1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(bdev: &adev->mman.bdev, type,
79 use_tt: false, p_size: size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(tbo: bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(gmc: &adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, res: bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162}
163
164/**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183{
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, type: mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, entity: &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 size: num_dw * 4 + num_bytes,
229 pool_type: AMDGPU_IB_POOL_DELAYED, job: &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(bo: adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, offset: 0, pages: num_pages, dma_addr, flags, dst: cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, offset: i << PAGE_SHIFT, pages: 1, dma_addr: &dma_address,
263 flags, dst: cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(fence: amdgpu_job_submit(job));
269 return 0;
270}
271
272/**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293{
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
301 return -EINVAL;
302 }
303
304 amdgpu_res_first(res: src->mem, start: src->offset, size, cur: &src_mm);
305 amdgpu_res_first(res: dst->mem, start: dst->offset, size, cur: &dst_mm);
306
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
311
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(bo: src->bo, mem: src->mem, mm_cur: &src_mm,
317 window: 0, ring, tmz, size: &cur_size, addr: &from);
318 if (r)
319 goto error;
320
321 r = amdgpu_ttm_map_buffer(bo: dst->bo, mem: dst->mem, mm_cur: &dst_mm,
322 window: 1, ring, tmz, size: &cur_size, addr: &to);
323 if (r)
324 goto error;
325
326 r = amdgpu_copy_buffer(ring, src_offset: from, dst_offset: to, byte_count: cur_size,
327 resv, fence: &next, direct_submit: false, vm_needs_flush: true, tmz);
328 if (r)
329 goto error;
330
331 dma_fence_put(fence);
332 fence = next;
333
334 amdgpu_res_next(cur: &src_mm, size: cur_size);
335 amdgpu_res_next(cur: &dst_mm, size: cur_size);
336 }
337error:
338 mutex_unlock(lock: &adev->mman.gtt_window_lock);
339 if (f)
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
342 return r;
343}
344
345/*
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
347 *
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
350 */
351static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 bool evict,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
355{
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
360 int r;
361
362 src.bo = bo;
363 dst.bo = bo;
364 src.mem = old_mem;
365 dst.mem = new_mem;
366 src.offset = 0;
367 dst.offset = 0;
368
369 r = amdgpu_ttm_copy_mem_to_mem(adev, src: &src, dst: &dst,
370 size: new_mem->size,
371 tmz: amdgpu_bo_encrypted(bo: abo),
372 resv: bo->base.resv, f: &fence);
373 if (r)
374 goto error;
375
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
380
381 r = amdgpu_fill_buffer(bo: abo, AMDGPU_POISON, NULL, fence: &wipe_fence,
382 delayed: false);
383 if (r) {
384 goto error;
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
387 fence = wipe_fence;
388 }
389 }
390
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, evict: true, pipeline: false, new_mem);
394 else
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, pipeline: true, new_mem);
396 dma_fence_put(fence);
397 return r;
398
399error:
400 if (fence)
401 dma_fence_wait(fence, intr: false);
402 dma_fence_put(fence);
403 return r;
404}
405
406/**
407 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408 * @adev: amdgpu device
409 * @res: the resource to check
410 *
411 * Returns: true if the full resource is CPU visible, false otherwise.
412 */
413bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414 struct ttm_resource *res)
415{
416 struct amdgpu_res_cursor cursor;
417
418 if (!res)
419 return false;
420
421 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422 res->mem_type == AMDGPU_PL_PREEMPT)
423 return true;
424
425 if (res->mem_type != TTM_PL_VRAM)
426 return false;
427
428 amdgpu_res_first(res, start: 0, size: res->size, cur: &cursor);
429 while (cursor.remaining) {
430 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
431 return false;
432 amdgpu_res_next(cur: &cursor, size: cursor.size);
433 }
434
435 return true;
436}
437
438/*
439 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
440 *
441 * Called by amdgpu_bo_move()
442 */
443static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444 struct ttm_resource *mem)
445{
446 if (!amdgpu_res_cpu_visible(adev, res: mem))
447 return false;
448
449 /* ttm_resource_ioremap only supports contiguous memory */
450 if (mem->mem_type == TTM_PL_VRAM &&
451 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
452 return false;
453
454 return true;
455}
456
457/*
458 * amdgpu_bo_move - Move a buffer object to a new memory location
459 *
460 * Called by ttm_bo_handle_move_mem()
461 */
462static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463 struct ttm_operation_ctx *ctx,
464 struct ttm_resource *new_mem,
465 struct ttm_place *hop)
466{
467 struct amdgpu_device *adev;
468 struct amdgpu_bo *abo;
469 struct ttm_resource *old_mem = bo->resource;
470 int r;
471
472 if (new_mem->mem_type == TTM_PL_TT ||
473 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474 r = amdgpu_ttm_backend_bind(bdev: bo->bdev, ttm: bo->ttm, bo_mem: new_mem);
475 if (r)
476 return r;
477 }
478
479 abo = ttm_to_amdgpu_bo(tbo: bo);
480 adev = amdgpu_ttm_adev(bdev: bo->bdev);
481
482 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
483 bo->ttm == NULL)) {
484 ttm_bo_move_null(bo, new_mem);
485 goto out;
486 }
487 if (old_mem->mem_type == TTM_PL_SYSTEM &&
488 (new_mem->mem_type == TTM_PL_TT ||
489 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
490 ttm_bo_move_null(bo, new_mem);
491 goto out;
492 }
493 if ((old_mem->mem_type == TTM_PL_TT ||
494 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
495 new_mem->mem_type == TTM_PL_SYSTEM) {
496 r = ttm_bo_wait_ctx(bo, ctx);
497 if (r)
498 return r;
499
500 amdgpu_ttm_backend_unbind(bdev: bo->bdev, ttm: bo->ttm);
501 ttm_resource_free(bo, res: &bo->resource);
502 ttm_bo_assign_mem(bo, new_mem);
503 goto out;
504 }
505
506 if (old_mem->mem_type == AMDGPU_PL_GDS ||
507 old_mem->mem_type == AMDGPU_PL_GWS ||
508 old_mem->mem_type == AMDGPU_PL_OA ||
509 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
510 new_mem->mem_type == AMDGPU_PL_GDS ||
511 new_mem->mem_type == AMDGPU_PL_GWS ||
512 new_mem->mem_type == AMDGPU_PL_OA ||
513 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
514 /* Nothing to save here */
515 ttm_bo_move_null(bo, new_mem);
516 goto out;
517 }
518
519 if (bo->type == ttm_bo_type_device &&
520 new_mem->mem_type == TTM_PL_VRAM &&
521 old_mem->mem_type != TTM_PL_VRAM) {
522 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523 * accesses the BO after it's moved.
524 */
525 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526 }
527
528 if (adev->mman.buffer_funcs_enabled) {
529 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530 new_mem->mem_type == TTM_PL_VRAM) ||
531 (old_mem->mem_type == TTM_PL_VRAM &&
532 new_mem->mem_type == TTM_PL_SYSTEM))) {
533 hop->fpfn = 0;
534 hop->lpfn = 0;
535 hop->mem_type = TTM_PL_TT;
536 hop->flags = TTM_PL_FLAG_TEMPORARY;
537 return -EMULTIHOP;
538 }
539
540 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541 } else {
542 r = -ENODEV;
543 }
544
545 if (r) {
546 /* Check that all memory is CPU accessible */
547 if (!amdgpu_res_copyable(adev, mem: old_mem) ||
548 !amdgpu_res_copyable(adev, mem: new_mem)) {
549 pr_err("Move buffer fallback to memcpy unavailable\n");
550 return r;
551 }
552
553 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554 if (r)
555 return r;
556 }
557
558 trace_amdgpu_bo_move(bo: abo, new_placement: new_mem->mem_type, old_placement: old_mem->mem_type);
559out:
560 /* update statistics */
561 atomic64_add(i: bo->base.size, v: &adev->num_bytes_moved);
562 amdgpu_bo_move_notify(bo, evict);
563 return 0;
564}
565
566/*
567 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
568 *
569 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
570 */
571static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
572 struct ttm_resource *mem)
573{
574 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
575
576 switch (mem->mem_type) {
577 case TTM_PL_SYSTEM:
578 /* system memory */
579 return 0;
580 case TTM_PL_TT:
581 case AMDGPU_PL_PREEMPT:
582 break;
583 case TTM_PL_VRAM:
584 mem->bus.offset = mem->start << PAGE_SHIFT;
585
586 if (adev->mman.aper_base_kaddr &&
587 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
588 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
589 mem->bus.offset;
590
591 mem->bus.offset += adev->gmc.aper_base;
592 mem->bus.is_iomem = true;
593 break;
594 case AMDGPU_PL_DOORBELL:
595 mem->bus.offset = mem->start << PAGE_SHIFT;
596 mem->bus.offset += adev->doorbell.base;
597 mem->bus.is_iomem = true;
598 mem->bus.caching = ttm_uncached;
599 break;
600 default:
601 return -EINVAL;
602 }
603 return 0;
604}
605
606static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
607 unsigned long page_offset)
608{
609 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
610 struct amdgpu_res_cursor cursor;
611
612 amdgpu_res_first(res: bo->resource, start: (u64)page_offset << PAGE_SHIFT, size: 0,
613 cur: &cursor);
614
615 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
616 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
617
618 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
619}
620
621/**
622 * amdgpu_ttm_domain_start - Returns GPU start address
623 * @adev: amdgpu device object
624 * @type: type of the memory
625 *
626 * Returns:
627 * GPU start address of a memory domain
628 */
629
630uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
631{
632 switch (type) {
633 case TTM_PL_TT:
634 return adev->gmc.gart_start;
635 case TTM_PL_VRAM:
636 return adev->gmc.vram_start;
637 }
638
639 return 0;
640}
641
642/*
643 * TTM backend functions.
644 */
645struct amdgpu_ttm_tt {
646 struct ttm_tt ttm;
647 struct drm_gem_object *gobj;
648 u64 offset;
649 uint64_t userptr;
650 struct task_struct *usertask;
651 uint32_t userflags;
652 bool bound;
653 int32_t pool_id;
654};
655
656#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
657
658#ifdef CONFIG_DRM_AMDGPU_USERPTR
659/*
660 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
661 * memory and start HMM tracking CPU page table update
662 *
663 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
664 * once afterwards to stop HMM tracking
665 */
666int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
667 struct hmm_range **range)
668{
669 struct ttm_tt *ttm = bo->tbo.ttm;
670 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
671 unsigned long start = gtt->userptr;
672 struct vm_area_struct *vma;
673 struct mm_struct *mm;
674 bool readonly;
675 int r = 0;
676
677 /* Make sure get_user_pages_done() can cleanup gracefully */
678 *range = NULL;
679
680 mm = bo->notifier.mm;
681 if (unlikely(!mm)) {
682 DRM_DEBUG_DRIVER("BO is not registered?\n");
683 return -EFAULT;
684 }
685
686 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
687 return -ESRCH;
688
689 mmap_read_lock(mm);
690 vma = vma_lookup(mm, addr: start);
691 if (unlikely(!vma)) {
692 r = -EFAULT;
693 goto out_unlock;
694 }
695 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
696 vma->vm_file)) {
697 r = -EPERM;
698 goto out_unlock;
699 }
700
701 readonly = amdgpu_ttm_tt_is_readonly(ttm);
702 r = amdgpu_hmm_range_get_pages(notifier: &bo->notifier, start, npages: ttm->num_pages,
703 readonly, NULL, pages, phmm_range: range);
704out_unlock:
705 mmap_read_unlock(mm);
706 if (r)
707 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
708
709 mmput(mm);
710
711 return r;
712}
713
714/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
715 */
716void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
717 struct hmm_range *range)
718{
719 struct amdgpu_ttm_tt *gtt = (void *)ttm;
720
721 if (gtt && gtt->userptr && range)
722 amdgpu_hmm_range_get_pages_done(hmm_range: range);
723}
724
725/*
726 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
727 * Check if the pages backing this ttm range have been invalidated
728 *
729 * Returns: true if pages are still valid
730 */
731bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
732 struct hmm_range *range)
733{
734 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
735
736 if (!gtt || !gtt->userptr || !range)
737 return false;
738
739 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
740 gtt->userptr, ttm->num_pages);
741
742 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
743
744 return !amdgpu_hmm_range_get_pages_done(hmm_range: range);
745}
746#endif
747
748/*
749 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
750 *
751 * Called by amdgpu_cs_list_validate(). This creates the page list
752 * that backs user memory and will ultimately be mapped into the device
753 * address space.
754 */
755void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
756{
757 unsigned long i;
758
759 for (i = 0; i < ttm->num_pages; ++i)
760 ttm->pages[i] = pages ? pages[i] : NULL;
761}
762
763/*
764 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
765 *
766 * Called by amdgpu_ttm_backend_bind()
767 **/
768static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
769 struct ttm_tt *ttm)
770{
771 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
772 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
773 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
774 enum dma_data_direction direction = write ?
775 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
776 int r;
777
778 /* Allocate an SG array and squash pages into it */
779 r = sg_alloc_table_from_pages(sgt: ttm->sg, pages: ttm->pages, n_pages: ttm->num_pages, offset: 0,
780 size: (u64)ttm->num_pages << PAGE_SHIFT,
781 GFP_KERNEL);
782 if (r)
783 goto release_sg;
784
785 /* Map SG to device */
786 r = dma_map_sgtable(dev: adev->dev, sgt: ttm->sg, dir: direction, attrs: 0);
787 if (r)
788 goto release_sg;
789
790 /* convert SG to linear array of pages and dma addresses */
791 drm_prime_sg_to_dma_addr_array(sgt: ttm->sg, addrs: gtt->ttm.dma_address,
792 max_pages: ttm->num_pages);
793
794 return 0;
795
796release_sg:
797 kfree(objp: ttm->sg);
798 ttm->sg = NULL;
799 return r;
800}
801
802/*
803 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
804 */
805static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
806 struct ttm_tt *ttm)
807{
808 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
809 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
810 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
811 enum dma_data_direction direction = write ?
812 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
813
814 /* double check that we don't free the table twice */
815 if (!ttm->sg || !ttm->sg->sgl)
816 return;
817
818 /* unmap the pages mapped to the device */
819 dma_unmap_sgtable(dev: adev->dev, sgt: ttm->sg, dir: direction, attrs: 0);
820 sg_free_table(ttm->sg);
821}
822
823/*
824 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
825 * MQDn+CtrlStackn where n is the number of XCCs per partition.
826 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
827 * and uses memory type default, UC. The rest of pages_per_xcc are
828 * Ctrl stack and modify their memory type to NC.
829 */
830static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
831 struct ttm_tt *ttm, uint64_t flags)
832{
833 struct amdgpu_ttm_tt *gtt = (void *)ttm;
834 uint64_t total_pages = ttm->num_pages;
835 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
836 uint64_t page_idx, pages_per_xcc;
837 int i;
838 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
839 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
840
841 pages_per_xcc = total_pages;
842 do_div(pages_per_xcc, num_xcc);
843
844 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
845 /* MQD page: use default flags */
846 amdgpu_gart_bind(adev,
847 offset: gtt->offset + (page_idx << PAGE_SHIFT),
848 pages: 1, dma_addr: &gtt->ttm.dma_address[page_idx], flags);
849 /*
850 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
851 * the second page of the BO onward.
852 */
853 amdgpu_gart_bind(adev,
854 offset: gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
855 pages: pages_per_xcc - 1,
856 dma_addr: &gtt->ttm.dma_address[page_idx + 1],
857 flags: ctrl_flags);
858 }
859}
860
861static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
862 struct ttm_buffer_object *tbo,
863 uint64_t flags)
864{
865 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
866 struct ttm_tt *ttm = tbo->ttm;
867 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
868
869 if (amdgpu_bo_encrypted(bo: abo))
870 flags |= AMDGPU_PTE_TMZ;
871
872 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
873 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
874 } else {
875 amdgpu_gart_bind(adev, offset: gtt->offset, pages: ttm->num_pages,
876 dma_addr: gtt->ttm.dma_address, flags);
877 }
878 gtt->bound = true;
879}
880
881/*
882 * amdgpu_ttm_backend_bind - Bind GTT memory
883 *
884 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
885 * This handles binding GTT memory to the device address space.
886 */
887static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
888 struct ttm_tt *ttm,
889 struct ttm_resource *bo_mem)
890{
891 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
892 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
893 uint64_t flags;
894 int r;
895
896 if (!bo_mem)
897 return -EINVAL;
898
899 if (gtt->bound)
900 return 0;
901
902 if (gtt->userptr) {
903 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
904 if (r) {
905 DRM_ERROR("failed to pin userptr\n");
906 return r;
907 }
908 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
909 if (!ttm->sg) {
910 struct dma_buf_attachment *attach;
911 struct sg_table *sgt;
912
913 attach = gtt->gobj->import_attach;
914 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
915 if (IS_ERR(ptr: sgt))
916 return PTR_ERR(ptr: sgt);
917
918 ttm->sg = sgt;
919 }
920
921 drm_prime_sg_to_dma_addr_array(sgt: ttm->sg, addrs: gtt->ttm.dma_address,
922 max_pages: ttm->num_pages);
923 }
924
925 if (!ttm->num_pages) {
926 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
927 ttm->num_pages, bo_mem, ttm);
928 }
929
930 if (bo_mem->mem_type != TTM_PL_TT ||
931 !amdgpu_gtt_mgr_has_gart_addr(mem: bo_mem)) {
932 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
933 return 0;
934 }
935
936 /* compute PTE flags relevant to this BO memory */
937 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem: bo_mem);
938
939 /* bind pages into GART page tables */
940 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
941 amdgpu_gart_bind(adev, offset: gtt->offset, pages: ttm->num_pages,
942 dma_addr: gtt->ttm.dma_address, flags);
943 gtt->bound = true;
944 return 0;
945}
946
947/*
948 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
949 * through AGP or GART aperture.
950 *
951 * If bo is accessible through AGP aperture, then use AGP aperture
952 * to access bo; otherwise allocate logical space in GART aperture
953 * and map bo to GART aperture.
954 */
955int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
956{
957 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
958 struct ttm_operation_ctx ctx = { false, false };
959 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
960 struct ttm_placement placement;
961 struct ttm_place placements;
962 struct ttm_resource *tmp;
963 uint64_t addr, flags;
964 int r;
965
966 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
967 return 0;
968
969 addr = amdgpu_gmc_agp_addr(bo);
970 if (addr != AMDGPU_BO_INVALID_OFFSET)
971 return 0;
972
973 /* allocate GART space */
974 placement.num_placement = 1;
975 placement.placement = &placements;
976 placements.fpfn = 0;
977 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
978 placements.mem_type = TTM_PL_TT;
979 placements.flags = bo->resource->placement;
980
981 r = ttm_bo_mem_space(bo, placement: &placement, mem: &tmp, ctx: &ctx);
982 if (unlikely(r))
983 return r;
984
985 /* compute PTE flags for this buffer object */
986 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: bo->ttm, mem: tmp);
987
988 /* Bind pages */
989 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
990 amdgpu_ttm_gart_bind(adev, tbo: bo, flags);
991 amdgpu_gart_invalidate_tlb(adev);
992 ttm_resource_free(bo, res: &bo->resource);
993 ttm_bo_assign_mem(bo, new_mem: tmp);
994
995 return 0;
996}
997
998/*
999 * amdgpu_ttm_recover_gart - Rebind GTT pages
1000 *
1001 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1002 * rebind GTT pages during a GPU reset.
1003 */
1004void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1005{
1006 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: tbo->bdev);
1007 uint64_t flags;
1008
1009 if (!tbo->ttm)
1010 return;
1011
1012 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: tbo->ttm, mem: tbo->resource);
1013 amdgpu_ttm_gart_bind(adev, tbo, flags);
1014}
1015
1016/*
1017 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1018 *
1019 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1020 * ttm_tt_destroy().
1021 */
1022static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1023 struct ttm_tt *ttm)
1024{
1025 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1026 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1027
1028 /* if the pages have userptr pinning then clear that first */
1029 if (gtt->userptr) {
1030 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1031 } else if (ttm->sg && gtt->gobj->import_attach) {
1032 struct dma_buf_attachment *attach;
1033
1034 attach = gtt->gobj->import_attach;
1035 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1036 ttm->sg = NULL;
1037 }
1038
1039 if (!gtt->bound)
1040 return;
1041
1042 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1043 return;
1044
1045 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1046 amdgpu_gart_unbind(adev, offset: gtt->offset, pages: ttm->num_pages);
1047 gtt->bound = false;
1048}
1049
1050static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1051 struct ttm_tt *ttm)
1052{
1053 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1054
1055 if (gtt->usertask)
1056 put_task_struct(t: gtt->usertask);
1057
1058 ttm_tt_fini(ttm: &gtt->ttm);
1059 kfree(objp: gtt);
1060}
1061
1062/**
1063 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1064 *
1065 * @bo: The buffer object to create a GTT ttm_tt object around
1066 * @page_flags: Page flags to be added to the ttm_tt object
1067 *
1068 * Called by ttm_tt_create().
1069 */
1070static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1071 uint32_t page_flags)
1072{
1073 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
1074 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1075 struct amdgpu_ttm_tt *gtt;
1076 enum ttm_caching caching;
1077
1078 gtt = kzalloc(size: sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1079 if (!gtt)
1080 return NULL;
1081
1082 gtt->gobj = &bo->base;
1083 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1084 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1085 else
1086 gtt->pool_id = abo->xcp_id;
1087
1088 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1089 caching = ttm_write_combined;
1090 else
1091 caching = ttm_cached;
1092
1093 /* allocate space for the uninitialized page entries */
1094 if (ttm_sg_tt_init(ttm_dma: &gtt->ttm, bo, page_flags, caching)) {
1095 kfree(objp: gtt);
1096 return NULL;
1097 }
1098 return &gtt->ttm;
1099}
1100
1101/*
1102 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1103 *
1104 * Map the pages of a ttm_tt object to an address space visible
1105 * to the underlying device.
1106 */
1107static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1108 struct ttm_tt *ttm,
1109 struct ttm_operation_ctx *ctx)
1110{
1111 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1112 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1113 struct ttm_pool *pool;
1114 pgoff_t i;
1115 int ret;
1116
1117 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1118 if (gtt->userptr) {
1119 ttm->sg = kzalloc(size: sizeof(struct sg_table), GFP_KERNEL);
1120 if (!ttm->sg)
1121 return -ENOMEM;
1122 return 0;
1123 }
1124
1125 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1126 return 0;
1127
1128 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1129 pool = &adev->mman.ttm_pools[gtt->pool_id];
1130 else
1131 pool = &adev->mman.bdev.pool;
1132 ret = ttm_pool_alloc(pool, tt: ttm, ctx);
1133 if (ret)
1134 return ret;
1135
1136 for (i = 0; i < ttm->num_pages; ++i)
1137 ttm->pages[i]->mapping = bdev->dev_mapping;
1138
1139 return 0;
1140}
1141
1142/*
1143 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1144 *
1145 * Unmaps pages of a ttm_tt object from the device address space and
1146 * unpopulates the page array backing it.
1147 */
1148static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1149 struct ttm_tt *ttm)
1150{
1151 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1152 struct amdgpu_device *adev;
1153 struct ttm_pool *pool;
1154 pgoff_t i;
1155
1156 amdgpu_ttm_backend_unbind(bdev, ttm);
1157
1158 if (gtt->userptr) {
1159 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1160 kfree(objp: ttm->sg);
1161 ttm->sg = NULL;
1162 return;
1163 }
1164
1165 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1166 return;
1167
1168 for (i = 0; i < ttm->num_pages; ++i)
1169 ttm->pages[i]->mapping = NULL;
1170
1171 adev = amdgpu_ttm_adev(bdev);
1172
1173 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1174 pool = &adev->mman.ttm_pools[gtt->pool_id];
1175 else
1176 pool = &adev->mman.bdev.pool;
1177
1178 return ttm_pool_free(pool, tt: ttm);
1179}
1180
1181/**
1182 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1183 * task
1184 *
1185 * @tbo: The ttm_buffer_object that contains the userptr
1186 * @user_addr: The returned value
1187 */
1188int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1189 uint64_t *user_addr)
1190{
1191 struct amdgpu_ttm_tt *gtt;
1192
1193 if (!tbo->ttm)
1194 return -EINVAL;
1195
1196 gtt = (void *)tbo->ttm;
1197 *user_addr = gtt->userptr;
1198 return 0;
1199}
1200
1201/**
1202 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1203 * task
1204 *
1205 * @bo: The ttm_buffer_object to bind this userptr to
1206 * @addr: The address in the current tasks VM space to use
1207 * @flags: Requirements of userptr object.
1208 *
1209 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1210 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1211 * initialize GPU VM for a KFD process.
1212 */
1213int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1214 uint64_t addr, uint32_t flags)
1215{
1216 struct amdgpu_ttm_tt *gtt;
1217
1218 if (!bo->ttm) {
1219 /* TODO: We want a separate TTM object type for userptrs */
1220 bo->ttm = amdgpu_ttm_tt_create(bo, page_flags: 0);
1221 if (bo->ttm == NULL)
1222 return -ENOMEM;
1223 }
1224
1225 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1226 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1227
1228 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1229 gtt->userptr = addr;
1230 gtt->userflags = flags;
1231
1232 if (gtt->usertask)
1233 put_task_struct(t: gtt->usertask);
1234 gtt->usertask = current->group_leader;
1235 get_task_struct(t: gtt->usertask);
1236
1237 return 0;
1238}
1239
1240/*
1241 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1242 */
1243struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1244{
1245 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1246
1247 if (gtt == NULL)
1248 return NULL;
1249
1250 if (gtt->usertask == NULL)
1251 return NULL;
1252
1253 return gtt->usertask->mm;
1254}
1255
1256/*
1257 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1258 * address range for the current task.
1259 *
1260 */
1261bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1262 unsigned long end, unsigned long *userptr)
1263{
1264 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1265 unsigned long size;
1266
1267 if (gtt == NULL || !gtt->userptr)
1268 return false;
1269
1270 /* Return false if no part of the ttm_tt object lies within
1271 * the range
1272 */
1273 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1274 if (gtt->userptr > end || gtt->userptr + size <= start)
1275 return false;
1276
1277 if (userptr)
1278 *userptr = gtt->userptr;
1279 return true;
1280}
1281
1282/*
1283 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1284 */
1285bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1286{
1287 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1288
1289 if (gtt == NULL || !gtt->userptr)
1290 return false;
1291
1292 return true;
1293}
1294
1295/*
1296 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1297 */
1298bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1299{
1300 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1301
1302 if (gtt == NULL)
1303 return false;
1304
1305 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1306}
1307
1308/**
1309 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1310 *
1311 * @ttm: The ttm_tt object to compute the flags for
1312 * @mem: The memory registry backing this ttm_tt object
1313 *
1314 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1315 */
1316uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1317{
1318 uint64_t flags = 0;
1319
1320 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1321 flags |= AMDGPU_PTE_VALID;
1322
1323 if (mem && (mem->mem_type == TTM_PL_TT ||
1324 mem->mem_type == AMDGPU_PL_DOORBELL ||
1325 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1326 flags |= AMDGPU_PTE_SYSTEM;
1327
1328 if (ttm->caching == ttm_cached)
1329 flags |= AMDGPU_PTE_SNOOPED;
1330 }
1331
1332 if (mem && mem->mem_type == TTM_PL_VRAM &&
1333 mem->bus.caching == ttm_cached)
1334 flags |= AMDGPU_PTE_SNOOPED;
1335
1336 return flags;
1337}
1338
1339/**
1340 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1341 *
1342 * @adev: amdgpu_device pointer
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PTE (Page Table Entry).
1347 */
1348uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1349 struct ttm_resource *mem)
1350{
1351 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1352
1353 flags |= adev->gart.gart_pte_flags;
1354 flags |= AMDGPU_PTE_READABLE;
1355
1356 if (!amdgpu_ttm_tt_is_readonly(ttm))
1357 flags |= AMDGPU_PTE_WRITEABLE;
1358
1359 return flags;
1360}
1361
1362/*
1363 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1364 * object.
1365 *
1366 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1367 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1368 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1369 * used to clean out a memory space.
1370 */
1371static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1372 const struct ttm_place *place)
1373{
1374 struct dma_resv_iter resv_cursor;
1375 struct dma_fence *f;
1376
1377 if (!amdgpu_bo_is_amdgpu_bo(bo))
1378 return ttm_bo_eviction_valuable(bo, place);
1379
1380 /* Swapout? */
1381 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1382 return true;
1383
1384 if (bo->type == ttm_bo_type_kernel &&
1385 !amdgpu_vm_evictable(bo: ttm_to_amdgpu_bo(tbo: bo)))
1386 return false;
1387
1388 /* If bo is a KFD BO, check if the bo belongs to the current process.
1389 * If true, then return false as any KFD process needs all its BOs to
1390 * be resident to run successfully
1391 */
1392 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1393 DMA_RESV_USAGE_BOOKKEEP, f) {
1394 if (amdkfd_fence_check_mm(f, current->mm))
1395 return false;
1396 }
1397
1398 /* Preemptible BOs don't own system resources managed by the
1399 * driver (pages, VRAM, GART space). They point to resources
1400 * owned by someone else (e.g. pageable memory in user mode
1401 * or a DMABuf). They are used in a preemptible context so we
1402 * can guarantee no deadlocks and good QoS in case of MMU
1403 * notifiers or DMABuf move notifiers from the resource owner.
1404 */
1405 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1406 return false;
1407
1408 if (bo->resource->mem_type == TTM_PL_TT &&
1409 amdgpu_bo_encrypted(bo: ttm_to_amdgpu_bo(tbo: bo)))
1410 return false;
1411
1412 return ttm_bo_eviction_valuable(bo, place);
1413}
1414
1415static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1416 void *buf, size_t size, bool write)
1417{
1418 while (size) {
1419 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1420 uint64_t bytes = 4 - (pos & 0x3);
1421 uint32_t shift = (pos & 0x3) * 8;
1422 uint32_t mask = 0xffffffff << shift;
1423 uint32_t value = 0;
1424
1425 if (size < bytes) {
1426 mask &= 0xffffffff >> (bytes - size) * 8;
1427 bytes = size;
1428 }
1429
1430 if (mask != 0xffffffff) {
1431 amdgpu_device_mm_access(adev, pos: aligned_pos, buf: &value, size: 4, write: false);
1432 if (write) {
1433 value &= ~mask;
1434 value |= (*(uint32_t *)buf << shift) & mask;
1435 amdgpu_device_mm_access(adev, pos: aligned_pos, buf: &value, size: 4, write: true);
1436 } else {
1437 value = (value & mask) >> shift;
1438 memcpy(buf, &value, bytes);
1439 }
1440 } else {
1441 amdgpu_device_mm_access(adev, pos: aligned_pos, buf, size: 4, write);
1442 }
1443
1444 pos += bytes;
1445 buf += bytes;
1446 size -= bytes;
1447 }
1448}
1449
1450static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1451 unsigned long offset, void *buf,
1452 int len, int write)
1453{
1454 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1455 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: abo->tbo.bdev);
1456 struct amdgpu_res_cursor src_mm;
1457 struct amdgpu_job *job;
1458 struct dma_fence *fence;
1459 uint64_t src_addr, dst_addr;
1460 unsigned int num_dw;
1461 int r, idx;
1462
1463 if (len != PAGE_SIZE)
1464 return -EINVAL;
1465
1466 if (!adev->mman.sdma_access_ptr)
1467 return -EACCES;
1468
1469 if (!drm_dev_enter(dev: adev_to_drm(adev), idx: &idx))
1470 return -ENODEV;
1471
1472 if (write)
1473 memcpy(adev->mman.sdma_access_ptr, buf, len);
1474
1475 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1476 r = amdgpu_job_alloc_with_ib(adev, entity: &adev->mman.high_pr,
1477 AMDGPU_FENCE_OWNER_UNDEFINED,
1478 size: num_dw * 4, pool_type: AMDGPU_IB_POOL_DELAYED,
1479 job: &job);
1480 if (r)
1481 goto out;
1482
1483 amdgpu_res_first(res: abo->tbo.resource, start: offset, size: len, cur: &src_mm);
1484 src_addr = amdgpu_ttm_domain_start(adev, type: bo->resource->mem_type) +
1485 src_mm.start;
1486 dst_addr = amdgpu_bo_gpu_offset(bo: adev->mman.sdma_access_bo);
1487 if (write)
1488 swap(src_addr, dst_addr);
1489
1490 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1491 PAGE_SIZE, false);
1492
1493 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1494 WARN_ON(job->ibs[0].length_dw > num_dw);
1495
1496 fence = amdgpu_job_submit(job);
1497
1498 if (!dma_fence_wait_timeout(fence, intr: false, timeout: adev->sdma_timeout))
1499 r = -ETIMEDOUT;
1500 dma_fence_put(fence);
1501
1502 if (!(r || write))
1503 memcpy(buf, adev->mman.sdma_access_ptr, len);
1504out:
1505 drm_dev_exit(idx);
1506 return r;
1507}
1508
1509/**
1510 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1511 *
1512 * @bo: The buffer object to read/write
1513 * @offset: Offset into buffer object
1514 * @buf: Secondary buffer to write/read from
1515 * @len: Length in bytes of access
1516 * @write: true if writing
1517 *
1518 * This is used to access VRAM that backs a buffer object via MMIO
1519 * access for debugging purposes.
1520 */
1521static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1522 unsigned long offset, void *buf, int len,
1523 int write)
1524{
1525 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1526 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: abo->tbo.bdev);
1527 struct amdgpu_res_cursor cursor;
1528 int ret = 0;
1529
1530 if (bo->resource->mem_type != TTM_PL_VRAM)
1531 return -EIO;
1532
1533 if (amdgpu_device_has_timeouts_enabled(adev) &&
1534 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1535 return len;
1536
1537 amdgpu_res_first(res: bo->resource, start: offset, size: len, cur: &cursor);
1538 while (cursor.remaining) {
1539 size_t count, size = cursor.size;
1540 loff_t pos = cursor.start;
1541
1542 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1543 size -= count;
1544 if (size) {
1545 /* using MM to access rest vram and handle un-aligned address */
1546 pos += count;
1547 buf += count;
1548 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1549 }
1550
1551 ret += cursor.size;
1552 buf += cursor.size;
1553 amdgpu_res_next(cur: &cursor, size: cursor.size);
1554 }
1555
1556 return ret;
1557}
1558
1559static void
1560amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1561{
1562 amdgpu_bo_move_notify(bo, evict: false);
1563}
1564
1565static struct ttm_device_funcs amdgpu_bo_driver = {
1566 .ttm_tt_create = &amdgpu_ttm_tt_create,
1567 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1568 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1569 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1570 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1571 .evict_flags = &amdgpu_evict_flags,
1572 .move = &amdgpu_bo_move,
1573 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1574 .release_notify = &amdgpu_bo_release_notify,
1575 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1576 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1577 .access_memory = &amdgpu_ttm_access_memory,
1578};
1579
1580/*
1581 * Firmware Reservation functions
1582 */
1583/**
1584 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1585 *
1586 * @adev: amdgpu_device pointer
1587 *
1588 * free fw reserved vram if it has been reserved.
1589 */
1590static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1591{
1592 amdgpu_bo_free_kernel(bo: &adev->mman.fw_vram_usage_reserved_bo,
1593 NULL, cpu_addr: &adev->mman.fw_vram_usage_va);
1594}
1595
1596/*
1597 * Driver Reservation functions
1598 */
1599/**
1600 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1601 *
1602 * @adev: amdgpu_device pointer
1603 *
1604 * free drv reserved vram if it has been reserved.
1605 */
1606static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1607{
1608 amdgpu_bo_free_kernel(bo: &adev->mman.drv_vram_usage_reserved_bo,
1609 NULL,
1610 cpu_addr: &adev->mman.drv_vram_usage_va);
1611}
1612
1613/**
1614 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1615 *
1616 * @adev: amdgpu_device pointer
1617 *
1618 * create bo vram reservation from fw.
1619 */
1620static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1621{
1622 uint64_t vram_size = adev->gmc.visible_vram_size;
1623
1624 adev->mman.fw_vram_usage_va = NULL;
1625 adev->mman.fw_vram_usage_reserved_bo = NULL;
1626
1627 if (adev->mman.fw_vram_usage_size == 0 ||
1628 adev->mman.fw_vram_usage_size > vram_size)
1629 return 0;
1630
1631 return amdgpu_bo_create_kernel_at(adev,
1632 offset: adev->mman.fw_vram_usage_start_offset,
1633 size: adev->mman.fw_vram_usage_size,
1634 bo_ptr: &adev->mman.fw_vram_usage_reserved_bo,
1635 cpu_addr: &adev->mman.fw_vram_usage_va);
1636}
1637
1638/**
1639 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1640 *
1641 * @adev: amdgpu_device pointer
1642 *
1643 * create bo vram reservation from drv.
1644 */
1645static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1646{
1647 u64 vram_size = adev->gmc.visible_vram_size;
1648
1649 adev->mman.drv_vram_usage_va = NULL;
1650 adev->mman.drv_vram_usage_reserved_bo = NULL;
1651
1652 if (adev->mman.drv_vram_usage_size == 0 ||
1653 adev->mman.drv_vram_usage_size > vram_size)
1654 return 0;
1655
1656 return amdgpu_bo_create_kernel_at(adev,
1657 offset: adev->mman.drv_vram_usage_start_offset,
1658 size: adev->mman.drv_vram_usage_size,
1659 bo_ptr: &adev->mman.drv_vram_usage_reserved_bo,
1660 cpu_addr: &adev->mman.drv_vram_usage_va);
1661}
1662
1663/*
1664 * Memoy training reservation functions
1665 */
1666
1667/**
1668 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1669 *
1670 * @adev: amdgpu_device pointer
1671 *
1672 * free memory training reserved vram if it has been reserved.
1673 */
1674static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1675{
1676 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1677
1678 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1679 amdgpu_bo_free_kernel(bo: &ctx->c2p_bo, NULL, NULL);
1680 ctx->c2p_bo = NULL;
1681
1682 return 0;
1683}
1684
1685static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1686 uint32_t reserve_size)
1687{
1688 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1689
1690 memset(ctx, 0, sizeof(*ctx));
1691
1692 ctx->c2p_train_data_offset =
1693 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1694 ctx->p2c_train_data_offset =
1695 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1696 ctx->train_data_size =
1697 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1698
1699 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1700 ctx->train_data_size,
1701 ctx->p2c_train_data_offset,
1702 ctx->c2p_train_data_offset);
1703}
1704
1705/*
1706 * reserve TMR memory at the top of VRAM which holds
1707 * IP Discovery data and is protected by PSP.
1708 */
1709static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1710{
1711 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1712 bool mem_train_support = false;
1713 uint32_t reserve_size = 0;
1714 int ret;
1715
1716 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1717 if (amdgpu_atomfirmware_mem_training_supported(adev))
1718 mem_train_support = true;
1719 else
1720 DRM_DEBUG("memory training does not support!\n");
1721 }
1722
1723 /*
1724 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1725 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1726 *
1727 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1728 * discovery data and G6 memory training data respectively
1729 */
1730 if (adev->bios)
1731 reserve_size =
1732 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1733
1734 if (!adev->bios &&
1735 amdgpu_ip_version(adev, ip: GC_HWIP, inst: 0) == IP_VERSION(9, 4, 3))
1736 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1737 else if (!reserve_size)
1738 reserve_size = DISCOVERY_TMR_OFFSET;
1739
1740 if (mem_train_support) {
1741 /* reserve vram for mem train according to TMR location */
1742 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1743 ret = amdgpu_bo_create_kernel_at(adev,
1744 offset: ctx->c2p_train_data_offset,
1745 size: ctx->train_data_size,
1746 bo_ptr: &ctx->c2p_bo,
1747 NULL);
1748 if (ret) {
1749 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1750 amdgpu_ttm_training_reserve_vram_fini(adev);
1751 return ret;
1752 }
1753 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1754 }
1755
1756 if (!adev->gmc.is_app_apu) {
1757 ret = amdgpu_bo_create_kernel_at(
1758 adev, offset: adev->gmc.real_vram_size - reserve_size,
1759 size: reserve_size, bo_ptr: &adev->mman.fw_reserved_memory, NULL);
1760 if (ret) {
1761 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1762 amdgpu_bo_free_kernel(bo: &adev->mman.fw_reserved_memory,
1763 NULL, NULL);
1764 return ret;
1765 }
1766 } else {
1767 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1768 }
1769
1770 return 0;
1771}
1772
1773static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1774{
1775 int i;
1776
1777 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1778 return 0;
1779
1780 adev->mman.ttm_pools = kcalloc(n: adev->gmc.num_mem_partitions,
1781 size: sizeof(*adev->mman.ttm_pools),
1782 GFP_KERNEL);
1783 if (!adev->mman.ttm_pools)
1784 return -ENOMEM;
1785
1786 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1787 ttm_pool_init(pool: &adev->mman.ttm_pools[i], dev: adev->dev,
1788 nid: adev->gmc.mem_partitions[i].numa.node,
1789 use_dma_alloc: false, use_dma32: false);
1790 }
1791 return 0;
1792}
1793
1794static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1795{
1796 int i;
1797
1798 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1799 return;
1800
1801 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1802 ttm_pool_fini(pool: &adev->mman.ttm_pools[i]);
1803
1804 kfree(objp: adev->mman.ttm_pools);
1805 adev->mman.ttm_pools = NULL;
1806}
1807
1808/*
1809 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1810 * gtt/vram related fields.
1811 *
1812 * This initializes all of the memory space pools that the TTM layer
1813 * will need such as the GTT space (system memory mapped to the device),
1814 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1815 * can be mapped per VMID.
1816 */
1817int amdgpu_ttm_init(struct amdgpu_device *adev)
1818{
1819 uint64_t gtt_size;
1820 int r;
1821
1822 mutex_init(&adev->mman.gtt_window_lock);
1823
1824 /* No others user of address space so set it to 0 */
1825 r = ttm_device_init(bdev: &adev->mman.bdev, funcs: &amdgpu_bo_driver, dev: adev->dev,
1826 mapping: adev_to_drm(adev)->anon_inode->i_mapping,
1827 vma_manager: adev_to_drm(adev)->vma_offset_manager,
1828 use_dma_alloc: adev->need_swiotlb,
1829 use_dma32: dma_addressing_limited(dev: adev->dev));
1830 if (r) {
1831 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1832 return r;
1833 }
1834
1835 r = amdgpu_ttm_pools_init(adev);
1836 if (r) {
1837 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1838 return r;
1839 }
1840 adev->mman.initialized = true;
1841
1842 /* Initialize VRAM pool with all of VRAM divided into pages */
1843 r = amdgpu_vram_mgr_init(adev);
1844 if (r) {
1845 DRM_ERROR("Failed initializing VRAM heap.\n");
1846 return r;
1847 }
1848
1849 /* Change the size here instead of the init above so only lpfn is affected */
1850 amdgpu_ttm_set_buffer_funcs_status(adev, enable: false);
1851#ifdef CONFIG_64BIT
1852#ifdef CONFIG_X86
1853 if (adev->gmc.xgmi.connected_to_cpu)
1854 adev->mman.aper_base_kaddr = ioremap_cache(offset: adev->gmc.aper_base,
1855 size: adev->gmc.visible_vram_size);
1856
1857 else if (adev->gmc.is_app_apu)
1858 DRM_DEBUG_DRIVER(
1859 "No need to ioremap when real vram size is 0\n");
1860 else
1861#endif
1862 adev->mman.aper_base_kaddr = ioremap_wc(offset: adev->gmc.aper_base,
1863 size: adev->gmc.visible_vram_size);
1864#endif
1865
1866 /*
1867 *The reserved vram for firmware must be pinned to the specified
1868 *place on the VRAM, so reserve it early.
1869 */
1870 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1871 if (r)
1872 return r;
1873
1874 /*
1875 *The reserved vram for driver must be pinned to the specified
1876 *place on the VRAM, so reserve it early.
1877 */
1878 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1879 if (r)
1880 return r;
1881
1882 /*
1883 * only NAVI10 and onwards ASIC support for IP discovery.
1884 * If IP discovery enabled, a block of memory should be
1885 * reserved for IP discovey.
1886 */
1887 if (adev->mman.discovery_bin) {
1888 r = amdgpu_ttm_reserve_tmr(adev);
1889 if (r)
1890 return r;
1891 }
1892
1893 /* allocate memory as required for VGA
1894 * This is used for VGA emulation and pre-OS scanout buffers to
1895 * avoid display artifacts while transitioning between pre-OS
1896 * and driver.
1897 */
1898 if (!adev->gmc.is_app_apu) {
1899 r = amdgpu_bo_create_kernel_at(adev, offset: 0,
1900 size: adev->mman.stolen_vga_size,
1901 bo_ptr: &adev->mman.stolen_vga_memory,
1902 NULL);
1903 if (r)
1904 return r;
1905
1906 r = amdgpu_bo_create_kernel_at(adev, offset: adev->mman.stolen_vga_size,
1907 size: adev->mman.stolen_extended_size,
1908 bo_ptr: &adev->mman.stolen_extended_memory,
1909 NULL);
1910
1911 if (r)
1912 return r;
1913
1914 r = amdgpu_bo_create_kernel_at(adev,
1915 offset: adev->mman.stolen_reserved_offset,
1916 size: adev->mman.stolen_reserved_size,
1917 bo_ptr: &adev->mman.stolen_reserved_memory,
1918 NULL);
1919 if (r)
1920 return r;
1921 } else {
1922 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1923 }
1924
1925 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1926 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1927
1928 /* Compute GTT size, either based on TTM limit
1929 * or whatever the user passed on module init.
1930 */
1931 if (amdgpu_gtt_size == -1)
1932 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1933 else
1934 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1935
1936 /* Initialize GTT memory pool */
1937 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1938 if (r) {
1939 DRM_ERROR("Failed initializing GTT heap.\n");
1940 return r;
1941 }
1942 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1943 (unsigned int)(gtt_size / (1024 * 1024)));
1944
1945 /* Initiailize doorbell pool on PCI BAR */
1946 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, size_in_page: adev->doorbell.size / PAGE_SIZE);
1947 if (r) {
1948 DRM_ERROR("Failed initializing doorbell heap.\n");
1949 return r;
1950 }
1951
1952 /* Create a boorbell page for kernel usages */
1953 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1954 if (r) {
1955 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1956 return r;
1957 }
1958
1959 /* Initialize preemptible memory pool */
1960 r = amdgpu_preempt_mgr_init(adev);
1961 if (r) {
1962 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1963 return r;
1964 }
1965
1966 /* Initialize various on-chip memory pools */
1967 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, size_in_page: adev->gds.gds_size);
1968 if (r) {
1969 DRM_ERROR("Failed initializing GDS heap.\n");
1970 return r;
1971 }
1972
1973 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, size_in_page: adev->gds.gws_size);
1974 if (r) {
1975 DRM_ERROR("Failed initializing gws heap.\n");
1976 return r;
1977 }
1978
1979 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, size_in_page: adev->gds.oa_size);
1980 if (r) {
1981 DRM_ERROR("Failed initializing oa heap.\n");
1982 return r;
1983 }
1984 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1985 AMDGPU_GEM_DOMAIN_GTT,
1986 bo_ptr: &adev->mman.sdma_access_bo, NULL,
1987 cpu_addr: &adev->mman.sdma_access_ptr))
1988 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1989
1990 return 0;
1991}
1992
1993/*
1994 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1995 */
1996void amdgpu_ttm_fini(struct amdgpu_device *adev)
1997{
1998 int idx;
1999
2000 if (!adev->mman.initialized)
2001 return;
2002
2003 amdgpu_ttm_pools_fini(adev);
2004
2005 amdgpu_ttm_training_reserve_vram_fini(adev);
2006 /* return the stolen vga memory back to VRAM */
2007 if (!adev->gmc.is_app_apu) {
2008 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_vga_memory, NULL, NULL);
2009 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_extended_memory, NULL, NULL);
2010 /* return the FW reserved memory back to VRAM */
2011 amdgpu_bo_free_kernel(bo: &adev->mman.fw_reserved_memory, NULL,
2012 NULL);
2013 if (adev->mman.stolen_reserved_size)
2014 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_reserved_memory,
2015 NULL, NULL);
2016 }
2017 amdgpu_bo_free_kernel(bo: &adev->mman.sdma_access_bo, NULL,
2018 cpu_addr: &adev->mman.sdma_access_ptr);
2019 amdgpu_ttm_fw_reserve_vram_fini(adev);
2020 amdgpu_ttm_drv_reserve_vram_fini(adev);
2021
2022 if (drm_dev_enter(dev: adev_to_drm(adev), idx: &idx)) {
2023
2024 if (adev->mman.aper_base_kaddr)
2025 iounmap(addr: adev->mman.aper_base_kaddr);
2026 adev->mman.aper_base_kaddr = NULL;
2027
2028 drm_dev_exit(idx);
2029 }
2030
2031 amdgpu_vram_mgr_fini(adev);
2032 amdgpu_gtt_mgr_fini(adev);
2033 amdgpu_preempt_mgr_fini(adev);
2034 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_GDS);
2035 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_GWS);
2036 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_OA);
2037 ttm_device_fini(bdev: &adev->mman.bdev);
2038 adev->mman.initialized = false;
2039 DRM_INFO("amdgpu: ttm finalized\n");
2040}
2041
2042/**
2043 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2044 *
2045 * @adev: amdgpu_device pointer
2046 * @enable: true when we can use buffer functions.
2047 *
2048 * Enable/disable use of buffer functions during suspend/resume. This should
2049 * only be called at bootup or when userspace isn't running.
2050 */
2051void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2052{
2053 struct ttm_resource_manager *man = ttm_manager_type(bdev: &adev->mman.bdev, TTM_PL_VRAM);
2054 uint64_t size;
2055 int r;
2056
2057 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2058 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2059 return;
2060
2061 if (enable) {
2062 struct amdgpu_ring *ring;
2063 struct drm_gpu_scheduler *sched;
2064
2065 ring = adev->mman.buffer_funcs_ring;
2066 sched = &ring->sched;
2067 r = drm_sched_entity_init(entity: &adev->mman.high_pr,
2068 priority: DRM_SCHED_PRIORITY_KERNEL, sched_list: &sched,
2069 num_sched_list: 1, NULL);
2070 if (r) {
2071 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2072 r);
2073 return;
2074 }
2075
2076 r = drm_sched_entity_init(entity: &adev->mman.low_pr,
2077 priority: DRM_SCHED_PRIORITY_NORMAL, sched_list: &sched,
2078 num_sched_list: 1, NULL);
2079 if (r) {
2080 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2081 r);
2082 goto error_free_entity;
2083 }
2084 } else {
2085 drm_sched_entity_destroy(entity: &adev->mman.high_pr);
2086 drm_sched_entity_destroy(entity: &adev->mman.low_pr);
2087 dma_fence_put(fence: man->move);
2088 man->move = NULL;
2089 }
2090
2091 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2092 if (enable)
2093 size = adev->gmc.real_vram_size;
2094 else
2095 size = adev->gmc.visible_vram_size;
2096 man->size = size;
2097 adev->mman.buffer_funcs_enabled = enable;
2098
2099 return;
2100
2101error_free_entity:
2102 drm_sched_entity_destroy(entity: &adev->mman.high_pr);
2103}
2104
2105static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2106 bool direct_submit,
2107 unsigned int num_dw,
2108 struct dma_resv *resv,
2109 bool vm_needs_flush,
2110 struct amdgpu_job **job,
2111 bool delayed)
2112{
2113 enum amdgpu_ib_pool_type pool = direct_submit ?
2114 AMDGPU_IB_POOL_DIRECT :
2115 AMDGPU_IB_POOL_DELAYED;
2116 int r;
2117 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2118 &adev->mman.high_pr;
2119 r = amdgpu_job_alloc_with_ib(adev, entity,
2120 AMDGPU_FENCE_OWNER_UNDEFINED,
2121 size: num_dw * 4, pool_type: pool, job);
2122 if (r)
2123 return r;
2124
2125 if (vm_needs_flush) {
2126 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(bo: adev->gmc.pdb0_bo ?
2127 adev->gmc.pdb0_bo :
2128 adev->gart.bo);
2129 (*job)->vm_needs_flush = true;
2130 }
2131 if (!resv)
2132 return 0;
2133
2134 return drm_sched_job_add_resv_dependencies(job: &(*job)->base, resv,
2135 usage: DMA_RESV_USAGE_BOOKKEEP);
2136}
2137
2138int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2139 uint64_t dst_offset, uint32_t byte_count,
2140 struct dma_resv *resv,
2141 struct dma_fence **fence, bool direct_submit,
2142 bool vm_needs_flush, bool tmz)
2143{
2144 struct amdgpu_device *adev = ring->adev;
2145 unsigned int num_loops, num_dw;
2146 struct amdgpu_job *job;
2147 uint32_t max_bytes;
2148 unsigned int i;
2149 int r;
2150
2151 if (!direct_submit && !ring->sched.ready) {
2152 DRM_ERROR("Trying to move memory with ring turned off.\n");
2153 return -EINVAL;
2154 }
2155
2156 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2157 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2158 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2159 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2160 resv, vm_needs_flush, job: &job, delayed: false);
2161 if (r)
2162 return r;
2163
2164 for (i = 0; i < num_loops; i++) {
2165 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2166
2167 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2168 dst_offset, cur_size_in_bytes, tmz);
2169
2170 src_offset += cur_size_in_bytes;
2171 dst_offset += cur_size_in_bytes;
2172 byte_count -= cur_size_in_bytes;
2173 }
2174
2175 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2176 WARN_ON(job->ibs[0].length_dw > num_dw);
2177 if (direct_submit)
2178 r = amdgpu_job_submit_direct(job, ring, fence);
2179 else
2180 *fence = amdgpu_job_submit(job);
2181 if (r)
2182 goto error_free;
2183
2184 return r;
2185
2186error_free:
2187 amdgpu_job_free(job);
2188 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2189 return r;
2190}
2191
2192static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2193 uint64_t dst_addr, uint32_t byte_count,
2194 struct dma_resv *resv,
2195 struct dma_fence **fence,
2196 bool vm_needs_flush, bool delayed)
2197{
2198 struct amdgpu_device *adev = ring->adev;
2199 unsigned int num_loops, num_dw;
2200 struct amdgpu_job *job;
2201 uint32_t max_bytes;
2202 unsigned int i;
2203 int r;
2204
2205 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2206 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2207 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2208 r = amdgpu_ttm_prepare_job(adev, direct_submit: false, num_dw, resv, vm_needs_flush,
2209 job: &job, delayed);
2210 if (r)
2211 return r;
2212
2213 for (i = 0; i < num_loops; i++) {
2214 uint32_t cur_size = min(byte_count, max_bytes);
2215
2216 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2217 cur_size);
2218
2219 dst_addr += cur_size;
2220 byte_count -= cur_size;
2221 }
2222
2223 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2224 WARN_ON(job->ibs[0].length_dw > num_dw);
2225 *fence = amdgpu_job_submit(job);
2226 return 0;
2227}
2228
2229int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2230 uint32_t src_data,
2231 struct dma_resv *resv,
2232 struct dma_fence **f,
2233 bool delayed)
2234{
2235 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->tbo.bdev);
2236 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2237 struct dma_fence *fence = NULL;
2238 struct amdgpu_res_cursor dst;
2239 int r;
2240
2241 if (!adev->mman.buffer_funcs_enabled) {
2242 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2243 return -EINVAL;
2244 }
2245
2246 amdgpu_res_first(res: bo->tbo.resource, start: 0, size: amdgpu_bo_size(bo), cur: &dst);
2247
2248 mutex_lock(&adev->mman.gtt_window_lock);
2249 while (dst.remaining) {
2250 struct dma_fence *next;
2251 uint64_t cur_size, to;
2252
2253 /* Never fill more than 256MiB at once to avoid timeouts */
2254 cur_size = min(dst.size, 256ULL << 20);
2255
2256 r = amdgpu_ttm_map_buffer(bo: &bo->tbo, mem: bo->tbo.resource, mm_cur: &dst,
2257 window: 1, ring, tmz: false, size: &cur_size, addr: &to);
2258 if (r)
2259 goto error;
2260
2261 r = amdgpu_ttm_fill_mem(ring, src_data, dst_addr: to, byte_count: cur_size, resv,
2262 fence: &next, vm_needs_flush: true, delayed);
2263 if (r)
2264 goto error;
2265
2266 dma_fence_put(fence);
2267 fence = next;
2268
2269 amdgpu_res_next(cur: &dst, size: cur_size);
2270 }
2271error:
2272 mutex_unlock(lock: &adev->mman.gtt_window_lock);
2273 if (f)
2274 *f = dma_fence_get(fence);
2275 dma_fence_put(fence);
2276 return r;
2277}
2278
2279/**
2280 * amdgpu_ttm_evict_resources - evict memory buffers
2281 * @adev: amdgpu device object
2282 * @mem_type: evicted BO's memory type
2283 *
2284 * Evicts all @mem_type buffers on the lru list of the memory type.
2285 *
2286 * Returns:
2287 * 0 for success or a negative error code on failure.
2288 */
2289int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2290{
2291 struct ttm_resource_manager *man;
2292
2293 switch (mem_type) {
2294 case TTM_PL_VRAM:
2295 case TTM_PL_TT:
2296 case AMDGPU_PL_GWS:
2297 case AMDGPU_PL_GDS:
2298 case AMDGPU_PL_OA:
2299 man = ttm_manager_type(bdev: &adev->mman.bdev, mem_type);
2300 break;
2301 default:
2302 DRM_ERROR("Trying to evict invalid memory type\n");
2303 return -EINVAL;
2304 }
2305
2306 return ttm_resource_manager_evict_all(bdev: &adev->mman.bdev, man);
2307}
2308
2309#if defined(CONFIG_DEBUG_FS)
2310
2311static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2312{
2313 struct amdgpu_device *adev = m->private;
2314
2315 return ttm_pool_debugfs(pool: &adev->mman.bdev.pool, m);
2316}
2317
2318DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2319
2320/*
2321 * amdgpu_ttm_vram_read - Linear read access to VRAM
2322 *
2323 * Accesses VRAM via MMIO for debugging purposes.
2324 */
2325static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2326 size_t size, loff_t *pos)
2327{
2328 struct amdgpu_device *adev = file_inode(f)->i_private;
2329 ssize_t result = 0;
2330
2331 if (size & 0x3 || *pos & 0x3)
2332 return -EINVAL;
2333
2334 if (*pos >= adev->gmc.mc_vram_size)
2335 return -ENXIO;
2336
2337 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2338 while (size) {
2339 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2340 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2341
2342 amdgpu_device_vram_access(adev, pos: *pos, buf: value, size: bytes, write: false);
2343 if (copy_to_user(to: buf, from: value, n: bytes))
2344 return -EFAULT;
2345
2346 result += bytes;
2347 buf += bytes;
2348 *pos += bytes;
2349 size -= bytes;
2350 }
2351
2352 return result;
2353}
2354
2355/*
2356 * amdgpu_ttm_vram_write - Linear write access to VRAM
2357 *
2358 * Accesses VRAM via MMIO for debugging purposes.
2359 */
2360static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2361 size_t size, loff_t *pos)
2362{
2363 struct amdgpu_device *adev = file_inode(f)->i_private;
2364 ssize_t result = 0;
2365 int r;
2366
2367 if (size & 0x3 || *pos & 0x3)
2368 return -EINVAL;
2369
2370 if (*pos >= adev->gmc.mc_vram_size)
2371 return -ENXIO;
2372
2373 while (size) {
2374 uint32_t value;
2375
2376 if (*pos >= adev->gmc.mc_vram_size)
2377 return result;
2378
2379 r = get_user(value, (uint32_t *)buf);
2380 if (r)
2381 return r;
2382
2383 amdgpu_device_mm_access(adev, pos: *pos, buf: &value, size: 4, write: true);
2384
2385 result += 4;
2386 buf += 4;
2387 *pos += 4;
2388 size -= 4;
2389 }
2390
2391 return result;
2392}
2393
2394static const struct file_operations amdgpu_ttm_vram_fops = {
2395 .owner = THIS_MODULE,
2396 .read = amdgpu_ttm_vram_read,
2397 .write = amdgpu_ttm_vram_write,
2398 .llseek = default_llseek,
2399};
2400
2401/*
2402 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2403 *
2404 * This function is used to read memory that has been mapped to the
2405 * GPU and the known addresses are not physical addresses but instead
2406 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2407 */
2408static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2409 size_t size, loff_t *pos)
2410{
2411 struct amdgpu_device *adev = file_inode(f)->i_private;
2412 struct iommu_domain *dom;
2413 ssize_t result = 0;
2414 int r;
2415
2416 /* retrieve the IOMMU domain if any for this device */
2417 dom = iommu_get_domain_for_dev(dev: adev->dev);
2418
2419 while (size) {
2420 phys_addr_t addr = *pos & PAGE_MASK;
2421 loff_t off = *pos & ~PAGE_MASK;
2422 size_t bytes = PAGE_SIZE - off;
2423 unsigned long pfn;
2424 struct page *p;
2425 void *ptr;
2426
2427 bytes = min(bytes, size);
2428
2429 /* Translate the bus address to a physical address. If
2430 * the domain is NULL it means there is no IOMMU active
2431 * and the address translation is the identity
2432 */
2433 addr = dom ? iommu_iova_to_phys(domain: dom, iova: addr) : addr;
2434
2435 pfn = addr >> PAGE_SHIFT;
2436 if (!pfn_valid(pfn))
2437 return -EPERM;
2438
2439 p = pfn_to_page(pfn);
2440 if (p->mapping != adev->mman.bdev.dev_mapping)
2441 return -EPERM;
2442
2443 ptr = kmap_local_page(page: p);
2444 r = copy_to_user(to: buf, from: ptr + off, n: bytes);
2445 kunmap_local(ptr);
2446 if (r)
2447 return -EFAULT;
2448
2449 size -= bytes;
2450 *pos += bytes;
2451 result += bytes;
2452 }
2453
2454 return result;
2455}
2456
2457/*
2458 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2459 *
2460 * This function is used to write memory that has been mapped to the
2461 * GPU and the known addresses are not physical addresses but instead
2462 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2463 */
2464static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2465 size_t size, loff_t *pos)
2466{
2467 struct amdgpu_device *adev = file_inode(f)->i_private;
2468 struct iommu_domain *dom;
2469 ssize_t result = 0;
2470 int r;
2471
2472 dom = iommu_get_domain_for_dev(dev: adev->dev);
2473
2474 while (size) {
2475 phys_addr_t addr = *pos & PAGE_MASK;
2476 loff_t off = *pos & ~PAGE_MASK;
2477 size_t bytes = PAGE_SIZE - off;
2478 unsigned long pfn;
2479 struct page *p;
2480 void *ptr;
2481
2482 bytes = min(bytes, size);
2483
2484 addr = dom ? iommu_iova_to_phys(domain: dom, iova: addr) : addr;
2485
2486 pfn = addr >> PAGE_SHIFT;
2487 if (!pfn_valid(pfn))
2488 return -EPERM;
2489
2490 p = pfn_to_page(pfn);
2491 if (p->mapping != adev->mman.bdev.dev_mapping)
2492 return -EPERM;
2493
2494 ptr = kmap_local_page(page: p);
2495 r = copy_from_user(to: ptr + off, from: buf, n: bytes);
2496 kunmap_local(ptr);
2497 if (r)
2498 return -EFAULT;
2499
2500 size -= bytes;
2501 *pos += bytes;
2502 result += bytes;
2503 }
2504
2505 return result;
2506}
2507
2508static const struct file_operations amdgpu_ttm_iomem_fops = {
2509 .owner = THIS_MODULE,
2510 .read = amdgpu_iomem_read,
2511 .write = amdgpu_iomem_write,
2512 .llseek = default_llseek
2513};
2514
2515#endif
2516
2517void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2518{
2519#if defined(CONFIG_DEBUG_FS)
2520 struct drm_minor *minor = adev_to_drm(adev)->primary;
2521 struct dentry *root = minor->debugfs_root;
2522
2523 debugfs_create_file_size(name: "amdgpu_vram", mode: 0444, parent: root, data: adev,
2524 fops: &amdgpu_ttm_vram_fops, file_size: adev->gmc.mc_vram_size);
2525 debugfs_create_file(name: "amdgpu_iomem", mode: 0444, parent: root, data: adev,
2526 fops: &amdgpu_ttm_iomem_fops);
2527 debugfs_create_file(name: "ttm_page_pool", mode: 0444, parent: root, data: adev,
2528 fops: &amdgpu_ttm_page_pool_fops);
2529 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2530 TTM_PL_VRAM),
2531 parent: root, name: "amdgpu_vram_mm");
2532 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2533 TTM_PL_TT),
2534 parent: root, name: "amdgpu_gtt_mm");
2535 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2536 AMDGPU_PL_GDS),
2537 parent: root, name: "amdgpu_gds_mm");
2538 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2539 AMDGPU_PL_GWS),
2540 parent: root, name: "amdgpu_gws_mm");
2541 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2542 AMDGPU_PL_OA),
2543 parent: root, name: "amdgpu_oa_mm");
2544
2545#endif
2546}
2547

source code of linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c