1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 drbd.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12 from Logicworks, Inc. for making SDP replication support possible.
13
14
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/jiffies.h>
21#include <linux/drbd.h>
22#include <linux/uaccess.h>
23#include <asm/types.h>
24#include <net/sock.h>
25#include <linux/ctype.h>
26#include <linux/mutex.h>
27#include <linux/fs.h>
28#include <linux/file.h>
29#include <linux/proc_fs.h>
30#include <linux/init.h>
31#include <linux/mm.h>
32#include <linux/memcontrol.h>
33#include <linux/mm_inline.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/reboot.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/workqueue.h>
40#include <linux/unistd.h>
41#include <linux/vmalloc.h>
42#include <linux/sched/signal.h>
43
44#include <linux/drbd_limits.h>
45#include "drbd_int.h"
46#include "drbd_protocol.h"
47#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48#include "drbd_vli.h"
49#include "drbd_debugfs.h"
50
51static DEFINE_MUTEX(drbd_main_mutex);
52static int drbd_open(struct gendisk *disk, blk_mode_t mode);
53static void drbd_release(struct gendisk *gd);
54static void md_sync_timer_fn(struct timer_list *t);
55static int w_bitmap_io(struct drbd_work *w, int unused);
56
57MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
58 "Lars Ellenberg <lars@linbit.com>");
59MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60MODULE_VERSION(REL_VERSION);
61MODULE_LICENSE("GPL");
62MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65
66#include <linux/moduleparam.h>
67/* thanks to these macros, if compiled into the kernel (not-module),
68 * these become boot parameters (e.g., drbd.minor_count) */
69
70#ifdef CONFIG_DRBD_FAULT_INJECTION
71int drbd_enable_faults;
72int drbd_fault_rate;
73static int drbd_fault_count;
74static int drbd_fault_devs;
75/* bitmap of enabled faults */
76module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77/* fault rate % value - applies to all enabled faults */
78module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79/* count of faults inserted */
80module_param_named(fault_count, drbd_fault_count, int, 0664);
81/* bitmap of devices to insert faults on */
82module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83#endif
84
85/* module parameters we can keep static */
86static bool drbd_allow_oos; /* allow_open_on_secondary */
87static bool drbd_disable_sendpage;
88MODULE_PARM_DESC(allow_oos, "DONT USE!");
89module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91
92/* module parameters we share */
93int drbd_proc_details; /* Detail level in proc drbd*/
94module_param_named(proc_details, drbd_proc_details, int, 0644);
95/* module parameters shared with defaults */
96unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97/* Module parameter for setting the user mode helper program
98 * to run. Default is /sbin/drbdadm */
99char drbd_usermode_helper[80] = "/sbin/drbdadm";
100module_param_named(minor_count, drbd_minor_count, uint, 0444);
101module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102
103/* in 2.6.x, our device mapping and config info contains our virtual gendisks
104 * as member "struct gendisk *vdisk;"
105 */
106struct idr drbd_devices;
107struct list_head drbd_resources;
108struct mutex resources_mutex;
109
110struct kmem_cache *drbd_request_cache;
111struct kmem_cache *drbd_ee_cache; /* peer requests */
112struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
113struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
114mempool_t drbd_request_mempool;
115mempool_t drbd_ee_mempool;
116mempool_t drbd_md_io_page_pool;
117struct bio_set drbd_md_io_bio_set;
118struct bio_set drbd_io_bio_set;
119
120/* I do not use a standard mempool, because:
121 1) I want to hand out the pre-allocated objects first.
122 2) I want to be able to interrupt sleeping allocation with a signal.
123 Note: This is a single linked list, the next pointer is the private
124 member of struct page.
125 */
126struct page *drbd_pp_pool;
127DEFINE_SPINLOCK(drbd_pp_lock);
128int drbd_pp_vacant;
129wait_queue_head_t drbd_pp_wait;
130
131DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
132
133static const struct block_device_operations drbd_ops = {
134 .owner = THIS_MODULE,
135 .submit_bio = drbd_submit_bio,
136 .open = drbd_open,
137 .release = drbd_release,
138};
139
140#ifdef __CHECKER__
141/* When checking with sparse, and this is an inline function, sparse will
142 give tons of false positives. When this is a real functions sparse works.
143 */
144int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
145{
146 int io_allowed;
147
148 atomic_inc(&device->local_cnt);
149 io_allowed = (device->state.disk >= mins);
150 if (!io_allowed) {
151 if (atomic_dec_and_test(&device->local_cnt))
152 wake_up(&device->misc_wait);
153 }
154 return io_allowed;
155}
156
157#endif
158
159/**
160 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
161 * @connection: DRBD connection.
162 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
163 * @set_size: Expected number of requests before that barrier.
164 *
165 * In case the passed barrier_nr or set_size does not match the oldest
166 * epoch of not yet barrier-acked requests, this function will cause a
167 * termination of the connection.
168 */
169void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
170 unsigned int set_size)
171{
172 struct drbd_request *r;
173 struct drbd_request *req = NULL, *tmp = NULL;
174 int expect_epoch = 0;
175 int expect_size = 0;
176
177 spin_lock_irq(lock: &connection->resource->req_lock);
178
179 /* find oldest not yet barrier-acked write request,
180 * count writes in its epoch. */
181 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
182 const unsigned s = r->rq_state;
183 if (!req) {
184 if (!(s & RQ_WRITE))
185 continue;
186 if (!(s & RQ_NET_MASK))
187 continue;
188 if (s & RQ_NET_DONE)
189 continue;
190 req = r;
191 expect_epoch = req->epoch;
192 expect_size ++;
193 } else {
194 if (r->epoch != expect_epoch)
195 break;
196 if (!(s & RQ_WRITE))
197 continue;
198 /* if (s & RQ_DONE): not expected */
199 /* if (!(s & RQ_NET_MASK)): not expected */
200 expect_size++;
201 }
202 }
203
204 /* first some paranoia code */
205 if (req == NULL) {
206 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
207 barrier_nr);
208 goto bail;
209 }
210 if (expect_epoch != barrier_nr) {
211 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
212 barrier_nr, expect_epoch);
213 goto bail;
214 }
215
216 if (expect_size != set_size) {
217 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
218 barrier_nr, set_size, expect_size);
219 goto bail;
220 }
221
222 /* Clean up list of requests processed during current epoch. */
223 /* this extra list walk restart is paranoia,
224 * to catch requests being barrier-acked "unexpectedly".
225 * It usually should find the same req again, or some READ preceding it. */
226 list_for_each_entry(req, &connection->transfer_log, tl_requests)
227 if (req->epoch == expect_epoch) {
228 tmp = req;
229 break;
230 }
231 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
232 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
233 struct drbd_peer_device *peer_device;
234 if (req->epoch != expect_epoch)
235 break;
236 peer_device = conn_peer_device(connection, volume_number: req->device->vnr);
237 _req_mod(req, what: BARRIER_ACKED, peer_device);
238 }
239 spin_unlock_irq(lock: &connection->resource->req_lock);
240
241 return;
242
243bail:
244 spin_unlock_irq(lock: &connection->resource->req_lock);
245 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), flags: CS_HARD);
246}
247
248
249/**
250 * _tl_restart() - Walks the transfer log, and applies an action to all requests
251 * @connection: DRBD connection to operate on.
252 * @what: The action/event to perform with all request objects
253 *
254 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
255 * RESTART_FROZEN_DISK_IO.
256 */
257/* must hold resource->req_lock */
258void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
259{
260 struct drbd_peer_device *peer_device;
261 struct drbd_request *req, *r;
262
263 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
264 peer_device = conn_peer_device(connection, volume_number: req->device->vnr);
265 _req_mod(req, what, peer_device);
266 }
267}
268
269void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
270{
271 spin_lock_irq(lock: &connection->resource->req_lock);
272 _tl_restart(connection, what);
273 spin_unlock_irq(lock: &connection->resource->req_lock);
274}
275
276/**
277 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
278 * @connection: DRBD connection.
279 *
280 * This is called after the connection to the peer was lost. The storage covered
281 * by the requests on the transfer gets marked as our of sync. Called from the
282 * receiver thread and the worker thread.
283 */
284void tl_clear(struct drbd_connection *connection)
285{
286 tl_restart(connection, what: CONNECTION_LOST_WHILE_PENDING);
287}
288
289/**
290 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
291 * @device: DRBD device.
292 */
293void tl_abort_disk_io(struct drbd_device *device)
294{
295 struct drbd_connection *connection = first_peer_device(device)->connection;
296 struct drbd_request *req, *r;
297
298 spin_lock_irq(lock: &connection->resource->req_lock);
299 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
300 if (!(req->rq_state & RQ_LOCAL_PENDING))
301 continue;
302 if (req->device != device)
303 continue;
304 _req_mod(req, what: ABORT_DISK_IO, NULL);
305 }
306 spin_unlock_irq(lock: &connection->resource->req_lock);
307}
308
309static int drbd_thread_setup(void *arg)
310{
311 struct drbd_thread *thi = (struct drbd_thread *) arg;
312 struct drbd_resource *resource = thi->resource;
313 unsigned long flags;
314 int retval;
315
316 snprintf(current->comm, size: sizeof(current->comm), fmt: "drbd_%c_%s",
317 thi->name[0],
318 resource->name);
319
320 allow_kernel_signal(DRBD_SIGKILL);
321 allow_kernel_signal(SIGXCPU);
322restart:
323 retval = thi->function(thi);
324
325 spin_lock_irqsave(&thi->t_lock, flags);
326
327 /* if the receiver has been "EXITING", the last thing it did
328 * was set the conn state to "StandAlone",
329 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
330 * and receiver thread will be "started".
331 * drbd_thread_start needs to set "RESTARTING" in that case.
332 * t_state check and assignment needs to be within the same spinlock,
333 * so either thread_start sees EXITING, and can remap to RESTARTING,
334 * or thread_start see NONE, and can proceed as normal.
335 */
336
337 if (thi->t_state == RESTARTING) {
338 drbd_info(resource, "Restarting %s thread\n", thi->name);
339 thi->t_state = RUNNING;
340 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
341 goto restart;
342 }
343
344 thi->task = NULL;
345 thi->t_state = NONE;
346 smp_mb();
347 complete_all(&thi->stop);
348 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
349
350 drbd_info(resource, "Terminating %s\n", current->comm);
351
352 /* Release mod reference taken when thread was started */
353
354 if (thi->connection)
355 kref_put(kref: &thi->connection->kref, release: drbd_destroy_connection);
356 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
357 module_put(THIS_MODULE);
358 return retval;
359}
360
361static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
362 int (*func) (struct drbd_thread *), const char *name)
363{
364 spin_lock_init(&thi->t_lock);
365 thi->task = NULL;
366 thi->t_state = NONE;
367 thi->function = func;
368 thi->resource = resource;
369 thi->connection = NULL;
370 thi->name = name;
371}
372
373int drbd_thread_start(struct drbd_thread *thi)
374{
375 struct drbd_resource *resource = thi->resource;
376 struct task_struct *nt;
377 unsigned long flags;
378
379 /* is used from state engine doing drbd_thread_stop_nowait,
380 * while holding the req lock irqsave */
381 spin_lock_irqsave(&thi->t_lock, flags);
382
383 switch (thi->t_state) {
384 case NONE:
385 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
386 thi->name, current->comm, current->pid);
387
388 /* Get ref on module for thread - this is released when thread exits */
389 if (!try_module_get(THIS_MODULE)) {
390 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
391 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
392 return false;
393 }
394
395 kref_get(kref: &resource->kref);
396 if (thi->connection)
397 kref_get(kref: &thi->connection->kref);
398
399 init_completion(x: &thi->stop);
400 thi->reset_cpu_mask = 1;
401 thi->t_state = RUNNING;
402 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
403 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
404
405 nt = kthread_create(drbd_thread_setup, (void *) thi,
406 "drbd_%c_%s", thi->name[0], thi->resource->name);
407
408 if (IS_ERR(ptr: nt)) {
409 drbd_err(resource, "Couldn't start thread\n");
410
411 if (thi->connection)
412 kref_put(kref: &thi->connection->kref, release: drbd_destroy_connection);
413 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
414 module_put(THIS_MODULE);
415 return false;
416 }
417 spin_lock_irqsave(&thi->t_lock, flags);
418 thi->task = nt;
419 thi->t_state = RUNNING;
420 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
421 wake_up_process(tsk: nt);
422 break;
423 case EXITING:
424 thi->t_state = RESTARTING;
425 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
426 thi->name, current->comm, current->pid);
427 fallthrough;
428 case RUNNING:
429 case RESTARTING:
430 default:
431 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
432 break;
433 }
434
435 return true;
436}
437
438
439void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
440{
441 unsigned long flags;
442
443 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
444
445 /* may be called from state engine, holding the req lock irqsave */
446 spin_lock_irqsave(&thi->t_lock, flags);
447
448 if (thi->t_state == NONE) {
449 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
450 if (restart)
451 drbd_thread_start(thi);
452 return;
453 }
454
455 if (thi->t_state != ns) {
456 if (thi->task == NULL) {
457 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
458 return;
459 }
460
461 thi->t_state = ns;
462 smp_mb();
463 init_completion(x: &thi->stop);
464 if (thi->task != current)
465 send_sig(DRBD_SIGKILL, thi->task, 1);
466 }
467
468 spin_unlock_irqrestore(lock: &thi->t_lock, flags);
469
470 if (wait)
471 wait_for_completion(&thi->stop);
472}
473
474int conn_lowest_minor(struct drbd_connection *connection)
475{
476 struct drbd_peer_device *peer_device;
477 int vnr = 0, minor = -1;
478
479 rcu_read_lock();
480 peer_device = idr_get_next(&connection->peer_devices, nextid: &vnr);
481 if (peer_device)
482 minor = device_to_minor(device: peer_device->device);
483 rcu_read_unlock();
484
485 return minor;
486}
487
488#ifdef CONFIG_SMP
489/*
490 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
491 *
492 * Forces all threads of a resource onto the same CPU. This is beneficial for
493 * DRBD's performance. May be overwritten by user's configuration.
494 */
495static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
496{
497 unsigned int *resources_per_cpu, min_index = ~0;
498
499 resources_per_cpu = kcalloc(n: nr_cpu_ids, size: sizeof(*resources_per_cpu),
500 GFP_KERNEL);
501 if (resources_per_cpu) {
502 struct drbd_resource *resource;
503 unsigned int cpu, min = ~0;
504
505 rcu_read_lock();
506 for_each_resource_rcu(resource, &drbd_resources) {
507 for_each_cpu(cpu, resource->cpu_mask)
508 resources_per_cpu[cpu]++;
509 }
510 rcu_read_unlock();
511 for_each_online_cpu(cpu) {
512 if (resources_per_cpu[cpu] < min) {
513 min = resources_per_cpu[cpu];
514 min_index = cpu;
515 }
516 }
517 kfree(objp: resources_per_cpu);
518 }
519 if (min_index == ~0) {
520 cpumask_setall(dstp: *cpu_mask);
521 return;
522 }
523 cpumask_set_cpu(cpu: min_index, dstp: *cpu_mask);
524}
525
526/**
527 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
528 * @thi: drbd_thread object
529 *
530 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
531 * prematurely.
532 */
533void drbd_thread_current_set_cpu(struct drbd_thread *thi)
534{
535 struct drbd_resource *resource = thi->resource;
536 struct task_struct *p = current;
537
538 if (!thi->reset_cpu_mask)
539 return;
540 thi->reset_cpu_mask = 0;
541 set_cpus_allowed_ptr(p, new_mask: resource->cpu_mask);
542}
543#else
544#define drbd_calc_cpu_mask(A) ({})
545#endif
546
547/*
548 * drbd_header_size - size of a packet header
549 *
550 * The header size is a multiple of 8, so any payload following the header is
551 * word aligned on 64-bit architectures. (The bitmap send and receive code
552 * relies on this.)
553 */
554unsigned int drbd_header_size(struct drbd_connection *connection)
555{
556 if (connection->agreed_pro_version >= 100) {
557 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
558 return sizeof(struct p_header100);
559 } else {
560 BUILD_BUG_ON(sizeof(struct p_header80) !=
561 sizeof(struct p_header95));
562 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
563 return sizeof(struct p_header80);
564 }
565}
566
567static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
568{
569 h->magic = cpu_to_be32(DRBD_MAGIC);
570 h->command = cpu_to_be16(cmd);
571 h->length = cpu_to_be16(size);
572 return sizeof(struct p_header80);
573}
574
575static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
576{
577 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
578 h->command = cpu_to_be16(cmd);
579 h->length = cpu_to_be32(size);
580 return sizeof(struct p_header95);
581}
582
583static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
584 int size, int vnr)
585{
586 h->magic = cpu_to_be32(DRBD_MAGIC_100);
587 h->volume = cpu_to_be16(vnr);
588 h->command = cpu_to_be16(cmd);
589 h->length = cpu_to_be32(size);
590 h->pad = 0;
591 return sizeof(struct p_header100);
592}
593
594static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
595 void *buffer, enum drbd_packet cmd, int size)
596{
597 if (connection->agreed_pro_version >= 100)
598 return prepare_header100(h: buffer, cmd, size, vnr);
599 else if (connection->agreed_pro_version >= 95 &&
600 size > DRBD_MAX_SIZE_H80_PACKET)
601 return prepare_header95(h: buffer, cmd, size);
602 else
603 return prepare_header80(h: buffer, cmd, size);
604}
605
606static void *__conn_prepare_command(struct drbd_connection *connection,
607 struct drbd_socket *sock)
608{
609 if (!sock->socket)
610 return NULL;
611 return sock->sbuf + drbd_header_size(connection);
612}
613
614void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
615{
616 void *p;
617
618 mutex_lock(&sock->mutex);
619 p = __conn_prepare_command(connection, sock);
620 if (!p)
621 mutex_unlock(lock: &sock->mutex);
622
623 return p;
624}
625
626void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
627{
628 return conn_prepare_command(connection: peer_device->connection, sock);
629}
630
631static int __send_command(struct drbd_connection *connection, int vnr,
632 struct drbd_socket *sock, enum drbd_packet cmd,
633 unsigned int header_size, void *data,
634 unsigned int size)
635{
636 int msg_flags;
637 int err;
638
639 /*
640 * Called with @data == NULL and the size of the data blocks in @size
641 * for commands that send data blocks. For those commands, omit the
642 * MSG_MORE flag: this will increase the likelihood that data blocks
643 * which are page aligned on the sender will end up page aligned on the
644 * receiver.
645 */
646 msg_flags = data ? MSG_MORE : 0;
647
648 header_size += prepare_header(connection, vnr, buffer: sock->sbuf, cmd,
649 size: header_size + size);
650 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
651 msg_flags);
652 if (data && !err)
653 err = drbd_send_all(connection, sock->socket, data, size, 0);
654 /* DRBD protocol "pings" are latency critical.
655 * This is supposed to trigger tcp_push_pending_frames() */
656 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
657 tcp_sock_set_nodelay(sk: sock->socket->sk);
658
659 return err;
660}
661
662static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663 enum drbd_packet cmd, unsigned int header_size,
664 void *data, unsigned int size)
665{
666 return __send_command(connection, vnr: 0, sock, cmd, header_size, data, size);
667}
668
669int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670 enum drbd_packet cmd, unsigned int header_size,
671 void *data, unsigned int size)
672{
673 int err;
674
675 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
676 mutex_unlock(lock: &sock->mutex);
677 return err;
678}
679
680int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
681 enum drbd_packet cmd, unsigned int header_size,
682 void *data, unsigned int size)
683{
684 int err;
685
686 err = __send_command(connection: peer_device->connection, vnr: peer_device->device->vnr,
687 sock, cmd, header_size, data, size);
688 mutex_unlock(lock: &sock->mutex);
689 return err;
690}
691
692int drbd_send_ping(struct drbd_connection *connection)
693{
694 struct drbd_socket *sock;
695
696 sock = &connection->meta;
697 if (!conn_prepare_command(connection, sock))
698 return -EIO;
699 return conn_send_command(connection, sock, cmd: P_PING, header_size: 0, NULL, size: 0);
700}
701
702int drbd_send_ping_ack(struct drbd_connection *connection)
703{
704 struct drbd_socket *sock;
705
706 sock = &connection->meta;
707 if (!conn_prepare_command(connection, sock))
708 return -EIO;
709 return conn_send_command(connection, sock, cmd: P_PING_ACK, header_size: 0, NULL, size: 0);
710}
711
712int drbd_send_sync_param(struct drbd_peer_device *peer_device)
713{
714 struct drbd_socket *sock;
715 struct p_rs_param_95 *p;
716 int size;
717 const int apv = peer_device->connection->agreed_pro_version;
718 enum drbd_packet cmd;
719 struct net_conf *nc;
720 struct disk_conf *dc;
721
722 sock = &peer_device->connection->data;
723 p = drbd_prepare_command(peer_device, sock);
724 if (!p)
725 return -EIO;
726
727 rcu_read_lock();
728 nc = rcu_dereference(peer_device->connection->net_conf);
729
730 size = apv <= 87 ? sizeof(struct p_rs_param)
731 : apv == 88 ? sizeof(struct p_rs_param)
732 + strlen(nc->verify_alg) + 1
733 : apv <= 94 ? sizeof(struct p_rs_param_89)
734 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
735
736 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
737
738 /* initialize verify_alg and csums_alg */
739 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
740 memset(&p->algs, 0, sizeof(p->algs));
741
742 if (get_ldev(peer_device->device)) {
743 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
744 p->resync_rate = cpu_to_be32(dc->resync_rate);
745 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
746 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
747 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
748 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
749 put_ldev(device: peer_device->device);
750 } else {
751 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
752 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
753 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
754 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
755 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
756 }
757
758 if (apv >= 88)
759 strcpy(p: p->verify_alg, q: nc->verify_alg);
760 if (apv >= 89)
761 strcpy(p: p->csums_alg, q: nc->csums_alg);
762 rcu_read_unlock();
763
764 return drbd_send_command(peer_device, sock, cmd, header_size: size, NULL, size: 0);
765}
766
767int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
768{
769 struct drbd_socket *sock;
770 struct p_protocol *p;
771 struct net_conf *nc;
772 int size, cf;
773
774 sock = &connection->data;
775 p = __conn_prepare_command(connection, sock);
776 if (!p)
777 return -EIO;
778
779 rcu_read_lock();
780 nc = rcu_dereference(connection->net_conf);
781
782 if (nc->tentative && connection->agreed_pro_version < 92) {
783 rcu_read_unlock();
784 drbd_err(connection, "--dry-run is not supported by peer");
785 return -EOPNOTSUPP;
786 }
787
788 size = sizeof(*p);
789 if (connection->agreed_pro_version >= 87)
790 size += strlen(nc->integrity_alg) + 1;
791
792 p->protocol = cpu_to_be32(nc->wire_protocol);
793 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
794 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
795 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
796 p->two_primaries = cpu_to_be32(nc->two_primaries);
797 cf = 0;
798 if (nc->discard_my_data)
799 cf |= CF_DISCARD_MY_DATA;
800 if (nc->tentative)
801 cf |= CF_DRY_RUN;
802 p->conn_flags = cpu_to_be32(cf);
803
804 if (connection->agreed_pro_version >= 87)
805 strcpy(p: p->integrity_alg, q: nc->integrity_alg);
806 rcu_read_unlock();
807
808 return __conn_send_command(connection, sock, cmd, header_size: size, NULL, size: 0);
809}
810
811int drbd_send_protocol(struct drbd_connection *connection)
812{
813 int err;
814
815 mutex_lock(&connection->data.mutex);
816 err = __drbd_send_protocol(connection, cmd: P_PROTOCOL);
817 mutex_unlock(lock: &connection->data.mutex);
818
819 return err;
820}
821
822static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
823{
824 struct drbd_device *device = peer_device->device;
825 struct drbd_socket *sock;
826 struct p_uuids *p;
827 int i;
828
829 if (!get_ldev_if_state(device, D_NEGOTIATING))
830 return 0;
831
832 sock = &peer_device->connection->data;
833 p = drbd_prepare_command(peer_device, sock);
834 if (!p) {
835 put_ldev(device);
836 return -EIO;
837 }
838 spin_lock_irq(lock: &device->ldev->md.uuid_lock);
839 for (i = UI_CURRENT; i < UI_SIZE; i++)
840 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
841 spin_unlock_irq(lock: &device->ldev->md.uuid_lock);
842
843 device->comm_bm_set = drbd_bm_total_weight(device);
844 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
845 rcu_read_lock();
846 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
847 rcu_read_unlock();
848 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
849 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
850 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
851
852 put_ldev(device);
853 return drbd_send_command(peer_device, sock, cmd: P_UUIDS, header_size: sizeof(*p), NULL, size: 0);
854}
855
856int drbd_send_uuids(struct drbd_peer_device *peer_device)
857{
858 return _drbd_send_uuids(peer_device, uuid_flags: 0);
859}
860
861int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
862{
863 return _drbd_send_uuids(peer_device, uuid_flags: 8);
864}
865
866void drbd_print_uuids(struct drbd_device *device, const char *text)
867{
868 if (get_ldev_if_state(device, D_NEGOTIATING)) {
869 u64 *uuid = device->ldev->md.uuid;
870 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
871 text,
872 (unsigned long long)uuid[UI_CURRENT],
873 (unsigned long long)uuid[UI_BITMAP],
874 (unsigned long long)uuid[UI_HISTORY_START],
875 (unsigned long long)uuid[UI_HISTORY_END]);
876 put_ldev(device);
877 } else {
878 drbd_info(device, "%s effective data uuid: %016llX\n",
879 text,
880 (unsigned long long)device->ed_uuid);
881 }
882}
883
884void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
885{
886 struct drbd_device *device = peer_device->device;
887 struct drbd_socket *sock;
888 struct p_rs_uuid *p;
889 u64 uuid;
890
891 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
892
893 uuid = device->ldev->md.uuid[UI_BITMAP];
894 if (uuid && uuid != UUID_JUST_CREATED)
895 uuid = uuid + UUID_NEW_BM_OFFSET;
896 else
897 get_random_bytes(buf: &uuid, len: sizeof(u64));
898 drbd_uuid_set(device, idx: UI_BITMAP, val: uuid);
899 drbd_print_uuids(device, text: "updated sync UUID");
900 drbd_md_sync(device);
901
902 sock = &peer_device->connection->data;
903 p = drbd_prepare_command(peer_device, sock);
904 if (p) {
905 p->uuid = cpu_to_be64(uuid);
906 drbd_send_command(peer_device, sock, cmd: P_SYNC_UUID, header_size: sizeof(*p), NULL, size: 0);
907 }
908}
909
910int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
911{
912 struct drbd_device *device = peer_device->device;
913 struct drbd_socket *sock;
914 struct p_sizes *p;
915 sector_t d_size, u_size;
916 int q_order_type;
917 unsigned int max_bio_size;
918 unsigned int packet_size;
919
920 sock = &peer_device->connection->data;
921 p = drbd_prepare_command(peer_device, sock);
922 if (!p)
923 return -EIO;
924
925 packet_size = sizeof(*p);
926 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
927 packet_size += sizeof(p->qlim[0]);
928
929 memset(p, 0, packet_size);
930 if (get_ldev_if_state(device, D_NEGOTIATING)) {
931 struct block_device *bdev = device->ldev->backing_bdev;
932 struct request_queue *q = bdev_get_queue(bdev);
933
934 d_size = drbd_get_max_capacity(bdev: device->ldev);
935 rcu_read_lock();
936 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937 rcu_read_unlock();
938 q_order_type = drbd_queue_order_type(device);
939 max_bio_size = queue_max_hw_sectors(q) << 9;
940 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941 p->qlim->physical_block_size =
942 cpu_to_be32(bdev_physical_block_size(bdev));
943 p->qlim->logical_block_size =
944 cpu_to_be32(bdev_logical_block_size(bdev));
945 p->qlim->alignment_offset =
946 cpu_to_be32(bdev_alignment_offset(bdev));
947 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
948 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
949 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
950 put_ldev(device);
951 } else {
952 struct request_queue *q = device->rq_queue;
953
954 p->qlim->physical_block_size =
955 cpu_to_be32(queue_physical_block_size(q));
956 p->qlim->logical_block_size =
957 cpu_to_be32(queue_logical_block_size(q));
958 p->qlim->alignment_offset = 0;
959 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
960 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
961 p->qlim->discard_enabled = 0;
962
963 d_size = 0;
964 u_size = 0;
965 q_order_type = QUEUE_ORDERED_NONE;
966 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
967 }
968
969 if (peer_device->connection->agreed_pro_version <= 94)
970 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
971 else if (peer_device->connection->agreed_pro_version < 100)
972 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
973
974 p->d_size = cpu_to_be64(d_size);
975 p->u_size = cpu_to_be64(u_size);
976 if (trigger_reply)
977 p->c_size = 0;
978 else
979 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
980 p->max_bio_size = cpu_to_be32(max_bio_size);
981 p->queue_order_type = cpu_to_be16(q_order_type);
982 p->dds_flags = cpu_to_be16(flags);
983
984 return drbd_send_command(peer_device, sock, cmd: P_SIZES, header_size: packet_size, NULL, size: 0);
985}
986
987/**
988 * drbd_send_current_state() - Sends the drbd state to the peer
989 * @peer_device: DRBD peer device.
990 */
991int drbd_send_current_state(struct drbd_peer_device *peer_device)
992{
993 struct drbd_socket *sock;
994 struct p_state *p;
995
996 sock = &peer_device->connection->data;
997 p = drbd_prepare_command(peer_device, sock);
998 if (!p)
999 return -EIO;
1000 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1001 return drbd_send_command(peer_device, sock, cmd: P_STATE, header_size: sizeof(*p), NULL, size: 0);
1002}
1003
1004/**
1005 * drbd_send_state() - After a state change, sends the new state to the peer
1006 * @peer_device: DRBD peer device.
1007 * @state: the state to send, not necessarily the current state.
1008 *
1009 * Each state change queues an "after_state_ch" work, which will eventually
1010 * send the resulting new state to the peer. If more state changes happen
1011 * between queuing and processing of the after_state_ch work, we still
1012 * want to send each intermediary state in the order it occurred.
1013 */
1014int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1015{
1016 struct drbd_socket *sock;
1017 struct p_state *p;
1018
1019 sock = &peer_device->connection->data;
1020 p = drbd_prepare_command(peer_device, sock);
1021 if (!p)
1022 return -EIO;
1023 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1024 return drbd_send_command(peer_device, sock, cmd: P_STATE, header_size: sizeof(*p), NULL, size: 0);
1025}
1026
1027int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1028{
1029 struct drbd_socket *sock;
1030 struct p_req_state *p;
1031
1032 sock = &peer_device->connection->data;
1033 p = drbd_prepare_command(peer_device, sock);
1034 if (!p)
1035 return -EIO;
1036 p->mask = cpu_to_be32(mask.i);
1037 p->val = cpu_to_be32(val.i);
1038 return drbd_send_command(peer_device, sock, cmd: P_STATE_CHG_REQ, header_size: sizeof(*p), NULL, size: 0);
1039}
1040
1041int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1042{
1043 enum drbd_packet cmd;
1044 struct drbd_socket *sock;
1045 struct p_req_state *p;
1046
1047 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1048 sock = &connection->data;
1049 p = conn_prepare_command(connection, sock);
1050 if (!p)
1051 return -EIO;
1052 p->mask = cpu_to_be32(mask.i);
1053 p->val = cpu_to_be32(val.i);
1054 return conn_send_command(connection, sock, cmd, header_size: sizeof(*p), NULL, size: 0);
1055}
1056
1057void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1058{
1059 struct drbd_socket *sock;
1060 struct p_req_state_reply *p;
1061
1062 sock = &peer_device->connection->meta;
1063 p = drbd_prepare_command(peer_device, sock);
1064 if (p) {
1065 p->retcode = cpu_to_be32(retcode);
1066 drbd_send_command(peer_device, sock, cmd: P_STATE_CHG_REPLY, header_size: sizeof(*p), NULL, size: 0);
1067 }
1068}
1069
1070void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1071{
1072 struct drbd_socket *sock;
1073 struct p_req_state_reply *p;
1074 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1075
1076 sock = &connection->meta;
1077 p = conn_prepare_command(connection, sock);
1078 if (p) {
1079 p->retcode = cpu_to_be32(retcode);
1080 conn_send_command(connection, sock, cmd, header_size: sizeof(*p), NULL, size: 0);
1081 }
1082}
1083
1084static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1085{
1086 BUG_ON(code & ~0xf);
1087 p->encoding = (p->encoding & ~0xf) | code;
1088}
1089
1090static void dcbp_set_start(struct p_compressed_bm *p, int set)
1091{
1092 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1093}
1094
1095static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1096{
1097 BUG_ON(n & ~0x7);
1098 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1099}
1100
1101static int fill_bitmap_rle_bits(struct drbd_device *device,
1102 struct p_compressed_bm *p,
1103 unsigned int size,
1104 struct bm_xfer_ctx *c)
1105{
1106 struct bitstream bs;
1107 unsigned long plain_bits;
1108 unsigned long tmp;
1109 unsigned long rl;
1110 unsigned len;
1111 unsigned toggle;
1112 int bits, use_rle;
1113
1114 /* may we use this feature? */
1115 rcu_read_lock();
1116 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1117 rcu_read_unlock();
1118 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1119 return 0;
1120
1121 if (c->bit_offset >= c->bm_bits)
1122 return 0; /* nothing to do. */
1123
1124 /* use at most thus many bytes */
1125 bitstream_init(bs: &bs, s: p->code, len: size, pad_bits: 0);
1126 memset(p->code, 0, size);
1127 /* plain bits covered in this code string */
1128 plain_bits = 0;
1129
1130 /* p->encoding & 0x80 stores whether the first run length is set.
1131 * bit offset is implicit.
1132 * start with toggle == 2 to be able to tell the first iteration */
1133 toggle = 2;
1134
1135 /* see how much plain bits we can stuff into one packet
1136 * using RLE and VLI. */
1137 do {
1138 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, bm_fo: c->bit_offset)
1139 : _drbd_bm_find_next(device, bm_fo: c->bit_offset);
1140 if (tmp == -1UL)
1141 tmp = c->bm_bits;
1142 rl = tmp - c->bit_offset;
1143
1144 if (toggle == 2) { /* first iteration */
1145 if (rl == 0) {
1146 /* the first checked bit was set,
1147 * store start value, */
1148 dcbp_set_start(p, set: 1);
1149 /* but skip encoding of zero run length */
1150 toggle = !toggle;
1151 continue;
1152 }
1153 dcbp_set_start(p, set: 0);
1154 }
1155
1156 /* paranoia: catch zero runlength.
1157 * can only happen if bitmap is modified while we scan it. */
1158 if (rl == 0) {
1159 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1160 "t:%u bo:%lu\n", toggle, c->bit_offset);
1161 return -1;
1162 }
1163
1164 bits = vli_encode_bits(bs: &bs, in: rl);
1165 if (bits == -ENOBUFS) /* buffer full */
1166 break;
1167 if (bits <= 0) {
1168 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1169 return 0;
1170 }
1171
1172 toggle = !toggle;
1173 plain_bits += rl;
1174 c->bit_offset = tmp;
1175 } while (c->bit_offset < c->bm_bits);
1176
1177 len = bs.cur.b - p->code + !!bs.cur.bit;
1178
1179 if (plain_bits < (len << 3)) {
1180 /* incompressible with this method.
1181 * we need to rewind both word and bit position. */
1182 c->bit_offset -= plain_bits;
1183 bm_xfer_ctx_bit_to_word_offset(c);
1184 c->bit_offset = c->word_offset * BITS_PER_LONG;
1185 return 0;
1186 }
1187
1188 /* RLE + VLI was able to compress it just fine.
1189 * update c->word_offset. */
1190 bm_xfer_ctx_bit_to_word_offset(c);
1191
1192 /* store pad_bits */
1193 dcbp_set_pad_bits(p, n: (8 - bs.cur.bit) & 0x7);
1194
1195 return len;
1196}
1197
1198/*
1199 * send_bitmap_rle_or_plain
1200 *
1201 * Return 0 when done, 1 when another iteration is needed, and a negative error
1202 * code upon failure.
1203 */
1204static int
1205send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1206{
1207 struct drbd_device *device = peer_device->device;
1208 struct drbd_socket *sock = &peer_device->connection->data;
1209 unsigned int header_size = drbd_header_size(connection: peer_device->connection);
1210 struct p_compressed_bm *p = sock->sbuf + header_size;
1211 int len, err;
1212
1213 len = fill_bitmap_rle_bits(device, p,
1214 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1215 if (len < 0)
1216 return -EIO;
1217
1218 if (len) {
1219 dcbp_set_code(p, code: RLE_VLI_Bits);
1220 err = __send_command(connection: peer_device->connection, vnr: device->vnr, sock,
1221 cmd: P_COMPRESSED_BITMAP, header_size: sizeof(*p) + len,
1222 NULL, size: 0);
1223 c->packets[0]++;
1224 c->bytes[0] += header_size + sizeof(*p) + len;
1225
1226 if (c->bit_offset >= c->bm_bits)
1227 len = 0; /* DONE */
1228 } else {
1229 /* was not compressible.
1230 * send a buffer full of plain text bits instead. */
1231 unsigned int data_size;
1232 unsigned long num_words;
1233 unsigned long *p = sock->sbuf + header_size;
1234
1235 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1236 num_words = min_t(size_t, data_size / sizeof(*p),
1237 c->bm_words - c->word_offset);
1238 len = num_words * sizeof(*p);
1239 if (len)
1240 drbd_bm_get_lel(device, offset: c->word_offset, number: num_words, buffer: p);
1241 err = __send_command(connection: peer_device->connection, vnr: device->vnr, sock, cmd: P_BITMAP,
1242 header_size: len, NULL, size: 0);
1243 c->word_offset += num_words;
1244 c->bit_offset = c->word_offset * BITS_PER_LONG;
1245
1246 c->packets[1]++;
1247 c->bytes[1] += header_size + len;
1248
1249 if (c->bit_offset > c->bm_bits)
1250 c->bit_offset = c->bm_bits;
1251 }
1252 if (!err) {
1253 if (len == 0) {
1254 INFO_bm_xfer_stats(peer_device, direction: "send", c);
1255 return 0;
1256 } else
1257 return 1;
1258 }
1259 return -EIO;
1260}
1261
1262/* See the comment at receive_bitmap() */
1263static int _drbd_send_bitmap(struct drbd_device *device,
1264 struct drbd_peer_device *peer_device)
1265{
1266 struct bm_xfer_ctx c;
1267 int err;
1268
1269 if (!expect(device, device->bitmap))
1270 return false;
1271
1272 if (get_ldev(device)) {
1273 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1274 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1275 drbd_bm_set_all(device);
1276 if (drbd_bm_write(device, peer_device)) {
1277 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1278 * but otherwise process as per normal - need to tell other
1279 * side that a full resync is required! */
1280 drbd_err(device, "Failed to write bitmap to disk!\n");
1281 } else {
1282 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1283 drbd_md_sync(device);
1284 }
1285 }
1286 put_ldev(device);
1287 }
1288
1289 c = (struct bm_xfer_ctx) {
1290 .bm_bits = drbd_bm_bits(device),
1291 .bm_words = drbd_bm_words(device),
1292 };
1293
1294 do {
1295 err = send_bitmap_rle_or_plain(peer_device, c: &c);
1296 } while (err > 0);
1297
1298 return err == 0;
1299}
1300
1301int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1302{
1303 struct drbd_socket *sock = &peer_device->connection->data;
1304 int err = -1;
1305
1306 mutex_lock(&sock->mutex);
1307 if (sock->socket)
1308 err = !_drbd_send_bitmap(device, peer_device);
1309 mutex_unlock(lock: &sock->mutex);
1310 return err;
1311}
1312
1313void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1314{
1315 struct drbd_socket *sock;
1316 struct p_barrier_ack *p;
1317
1318 if (connection->cstate < C_WF_REPORT_PARAMS)
1319 return;
1320
1321 sock = &connection->meta;
1322 p = conn_prepare_command(connection, sock);
1323 if (!p)
1324 return;
1325 p->barrier = barrier_nr;
1326 p->set_size = cpu_to_be32(set_size);
1327 conn_send_command(connection, sock, cmd: P_BARRIER_ACK, header_size: sizeof(*p), NULL, size: 0);
1328}
1329
1330/**
1331 * _drbd_send_ack() - Sends an ack packet
1332 * @peer_device: DRBD peer device.
1333 * @cmd: Packet command code.
1334 * @sector: sector, needs to be in big endian byte order
1335 * @blksize: size in byte, needs to be in big endian byte order
1336 * @block_id: Id, big endian byte order
1337 */
1338static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1339 u64 sector, u32 blksize, u64 block_id)
1340{
1341 struct drbd_socket *sock;
1342 struct p_block_ack *p;
1343
1344 if (peer_device->device->state.conn < C_CONNECTED)
1345 return -EIO;
1346
1347 sock = &peer_device->connection->meta;
1348 p = drbd_prepare_command(peer_device, sock);
1349 if (!p)
1350 return -EIO;
1351 p->sector = sector;
1352 p->block_id = block_id;
1353 p->blksize = blksize;
1354 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1355 return drbd_send_command(peer_device, sock, cmd, header_size: sizeof(*p), NULL, size: 0);
1356}
1357
1358/* dp->sector and dp->block_id already/still in network byte order,
1359 * data_size is payload size according to dp->head,
1360 * and may need to be corrected for digest size. */
1361void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1362 struct p_data *dp, int data_size)
1363{
1364 if (peer_device->connection->peer_integrity_tfm)
1365 data_size -= crypto_shash_digestsize(tfm: peer_device->connection->peer_integrity_tfm);
1366 _drbd_send_ack(peer_device, cmd, sector: dp->sector, cpu_to_be32(data_size),
1367 block_id: dp->block_id);
1368}
1369
1370void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1371 struct p_block_req *rp)
1372{
1373 _drbd_send_ack(peer_device, cmd, sector: rp->sector, blksize: rp->blksize, block_id: rp->block_id);
1374}
1375
1376/**
1377 * drbd_send_ack() - Sends an ack packet
1378 * @peer_device: DRBD peer device
1379 * @cmd: packet command code
1380 * @peer_req: peer request
1381 */
1382int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383 struct drbd_peer_request *peer_req)
1384{
1385 return _drbd_send_ack(peer_device, cmd,
1386 cpu_to_be64(peer_req->i.sector),
1387 cpu_to_be32(peer_req->i.size),
1388 block_id: peer_req->block_id);
1389}
1390
1391/* This function misuses the block_id field to signal if the blocks
1392 * are is sync or not. */
1393int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394 sector_t sector, int blksize, u64 block_id)
1395{
1396 return _drbd_send_ack(peer_device, cmd,
1397 cpu_to_be64(sector),
1398 cpu_to_be32(blksize),
1399 cpu_to_be64(block_id));
1400}
1401
1402int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1403 struct drbd_peer_request *peer_req)
1404{
1405 struct drbd_socket *sock;
1406 struct p_block_desc *p;
1407
1408 sock = &peer_device->connection->data;
1409 p = drbd_prepare_command(peer_device, sock);
1410 if (!p)
1411 return -EIO;
1412 p->sector = cpu_to_be64(peer_req->i.sector);
1413 p->blksize = cpu_to_be32(peer_req->i.size);
1414 p->pad = 0;
1415 return drbd_send_command(peer_device, sock, cmd: P_RS_DEALLOCATED, header_size: sizeof(*p), NULL, size: 0);
1416}
1417
1418int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1419 sector_t sector, int size, u64 block_id)
1420{
1421 struct drbd_socket *sock;
1422 struct p_block_req *p;
1423
1424 sock = &peer_device->connection->data;
1425 p = drbd_prepare_command(peer_device, sock);
1426 if (!p)
1427 return -EIO;
1428 p->sector = cpu_to_be64(sector);
1429 p->block_id = block_id;
1430 p->blksize = cpu_to_be32(size);
1431 return drbd_send_command(peer_device, sock, cmd, header_size: sizeof(*p), NULL, size: 0);
1432}
1433
1434int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1435 void *digest, int digest_size, enum drbd_packet cmd)
1436{
1437 struct drbd_socket *sock;
1438 struct p_block_req *p;
1439
1440 /* FIXME: Put the digest into the preallocated socket buffer. */
1441
1442 sock = &peer_device->connection->data;
1443 p = drbd_prepare_command(peer_device, sock);
1444 if (!p)
1445 return -EIO;
1446 p->sector = cpu_to_be64(sector);
1447 p->block_id = ID_SYNCER /* unused */;
1448 p->blksize = cpu_to_be32(size);
1449 return drbd_send_command(peer_device, sock, cmd, header_size: sizeof(*p), data: digest, size: digest_size);
1450}
1451
1452int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1453{
1454 struct drbd_socket *sock;
1455 struct p_block_req *p;
1456
1457 sock = &peer_device->connection->data;
1458 p = drbd_prepare_command(peer_device, sock);
1459 if (!p)
1460 return -EIO;
1461 p->sector = cpu_to_be64(sector);
1462 p->block_id = ID_SYNCER /* unused */;
1463 p->blksize = cpu_to_be32(size);
1464 return drbd_send_command(peer_device, sock, cmd: P_OV_REQUEST, header_size: sizeof(*p), NULL, size: 0);
1465}
1466
1467/* called on sndtimeo
1468 * returns false if we should retry,
1469 * true if we think connection is dead
1470 */
1471static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1472{
1473 int drop_it;
1474 /* long elapsed = (long)(jiffies - device->last_received); */
1475
1476 drop_it = connection->meta.socket == sock
1477 || !connection->ack_receiver.task
1478 || get_t_state(thi: &connection->ack_receiver) != RUNNING
1479 || connection->cstate < C_WF_REPORT_PARAMS;
1480
1481 if (drop_it)
1482 return true;
1483
1484 drop_it = !--connection->ko_count;
1485 if (!drop_it) {
1486 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1487 current->comm, current->pid, connection->ko_count);
1488 request_ping(connection);
1489 }
1490
1491 return drop_it; /* && (device->state == R_PRIMARY) */;
1492}
1493
1494static void drbd_update_congested(struct drbd_connection *connection)
1495{
1496 struct sock *sk = connection->data.socket->sk;
1497 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1498 set_bit(nr: NET_CONGESTED, addr: &connection->flags);
1499}
1500
1501/* The idea of sendpage seems to be to put some kind of reference
1502 * to the page into the skb, and to hand it over to the NIC. In
1503 * this process get_page() gets called.
1504 *
1505 * As soon as the page was really sent over the network put_page()
1506 * gets called by some part of the network layer. [ NIC driver? ]
1507 *
1508 * [ get_page() / put_page() increment/decrement the count. If count
1509 * reaches 0 the page will be freed. ]
1510 *
1511 * This works nicely with pages from FSs.
1512 * But this means that in protocol A we might signal IO completion too early!
1513 *
1514 * In order not to corrupt data during a resync we must make sure
1515 * that we do not reuse our own buffer pages (EEs) to early, therefore
1516 * we have the net_ee list.
1517 *
1518 * XFS seems to have problems, still, it submits pages with page_count == 0!
1519 * As a workaround, we disable sendpage on pages
1520 * with page_count == 0 or PageSlab.
1521 */
1522static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1523 int offset, size_t size, unsigned msg_flags)
1524{
1525 struct socket *socket;
1526 void *addr;
1527 int err;
1528
1529 socket = peer_device->connection->data.socket;
1530 addr = kmap(page) + offset;
1531 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1532 kunmap(page);
1533 if (!err)
1534 peer_device->device->send_cnt += size >> 9;
1535 return err;
1536}
1537
1538static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1539 int offset, size_t size, unsigned msg_flags)
1540{
1541 struct socket *socket = peer_device->connection->data.socket;
1542 struct msghdr msg = { .msg_flags = msg_flags, };
1543 struct bio_vec bvec;
1544 int len = size;
1545 int err = -EIO;
1546
1547 /* e.g. XFS meta- & log-data is in slab pages, which have a
1548 * page_count of 0 and/or have PageSlab() set.
1549 * we cannot use send_page for those, as that does get_page();
1550 * put_page(); and would cause either a VM_BUG directly, or
1551 * __page_cache_release a page that would actually still be referenced
1552 * by someone, leading to some obscure delayed Oops somewhere else. */
1553 if (!drbd_disable_sendpage && sendpage_ok(page))
1554 msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
1555
1556 drbd_update_congested(connection: peer_device->connection);
1557 do {
1558 int sent;
1559
1560 bvec_set_page(bv: &bvec, page, len, offset);
1561 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: len);
1562
1563 sent = sock_sendmsg(sock: socket, msg: &msg);
1564 if (sent <= 0) {
1565 if (sent == -EAGAIN) {
1566 if (we_should_drop_the_connection(connection: peer_device->connection, sock: socket))
1567 break;
1568 continue;
1569 }
1570 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1571 __func__, (int)size, len, sent);
1572 if (sent < 0)
1573 err = sent;
1574 break;
1575 }
1576 len -= sent;
1577 offset += sent;
1578 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1579 clear_bit(nr: NET_CONGESTED, addr: &peer_device->connection->flags);
1580
1581 if (len == 0) {
1582 err = 0;
1583 peer_device->device->send_cnt += size >> 9;
1584 }
1585 return err;
1586}
1587
1588static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1589{
1590 struct bio_vec bvec;
1591 struct bvec_iter iter;
1592
1593 /* hint all but last page with MSG_MORE */
1594 bio_for_each_segment(bvec, bio, iter) {
1595 int err;
1596
1597 err = _drbd_no_send_page(peer_device, page: bvec.bv_page,
1598 offset: bvec.bv_offset, size: bvec.bv_len,
1599 bio_iter_last(bvec, iter)
1600 ? 0 : MSG_MORE);
1601 if (err)
1602 return err;
1603 }
1604 return 0;
1605}
1606
1607static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1608{
1609 struct bio_vec bvec;
1610 struct bvec_iter iter;
1611
1612 /* hint all but last page with MSG_MORE */
1613 bio_for_each_segment(bvec, bio, iter) {
1614 int err;
1615
1616 err = _drbd_send_page(peer_device, page: bvec.bv_page,
1617 offset: bvec.bv_offset, size: bvec.bv_len,
1618 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1619 if (err)
1620 return err;
1621 }
1622 return 0;
1623}
1624
1625static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1626 struct drbd_peer_request *peer_req)
1627{
1628 struct page *page = peer_req->pages;
1629 unsigned len = peer_req->i.size;
1630 int err;
1631
1632 /* hint all but last page with MSG_MORE */
1633 page_chain_for_each(page) {
1634 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1635
1636 err = _drbd_send_page(peer_device, page, offset: 0, size: l,
1637 msg_flags: page_chain_next(page) ? MSG_MORE : 0);
1638 if (err)
1639 return err;
1640 len -= l;
1641 }
1642 return 0;
1643}
1644
1645static u32 bio_flags_to_wire(struct drbd_connection *connection,
1646 struct bio *bio)
1647{
1648 if (connection->agreed_pro_version >= 95)
1649 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1650 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1651 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1652 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1653 (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1654 ((connection->agreed_features & DRBD_FF_WZEROES) ?
1655 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1656 : DP_DISCARD)
1657 : 0);
1658 else
1659 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1660}
1661
1662/* Used to send write or TRIM aka REQ_OP_DISCARD requests
1663 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1664 */
1665int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1666{
1667 struct drbd_device *device = peer_device->device;
1668 struct drbd_socket *sock;
1669 struct p_data *p;
1670 void *digest_out;
1671 unsigned int dp_flags = 0;
1672 int digest_size;
1673 int err;
1674
1675 sock = &peer_device->connection->data;
1676 p = drbd_prepare_command(peer_device, sock);
1677 digest_size = peer_device->connection->integrity_tfm ?
1678 crypto_shash_digestsize(tfm: peer_device->connection->integrity_tfm) : 0;
1679
1680 if (!p)
1681 return -EIO;
1682 p->sector = cpu_to_be64(req->i.sector);
1683 p->block_id = (unsigned long)req;
1684 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1685 dp_flags = bio_flags_to_wire(connection: peer_device->connection, bio: req->master_bio);
1686 if (device->state.conn >= C_SYNC_SOURCE &&
1687 device->state.conn <= C_PAUSED_SYNC_T)
1688 dp_flags |= DP_MAY_SET_IN_SYNC;
1689 if (peer_device->connection->agreed_pro_version >= 100) {
1690 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1691 dp_flags |= DP_SEND_RECEIVE_ACK;
1692 /* During resync, request an explicit write ack,
1693 * even in protocol != C */
1694 if (req->rq_state & RQ_EXP_WRITE_ACK
1695 || (dp_flags & DP_MAY_SET_IN_SYNC))
1696 dp_flags |= DP_SEND_WRITE_ACK;
1697 }
1698 p->dp_flags = cpu_to_be32(dp_flags);
1699
1700 if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1701 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1702 struct p_trim *t = (struct p_trim*)p;
1703 t->size = cpu_to_be32(req->i.size);
1704 err = __send_command(connection: peer_device->connection, vnr: device->vnr, sock, cmd, header_size: sizeof(*t), NULL, size: 0);
1705 goto out;
1706 }
1707 digest_out = p + 1;
1708
1709 /* our digest is still only over the payload.
1710 * TRIM does not carry any payload. */
1711 if (digest_size)
1712 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1713 err = __send_command(connection: peer_device->connection, vnr: device->vnr, sock, cmd: P_DATA,
1714 header_size: sizeof(*p) + digest_size, NULL, size: req->i.size);
1715 if (!err) {
1716 /* For protocol A, we have to memcpy the payload into
1717 * socket buffers, as we may complete right away
1718 * as soon as we handed it over to tcp, at which point the data
1719 * pages may become invalid.
1720 *
1721 * For data-integrity enabled, we copy it as well, so we can be
1722 * sure that even if the bio pages may still be modified, it
1723 * won't change the data on the wire, thus if the digest checks
1724 * out ok after sending on this side, but does not fit on the
1725 * receiving side, we sure have detected corruption elsewhere.
1726 */
1727 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1728 err = _drbd_send_bio(peer_device, bio: req->master_bio);
1729 else
1730 err = _drbd_send_zc_bio(peer_device, bio: req->master_bio);
1731
1732 /* double check digest, sometimes buffers have been modified in flight. */
1733 if (digest_size > 0 && digest_size <= 64) {
1734 /* 64 byte, 512 bit, is the largest digest size
1735 * currently supported in kernel crypto. */
1736 unsigned char digest[64];
1737 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1738 if (memcmp(p: p + 1, q: digest, size: digest_size)) {
1739 drbd_warn(device,
1740 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1741 (unsigned long long)req->i.sector, req->i.size);
1742 }
1743 } /* else if (digest_size > 64) {
1744 ... Be noisy about digest too large ...
1745 } */
1746 }
1747out:
1748 mutex_unlock(lock: &sock->mutex); /* locked by drbd_prepare_command() */
1749
1750 return err;
1751}
1752
1753/* answer packet, used to send data back for read requests:
1754 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1755 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1756 */
1757int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1758 struct drbd_peer_request *peer_req)
1759{
1760 struct drbd_device *device = peer_device->device;
1761 struct drbd_socket *sock;
1762 struct p_data *p;
1763 int err;
1764 int digest_size;
1765
1766 sock = &peer_device->connection->data;
1767 p = drbd_prepare_command(peer_device, sock);
1768
1769 digest_size = peer_device->connection->integrity_tfm ?
1770 crypto_shash_digestsize(tfm: peer_device->connection->integrity_tfm) : 0;
1771
1772 if (!p)
1773 return -EIO;
1774 p->sector = cpu_to_be64(peer_req->i.sector);
1775 p->block_id = peer_req->block_id;
1776 p->seq_num = 0; /* unused */
1777 p->dp_flags = 0;
1778 if (digest_size)
1779 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1780 err = __send_command(connection: peer_device->connection, vnr: device->vnr, sock, cmd, header_size: sizeof(*p) + digest_size, NULL, size: peer_req->i.size);
1781 if (!err)
1782 err = _drbd_send_zc_ee(peer_device, peer_req);
1783 mutex_unlock(lock: &sock->mutex); /* locked by drbd_prepare_command() */
1784
1785 return err;
1786}
1787
1788int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1789{
1790 struct drbd_socket *sock;
1791 struct p_block_desc *p;
1792
1793 sock = &peer_device->connection->data;
1794 p = drbd_prepare_command(peer_device, sock);
1795 if (!p)
1796 return -EIO;
1797 p->sector = cpu_to_be64(req->i.sector);
1798 p->blksize = cpu_to_be32(req->i.size);
1799 return drbd_send_command(peer_device, sock, cmd: P_OUT_OF_SYNC, header_size: sizeof(*p), NULL, size: 0);
1800}
1801
1802/*
1803 drbd_send distinguishes two cases:
1804
1805 Packets sent via the data socket "sock"
1806 and packets sent via the meta data socket "msock"
1807
1808 sock msock
1809 -----------------+-------------------------+------------------------------
1810 timeout conf.timeout / 2 conf.timeout / 2
1811 timeout action send a ping via msock Abort communication
1812 and close all sockets
1813*/
1814
1815/*
1816 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1817 */
1818int drbd_send(struct drbd_connection *connection, struct socket *sock,
1819 void *buf, size_t size, unsigned msg_flags)
1820{
1821 struct kvec iov = {.iov_base = buf, .iov_len = size};
1822 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1823 int rv, sent = 0;
1824
1825 if (!sock)
1826 return -EBADR;
1827
1828 /* THINK if (signal_pending) return ... ? */
1829
1830 iov_iter_kvec(i: &msg.msg_iter, ITER_SOURCE, kvec: &iov, nr_segs: 1, count: size);
1831
1832 if (sock == connection->data.socket) {
1833 rcu_read_lock();
1834 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1835 rcu_read_unlock();
1836 drbd_update_congested(connection);
1837 }
1838 do {
1839 rv = sock_sendmsg(sock, msg: &msg);
1840 if (rv == -EAGAIN) {
1841 if (we_should_drop_the_connection(connection, sock))
1842 break;
1843 else
1844 continue;
1845 }
1846 if (rv == -EINTR) {
1847 flush_signals(current);
1848 rv = 0;
1849 }
1850 if (rv < 0)
1851 break;
1852 sent += rv;
1853 } while (sent < size);
1854
1855 if (sock == connection->data.socket)
1856 clear_bit(nr: NET_CONGESTED, addr: &connection->flags);
1857
1858 if (rv <= 0) {
1859 if (rv != -EAGAIN) {
1860 drbd_err(connection, "%s_sendmsg returned %d\n",
1861 sock == connection->meta.socket ? "msock" : "sock",
1862 rv);
1863 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), flags: CS_HARD);
1864 } else
1865 conn_request_state(connection, NS(conn, C_TIMEOUT), flags: CS_HARD);
1866 }
1867
1868 return sent;
1869}
1870
1871/*
1872 * drbd_send_all - Send an entire buffer
1873 *
1874 * Returns 0 upon success and a negative error value otherwise.
1875 */
1876int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1877 size_t size, unsigned msg_flags)
1878{
1879 int err;
1880
1881 err = drbd_send(connection, sock, buf: buffer, size, msg_flags);
1882 if (err < 0)
1883 return err;
1884 if (err != size)
1885 return -EIO;
1886 return 0;
1887}
1888
1889static int drbd_open(struct gendisk *disk, blk_mode_t mode)
1890{
1891 struct drbd_device *device = disk->private_data;
1892 unsigned long flags;
1893 int rv = 0;
1894
1895 mutex_lock(&drbd_main_mutex);
1896 spin_lock_irqsave(&device->resource->req_lock, flags);
1897 /* to have a stable device->state.role
1898 * and no race with updating open_cnt */
1899
1900 if (device->state.role != R_PRIMARY) {
1901 if (mode & BLK_OPEN_WRITE)
1902 rv = -EROFS;
1903 else if (!drbd_allow_oos)
1904 rv = -EMEDIUMTYPE;
1905 }
1906
1907 if (!rv)
1908 device->open_cnt++;
1909 spin_unlock_irqrestore(lock: &device->resource->req_lock, flags);
1910 mutex_unlock(lock: &drbd_main_mutex);
1911
1912 return rv;
1913}
1914
1915static void drbd_release(struct gendisk *gd)
1916{
1917 struct drbd_device *device = gd->private_data;
1918
1919 mutex_lock(&drbd_main_mutex);
1920 device->open_cnt--;
1921 mutex_unlock(lock: &drbd_main_mutex);
1922}
1923
1924/* need to hold resource->req_lock */
1925void drbd_queue_unplug(struct drbd_device *device)
1926{
1927 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1928 D_ASSERT(device, device->state.role == R_PRIMARY);
1929 if (test_and_clear_bit(nr: UNPLUG_REMOTE, addr: &device->flags)) {
1930 drbd_queue_work_if_unqueued(
1931 q: &first_peer_device(device)->connection->sender_work,
1932 w: &device->unplug_work);
1933 }
1934 }
1935}
1936
1937static void drbd_set_defaults(struct drbd_device *device)
1938{
1939 /* Beware! The actual layout differs
1940 * between big endian and little endian */
1941 device->state = (union drbd_dev_state) {
1942 { .role = R_SECONDARY,
1943 .peer = R_UNKNOWN,
1944 .conn = C_STANDALONE,
1945 .disk = D_DISKLESS,
1946 .pdsk = D_UNKNOWN,
1947 } };
1948}
1949
1950void drbd_init_set_defaults(struct drbd_device *device)
1951{
1952 /* the memset(,0,) did most of this.
1953 * note: only assignments, no allocation in here */
1954
1955 drbd_set_defaults(device);
1956
1957 atomic_set(v: &device->ap_bio_cnt, i: 0);
1958 atomic_set(v: &device->ap_actlog_cnt, i: 0);
1959 atomic_set(v: &device->ap_pending_cnt, i: 0);
1960 atomic_set(v: &device->rs_pending_cnt, i: 0);
1961 atomic_set(v: &device->unacked_cnt, i: 0);
1962 atomic_set(v: &device->local_cnt, i: 0);
1963 atomic_set(v: &device->pp_in_use_by_net, i: 0);
1964 atomic_set(v: &device->rs_sect_in, i: 0);
1965 atomic_set(v: &device->rs_sect_ev, i: 0);
1966 atomic_set(v: &device->ap_in_flight, i: 0);
1967 atomic_set(v: &device->md_io.in_use, i: 0);
1968
1969 mutex_init(&device->own_state_mutex);
1970 device->state_mutex = &device->own_state_mutex;
1971
1972 spin_lock_init(&device->al_lock);
1973 spin_lock_init(&device->peer_seq_lock);
1974
1975 INIT_LIST_HEAD(list: &device->active_ee);
1976 INIT_LIST_HEAD(list: &device->sync_ee);
1977 INIT_LIST_HEAD(list: &device->done_ee);
1978 INIT_LIST_HEAD(list: &device->read_ee);
1979 INIT_LIST_HEAD(list: &device->net_ee);
1980 INIT_LIST_HEAD(list: &device->resync_reads);
1981 INIT_LIST_HEAD(list: &device->resync_work.list);
1982 INIT_LIST_HEAD(list: &device->unplug_work.list);
1983 INIT_LIST_HEAD(list: &device->bm_io_work.w.list);
1984 INIT_LIST_HEAD(list: &device->pending_master_completion[0]);
1985 INIT_LIST_HEAD(list: &device->pending_master_completion[1]);
1986 INIT_LIST_HEAD(list: &device->pending_completion[0]);
1987 INIT_LIST_HEAD(list: &device->pending_completion[1]);
1988
1989 device->resync_work.cb = w_resync_timer;
1990 device->unplug_work.cb = w_send_write_hint;
1991 device->bm_io_work.w.cb = w_bitmap_io;
1992
1993 timer_setup(&device->resync_timer, resync_timer_fn, 0);
1994 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1995 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1996 timer_setup(&device->request_timer, request_timer_fn, 0);
1997
1998 init_waitqueue_head(&device->misc_wait);
1999 init_waitqueue_head(&device->state_wait);
2000 init_waitqueue_head(&device->ee_wait);
2001 init_waitqueue_head(&device->al_wait);
2002 init_waitqueue_head(&device->seq_wait);
2003
2004 device->resync_wenr = LC_FREE;
2005 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2006 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2007}
2008
2009void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2010{
2011 char ppb[10];
2012
2013 set_capacity_and_notify(disk: device->vdisk, size);
2014
2015 drbd_info(device, "size = %s (%llu KB)\n",
2016 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2017}
2018
2019void drbd_device_cleanup(struct drbd_device *device)
2020{
2021 int i;
2022 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2023 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2024 first_peer_device(device)->connection->receiver.t_state);
2025
2026 device->al_writ_cnt =
2027 device->bm_writ_cnt =
2028 device->read_cnt =
2029 device->recv_cnt =
2030 device->send_cnt =
2031 device->writ_cnt =
2032 device->p_size =
2033 device->rs_start =
2034 device->rs_total =
2035 device->rs_failed = 0;
2036 device->rs_last_events = 0;
2037 device->rs_last_sect_ev = 0;
2038 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2039 device->rs_mark_left[i] = 0;
2040 device->rs_mark_time[i] = 0;
2041 }
2042 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2043
2044 set_capacity_and_notify(disk: device->vdisk, size: 0);
2045 if (device->bitmap) {
2046 /* maybe never allocated. */
2047 drbd_bm_resize(device, sectors: 0, set_new_bits: 1);
2048 drbd_bm_cleanup(device);
2049 }
2050
2051 drbd_backing_dev_free(device, ldev: device->ldev);
2052 device->ldev = NULL;
2053
2054 clear_bit(nr: AL_SUSPENDED, addr: &device->flags);
2055
2056 D_ASSERT(device, list_empty(&device->active_ee));
2057 D_ASSERT(device, list_empty(&device->sync_ee));
2058 D_ASSERT(device, list_empty(&device->done_ee));
2059 D_ASSERT(device, list_empty(&device->read_ee));
2060 D_ASSERT(device, list_empty(&device->net_ee));
2061 D_ASSERT(device, list_empty(&device->resync_reads));
2062 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2063 D_ASSERT(device, list_empty(&device->resync_work.list));
2064 D_ASSERT(device, list_empty(&device->unplug_work.list));
2065
2066 drbd_set_defaults(device);
2067}
2068
2069
2070static void drbd_destroy_mempools(void)
2071{
2072 struct page *page;
2073
2074 while (drbd_pp_pool) {
2075 page = drbd_pp_pool;
2076 drbd_pp_pool = (struct page *)page_private(page);
2077 __free_page(page);
2078 drbd_pp_vacant--;
2079 }
2080
2081 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2082
2083 bioset_exit(&drbd_io_bio_set);
2084 bioset_exit(&drbd_md_io_bio_set);
2085 mempool_exit(pool: &drbd_md_io_page_pool);
2086 mempool_exit(pool: &drbd_ee_mempool);
2087 mempool_exit(pool: &drbd_request_mempool);
2088 kmem_cache_destroy(s: drbd_ee_cache);
2089 kmem_cache_destroy(s: drbd_request_cache);
2090 kmem_cache_destroy(s: drbd_bm_ext_cache);
2091 kmem_cache_destroy(s: drbd_al_ext_cache);
2092
2093 drbd_ee_cache = NULL;
2094 drbd_request_cache = NULL;
2095 drbd_bm_ext_cache = NULL;
2096 drbd_al_ext_cache = NULL;
2097
2098 return;
2099}
2100
2101static int drbd_create_mempools(void)
2102{
2103 struct page *page;
2104 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2105 int i, ret;
2106
2107 /* caches */
2108 drbd_request_cache = kmem_cache_create(
2109 name: "drbd_req", size: sizeof(struct drbd_request), align: 0, flags: 0, NULL);
2110 if (drbd_request_cache == NULL)
2111 goto Enomem;
2112
2113 drbd_ee_cache = kmem_cache_create(
2114 name: "drbd_ee", size: sizeof(struct drbd_peer_request), align: 0, flags: 0, NULL);
2115 if (drbd_ee_cache == NULL)
2116 goto Enomem;
2117
2118 drbd_bm_ext_cache = kmem_cache_create(
2119 name: "drbd_bm", size: sizeof(struct bm_extent), align: 0, flags: 0, NULL);
2120 if (drbd_bm_ext_cache == NULL)
2121 goto Enomem;
2122
2123 drbd_al_ext_cache = kmem_cache_create(
2124 name: "drbd_al", size: sizeof(struct lc_element), align: 0, flags: 0, NULL);
2125 if (drbd_al_ext_cache == NULL)
2126 goto Enomem;
2127
2128 /* mempools */
2129 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, flags: 0);
2130 if (ret)
2131 goto Enomem;
2132
2133 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2134 flags: BIOSET_NEED_BVECS);
2135 if (ret)
2136 goto Enomem;
2137
2138 ret = mempool_init_page_pool(pool: &drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, order: 0);
2139 if (ret)
2140 goto Enomem;
2141
2142 ret = mempool_init_slab_pool(pool: &drbd_request_mempool, min_nr: number,
2143 kc: drbd_request_cache);
2144 if (ret)
2145 goto Enomem;
2146
2147 ret = mempool_init_slab_pool(pool: &drbd_ee_mempool, min_nr: number, kc: drbd_ee_cache);
2148 if (ret)
2149 goto Enomem;
2150
2151 for (i = 0; i < number; i++) {
2152 page = alloc_page(GFP_HIGHUSER);
2153 if (!page)
2154 goto Enomem;
2155 set_page_private(page, private: (unsigned long)drbd_pp_pool);
2156 drbd_pp_pool = page;
2157 }
2158 drbd_pp_vacant = number;
2159
2160 return 0;
2161
2162Enomem:
2163 drbd_destroy_mempools(); /* in case we allocated some */
2164 return -ENOMEM;
2165}
2166
2167static void drbd_release_all_peer_reqs(struct drbd_device *device)
2168{
2169 int rr;
2170
2171 rr = drbd_free_peer_reqs(device, &device->active_ee);
2172 if (rr)
2173 drbd_err(device, "%d EEs in active list found!\n", rr);
2174
2175 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2176 if (rr)
2177 drbd_err(device, "%d EEs in sync list found!\n", rr);
2178
2179 rr = drbd_free_peer_reqs(device, &device->read_ee);
2180 if (rr)
2181 drbd_err(device, "%d EEs in read list found!\n", rr);
2182
2183 rr = drbd_free_peer_reqs(device, &device->done_ee);
2184 if (rr)
2185 drbd_err(device, "%d EEs in done list found!\n", rr);
2186
2187 rr = drbd_free_peer_reqs(device, &device->net_ee);
2188 if (rr)
2189 drbd_err(device, "%d EEs in net list found!\n", rr);
2190}
2191
2192/* caution. no locking. */
2193void drbd_destroy_device(struct kref *kref)
2194{
2195 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2196 struct drbd_resource *resource = device->resource;
2197 struct drbd_peer_device *peer_device, *tmp_peer_device;
2198
2199 timer_shutdown_sync(timer: &device->request_timer);
2200
2201 /* paranoia asserts */
2202 D_ASSERT(device, device->open_cnt == 0);
2203 /* end paranoia asserts */
2204
2205 /* cleanup stuff that may have been allocated during
2206 * device (re-)configuration or state changes */
2207
2208 drbd_backing_dev_free(device, ldev: device->ldev);
2209 device->ldev = NULL;
2210
2211 drbd_release_all_peer_reqs(device);
2212
2213 lc_destroy(lc: device->act_log);
2214 lc_destroy(lc: device->resync);
2215
2216 kfree(objp: device->p_uuid);
2217 /* device->p_uuid = NULL; */
2218
2219 if (device->bitmap) /* should no longer be there. */
2220 drbd_bm_cleanup(device);
2221 __free_page(device->md_io.page);
2222 put_disk(disk: device->vdisk);
2223 kfree(objp: device->rs_plan_s);
2224
2225 /* not for_each_connection(connection, resource):
2226 * those may have been cleaned up and disassociated already.
2227 */
2228 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2229 kref_put(kref: &peer_device->connection->kref, release: drbd_destroy_connection);
2230 kfree(objp: peer_device);
2231 }
2232 if (device->submit.wq)
2233 destroy_workqueue(wq: device->submit.wq);
2234 kfree(objp: device);
2235 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
2236}
2237
2238/* One global retry thread, if we need to push back some bio and have it
2239 * reinserted through our make request function.
2240 */
2241static struct retry_worker {
2242 struct workqueue_struct *wq;
2243 struct work_struct worker;
2244
2245 spinlock_t lock;
2246 struct list_head writes;
2247} retry;
2248
2249static void do_retry(struct work_struct *ws)
2250{
2251 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2252 LIST_HEAD(writes);
2253 struct drbd_request *req, *tmp;
2254
2255 spin_lock_irq(lock: &retry->lock);
2256 list_splice_init(list: &retry->writes, head: &writes);
2257 spin_unlock_irq(lock: &retry->lock);
2258
2259 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2260 struct drbd_device *device = req->device;
2261 struct bio *bio = req->master_bio;
2262 bool expected;
2263
2264 expected =
2265 expect(device, atomic_read(&req->completion_ref) == 0) &&
2266 expect(device, req->rq_state & RQ_POSTPONED) &&
2267 expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2268 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2269
2270 if (!expected)
2271 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2272 req, atomic_read(&req->completion_ref),
2273 req->rq_state);
2274
2275 /* We still need to put one kref associated with the
2276 * "completion_ref" going zero in the code path that queued it
2277 * here. The request object may still be referenced by a
2278 * frozen local req->private_bio, in case we force-detached.
2279 */
2280 kref_put(kref: &req->kref, release: drbd_req_destroy);
2281
2282 /* A single suspended or otherwise blocking device may stall
2283 * all others as well. Fortunately, this code path is to
2284 * recover from a situation that "should not happen":
2285 * concurrent writes in multi-primary setup.
2286 * In a "normal" lifecycle, this workqueue is supposed to be
2287 * destroyed without ever doing anything.
2288 * If it turns out to be an issue anyways, we can do per
2289 * resource (replication group) or per device (minor) retry
2290 * workqueues instead.
2291 */
2292
2293 /* We are not just doing submit_bio_noacct(),
2294 * as we want to keep the start_time information. */
2295 inc_ap_bio(device);
2296 __drbd_make_request(device, bio);
2297 }
2298}
2299
2300/* called via drbd_req_put_completion_ref(),
2301 * holds resource->req_lock */
2302void drbd_restart_request(struct drbd_request *req)
2303{
2304 unsigned long flags;
2305 spin_lock_irqsave(&retry.lock, flags);
2306 list_move_tail(list: &req->tl_requests, head: &retry.writes);
2307 spin_unlock_irqrestore(lock: &retry.lock, flags);
2308
2309 /* Drop the extra reference that would otherwise
2310 * have been dropped by complete_master_bio.
2311 * do_retry() needs to grab a new one. */
2312 dec_ap_bio(device: req->device);
2313
2314 queue_work(wq: retry.wq, work: &retry.worker);
2315}
2316
2317void drbd_destroy_resource(struct kref *kref)
2318{
2319 struct drbd_resource *resource =
2320 container_of(kref, struct drbd_resource, kref);
2321
2322 idr_destroy(&resource->devices);
2323 free_cpumask_var(mask: resource->cpu_mask);
2324 kfree(objp: resource->name);
2325 kfree(objp: resource);
2326}
2327
2328void drbd_free_resource(struct drbd_resource *resource)
2329{
2330 struct drbd_connection *connection, *tmp;
2331
2332 for_each_connection_safe(connection, tmp, resource) {
2333 list_del(entry: &connection->connections);
2334 drbd_debugfs_connection_cleanup(connection);
2335 kref_put(kref: &connection->kref, release: drbd_destroy_connection);
2336 }
2337 drbd_debugfs_resource_cleanup(resource);
2338 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
2339}
2340
2341static void drbd_cleanup(void)
2342{
2343 unsigned int i;
2344 struct drbd_device *device;
2345 struct drbd_resource *resource, *tmp;
2346
2347 /* first remove proc,
2348 * drbdsetup uses it's presence to detect
2349 * whether DRBD is loaded.
2350 * If we would get stuck in proc removal,
2351 * but have netlink already deregistered,
2352 * some drbdsetup commands may wait forever
2353 * for an answer.
2354 */
2355 if (drbd_proc)
2356 remove_proc_entry("drbd", NULL);
2357
2358 if (retry.wq)
2359 destroy_workqueue(wq: retry.wq);
2360
2361 drbd_genl_unregister();
2362
2363 idr_for_each_entry(&drbd_devices, device, i)
2364 drbd_delete_device(device);
2365
2366 /* not _rcu since, no other updater anymore. Genl already unregistered */
2367 for_each_resource_safe(resource, tmp, &drbd_resources) {
2368 list_del(entry: &resource->resources);
2369 drbd_free_resource(resource);
2370 }
2371
2372 drbd_debugfs_cleanup();
2373
2374 drbd_destroy_mempools();
2375 unregister_blkdev(DRBD_MAJOR, name: "drbd");
2376
2377 idr_destroy(&drbd_devices);
2378
2379 pr_info("module cleanup done.\n");
2380}
2381
2382static void drbd_init_workqueue(struct drbd_work_queue* wq)
2383{
2384 spin_lock_init(&wq->q_lock);
2385 INIT_LIST_HEAD(list: &wq->q);
2386 init_waitqueue_head(&wq->q_wait);
2387}
2388
2389struct completion_work {
2390 struct drbd_work w;
2391 struct completion done;
2392};
2393
2394static int w_complete(struct drbd_work *w, int cancel)
2395{
2396 struct completion_work *completion_work =
2397 container_of(w, struct completion_work, w);
2398
2399 complete(&completion_work->done);
2400 return 0;
2401}
2402
2403void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2404{
2405 struct completion_work completion_work;
2406
2407 completion_work.w.cb = w_complete;
2408 init_completion(x: &completion_work.done);
2409 drbd_queue_work(q: work_queue, w: &completion_work.w);
2410 wait_for_completion(&completion_work.done);
2411}
2412
2413struct drbd_resource *drbd_find_resource(const char *name)
2414{
2415 struct drbd_resource *resource;
2416
2417 if (!name || !name[0])
2418 return NULL;
2419
2420 rcu_read_lock();
2421 for_each_resource_rcu(resource, &drbd_resources) {
2422 if (!strcmp(resource->name, name)) {
2423 kref_get(kref: &resource->kref);
2424 goto found;
2425 }
2426 }
2427 resource = NULL;
2428found:
2429 rcu_read_unlock();
2430 return resource;
2431}
2432
2433struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2434 void *peer_addr, int peer_addr_len)
2435{
2436 struct drbd_resource *resource;
2437 struct drbd_connection *connection;
2438
2439 rcu_read_lock();
2440 for_each_resource_rcu(resource, &drbd_resources) {
2441 for_each_connection_rcu(connection, resource) {
2442 if (connection->my_addr_len == my_addr_len &&
2443 connection->peer_addr_len == peer_addr_len &&
2444 !memcmp(p: &connection->my_addr, q: my_addr, size: my_addr_len) &&
2445 !memcmp(p: &connection->peer_addr, q: peer_addr, size: peer_addr_len)) {
2446 kref_get(kref: &connection->kref);
2447 goto found;
2448 }
2449 }
2450 }
2451 connection = NULL;
2452found:
2453 rcu_read_unlock();
2454 return connection;
2455}
2456
2457static int drbd_alloc_socket(struct drbd_socket *socket)
2458{
2459 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2460 if (!socket->rbuf)
2461 return -ENOMEM;
2462 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2463 if (!socket->sbuf)
2464 return -ENOMEM;
2465 return 0;
2466}
2467
2468static void drbd_free_socket(struct drbd_socket *socket)
2469{
2470 free_page((unsigned long) socket->sbuf);
2471 free_page((unsigned long) socket->rbuf);
2472}
2473
2474void conn_free_crypto(struct drbd_connection *connection)
2475{
2476 drbd_free_sock(connection);
2477
2478 crypto_free_shash(tfm: connection->csums_tfm);
2479 crypto_free_shash(tfm: connection->verify_tfm);
2480 crypto_free_shash(tfm: connection->cram_hmac_tfm);
2481 crypto_free_shash(tfm: connection->integrity_tfm);
2482 crypto_free_shash(tfm: connection->peer_integrity_tfm);
2483 kfree(objp: connection->int_dig_in);
2484 kfree(objp: connection->int_dig_vv);
2485
2486 connection->csums_tfm = NULL;
2487 connection->verify_tfm = NULL;
2488 connection->cram_hmac_tfm = NULL;
2489 connection->integrity_tfm = NULL;
2490 connection->peer_integrity_tfm = NULL;
2491 connection->int_dig_in = NULL;
2492 connection->int_dig_vv = NULL;
2493}
2494
2495int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2496{
2497 struct drbd_connection *connection;
2498 cpumask_var_t new_cpu_mask;
2499 int err;
2500
2501 if (!zalloc_cpumask_var(mask: &new_cpu_mask, GFP_KERNEL))
2502 return -ENOMEM;
2503
2504 /* silently ignore cpu mask on UP kernel */
2505 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2506 err = bitmap_parse(buf: res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2507 cpumask_bits(new_cpu_mask), nbits: nr_cpu_ids);
2508 if (err == -EOVERFLOW) {
2509 /* So what. mask it out. */
2510 cpumask_var_t tmp_cpu_mask;
2511 if (zalloc_cpumask_var(mask: &tmp_cpu_mask, GFP_KERNEL)) {
2512 cpumask_setall(dstp: tmp_cpu_mask);
2513 cpumask_and(dstp: new_cpu_mask, src1p: new_cpu_mask, src2p: tmp_cpu_mask);
2514 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2515 res_opts->cpu_mask,
2516 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2517 nr_cpu_ids);
2518 free_cpumask_var(mask: tmp_cpu_mask);
2519 err = 0;
2520 }
2521 }
2522 if (err) {
2523 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2524 /* retcode = ERR_CPU_MASK_PARSE; */
2525 goto fail;
2526 }
2527 }
2528 resource->res_opts = *res_opts;
2529 if (cpumask_empty(srcp: new_cpu_mask))
2530 drbd_calc_cpu_mask(cpu_mask: &new_cpu_mask);
2531 if (!cpumask_equal(src1p: resource->cpu_mask, src2p: new_cpu_mask)) {
2532 cpumask_copy(dstp: resource->cpu_mask, srcp: new_cpu_mask);
2533 for_each_connection_rcu(connection, resource) {
2534 connection->receiver.reset_cpu_mask = 1;
2535 connection->ack_receiver.reset_cpu_mask = 1;
2536 connection->worker.reset_cpu_mask = 1;
2537 }
2538 }
2539 err = 0;
2540
2541fail:
2542 free_cpumask_var(mask: new_cpu_mask);
2543 return err;
2544
2545}
2546
2547struct drbd_resource *drbd_create_resource(const char *name)
2548{
2549 struct drbd_resource *resource;
2550
2551 resource = kzalloc(size: sizeof(struct drbd_resource), GFP_KERNEL);
2552 if (!resource)
2553 goto fail;
2554 resource->name = kstrdup(s: name, GFP_KERNEL);
2555 if (!resource->name)
2556 goto fail_free_resource;
2557 if (!zalloc_cpumask_var(mask: &resource->cpu_mask, GFP_KERNEL))
2558 goto fail_free_name;
2559 kref_init(kref: &resource->kref);
2560 idr_init(idr: &resource->devices);
2561 INIT_LIST_HEAD(list: &resource->connections);
2562 resource->write_ordering = WO_BDEV_FLUSH;
2563 list_add_tail_rcu(new: &resource->resources, head: &drbd_resources);
2564 mutex_init(&resource->conf_update);
2565 mutex_init(&resource->adm_mutex);
2566 spin_lock_init(&resource->req_lock);
2567 drbd_debugfs_resource_add(resource);
2568 return resource;
2569
2570fail_free_name:
2571 kfree(objp: resource->name);
2572fail_free_resource:
2573 kfree(objp: resource);
2574fail:
2575 return NULL;
2576}
2577
2578/* caller must be under adm_mutex */
2579struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2580{
2581 struct drbd_resource *resource;
2582 struct drbd_connection *connection;
2583
2584 connection = kzalloc(size: sizeof(struct drbd_connection), GFP_KERNEL);
2585 if (!connection)
2586 return NULL;
2587
2588 if (drbd_alloc_socket(socket: &connection->data))
2589 goto fail;
2590 if (drbd_alloc_socket(socket: &connection->meta))
2591 goto fail;
2592
2593 connection->current_epoch = kzalloc(size: sizeof(struct drbd_epoch), GFP_KERNEL);
2594 if (!connection->current_epoch)
2595 goto fail;
2596
2597 INIT_LIST_HEAD(list: &connection->transfer_log);
2598
2599 INIT_LIST_HEAD(list: &connection->current_epoch->list);
2600 connection->epochs = 1;
2601 spin_lock_init(&connection->epoch_lock);
2602
2603 connection->send.seen_any_write_yet = false;
2604 connection->send.current_epoch_nr = 0;
2605 connection->send.current_epoch_writes = 0;
2606
2607 resource = drbd_create_resource(name);
2608 if (!resource)
2609 goto fail;
2610
2611 connection->cstate = C_STANDALONE;
2612 mutex_init(&connection->cstate_mutex);
2613 init_waitqueue_head(&connection->ping_wait);
2614 idr_init(idr: &connection->peer_devices);
2615
2616 drbd_init_workqueue(wq: &connection->sender_work);
2617 mutex_init(&connection->data.mutex);
2618 mutex_init(&connection->meta.mutex);
2619
2620 drbd_thread_init(resource, thi: &connection->receiver, func: drbd_receiver, name: "receiver");
2621 connection->receiver.connection = connection;
2622 drbd_thread_init(resource, thi: &connection->worker, func: drbd_worker, name: "worker");
2623 connection->worker.connection = connection;
2624 drbd_thread_init(resource, thi: &connection->ack_receiver, func: drbd_ack_receiver, name: "ack_recv");
2625 connection->ack_receiver.connection = connection;
2626
2627 kref_init(kref: &connection->kref);
2628
2629 connection->resource = resource;
2630
2631 if (set_resource_options(resource, res_opts))
2632 goto fail_resource;
2633
2634 kref_get(kref: &resource->kref);
2635 list_add_tail_rcu(new: &connection->connections, head: &resource->connections);
2636 drbd_debugfs_connection_add(connection);
2637 return connection;
2638
2639fail_resource:
2640 list_del(entry: &resource->resources);
2641 drbd_free_resource(resource);
2642fail:
2643 kfree(objp: connection->current_epoch);
2644 drbd_free_socket(socket: &connection->meta);
2645 drbd_free_socket(socket: &connection->data);
2646 kfree(objp: connection);
2647 return NULL;
2648}
2649
2650void drbd_destroy_connection(struct kref *kref)
2651{
2652 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2653 struct drbd_resource *resource = connection->resource;
2654
2655 if (atomic_read(v: &connection->current_epoch->epoch_size) != 0)
2656 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2657 kfree(objp: connection->current_epoch);
2658
2659 idr_destroy(&connection->peer_devices);
2660
2661 drbd_free_socket(socket: &connection->meta);
2662 drbd_free_socket(socket: &connection->data);
2663 kfree(objp: connection->int_dig_in);
2664 kfree(objp: connection->int_dig_vv);
2665 kfree(objp: connection);
2666 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
2667}
2668
2669static int init_submitter(struct drbd_device *device)
2670{
2671 /* opencoded create_singlethread_workqueue(),
2672 * to be able to say "drbd%d", ..., minor */
2673 device->submit.wq =
2674 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2675 if (!device->submit.wq)
2676 return -ENOMEM;
2677
2678 INIT_WORK(&device->submit.worker, do_submit);
2679 INIT_LIST_HEAD(list: &device->submit.writes);
2680 return 0;
2681}
2682
2683enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2684{
2685 struct drbd_resource *resource = adm_ctx->resource;
2686 struct drbd_connection *connection, *n;
2687 struct drbd_device *device;
2688 struct drbd_peer_device *peer_device, *tmp_peer_device;
2689 struct gendisk *disk;
2690 int id;
2691 int vnr = adm_ctx->volume;
2692 enum drbd_ret_code err = ERR_NOMEM;
2693 struct queue_limits lim = {
2694 /*
2695 * Setting the max_hw_sectors to an odd value of 8kibyte here.
2696 * This triggers a max_bio_size message upon first attach or
2697 * connect.
2698 */
2699 .max_hw_sectors = DRBD_MAX_BIO_SIZE_SAFE >> 8,
2700 };
2701
2702 device = minor_to_device(minor);
2703 if (device)
2704 return ERR_MINOR_OR_VOLUME_EXISTS;
2705
2706 /* GFP_KERNEL, we are outside of all write-out paths */
2707 device = kzalloc(size: sizeof(struct drbd_device), GFP_KERNEL);
2708 if (!device)
2709 return ERR_NOMEM;
2710 kref_init(kref: &device->kref);
2711
2712 kref_get(kref: &resource->kref);
2713 device->resource = resource;
2714 device->minor = minor;
2715 device->vnr = vnr;
2716
2717 drbd_init_set_defaults(device);
2718
2719 disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2720 if (IS_ERR(ptr: disk)) {
2721 err = PTR_ERR(ptr: disk);
2722 goto out_no_disk;
2723 }
2724
2725 device->vdisk = disk;
2726 device->rq_queue = disk->queue;
2727
2728 set_disk_ro(disk, read_only: true);
2729
2730 disk->major = DRBD_MAJOR;
2731 disk->first_minor = minor;
2732 disk->minors = 1;
2733 disk->fops = &drbd_ops;
2734 disk->flags |= GENHD_FL_NO_PART;
2735 sprintf(buf: disk->disk_name, fmt: "drbd%d", minor);
2736 disk->private_data = device;
2737
2738 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q: disk->queue);
2739 blk_queue_write_cache(q: disk->queue, enabled: true, fua: true);
2740
2741 device->md_io.page = alloc_page(GFP_KERNEL);
2742 if (!device->md_io.page)
2743 goto out_no_io_page;
2744
2745 if (drbd_bm_init(device))
2746 goto out_no_bitmap;
2747 device->read_requests = RB_ROOT;
2748 device->write_requests = RB_ROOT;
2749
2750 id = idr_alloc(&drbd_devices, ptr: device, start: minor, end: minor + 1, GFP_KERNEL);
2751 if (id < 0) {
2752 if (id == -ENOSPC)
2753 err = ERR_MINOR_OR_VOLUME_EXISTS;
2754 goto out_no_minor_idr;
2755 }
2756 kref_get(kref: &device->kref);
2757
2758 id = idr_alloc(&resource->devices, ptr: device, start: vnr, end: vnr + 1, GFP_KERNEL);
2759 if (id < 0) {
2760 if (id == -ENOSPC)
2761 err = ERR_MINOR_OR_VOLUME_EXISTS;
2762 goto out_idr_remove_minor;
2763 }
2764 kref_get(kref: &device->kref);
2765
2766 INIT_LIST_HEAD(list: &device->peer_devices);
2767 INIT_LIST_HEAD(list: &device->pending_bitmap_io);
2768 for_each_connection(connection, resource) {
2769 peer_device = kzalloc(size: sizeof(struct drbd_peer_device), GFP_KERNEL);
2770 if (!peer_device)
2771 goto out_idr_remove_from_resource;
2772 peer_device->connection = connection;
2773 peer_device->device = device;
2774
2775 list_add(new: &peer_device->peer_devices, head: &device->peer_devices);
2776 kref_get(kref: &device->kref);
2777
2778 id = idr_alloc(&connection->peer_devices, ptr: peer_device, start: vnr, end: vnr + 1, GFP_KERNEL);
2779 if (id < 0) {
2780 if (id == -ENOSPC)
2781 err = ERR_INVALID_REQUEST;
2782 goto out_idr_remove_from_resource;
2783 }
2784 kref_get(kref: &connection->kref);
2785 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2786 }
2787
2788 if (init_submitter(device)) {
2789 err = ERR_NOMEM;
2790 goto out_idr_remove_from_resource;
2791 }
2792
2793 err = add_disk(disk);
2794 if (err)
2795 goto out_destroy_workqueue;
2796
2797 /* inherit the connection state */
2798 device->state.conn = first_connection(resource)->cstate;
2799 if (device->state.conn == C_WF_REPORT_PARAMS) {
2800 for_each_peer_device(peer_device, device)
2801 drbd_connected(peer_device);
2802 }
2803 /* move to create_peer_device() */
2804 for_each_peer_device(peer_device, device)
2805 drbd_debugfs_peer_device_add(peer_device);
2806 drbd_debugfs_device_add(device);
2807 return NO_ERROR;
2808
2809out_destroy_workqueue:
2810 destroy_workqueue(wq: device->submit.wq);
2811out_idr_remove_from_resource:
2812 for_each_connection_safe(connection, n, resource) {
2813 peer_device = idr_remove(&connection->peer_devices, id: vnr);
2814 if (peer_device)
2815 kref_put(kref: &connection->kref, release: drbd_destroy_connection);
2816 }
2817 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2818 list_del(entry: &peer_device->peer_devices);
2819 kfree(objp: peer_device);
2820 }
2821 idr_remove(&resource->devices, id: vnr);
2822out_idr_remove_minor:
2823 idr_remove(&drbd_devices, id: minor);
2824 synchronize_rcu();
2825out_no_minor_idr:
2826 drbd_bm_cleanup(device);
2827out_no_bitmap:
2828 __free_page(device->md_io.page);
2829out_no_io_page:
2830 put_disk(disk);
2831out_no_disk:
2832 kref_put(kref: &resource->kref, release: drbd_destroy_resource);
2833 kfree(objp: device);
2834 return err;
2835}
2836
2837void drbd_delete_device(struct drbd_device *device)
2838{
2839 struct drbd_resource *resource = device->resource;
2840 struct drbd_connection *connection;
2841 struct drbd_peer_device *peer_device;
2842
2843 /* move to free_peer_device() */
2844 for_each_peer_device(peer_device, device)
2845 drbd_debugfs_peer_device_cleanup(peer_device);
2846 drbd_debugfs_device_cleanup(device);
2847 for_each_connection(connection, resource) {
2848 idr_remove(&connection->peer_devices, id: device->vnr);
2849 kref_put(kref: &device->kref, release: drbd_destroy_device);
2850 }
2851 idr_remove(&resource->devices, id: device->vnr);
2852 kref_put(kref: &device->kref, release: drbd_destroy_device);
2853 idr_remove(&drbd_devices, id: device_to_minor(device));
2854 kref_put(kref: &device->kref, release: drbd_destroy_device);
2855 del_gendisk(gp: device->vdisk);
2856 synchronize_rcu();
2857 kref_put(kref: &device->kref, release: drbd_destroy_device);
2858}
2859
2860static int __init drbd_init(void)
2861{
2862 int err;
2863
2864 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2865 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2866#ifdef MODULE
2867 return -EINVAL;
2868#else
2869 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2870#endif
2871 }
2872
2873 err = register_blkdev(DRBD_MAJOR, "drbd");
2874 if (err) {
2875 pr_err("unable to register block device major %d\n",
2876 DRBD_MAJOR);
2877 return err;
2878 }
2879
2880 /*
2881 * allocate all necessary structs
2882 */
2883 init_waitqueue_head(&drbd_pp_wait);
2884
2885 drbd_proc = NULL; /* play safe for drbd_cleanup */
2886 idr_init(idr: &drbd_devices);
2887
2888 mutex_init(&resources_mutex);
2889 INIT_LIST_HEAD(list: &drbd_resources);
2890
2891 err = drbd_genl_register();
2892 if (err) {
2893 pr_err("unable to register generic netlink family\n");
2894 goto fail;
2895 }
2896
2897 err = drbd_create_mempools();
2898 if (err)
2899 goto fail;
2900
2901 err = -ENOMEM;
2902 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2903 if (!drbd_proc) {
2904 pr_err("unable to register proc file\n");
2905 goto fail;
2906 }
2907
2908 retry.wq = create_singlethread_workqueue("drbd-reissue");
2909 if (!retry.wq) {
2910 pr_err("unable to create retry workqueue\n");
2911 goto fail;
2912 }
2913 INIT_WORK(&retry.worker, do_retry);
2914 spin_lock_init(&retry.lock);
2915 INIT_LIST_HEAD(list: &retry.writes);
2916
2917 drbd_debugfs_init();
2918
2919 pr_info("initialized. "
2920 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2921 GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2922 pr_info("%s\n", drbd_buildtag());
2923 pr_info("registered as block device major %d\n", DRBD_MAJOR);
2924 return 0; /* Success! */
2925
2926fail:
2927 drbd_cleanup();
2928 if (err == -ENOMEM)
2929 pr_err("ran out of memory\n");
2930 else
2931 pr_err("initialization failure\n");
2932 return err;
2933}
2934
2935static void drbd_free_one_sock(struct drbd_socket *ds)
2936{
2937 struct socket *s;
2938 mutex_lock(&ds->mutex);
2939 s = ds->socket;
2940 ds->socket = NULL;
2941 mutex_unlock(lock: &ds->mutex);
2942 if (s) {
2943 /* so debugfs does not need to mutex_lock() */
2944 synchronize_rcu();
2945 kernel_sock_shutdown(sock: s, how: SHUT_RDWR);
2946 sock_release(sock: s);
2947 }
2948}
2949
2950void drbd_free_sock(struct drbd_connection *connection)
2951{
2952 if (connection->data.socket)
2953 drbd_free_one_sock(ds: &connection->data);
2954 if (connection->meta.socket)
2955 drbd_free_one_sock(ds: &connection->meta);
2956}
2957
2958/* meta data management */
2959
2960void conn_md_sync(struct drbd_connection *connection)
2961{
2962 struct drbd_peer_device *peer_device;
2963 int vnr;
2964
2965 rcu_read_lock();
2966 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2967 struct drbd_device *device = peer_device->device;
2968
2969 kref_get(kref: &device->kref);
2970 rcu_read_unlock();
2971 drbd_md_sync(device);
2972 kref_put(kref: &device->kref, release: drbd_destroy_device);
2973 rcu_read_lock();
2974 }
2975 rcu_read_unlock();
2976}
2977
2978/* aligned 4kByte */
2979struct meta_data_on_disk {
2980 u64 la_size_sect; /* last agreed size. */
2981 u64 uuid[UI_SIZE]; /* UUIDs. */
2982 u64 device_uuid;
2983 u64 reserved_u64_1;
2984 u32 flags; /* MDF */
2985 u32 magic;
2986 u32 md_size_sect;
2987 u32 al_offset; /* offset to this block */
2988 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2989 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2990 u32 bm_offset; /* offset to the bitmap, from here */
2991 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2992 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2993
2994 /* see al_tr_number_to_on_disk_sector() */
2995 u32 al_stripes;
2996 u32 al_stripe_size_4k;
2997
2998 u8 reserved_u8[4096 - (7*8 + 10*4)];
2999} __packed;
3000
3001
3002
3003void drbd_md_write(struct drbd_device *device, void *b)
3004{
3005 struct meta_data_on_disk *buffer = b;
3006 sector_t sector;
3007 int i;
3008
3009 memset(buffer, 0, sizeof(*buffer));
3010
3011 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3012 for (i = UI_CURRENT; i < UI_SIZE; i++)
3013 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3014 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3015 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3016
3017 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3018 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3019 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3020 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3021 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3022
3023 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3024 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3025
3026 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3027 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3028
3029 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3030 sector = device->ldev->md.md_offset;
3031
3032 if (drbd_md_sync_page_io(device, bdev: device->ldev, sector, op: REQ_OP_WRITE)) {
3033 /* this was a try anyways ... */
3034 drbd_err(device, "meta data update failed!\n");
3035 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3036 }
3037}
3038
3039/**
3040 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3041 * @device: DRBD device.
3042 */
3043void drbd_md_sync(struct drbd_device *device)
3044{
3045 struct meta_data_on_disk *buffer;
3046
3047 /* Don't accidentally change the DRBD meta data layout. */
3048 BUILD_BUG_ON(UI_SIZE != 4);
3049 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3050
3051 del_timer(timer: &device->md_sync_timer);
3052 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3053 if (!test_and_clear_bit(nr: MD_DIRTY, addr: &device->flags))
3054 return;
3055
3056 /* We use here D_FAILED and not D_ATTACHING because we try to write
3057 * metadata even if we detach due to a disk failure! */
3058 if (!get_ldev_if_state(device, D_FAILED))
3059 return;
3060
3061 buffer = drbd_md_get_buffer(device, intent: __func__);
3062 if (!buffer)
3063 goto out;
3064
3065 drbd_md_write(device, b: buffer);
3066
3067 /* Update device->ldev->md.la_size_sect,
3068 * since we updated it on metadata. */
3069 device->ldev->md.la_size_sect = get_capacity(disk: device->vdisk);
3070
3071 drbd_md_put_buffer(device);
3072out:
3073 put_ldev(device);
3074}
3075
3076static int check_activity_log_stripe_size(struct drbd_device *device,
3077 struct meta_data_on_disk *on_disk,
3078 struct drbd_md *in_core)
3079{
3080 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3081 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3082 u64 al_size_4k;
3083
3084 /* both not set: default to old fixed size activity log */
3085 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3086 al_stripes = 1;
3087 al_stripe_size_4k = MD_32kB_SECT/8;
3088 }
3089
3090 /* some paranoia plausibility checks */
3091
3092 /* we need both values to be set */
3093 if (al_stripes == 0 || al_stripe_size_4k == 0)
3094 goto err;
3095
3096 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3097
3098 /* Upper limit of activity log area, to avoid potential overflow
3099 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3100 * than 72 * 4k blocks total only increases the amount of history,
3101 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3102 if (al_size_4k > (16 * 1024 * 1024/4))
3103 goto err;
3104
3105 /* Lower limit: we need at least 8 transaction slots (32kB)
3106 * to not break existing setups */
3107 if (al_size_4k < MD_32kB_SECT/8)
3108 goto err;
3109
3110 in_core->al_stripe_size_4k = al_stripe_size_4k;
3111 in_core->al_stripes = al_stripes;
3112 in_core->al_size_4k = al_size_4k;
3113
3114 return 0;
3115err:
3116 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3117 al_stripes, al_stripe_size_4k);
3118 return -EINVAL;
3119}
3120
3121static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3122{
3123 sector_t capacity = drbd_get_capacity(bdev: bdev->md_bdev);
3124 struct drbd_md *in_core = &bdev->md;
3125 s32 on_disk_al_sect;
3126 s32 on_disk_bm_sect;
3127
3128 /* The on-disk size of the activity log, calculated from offsets, and
3129 * the size of the activity log calculated from the stripe settings,
3130 * should match.
3131 * Though we could relax this a bit: it is ok, if the striped activity log
3132 * fits in the available on-disk activity log size.
3133 * Right now, that would break how resize is implemented.
3134 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3135 * of possible unused padding space in the on disk layout. */
3136 if (in_core->al_offset < 0) {
3137 if (in_core->bm_offset > in_core->al_offset)
3138 goto err;
3139 on_disk_al_sect = -in_core->al_offset;
3140 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3141 } else {
3142 if (in_core->al_offset != MD_4kB_SECT)
3143 goto err;
3144 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3145 goto err;
3146
3147 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3148 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3149 }
3150
3151 /* old fixed size meta data is exactly that: fixed. */
3152 if (in_core->meta_dev_idx >= 0) {
3153 if (in_core->md_size_sect != MD_128MB_SECT
3154 || in_core->al_offset != MD_4kB_SECT
3155 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3156 || in_core->al_stripes != 1
3157 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3158 goto err;
3159 }
3160
3161 if (capacity < in_core->md_size_sect)
3162 goto err;
3163 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3164 goto err;
3165
3166 /* should be aligned, and at least 32k */
3167 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3168 goto err;
3169
3170 /* should fit (for now: exactly) into the available on-disk space;
3171 * overflow prevention is in check_activity_log_stripe_size() above. */
3172 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3173 goto err;
3174
3175 /* again, should be aligned */
3176 if (in_core->bm_offset & 7)
3177 goto err;
3178
3179 /* FIXME check for device grow with flex external meta data? */
3180
3181 /* can the available bitmap space cover the last agreed device size? */
3182 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3183 goto err;
3184
3185 return 0;
3186
3187err:
3188 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3189 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3190 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3191 in_core->meta_dev_idx,
3192 in_core->al_stripes, in_core->al_stripe_size_4k,
3193 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3194 (unsigned long long)in_core->la_size_sect,
3195 (unsigned long long)capacity);
3196
3197 return -EINVAL;
3198}
3199
3200
3201/**
3202 * drbd_md_read() - Reads in the meta data super block
3203 * @device: DRBD device.
3204 * @bdev: Device from which the meta data should be read in.
3205 *
3206 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3207 * something goes wrong.
3208 *
3209 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3210 * even before @bdev is assigned to @device->ldev.
3211 */
3212int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3213{
3214 struct meta_data_on_disk *buffer;
3215 u32 magic, flags;
3216 int i, rv = NO_ERROR;
3217
3218 if (device->state.disk != D_DISKLESS)
3219 return ERR_DISK_CONFIGURED;
3220
3221 buffer = drbd_md_get_buffer(device, intent: __func__);
3222 if (!buffer)
3223 return ERR_NOMEM;
3224
3225 /* First, figure out where our meta data superblock is located,
3226 * and read it. */
3227 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3228 bdev->md.md_offset = drbd_md_ss(bdev);
3229 /* Even for (flexible or indexed) external meta data,
3230 * initially restrict us to the 4k superblock for now.
3231 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3232 bdev->md.md_size_sect = 8;
3233
3234 if (drbd_md_sync_page_io(device, bdev, sector: bdev->md.md_offset,
3235 op: REQ_OP_READ)) {
3236 /* NOTE: can't do normal error processing here as this is
3237 called BEFORE disk is attached */
3238 drbd_err(device, "Error while reading metadata.\n");
3239 rv = ERR_IO_MD_DISK;
3240 goto err;
3241 }
3242
3243 magic = be32_to_cpu(buffer->magic);
3244 flags = be32_to_cpu(buffer->flags);
3245 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3246 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3247 /* btw: that's Activity Log clean, not "all" clean. */
3248 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3249 rv = ERR_MD_UNCLEAN;
3250 goto err;
3251 }
3252
3253 rv = ERR_MD_INVALID;
3254 if (magic != DRBD_MD_MAGIC_08) {
3255 if (magic == DRBD_MD_MAGIC_07)
3256 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3257 else
3258 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3259 goto err;
3260 }
3261
3262 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3263 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3264 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3265 goto err;
3266 }
3267
3268
3269 /* convert to in_core endian */
3270 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3271 for (i = UI_CURRENT; i < UI_SIZE; i++)
3272 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3273 bdev->md.flags = be32_to_cpu(buffer->flags);
3274 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3275
3276 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3277 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3278 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3279
3280 if (check_activity_log_stripe_size(device, on_disk: buffer, in_core: &bdev->md))
3281 goto err;
3282 if (check_offsets_and_sizes(device, bdev))
3283 goto err;
3284
3285 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3286 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3287 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3288 goto err;
3289 }
3290 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3291 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3292 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3293 goto err;
3294 }
3295
3296 rv = NO_ERROR;
3297
3298 spin_lock_irq(lock: &device->resource->req_lock);
3299 if (device->state.conn < C_CONNECTED) {
3300 unsigned int peer;
3301 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3302 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3303 device->peer_max_bio_size = peer;
3304 }
3305 spin_unlock_irq(lock: &device->resource->req_lock);
3306
3307 err:
3308 drbd_md_put_buffer(device);
3309
3310 return rv;
3311}
3312
3313/**
3314 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3315 * @device: DRBD device.
3316 *
3317 * Call this function if you change anything that should be written to
3318 * the meta-data super block. This function sets MD_DIRTY, and starts a
3319 * timer that ensures that within five seconds you have to call drbd_md_sync().
3320 */
3321void drbd_md_mark_dirty(struct drbd_device *device)
3322{
3323 if (!test_and_set_bit(nr: MD_DIRTY, addr: &device->flags))
3324 mod_timer(timer: &device->md_sync_timer, expires: jiffies + 5*HZ);
3325}
3326
3327void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3328{
3329 int i;
3330
3331 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3332 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3333}
3334
3335void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3336{
3337 if (idx == UI_CURRENT) {
3338 if (device->state.role == R_PRIMARY)
3339 val |= 1;
3340 else
3341 val &= ~((u64)1);
3342
3343 drbd_set_ed_uuid(device, val);
3344 }
3345
3346 device->ldev->md.uuid[idx] = val;
3347 drbd_md_mark_dirty(device);
3348}
3349
3350void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3351{
3352 unsigned long flags;
3353 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3354 __drbd_uuid_set(device, idx, val);
3355 spin_unlock_irqrestore(lock: &device->ldev->md.uuid_lock, flags);
3356}
3357
3358void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3359{
3360 unsigned long flags;
3361 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3362 if (device->ldev->md.uuid[idx]) {
3363 drbd_uuid_move_history(device);
3364 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3365 }
3366 __drbd_uuid_set(device, idx, val);
3367 spin_unlock_irqrestore(lock: &device->ldev->md.uuid_lock, flags);
3368}
3369
3370/**
3371 * drbd_uuid_new_current() - Creates a new current UUID
3372 * @device: DRBD device.
3373 *
3374 * Creates a new current UUID, and rotates the old current UUID into
3375 * the bitmap slot. Causes an incremental resync upon next connect.
3376 */
3377void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3378{
3379 u64 val;
3380 unsigned long long bm_uuid;
3381
3382 get_random_bytes(buf: &val, len: sizeof(u64));
3383
3384 spin_lock_irq(lock: &device->ldev->md.uuid_lock);
3385 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3386
3387 if (bm_uuid)
3388 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3389
3390 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3391 __drbd_uuid_set(device, idx: UI_CURRENT, val);
3392 spin_unlock_irq(lock: &device->ldev->md.uuid_lock);
3393
3394 drbd_print_uuids(device, text: "new current UUID");
3395 /* get it to stable storage _now_ */
3396 drbd_md_sync(device);
3397}
3398
3399void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3400{
3401 unsigned long flags;
3402 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3403 return;
3404
3405 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3406 if (val == 0) {
3407 drbd_uuid_move_history(device);
3408 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3409 device->ldev->md.uuid[UI_BITMAP] = 0;
3410 } else {
3411 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3412 if (bm_uuid)
3413 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3414
3415 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3416 }
3417 spin_unlock_irqrestore(lock: &device->ldev->md.uuid_lock, flags);
3418
3419 drbd_md_mark_dirty(device);
3420}
3421
3422/**
3423 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3424 * @device: DRBD device.
3425 *
3426 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3427 */
3428int drbd_bmio_set_n_write(struct drbd_device *device,
3429 struct drbd_peer_device *peer_device) __must_hold(local)
3430
3431{
3432 int rv = -EIO;
3433
3434 drbd_md_set_flag(device, MDF_FULL_SYNC);
3435 drbd_md_sync(device);
3436 drbd_bm_set_all(device);
3437
3438 rv = drbd_bm_write(device, peer_device);
3439
3440 if (!rv) {
3441 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3442 drbd_md_sync(device);
3443 }
3444
3445 return rv;
3446}
3447
3448/**
3449 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3450 * @device: DRBD device.
3451 *
3452 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3453 */
3454int drbd_bmio_clear_n_write(struct drbd_device *device,
3455 struct drbd_peer_device *peer_device) __must_hold(local)
3456
3457{
3458 drbd_resume_al(device);
3459 drbd_bm_clear_all(device);
3460 return drbd_bm_write(device, peer_device);
3461}
3462
3463static int w_bitmap_io(struct drbd_work *w, int unused)
3464{
3465 struct drbd_device *device =
3466 container_of(w, struct drbd_device, bm_io_work.w);
3467 struct bm_io_work *work = &device->bm_io_work;
3468 int rv = -EIO;
3469
3470 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3471 int cnt = atomic_read(v: &device->ap_bio_cnt);
3472 if (cnt)
3473 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3474 cnt, work->why);
3475 }
3476
3477 if (get_ldev(device)) {
3478 drbd_bm_lock(device, why: work->why, flags: work->flags);
3479 rv = work->io_fn(device, work->peer_device);
3480 drbd_bm_unlock(device);
3481 put_ldev(device);
3482 }
3483
3484 clear_bit_unlock(nr: BITMAP_IO, addr: &device->flags);
3485 wake_up(&device->misc_wait);
3486
3487 if (work->done)
3488 work->done(device, rv);
3489
3490 clear_bit(nr: BITMAP_IO_QUEUED, addr: &device->flags);
3491 work->why = NULL;
3492 work->flags = 0;
3493
3494 return 0;
3495}
3496
3497/**
3498 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3499 * @device: DRBD device.
3500 * @io_fn: IO callback to be called when bitmap IO is possible
3501 * @done: callback to be called after the bitmap IO was performed
3502 * @why: Descriptive text of the reason for doing the IO
3503 * @flags: Bitmap flags
3504 *
3505 * While IO on the bitmap happens we freeze application IO thus we ensure
3506 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3507 * called from worker context. It MUST NOT be used while a previous such
3508 * work is still pending!
3509 *
3510 * Its worker function encloses the call of io_fn() by get_ldev() and
3511 * put_ldev().
3512 */
3513void drbd_queue_bitmap_io(struct drbd_device *device,
3514 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3515 void (*done)(struct drbd_device *, int),
3516 char *why, enum bm_flag flags,
3517 struct drbd_peer_device *peer_device)
3518{
3519 D_ASSERT(device, current == peer_device->connection->worker.task);
3520
3521 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3522 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3523 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3524 if (device->bm_io_work.why)
3525 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3526 why, device->bm_io_work.why);
3527
3528 device->bm_io_work.peer_device = peer_device;
3529 device->bm_io_work.io_fn = io_fn;
3530 device->bm_io_work.done = done;
3531 device->bm_io_work.why = why;
3532 device->bm_io_work.flags = flags;
3533
3534 spin_lock_irq(lock: &device->resource->req_lock);
3535 set_bit(nr: BITMAP_IO, addr: &device->flags);
3536 /* don't wait for pending application IO if the caller indicates that
3537 * application IO does not conflict anyways. */
3538 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(v: &device->ap_bio_cnt) == 0) {
3539 if (!test_and_set_bit(nr: BITMAP_IO_QUEUED, addr: &device->flags))
3540 drbd_queue_work(q: &peer_device->connection->sender_work,
3541 w: &device->bm_io_work.w);
3542 }
3543 spin_unlock_irq(lock: &device->resource->req_lock);
3544}
3545
3546/**
3547 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3548 * @device: DRBD device.
3549 * @io_fn: IO callback to be called when bitmap IO is possible
3550 * @why: Descriptive text of the reason for doing the IO
3551 * @flags: Bitmap flags
3552 *
3553 * freezes application IO while that the actual IO operations runs. This
3554 * functions MAY NOT be called from worker context.
3555 */
3556int drbd_bitmap_io(struct drbd_device *device,
3557 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3558 char *why, enum bm_flag flags,
3559 struct drbd_peer_device *peer_device)
3560{
3561 /* Only suspend io, if some operation is supposed to be locked out */
3562 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3563 int rv;
3564
3565 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3566
3567 if (do_suspend_io)
3568 drbd_suspend_io(device);
3569
3570 drbd_bm_lock(device, why, flags);
3571 rv = io_fn(device, peer_device);
3572 drbd_bm_unlock(device);
3573
3574 if (do_suspend_io)
3575 drbd_resume_io(device);
3576
3577 return rv;
3578}
3579
3580void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3581{
3582 if ((device->ldev->md.flags & flag) != flag) {
3583 drbd_md_mark_dirty(device);
3584 device->ldev->md.flags |= flag;
3585 }
3586}
3587
3588void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3589{
3590 if ((device->ldev->md.flags & flag) != 0) {
3591 drbd_md_mark_dirty(device);
3592 device->ldev->md.flags &= ~flag;
3593 }
3594}
3595int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3596{
3597 return (bdev->md.flags & flag) != 0;
3598}
3599
3600static void md_sync_timer_fn(struct timer_list *t)
3601{
3602 struct drbd_device *device = from_timer(device, t, md_sync_timer);
3603 drbd_device_post_work(device, work_bit: MD_SYNC);
3604}
3605
3606const char *cmdname(enum drbd_packet cmd)
3607{
3608 /* THINK may need to become several global tables
3609 * when we want to support more than
3610 * one PRO_VERSION */
3611 static const char *cmdnames[] = {
3612
3613 [P_DATA] = "Data",
3614 [P_DATA_REPLY] = "DataReply",
3615 [P_RS_DATA_REPLY] = "RSDataReply",
3616 [P_BARRIER] = "Barrier",
3617 [P_BITMAP] = "ReportBitMap",
3618 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3619 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3620 [P_UNPLUG_REMOTE] = "UnplugRemote",
3621 [P_DATA_REQUEST] = "DataRequest",
3622 [P_RS_DATA_REQUEST] = "RSDataRequest",
3623 [P_SYNC_PARAM] = "SyncParam",
3624 [P_PROTOCOL] = "ReportProtocol",
3625 [P_UUIDS] = "ReportUUIDs",
3626 [P_SIZES] = "ReportSizes",
3627 [P_STATE] = "ReportState",
3628 [P_SYNC_UUID] = "ReportSyncUUID",
3629 [P_AUTH_CHALLENGE] = "AuthChallenge",
3630 [P_AUTH_RESPONSE] = "AuthResponse",
3631 [P_STATE_CHG_REQ] = "StateChgRequest",
3632 [P_PING] = "Ping",
3633 [P_PING_ACK] = "PingAck",
3634 [P_RECV_ACK] = "RecvAck",
3635 [P_WRITE_ACK] = "WriteAck",
3636 [P_RS_WRITE_ACK] = "RSWriteAck",
3637 [P_SUPERSEDED] = "Superseded",
3638 [P_NEG_ACK] = "NegAck",
3639 [P_NEG_DREPLY] = "NegDReply",
3640 [P_NEG_RS_DREPLY] = "NegRSDReply",
3641 [P_BARRIER_ACK] = "BarrierAck",
3642 [P_STATE_CHG_REPLY] = "StateChgReply",
3643 [P_OV_REQUEST] = "OVRequest",
3644 [P_OV_REPLY] = "OVReply",
3645 [P_OV_RESULT] = "OVResult",
3646 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3647 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3648 [P_SYNC_PARAM89] = "SyncParam89",
3649 [P_COMPRESSED_BITMAP] = "CBitmap",
3650 [P_DELAY_PROBE] = "DelayProbe",
3651 [P_OUT_OF_SYNC] = "OutOfSync",
3652 [P_RS_CANCEL] = "RSCancel",
3653 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3654 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3655 [P_PROTOCOL_UPDATE] = "protocol_update",
3656 [P_TRIM] = "Trim",
3657 [P_RS_THIN_REQ] = "rs_thin_req",
3658 [P_RS_DEALLOCATED] = "rs_deallocated",
3659 [P_WSAME] = "WriteSame",
3660 [P_ZEROES] = "Zeroes",
3661
3662 /* enum drbd_packet, but not commands - obsoleted flags:
3663 * P_MAY_IGNORE
3664 * P_MAX_OPT_CMD
3665 */
3666 };
3667
3668 /* too big for the array: 0xfffX */
3669 if (cmd == P_INITIAL_META)
3670 return "InitialMeta";
3671 if (cmd == P_INITIAL_DATA)
3672 return "InitialData";
3673 if (cmd == P_CONNECTION_FEATURES)
3674 return "ConnectionFeatures";
3675 if (cmd >= ARRAY_SIZE(cmdnames))
3676 return "Unknown";
3677 return cmdnames[cmd];
3678}
3679
3680/**
3681 * drbd_wait_misc - wait for a request to make progress
3682 * @device: device associated with the request
3683 * @i: the struct drbd_interval embedded in struct drbd_request or
3684 * struct drbd_peer_request
3685 */
3686int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3687{
3688 struct net_conf *nc;
3689 DEFINE_WAIT(wait);
3690 long timeout;
3691
3692 rcu_read_lock();
3693 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3694 if (!nc) {
3695 rcu_read_unlock();
3696 return -ETIMEDOUT;
3697 }
3698 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3699 rcu_read_unlock();
3700
3701 /* Indicate to wake up device->misc_wait on progress. */
3702 i->waiting = true;
3703 prepare_to_wait(wq_head: &device->misc_wait, wq_entry: &wait, TASK_INTERRUPTIBLE);
3704 spin_unlock_irq(lock: &device->resource->req_lock);
3705 timeout = schedule_timeout(timeout);
3706 finish_wait(wq_head: &device->misc_wait, wq_entry: &wait);
3707 spin_lock_irq(lock: &device->resource->req_lock);
3708 if (!timeout || device->state.conn < C_CONNECTED)
3709 return -ETIMEDOUT;
3710 if (signal_pending(current))
3711 return -ERESTARTSYS;
3712 return 0;
3713}
3714
3715void lock_all_resources(void)
3716{
3717 struct drbd_resource *resource;
3718 int __maybe_unused i = 0;
3719
3720 mutex_lock(&resources_mutex);
3721 local_irq_disable();
3722 for_each_resource(resource, &drbd_resources)
3723 spin_lock_nested(&resource->req_lock, i++);
3724}
3725
3726void unlock_all_resources(void)
3727{
3728 struct drbd_resource *resource;
3729
3730 for_each_resource(resource, &drbd_resources)
3731 spin_unlock(lock: &resource->req_lock);
3732 local_irq_enable();
3733 mutex_unlock(lock: &resources_mutex);
3734}
3735
3736#ifdef CONFIG_DRBD_FAULT_INJECTION
3737/* Fault insertion support including random number generator shamelessly
3738 * stolen from kernel/rcutorture.c */
3739struct fault_random_state {
3740 unsigned long state;
3741 unsigned long count;
3742};
3743
3744#define FAULT_RANDOM_MULT 39916801 /* prime */
3745#define FAULT_RANDOM_ADD 479001701 /* prime */
3746#define FAULT_RANDOM_REFRESH 10000
3747
3748/*
3749 * Crude but fast random-number generator. Uses a linear congruential
3750 * generator, with occasional help from get_random_bytes().
3751 */
3752static unsigned long
3753_drbd_fault_random(struct fault_random_state *rsp)
3754{
3755 long refresh;
3756
3757 if (!rsp->count--) {
3758 get_random_bytes(buf: &refresh, len: sizeof(refresh));
3759 rsp->state += refresh;
3760 rsp->count = FAULT_RANDOM_REFRESH;
3761 }
3762 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3763 return swahw32(rsp->state);
3764}
3765
3766static char *
3767_drbd_fault_str(unsigned int type) {
3768 static char *_faults[] = {
3769 [DRBD_FAULT_MD_WR] = "Meta-data write",
3770 [DRBD_FAULT_MD_RD] = "Meta-data read",
3771 [DRBD_FAULT_RS_WR] = "Resync write",
3772 [DRBD_FAULT_RS_RD] = "Resync read",
3773 [DRBD_FAULT_DT_WR] = "Data write",
3774 [DRBD_FAULT_DT_RD] = "Data read",
3775 [DRBD_FAULT_DT_RA] = "Data read ahead",
3776 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3777 [DRBD_FAULT_AL_EE] = "EE allocation",
3778 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3779 };
3780
3781 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3782}
3783
3784unsigned int
3785_drbd_insert_fault(struct drbd_device *device, unsigned int type)
3786{
3787 static struct fault_random_state rrs = {0, 0};
3788
3789 unsigned int ret = (
3790 (drbd_fault_devs == 0 ||
3791 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3792 (((_drbd_fault_random(rsp: &rrs) % 100) + 1) <= drbd_fault_rate));
3793
3794 if (ret) {
3795 drbd_fault_count++;
3796
3797 if (drbd_ratelimit())
3798 drbd_warn(device, "***Simulating %s failure\n",
3799 _drbd_fault_str(type));
3800 }
3801
3802 return ret;
3803}
3804#endif
3805
3806module_init(drbd_init)
3807module_exit(drbd_cleanup)
3808
3809EXPORT_SYMBOL(drbd_conn_str);
3810EXPORT_SYMBOL(drbd_role_str);
3811EXPORT_SYMBOL(drbd_disk_str);
3812EXPORT_SYMBOL(drbd_set_st_err_str);
3813

source code of linux/drivers/block/drbd/drbd_main.c