| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | |
| 31 | #ifndef PX_COOKING_H |
| 32 | #define PX_COOKING_H |
| 33 | /** \addtogroup cooking |
| 34 | @{ |
| 35 | */ |
| 36 | #include "common/PxPhysXCommonConfig.h" |
| 37 | #include "common/PxTolerancesScale.h" |
| 38 | #include "cooking/Pxc.h" |
| 39 | |
| 40 | #include "cooking/PxConvexMeshDesc.h" |
| 41 | #include "cooking/PxTriangleMeshDesc.h" |
| 42 | #include "cooking/PxMidphaseDesc.h" |
| 43 | #include "cooking/PxBVHStructureDesc.h" |
| 44 | #include "geometry/PxTriangleMesh.h" |
| 45 | #include "geometry/PxBVHStructure.h" |
| 46 | |
| 47 | #if !PX_DOXYGEN |
| 48 | namespace physx |
| 49 | { |
| 50 | #endif |
| 51 | |
| 52 | class PxPhysicsInsertionCallback; |
| 53 | class PxFoundation; |
| 54 | |
| 55 | /** |
| 56 | \brief Result from convex cooking. |
| 57 | */ |
| 58 | struct PxConvexMeshCookingResult |
| 59 | { |
| 60 | enum Enum |
| 61 | { |
| 62 | /** |
| 63 | \brief Convex mesh cooking succeeded. |
| 64 | */ |
| 65 | eSUCCESS, |
| 66 | |
| 67 | /** |
| 68 | \brief Convex mesh cooking failed, algorithm couldn't find 4 initial vertices without a small triangle. |
| 69 | |
| 70 | @see PxCookingParams::areaTestEpsilon PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES |
| 71 | */ |
| 72 | eZERO_AREA_TEST_FAILED, |
| 73 | |
| 74 | /** |
| 75 | \brief Convex mesh cooking succeeded, but the algorithm has reached the 255 polygons limit. |
| 76 | The produced hull does not contain all input vertices. Try to simplify the input vertices |
| 77 | or try to use the eINFLATE_CONVEX or the eQUANTIZE_INPUT flags. |
| 78 | |
| 79 | @see PxConvexFlag::eINFLATE_CONVEX PxConvexFlag::eQUANTIZE_INPUT |
| 80 | */ |
| 81 | ePOLYGONS_LIMIT_REACHED, |
| 82 | |
| 83 | /** |
| 84 | \brief Something unrecoverable happened. Check the error stream to find out what. |
| 85 | */ |
| 86 | eFAILURE |
| 87 | }; |
| 88 | }; |
| 89 | |
| 90 | /** \brief Enumeration for convex mesh cooking algorithms. */ |
| 91 | struct PxConvexMeshCookingType |
| 92 | { |
| 93 | enum Enum |
| 94 | { |
| 95 | /** |
| 96 | \brief The Quickhull algorithm constructs the hull from the given input points. The resulting hull |
| 97 | will only contain a subset of the input points. |
| 98 | |
| 99 | */ |
| 100 | eQUICKHULL |
| 101 | }; |
| 102 | }; |
| 103 | |
| 104 | /** |
| 105 | \brief Result from triangle mesh cooking |
| 106 | */ |
| 107 | struct PxTriangleMeshCookingResult |
| 108 | { |
| 109 | enum Enum |
| 110 | { |
| 111 | /** |
| 112 | \brief Everything is A-OK. |
| 113 | */ |
| 114 | eSUCCESS = 0, |
| 115 | |
| 116 | /** |
| 117 | \brief a triangle is too large for well-conditioned results. Tessellate the mesh for better behavior, see the user guide section on cooking for more details. |
| 118 | */ |
| 119 | eLARGE_TRIANGLE, |
| 120 | |
| 121 | /** |
| 122 | \brief Something unrecoverable happened. Check the error stream to find out what. |
| 123 | */ |
| 124 | eFAILURE |
| 125 | }; |
| 126 | }; |
| 127 | |
| 128 | /** |
| 129 | |
| 130 | \brief Enum for the set of mesh pre-processing parameters. |
| 131 | |
| 132 | */ |
| 133 | |
| 134 | struct PxMeshPreprocessingFlag |
| 135 | { |
| 136 | enum Enum |
| 137 | { |
| 138 | /** |
| 139 | \brief When set, mesh welding is performed. See PxCookingParams::meshWeldTolerance. Clean mesh must be enabled. |
| 140 | */ |
| 141 | eWELD_VERTICES = 1 << 0, |
| 142 | |
| 143 | /** |
| 144 | \brief When set, mesh cleaning is disabled. This makes cooking faster. |
| 145 | |
| 146 | When clean mesh is not performed, mesh welding is also not performed. |
| 147 | |
| 148 | It is recommended to use only meshes that passed during validateTriangleMesh. |
| 149 | |
| 150 | */ |
| 151 | eDISABLE_CLEAN_MESH = 1 << 1, |
| 152 | |
| 153 | /** |
| 154 | \brief When set, active edges are set for each triangle edge. This makes cooking faster but slow up contact generation. |
| 155 | */ |
| 156 | eDISABLE_ACTIVE_EDGES_PRECOMPUTE = 1 << 2, |
| 157 | |
| 158 | /** |
| 159 | \brief When set, 32-bit indices will always be created regardless of triangle count. |
| 160 | |
| 161 | \note By default mesh will be created with 16-bit indices for triangle count <= 0xFFFF and 32-bit otherwise. |
| 162 | */ |
| 163 | eFORCE_32BIT_INDICES = 1 << 3 |
| 164 | }; |
| 165 | }; |
| 166 | |
| 167 | typedef PxFlags<PxMeshPreprocessingFlag::Enum,PxU32> PxMeshPreprocessingFlags; |
| 168 | |
| 169 | /** |
| 170 | |
| 171 | \brief Structure describing parameters affecting mesh cooking. |
| 172 | |
| 173 | @see PxSetCookingParams() PxGetCookingParams() |
| 174 | */ |
| 175 | struct PxCookingParams |
| 176 | { |
| 177 | /** |
| 178 | \brief Zero-size area epsilon used in convex hull computation. |
| 179 | |
| 180 | If the area of a triangle of the hull is below this value, the triangle will be rejected. This test |
| 181 | is done only if PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES is used. |
| 182 | |
| 183 | @see PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES |
| 184 | |
| 185 | <b>Default value:</b> 0.06f*PxTolerancesScale.length*PxTolerancesScale.length |
| 186 | |
| 187 | <b>Range:</b> (0.0f, PX_MAX_F32) |
| 188 | */ |
| 189 | float areaTestEpsilon; |
| 190 | |
| 191 | /** |
| 192 | \brief Plane tolerance used in convex hull computation. |
| 193 | |
| 194 | The value is used during hull construction. When a new point is about to be added to the hull it |
| 195 | gets dropped when the point is closer to the hull than the planeTolerance. The planeTolerance |
| 196 | is increased according to the hull size. |
| 197 | |
| 198 | If 0.0f is set all points are accepted when the convex hull is created. This may lead to edge cases |
| 199 | where the new points may be merged into an existing polygon and the polygons plane equation might |
| 200 | slightly change therefore. This might lead to failures during polygon merging phase in the hull computation. |
| 201 | |
| 202 | It is recommended to use the default value, however if it is required that all points needs to be |
| 203 | accepted or huge thin convexes are created, it might be required to lower the default value. |
| 204 | |
| 205 | \note The plane tolerance is used only within PxConvexMeshCookingType::eQUICKHULL algorithm. |
| 206 | |
| 207 | <b>Default value:</b> 0.0007f |
| 208 | |
| 209 | <b>Range:</b> <0.0f, PX_MAX_F32) |
| 210 | */ |
| 211 | float planeTolerance; |
| 212 | |
| 213 | /** |
| 214 | \brief Convex hull creation algorithm. |
| 215 | |
| 216 | <b>Default value:</b> PxConvexMeshCookingType::eQUICKHULL |
| 217 | |
| 218 | @see PxConvexMeshCookingType |
| 219 | */ |
| 220 | PxConvexMeshCookingType::Enum convexMeshCookingType; |
| 221 | |
| 222 | /** |
| 223 | \brief When true, the face remap table is not created. This saves a significant amount of memory, but the SDK will |
| 224 | not be able to provide the remap information for internal mesh triangles returned by collisions, |
| 225 | sweeps or raycasts hits. |
| 226 | |
| 227 | <b>Default value:</b> false |
| 228 | */ |
| 229 | bool suppressTriangleMeshRemapTable; |
| 230 | |
| 231 | /** |
| 232 | \brief When true, the triangle adjacency information is created. You can get the adjacency triangles |
| 233 | for a given triangle from getTriangle. |
| 234 | |
| 235 | <b>Default value:</b> false |
| 236 | */ |
| 237 | bool buildTriangleAdjacencies; |
| 238 | |
| 239 | /** |
| 240 | \brief When true, addigional information required for GPU-accelerated rigid body simulation is created. This can increase memory usage and cooking times for convex meshes and triangle meshes. |
| 241 | |
| 242 | <b>Default value:</b> false |
| 243 | */ |
| 244 | bool buildGPUData; |
| 245 | |
| 246 | /** |
| 247 | \brief Tolerance scale is used to check if cooked triangles are not too huge. This check will help with simulation stability. |
| 248 | |
| 249 | \note The PxTolerancesScale values have to match the values used when creating a PxPhysics or PxScene instance. |
| 250 | |
| 251 | @see PxTolerancesScale |
| 252 | */ |
| 253 | PxTolerancesScale scale; |
| 254 | |
| 255 | /** |
| 256 | \brief Mesh pre-processing parameters. Used to control options like whether the mesh cooking performs vertex welding before cooking. |
| 257 | |
| 258 | <b>Default value:</b> 0 |
| 259 | */ |
| 260 | PxMeshPreprocessingFlags meshPreprocessParams; |
| 261 | |
| 262 | /** |
| 263 | \brief Mesh weld tolerance. If mesh welding is enabled, this controls the distance at which vertices are welded. |
| 264 | If mesh welding is not enabled, this value defines the acceptance distance for mesh validation. Provided no two vertices are within this distance, the mesh is considered to be |
| 265 | clean. If not, a warning will be emitted. Having a clean, welded mesh is required to achieve the best possible performance. |
| 266 | |
| 267 | The default vertex welding uses a snap-to-grid approach. This approach effectively truncates each vertex to integer values using meshWeldTolerance. |
| 268 | Once these snapped vertices are produced, all vertices that snap to a given vertex on the grid are remapped to reference a single vertex. Following this, |
| 269 | all triangles' indices are remapped to reference this subset of clean vertices. It should be noted that the vertices that we do not alter the |
| 270 | position of the vertices; the snap-to-grid is only performed to identify nearby vertices. |
| 271 | |
| 272 | The mesh validation approach also uses the same snap-to-grid approach to identify nearby vertices. If more than one vertex snaps to a given grid coordinate, |
| 273 | we ensure that the distance between the vertices is at least meshWeldTolerance. If this is not the case, a warning is emitted. |
| 274 | |
| 275 | <b>Default value:</b> 0.0 |
| 276 | */ |
| 277 | PxReal meshWeldTolerance; |
| 278 | |
| 279 | /** |
| 280 | \brief Controls the desired midphase desc structure for triangle meshes. |
| 281 | |
| 282 | @see PxBVH33MidphaseDesc, PxBVH34MidphaseDesc, PxMidphaseDesc |
| 283 | |
| 284 | <b>Default value:</b> PxMeshMidPhase::eBVH33 |
| 285 | */ |
| 286 | PxMidphaseDesc midphaseDesc; |
| 287 | |
| 288 | /** |
| 289 | \brief Vertex limit beyond which additional acceleration structures are computed for each convex mesh. Increase that limit to reduce memory usage. |
| 290 | Computing the extra structures all the time does not guarantee optimal performance. There is a per-platform break-even point below which the |
| 291 | extra structures actually hurt performance. |
| 292 | |
| 293 | <b>Default value:</b> 32 |
| 294 | */ |
| 295 | PxU32 gaussMapLimit; |
| 296 | |
| 297 | PxCookingParams(const PxTolerancesScale& sc): |
| 298 | areaTestEpsilon (0.06f*sc.length*sc.length), |
| 299 | planeTolerance (0.0007f), |
| 300 | convexMeshCookingType (PxConvexMeshCookingType::eQUICKHULL), |
| 301 | suppressTriangleMeshRemapTable (false), |
| 302 | buildTriangleAdjacencies (false), |
| 303 | buildGPUData (false), |
| 304 | scale (sc), |
| 305 | meshPreprocessParams (0), |
| 306 | meshWeldTolerance (0.f), |
| 307 | gaussMapLimit (32) |
| 308 | { |
| 309 | } |
| 310 | }; |
| 311 | |
| 312 | class PxCooking |
| 313 | { |
| 314 | public: |
| 315 | /** |
| 316 | \brief Closes this instance of the interface. |
| 317 | |
| 318 | This function should be called to cleanly shut down the Cooking library before application exit. |
| 319 | |
| 320 | \note This function is required to be called to release foundation usage. |
| 321 | |
| 322 | */ |
| 323 | virtual void release() = 0; |
| 324 | |
| 325 | /** |
| 326 | \brief Sets cooking parameters |
| 327 | |
| 328 | \param[in] params Cooking parameters |
| 329 | |
| 330 | @see getParams() |
| 331 | */ |
| 332 | virtual void setParams(const PxCookingParams& params) = 0; |
| 333 | |
| 334 | /** |
| 335 | \brief Gets cooking parameters |
| 336 | |
| 337 | \return Current cooking parameters. |
| 338 | |
| 339 | @see PxCookingParams setParams() |
| 340 | */ |
| 341 | virtual const PxCookingParams& getParams() const = 0; |
| 342 | |
| 343 | /** |
| 344 | \brief Checks endianness is the same between cooking & target platforms |
| 345 | |
| 346 | \return True if there is and endian mismatch. |
| 347 | */ |
| 348 | virtual bool platformMismatch() const = 0; |
| 349 | |
| 350 | /** |
| 351 | \brief Cooks a triangle mesh. The results are written to the stream. |
| 352 | |
| 353 | To create a triangle mesh object it is necessary to first 'cook' the mesh data into |
| 354 | a form which allows the SDK to perform efficient collision detection. |
| 355 | |
| 356 | cookTriangleMesh() allows a mesh description to be cooked into a binary stream |
| 357 | suitable for loading and performing collision detection at runtime. |
| 358 | |
| 359 | \param[in] desc The triangle mesh descriptor to read the mesh from. |
| 360 | \param[in] stream User stream to output the cooked data. |
| 361 | \param[out] condition Result from triangle mesh cooking. |
| 362 | \return true on success |
| 363 | |
| 364 | @see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxTriangleMeshCookingResult::Enum |
| 365 | */ |
| 366 | virtual bool cookTriangleMesh(const PxTriangleMeshDesc& desc, PxOutputStream& stream, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0; |
| 367 | |
| 368 | |
| 369 | /** |
| 370 | \brief Cooks and creates a triangle mesh and inserts it into PxPhysics. |
| 371 | |
| 372 | \note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). |
| 373 | |
| 374 | \param[in] desc The triangle mesh descriptor to read the mesh from. |
| 375 | \param[in] insertionCallback The insertion interface from PxPhysics. |
| 376 | \param[out] condition Result from triangle mesh cooking. |
| 377 | \return PxTriangleMesh pointer on success. |
| 378 | |
| 379 | @see cookTriangleMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback |
| 380 | */ |
| 381 | virtual PxTriangleMesh* createTriangleMesh(const PxTriangleMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0; |
| 382 | |
| 383 | /** |
| 384 | \brief Verifies if the triangle mesh is valid. Prints an error message for each inconsistency found. |
| 385 | |
| 386 | The following conditions are true for a valid triangle mesh: |
| 387 | 1. There are no duplicate vertices (within specified vertexWeldTolerance. See PxCookingParams::meshWeldTolerance) |
| 388 | 2. There are no large triangles (within specified PxTolerancesScale.) |
| 389 | |
| 390 | \param[in] desc The triangle mesh descriptor to read the mesh from. |
| 391 | |
| 392 | \return true if all the validity conditions hold, false otherwise. |
| 393 | |
| 394 | @see cookTriangleMesh() |
| 395 | */ |
| 396 | virtual bool validateTriangleMesh(const PxTriangleMeshDesc& desc) const = 0; |
| 397 | |
| 398 | |
| 399 | /** |
| 400 | \brief Cooks a convex mesh. The results are written to the stream. |
| 401 | |
| 402 | To create a triangle mesh object it is necessary to first 'cook' the mesh data into |
| 403 | a form which allows the SDK to perform efficient collision detection. |
| 404 | |
| 405 | cookConvexMesh() allows a mesh description to be cooked into a binary stream |
| 406 | suitable for loading and performing collision detection at runtime. |
| 407 | |
| 408 | \note The number of vertices and the number of convex polygons in a cooked convex mesh is limited to 255. |
| 409 | \note If those limits are exceeded in either the user-provided data or the final cooked mesh, an error is reported. |
| 410 | |
| 411 | \param[in] desc The convex mesh descriptor to read the mesh from. |
| 412 | \param[in] stream User stream to output the cooked data. |
| 413 | \param[out] condition Result from convex mesh cooking. |
| 414 | \return true on success. |
| 415 | |
| 416 | @see cookTriangleMesh() setParams() PxConvexMeshCookingResult::Enum |
| 417 | */ |
| 418 | virtual bool cookConvexMesh(const PxConvexMeshDesc& desc, PxOutputStream& stream, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0; |
| 419 | |
| 420 | /** |
| 421 | \brief Cooks and creates a convex mesh and inserts it into PxPhysics. |
| 422 | |
| 423 | \note This method does the same as cookConvexMesh, but the produced convex mesh is not stored |
| 424 | into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline. |
| 425 | |
| 426 | \note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). |
| 427 | |
| 428 | \param[in] desc The convex mesh descriptor to read the mesh from. |
| 429 | \param[in] insertionCallback The insertion interface from PxPhysics. |
| 430 | \param[out] condition Result from convex mesh cooking. |
| 431 | \return PxConvexMesh pointer on success |
| 432 | |
| 433 | @see cookConvexMesh() setParams() PxPhysicsInsertionCallback |
| 434 | */ |
| 435 | virtual PxConvexMesh* createConvexMesh(const PxConvexMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0; |
| 436 | |
| 437 | /** |
| 438 | \brief Verifies if the convex mesh is valid. Prints an error message for each inconsistency found. |
| 439 | |
| 440 | The convex mesh descriptor must contain an already created convex mesh - the vertices, indices and polygons must be provided. |
| 441 | |
| 442 | \note This function should be used if PxConvexFlag::eDISABLE_MESH_VALIDATION is planned to be used in release builds. |
| 443 | |
| 444 | \param[in] desc The convex mesh descriptor to read the mesh from. |
| 445 | |
| 446 | \return true if all the validity conditions hold, false otherwise. |
| 447 | |
| 448 | @see cookConvexMesh() |
| 449 | */ |
| 450 | virtual bool validateConvexMesh(const PxConvexMeshDesc& desc) const = 0; |
| 451 | |
| 452 | |
| 453 | /** |
| 454 | \brief Computed hull polygons from given vertices and triangles. Polygons are needed for PxConvexMeshDesc rather than triangles. |
| 455 | |
| 456 | Please note that the resulting polygons may have different number of vertices. Some vertices may be removed. |
| 457 | The output vertices, indices and polygons must be used to construct a hull. |
| 458 | |
| 459 | The provided PxAllocatorCallback does allocate the out array's. It is the user responsibility to deallocated those |
| 460 | array's. |
| 461 | |
| 462 | \param[in] mesh Simple triangle mesh containing vertices and triangles used to compute polygons. |
| 463 | \param[in] inCallback Memory allocator for out array allocations. |
| 464 | \param[out] nbVerts Number of vertices used by polygons. |
| 465 | \param[out] vertices Vertices array used by polygons. |
| 466 | \param[out] nbIndices Number of indices used by polygons. |
| 467 | \param[out] indices Indices array used by polygons. |
| 468 | \param[out] nbPolygons Number of created polygons. |
| 469 | \param[out] hullPolygons Polygons array. |
| 470 | \return true on success |
| 471 | |
| 472 | @see cookConvexMesh() PxConvexFlags PxConvexMeshDesc PxSimpleTriangleMesh |
| 473 | */ |
| 474 | virtual bool computeHullPolygons(const PxSimpleTriangleMesh& mesh, PxAllocatorCallback& inCallback, PxU32& nbVerts, PxVec3*& vertices, |
| 475 | PxU32& nbIndices, PxU32*& indices, PxU32& nbPolygons, PxHullPolygon*& hullPolygons) const = 0; |
| 476 | |
| 477 | /** |
| 478 | \brief Cooks a heightfield. The results are written to the stream. |
| 479 | |
| 480 | To create a heightfield object there is an option to precompute some of calculations done while loading the heightfield data. |
| 481 | |
| 482 | cookHeightField() allows a heightfield description to be cooked into a binary stream |
| 483 | suitable for loading and performing collision detection at runtime. |
| 484 | |
| 485 | \param[in] desc The heightfield descriptor to read the HF from. |
| 486 | \param[in] stream User stream to output the cooked data. |
| 487 | \return true on success |
| 488 | |
| 489 | @see PxPhysics.createHeightField() |
| 490 | */ |
| 491 | virtual bool cookHeightField(const PxHeightFieldDesc& desc, PxOutputStream& stream) const = 0; |
| 492 | |
| 493 | /** |
| 494 | \brief Cooks and creates a heightfield mesh and inserts it into PxPhysics. |
| 495 | |
| 496 | \param[in] desc The heightfield descriptor to read the HF from. |
| 497 | \param[in] insertionCallback The insertion interface from PxPhysics. |
| 498 | \return PxHeightField pointer on success |
| 499 | |
| 500 | @see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback |
| 501 | */ |
| 502 | virtual PxHeightField* createHeightField(const PxHeightFieldDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0; |
| 503 | |
| 504 | /** |
| 505 | \brief Cooks a bounding volume hierarchy structure. The results are written to the stream. |
| 506 | |
| 507 | cookBVHStructure() allows a BVH structure description to be cooked into a binary stream |
| 508 | suitable for loading and performing BVH detection at runtime. |
| 509 | |
| 510 | \param[in] desc The BVH structure descriptor. |
| 511 | \param[in] stream User stream to output the cooked data. |
| 512 | \return true on success. |
| 513 | |
| 514 | @see PxBVHStructure PxRigidActorExt::getRigidActorShapeLocalBoundsList |
| 515 | */ |
| 516 | virtual bool cookBVHStructure(const PxBVHStructureDesc& desc, PxOutputStream& stream) const = 0; |
| 517 | |
| 518 | /** |
| 519 | \brief Cooks and creates a bounding volume hierarchy structure and inserts it into PxPhysics. |
| 520 | |
| 521 | \note This method does the same as cookBVHStructure, but the produced BVH structure is not stored |
| 522 | into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline. |
| 523 | |
| 524 | \note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). |
| 525 | |
| 526 | \param[in] desc The BVH structure descriptor. |
| 527 | \param[in] insertionCallback The insertion interface from PxPhysics. |
| 528 | \return PxBVHStructure pointer on success |
| 529 | |
| 530 | @see cookBVHStructure() PxPhysicsInsertionCallback |
| 531 | */ |
| 532 | virtual PxBVHStructure* createBVHStructure(const PxBVHStructureDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0; |
| 533 | protected: |
| 534 | virtual ~PxCooking(){} |
| 535 | }; |
| 536 | |
| 537 | #if !PX_DOXYGEN |
| 538 | } // namespace physx |
| 539 | #endif |
| 540 | |
| 541 | /** |
| 542 | \brief Create an instance of the cooking interface. |
| 543 | |
| 544 | Note that the foundation object is handled as an application-wide singleton in statically linked executables |
| 545 | and a DLL-wide singleton in dynamically linked executables. Therefore, if you are using the runtime SDK in the |
| 546 | same executable as cooking, you should pass the Physics's copy of foundation (acquired with |
| 547 | PxPhysics::getFoundation()) to the cooker. This will also ensure correct handling of memory for objects |
| 548 | passed from the cooker to the SDK. |
| 549 | |
| 550 | To use cooking in standalone mode, create an instance of the Foundation object with PxCreateFoundation. |
| 551 | You should pass the same foundation object to all instances of the cooking interface. |
| 552 | |
| 553 | \param[in] version the SDK version number |
| 554 | \param[in] foundation the foundation object associated with this instance of the cooking interface. |
| 555 | \param[in] params the parameters for this instance of the cooking interface |
| 556 | \return true on success. |
| 557 | */ |
| 558 | PX_C_EXPORT PX_PHYSX_COOKING_API physx::PxCooking* PX_CALL_CONV PxCreateCooking(physx::PxU32 version, |
| 559 | physx::PxFoundation& foundation, |
| 560 | const physx::PxCookingParams& params); |
| 561 | |
| 562 | /** @} */ |
| 563 | #endif |
| 564 | |