1/* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34#include "config.h"
35#include "system.h"
36#include "coretypes.h"
37#include "backend.h"
38#include "target.h"
39#include "rtl.h"
40#include "tree.h"
41#include "gimple-expr.h"
42#include "cfghooks.h"
43#include "df.h"
44#include "memmodel.h"
45#include "tm_p.h"
46#include "stringpool.h"
47#include "expmed.h"
48#include "optabs.h"
49#include "opts.h"
50#include "regs.h"
51#include "emit-rtl.h"
52#include "recog.h"
53#include "rtl-error.h"
54#include "hard-reg-set.h"
55#include "alias.h"
56#include "fold-const.h"
57#include "stor-layout.h"
58#include "varasm.h"
59#include "except.h"
60#include "dojump.h"
61#include "explow.h"
62#include "calls.h"
63#include "expr.h"
64#include "optabs-tree.h"
65#include "output.h"
66#include "langhooks.h"
67#include "common/common-target.h"
68#include "gimplify.h"
69#include "tree-pass.h"
70#include "cfgrtl.h"
71#include "cfganal.h"
72#include "cfgbuild.h"
73#include "cfgcleanup.h"
74#include "cfgexpand.h"
75#include "shrink-wrap.h"
76#include "toplev.h"
77#include "rtl-iter.h"
78#include "tree-dfa.h"
79#include "tree-ssa.h"
80#include "stringpool.h"
81#include "attribs.h"
82#include "gimple.h"
83#include "options.h"
84#include "function-abi.h"
85#include "value-range.h"
86#include "gimple-range.h"
87
88/* So we can assign to cfun in this file. */
89#undef cfun
90
91#ifndef STACK_ALIGNMENT_NEEDED
92#define STACK_ALIGNMENT_NEEDED 1
93#endif
94
95#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
96
97/* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
101
102/* Similar, but round to the next highest integer that meets the
103 alignment. */
104#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
105
106/* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110int virtuals_instantiated;
111
112/* Assign unique numbers to labels generated for profiling, debugging, etc. */
113static GTY(()) int funcdef_no;
114
115/* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117struct machine_function * (*init_machine_status) (void);
118
119/* The currently compiled function. */
120struct function *cfun = 0;
121
122/* These hashes record the prologue and epilogue insns. */
123
124struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
125{
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
128};
129
130static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
134
135
136hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137vec<tree, va_gc> *types_used_by_cur_var_decl;
138
139/* Forward declarations. */
140
141static class temp_slot *find_temp_slot_from_address (rtx);
142static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143static void pad_below (struct args_size *, machine_mode, tree);
144static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145static int all_blocks (tree, tree *);
146static tree *get_block_vector (tree, int *);
147extern tree debug_find_var_in_block_tree (tree, tree);
148/* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153static void prepare_function_start (void);
154static void do_clobber_return_reg (rtx, void *);
155static void do_use_return_reg (rtx, void *);
156
157
158/* Stack of nested functions. */
159/* Keep track of the cfun stack. */
160
161static vec<function *> function_context_stack;
162
163/* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166void
167push_function_context (void)
168{
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 function_context_stack.safe_push (obj: cfun);
173 set_cfun (NULL);
174}
175
176/* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179void
180pop_function_context (void)
181{
182 struct function *p = function_context_stack.pop ();
183 set_cfun (new_cfun: p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189}
190
191/* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195void
196free_after_parsing (struct function *f)
197{
198 f->language = 0;
199}
200
201/* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205void
206free_after_compilation (struct function *f)
207{
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 free (crtl->emit.regno_pointer_align);
212
213 memset (crtl, c: 0, n: sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
218
219 regno_reg_rtx = NULL;
220}
221
222/* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
225
226poly_int64
227get_frame_size (void)
228{
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
233}
234
235/* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
238
239bool
240frame_offset_overflow (poly_int64 offset, tree func)
241{
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
247
248 if (!coeffs_in_range_p (a: size, b: 0U, c: limit))
249 {
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (const_value: &hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
260 }
261
262 return false;
263}
264
265/* Return the minimum spill slot alignment for a register of mode MODE. */
266
267unsigned int
268spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
269{
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
271}
272
273/* Return stack slot alignment in bits for TYPE and MODE. */
274
275static unsigned int
276get_stack_local_alignment (tree type, machine_mode mode)
277{
278 unsigned int alignment;
279
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
284
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
289
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
291}
292
293/* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
299
300static bool
301try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64 *poffset)
304{
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
307
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
313
314 /* Round the frame offset to the specified alignment. */
315
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (value: start + length - size - frame_phase, align: alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (value: start - frame_phase, align: alignment) + frame_phase;
323
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (a: this_frame_offset, b: start))
328 {
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
333 }
334 else if (maybe_gt (this_frame_offset + size, start + length))
335 {
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
340 }
341
342 *poffset = this_frame_offset;
343 return true;
344}
345
346/* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
349
350static void
351add_frame_space (poly_int64 start, poly_int64 end)
352{
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
358}
359
360/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
362
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
368
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
374
375 We do not round to stack_boundary here. */
376
377rtx
378assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
380{
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
385
386 if (align == 0)
387 {
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
390 }
391 else if (align == -1)
392 {
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (value: size, align: alignment);
395 }
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
400
401 alignment_in_bits = alignment * BITS_PER_UNIT;
402
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
405 {
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
408 }
409
410 if (SUPPORTS_STACK_ALIGNMENT)
411 {
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
413 {
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
417 {
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
425 {
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
435 }
436 }
437 }
438 }
439
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
444
445 if (mode != BLKmode || maybe_ne (a: size, b: 0))
446 {
447 if (kind & ASLK_RECORD_PAD)
448 {
449 class frame_space **psp;
450
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
452 {
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (start: space->start, length: space->length, size,
455 alignment, poffset: &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (start: space->start, end: slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (start: slot_offset + size,
462 end: space->start + space->length);
463 goto found_space;
464 }
465 }
466 }
467 else if (!STACK_ALIGNMENT_NEEDED)
468 {
469 slot_offset = frame_offset;
470 goto found_space;
471 }
472
473 old_frame_offset = frame_offset;
474
475 if (FRAME_GROWS_DOWNWARD)
476 {
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, length: size, size, alignment, poffset: &slot_offset);
479
480 if (kind & ASLK_RECORD_PAD)
481 {
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, end: slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (start: slot_offset + size, end: old_frame_offset);
486 }
487 }
488 else
489 {
490 frame_offset += size;
491 try_fit_stack_local (start: old_frame_offset, length: size, size, alignment, poffset: &slot_offset);
492
493 if (kind & ASLK_RECORD_PAD)
494 {
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (start: old_frame_offset, end: slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (start: slot_offset + size, frame_offset);
499 }
500 }
501
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
506 {
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (a: GET_MODE_SIZE (mode), b: size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
515 }
516
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
529
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
533
534 vec_safe_push (stack_slot_list, obj: x);
535
536 if (frame_offset_overflow (frame_offset, func: current_function_decl))
537 frame_offset = 0;
538
539 return x;
540}
541
542/* Wrap up assign_stack_local_1 with last parameter as false. */
543
544rtx
545assign_stack_local (machine_mode mode, poly_int64 size, int align)
546{
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
548}
549
550/* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
553
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
563
564class GTY(()) temp_slot {
565public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* True if this temporary is currently in use. */
582 bool in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
591};
592
593/* Entry for the below hash table. */
594struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
598};
599
600struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
601{
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
604};
605
606/* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609static size_t n_temp_slots_in_use;
610
611/* Removes temporary slot TEMP from LIST. */
612
613static void
614cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
615{
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
622
623 temp->prev = temp->next = NULL;
624}
625
626/* Inserts temporary slot TEMP to LIST. */
627
628static void
629insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
630{
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
636}
637
638/* Returns the list of used temp slots at LEVEL. */
639
640static class temp_slot **
641temp_slots_at_level (int level)
642{
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, len: level + 1, exact: true);
645
646 return &(*used_temp_slots)[level];
647}
648
649/* Returns the maximal temporary slot level. */
650
651static int
652max_slot_level (void)
653{
654 if (!used_temp_slots)
655 return -1;
656
657 return used_temp_slots->length () - 1;
658}
659
660/* Moves temporary slot TEMP to LEVEL. */
661
662static void
663move_slot_to_level (class temp_slot *temp, int level)
664{
665 cut_slot_from_list (temp, list: temp_slots_at_level (level: temp->level));
666 insert_slot_to_list (temp, list: temp_slots_at_level (level));
667 temp->level = level;
668}
669
670/* Make temporary slot TEMP available. */
671
672static void
673make_slot_available (class temp_slot *temp)
674{
675 cut_slot_from_list (temp, list: temp_slots_at_level (level: temp->level));
676 insert_slot_to_list (temp, list: &avail_temp_slots);
677 temp->in_use = false;
678 temp->level = -1;
679 n_temp_slots_in_use--;
680}
681
682/* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684static hashval_t
685temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
686{
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
690}
691
692/* Return the hash value for an address -> temp slot mapping. */
693hashval_t
694temp_address_hasher::hash (temp_slot_address_entry *t)
695{
696 return t->hash;
697}
698
699/* Compare two address -> temp slot mapping entries. */
700bool
701temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
703{
704 return exp_equiv_p (t1->address, t2->address, 0, true);
705}
706
707/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708static void
709insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
710{
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (comparable: t, hash: t->hash, insert: INSERT) = t;
716}
717
718/* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
720int
721remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
722{
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
727}
728
729/* Remove all mappings of addresses to unused temp slots. */
730static void
731remove_unused_temp_slot_addresses (void)
732{
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
739}
740
741/* Find the temp slot corresponding to the object at address X. */
742
743static class temp_slot *
744find_temp_slot_from_address (rtx x)
745{
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
748
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (t: &tmp);
754 t = temp_slot_address_table->find_with_hash (comparable: &tmp, hash: tmp.hash);
755 if (t)
756 return t->temp_slot;
757
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
766
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
770 {
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (level: i); p; p = p->next)
774 if (known_in_range_p (val: offset, pos: p->base_offset, size: p->full_size))
775 return p;
776 }
777
778 return NULL;
779}
780
781/* Allocate a temporary stack slot and record it for possible later
782 reuse.
783
784 MODE is the machine mode to be given to the returned rtx.
785
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
788
789 TYPE is the type that will be used for the stack slot. */
790
791rtx
792assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
793{
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
797
798 gcc_assert (known_size_p (size));
799
800 align = get_stack_local_alignment (type, mode);
801
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
805
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
810 {
811 for (p = avail_temp_slots; p; p = p->next)
812 {
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
821 {
822 if (p->align == align && known_eq (p->size, size))
823 {
824 selected = p;
825 cut_slot_from_list (temp: selected, list: &avail_temp_slots);
826 best_p = 0;
827 break;
828 }
829 best_p = p;
830 }
831 }
832 }
833
834 /* Make our best, if any, the one to use. */
835 if (best_p)
836 {
837 selected = best_p;
838 cut_slot_from_list (temp: selected, list: &avail_temp_slots);
839
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
844 {
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (value: size, align: alignment);
847
848 if (known_ge (best_p->size - rounded_size, alignment))
849 {
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = false;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (temp: p, list: &avail_temp_slots);
859
860 vec_safe_push (stack_slot_list, obj: p->slot);
861
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
864 }
865 }
866 }
867
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
870 {
871 poly_int64 frame_offset_old = frame_offset;
872
873 p = ggc_alloc<temp_slot> ();
874
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
878
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 size: (mode == BLKmode
885 ? aligned_upper_bound (value: size,
886 align: (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, kind: 0);
890
891 p->align = align;
892
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
904
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
907 {
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
910 }
911 else
912 {
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
915 }
916
917 selected = p;
918 }
919
920 p = selected;
921 p->in_use = true;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
925
926 pp = temp_slots_at_level (level: p->level);
927 insert_slot_to_list (temp: p, list: pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), temp_slot: p);
929
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, obj: slot);
933
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
939
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
944
945 return slot;
946}
947
948/* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
950
951rtx
952assign_stack_temp (machine_mode mode, poly_int64 size)
953{
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
955}
956
957/* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
965
966rtx
967assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
969{
970 tree type, decl;
971 machine_mode mode;
972#ifdef PROMOTE_MODE
973 int unsignedp;
974#endif
975
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
980
981 mode = TYPE_MODE (type);
982#ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984#endif
985
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
989
990 if (mode == BLKmode || memory_required)
991 {
992 poly_int64 size;
993 rtx tmp;
994
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), value: &size))
999 size = max_int_size_in_bytes (type);
1000
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1005
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (a: size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1013 {
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1016 }
1017
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1020 }
1021
1022#ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025#endif
1026
1027 return gen_reg_rtx (mode);
1028}
1029
1030/* Combine temporary stack slots which are adjacent on the stack.
1031
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1035
1036static void
1037combine_temp_slots (void)
1038{
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1041
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1046
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1053
1054 for (p = avail_temp_slots; p; p = next)
1055 {
1056 int delete_p = 0;
1057
1058 next = p->next;
1059
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1062
1063 for (q = p->next; q; q = next_q)
1064 {
1065 int delete_q = 0;
1066
1067 next_q = q->next;
1068
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1071
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1073 {
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1078 }
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1080 {
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1086 }
1087 if (delete_q)
1088 cut_slot_from_list (temp: q, list: &avail_temp_slots);
1089 }
1090
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (temp: p, list: &avail_temp_slots);
1094 }
1095}
1096
1097/* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1099
1100void
1101update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1102{
1103 class temp_slot *p;
1104
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1107
1108 p = find_temp_slot_from_address (x: old_rtx);
1109
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1117 {
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1120
1121 if (REG_P (new_rtx))
1122 {
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1126 }
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1129
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1138
1139 return;
1140 }
1141
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (address: new_rtx, temp_slot: p);
1144}
1145
1146/* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1150
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1153
1154void
1155preserve_temp_slots (rtx x)
1156{
1157 class temp_slot *p = 0, *next;
1158
1159 if (x == 0)
1160 return;
1161
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1166
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1171
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1175
1176 if (p != 0)
1177 {
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (temp: p, temp_slot_level - 1);
1180 return;
1181 }
1182
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1185 {
1186 next = p->next;
1187 move_slot_to_level (temp: p, temp_slot_level - 1);
1188 }
1189}
1190
1191/* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1193
1194void
1195free_temp_slots (void)
1196{
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1199
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1201 {
1202 next = p->next;
1203 make_slot_available (temp: p);
1204 some_available = true;
1205 }
1206
1207 if (some_available)
1208 {
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1211 }
1212}
1213
1214/* Push deeper into the nesting level for stack temporaries. */
1215
1216void
1217push_temp_slots (void)
1218{
1219 temp_slot_level++;
1220}
1221
1222/* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1224
1225void
1226pop_temp_slots (void)
1227{
1228 free_temp_slots ();
1229 temp_slot_level--;
1230}
1231
1232/* Initialize temporary slots. */
1233
1234void
1235init_temp_slots (void)
1236{
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, nelems: 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1242
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (n: 32);
1246 else
1247 temp_slot_address_table->empty ();
1248}
1249
1250/* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1252
1253/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1258};
1259/* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1266};
1267
1268/* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1270
1271rtx
1272get_hard_reg_initial_reg (rtx reg)
1273{
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1276
1277 if (ivs == 0)
1278 return NULL_RTX;
1279
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1283
1284 return NULL_RTX;
1285}
1286
1287/* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1289
1290rtx
1291get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1292{
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1295
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1299
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1302 {
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (c: 5);
1307 crtl->hard_reg_initial_vals = ivs;
1308 }
1309
1310 if (ivs->num_entries >= ivs->max_entries)
1311 {
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1315 }
1316
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1319
1320 return ivs->entries[ivs->num_entries++].pseudo;
1321}
1322
1323/* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1326
1327rtx
1328has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1329{
1330 struct initial_value_struct *ivs;
1331 int i;
1332
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1339
1340 return NULL_RTX;
1341}
1342
1343void
1344emit_initial_value_sets (void)
1345{
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1349
1350 if (ivs == 0)
1351 return;
1352
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1358
1359 emit_insn_at_entry (seq);
1360}
1361
1362/* Return the hardreg-pseudoreg initial values pair entry I and
1363 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1364bool
1365initial_value_entry (int i, rtx *hreg, rtx *preg)
1366{
1367 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1368 if (!ivs || i >= ivs->num_entries)
1369 return false;
1370
1371 *hreg = ivs->entries[i].hard_reg;
1372 *preg = ivs->entries[i].pseudo;
1373 return true;
1374}
1375
1376/* These routines are responsible for converting virtual register references
1377 to the actual hard register references once RTL generation is complete.
1378
1379 The following four variables are used for communication between the
1380 routines. They contain the offsets of the virtual registers from their
1381 respective hard registers. */
1382
1383static poly_int64 in_arg_offset;
1384static poly_int64 var_offset;
1385static poly_int64 dynamic_offset;
1386static poly_int64 out_arg_offset;
1387static poly_int64 cfa_offset;
1388
1389/* In most machines, the stack pointer register is equivalent to the bottom
1390 of the stack. */
1391
1392#ifndef STACK_POINTER_OFFSET
1393#define STACK_POINTER_OFFSET 0
1394#endif
1395
1396#if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1397#define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1398#endif
1399
1400/* If not defined, pick an appropriate default for the offset of dynamically
1401 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1402 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1403
1404#ifndef STACK_DYNAMIC_OFFSET
1405
1406/* The bottom of the stack points to the actual arguments. If
1407 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1408 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1409 stack space for register parameters is not pushed by the caller, but
1410 rather part of the fixed stack areas and hence not included in
1411 `crtl->outgoing_args_size'. Nevertheless, we must allow
1412 for it when allocating stack dynamic objects. */
1413
1414#ifdef INCOMING_REG_PARM_STACK_SPACE
1415#define STACK_DYNAMIC_OFFSET(FNDECL) \
1416((ACCUMULATE_OUTGOING_ARGS \
1417 ? (crtl->outgoing_args_size \
1418 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1419 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1420 : 0) + (STACK_POINTER_OFFSET))
1421#else
1422#define STACK_DYNAMIC_OFFSET(FNDECL) \
1423 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1424 + (STACK_POINTER_OFFSET))
1425#endif
1426#endif
1427
1428
1429/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1430 is a virtual register, return the equivalent hard register and set the
1431 offset indirectly through the pointer. Otherwise, return 0. */
1432
1433static rtx
1434instantiate_new_reg (rtx x, poly_int64 *poffset)
1435{
1436 rtx new_rtx;
1437 poly_int64 offset;
1438
1439 if (x == virtual_incoming_args_rtx)
1440 {
1441 if (stack_realign_drap)
1442 {
1443 /* Replace virtual_incoming_args_rtx with internal arg
1444 pointer if DRAP is used to realign stack. */
1445 new_rtx = crtl->args.internal_arg_pointer;
1446 offset = 0;
1447 }
1448 else
1449 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1450 }
1451 else if (x == virtual_stack_vars_rtx)
1452 new_rtx = frame_pointer_rtx, offset = var_offset;
1453 else if (x == virtual_stack_dynamic_rtx)
1454 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1455 else if (x == virtual_outgoing_args_rtx)
1456 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1457 else if (x == virtual_cfa_rtx)
1458 {
1459#ifdef FRAME_POINTER_CFA_OFFSET
1460 new_rtx = frame_pointer_rtx;
1461#else
1462 new_rtx = arg_pointer_rtx;
1463#endif
1464 offset = cfa_offset;
1465 }
1466 else if (x == virtual_preferred_stack_boundary_rtx)
1467 {
1468 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1469 offset = 0;
1470 }
1471 else
1472 return NULL_RTX;
1473
1474 *poffset = offset;
1475 return new_rtx;
1476}
1477
1478/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1479 registers present inside of *LOC. The expression is simplified,
1480 as much as possible, but is not to be considered "valid" in any sense
1481 implied by the target. Return true if any change is made. */
1482
1483static bool
1484instantiate_virtual_regs_in_rtx (rtx *loc)
1485{
1486 if (!*loc)
1487 return false;
1488 bool changed = false;
1489 subrtx_ptr_iterator::array_type array;
1490 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1491 {
1492 rtx *loc = *iter;
1493 if (rtx x = *loc)
1494 {
1495 rtx new_rtx;
1496 poly_int64 offset;
1497 switch (GET_CODE (x))
1498 {
1499 case REG:
1500 new_rtx = instantiate_new_reg (x, poffset: &offset);
1501 if (new_rtx)
1502 {
1503 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1504 changed = true;
1505 }
1506 iter.skip_subrtxes ();
1507 break;
1508
1509 case PLUS:
1510 new_rtx = instantiate_new_reg (XEXP (x, 0), poffset: &offset);
1511 if (new_rtx)
1512 {
1513 XEXP (x, 0) = new_rtx;
1514 *loc = plus_constant (GET_MODE (x), x, offset, true);
1515 changed = true;
1516 iter.skip_subrtxes ();
1517 break;
1518 }
1519
1520 /* FIXME -- from old code */
1521 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1522 we can commute the PLUS and SUBREG because pointers into the
1523 frame are well-behaved. */
1524 break;
1525
1526 default:
1527 break;
1528 }
1529 }
1530 }
1531 return changed;
1532}
1533
1534/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1535 matches the predicate for insn CODE operand OPERAND. */
1536
1537static bool
1538safe_insn_predicate (int code, int operand, rtx x)
1539{
1540 return code < 0 || insn_operand_matches (icode: (enum insn_code) code, opno: operand, operand: x);
1541}
1542
1543/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1544 registers present inside of insn. The result will be a valid insn. */
1545
1546static void
1547instantiate_virtual_regs_in_insn (rtx_insn *insn)
1548{
1549 poly_int64 offset;
1550 int insn_code, i;
1551 bool any_change = false;
1552 rtx set, new_rtx, x;
1553 rtx_insn *seq;
1554
1555 /* There are some special cases to be handled first. */
1556 set = single_set (insn);
1557 if (set)
1558 {
1559 /* We're allowed to assign to a virtual register. This is interpreted
1560 to mean that the underlying register gets assigned the inverse
1561 transformation. This is used, for example, in the handling of
1562 non-local gotos. */
1563 new_rtx = instantiate_new_reg (SET_DEST (set), poffset: &offset);
1564 if (new_rtx)
1565 {
1566 start_sequence ();
1567
1568 instantiate_virtual_regs_in_rtx (loc: &SET_SRC (set));
1569 x = simplify_gen_binary (code: PLUS, GET_MODE (new_rtx), SET_SRC (set),
1570 op1: gen_int_mode (-offset, GET_MODE (new_rtx)));
1571 x = force_operand (x, new_rtx);
1572 if (x != new_rtx)
1573 emit_move_insn (new_rtx, x);
1574
1575 seq = get_insns ();
1576 end_sequence ();
1577
1578 emit_insn_before (seq, insn);
1579 delete_insn (insn);
1580 return;
1581 }
1582
1583 /* Handle a straight copy from a virtual register by generating a
1584 new add insn. The difference between this and falling through
1585 to the generic case is avoiding a new pseudo and eliminating a
1586 move insn in the initial rtl stream. */
1587 new_rtx = instantiate_new_reg (SET_SRC (set), poffset: &offset);
1588 if (new_rtx
1589 && maybe_ne (a: offset, b: 0)
1590 && REG_P (SET_DEST (set))
1591 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1592 {
1593 start_sequence ();
1594
1595 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1596 gen_int_mode (offset,
1597 GET_MODE (SET_DEST (set))),
1598 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1599 if (x != SET_DEST (set))
1600 emit_move_insn (SET_DEST (set), x);
1601
1602 seq = get_insns ();
1603 end_sequence ();
1604
1605 emit_insn_before (seq, insn);
1606 delete_insn (insn);
1607 return;
1608 }
1609
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1612
1613 /* Handle a plus involving a virtual register by determining if the
1614 operands remain valid if they're modified in place. */
1615 poly_int64 delta;
1616 if (GET_CODE (SET_SRC (set)) == PLUS
1617 && recog_data.n_operands >= 3
1618 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1619 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1620 && poly_int_rtx_p (x: recog_data.operand[2], res: &delta)
1621 && (new_rtx = instantiate_new_reg (x: recog_data.operand[1], poffset: &offset)))
1622 {
1623 offset += delta;
1624
1625 /* If the sum is zero, then replace with a plain move. */
1626 if (known_eq (offset, 0)
1627 && REG_P (SET_DEST (set))
1628 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1629 {
1630 start_sequence ();
1631 emit_move_insn (SET_DEST (set), new_rtx);
1632 seq = get_insns ();
1633 end_sequence ();
1634
1635 emit_insn_before (seq, insn);
1636 delete_insn (insn);
1637 return;
1638 }
1639
1640 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1641
1642 /* Using validate_change and apply_change_group here leaves
1643 recog_data in an invalid state. Since we know exactly what
1644 we want to check, do those two by hand. */
1645 if (safe_insn_predicate (code: insn_code, operand: 1, x: new_rtx)
1646 && safe_insn_predicate (code: insn_code, operand: 2, x))
1647 {
1648 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1649 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1650 any_change = true;
1651
1652 /* Fall through into the regular operand fixup loop in
1653 order to take care of operands other than 1 and 2. */
1654 }
1655 }
1656 }
1657 else
1658 {
1659 extract_insn (insn);
1660 insn_code = INSN_CODE (insn);
1661 }
1662
1663 /* In the general case, we expect virtual registers to appear only in
1664 operands, and then only as either bare registers or inside memories. */
1665 for (i = 0; i < recog_data.n_operands; ++i)
1666 {
1667 x = recog_data.operand[i];
1668 switch (GET_CODE (x))
1669 {
1670 case MEM:
1671 {
1672 rtx addr = XEXP (x, 0);
1673
1674 if (!instantiate_virtual_regs_in_rtx (loc: &addr))
1675 continue;
1676
1677 start_sequence ();
1678 x = replace_equiv_address (x, addr, true);
1679 /* It may happen that the address with the virtual reg
1680 was valid (e.g. based on the virtual stack reg, which might
1681 be acceptable to the predicates with all offsets), whereas
1682 the address now isn't anymore, for instance when the address
1683 is still offsetted, but the base reg isn't virtual-stack-reg
1684 anymore. Below we would do a force_reg on the whole operand,
1685 but this insn might actually only accept memory. Hence,
1686 before doing that last resort, try to reload the address into
1687 a register, so this operand stays a MEM. */
1688 if (!safe_insn_predicate (code: insn_code, operand: i, x))
1689 {
1690 addr = force_reg (GET_MODE (addr), addr);
1691 x = replace_equiv_address (x, addr, true);
1692 }
1693 seq = get_insns ();
1694 end_sequence ();
1695 if (seq)
1696 emit_insn_before (seq, insn);
1697 }
1698 break;
1699
1700 case REG:
1701 new_rtx = instantiate_new_reg (x, poffset: &offset);
1702 if (new_rtx == NULL)
1703 continue;
1704 if (known_eq (offset, 0))
1705 x = new_rtx;
1706 else
1707 {
1708 start_sequence ();
1709
1710 /* Careful, special mode predicates may have stuff in
1711 insn_data[insn_code].operand[i].mode that isn't useful
1712 to us for computing a new value. */
1713 /* ??? Recognize address_operand and/or "p" constraints
1714 to see if (plus new offset) is a valid before we put
1715 this through expand_simple_binop. */
1716 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1717 gen_int_mode (offset, GET_MODE (x)),
1718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1719 seq = get_insns ();
1720 end_sequence ();
1721 emit_insn_before (seq, insn);
1722 }
1723 break;
1724
1725 case SUBREG:
1726 new_rtx = instantiate_new_reg (SUBREG_REG (x), poffset: &offset);
1727 if (new_rtx == NULL)
1728 continue;
1729 if (maybe_ne (a: offset, b: 0))
1730 {
1731 start_sequence ();
1732 new_rtx = expand_simple_binop
1733 (GET_MODE (new_rtx), PLUS, new_rtx,
1734 gen_int_mode (offset, GET_MODE (new_rtx)),
1735 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1736 seq = get_insns ();
1737 end_sequence ();
1738 emit_insn_before (seq, insn);
1739 }
1740 x = simplify_gen_subreg (outermode: recog_data.operand_mode[i], op: new_rtx,
1741 GET_MODE (new_rtx), SUBREG_BYTE (x));
1742 gcc_assert (x);
1743 break;
1744
1745 default:
1746 continue;
1747 }
1748
1749 /* At this point, X contains the new value for the operand.
1750 Validate the new value vs the insn predicate. Note that
1751 asm insns will have insn_code -1 here. */
1752 if (!safe_insn_predicate (code: insn_code, operand: i, x))
1753 {
1754 start_sequence ();
1755 if (REG_P (x))
1756 {
1757 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1758 x = copy_to_reg (x);
1759 }
1760 else
1761 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1762 seq = get_insns ();
1763 end_sequence ();
1764 if (seq)
1765 emit_insn_before (seq, insn);
1766 }
1767
1768 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1769 any_change = true;
1770 }
1771
1772 if (any_change)
1773 {
1774 /* Propagate operand changes into the duplicates. */
1775 for (i = 0; i < recog_data.n_dups; ++i)
1776 *recog_data.dup_loc[i]
1777 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1778
1779 /* Force re-recognition of the instruction for validation. */
1780 INSN_CODE (insn) = -1;
1781 }
1782
1783 if (asm_noperands (PATTERN (insn)) >= 0)
1784 {
1785 if (!check_asm_operands (PATTERN (insn)))
1786 {
1787 error_for_asm (insn, "impossible constraint in %<asm%>");
1788 /* For asm goto, instead of fixing up all the edges
1789 just clear the template and clear input and output operands
1790 and strip away clobbers. */
1791 if (JUMP_P (insn))
1792 {
1793 rtx asm_op = extract_asm_operands (PATTERN (insn));
1794 PATTERN (insn) = asm_op;
1795 PUT_MODE (x: asm_op, VOIDmode);
1796 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1797 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1798 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1799 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1800 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1801 }
1802 else
1803 delete_insn (insn);
1804 }
1805 }
1806 else
1807 {
1808 if (recog_memoized (insn) < 0)
1809 fatal_insn_not_found (insn);
1810 }
1811}
1812
1813/* Subroutine of instantiate_decls. Given RTL representing a decl,
1814 do any instantiation required. */
1815
1816void
1817instantiate_decl_rtl (rtx x)
1818{
1819 rtx addr;
1820
1821 if (x == 0)
1822 return;
1823
1824 /* If this is a CONCAT, recurse for the pieces. */
1825 if (GET_CODE (x) == CONCAT)
1826 {
1827 instantiate_decl_rtl (XEXP (x, 0));
1828 instantiate_decl_rtl (XEXP (x, 1));
1829 return;
1830 }
1831
1832 /* If this is not a MEM, no need to do anything. Similarly if the
1833 address is a constant or a register that is not a virtual register. */
1834 if (!MEM_P (x))
1835 return;
1836
1837 addr = XEXP (x, 0);
1838 if (CONSTANT_P (addr)
1839 || (REG_P (addr)
1840 && !VIRTUAL_REGISTER_P (addr)))
1841 return;
1842
1843 instantiate_virtual_regs_in_rtx (loc: &XEXP (x, 0));
1844}
1845
1846/* Helper for instantiate_decls called via walk_tree: Process all decls
1847 in the given DECL_VALUE_EXPR. */
1848
1849static tree
1850instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1851{
1852 tree t = *tp;
1853 if (! EXPR_P (t))
1854 {
1855 *walk_subtrees = 0;
1856 if (DECL_P (t))
1857 {
1858 if (DECL_RTL_SET_P (t))
1859 instantiate_decl_rtl (DECL_RTL (t));
1860 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1861 && DECL_INCOMING_RTL (t))
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1863 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1864 && DECL_HAS_VALUE_EXPR_P (t))
1865 {
1866 tree v = DECL_VALUE_EXPR (t);
1867 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 }
1869 }
1870 }
1871 return NULL;
1872}
1873
1874/* Subroutine of instantiate_decls: Process all decls in the given
1875 BLOCK node and all its subblocks. */
1876
1877static void
1878instantiate_decls_1 (tree let)
1879{
1880 tree t;
1881
1882 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1883 {
1884 if (DECL_RTL_SET_P (t))
1885 instantiate_decl_rtl (DECL_RTL (t));
1886 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1887 {
1888 tree v = DECL_VALUE_EXPR (t);
1889 walk_tree (&v, instantiate_expr, NULL, NULL);
1890 }
1891 }
1892
1893 /* Process all subblocks. */
1894 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1895 instantiate_decls_1 (let: t);
1896}
1897
1898/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1899 all virtual registers in their DECL_RTL's. */
1900
1901static void
1902instantiate_decls (tree fndecl)
1903{
1904 tree decl;
1905 unsigned ix;
1906
1907 /* Process all parameters of the function. */
1908 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1909 {
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1912 if (DECL_HAS_VALUE_EXPR_P (decl))
1913 {
1914 tree v = DECL_VALUE_EXPR (decl);
1915 walk_tree (&v, instantiate_expr, NULL, NULL);
1916 }
1917 }
1918
1919 if ((decl = DECL_RESULT (fndecl))
1920 && TREE_CODE (decl) == RESULT_DECL)
1921 {
1922 if (DECL_RTL_SET_P (decl))
1923 instantiate_decl_rtl (DECL_RTL (decl));
1924 if (DECL_HAS_VALUE_EXPR_P (decl))
1925 {
1926 tree v = DECL_VALUE_EXPR (decl);
1927 walk_tree (&v, instantiate_expr, NULL, NULL);
1928 }
1929 }
1930
1931 /* Process the saved static chain if it exists. */
1932 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1933 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1934 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1935
1936 /* Now process all variables defined in the function or its subblocks. */
1937 if (DECL_INITIAL (fndecl))
1938 instantiate_decls_1 (DECL_INITIAL (fndecl));
1939
1940 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1941 if (DECL_RTL_SET_P (decl))
1942 instantiate_decl_rtl (DECL_RTL (decl));
1943 vec_free (v&: cfun->local_decls);
1944}
1945
1946/* Return the value of STACK_DYNAMIC_OFFSET for the current function.
1947 This is done through a function wrapper so that the macro sees a
1948 predictable set of included files. */
1949
1950poly_int64
1951get_stack_dynamic_offset ()
1952{
1953 return STACK_DYNAMIC_OFFSET (current_function_decl);
1954}
1955
1956/* Pass through the INSNS of function FNDECL and convert virtual register
1957 references to hard register references. */
1958
1959static void
1960instantiate_virtual_regs (void)
1961{
1962 rtx_insn *insn;
1963
1964 /* Compute the offsets to use for this function. */
1965 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1966 var_offset = targetm.starting_frame_offset ();
1967 dynamic_offset = get_stack_dynamic_offset ();
1968 out_arg_offset = STACK_POINTER_OFFSET;
1969#ifdef FRAME_POINTER_CFA_OFFSET
1970 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1971#else
1972 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1973#endif
1974
1975 /* Initialize recognition, indicating that volatile is OK. */
1976 init_recog ();
1977
1978 /* Scan through all the insns, instantiating every virtual register still
1979 present. */
1980 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1981 if (INSN_P (insn))
1982 {
1983 /* These patterns in the instruction stream can never be recognized.
1984 Fortunately, they shouldn't contain virtual registers either. */
1985 if (GET_CODE (PATTERN (insn)) == USE
1986 || GET_CODE (PATTERN (insn)) == CLOBBER
1987 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1988 || DEBUG_MARKER_INSN_P (insn))
1989 continue;
1990 else if (DEBUG_BIND_INSN_P (insn))
1991 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1992 else
1993 instantiate_virtual_regs_in_insn (insn);
1994
1995 if (insn->deleted ())
1996 continue;
1997
1998 instantiate_virtual_regs_in_rtx (loc: &REG_NOTES (insn));
1999
2000 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
2001 if (CALL_P (insn))
2002 instantiate_virtual_regs_in_rtx (loc: &CALL_INSN_FUNCTION_USAGE (insn));
2003 }
2004
2005 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
2006 instantiate_decls (fndecl: current_function_decl);
2007
2008 targetm.instantiate_decls ();
2009
2010 /* Indicate that, from now on, assign_stack_local should use
2011 frame_pointer_rtx. */
2012 virtuals_instantiated = 1;
2013}
2014
2015namespace {
2016
2017const pass_data pass_data_instantiate_virtual_regs =
2018{
2019 .type: RTL_PASS, /* type */
2020 .name: "vregs", /* name */
2021 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2022 .tv_id: TV_NONE, /* tv_id */
2023 .properties_required: 0, /* properties_required */
2024 .properties_provided: 0, /* properties_provided */
2025 .properties_destroyed: 0, /* properties_destroyed */
2026 .todo_flags_start: 0, /* todo_flags_start */
2027 .todo_flags_finish: 0, /* todo_flags_finish */
2028};
2029
2030class pass_instantiate_virtual_regs : public rtl_opt_pass
2031{
2032public:
2033 pass_instantiate_virtual_regs (gcc::context *ctxt)
2034 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2035 {}
2036
2037 /* opt_pass methods: */
2038 unsigned int execute (function *) final override
2039 {
2040 instantiate_virtual_regs ();
2041 return 0;
2042 }
2043
2044}; // class pass_instantiate_virtual_regs
2045
2046} // anon namespace
2047
2048rtl_opt_pass *
2049make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2050{
2051 return new pass_instantiate_virtual_regs (ctxt);
2052}
2053
2054
2055/* Return true if EXP is an aggregate type (or a value with aggregate type).
2056 This means a type for which function calls must pass an address to the
2057 function or get an address back from the function.
2058 EXP may be a type node or an expression (whose type is tested). */
2059
2060bool
2061aggregate_value_p (const_tree exp, const_tree fntype)
2062{
2063 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2064 int i, regno, nregs;
2065 rtx reg;
2066
2067 if (fntype)
2068 switch (TREE_CODE (fntype))
2069 {
2070 case CALL_EXPR:
2071 {
2072 tree fndecl = get_callee_fndecl (fntype);
2073 if (fndecl)
2074 fntype = TREE_TYPE (fndecl);
2075 else if (CALL_EXPR_FN (fntype))
2076 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2077 else
2078 /* For internal functions, assume nothing needs to be
2079 returned in memory. */
2080 return false;
2081 }
2082 break;
2083 case FUNCTION_DECL:
2084 fntype = TREE_TYPE (fntype);
2085 break;
2086 case FUNCTION_TYPE:
2087 case METHOD_TYPE:
2088 break;
2089 case IDENTIFIER_NODE:
2090 fntype = NULL_TREE;
2091 break;
2092 default:
2093 /* We don't expect other tree types here. */
2094 gcc_unreachable ();
2095 }
2096
2097 if (VOID_TYPE_P (type))
2098 return false;
2099
2100 if (error_operand_p (t: fntype))
2101 return false;
2102
2103 /* If a record should be passed the same as its first (and only) member
2104 don't pass it as an aggregate. */
2105 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2106 return aggregate_value_p (exp: first_field (type), fntype);
2107
2108 /* If the front end has decided that this needs to be passed by
2109 reference, do so. */
2110 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2111 && DECL_BY_REFERENCE (exp))
2112 return true;
2113
2114 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2115 if (fntype && TREE_ADDRESSABLE (fntype))
2116 return true;
2117
2118 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2119 and thus can't be returned in registers. */
2120 if (TREE_ADDRESSABLE (type))
2121 return true;
2122
2123 if (TYPE_EMPTY_P (type))
2124 return false;
2125
2126 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2127 return true;
2128
2129 if (targetm.calls.return_in_memory (type, fntype))
2130 return true;
2131
2132 /* Make sure we have suitable call-clobbered regs to return
2133 the value in; if not, we must return it in memory. */
2134 reg = hard_function_value (type, 0, fntype, 0);
2135
2136 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2137 it is OK. */
2138 if (!REG_P (reg))
2139 return false;
2140
2141 /* Use the default ABI if the type of the function isn't known.
2142 The scheme for handling interoperability between different ABIs
2143 requires us to be able to tell when we're calling a function with
2144 a nondefault ABI. */
2145 const predefined_function_abi &abi = (fntype
2146 ? fntype_abi (fntype)
2147 : default_function_abi);
2148 regno = REGNO (reg);
2149 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2150 for (i = 0; i < nregs; i++)
2151 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno: regno + i))
2152 return true;
2153
2154 return false;
2155}
2156
2157/* Return true if we should assign DECL a pseudo register; false if it
2158 should live on the local stack. */
2159
2160bool
2161use_register_for_decl (const_tree decl)
2162{
2163 if (TREE_CODE (decl) == SSA_NAME)
2164 {
2165 /* We often try to use the SSA_NAME, instead of its underlying
2166 decl, to get type information and guide decisions, to avoid
2167 differences of behavior between anonymous and named
2168 variables, but in this one case we have to go for the actual
2169 variable if there is one. The main reason is that, at least
2170 at -O0, we want to place user variables on the stack, but we
2171 don't mind using pseudos for anonymous or ignored temps.
2172 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2173 should go in pseudos, whereas their corresponding variables
2174 might have to go on the stack. So, disregarding the decl
2175 here would negatively impact debug info at -O0, enable
2176 coalescing between SSA_NAMEs that ought to get different
2177 stack/pseudo assignments, and get the incoming argument
2178 processing thoroughly confused by PARM_DECLs expected to live
2179 in stack slots but assigned to pseudos. */
2180 if (!SSA_NAME_VAR (decl))
2181 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2182 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2183
2184 decl = SSA_NAME_VAR (decl);
2185 }
2186
2187 /* Honor volatile. */
2188 if (TREE_SIDE_EFFECTS (decl))
2189 return false;
2190
2191 /* Honor addressability. */
2192 if (TREE_ADDRESSABLE (decl))
2193 return false;
2194
2195 /* RESULT_DECLs are a bit special in that they're assigned without
2196 regard to use_register_for_decl, but we generally only store in
2197 them. If we coalesce their SSA NAMEs, we'd better return a
2198 result that matches the assignment in expand_function_start. */
2199 if (TREE_CODE (decl) == RESULT_DECL)
2200 {
2201 /* If it's not an aggregate, we're going to use a REG or a
2202 PARALLEL containing a REG. */
2203 if (!aggregate_value_p (exp: decl, fntype: current_function_decl))
2204 return true;
2205
2206 /* If expand_function_start determines the return value, we'll
2207 use MEM if it's not by reference. */
2208 if (cfun->returns_pcc_struct
2209 || (targetm.calls.struct_value_rtx
2210 (TREE_TYPE (current_function_decl), 1)))
2211 return DECL_BY_REFERENCE (decl);
2212
2213 /* Otherwise, we're taking an extra all.function_result_decl
2214 argument. It's set up in assign_parms_augmented_arg_list,
2215 under the (negated) conditions above, and then it's used to
2216 set up the RESULT_DECL rtl in assign_params, after looping
2217 over all parameters. Now, if the RESULT_DECL is not by
2218 reference, we'll use a MEM either way. */
2219 if (!DECL_BY_REFERENCE (decl))
2220 return false;
2221
2222 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2223 the function_result_decl's assignment. Since it's a pointer,
2224 we can short-circuit a number of the tests below, and we must
2225 duplicate them because we don't have the function_result_decl
2226 to test. */
2227 if (!targetm.calls.allocate_stack_slots_for_args ())
2228 return true;
2229 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2230 if (optimize)
2231 return true;
2232 if (cfun->tail_call_marked)
2233 return true;
2234 /* We don't set DECL_REGISTER for the function_result_decl. */
2235 return false;
2236 }
2237
2238 /* Only register-like things go in registers. */
2239 if (DECL_MODE (decl) == BLKmode)
2240 return false;
2241
2242 /* If -ffloat-store specified, don't put explicit float variables
2243 into registers. */
2244 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2245 propagates values across these stores, and it probably shouldn't. */
2246 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2247 return false;
2248
2249 if (!targetm.calls.allocate_stack_slots_for_args ())
2250 return true;
2251
2252 /* If we're not interested in tracking debugging information for
2253 this decl, then we can certainly put it in a register. */
2254 if (DECL_IGNORED_P (decl))
2255 return true;
2256
2257 if (optimize)
2258 return true;
2259
2260 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2261 dangling reference in case the parameter is passed by reference. */
2262 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2263 return true;
2264
2265 if (!DECL_REGISTER (decl))
2266 return false;
2267
2268 /* When not optimizing, disregard register keyword for types that
2269 could have methods, otherwise the methods won't be callable from
2270 the debugger. */
2271 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2272 return false;
2273
2274 return true;
2275}
2276
2277/* Structures to communicate between the subroutines of assign_parms.
2278 The first holds data persistent across all parameters, the second
2279 is cleared out for each parameter. */
2280
2281struct assign_parm_data_all
2282{
2283 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2284 should become a job of the target or otherwise encapsulated. */
2285 CUMULATIVE_ARGS args_so_far_v;
2286 cumulative_args_t args_so_far;
2287 struct args_size stack_args_size;
2288 tree function_result_decl;
2289 tree orig_fnargs;
2290 rtx_insn *first_conversion_insn;
2291 rtx_insn *last_conversion_insn;
2292 HOST_WIDE_INT pretend_args_size;
2293 HOST_WIDE_INT extra_pretend_bytes;
2294 int reg_parm_stack_space;
2295};
2296
2297struct assign_parm_data_one
2298{
2299 tree nominal_type;
2300 function_arg_info arg;
2301 rtx entry_parm;
2302 rtx stack_parm;
2303 machine_mode nominal_mode;
2304 machine_mode passed_mode;
2305 struct locate_and_pad_arg_data locate;
2306 int partial;
2307};
2308
2309/* A subroutine of assign_parms. Initialize ALL. */
2310
2311static void
2312assign_parms_initialize_all (struct assign_parm_data_all *all)
2313{
2314 tree fntype ATTRIBUTE_UNUSED;
2315
2316 memset (s: all, c: 0, n: sizeof (*all));
2317
2318 fntype = TREE_TYPE (current_function_decl);
2319
2320#ifdef INIT_CUMULATIVE_INCOMING_ARGS
2321 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2322#else
2323 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2324 current_function_decl, -1);
2325#endif
2326 all->args_so_far = pack_cumulative_args (arg: &all->args_so_far_v);
2327
2328#ifdef INCOMING_REG_PARM_STACK_SPACE
2329 all->reg_parm_stack_space
2330 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2331#endif
2332}
2333
2334/* If ARGS contains entries with complex types, split the entry into two
2335 entries of the component type. Return a new list of substitutions are
2336 needed, else the old list. */
2337
2338static void
2339split_complex_args (vec<tree> *args)
2340{
2341 unsigned i;
2342 tree p;
2343
2344 FOR_EACH_VEC_ELT (*args, i, p)
2345 {
2346 tree type = TREE_TYPE (p);
2347 if (TREE_CODE (type) == COMPLEX_TYPE
2348 && targetm.calls.split_complex_arg (type))
2349 {
2350 tree decl;
2351 tree subtype = TREE_TYPE (type);
2352 bool addressable = TREE_ADDRESSABLE (p);
2353
2354 /* Rewrite the PARM_DECL's type with its component. */
2355 p = copy_node (p);
2356 TREE_TYPE (p) = subtype;
2357 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2358 SET_DECL_MODE (p, VOIDmode);
2359 DECL_SIZE (p) = NULL;
2360 DECL_SIZE_UNIT (p) = NULL;
2361 /* If this arg must go in memory, put it in a pseudo here.
2362 We can't allow it to go in memory as per normal parms,
2363 because the usual place might not have the imag part
2364 adjacent to the real part. */
2365 DECL_ARTIFICIAL (p) = addressable;
2366 DECL_IGNORED_P (p) = addressable;
2367 TREE_ADDRESSABLE (p) = 0;
2368 layout_decl (p, 0);
2369 (*args)[i] = p;
2370
2371 /* Build a second synthetic decl. */
2372 decl = build_decl (EXPR_LOCATION (p),
2373 PARM_DECL, NULL_TREE, subtype);
2374 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2375 DECL_ARTIFICIAL (decl) = addressable;
2376 DECL_IGNORED_P (decl) = addressable;
2377 layout_decl (decl, 0);
2378 args->safe_insert (ix: ++i, obj: decl);
2379 }
2380 }
2381}
2382
2383/* A subroutine of assign_parms. Adjust the parameter list to incorporate
2384 the hidden struct return argument, and (abi willing) complex args.
2385 Return the new parameter list. */
2386
2387static vec<tree>
2388assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2389{
2390 tree fndecl = current_function_decl;
2391 tree fntype = TREE_TYPE (fndecl);
2392 vec<tree> fnargs = vNULL;
2393 tree arg;
2394
2395 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2396 fnargs.safe_push (obj: arg);
2397
2398 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2399
2400 /* If struct value address is treated as the first argument, make it so. */
2401 if (aggregate_value_p (DECL_RESULT (fndecl), fntype: fndecl)
2402 && ! cfun->returns_pcc_struct
2403 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2404 {
2405 tree type = build_pointer_type (TREE_TYPE (fntype));
2406 tree decl;
2407
2408 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2409 PARM_DECL, get_identifier (".result_ptr"), type);
2410 DECL_ARG_TYPE (decl) = type;
2411 DECL_ARTIFICIAL (decl) = 1;
2412 DECL_NAMELESS (decl) = 1;
2413 TREE_CONSTANT (decl) = 1;
2414 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2415 changes, the end of the RESULT_DECL handling block in
2416 use_register_for_decl must be adjusted to match. */
2417
2418 DECL_CHAIN (decl) = all->orig_fnargs;
2419 all->orig_fnargs = decl;
2420 fnargs.safe_insert (ix: 0, obj: decl);
2421
2422 all->function_result_decl = decl;
2423 }
2424
2425 /* If the target wants to split complex arguments into scalars, do so. */
2426 if (targetm.calls.split_complex_arg)
2427 split_complex_args (args: &fnargs);
2428
2429 return fnargs;
2430}
2431
2432/* A subroutine of assign_parms. Examine PARM and pull out type and mode
2433 data for the parameter. Incorporate ABI specifics such as pass-by-
2434 reference and type promotion. */
2435
2436static void
2437assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2438 struct assign_parm_data_one *data)
2439{
2440 int unsignedp;
2441
2442 *data = assign_parm_data_one ();
2443
2444 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2445 if (!cfun->stdarg)
2446 data->arg.named = 1; /* No variadic parms. */
2447 else if (DECL_CHAIN (parm))
2448 data->arg.named = 1; /* Not the last non-variadic parm. */
2449 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2450 data->arg.named = 1; /* Only variadic ones are unnamed. */
2451 else
2452 data->arg.named = 0; /* Treat as variadic. */
2453
2454 data->nominal_type = TREE_TYPE (parm);
2455 data->arg.type = DECL_ARG_TYPE (parm);
2456
2457 /* Look out for errors propagating this far. Also, if the parameter's
2458 type is void then its value doesn't matter. */
2459 if (TREE_TYPE (parm) == error_mark_node
2460 /* This can happen after weird syntax errors
2461 or if an enum type is defined among the parms. */
2462 || TREE_CODE (parm) != PARM_DECL
2463 || data->arg.type == NULL
2464 || VOID_TYPE_P (data->nominal_type))
2465 {
2466 data->nominal_type = data->arg.type = void_type_node;
2467 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2468 return;
2469 }
2470
2471 /* Find mode of arg as it is passed, and mode of arg as it should be
2472 during execution of this function. */
2473 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2474 data->nominal_mode = TYPE_MODE (data->nominal_type);
2475
2476 /* If the parm is to be passed as a transparent union or record, use the
2477 type of the first field for the tests below. We have already verified
2478 that the modes are the same. */
2479 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2480 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2481 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2482
2483 /* See if this arg was passed by invisible reference. */
2484 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2485 {
2486 data->nominal_type = data->arg.type;
2487 data->passed_mode = data->nominal_mode = data->arg.mode;
2488 }
2489
2490 /* Find mode as it is passed by the ABI. */
2491 unsignedp = TYPE_UNSIGNED (data->arg.type);
2492 data->arg.mode
2493 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2494 TREE_TYPE (current_function_decl), 0);
2495}
2496
2497/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2498
2499static void
2500assign_parms_setup_varargs (struct assign_parm_data_all *all,
2501 struct assign_parm_data_one *data, bool no_rtl)
2502{
2503 int varargs_pretend_bytes = 0;
2504
2505 function_arg_info last_named_arg = data->arg;
2506 last_named_arg.named = true;
2507 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2508 &varargs_pretend_bytes, no_rtl);
2509
2510 /* If the back-end has requested extra stack space, record how much is
2511 needed. Do not change pretend_args_size otherwise since it may be
2512 nonzero from an earlier partial argument. */
2513 if (varargs_pretend_bytes > 0)
2514 all->pretend_args_size = varargs_pretend_bytes;
2515}
2516
2517/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2518 the incoming location of the current parameter. */
2519
2520static void
2521assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2522 struct assign_parm_data_one *data)
2523{
2524 HOST_WIDE_INT pretend_bytes = 0;
2525 rtx entry_parm;
2526 bool in_regs;
2527
2528 if (data->arg.mode == VOIDmode)
2529 {
2530 data->entry_parm = data->stack_parm = const0_rtx;
2531 return;
2532 }
2533
2534 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2535 data->arg.type);
2536
2537 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2538 data->arg);
2539 if (entry_parm == 0)
2540 data->arg.mode = data->passed_mode;
2541
2542 /* Determine parm's home in the stack, in case it arrives in the stack
2543 or we should pretend it did. Compute the stack position and rtx where
2544 the argument arrives and its size.
2545
2546 There is one complexity here: If this was a parameter that would
2547 have been passed in registers, but wasn't only because it is
2548 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2549 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2550 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2551 as it was the previous time. */
2552 in_regs = (entry_parm != 0);
2553#ifdef STACK_PARMS_IN_REG_PARM_AREA
2554 in_regs = true;
2555#endif
2556 if (!in_regs && !data->arg.named)
2557 {
2558 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2559 {
2560 rtx tem;
2561 function_arg_info named_arg = data->arg;
2562 named_arg.named = true;
2563 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2564 named_arg);
2565 in_regs = tem != NULL;
2566 }
2567 }
2568
2569 /* If this parameter was passed both in registers and in the stack, use
2570 the copy on the stack. */
2571 if (targetm.calls.must_pass_in_stack (data->arg))
2572 entry_parm = 0;
2573
2574 if (entry_parm)
2575 {
2576 int partial;
2577
2578 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2579 data->partial = partial;
2580
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2584 {
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2588
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2592
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2599
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2603
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2606
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2610 }
2611 }
2612
2613 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2617
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2622
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2627
2628 data->entry_parm = entry_parm;
2629}
2630
2631/* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2633
2634static bool
2635assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2637{
2638 /* Trivially true if we've no incoming register. */
2639 if (data->entry_parm == NULL)
2640 ;
2641 /* Also true if we're partially in registers and partially not,
2642 since we've arranged to drop the entire argument on the stack. */
2643 else if (data->partial != 0)
2644 ;
2645 /* Also true if the target says that it's passed in both registers
2646 and on the stack. */
2647 else if (GET_CODE (data->entry_parm) == PARALLEL
2648 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2649 ;
2650 /* Also true if the target says that there's stack allocated for
2651 all register parameters. */
2652 else if (all->reg_parm_stack_space > 0)
2653 ;
2654 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2655 else
2656 return false;
2657
2658 all->stack_args_size.constant += data->locate.size.constant;
2659 if (data->locate.size.var)
2660 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2661
2662 return true;
2663}
2664
2665/* A subroutine of assign_parms. Given that this parameter is allocated
2666 stack space by the ABI, find it. */
2667
2668static void
2669assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2670{
2671 rtx offset_rtx, stack_parm;
2672 unsigned int align, boundary;
2673
2674 /* If we're passing this arg using a reg, make its stack home the
2675 aligned stack slot. */
2676 if (data->entry_parm)
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2678 else
2679 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2680
2681 stack_parm = crtl->args.internal_arg_pointer;
2682 if (offset_rtx != const0_rtx)
2683 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2684 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2685
2686 if (!data->arg.pass_by_reference)
2687 {
2688 set_mem_attributes (stack_parm, parm, 1);
2689 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2690 while promoted mode's size is needed. */
2691 if (data->arg.mode != BLKmode
2692 && data->arg.mode != DECL_MODE (parm))
2693 {
2694 set_mem_size (stack_parm, GET_MODE_SIZE (mode: data->arg.mode));
2695 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2696 {
2697 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2698 innermode: data->arg.mode);
2699 if (maybe_ne (a: offset, b: 0))
2700 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2701 }
2702 }
2703 }
2704
2705 boundary = data->locate.boundary;
2706 align = BITS_PER_UNIT;
2707
2708 /* If we're padding upward, we know that the alignment of the slot
2709 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2710 intentionally forcing upward padding. Otherwise we have to come
2711 up with a guess at the alignment based on OFFSET_RTX. */
2712 poly_int64 offset;
2713 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2714 align = boundary;
2715 else if (data->locate.where_pad == PAD_UPWARD)
2716 {
2717 align = boundary;
2718 /* If the argument offset is actually more aligned than the nominal
2719 stack slot boundary, take advantage of that excess alignment.
2720 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2721 if (poly_int_rtx_p (x: offset_rtx, res: &offset)
2722 && known_eq (STACK_POINTER_OFFSET, 0))
2723 {
2724 unsigned int offset_align = known_alignment (a: offset) * BITS_PER_UNIT;
2725 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2726 offset_align = STACK_BOUNDARY;
2727 align = MAX (align, offset_align);
2728 }
2729 }
2730 else if (poly_int_rtx_p (x: offset_rtx, res: &offset))
2731 {
2732 align = least_bit_hwi (x: boundary);
2733 unsigned int offset_align = known_alignment (a: offset) * BITS_PER_UNIT;
2734 if (offset_align != 0)
2735 align = MIN (align, offset_align);
2736 }
2737 set_mem_align (stack_parm, align);
2738
2739 if (data->entry_parm)
2740 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2741
2742 data->stack_parm = stack_parm;
2743}
2744
2745/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2746 always valid and contiguous. */
2747
2748static void
2749assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2750{
2751 rtx entry_parm = data->entry_parm;
2752 rtx stack_parm = data->stack_parm;
2753
2754 /* If this parm was passed part in regs and part in memory, pretend it
2755 arrived entirely in memory by pushing the register-part onto the stack.
2756 In the special case of a DImode or DFmode that is split, we could put
2757 it together in a pseudoreg directly, but for now that's not worth
2758 bothering with. */
2759 if (data->partial != 0)
2760 {
2761 /* Handle calls that pass values in multiple non-contiguous
2762 locations. The Irix 6 ABI has examples of this. */
2763 if (GET_CODE (entry_parm) == PARALLEL)
2764 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2765 data->arg.type, int_size_in_bytes (data->arg.type));
2766 else
2767 {
2768 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2769 move_block_from_reg (REGNO (entry_parm),
2770 validize_mem (copy_rtx (stack_parm)),
2771 data->partial / UNITS_PER_WORD);
2772 }
2773
2774 entry_parm = stack_parm;
2775 }
2776
2777 /* If we didn't decide this parm came in a register, by default it came
2778 on the stack. */
2779 else if (entry_parm == NULL)
2780 entry_parm = stack_parm;
2781
2782 /* When an argument is passed in multiple locations, we can't make use
2783 of this information, but we can save some copying if the whole argument
2784 is passed in a single register. */
2785 else if (GET_CODE (entry_parm) == PARALLEL
2786 && data->nominal_mode != BLKmode
2787 && data->passed_mode != BLKmode)
2788 {
2789 size_t i, len = XVECLEN (entry_parm, 0);
2790
2791 for (i = 0; i < len; i++)
2792 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2793 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2794 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2795 == data->passed_mode)
2796 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2797 {
2798 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2799 break;
2800 }
2801 }
2802
2803 data->entry_parm = entry_parm;
2804}
2805
2806/* A subroutine of assign_parms. Reconstitute any values which were
2807 passed in multiple registers and would fit in a single register. */
2808
2809static void
2810assign_parm_remove_parallels (struct assign_parm_data_one *data)
2811{
2812 rtx entry_parm = data->entry_parm;
2813
2814 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2815 This can be done with register operations rather than on the
2816 stack, even if we will store the reconstituted parameter on the
2817 stack later. */
2818 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2819 {
2820 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2821 emit_group_store (parmreg, entry_parm, data->arg.type,
2822 GET_MODE_SIZE (GET_MODE (entry_parm)));
2823 entry_parm = parmreg;
2824 }
2825
2826 data->entry_parm = entry_parm;
2827}
2828
2829/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2830 always valid and properly aligned. */
2831
2832static void
2833assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2834{
2835 rtx stack_parm = data->stack_parm;
2836
2837 /* If we can't trust the parm stack slot to be aligned enough for its
2838 ultimate type, don't use that slot after entry. We'll make another
2839 stack slot, if we need one. */
2840 if (stack_parm
2841 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2842 && ((optab_handler (op: movmisalign_optab, mode: data->nominal_mode)
2843 != CODE_FOR_nothing)
2844 || targetm.slow_unaligned_access (data->nominal_mode,
2845 MEM_ALIGN (stack_parm))))
2846 || (data->nominal_type
2847 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2848 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2849 stack_parm = NULL;
2850
2851 /* If parm was passed in memory, and we need to convert it on entry,
2852 don't store it back in that same slot. */
2853 else if (data->entry_parm == stack_parm
2854 && data->nominal_mode != BLKmode
2855 && data->nominal_mode != data->passed_mode)
2856 stack_parm = NULL;
2857
2858 /* If stack protection is in effect for this function, don't leave any
2859 pointers in their passed stack slots. */
2860 else if (crtl->stack_protect_guard
2861 && (flag_stack_protect == SPCT_FLAG_ALL
2862 || data->arg.pass_by_reference
2863 || POINTER_TYPE_P (data->nominal_type)))
2864 stack_parm = NULL;
2865
2866 data->stack_parm = stack_parm;
2867}
2868
2869/* A subroutine of assign_parms. Return true if the current parameter
2870 should be stored as a BLKmode in the current frame. */
2871
2872static bool
2873assign_parm_setup_block_p (struct assign_parm_data_one *data)
2874{
2875 if (data->nominal_mode == BLKmode)
2876 return true;
2877 if (GET_MODE (data->entry_parm) == BLKmode)
2878 return true;
2879
2880#ifdef BLOCK_REG_PADDING
2881 /* Only assign_parm_setup_block knows how to deal with register arguments
2882 that are padded at the least significant end. */
2883 if (REG_P (data->entry_parm)
2884 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2885 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2886 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2887 return true;
2888#endif
2889
2890 return false;
2891}
2892
2893/* A subroutine of assign_parms. Arrange for the parameter to be
2894 present and valid in DATA->STACK_RTL. */
2895
2896static void
2897assign_parm_setup_block (struct assign_parm_data_all *all,
2898 tree parm, struct assign_parm_data_one *data)
2899{
2900 rtx entry_parm = data->entry_parm;
2901 rtx stack_parm = data->stack_parm;
2902 rtx target_reg = NULL_RTX;
2903 bool in_conversion_seq = false;
2904 HOST_WIDE_INT size;
2905 HOST_WIDE_INT size_stored;
2906
2907 if (GET_CODE (entry_parm) == PARALLEL)
2908 entry_parm = emit_group_move_into_temps (entry_parm);
2909
2910 /* If we want the parameter in a pseudo, don't use a stack slot. */
2911 if (is_gimple_reg (parm) && use_register_for_decl (decl: parm))
2912 {
2913 tree def = ssa_default_def (cfun, parm);
2914 gcc_assert (def);
2915 machine_mode mode = promote_ssa_mode (def, NULL);
2916 rtx reg = gen_reg_rtx (mode);
2917 if (GET_CODE (reg) != CONCAT)
2918 stack_parm = reg;
2919 else
2920 {
2921 target_reg = reg;
2922 /* Avoid allocating a stack slot, if there isn't one
2923 preallocated by the ABI. It might seem like we should
2924 always prefer a pseudo, but converting between
2925 floating-point and integer modes goes through the stack
2926 on various machines, so it's better to use the reserved
2927 stack slot than to risk wasting it and allocating more
2928 for the conversion. */
2929 if (stack_parm == NULL_RTX)
2930 {
2931 int save = generating_concat_p;
2932 generating_concat_p = 0;
2933 stack_parm = gen_reg_rtx (mode);
2934 generating_concat_p = save;
2935 }
2936 }
2937 data->stack_parm = NULL;
2938 }
2939
2940 size = int_size_in_bytes (data->arg.type);
2941 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2942 if (stack_parm == 0)
2943 {
2944 HOST_WIDE_INT parm_align
2945 = (STRICT_ALIGNMENT
2946 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2947
2948 SET_DECL_ALIGN (parm, parm_align);
2949 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2950 {
2951 rtx allocsize = gen_int_mode (size_stored, Pmode);
2952 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2953 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2954 MAX_SUPPORTED_STACK_ALIGNMENT);
2955 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2956 DECL_ALIGN (parm));
2957 mark_reg_pointer (addr, DECL_ALIGN (parm));
2958 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2959 MEM_NOTRAP_P (stack_parm) = 1;
2960 }
2961 else
2962 stack_parm = assign_stack_local (BLKmode, size: size_stored,
2963 DECL_ALIGN (parm));
2964 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2965 PUT_MODE (x: stack_parm, GET_MODE (entry_parm));
2966 set_mem_attributes (stack_parm, parm, 1);
2967 }
2968
2969 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2970 calls that pass values in multiple non-contiguous locations. */
2971 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2972 {
2973 rtx mem;
2974
2975 /* Note that we will be storing an integral number of words.
2976 So we have to be careful to ensure that we allocate an
2977 integral number of words. We do this above when we call
2978 assign_stack_local if space was not allocated in the argument
2979 list. If it was, this will not work if PARM_BOUNDARY is not
2980 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2981 if it becomes a problem. Exception is when BLKmode arrives
2982 with arguments not conforming to word_mode. */
2983
2984 if (data->stack_parm == 0)
2985 ;
2986 else if (GET_CODE (entry_parm) == PARALLEL)
2987 ;
2988 else
2989 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2990
2991 mem = validize_mem (copy_rtx (stack_parm));
2992
2993 /* Handle values in multiple non-contiguous locations. */
2994 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2995 emit_group_store (mem, entry_parm, data->arg.type, size);
2996 else if (GET_CODE (entry_parm) == PARALLEL)
2997 {
2998 push_to_sequence2 (all->first_conversion_insn,
2999 all->last_conversion_insn);
3000 emit_group_store (mem, entry_parm, data->arg.type, size);
3001 all->first_conversion_insn = get_insns ();
3002 all->last_conversion_insn = get_last_insn ();
3003 end_sequence ();
3004 in_conversion_seq = true;
3005 }
3006
3007 else if (size == 0)
3008 ;
3009
3010 /* If SIZE is that of a mode no bigger than a word, just use
3011 that mode's store operation. */
3012 else if (size <= UNITS_PER_WORD)
3013 {
3014 unsigned int bits = size * BITS_PER_UNIT;
3015 machine_mode mode = int_mode_for_size (size: bits, limit: 0).else_blk ();
3016
3017 if (mode != BLKmode
3018#ifdef BLOCK_REG_PADDING
3019 && (size == UNITS_PER_WORD
3020 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3021 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3022#endif
3023 )
3024 {
3025 rtx reg;
3026
3027 /* We are really truncating a word_mode value containing
3028 SIZE bytes into a value of mode MODE. If such an
3029 operation requires no actual instructions, we can refer
3030 to the value directly in mode MODE, otherwise we must
3031 start with the register in word_mode and explicitly
3032 convert it. */
3033 if (mode == word_mode
3034 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3035 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3036 else
3037 {
3038 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3039 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3040 }
3041
3042 /* We use adjust_address to get a new MEM with the mode
3043 changed. adjust_address is better than change_address
3044 for this purpose because adjust_address does not lose
3045 the MEM_EXPR associated with the MEM.
3046
3047 If the MEM_EXPR is lost, then optimizations like DSE
3048 assume the MEM escapes and thus is not subject to DSE. */
3049 emit_move_insn (adjust_address (mem, mode, 0), reg);
3050 }
3051
3052#ifdef BLOCK_REG_PADDING
3053 /* Storing the register in memory as a full word, as
3054 move_block_from_reg below would do, and then using the
3055 MEM in a smaller mode, has the effect of shifting right
3056 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3057 shifting must be explicit. */
3058 else if (!MEM_P (mem))
3059 {
3060 rtx x;
3061
3062 /* If the assert below fails, we should have taken the
3063 mode != BLKmode path above, unless we have downward
3064 padding of smaller-than-word arguments on a machine
3065 with little-endian bytes, which would likely require
3066 additional changes to work correctly. */
3067 gcc_checking_assert (BYTES_BIG_ENDIAN
3068 && (BLOCK_REG_PADDING (mode,
3069 data->arg.type, 1)
3070 == PAD_UPWARD));
3071
3072 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3073
3074 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3075 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3076 NULL_RTX, 1);
3077 x = force_reg (word_mode, x);
3078 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3079
3080 emit_move_insn (mem, x);
3081 }
3082#endif
3083
3084 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3085 machine must be aligned to the left before storing
3086 to memory. Note that the previous test doesn't
3087 handle all cases (e.g. SIZE == 3). */
3088 else if (size != UNITS_PER_WORD
3089#ifdef BLOCK_REG_PADDING
3090 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3091 == PAD_DOWNWARD)
3092#else
3093 && BYTES_BIG_ENDIAN
3094#endif
3095 )
3096 {
3097 rtx tem, x;
3098 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3099 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3100
3101 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3102 tem = change_address (mem, word_mode, 0);
3103 emit_move_insn (tem, x);
3104 }
3105 else
3106 move_block_from_reg (REGNO (entry_parm), mem,
3107 size_stored / UNITS_PER_WORD);
3108 }
3109 else if (!MEM_P (mem))
3110 {
3111 gcc_checking_assert (size > UNITS_PER_WORD);
3112#ifdef BLOCK_REG_PADDING
3113 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3114 data->arg.type, 0)
3115 == PAD_UPWARD);
3116#endif
3117 emit_move_insn (mem, entry_parm);
3118 }
3119 else
3120 move_block_from_reg (REGNO (entry_parm), mem,
3121 size_stored / UNITS_PER_WORD);
3122 }
3123 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3124 {
3125 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3126 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3127 BLOCK_OP_NORMAL);
3128 all->first_conversion_insn = get_insns ();
3129 all->last_conversion_insn = get_last_insn ();
3130 end_sequence ();
3131 in_conversion_seq = true;
3132 }
3133
3134 if (target_reg)
3135 {
3136 if (!in_conversion_seq)
3137 emit_move_insn (target_reg, stack_parm);
3138 else
3139 {
3140 push_to_sequence2 (all->first_conversion_insn,
3141 all->last_conversion_insn);
3142 emit_move_insn (target_reg, stack_parm);
3143 all->first_conversion_insn = get_insns ();
3144 all->last_conversion_insn = get_last_insn ();
3145 end_sequence ();
3146 }
3147 stack_parm = target_reg;
3148 }
3149
3150 data->stack_parm = stack_parm;
3151 set_parm_rtl (parm, stack_parm);
3152}
3153
3154/* A subroutine of assign_parms. Allocate a pseudo to hold the current
3155 parameter. Get it there. Perform all ABI specified conversions. */
3156
3157static void
3158assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3159 struct assign_parm_data_one *data)
3160{
3161 rtx parmreg, validated_mem;
3162 rtx equiv_stack_parm;
3163 machine_mode promoted_nominal_mode;
3164 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3165 bool did_conversion = false;
3166 bool need_conversion, moved;
3167 enum insn_code icode;
3168 rtx rtl;
3169
3170 /* Store the parm in a pseudoregister during the function, but we may
3171 need to do it in a wider mode. Using 2 here makes the result
3172 consistent with promote_decl_mode and thus expand_expr_real_1. */
3173 promoted_nominal_mode
3174 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3175 TREE_TYPE (current_function_decl), 2);
3176
3177 parmreg = gen_reg_rtx (promoted_nominal_mode);
3178 if (!DECL_ARTIFICIAL (parm))
3179 mark_user_reg (parmreg);
3180
3181 /* If this was an item that we received a pointer to,
3182 set rtl appropriately. */
3183 if (data->arg.pass_by_reference)
3184 {
3185 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3186 set_mem_attributes (rtl, parm, 1);
3187 }
3188 else
3189 rtl = parmreg;
3190
3191 assign_parm_remove_parallels (data);
3192
3193 /* Copy the value into the register, thus bridging between
3194 assign_parm_find_data_types and expand_expr_real_1. */
3195
3196 equiv_stack_parm = data->stack_parm;
3197 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3198
3199 need_conversion = (data->nominal_mode != data->passed_mode
3200 || promoted_nominal_mode != data->arg.mode);
3201 moved = false;
3202
3203 if (need_conversion
3204 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3205 && data->nominal_mode == data->passed_mode
3206 && data->nominal_mode == GET_MODE (data->entry_parm))
3207 {
3208 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3209 mode, by the caller. We now have to convert it to
3210 NOMINAL_MODE, if different. However, PARMREG may be in
3211 a different mode than NOMINAL_MODE if it is being stored
3212 promoted.
3213
3214 If ENTRY_PARM is a hard register, it might be in a register
3215 not valid for operating in its mode (e.g., an odd-numbered
3216 register for a DFmode). In that case, moves are the only
3217 thing valid, so we can't do a convert from there. This
3218 occurs when the calling sequence allow such misaligned
3219 usages.
3220
3221 In addition, the conversion may involve a call, which could
3222 clobber parameters which haven't been copied to pseudo
3223 registers yet.
3224
3225 First, we try to emit an insn which performs the necessary
3226 conversion. We verify that this insn does not clobber any
3227 hard registers. */
3228
3229 rtx op0, op1;
3230
3231 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3232 unsignedp);
3233
3234 op0 = parmreg;
3235 op1 = validated_mem;
3236 if (icode != CODE_FOR_nothing
3237 && insn_operand_matches (icode, opno: 0, operand: op0)
3238 && insn_operand_matches (icode, opno: 1, operand: op1))
3239 {
3240 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3241 rtx_insn *insn, *insns;
3242 rtx t = op1;
3243 HARD_REG_SET hardregs;
3244
3245 start_sequence ();
3246 /* If op1 is a hard register that is likely spilled, first
3247 force it into a pseudo, otherwise combiner might extend
3248 its lifetime too much. */
3249 if (GET_CODE (t) == SUBREG)
3250 t = SUBREG_REG (t);
3251 if (REG_P (t)
3252 && HARD_REGISTER_P (t)
3253 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3254 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3255 {
3256 t = gen_reg_rtx (GET_MODE (op1));
3257 emit_move_insn (t, op1);
3258 }
3259 else
3260 t = op1;
3261 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3262 data->passed_mode, unsignedp);
3263 emit_insn (pat);
3264 insns = get_insns ();
3265
3266 moved = true;
3267 CLEAR_HARD_REG_SET (set&: hardregs);
3268 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3269 {
3270 if (INSN_P (insn))
3271 note_stores (insn, record_hard_reg_sets, &hardregs);
3272 if (!hard_reg_set_empty_p (x: hardregs))
3273 moved = false;
3274 }
3275
3276 end_sequence ();
3277
3278 if (moved)
3279 {
3280 emit_insn (insns);
3281 if (equiv_stack_parm != NULL_RTX)
3282 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3283 equiv_stack_parm);
3284 }
3285 }
3286 }
3287
3288 if (moved)
3289 /* Nothing to do. */
3290 ;
3291 else if (need_conversion)
3292 {
3293 /* We did not have an insn to convert directly, or the sequence
3294 generated appeared unsafe. We must first copy the parm to a
3295 pseudo reg, and save the conversion until after all
3296 parameters have been moved. */
3297
3298 int save_tree_used;
3299 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3300
3301 emit_move_insn (tempreg, validated_mem);
3302
3303 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3304 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3305
3306 if (partial_subreg_p (x: tempreg)
3307 && GET_MODE (tempreg) == data->nominal_mode
3308 && REG_P (SUBREG_REG (tempreg))
3309 && data->nominal_mode == data->passed_mode
3310 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3311 {
3312 /* The argument is already sign/zero extended, so note it
3313 into the subreg. */
3314 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3315 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3316 }
3317
3318 /* TREE_USED gets set erroneously during expand_assignment. */
3319 save_tree_used = TREE_USED (parm);
3320 SET_DECL_RTL (parm, rtl);
3321 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3322 SET_DECL_RTL (parm, NULL_RTX);
3323 TREE_USED (parm) = save_tree_used;
3324 all->first_conversion_insn = get_insns ();
3325 all->last_conversion_insn = get_last_insn ();
3326 end_sequence ();
3327
3328 did_conversion = true;
3329 }
3330 else if (MEM_P (data->entry_parm)
3331 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3332 > MEM_ALIGN (data->entry_parm)
3333 && (((icode = optab_handler (op: movmisalign_optab,
3334 mode: promoted_nominal_mode))
3335 != CODE_FOR_nothing)
3336 || targetm.slow_unaligned_access (promoted_nominal_mode,
3337 MEM_ALIGN (data->entry_parm))))
3338 {
3339 if (icode != CODE_FOR_nothing)
3340 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3341 else
3342 rtl = parmreg = extract_bit_field (validated_mem,
3343 GET_MODE_BITSIZE (mode: promoted_nominal_mode), 0,
3344 unsignedp, parmreg,
3345 promoted_nominal_mode, VOIDmode, false, NULL);
3346 }
3347 else
3348 emit_move_insn (parmreg, validated_mem);
3349
3350 /* If we were passed a pointer but the actual value can live in a register,
3351 retrieve it and use it directly. Note that we cannot use nominal_mode,
3352 because it will have been set to Pmode above, we must use the actual mode
3353 of the parameter instead. */
3354 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3355 {
3356 /* Use a stack slot for debugging purposes if possible. */
3357 if (use_register_for_decl (decl: parm))
3358 {
3359 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3360 mark_user_reg (parmreg);
3361 }
3362 else
3363 {
3364 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3365 TYPE_MODE (TREE_TYPE (parm)),
3366 TYPE_ALIGN (TREE_TYPE (parm)));
3367 parmreg
3368 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3369 size: GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3370 align);
3371 set_mem_attributes (parmreg, parm, 1);
3372 }
3373
3374 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3375 the debug info in case it is not legitimate. */
3376 if (GET_MODE (parmreg) != GET_MODE (rtl))
3377 {
3378 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3379 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3380
3381 push_to_sequence2 (all->first_conversion_insn,
3382 all->last_conversion_insn);
3383 emit_move_insn (tempreg, rtl);
3384 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3385 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3386 tempreg);
3387 all->first_conversion_insn = get_insns ();
3388 all->last_conversion_insn = get_last_insn ();
3389 end_sequence ();
3390
3391 did_conversion = true;
3392 }
3393 else
3394 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3395
3396 rtl = parmreg;
3397
3398 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3399 now the parm. */
3400 data->stack_parm = NULL;
3401 }
3402
3403 set_parm_rtl (parm, rtl);
3404
3405 /* Mark the register as eliminable if we did no conversion and it was
3406 copied from memory at a fixed offset, and the arg pointer was not
3407 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3408 offset formed an invalid address, such memory-equivalences as we
3409 make here would screw up life analysis for it. */
3410 if (data->nominal_mode == data->passed_mode
3411 && !did_conversion
3412 && data->stack_parm != 0
3413 && MEM_P (data->stack_parm)
3414 && data->locate.offset.var == 0
3415 && reg_mentioned_p (virtual_incoming_args_rtx,
3416 XEXP (data->stack_parm, 0)))
3417 {
3418 rtx_insn *linsn = get_last_insn ();
3419 rtx_insn *sinsn;
3420 rtx set;
3421
3422 /* Mark complex types separately. */
3423 if (GET_CODE (parmreg) == CONCAT)
3424 {
3425 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3426 int regnor = REGNO (XEXP (parmreg, 0));
3427 int regnoi = REGNO (XEXP (parmreg, 1));
3428 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3429 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3430 GET_MODE_SIZE (submode));
3431
3432 /* Scan backwards for the set of the real and
3433 imaginary parts. */
3434 for (sinsn = linsn; sinsn != 0;
3435 sinsn = prev_nonnote_insn (sinsn))
3436 {
3437 set = single_set (insn: sinsn);
3438 if (set == 0)
3439 continue;
3440
3441 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3443 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3444 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3445 }
3446 }
3447 else
3448 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3449 }
3450
3451 /* For pointer data type, suggest pointer register. */
3452 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3453 mark_reg_pointer (parmreg,
3454 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3455}
3456
3457/* A subroutine of assign_parms. Allocate stack space to hold the current
3458 parameter. Get it there. Perform all ABI specified conversions. */
3459
3460static void
3461assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3462 struct assign_parm_data_one *data)
3463{
3464 /* Value must be stored in the stack slot STACK_PARM during function
3465 execution. */
3466 bool to_conversion = false;
3467
3468 assign_parm_remove_parallels (data);
3469
3470 if (data->arg.mode != data->nominal_mode)
3471 {
3472 /* Conversion is required. */
3473 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3474
3475 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3476
3477 /* Some ABIs require scalar floating point modes to be passed
3478 in a wider scalar integer mode. We need to explicitly
3479 truncate to an integer mode of the correct precision before
3480 using a SUBREG to reinterpret as a floating point value. */
3481 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3482 && SCALAR_INT_MODE_P (data->arg.mode)
3483 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3484 GET_MODE_SIZE (data->arg.mode)))
3485 tempreg = convert_wider_int_to_float (mode: data->nominal_mode,
3486 imode: data->arg.mode, x: tempreg);
3487
3488 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3489 to_conversion = true;
3490
3491 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3492 TYPE_UNSIGNED (TREE_TYPE (parm)));
3493
3494 if (data->stack_parm)
3495 {
3496 poly_int64 offset
3497 = subreg_lowpart_offset (outermode: data->nominal_mode,
3498 GET_MODE (data->stack_parm));
3499 /* ??? This may need a big-endian conversion on sparc64. */
3500 data->stack_parm
3501 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3502 if (maybe_ne (a: offset, b: 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3503 set_mem_offset (data->stack_parm,
3504 MEM_OFFSET (data->stack_parm) + offset);
3505 }
3506 }
3507
3508 if (data->entry_parm != data->stack_parm)
3509 {
3510 rtx src, dest;
3511
3512 if (data->stack_parm == 0)
3513 {
3514 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3515 GET_MODE (data->entry_parm),
3516 TYPE_ALIGN (data->arg.type));
3517 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3518 && ((optab_handler (op: movmisalign_optab,
3519 GET_MODE (data->entry_parm))
3520 != CODE_FOR_nothing)
3521 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3522 align)))
3523 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3524 data->stack_parm
3525 = assign_stack_local (GET_MODE (data->entry_parm),
3526 size: GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3527 align);
3528 align = MEM_ALIGN (data->stack_parm);
3529 set_mem_attributes (data->stack_parm, parm, 1);
3530 set_mem_align (data->stack_parm, align);
3531 }
3532
3533 dest = validize_mem (copy_rtx (data->stack_parm));
3534 src = validize_mem (copy_rtx (data->entry_parm));
3535
3536 if (TYPE_EMPTY_P (data->arg.type))
3537 /* Empty types don't really need to be copied. */;
3538 else if (MEM_P (src))
3539 {
3540 /* Use a block move to handle potentially misaligned entry_parm. */
3541 if (!to_conversion)
3542 push_to_sequence2 (all->first_conversion_insn,
3543 all->last_conversion_insn);
3544 to_conversion = true;
3545
3546 emit_block_move (dest, src,
3547 GEN_INT (int_size_in_bytes (data->arg.type)),
3548 BLOCK_OP_NORMAL);
3549 }
3550 else
3551 {
3552 if (!REG_P (src))
3553 src = force_reg (GET_MODE (src), src);
3554 emit_move_insn (dest, src);
3555 }
3556 }
3557
3558 if (to_conversion)
3559 {
3560 all->first_conversion_insn = get_insns ();
3561 all->last_conversion_insn = get_last_insn ();
3562 end_sequence ();
3563 }
3564
3565 set_parm_rtl (parm, data->stack_parm);
3566}
3567
3568/* A subroutine of assign_parms. If the ABI splits complex arguments, then
3569 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3570
3571static void
3572assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3573 vec<tree> fnargs)
3574{
3575 tree parm;
3576 tree orig_fnargs = all->orig_fnargs;
3577 unsigned i = 0;
3578
3579 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3580 {
3581 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3582 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3583 {
3584 rtx tmp, real, imag;
3585 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3586
3587 real = DECL_RTL (fnargs[i]);
3588 imag = DECL_RTL (fnargs[i + 1]);
3589 if (inner != GET_MODE (real))
3590 {
3591 real = gen_lowpart_SUBREG (inner, real);
3592 imag = gen_lowpart_SUBREG (inner, imag);
3593 }
3594
3595 if (TREE_ADDRESSABLE (parm))
3596 {
3597 rtx rmem, imem;
3598 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3599 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3600 DECL_MODE (parm),
3601 TYPE_ALIGN (TREE_TYPE (parm)));
3602
3603 /* split_complex_arg put the real and imag parts in
3604 pseudos. Move them to memory. */
3605 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3606 set_mem_attributes (tmp, parm, 1);
3607 rmem = adjust_address_nv (tmp, inner, 0);
3608 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3609 push_to_sequence2 (all->first_conversion_insn,
3610 all->last_conversion_insn);
3611 emit_move_insn (rmem, real);
3612 emit_move_insn (imem, imag);
3613 all->first_conversion_insn = get_insns ();
3614 all->last_conversion_insn = get_last_insn ();
3615 end_sequence ();
3616 }
3617 else
3618 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3619 set_parm_rtl (parm, tmp);
3620
3621 real = DECL_INCOMING_RTL (fnargs[i]);
3622 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3623 if (inner != GET_MODE (real))
3624 {
3625 real = gen_lowpart_SUBREG (inner, real);
3626 imag = gen_lowpart_SUBREG (inner, imag);
3627 }
3628 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3629 set_decl_incoming_rtl (parm, tmp, false);
3630 i++;
3631 }
3632 }
3633}
3634
3635/* Assign RTL expressions to the function's parameters. This may involve
3636 copying them into registers and using those registers as the DECL_RTL. */
3637
3638static void
3639assign_parms (tree fndecl)
3640{
3641 struct assign_parm_data_all all;
3642 tree parm;
3643 vec<tree> fnargs;
3644 unsigned i;
3645
3646 crtl->args.internal_arg_pointer
3647 = targetm.calls.internal_arg_pointer ();
3648
3649 assign_parms_initialize_all (all: &all);
3650 fnargs = assign_parms_augmented_arg_list (all: &all);
3651
3652 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3653 {
3654 struct assign_parm_data_one data = {};
3655 assign_parms_setup_varargs (all: &all, data: &data, no_rtl: false);
3656 }
3657
3658 FOR_EACH_VEC_ELT (fnargs, i, parm)
3659 {
3660 struct assign_parm_data_one data;
3661
3662 /* Extract the type of PARM; adjust it according to ABI. */
3663 assign_parm_find_data_types (all: &all, parm, data: &data);
3664
3665 /* Early out for errors and void parameters. */
3666 if (data.passed_mode == VOIDmode)
3667 {
3668 SET_DECL_RTL (parm, const0_rtx);
3669 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3670 continue;
3671 }
3672
3673 /* Estimate stack alignment from parameter alignment. */
3674 if (SUPPORTS_STACK_ALIGNMENT)
3675 {
3676 unsigned int align
3677 = targetm.calls.function_arg_boundary (data.arg.mode,
3678 data.arg.type);
3679 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3680 if (TYPE_ALIGN (data.nominal_type) > align)
3681 align = MINIMUM_ALIGNMENT (data.nominal_type,
3682 TYPE_MODE (data.nominal_type),
3683 TYPE_ALIGN (data.nominal_type));
3684 if (crtl->stack_alignment_estimated < align)
3685 {
3686 gcc_assert (!crtl->stack_realign_processed);
3687 crtl->stack_alignment_estimated = align;
3688 }
3689 }
3690
3691 /* Find out where the parameter arrives in this function. */
3692 assign_parm_find_entry_rtl (all: &all, data: &data);
3693
3694 /* Find out where stack space for this parameter might be. */
3695 if (assign_parm_is_stack_parm (all: &all, data: &data))
3696 {
3697 assign_parm_find_stack_rtl (parm, data: &data);
3698 assign_parm_adjust_entry_rtl (data: &data);
3699 /* For arguments that occupy no space in the parameter
3700 passing area, have non-zero size and have address taken,
3701 force creation of a stack slot so that they have distinct
3702 address from other parameters. */
3703 if (TYPE_EMPTY_P (data.arg.type)
3704 && TREE_ADDRESSABLE (parm)
3705 && data.entry_parm == data.stack_parm
3706 && MEM_P (data.entry_parm)
3707 && int_size_in_bytes (data.arg.type))
3708 data.stack_parm = NULL_RTX;
3709 }
3710 /* Record permanently how this parm was passed. */
3711 if (data.arg.pass_by_reference)
3712 {
3713 rtx incoming_rtl
3714 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3715 data.entry_parm);
3716 set_decl_incoming_rtl (parm, incoming_rtl, true);
3717 }
3718 else
3719 set_decl_incoming_rtl (parm, data.entry_parm, false);
3720
3721 assign_parm_adjust_stack_rtl (data: &data);
3722
3723 if (assign_parm_setup_block_p (data: &data))
3724 assign_parm_setup_block (all: &all, parm, data: &data);
3725 else if (data.arg.pass_by_reference || use_register_for_decl (decl: parm))
3726 assign_parm_setup_reg (all: &all, parm, data: &data);
3727 else
3728 assign_parm_setup_stack (all: &all, parm, data: &data);
3729
3730 if (cfun->stdarg && !DECL_CHAIN (parm))
3731 assign_parms_setup_varargs (all: &all, data: &data, no_rtl: false);
3732
3733 /* Update info on where next arg arrives in registers. */
3734 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3735 }
3736
3737 if (targetm.calls.split_complex_arg)
3738 assign_parms_unsplit_complex (all: &all, fnargs);
3739
3740 fnargs.release ();
3741
3742 /* Output all parameter conversion instructions (possibly including calls)
3743 now that all parameters have been copied out of hard registers. */
3744 emit_insn (all.first_conversion_insn);
3745
3746 /* Estimate reload stack alignment from scalar return mode. */
3747 if (SUPPORTS_STACK_ALIGNMENT)
3748 {
3749 if (DECL_RESULT (fndecl))
3750 {
3751 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3752 machine_mode mode = TYPE_MODE (type);
3753
3754 if (mode != BLKmode
3755 && mode != VOIDmode
3756 && !AGGREGATE_TYPE_P (type))
3757 {
3758 unsigned int align = GET_MODE_ALIGNMENT (mode);
3759 if (crtl->stack_alignment_estimated < align)
3760 {
3761 gcc_assert (!crtl->stack_realign_processed);
3762 crtl->stack_alignment_estimated = align;
3763 }
3764 }
3765 }
3766 }
3767
3768 /* If we are receiving a struct value address as the first argument, set up
3769 the RTL for the function result. As this might require code to convert
3770 the transmitted address to Pmode, we do this here to ensure that possible
3771 preliminary conversions of the address have been emitted already. */
3772 if (all.function_result_decl)
3773 {
3774 tree result = DECL_RESULT (current_function_decl);
3775 rtx addr = DECL_RTL (all.function_result_decl);
3776 rtx x;
3777
3778 if (DECL_BY_REFERENCE (result))
3779 {
3780 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3781 x = addr;
3782 }
3783 else
3784 {
3785 SET_DECL_VALUE_EXPR (result,
3786 build1 (INDIRECT_REF, TREE_TYPE (result),
3787 all.function_result_decl));
3788 addr = convert_memory_address (Pmode, addr);
3789 x = gen_rtx_MEM (DECL_MODE (result), addr);
3790 set_mem_attributes (x, result, 1);
3791 }
3792
3793 DECL_HAS_VALUE_EXPR_P (result) = 1;
3794
3795 set_parm_rtl (result, x);
3796 }
3797
3798 /* We have aligned all the args, so add space for the pretend args. */
3799 crtl->args.pretend_args_size = all.pretend_args_size;
3800 all.stack_args_size.constant += all.extra_pretend_bytes;
3801 crtl->args.size = all.stack_args_size.constant;
3802
3803 /* Adjust function incoming argument size for alignment and
3804 minimum length. */
3805
3806 crtl->args.size = upper_bound (crtl->args.size, b: all.reg_parm_stack_space);
3807 crtl->args.size = aligned_upper_bound (crtl->args.size,
3808 PARM_BOUNDARY / BITS_PER_UNIT);
3809
3810 if (ARGS_GROW_DOWNWARD)
3811 {
3812 crtl->args.arg_offset_rtx
3813 = (all.stack_args_size.var == 0
3814 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3815 : expand_expr (size_diffop (all.stack_args_size.var,
3816 size_int (-all.stack_args_size.constant)),
3817 NULL_RTX, VOIDmode, modifier: EXPAND_NORMAL));
3818 }
3819 else
3820 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3821
3822 /* See how many bytes, if any, of its args a function should try to pop
3823 on return. */
3824
3825 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3826 TREE_TYPE (fndecl),
3827 crtl->args.size);
3828
3829 /* For stdarg.h function, save info about
3830 regs and stack space used by the named args. */
3831
3832 crtl->args.info = all.args_so_far_v;
3833
3834 /* Set the rtx used for the function return value. Put this in its
3835 own variable so any optimizers that need this information don't have
3836 to include tree.h. Do this here so it gets done when an inlined
3837 function gets output. */
3838
3839 crtl->return_rtx
3840 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3841 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3842
3843 /* If scalar return value was computed in a pseudo-reg, or was a named
3844 return value that got dumped to the stack, copy that to the hard
3845 return register. */
3846 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3847 {
3848 tree decl_result = DECL_RESULT (fndecl);
3849 rtx decl_rtl = DECL_RTL (decl_result);
3850
3851 if (REG_P (decl_rtl)
3852 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3853 : DECL_REGISTER (decl_result))
3854 {
3855 rtx real_decl_rtl;
3856
3857 /* Unless the psABI says not to. */
3858 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3859 real_decl_rtl = NULL_RTX;
3860 else
3861 {
3862 real_decl_rtl
3863 = targetm.calls.function_value (TREE_TYPE (decl_result),
3864 fndecl, true);
3865 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3866 }
3867 /* The delay slot scheduler assumes that crtl->return_rtx
3868 holds the hard register containing the return value, not a
3869 temporary pseudo. */
3870 crtl->return_rtx = real_decl_rtl;
3871 }
3872 }
3873}
3874
3875/* Gimplify the parameter list for current_function_decl. This involves
3876 evaluating SAVE_EXPRs of variable sized parameters and generating code
3877 to implement callee-copies reference parameters. Returns a sequence of
3878 statements to add to the beginning of the function. */
3879
3880gimple_seq
3881gimplify_parameters (gimple_seq *cleanup)
3882{
3883 struct assign_parm_data_all all;
3884 tree parm;
3885 gimple_seq stmts = NULL;
3886 vec<tree> fnargs;
3887 unsigned i;
3888
3889 assign_parms_initialize_all (all: &all);
3890 fnargs = assign_parms_augmented_arg_list (all: &all);
3891
3892 FOR_EACH_VEC_ELT (fnargs, i, parm)
3893 {
3894 struct assign_parm_data_one data;
3895
3896 /* Extract the type of PARM; adjust it according to ABI. */
3897 assign_parm_find_data_types (all: &all, parm, data: &data);
3898
3899 /* Early out for errors and void parameters. */
3900 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3901 continue;
3902
3903 /* Update info on where next arg arrives in registers. */
3904 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3905
3906 /* ??? Once upon a time variable_size stuffed parameter list
3907 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3908 turned out to be less than manageable in the gimple world.
3909 Now we have to hunt them down ourselves. */
3910 gimplify_type_sizes (TREE_TYPE (parm), &stmts);
3911
3912 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3913 {
3914 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3915 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3916 }
3917
3918 if (data.arg.pass_by_reference)
3919 {
3920 tree type = TREE_TYPE (data.arg.type);
3921 function_arg_info orig_arg (type, data.arg.named);
3922 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3923 {
3924 tree local, t;
3925
3926 /* For constant-sized objects, this is trivial; for
3927 variable-sized objects, we have to play games. */
3928 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3929 && !(flag_stack_check == GENERIC_STACK_CHECK
3930 && compare_tree_int (DECL_SIZE_UNIT (parm),
3931 STACK_CHECK_MAX_VAR_SIZE) > 0))
3932 {
3933 local = create_tmp_var (type, get_name (parm));
3934 DECL_IGNORED_P (local) = 0;
3935 /* If PARM was addressable, move that flag over
3936 to the local copy, as its address will be taken,
3937 not the PARMs. Keep the parms address taken
3938 as we'll query that flag during gimplification. */
3939 if (TREE_ADDRESSABLE (parm))
3940 TREE_ADDRESSABLE (local) = 1;
3941 if (DECL_NOT_GIMPLE_REG_P (parm))
3942 DECL_NOT_GIMPLE_REG_P (local) = 1;
3943
3944 if (!is_gimple_reg (local)
3945 && flag_stack_reuse != SR_NONE)
3946 {
3947 tree clobber = build_clobber (type);
3948 gimple *clobber_stmt;
3949 clobber_stmt = gimple_build_assign (local, clobber);
3950 gimple_seq_add_stmt (cleanup, clobber_stmt);
3951 }
3952 }
3953 else
3954 {
3955 tree ptr_type, addr;
3956
3957 ptr_type = build_pointer_type (type);
3958 addr = create_tmp_reg (ptr_type, get_name (parm));
3959 DECL_IGNORED_P (addr) = 0;
3960 local = build_fold_indirect_ref (addr);
3961
3962 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3963 DECL_ALIGN (parm),
3964 max_int_size_in_bytes (type));
3965 /* The call has been built for a variable-sized object. */
3966 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3967 t = fold_convert (ptr_type, t);
3968 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3969 gimplify_and_add (t, &stmts);
3970 }
3971
3972 gimplify_assign (local, parm, &stmts);
3973
3974 SET_DECL_VALUE_EXPR (parm, local);
3975 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3976 }
3977 }
3978 }
3979
3980 fnargs.release ();
3981
3982 return stmts;
3983}
3984
3985/* Compute the size and offset from the start of the stacked arguments for a
3986 parm passed in mode PASSED_MODE and with type TYPE.
3987
3988 INITIAL_OFFSET_PTR points to the current offset into the stacked
3989 arguments.
3990
3991 The starting offset and size for this parm are returned in
3992 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3993 nonzero, the offset is that of stack slot, which is returned in
3994 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3995 padding required from the initial offset ptr to the stack slot.
3996
3997 IN_REGS is nonzero if the argument will be passed in registers. It will
3998 never be set if REG_PARM_STACK_SPACE is not defined.
3999
4000 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4001 for arguments which are passed in registers.
4002
4003 FNDECL is the function in which the argument was defined.
4004
4005 There are two types of rounding that are done. The first, controlled by
4006 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4007 argument list to be aligned to the specific boundary (in bits). This
4008 rounding affects the initial and starting offsets, but not the argument
4009 size.
4010
4011 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4012 optionally rounds the size of the parm to PARM_BOUNDARY. The
4013 initial offset is not affected by this rounding, while the size always
4014 is and the starting offset may be. */
4015
4016/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4017 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4018 callers pass in the total size of args so far as
4019 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4020
4021void
4022locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4023 int reg_parm_stack_space, int partial,
4024 tree fndecl ATTRIBUTE_UNUSED,
4025 struct args_size *initial_offset_ptr,
4026 struct locate_and_pad_arg_data *locate)
4027{
4028 tree sizetree;
4029 pad_direction where_pad;
4030 unsigned int boundary, round_boundary;
4031 int part_size_in_regs;
4032
4033 /* If we have found a stack parm before we reach the end of the
4034 area reserved for registers, skip that area. */
4035 if (! in_regs)
4036 {
4037 if (reg_parm_stack_space > 0)
4038 {
4039 if (initial_offset_ptr->var
4040 || !ordered_p (a: initial_offset_ptr->constant,
4041 b: reg_parm_stack_space))
4042 {
4043 initial_offset_ptr->var
4044 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4045 ssize_int (reg_parm_stack_space));
4046 initial_offset_ptr->constant = 0;
4047 }
4048 else
4049 initial_offset_ptr->constant
4050 = ordered_max (a: initial_offset_ptr->constant,
4051 b: reg_parm_stack_space);
4052 }
4053 }
4054
4055 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4056
4057 sizetree = (type
4058 ? arg_size_in_bytes (type)
4059 : size_int (GET_MODE_SIZE (passed_mode)));
4060 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4061 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4062 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4063 type);
4064 locate->where_pad = where_pad;
4065
4066 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4067 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4068 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4069
4070 locate->boundary = boundary;
4071
4072 if (SUPPORTS_STACK_ALIGNMENT)
4073 {
4074 /* stack_alignment_estimated can't change after stack has been
4075 realigned. */
4076 if (crtl->stack_alignment_estimated < boundary)
4077 {
4078 if (!crtl->stack_realign_processed)
4079 crtl->stack_alignment_estimated = boundary;
4080 else
4081 {
4082 /* If stack is realigned and stack alignment value
4083 hasn't been finalized, it is OK not to increase
4084 stack_alignment_estimated. The bigger alignment
4085 requirement is recorded in stack_alignment_needed
4086 below. */
4087 gcc_assert (!crtl->stack_realign_finalized
4088 && crtl->stack_realign_needed);
4089 }
4090 }
4091 }
4092
4093 if (ARGS_GROW_DOWNWARD)
4094 {
4095 locate->slot_offset.constant = -initial_offset_ptr->constant;
4096 if (initial_offset_ptr->var)
4097 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4098 initial_offset_ptr->var);
4099
4100 {
4101 tree s2 = sizetree;
4102 if (where_pad != PAD_NONE
4103 && (!tree_fits_uhwi_p (sizetree)
4104 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4105 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4106 SUB_PARM_SIZE (locate->slot_offset, s2);
4107 }
4108
4109 locate->slot_offset.constant += part_size_in_regs;
4110
4111 if (!in_regs || reg_parm_stack_space > 0)
4112 pad_to_arg_alignment (&locate->slot_offset, boundary,
4113 &locate->alignment_pad);
4114
4115 locate->size.constant = (-initial_offset_ptr->constant
4116 - locate->slot_offset.constant);
4117 if (initial_offset_ptr->var)
4118 locate->size.var = size_binop (MINUS_EXPR,
4119 size_binop (MINUS_EXPR,
4120 ssize_int (0),
4121 initial_offset_ptr->var),
4122 locate->slot_offset.var);
4123
4124 /* Pad_below needs the pre-rounded size to know how much to pad
4125 below. */
4126 locate->offset = locate->slot_offset;
4127 if (where_pad == PAD_DOWNWARD)
4128 pad_below (&locate->offset, passed_mode, sizetree);
4129
4130 }
4131 else
4132 {
4133 if (!in_regs || reg_parm_stack_space > 0)
4134 pad_to_arg_alignment (initial_offset_ptr, boundary,
4135 &locate->alignment_pad);
4136 locate->slot_offset = *initial_offset_ptr;
4137
4138#ifdef PUSH_ROUNDING
4139 if (passed_mode != BLKmode)
4140 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4141#endif
4142
4143 /* Pad_below needs the pre-rounded size to know how much to pad below
4144 so this must be done before rounding up. */
4145 locate->offset = locate->slot_offset;
4146 if (where_pad == PAD_DOWNWARD)
4147 pad_below (&locate->offset, passed_mode, sizetree);
4148
4149 if (where_pad != PAD_NONE
4150 && (!tree_fits_uhwi_p (sizetree)
4151 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4152 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4153
4154 ADD_PARM_SIZE (locate->size, sizetree);
4155
4156 locate->size.constant -= part_size_in_regs;
4157 }
4158
4159 locate->offset.constant
4160 += targetm.calls.function_arg_offset (passed_mode, type);
4161}
4162
4163/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4164 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4165
4166static void
4167pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4168 struct args_size *alignment_pad)
4169{
4170 tree save_var = NULL_TREE;
4171 poly_int64 save_constant = 0;
4172 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4173 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4174
4175#ifdef SPARC_STACK_BOUNDARY_HACK
4176 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4177 the real alignment of %sp. However, when it does this, the
4178 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4179 if (SPARC_STACK_BOUNDARY_HACK)
4180 sp_offset = 0;
4181#endif
4182
4183 if (boundary > PARM_BOUNDARY)
4184 {
4185 save_var = offset_ptr->var;
4186 save_constant = offset_ptr->constant;
4187 }
4188
4189 alignment_pad->var = NULL_TREE;
4190 alignment_pad->constant = 0;
4191
4192 if (boundary > BITS_PER_UNIT)
4193 {
4194 int misalign;
4195 if (offset_ptr->var
4196 || !known_misalignment (value: offset_ptr->constant + sp_offset,
4197 align: boundary_in_bytes, misalign: &misalign))
4198 {
4199 tree sp_offset_tree = ssize_int (sp_offset);
4200 tree offset = size_binop (PLUS_EXPR,
4201 ARGS_SIZE_TREE (*offset_ptr),
4202 sp_offset_tree);
4203 tree rounded;
4204 if (ARGS_GROW_DOWNWARD)
4205 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4206 else
4207 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4208
4209 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4210 /* ARGS_SIZE_TREE includes constant term. */
4211 offset_ptr->constant = 0;
4212 if (boundary > PARM_BOUNDARY)
4213 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4214 save_var);
4215 }
4216 else
4217 {
4218 if (ARGS_GROW_DOWNWARD)
4219 offset_ptr->constant -= misalign;
4220 else
4221 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4222
4223 if (boundary > PARM_BOUNDARY)
4224 alignment_pad->constant = offset_ptr->constant - save_constant;
4225 }
4226 }
4227}
4228
4229static void
4230pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4231{
4232 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4233 int misalign;
4234 if (passed_mode != BLKmode
4235 && known_misalignment (value: GET_MODE_SIZE (mode: passed_mode), align, misalign: &misalign))
4236 offset_ptr->constant += -misalign & (align - 1);
4237 else
4238 {
4239 if (TREE_CODE (sizetree) != INTEGER_CST
4240 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4241 {
4242 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4243 tree s2 = round_up (sizetree, align);
4244 /* Add it in. */
4245 ADD_PARM_SIZE (*offset_ptr, s2);
4246 SUB_PARM_SIZE (*offset_ptr, sizetree);
4247 }
4248 }
4249}
4250
4251
4252/* True if register REGNO was alive at a place where `setjmp' was
4253 called and was set more than once or is an argument. Such regs may
4254 be clobbered by `longjmp'. */
4255
4256static bool
4257regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4258{
4259 /* There appear to be cases where some local vars never reach the
4260 backend but have bogus regnos. */
4261 if (regno >= max_reg_num ())
4262 return false;
4263
4264 return ((REG_N_SETS (regno) > 1
4265 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4266 regno))
4267 && REGNO_REG_SET_P (setjmp_crosses, regno));
4268}
4269
4270/* Walk the tree of blocks describing the binding levels within a
4271 function and warn about variables the might be killed by setjmp or
4272 vfork. This is done after calling flow_analysis before register
4273 allocation since that will clobber the pseudo-regs to hard
4274 regs. */
4275
4276static void
4277setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4278{
4279 tree decl, sub;
4280
4281 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4282 {
4283 if (VAR_P (decl)
4284 && DECL_RTL_SET_P (decl)
4285 && REG_P (DECL_RTL (decl))
4286 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4287 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4288 " %<longjmp%> or %<vfork%>", decl);
4289 }
4290
4291 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4292 setjmp_vars_warning (setjmp_crosses, block: sub);
4293}
4294
4295/* Do the appropriate part of setjmp_vars_warning
4296 but for arguments instead of local variables. */
4297
4298static void
4299setjmp_args_warning (bitmap setjmp_crosses)
4300{
4301 tree decl;
4302 for (decl = DECL_ARGUMENTS (current_function_decl);
4303 decl; decl = DECL_CHAIN (decl))
4304 if (DECL_RTL (decl) != 0
4305 && REG_P (DECL_RTL (decl))
4306 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4307 warning (OPT_Wclobbered,
4308 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4309 decl);
4310}
4311
4312/* Generate warning messages for variables live across setjmp. */
4313
4314void
4315generate_setjmp_warnings (void)
4316{
4317 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4318
4319 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4320 || bitmap_empty_p (map: setjmp_crosses))
4321 return;
4322
4323 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4324 setjmp_args_warning (setjmp_crosses);
4325}
4326
4327
4328/* Reverse the order of elements in the fragment chain T of blocks,
4329 and return the new head of the chain (old last element).
4330 In addition to that clear BLOCK_SAME_RANGE flags when needed
4331 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4332 its super fragment origin. */
4333
4334static tree
4335block_fragments_nreverse (tree t)
4336{
4337 tree prev = 0, block, next, prev_super = 0;
4338 tree super = BLOCK_SUPERCONTEXT (t);
4339 if (BLOCK_FRAGMENT_ORIGIN (super))
4340 super = BLOCK_FRAGMENT_ORIGIN (super);
4341 for (block = t; block; block = next)
4342 {
4343 next = BLOCK_FRAGMENT_CHAIN (block);
4344 BLOCK_FRAGMENT_CHAIN (block) = prev;
4345 if ((prev && !BLOCK_SAME_RANGE (prev))
4346 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4347 != prev_super))
4348 BLOCK_SAME_RANGE (block) = 0;
4349 prev_super = BLOCK_SUPERCONTEXT (block);
4350 BLOCK_SUPERCONTEXT (block) = super;
4351 prev = block;
4352 }
4353 t = BLOCK_FRAGMENT_ORIGIN (t);
4354 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4355 != prev_super)
4356 BLOCK_SAME_RANGE (t) = 0;
4357 BLOCK_SUPERCONTEXT (t) = super;
4358 return prev;
4359}
4360
4361/* Reverse the order of elements in the chain T of blocks,
4362 and return the new head of the chain (old last element).
4363 Also do the same on subblocks and reverse the order of elements
4364 in BLOCK_FRAGMENT_CHAIN as well. */
4365
4366static tree
4367blocks_nreverse_all (tree t)
4368{
4369 tree prev = 0, block, next;
4370 for (block = t; block; block = next)
4371 {
4372 next = BLOCK_CHAIN (block);
4373 BLOCK_CHAIN (block) = prev;
4374 if (BLOCK_FRAGMENT_CHAIN (block)
4375 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4376 {
4377 BLOCK_FRAGMENT_CHAIN (block)
4378 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4379 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4380 BLOCK_SAME_RANGE (block) = 0;
4381 }
4382 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4383 prev = block;
4384 }
4385 return prev;
4386}
4387
4388
4389/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4390 and create duplicate blocks. */
4391/* ??? Need an option to either create block fragments or to create
4392 abstract origin duplicates of a source block. It really depends
4393 on what optimization has been performed. */
4394
4395void
4396reorder_blocks (void)
4397{
4398 tree block = DECL_INITIAL (current_function_decl);
4399
4400 if (block == NULL_TREE)
4401 return;
4402
4403 auto_vec<tree, 10> block_stack;
4404
4405 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4406 clear_block_marks (block);
4407
4408 /* Prune the old trees away, so that they don't get in the way. */
4409 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4410 BLOCK_CHAIN (block) = NULL_TREE;
4411
4412 /* Recreate the block tree from the note nesting. */
4413 reorder_blocks_1 (get_insns (), block, &block_stack);
4414 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4415}
4416
4417/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4418
4419void
4420clear_block_marks (tree block)
4421{
4422 while (block)
4423 {
4424 TREE_ASM_WRITTEN (block) = 0;
4425 clear_block_marks (BLOCK_SUBBLOCKS (block));
4426 block = BLOCK_CHAIN (block);
4427 }
4428}
4429
4430static void
4431reorder_blocks_1 (rtx_insn *insns, tree current_block,
4432 vec<tree> *p_block_stack)
4433{
4434 rtx_insn *insn;
4435 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4436
4437 for (insn = insns; insn; insn = NEXT_INSN (insn))
4438 {
4439 if (NOTE_P (insn))
4440 {
4441 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4442 {
4443 tree block = NOTE_BLOCK (insn);
4444 tree origin;
4445
4446 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4447 origin = block;
4448
4449 if (prev_end)
4450 BLOCK_SAME_RANGE (prev_end) = 0;
4451 prev_end = NULL_TREE;
4452
4453 /* If we have seen this block before, that means it now
4454 spans multiple address regions. Create a new fragment. */
4455 if (TREE_ASM_WRITTEN (block))
4456 {
4457 tree new_block = copy_node (block);
4458
4459 BLOCK_SAME_RANGE (new_block) = 0;
4460 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4461 BLOCK_FRAGMENT_CHAIN (new_block)
4462 = BLOCK_FRAGMENT_CHAIN (origin);
4463 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4464
4465 NOTE_BLOCK (insn) = new_block;
4466 block = new_block;
4467 }
4468
4469 if (prev_beg == current_block && prev_beg)
4470 BLOCK_SAME_RANGE (block) = 1;
4471
4472 prev_beg = origin;
4473
4474 BLOCK_SUBBLOCKS (block) = 0;
4475 TREE_ASM_WRITTEN (block) = 1;
4476 /* When there's only one block for the entire function,
4477 current_block == block and we mustn't do this, it
4478 will cause infinite recursion. */
4479 if (block != current_block)
4480 {
4481 tree super;
4482 if (block != origin)
4483 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4484 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4485 (origin))
4486 == current_block);
4487 if (p_block_stack->is_empty ())
4488 super = current_block;
4489 else
4490 {
4491 super = p_block_stack->last ();
4492 gcc_assert (super == current_block
4493 || BLOCK_FRAGMENT_ORIGIN (super)
4494 == current_block);
4495 }
4496 BLOCK_SUPERCONTEXT (block) = super;
4497 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4498 BLOCK_SUBBLOCKS (current_block) = block;
4499 current_block = origin;
4500 }
4501 p_block_stack->safe_push (obj: block);
4502 }
4503 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4504 {
4505 NOTE_BLOCK (insn) = p_block_stack->pop ();
4506 current_block = BLOCK_SUPERCONTEXT (current_block);
4507 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4508 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4509 prev_beg = NULL_TREE;
4510 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4511 ? NOTE_BLOCK (insn) : NULL_TREE;
4512 }
4513 }
4514 else
4515 {
4516 prev_beg = NULL_TREE;
4517 if (prev_end)
4518 BLOCK_SAME_RANGE (prev_end) = 0;
4519 prev_end = NULL_TREE;
4520 }
4521 }
4522}
4523
4524/* Reverse the order of elements in the chain T of blocks,
4525 and return the new head of the chain (old last element). */
4526
4527tree
4528blocks_nreverse (tree t)
4529{
4530 tree prev = 0, block, next;
4531 for (block = t; block; block = next)
4532 {
4533 next = BLOCK_CHAIN (block);
4534 BLOCK_CHAIN (block) = prev;
4535 prev = block;
4536 }
4537 return prev;
4538}
4539
4540/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4541 by modifying the last node in chain 1 to point to chain 2. */
4542
4543tree
4544block_chainon (tree op1, tree op2)
4545{
4546 tree t1;
4547
4548 if (!op1)
4549 return op2;
4550 if (!op2)
4551 return op1;
4552
4553 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4554 continue;
4555 BLOCK_CHAIN (t1) = op2;
4556
4557#ifdef ENABLE_TREE_CHECKING
4558 {
4559 tree t2;
4560 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4561 gcc_assert (t2 != t1);
4562 }
4563#endif
4564
4565 return op1;
4566}
4567
4568/* Count the subblocks of the list starting with BLOCK. If VECTOR is
4569 non-NULL, list them all into VECTOR, in a depth-first preorder
4570 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4571 blocks. */
4572
4573static int
4574all_blocks (tree block, tree *vector)
4575{
4576 int n_blocks = 0;
4577
4578 while (block)
4579 {
4580 TREE_ASM_WRITTEN (block) = 0;
4581
4582 /* Record this block. */
4583 if (vector)
4584 vector[n_blocks] = block;
4585
4586 ++n_blocks;
4587
4588 /* Record the subblocks, and their subblocks... */
4589 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4590 vector: vector ? vector + n_blocks : 0);
4591 block = BLOCK_CHAIN (block);
4592 }
4593
4594 return n_blocks;
4595}
4596
4597/* Return a vector containing all the blocks rooted at BLOCK. The
4598 number of elements in the vector is stored in N_BLOCKS_P. The
4599 vector is dynamically allocated; it is the caller's responsibility
4600 to call `free' on the pointer returned. */
4601
4602static tree *
4603get_block_vector (tree block, int *n_blocks_p)
4604{
4605 tree *block_vector;
4606
4607 *n_blocks_p = all_blocks (block, NULL);
4608 block_vector = XNEWVEC (tree, *n_blocks_p);
4609 all_blocks (block, vector: block_vector);
4610
4611 return block_vector;
4612}
4613
4614static GTY(()) int next_block_index = 2;
4615
4616/* Set BLOCK_NUMBER for all the blocks in FN. */
4617
4618void
4619number_blocks (tree fn)
4620{
4621 int i;
4622 int n_blocks;
4623 tree *block_vector;
4624
4625 block_vector = get_block_vector (DECL_INITIAL (fn), n_blocks_p: &n_blocks);
4626
4627 /* The top-level BLOCK isn't numbered at all. */
4628 for (i = 1; i < n_blocks; ++i)
4629 /* We number the blocks from two. */
4630 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4631
4632 free (ptr: block_vector);
4633
4634 return;
4635}
4636
4637/* If VAR is present in a subblock of BLOCK, return the subblock. */
4638
4639DEBUG_FUNCTION tree
4640debug_find_var_in_block_tree (tree var, tree block)
4641{
4642 tree t;
4643
4644 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4645 if (t == var)
4646 return block;
4647
4648 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4649 {
4650 tree ret = debug_find_var_in_block_tree (var, block: t);
4651 if (ret)
4652 return ret;
4653 }
4654
4655 return NULL_TREE;
4656}
4657
4658/* Keep track of whether we're in a dummy function context. If we are,
4659 we don't want to invoke the set_current_function hook, because we'll
4660 get into trouble if the hook calls target_reinit () recursively or
4661 when the initial initialization is not yet complete. */
4662
4663static bool in_dummy_function;
4664
4665/* Invoke the target hook when setting cfun. Update the optimization options
4666 if the function uses different options than the default. */
4667
4668static void
4669invoke_set_current_function_hook (tree fndecl)
4670{
4671 if (!in_dummy_function)
4672 {
4673 tree opts = ((fndecl)
4674 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4675 : optimization_default_node);
4676
4677 if (!opts)
4678 opts = optimization_default_node;
4679
4680 /* Change optimization options if needed. */
4681 if (optimization_current_node != opts)
4682 {
4683 optimization_current_node = opts;
4684 cl_optimization_restore (&global_options, &global_options_set,
4685 TREE_OPTIMIZATION (opts));
4686 }
4687
4688 targetm.set_current_function (fndecl);
4689 this_fn_optabs = this_target_optabs;
4690
4691 /* Initialize global alignment variables after op. */
4692 parse_alignment_opts ();
4693
4694 if (opts != optimization_default_node)
4695 {
4696 init_tree_optimization_optabs (opts);
4697 if (TREE_OPTIMIZATION_OPTABS (opts))
4698 this_fn_optabs = (struct target_optabs *)
4699 TREE_OPTIMIZATION_OPTABS (opts);
4700 }
4701 }
4702}
4703
4704/* cfun should never be set directly; use this function. */
4705
4706void
4707set_cfun (struct function *new_cfun, bool force)
4708{
4709 if (cfun != new_cfun || force)
4710 {
4711 cfun = new_cfun;
4712 invoke_set_current_function_hook (fndecl: new_cfun ? new_cfun->decl : NULL_TREE);
4713 redirect_edge_var_map_empty ();
4714 }
4715}
4716
4717/* Initialized with NOGC, making this poisonous to the garbage collector. */
4718
4719static vec<function *> cfun_stack;
4720
4721/* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4722 current_function_decl accordingly. */
4723
4724void
4725push_cfun (struct function *new_cfun)
4726{
4727 gcc_assert ((!cfun && !current_function_decl)
4728 || (cfun && current_function_decl == cfun->decl));
4729 cfun_stack.safe_push (obj: cfun);
4730 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4731 set_cfun (new_cfun);
4732}
4733
4734/* Pop cfun from the stack. Also set current_function_decl accordingly. */
4735
4736void
4737pop_cfun (void)
4738{
4739 struct function *new_cfun = cfun_stack.pop ();
4740 /* When in_dummy_function, we do have a cfun but current_function_decl is
4741 NULL. We also allow pushing NULL cfun and subsequently changing
4742 current_function_decl to something else and have both restored by
4743 pop_cfun. */
4744 gcc_checking_assert (in_dummy_function
4745 || !cfun
4746 || current_function_decl == cfun->decl);
4747 set_cfun (new_cfun);
4748 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4749}
4750
4751/* Return value of funcdef and increase it. */
4752int
4753get_next_funcdef_no (void)
4754{
4755 return funcdef_no++;
4756}
4757
4758/* Return value of funcdef. */
4759int
4760get_last_funcdef_no (void)
4761{
4762 return funcdef_no;
4763}
4764
4765/* Allocate and initialize the stack usage info data structure for the
4766 current function. */
4767static void
4768allocate_stack_usage_info (void)
4769{
4770 gcc_assert (!cfun->su);
4771 cfun->su = ggc_cleared_alloc<stack_usage> ();
4772 cfun->su->static_stack_size = -1;
4773}
4774
4775/* Allocate a function structure for FNDECL and set its contents
4776 to the defaults. Set cfun to the newly-allocated object.
4777 Some of the helper functions invoked during initialization assume
4778 that cfun has already been set. Therefore, assign the new object
4779 directly into cfun and invoke the back end hook explicitly at the
4780 very end, rather than initializing a temporary and calling set_cfun
4781 on it.
4782
4783 ABSTRACT_P is true if this is a function that will never be seen by
4784 the middle-end. Such functions are front-end concepts (like C++
4785 function templates) that do not correspond directly to functions
4786 placed in object files. */
4787
4788void
4789allocate_struct_function (tree fndecl, bool abstract_p)
4790{
4791 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4792
4793 cfun = ggc_cleared_alloc<function> ();
4794
4795 init_eh_for_function ();
4796
4797 if (init_machine_status)
4798 cfun->machine = (*init_machine_status) ();
4799
4800#ifdef OVERRIDE_ABI_FORMAT
4801 OVERRIDE_ABI_FORMAT (fndecl);
4802#endif
4803
4804 if (fndecl != NULL_TREE)
4805 {
4806 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4807 cfun->decl = fndecl;
4808 current_function_funcdef_no = get_next_funcdef_no ();
4809 }
4810
4811 invoke_set_current_function_hook (fndecl);
4812
4813 if (fndecl != NULL_TREE)
4814 {
4815 tree result = DECL_RESULT (fndecl);
4816
4817 if (!abstract_p)
4818 {
4819 /* Now that we have activated any function-specific attributes
4820 that might affect layout, particularly vector modes, relayout
4821 each of the parameters and the result. */
4822 relayout_decl (result);
4823 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4824 parm = DECL_CHAIN (parm))
4825 relayout_decl (parm);
4826
4827 /* Similarly relayout the function decl. */
4828 targetm.target_option.relayout_function (fndecl);
4829 }
4830
4831 if (!abstract_p && aggregate_value_p (exp: result, fntype: fndecl))
4832 {
4833#ifdef PCC_STATIC_STRUCT_RETURN
4834 cfun->returns_pcc_struct = 1;
4835#endif
4836 cfun->returns_struct = 1;
4837 }
4838
4839 cfun->stdarg = stdarg_p (fntype);
4840
4841 /* Assume all registers in stdarg functions need to be saved. */
4842 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4843 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4844
4845 /* ??? This could be set on a per-function basis by the front-end
4846 but is this worth the hassle? */
4847 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4848 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4849
4850 if (!profile_flag && !flag_instrument_function_entry_exit)
4851 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4852
4853 if (flag_callgraph_info)
4854 allocate_stack_usage_info ();
4855 }
4856
4857 /* Don't enable begin stmt markers if var-tracking at assignments is
4858 disabled. The markers make little sense without the variable
4859 binding annotations among them. */
4860 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4861 && MAY_HAVE_DEBUG_MARKER_STMTS;
4862}
4863
4864/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4865 instead of just setting it. */
4866
4867void
4868push_struct_function (tree fndecl, bool abstract_p)
4869{
4870 /* When in_dummy_function we might be in the middle of a pop_cfun and
4871 current_function_decl and cfun may not match. */
4872 gcc_assert (in_dummy_function
4873 || (!cfun && !current_function_decl)
4874 || (cfun && current_function_decl == cfun->decl));
4875 cfun_stack.safe_push (obj: cfun);
4876 current_function_decl = fndecl;
4877 allocate_struct_function (fndecl, abstract_p);
4878}
4879
4880/* Reset crtl and other non-struct-function variables to defaults as
4881 appropriate for emitting rtl at the start of a function. */
4882
4883static void
4884prepare_function_start (void)
4885{
4886 gcc_assert (!get_last_insn ());
4887
4888 if (in_dummy_function)
4889 crtl->abi = &default_function_abi;
4890 else
4891 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4892
4893 init_temp_slots ();
4894 init_emit ();
4895 init_varasm_status ();
4896 init_expr ();
4897 default_rtl_profile ();
4898
4899 if (flag_stack_usage_info && !flag_callgraph_info)
4900 allocate_stack_usage_info ();
4901
4902 cse_not_expected = ! optimize;
4903
4904 /* Caller save not needed yet. */
4905 caller_save_needed = 0;
4906
4907 /* We haven't done register allocation yet. */
4908 reg_renumber = 0;
4909
4910 /* Indicate that we have not instantiated virtual registers yet. */
4911 virtuals_instantiated = 0;
4912
4913 /* Indicate that we want CONCATs now. */
4914 generating_concat_p = 1;
4915
4916 /* Indicate we have no need of a frame pointer yet. */
4917 frame_pointer_needed = 0;
4918}
4919
4920void
4921push_dummy_function (bool with_decl)
4922{
4923 tree fn_decl, fn_type, fn_result_decl;
4924
4925 gcc_assert (!in_dummy_function);
4926 in_dummy_function = true;
4927
4928 if (with_decl)
4929 {
4930 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4931 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4932 fn_type);
4933 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4934 NULL_TREE, void_type_node);
4935 DECL_RESULT (fn_decl) = fn_result_decl;
4936 DECL_ARTIFICIAL (fn_decl) = 1;
4937 tree fn_name = get_identifier (" ");
4938 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4939 }
4940 else
4941 fn_decl = NULL_TREE;
4942
4943 push_struct_function (fndecl: fn_decl);
4944}
4945
4946/* Initialize the rtl expansion mechanism so that we can do simple things
4947 like generate sequences. This is used to provide a context during global
4948 initialization of some passes. You must call expand_dummy_function_end
4949 to exit this context. */
4950
4951void
4952init_dummy_function_start (void)
4953{
4954 push_dummy_function (with_decl: false);
4955 prepare_function_start ();
4956}
4957
4958/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4959 and initialize static variables for generating RTL for the statements
4960 of the function. */
4961
4962void
4963init_function_start (tree subr)
4964{
4965 /* Initialize backend, if needed. */
4966 initialize_rtl ();
4967
4968 prepare_function_start ();
4969 decide_function_section (subr);
4970
4971 /* Warn if this value is an aggregate type,
4972 regardless of which calling convention we are using for it. */
4973 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4974 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
4975 OPT_Waggregate_return, "function returns an aggregate");
4976}
4977
4978/* Expand code to verify the stack_protect_guard. This is invoked at
4979 the end of a function to be protected. */
4980
4981void
4982stack_protect_epilogue (void)
4983{
4984 tree guard_decl = crtl->stack_protect_guard_decl;
4985 rtx_code_label *label = gen_label_rtx ();
4986 rtx x, y;
4987 rtx_insn *seq = NULL;
4988
4989 x = expand_normal (crtl->stack_protect_guard);
4990
4991 if (targetm.have_stack_protect_combined_test () && guard_decl)
4992 {
4993 gcc_assert (DECL_P (guard_decl));
4994 y = DECL_RTL (guard_decl);
4995 /* Allow the target to compute address of Y and compare it with X without
4996 leaking Y into a register. This combined address + compare pattern
4997 allows the target to prevent spilling of any intermediate results by
4998 splitting it after register allocator. */
4999 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5000 }
5001 else
5002 {
5003 if (guard_decl)
5004 y = expand_normal (exp: guard_decl);
5005 else
5006 y = const0_rtx;
5007
5008 /* Allow the target to compare Y with X without leaking either into
5009 a register. */
5010 if (targetm.have_stack_protect_test ())
5011 seq = targetm.gen_stack_protect_test (x, y, label);
5012 }
5013
5014 if (seq)
5015 emit_insn (seq);
5016 else
5017 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5018
5019 /* The noreturn predictor has been moved to the tree level. The rtl-level
5020 predictors estimate this branch about 20%, which isn't enough to get
5021 things moved out of line. Since this is the only extant case of adding
5022 a noreturn function at the rtl level, it doesn't seem worth doing ought
5023 except adding the prediction by hand. */
5024 rtx_insn *tmp = get_last_insn ();
5025 if (JUMP_P (tmp))
5026 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5027
5028 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5029 free_temp_slots ();
5030 emit_label (label);
5031}
5032
5033/* Start the RTL for a new function, and set variables used for
5034 emitting RTL.
5035 SUBR is the FUNCTION_DECL node.
5036 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5037 the function's parameters, which must be run at any return statement. */
5038
5039bool currently_expanding_function_start;
5040void
5041expand_function_start (tree subr)
5042{
5043 currently_expanding_function_start = true;
5044
5045 /* Make sure volatile mem refs aren't considered
5046 valid operands of arithmetic insns. */
5047 init_recog_no_volatile ();
5048
5049 crtl->profile
5050 = (profile_flag
5051 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5052
5053 crtl->limit_stack
5054 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5055
5056 /* Make the label for return statements to jump to. Do not special
5057 case machines with special return instructions -- they will be
5058 handled later during jump, ifcvt, or epilogue creation. */
5059 return_label = gen_label_rtx ();
5060
5061 /* Initialize rtx used to return the value. */
5062 /* Do this before assign_parms so that we copy the struct value address
5063 before any library calls that assign parms might generate. */
5064
5065 /* Decide whether to return the value in memory or in a register. */
5066 tree res = DECL_RESULT (subr);
5067 if (aggregate_value_p (exp: res, fntype: subr))
5068 {
5069 /* Returning something that won't go in a register. */
5070 rtx value_address = 0;
5071
5072#ifdef PCC_STATIC_STRUCT_RETURN
5073 if (cfun->returns_pcc_struct)
5074 {
5075 int size = int_size_in_bytes (TREE_TYPE (res));
5076 value_address = assemble_static_space (size);
5077 }
5078 else
5079#endif
5080 {
5081 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5082 /* Expect to be passed the address of a place to store the value.
5083 If it is passed as an argument, assign_parms will take care of
5084 it. */
5085 if (sv)
5086 {
5087 value_address = gen_reg_rtx (Pmode);
5088 emit_move_insn (value_address, sv);
5089 }
5090 }
5091 if (value_address)
5092 {
5093 rtx x = value_address;
5094 if (!DECL_BY_REFERENCE (res))
5095 {
5096 x = gen_rtx_MEM (DECL_MODE (res), x);
5097 set_mem_attributes (x, res, 1);
5098 }
5099 set_parm_rtl (res, x);
5100 }
5101 }
5102 else if (DECL_MODE (res) == VOIDmode)
5103 /* If return mode is void, this decl rtl should not be used. */
5104 set_parm_rtl (res, NULL_RTX);
5105 else
5106 {
5107 /* Compute the return values into a pseudo reg, which we will copy
5108 into the true return register after the cleanups are done. */
5109 tree return_type = TREE_TYPE (res);
5110
5111 /* If we may coalesce this result, make sure it has the expected mode
5112 in case it was promoted. But we need not bother about BLKmode. */
5113 machine_mode promoted_mode
5114 = flag_tree_coalesce_vars && is_gimple_reg (res)
5115 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5116 : BLKmode;
5117
5118 if (promoted_mode != BLKmode)
5119 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5120 else if (TYPE_MODE (return_type) != BLKmode
5121 && targetm.calls.return_in_msb (return_type))
5122 /* expand_function_end will insert the appropriate padding in
5123 this case. Use the return value's natural (unpadded) mode
5124 within the function proper. */
5125 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5126 else
5127 {
5128 /* In order to figure out what mode to use for the pseudo, we
5129 figure out what the mode of the eventual return register will
5130 actually be, and use that. */
5131 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5132
5133 /* Structures that are returned in registers are not
5134 aggregate_value_p, so we may see a PARALLEL or a REG. */
5135 if (REG_P (hard_reg))
5136 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5137 else
5138 {
5139 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5140 set_parm_rtl (res, gen_group_rtx (hard_reg));
5141 }
5142 }
5143
5144 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5145 result to the real return register(s). */
5146 DECL_REGISTER (res) = 1;
5147 }
5148
5149 /* Initialize rtx for parameters and local variables.
5150 In some cases this requires emitting insns. */
5151 assign_parms (fndecl: subr);
5152
5153 /* If function gets a static chain arg, store it. */
5154 if (cfun->static_chain_decl)
5155 {
5156 tree parm = cfun->static_chain_decl;
5157 rtx local, chain;
5158 rtx_insn *insn;
5159 int unsignedp;
5160
5161 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5162 chain = targetm.calls.static_chain (current_function_decl, true);
5163
5164 set_decl_incoming_rtl (parm, chain, false);
5165 set_parm_rtl (parm, local);
5166 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5167
5168 if (GET_MODE (local) != GET_MODE (chain))
5169 {
5170 convert_move (local, chain, unsignedp);
5171 insn = get_last_insn ();
5172 }
5173 else
5174 insn = emit_move_insn (local, chain);
5175
5176 /* Mark the register as eliminable, similar to parameters. */
5177 if (MEM_P (chain)
5178 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5179 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5180
5181 /* If we aren't optimizing, save the static chain onto the stack. */
5182 if (!optimize)
5183 {
5184 tree saved_static_chain_decl
5185 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5186 DECL_NAME (parm), TREE_TYPE (parm));
5187 rtx saved_static_chain_rtx
5188 = assign_stack_local (Pmode, size: GET_MODE_SIZE (Pmode), align: 0);
5189 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5190 emit_move_insn (saved_static_chain_rtx, chain);
5191 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5192 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5193 }
5194 }
5195
5196 /* The following was moved from init_function_start.
5197 The move was supposed to make sdb output more accurate. */
5198 /* Indicate the beginning of the function body,
5199 as opposed to parm setup. */
5200 emit_note (NOTE_INSN_FUNCTION_BEG);
5201
5202 gcc_assert (NOTE_P (get_last_insn ()));
5203
5204 parm_birth_insn = get_last_insn ();
5205
5206 /* If the function receives a non-local goto, then store the
5207 bits we need to restore the frame pointer. */
5208 if (cfun->nonlocal_goto_save_area)
5209 {
5210 tree t_save;
5211 rtx r_save;
5212
5213 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5214 gcc_assert (DECL_RTL_SET_P (var));
5215
5216 t_save = build4 (ARRAY_REF,
5217 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5218 cfun->nonlocal_goto_save_area,
5219 integer_zero_node, NULL_TREE, NULL_TREE);
5220 r_save = expand_expr (exp: t_save, NULL_RTX, VOIDmode, modifier: EXPAND_WRITE);
5221 gcc_assert (GET_MODE (r_save) == Pmode);
5222
5223 emit_move_insn (r_save, hard_frame_pointer_rtx);
5224 update_nonlocal_goto_save_area ();
5225 }
5226
5227 if (crtl->profile)
5228 {
5229#ifdef PROFILE_HOOK
5230 PROFILE_HOOK (current_function_funcdef_no);
5231#endif
5232 }
5233
5234 /* If we are doing generic stack checking, the probe should go here. */
5235 if (flag_stack_check == GENERIC_STACK_CHECK)
5236 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5237
5238 currently_expanding_function_start = false;
5239}
5240
5241void
5242pop_dummy_function (void)
5243{
5244 pop_cfun ();
5245 in_dummy_function = false;
5246}
5247
5248/* Undo the effects of init_dummy_function_start. */
5249void
5250expand_dummy_function_end (void)
5251{
5252 gcc_assert (in_dummy_function);
5253
5254 /* End any sequences that failed to be closed due to syntax errors. */
5255 while (in_sequence_p ())
5256 end_sequence ();
5257
5258 /* Outside function body, can't compute type's actual size
5259 until next function's body starts. */
5260
5261 free_after_parsing (f: cfun);
5262 free_after_compilation (f: cfun);
5263 pop_dummy_function ();
5264}
5265
5266/* Helper for diddle_return_value. */
5267
5268void
5269diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5270{
5271 if (! outgoing)
5272 return;
5273
5274 if (REG_P (outgoing))
5275 (*doit) (outgoing, arg);
5276 else if (GET_CODE (outgoing) == PARALLEL)
5277 {
5278 int i;
5279
5280 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5281 {
5282 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5283
5284 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5285 (*doit) (x, arg);
5286 }
5287 }
5288}
5289
5290/* Call DOIT for each hard register used as a return value from
5291 the current function. */
5292
5293void
5294diddle_return_value (void (*doit) (rtx, void *), void *arg)
5295{
5296 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5297}
5298
5299static void
5300do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5301{
5302 emit_clobber (reg);
5303}
5304
5305void
5306clobber_return_register (void)
5307{
5308 diddle_return_value (doit: do_clobber_return_reg, NULL);
5309
5310 /* In case we do use pseudo to return value, clobber it too. */
5311 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5312 {
5313 tree decl_result = DECL_RESULT (current_function_decl);
5314 rtx decl_rtl = DECL_RTL (decl_result);
5315 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5316 {
5317 do_clobber_return_reg (reg: decl_rtl, NULL);
5318 }
5319 }
5320}
5321
5322static void
5323do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5324{
5325 emit_use (reg);
5326}
5327
5328static void
5329use_return_register (void)
5330{
5331 diddle_return_value (doit: do_use_return_reg, NULL);
5332}
5333
5334/* Generate RTL for the end of the current function. */
5335
5336void
5337expand_function_end (void)
5338{
5339 /* If arg_pointer_save_area was referenced only from a nested
5340 function, we will not have initialized it yet. Do that now. */
5341 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5342 get_arg_pointer_save_area ();
5343
5344 /* If we are doing generic stack checking and this function makes calls,
5345 do a stack probe at the start of the function to ensure we have enough
5346 space for another stack frame. */
5347 if (flag_stack_check == GENERIC_STACK_CHECK)
5348 {
5349 rtx_insn *insn, *seq;
5350
5351 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5352 if (CALL_P (insn))
5353 {
5354 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5355 start_sequence ();
5356 if (STACK_CHECK_MOVING_SP)
5357 anti_adjust_stack_and_probe (max_frame_size, true);
5358 else
5359 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5360 seq = get_insns ();
5361 end_sequence ();
5362 set_insn_locations (seq, prologue_location);
5363 emit_insn_before (seq, stack_check_probe_note);
5364 break;
5365 }
5366 }
5367
5368 /* End any sequences that failed to be closed due to syntax errors. */
5369 while (in_sequence_p ())
5370 end_sequence ();
5371
5372 clear_pending_stack_adjust ();
5373 do_pending_stack_adjust ();
5374
5375 /* Output a linenumber for the end of the function.
5376 SDB depended on this. */
5377 set_curr_insn_location (input_location);
5378
5379 /* Before the return label (if any), clobber the return
5380 registers so that they are not propagated live to the rest of
5381 the function. This can only happen with functions that drop
5382 through; if there had been a return statement, there would
5383 have either been a return rtx, or a jump to the return label.
5384
5385 We delay actual code generation after the current_function_value_rtx
5386 is computed. */
5387 rtx_insn *clobber_after = get_last_insn ();
5388
5389 /* Output the label for the actual return from the function. */
5390 emit_label (return_label);
5391
5392 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5393 {
5394 /* Let except.cc know where it should emit the call to unregister
5395 the function context for sjlj exceptions. */
5396 if (flag_exceptions)
5397 sjlj_emit_function_exit_after (get_last_insn ());
5398 }
5399
5400 /* If this is an implementation of throw, do what's necessary to
5401 communicate between __builtin_eh_return and the epilogue. */
5402 expand_eh_return ();
5403
5404 /* If stack protection is enabled for this function, check the guard. */
5405 if (crtl->stack_protect_guard
5406 && targetm.stack_protect_runtime_enabled_p ()
5407 && naked_return_label == NULL_RTX)
5408 stack_protect_epilogue ();
5409
5410 /* If scalar return value was computed in a pseudo-reg, or was a named
5411 return value that got dumped to the stack, copy that to the hard
5412 return register. */
5413 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5414 {
5415 tree decl_result = DECL_RESULT (current_function_decl);
5416 rtx decl_rtl = DECL_RTL (decl_result);
5417
5418 if ((REG_P (decl_rtl)
5419 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5420 : DECL_REGISTER (decl_result))
5421 /* Unless the psABI says not to. */
5422 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5423 {
5424 rtx real_decl_rtl = crtl->return_rtx;
5425 complex_mode cmode;
5426
5427 /* This should be set in assign_parms. */
5428 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5429
5430 /* If this is a BLKmode structure being returned in registers,
5431 then use the mode computed in expand_return. Note that if
5432 decl_rtl is memory, then its mode may have been changed,
5433 but that crtl->return_rtx has not. */
5434 if (GET_MODE (real_decl_rtl) == BLKmode)
5435 PUT_MODE (x: real_decl_rtl, GET_MODE (decl_rtl));
5436
5437 /* If a non-BLKmode return value should be padded at the least
5438 significant end of the register, shift it left by the appropriate
5439 amount. BLKmode results are handled using the group load/store
5440 machinery. */
5441 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5442 && REG_P (real_decl_rtl)
5443 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5444 {
5445 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5446 REGNO (real_decl_rtl)),
5447 decl_rtl);
5448 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5449 }
5450 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5451 {
5452 /* If expand_function_start has created a PARALLEL for decl_rtl,
5453 move the result to the real return registers. Otherwise, do
5454 a group load from decl_rtl for a named return. */
5455 if (GET_CODE (decl_rtl) == PARALLEL)
5456 emit_group_move (real_decl_rtl, decl_rtl);
5457 else
5458 emit_group_load (real_decl_rtl, decl_rtl,
5459 TREE_TYPE (decl_result),
5460 int_size_in_bytes (TREE_TYPE (decl_result)));
5461 }
5462 /* In the case of complex integer modes smaller than a word, we'll
5463 need to generate some non-trivial bitfield insertions. Do that
5464 on a pseudo and not the hard register. */
5465 else if (GET_CODE (decl_rtl) == CONCAT
5466 && is_complex_int_mode (GET_MODE (decl_rtl), cmode: &cmode)
5467 && GET_MODE_BITSIZE (mode: cmode) <= BITS_PER_WORD)
5468 {
5469 int old_generating_concat_p;
5470 rtx tmp;
5471
5472 old_generating_concat_p = generating_concat_p;
5473 generating_concat_p = 0;
5474 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5475 generating_concat_p = old_generating_concat_p;
5476
5477 emit_move_insn (tmp, decl_rtl);
5478 emit_move_insn (real_decl_rtl, tmp);
5479 }
5480 /* If a named return value dumped decl_return to memory, then
5481 we may need to re-do the PROMOTE_MODE signed/unsigned
5482 extension. */
5483 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5484 {
5485 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5486 promote_function_mode (TREE_TYPE (decl_result),
5487 GET_MODE (decl_rtl), &unsignedp,
5488 TREE_TYPE (current_function_decl), 1);
5489
5490 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5491 }
5492 else
5493 emit_move_insn (real_decl_rtl, decl_rtl);
5494 }
5495 }
5496
5497 /* If returning a structure, arrange to return the address of the value
5498 in a place where debuggers expect to find it.
5499
5500 If returning a structure PCC style,
5501 the caller also depends on this value.
5502 And cfun->returns_pcc_struct is not necessarily set. */
5503 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5504 && !targetm.calls.omit_struct_return_reg)
5505 {
5506 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5507 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5508 rtx outgoing;
5509
5510 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5511 type = TREE_TYPE (type);
5512 else
5513 value_address = XEXP (value_address, 0);
5514
5515 outgoing = targetm.calls.function_value (build_pointer_type (type),
5516 current_function_decl, true);
5517
5518 /* Mark this as a function return value so integrate will delete the
5519 assignment and USE below when inlining this function. */
5520 REG_FUNCTION_VALUE_P (outgoing) = 1;
5521
5522 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5523 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5524 value_address = convert_memory_address (mode, value_address);
5525
5526 emit_move_insn (outgoing, value_address);
5527
5528 /* Show return register used to hold result (in this case the address
5529 of the result. */
5530 crtl->return_rtx = outgoing;
5531 }
5532
5533 /* Emit the actual code to clobber return register. Don't emit
5534 it if clobber_after is a barrier, then the previous basic block
5535 certainly doesn't fall thru into the exit block. */
5536 if (!BARRIER_P (clobber_after))
5537 {
5538 start_sequence ();
5539 clobber_return_register ();
5540 rtx_insn *seq = get_insns ();
5541 end_sequence ();
5542
5543 emit_insn_after (seq, clobber_after);
5544 }
5545
5546 /* Output the label for the naked return from the function. */
5547 if (naked_return_label)
5548 emit_label (naked_return_label);
5549
5550 /* @@@ This is a kludge. We want to ensure that instructions that
5551 may trap are not moved into the epilogue by scheduling, because
5552 we don't always emit unwind information for the epilogue. */
5553 if (cfun->can_throw_non_call_exceptions
5554 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5555 emit_insn (gen_blockage ());
5556
5557 /* If stack protection is enabled for this function, check the guard. */
5558 if (crtl->stack_protect_guard
5559 && targetm.stack_protect_runtime_enabled_p ()
5560 && naked_return_label)
5561 stack_protect_epilogue ();
5562
5563 /* If we had calls to alloca, and this machine needs
5564 an accurate stack pointer to exit the function,
5565 insert some code to save and restore the stack pointer. */
5566 if (! EXIT_IGNORE_STACK
5567 && cfun->calls_alloca)
5568 {
5569 rtx tem = 0;
5570
5571 start_sequence ();
5572 emit_stack_save (SAVE_FUNCTION, &tem);
5573 rtx_insn *seq = get_insns ();
5574 end_sequence ();
5575 emit_insn_before (seq, parm_birth_insn);
5576
5577 emit_stack_restore (SAVE_FUNCTION, tem);
5578 }
5579
5580 /* ??? This should no longer be necessary since stupid is no longer with
5581 us, but there are some parts of the compiler (eg reload_combine, and
5582 sh mach_dep_reorg) that still try and compute their own lifetime info
5583 instead of using the general framework. */
5584 use_return_register ();
5585}
5586
5587rtx
5588get_arg_pointer_save_area (void)
5589{
5590 rtx ret = arg_pointer_save_area;
5591
5592 if (! ret)
5593 {
5594 ret = assign_stack_local (Pmode, size: GET_MODE_SIZE (Pmode), align: 0);
5595 arg_pointer_save_area = ret;
5596 }
5597
5598 if (! crtl->arg_pointer_save_area_init)
5599 {
5600 /* Save the arg pointer at the beginning of the function. The
5601 generated stack slot may not be a valid memory address, so we
5602 have to check it and fix it if necessary. */
5603 start_sequence ();
5604 emit_move_insn (validize_mem (copy_rtx (ret)),
5605 crtl->args.internal_arg_pointer);
5606 rtx_insn *seq = get_insns ();
5607 end_sequence ();
5608
5609 push_topmost_sequence ();
5610 emit_insn_after (seq, entry_of_function ());
5611 pop_topmost_sequence ();
5612
5613 crtl->arg_pointer_save_area_init = true;
5614 }
5615
5616 return ret;
5617}
5618
5619
5620/* If debugging dumps are requested, dump information about how the
5621 target handled -fstack-check=clash for the prologue.
5622
5623 PROBES describes what if any probes were emitted.
5624
5625 RESIDUALS indicates if the prologue had any residual allocation
5626 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5627
5628void
5629dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5630{
5631 if (!dump_file)
5632 return;
5633
5634 switch (probes)
5635 {
5636 case NO_PROBE_NO_FRAME:
5637 fprintf (stream: dump_file,
5638 format: "Stack clash no probe no stack adjustment in prologue.\n");
5639 break;
5640 case NO_PROBE_SMALL_FRAME:
5641 fprintf (stream: dump_file,
5642 format: "Stack clash no probe small stack adjustment in prologue.\n");
5643 break;
5644 case PROBE_INLINE:
5645 fprintf (stream: dump_file, format: "Stack clash inline probes in prologue.\n");
5646 break;
5647 case PROBE_LOOP:
5648 fprintf (stream: dump_file, format: "Stack clash probe loop in prologue.\n");
5649 break;
5650 }
5651
5652 if (residuals)
5653 fprintf (stream: dump_file, format: "Stack clash residual allocation in prologue.\n");
5654 else
5655 fprintf (stream: dump_file, format: "Stack clash no residual allocation in prologue.\n");
5656
5657 if (frame_pointer_needed)
5658 fprintf (stream: dump_file, format: "Stack clash frame pointer needed.\n");
5659 else
5660 fprintf (stream: dump_file, format: "Stack clash no frame pointer needed.\n");
5661
5662 if (TREE_THIS_VOLATILE (cfun->decl))
5663 fprintf (stream: dump_file,
5664 format: "Stack clash noreturn prologue, assuming no implicit"
5665 " probes in caller.\n");
5666 else
5667 fprintf (stream: dump_file,
5668 format: "Stack clash not noreturn prologue.\n");
5669}
5670
5671/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5672 for the first time. */
5673
5674static void
5675record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5676{
5677 rtx_insn *tmp;
5678 hash_table<insn_cache_hasher> *hash = *hashp;
5679
5680 if (hash == NULL)
5681 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (n: 17);
5682
5683 for (tmp = insns; tmp != end; tmp = NEXT_INSN (insn: tmp))
5684 {
5685 rtx *slot = hash->find_slot (value: tmp, insert: INSERT);
5686 gcc_assert (*slot == NULL);
5687 *slot = tmp;
5688 }
5689}
5690
5691/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5692 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5693 insn, then record COPY as well. */
5694
5695void
5696maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5697{
5698 hash_table<insn_cache_hasher> *hash;
5699 rtx *slot;
5700
5701 hash = epilogue_insn_hash;
5702 if (!hash || !hash->find (value: insn))
5703 {
5704 hash = prologue_insn_hash;
5705 if (!hash || !hash->find (value: insn))
5706 return;
5707 }
5708
5709 slot = hash->find_slot (value: copy, insert: INSERT);
5710 gcc_assert (*slot == NULL);
5711 *slot = copy;
5712}
5713
5714/* Determine if any INSNs in HASH are, or are part of, INSN. Because
5715 we can be running after reorg, SEQUENCE rtl is possible. */
5716
5717static bool
5718contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5719{
5720 if (hash == NULL)
5721 return false;
5722
5723 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5724 {
5725 rtx_sequence *seq = as_a <rtx_sequence *> (p: PATTERN (insn));
5726 int i;
5727 for (i = seq->len () - 1; i >= 0; i--)
5728 if (hash->find (value: seq->element (index: i)))
5729 return true;
5730 return false;
5731 }
5732
5733 return hash->find (value: const_cast<rtx_insn *> (insn)) != NULL;
5734}
5735
5736bool
5737prologue_contains (const rtx_insn *insn)
5738{
5739 return contains (insn, hash: prologue_insn_hash);
5740}
5741
5742bool
5743epilogue_contains (const rtx_insn *insn)
5744{
5745 return contains (insn, hash: epilogue_insn_hash);
5746}
5747
5748bool
5749prologue_epilogue_contains (const rtx_insn *insn)
5750{
5751 if (contains (insn, hash: prologue_insn_hash))
5752 return true;
5753 if (contains (insn, hash: epilogue_insn_hash))
5754 return true;
5755 return false;
5756}
5757
5758void
5759record_prologue_seq (rtx_insn *seq)
5760{
5761 record_insns (insns: seq, NULL, hashp: &prologue_insn_hash);
5762}
5763
5764void
5765record_epilogue_seq (rtx_insn *seq)
5766{
5767 record_insns (insns: seq, NULL, hashp: &epilogue_insn_hash);
5768}
5769
5770/* Set JUMP_LABEL for a return insn. */
5771
5772void
5773set_return_jump_label (rtx_insn *returnjump)
5774{
5775 rtx pat = PATTERN (insn: returnjump);
5776 if (GET_CODE (pat) == PARALLEL)
5777 pat = XVECEXP (pat, 0, 0);
5778 if (ANY_RETURN_P (pat))
5779 JUMP_LABEL (returnjump) = pat;
5780 else
5781 JUMP_LABEL (returnjump) = ret_rtx;
5782}
5783
5784/* Return a sequence to be used as the split prologue for the current
5785 function, or NULL. */
5786
5787static rtx_insn *
5788make_split_prologue_seq (void)
5789{
5790 if (!flag_split_stack
5791 || lookup_attribute (attr_name: "no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5792 return NULL;
5793
5794 start_sequence ();
5795 emit_insn (targetm.gen_split_stack_prologue ());
5796 rtx_insn *seq = get_insns ();
5797 end_sequence ();
5798
5799 record_insns (insns: seq, NULL, hashp: &prologue_insn_hash);
5800 set_insn_locations (seq, prologue_location);
5801
5802 return seq;
5803}
5804
5805/* Return a sequence to be used as the prologue for the current function,
5806 or NULL. */
5807
5808static rtx_insn *
5809make_prologue_seq (void)
5810{
5811 if (!targetm.have_prologue ())
5812 return NULL;
5813
5814 start_sequence ();
5815 rtx_insn *seq = targetm.gen_prologue ();
5816 emit_insn (seq);
5817
5818 /* Insert an explicit USE for the frame pointer
5819 if the profiling is on and the frame pointer is required. */
5820 if (crtl->profile && frame_pointer_needed)
5821 emit_use (hard_frame_pointer_rtx);
5822
5823 /* Retain a map of the prologue insns. */
5824 record_insns (insns: seq, NULL, hashp: &prologue_insn_hash);
5825 emit_note (NOTE_INSN_PROLOGUE_END);
5826
5827 /* Ensure that instructions are not moved into the prologue when
5828 profiling is on. The call to the profiling routine can be
5829 emitted within the live range of a call-clobbered register. */
5830 if (!targetm.profile_before_prologue () && crtl->profile)
5831 emit_insn (gen_blockage ());
5832
5833 seq = get_insns ();
5834 end_sequence ();
5835 set_insn_locations (seq, prologue_location);
5836
5837 return seq;
5838}
5839
5840/* Emit a sequence of insns to zero the call-used registers before RET
5841 according to ZERO_REGS_TYPE. */
5842
5843static void
5844gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5845{
5846 bool only_gpr = true;
5847 bool only_used = true;
5848 bool only_arg = true;
5849
5850 /* No need to zero call-used-regs in main (). */
5851 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5852 return;
5853
5854 /* No need to zero call-used-regs if __builtin_eh_return is called
5855 since it isn't a normal function return. */
5856 if (crtl->calls_eh_return)
5857 return;
5858
5859 /* If only_gpr is true, only zero call-used registers that are
5860 general-purpose registers; if only_used is true, only zero
5861 call-used registers that are used in the current function;
5862 if only_arg is true, only zero call-used registers that pass
5863 parameters defined by the flatform's calling conversion. */
5864
5865 using namespace zero_regs_flags;
5866
5867 only_gpr = zero_regs_type & ONLY_GPR;
5868 only_used = zero_regs_type & ONLY_USED;
5869 only_arg = zero_regs_type & ONLY_ARG;
5870
5871 if ((zero_regs_type & LEAFY_MODE) && leaf_function_p ())
5872 only_used = true;
5873
5874 /* For each of the hard registers, we should zero it if:
5875 1. it is a call-used register;
5876 and 2. it is not a fixed register;
5877 and 3. it is not live at the return of the routine;
5878 and 4. it is general registor if only_gpr is true;
5879 and 5. it is used in the routine if only_used is true;
5880 and 6. it is a register that passes parameter if only_arg is true. */
5881
5882 /* First, prepare the data flow information. */
5883 basic_block bb = BLOCK_FOR_INSN (insn: ret);
5884 auto_bitmap live_out;
5885 bitmap_copy (live_out, df_get_live_out (bb));
5886 df_simulate_initialize_backwards (bb, live_out);
5887 df_simulate_one_insn_backwards (bb, ret, live_out);
5888
5889 HARD_REG_SET selected_hardregs;
5890 HARD_REG_SET all_call_used_regs;
5891 CLEAR_HARD_REG_SET (set&: selected_hardregs);
5892 CLEAR_HARD_REG_SET (set&: all_call_used_regs);
5893 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5894 {
5895 if (!crtl->abi->clobbers_full_reg_p (regno))
5896 continue;
5897 if (fixed_regs[regno])
5898 continue;
5899 if (REGNO_REG_SET_P (live_out, regno))
5900 continue;
5901#ifdef LEAF_REG_REMAP
5902 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5903 continue;
5904#endif
5905 /* This is a call used register that is dead at return. */
5906 SET_HARD_REG_BIT (set&: all_call_used_regs, bit: regno);
5907
5908 if (only_gpr
5909 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], bit: regno))
5910 continue;
5911 if (only_used && !df_regs_ever_live_p (regno))
5912 continue;
5913 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5914 continue;
5915
5916 /* Now this is a register that we might want to zero. */
5917 SET_HARD_REG_BIT (set&: selected_hardregs, bit: regno);
5918 }
5919
5920 if (hard_reg_set_empty_p (x: selected_hardregs))
5921 return;
5922
5923 /* Now that we have a hard register set that needs to be zeroed, pass it to
5924 target to generate zeroing sequence. */
5925 HARD_REG_SET zeroed_hardregs;
5926 start_sequence ();
5927 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5928
5929 /* For most targets, the returned set of registers is a subset of
5930 selected_hardregs, however, for some of the targets (for example MIPS),
5931 clearing some registers that are in selected_hardregs requires clearing
5932 other call used registers that are not in the selected_hardregs, under
5933 such situation, the returned set of registers must be a subset of
5934 all call used registers. */
5935 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5936
5937 rtx_insn *seq = get_insns ();
5938 end_sequence ();
5939 if (seq)
5940 {
5941 /* Emit the memory blockage and register clobber asm volatile before
5942 the whole sequence. */
5943 start_sequence ();
5944 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5945 rtx_insn *seq_barrier = get_insns ();
5946 end_sequence ();
5947
5948 emit_insn_before (seq_barrier, ret);
5949 emit_insn_before (seq, ret);
5950
5951 /* Update the data flow information. */
5952 crtl->must_be_zero_on_return |= zeroed_hardregs;
5953 df_update_exit_block_uses ();
5954 }
5955}
5956
5957
5958/* Return a sequence to be used as the epilogue for the current function,
5959 or NULL. */
5960
5961static rtx_insn *
5962make_epilogue_seq (void)
5963{
5964 if (!targetm.have_epilogue ())
5965 return NULL;
5966
5967 start_sequence ();
5968 emit_note (NOTE_INSN_EPILOGUE_BEG);
5969 rtx_insn *seq = targetm.gen_epilogue ();
5970 if (seq)
5971 emit_jump_insn (seq);
5972
5973 /* Retain a map of the epilogue insns. */
5974 record_insns (insns: seq, NULL, hashp: &epilogue_insn_hash);
5975 set_insn_locations (seq, epilogue_location);
5976
5977 seq = get_insns ();
5978 rtx_insn *returnjump = get_last_insn ();
5979 end_sequence ();
5980
5981 if (JUMP_P (returnjump))
5982 set_return_jump_label (returnjump);
5983
5984 return seq;
5985}
5986
5987
5988/* Generate the prologue and epilogue RTL if the machine supports it. Thread
5989 this into place with notes indicating where the prologue ends and where
5990 the epilogue begins. Update the basic block information when possible.
5991
5992 Notes on epilogue placement:
5993 There are several kinds of edges to the exit block:
5994 * a single fallthru edge from LAST_BB
5995 * possibly, edges from blocks containing sibcalls
5996 * possibly, fake edges from infinite loops
5997
5998 The epilogue is always emitted on the fallthru edge from the last basic
5999 block in the function, LAST_BB, into the exit block.
6000
6001 If LAST_BB is empty except for a label, it is the target of every
6002 other basic block in the function that ends in a return. If a
6003 target has a return or simple_return pattern (possibly with
6004 conditional variants), these basic blocks can be changed so that a
6005 return insn is emitted into them, and their target is adjusted to
6006 the real exit block.
6007
6008 Notes on shrink wrapping: We implement a fairly conservative
6009 version of shrink-wrapping rather than the textbook one. We only
6010 generate a single prologue and a single epilogue. This is
6011 sufficient to catch a number of interesting cases involving early
6012 exits.
6013
6014 First, we identify the blocks that require the prologue to occur before
6015 them. These are the ones that modify a call-saved register, or reference
6016 any of the stack or frame pointer registers. To simplify things, we then
6017 mark everything reachable from these blocks as also requiring a prologue.
6018 This takes care of loops automatically, and avoids the need to examine
6019 whether MEMs reference the frame, since it is sufficient to check for
6020 occurrences of the stack or frame pointer.
6021
6022 We then compute the set of blocks for which the need for a prologue
6023 is anticipatable (borrowing terminology from the shrink-wrapping
6024 description in Muchnick's book). These are the blocks which either
6025 require a prologue themselves, or those that have only successors
6026 where the prologue is anticipatable. The prologue needs to be
6027 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6028 is not. For the moment, we ensure that only one such edge exists.
6029
6030 The epilogue is placed as described above, but we make a
6031 distinction between inserting return and simple_return patterns
6032 when modifying other blocks that end in a return. Blocks that end
6033 in a sibcall omit the sibcall_epilogue if the block is not in
6034 ANTIC. */
6035
6036void
6037thread_prologue_and_epilogue_insns (void)
6038{
6039 df_analyze ();
6040
6041 /* Can't deal with multiple successors of the entry block at the
6042 moment. Function should always have at least one entry
6043 point. */
6044 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6045
6046 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6047 edge orig_entry_edge = entry_edge;
6048
6049 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6050 rtx_insn *prologue_seq = make_prologue_seq ();
6051 rtx_insn *epilogue_seq = make_epilogue_seq ();
6052
6053 /* Try to perform a kind of shrink-wrapping, making sure the
6054 prologue/epilogue is emitted only around those parts of the
6055 function that require it. */
6056 try_shrink_wrapping (entry_edge: &entry_edge, prologue_seq);
6057
6058 /* If the target can handle splitting the prologue/epilogue into separate
6059 components, try to shrink-wrap these components separately. */
6060 try_shrink_wrapping_separate (first_bb: entry_edge->dest);
6061
6062 /* If that did anything for any component we now need the generate the
6063 "main" prologue again. Because some targets require some of these
6064 to be called in a specific order (i386 requires the split prologue
6065 to be first, for example), we create all three sequences again here.
6066 If this does not work for some target, that target should not enable
6067 separate shrink-wrapping. */
6068 if (crtl->shrink_wrapped_separate)
6069 {
6070 split_prologue_seq = make_split_prologue_seq ();
6071 prologue_seq = make_prologue_seq ();
6072 epilogue_seq = make_epilogue_seq ();
6073 }
6074
6075 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6076
6077 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6078 this marker for the splits of EH_RETURN patterns, and nothing else
6079 uses the flag in the meantime. */
6080 epilogue_completed = 1;
6081
6082 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6083 some targets, these get split to a special version of the epilogue
6084 code. In order to be able to properly annotate these with unwind
6085 info, try to split them now. If we get a valid split, drop an
6086 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6087 edge e;
6088 edge_iterator ei;
6089 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6090 {
6091 rtx_insn *prev, *last, *trial;
6092
6093 if (e->flags & EDGE_FALLTHRU)
6094 continue;
6095 last = BB_END (e->src);
6096 if (!eh_returnjump_p (last))
6097 continue;
6098
6099 prev = PREV_INSN (insn: last);
6100 trial = try_split (PATTERN (insn: last), last, 1);
6101 if (trial == last)
6102 continue;
6103
6104 record_insns (insns: NEXT_INSN (insn: prev), end: NEXT_INSN (insn: trial), hashp: &epilogue_insn_hash);
6105 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6106 }
6107
6108 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6109
6110 if (exit_fallthru_edge)
6111 {
6112 if (epilogue_seq)
6113 {
6114 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6115 commit_edge_insertions ();
6116
6117 /* The epilogue insns we inserted may cause the exit edge to no longer
6118 be fallthru. */
6119 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6120 {
6121 if (((e->flags & EDGE_FALLTHRU) != 0)
6122 && returnjump_p (BB_END (e->src)))
6123 e->flags &= ~EDGE_FALLTHRU;
6124 }
6125
6126 find_sub_basic_blocks (BLOCK_FOR_INSN (insn: epilogue_seq));
6127 }
6128 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6129 {
6130 /* We have a fall-through edge to the exit block, the source is not
6131 at the end of the function, and there will be an assembler epilogue
6132 at the end of the function.
6133 We can't use force_nonfallthru here, because that would try to
6134 use return. Inserting a jump 'by hand' is extremely messy, so
6135 we take advantage of cfg_layout_finalize using
6136 fixup_fallthru_exit_predecessor. */
6137 cfg_layout_initialize (0);
6138 basic_block cur_bb;
6139 FOR_EACH_BB_FN (cur_bb, cfun)
6140 if (cur_bb->index >= NUM_FIXED_BLOCKS
6141 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6142 cur_bb->aux = cur_bb->next_bb;
6143 cfg_layout_finalize ();
6144 }
6145 }
6146
6147 /* Insert the prologue. */
6148
6149 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6150
6151 if (split_prologue_seq || prologue_seq)
6152 {
6153 rtx_insn *split_prologue_insn = split_prologue_seq;
6154 if (split_prologue_seq)
6155 {
6156 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6157 split_prologue_insn = NEXT_INSN (insn: split_prologue_insn);
6158 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6159 }
6160
6161 rtx_insn *prologue_insn = prologue_seq;
6162 if (prologue_seq)
6163 {
6164 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6165 prologue_insn = NEXT_INSN (insn: prologue_insn);
6166 insert_insn_on_edge (prologue_seq, entry_edge);
6167 }
6168
6169 commit_edge_insertions ();
6170
6171 /* Look for basic blocks within the prologue insns. */
6172 if (split_prologue_insn
6173 && BLOCK_FOR_INSN (insn: split_prologue_insn) == NULL)
6174 split_prologue_insn = NULL;
6175 if (prologue_insn
6176 && BLOCK_FOR_INSN (insn: prologue_insn) == NULL)
6177 prologue_insn = NULL;
6178 if (split_prologue_insn || prologue_insn)
6179 {
6180 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6181 bitmap_clear (blocks);
6182 if (split_prologue_insn)
6183 bitmap_set_bit (map: blocks,
6184 bitno: BLOCK_FOR_INSN (insn: split_prologue_insn)->index);
6185 if (prologue_insn)
6186 bitmap_set_bit (map: blocks, bitno: BLOCK_FOR_INSN (insn: prologue_insn)->index);
6187 find_many_sub_basic_blocks (blocks);
6188 }
6189 }
6190
6191 default_rtl_profile ();
6192
6193 /* Emit sibling epilogues before any sibling call sites. */
6194 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6195 (e = ei_safe_edge (i: ei));
6196 ei_next (i: &ei))
6197 {
6198 /* Skip those already handled, the ones that run without prologue. */
6199 if (e->flags & EDGE_IGNORE)
6200 {
6201 e->flags &= ~EDGE_IGNORE;
6202 continue;
6203 }
6204
6205 rtx_insn *insn = BB_END (e->src);
6206
6207 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6208 continue;
6209
6210 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6211 {
6212 start_sequence ();
6213 emit_note (NOTE_INSN_EPILOGUE_BEG);
6214 emit_insn (ep_seq);
6215 rtx_insn *seq = get_insns ();
6216 end_sequence ();
6217
6218 /* Retain a map of the epilogue insns. Used in life analysis to
6219 avoid getting rid of sibcall epilogue insns. Do this before we
6220 actually emit the sequence. */
6221 record_insns (insns: seq, NULL, hashp: &epilogue_insn_hash);
6222 set_insn_locations (seq, epilogue_location);
6223
6224 emit_insn_before (seq, insn);
6225
6226 find_sub_basic_blocks (BLOCK_FOR_INSN (insn));
6227 }
6228 }
6229
6230 if (epilogue_seq)
6231 {
6232 rtx_insn *insn, *next;
6233
6234 /* Similarly, move any line notes that appear after the epilogue.
6235 There is no need, however, to be quite so anal about the existence
6236 of such a note. Also possibly move
6237 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6238 info generation. */
6239 for (insn = epilogue_seq; insn; insn = next)
6240 {
6241 next = NEXT_INSN (insn);
6242 if (NOTE_P (insn)
6243 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6244 reorder_insns (insn, insn, PREV_INSN (insn: epilogue_seq));
6245 }
6246 }
6247
6248 /* Threading the prologue and epilogue changes the artificial refs in the
6249 entry and exit blocks, and may invalidate DF info for tail calls. */
6250 if (optimize
6251 || flag_optimize_sibling_calls
6252 || flag_ipa_icf_functions
6253 || in_lto_p)
6254 df_update_entry_exit_and_calls ();
6255 else
6256 {
6257 df_update_entry_block_defs ();
6258 df_update_exit_block_uses ();
6259 }
6260}
6261
6262/* Reposition the prologue-end and epilogue-begin notes after
6263 instruction scheduling. */
6264
6265void
6266reposition_prologue_and_epilogue_notes (void)
6267{
6268 if (!targetm.have_prologue ()
6269 && !targetm.have_epilogue ()
6270 && !targetm.have_sibcall_epilogue ())
6271 return;
6272
6273 /* Since the hash table is created on demand, the fact that it is
6274 non-null is a signal that it is non-empty. */
6275 if (prologue_insn_hash != NULL)
6276 {
6277 size_t len = prologue_insn_hash->elements ();
6278 rtx_insn *insn, *last = NULL, *note = NULL;
6279
6280 /* Scan from the beginning until we reach the last prologue insn. */
6281 /* ??? While we do have the CFG intact, there are two problems:
6282 (1) The prologue can contain loops (typically probing the stack),
6283 which means that the end of the prologue isn't in the first bb.
6284 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6285 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6286 {
6287 if (NOTE_P (insn))
6288 {
6289 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6290 note = insn;
6291 }
6292 else if (contains (insn, hash: prologue_insn_hash))
6293 {
6294 last = insn;
6295 if (--len == 0)
6296 break;
6297 }
6298 }
6299
6300 if (last)
6301 {
6302 if (note == NULL)
6303 {
6304 /* Scan forward looking for the PROLOGUE_END note. It should
6305 be right at the beginning of the block, possibly with other
6306 insn notes that got moved there. */
6307 for (note = NEXT_INSN (insn: last); ; note = NEXT_INSN (insn: note))
6308 {
6309 if (NOTE_P (note)
6310 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6311 break;
6312 }
6313 }
6314
6315 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6316 if (LABEL_P (last))
6317 last = NEXT_INSN (insn: last);
6318 reorder_insns (note, note, last);
6319 }
6320 }
6321
6322 if (epilogue_insn_hash != NULL)
6323 {
6324 edge_iterator ei;
6325 edge e;
6326
6327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6328 {
6329 rtx_insn *insn, *first = NULL, *note = NULL;
6330 basic_block bb = e->src;
6331
6332 /* Scan from the beginning until we reach the first epilogue insn. */
6333 FOR_BB_INSNS (bb, insn)
6334 {
6335 if (NOTE_P (insn))
6336 {
6337 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6338 {
6339 note = insn;
6340 if (first != NULL)
6341 break;
6342 }
6343 }
6344 else if (first == NULL && contains (insn, hash: epilogue_insn_hash))
6345 {
6346 first = insn;
6347 if (note != NULL)
6348 break;
6349 }
6350 }
6351
6352 if (note)
6353 {
6354 /* If the function has a single basic block, and no real
6355 epilogue insns (e.g. sibcall with no cleanup), the
6356 epilogue note can get scheduled before the prologue
6357 note. If we have frame related prologue insns, having
6358 them scanned during the epilogue will result in a crash.
6359 In this case re-order the epilogue note to just before
6360 the last insn in the block. */
6361 if (first == NULL)
6362 first = BB_END (bb);
6363
6364 if (PREV_INSN (insn: first) != note)
6365 reorder_insns (note, note, PREV_INSN (insn: first));
6366 }
6367 }
6368 }
6369}
6370
6371/* Returns the name of function declared by FNDECL. */
6372const char *
6373fndecl_name (tree fndecl)
6374{
6375 if (fndecl == NULL)
6376 return "(nofn)";
6377 return lang_hooks.decl_printable_name (fndecl, 1);
6378}
6379
6380/* Returns the name of function FN. */
6381const char *
6382function_name (struct function *fn)
6383{
6384 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6385 return fndecl_name (fndecl);
6386}
6387
6388/* Returns the name of the current function. */
6389const char *
6390current_function_name (void)
6391{
6392 return function_name (fn: cfun);
6393}
6394
6395
6396static void
6397rest_of_handle_check_leaf_regs (void)
6398{
6399#ifdef LEAF_REGISTERS
6400 crtl->uses_only_leaf_regs
6401 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6402#endif
6403}
6404
6405/* Insert a TYPE into the used types hash table of CFUN. */
6406
6407static void
6408used_types_insert_helper (tree type, struct function *func)
6409{
6410 if (type != NULL && func != NULL)
6411 {
6412 if (func->used_types_hash == NULL)
6413 func->used_types_hash = hash_set<tree>::create_ggc (n: 37);
6414
6415 func->used_types_hash->add (k: type);
6416 }
6417}
6418
6419/* Given a type, insert it into the used hash table in cfun. */
6420void
6421used_types_insert (tree t)
6422{
6423 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6424 if (TYPE_NAME (t))
6425 break;
6426 else
6427 t = TREE_TYPE (t);
6428 if (TREE_CODE (t) == ERROR_MARK)
6429 return;
6430 if (TYPE_NAME (t) == NULL_TREE
6431 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6432 t = TYPE_MAIN_VARIANT (t);
6433 if (debug_info_level > DINFO_LEVEL_NONE)
6434 {
6435 if (cfun)
6436 used_types_insert_helper (type: t, func: cfun);
6437 else
6438 {
6439 /* So this might be a type referenced by a global variable.
6440 Record that type so that we can later decide to emit its
6441 debug information. */
6442 vec_safe_push (v&: types_used_by_cur_var_decl, obj: t);
6443 }
6444 }
6445}
6446
6447/* Helper to Hash a struct types_used_by_vars_entry. */
6448
6449static hashval_t
6450hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6451{
6452 gcc_assert (entry && entry->var_decl && entry->type);
6453
6454 return iterative_hash_object (entry->type,
6455 iterative_hash_object (entry->var_decl, 0));
6456}
6457
6458/* Hash function of the types_used_by_vars_entry hash table. */
6459
6460hashval_t
6461used_type_hasher::hash (types_used_by_vars_entry *entry)
6462{
6463 return hash_types_used_by_vars_entry (entry);
6464}
6465
6466/*Equality function of the types_used_by_vars_entry hash table. */
6467
6468bool
6469used_type_hasher::equal (types_used_by_vars_entry *e1,
6470 types_used_by_vars_entry *e2)
6471{
6472 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6473}
6474
6475/* Inserts an entry into the types_used_by_vars_hash hash table. */
6476
6477void
6478types_used_by_var_decl_insert (tree type, tree var_decl)
6479{
6480 if (type != NULL && var_decl != NULL)
6481 {
6482 types_used_by_vars_entry **slot;
6483 struct types_used_by_vars_entry e;
6484 e.var_decl = var_decl;
6485 e.type = type;
6486 if (types_used_by_vars_hash == NULL)
6487 types_used_by_vars_hash
6488 = hash_table<used_type_hasher>::create_ggc (n: 37);
6489
6490 slot = types_used_by_vars_hash->find_slot (value: &e, insert: INSERT);
6491 if (*slot == NULL)
6492 {
6493 struct types_used_by_vars_entry *entry;
6494 entry = ggc_alloc<types_used_by_vars_entry> ();
6495 entry->type = type;
6496 entry->var_decl = var_decl;
6497 *slot = entry;
6498 }
6499 }
6500}
6501
6502namespace {
6503
6504const pass_data pass_data_leaf_regs =
6505{
6506 .type: RTL_PASS, /* type */
6507 .name: "*leaf_regs", /* name */
6508 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6509 .tv_id: TV_NONE, /* tv_id */
6510 .properties_required: 0, /* properties_required */
6511 .properties_provided: 0, /* properties_provided */
6512 .properties_destroyed: 0, /* properties_destroyed */
6513 .todo_flags_start: 0, /* todo_flags_start */
6514 .todo_flags_finish: 0, /* todo_flags_finish */
6515};
6516
6517class pass_leaf_regs : public rtl_opt_pass
6518{
6519public:
6520 pass_leaf_regs (gcc::context *ctxt)
6521 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6522 {}
6523
6524 /* opt_pass methods: */
6525 unsigned int execute (function *) final override
6526 {
6527 rest_of_handle_check_leaf_regs ();
6528 return 0;
6529 }
6530
6531}; // class pass_leaf_regs
6532
6533} // anon namespace
6534
6535rtl_opt_pass *
6536make_pass_leaf_regs (gcc::context *ctxt)
6537{
6538 return new pass_leaf_regs (ctxt);
6539}
6540
6541static void
6542rest_of_handle_thread_prologue_and_epilogue (function *fun)
6543{
6544 /* prepare_shrink_wrap is sensitive to the block structure of the control
6545 flow graph, so clean it up first. */
6546 if (optimize)
6547 cleanup_cfg (0);
6548
6549 /* On some machines, the prologue and epilogue code, or parts thereof,
6550 can be represented as RTL. Doing so lets us schedule insns between
6551 it and the rest of the code and also allows delayed branch
6552 scheduling to operate in the epilogue. */
6553 thread_prologue_and_epilogue_insns ();
6554
6555 /* Some non-cold blocks may now be only reachable from cold blocks.
6556 Fix that up. */
6557 fixup_partitions ();
6558
6559 /* After prologue and epilogue generation, the judgement on whether
6560 one memory access onto stack frame may trap or not could change,
6561 since we get more exact stack information by now. So try to
6562 remove any EH edges here, see PR90259. */
6563 if (fun->can_throw_non_call_exceptions)
6564 purge_all_dead_edges ();
6565
6566 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6567 see PR57320. */
6568 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6569
6570 /* The stack usage info is finalized during prologue expansion. */
6571 if (flag_stack_usage_info || flag_callgraph_info)
6572 output_stack_usage ();
6573}
6574
6575/* Record a final call to CALLEE at LOCATION. */
6576
6577void
6578record_final_call (tree callee, location_t location)
6579{
6580 struct callinfo_callee datum = { .location: location, .decl: callee };
6581 vec_safe_push (v&: cfun->su->callees, obj: datum);
6582}
6583
6584/* Record a dynamic allocation made for DECL_OR_EXP. */
6585
6586void
6587record_dynamic_alloc (tree decl_or_exp)
6588{
6589 struct callinfo_dalloc datum;
6590
6591 if (DECL_P (decl_or_exp))
6592 {
6593 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6594 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6595 const char *dot = strrchr (s: name, c: '.');
6596 if (dot)
6597 name = dot + 1;
6598 datum.name = ggc_strdup (name);
6599 }
6600 else
6601 {
6602 datum.location = EXPR_LOCATION (decl_or_exp);
6603 datum.name = NULL;
6604 }
6605
6606 vec_safe_push (v&: cfun->su->dallocs, obj: datum);
6607}
6608
6609namespace {
6610
6611const pass_data pass_data_thread_prologue_and_epilogue =
6612{
6613 .type: RTL_PASS, /* type */
6614 .name: "pro_and_epilogue", /* name */
6615 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6616 .tv_id: TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6617 .properties_required: 0, /* properties_required */
6618 .properties_provided: 0, /* properties_provided */
6619 .properties_destroyed: 0, /* properties_destroyed */
6620 .todo_flags_start: 0, /* todo_flags_start */
6621 .todo_flags_finish: ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6622};
6623
6624class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6625{
6626public:
6627 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6628 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6629 {}
6630
6631 /* opt_pass methods: */
6632 unsigned int execute (function * fun) final override
6633 {
6634 rest_of_handle_thread_prologue_and_epilogue (fun);
6635 return 0;
6636 }
6637
6638}; // class pass_thread_prologue_and_epilogue
6639
6640} // anon namespace
6641
6642rtl_opt_pass *
6643make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6644{
6645 return new pass_thread_prologue_and_epilogue (ctxt);
6646}
6647
6648namespace {
6649
6650const pass_data pass_data_zero_call_used_regs =
6651{
6652 .type: RTL_PASS, /* type */
6653 .name: "zero_call_used_regs", /* name */
6654 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6655 .tv_id: TV_NONE, /* tv_id */
6656 .properties_required: 0, /* properties_required */
6657 .properties_provided: 0, /* properties_provided */
6658 .properties_destroyed: 0, /* properties_destroyed */
6659 .todo_flags_start: 0, /* todo_flags_start */
6660 .todo_flags_finish: 0, /* todo_flags_finish */
6661};
6662
6663class pass_zero_call_used_regs: public rtl_opt_pass
6664{
6665public:
6666 pass_zero_call_used_regs (gcc::context *ctxt)
6667 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6668 {}
6669
6670 /* opt_pass methods: */
6671 unsigned int execute (function *) final override;
6672
6673}; // class pass_zero_call_used_regs
6674
6675unsigned int
6676pass_zero_call_used_regs::execute (function *fun)
6677{
6678 using namespace zero_regs_flags;
6679 unsigned int zero_regs_type = UNSET;
6680
6681 tree attr_zero_regs = lookup_attribute (attr_name: "zero_call_used_regs",
6682 DECL_ATTRIBUTES (fun->decl));
6683
6684 /* Get the type of zero_call_used_regs from function attribute.
6685 We have filtered out invalid attribute values already at this point. */
6686 if (attr_zero_regs)
6687 {
6688 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6689 is the attribute argument's value. */
6690 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6691 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6692 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6693 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6694
6695 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6696 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6697 s2: zero_call_used_regs_opts[i].name) == 0)
6698 {
6699 zero_regs_type = zero_call_used_regs_opts[i].flag;
6700 break;
6701 }
6702 }
6703
6704 if (!zero_regs_type)
6705 zero_regs_type = flag_zero_call_used_regs;
6706
6707 /* No need to zero call-used-regs when no user request is present. */
6708 if (!(zero_regs_type & ENABLED))
6709 return 0;
6710
6711 edge_iterator ei;
6712 edge e;
6713
6714 /* This pass needs data flow information. */
6715 df_analyze ();
6716
6717 /* Iterate over the function's return instructions and insert any
6718 register zeroing required by the -fzero-call-used-regs command-line
6719 option or the "zero_call_used_regs" function attribute. */
6720 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6721 {
6722 rtx_insn *insn = BB_END (e->src);
6723 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6724 gen_call_used_regs_seq (ret: insn, zero_regs_type);
6725 }
6726
6727 return 0;
6728}
6729
6730} // anon namespace
6731
6732rtl_opt_pass *
6733make_pass_zero_call_used_regs (gcc::context *ctxt)
6734{
6735 return new pass_zero_call_used_regs (ctxt);
6736}
6737
6738/* If CONSTRAINT is a matching constraint, then return its number.
6739 Otherwise, return -1. */
6740
6741static int
6742matching_constraint_num (const char *constraint)
6743{
6744 if (*constraint == '%')
6745 constraint++;
6746
6747 if (IN_RANGE (*constraint, '0', '9'))
6748 return strtoul (nptr: constraint, NULL, base: 10);
6749
6750 return -1;
6751}
6752
6753/* This mini-pass fixes fall-out from SSA in asm statements that have
6754 in-out constraints. Say you start with
6755
6756 orig = inout;
6757 asm ("": "+mr" (inout));
6758 use (orig);
6759
6760 which is transformed very early to use explicit output and match operands:
6761
6762 orig = inout;
6763 asm ("": "=mr" (inout) : "0" (inout));
6764 use (orig);
6765
6766 Or, after SSA and copyprop,
6767
6768 asm ("": "=mr" (inout_2) : "0" (inout_1));
6769 use (inout_1);
6770
6771 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6772 they represent two separate values, so they will get different pseudo
6773 registers during expansion. Then, since the two operands need to match
6774 per the constraints, but use different pseudo registers, reload can
6775 only register a reload for these operands. But reloads can only be
6776 satisfied by hardregs, not by memory, so we need a register for this
6777 reload, just because we are presented with non-matching operands.
6778 So, even though we allow memory for this operand, no memory can be
6779 used for it, just because the two operands don't match. This can
6780 cause reload failures on register-starved targets.
6781
6782 So it's a symptom of reload not being able to use memory for reloads
6783 or, alternatively it's also a symptom of both operands not coming into
6784 reload as matching (in which case the pseudo could go to memory just
6785 fine, as the alternative allows it, and no reload would be necessary).
6786 We fix the latter problem here, by transforming
6787
6788 asm ("": "=mr" (inout_2) : "0" (inout_1));
6789
6790 back to
6791
6792 inout_2 = inout_1;
6793 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6794
6795static void
6796match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6797{
6798 int i;
6799 bool changed = false;
6800 rtx op = SET_SRC (p_sets[0]);
6801 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6802 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6803 bool *output_matched = XALLOCAVEC (bool, noutputs);
6804
6805 memset (s: output_matched, c: 0, n: noutputs * sizeof (bool));
6806 for (i = 0; i < ninputs; i++)
6807 {
6808 rtx input, output;
6809 rtx_insn *insns;
6810 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6811 int match, j;
6812
6813 match = matching_constraint_num (constraint);
6814 if (match < 0)
6815 continue;
6816
6817 gcc_assert (match < noutputs);
6818 output = SET_DEST (p_sets[match]);
6819 input = RTVEC_ELT (inputs, i);
6820 /* Only do the transformation for pseudos. */
6821 if (! REG_P (output)
6822 || rtx_equal_p (output, input)
6823 || !(REG_P (input) || SUBREG_P (input)
6824 || MEM_P (input) || CONSTANT_P (input))
6825 || !general_operand (input, GET_MODE (output)))
6826 continue;
6827
6828 /* We can't do anything if the output is also used as input,
6829 as we're going to overwrite it. */
6830 for (j = 0; j < ninputs; j++)
6831 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6832 break;
6833 if (j != ninputs)
6834 continue;
6835
6836 /* Avoid changing the same input several times. For
6837 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6838 only change it once (to out1), rather than changing it
6839 first to out1 and afterwards to out2. */
6840 if (i > 0)
6841 {
6842 for (j = 0; j < noutputs; j++)
6843 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6844 break;
6845 if (j != noutputs)
6846 continue;
6847 }
6848 output_matched[match] = true;
6849
6850 start_sequence ();
6851 emit_move_insn (output, copy_rtx (input));
6852 insns = get_insns ();
6853 end_sequence ();
6854 emit_insn_before (insns, insn);
6855
6856 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6857 bool early_clobber_p = strchr (s: constraint, c: '&') != NULL;
6858
6859 /* Now replace all mentions of the input with output. We can't
6860 just replace the occurrence in inputs[i], as the register might
6861 also be used in some other input (or even in an address of an
6862 output), which would mean possibly increasing the number of
6863 inputs by one (namely 'output' in addition), which might pose
6864 a too complicated problem for reload to solve. E.g. this situation:
6865
6866 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6867
6868 Here 'input' is used in two occurrences as input (once for the
6869 input operand, once for the address in the second output operand).
6870 If we would replace only the occurrence of the input operand (to
6871 make the matching) we would be left with this:
6872
6873 output = input
6874 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6875
6876 Now we suddenly have two different input values (containing the same
6877 value, but different pseudos) where we formerly had only one.
6878 With more complicated asms this might lead to reload failures
6879 which wouldn't have happen without this pass. So, iterate over
6880 all operands and replace all occurrences of the register used.
6881
6882 However, if one or more of the 'input' uses have a non-matching
6883 constraint and the matched output operand is an early clobber
6884 operand, then do not replace the input operand, since by definition
6885 it conflicts with the output operand and cannot share the same
6886 register. See PR89313 for details. */
6887
6888 for (j = 0; j < noutputs; j++)
6889 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6890 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6891 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6892 input, output);
6893 for (j = 0; j < ninputs; j++)
6894 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6895 {
6896 if (!early_clobber_p
6897 || match == matching_constraint_num
6898 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6899 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6900 input, output);
6901 }
6902
6903 changed = true;
6904 }
6905
6906 if (changed)
6907 df_insn_rescan (insn);
6908}
6909
6910/* Add the decl D to the local_decls list of FUN. */
6911
6912void
6913add_local_decl (struct function *fun, tree d)
6914{
6915 gcc_assert (VAR_P (d));
6916 vec_safe_push (v&: fun->local_decls, obj: d);
6917}
6918
6919namespace {
6920
6921const pass_data pass_data_match_asm_constraints =
6922{
6923 .type: RTL_PASS, /* type */
6924 .name: "asmcons", /* name */
6925 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6926 .tv_id: TV_NONE, /* tv_id */
6927 .properties_required: 0, /* properties_required */
6928 .properties_provided: 0, /* properties_provided */
6929 .properties_destroyed: 0, /* properties_destroyed */
6930 .todo_flags_start: 0, /* todo_flags_start */
6931 .todo_flags_finish: 0, /* todo_flags_finish */
6932};
6933
6934class pass_match_asm_constraints : public rtl_opt_pass
6935{
6936public:
6937 pass_match_asm_constraints (gcc::context *ctxt)
6938 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6939 {}
6940
6941 /* opt_pass methods: */
6942 unsigned int execute (function *) final override;
6943
6944}; // class pass_match_asm_constraints
6945
6946unsigned
6947pass_match_asm_constraints::execute (function *fun)
6948{
6949 basic_block bb;
6950 rtx_insn *insn;
6951 rtx pat, *p_sets;
6952 int noutputs;
6953
6954 if (!crtl->has_asm_statement)
6955 return 0;
6956
6957 df_set_flags (DF_DEFER_INSN_RESCAN);
6958 FOR_EACH_BB_FN (bb, fun)
6959 {
6960 FOR_BB_INSNS (bb, insn)
6961 {
6962 if (!INSN_P (insn))
6963 continue;
6964
6965 pat = PATTERN (insn);
6966 if (GET_CODE (pat) == PARALLEL)
6967 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6968 else if (GET_CODE (pat) == SET)
6969 p_sets = &PATTERN (insn), noutputs = 1;
6970 else
6971 continue;
6972
6973 if (GET_CODE (*p_sets) == SET
6974 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6975 match_asm_constraints_1 (insn, p_sets, noutputs);
6976 }
6977 }
6978
6979 return TODO_df_finish;
6980}
6981
6982} // anon namespace
6983
6984rtl_opt_pass *
6985make_pass_match_asm_constraints (gcc::context *ctxt)
6986{
6987 return new pass_match_asm_constraints (ctxt);
6988}
6989
6990
6991#include "gt-function.h"
6992

source code of gcc/function.cc