 {MO_TPOFF, "x86-tpoff"},
10120 {MO_DTPOFF, "x86-dtpoff"},
10121 {MO_NTPOFF, "x86-ntpoff"},
10122 {MO_GOTNTPOFF, "x86-gotntpoff"},
10123 {MO_DLLIMPORT, "x86-dllimport"},
10124 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10125 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10126 {MO_TLVP, "x86-tlvp"},
10127 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10128 {MO_SECREL, "x86-secrel"},
10129 {MO_COFFSTUB, "x86-coffstub"}};
10130 return ArrayRef(TargetFlags);
10131}
10132
10133namespace {
10134/// Create Global Base Reg pass. This initializes the PIC
10135/// global base register for x86-32.
10136struct CGBR : public MachineFunctionPass {
10137 static char ID;
10138 CGBR() : MachineFunctionPass(ID) {}
10139
10140 bool runOnMachineFunction(MachineFunction &MF) override {
10141 const X86TargetMachine *TM =
10142 static_cast<const X86TargetMachine *>(&MF.getTarget());
10143 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10144
10145 // Only emit a global base reg in PIC mode.
10146 if (!TM->isPositionIndependent())
10147 return false;
10148
10149 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10150 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
10151
10152 // If we didn't need a GlobalBaseReg, don't insert code.
10153 if (GlobalBaseReg == 0)
10154 return false;
10155
10156 // Insert the set of GlobalBaseReg into the first MBB of the function
10157 MachineBasicBlock &FirstMBB = MF.front();
10158 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
10159 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10160 MachineRegisterInfo &RegInfo = MF.getRegInfo();
10161 const X86InstrInfo *TII = STI.getInstrInfo();
10162
10163 Register PC;
10164 if (STI.isPICStyleGOT())
10165 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10166 else
10167 PC = GlobalBaseReg;
10168
10169 if (STI.is64Bit()) {
10170 if (TM->getCodeModel() == CodeModel::Large) {
10171 // In the large code model, we are aiming for this code, though the
10172 // register allocation may vary:
10173 // leaq .LN$pb(%rip), %rax
10174 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10175 // addq %rcx, %rax
10176 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10177 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10178 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10179 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
10180 .addReg(X86::RIP)
10181 .addImm(0)
10182 .addReg(0)
10183 .addSym(MF.getPICBaseSymbol())
10184 .addReg(0);
10185 std::prev(x: MBBI)->setPreInstrSymbol(MF, Symbol: MF.getPICBaseSymbol());
10186 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
10187 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10188 X86II::MO_PIC_BASE_OFFSET);
10189 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
10190 .addReg(PBReg, RegState::Kill)
10191 .addReg(GOTReg, RegState::Kill);
10192 } else {
10193 // In other code models, use a RIP-relative LEA to materialize the
10194 // GOT.
10195 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
10196 .addReg(X86::RIP)
10197 .addImm(0)
10198 .addReg(0)
10199 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10200 .addReg(0);
10201 }
10202 } else {
10203 // Operand of MovePCtoStack is completely ignored by asm printer. It's
10204 // only used in JIT code emission as displacement to pc.
10205 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10206
10207 // If we're using vanilla 'GOT' PIC style, we should use relative
10208 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10209 if (STI.isPICStyleGOT()) {
10210 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10211 // %some_register
10212 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10213 .addReg(PC)
10214 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10215 X86II::MO_GOT_ABSOLUTE_ADDRESS);
10216 }
10217 }
10218
10219 return true;
10220 }
10221
10222 StringRef getPassName() const override {
10223 return "X86 PIC Global Base Reg Initialization";
10224 }
10225
10226 void getAnalysisUsage(AnalysisUsage &AU) const override {
10227 AU.setPreservesCFG();
10228 MachineFunctionPass::getAnalysisUsage(AU);
10229 }
10230};
10231} // namespace
10232
10233char CGBR::ID = 0;
10234FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
10235
10236namespace {
10237struct LDTLSCleanup : public MachineFunctionPass {
10238 static char ID;
10239 LDTLSCleanup() : MachineFunctionPass(ID) {}
10240
10241 bool runOnMachineFunction(MachineFunction &MF) override {
10242 if (skipFunction(F: MF.getFunction()))
10243 return false;
10244
10245 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
10246 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10247 // No point folding accesses if there isn't at least two.
10248 return false;
10249 }
10250
10251 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
10252 return VisitNode(Node: DT->getRootNode(), TLSBaseAddrReg: 0);
10253 }
10254
10255 // Visit the dominator subtree rooted at Node in pre-order.
10256 // If TLSBaseAddrReg is non-null, then use that to replace any
10257 // TLS_base_addr instructions. Otherwise, create the register
10258 // when the first such instruction is seen, and then use it
10259 // as we encounter more instructions.
10260 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
10261 MachineBasicBlock *BB = Node->getBlock();
10262 bool Changed = false;
10263
10264 // Traverse the current block.
10265 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10266 ++I) {
10267 switch (I->getOpcode()) {
10268 case X86::TLS_base_addr32:
10269 case X86::TLS_base_addr64:
10270 if (TLSBaseAddrReg)
10271 I = ReplaceTLSBaseAddrCall(I&: *I, TLSBaseAddrReg);
10272 else
10273 I = SetRegister(I&: *I, TLSBaseAddrReg: &TLSBaseAddrReg);
10274 Changed = true;
10275 break;
10276 default:
10277 break;
10278 }
10279 }
10280
10281 // Visit the children of this block in the dominator tree.
10282 for (auto &I : *Node) {
10283 Changed |= VisitNode(Node: I, TLSBaseAddrReg);
10284 }
10285
10286 return Changed;
10287 }
10288
10289 // Replace the TLS_base_addr instruction I with a copy from
10290 // TLSBaseAddrReg, returning the new instruction.
10291 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10292 unsigned TLSBaseAddrReg) {
10293 MachineFunction *MF = I.getParent()->getParent();
10294 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10295 const bool is64Bit = STI.is64Bit();
10296 const X86InstrInfo *TII = STI.getInstrInfo();
10297
10298 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10299 MachineInstr *Copy =
10300 BuildMI(*I.getParent(), I, I.getDebugLoc(),
10301 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10302 .addReg(TLSBaseAddrReg);
10303
10304 // Erase the TLS_base_addr instruction.
10305 I.eraseFromParent();
10306
10307 return Copy;
10308 }
10309
10310 // Create a virtual register in *TLSBaseAddrReg, and populate it by
10311 // inserting a copy instruction after I. Returns the new instruction.
10312 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
10313 MachineFunction *MF = I.getParent()->getParent();
10314 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10315 const bool is64Bit = STI.is64Bit();
10316 const X86InstrInfo *TII = STI.getInstrInfo();
10317
10318 // Create a virtual register for the TLS base address.
10319 MachineRegisterInfo &RegInfo = MF->getRegInfo();
10320 *TLSBaseAddrReg = RegInfo.createVirtualRegister(
10321 is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10322
10323 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10324 MachineInstr *Next = I.getNextNode();
10325 MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10326 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10327 .addReg(is64Bit ? X86::RAX : X86::EAX);
10328
10329 return Copy;
10330 }
10331
10332 StringRef getPassName() const override {
10333 return "Local Dynamic TLS Access Clean-up";
10334 }
10335
10336 void getAnalysisUsage(AnalysisUsage &AU) const override {
10337 AU.setPreservesCFG();
10338 AU.addRequired<MachineDominatorTree>();
10339 MachineFunctionPass::getAnalysisUsage(AU);
10340 }
10341};
10342} // namespace
10343
10344char LDTLSCleanup::ID = 0;
10345FunctionPass *llvm::createCleanupLocalDynamicTLSPass() {
10346 return new LDTLSCleanup();
10347}
10348
10349/// Constants defining how certain sequences should be outlined.
10350///
10351/// \p MachineOutlinerDefault implies that the function is called with a call
10352/// instruction, and a return must be emitted for the outlined function frame.
10353///
10354/// That is,
10355///
10356/// I1 OUTLINED_FUNCTION:
10357/// I2 --> call OUTLINED_FUNCTION I1
10358/// I3 I2
10359/// I3
10360/// ret
10361///
10362/// * Call construction overhead: 1 (call instruction)
10363/// * Frame construction overhead: 1 (return instruction)
10364///
10365/// \p MachineOutlinerTailCall implies that the function is being tail called.
10366/// A jump is emitted instead of a call, and the return is already present in
10367/// the outlined sequence. That is,
10368///
10369/// I1 OUTLINED_FUNCTION:
10370/// I2 --> jmp OUTLINED_FUNCTION I1
10371/// ret I2
10372/// ret
10373///
10374/// * Call construction overhead: 1 (jump instruction)
10375/// * Frame construction overhead: 0 (don't need to return)
10376///
10377enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall };
10378
10379std::optional<outliner::OutlinedFunction>
10380X86InstrInfo::getOutliningCandidateInfo(
10381 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
10382 unsigned SequenceSize = 0;
10383 for (auto &MI : RepeatedSequenceLocs[0]) {
10384 // FIXME: x86 doesn't implement getInstSizeInBytes, so
10385 // we can't tell the cost. Just assume each instruction
10386 // is one byte.
10387 if (MI.isDebugInstr() || MI.isKill())
10388 continue;
10389 SequenceSize += 1;
10390 }
10391
10392 // We check to see if CFI Instructions are present, and if they are
10393 // we find the number of CFI Instructions in the candidates.
10394 unsigned CFICount = 0;
10395 for (auto &I : RepeatedSequenceLocs[0]) {
10396 if (I.isCFIInstruction())
10397 CFICount++;
10398 }
10399
10400 // We compare the number of found CFI Instructions to the number of CFI
10401 // instructions in the parent function for each candidate. We must check this
10402 // since if we outline one of the CFI instructions in a function, we have to
10403 // outline them all for correctness. If we do not, the address offsets will be
10404 // incorrect between the two sections of the program.
10405 for (outliner::Candidate &C : RepeatedSequenceLocs) {
10406 std::vector<MCCFIInstruction> CFIInstructions =
10407 C.getMF()->getFrameInstructions();
10408
10409 if (CFICount > 0 && CFICount != CFIInstructions.size())
10410 return std::nullopt;
10411 }
10412
10413 // FIXME: Use real size in bytes for call and ret instructions.
10414 if (RepeatedSequenceLocs[0].back().isTerminator()) {
10415 for (outliner::Candidate &C : RepeatedSequenceLocs)
10416 C.setCallInfo(CID: MachineOutlinerTailCall, CO: 1);
10417
10418 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
10419 0, // Number of bytes to emit frame.
10420 MachineOutlinerTailCall // Type of frame.
10421 );
10422 }
10423
10424 if (CFICount > 0)
10425 return std::nullopt;
10426
10427 for (outliner::Candidate &C : RepeatedSequenceLocs)
10428 C.setCallInfo(CID: MachineOutlinerDefault, CO: 1);
10429
10430 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
10431 MachineOutlinerDefault);
10432}
10433
10434bool X86InstrInfo::isFunctionSafeToOutlineFrom(
10435 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
10436 const Function &F = MF.getFunction();
10437
10438 // Does the function use a red zone? If it does, then we can't risk messing
10439 // with the stack.
10440 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
10441 // It could have a red zone. If it does, then we don't want to touch it.
10442 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10443 if (!X86FI || X86FI->getUsesRedZone())
10444 return false;
10445 }
10446
10447 // If we *don't* want to outline from things that could potentially be deduped
10448 // then return false.
10449 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10450 return false;
10451
10452 // This function is viable for outlining, so return true.
10453 return true;
10454}
10455
10456outliner::InstrType
10457X86InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
10458 unsigned Flags) const {
10459 MachineInstr &MI = *MIT;
10460
10461 // Is this a terminator for a basic block?
10462 if (MI.isTerminator())
10463 // TargetInstrInfo::getOutliningType has already filtered out anything
10464 // that would break this, so we can allow it here.
10465 return outliner::InstrType::Legal;
10466
10467 // Don't outline anything that modifies or reads from the stack pointer.
10468 //
10469 // FIXME: There are instructions which are being manually built without
10470 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10471 // able to remove the extra checks once those are fixed up. For example,
10472 // sometimes we might get something like %rax = POP64r 1. This won't be
10473 // caught by modifiesRegister or readsRegister even though the instruction
10474 // really ought to be formed so that modifiesRegister/readsRegister would
10475 // catch it.
10476 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10477 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10478 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10479 return outliner::InstrType::Illegal;
10480
10481 // Outlined calls change the instruction pointer, so don't read from it.
10482 if (MI.readsRegister(X86::RIP, &RI) ||
10483 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10484 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10485 return outliner::InstrType::Illegal;
10486
10487 // Don't outline CFI instructions.
10488 if (MI.isCFIInstruction())
10489 return outliner::InstrType::Illegal;
10490
10491 return outliner::InstrType::Legal;
10492}
10493
10494void X86InstrInfo::buildOutlinedFrame(
10495 MachineBasicBlock &MBB, MachineFunction &MF,
10496 const outliner::OutlinedFunction &OF) const {
10497 // If we're a tail call, we already have a return, so don't do anything.
10498 if (OF.FrameConstructionID == MachineOutlinerTailCall)
10499 return;
10500
10501 // We're a normal call, so our sequence doesn't have a return instruction.
10502 // Add it in.
10503 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
10504 MBB.insert(I: MBB.end(), MI: retq);
10505}
10506
10507MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall(
10508 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
10509 MachineFunction &MF, outliner::Candidate &C) const {
10510 // Is it a tail call?
10511 if (C.CallConstructionID == MachineOutlinerTailCall) {
10512 // Yes, just insert a JMP.
10513 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
10514 .addGlobalAddress(M.getNamedValue(MF.getName())));
10515 } else {
10516 // No, insert a call.
10517 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10518 .addGlobalAddress(M.getNamedValue(MF.getName())));
10519 }
10520
10521 return It;
10522}
10523
10524void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB,
10525 MachineBasicBlock::iterator Iter,
10526 DebugLoc &DL,
10527 bool AllowSideEffects) const {
10528 const MachineFunction &MF = *MBB.getParent();
10529 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
10530 const TargetRegisterInfo &TRI = getRegisterInfo();
10531
10532 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10533 // FIXME: Should we ignore MMX registers?
10534 return;
10535
10536 if (TRI.isGeneralPurposeRegister(MF, PhysReg: Reg)) {
10537 // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10538 // upper bits of a 64-bit register automagically.
10539 Reg = getX86SubSuperRegister(Reg, Size: 32);
10540
10541 if (!AllowSideEffects)
10542 // XOR affects flags, so use a MOV instead.
10543 BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0);
10544 else
10545 BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg)
10546 .addReg(Reg, RegState::Undef)
10547 .addReg(Reg, RegState::Undef);
10548 } else if (X86::VR128RegClass.contains(Reg)) {
10549 // XMM#
10550 if (!ST.hasSSE1())
10551 return;
10552
10553 // PXOR is safe to use because it doesn't affect flags.
10554 BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg)
10555 .addReg(Reg, RegState::Undef)
10556 .addReg(Reg, RegState::Undef);
10557 } else if (X86::VR256RegClass.contains(Reg)) {
10558 // YMM#
10559 if (!ST.hasAVX())
10560 return;
10561
10562 // VPXOR is safe to use because it doesn't affect flags.
10563 BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg)
10564 .addReg(Reg, RegState::Undef)
10565 .addReg(Reg, RegState::Undef);
10566 } else if (X86::VR512RegClass.contains(Reg)) {
10567 // ZMM#
10568 if (!ST.hasAVX512())
10569 return;
10570
10571 // VPXORY is safe to use because it doesn't affect flags.
10572 BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg)
10573 .addReg(Reg, RegState::Undef)
10574 .addReg(Reg, RegState::Undef);
10575 } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) ||
10576 X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) ||
10577 X86::VK16RegClass.contains(Reg)) {
10578 if (!ST.hasVLX())
10579 return;
10580
10581 // KXOR is safe to use because it doesn't affect flags.
10582 unsigned Op = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
10583 BuildMI(MBB, Iter, DL, get(Op), Reg)
10584 .addReg(Reg, RegState::Undef)
10585 .addReg(Reg, RegState::Undef);
10586 }
10587}
10588
10589bool X86InstrInfo::getMachineCombinerPatterns(
10590 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
10591 bool DoRegPressureReduce) const {
10592 unsigned Opc = Root.getOpcode();
10593 switch (Opc) {
10594 case X86::VPDPWSSDrr:
10595 case X86::VPDPWSSDrm:
10596 case X86::VPDPWSSDYrr:
10597 case X86::VPDPWSSDYrm: {
10598 if (!Subtarget.hasFastDPWSSD()) {
10599 Patterns.push_back(Elt: X86MachineCombinerPattern::DPWSSD);
10600 return true;
10601 }
10602 break;
10603 }
10604 case X86::VPDPWSSDZ128r:
10605 case X86::VPDPWSSDZ128m:
10606 case X86::VPDPWSSDZ256r:
10607 case X86::VPDPWSSDZ256m:
10608 case X86::VPDPWSSDZr:
10609 case X86::VPDPWSSDZm: {
10610 if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) {
10611 Patterns.push_back(Elt: X86MachineCombinerPattern::DPWSSD);
10612 return true;
10613 }
10614 break;
10615 }
10616 }
10617 return TargetInstrInfo::getMachineCombinerPatterns(Root,
10618 Patterns, DoRegPressureReduce);
10619}
10620
10621static void
10622genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII,
10623 SmallVectorImpl<MachineInstr *> &InsInstrs,
10624 SmallVectorImpl<MachineInstr *> &DelInstrs,
10625 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
10626 MachineFunction *MF = Root.getMF();
10627 MachineRegisterInfo &RegInfo = MF->getRegInfo();
10628
10629 unsigned Opc = Root.getOpcode();
10630 unsigned AddOpc = 0;
10631 unsigned MaddOpc = 0;
10632 switch (Opc) {
10633 default:
10634 assert(false && "It should not reach here");
10635 break;
10636 // vpdpwssd xmm2,xmm3,xmm1
10637 // -->
10638 // vpmaddwd xmm3,xmm3,xmm1
10639 // vpaddd xmm2,xmm2,xmm3
10640 case X86::VPDPWSSDrr:
10641 MaddOpc = X86::VPMADDWDrr;
10642 AddOpc = X86::VPADDDrr;
10643 break;
10644 case X86::VPDPWSSDrm:
10645 MaddOpc = X86::VPMADDWDrm;
10646 AddOpc = X86::VPADDDrr;
10647 break;
10648 case X86::VPDPWSSDZ128r:
10649 MaddOpc = X86::VPMADDWDZ128rr;
10650 AddOpc = X86::VPADDDZ128rr;
10651 break;
10652 case X86::VPDPWSSDZ128m:
10653 MaddOpc = X86::VPMADDWDZ128rm;
10654 AddOpc = X86::VPADDDZ128rr;
10655 break;
10656 // vpdpwssd ymm2,ymm3,ymm1
10657 // -->
10658 // vpmaddwd ymm3,ymm3,ymm1
10659 // vpaddd ymm2,ymm2,ymm3
10660 case X86::VPDPWSSDYrr:
10661 MaddOpc = X86::VPMADDWDYrr;
10662 AddOpc = X86::VPADDDYrr;
10663 break;
10664 case X86::VPDPWSSDYrm:
10665 MaddOpc = X86::VPMADDWDYrm;
10666 AddOpc = X86::VPADDDYrr;
10667 break;
10668 case X86::VPDPWSSDZ256r:
10669 MaddOpc = X86::VPMADDWDZ256rr;
10670 AddOpc = X86::VPADDDZ256rr;
10671 break;
10672 case X86::VPDPWSSDZ256m:
10673 MaddOpc = X86::VPMADDWDZ256rm;
10674 AddOpc = X86::VPADDDZ256rr;
10675 break;
10676 // vpdpwssd zmm2,zmm3,zmm1
10677 // -->
10678 // vpmaddwd zmm3,zmm3,zmm1
10679 // vpaddd zmm2,zmm2,zmm3
10680 case X86::VPDPWSSDZr:
10681 MaddOpc = X86::VPMADDWDZrr;
10682 AddOpc = X86::VPADDDZrr;
10683 break;
10684 case X86::VPDPWSSDZm:
10685 MaddOpc = X86::VPMADDWDZrm;
10686 AddOpc = X86::VPADDDZrr;
10687 break;
10688 }
10689 // Create vpmaddwd.
10690 const TargetRegisterClass *RC =
10691 RegInfo.getRegClass(Reg: Root.getOperand(i: 0).getReg());
10692 Register NewReg = RegInfo.createVirtualRegister(RegClass: RC);
10693 MachineInstr *Madd = Root.getMF()->CloneMachineInstr(Orig: &Root);
10694 Madd->setDesc(TII.get(Opcode: MaddOpc));
10695 Madd->untieRegOperand(OpIdx: 1);
10696 Madd->removeOperand(OpNo: 1);
10697 Madd->getOperand(i: 0).setReg(NewReg);
10698 InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewReg, y: 0));
10699 // Create vpaddd.
10700 Register DstReg = Root.getOperand(i: 0).getReg();
10701 bool IsKill = Root.getOperand(i: 1).isKill();
10702 MachineInstr *Add =
10703 BuildMI(MF&: *MF, MIMD: MIMetadata(Root), MCID: TII.get(Opcode: AddOpc), DestReg: DstReg)
10704 .addReg(RegNo: Root.getOperand(i: 1).getReg(), flags: getKillRegState(B: IsKill))
10705 .addReg(RegNo: Madd->getOperand(i: 0).getReg(), flags: getKillRegState(B: true));
10706 InsInstrs.push_back(Elt: Madd);
10707 InsInstrs.push_back(Elt: Add);
10708 DelInstrs.push_back(Elt: &Root);
10709}
10710
10711void X86InstrInfo::genAlternativeCodeSequence(
10712 MachineInstr &Root, unsigned Pattern,
10713 SmallVectorImpl<MachineInstr *> &InsInstrs,
10714 SmallVectorImpl<MachineInstr *> &DelInstrs,
10715 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
10716 switch (Pattern) {
10717 default:
10718 // Reassociate instructions.
10719 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
10720 DelInstrs, InstrIdxForVirtReg);
10721 return;
10722 case X86MachineCombinerPattern::DPWSSD:
10723 genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs,
10724 InstrIdxForVirtReg);
10725 return;
10726 }
10727}
10728
10729// See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10730void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
10731 int FI) const {
10732 X86AddressMode M;
10733 M.BaseType = X86AddressMode::FrameIndexBase;
10734 M.Base.FrameIndex = FI;
10735 M.getFullAddress(MO&: Ops);
10736}
10737
10738#define GET_INSTRINFO_HELPERS
10739#include "X86GenInstrInfo.inc"
10740

source code of llvm/lib/Target/X86/X86InstrInfo.cpp