| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 1995 Linus Torvalds |
| 4 | * |
| 5 | * This file contains the setup_arch() code, which handles the architecture-dependent |
| 6 | * parts of early kernel initialization. |
| 7 | */ |
| 8 | #include <linux/acpi.h> |
| 9 | #include <linux/console.h> |
| 10 | #include <linux/cpu.h> |
| 11 | #include <linux/crash_dump.h> |
| 12 | #include <linux/dma-map-ops.h> |
| 13 | #include <linux/efi.h> |
| 14 | #include <linux/hugetlb.h> |
| 15 | #include <linux/ima.h> |
| 16 | #include <linux/init_ohci1394_dma.h> |
| 17 | #include <linux/initrd.h> |
| 18 | #include <linux/iscsi_ibft.h> |
| 19 | #include <linux/memblock.h> |
| 20 | #include <linux/panic_notifier.h> |
| 21 | #include <linux/pci.h> |
| 22 | #include <linux/random.h> |
| 23 | #include <linux/root_dev.h> |
| 24 | #include <linux/static_call.h> |
| 25 | #include <linux/swiotlb.h> |
| 26 | #include <linux/tboot.h> |
| 27 | #include <linux/usb/xhci-dbgp.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | |
| 30 | #include <uapi/linux/mount.h> |
| 31 | |
| 32 | #include <xen/xen.h> |
| 33 | |
| 34 | #include <asm/apic.h> |
| 35 | #include <asm/bios_ebda.h> |
| 36 | #include <asm/bugs.h> |
| 37 | #include <asm/cacheinfo.h> |
| 38 | #include <asm/coco.h> |
| 39 | #include <asm/cpu.h> |
| 40 | #include <asm/efi.h> |
| 41 | #include <asm/gart.h> |
| 42 | #include <asm/hypervisor.h> |
| 43 | #include <asm/io_apic.h> |
| 44 | #include <asm/kasan.h> |
| 45 | #include <asm/kaslr.h> |
| 46 | #include <asm/mce.h> |
| 47 | #include <asm/memtype.h> |
| 48 | #include <asm/mtrr.h> |
| 49 | #include <asm/nmi.h> |
| 50 | #include <asm/numa.h> |
| 51 | #include <asm/olpc_ofw.h> |
| 52 | #include <asm/pci-direct.h> |
| 53 | #include <asm/prom.h> |
| 54 | #include <asm/proto.h> |
| 55 | #include <asm/realmode.h> |
| 56 | #include <asm/thermal.h> |
| 57 | #include <asm/unwind.h> |
| 58 | #include <asm/vsyscall.h> |
| 59 | |
| 60 | /* |
| 61 | * max_low_pfn_mapped: highest directly mapped pfn < 4 GB |
| 62 | * max_pfn_mapped: highest directly mapped pfn > 4 GB |
| 63 | * |
| 64 | * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are |
| 65 | * represented by pfn_mapped[]. |
| 66 | */ |
| 67 | unsigned long max_low_pfn_mapped; |
| 68 | unsigned long max_pfn_mapped; |
| 69 | |
| 70 | #ifdef CONFIG_DMI |
| 71 | RESERVE_BRK(dmi_alloc, 65536); |
| 72 | #endif |
| 73 | |
| 74 | |
| 75 | unsigned long _brk_start = (unsigned long)__brk_base; |
| 76 | unsigned long _brk_end = (unsigned long)__brk_base; |
| 77 | |
| 78 | struct boot_params boot_params; |
| 79 | |
| 80 | /* |
| 81 | * These are the four main kernel memory regions, we put them into |
| 82 | * the resource tree so that kdump tools and other debugging tools |
| 83 | * recover it: |
| 84 | */ |
| 85 | |
| 86 | static struct resource rodata_resource = { |
| 87 | .name = "Kernel rodata" , |
| 88 | .start = 0, |
| 89 | .end = 0, |
| 90 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| 91 | }; |
| 92 | |
| 93 | static struct resource data_resource = { |
| 94 | .name = "Kernel data" , |
| 95 | .start = 0, |
| 96 | .end = 0, |
| 97 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| 98 | }; |
| 99 | |
| 100 | static struct resource code_resource = { |
| 101 | .name = "Kernel code" , |
| 102 | .start = 0, |
| 103 | .end = 0, |
| 104 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| 105 | }; |
| 106 | |
| 107 | static struct resource bss_resource = { |
| 108 | .name = "Kernel bss" , |
| 109 | .start = 0, |
| 110 | .end = 0, |
| 111 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| 112 | }; |
| 113 | |
| 114 | |
| 115 | #ifdef CONFIG_X86_32 |
| 116 | /* CPU data as detected by the assembly code in head_32.S */ |
| 117 | struct cpuinfo_x86 new_cpu_data; |
| 118 | |
| 119 | struct apm_info apm_info; |
| 120 | EXPORT_SYMBOL(apm_info); |
| 121 | |
| 122 | #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ |
| 123 | defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) |
| 124 | struct ist_info ist_info; |
| 125 | EXPORT_SYMBOL(ist_info); |
| 126 | #else |
| 127 | struct ist_info ist_info; |
| 128 | #endif |
| 129 | |
| 130 | #endif |
| 131 | |
| 132 | struct cpuinfo_x86 boot_cpu_data __read_mostly; |
| 133 | EXPORT_SYMBOL(boot_cpu_data); |
| 134 | SYM_PIC_ALIAS(boot_cpu_data); |
| 135 | |
| 136 | #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) |
| 137 | __visible unsigned long mmu_cr4_features __ro_after_init; |
| 138 | #else |
| 139 | __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; |
| 140 | #endif |
| 141 | |
| 142 | #ifdef CONFIG_IMA |
| 143 | static phys_addr_t ima_kexec_buffer_phys; |
| 144 | static size_t ima_kexec_buffer_size; |
| 145 | #endif |
| 146 | |
| 147 | /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ |
| 148 | int bootloader_type, bootloader_version; |
| 149 | |
| 150 | static const struct ctl_table x86_sysctl_table[] = { |
| 151 | { |
| 152 | .procname = "unknown_nmi_panic" , |
| 153 | .data = &unknown_nmi_panic, |
| 154 | .maxlen = sizeof(int), |
| 155 | .mode = 0644, |
| 156 | .proc_handler = proc_dointvec, |
| 157 | }, |
| 158 | { |
| 159 | .procname = "panic_on_unrecovered_nmi" , |
| 160 | .data = &panic_on_unrecovered_nmi, |
| 161 | .maxlen = sizeof(int), |
| 162 | .mode = 0644, |
| 163 | .proc_handler = proc_dointvec, |
| 164 | }, |
| 165 | { |
| 166 | .procname = "panic_on_io_nmi" , |
| 167 | .data = &panic_on_io_nmi, |
| 168 | .maxlen = sizeof(int), |
| 169 | .mode = 0644, |
| 170 | .proc_handler = proc_dointvec, |
| 171 | }, |
| 172 | { |
| 173 | .procname = "bootloader_type" , |
| 174 | .data = &bootloader_type, |
| 175 | .maxlen = sizeof(int), |
| 176 | .mode = 0444, |
| 177 | .proc_handler = proc_dointvec, |
| 178 | }, |
| 179 | { |
| 180 | .procname = "bootloader_version" , |
| 181 | .data = &bootloader_version, |
| 182 | .maxlen = sizeof(int), |
| 183 | .mode = 0444, |
| 184 | .proc_handler = proc_dointvec, |
| 185 | }, |
| 186 | { |
| 187 | .procname = "io_delay_type" , |
| 188 | .data = &io_delay_type, |
| 189 | .maxlen = sizeof(int), |
| 190 | .mode = 0644, |
| 191 | .proc_handler = proc_dointvec, |
| 192 | }, |
| 193 | #if defined(CONFIG_ACPI_SLEEP) |
| 194 | { |
| 195 | .procname = "acpi_video_flags" , |
| 196 | .data = &acpi_realmode_flags, |
| 197 | .maxlen = sizeof(unsigned long), |
| 198 | .mode = 0644, |
| 199 | .proc_handler = proc_doulongvec_minmax, |
| 200 | }, |
| 201 | #endif |
| 202 | }; |
| 203 | |
| 204 | static int __init init_x86_sysctl(void) |
| 205 | { |
| 206 | register_sysctl_init("kernel" , x86_sysctl_table); |
| 207 | return 0; |
| 208 | } |
| 209 | arch_initcall(init_x86_sysctl); |
| 210 | |
| 211 | /* |
| 212 | * Setup options |
| 213 | */ |
| 214 | struct screen_info screen_info; |
| 215 | EXPORT_SYMBOL(screen_info); |
| 216 | struct edid_info edid_info; |
| 217 | EXPORT_SYMBOL_GPL(edid_info); |
| 218 | |
| 219 | extern int root_mountflags; |
| 220 | |
| 221 | unsigned long saved_video_mode; |
| 222 | |
| 223 | #define RAMDISK_IMAGE_START_MASK 0x07FF |
| 224 | #define RAMDISK_PROMPT_FLAG 0x8000 |
| 225 | #define RAMDISK_LOAD_FLAG 0x4000 |
| 226 | |
| 227 | static char __initdata command_line[COMMAND_LINE_SIZE]; |
| 228 | #ifdef CONFIG_CMDLINE_BOOL |
| 229 | char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; |
| 230 | bool builtin_cmdline_added __ro_after_init; |
| 231 | #endif |
| 232 | |
| 233 | #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) |
| 234 | struct edd edd; |
| 235 | #ifdef CONFIG_EDD_MODULE |
| 236 | EXPORT_SYMBOL(edd); |
| 237 | #endif |
| 238 | /** |
| 239 | * copy_edd() - Copy the BIOS EDD information |
| 240 | * from boot_params into a safe place. |
| 241 | * |
| 242 | */ |
| 243 | static inline void __init copy_edd(void) |
| 244 | { |
| 245 | memcpy(to: edd.mbr_signature, from: boot_params.edd_mbr_sig_buffer, |
| 246 | len: sizeof(edd.mbr_signature)); |
| 247 | memcpy(to: edd.edd_info, from: boot_params.eddbuf, len: sizeof(edd.edd_info)); |
| 248 | edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; |
| 249 | edd.edd_info_nr = boot_params.eddbuf_entries; |
| 250 | } |
| 251 | #else |
| 252 | static inline void __init copy_edd(void) |
| 253 | { |
| 254 | } |
| 255 | #endif |
| 256 | |
| 257 | void * __init extend_brk(size_t size, size_t align) |
| 258 | { |
| 259 | size_t mask = align - 1; |
| 260 | void *ret; |
| 261 | |
| 262 | BUG_ON(_brk_start == 0); |
| 263 | BUG_ON(align & mask); |
| 264 | |
| 265 | _brk_end = (_brk_end + mask) & ~mask; |
| 266 | BUG_ON((char *)(_brk_end + size) > __brk_limit); |
| 267 | |
| 268 | ret = (void *)_brk_end; |
| 269 | _brk_end += size; |
| 270 | |
| 271 | memset(s: ret, c: 0, n: size); |
| 272 | |
| 273 | return ret; |
| 274 | } |
| 275 | |
| 276 | #ifdef CONFIG_X86_32 |
| 277 | static void __init cleanup_highmap(void) |
| 278 | { |
| 279 | } |
| 280 | #endif |
| 281 | |
| 282 | static void __init reserve_brk(void) |
| 283 | { |
| 284 | if (_brk_end > _brk_start) |
| 285 | memblock_reserve_kern(__pa_symbol(_brk_start), |
| 286 | size: _brk_end - _brk_start); |
| 287 | |
| 288 | /* Mark brk area as locked down and no longer taking any |
| 289 | new allocations */ |
| 290 | _brk_start = 0; |
| 291 | } |
| 292 | |
| 293 | #ifdef CONFIG_BLK_DEV_INITRD |
| 294 | |
| 295 | static u64 __init get_ramdisk_image(void) |
| 296 | { |
| 297 | u64 ramdisk_image = boot_params.hdr.ramdisk_image; |
| 298 | |
| 299 | ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; |
| 300 | |
| 301 | if (ramdisk_image == 0) |
| 302 | ramdisk_image = phys_initrd_start; |
| 303 | |
| 304 | return ramdisk_image; |
| 305 | } |
| 306 | static u64 __init get_ramdisk_size(void) |
| 307 | { |
| 308 | u64 ramdisk_size = boot_params.hdr.ramdisk_size; |
| 309 | |
| 310 | ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; |
| 311 | |
| 312 | if (ramdisk_size == 0) |
| 313 | ramdisk_size = phys_initrd_size; |
| 314 | |
| 315 | return ramdisk_size; |
| 316 | } |
| 317 | |
| 318 | static void __init relocate_initrd(void) |
| 319 | { |
| 320 | /* Assume only end is not page aligned */ |
| 321 | u64 ramdisk_image = get_ramdisk_image(); |
| 322 | u64 ramdisk_size = get_ramdisk_size(); |
| 323 | u64 area_size = PAGE_ALIGN(ramdisk_size); |
| 324 | int ret = 0; |
| 325 | |
| 326 | /* We need to move the initrd down into directly mapped mem */ |
| 327 | u64 relocated_ramdisk = memblock_phys_alloc_range(size: area_size, PAGE_SIZE, start: 0, |
| 328 | PFN_PHYS(max_pfn_mapped)); |
| 329 | if (!relocated_ramdisk) |
| 330 | panic(fmt: "Cannot find place for new RAMDISK of size %lld\n" , |
| 331 | ramdisk_size); |
| 332 | |
| 333 | initrd_start = relocated_ramdisk + PAGE_OFFSET; |
| 334 | initrd_end = initrd_start + ramdisk_size; |
| 335 | printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n" , |
| 336 | relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); |
| 337 | |
| 338 | ret = copy_from_early_mem(dest: (void *)initrd_start, src: ramdisk_image, size: ramdisk_size); |
| 339 | if (ret) |
| 340 | panic(fmt: "Copy RAMDISK failed\n" ); |
| 341 | |
| 342 | printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" |
| 343 | " [mem %#010llx-%#010llx]\n" , |
| 344 | ramdisk_image, ramdisk_image + ramdisk_size - 1, |
| 345 | relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); |
| 346 | } |
| 347 | |
| 348 | static void __init early_reserve_initrd(void) |
| 349 | { |
| 350 | /* Assume only end is not page aligned */ |
| 351 | u64 ramdisk_image = get_ramdisk_image(); |
| 352 | u64 ramdisk_size = get_ramdisk_size(); |
| 353 | u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); |
| 354 | |
| 355 | if (!boot_params.hdr.type_of_loader || |
| 356 | !ramdisk_image || !ramdisk_size) |
| 357 | return; /* No initrd provided by bootloader */ |
| 358 | |
| 359 | memblock_reserve_kern(base: ramdisk_image, size: ramdisk_end - ramdisk_image); |
| 360 | } |
| 361 | |
| 362 | static void __init reserve_initrd(void) |
| 363 | { |
| 364 | /* Assume only end is not page aligned */ |
| 365 | u64 ramdisk_image = get_ramdisk_image(); |
| 366 | u64 ramdisk_size = get_ramdisk_size(); |
| 367 | u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); |
| 368 | |
| 369 | if (!boot_params.hdr.type_of_loader || |
| 370 | !ramdisk_image || !ramdisk_size) |
| 371 | return; /* No initrd provided by bootloader */ |
| 372 | |
| 373 | initrd_start = 0; |
| 374 | |
| 375 | printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n" , ramdisk_image, |
| 376 | ramdisk_end - 1); |
| 377 | |
| 378 | if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), |
| 379 | PFN_DOWN(ramdisk_end))) { |
| 380 | /* All are mapped, easy case */ |
| 381 | initrd_start = ramdisk_image + PAGE_OFFSET; |
| 382 | initrd_end = initrd_start + ramdisk_size; |
| 383 | return; |
| 384 | } |
| 385 | |
| 386 | relocate_initrd(); |
| 387 | |
| 388 | memblock_phys_free(base: ramdisk_image, size: ramdisk_end - ramdisk_image); |
| 389 | } |
| 390 | |
| 391 | #else |
| 392 | static void __init early_reserve_initrd(void) |
| 393 | { |
| 394 | } |
| 395 | static void __init reserve_initrd(void) |
| 396 | { |
| 397 | } |
| 398 | #endif /* CONFIG_BLK_DEV_INITRD */ |
| 399 | |
| 400 | static void __init add_early_ima_buffer(u64 phys_addr) |
| 401 | { |
| 402 | #ifdef CONFIG_IMA |
| 403 | struct ima_setup_data *data; |
| 404 | |
| 405 | data = early_memremap(phys_addr: phys_addr + sizeof(struct setup_data), size: sizeof(*data)); |
| 406 | if (!data) { |
| 407 | pr_warn("setup: failed to memremap ima_setup_data entry\n" ); |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | if (data->size) { |
| 412 | memblock_reserve_kern(base: data->addr, size: data->size); |
| 413 | ima_kexec_buffer_phys = data->addr; |
| 414 | ima_kexec_buffer_size = data->size; |
| 415 | } |
| 416 | |
| 417 | early_memunmap(addr: data, size: sizeof(*data)); |
| 418 | #else |
| 419 | pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n" ); |
| 420 | #endif |
| 421 | } |
| 422 | |
| 423 | #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) |
| 424 | int __init ima_free_kexec_buffer(void) |
| 425 | { |
| 426 | if (!ima_kexec_buffer_size) |
| 427 | return -ENOENT; |
| 428 | |
| 429 | memblock_free_late(ima_kexec_buffer_phys, |
| 430 | ima_kexec_buffer_size); |
| 431 | |
| 432 | ima_kexec_buffer_phys = 0; |
| 433 | ima_kexec_buffer_size = 0; |
| 434 | |
| 435 | return 0; |
| 436 | } |
| 437 | |
| 438 | int __init ima_get_kexec_buffer(void **addr, size_t *size) |
| 439 | { |
| 440 | if (!ima_kexec_buffer_size) |
| 441 | return -ENOENT; |
| 442 | |
| 443 | *addr = __va(ima_kexec_buffer_phys); |
| 444 | *size = ima_kexec_buffer_size; |
| 445 | |
| 446 | return 0; |
| 447 | } |
| 448 | #endif |
| 449 | |
| 450 | static void __init add_kho(u64 phys_addr, u32 data_len) |
| 451 | { |
| 452 | struct kho_data *kho; |
| 453 | u64 addr = phys_addr + sizeof(struct setup_data); |
| 454 | u64 size = data_len - sizeof(struct setup_data); |
| 455 | |
| 456 | if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER)) { |
| 457 | pr_warn("Passed KHO data, but CONFIG_KEXEC_HANDOVER not set. Ignoring.\n" ); |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | kho = early_memremap(phys_addr: addr, size); |
| 462 | if (!kho) { |
| 463 | pr_warn("setup: failed to memremap kho data (0x%llx, 0x%llx)\n" , |
| 464 | addr, size); |
| 465 | return; |
| 466 | } |
| 467 | |
| 468 | kho_populate(fdt_phys: kho->fdt_addr, fdt_len: kho->fdt_size, scratch_phys: kho->scratch_addr, scratch_len: kho->scratch_size); |
| 469 | |
| 470 | early_memunmap(addr: kho, size); |
| 471 | } |
| 472 | |
| 473 | static void __init parse_setup_data(void) |
| 474 | { |
| 475 | struct setup_data *data; |
| 476 | u64 pa_data, pa_next; |
| 477 | |
| 478 | pa_data = boot_params.hdr.setup_data; |
| 479 | while (pa_data) { |
| 480 | u32 data_len, data_type; |
| 481 | |
| 482 | data = early_memremap(phys_addr: pa_data, size: sizeof(*data)); |
| 483 | data_len = data->len + sizeof(struct setup_data); |
| 484 | data_type = data->type; |
| 485 | pa_next = data->next; |
| 486 | early_memunmap(addr: data, size: sizeof(*data)); |
| 487 | |
| 488 | switch (data_type) { |
| 489 | case SETUP_E820_EXT: |
| 490 | e820__memory_setup_extended(phys_addr: pa_data, data_len); |
| 491 | break; |
| 492 | case SETUP_DTB: |
| 493 | add_dtb(data: pa_data); |
| 494 | break; |
| 495 | case SETUP_EFI: |
| 496 | parse_efi_setup(phys_addr: pa_data, data_len); |
| 497 | break; |
| 498 | case SETUP_IMA: |
| 499 | add_early_ima_buffer(phys_addr: pa_data); |
| 500 | break; |
| 501 | case SETUP_KEXEC_KHO: |
| 502 | add_kho(phys_addr: pa_data, data_len); |
| 503 | break; |
| 504 | case SETUP_RNG_SEED: |
| 505 | data = early_memremap(phys_addr: pa_data, size: data_len); |
| 506 | add_bootloader_randomness(buf: data->data, len: data->len); |
| 507 | /* Zero seed for forward secrecy. */ |
| 508 | memzero_explicit(s: data->data, count: data->len); |
| 509 | /* Zero length in case we find ourselves back here by accident. */ |
| 510 | memzero_explicit(s: &data->len, count: sizeof(data->len)); |
| 511 | early_memunmap(addr: data, size: data_len); |
| 512 | break; |
| 513 | default: |
| 514 | break; |
| 515 | } |
| 516 | pa_data = pa_next; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * Translate the fields of 'struct boot_param' into global variables |
| 522 | * representing these parameters. |
| 523 | */ |
| 524 | static void __init parse_boot_params(void) |
| 525 | { |
| 526 | ROOT_DEV = old_decode_dev(val: boot_params.hdr.root_dev); |
| 527 | screen_info = boot_params.screen_info; |
| 528 | edid_info = boot_params.edid_info; |
| 529 | #ifdef CONFIG_X86_32 |
| 530 | apm_info.bios = boot_params.apm_bios_info; |
| 531 | ist_info = boot_params.ist_info; |
| 532 | #endif |
| 533 | saved_video_mode = boot_params.hdr.vid_mode; |
| 534 | bootloader_type = boot_params.hdr.type_of_loader; |
| 535 | if ((bootloader_type >> 4) == 0xe) { |
| 536 | bootloader_type &= 0xf; |
| 537 | bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; |
| 538 | } |
| 539 | bootloader_version = bootloader_type & 0xf; |
| 540 | bootloader_version |= boot_params.hdr.ext_loader_ver << 4; |
| 541 | |
| 542 | #ifdef CONFIG_BLK_DEV_RAM |
| 543 | rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; |
| 544 | #endif |
| 545 | #ifdef CONFIG_EFI |
| 546 | if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, |
| 547 | EFI32_LOADER_SIGNATURE, 4)) { |
| 548 | set_bit(EFI_BOOT, addr: &efi.flags); |
| 549 | } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, |
| 550 | EFI64_LOADER_SIGNATURE, 4)) { |
| 551 | set_bit(EFI_BOOT, addr: &efi.flags); |
| 552 | set_bit(EFI_64BIT, addr: &efi.flags); |
| 553 | } |
| 554 | #endif |
| 555 | |
| 556 | if (!boot_params.hdr.root_flags) |
| 557 | root_mountflags &= ~MS_RDONLY; |
| 558 | } |
| 559 | |
| 560 | static void __init memblock_x86_reserve_range_setup_data(void) |
| 561 | { |
| 562 | struct setup_indirect *indirect; |
| 563 | struct setup_data *data; |
| 564 | u64 pa_data, pa_next; |
| 565 | u32 len; |
| 566 | |
| 567 | pa_data = boot_params.hdr.setup_data; |
| 568 | while (pa_data) { |
| 569 | data = early_memremap(phys_addr: pa_data, size: sizeof(*data)); |
| 570 | if (!data) { |
| 571 | pr_warn("setup: failed to memremap setup_data entry\n" ); |
| 572 | return; |
| 573 | } |
| 574 | |
| 575 | len = sizeof(*data); |
| 576 | pa_next = data->next; |
| 577 | |
| 578 | memblock_reserve_kern(base: pa_data, size: sizeof(*data) + data->len); |
| 579 | |
| 580 | if (data->type == SETUP_INDIRECT) { |
| 581 | len += data->len; |
| 582 | early_memunmap(addr: data, size: sizeof(*data)); |
| 583 | data = early_memremap(phys_addr: pa_data, size: len); |
| 584 | if (!data) { |
| 585 | pr_warn("setup: failed to memremap indirect setup_data\n" ); |
| 586 | return; |
| 587 | } |
| 588 | |
| 589 | indirect = (struct setup_indirect *)data->data; |
| 590 | |
| 591 | if (indirect->type != SETUP_INDIRECT) |
| 592 | memblock_reserve_kern(base: indirect->addr, size: indirect->len); |
| 593 | } |
| 594 | |
| 595 | pa_data = pa_next; |
| 596 | early_memunmap(addr: data, size: len); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | static void __init arch_reserve_crashkernel(void) |
| 601 | { |
| 602 | unsigned long long crash_base, crash_size, low_size = 0; |
| 603 | bool high = false; |
| 604 | int ret; |
| 605 | |
| 606 | if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) |
| 607 | return; |
| 608 | |
| 609 | ret = parse_crashkernel(cmdline: boot_command_line, system_ram: memblock_phys_mem_size(), |
| 610 | crash_size: &crash_size, crash_base: &crash_base, |
| 611 | low_size: &low_size, high: &high); |
| 612 | if (ret) |
| 613 | return; |
| 614 | |
| 615 | if (xen_pv_domain()) { |
| 616 | pr_info("Ignoring crashkernel for a Xen PV domain\n" ); |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | reserve_crashkernel_generic(crash_size, crash_base, crash_low_size: low_size, high); |
| 621 | } |
| 622 | |
| 623 | static struct resource standard_io_resources[] = { |
| 624 | { .name = "dma1" , .start = 0x00, .end = 0x1f, |
| 625 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 626 | { .name = "pic1" , .start = 0x20, .end = 0x21, |
| 627 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 628 | { .name = "timer0" , .start = 0x40, .end = 0x43, |
| 629 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 630 | { .name = "timer1" , .start = 0x50, .end = 0x53, |
| 631 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 632 | { .name = "keyboard" , .start = 0x60, .end = 0x60, |
| 633 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 634 | { .name = "keyboard" , .start = 0x64, .end = 0x64, |
| 635 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 636 | { .name = "dma page reg" , .start = 0x80, .end = 0x8f, |
| 637 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 638 | { .name = "pic2" , .start = 0xa0, .end = 0xa1, |
| 639 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 640 | { .name = "dma2" , .start = 0xc0, .end = 0xdf, |
| 641 | .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| 642 | { .name = "fpu" , .start = 0xf0, .end = 0xff, |
| 643 | .flags = IORESOURCE_BUSY | IORESOURCE_IO } |
| 644 | }; |
| 645 | |
| 646 | void __init reserve_standard_io_resources(void) |
| 647 | { |
| 648 | int i; |
| 649 | |
| 650 | /* request I/O space for devices used on all i[345]86 PCs */ |
| 651 | for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) |
| 652 | request_resource(root: &ioport_resource, new: &standard_io_resources[i]); |
| 653 | |
| 654 | } |
| 655 | |
| 656 | static void __init setup_kernel_resources(void) |
| 657 | { |
| 658 | code_resource.start = __pa_symbol(_text); |
| 659 | code_resource.end = __pa_symbol(_etext)-1; |
| 660 | rodata_resource.start = __pa_symbol(__start_rodata); |
| 661 | rodata_resource.end = __pa_symbol(__end_rodata)-1; |
| 662 | data_resource.start = __pa_symbol(_sdata); |
| 663 | data_resource.end = __pa_symbol(_edata)-1; |
| 664 | bss_resource.start = __pa_symbol(__bss_start); |
| 665 | bss_resource.end = __pa_symbol(__bss_stop)-1; |
| 666 | |
| 667 | insert_resource(parent: &iomem_resource, new: &code_resource); |
| 668 | insert_resource(parent: &iomem_resource, new: &rodata_resource); |
| 669 | insert_resource(parent: &iomem_resource, new: &data_resource); |
| 670 | insert_resource(parent: &iomem_resource, new: &bss_resource); |
| 671 | } |
| 672 | |
| 673 | static bool __init snb_gfx_workaround_needed(void) |
| 674 | { |
| 675 | #ifdef CONFIG_PCI |
| 676 | int i; |
| 677 | u16 vendor, devid; |
| 678 | static const __initconst u16 snb_ids[] = { |
| 679 | 0x0102, |
| 680 | 0x0112, |
| 681 | 0x0122, |
| 682 | 0x0106, |
| 683 | 0x0116, |
| 684 | 0x0126, |
| 685 | 0x010a, |
| 686 | }; |
| 687 | |
| 688 | /* Assume no if something weird is going on with PCI */ |
| 689 | if (!early_pci_allowed()) |
| 690 | return false; |
| 691 | |
| 692 | vendor = read_pci_config_16(bus: 0, slot: 2, func: 0, PCI_VENDOR_ID); |
| 693 | if (vendor != 0x8086) |
| 694 | return false; |
| 695 | |
| 696 | devid = read_pci_config_16(bus: 0, slot: 2, func: 0, PCI_DEVICE_ID); |
| 697 | for (i = 0; i < ARRAY_SIZE(snb_ids); i++) |
| 698 | if (devid == snb_ids[i]) |
| 699 | return true; |
| 700 | #endif |
| 701 | |
| 702 | return false; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Sandy Bridge graphics has trouble with certain ranges, exclude |
| 707 | * them from allocation. |
| 708 | */ |
| 709 | static void __init trim_snb_memory(void) |
| 710 | { |
| 711 | static const __initconst unsigned long bad_pages[] = { |
| 712 | 0x20050000, |
| 713 | 0x20110000, |
| 714 | 0x20130000, |
| 715 | 0x20138000, |
| 716 | 0x40004000, |
| 717 | }; |
| 718 | int i; |
| 719 | |
| 720 | if (!snb_gfx_workaround_needed()) |
| 721 | return; |
| 722 | |
| 723 | printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n" ); |
| 724 | |
| 725 | /* |
| 726 | * SandyBridge integrated graphics devices have a bug that prevents |
| 727 | * them from accessing certain memory ranges, namely anything below |
| 728 | * 1M and in the pages listed in bad_pages[] above. |
| 729 | * |
| 730 | * To avoid these pages being ever accessed by SNB gfx devices reserve |
| 731 | * bad_pages that have not already been reserved at boot time. |
| 732 | * All memory below the 1 MB mark is anyway reserved later during |
| 733 | * setup_arch(), so there is no need to reserve it here. |
| 734 | */ |
| 735 | |
| 736 | for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { |
| 737 | if (memblock_reserve(base: bad_pages[i], PAGE_SIZE)) |
| 738 | printk(KERN_WARNING "failed to reserve 0x%08lx\n" , |
| 739 | bad_pages[i]); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | static void __init trim_bios_range(void) |
| 744 | { |
| 745 | /* |
| 746 | * A special case is the first 4Kb of memory; |
| 747 | * This is a BIOS owned area, not kernel ram, but generally |
| 748 | * not listed as such in the E820 table. |
| 749 | * |
| 750 | * This typically reserves additional memory (64KiB by default) |
| 751 | * since some BIOSes are known to corrupt low memory. See the |
| 752 | * Kconfig help text for X86_RESERVE_LOW. |
| 753 | */ |
| 754 | e820__range_update(start: 0, PAGE_SIZE, old_type: E820_TYPE_RAM, new_type: E820_TYPE_RESERVED); |
| 755 | |
| 756 | /* |
| 757 | * special case: Some BIOSes report the PC BIOS |
| 758 | * area (640Kb -> 1Mb) as RAM even though it is not. |
| 759 | * take them out. |
| 760 | */ |
| 761 | e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, old_type: E820_TYPE_RAM, check_type: 1); |
| 762 | |
| 763 | e820__update_table(table: e820_table); |
| 764 | } |
| 765 | |
| 766 | /* called before trim_bios_range() to spare extra sanitize */ |
| 767 | static void __init e820_add_kernel_range(void) |
| 768 | { |
| 769 | u64 start = __pa_symbol(_text); |
| 770 | u64 size = __pa_symbol(_end) - start; |
| 771 | |
| 772 | /* |
| 773 | * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and |
| 774 | * attempt to fix it by adding the range. We may have a confused BIOS, |
| 775 | * or the user may have used memmap=exactmap or memmap=xxM$yyM to |
| 776 | * exclude kernel range. If we really are running on top non-RAM, |
| 777 | * we will crash later anyways. |
| 778 | */ |
| 779 | if (e820__mapped_all(start, end: start + size, type: E820_TYPE_RAM)) |
| 780 | return; |
| 781 | |
| 782 | pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n" ); |
| 783 | e820__range_remove(start, size, old_type: E820_TYPE_RAM, check_type: 0); |
| 784 | e820__range_add(start, size, type: E820_TYPE_RAM); |
| 785 | } |
| 786 | |
| 787 | static void __init early_reserve_memory(void) |
| 788 | { |
| 789 | /* |
| 790 | * Reserve the memory occupied by the kernel between _text and |
| 791 | * __end_of_kernel_reserve symbols. Any kernel sections after the |
| 792 | * __end_of_kernel_reserve symbol must be explicitly reserved with a |
| 793 | * separate memblock_reserve() or they will be discarded. |
| 794 | */ |
| 795 | memblock_reserve_kern(__pa_symbol(_text), |
| 796 | size: (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); |
| 797 | |
| 798 | /* |
| 799 | * The first 4Kb of memory is a BIOS owned area, but generally it is |
| 800 | * not listed as such in the E820 table. |
| 801 | * |
| 802 | * Reserve the first 64K of memory since some BIOSes are known to |
| 803 | * corrupt low memory. After the real mode trampoline is allocated the |
| 804 | * rest of the memory below 640k is reserved. |
| 805 | * |
| 806 | * In addition, make sure page 0 is always reserved because on |
| 807 | * systems with L1TF its contents can be leaked to user processes. |
| 808 | */ |
| 809 | memblock_reserve(base: 0, SZ_64K); |
| 810 | |
| 811 | early_reserve_initrd(); |
| 812 | |
| 813 | memblock_x86_reserve_range_setup_data(); |
| 814 | |
| 815 | reserve_bios_regions(); |
| 816 | trim_snb_memory(); |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * Dump out kernel offset information on panic. |
| 821 | */ |
| 822 | static int |
| 823 | dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) |
| 824 | { |
| 825 | if (kaslr_enabled()) { |
| 826 | pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n" , |
| 827 | kaslr_offset(), |
| 828 | __START_KERNEL, |
| 829 | __START_KERNEL_map, |
| 830 | MODULES_VADDR-1); |
| 831 | } else { |
| 832 | pr_emerg("Kernel Offset: disabled\n" ); |
| 833 | } |
| 834 | |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | void x86_configure_nx(void) |
| 839 | { |
| 840 | if (boot_cpu_has(X86_FEATURE_NX)) |
| 841 | __supported_pte_mask |= _PAGE_NX; |
| 842 | else |
| 843 | __supported_pte_mask &= ~_PAGE_NX; |
| 844 | } |
| 845 | |
| 846 | static void __init x86_report_nx(void) |
| 847 | { |
| 848 | if (!boot_cpu_has(X86_FEATURE_NX)) { |
| 849 | printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " |
| 850 | "missing in CPU!\n" ); |
| 851 | } else { |
| 852 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| 853 | printk(KERN_INFO "NX (Execute Disable) protection: active\n" ); |
| 854 | #else |
| 855 | /* 32bit non-PAE kernel, NX cannot be used */ |
| 856 | printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " |
| 857 | "cannot be enabled: non-PAE kernel!\n" ); |
| 858 | #endif |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * Determine if we were loaded by an EFI loader. If so, then we have also been |
| 864 | * passed the efi memmap, systab, etc., so we should use these data structures |
| 865 | * for initialization. Note, the efi init code path is determined by the |
| 866 | * global efi_enabled. This allows the same kernel image to be used on existing |
| 867 | * systems (with a traditional BIOS) as well as on EFI systems. |
| 868 | */ |
| 869 | /* |
| 870 | * setup_arch - architecture-specific boot-time initializations |
| 871 | * |
| 872 | * Note: On x86_64, fixmaps are ready for use even before this is called. |
| 873 | */ |
| 874 | |
| 875 | void __init setup_arch(char **cmdline_p) |
| 876 | { |
| 877 | #ifdef CONFIG_X86_32 |
| 878 | memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); |
| 879 | |
| 880 | /* |
| 881 | * copy kernel address range established so far and switch |
| 882 | * to the proper swapper page table |
| 883 | */ |
| 884 | clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, |
| 885 | initial_page_table + KERNEL_PGD_BOUNDARY, |
| 886 | KERNEL_PGD_PTRS); |
| 887 | |
| 888 | load_cr3(swapper_pg_dir); |
| 889 | /* |
| 890 | * Note: Quark X1000 CPUs advertise PGE incorrectly and require |
| 891 | * a cr3 based tlb flush, so the following __flush_tlb_all() |
| 892 | * will not flush anything because the CPU quirk which clears |
| 893 | * X86_FEATURE_PGE has not been invoked yet. Though due to the |
| 894 | * load_cr3() above the TLB has been flushed already. The |
| 895 | * quirk is invoked before subsequent calls to __flush_tlb_all() |
| 896 | * so proper operation is guaranteed. |
| 897 | */ |
| 898 | __flush_tlb_all(); |
| 899 | #else |
| 900 | printk(KERN_INFO "Command line: %s\n" , boot_command_line); |
| 901 | boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; |
| 902 | #endif |
| 903 | |
| 904 | #ifdef CONFIG_CMDLINE_BOOL |
| 905 | #ifdef CONFIG_CMDLINE_OVERRIDE |
| 906 | strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| 907 | #else |
| 908 | if (builtin_cmdline[0]) { |
| 909 | /* append boot loader cmdline to builtin */ |
| 910 | strlcat(p: builtin_cmdline, q: " " , COMMAND_LINE_SIZE); |
| 911 | strlcat(p: builtin_cmdline, q: boot_command_line, COMMAND_LINE_SIZE); |
| 912 | strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| 913 | } |
| 914 | #endif |
| 915 | builtin_cmdline_added = true; |
| 916 | #endif |
| 917 | |
| 918 | strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); |
| 919 | *cmdline_p = command_line; |
| 920 | |
| 921 | /* |
| 922 | * If we have OLPC OFW, we might end up relocating the fixmap due to |
| 923 | * reserve_top(), so do this before touching the ioremap area. |
| 924 | */ |
| 925 | olpc_ofw_detect(); |
| 926 | |
| 927 | idt_setup_early_traps(); |
| 928 | early_cpu_init(); |
| 929 | jump_label_init(); |
| 930 | static_call_init(); |
| 931 | early_ioremap_init(); |
| 932 | |
| 933 | setup_olpc_ofw_pgd(); |
| 934 | |
| 935 | parse_boot_params(); |
| 936 | |
| 937 | x86_init.oem.arch_setup(); |
| 938 | |
| 939 | /* |
| 940 | * Do some memory reservations *before* memory is added to memblock, so |
| 941 | * memblock allocations won't overwrite it. |
| 942 | * |
| 943 | * After this point, everything still needed from the boot loader or |
| 944 | * firmware or kernel text should be early reserved or marked not RAM in |
| 945 | * e820. All other memory is free game. |
| 946 | * |
| 947 | * This call needs to happen before e820__memory_setup() which calls the |
| 948 | * xen_memory_setup() on Xen dom0 which relies on the fact that those |
| 949 | * early reservations have happened already. |
| 950 | */ |
| 951 | early_reserve_memory(); |
| 952 | |
| 953 | iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; |
| 954 | e820__memory_setup(); |
| 955 | parse_setup_data(); |
| 956 | |
| 957 | copy_edd(); |
| 958 | |
| 959 | setup_initial_init_mm(start_code: _text, end_code: _etext, end_data: _edata, brk: (void *)_brk_end); |
| 960 | |
| 961 | /* |
| 962 | * x86_configure_nx() is called before parse_early_param() to detect |
| 963 | * whether hardware doesn't support NX (so that the early EHCI debug |
| 964 | * console setup can safely call set_fixmap()). |
| 965 | */ |
| 966 | x86_configure_nx(); |
| 967 | |
| 968 | parse_early_param(); |
| 969 | |
| 970 | if (efi_enabled(EFI_BOOT)) |
| 971 | efi_memblock_x86_reserve_range(); |
| 972 | |
| 973 | x86_report_nx(); |
| 974 | |
| 975 | apic_setup_apic_calls(); |
| 976 | |
| 977 | if (acpi_mps_check()) { |
| 978 | #ifdef CONFIG_X86_LOCAL_APIC |
| 979 | apic_is_disabled = true; |
| 980 | #endif |
| 981 | setup_clear_cpu_cap(X86_FEATURE_APIC); |
| 982 | } |
| 983 | |
| 984 | e820__finish_early_params(); |
| 985 | |
| 986 | if (efi_enabled(EFI_BOOT)) |
| 987 | efi_init(); |
| 988 | |
| 989 | reserve_ibft_region(); |
| 990 | x86_init.resources.dmi_setup(); |
| 991 | |
| 992 | /* |
| 993 | * VMware detection requires dmi to be available, so this |
| 994 | * needs to be done after dmi_setup(), for the boot CPU. |
| 995 | * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be |
| 996 | * called before cache_bp_init() for setting up MTRR state. |
| 997 | */ |
| 998 | init_hypervisor_platform(); |
| 999 | |
| 1000 | tsc_early_init(); |
| 1001 | x86_init.resources.probe_roms(); |
| 1002 | |
| 1003 | /* |
| 1004 | * Add resources for kernel text and data to the iomem_resource. |
| 1005 | * Do it after parse_early_param, so it can be debugged. |
| 1006 | */ |
| 1007 | setup_kernel_resources(); |
| 1008 | |
| 1009 | e820_add_kernel_range(); |
| 1010 | trim_bios_range(); |
| 1011 | #ifdef CONFIG_X86_32 |
| 1012 | if (ppro_with_ram_bug()) { |
| 1013 | e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, |
| 1014 | E820_TYPE_RESERVED); |
| 1015 | e820__update_table(e820_table); |
| 1016 | printk(KERN_INFO "fixed physical RAM map:\n" ); |
| 1017 | e820__print_table("bad_ppro" ); |
| 1018 | } |
| 1019 | #else |
| 1020 | early_gart_iommu_check(); |
| 1021 | #endif |
| 1022 | |
| 1023 | /* |
| 1024 | * partially used pages are not usable - thus |
| 1025 | * we are rounding upwards: |
| 1026 | */ |
| 1027 | max_pfn = e820__end_of_ram_pfn(); |
| 1028 | |
| 1029 | /* update e820 for memory not covered by WB MTRRs */ |
| 1030 | cache_bp_init(); |
| 1031 | if (mtrr_trim_uncached_memory(end_pfn: max_pfn)) |
| 1032 | max_pfn = e820__end_of_ram_pfn(); |
| 1033 | |
| 1034 | max_possible_pfn = max_pfn; |
| 1035 | |
| 1036 | /* |
| 1037 | * Define random base addresses for memory sections after max_pfn is |
| 1038 | * defined and before each memory section base is used. |
| 1039 | */ |
| 1040 | kernel_randomize_memory(); |
| 1041 | |
| 1042 | #ifdef CONFIG_X86_32 |
| 1043 | /* max_low_pfn get updated here */ |
| 1044 | find_low_pfn_range(); |
| 1045 | #else |
| 1046 | check_x2apic(); |
| 1047 | |
| 1048 | /* How many end-of-memory variables you have, grandma! */ |
| 1049 | /* need this before calling reserve_initrd */ |
| 1050 | if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) |
| 1051 | max_low_pfn = e820__end_of_low_ram_pfn(); |
| 1052 | else |
| 1053 | max_low_pfn = max_pfn; |
| 1054 | #endif |
| 1055 | |
| 1056 | /* Find and reserve MPTABLE area */ |
| 1057 | x86_init.mpparse.find_mptable(); |
| 1058 | |
| 1059 | early_alloc_pgt_buf(); |
| 1060 | |
| 1061 | /* |
| 1062 | * Need to conclude brk, before e820__memblock_setup() |
| 1063 | * it could use memblock_find_in_range, could overlap with |
| 1064 | * brk area. |
| 1065 | */ |
| 1066 | reserve_brk(); |
| 1067 | |
| 1068 | cleanup_highmap(); |
| 1069 | |
| 1070 | e820__memblock_setup(); |
| 1071 | |
| 1072 | /* |
| 1073 | * Needs to run after memblock setup because it needs the physical |
| 1074 | * memory size. |
| 1075 | */ |
| 1076 | mem_encrypt_setup_arch(); |
| 1077 | cc_random_init(); |
| 1078 | |
| 1079 | efi_find_mirror(); |
| 1080 | efi_esrt_init(); |
| 1081 | efi_mokvar_table_init(); |
| 1082 | |
| 1083 | /* |
| 1084 | * The EFI specification says that boot service code won't be |
| 1085 | * called after ExitBootServices(). This is, in fact, a lie. |
| 1086 | */ |
| 1087 | efi_reserve_boot_services(); |
| 1088 | |
| 1089 | /* preallocate 4k for mptable mpc */ |
| 1090 | e820__memblock_alloc_reserved_mpc_new(); |
| 1091 | |
| 1092 | #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION |
| 1093 | setup_bios_corruption_check(); |
| 1094 | #endif |
| 1095 | |
| 1096 | #ifdef CONFIG_X86_32 |
| 1097 | printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n" , |
| 1098 | (max_pfn_mapped<<PAGE_SHIFT) - 1); |
| 1099 | #endif |
| 1100 | |
| 1101 | /* |
| 1102 | * Find free memory for the real mode trampoline and place it there. If |
| 1103 | * there is not enough free memory under 1M, on EFI-enabled systems |
| 1104 | * there will be additional attempt to reclaim the memory for the real |
| 1105 | * mode trampoline at efi_free_boot_services(). |
| 1106 | * |
| 1107 | * Unconditionally reserve the entire first 1M of RAM because BIOSes |
| 1108 | * are known to corrupt low memory and several hundred kilobytes are not |
| 1109 | * worth complex detection what memory gets clobbered. Windows does the |
| 1110 | * same thing for very similar reasons. |
| 1111 | * |
| 1112 | * Moreover, on machines with SandyBridge graphics or in setups that use |
| 1113 | * crashkernel the entire 1M is reserved anyway. |
| 1114 | * |
| 1115 | * Note the host kernel TDX also requires the first 1MB being reserved. |
| 1116 | */ |
| 1117 | x86_platform.realmode_reserve(); |
| 1118 | |
| 1119 | init_mem_mapping(); |
| 1120 | |
| 1121 | /* |
| 1122 | * init_mem_mapping() relies on the early IDT page fault handling. |
| 1123 | * Now either enable FRED or install the real page fault handler |
| 1124 | * for 64-bit in the IDT. |
| 1125 | */ |
| 1126 | cpu_init_replace_early_idt(); |
| 1127 | |
| 1128 | /* |
| 1129 | * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) |
| 1130 | * with the current CR4 value. This may not be necessary, but |
| 1131 | * auditing all the early-boot CR4 manipulation would be needed to |
| 1132 | * rule it out. |
| 1133 | * |
| 1134 | * Mask off features that don't work outside long mode (just |
| 1135 | * PCIDE for now). |
| 1136 | */ |
| 1137 | mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; |
| 1138 | |
| 1139 | memblock_set_current_limit(limit: get_max_mapped()); |
| 1140 | |
| 1141 | /* |
| 1142 | * NOTE: On x86-32, only from this point on, fixmaps are ready for use. |
| 1143 | */ |
| 1144 | |
| 1145 | #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT |
| 1146 | if (init_ohci1394_dma_early) |
| 1147 | init_ohci1394_dma_on_all_controllers(); |
| 1148 | #endif |
| 1149 | /* Allocate bigger log buffer */ |
| 1150 | setup_log_buf(1); |
| 1151 | |
| 1152 | if (efi_enabled(EFI_BOOT)) { |
| 1153 | switch (boot_params.secure_boot) { |
| 1154 | case efi_secureboot_mode_disabled: |
| 1155 | pr_info("Secure boot disabled\n" ); |
| 1156 | break; |
| 1157 | case efi_secureboot_mode_enabled: |
| 1158 | pr_info("Secure boot enabled\n" ); |
| 1159 | break; |
| 1160 | default: |
| 1161 | pr_info("Secure boot could not be determined\n" ); |
| 1162 | break; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | reserve_initrd(); |
| 1167 | |
| 1168 | acpi_table_upgrade(); |
| 1169 | /* Look for ACPI tables and reserve memory occupied by them. */ |
| 1170 | acpi_boot_table_init(); |
| 1171 | |
| 1172 | vsmp_init(); |
| 1173 | |
| 1174 | io_delay_init(); |
| 1175 | |
| 1176 | early_platform_quirks(); |
| 1177 | |
| 1178 | /* Some platforms need the APIC registered for NUMA configuration */ |
| 1179 | early_acpi_boot_init(); |
| 1180 | x86_init.mpparse.early_parse_smp_cfg(); |
| 1181 | |
| 1182 | x86_flattree_get_config(); |
| 1183 | |
| 1184 | initmem_init(); |
| 1185 | dma_contiguous_reserve(addr_limit: max_pfn_mapped << PAGE_SHIFT); |
| 1186 | |
| 1187 | if (boot_cpu_has(X86_FEATURE_GBPAGES)) { |
| 1188 | hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); |
| 1189 | hugetlb_bootmem_alloc(); |
| 1190 | } |
| 1191 | |
| 1192 | /* |
| 1193 | * Reserve memory for crash kernel after SRAT is parsed so that it |
| 1194 | * won't consume hotpluggable memory. |
| 1195 | */ |
| 1196 | arch_reserve_crashkernel(); |
| 1197 | |
| 1198 | if (!early_xdbc_setup_hardware()) |
| 1199 | early_xdbc_register_console(); |
| 1200 | |
| 1201 | x86_init.paging.pagetable_init(); |
| 1202 | |
| 1203 | kasan_init(); |
| 1204 | |
| 1205 | /* |
| 1206 | * Sync back kernel address range. |
| 1207 | * |
| 1208 | * FIXME: Can the later sync in setup_cpu_entry_areas() replace |
| 1209 | * this call? |
| 1210 | */ |
| 1211 | sync_initial_page_table(); |
| 1212 | |
| 1213 | tboot_probe(); |
| 1214 | |
| 1215 | map_vsyscall(); |
| 1216 | |
| 1217 | x86_32_probe_apic(); |
| 1218 | |
| 1219 | early_quirks(); |
| 1220 | |
| 1221 | topology_apply_cmdline_limits_early(); |
| 1222 | |
| 1223 | /* |
| 1224 | * Parse SMP configuration. Try ACPI first and then the platform |
| 1225 | * specific parser. |
| 1226 | */ |
| 1227 | acpi_boot_init(); |
| 1228 | x86_init.mpparse.parse_smp_cfg(); |
| 1229 | |
| 1230 | /* Last opportunity to detect and map the local APIC */ |
| 1231 | init_apic_mappings(); |
| 1232 | |
| 1233 | topology_init_possible_cpus(); |
| 1234 | |
| 1235 | init_cpu_to_node(); |
| 1236 | init_gi_nodes(); |
| 1237 | |
| 1238 | io_apic_init_mappings(); |
| 1239 | |
| 1240 | x86_init.hyper.guest_late_init(); |
| 1241 | |
| 1242 | e820__reserve_resources(); |
| 1243 | e820__register_nosave_regions(limit_pfn: max_pfn); |
| 1244 | |
| 1245 | x86_init.resources.reserve_resources(); |
| 1246 | |
| 1247 | e820__setup_pci_gap(); |
| 1248 | |
| 1249 | #ifdef CONFIG_VT |
| 1250 | #if defined(CONFIG_VGA_CONSOLE) |
| 1251 | if (!efi_enabled(EFI_BOOT) || (efi_mem_type(phys_addr: 0xa0000) != EFI_CONVENTIONAL_MEMORY)) |
| 1252 | vgacon_register_screen(si: &screen_info); |
| 1253 | #endif |
| 1254 | #endif |
| 1255 | x86_init.oem.banner(); |
| 1256 | |
| 1257 | x86_init.timers.wallclock_init(); |
| 1258 | |
| 1259 | /* |
| 1260 | * This needs to run before setup_local_APIC() which soft-disables the |
| 1261 | * local APIC temporarily and that masks the thermal LVT interrupt, |
| 1262 | * leading to softlockups on machines which have configured SMI |
| 1263 | * interrupt delivery. |
| 1264 | */ |
| 1265 | therm_lvt_init(); |
| 1266 | |
| 1267 | mcheck_init(); |
| 1268 | |
| 1269 | register_refined_jiffies(CLOCK_TICK_RATE); |
| 1270 | |
| 1271 | #ifdef CONFIG_EFI |
| 1272 | if (efi_enabled(EFI_BOOT)) |
| 1273 | efi_apply_memmap_quirks(); |
| 1274 | #endif |
| 1275 | |
| 1276 | unwind_init(); |
| 1277 | } |
| 1278 | |
| 1279 | #ifdef CONFIG_X86_32 |
| 1280 | |
| 1281 | static struct resource video_ram_resource = { |
| 1282 | .name = "Video RAM area" , |
| 1283 | .start = 0xa0000, |
| 1284 | .end = 0xbffff, |
| 1285 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| 1286 | }; |
| 1287 | |
| 1288 | void __init i386_reserve_resources(void) |
| 1289 | { |
| 1290 | request_resource(&iomem_resource, &video_ram_resource); |
| 1291 | reserve_standard_io_resources(); |
| 1292 | } |
| 1293 | |
| 1294 | #endif /* CONFIG_X86_32 */ |
| 1295 | |
| 1296 | static struct notifier_block kernel_offset_notifier = { |
| 1297 | .notifier_call = dump_kernel_offset |
| 1298 | }; |
| 1299 | |
| 1300 | static int __init register_kernel_offset_dumper(void) |
| 1301 | { |
| 1302 | atomic_notifier_chain_register(nh: &panic_notifier_list, |
| 1303 | nb: &kernel_offset_notifier); |
| 1304 | return 0; |
| 1305 | } |
| 1306 | __initcall(register_kernel_offset_dumper); |
| 1307 | |
| 1308 | #ifdef CONFIG_HOTPLUG_CPU |
| 1309 | bool arch_cpu_is_hotpluggable(int cpu) |
| 1310 | { |
| 1311 | return cpu > 0; |
| 1312 | } |
| 1313 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1314 | |