| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| 4 | * |
| 5 | * Copyright IBM Corporation, 2008 |
| 6 | * |
| 7 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 8 | * Manfred Spraul <manfred@colorfullife.com> |
| 9 | * Paul E. McKenney <paulmck@linux.ibm.com> |
| 10 | * |
| 11 | * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> |
| 12 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 13 | * |
| 14 | * For detailed explanation of Read-Copy Update mechanism see - |
| 15 | * Documentation/RCU |
| 16 | */ |
| 17 | |
| 18 | #define pr_fmt(fmt) "rcu: " fmt |
| 19 | |
| 20 | #include <linux/types.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | #include <linux/smp.h> |
| 25 | #include <linux/rcupdate_wait.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/sched.h> |
| 28 | #include <linux/sched/debug.h> |
| 29 | #include <linux/nmi.h> |
| 30 | #include <linux/atomic.h> |
| 31 | #include <linux/bitops.h> |
| 32 | #include <linux/export.h> |
| 33 | #include <linux/completion.h> |
| 34 | #include <linux/kmemleak.h> |
| 35 | #include <linux/moduleparam.h> |
| 36 | #include <linux/panic.h> |
| 37 | #include <linux/panic_notifier.h> |
| 38 | #include <linux/percpu.h> |
| 39 | #include <linux/notifier.h> |
| 40 | #include <linux/cpu.h> |
| 41 | #include <linux/mutex.h> |
| 42 | #include <linux/time.h> |
| 43 | #include <linux/kernel_stat.h> |
| 44 | #include <linux/wait.h> |
| 45 | #include <linux/kthread.h> |
| 46 | #include <uapi/linux/sched/types.h> |
| 47 | #include <linux/prefetch.h> |
| 48 | #include <linux/delay.h> |
| 49 | #include <linux/random.h> |
| 50 | #include <linux/trace_events.h> |
| 51 | #include <linux/suspend.h> |
| 52 | #include <linux/ftrace.h> |
| 53 | #include <linux/tick.h> |
| 54 | #include <linux/sysrq.h> |
| 55 | #include <linux/kprobes.h> |
| 56 | #include <linux/gfp.h> |
| 57 | #include <linux/oom.h> |
| 58 | #include <linux/smpboot.h> |
| 59 | #include <linux/jiffies.h> |
| 60 | #include <linux/slab.h> |
| 61 | #include <linux/sched/isolation.h> |
| 62 | #include <linux/sched/clock.h> |
| 63 | #include <linux/vmalloc.h> |
| 64 | #include <linux/mm.h> |
| 65 | #include <linux/kasan.h> |
| 66 | #include <linux/context_tracking.h> |
| 67 | #include "../time/tick-internal.h" |
| 68 | |
| 69 | #include "tree.h" |
| 70 | #include "rcu.h" |
| 71 | |
| 72 | #ifdef MODULE_PARAM_PREFIX |
| 73 | #undef MODULE_PARAM_PREFIX |
| 74 | #endif |
| 75 | #define MODULE_PARAM_PREFIX "rcutree." |
| 76 | |
| 77 | /* Data structures. */ |
| 78 | static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); |
| 79 | |
| 80 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { |
| 81 | .gpwrap = true, |
| 82 | }; |
| 83 | |
| 84 | int rcu_get_gpwrap_count(int cpu) |
| 85 | { |
| 86 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 87 | |
| 88 | return READ_ONCE(rdp->gpwrap_count); |
| 89 | } |
| 90 | EXPORT_SYMBOL_GPL(rcu_get_gpwrap_count); |
| 91 | |
| 92 | static struct rcu_state rcu_state = { |
| 93 | .level = { &rcu_state.node[0] }, |
| 94 | .gp_state = RCU_GP_IDLE, |
| 95 | .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, |
| 96 | .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), |
| 97 | .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), |
| 98 | .name = RCU_NAME, |
| 99 | .abbr = RCU_ABBR, |
| 100 | .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), |
| 101 | .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), |
| 102 | .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, |
| 103 | .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, |
| 104 | rcu_sr_normal_gp_cleanup_work), |
| 105 | .srs_cleanups_pending = ATOMIC_INIT(0), |
| 106 | #ifdef CONFIG_RCU_NOCB_CPU |
| 107 | .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex), |
| 108 | #endif |
| 109 | }; |
| 110 | |
| 111 | /* Dump rcu_node combining tree at boot to verify correct setup. */ |
| 112 | static bool dump_tree; |
| 113 | module_param(dump_tree, bool, 0444); |
| 114 | /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ |
| 115 | static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); |
| 116 | #ifndef CONFIG_PREEMPT_RT |
| 117 | module_param(use_softirq, bool, 0444); |
| 118 | #endif |
| 119 | /* Control rcu_node-tree auto-balancing at boot time. */ |
| 120 | static bool rcu_fanout_exact; |
| 121 | module_param(rcu_fanout_exact, bool, 0444); |
| 122 | /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ |
| 123 | static int rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 124 | module_param(rcu_fanout_leaf, int, 0444); |
| 125 | int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; |
| 126 | /* Number of rcu_nodes at specified level. */ |
| 127 | int num_rcu_lvl[] = NUM_RCU_LVL_INIT; |
| 128 | int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ |
| 129 | |
| 130 | /* |
| 131 | * The rcu_scheduler_active variable is initialized to the value |
| 132 | * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the |
| 133 | * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, |
| 134 | * RCU can assume that there is but one task, allowing RCU to (for example) |
| 135 | * optimize synchronize_rcu() to a simple barrier(). When this variable |
| 136 | * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required |
| 137 | * to detect real grace periods. This variable is also used to suppress |
| 138 | * boot-time false positives from lockdep-RCU error checking. Finally, it |
| 139 | * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU |
| 140 | * is fully initialized, including all of its kthreads having been spawned. |
| 141 | */ |
| 142 | int rcu_scheduler_active __read_mostly; |
| 143 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); |
| 144 | |
| 145 | /* |
| 146 | * The rcu_scheduler_fully_active variable transitions from zero to one |
| 147 | * during the early_initcall() processing, which is after the scheduler |
| 148 | * is capable of creating new tasks. So RCU processing (for example, |
| 149 | * creating tasks for RCU priority boosting) must be delayed until after |
| 150 | * rcu_scheduler_fully_active transitions from zero to one. We also |
| 151 | * currently delay invocation of any RCU callbacks until after this point. |
| 152 | * |
| 153 | * It might later prove better for people registering RCU callbacks during |
| 154 | * early boot to take responsibility for these callbacks, but one step at |
| 155 | * a time. |
| 156 | */ |
| 157 | static int rcu_scheduler_fully_active __read_mostly; |
| 158 | |
| 159 | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, |
| 160 | unsigned long gps, unsigned long flags); |
| 161 | static void invoke_rcu_core(void); |
| 162 | static void rcu_report_exp_rdp(struct rcu_data *rdp); |
| 163 | static void sync_sched_exp_online_cleanup(int cpu); |
| 164 | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); |
| 165 | static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); |
| 166 | static bool rcu_rdp_cpu_online(struct rcu_data *rdp); |
| 167 | static bool rcu_init_invoked(void); |
| 168 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); |
| 169 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); |
| 170 | |
| 171 | /* |
| 172 | * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" |
| 173 | * real-time priority(enabling/disabling) is controlled by |
| 174 | * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. |
| 175 | */ |
| 176 | static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; |
| 177 | module_param(kthread_prio, int, 0444); |
| 178 | |
| 179 | /* Delay in jiffies for grace-period initialization delays, debug only. */ |
| 180 | |
| 181 | static int gp_preinit_delay; |
| 182 | module_param(gp_preinit_delay, int, 0444); |
| 183 | static int gp_init_delay; |
| 184 | module_param(gp_init_delay, int, 0444); |
| 185 | static int gp_cleanup_delay; |
| 186 | module_param(gp_cleanup_delay, int, 0444); |
| 187 | static int nohz_full_patience_delay; |
| 188 | module_param(nohz_full_patience_delay, int, 0444); |
| 189 | static int nohz_full_patience_delay_jiffies; |
| 190 | |
| 191 | // Add delay to rcu_read_unlock() for strict grace periods. |
| 192 | static int rcu_unlock_delay; |
| 193 | #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD |
| 194 | module_param(rcu_unlock_delay, int, 0444); |
| 195 | #endif |
| 196 | |
| 197 | /* Retrieve RCU kthreads priority for rcutorture */ |
| 198 | int rcu_get_gp_kthreads_prio(void) |
| 199 | { |
| 200 | return kthread_prio; |
| 201 | } |
| 202 | EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); |
| 203 | |
| 204 | /* |
| 205 | * Number of grace periods between delays, normalized by the duration of |
| 206 | * the delay. The longer the delay, the more the grace periods between |
| 207 | * each delay. The reason for this normalization is that it means that, |
| 208 | * for non-zero delays, the overall slowdown of grace periods is constant |
| 209 | * regardless of the duration of the delay. This arrangement balances |
| 210 | * the need for long delays to increase some race probabilities with the |
| 211 | * need for fast grace periods to increase other race probabilities. |
| 212 | */ |
| 213 | #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ |
| 214 | |
| 215 | /* |
| 216 | * Return true if an RCU grace period is in progress. The READ_ONCE()s |
| 217 | * permit this function to be invoked without holding the root rcu_node |
| 218 | * structure's ->lock, but of course results can be subject to change. |
| 219 | */ |
| 220 | static int rcu_gp_in_progress(void) |
| 221 | { |
| 222 | return rcu_seq_state(s: rcu_seq_current(sp: &rcu_state.gp_seq)); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Return the number of callbacks queued on the specified CPU. |
| 227 | * Handles both the nocbs and normal cases. |
| 228 | */ |
| 229 | static long rcu_get_n_cbs_cpu(int cpu) |
| 230 | { |
| 231 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 232 | |
| 233 | if (rcu_segcblist_is_enabled(rsclp: &rdp->cblist)) |
| 234 | return rcu_segcblist_n_cbs(rsclp: &rdp->cblist); |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing |
| 240 | * |
| 241 | * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. |
| 242 | * This is a special-purpose function to be used in the softirq |
| 243 | * infrastructure and perhaps the occasional long-running softirq |
| 244 | * handler. |
| 245 | * |
| 246 | * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is |
| 247 | * equivalent to momentarily completely enabling preemption. For |
| 248 | * example, given this code:: |
| 249 | * |
| 250 | * local_bh_disable(); |
| 251 | * do_something(); |
| 252 | * rcu_softirq_qs(); // A |
| 253 | * do_something_else(); |
| 254 | * local_bh_enable(); // B |
| 255 | * |
| 256 | * A call to synchronize_rcu() that began concurrently with the |
| 257 | * call to do_something() would be guaranteed to wait only until |
| 258 | * execution reached statement A. Without that rcu_softirq_qs(), |
| 259 | * that same synchronize_rcu() would instead be guaranteed to wait |
| 260 | * until execution reached statement B. |
| 261 | */ |
| 262 | void rcu_softirq_qs(void) |
| 263 | { |
| 264 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| 265 | lock_is_held(&rcu_lock_map) || |
| 266 | lock_is_held(&rcu_sched_lock_map), |
| 267 | "Illegal rcu_softirq_qs() in RCU read-side critical section" ); |
| 268 | rcu_qs(); |
| 269 | rcu_preempt_deferred_qs(current); |
| 270 | rcu_tasks_qs(current, false); |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Reset the current CPU's RCU_WATCHING counter to indicate that the |
| 275 | * newly onlined CPU is no longer in an extended quiescent state. |
| 276 | * This will either leave the counter unchanged, or increment it |
| 277 | * to the next non-quiescent value. |
| 278 | * |
| 279 | * The non-atomic test/increment sequence works because the upper bits |
| 280 | * of the ->state variable are manipulated only by the corresponding CPU, |
| 281 | * or when the corresponding CPU is offline. |
| 282 | */ |
| 283 | static void rcu_watching_online(void) |
| 284 | { |
| 285 | if (ct_rcu_watching() & CT_RCU_WATCHING) |
| 286 | return; |
| 287 | ct_state_inc(CT_RCU_WATCHING); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Return true if the snapshot returned from ct_rcu_watching() |
| 292 | * indicates that RCU is in an extended quiescent state. |
| 293 | */ |
| 294 | static bool rcu_watching_snap_in_eqs(int snap) |
| 295 | { |
| 296 | return !(snap & CT_RCU_WATCHING); |
| 297 | } |
| 298 | |
| 299 | /** |
| 300 | * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU |
| 301 | * since the specified @snap? |
| 302 | * |
| 303 | * @rdp: The rcu_data corresponding to the CPU for which to check EQS. |
| 304 | * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS. |
| 305 | * |
| 306 | * Returns true if the CPU corresponding to @rdp has spent some time in an |
| 307 | * extended quiescent state since @snap. Note that this doesn't check if it |
| 308 | * /still/ is in an EQS, just that it went through one since @snap. |
| 309 | * |
| 310 | * This is meant to be used in a loop waiting for a CPU to go through an EQS. |
| 311 | */ |
| 312 | static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap) |
| 313 | { |
| 314 | /* |
| 315 | * The first failing snapshot is already ordered against the accesses |
| 316 | * performed by the remote CPU after it exits idle. |
| 317 | * |
| 318 | * The second snapshot therefore only needs to order against accesses |
| 319 | * performed by the remote CPU prior to entering idle and therefore can |
| 320 | * rely solely on acquire semantics. |
| 321 | */ |
| 322 | if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap))) |
| 323 | return true; |
| 324 | |
| 325 | return snap != ct_rcu_watching_cpu_acquire(cpu: rdp->cpu); |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Return true if the referenced integer is zero while the specified |
| 330 | * CPU remains within a single extended quiescent state. |
| 331 | */ |
| 332 | bool rcu_watching_zero_in_eqs(int cpu, int *vp) |
| 333 | { |
| 334 | int snap; |
| 335 | |
| 336 | // If not quiescent, force back to earlier extended quiescent state. |
| 337 | snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING; |
| 338 | smp_rmb(); // Order CT state and *vp reads. |
| 339 | if (READ_ONCE(*vp)) |
| 340 | return false; // Non-zero, so report failure; |
| 341 | smp_rmb(); // Order *vp read and CT state re-read. |
| 342 | |
| 343 | // If still in the same extended quiescent state, we are good! |
| 344 | return snap == ct_rcu_watching_cpu(cpu); |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Let the RCU core know that this CPU has gone through the scheduler, |
| 349 | * which is a quiescent state. This is called when the need for a |
| 350 | * quiescent state is urgent, so we burn an atomic operation and full |
| 351 | * memory barriers to let the RCU core know about it, regardless of what |
| 352 | * this CPU might (or might not) do in the near future. |
| 353 | * |
| 354 | * We inform the RCU core by emulating a zero-duration dyntick-idle period. |
| 355 | * |
| 356 | * The caller must have disabled interrupts and must not be idle. |
| 357 | */ |
| 358 | notrace void rcu_momentary_eqs(void) |
| 359 | { |
| 360 | int seq; |
| 361 | |
| 362 | raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); |
| 363 | seq = ct_state_inc(incby: 2 * CT_RCU_WATCHING); |
| 364 | /* It is illegal to call this from idle state. */ |
| 365 | WARN_ON_ONCE(!(seq & CT_RCU_WATCHING)); |
| 366 | rcu_preempt_deferred_qs(current); |
| 367 | } |
| 368 | EXPORT_SYMBOL_GPL(rcu_momentary_eqs); |
| 369 | |
| 370 | /** |
| 371 | * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle |
| 372 | * |
| 373 | * If the current CPU is idle and running at a first-level (not nested) |
| 374 | * interrupt, or directly, from idle, return true. |
| 375 | * |
| 376 | * The caller must have at least disabled IRQs. |
| 377 | */ |
| 378 | static int rcu_is_cpu_rrupt_from_idle(void) |
| 379 | { |
| 380 | long nesting; |
| 381 | |
| 382 | /* |
| 383 | * Usually called from the tick; but also used from smp_function_call() |
| 384 | * for expedited grace periods. This latter can result in running from |
| 385 | * the idle task, instead of an actual IPI. |
| 386 | */ |
| 387 | lockdep_assert_irqs_disabled(); |
| 388 | |
| 389 | /* Check for counter underflows */ |
| 390 | RCU_LOCKDEP_WARN(ct_nesting() < 0, |
| 391 | "RCU nesting counter underflow!" ); |
| 392 | RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0, |
| 393 | "RCU nmi_nesting counter underflow/zero!" ); |
| 394 | |
| 395 | /* Are we at first interrupt nesting level? */ |
| 396 | nesting = ct_nmi_nesting(); |
| 397 | if (nesting > 1) |
| 398 | return false; |
| 399 | |
| 400 | /* |
| 401 | * If we're not in an interrupt, we must be in the idle task! |
| 402 | */ |
| 403 | WARN_ON_ONCE(!nesting && !is_idle_task(current)); |
| 404 | |
| 405 | /* Does CPU appear to be idle from an RCU standpoint? */ |
| 406 | return ct_nesting() == 0; |
| 407 | } |
| 408 | |
| 409 | #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) |
| 410 | // Maximum callbacks per rcu_do_batch ... |
| 411 | #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. |
| 412 | static long blimit = DEFAULT_RCU_BLIMIT; |
| 413 | #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. |
| 414 | static long qhimark = DEFAULT_RCU_QHIMARK; |
| 415 | #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. |
| 416 | static long qlowmark = DEFAULT_RCU_QLOMARK; |
| 417 | #define DEFAULT_RCU_QOVLD_MULT 2 |
| 418 | #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) |
| 419 | static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. |
| 420 | static long qovld_calc = -1; // No pre-initialization lock acquisitions! |
| 421 | |
| 422 | module_param(blimit, long, 0444); |
| 423 | module_param(qhimark, long, 0444); |
| 424 | module_param(qlowmark, long, 0444); |
| 425 | module_param(qovld, long, 0444); |
| 426 | |
| 427 | static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; |
| 428 | static ulong jiffies_till_next_fqs = ULONG_MAX; |
| 429 | static bool rcu_kick_kthreads; |
| 430 | static int rcu_divisor = 7; |
| 431 | module_param(rcu_divisor, int, 0644); |
| 432 | |
| 433 | /* Force an exit from rcu_do_batch() after 3 milliseconds. */ |
| 434 | static long rcu_resched_ns = 3 * NSEC_PER_MSEC; |
| 435 | module_param(rcu_resched_ns, long, 0644); |
| 436 | |
| 437 | /* |
| 438 | * How long the grace period must be before we start recruiting |
| 439 | * quiescent-state help from rcu_note_context_switch(). |
| 440 | */ |
| 441 | static ulong jiffies_till_sched_qs = ULONG_MAX; |
| 442 | module_param(jiffies_till_sched_qs, ulong, 0444); |
| 443 | static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ |
| 444 | module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ |
| 445 | |
| 446 | /* |
| 447 | * Make sure that we give the grace-period kthread time to detect any |
| 448 | * idle CPUs before taking active measures to force quiescent states. |
| 449 | * However, don't go below 100 milliseconds, adjusted upwards for really |
| 450 | * large systems. |
| 451 | */ |
| 452 | static void adjust_jiffies_till_sched_qs(void) |
| 453 | { |
| 454 | unsigned long j; |
| 455 | |
| 456 | /* If jiffies_till_sched_qs was specified, respect the request. */ |
| 457 | if (jiffies_till_sched_qs != ULONG_MAX) { |
| 458 | WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); |
| 459 | return; |
| 460 | } |
| 461 | /* Otherwise, set to third fqs scan, but bound below on large system. */ |
| 462 | j = READ_ONCE(jiffies_till_first_fqs) + |
| 463 | 2 * READ_ONCE(jiffies_till_next_fqs); |
| 464 | if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) |
| 465 | j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; |
| 466 | pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n" , j); |
| 467 | WRITE_ONCE(jiffies_to_sched_qs, j); |
| 468 | } |
| 469 | |
| 470 | static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) |
| 471 | { |
| 472 | ulong j; |
| 473 | int ret = kstrtoul(s: val, base: 0, res: &j); |
| 474 | |
| 475 | if (!ret) { |
| 476 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); |
| 477 | adjust_jiffies_till_sched_qs(); |
| 478 | } |
| 479 | return ret; |
| 480 | } |
| 481 | |
| 482 | static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) |
| 483 | { |
| 484 | ulong j; |
| 485 | int ret = kstrtoul(s: val, base: 0, res: &j); |
| 486 | |
| 487 | if (!ret) { |
| 488 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); |
| 489 | adjust_jiffies_till_sched_qs(); |
| 490 | } |
| 491 | return ret; |
| 492 | } |
| 493 | |
| 494 | static const struct kernel_param_ops first_fqs_jiffies_ops = { |
| 495 | .set = param_set_first_fqs_jiffies, |
| 496 | .get = param_get_ulong, |
| 497 | }; |
| 498 | |
| 499 | static const struct kernel_param_ops next_fqs_jiffies_ops = { |
| 500 | .set = param_set_next_fqs_jiffies, |
| 501 | .get = param_get_ulong, |
| 502 | }; |
| 503 | |
| 504 | module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); |
| 505 | module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); |
| 506 | module_param(rcu_kick_kthreads, bool, 0644); |
| 507 | |
| 508 | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); |
| 509 | static int rcu_pending(int user); |
| 510 | |
| 511 | /* |
| 512 | * Return the number of RCU GPs completed thus far for debug & stats. |
| 513 | */ |
| 514 | unsigned long rcu_get_gp_seq(void) |
| 515 | { |
| 516 | return READ_ONCE(rcu_state.gp_seq); |
| 517 | } |
| 518 | EXPORT_SYMBOL_GPL(rcu_get_gp_seq); |
| 519 | |
| 520 | /* |
| 521 | * Return the number of RCU expedited batches completed thus far for |
| 522 | * debug & stats. Odd numbers mean that a batch is in progress, even |
| 523 | * numbers mean idle. The value returned will thus be roughly double |
| 524 | * the cumulative batches since boot. |
| 525 | */ |
| 526 | unsigned long rcu_exp_batches_completed(void) |
| 527 | { |
| 528 | return rcu_state.expedited_sequence; |
| 529 | } |
| 530 | EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); |
| 531 | |
| 532 | /* |
| 533 | * Return the root node of the rcu_state structure. |
| 534 | */ |
| 535 | static struct rcu_node *rcu_get_root(void) |
| 536 | { |
| 537 | return &rcu_state.node[0]; |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * Send along grace-period-related data for rcutorture diagnostics. |
| 542 | */ |
| 543 | void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) |
| 544 | { |
| 545 | *flags = READ_ONCE(rcu_state.gp_flags); |
| 546 | *gp_seq = rcu_seq_current(sp: &rcu_state.gp_seq); |
| 547 | } |
| 548 | EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); |
| 549 | |
| 550 | /* Gather grace-period sequence numbers for rcutorture diagnostics. */ |
| 551 | unsigned long long rcutorture_gather_gp_seqs(void) |
| 552 | { |
| 553 | return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) | |
| 554 | ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) | |
| 555 | (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL); |
| 556 | } |
| 557 | EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs); |
| 558 | |
| 559 | /* Format grace-period sequence numbers for rcutorture diagnostics. */ |
| 560 | void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len) |
| 561 | { |
| 562 | unsigned int egp = (seqs >> 16) & 0xffffffULL; |
| 563 | unsigned int ggp = (seqs >> 40) & 0xffffULL; |
| 564 | unsigned int pgp = seqs & 0xffffULL; |
| 565 | |
| 566 | snprintf(buf: cp, size: len, fmt: "g%04x:e%06x:p%04x" , ggp, egp, pgp); |
| 567 | } |
| 568 | EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs); |
| 569 | |
| 570 | #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) |
| 571 | /* |
| 572 | * An empty function that will trigger a reschedule on |
| 573 | * IRQ tail once IRQs get re-enabled on userspace/guest resume. |
| 574 | */ |
| 575 | static void late_wakeup_func(struct irq_work *work) |
| 576 | { |
| 577 | } |
| 578 | |
| 579 | static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = |
| 580 | IRQ_WORK_INIT(late_wakeup_func); |
| 581 | |
| 582 | /* |
| 583 | * If either: |
| 584 | * |
| 585 | * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work |
| 586 | * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. |
| 587 | * |
| 588 | * In these cases the late RCU wake ups aren't supported in the resched loops and our |
| 589 | * last resort is to fire a local irq_work that will trigger a reschedule once IRQs |
| 590 | * get re-enabled again. |
| 591 | */ |
| 592 | noinstr void rcu_irq_work_resched(void) |
| 593 | { |
| 594 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 595 | |
| 596 | if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) |
| 597 | return; |
| 598 | |
| 599 | if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) |
| 600 | return; |
| 601 | |
| 602 | instrumentation_begin(); |
| 603 | if (do_nocb_deferred_wakeup(rdp) && need_resched()) { |
| 604 | irq_work_queue(this_cpu_ptr(&late_wakeup_work)); |
| 605 | } |
| 606 | instrumentation_end(); |
| 607 | } |
| 608 | #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ |
| 609 | |
| 610 | #ifdef CONFIG_PROVE_RCU |
| 611 | /** |
| 612 | * rcu_irq_exit_check_preempt - Validate that scheduling is possible |
| 613 | */ |
| 614 | void rcu_irq_exit_check_preempt(void) |
| 615 | { |
| 616 | lockdep_assert_irqs_disabled(); |
| 617 | |
| 618 | RCU_LOCKDEP_WARN(ct_nesting() <= 0, |
| 619 | "RCU nesting counter underflow/zero!" ); |
| 620 | RCU_LOCKDEP_WARN(ct_nmi_nesting() != |
| 621 | CT_NESTING_IRQ_NONIDLE, |
| 622 | "Bad RCU nmi_nesting counter\n" ); |
| 623 | RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), |
| 624 | "RCU in extended quiescent state!" ); |
| 625 | } |
| 626 | #endif /* #ifdef CONFIG_PROVE_RCU */ |
| 627 | |
| 628 | #ifdef CONFIG_NO_HZ_FULL |
| 629 | /** |
| 630 | * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. |
| 631 | * |
| 632 | * The scheduler tick is not normally enabled when CPUs enter the kernel |
| 633 | * from nohz_full userspace execution. After all, nohz_full userspace |
| 634 | * execution is an RCU quiescent state and the time executing in the kernel |
| 635 | * is quite short. Except of course when it isn't. And it is not hard to |
| 636 | * cause a large system to spend tens of seconds or even minutes looping |
| 637 | * in the kernel, which can cause a number of problems, include RCU CPU |
| 638 | * stall warnings. |
| 639 | * |
| 640 | * Therefore, if a nohz_full CPU fails to report a quiescent state |
| 641 | * in a timely manner, the RCU grace-period kthread sets that CPU's |
| 642 | * ->rcu_urgent_qs flag with the expectation that the next interrupt or |
| 643 | * exception will invoke this function, which will turn on the scheduler |
| 644 | * tick, which will enable RCU to detect that CPU's quiescent states, |
| 645 | * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. |
| 646 | * The tick will be disabled once a quiescent state is reported for |
| 647 | * this CPU. |
| 648 | * |
| 649 | * Of course, in carefully tuned systems, there might never be an |
| 650 | * interrupt or exception. In that case, the RCU grace-period kthread |
| 651 | * will eventually cause one to happen. However, in less carefully |
| 652 | * controlled environments, this function allows RCU to get what it |
| 653 | * needs without creating otherwise useless interruptions. |
| 654 | */ |
| 655 | void __rcu_irq_enter_check_tick(void) |
| 656 | { |
| 657 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 658 | |
| 659 | // If we're here from NMI there's nothing to do. |
| 660 | if (in_nmi()) |
| 661 | return; |
| 662 | |
| 663 | RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), |
| 664 | "Illegal rcu_irq_enter_check_tick() from extended quiescent state" ); |
| 665 | |
| 666 | if (!tick_nohz_full_cpu(rdp->cpu) || |
| 667 | !READ_ONCE(rdp->rcu_urgent_qs) || |
| 668 | READ_ONCE(rdp->rcu_forced_tick)) { |
| 669 | // RCU doesn't need nohz_full help from this CPU, or it is |
| 670 | // already getting that help. |
| 671 | return; |
| 672 | } |
| 673 | |
| 674 | // We get here only when not in an extended quiescent state and |
| 675 | // from interrupts (as opposed to NMIs). Therefore, (1) RCU is |
| 676 | // already watching and (2) The fact that we are in an interrupt |
| 677 | // handler and that the rcu_node lock is an irq-disabled lock |
| 678 | // prevents self-deadlock. So we can safely recheck under the lock. |
| 679 | // Note that the nohz_full state currently cannot change. |
| 680 | raw_spin_lock_rcu_node(rdp->mynode); |
| 681 | if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { |
| 682 | // A nohz_full CPU is in the kernel and RCU needs a |
| 683 | // quiescent state. Turn on the tick! |
| 684 | WRITE_ONCE(rdp->rcu_forced_tick, true); |
| 685 | tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); |
| 686 | } |
| 687 | raw_spin_unlock_rcu_node(rdp->mynode); |
| 688 | } |
| 689 | NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); |
| 690 | #endif /* CONFIG_NO_HZ_FULL */ |
| 691 | |
| 692 | /* |
| 693 | * Check to see if any future non-offloaded RCU-related work will need |
| 694 | * to be done by the current CPU, even if none need be done immediately, |
| 695 | * returning 1 if so. This function is part of the RCU implementation; |
| 696 | * it is -not- an exported member of the RCU API. This is used by |
| 697 | * the idle-entry code to figure out whether it is safe to disable the |
| 698 | * scheduler-clock interrupt. |
| 699 | * |
| 700 | * Just check whether or not this CPU has non-offloaded RCU callbacks |
| 701 | * queued. |
| 702 | */ |
| 703 | int rcu_needs_cpu(void) |
| 704 | { |
| 705 | return !rcu_segcblist_empty(rsclp: &this_cpu_ptr(&rcu_data)->cblist) && |
| 706 | !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * If any sort of urgency was applied to the current CPU (for example, |
| 711 | * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order |
| 712 | * to get to a quiescent state, disable it. |
| 713 | */ |
| 714 | static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) |
| 715 | { |
| 716 | raw_lockdep_assert_held_rcu_node(rdp->mynode); |
| 717 | WRITE_ONCE(rdp->rcu_urgent_qs, false); |
| 718 | WRITE_ONCE(rdp->rcu_need_heavy_qs, false); |
| 719 | if (tick_nohz_full_cpu(cpu: rdp->cpu) && rdp->rcu_forced_tick) { |
| 720 | tick_dep_clear_cpu(cpu: rdp->cpu, bit: TICK_DEP_BIT_RCU); |
| 721 | WRITE_ONCE(rdp->rcu_forced_tick, false); |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /** |
| 726 | * rcu_is_watching - RCU read-side critical sections permitted on current CPU? |
| 727 | * |
| 728 | * Return @true if RCU is watching the running CPU and @false otherwise. |
| 729 | * An @true return means that this CPU can safely enter RCU read-side |
| 730 | * critical sections. |
| 731 | * |
| 732 | * Although calls to rcu_is_watching() from most parts of the kernel |
| 733 | * will return @true, there are important exceptions. For example, if the |
| 734 | * current CPU is deep within its idle loop, in kernel entry/exit code, |
| 735 | * or offline, rcu_is_watching() will return @false. |
| 736 | * |
| 737 | * Make notrace because it can be called by the internal functions of |
| 738 | * ftrace, and making this notrace removes unnecessary recursion calls. |
| 739 | */ |
| 740 | notrace bool rcu_is_watching(void) |
| 741 | { |
| 742 | bool ret; |
| 743 | |
| 744 | preempt_disable_notrace(); |
| 745 | ret = rcu_is_watching_curr_cpu(); |
| 746 | preempt_enable_notrace(); |
| 747 | return ret; |
| 748 | } |
| 749 | EXPORT_SYMBOL_GPL(rcu_is_watching); |
| 750 | |
| 751 | /* |
| 752 | * If a holdout task is actually running, request an urgent quiescent |
| 753 | * state from its CPU. This is unsynchronized, so migrations can cause |
| 754 | * the request to go to the wrong CPU. Which is OK, all that will happen |
| 755 | * is that the CPU's next context switch will be a bit slower and next |
| 756 | * time around this task will generate another request. |
| 757 | */ |
| 758 | void rcu_request_urgent_qs_task(struct task_struct *t) |
| 759 | { |
| 760 | int cpu; |
| 761 | |
| 762 | barrier(); |
| 763 | cpu = task_cpu(p: t); |
| 764 | if (!task_curr(p: t)) |
| 765 | return; /* This task is not running on that CPU. */ |
| 766 | smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); |
| 767 | } |
| 768 | |
| 769 | static unsigned long seq_gpwrap_lag = ULONG_MAX / 4; |
| 770 | |
| 771 | /** |
| 772 | * rcu_set_gpwrap_lag - Set RCU GP sequence overflow lag value. |
| 773 | * @lag_gps: Set overflow lag to this many grace period worth of counters |
| 774 | * which is used by rcutorture to quickly force a gpwrap situation. |
| 775 | * @lag_gps = 0 means we reset it back to the boot-time value. |
| 776 | */ |
| 777 | void rcu_set_gpwrap_lag(unsigned long lag_gps) |
| 778 | { |
| 779 | unsigned long lag_seq_count; |
| 780 | |
| 781 | lag_seq_count = (lag_gps == 0) |
| 782 | ? ULONG_MAX / 4 |
| 783 | : lag_gps << RCU_SEQ_CTR_SHIFT; |
| 784 | WRITE_ONCE(seq_gpwrap_lag, lag_seq_count); |
| 785 | } |
| 786 | EXPORT_SYMBOL_GPL(rcu_set_gpwrap_lag); |
| 787 | |
| 788 | /* |
| 789 | * When trying to report a quiescent state on behalf of some other CPU, |
| 790 | * it is our responsibility to check for and handle potential overflow |
| 791 | * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. |
| 792 | * After all, the CPU might be in deep idle state, and thus executing no |
| 793 | * code whatsoever. |
| 794 | */ |
| 795 | static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) |
| 796 | { |
| 797 | raw_lockdep_assert_held_rcu_node(rnp); |
| 798 | if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + seq_gpwrap_lag, |
| 799 | rnp->gp_seq)) { |
| 800 | WRITE_ONCE(rdp->gpwrap, true); |
| 801 | WRITE_ONCE(rdp->gpwrap_count, READ_ONCE(rdp->gpwrap_count) + 1); |
| 802 | } |
| 803 | if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) |
| 804 | rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Snapshot the specified CPU's RCU_WATCHING counter so that we can later |
| 809 | * credit them with an implicit quiescent state. Return 1 if this CPU |
| 810 | * is in dynticks idle mode, which is an extended quiescent state. |
| 811 | */ |
| 812 | static int rcu_watching_snap_save(struct rcu_data *rdp) |
| 813 | { |
| 814 | /* |
| 815 | * Full ordering between remote CPU's post idle accesses and updater's |
| 816 | * accesses prior to current GP (and also the started GP sequence number) |
| 817 | * is enforced by rcu_seq_start() implicit barrier and even further by |
| 818 | * smp_mb__after_unlock_lock() barriers chained all the way throughout the |
| 819 | * rnp locking tree since rcu_gp_init() and up to the current leaf rnp |
| 820 | * locking. |
| 821 | * |
| 822 | * Ordering between remote CPU's pre idle accesses and post grace period |
| 823 | * updater's accesses is enforced by the below acquire semantic. |
| 824 | */ |
| 825 | rdp->watching_snap = ct_rcu_watching_cpu_acquire(cpu: rdp->cpu); |
| 826 | if (rcu_watching_snap_in_eqs(snap: rdp->watching_snap)) { |
| 827 | trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti" )); |
| 828 | rcu_gpnum_ovf(rnp: rdp->mynode, rdp); |
| 829 | return 1; |
| 830 | } |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | #ifndef arch_irq_stat_cpu |
| 835 | #define arch_irq_stat_cpu(cpu) 0 |
| 836 | #endif |
| 837 | |
| 838 | /* |
| 839 | * Returns positive if the specified CPU has passed through a quiescent state |
| 840 | * by virtue of being in or having passed through an dynticks idle state since |
| 841 | * the last call to rcu_watching_snap_save() for this same CPU, or by |
| 842 | * virtue of having been offline. |
| 843 | * |
| 844 | * Returns negative if the specified CPU needs a force resched. |
| 845 | * |
| 846 | * Returns zero otherwise. |
| 847 | */ |
| 848 | static int rcu_watching_snap_recheck(struct rcu_data *rdp) |
| 849 | { |
| 850 | unsigned long jtsq; |
| 851 | int ret = 0; |
| 852 | struct rcu_node *rnp = rdp->mynode; |
| 853 | |
| 854 | /* |
| 855 | * If the CPU passed through or entered a dynticks idle phase with |
| 856 | * no active irq/NMI handlers, then we can safely pretend that the CPU |
| 857 | * already acknowledged the request to pass through a quiescent |
| 858 | * state. Either way, that CPU cannot possibly be in an RCU |
| 859 | * read-side critical section that started before the beginning |
| 860 | * of the current RCU grace period. |
| 861 | */ |
| 862 | if (rcu_watching_snap_stopped_since(rdp, snap: rdp->watching_snap)) { |
| 863 | trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti" )); |
| 864 | rcu_gpnum_ovf(rnp, rdp); |
| 865 | return 1; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * Complain if a CPU that is considered to be offline from RCU's |
| 870 | * perspective has not yet reported a quiescent state. After all, |
| 871 | * the offline CPU should have reported a quiescent state during |
| 872 | * the CPU-offline process, or, failing that, by rcu_gp_init() |
| 873 | * if it ran concurrently with either the CPU going offline or the |
| 874 | * last task on a leaf rcu_node structure exiting its RCU read-side |
| 875 | * critical section while all CPUs corresponding to that structure |
| 876 | * are offline. This added warning detects bugs in any of these |
| 877 | * code paths. |
| 878 | * |
| 879 | * The rcu_node structure's ->lock is held here, which excludes |
| 880 | * the relevant portions the CPU-hotplug code, the grace-period |
| 881 | * initialization code, and the rcu_read_unlock() code paths. |
| 882 | * |
| 883 | * For more detail, please refer to the "Hotplug CPU" section |
| 884 | * of RCU's Requirements documentation. |
| 885 | */ |
| 886 | if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { |
| 887 | struct rcu_node *rnp1; |
| 888 | |
| 889 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n" , |
| 890 | __func__, rnp->grplo, rnp->grphi, rnp->level, |
| 891 | (long)rnp->gp_seq, (long)rnp->completedqs); |
| 892 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| 893 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n" , |
| 894 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); |
| 895 | pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n" , |
| 896 | __func__, rdp->cpu, ".o" [rcu_rdp_cpu_online(rdp)], |
| 897 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, |
| 898 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); |
| 899 | return 1; /* Break things loose after complaining. */ |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * A CPU running for an extended time within the kernel can |
| 904 | * delay RCU grace periods: (1) At age jiffies_to_sched_qs, |
| 905 | * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set |
| 906 | * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the |
| 907 | * unsynchronized assignments to the per-CPU rcu_need_heavy_qs |
| 908 | * variable are safe because the assignments are repeated if this |
| 909 | * CPU failed to pass through a quiescent state. This code |
| 910 | * also checks .jiffies_resched in case jiffies_to_sched_qs |
| 911 | * is set way high. |
| 912 | */ |
| 913 | jtsq = READ_ONCE(jiffies_to_sched_qs); |
| 914 | if (!READ_ONCE(rdp->rcu_need_heavy_qs) && |
| 915 | (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || |
| 916 | time_after(jiffies, rcu_state.jiffies_resched) || |
| 917 | rcu_state.cbovld)) { |
| 918 | WRITE_ONCE(rdp->rcu_need_heavy_qs, true); |
| 919 | /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ |
| 920 | smp_store_release(&rdp->rcu_urgent_qs, true); |
| 921 | } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { |
| 922 | WRITE_ONCE(rdp->rcu_urgent_qs, true); |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! |
| 927 | * The above code handles this, but only for straight cond_resched(). |
| 928 | * And some in-kernel loops check need_resched() before calling |
| 929 | * cond_resched(), which defeats the above code for CPUs that are |
| 930 | * running in-kernel with scheduling-clock interrupts disabled. |
| 931 | * So hit them over the head with the resched_cpu() hammer! |
| 932 | */ |
| 933 | if (tick_nohz_full_cpu(cpu: rdp->cpu) && |
| 934 | (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || |
| 935 | rcu_state.cbovld)) { |
| 936 | WRITE_ONCE(rdp->rcu_urgent_qs, true); |
| 937 | WRITE_ONCE(rdp->last_fqs_resched, jiffies); |
| 938 | ret = -1; |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * If more than halfway to RCU CPU stall-warning time, invoke |
| 943 | * resched_cpu() more frequently to try to loosen things up a bit. |
| 944 | * Also check to see if the CPU is getting hammered with interrupts, |
| 945 | * but only once per grace period, just to keep the IPIs down to |
| 946 | * a dull roar. |
| 947 | */ |
| 948 | if (time_after(jiffies, rcu_state.jiffies_resched)) { |
| 949 | if (time_after(jiffies, |
| 950 | READ_ONCE(rdp->last_fqs_resched) + jtsq)) { |
| 951 | WRITE_ONCE(rdp->last_fqs_resched, jiffies); |
| 952 | ret = -1; |
| 953 | } |
| 954 | if (IS_ENABLED(CONFIG_IRQ_WORK) && |
| 955 | !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && |
| 956 | (rnp->ffmask & rdp->grpmask)) { |
| 957 | rdp->rcu_iw_pending = true; |
| 958 | rdp->rcu_iw_gp_seq = rnp->gp_seq; |
| 959 | irq_work_queue_on(work: &rdp->rcu_iw, cpu: rdp->cpu); |
| 960 | } |
| 961 | |
| 962 | if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { |
| 963 | int cpu = rdp->cpu; |
| 964 | struct rcu_snap_record *rsrp; |
| 965 | struct kernel_cpustat *kcsp; |
| 966 | |
| 967 | kcsp = &kcpustat_cpu(cpu); |
| 968 | |
| 969 | rsrp = &rdp->snap_record; |
| 970 | rsrp->cputime_irq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_IRQ, cpu); |
| 971 | rsrp->cputime_softirq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SOFTIRQ, cpu); |
| 972 | rsrp->cputime_system = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SYSTEM, cpu); |
| 973 | rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu); |
| 974 | rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu); |
| 975 | rsrp->nr_csw = nr_context_switches_cpu(cpu); |
| 976 | rsrp->jiffies = jiffies; |
| 977 | rsrp->gp_seq = rdp->gp_seq; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | return ret; |
| 982 | } |
| 983 | |
| 984 | /* Trace-event wrapper function for trace_rcu_future_grace_period. */ |
| 985 | static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, |
| 986 | unsigned long gp_seq_req, const char *s) |
| 987 | { |
| 988 | trace_rcu_future_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq), |
| 989 | gp_seq_req, level: rnp->level, |
| 990 | grplo: rnp->grplo, grphi: rnp->grphi, gpevent: s); |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * rcu_start_this_gp - Request the start of a particular grace period |
| 995 | * @rnp_start: The leaf node of the CPU from which to start. |
| 996 | * @rdp: The rcu_data corresponding to the CPU from which to start. |
| 997 | * @gp_seq_req: The gp_seq of the grace period to start. |
| 998 | * |
| 999 | * Start the specified grace period, as needed to handle newly arrived |
| 1000 | * callbacks. The required future grace periods are recorded in each |
| 1001 | * rcu_node structure's ->gp_seq_needed field. Returns true if there |
| 1002 | * is reason to awaken the grace-period kthread. |
| 1003 | * |
| 1004 | * The caller must hold the specified rcu_node structure's ->lock, which |
| 1005 | * is why the caller is responsible for waking the grace-period kthread. |
| 1006 | * |
| 1007 | * Returns true if the GP thread needs to be awakened else false. |
| 1008 | */ |
| 1009 | static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, |
| 1010 | unsigned long gp_seq_req) |
| 1011 | { |
| 1012 | bool ret = false; |
| 1013 | struct rcu_node *rnp; |
| 1014 | |
| 1015 | /* |
| 1016 | * Use funnel locking to either acquire the root rcu_node |
| 1017 | * structure's lock or bail out if the need for this grace period |
| 1018 | * has already been recorded -- or if that grace period has in |
| 1019 | * fact already started. If there is already a grace period in |
| 1020 | * progress in a non-leaf node, no recording is needed because the |
| 1021 | * end of the grace period will scan the leaf rcu_node structures. |
| 1022 | * Note that rnp_start->lock must not be released. |
| 1023 | */ |
| 1024 | raw_lockdep_assert_held_rcu_node(rnp_start); |
| 1025 | trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req, TPS("Startleaf" )); |
| 1026 | for (rnp = rnp_start; 1; rnp = rnp->parent) { |
| 1027 | if (rnp != rnp_start) |
| 1028 | raw_spin_lock_rcu_node(rnp); |
| 1029 | if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || |
| 1030 | rcu_seq_started(sp: &rnp->gp_seq, s: gp_seq_req) || |
| 1031 | (rnp != rnp_start && |
| 1032 | rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)))) { |
| 1033 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, |
| 1034 | TPS("Prestarted" )); |
| 1035 | goto unlock_out; |
| 1036 | } |
| 1037 | WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); |
| 1038 | if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq))) { |
| 1039 | /* |
| 1040 | * We just marked the leaf or internal node, and a |
| 1041 | * grace period is in progress, which means that |
| 1042 | * rcu_gp_cleanup() will see the marking. Bail to |
| 1043 | * reduce contention. |
| 1044 | */ |
| 1045 | trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req, |
| 1046 | TPS("Startedleaf" )); |
| 1047 | goto unlock_out; |
| 1048 | } |
| 1049 | if (rnp != rnp_start && rnp->parent != NULL) |
| 1050 | raw_spin_unlock_rcu_node(rnp); |
| 1051 | if (!rnp->parent) |
| 1052 | break; /* At root, and perhaps also leaf. */ |
| 1053 | } |
| 1054 | |
| 1055 | /* If GP already in progress, just leave, otherwise start one. */ |
| 1056 | if (rcu_gp_in_progress()) { |
| 1057 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot" )); |
| 1058 | goto unlock_out; |
| 1059 | } |
| 1060 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot" )); |
| 1061 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); |
| 1062 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); |
| 1063 | if (!READ_ONCE(rcu_state.gp_kthread)) { |
| 1064 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread" )); |
| 1065 | goto unlock_out; |
| 1066 | } |
| 1067 | trace_rcu_grace_period(rcuname: rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq" )); |
| 1068 | ret = true; /* Caller must wake GP kthread. */ |
| 1069 | unlock_out: |
| 1070 | /* Push furthest requested GP to leaf node and rcu_data structure. */ |
| 1071 | if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { |
| 1072 | WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); |
| 1073 | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); |
| 1074 | } |
| 1075 | if (rnp != rnp_start) |
| 1076 | raw_spin_unlock_rcu_node(rnp); |
| 1077 | return ret; |
| 1078 | } |
| 1079 | |
| 1080 | /* |
| 1081 | * Clean up any old requests for the just-ended grace period. Also return |
| 1082 | * whether any additional grace periods have been requested. |
| 1083 | */ |
| 1084 | static bool rcu_future_gp_cleanup(struct rcu_node *rnp) |
| 1085 | { |
| 1086 | bool needmore; |
| 1087 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 1088 | |
| 1089 | needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); |
| 1090 | if (!needmore) |
| 1091 | rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ |
| 1092 | trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq, |
| 1093 | s: needmore ? TPS("CleanupMore" ) : TPS("Cleanup" )); |
| 1094 | return needmore; |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * Awaken the grace-period kthread. Don't do a self-awaken (unless in an |
| 1099 | * interrupt or softirq handler, in which case we just might immediately |
| 1100 | * sleep upon return, resulting in a grace-period hang), and don't bother |
| 1101 | * awakening when there is nothing for the grace-period kthread to do |
| 1102 | * (as in several CPUs raced to awaken, we lost), and finally don't try |
| 1103 | * to awaken a kthread that has not yet been created. If all those checks |
| 1104 | * are passed, track some debug information and awaken. |
| 1105 | * |
| 1106 | * So why do the self-wakeup when in an interrupt or softirq handler |
| 1107 | * in the grace-period kthread's context? Because the kthread might have |
| 1108 | * been interrupted just as it was going to sleep, and just after the final |
| 1109 | * pre-sleep check of the awaken condition. In this case, a wakeup really |
| 1110 | * is required, and is therefore supplied. |
| 1111 | */ |
| 1112 | static void rcu_gp_kthread_wake(void) |
| 1113 | { |
| 1114 | struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); |
| 1115 | |
| 1116 | if ((current == t && !in_hardirq() && !in_serving_softirq()) || |
| 1117 | !READ_ONCE(rcu_state.gp_flags) || !t) |
| 1118 | return; |
| 1119 | WRITE_ONCE(rcu_state.gp_wake_time, jiffies); |
| 1120 | WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); |
| 1121 | swake_up_one(q: &rcu_state.gp_wq); |
| 1122 | } |
| 1123 | |
| 1124 | /* |
| 1125 | * If there is room, assign a ->gp_seq number to any callbacks on this |
| 1126 | * CPU that have not already been assigned. Also accelerate any callbacks |
| 1127 | * that were previously assigned a ->gp_seq number that has since proven |
| 1128 | * to be too conservative, which can happen if callbacks get assigned a |
| 1129 | * ->gp_seq number while RCU is idle, but with reference to a non-root |
| 1130 | * rcu_node structure. This function is idempotent, so it does not hurt |
| 1131 | * to call it repeatedly. Returns an flag saying that we should awaken |
| 1132 | * the RCU grace-period kthread. |
| 1133 | * |
| 1134 | * The caller must hold rnp->lock with interrupts disabled. |
| 1135 | */ |
| 1136 | static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) |
| 1137 | { |
| 1138 | unsigned long gp_seq_req; |
| 1139 | bool ret = false; |
| 1140 | |
| 1141 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1142 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1143 | |
| 1144 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
| 1145 | if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist)) |
| 1146 | return false; |
| 1147 | |
| 1148 | trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPreAcc" )); |
| 1149 | |
| 1150 | /* |
| 1151 | * Callbacks are often registered with incomplete grace-period |
| 1152 | * information. Something about the fact that getting exact |
| 1153 | * information requires acquiring a global lock... RCU therefore |
| 1154 | * makes a conservative estimate of the grace period number at which |
| 1155 | * a given callback will become ready to invoke. The following |
| 1156 | * code checks this estimate and improves it when possible, thus |
| 1157 | * accelerating callback invocation to an earlier grace-period |
| 1158 | * number. |
| 1159 | */ |
| 1160 | gp_seq_req = rcu_seq_snap(sp: &rcu_state.gp_seq); |
| 1161 | if (rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: gp_seq_req)) |
| 1162 | ret = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req); |
| 1163 | |
| 1164 | /* Trace depending on how much we were able to accelerate. */ |
| 1165 | if (rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_WAIT_TAIL)) |
| 1166 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccWaitCB" )); |
| 1167 | else |
| 1168 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccReadyCB" )); |
| 1169 | |
| 1170 | trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPostAcc" )); |
| 1171 | |
| 1172 | return ret; |
| 1173 | } |
| 1174 | |
| 1175 | /* |
| 1176 | * Similar to rcu_accelerate_cbs(), but does not require that the leaf |
| 1177 | * rcu_node structure's ->lock be held. It consults the cached value |
| 1178 | * of ->gp_seq_needed in the rcu_data structure, and if that indicates |
| 1179 | * that a new grace-period request be made, invokes rcu_accelerate_cbs() |
| 1180 | * while holding the leaf rcu_node structure's ->lock. |
| 1181 | */ |
| 1182 | static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, |
| 1183 | struct rcu_data *rdp) |
| 1184 | { |
| 1185 | unsigned long c; |
| 1186 | bool needwake; |
| 1187 | |
| 1188 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1189 | c = rcu_seq_snap(sp: &rcu_state.gp_seq); |
| 1190 | if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { |
| 1191 | /* Old request still live, so mark recent callbacks. */ |
| 1192 | (void)rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: c); |
| 1193 | return; |
| 1194 | } |
| 1195 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 1196 | needwake = rcu_accelerate_cbs(rnp, rdp); |
| 1197 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 1198 | if (needwake) |
| 1199 | rcu_gp_kthread_wake(); |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * Move any callbacks whose grace period has completed to the |
| 1204 | * RCU_DONE_TAIL sublist, then compact the remaining sublists and |
| 1205 | * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL |
| 1206 | * sublist. This function is idempotent, so it does not hurt to |
| 1207 | * invoke it repeatedly. As long as it is not invoked -too- often... |
| 1208 | * Returns true if the RCU grace-period kthread needs to be awakened. |
| 1209 | * |
| 1210 | * The caller must hold rnp->lock with interrupts disabled. |
| 1211 | */ |
| 1212 | static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) |
| 1213 | { |
| 1214 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1215 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1216 | |
| 1217 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
| 1218 | if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist)) |
| 1219 | return false; |
| 1220 | |
| 1221 | /* |
| 1222 | * Find all callbacks whose ->gp_seq numbers indicate that they |
| 1223 | * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. |
| 1224 | */ |
| 1225 | rcu_segcblist_advance(rsclp: &rdp->cblist, seq: rnp->gp_seq); |
| 1226 | |
| 1227 | /* Classify any remaining callbacks. */ |
| 1228 | return rcu_accelerate_cbs(rnp, rdp); |
| 1229 | } |
| 1230 | |
| 1231 | /* |
| 1232 | * Move and classify callbacks, but only if doing so won't require |
| 1233 | * that the RCU grace-period kthread be awakened. |
| 1234 | */ |
| 1235 | static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, |
| 1236 | struct rcu_data *rdp) |
| 1237 | { |
| 1238 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1239 | if (!rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) |
| 1240 | return; |
| 1241 | // The grace period cannot end while we hold the rcu_node lock. |
| 1242 | if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq))) |
| 1243 | WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); |
| 1244 | raw_spin_unlock_rcu_node(rnp); |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a |
| 1249 | * quiescent state. This is intended to be invoked when the CPU notices |
| 1250 | * a new grace period. |
| 1251 | */ |
| 1252 | static void rcu_strict_gp_check_qs(void) |
| 1253 | { |
| 1254 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { |
| 1255 | rcu_read_lock(); |
| 1256 | rcu_read_unlock(); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | /* |
| 1261 | * Update CPU-local rcu_data state to record the beginnings and ends of |
| 1262 | * grace periods. The caller must hold the ->lock of the leaf rcu_node |
| 1263 | * structure corresponding to the current CPU, and must have irqs disabled. |
| 1264 | * Returns true if the grace-period kthread needs to be awakened. |
| 1265 | */ |
| 1266 | static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) |
| 1267 | { |
| 1268 | bool ret = false; |
| 1269 | bool need_qs; |
| 1270 | const bool offloaded = rcu_rdp_is_offloaded(rdp); |
| 1271 | |
| 1272 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1273 | |
| 1274 | if (rdp->gp_seq == rnp->gp_seq) |
| 1275 | return false; /* Nothing to do. */ |
| 1276 | |
| 1277 | /* Handle the ends of any preceding grace periods first. */ |
| 1278 | if (rcu_seq_completed_gp(old: rdp->gp_seq, new: rnp->gp_seq) || |
| 1279 | unlikely(rdp->gpwrap)) { |
| 1280 | if (!offloaded) |
| 1281 | ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ |
| 1282 | rdp->core_needs_qs = false; |
| 1283 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuend" )); |
| 1284 | } else { |
| 1285 | if (!offloaded) |
| 1286 | ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ |
| 1287 | if (rdp->core_needs_qs) |
| 1288 | rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); |
| 1289 | } |
| 1290 | |
| 1291 | /* Now handle the beginnings of any new-to-this-CPU grace periods. */ |
| 1292 | if (rcu_seq_new_gp(old: rdp->gp_seq, new: rnp->gp_seq) || |
| 1293 | unlikely(rdp->gpwrap)) { |
| 1294 | /* |
| 1295 | * If the current grace period is waiting for this CPU, |
| 1296 | * set up to detect a quiescent state, otherwise don't |
| 1297 | * go looking for one. |
| 1298 | */ |
| 1299 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rnp->gp_seq, TPS("cpustart" )); |
| 1300 | need_qs = !!(rnp->qsmask & rdp->grpmask); |
| 1301 | rdp->cpu_no_qs.b.norm = need_qs; |
| 1302 | rdp->core_needs_qs = need_qs; |
| 1303 | zero_cpu_stall_ticks(rdp); |
| 1304 | } |
| 1305 | rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ |
| 1306 | if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) |
| 1307 | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); |
| 1308 | if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap) |
| 1309 | WRITE_ONCE(rdp->last_sched_clock, jiffies); |
| 1310 | WRITE_ONCE(rdp->gpwrap, false); |
| 1311 | rcu_gpnum_ovf(rnp, rdp); |
| 1312 | return ret; |
| 1313 | } |
| 1314 | |
| 1315 | static void note_gp_changes(struct rcu_data *rdp) |
| 1316 | { |
| 1317 | unsigned long flags; |
| 1318 | bool needwake; |
| 1319 | struct rcu_node *rnp; |
| 1320 | |
| 1321 | local_irq_save(flags); |
| 1322 | rnp = rdp->mynode; |
| 1323 | if ((rdp->gp_seq == rcu_seq_current(sp: &rnp->gp_seq) && |
| 1324 | !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ |
| 1325 | !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ |
| 1326 | local_irq_restore(flags); |
| 1327 | return; |
| 1328 | } |
| 1329 | needwake = __note_gp_changes(rnp, rdp); |
| 1330 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1331 | rcu_strict_gp_check_qs(); |
| 1332 | if (needwake) |
| 1333 | rcu_gp_kthread_wake(); |
| 1334 | } |
| 1335 | |
| 1336 | static atomic_t *rcu_gp_slow_suppress; |
| 1337 | |
| 1338 | /* Register a counter to suppress debugging grace-period delays. */ |
| 1339 | void rcu_gp_slow_register(atomic_t *rgssp) |
| 1340 | { |
| 1341 | WARN_ON_ONCE(rcu_gp_slow_suppress); |
| 1342 | |
| 1343 | WRITE_ONCE(rcu_gp_slow_suppress, rgssp); |
| 1344 | } |
| 1345 | EXPORT_SYMBOL_GPL(rcu_gp_slow_register); |
| 1346 | |
| 1347 | /* Unregister a counter, with NULL for not caring which. */ |
| 1348 | void rcu_gp_slow_unregister(atomic_t *rgssp) |
| 1349 | { |
| 1350 | WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); |
| 1351 | |
| 1352 | WRITE_ONCE(rcu_gp_slow_suppress, NULL); |
| 1353 | } |
| 1354 | EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); |
| 1355 | |
| 1356 | static bool rcu_gp_slow_is_suppressed(void) |
| 1357 | { |
| 1358 | atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); |
| 1359 | |
| 1360 | return rgssp && atomic_read(v: rgssp); |
| 1361 | } |
| 1362 | |
| 1363 | static void rcu_gp_slow(int delay) |
| 1364 | { |
| 1365 | if (!rcu_gp_slow_is_suppressed() && delay > 0 && |
| 1366 | !(rcu_seq_ctr(s: rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) |
| 1367 | schedule_timeout_idle(timeout: delay); |
| 1368 | } |
| 1369 | |
| 1370 | static unsigned long sleep_duration; |
| 1371 | |
| 1372 | /* Allow rcutorture to stall the grace-period kthread. */ |
| 1373 | void rcu_gp_set_torture_wait(int duration) |
| 1374 | { |
| 1375 | if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) |
| 1376 | WRITE_ONCE(sleep_duration, duration); |
| 1377 | } |
| 1378 | EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); |
| 1379 | |
| 1380 | /* Actually implement the aforementioned wait. */ |
| 1381 | static void rcu_gp_torture_wait(void) |
| 1382 | { |
| 1383 | unsigned long duration; |
| 1384 | |
| 1385 | if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) |
| 1386 | return; |
| 1387 | duration = xchg(&sleep_duration, 0UL); |
| 1388 | if (duration > 0) { |
| 1389 | pr_alert("%s: Waiting %lu jiffies\n" , __func__, duration); |
| 1390 | schedule_timeout_idle(timeout: duration); |
| 1391 | pr_alert("%s: Wait complete\n" , __func__); |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * Handler for on_each_cpu() to invoke the target CPU's RCU core |
| 1397 | * processing. |
| 1398 | */ |
| 1399 | static void rcu_strict_gp_boundary(void *unused) |
| 1400 | { |
| 1401 | invoke_rcu_core(); |
| 1402 | } |
| 1403 | |
| 1404 | // Make the polled API aware of the beginning of a grace period. |
| 1405 | static void rcu_poll_gp_seq_start(unsigned long *snap) |
| 1406 | { |
| 1407 | struct rcu_node *rnp = rcu_get_root(); |
| 1408 | |
| 1409 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
| 1410 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1411 | |
| 1412 | // If RCU was idle, note beginning of GP. |
| 1413 | if (!rcu_seq_state(s: rcu_state.gp_seq_polled)) |
| 1414 | rcu_seq_start(sp: &rcu_state.gp_seq_polled); |
| 1415 | |
| 1416 | // Either way, record current state. |
| 1417 | *snap = rcu_state.gp_seq_polled; |
| 1418 | } |
| 1419 | |
| 1420 | // Make the polled API aware of the end of a grace period. |
| 1421 | static void rcu_poll_gp_seq_end(unsigned long *snap) |
| 1422 | { |
| 1423 | struct rcu_node *rnp = rcu_get_root(); |
| 1424 | |
| 1425 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
| 1426 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1427 | |
| 1428 | // If the previously noted GP is still in effect, record the |
| 1429 | // end of that GP. Either way, zero counter to avoid counter-wrap |
| 1430 | // problems. |
| 1431 | if (*snap && *snap == rcu_state.gp_seq_polled) { |
| 1432 | rcu_seq_end(sp: &rcu_state.gp_seq_polled); |
| 1433 | rcu_state.gp_seq_polled_snap = 0; |
| 1434 | rcu_state.gp_seq_polled_exp_snap = 0; |
| 1435 | } else { |
| 1436 | *snap = 0; |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | // Make the polled API aware of the beginning of a grace period, but |
| 1441 | // where caller does not hold the root rcu_node structure's lock. |
| 1442 | static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) |
| 1443 | { |
| 1444 | unsigned long flags; |
| 1445 | struct rcu_node *rnp = rcu_get_root(); |
| 1446 | |
| 1447 | if (rcu_init_invoked()) { |
| 1448 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
| 1449 | lockdep_assert_irqs_enabled(); |
| 1450 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1451 | } |
| 1452 | rcu_poll_gp_seq_start(snap); |
| 1453 | if (rcu_init_invoked()) |
| 1454 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1455 | } |
| 1456 | |
| 1457 | // Make the polled API aware of the end of a grace period, but where |
| 1458 | // caller does not hold the root rcu_node structure's lock. |
| 1459 | static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) |
| 1460 | { |
| 1461 | unsigned long flags; |
| 1462 | struct rcu_node *rnp = rcu_get_root(); |
| 1463 | |
| 1464 | if (rcu_init_invoked()) { |
| 1465 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
| 1466 | lockdep_assert_irqs_enabled(); |
| 1467 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1468 | } |
| 1469 | rcu_poll_gp_seq_end(snap); |
| 1470 | if (rcu_init_invoked()) |
| 1471 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * There is a single llist, which is used for handling |
| 1476 | * synchronize_rcu() users' enqueued rcu_synchronize nodes. |
| 1477 | * Within this llist, there are two tail pointers: |
| 1478 | * |
| 1479 | * wait tail: Tracks the set of nodes, which need to |
| 1480 | * wait for the current GP to complete. |
| 1481 | * done tail: Tracks the set of nodes, for which grace |
| 1482 | * period has elapsed. These nodes processing |
| 1483 | * will be done as part of the cleanup work |
| 1484 | * execution by a kworker. |
| 1485 | * |
| 1486 | * At every grace period init, a new wait node is added |
| 1487 | * to the llist. This wait node is used as wait tail |
| 1488 | * for this new grace period. Given that there are a fixed |
| 1489 | * number of wait nodes, if all wait nodes are in use |
| 1490 | * (which can happen when kworker callback processing |
| 1491 | * is delayed) and additional grace period is requested. |
| 1492 | * This means, a system is slow in processing callbacks. |
| 1493 | * |
| 1494 | * TODO: If a slow processing is detected, a first node |
| 1495 | * in the llist should be used as a wait-tail for this |
| 1496 | * grace period, therefore users which should wait due |
| 1497 | * to a slow process are handled by _this_ grace period |
| 1498 | * and not next. |
| 1499 | * |
| 1500 | * Below is an illustration of how the done and wait |
| 1501 | * tail pointers move from one set of rcu_synchronize nodes |
| 1502 | * to the other, as grace periods start and finish and |
| 1503 | * nodes are processed by kworker. |
| 1504 | * |
| 1505 | * |
| 1506 | * a. Initial llist callbacks list: |
| 1507 | * |
| 1508 | * +----------+ +--------+ +-------+ |
| 1509 | * | | | | | | |
| 1510 | * | head |---------> | cb2 |--------->| cb1 | |
| 1511 | * | | | | | | |
| 1512 | * +----------+ +--------+ +-------+ |
| 1513 | * |
| 1514 | * |
| 1515 | * |
| 1516 | * b. New GP1 Start: |
| 1517 | * |
| 1518 | * WAIT TAIL |
| 1519 | * | |
| 1520 | * | |
| 1521 | * v |
| 1522 | * +----------+ +--------+ +--------+ +-------+ |
| 1523 | * | | | | | | | | |
| 1524 | * | head ------> wait |------> cb2 |------> | cb1 | |
| 1525 | * | | | head1 | | | | | |
| 1526 | * +----------+ +--------+ +--------+ +-------+ |
| 1527 | * |
| 1528 | * |
| 1529 | * |
| 1530 | * c. GP completion: |
| 1531 | * |
| 1532 | * WAIT_TAIL == DONE_TAIL |
| 1533 | * |
| 1534 | * DONE TAIL |
| 1535 | * | |
| 1536 | * | |
| 1537 | * v |
| 1538 | * +----------+ +--------+ +--------+ +-------+ |
| 1539 | * | | | | | | | | |
| 1540 | * | head ------> wait |------> cb2 |------> | cb1 | |
| 1541 | * | | | head1 | | | | | |
| 1542 | * +----------+ +--------+ +--------+ +-------+ |
| 1543 | * |
| 1544 | * |
| 1545 | * |
| 1546 | * d. New callbacks and GP2 start: |
| 1547 | * |
| 1548 | * WAIT TAIL DONE TAIL |
| 1549 | * | | |
| 1550 | * | | |
| 1551 | * v v |
| 1552 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ |
| 1553 | * | | | | | | | | | | | | | | |
| 1554 | * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | |
| 1555 | * | | | head2| | | | | |head1| | | | | |
| 1556 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ |
| 1557 | * |
| 1558 | * |
| 1559 | * |
| 1560 | * e. GP2 completion: |
| 1561 | * |
| 1562 | * WAIT_TAIL == DONE_TAIL |
| 1563 | * DONE TAIL |
| 1564 | * | |
| 1565 | * | |
| 1566 | * v |
| 1567 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ |
| 1568 | * | | | | | | | | | | | | | | |
| 1569 | * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | |
| 1570 | * | | | head2| | | | | |head1| | | | | |
| 1571 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ |
| 1572 | * |
| 1573 | * |
| 1574 | * While the llist state transitions from d to e, a kworker |
| 1575 | * can start executing rcu_sr_normal_gp_cleanup_work() and |
| 1576 | * can observe either the old done tail (@c) or the new |
| 1577 | * done tail (@e). So, done tail updates and reads need |
| 1578 | * to use the rel-acq semantics. If the concurrent kworker |
| 1579 | * observes the old done tail, the newly queued work |
| 1580 | * execution will process the updated done tail. If the |
| 1581 | * concurrent kworker observes the new done tail, then |
| 1582 | * the newly queued work will skip processing the done |
| 1583 | * tail, as workqueue semantics guarantees that the new |
| 1584 | * work is executed only after the previous one completes. |
| 1585 | * |
| 1586 | * f. kworker callbacks processing complete: |
| 1587 | * |
| 1588 | * |
| 1589 | * DONE TAIL |
| 1590 | * | |
| 1591 | * | |
| 1592 | * v |
| 1593 | * +----------+ +--------+ |
| 1594 | * | | | | |
| 1595 | * | head ------> wait | |
| 1596 | * | | | head2 | |
| 1597 | * +----------+ +--------+ |
| 1598 | * |
| 1599 | */ |
| 1600 | static bool rcu_sr_is_wait_head(struct llist_node *node) |
| 1601 | { |
| 1602 | return &(rcu_state.srs_wait_nodes)[0].node <= node && |
| 1603 | node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; |
| 1604 | } |
| 1605 | |
| 1606 | static struct llist_node *rcu_sr_get_wait_head(void) |
| 1607 | { |
| 1608 | struct sr_wait_node *sr_wn; |
| 1609 | int i; |
| 1610 | |
| 1611 | for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { |
| 1612 | sr_wn = &(rcu_state.srs_wait_nodes)[i]; |
| 1613 | |
| 1614 | if (!atomic_cmpxchg_acquire(v: &sr_wn->inuse, old: 0, new: 1)) |
| 1615 | return &sr_wn->node; |
| 1616 | } |
| 1617 | |
| 1618 | return NULL; |
| 1619 | } |
| 1620 | |
| 1621 | static void rcu_sr_put_wait_head(struct llist_node *node) |
| 1622 | { |
| 1623 | struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); |
| 1624 | |
| 1625 | atomic_set_release(v: &sr_wn->inuse, i: 0); |
| 1626 | } |
| 1627 | |
| 1628 | /* Disabled by default. */ |
| 1629 | static int rcu_normal_wake_from_gp; |
| 1630 | module_param(rcu_normal_wake_from_gp, int, 0644); |
| 1631 | static struct workqueue_struct *sync_wq; |
| 1632 | |
| 1633 | static void rcu_sr_normal_complete(struct llist_node *node) |
| 1634 | { |
| 1635 | struct rcu_synchronize *rs = container_of( |
| 1636 | (struct rcu_head *) node, struct rcu_synchronize, head); |
| 1637 | |
| 1638 | WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && |
| 1639 | !poll_state_synchronize_rcu_full(&rs->oldstate), |
| 1640 | "A full grace period is not passed yet!\n" ); |
| 1641 | |
| 1642 | /* Finally. */ |
| 1643 | complete(&rs->completion); |
| 1644 | } |
| 1645 | |
| 1646 | static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) |
| 1647 | { |
| 1648 | struct llist_node *done, *rcu, *next, *head; |
| 1649 | |
| 1650 | /* |
| 1651 | * This work execution can potentially execute |
| 1652 | * while a new done tail is being updated by |
| 1653 | * grace period kthread in rcu_sr_normal_gp_cleanup(). |
| 1654 | * So, read and updates of done tail need to |
| 1655 | * follow acq-rel semantics. |
| 1656 | * |
| 1657 | * Given that wq semantics guarantees that a single work |
| 1658 | * cannot execute concurrently by multiple kworkers, |
| 1659 | * the done tail list manipulations are protected here. |
| 1660 | */ |
| 1661 | done = smp_load_acquire(&rcu_state.srs_done_tail); |
| 1662 | if (WARN_ON_ONCE(!done)) |
| 1663 | return; |
| 1664 | |
| 1665 | WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); |
| 1666 | head = done->next; |
| 1667 | done->next = NULL; |
| 1668 | |
| 1669 | /* |
| 1670 | * The dummy node, which is pointed to by the |
| 1671 | * done tail which is acq-read above is not removed |
| 1672 | * here. This allows lockless additions of new |
| 1673 | * rcu_synchronize nodes in rcu_sr_normal_add_req(), |
| 1674 | * while the cleanup work executes. The dummy |
| 1675 | * nodes is removed, in next round of cleanup |
| 1676 | * work execution. |
| 1677 | */ |
| 1678 | llist_for_each_safe(rcu, next, head) { |
| 1679 | if (!rcu_sr_is_wait_head(node: rcu)) { |
| 1680 | rcu_sr_normal_complete(node: rcu); |
| 1681 | continue; |
| 1682 | } |
| 1683 | |
| 1684 | rcu_sr_put_wait_head(node: rcu); |
| 1685 | } |
| 1686 | |
| 1687 | /* Order list manipulations with atomic access. */ |
| 1688 | atomic_dec_return_release(v: &rcu_state.srs_cleanups_pending); |
| 1689 | } |
| 1690 | |
| 1691 | /* |
| 1692 | * Helper function for rcu_gp_cleanup(). |
| 1693 | */ |
| 1694 | static void rcu_sr_normal_gp_cleanup(void) |
| 1695 | { |
| 1696 | struct llist_node *wait_tail, *next = NULL, *rcu = NULL; |
| 1697 | int done = 0; |
| 1698 | |
| 1699 | wait_tail = rcu_state.srs_wait_tail; |
| 1700 | if (wait_tail == NULL) |
| 1701 | return; |
| 1702 | |
| 1703 | rcu_state.srs_wait_tail = NULL; |
| 1704 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); |
| 1705 | WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); |
| 1706 | |
| 1707 | /* |
| 1708 | * Process (a) and (d) cases. See an illustration. |
| 1709 | */ |
| 1710 | llist_for_each_safe(rcu, next, wait_tail->next) { |
| 1711 | if (rcu_sr_is_wait_head(node: rcu)) |
| 1712 | break; |
| 1713 | |
| 1714 | rcu_sr_normal_complete(node: rcu); |
| 1715 | // It can be last, update a next on this step. |
| 1716 | wait_tail->next = next; |
| 1717 | |
| 1718 | if (++done == SR_MAX_USERS_WAKE_FROM_GP) |
| 1719 | break; |
| 1720 | } |
| 1721 | |
| 1722 | /* |
| 1723 | * Fast path, no more users to process except putting the second last |
| 1724 | * wait head if no inflight-workers. If there are in-flight workers, |
| 1725 | * they will remove the last wait head. |
| 1726 | * |
| 1727 | * Note that the ACQUIRE orders atomic access with list manipulation. |
| 1728 | */ |
| 1729 | if (wait_tail->next && wait_tail->next->next == NULL && |
| 1730 | rcu_sr_is_wait_head(node: wait_tail->next) && |
| 1731 | !atomic_read_acquire(v: &rcu_state.srs_cleanups_pending)) { |
| 1732 | rcu_sr_put_wait_head(node: wait_tail->next); |
| 1733 | wait_tail->next = NULL; |
| 1734 | } |
| 1735 | |
| 1736 | /* Concurrent sr_normal_gp_cleanup work might observe this update. */ |
| 1737 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); |
| 1738 | smp_store_release(&rcu_state.srs_done_tail, wait_tail); |
| 1739 | |
| 1740 | /* |
| 1741 | * We schedule a work in order to perform a final processing |
| 1742 | * of outstanding users(if still left) and releasing wait-heads |
| 1743 | * added by rcu_sr_normal_gp_init() call. |
| 1744 | */ |
| 1745 | if (wait_tail->next) { |
| 1746 | atomic_inc(v: &rcu_state.srs_cleanups_pending); |
| 1747 | if (!queue_work(wq: sync_wq, work: &rcu_state.srs_cleanup_work)) |
| 1748 | atomic_dec(v: &rcu_state.srs_cleanups_pending); |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * Helper function for rcu_gp_init(). |
| 1754 | */ |
| 1755 | static bool rcu_sr_normal_gp_init(void) |
| 1756 | { |
| 1757 | struct llist_node *first; |
| 1758 | struct llist_node *wait_head; |
| 1759 | bool start_new_poll = false; |
| 1760 | |
| 1761 | first = READ_ONCE(rcu_state.srs_next.first); |
| 1762 | if (!first || rcu_sr_is_wait_head(node: first)) |
| 1763 | return start_new_poll; |
| 1764 | |
| 1765 | wait_head = rcu_sr_get_wait_head(); |
| 1766 | if (!wait_head) { |
| 1767 | // Kick another GP to retry. |
| 1768 | start_new_poll = true; |
| 1769 | return start_new_poll; |
| 1770 | } |
| 1771 | |
| 1772 | /* Inject a wait-dummy-node. */ |
| 1773 | llist_add(new: wait_head, head: &rcu_state.srs_next); |
| 1774 | |
| 1775 | /* |
| 1776 | * A waiting list of rcu_synchronize nodes should be empty on |
| 1777 | * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), |
| 1778 | * rolls it over. If not, it is a BUG, warn a user. |
| 1779 | */ |
| 1780 | WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); |
| 1781 | rcu_state.srs_wait_tail = wait_head; |
| 1782 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); |
| 1783 | |
| 1784 | return start_new_poll; |
| 1785 | } |
| 1786 | |
| 1787 | static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) |
| 1788 | { |
| 1789 | llist_add(new: (struct llist_node *) &rs->head, head: &rcu_state.srs_next); |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * Initialize a new grace period. Return false if no grace period required. |
| 1794 | */ |
| 1795 | static noinline_for_stack bool rcu_gp_init(void) |
| 1796 | { |
| 1797 | unsigned long flags; |
| 1798 | unsigned long oldmask; |
| 1799 | unsigned long mask; |
| 1800 | struct rcu_data *rdp; |
| 1801 | struct rcu_node *rnp = rcu_get_root(); |
| 1802 | bool start_new_poll; |
| 1803 | unsigned long old_gp_seq; |
| 1804 | |
| 1805 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 1806 | raw_spin_lock_irq_rcu_node(rnp); |
| 1807 | if (!rcu_state.gp_flags) { |
| 1808 | /* Spurious wakeup, tell caller to go back to sleep. */ |
| 1809 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1810 | return false; |
| 1811 | } |
| 1812 | WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ |
| 1813 | |
| 1814 | if (WARN_ON_ONCE(rcu_gp_in_progress())) { |
| 1815 | /* |
| 1816 | * Grace period already in progress, don't start another. |
| 1817 | * Not supposed to be able to happen. |
| 1818 | */ |
| 1819 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1820 | return false; |
| 1821 | } |
| 1822 | |
| 1823 | /* Advance to a new grace period and initialize state. */ |
| 1824 | record_gp_stall_check_time(); |
| 1825 | /* |
| 1826 | * A new wait segment must be started before gp_seq advanced, so |
| 1827 | * that previous gp waiters won't observe the new gp_seq. |
| 1828 | */ |
| 1829 | start_new_poll = rcu_sr_normal_gp_init(); |
| 1830 | /* Record GP times before starting GP, hence rcu_seq_start(). */ |
| 1831 | old_gp_seq = rcu_state.gp_seq; |
| 1832 | rcu_seq_start(sp: &rcu_state.gp_seq); |
| 1833 | /* Ensure that rcu_seq_done_exact() guardband doesn't give false positives. */ |
| 1834 | WARN_ON_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && |
| 1835 | rcu_seq_done_exact(&old_gp_seq, rcu_seq_snap(&rcu_state.gp_seq))); |
| 1836 | |
| 1837 | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); |
| 1838 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("start" )); |
| 1839 | rcu_poll_gp_seq_start(snap: &rcu_state.gp_seq_polled_snap); |
| 1840 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1841 | |
| 1842 | /* |
| 1843 | * The "start_new_poll" is set to true, only when this GP is not able |
| 1844 | * to handle anything and there are outstanding users. It happens when |
| 1845 | * the rcu_sr_normal_gp_init() function was not able to insert a dummy |
| 1846 | * separator to the llist, because there were no left any dummy-nodes. |
| 1847 | * |
| 1848 | * Number of dummy-nodes is fixed, it could be that we are run out of |
| 1849 | * them, if so we start a new pool request to repeat a try. It is rare |
| 1850 | * and it means that a system is doing a slow processing of callbacks. |
| 1851 | */ |
| 1852 | if (start_new_poll) |
| 1853 | (void) start_poll_synchronize_rcu(); |
| 1854 | |
| 1855 | /* |
| 1856 | * Apply per-leaf buffered online and offline operations to |
| 1857 | * the rcu_node tree. Note that this new grace period need not |
| 1858 | * wait for subsequent online CPUs, and that RCU hooks in the CPU |
| 1859 | * offlining path, when combined with checks in this function, |
| 1860 | * will handle CPUs that are currently going offline or that will |
| 1861 | * go offline later. Please also refer to "Hotplug CPU" section |
| 1862 | * of RCU's Requirements documentation. |
| 1863 | */ |
| 1864 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); |
| 1865 | /* Exclude CPU hotplug operations. */ |
| 1866 | rcu_for_each_leaf_node(rnp) { |
| 1867 | local_irq_disable(); |
| 1868 | arch_spin_lock(&rcu_state.ofl_lock); |
| 1869 | raw_spin_lock_rcu_node(rnp); |
| 1870 | if (rnp->qsmaskinit == rnp->qsmaskinitnext && |
| 1871 | !rnp->wait_blkd_tasks) { |
| 1872 | /* Nothing to do on this leaf rcu_node structure. */ |
| 1873 | raw_spin_unlock_rcu_node(rnp); |
| 1874 | arch_spin_unlock(&rcu_state.ofl_lock); |
| 1875 | local_irq_enable(); |
| 1876 | continue; |
| 1877 | } |
| 1878 | |
| 1879 | /* Record old state, apply changes to ->qsmaskinit field. */ |
| 1880 | oldmask = rnp->qsmaskinit; |
| 1881 | rnp->qsmaskinit = rnp->qsmaskinitnext; |
| 1882 | |
| 1883 | /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ |
| 1884 | if (!oldmask != !rnp->qsmaskinit) { |
| 1885 | if (!oldmask) { /* First online CPU for rcu_node. */ |
| 1886 | if (!rnp->wait_blkd_tasks) /* Ever offline? */ |
| 1887 | rcu_init_new_rnp(rnp_leaf: rnp); |
| 1888 | } else if (rcu_preempt_has_tasks(rnp)) { |
| 1889 | rnp->wait_blkd_tasks = true; /* blocked tasks */ |
| 1890 | } else { /* Last offline CPU and can propagate. */ |
| 1891 | rcu_cleanup_dead_rnp(rnp_leaf: rnp); |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | /* |
| 1896 | * If all waited-on tasks from prior grace period are |
| 1897 | * done, and if all this rcu_node structure's CPUs are |
| 1898 | * still offline, propagate up the rcu_node tree and |
| 1899 | * clear ->wait_blkd_tasks. Otherwise, if one of this |
| 1900 | * rcu_node structure's CPUs has since come back online, |
| 1901 | * simply clear ->wait_blkd_tasks. |
| 1902 | */ |
| 1903 | if (rnp->wait_blkd_tasks && |
| 1904 | (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { |
| 1905 | rnp->wait_blkd_tasks = false; |
| 1906 | if (!rnp->qsmaskinit) |
| 1907 | rcu_cleanup_dead_rnp(rnp_leaf: rnp); |
| 1908 | } |
| 1909 | |
| 1910 | raw_spin_unlock_rcu_node(rnp); |
| 1911 | arch_spin_unlock(&rcu_state.ofl_lock); |
| 1912 | local_irq_enable(); |
| 1913 | } |
| 1914 | rcu_gp_slow(delay: gp_preinit_delay); /* Races with CPU hotplug. */ |
| 1915 | |
| 1916 | /* |
| 1917 | * Set the quiescent-state-needed bits in all the rcu_node |
| 1918 | * structures for all currently online CPUs in breadth-first |
| 1919 | * order, starting from the root rcu_node structure, relying on the |
| 1920 | * layout of the tree within the rcu_state.node[] array. Note that |
| 1921 | * other CPUs will access only the leaves of the hierarchy, thus |
| 1922 | * seeing that no grace period is in progress, at least until the |
| 1923 | * corresponding leaf node has been initialized. |
| 1924 | * |
| 1925 | * The grace period cannot complete until the initialization |
| 1926 | * process finishes, because this kthread handles both. |
| 1927 | */ |
| 1928 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); |
| 1929 | rcu_for_each_node_breadth_first(rnp) { |
| 1930 | rcu_gp_slow(delay: gp_init_delay); |
| 1931 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1932 | rdp = this_cpu_ptr(&rcu_data); |
| 1933 | rcu_preempt_check_blocked_tasks(rnp); |
| 1934 | rnp->qsmask = rnp->qsmaskinit; |
| 1935 | WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); |
| 1936 | if (rnp == rdp->mynode) |
| 1937 | (void)__note_gp_changes(rnp, rdp); |
| 1938 | rcu_preempt_boost_start_gp(rnp); |
| 1939 | trace_rcu_grace_period_init(rcuname: rcu_state.name, gp_seq: rnp->gp_seq, |
| 1940 | level: rnp->level, grplo: rnp->grplo, |
| 1941 | grphi: rnp->grphi, qsmask: rnp->qsmask); |
| 1942 | /* Quiescent states for tasks on any now-offline CPUs. */ |
| 1943 | mask = rnp->qsmask & ~rnp->qsmaskinitnext; |
| 1944 | rnp->rcu_gp_init_mask = mask; |
| 1945 | if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) |
| 1946 | rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags); |
| 1947 | else |
| 1948 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1949 | cond_resched_tasks_rcu_qs(); |
| 1950 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 1951 | } |
| 1952 | |
| 1953 | // If strict, make all CPUs aware of new grace period. |
| 1954 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
| 1955 | on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0); |
| 1956 | |
| 1957 | return true; |
| 1958 | } |
| 1959 | |
| 1960 | /* |
| 1961 | * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state |
| 1962 | * time. |
| 1963 | */ |
| 1964 | static bool rcu_gp_fqs_check_wake(int *gfp) |
| 1965 | { |
| 1966 | struct rcu_node *rnp = rcu_get_root(); |
| 1967 | |
| 1968 | // If under overload conditions, force an immediate FQS scan. |
| 1969 | if (*gfp & RCU_GP_FLAG_OVLD) |
| 1970 | return true; |
| 1971 | |
| 1972 | // Someone like call_rcu() requested a force-quiescent-state scan. |
| 1973 | *gfp = READ_ONCE(rcu_state.gp_flags); |
| 1974 | if (*gfp & RCU_GP_FLAG_FQS) |
| 1975 | return true; |
| 1976 | |
| 1977 | // The current grace period has completed. |
| 1978 | if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) |
| 1979 | return true; |
| 1980 | |
| 1981 | return false; |
| 1982 | } |
| 1983 | |
| 1984 | /* |
| 1985 | * Do one round of quiescent-state forcing. |
| 1986 | */ |
| 1987 | static void rcu_gp_fqs(bool first_time) |
| 1988 | { |
| 1989 | int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); |
| 1990 | struct rcu_node *rnp = rcu_get_root(); |
| 1991 | |
| 1992 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 1993 | WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); |
| 1994 | |
| 1995 | WARN_ON_ONCE(nr_fqs > 3); |
| 1996 | /* Only countdown nr_fqs for stall purposes if jiffies moves. */ |
| 1997 | if (nr_fqs) { |
| 1998 | if (nr_fqs == 1) { |
| 1999 | WRITE_ONCE(rcu_state.jiffies_stall, |
| 2000 | jiffies + rcu_jiffies_till_stall_check()); |
| 2001 | } |
| 2002 | WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); |
| 2003 | } |
| 2004 | |
| 2005 | if (first_time) { |
| 2006 | /* Collect dyntick-idle snapshots. */ |
| 2007 | force_qs_rnp(f: rcu_watching_snap_save); |
| 2008 | } else { |
| 2009 | /* Handle dyntick-idle and offline CPUs. */ |
| 2010 | force_qs_rnp(f: rcu_watching_snap_recheck); |
| 2011 | } |
| 2012 | /* Clear flag to prevent immediate re-entry. */ |
| 2013 | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { |
| 2014 | raw_spin_lock_irq_rcu_node(rnp); |
| 2015 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); |
| 2016 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | /* |
| 2021 | * Loop doing repeated quiescent-state forcing until the grace period ends. |
| 2022 | */ |
| 2023 | static noinline_for_stack void rcu_gp_fqs_loop(void) |
| 2024 | { |
| 2025 | bool first_gp_fqs = true; |
| 2026 | int gf = 0; |
| 2027 | unsigned long j; |
| 2028 | int ret; |
| 2029 | struct rcu_node *rnp = rcu_get_root(); |
| 2030 | |
| 2031 | j = READ_ONCE(jiffies_till_first_fqs); |
| 2032 | if (rcu_state.cbovld) |
| 2033 | gf = RCU_GP_FLAG_OVLD; |
| 2034 | ret = 0; |
| 2035 | for (;;) { |
| 2036 | if (rcu_state.cbovld) { |
| 2037 | j = (j + 2) / 3; |
| 2038 | if (j <= 0) |
| 2039 | j = 1; |
| 2040 | } |
| 2041 | if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { |
| 2042 | WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); |
| 2043 | /* |
| 2044 | * jiffies_force_qs before RCU_GP_WAIT_FQS state |
| 2045 | * update; required for stall checks. |
| 2046 | */ |
| 2047 | smp_wmb(); |
| 2048 | WRITE_ONCE(rcu_state.jiffies_kick_kthreads, |
| 2049 | jiffies + (j ? 3 * j : 2)); |
| 2050 | } |
| 2051 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2052 | TPS("fqswait" )); |
| 2053 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); |
| 2054 | (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, |
| 2055 | rcu_gp_fqs_check_wake(&gf), j); |
| 2056 | rcu_gp_torture_wait(); |
| 2057 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); |
| 2058 | /* Locking provides needed memory barriers. */ |
| 2059 | /* |
| 2060 | * Exit the loop if the root rcu_node structure indicates that the grace period |
| 2061 | * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check |
| 2062 | * is required only for single-node rcu_node trees because readers blocking |
| 2063 | * the current grace period are queued only on leaf rcu_node structures. |
| 2064 | * For multi-node trees, checking the root node's ->qsmask suffices, because a |
| 2065 | * given root node's ->qsmask bit is cleared only when all CPUs and tasks from |
| 2066 | * the corresponding leaf nodes have passed through their quiescent state. |
| 2067 | */ |
| 2068 | if (!READ_ONCE(rnp->qsmask) && |
| 2069 | !rcu_preempt_blocked_readers_cgp(rnp)) |
| 2070 | break; |
| 2071 | /* If time for quiescent-state forcing, do it. */ |
| 2072 | if (!time_after(rcu_state.jiffies_force_qs, jiffies) || |
| 2073 | (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { |
| 2074 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2075 | TPS("fqsstart" )); |
| 2076 | rcu_gp_fqs(first_time: first_gp_fqs); |
| 2077 | gf = 0; |
| 2078 | if (first_gp_fqs) { |
| 2079 | first_gp_fqs = false; |
| 2080 | gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; |
| 2081 | } |
| 2082 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2083 | TPS("fqsend" )); |
| 2084 | cond_resched_tasks_rcu_qs(); |
| 2085 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 2086 | ret = 0; /* Force full wait till next FQS. */ |
| 2087 | j = READ_ONCE(jiffies_till_next_fqs); |
| 2088 | } else { |
| 2089 | /* Deal with stray signal. */ |
| 2090 | cond_resched_tasks_rcu_qs(); |
| 2091 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 2092 | WARN_ON(signal_pending(current)); |
| 2093 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2094 | TPS("fqswaitsig" )); |
| 2095 | ret = 1; /* Keep old FQS timing. */ |
| 2096 | j = jiffies; |
| 2097 | if (time_after(jiffies, rcu_state.jiffies_force_qs)) |
| 2098 | j = 1; |
| 2099 | else |
| 2100 | j = rcu_state.jiffies_force_qs - j; |
| 2101 | gf = 0; |
| 2102 | } |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | /* |
| 2107 | * Clean up after the old grace period. |
| 2108 | */ |
| 2109 | static noinline void rcu_gp_cleanup(void) |
| 2110 | { |
| 2111 | int cpu; |
| 2112 | bool needgp = false; |
| 2113 | unsigned long gp_duration; |
| 2114 | unsigned long new_gp_seq; |
| 2115 | bool offloaded; |
| 2116 | struct rcu_data *rdp; |
| 2117 | struct rcu_node *rnp = rcu_get_root(); |
| 2118 | struct swait_queue_head *sq; |
| 2119 | |
| 2120 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 2121 | raw_spin_lock_irq_rcu_node(rnp); |
| 2122 | rcu_state.gp_end = jiffies; |
| 2123 | gp_duration = rcu_state.gp_end - rcu_state.gp_start; |
| 2124 | if (gp_duration > rcu_state.gp_max) |
| 2125 | rcu_state.gp_max = gp_duration; |
| 2126 | |
| 2127 | /* |
| 2128 | * We know the grace period is complete, but to everyone else |
| 2129 | * it appears to still be ongoing. But it is also the case |
| 2130 | * that to everyone else it looks like there is nothing that |
| 2131 | * they can do to advance the grace period. It is therefore |
| 2132 | * safe for us to drop the lock in order to mark the grace |
| 2133 | * period as completed in all of the rcu_node structures. |
| 2134 | */ |
| 2135 | rcu_poll_gp_seq_end(snap: &rcu_state.gp_seq_polled_snap); |
| 2136 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2137 | |
| 2138 | /* |
| 2139 | * Propagate new ->gp_seq value to rcu_node structures so that |
| 2140 | * other CPUs don't have to wait until the start of the next grace |
| 2141 | * period to process their callbacks. This also avoids some nasty |
| 2142 | * RCU grace-period initialization races by forcing the end of |
| 2143 | * the current grace period to be completely recorded in all of |
| 2144 | * the rcu_node structures before the beginning of the next grace |
| 2145 | * period is recorded in any of the rcu_node structures. |
| 2146 | */ |
| 2147 | new_gp_seq = rcu_state.gp_seq; |
| 2148 | rcu_seq_end(sp: &new_gp_seq); |
| 2149 | rcu_for_each_node_breadth_first(rnp) { |
| 2150 | raw_spin_lock_irq_rcu_node(rnp); |
| 2151 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
| 2152 | dump_blkd_tasks(rnp, ncheck: 10); |
| 2153 | WARN_ON_ONCE(rnp->qsmask); |
| 2154 | WRITE_ONCE(rnp->gp_seq, new_gp_seq); |
| 2155 | if (!rnp->parent) |
| 2156 | smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). |
| 2157 | rdp = this_cpu_ptr(&rcu_data); |
| 2158 | if (rnp == rdp->mynode) |
| 2159 | needgp = __note_gp_changes(rnp, rdp) || needgp; |
| 2160 | /* smp_mb() provided by prior unlock-lock pair. */ |
| 2161 | needgp = rcu_future_gp_cleanup(rnp) || needgp; |
| 2162 | // Reset overload indication for CPUs no longer overloaded |
| 2163 | if (rcu_is_leaf_node(rnp)) |
| 2164 | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { |
| 2165 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 2166 | check_cb_ovld_locked(rdp, rnp); |
| 2167 | } |
| 2168 | sq = rcu_nocb_gp_get(rnp); |
| 2169 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2170 | rcu_nocb_gp_cleanup(sq); |
| 2171 | cond_resched_tasks_rcu_qs(); |
| 2172 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 2173 | rcu_gp_slow(delay: gp_cleanup_delay); |
| 2174 | } |
| 2175 | rnp = rcu_get_root(); |
| 2176 | raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ |
| 2177 | |
| 2178 | /* Declare grace period done, trace first to use old GP number. */ |
| 2179 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("end" )); |
| 2180 | rcu_seq_end(sp: &rcu_state.gp_seq); |
| 2181 | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); |
| 2182 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); |
| 2183 | /* Check for GP requests since above loop. */ |
| 2184 | rdp = this_cpu_ptr(&rcu_data); |
| 2185 | if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { |
| 2186 | trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq_needed, |
| 2187 | TPS("CleanupMore" )); |
| 2188 | needgp = true; |
| 2189 | } |
| 2190 | /* Advance CBs to reduce false positives below. */ |
| 2191 | offloaded = rcu_rdp_is_offloaded(rdp); |
| 2192 | if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { |
| 2193 | |
| 2194 | // We get here if a grace period was needed (“needgp”) |
| 2195 | // and the above call to rcu_accelerate_cbs() did not set |
| 2196 | // the RCU_GP_FLAG_INIT bit in ->gp_state (which records |
| 2197 | // the need for another grace period). The purpose |
| 2198 | // of the “offloaded” check is to avoid invoking |
| 2199 | // rcu_accelerate_cbs() on an offloaded CPU because we do not |
| 2200 | // hold the ->nocb_lock needed to safely access an offloaded |
| 2201 | // ->cblist. We do not want to acquire that lock because |
| 2202 | // it can be heavily contended during callback floods. |
| 2203 | |
| 2204 | WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); |
| 2205 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); |
| 2206 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("newreq" )); |
| 2207 | } else { |
| 2208 | |
| 2209 | // We get here either if there is no need for an |
| 2210 | // additional grace period or if rcu_accelerate_cbs() has |
| 2211 | // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. |
| 2212 | // So all we need to do is to clear all of the other |
| 2213 | // ->gp_flags bits. |
| 2214 | |
| 2215 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); |
| 2216 | } |
| 2217 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2218 | |
| 2219 | // Make synchronize_rcu() users aware of the end of old grace period. |
| 2220 | rcu_sr_normal_gp_cleanup(); |
| 2221 | |
| 2222 | // If strict, make all CPUs aware of the end of the old grace period. |
| 2223 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
| 2224 | on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0); |
| 2225 | } |
| 2226 | |
| 2227 | /* |
| 2228 | * Body of kthread that handles grace periods. |
| 2229 | */ |
| 2230 | static int __noreturn rcu_gp_kthread(void *unused) |
| 2231 | { |
| 2232 | rcu_bind_gp_kthread(); |
| 2233 | for (;;) { |
| 2234 | |
| 2235 | /* Handle grace-period start. */ |
| 2236 | for (;;) { |
| 2237 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2238 | TPS("reqwait" )); |
| 2239 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); |
| 2240 | swait_event_idle_exclusive(rcu_state.gp_wq, |
| 2241 | READ_ONCE(rcu_state.gp_flags) & |
| 2242 | RCU_GP_FLAG_INIT); |
| 2243 | rcu_gp_torture_wait(); |
| 2244 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); |
| 2245 | /* Locking provides needed memory barrier. */ |
| 2246 | if (rcu_gp_init()) |
| 2247 | break; |
| 2248 | cond_resched_tasks_rcu_qs(); |
| 2249 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 2250 | WARN_ON(signal_pending(current)); |
| 2251 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, |
| 2252 | TPS("reqwaitsig" )); |
| 2253 | } |
| 2254 | |
| 2255 | /* Handle quiescent-state forcing. */ |
| 2256 | rcu_gp_fqs_loop(); |
| 2257 | |
| 2258 | /* Handle grace-period end. */ |
| 2259 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); |
| 2260 | rcu_gp_cleanup(); |
| 2261 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); |
| 2262 | } |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Report a full set of quiescent states to the rcu_state data structure. |
| 2267 | * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if |
| 2268 | * another grace period is required. Whether we wake the grace-period |
| 2269 | * kthread or it awakens itself for the next round of quiescent-state |
| 2270 | * forcing, that kthread will clean up after the just-completed grace |
| 2271 | * period. Note that the caller must hold rnp->lock, which is released |
| 2272 | * before return. |
| 2273 | */ |
| 2274 | static void rcu_report_qs_rsp(unsigned long flags) |
| 2275 | __releases(rcu_get_root()->lock) |
| 2276 | { |
| 2277 | raw_lockdep_assert_held_rcu_node(rcu_get_root()); |
| 2278 | WARN_ON_ONCE(!rcu_gp_in_progress()); |
| 2279 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); |
| 2280 | raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); |
| 2281 | rcu_gp_kthread_wake(); |
| 2282 | } |
| 2283 | |
| 2284 | /* |
| 2285 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. |
| 2286 | * Allows quiescent states for a group of CPUs to be reported at one go |
| 2287 | * to the specified rcu_node structure, though all the CPUs in the group |
| 2288 | * must be represented by the same rcu_node structure (which need not be a |
| 2289 | * leaf rcu_node structure, though it often will be). The gps parameter |
| 2290 | * is the grace-period snapshot, which means that the quiescent states |
| 2291 | * are valid only if rnp->gp_seq is equal to gps. That structure's lock |
| 2292 | * must be held upon entry, and it is released before return. |
| 2293 | * |
| 2294 | * As a special case, if mask is zero, the bit-already-cleared check is |
| 2295 | * disabled. This allows propagating quiescent state due to resumed tasks |
| 2296 | * during grace-period initialization. |
| 2297 | */ |
| 2298 | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, |
| 2299 | unsigned long gps, unsigned long flags) |
| 2300 | __releases(rnp->lock) |
| 2301 | { |
| 2302 | unsigned long oldmask = 0; |
| 2303 | struct rcu_node *rnp_c; |
| 2304 | |
| 2305 | raw_lockdep_assert_held_rcu_node(rnp); |
| 2306 | |
| 2307 | /* Walk up the rcu_node hierarchy. */ |
| 2308 | for (;;) { |
| 2309 | if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { |
| 2310 | |
| 2311 | /* |
| 2312 | * Our bit has already been cleared, or the |
| 2313 | * relevant grace period is already over, so done. |
| 2314 | */ |
| 2315 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2316 | return; |
| 2317 | } |
| 2318 | WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ |
| 2319 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && |
| 2320 | rcu_preempt_blocked_readers_cgp(rnp)); |
| 2321 | WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); |
| 2322 | trace_rcu_quiescent_state_report(rcuname: rcu_state.name, gp_seq: rnp->gp_seq, |
| 2323 | mask, qsmask: rnp->qsmask, level: rnp->level, |
| 2324 | grplo: rnp->grplo, grphi: rnp->grphi, |
| 2325 | gp_tasks: !!rnp->gp_tasks); |
| 2326 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
| 2327 | |
| 2328 | /* Other bits still set at this level, so done. */ |
| 2329 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2330 | return; |
| 2331 | } |
| 2332 | rnp->completedqs = rnp->gp_seq; |
| 2333 | mask = rnp->grpmask; |
| 2334 | if (rnp->parent == NULL) { |
| 2335 | |
| 2336 | /* No more levels. Exit loop holding root lock. */ |
| 2337 | |
| 2338 | break; |
| 2339 | } |
| 2340 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2341 | rnp_c = rnp; |
| 2342 | rnp = rnp->parent; |
| 2343 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2344 | oldmask = READ_ONCE(rnp_c->qsmask); |
| 2345 | } |
| 2346 | |
| 2347 | /* |
| 2348 | * Get here if we are the last CPU to pass through a quiescent |
| 2349 | * state for this grace period. Invoke rcu_report_qs_rsp() |
| 2350 | * to clean up and start the next grace period if one is needed. |
| 2351 | */ |
| 2352 | rcu_report_qs_rsp(flags); /* releases rnp->lock. */ |
| 2353 | } |
| 2354 | |
| 2355 | /* |
| 2356 | * Record a quiescent state for all tasks that were previously queued |
| 2357 | * on the specified rcu_node structure and that were blocking the current |
| 2358 | * RCU grace period. The caller must hold the corresponding rnp->lock with |
| 2359 | * irqs disabled, and this lock is released upon return, but irqs remain |
| 2360 | * disabled. |
| 2361 | */ |
| 2362 | static void __maybe_unused |
| 2363 | rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
| 2364 | __releases(rnp->lock) |
| 2365 | { |
| 2366 | unsigned long gps; |
| 2367 | unsigned long mask; |
| 2368 | struct rcu_node *rnp_p; |
| 2369 | |
| 2370 | raw_lockdep_assert_held_rcu_node(rnp); |
| 2371 | if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || |
| 2372 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || |
| 2373 | rnp->qsmask != 0) { |
| 2374 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2375 | return; /* Still need more quiescent states! */ |
| 2376 | } |
| 2377 | |
| 2378 | rnp->completedqs = rnp->gp_seq; |
| 2379 | rnp_p = rnp->parent; |
| 2380 | if (rnp_p == NULL) { |
| 2381 | /* |
| 2382 | * Only one rcu_node structure in the tree, so don't |
| 2383 | * try to report up to its nonexistent parent! |
| 2384 | */ |
| 2385 | rcu_report_qs_rsp(flags); |
| 2386 | return; |
| 2387 | } |
| 2388 | |
| 2389 | /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ |
| 2390 | gps = rnp->gp_seq; |
| 2391 | mask = rnp->grpmask; |
| 2392 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 2393 | raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ |
| 2394 | rcu_report_qs_rnp(mask, rnp: rnp_p, gps, flags); |
| 2395 | } |
| 2396 | |
| 2397 | /* |
| 2398 | * Record a quiescent state for the specified CPU to that CPU's rcu_data |
| 2399 | * structure. This must be called from the specified CPU. |
| 2400 | */ |
| 2401 | static void |
| 2402 | rcu_report_qs_rdp(struct rcu_data *rdp) |
| 2403 | { |
| 2404 | unsigned long flags; |
| 2405 | unsigned long mask; |
| 2406 | struct rcu_node *rnp; |
| 2407 | |
| 2408 | WARN_ON_ONCE(rdp->cpu != smp_processor_id()); |
| 2409 | rnp = rdp->mynode; |
| 2410 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2411 | if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || |
| 2412 | rdp->gpwrap) { |
| 2413 | |
| 2414 | /* |
| 2415 | * The grace period in which this quiescent state was |
| 2416 | * recorded has ended, so don't report it upwards. |
| 2417 | * We will instead need a new quiescent state that lies |
| 2418 | * within the current grace period. |
| 2419 | */ |
| 2420 | rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ |
| 2421 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2422 | return; |
| 2423 | } |
| 2424 | mask = rdp->grpmask; |
| 2425 | rdp->core_needs_qs = false; |
| 2426 | if ((rnp->qsmask & mask) == 0) { |
| 2427 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2428 | } else { |
| 2429 | /* |
| 2430 | * This GP can't end until cpu checks in, so all of our |
| 2431 | * callbacks can be processed during the next GP. |
| 2432 | * |
| 2433 | * NOCB kthreads have their own way to deal with that... |
| 2434 | */ |
| 2435 | if (!rcu_rdp_is_offloaded(rdp)) { |
| 2436 | /* |
| 2437 | * The current GP has not yet ended, so it |
| 2438 | * should not be possible for rcu_accelerate_cbs() |
| 2439 | * to return true. So complain, but don't awaken. |
| 2440 | */ |
| 2441 | WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); |
| 2442 | } |
| 2443 | |
| 2444 | rcu_disable_urgency_upon_qs(rdp); |
| 2445 | rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags); |
| 2446 | /* ^^^ Released rnp->lock */ |
| 2447 | } |
| 2448 | } |
| 2449 | |
| 2450 | /* |
| 2451 | * Check to see if there is a new grace period of which this CPU |
| 2452 | * is not yet aware, and if so, set up local rcu_data state for it. |
| 2453 | * Otherwise, see if this CPU has just passed through its first |
| 2454 | * quiescent state for this grace period, and record that fact if so. |
| 2455 | */ |
| 2456 | static void |
| 2457 | rcu_check_quiescent_state(struct rcu_data *rdp) |
| 2458 | { |
| 2459 | /* Check for grace-period ends and beginnings. */ |
| 2460 | note_gp_changes(rdp); |
| 2461 | |
| 2462 | /* |
| 2463 | * Does this CPU still need to do its part for current grace period? |
| 2464 | * If no, return and let the other CPUs do their part as well. |
| 2465 | */ |
| 2466 | if (!rdp->core_needs_qs) |
| 2467 | return; |
| 2468 | |
| 2469 | /* |
| 2470 | * Was there a quiescent state since the beginning of the grace |
| 2471 | * period? If no, then exit and wait for the next call. |
| 2472 | */ |
| 2473 | if (rdp->cpu_no_qs.b.norm) |
| 2474 | return; |
| 2475 | |
| 2476 | /* |
| 2477 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the |
| 2478 | * judge of that). |
| 2479 | */ |
| 2480 | rcu_report_qs_rdp(rdp); |
| 2481 | } |
| 2482 | |
| 2483 | /* Return true if callback-invocation time limit exceeded. */ |
| 2484 | static bool rcu_do_batch_check_time(long count, long tlimit, |
| 2485 | bool jlimit_check, unsigned long jlimit) |
| 2486 | { |
| 2487 | // Invoke local_clock() only once per 32 consecutive callbacks. |
| 2488 | return unlikely(tlimit) && |
| 2489 | (!likely(count & 31) || |
| 2490 | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && |
| 2491 | jlimit_check && time_after(jiffies, jlimit))) && |
| 2492 | local_clock() >= tlimit; |
| 2493 | } |
| 2494 | |
| 2495 | /* |
| 2496 | * Invoke any RCU callbacks that have made it to the end of their grace |
| 2497 | * period. Throttle as specified by rdp->blimit. |
| 2498 | */ |
| 2499 | static void rcu_do_batch(struct rcu_data *rdp) |
| 2500 | { |
| 2501 | long bl; |
| 2502 | long count = 0; |
| 2503 | int div; |
| 2504 | bool __maybe_unused empty; |
| 2505 | unsigned long flags; |
| 2506 | unsigned long jlimit; |
| 2507 | bool jlimit_check = false; |
| 2508 | long pending; |
| 2509 | struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); |
| 2510 | struct rcu_head *rhp; |
| 2511 | long tlimit = 0; |
| 2512 | |
| 2513 | /* If no callbacks are ready, just return. */ |
| 2514 | if (!rcu_segcblist_ready_cbs(rsclp: &rdp->cblist)) { |
| 2515 | trace_rcu_batch_start(rcuname: rcu_state.name, |
| 2516 | qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: 0); |
| 2517 | trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: 0, |
| 2518 | cb: !rcu_segcblist_empty(rsclp: &rdp->cblist), |
| 2519 | nr: need_resched(), iit: is_idle_task(current), |
| 2520 | risk: rcu_is_callbacks_kthread(rdp)); |
| 2521 | return; |
| 2522 | } |
| 2523 | |
| 2524 | /* |
| 2525 | * Extract the list of ready callbacks, disabling IRQs to prevent |
| 2526 | * races with call_rcu() from interrupt handlers. Leave the |
| 2527 | * callback counts, as rcu_barrier() needs to be conservative. |
| 2528 | * |
| 2529 | * Callbacks execution is fully ordered against preceding grace period |
| 2530 | * completion (materialized by rnp->gp_seq update) thanks to the |
| 2531 | * smp_mb__after_unlock_lock() upon node locking required for callbacks |
| 2532 | * advancing. In NOCB mode this ordering is then further relayed through |
| 2533 | * the nocb locking that protects both callbacks advancing and extraction. |
| 2534 | */ |
| 2535 | rcu_nocb_lock_irqsave(rdp, flags); |
| 2536 | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); |
| 2537 | pending = rcu_segcblist_get_seglen(rsclp: &rdp->cblist, RCU_DONE_TAIL); |
| 2538 | div = READ_ONCE(rcu_divisor); |
| 2539 | div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; |
| 2540 | bl = max(rdp->blimit, pending >> div); |
| 2541 | if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && |
| 2542 | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { |
| 2543 | const long npj = NSEC_PER_SEC / HZ; |
| 2544 | long rrn = READ_ONCE(rcu_resched_ns); |
| 2545 | |
| 2546 | rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; |
| 2547 | tlimit = local_clock() + rrn; |
| 2548 | jlimit = jiffies + (rrn + npj + 1) / npj; |
| 2549 | jlimit_check = true; |
| 2550 | } |
| 2551 | trace_rcu_batch_start(rcuname: rcu_state.name, |
| 2552 | qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: bl); |
| 2553 | rcu_segcblist_extract_done_cbs(rsclp: &rdp->cblist, rclp: &rcl); |
| 2554 | if (rcu_rdp_is_offloaded(rdp)) |
| 2555 | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist); |
| 2556 | |
| 2557 | trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbDequeued" )); |
| 2558 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 2559 | |
| 2560 | /* Invoke callbacks. */ |
| 2561 | tick_dep_set_task(current, bit: TICK_DEP_BIT_RCU); |
| 2562 | rhp = rcu_cblist_dequeue(rclp: &rcl); |
| 2563 | |
| 2564 | for (; rhp; rhp = rcu_cblist_dequeue(rclp: &rcl)) { |
| 2565 | rcu_callback_t f; |
| 2566 | |
| 2567 | count++; |
| 2568 | debug_rcu_head_unqueue(head: rhp); |
| 2569 | |
| 2570 | rcu_lock_acquire(map: &rcu_callback_map); |
| 2571 | trace_rcu_invoke_callback(rcuname: rcu_state.name, rhp); |
| 2572 | |
| 2573 | f = rhp->func; |
| 2574 | debug_rcu_head_callback(rhp); |
| 2575 | WRITE_ONCE(rhp->func, (rcu_callback_t)0L); |
| 2576 | f(rhp); |
| 2577 | |
| 2578 | rcu_lock_release(map: &rcu_callback_map); |
| 2579 | |
| 2580 | /* |
| 2581 | * Stop only if limit reached and CPU has something to do. |
| 2582 | */ |
| 2583 | if (in_serving_softirq()) { |
| 2584 | if (count >= bl && (need_resched() || !is_idle_task(current))) |
| 2585 | break; |
| 2586 | /* |
| 2587 | * Make sure we don't spend too much time here and deprive other |
| 2588 | * softirq vectors of CPU cycles. |
| 2589 | */ |
| 2590 | if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) |
| 2591 | break; |
| 2592 | } else { |
| 2593 | // In rcuc/rcuoc context, so no worries about |
| 2594 | // depriving other softirq vectors of CPU cycles. |
| 2595 | local_bh_enable(); |
| 2596 | lockdep_assert_irqs_enabled(); |
| 2597 | cond_resched_tasks_rcu_qs(); |
| 2598 | lockdep_assert_irqs_enabled(); |
| 2599 | local_bh_disable(); |
| 2600 | // But rcuc kthreads can delay quiescent-state |
| 2601 | // reporting, so check time limits for them. |
| 2602 | if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && |
| 2603 | rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { |
| 2604 | rdp->rcu_cpu_has_work = 1; |
| 2605 | break; |
| 2606 | } |
| 2607 | } |
| 2608 | } |
| 2609 | |
| 2610 | rcu_nocb_lock_irqsave(rdp, flags); |
| 2611 | rdp->n_cbs_invoked += count; |
| 2612 | trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: count, cb: !!rcl.head, nr: need_resched(), |
| 2613 | iit: is_idle_task(current), risk: rcu_is_callbacks_kthread(rdp)); |
| 2614 | |
| 2615 | /* Update counts and requeue any remaining callbacks. */ |
| 2616 | rcu_segcblist_insert_done_cbs(rsclp: &rdp->cblist, rclp: &rcl); |
| 2617 | rcu_segcblist_add_len(rsclp: &rdp->cblist, v: -count); |
| 2618 | |
| 2619 | /* Reinstate batch limit if we have worked down the excess. */ |
| 2620 | count = rcu_segcblist_n_cbs(rsclp: &rdp->cblist); |
| 2621 | if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) |
| 2622 | rdp->blimit = blimit; |
| 2623 | |
| 2624 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ |
| 2625 | if (count == 0 && rdp->qlen_last_fqs_check != 0) { |
| 2626 | rdp->qlen_last_fqs_check = 0; |
| 2627 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
| 2628 | } else if (count < rdp->qlen_last_fqs_check - qhimark) |
| 2629 | rdp->qlen_last_fqs_check = count; |
| 2630 | |
| 2631 | /* |
| 2632 | * The following usually indicates a double call_rcu(). To track |
| 2633 | * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. |
| 2634 | */ |
| 2635 | empty = rcu_segcblist_empty(rsclp: &rdp->cblist); |
| 2636 | WARN_ON_ONCE(count == 0 && !empty); |
| 2637 | WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && |
| 2638 | count != 0 && empty); |
| 2639 | WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); |
| 2640 | WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); |
| 2641 | |
| 2642 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 2643 | |
| 2644 | tick_dep_clear_task(current, bit: TICK_DEP_BIT_RCU); |
| 2645 | } |
| 2646 | |
| 2647 | /* |
| 2648 | * This function is invoked from each scheduling-clock interrupt, |
| 2649 | * and checks to see if this CPU is in a non-context-switch quiescent |
| 2650 | * state, for example, user mode or idle loop. It also schedules RCU |
| 2651 | * core processing. If the current grace period has gone on too long, |
| 2652 | * it will ask the scheduler to manufacture a context switch for the sole |
| 2653 | * purpose of providing the needed quiescent state. |
| 2654 | */ |
| 2655 | void rcu_sched_clock_irq(int user) |
| 2656 | { |
| 2657 | unsigned long j; |
| 2658 | |
| 2659 | if (IS_ENABLED(CONFIG_PROVE_RCU)) { |
| 2660 | j = jiffies; |
| 2661 | WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); |
| 2662 | __this_cpu_write(rcu_data.last_sched_clock, j); |
| 2663 | } |
| 2664 | trace_rcu_utilization(TPS("Start scheduler-tick" )); |
| 2665 | lockdep_assert_irqs_disabled(); |
| 2666 | raw_cpu_inc(rcu_data.ticks_this_gp); |
| 2667 | /* The load-acquire pairs with the store-release setting to true. */ |
| 2668 | if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
| 2669 | /* Idle and userspace execution already are quiescent states. */ |
| 2670 | if (!rcu_is_cpu_rrupt_from_idle() && !user) { |
| 2671 | set_tsk_need_resched(current); |
| 2672 | set_preempt_need_resched(); |
| 2673 | } |
| 2674 | __this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| 2675 | } |
| 2676 | rcu_flavor_sched_clock_irq(user); |
| 2677 | if (rcu_pending(user)) |
| 2678 | invoke_rcu_core(); |
| 2679 | if (user || rcu_is_cpu_rrupt_from_idle()) |
| 2680 | rcu_note_voluntary_context_switch(current); |
| 2681 | lockdep_assert_irqs_disabled(); |
| 2682 | |
| 2683 | trace_rcu_utilization(TPS("End scheduler-tick" )); |
| 2684 | } |
| 2685 | |
| 2686 | /* |
| 2687 | * Scan the leaf rcu_node structures. For each structure on which all |
| 2688 | * CPUs have reported a quiescent state and on which there are tasks |
| 2689 | * blocking the current grace period, initiate RCU priority boosting. |
| 2690 | * Otherwise, invoke the specified function to check dyntick state for |
| 2691 | * each CPU that has not yet reported a quiescent state. |
| 2692 | */ |
| 2693 | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) |
| 2694 | { |
| 2695 | int cpu; |
| 2696 | unsigned long flags; |
| 2697 | struct rcu_node *rnp; |
| 2698 | |
| 2699 | rcu_state.cbovld = rcu_state.cbovldnext; |
| 2700 | rcu_state.cbovldnext = false; |
| 2701 | rcu_for_each_leaf_node(rnp) { |
| 2702 | unsigned long mask = 0; |
| 2703 | unsigned long rsmask = 0; |
| 2704 | |
| 2705 | cond_resched_tasks_rcu_qs(); |
| 2706 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2707 | rcu_state.cbovldnext |= !!rnp->cbovldmask; |
| 2708 | if (rnp->qsmask == 0) { |
| 2709 | if (rcu_preempt_blocked_readers_cgp(rnp)) { |
| 2710 | /* |
| 2711 | * No point in scanning bits because they |
| 2712 | * are all zero. But we might need to |
| 2713 | * priority-boost blocked readers. |
| 2714 | */ |
| 2715 | rcu_initiate_boost(rnp, flags); |
| 2716 | /* rcu_initiate_boost() releases rnp->lock */ |
| 2717 | continue; |
| 2718 | } |
| 2719 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2720 | continue; |
| 2721 | } |
| 2722 | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { |
| 2723 | struct rcu_data *rdp; |
| 2724 | int ret; |
| 2725 | |
| 2726 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 2727 | ret = f(rdp); |
| 2728 | if (ret > 0) { |
| 2729 | mask |= rdp->grpmask; |
| 2730 | rcu_disable_urgency_upon_qs(rdp); |
| 2731 | } |
| 2732 | if (ret < 0) |
| 2733 | rsmask |= rdp->grpmask; |
| 2734 | } |
| 2735 | if (mask != 0) { |
| 2736 | /* Idle/offline CPUs, report (releases rnp->lock). */ |
| 2737 | rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags); |
| 2738 | } else { |
| 2739 | /* Nothing to do here, so just drop the lock. */ |
| 2740 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2741 | } |
| 2742 | |
| 2743 | for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) |
| 2744 | resched_cpu(cpu); |
| 2745 | } |
| 2746 | } |
| 2747 | |
| 2748 | /* |
| 2749 | * Force quiescent states on reluctant CPUs, and also detect which |
| 2750 | * CPUs are in dyntick-idle mode. |
| 2751 | */ |
| 2752 | void rcu_force_quiescent_state(void) |
| 2753 | { |
| 2754 | unsigned long flags; |
| 2755 | bool ret; |
| 2756 | struct rcu_node *rnp; |
| 2757 | struct rcu_node *rnp_old = NULL; |
| 2758 | |
| 2759 | if (!rcu_gp_in_progress()) |
| 2760 | return; |
| 2761 | /* Funnel through hierarchy to reduce memory contention. */ |
| 2762 | rnp = raw_cpu_read(rcu_data.mynode); |
| 2763 | for (; rnp != NULL; rnp = rnp->parent) { |
| 2764 | ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || |
| 2765 | !raw_spin_trylock(&rnp->fqslock); |
| 2766 | if (rnp_old != NULL) |
| 2767 | raw_spin_unlock(&rnp_old->fqslock); |
| 2768 | if (ret) |
| 2769 | return; |
| 2770 | rnp_old = rnp; |
| 2771 | } |
| 2772 | /* rnp_old == rcu_get_root(), rnp == NULL. */ |
| 2773 | |
| 2774 | /* Reached the root of the rcu_node tree, acquire lock. */ |
| 2775 | raw_spin_lock_irqsave_rcu_node(rnp_old, flags); |
| 2776 | raw_spin_unlock(&rnp_old->fqslock); |
| 2777 | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { |
| 2778 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
| 2779 | return; /* Someone beat us to it. */ |
| 2780 | } |
| 2781 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); |
| 2782 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
| 2783 | rcu_gp_kthread_wake(); |
| 2784 | } |
| 2785 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); |
| 2786 | |
| 2787 | // Workqueue handler for an RCU reader for kernels enforcing struct RCU |
| 2788 | // grace periods. |
| 2789 | static void strict_work_handler(struct work_struct *work) |
| 2790 | { |
| 2791 | rcu_read_lock(); |
| 2792 | rcu_read_unlock(); |
| 2793 | } |
| 2794 | |
| 2795 | /* Perform RCU core processing work for the current CPU. */ |
| 2796 | static __latent_entropy void rcu_core(void) |
| 2797 | { |
| 2798 | unsigned long flags; |
| 2799 | struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); |
| 2800 | struct rcu_node *rnp = rdp->mynode; |
| 2801 | |
| 2802 | if (cpu_is_offline(smp_processor_id())) |
| 2803 | return; |
| 2804 | trace_rcu_utilization(TPS("Start RCU core" )); |
| 2805 | WARN_ON_ONCE(!rdp->beenonline); |
| 2806 | |
| 2807 | /* Report any deferred quiescent states if preemption enabled. */ |
| 2808 | if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { |
| 2809 | rcu_preempt_deferred_qs(current); |
| 2810 | } else if (rcu_preempt_need_deferred_qs(current)) { |
| 2811 | set_tsk_need_resched(current); |
| 2812 | set_preempt_need_resched(); |
| 2813 | } |
| 2814 | |
| 2815 | /* Update RCU state based on any recent quiescent states. */ |
| 2816 | rcu_check_quiescent_state(rdp); |
| 2817 | |
| 2818 | /* No grace period and unregistered callbacks? */ |
| 2819 | if (!rcu_gp_in_progress() && |
| 2820 | rcu_segcblist_is_enabled(rsclp: &rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) { |
| 2821 | local_irq_save(flags); |
| 2822 | if (!rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL)) |
| 2823 | rcu_accelerate_cbs_unlocked(rnp, rdp); |
| 2824 | local_irq_restore(flags); |
| 2825 | } |
| 2826 | |
| 2827 | rcu_check_gp_start_stall(rnp, rdp, gpssdelay: rcu_jiffies_till_stall_check()); |
| 2828 | |
| 2829 | /* If there are callbacks ready, invoke them. */ |
| 2830 | if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(rsclp: &rdp->cblist) && |
| 2831 | likely(READ_ONCE(rcu_scheduler_fully_active))) { |
| 2832 | rcu_do_batch(rdp); |
| 2833 | /* Re-invoke RCU core processing if there are callbacks remaining. */ |
| 2834 | if (rcu_segcblist_ready_cbs(rsclp: &rdp->cblist)) |
| 2835 | invoke_rcu_core(); |
| 2836 | } |
| 2837 | |
| 2838 | /* Do any needed deferred wakeups of rcuo kthreads. */ |
| 2839 | do_nocb_deferred_wakeup(rdp); |
| 2840 | trace_rcu_utilization(TPS("End RCU core" )); |
| 2841 | |
| 2842 | // If strict GPs, schedule an RCU reader in a clean environment. |
| 2843 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
| 2844 | queue_work_on(cpu: rdp->cpu, wq: rcu_gp_wq, work: &rdp->strict_work); |
| 2845 | } |
| 2846 | |
| 2847 | static void rcu_core_si(void) |
| 2848 | { |
| 2849 | rcu_core(); |
| 2850 | } |
| 2851 | |
| 2852 | static void rcu_wake_cond(struct task_struct *t, int status) |
| 2853 | { |
| 2854 | /* |
| 2855 | * If the thread is yielding, only wake it when this |
| 2856 | * is invoked from idle |
| 2857 | */ |
| 2858 | if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) |
| 2859 | wake_up_process(tsk: t); |
| 2860 | } |
| 2861 | |
| 2862 | static void invoke_rcu_core_kthread(void) |
| 2863 | { |
| 2864 | struct task_struct *t; |
| 2865 | unsigned long flags; |
| 2866 | |
| 2867 | local_irq_save(flags); |
| 2868 | __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); |
| 2869 | t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); |
| 2870 | if (t != NULL && t != current) |
| 2871 | rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); |
| 2872 | local_irq_restore(flags); |
| 2873 | } |
| 2874 | |
| 2875 | /* |
| 2876 | * Wake up this CPU's rcuc kthread to do RCU core processing. |
| 2877 | */ |
| 2878 | static void invoke_rcu_core(void) |
| 2879 | { |
| 2880 | if (!cpu_online(smp_processor_id())) |
| 2881 | return; |
| 2882 | if (use_softirq) |
| 2883 | raise_softirq(nr: RCU_SOFTIRQ); |
| 2884 | else |
| 2885 | invoke_rcu_core_kthread(); |
| 2886 | } |
| 2887 | |
| 2888 | static void rcu_cpu_kthread_park(unsigned int cpu) |
| 2889 | { |
| 2890 | per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
| 2891 | } |
| 2892 | |
| 2893 | static int rcu_cpu_kthread_should_run(unsigned int cpu) |
| 2894 | { |
| 2895 | return __this_cpu_read(rcu_data.rcu_cpu_has_work); |
| 2896 | } |
| 2897 | |
| 2898 | /* |
| 2899 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces |
| 2900 | * the RCU softirq used in configurations of RCU that do not support RCU |
| 2901 | * priority boosting. |
| 2902 | */ |
| 2903 | static void rcu_cpu_kthread(unsigned int cpu) |
| 2904 | { |
| 2905 | unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); |
| 2906 | char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); |
| 2907 | unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); |
| 2908 | int spincnt; |
| 2909 | |
| 2910 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_run" )); |
| 2911 | for (spincnt = 0; spincnt < 10; spincnt++) { |
| 2912 | WRITE_ONCE(*j, jiffies); |
| 2913 | local_bh_disable(); |
| 2914 | *statusp = RCU_KTHREAD_RUNNING; |
| 2915 | local_irq_disable(); |
| 2916 | work = *workp; |
| 2917 | WRITE_ONCE(*workp, 0); |
| 2918 | local_irq_enable(); |
| 2919 | if (work) |
| 2920 | rcu_core(); |
| 2921 | local_bh_enable(); |
| 2922 | if (!READ_ONCE(*workp)) { |
| 2923 | trace_rcu_utilization(TPS("End CPU kthread@rcu_wait" )); |
| 2924 | *statusp = RCU_KTHREAD_WAITING; |
| 2925 | return; |
| 2926 | } |
| 2927 | } |
| 2928 | *statusp = RCU_KTHREAD_YIELDING; |
| 2929 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield" )); |
| 2930 | schedule_timeout_idle(timeout: 2); |
| 2931 | trace_rcu_utilization(TPS("End CPU kthread@rcu_yield" )); |
| 2932 | *statusp = RCU_KTHREAD_WAITING; |
| 2933 | WRITE_ONCE(*j, jiffies); |
| 2934 | } |
| 2935 | |
| 2936 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
| 2937 | .store = &rcu_data.rcu_cpu_kthread_task, |
| 2938 | .thread_should_run = rcu_cpu_kthread_should_run, |
| 2939 | .thread_fn = rcu_cpu_kthread, |
| 2940 | .thread_comm = "rcuc/%u" , |
| 2941 | .setup = rcu_cpu_kthread_setup, |
| 2942 | .park = rcu_cpu_kthread_park, |
| 2943 | }; |
| 2944 | |
| 2945 | /* |
| 2946 | * Spawn per-CPU RCU core processing kthreads. |
| 2947 | */ |
| 2948 | static int __init rcu_spawn_core_kthreads(void) |
| 2949 | { |
| 2950 | int cpu; |
| 2951 | |
| 2952 | for_each_possible_cpu(cpu) |
| 2953 | per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; |
| 2954 | if (use_softirq) |
| 2955 | return 0; |
| 2956 | WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), |
| 2957 | "%s: Could not start rcuc kthread, OOM is now expected behavior\n" , __func__); |
| 2958 | return 0; |
| 2959 | } |
| 2960 | |
| 2961 | static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) |
| 2962 | { |
| 2963 | rcu_segcblist_enqueue(rsclp: &rdp->cblist, rhp: head); |
| 2964 | trace_rcu_callback(rcuname: rcu_state.name, rhp: head, |
| 2965 | qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist)); |
| 2966 | trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCBQueued" )); |
| 2967 | } |
| 2968 | |
| 2969 | /* |
| 2970 | * Handle any core-RCU processing required by a call_rcu() invocation. |
| 2971 | */ |
| 2972 | static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, |
| 2973 | rcu_callback_t func, unsigned long flags) |
| 2974 | { |
| 2975 | rcutree_enqueue(rdp, head, func); |
| 2976 | /* |
| 2977 | * If called from an extended quiescent state, invoke the RCU |
| 2978 | * core in order to force a re-evaluation of RCU's idleness. |
| 2979 | */ |
| 2980 | if (!rcu_is_watching()) |
| 2981 | invoke_rcu_core(); |
| 2982 | |
| 2983 | /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ |
| 2984 | if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) |
| 2985 | return; |
| 2986 | |
| 2987 | /* |
| 2988 | * Force the grace period if too many callbacks or too long waiting. |
| 2989 | * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() |
| 2990 | * if some other CPU has recently done so. Also, don't bother |
| 2991 | * invoking rcu_force_quiescent_state() if the newly enqueued callback |
| 2992 | * is the only one waiting for a grace period to complete. |
| 2993 | */ |
| 2994 | if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > |
| 2995 | rdp->qlen_last_fqs_check + qhimark)) { |
| 2996 | |
| 2997 | /* Are we ignoring a completed grace period? */ |
| 2998 | note_gp_changes(rdp); |
| 2999 | |
| 3000 | /* Start a new grace period if one not already started. */ |
| 3001 | if (!rcu_gp_in_progress()) { |
| 3002 | rcu_accelerate_cbs_unlocked(rnp: rdp->mynode, rdp); |
| 3003 | } else { |
| 3004 | /* Give the grace period a kick. */ |
| 3005 | rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; |
| 3006 | if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && |
| 3007 | rcu_segcblist_first_pend_cb(rsclp: &rdp->cblist) != head) |
| 3008 | rcu_force_quiescent_state(); |
| 3009 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
| 3010 | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist); |
| 3011 | } |
| 3012 | } |
| 3013 | } |
| 3014 | |
| 3015 | /* |
| 3016 | * RCU callback function to leak a callback. |
| 3017 | */ |
| 3018 | static void rcu_leak_callback(struct rcu_head *rhp) |
| 3019 | { |
| 3020 | } |
| 3021 | |
| 3022 | /* |
| 3023 | * Check and if necessary update the leaf rcu_node structure's |
| 3024 | * ->cbovldmask bit corresponding to the current CPU based on that CPU's |
| 3025 | * number of queued RCU callbacks. The caller must hold the leaf rcu_node |
| 3026 | * structure's ->lock. |
| 3027 | */ |
| 3028 | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) |
| 3029 | { |
| 3030 | raw_lockdep_assert_held_rcu_node(rnp); |
| 3031 | if (qovld_calc <= 0) |
| 3032 | return; // Early boot and wildcard value set. |
| 3033 | if (rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc) |
| 3034 | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); |
| 3035 | else |
| 3036 | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); |
| 3037 | } |
| 3038 | |
| 3039 | /* |
| 3040 | * Check and if necessary update the leaf rcu_node structure's |
| 3041 | * ->cbovldmask bit corresponding to the current CPU based on that CPU's |
| 3042 | * number of queued RCU callbacks. No locks need be held, but the |
| 3043 | * caller must have disabled interrupts. |
| 3044 | * |
| 3045 | * Note that this function ignores the possibility that there are a lot |
| 3046 | * of callbacks all of which have already seen the end of their respective |
| 3047 | * grace periods. This omission is due to the need for no-CBs CPUs to |
| 3048 | * be holding ->nocb_lock to do this check, which is too heavy for a |
| 3049 | * common-case operation. |
| 3050 | */ |
| 3051 | static void check_cb_ovld(struct rcu_data *rdp) |
| 3052 | { |
| 3053 | struct rcu_node *const rnp = rdp->mynode; |
| 3054 | |
| 3055 | if (qovld_calc <= 0 || |
| 3056 | ((rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc) == |
| 3057 | !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) |
| 3058 | return; // Early boot wildcard value or already set correctly. |
| 3059 | raw_spin_lock_rcu_node(rnp); |
| 3060 | check_cb_ovld_locked(rdp, rnp); |
| 3061 | raw_spin_unlock_rcu_node(rnp); |
| 3062 | } |
| 3063 | |
| 3064 | static void |
| 3065 | __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) |
| 3066 | { |
| 3067 | static atomic_t doublefrees; |
| 3068 | unsigned long flags; |
| 3069 | bool lazy; |
| 3070 | struct rcu_data *rdp; |
| 3071 | |
| 3072 | /* Misaligned rcu_head! */ |
| 3073 | WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); |
| 3074 | |
| 3075 | if (debug_rcu_head_queue(head)) { |
| 3076 | /* |
| 3077 | * Probable double call_rcu(), so leak the callback. |
| 3078 | * Use rcu:rcu_callback trace event to find the previous |
| 3079 | * time callback was passed to call_rcu(). |
| 3080 | */ |
| 3081 | if (atomic_inc_return(v: &doublefrees) < 4) { |
| 3082 | pr_err("%s(): Double-freed CB %p->%pS()!!! " , __func__, head, head->func); |
| 3083 | mem_dump_obj(object: head); |
| 3084 | } |
| 3085 | WRITE_ONCE(head->func, rcu_leak_callback); |
| 3086 | return; |
| 3087 | } |
| 3088 | head->func = func; |
| 3089 | head->next = NULL; |
| 3090 | kasan_record_aux_stack(ptr: head); |
| 3091 | |
| 3092 | local_irq_save(flags); |
| 3093 | rdp = this_cpu_ptr(&rcu_data); |
| 3094 | RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!" ); |
| 3095 | |
| 3096 | lazy = lazy_in && !rcu_async_should_hurry(); |
| 3097 | |
| 3098 | /* Add the callback to our list. */ |
| 3099 | if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { |
| 3100 | // This can trigger due to call_rcu() from offline CPU: |
| 3101 | WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); |
| 3102 | WARN_ON_ONCE(!rcu_is_watching()); |
| 3103 | // Very early boot, before rcu_init(). Initialize if needed |
| 3104 | // and then drop through to queue the callback. |
| 3105 | if (rcu_segcblist_empty(rsclp: &rdp->cblist)) |
| 3106 | rcu_segcblist_init(rsclp: &rdp->cblist); |
| 3107 | } |
| 3108 | |
| 3109 | check_cb_ovld(rdp); |
| 3110 | |
| 3111 | if (unlikely(rcu_rdp_is_offloaded(rdp))) |
| 3112 | call_rcu_nocb(rdp, head, func, flags, lazy); |
| 3113 | else |
| 3114 | call_rcu_core(rdp, head, func, flags); |
| 3115 | local_irq_restore(flags); |
| 3116 | } |
| 3117 | |
| 3118 | #ifdef CONFIG_RCU_LAZY |
| 3119 | static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); |
| 3120 | module_param(enable_rcu_lazy, bool, 0444); |
| 3121 | |
| 3122 | /** |
| 3123 | * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and |
| 3124 | * flush all lazy callbacks (including the new one) to the main ->cblist while |
| 3125 | * doing so. |
| 3126 | * |
| 3127 | * @head: structure to be used for queueing the RCU updates. |
| 3128 | * @func: actual callback function to be invoked after the grace period |
| 3129 | * |
| 3130 | * The callback function will be invoked some time after a full grace |
| 3131 | * period elapses, in other words after all pre-existing RCU read-side |
| 3132 | * critical sections have completed. |
| 3133 | * |
| 3134 | * Use this API instead of call_rcu() if you don't want the callback to be |
| 3135 | * delayed for very long periods of time, which can happen on systems without |
| 3136 | * memory pressure and on systems which are lightly loaded or mostly idle. |
| 3137 | * This function will cause callbacks to be invoked sooner than later at the |
| 3138 | * expense of extra power. Other than that, this function is identical to, and |
| 3139 | * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory |
| 3140 | * ordering and other functionality. |
| 3141 | */ |
| 3142 | void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) |
| 3143 | { |
| 3144 | __call_rcu_common(head, func, lazy_in: false); |
| 3145 | } |
| 3146 | EXPORT_SYMBOL_GPL(call_rcu_hurry); |
| 3147 | #else |
| 3148 | #define enable_rcu_lazy false |
| 3149 | #endif |
| 3150 | |
| 3151 | /** |
| 3152 | * call_rcu() - Queue an RCU callback for invocation after a grace period. |
| 3153 | * By default the callbacks are 'lazy' and are kept hidden from the main |
| 3154 | * ->cblist to prevent starting of grace periods too soon. |
| 3155 | * If you desire grace periods to start very soon, use call_rcu_hurry(). |
| 3156 | * |
| 3157 | * @head: structure to be used for queueing the RCU updates. |
| 3158 | * @func: actual callback function to be invoked after the grace period |
| 3159 | * |
| 3160 | * The callback function will be invoked some time after a full grace |
| 3161 | * period elapses, in other words after all pre-existing RCU read-side |
| 3162 | * critical sections have completed. However, the callback function |
| 3163 | * might well execute concurrently with RCU read-side critical sections |
| 3164 | * that started after call_rcu() was invoked. |
| 3165 | * |
| 3166 | * It is perfectly legal to repost an RCU callback, potentially with |
| 3167 | * a different callback function, from within its callback function. |
| 3168 | * The specified function will be invoked after another full grace period |
| 3169 | * has elapsed. This use case is similar in form to the common practice |
| 3170 | * of reposting a timer from within its own handler. |
| 3171 | * |
| 3172 | * RCU read-side critical sections are delimited by rcu_read_lock() |
| 3173 | * and rcu_read_unlock(), and may be nested. In addition, but only in |
| 3174 | * v5.0 and later, regions of code across which interrupts, preemption, |
| 3175 | * or softirqs have been disabled also serve as RCU read-side critical |
| 3176 | * sections. This includes hardware interrupt handlers, softirq handlers, |
| 3177 | * and NMI handlers. |
| 3178 | * |
| 3179 | * Note that all CPUs must agree that the grace period extended beyond |
| 3180 | * all pre-existing RCU read-side critical section. On systems with more |
| 3181 | * than one CPU, this means that when "func()" is invoked, each CPU is |
| 3182 | * guaranteed to have executed a full memory barrier since the end of its |
| 3183 | * last RCU read-side critical section whose beginning preceded the call |
| 3184 | * to call_rcu(). It also means that each CPU executing an RCU read-side |
| 3185 | * critical section that continues beyond the start of "func()" must have |
| 3186 | * executed a memory barrier after the call_rcu() but before the beginning |
| 3187 | * of that RCU read-side critical section. Note that these guarantees |
| 3188 | * include CPUs that are offline, idle, or executing in user mode, as |
| 3189 | * well as CPUs that are executing in the kernel. |
| 3190 | * |
| 3191 | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the |
| 3192 | * resulting RCU callback function "func()", then both CPU A and CPU B are |
| 3193 | * guaranteed to execute a full memory barrier during the time interval |
| 3194 | * between the call to call_rcu() and the invocation of "func()" -- even |
| 3195 | * if CPU A and CPU B are the same CPU (but again only if the system has |
| 3196 | * more than one CPU). |
| 3197 | * |
| 3198 | * Implementation of these memory-ordering guarantees is described here: |
| 3199 | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. |
| 3200 | * |
| 3201 | * Specific to call_rcu() (as opposed to the other call_rcu*() functions), |
| 3202 | * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many |
| 3203 | * seconds before starting the grace period needed by the corresponding |
| 3204 | * callback. This delay can significantly improve energy-efficiency |
| 3205 | * on low-utilization battery-powered devices. To avoid this delay, |
| 3206 | * in latency-sensitive kernel code, use call_rcu_hurry(). |
| 3207 | */ |
| 3208 | void call_rcu(struct rcu_head *head, rcu_callback_t func) |
| 3209 | { |
| 3210 | __call_rcu_common(head, func, lazy_in: enable_rcu_lazy); |
| 3211 | } |
| 3212 | EXPORT_SYMBOL_GPL(call_rcu); |
| 3213 | |
| 3214 | /* |
| 3215 | * During early boot, any blocking grace-period wait automatically |
| 3216 | * implies a grace period. |
| 3217 | * |
| 3218 | * Later on, this could in theory be the case for kernels built with |
| 3219 | * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this |
| 3220 | * is not a common case. Furthermore, this optimization would cause |
| 3221 | * the rcu_gp_oldstate structure to expand by 50%, so this potential |
| 3222 | * grace-period optimization is ignored once the scheduler is running. |
| 3223 | */ |
| 3224 | static int rcu_blocking_is_gp(void) |
| 3225 | { |
| 3226 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { |
| 3227 | might_sleep(); |
| 3228 | return false; |
| 3229 | } |
| 3230 | return true; |
| 3231 | } |
| 3232 | |
| 3233 | /* |
| 3234 | * Helper function for the synchronize_rcu() API. |
| 3235 | */ |
| 3236 | static void synchronize_rcu_normal(void) |
| 3237 | { |
| 3238 | struct rcu_synchronize rs; |
| 3239 | |
| 3240 | trace_rcu_sr_normal(rcuname: rcu_state.name, rhp: &rs.head, TPS("request" )); |
| 3241 | |
| 3242 | if (!READ_ONCE(rcu_normal_wake_from_gp)) { |
| 3243 | wait_rcu_gp(call_rcu_hurry); |
| 3244 | goto trace_complete_out; |
| 3245 | } |
| 3246 | |
| 3247 | init_rcu_head_on_stack(head: &rs.head); |
| 3248 | init_completion(x: &rs.completion); |
| 3249 | |
| 3250 | /* |
| 3251 | * This code might be preempted, therefore take a GP |
| 3252 | * snapshot before adding a request. |
| 3253 | */ |
| 3254 | if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| 3255 | get_state_synchronize_rcu_full(rgosp: &rs.oldstate); |
| 3256 | |
| 3257 | rcu_sr_normal_add_req(rs: &rs); |
| 3258 | |
| 3259 | /* Kick a GP and start waiting. */ |
| 3260 | (void) start_poll_synchronize_rcu(); |
| 3261 | |
| 3262 | /* Now we can wait. */ |
| 3263 | wait_for_completion(&rs.completion); |
| 3264 | destroy_rcu_head_on_stack(head: &rs.head); |
| 3265 | |
| 3266 | trace_complete_out: |
| 3267 | trace_rcu_sr_normal(rcuname: rcu_state.name, rhp: &rs.head, TPS("complete" )); |
| 3268 | } |
| 3269 | |
| 3270 | /** |
| 3271 | * synchronize_rcu - wait until a grace period has elapsed. |
| 3272 | * |
| 3273 | * Control will return to the caller some time after a full grace |
| 3274 | * period has elapsed, in other words after all currently executing RCU |
| 3275 | * read-side critical sections have completed. Note, however, that |
| 3276 | * upon return from synchronize_rcu(), the caller might well be executing |
| 3277 | * concurrently with new RCU read-side critical sections that began while |
| 3278 | * synchronize_rcu() was waiting. |
| 3279 | * |
| 3280 | * RCU read-side critical sections are delimited by rcu_read_lock() |
| 3281 | * and rcu_read_unlock(), and may be nested. In addition, but only in |
| 3282 | * v5.0 and later, regions of code across which interrupts, preemption, |
| 3283 | * or softirqs have been disabled also serve as RCU read-side critical |
| 3284 | * sections. This includes hardware interrupt handlers, softirq handlers, |
| 3285 | * and NMI handlers. |
| 3286 | * |
| 3287 | * Note that this guarantee implies further memory-ordering guarantees. |
| 3288 | * On systems with more than one CPU, when synchronize_rcu() returns, |
| 3289 | * each CPU is guaranteed to have executed a full memory barrier since |
| 3290 | * the end of its last RCU read-side critical section whose beginning |
| 3291 | * preceded the call to synchronize_rcu(). In addition, each CPU having |
| 3292 | * an RCU read-side critical section that extends beyond the return from |
| 3293 | * synchronize_rcu() is guaranteed to have executed a full memory barrier |
| 3294 | * after the beginning of synchronize_rcu() and before the beginning of |
| 3295 | * that RCU read-side critical section. Note that these guarantees include |
| 3296 | * CPUs that are offline, idle, or executing in user mode, as well as CPUs |
| 3297 | * that are executing in the kernel. |
| 3298 | * |
| 3299 | * Furthermore, if CPU A invoked synchronize_rcu(), which returned |
| 3300 | * to its caller on CPU B, then both CPU A and CPU B are guaranteed |
| 3301 | * to have executed a full memory barrier during the execution of |
| 3302 | * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but |
| 3303 | * again only if the system has more than one CPU). |
| 3304 | * |
| 3305 | * Implementation of these memory-ordering guarantees is described here: |
| 3306 | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. |
| 3307 | */ |
| 3308 | void synchronize_rcu(void) |
| 3309 | { |
| 3310 | unsigned long flags; |
| 3311 | struct rcu_node *rnp; |
| 3312 | |
| 3313 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| 3314 | lock_is_held(&rcu_lock_map) || |
| 3315 | lock_is_held(&rcu_sched_lock_map), |
| 3316 | "Illegal synchronize_rcu() in RCU read-side critical section" ); |
| 3317 | if (!rcu_blocking_is_gp()) { |
| 3318 | if (rcu_gp_is_expedited()) |
| 3319 | synchronize_rcu_expedited(); |
| 3320 | else |
| 3321 | synchronize_rcu_normal(); |
| 3322 | return; |
| 3323 | } |
| 3324 | |
| 3325 | // Context allows vacuous grace periods. |
| 3326 | // Note well that this code runs with !PREEMPT && !SMP. |
| 3327 | // In addition, all code that advances grace periods runs at |
| 3328 | // process level. Therefore, this normal GP overlaps with other |
| 3329 | // normal GPs only by being fully nested within them, which allows |
| 3330 | // reuse of ->gp_seq_polled_snap. |
| 3331 | rcu_poll_gp_seq_start_unlocked(snap: &rcu_state.gp_seq_polled_snap); |
| 3332 | rcu_poll_gp_seq_end_unlocked(snap: &rcu_state.gp_seq_polled_snap); |
| 3333 | |
| 3334 | // Update the normal grace-period counters to record |
| 3335 | // this grace period, but only those used by the boot CPU. |
| 3336 | // The rcu_scheduler_starting() will take care of the rest of |
| 3337 | // these counters. |
| 3338 | local_irq_save(flags); |
| 3339 | WARN_ON_ONCE(num_online_cpus() > 1); |
| 3340 | rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); |
| 3341 | for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) |
| 3342 | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; |
| 3343 | local_irq_restore(flags); |
| 3344 | } |
| 3345 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
| 3346 | |
| 3347 | /** |
| 3348 | * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie |
| 3349 | * @rgosp: Place to put state cookie |
| 3350 | * |
| 3351 | * Stores into @rgosp a value that will always be treated by functions |
| 3352 | * like poll_state_synchronize_rcu_full() as a cookie whose grace period |
| 3353 | * has already completed. |
| 3354 | */ |
| 3355 | void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
| 3356 | { |
| 3357 | rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; |
| 3358 | rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; |
| 3359 | } |
| 3360 | EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); |
| 3361 | |
| 3362 | /** |
| 3363 | * get_state_synchronize_rcu - Snapshot current RCU state |
| 3364 | * |
| 3365 | * Returns a cookie that is used by a later call to cond_synchronize_rcu() |
| 3366 | * or poll_state_synchronize_rcu() to determine whether or not a full |
| 3367 | * grace period has elapsed in the meantime. |
| 3368 | */ |
| 3369 | unsigned long get_state_synchronize_rcu(void) |
| 3370 | { |
| 3371 | /* |
| 3372 | * Any prior manipulation of RCU-protected data must happen |
| 3373 | * before the load from ->gp_seq. |
| 3374 | */ |
| 3375 | smp_mb(); /* ^^^ */ |
| 3376 | return rcu_seq_snap(sp: &rcu_state.gp_seq_polled); |
| 3377 | } |
| 3378 | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); |
| 3379 | |
| 3380 | /** |
| 3381 | * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited |
| 3382 | * @rgosp: location to place combined normal/expedited grace-period state |
| 3383 | * |
| 3384 | * Places the normal and expedited grace-period states in @rgosp. This |
| 3385 | * state value can be passed to a later call to cond_synchronize_rcu_full() |
| 3386 | * or poll_state_synchronize_rcu_full() to determine whether or not a |
| 3387 | * grace period (whether normal or expedited) has elapsed in the meantime. |
| 3388 | * The rcu_gp_oldstate structure takes up twice the memory of an unsigned |
| 3389 | * long, but is guaranteed to see all grace periods. In contrast, the |
| 3390 | * combined state occupies less memory, but can sometimes fail to take |
| 3391 | * grace periods into account. |
| 3392 | * |
| 3393 | * This does not guarantee that the needed grace period will actually |
| 3394 | * start. |
| 3395 | */ |
| 3396 | void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
| 3397 | { |
| 3398 | /* |
| 3399 | * Any prior manipulation of RCU-protected data must happen |
| 3400 | * before the loads from ->gp_seq and ->expedited_sequence. |
| 3401 | */ |
| 3402 | smp_mb(); /* ^^^ */ |
| 3403 | |
| 3404 | // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use |
| 3405 | // in poll_state_synchronize_rcu_full() notwithstanding. Use of |
| 3406 | // the latter here would result in too-short grace periods due to |
| 3407 | // interactions with newly onlined CPUs. |
| 3408 | rgosp->rgos_norm = rcu_seq_snap(sp: &rcu_state.gp_seq); |
| 3409 | rgosp->rgos_exp = rcu_seq_snap(sp: &rcu_state.expedited_sequence); |
| 3410 | } |
| 3411 | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); |
| 3412 | |
| 3413 | /* |
| 3414 | * Helper function for start_poll_synchronize_rcu() and |
| 3415 | * start_poll_synchronize_rcu_full(). |
| 3416 | */ |
| 3417 | static void start_poll_synchronize_rcu_common(void) |
| 3418 | { |
| 3419 | unsigned long flags; |
| 3420 | bool needwake; |
| 3421 | struct rcu_data *rdp; |
| 3422 | struct rcu_node *rnp; |
| 3423 | |
| 3424 | local_irq_save(flags); |
| 3425 | rdp = this_cpu_ptr(&rcu_data); |
| 3426 | rnp = rdp->mynode; |
| 3427 | raw_spin_lock_rcu_node(rnp); // irqs already disabled. |
| 3428 | // Note it is possible for a grace period to have elapsed between |
| 3429 | // the above call to get_state_synchronize_rcu() and the below call |
| 3430 | // to rcu_seq_snap. This is OK, the worst that happens is that we |
| 3431 | // get a grace period that no one needed. These accesses are ordered |
| 3432 | // by smp_mb(), and we are accessing them in the opposite order |
| 3433 | // from which they are updated at grace-period start, as required. |
| 3434 | needwake = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req: rcu_seq_snap(sp: &rcu_state.gp_seq)); |
| 3435 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3436 | if (needwake) |
| 3437 | rcu_gp_kthread_wake(); |
| 3438 | } |
| 3439 | |
| 3440 | /** |
| 3441 | * start_poll_synchronize_rcu - Snapshot and start RCU grace period |
| 3442 | * |
| 3443 | * Returns a cookie that is used by a later call to cond_synchronize_rcu() |
| 3444 | * or poll_state_synchronize_rcu() to determine whether or not a full |
| 3445 | * grace period has elapsed in the meantime. If the needed grace period |
| 3446 | * is not already slated to start, notifies RCU core of the need for that |
| 3447 | * grace period. |
| 3448 | */ |
| 3449 | unsigned long start_poll_synchronize_rcu(void) |
| 3450 | { |
| 3451 | unsigned long gp_seq = get_state_synchronize_rcu(); |
| 3452 | |
| 3453 | start_poll_synchronize_rcu_common(); |
| 3454 | return gp_seq; |
| 3455 | } |
| 3456 | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); |
| 3457 | |
| 3458 | /** |
| 3459 | * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period |
| 3460 | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() |
| 3461 | * |
| 3462 | * Places the normal and expedited grace-period states in *@rgos. This |
| 3463 | * state value can be passed to a later call to cond_synchronize_rcu_full() |
| 3464 | * or poll_state_synchronize_rcu_full() to determine whether or not a |
| 3465 | * grace period (whether normal or expedited) has elapsed in the meantime. |
| 3466 | * If the needed grace period is not already slated to start, notifies |
| 3467 | * RCU core of the need for that grace period. |
| 3468 | */ |
| 3469 | void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
| 3470 | { |
| 3471 | get_state_synchronize_rcu_full(rgosp); |
| 3472 | |
| 3473 | start_poll_synchronize_rcu_common(); |
| 3474 | } |
| 3475 | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); |
| 3476 | |
| 3477 | /** |
| 3478 | * poll_state_synchronize_rcu - Has the specified RCU grace period completed? |
| 3479 | * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() |
| 3480 | * |
| 3481 | * If a full RCU grace period has elapsed since the earlier call from |
| 3482 | * which @oldstate was obtained, return @true, otherwise return @false. |
| 3483 | * If @false is returned, it is the caller's responsibility to invoke this |
| 3484 | * function later on until it does return @true. Alternatively, the caller |
| 3485 | * can explicitly wait for a grace period, for example, by passing @oldstate |
| 3486 | * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() |
| 3487 | * on the one hand or by directly invoking either synchronize_rcu() or |
| 3488 | * synchronize_rcu_expedited() on the other. |
| 3489 | * |
| 3490 | * Yes, this function does not take counter wrap into account. |
| 3491 | * But counter wrap is harmless. If the counter wraps, we have waited for |
| 3492 | * more than a billion grace periods (and way more on a 64-bit system!). |
| 3493 | * Those needing to keep old state values for very long time periods |
| 3494 | * (many hours even on 32-bit systems) should check them occasionally and |
| 3495 | * either refresh them or set a flag indicating that the grace period has |
| 3496 | * completed. Alternatively, they can use get_completed_synchronize_rcu() |
| 3497 | * to get a guaranteed-completed grace-period state. |
| 3498 | * |
| 3499 | * In addition, because oldstate compresses the grace-period state for |
| 3500 | * both normal and expedited grace periods into a single unsigned long, |
| 3501 | * it can miss a grace period when synchronize_rcu() runs concurrently |
| 3502 | * with synchronize_rcu_expedited(). If this is unacceptable, please |
| 3503 | * instead use the _full() variant of these polling APIs. |
| 3504 | * |
| 3505 | * This function provides the same memory-ordering guarantees that |
| 3506 | * would be provided by a synchronize_rcu() that was invoked at the call |
| 3507 | * to the function that provided @oldstate, and that returned at the end |
| 3508 | * of this function. |
| 3509 | */ |
| 3510 | bool poll_state_synchronize_rcu(unsigned long oldstate) |
| 3511 | { |
| 3512 | if (oldstate == RCU_GET_STATE_COMPLETED || |
| 3513 | rcu_seq_done_exact(sp: &rcu_state.gp_seq_polled, s: oldstate)) { |
| 3514 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
| 3515 | return true; |
| 3516 | } |
| 3517 | return false; |
| 3518 | } |
| 3519 | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); |
| 3520 | |
| 3521 | /** |
| 3522 | * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? |
| 3523 | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() |
| 3524 | * |
| 3525 | * If a full RCU grace period has elapsed since the earlier call from |
| 3526 | * which *rgosp was obtained, return @true, otherwise return @false. |
| 3527 | * If @false is returned, it is the caller's responsibility to invoke this |
| 3528 | * function later on until it does return @true. Alternatively, the caller |
| 3529 | * can explicitly wait for a grace period, for example, by passing @rgosp |
| 3530 | * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). |
| 3531 | * |
| 3532 | * Yes, this function does not take counter wrap into account. |
| 3533 | * But counter wrap is harmless. If the counter wraps, we have waited |
| 3534 | * for more than a billion grace periods (and way more on a 64-bit |
| 3535 | * system!). Those needing to keep rcu_gp_oldstate values for very |
| 3536 | * long time periods (many hours even on 32-bit systems) should check |
| 3537 | * them occasionally and either refresh them or set a flag indicating |
| 3538 | * that the grace period has completed. Alternatively, they can use |
| 3539 | * get_completed_synchronize_rcu_full() to get a guaranteed-completed |
| 3540 | * grace-period state. |
| 3541 | * |
| 3542 | * This function provides the same memory-ordering guarantees that would |
| 3543 | * be provided by a synchronize_rcu() that was invoked at the call to |
| 3544 | * the function that provided @rgosp, and that returned at the end of this |
| 3545 | * function. And this guarantee requires that the root rcu_node structure's |
| 3546 | * ->gp_seq field be checked instead of that of the rcu_state structure. |
| 3547 | * The problem is that the just-ending grace-period's callbacks can be |
| 3548 | * invoked between the time that the root rcu_node structure's ->gp_seq |
| 3549 | * field is updated and the time that the rcu_state structure's ->gp_seq |
| 3550 | * field is updated. Therefore, if a single synchronize_rcu() is to |
| 3551 | * cause a subsequent poll_state_synchronize_rcu_full() to return @true, |
| 3552 | * then the root rcu_node structure is the one that needs to be polled. |
| 3553 | */ |
| 3554 | bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
| 3555 | { |
| 3556 | struct rcu_node *rnp = rcu_get_root(); |
| 3557 | |
| 3558 | smp_mb(); // Order against root rcu_node structure grace-period cleanup. |
| 3559 | if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || |
| 3560 | rcu_seq_done_exact(sp: &rnp->gp_seq, s: rgosp->rgos_norm) || |
| 3561 | rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || |
| 3562 | rcu_seq_done_exact(sp: &rcu_state.expedited_sequence, s: rgosp->rgos_exp)) { |
| 3563 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
| 3564 | return true; |
| 3565 | } |
| 3566 | return false; |
| 3567 | } |
| 3568 | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); |
| 3569 | |
| 3570 | /** |
| 3571 | * cond_synchronize_rcu - Conditionally wait for an RCU grace period |
| 3572 | * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() |
| 3573 | * |
| 3574 | * If a full RCU grace period has elapsed since the earlier call to |
| 3575 | * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. |
| 3576 | * Otherwise, invoke synchronize_rcu() to wait for a full grace period. |
| 3577 | * |
| 3578 | * Yes, this function does not take counter wrap into account. |
| 3579 | * But counter wrap is harmless. If the counter wraps, we have waited for |
| 3580 | * more than 2 billion grace periods (and way more on a 64-bit system!), |
| 3581 | * so waiting for a couple of additional grace periods should be just fine. |
| 3582 | * |
| 3583 | * This function provides the same memory-ordering guarantees that |
| 3584 | * would be provided by a synchronize_rcu() that was invoked at the call |
| 3585 | * to the function that provided @oldstate and that returned at the end |
| 3586 | * of this function. |
| 3587 | */ |
| 3588 | void cond_synchronize_rcu(unsigned long oldstate) |
| 3589 | { |
| 3590 | if (!poll_state_synchronize_rcu(oldstate)) |
| 3591 | synchronize_rcu(); |
| 3592 | } |
| 3593 | EXPORT_SYMBOL_GPL(cond_synchronize_rcu); |
| 3594 | |
| 3595 | /** |
| 3596 | * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period |
| 3597 | * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() |
| 3598 | * |
| 3599 | * If a full RCU grace period has elapsed since the call to |
| 3600 | * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), |
| 3601 | * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was |
| 3602 | * obtained, just return. Otherwise, invoke synchronize_rcu() to wait |
| 3603 | * for a full grace period. |
| 3604 | * |
| 3605 | * Yes, this function does not take counter wrap into account. |
| 3606 | * But counter wrap is harmless. If the counter wraps, we have waited for |
| 3607 | * more than 2 billion grace periods (and way more on a 64-bit system!), |
| 3608 | * so waiting for a couple of additional grace periods should be just fine. |
| 3609 | * |
| 3610 | * This function provides the same memory-ordering guarantees that |
| 3611 | * would be provided by a synchronize_rcu() that was invoked at the call |
| 3612 | * to the function that provided @rgosp and that returned at the end of |
| 3613 | * this function. |
| 3614 | */ |
| 3615 | void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
| 3616 | { |
| 3617 | if (!poll_state_synchronize_rcu_full(rgosp)) |
| 3618 | synchronize_rcu(); |
| 3619 | } |
| 3620 | EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); |
| 3621 | |
| 3622 | /* |
| 3623 | * Check to see if there is any immediate RCU-related work to be done by |
| 3624 | * the current CPU, returning 1 if so and zero otherwise. The checks are |
| 3625 | * in order of increasing expense: checks that can be carried out against |
| 3626 | * CPU-local state are performed first. However, we must check for CPU |
| 3627 | * stalls first, else we might not get a chance. |
| 3628 | */ |
| 3629 | static int rcu_pending(int user) |
| 3630 | { |
| 3631 | bool gp_in_progress; |
| 3632 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 3633 | struct rcu_node *rnp = rdp->mynode; |
| 3634 | |
| 3635 | lockdep_assert_irqs_disabled(); |
| 3636 | |
| 3637 | /* Check for CPU stalls, if enabled. */ |
| 3638 | check_cpu_stall(rdp); |
| 3639 | |
| 3640 | /* Does this CPU need a deferred NOCB wakeup? */ |
| 3641 | if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) |
| 3642 | return 1; |
| 3643 | |
| 3644 | /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ |
| 3645 | gp_in_progress = rcu_gp_in_progress(); |
| 3646 | if ((user || rcu_is_cpu_rrupt_from_idle() || |
| 3647 | (gp_in_progress && |
| 3648 | time_before(jiffies, READ_ONCE(rcu_state.gp_start) + |
| 3649 | nohz_full_patience_delay_jiffies))) && |
| 3650 | rcu_nohz_full_cpu()) |
| 3651 | return 0; |
| 3652 | |
| 3653 | /* Is the RCU core waiting for a quiescent state from this CPU? */ |
| 3654 | if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) |
| 3655 | return 1; |
| 3656 | |
| 3657 | /* Does this CPU have callbacks ready to invoke? */ |
| 3658 | if (!rcu_rdp_is_offloaded(rdp) && |
| 3659 | rcu_segcblist_ready_cbs(rsclp: &rdp->cblist)) |
| 3660 | return 1; |
| 3661 | |
| 3662 | /* Has RCU gone idle with this CPU needing another grace period? */ |
| 3663 | if (!gp_in_progress && rcu_segcblist_is_enabled(rsclp: &rdp->cblist) && |
| 3664 | !rcu_rdp_is_offloaded(rdp) && |
| 3665 | !rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL)) |
| 3666 | return 1; |
| 3667 | |
| 3668 | /* Have RCU grace period completed or started? */ |
| 3669 | if (rcu_seq_current(sp: &rnp->gp_seq) != rdp->gp_seq || |
| 3670 | unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ |
| 3671 | return 1; |
| 3672 | |
| 3673 | /* nothing to do */ |
| 3674 | return 0; |
| 3675 | } |
| 3676 | |
| 3677 | /* |
| 3678 | * Helper function for rcu_barrier() tracing. If tracing is disabled, |
| 3679 | * the compiler is expected to optimize this away. |
| 3680 | */ |
| 3681 | static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) |
| 3682 | { |
| 3683 | trace_rcu_barrier(rcuname: rcu_state.name, s, cpu, |
| 3684 | cnt: atomic_read(v: &rcu_state.barrier_cpu_count), done); |
| 3685 | } |
| 3686 | |
| 3687 | /* |
| 3688 | * RCU callback function for rcu_barrier(). If we are last, wake |
| 3689 | * up the task executing rcu_barrier(). |
| 3690 | * |
| 3691 | * Note that the value of rcu_state.barrier_sequence must be captured |
| 3692 | * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, |
| 3693 | * other CPUs might count the value down to zero before this CPU gets |
| 3694 | * around to invoking rcu_barrier_trace(), which might result in bogus |
| 3695 | * data from the next instance of rcu_barrier(). |
| 3696 | */ |
| 3697 | static void rcu_barrier_callback(struct rcu_head *rhp) |
| 3698 | { |
| 3699 | unsigned long __maybe_unused s = rcu_state.barrier_sequence; |
| 3700 | |
| 3701 | rhp->next = rhp; // Mark the callback as having been invoked. |
| 3702 | if (atomic_dec_and_test(v: &rcu_state.barrier_cpu_count)) { |
| 3703 | rcu_barrier_trace(TPS("LastCB" ), cpu: -1, done: s); |
| 3704 | complete(&rcu_state.barrier_completion); |
| 3705 | } else { |
| 3706 | rcu_barrier_trace(TPS("CB" ), cpu: -1, done: s); |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | /* |
| 3711 | * If needed, entrain an rcu_barrier() callback on rdp->cblist. |
| 3712 | */ |
| 3713 | static void rcu_barrier_entrain(struct rcu_data *rdp) |
| 3714 | { |
| 3715 | unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); |
| 3716 | unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); |
| 3717 | bool wake_nocb = false; |
| 3718 | bool was_alldone = false; |
| 3719 | |
| 3720 | lockdep_assert_held(&rcu_state.barrier_lock); |
| 3721 | if (rcu_seq_state(s: lseq) || !rcu_seq_state(s: gseq) || rcu_seq_ctr(s: lseq) != rcu_seq_ctr(s: gseq)) |
| 3722 | return; |
| 3723 | rcu_barrier_trace(TPS("IRQ" ), cpu: -1, done: rcu_state.barrier_sequence); |
| 3724 | rdp->barrier_head.func = rcu_barrier_callback; |
| 3725 | debug_rcu_head_queue(head: &rdp->barrier_head); |
| 3726 | rcu_nocb_lock(rdp); |
| 3727 | /* |
| 3728 | * Flush bypass and wakeup rcuog if we add callbacks to an empty regular |
| 3729 | * queue. This way we don't wait for bypass timer that can reach seconds |
| 3730 | * if it's fully lazy. |
| 3731 | */ |
| 3732 | was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(rsclp: &rdp->cblist); |
| 3733 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); |
| 3734 | wake_nocb = was_alldone && rcu_segcblist_pend_cbs(rsclp: &rdp->cblist); |
| 3735 | if (rcu_segcblist_entrain(rsclp: &rdp->cblist, rhp: &rdp->barrier_head)) { |
| 3736 | atomic_inc(v: &rcu_state.barrier_cpu_count); |
| 3737 | } else { |
| 3738 | debug_rcu_head_unqueue(head: &rdp->barrier_head); |
| 3739 | rcu_barrier_trace(TPS("IRQNQ" ), cpu: -1, done: rcu_state.barrier_sequence); |
| 3740 | } |
| 3741 | rcu_nocb_unlock(rdp); |
| 3742 | if (wake_nocb) |
| 3743 | wake_nocb_gp(rdp, force: false); |
| 3744 | smp_store_release(&rdp->barrier_seq_snap, gseq); |
| 3745 | } |
| 3746 | |
| 3747 | /* |
| 3748 | * Called with preemption disabled, and from cross-cpu IRQ context. |
| 3749 | */ |
| 3750 | static void rcu_barrier_handler(void *cpu_in) |
| 3751 | { |
| 3752 | uintptr_t cpu = (uintptr_t)cpu_in; |
| 3753 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 3754 | |
| 3755 | lockdep_assert_irqs_disabled(); |
| 3756 | WARN_ON_ONCE(cpu != rdp->cpu); |
| 3757 | WARN_ON_ONCE(cpu != smp_processor_id()); |
| 3758 | raw_spin_lock(&rcu_state.barrier_lock); |
| 3759 | rcu_barrier_entrain(rdp); |
| 3760 | raw_spin_unlock(&rcu_state.barrier_lock); |
| 3761 | } |
| 3762 | |
| 3763 | /** |
| 3764 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. |
| 3765 | * |
| 3766 | * Note that this primitive does not necessarily wait for an RCU grace period |
| 3767 | * to complete. For example, if there are no RCU callbacks queued anywhere |
| 3768 | * in the system, then rcu_barrier() is within its rights to return |
| 3769 | * immediately, without waiting for anything, much less an RCU grace period. |
| 3770 | */ |
| 3771 | void rcu_barrier(void) |
| 3772 | { |
| 3773 | uintptr_t cpu; |
| 3774 | unsigned long flags; |
| 3775 | unsigned long gseq; |
| 3776 | struct rcu_data *rdp; |
| 3777 | unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence); |
| 3778 | |
| 3779 | rcu_barrier_trace(TPS("Begin" ), cpu: -1, done: s); |
| 3780 | |
| 3781 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ |
| 3782 | mutex_lock(&rcu_state.barrier_mutex); |
| 3783 | |
| 3784 | /* Did someone else do our work for us? */ |
| 3785 | if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) { |
| 3786 | rcu_barrier_trace(TPS("EarlyExit" ), cpu: -1, done: rcu_state.barrier_sequence); |
| 3787 | smp_mb(); /* caller's subsequent code after above check. */ |
| 3788 | mutex_unlock(lock: &rcu_state.barrier_mutex); |
| 3789 | return; |
| 3790 | } |
| 3791 | |
| 3792 | /* Mark the start of the barrier operation. */ |
| 3793 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
| 3794 | rcu_seq_start(sp: &rcu_state.barrier_sequence); |
| 3795 | gseq = rcu_state.barrier_sequence; |
| 3796 | rcu_barrier_trace(TPS("Inc1" ), cpu: -1, done: rcu_state.barrier_sequence); |
| 3797 | |
| 3798 | /* |
| 3799 | * Initialize the count to two rather than to zero in order |
| 3800 | * to avoid a too-soon return to zero in case of an immediate |
| 3801 | * invocation of the just-enqueued callback (or preemption of |
| 3802 | * this task). Exclude CPU-hotplug operations to ensure that no |
| 3803 | * offline non-offloaded CPU has callbacks queued. |
| 3804 | */ |
| 3805 | init_completion(x: &rcu_state.barrier_completion); |
| 3806 | atomic_set(v: &rcu_state.barrier_cpu_count, i: 2); |
| 3807 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
| 3808 | |
| 3809 | /* |
| 3810 | * Force each CPU with callbacks to register a new callback. |
| 3811 | * When that callback is invoked, we will know that all of the |
| 3812 | * corresponding CPU's preceding callbacks have been invoked. |
| 3813 | */ |
| 3814 | for_each_possible_cpu(cpu) { |
| 3815 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 3816 | retry: |
| 3817 | if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) |
| 3818 | continue; |
| 3819 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
| 3820 | if (!rcu_segcblist_n_cbs(rsclp: &rdp->cblist)) { |
| 3821 | WRITE_ONCE(rdp->barrier_seq_snap, gseq); |
| 3822 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
| 3823 | rcu_barrier_trace(TPS("NQ" ), cpu, done: rcu_state.barrier_sequence); |
| 3824 | continue; |
| 3825 | } |
| 3826 | if (!rcu_rdp_cpu_online(rdp)) { |
| 3827 | rcu_barrier_entrain(rdp); |
| 3828 | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); |
| 3829 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
| 3830 | rcu_barrier_trace(TPS("OfflineNoCBQ" ), cpu, done: rcu_state.barrier_sequence); |
| 3831 | continue; |
| 3832 | } |
| 3833 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
| 3834 | if (smp_call_function_single(cpuid: cpu, func: rcu_barrier_handler, info: (void *)cpu, wait: 1)) { |
| 3835 | schedule_timeout_uninterruptible(timeout: 1); |
| 3836 | goto retry; |
| 3837 | } |
| 3838 | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); |
| 3839 | rcu_barrier_trace(TPS("OnlineQ" ), cpu, done: rcu_state.barrier_sequence); |
| 3840 | } |
| 3841 | |
| 3842 | /* |
| 3843 | * Now that we have an rcu_barrier_callback() callback on each |
| 3844 | * CPU, and thus each counted, remove the initial count. |
| 3845 | */ |
| 3846 | if (atomic_sub_and_test(i: 2, v: &rcu_state.barrier_cpu_count)) |
| 3847 | complete(&rcu_state.barrier_completion); |
| 3848 | |
| 3849 | /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ |
| 3850 | wait_for_completion(&rcu_state.barrier_completion); |
| 3851 | |
| 3852 | /* Mark the end of the barrier operation. */ |
| 3853 | rcu_barrier_trace(TPS("Inc2" ), cpu: -1, done: rcu_state.barrier_sequence); |
| 3854 | rcu_seq_end(sp: &rcu_state.barrier_sequence); |
| 3855 | gseq = rcu_state.barrier_sequence; |
| 3856 | for_each_possible_cpu(cpu) { |
| 3857 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 3858 | |
| 3859 | WRITE_ONCE(rdp->barrier_seq_snap, gseq); |
| 3860 | } |
| 3861 | |
| 3862 | /* Other rcu_barrier() invocations can now safely proceed. */ |
| 3863 | mutex_unlock(lock: &rcu_state.barrier_mutex); |
| 3864 | } |
| 3865 | EXPORT_SYMBOL_GPL(rcu_barrier); |
| 3866 | |
| 3867 | static unsigned long rcu_barrier_last_throttle; |
| 3868 | |
| 3869 | /** |
| 3870 | * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second |
| 3871 | * |
| 3872 | * This can be thought of as guard rails around rcu_barrier() that |
| 3873 | * permits unrestricted userspace use, at least assuming the hardware's |
| 3874 | * try_cmpxchg() is robust. There will be at most one call per second to |
| 3875 | * rcu_barrier() system-wide from use of this function, which means that |
| 3876 | * callers might needlessly wait a second or three. |
| 3877 | * |
| 3878 | * This is intended for use by test suites to avoid OOM by flushing RCU |
| 3879 | * callbacks from the previous test before starting the next. See the |
| 3880 | * rcutree.do_rcu_barrier module parameter for more information. |
| 3881 | * |
| 3882 | * Why not simply make rcu_barrier() more scalable? That might be |
| 3883 | * the eventual endpoint, but let's keep it simple for the time being. |
| 3884 | * Note that the module parameter infrastructure serializes calls to a |
| 3885 | * given .set() function, but should concurrent .set() invocation ever be |
| 3886 | * possible, we are ready! |
| 3887 | */ |
| 3888 | static void rcu_barrier_throttled(void) |
| 3889 | { |
| 3890 | unsigned long j = jiffies; |
| 3891 | unsigned long old = READ_ONCE(rcu_barrier_last_throttle); |
| 3892 | unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence); |
| 3893 | |
| 3894 | while (time_in_range(j, old, old + HZ / 16) || |
| 3895 | !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { |
| 3896 | schedule_timeout_idle(HZ / 16); |
| 3897 | if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) { |
| 3898 | smp_mb(); /* caller's subsequent code after above check. */ |
| 3899 | return; |
| 3900 | } |
| 3901 | j = jiffies; |
| 3902 | old = READ_ONCE(rcu_barrier_last_throttle); |
| 3903 | } |
| 3904 | rcu_barrier(); |
| 3905 | } |
| 3906 | |
| 3907 | /* |
| 3908 | * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier |
| 3909 | * request arrives. We insist on a true value to allow for possible |
| 3910 | * future expansion. |
| 3911 | */ |
| 3912 | static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) |
| 3913 | { |
| 3914 | bool b; |
| 3915 | int ret; |
| 3916 | |
| 3917 | if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) |
| 3918 | return -EAGAIN; |
| 3919 | ret = kstrtobool(s: val, res: &b); |
| 3920 | if (!ret && b) { |
| 3921 | atomic_inc(v: (atomic_t *)kp->arg); |
| 3922 | rcu_barrier_throttled(); |
| 3923 | atomic_dec(v: (atomic_t *)kp->arg); |
| 3924 | } |
| 3925 | return ret; |
| 3926 | } |
| 3927 | |
| 3928 | /* |
| 3929 | * Output the number of outstanding rcutree.do_rcu_barrier requests. |
| 3930 | */ |
| 3931 | static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) |
| 3932 | { |
| 3933 | return sprintf(buf: buffer, fmt: "%d\n" , atomic_read(v: (atomic_t *)kp->arg)); |
| 3934 | } |
| 3935 | |
| 3936 | static const struct kernel_param_ops do_rcu_barrier_ops = { |
| 3937 | .set = param_set_do_rcu_barrier, |
| 3938 | .get = param_get_do_rcu_barrier, |
| 3939 | }; |
| 3940 | static atomic_t do_rcu_barrier; |
| 3941 | module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); |
| 3942 | |
| 3943 | /* |
| 3944 | * Compute the mask of online CPUs for the specified rcu_node structure. |
| 3945 | * This will not be stable unless the rcu_node structure's ->lock is |
| 3946 | * held, but the bit corresponding to the current CPU will be stable |
| 3947 | * in most contexts. |
| 3948 | */ |
| 3949 | static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) |
| 3950 | { |
| 3951 | return READ_ONCE(rnp->qsmaskinitnext); |
| 3952 | } |
| 3953 | |
| 3954 | /* |
| 3955 | * Is the CPU corresponding to the specified rcu_data structure online |
| 3956 | * from RCU's perspective? This perspective is given by that structure's |
| 3957 | * ->qsmaskinitnext field rather than by the global cpu_online_mask. |
| 3958 | */ |
| 3959 | static bool rcu_rdp_cpu_online(struct rcu_data *rdp) |
| 3960 | { |
| 3961 | return !!(rdp->grpmask & rcu_rnp_online_cpus(rnp: rdp->mynode)); |
| 3962 | } |
| 3963 | |
| 3964 | bool rcu_cpu_online(int cpu) |
| 3965 | { |
| 3966 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 3967 | |
| 3968 | return rcu_rdp_cpu_online(rdp); |
| 3969 | } |
| 3970 | |
| 3971 | #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) |
| 3972 | |
| 3973 | /* |
| 3974 | * Is the current CPU online as far as RCU is concerned? |
| 3975 | * |
| 3976 | * Disable preemption to avoid false positives that could otherwise |
| 3977 | * happen due to the current CPU number being sampled, this task being |
| 3978 | * preempted, its old CPU being taken offline, resuming on some other CPU, |
| 3979 | * then determining that its old CPU is now offline. |
| 3980 | * |
| 3981 | * Disable checking if in an NMI handler because we cannot safely |
| 3982 | * report errors from NMI handlers anyway. In addition, it is OK to use |
| 3983 | * RCU on an offline processor during initial boot, hence the check for |
| 3984 | * rcu_scheduler_fully_active. |
| 3985 | */ |
| 3986 | bool rcu_lockdep_current_cpu_online(void) |
| 3987 | { |
| 3988 | struct rcu_data *rdp; |
| 3989 | bool ret = false; |
| 3990 | |
| 3991 | if (in_nmi() || !rcu_scheduler_fully_active) |
| 3992 | return true; |
| 3993 | preempt_disable_notrace(); |
| 3994 | rdp = this_cpu_ptr(&rcu_data); |
| 3995 | /* |
| 3996 | * Strictly, we care here about the case where the current CPU is |
| 3997 | * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask |
| 3998 | * not being up to date. So arch_spin_is_locked() might have a |
| 3999 | * false positive if it's held by some *other* CPU, but that's |
| 4000 | * OK because that just means a false *negative* on the warning. |
| 4001 | */ |
| 4002 | if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) |
| 4003 | ret = true; |
| 4004 | preempt_enable_notrace(); |
| 4005 | return ret; |
| 4006 | } |
| 4007 | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); |
| 4008 | |
| 4009 | #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ |
| 4010 | |
| 4011 | // Has rcu_init() been invoked? This is used (for example) to determine |
| 4012 | // whether spinlocks may be acquired safely. |
| 4013 | static bool rcu_init_invoked(void) |
| 4014 | { |
| 4015 | return !!READ_ONCE(rcu_state.n_online_cpus); |
| 4016 | } |
| 4017 | |
| 4018 | /* |
| 4019 | * All CPUs for the specified rcu_node structure have gone offline, |
| 4020 | * and all tasks that were preempted within an RCU read-side critical |
| 4021 | * section while running on one of those CPUs have since exited their RCU |
| 4022 | * read-side critical section. Some other CPU is reporting this fact with |
| 4023 | * the specified rcu_node structure's ->lock held and interrupts disabled. |
| 4024 | * This function therefore goes up the tree of rcu_node structures, |
| 4025 | * clearing the corresponding bits in the ->qsmaskinit fields. Note that |
| 4026 | * the leaf rcu_node structure's ->qsmaskinit field has already been |
| 4027 | * updated. |
| 4028 | * |
| 4029 | * This function does check that the specified rcu_node structure has |
| 4030 | * all CPUs offline and no blocked tasks, so it is OK to invoke it |
| 4031 | * prematurely. That said, invoking it after the fact will cost you |
| 4032 | * a needless lock acquisition. So once it has done its work, don't |
| 4033 | * invoke it again. |
| 4034 | */ |
| 4035 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) |
| 4036 | { |
| 4037 | long mask; |
| 4038 | struct rcu_node *rnp = rnp_leaf; |
| 4039 | |
| 4040 | raw_lockdep_assert_held_rcu_node(rnp_leaf); |
| 4041 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || |
| 4042 | WARN_ON_ONCE(rnp_leaf->qsmaskinit) || |
| 4043 | WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) |
| 4044 | return; |
| 4045 | for (;;) { |
| 4046 | mask = rnp->grpmask; |
| 4047 | rnp = rnp->parent; |
| 4048 | if (!rnp) |
| 4049 | break; |
| 4050 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 4051 | rnp->qsmaskinit &= ~mask; |
| 4052 | /* Between grace periods, so better already be zero! */ |
| 4053 | WARN_ON_ONCE(rnp->qsmask); |
| 4054 | if (rnp->qsmaskinit) { |
| 4055 | raw_spin_unlock_rcu_node(rnp); |
| 4056 | /* irqs remain disabled. */ |
| 4057 | return; |
| 4058 | } |
| 4059 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 4060 | } |
| 4061 | } |
| 4062 | |
| 4063 | /* |
| 4064 | * Propagate ->qsinitmask bits up the rcu_node tree to account for the |
| 4065 | * first CPU in a given leaf rcu_node structure coming online. The caller |
| 4066 | * must hold the corresponding leaf rcu_node ->lock with interrupts |
| 4067 | * disabled. |
| 4068 | */ |
| 4069 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) |
| 4070 | { |
| 4071 | long mask; |
| 4072 | long oldmask; |
| 4073 | struct rcu_node *rnp = rnp_leaf; |
| 4074 | |
| 4075 | raw_lockdep_assert_held_rcu_node(rnp_leaf); |
| 4076 | WARN_ON_ONCE(rnp->wait_blkd_tasks); |
| 4077 | for (;;) { |
| 4078 | mask = rnp->grpmask; |
| 4079 | rnp = rnp->parent; |
| 4080 | if (rnp == NULL) |
| 4081 | return; |
| 4082 | raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ |
| 4083 | oldmask = rnp->qsmaskinit; |
| 4084 | rnp->qsmaskinit |= mask; |
| 4085 | raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ |
| 4086 | if (oldmask) |
| 4087 | return; |
| 4088 | } |
| 4089 | } |
| 4090 | |
| 4091 | /* |
| 4092 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
| 4093 | */ |
| 4094 | static void __init |
| 4095 | rcu_boot_init_percpu_data(int cpu) |
| 4096 | { |
| 4097 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
| 4098 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4099 | |
| 4100 | /* Set up local state, ensuring consistent view of global state. */ |
| 4101 | rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); |
| 4102 | INIT_WORK(&rdp->strict_work, strict_work_handler); |
| 4103 | WARN_ON_ONCE(ct->nesting != 1); |
| 4104 | WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu))); |
| 4105 | rdp->barrier_seq_snap = rcu_state.barrier_sequence; |
| 4106 | rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; |
| 4107 | rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; |
| 4108 | rdp->rcu_onl_gp_seq = rcu_state.gp_seq; |
| 4109 | rdp->rcu_onl_gp_state = RCU_GP_CLEANED; |
| 4110 | rdp->last_sched_clock = jiffies; |
| 4111 | rdp->cpu = cpu; |
| 4112 | rcu_boot_init_nocb_percpu_data(rdp); |
| 4113 | } |
| 4114 | |
| 4115 | static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp) |
| 4116 | { |
| 4117 | cpumask_var_t affinity; |
| 4118 | int cpu; |
| 4119 | |
| 4120 | if (!zalloc_cpumask_var(mask: &affinity, GFP_KERNEL)) |
| 4121 | return; |
| 4122 | |
| 4123 | for_each_leaf_node_possible_cpu(rnp, cpu) |
| 4124 | cpumask_set_cpu(cpu, dstp: affinity); |
| 4125 | |
| 4126 | kthread_affine_preferred(p: t, mask: affinity); |
| 4127 | |
| 4128 | free_cpumask_var(mask: affinity); |
| 4129 | } |
| 4130 | |
| 4131 | struct kthread_worker *rcu_exp_gp_kworker; |
| 4132 | |
| 4133 | static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) |
| 4134 | { |
| 4135 | struct kthread_worker *kworker; |
| 4136 | const char *name = "rcu_exp_par_gp_kthread_worker/%d" ; |
| 4137 | struct sched_param param = { .sched_priority = kthread_prio }; |
| 4138 | int rnp_index = rnp - rcu_get_root(); |
| 4139 | |
| 4140 | if (rnp->exp_kworker) |
| 4141 | return; |
| 4142 | |
| 4143 | kworker = kthread_create_worker(0, name, rnp_index); |
| 4144 | if (IS_ERR_OR_NULL(ptr: kworker)) { |
| 4145 | pr_err("Failed to create par gp kworker on %d/%d\n" , |
| 4146 | rnp->grplo, rnp->grphi); |
| 4147 | return; |
| 4148 | } |
| 4149 | WRITE_ONCE(rnp->exp_kworker, kworker); |
| 4150 | |
| 4151 | if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) |
| 4152 | sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); |
| 4153 | |
| 4154 | rcu_thread_affine_rnp(t: kworker->task, rnp); |
| 4155 | wake_up_process(tsk: kworker->task); |
| 4156 | } |
| 4157 | |
| 4158 | static void __init rcu_start_exp_gp_kworker(void) |
| 4159 | { |
| 4160 | const char *name = "rcu_exp_gp_kthread_worker" ; |
| 4161 | struct sched_param param = { .sched_priority = kthread_prio }; |
| 4162 | |
| 4163 | rcu_exp_gp_kworker = kthread_run_worker(0, name); |
| 4164 | if (IS_ERR_OR_NULL(ptr: rcu_exp_gp_kworker)) { |
| 4165 | pr_err("Failed to create %s!\n" , name); |
| 4166 | rcu_exp_gp_kworker = NULL; |
| 4167 | return; |
| 4168 | } |
| 4169 | |
| 4170 | if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) |
| 4171 | sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); |
| 4172 | } |
| 4173 | |
| 4174 | static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) |
| 4175 | { |
| 4176 | if (rcu_scheduler_fully_active) { |
| 4177 | mutex_lock(&rnp->kthread_mutex); |
| 4178 | rcu_spawn_one_boost_kthread(rnp); |
| 4179 | rcu_spawn_exp_par_gp_kworker(rnp); |
| 4180 | mutex_unlock(lock: &rnp->kthread_mutex); |
| 4181 | } |
| 4182 | } |
| 4183 | |
| 4184 | /* |
| 4185 | * Invoked early in the CPU-online process, when pretty much all services |
| 4186 | * are available. The incoming CPU is not present. |
| 4187 | * |
| 4188 | * Initializes a CPU's per-CPU RCU data. Note that only one online or |
| 4189 | * offline event can be happening at a given time. Note also that we can |
| 4190 | * accept some slop in the rsp->gp_seq access due to the fact that this |
| 4191 | * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. |
| 4192 | * And any offloaded callbacks are being numbered elsewhere. |
| 4193 | */ |
| 4194 | int rcutree_prepare_cpu(unsigned int cpu) |
| 4195 | { |
| 4196 | unsigned long flags; |
| 4197 | struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); |
| 4198 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4199 | struct rcu_node *rnp = rcu_get_root(); |
| 4200 | |
| 4201 | /* Set up local state, ensuring consistent view of global state. */ |
| 4202 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 4203 | rdp->qlen_last_fqs_check = 0; |
| 4204 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
| 4205 | rdp->blimit = blimit; |
| 4206 | ct->nesting = 1; /* CPU not up, no tearing. */ |
| 4207 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 4208 | |
| 4209 | /* |
| 4210 | * Only non-NOCB CPUs that didn't have early-boot callbacks need to be |
| 4211 | * (re-)initialized. |
| 4212 | */ |
| 4213 | if (!rcu_segcblist_is_enabled(rsclp: &rdp->cblist)) |
| 4214 | rcu_segcblist_init(rsclp: &rdp->cblist); /* Re-enable callbacks. */ |
| 4215 | |
| 4216 | /* |
| 4217 | * Add CPU to leaf rcu_node pending-online bitmask. Any needed |
| 4218 | * propagation up the rcu_node tree will happen at the beginning |
| 4219 | * of the next grace period. |
| 4220 | */ |
| 4221 | rnp = rdp->mynode; |
| 4222 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 4223 | rdp->gp_seq = READ_ONCE(rnp->gp_seq); |
| 4224 | rdp->gp_seq_needed = rdp->gp_seq; |
| 4225 | rdp->cpu_no_qs.b.norm = true; |
| 4226 | rdp->core_needs_qs = false; |
| 4227 | rdp->rcu_iw_pending = false; |
| 4228 | rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); |
| 4229 | rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; |
| 4230 | trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuonl" )); |
| 4231 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 4232 | rcu_spawn_rnp_kthreads(rnp); |
| 4233 | rcu_spawn_cpu_nocb_kthread(cpu); |
| 4234 | ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); |
| 4235 | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); |
| 4236 | |
| 4237 | return 0; |
| 4238 | } |
| 4239 | |
| 4240 | /* |
| 4241 | * Has the specified (known valid) CPU ever been fully online? |
| 4242 | */ |
| 4243 | bool rcu_cpu_beenfullyonline(int cpu) |
| 4244 | { |
| 4245 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4246 | |
| 4247 | return smp_load_acquire(&rdp->beenonline); |
| 4248 | } |
| 4249 | |
| 4250 | /* |
| 4251 | * Near the end of the CPU-online process. Pretty much all services |
| 4252 | * enabled, and the CPU is now very much alive. |
| 4253 | */ |
| 4254 | int rcutree_online_cpu(unsigned int cpu) |
| 4255 | { |
| 4256 | unsigned long flags; |
| 4257 | struct rcu_data *rdp; |
| 4258 | struct rcu_node *rnp; |
| 4259 | |
| 4260 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4261 | rnp = rdp->mynode; |
| 4262 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 4263 | rnp->ffmask |= rdp->grpmask; |
| 4264 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 4265 | if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) |
| 4266 | return 0; /* Too early in boot for scheduler work. */ |
| 4267 | sync_sched_exp_online_cleanup(cpu); |
| 4268 | |
| 4269 | // Stop-machine done, so allow nohz_full to disable tick. |
| 4270 | tick_dep_clear(bit: TICK_DEP_BIT_RCU); |
| 4271 | return 0; |
| 4272 | } |
| 4273 | |
| 4274 | /* |
| 4275 | * Mark the specified CPU as being online so that subsequent grace periods |
| 4276 | * (both expedited and normal) will wait on it. Note that this means that |
| 4277 | * incoming CPUs are not allowed to use RCU read-side critical sections |
| 4278 | * until this function is called. Failing to observe this restriction |
| 4279 | * will result in lockdep splats. |
| 4280 | * |
| 4281 | * Note that this function is special in that it is invoked directly |
| 4282 | * from the incoming CPU rather than from the cpuhp_step mechanism. |
| 4283 | * This is because this function must be invoked at a precise location. |
| 4284 | * This incoming CPU must not have enabled interrupts yet. |
| 4285 | * |
| 4286 | * This mirrors the effects of rcutree_report_cpu_dead(). |
| 4287 | */ |
| 4288 | void rcutree_report_cpu_starting(unsigned int cpu) |
| 4289 | { |
| 4290 | unsigned long mask; |
| 4291 | struct rcu_data *rdp; |
| 4292 | struct rcu_node *rnp; |
| 4293 | bool newcpu; |
| 4294 | |
| 4295 | lockdep_assert_irqs_disabled(); |
| 4296 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4297 | if (rdp->cpu_started) |
| 4298 | return; |
| 4299 | rdp->cpu_started = true; |
| 4300 | |
| 4301 | rnp = rdp->mynode; |
| 4302 | mask = rdp->grpmask; |
| 4303 | arch_spin_lock(&rcu_state.ofl_lock); |
| 4304 | rcu_watching_online(); |
| 4305 | raw_spin_lock(&rcu_state.barrier_lock); |
| 4306 | raw_spin_lock_rcu_node(rnp); |
| 4307 | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); |
| 4308 | raw_spin_unlock(&rcu_state.barrier_lock); |
| 4309 | newcpu = !(rnp->expmaskinitnext & mask); |
| 4310 | rnp->expmaskinitnext |= mask; |
| 4311 | /* Allow lockless access for expedited grace periods. */ |
| 4312 | smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ |
| 4313 | ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); |
| 4314 | rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ |
| 4315 | rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); |
| 4316 | rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); |
| 4317 | |
| 4318 | /* An incoming CPU should never be blocking a grace period. */ |
| 4319 | if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ |
| 4320 | /* rcu_report_qs_rnp() *really* wants some flags to restore */ |
| 4321 | unsigned long flags; |
| 4322 | |
| 4323 | local_irq_save(flags); |
| 4324 | rcu_disable_urgency_upon_qs(rdp); |
| 4325 | /* Report QS -after- changing ->qsmaskinitnext! */ |
| 4326 | rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags); |
| 4327 | } else { |
| 4328 | raw_spin_unlock_rcu_node(rnp); |
| 4329 | } |
| 4330 | arch_spin_unlock(&rcu_state.ofl_lock); |
| 4331 | smp_store_release(&rdp->beenonline, true); |
| 4332 | smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ |
| 4333 | } |
| 4334 | |
| 4335 | /* |
| 4336 | * The outgoing function has no further need of RCU, so remove it from |
| 4337 | * the rcu_node tree's ->qsmaskinitnext bit masks. |
| 4338 | * |
| 4339 | * Note that this function is special in that it is invoked directly |
| 4340 | * from the outgoing CPU rather than from the cpuhp_step mechanism. |
| 4341 | * This is because this function must be invoked at a precise location. |
| 4342 | * |
| 4343 | * This mirrors the effect of rcutree_report_cpu_starting(). |
| 4344 | */ |
| 4345 | void rcutree_report_cpu_dead(void) |
| 4346 | { |
| 4347 | unsigned long flags; |
| 4348 | unsigned long mask; |
| 4349 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 4350 | struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ |
| 4351 | |
| 4352 | /* |
| 4353 | * IRQS must be disabled from now on and until the CPU dies, or an interrupt |
| 4354 | * may introduce a new READ-side while it is actually off the QS masks. |
| 4355 | */ |
| 4356 | lockdep_assert_irqs_disabled(); |
| 4357 | // Do any dangling deferred wakeups. |
| 4358 | do_nocb_deferred_wakeup(rdp); |
| 4359 | |
| 4360 | rcu_preempt_deferred_qs(current); |
| 4361 | |
| 4362 | /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ |
| 4363 | mask = rdp->grpmask; |
| 4364 | arch_spin_lock(&rcu_state.ofl_lock); |
| 4365 | raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ |
| 4366 | rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); |
| 4367 | rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); |
| 4368 | if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ |
| 4369 | /* Report quiescent state -before- changing ->qsmaskinitnext! */ |
| 4370 | rcu_disable_urgency_upon_qs(rdp); |
| 4371 | rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags); |
| 4372 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 4373 | } |
| 4374 | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); |
| 4375 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 4376 | arch_spin_unlock(&rcu_state.ofl_lock); |
| 4377 | rdp->cpu_started = false; |
| 4378 | } |
| 4379 | |
| 4380 | #ifdef CONFIG_HOTPLUG_CPU |
| 4381 | /* |
| 4382 | * The outgoing CPU has just passed through the dying-idle state, and we |
| 4383 | * are being invoked from the CPU that was IPIed to continue the offline |
| 4384 | * operation. Migrate the outgoing CPU's callbacks to the current CPU. |
| 4385 | */ |
| 4386 | void rcutree_migrate_callbacks(int cpu) |
| 4387 | { |
| 4388 | unsigned long flags; |
| 4389 | struct rcu_data *my_rdp; |
| 4390 | struct rcu_node *my_rnp; |
| 4391 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4392 | bool needwake; |
| 4393 | |
| 4394 | if (rcu_rdp_is_offloaded(rdp)) |
| 4395 | return; |
| 4396 | |
| 4397 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
| 4398 | if (rcu_segcblist_empty(rsclp: &rdp->cblist)) { |
| 4399 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
| 4400 | return; /* No callbacks to migrate. */ |
| 4401 | } |
| 4402 | |
| 4403 | WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); |
| 4404 | rcu_barrier_entrain(rdp); |
| 4405 | my_rdp = this_cpu_ptr(&rcu_data); |
| 4406 | my_rnp = my_rdp->mynode; |
| 4407 | rcu_nocb_lock(rdp: my_rdp); /* irqs already disabled. */ |
| 4408 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); |
| 4409 | raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ |
| 4410 | /* Leverage recent GPs and set GP for new callbacks. */ |
| 4411 | needwake = rcu_advance_cbs(rnp: my_rnp, rdp) || |
| 4412 | rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp); |
| 4413 | rcu_segcblist_merge(dst_rsclp: &my_rdp->cblist, src_rsclp: &rdp->cblist); |
| 4414 | raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ |
| 4415 | needwake = needwake || rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp); |
| 4416 | rcu_segcblist_disable(rsclp: &rdp->cblist); |
| 4417 | WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); |
| 4418 | check_cb_ovld_locked(rdp: my_rdp, rnp: my_rnp); |
| 4419 | if (rcu_rdp_is_offloaded(rdp: my_rdp)) { |
| 4420 | raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ |
| 4421 | __call_rcu_nocb_wake(rdp: my_rdp, was_empty: true, flags); |
| 4422 | } else { |
| 4423 | rcu_nocb_unlock(rdp: my_rdp); /* irqs remain disabled. */ |
| 4424 | raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ |
| 4425 | } |
| 4426 | local_irq_restore(flags); |
| 4427 | if (needwake) |
| 4428 | rcu_gp_kthread_wake(); |
| 4429 | lockdep_assert_irqs_enabled(); |
| 4430 | WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || |
| 4431 | !rcu_segcblist_empty(&rdp->cblist), |
| 4432 | "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n" , |
| 4433 | cpu, rcu_segcblist_n_cbs(&rdp->cblist), |
| 4434 | rcu_segcblist_first_cb(&rdp->cblist)); |
| 4435 | } |
| 4436 | |
| 4437 | /* |
| 4438 | * The CPU has been completely removed, and some other CPU is reporting |
| 4439 | * this fact from process context. Do the remainder of the cleanup. |
| 4440 | * There can only be one CPU hotplug operation at a time, so no need for |
| 4441 | * explicit locking. |
| 4442 | */ |
| 4443 | int rcutree_dead_cpu(unsigned int cpu) |
| 4444 | { |
| 4445 | ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); |
| 4446 | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); |
| 4447 | // Stop-machine done, so allow nohz_full to disable tick. |
| 4448 | tick_dep_clear(bit: TICK_DEP_BIT_RCU); |
| 4449 | return 0; |
| 4450 | } |
| 4451 | |
| 4452 | /* |
| 4453 | * Near the end of the offline process. Trace the fact that this CPU |
| 4454 | * is going offline. |
| 4455 | */ |
| 4456 | int rcutree_dying_cpu(unsigned int cpu) |
| 4457 | { |
| 4458 | bool blkd; |
| 4459 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4460 | struct rcu_node *rnp = rdp->mynode; |
| 4461 | |
| 4462 | blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); |
| 4463 | trace_rcu_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq), |
| 4464 | gpevent: blkd ? TPS("cpuofl-bgp" ) : TPS("cpuofl" )); |
| 4465 | return 0; |
| 4466 | } |
| 4467 | |
| 4468 | /* |
| 4469 | * Near the beginning of the process. The CPU is still very much alive |
| 4470 | * with pretty much all services enabled. |
| 4471 | */ |
| 4472 | int rcutree_offline_cpu(unsigned int cpu) |
| 4473 | { |
| 4474 | unsigned long flags; |
| 4475 | struct rcu_data *rdp; |
| 4476 | struct rcu_node *rnp; |
| 4477 | |
| 4478 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 4479 | rnp = rdp->mynode; |
| 4480 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 4481 | rnp->ffmask &= ~rdp->grpmask; |
| 4482 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 4483 | |
| 4484 | // nohz_full CPUs need the tick for stop-machine to work quickly |
| 4485 | tick_dep_set(bit: TICK_DEP_BIT_RCU); |
| 4486 | return 0; |
| 4487 | } |
| 4488 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
| 4489 | |
| 4490 | /* |
| 4491 | * On non-huge systems, use expedited RCU grace periods to make suspend |
| 4492 | * and hibernation run faster. |
| 4493 | */ |
| 4494 | static int rcu_pm_notify(struct notifier_block *self, |
| 4495 | unsigned long action, void *hcpu) |
| 4496 | { |
| 4497 | switch (action) { |
| 4498 | case PM_HIBERNATION_PREPARE: |
| 4499 | case PM_SUSPEND_PREPARE: |
| 4500 | rcu_async_hurry(); |
| 4501 | rcu_expedite_gp(); |
| 4502 | break; |
| 4503 | case PM_POST_HIBERNATION: |
| 4504 | case PM_POST_SUSPEND: |
| 4505 | rcu_unexpedite_gp(); |
| 4506 | rcu_async_relax(); |
| 4507 | break; |
| 4508 | default: |
| 4509 | break; |
| 4510 | } |
| 4511 | return NOTIFY_OK; |
| 4512 | } |
| 4513 | |
| 4514 | /* |
| 4515 | * Spawn the kthreads that handle RCU's grace periods. |
| 4516 | */ |
| 4517 | static int __init rcu_spawn_gp_kthread(void) |
| 4518 | { |
| 4519 | unsigned long flags; |
| 4520 | struct rcu_node *rnp; |
| 4521 | struct sched_param sp; |
| 4522 | struct task_struct *t; |
| 4523 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 4524 | |
| 4525 | rcu_scheduler_fully_active = 1; |
| 4526 | t = kthread_create(rcu_gp_kthread, NULL, "%s" , rcu_state.name); |
| 4527 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n" , __func__)) |
| 4528 | return 0; |
| 4529 | if (kthread_prio) { |
| 4530 | sp.sched_priority = kthread_prio; |
| 4531 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| 4532 | } |
| 4533 | rnp = rcu_get_root(); |
| 4534 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 4535 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
| 4536 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); |
| 4537 | // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. |
| 4538 | smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ |
| 4539 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 4540 | wake_up_process(tsk: t); |
| 4541 | /* This is a pre-SMP initcall, we expect a single CPU */ |
| 4542 | WARN_ON(num_online_cpus() > 1); |
| 4543 | /* |
| 4544 | * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() |
| 4545 | * due to rcu_scheduler_fully_active. |
| 4546 | */ |
| 4547 | rcu_spawn_cpu_nocb_kthread(smp_processor_id()); |
| 4548 | rcu_spawn_rnp_kthreads(rnp: rdp->mynode); |
| 4549 | rcu_spawn_core_kthreads(); |
| 4550 | /* Create kthread worker for expedited GPs */ |
| 4551 | rcu_start_exp_gp_kworker(); |
| 4552 | return 0; |
| 4553 | } |
| 4554 | early_initcall(rcu_spawn_gp_kthread); |
| 4555 | |
| 4556 | /* |
| 4557 | * This function is invoked towards the end of the scheduler's |
| 4558 | * initialization process. Before this is called, the idle task might |
| 4559 | * contain synchronous grace-period primitives (during which time, this idle |
| 4560 | * task is booting the system, and such primitives are no-ops). After this |
| 4561 | * function is called, any synchronous grace-period primitives are run as |
| 4562 | * expedited, with the requesting task driving the grace period forward. |
| 4563 | * A later core_initcall() rcu_set_runtime_mode() will switch to full |
| 4564 | * runtime RCU functionality. |
| 4565 | */ |
| 4566 | void rcu_scheduler_starting(void) |
| 4567 | { |
| 4568 | unsigned long flags; |
| 4569 | struct rcu_node *rnp; |
| 4570 | |
| 4571 | WARN_ON(num_online_cpus() != 1); |
| 4572 | WARN_ON(nr_context_switches() > 0); |
| 4573 | rcu_test_sync_prims(); |
| 4574 | |
| 4575 | // Fix up the ->gp_seq counters. |
| 4576 | local_irq_save(flags); |
| 4577 | rcu_for_each_node_breadth_first(rnp) |
| 4578 | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; |
| 4579 | local_irq_restore(flags); |
| 4580 | |
| 4581 | // Switch out of early boot mode. |
| 4582 | rcu_scheduler_active = RCU_SCHEDULER_INIT; |
| 4583 | rcu_test_sync_prims(); |
| 4584 | } |
| 4585 | |
| 4586 | /* |
| 4587 | * Helper function for rcu_init() that initializes the rcu_state structure. |
| 4588 | */ |
| 4589 | static void __init rcu_init_one(void) |
| 4590 | { |
| 4591 | static const char * const buf[] = RCU_NODE_NAME_INIT; |
| 4592 | static const char * const fqs[] = RCU_FQS_NAME_INIT; |
| 4593 | static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; |
| 4594 | static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; |
| 4595 | |
| 4596 | int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ |
| 4597 | int cpustride = 1; |
| 4598 | int i; |
| 4599 | int j; |
| 4600 | struct rcu_node *rnp; |
| 4601 | |
| 4602 | BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ |
| 4603 | |
| 4604 | /* Silence gcc 4.8 false positive about array index out of range. */ |
| 4605 | if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) |
| 4606 | panic(fmt: "rcu_init_one: rcu_num_lvls out of range" ); |
| 4607 | |
| 4608 | /* Initialize the level-tracking arrays. */ |
| 4609 | |
| 4610 | for (i = 1; i < rcu_num_lvls; i++) |
| 4611 | rcu_state.level[i] = |
| 4612 | rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; |
| 4613 | rcu_init_levelspread(levelspread, levelcnt: num_rcu_lvl); |
| 4614 | |
| 4615 | /* Initialize the elements themselves, starting from the leaves. */ |
| 4616 | |
| 4617 | for (i = rcu_num_lvls - 1; i >= 0; i--) { |
| 4618 | cpustride *= levelspread[i]; |
| 4619 | rnp = rcu_state.level[i]; |
| 4620 | for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { |
| 4621 | raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); |
| 4622 | lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), |
| 4623 | &rcu_node_class[i], buf[i]); |
| 4624 | raw_spin_lock_init(&rnp->fqslock); |
| 4625 | lockdep_set_class_and_name(&rnp->fqslock, |
| 4626 | &rcu_fqs_class[i], fqs[i]); |
| 4627 | rnp->gp_seq = rcu_state.gp_seq; |
| 4628 | rnp->gp_seq_needed = rcu_state.gp_seq; |
| 4629 | rnp->completedqs = rcu_state.gp_seq; |
| 4630 | rnp->qsmask = 0; |
| 4631 | rnp->qsmaskinit = 0; |
| 4632 | rnp->grplo = j * cpustride; |
| 4633 | rnp->grphi = (j + 1) * cpustride - 1; |
| 4634 | if (rnp->grphi >= nr_cpu_ids) |
| 4635 | rnp->grphi = nr_cpu_ids - 1; |
| 4636 | if (i == 0) { |
| 4637 | rnp->grpnum = 0; |
| 4638 | rnp->grpmask = 0; |
| 4639 | rnp->parent = NULL; |
| 4640 | } else { |
| 4641 | rnp->grpnum = j % levelspread[i - 1]; |
| 4642 | rnp->grpmask = BIT(rnp->grpnum); |
| 4643 | rnp->parent = rcu_state.level[i - 1] + |
| 4644 | j / levelspread[i - 1]; |
| 4645 | } |
| 4646 | rnp->level = i; |
| 4647 | INIT_LIST_HEAD(list: &rnp->blkd_tasks); |
| 4648 | rcu_init_one_nocb(rnp); |
| 4649 | init_waitqueue_head(&rnp->exp_wq[0]); |
| 4650 | init_waitqueue_head(&rnp->exp_wq[1]); |
| 4651 | init_waitqueue_head(&rnp->exp_wq[2]); |
| 4652 | init_waitqueue_head(&rnp->exp_wq[3]); |
| 4653 | spin_lock_init(&rnp->exp_lock); |
| 4654 | mutex_init(&rnp->kthread_mutex); |
| 4655 | raw_spin_lock_init(&rnp->exp_poll_lock); |
| 4656 | rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; |
| 4657 | INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); |
| 4658 | } |
| 4659 | } |
| 4660 | |
| 4661 | init_swait_queue_head(&rcu_state.gp_wq); |
| 4662 | init_swait_queue_head(&rcu_state.expedited_wq); |
| 4663 | rnp = rcu_first_leaf_node(); |
| 4664 | for_each_possible_cpu(i) { |
| 4665 | while (i > rnp->grphi) |
| 4666 | rnp++; |
| 4667 | per_cpu_ptr(&rcu_data, i)->mynode = rnp; |
| 4668 | per_cpu_ptr(&rcu_data, i)->barrier_head.next = |
| 4669 | &per_cpu_ptr(&rcu_data, i)->barrier_head; |
| 4670 | rcu_boot_init_percpu_data(cpu: i); |
| 4671 | } |
| 4672 | } |
| 4673 | |
| 4674 | /* |
| 4675 | * Force priority from the kernel command-line into range. |
| 4676 | */ |
| 4677 | static void __init sanitize_kthread_prio(void) |
| 4678 | { |
| 4679 | int kthread_prio_in = kthread_prio; |
| 4680 | |
| 4681 | if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 |
| 4682 | && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) |
| 4683 | kthread_prio = 2; |
| 4684 | else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) |
| 4685 | kthread_prio = 1; |
| 4686 | else if (kthread_prio < 0) |
| 4687 | kthread_prio = 0; |
| 4688 | else if (kthread_prio > 99) |
| 4689 | kthread_prio = 99; |
| 4690 | |
| 4691 | if (kthread_prio != kthread_prio_in) |
| 4692 | pr_alert("%s: Limited prio to %d from %d\n" , |
| 4693 | __func__, kthread_prio, kthread_prio_in); |
| 4694 | } |
| 4695 | |
| 4696 | /* |
| 4697 | * Compute the rcu_node tree geometry from kernel parameters. This cannot |
| 4698 | * replace the definitions in tree.h because those are needed to size |
| 4699 | * the ->node array in the rcu_state structure. |
| 4700 | */ |
| 4701 | void rcu_init_geometry(void) |
| 4702 | { |
| 4703 | ulong d; |
| 4704 | int i; |
| 4705 | static unsigned long old_nr_cpu_ids; |
| 4706 | int rcu_capacity[RCU_NUM_LVLS]; |
| 4707 | static bool initialized; |
| 4708 | |
| 4709 | if (initialized) { |
| 4710 | /* |
| 4711 | * Warn if setup_nr_cpu_ids() had not yet been invoked, |
| 4712 | * unless nr_cpus_ids == NR_CPUS, in which case who cares? |
| 4713 | */ |
| 4714 | WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); |
| 4715 | return; |
| 4716 | } |
| 4717 | |
| 4718 | old_nr_cpu_ids = nr_cpu_ids; |
| 4719 | initialized = true; |
| 4720 | |
| 4721 | /* |
| 4722 | * Initialize any unspecified boot parameters. |
| 4723 | * The default values of jiffies_till_first_fqs and |
| 4724 | * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS |
| 4725 | * value, which is a function of HZ, then adding one for each |
| 4726 | * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. |
| 4727 | */ |
| 4728 | d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; |
| 4729 | if (jiffies_till_first_fqs == ULONG_MAX) |
| 4730 | jiffies_till_first_fqs = d; |
| 4731 | if (jiffies_till_next_fqs == ULONG_MAX) |
| 4732 | jiffies_till_next_fqs = d; |
| 4733 | adjust_jiffies_till_sched_qs(); |
| 4734 | |
| 4735 | /* If the compile-time values are accurate, just leave. */ |
| 4736 | if (rcu_fanout_leaf == RCU_FANOUT_LEAF && |
| 4737 | nr_cpu_ids == NR_CPUS) |
| 4738 | return; |
| 4739 | pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n" , |
| 4740 | rcu_fanout_leaf, nr_cpu_ids); |
| 4741 | |
| 4742 | /* |
| 4743 | * The boot-time rcu_fanout_leaf parameter must be at least two |
| 4744 | * and cannot exceed the number of bits in the rcu_node masks. |
| 4745 | * Complain and fall back to the compile-time values if this |
| 4746 | * limit is exceeded. |
| 4747 | */ |
| 4748 | if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) { |
| 4749 | rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 4750 | WARN_ON(1); |
| 4751 | return; |
| 4752 | } |
| 4753 | |
| 4754 | /* |
| 4755 | * Compute number of nodes that can be handled an rcu_node tree |
| 4756 | * with the given number of levels. |
| 4757 | */ |
| 4758 | rcu_capacity[0] = rcu_fanout_leaf; |
| 4759 | for (i = 1; i < RCU_NUM_LVLS; i++) |
| 4760 | rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; |
| 4761 | |
| 4762 | /* |
| 4763 | * The tree must be able to accommodate the configured number of CPUs. |
| 4764 | * If this limit is exceeded, fall back to the compile-time values. |
| 4765 | */ |
| 4766 | if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { |
| 4767 | rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 4768 | WARN_ON(1); |
| 4769 | return; |
| 4770 | } |
| 4771 | |
| 4772 | /* Calculate the number of levels in the tree. */ |
| 4773 | for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { |
| 4774 | } |
| 4775 | rcu_num_lvls = i + 1; |
| 4776 | |
| 4777 | /* Calculate the number of rcu_nodes at each level of the tree. */ |
| 4778 | for (i = 0; i < rcu_num_lvls; i++) { |
| 4779 | int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; |
| 4780 | num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); |
| 4781 | } |
| 4782 | |
| 4783 | /* Calculate the total number of rcu_node structures. */ |
| 4784 | rcu_num_nodes = 0; |
| 4785 | for (i = 0; i < rcu_num_lvls; i++) |
| 4786 | rcu_num_nodes += num_rcu_lvl[i]; |
| 4787 | } |
| 4788 | |
| 4789 | /* |
| 4790 | * Dump out the structure of the rcu_node combining tree associated |
| 4791 | * with the rcu_state structure. |
| 4792 | */ |
| 4793 | static void __init rcu_dump_rcu_node_tree(void) |
| 4794 | { |
| 4795 | int level = 0; |
| 4796 | struct rcu_node *rnp; |
| 4797 | |
| 4798 | pr_info("rcu_node tree layout dump\n" ); |
| 4799 | pr_info(" " ); |
| 4800 | rcu_for_each_node_breadth_first(rnp) { |
| 4801 | if (rnp->level != level) { |
| 4802 | pr_cont("\n" ); |
| 4803 | pr_info(" " ); |
| 4804 | level = rnp->level; |
| 4805 | } |
| 4806 | pr_cont("%d:%d ^%d " , rnp->grplo, rnp->grphi, rnp->grpnum); |
| 4807 | } |
| 4808 | pr_cont("\n" ); |
| 4809 | } |
| 4810 | |
| 4811 | struct workqueue_struct *rcu_gp_wq; |
| 4812 | |
| 4813 | void __init rcu_init(void) |
| 4814 | { |
| 4815 | int cpu = smp_processor_id(); |
| 4816 | |
| 4817 | rcu_early_boot_tests(); |
| 4818 | |
| 4819 | rcu_bootup_announce(); |
| 4820 | sanitize_kthread_prio(); |
| 4821 | rcu_init_geometry(); |
| 4822 | rcu_init_one(); |
| 4823 | if (dump_tree) |
| 4824 | rcu_dump_rcu_node_tree(); |
| 4825 | if (use_softirq) |
| 4826 | open_softirq(nr: RCU_SOFTIRQ, action: rcu_core_si); |
| 4827 | |
| 4828 | /* |
| 4829 | * We don't need protection against CPU-hotplug here because |
| 4830 | * this is called early in boot, before either interrupts |
| 4831 | * or the scheduler are operational. |
| 4832 | */ |
| 4833 | pm_notifier(rcu_pm_notify, 0); |
| 4834 | WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. |
| 4835 | rcutree_prepare_cpu(cpu); |
| 4836 | rcutree_report_cpu_starting(cpu); |
| 4837 | rcutree_online_cpu(cpu); |
| 4838 | |
| 4839 | /* Create workqueue for Tree SRCU and for expedited GPs. */ |
| 4840 | rcu_gp_wq = alloc_workqueue(fmt: "rcu_gp" , flags: WQ_MEM_RECLAIM, max_active: 0); |
| 4841 | WARN_ON(!rcu_gp_wq); |
| 4842 | |
| 4843 | sync_wq = alloc_workqueue(fmt: "sync_wq" , flags: WQ_MEM_RECLAIM, max_active: 0); |
| 4844 | WARN_ON(!sync_wq); |
| 4845 | |
| 4846 | /* Fill in default value for rcutree.qovld boot parameter. */ |
| 4847 | /* -After- the rcu_node ->lock fields are initialized! */ |
| 4848 | if (qovld < 0) |
| 4849 | qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; |
| 4850 | else |
| 4851 | qovld_calc = qovld; |
| 4852 | |
| 4853 | // Kick-start in case any polled grace periods started early. |
| 4854 | (void)start_poll_synchronize_rcu_expedited(); |
| 4855 | |
| 4856 | rcu_test_sync_prims(); |
| 4857 | |
| 4858 | tasks_cblist_init_generic(); |
| 4859 | } |
| 4860 | |
| 4861 | #include "tree_stall.h" |
| 4862 | #include "tree_exp.h" |
| 4863 | #include "tree_nocb.h" |
| 4864 | #include "tree_plugin.h" |
| 4865 | |