1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include "cgroup-internal.h"
32
33#include <linux/bpf-cgroup.h>
34#include <linux/cred.h>
35#include <linux/errno.h>
36#include <linux/init_task.h>
37#include <linux/kernel.h>
38#include <linux/magic.h>
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
45#include <linux/sched/task.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/percpu-rwsem.h>
49#include <linux/string.h>
50#include <linux/hashtable.h>
51#include <linux/idr.h>
52#include <linux/kthread.h>
53#include <linux/atomic.h>
54#include <linux/cpuset.h>
55#include <linux/proc_ns.h>
56#include <linux/nsproxy.h>
57#include <linux/file.h>
58#include <linux/fs_parser.h>
59#include <linux/sched/cputime.h>
60#include <linux/sched/deadline.h>
61#include <linux/psi.h>
62#include <net/sock.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/cgroup.h>
66
67#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69/* let's not notify more than 100 times per second */
70#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71
72/*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
79
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90DEFINE_MUTEX(cgroup_mutex);
91DEFINE_SPINLOCK(css_set_lock);
92
93#ifdef CONFIG_PROVE_RCU
94EXPORT_SYMBOL_GPL(cgroup_mutex);
95EXPORT_SYMBOL_GPL(css_set_lock);
96#endif
97
98DEFINE_SPINLOCK(trace_cgroup_path_lock);
99char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100static bool cgroup_debug __read_mostly;
101
102/*
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
105 */
106static DEFINE_SPINLOCK(cgroup_idr_lock);
107
108/*
109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
110 * against file removal/re-creation across css hiding.
111 */
112static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113
114DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115
116#define cgroup_assert_mutex_or_rcu_locked() \
117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
118 !lockdep_is_held(&cgroup_mutex), \
119 "cgroup_mutex or RCU read lock required");
120
121/*
122 * cgroup destruction makes heavy use of work items and there can be a lot
123 * of concurrent destructions. Use a separate workqueue so that cgroup
124 * destruction work items don't end up filling up max_active of system_wq
125 * which may lead to deadlock.
126 */
127static struct workqueue_struct *cgroup_destroy_wq;
128
129/* generate an array of cgroup subsystem pointers */
130#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131struct cgroup_subsys *cgroup_subsys[] = {
132#include <linux/cgroup_subsys.h>
133};
134#undef SUBSYS
135
136/* array of cgroup subsystem names */
137#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138static const char *cgroup_subsys_name[] = {
139#include <linux/cgroup_subsys.h>
140};
141#undef SUBSYS
142
143/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144#define SUBSYS(_x) \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149#include <linux/cgroup_subsys.h>
150#undef SUBSYS
151
152#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153static struct static_key_true *cgroup_subsys_enabled_key[] = {
154#include <linux/cgroup_subsys.h>
155};
156#undef SUBSYS
157
158#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160#include <linux/cgroup_subsys.h>
161};
162#undef SUBSYS
163
164static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165
166/* the default hierarchy */
167struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_visible;
175
176/* some controllers are not supported in the default hierarchy */
177static u16 cgrp_dfl_inhibit_ss_mask;
178
179/* some controllers are implicitly enabled on the default hierarchy */
180static u16 cgrp_dfl_implicit_ss_mask;
181
182/* some controllers can be threaded on the default hierarchy */
183static u16 cgrp_dfl_threaded_ss_mask;
184
185/* The list of hierarchy roots */
186LIST_HEAD(cgroup_roots);
187static int cgroup_root_count;
188
189/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190static DEFINE_IDR(cgroup_hierarchy_idr);
191
192/*
193 * Assign a monotonically increasing serial number to csses. It guarantees
194 * cgroups with bigger numbers are newer than those with smaller numbers.
195 * Also, as csses are always appended to the parent's ->children list, it
196 * guarantees that sibling csses are always sorted in the ascending serial
197 * number order on the list. Protected by cgroup_mutex.
198 */
199static u64 css_serial_nr_next = 1;
200
201/*
202 * These bitmasks identify subsystems with specific features to avoid
203 * having to do iterative checks repeatedly.
204 */
205static u16 have_fork_callback __read_mostly;
206static u16 have_exit_callback __read_mostly;
207static u16 have_release_callback __read_mostly;
208static u16 have_canfork_callback __read_mostly;
209
210static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211
212/* cgroup namespace for init task */
213struct cgroup_namespace init_cgroup_ns = {
214 .ns.count = REFCOUNT_INIT(2),
215 .user_ns = &init_user_ns,
216 .ns.ops = &cgroupns_operations,
217 .ns.inum = PROC_CGROUP_INIT_INO,
218 .root_cset = &init_css_set,
219};
220
221static struct file_system_type cgroup2_fs_type;
222static struct cftype cgroup_base_files[];
223static struct cftype cgroup_psi_files[];
224
225/* cgroup optional features */
226enum cgroup_opt_features {
227#ifdef CONFIG_PSI
228 OPT_FEATURE_PRESSURE,
229#endif
230 OPT_FEATURE_COUNT
231};
232
233static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234#ifdef CONFIG_PSI
235 "pressure",
236#endif
237};
238
239static u16 cgroup_feature_disable_mask __read_mostly;
240
241static int cgroup_apply_control(struct cgroup *cgrp);
242static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243static void css_task_iter_skip(struct css_task_iter *it,
244 struct task_struct *task);
245static int cgroup_destroy_locked(struct cgroup *cgrp);
246static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248static void css_release(struct percpu_ref *ref);
249static void kill_css(struct cgroup_subsys_state *css);
250static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254#ifdef CONFIG_DEBUG_CGROUP_REF
255#define CGROUP_REF_FN_ATTRS noinline
256#define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
257#include <linux/cgroup_refcnt.h>
258#endif
259
260/**
261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262 * @ssid: subsys ID of interest
263 *
264 * cgroup_subsys_enabled() can only be used with literal subsys names which
265 * is fine for individual subsystems but unsuitable for cgroup core. This
266 * is slower static_key_enabled() based test indexed by @ssid.
267 */
268bool cgroup_ssid_enabled(int ssid)
269{
270 if (!CGROUP_HAS_SUBSYS_CONFIG)
271 return false;
272
273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274}
275
276/**
277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278 * @cgrp: the cgroup of interest
279 *
280 * The default hierarchy is the v2 interface of cgroup and this function
281 * can be used to test whether a cgroup is on the default hierarchy for
282 * cases where a subsystem should behave differently depending on the
283 * interface version.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 * and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled in-between reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - blkcg: blk-throttle becomes properly hierarchical.
318 */
319bool cgroup_on_dfl(const struct cgroup *cgrp)
320{
321 return cgrp->root == &cgrp_dfl_root;
322}
323
324/* IDR wrappers which synchronize using cgroup_idr_lock */
325static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 gfp_t gfp_mask)
327{
328 int ret;
329
330 idr_preload(gfp_mask);
331 spin_lock_bh(lock: &cgroup_idr_lock);
332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 spin_unlock_bh(lock: &cgroup_idr_lock);
334 idr_preload_end();
335 return ret;
336}
337
338static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339{
340 void *ret;
341
342 spin_lock_bh(lock: &cgroup_idr_lock);
343 ret = idr_replace(idr, ptr, id);
344 spin_unlock_bh(lock: &cgroup_idr_lock);
345 return ret;
346}
347
348static void cgroup_idr_remove(struct idr *idr, int id)
349{
350 spin_lock_bh(lock: &cgroup_idr_lock);
351 idr_remove(idr, id);
352 spin_unlock_bh(lock: &cgroup_idr_lock);
353}
354
355static bool cgroup_has_tasks(struct cgroup *cgrp)
356{
357 return cgrp->nr_populated_csets;
358}
359
360static bool cgroup_is_threaded(struct cgroup *cgrp)
361{
362 return cgrp->dom_cgrp != cgrp;
363}
364
365/* can @cgrp host both domain and threaded children? */
366static bool cgroup_is_mixable(struct cgroup *cgrp)
367{
368 /*
369 * Root isn't under domain level resource control exempting it from
370 * the no-internal-process constraint, so it can serve as a thread
371 * root and a parent of resource domains at the same time.
372 */
373 return !cgroup_parent(cgrp);
374}
375
376/* can @cgrp become a thread root? Should always be true for a thread root */
377static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378{
379 /* mixables don't care */
380 if (cgroup_is_mixable(cgrp))
381 return true;
382
383 /* domain roots can't be nested under threaded */
384 if (cgroup_is_threaded(cgrp))
385 return false;
386
387 /* can only have either domain or threaded children */
388 if (cgrp->nr_populated_domain_children)
389 return false;
390
391 /* and no domain controllers can be enabled */
392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 return false;
394
395 return true;
396}
397
398/* is @cgrp root of a threaded subtree? */
399static bool cgroup_is_thread_root(struct cgroup *cgrp)
400{
401 /* thread root should be a domain */
402 if (cgroup_is_threaded(cgrp))
403 return false;
404
405 /* a domain w/ threaded children is a thread root */
406 if (cgrp->nr_threaded_children)
407 return true;
408
409 /*
410 * A domain which has tasks and explicit threaded controllers
411 * enabled is a thread root.
412 */
413 if (cgroup_has_tasks(cgrp) &&
414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 return true;
416
417 return false;
418}
419
420/* a domain which isn't connected to the root w/o brekage can't be used */
421static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422{
423 /* the cgroup itself can be a thread root */
424 if (cgroup_is_threaded(cgrp))
425 return false;
426
427 /* but the ancestors can't be unless mixable */
428 while ((cgrp = cgroup_parent(cgrp))) {
429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 return false;
431 if (cgroup_is_threaded(cgrp))
432 return false;
433 }
434
435 return true;
436}
437
438/* subsystems visibly enabled on a cgroup */
439static u16 cgroup_control(struct cgroup *cgrp)
440{
441 struct cgroup *parent = cgroup_parent(cgrp);
442 u16 root_ss_mask = cgrp->root->subsys_mask;
443
444 if (parent) {
445 u16 ss_mask = parent->subtree_control;
446
447 /* threaded cgroups can only have threaded controllers */
448 if (cgroup_is_threaded(cgrp))
449 ss_mask &= cgrp_dfl_threaded_ss_mask;
450 return ss_mask;
451 }
452
453 if (cgroup_on_dfl(cgrp))
454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 cgrp_dfl_implicit_ss_mask);
456 return root_ss_mask;
457}
458
459/* subsystems enabled on a cgroup */
460static u16 cgroup_ss_mask(struct cgroup *cgrp)
461{
462 struct cgroup *parent = cgroup_parent(cgrp);
463
464 if (parent) {
465 u16 ss_mask = parent->subtree_ss_mask;
466
467 /* threaded cgroups can only have threaded controllers */
468 if (cgroup_is_threaded(cgrp))
469 ss_mask &= cgrp_dfl_threaded_ss_mask;
470 return ss_mask;
471 }
472
473 return cgrp->root->subsys_mask;
474}
475
476/**
477 * cgroup_css - obtain a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480 *
481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
482 * function must be called either under cgroup_mutex or rcu_read_lock() and
483 * the caller is responsible for pinning the returned css if it wants to
484 * keep accessing it outside the said locks. This function may return
485 * %NULL if @cgrp doesn't have @subsys_id enabled.
486 */
487static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 struct cgroup_subsys *ss)
489{
490 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 return rcu_dereference_check(cgrp->subsys[ss->id],
492 lockdep_is_held(&cgroup_mutex));
493 else
494 return &cgrp->self;
495}
496
497/**
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501 *
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
507static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
509{
510 lockdep_assert_held(&cgroup_mutex);
511
512 if (!ss)
513 return &cgrp->self;
514
515 /*
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
518 */
519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 cgrp = cgroup_parent(cgrp);
521 if (!cgrp)
522 return NULL;
523 }
524
525 return cgroup_css(cgrp, ss);
526}
527
528/**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsibility to try get a reference for it.
540 */
541struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
543{
544 struct cgroup_subsys_state *css;
545
546 if (!CGROUP_HAS_SUBSYS_CONFIG)
547 return NULL;
548
549 do {
550 css = cgroup_css(cgrp, ss);
551
552 if (css)
553 return css;
554 cgrp = cgroup_parent(cgrp);
555 } while (cgrp);
556
557 return init_css_set.subsys[ss->id];
558}
559
560/**
561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562 * @cgrp: the cgroup of interest
563 * @ss: the subsystem of interest
564 *
565 * Find and get the effective css of @cgrp for @ss. The effective css is
566 * defined as the matching css of the nearest ancestor including self which
567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
568 * the root css is returned, so this function always returns a valid css.
569 * The returned css must be put using css_put().
570 */
571struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 struct cgroup_subsys *ss)
573{
574 struct cgroup_subsys_state *css;
575
576 if (!CGROUP_HAS_SUBSYS_CONFIG)
577 return NULL;
578
579 rcu_read_lock();
580
581 do {
582 css = cgroup_css(cgrp, ss);
583
584 if (css && css_tryget_online(css))
585 goto out_unlock;
586 cgrp = cgroup_parent(cgrp);
587 } while (cgrp);
588
589 css = init_css_set.subsys[ss->id];
590 css_get(css);
591out_unlock:
592 rcu_read_unlock();
593 return css;
594}
595EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596
597static void cgroup_get_live(struct cgroup *cgrp)
598{
599 WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 cgroup_get(cgrp);
601}
602
603/**
604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605 * is responsible for taking the css_set_lock.
606 * @cgrp: the cgroup in question
607 */
608int __cgroup_task_count(const struct cgroup *cgrp)
609{
610 int count = 0;
611 struct cgrp_cset_link *link;
612
613 lockdep_assert_held(&css_set_lock);
614
615 list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 count += link->cset->nr_tasks;
617
618 return count;
619}
620
621/**
622 * cgroup_task_count - count the number of tasks in a cgroup.
623 * @cgrp: the cgroup in question
624 */
625int cgroup_task_count(const struct cgroup *cgrp)
626{
627 int count;
628
629 spin_lock_irq(lock: &css_set_lock);
630 count = __cgroup_task_count(cgrp);
631 spin_unlock_irq(lock: &css_set_lock);
632
633 return count;
634}
635
636struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637{
638 struct cgroup *cgrp = of->kn->parent->priv;
639 struct cftype *cft = of_cft(of);
640
641 /*
642 * This is open and unprotected implementation of cgroup_css().
643 * seq_css() is only called from a kernfs file operation which has
644 * an active reference on the file. Because all the subsystem
645 * files are drained before a css is disassociated with a cgroup,
646 * the matching css from the cgroup's subsys table is guaranteed to
647 * be and stay valid until the enclosing operation is complete.
648 */
649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 else
652 return &cgrp->self;
653}
654EXPORT_SYMBOL_GPL(of_css);
655
656/**
657 * for_each_css - iterate all css's of a cgroup
658 * @css: the iteration cursor
659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660 * @cgrp: the target cgroup to iterate css's of
661 *
662 * Should be called under cgroup_mutex.
663 */
664#define for_each_css(css, ssid, cgrp) \
665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
666 if (!((css) = rcu_dereference_check( \
667 (cgrp)->subsys[(ssid)], \
668 lockdep_is_held(&cgroup_mutex)))) { } \
669 else
670
671/**
672 * do_each_subsys_mask - filter for_each_subsys with a bitmask
673 * @ss: the iteration cursor
674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675 * @ss_mask: the bitmask
676 *
677 * The block will only run for cases where the ssid-th bit (1 << ssid) of
678 * @ss_mask is set.
679 */
680#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
681 unsigned long __ss_mask = (ss_mask); \
682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
683 (ssid) = 0; \
684 break; \
685 } \
686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
687 (ss) = cgroup_subsys[ssid]; \
688 {
689
690#define while_each_subsys_mask() \
691 } \
692 } \
693} while (false)
694
695/* iterate over child cgrps, lock should be held throughout iteration */
696#define cgroup_for_each_live_child(child, cgrp) \
697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 if (({ lockdep_assert_held(&cgroup_mutex); \
699 cgroup_is_dead(child); })) \
700 ; \
701 else
702
703/* walk live descendants in pre order */
704#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
706 if (({ lockdep_assert_held(&cgroup_mutex); \
707 (dsct) = (d_css)->cgroup; \
708 cgroup_is_dead(dsct); })) \
709 ; \
710 else
711
712/* walk live descendants in postorder */
713#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
718 ; \
719 else
720
721/*
722 * The default css_set - used by init and its children prior to any
723 * hierarchies being mounted. It contains a pointer to the root state
724 * for each subsystem. Also used to anchor the list of css_sets. Not
725 * reference-counted, to improve performance when child cgroups
726 * haven't been created.
727 */
728struct css_set init_css_set = {
729 .refcount = REFCOUNT_INIT(1),
730 .dom_cset = &init_css_set,
731 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
740
741 /*
742 * The following field is re-initialized when this cset gets linked
743 * in cgroup_init(). However, let's initialize the field
744 * statically too so that the default cgroup can be accessed safely
745 * early during boot.
746 */
747 .dfl_cgrp = &cgrp_dfl_root.cgrp,
748};
749
750static int css_set_count = 1; /* 1 for init_css_set */
751
752static bool css_set_threaded(struct css_set *cset)
753{
754 return cset->dom_cset != cset;
755}
756
757/**
758 * css_set_populated - does a css_set contain any tasks?
759 * @cset: target css_set
760 *
761 * css_set_populated() should be the same as !!cset->nr_tasks at steady
762 * state. However, css_set_populated() can be called while a task is being
763 * added to or removed from the linked list before the nr_tasks is
764 * properly updated. Hence, we can't just look at ->nr_tasks here.
765 */
766static bool css_set_populated(struct css_set *cset)
767{
768 lockdep_assert_held(&css_set_lock);
769
770 return !list_empty(head: &cset->tasks) || !list_empty(head: &cset->mg_tasks);
771}
772
773/**
774 * cgroup_update_populated - update the populated count of a cgroup
775 * @cgrp: the target cgroup
776 * @populated: inc or dec populated count
777 *
778 * One of the css_sets associated with @cgrp is either getting its first
779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
780 * count is propagated towards root so that a given cgroup's
781 * nr_populated_children is zero iff none of its descendants contain any
782 * tasks.
783 *
784 * @cgrp's interface file "cgroup.populated" is zero if both
785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786 * 1 otherwise. When the sum changes from or to zero, userland is notified
787 * that the content of the interface file has changed. This can be used to
788 * detect when @cgrp and its descendants become populated or empty.
789 */
790static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791{
792 struct cgroup *child = NULL;
793 int adj = populated ? 1 : -1;
794
795 lockdep_assert_held(&css_set_lock);
796
797 do {
798 bool was_populated = cgroup_is_populated(cgrp);
799
800 if (!child) {
801 cgrp->nr_populated_csets += adj;
802 } else {
803 if (cgroup_is_threaded(cgrp: child))
804 cgrp->nr_populated_threaded_children += adj;
805 else
806 cgrp->nr_populated_domain_children += adj;
807 }
808
809 if (was_populated == cgroup_is_populated(cgrp))
810 break;
811
812 cgroup1_check_for_release(cgrp);
813 TRACE_CGROUP_PATH(notify_populated, cgrp,
814 cgroup_is_populated(cgrp));
815 cgroup_file_notify(cfile: &cgrp->events_file);
816
817 child = cgrp;
818 cgrp = cgroup_parent(cgrp);
819 } while (cgrp);
820}
821
822/**
823 * css_set_update_populated - update populated state of a css_set
824 * @cset: target css_set
825 * @populated: whether @cset is populated or depopulated
826 *
827 * @cset is either getting the first task or losing the last. Update the
828 * populated counters of all associated cgroups accordingly.
829 */
830static void css_set_update_populated(struct css_set *cset, bool populated)
831{
832 struct cgrp_cset_link *link;
833
834 lockdep_assert_held(&css_set_lock);
835
836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 cgroup_update_populated(cgrp: link->cgrp, populated);
838}
839
840/*
841 * @task is leaving, advance task iterators which are pointing to it so
842 * that they can resume at the next position. Advancing an iterator might
843 * remove it from the list, use safe walk. See css_task_iter_skip() for
844 * details.
845 */
846static void css_set_skip_task_iters(struct css_set *cset,
847 struct task_struct *task)
848{
849 struct css_task_iter *it, *pos;
850
851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 css_task_iter_skip(it, task);
853}
854
855/**
856 * css_set_move_task - move a task from one css_set to another
857 * @task: task being moved
858 * @from_cset: css_set @task currently belongs to (may be NULL)
859 * @to_cset: new css_set @task is being moved to (may be NULL)
860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861 *
862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
863 * css_set, @from_cset can be NULL. If @task is being disassociated
864 * instead of moved, @to_cset can be NULL.
865 *
866 * This function automatically handles populated counter updates and
867 * css_task_iter adjustments but the caller is responsible for managing
868 * @from_cset and @to_cset's reference counts.
869 */
870static void css_set_move_task(struct task_struct *task,
871 struct css_set *from_cset, struct css_set *to_cset,
872 bool use_mg_tasks)
873{
874 lockdep_assert_held(&css_set_lock);
875
876 if (to_cset && !css_set_populated(cset: to_cset))
877 css_set_update_populated(cset: to_cset, populated: true);
878
879 if (from_cset) {
880 WARN_ON_ONCE(list_empty(&task->cg_list));
881
882 css_set_skip_task_iters(cset: from_cset, task);
883 list_del_init(entry: &task->cg_list);
884 if (!css_set_populated(cset: from_cset))
885 css_set_update_populated(cset: from_cset, populated: false);
886 } else {
887 WARN_ON_ONCE(!list_empty(&task->cg_list));
888 }
889
890 if (to_cset) {
891 /*
892 * We are synchronized through cgroup_threadgroup_rwsem
893 * against PF_EXITING setting such that we can't race
894 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 */
896 WARN_ON_ONCE(task->flags & PF_EXITING);
897
898 cgroup_move_task(p: task, to: to_cset);
899 list_add_tail(new: &task->cg_list, head: use_mg_tasks ? &to_cset->mg_tasks :
900 &to_cset->tasks);
901 }
902}
903
904/*
905 * hash table for cgroup groups. This improves the performance to find
906 * an existing css_set. This hash doesn't (currently) take into
907 * account cgroups in empty hierarchies.
908 */
909#define CSS_SET_HASH_BITS 7
910static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911
912static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913{
914 unsigned long key = 0UL;
915 struct cgroup_subsys *ss;
916 int i;
917
918 for_each_subsys(ss, i)
919 key += (unsigned long)css[i];
920 key = (key >> 16) ^ key;
921
922 return key;
923}
924
925void put_css_set_locked(struct css_set *cset)
926{
927 struct cgrp_cset_link *link, *tmp_link;
928 struct cgroup_subsys *ss;
929 int ssid;
930
931 lockdep_assert_held(&css_set_lock);
932
933 if (!refcount_dec_and_test(r: &cset->refcount))
934 return;
935
936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937
938 /* This css_set is dead. Unlink it and release cgroup and css refs */
939 for_each_subsys(ss, ssid) {
940 list_del(entry: &cset->e_cset_node[ssid]);
941 css_put(cset->subsys[ssid]);
942 }
943 hash_del(node: &cset->hlist);
944 css_set_count--;
945
946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 list_del(entry: &link->cset_link);
948 list_del(entry: &link->cgrp_link);
949 if (cgroup_parent(cgrp: link->cgrp))
950 cgroup_put(cgrp: link->cgrp);
951 kfree(objp: link);
952 }
953
954 if (css_set_threaded(cset)) {
955 list_del(entry: &cset->threaded_csets_node);
956 put_css_set_locked(cset: cset->dom_cset);
957 }
958
959 kfree_rcu(cset, rcu_head);
960}
961
962/**
963 * compare_css_sets - helper function for find_existing_css_set().
964 * @cset: candidate css_set being tested
965 * @old_cset: existing css_set for a task
966 * @new_cgrp: cgroup that's being entered by the task
967 * @template: desired set of css pointers in css_set (pre-calculated)
968 *
969 * Returns true if "cset" matches "old_cset" except for the hierarchy
970 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971 */
972static bool compare_css_sets(struct css_set *cset,
973 struct css_set *old_cset,
974 struct cgroup *new_cgrp,
975 struct cgroup_subsys_state *template[])
976{
977 struct cgroup *new_dfl_cgrp;
978 struct list_head *l1, *l2;
979
980 /*
981 * On the default hierarchy, there can be csets which are
982 * associated with the same set of cgroups but different csses.
983 * Let's first ensure that csses match.
984 */
985 if (memcmp(p: template, q: cset->subsys, size: sizeof(cset->subsys)))
986 return false;
987
988
989 /* @cset's domain should match the default cgroup's */
990 if (cgroup_on_dfl(cgrp: new_cgrp))
991 new_dfl_cgrp = new_cgrp;
992 else
993 new_dfl_cgrp = old_cset->dfl_cgrp;
994
995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 return false;
997
998 /*
999 * Compare cgroup pointers in order to distinguish between
1000 * different cgroups in hierarchies. As different cgroups may
1001 * share the same effective css, this comparison is always
1002 * necessary.
1003 */
1004 l1 = &cset->cgrp_links;
1005 l2 = &old_cset->cgrp_links;
1006 while (1) {
1007 struct cgrp_cset_link *link1, *link2;
1008 struct cgroup *cgrp1, *cgrp2;
1009
1010 l1 = l1->next;
1011 l2 = l2->next;
1012 /* See if we reached the end - both lists are equal length. */
1013 if (l1 == &cset->cgrp_links) {
1014 BUG_ON(l2 != &old_cset->cgrp_links);
1015 break;
1016 } else {
1017 BUG_ON(l2 == &old_cset->cgrp_links);
1018 }
1019 /* Locate the cgroups associated with these links. */
1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 cgrp1 = link1->cgrp;
1023 cgrp2 = link2->cgrp;
1024 /* Hierarchies should be linked in the same order. */
1025 BUG_ON(cgrp1->root != cgrp2->root);
1026
1027 /*
1028 * If this hierarchy is the hierarchy of the cgroup
1029 * that's changing, then we need to check that this
1030 * css_set points to the new cgroup; if it's any other
1031 * hierarchy, then this css_set should point to the
1032 * same cgroup as the old css_set.
1033 */
1034 if (cgrp1->root == new_cgrp->root) {
1035 if (cgrp1 != new_cgrp)
1036 return false;
1037 } else {
1038 if (cgrp1 != cgrp2)
1039 return false;
1040 }
1041 }
1042 return true;
1043}
1044
1045/**
1046 * find_existing_css_set - init css array and find the matching css_set
1047 * @old_cset: the css_set that we're using before the cgroup transition
1048 * @cgrp: the cgroup that we're moving into
1049 * @template: out param for the new set of csses, should be clear on entry
1050 */
1051static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 struct cgroup *cgrp,
1053 struct cgroup_subsys_state **template)
1054{
1055 struct cgroup_root *root = cgrp->root;
1056 struct cgroup_subsys *ss;
1057 struct css_set *cset;
1058 unsigned long key;
1059 int i;
1060
1061 /*
1062 * Build the set of subsystem state objects that we want to see in the
1063 * new css_set. While subsystems can change globally, the entries here
1064 * won't change, so no need for locking.
1065 */
1066 for_each_subsys(ss, i) {
1067 if (root->subsys_mask & (1UL << i)) {
1068 /*
1069 * @ss is in this hierarchy, so we want the
1070 * effective css from @cgrp.
1071 */
1072 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 } else {
1074 /*
1075 * @ss is not in this hierarchy, so we don't want
1076 * to change the css.
1077 */
1078 template[i] = old_cset->subsys[i];
1079 }
1080 }
1081
1082 key = css_set_hash(css: template);
1083 hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 if (!compare_css_sets(cset, old_cset, new_cgrp: cgrp, template))
1085 continue;
1086
1087 /* This css_set matches what we need */
1088 return cset;
1089 }
1090
1091 /* No existing cgroup group matched */
1092 return NULL;
1093}
1094
1095static void free_cgrp_cset_links(struct list_head *links_to_free)
1096{
1097 struct cgrp_cset_link *link, *tmp_link;
1098
1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 list_del(entry: &link->cset_link);
1101 kfree(objp: link);
1102 }
1103}
1104
1105/**
1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107 * @count: the number of links to allocate
1108 * @tmp_links: list_head the allocated links are put on
1109 *
1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111 * through ->cset_link. Returns 0 on success or -errno.
1112 */
1113static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114{
1115 struct cgrp_cset_link *link;
1116 int i;
1117
1118 INIT_LIST_HEAD(list: tmp_links);
1119
1120 for (i = 0; i < count; i++) {
1121 link = kzalloc(size: sizeof(*link), GFP_KERNEL);
1122 if (!link) {
1123 free_cgrp_cset_links(links_to_free: tmp_links);
1124 return -ENOMEM;
1125 }
1126 list_add(new: &link->cset_link, head: tmp_links);
1127 }
1128 return 0;
1129}
1130
1131/**
1132 * link_css_set - a helper function to link a css_set to a cgroup
1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134 * @cset: the css_set to be linked
1135 * @cgrp: the destination cgroup
1136 */
1137static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 struct cgroup *cgrp)
1139{
1140 struct cgrp_cset_link *link;
1141
1142 BUG_ON(list_empty(tmp_links));
1143
1144 if (cgroup_on_dfl(cgrp))
1145 cset->dfl_cgrp = cgrp;
1146
1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 link->cset = cset;
1149 link->cgrp = cgrp;
1150
1151 /*
1152 * Always add links to the tail of the lists so that the lists are
1153 * in chronological order.
1154 */
1155 list_move_tail(list: &link->cset_link, head: &cgrp->cset_links);
1156 list_add_tail(new: &link->cgrp_link, head: &cset->cgrp_links);
1157
1158 if (cgroup_parent(cgrp))
1159 cgroup_get_live(cgrp);
1160}
1161
1162/**
1163 * find_css_set - return a new css_set with one cgroup updated
1164 * @old_cset: the baseline css_set
1165 * @cgrp: the cgroup to be updated
1166 *
1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168 * substituted into the appropriate hierarchy.
1169 */
1170static struct css_set *find_css_set(struct css_set *old_cset,
1171 struct cgroup *cgrp)
1172{
1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 struct css_set *cset;
1175 struct list_head tmp_links;
1176 struct cgrp_cset_link *link;
1177 struct cgroup_subsys *ss;
1178 unsigned long key;
1179 int ssid;
1180
1181 lockdep_assert_held(&cgroup_mutex);
1182
1183 /* First see if we already have a cgroup group that matches
1184 * the desired set */
1185 spin_lock_irq(lock: &css_set_lock);
1186 cset = find_existing_css_set(old_cset, cgrp, template);
1187 if (cset)
1188 get_css_set(cset);
1189 spin_unlock_irq(lock: &css_set_lock);
1190
1191 if (cset)
1192 return cset;
1193
1194 cset = kzalloc(size: sizeof(*cset), GFP_KERNEL);
1195 if (!cset)
1196 return NULL;
1197
1198 /* Allocate all the cgrp_cset_link objects that we'll need */
1199 if (allocate_cgrp_cset_links(count: cgroup_root_count, tmp_links: &tmp_links) < 0) {
1200 kfree(objp: cset);
1201 return NULL;
1202 }
1203
1204 refcount_set(r: &cset->refcount, n: 1);
1205 cset->dom_cset = cset;
1206 INIT_LIST_HEAD(list: &cset->tasks);
1207 INIT_LIST_HEAD(list: &cset->mg_tasks);
1208 INIT_LIST_HEAD(list: &cset->dying_tasks);
1209 INIT_LIST_HEAD(list: &cset->task_iters);
1210 INIT_LIST_HEAD(list: &cset->threaded_csets);
1211 INIT_HLIST_NODE(h: &cset->hlist);
1212 INIT_LIST_HEAD(list: &cset->cgrp_links);
1213 INIT_LIST_HEAD(list: &cset->mg_src_preload_node);
1214 INIT_LIST_HEAD(list: &cset->mg_dst_preload_node);
1215 INIT_LIST_HEAD(list: &cset->mg_node);
1216
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221 spin_lock_irq(lock: &css_set_lock);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 struct cgroup *c = link->cgrp;
1225
1226 if (c->root == cgrp->root)
1227 c = cgrp;
1228 link_css_set(tmp_links: &tmp_links, cset, cgrp: c);
1229 }
1230
1231 BUG_ON(!list_empty(&tmp_links));
1232
1233 css_set_count++;
1234
1235 /* Add @cset to the hash table */
1236 key = css_set_hash(css: cset->subsys);
1237 hash_add(css_set_table, &cset->hlist, key);
1238
1239 for_each_subsys(ss, ssid) {
1240 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242 list_add_tail(new: &cset->e_cset_node[ssid],
1243 head: &css->cgroup->e_csets[ssid]);
1244 css_get(css);
1245 }
1246
1247 spin_unlock_irq(lock: &css_set_lock);
1248
1249 /*
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1254 */
1255 if (cgroup_is_threaded(cgrp: cset->dfl_cgrp)) {
1256 struct css_set *dcset;
1257
1258 dcset = find_css_set(old_cset: cset, cgrp: cset->dfl_cgrp->dom_cgrp);
1259 if (!dcset) {
1260 put_css_set(cset);
1261 return NULL;
1262 }
1263
1264 spin_lock_irq(lock: &css_set_lock);
1265 cset->dom_cset = dcset;
1266 list_add_tail(new: &cset->threaded_csets_node,
1267 head: &dcset->threaded_csets);
1268 spin_unlock_irq(lock: &css_set_lock);
1269 }
1270
1271 return cset;
1272}
1273
1274struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275{
1276 struct cgroup *root_cgrp = kernfs_root_to_node(root: kf_root)->priv;
1277
1278 return root_cgrp->root;
1279}
1280
1281void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282{
1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284
1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 if (favor && !favoring) {
1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 } else if (!favor && favoring) {
1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 }
1293}
1294
1295static int cgroup_init_root_id(struct cgroup_root *root)
1296{
1297 int id;
1298
1299 lockdep_assert_held(&cgroup_mutex);
1300
1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, ptr: root, start: 0, end: 0, GFP_KERNEL);
1302 if (id < 0)
1303 return id;
1304
1305 root->hierarchy_id = id;
1306 return 0;
1307}
1308
1309static void cgroup_exit_root_id(struct cgroup_root *root)
1310{
1311 lockdep_assert_held(&cgroup_mutex);
1312
1313 idr_remove(&cgroup_hierarchy_idr, id: root->hierarchy_id);
1314}
1315
1316void cgroup_free_root(struct cgroup_root *root)
1317{
1318 kfree_rcu(root, rcu);
1319}
1320
1321static void cgroup_destroy_root(struct cgroup_root *root)
1322{
1323 struct cgroup *cgrp = &root->cgrp;
1324 struct cgrp_cset_link *link, *tmp_link;
1325
1326 trace_cgroup_destroy_root(root);
1327
1328 cgroup_lock_and_drain_offline(cgrp: &cgrp_dfl_root.cgrp);
1329
1330 BUG_ON(atomic_read(&root->nr_cgrps));
1331 BUG_ON(!list_empty(&cgrp->self.children));
1332
1333 /* Rebind all subsystems back to the default hierarchy */
1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335
1336 /*
1337 * Release all the links from cset_links to this hierarchy's
1338 * root cgroup
1339 */
1340 spin_lock_irq(lock: &css_set_lock);
1341
1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 list_del(entry: &link->cset_link);
1344 list_del(entry: &link->cgrp_link);
1345 kfree(objp: link);
1346 }
1347
1348 spin_unlock_irq(lock: &css_set_lock);
1349
1350 WARN_ON_ONCE(list_empty(&root->root_list));
1351 list_del_rcu(entry: &root->root_list);
1352 cgroup_root_count--;
1353
1354 if (!have_favordynmods)
1355 cgroup_favor_dynmods(root, favor: false);
1356
1357 cgroup_exit_root_id(root);
1358
1359 cgroup_unlock();
1360
1361 cgroup_rstat_exit(cgrp);
1362 kernfs_destroy_root(root: root->kf_root);
1363 cgroup_free_root(root);
1364}
1365
1366/*
1367 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368 */
1369static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370 struct cgroup_root *root)
1371{
1372 struct cgroup *res_cgroup = NULL;
1373
1374 if (cset == &init_css_set) {
1375 res_cgroup = &root->cgrp;
1376 } else if (root == &cgrp_dfl_root) {
1377 res_cgroup = cset->dfl_cgrp;
1378 } else {
1379 struct cgrp_cset_link *link;
1380 lockdep_assert_held(&css_set_lock);
1381
1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383 struct cgroup *c = link->cgrp;
1384
1385 if (c->root == root) {
1386 res_cgroup = c;
1387 break;
1388 }
1389 }
1390 }
1391
1392 /*
1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394 * before we remove the cgroup root from the root_list. Consequently,
1395 * when accessing a cgroup root, the cset_link may have already been
1396 * freed, resulting in a NULL res_cgroup. However, by holding the
1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399 * check.
1400 */
1401 return res_cgroup;
1402}
1403
1404/*
1405 * look up cgroup associated with current task's cgroup namespace on the
1406 * specified hierarchy
1407 */
1408static struct cgroup *
1409current_cgns_cgroup_from_root(struct cgroup_root *root)
1410{
1411 struct cgroup *res = NULL;
1412 struct css_set *cset;
1413
1414 lockdep_assert_held(&css_set_lock);
1415
1416 rcu_read_lock();
1417
1418 cset = current->nsproxy->cgroup_ns->root_cset;
1419 res = __cset_cgroup_from_root(cset, root);
1420
1421 rcu_read_unlock();
1422
1423 /*
1424 * The namespace_sem is held by current, so the root cgroup can't
1425 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426 */
1427 WARN_ON_ONCE(!res);
1428 return res;
1429}
1430
1431/*
1432 * Look up cgroup associated with current task's cgroup namespace on the default
1433 * hierarchy.
1434 *
1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437 * pointers.
1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439 * - As a bonus returned cgrp is pinned with the current because it cannot
1440 * switch cgroup_ns asynchronously.
1441 */
1442static struct cgroup *current_cgns_cgroup_dfl(void)
1443{
1444 struct css_set *cset;
1445
1446 if (current->nsproxy) {
1447 cset = current->nsproxy->cgroup_ns->root_cset;
1448 return __cset_cgroup_from_root(cset, root: &cgrp_dfl_root);
1449 } else {
1450 /*
1451 * NOTE: This function may be called from bpf_cgroup_from_id()
1452 * on a task which has already passed exit_task_namespaces() and
1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454 * cgroups visible for lookups.
1455 */
1456 return &cgrp_dfl_root.cgrp;
1457 }
1458}
1459
1460/* look up cgroup associated with given css_set on the specified hierarchy */
1461static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462 struct cgroup_root *root)
1463{
1464 lockdep_assert_held(&css_set_lock);
1465
1466 return __cset_cgroup_from_root(cset, root);
1467}
1468
1469/*
1470 * Return the cgroup for "task" from the given hierarchy. Must be
1471 * called with css_set_lock held to prevent task's groups from being modified.
1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473 * cgroup root from being destroyed.
1474 */
1475struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476 struct cgroup_root *root)
1477{
1478 /*
1479 * No need to lock the task - since we hold css_set_lock the
1480 * task can't change groups.
1481 */
1482 return cset_cgroup_from_root(cset: task_css_set(task), root);
1483}
1484
1485/*
1486 * A task must hold cgroup_mutex to modify cgroups.
1487 *
1488 * Any task can increment and decrement the count field without lock.
1489 * So in general, code holding cgroup_mutex can't rely on the count
1490 * field not changing. However, if the count goes to zero, then only
1491 * cgroup_attach_task() can increment it again. Because a count of zero
1492 * means that no tasks are currently attached, therefore there is no
1493 * way a task attached to that cgroup can fork (the other way to
1494 * increment the count). So code holding cgroup_mutex can safely
1495 * assume that if the count is zero, it will stay zero. Similarly, if
1496 * a task holds cgroup_mutex on a cgroup with zero count, it
1497 * knows that the cgroup won't be removed, as cgroup_rmdir()
1498 * needs that mutex.
1499 *
1500 * A cgroup can only be deleted if both its 'count' of using tasks
1501 * is zero, and its list of 'children' cgroups is empty. Since all
1502 * tasks in the system use _some_ cgroup, and since there is always at
1503 * least one task in the system (init, pid == 1), therefore, root cgroup
1504 * always has either children cgroups and/or using tasks. So we don't
1505 * need a special hack to ensure that root cgroup cannot be deleted.
1506 *
1507 * P.S. One more locking exception. RCU is used to guard the
1508 * update of a tasks cgroup pointer by cgroup_attach_task()
1509 */
1510
1511static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512
1513static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514 char *buf)
1515{
1516 struct cgroup_subsys *ss = cft->ss;
1517
1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521
1522 snprintf(buf, CGROUP_FILE_NAME_MAX, fmt: "%s%s.%s",
1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524 cft->name);
1525 } else {
1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527 }
1528 return buf;
1529}
1530
1531/**
1532 * cgroup_file_mode - deduce file mode of a control file
1533 * @cft: the control file in question
1534 *
1535 * S_IRUGO for read, S_IWUSR for write.
1536 */
1537static umode_t cgroup_file_mode(const struct cftype *cft)
1538{
1539 umode_t mode = 0;
1540
1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542 mode |= S_IRUGO;
1543
1544 if (cft->write_u64 || cft->write_s64 || cft->write) {
1545 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546 mode |= S_IWUGO;
1547 else
1548 mode |= S_IWUSR;
1549 }
1550
1551 return mode;
1552}
1553
1554/**
1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556 * @subtree_control: the new subtree_control mask to consider
1557 * @this_ss_mask: available subsystems
1558 *
1559 * On the default hierarchy, a subsystem may request other subsystems to be
1560 * enabled together through its ->depends_on mask. In such cases, more
1561 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562 *
1563 * This function calculates which subsystems need to be enabled if
1564 * @subtree_control is to be applied while restricted to @this_ss_mask.
1565 */
1566static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567{
1568 u16 cur_ss_mask = subtree_control;
1569 struct cgroup_subsys *ss;
1570 int ssid;
1571
1572 lockdep_assert_held(&cgroup_mutex);
1573
1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575
1576 while (true) {
1577 u16 new_ss_mask = cur_ss_mask;
1578
1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580 new_ss_mask |= ss->depends_on;
1581 } while_each_subsys_mask();
1582
1583 /*
1584 * Mask out subsystems which aren't available. This can
1585 * happen only if some depended-upon subsystems were bound
1586 * to non-default hierarchies.
1587 */
1588 new_ss_mask &= this_ss_mask;
1589
1590 if (new_ss_mask == cur_ss_mask)
1591 break;
1592 cur_ss_mask = new_ss_mask;
1593 }
1594
1595 return cur_ss_mask;
1596}
1597
1598/**
1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600 * @kn: the kernfs_node being serviced
1601 *
1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603 * the method finishes if locking succeeded. Note that once this function
1604 * returns the cgroup returned by cgroup_kn_lock_live() may become
1605 * inaccessible any time. If the caller intends to continue to access the
1606 * cgroup, it should pin it before invoking this function.
1607 */
1608void cgroup_kn_unlock(struct kernfs_node *kn)
1609{
1610 struct cgroup *cgrp;
1611
1612 if (kernfs_type(kn) == KERNFS_DIR)
1613 cgrp = kn->priv;
1614 else
1615 cgrp = kn->parent->priv;
1616
1617 cgroup_unlock();
1618
1619 kernfs_unbreak_active_protection(kn);
1620 cgroup_put(cgrp);
1621}
1622
1623/**
1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625 * @kn: the kernfs_node being serviced
1626 * @drain_offline: perform offline draining on the cgroup
1627 *
1628 * This helper is to be used by a cgroup kernfs method currently servicing
1629 * @kn. It breaks the active protection, performs cgroup locking and
1630 * verifies that the associated cgroup is alive. Returns the cgroup if
1631 * alive; otherwise, %NULL. A successful return should be undone by a
1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1633 * cgroup is drained of offlining csses before return.
1634 *
1635 * Any cgroup kernfs method implementation which requires locking the
1636 * associated cgroup should use this helper. It avoids nesting cgroup
1637 * locking under kernfs active protection and allows all kernfs operations
1638 * including self-removal.
1639 */
1640struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641{
1642 struct cgroup *cgrp;
1643
1644 if (kernfs_type(kn) == KERNFS_DIR)
1645 cgrp = kn->priv;
1646 else
1647 cgrp = kn->parent->priv;
1648
1649 /*
1650 * We're gonna grab cgroup_mutex which nests outside kernfs
1651 * active_ref. cgroup liveliness check alone provides enough
1652 * protection against removal. Ensure @cgrp stays accessible and
1653 * break the active_ref protection.
1654 */
1655 if (!cgroup_tryget(cgrp))
1656 return NULL;
1657 kernfs_break_active_protection(kn);
1658
1659 if (drain_offline)
1660 cgroup_lock_and_drain_offline(cgrp);
1661 else
1662 cgroup_lock();
1663
1664 if (!cgroup_is_dead(cgrp))
1665 return cgrp;
1666
1667 cgroup_kn_unlock(kn);
1668 return NULL;
1669}
1670
1671static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672{
1673 char name[CGROUP_FILE_NAME_MAX];
1674
1675 lockdep_assert_held(&cgroup_mutex);
1676
1677 if (cft->file_offset) {
1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss: cft->ss);
1679 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680
1681 spin_lock_irq(lock: &cgroup_file_kn_lock);
1682 cfile->kn = NULL;
1683 spin_unlock_irq(lock: &cgroup_file_kn_lock);
1684
1685 del_timer_sync(timer: &cfile->notify_timer);
1686 }
1687
1688 kernfs_remove_by_name(parent: cgrp->kn, name: cgroup_file_name(cgrp, cft, buf: name));
1689}
1690
1691/**
1692 * css_clear_dir - remove subsys files in a cgroup directory
1693 * @css: target css
1694 */
1695static void css_clear_dir(struct cgroup_subsys_state *css)
1696{
1697 struct cgroup *cgrp = css->cgroup;
1698 struct cftype *cfts;
1699
1700 if (!(css->flags & CSS_VISIBLE))
1701 return;
1702
1703 css->flags &= ~CSS_VISIBLE;
1704
1705 if (!css->ss) {
1706 if (cgroup_on_dfl(cgrp)) {
1707 cgroup_addrm_files(css, cgrp,
1708 cfts: cgroup_base_files, is_add: false);
1709 if (cgroup_psi_enabled())
1710 cgroup_addrm_files(css, cgrp,
1711 cfts: cgroup_psi_files, is_add: false);
1712 } else {
1713 cgroup_addrm_files(css, cgrp,
1714 cfts: cgroup1_base_files, is_add: false);
1715 }
1716 } else {
1717 list_for_each_entry(cfts, &css->ss->cfts, node)
1718 cgroup_addrm_files(css, cgrp, cfts, is_add: false);
1719 }
1720}
1721
1722/**
1723 * css_populate_dir - create subsys files in a cgroup directory
1724 * @css: target css
1725 *
1726 * On failure, no file is added.
1727 */
1728static int css_populate_dir(struct cgroup_subsys_state *css)
1729{
1730 struct cgroup *cgrp = css->cgroup;
1731 struct cftype *cfts, *failed_cfts;
1732 int ret;
1733
1734 if (css->flags & CSS_VISIBLE)
1735 return 0;
1736
1737 if (!css->ss) {
1738 if (cgroup_on_dfl(cgrp)) {
1739 ret = cgroup_addrm_files(css, cgrp,
1740 cfts: cgroup_base_files, is_add: true);
1741 if (ret < 0)
1742 return ret;
1743
1744 if (cgroup_psi_enabled()) {
1745 ret = cgroup_addrm_files(css, cgrp,
1746 cfts: cgroup_psi_files, is_add: true);
1747 if (ret < 0)
1748 return ret;
1749 }
1750 } else {
1751 ret = cgroup_addrm_files(css, cgrp,
1752 cfts: cgroup1_base_files, is_add: true);
1753 if (ret < 0)
1754 return ret;
1755 }
1756 } else {
1757 list_for_each_entry(cfts, &css->ss->cfts, node) {
1758 ret = cgroup_addrm_files(css, cgrp, cfts, is_add: true);
1759 if (ret < 0) {
1760 failed_cfts = cfts;
1761 goto err;
1762 }
1763 }
1764 }
1765
1766 css->flags |= CSS_VISIBLE;
1767
1768 return 0;
1769err:
1770 list_for_each_entry(cfts, &css->ss->cfts, node) {
1771 if (cfts == failed_cfts)
1772 break;
1773 cgroup_addrm_files(css, cgrp, cfts, is_add: false);
1774 }
1775 return ret;
1776}
1777
1778int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1779{
1780 struct cgroup *dcgrp = &dst_root->cgrp;
1781 struct cgroup_subsys *ss;
1782 int ssid, ret;
1783 u16 dfl_disable_ss_mask = 0;
1784
1785 lockdep_assert_held(&cgroup_mutex);
1786
1787 do_each_subsys_mask(ss, ssid, ss_mask) {
1788 /*
1789 * If @ss has non-root csses attached to it, can't move.
1790 * If @ss is an implicit controller, it is exempt from this
1791 * rule and can be stolen.
1792 */
1793 if (css_next_child(NULL, parent: cgroup_css(cgrp: &ss->root->cgrp, ss)) &&
1794 !ss->implicit_on_dfl)
1795 return -EBUSY;
1796
1797 /* can't move between two non-dummy roots either */
1798 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1799 return -EBUSY;
1800
1801 /*
1802 * Collect ssid's that need to be disabled from default
1803 * hierarchy.
1804 */
1805 if (ss->root == &cgrp_dfl_root)
1806 dfl_disable_ss_mask |= 1 << ssid;
1807
1808 } while_each_subsys_mask();
1809
1810 if (dfl_disable_ss_mask) {
1811 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1812
1813 /*
1814 * Controllers from default hierarchy that need to be rebound
1815 * are all disabled together in one go.
1816 */
1817 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1818 WARN_ON(cgroup_apply_control(scgrp));
1819 cgroup_finalize_control(cgrp: scgrp, ret: 0);
1820 }
1821
1822 do_each_subsys_mask(ss, ssid, ss_mask) {
1823 struct cgroup_root *src_root = ss->root;
1824 struct cgroup *scgrp = &src_root->cgrp;
1825 struct cgroup_subsys_state *css = cgroup_css(cgrp: scgrp, ss);
1826 struct css_set *cset, *cset_pos;
1827 struct css_task_iter *it;
1828
1829 WARN_ON(!css || cgroup_css(dcgrp, ss));
1830
1831 if (src_root != &cgrp_dfl_root) {
1832 /* disable from the source */
1833 src_root->subsys_mask &= ~(1 << ssid);
1834 WARN_ON(cgroup_apply_control(scgrp));
1835 cgroup_finalize_control(cgrp: scgrp, ret: 0);
1836 }
1837
1838 /* rebind */
1839 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1840 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1841 ss->root = dst_root;
1842 css->cgroup = dcgrp;
1843
1844 spin_lock_irq(lock: &css_set_lock);
1845 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1846 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1847 e_cset_node[ss->id]) {
1848 list_move_tail(list: &cset->e_cset_node[ss->id],
1849 head: &dcgrp->e_csets[ss->id]);
1850 /*
1851 * all css_sets of scgrp together in same order to dcgrp,
1852 * patch in-flight iterators to preserve correct iteration.
1853 * since the iterator is always advanced right away and
1854 * finished when it->cset_pos meets it->cset_head, so only
1855 * update it->cset_head is enough here.
1856 */
1857 list_for_each_entry(it, &cset->task_iters, iters_node)
1858 if (it->cset_head == &scgrp->e_csets[ss->id])
1859 it->cset_head = &dcgrp->e_csets[ss->id];
1860 }
1861 spin_unlock_irq(lock: &css_set_lock);
1862
1863 if (ss->css_rstat_flush) {
1864 list_del_rcu(entry: &css->rstat_css_node);
1865 synchronize_rcu();
1866 list_add_rcu(new: &css->rstat_css_node,
1867 head: &dcgrp->rstat_css_list);
1868 }
1869
1870 /* default hierarchy doesn't enable controllers by default */
1871 dst_root->subsys_mask |= 1 << ssid;
1872 if (dst_root == &cgrp_dfl_root) {
1873 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1874 } else {
1875 dcgrp->subtree_control |= 1 << ssid;
1876 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1877 }
1878
1879 ret = cgroup_apply_control(cgrp: dcgrp);
1880 if (ret)
1881 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1882 ss->name, ret);
1883
1884 if (ss->bind)
1885 ss->bind(css);
1886 } while_each_subsys_mask();
1887
1888 kernfs_activate(kn: dcgrp->kn);
1889 return 0;
1890}
1891
1892int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1893 struct kernfs_root *kf_root)
1894{
1895 int len = 0;
1896 char *buf = NULL;
1897 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1898 struct cgroup *ns_cgroup;
1899
1900 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1901 if (!buf)
1902 return -ENOMEM;
1903
1904 spin_lock_irq(lock: &css_set_lock);
1905 ns_cgroup = current_cgns_cgroup_from_root(root: kf_cgroot);
1906 len = kernfs_path_from_node(root_kn: kf_node, kn: ns_cgroup->kn, buf, PATH_MAX);
1907 spin_unlock_irq(lock: &css_set_lock);
1908
1909 if (len == -E2BIG)
1910 len = -ERANGE;
1911 else if (len > 0) {
1912 seq_escape(m: sf, s: buf, esc: " \t\n\\");
1913 len = 0;
1914 }
1915 kfree(objp: buf);
1916 return len;
1917}
1918
1919enum cgroup2_param {
1920 Opt_nsdelegate,
1921 Opt_favordynmods,
1922 Opt_memory_localevents,
1923 Opt_memory_recursiveprot,
1924 Opt_memory_hugetlb_accounting,
1925 nr__cgroup2_params
1926};
1927
1928static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1929 fsparam_flag("nsdelegate", Opt_nsdelegate),
1930 fsparam_flag("favordynmods", Opt_favordynmods),
1931 fsparam_flag("memory_localevents", Opt_memory_localevents),
1932 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1933 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1934 {}
1935};
1936
1937static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1938{
1939 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1940 struct fs_parse_result result;
1941 int opt;
1942
1943 opt = fs_parse(fc, desc: cgroup2_fs_parameters, param, result: &result);
1944 if (opt < 0)
1945 return opt;
1946
1947 switch (opt) {
1948 case Opt_nsdelegate:
1949 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1950 return 0;
1951 case Opt_favordynmods:
1952 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1953 return 0;
1954 case Opt_memory_localevents:
1955 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1956 return 0;
1957 case Opt_memory_recursiveprot:
1958 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1959 return 0;
1960 case Opt_memory_hugetlb_accounting:
1961 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1962 return 0;
1963 }
1964 return -EINVAL;
1965}
1966
1967static void apply_cgroup_root_flags(unsigned int root_flags)
1968{
1969 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1970 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1971 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1972 else
1973 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1974
1975 cgroup_favor_dynmods(root: &cgrp_dfl_root,
1976 favor: root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1977
1978 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1979 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1980 else
1981 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1982
1983 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1984 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1985 else
1986 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1987
1988 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1989 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1990 else
1991 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1992 }
1993}
1994
1995static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1996{
1997 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1998 seq_puts(m: seq, s: ",nsdelegate");
1999 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2000 seq_puts(m: seq, s: ",favordynmods");
2001 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2002 seq_puts(m: seq, s: ",memory_localevents");
2003 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2004 seq_puts(m: seq, s: ",memory_recursiveprot");
2005 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2006 seq_puts(m: seq, s: ",memory_hugetlb_accounting");
2007 return 0;
2008}
2009
2010static int cgroup_reconfigure(struct fs_context *fc)
2011{
2012 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2013
2014 apply_cgroup_root_flags(root_flags: ctx->flags);
2015 return 0;
2016}
2017
2018static void init_cgroup_housekeeping(struct cgroup *cgrp)
2019{
2020 struct cgroup_subsys *ss;
2021 int ssid;
2022
2023 INIT_LIST_HEAD(list: &cgrp->self.sibling);
2024 INIT_LIST_HEAD(list: &cgrp->self.children);
2025 INIT_LIST_HEAD(list: &cgrp->cset_links);
2026 INIT_LIST_HEAD(list: &cgrp->pidlists);
2027 mutex_init(&cgrp->pidlist_mutex);
2028 cgrp->self.cgroup = cgrp;
2029 cgrp->self.flags |= CSS_ONLINE;
2030 cgrp->dom_cgrp = cgrp;
2031 cgrp->max_descendants = INT_MAX;
2032 cgrp->max_depth = INT_MAX;
2033 INIT_LIST_HEAD(list: &cgrp->rstat_css_list);
2034 prev_cputime_init(prev: &cgrp->prev_cputime);
2035
2036 for_each_subsys(ss, ssid)
2037 INIT_LIST_HEAD(list: &cgrp->e_csets[ssid]);
2038
2039 init_waitqueue_head(&cgrp->offline_waitq);
2040 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2041}
2042
2043void init_cgroup_root(struct cgroup_fs_context *ctx)
2044{
2045 struct cgroup_root *root = ctx->root;
2046 struct cgroup *cgrp = &root->cgrp;
2047
2048 INIT_LIST_HEAD_RCU(list: &root->root_list);
2049 atomic_set(v: &root->nr_cgrps, i: 1);
2050 cgrp->root = root;
2051 init_cgroup_housekeeping(cgrp);
2052
2053 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2054 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2055 if (ctx->release_agent)
2056 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2057 if (ctx->name)
2058 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2059 if (ctx->cpuset_clone_children)
2060 set_bit(nr: CGRP_CPUSET_CLONE_CHILDREN, addr: &root->cgrp.flags);
2061}
2062
2063int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2064{
2065 LIST_HEAD(tmp_links);
2066 struct cgroup *root_cgrp = &root->cgrp;
2067 struct kernfs_syscall_ops *kf_sops;
2068 struct css_set *cset;
2069 int i, ret;
2070
2071 lockdep_assert_held(&cgroup_mutex);
2072
2073 ret = percpu_ref_init(ref: &root_cgrp->self.refcnt, release: css_release,
2074 flags: 0, GFP_KERNEL);
2075 if (ret)
2076 goto out;
2077
2078 /*
2079 * We're accessing css_set_count without locking css_set_lock here,
2080 * but that's OK - it can only be increased by someone holding
2081 * cgroup_lock, and that's us. Later rebinding may disable
2082 * controllers on the default hierarchy and thus create new csets,
2083 * which can't be more than the existing ones. Allocate 2x.
2084 */
2085 ret = allocate_cgrp_cset_links(count: 2 * css_set_count, tmp_links: &tmp_links);
2086 if (ret)
2087 goto cancel_ref;
2088
2089 ret = cgroup_init_root_id(root);
2090 if (ret)
2091 goto cancel_ref;
2092
2093 kf_sops = root == &cgrp_dfl_root ?
2094 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2095
2096 root->kf_root = kernfs_create_root(scops: kf_sops,
2097 flags: KERNFS_ROOT_CREATE_DEACTIVATED |
2098 KERNFS_ROOT_SUPPORT_EXPORTOP |
2099 KERNFS_ROOT_SUPPORT_USER_XATTR,
2100 priv: root_cgrp);
2101 if (IS_ERR(ptr: root->kf_root)) {
2102 ret = PTR_ERR(ptr: root->kf_root);
2103 goto exit_root_id;
2104 }
2105 root_cgrp->kn = kernfs_root_to_node(root: root->kf_root);
2106 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2107 root_cgrp->ancestors[0] = root_cgrp;
2108
2109 ret = css_populate_dir(css: &root_cgrp->self);
2110 if (ret)
2111 goto destroy_root;
2112
2113 ret = cgroup_rstat_init(cgrp: root_cgrp);
2114 if (ret)
2115 goto destroy_root;
2116
2117 ret = rebind_subsystems(dst_root: root, ss_mask);
2118 if (ret)
2119 goto exit_stats;
2120
2121 ret = cgroup_bpf_inherit(cgrp: root_cgrp);
2122 WARN_ON_ONCE(ret);
2123
2124 trace_cgroup_setup_root(root);
2125
2126 /*
2127 * There must be no failure case after here, since rebinding takes
2128 * care of subsystems' refcounts, which are explicitly dropped in
2129 * the failure exit path.
2130 */
2131 list_add_rcu(new: &root->root_list, head: &cgroup_roots);
2132 cgroup_root_count++;
2133
2134 /*
2135 * Link the root cgroup in this hierarchy into all the css_set
2136 * objects.
2137 */
2138 spin_lock_irq(lock: &css_set_lock);
2139 hash_for_each(css_set_table, i, cset, hlist) {
2140 link_css_set(tmp_links: &tmp_links, cset, cgrp: root_cgrp);
2141 if (css_set_populated(cset))
2142 cgroup_update_populated(cgrp: root_cgrp, populated: true);
2143 }
2144 spin_unlock_irq(lock: &css_set_lock);
2145
2146 BUG_ON(!list_empty(&root_cgrp->self.children));
2147 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2148
2149 ret = 0;
2150 goto out;
2151
2152exit_stats:
2153 cgroup_rstat_exit(cgrp: root_cgrp);
2154destroy_root:
2155 kernfs_destroy_root(root: root->kf_root);
2156 root->kf_root = NULL;
2157exit_root_id:
2158 cgroup_exit_root_id(root);
2159cancel_ref:
2160 percpu_ref_exit(ref: &root_cgrp->self.refcnt);
2161out:
2162 free_cgrp_cset_links(links_to_free: &tmp_links);
2163 return ret;
2164}
2165
2166int cgroup_do_get_tree(struct fs_context *fc)
2167{
2168 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2169 int ret;
2170
2171 ctx->kfc.root = ctx->root->kf_root;
2172 if (fc->fs_type == &cgroup2_fs_type)
2173 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2174 else
2175 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2176 ret = kernfs_get_tree(fc);
2177
2178 /*
2179 * In non-init cgroup namespace, instead of root cgroup's dentry,
2180 * we return the dentry corresponding to the cgroupns->root_cgrp.
2181 */
2182 if (!ret && ctx->ns != &init_cgroup_ns) {
2183 struct dentry *nsdentry;
2184 struct super_block *sb = fc->root->d_sb;
2185 struct cgroup *cgrp;
2186
2187 cgroup_lock();
2188 spin_lock_irq(lock: &css_set_lock);
2189
2190 cgrp = cset_cgroup_from_root(cset: ctx->ns->root_cset, root: ctx->root);
2191
2192 spin_unlock_irq(lock: &css_set_lock);
2193 cgroup_unlock();
2194
2195 nsdentry = kernfs_node_dentry(kn: cgrp->kn, sb);
2196 dput(fc->root);
2197 if (IS_ERR(ptr: nsdentry)) {
2198 deactivate_locked_super(sb);
2199 ret = PTR_ERR(ptr: nsdentry);
2200 nsdentry = NULL;
2201 }
2202 fc->root = nsdentry;
2203 }
2204
2205 if (!ctx->kfc.new_sb_created)
2206 cgroup_put(cgrp: &ctx->root->cgrp);
2207
2208 return ret;
2209}
2210
2211/*
2212 * Destroy a cgroup filesystem context.
2213 */
2214static void cgroup_fs_context_free(struct fs_context *fc)
2215{
2216 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2217
2218 kfree(objp: ctx->name);
2219 kfree(objp: ctx->release_agent);
2220 put_cgroup_ns(ns: ctx->ns);
2221 kernfs_free_fs_context(fc);
2222 kfree(objp: ctx);
2223}
2224
2225static int cgroup_get_tree(struct fs_context *fc)
2226{
2227 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2228 int ret;
2229
2230 WRITE_ONCE(cgrp_dfl_visible, true);
2231 cgroup_get_live(cgrp: &cgrp_dfl_root.cgrp);
2232 ctx->root = &cgrp_dfl_root;
2233
2234 ret = cgroup_do_get_tree(fc);
2235 if (!ret)
2236 apply_cgroup_root_flags(root_flags: ctx->flags);
2237 return ret;
2238}
2239
2240static const struct fs_context_operations cgroup_fs_context_ops = {
2241 .free = cgroup_fs_context_free,
2242 .parse_param = cgroup2_parse_param,
2243 .get_tree = cgroup_get_tree,
2244 .reconfigure = cgroup_reconfigure,
2245};
2246
2247static const struct fs_context_operations cgroup1_fs_context_ops = {
2248 .free = cgroup_fs_context_free,
2249 .parse_param = cgroup1_parse_param,
2250 .get_tree = cgroup1_get_tree,
2251 .reconfigure = cgroup1_reconfigure,
2252};
2253
2254/*
2255 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2256 * we select the namespace we're going to use.
2257 */
2258static int cgroup_init_fs_context(struct fs_context *fc)
2259{
2260 struct cgroup_fs_context *ctx;
2261
2262 ctx = kzalloc(size: sizeof(struct cgroup_fs_context), GFP_KERNEL);
2263 if (!ctx)
2264 return -ENOMEM;
2265
2266 ctx->ns = current->nsproxy->cgroup_ns;
2267 get_cgroup_ns(ns: ctx->ns);
2268 fc->fs_private = &ctx->kfc;
2269 if (fc->fs_type == &cgroup2_fs_type)
2270 fc->ops = &cgroup_fs_context_ops;
2271 else
2272 fc->ops = &cgroup1_fs_context_ops;
2273 put_user_ns(ns: fc->user_ns);
2274 fc->user_ns = get_user_ns(ns: ctx->ns->user_ns);
2275 fc->global = true;
2276
2277 if (have_favordynmods)
2278 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2279
2280 return 0;
2281}
2282
2283static void cgroup_kill_sb(struct super_block *sb)
2284{
2285 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2286 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2287
2288 /*
2289 * If @root doesn't have any children, start killing it.
2290 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291 *
2292 * And don't kill the default root.
2293 */
2294 if (list_empty(head: &root->cgrp.self.children) && root != &cgrp_dfl_root &&
2295 !percpu_ref_is_dying(ref: &root->cgrp.self.refcnt)) {
2296 cgroup_bpf_offline(cgrp: &root->cgrp);
2297 percpu_ref_kill(ref: &root->cgrp.self.refcnt);
2298 }
2299 cgroup_put(cgrp: &root->cgrp);
2300 kernfs_kill_sb(sb);
2301}
2302
2303struct file_system_type cgroup_fs_type = {
2304 .name = "cgroup",
2305 .init_fs_context = cgroup_init_fs_context,
2306 .parameters = cgroup1_fs_parameters,
2307 .kill_sb = cgroup_kill_sb,
2308 .fs_flags = FS_USERNS_MOUNT,
2309};
2310
2311static struct file_system_type cgroup2_fs_type = {
2312 .name = "cgroup2",
2313 .init_fs_context = cgroup_init_fs_context,
2314 .parameters = cgroup2_fs_parameters,
2315 .kill_sb = cgroup_kill_sb,
2316 .fs_flags = FS_USERNS_MOUNT,
2317};
2318
2319#ifdef CONFIG_CPUSETS
2320static const struct fs_context_operations cpuset_fs_context_ops = {
2321 .get_tree = cgroup1_get_tree,
2322 .free = cgroup_fs_context_free,
2323};
2324
2325/*
2326 * This is ugly, but preserves the userspace API for existing cpuset
2327 * users. If someone tries to mount the "cpuset" filesystem, we
2328 * silently switch it to mount "cgroup" instead
2329 */
2330static int cpuset_init_fs_context(struct fs_context *fc)
2331{
2332 char *agent = kstrdup(s: "/sbin/cpuset_release_agent", GFP_USER);
2333 struct cgroup_fs_context *ctx;
2334 int err;
2335
2336 err = cgroup_init_fs_context(fc);
2337 if (err) {
2338 kfree(objp: agent);
2339 return err;
2340 }
2341
2342 fc->ops = &cpuset_fs_context_ops;
2343
2344 ctx = cgroup_fc2context(fc);
2345 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2346 ctx->flags |= CGRP_ROOT_NOPREFIX;
2347 ctx->release_agent = agent;
2348
2349 get_filesystem(fs: &cgroup_fs_type);
2350 put_filesystem(fs: fc->fs_type);
2351 fc->fs_type = &cgroup_fs_type;
2352
2353 return 0;
2354}
2355
2356static struct file_system_type cpuset_fs_type = {
2357 .name = "cpuset",
2358 .init_fs_context = cpuset_init_fs_context,
2359 .fs_flags = FS_USERNS_MOUNT,
2360};
2361#endif
2362
2363int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2364 struct cgroup_namespace *ns)
2365{
2366 struct cgroup *root = cset_cgroup_from_root(cset: ns->root_cset, root: cgrp->root);
2367
2368 return kernfs_path_from_node(root_kn: cgrp->kn, kn: root->kn, buf, buflen);
2369}
2370
2371int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2372 struct cgroup_namespace *ns)
2373{
2374 int ret;
2375
2376 cgroup_lock();
2377 spin_lock_irq(lock: &css_set_lock);
2378
2379 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2380
2381 spin_unlock_irq(lock: &css_set_lock);
2382 cgroup_unlock();
2383
2384 return ret;
2385}
2386EXPORT_SYMBOL_GPL(cgroup_path_ns);
2387
2388/**
2389 * cgroup_attach_lock - Lock for ->attach()
2390 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2391 *
2392 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2393 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2394 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2395 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2396 * lead to deadlocks.
2397 *
2398 * Bringing up a CPU may involve creating and destroying tasks which requires
2399 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2400 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2401 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2402 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2403 * the threadgroup_rwsem to be released to create new tasks. For more details:
2404 *
2405 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2406 *
2407 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2408 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2409 * CPU hotplug is disabled on entry.
2410 */
2411void cgroup_attach_lock(bool lock_threadgroup)
2412{
2413 cpus_read_lock();
2414 if (lock_threadgroup)
2415 percpu_down_write(&cgroup_threadgroup_rwsem);
2416}
2417
2418/**
2419 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2420 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2421 */
2422void cgroup_attach_unlock(bool lock_threadgroup)
2423{
2424 if (lock_threadgroup)
2425 percpu_up_write(&cgroup_threadgroup_rwsem);
2426 cpus_read_unlock();
2427}
2428
2429/**
2430 * cgroup_migrate_add_task - add a migration target task to a migration context
2431 * @task: target task
2432 * @mgctx: target migration context
2433 *
2434 * Add @task, which is a migration target, to @mgctx->tset. This function
2435 * becomes noop if @task doesn't need to be migrated. @task's css_set
2436 * should have been added as a migration source and @task->cg_list will be
2437 * moved from the css_set's tasks list to mg_tasks one.
2438 */
2439static void cgroup_migrate_add_task(struct task_struct *task,
2440 struct cgroup_mgctx *mgctx)
2441{
2442 struct css_set *cset;
2443
2444 lockdep_assert_held(&css_set_lock);
2445
2446 /* @task either already exited or can't exit until the end */
2447 if (task->flags & PF_EXITING)
2448 return;
2449
2450 /* cgroup_threadgroup_rwsem protects racing against forks */
2451 WARN_ON_ONCE(list_empty(&task->cg_list));
2452
2453 cset = task_css_set(task);
2454 if (!cset->mg_src_cgrp)
2455 return;
2456
2457 mgctx->tset.nr_tasks++;
2458
2459 list_move_tail(list: &task->cg_list, head: &cset->mg_tasks);
2460 if (list_empty(head: &cset->mg_node))
2461 list_add_tail(new: &cset->mg_node,
2462 head: &mgctx->tset.src_csets);
2463 if (list_empty(head: &cset->mg_dst_cset->mg_node))
2464 list_add_tail(new: &cset->mg_dst_cset->mg_node,
2465 head: &mgctx->tset.dst_csets);
2466}
2467
2468/**
2469 * cgroup_taskset_first - reset taskset and return the first task
2470 * @tset: taskset of interest
2471 * @dst_cssp: output variable for the destination css
2472 *
2473 * @tset iteration is initialized and the first task is returned.
2474 */
2475struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2476 struct cgroup_subsys_state **dst_cssp)
2477{
2478 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2479 tset->cur_task = NULL;
2480
2481 return cgroup_taskset_next(tset, dst_cssp);
2482}
2483
2484/**
2485 * cgroup_taskset_next - iterate to the next task in taskset
2486 * @tset: taskset of interest
2487 * @dst_cssp: output variable for the destination css
2488 *
2489 * Return the next task in @tset. Iteration must have been initialized
2490 * with cgroup_taskset_first().
2491 */
2492struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2493 struct cgroup_subsys_state **dst_cssp)
2494{
2495 struct css_set *cset = tset->cur_cset;
2496 struct task_struct *task = tset->cur_task;
2497
2498 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2499 if (!task)
2500 task = list_first_entry(&cset->mg_tasks,
2501 struct task_struct, cg_list);
2502 else
2503 task = list_next_entry(task, cg_list);
2504
2505 if (&task->cg_list != &cset->mg_tasks) {
2506 tset->cur_cset = cset;
2507 tset->cur_task = task;
2508
2509 /*
2510 * This function may be called both before and
2511 * after cgroup_migrate_execute(). The two cases
2512 * can be distinguished by looking at whether @cset
2513 * has its ->mg_dst_cset set.
2514 */
2515 if (cset->mg_dst_cset)
2516 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2517 else
2518 *dst_cssp = cset->subsys[tset->ssid];
2519
2520 return task;
2521 }
2522
2523 cset = list_next_entry(cset, mg_node);
2524 task = NULL;
2525 }
2526
2527 return NULL;
2528}
2529
2530/**
2531 * cgroup_migrate_execute - migrate a taskset
2532 * @mgctx: migration context
2533 *
2534 * Migrate tasks in @mgctx as setup by migration preparation functions.
2535 * This function fails iff one of the ->can_attach callbacks fails and
2536 * guarantees that either all or none of the tasks in @mgctx are migrated.
2537 * @mgctx is consumed regardless of success.
2538 */
2539static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2540{
2541 struct cgroup_taskset *tset = &mgctx->tset;
2542 struct cgroup_subsys *ss;
2543 struct task_struct *task, *tmp_task;
2544 struct css_set *cset, *tmp_cset;
2545 int ssid, failed_ssid, ret;
2546
2547 /* check that we can legitimately attach to the cgroup */
2548 if (tset->nr_tasks) {
2549 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2550 if (ss->can_attach) {
2551 tset->ssid = ssid;
2552 ret = ss->can_attach(tset);
2553 if (ret) {
2554 failed_ssid = ssid;
2555 goto out_cancel_attach;
2556 }
2557 }
2558 } while_each_subsys_mask();
2559 }
2560
2561 /*
2562 * Now that we're guaranteed success, proceed to move all tasks to
2563 * the new cgroup. There are no failure cases after here, so this
2564 * is the commit point.
2565 */
2566 spin_lock_irq(lock: &css_set_lock);
2567 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2568 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2569 struct css_set *from_cset = task_css_set(task);
2570 struct css_set *to_cset = cset->mg_dst_cset;
2571
2572 get_css_set(cset: to_cset);
2573 to_cset->nr_tasks++;
2574 css_set_move_task(task, from_cset, to_cset, use_mg_tasks: true);
2575 from_cset->nr_tasks--;
2576 /*
2577 * If the source or destination cgroup is frozen,
2578 * the task might require to change its state.
2579 */
2580 cgroup_freezer_migrate_task(task, src: from_cset->dfl_cgrp,
2581 dst: to_cset->dfl_cgrp);
2582 put_css_set_locked(cset: from_cset);
2583
2584 }
2585 }
2586 spin_unlock_irq(lock: &css_set_lock);
2587
2588 /*
2589 * Migration is committed, all target tasks are now on dst_csets.
2590 * Nothing is sensitive to fork() after this point. Notify
2591 * controllers that migration is complete.
2592 */
2593 tset->csets = &tset->dst_csets;
2594
2595 if (tset->nr_tasks) {
2596 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2597 if (ss->attach) {
2598 tset->ssid = ssid;
2599 ss->attach(tset);
2600 }
2601 } while_each_subsys_mask();
2602 }
2603
2604 ret = 0;
2605 goto out_release_tset;
2606
2607out_cancel_attach:
2608 if (tset->nr_tasks) {
2609 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2610 if (ssid == failed_ssid)
2611 break;
2612 if (ss->cancel_attach) {
2613 tset->ssid = ssid;
2614 ss->cancel_attach(tset);
2615 }
2616 } while_each_subsys_mask();
2617 }
2618out_release_tset:
2619 spin_lock_irq(lock: &css_set_lock);
2620 list_splice_init(list: &tset->dst_csets, head: &tset->src_csets);
2621 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2622 list_splice_tail_init(list: &cset->mg_tasks, head: &cset->tasks);
2623 list_del_init(entry: &cset->mg_node);
2624 }
2625 spin_unlock_irq(lock: &css_set_lock);
2626
2627 /*
2628 * Re-initialize the cgroup_taskset structure in case it is reused
2629 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2630 * iteration.
2631 */
2632 tset->nr_tasks = 0;
2633 tset->csets = &tset->src_csets;
2634 return ret;
2635}
2636
2637/**
2638 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2639 * @dst_cgrp: destination cgroup to test
2640 *
2641 * On the default hierarchy, except for the mixable, (possible) thread root
2642 * and threaded cgroups, subtree_control must be zero for migration
2643 * destination cgroups with tasks so that child cgroups don't compete
2644 * against tasks.
2645 */
2646int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2647{
2648 /* v1 doesn't have any restriction */
2649 if (!cgroup_on_dfl(cgrp: dst_cgrp))
2650 return 0;
2651
2652 /* verify @dst_cgrp can host resources */
2653 if (!cgroup_is_valid_domain(cgrp: dst_cgrp->dom_cgrp))
2654 return -EOPNOTSUPP;
2655
2656 /*
2657 * If @dst_cgrp is already or can become a thread root or is
2658 * threaded, it doesn't matter.
2659 */
2660 if (cgroup_can_be_thread_root(cgrp: dst_cgrp) || cgroup_is_threaded(cgrp: dst_cgrp))
2661 return 0;
2662
2663 /* apply no-internal-process constraint */
2664 if (dst_cgrp->subtree_control)
2665 return -EBUSY;
2666
2667 return 0;
2668}
2669
2670/**
2671 * cgroup_migrate_finish - cleanup after attach
2672 * @mgctx: migration context
2673 *
2674 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2675 * those functions for details.
2676 */
2677void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2678{
2679 struct css_set *cset, *tmp_cset;
2680
2681 lockdep_assert_held(&cgroup_mutex);
2682
2683 spin_lock_irq(lock: &css_set_lock);
2684
2685 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2686 mg_src_preload_node) {
2687 cset->mg_src_cgrp = NULL;
2688 cset->mg_dst_cgrp = NULL;
2689 cset->mg_dst_cset = NULL;
2690 list_del_init(entry: &cset->mg_src_preload_node);
2691 put_css_set_locked(cset);
2692 }
2693
2694 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2695 mg_dst_preload_node) {
2696 cset->mg_src_cgrp = NULL;
2697 cset->mg_dst_cgrp = NULL;
2698 cset->mg_dst_cset = NULL;
2699 list_del_init(entry: &cset->mg_dst_preload_node);
2700 put_css_set_locked(cset);
2701 }
2702
2703 spin_unlock_irq(lock: &css_set_lock);
2704}
2705
2706/**
2707 * cgroup_migrate_add_src - add a migration source css_set
2708 * @src_cset: the source css_set to add
2709 * @dst_cgrp: the destination cgroup
2710 * @mgctx: migration context
2711 *
2712 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2713 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2714 * up by cgroup_migrate_finish().
2715 *
2716 * This function may be called without holding cgroup_threadgroup_rwsem
2717 * even if the target is a process. Threads may be created and destroyed
2718 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2719 * into play and the preloaded css_sets are guaranteed to cover all
2720 * migrations.
2721 */
2722void cgroup_migrate_add_src(struct css_set *src_cset,
2723 struct cgroup *dst_cgrp,
2724 struct cgroup_mgctx *mgctx)
2725{
2726 struct cgroup *src_cgrp;
2727
2728 lockdep_assert_held(&cgroup_mutex);
2729 lockdep_assert_held(&css_set_lock);
2730
2731 /*
2732 * If ->dead, @src_set is associated with one or more dead cgroups
2733 * and doesn't contain any migratable tasks. Ignore it early so
2734 * that the rest of migration path doesn't get confused by it.
2735 */
2736 if (src_cset->dead)
2737 return;
2738
2739 if (!list_empty(head: &src_cset->mg_src_preload_node))
2740 return;
2741
2742 src_cgrp = cset_cgroup_from_root(cset: src_cset, root: dst_cgrp->root);
2743
2744 WARN_ON(src_cset->mg_src_cgrp);
2745 WARN_ON(src_cset->mg_dst_cgrp);
2746 WARN_ON(!list_empty(&src_cset->mg_tasks));
2747 WARN_ON(!list_empty(&src_cset->mg_node));
2748
2749 src_cset->mg_src_cgrp = src_cgrp;
2750 src_cset->mg_dst_cgrp = dst_cgrp;
2751 get_css_set(cset: src_cset);
2752 list_add_tail(new: &src_cset->mg_src_preload_node, head: &mgctx->preloaded_src_csets);
2753}
2754
2755/**
2756 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2757 * @mgctx: migration context
2758 *
2759 * Tasks are about to be moved and all the source css_sets have been
2760 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2761 * pins all destination css_sets, links each to its source, and append them
2762 * to @mgctx->preloaded_dst_csets.
2763 *
2764 * This function must be called after cgroup_migrate_add_src() has been
2765 * called on each migration source css_set. After migration is performed
2766 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2767 * @mgctx.
2768 */
2769int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2770{
2771 struct css_set *src_cset, *tmp_cset;
2772
2773 lockdep_assert_held(&cgroup_mutex);
2774
2775 /* look up the dst cset for each src cset and link it to src */
2776 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2777 mg_src_preload_node) {
2778 struct css_set *dst_cset;
2779 struct cgroup_subsys *ss;
2780 int ssid;
2781
2782 dst_cset = find_css_set(old_cset: src_cset, cgrp: src_cset->mg_dst_cgrp);
2783 if (!dst_cset)
2784 return -ENOMEM;
2785
2786 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2787
2788 /*
2789 * If src cset equals dst, it's noop. Drop the src.
2790 * cgroup_migrate() will skip the cset too. Note that we
2791 * can't handle src == dst as some nodes are used by both.
2792 */
2793 if (src_cset == dst_cset) {
2794 src_cset->mg_src_cgrp = NULL;
2795 src_cset->mg_dst_cgrp = NULL;
2796 list_del_init(entry: &src_cset->mg_src_preload_node);
2797 put_css_set(cset: src_cset);
2798 put_css_set(cset: dst_cset);
2799 continue;
2800 }
2801
2802 src_cset->mg_dst_cset = dst_cset;
2803
2804 if (list_empty(head: &dst_cset->mg_dst_preload_node))
2805 list_add_tail(new: &dst_cset->mg_dst_preload_node,
2806 head: &mgctx->preloaded_dst_csets);
2807 else
2808 put_css_set(cset: dst_cset);
2809
2810 for_each_subsys(ss, ssid)
2811 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2812 mgctx->ss_mask |= 1 << ssid;
2813 }
2814
2815 return 0;
2816}
2817
2818/**
2819 * cgroup_migrate - migrate a process or task to a cgroup
2820 * @leader: the leader of the process or the task to migrate
2821 * @threadgroup: whether @leader points to the whole process or a single task
2822 * @mgctx: migration context
2823 *
2824 * Migrate a process or task denoted by @leader. If migrating a process,
2825 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2826 * responsible for invoking cgroup_migrate_add_src() and
2827 * cgroup_migrate_prepare_dst() on the targets before invoking this
2828 * function and following up with cgroup_migrate_finish().
2829 *
2830 * As long as a controller's ->can_attach() doesn't fail, this function is
2831 * guaranteed to succeed. This means that, excluding ->can_attach()
2832 * failure, when migrating multiple targets, the success or failure can be
2833 * decided for all targets by invoking group_migrate_prepare_dst() before
2834 * actually starting migrating.
2835 */
2836int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2837 struct cgroup_mgctx *mgctx)
2838{
2839 struct task_struct *task;
2840
2841 /*
2842 * The following thread iteration should be inside an RCU critical
2843 * section to prevent tasks from being freed while taking the snapshot.
2844 * spin_lock_irq() implies RCU critical section here.
2845 */
2846 spin_lock_irq(lock: &css_set_lock);
2847 task = leader;
2848 do {
2849 cgroup_migrate_add_task(task, mgctx);
2850 if (!threadgroup)
2851 break;
2852 } while_each_thread(leader, task);
2853 spin_unlock_irq(lock: &css_set_lock);
2854
2855 return cgroup_migrate_execute(mgctx);
2856}
2857
2858/**
2859 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2860 * @dst_cgrp: the cgroup to attach to
2861 * @leader: the task or the leader of the threadgroup to be attached
2862 * @threadgroup: attach the whole threadgroup?
2863 *
2864 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2865 */
2866int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2867 bool threadgroup)
2868{
2869 DEFINE_CGROUP_MGCTX(mgctx);
2870 struct task_struct *task;
2871 int ret = 0;
2872
2873 /* look up all src csets */
2874 spin_lock_irq(lock: &css_set_lock);
2875 rcu_read_lock();
2876 task = leader;
2877 do {
2878 cgroup_migrate_add_src(src_cset: task_css_set(task), dst_cgrp, mgctx: &mgctx);
2879 if (!threadgroup)
2880 break;
2881 } while_each_thread(leader, task);
2882 rcu_read_unlock();
2883 spin_unlock_irq(lock: &css_set_lock);
2884
2885 /* prepare dst csets and commit */
2886 ret = cgroup_migrate_prepare_dst(mgctx: &mgctx);
2887 if (!ret)
2888 ret = cgroup_migrate(leader, threadgroup, mgctx: &mgctx);
2889
2890 cgroup_migrate_finish(mgctx: &mgctx);
2891
2892 if (!ret)
2893 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2894
2895 return ret;
2896}
2897
2898struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2899 bool *threadgroup_locked)
2900{
2901 struct task_struct *tsk;
2902 pid_t pid;
2903
2904 if (kstrtoint(s: strstrip(str: buf), base: 0, res: &pid) || pid < 0)
2905 return ERR_PTR(error: -EINVAL);
2906
2907 /*
2908 * If we migrate a single thread, we don't care about threadgroup
2909 * stability. If the thread is `current`, it won't exit(2) under our
2910 * hands or change PID through exec(2). We exclude
2911 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2912 * callers by cgroup_mutex.
2913 * Therefore, we can skip the global lock.
2914 */
2915 lockdep_assert_held(&cgroup_mutex);
2916 *threadgroup_locked = pid || threadgroup;
2917 cgroup_attach_lock(lock_threadgroup: *threadgroup_locked);
2918
2919 rcu_read_lock();
2920 if (pid) {
2921 tsk = find_task_by_vpid(nr: pid);
2922 if (!tsk) {
2923 tsk = ERR_PTR(error: -ESRCH);
2924 goto out_unlock_threadgroup;
2925 }
2926 } else {
2927 tsk = current;
2928 }
2929
2930 if (threadgroup)
2931 tsk = tsk->group_leader;
2932
2933 /*
2934 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2935 * If userland migrates such a kthread to a non-root cgroup, it can
2936 * become trapped in a cpuset, or RT kthread may be born in a
2937 * cgroup with no rt_runtime allocated. Just say no.
2938 */
2939 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2940 tsk = ERR_PTR(error: -EINVAL);
2941 goto out_unlock_threadgroup;
2942 }
2943
2944 get_task_struct(t: tsk);
2945 goto out_unlock_rcu;
2946
2947out_unlock_threadgroup:
2948 cgroup_attach_unlock(lock_threadgroup: *threadgroup_locked);
2949 *threadgroup_locked = false;
2950out_unlock_rcu:
2951 rcu_read_unlock();
2952 return tsk;
2953}
2954
2955void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2956{
2957 struct cgroup_subsys *ss;
2958 int ssid;
2959
2960 /* release reference from cgroup_procs_write_start() */
2961 put_task_struct(t: task);
2962
2963 cgroup_attach_unlock(lock_threadgroup: threadgroup_locked);
2964
2965 for_each_subsys(ss, ssid)
2966 if (ss->post_attach)
2967 ss->post_attach();
2968}
2969
2970static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2971{
2972 struct cgroup_subsys *ss;
2973 bool printed = false;
2974 int ssid;
2975
2976 do_each_subsys_mask(ss, ssid, ss_mask) {
2977 if (printed)
2978 seq_putc(m: seq, c: ' ');
2979 seq_puts(m: seq, s: ss->name);
2980 printed = true;
2981 } while_each_subsys_mask();
2982 if (printed)
2983 seq_putc(m: seq, c: '\n');
2984}
2985
2986/* show controllers which are enabled from the parent */
2987static int cgroup_controllers_show(struct seq_file *seq, void *v)
2988{
2989 struct cgroup *cgrp = seq_css(seq)->cgroup;
2990
2991 cgroup_print_ss_mask(seq, ss_mask: cgroup_control(cgrp));
2992 return 0;
2993}
2994
2995/* show controllers which are enabled for a given cgroup's children */
2996static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2997{
2998 struct cgroup *cgrp = seq_css(seq)->cgroup;
2999
3000 cgroup_print_ss_mask(seq, ss_mask: cgrp->subtree_control);
3001 return 0;
3002}
3003
3004/**
3005 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3006 * @cgrp: root of the subtree to update csses for
3007 *
3008 * @cgrp's control masks have changed and its subtree's css associations
3009 * need to be updated accordingly. This function looks up all css_sets
3010 * which are attached to the subtree, creates the matching updated css_sets
3011 * and migrates the tasks to the new ones.
3012 */
3013static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3014{
3015 DEFINE_CGROUP_MGCTX(mgctx);
3016 struct cgroup_subsys_state *d_css;
3017 struct cgroup *dsct;
3018 struct css_set *src_cset;
3019 bool has_tasks;
3020 int ret;
3021
3022 lockdep_assert_held(&cgroup_mutex);
3023
3024 /* look up all csses currently attached to @cgrp's subtree */
3025 spin_lock_irq(lock: &css_set_lock);
3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 struct cgrp_cset_link *link;
3028
3029 /*
3030 * As cgroup_update_dfl_csses() is only called by
3031 * cgroup_apply_control(). The csses associated with the
3032 * given cgrp will not be affected by changes made to
3033 * its subtree_control file. We can skip them.
3034 */
3035 if (dsct == cgrp)
3036 continue;
3037
3038 list_for_each_entry(link, &dsct->cset_links, cset_link)
3039 cgroup_migrate_add_src(src_cset: link->cset, dst_cgrp: dsct, mgctx: &mgctx);
3040 }
3041 spin_unlock_irq(lock: &css_set_lock);
3042
3043 /*
3044 * We need to write-lock threadgroup_rwsem while migrating tasks.
3045 * However, if there are no source csets for @cgrp, changing its
3046 * controllers isn't gonna produce any task migrations and the
3047 * write-locking can be skipped safely.
3048 */
3049 has_tasks = !list_empty(head: &mgctx.preloaded_src_csets);
3050 cgroup_attach_lock(lock_threadgroup: has_tasks);
3051
3052 /* NULL dst indicates self on default hierarchy */
3053 ret = cgroup_migrate_prepare_dst(mgctx: &mgctx);
3054 if (ret)
3055 goto out_finish;
3056
3057 spin_lock_irq(lock: &css_set_lock);
3058 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3059 mg_src_preload_node) {
3060 struct task_struct *task, *ntask;
3061
3062 /* all tasks in src_csets need to be migrated */
3063 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3064 cgroup_migrate_add_task(task, mgctx: &mgctx);
3065 }
3066 spin_unlock_irq(lock: &css_set_lock);
3067
3068 ret = cgroup_migrate_execute(mgctx: &mgctx);
3069out_finish:
3070 cgroup_migrate_finish(mgctx: &mgctx);
3071 cgroup_attach_unlock(lock_threadgroup: has_tasks);
3072 return ret;
3073}
3074
3075/**
3076 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3077 * @cgrp: root of the target subtree
3078 *
3079 * Because css offlining is asynchronous, userland may try to re-enable a
3080 * controller while the previous css is still around. This function grabs
3081 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3082 */
3083void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3084 __acquires(&cgroup_mutex)
3085{
3086 struct cgroup *dsct;
3087 struct cgroup_subsys_state *d_css;
3088 struct cgroup_subsys *ss;
3089 int ssid;
3090
3091restart:
3092 cgroup_lock();
3093
3094 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095 for_each_subsys(ss, ssid) {
3096 struct cgroup_subsys_state *css = cgroup_css(cgrp: dsct, ss);
3097 DEFINE_WAIT(wait);
3098
3099 if (!css || !percpu_ref_is_dying(ref: &css->refcnt))
3100 continue;
3101
3102 cgroup_get_live(cgrp: dsct);
3103 prepare_to_wait(wq_head: &dsct->offline_waitq, wq_entry: &wait,
3104 TASK_UNINTERRUPTIBLE);
3105
3106 cgroup_unlock();
3107 schedule();
3108 finish_wait(wq_head: &dsct->offline_waitq, wq_entry: &wait);
3109
3110 cgroup_put(cgrp: dsct);
3111 goto restart;
3112 }
3113 }
3114}
3115
3116/**
3117 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3118 * @cgrp: root of the target subtree
3119 *
3120 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3121 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3122 * itself.
3123 */
3124static void cgroup_save_control(struct cgroup *cgrp)
3125{
3126 struct cgroup *dsct;
3127 struct cgroup_subsys_state *d_css;
3128
3129 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130 dsct->old_subtree_control = dsct->subtree_control;
3131 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3132 dsct->old_dom_cgrp = dsct->dom_cgrp;
3133 }
3134}
3135
3136/**
3137 * cgroup_propagate_control - refresh control masks of a subtree
3138 * @cgrp: root of the target subtree
3139 *
3140 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3141 * ->subtree_control and propagate controller availability through the
3142 * subtree so that descendants don't have unavailable controllers enabled.
3143 */
3144static void cgroup_propagate_control(struct cgroup *cgrp)
3145{
3146 struct cgroup *dsct;
3147 struct cgroup_subsys_state *d_css;
3148
3149 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3150 dsct->subtree_control &= cgroup_control(cgrp: dsct);
3151 dsct->subtree_ss_mask =
3152 cgroup_calc_subtree_ss_mask(subtree_control: dsct->subtree_control,
3153 this_ss_mask: cgroup_ss_mask(cgrp: dsct));
3154 }
3155}
3156
3157/**
3158 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3159 * @cgrp: root of the target subtree
3160 *
3161 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3162 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3163 * itself.
3164 */
3165static void cgroup_restore_control(struct cgroup *cgrp)
3166{
3167 struct cgroup *dsct;
3168 struct cgroup_subsys_state *d_css;
3169
3170 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3171 dsct->subtree_control = dsct->old_subtree_control;
3172 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3173 dsct->dom_cgrp = dsct->old_dom_cgrp;
3174 }
3175}
3176
3177static bool css_visible(struct cgroup_subsys_state *css)
3178{
3179 struct cgroup_subsys *ss = css->ss;
3180 struct cgroup *cgrp = css->cgroup;
3181
3182 if (cgroup_control(cgrp) & (1 << ss->id))
3183 return true;
3184 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3185 return false;
3186 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3187}
3188
3189/**
3190 * cgroup_apply_control_enable - enable or show csses according to control
3191 * @cgrp: root of the target subtree
3192 *
3193 * Walk @cgrp's subtree and create new csses or make the existing ones
3194 * visible. A css is created invisible if it's being implicitly enabled
3195 * through dependency. An invisible css is made visible when the userland
3196 * explicitly enables it.
3197 *
3198 * Returns 0 on success, -errno on failure. On failure, csses which have
3199 * been processed already aren't cleaned up. The caller is responsible for
3200 * cleaning up with cgroup_apply_control_disable().
3201 */
3202static int cgroup_apply_control_enable(struct cgroup *cgrp)
3203{
3204 struct cgroup *dsct;
3205 struct cgroup_subsys_state *d_css;
3206 struct cgroup_subsys *ss;
3207 int ssid, ret;
3208
3209 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3210 for_each_subsys(ss, ssid) {
3211 struct cgroup_subsys_state *css = cgroup_css(cgrp: dsct, ss);
3212
3213 if (!(cgroup_ss_mask(cgrp: dsct) & (1 << ss->id)))
3214 continue;
3215
3216 if (!css) {
3217 css = css_create(cgrp: dsct, ss);
3218 if (IS_ERR(ptr: css))
3219 return PTR_ERR(ptr: css);
3220 }
3221
3222 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3223
3224 if (css_visible(css)) {
3225 ret = css_populate_dir(css);
3226 if (ret)
3227 return ret;
3228 }
3229 }
3230 }
3231
3232 return 0;
3233}
3234
3235/**
3236 * cgroup_apply_control_disable - kill or hide csses according to control
3237 * @cgrp: root of the target subtree
3238 *
3239 * Walk @cgrp's subtree and kill and hide csses so that they match
3240 * cgroup_ss_mask() and cgroup_visible_mask().
3241 *
3242 * A css is hidden when the userland requests it to be disabled while other
3243 * subsystems are still depending on it. The css must not actively control
3244 * resources and be in the vanilla state if it's made visible again later.
3245 * Controllers which may be depended upon should provide ->css_reset() for
3246 * this purpose.
3247 */
3248static void cgroup_apply_control_disable(struct cgroup *cgrp)
3249{
3250 struct cgroup *dsct;
3251 struct cgroup_subsys_state *d_css;
3252 struct cgroup_subsys *ss;
3253 int ssid;
3254
3255 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3256 for_each_subsys(ss, ssid) {
3257 struct cgroup_subsys_state *css = cgroup_css(cgrp: dsct, ss);
3258
3259 if (!css)
3260 continue;
3261
3262 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3263
3264 if (css->parent &&
3265 !(cgroup_ss_mask(cgrp: dsct) & (1 << ss->id))) {
3266 kill_css(css);
3267 } else if (!css_visible(css)) {
3268 css_clear_dir(css);
3269 if (ss->css_reset)
3270 ss->css_reset(css);
3271 }
3272 }
3273 }
3274}
3275
3276/**
3277 * cgroup_apply_control - apply control mask updates to the subtree
3278 * @cgrp: root of the target subtree
3279 *
3280 * subsystems can be enabled and disabled in a subtree using the following
3281 * steps.
3282 *
3283 * 1. Call cgroup_save_control() to stash the current state.
3284 * 2. Update ->subtree_control masks in the subtree as desired.
3285 * 3. Call cgroup_apply_control() to apply the changes.
3286 * 4. Optionally perform other related operations.
3287 * 5. Call cgroup_finalize_control() to finish up.
3288 *
3289 * This function implements step 3 and propagates the mask changes
3290 * throughout @cgrp's subtree, updates csses accordingly and perform
3291 * process migrations.
3292 */
3293static int cgroup_apply_control(struct cgroup *cgrp)
3294{
3295 int ret;
3296
3297 cgroup_propagate_control(cgrp);
3298
3299 ret = cgroup_apply_control_enable(cgrp);
3300 if (ret)
3301 return ret;
3302
3303 /*
3304 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3305 * making the following cgroup_update_dfl_csses() properly update
3306 * css associations of all tasks in the subtree.
3307 */
3308 return cgroup_update_dfl_csses(cgrp);
3309}
3310
3311/**
3312 * cgroup_finalize_control - finalize control mask update
3313 * @cgrp: root of the target subtree
3314 * @ret: the result of the update
3315 *
3316 * Finalize control mask update. See cgroup_apply_control() for more info.
3317 */
3318static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3319{
3320 if (ret) {
3321 cgroup_restore_control(cgrp);
3322 cgroup_propagate_control(cgrp);
3323 }
3324
3325 cgroup_apply_control_disable(cgrp);
3326}
3327
3328static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3329{
3330 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3331
3332 /* if nothing is getting enabled, nothing to worry about */
3333 if (!enable)
3334 return 0;
3335
3336 /* can @cgrp host any resources? */
3337 if (!cgroup_is_valid_domain(cgrp: cgrp->dom_cgrp))
3338 return -EOPNOTSUPP;
3339
3340 /* mixables don't care */
3341 if (cgroup_is_mixable(cgrp))
3342 return 0;
3343
3344 if (domain_enable) {
3345 /* can't enable domain controllers inside a thread subtree */
3346 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3347 return -EOPNOTSUPP;
3348 } else {
3349 /*
3350 * Threaded controllers can handle internal competitions
3351 * and are always allowed inside a (prospective) thread
3352 * subtree.
3353 */
3354 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3355 return 0;
3356 }
3357
3358 /*
3359 * Controllers can't be enabled for a cgroup with tasks to avoid
3360 * child cgroups competing against tasks.
3361 */
3362 if (cgroup_has_tasks(cgrp))
3363 return -EBUSY;
3364
3365 return 0;
3366}
3367
3368/* change the enabled child controllers for a cgroup in the default hierarchy */
3369static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3370 char *buf, size_t nbytes,
3371 loff_t off)
3372{
3373 u16 enable = 0, disable = 0;
3374 struct cgroup *cgrp, *child;
3375 struct cgroup_subsys *ss;
3376 char *tok;
3377 int ssid, ret;
3378
3379 /*
3380 * Parse input - space separated list of subsystem names prefixed
3381 * with either + or -.
3382 */
3383 buf = strstrip(str: buf);
3384 while ((tok = strsep(&buf, " "))) {
3385 if (tok[0] == '\0')
3386 continue;
3387 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3388 if (!cgroup_ssid_enabled(ssid) ||
3389 strcmp(tok + 1, ss->name))
3390 continue;
3391
3392 if (*tok == '+') {
3393 enable |= 1 << ssid;
3394 disable &= ~(1 << ssid);
3395 } else if (*tok == '-') {
3396 disable |= 1 << ssid;
3397 enable &= ~(1 << ssid);
3398 } else {
3399 return -EINVAL;
3400 }
3401 break;
3402 } while_each_subsys_mask();
3403 if (ssid == CGROUP_SUBSYS_COUNT)
3404 return -EINVAL;
3405 }
3406
3407 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: true);
3408 if (!cgrp)
3409 return -ENODEV;
3410
3411 for_each_subsys(ss, ssid) {
3412 if (enable & (1 << ssid)) {
3413 if (cgrp->subtree_control & (1 << ssid)) {
3414 enable &= ~(1 << ssid);
3415 continue;
3416 }
3417
3418 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3419 ret = -ENOENT;
3420 goto out_unlock;
3421 }
3422 } else if (disable & (1 << ssid)) {
3423 if (!(cgrp->subtree_control & (1 << ssid))) {
3424 disable &= ~(1 << ssid);
3425 continue;
3426 }
3427
3428 /* a child has it enabled? */
3429 cgroup_for_each_live_child(child, cgrp) {
3430 if (child->subtree_control & (1 << ssid)) {
3431 ret = -EBUSY;
3432 goto out_unlock;
3433 }
3434 }
3435 }
3436 }
3437
3438 if (!enable && !disable) {
3439 ret = 0;
3440 goto out_unlock;
3441 }
3442
3443 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3444 if (ret)
3445 goto out_unlock;
3446
3447 /* save and update control masks and prepare csses */
3448 cgroup_save_control(cgrp);
3449
3450 cgrp->subtree_control |= enable;
3451 cgrp->subtree_control &= ~disable;
3452
3453 ret = cgroup_apply_control(cgrp);
3454 cgroup_finalize_control(cgrp, ret);
3455 if (ret)
3456 goto out_unlock;
3457
3458 kernfs_activate(kn: cgrp->kn);
3459out_unlock:
3460 cgroup_kn_unlock(kn: of->kn);
3461 return ret ?: nbytes;
3462}
3463
3464/**
3465 * cgroup_enable_threaded - make @cgrp threaded
3466 * @cgrp: the target cgroup
3467 *
3468 * Called when "threaded" is written to the cgroup.type interface file and
3469 * tries to make @cgrp threaded and join the parent's resource domain.
3470 * This function is never called on the root cgroup as cgroup.type doesn't
3471 * exist on it.
3472 */
3473static int cgroup_enable_threaded(struct cgroup *cgrp)
3474{
3475 struct cgroup *parent = cgroup_parent(cgrp);
3476 struct cgroup *dom_cgrp = parent->dom_cgrp;
3477 struct cgroup *dsct;
3478 struct cgroup_subsys_state *d_css;
3479 int ret;
3480
3481 lockdep_assert_held(&cgroup_mutex);
3482
3483 /* noop if already threaded */
3484 if (cgroup_is_threaded(cgrp))
3485 return 0;
3486
3487 /*
3488 * If @cgroup is populated or has domain controllers enabled, it
3489 * can't be switched. While the below cgroup_can_be_thread_root()
3490 * test can catch the same conditions, that's only when @parent is
3491 * not mixable, so let's check it explicitly.
3492 */
3493 if (cgroup_is_populated(cgrp) ||
3494 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3495 return -EOPNOTSUPP;
3496
3497 /* we're joining the parent's domain, ensure its validity */
3498 if (!cgroup_is_valid_domain(cgrp: dom_cgrp) ||
3499 !cgroup_can_be_thread_root(cgrp: dom_cgrp))
3500 return -EOPNOTSUPP;
3501
3502 /*
3503 * The following shouldn't cause actual migrations and should
3504 * always succeed.
3505 */
3506 cgroup_save_control(cgrp);
3507
3508 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3509 if (dsct == cgrp || cgroup_is_threaded(cgrp: dsct))
3510 dsct->dom_cgrp = dom_cgrp;
3511
3512 ret = cgroup_apply_control(cgrp);
3513 if (!ret)
3514 parent->nr_threaded_children++;
3515
3516 cgroup_finalize_control(cgrp, ret);
3517 return ret;
3518}
3519
3520static int cgroup_type_show(struct seq_file *seq, void *v)
3521{
3522 struct cgroup *cgrp = seq_css(seq)->cgroup;
3523
3524 if (cgroup_is_threaded(cgrp))
3525 seq_puts(m: seq, s: "threaded\n");
3526 else if (!cgroup_is_valid_domain(cgrp))
3527 seq_puts(m: seq, s: "domain invalid\n");
3528 else if (cgroup_is_thread_root(cgrp))
3529 seq_puts(m: seq, s: "domain threaded\n");
3530 else
3531 seq_puts(m: seq, s: "domain\n");
3532
3533 return 0;
3534}
3535
3536static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3537 size_t nbytes, loff_t off)
3538{
3539 struct cgroup *cgrp;
3540 int ret;
3541
3542 /* only switching to threaded mode is supported */
3543 if (strcmp(strstrip(str: buf), "threaded"))
3544 return -EINVAL;
3545
3546 /* drain dying csses before we re-apply (threaded) subtree control */
3547 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: true);
3548 if (!cgrp)
3549 return -ENOENT;
3550
3551 /* threaded can only be enabled */
3552 ret = cgroup_enable_threaded(cgrp);
3553
3554 cgroup_kn_unlock(kn: of->kn);
3555 return ret ?: nbytes;
3556}
3557
3558static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3559{
3560 struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 int descendants = READ_ONCE(cgrp->max_descendants);
3562
3563 if (descendants == INT_MAX)
3564 seq_puts(m: seq, s: "max\n");
3565 else
3566 seq_printf(m: seq, fmt: "%d\n", descendants);
3567
3568 return 0;
3569}
3570
3571static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3572 char *buf, size_t nbytes, loff_t off)
3573{
3574 struct cgroup *cgrp;
3575 int descendants;
3576 ssize_t ret;
3577
3578 buf = strstrip(str: buf);
3579 if (!strcmp(buf, "max")) {
3580 descendants = INT_MAX;
3581 } else {
3582 ret = kstrtoint(s: buf, base: 0, res: &descendants);
3583 if (ret)
3584 return ret;
3585 }
3586
3587 if (descendants < 0)
3588 return -ERANGE;
3589
3590 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
3591 if (!cgrp)
3592 return -ENOENT;
3593
3594 cgrp->max_descendants = descendants;
3595
3596 cgroup_kn_unlock(kn: of->kn);
3597
3598 return nbytes;
3599}
3600
3601static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3602{
3603 struct cgroup *cgrp = seq_css(seq)->cgroup;
3604 int depth = READ_ONCE(cgrp->max_depth);
3605
3606 if (depth == INT_MAX)
3607 seq_puts(m: seq, s: "max\n");
3608 else
3609 seq_printf(m: seq, fmt: "%d\n", depth);
3610
3611 return 0;
3612}
3613
3614static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3615 char *buf, size_t nbytes, loff_t off)
3616{
3617 struct cgroup *cgrp;
3618 ssize_t ret;
3619 int depth;
3620
3621 buf = strstrip(str: buf);
3622 if (!strcmp(buf, "max")) {
3623 depth = INT_MAX;
3624 } else {
3625 ret = kstrtoint(s: buf, base: 0, res: &depth);
3626 if (ret)
3627 return ret;
3628 }
3629
3630 if (depth < 0)
3631 return -ERANGE;
3632
3633 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
3634 if (!cgrp)
3635 return -ENOENT;
3636
3637 cgrp->max_depth = depth;
3638
3639 cgroup_kn_unlock(kn: of->kn);
3640
3641 return nbytes;
3642}
3643
3644static int cgroup_events_show(struct seq_file *seq, void *v)
3645{
3646 struct cgroup *cgrp = seq_css(seq)->cgroup;
3647
3648 seq_printf(m: seq, fmt: "populated %d\n", cgroup_is_populated(cgrp));
3649 seq_printf(m: seq, fmt: "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3650
3651 return 0;
3652}
3653
3654static int cgroup_stat_show(struct seq_file *seq, void *v)
3655{
3656 struct cgroup *cgroup = seq_css(seq)->cgroup;
3657
3658 seq_printf(m: seq, fmt: "nr_descendants %d\n",
3659 cgroup->nr_descendants);
3660 seq_printf(m: seq, fmt: "nr_dying_descendants %d\n",
3661 cgroup->nr_dying_descendants);
3662
3663 return 0;
3664}
3665
3666#ifdef CONFIG_CGROUP_SCHED
3667/**
3668 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3669 * @cgrp: the cgroup of interest
3670 * @ss: the subsystem of interest
3671 *
3672 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3673 * or is offline, %NULL is returned.
3674 */
3675static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3676 struct cgroup_subsys *ss)
3677{
3678 struct cgroup_subsys_state *css;
3679
3680 rcu_read_lock();
3681 css = cgroup_css(cgrp, ss);
3682 if (css && !css_tryget_online(css))
3683 css = NULL;
3684 rcu_read_unlock();
3685
3686 return css;
3687}
3688
3689static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3690{
3691 struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3693 struct cgroup_subsys_state *css;
3694 int ret;
3695
3696 if (!ss->css_extra_stat_show)
3697 return 0;
3698
3699 css = cgroup_tryget_css(cgrp, ss);
3700 if (!css)
3701 return 0;
3702
3703 ret = ss->css_extra_stat_show(seq, css);
3704 css_put(css);
3705 return ret;
3706}
3707
3708static int cgroup_local_stat_show(struct seq_file *seq,
3709 struct cgroup *cgrp, int ssid)
3710{
3711 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3712 struct cgroup_subsys_state *css;
3713 int ret;
3714
3715 if (!ss->css_local_stat_show)
3716 return 0;
3717
3718 css = cgroup_tryget_css(cgrp, ss);
3719 if (!css)
3720 return 0;
3721
3722 ret = ss->css_local_stat_show(seq, css);
3723 css_put(css);
3724 return ret;
3725}
3726#endif
3727
3728static int cpu_stat_show(struct seq_file *seq, void *v)
3729{
3730 int ret = 0;
3731
3732 cgroup_base_stat_cputime_show(seq);
3733#ifdef CONFIG_CGROUP_SCHED
3734 ret = cgroup_extra_stat_show(seq, ssid: cpu_cgrp_id);
3735#endif
3736 return ret;
3737}
3738
3739static int cpu_local_stat_show(struct seq_file *seq, void *v)
3740{
3741 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3742 int ret = 0;
3743
3744#ifdef CONFIG_CGROUP_SCHED
3745 ret = cgroup_local_stat_show(seq, cgrp, ssid: cpu_cgrp_id);
3746#endif
3747 return ret;
3748}
3749
3750#ifdef CONFIG_PSI
3751static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3752{
3753 struct cgroup *cgrp = seq_css(seq)->cgroup;
3754 struct psi_group *psi = cgroup_psi(cgrp);
3755
3756 return psi_show(s: seq, group: psi, res: PSI_IO);
3757}
3758static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3759{
3760 struct cgroup *cgrp = seq_css(seq)->cgroup;
3761 struct psi_group *psi = cgroup_psi(cgrp);
3762
3763 return psi_show(s: seq, group: psi, res: PSI_MEM);
3764}
3765static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3766{
3767 struct cgroup *cgrp = seq_css(seq)->cgroup;
3768 struct psi_group *psi = cgroup_psi(cgrp);
3769
3770 return psi_show(s: seq, group: psi, res: PSI_CPU);
3771}
3772
3773static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3774 size_t nbytes, enum psi_res res)
3775{
3776 struct cgroup_file_ctx *ctx = of->priv;
3777 struct psi_trigger *new;
3778 struct cgroup *cgrp;
3779 struct psi_group *psi;
3780
3781 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
3782 if (!cgrp)
3783 return -ENODEV;
3784
3785 cgroup_get(cgrp);
3786 cgroup_kn_unlock(kn: of->kn);
3787
3788 /* Allow only one trigger per file descriptor */
3789 if (ctx->psi.trigger) {
3790 cgroup_put(cgrp);
3791 return -EBUSY;
3792 }
3793
3794 psi = cgroup_psi(cgrp);
3795 new = psi_trigger_create(group: psi, buf, res, file: of->file, of);
3796 if (IS_ERR(ptr: new)) {
3797 cgroup_put(cgrp);
3798 return PTR_ERR(ptr: new);
3799 }
3800
3801 smp_store_release(&ctx->psi.trigger, new);
3802 cgroup_put(cgrp);
3803
3804 return nbytes;
3805}
3806
3807static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3808 char *buf, size_t nbytes,
3809 loff_t off)
3810{
3811 return pressure_write(of, buf, nbytes, res: PSI_IO);
3812}
3813
3814static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3815 char *buf, size_t nbytes,
3816 loff_t off)
3817{
3818 return pressure_write(of, buf, nbytes, res: PSI_MEM);
3819}
3820
3821static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3822 char *buf, size_t nbytes,
3823 loff_t off)
3824{
3825 return pressure_write(of, buf, nbytes, res: PSI_CPU);
3826}
3827
3828#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3829static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3830{
3831 struct cgroup *cgrp = seq_css(seq)->cgroup;
3832 struct psi_group *psi = cgroup_psi(cgrp);
3833
3834 return psi_show(s: seq, group: psi, res: PSI_IRQ);
3835}
3836
3837static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3838 char *buf, size_t nbytes,
3839 loff_t off)
3840{
3841 return pressure_write(of, buf, nbytes, res: PSI_IRQ);
3842}
3843#endif
3844
3845static int cgroup_pressure_show(struct seq_file *seq, void *v)
3846{
3847 struct cgroup *cgrp = seq_css(seq)->cgroup;
3848 struct psi_group *psi = cgroup_psi(cgrp);
3849
3850 seq_printf(m: seq, fmt: "%d\n", psi->enabled);
3851
3852 return 0;
3853}
3854
3855static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3856 char *buf, size_t nbytes,
3857 loff_t off)
3858{
3859 ssize_t ret;
3860 int enable;
3861 struct cgroup *cgrp;
3862 struct psi_group *psi;
3863
3864 ret = kstrtoint(s: strstrip(str: buf), base: 0, res: &enable);
3865 if (ret)
3866 return ret;
3867
3868 if (enable < 0 || enable > 1)
3869 return -ERANGE;
3870
3871 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
3872 if (!cgrp)
3873 return -ENOENT;
3874
3875 psi = cgroup_psi(cgrp);
3876 if (psi->enabled != enable) {
3877 int i;
3878
3879 /* show or hide {cpu,memory,io,irq}.pressure files */
3880 for (i = 0; i < NR_PSI_RESOURCES; i++)
3881 cgroup_file_show(cfile: &cgrp->psi_files[i], show: enable);
3882
3883 psi->enabled = enable;
3884 if (enable)
3885 psi_cgroup_restart(group: psi);
3886 }
3887
3888 cgroup_kn_unlock(kn: of->kn);
3889
3890 return nbytes;
3891}
3892
3893static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3894 poll_table *pt)
3895{
3896 struct cgroup_file_ctx *ctx = of->priv;
3897
3898 return psi_trigger_poll(trigger_ptr: &ctx->psi.trigger, file: of->file, wait: pt);
3899}
3900
3901static void cgroup_pressure_release(struct kernfs_open_file *of)
3902{
3903 struct cgroup_file_ctx *ctx = of->priv;
3904
3905 psi_trigger_destroy(t: ctx->psi.trigger);
3906}
3907
3908bool cgroup_psi_enabled(void)
3909{
3910 if (static_branch_likely(&psi_disabled))
3911 return false;
3912
3913 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3914}
3915
3916#else /* CONFIG_PSI */
3917bool cgroup_psi_enabled(void)
3918{
3919 return false;
3920}
3921
3922#endif /* CONFIG_PSI */
3923
3924static int cgroup_freeze_show(struct seq_file *seq, void *v)
3925{
3926 struct cgroup *cgrp = seq_css(seq)->cgroup;
3927
3928 seq_printf(m: seq, fmt: "%d\n", cgrp->freezer.freeze);
3929
3930 return 0;
3931}
3932
3933static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3934 char *buf, size_t nbytes, loff_t off)
3935{
3936 struct cgroup *cgrp;
3937 ssize_t ret;
3938 int freeze;
3939
3940 ret = kstrtoint(s: strstrip(str: buf), base: 0, res: &freeze);
3941 if (ret)
3942 return ret;
3943
3944 if (freeze < 0 || freeze > 1)
3945 return -ERANGE;
3946
3947 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
3948 if (!cgrp)
3949 return -ENOENT;
3950
3951 cgroup_freeze(cgrp, freeze);
3952
3953 cgroup_kn_unlock(kn: of->kn);
3954
3955 return nbytes;
3956}
3957
3958static void __cgroup_kill(struct cgroup *cgrp)
3959{
3960 struct css_task_iter it;
3961 struct task_struct *task;
3962
3963 lockdep_assert_held(&cgroup_mutex);
3964
3965 spin_lock_irq(lock: &css_set_lock);
3966 set_bit(nr: CGRP_KILL, addr: &cgrp->flags);
3967 spin_unlock_irq(lock: &css_set_lock);
3968
3969 css_task_iter_start(css: &cgrp->self, flags: CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, it: &it);
3970 while ((task = css_task_iter_next(it: &it))) {
3971 /* Ignore kernel threads here. */
3972 if (task->flags & PF_KTHREAD)
3973 continue;
3974
3975 /* Skip tasks that are already dying. */
3976 if (__fatal_signal_pending(p: task))
3977 continue;
3978
3979 send_sig(SIGKILL, task, 0);
3980 }
3981 css_task_iter_end(it: &it);
3982
3983 spin_lock_irq(lock: &css_set_lock);
3984 clear_bit(nr: CGRP_KILL, addr: &cgrp->flags);
3985 spin_unlock_irq(lock: &css_set_lock);
3986}
3987
3988static void cgroup_kill(struct cgroup *cgrp)
3989{
3990 struct cgroup_subsys_state *css;
3991 struct cgroup *dsct;
3992
3993 lockdep_assert_held(&cgroup_mutex);
3994
3995 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3996 __cgroup_kill(cgrp: dsct);
3997}
3998
3999static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4000 size_t nbytes, loff_t off)
4001{
4002 ssize_t ret = 0;
4003 int kill;
4004 struct cgroup *cgrp;
4005
4006 ret = kstrtoint(s: strstrip(str: buf), base: 0, res: &kill);
4007 if (ret)
4008 return ret;
4009
4010 if (kill != 1)
4011 return -ERANGE;
4012
4013 cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
4014 if (!cgrp)
4015 return -ENOENT;
4016
4017 /*
4018 * Killing is a process directed operation, i.e. the whole thread-group
4019 * is taken down so act like we do for cgroup.procs and only make this
4020 * writable in non-threaded cgroups.
4021 */
4022 if (cgroup_is_threaded(cgrp))
4023 ret = -EOPNOTSUPP;
4024 else
4025 cgroup_kill(cgrp);
4026
4027 cgroup_kn_unlock(kn: of->kn);
4028
4029 return ret ?: nbytes;
4030}
4031
4032static int cgroup_file_open(struct kernfs_open_file *of)
4033{
4034 struct cftype *cft = of_cft(of);
4035 struct cgroup_file_ctx *ctx;
4036 int ret;
4037
4038 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
4039 if (!ctx)
4040 return -ENOMEM;
4041
4042 ctx->ns = current->nsproxy->cgroup_ns;
4043 get_cgroup_ns(ns: ctx->ns);
4044 of->priv = ctx;
4045
4046 if (!cft->open)
4047 return 0;
4048
4049 ret = cft->open(of);
4050 if (ret) {
4051 put_cgroup_ns(ns: ctx->ns);
4052 kfree(objp: ctx);
4053 }
4054 return ret;
4055}
4056
4057static void cgroup_file_release(struct kernfs_open_file *of)
4058{
4059 struct cftype *cft = of_cft(of);
4060 struct cgroup_file_ctx *ctx = of->priv;
4061
4062 if (cft->release)
4063 cft->release(of);
4064 put_cgroup_ns(ns: ctx->ns);
4065 kfree(objp: ctx);
4066}
4067
4068static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4069 size_t nbytes, loff_t off)
4070{
4071 struct cgroup_file_ctx *ctx = of->priv;
4072 struct cgroup *cgrp = of->kn->parent->priv;
4073 struct cftype *cft = of_cft(of);
4074 struct cgroup_subsys_state *css;
4075 int ret;
4076
4077 if (!nbytes)
4078 return 0;
4079
4080 /*
4081 * If namespaces are delegation boundaries, disallow writes to
4082 * files in an non-init namespace root from inside the namespace
4083 * except for the files explicitly marked delegatable -
4084 * cgroup.procs and cgroup.subtree_control.
4085 */
4086 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4087 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4088 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4089 return -EPERM;
4090
4091 if (cft->write)
4092 return cft->write(of, buf, nbytes, off);
4093
4094 /*
4095 * kernfs guarantees that a file isn't deleted with operations in
4096 * flight, which means that the matching css is and stays alive and
4097 * doesn't need to be pinned. The RCU locking is not necessary
4098 * either. It's just for the convenience of using cgroup_css().
4099 */
4100 rcu_read_lock();
4101 css = cgroup_css(cgrp, ss: cft->ss);
4102 rcu_read_unlock();
4103
4104 if (cft->write_u64) {
4105 unsigned long long v;
4106 ret = kstrtoull(s: buf, base: 0, res: &v);
4107 if (!ret)
4108 ret = cft->write_u64(css, cft, v);
4109 } else if (cft->write_s64) {
4110 long long v;
4111 ret = kstrtoll(s: buf, base: 0, res: &v);
4112 if (!ret)
4113 ret = cft->write_s64(css, cft, v);
4114 } else {
4115 ret = -EINVAL;
4116 }
4117
4118 return ret ?: nbytes;
4119}
4120
4121static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4122{
4123 struct cftype *cft = of_cft(of);
4124
4125 if (cft->poll)
4126 return cft->poll(of, pt);
4127
4128 return kernfs_generic_poll(of, pt);
4129}
4130
4131static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4132{
4133 return seq_cft(seq)->seq_start(seq, ppos);
4134}
4135
4136static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4137{
4138 return seq_cft(seq)->seq_next(seq, v, ppos);
4139}
4140
4141static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4142{
4143 if (seq_cft(seq)->seq_stop)
4144 seq_cft(seq)->seq_stop(seq, v);
4145}
4146
4147static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4148{
4149 struct cftype *cft = seq_cft(seq: m);
4150 struct cgroup_subsys_state *css = seq_css(seq: m);
4151
4152 if (cft->seq_show)
4153 return cft->seq_show(m, arg);
4154
4155 if (cft->read_u64)
4156 seq_printf(m, fmt: "%llu\n", cft->read_u64(css, cft));
4157 else if (cft->read_s64)
4158 seq_printf(m, fmt: "%lld\n", cft->read_s64(css, cft));
4159 else
4160 return -EINVAL;
4161 return 0;
4162}
4163
4164static struct kernfs_ops cgroup_kf_single_ops = {
4165 .atomic_write_len = PAGE_SIZE,
4166 .open = cgroup_file_open,
4167 .release = cgroup_file_release,
4168 .write = cgroup_file_write,
4169 .poll = cgroup_file_poll,
4170 .seq_show = cgroup_seqfile_show,
4171};
4172
4173static struct kernfs_ops cgroup_kf_ops = {
4174 .atomic_write_len = PAGE_SIZE,
4175 .open = cgroup_file_open,
4176 .release = cgroup_file_release,
4177 .write = cgroup_file_write,
4178 .poll = cgroup_file_poll,
4179 .seq_start = cgroup_seqfile_start,
4180 .seq_next = cgroup_seqfile_next,
4181 .seq_stop = cgroup_seqfile_stop,
4182 .seq_show = cgroup_seqfile_show,
4183};
4184
4185static void cgroup_file_notify_timer(struct timer_list *timer)
4186{
4187 cgroup_file_notify(container_of(timer, struct cgroup_file,
4188 notify_timer));
4189}
4190
4191static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4192 struct cftype *cft)
4193{
4194 char name[CGROUP_FILE_NAME_MAX];
4195 struct kernfs_node *kn;
4196 struct lock_class_key *key = NULL;
4197
4198#ifdef CONFIG_DEBUG_LOCK_ALLOC
4199 key = &cft->lockdep_key;
4200#endif
4201 kn = __kernfs_create_file(parent: cgrp->kn, name: cgroup_file_name(cgrp, cft, buf: name),
4202 mode: cgroup_file_mode(cft),
4203 current_fsuid(), current_fsgid(),
4204 size: 0, ops: cft->kf_ops, priv: cft,
4205 NULL, key);
4206 if (IS_ERR(ptr: kn))
4207 return PTR_ERR(ptr: kn);
4208
4209 if (cft->file_offset) {
4210 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4211
4212 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4213
4214 spin_lock_irq(lock: &cgroup_file_kn_lock);
4215 cfile->kn = kn;
4216 spin_unlock_irq(lock: &cgroup_file_kn_lock);
4217 }
4218
4219 return 0;
4220}
4221
4222/**
4223 * cgroup_addrm_files - add or remove files to a cgroup directory
4224 * @css: the target css
4225 * @cgrp: the target cgroup (usually css->cgroup)
4226 * @cfts: array of cftypes to be added
4227 * @is_add: whether to add or remove
4228 *
4229 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4230 * For removals, this function never fails.
4231 */
4232static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4233 struct cgroup *cgrp, struct cftype cfts[],
4234 bool is_add)
4235{
4236 struct cftype *cft, *cft_end = NULL;
4237 int ret = 0;
4238
4239 lockdep_assert_held(&cgroup_mutex);
4240
4241restart:
4242 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4243 /* does cft->flags tell us to skip this file on @cgrp? */
4244 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4245 continue;
4246 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4247 continue;
4248 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4249 continue;
4250 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4251 continue;
4252 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4253 continue;
4254 if (is_add) {
4255 ret = cgroup_add_file(css, cgrp, cft);
4256 if (ret) {
4257 pr_warn("%s: failed to add %s, err=%d\n",
4258 __func__, cft->name, ret);
4259 cft_end = cft;
4260 is_add = false;
4261 goto restart;
4262 }
4263 } else {
4264 cgroup_rm_file(cgrp, cft);
4265 }
4266 }
4267 return ret;
4268}
4269
4270static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4271{
4272 struct cgroup_subsys *ss = cfts[0].ss;
4273 struct cgroup *root = &ss->root->cgrp;
4274 struct cgroup_subsys_state *css;
4275 int ret = 0;
4276
4277 lockdep_assert_held(&cgroup_mutex);
4278
4279 /* add/rm files for all cgroups created before */
4280 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4281 struct cgroup *cgrp = css->cgroup;
4282
4283 if (!(css->flags & CSS_VISIBLE))
4284 continue;
4285
4286 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4287 if (ret)
4288 break;
4289 }
4290
4291 if (is_add && !ret)
4292 kernfs_activate(kn: root->kn);
4293 return ret;
4294}
4295
4296static void cgroup_exit_cftypes(struct cftype *cfts)
4297{
4298 struct cftype *cft;
4299
4300 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4301 /* free copy for custom atomic_write_len, see init_cftypes() */
4302 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4303 kfree(objp: cft->kf_ops);
4304 cft->kf_ops = NULL;
4305 cft->ss = NULL;
4306
4307 /* revert flags set by cgroup core while adding @cfts */
4308 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4309 __CFTYPE_ADDED);
4310 }
4311}
4312
4313static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4314{
4315 struct cftype *cft;
4316 int ret = 0;
4317
4318 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4319 struct kernfs_ops *kf_ops;
4320
4321 WARN_ON(cft->ss || cft->kf_ops);
4322
4323 if (cft->flags & __CFTYPE_ADDED) {
4324 ret = -EBUSY;
4325 break;
4326 }
4327
4328 if (cft->seq_start)
4329 kf_ops = &cgroup_kf_ops;
4330 else
4331 kf_ops = &cgroup_kf_single_ops;
4332
4333 /*
4334 * Ugh... if @cft wants a custom max_write_len, we need to
4335 * make a copy of kf_ops to set its atomic_write_len.
4336 */
4337 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4338 kf_ops = kmemdup(p: kf_ops, size: sizeof(*kf_ops), GFP_KERNEL);
4339 if (!kf_ops) {
4340 ret = -ENOMEM;
4341 break;
4342 }
4343 kf_ops->atomic_write_len = cft->max_write_len;
4344 }
4345
4346 cft->kf_ops = kf_ops;
4347 cft->ss = ss;
4348 cft->flags |= __CFTYPE_ADDED;
4349 }
4350
4351 if (ret)
4352 cgroup_exit_cftypes(cfts);
4353 return ret;
4354}
4355
4356static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4357{
4358 lockdep_assert_held(&cgroup_mutex);
4359
4360 list_del(entry: &cfts->node);
4361 cgroup_apply_cftypes(cfts, is_add: false);
4362 cgroup_exit_cftypes(cfts);
4363}
4364
4365/**
4366 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4367 * @cfts: zero-length name terminated array of cftypes
4368 *
4369 * Unregister @cfts. Files described by @cfts are removed from all
4370 * existing cgroups and all future cgroups won't have them either. This
4371 * function can be called anytime whether @cfts' subsys is attached or not.
4372 *
4373 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4374 * registered.
4375 */
4376int cgroup_rm_cftypes(struct cftype *cfts)
4377{
4378 if (!cfts || cfts[0].name[0] == '\0')
4379 return 0;
4380
4381 if (!(cfts[0].flags & __CFTYPE_ADDED))
4382 return -ENOENT;
4383
4384 cgroup_lock();
4385 cgroup_rm_cftypes_locked(cfts);
4386 cgroup_unlock();
4387 return 0;
4388}
4389
4390/**
4391 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4392 * @ss: target cgroup subsystem
4393 * @cfts: zero-length name terminated array of cftypes
4394 *
4395 * Register @cfts to @ss. Files described by @cfts are created for all
4396 * existing cgroups to which @ss is attached and all future cgroups will
4397 * have them too. This function can be called anytime whether @ss is
4398 * attached or not.
4399 *
4400 * Returns 0 on successful registration, -errno on failure. Note that this
4401 * function currently returns 0 as long as @cfts registration is successful
4402 * even if some file creation attempts on existing cgroups fail.
4403 */
4404static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4405{
4406 int ret;
4407
4408 if (!cgroup_ssid_enabled(ssid: ss->id))
4409 return 0;
4410
4411 if (!cfts || cfts[0].name[0] == '\0')
4412 return 0;
4413
4414 ret = cgroup_init_cftypes(ss, cfts);
4415 if (ret)
4416 return ret;
4417
4418 cgroup_lock();
4419
4420 list_add_tail(new: &cfts->node, head: &ss->cfts);
4421 ret = cgroup_apply_cftypes(cfts, is_add: true);
4422 if (ret)
4423 cgroup_rm_cftypes_locked(cfts);
4424
4425 cgroup_unlock();
4426 return ret;
4427}
4428
4429/**
4430 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4431 * @ss: target cgroup subsystem
4432 * @cfts: zero-length name terminated array of cftypes
4433 *
4434 * Similar to cgroup_add_cftypes() but the added files are only used for
4435 * the default hierarchy.
4436 */
4437int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4438{
4439 struct cftype *cft;
4440
4441 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4442 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4443 return cgroup_add_cftypes(ss, cfts);
4444}
4445
4446/**
4447 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4448 * @ss: target cgroup subsystem
4449 * @cfts: zero-length name terminated array of cftypes
4450 *
4451 * Similar to cgroup_add_cftypes() but the added files are only used for
4452 * the legacy hierarchies.
4453 */
4454int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4455{
4456 struct cftype *cft;
4457
4458 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4459 cft->flags |= __CFTYPE_NOT_ON_DFL;
4460 return cgroup_add_cftypes(ss, cfts);
4461}
4462
4463/**
4464 * cgroup_file_notify - generate a file modified event for a cgroup_file
4465 * @cfile: target cgroup_file
4466 *
4467 * @cfile must have been obtained by setting cftype->file_offset.
4468 */
4469void cgroup_file_notify(struct cgroup_file *cfile)
4470{
4471 unsigned long flags;
4472
4473 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4474 if (cfile->kn) {
4475 unsigned long last = cfile->notified_at;
4476 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4477
4478 if (time_in_range(jiffies, last, next)) {
4479 timer_reduce(timer: &cfile->notify_timer, expires: next);
4480 } else {
4481 kernfs_notify(kn: cfile->kn);
4482 cfile->notified_at = jiffies;
4483 }
4484 }
4485 spin_unlock_irqrestore(lock: &cgroup_file_kn_lock, flags);
4486}
4487
4488/**
4489 * cgroup_file_show - show or hide a hidden cgroup file
4490 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4491 * @show: whether to show or hide
4492 */
4493void cgroup_file_show(struct cgroup_file *cfile, bool show)
4494{
4495 struct kernfs_node *kn;
4496
4497 spin_lock_irq(lock: &cgroup_file_kn_lock);
4498 kn = cfile->kn;
4499 kernfs_get(kn);
4500 spin_unlock_irq(lock: &cgroup_file_kn_lock);
4501
4502 if (kn)
4503 kernfs_show(kn, show);
4504
4505 kernfs_put(kn);
4506}
4507
4508/**
4509 * css_next_child - find the next child of a given css
4510 * @pos: the current position (%NULL to initiate traversal)
4511 * @parent: css whose children to walk
4512 *
4513 * This function returns the next child of @parent and should be called
4514 * under either cgroup_mutex or RCU read lock. The only requirement is
4515 * that @parent and @pos are accessible. The next sibling is guaranteed to
4516 * be returned regardless of their states.
4517 *
4518 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4519 * css which finished ->css_online() is guaranteed to be visible in the
4520 * future iterations and will stay visible until the last reference is put.
4521 * A css which hasn't finished ->css_online() or already finished
4522 * ->css_offline() may show up during traversal. It's each subsystem's
4523 * responsibility to synchronize against on/offlining.
4524 */
4525struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4526 struct cgroup_subsys_state *parent)
4527{
4528 struct cgroup_subsys_state *next;
4529
4530 cgroup_assert_mutex_or_rcu_locked();
4531
4532 /*
4533 * @pos could already have been unlinked from the sibling list.
4534 * Once a cgroup is removed, its ->sibling.next is no longer
4535 * updated when its next sibling changes. CSS_RELEASED is set when
4536 * @pos is taken off list, at which time its next pointer is valid,
4537 * and, as releases are serialized, the one pointed to by the next
4538 * pointer is guaranteed to not have started release yet. This
4539 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4540 * critical section, the one pointed to by its next pointer is
4541 * guaranteed to not have finished its RCU grace period even if we
4542 * have dropped rcu_read_lock() in-between iterations.
4543 *
4544 * If @pos has CSS_RELEASED set, its next pointer can't be
4545 * dereferenced; however, as each css is given a monotonically
4546 * increasing unique serial number and always appended to the
4547 * sibling list, the next one can be found by walking the parent's
4548 * children until the first css with higher serial number than
4549 * @pos's. While this path can be slower, it happens iff iteration
4550 * races against release and the race window is very small.
4551 */
4552 if (!pos) {
4553 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4554 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4555 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4556 } else {
4557 list_for_each_entry_rcu(next, &parent->children, sibling,
4558 lockdep_is_held(&cgroup_mutex))
4559 if (next->serial_nr > pos->serial_nr)
4560 break;
4561 }
4562
4563 /*
4564 * @next, if not pointing to the head, can be dereferenced and is
4565 * the next sibling.
4566 */
4567 if (&next->sibling != &parent->children)
4568 return next;
4569 return NULL;
4570}
4571
4572/**
4573 * css_next_descendant_pre - find the next descendant for pre-order walk
4574 * @pos: the current position (%NULL to initiate traversal)
4575 * @root: css whose descendants to walk
4576 *
4577 * To be used by css_for_each_descendant_pre(). Find the next descendant
4578 * to visit for pre-order traversal of @root's descendants. @root is
4579 * included in the iteration and the first node to be visited.
4580 *
4581 * While this function requires cgroup_mutex or RCU read locking, it
4582 * doesn't require the whole traversal to be contained in a single critical
4583 * section. This function will return the correct next descendant as long
4584 * as both @pos and @root are accessible and @pos is a descendant of @root.
4585 *
4586 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4587 * css which finished ->css_online() is guaranteed to be visible in the
4588 * future iterations and will stay visible until the last reference is put.
4589 * A css which hasn't finished ->css_online() or already finished
4590 * ->css_offline() may show up during traversal. It's each subsystem's
4591 * responsibility to synchronize against on/offlining.
4592 */
4593struct cgroup_subsys_state *
4594css_next_descendant_pre(struct cgroup_subsys_state *pos,
4595 struct cgroup_subsys_state *root)
4596{
4597 struct cgroup_subsys_state *next;
4598
4599 cgroup_assert_mutex_or_rcu_locked();
4600
4601 /* if first iteration, visit @root */
4602 if (!pos)
4603 return root;
4604
4605 /* visit the first child if exists */
4606 next = css_next_child(NULL, parent: pos);
4607 if (next)
4608 return next;
4609
4610 /* no child, visit my or the closest ancestor's next sibling */
4611 while (pos != root) {
4612 next = css_next_child(pos, parent: pos->parent);
4613 if (next)
4614 return next;
4615 pos = pos->parent;
4616 }
4617
4618 return NULL;
4619}
4620EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4621
4622/**
4623 * css_rightmost_descendant - return the rightmost descendant of a css
4624 * @pos: css of interest
4625 *
4626 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4627 * is returned. This can be used during pre-order traversal to skip
4628 * subtree of @pos.
4629 *
4630 * While this function requires cgroup_mutex or RCU read locking, it
4631 * doesn't require the whole traversal to be contained in a single critical
4632 * section. This function will return the correct rightmost descendant as
4633 * long as @pos is accessible.
4634 */
4635struct cgroup_subsys_state *
4636css_rightmost_descendant(struct cgroup_subsys_state *pos)
4637{
4638 struct cgroup_subsys_state *last, *tmp;
4639
4640 cgroup_assert_mutex_or_rcu_locked();
4641
4642 do {
4643 last = pos;
4644 /* ->prev isn't RCU safe, walk ->next till the end */
4645 pos = NULL;
4646 css_for_each_child(tmp, last)
4647 pos = tmp;
4648 } while (pos);
4649
4650 return last;
4651}
4652
4653static struct cgroup_subsys_state *
4654css_leftmost_descendant(struct cgroup_subsys_state *pos)
4655{
4656 struct cgroup_subsys_state *last;
4657
4658 do {
4659 last = pos;
4660 pos = css_next_child(NULL, parent: pos);
4661 } while (pos);
4662
4663 return last;
4664}
4665
4666/**
4667 * css_next_descendant_post - find the next descendant for post-order walk
4668 * @pos: the current position (%NULL to initiate traversal)
4669 * @root: css whose descendants to walk
4670 *
4671 * To be used by css_for_each_descendant_post(). Find the next descendant
4672 * to visit for post-order traversal of @root's descendants. @root is
4673 * included in the iteration and the last node to be visited.
4674 *
4675 * While this function requires cgroup_mutex or RCU read locking, it
4676 * doesn't require the whole traversal to be contained in a single critical
4677 * section. This function will return the correct next descendant as long
4678 * as both @pos and @cgroup are accessible and @pos is a descendant of
4679 * @cgroup.
4680 *
4681 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4682 * css which finished ->css_online() is guaranteed to be visible in the
4683 * future iterations and will stay visible until the last reference is put.
4684 * A css which hasn't finished ->css_online() or already finished
4685 * ->css_offline() may show up during traversal. It's each subsystem's
4686 * responsibility to synchronize against on/offlining.
4687 */
4688struct cgroup_subsys_state *
4689css_next_descendant_post(struct cgroup_subsys_state *pos,
4690 struct cgroup_subsys_state *root)
4691{
4692 struct cgroup_subsys_state *next;
4693
4694 cgroup_assert_mutex_or_rcu_locked();
4695
4696 /* if first iteration, visit leftmost descendant which may be @root */
4697 if (!pos)
4698 return css_leftmost_descendant(pos: root);
4699
4700 /* if we visited @root, we're done */
4701 if (pos == root)
4702 return NULL;
4703
4704 /* if there's an unvisited sibling, visit its leftmost descendant */
4705 next = css_next_child(pos, parent: pos->parent);
4706 if (next)
4707 return css_leftmost_descendant(pos: next);
4708
4709 /* no sibling left, visit parent */
4710 return pos->parent;
4711}
4712
4713/**
4714 * css_has_online_children - does a css have online children
4715 * @css: the target css
4716 *
4717 * Returns %true if @css has any online children; otherwise, %false. This
4718 * function can be called from any context but the caller is responsible
4719 * for synchronizing against on/offlining as necessary.
4720 */
4721bool css_has_online_children(struct cgroup_subsys_state *css)
4722{
4723 struct cgroup_subsys_state *child;
4724 bool ret = false;
4725
4726 rcu_read_lock();
4727 css_for_each_child(child, css) {
4728 if (child->flags & CSS_ONLINE) {
4729 ret = true;
4730 break;
4731 }
4732 }
4733 rcu_read_unlock();
4734 return ret;
4735}
4736
4737static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4738{
4739 struct list_head *l;
4740 struct cgrp_cset_link *link;
4741 struct css_set *cset;
4742
4743 lockdep_assert_held(&css_set_lock);
4744
4745 /* find the next threaded cset */
4746 if (it->tcset_pos) {
4747 l = it->tcset_pos->next;
4748
4749 if (l != it->tcset_head) {
4750 it->tcset_pos = l;
4751 return container_of(l, struct css_set,
4752 threaded_csets_node);
4753 }
4754
4755 it->tcset_pos = NULL;
4756 }
4757
4758 /* find the next cset */
4759 l = it->cset_pos;
4760 l = l->next;
4761 if (l == it->cset_head) {
4762 it->cset_pos = NULL;
4763 return NULL;
4764 }
4765
4766 if (it->ss) {
4767 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4768 } else {
4769 link = list_entry(l, struct cgrp_cset_link, cset_link);
4770 cset = link->cset;
4771 }
4772
4773 it->cset_pos = l;
4774
4775 /* initialize threaded css_set walking */
4776 if (it->flags & CSS_TASK_ITER_THREADED) {
4777 if (it->cur_dcset)
4778 put_css_set_locked(cset: it->cur_dcset);
4779 it->cur_dcset = cset;
4780 get_css_set(cset);
4781
4782 it->tcset_head = &cset->threaded_csets;
4783 it->tcset_pos = &cset->threaded_csets;
4784 }
4785
4786 return cset;
4787}
4788
4789/**
4790 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4791 * @it: the iterator to advance
4792 *
4793 * Advance @it to the next css_set to walk.
4794 */
4795static void css_task_iter_advance_css_set(struct css_task_iter *it)
4796{
4797 struct css_set *cset;
4798
4799 lockdep_assert_held(&css_set_lock);
4800
4801 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4802 while ((cset = css_task_iter_next_css_set(it))) {
4803 if (!list_empty(head: &cset->tasks)) {
4804 it->cur_tasks_head = &cset->tasks;
4805 break;
4806 } else if (!list_empty(head: &cset->mg_tasks)) {
4807 it->cur_tasks_head = &cset->mg_tasks;
4808 break;
4809 } else if (!list_empty(head: &cset->dying_tasks)) {
4810 it->cur_tasks_head = &cset->dying_tasks;
4811 break;
4812 }
4813 }
4814 if (!cset) {
4815 it->task_pos = NULL;
4816 return;
4817 }
4818 it->task_pos = it->cur_tasks_head->next;
4819
4820 /*
4821 * We don't keep css_sets locked across iteration steps and thus
4822 * need to take steps to ensure that iteration can be resumed after
4823 * the lock is re-acquired. Iteration is performed at two levels -
4824 * css_sets and tasks in them.
4825 *
4826 * Once created, a css_set never leaves its cgroup lists, so a
4827 * pinned css_set is guaranteed to stay put and we can resume
4828 * iteration afterwards.
4829 *
4830 * Tasks may leave @cset across iteration steps. This is resolved
4831 * by registering each iterator with the css_set currently being
4832 * walked and making css_set_move_task() advance iterators whose
4833 * next task is leaving.
4834 */
4835 if (it->cur_cset) {
4836 list_del(entry: &it->iters_node);
4837 put_css_set_locked(cset: it->cur_cset);
4838 }
4839 get_css_set(cset);
4840 it->cur_cset = cset;
4841 list_add(new: &it->iters_node, head: &cset->task_iters);
4842}
4843
4844static void css_task_iter_skip(struct css_task_iter *it,
4845 struct task_struct *task)
4846{
4847 lockdep_assert_held(&css_set_lock);
4848
4849 if (it->task_pos == &task->cg_list) {
4850 it->task_pos = it->task_pos->next;
4851 it->flags |= CSS_TASK_ITER_SKIPPED;
4852 }
4853}
4854
4855static void css_task_iter_advance(struct css_task_iter *it)
4856{
4857 struct task_struct *task;
4858
4859 lockdep_assert_held(&css_set_lock);
4860repeat:
4861 if (it->task_pos) {
4862 /*
4863 * Advance iterator to find next entry. We go through cset
4864 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4865 * the next cset.
4866 */
4867 if (it->flags & CSS_TASK_ITER_SKIPPED)
4868 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4869 else
4870 it->task_pos = it->task_pos->next;
4871
4872 if (it->task_pos == &it->cur_cset->tasks) {
4873 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4874 it->task_pos = it->cur_tasks_head->next;
4875 }
4876 if (it->task_pos == &it->cur_cset->mg_tasks) {
4877 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4878 it->task_pos = it->cur_tasks_head->next;
4879 }
4880 if (it->task_pos == &it->cur_cset->dying_tasks)
4881 css_task_iter_advance_css_set(it);
4882 } else {
4883 /* called from start, proceed to the first cset */
4884 css_task_iter_advance_css_set(it);
4885 }
4886
4887 if (!it->task_pos)
4888 return;
4889
4890 task = list_entry(it->task_pos, struct task_struct, cg_list);
4891
4892 if (it->flags & CSS_TASK_ITER_PROCS) {
4893 /* if PROCS, skip over tasks which aren't group leaders */
4894 if (!thread_group_leader(p: task))
4895 goto repeat;
4896
4897 /* and dying leaders w/o live member threads */
4898 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4899 !atomic_read(v: &task->signal->live))
4900 goto repeat;
4901 } else {
4902 /* skip all dying ones */
4903 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4904 goto repeat;
4905 }
4906}
4907
4908/**
4909 * css_task_iter_start - initiate task iteration
4910 * @css: the css to walk tasks of
4911 * @flags: CSS_TASK_ITER_* flags
4912 * @it: the task iterator to use
4913 *
4914 * Initiate iteration through the tasks of @css. The caller can call
4915 * css_task_iter_next() to walk through the tasks until the function
4916 * returns NULL. On completion of iteration, css_task_iter_end() must be
4917 * called.
4918 */
4919void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4920 struct css_task_iter *it)
4921{
4922 unsigned long irqflags;
4923
4924 memset(it, 0, sizeof(*it));
4925
4926 spin_lock_irqsave(&css_set_lock, irqflags);
4927
4928 it->ss = css->ss;
4929 it->flags = flags;
4930
4931 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4932 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4933 else
4934 it->cset_pos = &css->cgroup->cset_links;
4935
4936 it->cset_head = it->cset_pos;
4937
4938 css_task_iter_advance(it);
4939
4940 spin_unlock_irqrestore(lock: &css_set_lock, flags: irqflags);
4941}
4942
4943/**
4944 * css_task_iter_next - return the next task for the iterator
4945 * @it: the task iterator being iterated
4946 *
4947 * The "next" function for task iteration. @it should have been
4948 * initialized via css_task_iter_start(). Returns NULL when the iteration
4949 * reaches the end.
4950 */
4951struct task_struct *css_task_iter_next(struct css_task_iter *it)
4952{
4953 unsigned long irqflags;
4954
4955 if (it->cur_task) {
4956 put_task_struct(t: it->cur_task);
4957 it->cur_task = NULL;
4958 }
4959
4960 spin_lock_irqsave(&css_set_lock, irqflags);
4961
4962 /* @it may be half-advanced by skips, finish advancing */
4963 if (it->flags & CSS_TASK_ITER_SKIPPED)
4964 css_task_iter_advance(it);
4965
4966 if (it->task_pos) {
4967 it->cur_task = list_entry(it->task_pos, struct task_struct,
4968 cg_list);
4969 get_task_struct(t: it->cur_task);
4970 css_task_iter_advance(it);
4971 }
4972
4973 spin_unlock_irqrestore(lock: &css_set_lock, flags: irqflags);
4974
4975 return it->cur_task;
4976}
4977
4978/**
4979 * css_task_iter_end - finish task iteration
4980 * @it: the task iterator to finish
4981 *
4982 * Finish task iteration started by css_task_iter_start().
4983 */
4984void css_task_iter_end(struct css_task_iter *it)
4985{
4986 unsigned long irqflags;
4987
4988 if (it->cur_cset) {
4989 spin_lock_irqsave(&css_set_lock, irqflags);
4990 list_del(entry: &it->iters_node);
4991 put_css_set_locked(cset: it->cur_cset);
4992 spin_unlock_irqrestore(lock: &css_set_lock, flags: irqflags);
4993 }
4994
4995 if (it->cur_dcset)
4996 put_css_set(cset: it->cur_dcset);
4997
4998 if (it->cur_task)
4999 put_task_struct(t: it->cur_task);
5000}
5001
5002static void cgroup_procs_release(struct kernfs_open_file *of)
5003{
5004 struct cgroup_file_ctx *ctx = of->priv;
5005
5006 if (ctx->procs.started)
5007 css_task_iter_end(it: &ctx->procs.iter);
5008}
5009
5010static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5011{
5012 struct kernfs_open_file *of = s->private;
5013 struct cgroup_file_ctx *ctx = of->priv;
5014
5015 if (pos)
5016 (*pos)++;
5017
5018 return css_task_iter_next(it: &ctx->procs.iter);
5019}
5020
5021static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5022 unsigned int iter_flags)
5023{
5024 struct kernfs_open_file *of = s->private;
5025 struct cgroup *cgrp = seq_css(seq: s)->cgroup;
5026 struct cgroup_file_ctx *ctx = of->priv;
5027 struct css_task_iter *it = &ctx->procs.iter;
5028
5029 /*
5030 * When a seq_file is seeked, it's always traversed sequentially
5031 * from position 0, so we can simply keep iterating on !0 *pos.
5032 */
5033 if (!ctx->procs.started) {
5034 if (WARN_ON_ONCE((*pos)))
5035 return ERR_PTR(error: -EINVAL);
5036 css_task_iter_start(css: &cgrp->self, flags: iter_flags, it);
5037 ctx->procs.started = true;
5038 } else if (!(*pos)) {
5039 css_task_iter_end(it);
5040 css_task_iter_start(css: &cgrp->self, flags: iter_flags, it);
5041 } else
5042 return it->cur_task;
5043
5044 return cgroup_procs_next(s, NULL, NULL);
5045}
5046
5047static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5048{
5049 struct cgroup *cgrp = seq_css(seq: s)->cgroup;
5050
5051 /*
5052 * All processes of a threaded subtree belong to the domain cgroup
5053 * of the subtree. Only threads can be distributed across the
5054 * subtree. Reject reads on cgroup.procs in the subtree proper.
5055 * They're always empty anyway.
5056 */
5057 if (cgroup_is_threaded(cgrp))
5058 return ERR_PTR(error: -EOPNOTSUPP);
5059
5060 return __cgroup_procs_start(s, pos, iter_flags: CSS_TASK_ITER_PROCS |
5061 CSS_TASK_ITER_THREADED);
5062}
5063
5064static int cgroup_procs_show(struct seq_file *s, void *v)
5065{
5066 seq_printf(m: s, fmt: "%d\n", task_pid_vnr(tsk: v));
5067 return 0;
5068}
5069
5070static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5071{
5072 int ret;
5073 struct inode *inode;
5074
5075 lockdep_assert_held(&cgroup_mutex);
5076
5077 inode = kernfs_get_inode(sb, kn: cgrp->procs_file.kn);
5078 if (!inode)
5079 return -ENOMEM;
5080
5081 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5082 iput(inode);
5083 return ret;
5084}
5085
5086static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5087 struct cgroup *dst_cgrp,
5088 struct super_block *sb,
5089 struct cgroup_namespace *ns)
5090{
5091 struct cgroup *com_cgrp = src_cgrp;
5092 int ret;
5093
5094 lockdep_assert_held(&cgroup_mutex);
5095
5096 /* find the common ancestor */
5097 while (!cgroup_is_descendant(cgrp: dst_cgrp, ancestor: com_cgrp))
5098 com_cgrp = cgroup_parent(cgrp: com_cgrp);
5099
5100 /* %current should be authorized to migrate to the common ancestor */
5101 ret = cgroup_may_write(cgrp: com_cgrp, sb);
5102 if (ret)
5103 return ret;
5104
5105 /*
5106 * If namespaces are delegation boundaries, %current must be able
5107 * to see both source and destination cgroups from its namespace.
5108 */
5109 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5110 (!cgroup_is_descendant(cgrp: src_cgrp, ancestor: ns->root_cset->dfl_cgrp) ||
5111 !cgroup_is_descendant(cgrp: dst_cgrp, ancestor: ns->root_cset->dfl_cgrp)))
5112 return -ENOENT;
5113
5114 return 0;
5115}
5116
5117static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5118 struct cgroup *dst_cgrp,
5119 struct super_block *sb, bool threadgroup,
5120 struct cgroup_namespace *ns)
5121{
5122 int ret = 0;
5123
5124 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5125 if (ret)
5126 return ret;
5127
5128 ret = cgroup_migrate_vet_dst(dst_cgrp);
5129 if (ret)
5130 return ret;
5131
5132 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5133 ret = -EOPNOTSUPP;
5134
5135 return ret;
5136}
5137
5138static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5139 bool threadgroup)
5140{
5141 struct cgroup_file_ctx *ctx = of->priv;
5142 struct cgroup *src_cgrp, *dst_cgrp;
5143 struct task_struct *task;
5144 const struct cred *saved_cred;
5145 ssize_t ret;
5146 bool threadgroup_locked;
5147
5148 dst_cgrp = cgroup_kn_lock_live(kn: of->kn, drain_offline: false);
5149 if (!dst_cgrp)
5150 return -ENODEV;
5151
5152 task = cgroup_procs_write_start(buf, threadgroup, threadgroup_locked: &threadgroup_locked);
5153 ret = PTR_ERR_OR_ZERO(ptr: task);
5154 if (ret)
5155 goto out_unlock;
5156
5157 /* find the source cgroup */
5158 spin_lock_irq(lock: &css_set_lock);
5159 src_cgrp = task_cgroup_from_root(task, root: &cgrp_dfl_root);
5160 spin_unlock_irq(lock: &css_set_lock);
5161
5162 /*
5163 * Process and thread migrations follow same delegation rule. Check
5164 * permissions using the credentials from file open to protect against
5165 * inherited fd attacks.
5166 */
5167 saved_cred = override_creds(of->file->f_cred);
5168 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5169 sb: of->file->f_path.dentry->d_sb,
5170 threadgroup, ns: ctx->ns);
5171 revert_creds(saved_cred);
5172 if (ret)
5173 goto out_finish;
5174
5175 ret = cgroup_attach_task(dst_cgrp, leader: task, threadgroup);
5176
5177out_finish:
5178 cgroup_procs_write_finish(task, threadgroup_locked);
5179out_unlock:
5180 cgroup_kn_unlock(kn: of->kn);
5181
5182 return ret;
5183}
5184
5185static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5186 char *buf, size_t nbytes, loff_t off)
5187{
5188 return __cgroup_procs_write(of, buf, threadgroup: true) ?: nbytes;
5189}
5190
5191static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5192{
5193 return __cgroup_procs_start(s, pos, iter_flags: 0);
5194}
5195
5196static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5197 char *buf, size_t nbytes, loff_t off)
5198{
5199 return __cgroup_procs_write(of, buf, threadgroup: false) ?: nbytes;
5200}
5201
5202/* cgroup core interface files for the default hierarchy */
5203static struct cftype cgroup_base_files[] = {
5204 {
5205 .name = "cgroup.type",
5206 .flags = CFTYPE_NOT_ON_ROOT,
5207 .seq_show = cgroup_type_show,
5208 .write = cgroup_type_write,
5209 },
5210 {
5211 .name = "cgroup.procs",
5212 .flags = CFTYPE_NS_DELEGATABLE,
5213 .file_offset = offsetof(struct cgroup, procs_file),
5214 .release = cgroup_procs_release,
5215 .seq_start = cgroup_procs_start,
5216 .seq_next = cgroup_procs_next,
5217 .seq_show = cgroup_procs_show,
5218 .write = cgroup_procs_write,
5219 },
5220 {
5221 .name = "cgroup.threads",
5222 .flags = CFTYPE_NS_DELEGATABLE,
5223 .release = cgroup_procs_release,
5224 .seq_start = cgroup_threads_start,
5225 .seq_next = cgroup_procs_next,
5226 .seq_show = cgroup_procs_show,
5227 .write = cgroup_threads_write,
5228 },
5229 {
5230 .name = "cgroup.controllers",
5231 .seq_show = cgroup_controllers_show,
5232 },
5233 {
5234 .name = "cgroup.subtree_control",
5235 .flags = CFTYPE_NS_DELEGATABLE,
5236 .seq_show = cgroup_subtree_control_show,
5237 .write = cgroup_subtree_control_write,
5238 },
5239 {
5240 .name = "cgroup.events",
5241 .flags = CFTYPE_NOT_ON_ROOT,
5242 .file_offset = offsetof(struct cgroup, events_file),
5243 .seq_show = cgroup_events_show,
5244 },
5245 {
5246 .name = "cgroup.max.descendants",
5247 .seq_show = cgroup_max_descendants_show,
5248 .write = cgroup_max_descendants_write,
5249 },
5250 {
5251 .name = "cgroup.max.depth",
5252 .seq_show = cgroup_max_depth_show,
5253 .write = cgroup_max_depth_write,
5254 },
5255 {
5256 .name = "cgroup.stat",
5257 .seq_show = cgroup_stat_show,
5258 },
5259 {
5260 .name = "cgroup.freeze",
5261 .flags = CFTYPE_NOT_ON_ROOT,
5262 .seq_show = cgroup_freeze_show,
5263 .write = cgroup_freeze_write,
5264 },
5265 {
5266 .name = "cgroup.kill",
5267 .flags = CFTYPE_NOT_ON_ROOT,
5268 .write = cgroup_kill_write,
5269 },
5270 {
5271 .name = "cpu.stat",
5272 .seq_show = cpu_stat_show,
5273 },
5274 {
5275 .name = "cpu.stat.local",
5276 .seq_show = cpu_local_stat_show,
5277 },
5278 { } /* terminate */
5279};
5280
5281static struct cftype cgroup_psi_files[] = {
5282#ifdef CONFIG_PSI
5283 {
5284 .name = "io.pressure",
5285 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5286 .seq_show = cgroup_io_pressure_show,
5287 .write = cgroup_io_pressure_write,
5288 .poll = cgroup_pressure_poll,
5289 .release = cgroup_pressure_release,
5290 },
5291 {
5292 .name = "memory.pressure",
5293 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5294 .seq_show = cgroup_memory_pressure_show,
5295 .write = cgroup_memory_pressure_write,
5296 .poll = cgroup_pressure_poll,
5297 .release = cgroup_pressure_release,
5298 },
5299 {
5300 .name = "cpu.pressure",
5301 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5302 .seq_show = cgroup_cpu_pressure_show,
5303 .write = cgroup_cpu_pressure_write,
5304 .poll = cgroup_pressure_poll,
5305 .release = cgroup_pressure_release,
5306 },
5307#ifdef CONFIG_IRQ_TIME_ACCOUNTING
5308 {
5309 .name = "irq.pressure",
5310 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5311 .seq_show = cgroup_irq_pressure_show,
5312 .write = cgroup_irq_pressure_write,
5313 .poll = cgroup_pressure_poll,
5314 .release = cgroup_pressure_release,
5315 },
5316#endif
5317 {
5318 .name = "cgroup.pressure",
5319 .seq_show = cgroup_pressure_show,
5320 .write = cgroup_pressure_write,
5321 },
5322#endif /* CONFIG_PSI */
5323 { } /* terminate */
5324};
5325
5326/*
5327 * css destruction is four-stage process.
5328 *
5329 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5330 * Implemented in kill_css().
5331 *
5332 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5333 * and thus css_tryget_online() is guaranteed to fail, the css can be
5334 * offlined by invoking offline_css(). After offlining, the base ref is
5335 * put. Implemented in css_killed_work_fn().
5336 *
5337 * 3. When the percpu_ref reaches zero, the only possible remaining
5338 * accessors are inside RCU read sections. css_release() schedules the
5339 * RCU callback.
5340 *
5341 * 4. After the grace period, the css can be freed. Implemented in
5342 * css_free_rwork_fn().
5343 *
5344 * It is actually hairier because both step 2 and 4 require process context
5345 * and thus involve punting to css->destroy_work adding two additional
5346 * steps to the already complex sequence.
5347 */
5348static void css_free_rwork_fn(struct work_struct *work)
5349{
5350 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5351 struct cgroup_subsys_state, destroy_rwork);
5352 struct cgroup_subsys *ss = css->ss;
5353 struct cgroup *cgrp = css->cgroup;
5354
5355 percpu_ref_exit(ref: &css->refcnt);
5356
5357 if (ss) {
5358 /* css free path */
5359 struct cgroup_subsys_state *parent = css->parent;
5360 int id = css->id;
5361
5362 ss->css_free(css);
5363 cgroup_idr_remove(idr: &ss->css_idr, id);
5364 cgroup_put(cgrp);
5365
5366 if (parent)
5367 css_put(parent);
5368 } else {
5369 /* cgroup free path */
5370 atomic_dec(v: &cgrp->root->nr_cgrps);
5371 cgroup1_pidlist_destroy_all(cgrp);
5372 cancel_work_sync(work: &cgrp->release_agent_work);
5373 bpf_cgrp_storage_free(cgroup: cgrp);
5374
5375 if (cgroup_parent(cgrp)) {
5376 /*
5377 * We get a ref to the parent, and put the ref when
5378 * this cgroup is being freed, so it's guaranteed
5379 * that the parent won't be destroyed before its
5380 * children.
5381 */
5382 cgroup_put(cgrp: cgroup_parent(cgrp));
5383 kernfs_put(kn: cgrp->kn);
5384 psi_cgroup_free(cgrp);
5385 cgroup_rstat_exit(cgrp);
5386 kfree(objp: cgrp);
5387 } else {
5388 /*
5389 * This is root cgroup's refcnt reaching zero,
5390 * which indicates that the root should be
5391 * released.
5392 */
5393 cgroup_destroy_root(root: cgrp->root);
5394 }
5395 }
5396}
5397
5398static void css_release_work_fn(struct work_struct *work)
5399{
5400 struct cgroup_subsys_state *css =
5401 container_of(work, struct cgroup_subsys_state, destroy_work);
5402 struct cgroup_subsys *ss = css->ss;
5403 struct cgroup *cgrp = css->cgroup;
5404
5405 cgroup_lock();
5406
5407 css->flags |= CSS_RELEASED;
5408 list_del_rcu(entry: &css->sibling);
5409
5410 if (ss) {
5411 /* css release path */
5412 if (!list_empty(head: &css->rstat_css_node)) {
5413 cgroup_rstat_flush(cgrp);
5414 list_del_rcu(entry: &css->rstat_css_node);
5415 }
5416
5417 cgroup_idr_replace(idr: &ss->css_idr, NULL, id: css->id);
5418 if (ss->css_released)
5419 ss->css_released(css);
5420 } else {
5421 struct cgroup *tcgrp;
5422
5423 /* cgroup release path */
5424 TRACE_CGROUP_PATH(release, cgrp);
5425
5426 cgroup_rstat_flush(cgrp);
5427
5428 spin_lock_irq(lock: &css_set_lock);
5429 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5430 tcgrp = cgroup_parent(cgrp: tcgrp))
5431 tcgrp->nr_dying_descendants--;
5432 spin_unlock_irq(lock: &css_set_lock);
5433
5434 /*
5435 * There are two control paths which try to determine
5436 * cgroup from dentry without going through kernfs -
5437 * cgroupstats_build() and css_tryget_online_from_dir().
5438 * Those are supported by RCU protecting clearing of
5439 * cgrp->kn->priv backpointer.
5440 */
5441 if (cgrp->kn)
5442 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5443 NULL);
5444 }
5445
5446 cgroup_unlock();
5447
5448 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5449 queue_rcu_work(wq: cgroup_destroy_wq, rwork: &css->destroy_rwork);
5450}
5451
5452static void css_release(struct percpu_ref *ref)
5453{
5454 struct cgroup_subsys_state *css =
5455 container_of(ref, struct cgroup_subsys_state, refcnt);
5456
5457 INIT_WORK(&css->destroy_work, css_release_work_fn);
5458 queue_work(wq: cgroup_destroy_wq, work: &css->destroy_work);
5459}
5460
5461static void init_and_link_css(struct cgroup_subsys_state *css,
5462 struct cgroup_subsys *ss, struct cgroup *cgrp)
5463{
5464 lockdep_assert_held(&cgroup_mutex);
5465
5466 cgroup_get_live(cgrp);
5467
5468 memset(css, 0, sizeof(*css));
5469 css->cgroup = cgrp;
5470 css->ss = ss;
5471 css->id = -1;
5472 INIT_LIST_HEAD(list: &css->sibling);
5473 INIT_LIST_HEAD(list: &css->children);
5474 INIT_LIST_HEAD(list: &css->rstat_css_node);
5475 css->serial_nr = css_serial_nr_next++;
5476 atomic_set(v: &css->online_cnt, i: 0);
5477
5478 if (cgroup_parent(cgrp)) {
5479 css->parent = cgroup_css(cgrp: cgroup_parent(cgrp), ss);
5480 css_get(css->parent);
5481 }
5482
5483 if (ss->css_rstat_flush)
5484 list_add_rcu(new: &css->rstat_css_node, head: &cgrp->rstat_css_list);
5485
5486 BUG_ON(cgroup_css(cgrp, ss));
5487}
5488
5489/* invoke ->css_online() on a new CSS and mark it online if successful */
5490static int online_css(struct cgroup_subsys_state *css)
5491{
5492 struct cgroup_subsys *ss = css->ss;
5493 int ret = 0;
5494
5495 lockdep_assert_held(&cgroup_mutex);
5496
5497 if (ss->css_online)
5498 ret = ss->css_online(css);
5499 if (!ret) {
5500 css->flags |= CSS_ONLINE;
5501 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5502
5503 atomic_inc(v: &css->online_cnt);
5504 if (css->parent)
5505 atomic_inc(v: &css->parent->online_cnt);
5506 }
5507 return ret;
5508}
5509
5510/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5511static void offline_css(struct cgroup_subsys_state *css)
5512{
5513 struct cgroup_subsys *ss = css->ss;
5514
5515 lockdep_assert_held(&cgroup_mutex);
5516
5517 if (!(css->flags & CSS_ONLINE))
5518 return;
5519
5520 if (ss->css_offline)
5521 ss->css_offline(css);
5522
5523 css->flags &= ~CSS_ONLINE;
5524 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5525
5526 wake_up_all(&css->cgroup->offline_waitq);
5527}
5528
5529/**
5530 * css_create - create a cgroup_subsys_state
5531 * @cgrp: the cgroup new css will be associated with
5532 * @ss: the subsys of new css
5533 *
5534 * Create a new css associated with @cgrp - @ss pair. On success, the new
5535 * css is online and installed in @cgrp. This function doesn't create the
5536 * interface files. Returns 0 on success, -errno on failure.
5537 */
5538static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5539 struct cgroup_subsys *ss)
5540{
5541 struct cgroup *parent = cgroup_parent(cgrp);
5542 struct cgroup_subsys_state *parent_css = cgroup_css(cgrp: parent, ss);
5543 struct cgroup_subsys_state *css;
5544 int err;
5545
5546 lockdep_assert_held(&cgroup_mutex);
5547
5548 css = ss->css_alloc(parent_css);
5549 if (!css)
5550 css = ERR_PTR(error: -ENOMEM);
5551 if (IS_ERR(ptr: css))
5552 return css;
5553
5554 init_and_link_css(css, ss, cgrp);
5555
5556 err = percpu_ref_init(ref: &css->refcnt, release: css_release, flags: 0, GFP_KERNEL);
5557 if (err)
5558 goto err_free_css;
5559
5560 err = cgroup_idr_alloc(idr: &ss->css_idr, NULL, start: 2, end: 0, GFP_KERNEL);
5561 if (err < 0)
5562 goto err_free_css;
5563 css->id = err;
5564
5565 /* @css is ready to be brought online now, make it visible */
5566 list_add_tail_rcu(new: &css->sibling, head: &parent_css->children);
5567 cgroup_idr_replace(idr: &ss->css_idr, ptr: css, id: css->id);
5568
5569 err = online_css(css);
5570 if (err)
5571 goto err_list_del;
5572
5573 return css;
5574
5575err_list_del:
5576 list_del_rcu(entry: &css->sibling);
5577err_free_css:
5578 list_del_rcu(entry: &css->rstat_css_node);
5579 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5580 queue_rcu_work(wq: cgroup_destroy_wq, rwork: &css->destroy_rwork);
5581 return ERR_PTR(error: err);
5582}
5583
5584/*
5585 * The returned cgroup is fully initialized including its control mask, but
5586 * it doesn't have the control mask applied.
5587 */
5588static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5589 umode_t mode)
5590{
5591 struct cgroup_root *root = parent->root;
5592 struct cgroup *cgrp, *tcgrp;
5593 struct kernfs_node *kn;
5594 int level = parent->level + 1;
5595 int ret;
5596
5597 /* allocate the cgroup and its ID, 0 is reserved for the root */
5598 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5599 if (!cgrp)
5600 return ERR_PTR(error: -ENOMEM);
5601
5602 ret = percpu_ref_init(ref: &cgrp->self.refcnt, release: css_release, flags: 0, GFP_KERNEL);
5603 if (ret)
5604 goto out_free_cgrp;
5605
5606 ret = cgroup_rstat_init(cgrp);
5607 if (ret)
5608 goto out_cancel_ref;
5609
5610 /* create the directory */
5611 kn = kernfs_create_dir_ns(parent: parent->kn, name, mode,
5612 current_fsuid(), current_fsgid(),
5613 priv: cgrp, NULL);
5614 if (IS_ERR(ptr: kn)) {
5615 ret = PTR_ERR(ptr: kn);
5616 goto out_stat_exit;
5617 }
5618 cgrp->kn = kn;
5619
5620 init_cgroup_housekeeping(cgrp);
5621
5622 cgrp->self.parent = &parent->self;
5623 cgrp->root = root;
5624 cgrp->level = level;
5625
5626 ret = psi_cgroup_alloc(cgrp);
5627 if (ret)
5628 goto out_kernfs_remove;
5629
5630 ret = cgroup_bpf_inherit(cgrp);
5631 if (ret)
5632 goto out_psi_free;
5633
5634 /*
5635 * New cgroup inherits effective freeze counter, and
5636 * if the parent has to be frozen, the child has too.
5637 */
5638 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5639 if (cgrp->freezer.e_freeze) {
5640 /*
5641 * Set the CGRP_FREEZE flag, so when a process will be
5642 * attached to the child cgroup, it will become frozen.
5643 * At this point the new cgroup is unpopulated, so we can
5644 * consider it frozen immediately.
5645 */
5646 set_bit(nr: CGRP_FREEZE, addr: &cgrp->flags);
5647 set_bit(nr: CGRP_FROZEN, addr: &cgrp->flags);
5648 }
5649
5650 spin_lock_irq(lock: &css_set_lock);
5651 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(cgrp: tcgrp)) {
5652 cgrp->ancestors[tcgrp->level] = tcgrp;
5653
5654 if (tcgrp != cgrp) {
5655 tcgrp->nr_descendants++;
5656
5657 /*
5658 * If the new cgroup is frozen, all ancestor cgroups
5659 * get a new frozen descendant, but their state can't
5660 * change because of this.
5661 */
5662 if (cgrp->freezer.e_freeze)
5663 tcgrp->freezer.nr_frozen_descendants++;
5664 }
5665 }
5666 spin_unlock_irq(lock: &css_set_lock);
5667
5668 if (notify_on_release(cgrp: parent))
5669 set_bit(nr: CGRP_NOTIFY_ON_RELEASE, addr: &cgrp->flags);
5670
5671 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5672 set_bit(nr: CGRP_CPUSET_CLONE_CHILDREN, addr: &cgrp->flags);
5673
5674 cgrp->self.serial_nr = css_serial_nr_next++;
5675
5676 /* allocation complete, commit to creation */
5677 list_add_tail_rcu(new: &cgrp->self.sibling, head: &cgroup_parent(cgrp)->self.children);
5678 atomic_inc(v: &root->nr_cgrps);
5679 cgroup_get_live(cgrp: parent);
5680
5681 /*
5682 * On the default hierarchy, a child doesn't automatically inherit
5683 * subtree_control from the parent. Each is configured manually.
5684 */
5685 if (!cgroup_on_dfl(cgrp))
5686 cgrp->subtree_control = cgroup_control(cgrp);
5687
5688 cgroup_propagate_control(cgrp);
5689
5690 return cgrp;
5691
5692out_psi_free:
5693 psi_cgroup_free(cgrp);
5694out_kernfs_remove:
5695 kernfs_remove(kn: cgrp->kn);
5696out_stat_exit:
5697 cgroup_rstat_exit(cgrp);
5698out_cancel_ref:
5699 percpu_ref_exit(ref: &cgrp->self.refcnt);
5700out_free_cgrp:
5701 kfree(objp: cgrp);
5702 return ERR_PTR(error: ret);
5703}
5704
5705static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5706{
5707 struct cgroup *cgroup;
5708 int ret = false;
5709 int level = 1;
5710
5711 lockdep_assert_held(&cgroup_mutex);
5712
5713 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgrp: cgroup)) {
5714 if (cgroup->nr_descendants >= cgroup->max_descendants)
5715 goto fail;
5716
5717 if (level > cgroup->max_depth)
5718 goto fail;
5719
5720 level++;
5721 }
5722
5723 ret = true;
5724fail:
5725 return ret;
5726}
5727
5728int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5729{
5730 struct cgroup *parent, *cgrp;
5731 int ret;
5732
5733 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5734 if (strchr(name, '\n'))
5735 return -EINVAL;
5736
5737 parent = cgroup_kn_lock_live(kn: parent_kn, drain_offline: false);
5738 if (!parent)
5739 return -ENODEV;
5740
5741 if (!cgroup_check_hierarchy_limits(parent)) {
5742 ret = -EAGAIN;
5743 goto out_unlock;
5744 }
5745
5746 cgrp = cgroup_create(parent, name, mode);
5747 if (IS_ERR(ptr: cgrp)) {
5748 ret = PTR_ERR(ptr: cgrp);
5749 goto out_unlock;
5750 }
5751
5752 /*
5753 * This extra ref will be put in cgroup_free_fn() and guarantees
5754 * that @cgrp->kn is always accessible.
5755 */
5756 kernfs_get(kn: cgrp->kn);
5757
5758 ret = css_populate_dir(css: &cgrp->self);
5759 if (ret)
5760 goto out_destroy;
5761
5762 ret = cgroup_apply_control_enable(cgrp);
5763 if (ret)
5764 goto out_destroy;
5765
5766 TRACE_CGROUP_PATH(mkdir, cgrp);
5767
5768 /* let's create and online css's */
5769 kernfs_activate(kn: cgrp->kn);
5770
5771 ret = 0;
5772 goto out_unlock;
5773
5774out_destroy:
5775 cgroup_destroy_locked(cgrp);
5776out_unlock:
5777 cgroup_kn_unlock(kn: parent_kn);
5778 return ret;
5779}
5780
5781/*
5782 * This is called when the refcnt of a css is confirmed to be killed.
5783 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5784 * initiate destruction and put the css ref from kill_css().
5785 */
5786static void css_killed_work_fn(struct work_struct *work)
5787{
5788 struct cgroup_subsys_state *css =
5789 container_of(work, struct cgroup_subsys_state, destroy_work);
5790
5791 cgroup_lock();
5792
5793 do {
5794 offline_css(css);
5795 css_put(css);
5796 /* @css can't go away while we're holding cgroup_mutex */
5797 css = css->parent;
5798 } while (css && atomic_dec_and_test(v: &css->online_cnt));
5799
5800 cgroup_unlock();
5801}
5802
5803/* css kill confirmation processing requires process context, bounce */
5804static void css_killed_ref_fn(struct percpu_ref *ref)
5805{
5806 struct cgroup_subsys_state *css =
5807 container_of(ref, struct cgroup_subsys_state, refcnt);
5808
5809 if (atomic_dec_and_test(v: &css->online_cnt)) {
5810 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5811 queue_work(wq: cgroup_destroy_wq, work: &css->destroy_work);
5812 }
5813}
5814
5815/**
5816 * kill_css - destroy a css
5817 * @css: css to destroy
5818 *
5819 * This function initiates destruction of @css by removing cgroup interface
5820 * files and putting its base reference. ->css_offline() will be invoked
5821 * asynchronously once css_tryget_online() is guaranteed to fail and when
5822 * the reference count reaches zero, @css will be released.
5823 */
5824static void kill_css(struct cgroup_subsys_state *css)
5825{
5826 lockdep_assert_held(&cgroup_mutex);
5827
5828 if (css->flags & CSS_DYING)
5829 return;
5830
5831 css->flags |= CSS_DYING;
5832
5833 /*
5834 * This must happen before css is disassociated with its cgroup.
5835 * See seq_css() for details.
5836 */
5837 css_clear_dir(css);
5838
5839 /*
5840 * Killing would put the base ref, but we need to keep it alive
5841 * until after ->css_offline().
5842 */
5843 css_get(css);
5844
5845 /*
5846 * cgroup core guarantees that, by the time ->css_offline() is
5847 * invoked, no new css reference will be given out via
5848 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5849 * proceed to offlining css's because percpu_ref_kill() doesn't
5850 * guarantee that the ref is seen as killed on all CPUs on return.
5851 *
5852 * Use percpu_ref_kill_and_confirm() to get notifications as each
5853 * css is confirmed to be seen as killed on all CPUs.
5854 */
5855 percpu_ref_kill_and_confirm(ref: &css->refcnt, confirm_kill: css_killed_ref_fn);
5856}
5857
5858/**
5859 * cgroup_destroy_locked - the first stage of cgroup destruction
5860 * @cgrp: cgroup to be destroyed
5861 *
5862 * css's make use of percpu refcnts whose killing latency shouldn't be
5863 * exposed to userland and are RCU protected. Also, cgroup core needs to
5864 * guarantee that css_tryget_online() won't succeed by the time
5865 * ->css_offline() is invoked. To satisfy all the requirements,
5866 * destruction is implemented in the following two steps.
5867 *
5868 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5869 * userland visible parts and start killing the percpu refcnts of
5870 * css's. Set up so that the next stage will be kicked off once all
5871 * the percpu refcnts are confirmed to be killed.
5872 *
5873 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5874 * rest of destruction. Once all cgroup references are gone, the
5875 * cgroup is RCU-freed.
5876 *
5877 * This function implements s1. After this step, @cgrp is gone as far as
5878 * the userland is concerned and a new cgroup with the same name may be
5879 * created. As cgroup doesn't care about the names internally, this
5880 * doesn't cause any problem.
5881 */
5882static int cgroup_destroy_locked(struct cgroup *cgrp)
5883 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5884{
5885 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5886 struct cgroup_subsys_state *css;
5887 struct cgrp_cset_link *link;
5888 int ssid;
5889
5890 lockdep_assert_held(&cgroup_mutex);
5891
5892 /*
5893 * Only migration can raise populated from zero and we're already
5894 * holding cgroup_mutex.
5895 */
5896 if (cgroup_is_populated(cgrp))
5897 return -EBUSY;
5898
5899 /*
5900 * Make sure there's no live children. We can't test emptiness of
5901 * ->self.children as dead children linger on it while being
5902 * drained; otherwise, "rmdir parent/child parent" may fail.
5903 */
5904 if (css_has_online_children(css: &cgrp->self))
5905 return -EBUSY;
5906
5907 /*
5908 * Mark @cgrp and the associated csets dead. The former prevents
5909 * further task migration and child creation by disabling
5910 * cgroup_kn_lock_live(). The latter makes the csets ignored by
5911 * the migration path.
5912 */
5913 cgrp->self.flags &= ~CSS_ONLINE;
5914
5915 spin_lock_irq(lock: &css_set_lock);
5916 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5917 link->cset->dead = true;
5918 spin_unlock_irq(lock: &css_set_lock);
5919
5920 /* initiate massacre of all css's */
5921 for_each_css(css, ssid, cgrp)
5922 kill_css(css);
5923
5924 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5925 css_clear_dir(css: &cgrp->self);
5926 kernfs_remove(kn: cgrp->kn);
5927
5928 if (cgroup_is_threaded(cgrp))
5929 parent->nr_threaded_children--;
5930
5931 spin_lock_irq(lock: &css_set_lock);
5932 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(cgrp: tcgrp)) {
5933 tcgrp->nr_descendants--;
5934 tcgrp->nr_dying_descendants++;
5935 /*
5936 * If the dying cgroup is frozen, decrease frozen descendants
5937 * counters of ancestor cgroups.
5938 */
5939 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5940 tcgrp->freezer.nr_frozen_descendants--;
5941 }
5942 spin_unlock_irq(lock: &css_set_lock);
5943
5944 cgroup1_check_for_release(cgrp: parent);
5945
5946 cgroup_bpf_offline(cgrp);
5947
5948 /* put the base reference */
5949 percpu_ref_kill(ref: &cgrp->self.refcnt);
5950
5951 return 0;
5952};
5953
5954int cgroup_rmdir(struct kernfs_node *kn)
5955{
5956 struct cgroup *cgrp;
5957 int ret = 0;
5958
5959 cgrp = cgroup_kn_lock_live(kn, drain_offline: false);
5960 if (!cgrp)
5961 return 0;
5962
5963 ret = cgroup_destroy_locked(cgrp);
5964 if (!ret)
5965 TRACE_CGROUP_PATH(rmdir, cgrp);
5966
5967 cgroup_kn_unlock(kn);
5968 return ret;
5969}
5970
5971static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5972 .show_options = cgroup_show_options,
5973 .mkdir = cgroup_mkdir,
5974 .rmdir = cgroup_rmdir,
5975 .show_path = cgroup_show_path,
5976};
5977
5978static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5979{
5980 struct cgroup_subsys_state *css;
5981
5982 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5983
5984 cgroup_lock();
5985
5986 idr_init(idr: &ss->css_idr);
5987 INIT_LIST_HEAD(list: &ss->cfts);
5988
5989 /* Create the root cgroup state for this subsystem */
5990 ss->root = &cgrp_dfl_root;
5991 css = ss->css_alloc(NULL);
5992 /* We don't handle early failures gracefully */
5993 BUG_ON(IS_ERR(css));
5994 init_and_link_css(css, ss, cgrp: &cgrp_dfl_root.cgrp);
5995
5996 /*
5997 * Root csses are never destroyed and we can't initialize
5998 * percpu_ref during early init. Disable refcnting.
5999 */
6000 css->flags |= CSS_NO_REF;
6001
6002 if (early) {
6003 /* allocation can't be done safely during early init */
6004 css->id = 1;
6005 } else {
6006 css->id = cgroup_idr_alloc(idr: &ss->css_idr, ptr: css, start: 1, end: 2, GFP_KERNEL);
6007 BUG_ON(css->id < 0);
6008 }
6009
6010 /* Update the init_css_set to contain a subsys
6011 * pointer to this state - since the subsystem is
6012 * newly registered, all tasks and hence the
6013 * init_css_set is in the subsystem's root cgroup. */
6014 init_css_set.subsys[ss->id] = css;
6015
6016 have_fork_callback |= (bool)ss->fork << ss->id;
6017 have_exit_callback |= (bool)ss->exit << ss->id;
6018 have_release_callback |= (bool)ss->release << ss->id;
6019 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6020
6021 /* At system boot, before all subsystems have been
6022 * registered, no tasks have been forked, so we don't
6023 * need to invoke fork callbacks here. */
6024 BUG_ON(!list_empty(&init_task.tasks));
6025
6026 BUG_ON(online_css(css));
6027
6028 cgroup_unlock();
6029}
6030
6031/**
6032 * cgroup_init_early - cgroup initialization at system boot
6033 *
6034 * Initialize cgroups at system boot, and initialize any
6035 * subsystems that request early init.
6036 */
6037int __init cgroup_init_early(void)
6038{
6039 static struct cgroup_fs_context __initdata ctx;
6040 struct cgroup_subsys *ss;
6041 int i;
6042
6043 ctx.root = &cgrp_dfl_root;
6044 init_cgroup_root(ctx: &ctx);
6045 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6046
6047 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6048
6049 for_each_subsys(ss, i) {
6050 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6051 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6052 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6053 ss->id, ss->name);
6054 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6055 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6056
6057 ss->id = i;
6058 ss->name = cgroup_subsys_name[i];
6059 if (!ss->legacy_name)
6060 ss->legacy_name = cgroup_subsys_name[i];
6061
6062 if (ss->early_init)
6063 cgroup_init_subsys(ss, early: true);
6064 }
6065 return 0;
6066}
6067
6068/**
6069 * cgroup_init - cgroup initialization
6070 *
6071 * Register cgroup filesystem and /proc file, and initialize
6072 * any subsystems that didn't request early init.
6073 */
6074int __init cgroup_init(void)
6075{
6076 struct cgroup_subsys *ss;
6077 int ssid;
6078
6079 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6080 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6081 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6082 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6083
6084 cgroup_rstat_boot();
6085
6086 get_user_ns(ns: init_cgroup_ns.user_ns);
6087
6088 cgroup_lock();
6089
6090 /*
6091 * Add init_css_set to the hash table so that dfl_root can link to
6092 * it during init.
6093 */
6094 hash_add(css_set_table, &init_css_set.hlist,
6095 css_set_hash(init_css_set.subsys));
6096
6097 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6098
6099 cgroup_unlock();
6100
6101 for_each_subsys(ss, ssid) {
6102 if (ss->early_init) {
6103 struct cgroup_subsys_state *css =
6104 init_css_set.subsys[ss->id];
6105
6106 css->id = cgroup_idr_alloc(idr: &ss->css_idr, ptr: css, start: 1, end: 2,
6107 GFP_KERNEL);
6108 BUG_ON(css->id < 0);
6109 } else {
6110 cgroup_init_subsys(ss, early: false);
6111 }
6112
6113 list_add_tail(new: &init_css_set.e_cset_node[ssid],
6114 head: &cgrp_dfl_root.cgrp.e_csets[ssid]);
6115
6116 /*
6117 * Setting dfl_root subsys_mask needs to consider the
6118 * disabled flag and cftype registration needs kmalloc,
6119 * both of which aren't available during early_init.
6120 */
6121 if (!cgroup_ssid_enabled(ssid))
6122 continue;
6123
6124 if (cgroup1_ssid_disabled(ssid))
6125 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6126 ss->legacy_name);
6127
6128 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6129
6130 /* implicit controllers must be threaded too */
6131 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6132
6133 if (ss->implicit_on_dfl)
6134 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6135 else if (!ss->dfl_cftypes)
6136 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6137
6138 if (ss->threaded)
6139 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6140
6141 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6142 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6143 } else {
6144 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6145 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6146 }
6147
6148 if (ss->bind)
6149 ss->bind(init_css_set.subsys[ssid]);
6150
6151 cgroup_lock();
6152 css_populate_dir(css: init_css_set.subsys[ssid]);
6153 cgroup_unlock();
6154 }
6155
6156 /* init_css_set.subsys[] has been updated, re-hash */
6157 hash_del(node: &init_css_set.hlist);
6158 hash_add(css_set_table, &init_css_set.hlist,
6159 css_set_hash(init_css_set.subsys));
6160
6161 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6162 WARN_ON(register_filesystem(&cgroup_fs_type));
6163 WARN_ON(register_filesystem(&cgroup2_fs_type));
6164 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6165#ifdef CONFIG_CPUSETS
6166 WARN_ON(register_filesystem(&cpuset_fs_type));
6167#endif
6168
6169 return 0;
6170}
6171
6172static int __init cgroup_wq_init(void)
6173{
6174 /*
6175 * There isn't much point in executing destruction path in
6176 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6177 * Use 1 for @max_active.
6178 *
6179 * We would prefer to do this in cgroup_init() above, but that
6180 * is called before init_workqueues(): so leave this until after.
6181 */
6182 cgroup_destroy_wq = alloc_workqueue(fmt: "cgroup_destroy", flags: 0, max_active: 1);
6183 BUG_ON(!cgroup_destroy_wq);
6184 return 0;
6185}
6186core_initcall(cgroup_wq_init);
6187
6188void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6189{
6190 struct kernfs_node *kn;
6191
6192 kn = kernfs_find_and_get_node_by_id(root: cgrp_dfl_root.kf_root, id);
6193 if (!kn)
6194 return;
6195 kernfs_path(kn, buf, buflen);
6196 kernfs_put(kn);
6197}
6198
6199/*
6200 * cgroup_get_from_id : get the cgroup associated with cgroup id
6201 * @id: cgroup id
6202 * On success return the cgrp or ERR_PTR on failure
6203 * Only cgroups within current task's cgroup NS are valid.
6204 */
6205struct cgroup *cgroup_get_from_id(u64 id)
6206{
6207 struct kernfs_node *kn;
6208 struct cgroup *cgrp, *root_cgrp;
6209
6210 kn = kernfs_find_and_get_node_by_id(root: cgrp_dfl_root.kf_root, id);
6211 if (!kn)
6212 return ERR_PTR(error: -ENOENT);
6213
6214 if (kernfs_type(kn) != KERNFS_DIR) {
6215 kernfs_put(kn);
6216 return ERR_PTR(error: -ENOENT);
6217 }
6218
6219 rcu_read_lock();
6220
6221 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6222 if (cgrp && !cgroup_tryget(cgrp))
6223 cgrp = NULL;
6224
6225 rcu_read_unlock();
6226 kernfs_put(kn);
6227
6228 if (!cgrp)
6229 return ERR_PTR(error: -ENOENT);
6230
6231 root_cgrp = current_cgns_cgroup_dfl();
6232 if (!cgroup_is_descendant(cgrp, ancestor: root_cgrp)) {
6233 cgroup_put(cgrp);
6234 return ERR_PTR(error: -ENOENT);
6235 }
6236
6237 return cgrp;
6238}
6239EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6240
6241/*
6242 * proc_cgroup_show()
6243 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6244 * - Used for /proc/<pid>/cgroup.
6245 */
6246int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6247 struct pid *pid, struct task_struct *tsk)
6248{
6249 char *buf;
6250 int retval;
6251 struct cgroup_root *root;
6252
6253 retval = -ENOMEM;
6254 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6255 if (!buf)
6256 goto out;
6257
6258 rcu_read_lock();
6259 spin_lock_irq(lock: &css_set_lock);
6260
6261 for_each_root(root) {
6262 struct cgroup_subsys *ss;
6263 struct cgroup *cgrp;
6264 int ssid, count = 0;
6265
6266 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6267 continue;
6268
6269 cgrp = task_cgroup_from_root(task: tsk, root);
6270 /* The root has already been unmounted. */
6271 if (!cgrp)
6272 continue;
6273
6274 seq_printf(m, fmt: "%d:", root->hierarchy_id);
6275 if (root != &cgrp_dfl_root)
6276 for_each_subsys(ss, ssid)
6277 if (root->subsys_mask & (1 << ssid))
6278 seq_printf(m, fmt: "%s%s", count++ ? "," : "",
6279 ss->legacy_name);
6280 if (strlen(root->name))
6281 seq_printf(m, fmt: "%sname=%s", count ? "," : "",
6282 root->name);
6283 seq_putc(m, c: ':');
6284 /*
6285 * On traditional hierarchies, all zombie tasks show up as
6286 * belonging to the root cgroup. On the default hierarchy,
6287 * while a zombie doesn't show up in "cgroup.procs" and
6288 * thus can't be migrated, its /proc/PID/cgroup keeps
6289 * reporting the cgroup it belonged to before exiting. If
6290 * the cgroup is removed before the zombie is reaped,
6291 * " (deleted)" is appended to the cgroup path.
6292 */
6293 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6294 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6295 current->nsproxy->cgroup_ns);
6296 if (retval == -E2BIG)
6297 retval = -ENAMETOOLONG;
6298 if (retval < 0)
6299 goto out_unlock;
6300
6301 seq_puts(m, s: buf);
6302 } else {
6303 seq_puts(m, s: "/");
6304 }
6305
6306 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6307 seq_puts(m, s: " (deleted)\n");
6308 else
6309 seq_putc(m, c: '\n');
6310 }
6311
6312 retval = 0;
6313out_unlock:
6314 spin_unlock_irq(lock: &css_set_lock);
6315 rcu_read_unlock();
6316 kfree(objp: buf);
6317out:
6318 return retval;
6319}
6320
6321/**
6322 * cgroup_fork - initialize cgroup related fields during copy_process()
6323 * @child: pointer to task_struct of forking parent process.
6324 *
6325 * A task is associated with the init_css_set until cgroup_post_fork()
6326 * attaches it to the target css_set.
6327 */
6328void cgroup_fork(struct task_struct *child)
6329{
6330 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6331 INIT_LIST_HEAD(list: &child->cg_list);
6332}
6333
6334/**
6335 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6336 * @f: file corresponding to cgroup_dir
6337 *
6338 * Find the cgroup from a file pointer associated with a cgroup directory.
6339 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6340 * cgroup cannot be found.
6341 */
6342static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6343{
6344 struct cgroup_subsys_state *css;
6345
6346 css = css_tryget_online_from_dir(dentry: f->f_path.dentry, NULL);
6347 if (IS_ERR(ptr: css))
6348 return ERR_CAST(ptr: css);
6349
6350 return css->cgroup;
6351}
6352
6353/**
6354 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6355 * cgroup2.
6356 * @f: file corresponding to cgroup2_dir
6357 */
6358static struct cgroup *cgroup_get_from_file(struct file *f)
6359{
6360 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6361
6362 if (IS_ERR(ptr: cgrp))
6363 return ERR_CAST(ptr: cgrp);
6364
6365 if (!cgroup_on_dfl(cgrp)) {
6366 cgroup_put(cgrp);
6367 return ERR_PTR(error: -EBADF);
6368 }
6369
6370 return cgrp;
6371}
6372
6373/**
6374 * cgroup_css_set_fork - find or create a css_set for a child process
6375 * @kargs: the arguments passed to create the child process
6376 *
6377 * This functions finds or creates a new css_set which the child
6378 * process will be attached to in cgroup_post_fork(). By default,
6379 * the child process will be given the same css_set as its parent.
6380 *
6381 * If CLONE_INTO_CGROUP is specified this function will try to find an
6382 * existing css_set which includes the requested cgroup and if not create
6383 * a new css_set that the child will be attached to later. If this function
6384 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6385 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6386 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6387 * to the target cgroup.
6388 */
6389static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6390 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6391{
6392 int ret;
6393 struct cgroup *dst_cgrp = NULL;
6394 struct css_set *cset;
6395 struct super_block *sb;
6396 struct file *f;
6397
6398 if (kargs->flags & CLONE_INTO_CGROUP)
6399 cgroup_lock();
6400
6401 cgroup_threadgroup_change_begin(current);
6402
6403 spin_lock_irq(lock: &css_set_lock);
6404 cset = task_css_set(current);
6405 get_css_set(cset);
6406 spin_unlock_irq(lock: &css_set_lock);
6407
6408 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6409 kargs->cset = cset;
6410 return 0;
6411 }
6412
6413 f = fget_raw(fd: kargs->cgroup);
6414 if (!f) {
6415 ret = -EBADF;
6416 goto err;
6417 }
6418 sb = f->f_path.dentry->d_sb;
6419
6420 dst_cgrp = cgroup_get_from_file(f);
6421 if (IS_ERR(ptr: dst_cgrp)) {
6422 ret = PTR_ERR(ptr: dst_cgrp);
6423 dst_cgrp = NULL;
6424 goto err;
6425 }
6426
6427 if (cgroup_is_dead(cgrp: dst_cgrp)) {
6428 ret = -ENODEV;
6429 goto err;
6430 }
6431
6432 /*
6433 * Verify that we the target cgroup is writable for us. This is
6434 * usually done by the vfs layer but since we're not going through
6435 * the vfs layer here we need to do it "manually".
6436 */
6437 ret = cgroup_may_write(cgrp: dst_cgrp, sb);
6438 if (ret)
6439 goto err;
6440
6441 /*
6442 * Spawning a task directly into a cgroup works by passing a file
6443 * descriptor to the target cgroup directory. This can even be an O_PATH
6444 * file descriptor. But it can never be a cgroup.procs file descriptor.
6445 * This was done on purpose so spawning into a cgroup could be
6446 * conceptualized as an atomic
6447 *
6448 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6449 * write(fd, <child-pid>, ...);
6450 *
6451 * sequence, i.e. it's a shorthand for the caller opening and writing
6452 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6453 * to always use the caller's credentials.
6454 */
6455 ret = cgroup_attach_permissions(src_cgrp: cset->dfl_cgrp, dst_cgrp, sb,
6456 threadgroup: !(kargs->flags & CLONE_THREAD),
6457 current->nsproxy->cgroup_ns);
6458 if (ret)
6459 goto err;
6460
6461 kargs->cset = find_css_set(old_cset: cset, cgrp: dst_cgrp);
6462 if (!kargs->cset) {
6463 ret = -ENOMEM;
6464 goto err;
6465 }
6466
6467 put_css_set(cset);
6468 fput(f);
6469 kargs->cgrp = dst_cgrp;
6470 return ret;
6471
6472err:
6473 cgroup_threadgroup_change_end(current);
6474 cgroup_unlock();
6475 if (f)
6476 fput(f);
6477 if (dst_cgrp)
6478 cgroup_put(cgrp: dst_cgrp);
6479 put_css_set(cset);
6480 if (kargs->cset)
6481 put_css_set(cset: kargs->cset);
6482 return ret;
6483}
6484
6485/**
6486 * cgroup_css_set_put_fork - drop references we took during fork
6487 * @kargs: the arguments passed to create the child process
6488 *
6489 * Drop references to the prepared css_set and target cgroup if
6490 * CLONE_INTO_CGROUP was requested.
6491 */
6492static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6493 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6494{
6495 struct cgroup *cgrp = kargs->cgrp;
6496 struct css_set *cset = kargs->cset;
6497
6498 cgroup_threadgroup_change_end(current);
6499
6500 if (cset) {
6501 put_css_set(cset);
6502 kargs->cset = NULL;
6503 }
6504
6505 if (kargs->flags & CLONE_INTO_CGROUP) {
6506 cgroup_unlock();
6507 if (cgrp) {
6508 cgroup_put(cgrp);
6509 kargs->cgrp = NULL;
6510 }
6511 }
6512}
6513
6514/**
6515 * cgroup_can_fork - called on a new task before the process is exposed
6516 * @child: the child process
6517 * @kargs: the arguments passed to create the child process
6518 *
6519 * This prepares a new css_set for the child process which the child will
6520 * be attached to in cgroup_post_fork().
6521 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6522 * callback returns an error, the fork aborts with that error code. This
6523 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6524 */
6525int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6526{
6527 struct cgroup_subsys *ss;
6528 int i, j, ret;
6529
6530 ret = cgroup_css_set_fork(kargs);
6531 if (ret)
6532 return ret;
6533
6534 do_each_subsys_mask(ss, i, have_canfork_callback) {
6535 ret = ss->can_fork(child, kargs->cset);
6536 if (ret)
6537 goto out_revert;
6538 } while_each_subsys_mask();
6539
6540 return 0;
6541
6542out_revert:
6543 for_each_subsys(ss, j) {
6544 if (j >= i)
6545 break;
6546 if (ss->cancel_fork)
6547 ss->cancel_fork(child, kargs->cset);
6548 }
6549
6550 cgroup_css_set_put_fork(kargs);
6551
6552 return ret;
6553}
6554
6555/**
6556 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6557 * @child: the child process
6558 * @kargs: the arguments passed to create the child process
6559 *
6560 * This calls the cancel_fork() callbacks if a fork failed *after*
6561 * cgroup_can_fork() succeeded and cleans up references we took to
6562 * prepare a new css_set for the child process in cgroup_can_fork().
6563 */
6564void cgroup_cancel_fork(struct task_struct *child,
6565 struct kernel_clone_args *kargs)
6566{
6567 struct cgroup_subsys *ss;
6568 int i;
6569
6570 for_each_subsys(ss, i)
6571 if (ss->cancel_fork)
6572 ss->cancel_fork(child, kargs->cset);
6573
6574 cgroup_css_set_put_fork(kargs);
6575}
6576
6577/**
6578 * cgroup_post_fork - finalize cgroup setup for the child process
6579 * @child: the child process
6580 * @kargs: the arguments passed to create the child process
6581 *
6582 * Attach the child process to its css_set calling the subsystem fork()
6583 * callbacks.
6584 */
6585void cgroup_post_fork(struct task_struct *child,
6586 struct kernel_clone_args *kargs)
6587 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6588{
6589 unsigned long cgrp_flags = 0;
6590 bool kill = false;
6591 struct cgroup_subsys *ss;
6592 struct css_set *cset;
6593 int i;
6594
6595 cset = kargs->cset;
6596 kargs->cset = NULL;
6597
6598 spin_lock_irq(lock: &css_set_lock);
6599
6600 /* init tasks are special, only link regular threads */
6601 if (likely(child->pid)) {
6602 if (kargs->cgrp)
6603 cgrp_flags = kargs->cgrp->flags;
6604 else
6605 cgrp_flags = cset->dfl_cgrp->flags;
6606
6607 WARN_ON_ONCE(!list_empty(&child->cg_list));
6608 cset->nr_tasks++;
6609 css_set_move_task(task: child, NULL, to_cset: cset, use_mg_tasks: false);
6610 } else {
6611 put_css_set(cset);
6612 cset = NULL;
6613 }
6614
6615 if (!(child->flags & PF_KTHREAD)) {
6616 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6617 /*
6618 * If the cgroup has to be frozen, the new task has
6619 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6620 * get the task into the frozen state.
6621 */
6622 spin_lock(lock: &child->sighand->siglock);
6623 WARN_ON_ONCE(child->frozen);
6624 child->jobctl |= JOBCTL_TRAP_FREEZE;
6625 spin_unlock(lock: &child->sighand->siglock);
6626
6627 /*
6628 * Calling cgroup_update_frozen() isn't required here,
6629 * because it will be called anyway a bit later from
6630 * do_freezer_trap(). So we avoid cgroup's transient
6631 * switch from the frozen state and back.
6632 */
6633 }
6634
6635 /*
6636 * If the cgroup is to be killed notice it now and take the
6637 * child down right after we finished preparing it for
6638 * userspace.
6639 */
6640 kill = test_bit(CGRP_KILL, &cgrp_flags);
6641 }
6642
6643 spin_unlock_irq(lock: &css_set_lock);
6644
6645 /*
6646 * Call ss->fork(). This must happen after @child is linked on
6647 * css_set; otherwise, @child might change state between ->fork()
6648 * and addition to css_set.
6649 */
6650 do_each_subsys_mask(ss, i, have_fork_callback) {
6651 ss->fork(child);
6652 } while_each_subsys_mask();
6653
6654 /* Make the new cset the root_cset of the new cgroup namespace. */
6655 if (kargs->flags & CLONE_NEWCGROUP) {
6656 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6657
6658 get_css_set(cset);
6659 child->nsproxy->cgroup_ns->root_cset = cset;
6660 put_css_set(cset: rcset);
6661 }
6662
6663 /* Cgroup has to be killed so take down child immediately. */
6664 if (unlikely(kill))
6665 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, p: child, type: PIDTYPE_TGID);
6666
6667 cgroup_css_set_put_fork(kargs);
6668}
6669
6670/**
6671 * cgroup_exit - detach cgroup from exiting task
6672 * @tsk: pointer to task_struct of exiting process
6673 *
6674 * Description: Detach cgroup from @tsk.
6675 *
6676 */
6677void cgroup_exit(struct task_struct *tsk)
6678{
6679 struct cgroup_subsys *ss;
6680 struct css_set *cset;
6681 int i;
6682
6683 spin_lock_irq(lock: &css_set_lock);
6684
6685 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6686 cset = task_css_set(task: tsk);
6687 css_set_move_task(task: tsk, from_cset: cset, NULL, use_mg_tasks: false);
6688 list_add_tail(new: &tsk->cg_list, head: &cset->dying_tasks);
6689 cset->nr_tasks--;
6690
6691 if (dl_task(p: tsk))
6692 dec_dl_tasks_cs(task: tsk);
6693
6694 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6695 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6696 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6697 cgroup_update_frozen(cgrp: task_dfl_cgroup(task: tsk));
6698
6699 spin_unlock_irq(lock: &css_set_lock);
6700
6701 /* see cgroup_post_fork() for details */
6702 do_each_subsys_mask(ss, i, have_exit_callback) {
6703 ss->exit(tsk);
6704 } while_each_subsys_mask();
6705}
6706
6707void cgroup_release(struct task_struct *task)
6708{
6709 struct cgroup_subsys *ss;
6710 int ssid;
6711
6712 do_each_subsys_mask(ss, ssid, have_release_callback) {
6713 ss->release(task);
6714 } while_each_subsys_mask();
6715
6716 spin_lock_irq(lock: &css_set_lock);
6717 css_set_skip_task_iters(cset: task_css_set(task), task);
6718 list_del_init(entry: &task->cg_list);
6719 spin_unlock_irq(lock: &css_set_lock);
6720}
6721
6722void cgroup_free(struct task_struct *task)
6723{
6724 struct css_set *cset = task_css_set(task);
6725 put_css_set(cset);
6726}
6727
6728static int __init cgroup_disable(char *str)
6729{
6730 struct cgroup_subsys *ss;
6731 char *token;
6732 int i;
6733
6734 while ((token = strsep(&str, ",")) != NULL) {
6735 if (!*token)
6736 continue;
6737
6738 for_each_subsys(ss, i) {
6739 if (strcmp(token, ss->name) &&
6740 strcmp(token, ss->legacy_name))
6741 continue;
6742
6743 static_branch_disable(cgroup_subsys_enabled_key[i]);
6744 pr_info("Disabling %s control group subsystem\n",
6745 ss->name);
6746 }
6747
6748 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6749 if (strcmp(token, cgroup_opt_feature_names[i]))
6750 continue;
6751 cgroup_feature_disable_mask |= 1 << i;
6752 pr_info("Disabling %s control group feature\n",
6753 cgroup_opt_feature_names[i]);
6754 break;
6755 }
6756 }
6757 return 1;
6758}
6759__setup("cgroup_disable=", cgroup_disable);
6760
6761void __init __weak enable_debug_cgroup(void) { }
6762
6763static int __init enable_cgroup_debug(char *str)
6764{
6765 cgroup_debug = true;
6766 enable_debug_cgroup();
6767 return 1;
6768}
6769__setup("cgroup_debug", enable_cgroup_debug);
6770
6771static int __init cgroup_favordynmods_setup(char *str)
6772{
6773 return (kstrtobool(s: str, res: &have_favordynmods) == 0);
6774}
6775__setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6776
6777/**
6778 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6779 * @dentry: directory dentry of interest
6780 * @ss: subsystem of interest
6781 *
6782 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6783 * to get the corresponding css and return it. If such css doesn't exist
6784 * or can't be pinned, an ERR_PTR value is returned.
6785 */
6786struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6787 struct cgroup_subsys *ss)
6788{
6789 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6790 struct file_system_type *s_type = dentry->d_sb->s_type;
6791 struct cgroup_subsys_state *css = NULL;
6792 struct cgroup *cgrp;
6793
6794 /* is @dentry a cgroup dir? */
6795 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6796 !kn || kernfs_type(kn) != KERNFS_DIR)
6797 return ERR_PTR(error: -EBADF);
6798
6799 rcu_read_lock();
6800
6801 /*
6802 * This path doesn't originate from kernfs and @kn could already
6803 * have been or be removed at any point. @kn->priv is RCU
6804 * protected for this access. See css_release_work_fn() for details.
6805 */
6806 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6807 if (cgrp)
6808 css = cgroup_css(cgrp, ss);
6809
6810 if (!css || !css_tryget_online(css))
6811 css = ERR_PTR(error: -ENOENT);
6812
6813 rcu_read_unlock();
6814 return css;
6815}
6816
6817/**
6818 * css_from_id - lookup css by id
6819 * @id: the cgroup id
6820 * @ss: cgroup subsys to be looked into
6821 *
6822 * Returns the css if there's valid one with @id, otherwise returns NULL.
6823 * Should be called under rcu_read_lock().
6824 */
6825struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6826{
6827 WARN_ON_ONCE(!rcu_read_lock_held());
6828 return idr_find(&ss->css_idr, id);
6829}
6830
6831/**
6832 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6833 * @path: path on the default hierarchy
6834 *
6835 * Find the cgroup at @path on the default hierarchy, increment its
6836 * reference count and return it. Returns pointer to the found cgroup on
6837 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6838 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6839 */
6840struct cgroup *cgroup_get_from_path(const char *path)
6841{
6842 struct kernfs_node *kn;
6843 struct cgroup *cgrp = ERR_PTR(error: -ENOENT);
6844 struct cgroup *root_cgrp;
6845
6846 root_cgrp = current_cgns_cgroup_dfl();
6847 kn = kernfs_walk_and_get(kn: root_cgrp->kn, path);
6848 if (!kn)
6849 goto out;
6850
6851 if (kernfs_type(kn) != KERNFS_DIR) {
6852 cgrp = ERR_PTR(error: -ENOTDIR);
6853 goto out_kernfs;
6854 }
6855
6856 rcu_read_lock();
6857
6858 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6859 if (!cgrp || !cgroup_tryget(cgrp))
6860 cgrp = ERR_PTR(error: -ENOENT);
6861
6862 rcu_read_unlock();
6863
6864out_kernfs:
6865 kernfs_put(kn);
6866out:
6867 return cgrp;
6868}
6869EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6870
6871/**
6872 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6873 * @fd: fd obtained by open(cgroup_dir)
6874 *
6875 * Find the cgroup from a fd which should be obtained
6876 * by opening a cgroup directory. Returns a pointer to the
6877 * cgroup on success. ERR_PTR is returned if the cgroup
6878 * cannot be found.
6879 */
6880struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6881{
6882 struct cgroup *cgrp;
6883 struct fd f = fdget_raw(fd);
6884 if (!f.file)
6885 return ERR_PTR(error: -EBADF);
6886
6887 cgrp = cgroup_v1v2_get_from_file(f: f.file);
6888 fdput(fd: f);
6889 return cgrp;
6890}
6891
6892/**
6893 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6894 * cgroup2.
6895 * @fd: fd obtained by open(cgroup2_dir)
6896 */
6897struct cgroup *cgroup_get_from_fd(int fd)
6898{
6899 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6900
6901 if (IS_ERR(ptr: cgrp))
6902 return ERR_CAST(ptr: cgrp);
6903
6904 if (!cgroup_on_dfl(cgrp)) {
6905 cgroup_put(cgrp);
6906 return ERR_PTR(error: -EBADF);
6907 }
6908 return cgrp;
6909}
6910EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6911
6912static u64 power_of_ten(int power)
6913{
6914 u64 v = 1;
6915 while (power--)
6916 v *= 10;
6917 return v;
6918}
6919
6920/**
6921 * cgroup_parse_float - parse a floating number
6922 * @input: input string
6923 * @dec_shift: number of decimal digits to shift
6924 * @v: output
6925 *
6926 * Parse a decimal floating point number in @input and store the result in
6927 * @v with decimal point right shifted @dec_shift times. For example, if
6928 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6929 * Returns 0 on success, -errno otherwise.
6930 *
6931 * There's nothing cgroup specific about this function except that it's
6932 * currently the only user.
6933 */
6934int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6935{
6936 s64 whole, frac = 0;
6937 int fstart = 0, fend = 0, flen;
6938
6939 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6940 return -EINVAL;
6941 if (frac < 0)
6942 return -EINVAL;
6943
6944 flen = fend > fstart ? fend - fstart : 0;
6945 if (flen < dec_shift)
6946 frac *= power_of_ten(power: dec_shift - flen);
6947 else
6948 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6949
6950 *v = whole * power_of_ten(power: dec_shift) + frac;
6951 return 0;
6952}
6953
6954/*
6955 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6956 * definition in cgroup-defs.h.
6957 */
6958#ifdef CONFIG_SOCK_CGROUP_DATA
6959
6960void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6961{
6962 struct cgroup *cgroup;
6963
6964 rcu_read_lock();
6965 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6966 if (in_interrupt()) {
6967 cgroup = &cgrp_dfl_root.cgrp;
6968 cgroup_get(cgrp: cgroup);
6969 goto out;
6970 }
6971
6972 while (true) {
6973 struct css_set *cset;
6974
6975 cset = task_css_set(current);
6976 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6977 cgroup = cset->dfl_cgrp;
6978 break;
6979 }
6980 cpu_relax();
6981 }
6982out:
6983 skcd->cgroup = cgroup;
6984 cgroup_bpf_get(cgrp: cgroup);
6985 rcu_read_unlock();
6986}
6987
6988void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6989{
6990 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6991
6992 /*
6993 * We might be cloning a socket which is left in an empty
6994 * cgroup and the cgroup might have already been rmdir'd.
6995 * Don't use cgroup_get_live().
6996 */
6997 cgroup_get(cgrp);
6998 cgroup_bpf_get(cgrp);
6999}
7000
7001void cgroup_sk_free(struct sock_cgroup_data *skcd)
7002{
7003 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7004
7005 cgroup_bpf_put(cgrp);
7006 cgroup_put(cgrp);
7007}
7008
7009#endif /* CONFIG_SOCK_CGROUP_DATA */
7010
7011#ifdef CONFIG_SYSFS
7012static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7013 ssize_t size, const char *prefix)
7014{
7015 struct cftype *cft;
7016 ssize_t ret = 0;
7017
7018 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7019 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7020 continue;
7021
7022 if (prefix)
7023 ret += snprintf(buf: buf + ret, size: size - ret, fmt: "%s.", prefix);
7024
7025 ret += snprintf(buf: buf + ret, size: size - ret, fmt: "%s\n", cft->name);
7026
7027 if (WARN_ON(ret >= size))
7028 break;
7029 }
7030
7031 return ret;
7032}
7033
7034static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7035 char *buf)
7036{
7037 struct cgroup_subsys *ss;
7038 int ssid;
7039 ssize_t ret = 0;
7040
7041 ret = show_delegatable_files(files: cgroup_base_files, buf: buf + ret,
7042 PAGE_SIZE - ret, NULL);
7043 if (cgroup_psi_enabled())
7044 ret += show_delegatable_files(files: cgroup_psi_files, buf: buf + ret,
7045 PAGE_SIZE - ret, NULL);
7046
7047 for_each_subsys(ss, ssid)
7048 ret += show_delegatable_files(files: ss->dfl_cftypes, buf: buf + ret,
7049 PAGE_SIZE - ret,
7050 prefix: cgroup_subsys_name[ssid]);
7051
7052 return ret;
7053}
7054static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7055
7056static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7057 char *buf)
7058{
7059 return snprintf(buf, PAGE_SIZE,
7060 fmt: "nsdelegate\n"
7061 "favordynmods\n"
7062 "memory_localevents\n"
7063 "memory_recursiveprot\n"
7064 "memory_hugetlb_accounting\n");
7065}
7066static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7067
7068static struct attribute *cgroup_sysfs_attrs[] = {
7069 &cgroup_delegate_attr.attr,
7070 &cgroup_features_attr.attr,
7071 NULL,
7072};
7073
7074static const struct attribute_group cgroup_sysfs_attr_group = {
7075 .attrs = cgroup_sysfs_attrs,
7076 .name = "cgroup",
7077};
7078
7079static int __init cgroup_sysfs_init(void)
7080{
7081 return sysfs_create_group(kobj: kernel_kobj, grp: &cgroup_sysfs_attr_group);
7082}
7083subsys_initcall(cgroup_sysfs_init);
7084
7085#endif /* CONFIG_SYSFS */
7086

source code of linux/kernel/cgroup/cgroup.c