1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | #define pr_fmt(fmt) "SMP alternatives: " fmt |
3 | |
4 | #include <linux/module.h> |
5 | #include <linux/sched.h> |
6 | #include <linux/perf_event.h> |
7 | #include <linux/mutex.h> |
8 | #include <linux/list.h> |
9 | #include <linux/stringify.h> |
10 | #include <linux/highmem.h> |
11 | #include <linux/mm.h> |
12 | #include <linux/vmalloc.h> |
13 | #include <linux/memory.h> |
14 | #include <linux/stop_machine.h> |
15 | #include <linux/slab.h> |
16 | #include <linux/kdebug.h> |
17 | #include <linux/kprobes.h> |
18 | #include <linux/mmu_context.h> |
19 | #include <linux/bsearch.h> |
20 | #include <linux/sync_core.h> |
21 | #include <asm/text-patching.h> |
22 | #include <asm/alternative.h> |
23 | #include <asm/sections.h> |
24 | #include <asm/mce.h> |
25 | #include <asm/nmi.h> |
26 | #include <asm/cacheflush.h> |
27 | #include <asm/tlbflush.h> |
28 | #include <asm/insn.h> |
29 | #include <asm/io.h> |
30 | #include <asm/fixmap.h> |
31 | #include <asm/paravirt.h> |
32 | #include <asm/asm-prototypes.h> |
33 | #include <asm/cfi.h> |
34 | |
35 | int __read_mostly alternatives_patched; |
36 | |
37 | EXPORT_SYMBOL_GPL(alternatives_patched); |
38 | |
39 | #define MAX_PATCH_LEN (255-1) |
40 | |
41 | #define DA_ALL (~0) |
42 | #define DA_ALT 0x01 |
43 | #define DA_RET 0x02 |
44 | #define DA_RETPOLINE 0x04 |
45 | #define DA_ENDBR 0x08 |
46 | #define DA_SMP 0x10 |
47 | |
48 | static unsigned int debug_alternative; |
49 | |
50 | static int __init debug_alt(char *str) |
51 | { |
52 | if (str && *str == '=') |
53 | str++; |
54 | |
55 | if (!str || kstrtouint(s: str, base: 0, res: &debug_alternative)) |
56 | debug_alternative = DA_ALL; |
57 | |
58 | return 1; |
59 | } |
60 | __setup("debug-alternative", debug_alt); |
61 | |
62 | static int noreplace_smp; |
63 | |
64 | static int __init setup_noreplace_smp(char *str) |
65 | { |
66 | noreplace_smp = 1; |
67 | return 1; |
68 | } |
69 | __setup("noreplace-smp", setup_noreplace_smp); |
70 | |
71 | #define DPRINTK(type, fmt, args...) \ |
72 | do { \ |
73 | if (debug_alternative & DA_##type) \ |
74 | printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ |
75 | } while (0) |
76 | |
77 | #define DUMP_BYTES(type, buf, len, fmt, args...) \ |
78 | do { \ |
79 | if (unlikely(debug_alternative & DA_##type)) { \ |
80 | int j; \ |
81 | \ |
82 | if (!(len)) \ |
83 | break; \ |
84 | \ |
85 | printk(KERN_DEBUG pr_fmt(fmt), ##args); \ |
86 | for (j = 0; j < (len) - 1; j++) \ |
87 | printk(KERN_CONT "%02hhx ", buf[j]); \ |
88 | printk(KERN_CONT "%02hhx\n", buf[j]); \ |
89 | } \ |
90 | } while (0) |
91 | |
92 | static const unsigned char x86nops[] = |
93 | { |
94 | BYTES_NOP1, |
95 | BYTES_NOP2, |
96 | BYTES_NOP3, |
97 | BYTES_NOP4, |
98 | BYTES_NOP5, |
99 | BYTES_NOP6, |
100 | BYTES_NOP7, |
101 | BYTES_NOP8, |
102 | #ifdef CONFIG_64BIT |
103 | BYTES_NOP9, |
104 | BYTES_NOP10, |
105 | BYTES_NOP11, |
106 | #endif |
107 | }; |
108 | |
109 | const unsigned char * const x86_nops[ASM_NOP_MAX+1] = |
110 | { |
111 | NULL, |
112 | x86nops, |
113 | x86nops + 1, |
114 | x86nops + 1 + 2, |
115 | x86nops + 1 + 2 + 3, |
116 | x86nops + 1 + 2 + 3 + 4, |
117 | x86nops + 1 + 2 + 3 + 4 + 5, |
118 | x86nops + 1 + 2 + 3 + 4 + 5 + 6, |
119 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, |
120 | #ifdef CONFIG_64BIT |
121 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, |
122 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, |
123 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, |
124 | #endif |
125 | }; |
126 | |
127 | /* |
128 | * Fill the buffer with a single effective instruction of size @len. |
129 | * |
130 | * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) |
131 | * for every single-byte NOP, try to generate the maximally available NOP of |
132 | * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for |
133 | * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and |
134 | * *jump* over instead of executing long and daft NOPs. |
135 | */ |
136 | static void add_nop(u8 *instr, unsigned int len) |
137 | { |
138 | u8 *target = instr + len; |
139 | |
140 | if (!len) |
141 | return; |
142 | |
143 | if (len <= ASM_NOP_MAX) { |
144 | memcpy(instr, x86_nops[len], len); |
145 | return; |
146 | } |
147 | |
148 | if (len < 128) { |
149 | __text_gen_insn(buf: instr, JMP8_INSN_OPCODE, addr: instr, dest: target, JMP8_INSN_SIZE); |
150 | instr += JMP8_INSN_SIZE; |
151 | } else { |
152 | __text_gen_insn(buf: instr, JMP32_INSN_OPCODE, addr: instr, dest: target, JMP32_INSN_SIZE); |
153 | instr += JMP32_INSN_SIZE; |
154 | } |
155 | |
156 | for (;instr < target; instr++) |
157 | *instr = INT3_INSN_OPCODE; |
158 | } |
159 | |
160 | extern s32 __retpoline_sites[], __retpoline_sites_end[]; |
161 | extern s32 __return_sites[], __return_sites_end[]; |
162 | extern s32 __cfi_sites[], __cfi_sites_end[]; |
163 | extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[]; |
164 | extern s32 __smp_locks[], __smp_locks_end[]; |
165 | void text_poke_early(void *addr, const void *opcode, size_t len); |
166 | |
167 | /* |
168 | * Matches NOP and NOPL, not any of the other possible NOPs. |
169 | */ |
170 | static bool insn_is_nop(struct insn *insn) |
171 | { |
172 | /* Anything NOP, but no REP NOP */ |
173 | if (insn->opcode.bytes[0] == 0x90 && |
174 | (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) |
175 | return true; |
176 | |
177 | /* NOPL */ |
178 | if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) |
179 | return true; |
180 | |
181 | /* TODO: more nops */ |
182 | |
183 | return false; |
184 | } |
185 | |
186 | /* |
187 | * Find the offset of the first non-NOP instruction starting at @offset |
188 | * but no further than @len. |
189 | */ |
190 | static int skip_nops(u8 *instr, int offset, int len) |
191 | { |
192 | struct insn insn; |
193 | |
194 | for (; offset < len; offset += insn.length) { |
195 | if (insn_decode_kernel(&insn, &instr[offset])) |
196 | break; |
197 | |
198 | if (!insn_is_nop(insn: &insn)) |
199 | break; |
200 | } |
201 | |
202 | return offset; |
203 | } |
204 | |
205 | /* |
206 | * Optimize a sequence of NOPs, possibly preceded by an unconditional jump |
207 | * to the end of the NOP sequence into a single NOP. |
208 | */ |
209 | static bool |
210 | __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target) |
211 | { |
212 | int i = *next - insn->length; |
213 | |
214 | switch (insn->opcode.bytes[0]) { |
215 | case JMP8_INSN_OPCODE: |
216 | case JMP32_INSN_OPCODE: |
217 | *prev = i; |
218 | *target = *next + insn->immediate.value; |
219 | return false; |
220 | } |
221 | |
222 | if (insn_is_nop(insn)) { |
223 | int nop = i; |
224 | |
225 | *next = skip_nops(instr, offset: *next, len); |
226 | if (*target && *next == *target) |
227 | nop = *prev; |
228 | |
229 | add_nop(instr: instr + nop, len: *next - nop); |
230 | DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next); |
231 | return true; |
232 | } |
233 | |
234 | *target = 0; |
235 | return false; |
236 | } |
237 | |
238 | /* |
239 | * "noinline" to cause control flow change and thus invalidate I$ and |
240 | * cause refetch after modification. |
241 | */ |
242 | static void __init_or_module noinline optimize_nops(u8 *instr, size_t len) |
243 | { |
244 | int prev, target = 0; |
245 | |
246 | for (int next, i = 0; i < len; i = next) { |
247 | struct insn insn; |
248 | |
249 | if (insn_decode_kernel(&insn, &instr[i])) |
250 | return; |
251 | |
252 | next = i + insn.length; |
253 | |
254 | __optimize_nops(instr, len, insn: &insn, next: &next, prev: &prev, target: &target); |
255 | } |
256 | } |
257 | |
258 | static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len) |
259 | { |
260 | unsigned long flags; |
261 | |
262 | local_irq_save(flags); |
263 | optimize_nops(instr, len); |
264 | sync_core(); |
265 | local_irq_restore(flags); |
266 | } |
267 | |
268 | /* |
269 | * In this context, "source" is where the instructions are placed in the |
270 | * section .altinstr_replacement, for example during kernel build by the |
271 | * toolchain. |
272 | * "Destination" is where the instructions are being patched in by this |
273 | * machinery. |
274 | * |
275 | * The source offset is: |
276 | * |
277 | * src_imm = target - src_next_ip (1) |
278 | * |
279 | * and the target offset is: |
280 | * |
281 | * dst_imm = target - dst_next_ip (2) |
282 | * |
283 | * so rework (1) as an expression for target like: |
284 | * |
285 | * target = src_imm + src_next_ip (1a) |
286 | * |
287 | * and substitute in (2) to get: |
288 | * |
289 | * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) |
290 | * |
291 | * Now, since the instruction stream is 'identical' at src and dst (it |
292 | * is being copied after all) it can be stated that: |
293 | * |
294 | * src_next_ip = src + ip_offset |
295 | * dst_next_ip = dst + ip_offset (4) |
296 | * |
297 | * Substitute (4) in (3) and observe ip_offset being cancelled out to |
298 | * obtain: |
299 | * |
300 | * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) |
301 | * = src_imm + src - dst + ip_offset - ip_offset |
302 | * = src_imm + src - dst (5) |
303 | * |
304 | * IOW, only the relative displacement of the code block matters. |
305 | */ |
306 | |
307 | #define apply_reloc_n(n_, p_, d_) \ |
308 | do { \ |
309 | s32 v = *(s##n_ *)(p_); \ |
310 | v += (d_); \ |
311 | BUG_ON((v >> 31) != (v >> (n_-1))); \ |
312 | *(s##n_ *)(p_) = (s##n_)v; \ |
313 | } while (0) |
314 | |
315 | |
316 | static __always_inline |
317 | void apply_reloc(int n, void *ptr, uintptr_t diff) |
318 | { |
319 | switch (n) { |
320 | case 1: apply_reloc_n(8, ptr, diff); break; |
321 | case 2: apply_reloc_n(16, ptr, diff); break; |
322 | case 4: apply_reloc_n(32, ptr, diff); break; |
323 | default: BUG(); |
324 | } |
325 | } |
326 | |
327 | static __always_inline |
328 | bool need_reloc(unsigned long offset, u8 *src, size_t src_len) |
329 | { |
330 | u8 *target = src + offset; |
331 | /* |
332 | * If the target is inside the patched block, it's relative to the |
333 | * block itself and does not need relocation. |
334 | */ |
335 | return (target < src || target > src + src_len); |
336 | } |
337 | |
338 | void apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len) |
339 | { |
340 | int prev, target = 0; |
341 | |
342 | for (int next, i = 0; i < len; i = next) { |
343 | struct insn insn; |
344 | |
345 | if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) |
346 | return; |
347 | |
348 | next = i + insn.length; |
349 | |
350 | if (__optimize_nops(instr: buf, len, insn: &insn, next: &next, prev: &prev, target: &target)) |
351 | continue; |
352 | |
353 | switch (insn.opcode.bytes[0]) { |
354 | case 0x0f: |
355 | if (insn.opcode.bytes[1] < 0x80 || |
356 | insn.opcode.bytes[1] > 0x8f) |
357 | break; |
358 | |
359 | fallthrough; /* Jcc.d32 */ |
360 | case 0x70 ... 0x7f: /* Jcc.d8 */ |
361 | case JMP8_INSN_OPCODE: |
362 | case JMP32_INSN_OPCODE: |
363 | case CALL_INSN_OPCODE: |
364 | if (need_reloc(offset: next + insn.immediate.value, src, src_len)) { |
365 | apply_reloc(n: insn.immediate.nbytes, |
366 | ptr: buf + i + insn_offset_immediate(insn: &insn), |
367 | diff: src - dest); |
368 | } |
369 | |
370 | /* |
371 | * Where possible, convert JMP.d32 into JMP.d8. |
372 | */ |
373 | if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { |
374 | s32 imm = insn.immediate.value; |
375 | imm += src - dest; |
376 | imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; |
377 | if ((imm >> 31) == (imm >> 7)) { |
378 | buf[i+0] = JMP8_INSN_OPCODE; |
379 | buf[i+1] = (s8)imm; |
380 | |
381 | memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); |
382 | } |
383 | } |
384 | break; |
385 | } |
386 | |
387 | if (insn_rip_relative(insn: &insn)) { |
388 | if (need_reloc(offset: next + insn.displacement.value, src, src_len)) { |
389 | apply_reloc(n: insn.displacement.nbytes, |
390 | ptr: buf + i + insn_offset_displacement(insn: &insn), |
391 | diff: src - dest); |
392 | } |
393 | } |
394 | } |
395 | } |
396 | |
397 | /* Low-level backend functions usable from alternative code replacements. */ |
398 | DEFINE_ASM_FUNC(nop_func, "", .entry.text); |
399 | EXPORT_SYMBOL_GPL(nop_func); |
400 | |
401 | noinstr void BUG_func(void) |
402 | { |
403 | BUG(); |
404 | } |
405 | EXPORT_SYMBOL(BUG_func); |
406 | |
407 | #define CALL_RIP_REL_OPCODE 0xff |
408 | #define CALL_RIP_REL_MODRM 0x15 |
409 | |
410 | /* |
411 | * Rewrite the "call BUG_func" replacement to point to the target of the |
412 | * indirect pv_ops call "call *disp(%ip)". |
413 | */ |
414 | static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) |
415 | { |
416 | void *target, *bug = &BUG_func; |
417 | s32 disp; |
418 | |
419 | if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { |
420 | pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); |
421 | BUG(); |
422 | } |
423 | |
424 | if (a->instrlen != 6 || |
425 | instr[0] != CALL_RIP_REL_OPCODE || |
426 | instr[1] != CALL_RIP_REL_MODRM) { |
427 | pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); |
428 | BUG(); |
429 | } |
430 | |
431 | /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ |
432 | disp = *(s32 *)(instr + 2); |
433 | #ifdef CONFIG_X86_64 |
434 | /* ff 15 00 00 00 00 call *0x0(%rip) */ |
435 | /* target address is stored at "next instruction + disp". */ |
436 | target = *(void **)(instr + a->instrlen + disp); |
437 | #else |
438 | /* ff 15 00 00 00 00 call *0x0 */ |
439 | /* target address is stored at disp. */ |
440 | target = *(void **)disp; |
441 | #endif |
442 | if (!target) |
443 | target = bug; |
444 | |
445 | /* (BUG_func - .) + (target - BUG_func) := target - . */ |
446 | *(s32 *)(insn_buff + 1) += target - bug; |
447 | |
448 | if (target == &nop_func) |
449 | return 0; |
450 | |
451 | return 5; |
452 | } |
453 | |
454 | /* |
455 | * Replace instructions with better alternatives for this CPU type. This runs |
456 | * before SMP is initialized to avoid SMP problems with self modifying code. |
457 | * This implies that asymmetric systems where APs have less capabilities than |
458 | * the boot processor are not handled. Tough. Make sure you disable such |
459 | * features by hand. |
460 | * |
461 | * Marked "noinline" to cause control flow change and thus insn cache |
462 | * to refetch changed I$ lines. |
463 | */ |
464 | void __init_or_module noinline apply_alternatives(struct alt_instr *start, |
465 | struct alt_instr *end) |
466 | { |
467 | struct alt_instr *a; |
468 | u8 *instr, *replacement; |
469 | u8 insn_buff[MAX_PATCH_LEN]; |
470 | |
471 | DPRINTK(ALT, "alt table %px, -> %px", start, end); |
472 | |
473 | /* |
474 | * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using |
475 | * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. |
476 | * During the process, KASAN becomes confused seeing partial LA57 |
477 | * conversion and triggers a false-positive out-of-bound report. |
478 | * |
479 | * Disable KASAN until the patching is complete. |
480 | */ |
481 | kasan_disable_current(); |
482 | |
483 | /* |
484 | * The scan order should be from start to end. A later scanned |
485 | * alternative code can overwrite previously scanned alternative code. |
486 | * Some kernel functions (e.g. memcpy, memset, etc) use this order to |
487 | * patch code. |
488 | * |
489 | * So be careful if you want to change the scan order to any other |
490 | * order. |
491 | */ |
492 | for (a = start; a < end; a++) { |
493 | int insn_buff_sz = 0; |
494 | |
495 | instr = (u8 *)&a->instr_offset + a->instr_offset; |
496 | replacement = (u8 *)&a->repl_offset + a->repl_offset; |
497 | BUG_ON(a->instrlen > sizeof(insn_buff)); |
498 | BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); |
499 | |
500 | /* |
501 | * Patch if either: |
502 | * - feature is present |
503 | * - feature not present but ALT_FLAG_NOT is set to mean, |
504 | * patch if feature is *NOT* present. |
505 | */ |
506 | if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { |
507 | optimize_nops_inplace(instr, len: a->instrlen); |
508 | continue; |
509 | } |
510 | |
511 | DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", |
512 | a->cpuid >> 5, |
513 | a->cpuid & 0x1f, |
514 | instr, instr, a->instrlen, |
515 | replacement, a->replacementlen, a->flags); |
516 | |
517 | memcpy(insn_buff, replacement, a->replacementlen); |
518 | insn_buff_sz = a->replacementlen; |
519 | |
520 | if (a->flags & ALT_FLAG_DIRECT_CALL) { |
521 | insn_buff_sz = alt_replace_call(instr, insn_buff, a); |
522 | if (insn_buff_sz < 0) |
523 | continue; |
524 | } |
525 | |
526 | for (; insn_buff_sz < a->instrlen; insn_buff_sz++) |
527 | insn_buff[insn_buff_sz] = 0x90; |
528 | |
529 | apply_relocation(buf: insn_buff, len: a->instrlen, dest: instr, src: replacement, src_len: a->replacementlen); |
530 | |
531 | DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); |
532 | DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); |
533 | DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); |
534 | |
535 | text_poke_early(addr: instr, opcode: insn_buff, len: insn_buff_sz); |
536 | } |
537 | |
538 | kasan_enable_current(); |
539 | } |
540 | |
541 | static inline bool is_jcc32(struct insn *insn) |
542 | { |
543 | /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ |
544 | return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; |
545 | } |
546 | |
547 | #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) |
548 | |
549 | /* |
550 | * CALL/JMP *%\reg |
551 | */ |
552 | static int emit_indirect(int op, int reg, u8 *bytes) |
553 | { |
554 | int i = 0; |
555 | u8 modrm; |
556 | |
557 | switch (op) { |
558 | case CALL_INSN_OPCODE: |
559 | modrm = 0x10; /* Reg = 2; CALL r/m */ |
560 | break; |
561 | |
562 | case JMP32_INSN_OPCODE: |
563 | modrm = 0x20; /* Reg = 4; JMP r/m */ |
564 | break; |
565 | |
566 | default: |
567 | WARN_ON_ONCE(1); |
568 | return -1; |
569 | } |
570 | |
571 | if (reg >= 8) { |
572 | bytes[i++] = 0x41; /* REX.B prefix */ |
573 | reg -= 8; |
574 | } |
575 | |
576 | modrm |= 0xc0; /* Mod = 3 */ |
577 | modrm += reg; |
578 | |
579 | bytes[i++] = 0xff; /* opcode */ |
580 | bytes[i++] = modrm; |
581 | |
582 | return i; |
583 | } |
584 | |
585 | static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) |
586 | { |
587 | u8 op = insn->opcode.bytes[0]; |
588 | int i = 0; |
589 | |
590 | /* |
591 | * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional |
592 | * tail-calls. Deal with them. |
593 | */ |
594 | if (is_jcc32(insn)) { |
595 | bytes[i++] = op; |
596 | op = insn->opcode.bytes[1]; |
597 | goto clang_jcc; |
598 | } |
599 | |
600 | if (insn->length == 6) |
601 | bytes[i++] = 0x2e; /* CS-prefix */ |
602 | |
603 | switch (op) { |
604 | case CALL_INSN_OPCODE: |
605 | __text_gen_insn(buf: bytes+i, opcode: op, addr: addr+i, |
606 | dest: __x86_indirect_call_thunk_array[reg], |
607 | CALL_INSN_SIZE); |
608 | i += CALL_INSN_SIZE; |
609 | break; |
610 | |
611 | case JMP32_INSN_OPCODE: |
612 | clang_jcc: |
613 | __text_gen_insn(buf: bytes+i, opcode: op, addr: addr+i, |
614 | dest: __x86_indirect_jump_thunk_array[reg], |
615 | JMP32_INSN_SIZE); |
616 | i += JMP32_INSN_SIZE; |
617 | break; |
618 | |
619 | default: |
620 | WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); |
621 | return -1; |
622 | } |
623 | |
624 | WARN_ON_ONCE(i != insn->length); |
625 | |
626 | return i; |
627 | } |
628 | |
629 | /* |
630 | * Rewrite the compiler generated retpoline thunk calls. |
631 | * |
632 | * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate |
633 | * indirect instructions, avoiding the extra indirection. |
634 | * |
635 | * For example, convert: |
636 | * |
637 | * CALL __x86_indirect_thunk_\reg |
638 | * |
639 | * into: |
640 | * |
641 | * CALL *%\reg |
642 | * |
643 | * It also tries to inline spectre_v2=retpoline,lfence when size permits. |
644 | */ |
645 | static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) |
646 | { |
647 | retpoline_thunk_t *target; |
648 | int reg, ret, i = 0; |
649 | u8 op, cc; |
650 | |
651 | target = addr + insn->length + insn->immediate.value; |
652 | reg = target - __x86_indirect_thunk_array; |
653 | |
654 | if (WARN_ON_ONCE(reg & ~0xf)) |
655 | return -1; |
656 | |
657 | /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ |
658 | BUG_ON(reg == 4); |
659 | |
660 | if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && |
661 | !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { |
662 | if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) |
663 | return emit_call_track_retpoline(addr, insn, reg, bytes); |
664 | |
665 | return -1; |
666 | } |
667 | |
668 | op = insn->opcode.bytes[0]; |
669 | |
670 | /* |
671 | * Convert: |
672 | * |
673 | * Jcc.d32 __x86_indirect_thunk_\reg |
674 | * |
675 | * into: |
676 | * |
677 | * Jncc.d8 1f |
678 | * [ LFENCE ] |
679 | * JMP *%\reg |
680 | * [ NOP ] |
681 | * 1: |
682 | */ |
683 | if (is_jcc32(insn)) { |
684 | cc = insn->opcode.bytes[1] & 0xf; |
685 | cc ^= 1; /* invert condition */ |
686 | |
687 | bytes[i++] = 0x70 + cc; /* Jcc.d8 */ |
688 | bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ |
689 | |
690 | /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ |
691 | op = JMP32_INSN_OPCODE; |
692 | } |
693 | |
694 | /* |
695 | * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. |
696 | */ |
697 | if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { |
698 | bytes[i++] = 0x0f; |
699 | bytes[i++] = 0xae; |
700 | bytes[i++] = 0xe8; /* LFENCE */ |
701 | } |
702 | |
703 | ret = emit_indirect(op, reg, bytes: bytes + i); |
704 | if (ret < 0) |
705 | return ret; |
706 | i += ret; |
707 | |
708 | /* |
709 | * The compiler is supposed to EMIT an INT3 after every unconditional |
710 | * JMP instruction due to AMD BTC. However, if the compiler is too old |
711 | * or MITIGATION_SLS isn't enabled, we still need an INT3 after |
712 | * indirect JMPs even on Intel. |
713 | */ |
714 | if (op == JMP32_INSN_OPCODE && i < insn->length) |
715 | bytes[i++] = INT3_INSN_OPCODE; |
716 | |
717 | for (; i < insn->length;) |
718 | bytes[i++] = BYTES_NOP1; |
719 | |
720 | return i; |
721 | } |
722 | |
723 | /* |
724 | * Generated by 'objtool --retpoline'. |
725 | */ |
726 | void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) |
727 | { |
728 | s32 *s; |
729 | |
730 | for (s = start; s < end; s++) { |
731 | void *addr = (void *)s + *s; |
732 | struct insn insn; |
733 | int len, ret; |
734 | u8 bytes[16]; |
735 | u8 op1, op2; |
736 | |
737 | ret = insn_decode_kernel(&insn, addr); |
738 | if (WARN_ON_ONCE(ret < 0)) |
739 | continue; |
740 | |
741 | op1 = insn.opcode.bytes[0]; |
742 | op2 = insn.opcode.bytes[1]; |
743 | |
744 | switch (op1) { |
745 | case CALL_INSN_OPCODE: |
746 | case JMP32_INSN_OPCODE: |
747 | break; |
748 | |
749 | case 0x0f: /* escape */ |
750 | if (op2 >= 0x80 && op2 <= 0x8f) |
751 | break; |
752 | fallthrough; |
753 | default: |
754 | WARN_ON_ONCE(1); |
755 | continue; |
756 | } |
757 | |
758 | DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", |
759 | addr, addr, insn.length, |
760 | addr + insn.length + insn.immediate.value); |
761 | |
762 | len = patch_retpoline(addr, insn: &insn, bytes); |
763 | if (len == insn.length) { |
764 | optimize_nops(instr: bytes, len); |
765 | DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); |
766 | DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); |
767 | text_poke_early(addr, opcode: bytes, len); |
768 | } |
769 | } |
770 | } |
771 | |
772 | #ifdef CONFIG_MITIGATION_RETHUNK |
773 | |
774 | /* |
775 | * Rewrite the compiler generated return thunk tail-calls. |
776 | * |
777 | * For example, convert: |
778 | * |
779 | * JMP __x86_return_thunk |
780 | * |
781 | * into: |
782 | * |
783 | * RET |
784 | */ |
785 | static int patch_return(void *addr, struct insn *insn, u8 *bytes) |
786 | { |
787 | int i = 0; |
788 | |
789 | /* Patch the custom return thunks... */ |
790 | if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { |
791 | i = JMP32_INSN_SIZE; |
792 | __text_gen_insn(buf: bytes, JMP32_INSN_OPCODE, addr, dest: x86_return_thunk, size: i); |
793 | } else { |
794 | /* ... or patch them out if not needed. */ |
795 | bytes[i++] = RET_INSN_OPCODE; |
796 | } |
797 | |
798 | for (; i < insn->length;) |
799 | bytes[i++] = INT3_INSN_OPCODE; |
800 | return i; |
801 | } |
802 | |
803 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) |
804 | { |
805 | s32 *s; |
806 | |
807 | if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) |
808 | static_call_force_reinit(); |
809 | |
810 | for (s = start; s < end; s++) { |
811 | void *dest = NULL, *addr = (void *)s + *s; |
812 | struct insn insn; |
813 | int len, ret; |
814 | u8 bytes[16]; |
815 | u8 op; |
816 | |
817 | ret = insn_decode_kernel(&insn, addr); |
818 | if (WARN_ON_ONCE(ret < 0)) |
819 | continue; |
820 | |
821 | op = insn.opcode.bytes[0]; |
822 | if (op == JMP32_INSN_OPCODE) |
823 | dest = addr + insn.length + insn.immediate.value; |
824 | |
825 | if (__static_call_fixup(tramp: addr, op, dest) || |
826 | WARN_ONCE(dest != &__x86_return_thunk, |
827 | "missing return thunk: %pS-%pS: %*ph", |
828 | addr, dest, 5, addr)) |
829 | continue; |
830 | |
831 | DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", |
832 | addr, addr, insn.length, |
833 | addr + insn.length + insn.immediate.value); |
834 | |
835 | len = patch_return(addr, insn: &insn, bytes); |
836 | if (len == insn.length) { |
837 | DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); |
838 | DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); |
839 | text_poke_early(addr, opcode: bytes, len); |
840 | } |
841 | } |
842 | } |
843 | #else |
844 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } |
845 | #endif /* CONFIG_MITIGATION_RETHUNK */ |
846 | |
847 | #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ |
848 | |
849 | void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } |
850 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } |
851 | |
852 | #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */ |
853 | |
854 | #ifdef CONFIG_X86_KERNEL_IBT |
855 | |
856 | static void poison_cfi(void *addr); |
857 | |
858 | static void __init_or_module poison_endbr(void *addr, bool warn) |
859 | { |
860 | u32 endbr, poison = gen_endbr_poison(); |
861 | |
862 | if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr))) |
863 | return; |
864 | |
865 | if (!is_endbr(val: endbr)) { |
866 | WARN_ON_ONCE(warn); |
867 | return; |
868 | } |
869 | |
870 | DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); |
871 | |
872 | /* |
873 | * When we have IBT, the lack of ENDBR will trigger #CP |
874 | */ |
875 | DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); |
876 | DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); |
877 | text_poke_early(addr, opcode: &poison, len: 4); |
878 | } |
879 | |
880 | /* |
881 | * Generated by: objtool --ibt |
882 | * |
883 | * Seal the functions for indirect calls by clobbering the ENDBR instructions |
884 | * and the kCFI hash value. |
885 | */ |
886 | void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) |
887 | { |
888 | s32 *s; |
889 | |
890 | for (s = start; s < end; s++) { |
891 | void *addr = (void *)s + *s; |
892 | |
893 | poison_endbr(addr, warn: true); |
894 | if (IS_ENABLED(CONFIG_FINEIBT)) |
895 | poison_cfi(addr: addr - 16); |
896 | } |
897 | } |
898 | |
899 | #else |
900 | |
901 | void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } |
902 | |
903 | #endif /* CONFIG_X86_KERNEL_IBT */ |
904 | |
905 | #ifdef CONFIG_FINEIBT |
906 | #define __CFI_DEFAULT CFI_DEFAULT |
907 | #elif defined(CONFIG_CFI_CLANG) |
908 | #define __CFI_DEFAULT CFI_KCFI |
909 | #else |
910 | #define __CFI_DEFAULT CFI_OFF |
911 | #endif |
912 | |
913 | enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; |
914 | |
915 | #ifdef CONFIG_CFI_CLANG |
916 | struct bpf_insn; |
917 | |
918 | /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */ |
919 | extern unsigned int __bpf_prog_runX(const void *ctx, |
920 | const struct bpf_insn *insn); |
921 | |
922 | /* |
923 | * Force a reference to the external symbol so the compiler generates |
924 | * __kcfi_typid. |
925 | */ |
926 | __ADDRESSABLE(__bpf_prog_runX); |
927 | |
928 | /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */ |
929 | asm ( |
930 | " .pushsection .data..ro_after_init,\"aw\",@progbits \n" |
931 | " .type cfi_bpf_hash,@object \n" |
932 | " .globl cfi_bpf_hash \n" |
933 | " .p2align 2, 0x0 \n" |
934 | "cfi_bpf_hash: \n" |
935 | " .long __kcfi_typeid___bpf_prog_runX \n" |
936 | " .size cfi_bpf_hash, 4 \n" |
937 | " .popsection \n" |
938 | ); |
939 | |
940 | /* Must match bpf_callback_t */ |
941 | extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64); |
942 | |
943 | __ADDRESSABLE(__bpf_callback_fn); |
944 | |
945 | /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */ |
946 | asm ( |
947 | " .pushsection .data..ro_after_init,\"aw\",@progbits \n" |
948 | " .type cfi_bpf_subprog_hash,@object \n" |
949 | " .globl cfi_bpf_subprog_hash \n" |
950 | " .p2align 2, 0x0 \n" |
951 | "cfi_bpf_subprog_hash: \n" |
952 | " .long __kcfi_typeid___bpf_callback_fn \n" |
953 | " .size cfi_bpf_subprog_hash, 4 \n" |
954 | " .popsection \n" |
955 | ); |
956 | |
957 | u32 cfi_get_func_hash(void *func) |
958 | { |
959 | u32 hash; |
960 | |
961 | func -= cfi_get_offset(); |
962 | switch (cfi_mode) { |
963 | case CFI_FINEIBT: |
964 | func += 7; |
965 | break; |
966 | case CFI_KCFI: |
967 | func += 1; |
968 | break; |
969 | default: |
970 | return 0; |
971 | } |
972 | |
973 | if (get_kernel_nofault(hash, func)) |
974 | return 0; |
975 | |
976 | return hash; |
977 | } |
978 | #endif |
979 | |
980 | #ifdef CONFIG_FINEIBT |
981 | |
982 | static bool cfi_rand __ro_after_init = true; |
983 | static u32 cfi_seed __ro_after_init; |
984 | |
985 | /* |
986 | * Re-hash the CFI hash with a boot-time seed while making sure the result is |
987 | * not a valid ENDBR instruction. |
988 | */ |
989 | static u32 cfi_rehash(u32 hash) |
990 | { |
991 | hash ^= cfi_seed; |
992 | while (unlikely(is_endbr(hash) || is_endbr(-hash))) { |
993 | bool lsb = hash & 1; |
994 | hash >>= 1; |
995 | if (lsb) |
996 | hash ^= 0x80200003; |
997 | } |
998 | return hash; |
999 | } |
1000 | |
1001 | static __init int cfi_parse_cmdline(char *str) |
1002 | { |
1003 | if (!str) |
1004 | return -EINVAL; |
1005 | |
1006 | while (str) { |
1007 | char *next = strchr(str, ','); |
1008 | if (next) { |
1009 | *next = 0; |
1010 | next++; |
1011 | } |
1012 | |
1013 | if (!strcmp(str, "auto")) { |
1014 | cfi_mode = CFI_DEFAULT; |
1015 | } else if (!strcmp(str, "off")) { |
1016 | cfi_mode = CFI_OFF; |
1017 | cfi_rand = false; |
1018 | } else if (!strcmp(str, "kcfi")) { |
1019 | cfi_mode = CFI_KCFI; |
1020 | } else if (!strcmp(str, "fineibt")) { |
1021 | cfi_mode = CFI_FINEIBT; |
1022 | } else if (!strcmp(str, "norand")) { |
1023 | cfi_rand = false; |
1024 | } else { |
1025 | pr_err("Ignoring unknown cfi option (%s).", str); |
1026 | } |
1027 | |
1028 | str = next; |
1029 | } |
1030 | |
1031 | return 0; |
1032 | } |
1033 | early_param("cfi", cfi_parse_cmdline); |
1034 | |
1035 | /* |
1036 | * kCFI FineIBT |
1037 | * |
1038 | * __cfi_\func: __cfi_\func: |
1039 | * movl $0x12345678,%eax // 5 endbr64 // 4 |
1040 | * nop subl $0x12345678,%r10d // 7 |
1041 | * nop jz 1f // 2 |
1042 | * nop ud2 // 2 |
1043 | * nop 1: nop // 1 |
1044 | * nop |
1045 | * nop |
1046 | * nop |
1047 | * nop |
1048 | * nop |
1049 | * nop |
1050 | * nop |
1051 | * |
1052 | * |
1053 | * caller: caller: |
1054 | * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 |
1055 | * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4 |
1056 | * je 1f // 2 nop4 // 4 |
1057 | * ud2 // 2 |
1058 | * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5 |
1059 | * |
1060 | */ |
1061 | |
1062 | asm( ".pushsection .rodata \n" |
1063 | "fineibt_preamble_start: \n" |
1064 | " endbr64 \n" |
1065 | " subl $0x12345678, %r10d \n" |
1066 | " je fineibt_preamble_end \n" |
1067 | " ud2 \n" |
1068 | " nop \n" |
1069 | "fineibt_preamble_end: \n" |
1070 | ".popsection\n" |
1071 | ); |
1072 | |
1073 | extern u8 fineibt_preamble_start[]; |
1074 | extern u8 fineibt_preamble_end[]; |
1075 | |
1076 | #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) |
1077 | #define fineibt_preamble_hash 7 |
1078 | |
1079 | asm( ".pushsection .rodata \n" |
1080 | "fineibt_caller_start: \n" |
1081 | " movl $0x12345678, %r10d \n" |
1082 | " sub $16, %r11 \n" |
1083 | ASM_NOP4 |
1084 | "fineibt_caller_end: \n" |
1085 | ".popsection \n" |
1086 | ); |
1087 | |
1088 | extern u8 fineibt_caller_start[]; |
1089 | extern u8 fineibt_caller_end[]; |
1090 | |
1091 | #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) |
1092 | #define fineibt_caller_hash 2 |
1093 | |
1094 | #define fineibt_caller_jmp (fineibt_caller_size - 2) |
1095 | |
1096 | static u32 decode_preamble_hash(void *addr) |
1097 | { |
1098 | u8 *p = addr; |
1099 | |
1100 | /* b8 78 56 34 12 mov $0x12345678,%eax */ |
1101 | if (p[0] == 0xb8) |
1102 | return *(u32 *)(addr + 1); |
1103 | |
1104 | return 0; /* invalid hash value */ |
1105 | } |
1106 | |
1107 | static u32 decode_caller_hash(void *addr) |
1108 | { |
1109 | u8 *p = addr; |
1110 | |
1111 | /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */ |
1112 | if (p[0] == 0x41 && p[1] == 0xba) |
1113 | return -*(u32 *)(addr + 2); |
1114 | |
1115 | /* e8 0c 78 56 34 12 jmp.d8 +12 */ |
1116 | if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) |
1117 | return -*(u32 *)(addr + 2); |
1118 | |
1119 | return 0; /* invalid hash value */ |
1120 | } |
1121 | |
1122 | /* .retpoline_sites */ |
1123 | static int cfi_disable_callers(s32 *start, s32 *end) |
1124 | { |
1125 | /* |
1126 | * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate |
1127 | * in tact for later usage. Also see decode_caller_hash() and |
1128 | * cfi_rewrite_callers(). |
1129 | */ |
1130 | const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; |
1131 | s32 *s; |
1132 | |
1133 | for (s = start; s < end; s++) { |
1134 | void *addr = (void *)s + *s; |
1135 | u32 hash; |
1136 | |
1137 | addr -= fineibt_caller_size; |
1138 | hash = decode_caller_hash(addr); |
1139 | if (!hash) /* nocfi callers */ |
1140 | continue; |
1141 | |
1142 | text_poke_early(addr, jmp, 2); |
1143 | } |
1144 | |
1145 | return 0; |
1146 | } |
1147 | |
1148 | static int cfi_enable_callers(s32 *start, s32 *end) |
1149 | { |
1150 | /* |
1151 | * Re-enable kCFI, undo what cfi_disable_callers() did. |
1152 | */ |
1153 | const u8 mov[] = { 0x41, 0xba }; |
1154 | s32 *s; |
1155 | |
1156 | for (s = start; s < end; s++) { |
1157 | void *addr = (void *)s + *s; |
1158 | u32 hash; |
1159 | |
1160 | addr -= fineibt_caller_size; |
1161 | hash = decode_caller_hash(addr); |
1162 | if (!hash) /* nocfi callers */ |
1163 | continue; |
1164 | |
1165 | text_poke_early(addr, mov, 2); |
1166 | } |
1167 | |
1168 | return 0; |
1169 | } |
1170 | |
1171 | /* .cfi_sites */ |
1172 | static int cfi_rand_preamble(s32 *start, s32 *end) |
1173 | { |
1174 | s32 *s; |
1175 | |
1176 | for (s = start; s < end; s++) { |
1177 | void *addr = (void *)s + *s; |
1178 | u32 hash; |
1179 | |
1180 | hash = decode_preamble_hash(addr); |
1181 | if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", |
1182 | addr, addr, 5, addr)) |
1183 | return -EINVAL; |
1184 | |
1185 | hash = cfi_rehash(hash); |
1186 | text_poke_early(addr + 1, &hash, 4); |
1187 | } |
1188 | |
1189 | return 0; |
1190 | } |
1191 | |
1192 | static int cfi_rewrite_preamble(s32 *start, s32 *end) |
1193 | { |
1194 | s32 *s; |
1195 | |
1196 | for (s = start; s < end; s++) { |
1197 | void *addr = (void *)s + *s; |
1198 | u32 hash; |
1199 | |
1200 | hash = decode_preamble_hash(addr); |
1201 | if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", |
1202 | addr, addr, 5, addr)) |
1203 | return -EINVAL; |
1204 | |
1205 | text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); |
1206 | WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); |
1207 | text_poke_early(addr + fineibt_preamble_hash, &hash, 4); |
1208 | } |
1209 | |
1210 | return 0; |
1211 | } |
1212 | |
1213 | static void cfi_rewrite_endbr(s32 *start, s32 *end) |
1214 | { |
1215 | s32 *s; |
1216 | |
1217 | for (s = start; s < end; s++) { |
1218 | void *addr = (void *)s + *s; |
1219 | |
1220 | poison_endbr(addr+16, false); |
1221 | } |
1222 | } |
1223 | |
1224 | /* .retpoline_sites */ |
1225 | static int cfi_rand_callers(s32 *start, s32 *end) |
1226 | { |
1227 | s32 *s; |
1228 | |
1229 | for (s = start; s < end; s++) { |
1230 | void *addr = (void *)s + *s; |
1231 | u32 hash; |
1232 | |
1233 | addr -= fineibt_caller_size; |
1234 | hash = decode_caller_hash(addr); |
1235 | if (hash) { |
1236 | hash = -cfi_rehash(hash); |
1237 | text_poke_early(addr + 2, &hash, 4); |
1238 | } |
1239 | } |
1240 | |
1241 | return 0; |
1242 | } |
1243 | |
1244 | static int cfi_rewrite_callers(s32 *start, s32 *end) |
1245 | { |
1246 | s32 *s; |
1247 | |
1248 | for (s = start; s < end; s++) { |
1249 | void *addr = (void *)s + *s; |
1250 | u32 hash; |
1251 | |
1252 | addr -= fineibt_caller_size; |
1253 | hash = decode_caller_hash(addr); |
1254 | if (hash) { |
1255 | text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); |
1256 | WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); |
1257 | text_poke_early(addr + fineibt_caller_hash, &hash, 4); |
1258 | } |
1259 | /* rely on apply_retpolines() */ |
1260 | } |
1261 | |
1262 | return 0; |
1263 | } |
1264 | |
1265 | static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
1266 | s32 *start_cfi, s32 *end_cfi, bool builtin) |
1267 | { |
1268 | int ret; |
1269 | |
1270 | if (WARN_ONCE(fineibt_preamble_size != 16, |
1271 | "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) |
1272 | return; |
1273 | |
1274 | if (cfi_mode == CFI_DEFAULT) { |
1275 | cfi_mode = CFI_KCFI; |
1276 | if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) |
1277 | cfi_mode = CFI_FINEIBT; |
1278 | } |
1279 | |
1280 | /* |
1281 | * Rewrite the callers to not use the __cfi_ stubs, such that we might |
1282 | * rewrite them. This disables all CFI. If this succeeds but any of the |
1283 | * later stages fails, we're without CFI. |
1284 | */ |
1285 | ret = cfi_disable_callers(start_retpoline, end_retpoline); |
1286 | if (ret) |
1287 | goto err; |
1288 | |
1289 | if (cfi_rand) { |
1290 | if (builtin) { |
1291 | cfi_seed = get_random_u32(); |
1292 | cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); |
1293 | cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); |
1294 | } |
1295 | |
1296 | ret = cfi_rand_preamble(start_cfi, end_cfi); |
1297 | if (ret) |
1298 | goto err; |
1299 | |
1300 | ret = cfi_rand_callers(start_retpoline, end_retpoline); |
1301 | if (ret) |
1302 | goto err; |
1303 | } |
1304 | |
1305 | switch (cfi_mode) { |
1306 | case CFI_OFF: |
1307 | if (builtin) |
1308 | pr_info("Disabling CFI\n"); |
1309 | return; |
1310 | |
1311 | case CFI_KCFI: |
1312 | ret = cfi_enable_callers(start_retpoline, end_retpoline); |
1313 | if (ret) |
1314 | goto err; |
1315 | |
1316 | if (builtin) |
1317 | pr_info("Using kCFI\n"); |
1318 | return; |
1319 | |
1320 | case CFI_FINEIBT: |
1321 | /* place the FineIBT preamble at func()-16 */ |
1322 | ret = cfi_rewrite_preamble(start_cfi, end_cfi); |
1323 | if (ret) |
1324 | goto err; |
1325 | |
1326 | /* rewrite the callers to target func()-16 */ |
1327 | ret = cfi_rewrite_callers(start_retpoline, end_retpoline); |
1328 | if (ret) |
1329 | goto err; |
1330 | |
1331 | /* now that nobody targets func()+0, remove ENDBR there */ |
1332 | cfi_rewrite_endbr(start_cfi, end_cfi); |
1333 | |
1334 | if (builtin) |
1335 | pr_info("Using FineIBT CFI\n"); |
1336 | return; |
1337 | |
1338 | default: |
1339 | break; |
1340 | } |
1341 | |
1342 | err: |
1343 | pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); |
1344 | } |
1345 | |
1346 | static inline void poison_hash(void *addr) |
1347 | { |
1348 | *(u32 *)addr = 0; |
1349 | } |
1350 | |
1351 | static void poison_cfi(void *addr) |
1352 | { |
1353 | switch (cfi_mode) { |
1354 | case CFI_FINEIBT: |
1355 | /* |
1356 | * __cfi_\func: |
1357 | * osp nopl (%rax) |
1358 | * subl $0, %r10d |
1359 | * jz 1f |
1360 | * ud2 |
1361 | * 1: nop |
1362 | */ |
1363 | poison_endbr(addr, false); |
1364 | poison_hash(addr + fineibt_preamble_hash); |
1365 | break; |
1366 | |
1367 | case CFI_KCFI: |
1368 | /* |
1369 | * __cfi_\func: |
1370 | * movl $0, %eax |
1371 | * .skip 11, 0x90 |
1372 | */ |
1373 | poison_hash(addr + 1); |
1374 | break; |
1375 | |
1376 | default: |
1377 | break; |
1378 | } |
1379 | } |
1380 | |
1381 | #else |
1382 | |
1383 | static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
1384 | s32 *start_cfi, s32 *end_cfi, bool builtin) |
1385 | { |
1386 | } |
1387 | |
1388 | #ifdef CONFIG_X86_KERNEL_IBT |
1389 | static void poison_cfi(void *addr) { } |
1390 | #endif |
1391 | |
1392 | #endif |
1393 | |
1394 | void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
1395 | s32 *start_cfi, s32 *end_cfi) |
1396 | { |
1397 | return __apply_fineibt(start_retpoline, end_retpoline, |
1398 | start_cfi, end_cfi, |
1399 | /* .builtin = */ false); |
1400 | } |
1401 | |
1402 | #ifdef CONFIG_SMP |
1403 | static void alternatives_smp_lock(const s32 *start, const s32 *end, |
1404 | u8 *text, u8 *text_end) |
1405 | { |
1406 | const s32 *poff; |
1407 | |
1408 | for (poff = start; poff < end; poff++) { |
1409 | u8 *ptr = (u8 *)poff + *poff; |
1410 | |
1411 | if (!*poff || ptr < text || ptr >= text_end) |
1412 | continue; |
1413 | /* turn DS segment override prefix into lock prefix */ |
1414 | if (*ptr == 0x3e) |
1415 | text_poke(addr: ptr, opcode: ((unsigned char []){0xf0}), len: 1); |
1416 | } |
1417 | } |
1418 | |
1419 | static void alternatives_smp_unlock(const s32 *start, const s32 *end, |
1420 | u8 *text, u8 *text_end) |
1421 | { |
1422 | const s32 *poff; |
1423 | |
1424 | for (poff = start; poff < end; poff++) { |
1425 | u8 *ptr = (u8 *)poff + *poff; |
1426 | |
1427 | if (!*poff || ptr < text || ptr >= text_end) |
1428 | continue; |
1429 | /* turn lock prefix into DS segment override prefix */ |
1430 | if (*ptr == 0xf0) |
1431 | text_poke(addr: ptr, opcode: ((unsigned char []){0x3E}), len: 1); |
1432 | } |
1433 | } |
1434 | |
1435 | struct smp_alt_module { |
1436 | /* what is this ??? */ |
1437 | struct module *mod; |
1438 | char *name; |
1439 | |
1440 | /* ptrs to lock prefixes */ |
1441 | const s32 *locks; |
1442 | const s32 *locks_end; |
1443 | |
1444 | /* .text segment, needed to avoid patching init code ;) */ |
1445 | u8 *text; |
1446 | u8 *text_end; |
1447 | |
1448 | struct list_head next; |
1449 | }; |
1450 | static LIST_HEAD(smp_alt_modules); |
1451 | static bool uniproc_patched = false; /* protected by text_mutex */ |
1452 | |
1453 | void __init_or_module alternatives_smp_module_add(struct module *mod, |
1454 | char *name, |
1455 | void *locks, void *locks_end, |
1456 | void *text, void *text_end) |
1457 | { |
1458 | struct smp_alt_module *smp; |
1459 | |
1460 | mutex_lock(&text_mutex); |
1461 | if (!uniproc_patched) |
1462 | goto unlock; |
1463 | |
1464 | if (num_possible_cpus() == 1) |
1465 | /* Don't bother remembering, we'll never have to undo it. */ |
1466 | goto smp_unlock; |
1467 | |
1468 | smp = kzalloc(size: sizeof(*smp), GFP_KERNEL); |
1469 | if (NULL == smp) |
1470 | /* we'll run the (safe but slow) SMP code then ... */ |
1471 | goto unlock; |
1472 | |
1473 | smp->mod = mod; |
1474 | smp->name = name; |
1475 | smp->locks = locks; |
1476 | smp->locks_end = locks_end; |
1477 | smp->text = text; |
1478 | smp->text_end = text_end; |
1479 | DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", |
1480 | smp->locks, smp->locks_end, |
1481 | smp->text, smp->text_end, smp->name); |
1482 | |
1483 | list_add_tail(new: &smp->next, head: &smp_alt_modules); |
1484 | smp_unlock: |
1485 | alternatives_smp_unlock(start: locks, end: locks_end, text, text_end); |
1486 | unlock: |
1487 | mutex_unlock(lock: &text_mutex); |
1488 | } |
1489 | |
1490 | void __init_or_module alternatives_smp_module_del(struct module *mod) |
1491 | { |
1492 | struct smp_alt_module *item; |
1493 | |
1494 | mutex_lock(&text_mutex); |
1495 | list_for_each_entry(item, &smp_alt_modules, next) { |
1496 | if (mod != item->mod) |
1497 | continue; |
1498 | list_del(entry: &item->next); |
1499 | kfree(objp: item); |
1500 | break; |
1501 | } |
1502 | mutex_unlock(lock: &text_mutex); |
1503 | } |
1504 | |
1505 | void alternatives_enable_smp(void) |
1506 | { |
1507 | struct smp_alt_module *mod; |
1508 | |
1509 | /* Why bother if there are no other CPUs? */ |
1510 | BUG_ON(num_possible_cpus() == 1); |
1511 | |
1512 | mutex_lock(&text_mutex); |
1513 | |
1514 | if (uniproc_patched) { |
1515 | pr_info("switching to SMP code\n"); |
1516 | BUG_ON(num_online_cpus() != 1); |
1517 | clear_cpu_cap(c: &boot_cpu_data, X86_FEATURE_UP); |
1518 | clear_cpu_cap(c: &cpu_data(0), X86_FEATURE_UP); |
1519 | list_for_each_entry(mod, &smp_alt_modules, next) |
1520 | alternatives_smp_lock(start: mod->locks, end: mod->locks_end, |
1521 | text: mod->text, text_end: mod->text_end); |
1522 | uniproc_patched = false; |
1523 | } |
1524 | mutex_unlock(lock: &text_mutex); |
1525 | } |
1526 | |
1527 | /* |
1528 | * Return 1 if the address range is reserved for SMP-alternatives. |
1529 | * Must hold text_mutex. |
1530 | */ |
1531 | int alternatives_text_reserved(void *start, void *end) |
1532 | { |
1533 | struct smp_alt_module *mod; |
1534 | const s32 *poff; |
1535 | u8 *text_start = start; |
1536 | u8 *text_end = end; |
1537 | |
1538 | lockdep_assert_held(&text_mutex); |
1539 | |
1540 | list_for_each_entry(mod, &smp_alt_modules, next) { |
1541 | if (mod->text > text_end || mod->text_end < text_start) |
1542 | continue; |
1543 | for (poff = mod->locks; poff < mod->locks_end; poff++) { |
1544 | const u8 *ptr = (const u8 *)poff + *poff; |
1545 | |
1546 | if (text_start <= ptr && text_end > ptr) |
1547 | return 1; |
1548 | } |
1549 | } |
1550 | |
1551 | return 0; |
1552 | } |
1553 | #endif /* CONFIG_SMP */ |
1554 | |
1555 | /* |
1556 | * Self-test for the INT3 based CALL emulation code. |
1557 | * |
1558 | * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up |
1559 | * properly and that there is a stack gap between the INT3 frame and the |
1560 | * previous context. Without this gap doing a virtual PUSH on the interrupted |
1561 | * stack would corrupt the INT3 IRET frame. |
1562 | * |
1563 | * See entry_{32,64}.S for more details. |
1564 | */ |
1565 | |
1566 | /* |
1567 | * We define the int3_magic() function in assembly to control the calling |
1568 | * convention such that we can 'call' it from assembly. |
1569 | */ |
1570 | |
1571 | extern void int3_magic(unsigned int *ptr); /* defined in asm */ |
1572 | |
1573 | asm ( |
1574 | " .pushsection .init.text, \"ax\", @progbits\n" |
1575 | " .type int3_magic, @function\n" |
1576 | "int3_magic:\n" |
1577 | ANNOTATE_NOENDBR |
1578 | " movl $1, (%"_ASM_ARG1 ")\n" |
1579 | ASM_RET |
1580 | " .size int3_magic, .-int3_magic\n" |
1581 | " .popsection\n" |
1582 | ); |
1583 | |
1584 | extern void int3_selftest_ip(void); /* defined in asm below */ |
1585 | |
1586 | static int __init |
1587 | int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) |
1588 | { |
1589 | unsigned long selftest = (unsigned long)&int3_selftest_ip; |
1590 | struct die_args *args = data; |
1591 | struct pt_regs *regs = args->regs; |
1592 | |
1593 | OPTIMIZER_HIDE_VAR(selftest); |
1594 | |
1595 | if (!regs || user_mode(regs)) |
1596 | return NOTIFY_DONE; |
1597 | |
1598 | if (val != DIE_INT3) |
1599 | return NOTIFY_DONE; |
1600 | |
1601 | if (regs->ip - INT3_INSN_SIZE != selftest) |
1602 | return NOTIFY_DONE; |
1603 | |
1604 | int3_emulate_call(regs, func: (unsigned long)&int3_magic); |
1605 | return NOTIFY_STOP; |
1606 | } |
1607 | |
1608 | /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ |
1609 | static noinline void __init int3_selftest(void) |
1610 | { |
1611 | static __initdata struct notifier_block int3_exception_nb = { |
1612 | .notifier_call = int3_exception_notify, |
1613 | .priority = INT_MAX-1, /* last */ |
1614 | }; |
1615 | unsigned int val = 0; |
1616 | |
1617 | BUG_ON(register_die_notifier(&int3_exception_nb)); |
1618 | |
1619 | /* |
1620 | * Basically: int3_magic(&val); but really complicated :-) |
1621 | * |
1622 | * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb |
1623 | * notifier above will emulate CALL for us. |
1624 | */ |
1625 | asm volatile ("int3_selftest_ip:\n\t" |
1626 | ANNOTATE_NOENDBR |
1627 | " int3; nop; nop; nop; nop\n\t" |
1628 | : ASM_CALL_CONSTRAINT |
1629 | : __ASM_SEL_RAW(a, D) (&val) |
1630 | : "memory"); |
1631 | |
1632 | BUG_ON(val != 1); |
1633 | |
1634 | unregister_die_notifier(nb: &int3_exception_nb); |
1635 | } |
1636 | |
1637 | static __initdata int __alt_reloc_selftest_addr; |
1638 | |
1639 | extern void __init __alt_reloc_selftest(void *arg); |
1640 | __visible noinline void __init __alt_reloc_selftest(void *arg) |
1641 | { |
1642 | WARN_ON(arg != &__alt_reloc_selftest_addr); |
1643 | } |
1644 | |
1645 | static noinline void __init alt_reloc_selftest(void) |
1646 | { |
1647 | /* |
1648 | * Tests apply_relocation(). |
1649 | * |
1650 | * This has a relative immediate (CALL) in a place other than the first |
1651 | * instruction and additionally on x86_64 we get a RIP-relative LEA: |
1652 | * |
1653 | * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c |
1654 | * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 |
1655 | * |
1656 | * Getting this wrong will either crash and burn or tickle the WARN |
1657 | * above. |
1658 | */ |
1659 | asm_inline volatile ( |
1660 | ALTERNATIVE("", "lea %[mem], %%"_ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) |
1661 | : /* output */ |
1662 | : [mem] "m"(__alt_reloc_selftest_addr) |
1663 | : _ASM_ARG1 |
1664 | ); |
1665 | } |
1666 | |
1667 | void __init alternative_instructions(void) |
1668 | { |
1669 | int3_selftest(); |
1670 | |
1671 | /* |
1672 | * The patching is not fully atomic, so try to avoid local |
1673 | * interruptions that might execute the to be patched code. |
1674 | * Other CPUs are not running. |
1675 | */ |
1676 | stop_nmi(); |
1677 | |
1678 | /* |
1679 | * Don't stop machine check exceptions while patching. |
1680 | * MCEs only happen when something got corrupted and in this |
1681 | * case we must do something about the corruption. |
1682 | * Ignoring it is worse than an unlikely patching race. |
1683 | * Also machine checks tend to be broadcast and if one CPU |
1684 | * goes into machine check the others follow quickly, so we don't |
1685 | * expect a machine check to cause undue problems during to code |
1686 | * patching. |
1687 | */ |
1688 | |
1689 | /* |
1690 | * Make sure to set (artificial) features depending on used paravirt |
1691 | * functions which can later influence alternative patching. |
1692 | */ |
1693 | paravirt_set_cap(); |
1694 | |
1695 | __apply_fineibt(start_retpoline: __retpoline_sites, end_retpoline: __retpoline_sites_end, |
1696 | start_cfi: __cfi_sites, end_cfi: __cfi_sites_end, builtin: true); |
1697 | |
1698 | /* |
1699 | * Rewrite the retpolines, must be done before alternatives since |
1700 | * those can rewrite the retpoline thunks. |
1701 | */ |
1702 | apply_retpolines(start: __retpoline_sites, end: __retpoline_sites_end); |
1703 | apply_returns(start: __return_sites, end: __return_sites_end); |
1704 | |
1705 | apply_alternatives(start: __alt_instructions, end: __alt_instructions_end); |
1706 | |
1707 | /* |
1708 | * Now all calls are established. Apply the call thunks if |
1709 | * required. |
1710 | */ |
1711 | callthunks_patch_builtin_calls(); |
1712 | |
1713 | /* |
1714 | * Seal all functions that do not have their address taken. |
1715 | */ |
1716 | apply_seal_endbr(start: __ibt_endbr_seal, end: __ibt_endbr_seal_end); |
1717 | |
1718 | #ifdef CONFIG_SMP |
1719 | /* Patch to UP if other cpus not imminent. */ |
1720 | if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { |
1721 | uniproc_patched = true; |
1722 | alternatives_smp_module_add(NULL, name: "core kernel", |
1723 | locks: __smp_locks, locks_end: __smp_locks_end, |
1724 | text: _text, text_end: _etext); |
1725 | } |
1726 | |
1727 | if (!uniproc_patched || num_possible_cpus() == 1) { |
1728 | free_init_pages(what: "SMP alternatives", |
1729 | begin: (unsigned long)__smp_locks, |
1730 | end: (unsigned long)__smp_locks_end); |
1731 | } |
1732 | #endif |
1733 | |
1734 | restart_nmi(); |
1735 | alternatives_patched = 1; |
1736 | |
1737 | alt_reloc_selftest(); |
1738 | } |
1739 | |
1740 | /** |
1741 | * text_poke_early - Update instructions on a live kernel at boot time |
1742 | * @addr: address to modify |
1743 | * @opcode: source of the copy |
1744 | * @len: length to copy |
1745 | * |
1746 | * When you use this code to patch more than one byte of an instruction |
1747 | * you need to make sure that other CPUs cannot execute this code in parallel. |
1748 | * Also no thread must be currently preempted in the middle of these |
1749 | * instructions. And on the local CPU you need to be protected against NMI or |
1750 | * MCE handlers seeing an inconsistent instruction while you patch. |
1751 | */ |
1752 | void __init_or_module text_poke_early(void *addr, const void *opcode, |
1753 | size_t len) |
1754 | { |
1755 | unsigned long flags; |
1756 | |
1757 | if (boot_cpu_has(X86_FEATURE_NX) && |
1758 | is_module_text_address(addr: (unsigned long)addr)) { |
1759 | /* |
1760 | * Modules text is marked initially as non-executable, so the |
1761 | * code cannot be running and speculative code-fetches are |
1762 | * prevented. Just change the code. |
1763 | */ |
1764 | memcpy(addr, opcode, len); |
1765 | } else { |
1766 | local_irq_save(flags); |
1767 | memcpy(addr, opcode, len); |
1768 | sync_core(); |
1769 | local_irq_restore(flags); |
1770 | |
1771 | /* |
1772 | * Could also do a CLFLUSH here to speed up CPU recovery; but |
1773 | * that causes hangs on some VIA CPUs. |
1774 | */ |
1775 | } |
1776 | } |
1777 | |
1778 | typedef struct { |
1779 | struct mm_struct *mm; |
1780 | } temp_mm_state_t; |
1781 | |
1782 | /* |
1783 | * Using a temporary mm allows to set temporary mappings that are not accessible |
1784 | * by other CPUs. Such mappings are needed to perform sensitive memory writes |
1785 | * that override the kernel memory protections (e.g., W^X), without exposing the |
1786 | * temporary page-table mappings that are required for these write operations to |
1787 | * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the |
1788 | * mapping is torn down. |
1789 | * |
1790 | * Context: The temporary mm needs to be used exclusively by a single core. To |
1791 | * harden security IRQs must be disabled while the temporary mm is |
1792 | * loaded, thereby preventing interrupt handler bugs from overriding |
1793 | * the kernel memory protection. |
1794 | */ |
1795 | static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) |
1796 | { |
1797 | temp_mm_state_t temp_state; |
1798 | |
1799 | lockdep_assert_irqs_disabled(); |
1800 | |
1801 | /* |
1802 | * Make sure not to be in TLB lazy mode, as otherwise we'll end up |
1803 | * with a stale address space WITHOUT being in lazy mode after |
1804 | * restoring the previous mm. |
1805 | */ |
1806 | if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) |
1807 | leave_mm(); |
1808 | |
1809 | temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
1810 | switch_mm_irqs_off(NULL, next: mm, current); |
1811 | |
1812 | /* |
1813 | * If breakpoints are enabled, disable them while the temporary mm is |
1814 | * used. Userspace might set up watchpoints on addresses that are used |
1815 | * in the temporary mm, which would lead to wrong signals being sent or |
1816 | * crashes. |
1817 | * |
1818 | * Note that breakpoints are not disabled selectively, which also causes |
1819 | * kernel breakpoints (e.g., perf's) to be disabled. This might be |
1820 | * undesirable, but still seems reasonable as the code that runs in the |
1821 | * temporary mm should be short. |
1822 | */ |
1823 | if (hw_breakpoint_active()) |
1824 | hw_breakpoint_disable(); |
1825 | |
1826 | return temp_state; |
1827 | } |
1828 | |
1829 | static inline void unuse_temporary_mm(temp_mm_state_t prev_state) |
1830 | { |
1831 | lockdep_assert_irqs_disabled(); |
1832 | switch_mm_irqs_off(NULL, next: prev_state.mm, current); |
1833 | |
1834 | /* |
1835 | * Restore the breakpoints if they were disabled before the temporary mm |
1836 | * was loaded. |
1837 | */ |
1838 | if (hw_breakpoint_active()) |
1839 | hw_breakpoint_restore(); |
1840 | } |
1841 | |
1842 | __ro_after_init struct mm_struct *poking_mm; |
1843 | __ro_after_init unsigned long poking_addr; |
1844 | |
1845 | static void text_poke_memcpy(void *dst, const void *src, size_t len) |
1846 | { |
1847 | memcpy(dst, src, len); |
1848 | } |
1849 | |
1850 | static void text_poke_memset(void *dst, const void *src, size_t len) |
1851 | { |
1852 | int c = *(const int *)src; |
1853 | |
1854 | memset(dst, c, len); |
1855 | } |
1856 | |
1857 | typedef void text_poke_f(void *dst, const void *src, size_t len); |
1858 | |
1859 | static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) |
1860 | { |
1861 | bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; |
1862 | struct page *pages[2] = {NULL}; |
1863 | temp_mm_state_t prev; |
1864 | unsigned long flags; |
1865 | pte_t pte, *ptep; |
1866 | spinlock_t *ptl; |
1867 | pgprot_t pgprot; |
1868 | |
1869 | /* |
1870 | * While boot memory allocator is running we cannot use struct pages as |
1871 | * they are not yet initialized. There is no way to recover. |
1872 | */ |
1873 | BUG_ON(!after_bootmem); |
1874 | |
1875 | if (!core_kernel_text(addr: (unsigned long)addr)) { |
1876 | pages[0] = vmalloc_to_page(addr); |
1877 | if (cross_page_boundary) |
1878 | pages[1] = vmalloc_to_page(addr: addr + PAGE_SIZE); |
1879 | } else { |
1880 | pages[0] = virt_to_page(addr); |
1881 | WARN_ON(!PageReserved(pages[0])); |
1882 | if (cross_page_boundary) |
1883 | pages[1] = virt_to_page(addr + PAGE_SIZE); |
1884 | } |
1885 | /* |
1886 | * If something went wrong, crash and burn since recovery paths are not |
1887 | * implemented. |
1888 | */ |
1889 | BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); |
1890 | |
1891 | /* |
1892 | * Map the page without the global bit, as TLB flushing is done with |
1893 | * flush_tlb_mm_range(), which is intended for non-global PTEs. |
1894 | */ |
1895 | pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); |
1896 | |
1897 | /* |
1898 | * The lock is not really needed, but this allows to avoid open-coding. |
1899 | */ |
1900 | ptep = get_locked_pte(mm: poking_mm, addr: poking_addr, ptl: &ptl); |
1901 | |
1902 | /* |
1903 | * This must not fail; preallocated in poking_init(). |
1904 | */ |
1905 | VM_BUG_ON(!ptep); |
1906 | |
1907 | local_irq_save(flags); |
1908 | |
1909 | pte = mk_pte(pages[0], pgprot); |
1910 | set_pte_at(poking_mm, poking_addr, ptep, pte); |
1911 | |
1912 | if (cross_page_boundary) { |
1913 | pte = mk_pte(pages[1], pgprot); |
1914 | set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); |
1915 | } |
1916 | |
1917 | /* |
1918 | * Loading the temporary mm behaves as a compiler barrier, which |
1919 | * guarantees that the PTE will be set at the time memcpy() is done. |
1920 | */ |
1921 | prev = use_temporary_mm(mm: poking_mm); |
1922 | |
1923 | kasan_disable_current(); |
1924 | func((u8 *)poking_addr + offset_in_page(addr), src, len); |
1925 | kasan_enable_current(); |
1926 | |
1927 | /* |
1928 | * Ensure that the PTE is only cleared after the instructions of memcpy |
1929 | * were issued by using a compiler barrier. |
1930 | */ |
1931 | barrier(); |
1932 | |
1933 | pte_clear(mm: poking_mm, addr: poking_addr, ptep); |
1934 | if (cross_page_boundary) |
1935 | pte_clear(mm: poking_mm, addr: poking_addr + PAGE_SIZE, ptep: ptep + 1); |
1936 | |
1937 | /* |
1938 | * Loading the previous page-table hierarchy requires a serializing |
1939 | * instruction that already allows the core to see the updated version. |
1940 | * Xen-PV is assumed to serialize execution in a similar manner. |
1941 | */ |
1942 | unuse_temporary_mm(prev_state: prev); |
1943 | |
1944 | /* |
1945 | * Flushing the TLB might involve IPIs, which would require enabled |
1946 | * IRQs, but not if the mm is not used, as it is in this point. |
1947 | */ |
1948 | flush_tlb_mm_range(mm: poking_mm, start: poking_addr, end: poking_addr + |
1949 | (cross_page_boundary ? 2 : 1) * PAGE_SIZE, |
1950 | PAGE_SHIFT, freed_tables: false); |
1951 | |
1952 | if (func == text_poke_memcpy) { |
1953 | /* |
1954 | * If the text does not match what we just wrote then something is |
1955 | * fundamentally screwy; there's nothing we can really do about that. |
1956 | */ |
1957 | BUG_ON(memcmp(addr, src, len)); |
1958 | } |
1959 | |
1960 | local_irq_restore(flags); |
1961 | pte_unmap_unlock(ptep, ptl); |
1962 | return addr; |
1963 | } |
1964 | |
1965 | /** |
1966 | * text_poke - Update instructions on a live kernel |
1967 | * @addr: address to modify |
1968 | * @opcode: source of the copy |
1969 | * @len: length to copy |
1970 | * |
1971 | * Only atomic text poke/set should be allowed when not doing early patching. |
1972 | * It means the size must be writable atomically and the address must be aligned |
1973 | * in a way that permits an atomic write. It also makes sure we fit on a single |
1974 | * page. |
1975 | * |
1976 | * Note that the caller must ensure that if the modified code is part of a |
1977 | * module, the module would not be removed during poking. This can be achieved |
1978 | * by registering a module notifier, and ordering module removal and patching |
1979 | * through a mutex. |
1980 | */ |
1981 | void *text_poke(void *addr, const void *opcode, size_t len) |
1982 | { |
1983 | lockdep_assert_held(&text_mutex); |
1984 | |
1985 | return __text_poke(func: text_poke_memcpy, addr, src: opcode, len); |
1986 | } |
1987 | |
1988 | /** |
1989 | * text_poke_kgdb - Update instructions on a live kernel by kgdb |
1990 | * @addr: address to modify |
1991 | * @opcode: source of the copy |
1992 | * @len: length to copy |
1993 | * |
1994 | * Only atomic text poke/set should be allowed when not doing early patching. |
1995 | * It means the size must be writable atomically and the address must be aligned |
1996 | * in a way that permits an atomic write. It also makes sure we fit on a single |
1997 | * page. |
1998 | * |
1999 | * Context: should only be used by kgdb, which ensures no other core is running, |
2000 | * despite the fact it does not hold the text_mutex. |
2001 | */ |
2002 | void *text_poke_kgdb(void *addr, const void *opcode, size_t len) |
2003 | { |
2004 | return __text_poke(func: text_poke_memcpy, addr, src: opcode, len); |
2005 | } |
2006 | |
2007 | void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, |
2008 | bool core_ok) |
2009 | { |
2010 | unsigned long start = (unsigned long)addr; |
2011 | size_t patched = 0; |
2012 | |
2013 | if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) |
2014 | return NULL; |
2015 | |
2016 | while (patched < len) { |
2017 | unsigned long ptr = start + patched; |
2018 | size_t s; |
2019 | |
2020 | s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); |
2021 | |
2022 | __text_poke(func: text_poke_memcpy, addr: (void *)ptr, src: opcode + patched, len: s); |
2023 | patched += s; |
2024 | } |
2025 | return addr; |
2026 | } |
2027 | |
2028 | /** |
2029 | * text_poke_copy - Copy instructions into (an unused part of) RX memory |
2030 | * @addr: address to modify |
2031 | * @opcode: source of the copy |
2032 | * @len: length to copy, could be more than 2x PAGE_SIZE |
2033 | * |
2034 | * Not safe against concurrent execution; useful for JITs to dump |
2035 | * new code blocks into unused regions of RX memory. Can be used in |
2036 | * conjunction with synchronize_rcu_tasks() to wait for existing |
2037 | * execution to quiesce after having made sure no existing functions |
2038 | * pointers are live. |
2039 | */ |
2040 | void *text_poke_copy(void *addr, const void *opcode, size_t len) |
2041 | { |
2042 | mutex_lock(&text_mutex); |
2043 | addr = text_poke_copy_locked(addr, opcode, len, core_ok: false); |
2044 | mutex_unlock(lock: &text_mutex); |
2045 | return addr; |
2046 | } |
2047 | |
2048 | /** |
2049 | * text_poke_set - memset into (an unused part of) RX memory |
2050 | * @addr: address to modify |
2051 | * @c: the byte to fill the area with |
2052 | * @len: length to copy, could be more than 2x PAGE_SIZE |
2053 | * |
2054 | * This is useful to overwrite unused regions of RX memory with illegal |
2055 | * instructions. |
2056 | */ |
2057 | void *text_poke_set(void *addr, int c, size_t len) |
2058 | { |
2059 | unsigned long start = (unsigned long)addr; |
2060 | size_t patched = 0; |
2061 | |
2062 | if (WARN_ON_ONCE(core_kernel_text(start))) |
2063 | return NULL; |
2064 | |
2065 | mutex_lock(&text_mutex); |
2066 | while (patched < len) { |
2067 | unsigned long ptr = start + patched; |
2068 | size_t s; |
2069 | |
2070 | s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); |
2071 | |
2072 | __text_poke(func: text_poke_memset, addr: (void *)ptr, src: (void *)&c, len: s); |
2073 | patched += s; |
2074 | } |
2075 | mutex_unlock(lock: &text_mutex); |
2076 | return addr; |
2077 | } |
2078 | |
2079 | static void do_sync_core(void *info) |
2080 | { |
2081 | sync_core(); |
2082 | } |
2083 | |
2084 | void text_poke_sync(void) |
2085 | { |
2086 | on_each_cpu(func: do_sync_core, NULL, wait: 1); |
2087 | } |
2088 | |
2089 | /* |
2090 | * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of |
2091 | * this thing. When len == 6 everything is prefixed with 0x0f and we map |
2092 | * opcode to Jcc.d8, using len to distinguish. |
2093 | */ |
2094 | struct text_poke_loc { |
2095 | /* addr := _stext + rel_addr */ |
2096 | s32 rel_addr; |
2097 | s32 disp; |
2098 | u8 len; |
2099 | u8 opcode; |
2100 | const u8 text[POKE_MAX_OPCODE_SIZE]; |
2101 | /* see text_poke_bp_batch() */ |
2102 | u8 old; |
2103 | }; |
2104 | |
2105 | struct bp_patching_desc { |
2106 | struct text_poke_loc *vec; |
2107 | int nr_entries; |
2108 | atomic_t refs; |
2109 | }; |
2110 | |
2111 | static struct bp_patching_desc bp_desc; |
2112 | |
2113 | static __always_inline |
2114 | struct bp_patching_desc *try_get_desc(void) |
2115 | { |
2116 | struct bp_patching_desc *desc = &bp_desc; |
2117 | |
2118 | if (!raw_atomic_inc_not_zero(v: &desc->refs)) |
2119 | return NULL; |
2120 | |
2121 | return desc; |
2122 | } |
2123 | |
2124 | static __always_inline void put_desc(void) |
2125 | { |
2126 | struct bp_patching_desc *desc = &bp_desc; |
2127 | |
2128 | smp_mb__before_atomic(); |
2129 | raw_atomic_dec(v: &desc->refs); |
2130 | } |
2131 | |
2132 | static __always_inline void *text_poke_addr(struct text_poke_loc *tp) |
2133 | { |
2134 | return _stext + tp->rel_addr; |
2135 | } |
2136 | |
2137 | static __always_inline int patch_cmp(const void *key, const void *elt) |
2138 | { |
2139 | struct text_poke_loc *tp = (struct text_poke_loc *) elt; |
2140 | |
2141 | if (key < text_poke_addr(tp)) |
2142 | return -1; |
2143 | if (key > text_poke_addr(tp)) |
2144 | return 1; |
2145 | return 0; |
2146 | } |
2147 | |
2148 | noinstr int poke_int3_handler(struct pt_regs *regs) |
2149 | { |
2150 | struct bp_patching_desc *desc; |
2151 | struct text_poke_loc *tp; |
2152 | int ret = 0; |
2153 | void *ip; |
2154 | |
2155 | if (user_mode(regs)) |
2156 | return 0; |
2157 | |
2158 | /* |
2159 | * Having observed our INT3 instruction, we now must observe |
2160 | * bp_desc with non-zero refcount: |
2161 | * |
2162 | * bp_desc.refs = 1 INT3 |
2163 | * WMB RMB |
2164 | * write INT3 if (bp_desc.refs != 0) |
2165 | */ |
2166 | smp_rmb(); |
2167 | |
2168 | desc = try_get_desc(); |
2169 | if (!desc) |
2170 | return 0; |
2171 | |
2172 | /* |
2173 | * Discount the INT3. See text_poke_bp_batch(). |
2174 | */ |
2175 | ip = (void *) regs->ip - INT3_INSN_SIZE; |
2176 | |
2177 | /* |
2178 | * Skip the binary search if there is a single member in the vector. |
2179 | */ |
2180 | if (unlikely(desc->nr_entries > 1)) { |
2181 | tp = __inline_bsearch(key: ip, base: desc->vec, num: desc->nr_entries, |
2182 | size: sizeof(struct text_poke_loc), |
2183 | cmp: patch_cmp); |
2184 | if (!tp) |
2185 | goto out_put; |
2186 | } else { |
2187 | tp = desc->vec; |
2188 | if (text_poke_addr(tp) != ip) |
2189 | goto out_put; |
2190 | } |
2191 | |
2192 | ip += tp->len; |
2193 | |
2194 | switch (tp->opcode) { |
2195 | case INT3_INSN_OPCODE: |
2196 | /* |
2197 | * Someone poked an explicit INT3, they'll want to handle it, |
2198 | * do not consume. |
2199 | */ |
2200 | goto out_put; |
2201 | |
2202 | case RET_INSN_OPCODE: |
2203 | int3_emulate_ret(regs); |
2204 | break; |
2205 | |
2206 | case CALL_INSN_OPCODE: |
2207 | int3_emulate_call(regs, func: (long)ip + tp->disp); |
2208 | break; |
2209 | |
2210 | case JMP32_INSN_OPCODE: |
2211 | case JMP8_INSN_OPCODE: |
2212 | int3_emulate_jmp(regs, ip: (long)ip + tp->disp); |
2213 | break; |
2214 | |
2215 | case 0x70 ... 0x7f: /* Jcc */ |
2216 | int3_emulate_jcc(regs, cc: tp->opcode & 0xf, ip: (long)ip, disp: tp->disp); |
2217 | break; |
2218 | |
2219 | default: |
2220 | BUG(); |
2221 | } |
2222 | |
2223 | ret = 1; |
2224 | |
2225 | out_put: |
2226 | put_desc(); |
2227 | return ret; |
2228 | } |
2229 | |
2230 | #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) |
2231 | static struct text_poke_loc tp_vec[TP_VEC_MAX]; |
2232 | static int tp_vec_nr; |
2233 | |
2234 | /** |
2235 | * text_poke_bp_batch() -- update instructions on live kernel on SMP |
2236 | * @tp: vector of instructions to patch |
2237 | * @nr_entries: number of entries in the vector |
2238 | * |
2239 | * Modify multi-byte instruction by using int3 breakpoint on SMP. |
2240 | * We completely avoid stop_machine() here, and achieve the |
2241 | * synchronization using int3 breakpoint. |
2242 | * |
2243 | * The way it is done: |
2244 | * - For each entry in the vector: |
2245 | * - add a int3 trap to the address that will be patched |
2246 | * - sync cores |
2247 | * - For each entry in the vector: |
2248 | * - update all but the first byte of the patched range |
2249 | * - sync cores |
2250 | * - For each entry in the vector: |
2251 | * - replace the first byte (int3) by the first byte of |
2252 | * replacing opcode |
2253 | * - sync cores |
2254 | */ |
2255 | static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) |
2256 | { |
2257 | unsigned char int3 = INT3_INSN_OPCODE; |
2258 | unsigned int i; |
2259 | int do_sync; |
2260 | |
2261 | lockdep_assert_held(&text_mutex); |
2262 | |
2263 | bp_desc.vec = tp; |
2264 | bp_desc.nr_entries = nr_entries; |
2265 | |
2266 | /* |
2267 | * Corresponds to the implicit memory barrier in try_get_desc() to |
2268 | * ensure reading a non-zero refcount provides up to date bp_desc data. |
2269 | */ |
2270 | atomic_set_release(v: &bp_desc.refs, i: 1); |
2271 | |
2272 | /* |
2273 | * Function tracing can enable thousands of places that need to be |
2274 | * updated. This can take quite some time, and with full kernel debugging |
2275 | * enabled, this could cause the softlockup watchdog to trigger. |
2276 | * This function gets called every 256 entries added to be patched. |
2277 | * Call cond_resched() here to make sure that other tasks can get scheduled |
2278 | * while processing all the functions being patched. |
2279 | */ |
2280 | cond_resched(); |
2281 | |
2282 | /* |
2283 | * Corresponding read barrier in int3 notifier for making sure the |
2284 | * nr_entries and handler are correctly ordered wrt. patching. |
2285 | */ |
2286 | smp_wmb(); |
2287 | |
2288 | /* |
2289 | * First step: add a int3 trap to the address that will be patched. |
2290 | */ |
2291 | for (i = 0; i < nr_entries; i++) { |
2292 | tp[i].old = *(u8 *)text_poke_addr(tp: &tp[i]); |
2293 | text_poke(addr: text_poke_addr(tp: &tp[i]), opcode: &int3, INT3_INSN_SIZE); |
2294 | } |
2295 | |
2296 | text_poke_sync(); |
2297 | |
2298 | /* |
2299 | * Second step: update all but the first byte of the patched range. |
2300 | */ |
2301 | for (do_sync = 0, i = 0; i < nr_entries; i++) { |
2302 | u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, }; |
2303 | u8 _new[POKE_MAX_OPCODE_SIZE+1]; |
2304 | const u8 *new = tp[i].text; |
2305 | int len = tp[i].len; |
2306 | |
2307 | if (len - INT3_INSN_SIZE > 0) { |
2308 | memcpy(old + INT3_INSN_SIZE, |
2309 | text_poke_addr(tp: &tp[i]) + INT3_INSN_SIZE, |
2310 | len - INT3_INSN_SIZE); |
2311 | |
2312 | if (len == 6) { |
2313 | _new[0] = 0x0f; |
2314 | memcpy(_new + 1, new, 5); |
2315 | new = _new; |
2316 | } |
2317 | |
2318 | text_poke(addr: text_poke_addr(tp: &tp[i]) + INT3_INSN_SIZE, |
2319 | opcode: new + INT3_INSN_SIZE, |
2320 | len: len - INT3_INSN_SIZE); |
2321 | |
2322 | do_sync++; |
2323 | } |
2324 | |
2325 | /* |
2326 | * Emit a perf event to record the text poke, primarily to |
2327 | * support Intel PT decoding which must walk the executable code |
2328 | * to reconstruct the trace. The flow up to here is: |
2329 | * - write INT3 byte |
2330 | * - IPI-SYNC |
2331 | * - write instruction tail |
2332 | * At this point the actual control flow will be through the |
2333 | * INT3 and handler and not hit the old or new instruction. |
2334 | * Intel PT outputs FUP/TIP packets for the INT3, so the flow |
2335 | * can still be decoded. Subsequently: |
2336 | * - emit RECORD_TEXT_POKE with the new instruction |
2337 | * - IPI-SYNC |
2338 | * - write first byte |
2339 | * - IPI-SYNC |
2340 | * So before the text poke event timestamp, the decoder will see |
2341 | * either the old instruction flow or FUP/TIP of INT3. After the |
2342 | * text poke event timestamp, the decoder will see either the |
2343 | * new instruction flow or FUP/TIP of INT3. Thus decoders can |
2344 | * use the timestamp as the point at which to modify the |
2345 | * executable code. |
2346 | * The old instruction is recorded so that the event can be |
2347 | * processed forwards or backwards. |
2348 | */ |
2349 | perf_event_text_poke(addr: text_poke_addr(tp: &tp[i]), old_bytes: old, old_len: len, new_bytes: new, new_len: len); |
2350 | } |
2351 | |
2352 | if (do_sync) { |
2353 | /* |
2354 | * According to Intel, this core syncing is very likely |
2355 | * not necessary and we'd be safe even without it. But |
2356 | * better safe than sorry (plus there's not only Intel). |
2357 | */ |
2358 | text_poke_sync(); |
2359 | } |
2360 | |
2361 | /* |
2362 | * Third step: replace the first byte (int3) by the first byte of |
2363 | * replacing opcode. |
2364 | */ |
2365 | for (do_sync = 0, i = 0; i < nr_entries; i++) { |
2366 | u8 byte = tp[i].text[0]; |
2367 | |
2368 | if (tp[i].len == 6) |
2369 | byte = 0x0f; |
2370 | |
2371 | if (byte == INT3_INSN_OPCODE) |
2372 | continue; |
2373 | |
2374 | text_poke(addr: text_poke_addr(tp: &tp[i]), opcode: &byte, INT3_INSN_SIZE); |
2375 | do_sync++; |
2376 | } |
2377 | |
2378 | if (do_sync) |
2379 | text_poke_sync(); |
2380 | |
2381 | /* |
2382 | * Remove and wait for refs to be zero. |
2383 | */ |
2384 | if (!atomic_dec_and_test(v: &bp_desc.refs)) |
2385 | atomic_cond_read_acquire(&bp_desc.refs, !VAL); |
2386 | } |
2387 | |
2388 | static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, |
2389 | const void *opcode, size_t len, const void *emulate) |
2390 | { |
2391 | struct insn insn; |
2392 | int ret, i = 0; |
2393 | |
2394 | if (len == 6) |
2395 | i = 1; |
2396 | memcpy((void *)tp->text, opcode+i, len-i); |
2397 | if (!emulate) |
2398 | emulate = opcode; |
2399 | |
2400 | ret = insn_decode_kernel(&insn, emulate); |
2401 | BUG_ON(ret < 0); |
2402 | |
2403 | tp->rel_addr = addr - (void *)_stext; |
2404 | tp->len = len; |
2405 | tp->opcode = insn.opcode.bytes[0]; |
2406 | |
2407 | if (is_jcc32(insn: &insn)) { |
2408 | /* |
2409 | * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. |
2410 | */ |
2411 | tp->opcode = insn.opcode.bytes[1] - 0x10; |
2412 | } |
2413 | |
2414 | switch (tp->opcode) { |
2415 | case RET_INSN_OPCODE: |
2416 | case JMP32_INSN_OPCODE: |
2417 | case JMP8_INSN_OPCODE: |
2418 | /* |
2419 | * Control flow instructions without implied execution of the |
2420 | * next instruction can be padded with INT3. |
2421 | */ |
2422 | for (i = insn.length; i < len; i++) |
2423 | BUG_ON(tp->text[i] != INT3_INSN_OPCODE); |
2424 | break; |
2425 | |
2426 | default: |
2427 | BUG_ON(len != insn.length); |
2428 | } |
2429 | |
2430 | switch (tp->opcode) { |
2431 | case INT3_INSN_OPCODE: |
2432 | case RET_INSN_OPCODE: |
2433 | break; |
2434 | |
2435 | case CALL_INSN_OPCODE: |
2436 | case JMP32_INSN_OPCODE: |
2437 | case JMP8_INSN_OPCODE: |
2438 | case 0x70 ... 0x7f: /* Jcc */ |
2439 | tp->disp = insn.immediate.value; |
2440 | break; |
2441 | |
2442 | default: /* assume NOP */ |
2443 | switch (len) { |
2444 | case 2: /* NOP2 -- emulate as JMP8+0 */ |
2445 | BUG_ON(memcmp(emulate, x86_nops[len], len)); |
2446 | tp->opcode = JMP8_INSN_OPCODE; |
2447 | tp->disp = 0; |
2448 | break; |
2449 | |
2450 | case 5: /* NOP5 -- emulate as JMP32+0 */ |
2451 | BUG_ON(memcmp(emulate, x86_nops[len], len)); |
2452 | tp->opcode = JMP32_INSN_OPCODE; |
2453 | tp->disp = 0; |
2454 | break; |
2455 | |
2456 | default: /* unknown instruction */ |
2457 | BUG(); |
2458 | } |
2459 | break; |
2460 | } |
2461 | } |
2462 | |
2463 | /* |
2464 | * We hard rely on the tp_vec being ordered; ensure this is so by flushing |
2465 | * early if needed. |
2466 | */ |
2467 | static bool tp_order_fail(void *addr) |
2468 | { |
2469 | struct text_poke_loc *tp; |
2470 | |
2471 | if (!tp_vec_nr) |
2472 | return false; |
2473 | |
2474 | if (!addr) /* force */ |
2475 | return true; |
2476 | |
2477 | tp = &tp_vec[tp_vec_nr - 1]; |
2478 | if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) |
2479 | return true; |
2480 | |
2481 | return false; |
2482 | } |
2483 | |
2484 | static void text_poke_flush(void *addr) |
2485 | { |
2486 | if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { |
2487 | text_poke_bp_batch(tp: tp_vec, nr_entries: tp_vec_nr); |
2488 | tp_vec_nr = 0; |
2489 | } |
2490 | } |
2491 | |
2492 | void text_poke_finish(void) |
2493 | { |
2494 | text_poke_flush(NULL); |
2495 | } |
2496 | |
2497 | void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) |
2498 | { |
2499 | struct text_poke_loc *tp; |
2500 | |
2501 | text_poke_flush(addr); |
2502 | |
2503 | tp = &tp_vec[tp_vec_nr++]; |
2504 | text_poke_loc_init(tp, addr, opcode, len, emulate); |
2505 | } |
2506 | |
2507 | /** |
2508 | * text_poke_bp() -- update instructions on live kernel on SMP |
2509 | * @addr: address to patch |
2510 | * @opcode: opcode of new instruction |
2511 | * @len: length to copy |
2512 | * @emulate: instruction to be emulated |
2513 | * |
2514 | * Update a single instruction with the vector in the stack, avoiding |
2515 | * dynamically allocated memory. This function should be used when it is |
2516 | * not possible to allocate memory. |
2517 | */ |
2518 | void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) |
2519 | { |
2520 | struct text_poke_loc tp; |
2521 | |
2522 | text_poke_loc_init(tp: &tp, addr, opcode, len, emulate); |
2523 | text_poke_bp_batch(tp: &tp, nr_entries: 1); |
2524 | } |
2525 |
Definitions
- alternatives_patched
- debug_alternative
- debug_alt
- noreplace_smp
- setup_noreplace_smp
- x86nops
- x86_nops
- add_nop
- insn_is_nop
- skip_nops
- __optimize_nops
- optimize_nops
- optimize_nops_inplace
- apply_reloc
- need_reloc
- apply_relocation
- BUG_func
- alt_replace_call
- apply_alternatives
- is_jcc32
- emit_indirect
- emit_call_track_retpoline
- patch_retpoline
- apply_retpolines
- patch_return
- apply_returns
- poison_endbr
- apply_seal_endbr
- cfi_mode
- __apply_fineibt
- poison_cfi
- apply_fineibt
- alternatives_smp_lock
- alternatives_smp_unlock
- smp_alt_module
- smp_alt_modules
- uniproc_patched
- alternatives_smp_module_add
- alternatives_smp_module_del
- alternatives_enable_smp
- alternatives_text_reserved
- int3_exception_notify
- int3_selftest
- __alt_reloc_selftest_addr
- __alt_reloc_selftest
- alt_reloc_selftest
- alternative_instructions
- text_poke_early
- use_temporary_mm
- unuse_temporary_mm
- poking_mm
- poking_addr
- text_poke_memcpy
- text_poke_memset
- __text_poke
- text_poke
- text_poke_kgdb
- text_poke_copy_locked
- text_poke_copy
- text_poke_set
- do_sync_core
- text_poke_sync
- text_poke_loc
- bp_patching_desc
- bp_desc
- try_get_desc
- put_desc
- text_poke_addr
- patch_cmp
- poke_int3_handler
- tp_vec
- tp_vec_nr
- text_poke_bp_batch
- text_poke_loc_init
- tp_order_fail
- text_poke_flush
- text_poke_finish
- text_poke_queue
Improve your Profiling and Debugging skills
Find out more