1// SPDX-License-Identifier: GPL-2.0-or-later
2/* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/kernel.h>
63#include <linux/platform_device.h>
64#include <linux/string.h>
65#include <linux/errno.h>
66#include <linux/unistd.h>
67#include <linux/slab.h>
68#include <linux/interrupt.h>
69#include <linux/delay.h>
70#include <linux/netdevice.h>
71#include <linux/etherdevice.h>
72#include <linux/skbuff.h>
73#include <linux/if_vlan.h>
74#include <linux/spinlock.h>
75#include <linux/mm.h>
76#include <linux/of_address.h>
77#include <linux/of_irq.h>
78#include <linux/of_mdio.h>
79#include <linux/ip.h>
80#include <linux/tcp.h>
81#include <linux/udp.h>
82#include <linux/in.h>
83#include <linux/net_tstamp.h>
84
85#include <asm/io.h>
86#ifdef CONFIG_PPC
87#include <asm/reg.h>
88#include <asm/mpc85xx.h>
89#endif
90#include <asm/irq.h>
91#include <linux/uaccess.h>
92#include <linux/module.h>
93#include <linux/dma-mapping.h>
94#include <linux/crc32.h>
95#include <linux/mii.h>
96#include <linux/phy.h>
97#include <linux/phy_fixed.h>
98#include <linux/of.h>
99#include <linux/of_net.h>
100
101#include "gianfar.h"
102
103#define TX_TIMEOUT (5*HZ)
104
105MODULE_AUTHOR("Freescale Semiconductor, Inc");
106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107MODULE_LICENSE("GPL");
108
109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 dma_addr_t buf)
111{
112 u32 lstatus;
113
114 bdp->bufPtr = cpu_to_be32(buf);
115
116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120 gfar_wmb();
121
122 bdp->lstatus = cpu_to_be32(lstatus);
123}
124
125static void gfar_init_tx_rx_base(struct gfar_private *priv)
126{
127 struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 u32 __iomem *baddr;
129 int i;
130
131 baddr = &regs->tbase0;
132 for (i = 0; i < priv->num_tx_queues; i++) {
133 gfar_write(addr: baddr, val: priv->tx_queue[i]->tx_bd_dma_base);
134 baddr += 2;
135 }
136
137 baddr = &regs->rbase0;
138 for (i = 0; i < priv->num_rx_queues; i++) {
139 gfar_write(addr: baddr, val: priv->rx_queue[i]->rx_bd_dma_base);
140 baddr += 2;
141 }
142}
143
144static void gfar_init_rqprm(struct gfar_private *priv)
145{
146 struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 u32 __iomem *baddr;
148 int i;
149
150 baddr = &regs->rqprm0;
151 for (i = 0; i < priv->num_rx_queues; i++) {
152 gfar_write(addr: baddr, val: priv->rx_queue[i]->rx_ring_size |
153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 baddr++;
155 }
156}
157
158static void gfar_rx_offload_en(struct gfar_private *priv)
159{
160 /* set this when rx hw offload (TOE) functions are being used */
161 priv->uses_rxfcb = 0;
162
163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 priv->uses_rxfcb = 1;
165
166 if (priv->hwts_rx_en || priv->rx_filer_enable)
167 priv->uses_rxfcb = 1;
168}
169
170static void gfar_mac_rx_config(struct gfar_private *priv)
171{
172 struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 u32 rctrl = 0;
174
175 if (priv->rx_filer_enable) {
176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 /* Program the RIR0 reg with the required distribution */
178 gfar_write(addr: &regs->rir0, DEFAULT_2RXQ_RIR0);
179 }
180
181 /* Restore PROMISC mode */
182 if (priv->ndev->flags & IFF_PROMISC)
183 rctrl |= RCTRL_PROM;
184
185 if (priv->ndev->features & NETIF_F_RXCSUM)
186 rctrl |= RCTRL_CHECKSUMMING;
187
188 if (priv->extended_hash)
189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190
191 if (priv->padding) {
192 rctrl &= ~RCTRL_PAL_MASK;
193 rctrl |= RCTRL_PADDING(priv->padding);
194 }
195
196 /* Enable HW time stamping if requested from user space */
197 if (priv->hwts_rx_en)
198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199
200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202
203 /* Clear the LFC bit */
204 gfar_write(addr: &regs->rctrl, val: rctrl);
205 /* Init flow control threshold values */
206 gfar_init_rqprm(priv);
207 gfar_write(addr: &regs->ptv, DEFAULT_LFC_PTVVAL);
208 rctrl |= RCTRL_LFC;
209
210 /* Init rctrl based on our settings */
211 gfar_write(addr: &regs->rctrl, val: rctrl);
212}
213
214static void gfar_mac_tx_config(struct gfar_private *priv)
215{
216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 u32 tctrl = 0;
218
219 if (priv->ndev->features & NETIF_F_IP_CSUM)
220 tctrl |= TCTRL_INIT_CSUM;
221
222 if (priv->prio_sched_en)
223 tctrl |= TCTRL_TXSCHED_PRIO;
224 else {
225 tctrl |= TCTRL_TXSCHED_WRRS;
226 gfar_write(addr: &regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227 gfar_write(addr: &regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228 }
229
230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 tctrl |= TCTRL_VLINS;
232
233 gfar_write(addr: &regs->tctrl, val: tctrl);
234}
235
236static void gfar_configure_coalescing(struct gfar_private *priv,
237 unsigned long tx_mask, unsigned long rx_mask)
238{
239 struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 u32 __iomem *baddr;
241
242 if (priv->mode == MQ_MG_MODE) {
243 int i = 0;
244
245 baddr = &regs->txic0;
246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 gfar_write(addr: baddr + i, val: 0);
248 if (likely(priv->tx_queue[i]->txcoalescing))
249 gfar_write(addr: baddr + i, val: priv->tx_queue[i]->txic);
250 }
251
252 baddr = &regs->rxic0;
253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 gfar_write(addr: baddr + i, val: 0);
255 if (likely(priv->rx_queue[i]->rxcoalescing))
256 gfar_write(addr: baddr + i, val: priv->rx_queue[i]->rxic);
257 }
258 } else {
259 /* Backward compatible case -- even if we enable
260 * multiple queues, there's only single reg to program
261 */
262 gfar_write(addr: &regs->txic, val: 0);
263 if (likely(priv->tx_queue[0]->txcoalescing))
264 gfar_write(addr: &regs->txic, val: priv->tx_queue[0]->txic);
265
266 gfar_write(addr: &regs->rxic, val: 0);
267 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 gfar_write(addr: &regs->rxic, val: priv->rx_queue[0]->rxic);
269 }
270}
271
272static void gfar_configure_coalescing_all(struct gfar_private *priv)
273{
274 gfar_configure_coalescing(priv, tx_mask: 0xFF, rx_mask: 0xFF);
275}
276
277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278{
279 struct gfar_private *priv = netdev_priv(dev);
280 int i;
281
282 for (i = 0; i < priv->num_rx_queues; i++) {
283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 }
287
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 }
292
293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 unsigned long flags;
296 u32 rdrp, car, car_before;
297 u64 rdrp_offset;
298
299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 car = gfar_read(addr: &rmon->car1) & CAR1_C1RDR;
301 do {
302 car_before = car;
303 rdrp = gfar_read(addr: &rmon->rdrp);
304 car = gfar_read(addr: &rmon->car1) & CAR1_C1RDR;
305 } while (car != car_before);
306 if (car) {
307 priv->rmon_overflow.rdrp++;
308 gfar_write(addr: &rmon->car1, val: car);
309 }
310 rdrp_offset = priv->rmon_overflow.rdrp;
311 spin_unlock_irqrestore(lock: &priv->rmon_overflow.lock, flags);
312
313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 }
315}
316
317/* Set the appropriate hash bit for the given addr */
318/* The algorithm works like so:
319 * 1) Take the Destination Address (ie the multicast address), and
320 * do a CRC on it (little endian), and reverse the bits of the
321 * result.
322 * 2) Use the 8 most significant bits as a hash into a 256-entry
323 * table. The table is controlled through 8 32-bit registers:
324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
325 * gaddr7. This means that the 3 most significant bits in the
326 * hash index which gaddr register to use, and the 5 other bits
327 * indicate which bit (assuming an IBM numbering scheme, which
328 * for PowerPC (tm) is usually the case) in the register holds
329 * the entry.
330 */
331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332{
333 u32 tempval;
334 struct gfar_private *priv = netdev_priv(dev);
335 u32 result = ether_crc(ETH_ALEN, addr);
336 int width = priv->hash_width;
337 u8 whichbit = (result >> (32 - width)) & 0x1f;
338 u8 whichreg = result >> (32 - width + 5);
339 u32 value = (1 << (31-whichbit));
340
341 tempval = gfar_read(addr: priv->hash_regs[whichreg]);
342 tempval |= value;
343 gfar_write(addr: priv->hash_regs[whichreg], val: tempval);
344}
345
346/* There are multiple MAC Address register pairs on some controllers
347 * This function sets the numth pair to a given address
348 */
349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 const u8 *addr)
351{
352 struct gfar_private *priv = netdev_priv(dev);
353 struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 u32 tempval;
355 u32 __iomem *macptr = &regs->macstnaddr1;
356
357 macptr += num*2;
358
359 /* For a station address of 0x12345678ABCD in transmission
360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 * MACnADDR2 is set to 0x34120000.
362 */
363 tempval = (addr[5] << 24) | (addr[4] << 16) |
364 (addr[3] << 8) | addr[2];
365
366 gfar_write(addr: macptr, val: tempval);
367
368 tempval = (addr[1] << 24) | (addr[0] << 16);
369
370 gfar_write(addr: macptr+1, val: tempval);
371}
372
373static int gfar_set_mac_addr(struct net_device *dev, void *p)
374{
375 int ret;
376
377 ret = eth_mac_addr(dev, p);
378 if (ret)
379 return ret;
380
381 gfar_set_mac_for_addr(dev, num: 0, addr: dev->dev_addr);
382
383 return 0;
384}
385
386static void gfar_ints_disable(struct gfar_private *priv)
387{
388 int i;
389 for (i = 0; i < priv->num_grps; i++) {
390 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 /* Clear IEVENT */
392 gfar_write(addr: &regs->ievent, IEVENT_INIT_CLEAR);
393
394 /* Initialize IMASK */
395 gfar_write(addr: &regs->imask, IMASK_INIT_CLEAR);
396 }
397}
398
399static void gfar_ints_enable(struct gfar_private *priv)
400{
401 int i;
402 for (i = 0; i < priv->num_grps; i++) {
403 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 /* Unmask the interrupts we look for */
405 gfar_write(addr: &regs->imask,
406 IMASK_DEFAULT | priv->rmon_overflow.imask);
407 }
408}
409
410static int gfar_alloc_tx_queues(struct gfar_private *priv)
411{
412 int i;
413
414 for (i = 0; i < priv->num_tx_queues; i++) {
415 priv->tx_queue[i] = kzalloc(size: sizeof(struct gfar_priv_tx_q),
416 GFP_KERNEL);
417 if (!priv->tx_queue[i])
418 return -ENOMEM;
419
420 priv->tx_queue[i]->tx_skbuff = NULL;
421 priv->tx_queue[i]->qindex = i;
422 priv->tx_queue[i]->dev = priv->ndev;
423 spin_lock_init(&(priv->tx_queue[i]->txlock));
424 }
425 return 0;
426}
427
428static int gfar_alloc_rx_queues(struct gfar_private *priv)
429{
430 int i;
431
432 for (i = 0; i < priv->num_rx_queues; i++) {
433 priv->rx_queue[i] = kzalloc(size: sizeof(struct gfar_priv_rx_q),
434 GFP_KERNEL);
435 if (!priv->rx_queue[i])
436 return -ENOMEM;
437
438 priv->rx_queue[i]->qindex = i;
439 priv->rx_queue[i]->ndev = priv->ndev;
440 }
441 return 0;
442}
443
444static void gfar_free_tx_queues(struct gfar_private *priv)
445{
446 int i;
447
448 for (i = 0; i < priv->num_tx_queues; i++)
449 kfree(objp: priv->tx_queue[i]);
450}
451
452static void gfar_free_rx_queues(struct gfar_private *priv)
453{
454 int i;
455
456 for (i = 0; i < priv->num_rx_queues; i++)
457 kfree(objp: priv->rx_queue[i]);
458}
459
460static void unmap_group_regs(struct gfar_private *priv)
461{
462 int i;
463
464 for (i = 0; i < MAXGROUPS; i++)
465 if (priv->gfargrp[i].regs)
466 iounmap(addr: priv->gfargrp[i].regs);
467}
468
469static void free_gfar_dev(struct gfar_private *priv)
470{
471 int i, j;
472
473 for (i = 0; i < priv->num_grps; i++)
474 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 kfree(objp: priv->gfargrp[i].irqinfo[j]);
476 priv->gfargrp[i].irqinfo[j] = NULL;
477 }
478
479 free_netdev(dev: priv->ndev);
480}
481
482static void disable_napi(struct gfar_private *priv)
483{
484 int i;
485
486 for (i = 0; i < priv->num_grps; i++) {
487 napi_disable(n: &priv->gfargrp[i].napi_rx);
488 napi_disable(n: &priv->gfargrp[i].napi_tx);
489 }
490}
491
492static void enable_napi(struct gfar_private *priv)
493{
494 int i;
495
496 for (i = 0; i < priv->num_grps; i++) {
497 napi_enable(n: &priv->gfargrp[i].napi_rx);
498 napi_enable(n: &priv->gfargrp[i].napi_tx);
499 }
500}
501
502static int gfar_parse_group(struct device_node *np,
503 struct gfar_private *priv, const char *model)
504{
505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 int i;
507
508 for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 grp->irqinfo[i] = kzalloc(size: sizeof(struct gfar_irqinfo),
510 GFP_KERNEL);
511 if (!grp->irqinfo[i])
512 return -ENOMEM;
513 }
514
515 grp->regs = of_iomap(node: np, index: 0);
516 if (!grp->regs)
517 return -ENOMEM;
518
519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(node: np, index: 0);
520
521 /* If we aren't the FEC we have multiple interrupts */
522 if (model && strcasecmp(s1: model, s2: "FEC")) {
523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(node: np, index: 1);
524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(node: np, index: 2);
525 if (!gfar_irq(grp, TX)->irq ||
526 !gfar_irq(grp, RX)->irq ||
527 !gfar_irq(grp, ER)->irq)
528 return -EINVAL;
529 }
530
531 grp->priv = priv;
532 spin_lock_init(&grp->grplock);
533 if (priv->mode == MQ_MG_MODE) {
534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 } else {
538 grp->rx_bit_map = 0xFF;
539 grp->tx_bit_map = 0xFF;
540 }
541
542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 * right to left, so we need to revert the 8 bits to get the q index
544 */
545 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547
548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 * also assign queues to groups
550 */
551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 if (!grp->rx_queue)
553 grp->rx_queue = priv->rx_queue[i];
554 grp->num_rx_queues++;
555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 priv->rx_queue[i]->grp = grp;
558 }
559
560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 if (!grp->tx_queue)
562 grp->tx_queue = priv->tx_queue[i];
563 grp->num_tx_queues++;
564 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 priv->tqueue |= (TQUEUE_EN0 >> i);
566 priv->tx_queue[i]->grp = grp;
567 }
568
569 priv->num_grps++;
570
571 return 0;
572}
573
574static int gfar_of_group_count(struct device_node *np)
575{
576 struct device_node *child;
577 int num = 0;
578
579 for_each_available_child_of_node(np, child)
580 if (of_node_name_eq(np: child, name: "queue-group"))
581 num++;
582
583 return num;
584}
585
586/* Reads the controller's registers to determine what interface
587 * connects it to the PHY.
588 */
589static phy_interface_t gfar_get_interface(struct net_device *dev)
590{
591 struct gfar_private *priv = netdev_priv(dev);
592 struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 u32 ecntrl;
594
595 ecntrl = gfar_read(addr: &regs->ecntrl);
596
597 if (ecntrl & ECNTRL_SGMII_MODE)
598 return PHY_INTERFACE_MODE_SGMII;
599
600 if (ecntrl & ECNTRL_TBI_MODE) {
601 if (ecntrl & ECNTRL_REDUCED_MODE)
602 return PHY_INTERFACE_MODE_RTBI;
603 else
604 return PHY_INTERFACE_MODE_TBI;
605 }
606
607 if (ecntrl & ECNTRL_REDUCED_MODE) {
608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 return PHY_INTERFACE_MODE_RMII;
610 }
611 else {
612 phy_interface_t interface = priv->interface;
613
614 /* This isn't autodetected right now, so it must
615 * be set by the device tree or platform code.
616 */
617 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 return PHY_INTERFACE_MODE_RGMII_ID;
619
620 return PHY_INTERFACE_MODE_RGMII;
621 }
622 }
623
624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 return PHY_INTERFACE_MODE_GMII;
626
627 return PHY_INTERFACE_MODE_MII;
628}
629
630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631{
632 const char *model;
633 int err = 0, i;
634 phy_interface_t interface;
635 struct net_device *dev = NULL;
636 struct gfar_private *priv = NULL;
637 struct device_node *np = ofdev->dev.of_node;
638 struct device_node *child = NULL;
639 u32 stash_len = 0;
640 u32 stash_idx = 0;
641 unsigned int num_tx_qs, num_rx_qs;
642 unsigned short mode;
643
644 if (!np)
645 return -ENODEV;
646
647 if (of_device_is_compatible(device: np, "fsl,etsec2"))
648 mode = MQ_MG_MODE;
649 else
650 mode = SQ_SG_MODE;
651
652 if (mode == SQ_SG_MODE) {
653 num_tx_qs = 1;
654 num_rx_qs = 1;
655 } else { /* MQ_MG_MODE */
656 /* get the actual number of supported groups */
657 unsigned int num_grps = gfar_of_group_count(np);
658
659 if (num_grps == 0 || num_grps > MAXGROUPS) {
660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 num_grps);
662 pr_err("Cannot do alloc_etherdev, aborting\n");
663 return -EINVAL;
664 }
665
666 num_tx_qs = num_grps; /* one txq per int group */
667 num_rx_qs = num_grps; /* one rxq per int group */
668 }
669
670 if (num_tx_qs > MAX_TX_QS) {
671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 num_tx_qs, MAX_TX_QS);
673 pr_err("Cannot do alloc_etherdev, aborting\n");
674 return -EINVAL;
675 }
676
677 if (num_rx_qs > MAX_RX_QS) {
678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 num_rx_qs, MAX_RX_QS);
680 pr_err("Cannot do alloc_etherdev, aborting\n");
681 return -EINVAL;
682 }
683
684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 dev = *pdev;
686 if (NULL == dev)
687 return -ENOMEM;
688
689 priv = netdev_priv(dev);
690 priv->ndev = dev;
691
692 priv->mode = mode;
693
694 priv->num_tx_queues = num_tx_qs;
695 netif_set_real_num_rx_queues(dev, rxq: num_rx_qs);
696 priv->num_rx_queues = num_rx_qs;
697
698 err = gfar_alloc_tx_queues(priv);
699 if (err)
700 goto tx_alloc_failed;
701
702 err = gfar_alloc_rx_queues(priv);
703 if (err)
704 goto rx_alloc_failed;
705
706 err = of_property_read_string(np, propname: "model", out_string: &model);
707 if (err) {
708 pr_err("Device model property missing, aborting\n");
709 goto rx_alloc_failed;
710 }
711
712 /* Init Rx queue filer rule set linked list */
713 INIT_LIST_HEAD(list: &priv->rx_list.list);
714 priv->rx_list.count = 0;
715 mutex_init(&priv->rx_queue_access);
716
717 for (i = 0; i < MAXGROUPS; i++)
718 priv->gfargrp[i].regs = NULL;
719
720 /* Parse and initialize group specific information */
721 if (priv->mode == MQ_MG_MODE) {
722 for_each_available_child_of_node(np, child) {
723 if (!of_node_name_eq(np: child, name: "queue-group"))
724 continue;
725
726 err = gfar_parse_group(np: child, priv, model);
727 if (err) {
728 of_node_put(node: child);
729 goto err_grp_init;
730 }
731 }
732 } else { /* SQ_SG_MODE */
733 err = gfar_parse_group(np, priv, model);
734 if (err)
735 goto err_grp_init;
736 }
737
738 if (of_property_read_bool(np, propname: "bd-stash")) {
739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 priv->bd_stash_en = 1;
741 }
742
743 err = of_property_read_u32(np, propname: "rx-stash-len", out_value: &stash_len);
744
745 if (err == 0)
746 priv->rx_stash_size = stash_len;
747
748 err = of_property_read_u32(np, propname: "rx-stash-idx", out_value: &stash_idx);
749
750 if (err == 0)
751 priv->rx_stash_index = stash_idx;
752
753 if (stash_len || stash_idx)
754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755
756 err = of_get_ethdev_address(np, dev);
757 if (err) {
758 eth_hw_addr_random(dev);
759 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
760 }
761
762 if (model && !strcasecmp(s1: model, s2: "TSEC"))
763 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
764 FSL_GIANFAR_DEV_HAS_COALESCE |
765 FSL_GIANFAR_DEV_HAS_RMON |
766 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
767
768 if (model && !strcasecmp(s1: model, s2: "eTSEC"))
769 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
770 FSL_GIANFAR_DEV_HAS_COALESCE |
771 FSL_GIANFAR_DEV_HAS_RMON |
772 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
773 FSL_GIANFAR_DEV_HAS_CSUM |
774 FSL_GIANFAR_DEV_HAS_VLAN |
775 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
776 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
777 FSL_GIANFAR_DEV_HAS_TIMER |
778 FSL_GIANFAR_DEV_HAS_RX_FILER;
779
780 /* Use PHY connection type from the DT node if one is specified there.
781 * rgmii-id really needs to be specified. Other types can be
782 * detected by hardware
783 */
784 err = of_get_phy_mode(np, interface: &interface);
785 if (!err)
786 priv->interface = interface;
787 else
788 priv->interface = gfar_get_interface(dev);
789
790 if (of_property_read_bool(np, propname: "fsl,magic-packet"))
791 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
792
793 if (of_property_read_bool(np, propname: "fsl,wake-on-filer"))
794 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
795
796 priv->phy_node = of_parse_phandle(np, phandle_name: "phy-handle", index: 0);
797
798 /* In the case of a fixed PHY, the DT node associated
799 * to the PHY is the Ethernet MAC DT node.
800 */
801 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
802 err = of_phy_register_fixed_link(np);
803 if (err)
804 goto err_grp_init;
805
806 priv->phy_node = of_node_get(node: np);
807 }
808
809 /* Find the TBI PHY. If it's not there, we don't support SGMII */
810 priv->tbi_node = of_parse_phandle(np, phandle_name: "tbi-handle", index: 0);
811
812 return 0;
813
814err_grp_init:
815 unmap_group_regs(priv);
816rx_alloc_failed:
817 gfar_free_rx_queues(priv);
818tx_alloc_failed:
819 gfar_free_tx_queues(priv);
820 free_gfar_dev(priv);
821 return err;
822}
823
824static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
825 u32 class)
826{
827 u32 rqfpr = FPR_FILER_MASK;
828 u32 rqfcr = 0x0;
829
830 rqfar--;
831 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
832 priv->ftp_rqfpr[rqfar] = rqfpr;
833 priv->ftp_rqfcr[rqfar] = rqfcr;
834 gfar_write_filer(priv, far: rqfar, fcr: rqfcr, fpr: rqfpr);
835
836 rqfar--;
837 rqfcr = RQFCR_CMP_NOMATCH;
838 priv->ftp_rqfpr[rqfar] = rqfpr;
839 priv->ftp_rqfcr[rqfar] = rqfcr;
840 gfar_write_filer(priv, far: rqfar, fcr: rqfcr, fpr: rqfpr);
841
842 rqfar--;
843 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
844 rqfpr = class;
845 priv->ftp_rqfcr[rqfar] = rqfcr;
846 priv->ftp_rqfpr[rqfar] = rqfpr;
847 gfar_write_filer(priv, far: rqfar, fcr: rqfcr, fpr: rqfpr);
848
849 rqfar--;
850 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
851 rqfpr = class;
852 priv->ftp_rqfcr[rqfar] = rqfcr;
853 priv->ftp_rqfpr[rqfar] = rqfpr;
854 gfar_write_filer(priv, far: rqfar, fcr: rqfcr, fpr: rqfpr);
855
856 return rqfar;
857}
858
859static void gfar_init_filer_table(struct gfar_private *priv)
860{
861 int i = 0x0;
862 u32 rqfar = MAX_FILER_IDX;
863 u32 rqfcr = 0x0;
864 u32 rqfpr = FPR_FILER_MASK;
865
866 /* Default rule */
867 rqfcr = RQFCR_CMP_MATCH;
868 priv->ftp_rqfcr[rqfar] = rqfcr;
869 priv->ftp_rqfpr[rqfar] = rqfpr;
870 gfar_write_filer(priv, far: rqfar, fcr: rqfcr, fpr: rqfpr);
871
872 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
873 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
878
879 /* cur_filer_idx indicated the first non-masked rule */
880 priv->cur_filer_idx = rqfar;
881
882 /* Rest are masked rules */
883 rqfcr = RQFCR_CMP_NOMATCH;
884 for (i = 0; i < rqfar; i++) {
885 priv->ftp_rqfcr[i] = rqfcr;
886 priv->ftp_rqfpr[i] = rqfpr;
887 gfar_write_filer(priv, far: i, fcr: rqfcr, fpr: rqfpr);
888 }
889}
890
891#ifdef CONFIG_PPC
892static void __gfar_detect_errata_83xx(struct gfar_private *priv)
893{
894 unsigned int pvr = mfspr(SPRN_PVR);
895 unsigned int svr = mfspr(SPRN_SVR);
896 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
897 unsigned int rev = svr & 0xffff;
898
899 /* MPC8313 Rev 2.0 and higher; All MPC837x */
900 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
901 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
902 priv->errata |= GFAR_ERRATA_74;
903
904 /* MPC8313 and MPC837x all rev */
905 if ((pvr == 0x80850010 && mod == 0x80b0) ||
906 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
907 priv->errata |= GFAR_ERRATA_76;
908
909 /* MPC8313 Rev < 2.0 */
910 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
911 priv->errata |= GFAR_ERRATA_12;
912}
913
914static void __gfar_detect_errata_85xx(struct gfar_private *priv)
915{
916 unsigned int svr = mfspr(SPRN_SVR);
917
918 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
919 priv->errata |= GFAR_ERRATA_12;
920 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
921 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
922 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
923 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
924 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
925}
926#endif
927
928static void gfar_detect_errata(struct gfar_private *priv)
929{
930 struct device *dev = &priv->ofdev->dev;
931
932 /* no plans to fix */
933 priv->errata |= GFAR_ERRATA_A002;
934
935#ifdef CONFIG_PPC
936 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
937 __gfar_detect_errata_85xx(priv);
938 else /* non-mpc85xx parts, i.e. e300 core based */
939 __gfar_detect_errata_83xx(priv);
940#endif
941
942 if (priv->errata)
943 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
944 priv->errata);
945}
946
947static void gfar_init_addr_hash_table(struct gfar_private *priv)
948{
949 struct gfar __iomem *regs = priv->gfargrp[0].regs;
950
951 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
952 priv->extended_hash = 1;
953 priv->hash_width = 9;
954
955 priv->hash_regs[0] = &regs->igaddr0;
956 priv->hash_regs[1] = &regs->igaddr1;
957 priv->hash_regs[2] = &regs->igaddr2;
958 priv->hash_regs[3] = &regs->igaddr3;
959 priv->hash_regs[4] = &regs->igaddr4;
960 priv->hash_regs[5] = &regs->igaddr5;
961 priv->hash_regs[6] = &regs->igaddr6;
962 priv->hash_regs[7] = &regs->igaddr7;
963 priv->hash_regs[8] = &regs->gaddr0;
964 priv->hash_regs[9] = &regs->gaddr1;
965 priv->hash_regs[10] = &regs->gaddr2;
966 priv->hash_regs[11] = &regs->gaddr3;
967 priv->hash_regs[12] = &regs->gaddr4;
968 priv->hash_regs[13] = &regs->gaddr5;
969 priv->hash_regs[14] = &regs->gaddr6;
970 priv->hash_regs[15] = &regs->gaddr7;
971
972 } else {
973 priv->extended_hash = 0;
974 priv->hash_width = 8;
975
976 priv->hash_regs[0] = &regs->gaddr0;
977 priv->hash_regs[1] = &regs->gaddr1;
978 priv->hash_regs[2] = &regs->gaddr2;
979 priv->hash_regs[3] = &regs->gaddr3;
980 priv->hash_regs[4] = &regs->gaddr4;
981 priv->hash_regs[5] = &regs->gaddr5;
982 priv->hash_regs[6] = &regs->gaddr6;
983 priv->hash_regs[7] = &regs->gaddr7;
984 }
985}
986
987static int __gfar_is_rx_idle(struct gfar_private *priv)
988{
989 u32 res;
990
991 /* Normaly TSEC should not hang on GRS commands, so we should
992 * actually wait for IEVENT_GRSC flag.
993 */
994 if (!gfar_has_errata(priv, err: GFAR_ERRATA_A002))
995 return 0;
996
997 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
998 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
999 * and the Rx can be safely reset.
1000 */
1001 res = gfar_read(addr: (void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002 res &= 0x7f807f80;
1003 if ((res & 0xffff) == (res >> 16))
1004 return 1;
1005
1006 return 0;
1007}
1008
1009/* Halt the receive and transmit queues */
1010static void gfar_halt_nodisable(struct gfar_private *priv)
1011{
1012 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013 u32 tempval;
1014 unsigned int timeout;
1015 int stopped;
1016
1017 gfar_ints_disable(priv);
1018
1019 if (gfar_is_dma_stopped(priv))
1020 return;
1021
1022 /* Stop the DMA, and wait for it to stop */
1023 tempval = gfar_read(addr: &regs->dmactrl);
1024 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025 gfar_write(addr: &regs->dmactrl, val: tempval);
1026
1027retry:
1028 timeout = 1000;
1029 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030 cpu_relax();
1031 timeout--;
1032 }
1033
1034 if (!timeout)
1035 stopped = gfar_is_dma_stopped(priv);
1036
1037 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038 !__gfar_is_rx_idle(priv))
1039 goto retry;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt(struct gfar_private *priv)
1044{
1045 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046 u32 tempval;
1047
1048 /* Dissable the Rx/Tx hw queues */
1049 gfar_write(addr: &regs->rqueue, val: 0);
1050 gfar_write(addr: &regs->tqueue, val: 0);
1051
1052 mdelay(10);
1053
1054 gfar_halt_nodisable(priv);
1055
1056 /* Disable Rx/Tx DMA */
1057 tempval = gfar_read(addr: &regs->maccfg1);
1058 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059 gfar_write(addr: &regs->maccfg1, val: tempval);
1060}
1061
1062static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063{
1064 struct txbd8 *txbdp;
1065 struct gfar_private *priv = netdev_priv(dev: tx_queue->dev);
1066 int i, j;
1067
1068 txbdp = tx_queue->tx_bd_base;
1069
1070 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071 if (!tx_queue->tx_skbuff[i])
1072 continue;
1073
1074 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076 txbdp->lstatus = 0;
1077 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078 j++) {
1079 txbdp++;
1080 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081 be16_to_cpu(txbdp->length),
1082 DMA_TO_DEVICE);
1083 }
1084 txbdp++;
1085 dev_kfree_skb_any(skb: tx_queue->tx_skbuff[i]);
1086 tx_queue->tx_skbuff[i] = NULL;
1087 }
1088 kfree(objp: tx_queue->tx_skbuff);
1089 tx_queue->tx_skbuff = NULL;
1090}
1091
1092static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093{
1094 int i;
1095
1096 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098 dev_kfree_skb(rx_queue->skb);
1099
1100 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
1103 rxbdp->lstatus = 0;
1104 rxbdp->bufPtr = 0;
1105 rxbdp++;
1106
1107 if (!rxb->page)
1108 continue;
1109
1110 dma_unmap_page(rx_queue->dev, rxb->dma,
1111 PAGE_SIZE, DMA_FROM_DEVICE);
1112 __free_page(rxb->page);
1113
1114 rxb->page = NULL;
1115 }
1116
1117 kfree(objp: rx_queue->rx_buff);
1118 rx_queue->rx_buff = NULL;
1119}
1120
1121/* If there are any tx skbs or rx skbs still around, free them.
1122 * Then free tx_skbuff and rx_skbuff
1123 */
1124static void free_skb_resources(struct gfar_private *priv)
1125{
1126 struct gfar_priv_tx_q *tx_queue = NULL;
1127 struct gfar_priv_rx_q *rx_queue = NULL;
1128 int i;
1129
1130 /* Go through all the buffer descriptors and free their data buffers */
1131 for (i = 0; i < priv->num_tx_queues; i++) {
1132 struct netdev_queue *txq;
1133
1134 tx_queue = priv->tx_queue[i];
1135 txq = netdev_get_tx_queue(dev: tx_queue->dev, index: tx_queue->qindex);
1136 if (tx_queue->tx_skbuff)
1137 free_skb_tx_queue(tx_queue);
1138 netdev_tx_reset_queue(q: txq);
1139 }
1140
1141 for (i = 0; i < priv->num_rx_queues; i++) {
1142 rx_queue = priv->rx_queue[i];
1143 if (rx_queue->rx_buff)
1144 free_skb_rx_queue(rx_queue);
1145 }
1146
1147 dma_free_coherent(dev: priv->dev,
1148 size: sizeof(struct txbd8) * priv->total_tx_ring_size +
1149 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150 cpu_addr: priv->tx_queue[0]->tx_bd_base,
1151 dma_handle: priv->tx_queue[0]->tx_bd_dma_base);
1152}
1153
1154void stop_gfar(struct net_device *dev)
1155{
1156 struct gfar_private *priv = netdev_priv(dev);
1157
1158 netif_tx_stop_all_queues(dev);
1159
1160 smp_mb__before_atomic();
1161 set_bit(nr: GFAR_DOWN, addr: &priv->state);
1162 smp_mb__after_atomic();
1163
1164 disable_napi(priv);
1165
1166 /* disable ints and gracefully shut down Rx/Tx DMA */
1167 gfar_halt(priv);
1168
1169 phy_stop(phydev: dev->phydev);
1170
1171 free_skb_resources(priv);
1172}
1173
1174static void gfar_start(struct gfar_private *priv)
1175{
1176 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177 u32 tempval;
1178 int i = 0;
1179
1180 /* Enable Rx/Tx hw queues */
1181 gfar_write(addr: &regs->rqueue, val: priv->rqueue);
1182 gfar_write(addr: &regs->tqueue, val: priv->tqueue);
1183
1184 /* Initialize DMACTRL to have WWR and WOP */
1185 tempval = gfar_read(addr: &regs->dmactrl);
1186 tempval |= DMACTRL_INIT_SETTINGS;
1187 gfar_write(addr: &regs->dmactrl, val: tempval);
1188
1189 /* Make sure we aren't stopped */
1190 tempval = gfar_read(addr: &regs->dmactrl);
1191 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192 gfar_write(addr: &regs->dmactrl, val: tempval);
1193
1194 for (i = 0; i < priv->num_grps; i++) {
1195 regs = priv->gfargrp[i].regs;
1196 /* Clear THLT/RHLT, so that the DMA starts polling now */
1197 gfar_write(addr: &regs->tstat, val: priv->gfargrp[i].tstat);
1198 gfar_write(addr: &regs->rstat, val: priv->gfargrp[i].rstat);
1199 }
1200
1201 /* Enable Rx/Tx DMA */
1202 tempval = gfar_read(addr: &regs->maccfg1);
1203 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204 gfar_write(addr: &regs->maccfg1, val: tempval);
1205
1206 gfar_ints_enable(priv);
1207
1208 netif_trans_update(dev: priv->ndev); /* prevent tx timeout */
1209}
1210
1211static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212{
1213 struct page *page;
1214 dma_addr_t addr;
1215
1216 page = dev_alloc_page();
1217 if (unlikely(!page))
1218 return false;
1219
1220 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222 __free_page(page);
1223
1224 return false;
1225 }
1226
1227 rxb->dma = addr;
1228 rxb->page = page;
1229 rxb->page_offset = 0;
1230
1231 return true;
1232}
1233
1234static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235{
1236 struct gfar_private *priv = netdev_priv(dev: rx_queue->ndev);
1237 struct gfar_extra_stats *estats = &priv->extra_stats;
1238
1239 netdev_err(dev: rx_queue->ndev, format: "Can't alloc RX buffers\n");
1240 atomic64_inc(v: &estats->rx_alloc_err);
1241}
1242
1243static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244 int alloc_cnt)
1245{
1246 struct rxbd8 *bdp;
1247 struct gfar_rx_buff *rxb;
1248 int i;
1249
1250 i = rx_queue->next_to_use;
1251 bdp = &rx_queue->rx_bd_base[i];
1252 rxb = &rx_queue->rx_buff[i];
1253
1254 while (alloc_cnt--) {
1255 /* try reuse page */
1256 if (unlikely(!rxb->page)) {
1257 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258 gfar_rx_alloc_err(rx_queue);
1259 break;
1260 }
1261 }
1262
1263 /* Setup the new RxBD */
1264 gfar_init_rxbdp(rx_queue, bdp,
1265 buf: rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267 /* Update to the next pointer */
1268 bdp++;
1269 rxb++;
1270
1271 if (unlikely(++i == rx_queue->rx_ring_size)) {
1272 i = 0;
1273 bdp = rx_queue->rx_bd_base;
1274 rxb = rx_queue->rx_buff;
1275 }
1276 }
1277
1278 rx_queue->next_to_use = i;
1279 rx_queue->next_to_alloc = i;
1280}
1281
1282static void gfar_init_bds(struct net_device *ndev)
1283{
1284 struct gfar_private *priv = netdev_priv(dev: ndev);
1285 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286 struct gfar_priv_tx_q *tx_queue = NULL;
1287 struct gfar_priv_rx_q *rx_queue = NULL;
1288 struct txbd8 *txbdp;
1289 u32 __iomem *rfbptr;
1290 int i, j;
1291
1292 for (i = 0; i < priv->num_tx_queues; i++) {
1293 tx_queue = priv->tx_queue[i];
1294 /* Initialize some variables in our dev structure */
1295 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297 tx_queue->cur_tx = tx_queue->tx_bd_base;
1298 tx_queue->skb_curtx = 0;
1299 tx_queue->skb_dirtytx = 0;
1300
1301 /* Initialize Transmit Descriptor Ring */
1302 txbdp = tx_queue->tx_bd_base;
1303 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304 txbdp->lstatus = 0;
1305 txbdp->bufPtr = 0;
1306 txbdp++;
1307 }
1308
1309 /* Set the last descriptor in the ring to indicate wrap */
1310 txbdp--;
1311 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312 TXBD_WRAP);
1313 }
1314
1315 rfbptr = &regs->rfbptr0;
1316 for (i = 0; i < priv->num_rx_queues; i++) {
1317 rx_queue = priv->rx_queue[i];
1318
1319 rx_queue->next_to_clean = 0;
1320 rx_queue->next_to_use = 0;
1321 rx_queue->next_to_alloc = 0;
1322
1323 /* make sure next_to_clean != next_to_use after this
1324 * by leaving at least 1 unused descriptor
1325 */
1326 gfar_alloc_rx_buffs(rx_queue, alloc_cnt: gfar_rxbd_unused(rxq: rx_queue));
1327
1328 rx_queue->rfbptr = rfbptr;
1329 rfbptr += 2;
1330 }
1331}
1332
1333static int gfar_alloc_skb_resources(struct net_device *ndev)
1334{
1335 void *vaddr;
1336 dma_addr_t addr;
1337 int i, j;
1338 struct gfar_private *priv = netdev_priv(dev: ndev);
1339 struct device *dev = priv->dev;
1340 struct gfar_priv_tx_q *tx_queue = NULL;
1341 struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343 priv->total_tx_ring_size = 0;
1344 for (i = 0; i < priv->num_tx_queues; i++)
1345 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347 priv->total_rx_ring_size = 0;
1348 for (i = 0; i < priv->num_rx_queues; i++)
1349 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351 /* Allocate memory for the buffer descriptors */
1352 vaddr = dma_alloc_coherent(dev,
1353 size: (priv->total_tx_ring_size *
1354 sizeof(struct txbd8)) +
1355 (priv->total_rx_ring_size *
1356 sizeof(struct rxbd8)),
1357 dma_handle: &addr, GFP_KERNEL);
1358 if (!vaddr)
1359 return -ENOMEM;
1360
1361 for (i = 0; i < priv->num_tx_queues; i++) {
1362 tx_queue = priv->tx_queue[i];
1363 tx_queue->tx_bd_base = vaddr;
1364 tx_queue->tx_bd_dma_base = addr;
1365 tx_queue->dev = ndev;
1366 /* enet DMA only understands physical addresses */
1367 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369 }
1370
1371 /* Start the rx descriptor ring where the tx ring leaves off */
1372 for (i = 0; i < priv->num_rx_queues; i++) {
1373 rx_queue = priv->rx_queue[i];
1374 rx_queue->rx_bd_base = vaddr;
1375 rx_queue->rx_bd_dma_base = addr;
1376 rx_queue->ndev = ndev;
1377 rx_queue->dev = dev;
1378 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380 }
1381
1382 /* Setup the skbuff rings */
1383 for (i = 0; i < priv->num_tx_queues; i++) {
1384 tx_queue = priv->tx_queue[i];
1385 tx_queue->tx_skbuff =
1386 kmalloc_array(n: tx_queue->tx_ring_size,
1387 size: sizeof(*tx_queue->tx_skbuff),
1388 GFP_KERNEL);
1389 if (!tx_queue->tx_skbuff)
1390 goto cleanup;
1391
1392 for (j = 0; j < tx_queue->tx_ring_size; j++)
1393 tx_queue->tx_skbuff[j] = NULL;
1394 }
1395
1396 for (i = 0; i < priv->num_rx_queues; i++) {
1397 rx_queue = priv->rx_queue[i];
1398 rx_queue->rx_buff = kcalloc(n: rx_queue->rx_ring_size,
1399 size: sizeof(*rx_queue->rx_buff),
1400 GFP_KERNEL);
1401 if (!rx_queue->rx_buff)
1402 goto cleanup;
1403 }
1404
1405 gfar_init_bds(ndev);
1406
1407 return 0;
1408
1409cleanup:
1410 free_skb_resources(priv);
1411 return -ENOMEM;
1412}
1413
1414/* Bring the controller up and running */
1415int startup_gfar(struct net_device *ndev)
1416{
1417 struct gfar_private *priv = netdev_priv(dev: ndev);
1418 int err;
1419
1420 gfar_mac_reset(priv);
1421
1422 err = gfar_alloc_skb_resources(ndev);
1423 if (err)
1424 return err;
1425
1426 gfar_init_tx_rx_base(priv);
1427
1428 smp_mb__before_atomic();
1429 clear_bit(nr: GFAR_DOWN, addr: &priv->state);
1430 smp_mb__after_atomic();
1431
1432 /* Start Rx/Tx DMA and enable the interrupts */
1433 gfar_start(priv);
1434
1435 /* force link state update after mac reset */
1436 priv->oldlink = 0;
1437 priv->oldspeed = 0;
1438 priv->oldduplex = -1;
1439
1440 phy_start(phydev: ndev->phydev);
1441
1442 enable_napi(priv);
1443
1444 netif_tx_wake_all_queues(dev: ndev);
1445
1446 return 0;
1447}
1448
1449static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450{
1451 struct net_device *ndev = priv->ndev;
1452 struct phy_device *phydev = ndev->phydev;
1453 u32 val = 0;
1454
1455 if (!phydev->duplex)
1456 return val;
1457
1458 if (!priv->pause_aneg_en) {
1459 if (priv->tx_pause_en)
1460 val |= MACCFG1_TX_FLOW;
1461 if (priv->rx_pause_en)
1462 val |= MACCFG1_RX_FLOW;
1463 } else {
1464 u16 lcl_adv, rmt_adv;
1465 u8 flowctrl;
1466 /* get link partner capabilities */
1467 rmt_adv = 0;
1468 if (phydev->pause)
1469 rmt_adv = LPA_PAUSE_CAP;
1470 if (phydev->asym_pause)
1471 rmt_adv |= LPA_PAUSE_ASYM;
1472
1473 lcl_adv = linkmode_adv_to_lcl_adv_t(advertising: phydev->advertising);
1474 flowctrl = mii_resolve_flowctrl_fdx(lcladv: lcl_adv, rmtadv: rmt_adv);
1475 if (flowctrl & FLOW_CTRL_TX)
1476 val |= MACCFG1_TX_FLOW;
1477 if (flowctrl & FLOW_CTRL_RX)
1478 val |= MACCFG1_RX_FLOW;
1479 }
1480
1481 return val;
1482}
1483
1484static noinline void gfar_update_link_state(struct gfar_private *priv)
1485{
1486 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487 struct net_device *ndev = priv->ndev;
1488 struct phy_device *phydev = ndev->phydev;
1489 struct gfar_priv_rx_q *rx_queue = NULL;
1490 int i;
1491
1492 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493 return;
1494
1495 if (phydev->link) {
1496 u32 tempval1 = gfar_read(addr: &regs->maccfg1);
1497 u32 tempval = gfar_read(addr: &regs->maccfg2);
1498 u32 ecntrl = gfar_read(addr: &regs->ecntrl);
1499 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501 if (phydev->duplex != priv->oldduplex) {
1502 if (!(phydev->duplex))
1503 tempval &= ~(MACCFG2_FULL_DUPLEX);
1504 else
1505 tempval |= MACCFG2_FULL_DUPLEX;
1506
1507 priv->oldduplex = phydev->duplex;
1508 }
1509
1510 if (phydev->speed != priv->oldspeed) {
1511 switch (phydev->speed) {
1512 case 1000:
1513 tempval =
1514 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516 ecntrl &= ~(ECNTRL_R100);
1517 break;
1518 case 100:
1519 case 10:
1520 tempval =
1521 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523 /* Reduced mode distinguishes
1524 * between 10 and 100
1525 */
1526 if (phydev->speed == SPEED_100)
1527 ecntrl |= ECNTRL_R100;
1528 else
1529 ecntrl &= ~(ECNTRL_R100);
1530 break;
1531 default:
1532 netif_warn(priv, link, priv->ndev,
1533 "Ack! Speed (%d) is not 10/100/1000!\n",
1534 phydev->speed);
1535 break;
1536 }
1537
1538 priv->oldspeed = phydev->speed;
1539 }
1540
1541 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542 tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544 /* Turn last free buffer recording on */
1545 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546 for (i = 0; i < priv->num_rx_queues; i++) {
1547 u32 bdp_dma;
1548
1549 rx_queue = priv->rx_queue[i];
1550 bdp_dma = gfar_rxbd_dma_lastfree(rxq: rx_queue);
1551 gfar_write(addr: rx_queue->rfbptr, val: bdp_dma);
1552 }
1553
1554 priv->tx_actual_en = 1;
1555 }
1556
1557 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558 priv->tx_actual_en = 0;
1559
1560 gfar_write(addr: &regs->maccfg1, val: tempval1);
1561 gfar_write(addr: &regs->maccfg2, val: tempval);
1562 gfar_write(addr: &regs->ecntrl, val: ecntrl);
1563
1564 if (!priv->oldlink)
1565 priv->oldlink = 1;
1566
1567 } else if (priv->oldlink) {
1568 priv->oldlink = 0;
1569 priv->oldspeed = 0;
1570 priv->oldduplex = -1;
1571 }
1572
1573 if (netif_msg_link(priv))
1574 phy_print_status(phydev);
1575}
1576
1577/* Called every time the controller might need to be made
1578 * aware of new link state. The PHY code conveys this
1579 * information through variables in the phydev structure, and this
1580 * function converts those variables into the appropriate
1581 * register values, and can bring down the device if needed.
1582 */
1583static void adjust_link(struct net_device *dev)
1584{
1585 struct gfar_private *priv = netdev_priv(dev);
1586 struct phy_device *phydev = dev->phydev;
1587
1588 if (unlikely(phydev->link != priv->oldlink ||
1589 (phydev->link && (phydev->duplex != priv->oldduplex ||
1590 phydev->speed != priv->oldspeed))))
1591 gfar_update_link_state(priv);
1592}
1593
1594/* Initialize TBI PHY interface for communicating with the
1595 * SERDES lynx PHY on the chip. We communicate with this PHY
1596 * through the MDIO bus on each controller, treating it as a
1597 * "normal" PHY at the address found in the TBIPA register. We assume
1598 * that the TBIPA register is valid. Either the MDIO bus code will set
1599 * it to a value that doesn't conflict with other PHYs on the bus, or the
1600 * value doesn't matter, as there are no other PHYs on the bus.
1601 */
1602static void gfar_configure_serdes(struct net_device *dev)
1603{
1604 struct gfar_private *priv = netdev_priv(dev);
1605 struct phy_device *tbiphy;
1606
1607 if (!priv->tbi_node) {
1608 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609 "device tree specify a tbi-handle\n");
1610 return;
1611 }
1612
1613 tbiphy = of_phy_find_device(phy_np: priv->tbi_node);
1614 if (!tbiphy) {
1615 dev_err(&dev->dev, "error: Could not get TBI device\n");
1616 return;
1617 }
1618
1619 /* If the link is already up, we must already be ok, and don't need to
1620 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1621 * everything for us? Resetting it takes the link down and requires
1622 * several seconds for it to come back.
1623 */
1624 if (phy_read(phydev: tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625 put_device(dev: &tbiphy->mdio.dev);
1626 return;
1627 }
1628
1629 /* Single clk mode, mii mode off(for serdes communication) */
1630 phy_write(phydev: tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632 phy_write(phydev: tbiphy, MII_ADVERTISE,
1633 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634 ADVERTISE_1000XPSE_ASYM);
1635
1636 phy_write(phydev: tbiphy, MII_BMCR,
1637 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638 BMCR_SPEED1000);
1639
1640 put_device(dev: &tbiphy->mdio.dev);
1641}
1642
1643/* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646static int init_phy(struct net_device *dev)
1647{
1648 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649 struct gfar_private *priv = netdev_priv(dev);
1650 phy_interface_t interface = priv->interface;
1651 struct phy_device *phydev;
1652 struct ethtool_keee edata;
1653
1654 linkmode_set_bit_array(array: phy_10_100_features_array,
1655 ARRAY_SIZE(phy_10_100_features_array),
1656 addr: mask);
1657 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_Autoneg_BIT, addr: mask);
1658 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_MII_BIT, addr: mask);
1659 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_1000baseT_Full_BIT, addr: mask);
1661
1662 priv->oldlink = 0;
1663 priv->oldspeed = 0;
1664 priv->oldduplex = -1;
1665
1666 phydev = of_phy_connect(dev, phy_np: priv->phy_node, hndlr: &adjust_link, flags: 0,
1667 iface: interface);
1668 if (!phydev) {
1669 dev_err(&dev->dev, "could not attach to PHY\n");
1670 return -ENODEV;
1671 }
1672
1673 if (interface == PHY_INTERFACE_MODE_SGMII)
1674 gfar_configure_serdes(dev);
1675
1676 /* Remove any features not supported by the controller */
1677 linkmode_and(dst: phydev->supported, a: phydev->supported, b: mask);
1678 linkmode_copy(dst: phydev->advertising, src: phydev->supported);
1679
1680 /* Add support for flow control */
1681 phy_support_asym_pause(phydev);
1682
1683 /* disable EEE autoneg, EEE not supported by eTSEC */
1684 memset(&edata, 0, sizeof(struct ethtool_keee));
1685 phy_ethtool_set_eee(phydev, data: &edata);
1686
1687 return 0;
1688}
1689
1690static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691{
1692 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694 memset(fcb, 0, GMAC_FCB_LEN);
1695
1696 return fcb;
1697}
1698
1699static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700 int fcb_length)
1701{
1702 /* If we're here, it's a IP packet with a TCP or UDP
1703 * payload. We set it to checksum, using a pseudo-header
1704 * we provide
1705 */
1706 u8 flags = TXFCB_DEFAULT;
1707
1708 /* Tell the controller what the protocol is
1709 * And provide the already calculated phcs
1710 */
1711 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712 flags |= TXFCB_UDP;
1713 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714 } else
1715 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717 /* l3os is the distance between the start of the
1718 * frame (skb->data) and the start of the IP hdr.
1719 * l4os is the distance between the start of the
1720 * l3 hdr and the l4 hdr
1721 */
1722 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723 fcb->l4os = skb_network_header_len(skb);
1724
1725 fcb->flags = flags;
1726}
1727
1728static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729{
1730 fcb->flags |= TXFCB_VLN;
1731 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732}
1733
1734static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735 struct txbd8 *base, int ring_size)
1736{
1737 struct txbd8 *new_bd = bdp + stride;
1738
1739 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740}
1741
1742static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743 int ring_size)
1744{
1745 return skip_txbd(bdp, stride: 1, base, ring_size);
1746}
1747
1748/* eTSEC12: csum generation not supported for some fcb offsets */
1749static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750 unsigned long fcb_addr)
1751{
1752 return (gfar_has_errata(priv, err: GFAR_ERRATA_12) &&
1753 (fcb_addr % 0x20) > 0x18);
1754}
1755
1756/* eTSEC76: csum generation for frames larger than 2500 may
1757 * cause excess delays before start of transmission
1758 */
1759static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760 unsigned int len)
1761{
1762 return (gfar_has_errata(priv, err: GFAR_ERRATA_76) &&
1763 (len > 2500));
1764}
1765
1766/* This is called by the kernel when a frame is ready for transmission.
1767 * It is pointed to by the dev->hard_start_xmit function pointer
1768 */
1769static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770{
1771 struct gfar_private *priv = netdev_priv(dev);
1772 struct gfar_priv_tx_q *tx_queue = NULL;
1773 struct netdev_queue *txq;
1774 struct gfar __iomem *regs = NULL;
1775 struct txfcb *fcb = NULL;
1776 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777 u32 lstatus;
1778 skb_frag_t *frag;
1779 int i, rq = 0;
1780 int do_tstamp, do_csum, do_vlan;
1781 u32 bufaddr;
1782 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784 rq = skb->queue_mapping;
1785 tx_queue = priv->tx_queue[rq];
1786 txq = netdev_get_tx_queue(dev, index: rq);
1787 base = tx_queue->tx_bd_base;
1788 regs = tx_queue->grp->regs;
1789
1790 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791 do_vlan = skb_vlan_tag_present(skb);
1792 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793 priv->hwts_tx_en;
1794
1795 if (do_csum || do_vlan)
1796 fcb_len = GMAC_FCB_LEN;
1797
1798 /* check if time stamp should be generated */
1799 if (unlikely(do_tstamp))
1800 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802 /* make space for additional header when fcb is needed */
1803 if (fcb_len) {
1804 if (unlikely(skb_cow_head(skb, fcb_len))) {
1805 dev->stats.tx_errors++;
1806 dev_kfree_skb_any(skb);
1807 return NETDEV_TX_OK;
1808 }
1809 }
1810
1811 /* total number of fragments in the SKB */
1812 nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814 /* calculate the required number of TxBDs for this skb */
1815 if (unlikely(do_tstamp))
1816 nr_txbds = nr_frags + 2;
1817 else
1818 nr_txbds = nr_frags + 1;
1819
1820 /* check if there is space to queue this packet */
1821 if (nr_txbds > tx_queue->num_txbdfree) {
1822 /* no space, stop the queue */
1823 netif_tx_stop_queue(dev_queue: txq);
1824 dev->stats.tx_fifo_errors++;
1825 return NETDEV_TX_BUSY;
1826 }
1827
1828 /* Update transmit stats */
1829 bytes_sent = skb->len;
1830 tx_queue->stats.tx_bytes += bytes_sent;
1831 /* keep Tx bytes on wire for BQL accounting */
1832 GFAR_CB(skb)->bytes_sent = bytes_sent;
1833 tx_queue->stats.tx_packets++;
1834
1835 txbdp = txbdp_start = tx_queue->cur_tx;
1836 lstatus = be32_to_cpu(txbdp->lstatus);
1837
1838 /* Add TxPAL between FCB and frame if required */
1839 if (unlikely(do_tstamp)) {
1840 skb_push(skb, GMAC_TXPAL_LEN);
1841 memset(skb->data, 0, GMAC_TXPAL_LEN);
1842 }
1843
1844 /* Add TxFCB if required */
1845 if (fcb_len) {
1846 fcb = gfar_add_fcb(skb);
1847 lstatus |= BD_LFLAG(TXBD_TOE);
1848 }
1849
1850 /* Set up checksumming */
1851 if (do_csum) {
1852 gfar_tx_checksum(skb, fcb, fcb_length: fcb_len);
1853
1854 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856 __skb_pull(skb, GMAC_FCB_LEN);
1857 skb_checksum_help(skb);
1858 if (do_vlan || do_tstamp) {
1859 /* put back a new fcb for vlan/tstamp TOE */
1860 fcb = gfar_add_fcb(skb);
1861 } else {
1862 /* Tx TOE not used */
1863 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864 fcb = NULL;
1865 }
1866 }
1867 }
1868
1869 if (do_vlan)
1870 gfar_tx_vlan(skb, fcb);
1871
1872 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873 DMA_TO_DEVICE);
1874 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875 goto dma_map_err;
1876
1877 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879 /* Time stamp insertion requires one additional TxBD */
1880 if (unlikely(do_tstamp))
1881 txbdp_tstamp = txbdp = next_txbd(bdp: txbdp, base,
1882 ring_size: tx_queue->tx_ring_size);
1883
1884 if (likely(!nr_frags)) {
1885 if (likely(!do_tstamp))
1886 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887 } else {
1888 u32 lstatus_start = lstatus;
1889
1890 /* Place the fragment addresses and lengths into the TxBDs */
1891 frag = &skb_shinfo(skb)->frags[0];
1892 for (i = 0; i < nr_frags; i++, frag++) {
1893 unsigned int size;
1894
1895 /* Point at the next BD, wrapping as needed */
1896 txbdp = next_txbd(bdp: txbdp, base, ring_size: tx_queue->tx_ring_size);
1897
1898 size = skb_frag_size(frag);
1899
1900 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901 BD_LFLAG(TXBD_READY);
1902
1903 /* Handle the last BD specially */
1904 if (i == nr_frags - 1)
1905 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907 bufaddr = skb_frag_dma_map(dev: priv->dev, frag, offset: 0,
1908 size, dir: DMA_TO_DEVICE);
1909 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910 goto dma_map_err;
1911
1912 /* set the TxBD length and buffer pointer */
1913 txbdp->bufPtr = cpu_to_be32(bufaddr);
1914 txbdp->lstatus = cpu_to_be32(lstatus);
1915 }
1916
1917 lstatus = lstatus_start;
1918 }
1919
1920 /* If time stamping is requested one additional TxBD must be set up. The
1921 * first TxBD points to the FCB and must have a data length of
1922 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923 * the full frame length.
1924 */
1925 if (unlikely(do_tstamp)) {
1926 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929 bufaddr += fcb_len;
1930
1931 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932 (skb_headlen(skb) - fcb_len);
1933 if (!nr_frags)
1934 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940 /* Setup tx hardware time stamping */
1941 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942 fcb->ptp = 1;
1943 } else {
1944 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945 }
1946
1947 skb_tx_timestamp(skb);
1948 netdev_tx_sent_queue(dev_queue: txq, bytes: bytes_sent);
1949
1950 gfar_wmb();
1951
1952 txbdp_start->lstatus = cpu_to_be32(lstatus);
1953
1954 gfar_wmb(); /* force lstatus write before tx_skbuff */
1955
1956 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1957
1958 /* Update the current skb pointer to the next entry we will use
1959 * (wrapping if necessary)
1960 */
1961 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1962 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1963
1964 tx_queue->cur_tx = next_txbd(bdp: txbdp, base, ring_size: tx_queue->tx_ring_size);
1965
1966 /* We can work in parallel with gfar_clean_tx_ring(), except
1967 * when modifying num_txbdfree. Note that we didn't grab the lock
1968 * when we were reading the num_txbdfree and checking for available
1969 * space, that's because outside of this function it can only grow.
1970 */
1971 spin_lock_bh(lock: &tx_queue->txlock);
1972 /* reduce TxBD free count */
1973 tx_queue->num_txbdfree -= (nr_txbds);
1974 spin_unlock_bh(lock: &tx_queue->txlock);
1975
1976 /* If the next BD still needs to be cleaned up, then the bds
1977 * are full. We need to tell the kernel to stop sending us stuff.
1978 */
1979 if (!tx_queue->num_txbdfree) {
1980 netif_tx_stop_queue(dev_queue: txq);
1981
1982 dev->stats.tx_fifo_errors++;
1983 }
1984
1985 /* Tell the DMA to go go go */
1986 gfar_write(addr: &regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1987
1988 return NETDEV_TX_OK;
1989
1990dma_map_err:
1991 txbdp = next_txbd(bdp: txbdp_start, base, ring_size: tx_queue->tx_ring_size);
1992 if (do_tstamp)
1993 txbdp = next_txbd(bdp: txbdp, base, ring_size: tx_queue->tx_ring_size);
1994 for (i = 0; i < nr_frags; i++) {
1995 lstatus = be32_to_cpu(txbdp->lstatus);
1996 if (!(lstatus & BD_LFLAG(TXBD_READY)))
1997 break;
1998
1999 lstatus &= ~BD_LFLAG(TXBD_READY);
2000 txbdp->lstatus = cpu_to_be32(lstatus);
2001 bufaddr = be32_to_cpu(txbdp->bufPtr);
2002 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2003 DMA_TO_DEVICE);
2004 txbdp = next_txbd(bdp: txbdp, base, ring_size: tx_queue->tx_ring_size);
2005 }
2006 gfar_wmb();
2007 dev_kfree_skb_any(skb);
2008 return NETDEV_TX_OK;
2009}
2010
2011/* Changes the mac address if the controller is not running. */
2012static int gfar_set_mac_address(struct net_device *dev)
2013{
2014 gfar_set_mac_for_addr(dev, num: 0, addr: dev->dev_addr);
2015
2016 return 0;
2017}
2018
2019static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2020{
2021 struct gfar_private *priv = netdev_priv(dev);
2022
2023 while (test_and_set_bit_lock(nr: GFAR_RESETTING, addr: &priv->state))
2024 cpu_relax();
2025
2026 if (dev->flags & IFF_UP)
2027 stop_gfar(dev);
2028
2029 dev->mtu = new_mtu;
2030
2031 if (dev->flags & IFF_UP)
2032 startup_gfar(ndev: dev);
2033
2034 clear_bit_unlock(nr: GFAR_RESETTING, addr: &priv->state);
2035
2036 return 0;
2037}
2038
2039static void reset_gfar(struct net_device *ndev)
2040{
2041 struct gfar_private *priv = netdev_priv(dev: ndev);
2042
2043 while (test_and_set_bit_lock(nr: GFAR_RESETTING, addr: &priv->state))
2044 cpu_relax();
2045
2046 stop_gfar(dev: ndev);
2047 startup_gfar(ndev);
2048
2049 clear_bit_unlock(nr: GFAR_RESETTING, addr: &priv->state);
2050}
2051
2052/* gfar_reset_task gets scheduled when a packet has not been
2053 * transmitted after a set amount of time.
2054 * For now, assume that clearing out all the structures, and
2055 * starting over will fix the problem.
2056 */
2057static void gfar_reset_task(struct work_struct *work)
2058{
2059 struct gfar_private *priv = container_of(work, struct gfar_private,
2060 reset_task);
2061 reset_gfar(ndev: priv->ndev);
2062}
2063
2064static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2065{
2066 struct gfar_private *priv = netdev_priv(dev);
2067
2068 dev->stats.tx_errors++;
2069 schedule_work(work: &priv->reset_task);
2070}
2071
2072static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2073{
2074 struct hwtstamp_config config;
2075 struct gfar_private *priv = netdev_priv(dev: netdev);
2076
2077 if (copy_from_user(to: &config, from: ifr->ifr_data, n: sizeof(config)))
2078 return -EFAULT;
2079
2080 switch (config.tx_type) {
2081 case HWTSTAMP_TX_OFF:
2082 priv->hwts_tx_en = 0;
2083 break;
2084 case HWTSTAMP_TX_ON:
2085 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2086 return -ERANGE;
2087 priv->hwts_tx_en = 1;
2088 break;
2089 default:
2090 return -ERANGE;
2091 }
2092
2093 switch (config.rx_filter) {
2094 case HWTSTAMP_FILTER_NONE:
2095 if (priv->hwts_rx_en) {
2096 priv->hwts_rx_en = 0;
2097 reset_gfar(ndev: netdev);
2098 }
2099 break;
2100 default:
2101 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2102 return -ERANGE;
2103 if (!priv->hwts_rx_en) {
2104 priv->hwts_rx_en = 1;
2105 reset_gfar(ndev: netdev);
2106 }
2107 config.rx_filter = HWTSTAMP_FILTER_ALL;
2108 break;
2109 }
2110
2111 return copy_to_user(to: ifr->ifr_data, from: &config, n: sizeof(config)) ?
2112 -EFAULT : 0;
2113}
2114
2115static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2116{
2117 struct hwtstamp_config config;
2118 struct gfar_private *priv = netdev_priv(dev: netdev);
2119
2120 config.flags = 0;
2121 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2122 config.rx_filter = (priv->hwts_rx_en ?
2123 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2124
2125 return copy_to_user(to: ifr->ifr_data, from: &config, n: sizeof(config)) ?
2126 -EFAULT : 0;
2127}
2128
2129static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2130{
2131 struct phy_device *phydev = dev->phydev;
2132
2133 if (!netif_running(dev))
2134 return -EINVAL;
2135
2136 if (cmd == SIOCSHWTSTAMP)
2137 return gfar_hwtstamp_set(netdev: dev, ifr: rq);
2138 if (cmd == SIOCGHWTSTAMP)
2139 return gfar_hwtstamp_get(netdev: dev, ifr: rq);
2140
2141 if (!phydev)
2142 return -ENODEV;
2143
2144 return phy_mii_ioctl(phydev, ifr: rq, cmd);
2145}
2146
2147/* Interrupt Handler for Transmit complete */
2148static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2149{
2150 struct net_device *dev = tx_queue->dev;
2151 struct netdev_queue *txq;
2152 struct gfar_private *priv = netdev_priv(dev);
2153 struct txbd8 *bdp, *next = NULL;
2154 struct txbd8 *lbdp = NULL;
2155 struct txbd8 *base = tx_queue->tx_bd_base;
2156 struct sk_buff *skb;
2157 int skb_dirtytx;
2158 int tx_ring_size = tx_queue->tx_ring_size;
2159 int frags = 0, nr_txbds = 0;
2160 int i;
2161 int howmany = 0;
2162 int tqi = tx_queue->qindex;
2163 unsigned int bytes_sent = 0;
2164 u32 lstatus;
2165 size_t buflen;
2166
2167 txq = netdev_get_tx_queue(dev, index: tqi);
2168 bdp = tx_queue->dirty_tx;
2169 skb_dirtytx = tx_queue->skb_dirtytx;
2170
2171 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2172 bool do_tstamp;
2173
2174 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2175 priv->hwts_tx_en;
2176
2177 frags = skb_shinfo(skb)->nr_frags;
2178
2179 /* When time stamping, one additional TxBD must be freed.
2180 * Also, we need to dma_unmap_single() the TxPAL.
2181 */
2182 if (unlikely(do_tstamp))
2183 nr_txbds = frags + 2;
2184 else
2185 nr_txbds = frags + 1;
2186
2187 lbdp = skip_txbd(bdp, stride: nr_txbds - 1, base, ring_size: tx_ring_size);
2188
2189 lstatus = be32_to_cpu(lbdp->lstatus);
2190
2191 /* Only clean completed frames */
2192 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2193 (lstatus & BD_LENGTH_MASK))
2194 break;
2195
2196 if (unlikely(do_tstamp)) {
2197 next = next_txbd(bdp, base, ring_size: tx_ring_size);
2198 buflen = be16_to_cpu(next->length) +
2199 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2200 } else
2201 buflen = be16_to_cpu(bdp->length);
2202
2203 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2204 buflen, DMA_TO_DEVICE);
2205
2206 if (unlikely(do_tstamp)) {
2207 struct skb_shared_hwtstamps shhwtstamps;
2208 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2209 ~0x7UL);
2210
2211 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2212 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2213 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2214 skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps);
2215 gfar_clear_txbd_status(bdp);
2216 bdp = next;
2217 }
2218
2219 gfar_clear_txbd_status(bdp);
2220 bdp = next_txbd(bdp, base, ring_size: tx_ring_size);
2221
2222 for (i = 0; i < frags; i++) {
2223 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2224 be16_to_cpu(bdp->length),
2225 DMA_TO_DEVICE);
2226 gfar_clear_txbd_status(bdp);
2227 bdp = next_txbd(bdp, base, ring_size: tx_ring_size);
2228 }
2229
2230 bytes_sent += GFAR_CB(skb)->bytes_sent;
2231
2232 dev_kfree_skb_any(skb);
2233
2234 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2235
2236 skb_dirtytx = (skb_dirtytx + 1) &
2237 TX_RING_MOD_MASK(tx_ring_size);
2238
2239 howmany++;
2240 spin_lock(lock: &tx_queue->txlock);
2241 tx_queue->num_txbdfree += nr_txbds;
2242 spin_unlock(lock: &tx_queue->txlock);
2243 }
2244
2245 /* If we freed a buffer, we can restart transmission, if necessary */
2246 if (tx_queue->num_txbdfree &&
2247 netif_tx_queue_stopped(dev_queue: txq) &&
2248 !(test_bit(GFAR_DOWN, &priv->state)))
2249 netif_wake_subqueue(dev: priv->ndev, queue_index: tqi);
2250
2251 /* Update dirty indicators */
2252 tx_queue->skb_dirtytx = skb_dirtytx;
2253 tx_queue->dirty_tx = bdp;
2254
2255 netdev_tx_completed_queue(dev_queue: txq, pkts: howmany, bytes: bytes_sent);
2256}
2257
2258static void count_errors(u32 lstatus, struct net_device *ndev)
2259{
2260 struct gfar_private *priv = netdev_priv(dev: ndev);
2261 struct net_device_stats *stats = &ndev->stats;
2262 struct gfar_extra_stats *estats = &priv->extra_stats;
2263
2264 /* If the packet was truncated, none of the other errors matter */
2265 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2266 stats->rx_length_errors++;
2267
2268 atomic64_inc(v: &estats->rx_trunc);
2269
2270 return;
2271 }
2272 /* Count the errors, if there were any */
2273 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2274 stats->rx_length_errors++;
2275
2276 if (lstatus & BD_LFLAG(RXBD_LARGE))
2277 atomic64_inc(v: &estats->rx_large);
2278 else
2279 atomic64_inc(v: &estats->rx_short);
2280 }
2281 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2282 stats->rx_frame_errors++;
2283 atomic64_inc(v: &estats->rx_nonoctet);
2284 }
2285 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2286 atomic64_inc(v: &estats->rx_crcerr);
2287 stats->rx_crc_errors++;
2288 }
2289 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2290 atomic64_inc(v: &estats->rx_overrun);
2291 stats->rx_over_errors++;
2292 }
2293}
2294
2295static irqreturn_t gfar_receive(int irq, void *grp_id)
2296{
2297 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2298 unsigned long flags;
2299 u32 imask, ievent;
2300
2301 ievent = gfar_read(addr: &grp->regs->ievent);
2302
2303 if (unlikely(ievent & IEVENT_FGPI)) {
2304 gfar_write(addr: &grp->regs->ievent, IEVENT_FGPI);
2305 return IRQ_HANDLED;
2306 }
2307
2308 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2309 spin_lock_irqsave(&grp->grplock, flags);
2310 imask = gfar_read(addr: &grp->regs->imask);
2311 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2312 gfar_write(addr: &grp->regs->imask, val: imask);
2313 spin_unlock_irqrestore(lock: &grp->grplock, flags);
2314 __napi_schedule(n: &grp->napi_rx);
2315 } else {
2316 /* Clear IEVENT, so interrupts aren't called again
2317 * because of the packets that have already arrived.
2318 */
2319 gfar_write(addr: &grp->regs->ievent, IEVENT_RX_MASK);
2320 }
2321
2322 return IRQ_HANDLED;
2323}
2324
2325/* Interrupt Handler for Transmit complete */
2326static irqreturn_t gfar_transmit(int irq, void *grp_id)
2327{
2328 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329 unsigned long flags;
2330 u32 imask;
2331
2332 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2333 spin_lock_irqsave(&grp->grplock, flags);
2334 imask = gfar_read(addr: &grp->regs->imask);
2335 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2336 gfar_write(addr: &grp->regs->imask, val: imask);
2337 spin_unlock_irqrestore(lock: &grp->grplock, flags);
2338 __napi_schedule(n: &grp->napi_tx);
2339 } else {
2340 /* Clear IEVENT, so interrupts aren't called again
2341 * because of the packets that have already arrived.
2342 */
2343 gfar_write(addr: &grp->regs->ievent, IEVENT_TX_MASK);
2344 }
2345
2346 return IRQ_HANDLED;
2347}
2348
2349static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2350 struct sk_buff *skb, bool first)
2351{
2352 int size = lstatus & BD_LENGTH_MASK;
2353 struct page *page = rxb->page;
2354
2355 if (likely(first)) {
2356 skb_put(skb, len: size);
2357 } else {
2358 /* the last fragments' length contains the full frame length */
2359 if (lstatus & BD_LFLAG(RXBD_LAST))
2360 size -= skb->len;
2361
2362 WARN(size < 0, "gianfar: rx fragment size underflow");
2363 if (size < 0)
2364 return false;
2365
2366 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2367 off: rxb->page_offset + RXBUF_ALIGNMENT,
2368 size, GFAR_RXB_TRUESIZE);
2369 }
2370
2371 /* try reuse page */
2372 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2373 return false;
2374
2375 /* change offset to the other half */
2376 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2377
2378 page_ref_inc(page);
2379
2380 return true;
2381}
2382
2383static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2384 struct gfar_rx_buff *old_rxb)
2385{
2386 struct gfar_rx_buff *new_rxb;
2387 u16 nta = rxq->next_to_alloc;
2388
2389 new_rxb = &rxq->rx_buff[nta];
2390
2391 /* find next buf that can reuse a page */
2392 nta++;
2393 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2394
2395 /* copy page reference */
2396 *new_rxb = *old_rxb;
2397
2398 /* sync for use by the device */
2399 dma_sync_single_range_for_device(dev: rxq->dev, addr: old_rxb->dma,
2400 offset: old_rxb->page_offset,
2401 GFAR_RXB_TRUESIZE, dir: DMA_FROM_DEVICE);
2402}
2403
2404static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2405 u32 lstatus, struct sk_buff *skb)
2406{
2407 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2408 struct page *page = rxb->page;
2409 bool first = false;
2410
2411 if (likely(!skb)) {
2412 void *buff_addr = page_address(page) + rxb->page_offset;
2413
2414 skb = build_skb(data: buff_addr, GFAR_SKBFRAG_SIZE);
2415 if (unlikely(!skb)) {
2416 gfar_rx_alloc_err(rx_queue);
2417 return NULL;
2418 }
2419 skb_reserve(skb, RXBUF_ALIGNMENT);
2420 first = true;
2421 }
2422
2423 dma_sync_single_range_for_cpu(dev: rx_queue->dev, addr: rxb->dma, offset: rxb->page_offset,
2424 GFAR_RXB_TRUESIZE, dir: DMA_FROM_DEVICE);
2425
2426 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2427 /* reuse the free half of the page */
2428 gfar_reuse_rx_page(rxq: rx_queue, old_rxb: rxb);
2429 } else {
2430 /* page cannot be reused, unmap it */
2431 dma_unmap_page(rx_queue->dev, rxb->dma,
2432 PAGE_SIZE, DMA_FROM_DEVICE);
2433 }
2434
2435 /* clear rxb content */
2436 rxb->page = NULL;
2437
2438 return skb;
2439}
2440
2441static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442{
2443 /* If valid headers were found, and valid sums
2444 * were verified, then we tell the kernel that no
2445 * checksumming is necessary. Otherwise, it is [FIXME]
2446 */
2447 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2448 (RXFCB_CIP | RXFCB_CTU))
2449 skb->ip_summed = CHECKSUM_UNNECESSARY;
2450 else
2451 skb_checksum_none_assert(skb);
2452}
2453
2454/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2455static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2456{
2457 struct gfar_private *priv = netdev_priv(dev: ndev);
2458 struct rxfcb *fcb = NULL;
2459
2460 /* fcb is at the beginning if exists */
2461 fcb = (struct rxfcb *)skb->data;
2462
2463 /* Remove the FCB from the skb
2464 * Remove the padded bytes, if there are any
2465 */
2466 if (priv->uses_rxfcb)
2467 skb_pull(skb, GMAC_FCB_LEN);
2468
2469 /* Get receive timestamp from the skb */
2470 if (priv->hwts_rx_en) {
2471 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2472 u64 *ns = (u64 *) skb->data;
2473
2474 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2475 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2476 }
2477
2478 if (priv->padding)
2479 skb_pull(skb, len: priv->padding);
2480
2481 /* Trim off the FCS */
2482 pskb_trim(skb, len: skb->len - ETH_FCS_LEN);
2483
2484 if (ndev->features & NETIF_F_RXCSUM)
2485 gfar_rx_checksum(skb, fcb);
2486
2487 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2488 * Even if vlan rx accel is disabled, on some chips
2489 * RXFCB_VLN is pseudo randomly set.
2490 */
2491 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2492 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2493 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2494 be16_to_cpu(fcb->vlctl));
2495}
2496
2497/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2498 * until the budget/quota has been reached. Returns the number
2499 * of frames handled
2500 */
2501static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2502 int rx_work_limit)
2503{
2504 struct net_device *ndev = rx_queue->ndev;
2505 struct gfar_private *priv = netdev_priv(dev: ndev);
2506 struct rxbd8 *bdp;
2507 int i, howmany = 0;
2508 struct sk_buff *skb = rx_queue->skb;
2509 int cleaned_cnt = gfar_rxbd_unused(rxq: rx_queue);
2510 unsigned int total_bytes = 0, total_pkts = 0;
2511
2512 /* Get the first full descriptor */
2513 i = rx_queue->next_to_clean;
2514
2515 while (rx_work_limit--) {
2516 u32 lstatus;
2517
2518 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2519 gfar_alloc_rx_buffs(rx_queue, alloc_cnt: cleaned_cnt);
2520 cleaned_cnt = 0;
2521 }
2522
2523 bdp = &rx_queue->rx_bd_base[i];
2524 lstatus = be32_to_cpu(bdp->lstatus);
2525 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2526 break;
2527
2528 /* lost RXBD_LAST descriptor due to overrun */
2529 if (skb &&
2530 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2531 /* discard faulty buffer */
2532 dev_kfree_skb(skb);
2533 skb = NULL;
2534 rx_queue->stats.rx_dropped++;
2535
2536 /* can continue normally */
2537 }
2538
2539 /* order rx buffer descriptor reads */
2540 rmb();
2541
2542 /* fetch next to clean buffer from the ring */
2543 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2544 if (unlikely(!skb))
2545 break;
2546
2547 cleaned_cnt++;
2548 howmany++;
2549
2550 if (unlikely(++i == rx_queue->rx_ring_size))
2551 i = 0;
2552
2553 rx_queue->next_to_clean = i;
2554
2555 /* fetch next buffer if not the last in frame */
2556 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2557 continue;
2558
2559 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2560 count_errors(lstatus, ndev);
2561
2562 /* discard faulty buffer */
2563 dev_kfree_skb(skb);
2564 skb = NULL;
2565 rx_queue->stats.rx_dropped++;
2566 continue;
2567 }
2568
2569 gfar_process_frame(ndev, skb);
2570
2571 /* Increment the number of packets */
2572 total_pkts++;
2573 total_bytes += skb->len;
2574
2575 skb_record_rx_queue(skb, rx_queue: rx_queue->qindex);
2576
2577 skb->protocol = eth_type_trans(skb, dev: ndev);
2578
2579 /* Send the packet up the stack */
2580 napi_gro_receive(napi: &rx_queue->grp->napi_rx, skb);
2581
2582 skb = NULL;
2583 }
2584
2585 /* Store incomplete frames for completion */
2586 rx_queue->skb = skb;
2587
2588 rx_queue->stats.rx_packets += total_pkts;
2589 rx_queue->stats.rx_bytes += total_bytes;
2590
2591 if (cleaned_cnt)
2592 gfar_alloc_rx_buffs(rx_queue, alloc_cnt: cleaned_cnt);
2593
2594 /* Update Last Free RxBD pointer for LFC */
2595 if (unlikely(priv->tx_actual_en)) {
2596 u32 bdp_dma = gfar_rxbd_dma_lastfree(rxq: rx_queue);
2597
2598 gfar_write(addr: rx_queue->rfbptr, val: bdp_dma);
2599 }
2600
2601 return howmany;
2602}
2603
2604static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2605{
2606 struct gfar_priv_grp *gfargrp =
2607 container_of(napi, struct gfar_priv_grp, napi_rx);
2608 struct gfar __iomem *regs = gfargrp->regs;
2609 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2610 int work_done = 0;
2611
2612 /* Clear IEVENT, so interrupts aren't called again
2613 * because of the packets that have already arrived
2614 */
2615 gfar_write(addr: &regs->ievent, IEVENT_RX_MASK);
2616
2617 work_done = gfar_clean_rx_ring(rx_queue, rx_work_limit: budget);
2618
2619 if (work_done < budget) {
2620 u32 imask;
2621 napi_complete_done(n: napi, work_done);
2622 /* Clear the halt bit in RSTAT */
2623 gfar_write(addr: &regs->rstat, val: gfargrp->rstat);
2624
2625 spin_lock_irq(lock: &gfargrp->grplock);
2626 imask = gfar_read(addr: &regs->imask);
2627 imask |= IMASK_RX_DEFAULT;
2628 gfar_write(addr: &regs->imask, val: imask);
2629 spin_unlock_irq(lock: &gfargrp->grplock);
2630 }
2631
2632 return work_done;
2633}
2634
2635static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2636{
2637 struct gfar_priv_grp *gfargrp =
2638 container_of(napi, struct gfar_priv_grp, napi_tx);
2639 struct gfar __iomem *regs = gfargrp->regs;
2640 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2641 u32 imask;
2642
2643 /* Clear IEVENT, so interrupts aren't called again
2644 * because of the packets that have already arrived
2645 */
2646 gfar_write(addr: &regs->ievent, IEVENT_TX_MASK);
2647
2648 /* run Tx cleanup to completion */
2649 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2650 gfar_clean_tx_ring(tx_queue);
2651
2652 napi_complete(n: napi);
2653
2654 spin_lock_irq(lock: &gfargrp->grplock);
2655 imask = gfar_read(addr: &regs->imask);
2656 imask |= IMASK_TX_DEFAULT;
2657 gfar_write(addr: &regs->imask, val: imask);
2658 spin_unlock_irq(lock: &gfargrp->grplock);
2659
2660 return 0;
2661}
2662
2663/* GFAR error interrupt handler */
2664static irqreturn_t gfar_error(int irq, void *grp_id)
2665{
2666 struct gfar_priv_grp *gfargrp = grp_id;
2667 struct gfar __iomem *regs = gfargrp->regs;
2668 struct gfar_private *priv= gfargrp->priv;
2669 struct net_device *dev = priv->ndev;
2670
2671 /* Save ievent for future reference */
2672 u32 events = gfar_read(addr: &regs->ievent);
2673
2674 /* Clear IEVENT */
2675 gfar_write(addr: &regs->ievent, val: events & IEVENT_ERR_MASK);
2676
2677 /* Magic Packet is not an error. */
2678 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2679 (events & IEVENT_MAG))
2680 events &= ~IEVENT_MAG;
2681
2682 /* Hmm... */
2683 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2684 netdev_dbg(dev,
2685 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2686 events, gfar_read(&regs->imask));
2687
2688 /* Update the error counters */
2689 if (events & IEVENT_TXE) {
2690 dev->stats.tx_errors++;
2691
2692 if (events & IEVENT_LC)
2693 dev->stats.tx_window_errors++;
2694 if (events & IEVENT_CRL)
2695 dev->stats.tx_aborted_errors++;
2696 if (events & IEVENT_XFUN) {
2697 netif_dbg(priv, tx_err, dev,
2698 "TX FIFO underrun, packet dropped\n");
2699 dev->stats.tx_dropped++;
2700 atomic64_inc(v: &priv->extra_stats.tx_underrun);
2701
2702 schedule_work(work: &priv->reset_task);
2703 }
2704 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2705 }
2706 if (events & IEVENT_MSRO) {
2707 struct rmon_mib __iomem *rmon = &regs->rmon;
2708 u32 car;
2709
2710 spin_lock(lock: &priv->rmon_overflow.lock);
2711 car = gfar_read(addr: &rmon->car1) & CAR1_C1RDR;
2712 if (car) {
2713 priv->rmon_overflow.rdrp++;
2714 gfar_write(addr: &rmon->car1, val: car);
2715 }
2716 spin_unlock(lock: &priv->rmon_overflow.lock);
2717 }
2718 if (events & IEVENT_BSY) {
2719 dev->stats.rx_over_errors++;
2720 atomic64_inc(v: &priv->extra_stats.rx_bsy);
2721
2722 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2723 gfar_read(&regs->rstat));
2724 }
2725 if (events & IEVENT_BABR) {
2726 dev->stats.rx_errors++;
2727 atomic64_inc(v: &priv->extra_stats.rx_babr);
2728
2729 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2730 }
2731 if (events & IEVENT_EBERR) {
2732 atomic64_inc(v: &priv->extra_stats.eberr);
2733 netif_dbg(priv, rx_err, dev, "bus error\n");
2734 }
2735 if (events & IEVENT_RXC)
2736 netif_dbg(priv, rx_status, dev, "control frame\n");
2737
2738 if (events & IEVENT_BABT) {
2739 atomic64_inc(v: &priv->extra_stats.tx_babt);
2740 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2741 }
2742 return IRQ_HANDLED;
2743}
2744
2745/* The interrupt handler for devices with one interrupt */
2746static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2747{
2748 struct gfar_priv_grp *gfargrp = grp_id;
2749
2750 /* Save ievent for future reference */
2751 u32 events = gfar_read(addr: &gfargrp->regs->ievent);
2752
2753 /* Check for reception */
2754 if (events & IEVENT_RX_MASK)
2755 gfar_receive(irq, grp_id);
2756
2757 /* Check for transmit completion */
2758 if (events & IEVENT_TX_MASK)
2759 gfar_transmit(irq, grp_id);
2760
2761 /* Check for errors */
2762 if (events & IEVENT_ERR_MASK)
2763 gfar_error(irq, grp_id);
2764
2765 return IRQ_HANDLED;
2766}
2767
2768#ifdef CONFIG_NET_POLL_CONTROLLER
2769/* Polling 'interrupt' - used by things like netconsole to send skbs
2770 * without having to re-enable interrupts. It's not called while
2771 * the interrupt routine is executing.
2772 */
2773static void gfar_netpoll(struct net_device *dev)
2774{
2775 struct gfar_private *priv = netdev_priv(dev);
2776 int i;
2777
2778 /* If the device has multiple interrupts, run tx/rx */
2779 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2780 for (i = 0; i < priv->num_grps; i++) {
2781 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2782
2783 disable_irq(gfar_irq(grp, TX)->irq);
2784 disable_irq(gfar_irq(grp, RX)->irq);
2785 disable_irq(gfar_irq(grp, ER)->irq);
2786 gfar_interrupt(gfar_irq(grp, TX)->irq, grp_id: grp);
2787 enable_irq(gfar_irq(grp, ER)->irq);
2788 enable_irq(gfar_irq(grp, RX)->irq);
2789 enable_irq(gfar_irq(grp, TX)->irq);
2790 }
2791 } else {
2792 for (i = 0; i < priv->num_grps; i++) {
2793 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2794
2795 disable_irq(gfar_irq(grp, TX)->irq);
2796 gfar_interrupt(gfar_irq(grp, TX)->irq, grp_id: grp);
2797 enable_irq(gfar_irq(grp, TX)->irq);
2798 }
2799 }
2800}
2801#endif
2802
2803static void free_grp_irqs(struct gfar_priv_grp *grp)
2804{
2805 free_irq(gfar_irq(grp, TX)->irq, grp);
2806 free_irq(gfar_irq(grp, RX)->irq, grp);
2807 free_irq(gfar_irq(grp, ER)->irq, grp);
2808}
2809
2810static int register_grp_irqs(struct gfar_priv_grp *grp)
2811{
2812 struct gfar_private *priv = grp->priv;
2813 struct net_device *dev = priv->ndev;
2814 int err;
2815
2816 /* If the device has multiple interrupts, register for
2817 * them. Otherwise, only register for the one
2818 */
2819 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2820 /* Install our interrupt handlers for Error,
2821 * Transmit, and Receive
2822 */
2823 err = request_irq(gfar_irq(grp, ER)->irq, handler: gfar_error, flags: 0,
2824 gfar_irq(grp, ER)->name, dev: grp);
2825 if (err < 0) {
2826 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2827 gfar_irq(grp, ER)->irq);
2828
2829 goto err_irq_fail;
2830 }
2831 enable_irq_wake(gfar_irq(grp, ER)->irq);
2832
2833 err = request_irq(gfar_irq(grp, TX)->irq, handler: gfar_transmit, flags: 0,
2834 gfar_irq(grp, TX)->name, dev: grp);
2835 if (err < 0) {
2836 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837 gfar_irq(grp, TX)->irq);
2838 goto tx_irq_fail;
2839 }
2840 err = request_irq(gfar_irq(grp, RX)->irq, handler: gfar_receive, flags: 0,
2841 gfar_irq(grp, RX)->name, dev: grp);
2842 if (err < 0) {
2843 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2844 gfar_irq(grp, RX)->irq);
2845 goto rx_irq_fail;
2846 }
2847 enable_irq_wake(gfar_irq(grp, RX)->irq);
2848
2849 } else {
2850 err = request_irq(gfar_irq(grp, TX)->irq, handler: gfar_interrupt, flags: 0,
2851 gfar_irq(grp, TX)->name, dev: grp);
2852 if (err < 0) {
2853 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2854 gfar_irq(grp, TX)->irq);
2855 goto err_irq_fail;
2856 }
2857 enable_irq_wake(gfar_irq(grp, TX)->irq);
2858 }
2859
2860 return 0;
2861
2862rx_irq_fail:
2863 free_irq(gfar_irq(grp, TX)->irq, grp);
2864tx_irq_fail:
2865 free_irq(gfar_irq(grp, ER)->irq, grp);
2866err_irq_fail:
2867 return err;
2868
2869}
2870
2871static void gfar_free_irq(struct gfar_private *priv)
2872{
2873 int i;
2874
2875 /* Free the IRQs */
2876 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2877 for (i = 0; i < priv->num_grps; i++)
2878 free_grp_irqs(grp: &priv->gfargrp[i]);
2879 } else {
2880 for (i = 0; i < priv->num_grps; i++)
2881 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2882 &priv->gfargrp[i]);
2883 }
2884}
2885
2886static int gfar_request_irq(struct gfar_private *priv)
2887{
2888 int err, i, j;
2889
2890 for (i = 0; i < priv->num_grps; i++) {
2891 err = register_grp_irqs(grp: &priv->gfargrp[i]);
2892 if (err) {
2893 for (j = 0; j < i; j++)
2894 free_grp_irqs(grp: &priv->gfargrp[j]);
2895 return err;
2896 }
2897 }
2898
2899 return 0;
2900}
2901
2902/* Called when something needs to use the ethernet device
2903 * Returns 0 for success.
2904 */
2905static int gfar_enet_open(struct net_device *dev)
2906{
2907 struct gfar_private *priv = netdev_priv(dev);
2908 int err;
2909
2910 err = init_phy(dev);
2911 if (err)
2912 return err;
2913
2914 err = gfar_request_irq(priv);
2915 if (err)
2916 return err;
2917
2918 err = startup_gfar(ndev: dev);
2919 if (err)
2920 return err;
2921
2922 return err;
2923}
2924
2925/* Stops the kernel queue, and halts the controller */
2926static int gfar_close(struct net_device *dev)
2927{
2928 struct gfar_private *priv = netdev_priv(dev);
2929
2930 cancel_work_sync(work: &priv->reset_task);
2931 stop_gfar(dev);
2932
2933 /* Disconnect from the PHY */
2934 phy_disconnect(phydev: dev->phydev);
2935
2936 gfar_free_irq(priv);
2937
2938 return 0;
2939}
2940
2941/* Clears each of the exact match registers to zero, so they
2942 * don't interfere with normal reception
2943 */
2944static void gfar_clear_exact_match(struct net_device *dev)
2945{
2946 int idx;
2947 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2948
2949 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2950 gfar_set_mac_for_addr(dev, num: idx, addr: zero_arr);
2951}
2952
2953/* Update the hash table based on the current list of multicast
2954 * addresses we subscribe to. Also, change the promiscuity of
2955 * the device based on the flags (this function is called
2956 * whenever dev->flags is changed
2957 */
2958static void gfar_set_multi(struct net_device *dev)
2959{
2960 struct netdev_hw_addr *ha;
2961 struct gfar_private *priv = netdev_priv(dev);
2962 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2963 u32 tempval;
2964
2965 if (dev->flags & IFF_PROMISC) {
2966 /* Set RCTRL to PROM */
2967 tempval = gfar_read(addr: &regs->rctrl);
2968 tempval |= RCTRL_PROM;
2969 gfar_write(addr: &regs->rctrl, val: tempval);
2970 } else {
2971 /* Set RCTRL to not PROM */
2972 tempval = gfar_read(addr: &regs->rctrl);
2973 tempval &= ~(RCTRL_PROM);
2974 gfar_write(addr: &regs->rctrl, val: tempval);
2975 }
2976
2977 if (dev->flags & IFF_ALLMULTI) {
2978 /* Set the hash to rx all multicast frames */
2979 gfar_write(addr: &regs->igaddr0, val: 0xffffffff);
2980 gfar_write(addr: &regs->igaddr1, val: 0xffffffff);
2981 gfar_write(addr: &regs->igaddr2, val: 0xffffffff);
2982 gfar_write(addr: &regs->igaddr3, val: 0xffffffff);
2983 gfar_write(addr: &regs->igaddr4, val: 0xffffffff);
2984 gfar_write(addr: &regs->igaddr5, val: 0xffffffff);
2985 gfar_write(addr: &regs->igaddr6, val: 0xffffffff);
2986 gfar_write(addr: &regs->igaddr7, val: 0xffffffff);
2987 gfar_write(addr: &regs->gaddr0, val: 0xffffffff);
2988 gfar_write(addr: &regs->gaddr1, val: 0xffffffff);
2989 gfar_write(addr: &regs->gaddr2, val: 0xffffffff);
2990 gfar_write(addr: &regs->gaddr3, val: 0xffffffff);
2991 gfar_write(addr: &regs->gaddr4, val: 0xffffffff);
2992 gfar_write(addr: &regs->gaddr5, val: 0xffffffff);
2993 gfar_write(addr: &regs->gaddr6, val: 0xffffffff);
2994 gfar_write(addr: &regs->gaddr7, val: 0xffffffff);
2995 } else {
2996 int em_num;
2997 int idx;
2998
2999 /* zero out the hash */
3000 gfar_write(addr: &regs->igaddr0, val: 0x0);
3001 gfar_write(addr: &regs->igaddr1, val: 0x0);
3002 gfar_write(addr: &regs->igaddr2, val: 0x0);
3003 gfar_write(addr: &regs->igaddr3, val: 0x0);
3004 gfar_write(addr: &regs->igaddr4, val: 0x0);
3005 gfar_write(addr: &regs->igaddr5, val: 0x0);
3006 gfar_write(addr: &regs->igaddr6, val: 0x0);
3007 gfar_write(addr: &regs->igaddr7, val: 0x0);
3008 gfar_write(addr: &regs->gaddr0, val: 0x0);
3009 gfar_write(addr: &regs->gaddr1, val: 0x0);
3010 gfar_write(addr: &regs->gaddr2, val: 0x0);
3011 gfar_write(addr: &regs->gaddr3, val: 0x0);
3012 gfar_write(addr: &regs->gaddr4, val: 0x0);
3013 gfar_write(addr: &regs->gaddr5, val: 0x0);
3014 gfar_write(addr: &regs->gaddr6, val: 0x0);
3015 gfar_write(addr: &regs->gaddr7, val: 0x0);
3016
3017 /* If we have extended hash tables, we need to
3018 * clear the exact match registers to prepare for
3019 * setting them
3020 */
3021 if (priv->extended_hash) {
3022 em_num = GFAR_EM_NUM + 1;
3023 gfar_clear_exact_match(dev);
3024 idx = 1;
3025 } else {
3026 idx = 0;
3027 em_num = 0;
3028 }
3029
3030 if (netdev_mc_empty(dev))
3031 return;
3032
3033 /* Parse the list, and set the appropriate bits */
3034 netdev_for_each_mc_addr(ha, dev) {
3035 if (idx < em_num) {
3036 gfar_set_mac_for_addr(dev, num: idx, addr: ha->addr);
3037 idx++;
3038 } else
3039 gfar_set_hash_for_addr(dev, addr: ha->addr);
3040 }
3041 }
3042}
3043
3044void gfar_mac_reset(struct gfar_private *priv)
3045{
3046 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3047 u32 tempval;
3048
3049 /* Reset MAC layer */
3050 gfar_write(addr: &regs->maccfg1, MACCFG1_SOFT_RESET);
3051
3052 /* We need to delay at least 3 TX clocks */
3053 udelay(3);
3054
3055 /* the soft reset bit is not self-resetting, so we need to
3056 * clear it before resuming normal operation
3057 */
3058 gfar_write(addr: &regs->maccfg1, val: 0);
3059
3060 udelay(3);
3061
3062 gfar_rx_offload_en(priv);
3063
3064 /* Initialize the max receive frame/buffer lengths */
3065 gfar_write(addr: &regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3066 gfar_write(addr: &regs->mrblr, GFAR_RXB_SIZE);
3067
3068 /* Initialize the Minimum Frame Length Register */
3069 gfar_write(addr: &regs->minflr, MINFLR_INIT_SETTINGS);
3070
3071 /* Initialize MACCFG2. */
3072 tempval = MACCFG2_INIT_SETTINGS;
3073
3074 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3075 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3076 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3077 */
3078 if (gfar_has_errata(priv, err: GFAR_ERRATA_74))
3079 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3080
3081 gfar_write(addr: &regs->maccfg2, val: tempval);
3082
3083 /* Clear mac addr hash registers */
3084 gfar_write(addr: &regs->igaddr0, val: 0);
3085 gfar_write(addr: &regs->igaddr1, val: 0);
3086 gfar_write(addr: &regs->igaddr2, val: 0);
3087 gfar_write(addr: &regs->igaddr3, val: 0);
3088 gfar_write(addr: &regs->igaddr4, val: 0);
3089 gfar_write(addr: &regs->igaddr5, val: 0);
3090 gfar_write(addr: &regs->igaddr6, val: 0);
3091 gfar_write(addr: &regs->igaddr7, val: 0);
3092
3093 gfar_write(addr: &regs->gaddr0, val: 0);
3094 gfar_write(addr: &regs->gaddr1, val: 0);
3095 gfar_write(addr: &regs->gaddr2, val: 0);
3096 gfar_write(addr: &regs->gaddr3, val: 0);
3097 gfar_write(addr: &regs->gaddr4, val: 0);
3098 gfar_write(addr: &regs->gaddr5, val: 0);
3099 gfar_write(addr: &regs->gaddr6, val: 0);
3100 gfar_write(addr: &regs->gaddr7, val: 0);
3101
3102 if (priv->extended_hash)
3103 gfar_clear_exact_match(dev: priv->ndev);
3104
3105 gfar_mac_rx_config(priv);
3106
3107 gfar_mac_tx_config(priv);
3108
3109 gfar_set_mac_address(dev: priv->ndev);
3110
3111 gfar_set_multi(dev: priv->ndev);
3112
3113 /* clear ievent and imask before configuring coalescing */
3114 gfar_ints_disable(priv);
3115
3116 /* Configure the coalescing support */
3117 gfar_configure_coalescing_all(priv);
3118}
3119
3120static void gfar_hw_init(struct gfar_private *priv)
3121{
3122 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3123 u32 attrs;
3124
3125 /* Stop the DMA engine now, in case it was running before
3126 * (The firmware could have used it, and left it running).
3127 */
3128 gfar_halt(priv);
3129
3130 gfar_mac_reset(priv);
3131
3132 /* Zero out the rmon mib registers if it has them */
3133 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3134 memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3135
3136 /* Mask off the CAM interrupts */
3137 gfar_write(addr: &regs->rmon.cam1, val: 0xffffffff);
3138 gfar_write(addr: &regs->rmon.cam2, val: 0xffffffff);
3139 /* Clear the CAR registers (w1c style) */
3140 gfar_write(addr: &regs->rmon.car1, val: 0xffffffff);
3141 gfar_write(addr: &regs->rmon.car2, val: 0xffffffff);
3142 }
3143
3144 /* Initialize ECNTRL */
3145 gfar_write(addr: &regs->ecntrl, ECNTRL_INIT_SETTINGS);
3146
3147 /* Set the extraction length and index */
3148 attrs = ATTRELI_EL(priv->rx_stash_size) |
3149 ATTRELI_EI(priv->rx_stash_index);
3150
3151 gfar_write(addr: &regs->attreli, val: attrs);
3152
3153 /* Start with defaults, and add stashing
3154 * depending on driver parameters
3155 */
3156 attrs = ATTR_INIT_SETTINGS;
3157
3158 if (priv->bd_stash_en)
3159 attrs |= ATTR_BDSTASH;
3160
3161 if (priv->rx_stash_size != 0)
3162 attrs |= ATTR_BUFSTASH;
3163
3164 gfar_write(addr: &regs->attr, val: attrs);
3165
3166 /* FIFO configs */
3167 gfar_write(addr: &regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3168 gfar_write(addr: &regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3169 gfar_write(addr: &regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3170
3171 /* Program the interrupt steering regs, only for MG devices */
3172 if (priv->num_grps > 1)
3173 gfar_write_isrg(priv);
3174}
3175
3176static const struct net_device_ops gfar_netdev_ops = {
3177 .ndo_open = gfar_enet_open,
3178 .ndo_start_xmit = gfar_start_xmit,
3179 .ndo_stop = gfar_close,
3180 .ndo_change_mtu = gfar_change_mtu,
3181 .ndo_set_features = gfar_set_features,
3182 .ndo_set_rx_mode = gfar_set_multi,
3183 .ndo_tx_timeout = gfar_timeout,
3184 .ndo_eth_ioctl = gfar_ioctl,
3185 .ndo_get_stats64 = gfar_get_stats64,
3186 .ndo_change_carrier = fixed_phy_change_carrier,
3187 .ndo_set_mac_address = gfar_set_mac_addr,
3188 .ndo_validate_addr = eth_validate_addr,
3189#ifdef CONFIG_NET_POLL_CONTROLLER
3190 .ndo_poll_controller = gfar_netpoll,
3191#endif
3192};
3193
3194/* Set up the ethernet device structure, private data,
3195 * and anything else we need before we start
3196 */
3197static int gfar_probe(struct platform_device *ofdev)
3198{
3199 struct device_node *np = ofdev->dev.of_node;
3200 struct net_device *dev = NULL;
3201 struct gfar_private *priv = NULL;
3202 int err = 0, i;
3203
3204 err = gfar_of_init(ofdev, pdev: &dev);
3205
3206 if (err)
3207 return err;
3208
3209 priv = netdev_priv(dev);
3210 priv->ndev = dev;
3211 priv->ofdev = ofdev;
3212 priv->dev = &ofdev->dev;
3213 SET_NETDEV_DEV(dev, &ofdev->dev);
3214
3215 INIT_WORK(&priv->reset_task, gfar_reset_task);
3216
3217 platform_set_drvdata(pdev: ofdev, data: priv);
3218
3219 gfar_detect_errata(priv);
3220
3221 /* Set the dev->base_addr to the gfar reg region */
3222 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3223
3224 /* Fill in the dev structure */
3225 dev->watchdog_timeo = TX_TIMEOUT;
3226 /* MTU range: 50 - 9586 */
3227 dev->mtu = 1500;
3228 dev->min_mtu = 50;
3229 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3230 dev->netdev_ops = &gfar_netdev_ops;
3231 dev->ethtool_ops = &gfar_ethtool_ops;
3232
3233 /* Register for napi ...We are registering NAPI for each grp */
3234 for (i = 0; i < priv->num_grps; i++) {
3235 netif_napi_add(dev, napi: &priv->gfargrp[i].napi_rx,
3236 poll: gfar_poll_rx_sq);
3237 netif_napi_add_tx_weight(dev, napi: &priv->gfargrp[i].napi_tx,
3238 poll: gfar_poll_tx_sq, weight: 2);
3239 }
3240
3241 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3242 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3243 NETIF_F_RXCSUM;
3244 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3245 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3246 }
3247
3248 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3249 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3250 NETIF_F_HW_VLAN_CTAG_RX;
3251 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3252 }
3253
3254 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3255
3256 gfar_init_addr_hash_table(priv);
3257
3258 /* Insert receive time stamps into padding alignment bytes, and
3259 * plus 2 bytes padding to ensure the cpu alignment.
3260 */
3261 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3262 priv->padding = 8 + DEFAULT_PADDING;
3263
3264 if (dev->features & NETIF_F_IP_CSUM ||
3265 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3266 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3267
3268 /* Initializing some of the rx/tx queue level parameters */
3269 for (i = 0; i < priv->num_tx_queues; i++) {
3270 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3271 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3272 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3273 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3274 }
3275
3276 for (i = 0; i < priv->num_rx_queues; i++) {
3277 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3278 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3279 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3280 }
3281
3282 /* Always enable rx filer if available */
3283 priv->rx_filer_enable =
3284 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3285 /* Enable most messages by default */
3286 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3287 /* use pritority h/w tx queue scheduling for single queue devices */
3288 if (priv->num_tx_queues == 1)
3289 priv->prio_sched_en = 1;
3290
3291 set_bit(nr: GFAR_DOWN, addr: &priv->state);
3292
3293 gfar_hw_init(priv);
3294
3295 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3296 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3297
3298 spin_lock_init(&priv->rmon_overflow.lock);
3299 priv->rmon_overflow.imask = IMASK_MSRO;
3300 gfar_write(addr: &rmon->cam1, val: gfar_read(addr: &rmon->cam1) & ~CAM1_M1RDR);
3301 }
3302
3303 /* Carrier starts down, phylib will bring it up */
3304 netif_carrier_off(dev);
3305
3306 err = register_netdev(dev);
3307
3308 if (err) {
3309 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3310 goto register_fail;
3311 }
3312
3313 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3314 priv->wol_supported |= GFAR_WOL_MAGIC;
3315
3316 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3317 priv->rx_filer_enable)
3318 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3319
3320 device_set_wakeup_capable(dev: &ofdev->dev, capable: priv->wol_supported);
3321
3322 /* fill out IRQ number and name fields */
3323 for (i = 0; i < priv->num_grps; i++) {
3324 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3325 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3326 sprintf(gfar_irq(grp, TX)->name, fmt: "%s%s%c%s",
3327 dev->name, "_g", '0' + i, "_tx");
3328 sprintf(gfar_irq(grp, RX)->name, fmt: "%s%s%c%s",
3329 dev->name, "_g", '0' + i, "_rx");
3330 sprintf(gfar_irq(grp, ER)->name, fmt: "%s%s%c%s",
3331 dev->name, "_g", '0' + i, "_er");
3332 } else
3333 strcpy(gfar_irq(grp, TX)->name, q: dev->name);
3334 }
3335
3336 /* Initialize the filer table */
3337 gfar_init_filer_table(priv);
3338
3339 /* Print out the device info */
3340 netdev_info(dev, format: "mac: %pM\n", dev->dev_addr);
3341
3342 /* Even more device info helps when determining which kernel
3343 * provided which set of benchmarks.
3344 */
3345 netdev_info(dev, format: "Running with NAPI enabled\n");
3346 for (i = 0; i < priv->num_rx_queues; i++)
3347 netdev_info(dev, format: "RX BD ring size for Q[%d]: %d\n",
3348 i, priv->rx_queue[i]->rx_ring_size);
3349 for (i = 0; i < priv->num_tx_queues; i++)
3350 netdev_info(dev, format: "TX BD ring size for Q[%d]: %d\n",
3351 i, priv->tx_queue[i]->tx_ring_size);
3352
3353 return 0;
3354
3355register_fail:
3356 if (of_phy_is_fixed_link(np))
3357 of_phy_deregister_fixed_link(np);
3358 unmap_group_regs(priv);
3359 gfar_free_rx_queues(priv);
3360 gfar_free_tx_queues(priv);
3361 of_node_put(node: priv->phy_node);
3362 of_node_put(node: priv->tbi_node);
3363 free_gfar_dev(priv);
3364 return err;
3365}
3366
3367static void gfar_remove(struct platform_device *ofdev)
3368{
3369 struct gfar_private *priv = platform_get_drvdata(pdev: ofdev);
3370 struct device_node *np = ofdev->dev.of_node;
3371
3372 of_node_put(node: priv->phy_node);
3373 of_node_put(node: priv->tbi_node);
3374
3375 unregister_netdev(dev: priv->ndev);
3376
3377 if (of_phy_is_fixed_link(np))
3378 of_phy_deregister_fixed_link(np);
3379
3380 unmap_group_regs(priv);
3381 gfar_free_rx_queues(priv);
3382 gfar_free_tx_queues(priv);
3383 free_gfar_dev(priv);
3384}
3385
3386#ifdef CONFIG_PM
3387
3388static void __gfar_filer_disable(struct gfar_private *priv)
3389{
3390 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3391 u32 temp;
3392
3393 temp = gfar_read(addr: &regs->rctrl);
3394 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3395 gfar_write(addr: &regs->rctrl, val: temp);
3396}
3397
3398static void __gfar_filer_enable(struct gfar_private *priv)
3399{
3400 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3401 u32 temp;
3402
3403 temp = gfar_read(addr: &regs->rctrl);
3404 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3405 gfar_write(addr: &regs->rctrl, val: temp);
3406}
3407
3408/* Filer rules implementing wol capabilities */
3409static void gfar_filer_config_wol(struct gfar_private *priv)
3410{
3411 unsigned int i;
3412 u32 rqfcr;
3413
3414 __gfar_filer_disable(priv);
3415
3416 /* clear the filer table, reject any packet by default */
3417 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3418 for (i = 0; i <= MAX_FILER_IDX; i++)
3419 gfar_write_filer(priv, far: i, fcr: rqfcr, fpr: 0);
3420
3421 i = 0;
3422 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3423 /* unicast packet, accept it */
3424 struct net_device *ndev = priv->ndev;
3425 /* get the default rx queue index */
3426 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3427 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3428 (ndev->dev_addr[1] << 8) |
3429 ndev->dev_addr[2];
3430
3431 rqfcr = (qindex << 10) | RQFCR_AND |
3432 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3433
3434 gfar_write_filer(priv, far: i++, fcr: rqfcr, fpr: dest_mac_addr);
3435
3436 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3437 (ndev->dev_addr[4] << 8) |
3438 ndev->dev_addr[5];
3439 rqfcr = (qindex << 10) | RQFCR_GPI |
3440 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3441 gfar_write_filer(priv, far: i++, fcr: rqfcr, fpr: dest_mac_addr);
3442 }
3443
3444 __gfar_filer_enable(priv);
3445}
3446
3447static void gfar_filer_restore_table(struct gfar_private *priv)
3448{
3449 u32 rqfcr, rqfpr;
3450 unsigned int i;
3451
3452 __gfar_filer_disable(priv);
3453
3454 for (i = 0; i <= MAX_FILER_IDX; i++) {
3455 rqfcr = priv->ftp_rqfcr[i];
3456 rqfpr = priv->ftp_rqfpr[i];
3457 gfar_write_filer(priv, far: i, fcr: rqfcr, fpr: rqfpr);
3458 }
3459
3460 __gfar_filer_enable(priv);
3461}
3462
3463/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3464static void gfar_start_wol_filer(struct gfar_private *priv)
3465{
3466 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3467 u32 tempval;
3468 int i = 0;
3469
3470 /* Enable Rx hw queues */
3471 gfar_write(addr: &regs->rqueue, val: priv->rqueue);
3472
3473 /* Initialize DMACTRL to have WWR and WOP */
3474 tempval = gfar_read(addr: &regs->dmactrl);
3475 tempval |= DMACTRL_INIT_SETTINGS;
3476 gfar_write(addr: &regs->dmactrl, val: tempval);
3477
3478 /* Make sure we aren't stopped */
3479 tempval = gfar_read(addr: &regs->dmactrl);
3480 tempval &= ~DMACTRL_GRS;
3481 gfar_write(addr: &regs->dmactrl, val: tempval);
3482
3483 for (i = 0; i < priv->num_grps; i++) {
3484 regs = priv->gfargrp[i].regs;
3485 /* Clear RHLT, so that the DMA starts polling now */
3486 gfar_write(addr: &regs->rstat, val: priv->gfargrp[i].rstat);
3487 /* enable the Filer General Purpose Interrupt */
3488 gfar_write(addr: &regs->imask, IMASK_FGPI);
3489 }
3490
3491 /* Enable Rx DMA */
3492 tempval = gfar_read(addr: &regs->maccfg1);
3493 tempval |= MACCFG1_RX_EN;
3494 gfar_write(addr: &regs->maccfg1, val: tempval);
3495}
3496
3497static int gfar_suspend(struct device *dev)
3498{
3499 struct gfar_private *priv = dev_get_drvdata(dev);
3500 struct net_device *ndev = priv->ndev;
3501 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502 u32 tempval;
3503 u16 wol = priv->wol_opts;
3504
3505 if (!netif_running(dev: ndev))
3506 return 0;
3507
3508 disable_napi(priv);
3509 netif_tx_lock(dev: ndev);
3510 netif_device_detach(dev: ndev);
3511 netif_tx_unlock(dev: ndev);
3512
3513 gfar_halt(priv);
3514
3515 if (wol & GFAR_WOL_MAGIC) {
3516 /* Enable interrupt on Magic Packet */
3517 gfar_write(addr: &regs->imask, IMASK_MAG);
3518
3519 /* Enable Magic Packet mode */
3520 tempval = gfar_read(addr: &regs->maccfg2);
3521 tempval |= MACCFG2_MPEN;
3522 gfar_write(addr: &regs->maccfg2, val: tempval);
3523
3524 /* re-enable the Rx block */
3525 tempval = gfar_read(addr: &regs->maccfg1);
3526 tempval |= MACCFG1_RX_EN;
3527 gfar_write(addr: &regs->maccfg1, val: tempval);
3528
3529 } else if (wol & GFAR_WOL_FILER_UCAST) {
3530 gfar_filer_config_wol(priv);
3531 gfar_start_wol_filer(priv);
3532
3533 } else {
3534 phy_stop(phydev: ndev->phydev);
3535 }
3536
3537 return 0;
3538}
3539
3540static int gfar_resume(struct device *dev)
3541{
3542 struct gfar_private *priv = dev_get_drvdata(dev);
3543 struct net_device *ndev = priv->ndev;
3544 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3545 u32 tempval;
3546 u16 wol = priv->wol_opts;
3547
3548 if (!netif_running(dev: ndev))
3549 return 0;
3550
3551 if (wol & GFAR_WOL_MAGIC) {
3552 /* Disable Magic Packet mode */
3553 tempval = gfar_read(addr: &regs->maccfg2);
3554 tempval &= ~MACCFG2_MPEN;
3555 gfar_write(addr: &regs->maccfg2, val: tempval);
3556
3557 } else if (wol & GFAR_WOL_FILER_UCAST) {
3558 /* need to stop rx only, tx is already down */
3559 gfar_halt(priv);
3560 gfar_filer_restore_table(priv);
3561
3562 } else {
3563 phy_start(phydev: ndev->phydev);
3564 }
3565
3566 gfar_start(priv);
3567
3568 netif_device_attach(dev: ndev);
3569 enable_napi(priv);
3570
3571 return 0;
3572}
3573
3574static int gfar_restore(struct device *dev)
3575{
3576 struct gfar_private *priv = dev_get_drvdata(dev);
3577 struct net_device *ndev = priv->ndev;
3578
3579 if (!netif_running(dev: ndev)) {
3580 netif_device_attach(dev: ndev);
3581
3582 return 0;
3583 }
3584
3585 gfar_init_bds(ndev);
3586
3587 gfar_mac_reset(priv);
3588
3589 gfar_init_tx_rx_base(priv);
3590
3591 gfar_start(priv);
3592
3593 priv->oldlink = 0;
3594 priv->oldspeed = 0;
3595 priv->oldduplex = -1;
3596
3597 if (ndev->phydev)
3598 phy_start(phydev: ndev->phydev);
3599
3600 netif_device_attach(dev: ndev);
3601 enable_napi(priv);
3602
3603 return 0;
3604}
3605
3606static const struct dev_pm_ops gfar_pm_ops = {
3607 .suspend = gfar_suspend,
3608 .resume = gfar_resume,
3609 .freeze = gfar_suspend,
3610 .thaw = gfar_resume,
3611 .restore = gfar_restore,
3612};
3613
3614#define GFAR_PM_OPS (&gfar_pm_ops)
3615
3616#else
3617
3618#define GFAR_PM_OPS NULL
3619
3620#endif
3621
3622static const struct of_device_id gfar_match[] =
3623{
3624 {
3625 .type = "network",
3626 .compatible = "gianfar",
3627 },
3628 {
3629 .compatible = "fsl,etsec2",
3630 },
3631 {},
3632};
3633MODULE_DEVICE_TABLE(of, gfar_match);
3634
3635/* Structure for a device driver */
3636static struct platform_driver gfar_driver = {
3637 .driver = {
3638 .name = "fsl-gianfar",
3639 .pm = GFAR_PM_OPS,
3640 .of_match_table = gfar_match,
3641 },
3642 .probe = gfar_probe,
3643 .remove_new = gfar_remove,
3644};
3645
3646module_platform_driver(gfar_driver);
3647

source code of linux/drivers/net/ethernet/freescale/gianfar.c