1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <crypto/hash.h>
7#include <linux/kernel.h>
8#include <linux/bio.h>
9#include <linux/blk-cgroup.h>
10#include <linux/file.h>
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/xattr.h>
21#include <linux/posix_acl.h>
22#include <linux/falloc.h>
23#include <linux/slab.h>
24#include <linux/ratelimit.h>
25#include <linux/btrfs.h>
26#include <linux/blkdev.h>
27#include <linux/posix_acl_xattr.h>
28#include <linux/uio.h>
29#include <linux/magic.h>
30#include <linux/iversion.h>
31#include <linux/swap.h>
32#include <linux/migrate.h>
33#include <linux/sched/mm.h>
34#include <linux/iomap.h>
35#include <asm/unaligned.h>
36#include <linux/fsverity.h>
37#include "misc.h"
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
42#include "ordered-data.h"
43#include "xattr.h"
44#include "tree-log.h"
45#include "bio.h"
46#include "compression.h"
47#include "locking.h"
48#include "props.h"
49#include "qgroup.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "space-info.h"
53#include "zoned.h"
54#include "subpage.h"
55#include "inode-item.h"
56#include "fs.h"
57#include "accessors.h"
58#include "extent-tree.h"
59#include "root-tree.h"
60#include "defrag.h"
61#include "dir-item.h"
62#include "file-item.h"
63#include "uuid-tree.h"
64#include "ioctl.h"
65#include "file.h"
66#include "acl.h"
67#include "relocation.h"
68#include "verity.h"
69#include "super.h"
70#include "orphan.h"
71#include "backref.h"
72#include "raid-stripe-tree.h"
73
74struct btrfs_iget_args {
75 u64 ino;
76 struct btrfs_root *root;
77};
78
79struct btrfs_dio_data {
80 ssize_t submitted;
81 struct extent_changeset *data_reserved;
82 struct btrfs_ordered_extent *ordered;
83 bool data_space_reserved;
84 bool nocow_done;
85};
86
87struct btrfs_dio_private {
88 /* Range of I/O */
89 u64 file_offset;
90 u32 bytes;
91
92 /* This must be last */
93 struct btrfs_bio bbio;
94};
95
96static struct bio_set btrfs_dio_bioset;
97
98struct btrfs_rename_ctx {
99 /* Output field. Stores the index number of the old directory entry. */
100 u64 index;
101};
102
103/*
104 * Used by data_reloc_print_warning_inode() to pass needed info for filename
105 * resolution and output of error message.
106 */
107struct data_reloc_warn {
108 struct btrfs_path path;
109 struct btrfs_fs_info *fs_info;
110 u64 extent_item_size;
111 u64 logical;
112 int mirror_num;
113};
114
115/*
116 * For the file_extent_tree, we want to hold the inode lock when we lookup and
117 * update the disk_i_size, but lockdep will complain because our io_tree we hold
118 * the tree lock and get the inode lock when setting delalloc. These two things
119 * are unrelated, so make a class for the file_extent_tree so we don't get the
120 * two locking patterns mixed up.
121 */
122static struct lock_class_key file_extent_tree_class;
123
124static const struct inode_operations btrfs_dir_inode_operations;
125static const struct inode_operations btrfs_symlink_inode_operations;
126static const struct inode_operations btrfs_special_inode_operations;
127static const struct inode_operations btrfs_file_inode_operations;
128static const struct address_space_operations btrfs_aops;
129static const struct file_operations btrfs_dir_file_operations;
130
131static struct kmem_cache *btrfs_inode_cachep;
132
133static int btrfs_setsize(struct inode *inode, struct iattr *attr);
134static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
135
136static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 struct page *locked_page, u64 start,
138 u64 end, struct writeback_control *wbc,
139 bool pages_dirty);
140static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 u64 len, u64 orig_start, u64 block_start,
142 u64 block_len, u64 orig_block_len,
143 u64 ram_bytes, int compress_type,
144 int type);
145
146static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 u64 root, void *warn_ctx)
148{
149 struct data_reloc_warn *warn = warn_ctx;
150 struct btrfs_fs_info *fs_info = warn->fs_info;
151 struct extent_buffer *eb;
152 struct btrfs_inode_item *inode_item;
153 struct inode_fs_paths *ipath = NULL;
154 struct btrfs_root *local_root;
155 struct btrfs_key key;
156 unsigned int nofs_flag;
157 u32 nlink;
158 int ret;
159
160 local_root = btrfs_get_fs_root(fs_info, objectid: root, check_ref: true);
161 if (IS_ERR(ptr: local_root)) {
162 ret = PTR_ERR(ptr: local_root);
163 goto err;
164 }
165
166 /* This makes the path point to (inum INODE_ITEM ioff). */
167 key.objectid = inum;
168 key.type = BTRFS_INODE_ITEM_KEY;
169 key.offset = 0;
170
171 ret = btrfs_search_slot(NULL, root: local_root, key: &key, p: &warn->path, ins_len: 0, cow: 0);
172 if (ret) {
173 btrfs_put_root(root: local_root);
174 btrfs_release_path(p: &warn->path);
175 goto err;
176 }
177
178 eb = warn->path.nodes[0];
179 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 nlink = btrfs_inode_nlink(eb, s: inode_item);
181 btrfs_release_path(p: &warn->path);
182
183 nofs_flag = memalloc_nofs_save();
184 ipath = init_ipath(total_bytes: 4096, fs_root: local_root, path: &warn->path);
185 memalloc_nofs_restore(flags: nofs_flag);
186 if (IS_ERR(ptr: ipath)) {
187 btrfs_put_root(root: local_root);
188 ret = PTR_ERR(ptr: ipath);
189 ipath = NULL;
190 /*
191 * -ENOMEM, not a critical error, just output an generic error
192 * without filename.
193 */
194 btrfs_warn(fs_info,
195"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 warn->logical, warn->mirror_num, root, inum, offset);
197 return ret;
198 }
199 ret = paths_from_inode(inum, ipath);
200 if (ret < 0)
201 goto err;
202
203 /*
204 * We deliberately ignore the bit ipath might have been too small to
205 * hold all of the paths here
206 */
207 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
208 btrfs_warn(fs_info,
209"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 warn->logical, warn->mirror_num, root, inum, offset,
211 fs_info->sectorsize, nlink,
212 (char *)(unsigned long)ipath->fspath->val[i]);
213 }
214
215 btrfs_put_root(root: local_root);
216 free_ipath(ipath);
217 return 0;
218
219err:
220 btrfs_warn(fs_info,
221"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 warn->logical, warn->mirror_num, root, inum, offset, ret);
223
224 free_ipath(ipath);
225 return ret;
226}
227
228/*
229 * Do extra user-friendly error output (e.g. lookup all the affected files).
230 *
231 * Return true if we succeeded doing the backref lookup.
232 * Return false if such lookup failed, and has to fallback to the old error message.
233 */
234static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 const u8 *csum, const u8 *csum_expected,
236 int mirror_num)
237{
238 struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 struct btrfs_path path = { 0 };
240 struct btrfs_key found_key = { 0 };
241 struct extent_buffer *eb;
242 struct btrfs_extent_item *ei;
243 const u32 csum_size = fs_info->csum_size;
244 u64 logical;
245 u64 flags;
246 u32 item_size;
247 int ret;
248
249 mutex_lock(&fs_info->reloc_mutex);
250 logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 mutex_unlock(lock: &fs_info->reloc_mutex);
252
253 if (logical == U64_MAX) {
254 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 btrfs_warn_rl(fs_info,
256"csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
258 CSUM_FMT_VALUE(csum_size, csum),
259 CSUM_FMT_VALUE(csum_size, csum_expected),
260 mirror_num);
261 return;
262 }
263
264 logical += file_off;
265 btrfs_warn_rl(fs_info,
266"csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 inode->root->root_key.objectid,
268 btrfs_ino(inode), file_off, logical,
269 CSUM_FMT_VALUE(csum_size, csum),
270 CSUM_FMT_VALUE(csum_size, csum_expected),
271 mirror_num);
272
273 ret = extent_from_logical(fs_info, logical, path: &path, found_key: &found_key, flags: &flags);
274 if (ret < 0) {
275 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
276 logical, ret);
277 return;
278 }
279 eb = path.nodes[0];
280 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 item_size = btrfs_item_size(eb, slot: path.slots[0]);
282 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 unsigned long ptr = 0;
284 u64 ref_root;
285 u8 ref_level;
286
287 while (true) {
288 ret = tree_backref_for_extent(ptr: &ptr, eb, key: &found_key, ei,
289 item_size, out_root: &ref_root,
290 out_level: &ref_level);
291 if (ret < 0) {
292 btrfs_warn_rl(fs_info,
293 "failed to resolve tree backref for logical %llu: %d",
294 logical, ret);
295 break;
296 }
297 if (ret > 0)
298 break;
299
300 btrfs_warn_rl(fs_info,
301"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
302 logical, mirror_num,
303 (ref_level ? "node" : "leaf"),
304 ref_level, ref_root);
305 }
306 btrfs_release_path(p: &path);
307 } else {
308 struct btrfs_backref_walk_ctx ctx = { 0 };
309 struct data_reloc_warn reloc_warn = { 0 };
310
311 btrfs_release_path(p: &path);
312
313 ctx.bytenr = found_key.objectid;
314 ctx.extent_item_pos = logical - found_key.objectid;
315 ctx.fs_info = fs_info;
316
317 reloc_warn.logical = logical;
318 reloc_warn.extent_item_size = found_key.offset;
319 reloc_warn.mirror_num = mirror_num;
320 reloc_warn.fs_info = fs_info;
321
322 iterate_extent_inodes(ctx: &ctx, search_commit_root: true,
323 iterate: data_reloc_print_warning_inode, user_ctx: &reloc_warn);
324 }
325}
326
327static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
329{
330 struct btrfs_root *root = inode->root;
331 const u32 csum_size = root->fs_info->csum_size;
332
333 /* For data reloc tree, it's better to do a backref lookup instead. */
334 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 return print_data_reloc_error(inode, file_off: logical_start, csum,
336 csum_expected, mirror_num);
337
338 /* Output without objectid, which is more meaningful */
339 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
340 btrfs_warn_rl(root->fs_info,
341"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
343 logical_start,
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
346 mirror_num);
347 } else {
348 btrfs_warn_rl(root->fs_info,
349"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 root->root_key.objectid, btrfs_ino(inode),
351 logical_start,
352 CSUM_FMT_VALUE(csum_size, csum),
353 CSUM_FMT_VALUE(csum_size, csum_expected),
354 mirror_num);
355 }
356}
357
358/*
359 * Lock inode i_rwsem based on arguments passed.
360 *
361 * ilock_flags can have the following bit set:
362 *
363 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
365 * return -EAGAIN
366 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
367 */
368int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
369{
370 if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock_shared(inode: &inode->vfs_inode))
373 return -EAGAIN;
374 else
375 return 0;
376 }
377 inode_lock_shared(inode: &inode->vfs_inode);
378 } else {
379 if (ilock_flags & BTRFS_ILOCK_TRY) {
380 if (!inode_trylock(inode: &inode->vfs_inode))
381 return -EAGAIN;
382 else
383 return 0;
384 }
385 inode_lock(inode: &inode->vfs_inode);
386 }
387 if (ilock_flags & BTRFS_ILOCK_MMAP)
388 down_write(sem: &inode->i_mmap_lock);
389 return 0;
390}
391
392/*
393 * Unock inode i_rwsem.
394 *
395 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396 * to decide whether the lock acquired is shared or exclusive.
397 */
398void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
399{
400 if (ilock_flags & BTRFS_ILOCK_MMAP)
401 up_write(sem: &inode->i_mmap_lock);
402 if (ilock_flags & BTRFS_ILOCK_SHARED)
403 inode_unlock_shared(inode: &inode->vfs_inode);
404 else
405 inode_unlock(inode: &inode->vfs_inode);
406}
407
408/*
409 * Cleanup all submitted ordered extents in specified range to handle errors
410 * from the btrfs_run_delalloc_range() callback.
411 *
412 * NOTE: caller must ensure that when an error happens, it can not call
413 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415 * to be released, which we want to happen only when finishing the ordered
416 * extent (btrfs_finish_ordered_io()).
417 */
418static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
419 struct page *locked_page,
420 u64 offset, u64 bytes)
421{
422 unsigned long index = offset >> PAGE_SHIFT;
423 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
424 u64 page_start = 0, page_end = 0;
425 struct page *page;
426
427 if (locked_page) {
428 page_start = page_offset(page: locked_page);
429 page_end = page_start + PAGE_SIZE - 1;
430 }
431
432 while (index <= end_index) {
433 /*
434 * For locked page, we will call btrfs_mark_ordered_io_finished
435 * through btrfs_mark_ordered_io_finished() on it
436 * in run_delalloc_range() for the error handling, which will
437 * clear page Ordered and run the ordered extent accounting.
438 *
439 * Here we can't just clear the Ordered bit, or
440 * btrfs_mark_ordered_io_finished() would skip the accounting
441 * for the page range, and the ordered extent will never finish.
442 */
443 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
444 index++;
445 continue;
446 }
447 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: index);
448 index++;
449 if (!page)
450 continue;
451
452 /*
453 * Here we just clear all Ordered bits for every page in the
454 * range, then btrfs_mark_ordered_io_finished() will handle
455 * the ordered extent accounting for the range.
456 */
457 btrfs_folio_clamp_clear_ordered(fs_info: inode->root->fs_info,
458 page_folio(page), start: offset, len: bytes);
459 put_page(page);
460 }
461
462 if (locked_page) {
463 /* The locked page covers the full range, nothing needs to be done */
464 if (bytes + offset <= page_start + PAGE_SIZE)
465 return;
466 /*
467 * In case this page belongs to the delalloc range being
468 * instantiated then skip it, since the first page of a range is
469 * going to be properly cleaned up by the caller of
470 * run_delalloc_range
471 */
472 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 bytes = offset + bytes - page_offset(page: locked_page) - PAGE_SIZE;
474 offset = page_offset(page: locked_page) + PAGE_SIZE;
475 }
476 }
477
478 return btrfs_mark_ordered_io_finished(inode, NULL, file_offset: offset, num_bytes: bytes, uptodate: false);
479}
480
481static int btrfs_dirty_inode(struct btrfs_inode *inode);
482
483static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
484 struct btrfs_new_inode_args *args)
485{
486 int err;
487
488 if (args->default_acl) {
489 err = __btrfs_set_acl(trans, inode: args->inode, acl: args->default_acl,
490 ACL_TYPE_DEFAULT);
491 if (err)
492 return err;
493 }
494 if (args->acl) {
495 err = __btrfs_set_acl(trans, inode: args->inode, acl: args->acl, ACL_TYPE_ACCESS);
496 if (err)
497 return err;
498 }
499 if (!args->default_acl && !args->acl)
500 cache_no_acl(inode: args->inode);
501 return btrfs_xattr_security_init(trans, inode: args->inode, dir: args->dir,
502 qstr: &args->dentry->d_name);
503}
504
505/*
506 * this does all the hard work for inserting an inline extent into
507 * the btree. The caller should have done a btrfs_drop_extents so that
508 * no overlapping inline items exist in the btree
509 */
510static int insert_inline_extent(struct btrfs_trans_handle *trans,
511 struct btrfs_path *path,
512 struct btrfs_inode *inode, bool extent_inserted,
513 size_t size, size_t compressed_size,
514 int compress_type,
515 struct page **compressed_pages,
516 bool update_i_size)
517{
518 struct btrfs_root *root = inode->root;
519 struct extent_buffer *leaf;
520 struct page *page = NULL;
521 char *kaddr;
522 unsigned long ptr;
523 struct btrfs_file_extent_item *ei;
524 int ret;
525 size_t cur_size = size;
526 u64 i_size;
527
528 ASSERT((compressed_size > 0 && compressed_pages) ||
529 (compressed_size == 0 && !compressed_pages));
530
531 if (compressed_size && compressed_pages)
532 cur_size = compressed_size;
533
534 if (!extent_inserted) {
535 struct btrfs_key key;
536 size_t datasize;
537
538 key.objectid = btrfs_ino(inode);
539 key.offset = 0;
540 key.type = BTRFS_EXTENT_DATA_KEY;
541
542 datasize = btrfs_file_extent_calc_inline_size(datasize: cur_size);
543 ret = btrfs_insert_empty_item(trans, root, path, key: &key,
544 data_size: datasize);
545 if (ret)
546 goto fail;
547 }
548 leaf = path->nodes[0];
549 ei = btrfs_item_ptr(leaf, path->slots[0],
550 struct btrfs_file_extent_item);
551 btrfs_set_file_extent_generation(eb: leaf, s: ei, val: trans->transid);
552 btrfs_set_file_extent_type(eb: leaf, s: ei, val: BTRFS_FILE_EXTENT_INLINE);
553 btrfs_set_file_extent_encryption(eb: leaf, s: ei, val: 0);
554 btrfs_set_file_extent_other_encoding(eb: leaf, s: ei, val: 0);
555 btrfs_set_file_extent_ram_bytes(eb: leaf, s: ei, val: size);
556 ptr = btrfs_file_extent_inline_start(e: ei);
557
558 if (compress_type != BTRFS_COMPRESS_NONE) {
559 struct page *cpage;
560 int i = 0;
561 while (compressed_size > 0) {
562 cpage = compressed_pages[i];
563 cur_size = min_t(unsigned long, compressed_size,
564 PAGE_SIZE);
565
566 kaddr = kmap_local_page(page: cpage);
567 write_extent_buffer(eb: leaf, src: kaddr, start: ptr, len: cur_size);
568 kunmap_local(kaddr);
569
570 i++;
571 ptr += cur_size;
572 compressed_size -= cur_size;
573 }
574 btrfs_set_file_extent_compression(eb: leaf, s: ei,
575 val: compress_type);
576 } else {
577 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: 0);
578 btrfs_set_file_extent_compression(eb: leaf, s: ei, val: 0);
579 kaddr = kmap_local_page(page);
580 write_extent_buffer(eb: leaf, src: kaddr, start: ptr, len: size);
581 kunmap_local(kaddr);
582 put_page(page);
583 }
584 btrfs_mark_buffer_dirty(trans, buf: leaf);
585 btrfs_release_path(p: path);
586
587 /*
588 * We align size to sectorsize for inline extents just for simplicity
589 * sake.
590 */
591 ret = btrfs_inode_set_file_extent_range(inode, start: 0,
592 ALIGN(size, root->fs_info->sectorsize));
593 if (ret)
594 goto fail;
595
596 /*
597 * We're an inline extent, so nobody can extend the file past i_size
598 * without locking a page we already have locked.
599 *
600 * We must do any i_size and inode updates before we unlock the pages.
601 * Otherwise we could end up racing with unlink.
602 */
603 i_size = i_size_read(inode: &inode->vfs_inode);
604 if (update_i_size && size > i_size) {
605 i_size_write(inode: &inode->vfs_inode, i_size: size);
606 i_size = size;
607 }
608 inode->disk_i_size = i_size;
609
610fail:
611 return ret;
612}
613
614
615/*
616 * conditionally insert an inline extent into the file. This
617 * does the checks required to make sure the data is small enough
618 * to fit as an inline extent.
619 */
620static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
621 size_t compressed_size,
622 int compress_type,
623 struct page **compressed_pages,
624 bool update_i_size)
625{
626 struct btrfs_drop_extents_args drop_args = { 0 };
627 struct btrfs_root *root = inode->root;
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 struct btrfs_trans_handle *trans;
630 u64 data_len = (compressed_size ?: size);
631 int ret;
632 struct btrfs_path *path;
633
634 /*
635 * We can create an inline extent if it ends at or beyond the current
636 * i_size, is no larger than a sector (decompressed), and the (possibly
637 * compressed) data fits in a leaf and the configured maximum inline
638 * size.
639 */
640 if (size < i_size_read(inode: &inode->vfs_inode) ||
641 size > fs_info->sectorsize ||
642 data_len > BTRFS_MAX_INLINE_DATA_SIZE(info: fs_info) ||
643 data_len > fs_info->max_inline)
644 return 1;
645
646 path = btrfs_alloc_path();
647 if (!path)
648 return -ENOMEM;
649
650 trans = btrfs_join_transaction(root);
651 if (IS_ERR(ptr: trans)) {
652 btrfs_free_path(p: path);
653 return PTR_ERR(ptr: trans);
654 }
655 trans->block_rsv = &inode->block_rsv;
656
657 drop_args.path = path;
658 drop_args.start = 0;
659 drop_args.end = fs_info->sectorsize;
660 drop_args.drop_cache = true;
661 drop_args.replace_extent = true;
662 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(datasize: data_len);
663 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
664 if (ret) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 }
668
669 ret = insert_inline_extent(trans, path, inode, extent_inserted: drop_args.extent_inserted,
670 size, compressed_size, compress_type,
671 compressed_pages, update_i_size);
672 if (ret && ret != -ENOSPC) {
673 btrfs_abort_transaction(trans, ret);
674 goto out;
675 } else if (ret == -ENOSPC) {
676 ret = 1;
677 goto out;
678 }
679
680 btrfs_update_inode_bytes(inode, add_bytes: size, del_bytes: drop_args.bytes_found);
681 ret = btrfs_update_inode(trans, inode);
682 if (ret && ret != -ENOSPC) {
683 btrfs_abort_transaction(trans, ret);
684 goto out;
685 } else if (ret == -ENOSPC) {
686 ret = 1;
687 goto out;
688 }
689
690 btrfs_set_inode_full_sync(inode);
691out:
692 /*
693 * Don't forget to free the reserved space, as for inlined extent
694 * it won't count as data extent, free them directly here.
695 * And at reserve time, it's always aligned to page size, so
696 * just free one page here.
697 */
698 btrfs_qgroup_free_data(inode, NULL, start: 0, PAGE_SIZE, NULL);
699 btrfs_free_path(p: path);
700 btrfs_end_transaction(trans);
701 return ret;
702}
703
704struct async_extent {
705 u64 start;
706 u64 ram_size;
707 u64 compressed_size;
708 struct page **pages;
709 unsigned long nr_pages;
710 int compress_type;
711 struct list_head list;
712};
713
714struct async_chunk {
715 struct btrfs_inode *inode;
716 struct page *locked_page;
717 u64 start;
718 u64 end;
719 blk_opf_t write_flags;
720 struct list_head extents;
721 struct cgroup_subsys_state *blkcg_css;
722 struct btrfs_work work;
723 struct async_cow *async_cow;
724};
725
726struct async_cow {
727 atomic_t num_chunks;
728 struct async_chunk chunks[];
729};
730
731static noinline int add_async_extent(struct async_chunk *cow,
732 u64 start, u64 ram_size,
733 u64 compressed_size,
734 struct page **pages,
735 unsigned long nr_pages,
736 int compress_type)
737{
738 struct async_extent *async_extent;
739
740 async_extent = kmalloc(size: sizeof(*async_extent), GFP_NOFS);
741 if (!async_extent)
742 return -ENOMEM;
743 async_extent->start = start;
744 async_extent->ram_size = ram_size;
745 async_extent->compressed_size = compressed_size;
746 async_extent->pages = pages;
747 async_extent->nr_pages = nr_pages;
748 async_extent->compress_type = compress_type;
749 list_add_tail(new: &async_extent->list, head: &cow->extents);
750 return 0;
751}
752
753/*
754 * Check if the inode needs to be submitted to compression, based on mount
755 * options, defragmentation, properties or heuristics.
756 */
757static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
758 u64 end)
759{
760 struct btrfs_fs_info *fs_info = inode->root->fs_info;
761
762 if (!btrfs_inode_can_compress(inode)) {
763 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
764 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
765 btrfs_ino(inode));
766 return 0;
767 }
768 /*
769 * Special check for subpage.
770 *
771 * We lock the full page then run each delalloc range in the page, thus
772 * for the following case, we will hit some subpage specific corner case:
773 *
774 * 0 32K 64K
775 * | |///////| |///////|
776 * \- A \- B
777 *
778 * In above case, both range A and range B will try to unlock the full
779 * page [0, 64K), causing the one finished later will have page
780 * unlocked already, triggering various page lock requirement BUG_ON()s.
781 *
782 * So here we add an artificial limit that subpage compression can only
783 * if the range is fully page aligned.
784 *
785 * In theory we only need to ensure the first page is fully covered, but
786 * the tailing partial page will be locked until the full compression
787 * finishes, delaying the write of other range.
788 *
789 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
790 * first to prevent any submitted async extent to unlock the full page.
791 * By this, we can ensure for subpage case that only the last async_cow
792 * will unlock the full page.
793 */
794 if (fs_info->sectorsize < PAGE_SIZE) {
795 if (!PAGE_ALIGNED(start) ||
796 !PAGE_ALIGNED(end + 1))
797 return 0;
798 }
799
800 /* force compress */
801 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
802 return 1;
803 /* defrag ioctl */
804 if (inode->defrag_compress)
805 return 1;
806 /* bad compression ratios */
807 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
808 return 0;
809 if (btrfs_test_opt(fs_info, COMPRESS) ||
810 inode->flags & BTRFS_INODE_COMPRESS ||
811 inode->prop_compress)
812 return btrfs_compress_heuristic(inode: &inode->vfs_inode, start, end);
813 return 0;
814}
815
816static inline void inode_should_defrag(struct btrfs_inode *inode,
817 u64 start, u64 end, u64 num_bytes, u32 small_write)
818{
819 /* If this is a small write inside eof, kick off a defrag */
820 if (num_bytes < small_write &&
821 (start > 0 || end + 1 < inode->disk_i_size))
822 btrfs_add_inode_defrag(NULL, inode, extent_thresh: small_write);
823}
824
825/*
826 * Work queue call back to started compression on a file and pages.
827 *
828 * This is done inside an ordered work queue, and the compression is spread
829 * across many cpus. The actual IO submission is step two, and the ordered work
830 * queue takes care of making sure that happens in the same order things were
831 * put onto the queue by writepages and friends.
832 *
833 * If this code finds it can't get good compression, it puts an entry onto the
834 * work queue to write the uncompressed bytes. This makes sure that both
835 * compressed inodes and uncompressed inodes are written in the same order that
836 * the flusher thread sent them down.
837 */
838static void compress_file_range(struct btrfs_work *work)
839{
840 struct async_chunk *async_chunk =
841 container_of(work, struct async_chunk, work);
842 struct btrfs_inode *inode = async_chunk->inode;
843 struct btrfs_fs_info *fs_info = inode->root->fs_info;
844 struct address_space *mapping = inode->vfs_inode.i_mapping;
845 u64 blocksize = fs_info->sectorsize;
846 u64 start = async_chunk->start;
847 u64 end = async_chunk->end;
848 u64 actual_end;
849 u64 i_size;
850 int ret = 0;
851 struct page **pages;
852 unsigned long nr_pages;
853 unsigned long total_compressed = 0;
854 unsigned long total_in = 0;
855 unsigned int poff;
856 int i;
857 int compress_type = fs_info->compress_type;
858
859 inode_should_defrag(inode, start, end, num_bytes: end - start + 1, SZ_16K);
860
861 /*
862 * We need to call clear_page_dirty_for_io on each page in the range.
863 * Otherwise applications with the file mmap'd can wander in and change
864 * the page contents while we are compressing them.
865 */
866 extent_range_clear_dirty_for_io(inode: &inode->vfs_inode, start, end);
867
868 /*
869 * We need to save i_size before now because it could change in between
870 * us evaluating the size and assigning it. This is because we lock and
871 * unlock the page in truncate and fallocate, and then modify the i_size
872 * later on.
873 *
874 * The barriers are to emulate READ_ONCE, remove that once i_size_read
875 * does that for us.
876 */
877 barrier();
878 i_size = i_size_read(inode: &inode->vfs_inode);
879 barrier();
880 actual_end = min_t(u64, i_size, end + 1);
881again:
882 pages = NULL;
883 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
884 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
885
886 /*
887 * we don't want to send crud past the end of i_size through
888 * compression, that's just a waste of CPU time. So, if the
889 * end of the file is before the start of our current
890 * requested range of bytes, we bail out to the uncompressed
891 * cleanup code that can deal with all of this.
892 *
893 * It isn't really the fastest way to fix things, but this is a
894 * very uncommon corner.
895 */
896 if (actual_end <= start)
897 goto cleanup_and_bail_uncompressed;
898
899 total_compressed = actual_end - start;
900
901 /*
902 * Skip compression for a small file range(<=blocksize) that
903 * isn't an inline extent, since it doesn't save disk space at all.
904 */
905 if (total_compressed <= blocksize &&
906 (start > 0 || end + 1 < inode->disk_i_size))
907 goto cleanup_and_bail_uncompressed;
908
909 /*
910 * For subpage case, we require full page alignment for the sector
911 * aligned range.
912 * Thus we must also check against @actual_end, not just @end.
913 */
914 if (blocksize < PAGE_SIZE) {
915 if (!PAGE_ALIGNED(start) ||
916 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
917 goto cleanup_and_bail_uncompressed;
918 }
919
920 total_compressed = min_t(unsigned long, total_compressed,
921 BTRFS_MAX_UNCOMPRESSED);
922 total_in = 0;
923 ret = 0;
924
925 /*
926 * We do compression for mount -o compress and when the inode has not
927 * been flagged as NOCOMPRESS. This flag can change at any time if we
928 * discover bad compression ratios.
929 */
930 if (!inode_need_compress(inode, start, end))
931 goto cleanup_and_bail_uncompressed;
932
933 pages = kcalloc(n: nr_pages, size: sizeof(struct page *), GFP_NOFS);
934 if (!pages) {
935 /*
936 * Memory allocation failure is not a fatal error, we can fall
937 * back to uncompressed code.
938 */
939 goto cleanup_and_bail_uncompressed;
940 }
941
942 if (inode->defrag_compress)
943 compress_type = inode->defrag_compress;
944 else if (inode->prop_compress)
945 compress_type = inode->prop_compress;
946
947 /* Compression level is applied here. */
948 ret = btrfs_compress_pages(type_level: compress_type | (fs_info->compress_level << 4),
949 mapping, start, pages, out_pages: &nr_pages, total_in: &total_in,
950 total_out: &total_compressed);
951 if (ret)
952 goto mark_incompressible;
953
954 /*
955 * Zero the tail end of the last page, as we might be sending it down
956 * to disk.
957 */
958 poff = offset_in_page(total_compressed);
959 if (poff)
960 memzero_page(page: pages[nr_pages - 1], offset: poff, PAGE_SIZE - poff);
961
962 /*
963 * Try to create an inline extent.
964 *
965 * If we didn't compress the entire range, try to create an uncompressed
966 * inline extent, else a compressed one.
967 *
968 * Check cow_file_range() for why we don't even try to create inline
969 * extent for the subpage case.
970 */
971 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
972 if (total_in < actual_end) {
973 ret = cow_file_range_inline(inode, size: actual_end, compressed_size: 0,
974 compress_type: BTRFS_COMPRESS_NONE, NULL,
975 update_i_size: false);
976 } else {
977 ret = cow_file_range_inline(inode, size: actual_end,
978 compressed_size: total_compressed,
979 compress_type, compressed_pages: pages,
980 update_i_size: false);
981 }
982 if (ret <= 0) {
983 unsigned long clear_flags = EXTENT_DELALLOC |
984 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
985 EXTENT_DO_ACCOUNTING;
986
987 if (ret < 0)
988 mapping_set_error(mapping, error: -EIO);
989
990 /*
991 * inline extent creation worked or returned error,
992 * we don't need to create any more async work items.
993 * Unlock and free up our temp pages.
994 *
995 * We use DO_ACCOUNTING here because we need the
996 * delalloc_release_metadata to be done _after_ we drop
997 * our outstanding extent for clearing delalloc for this
998 * range.
999 */
1000 extent_clear_unlock_delalloc(inode, start, end,
1001 NULL,
1002 bits_to_clear: clear_flags,
1003 page_ops: PAGE_UNLOCK |
1004 PAGE_START_WRITEBACK |
1005 PAGE_END_WRITEBACK);
1006 goto free_pages;
1007 }
1008 }
1009
1010 /*
1011 * We aren't doing an inline extent. Round the compressed size up to a
1012 * block size boundary so the allocator does sane things.
1013 */
1014 total_compressed = ALIGN(total_compressed, blocksize);
1015
1016 /*
1017 * One last check to make sure the compression is really a win, compare
1018 * the page count read with the blocks on disk, compression must free at
1019 * least one sector.
1020 */
1021 total_in = round_up(total_in, fs_info->sectorsize);
1022 if (total_compressed + blocksize > total_in)
1023 goto mark_incompressible;
1024
1025 /*
1026 * The async work queues will take care of doing actual allocation on
1027 * disk for these compressed pages, and will submit the bios.
1028 */
1029 ret = add_async_extent(cow: async_chunk, start, ram_size: total_in, compressed_size: total_compressed, pages,
1030 nr_pages, compress_type);
1031 BUG_ON(ret);
1032 if (start + total_in < end) {
1033 start += total_in;
1034 cond_resched();
1035 goto again;
1036 }
1037 return;
1038
1039mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042cleanup_and_bail_uncompressed:
1043 ret = add_async_extent(cow: async_chunk, start, ram_size: end - start + 1, compressed_size: 0, NULL, nr_pages: 0,
1044 compress_type: BTRFS_COMPRESS_NONE);
1045 BUG_ON(ret);
1046free_pages:
1047 if (pages) {
1048 for (i = 0; i < nr_pages; i++) {
1049 WARN_ON(pages[i]->mapping);
1050 btrfs_free_compr_page(page: pages[i]);
1051 }
1052 kfree(objp: pages);
1053 }
1054}
1055
1056static void free_async_extent_pages(struct async_extent *async_extent)
1057{
1058 int i;
1059
1060 if (!async_extent->pages)
1061 return;
1062
1063 for (i = 0; i < async_extent->nr_pages; i++) {
1064 WARN_ON(async_extent->pages[i]->mapping);
1065 btrfs_free_compr_page(page: async_extent->pages[i]);
1066 }
1067 kfree(objp: async_extent->pages);
1068 async_extent->nr_pages = 0;
1069 async_extent->pages = NULL;
1070}
1071
1072static void submit_uncompressed_range(struct btrfs_inode *inode,
1073 struct async_extent *async_extent,
1074 struct page *locked_page)
1075{
1076 u64 start = async_extent->start;
1077 u64 end = async_extent->start + async_extent->ram_size - 1;
1078 int ret;
1079 struct writeback_control wbc = {
1080 .sync_mode = WB_SYNC_ALL,
1081 .range_start = start,
1082 .range_end = end,
1083 .no_cgroup_owner = 1,
1084 };
1085
1086 wbc_attach_fdatawrite_inode(wbc: &wbc, inode: &inode->vfs_inode);
1087 ret = run_delalloc_cow(inode, locked_page, start, end, wbc: &wbc, pages_dirty: false);
1088 wbc_detach_inode(wbc: &wbc);
1089 if (ret < 0) {
1090 btrfs_cleanup_ordered_extents(inode, locked_page, offset: start, bytes: end - start + 1);
1091 if (locked_page) {
1092 const u64 page_start = page_offset(page: locked_page);
1093
1094 set_page_writeback(locked_page);
1095 end_page_writeback(page: locked_page);
1096 btrfs_mark_ordered_io_finished(inode, page: locked_page,
1097 file_offset: page_start, PAGE_SIZE,
1098 uptodate: !ret);
1099 mapping_set_error(mapping: locked_page->mapping, error: ret);
1100 unlock_page(page: locked_page);
1101 }
1102 }
1103}
1104
1105static void submit_one_async_extent(struct async_chunk *async_chunk,
1106 struct async_extent *async_extent,
1107 u64 *alloc_hint)
1108{
1109 struct btrfs_inode *inode = async_chunk->inode;
1110 struct extent_io_tree *io_tree = &inode->io_tree;
1111 struct btrfs_root *root = inode->root;
1112 struct btrfs_fs_info *fs_info = root->fs_info;
1113 struct btrfs_ordered_extent *ordered;
1114 struct btrfs_key ins;
1115 struct page *locked_page = NULL;
1116 struct extent_map *em;
1117 int ret = 0;
1118 u64 start = async_extent->start;
1119 u64 end = async_extent->start + async_extent->ram_size - 1;
1120
1121 if (async_chunk->blkcg_css)
1122 kthread_associate_blkcg(css: async_chunk->blkcg_css);
1123
1124 /*
1125 * If async_chunk->locked_page is in the async_extent range, we need to
1126 * handle it.
1127 */
1128 if (async_chunk->locked_page) {
1129 u64 locked_page_start = page_offset(page: async_chunk->locked_page);
1130 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1131
1132 if (!(start >= locked_page_end || end <= locked_page_start))
1133 locked_page = async_chunk->locked_page;
1134 }
1135 lock_extent(tree: io_tree, start, end, NULL);
1136
1137 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1138 submit_uncompressed_range(inode, async_extent, locked_page);
1139 goto done;
1140 }
1141
1142 ret = btrfs_reserve_extent(root, ram_bytes: async_extent->ram_size,
1143 num_bytes: async_extent->compressed_size,
1144 min_alloc_size: async_extent->compressed_size,
1145 empty_size: 0, hint_byte: *alloc_hint, ins: &ins, is_data: 1, delalloc: 1);
1146 if (ret) {
1147 /*
1148 * Here we used to try again by going back to non-compressed
1149 * path for ENOSPC. But we can't reserve space even for
1150 * compressed size, how could it work for uncompressed size
1151 * which requires larger size? So here we directly go error
1152 * path.
1153 */
1154 goto out_free;
1155 }
1156
1157 /* Here we're doing allocation and writeback of the compressed pages */
1158 em = create_io_em(inode, start,
1159 len: async_extent->ram_size, /* len */
1160 orig_start: start, /* orig_start */
1161 block_start: ins.objectid, /* block_start */
1162 block_len: ins.offset, /* block_len */
1163 orig_block_len: ins.offset, /* orig_block_len */
1164 ram_bytes: async_extent->ram_size, /* ram_bytes */
1165 compress_type: async_extent->compress_type,
1166 type: BTRFS_ORDERED_COMPRESSED);
1167 if (IS_ERR(ptr: em)) {
1168 ret = PTR_ERR(ptr: em);
1169 goto out_free_reserve;
1170 }
1171 free_extent_map(em);
1172
1173 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, /* file_offset */
1174 num_bytes: async_extent->ram_size, /* num_bytes */
1175 ram_bytes: async_extent->ram_size, /* ram_bytes */
1176 disk_bytenr: ins.objectid, /* disk_bytenr */
1177 disk_num_bytes: ins.offset, /* disk_num_bytes */
1178 offset: 0, /* offset */
1179 flags: 1 << BTRFS_ORDERED_COMPRESSED,
1180 compress_type: async_extent->compress_type);
1181 if (IS_ERR(ptr: ordered)) {
1182 btrfs_drop_extent_map_range(inode, start, end, skip_pinned: false);
1183 ret = PTR_ERR(ptr: ordered);
1184 goto out_free_reserve;
1185 }
1186 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1187
1188 /* Clear dirty, set writeback and unlock the pages. */
1189 extent_clear_unlock_delalloc(inode, start, end,
1190 NULL, bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC,
1191 page_ops: PAGE_UNLOCK | PAGE_START_WRITEBACK);
1192 btrfs_submit_compressed_write(ordered,
1193 compressed_pages: async_extent->pages, /* compressed_pages */
1194 nr_pages: async_extent->nr_pages,
1195 write_flags: async_chunk->write_flags, writeback: true);
1196 *alloc_hint = ins.objectid + ins.offset;
1197done:
1198 if (async_chunk->blkcg_css)
1199 kthread_associate_blkcg(NULL);
1200 kfree(objp: async_extent);
1201 return;
1202
1203out_free_reserve:
1204 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1205 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
1206out_free:
1207 mapping_set_error(mapping: inode->vfs_inode.i_mapping, error: -EIO);
1208 extent_clear_unlock_delalloc(inode, start, end,
1209 NULL, bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC |
1210 EXTENT_DELALLOC_NEW |
1211 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1212 page_ops: PAGE_UNLOCK | PAGE_START_WRITEBACK |
1213 PAGE_END_WRITEBACK);
1214 free_async_extent_pages(async_extent);
1215 if (async_chunk->blkcg_css)
1216 kthread_associate_blkcg(NULL);
1217 btrfs_debug(fs_info,
1218"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1219 root->root_key.objectid, btrfs_ino(inode), start,
1220 async_extent->ram_size, ret);
1221 kfree(objp: async_extent);
1222}
1223
1224static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1225 u64 num_bytes)
1226{
1227 struct extent_map_tree *em_tree = &inode->extent_tree;
1228 struct extent_map *em;
1229 u64 alloc_hint = 0;
1230
1231 read_lock(&em_tree->lock);
1232 em = search_extent_mapping(tree: em_tree, start, len: num_bytes);
1233 if (em) {
1234 /*
1235 * if block start isn't an actual block number then find the
1236 * first block in this inode and use that as a hint. If that
1237 * block is also bogus then just don't worry about it.
1238 */
1239 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1240 free_extent_map(em);
1241 em = search_extent_mapping(tree: em_tree, start: 0, len: 0);
1242 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1243 alloc_hint = em->block_start;
1244 if (em)
1245 free_extent_map(em);
1246 } else {
1247 alloc_hint = em->block_start;
1248 free_extent_map(em);
1249 }
1250 }
1251 read_unlock(&em_tree->lock);
1252
1253 return alloc_hint;
1254}
1255
1256/*
1257 * when extent_io.c finds a delayed allocation range in the file,
1258 * the call backs end up in this code. The basic idea is to
1259 * allocate extents on disk for the range, and create ordered data structs
1260 * in ram to track those extents.
1261 *
1262 * locked_page is the page that writepage had locked already. We use
1263 * it to make sure we don't do extra locks or unlocks.
1264 *
1265 * When this function fails, it unlocks all pages except @locked_page.
1266 *
1267 * When this function successfully creates an inline extent, it returns 1 and
1268 * unlocks all pages including locked_page and starts I/O on them.
1269 * (In reality inline extents are limited to a single page, so locked_page is
1270 * the only page handled anyway).
1271 *
1272 * When this function succeed and creates a normal extent, the page locking
1273 * status depends on the passed in flags:
1274 *
1275 * - If @keep_locked is set, all pages are kept locked.
1276 * - Else all pages except for @locked_page are unlocked.
1277 *
1278 * When a failure happens in the second or later iteration of the
1279 * while-loop, the ordered extents created in previous iterations are kept
1280 * intact. So, the caller must clean them up by calling
1281 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1282 * example.
1283 */
1284static noinline int cow_file_range(struct btrfs_inode *inode,
1285 struct page *locked_page, u64 start, u64 end,
1286 u64 *done_offset,
1287 bool keep_locked, bool no_inline)
1288{
1289 struct btrfs_root *root = inode->root;
1290 struct btrfs_fs_info *fs_info = root->fs_info;
1291 u64 alloc_hint = 0;
1292 u64 orig_start = start;
1293 u64 num_bytes;
1294 unsigned long ram_size;
1295 u64 cur_alloc_size = 0;
1296 u64 min_alloc_size;
1297 u64 blocksize = fs_info->sectorsize;
1298 struct btrfs_key ins;
1299 struct extent_map *em;
1300 unsigned clear_bits;
1301 unsigned long page_ops;
1302 bool extent_reserved = false;
1303 int ret = 0;
1304
1305 if (btrfs_is_free_space_inode(inode)) {
1306 ret = -EINVAL;
1307 goto out_unlock;
1308 }
1309
1310 num_bytes = ALIGN(end - start + 1, blocksize);
1311 num_bytes = max(blocksize, num_bytes);
1312 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1313
1314 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1315
1316 /*
1317 * Due to the page size limit, for subpage we can only trigger the
1318 * writeback for the dirty sectors of page, that means data writeback
1319 * is doing more writeback than what we want.
1320 *
1321 * This is especially unexpected for some call sites like fallocate,
1322 * where we only increase i_size after everything is done.
1323 * This means we can trigger inline extent even if we didn't want to.
1324 * So here we skip inline extent creation completely.
1325 */
1326 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1327 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1328 end + 1);
1329
1330 /* lets try to make an inline extent */
1331 ret = cow_file_range_inline(inode, size: actual_end, compressed_size: 0,
1332 compress_type: BTRFS_COMPRESS_NONE, NULL, update_i_size: false);
1333 if (ret == 0) {
1334 /*
1335 * We use DO_ACCOUNTING here because we need the
1336 * delalloc_release_metadata to be run _after_ we drop
1337 * our outstanding extent for clearing delalloc for this
1338 * range.
1339 */
1340 extent_clear_unlock_delalloc(inode, start, end,
1341 locked_page,
1342 bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC |
1343 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1344 EXTENT_DO_ACCOUNTING, page_ops: PAGE_UNLOCK |
1345 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1346 /*
1347 * locked_page is locked by the caller of
1348 * writepage_delalloc(), not locked by
1349 * __process_pages_contig().
1350 *
1351 * We can't let __process_pages_contig() to unlock it,
1352 * as it doesn't have any subpage::writers recorded.
1353 *
1354 * Here we manually unlock the page, since the caller
1355 * can't determine if it's an inline extent or a
1356 * compressed extent.
1357 */
1358 unlock_page(page: locked_page);
1359 ret = 1;
1360 goto done;
1361 } else if (ret < 0) {
1362 goto out_unlock;
1363 }
1364 }
1365
1366 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1367
1368 /*
1369 * Relocation relies on the relocated extents to have exactly the same
1370 * size as the original extents. Normally writeback for relocation data
1371 * extents follows a NOCOW path because relocation preallocates the
1372 * extents. However, due to an operation such as scrub turning a block
1373 * group to RO mode, it may fallback to COW mode, so we must make sure
1374 * an extent allocated during COW has exactly the requested size and can
1375 * not be split into smaller extents, otherwise relocation breaks and
1376 * fails during the stage where it updates the bytenr of file extent
1377 * items.
1378 */
1379 if (btrfs_is_data_reloc_root(root))
1380 min_alloc_size = num_bytes;
1381 else
1382 min_alloc_size = fs_info->sectorsize;
1383
1384 while (num_bytes > 0) {
1385 struct btrfs_ordered_extent *ordered;
1386
1387 cur_alloc_size = num_bytes;
1388 ret = btrfs_reserve_extent(root, ram_bytes: cur_alloc_size, num_bytes: cur_alloc_size,
1389 min_alloc_size, empty_size: 0, hint_byte: alloc_hint,
1390 ins: &ins, is_data: 1, delalloc: 1);
1391 if (ret == -EAGAIN) {
1392 /*
1393 * btrfs_reserve_extent only returns -EAGAIN for zoned
1394 * file systems, which is an indication that there are
1395 * no active zones to allocate from at the moment.
1396 *
1397 * If this is the first loop iteration, wait for at
1398 * least one zone to finish before retrying the
1399 * allocation. Otherwise ask the caller to write out
1400 * the already allocated blocks before coming back to
1401 * us, or return -ENOSPC if it can't handle retries.
1402 */
1403 ASSERT(btrfs_is_zoned(fs_info));
1404 if (start == orig_start) {
1405 wait_on_bit_io(word: &inode->root->fs_info->flags,
1406 bit: BTRFS_FS_NEED_ZONE_FINISH,
1407 TASK_UNINTERRUPTIBLE);
1408 continue;
1409 }
1410 if (done_offset) {
1411 *done_offset = start - 1;
1412 return 0;
1413 }
1414 ret = -ENOSPC;
1415 }
1416 if (ret < 0)
1417 goto out_unlock;
1418 cur_alloc_size = ins.offset;
1419 extent_reserved = true;
1420
1421 ram_size = ins.offset;
1422 em = create_io_em(inode, start, len: ins.offset, /* len */
1423 orig_start: start, /* orig_start */
1424 block_start: ins.objectid, /* block_start */
1425 block_len: ins.offset, /* block_len */
1426 orig_block_len: ins.offset, /* orig_block_len */
1427 ram_bytes: ram_size, /* ram_bytes */
1428 compress_type: BTRFS_COMPRESS_NONE, /* compress_type */
1429 type: BTRFS_ORDERED_REGULAR /* type */);
1430 if (IS_ERR(ptr: em)) {
1431 ret = PTR_ERR(ptr: em);
1432 goto out_reserve;
1433 }
1434 free_extent_map(em);
1435
1436 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes: ram_size,
1437 ram_bytes: ram_size, disk_bytenr: ins.objectid, disk_num_bytes: cur_alloc_size,
1438 offset: 0, flags: 1 << BTRFS_ORDERED_REGULAR,
1439 compress_type: BTRFS_COMPRESS_NONE);
1440 if (IS_ERR(ptr: ordered)) {
1441 ret = PTR_ERR(ptr: ordered);
1442 goto out_drop_extent_cache;
1443 }
1444
1445 if (btrfs_is_data_reloc_root(root)) {
1446 ret = btrfs_reloc_clone_csums(ordered);
1447
1448 /*
1449 * Only drop cache here, and process as normal.
1450 *
1451 * We must not allow extent_clear_unlock_delalloc()
1452 * at out_unlock label to free meta of this ordered
1453 * extent, as its meta should be freed by
1454 * btrfs_finish_ordered_io().
1455 *
1456 * So we must continue until @start is increased to
1457 * skip current ordered extent.
1458 */
1459 if (ret)
1460 btrfs_drop_extent_map_range(inode, start,
1461 end: start + ram_size - 1,
1462 skip_pinned: false);
1463 }
1464 btrfs_put_ordered_extent(entry: ordered);
1465
1466 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1467
1468 /*
1469 * We're not doing compressed IO, don't unlock the first page
1470 * (which the caller expects to stay locked), don't clear any
1471 * dirty bits and don't set any writeback bits
1472 *
1473 * Do set the Ordered (Private2) bit so we know this page was
1474 * properly setup for writepage.
1475 */
1476 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1477 page_ops |= PAGE_SET_ORDERED;
1478
1479 extent_clear_unlock_delalloc(inode, start, end: start + ram_size - 1,
1480 locked_page,
1481 bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC,
1482 page_ops);
1483 if (num_bytes < cur_alloc_size)
1484 num_bytes = 0;
1485 else
1486 num_bytes -= cur_alloc_size;
1487 alloc_hint = ins.objectid + ins.offset;
1488 start += cur_alloc_size;
1489 extent_reserved = false;
1490
1491 /*
1492 * btrfs_reloc_clone_csums() error, since start is increased
1493 * extent_clear_unlock_delalloc() at out_unlock label won't
1494 * free metadata of current ordered extent, we're OK to exit.
1495 */
1496 if (ret)
1497 goto out_unlock;
1498 }
1499done:
1500 if (done_offset)
1501 *done_offset = end;
1502 return ret;
1503
1504out_drop_extent_cache:
1505 btrfs_drop_extent_map_range(inode, start, end: start + ram_size - 1, skip_pinned: false);
1506out_reserve:
1507 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1508 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
1509out_unlock:
1510 /*
1511 * Now, we have three regions to clean up:
1512 *
1513 * |-------(1)----|---(2)---|-------------(3)----------|
1514 * `- orig_start `- start `- start + cur_alloc_size `- end
1515 *
1516 * We process each region below.
1517 */
1518
1519 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1520 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1521 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1522
1523 /*
1524 * For the range (1). We have already instantiated the ordered extents
1525 * for this region. They are cleaned up by
1526 * btrfs_cleanup_ordered_extents() in e.g,
1527 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1528 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1529 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1530 * function.
1531 *
1532 * However, in case of @keep_locked, we still need to unlock the pages
1533 * (except @locked_page) to ensure all the pages are unlocked.
1534 */
1535 if (keep_locked && orig_start < start) {
1536 if (!locked_page)
1537 mapping_set_error(mapping: inode->vfs_inode.i_mapping, error: ret);
1538 extent_clear_unlock_delalloc(inode, start: orig_start, end: start - 1,
1539 locked_page, bits_to_clear: 0, page_ops);
1540 }
1541
1542 /*
1543 * For the range (2). If we reserved an extent for our delalloc range
1544 * (or a subrange) and failed to create the respective ordered extent,
1545 * then it means that when we reserved the extent we decremented the
1546 * extent's size from the data space_info's bytes_may_use counter and
1547 * incremented the space_info's bytes_reserved counter by the same
1548 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1549 * to decrement again the data space_info's bytes_may_use counter,
1550 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1551 */
1552 if (extent_reserved) {
1553 extent_clear_unlock_delalloc(inode, start,
1554 end: start + cur_alloc_size - 1,
1555 locked_page,
1556 bits_to_clear: clear_bits,
1557 page_ops);
1558 start += cur_alloc_size;
1559 }
1560
1561 /*
1562 * For the range (3). We never touched the region. In addition to the
1563 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1564 * space_info's bytes_may_use counter, reserved in
1565 * btrfs_check_data_free_space().
1566 */
1567 if (start < end) {
1568 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1569 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1570 bits_to_clear: clear_bits, page_ops);
1571 }
1572 return ret;
1573}
1574
1575/*
1576 * Phase two of compressed writeback. This is the ordered portion of the code,
1577 * which only gets called in the order the work was queued. We walk all the
1578 * async extents created by compress_file_range and send them down to the disk.
1579 *
1580 * If called with @do_free == true then it'll try to finish the work and free
1581 * the work struct eventually.
1582 */
1583static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1584{
1585 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1586 work);
1587 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1588 struct async_extent *async_extent;
1589 unsigned long nr_pages;
1590 u64 alloc_hint = 0;
1591
1592 if (do_free) {
1593 struct async_chunk *async_chunk;
1594 struct async_cow *async_cow;
1595
1596 async_chunk = container_of(work, struct async_chunk, work);
1597 btrfs_add_delayed_iput(inode: async_chunk->inode);
1598 if (async_chunk->blkcg_css)
1599 css_put(css: async_chunk->blkcg_css);
1600
1601 async_cow = async_chunk->async_cow;
1602 if (atomic_dec_and_test(v: &async_cow->num_chunks))
1603 kvfree(addr: async_cow);
1604 return;
1605 }
1606
1607 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1608 PAGE_SHIFT;
1609
1610 while (!list_empty(head: &async_chunk->extents)) {
1611 async_extent = list_entry(async_chunk->extents.next,
1612 struct async_extent, list);
1613 list_del(entry: &async_extent->list);
1614 submit_one_async_extent(async_chunk, async_extent, alloc_hint: &alloc_hint);
1615 }
1616
1617 /* atomic_sub_return implies a barrier */
1618 if (atomic_sub_return(i: nr_pages, v: &fs_info->async_delalloc_pages) <
1619 5 * SZ_1M)
1620 cond_wake_up_nomb(wq: &fs_info->async_submit_wait);
1621}
1622
1623static bool run_delalloc_compressed(struct btrfs_inode *inode,
1624 struct page *locked_page, u64 start,
1625 u64 end, struct writeback_control *wbc)
1626{
1627 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1628 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1629 struct async_cow *ctx;
1630 struct async_chunk *async_chunk;
1631 unsigned long nr_pages;
1632 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1633 int i;
1634 unsigned nofs_flag;
1635 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1636
1637 nofs_flag = memalloc_nofs_save();
1638 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1639 memalloc_nofs_restore(flags: nofs_flag);
1640 if (!ctx)
1641 return false;
1642
1643 unlock_extent(tree: &inode->io_tree, start, end, NULL);
1644 set_bit(nr: BTRFS_INODE_HAS_ASYNC_EXTENT, addr: &inode->runtime_flags);
1645
1646 async_chunk = ctx->chunks;
1647 atomic_set(v: &ctx->num_chunks, i: num_chunks);
1648
1649 for (i = 0; i < num_chunks; i++) {
1650 u64 cur_end = min(end, start + SZ_512K - 1);
1651
1652 /*
1653 * igrab is called higher up in the call chain, take only the
1654 * lightweight reference for the callback lifetime
1655 */
1656 ihold(inode: &inode->vfs_inode);
1657 async_chunk[i].async_cow = ctx;
1658 async_chunk[i].inode = inode;
1659 async_chunk[i].start = start;
1660 async_chunk[i].end = cur_end;
1661 async_chunk[i].write_flags = write_flags;
1662 INIT_LIST_HEAD(list: &async_chunk[i].extents);
1663
1664 /*
1665 * The locked_page comes all the way from writepage and its
1666 * the original page we were actually given. As we spread
1667 * this large delalloc region across multiple async_chunk
1668 * structs, only the first struct needs a pointer to locked_page
1669 *
1670 * This way we don't need racey decisions about who is supposed
1671 * to unlock it.
1672 */
1673 if (locked_page) {
1674 /*
1675 * Depending on the compressibility, the pages might or
1676 * might not go through async. We want all of them to
1677 * be accounted against wbc once. Let's do it here
1678 * before the paths diverge. wbc accounting is used
1679 * only for foreign writeback detection and doesn't
1680 * need full accuracy. Just account the whole thing
1681 * against the first page.
1682 */
1683 wbc_account_cgroup_owner(wbc, page: locked_page,
1684 bytes: cur_end - start);
1685 async_chunk[i].locked_page = locked_page;
1686 locked_page = NULL;
1687 } else {
1688 async_chunk[i].locked_page = NULL;
1689 }
1690
1691 if (blkcg_css != blkcg_root_css) {
1692 css_get(css: blkcg_css);
1693 async_chunk[i].blkcg_css = blkcg_css;
1694 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1695 } else {
1696 async_chunk[i].blkcg_css = NULL;
1697 }
1698
1699 btrfs_init_work(work: &async_chunk[i].work, func: compress_file_range,
1700 ordered_func: submit_compressed_extents);
1701
1702 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1703 atomic_add(i: nr_pages, v: &fs_info->async_delalloc_pages);
1704
1705 btrfs_queue_work(wq: fs_info->delalloc_workers, work: &async_chunk[i].work);
1706
1707 start = cur_end + 1;
1708 }
1709 return true;
1710}
1711
1712/*
1713 * Run the delalloc range from start to end, and write back any dirty pages
1714 * covered by the range.
1715 */
1716static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1717 struct page *locked_page, u64 start,
1718 u64 end, struct writeback_control *wbc,
1719 bool pages_dirty)
1720{
1721 u64 done_offset = end;
1722 int ret;
1723
1724 while (start <= end) {
1725 ret = cow_file_range(inode, locked_page, start, end, done_offset: &done_offset,
1726 keep_locked: true, no_inline: false);
1727 if (ret)
1728 return ret;
1729 extent_write_locked_range(inode: &inode->vfs_inode, locked_page, start,
1730 end: done_offset, wbc, pages_dirty);
1731 start = done_offset + 1;
1732 }
1733
1734 return 1;
1735}
1736
1737static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1738 u64 bytenr, u64 num_bytes, bool nowait)
1739{
1740 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1741 struct btrfs_ordered_sum *sums;
1742 int ret;
1743 LIST_HEAD(list);
1744
1745 ret = btrfs_lookup_csums_list(root: csum_root, start: bytenr, end: bytenr + num_bytes - 1,
1746 list: &list, search_commit: 0, nowait);
1747 if (ret == 0 && list_empty(head: &list))
1748 return 0;
1749
1750 while (!list_empty(head: &list)) {
1751 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1752 list_del(entry: &sums->list);
1753 kfree(objp: sums);
1754 }
1755 if (ret < 0)
1756 return ret;
1757 return 1;
1758}
1759
1760static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1761 const u64 start, const u64 end)
1762{
1763 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1764 const bool is_reloc_ino = btrfs_is_data_reloc_root(root: inode->root);
1765 const u64 range_bytes = end + 1 - start;
1766 struct extent_io_tree *io_tree = &inode->io_tree;
1767 u64 range_start = start;
1768 u64 count;
1769 int ret;
1770
1771 /*
1772 * If EXTENT_NORESERVE is set it means that when the buffered write was
1773 * made we had not enough available data space and therefore we did not
1774 * reserve data space for it, since we though we could do NOCOW for the
1775 * respective file range (either there is prealloc extent or the inode
1776 * has the NOCOW bit set).
1777 *
1778 * However when we need to fallback to COW mode (because for example the
1779 * block group for the corresponding extent was turned to RO mode by a
1780 * scrub or relocation) we need to do the following:
1781 *
1782 * 1) We increment the bytes_may_use counter of the data space info.
1783 * If COW succeeds, it allocates a new data extent and after doing
1784 * that it decrements the space info's bytes_may_use counter and
1785 * increments its bytes_reserved counter by the same amount (we do
1786 * this at btrfs_add_reserved_bytes()). So we need to increment the
1787 * bytes_may_use counter to compensate (when space is reserved at
1788 * buffered write time, the bytes_may_use counter is incremented);
1789 *
1790 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1791 * that if the COW path fails for any reason, it decrements (through
1792 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1793 * data space info, which we incremented in the step above.
1794 *
1795 * If we need to fallback to cow and the inode corresponds to a free
1796 * space cache inode or an inode of the data relocation tree, we must
1797 * also increment bytes_may_use of the data space_info for the same
1798 * reason. Space caches and relocated data extents always get a prealloc
1799 * extent for them, however scrub or balance may have set the block
1800 * group that contains that extent to RO mode and therefore force COW
1801 * when starting writeback.
1802 */
1803 count = count_range_bits(tree: io_tree, start: &range_start, search_end: end, max_bytes: range_bytes,
1804 bits: EXTENT_NORESERVE, contig: 0, NULL);
1805 if (count > 0 || is_space_ino || is_reloc_ino) {
1806 u64 bytes = count;
1807 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1808 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1809
1810 if (is_space_ino || is_reloc_ino)
1811 bytes = range_bytes;
1812
1813 spin_lock(lock: &sinfo->lock);
1814 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1815 spin_unlock(lock: &sinfo->lock);
1816
1817 if (count > 0)
1818 clear_extent_bit(tree: io_tree, start, end, bits: EXTENT_NORESERVE,
1819 NULL);
1820 }
1821
1822 /*
1823 * Don't try to create inline extents, as a mix of inline extent that
1824 * is written out and unlocked directly and a normal NOCOW extent
1825 * doesn't work.
1826 */
1827 ret = cow_file_range(inode, locked_page, start, end, NULL, keep_locked: false, no_inline: true);
1828 ASSERT(ret != 1);
1829 return ret;
1830}
1831
1832struct can_nocow_file_extent_args {
1833 /* Input fields. */
1834
1835 /* Start file offset of the range we want to NOCOW. */
1836 u64 start;
1837 /* End file offset (inclusive) of the range we want to NOCOW. */
1838 u64 end;
1839 bool writeback_path;
1840 bool strict;
1841 /*
1842 * Free the path passed to can_nocow_file_extent() once it's not needed
1843 * anymore.
1844 */
1845 bool free_path;
1846
1847 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1848
1849 u64 disk_bytenr;
1850 u64 disk_num_bytes;
1851 u64 extent_offset;
1852 /* Number of bytes that can be written to in NOCOW mode. */
1853 u64 num_bytes;
1854};
1855
1856/*
1857 * Check if we can NOCOW the file extent that the path points to.
1858 * This function may return with the path released, so the caller should check
1859 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1860 *
1861 * Returns: < 0 on error
1862 * 0 if we can not NOCOW
1863 * 1 if we can NOCOW
1864 */
1865static int can_nocow_file_extent(struct btrfs_path *path,
1866 struct btrfs_key *key,
1867 struct btrfs_inode *inode,
1868 struct can_nocow_file_extent_args *args)
1869{
1870 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1871 struct extent_buffer *leaf = path->nodes[0];
1872 struct btrfs_root *root = inode->root;
1873 struct btrfs_file_extent_item *fi;
1874 u64 extent_end;
1875 u8 extent_type;
1876 int can_nocow = 0;
1877 int ret = 0;
1878 bool nowait = path->nowait;
1879
1880 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 extent_type = btrfs_file_extent_type(eb: leaf, s: fi);
1882
1883 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1884 goto out;
1885
1886 /* Can't access these fields unless we know it's not an inline extent. */
1887 args->disk_bytenr = btrfs_file_extent_disk_bytenr(eb: leaf, s: fi);
1888 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(eb: leaf, s: fi);
1889 args->extent_offset = btrfs_file_extent_offset(eb: leaf, s: fi);
1890
1891 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1892 extent_type == BTRFS_FILE_EXTENT_REG)
1893 goto out;
1894
1895 /*
1896 * If the extent was created before the generation where the last snapshot
1897 * for its subvolume was created, then this implies the extent is shared,
1898 * hence we must COW.
1899 */
1900 if (!args->strict &&
1901 btrfs_file_extent_generation(eb: leaf, s: fi) <=
1902 btrfs_root_last_snapshot(s: &root->root_item))
1903 goto out;
1904
1905 /* An explicit hole, must COW. */
1906 if (args->disk_bytenr == 0)
1907 goto out;
1908
1909 /* Compressed/encrypted/encoded extents must be COWed. */
1910 if (btrfs_file_extent_compression(eb: leaf, s: fi) ||
1911 btrfs_file_extent_encryption(eb: leaf, s: fi) ||
1912 btrfs_file_extent_other_encoding(eb: leaf, s: fi))
1913 goto out;
1914
1915 extent_end = btrfs_file_extent_end(path);
1916
1917 /*
1918 * The following checks can be expensive, as they need to take other
1919 * locks and do btree or rbtree searches, so release the path to avoid
1920 * blocking other tasks for too long.
1921 */
1922 btrfs_release_path(p: path);
1923
1924 ret = btrfs_cross_ref_exist(root, objectid: btrfs_ino(inode),
1925 offset: key->offset - args->extent_offset,
1926 bytenr: args->disk_bytenr, strict: args->strict, path);
1927 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1928 if (ret != 0)
1929 goto out;
1930
1931 if (args->free_path) {
1932 /*
1933 * We don't need the path anymore, plus through the
1934 * csum_exist_in_range() call below we will end up allocating
1935 * another path. So free the path to avoid unnecessary extra
1936 * memory usage.
1937 */
1938 btrfs_free_path(p: path);
1939 path = NULL;
1940 }
1941
1942 /* If there are pending snapshots for this root, we must COW. */
1943 if (args->writeback_path && !is_freespace_inode &&
1944 atomic_read(v: &root->snapshot_force_cow))
1945 goto out;
1946
1947 args->disk_bytenr += args->extent_offset;
1948 args->disk_bytenr += args->start - key->offset;
1949 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1950
1951 /*
1952 * Force COW if csums exist in the range. This ensures that csums for a
1953 * given extent are either valid or do not exist.
1954 */
1955 ret = csum_exist_in_range(fs_info: root->fs_info, bytenr: args->disk_bytenr, num_bytes: args->num_bytes,
1956 nowait);
1957 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1958 if (ret != 0)
1959 goto out;
1960
1961 can_nocow = 1;
1962 out:
1963 if (args->free_path && path)
1964 btrfs_free_path(p: path);
1965
1966 return ret < 0 ? ret : can_nocow;
1967}
1968
1969/*
1970 * when nowcow writeback call back. This checks for snapshots or COW copies
1971 * of the extents that exist in the file, and COWs the file as required.
1972 *
1973 * If no cow copies or snapshots exist, we write directly to the existing
1974 * blocks on disk
1975 */
1976static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1977 struct page *locked_page,
1978 const u64 start, const u64 end)
1979{
1980 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1981 struct btrfs_root *root = inode->root;
1982 struct btrfs_path *path;
1983 u64 cow_start = (u64)-1;
1984 u64 cur_offset = start;
1985 int ret;
1986 bool check_prev = true;
1987 u64 ino = btrfs_ino(inode);
1988 struct can_nocow_file_extent_args nocow_args = { 0 };
1989
1990 /*
1991 * Normally on a zoned device we're only doing COW writes, but in case
1992 * of relocation on a zoned filesystem serializes I/O so that we're only
1993 * writing sequentially and can end up here as well.
1994 */
1995 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1996
1997 path = btrfs_alloc_path();
1998 if (!path) {
1999 ret = -ENOMEM;
2000 goto error;
2001 }
2002
2003 nocow_args.end = end;
2004 nocow_args.writeback_path = true;
2005
2006 while (1) {
2007 struct btrfs_block_group *nocow_bg = NULL;
2008 struct btrfs_ordered_extent *ordered;
2009 struct btrfs_key found_key;
2010 struct btrfs_file_extent_item *fi;
2011 struct extent_buffer *leaf;
2012 u64 extent_end;
2013 u64 ram_bytes;
2014 u64 nocow_end;
2015 int extent_type;
2016 bool is_prealloc;
2017
2018 ret = btrfs_lookup_file_extent(NULL, root, path, objectid: ino,
2019 bytenr: cur_offset, mod: 0);
2020 if (ret < 0)
2021 goto error;
2022
2023 /*
2024 * If there is no extent for our range when doing the initial
2025 * search, then go back to the previous slot as it will be the
2026 * one containing the search offset
2027 */
2028 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2029 leaf = path->nodes[0];
2030 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key,
2031 nr: path->slots[0] - 1);
2032 if (found_key.objectid == ino &&
2033 found_key.type == BTRFS_EXTENT_DATA_KEY)
2034 path->slots[0]--;
2035 }
2036 check_prev = false;
2037next_slot:
2038 /* Go to next leaf if we have exhausted the current one */
2039 leaf = path->nodes[0];
2040 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
2041 ret = btrfs_next_leaf(root, path);
2042 if (ret < 0)
2043 goto error;
2044 if (ret > 0)
2045 break;
2046 leaf = path->nodes[0];
2047 }
2048
2049 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
2050
2051 /* Didn't find anything for our INO */
2052 if (found_key.objectid > ino)
2053 break;
2054 /*
2055 * Keep searching until we find an EXTENT_ITEM or there are no
2056 * more extents for this inode
2057 */
2058 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2059 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2060 path->slots[0]++;
2061 goto next_slot;
2062 }
2063
2064 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2065 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2066 found_key.offset > end)
2067 break;
2068
2069 /*
2070 * If the found extent starts after requested offset, then
2071 * adjust extent_end to be right before this extent begins
2072 */
2073 if (found_key.offset > cur_offset) {
2074 extent_end = found_key.offset;
2075 extent_type = 0;
2076 goto must_cow;
2077 }
2078
2079 /*
2080 * Found extent which begins before our range and potentially
2081 * intersect it
2082 */
2083 fi = btrfs_item_ptr(leaf, path->slots[0],
2084 struct btrfs_file_extent_item);
2085 extent_type = btrfs_file_extent_type(eb: leaf, s: fi);
2086 /* If this is triggered then we have a memory corruption. */
2087 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2088 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2089 ret = -EUCLEAN;
2090 goto error;
2091 }
2092 ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: fi);
2093 extent_end = btrfs_file_extent_end(path);
2094
2095 /*
2096 * If the extent we got ends before our current offset, skip to
2097 * the next extent.
2098 */
2099 if (extent_end <= cur_offset) {
2100 path->slots[0]++;
2101 goto next_slot;
2102 }
2103
2104 nocow_args.start = cur_offset;
2105 ret = can_nocow_file_extent(path, key: &found_key, inode, args: &nocow_args);
2106 if (ret < 0)
2107 goto error;
2108 if (ret == 0)
2109 goto must_cow;
2110
2111 ret = 0;
2112 nocow_bg = btrfs_inc_nocow_writers(fs_info, bytenr: nocow_args.disk_bytenr);
2113 if (!nocow_bg) {
2114must_cow:
2115 /*
2116 * If we can't perform NOCOW writeback for the range,
2117 * then record the beginning of the range that needs to
2118 * be COWed. It will be written out before the next
2119 * NOCOW range if we find one, or when exiting this
2120 * loop.
2121 */
2122 if (cow_start == (u64)-1)
2123 cow_start = cur_offset;
2124 cur_offset = extent_end;
2125 if (cur_offset > end)
2126 break;
2127 if (!path->nodes[0])
2128 continue;
2129 path->slots[0]++;
2130 goto next_slot;
2131 }
2132
2133 /*
2134 * COW range from cow_start to found_key.offset - 1. As the key
2135 * will contain the beginning of the first extent that can be
2136 * NOCOW, following one which needs to be COW'ed
2137 */
2138 if (cow_start != (u64)-1) {
2139 ret = fallback_to_cow(inode, locked_page,
2140 start: cow_start, end: found_key.offset - 1);
2141 cow_start = (u64)-1;
2142 if (ret) {
2143 btrfs_dec_nocow_writers(bg: nocow_bg);
2144 goto error;
2145 }
2146 }
2147
2148 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2149 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2150 if (is_prealloc) {
2151 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2152 struct extent_map *em;
2153
2154 em = create_io_em(inode, start: cur_offset, len: nocow_args.num_bytes,
2155 orig_start,
2156 block_start: nocow_args.disk_bytenr, /* block_start */
2157 block_len: nocow_args.num_bytes, /* block_len */
2158 orig_block_len: nocow_args.disk_num_bytes, /* orig_block_len */
2159 ram_bytes, compress_type: BTRFS_COMPRESS_NONE,
2160 type: BTRFS_ORDERED_PREALLOC);
2161 if (IS_ERR(ptr: em)) {
2162 btrfs_dec_nocow_writers(bg: nocow_bg);
2163 ret = PTR_ERR(ptr: em);
2164 goto error;
2165 }
2166 free_extent_map(em);
2167 }
2168
2169 ordered = btrfs_alloc_ordered_extent(inode, file_offset: cur_offset,
2170 num_bytes: nocow_args.num_bytes, ram_bytes: nocow_args.num_bytes,
2171 disk_bytenr: nocow_args.disk_bytenr, disk_num_bytes: nocow_args.num_bytes, offset: 0,
2172 flags: is_prealloc
2173 ? (1 << BTRFS_ORDERED_PREALLOC)
2174 : (1 << BTRFS_ORDERED_NOCOW),
2175 compress_type: BTRFS_COMPRESS_NONE);
2176 btrfs_dec_nocow_writers(bg: nocow_bg);
2177 if (IS_ERR(ptr: ordered)) {
2178 if (is_prealloc) {
2179 btrfs_drop_extent_map_range(inode, start: cur_offset,
2180 end: nocow_end, skip_pinned: false);
2181 }
2182 ret = PTR_ERR(ptr: ordered);
2183 goto error;
2184 }
2185
2186 if (btrfs_is_data_reloc_root(root))
2187 /*
2188 * Error handled later, as we must prevent
2189 * extent_clear_unlock_delalloc() in error handler
2190 * from freeing metadata of created ordered extent.
2191 */
2192 ret = btrfs_reloc_clone_csums(ordered);
2193 btrfs_put_ordered_extent(entry: ordered);
2194
2195 extent_clear_unlock_delalloc(inode, start: cur_offset, end: nocow_end,
2196 locked_page, bits_to_clear: EXTENT_LOCKED |
2197 EXTENT_DELALLOC |
2198 EXTENT_CLEAR_DATA_RESV,
2199 page_ops: PAGE_UNLOCK | PAGE_SET_ORDERED);
2200
2201 cur_offset = extent_end;
2202
2203 /*
2204 * btrfs_reloc_clone_csums() error, now we're OK to call error
2205 * handler, as metadata for created ordered extent will only
2206 * be freed by btrfs_finish_ordered_io().
2207 */
2208 if (ret)
2209 goto error;
2210 if (cur_offset > end)
2211 break;
2212 }
2213 btrfs_release_path(p: path);
2214
2215 if (cur_offset <= end && cow_start == (u64)-1)
2216 cow_start = cur_offset;
2217
2218 if (cow_start != (u64)-1) {
2219 cur_offset = end;
2220 ret = fallback_to_cow(inode, locked_page, start: cow_start, end);
2221 cow_start = (u64)-1;
2222 if (ret)
2223 goto error;
2224 }
2225
2226 btrfs_free_path(p: path);
2227 return 0;
2228
2229error:
2230 /*
2231 * If an error happened while a COW region is outstanding, cur_offset
2232 * needs to be reset to cow_start to ensure the COW region is unlocked
2233 * as well.
2234 */
2235 if (cow_start != (u64)-1)
2236 cur_offset = cow_start;
2237 if (cur_offset < end)
2238 extent_clear_unlock_delalloc(inode, start: cur_offset, end,
2239 locked_page, bits_to_clear: EXTENT_LOCKED |
2240 EXTENT_DELALLOC | EXTENT_DEFRAG |
2241 EXTENT_DO_ACCOUNTING, page_ops: PAGE_UNLOCK |
2242 PAGE_START_WRITEBACK |
2243 PAGE_END_WRITEBACK);
2244 btrfs_free_path(p: path);
2245 return ret;
2246}
2247
2248static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2249{
2250 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2251 if (inode->defrag_bytes &&
2252 test_range_bit_exists(tree: &inode->io_tree, start, end, bit: EXTENT_DEFRAG))
2253 return false;
2254 return true;
2255 }
2256 return false;
2257}
2258
2259/*
2260 * Function to process delayed allocation (create CoW) for ranges which are
2261 * being touched for the first time.
2262 */
2263int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2264 u64 start, u64 end, struct writeback_control *wbc)
2265{
2266 const bool zoned = btrfs_is_zoned(fs_info: inode->root->fs_info);
2267 int ret;
2268
2269 /*
2270 * The range must cover part of the @locked_page, or a return of 1
2271 * can confuse the caller.
2272 */
2273 ASSERT(!(end <= page_offset(locked_page) ||
2274 start >= page_offset(locked_page) + PAGE_SIZE));
2275
2276 if (should_nocow(inode, start, end)) {
2277 ret = run_delalloc_nocow(inode, locked_page, start, end);
2278 goto out;
2279 }
2280
2281 if (btrfs_inode_can_compress(inode) &&
2282 inode_need_compress(inode, start, end) &&
2283 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2284 return 1;
2285
2286 if (zoned)
2287 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2288 pages_dirty: true);
2289 else
2290 ret = cow_file_range(inode, locked_page, start, end, NULL,
2291 keep_locked: false, no_inline: false);
2292
2293out:
2294 if (ret < 0)
2295 btrfs_cleanup_ordered_extents(inode, locked_page, offset: start,
2296 bytes: end - start + 1);
2297 return ret;
2298}
2299
2300void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2301 struct extent_state *orig, u64 split)
2302{
2303 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2304 u64 size;
2305
2306 lockdep_assert_held(&inode->io_tree.lock);
2307
2308 /* not delalloc, ignore it */
2309 if (!(orig->state & EXTENT_DELALLOC))
2310 return;
2311
2312 size = orig->end - orig->start + 1;
2313 if (size > fs_info->max_extent_size) {
2314 u32 num_extents;
2315 u64 new_size;
2316
2317 /*
2318 * See the explanation in btrfs_merge_delalloc_extent, the same
2319 * applies here, just in reverse.
2320 */
2321 new_size = orig->end - split + 1;
2322 num_extents = count_max_extents(fs_info, size: new_size);
2323 new_size = split - orig->start;
2324 num_extents += count_max_extents(fs_info, size: new_size);
2325 if (count_max_extents(fs_info, size) >= num_extents)
2326 return;
2327 }
2328
2329 spin_lock(lock: &inode->lock);
2330 btrfs_mod_outstanding_extents(inode, mod: 1);
2331 spin_unlock(lock: &inode->lock);
2332}
2333
2334/*
2335 * Handle merged delayed allocation extents so we can keep track of new extents
2336 * that are just merged onto old extents, such as when we are doing sequential
2337 * writes, so we can properly account for the metadata space we'll need.
2338 */
2339void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2340 struct extent_state *other)
2341{
2342 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2343 u64 new_size, old_size;
2344 u32 num_extents;
2345
2346 lockdep_assert_held(&inode->io_tree.lock);
2347
2348 /* not delalloc, ignore it */
2349 if (!(other->state & EXTENT_DELALLOC))
2350 return;
2351
2352 if (new->start > other->start)
2353 new_size = new->end - other->start + 1;
2354 else
2355 new_size = other->end - new->start + 1;
2356
2357 /* we're not bigger than the max, unreserve the space and go */
2358 if (new_size <= fs_info->max_extent_size) {
2359 spin_lock(lock: &inode->lock);
2360 btrfs_mod_outstanding_extents(inode, mod: -1);
2361 spin_unlock(lock: &inode->lock);
2362 return;
2363 }
2364
2365 /*
2366 * We have to add up either side to figure out how many extents were
2367 * accounted for before we merged into one big extent. If the number of
2368 * extents we accounted for is <= the amount we need for the new range
2369 * then we can return, otherwise drop. Think of it like this
2370 *
2371 * [ 4k][MAX_SIZE]
2372 *
2373 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2374 * need 2 outstanding extents, on one side we have 1 and the other side
2375 * we have 1 so they are == and we can return. But in this case
2376 *
2377 * [MAX_SIZE+4k][MAX_SIZE+4k]
2378 *
2379 * Each range on their own accounts for 2 extents, but merged together
2380 * they are only 3 extents worth of accounting, so we need to drop in
2381 * this case.
2382 */
2383 old_size = other->end - other->start + 1;
2384 num_extents = count_max_extents(fs_info, size: old_size);
2385 old_size = new->end - new->start + 1;
2386 num_extents += count_max_extents(fs_info, size: old_size);
2387 if (count_max_extents(fs_info, size: new_size) >= num_extents)
2388 return;
2389
2390 spin_lock(lock: &inode->lock);
2391 btrfs_mod_outstanding_extents(inode, mod: -1);
2392 spin_unlock(lock: &inode->lock);
2393}
2394
2395static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2396{
2397 struct btrfs_root *root = inode->root;
2398 struct btrfs_fs_info *fs_info = root->fs_info;
2399
2400 spin_lock(lock: &root->delalloc_lock);
2401 ASSERT(list_empty(&inode->delalloc_inodes));
2402 list_add_tail(new: &inode->delalloc_inodes, head: &root->delalloc_inodes);
2403 root->nr_delalloc_inodes++;
2404 if (root->nr_delalloc_inodes == 1) {
2405 spin_lock(lock: &fs_info->delalloc_root_lock);
2406 ASSERT(list_empty(&root->delalloc_root));
2407 list_add_tail(new: &root->delalloc_root, head: &fs_info->delalloc_roots);
2408 spin_unlock(lock: &fs_info->delalloc_root_lock);
2409 }
2410 spin_unlock(lock: &root->delalloc_lock);
2411}
2412
2413void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2414{
2415 struct btrfs_root *root = inode->root;
2416 struct btrfs_fs_info *fs_info = root->fs_info;
2417
2418 lockdep_assert_held(&root->delalloc_lock);
2419
2420 /*
2421 * We may be called after the inode was already deleted from the list,
2422 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2423 * and then later through btrfs_clear_delalloc_extent() while the inode
2424 * still has ->delalloc_bytes > 0.
2425 */
2426 if (!list_empty(head: &inode->delalloc_inodes)) {
2427 list_del_init(entry: &inode->delalloc_inodes);
2428 root->nr_delalloc_inodes--;
2429 if (!root->nr_delalloc_inodes) {
2430 ASSERT(list_empty(&root->delalloc_inodes));
2431 spin_lock(lock: &fs_info->delalloc_root_lock);
2432 ASSERT(!list_empty(&root->delalloc_root));
2433 list_del_init(entry: &root->delalloc_root);
2434 spin_unlock(lock: &fs_info->delalloc_root_lock);
2435 }
2436 }
2437}
2438
2439/*
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
2442 */
2443void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2444 u32 bits)
2445{
2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2447
2448 lockdep_assert_held(&inode->io_tree.lock);
2449
2450 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2451 WARN_ON(1);
2452 /*
2453 * set_bit and clear bit hooks normally require _irqsave/restore
2454 * but in this case, we are only testing for the DELALLOC
2455 * bit, which is only set or cleared with irqs on
2456 */
2457 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2458 u64 len = state->end + 1 - state->start;
2459 u64 prev_delalloc_bytes;
2460 u32 num_extents = count_max_extents(fs_info, size: len);
2461
2462 spin_lock(lock: &inode->lock);
2463 btrfs_mod_outstanding_extents(inode, mod: num_extents);
2464 spin_unlock(lock: &inode->lock);
2465
2466 /* For sanity tests */
2467 if (btrfs_is_testing(fs_info))
2468 return;
2469
2470 percpu_counter_add_batch(fbc: &fs_info->delalloc_bytes, amount: len,
2471 batch: fs_info->delalloc_batch);
2472 spin_lock(lock: &inode->lock);
2473 prev_delalloc_bytes = inode->delalloc_bytes;
2474 inode->delalloc_bytes += len;
2475 if (bits & EXTENT_DEFRAG)
2476 inode->defrag_bytes += len;
2477 spin_unlock(lock: &inode->lock);
2478
2479 /*
2480 * We don't need to be under the protection of the inode's lock,
2481 * because we are called while holding the inode's io_tree lock
2482 * and are therefore protected against concurrent calls of this
2483 * function and btrfs_clear_delalloc_extent().
2484 */
2485 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2486 btrfs_add_delalloc_inode(inode);
2487 }
2488
2489 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2490 (bits & EXTENT_DELALLOC_NEW)) {
2491 spin_lock(lock: &inode->lock);
2492 inode->new_delalloc_bytes += state->end + 1 - state->start;
2493 spin_unlock(lock: &inode->lock);
2494 }
2495}
2496
2497/*
2498 * Once a range is no longer delalloc this function ensures that proper
2499 * accounting happens.
2500 */
2501void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2502 struct extent_state *state, u32 bits)
2503{
2504 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2505 u64 len = state->end + 1 - state->start;
2506 u32 num_extents = count_max_extents(fs_info, size: len);
2507
2508 lockdep_assert_held(&inode->io_tree.lock);
2509
2510 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2511 spin_lock(lock: &inode->lock);
2512 inode->defrag_bytes -= len;
2513 spin_unlock(lock: &inode->lock);
2514 }
2515
2516 /*
2517 * set_bit and clear bit hooks normally require _irqsave/restore
2518 * but in this case, we are only testing for the DELALLOC
2519 * bit, which is only set or cleared with irqs on
2520 */
2521 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2522 struct btrfs_root *root = inode->root;
2523 u64 new_delalloc_bytes;
2524
2525 spin_lock(lock: &inode->lock);
2526 btrfs_mod_outstanding_extents(inode, mod: -num_extents);
2527 spin_unlock(lock: &inode->lock);
2528
2529 /*
2530 * We don't reserve metadata space for space cache inodes so we
2531 * don't need to call delalloc_release_metadata if there is an
2532 * error.
2533 */
2534 if (bits & EXTENT_CLEAR_META_RESV &&
2535 root != fs_info->tree_root)
2536 btrfs_delalloc_release_metadata(inode, num_bytes: len, qgroup_free: true);
2537
2538 /* For sanity tests. */
2539 if (btrfs_is_testing(fs_info))
2540 return;
2541
2542 if (!btrfs_is_data_reloc_root(root) &&
2543 !btrfs_is_free_space_inode(inode) &&
2544 !(state->state & EXTENT_NORESERVE) &&
2545 (bits & EXTENT_CLEAR_DATA_RESV))
2546 btrfs_free_reserved_data_space_noquota(fs_info, len);
2547
2548 percpu_counter_add_batch(fbc: &fs_info->delalloc_bytes, amount: -len,
2549 batch: fs_info->delalloc_batch);
2550 spin_lock(lock: &inode->lock);
2551 inode->delalloc_bytes -= len;
2552 new_delalloc_bytes = inode->delalloc_bytes;
2553 spin_unlock(lock: &inode->lock);
2554
2555 /*
2556 * We don't need to be under the protection of the inode's lock,
2557 * because we are called while holding the inode's io_tree lock
2558 * and are therefore protected against concurrent calls of this
2559 * function and btrfs_set_delalloc_extent().
2560 */
2561 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2562 spin_lock(lock: &root->delalloc_lock);
2563 btrfs_del_delalloc_inode(inode);
2564 spin_unlock(lock: &root->delalloc_lock);
2565 }
2566 }
2567
2568 if ((state->state & EXTENT_DELALLOC_NEW) &&
2569 (bits & EXTENT_DELALLOC_NEW)) {
2570 spin_lock(lock: &inode->lock);
2571 ASSERT(inode->new_delalloc_bytes >= len);
2572 inode->new_delalloc_bytes -= len;
2573 if (bits & EXTENT_ADD_INODE_BYTES)
2574 inode_add_bytes(inode: &inode->vfs_inode, bytes: len);
2575 spin_unlock(lock: &inode->lock);
2576 }
2577}
2578
2579static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2580 struct btrfs_ordered_extent *ordered)
2581{
2582 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2583 u64 len = bbio->bio.bi_iter.bi_size;
2584 struct btrfs_ordered_extent *new;
2585 int ret;
2586
2587 /* Must always be called for the beginning of an ordered extent. */
2588 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2589 return -EINVAL;
2590
2591 /* No need to split if the ordered extent covers the entire bio. */
2592 if (ordered->disk_num_bytes == len) {
2593 refcount_inc(r: &ordered->refs);
2594 bbio->ordered = ordered;
2595 return 0;
2596 }
2597
2598 /*
2599 * Don't split the extent_map for NOCOW extents, as we're writing into
2600 * a pre-existing one.
2601 */
2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2603 ret = split_extent_map(inode: bbio->inode, start: bbio->file_offset,
2604 len: ordered->num_bytes, pre: len,
2605 new_logical: ordered->disk_bytenr);
2606 if (ret)
2607 return ret;
2608 }
2609
2610 new = btrfs_split_ordered_extent(ordered, len);
2611 if (IS_ERR(ptr: new))
2612 return PTR_ERR(ptr: new);
2613 bbio->ordered = new;
2614 return 0;
2615}
2616
2617/*
2618 * given a list of ordered sums record them in the inode. This happens
2619 * at IO completion time based on sums calculated at bio submission time.
2620 */
2621static int add_pending_csums(struct btrfs_trans_handle *trans,
2622 struct list_head *list)
2623{
2624 struct btrfs_ordered_sum *sum;
2625 struct btrfs_root *csum_root = NULL;
2626 int ret;
2627
2628 list_for_each_entry(sum, list, list) {
2629 trans->adding_csums = true;
2630 if (!csum_root)
2631 csum_root = btrfs_csum_root(fs_info: trans->fs_info,
2632 bytenr: sum->logical);
2633 ret = btrfs_csum_file_blocks(trans, root: csum_root, sums: sum);
2634 trans->adding_csums = false;
2635 if (ret)
2636 return ret;
2637 }
2638 return 0;
2639}
2640
2641static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2642 const u64 start,
2643 const u64 len,
2644 struct extent_state **cached_state)
2645{
2646 u64 search_start = start;
2647 const u64 end = start + len - 1;
2648
2649 while (search_start < end) {
2650 const u64 search_len = end - search_start + 1;
2651 struct extent_map *em;
2652 u64 em_len;
2653 int ret = 0;
2654
2655 em = btrfs_get_extent(inode, NULL, start: search_start, len: search_len);
2656 if (IS_ERR(ptr: em))
2657 return PTR_ERR(ptr: em);
2658
2659 if (em->block_start != EXTENT_MAP_HOLE)
2660 goto next;
2661
2662 em_len = em->len;
2663 if (em->start < search_start)
2664 em_len -= search_start - em->start;
2665 if (em_len > search_len)
2666 em_len = search_len;
2667
2668 ret = set_extent_bit(tree: &inode->io_tree, start: search_start,
2669 end: search_start + em_len - 1,
2670 bits: EXTENT_DELALLOC_NEW, cached_state);
2671next:
2672 search_start = extent_map_end(em);
2673 free_extent_map(em);
2674 if (ret)
2675 return ret;
2676 }
2677 return 0;
2678}
2679
2680int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2681 unsigned int extra_bits,
2682 struct extent_state **cached_state)
2683{
2684 WARN_ON(PAGE_ALIGNED(end));
2685
2686 if (start >= i_size_read(inode: &inode->vfs_inode) &&
2687 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2688 /*
2689 * There can't be any extents following eof in this case so just
2690 * set the delalloc new bit for the range directly.
2691 */
2692 extra_bits |= EXTENT_DELALLOC_NEW;
2693 } else {
2694 int ret;
2695
2696 ret = btrfs_find_new_delalloc_bytes(inode, start,
2697 len: end + 1 - start,
2698 cached_state);
2699 if (ret)
2700 return ret;
2701 }
2702
2703 return set_extent_bit(tree: &inode->io_tree, start, end,
2704 bits: EXTENT_DELALLOC | extra_bits, cached_state);
2705}
2706
2707/* see btrfs_writepage_start_hook for details on why this is required */
2708struct btrfs_writepage_fixup {
2709 struct page *page;
2710 struct btrfs_inode *inode;
2711 struct btrfs_work work;
2712};
2713
2714static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2715{
2716 struct btrfs_writepage_fixup *fixup =
2717 container_of(work, struct btrfs_writepage_fixup, work);
2718 struct btrfs_ordered_extent *ordered;
2719 struct extent_state *cached_state = NULL;
2720 struct extent_changeset *data_reserved = NULL;
2721 struct page *page = fixup->page;
2722 struct btrfs_inode *inode = fixup->inode;
2723 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2724 u64 page_start = page_offset(page);
2725 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2726 int ret = 0;
2727 bool free_delalloc_space = true;
2728
2729 /*
2730 * This is similar to page_mkwrite, we need to reserve the space before
2731 * we take the page lock.
2732 */
2733 ret = btrfs_delalloc_reserve_space(inode, reserved: &data_reserved, start: page_start,
2734 PAGE_SIZE);
2735again:
2736 lock_page(page);
2737
2738 /*
2739 * Before we queued this fixup, we took a reference on the page.
2740 * page->mapping may go NULL, but it shouldn't be moved to a different
2741 * address space.
2742 */
2743 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2744 /*
2745 * Unfortunately this is a little tricky, either
2746 *
2747 * 1) We got here and our page had already been dealt with and
2748 * we reserved our space, thus ret == 0, so we need to just
2749 * drop our space reservation and bail. This can happen the
2750 * first time we come into the fixup worker, or could happen
2751 * while waiting for the ordered extent.
2752 * 2) Our page was already dealt with, but we happened to get an
2753 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2754 * this case we obviously don't have anything to release, but
2755 * because the page was already dealt with we don't want to
2756 * mark the page with an error, so make sure we're resetting
2757 * ret to 0. This is why we have this check _before_ the ret
2758 * check, because we do not want to have a surprise ENOSPC
2759 * when the page was already properly dealt with.
2760 */
2761 if (!ret) {
2762 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2763 btrfs_delalloc_release_space(inode, reserved: data_reserved,
2764 start: page_start, PAGE_SIZE,
2765 qgroup_free: true);
2766 }
2767 ret = 0;
2768 goto out_page;
2769 }
2770
2771 /*
2772 * We can't mess with the page state unless it is locked, so now that
2773 * it is locked bail if we failed to make our space reservation.
2774 */
2775 if (ret)
2776 goto out_page;
2777
2778 lock_extent(tree: &inode->io_tree, start: page_start, end: page_end, cached: &cached_state);
2779
2780 /* already ordered? We're done */
2781 if (PageOrdered(page))
2782 goto out_reserved;
2783
2784 ordered = btrfs_lookup_ordered_range(inode, file_offset: page_start, PAGE_SIZE);
2785 if (ordered) {
2786 unlock_extent(tree: &inode->io_tree, start: page_start, end: page_end,
2787 cached: &cached_state);
2788 unlock_page(page);
2789 btrfs_start_ordered_extent(entry: ordered);
2790 btrfs_put_ordered_extent(entry: ordered);
2791 goto again;
2792 }
2793
2794 ret = btrfs_set_extent_delalloc(inode, start: page_start, end: page_end, extra_bits: 0,
2795 cached_state: &cached_state);
2796 if (ret)
2797 goto out_reserved;
2798
2799 /*
2800 * Everything went as planned, we're now the owner of a dirty page with
2801 * delayed allocation bits set and space reserved for our COW
2802 * destination.
2803 *
2804 * The page was dirty when we started, nothing should have cleaned it.
2805 */
2806 BUG_ON(!PageDirty(page));
2807 free_delalloc_space = false;
2808out_reserved:
2809 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2810 if (free_delalloc_space)
2811 btrfs_delalloc_release_space(inode, reserved: data_reserved, start: page_start,
2812 PAGE_SIZE, qgroup_free: true);
2813 unlock_extent(tree: &inode->io_tree, start: page_start, end: page_end, cached: &cached_state);
2814out_page:
2815 if (ret) {
2816 /*
2817 * We hit ENOSPC or other errors. Update the mapping and page
2818 * to reflect the errors and clean the page.
2819 */
2820 mapping_set_error(mapping: page->mapping, error: ret);
2821 btrfs_mark_ordered_io_finished(inode, page, file_offset: page_start,
2822 PAGE_SIZE, uptodate: !ret);
2823 clear_page_dirty_for_io(page);
2824 }
2825 btrfs_folio_clear_checked(fs_info, page_folio(page), start: page_start, PAGE_SIZE);
2826 unlock_page(page);
2827 put_page(page);
2828 kfree(objp: fixup);
2829 extent_changeset_free(changeset: data_reserved);
2830 /*
2831 * As a precaution, do a delayed iput in case it would be the last iput
2832 * that could need flushing space. Recursing back to fixup worker would
2833 * deadlock.
2834 */
2835 btrfs_add_delayed_iput(inode);
2836}
2837
2838/*
2839 * There are a few paths in the higher layers of the kernel that directly
2840 * set the page dirty bit without asking the filesystem if it is a
2841 * good idea. This causes problems because we want to make sure COW
2842 * properly happens and the data=ordered rules are followed.
2843 *
2844 * In our case any range that doesn't have the ORDERED bit set
2845 * hasn't been properly setup for IO. We kick off an async process
2846 * to fix it up. The async helper will wait for ordered extents, set
2847 * the delalloc bit and make it safe to write the page.
2848 */
2849int btrfs_writepage_cow_fixup(struct page *page)
2850{
2851 struct inode *inode = page->mapping->host;
2852 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2853 struct btrfs_writepage_fixup *fixup;
2854
2855 /* This page has ordered extent covering it already */
2856 if (PageOrdered(page))
2857 return 0;
2858
2859 /*
2860 * PageChecked is set below when we create a fixup worker for this page,
2861 * don't try to create another one if we're already PageChecked()
2862 *
2863 * The extent_io writepage code will redirty the page if we send back
2864 * EAGAIN.
2865 */
2866 if (PageChecked(page))
2867 return -EAGAIN;
2868
2869 fixup = kzalloc(size: sizeof(*fixup), GFP_NOFS);
2870 if (!fixup)
2871 return -EAGAIN;
2872
2873 /*
2874 * We are already holding a reference to this inode from
2875 * write_cache_pages. We need to hold it because the space reservation
2876 * takes place outside of the page lock, and we can't trust
2877 * page->mapping outside of the page lock.
2878 */
2879 ihold(inode);
2880 btrfs_folio_set_checked(fs_info, page_folio(page), start: page_offset(page), PAGE_SIZE);
2881 get_page(page);
2882 btrfs_init_work(work: &fixup->work, func: btrfs_writepage_fixup_worker, NULL);
2883 fixup->page = page;
2884 fixup->inode = BTRFS_I(inode);
2885 btrfs_queue_work(wq: fs_info->fixup_workers, work: &fixup->work);
2886
2887 return -EAGAIN;
2888}
2889
2890static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2891 struct btrfs_inode *inode, u64 file_pos,
2892 struct btrfs_file_extent_item *stack_fi,
2893 const bool update_inode_bytes,
2894 u64 qgroup_reserved)
2895{
2896 struct btrfs_root *root = inode->root;
2897 const u64 sectorsize = root->fs_info->sectorsize;
2898 struct btrfs_path *path;
2899 struct extent_buffer *leaf;
2900 struct btrfs_key ins;
2901 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(s: stack_fi);
2902 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(s: stack_fi);
2903 u64 offset = btrfs_stack_file_extent_offset(s: stack_fi);
2904 u64 num_bytes = btrfs_stack_file_extent_num_bytes(s: stack_fi);
2905 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(s: stack_fi);
2906 struct btrfs_drop_extents_args drop_args = { 0 };
2907 int ret;
2908
2909 path = btrfs_alloc_path();
2910 if (!path)
2911 return -ENOMEM;
2912
2913 /*
2914 * we may be replacing one extent in the tree with another.
2915 * The new extent is pinned in the extent map, and we don't want
2916 * to drop it from the cache until it is completely in the btree.
2917 *
2918 * So, tell btrfs_drop_extents to leave this extent in the cache.
2919 * the caller is expected to unpin it and allow it to be merged
2920 * with the others.
2921 */
2922 drop_args.path = path;
2923 drop_args.start = file_pos;
2924 drop_args.end = file_pos + num_bytes;
2925 drop_args.replace_extent = true;
2926 drop_args.extent_item_size = sizeof(*stack_fi);
2927 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
2928 if (ret)
2929 goto out;
2930
2931 if (!drop_args.extent_inserted) {
2932 ins.objectid = btrfs_ino(inode);
2933 ins.offset = file_pos;
2934 ins.type = BTRFS_EXTENT_DATA_KEY;
2935
2936 ret = btrfs_insert_empty_item(trans, root, path, key: &ins,
2937 data_size: sizeof(*stack_fi));
2938 if (ret)
2939 goto out;
2940 }
2941 leaf = path->nodes[0];
2942 btrfs_set_stack_file_extent_generation(s: stack_fi, val: trans->transid);
2943 write_extent_buffer(eb: leaf, src: stack_fi,
2944 btrfs_item_ptr_offset(leaf, path->slots[0]),
2945 len: sizeof(struct btrfs_file_extent_item));
2946
2947 btrfs_mark_buffer_dirty(trans, buf: leaf);
2948 btrfs_release_path(p: path);
2949
2950 /*
2951 * If we dropped an inline extent here, we know the range where it is
2952 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2953 * number of bytes only for that range containing the inline extent.
2954 * The remaining of the range will be processed when clearning the
2955 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2956 */
2957 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2958 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2959
2960 inline_size = drop_args.bytes_found - inline_size;
2961 btrfs_update_inode_bytes(inode, add_bytes: sectorsize, del_bytes: inline_size);
2962 drop_args.bytes_found -= inline_size;
2963 num_bytes -= sectorsize;
2964 }
2965
2966 if (update_inode_bytes)
2967 btrfs_update_inode_bytes(inode, add_bytes: num_bytes, del_bytes: drop_args.bytes_found);
2968
2969 ins.objectid = disk_bytenr;
2970 ins.offset = disk_num_bytes;
2971 ins.type = BTRFS_EXTENT_ITEM_KEY;
2972
2973 ret = btrfs_inode_set_file_extent_range(inode, start: file_pos, len: ram_bytes);
2974 if (ret)
2975 goto out;
2976
2977 ret = btrfs_alloc_reserved_file_extent(trans, root, owner: btrfs_ino(inode),
2978 offset: file_pos - offset,
2979 ram_bytes: qgroup_reserved, ins: &ins);
2980out:
2981 btrfs_free_path(p: path);
2982
2983 return ret;
2984}
2985
2986static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2987 u64 start, u64 len)
2988{
2989 struct btrfs_block_group *cache;
2990
2991 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
2992 ASSERT(cache);
2993
2994 spin_lock(lock: &cache->lock);
2995 cache->delalloc_bytes -= len;
2996 spin_unlock(lock: &cache->lock);
2997
2998 btrfs_put_block_group(cache);
2999}
3000
3001static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3002 struct btrfs_ordered_extent *oe)
3003{
3004 struct btrfs_file_extent_item stack_fi;
3005 bool update_inode_bytes;
3006 u64 num_bytes = oe->num_bytes;
3007 u64 ram_bytes = oe->ram_bytes;
3008
3009 memset(&stack_fi, 0, sizeof(stack_fi));
3010 btrfs_set_stack_file_extent_type(s: &stack_fi, val: BTRFS_FILE_EXTENT_REG);
3011 btrfs_set_stack_file_extent_disk_bytenr(s: &stack_fi, val: oe->disk_bytenr);
3012 btrfs_set_stack_file_extent_disk_num_bytes(s: &stack_fi,
3013 val: oe->disk_num_bytes);
3014 btrfs_set_stack_file_extent_offset(s: &stack_fi, val: oe->offset);
3015 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3016 num_bytes = oe->truncated_len;
3017 ram_bytes = num_bytes;
3018 }
3019 btrfs_set_stack_file_extent_num_bytes(s: &stack_fi, val: num_bytes);
3020 btrfs_set_stack_file_extent_ram_bytes(s: &stack_fi, val: ram_bytes);
3021 btrfs_set_stack_file_extent_compression(s: &stack_fi, val: oe->compress_type);
3022 /* Encryption and other encoding is reserved and all 0 */
3023
3024 /*
3025 * For delalloc, when completing an ordered extent we update the inode's
3026 * bytes when clearing the range in the inode's io tree, so pass false
3027 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3028 * except if the ordered extent was truncated.
3029 */
3030 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3031 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3032 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3033
3034 return insert_reserved_file_extent(trans, inode: BTRFS_I(inode: oe->inode),
3035 file_pos: oe->file_offset, stack_fi: &stack_fi,
3036 update_inode_bytes, qgroup_reserved: oe->qgroup_rsv);
3037}
3038
3039/*
3040 * As ordered data IO finishes, this gets called so we can finish
3041 * an ordered extent if the range of bytes in the file it covers are
3042 * fully written.
3043 */
3044int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3045{
3046 struct btrfs_inode *inode = BTRFS_I(inode: ordered_extent->inode);
3047 struct btrfs_root *root = inode->root;
3048 struct btrfs_fs_info *fs_info = root->fs_info;
3049 struct btrfs_trans_handle *trans = NULL;
3050 struct extent_io_tree *io_tree = &inode->io_tree;
3051 struct extent_state *cached_state = NULL;
3052 u64 start, end;
3053 int compress_type = 0;
3054 int ret = 0;
3055 u64 logical_len = ordered_extent->num_bytes;
3056 bool freespace_inode;
3057 bool truncated = false;
3058 bool clear_reserved_extent = true;
3059 unsigned int clear_bits = EXTENT_DEFRAG;
3060
3061 start = ordered_extent->file_offset;
3062 end = start + ordered_extent->num_bytes - 1;
3063
3064 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3065 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3066 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3067 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3068 clear_bits |= EXTENT_DELALLOC_NEW;
3069
3070 freespace_inode = btrfs_is_free_space_inode(inode);
3071 if (!freespace_inode)
3072 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3073
3074 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3075 ret = -EIO;
3076 goto out;
3077 }
3078
3079 if (btrfs_is_zoned(fs_info))
3080 btrfs_zone_finish_endio(fs_info, logical: ordered_extent->disk_bytenr,
3081 length: ordered_extent->disk_num_bytes);
3082
3083 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3084 truncated = true;
3085 logical_len = ordered_extent->truncated_len;
3086 /* Truncated the entire extent, don't bother adding */
3087 if (!logical_len)
3088 goto out;
3089 }
3090
3091 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3092 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3093
3094 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
3095 if (freespace_inode)
3096 trans = btrfs_join_transaction_spacecache(root);
3097 else
3098 trans = btrfs_join_transaction(root);
3099 if (IS_ERR(ptr: trans)) {
3100 ret = PTR_ERR(ptr: trans);
3101 trans = NULL;
3102 goto out;
3103 }
3104 trans->block_rsv = &inode->block_rsv;
3105 ret = btrfs_update_inode_fallback(trans, inode);
3106 if (ret) /* -ENOMEM or corruption */
3107 btrfs_abort_transaction(trans, ret);
3108 goto out;
3109 }
3110
3111 clear_bits |= EXTENT_LOCKED;
3112 lock_extent(tree: io_tree, start, end, cached: &cached_state);
3113
3114 if (freespace_inode)
3115 trans = btrfs_join_transaction_spacecache(root);
3116 else
3117 trans = btrfs_join_transaction(root);
3118 if (IS_ERR(ptr: trans)) {
3119 ret = PTR_ERR(ptr: trans);
3120 trans = NULL;
3121 goto out;
3122 }
3123
3124 trans->block_rsv = &inode->block_rsv;
3125
3126 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3127 if (ret)
3128 goto out;
3129
3130 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3131 compress_type = ordered_extent->compress_type;
3132 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3133 BUG_ON(compress_type);
3134 ret = btrfs_mark_extent_written(trans, inode,
3135 start: ordered_extent->file_offset,
3136 end: ordered_extent->file_offset +
3137 logical_len);
3138 btrfs_zoned_release_data_reloc_bg(fs_info, logical: ordered_extent->disk_bytenr,
3139 length: ordered_extent->disk_num_bytes);
3140 } else {
3141 BUG_ON(root == fs_info->tree_root);
3142 ret = insert_ordered_extent_file_extent(trans, oe: ordered_extent);
3143 if (!ret) {
3144 clear_reserved_extent = false;
3145 btrfs_release_delalloc_bytes(fs_info,
3146 start: ordered_extent->disk_bytenr,
3147 len: ordered_extent->disk_num_bytes);
3148 }
3149 }
3150 if (ret < 0) {
3151 btrfs_abort_transaction(trans, ret);
3152 goto out;
3153 }
3154
3155 ret = unpin_extent_cache(inode, start: ordered_extent->file_offset,
3156 len: ordered_extent->num_bytes, gen: trans->transid);
3157 if (ret < 0) {
3158 btrfs_abort_transaction(trans, ret);
3159 goto out;
3160 }
3161
3162 ret = add_pending_csums(trans, list: &ordered_extent->list);
3163 if (ret) {
3164 btrfs_abort_transaction(trans, ret);
3165 goto out;
3166 }
3167
3168 /*
3169 * If this is a new delalloc range, clear its new delalloc flag to
3170 * update the inode's number of bytes. This needs to be done first
3171 * before updating the inode item.
3172 */
3173 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3174 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3175 clear_extent_bit(tree: &inode->io_tree, start, end,
3176 bits: EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3177 cached: &cached_state);
3178
3179 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
3180 ret = btrfs_update_inode_fallback(trans, inode);
3181 if (ret) { /* -ENOMEM or corruption */
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185 ret = 0;
3186out:
3187 clear_extent_bit(tree: &inode->io_tree, start, end, bits: clear_bits,
3188 cached: &cached_state);
3189
3190 if (trans)
3191 btrfs_end_transaction(trans);
3192
3193 if (ret || truncated) {
3194 u64 unwritten_start = start;
3195
3196 /*
3197 * If we failed to finish this ordered extent for any reason we
3198 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3199 * extent, and mark the inode with the error if it wasn't
3200 * already set. Any error during writeback would have already
3201 * set the mapping error, so we need to set it if we're the ones
3202 * marking this ordered extent as failed.
3203 */
3204 if (ret && !test_and_set_bit(nr: BTRFS_ORDERED_IOERR,
3205 addr: &ordered_extent->flags))
3206 mapping_set_error(mapping: ordered_extent->inode->i_mapping, error: -EIO);
3207
3208 if (truncated)
3209 unwritten_start += logical_len;
3210 clear_extent_uptodate(tree: io_tree, start: unwritten_start, end, NULL);
3211
3212 /*
3213 * Drop extent maps for the part of the extent we didn't write.
3214 *
3215 * We have an exception here for the free_space_inode, this is
3216 * because when we do btrfs_get_extent() on the free space inode
3217 * we will search the commit root. If this is a new block group
3218 * we won't find anything, and we will trip over the assert in
3219 * writepage where we do ASSERT(em->block_start !=
3220 * EXTENT_MAP_HOLE).
3221 *
3222 * Theoretically we could also skip this for any NOCOW extent as
3223 * we don't mess with the extent map tree in the NOCOW case, but
3224 * for now simply skip this if we are the free space inode.
3225 */
3226 if (!btrfs_is_free_space_inode(inode))
3227 btrfs_drop_extent_map_range(inode, start: unwritten_start,
3228 end, skip_pinned: false);
3229
3230 /*
3231 * If the ordered extent had an IOERR or something else went
3232 * wrong we need to return the space for this ordered extent
3233 * back to the allocator. We only free the extent in the
3234 * truncated case if we didn't write out the extent at all.
3235 *
3236 * If we made it past insert_reserved_file_extent before we
3237 * errored out then we don't need to do this as the accounting
3238 * has already been done.
3239 */
3240 if ((ret || !logical_len) &&
3241 clear_reserved_extent &&
3242 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3243 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3244 /*
3245 * Discard the range before returning it back to the
3246 * free space pool
3247 */
3248 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3249 btrfs_discard_extent(fs_info,
3250 bytenr: ordered_extent->disk_bytenr,
3251 num_bytes: ordered_extent->disk_num_bytes,
3252 NULL);
3253 btrfs_free_reserved_extent(fs_info,
3254 start: ordered_extent->disk_bytenr,
3255 len: ordered_extent->disk_num_bytes, delalloc: 1);
3256 /*
3257 * Actually free the qgroup rsv which was released when
3258 * the ordered extent was created.
3259 */
3260 btrfs_qgroup_free_refroot(fs_info, ref_root: inode->root->root_key.objectid,
3261 num_bytes: ordered_extent->qgroup_rsv,
3262 type: BTRFS_QGROUP_RSV_DATA);
3263 }
3264 }
3265
3266 /*
3267 * This needs to be done to make sure anybody waiting knows we are done
3268 * updating everything for this ordered extent.
3269 */
3270 btrfs_remove_ordered_extent(btrfs_inode: inode, entry: ordered_extent);
3271
3272 /* once for us */
3273 btrfs_put_ordered_extent(entry: ordered_extent);
3274 /* once for the tree */
3275 btrfs_put_ordered_extent(entry: ordered_extent);
3276
3277 return ret;
3278}
3279
3280int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3281{
3282 if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
3283 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3284 list_empty(head: &ordered->bioc_list))
3285 btrfs_finish_ordered_zoned(ordered);
3286 return btrfs_finish_one_ordered(ordered_extent: ordered);
3287}
3288
3289/*
3290 * Verify the checksum for a single sector without any extra action that depend
3291 * on the type of I/O.
3292 */
3293int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3294 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3295{
3296 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3297 char *kaddr;
3298
3299 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3300
3301 shash->tfm = fs_info->csum_shash;
3302
3303 kaddr = kmap_local_page(page) + pgoff;
3304 crypto_shash_digest(desc: shash, data: kaddr, len: fs_info->sectorsize, out: csum);
3305 kunmap_local(kaddr);
3306
3307 if (memcmp(p: csum, q: csum_expected, size: fs_info->csum_size))
3308 return -EIO;
3309 return 0;
3310}
3311
3312/*
3313 * Verify the checksum of a single data sector.
3314 *
3315 * @bbio: btrfs_io_bio which contains the csum
3316 * @dev: device the sector is on
3317 * @bio_offset: offset to the beginning of the bio (in bytes)
3318 * @bv: bio_vec to check
3319 *
3320 * Check if the checksum on a data block is valid. When a checksum mismatch is
3321 * detected, report the error and fill the corrupted range with zero.
3322 *
3323 * Return %true if the sector is ok or had no checksum to start with, else %false.
3324 */
3325bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3326 u32 bio_offset, struct bio_vec *bv)
3327{
3328 struct btrfs_inode *inode = bbio->inode;
3329 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3330 u64 file_offset = bbio->file_offset + bio_offset;
3331 u64 end = file_offset + bv->bv_len - 1;
3332 u8 *csum_expected;
3333 u8 csum[BTRFS_CSUM_SIZE];
3334
3335 ASSERT(bv->bv_len == fs_info->sectorsize);
3336
3337 if (!bbio->csum)
3338 return true;
3339
3340 if (btrfs_is_data_reloc_root(root: inode->root) &&
3341 test_range_bit(tree: &inode->io_tree, start: file_offset, end, bit: EXTENT_NODATASUM,
3342 NULL)) {
3343 /* Skip the range without csum for data reloc inode */
3344 clear_extent_bits(tree: &inode->io_tree, start: file_offset, end,
3345 bits: EXTENT_NODATASUM);
3346 return true;
3347 }
3348
3349 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3350 fs_info->csum_size;
3351 if (btrfs_check_sector_csum(fs_info, page: bv->bv_page, pgoff: bv->bv_offset, csum,
3352 csum_expected))
3353 goto zeroit;
3354 return true;
3355
3356zeroit:
3357 btrfs_print_data_csum_error(inode, logical_start: file_offset, csum, csum_expected,
3358 mirror_num: bbio->mirror_num);
3359 if (dev)
3360 btrfs_dev_stat_inc_and_print(dev, index: BTRFS_DEV_STAT_CORRUPTION_ERRS);
3361 memzero_bvec(bvec: bv);
3362 return false;
3363}
3364
3365/*
3366 * Perform a delayed iput on @inode.
3367 *
3368 * @inode: The inode we want to perform iput on
3369 *
3370 * This function uses the generic vfs_inode::i_count to track whether we should
3371 * just decrement it (in case it's > 1) or if this is the last iput then link
3372 * the inode to the delayed iput machinery. Delayed iputs are processed at
3373 * transaction commit time/superblock commit/cleaner kthread.
3374 */
3375void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3376{
3377 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3378 unsigned long flags;
3379
3380 if (atomic_add_unless(v: &inode->vfs_inode.i_count, a: -1, u: 1))
3381 return;
3382
3383 atomic_inc(v: &fs_info->nr_delayed_iputs);
3384 /*
3385 * Need to be irq safe here because we can be called from either an irq
3386 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3387 * context.
3388 */
3389 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3390 ASSERT(list_empty(&inode->delayed_iput));
3391 list_add_tail(new: &inode->delayed_iput, head: &fs_info->delayed_iputs);
3392 spin_unlock_irqrestore(lock: &fs_info->delayed_iput_lock, flags);
3393 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3394 wake_up_process(tsk: fs_info->cleaner_kthread);
3395}
3396
3397static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3398 struct btrfs_inode *inode)
3399{
3400 list_del_init(entry: &inode->delayed_iput);
3401 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3402 iput(&inode->vfs_inode);
3403 if (atomic_dec_and_test(v: &fs_info->nr_delayed_iputs))
3404 wake_up(&fs_info->delayed_iputs_wait);
3405 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3406}
3407
3408static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3409 struct btrfs_inode *inode)
3410{
3411 if (!list_empty(head: &inode->delayed_iput)) {
3412 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3413 if (!list_empty(head: &inode->delayed_iput))
3414 run_delayed_iput_locked(fs_info, inode);
3415 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3416 }
3417}
3418
3419void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3420{
3421 /*
3422 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3423 * calls btrfs_add_delayed_iput() and that needs to lock
3424 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3425 * prevent a deadlock.
3426 */
3427 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3428 while (!list_empty(head: &fs_info->delayed_iputs)) {
3429 struct btrfs_inode *inode;
3430
3431 inode = list_first_entry(&fs_info->delayed_iputs,
3432 struct btrfs_inode, delayed_iput);
3433 run_delayed_iput_locked(fs_info, inode);
3434 if (need_resched()) {
3435 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3436 cond_resched();
3437 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3438 }
3439 }
3440 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3441}
3442
3443/*
3444 * Wait for flushing all delayed iputs
3445 *
3446 * @fs_info: the filesystem
3447 *
3448 * This will wait on any delayed iputs that are currently running with KILLABLE
3449 * set. Once they are all done running we will return, unless we are killed in
3450 * which case we return EINTR. This helps in user operations like fallocate etc
3451 * that might get blocked on the iputs.
3452 *
3453 * Return EINTR if we were killed, 0 if nothing's pending
3454 */
3455int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3456{
3457 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3458 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3459 if (ret)
3460 return -EINTR;
3461 return 0;
3462}
3463
3464/*
3465 * This creates an orphan entry for the given inode in case something goes wrong
3466 * in the middle of an unlink.
3467 */
3468int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3469 struct btrfs_inode *inode)
3470{
3471 int ret;
3472
3473 ret = btrfs_insert_orphan_item(trans, root: inode->root, offset: btrfs_ino(inode));
3474 if (ret && ret != -EEXIST) {
3475 btrfs_abort_transaction(trans, ret);
3476 return ret;
3477 }
3478
3479 return 0;
3480}
3481
3482/*
3483 * We have done the delete so we can go ahead and remove the orphan item for
3484 * this particular inode.
3485 */
3486static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3487 struct btrfs_inode *inode)
3488{
3489 return btrfs_del_orphan_item(trans, root: inode->root, offset: btrfs_ino(inode));
3490}
3491
3492/*
3493 * this cleans up any orphans that may be left on the list from the last use
3494 * of this root.
3495 */
3496int btrfs_orphan_cleanup(struct btrfs_root *root)
3497{
3498 struct btrfs_fs_info *fs_info = root->fs_info;
3499 struct btrfs_path *path;
3500 struct extent_buffer *leaf;
3501 struct btrfs_key key, found_key;
3502 struct btrfs_trans_handle *trans;
3503 struct inode *inode;
3504 u64 last_objectid = 0;
3505 int ret = 0, nr_unlink = 0;
3506
3507 if (test_and_set_bit(nr: BTRFS_ROOT_ORPHAN_CLEANUP, addr: &root->state))
3508 return 0;
3509
3510 path = btrfs_alloc_path();
3511 if (!path) {
3512 ret = -ENOMEM;
3513 goto out;
3514 }
3515 path->reada = READA_BACK;
3516
3517 key.objectid = BTRFS_ORPHAN_OBJECTID;
3518 key.type = BTRFS_ORPHAN_ITEM_KEY;
3519 key.offset = (u64)-1;
3520
3521 while (1) {
3522 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
3523 if (ret < 0)
3524 goto out;
3525
3526 /*
3527 * if ret == 0 means we found what we were searching for, which
3528 * is weird, but possible, so only screw with path if we didn't
3529 * find the key and see if we have stuff that matches
3530 */
3531 if (ret > 0) {
3532 ret = 0;
3533 if (path->slots[0] == 0)
3534 break;
3535 path->slots[0]--;
3536 }
3537
3538 /* pull out the item */
3539 leaf = path->nodes[0];
3540 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
3541
3542 /* make sure the item matches what we want */
3543 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3544 break;
3545 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3546 break;
3547
3548 /* release the path since we're done with it */
3549 btrfs_release_path(p: path);
3550
3551 /*
3552 * this is where we are basically btrfs_lookup, without the
3553 * crossing root thing. we store the inode number in the
3554 * offset of the orphan item.
3555 */
3556
3557 if (found_key.offset == last_objectid) {
3558 /*
3559 * We found the same inode as before. This means we were
3560 * not able to remove its items via eviction triggered
3561 * by an iput(). A transaction abort may have happened,
3562 * due to -ENOSPC for example, so try to grab the error
3563 * that lead to a transaction abort, if any.
3564 */
3565 btrfs_err(fs_info,
3566 "Error removing orphan entry, stopping orphan cleanup");
3567 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3568 goto out;
3569 }
3570
3571 last_objectid = found_key.offset;
3572
3573 found_key.objectid = found_key.offset;
3574 found_key.type = BTRFS_INODE_ITEM_KEY;
3575 found_key.offset = 0;
3576 inode = btrfs_iget(s: fs_info->sb, ino: last_objectid, root);
3577 if (IS_ERR(ptr: inode)) {
3578 ret = PTR_ERR(ptr: inode);
3579 inode = NULL;
3580 if (ret != -ENOENT)
3581 goto out;
3582 }
3583
3584 if (!inode && root == fs_info->tree_root) {
3585 struct btrfs_root *dead_root;
3586 int is_dead_root = 0;
3587
3588 /*
3589 * This is an orphan in the tree root. Currently these
3590 * could come from 2 sources:
3591 * a) a root (snapshot/subvolume) deletion in progress
3592 * b) a free space cache inode
3593 * We need to distinguish those two, as the orphan item
3594 * for a root must not get deleted before the deletion
3595 * of the snapshot/subvolume's tree completes.
3596 *
3597 * btrfs_find_orphan_roots() ran before us, which has
3598 * found all deleted roots and loaded them into
3599 * fs_info->fs_roots_radix. So here we can find if an
3600 * orphan item corresponds to a deleted root by looking
3601 * up the root from that radix tree.
3602 */
3603
3604 spin_lock(lock: &fs_info->fs_roots_radix_lock);
3605 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3606 (unsigned long)found_key.objectid);
3607 if (dead_root && btrfs_root_refs(s: &dead_root->root_item) == 0)
3608 is_dead_root = 1;
3609 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
3610
3611 if (is_dead_root) {
3612 /* prevent this orphan from being found again */
3613 key.offset = found_key.objectid - 1;
3614 continue;
3615 }
3616
3617 }
3618
3619 /*
3620 * If we have an inode with links, there are a couple of
3621 * possibilities:
3622 *
3623 * 1. We were halfway through creating fsverity metadata for the
3624 * file. In that case, the orphan item represents incomplete
3625 * fsverity metadata which must be cleaned up with
3626 * btrfs_drop_verity_items and deleting the orphan item.
3627
3628 * 2. Old kernels (before v3.12) used to create an
3629 * orphan item for truncate indicating that there were possibly
3630 * extent items past i_size that needed to be deleted. In v3.12,
3631 * truncate was changed to update i_size in sync with the extent
3632 * items, but the (useless) orphan item was still created. Since
3633 * v4.18, we don't create the orphan item for truncate at all.
3634 *
3635 * So, this item could mean that we need to do a truncate, but
3636 * only if this filesystem was last used on a pre-v3.12 kernel
3637 * and was not cleanly unmounted. The odds of that are quite
3638 * slim, and it's a pain to do the truncate now, so just delete
3639 * the orphan item.
3640 *
3641 * It's also possible that this orphan item was supposed to be
3642 * deleted but wasn't. The inode number may have been reused,
3643 * but either way, we can delete the orphan item.
3644 */
3645 if (!inode || inode->i_nlink) {
3646 if (inode) {
3647 ret = btrfs_drop_verity_items(inode: BTRFS_I(inode));
3648 iput(inode);
3649 inode = NULL;
3650 if (ret)
3651 goto out;
3652 }
3653 trans = btrfs_start_transaction(root, num_items: 1);
3654 if (IS_ERR(ptr: trans)) {
3655 ret = PTR_ERR(ptr: trans);
3656 goto out;
3657 }
3658 btrfs_debug(fs_info, "auto deleting %Lu",
3659 found_key.objectid);
3660 ret = btrfs_del_orphan_item(trans, root,
3661 offset: found_key.objectid);
3662 btrfs_end_transaction(trans);
3663 if (ret)
3664 goto out;
3665 continue;
3666 }
3667
3668 nr_unlink++;
3669
3670 /* this will do delete_inode and everything for us */
3671 iput(inode);
3672 }
3673 /* release the path since we're done with it */
3674 btrfs_release_path(p: path);
3675
3676 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3677 trans = btrfs_join_transaction(root);
3678 if (!IS_ERR(ptr: trans))
3679 btrfs_end_transaction(trans);
3680 }
3681
3682 if (nr_unlink)
3683 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3684
3685out:
3686 if (ret)
3687 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3688 btrfs_free_path(p: path);
3689 return ret;
3690}
3691
3692/*
3693 * very simple check to peek ahead in the leaf looking for xattrs. If we
3694 * don't find any xattrs, we know there can't be any acls.
3695 *
3696 * slot is the slot the inode is in, objectid is the objectid of the inode
3697 */
3698static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3699 int slot, u64 objectid,
3700 int *first_xattr_slot)
3701{
3702 u32 nritems = btrfs_header_nritems(eb: leaf);
3703 struct btrfs_key found_key;
3704 static u64 xattr_access = 0;
3705 static u64 xattr_default = 0;
3706 int scanned = 0;
3707
3708 if (!xattr_access) {
3709 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3710 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3711 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3712 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3713 }
3714
3715 slot++;
3716 *first_xattr_slot = -1;
3717 while (slot < nritems) {
3718 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
3719
3720 /* we found a different objectid, there must not be acls */
3721 if (found_key.objectid != objectid)
3722 return 0;
3723
3724 /* we found an xattr, assume we've got an acl */
3725 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3726 if (*first_xattr_slot == -1)
3727 *first_xattr_slot = slot;
3728 if (found_key.offset == xattr_access ||
3729 found_key.offset == xattr_default)
3730 return 1;
3731 }
3732
3733 /*
3734 * we found a key greater than an xattr key, there can't
3735 * be any acls later on
3736 */
3737 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3738 return 0;
3739
3740 slot++;
3741 scanned++;
3742
3743 /*
3744 * it goes inode, inode backrefs, xattrs, extents,
3745 * so if there are a ton of hard links to an inode there can
3746 * be a lot of backrefs. Don't waste time searching too hard,
3747 * this is just an optimization
3748 */
3749 if (scanned >= 8)
3750 break;
3751 }
3752 /* we hit the end of the leaf before we found an xattr or
3753 * something larger than an xattr. We have to assume the inode
3754 * has acls
3755 */
3756 if (*first_xattr_slot == -1)
3757 *first_xattr_slot = slot;
3758 return 1;
3759}
3760
3761/*
3762 * read an inode from the btree into the in-memory inode
3763 */
3764static int btrfs_read_locked_inode(struct inode *inode,
3765 struct btrfs_path *in_path)
3766{
3767 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3768 struct btrfs_path *path = in_path;
3769 struct extent_buffer *leaf;
3770 struct btrfs_inode_item *inode_item;
3771 struct btrfs_root *root = BTRFS_I(inode)->root;
3772 struct btrfs_key location;
3773 unsigned long ptr;
3774 int maybe_acls;
3775 u32 rdev;
3776 int ret;
3777 bool filled = false;
3778 int first_xattr_slot;
3779
3780 ret = btrfs_fill_inode(inode, rdev: &rdev);
3781 if (!ret)
3782 filled = true;
3783
3784 if (!path) {
3785 path = btrfs_alloc_path();
3786 if (!path)
3787 return -ENOMEM;
3788 }
3789
3790 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3791
3792 ret = btrfs_lookup_inode(NULL, root, path, location: &location, mod: 0);
3793 if (ret) {
3794 if (path != in_path)
3795 btrfs_free_path(p: path);
3796 return ret;
3797 }
3798
3799 leaf = path->nodes[0];
3800
3801 if (filled)
3802 goto cache_index;
3803
3804 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3805 struct btrfs_inode_item);
3806 inode->i_mode = btrfs_inode_mode(eb: leaf, s: inode_item);
3807 set_nlink(inode, nlink: btrfs_inode_nlink(eb: leaf, s: inode_item));
3808 i_uid_write(inode, uid: btrfs_inode_uid(eb: leaf, s: inode_item));
3809 i_gid_write(inode, gid: btrfs_inode_gid(eb: leaf, s: inode_item));
3810 btrfs_i_size_write(inode: BTRFS_I(inode), size: btrfs_inode_size(eb: leaf, s: inode_item));
3811 btrfs_inode_set_file_extent_range(inode: BTRFS_I(inode), start: 0,
3812 round_up(i_size_read(inode), fs_info->sectorsize));
3813
3814 inode_set_atime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->atime),
3815 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->atime));
3816
3817 inode_set_mtime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->mtime),
3818 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->mtime));
3819
3820 inode_set_ctime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->ctime),
3821 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->ctime));
3822
3823 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(eb: leaf, s: &inode_item->otime);
3824 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(eb: leaf, s: &inode_item->otime);
3825
3826 inode_set_bytes(inode, bytes: btrfs_inode_nbytes(eb: leaf, s: inode_item));
3827 BTRFS_I(inode)->generation = btrfs_inode_generation(eb: leaf, s: inode_item);
3828 BTRFS_I(inode)->last_trans = btrfs_inode_transid(eb: leaf, s: inode_item);
3829
3830 inode_set_iversion_queried(inode,
3831 val: btrfs_inode_sequence(eb: leaf, s: inode_item));
3832 inode->i_generation = BTRFS_I(inode)->generation;
3833 inode->i_rdev = 0;
3834 rdev = btrfs_inode_rdev(eb: leaf, s: inode_item);
3835
3836 BTRFS_I(inode)->index_cnt = (u64)-1;
3837 btrfs_inode_split_flags(inode_item_flags: btrfs_inode_flags(eb: leaf, s: inode_item),
3838 flags: &BTRFS_I(inode)->flags, ro_flags: &BTRFS_I(inode)->ro_flags);
3839
3840cache_index:
3841 /*
3842 * If we were modified in the current generation and evicted from memory
3843 * and then re-read we need to do a full sync since we don't have any
3844 * idea about which extents were modified before we were evicted from
3845 * cache.
3846 *
3847 * This is required for both inode re-read from disk and delayed inode
3848 * in the delayed_nodes xarray.
3849 */
3850 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3851 set_bit(nr: BTRFS_INODE_NEEDS_FULL_SYNC,
3852 addr: &BTRFS_I(inode)->runtime_flags);
3853
3854 /*
3855 * We don't persist the id of the transaction where an unlink operation
3856 * against the inode was last made. So here we assume the inode might
3857 * have been evicted, and therefore the exact value of last_unlink_trans
3858 * lost, and set it to last_trans to avoid metadata inconsistencies
3859 * between the inode and its parent if the inode is fsync'ed and the log
3860 * replayed. For example, in the scenario:
3861 *
3862 * touch mydir/foo
3863 * ln mydir/foo mydir/bar
3864 * sync
3865 * unlink mydir/bar
3866 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3867 * xfs_io -c fsync mydir/foo
3868 * <power failure>
3869 * mount fs, triggers fsync log replay
3870 *
3871 * We must make sure that when we fsync our inode foo we also log its
3872 * parent inode, otherwise after log replay the parent still has the
3873 * dentry with the "bar" name but our inode foo has a link count of 1
3874 * and doesn't have an inode ref with the name "bar" anymore.
3875 *
3876 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3877 * but it guarantees correctness at the expense of occasional full
3878 * transaction commits on fsync if our inode is a directory, or if our
3879 * inode is not a directory, logging its parent unnecessarily.
3880 */
3881 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3882
3883 /*
3884 * Same logic as for last_unlink_trans. We don't persist the generation
3885 * of the last transaction where this inode was used for a reflink
3886 * operation, so after eviction and reloading the inode we must be
3887 * pessimistic and assume the last transaction that modified the inode.
3888 */
3889 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3890
3891 path->slots[0]++;
3892 if (inode->i_nlink != 1 ||
3893 path->slots[0] >= btrfs_header_nritems(eb: leaf))
3894 goto cache_acl;
3895
3896 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &location, nr: path->slots[0]);
3897 if (location.objectid != btrfs_ino(inode: BTRFS_I(inode)))
3898 goto cache_acl;
3899
3900 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3901 if (location.type == BTRFS_INODE_REF_KEY) {
3902 struct btrfs_inode_ref *ref;
3903
3904 ref = (struct btrfs_inode_ref *)ptr;
3905 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(eb: leaf, s: ref);
3906 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3907 struct btrfs_inode_extref *extref;
3908
3909 extref = (struct btrfs_inode_extref *)ptr;
3910 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(eb: leaf,
3911 s: extref);
3912 }
3913cache_acl:
3914 /*
3915 * try to precache a NULL acl entry for files that don't have
3916 * any xattrs or acls
3917 */
3918 maybe_acls = acls_after_inode_item(leaf, slot: path->slots[0],
3919 objectid: btrfs_ino(inode: BTRFS_I(inode)), first_xattr_slot: &first_xattr_slot);
3920 if (first_xattr_slot != -1) {
3921 path->slots[0] = first_xattr_slot;
3922 ret = btrfs_load_inode_props(inode, path);
3923 if (ret)
3924 btrfs_err(fs_info,
3925 "error loading props for ino %llu (root %llu): %d",
3926 btrfs_ino(BTRFS_I(inode)),
3927 root->root_key.objectid, ret);
3928 }
3929 if (path != in_path)
3930 btrfs_free_path(p: path);
3931
3932 if (!maybe_acls)
3933 cache_no_acl(inode);
3934
3935 switch (inode->i_mode & S_IFMT) {
3936 case S_IFREG:
3937 inode->i_mapping->a_ops = &btrfs_aops;
3938 inode->i_fop = &btrfs_file_operations;
3939 inode->i_op = &btrfs_file_inode_operations;
3940 break;
3941 case S_IFDIR:
3942 inode->i_fop = &btrfs_dir_file_operations;
3943 inode->i_op = &btrfs_dir_inode_operations;
3944 break;
3945 case S_IFLNK:
3946 inode->i_op = &btrfs_symlink_inode_operations;
3947 inode_nohighmem(inode);
3948 inode->i_mapping->a_ops = &btrfs_aops;
3949 break;
3950 default:
3951 inode->i_op = &btrfs_special_inode_operations;
3952 init_special_inode(inode, inode->i_mode, rdev);
3953 break;
3954 }
3955
3956 btrfs_sync_inode_flags_to_i_flags(inode);
3957 return 0;
3958}
3959
3960/*
3961 * given a leaf and an inode, copy the inode fields into the leaf
3962 */
3963static void fill_inode_item(struct btrfs_trans_handle *trans,
3964 struct extent_buffer *leaf,
3965 struct btrfs_inode_item *item,
3966 struct inode *inode)
3967{
3968 struct btrfs_map_token token;
3969 u64 flags;
3970
3971 btrfs_init_map_token(token: &token, eb: leaf);
3972
3973 btrfs_set_token_inode_uid(token: &token, s: item, val: i_uid_read(inode));
3974 btrfs_set_token_inode_gid(token: &token, s: item, val: i_gid_read(inode));
3975 btrfs_set_token_inode_size(token: &token, s: item, val: BTRFS_I(inode)->disk_i_size);
3976 btrfs_set_token_inode_mode(token: &token, s: item, val: inode->i_mode);
3977 btrfs_set_token_inode_nlink(token: &token, s: item, val: inode->i_nlink);
3978
3979 btrfs_set_token_timespec_sec(token: &token, s: &item->atime,
3980 val: inode_get_atime_sec(inode));
3981 btrfs_set_token_timespec_nsec(token: &token, s: &item->atime,
3982 val: inode_get_atime_nsec(inode));
3983
3984 btrfs_set_token_timespec_sec(token: &token, s: &item->mtime,
3985 val: inode_get_mtime_sec(inode));
3986 btrfs_set_token_timespec_nsec(token: &token, s: &item->mtime,
3987 val: inode_get_mtime_nsec(inode));
3988
3989 btrfs_set_token_timespec_sec(token: &token, s: &item->ctime,
3990 val: inode_get_ctime_sec(inode));
3991 btrfs_set_token_timespec_nsec(token: &token, s: &item->ctime,
3992 val: inode_get_ctime_nsec(inode));
3993
3994 btrfs_set_token_timespec_sec(token: &token, s: &item->otime, val: BTRFS_I(inode)->i_otime_sec);
3995 btrfs_set_token_timespec_nsec(token: &token, s: &item->otime, val: BTRFS_I(inode)->i_otime_nsec);
3996
3997 btrfs_set_token_inode_nbytes(token: &token, s: item, val: inode_get_bytes(inode));
3998 btrfs_set_token_inode_generation(token: &token, s: item,
3999 val: BTRFS_I(inode)->generation);
4000 btrfs_set_token_inode_sequence(token: &token, s: item, val: inode_peek_iversion(inode));
4001 btrfs_set_token_inode_transid(token: &token, s: item, val: trans->transid);
4002 btrfs_set_token_inode_rdev(token: &token, s: item, val: inode->i_rdev);
4003 flags = btrfs_inode_combine_flags(flags: BTRFS_I(inode)->flags,
4004 ro_flags: BTRFS_I(inode)->ro_flags);
4005 btrfs_set_token_inode_flags(token: &token, s: item, val: flags);
4006 btrfs_set_token_inode_block_group(token: &token, s: item, val: 0);
4007}
4008
4009/*
4010 * copy everything in the in-memory inode into the btree.
4011 */
4012static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4013 struct btrfs_inode *inode)
4014{
4015 struct btrfs_inode_item *inode_item;
4016 struct btrfs_path *path;
4017 struct extent_buffer *leaf;
4018 int ret;
4019
4020 path = btrfs_alloc_path();
4021 if (!path)
4022 return -ENOMEM;
4023
4024 ret = btrfs_lookup_inode(trans, root: inode->root, path, location: &inode->location, mod: 1);
4025 if (ret) {
4026 if (ret > 0)
4027 ret = -ENOENT;
4028 goto failed;
4029 }
4030
4031 leaf = path->nodes[0];
4032 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4033 struct btrfs_inode_item);
4034
4035 fill_inode_item(trans, leaf, item: inode_item, inode: &inode->vfs_inode);
4036 btrfs_mark_buffer_dirty(trans, buf: leaf);
4037 btrfs_set_inode_last_trans(trans, inode);
4038 ret = 0;
4039failed:
4040 btrfs_free_path(p: path);
4041 return ret;
4042}
4043
4044/*
4045 * copy everything in the in-memory inode into the btree.
4046 */
4047int btrfs_update_inode(struct btrfs_trans_handle *trans,
4048 struct btrfs_inode *inode)
4049{
4050 struct btrfs_root *root = inode->root;
4051 struct btrfs_fs_info *fs_info = root->fs_info;
4052 int ret;
4053
4054 /*
4055 * If the inode is a free space inode, we can deadlock during commit
4056 * if we put it into the delayed code.
4057 *
4058 * The data relocation inode should also be directly updated
4059 * without delay
4060 */
4061 if (!btrfs_is_free_space_inode(inode)
4062 && !btrfs_is_data_reloc_root(root)
4063 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4064 btrfs_update_root_times(trans, root);
4065
4066 ret = btrfs_delayed_update_inode(trans, inode);
4067 if (!ret)
4068 btrfs_set_inode_last_trans(trans, inode);
4069 return ret;
4070 }
4071
4072 return btrfs_update_inode_item(trans, inode);
4073}
4074
4075int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4076 struct btrfs_inode *inode)
4077{
4078 int ret;
4079
4080 ret = btrfs_update_inode(trans, inode);
4081 if (ret == -ENOSPC)
4082 return btrfs_update_inode_item(trans, inode);
4083 return ret;
4084}
4085
4086/*
4087 * unlink helper that gets used here in inode.c and in the tree logging
4088 * recovery code. It remove a link in a directory with a given name, and
4089 * also drops the back refs in the inode to the directory
4090 */
4091static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4092 struct btrfs_inode *dir,
4093 struct btrfs_inode *inode,
4094 const struct fscrypt_str *name,
4095 struct btrfs_rename_ctx *rename_ctx)
4096{
4097 struct btrfs_root *root = dir->root;
4098 struct btrfs_fs_info *fs_info = root->fs_info;
4099 struct btrfs_path *path;
4100 int ret = 0;
4101 struct btrfs_dir_item *di;
4102 u64 index;
4103 u64 ino = btrfs_ino(inode);
4104 u64 dir_ino = btrfs_ino(inode: dir);
4105
4106 path = btrfs_alloc_path();
4107 if (!path) {
4108 ret = -ENOMEM;
4109 goto out;
4110 }
4111
4112 di = btrfs_lookup_dir_item(trans, root, path, dir: dir_ino, name, mod: -1);
4113 if (IS_ERR_OR_NULL(ptr: di)) {
4114 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
4115 goto err;
4116 }
4117 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4118 if (ret)
4119 goto err;
4120 btrfs_release_path(p: path);
4121
4122 /*
4123 * If we don't have dir index, we have to get it by looking up
4124 * the inode ref, since we get the inode ref, remove it directly,
4125 * it is unnecessary to do delayed deletion.
4126 *
4127 * But if we have dir index, needn't search inode ref to get it.
4128 * Since the inode ref is close to the inode item, it is better
4129 * that we delay to delete it, and just do this deletion when
4130 * we update the inode item.
4131 */
4132 if (inode->dir_index) {
4133 ret = btrfs_delayed_delete_inode_ref(inode);
4134 if (!ret) {
4135 index = inode->dir_index;
4136 goto skip_backref;
4137 }
4138 }
4139
4140 ret = btrfs_del_inode_ref(trans, root, name, inode_objectid: ino, ref_objectid: dir_ino, index: &index);
4141 if (ret) {
4142 btrfs_info(fs_info,
4143 "failed to delete reference to %.*s, inode %llu parent %llu",
4144 name->len, name->name, ino, dir_ino);
4145 btrfs_abort_transaction(trans, ret);
4146 goto err;
4147 }
4148skip_backref:
4149 if (rename_ctx)
4150 rename_ctx->index = index;
4151
4152 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4153 if (ret) {
4154 btrfs_abort_transaction(trans, ret);
4155 goto err;
4156 }
4157
4158 /*
4159 * If we are in a rename context, we don't need to update anything in the
4160 * log. That will be done later during the rename by btrfs_log_new_name().
4161 * Besides that, doing it here would only cause extra unnecessary btree
4162 * operations on the log tree, increasing latency for applications.
4163 */
4164 if (!rename_ctx) {
4165 btrfs_del_inode_ref_in_log(trans, root, name, inode, dirid: dir_ino);
4166 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4167 }
4168
4169 /*
4170 * If we have a pending delayed iput we could end up with the final iput
4171 * being run in btrfs-cleaner context. If we have enough of these built
4172 * up we can end up burning a lot of time in btrfs-cleaner without any
4173 * way to throttle the unlinks. Since we're currently holding a ref on
4174 * the inode we can run the delayed iput here without any issues as the
4175 * final iput won't be done until after we drop the ref we're currently
4176 * holding.
4177 */
4178 btrfs_run_delayed_iput(fs_info, inode);
4179err:
4180 btrfs_free_path(p: path);
4181 if (ret)
4182 goto out;
4183
4184 btrfs_i_size_write(inode: dir, size: dir->vfs_inode.i_size - name->len * 2);
4185 inode_inc_iversion(inode: &inode->vfs_inode);
4186 inode_inc_iversion(inode: &dir->vfs_inode);
4187 inode_set_mtime_to_ts(inode: &dir->vfs_inode, ts: inode_set_ctime_current(inode: &dir->vfs_inode));
4188 ret = btrfs_update_inode(trans, inode: dir);
4189out:
4190 return ret;
4191}
4192
4193int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4194 struct btrfs_inode *dir, struct btrfs_inode *inode,
4195 const struct fscrypt_str *name)
4196{
4197 int ret;
4198
4199 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4200 if (!ret) {
4201 drop_nlink(inode: &inode->vfs_inode);
4202 ret = btrfs_update_inode(trans, inode);
4203 }
4204 return ret;
4205}
4206
4207/*
4208 * helper to start transaction for unlink and rmdir.
4209 *
4210 * unlink and rmdir are special in btrfs, they do not always free space, so
4211 * if we cannot make our reservations the normal way try and see if there is
4212 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4213 * allow the unlink to occur.
4214 */
4215static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4216{
4217 struct btrfs_root *root = dir->root;
4218
4219 return btrfs_start_transaction_fallback_global_rsv(root,
4220 BTRFS_UNLINK_METADATA_UNITS);
4221}
4222
4223static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4224{
4225 struct btrfs_trans_handle *trans;
4226 struct inode *inode = d_inode(dentry);
4227 int ret;
4228 struct fscrypt_name fname;
4229
4230 ret = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 1, fname: &fname);
4231 if (ret)
4232 return ret;
4233
4234 /* This needs to handle no-key deletions later on */
4235
4236 trans = __unlink_start_trans(dir: BTRFS_I(inode: dir));
4237 if (IS_ERR(ptr: trans)) {
4238 ret = PTR_ERR(ptr: trans);
4239 goto fscrypt_free;
4240 }
4241
4242 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4243 for_rename: false);
4244
4245 ret = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4246 name: &fname.disk_name);
4247 if (ret)
4248 goto end_trans;
4249
4250 if (inode->i_nlink == 0) {
4251 ret = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
4252 if (ret)
4253 goto end_trans;
4254 }
4255
4256end_trans:
4257 btrfs_end_transaction(trans);
4258 btrfs_btree_balance_dirty(fs_info: BTRFS_I(inode: dir)->root->fs_info);
4259fscrypt_free:
4260 fscrypt_free_filename(fname: &fname);
4261 return ret;
4262}
4263
4264static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4265 struct btrfs_inode *dir, struct dentry *dentry)
4266{
4267 struct btrfs_root *root = dir->root;
4268 struct btrfs_inode *inode = BTRFS_I(inode: d_inode(dentry));
4269 struct btrfs_path *path;
4270 struct extent_buffer *leaf;
4271 struct btrfs_dir_item *di;
4272 struct btrfs_key key;
4273 u64 index;
4274 int ret;
4275 u64 objectid;
4276 u64 dir_ino = btrfs_ino(inode: dir);
4277 struct fscrypt_name fname;
4278
4279 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 1, fname: &fname);
4280 if (ret)
4281 return ret;
4282
4283 /* This needs to handle no-key deletions later on */
4284
4285 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4286 objectid = inode->root->root_key.objectid;
4287 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4288 objectid = inode->location.objectid;
4289 } else {
4290 WARN_ON(1);
4291 fscrypt_free_filename(fname: &fname);
4292 return -EINVAL;
4293 }
4294
4295 path = btrfs_alloc_path();
4296 if (!path) {
4297 ret = -ENOMEM;
4298 goto out;
4299 }
4300
4301 di = btrfs_lookup_dir_item(trans, root, path, dir: dir_ino,
4302 name: &fname.disk_name, mod: -1);
4303 if (IS_ERR_OR_NULL(ptr: di)) {
4304 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
4305 goto out;
4306 }
4307
4308 leaf = path->nodes[0];
4309 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &key);
4310 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4311 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4312 if (ret) {
4313 btrfs_abort_transaction(trans, ret);
4314 goto out;
4315 }
4316 btrfs_release_path(p: path);
4317
4318 /*
4319 * This is a placeholder inode for a subvolume we didn't have a
4320 * reference to at the time of the snapshot creation. In the meantime
4321 * we could have renamed the real subvol link into our snapshot, so
4322 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4323 * Instead simply lookup the dir_index_item for this entry so we can
4324 * remove it. Otherwise we know we have a ref to the root and we can
4325 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4326 */
4327 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4328 di = btrfs_search_dir_index_item(root, path, dirid: dir_ino, name: &fname.disk_name);
4329 if (IS_ERR_OR_NULL(ptr: di)) {
4330 if (!di)
4331 ret = -ENOENT;
4332 else
4333 ret = PTR_ERR(ptr: di);
4334 btrfs_abort_transaction(trans, ret);
4335 goto out;
4336 }
4337
4338 leaf = path->nodes[0];
4339 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
4340 index = key.offset;
4341 btrfs_release_path(p: path);
4342 } else {
4343 ret = btrfs_del_root_ref(trans, root_id: objectid,
4344 ref_id: root->root_key.objectid, dirid: dir_ino,
4345 sequence: &index, name: &fname.disk_name);
4346 if (ret) {
4347 btrfs_abort_transaction(trans, ret);
4348 goto out;
4349 }
4350 }
4351
4352 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4353 if (ret) {
4354 btrfs_abort_transaction(trans, ret);
4355 goto out;
4356 }
4357
4358 btrfs_i_size_write(inode: dir, size: dir->vfs_inode.i_size - fname.disk_name.len * 2);
4359 inode_inc_iversion(inode: &dir->vfs_inode);
4360 inode_set_mtime_to_ts(inode: &dir->vfs_inode, ts: inode_set_ctime_current(inode: &dir->vfs_inode));
4361 ret = btrfs_update_inode_fallback(trans, inode: dir);
4362 if (ret)
4363 btrfs_abort_transaction(trans, ret);
4364out:
4365 btrfs_free_path(p: path);
4366 fscrypt_free_filename(fname: &fname);
4367 return ret;
4368}
4369
4370/*
4371 * Helper to check if the subvolume references other subvolumes or if it's
4372 * default.
4373 */
4374static noinline int may_destroy_subvol(struct btrfs_root *root)
4375{
4376 struct btrfs_fs_info *fs_info = root->fs_info;
4377 struct btrfs_path *path;
4378 struct btrfs_dir_item *di;
4379 struct btrfs_key key;
4380 struct fscrypt_str name = FSTR_INIT("default", 7);
4381 u64 dir_id;
4382 int ret;
4383
4384 path = btrfs_alloc_path();
4385 if (!path)
4386 return -ENOMEM;
4387
4388 /* Make sure this root isn't set as the default subvol */
4389 dir_id = btrfs_super_root_dir(s: fs_info->super_copy);
4390 di = btrfs_lookup_dir_item(NULL, root: fs_info->tree_root, path,
4391 dir: dir_id, name: &name, mod: 0);
4392 if (di && !IS_ERR(ptr: di)) {
4393 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &key);
4394 if (key.objectid == root->root_key.objectid) {
4395 ret = -EPERM;
4396 btrfs_err(fs_info,
4397 "deleting default subvolume %llu is not allowed",
4398 key.objectid);
4399 goto out;
4400 }
4401 btrfs_release_path(p: path);
4402 }
4403
4404 key.objectid = root->root_key.objectid;
4405 key.type = BTRFS_ROOT_REF_KEY;
4406 key.offset = (u64)-1;
4407
4408 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
4409 if (ret < 0)
4410 goto out;
4411 if (ret == 0) {
4412 /*
4413 * Key with offset -1 found, there would have to exist a root
4414 * with such id, but this is out of valid range.
4415 */
4416 ret = -EUCLEAN;
4417 goto out;
4418 }
4419
4420 ret = 0;
4421 if (path->slots[0] > 0) {
4422 path->slots[0]--;
4423 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
4424 if (key.objectid == root->root_key.objectid &&
4425 key.type == BTRFS_ROOT_REF_KEY)
4426 ret = -ENOTEMPTY;
4427 }
4428out:
4429 btrfs_free_path(p: path);
4430 return ret;
4431}
4432
4433/* Delete all dentries for inodes belonging to the root */
4434static void btrfs_prune_dentries(struct btrfs_root *root)
4435{
4436 struct btrfs_fs_info *fs_info = root->fs_info;
4437 struct rb_node *node;
4438 struct rb_node *prev;
4439 struct btrfs_inode *entry;
4440 struct inode *inode;
4441 u64 objectid = 0;
4442
4443 if (!BTRFS_FS_ERROR(fs_info))
4444 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4445
4446 spin_lock(lock: &root->inode_lock);
4447again:
4448 node = root->inode_tree.rb_node;
4449 prev = NULL;
4450 while (node) {
4451 prev = node;
4452 entry = rb_entry(node, struct btrfs_inode, rb_node);
4453
4454 if (objectid < btrfs_ino(inode: entry))
4455 node = node->rb_left;
4456 else if (objectid > btrfs_ino(inode: entry))
4457 node = node->rb_right;
4458 else
4459 break;
4460 }
4461 if (!node) {
4462 while (prev) {
4463 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4464 if (objectid <= btrfs_ino(inode: entry)) {
4465 node = prev;
4466 break;
4467 }
4468 prev = rb_next(prev);
4469 }
4470 }
4471 while (node) {
4472 entry = rb_entry(node, struct btrfs_inode, rb_node);
4473 objectid = btrfs_ino(inode: entry) + 1;
4474 inode = igrab(&entry->vfs_inode);
4475 if (inode) {
4476 spin_unlock(lock: &root->inode_lock);
4477 if (atomic_read(v: &inode->i_count) > 1)
4478 d_prune_aliases(inode);
4479 /*
4480 * btrfs_drop_inode will have it removed from the inode
4481 * cache when its usage count hits zero.
4482 */
4483 iput(inode);
4484 cond_resched();
4485 spin_lock(lock: &root->inode_lock);
4486 goto again;
4487 }
4488
4489 if (cond_resched_lock(&root->inode_lock))
4490 goto again;
4491
4492 node = rb_next(node);
4493 }
4494 spin_unlock(lock: &root->inode_lock);
4495}
4496
4497int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4498{
4499 struct btrfs_root *root = dir->root;
4500 struct btrfs_fs_info *fs_info = root->fs_info;
4501 struct inode *inode = d_inode(dentry);
4502 struct btrfs_root *dest = BTRFS_I(inode)->root;
4503 struct btrfs_trans_handle *trans;
4504 struct btrfs_block_rsv block_rsv;
4505 u64 root_flags;
4506 u64 qgroup_reserved = 0;
4507 int ret;
4508
4509 down_write(sem: &fs_info->subvol_sem);
4510
4511 /*
4512 * Don't allow to delete a subvolume with send in progress. This is
4513 * inside the inode lock so the error handling that has to drop the bit
4514 * again is not run concurrently.
4515 */
4516 spin_lock(lock: &dest->root_item_lock);
4517 if (dest->send_in_progress) {
4518 spin_unlock(lock: &dest->root_item_lock);
4519 btrfs_warn(fs_info,
4520 "attempt to delete subvolume %llu during send",
4521 dest->root_key.objectid);
4522 ret = -EPERM;
4523 goto out_up_write;
4524 }
4525 if (atomic_read(v: &dest->nr_swapfiles)) {
4526 spin_unlock(lock: &dest->root_item_lock);
4527 btrfs_warn(fs_info,
4528 "attempt to delete subvolume %llu with active swapfile",
4529 root->root_key.objectid);
4530 ret = -EPERM;
4531 goto out_up_write;
4532 }
4533 root_flags = btrfs_root_flags(s: &dest->root_item);
4534 btrfs_set_root_flags(s: &dest->root_item,
4535 val: root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4536 spin_unlock(lock: &dest->root_item_lock);
4537
4538 ret = may_destroy_subvol(root: dest);
4539 if (ret)
4540 goto out_undead;
4541
4542 btrfs_init_block_rsv(rsv: &block_rsv, type: BTRFS_BLOCK_RSV_TEMP);
4543 /*
4544 * One for dir inode,
4545 * two for dir entries,
4546 * two for root ref/backref.
4547 */
4548 ret = btrfs_subvolume_reserve_metadata(root, rsv: &block_rsv, nitems: 5, use_global_rsv: true);
4549 if (ret)
4550 goto out_undead;
4551 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4552
4553 trans = btrfs_start_transaction(root, num_items: 0);
4554 if (IS_ERR(ptr: trans)) {
4555 ret = PTR_ERR(ptr: trans);
4556 goto out_release;
4557 }
4558 ret = btrfs_record_root_in_trans(trans, root);
4559 if (ret) {
4560 btrfs_abort_transaction(trans, ret);
4561 goto out_end_trans;
4562 }
4563 btrfs_qgroup_convert_reserved_meta(root, num_bytes: qgroup_reserved);
4564 qgroup_reserved = 0;
4565 trans->block_rsv = &block_rsv;
4566 trans->bytes_reserved = block_rsv.size;
4567
4568 btrfs_record_snapshot_destroy(trans, dir);
4569
4570 ret = btrfs_unlink_subvol(trans, dir, dentry);
4571 if (ret) {
4572 btrfs_abort_transaction(trans, ret);
4573 goto out_end_trans;
4574 }
4575
4576 ret = btrfs_record_root_in_trans(trans, root: dest);
4577 if (ret) {
4578 btrfs_abort_transaction(trans, ret);
4579 goto out_end_trans;
4580 }
4581
4582 memset(&dest->root_item.drop_progress, 0,
4583 sizeof(dest->root_item.drop_progress));
4584 btrfs_set_root_drop_level(s: &dest->root_item, val: 0);
4585 btrfs_set_root_refs(s: &dest->root_item, val: 0);
4586
4587 if (!test_and_set_bit(nr: BTRFS_ROOT_ORPHAN_ITEM_INSERTED, addr: &dest->state)) {
4588 ret = btrfs_insert_orphan_item(trans,
4589 root: fs_info->tree_root,
4590 offset: dest->root_key.objectid);
4591 if (ret) {
4592 btrfs_abort_transaction(trans, ret);
4593 goto out_end_trans;
4594 }
4595 }
4596
4597 ret = btrfs_uuid_tree_remove(trans, uuid: dest->root_item.uuid,
4598 BTRFS_UUID_KEY_SUBVOL,
4599 subid: dest->root_key.objectid);
4600 if (ret && ret != -ENOENT) {
4601 btrfs_abort_transaction(trans, ret);
4602 goto out_end_trans;
4603 }
4604 if (!btrfs_is_empty_uuid(uuid: dest->root_item.received_uuid)) {
4605 ret = btrfs_uuid_tree_remove(trans,
4606 uuid: dest->root_item.received_uuid,
4607 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4608 subid: dest->root_key.objectid);
4609 if (ret && ret != -ENOENT) {
4610 btrfs_abort_transaction(trans, ret);
4611 goto out_end_trans;
4612 }
4613 }
4614
4615 free_anon_bdev(dest->anon_dev);
4616 dest->anon_dev = 0;
4617out_end_trans:
4618 trans->block_rsv = NULL;
4619 trans->bytes_reserved = 0;
4620 ret = btrfs_end_transaction(trans);
4621 inode->i_flags |= S_DEAD;
4622out_release:
4623 btrfs_block_rsv_release(fs_info, block_rsv: &block_rsv, num_bytes: (u64)-1, NULL);
4624 if (qgroup_reserved)
4625 btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_reserved);
4626out_undead:
4627 if (ret) {
4628 spin_lock(lock: &dest->root_item_lock);
4629 root_flags = btrfs_root_flags(s: &dest->root_item);
4630 btrfs_set_root_flags(s: &dest->root_item,
4631 val: root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4632 spin_unlock(lock: &dest->root_item_lock);
4633 }
4634out_up_write:
4635 up_write(sem: &fs_info->subvol_sem);
4636 if (!ret) {
4637 d_invalidate(dentry);
4638 btrfs_prune_dentries(root: dest);
4639 ASSERT(dest->send_in_progress == 0);
4640 }
4641
4642 return ret;
4643}
4644
4645static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4646{
4647 struct inode *inode = d_inode(dentry);
4648 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4649 int err = 0;
4650 struct btrfs_trans_handle *trans;
4651 u64 last_unlink_trans;
4652 struct fscrypt_name fname;
4653
4654 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4655 return -ENOTEMPTY;
4656 if (btrfs_ino(inode: BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4657 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4658 btrfs_err(fs_info,
4659 "extent tree v2 doesn't support snapshot deletion yet");
4660 return -EOPNOTSUPP;
4661 }
4662 return btrfs_delete_subvolume(dir: BTRFS_I(inode: dir), dentry);
4663 }
4664
4665 err = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 1, fname: &fname);
4666 if (err)
4667 return err;
4668
4669 /* This needs to handle no-key deletions later on */
4670
4671 trans = __unlink_start_trans(dir: BTRFS_I(inode: dir));
4672 if (IS_ERR(ptr: trans)) {
4673 err = PTR_ERR(ptr: trans);
4674 goto out_notrans;
4675 }
4676
4677 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4678 err = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: dir), dentry);
4679 goto out;
4680 }
4681
4682 err = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
4683 if (err)
4684 goto out;
4685
4686 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4687
4688 /* now the directory is empty */
4689 err = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4690 name: &fname.disk_name);
4691 if (!err) {
4692 btrfs_i_size_write(inode: BTRFS_I(inode), size: 0);
4693 /*
4694 * Propagate the last_unlink_trans value of the deleted dir to
4695 * its parent directory. This is to prevent an unrecoverable
4696 * log tree in the case we do something like this:
4697 * 1) create dir foo
4698 * 2) create snapshot under dir foo
4699 * 3) delete the snapshot
4700 * 4) rmdir foo
4701 * 5) mkdir foo
4702 * 6) fsync foo or some file inside foo
4703 */
4704 if (last_unlink_trans >= trans->transid)
4705 BTRFS_I(inode: dir)->last_unlink_trans = last_unlink_trans;
4706 }
4707out:
4708 btrfs_end_transaction(trans);
4709out_notrans:
4710 btrfs_btree_balance_dirty(fs_info);
4711 fscrypt_free_filename(fname: &fname);
4712
4713 return err;
4714}
4715
4716/*
4717 * Read, zero a chunk and write a block.
4718 *
4719 * @inode - inode that we're zeroing
4720 * @from - the offset to start zeroing
4721 * @len - the length to zero, 0 to zero the entire range respective to the
4722 * offset
4723 * @front - zero up to the offset instead of from the offset on
4724 *
4725 * This will find the block for the "from" offset and cow the block and zero the
4726 * part we want to zero. This is used with truncate and hole punching.
4727 */
4728int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4729 int front)
4730{
4731 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4732 struct address_space *mapping = inode->vfs_inode.i_mapping;
4733 struct extent_io_tree *io_tree = &inode->io_tree;
4734 struct btrfs_ordered_extent *ordered;
4735 struct extent_state *cached_state = NULL;
4736 struct extent_changeset *data_reserved = NULL;
4737 bool only_release_metadata = false;
4738 u32 blocksize = fs_info->sectorsize;
4739 pgoff_t index = from >> PAGE_SHIFT;
4740 unsigned offset = from & (blocksize - 1);
4741 struct folio *folio;
4742 gfp_t mask = btrfs_alloc_write_mask(mapping);
4743 size_t write_bytes = blocksize;
4744 int ret = 0;
4745 u64 block_start;
4746 u64 block_end;
4747
4748 if (IS_ALIGNED(offset, blocksize) &&
4749 (!len || IS_ALIGNED(len, blocksize)))
4750 goto out;
4751
4752 block_start = round_down(from, blocksize);
4753 block_end = block_start + blocksize - 1;
4754
4755 ret = btrfs_check_data_free_space(inode, reserved: &data_reserved, start: block_start,
4756 len: blocksize, noflush: false);
4757 if (ret < 0) {
4758 if (btrfs_check_nocow_lock(inode, pos: block_start, write_bytes: &write_bytes, nowait: false) > 0) {
4759 /* For nocow case, no need to reserve data space */
4760 only_release_metadata = true;
4761 } else {
4762 goto out;
4763 }
4764 }
4765 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes: blocksize, disk_num_bytes: blocksize, noflush: false);
4766 if (ret < 0) {
4767 if (!only_release_metadata)
4768 btrfs_free_reserved_data_space(inode, reserved: data_reserved,
4769 start: block_start, len: blocksize);
4770 goto out;
4771 }
4772again:
4773 folio = __filemap_get_folio(mapping, index,
4774 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp: mask);
4775 if (IS_ERR(ptr: folio)) {
4776 btrfs_delalloc_release_space(inode, reserved: data_reserved, start: block_start,
4777 len: blocksize, qgroup_free: true);
4778 btrfs_delalloc_release_extents(inode, num_bytes: blocksize);
4779 ret = -ENOMEM;
4780 goto out;
4781 }
4782
4783 if (!folio_test_uptodate(folio)) {
4784 ret = btrfs_read_folio(NULL, folio);
4785 folio_lock(folio);
4786 if (folio->mapping != mapping) {
4787 folio_unlock(folio);
4788 folio_put(folio);
4789 goto again;
4790 }
4791 if (!folio_test_uptodate(folio)) {
4792 ret = -EIO;
4793 goto out_unlock;
4794 }
4795 }
4796
4797 /*
4798 * We unlock the page after the io is completed and then re-lock it
4799 * above. release_folio() could have come in between that and cleared
4800 * folio private, but left the page in the mapping. Set the page mapped
4801 * here to make sure it's properly set for the subpage stuff.
4802 */
4803 ret = set_folio_extent_mapped(folio);
4804 if (ret < 0)
4805 goto out_unlock;
4806
4807 folio_wait_writeback(folio);
4808
4809 lock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4810
4811 ordered = btrfs_lookup_ordered_extent(inode, file_offset: block_start);
4812 if (ordered) {
4813 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4814 folio_unlock(folio);
4815 folio_put(folio);
4816 btrfs_start_ordered_extent(entry: ordered);
4817 btrfs_put_ordered_extent(entry: ordered);
4818 goto again;
4819 }
4820
4821 clear_extent_bit(tree: &inode->io_tree, start: block_start, end: block_end,
4822 bits: EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4823 cached: &cached_state);
4824
4825 ret = btrfs_set_extent_delalloc(inode, start: block_start, end: block_end, extra_bits: 0,
4826 cached_state: &cached_state);
4827 if (ret) {
4828 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4829 goto out_unlock;
4830 }
4831
4832 if (offset != blocksize) {
4833 if (!len)
4834 len = blocksize - offset;
4835 if (front)
4836 folio_zero_range(folio, start: block_start - folio_pos(folio),
4837 length: offset);
4838 else
4839 folio_zero_range(folio,
4840 start: (block_start - folio_pos(folio)) + offset,
4841 length: len);
4842 }
4843 btrfs_folio_clear_checked(fs_info, folio, start: block_start,
4844 len: block_end + 1 - block_start);
4845 btrfs_folio_set_dirty(fs_info, folio, start: block_start,
4846 len: block_end + 1 - block_start);
4847 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4848
4849 if (only_release_metadata)
4850 set_extent_bit(tree: &inode->io_tree, start: block_start, end: block_end,
4851 bits: EXTENT_NORESERVE, NULL);
4852
4853out_unlock:
4854 if (ret) {
4855 if (only_release_metadata)
4856 btrfs_delalloc_release_metadata(inode, num_bytes: blocksize, qgroup_free: true);
4857 else
4858 btrfs_delalloc_release_space(inode, reserved: data_reserved,
4859 start: block_start, len: blocksize, qgroup_free: true);
4860 }
4861 btrfs_delalloc_release_extents(inode, num_bytes: blocksize);
4862 folio_unlock(folio);
4863 folio_put(folio);
4864out:
4865 if (only_release_metadata)
4866 btrfs_check_nocow_unlock(inode);
4867 extent_changeset_free(changeset: data_reserved);
4868 return ret;
4869}
4870
4871static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4872{
4873 struct btrfs_root *root = inode->root;
4874 struct btrfs_fs_info *fs_info = root->fs_info;
4875 struct btrfs_trans_handle *trans;
4876 struct btrfs_drop_extents_args drop_args = { 0 };
4877 int ret;
4878
4879 /*
4880 * If NO_HOLES is enabled, we don't need to do anything.
4881 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4882 * or btrfs_update_inode() will be called, which guarantee that the next
4883 * fsync will know this inode was changed and needs to be logged.
4884 */
4885 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4886 return 0;
4887
4888 /*
4889 * 1 - for the one we're dropping
4890 * 1 - for the one we're adding
4891 * 1 - for updating the inode.
4892 */
4893 trans = btrfs_start_transaction(root, num_items: 3);
4894 if (IS_ERR(ptr: trans))
4895 return PTR_ERR(ptr: trans);
4896
4897 drop_args.start = offset;
4898 drop_args.end = offset + len;
4899 drop_args.drop_cache = true;
4900
4901 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
4902 if (ret) {
4903 btrfs_abort_transaction(trans, ret);
4904 btrfs_end_transaction(trans);
4905 return ret;
4906 }
4907
4908 ret = btrfs_insert_hole_extent(trans, root, objectid: btrfs_ino(inode), pos: offset, num_bytes: len);
4909 if (ret) {
4910 btrfs_abort_transaction(trans, ret);
4911 } else {
4912 btrfs_update_inode_bytes(inode, add_bytes: 0, del_bytes: drop_args.bytes_found);
4913 btrfs_update_inode(trans, inode);
4914 }
4915 btrfs_end_transaction(trans);
4916 return ret;
4917}
4918
4919/*
4920 * This function puts in dummy file extents for the area we're creating a hole
4921 * for. So if we are truncating this file to a larger size we need to insert
4922 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4923 * the range between oldsize and size
4924 */
4925int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4926{
4927 struct btrfs_root *root = inode->root;
4928 struct btrfs_fs_info *fs_info = root->fs_info;
4929 struct extent_io_tree *io_tree = &inode->io_tree;
4930 struct extent_map *em = NULL;
4931 struct extent_state *cached_state = NULL;
4932 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4933 u64 block_end = ALIGN(size, fs_info->sectorsize);
4934 u64 last_byte;
4935 u64 cur_offset;
4936 u64 hole_size;
4937 int err = 0;
4938
4939 /*
4940 * If our size started in the middle of a block we need to zero out the
4941 * rest of the block before we expand the i_size, otherwise we could
4942 * expose stale data.
4943 */
4944 err = btrfs_truncate_block(inode, from: oldsize, len: 0, front: 0);
4945 if (err)
4946 return err;
4947
4948 if (size <= hole_start)
4949 return 0;
4950
4951 btrfs_lock_and_flush_ordered_range(inode, start: hole_start, end: block_end - 1,
4952 cached_state: &cached_state);
4953 cur_offset = hole_start;
4954 while (1) {
4955 em = btrfs_get_extent(inode, NULL, start: cur_offset, len: block_end - cur_offset);
4956 if (IS_ERR(ptr: em)) {
4957 err = PTR_ERR(ptr: em);
4958 em = NULL;
4959 break;
4960 }
4961 last_byte = min(extent_map_end(em), block_end);
4962 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4963 hole_size = last_byte - cur_offset;
4964
4965 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4966 struct extent_map *hole_em;
4967
4968 err = maybe_insert_hole(inode, offset: cur_offset, len: hole_size);
4969 if (err)
4970 break;
4971
4972 err = btrfs_inode_set_file_extent_range(inode,
4973 start: cur_offset, len: hole_size);
4974 if (err)
4975 break;
4976
4977 hole_em = alloc_extent_map();
4978 if (!hole_em) {
4979 btrfs_drop_extent_map_range(inode, start: cur_offset,
4980 end: cur_offset + hole_size - 1,
4981 skip_pinned: false);
4982 btrfs_set_inode_full_sync(inode);
4983 goto next;
4984 }
4985 hole_em->start = cur_offset;
4986 hole_em->len = hole_size;
4987 hole_em->orig_start = cur_offset;
4988
4989 hole_em->block_start = EXTENT_MAP_HOLE;
4990 hole_em->block_len = 0;
4991 hole_em->orig_block_len = 0;
4992 hole_em->ram_bytes = hole_size;
4993 hole_em->generation = btrfs_get_fs_generation(fs_info);
4994
4995 err = btrfs_replace_extent_map_range(inode, new_em: hole_em, modified: true);
4996 free_extent_map(em: hole_em);
4997 } else {
4998 err = btrfs_inode_set_file_extent_range(inode,
4999 start: cur_offset, len: hole_size);
5000 if (err)
5001 break;
5002 }
5003next:
5004 free_extent_map(em);
5005 em = NULL;
5006 cur_offset = last_byte;
5007 if (cur_offset >= block_end)
5008 break;
5009 }
5010 free_extent_map(em);
5011 unlock_extent(tree: io_tree, start: hole_start, end: block_end - 1, cached: &cached_state);
5012 return err;
5013}
5014
5015static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5016{
5017 struct btrfs_root *root = BTRFS_I(inode)->root;
5018 struct btrfs_trans_handle *trans;
5019 loff_t oldsize = i_size_read(inode);
5020 loff_t newsize = attr->ia_size;
5021 int mask = attr->ia_valid;
5022 int ret;
5023
5024 /*
5025 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5026 * special case where we need to update the times despite not having
5027 * these flags set. For all other operations the VFS set these flags
5028 * explicitly if it wants a timestamp update.
5029 */
5030 if (newsize != oldsize) {
5031 inode_inc_iversion(inode);
5032 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5033 inode_set_mtime_to_ts(inode,
5034 ts: inode_set_ctime_current(inode));
5035 }
5036 }
5037
5038 if (newsize > oldsize) {
5039 /*
5040 * Don't do an expanding truncate while snapshotting is ongoing.
5041 * This is to ensure the snapshot captures a fully consistent
5042 * state of this file - if the snapshot captures this expanding
5043 * truncation, it must capture all writes that happened before
5044 * this truncation.
5045 */
5046 btrfs_drew_write_lock(lock: &root->snapshot_lock);
5047 ret = btrfs_cont_expand(inode: BTRFS_I(inode), oldsize, size: newsize);
5048 if (ret) {
5049 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
5050 return ret;
5051 }
5052
5053 trans = btrfs_start_transaction(root, num_items: 1);
5054 if (IS_ERR(ptr: trans)) {
5055 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
5056 return PTR_ERR(ptr: trans);
5057 }
5058
5059 i_size_write(inode, i_size: newsize);
5060 btrfs_inode_safe_disk_i_size_write(inode: BTRFS_I(inode), new_i_size: 0);
5061 pagecache_isize_extended(inode, from: oldsize, to: newsize);
5062 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
5063 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
5064 btrfs_end_transaction(trans);
5065 } else {
5066 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5067
5068 if (btrfs_is_zoned(fs_info)) {
5069 ret = btrfs_wait_ordered_range(inode,
5070 ALIGN(newsize, fs_info->sectorsize),
5071 len: (u64)-1);
5072 if (ret)
5073 return ret;
5074 }
5075
5076 /*
5077 * We're truncating a file that used to have good data down to
5078 * zero. Make sure any new writes to the file get on disk
5079 * on close.
5080 */
5081 if (newsize == 0)
5082 set_bit(nr: BTRFS_INODE_FLUSH_ON_CLOSE,
5083 addr: &BTRFS_I(inode)->runtime_flags);
5084
5085 truncate_setsize(inode, newsize);
5086
5087 inode_dio_wait(inode);
5088
5089 ret = btrfs_truncate(inode: BTRFS_I(inode), skip_writeback: newsize == oldsize);
5090 if (ret && inode->i_nlink) {
5091 int err;
5092
5093 /*
5094 * Truncate failed, so fix up the in-memory size. We
5095 * adjusted disk_i_size down as we removed extents, so
5096 * wait for disk_i_size to be stable and then update the
5097 * in-memory size to match.
5098 */
5099 err = btrfs_wait_ordered_range(inode, start: 0, len: (u64)-1);
5100 if (err)
5101 return err;
5102 i_size_write(inode, i_size: BTRFS_I(inode)->disk_i_size);
5103 }
5104 }
5105
5106 return ret;
5107}
5108
5109static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5110 struct iattr *attr)
5111{
5112 struct inode *inode = d_inode(dentry);
5113 struct btrfs_root *root = BTRFS_I(inode)->root;
5114 int err;
5115
5116 if (btrfs_root_readonly(root))
5117 return -EROFS;
5118
5119 err = setattr_prepare(idmap, dentry, attr);
5120 if (err)
5121 return err;
5122
5123 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5124 err = btrfs_setsize(inode, attr);
5125 if (err)
5126 return err;
5127 }
5128
5129 if (attr->ia_valid) {
5130 setattr_copy(idmap, inode, attr);
5131 inode_inc_iversion(inode);
5132 err = btrfs_dirty_inode(inode: BTRFS_I(inode));
5133
5134 if (!err && attr->ia_valid & ATTR_MODE)
5135 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5136 }
5137
5138 return err;
5139}
5140
5141/*
5142 * While truncating the inode pages during eviction, we get the VFS
5143 * calling btrfs_invalidate_folio() against each folio of the inode. This
5144 * is slow because the calls to btrfs_invalidate_folio() result in a
5145 * huge amount of calls to lock_extent() and clear_extent_bit(),
5146 * which keep merging and splitting extent_state structures over and over,
5147 * wasting lots of time.
5148 *
5149 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5150 * skip all those expensive operations on a per folio basis and do only
5151 * the ordered io finishing, while we release here the extent_map and
5152 * extent_state structures, without the excessive merging and splitting.
5153 */
5154static void evict_inode_truncate_pages(struct inode *inode)
5155{
5156 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5157 struct rb_node *node;
5158
5159 ASSERT(inode->i_state & I_FREEING);
5160 truncate_inode_pages_final(&inode->i_data);
5161
5162 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: 0, end: (u64)-1, skip_pinned: false);
5163
5164 /*
5165 * Keep looping until we have no more ranges in the io tree.
5166 * We can have ongoing bios started by readahead that have
5167 * their endio callback (extent_io.c:end_bio_extent_readpage)
5168 * still in progress (unlocked the pages in the bio but did not yet
5169 * unlocked the ranges in the io tree). Therefore this means some
5170 * ranges can still be locked and eviction started because before
5171 * submitting those bios, which are executed by a separate task (work
5172 * queue kthread), inode references (inode->i_count) were not taken
5173 * (which would be dropped in the end io callback of each bio).
5174 * Therefore here we effectively end up waiting for those bios and
5175 * anyone else holding locked ranges without having bumped the inode's
5176 * reference count - if we don't do it, when they access the inode's
5177 * io_tree to unlock a range it may be too late, leading to an
5178 * use-after-free issue.
5179 */
5180 spin_lock(lock: &io_tree->lock);
5181 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5182 struct extent_state *state;
5183 struct extent_state *cached_state = NULL;
5184 u64 start;
5185 u64 end;
5186 unsigned state_flags;
5187
5188 node = rb_first(&io_tree->state);
5189 state = rb_entry(node, struct extent_state, rb_node);
5190 start = state->start;
5191 end = state->end;
5192 state_flags = state->state;
5193 spin_unlock(lock: &io_tree->lock);
5194
5195 lock_extent(tree: io_tree, start, end, cached: &cached_state);
5196
5197 /*
5198 * If still has DELALLOC flag, the extent didn't reach disk,
5199 * and its reserved space won't be freed by delayed_ref.
5200 * So we need to free its reserved space here.
5201 * (Refer to comment in btrfs_invalidate_folio, case 2)
5202 *
5203 * Note, end is the bytenr of last byte, so we need + 1 here.
5204 */
5205 if (state_flags & EXTENT_DELALLOC)
5206 btrfs_qgroup_free_data(inode: BTRFS_I(inode), NULL, start,
5207 len: end - start + 1, NULL);
5208
5209 clear_extent_bit(tree: io_tree, start, end,
5210 bits: EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5211 cached: &cached_state);
5212
5213 cond_resched();
5214 spin_lock(lock: &io_tree->lock);
5215 }
5216 spin_unlock(lock: &io_tree->lock);
5217}
5218
5219static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5220 struct btrfs_block_rsv *rsv)
5221{
5222 struct btrfs_fs_info *fs_info = root->fs_info;
5223 struct btrfs_trans_handle *trans;
5224 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, num_delayed_refs: 1);
5225 int ret;
5226
5227 /*
5228 * Eviction should be taking place at some place safe because of our
5229 * delayed iputs. However the normal flushing code will run delayed
5230 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5231 *
5232 * We reserve the delayed_refs_extra here again because we can't use
5233 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5234 * above. We reserve our extra bit here because we generate a ton of
5235 * delayed refs activity by truncating.
5236 *
5237 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5238 * if we fail to make this reservation we can re-try without the
5239 * delayed_refs_extra so we can make some forward progress.
5240 */
5241 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rsv, num_bytes: rsv->size + delayed_refs_extra,
5242 flush: BTRFS_RESERVE_FLUSH_EVICT);
5243 if (ret) {
5244 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rsv, num_bytes: rsv->size,
5245 flush: BTRFS_RESERVE_FLUSH_EVICT);
5246 if (ret) {
5247 btrfs_warn(fs_info,
5248 "could not allocate space for delete; will truncate on mount");
5249 return ERR_PTR(error: -ENOSPC);
5250 }
5251 delayed_refs_extra = 0;
5252 }
5253
5254 trans = btrfs_join_transaction(root);
5255 if (IS_ERR(ptr: trans))
5256 return trans;
5257
5258 if (delayed_refs_extra) {
5259 trans->block_rsv = &fs_info->trans_block_rsv;
5260 trans->bytes_reserved = delayed_refs_extra;
5261 btrfs_block_rsv_migrate(src_rsv: rsv, dst_rsv: trans->block_rsv,
5262 num_bytes: delayed_refs_extra, update_size: true);
5263 }
5264 return trans;
5265}
5266
5267void btrfs_evict_inode(struct inode *inode)
5268{
5269 struct btrfs_fs_info *fs_info;
5270 struct btrfs_trans_handle *trans;
5271 struct btrfs_root *root = BTRFS_I(inode)->root;
5272 struct btrfs_block_rsv *rsv = NULL;
5273 int ret;
5274
5275 trace_btrfs_inode_evict(inode);
5276
5277 if (!root) {
5278 fsverity_cleanup_inode(inode);
5279 clear_inode(inode);
5280 return;
5281 }
5282
5283 fs_info = inode_to_fs_info(inode);
5284 evict_inode_truncate_pages(inode);
5285
5286 if (inode->i_nlink &&
5287 ((btrfs_root_refs(s: &root->root_item) != 0 &&
5288 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5289 btrfs_is_free_space_inode(inode: BTRFS_I(inode))))
5290 goto out;
5291
5292 if (is_bad_inode(inode))
5293 goto out;
5294
5295 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5296 goto out;
5297
5298 if (inode->i_nlink > 0) {
5299 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5300 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5301 goto out;
5302 }
5303
5304 /*
5305 * This makes sure the inode item in tree is uptodate and the space for
5306 * the inode update is released.
5307 */
5308 ret = btrfs_commit_inode_delayed_inode(inode: BTRFS_I(inode));
5309 if (ret)
5310 goto out;
5311
5312 /*
5313 * This drops any pending insert or delete operations we have for this
5314 * inode. We could have a delayed dir index deletion queued up, but
5315 * we're removing the inode completely so that'll be taken care of in
5316 * the truncate.
5317 */
5318 btrfs_kill_delayed_inode_items(inode: BTRFS_I(inode));
5319
5320 rsv = btrfs_alloc_block_rsv(fs_info, type: BTRFS_BLOCK_RSV_TEMP);
5321 if (!rsv)
5322 goto out;
5323 rsv->size = btrfs_calc_metadata_size(fs_info, num_items: 1);
5324 rsv->failfast = true;
5325
5326 btrfs_i_size_write(inode: BTRFS_I(inode), size: 0);
5327
5328 while (1) {
5329 struct btrfs_truncate_control control = {
5330 .inode = BTRFS_I(inode),
5331 .ino = btrfs_ino(inode: BTRFS_I(inode)),
5332 .new_size = 0,
5333 .min_type = 0,
5334 };
5335
5336 trans = evict_refill_and_join(root, rsv);
5337 if (IS_ERR(ptr: trans))
5338 goto out;
5339
5340 trans->block_rsv = rsv;
5341
5342 ret = btrfs_truncate_inode_items(trans, root, control: &control);
5343 trans->block_rsv = &fs_info->trans_block_rsv;
5344 btrfs_end_transaction(trans);
5345 /*
5346 * We have not added new delayed items for our inode after we
5347 * have flushed its delayed items, so no need to throttle on
5348 * delayed items. However we have modified extent buffers.
5349 */
5350 btrfs_btree_balance_dirty_nodelay(fs_info);
5351 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5352 goto out;
5353 else if (!ret)
5354 break;
5355 }
5356
5357 /*
5358 * Errors here aren't a big deal, it just means we leave orphan items in
5359 * the tree. They will be cleaned up on the next mount. If the inode
5360 * number gets reused, cleanup deletes the orphan item without doing
5361 * anything, and unlink reuses the existing orphan item.
5362 *
5363 * If it turns out that we are dropping too many of these, we might want
5364 * to add a mechanism for retrying these after a commit.
5365 */
5366 trans = evict_refill_and_join(root, rsv);
5367 if (!IS_ERR(ptr: trans)) {
5368 trans->block_rsv = rsv;
5369 btrfs_orphan_del(trans, inode: BTRFS_I(inode));
5370 trans->block_rsv = &fs_info->trans_block_rsv;
5371 btrfs_end_transaction(trans);
5372 }
5373
5374out:
5375 btrfs_free_block_rsv(fs_info, rsv);
5376 /*
5377 * If we didn't successfully delete, the orphan item will still be in
5378 * the tree and we'll retry on the next mount. Again, we might also want
5379 * to retry these periodically in the future.
5380 */
5381 btrfs_remove_delayed_node(inode: BTRFS_I(inode));
5382 fsverity_cleanup_inode(inode);
5383 clear_inode(inode);
5384}
5385
5386/*
5387 * Return the key found in the dir entry in the location pointer, fill @type
5388 * with BTRFS_FT_*, and return 0.
5389 *
5390 * If no dir entries were found, returns -ENOENT.
5391 * If found a corrupted location in dir entry, returns -EUCLEAN.
5392 */
5393static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5394 struct btrfs_key *location, u8 *type)
5395{
5396 struct btrfs_dir_item *di;
5397 struct btrfs_path *path;
5398 struct btrfs_root *root = dir->root;
5399 int ret = 0;
5400 struct fscrypt_name fname;
5401
5402 path = btrfs_alloc_path();
5403 if (!path)
5404 return -ENOMEM;
5405
5406 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 1, fname: &fname);
5407 if (ret < 0)
5408 goto out;
5409 /*
5410 * fscrypt_setup_filename() should never return a positive value, but
5411 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5412 */
5413 ASSERT(ret == 0);
5414
5415 /* This needs to handle no-key deletions later on */
5416
5417 di = btrfs_lookup_dir_item(NULL, root, path, dir: btrfs_ino(inode: dir),
5418 name: &fname.disk_name, mod: 0);
5419 if (IS_ERR_OR_NULL(ptr: di)) {
5420 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
5421 goto out;
5422 }
5423
5424 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: location);
5425 if (location->type != BTRFS_INODE_ITEM_KEY &&
5426 location->type != BTRFS_ROOT_ITEM_KEY) {
5427 ret = -EUCLEAN;
5428 btrfs_warn(root->fs_info,
5429"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5430 __func__, fname.disk_name.name, btrfs_ino(dir),
5431 location->objectid, location->type, location->offset);
5432 }
5433 if (!ret)
5434 *type = btrfs_dir_ftype(eb: path->nodes[0], item: di);
5435out:
5436 fscrypt_free_filename(fname: &fname);
5437 btrfs_free_path(p: path);
5438 return ret;
5439}
5440
5441/*
5442 * when we hit a tree root in a directory, the btrfs part of the inode
5443 * needs to be changed to reflect the root directory of the tree root. This
5444 * is kind of like crossing a mount point.
5445 */
5446static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5447 struct btrfs_inode *dir,
5448 struct dentry *dentry,
5449 struct btrfs_key *location,
5450 struct btrfs_root **sub_root)
5451{
5452 struct btrfs_path *path;
5453 struct btrfs_root *new_root;
5454 struct btrfs_root_ref *ref;
5455 struct extent_buffer *leaf;
5456 struct btrfs_key key;
5457 int ret;
5458 int err = 0;
5459 struct fscrypt_name fname;
5460
5461 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 0, fname: &fname);
5462 if (ret)
5463 return ret;
5464
5465 path = btrfs_alloc_path();
5466 if (!path) {
5467 err = -ENOMEM;
5468 goto out;
5469 }
5470
5471 err = -ENOENT;
5472 key.objectid = dir->root->root_key.objectid;
5473 key.type = BTRFS_ROOT_REF_KEY;
5474 key.offset = location->objectid;
5475
5476 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
5477 if (ret) {
5478 if (ret < 0)
5479 err = ret;
5480 goto out;
5481 }
5482
5483 leaf = path->nodes[0];
5484 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5485 if (btrfs_root_ref_dirid(eb: leaf, s: ref) != btrfs_ino(inode: dir) ||
5486 btrfs_root_ref_name_len(eb: leaf, s: ref) != fname.disk_name.len)
5487 goto out;
5488
5489 ret = memcmp_extent_buffer(eb: leaf, ptrv: fname.disk_name.name,
5490 start: (unsigned long)(ref + 1), len: fname.disk_name.len);
5491 if (ret)
5492 goto out;
5493
5494 btrfs_release_path(p: path);
5495
5496 new_root = btrfs_get_fs_root(fs_info, objectid: location->objectid, check_ref: true);
5497 if (IS_ERR(ptr: new_root)) {
5498 err = PTR_ERR(ptr: new_root);
5499 goto out;
5500 }
5501
5502 *sub_root = new_root;
5503 location->objectid = btrfs_root_dirid(s: &new_root->root_item);
5504 location->type = BTRFS_INODE_ITEM_KEY;
5505 location->offset = 0;
5506 err = 0;
5507out:
5508 btrfs_free_path(p: path);
5509 fscrypt_free_filename(fname: &fname);
5510 return err;
5511}
5512
5513static void inode_tree_add(struct btrfs_inode *inode)
5514{
5515 struct btrfs_root *root = inode->root;
5516 struct btrfs_inode *entry;
5517 struct rb_node **p;
5518 struct rb_node *parent;
5519 struct rb_node *new = &inode->rb_node;
5520 u64 ino = btrfs_ino(inode);
5521
5522 if (inode_unhashed(inode: &inode->vfs_inode))
5523 return;
5524 parent = NULL;
5525 spin_lock(lock: &root->inode_lock);
5526 p = &root->inode_tree.rb_node;
5527 while (*p) {
5528 parent = *p;
5529 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5530
5531 if (ino < btrfs_ino(inode: entry))
5532 p = &parent->rb_left;
5533 else if (ino > btrfs_ino(inode: entry))
5534 p = &parent->rb_right;
5535 else {
5536 WARN_ON(!(entry->vfs_inode.i_state &
5537 (I_WILL_FREE | I_FREEING)));
5538 rb_replace_node(victim: parent, new, root: &root->inode_tree);
5539 RB_CLEAR_NODE(parent);
5540 spin_unlock(lock: &root->inode_lock);
5541 return;
5542 }
5543 }
5544 rb_link_node(node: new, parent, rb_link: p);
5545 rb_insert_color(new, &root->inode_tree);
5546 spin_unlock(lock: &root->inode_lock);
5547}
5548
5549static void inode_tree_del(struct btrfs_inode *inode)
5550{
5551 struct btrfs_root *root = inode->root;
5552 int empty = 0;
5553
5554 spin_lock(lock: &root->inode_lock);
5555 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5556 rb_erase(&inode->rb_node, &root->inode_tree);
5557 RB_CLEAR_NODE(&inode->rb_node);
5558 empty = RB_EMPTY_ROOT(&root->inode_tree);
5559 }
5560 spin_unlock(lock: &root->inode_lock);
5561
5562 if (empty && btrfs_root_refs(s: &root->root_item) == 0) {
5563 spin_lock(lock: &root->inode_lock);
5564 empty = RB_EMPTY_ROOT(&root->inode_tree);
5565 spin_unlock(lock: &root->inode_lock);
5566 if (empty)
5567 btrfs_add_dead_root(root);
5568 }
5569}
5570
5571
5572static int btrfs_init_locked_inode(struct inode *inode, void *p)
5573{
5574 struct btrfs_iget_args *args = p;
5575
5576 inode->i_ino = args->ino;
5577 BTRFS_I(inode)->location.objectid = args->ino;
5578 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5579 BTRFS_I(inode)->location.offset = 0;
5580 BTRFS_I(inode)->root = btrfs_grab_root(root: args->root);
5581
5582 if (args->root && args->root == args->root->fs_info->tree_root &&
5583 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5584 set_bit(nr: BTRFS_INODE_FREE_SPACE_INODE,
5585 addr: &BTRFS_I(inode)->runtime_flags);
5586 return 0;
5587}
5588
5589static int btrfs_find_actor(struct inode *inode, void *opaque)
5590{
5591 struct btrfs_iget_args *args = opaque;
5592
5593 return args->ino == BTRFS_I(inode)->location.objectid &&
5594 args->root == BTRFS_I(inode)->root;
5595}
5596
5597static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5598 struct btrfs_root *root)
5599{
5600 struct inode *inode;
5601 struct btrfs_iget_args args;
5602 unsigned long hashval = btrfs_inode_hash(objectid: ino, root);
5603
5604 args.ino = ino;
5605 args.root = root;
5606
5607 inode = iget5_locked(s, hashval, test: btrfs_find_actor,
5608 set: btrfs_init_locked_inode,
5609 (void *)&args);
5610 return inode;
5611}
5612
5613/*
5614 * Get an inode object given its inode number and corresponding root.
5615 * Path can be preallocated to prevent recursing back to iget through
5616 * allocator. NULL is also valid but may require an additional allocation
5617 * later.
5618 */
5619struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5620 struct btrfs_root *root, struct btrfs_path *path)
5621{
5622 struct inode *inode;
5623
5624 inode = btrfs_iget_locked(s, ino, root);
5625 if (!inode)
5626 return ERR_PTR(error: -ENOMEM);
5627
5628 if (inode->i_state & I_NEW) {
5629 int ret;
5630
5631 ret = btrfs_read_locked_inode(inode, in_path: path);
5632 if (!ret) {
5633 inode_tree_add(inode: BTRFS_I(inode));
5634 unlock_new_inode(inode);
5635 } else {
5636 iget_failed(inode);
5637 /*
5638 * ret > 0 can come from btrfs_search_slot called by
5639 * btrfs_read_locked_inode, this means the inode item
5640 * was not found.
5641 */
5642 if (ret > 0)
5643 ret = -ENOENT;
5644 inode = ERR_PTR(error: ret);
5645 }
5646 }
5647
5648 return inode;
5649}
5650
5651struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5652{
5653 return btrfs_iget_path(s, ino, root, NULL);
5654}
5655
5656static struct inode *new_simple_dir(struct inode *dir,
5657 struct btrfs_key *key,
5658 struct btrfs_root *root)
5659{
5660 struct timespec64 ts;
5661 struct inode *inode = new_inode(sb: dir->i_sb);
5662
5663 if (!inode)
5664 return ERR_PTR(error: -ENOMEM);
5665
5666 BTRFS_I(inode)->root = btrfs_grab_root(root);
5667 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5668 set_bit(nr: BTRFS_INODE_DUMMY, addr: &BTRFS_I(inode)->runtime_flags);
5669
5670 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5671 /*
5672 * We only need lookup, the rest is read-only and there's no inode
5673 * associated with the dentry
5674 */
5675 inode->i_op = &simple_dir_inode_operations;
5676 inode->i_opflags &= ~IOP_XATTR;
5677 inode->i_fop = &simple_dir_operations;
5678 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5679
5680 ts = inode_set_ctime_current(inode);
5681 inode_set_mtime_to_ts(inode, ts);
5682 inode_set_atime_to_ts(inode, ts: inode_get_atime(inode: dir));
5683 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5684 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5685
5686 inode->i_uid = dir->i_uid;
5687 inode->i_gid = dir->i_gid;
5688
5689 return inode;
5690}
5691
5692static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5693static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5694static_assert(BTRFS_FT_DIR == FT_DIR);
5695static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5696static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5697static_assert(BTRFS_FT_FIFO == FT_FIFO);
5698static_assert(BTRFS_FT_SOCK == FT_SOCK);
5699static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5700
5701static inline u8 btrfs_inode_type(struct inode *inode)
5702{
5703 return fs_umode_to_ftype(mode: inode->i_mode);
5704}
5705
5706struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5707{
5708 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5709 struct inode *inode;
5710 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
5711 struct btrfs_root *sub_root = root;
5712 struct btrfs_key location;
5713 u8 di_type = 0;
5714 int ret = 0;
5715
5716 if (dentry->d_name.len > BTRFS_NAME_LEN)
5717 return ERR_PTR(error: -ENAMETOOLONG);
5718
5719 ret = btrfs_inode_by_name(dir: BTRFS_I(inode: dir), dentry, location: &location, type: &di_type);
5720 if (ret < 0)
5721 return ERR_PTR(error: ret);
5722
5723 if (location.type == BTRFS_INODE_ITEM_KEY) {
5724 inode = btrfs_iget(s: dir->i_sb, ino: location.objectid, root);
5725 if (IS_ERR(ptr: inode))
5726 return inode;
5727
5728 /* Do extra check against inode mode with di_type */
5729 if (btrfs_inode_type(inode) != di_type) {
5730 btrfs_crit(fs_info,
5731"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5732 inode->i_mode, btrfs_inode_type(inode),
5733 di_type);
5734 iput(inode);
5735 return ERR_PTR(error: -EUCLEAN);
5736 }
5737 return inode;
5738 }
5739
5740 ret = fixup_tree_root_location(fs_info, dir: BTRFS_I(inode: dir), dentry,
5741 location: &location, sub_root: &sub_root);
5742 if (ret < 0) {
5743 if (ret != -ENOENT)
5744 inode = ERR_PTR(error: ret);
5745 else
5746 inode = new_simple_dir(dir, key: &location, root);
5747 } else {
5748 inode = btrfs_iget(s: dir->i_sb, ino: location.objectid, root: sub_root);
5749 btrfs_put_root(root: sub_root);
5750
5751 if (IS_ERR(ptr: inode))
5752 return inode;
5753
5754 down_read(sem: &fs_info->cleanup_work_sem);
5755 if (!sb_rdonly(sb: inode->i_sb))
5756 ret = btrfs_orphan_cleanup(root: sub_root);
5757 up_read(sem: &fs_info->cleanup_work_sem);
5758 if (ret) {
5759 iput(inode);
5760 inode = ERR_PTR(error: ret);
5761 }
5762 }
5763
5764 return inode;
5765}
5766
5767static int btrfs_dentry_delete(const struct dentry *dentry)
5768{
5769 struct btrfs_root *root;
5770 struct inode *inode = d_inode(dentry);
5771
5772 if (!inode && !IS_ROOT(dentry))
5773 inode = d_inode(dentry: dentry->d_parent);
5774
5775 if (inode) {
5776 root = BTRFS_I(inode)->root;
5777 if (btrfs_root_refs(s: &root->root_item) == 0)
5778 return 1;
5779
5780 if (btrfs_ino(inode: BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5781 return 1;
5782 }
5783 return 0;
5784}
5785
5786static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5787 unsigned int flags)
5788{
5789 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5790
5791 if (inode == ERR_PTR(error: -ENOENT))
5792 inode = NULL;
5793 return d_splice_alias(inode, dentry);
5794}
5795
5796/*
5797 * Find the highest existing sequence number in a directory and then set the
5798 * in-memory index_cnt variable to the first free sequence number.
5799 */
5800static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5801{
5802 struct btrfs_root *root = inode->root;
5803 struct btrfs_key key, found_key;
5804 struct btrfs_path *path;
5805 struct extent_buffer *leaf;
5806 int ret;
5807
5808 key.objectid = btrfs_ino(inode);
5809 key.type = BTRFS_DIR_INDEX_KEY;
5810 key.offset = (u64)-1;
5811
5812 path = btrfs_alloc_path();
5813 if (!path)
5814 return -ENOMEM;
5815
5816 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5817 if (ret < 0)
5818 goto out;
5819 /* FIXME: we should be able to handle this */
5820 if (ret == 0)
5821 goto out;
5822 ret = 0;
5823
5824 if (path->slots[0] == 0) {
5825 inode->index_cnt = BTRFS_DIR_START_INDEX;
5826 goto out;
5827 }
5828
5829 path->slots[0]--;
5830
5831 leaf = path->nodes[0];
5832 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
5833
5834 if (found_key.objectid != btrfs_ino(inode) ||
5835 found_key.type != BTRFS_DIR_INDEX_KEY) {
5836 inode->index_cnt = BTRFS_DIR_START_INDEX;
5837 goto out;
5838 }
5839
5840 inode->index_cnt = found_key.offset + 1;
5841out:
5842 btrfs_free_path(p: path);
5843 return ret;
5844}
5845
5846static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5847{
5848 int ret = 0;
5849
5850 btrfs_inode_lock(inode: dir, ilock_flags: 0);
5851 if (dir->index_cnt == (u64)-1) {
5852 ret = btrfs_inode_delayed_dir_index_count(inode: dir);
5853 if (ret) {
5854 ret = btrfs_set_inode_index_count(inode: dir);
5855 if (ret)
5856 goto out;
5857 }
5858 }
5859
5860 /* index_cnt is the index number of next new entry, so decrement it. */
5861 *index = dir->index_cnt - 1;
5862out:
5863 btrfs_inode_unlock(inode: dir, ilock_flags: 0);
5864
5865 return ret;
5866}
5867
5868/*
5869 * All this infrastructure exists because dir_emit can fault, and we are holding
5870 * the tree lock when doing readdir. For now just allocate a buffer and copy
5871 * our information into that, and then dir_emit from the buffer. This is
5872 * similar to what NFS does, only we don't keep the buffer around in pagecache
5873 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5874 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5875 * tree lock.
5876 */
5877static int btrfs_opendir(struct inode *inode, struct file *file)
5878{
5879 struct btrfs_file_private *private;
5880 u64 last_index;
5881 int ret;
5882
5883 ret = btrfs_get_dir_last_index(dir: BTRFS_I(inode), index: &last_index);
5884 if (ret)
5885 return ret;
5886
5887 private = kzalloc(size: sizeof(struct btrfs_file_private), GFP_KERNEL);
5888 if (!private)
5889 return -ENOMEM;
5890 private->last_index = last_index;
5891 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5892 if (!private->filldir_buf) {
5893 kfree(objp: private);
5894 return -ENOMEM;
5895 }
5896 file->private_data = private;
5897 return 0;
5898}
5899
5900static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5901{
5902 struct btrfs_file_private *private = file->private_data;
5903 int ret;
5904
5905 ret = btrfs_get_dir_last_index(dir: BTRFS_I(inode: file_inode(f: file)),
5906 index: &private->last_index);
5907 if (ret)
5908 return ret;
5909
5910 return generic_file_llseek(file, offset, whence);
5911}
5912
5913struct dir_entry {
5914 u64 ino;
5915 u64 offset;
5916 unsigned type;
5917 int name_len;
5918};
5919
5920static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5921{
5922 while (entries--) {
5923 struct dir_entry *entry = addr;
5924 char *name = (char *)(entry + 1);
5925
5926 ctx->pos = get_unaligned(&entry->offset);
5927 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5928 get_unaligned(&entry->ino),
5929 get_unaligned(&entry->type)))
5930 return 1;
5931 addr += sizeof(struct dir_entry) +
5932 get_unaligned(&entry->name_len);
5933 ctx->pos++;
5934 }
5935 return 0;
5936}
5937
5938static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5939{
5940 struct inode *inode = file_inode(f: file);
5941 struct btrfs_root *root = BTRFS_I(inode)->root;
5942 struct btrfs_file_private *private = file->private_data;
5943 struct btrfs_dir_item *di;
5944 struct btrfs_key key;
5945 struct btrfs_key found_key;
5946 struct btrfs_path *path;
5947 void *addr;
5948 LIST_HEAD(ins_list);
5949 LIST_HEAD(del_list);
5950 int ret;
5951 char *name_ptr;
5952 int name_len;
5953 int entries = 0;
5954 int total_len = 0;
5955 bool put = false;
5956 struct btrfs_key location;
5957
5958 if (!dir_emit_dots(file, ctx))
5959 return 0;
5960
5961 path = btrfs_alloc_path();
5962 if (!path)
5963 return -ENOMEM;
5964
5965 addr = private->filldir_buf;
5966 path->reada = READA_FORWARD;
5967
5968 put = btrfs_readdir_get_delayed_items(inode, last_index: private->last_index,
5969 ins_list: &ins_list, del_list: &del_list);
5970
5971again:
5972 key.type = BTRFS_DIR_INDEX_KEY;
5973 key.offset = ctx->pos;
5974 key.objectid = btrfs_ino(inode: BTRFS_I(inode));
5975
5976 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5977 struct dir_entry *entry;
5978 struct extent_buffer *leaf = path->nodes[0];
5979 u8 ftype;
5980
5981 if (found_key.objectid != key.objectid)
5982 break;
5983 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5984 break;
5985 if (found_key.offset < ctx->pos)
5986 continue;
5987 if (found_key.offset > private->last_index)
5988 break;
5989 if (btrfs_should_delete_dir_index(del_list: &del_list, index: found_key.offset))
5990 continue;
5991 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5992 name_len = btrfs_dir_name_len(eb: leaf, s: di);
5993 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5994 PAGE_SIZE) {
5995 btrfs_release_path(p: path);
5996 ret = btrfs_filldir(addr: private->filldir_buf, entries, ctx);
5997 if (ret)
5998 goto nopos;
5999 addr = private->filldir_buf;
6000 entries = 0;
6001 total_len = 0;
6002 goto again;
6003 }
6004
6005 ftype = btrfs_dir_flags_to_ftype(flags: btrfs_dir_flags(eb: leaf, s: di));
6006 entry = addr;
6007 name_ptr = (char *)(entry + 1);
6008 read_extent_buffer(eb: leaf, dst: name_ptr,
6009 start: (unsigned long)(di + 1), len: name_len);
6010 put_unaligned(name_len, &entry->name_len);
6011 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6012 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &location);
6013 put_unaligned(location.objectid, &entry->ino);
6014 put_unaligned(found_key.offset, &entry->offset);
6015 entries++;
6016 addr += sizeof(struct dir_entry) + name_len;
6017 total_len += sizeof(struct dir_entry) + name_len;
6018 }
6019 /* Catch error encountered during iteration */
6020 if (ret < 0)
6021 goto err;
6022
6023 btrfs_release_path(p: path);
6024
6025 ret = btrfs_filldir(addr: private->filldir_buf, entries, ctx);
6026 if (ret)
6027 goto nopos;
6028
6029 ret = btrfs_readdir_delayed_dir_index(ctx, ins_list: &ins_list);
6030 if (ret)
6031 goto nopos;
6032
6033 /*
6034 * Stop new entries from being returned after we return the last
6035 * entry.
6036 *
6037 * New directory entries are assigned a strictly increasing
6038 * offset. This means that new entries created during readdir
6039 * are *guaranteed* to be seen in the future by that readdir.
6040 * This has broken buggy programs which operate on names as
6041 * they're returned by readdir. Until we re-use freed offsets
6042 * we have this hack to stop new entries from being returned
6043 * under the assumption that they'll never reach this huge
6044 * offset.
6045 *
6046 * This is being careful not to overflow 32bit loff_t unless the
6047 * last entry requires it because doing so has broken 32bit apps
6048 * in the past.
6049 */
6050 if (ctx->pos >= INT_MAX)
6051 ctx->pos = LLONG_MAX;
6052 else
6053 ctx->pos = INT_MAX;
6054nopos:
6055 ret = 0;
6056err:
6057 if (put)
6058 btrfs_readdir_put_delayed_items(inode, ins_list: &ins_list, del_list: &del_list);
6059 btrfs_free_path(p: path);
6060 return ret;
6061}
6062
6063/*
6064 * This is somewhat expensive, updating the tree every time the
6065 * inode changes. But, it is most likely to find the inode in cache.
6066 * FIXME, needs more benchmarking...there are no reasons other than performance
6067 * to keep or drop this code.
6068 */
6069static int btrfs_dirty_inode(struct btrfs_inode *inode)
6070{
6071 struct btrfs_root *root = inode->root;
6072 struct btrfs_fs_info *fs_info = root->fs_info;
6073 struct btrfs_trans_handle *trans;
6074 int ret;
6075
6076 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6077 return 0;
6078
6079 trans = btrfs_join_transaction(root);
6080 if (IS_ERR(ptr: trans))
6081 return PTR_ERR(ptr: trans);
6082
6083 ret = btrfs_update_inode(trans, inode);
6084 if (ret == -ENOSPC || ret == -EDQUOT) {
6085 /* whoops, lets try again with the full transaction */
6086 btrfs_end_transaction(trans);
6087 trans = btrfs_start_transaction(root, num_items: 1);
6088 if (IS_ERR(ptr: trans))
6089 return PTR_ERR(ptr: trans);
6090
6091 ret = btrfs_update_inode(trans, inode);
6092 }
6093 btrfs_end_transaction(trans);
6094 if (inode->delayed_node)
6095 btrfs_balance_delayed_items(fs_info);
6096
6097 return ret;
6098}
6099
6100/*
6101 * This is a copy of file_update_time. We need this so we can return error on
6102 * ENOSPC for updating the inode in the case of file write and mmap writes.
6103 */
6104static int btrfs_update_time(struct inode *inode, int flags)
6105{
6106 struct btrfs_root *root = BTRFS_I(inode)->root;
6107 bool dirty;
6108
6109 if (btrfs_root_readonly(root))
6110 return -EROFS;
6111
6112 dirty = inode_update_timestamps(inode, flags);
6113 return dirty ? btrfs_dirty_inode(inode: BTRFS_I(inode)) : 0;
6114}
6115
6116/*
6117 * helper to find a free sequence number in a given directory. This current
6118 * code is very simple, later versions will do smarter things in the btree
6119 */
6120int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6121{
6122 int ret = 0;
6123
6124 if (dir->index_cnt == (u64)-1) {
6125 ret = btrfs_inode_delayed_dir_index_count(inode: dir);
6126 if (ret) {
6127 ret = btrfs_set_inode_index_count(inode: dir);
6128 if (ret)
6129 return ret;
6130 }
6131 }
6132
6133 *index = dir->index_cnt;
6134 dir->index_cnt++;
6135
6136 return ret;
6137}
6138
6139static int btrfs_insert_inode_locked(struct inode *inode)
6140{
6141 struct btrfs_iget_args args;
6142
6143 args.ino = BTRFS_I(inode)->location.objectid;
6144 args.root = BTRFS_I(inode)->root;
6145
6146 return insert_inode_locked4(inode,
6147 btrfs_inode_hash(objectid: inode->i_ino, root: BTRFS_I(inode)->root),
6148 test: btrfs_find_actor, &args);
6149}
6150
6151int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6152 unsigned int *trans_num_items)
6153{
6154 struct inode *dir = args->dir;
6155 struct inode *inode = args->inode;
6156 int ret;
6157
6158 if (!args->orphan) {
6159 ret = fscrypt_setup_filename(inode: dir, iname: &args->dentry->d_name, lookup: 0,
6160 fname: &args->fname);
6161 if (ret)
6162 return ret;
6163 }
6164
6165 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6166 if (ret) {
6167 fscrypt_free_filename(fname: &args->fname);
6168 return ret;
6169 }
6170
6171 /* 1 to add inode item */
6172 *trans_num_items = 1;
6173 /* 1 to add compression property */
6174 if (BTRFS_I(inode: dir)->prop_compress)
6175 (*trans_num_items)++;
6176 /* 1 to add default ACL xattr */
6177 if (args->default_acl)
6178 (*trans_num_items)++;
6179 /* 1 to add access ACL xattr */
6180 if (args->acl)
6181 (*trans_num_items)++;
6182#ifdef CONFIG_SECURITY
6183 /* 1 to add LSM xattr */
6184 if (dir->i_security)
6185 (*trans_num_items)++;
6186#endif
6187 if (args->orphan) {
6188 /* 1 to add orphan item */
6189 (*trans_num_items)++;
6190 } else {
6191 /*
6192 * 1 to add dir item
6193 * 1 to add dir index
6194 * 1 to update parent inode item
6195 *
6196 * No need for 1 unit for the inode ref item because it is
6197 * inserted in a batch together with the inode item at
6198 * btrfs_create_new_inode().
6199 */
6200 *trans_num_items += 3;
6201 }
6202 return 0;
6203}
6204
6205void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6206{
6207 posix_acl_release(acl: args->acl);
6208 posix_acl_release(acl: args->default_acl);
6209 fscrypt_free_filename(fname: &args->fname);
6210}
6211
6212/*
6213 * Inherit flags from the parent inode.
6214 *
6215 * Currently only the compression flags and the cow flags are inherited.
6216 */
6217static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6218{
6219 unsigned int flags;
6220
6221 flags = dir->flags;
6222
6223 if (flags & BTRFS_INODE_NOCOMPRESS) {
6224 inode->flags &= ~BTRFS_INODE_COMPRESS;
6225 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6226 } else if (flags & BTRFS_INODE_COMPRESS) {
6227 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6228 inode->flags |= BTRFS_INODE_COMPRESS;
6229 }
6230
6231 if (flags & BTRFS_INODE_NODATACOW) {
6232 inode->flags |= BTRFS_INODE_NODATACOW;
6233 if (S_ISREG(inode->vfs_inode.i_mode))
6234 inode->flags |= BTRFS_INODE_NODATASUM;
6235 }
6236
6237 btrfs_sync_inode_flags_to_i_flags(inode: &inode->vfs_inode);
6238}
6239
6240int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6241 struct btrfs_new_inode_args *args)
6242{
6243 struct timespec64 ts;
6244 struct inode *dir = args->dir;
6245 struct inode *inode = args->inode;
6246 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6247 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6248 struct btrfs_root *root;
6249 struct btrfs_inode_item *inode_item;
6250 struct btrfs_key *location;
6251 struct btrfs_path *path;
6252 u64 objectid;
6253 struct btrfs_inode_ref *ref;
6254 struct btrfs_key key[2];
6255 u32 sizes[2];
6256 struct btrfs_item_batch batch;
6257 unsigned long ptr;
6258 int ret;
6259
6260 path = btrfs_alloc_path();
6261 if (!path)
6262 return -ENOMEM;
6263
6264 if (!args->subvol)
6265 BTRFS_I(inode)->root = btrfs_grab_root(root: BTRFS_I(inode: dir)->root);
6266 root = BTRFS_I(inode)->root;
6267
6268 ret = btrfs_get_free_objectid(root, objectid: &objectid);
6269 if (ret)
6270 goto out;
6271 inode->i_ino = objectid;
6272
6273 if (args->orphan) {
6274 /*
6275 * O_TMPFILE, set link count to 0, so that after this point, we
6276 * fill in an inode item with the correct link count.
6277 */
6278 set_nlink(inode, nlink: 0);
6279 } else {
6280 trace_btrfs_inode_request(inode: dir);
6281
6282 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: dir), index: &BTRFS_I(inode)->dir_index);
6283 if (ret)
6284 goto out;
6285 }
6286 /* index_cnt is ignored for everything but a dir. */
6287 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6288 BTRFS_I(inode)->generation = trans->transid;
6289 inode->i_generation = BTRFS_I(inode)->generation;
6290
6291 /*
6292 * We don't have any capability xattrs set here yet, shortcut any
6293 * queries for the xattrs here. If we add them later via the inode
6294 * security init path or any other path this flag will be cleared.
6295 */
6296 set_bit(nr: BTRFS_INODE_NO_CAP_XATTR, addr: &BTRFS_I(inode)->runtime_flags);
6297
6298 /*
6299 * Subvolumes don't inherit flags from their parent directory.
6300 * Originally this was probably by accident, but we probably can't
6301 * change it now without compatibility issues.
6302 */
6303 if (!args->subvol)
6304 btrfs_inherit_iflags(inode: BTRFS_I(inode), dir: BTRFS_I(inode: dir));
6305
6306 if (S_ISREG(inode->i_mode)) {
6307 if (btrfs_test_opt(fs_info, NODATASUM))
6308 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6309 if (btrfs_test_opt(fs_info, NODATACOW))
6310 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6311 BTRFS_INODE_NODATASUM;
6312 }
6313
6314 location = &BTRFS_I(inode)->location;
6315 location->objectid = objectid;
6316 location->offset = 0;
6317 location->type = BTRFS_INODE_ITEM_KEY;
6318
6319 ret = btrfs_insert_inode_locked(inode);
6320 if (ret < 0) {
6321 if (!args->orphan)
6322 BTRFS_I(inode: dir)->index_cnt--;
6323 goto out;
6324 }
6325
6326 /*
6327 * We could have gotten an inode number from somebody who was fsynced
6328 * and then removed in this same transaction, so let's just set full
6329 * sync since it will be a full sync anyway and this will blow away the
6330 * old info in the log.
6331 */
6332 btrfs_set_inode_full_sync(inode: BTRFS_I(inode));
6333
6334 key[0].objectid = objectid;
6335 key[0].type = BTRFS_INODE_ITEM_KEY;
6336 key[0].offset = 0;
6337
6338 sizes[0] = sizeof(struct btrfs_inode_item);
6339
6340 if (!args->orphan) {
6341 /*
6342 * Start new inodes with an inode_ref. This is slightly more
6343 * efficient for small numbers of hard links since they will
6344 * be packed into one item. Extended refs will kick in if we
6345 * add more hard links than can fit in the ref item.
6346 */
6347 key[1].objectid = objectid;
6348 key[1].type = BTRFS_INODE_REF_KEY;
6349 if (args->subvol) {
6350 key[1].offset = objectid;
6351 sizes[1] = 2 + sizeof(*ref);
6352 } else {
6353 key[1].offset = btrfs_ino(inode: BTRFS_I(inode: dir));
6354 sizes[1] = name->len + sizeof(*ref);
6355 }
6356 }
6357
6358 batch.keys = &key[0];
6359 batch.data_sizes = &sizes[0];
6360 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6361 batch.nr = args->orphan ? 1 : 2;
6362 ret = btrfs_insert_empty_items(trans, root, path, batch: &batch);
6363 if (ret != 0) {
6364 btrfs_abort_transaction(trans, ret);
6365 goto discard;
6366 }
6367
6368 ts = simple_inode_init_ts(inode);
6369 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6370 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6371
6372 /*
6373 * We're going to fill the inode item now, so at this point the inode
6374 * must be fully initialized.
6375 */
6376
6377 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6378 struct btrfs_inode_item);
6379 memzero_extent_buffer(eb: path->nodes[0], start: (unsigned long)inode_item,
6380 len: sizeof(*inode_item));
6381 fill_inode_item(trans, leaf: path->nodes[0], item: inode_item, inode);
6382
6383 if (!args->orphan) {
6384 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6385 struct btrfs_inode_ref);
6386 ptr = (unsigned long)(ref + 1);
6387 if (args->subvol) {
6388 btrfs_set_inode_ref_name_len(eb: path->nodes[0], s: ref, val: 2);
6389 btrfs_set_inode_ref_index(eb: path->nodes[0], s: ref, val: 0);
6390 write_extent_buffer(eb: path->nodes[0], src: "..", start: ptr, len: 2);
6391 } else {
6392 btrfs_set_inode_ref_name_len(eb: path->nodes[0], s: ref,
6393 val: name->len);
6394 btrfs_set_inode_ref_index(eb: path->nodes[0], s: ref,
6395 val: BTRFS_I(inode)->dir_index);
6396 write_extent_buffer(eb: path->nodes[0], src: name->name, start: ptr,
6397 len: name->len);
6398 }
6399 }
6400
6401 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
6402 /*
6403 * We don't need the path anymore, plus inheriting properties, adding
6404 * ACLs, security xattrs, orphan item or adding the link, will result in
6405 * allocating yet another path. So just free our path.
6406 */
6407 btrfs_free_path(p: path);
6408 path = NULL;
6409
6410 if (args->subvol) {
6411 struct inode *parent;
6412
6413 /*
6414 * Subvolumes inherit properties from their parent subvolume,
6415 * not the directory they were created in.
6416 */
6417 parent = btrfs_iget(s: fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6418 root: BTRFS_I(inode: dir)->root);
6419 if (IS_ERR(ptr: parent)) {
6420 ret = PTR_ERR(ptr: parent);
6421 } else {
6422 ret = btrfs_inode_inherit_props(trans, inode, dir: parent);
6423 iput(parent);
6424 }
6425 } else {
6426 ret = btrfs_inode_inherit_props(trans, inode, dir);
6427 }
6428 if (ret) {
6429 btrfs_err(fs_info,
6430 "error inheriting props for ino %llu (root %llu): %d",
6431 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6432 ret);
6433 }
6434
6435 /*
6436 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6437 * probably a bug.
6438 */
6439 if (!args->subvol) {
6440 ret = btrfs_init_inode_security(trans, args);
6441 if (ret) {
6442 btrfs_abort_transaction(trans, ret);
6443 goto discard;
6444 }
6445 }
6446
6447 inode_tree_add(inode: BTRFS_I(inode));
6448
6449 trace_btrfs_inode_new(inode);
6450 btrfs_set_inode_last_trans(trans, inode: BTRFS_I(inode));
6451
6452 btrfs_update_root_times(trans, root);
6453
6454 if (args->orphan) {
6455 ret = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
6456 } else {
6457 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode), name,
6458 add_backref: 0, index: BTRFS_I(inode)->dir_index);
6459 }
6460 if (ret) {
6461 btrfs_abort_transaction(trans, ret);
6462 goto discard;
6463 }
6464
6465 return 0;
6466
6467discard:
6468 /*
6469 * discard_new_inode() calls iput(), but the caller owns the reference
6470 * to the inode.
6471 */
6472 ihold(inode);
6473 discard_new_inode(inode);
6474out:
6475 btrfs_free_path(p: path);
6476 return ret;
6477}
6478
6479/*
6480 * utility function to add 'inode' into 'parent_inode' with
6481 * a give name and a given sequence number.
6482 * if 'add_backref' is true, also insert a backref from the
6483 * inode to the parent directory.
6484 */
6485int btrfs_add_link(struct btrfs_trans_handle *trans,
6486 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6487 const struct fscrypt_str *name, int add_backref, u64 index)
6488{
6489 int ret = 0;
6490 struct btrfs_key key;
6491 struct btrfs_root *root = parent_inode->root;
6492 u64 ino = btrfs_ino(inode);
6493 u64 parent_ino = btrfs_ino(inode: parent_inode);
6494
6495 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6496 memcpy(&key, &inode->root->root_key, sizeof(key));
6497 } else {
6498 key.objectid = ino;
6499 key.type = BTRFS_INODE_ITEM_KEY;
6500 key.offset = 0;
6501 }
6502
6503 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6504 ret = btrfs_add_root_ref(trans, root_id: key.objectid,
6505 ref_id: root->root_key.objectid, dirid: parent_ino,
6506 sequence: index, name);
6507 } else if (add_backref) {
6508 ret = btrfs_insert_inode_ref(trans, root, name,
6509 inode_objectid: ino, ref_objectid: parent_ino, index);
6510 }
6511
6512 /* Nothing to clean up yet */
6513 if (ret)
6514 return ret;
6515
6516 ret = btrfs_insert_dir_item(trans, name, dir: parent_inode, location: &key,
6517 type: btrfs_inode_type(inode: &inode->vfs_inode), index);
6518 if (ret == -EEXIST || ret == -EOVERFLOW)
6519 goto fail_dir_item;
6520 else if (ret) {
6521 btrfs_abort_transaction(trans, ret);
6522 return ret;
6523 }
6524
6525 btrfs_i_size_write(inode: parent_inode, size: parent_inode->vfs_inode.i_size +
6526 name->len * 2);
6527 inode_inc_iversion(inode: &parent_inode->vfs_inode);
6528 /*
6529 * If we are replaying a log tree, we do not want to update the mtime
6530 * and ctime of the parent directory with the current time, since the
6531 * log replay procedure is responsible for setting them to their correct
6532 * values (the ones it had when the fsync was done).
6533 */
6534 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6535 inode_set_mtime_to_ts(inode: &parent_inode->vfs_inode,
6536 ts: inode_set_ctime_current(inode: &parent_inode->vfs_inode));
6537
6538 ret = btrfs_update_inode(trans, inode: parent_inode);
6539 if (ret)
6540 btrfs_abort_transaction(trans, ret);
6541 return ret;
6542
6543fail_dir_item:
6544 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6545 u64 local_index;
6546 int err;
6547 err = btrfs_del_root_ref(trans, root_id: key.objectid,
6548 ref_id: root->root_key.objectid, dirid: parent_ino,
6549 sequence: &local_index, name);
6550 if (err)
6551 btrfs_abort_transaction(trans, err);
6552 } else if (add_backref) {
6553 u64 local_index;
6554 int err;
6555
6556 err = btrfs_del_inode_ref(trans, root, name, inode_objectid: ino, ref_objectid: parent_ino,
6557 index: &local_index);
6558 if (err)
6559 btrfs_abort_transaction(trans, err);
6560 }
6561
6562 /* Return the original error code */
6563 return ret;
6564}
6565
6566static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6567 struct inode *inode)
6568{
6569 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6570 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
6571 struct btrfs_new_inode_args new_inode_args = {
6572 .dir = dir,
6573 .dentry = dentry,
6574 .inode = inode,
6575 };
6576 unsigned int trans_num_items;
6577 struct btrfs_trans_handle *trans;
6578 int err;
6579
6580 err = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
6581 if (err)
6582 goto out_inode;
6583
6584 trans = btrfs_start_transaction(root, num_items: trans_num_items);
6585 if (IS_ERR(ptr: trans)) {
6586 err = PTR_ERR(ptr: trans);
6587 goto out_new_inode_args;
6588 }
6589
6590 err = btrfs_create_new_inode(trans, args: &new_inode_args);
6591 if (!err)
6592 d_instantiate_new(dentry, inode);
6593
6594 btrfs_end_transaction(trans);
6595 btrfs_btree_balance_dirty(fs_info);
6596out_new_inode_args:
6597 btrfs_new_inode_args_destroy(args: &new_inode_args);
6598out_inode:
6599 if (err)
6600 iput(inode);
6601 return err;
6602}
6603
6604static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6605 struct dentry *dentry, umode_t mode, dev_t rdev)
6606{
6607 struct inode *inode;
6608
6609 inode = new_inode(sb: dir->i_sb);
6610 if (!inode)
6611 return -ENOMEM;
6612 inode_init_owner(idmap, inode, dir, mode);
6613 inode->i_op = &btrfs_special_inode_operations;
6614 init_special_inode(inode, inode->i_mode, rdev);
6615 return btrfs_create_common(dir, dentry, inode);
6616}
6617
6618static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6619 struct dentry *dentry, umode_t mode, bool excl)
6620{
6621 struct inode *inode;
6622
6623 inode = new_inode(sb: dir->i_sb);
6624 if (!inode)
6625 return -ENOMEM;
6626 inode_init_owner(idmap, inode, dir, mode);
6627 inode->i_fop = &btrfs_file_operations;
6628 inode->i_op = &btrfs_file_inode_operations;
6629 inode->i_mapping->a_ops = &btrfs_aops;
6630 return btrfs_create_common(dir, dentry, inode);
6631}
6632
6633static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6634 struct dentry *dentry)
6635{
6636 struct btrfs_trans_handle *trans = NULL;
6637 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
6638 struct inode *inode = d_inode(dentry: old_dentry);
6639 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6640 struct fscrypt_name fname;
6641 u64 index;
6642 int err;
6643 int drop_inode = 0;
6644
6645 /* do not allow sys_link's with other subvols of the same device */
6646 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6647 return -EXDEV;
6648
6649 if (inode->i_nlink >= BTRFS_LINK_MAX)
6650 return -EMLINK;
6651
6652 err = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 0, fname: &fname);
6653 if (err)
6654 goto fail;
6655
6656 err = btrfs_set_inode_index(dir: BTRFS_I(inode: dir), index: &index);
6657 if (err)
6658 goto fail;
6659
6660 /*
6661 * 2 items for inode and inode ref
6662 * 2 items for dir items
6663 * 1 item for parent inode
6664 * 1 item for orphan item deletion if O_TMPFILE
6665 */
6666 trans = btrfs_start_transaction(root, num_items: inode->i_nlink ? 5 : 6);
6667 if (IS_ERR(ptr: trans)) {
6668 err = PTR_ERR(ptr: trans);
6669 trans = NULL;
6670 goto fail;
6671 }
6672
6673 /* There are several dir indexes for this inode, clear the cache. */
6674 BTRFS_I(inode)->dir_index = 0ULL;
6675 inc_nlink(inode);
6676 inode_inc_iversion(inode);
6677 inode_set_ctime_current(inode);
6678 ihold(inode);
6679 set_bit(nr: BTRFS_INODE_COPY_EVERYTHING, addr: &BTRFS_I(inode)->runtime_flags);
6680
6681 err = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode),
6682 name: &fname.disk_name, add_backref: 1, index);
6683
6684 if (err) {
6685 drop_inode = 1;
6686 } else {
6687 struct dentry *parent = dentry->d_parent;
6688
6689 err = btrfs_update_inode(trans, inode: BTRFS_I(inode));
6690 if (err)
6691 goto fail;
6692 if (inode->i_nlink == 1) {
6693 /*
6694 * If new hard link count is 1, it's a file created
6695 * with open(2) O_TMPFILE flag.
6696 */
6697 err = btrfs_orphan_del(trans, inode: BTRFS_I(inode));
6698 if (err)
6699 goto fail;
6700 }
6701 d_instantiate(dentry, inode);
6702 btrfs_log_new_name(trans, old_dentry, NULL, old_dir_index: 0, parent);
6703 }
6704
6705fail:
6706 fscrypt_free_filename(fname: &fname);
6707 if (trans)
6708 btrfs_end_transaction(trans);
6709 if (drop_inode) {
6710 inode_dec_link_count(inode);
6711 iput(inode);
6712 }
6713 btrfs_btree_balance_dirty(fs_info);
6714 return err;
6715}
6716
6717static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6718 struct dentry *dentry, umode_t mode)
6719{
6720 struct inode *inode;
6721
6722 inode = new_inode(sb: dir->i_sb);
6723 if (!inode)
6724 return -ENOMEM;
6725 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6726 inode->i_op = &btrfs_dir_inode_operations;
6727 inode->i_fop = &btrfs_dir_file_operations;
6728 return btrfs_create_common(dir, dentry, inode);
6729}
6730
6731static noinline int uncompress_inline(struct btrfs_path *path,
6732 struct page *page,
6733 struct btrfs_file_extent_item *item)
6734{
6735 int ret;
6736 struct extent_buffer *leaf = path->nodes[0];
6737 char *tmp;
6738 size_t max_size;
6739 unsigned long inline_size;
6740 unsigned long ptr;
6741 int compress_type;
6742
6743 compress_type = btrfs_file_extent_compression(eb: leaf, s: item);
6744 max_size = btrfs_file_extent_ram_bytes(eb: leaf, s: item);
6745 inline_size = btrfs_file_extent_inline_item_len(eb: leaf, nr: path->slots[0]);
6746 tmp = kmalloc(size: inline_size, GFP_NOFS);
6747 if (!tmp)
6748 return -ENOMEM;
6749 ptr = btrfs_file_extent_inline_start(e: item);
6750
6751 read_extent_buffer(eb: leaf, dst: tmp, start: ptr, len: inline_size);
6752
6753 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6754 ret = btrfs_decompress(type: compress_type, data_in: tmp, dest_page: page, start_byte: 0, srclen: inline_size, destlen: max_size);
6755
6756 /*
6757 * decompression code contains a memset to fill in any space between the end
6758 * of the uncompressed data and the end of max_size in case the decompressed
6759 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6760 * the end of an inline extent and the beginning of the next block, so we
6761 * cover that region here.
6762 */
6763
6764 if (max_size < PAGE_SIZE)
6765 memzero_page(page, offset: max_size, PAGE_SIZE - max_size);
6766 kfree(objp: tmp);
6767 return ret;
6768}
6769
6770static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6771 struct page *page)
6772{
6773 struct btrfs_file_extent_item *fi;
6774 void *kaddr;
6775 size_t copy_size;
6776
6777 if (!page || PageUptodate(page))
6778 return 0;
6779
6780 ASSERT(page_offset(page) == 0);
6781
6782 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6783 struct btrfs_file_extent_item);
6784 if (btrfs_file_extent_compression(eb: path->nodes[0], s: fi) != BTRFS_COMPRESS_NONE)
6785 return uncompress_inline(path, page, item: fi);
6786
6787 copy_size = min_t(u64, PAGE_SIZE,
6788 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6789 kaddr = kmap_local_page(page);
6790 read_extent_buffer(eb: path->nodes[0], dst: kaddr,
6791 start: btrfs_file_extent_inline_start(e: fi), len: copy_size);
6792 kunmap_local(kaddr);
6793 if (copy_size < PAGE_SIZE)
6794 memzero_page(page, offset: copy_size, PAGE_SIZE - copy_size);
6795 return 0;
6796}
6797
6798/*
6799 * Lookup the first extent overlapping a range in a file.
6800 *
6801 * @inode: file to search in
6802 * @page: page to read extent data into if the extent is inline
6803 * @start: file offset
6804 * @len: length of range starting at @start
6805 *
6806 * Return the first &struct extent_map which overlaps the given range, reading
6807 * it from the B-tree and caching it if necessary. Note that there may be more
6808 * extents which overlap the given range after the returned extent_map.
6809 *
6810 * If @page is not NULL and the extent is inline, this also reads the extent
6811 * data directly into the page and marks the extent up to date in the io_tree.
6812 *
6813 * Return: ERR_PTR on error, non-NULL extent_map on success.
6814 */
6815struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6816 struct page *page, u64 start, u64 len)
6817{
6818 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6819 int ret = 0;
6820 u64 extent_start = 0;
6821 u64 extent_end = 0;
6822 u64 objectid = btrfs_ino(inode);
6823 int extent_type = -1;
6824 struct btrfs_path *path = NULL;
6825 struct btrfs_root *root = inode->root;
6826 struct btrfs_file_extent_item *item;
6827 struct extent_buffer *leaf;
6828 struct btrfs_key found_key;
6829 struct extent_map *em = NULL;
6830 struct extent_map_tree *em_tree = &inode->extent_tree;
6831
6832 read_lock(&em_tree->lock);
6833 em = lookup_extent_mapping(tree: em_tree, start, len);
6834 read_unlock(&em_tree->lock);
6835
6836 if (em) {
6837 if (em->start > start || em->start + em->len <= start)
6838 free_extent_map(em);
6839 else if (em->block_start == EXTENT_MAP_INLINE && page)
6840 free_extent_map(em);
6841 else
6842 goto out;
6843 }
6844 em = alloc_extent_map();
6845 if (!em) {
6846 ret = -ENOMEM;
6847 goto out;
6848 }
6849 em->start = EXTENT_MAP_HOLE;
6850 em->orig_start = EXTENT_MAP_HOLE;
6851 em->len = (u64)-1;
6852 em->block_len = (u64)-1;
6853
6854 path = btrfs_alloc_path();
6855 if (!path) {
6856 ret = -ENOMEM;
6857 goto out;
6858 }
6859
6860 /* Chances are we'll be called again, so go ahead and do readahead */
6861 path->reada = READA_FORWARD;
6862
6863 /*
6864 * The same explanation in load_free_space_cache applies here as well,
6865 * we only read when we're loading the free space cache, and at that
6866 * point the commit_root has everything we need.
6867 */
6868 if (btrfs_is_free_space_inode(inode)) {
6869 path->search_commit_root = 1;
6870 path->skip_locking = 1;
6871 }
6872
6873 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, bytenr: start, mod: 0);
6874 if (ret < 0) {
6875 goto out;
6876 } else if (ret > 0) {
6877 if (path->slots[0] == 0)
6878 goto not_found;
6879 path->slots[0]--;
6880 ret = 0;
6881 }
6882
6883 leaf = path->nodes[0];
6884 item = btrfs_item_ptr(leaf, path->slots[0],
6885 struct btrfs_file_extent_item);
6886 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
6887 if (found_key.objectid != objectid ||
6888 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6889 /*
6890 * If we backup past the first extent we want to move forward
6891 * and see if there is an extent in front of us, otherwise we'll
6892 * say there is a hole for our whole search range which can
6893 * cause problems.
6894 */
6895 extent_end = start;
6896 goto next;
6897 }
6898
6899 extent_type = btrfs_file_extent_type(eb: leaf, s: item);
6900 extent_start = found_key.offset;
6901 extent_end = btrfs_file_extent_end(path);
6902 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6903 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6904 /* Only regular file could have regular/prealloc extent */
6905 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6906 ret = -EUCLEAN;
6907 btrfs_crit(fs_info,
6908 "regular/prealloc extent found for non-regular inode %llu",
6909 btrfs_ino(inode));
6910 goto out;
6911 }
6912 trace_btrfs_get_extent_show_fi_regular(bi: inode, l: leaf, fi: item,
6913 start: extent_start);
6914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6915 trace_btrfs_get_extent_show_fi_inline(bi: inode, l: leaf, fi: item,
6916 slot: path->slots[0],
6917 start: extent_start);
6918 }
6919next:
6920 if (start >= extent_end) {
6921 path->slots[0]++;
6922 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
6923 ret = btrfs_next_leaf(root, path);
6924 if (ret < 0)
6925 goto out;
6926 else if (ret > 0)
6927 goto not_found;
6928
6929 leaf = path->nodes[0];
6930 }
6931 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
6932 if (found_key.objectid != objectid ||
6933 found_key.type != BTRFS_EXTENT_DATA_KEY)
6934 goto not_found;
6935 if (start + len <= found_key.offset)
6936 goto not_found;
6937 if (start > found_key.offset)
6938 goto next;
6939
6940 /* New extent overlaps with existing one */
6941 em->start = start;
6942 em->orig_start = start;
6943 em->len = found_key.offset - start;
6944 em->block_start = EXTENT_MAP_HOLE;
6945 goto insert;
6946 }
6947
6948 btrfs_extent_item_to_extent_map(inode, path, fi: item, em);
6949
6950 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6951 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6952 goto insert;
6953 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6954 /*
6955 * Inline extent can only exist at file offset 0. This is
6956 * ensured by tree-checker and inline extent creation path.
6957 * Thus all members representing file offsets should be zero.
6958 */
6959 ASSERT(extent_start == 0);
6960 ASSERT(em->start == 0);
6961
6962 /*
6963 * btrfs_extent_item_to_extent_map() should have properly
6964 * initialized em members already.
6965 *
6966 * Other members are not utilized for inline extents.
6967 */
6968 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6969 ASSERT(em->len == fs_info->sectorsize);
6970
6971 ret = read_inline_extent(inode, path, page);
6972 if (ret < 0)
6973 goto out;
6974 goto insert;
6975 }
6976not_found:
6977 em->start = start;
6978 em->orig_start = start;
6979 em->len = len;
6980 em->block_start = EXTENT_MAP_HOLE;
6981insert:
6982 ret = 0;
6983 btrfs_release_path(p: path);
6984 if (em->start > start || extent_map_end(em) <= start) {
6985 btrfs_err(fs_info,
6986 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6987 em->start, em->len, start, len);
6988 ret = -EIO;
6989 goto out;
6990 }
6991
6992 write_lock(&em_tree->lock);
6993 ret = btrfs_add_extent_mapping(fs_info, em_tree, em_in: &em, start, len);
6994 write_unlock(&em_tree->lock);
6995out:
6996 btrfs_free_path(p: path);
6997
6998 trace_btrfs_get_extent(root, inode, map: em);
6999
7000 if (ret) {
7001 free_extent_map(em);
7002 return ERR_PTR(error: ret);
7003 }
7004 return em;
7005}
7006
7007static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7008 struct btrfs_dio_data *dio_data,
7009 const u64 start,
7010 const u64 len,
7011 const u64 orig_start,
7012 const u64 block_start,
7013 const u64 block_len,
7014 const u64 orig_block_len,
7015 const u64 ram_bytes,
7016 const int type)
7017{
7018 struct extent_map *em = NULL;
7019 struct btrfs_ordered_extent *ordered;
7020
7021 if (type != BTRFS_ORDERED_NOCOW) {
7022 em = create_io_em(inode, start, len, orig_start, block_start,
7023 block_len, orig_block_len, ram_bytes,
7024 compress_type: BTRFS_COMPRESS_NONE, /* compress_type */
7025 type);
7026 if (IS_ERR(ptr: em))
7027 goto out;
7028 }
7029 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes: len, ram_bytes: len,
7030 disk_bytenr: block_start, disk_num_bytes: block_len, offset: 0,
7031 flags: (1 << type) |
7032 (1 << BTRFS_ORDERED_DIRECT),
7033 compress_type: BTRFS_COMPRESS_NONE);
7034 if (IS_ERR(ptr: ordered)) {
7035 if (em) {
7036 free_extent_map(em);
7037 btrfs_drop_extent_map_range(inode, start,
7038 end: start + len - 1, skip_pinned: false);
7039 }
7040 em = ERR_CAST(ptr: ordered);
7041 } else {
7042 ASSERT(!dio_data->ordered);
7043 dio_data->ordered = ordered;
7044 }
7045 out:
7046
7047 return em;
7048}
7049
7050static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7051 struct btrfs_dio_data *dio_data,
7052 u64 start, u64 len)
7053{
7054 struct btrfs_root *root = inode->root;
7055 struct btrfs_fs_info *fs_info = root->fs_info;
7056 struct extent_map *em;
7057 struct btrfs_key ins;
7058 u64 alloc_hint;
7059 int ret;
7060
7061 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes: len);
7062again:
7063 ret = btrfs_reserve_extent(root, ram_bytes: len, num_bytes: len, min_alloc_size: fs_info->sectorsize,
7064 empty_size: 0, hint_byte: alloc_hint, ins: &ins, is_data: 1, delalloc: 1);
7065 if (ret == -EAGAIN) {
7066 ASSERT(btrfs_is_zoned(fs_info));
7067 wait_on_bit_io(word: &inode->root->fs_info->flags, bit: BTRFS_FS_NEED_ZONE_FINISH,
7068 TASK_UNINTERRUPTIBLE);
7069 goto again;
7070 }
7071 if (ret)
7072 return ERR_PTR(error: ret);
7073
7074 em = btrfs_create_dio_extent(inode, dio_data, start, len: ins.offset, orig_start: start,
7075 block_start: ins.objectid, block_len: ins.offset, orig_block_len: ins.offset,
7076 ram_bytes: ins.offset, type: BTRFS_ORDERED_REGULAR);
7077 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
7078 if (IS_ERR(ptr: em))
7079 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset,
7080 delalloc: 1);
7081
7082 return em;
7083}
7084
7085static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7086{
7087 struct btrfs_block_group *block_group;
7088 bool readonly = false;
7089
7090 block_group = btrfs_lookup_block_group(info: fs_info, bytenr);
7091 if (!block_group || block_group->ro)
7092 readonly = true;
7093 if (block_group)
7094 btrfs_put_block_group(cache: block_group);
7095 return readonly;
7096}
7097
7098/*
7099 * Check if we can do nocow write into the range [@offset, @offset + @len)
7100 *
7101 * @offset: File offset
7102 * @len: The length to write, will be updated to the nocow writeable
7103 * range
7104 * @orig_start: (optional) Return the original file offset of the file extent
7105 * @orig_len: (optional) Return the original on-disk length of the file extent
7106 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7107 * @strict: if true, omit optimizations that might force us into unnecessary
7108 * cow. e.g., don't trust generation number.
7109 *
7110 * Return:
7111 * >0 and update @len if we can do nocow write
7112 * 0 if we can't do nocow write
7113 * <0 if error happened
7114 *
7115 * NOTE: This only checks the file extents, caller is responsible to wait for
7116 * any ordered extents.
7117 */
7118noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7119 u64 *orig_start, u64 *orig_block_len,
7120 u64 *ram_bytes, bool nowait, bool strict)
7121{
7122 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7123 struct can_nocow_file_extent_args nocow_args = { 0 };
7124 struct btrfs_path *path;
7125 int ret;
7126 struct extent_buffer *leaf;
7127 struct btrfs_root *root = BTRFS_I(inode)->root;
7128 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7129 struct btrfs_file_extent_item *fi;
7130 struct btrfs_key key;
7131 int found_type;
7132
7133 path = btrfs_alloc_path();
7134 if (!path)
7135 return -ENOMEM;
7136 path->nowait = nowait;
7137
7138 ret = btrfs_lookup_file_extent(NULL, root, path,
7139 objectid: btrfs_ino(inode: BTRFS_I(inode)), bytenr: offset, mod: 0);
7140 if (ret < 0)
7141 goto out;
7142
7143 if (ret == 1) {
7144 if (path->slots[0] == 0) {
7145 /* can't find the item, must cow */
7146 ret = 0;
7147 goto out;
7148 }
7149 path->slots[0]--;
7150 }
7151 ret = 0;
7152 leaf = path->nodes[0];
7153 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
7154 if (key.objectid != btrfs_ino(inode: BTRFS_I(inode)) ||
7155 key.type != BTRFS_EXTENT_DATA_KEY) {
7156 /* not our file or wrong item type, must cow */
7157 goto out;
7158 }
7159
7160 if (key.offset > offset) {
7161 /* Wrong offset, must cow */
7162 goto out;
7163 }
7164
7165 if (btrfs_file_extent_end(path) <= offset)
7166 goto out;
7167
7168 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7169 found_type = btrfs_file_extent_type(eb: leaf, s: fi);
7170 if (ram_bytes)
7171 *ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: fi);
7172
7173 nocow_args.start = offset;
7174 nocow_args.end = offset + *len - 1;
7175 nocow_args.strict = strict;
7176 nocow_args.free_path = true;
7177
7178 ret = can_nocow_file_extent(path, key: &key, inode: BTRFS_I(inode), args: &nocow_args);
7179 /* can_nocow_file_extent() has freed the path. */
7180 path = NULL;
7181
7182 if (ret != 1) {
7183 /* Treat errors as not being able to NOCOW. */
7184 ret = 0;
7185 goto out;
7186 }
7187
7188 ret = 0;
7189 if (btrfs_extent_readonly(fs_info, bytenr: nocow_args.disk_bytenr))
7190 goto out;
7191
7192 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7193 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7194 u64 range_end;
7195
7196 range_end = round_up(offset + nocow_args.num_bytes,
7197 root->fs_info->sectorsize) - 1;
7198 ret = test_range_bit_exists(tree: io_tree, start: offset, end: range_end, bit: EXTENT_DELALLOC);
7199 if (ret) {
7200 ret = -EAGAIN;
7201 goto out;
7202 }
7203 }
7204
7205 if (orig_start)
7206 *orig_start = key.offset - nocow_args.extent_offset;
7207 if (orig_block_len)
7208 *orig_block_len = nocow_args.disk_num_bytes;
7209
7210 *len = nocow_args.num_bytes;
7211 ret = 1;
7212out:
7213 btrfs_free_path(p: path);
7214 return ret;
7215}
7216
7217static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7218 struct extent_state **cached_state,
7219 unsigned int iomap_flags)
7220{
7221 const bool writing = (iomap_flags & IOMAP_WRITE);
7222 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7224 struct btrfs_ordered_extent *ordered;
7225 int ret = 0;
7226
7227 while (1) {
7228 if (nowait) {
7229 if (!try_lock_extent(tree: io_tree, start: lockstart, end: lockend,
7230 cached: cached_state))
7231 return -EAGAIN;
7232 } else {
7233 lock_extent(tree: io_tree, start: lockstart, end: lockend, cached: cached_state);
7234 }
7235 /*
7236 * We're concerned with the entire range that we're going to be
7237 * doing DIO to, so we need to make sure there's no ordered
7238 * extents in this range.
7239 */
7240 ordered = btrfs_lookup_ordered_range(inode: BTRFS_I(inode), file_offset: lockstart,
7241 len: lockend - lockstart + 1);
7242
7243 /*
7244 * We need to make sure there are no buffered pages in this
7245 * range either, we could have raced between the invalidate in
7246 * generic_file_direct_write and locking the extent. The
7247 * invalidate needs to happen so that reads after a write do not
7248 * get stale data.
7249 */
7250 if (!ordered &&
7251 (!writing || !filemap_range_has_page(inode->i_mapping,
7252 lstart: lockstart, lend: lockend)))
7253 break;
7254
7255 unlock_extent(tree: io_tree, start: lockstart, end: lockend, cached: cached_state);
7256
7257 if (ordered) {
7258 if (nowait) {
7259 btrfs_put_ordered_extent(entry: ordered);
7260 ret = -EAGAIN;
7261 break;
7262 }
7263 /*
7264 * If we are doing a DIO read and the ordered extent we
7265 * found is for a buffered write, we can not wait for it
7266 * to complete and retry, because if we do so we can
7267 * deadlock with concurrent buffered writes on page
7268 * locks. This happens only if our DIO read covers more
7269 * than one extent map, if at this point has already
7270 * created an ordered extent for a previous extent map
7271 * and locked its range in the inode's io tree, and a
7272 * concurrent write against that previous extent map's
7273 * range and this range started (we unlock the ranges
7274 * in the io tree only when the bios complete and
7275 * buffered writes always lock pages before attempting
7276 * to lock range in the io tree).
7277 */
7278 if (writing ||
7279 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7280 btrfs_start_ordered_extent(entry: ordered);
7281 else
7282 ret = nowait ? -EAGAIN : -ENOTBLK;
7283 btrfs_put_ordered_extent(entry: ordered);
7284 } else {
7285 /*
7286 * We could trigger writeback for this range (and wait
7287 * for it to complete) and then invalidate the pages for
7288 * this range (through invalidate_inode_pages2_range()),
7289 * but that can lead us to a deadlock with a concurrent
7290 * call to readahead (a buffered read or a defrag call
7291 * triggered a readahead) on a page lock due to an
7292 * ordered dio extent we created before but did not have
7293 * yet a corresponding bio submitted (whence it can not
7294 * complete), which makes readahead wait for that
7295 * ordered extent to complete while holding a lock on
7296 * that page.
7297 */
7298 ret = nowait ? -EAGAIN : -ENOTBLK;
7299 }
7300
7301 if (ret)
7302 break;
7303
7304 cond_resched();
7305 }
7306
7307 return ret;
7308}
7309
7310/* The callers of this must take lock_extent() */
7311static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7312 u64 len, u64 orig_start, u64 block_start,
7313 u64 block_len, u64 orig_block_len,
7314 u64 ram_bytes, int compress_type,
7315 int type)
7316{
7317 struct extent_map *em;
7318 int ret;
7319
7320 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7321 type == BTRFS_ORDERED_COMPRESSED ||
7322 type == BTRFS_ORDERED_NOCOW ||
7323 type == BTRFS_ORDERED_REGULAR);
7324
7325 em = alloc_extent_map();
7326 if (!em)
7327 return ERR_PTR(error: -ENOMEM);
7328
7329 em->start = start;
7330 em->orig_start = orig_start;
7331 em->len = len;
7332 em->block_len = block_len;
7333 em->block_start = block_start;
7334 em->orig_block_len = orig_block_len;
7335 em->ram_bytes = ram_bytes;
7336 em->generation = -1;
7337 em->flags |= EXTENT_FLAG_PINNED;
7338 if (type == BTRFS_ORDERED_PREALLOC)
7339 em->flags |= EXTENT_FLAG_FILLING;
7340 else if (type == BTRFS_ORDERED_COMPRESSED)
7341 extent_map_set_compression(em, type: compress_type);
7342
7343 ret = btrfs_replace_extent_map_range(inode, new_em: em, modified: true);
7344 if (ret) {
7345 free_extent_map(em);
7346 return ERR_PTR(error: ret);
7347 }
7348
7349 /* em got 2 refs now, callers needs to do free_extent_map once. */
7350 return em;
7351}
7352
7353
7354static int btrfs_get_blocks_direct_write(struct extent_map **map,
7355 struct inode *inode,
7356 struct btrfs_dio_data *dio_data,
7357 u64 start, u64 *lenp,
7358 unsigned int iomap_flags)
7359{
7360 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7361 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7362 struct extent_map *em = *map;
7363 int type;
7364 u64 block_start, orig_start, orig_block_len, ram_bytes;
7365 struct btrfs_block_group *bg;
7366 bool can_nocow = false;
7367 bool space_reserved = false;
7368 u64 len = *lenp;
7369 u64 prev_len;
7370 int ret = 0;
7371
7372 /*
7373 * We don't allocate a new extent in the following cases
7374 *
7375 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7376 * existing extent.
7377 * 2) The extent is marked as PREALLOC. We're good to go here and can
7378 * just use the extent.
7379 *
7380 */
7381 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7382 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7383 em->block_start != EXTENT_MAP_HOLE)) {
7384 if (em->flags & EXTENT_FLAG_PREALLOC)
7385 type = BTRFS_ORDERED_PREALLOC;
7386 else
7387 type = BTRFS_ORDERED_NOCOW;
7388 len = min(len, em->len - (start - em->start));
7389 block_start = em->block_start + (start - em->start);
7390
7391 if (can_nocow_extent(inode, offset: start, len: &len, orig_start: &orig_start,
7392 orig_block_len: &orig_block_len, ram_bytes: &ram_bytes, nowait: false, strict: false) == 1) {
7393 bg = btrfs_inc_nocow_writers(fs_info, bytenr: block_start);
7394 if (bg)
7395 can_nocow = true;
7396 }
7397 }
7398
7399 prev_len = len;
7400 if (can_nocow) {
7401 struct extent_map *em2;
7402
7403 /* We can NOCOW, so only need to reserve metadata space. */
7404 ret = btrfs_delalloc_reserve_metadata(inode: BTRFS_I(inode), num_bytes: len, disk_num_bytes: len,
7405 noflush: nowait);
7406 if (ret < 0) {
7407 /* Our caller expects us to free the input extent map. */
7408 free_extent_map(em);
7409 *map = NULL;
7410 btrfs_dec_nocow_writers(bg);
7411 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7412 ret = -EAGAIN;
7413 goto out;
7414 }
7415 space_reserved = true;
7416
7417 em2 = btrfs_create_dio_extent(inode: BTRFS_I(inode), dio_data, start, len,
7418 orig_start, block_start,
7419 block_len: len, orig_block_len,
7420 ram_bytes, type);
7421 btrfs_dec_nocow_writers(bg);
7422 if (type == BTRFS_ORDERED_PREALLOC) {
7423 free_extent_map(em);
7424 *map = em2;
7425 em = em2;
7426 }
7427
7428 if (IS_ERR(ptr: em2)) {
7429 ret = PTR_ERR(ptr: em2);
7430 goto out;
7431 }
7432
7433 dio_data->nocow_done = true;
7434 } else {
7435 /* Our caller expects us to free the input extent map. */
7436 free_extent_map(em);
7437 *map = NULL;
7438
7439 if (nowait) {
7440 ret = -EAGAIN;
7441 goto out;
7442 }
7443
7444 /*
7445 * If we could not allocate data space before locking the file
7446 * range and we can't do a NOCOW write, then we have to fail.
7447 */
7448 if (!dio_data->data_space_reserved) {
7449 ret = -ENOSPC;
7450 goto out;
7451 }
7452
7453 /*
7454 * We have to COW and we have already reserved data space before,
7455 * so now we reserve only metadata.
7456 */
7457 ret = btrfs_delalloc_reserve_metadata(inode: BTRFS_I(inode), num_bytes: len, disk_num_bytes: len,
7458 noflush: false);
7459 if (ret < 0)
7460 goto out;
7461 space_reserved = true;
7462
7463 em = btrfs_new_extent_direct(inode: BTRFS_I(inode), dio_data, start, len);
7464 if (IS_ERR(ptr: em)) {
7465 ret = PTR_ERR(ptr: em);
7466 goto out;
7467 }
7468 *map = em;
7469 len = min(len, em->len - (start - em->start));
7470 if (len < prev_len)
7471 btrfs_delalloc_release_metadata(inode: BTRFS_I(inode),
7472 num_bytes: prev_len - len, qgroup_free: true);
7473 }
7474
7475 /*
7476 * We have created our ordered extent, so we can now release our reservation
7477 * for an outstanding extent.
7478 */
7479 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), num_bytes: prev_len);
7480
7481 /*
7482 * Need to update the i_size under the extent lock so buffered
7483 * readers will get the updated i_size when we unlock.
7484 */
7485 if (start + len > i_size_read(inode))
7486 i_size_write(inode, i_size: start + len);
7487out:
7488 if (ret && space_reserved) {
7489 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), num_bytes: len);
7490 btrfs_delalloc_release_metadata(inode: BTRFS_I(inode), num_bytes: len, qgroup_free: true);
7491 }
7492 *lenp = len;
7493 return ret;
7494}
7495
7496static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7497 loff_t length, unsigned int flags, struct iomap *iomap,
7498 struct iomap *srcmap)
7499{
7500 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7501 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7502 struct extent_map *em;
7503 struct extent_state *cached_state = NULL;
7504 struct btrfs_dio_data *dio_data = iter->private;
7505 u64 lockstart, lockend;
7506 const bool write = !!(flags & IOMAP_WRITE);
7507 int ret = 0;
7508 u64 len = length;
7509 const u64 data_alloc_len = length;
7510 bool unlock_extents = false;
7511
7512 /*
7513 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7514 * we're NOWAIT we may submit a bio for a partial range and return
7515 * EIOCBQUEUED, which would result in an errant short read.
7516 *
7517 * The best way to handle this would be to allow for partial completions
7518 * of iocb's, so we could submit the partial bio, return and fault in
7519 * the rest of the pages, and then submit the io for the rest of the
7520 * range. However we don't have that currently, so simply return
7521 * -EAGAIN at this point so that the normal path is used.
7522 */
7523 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7524 return -EAGAIN;
7525
7526 /*
7527 * Cap the size of reads to that usually seen in buffered I/O as we need
7528 * to allocate a contiguous array for the checksums.
7529 */
7530 if (!write)
7531 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7532
7533 lockstart = start;
7534 lockend = start + len - 1;
7535
7536 /*
7537 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7538 * enough if we've written compressed pages to this area, so we need to
7539 * flush the dirty pages again to make absolutely sure that any
7540 * outstanding dirty pages are on disk - the first flush only starts
7541 * compression on the data, while keeping the pages locked, so by the
7542 * time the second flush returns we know bios for the compressed pages
7543 * were submitted and finished, and the pages no longer under writeback.
7544 *
7545 * If we have a NOWAIT request and we have any pages in the range that
7546 * are locked, likely due to compression still in progress, we don't want
7547 * to block on page locks. We also don't want to block on pages marked as
7548 * dirty or under writeback (same as for the non-compression case).
7549 * iomap_dio_rw() did the same check, but after that and before we got
7550 * here, mmap'ed writes may have happened or buffered reads started
7551 * (readpage() and readahead(), which lock pages), as we haven't locked
7552 * the file range yet.
7553 */
7554 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7555 &BTRFS_I(inode)->runtime_flags)) {
7556 if (flags & IOMAP_NOWAIT) {
7557 if (filemap_range_needs_writeback(mapping: inode->i_mapping,
7558 start_byte: lockstart, end_byte: lockend))
7559 return -EAGAIN;
7560 } else {
7561 ret = filemap_fdatawrite_range(mapping: inode->i_mapping, start,
7562 end: start + length - 1);
7563 if (ret)
7564 return ret;
7565 }
7566 }
7567
7568 memset(dio_data, 0, sizeof(*dio_data));
7569
7570 /*
7571 * We always try to allocate data space and must do it before locking
7572 * the file range, to avoid deadlocks with concurrent writes to the same
7573 * range if the range has several extents and the writes don't expand the
7574 * current i_size (the inode lock is taken in shared mode). If we fail to
7575 * allocate data space here we continue and later, after locking the
7576 * file range, we fail with ENOSPC only if we figure out we can not do a
7577 * NOCOW write.
7578 */
7579 if (write && !(flags & IOMAP_NOWAIT)) {
7580 ret = btrfs_check_data_free_space(inode: BTRFS_I(inode),
7581 reserved: &dio_data->data_reserved,
7582 start, len: data_alloc_len, noflush: false);
7583 if (!ret)
7584 dio_data->data_space_reserved = true;
7585 else if (ret && !(BTRFS_I(inode)->flags &
7586 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7587 goto err;
7588 }
7589
7590 /*
7591 * If this errors out it's because we couldn't invalidate pagecache for
7592 * this range and we need to fallback to buffered IO, or we are doing a
7593 * NOWAIT read/write and we need to block.
7594 */
7595 ret = lock_extent_direct(inode, lockstart, lockend, cached_state: &cached_state, iomap_flags: flags);
7596 if (ret < 0)
7597 goto err;
7598
7599 em = btrfs_get_extent(inode: BTRFS_I(inode), NULL, start, len);
7600 if (IS_ERR(ptr: em)) {
7601 ret = PTR_ERR(ptr: em);
7602 goto unlock_err;
7603 }
7604
7605 /*
7606 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7607 * io. INLINE is special, and we could probably kludge it in here, but
7608 * it's still buffered so for safety lets just fall back to the generic
7609 * buffered path.
7610 *
7611 * For COMPRESSED we _have_ to read the entire extent in so we can
7612 * decompress it, so there will be buffering required no matter what we
7613 * do, so go ahead and fallback to buffered.
7614 *
7615 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7616 * to buffered IO. Don't blame me, this is the price we pay for using
7617 * the generic code.
7618 */
7619 if (extent_map_is_compressed(em) ||
7620 em->block_start == EXTENT_MAP_INLINE) {
7621 free_extent_map(em);
7622 /*
7623 * If we are in a NOWAIT context, return -EAGAIN in order to
7624 * fallback to buffered IO. This is not only because we can
7625 * block with buffered IO (no support for NOWAIT semantics at
7626 * the moment) but also to avoid returning short reads to user
7627 * space - this happens if we were able to read some data from
7628 * previous non-compressed extents and then when we fallback to
7629 * buffered IO, at btrfs_file_read_iter() by calling
7630 * filemap_read(), we fail to fault in pages for the read buffer,
7631 * in which case filemap_read() returns a short read (the number
7632 * of bytes previously read is > 0, so it does not return -EFAULT).
7633 */
7634 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7635 goto unlock_err;
7636 }
7637
7638 len = min(len, em->len - (start - em->start));
7639
7640 /*
7641 * If we have a NOWAIT request and the range contains multiple extents
7642 * (or a mix of extents and holes), then we return -EAGAIN to make the
7643 * caller fallback to a context where it can do a blocking (without
7644 * NOWAIT) request. This way we avoid doing partial IO and returning
7645 * success to the caller, which is not optimal for writes and for reads
7646 * it can result in unexpected behaviour for an application.
7647 *
7648 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7649 * iomap_dio_rw(), we can end up returning less data then what the caller
7650 * asked for, resulting in an unexpected, and incorrect, short read.
7651 * That is, the caller asked to read N bytes and we return less than that,
7652 * which is wrong unless we are crossing EOF. This happens if we get a
7653 * page fault error when trying to fault in pages for the buffer that is
7654 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7655 * have previously submitted bios for other extents in the range, in
7656 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7657 * those bios have completed by the time we get the page fault error,
7658 * which we return back to our caller - we should only return EIOCBQUEUED
7659 * after we have submitted bios for all the extents in the range.
7660 */
7661 if ((flags & IOMAP_NOWAIT) && len < length) {
7662 free_extent_map(em);
7663 ret = -EAGAIN;
7664 goto unlock_err;
7665 }
7666
7667 if (write) {
7668 ret = btrfs_get_blocks_direct_write(map: &em, inode, dio_data,
7669 start, lenp: &len, iomap_flags: flags);
7670 if (ret < 0)
7671 goto unlock_err;
7672 unlock_extents = true;
7673 /* Recalc len in case the new em is smaller than requested */
7674 len = min(len, em->len - (start - em->start));
7675 if (dio_data->data_space_reserved) {
7676 u64 release_offset;
7677 u64 release_len = 0;
7678
7679 if (dio_data->nocow_done) {
7680 release_offset = start;
7681 release_len = data_alloc_len;
7682 } else if (len < data_alloc_len) {
7683 release_offset = start + len;
7684 release_len = data_alloc_len - len;
7685 }
7686
7687 if (release_len > 0)
7688 btrfs_free_reserved_data_space(inode: BTRFS_I(inode),
7689 reserved: dio_data->data_reserved,
7690 start: release_offset,
7691 len: release_len);
7692 }
7693 } else {
7694 /*
7695 * We need to unlock only the end area that we aren't using.
7696 * The rest is going to be unlocked by the endio routine.
7697 */
7698 lockstart = start + len;
7699 if (lockstart < lockend)
7700 unlock_extents = true;
7701 }
7702
7703 if (unlock_extents)
7704 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: lockstart, end: lockend,
7705 cached: &cached_state);
7706 else
7707 free_extent_state(state: cached_state);
7708
7709 /*
7710 * Translate extent map information to iomap.
7711 * We trim the extents (and move the addr) even though iomap code does
7712 * that, since we have locked only the parts we are performing I/O in.
7713 */
7714 if ((em->block_start == EXTENT_MAP_HOLE) ||
7715 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7716 iomap->addr = IOMAP_NULL_ADDR;
7717 iomap->type = IOMAP_HOLE;
7718 } else {
7719 iomap->addr = em->block_start + (start - em->start);
7720 iomap->type = IOMAP_MAPPED;
7721 }
7722 iomap->offset = start;
7723 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7724 iomap->length = len;
7725 free_extent_map(em);
7726
7727 return 0;
7728
7729unlock_err:
7730 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: lockstart, end: lockend,
7731 cached: &cached_state);
7732err:
7733 if (dio_data->data_space_reserved) {
7734 btrfs_free_reserved_data_space(inode: BTRFS_I(inode),
7735 reserved: dio_data->data_reserved,
7736 start, len: data_alloc_len);
7737 extent_changeset_free(changeset: dio_data->data_reserved);
7738 }
7739
7740 return ret;
7741}
7742
7743static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7744 ssize_t written, unsigned int flags, struct iomap *iomap)
7745{
7746 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7747 struct btrfs_dio_data *dio_data = iter->private;
7748 size_t submitted = dio_data->submitted;
7749 const bool write = !!(flags & IOMAP_WRITE);
7750 int ret = 0;
7751
7752 if (!write && (iomap->type == IOMAP_HOLE)) {
7753 /* If reading from a hole, unlock and return */
7754 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: pos, end: pos + length - 1,
7755 NULL);
7756 return 0;
7757 }
7758
7759 if (submitted < length) {
7760 pos += submitted;
7761 length -= submitted;
7762 if (write)
7763 btrfs_finish_ordered_extent(ordered: dio_data->ordered, NULL,
7764 file_offset: pos, len: length, uptodate: false);
7765 else
7766 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: pos,
7767 end: pos + length - 1, NULL);
7768 ret = -ENOTBLK;
7769 }
7770 if (write) {
7771 btrfs_put_ordered_extent(entry: dio_data->ordered);
7772 dio_data->ordered = NULL;
7773 }
7774
7775 if (write)
7776 extent_changeset_free(changeset: dio_data->data_reserved);
7777 return ret;
7778}
7779
7780static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7781{
7782 struct btrfs_dio_private *dip =
7783 container_of(bbio, struct btrfs_dio_private, bbio);
7784 struct btrfs_inode *inode = bbio->inode;
7785 struct bio *bio = &bbio->bio;
7786
7787 if (bio->bi_status) {
7788 btrfs_warn(inode->root->fs_info,
7789 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7790 btrfs_ino(inode), bio->bi_opf,
7791 dip->file_offset, dip->bytes, bio->bi_status);
7792 }
7793
7794 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7795 btrfs_finish_ordered_extent(ordered: bbio->ordered, NULL,
7796 file_offset: dip->file_offset, len: dip->bytes,
7797 uptodate: !bio->bi_status);
7798 } else {
7799 unlock_extent(tree: &inode->io_tree, start: dip->file_offset,
7800 end: dip->file_offset + dip->bytes - 1, NULL);
7801 }
7802
7803 bbio->bio.bi_private = bbio->private;
7804 iomap_dio_bio_end_io(bio);
7805}
7806
7807static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7808 loff_t file_offset)
7809{
7810 struct btrfs_bio *bbio = btrfs_bio(bio);
7811 struct btrfs_dio_private *dip =
7812 container_of(bbio, struct btrfs_dio_private, bbio);
7813 struct btrfs_dio_data *dio_data = iter->private;
7814
7815 btrfs_bio_init(bbio, fs_info: BTRFS_I(inode: iter->inode)->root->fs_info,
7816 end_io: btrfs_dio_end_io, private: bio->bi_private);
7817 bbio->inode = BTRFS_I(inode: iter->inode);
7818 bbio->file_offset = file_offset;
7819
7820 dip->file_offset = file_offset;
7821 dip->bytes = bio->bi_iter.bi_size;
7822
7823 dio_data->submitted += bio->bi_iter.bi_size;
7824
7825 /*
7826 * Check if we are doing a partial write. If we are, we need to split
7827 * the ordered extent to match the submitted bio. Hang on to the
7828 * remaining unfinishable ordered_extent in dio_data so that it can be
7829 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7830 * remaining pages is blocked on the outstanding ordered extent.
7831 */
7832 if (iter->flags & IOMAP_WRITE) {
7833 int ret;
7834
7835 ret = btrfs_extract_ordered_extent(bbio, ordered: dio_data->ordered);
7836 if (ret) {
7837 btrfs_finish_ordered_extent(ordered: dio_data->ordered, NULL,
7838 file_offset, len: dip->bytes,
7839 uptodate: !ret);
7840 bio->bi_status = errno_to_blk_status(errno: ret);
7841 iomap_dio_bio_end_io(bio);
7842 return;
7843 }
7844 }
7845
7846 btrfs_submit_bio(bbio, mirror_num: 0);
7847}
7848
7849static const struct iomap_ops btrfs_dio_iomap_ops = {
7850 .iomap_begin = btrfs_dio_iomap_begin,
7851 .iomap_end = btrfs_dio_iomap_end,
7852};
7853
7854static const struct iomap_dio_ops btrfs_dio_ops = {
7855 .submit_io = btrfs_dio_submit_io,
7856 .bio_set = &btrfs_dio_bioset,
7857};
7858
7859ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7860{
7861 struct btrfs_dio_data data = { 0 };
7862
7863 return iomap_dio_rw(iocb, iter, ops: &btrfs_dio_iomap_ops, dops: &btrfs_dio_ops,
7864 IOMAP_DIO_PARTIAL, private: &data, done_before);
7865}
7866
7867struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7868 size_t done_before)
7869{
7870 struct btrfs_dio_data data = { 0 };
7871
7872 return __iomap_dio_rw(iocb, iter, ops: &btrfs_dio_iomap_ops, dops: &btrfs_dio_ops,
7873 IOMAP_DIO_PARTIAL, private: &data, done_before);
7874}
7875
7876static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7877 u64 start, u64 len)
7878{
7879 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7880 int ret;
7881
7882 ret = fiemap_prep(inode, fieinfo, start, len: &len, supported_flags: 0);
7883 if (ret)
7884 return ret;
7885
7886 /*
7887 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7888 * file range (0 to LLONG_MAX), but that is not enough if we have
7889 * compression enabled. The first filemap_fdatawrite_range() only kicks
7890 * in the compression of data (in an async thread) and will return
7891 * before the compression is done and writeback is started. A second
7892 * filemap_fdatawrite_range() is needed to wait for the compression to
7893 * complete and writeback to start. We also need to wait for ordered
7894 * extents to complete, because our fiemap implementation uses mainly
7895 * file extent items to list the extents, searching for extent maps
7896 * only for file ranges with holes or prealloc extents to figure out
7897 * if we have delalloc in those ranges.
7898 */
7899 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7900 ret = btrfs_wait_ordered_range(inode, start: 0, LLONG_MAX);
7901 if (ret)
7902 return ret;
7903 }
7904
7905 btrfs_inode_lock(inode: btrfs_inode, ilock_flags: BTRFS_ILOCK_SHARED);
7906
7907 /*
7908 * We did an initial flush to avoid holding the inode's lock while
7909 * triggering writeback and waiting for the completion of IO and ordered
7910 * extents. Now after we locked the inode we do it again, because it's
7911 * possible a new write may have happened in between those two steps.
7912 */
7913 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7914 ret = btrfs_wait_ordered_range(inode, start: 0, LLONG_MAX);
7915 if (ret) {
7916 btrfs_inode_unlock(inode: btrfs_inode, ilock_flags: BTRFS_ILOCK_SHARED);
7917 return ret;
7918 }
7919 }
7920
7921 ret = extent_fiemap(inode: btrfs_inode, fieinfo, start, len);
7922 btrfs_inode_unlock(inode: btrfs_inode, ilock_flags: BTRFS_ILOCK_SHARED);
7923
7924 return ret;
7925}
7926
7927static int btrfs_writepages(struct address_space *mapping,
7928 struct writeback_control *wbc)
7929{
7930 return extent_writepages(mapping, wbc);
7931}
7932
7933static void btrfs_readahead(struct readahead_control *rac)
7934{
7935 extent_readahead(rac);
7936}
7937
7938/*
7939 * For release_folio() and invalidate_folio() we have a race window where
7940 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7941 * If we continue to release/invalidate the page, we could cause use-after-free
7942 * for subpage spinlock. So this function is to spin and wait for subpage
7943 * spinlock.
7944 */
7945static void wait_subpage_spinlock(struct page *page)
7946{
7947 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7948 struct folio *folio = page_folio(page);
7949 struct btrfs_subpage *subpage;
7950
7951 if (!btrfs_is_subpage(fs_info, mapping: page->mapping))
7952 return;
7953
7954 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7955 subpage = folio_get_private(folio);
7956
7957 /*
7958 * This may look insane as we just acquire the spinlock and release it,
7959 * without doing anything. But we just want to make sure no one is
7960 * still holding the subpage spinlock.
7961 * And since the page is not dirty nor writeback, and we have page
7962 * locked, the only possible way to hold a spinlock is from the endio
7963 * function to clear page writeback.
7964 *
7965 * Here we just acquire the spinlock so that all existing callers
7966 * should exit and we're safe to release/invalidate the page.
7967 */
7968 spin_lock_irq(lock: &subpage->lock);
7969 spin_unlock_irq(lock: &subpage->lock);
7970}
7971
7972static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7973{
7974 int ret = try_release_extent_mapping(page: &folio->page, mask: gfp_flags);
7975
7976 if (ret == 1) {
7977 wait_subpage_spinlock(page: &folio->page);
7978 clear_page_extent_mapped(page: &folio->page);
7979 }
7980 return ret;
7981}
7982
7983static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7984{
7985 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7986 return false;
7987 return __btrfs_release_folio(folio, gfp_flags);
7988}
7989
7990#ifdef CONFIG_MIGRATION
7991static int btrfs_migrate_folio(struct address_space *mapping,
7992 struct folio *dst, struct folio *src,
7993 enum migrate_mode mode)
7994{
7995 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7996
7997 if (ret != MIGRATEPAGE_SUCCESS)
7998 return ret;
7999
8000 if (folio_test_ordered(src)) {
8001 folio_clear_ordered(src);
8002 folio_set_ordered(dst);
8003 }
8004
8005 return MIGRATEPAGE_SUCCESS;
8006}
8007#else
8008#define btrfs_migrate_folio NULL
8009#endif
8010
8011static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8012 size_t length)
8013{
8014 struct btrfs_inode *inode = folio_to_inode(folio);
8015 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8016 struct extent_io_tree *tree = &inode->io_tree;
8017 struct extent_state *cached_state = NULL;
8018 u64 page_start = folio_pos(folio);
8019 u64 page_end = page_start + folio_size(folio) - 1;
8020 u64 cur;
8021 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8022
8023 /*
8024 * We have folio locked so no new ordered extent can be created on this
8025 * page, nor bio can be submitted for this folio.
8026 *
8027 * But already submitted bio can still be finished on this folio.
8028 * Furthermore, endio function won't skip folio which has Ordered
8029 * (Private2) already cleared, so it's possible for endio and
8030 * invalidate_folio to do the same ordered extent accounting twice
8031 * on one folio.
8032 *
8033 * So here we wait for any submitted bios to finish, so that we won't
8034 * do double ordered extent accounting on the same folio.
8035 */
8036 folio_wait_writeback(folio);
8037 wait_subpage_spinlock(page: &folio->page);
8038
8039 /*
8040 * For subpage case, we have call sites like
8041 * btrfs_punch_hole_lock_range() which passes range not aligned to
8042 * sectorsize.
8043 * If the range doesn't cover the full folio, we don't need to and
8044 * shouldn't clear page extent mapped, as folio->private can still
8045 * record subpage dirty bits for other part of the range.
8046 *
8047 * For cases that invalidate the full folio even the range doesn't
8048 * cover the full folio, like invalidating the last folio, we're
8049 * still safe to wait for ordered extent to finish.
8050 */
8051 if (!(offset == 0 && length == folio_size(folio))) {
8052 btrfs_release_folio(folio, GFP_NOFS);
8053 return;
8054 }
8055
8056 if (!inode_evicting)
8057 lock_extent(tree, start: page_start, end: page_end, cached: &cached_state);
8058
8059 cur = page_start;
8060 while (cur < page_end) {
8061 struct btrfs_ordered_extent *ordered;
8062 u64 range_end;
8063 u32 range_len;
8064 u32 extra_flags = 0;
8065
8066 ordered = btrfs_lookup_first_ordered_range(inode, file_offset: cur,
8067 len: page_end + 1 - cur);
8068 if (!ordered) {
8069 range_end = page_end;
8070 /*
8071 * No ordered extent covering this range, we are safe
8072 * to delete all extent states in the range.
8073 */
8074 extra_flags = EXTENT_CLEAR_ALL_BITS;
8075 goto next;
8076 }
8077 if (ordered->file_offset > cur) {
8078 /*
8079 * There is a range between [cur, oe->file_offset) not
8080 * covered by any ordered extent.
8081 * We are safe to delete all extent states, and handle
8082 * the ordered extent in the next iteration.
8083 */
8084 range_end = ordered->file_offset - 1;
8085 extra_flags = EXTENT_CLEAR_ALL_BITS;
8086 goto next;
8087 }
8088
8089 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8090 page_end);
8091 ASSERT(range_end + 1 - cur < U32_MAX);
8092 range_len = range_end + 1 - cur;
8093 if (!btrfs_folio_test_ordered(fs_info, folio, start: cur, len: range_len)) {
8094 /*
8095 * If Ordered (Private2) is cleared, it means endio has
8096 * already been executed for the range.
8097 * We can't delete the extent states as
8098 * btrfs_finish_ordered_io() may still use some of them.
8099 */
8100 goto next;
8101 }
8102 btrfs_folio_clear_ordered(fs_info, folio, start: cur, len: range_len);
8103
8104 /*
8105 * IO on this page will never be started, so we need to account
8106 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8107 * here, must leave that up for the ordered extent completion.
8108 *
8109 * This will also unlock the range for incoming
8110 * btrfs_finish_ordered_io().
8111 */
8112 if (!inode_evicting)
8113 clear_extent_bit(tree, start: cur, end: range_end,
8114 bits: EXTENT_DELALLOC |
8115 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8116 EXTENT_DEFRAG, cached: &cached_state);
8117
8118 spin_lock_irq(lock: &inode->ordered_tree_lock);
8119 set_bit(nr: BTRFS_ORDERED_TRUNCATED, addr: &ordered->flags);
8120 ordered->truncated_len = min(ordered->truncated_len,
8121 cur - ordered->file_offset);
8122 spin_unlock_irq(lock: &inode->ordered_tree_lock);
8123
8124 /*
8125 * If the ordered extent has finished, we're safe to delete all
8126 * the extent states of the range, otherwise
8127 * btrfs_finish_ordered_io() will get executed by endio for
8128 * other pages, so we can't delete extent states.
8129 */
8130 if (btrfs_dec_test_ordered_pending(inode, cached: &ordered,
8131 file_offset: cur, io_size: range_end + 1 - cur)) {
8132 btrfs_finish_ordered_io(ordered);
8133 /*
8134 * The ordered extent has finished, now we're again
8135 * safe to delete all extent states of the range.
8136 */
8137 extra_flags = EXTENT_CLEAR_ALL_BITS;
8138 }
8139next:
8140 if (ordered)
8141 btrfs_put_ordered_extent(entry: ordered);
8142 /*
8143 * Qgroup reserved space handler
8144 * Sector(s) here will be either:
8145 *
8146 * 1) Already written to disk or bio already finished
8147 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8148 * Qgroup will be handled by its qgroup_record then.
8149 * btrfs_qgroup_free_data() call will do nothing here.
8150 *
8151 * 2) Not written to disk yet
8152 * Then btrfs_qgroup_free_data() call will clear the
8153 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8154 * reserved data space.
8155 * Since the IO will never happen for this page.
8156 */
8157 btrfs_qgroup_free_data(inode, NULL, start: cur, len: range_end + 1 - cur, NULL);
8158 if (!inode_evicting) {
8159 clear_extent_bit(tree, start: cur, end: range_end, bits: EXTENT_LOCKED |
8160 EXTENT_DELALLOC | EXTENT_UPTODATE |
8161 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8162 extra_flags, cached: &cached_state);
8163 }
8164 cur = range_end + 1;
8165 }
8166 /*
8167 * We have iterated through all ordered extents of the page, the page
8168 * should not have Ordered (Private2) anymore, or the above iteration
8169 * did something wrong.
8170 */
8171 ASSERT(!folio_test_ordered(folio));
8172 btrfs_folio_clear_checked(fs_info, folio, start: folio_pos(folio), len: folio_size(folio));
8173 if (!inode_evicting)
8174 __btrfs_release_folio(folio, GFP_NOFS);
8175 clear_page_extent_mapped(page: &folio->page);
8176}
8177
8178/*
8179 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8180 * called from a page fault handler when a page is first dirtied. Hence we must
8181 * be careful to check for EOF conditions here. We set the page up correctly
8182 * for a written page which means we get ENOSPC checking when writing into
8183 * holes and correct delalloc and unwritten extent mapping on filesystems that
8184 * support these features.
8185 *
8186 * We are not allowed to take the i_mutex here so we have to play games to
8187 * protect against truncate races as the page could now be beyond EOF. Because
8188 * truncate_setsize() writes the inode size before removing pages, once we have
8189 * the page lock we can determine safely if the page is beyond EOF. If it is not
8190 * beyond EOF, then the page is guaranteed safe against truncation until we
8191 * unlock the page.
8192 */
8193vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8194{
8195 struct page *page = vmf->page;
8196 struct folio *folio = page_folio(page);
8197 struct inode *inode = file_inode(f: vmf->vma->vm_file);
8198 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8199 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8200 struct btrfs_ordered_extent *ordered;
8201 struct extent_state *cached_state = NULL;
8202 struct extent_changeset *data_reserved = NULL;
8203 unsigned long zero_start;
8204 loff_t size;
8205 vm_fault_t ret;
8206 int ret2;
8207 int reserved = 0;
8208 u64 reserved_space;
8209 u64 page_start;
8210 u64 page_end;
8211 u64 end;
8212
8213 ASSERT(folio_order(folio) == 0);
8214
8215 reserved_space = PAGE_SIZE;
8216
8217 sb_start_pagefault(sb: inode->i_sb);
8218 page_start = page_offset(page);
8219 page_end = page_start + PAGE_SIZE - 1;
8220 end = page_end;
8221
8222 /*
8223 * Reserving delalloc space after obtaining the page lock can lead to
8224 * deadlock. For example, if a dirty page is locked by this function
8225 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8226 * dirty page write out, then the btrfs_writepages() function could
8227 * end up waiting indefinitely to get a lock on the page currently
8228 * being processed by btrfs_page_mkwrite() function.
8229 */
8230 ret2 = btrfs_delalloc_reserve_space(inode: BTRFS_I(inode), reserved: &data_reserved,
8231 start: page_start, len: reserved_space);
8232 if (!ret2) {
8233 ret2 = file_update_time(file: vmf->vma->vm_file);
8234 reserved = 1;
8235 }
8236 if (ret2) {
8237 ret = vmf_error(err: ret2);
8238 if (reserved)
8239 goto out;
8240 goto out_noreserve;
8241 }
8242
8243 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8244again:
8245 down_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8246 lock_page(page);
8247 size = i_size_read(inode);
8248
8249 if ((page->mapping != inode->i_mapping) ||
8250 (page_start >= size)) {
8251 /* page got truncated out from underneath us */
8252 goto out_unlock;
8253 }
8254 wait_on_page_writeback(page);
8255
8256 lock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8257 ret2 = set_page_extent_mapped(page);
8258 if (ret2 < 0) {
8259 ret = vmf_error(err: ret2);
8260 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8261 goto out_unlock;
8262 }
8263
8264 /*
8265 * we can't set the delalloc bits if there are pending ordered
8266 * extents. Drop our locks and wait for them to finish
8267 */
8268 ordered = btrfs_lookup_ordered_range(inode: BTRFS_I(inode), file_offset: page_start,
8269 PAGE_SIZE);
8270 if (ordered) {
8271 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8272 unlock_page(page);
8273 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8274 btrfs_start_ordered_extent(entry: ordered);
8275 btrfs_put_ordered_extent(entry: ordered);
8276 goto again;
8277 }
8278
8279 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8280 reserved_space = round_up(size - page_start,
8281 fs_info->sectorsize);
8282 if (reserved_space < PAGE_SIZE) {
8283 end = page_start + reserved_space - 1;
8284 btrfs_delalloc_release_space(inode: BTRFS_I(inode),
8285 reserved: data_reserved, start: page_start,
8286 PAGE_SIZE - reserved_space, qgroup_free: true);
8287 }
8288 }
8289
8290 /*
8291 * page_mkwrite gets called when the page is firstly dirtied after it's
8292 * faulted in, but write(2) could also dirty a page and set delalloc
8293 * bits, thus in this case for space account reason, we still need to
8294 * clear any delalloc bits within this page range since we have to
8295 * reserve data&meta space before lock_page() (see above comments).
8296 */
8297 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree, start: page_start, end,
8298 bits: EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8299 EXTENT_DEFRAG, cached: &cached_state);
8300
8301 ret2 = btrfs_set_extent_delalloc(inode: BTRFS_I(inode), start: page_start, end, extra_bits: 0,
8302 cached_state: &cached_state);
8303 if (ret2) {
8304 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8305 ret = VM_FAULT_SIGBUS;
8306 goto out_unlock;
8307 }
8308
8309 /* page is wholly or partially inside EOF */
8310 if (page_start + PAGE_SIZE > size)
8311 zero_start = offset_in_page(size);
8312 else
8313 zero_start = PAGE_SIZE;
8314
8315 if (zero_start != PAGE_SIZE)
8316 memzero_page(page, offset: zero_start, PAGE_SIZE - zero_start);
8317
8318 btrfs_folio_clear_checked(fs_info, folio, start: page_start, PAGE_SIZE);
8319 btrfs_folio_set_dirty(fs_info, folio, start: page_start, len: end + 1 - page_start);
8320 btrfs_folio_set_uptodate(fs_info, folio, start: page_start, len: end + 1 - page_start);
8321
8322 btrfs_set_inode_last_sub_trans(inode: BTRFS_I(inode));
8323
8324 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8325 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8326
8327 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), PAGE_SIZE);
8328 sb_end_pagefault(sb: inode->i_sb);
8329 extent_changeset_free(changeset: data_reserved);
8330 return VM_FAULT_LOCKED;
8331
8332out_unlock:
8333 unlock_page(page);
8334 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8335out:
8336 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), PAGE_SIZE);
8337 btrfs_delalloc_release_space(inode: BTRFS_I(inode), reserved: data_reserved, start: page_start,
8338 len: reserved_space, qgroup_free: (ret != 0));
8339out_noreserve:
8340 sb_end_pagefault(sb: inode->i_sb);
8341 extent_changeset_free(changeset: data_reserved);
8342 return ret;
8343}
8344
8345static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8346{
8347 struct btrfs_truncate_control control = {
8348 .inode = inode,
8349 .ino = btrfs_ino(inode),
8350 .min_type = BTRFS_EXTENT_DATA_KEY,
8351 .clear_extent_range = true,
8352 };
8353 struct btrfs_root *root = inode->root;
8354 struct btrfs_fs_info *fs_info = root->fs_info;
8355 struct btrfs_block_rsv *rsv;
8356 int ret;
8357 struct btrfs_trans_handle *trans;
8358 u64 mask = fs_info->sectorsize - 1;
8359 const u64 min_size = btrfs_calc_metadata_size(fs_info, num_items: 1);
8360
8361 if (!skip_writeback) {
8362 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode,
8363 start: inode->vfs_inode.i_size & (~mask),
8364 len: (u64)-1);
8365 if (ret)
8366 return ret;
8367 }
8368
8369 /*
8370 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8371 * things going on here:
8372 *
8373 * 1) We need to reserve space to update our inode.
8374 *
8375 * 2) We need to have something to cache all the space that is going to
8376 * be free'd up by the truncate operation, but also have some slack
8377 * space reserved in case it uses space during the truncate (thank you
8378 * very much snapshotting).
8379 *
8380 * And we need these to be separate. The fact is we can use a lot of
8381 * space doing the truncate, and we have no earthly idea how much space
8382 * we will use, so we need the truncate reservation to be separate so it
8383 * doesn't end up using space reserved for updating the inode. We also
8384 * need to be able to stop the transaction and start a new one, which
8385 * means we need to be able to update the inode several times, and we
8386 * have no idea of knowing how many times that will be, so we can't just
8387 * reserve 1 item for the entirety of the operation, so that has to be
8388 * done separately as well.
8389 *
8390 * So that leaves us with
8391 *
8392 * 1) rsv - for the truncate reservation, which we will steal from the
8393 * transaction reservation.
8394 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8395 * updating the inode.
8396 */
8397 rsv = btrfs_alloc_block_rsv(fs_info, type: BTRFS_BLOCK_RSV_TEMP);
8398 if (!rsv)
8399 return -ENOMEM;
8400 rsv->size = min_size;
8401 rsv->failfast = true;
8402
8403 /*
8404 * 1 for the truncate slack space
8405 * 1 for updating the inode.
8406 */
8407 trans = btrfs_start_transaction(root, num_items: 2);
8408 if (IS_ERR(ptr: trans)) {
8409 ret = PTR_ERR(ptr: trans);
8410 goto out;
8411 }
8412
8413 /* Migrate the slack space for the truncate to our reserve */
8414 ret = btrfs_block_rsv_migrate(src_rsv: &fs_info->trans_block_rsv, dst_rsv: rsv,
8415 num_bytes: min_size, update_size: false);
8416 /*
8417 * We have reserved 2 metadata units when we started the transaction and
8418 * min_size matches 1 unit, so this should never fail, but if it does,
8419 * it's not critical we just fail truncation.
8420 */
8421 if (WARN_ON(ret)) {
8422 btrfs_end_transaction(trans);
8423 goto out;
8424 }
8425
8426 trans->block_rsv = rsv;
8427
8428 while (1) {
8429 struct extent_state *cached_state = NULL;
8430 const u64 new_size = inode->vfs_inode.i_size;
8431 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8432
8433 control.new_size = new_size;
8434 lock_extent(tree: &inode->io_tree, start: lock_start, end: (u64)-1, cached: &cached_state);
8435 /*
8436 * We want to drop from the next block forward in case this new
8437 * size is not block aligned since we will be keeping the last
8438 * block of the extent just the way it is.
8439 */
8440 btrfs_drop_extent_map_range(inode,
8441 ALIGN(new_size, fs_info->sectorsize),
8442 end: (u64)-1, skip_pinned: false);
8443
8444 ret = btrfs_truncate_inode_items(trans, root, control: &control);
8445
8446 inode_sub_bytes(inode: &inode->vfs_inode, bytes: control.sub_bytes);
8447 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: control.last_size);
8448
8449 unlock_extent(tree: &inode->io_tree, start: lock_start, end: (u64)-1, cached: &cached_state);
8450
8451 trans->block_rsv = &fs_info->trans_block_rsv;
8452 if (ret != -ENOSPC && ret != -EAGAIN)
8453 break;
8454
8455 ret = btrfs_update_inode(trans, inode);
8456 if (ret)
8457 break;
8458
8459 btrfs_end_transaction(trans);
8460 btrfs_btree_balance_dirty(fs_info);
8461
8462 trans = btrfs_start_transaction(root, num_items: 2);
8463 if (IS_ERR(ptr: trans)) {
8464 ret = PTR_ERR(ptr: trans);
8465 trans = NULL;
8466 break;
8467 }
8468
8469 btrfs_block_rsv_release(fs_info, block_rsv: rsv, num_bytes: -1, NULL);
8470 ret = btrfs_block_rsv_migrate(src_rsv: &fs_info->trans_block_rsv,
8471 dst_rsv: rsv, num_bytes: min_size, update_size: false);
8472 /*
8473 * We have reserved 2 metadata units when we started the
8474 * transaction and min_size matches 1 unit, so this should never
8475 * fail, but if it does, it's not critical we just fail truncation.
8476 */
8477 if (WARN_ON(ret))
8478 break;
8479
8480 trans->block_rsv = rsv;
8481 }
8482
8483 /*
8484 * We can't call btrfs_truncate_block inside a trans handle as we could
8485 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8486 * know we've truncated everything except the last little bit, and can
8487 * do btrfs_truncate_block and then update the disk_i_size.
8488 */
8489 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8490 btrfs_end_transaction(trans);
8491 btrfs_btree_balance_dirty(fs_info);
8492
8493 ret = btrfs_truncate_block(inode, from: inode->vfs_inode.i_size, len: 0, front: 0);
8494 if (ret)
8495 goto out;
8496 trans = btrfs_start_transaction(root, num_items: 1);
8497 if (IS_ERR(ptr: trans)) {
8498 ret = PTR_ERR(ptr: trans);
8499 goto out;
8500 }
8501 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
8502 }
8503
8504 if (trans) {
8505 int ret2;
8506
8507 trans->block_rsv = &fs_info->trans_block_rsv;
8508 ret2 = btrfs_update_inode(trans, inode);
8509 if (ret2 && !ret)
8510 ret = ret2;
8511
8512 ret2 = btrfs_end_transaction(trans);
8513 if (ret2 && !ret)
8514 ret = ret2;
8515 btrfs_btree_balance_dirty(fs_info);
8516 }
8517out:
8518 btrfs_free_block_rsv(fs_info, rsv);
8519 /*
8520 * So if we truncate and then write and fsync we normally would just
8521 * write the extents that changed, which is a problem if we need to
8522 * first truncate that entire inode. So set this flag so we write out
8523 * all of the extents in the inode to the sync log so we're completely
8524 * safe.
8525 *
8526 * If no extents were dropped or trimmed we don't need to force the next
8527 * fsync to truncate all the inode's items from the log and re-log them
8528 * all. This means the truncate operation did not change the file size,
8529 * or changed it to a smaller size but there was only an implicit hole
8530 * between the old i_size and the new i_size, and there were no prealloc
8531 * extents beyond i_size to drop.
8532 */
8533 if (control.extents_found > 0)
8534 btrfs_set_inode_full_sync(inode);
8535
8536 return ret;
8537}
8538
8539struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8540 struct inode *dir)
8541{
8542 struct inode *inode;
8543
8544 inode = new_inode(sb: dir->i_sb);
8545 if (inode) {
8546 /*
8547 * Subvolumes don't inherit the sgid bit or the parent's gid if
8548 * the parent's sgid bit is set. This is probably a bug.
8549 */
8550 inode_init_owner(idmap, inode, NULL,
8551 S_IFDIR | (~current_umask() & S_IRWXUGO));
8552 inode->i_op = &btrfs_dir_inode_operations;
8553 inode->i_fop = &btrfs_dir_file_operations;
8554 }
8555 return inode;
8556}
8557
8558struct inode *btrfs_alloc_inode(struct super_block *sb)
8559{
8560 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8561 struct btrfs_inode *ei;
8562 struct inode *inode;
8563 struct extent_io_tree *file_extent_tree = NULL;
8564
8565 /* Self tests may pass a NULL fs_info. */
8566 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8567 file_extent_tree = kmalloc(size: sizeof(struct extent_io_tree), GFP_KERNEL);
8568 if (!file_extent_tree)
8569 return NULL;
8570 }
8571
8572 ei = alloc_inode_sb(sb, cache: btrfs_inode_cachep, GFP_KERNEL);
8573 if (!ei) {
8574 kfree(objp: file_extent_tree);
8575 return NULL;
8576 }
8577
8578 ei->root = NULL;
8579 ei->generation = 0;
8580 ei->last_trans = 0;
8581 ei->last_sub_trans = 0;
8582 ei->logged_trans = 0;
8583 ei->delalloc_bytes = 0;
8584 ei->new_delalloc_bytes = 0;
8585 ei->defrag_bytes = 0;
8586 ei->disk_i_size = 0;
8587 ei->flags = 0;
8588 ei->ro_flags = 0;
8589 ei->csum_bytes = 0;
8590 ei->index_cnt = (u64)-1;
8591 ei->dir_index = 0;
8592 ei->last_unlink_trans = 0;
8593 ei->last_reflink_trans = 0;
8594 ei->last_log_commit = 0;
8595
8596 spin_lock_init(&ei->lock);
8597 ei->outstanding_extents = 0;
8598 if (sb->s_magic != BTRFS_TEST_MAGIC)
8599 btrfs_init_metadata_block_rsv(fs_info, rsv: &ei->block_rsv,
8600 type: BTRFS_BLOCK_RSV_DELALLOC);
8601 ei->runtime_flags = 0;
8602 ei->prop_compress = BTRFS_COMPRESS_NONE;
8603 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8604
8605 ei->delayed_node = NULL;
8606
8607 ei->i_otime_sec = 0;
8608 ei->i_otime_nsec = 0;
8609
8610 inode = &ei->vfs_inode;
8611 extent_map_tree_init(tree: &ei->extent_tree);
8612
8613 /* This io tree sets the valid inode. */
8614 extent_io_tree_init(fs_info, tree: &ei->io_tree, owner: IO_TREE_INODE_IO);
8615 ei->io_tree.inode = ei;
8616
8617 ei->file_extent_tree = file_extent_tree;
8618 if (file_extent_tree) {
8619 extent_io_tree_init(fs_info, tree: ei->file_extent_tree,
8620 owner: IO_TREE_INODE_FILE_EXTENT);
8621 /* Lockdep class is set only for the file extent tree. */
8622 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8623 }
8624 mutex_init(&ei->log_mutex);
8625 spin_lock_init(&ei->ordered_tree_lock);
8626 ei->ordered_tree = RB_ROOT;
8627 ei->ordered_tree_last = NULL;
8628 INIT_LIST_HEAD(list: &ei->delalloc_inodes);
8629 INIT_LIST_HEAD(list: &ei->delayed_iput);
8630 RB_CLEAR_NODE(&ei->rb_node);
8631 init_rwsem(&ei->i_mmap_lock);
8632
8633 return inode;
8634}
8635
8636#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8637void btrfs_test_destroy_inode(struct inode *inode)
8638{
8639 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: 0, end: (u64)-1, skip_pinned: false);
8640 kfree(objp: BTRFS_I(inode)->file_extent_tree);
8641 kmem_cache_free(s: btrfs_inode_cachep, objp: BTRFS_I(inode));
8642}
8643#endif
8644
8645void btrfs_free_inode(struct inode *inode)
8646{
8647 kfree(objp: BTRFS_I(inode)->file_extent_tree);
8648 kmem_cache_free(s: btrfs_inode_cachep, objp: BTRFS_I(inode));
8649}
8650
8651void btrfs_destroy_inode(struct inode *vfs_inode)
8652{
8653 struct btrfs_ordered_extent *ordered;
8654 struct btrfs_inode *inode = BTRFS_I(inode: vfs_inode);
8655 struct btrfs_root *root = inode->root;
8656 bool freespace_inode;
8657
8658 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8659 WARN_ON(vfs_inode->i_data.nrpages);
8660 WARN_ON(inode->block_rsv.reserved);
8661 WARN_ON(inode->block_rsv.size);
8662 WARN_ON(inode->outstanding_extents);
8663 if (!S_ISDIR(vfs_inode->i_mode)) {
8664 WARN_ON(inode->delalloc_bytes);
8665 WARN_ON(inode->new_delalloc_bytes);
8666 }
8667 WARN_ON(inode->csum_bytes);
8668 WARN_ON(inode->defrag_bytes);
8669
8670 /*
8671 * This can happen where we create an inode, but somebody else also
8672 * created the same inode and we need to destroy the one we already
8673 * created.
8674 */
8675 if (!root)
8676 return;
8677
8678 /*
8679 * If this is a free space inode do not take the ordered extents lockdep
8680 * map.
8681 */
8682 freespace_inode = btrfs_is_free_space_inode(inode);
8683
8684 while (1) {
8685 ordered = btrfs_lookup_first_ordered_extent(inode, file_offset: (u64)-1);
8686 if (!ordered)
8687 break;
8688 else {
8689 btrfs_err(root->fs_info,
8690 "found ordered extent %llu %llu on inode cleanup",
8691 ordered->file_offset, ordered->num_bytes);
8692
8693 if (!freespace_inode)
8694 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8695
8696 btrfs_remove_ordered_extent(btrfs_inode: inode, entry: ordered);
8697 btrfs_put_ordered_extent(entry: ordered);
8698 btrfs_put_ordered_extent(entry: ordered);
8699 }
8700 }
8701 btrfs_qgroup_check_reserved_leak(inode);
8702 inode_tree_del(inode);
8703 btrfs_drop_extent_map_range(inode, start: 0, end: (u64)-1, skip_pinned: false);
8704 btrfs_inode_clear_file_extent_range(inode, start: 0, len: (u64)-1);
8705 btrfs_put_root(root: inode->root);
8706}
8707
8708int btrfs_drop_inode(struct inode *inode)
8709{
8710 struct btrfs_root *root = BTRFS_I(inode)->root;
8711
8712 if (root == NULL)
8713 return 1;
8714
8715 /* the snap/subvol tree is on deleting */
8716 if (btrfs_root_refs(s: &root->root_item) == 0)
8717 return 1;
8718 else
8719 return generic_drop_inode(inode);
8720}
8721
8722static void init_once(void *foo)
8723{
8724 struct btrfs_inode *ei = foo;
8725
8726 inode_init_once(&ei->vfs_inode);
8727}
8728
8729void __cold btrfs_destroy_cachep(void)
8730{
8731 /*
8732 * Make sure all delayed rcu free inodes are flushed before we
8733 * destroy cache.
8734 */
8735 rcu_barrier();
8736 bioset_exit(&btrfs_dio_bioset);
8737 kmem_cache_destroy(s: btrfs_inode_cachep);
8738}
8739
8740int __init btrfs_init_cachep(void)
8741{
8742 btrfs_inode_cachep = kmem_cache_create(name: "btrfs_inode",
8743 size: sizeof(struct btrfs_inode), align: 0,
8744 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8745 ctor: init_once);
8746 if (!btrfs_inode_cachep)
8747 goto fail;
8748
8749 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8750 offsetof(struct btrfs_dio_private, bbio.bio),
8751 flags: BIOSET_NEED_BVECS))
8752 goto fail;
8753
8754 return 0;
8755fail:
8756 btrfs_destroy_cachep();
8757 return -ENOMEM;
8758}
8759
8760static int btrfs_getattr(struct mnt_idmap *idmap,
8761 const struct path *path, struct kstat *stat,
8762 u32 request_mask, unsigned int flags)
8763{
8764 u64 delalloc_bytes;
8765 u64 inode_bytes;
8766 struct inode *inode = d_inode(dentry: path->dentry);
8767 u32 blocksize = btrfs_sb(sb: inode->i_sb)->sectorsize;
8768 u32 bi_flags = BTRFS_I(inode)->flags;
8769 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8770
8771 stat->result_mask |= STATX_BTIME;
8772 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8773 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8774 if (bi_flags & BTRFS_INODE_APPEND)
8775 stat->attributes |= STATX_ATTR_APPEND;
8776 if (bi_flags & BTRFS_INODE_COMPRESS)
8777 stat->attributes |= STATX_ATTR_COMPRESSED;
8778 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8779 stat->attributes |= STATX_ATTR_IMMUTABLE;
8780 if (bi_flags & BTRFS_INODE_NODUMP)
8781 stat->attributes |= STATX_ATTR_NODUMP;
8782 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8783 stat->attributes |= STATX_ATTR_VERITY;
8784
8785 stat->attributes_mask |= (STATX_ATTR_APPEND |
8786 STATX_ATTR_COMPRESSED |
8787 STATX_ATTR_IMMUTABLE |
8788 STATX_ATTR_NODUMP);
8789
8790 generic_fillattr(idmap, request_mask, inode, stat);
8791 stat->dev = BTRFS_I(inode)->root->anon_dev;
8792
8793 spin_lock(lock: &BTRFS_I(inode)->lock);
8794 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8795 inode_bytes = inode_get_bytes(inode);
8796 spin_unlock(lock: &BTRFS_I(inode)->lock);
8797 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8798 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8799 return 0;
8800}
8801
8802static int btrfs_rename_exchange(struct inode *old_dir,
8803 struct dentry *old_dentry,
8804 struct inode *new_dir,
8805 struct dentry *new_dentry)
8806{
8807 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8808 struct btrfs_trans_handle *trans;
8809 unsigned int trans_num_items;
8810 struct btrfs_root *root = BTRFS_I(inode: old_dir)->root;
8811 struct btrfs_root *dest = BTRFS_I(inode: new_dir)->root;
8812 struct inode *new_inode = new_dentry->d_inode;
8813 struct inode *old_inode = old_dentry->d_inode;
8814 struct btrfs_rename_ctx old_rename_ctx;
8815 struct btrfs_rename_ctx new_rename_ctx;
8816 u64 old_ino = btrfs_ino(inode: BTRFS_I(inode: old_inode));
8817 u64 new_ino = btrfs_ino(inode: BTRFS_I(inode: new_inode));
8818 u64 old_idx = 0;
8819 u64 new_idx = 0;
8820 int ret;
8821 int ret2;
8822 bool need_abort = false;
8823 struct fscrypt_name old_fname, new_fname;
8824 struct fscrypt_str *old_name, *new_name;
8825
8826 /*
8827 * For non-subvolumes allow exchange only within one subvolume, in the
8828 * same inode namespace. Two subvolumes (represented as directory) can
8829 * be exchanged as they're a logical link and have a fixed inode number.
8830 */
8831 if (root != dest &&
8832 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8833 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8834 return -EXDEV;
8835
8836 ret = fscrypt_setup_filename(inode: old_dir, iname: &old_dentry->d_name, lookup: 0, fname: &old_fname);
8837 if (ret)
8838 return ret;
8839
8840 ret = fscrypt_setup_filename(inode: new_dir, iname: &new_dentry->d_name, lookup: 0, fname: &new_fname);
8841 if (ret) {
8842 fscrypt_free_filename(fname: &old_fname);
8843 return ret;
8844 }
8845
8846 old_name = &old_fname.disk_name;
8847 new_name = &new_fname.disk_name;
8848
8849 /* close the race window with snapshot create/destroy ioctl */
8850 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8851 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8852 down_read(sem: &fs_info->subvol_sem);
8853
8854 /*
8855 * For each inode:
8856 * 1 to remove old dir item
8857 * 1 to remove old dir index
8858 * 1 to add new dir item
8859 * 1 to add new dir index
8860 * 1 to update parent inode
8861 *
8862 * If the parents are the same, we only need to account for one
8863 */
8864 trans_num_items = (old_dir == new_dir ? 9 : 10);
8865 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8866 /*
8867 * 1 to remove old root ref
8868 * 1 to remove old root backref
8869 * 1 to add new root ref
8870 * 1 to add new root backref
8871 */
8872 trans_num_items += 4;
8873 } else {
8874 /*
8875 * 1 to update inode item
8876 * 1 to remove old inode ref
8877 * 1 to add new inode ref
8878 */
8879 trans_num_items += 3;
8880 }
8881 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8882 trans_num_items += 4;
8883 else
8884 trans_num_items += 3;
8885 trans = btrfs_start_transaction(root, num_items: trans_num_items);
8886 if (IS_ERR(ptr: trans)) {
8887 ret = PTR_ERR(ptr: trans);
8888 goto out_notrans;
8889 }
8890
8891 if (dest != root) {
8892 ret = btrfs_record_root_in_trans(trans, root: dest);
8893 if (ret)
8894 goto out_fail;
8895 }
8896
8897 /*
8898 * We need to find a free sequence number both in the source and
8899 * in the destination directory for the exchange.
8900 */
8901 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: new_dir), index: &old_idx);
8902 if (ret)
8903 goto out_fail;
8904 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: old_dir), index: &new_idx);
8905 if (ret)
8906 goto out_fail;
8907
8908 BTRFS_I(inode: old_inode)->dir_index = 0ULL;
8909 BTRFS_I(inode: new_inode)->dir_index = 0ULL;
8910
8911 /* Reference for the source. */
8912 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8913 /* force full log commit if subvolume involved. */
8914 btrfs_set_log_full_commit(trans);
8915 } else {
8916 ret = btrfs_insert_inode_ref(trans, root: dest, name: new_name, inode_objectid: old_ino,
8917 ref_objectid: btrfs_ino(inode: BTRFS_I(inode: new_dir)),
8918 index: old_idx);
8919 if (ret)
8920 goto out_fail;
8921 need_abort = true;
8922 }
8923
8924 /* And now for the dest. */
8925 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8926 /* force full log commit if subvolume involved. */
8927 btrfs_set_log_full_commit(trans);
8928 } else {
8929 ret = btrfs_insert_inode_ref(trans, root, name: old_name, inode_objectid: new_ino,
8930 ref_objectid: btrfs_ino(inode: BTRFS_I(inode: old_dir)),
8931 index: new_idx);
8932 if (ret) {
8933 if (need_abort)
8934 btrfs_abort_transaction(trans, ret);
8935 goto out_fail;
8936 }
8937 }
8938
8939 /* Update inode version and ctime/mtime. */
8940 inode_inc_iversion(inode: old_dir);
8941 inode_inc_iversion(inode: new_dir);
8942 inode_inc_iversion(inode: old_inode);
8943 inode_inc_iversion(inode: new_inode);
8944 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8945
8946 if (old_dentry->d_parent != new_dentry->d_parent) {
8947 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: old_dir),
8948 inode: BTRFS_I(inode: old_inode), for_rename: true);
8949 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: new_dir),
8950 inode: BTRFS_I(inode: new_inode), for_rename: true);
8951 }
8952
8953 /* src is a subvolume */
8954 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8955 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: old_dir), dentry: old_dentry);
8956 } else { /* src is an inode */
8957 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: old_dir),
8958 inode: BTRFS_I(inode: old_dentry->d_inode),
8959 name: old_name, rename_ctx: &old_rename_ctx);
8960 if (!ret)
8961 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: old_inode));
8962 }
8963 if (ret) {
8964 btrfs_abort_transaction(trans, ret);
8965 goto out_fail;
8966 }
8967
8968 /* dest is a subvolume */
8969 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8970 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: new_dir), dentry: new_dentry);
8971 } else { /* dest is an inode */
8972 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: new_dir),
8973 inode: BTRFS_I(inode: new_dentry->d_inode),
8974 name: new_name, rename_ctx: &new_rename_ctx);
8975 if (!ret)
8976 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: new_inode));
8977 }
8978 if (ret) {
8979 btrfs_abort_transaction(trans, ret);
8980 goto out_fail;
8981 }
8982
8983 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: new_dir), inode: BTRFS_I(inode: old_inode),
8984 name: new_name, add_backref: 0, index: old_idx);
8985 if (ret) {
8986 btrfs_abort_transaction(trans, ret);
8987 goto out_fail;
8988 }
8989
8990 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: old_dir), inode: BTRFS_I(inode: new_inode),
8991 name: old_name, add_backref: 0, index: new_idx);
8992 if (ret) {
8993 btrfs_abort_transaction(trans, ret);
8994 goto out_fail;
8995 }
8996
8997 if (old_inode->i_nlink == 1)
8998 BTRFS_I(inode: old_inode)->dir_index = old_idx;
8999 if (new_inode->i_nlink == 1)
9000 BTRFS_I(inode: new_inode)->dir_index = new_idx;
9001
9002 /*
9003 * Now pin the logs of the roots. We do it to ensure that no other task
9004 * can sync the logs while we are in progress with the rename, because
9005 * that could result in an inconsistency in case any of the inodes that
9006 * are part of this rename operation were logged before.
9007 */
9008 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9009 btrfs_pin_log_trans(root);
9010 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9011 btrfs_pin_log_trans(root: dest);
9012
9013 /* Do the log updates for all inodes. */
9014 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9015 btrfs_log_new_name(trans, old_dentry, old_dir: BTRFS_I(inode: old_dir),
9016 old_dir_index: old_rename_ctx.index, parent: new_dentry->d_parent);
9017 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9018 btrfs_log_new_name(trans, old_dentry: new_dentry, old_dir: BTRFS_I(inode: new_dir),
9019 old_dir_index: new_rename_ctx.index, parent: old_dentry->d_parent);
9020
9021 /* Now unpin the logs. */
9022 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9023 btrfs_end_log_trans(root);
9024 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9025 btrfs_end_log_trans(root: dest);
9026out_fail:
9027 ret2 = btrfs_end_transaction(trans);
9028 ret = ret ? ret : ret2;
9029out_notrans:
9030 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9031 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9032 up_read(sem: &fs_info->subvol_sem);
9033
9034 fscrypt_free_filename(fname: &new_fname);
9035 fscrypt_free_filename(fname: &old_fname);
9036 return ret;
9037}
9038
9039static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9040 struct inode *dir)
9041{
9042 struct inode *inode;
9043
9044 inode = new_inode(sb: dir->i_sb);
9045 if (inode) {
9046 inode_init_owner(idmap, inode, dir,
9047 S_IFCHR | WHITEOUT_MODE);
9048 inode->i_op = &btrfs_special_inode_operations;
9049 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9050 }
9051 return inode;
9052}
9053
9054static int btrfs_rename(struct mnt_idmap *idmap,
9055 struct inode *old_dir, struct dentry *old_dentry,
9056 struct inode *new_dir, struct dentry *new_dentry,
9057 unsigned int flags)
9058{
9059 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
9060 struct btrfs_new_inode_args whiteout_args = {
9061 .dir = old_dir,
9062 .dentry = old_dentry,
9063 };
9064 struct btrfs_trans_handle *trans;
9065 unsigned int trans_num_items;
9066 struct btrfs_root *root = BTRFS_I(inode: old_dir)->root;
9067 struct btrfs_root *dest = BTRFS_I(inode: new_dir)->root;
9068 struct inode *new_inode = d_inode(dentry: new_dentry);
9069 struct inode *old_inode = d_inode(dentry: old_dentry);
9070 struct btrfs_rename_ctx rename_ctx;
9071 u64 index = 0;
9072 int ret;
9073 int ret2;
9074 u64 old_ino = btrfs_ino(inode: BTRFS_I(inode: old_inode));
9075 struct fscrypt_name old_fname, new_fname;
9076
9077 if (btrfs_ino(inode: BTRFS_I(inode: new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9078 return -EPERM;
9079
9080 /* we only allow rename subvolume link between subvolumes */
9081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9082 return -EXDEV;
9083
9084 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9085 (new_inode && btrfs_ino(inode: BTRFS_I(inode: new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9086 return -ENOTEMPTY;
9087
9088 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9089 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9090 return -ENOTEMPTY;
9091
9092 ret = fscrypt_setup_filename(inode: old_dir, iname: &old_dentry->d_name, lookup: 0, fname: &old_fname);
9093 if (ret)
9094 return ret;
9095
9096 ret = fscrypt_setup_filename(inode: new_dir, iname: &new_dentry->d_name, lookup: 0, fname: &new_fname);
9097 if (ret) {
9098 fscrypt_free_filename(fname: &old_fname);
9099 return ret;
9100 }
9101
9102 /* check for collisions, even if the name isn't there */
9103 ret = btrfs_check_dir_item_collision(root: dest, dir: new_dir->i_ino, name: &new_fname.disk_name);
9104 if (ret) {
9105 if (ret == -EEXIST) {
9106 /* we shouldn't get
9107 * eexist without a new_inode */
9108 if (WARN_ON(!new_inode)) {
9109 goto out_fscrypt_names;
9110 }
9111 } else {
9112 /* maybe -EOVERFLOW */
9113 goto out_fscrypt_names;
9114 }
9115 }
9116 ret = 0;
9117
9118 /*
9119 * we're using rename to replace one file with another. Start IO on it
9120 * now so we don't add too much work to the end of the transaction
9121 */
9122 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9123 filemap_flush(old_inode->i_mapping);
9124
9125 if (flags & RENAME_WHITEOUT) {
9126 whiteout_args.inode = new_whiteout_inode(idmap, dir: old_dir);
9127 if (!whiteout_args.inode) {
9128 ret = -ENOMEM;
9129 goto out_fscrypt_names;
9130 }
9131 ret = btrfs_new_inode_prepare(args: &whiteout_args, trans_num_items: &trans_num_items);
9132 if (ret)
9133 goto out_whiteout_inode;
9134 } else {
9135 /* 1 to update the old parent inode. */
9136 trans_num_items = 1;
9137 }
9138
9139 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9140 /* Close the race window with snapshot create/destroy ioctl */
9141 down_read(sem: &fs_info->subvol_sem);
9142 /*
9143 * 1 to remove old root ref
9144 * 1 to remove old root backref
9145 * 1 to add new root ref
9146 * 1 to add new root backref
9147 */
9148 trans_num_items += 4;
9149 } else {
9150 /*
9151 * 1 to update inode
9152 * 1 to remove old inode ref
9153 * 1 to add new inode ref
9154 */
9155 trans_num_items += 3;
9156 }
9157 /*
9158 * 1 to remove old dir item
9159 * 1 to remove old dir index
9160 * 1 to add new dir item
9161 * 1 to add new dir index
9162 */
9163 trans_num_items += 4;
9164 /* 1 to update new parent inode if it's not the same as the old parent */
9165 if (new_dir != old_dir)
9166 trans_num_items++;
9167 if (new_inode) {
9168 /*
9169 * 1 to update inode
9170 * 1 to remove inode ref
9171 * 1 to remove dir item
9172 * 1 to remove dir index
9173 * 1 to possibly add orphan item
9174 */
9175 trans_num_items += 5;
9176 }
9177 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9178 if (IS_ERR(ptr: trans)) {
9179 ret = PTR_ERR(ptr: trans);
9180 goto out_notrans;
9181 }
9182
9183 if (dest != root) {
9184 ret = btrfs_record_root_in_trans(trans, root: dest);
9185 if (ret)
9186 goto out_fail;
9187 }
9188
9189 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: new_dir), index: &index);
9190 if (ret)
9191 goto out_fail;
9192
9193 BTRFS_I(inode: old_inode)->dir_index = 0ULL;
9194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9195 /* force full log commit if subvolume involved. */
9196 btrfs_set_log_full_commit(trans);
9197 } else {
9198 ret = btrfs_insert_inode_ref(trans, root: dest, name: &new_fname.disk_name,
9199 inode_objectid: old_ino, ref_objectid: btrfs_ino(inode: BTRFS_I(inode: new_dir)),
9200 index);
9201 if (ret)
9202 goto out_fail;
9203 }
9204
9205 inode_inc_iversion(inode: old_dir);
9206 inode_inc_iversion(inode: new_dir);
9207 inode_inc_iversion(inode: old_inode);
9208 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9209
9210 if (old_dentry->d_parent != new_dentry->d_parent)
9211 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: old_dir),
9212 inode: BTRFS_I(inode: old_inode), for_rename: true);
9213
9214 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9215 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: old_dir), dentry: old_dentry);
9216 } else {
9217 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: old_dir),
9218 inode: BTRFS_I(inode: d_inode(dentry: old_dentry)),
9219 name: &old_fname.disk_name, rename_ctx: &rename_ctx);
9220 if (!ret)
9221 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: old_inode));
9222 }
9223 if (ret) {
9224 btrfs_abort_transaction(trans, ret);
9225 goto out_fail;
9226 }
9227
9228 if (new_inode) {
9229 inode_inc_iversion(inode: new_inode);
9230 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9231 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9232 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: new_dir), dentry: new_dentry);
9233 BUG_ON(new_inode->i_nlink == 0);
9234 } else {
9235 ret = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: new_dir),
9236 inode: BTRFS_I(inode: d_inode(dentry: new_dentry)),
9237 name: &new_fname.disk_name);
9238 }
9239 if (!ret && new_inode->i_nlink == 0)
9240 ret = btrfs_orphan_add(trans,
9241 inode: BTRFS_I(inode: d_inode(dentry: new_dentry)));
9242 if (ret) {
9243 btrfs_abort_transaction(trans, ret);
9244 goto out_fail;
9245 }
9246 }
9247
9248 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: new_dir), inode: BTRFS_I(inode: old_inode),
9249 name: &new_fname.disk_name, add_backref: 0, index);
9250 if (ret) {
9251 btrfs_abort_transaction(trans, ret);
9252 goto out_fail;
9253 }
9254
9255 if (old_inode->i_nlink == 1)
9256 BTRFS_I(inode: old_inode)->dir_index = index;
9257
9258 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9259 btrfs_log_new_name(trans, old_dentry, old_dir: BTRFS_I(inode: old_dir),
9260 old_dir_index: rename_ctx.index, parent: new_dentry->d_parent);
9261
9262 if (flags & RENAME_WHITEOUT) {
9263 ret = btrfs_create_new_inode(trans, args: &whiteout_args);
9264 if (ret) {
9265 btrfs_abort_transaction(trans, ret);
9266 goto out_fail;
9267 } else {
9268 unlock_new_inode(whiteout_args.inode);
9269 iput(whiteout_args.inode);
9270 whiteout_args.inode = NULL;
9271 }
9272 }
9273out_fail:
9274 ret2 = btrfs_end_transaction(trans);
9275 ret = ret ? ret : ret2;
9276out_notrans:
9277 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9278 up_read(sem: &fs_info->subvol_sem);
9279 if (flags & RENAME_WHITEOUT)
9280 btrfs_new_inode_args_destroy(args: &whiteout_args);
9281out_whiteout_inode:
9282 if (flags & RENAME_WHITEOUT)
9283 iput(whiteout_args.inode);
9284out_fscrypt_names:
9285 fscrypt_free_filename(fname: &old_fname);
9286 fscrypt_free_filename(fname: &new_fname);
9287 return ret;
9288}
9289
9290static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9291 struct dentry *old_dentry, struct inode *new_dir,
9292 struct dentry *new_dentry, unsigned int flags)
9293{
9294 int ret;
9295
9296 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9297 return -EINVAL;
9298
9299 if (flags & RENAME_EXCHANGE)
9300 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9301 new_dentry);
9302 else
9303 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9304 new_dentry, flags);
9305
9306 btrfs_btree_balance_dirty(fs_info: BTRFS_I(inode: new_dir)->root->fs_info);
9307
9308 return ret;
9309}
9310
9311struct btrfs_delalloc_work {
9312 struct inode *inode;
9313 struct completion completion;
9314 struct list_head list;
9315 struct btrfs_work work;
9316};
9317
9318static void btrfs_run_delalloc_work(struct btrfs_work *work)
9319{
9320 struct btrfs_delalloc_work *delalloc_work;
9321 struct inode *inode;
9322
9323 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9324 work);
9325 inode = delalloc_work->inode;
9326 filemap_flush(inode->i_mapping);
9327 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9328 &BTRFS_I(inode)->runtime_flags))
9329 filemap_flush(inode->i_mapping);
9330
9331 iput(inode);
9332 complete(&delalloc_work->completion);
9333}
9334
9335static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9336{
9337 struct btrfs_delalloc_work *work;
9338
9339 work = kmalloc(size: sizeof(*work), GFP_NOFS);
9340 if (!work)
9341 return NULL;
9342
9343 init_completion(x: &work->completion);
9344 INIT_LIST_HEAD(list: &work->list);
9345 work->inode = inode;
9346 btrfs_init_work(work: &work->work, func: btrfs_run_delalloc_work, NULL);
9347
9348 return work;
9349}
9350
9351/*
9352 * some fairly slow code that needs optimization. This walks the list
9353 * of all the inodes with pending delalloc and forces them to disk.
9354 */
9355static int start_delalloc_inodes(struct btrfs_root *root,
9356 struct writeback_control *wbc, bool snapshot,
9357 bool in_reclaim_context)
9358{
9359 struct btrfs_inode *binode;
9360 struct inode *inode;
9361 struct btrfs_delalloc_work *work, *next;
9362 LIST_HEAD(works);
9363 LIST_HEAD(splice);
9364 int ret = 0;
9365 bool full_flush = wbc->nr_to_write == LONG_MAX;
9366
9367 mutex_lock(&root->delalloc_mutex);
9368 spin_lock(lock: &root->delalloc_lock);
9369 list_splice_init(list: &root->delalloc_inodes, head: &splice);
9370 while (!list_empty(head: &splice)) {
9371 binode = list_entry(splice.next, struct btrfs_inode,
9372 delalloc_inodes);
9373
9374 list_move_tail(list: &binode->delalloc_inodes,
9375 head: &root->delalloc_inodes);
9376
9377 if (in_reclaim_context &&
9378 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9379 continue;
9380
9381 inode = igrab(&binode->vfs_inode);
9382 if (!inode) {
9383 cond_resched_lock(&root->delalloc_lock);
9384 continue;
9385 }
9386 spin_unlock(lock: &root->delalloc_lock);
9387
9388 if (snapshot)
9389 set_bit(nr: BTRFS_INODE_SNAPSHOT_FLUSH,
9390 addr: &binode->runtime_flags);
9391 if (full_flush) {
9392 work = btrfs_alloc_delalloc_work(inode);
9393 if (!work) {
9394 iput(inode);
9395 ret = -ENOMEM;
9396 goto out;
9397 }
9398 list_add_tail(new: &work->list, head: &works);
9399 btrfs_queue_work(wq: root->fs_info->flush_workers,
9400 work: &work->work);
9401 } else {
9402 ret = filemap_fdatawrite_wbc(mapping: inode->i_mapping, wbc);
9403 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
9404 if (ret || wbc->nr_to_write <= 0)
9405 goto out;
9406 }
9407 cond_resched();
9408 spin_lock(lock: &root->delalloc_lock);
9409 }
9410 spin_unlock(lock: &root->delalloc_lock);
9411
9412out:
9413 list_for_each_entry_safe(work, next, &works, list) {
9414 list_del_init(entry: &work->list);
9415 wait_for_completion(&work->completion);
9416 kfree(objp: work);
9417 }
9418
9419 if (!list_empty(head: &splice)) {
9420 spin_lock(lock: &root->delalloc_lock);
9421 list_splice_tail(list: &splice, head: &root->delalloc_inodes);
9422 spin_unlock(lock: &root->delalloc_lock);
9423 }
9424 mutex_unlock(lock: &root->delalloc_mutex);
9425 return ret;
9426}
9427
9428int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9429{
9430 struct writeback_control wbc = {
9431 .nr_to_write = LONG_MAX,
9432 .sync_mode = WB_SYNC_NONE,
9433 .range_start = 0,
9434 .range_end = LLONG_MAX,
9435 };
9436 struct btrfs_fs_info *fs_info = root->fs_info;
9437
9438 if (BTRFS_FS_ERROR(fs_info))
9439 return -EROFS;
9440
9441 return start_delalloc_inodes(root, wbc: &wbc, snapshot: true, in_reclaim_context);
9442}
9443
9444int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9445 bool in_reclaim_context)
9446{
9447 struct writeback_control wbc = {
9448 .nr_to_write = nr,
9449 .sync_mode = WB_SYNC_NONE,
9450 .range_start = 0,
9451 .range_end = LLONG_MAX,
9452 };
9453 struct btrfs_root *root;
9454 LIST_HEAD(splice);
9455 int ret;
9456
9457 if (BTRFS_FS_ERROR(fs_info))
9458 return -EROFS;
9459
9460 mutex_lock(&fs_info->delalloc_root_mutex);
9461 spin_lock(lock: &fs_info->delalloc_root_lock);
9462 list_splice_init(list: &fs_info->delalloc_roots, head: &splice);
9463 while (!list_empty(head: &splice)) {
9464 /*
9465 * Reset nr_to_write here so we know that we're doing a full
9466 * flush.
9467 */
9468 if (nr == LONG_MAX)
9469 wbc.nr_to_write = LONG_MAX;
9470
9471 root = list_first_entry(&splice, struct btrfs_root,
9472 delalloc_root);
9473 root = btrfs_grab_root(root);
9474 BUG_ON(!root);
9475 list_move_tail(list: &root->delalloc_root,
9476 head: &fs_info->delalloc_roots);
9477 spin_unlock(lock: &fs_info->delalloc_root_lock);
9478
9479 ret = start_delalloc_inodes(root, wbc: &wbc, snapshot: false, in_reclaim_context);
9480 btrfs_put_root(root);
9481 if (ret < 0 || wbc.nr_to_write <= 0)
9482 goto out;
9483 spin_lock(lock: &fs_info->delalloc_root_lock);
9484 }
9485 spin_unlock(lock: &fs_info->delalloc_root_lock);
9486
9487 ret = 0;
9488out:
9489 if (!list_empty(head: &splice)) {
9490 spin_lock(lock: &fs_info->delalloc_root_lock);
9491 list_splice_tail(list: &splice, head: &fs_info->delalloc_roots);
9492 spin_unlock(lock: &fs_info->delalloc_root_lock);
9493 }
9494 mutex_unlock(lock: &fs_info->delalloc_root_mutex);
9495 return ret;
9496}
9497
9498static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9499 struct dentry *dentry, const char *symname)
9500{
9501 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9502 struct btrfs_trans_handle *trans;
9503 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
9504 struct btrfs_path *path;
9505 struct btrfs_key key;
9506 struct inode *inode;
9507 struct btrfs_new_inode_args new_inode_args = {
9508 .dir = dir,
9509 .dentry = dentry,
9510 };
9511 unsigned int trans_num_items;
9512 int err;
9513 int name_len;
9514 int datasize;
9515 unsigned long ptr;
9516 struct btrfs_file_extent_item *ei;
9517 struct extent_buffer *leaf;
9518
9519 name_len = strlen(symname);
9520 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(info: fs_info))
9521 return -ENAMETOOLONG;
9522
9523 inode = new_inode(sb: dir->i_sb);
9524 if (!inode)
9525 return -ENOMEM;
9526 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9527 inode->i_op = &btrfs_symlink_inode_operations;
9528 inode_nohighmem(inode);
9529 inode->i_mapping->a_ops = &btrfs_aops;
9530 btrfs_i_size_write(inode: BTRFS_I(inode), size: name_len);
9531 inode_set_bytes(inode, bytes: name_len);
9532
9533 new_inode_args.inode = inode;
9534 err = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
9535 if (err)
9536 goto out_inode;
9537 /* 1 additional item for the inline extent */
9538 trans_num_items++;
9539
9540 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9541 if (IS_ERR(ptr: trans)) {
9542 err = PTR_ERR(ptr: trans);
9543 goto out_new_inode_args;
9544 }
9545
9546 err = btrfs_create_new_inode(trans, args: &new_inode_args);
9547 if (err)
9548 goto out;
9549
9550 path = btrfs_alloc_path();
9551 if (!path) {
9552 err = -ENOMEM;
9553 btrfs_abort_transaction(trans, err);
9554 discard_new_inode(inode);
9555 inode = NULL;
9556 goto out;
9557 }
9558 key.objectid = btrfs_ino(inode: BTRFS_I(inode));
9559 key.offset = 0;
9560 key.type = BTRFS_EXTENT_DATA_KEY;
9561 datasize = btrfs_file_extent_calc_inline_size(datasize: name_len);
9562 err = btrfs_insert_empty_item(trans, root, path, key: &key,
9563 data_size: datasize);
9564 if (err) {
9565 btrfs_abort_transaction(trans, err);
9566 btrfs_free_path(p: path);
9567 discard_new_inode(inode);
9568 inode = NULL;
9569 goto out;
9570 }
9571 leaf = path->nodes[0];
9572 ei = btrfs_item_ptr(leaf, path->slots[0],
9573 struct btrfs_file_extent_item);
9574 btrfs_set_file_extent_generation(eb: leaf, s: ei, val: trans->transid);
9575 btrfs_set_file_extent_type(eb: leaf, s: ei,
9576 val: BTRFS_FILE_EXTENT_INLINE);
9577 btrfs_set_file_extent_encryption(eb: leaf, s: ei, val: 0);
9578 btrfs_set_file_extent_compression(eb: leaf, s: ei, val: 0);
9579 btrfs_set_file_extent_other_encoding(eb: leaf, s: ei, val: 0);
9580 btrfs_set_file_extent_ram_bytes(eb: leaf, s: ei, val: name_len);
9581
9582 ptr = btrfs_file_extent_inline_start(e: ei);
9583 write_extent_buffer(eb: leaf, src: symname, start: ptr, len: name_len);
9584 btrfs_mark_buffer_dirty(trans, buf: leaf);
9585 btrfs_free_path(p: path);
9586
9587 d_instantiate_new(dentry, inode);
9588 err = 0;
9589out:
9590 btrfs_end_transaction(trans);
9591 btrfs_btree_balance_dirty(fs_info);
9592out_new_inode_args:
9593 btrfs_new_inode_args_destroy(args: &new_inode_args);
9594out_inode:
9595 if (err)
9596 iput(inode);
9597 return err;
9598}
9599
9600static struct btrfs_trans_handle *insert_prealloc_file_extent(
9601 struct btrfs_trans_handle *trans_in,
9602 struct btrfs_inode *inode,
9603 struct btrfs_key *ins,
9604 u64 file_offset)
9605{
9606 struct btrfs_file_extent_item stack_fi;
9607 struct btrfs_replace_extent_info extent_info;
9608 struct btrfs_trans_handle *trans = trans_in;
9609 struct btrfs_path *path;
9610 u64 start = ins->objectid;
9611 u64 len = ins->offset;
9612 u64 qgroup_released = 0;
9613 int ret;
9614
9615 memset(&stack_fi, 0, sizeof(stack_fi));
9616
9617 btrfs_set_stack_file_extent_type(s: &stack_fi, val: BTRFS_FILE_EXTENT_PREALLOC);
9618 btrfs_set_stack_file_extent_disk_bytenr(s: &stack_fi, val: start);
9619 btrfs_set_stack_file_extent_disk_num_bytes(s: &stack_fi, val: len);
9620 btrfs_set_stack_file_extent_num_bytes(s: &stack_fi, val: len);
9621 btrfs_set_stack_file_extent_ram_bytes(s: &stack_fi, val: len);
9622 btrfs_set_stack_file_extent_compression(s: &stack_fi, val: BTRFS_COMPRESS_NONE);
9623 /* Encryption and other encoding is reserved and all 0 */
9624
9625 ret = btrfs_qgroup_release_data(inode, start: file_offset, len, released: &qgroup_released);
9626 if (ret < 0)
9627 return ERR_PTR(error: ret);
9628
9629 if (trans) {
9630 ret = insert_reserved_file_extent(trans, inode,
9631 file_pos: file_offset, stack_fi: &stack_fi,
9632 update_inode_bytes: true, qgroup_reserved: qgroup_released);
9633 if (ret)
9634 goto free_qgroup;
9635 return trans;
9636 }
9637
9638 extent_info.disk_offset = start;
9639 extent_info.disk_len = len;
9640 extent_info.data_offset = 0;
9641 extent_info.data_len = len;
9642 extent_info.file_offset = file_offset;
9643 extent_info.extent_buf = (char *)&stack_fi;
9644 extent_info.is_new_extent = true;
9645 extent_info.update_times = true;
9646 extent_info.qgroup_reserved = qgroup_released;
9647 extent_info.insertions = 0;
9648
9649 path = btrfs_alloc_path();
9650 if (!path) {
9651 ret = -ENOMEM;
9652 goto free_qgroup;
9653 }
9654
9655 ret = btrfs_replace_file_extents(inode, path, start: file_offset,
9656 end: file_offset + len - 1, extent_info: &extent_info,
9657 trans_out: &trans);
9658 btrfs_free_path(p: path);
9659 if (ret)
9660 goto free_qgroup;
9661 return trans;
9662
9663free_qgroup:
9664 /*
9665 * We have released qgroup data range at the beginning of the function,
9666 * and normally qgroup_released bytes will be freed when committing
9667 * transaction.
9668 * But if we error out early, we have to free what we have released
9669 * or we leak qgroup data reservation.
9670 */
9671 btrfs_qgroup_free_refroot(fs_info: inode->root->fs_info,
9672 ref_root: inode->root->root_key.objectid, num_bytes: qgroup_released,
9673 type: BTRFS_QGROUP_RSV_DATA);
9674 return ERR_PTR(error: ret);
9675}
9676
9677static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9678 u64 start, u64 num_bytes, u64 min_size,
9679 loff_t actual_len, u64 *alloc_hint,
9680 struct btrfs_trans_handle *trans)
9681{
9682 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9683 struct extent_map *em;
9684 struct btrfs_root *root = BTRFS_I(inode)->root;
9685 struct btrfs_key ins;
9686 u64 cur_offset = start;
9687 u64 clear_offset = start;
9688 u64 i_size;
9689 u64 cur_bytes;
9690 u64 last_alloc = (u64)-1;
9691 int ret = 0;
9692 bool own_trans = true;
9693 u64 end = start + num_bytes - 1;
9694
9695 if (trans)
9696 own_trans = false;
9697 while (num_bytes > 0) {
9698 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9699 cur_bytes = max(cur_bytes, min_size);
9700 /*
9701 * If we are severely fragmented we could end up with really
9702 * small allocations, so if the allocator is returning small
9703 * chunks lets make its job easier by only searching for those
9704 * sized chunks.
9705 */
9706 cur_bytes = min(cur_bytes, last_alloc);
9707 ret = btrfs_reserve_extent(root, ram_bytes: cur_bytes, num_bytes: cur_bytes,
9708 min_alloc_size: min_size, empty_size: 0, hint_byte: *alloc_hint, ins: &ins, is_data: 1, delalloc: 0);
9709 if (ret)
9710 break;
9711
9712 /*
9713 * We've reserved this space, and thus converted it from
9714 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9715 * from here on out we will only need to clear our reservation
9716 * for the remaining unreserved area, so advance our
9717 * clear_offset by our extent size.
9718 */
9719 clear_offset += ins.offset;
9720
9721 last_alloc = ins.offset;
9722 trans = insert_prealloc_file_extent(trans_in: trans, inode: BTRFS_I(inode),
9723 ins: &ins, file_offset: cur_offset);
9724 /*
9725 * Now that we inserted the prealloc extent we can finally
9726 * decrement the number of reservations in the block group.
9727 * If we did it before, we could race with relocation and have
9728 * relocation miss the reserved extent, making it fail later.
9729 */
9730 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
9731 if (IS_ERR(ptr: trans)) {
9732 ret = PTR_ERR(ptr: trans);
9733 btrfs_free_reserved_extent(fs_info, start: ins.objectid,
9734 len: ins.offset, delalloc: 0);
9735 break;
9736 }
9737
9738 em = alloc_extent_map();
9739 if (!em) {
9740 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: cur_offset,
9741 end: cur_offset + ins.offset - 1, skip_pinned: false);
9742 btrfs_set_inode_full_sync(inode: BTRFS_I(inode));
9743 goto next;
9744 }
9745
9746 em->start = cur_offset;
9747 em->orig_start = cur_offset;
9748 em->len = ins.offset;
9749 em->block_start = ins.objectid;
9750 em->block_len = ins.offset;
9751 em->orig_block_len = ins.offset;
9752 em->ram_bytes = ins.offset;
9753 em->flags |= EXTENT_FLAG_PREALLOC;
9754 em->generation = trans->transid;
9755
9756 ret = btrfs_replace_extent_map_range(inode: BTRFS_I(inode), new_em: em, modified: true);
9757 free_extent_map(em);
9758next:
9759 num_bytes -= ins.offset;
9760 cur_offset += ins.offset;
9761 *alloc_hint = ins.objectid + ins.offset;
9762
9763 inode_inc_iversion(inode);
9764 inode_set_ctime_current(inode);
9765 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9766 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9767 (actual_len > inode->i_size) &&
9768 (cur_offset > inode->i_size)) {
9769 if (cur_offset > actual_len)
9770 i_size = actual_len;
9771 else
9772 i_size = cur_offset;
9773 i_size_write(inode, i_size);
9774 btrfs_inode_safe_disk_i_size_write(inode: BTRFS_I(inode), new_i_size: 0);
9775 }
9776
9777 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
9778
9779 if (ret) {
9780 btrfs_abort_transaction(trans, ret);
9781 if (own_trans)
9782 btrfs_end_transaction(trans);
9783 break;
9784 }
9785
9786 if (own_trans) {
9787 btrfs_end_transaction(trans);
9788 trans = NULL;
9789 }
9790 }
9791 if (clear_offset < end)
9792 btrfs_free_reserved_data_space(inode: BTRFS_I(inode), NULL, start: clear_offset,
9793 len: end - clear_offset + 1);
9794 return ret;
9795}
9796
9797int btrfs_prealloc_file_range(struct inode *inode, int mode,
9798 u64 start, u64 num_bytes, u64 min_size,
9799 loff_t actual_len, u64 *alloc_hint)
9800{
9801 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9802 min_size, actual_len, alloc_hint,
9803 NULL);
9804}
9805
9806int btrfs_prealloc_file_range_trans(struct inode *inode,
9807 struct btrfs_trans_handle *trans, int mode,
9808 u64 start, u64 num_bytes, u64 min_size,
9809 loff_t actual_len, u64 *alloc_hint)
9810{
9811 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9812 min_size, actual_len, alloc_hint, trans);
9813}
9814
9815static int btrfs_permission(struct mnt_idmap *idmap,
9816 struct inode *inode, int mask)
9817{
9818 struct btrfs_root *root = BTRFS_I(inode)->root;
9819 umode_t mode = inode->i_mode;
9820
9821 if (mask & MAY_WRITE &&
9822 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9823 if (btrfs_root_readonly(root))
9824 return -EROFS;
9825 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9826 return -EACCES;
9827 }
9828 return generic_permission(idmap, inode, mask);
9829}
9830
9831static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9832 struct file *file, umode_t mode)
9833{
9834 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9835 struct btrfs_trans_handle *trans;
9836 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
9837 struct inode *inode;
9838 struct btrfs_new_inode_args new_inode_args = {
9839 .dir = dir,
9840 .dentry = file->f_path.dentry,
9841 .orphan = true,
9842 };
9843 unsigned int trans_num_items;
9844 int ret;
9845
9846 inode = new_inode(sb: dir->i_sb);
9847 if (!inode)
9848 return -ENOMEM;
9849 inode_init_owner(idmap, inode, dir, mode);
9850 inode->i_fop = &btrfs_file_operations;
9851 inode->i_op = &btrfs_file_inode_operations;
9852 inode->i_mapping->a_ops = &btrfs_aops;
9853
9854 new_inode_args.inode = inode;
9855 ret = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
9856 if (ret)
9857 goto out_inode;
9858
9859 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9860 if (IS_ERR(ptr: trans)) {
9861 ret = PTR_ERR(ptr: trans);
9862 goto out_new_inode_args;
9863 }
9864
9865 ret = btrfs_create_new_inode(trans, args: &new_inode_args);
9866
9867 /*
9868 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9869 * set it to 1 because d_tmpfile() will issue a warning if the count is
9870 * 0, through:
9871 *
9872 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9873 */
9874 set_nlink(inode, nlink: 1);
9875
9876 if (!ret) {
9877 d_tmpfile(file, inode);
9878 unlock_new_inode(inode);
9879 mark_inode_dirty(inode);
9880 }
9881
9882 btrfs_end_transaction(trans);
9883 btrfs_btree_balance_dirty(fs_info);
9884out_new_inode_args:
9885 btrfs_new_inode_args_destroy(args: &new_inode_args);
9886out_inode:
9887 if (ret)
9888 iput(inode);
9889 return finish_open_simple(file, error: ret);
9890}
9891
9892void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9893{
9894 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9895 unsigned long index = start >> PAGE_SHIFT;
9896 unsigned long end_index = end >> PAGE_SHIFT;
9897 struct page *page;
9898 u32 len;
9899
9900 ASSERT(end + 1 - start <= U32_MAX);
9901 len = end + 1 - start;
9902 while (index <= end_index) {
9903 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: index);
9904 ASSERT(page); /* Pages should be in the extent_io_tree */
9905
9906 /* This is for data, which doesn't yet support larger folio. */
9907 ASSERT(folio_order(page_folio(page)) == 0);
9908 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9909 put_page(page);
9910 index++;
9911 }
9912}
9913
9914int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9915 int compress_type)
9916{
9917 switch (compress_type) {
9918 case BTRFS_COMPRESS_NONE:
9919 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9920 case BTRFS_COMPRESS_ZLIB:
9921 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9922 case BTRFS_COMPRESS_LZO:
9923 /*
9924 * The LZO format depends on the sector size. 64K is the maximum
9925 * sector size that we support.
9926 */
9927 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9928 return -EINVAL;
9929 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9930 (fs_info->sectorsize_bits - 12);
9931 case BTRFS_COMPRESS_ZSTD:
9932 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9933 default:
9934 return -EUCLEAN;
9935 }
9936}
9937
9938static ssize_t btrfs_encoded_read_inline(
9939 struct kiocb *iocb,
9940 struct iov_iter *iter, u64 start,
9941 u64 lockend,
9942 struct extent_state **cached_state,
9943 u64 extent_start, size_t count,
9944 struct btrfs_ioctl_encoded_io_args *encoded,
9945 bool *unlocked)
9946{
9947 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
9948 struct btrfs_root *root = inode->root;
9949 struct btrfs_fs_info *fs_info = root->fs_info;
9950 struct extent_io_tree *io_tree = &inode->io_tree;
9951 struct btrfs_path *path;
9952 struct extent_buffer *leaf;
9953 struct btrfs_file_extent_item *item;
9954 u64 ram_bytes;
9955 unsigned long ptr;
9956 void *tmp;
9957 ssize_t ret;
9958
9959 path = btrfs_alloc_path();
9960 if (!path) {
9961 ret = -ENOMEM;
9962 goto out;
9963 }
9964 ret = btrfs_lookup_file_extent(NULL, root, path, objectid: btrfs_ino(inode),
9965 bytenr: extent_start, mod: 0);
9966 if (ret) {
9967 if (ret > 0) {
9968 /* The extent item disappeared? */
9969 ret = -EIO;
9970 }
9971 goto out;
9972 }
9973 leaf = path->nodes[0];
9974 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9975
9976 ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: item);
9977 ptr = btrfs_file_extent_inline_start(e: item);
9978
9979 encoded->len = min_t(u64, extent_start + ram_bytes,
9980 inode->vfs_inode.i_size) - iocb->ki_pos;
9981 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9982 compress_type: btrfs_file_extent_compression(eb: leaf, s: item));
9983 if (ret < 0)
9984 goto out;
9985 encoded->compression = ret;
9986 if (encoded->compression) {
9987 size_t inline_size;
9988
9989 inline_size = btrfs_file_extent_inline_item_len(eb: leaf,
9990 nr: path->slots[0]);
9991 if (inline_size > count) {
9992 ret = -ENOBUFS;
9993 goto out;
9994 }
9995 count = inline_size;
9996 encoded->unencoded_len = ram_bytes;
9997 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9998 } else {
9999 count = min_t(u64, count, encoded->len);
10000 encoded->len = count;
10001 encoded->unencoded_len = count;
10002 ptr += iocb->ki_pos - extent_start;
10003 }
10004
10005 tmp = kmalloc(size: count, GFP_NOFS);
10006 if (!tmp) {
10007 ret = -ENOMEM;
10008 goto out;
10009 }
10010 read_extent_buffer(eb: leaf, dst: tmp, start: ptr, len: count);
10011 btrfs_release_path(p: path);
10012 unlock_extent(tree: io_tree, start, end: lockend, cached: cached_state);
10013 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10014 *unlocked = true;
10015
10016 ret = copy_to_iter(addr: tmp, bytes: count, i: iter);
10017 if (ret != count)
10018 ret = -EFAULT;
10019 kfree(objp: tmp);
10020out:
10021 btrfs_free_path(p: path);
10022 return ret;
10023}
10024
10025struct btrfs_encoded_read_private {
10026 wait_queue_head_t wait;
10027 atomic_t pending;
10028 blk_status_t status;
10029};
10030
10031static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10032{
10033 struct btrfs_encoded_read_private *priv = bbio->private;
10034
10035 if (bbio->bio.bi_status) {
10036 /*
10037 * The memory barrier implied by the atomic_dec_return() here
10038 * pairs with the memory barrier implied by the
10039 * atomic_dec_return() or io_wait_event() in
10040 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10041 * write is observed before the load of status in
10042 * btrfs_encoded_read_regular_fill_pages().
10043 */
10044 WRITE_ONCE(priv->status, bbio->bio.bi_status);
10045 }
10046 if (!atomic_dec_return(v: &priv->pending))
10047 wake_up(&priv->wait);
10048 bio_put(&bbio->bio);
10049}
10050
10051int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10052 u64 file_offset, u64 disk_bytenr,
10053 u64 disk_io_size, struct page **pages)
10054{
10055 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10056 struct btrfs_encoded_read_private priv = {
10057 .pending = ATOMIC_INIT(1),
10058 };
10059 unsigned long i = 0;
10060 struct btrfs_bio *bbio;
10061
10062 init_waitqueue_head(&priv.wait);
10063
10064 bbio = btrfs_bio_alloc(BIO_MAX_VECS, opf: REQ_OP_READ, fs_info,
10065 end_io: btrfs_encoded_read_endio, private: &priv);
10066 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10067 bbio->inode = inode;
10068
10069 do {
10070 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10071
10072 if (bio_add_page(bio: &bbio->bio, page: pages[i], len: bytes, off: 0) < bytes) {
10073 atomic_inc(v: &priv.pending);
10074 btrfs_submit_bio(bbio, mirror_num: 0);
10075
10076 bbio = btrfs_bio_alloc(BIO_MAX_VECS, opf: REQ_OP_READ, fs_info,
10077 end_io: btrfs_encoded_read_endio, private: &priv);
10078 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10079 bbio->inode = inode;
10080 continue;
10081 }
10082
10083 i++;
10084 disk_bytenr += bytes;
10085 disk_io_size -= bytes;
10086 } while (disk_io_size);
10087
10088 atomic_inc(v: &priv.pending);
10089 btrfs_submit_bio(bbio, mirror_num: 0);
10090
10091 if (atomic_dec_return(v: &priv.pending))
10092 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10093 /* See btrfs_encoded_read_endio() for ordering. */
10094 return blk_status_to_errno(READ_ONCE(priv.status));
10095}
10096
10097static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10098 struct iov_iter *iter,
10099 u64 start, u64 lockend,
10100 struct extent_state **cached_state,
10101 u64 disk_bytenr, u64 disk_io_size,
10102 size_t count, bool compressed,
10103 bool *unlocked)
10104{
10105 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
10106 struct extent_io_tree *io_tree = &inode->io_tree;
10107 struct page **pages;
10108 unsigned long nr_pages, i;
10109 u64 cur;
10110 size_t page_offset;
10111 ssize_t ret;
10112
10113 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10114 pages = kcalloc(n: nr_pages, size: sizeof(struct page *), GFP_NOFS);
10115 if (!pages)
10116 return -ENOMEM;
10117 ret = btrfs_alloc_page_array(nr_pages, page_array: pages, extra_gfp: 0);
10118 if (ret) {
10119 ret = -ENOMEM;
10120 goto out;
10121 }
10122
10123 ret = btrfs_encoded_read_regular_fill_pages(inode, file_offset: start, disk_bytenr,
10124 disk_io_size, pages);
10125 if (ret)
10126 goto out;
10127
10128 unlock_extent(tree: io_tree, start, end: lockend, cached: cached_state);
10129 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10130 *unlocked = true;
10131
10132 if (compressed) {
10133 i = 0;
10134 page_offset = 0;
10135 } else {
10136 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10137 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10138 }
10139 cur = 0;
10140 while (cur < count) {
10141 size_t bytes = min_t(size_t, count - cur,
10142 PAGE_SIZE - page_offset);
10143
10144 if (copy_page_to_iter(page: pages[i], offset: page_offset, bytes,
10145 i: iter) != bytes) {
10146 ret = -EFAULT;
10147 goto out;
10148 }
10149 i++;
10150 cur += bytes;
10151 page_offset = 0;
10152 }
10153 ret = count;
10154out:
10155 for (i = 0; i < nr_pages; i++) {
10156 if (pages[i])
10157 __free_page(pages[i]);
10158 }
10159 kfree(objp: pages);
10160 return ret;
10161}
10162
10163ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10164 struct btrfs_ioctl_encoded_io_args *encoded)
10165{
10166 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
10167 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10168 struct extent_io_tree *io_tree = &inode->io_tree;
10169 ssize_t ret;
10170 size_t count = iov_iter_count(i: iter);
10171 u64 start, lockend, disk_bytenr, disk_io_size;
10172 struct extent_state *cached_state = NULL;
10173 struct extent_map *em;
10174 bool unlocked = false;
10175
10176 file_accessed(file: iocb->ki_filp);
10177
10178 btrfs_inode_lock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10179
10180 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10181 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10182 return 0;
10183 }
10184 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10185 /*
10186 * We don't know how long the extent containing iocb->ki_pos is, but if
10187 * it's compressed we know that it won't be longer than this.
10188 */
10189 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10190
10191 for (;;) {
10192 struct btrfs_ordered_extent *ordered;
10193
10194 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode, start,
10195 len: lockend - start + 1);
10196 if (ret)
10197 goto out_unlock_inode;
10198 lock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10199 ordered = btrfs_lookup_ordered_range(inode, file_offset: start,
10200 len: lockend - start + 1);
10201 if (!ordered)
10202 break;
10203 btrfs_put_ordered_extent(entry: ordered);
10204 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10205 cond_resched();
10206 }
10207
10208 em = btrfs_get_extent(inode, NULL, start, len: lockend - start + 1);
10209 if (IS_ERR(ptr: em)) {
10210 ret = PTR_ERR(ptr: em);
10211 goto out_unlock_extent;
10212 }
10213
10214 if (em->block_start == EXTENT_MAP_INLINE) {
10215 u64 extent_start = em->start;
10216
10217 /*
10218 * For inline extents we get everything we need out of the
10219 * extent item.
10220 */
10221 free_extent_map(em);
10222 em = NULL;
10223 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10224 cached_state: &cached_state, extent_start,
10225 count, encoded, unlocked: &unlocked);
10226 goto out;
10227 }
10228
10229 /*
10230 * We only want to return up to EOF even if the extent extends beyond
10231 * that.
10232 */
10233 encoded->len = min_t(u64, extent_map_end(em),
10234 inode->vfs_inode.i_size) - iocb->ki_pos;
10235 if (em->block_start == EXTENT_MAP_HOLE ||
10236 (em->flags & EXTENT_FLAG_PREALLOC)) {
10237 disk_bytenr = EXTENT_MAP_HOLE;
10238 count = min_t(u64, count, encoded->len);
10239 encoded->len = count;
10240 encoded->unencoded_len = count;
10241 } else if (extent_map_is_compressed(em)) {
10242 disk_bytenr = em->block_start;
10243 /*
10244 * Bail if the buffer isn't large enough to return the whole
10245 * compressed extent.
10246 */
10247 if (em->block_len > count) {
10248 ret = -ENOBUFS;
10249 goto out_em;
10250 }
10251 disk_io_size = em->block_len;
10252 count = em->block_len;
10253 encoded->unencoded_len = em->ram_bytes;
10254 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10255 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10256 compress_type: extent_map_compression(em));
10257 if (ret < 0)
10258 goto out_em;
10259 encoded->compression = ret;
10260 } else {
10261 disk_bytenr = em->block_start + (start - em->start);
10262 if (encoded->len > count)
10263 encoded->len = count;
10264 /*
10265 * Don't read beyond what we locked. This also limits the page
10266 * allocations that we'll do.
10267 */
10268 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10269 count = start + disk_io_size - iocb->ki_pos;
10270 encoded->len = count;
10271 encoded->unencoded_len = count;
10272 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10273 }
10274 free_extent_map(em);
10275 em = NULL;
10276
10277 if (disk_bytenr == EXTENT_MAP_HOLE) {
10278 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10279 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10280 unlocked = true;
10281 ret = iov_iter_zero(bytes: count, iter);
10282 if (ret != count)
10283 ret = -EFAULT;
10284 } else {
10285 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10286 cached_state: &cached_state, disk_bytenr,
10287 disk_io_size, count,
10288 compressed: encoded->compression,
10289 unlocked: &unlocked);
10290 }
10291
10292out:
10293 if (ret >= 0)
10294 iocb->ki_pos += encoded->len;
10295out_em:
10296 free_extent_map(em);
10297out_unlock_extent:
10298 if (!unlocked)
10299 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10300out_unlock_inode:
10301 if (!unlocked)
10302 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10303 return ret;
10304}
10305
10306ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10307 const struct btrfs_ioctl_encoded_io_args *encoded)
10308{
10309 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
10310 struct btrfs_root *root = inode->root;
10311 struct btrfs_fs_info *fs_info = root->fs_info;
10312 struct extent_io_tree *io_tree = &inode->io_tree;
10313 struct extent_changeset *data_reserved = NULL;
10314 struct extent_state *cached_state = NULL;
10315 struct btrfs_ordered_extent *ordered;
10316 int compression;
10317 size_t orig_count;
10318 u64 start, end;
10319 u64 num_bytes, ram_bytes, disk_num_bytes;
10320 unsigned long nr_pages, i;
10321 struct page **pages;
10322 struct btrfs_key ins;
10323 bool extent_reserved = false;
10324 struct extent_map *em;
10325 ssize_t ret;
10326
10327 switch (encoded->compression) {
10328 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10329 compression = BTRFS_COMPRESS_ZLIB;
10330 break;
10331 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10332 compression = BTRFS_COMPRESS_ZSTD;
10333 break;
10334 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10335 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10336 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10337 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10338 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10339 /* The sector size must match for LZO. */
10340 if (encoded->compression -
10341 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10342 fs_info->sectorsize_bits)
10343 return -EINVAL;
10344 compression = BTRFS_COMPRESS_LZO;
10345 break;
10346 default:
10347 return -EINVAL;
10348 }
10349 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10350 return -EINVAL;
10351
10352 /*
10353 * Compressed extents should always have checksums, so error out if we
10354 * have a NOCOW file or inode was created while mounted with NODATASUM.
10355 */
10356 if (inode->flags & BTRFS_INODE_NODATASUM)
10357 return -EINVAL;
10358
10359 orig_count = iov_iter_count(i: from);
10360
10361 /* The extent size must be sane. */
10362 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10363 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10364 return -EINVAL;
10365
10366 /*
10367 * The compressed data must be smaller than the decompressed data.
10368 *
10369 * It's of course possible for data to compress to larger or the same
10370 * size, but the buffered I/O path falls back to no compression for such
10371 * data, and we don't want to break any assumptions by creating these
10372 * extents.
10373 *
10374 * Note that this is less strict than the current check we have that the
10375 * compressed data must be at least one sector smaller than the
10376 * decompressed data. We only want to enforce the weaker requirement
10377 * from old kernels that it is at least one byte smaller.
10378 */
10379 if (orig_count >= encoded->unencoded_len)
10380 return -EINVAL;
10381
10382 /* The extent must start on a sector boundary. */
10383 start = iocb->ki_pos;
10384 if (!IS_ALIGNED(start, fs_info->sectorsize))
10385 return -EINVAL;
10386
10387 /*
10388 * The extent must end on a sector boundary. However, we allow a write
10389 * which ends at or extends i_size to have an unaligned length; we round
10390 * up the extent size and set i_size to the unaligned end.
10391 */
10392 if (start + encoded->len < inode->vfs_inode.i_size &&
10393 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10394 return -EINVAL;
10395
10396 /* Finally, the offset in the unencoded data must be sector-aligned. */
10397 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10398 return -EINVAL;
10399
10400 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10401 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10402 end = start + num_bytes - 1;
10403
10404 /*
10405 * If the extent cannot be inline, the compressed data on disk must be
10406 * sector-aligned. For convenience, we extend it with zeroes if it
10407 * isn't.
10408 */
10409 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10410 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10411 pages = kvcalloc(n: nr_pages, size: sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10412 if (!pages)
10413 return -ENOMEM;
10414 for (i = 0; i < nr_pages; i++) {
10415 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10416 char *kaddr;
10417
10418 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10419 if (!pages[i]) {
10420 ret = -ENOMEM;
10421 goto out_pages;
10422 }
10423 kaddr = kmap_local_page(page: pages[i]);
10424 if (copy_from_iter(addr: kaddr, bytes, i: from) != bytes) {
10425 kunmap_local(kaddr);
10426 ret = -EFAULT;
10427 goto out_pages;
10428 }
10429 if (bytes < PAGE_SIZE)
10430 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10431 kunmap_local(kaddr);
10432 }
10433
10434 for (;;) {
10435 struct btrfs_ordered_extent *ordered;
10436
10437 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode, start, len: num_bytes);
10438 if (ret)
10439 goto out_pages;
10440 ret = invalidate_inode_pages2_range(mapping: inode->vfs_inode.i_mapping,
10441 start: start >> PAGE_SHIFT,
10442 end: end >> PAGE_SHIFT);
10443 if (ret)
10444 goto out_pages;
10445 lock_extent(tree: io_tree, start, end, cached: &cached_state);
10446 ordered = btrfs_lookup_ordered_range(inode, file_offset: start, len: num_bytes);
10447 if (!ordered &&
10448 !filemap_range_has_page(inode->vfs_inode.i_mapping, lstart: start, lend: end))
10449 break;
10450 if (ordered)
10451 btrfs_put_ordered_extent(entry: ordered);
10452 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10453 cond_resched();
10454 }
10455
10456 /*
10457 * We don't use the higher-level delalloc space functions because our
10458 * num_bytes and disk_num_bytes are different.
10459 */
10460 ret = btrfs_alloc_data_chunk_ondemand(inode, bytes: disk_num_bytes);
10461 if (ret)
10462 goto out_unlock;
10463 ret = btrfs_qgroup_reserve_data(inode, reserved: &data_reserved, start, len: num_bytes);
10464 if (ret)
10465 goto out_free_data_space;
10466 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10467 noflush: false);
10468 if (ret)
10469 goto out_qgroup_free_data;
10470
10471 /* Try an inline extent first. */
10472 if (start == 0 && encoded->unencoded_len == encoded->len &&
10473 encoded->unencoded_offset == 0) {
10474 ret = cow_file_range_inline(inode, size: encoded->len, compressed_size: orig_count,
10475 compress_type: compression, compressed_pages: pages, update_i_size: true);
10476 if (ret <= 0) {
10477 if (ret == 0)
10478 ret = orig_count;
10479 goto out_delalloc_release;
10480 }
10481 }
10482
10483 ret = btrfs_reserve_extent(root, ram_bytes: disk_num_bytes, num_bytes: disk_num_bytes,
10484 min_alloc_size: disk_num_bytes, empty_size: 0, hint_byte: 0, ins: &ins, is_data: 1, delalloc: 1);
10485 if (ret)
10486 goto out_delalloc_release;
10487 extent_reserved = true;
10488
10489 em = create_io_em(inode, start, len: num_bytes,
10490 orig_start: start - encoded->unencoded_offset, block_start: ins.objectid,
10491 block_len: ins.offset, orig_block_len: ins.offset, ram_bytes, compress_type: compression,
10492 type: BTRFS_ORDERED_COMPRESSED);
10493 if (IS_ERR(ptr: em)) {
10494 ret = PTR_ERR(ptr: em);
10495 goto out_free_reserved;
10496 }
10497 free_extent_map(em);
10498
10499 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes, ram_bytes,
10500 disk_bytenr: ins.objectid, disk_num_bytes: ins.offset,
10501 offset: encoded->unencoded_offset,
10502 flags: (1 << BTRFS_ORDERED_ENCODED) |
10503 (1 << BTRFS_ORDERED_COMPRESSED),
10504 compress_type: compression);
10505 if (IS_ERR(ptr: ordered)) {
10506 btrfs_drop_extent_map_range(inode, start, end, skip_pinned: false);
10507 ret = PTR_ERR(ptr: ordered);
10508 goto out_free_reserved;
10509 }
10510 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
10511
10512 if (start + encoded->len > inode->vfs_inode.i_size)
10513 i_size_write(inode: &inode->vfs_inode, i_size: start + encoded->len);
10514
10515 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10516
10517 btrfs_delalloc_release_extents(inode, num_bytes);
10518
10519 btrfs_submit_compressed_write(ordered, compressed_pages: pages, nr_pages, write_flags: 0, writeback: false);
10520 ret = orig_count;
10521 goto out;
10522
10523out_free_reserved:
10524 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
10525 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
10526out_delalloc_release:
10527 btrfs_delalloc_release_extents(inode, num_bytes);
10528 btrfs_delalloc_release_metadata(inode, num_bytes: disk_num_bytes, qgroup_free: ret < 0);
10529out_qgroup_free_data:
10530 if (ret < 0)
10531 btrfs_qgroup_free_data(inode, reserved: data_reserved, start, len: num_bytes, NULL);
10532out_free_data_space:
10533 /*
10534 * If btrfs_reserve_extent() succeeded, then we already decremented
10535 * bytes_may_use.
10536 */
10537 if (!extent_reserved)
10538 btrfs_free_reserved_data_space_noquota(fs_info, len: disk_num_bytes);
10539out_unlock:
10540 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10541out_pages:
10542 for (i = 0; i < nr_pages; i++) {
10543 if (pages[i])
10544 __free_page(pages[i]);
10545 }
10546 kvfree(addr: pages);
10547out:
10548 if (ret >= 0)
10549 iocb->ki_pos += encoded->len;
10550 return ret;
10551}
10552
10553#ifdef CONFIG_SWAP
10554/*
10555 * Add an entry indicating a block group or device which is pinned by a
10556 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10557 * negative errno on failure.
10558 */
10559static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10560 bool is_block_group)
10561{
10562 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10563 struct btrfs_swapfile_pin *sp, *entry;
10564 struct rb_node **p;
10565 struct rb_node *parent = NULL;
10566
10567 sp = kmalloc(size: sizeof(*sp), GFP_NOFS);
10568 if (!sp)
10569 return -ENOMEM;
10570 sp->ptr = ptr;
10571 sp->inode = inode;
10572 sp->is_block_group = is_block_group;
10573 sp->bg_extent_count = 1;
10574
10575 spin_lock(lock: &fs_info->swapfile_pins_lock);
10576 p = &fs_info->swapfile_pins.rb_node;
10577 while (*p) {
10578 parent = *p;
10579 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10580 if (sp->ptr < entry->ptr ||
10581 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10582 p = &(*p)->rb_left;
10583 } else if (sp->ptr > entry->ptr ||
10584 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10585 p = &(*p)->rb_right;
10586 } else {
10587 if (is_block_group)
10588 entry->bg_extent_count++;
10589 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10590 kfree(objp: sp);
10591 return 1;
10592 }
10593 }
10594 rb_link_node(node: &sp->node, parent, rb_link: p);
10595 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10596 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10597 return 0;
10598}
10599
10600/* Free all of the entries pinned by this swapfile. */
10601static void btrfs_free_swapfile_pins(struct inode *inode)
10602{
10603 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10604 struct btrfs_swapfile_pin *sp;
10605 struct rb_node *node, *next;
10606
10607 spin_lock(lock: &fs_info->swapfile_pins_lock);
10608 node = rb_first(&fs_info->swapfile_pins);
10609 while (node) {
10610 next = rb_next(node);
10611 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10612 if (sp->inode == inode) {
10613 rb_erase(&sp->node, &fs_info->swapfile_pins);
10614 if (sp->is_block_group) {
10615 btrfs_dec_block_group_swap_extents(bg: sp->ptr,
10616 amount: sp->bg_extent_count);
10617 btrfs_put_block_group(cache: sp->ptr);
10618 }
10619 kfree(objp: sp);
10620 }
10621 node = next;
10622 }
10623 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10624}
10625
10626struct btrfs_swap_info {
10627 u64 start;
10628 u64 block_start;
10629 u64 block_len;
10630 u64 lowest_ppage;
10631 u64 highest_ppage;
10632 unsigned long nr_pages;
10633 int nr_extents;
10634};
10635
10636static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10637 struct btrfs_swap_info *bsi)
10638{
10639 unsigned long nr_pages;
10640 unsigned long max_pages;
10641 u64 first_ppage, first_ppage_reported, next_ppage;
10642 int ret;
10643
10644 /*
10645 * Our swapfile may have had its size extended after the swap header was
10646 * written. In that case activating the swapfile should not go beyond
10647 * the max size set in the swap header.
10648 */
10649 if (bsi->nr_pages >= sis->max)
10650 return 0;
10651
10652 max_pages = sis->max - bsi->nr_pages;
10653 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10654 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10655
10656 if (first_ppage >= next_ppage)
10657 return 0;
10658 nr_pages = next_ppage - first_ppage;
10659 nr_pages = min(nr_pages, max_pages);
10660
10661 first_ppage_reported = first_ppage;
10662 if (bsi->start == 0)
10663 first_ppage_reported++;
10664 if (bsi->lowest_ppage > first_ppage_reported)
10665 bsi->lowest_ppage = first_ppage_reported;
10666 if (bsi->highest_ppage < (next_ppage - 1))
10667 bsi->highest_ppage = next_ppage - 1;
10668
10669 ret = add_swap_extent(sis, start_page: bsi->nr_pages, nr_pages, start_block: first_ppage);
10670 if (ret < 0)
10671 return ret;
10672 bsi->nr_extents += ret;
10673 bsi->nr_pages += nr_pages;
10674 return 0;
10675}
10676
10677static void btrfs_swap_deactivate(struct file *file)
10678{
10679 struct inode *inode = file_inode(f: file);
10680
10681 btrfs_free_swapfile_pins(inode);
10682 atomic_dec(v: &BTRFS_I(inode)->root->nr_swapfiles);
10683}
10684
10685static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10686 sector_t *span)
10687{
10688 struct inode *inode = file_inode(f: file);
10689 struct btrfs_root *root = BTRFS_I(inode)->root;
10690 struct btrfs_fs_info *fs_info = root->fs_info;
10691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10692 struct extent_state *cached_state = NULL;
10693 struct extent_map *em = NULL;
10694 struct btrfs_chunk_map *map = NULL;
10695 struct btrfs_device *device = NULL;
10696 struct btrfs_swap_info bsi = {
10697 .lowest_ppage = (sector_t)-1ULL,
10698 };
10699 int ret = 0;
10700 u64 isize;
10701 u64 start;
10702
10703 /*
10704 * If the swap file was just created, make sure delalloc is done. If the
10705 * file changes again after this, the user is doing something stupid and
10706 * we don't really care.
10707 */
10708 ret = btrfs_wait_ordered_range(inode, start: 0, len: (u64)-1);
10709 if (ret)
10710 return ret;
10711
10712 /*
10713 * The inode is locked, so these flags won't change after we check them.
10714 */
10715 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10716 btrfs_warn(fs_info, "swapfile must not be compressed");
10717 return -EINVAL;
10718 }
10719 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10720 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10721 return -EINVAL;
10722 }
10723 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10724 btrfs_warn(fs_info, "swapfile must not be checksummed");
10725 return -EINVAL;
10726 }
10727
10728 /*
10729 * Balance or device remove/replace/resize can move stuff around from
10730 * under us. The exclop protection makes sure they aren't running/won't
10731 * run concurrently while we are mapping the swap extents, and
10732 * fs_info->swapfile_pins prevents them from running while the swap
10733 * file is active and moving the extents. Note that this also prevents
10734 * a concurrent device add which isn't actually necessary, but it's not
10735 * really worth the trouble to allow it.
10736 */
10737 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10738 btrfs_warn(fs_info,
10739 "cannot activate swapfile while exclusive operation is running");
10740 return -EBUSY;
10741 }
10742
10743 /*
10744 * Prevent snapshot creation while we are activating the swap file.
10745 * We do not want to race with snapshot creation. If snapshot creation
10746 * already started before we bumped nr_swapfiles from 0 to 1 and
10747 * completes before the first write into the swap file after it is
10748 * activated, than that write would fallback to COW.
10749 */
10750 if (!btrfs_drew_try_write_lock(lock: &root->snapshot_lock)) {
10751 btrfs_exclop_finish(fs_info);
10752 btrfs_warn(fs_info,
10753 "cannot activate swapfile because snapshot creation is in progress");
10754 return -EINVAL;
10755 }
10756 /*
10757 * Snapshots can create extents which require COW even if NODATACOW is
10758 * set. We use this counter to prevent snapshots. We must increment it
10759 * before walking the extents because we don't want a concurrent
10760 * snapshot to run after we've already checked the extents.
10761 *
10762 * It is possible that subvolume is marked for deletion but still not
10763 * removed yet. To prevent this race, we check the root status before
10764 * activating the swapfile.
10765 */
10766 spin_lock(lock: &root->root_item_lock);
10767 if (btrfs_root_dead(root)) {
10768 spin_unlock(lock: &root->root_item_lock);
10769
10770 btrfs_exclop_finish(fs_info);
10771 btrfs_warn(fs_info,
10772 "cannot activate swapfile because subvolume %llu is being deleted",
10773 root->root_key.objectid);
10774 return -EPERM;
10775 }
10776 atomic_inc(v: &root->nr_swapfiles);
10777 spin_unlock(lock: &root->root_item_lock);
10778
10779 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10780
10781 lock_extent(tree: io_tree, start: 0, end: isize - 1, cached: &cached_state);
10782 start = 0;
10783 while (start < isize) {
10784 u64 logical_block_start, physical_block_start;
10785 struct btrfs_block_group *bg;
10786 u64 len = isize - start;
10787
10788 em = btrfs_get_extent(inode: BTRFS_I(inode), NULL, start, len);
10789 if (IS_ERR(ptr: em)) {
10790 ret = PTR_ERR(ptr: em);
10791 goto out;
10792 }
10793
10794 if (em->block_start == EXTENT_MAP_HOLE) {
10795 btrfs_warn(fs_info, "swapfile must not have holes");
10796 ret = -EINVAL;
10797 goto out;
10798 }
10799 if (em->block_start == EXTENT_MAP_INLINE) {
10800 /*
10801 * It's unlikely we'll ever actually find ourselves
10802 * here, as a file small enough to fit inline won't be
10803 * big enough to store more than the swap header, but in
10804 * case something changes in the future, let's catch it
10805 * here rather than later.
10806 */
10807 btrfs_warn(fs_info, "swapfile must not be inline");
10808 ret = -EINVAL;
10809 goto out;
10810 }
10811 if (extent_map_is_compressed(em)) {
10812 btrfs_warn(fs_info, "swapfile must not be compressed");
10813 ret = -EINVAL;
10814 goto out;
10815 }
10816
10817 logical_block_start = em->block_start + (start - em->start);
10818 len = min(len, em->len - (start - em->start));
10819 free_extent_map(em);
10820 em = NULL;
10821
10822 ret = can_nocow_extent(inode, offset: start, len: &len, NULL, NULL, NULL, nowait: false, strict: true);
10823 if (ret < 0) {
10824 goto out;
10825 } else if (ret) {
10826 ret = 0;
10827 } else {
10828 btrfs_warn(fs_info,
10829 "swapfile must not be copy-on-write");
10830 ret = -EINVAL;
10831 goto out;
10832 }
10833
10834 map = btrfs_get_chunk_map(fs_info, logical: logical_block_start, length: len);
10835 if (IS_ERR(ptr: map)) {
10836 ret = PTR_ERR(ptr: map);
10837 goto out;
10838 }
10839
10840 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10841 btrfs_warn(fs_info,
10842 "swapfile must have single data profile");
10843 ret = -EINVAL;
10844 goto out;
10845 }
10846
10847 if (device == NULL) {
10848 device = map->stripes[0].dev;
10849 ret = btrfs_add_swapfile_pin(inode, ptr: device, is_block_group: false);
10850 if (ret == 1)
10851 ret = 0;
10852 else if (ret)
10853 goto out;
10854 } else if (device != map->stripes[0].dev) {
10855 btrfs_warn(fs_info, "swapfile must be on one device");
10856 ret = -EINVAL;
10857 goto out;
10858 }
10859
10860 physical_block_start = (map->stripes[0].physical +
10861 (logical_block_start - map->start));
10862 len = min(len, map->chunk_len - (logical_block_start - map->start));
10863 btrfs_free_chunk_map(map);
10864 map = NULL;
10865
10866 bg = btrfs_lookup_block_group(info: fs_info, bytenr: logical_block_start);
10867 if (!bg) {
10868 btrfs_warn(fs_info,
10869 "could not find block group containing swapfile");
10870 ret = -EINVAL;
10871 goto out;
10872 }
10873
10874 if (!btrfs_inc_block_group_swap_extents(bg)) {
10875 btrfs_warn(fs_info,
10876 "block group for swapfile at %llu is read-only%s",
10877 bg->start,
10878 atomic_read(&fs_info->scrubs_running) ?
10879 " (scrub running)" : "");
10880 btrfs_put_block_group(cache: bg);
10881 ret = -EINVAL;
10882 goto out;
10883 }
10884
10885 ret = btrfs_add_swapfile_pin(inode, ptr: bg, is_block_group: true);
10886 if (ret) {
10887 btrfs_put_block_group(cache: bg);
10888 if (ret == 1)
10889 ret = 0;
10890 else
10891 goto out;
10892 }
10893
10894 if (bsi.block_len &&
10895 bsi.block_start + bsi.block_len == physical_block_start) {
10896 bsi.block_len += len;
10897 } else {
10898 if (bsi.block_len) {
10899 ret = btrfs_add_swap_extent(sis, bsi: &bsi);
10900 if (ret)
10901 goto out;
10902 }
10903 bsi.start = start;
10904 bsi.block_start = physical_block_start;
10905 bsi.block_len = len;
10906 }
10907
10908 start += len;
10909 }
10910
10911 if (bsi.block_len)
10912 ret = btrfs_add_swap_extent(sis, bsi: &bsi);
10913
10914out:
10915 if (!IS_ERR_OR_NULL(ptr: em))
10916 free_extent_map(em);
10917 if (!IS_ERR_OR_NULL(ptr: map))
10918 btrfs_free_chunk_map(map);
10919
10920 unlock_extent(tree: io_tree, start: 0, end: isize - 1, cached: &cached_state);
10921
10922 if (ret)
10923 btrfs_swap_deactivate(file);
10924
10925 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
10926
10927 btrfs_exclop_finish(fs_info);
10928
10929 if (ret)
10930 return ret;
10931
10932 if (device)
10933 sis->bdev = device->bdev;
10934 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10935 sis->max = bsi.nr_pages;
10936 sis->pages = bsi.nr_pages - 1;
10937 sis->highest_bit = bsi.nr_pages - 1;
10938 return bsi.nr_extents;
10939}
10940#else
10941static void btrfs_swap_deactivate(struct file *file)
10942{
10943}
10944
10945static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10946 sector_t *span)
10947{
10948 return -EOPNOTSUPP;
10949}
10950#endif
10951
10952/*
10953 * Update the number of bytes used in the VFS' inode. When we replace extents in
10954 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10955 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10956 * always get a correct value.
10957 */
10958void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10959 const u64 add_bytes,
10960 const u64 del_bytes)
10961{
10962 if (add_bytes == del_bytes)
10963 return;
10964
10965 spin_lock(lock: &inode->lock);
10966 if (del_bytes > 0)
10967 inode_sub_bytes(inode: &inode->vfs_inode, bytes: del_bytes);
10968 if (add_bytes > 0)
10969 inode_add_bytes(inode: &inode->vfs_inode, bytes: add_bytes);
10970 spin_unlock(lock: &inode->lock);
10971}
10972
10973/*
10974 * Verify that there are no ordered extents for a given file range.
10975 *
10976 * @inode: The target inode.
10977 * @start: Start offset of the file range, should be sector size aligned.
10978 * @end: End offset (inclusive) of the file range, its value +1 should be
10979 * sector size aligned.
10980 *
10981 * This should typically be used for cases where we locked an inode's VFS lock in
10982 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10983 * we have flushed all delalloc in the range, we have waited for all ordered
10984 * extents in the range to complete and finally we have locked the file range in
10985 * the inode's io_tree.
10986 */
10987void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10988{
10989 struct btrfs_root *root = inode->root;
10990 struct btrfs_ordered_extent *ordered;
10991
10992 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10993 return;
10994
10995 ordered = btrfs_lookup_first_ordered_range(inode, file_offset: start, len: end + 1 - start);
10996 if (ordered) {
10997 btrfs_err(root->fs_info,
10998"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10999 start, end, btrfs_ino(inode), root->root_key.objectid,
11000 ordered->file_offset,
11001 ordered->file_offset + ordered->num_bytes - 1);
11002 btrfs_put_ordered_extent(entry: ordered);
11003 }
11004
11005 ASSERT(ordered == NULL);
11006}
11007
11008static const struct inode_operations btrfs_dir_inode_operations = {
11009 .getattr = btrfs_getattr,
11010 .lookup = btrfs_lookup,
11011 .create = btrfs_create,
11012 .unlink = btrfs_unlink,
11013 .link = btrfs_link,
11014 .mkdir = btrfs_mkdir,
11015 .rmdir = btrfs_rmdir,
11016 .rename = btrfs_rename2,
11017 .symlink = btrfs_symlink,
11018 .setattr = btrfs_setattr,
11019 .mknod = btrfs_mknod,
11020 .listxattr = btrfs_listxattr,
11021 .permission = btrfs_permission,
11022 .get_inode_acl = btrfs_get_acl,
11023 .set_acl = btrfs_set_acl,
11024 .update_time = btrfs_update_time,
11025 .tmpfile = btrfs_tmpfile,
11026 .fileattr_get = btrfs_fileattr_get,
11027 .fileattr_set = btrfs_fileattr_set,
11028};
11029
11030static const struct file_operations btrfs_dir_file_operations = {
11031 .llseek = btrfs_dir_llseek,
11032 .read = generic_read_dir,
11033 .iterate_shared = btrfs_real_readdir,
11034 .open = btrfs_opendir,
11035 .unlocked_ioctl = btrfs_ioctl,
11036#ifdef CONFIG_COMPAT
11037 .compat_ioctl = btrfs_compat_ioctl,
11038#endif
11039 .release = btrfs_release_file,
11040 .fsync = btrfs_sync_file,
11041};
11042
11043/*
11044 * btrfs doesn't support the bmap operation because swapfiles
11045 * use bmap to make a mapping of extents in the file. They assume
11046 * these extents won't change over the life of the file and they
11047 * use the bmap result to do IO directly to the drive.
11048 *
11049 * the btrfs bmap call would return logical addresses that aren't
11050 * suitable for IO and they also will change frequently as COW
11051 * operations happen. So, swapfile + btrfs == corruption.
11052 *
11053 * For now we're avoiding this by dropping bmap.
11054 */
11055static const struct address_space_operations btrfs_aops = {
11056 .read_folio = btrfs_read_folio,
11057 .writepages = btrfs_writepages,
11058 .readahead = btrfs_readahead,
11059 .invalidate_folio = btrfs_invalidate_folio,
11060 .release_folio = btrfs_release_folio,
11061 .migrate_folio = btrfs_migrate_folio,
11062 .dirty_folio = filemap_dirty_folio,
11063 .error_remove_folio = generic_error_remove_folio,
11064 .swap_activate = btrfs_swap_activate,
11065 .swap_deactivate = btrfs_swap_deactivate,
11066};
11067
11068static const struct inode_operations btrfs_file_inode_operations = {
11069 .getattr = btrfs_getattr,
11070 .setattr = btrfs_setattr,
11071 .listxattr = btrfs_listxattr,
11072 .permission = btrfs_permission,
11073 .fiemap = btrfs_fiemap,
11074 .get_inode_acl = btrfs_get_acl,
11075 .set_acl = btrfs_set_acl,
11076 .update_time = btrfs_update_time,
11077 .fileattr_get = btrfs_fileattr_get,
11078 .fileattr_set = btrfs_fileattr_set,
11079};
11080static const struct inode_operations btrfs_special_inode_operations = {
11081 .getattr = btrfs_getattr,
11082 .setattr = btrfs_setattr,
11083 .permission = btrfs_permission,
11084 .listxattr = btrfs_listxattr,
11085 .get_inode_acl = btrfs_get_acl,
11086 .set_acl = btrfs_set_acl,
11087 .update_time = btrfs_update_time,
11088};
11089static const struct inode_operations btrfs_symlink_inode_operations = {
11090 .get_link = page_get_link,
11091 .getattr = btrfs_getattr,
11092 .setattr = btrfs_setattr,
11093 .permission = btrfs_permission,
11094 .listxattr = btrfs_listxattr,
11095 .update_time = btrfs_update_time,
11096};
11097
11098const struct dentry_operations btrfs_dentry_operations = {
11099 .d_delete = btrfs_dentry_delete,
11100};
11101

source code of linux/fs/btrfs/inode.c