| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 |  | 
| 31 | #ifndef PX_COOKING_H | 
| 32 | #define PX_COOKING_H | 
| 33 | /** \addtogroup cooking | 
| 34 | @{ | 
| 35 | */ | 
| 36 | #include "common/PxPhysXCommonConfig.h" | 
| 37 | #include "common/PxTolerancesScale.h" | 
| 38 | #include "cooking/Pxc.h" | 
| 39 |  | 
| 40 | #include "cooking/PxConvexMeshDesc.h" | 
| 41 | #include "cooking/PxTriangleMeshDesc.h" | 
| 42 | #include "cooking/PxMidphaseDesc.h" | 
| 43 | #include "cooking/PxBVHStructureDesc.h" | 
| 44 | #include "geometry/PxTriangleMesh.h" | 
| 45 | #include "geometry/PxBVHStructure.h" | 
| 46 |  | 
| 47 | #if !PX_DOXYGEN | 
| 48 | namespace physx | 
| 49 | { | 
| 50 | #endif | 
| 51 |  | 
| 52 | class PxPhysicsInsertionCallback; | 
| 53 | class PxFoundation; | 
| 54 |  | 
| 55 | /** | 
| 56 | \brief Result from convex cooking. | 
| 57 | */ | 
| 58 | struct PxConvexMeshCookingResult | 
| 59 | { | 
| 60 | 	enum Enum | 
| 61 | 	{ | 
| 62 | 		/** | 
| 63 | 		\brief Convex mesh cooking succeeded. | 
| 64 | 		*/ | 
| 65 | 		eSUCCESS, | 
| 66 |  | 
| 67 | 		/** | 
| 68 | 		\brief Convex mesh cooking failed, algorithm couldn't find 4 initial vertices without a small triangle. | 
| 69 |  | 
| 70 | 		@see PxCookingParams::areaTestEpsilon PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES | 
| 71 | 		*/ | 
| 72 | 		eZERO_AREA_TEST_FAILED, | 
| 73 |  | 
| 74 | 		/** | 
| 75 | 		\brief Convex mesh cooking succeeded, but the algorithm has reached the 255 polygons limit. | 
| 76 | 			The produced hull does not contain all input vertices. Try to simplify the input vertices | 
| 77 | 			or try to use the eINFLATE_CONVEX or the eQUANTIZE_INPUT flags. | 
| 78 |  | 
| 79 | 		@see PxConvexFlag::eINFLATE_CONVEX PxConvexFlag::eQUANTIZE_INPUT | 
| 80 | 		*/ | 
| 81 | 		ePOLYGONS_LIMIT_REACHED, | 
| 82 |  | 
| 83 | 		/** | 
| 84 | 		\brief Something unrecoverable happened. Check the error stream to find out what. | 
| 85 | 		*/ | 
| 86 | 		eFAILURE | 
| 87 | 	}; | 
| 88 | }; | 
| 89 |  | 
| 90 | /** \brief Enumeration for convex mesh cooking algorithms. */ | 
| 91 | struct PxConvexMeshCookingType | 
| 92 | { | 
| 93 | 	enum Enum | 
| 94 | 	{ | 
| 95 | 		/** | 
| 96 | 		\brief The Quickhull algorithm constructs the hull from the given input points. The resulting hull | 
| 97 | 		will only contain a subset of the input points.  | 
| 98 | 		 | 
| 99 | 		*/ | 
| 100 | 		eQUICKHULL | 
| 101 | 	}; | 
| 102 | }; | 
| 103 |  | 
| 104 | /** | 
| 105 | \brief Result from triangle mesh cooking | 
| 106 | */ | 
| 107 | struct PxTriangleMeshCookingResult | 
| 108 | { | 
| 109 | 	enum Enum | 
| 110 | 	{ | 
| 111 | 		/** | 
| 112 | 		\brief Everything is A-OK. | 
| 113 | 		*/ | 
| 114 | 		eSUCCESS			= 0, | 
| 115 |  | 
| 116 | 		/** | 
| 117 | 		\brief a triangle is too large for well-conditioned results. Tessellate the mesh for better behavior, see the user guide section on cooking for more details. | 
| 118 | 		*/ | 
| 119 | 		eLARGE_TRIANGLE, | 
| 120 |  | 
| 121 | 		/** | 
| 122 | 		\brief Something unrecoverable happened. Check the error stream to find out what. | 
| 123 | 		*/ | 
| 124 | 		eFAILURE | 
| 125 | 	}; | 
| 126 | }; | 
| 127 |  | 
| 128 | /** | 
| 129 |  | 
| 130 | \brief Enum for the set of mesh pre-processing parameters. | 
| 131 |  | 
| 132 | */ | 
| 133 |  | 
| 134 | struct PxMeshPreprocessingFlag | 
| 135 | { | 
| 136 | 	enum Enum | 
| 137 | 	{ | 
| 138 | 		/** | 
| 139 | 		\brief When set, mesh welding is performed. See PxCookingParams::meshWeldTolerance. Clean mesh must be enabled. | 
| 140 | 		*/ | 
| 141 | 		eWELD_VERTICES					=	1 << 0,  | 
| 142 |  | 
| 143 | 		/** | 
| 144 | 		\brief When set, mesh cleaning is disabled. This makes cooking faster. | 
| 145 |  | 
| 146 | 		When clean mesh is not performed, mesh welding is also not performed.  | 
| 147 |  | 
| 148 | 		It is recommended to use only meshes that passed during validateTriangleMesh.  | 
| 149 |  | 
| 150 | 		*/ | 
| 151 | 		eDISABLE_CLEAN_MESH								=	1 << 1,  | 
| 152 |  | 
| 153 | 		/** | 
| 154 | 		\brief When set, active edges are set for each triangle edge. This makes cooking faster but slow up contact generation. | 
| 155 | 		*/ | 
| 156 | 		eDISABLE_ACTIVE_EDGES_PRECOMPUTE				=	1 << 2, | 
| 157 |  | 
| 158 | 		/** | 
| 159 | 		\brief When set, 32-bit indices will always be created regardless of triangle count. | 
| 160 |  | 
| 161 | 		\note By default mesh will be created with 16-bit indices for triangle count <= 0xFFFF and 32-bit otherwise. | 
| 162 | 		*/ | 
| 163 | 		eFORCE_32BIT_INDICES							=	1 << 3 | 
| 164 | 	}; | 
| 165 | }; | 
| 166 |  | 
| 167 | typedef PxFlags<PxMeshPreprocessingFlag::Enum,PxU32> PxMeshPreprocessingFlags; | 
| 168 |  | 
| 169 | /** | 
| 170 |  | 
| 171 | \brief Structure describing parameters affecting mesh cooking. | 
| 172 |  | 
| 173 | @see PxSetCookingParams() PxGetCookingParams() | 
| 174 | */ | 
| 175 | struct PxCookingParams | 
| 176 | { | 
| 177 | 	/** | 
| 178 | 	\brief Zero-size area epsilon used in convex hull computation. | 
| 179 |  | 
| 180 | 	If the area of a triangle of the hull is below this value, the triangle will be rejected. This test | 
| 181 | 	is done only if PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES is used. | 
| 182 |  | 
| 183 | 	@see PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES | 
| 184 |  | 
| 185 | 	<b>Default value:</b> 0.06f*PxTolerancesScale.length*PxTolerancesScale.length | 
| 186 |  | 
| 187 | 	<b>Range:</b> (0.0f, PX_MAX_F32) | 
| 188 | 	*/ | 
| 189 | 	float		areaTestEpsilon; | 
| 190 |  | 
| 191 | 	/** | 
| 192 | 	\brief Plane tolerance used in convex hull computation. | 
| 193 |  | 
| 194 | 	The value is used during hull construction. When a new point is about to be added to the hull it | 
| 195 | 	gets dropped when the point is closer to the hull than the planeTolerance. The planeTolerance | 
| 196 | 	is increased according to the hull size.  | 
| 197 |  | 
| 198 | 	If 0.0f is set all points are accepted when the convex hull is created. This may lead to edge cases | 
| 199 | 	where the new points may be merged into an existing polygon and the polygons plane equation might  | 
| 200 | 	slightly change therefore. This might lead to failures during polygon merging phase in the hull computation. | 
| 201 |  | 
| 202 | 	It is recommended to use the default value, however if it is required that all points needs to be | 
| 203 | 	accepted or huge thin convexes are created, it might be required to lower the default value. | 
| 204 |  | 
| 205 | 	\note The plane tolerance is used only within PxConvexMeshCookingType::eQUICKHULL algorithm. | 
| 206 |  | 
| 207 | 	<b>Default value:</b> 0.0007f | 
| 208 |  | 
| 209 | 	<b>Range:</b> <0.0f, PX_MAX_F32) | 
| 210 | 	*/ | 
| 211 | 	float		planeTolerance; | 
| 212 |  | 
| 213 | 	/** | 
| 214 | 	\brief Convex hull creation algorithm. | 
| 215 |  | 
| 216 | 	<b>Default value:</b> PxConvexMeshCookingType::eQUICKHULL | 
| 217 |  | 
| 218 | 	@see PxConvexMeshCookingType | 
| 219 | 	*/ | 
| 220 | 	PxConvexMeshCookingType::Enum convexMeshCookingType; | 
| 221 |  | 
| 222 | 	/** | 
| 223 | 	\brief When true, the face remap table is not created.  This saves a significant amount of memory, but the SDK will | 
| 224 | 		not be able to provide the remap information for internal mesh triangles returned by collisions,  | 
| 225 | 		sweeps or raycasts hits. | 
| 226 |  | 
| 227 | 	<b>Default value:</b> false | 
| 228 | 	*/ | 
| 229 | 	bool		suppressTriangleMeshRemapTable; | 
| 230 |  | 
| 231 | 	/** | 
| 232 | 	\brief When true, the triangle adjacency information is created. You can get the adjacency triangles | 
| 233 | 	for a given triangle from getTriangle. | 
| 234 |  | 
| 235 | 	<b>Default value:</b> false | 
| 236 | 	*/ | 
| 237 | 	bool		buildTriangleAdjacencies; | 
| 238 |  | 
| 239 | 	/** | 
| 240 | 	\brief When true, addigional information required for GPU-accelerated rigid body simulation is created. This can increase memory usage and cooking times for convex meshes and triangle meshes. | 
| 241 |  | 
| 242 | 	<b>Default value:</b> false | 
| 243 | 	*/ | 
| 244 | 	bool		buildGPUData; | 
| 245 |  | 
| 246 | 	/** | 
| 247 | 	\brief Tolerance scale is used to check if cooked triangles are not too huge. This check will help with simulation stability. | 
| 248 |  | 
| 249 | 	\note The PxTolerancesScale values have to match the values used when creating a PxPhysics or PxScene instance. | 
| 250 |  | 
| 251 | 	@see PxTolerancesScale | 
| 252 | 	*/ | 
| 253 | 	PxTolerancesScale scale; | 
| 254 |  | 
| 255 | 	/** | 
| 256 | 	\brief Mesh pre-processing parameters. Used to control options like whether the mesh cooking performs vertex welding before cooking. | 
| 257 |  | 
| 258 | 	<b>Default value:</b> 0 | 
| 259 | 	*/ | 
| 260 | 	PxMeshPreprocessingFlags	meshPreprocessParams; | 
| 261 |  | 
| 262 | 	/** | 
| 263 | 	\brief Mesh weld tolerance. If mesh welding is enabled, this controls the distance at which vertices are welded. | 
| 264 | 	If mesh welding is not enabled, this value defines the acceptance distance for mesh validation. Provided no two vertices are within this distance, the mesh is considered to be | 
| 265 | 	clean. If not, a warning will be emitted. Having a clean, welded mesh is required to achieve the best possible performance. | 
| 266 |  | 
| 267 | 	The default vertex welding uses a snap-to-grid approach. This approach effectively truncates each vertex to integer values using meshWeldTolerance. | 
| 268 | 	Once these snapped vertices are produced, all vertices that snap to a given vertex on the grid are remapped to reference a single vertex. Following this, | 
| 269 | 	all triangles' indices are remapped to reference this subset of clean vertices. It should be noted that	the vertices that we do not alter the | 
| 270 | 	position of the vertices; the snap-to-grid is only performed to identify nearby vertices. | 
| 271 |  | 
| 272 | 	The mesh validation approach also uses the same snap-to-grid approach to identify nearby vertices. If more than one vertex snaps to a given grid coordinate, | 
| 273 | 	we ensure that the distance between the vertices is at least meshWeldTolerance. If this is not the case, a warning is emitted. | 
| 274 |  | 
| 275 | 	<b>Default value:</b> 0.0 | 
| 276 | 	*/ | 
| 277 | 	PxReal		meshWeldTolerance; | 
| 278 |  | 
| 279 | 	/** | 
| 280 | 	\brief Controls the desired midphase desc structure for triangle meshes. | 
| 281 |  | 
| 282 | 	@see PxBVH33MidphaseDesc, PxBVH34MidphaseDesc, PxMidphaseDesc | 
| 283 |  | 
| 284 | 	<b>Default value:</b> PxMeshMidPhase::eBVH33 | 
| 285 | 	*/ | 
| 286 | 	PxMidphaseDesc midphaseDesc; | 
| 287 |  | 
| 288 | 	/** | 
| 289 | 	\brief Vertex limit beyond which additional acceleration structures are computed for each convex mesh. Increase that limit to reduce memory usage. | 
| 290 | 	Computing the extra structures all the time does not guarantee optimal performance. There is a per-platform break-even point below which the | 
| 291 | 	extra structures actually hurt performance. | 
| 292 |  | 
| 293 | 	<b>Default value:</b> 32 | 
| 294 | 	*/ | 
| 295 | 	PxU32	gaussMapLimit; | 
| 296 |  | 
| 297 | 	PxCookingParams(const PxTolerancesScale& sc): | 
| 298 | 		areaTestEpsilon					(0.06f*sc.length*sc.length), | 
| 299 | 		planeTolerance					(0.0007f), | 
| 300 | 		convexMeshCookingType			(PxConvexMeshCookingType::eQUICKHULL), | 
| 301 | 		suppressTriangleMeshRemapTable	(false), | 
| 302 | 		buildTriangleAdjacencies		(false), | 
| 303 | 		buildGPUData					(false), | 
| 304 | 		scale							(sc), | 
| 305 | 		meshPreprocessParams			(0), | 
| 306 | 		meshWeldTolerance				(0.f), | 
| 307 | 		gaussMapLimit					(32) | 
| 308 | 	{ | 
| 309 | 	} | 
| 310 | }; | 
| 311 |  | 
| 312 | class PxCooking | 
| 313 | { | 
| 314 | public: | 
| 315 | 	/** | 
| 316 | 	\brief Closes this instance of the interface. | 
| 317 |  | 
| 318 | 	This function should be called to cleanly shut down the Cooking library before application exit. | 
| 319 |  | 
| 320 | 	\note This function is required to be called to release foundation usage. | 
| 321 |  | 
| 322 | 	*/ | 
| 323 | 	virtual void  release() = 0; | 
| 324 |  | 
| 325 | 	/** | 
| 326 | 	\brief Sets cooking parameters | 
| 327 |  | 
| 328 | 	\param[in] params Cooking parameters | 
| 329 |  | 
| 330 | 	@see getParams() | 
| 331 | 	*/ | 
| 332 | 	virtual void  setParams(const PxCookingParams& params) = 0; | 
| 333 |  | 
| 334 | 	/** | 
| 335 | 	\brief Gets cooking parameters | 
| 336 |  | 
| 337 | 	\return Current cooking parameters. | 
| 338 |  | 
| 339 | 	@see PxCookingParams setParams() | 
| 340 | 	*/ | 
| 341 | 	virtual const PxCookingParams& getParams() const = 0; | 
| 342 |  | 
| 343 | 	/** | 
| 344 | 	\brief Checks endianness is the same between cooking & target platforms | 
| 345 |  | 
| 346 | 	\return True if there is and endian mismatch. | 
| 347 | 	*/ | 
| 348 | 	virtual bool  platformMismatch() const = 0; | 
| 349 |  | 
| 350 | 	/** | 
| 351 | 	\brief Cooks a triangle mesh. The results are written to the stream. | 
| 352 |  | 
| 353 | 	To create a triangle mesh object it is necessary to first 'cook' the mesh data into | 
| 354 | 	a form which allows the SDK to perform efficient collision detection. | 
| 355 |  | 
| 356 | 	cookTriangleMesh() allows a mesh description to be cooked into a binary stream | 
| 357 | 	suitable for loading and performing collision detection at runtime. | 
| 358 |  | 
| 359 | 	\param[in] desc The triangle mesh descriptor to read the mesh from. | 
| 360 | 	\param[in] stream User stream to output the cooked data. | 
| 361 | 	\param[out] condition Result from triangle mesh cooking. | 
| 362 | 	\return true on success | 
| 363 |  | 
| 364 | 	@see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxTriangleMeshCookingResult::Enum | 
| 365 | 	*/ | 
| 366 | 	virtual bool  cookTriangleMesh(const PxTriangleMeshDesc& desc, PxOutputStream& stream, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0; | 
| 367 |  | 
| 368 |  | 
| 369 | 	/** | 
| 370 | 	\brief Cooks and creates a triangle mesh and inserts it into PxPhysics. | 
| 371 |  | 
| 372 | 	\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). | 
| 373 |  | 
| 374 | 	\param[in] desc The triangle mesh descriptor to read the mesh from. | 
| 375 | 	\param[in] insertionCallback The insertion interface from PxPhysics. | 
| 376 | 	\param[out] condition Result from triangle mesh cooking. | 
| 377 | 	\return PxTriangleMesh pointer on success.	 | 
| 378 |  | 
| 379 | 	@see cookTriangleMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback | 
| 380 | 	*/ | 
| 381 | 	virtual PxTriangleMesh*    createTriangleMesh(const PxTriangleMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0; | 
| 382 |  | 
| 383 | 	/** | 
| 384 | 	\brief Verifies if the triangle mesh is valid. Prints an error message for each inconsistency found. | 
| 385 |  | 
| 386 | 	The following conditions are true for a valid triangle mesh: | 
| 387 | 	1. There are no duplicate vertices (within specified vertexWeldTolerance. See PxCookingParams::meshWeldTolerance) | 
| 388 |     2. There are no large triangles (within specified PxTolerancesScale.) | 
| 389 |  | 
| 390 | 	\param[in] desc The triangle mesh descriptor to read the mesh from. | 
| 391 |  | 
| 392 | 	\return true if all the validity conditions hold, false otherwise. | 
| 393 |  | 
| 394 | 	@see cookTriangleMesh() | 
| 395 | 	*/ | 
| 396 | 	virtual bool  validateTriangleMesh(const PxTriangleMeshDesc& desc) const = 0; | 
| 397 |  | 
| 398 |  | 
| 399 | 	/** | 
| 400 | 	\brief Cooks a convex mesh. The results are written to the stream. | 
| 401 |  | 
| 402 | 	To create a triangle mesh object it is necessary to first 'cook' the mesh data into | 
| 403 | 	a form which allows the SDK to perform efficient collision detection. | 
| 404 |  | 
| 405 | 	cookConvexMesh() allows a mesh description to be cooked into a binary stream | 
| 406 | 	suitable for loading and performing collision detection at runtime. | 
| 407 |  | 
| 408 | 	\note The number of vertices and the number of convex polygons in a cooked convex mesh is limited to 255. | 
| 409 | 	\note If those limits are exceeded in either the user-provided data or the final cooked mesh, an error is reported. | 
| 410 |  | 
| 411 | 	\param[in] desc The convex mesh descriptor to read the mesh from. | 
| 412 | 	\param[in] stream User stream to output the cooked data. | 
| 413 | 	\param[out] condition Result from convex mesh cooking. | 
| 414 | 	\return true on success. | 
| 415 |  | 
| 416 | 	@see cookTriangleMesh() setParams() PxConvexMeshCookingResult::Enum | 
| 417 | 	*/ | 
| 418 | 	virtual bool  cookConvexMesh(const PxConvexMeshDesc& desc, PxOutputStream& stream, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0; | 
| 419 |  | 
| 420 | 	/** | 
| 421 | 	\brief Cooks and creates a convex mesh and inserts it into PxPhysics. | 
| 422 |  | 
| 423 | 	\note This method does the same as cookConvexMesh, but the produced convex mesh is not stored | 
| 424 | 	into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline. | 
| 425 |  | 
| 426 | 	\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). | 
| 427 |  | 
| 428 | 	\param[in] desc The convex mesh descriptor to read the mesh from. | 
| 429 | 	\param[in] insertionCallback The insertion interface from PxPhysics. | 
| 430 | 	\param[out] condition Result from convex mesh cooking. | 
| 431 | 	\return PxConvexMesh pointer on success	 | 
| 432 |  | 
| 433 | 	@see cookConvexMesh() setParams() PxPhysicsInsertionCallback | 
| 434 | 	*/ | 
| 435 | 	virtual PxConvexMesh*    createConvexMesh(const PxConvexMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0; | 
| 436 |  | 
| 437 | 	/** | 
| 438 | 	\brief Verifies if the convex mesh is valid. Prints an error message for each inconsistency found. | 
| 439 |  | 
| 440 | 	The convex mesh descriptor must contain an already created convex mesh - the vertices, indices and polygons must be provided.	 | 
| 441 |  | 
| 442 | 	\note This function should be used if PxConvexFlag::eDISABLE_MESH_VALIDATION is planned to be used in release builds. | 
| 443 |  | 
| 444 | 	\param[in] desc The convex mesh descriptor to read the mesh from. | 
| 445 |  | 
| 446 | 	\return true if all the validity conditions hold, false otherwise. | 
| 447 |  | 
| 448 | 	@see cookConvexMesh() | 
| 449 | 	*/ | 
| 450 | 	virtual bool  validateConvexMesh(const PxConvexMeshDesc& desc) const = 0; | 
| 451 |  | 
| 452 |  | 
| 453 | 	/** | 
| 454 | 	\brief Computed hull polygons from given vertices and triangles. Polygons are needed for PxConvexMeshDesc rather than triangles. | 
| 455 |  | 
| 456 | 	Please note that the resulting polygons may have different number of vertices. Some vertices may be removed.  | 
| 457 | 	The output vertices, indices and polygons must be used to construct a hull. | 
| 458 |  | 
| 459 | 	The provided PxAllocatorCallback does allocate the out array's. It is the user responsibility to deallocated those | 
| 460 | 	array's. | 
| 461 |  | 
| 462 | 	\param[in] mesh Simple triangle mesh containing vertices and triangles used to compute polygons. | 
| 463 | 	\param[in] inCallback Memory allocator for out array allocations. | 
| 464 | 	\param[out] nbVerts Number of vertices used by polygons. | 
| 465 | 	\param[out] vertices Vertices array used by polygons. | 
| 466 | 	\param[out] nbIndices Number of indices used by polygons. | 
| 467 | 	\param[out] indices Indices array used by polygons. | 
| 468 | 	\param[out] nbPolygons Number of created polygons. | 
| 469 | 	\param[out] hullPolygons Polygons array. | 
| 470 | 	\return true on success | 
| 471 |  | 
| 472 | 	@see cookConvexMesh() PxConvexFlags PxConvexMeshDesc PxSimpleTriangleMesh | 
| 473 | 	*/ | 
| 474 | 	virtual bool  computeHullPolygons(const PxSimpleTriangleMesh& mesh, PxAllocatorCallback& inCallback, PxU32& nbVerts, PxVec3*& vertices, | 
| 475 | 											PxU32& nbIndices, PxU32*& indices, PxU32& nbPolygons, PxHullPolygon*& hullPolygons) const = 0; | 
| 476 |  | 
| 477 | 	/** | 
| 478 | 	\brief Cooks a heightfield. The results are written to the stream. | 
| 479 |  | 
| 480 | 	To create a heightfield object there is an option to precompute some of calculations done while loading the heightfield data. | 
| 481 |  | 
| 482 | 	cookHeightField() allows a heightfield description to be cooked into a binary stream | 
| 483 | 	suitable for loading and performing collision detection at runtime. | 
| 484 |  | 
| 485 | 	\param[in] desc The heightfield descriptor to read the HF from. | 
| 486 | 	\param[in] stream User stream to output the cooked data. | 
| 487 | 	\return true on success | 
| 488 |  | 
| 489 | 	@see PxPhysics.createHeightField() | 
| 490 | 	*/ | 
| 491 | 	virtual bool  cookHeightField(const PxHeightFieldDesc& desc, PxOutputStream& stream) const = 0; | 
| 492 |  | 
| 493 | 	/** | 
| 494 | 	\brief Cooks and creates a heightfield mesh and inserts it into PxPhysics. | 
| 495 |  | 
| 496 | 	\param[in] desc The heightfield descriptor to read the HF from. | 
| 497 | 	\param[in] insertionCallback The insertion interface from PxPhysics. | 
| 498 | 	\return PxHeightField pointer on success | 
| 499 |  | 
| 500 | 	@see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback | 
| 501 | 	*/ | 
| 502 | 	virtual PxHeightField*    createHeightField(const PxHeightFieldDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0; | 
| 503 |  | 
| 504 | 	/** | 
| 505 | 	\brief Cooks a bounding volume hierarchy structure. The results are written to the stream. | 
| 506 |  | 
| 507 | 	cookBVHStructure() allows a BVH structure description to be cooked into a binary stream | 
| 508 | 	suitable for loading and performing BVH detection at runtime. | 
| 509 |  | 
| 510 | 	\param[in] desc The BVH structure descriptor. | 
| 511 | 	\param[in] stream User stream to output the cooked data. | 
| 512 | 	\return true on success. | 
| 513 |  | 
| 514 | 	@see PxBVHStructure PxRigidActorExt::getRigidActorShapeLocalBoundsList | 
| 515 | 	*/ | 
| 516 | 	virtual bool  cookBVHStructure(const PxBVHStructureDesc& desc, PxOutputStream& stream) const = 0; | 
| 517 |  | 
| 518 | 	/** | 
| 519 | 	\brief Cooks and creates a bounding volume hierarchy structure and inserts it into PxPhysics. | 
| 520 |  | 
| 521 | 	\note This method does the same as cookBVHStructure, but the produced BVH structure is not stored | 
| 522 | 	into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline. | 
| 523 |  | 
| 524 | 	\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback(). | 
| 525 |  | 
| 526 | 	\param[in] desc The BVH structure descriptor. | 
| 527 | 	\param[in] insertionCallback The insertion interface from PxPhysics. | 
| 528 | 	\return PxBVHStructure pointer on success	 | 
| 529 |  | 
| 530 | 	@see cookBVHStructure() PxPhysicsInsertionCallback | 
| 531 | 	*/ | 
| 532 | 	virtual PxBVHStructure*    createBVHStructure(const PxBVHStructureDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0; | 
| 533 | protected: | 
| 534 | 	virtual ~PxCooking(){} | 
| 535 | }; | 
| 536 |  | 
| 537 | #if !PX_DOXYGEN | 
| 538 | } // namespace physx | 
| 539 | #endif | 
| 540 |  | 
| 541 | /** | 
| 542 | \brief Create an instance of the cooking interface. | 
| 543 |  | 
| 544 | Note that the foundation object is handled as an application-wide singleton in statically linked executables | 
| 545 | and a DLL-wide singleton in dynamically linked executables. Therefore, if you are using the runtime SDK in the | 
| 546 | same executable as cooking, you should pass the Physics's copy of foundation (acquired with | 
| 547 | PxPhysics::getFoundation()) to the cooker. This will also ensure correct handling of memory for objects | 
| 548 | passed from the cooker to the SDK. | 
| 549 |  | 
| 550 | To use cooking in standalone mode, create an instance of the Foundation object with PxCreateFoundation. | 
| 551 | You should pass the same foundation object to all instances of the cooking interface. | 
| 552 |  | 
| 553 | \param[in] version the SDK version number | 
| 554 | \param[in] foundation the foundation object associated with this instance of the cooking interface. | 
| 555 | \param[in] params the parameters for this instance of the cooking interface | 
| 556 | \return true on success. | 
| 557 | */ | 
| 558 | PX_C_EXPORT PX_PHYSX_COOKING_API physx::PxCooking* PX_CALL_CONV PxCreateCooking(physx::PxU32 version, | 
| 559 | 																				physx::PxFoundation& foundation, | 
| 560 | 																				const physx::PxCookingParams& params); | 
| 561 |  | 
| 562 | /** @} */ | 
| 563 | #endif | 
| 564 |  |