1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18#define pr_fmt(fmt) "rcu: " fmt
19
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
25#include <linux/rcupdate_wait.h>
26#include <linux/interrupt.h>
27#include <linux/sched.h>
28#include <linux/sched/debug.h>
29#include <linux/nmi.h>
30#include <linux/atomic.h>
31#include <linux/bitops.h>
32#include <linux/export.h>
33#include <linux/completion.h>
34#include <linux/kmemleak.h>
35#include <linux/moduleparam.h>
36#include <linux/panic.h>
37#include <linux/panic_notifier.h>
38#include <linux/percpu.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/mutex.h>
42#include <linux/time.h>
43#include <linux/kernel_stat.h>
44#include <linux/wait.h>
45#include <linux/kthread.h>
46#include <uapi/linux/sched/types.h>
47#include <linux/prefetch.h>
48#include <linux/delay.h>
49#include <linux/random.h>
50#include <linux/trace_events.h>
51#include <linux/suspend.h>
52#include <linux/ftrace.h>
53#include <linux/tick.h>
54#include <linux/sysrq.h>
55#include <linux/kprobes.h>
56#include <linux/gfp.h>
57#include <linux/oom.h>
58#include <linux/smpboot.h>
59#include <linux/jiffies.h>
60#include <linux/slab.h>
61#include <linux/sched/isolation.h>
62#include <linux/sched/clock.h>
63#include <linux/vmalloc.h>
64#include <linux/mm.h>
65#include <linux/kasan.h>
66#include <linux/context_tracking.h>
67#include "../time/tick-internal.h"
68
69#include "tree.h"
70#include "rcu.h"
71
72#ifdef MODULE_PARAM_PREFIX
73#undef MODULE_PARAM_PREFIX
74#endif
75#define MODULE_PARAM_PREFIX "rcutree."
76
77/* Data structures. */
78static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
79
80static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
81 .gpwrap = true,
82};
83
84int rcu_get_gpwrap_count(int cpu)
85{
86 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
87
88 return READ_ONCE(rdp->gpwrap_count);
89}
90EXPORT_SYMBOL_GPL(rcu_get_gpwrap_count);
91
92static struct rcu_state rcu_state = {
93 .level = { &rcu_state.node[0] },
94 .gp_state = RCU_GP_IDLE,
95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
97 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
98 .name = RCU_NAME,
99 .abbr = RCU_ABBR,
100 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
101 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
102 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
103 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
104 rcu_sr_normal_gp_cleanup_work),
105 .srs_cleanups_pending = ATOMIC_INIT(0),
106#ifdef CONFIG_RCU_NOCB_CPU
107 .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
108#endif
109};
110
111/* Dump rcu_node combining tree at boot to verify correct setup. */
112static bool dump_tree;
113module_param(dump_tree, bool, 0444);
114/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
115static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
116#ifndef CONFIG_PREEMPT_RT
117module_param(use_softirq, bool, 0444);
118#endif
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124module_param(rcu_fanout_leaf, int, 0444);
125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126/* Number of rcu_nodes at specified level. */
127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129
130/*
131 * The rcu_scheduler_active variable is initialized to the value
132 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
133 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
134 * RCU can assume that there is but one task, allowing RCU to (for example)
135 * optimize synchronize_rcu() to a simple barrier(). When this variable
136 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
137 * to detect real grace periods. This variable is also used to suppress
138 * boot-time false positives from lockdep-RCU error checking. Finally, it
139 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
140 * is fully initialized, including all of its kthreads having been spawned.
141 */
142int rcu_scheduler_active __read_mostly;
143EXPORT_SYMBOL_GPL(rcu_scheduler_active);
144
145/*
146 * The rcu_scheduler_fully_active variable transitions from zero to one
147 * during the early_initcall() processing, which is after the scheduler
148 * is capable of creating new tasks. So RCU processing (for example,
149 * creating tasks for RCU priority boosting) must be delayed until after
150 * rcu_scheduler_fully_active transitions from zero to one. We also
151 * currently delay invocation of any RCU callbacks until after this point.
152 *
153 * It might later prove better for people registering RCU callbacks during
154 * early boot to take responsibility for these callbacks, but one step at
155 * a time.
156 */
157static int rcu_scheduler_fully_active __read_mostly;
158
159static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
160 unsigned long gps, unsigned long flags);
161static void invoke_rcu_core(void);
162static void rcu_report_exp_rdp(struct rcu_data *rdp);
163static void sync_sched_exp_online_cleanup(int cpu);
164static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
165static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
166static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
167static bool rcu_init_invoked(void);
168static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
169static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
170
171/*
172 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
173 * real-time priority(enabling/disabling) is controlled by
174 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
175 */
176static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
177module_param(kthread_prio, int, 0444);
178
179/* Delay in jiffies for grace-period initialization delays, debug only. */
180
181static int gp_preinit_delay;
182module_param(gp_preinit_delay, int, 0444);
183static int gp_init_delay;
184module_param(gp_init_delay, int, 0444);
185static int gp_cleanup_delay;
186module_param(gp_cleanup_delay, int, 0444);
187static int nohz_full_patience_delay;
188module_param(nohz_full_patience_delay, int, 0444);
189static int nohz_full_patience_delay_jiffies;
190
191// Add delay to rcu_read_unlock() for strict grace periods.
192static int rcu_unlock_delay;
193#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
194module_param(rcu_unlock_delay, int, 0444);
195#endif
196
197/* Retrieve RCU kthreads priority for rcutorture */
198int rcu_get_gp_kthreads_prio(void)
199{
200 return kthread_prio;
201}
202EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
203
204/*
205 * Number of grace periods between delays, normalized by the duration of
206 * the delay. The longer the delay, the more the grace periods between
207 * each delay. The reason for this normalization is that it means that,
208 * for non-zero delays, the overall slowdown of grace periods is constant
209 * regardless of the duration of the delay. This arrangement balances
210 * the need for long delays to increase some race probabilities with the
211 * need for fast grace periods to increase other race probabilities.
212 */
213#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
214
215/*
216 * Return true if an RCU grace period is in progress. The READ_ONCE()s
217 * permit this function to be invoked without holding the root rcu_node
218 * structure's ->lock, but of course results can be subject to change.
219 */
220static int rcu_gp_in_progress(void)
221{
222 return rcu_seq_state(s: rcu_seq_current(sp: &rcu_state.gp_seq));
223}
224
225/*
226 * Return the number of callbacks queued on the specified CPU.
227 * Handles both the nocbs and normal cases.
228 */
229static long rcu_get_n_cbs_cpu(int cpu)
230{
231 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
232
233 if (rcu_segcblist_is_enabled(rsclp: &rdp->cblist))
234 return rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
235 return 0;
236}
237
238/**
239 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
240 *
241 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
242 * This is a special-purpose function to be used in the softirq
243 * infrastructure and perhaps the occasional long-running softirq
244 * handler.
245 *
246 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
247 * equivalent to momentarily completely enabling preemption. For
248 * example, given this code::
249 *
250 * local_bh_disable();
251 * do_something();
252 * rcu_softirq_qs(); // A
253 * do_something_else();
254 * local_bh_enable(); // B
255 *
256 * A call to synchronize_rcu() that began concurrently with the
257 * call to do_something() would be guaranteed to wait only until
258 * execution reached statement A. Without that rcu_softirq_qs(),
259 * that same synchronize_rcu() would instead be guaranteed to wait
260 * until execution reached statement B.
261 */
262void rcu_softirq_qs(void)
263{
264 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
265 lock_is_held(&rcu_lock_map) ||
266 lock_is_held(&rcu_sched_lock_map),
267 "Illegal rcu_softirq_qs() in RCU read-side critical section");
268 rcu_qs();
269 rcu_preempt_deferred_qs(current);
270 rcu_tasks_qs(current, false);
271}
272
273/*
274 * Reset the current CPU's RCU_WATCHING counter to indicate that the
275 * newly onlined CPU is no longer in an extended quiescent state.
276 * This will either leave the counter unchanged, or increment it
277 * to the next non-quiescent value.
278 *
279 * The non-atomic test/increment sequence works because the upper bits
280 * of the ->state variable are manipulated only by the corresponding CPU,
281 * or when the corresponding CPU is offline.
282 */
283static void rcu_watching_online(void)
284{
285 if (ct_rcu_watching() & CT_RCU_WATCHING)
286 return;
287 ct_state_inc(CT_RCU_WATCHING);
288}
289
290/*
291 * Return true if the snapshot returned from ct_rcu_watching()
292 * indicates that RCU is in an extended quiescent state.
293 */
294static bool rcu_watching_snap_in_eqs(int snap)
295{
296 return !(snap & CT_RCU_WATCHING);
297}
298
299/**
300 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
301 * since the specified @snap?
302 *
303 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
304 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
305 *
306 * Returns true if the CPU corresponding to @rdp has spent some time in an
307 * extended quiescent state since @snap. Note that this doesn't check if it
308 * /still/ is in an EQS, just that it went through one since @snap.
309 *
310 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
311 */
312static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
313{
314 /*
315 * The first failing snapshot is already ordered against the accesses
316 * performed by the remote CPU after it exits idle.
317 *
318 * The second snapshot therefore only needs to order against accesses
319 * performed by the remote CPU prior to entering idle and therefore can
320 * rely solely on acquire semantics.
321 */
322 if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
323 return true;
324
325 return snap != ct_rcu_watching_cpu_acquire(cpu: rdp->cpu);
326}
327
328/*
329 * Return true if the referenced integer is zero while the specified
330 * CPU remains within a single extended quiescent state.
331 */
332bool rcu_watching_zero_in_eqs(int cpu, int *vp)
333{
334 int snap;
335
336 // If not quiescent, force back to earlier extended quiescent state.
337 snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
338 smp_rmb(); // Order CT state and *vp reads.
339 if (READ_ONCE(*vp))
340 return false; // Non-zero, so report failure;
341 smp_rmb(); // Order *vp read and CT state re-read.
342
343 // If still in the same extended quiescent state, we are good!
344 return snap == ct_rcu_watching_cpu(cpu);
345}
346
347/*
348 * Let the RCU core know that this CPU has gone through the scheduler,
349 * which is a quiescent state. This is called when the need for a
350 * quiescent state is urgent, so we burn an atomic operation and full
351 * memory barriers to let the RCU core know about it, regardless of what
352 * this CPU might (or might not) do in the near future.
353 *
354 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
355 *
356 * The caller must have disabled interrupts and must not be idle.
357 */
358notrace void rcu_momentary_eqs(void)
359{
360 int seq;
361
362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
363 seq = ct_state_inc(incby: 2 * CT_RCU_WATCHING);
364 /* It is illegal to call this from idle state. */
365 WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
366 rcu_preempt_deferred_qs(current);
367}
368EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
369
370/**
371 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
372 *
373 * If the current CPU is idle and running at a first-level (not nested)
374 * interrupt, or directly, from idle, return true.
375 *
376 * The caller must have at least disabled IRQs.
377 */
378static int rcu_is_cpu_rrupt_from_idle(void)
379{
380 long nesting;
381
382 /*
383 * Usually called from the tick; but also used from smp_function_call()
384 * for expedited grace periods. This latter can result in running from
385 * the idle task, instead of an actual IPI.
386 */
387 lockdep_assert_irqs_disabled();
388
389 /* Check for counter underflows */
390 RCU_LOCKDEP_WARN(ct_nesting() < 0,
391 "RCU nesting counter underflow!");
392 RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
393 "RCU nmi_nesting counter underflow/zero!");
394
395 /* Are we at first interrupt nesting level? */
396 nesting = ct_nmi_nesting();
397 if (nesting > 1)
398 return false;
399
400 /*
401 * If we're not in an interrupt, we must be in the idle task!
402 */
403 WARN_ON_ONCE(!nesting && !is_idle_task(current));
404
405 /* Does CPU appear to be idle from an RCU standpoint? */
406 return ct_nesting() == 0;
407}
408
409#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
410 // Maximum callbacks per rcu_do_batch ...
411#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
412static long blimit = DEFAULT_RCU_BLIMIT;
413#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
414static long qhimark = DEFAULT_RCU_QHIMARK;
415#define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
416static long qlowmark = DEFAULT_RCU_QLOMARK;
417#define DEFAULT_RCU_QOVLD_MULT 2
418#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
419static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
420static long qovld_calc = -1; // No pre-initialization lock acquisitions!
421
422module_param(blimit, long, 0444);
423module_param(qhimark, long, 0444);
424module_param(qlowmark, long, 0444);
425module_param(qovld, long, 0444);
426
427static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
428static ulong jiffies_till_next_fqs = ULONG_MAX;
429static bool rcu_kick_kthreads;
430static int rcu_divisor = 7;
431module_param(rcu_divisor, int, 0644);
432
433/* Force an exit from rcu_do_batch() after 3 milliseconds. */
434static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
435module_param(rcu_resched_ns, long, 0644);
436
437/*
438 * How long the grace period must be before we start recruiting
439 * quiescent-state help from rcu_note_context_switch().
440 */
441static ulong jiffies_till_sched_qs = ULONG_MAX;
442module_param(jiffies_till_sched_qs, ulong, 0444);
443static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
444module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
445
446/*
447 * Make sure that we give the grace-period kthread time to detect any
448 * idle CPUs before taking active measures to force quiescent states.
449 * However, don't go below 100 milliseconds, adjusted upwards for really
450 * large systems.
451 */
452static void adjust_jiffies_till_sched_qs(void)
453{
454 unsigned long j;
455
456 /* If jiffies_till_sched_qs was specified, respect the request. */
457 if (jiffies_till_sched_qs != ULONG_MAX) {
458 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
459 return;
460 }
461 /* Otherwise, set to third fqs scan, but bound below on large system. */
462 j = READ_ONCE(jiffies_till_first_fqs) +
463 2 * READ_ONCE(jiffies_till_next_fqs);
464 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
465 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
466 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
467 WRITE_ONCE(jiffies_to_sched_qs, j);
468}
469
470static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
471{
472 ulong j;
473 int ret = kstrtoul(s: val, base: 0, res: &j);
474
475 if (!ret) {
476 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
477 adjust_jiffies_till_sched_qs();
478 }
479 return ret;
480}
481
482static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
483{
484 ulong j;
485 int ret = kstrtoul(s: val, base: 0, res: &j);
486
487 if (!ret) {
488 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
489 adjust_jiffies_till_sched_qs();
490 }
491 return ret;
492}
493
494static const struct kernel_param_ops first_fqs_jiffies_ops = {
495 .set = param_set_first_fqs_jiffies,
496 .get = param_get_ulong,
497};
498
499static const struct kernel_param_ops next_fqs_jiffies_ops = {
500 .set = param_set_next_fqs_jiffies,
501 .get = param_get_ulong,
502};
503
504module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
505module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
506module_param(rcu_kick_kthreads, bool, 0644);
507
508static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
509static int rcu_pending(int user);
510
511/*
512 * Return the number of RCU GPs completed thus far for debug & stats.
513 */
514unsigned long rcu_get_gp_seq(void)
515{
516 return READ_ONCE(rcu_state.gp_seq);
517}
518EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
519
520/*
521 * Return the number of RCU expedited batches completed thus far for
522 * debug & stats. Odd numbers mean that a batch is in progress, even
523 * numbers mean idle. The value returned will thus be roughly double
524 * the cumulative batches since boot.
525 */
526unsigned long rcu_exp_batches_completed(void)
527{
528 return rcu_state.expedited_sequence;
529}
530EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
531
532/*
533 * Return the root node of the rcu_state structure.
534 */
535static struct rcu_node *rcu_get_root(void)
536{
537 return &rcu_state.node[0];
538}
539
540/*
541 * Send along grace-period-related data for rcutorture diagnostics.
542 */
543void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
544{
545 *flags = READ_ONCE(rcu_state.gp_flags);
546 *gp_seq = rcu_seq_current(sp: &rcu_state.gp_seq);
547}
548EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549
550/* Gather grace-period sequence numbers for rcutorture diagnostics. */
551unsigned long long rcutorture_gather_gp_seqs(void)
552{
553 return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) |
554 ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) |
555 (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL);
556}
557EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs);
558
559/* Format grace-period sequence numbers for rcutorture diagnostics. */
560void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len)
561{
562 unsigned int egp = (seqs >> 16) & 0xffffffULL;
563 unsigned int ggp = (seqs >> 40) & 0xffffULL;
564 unsigned int pgp = seqs & 0xffffULL;
565
566 snprintf(buf: cp, size: len, fmt: "g%04x:e%06x:p%04x", ggp, egp, pgp);
567}
568EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs);
569
570#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
571/*
572 * An empty function that will trigger a reschedule on
573 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
574 */
575static void late_wakeup_func(struct irq_work *work)
576{
577}
578
579static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
580 IRQ_WORK_INIT(late_wakeup_func);
581
582/*
583 * If either:
584 *
585 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
586 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
587 *
588 * In these cases the late RCU wake ups aren't supported in the resched loops and our
589 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
590 * get re-enabled again.
591 */
592noinstr void rcu_irq_work_resched(void)
593{
594 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
595
596 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
597 return;
598
599 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
600 return;
601
602 instrumentation_begin();
603 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
604 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
605 }
606 instrumentation_end();
607}
608#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
609
610#ifdef CONFIG_PROVE_RCU
611/**
612 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
613 */
614void rcu_irq_exit_check_preempt(void)
615{
616 lockdep_assert_irqs_disabled();
617
618 RCU_LOCKDEP_WARN(ct_nesting() <= 0,
619 "RCU nesting counter underflow/zero!");
620 RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
621 CT_NESTING_IRQ_NONIDLE,
622 "Bad RCU nmi_nesting counter\n");
623 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
624 "RCU in extended quiescent state!");
625}
626#endif /* #ifdef CONFIG_PROVE_RCU */
627
628#ifdef CONFIG_NO_HZ_FULL
629/**
630 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
631 *
632 * The scheduler tick is not normally enabled when CPUs enter the kernel
633 * from nohz_full userspace execution. After all, nohz_full userspace
634 * execution is an RCU quiescent state and the time executing in the kernel
635 * is quite short. Except of course when it isn't. And it is not hard to
636 * cause a large system to spend tens of seconds or even minutes looping
637 * in the kernel, which can cause a number of problems, include RCU CPU
638 * stall warnings.
639 *
640 * Therefore, if a nohz_full CPU fails to report a quiescent state
641 * in a timely manner, the RCU grace-period kthread sets that CPU's
642 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
643 * exception will invoke this function, which will turn on the scheduler
644 * tick, which will enable RCU to detect that CPU's quiescent states,
645 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
646 * The tick will be disabled once a quiescent state is reported for
647 * this CPU.
648 *
649 * Of course, in carefully tuned systems, there might never be an
650 * interrupt or exception. In that case, the RCU grace-period kthread
651 * will eventually cause one to happen. However, in less carefully
652 * controlled environments, this function allows RCU to get what it
653 * needs without creating otherwise useless interruptions.
654 */
655void __rcu_irq_enter_check_tick(void)
656{
657 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
658
659 // If we're here from NMI there's nothing to do.
660 if (in_nmi())
661 return;
662
663 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
664 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
665
666 if (!tick_nohz_full_cpu(rdp->cpu) ||
667 !READ_ONCE(rdp->rcu_urgent_qs) ||
668 READ_ONCE(rdp->rcu_forced_tick)) {
669 // RCU doesn't need nohz_full help from this CPU, or it is
670 // already getting that help.
671 return;
672 }
673
674 // We get here only when not in an extended quiescent state and
675 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
676 // already watching and (2) The fact that we are in an interrupt
677 // handler and that the rcu_node lock is an irq-disabled lock
678 // prevents self-deadlock. So we can safely recheck under the lock.
679 // Note that the nohz_full state currently cannot change.
680 raw_spin_lock_rcu_node(rdp->mynode);
681 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
682 // A nohz_full CPU is in the kernel and RCU needs a
683 // quiescent state. Turn on the tick!
684 WRITE_ONCE(rdp->rcu_forced_tick, true);
685 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
686 }
687 raw_spin_unlock_rcu_node(rdp->mynode);
688}
689NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
690#endif /* CONFIG_NO_HZ_FULL */
691
692/*
693 * Check to see if any future non-offloaded RCU-related work will need
694 * to be done by the current CPU, even if none need be done immediately,
695 * returning 1 if so. This function is part of the RCU implementation;
696 * it is -not- an exported member of the RCU API. This is used by
697 * the idle-entry code to figure out whether it is safe to disable the
698 * scheduler-clock interrupt.
699 *
700 * Just check whether or not this CPU has non-offloaded RCU callbacks
701 * queued.
702 */
703int rcu_needs_cpu(void)
704{
705 return !rcu_segcblist_empty(rsclp: &this_cpu_ptr(&rcu_data)->cblist) &&
706 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
707}
708
709/*
710 * If any sort of urgency was applied to the current CPU (for example,
711 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
712 * to get to a quiescent state, disable it.
713 */
714static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
715{
716 raw_lockdep_assert_held_rcu_node(rdp->mynode);
717 WRITE_ONCE(rdp->rcu_urgent_qs, false);
718 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
719 if (tick_nohz_full_cpu(cpu: rdp->cpu) && rdp->rcu_forced_tick) {
720 tick_dep_clear_cpu(cpu: rdp->cpu, bit: TICK_DEP_BIT_RCU);
721 WRITE_ONCE(rdp->rcu_forced_tick, false);
722 }
723}
724
725/**
726 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
727 *
728 * Return @true if RCU is watching the running CPU and @false otherwise.
729 * An @true return means that this CPU can safely enter RCU read-side
730 * critical sections.
731 *
732 * Although calls to rcu_is_watching() from most parts of the kernel
733 * will return @true, there are important exceptions. For example, if the
734 * current CPU is deep within its idle loop, in kernel entry/exit code,
735 * or offline, rcu_is_watching() will return @false.
736 *
737 * Make notrace because it can be called by the internal functions of
738 * ftrace, and making this notrace removes unnecessary recursion calls.
739 */
740notrace bool rcu_is_watching(void)
741{
742 bool ret;
743
744 preempt_disable_notrace();
745 ret = rcu_is_watching_curr_cpu();
746 preempt_enable_notrace();
747 return ret;
748}
749EXPORT_SYMBOL_GPL(rcu_is_watching);
750
751/*
752 * If a holdout task is actually running, request an urgent quiescent
753 * state from its CPU. This is unsynchronized, so migrations can cause
754 * the request to go to the wrong CPU. Which is OK, all that will happen
755 * is that the CPU's next context switch will be a bit slower and next
756 * time around this task will generate another request.
757 */
758void rcu_request_urgent_qs_task(struct task_struct *t)
759{
760 int cpu;
761
762 barrier();
763 cpu = task_cpu(p: t);
764 if (!task_curr(p: t))
765 return; /* This task is not running on that CPU. */
766 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
767}
768
769static unsigned long seq_gpwrap_lag = ULONG_MAX / 4;
770
771/**
772 * rcu_set_gpwrap_lag - Set RCU GP sequence overflow lag value.
773 * @lag_gps: Set overflow lag to this many grace period worth of counters
774 * which is used by rcutorture to quickly force a gpwrap situation.
775 * @lag_gps = 0 means we reset it back to the boot-time value.
776 */
777void rcu_set_gpwrap_lag(unsigned long lag_gps)
778{
779 unsigned long lag_seq_count;
780
781 lag_seq_count = (lag_gps == 0)
782 ? ULONG_MAX / 4
783 : lag_gps << RCU_SEQ_CTR_SHIFT;
784 WRITE_ONCE(seq_gpwrap_lag, lag_seq_count);
785}
786EXPORT_SYMBOL_GPL(rcu_set_gpwrap_lag);
787
788/*
789 * When trying to report a quiescent state on behalf of some other CPU,
790 * it is our responsibility to check for and handle potential overflow
791 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
792 * After all, the CPU might be in deep idle state, and thus executing no
793 * code whatsoever.
794 */
795static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
796{
797 raw_lockdep_assert_held_rcu_node(rnp);
798 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + seq_gpwrap_lag,
799 rnp->gp_seq)) {
800 WRITE_ONCE(rdp->gpwrap, true);
801 WRITE_ONCE(rdp->gpwrap_count, READ_ONCE(rdp->gpwrap_count) + 1);
802 }
803 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
804 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
805}
806
807/*
808 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
809 * credit them with an implicit quiescent state. Return 1 if this CPU
810 * is in dynticks idle mode, which is an extended quiescent state.
811 */
812static int rcu_watching_snap_save(struct rcu_data *rdp)
813{
814 /*
815 * Full ordering between remote CPU's post idle accesses and updater's
816 * accesses prior to current GP (and also the started GP sequence number)
817 * is enforced by rcu_seq_start() implicit barrier and even further by
818 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
819 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
820 * locking.
821 *
822 * Ordering between remote CPU's pre idle accesses and post grace period
823 * updater's accesses is enforced by the below acquire semantic.
824 */
825 rdp->watching_snap = ct_rcu_watching_cpu_acquire(cpu: rdp->cpu);
826 if (rcu_watching_snap_in_eqs(snap: rdp->watching_snap)) {
827 trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti"));
828 rcu_gpnum_ovf(rnp: rdp->mynode, rdp);
829 return 1;
830 }
831 return 0;
832}
833
834#ifndef arch_irq_stat_cpu
835#define arch_irq_stat_cpu(cpu) 0
836#endif
837
838/*
839 * Returns positive if the specified CPU has passed through a quiescent state
840 * by virtue of being in or having passed through an dynticks idle state since
841 * the last call to rcu_watching_snap_save() for this same CPU, or by
842 * virtue of having been offline.
843 *
844 * Returns negative if the specified CPU needs a force resched.
845 *
846 * Returns zero otherwise.
847 */
848static int rcu_watching_snap_recheck(struct rcu_data *rdp)
849{
850 unsigned long jtsq;
851 int ret = 0;
852 struct rcu_node *rnp = rdp->mynode;
853
854 /*
855 * If the CPU passed through or entered a dynticks idle phase with
856 * no active irq/NMI handlers, then we can safely pretend that the CPU
857 * already acknowledged the request to pass through a quiescent
858 * state. Either way, that CPU cannot possibly be in an RCU
859 * read-side critical section that started before the beginning
860 * of the current RCU grace period.
861 */
862 if (rcu_watching_snap_stopped_since(rdp, snap: rdp->watching_snap)) {
863 trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti"));
864 rcu_gpnum_ovf(rnp, rdp);
865 return 1;
866 }
867
868 /*
869 * Complain if a CPU that is considered to be offline from RCU's
870 * perspective has not yet reported a quiescent state. After all,
871 * the offline CPU should have reported a quiescent state during
872 * the CPU-offline process, or, failing that, by rcu_gp_init()
873 * if it ran concurrently with either the CPU going offline or the
874 * last task on a leaf rcu_node structure exiting its RCU read-side
875 * critical section while all CPUs corresponding to that structure
876 * are offline. This added warning detects bugs in any of these
877 * code paths.
878 *
879 * The rcu_node structure's ->lock is held here, which excludes
880 * the relevant portions the CPU-hotplug code, the grace-period
881 * initialization code, and the rcu_read_unlock() code paths.
882 *
883 * For more detail, please refer to the "Hotplug CPU" section
884 * of RCU's Requirements documentation.
885 */
886 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
887 struct rcu_node *rnp1;
888
889 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
890 __func__, rnp->grplo, rnp->grphi, rnp->level,
891 (long)rnp->gp_seq, (long)rnp->completedqs);
892 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
893 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
894 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
895 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
896 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
897 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
898 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
899 return 1; /* Break things loose after complaining. */
900 }
901
902 /*
903 * A CPU running for an extended time within the kernel can
904 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
905 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
906 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
907 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
908 * variable are safe because the assignments are repeated if this
909 * CPU failed to pass through a quiescent state. This code
910 * also checks .jiffies_resched in case jiffies_to_sched_qs
911 * is set way high.
912 */
913 jtsq = READ_ONCE(jiffies_to_sched_qs);
914 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
915 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
916 time_after(jiffies, rcu_state.jiffies_resched) ||
917 rcu_state.cbovld)) {
918 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
919 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
920 smp_store_release(&rdp->rcu_urgent_qs, true);
921 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
922 WRITE_ONCE(rdp->rcu_urgent_qs, true);
923 }
924
925 /*
926 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
927 * The above code handles this, but only for straight cond_resched().
928 * And some in-kernel loops check need_resched() before calling
929 * cond_resched(), which defeats the above code for CPUs that are
930 * running in-kernel with scheduling-clock interrupts disabled.
931 * So hit them over the head with the resched_cpu() hammer!
932 */
933 if (tick_nohz_full_cpu(cpu: rdp->cpu) &&
934 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
935 rcu_state.cbovld)) {
936 WRITE_ONCE(rdp->rcu_urgent_qs, true);
937 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
938 ret = -1;
939 }
940
941 /*
942 * If more than halfway to RCU CPU stall-warning time, invoke
943 * resched_cpu() more frequently to try to loosen things up a bit.
944 * Also check to see if the CPU is getting hammered with interrupts,
945 * but only once per grace period, just to keep the IPIs down to
946 * a dull roar.
947 */
948 if (time_after(jiffies, rcu_state.jiffies_resched)) {
949 if (time_after(jiffies,
950 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
951 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
952 ret = -1;
953 }
954 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
955 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
956 (rnp->ffmask & rdp->grpmask)) {
957 rdp->rcu_iw_pending = true;
958 rdp->rcu_iw_gp_seq = rnp->gp_seq;
959 irq_work_queue_on(work: &rdp->rcu_iw, cpu: rdp->cpu);
960 }
961
962 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
963 int cpu = rdp->cpu;
964 struct rcu_snap_record *rsrp;
965 struct kernel_cpustat *kcsp;
966
967 kcsp = &kcpustat_cpu(cpu);
968
969 rsrp = &rdp->snap_record;
970 rsrp->cputime_irq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_IRQ, cpu);
971 rsrp->cputime_softirq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SOFTIRQ, cpu);
972 rsrp->cputime_system = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SYSTEM, cpu);
973 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu);
974 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu);
975 rsrp->nr_csw = nr_context_switches_cpu(cpu);
976 rsrp->jiffies = jiffies;
977 rsrp->gp_seq = rdp->gp_seq;
978 }
979 }
980
981 return ret;
982}
983
984/* Trace-event wrapper function for trace_rcu_future_grace_period. */
985static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
986 unsigned long gp_seq_req, const char *s)
987{
988 trace_rcu_future_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq),
989 gp_seq_req, level: rnp->level,
990 grplo: rnp->grplo, grphi: rnp->grphi, gpevent: s);
991}
992
993/*
994 * rcu_start_this_gp - Request the start of a particular grace period
995 * @rnp_start: The leaf node of the CPU from which to start.
996 * @rdp: The rcu_data corresponding to the CPU from which to start.
997 * @gp_seq_req: The gp_seq of the grace period to start.
998 *
999 * Start the specified grace period, as needed to handle newly arrived
1000 * callbacks. The required future grace periods are recorded in each
1001 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1002 * is reason to awaken the grace-period kthread.
1003 *
1004 * The caller must hold the specified rcu_node structure's ->lock, which
1005 * is why the caller is responsible for waking the grace-period kthread.
1006 *
1007 * Returns true if the GP thread needs to be awakened else false.
1008 */
1009static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1010 unsigned long gp_seq_req)
1011{
1012 bool ret = false;
1013 struct rcu_node *rnp;
1014
1015 /*
1016 * Use funnel locking to either acquire the root rcu_node
1017 * structure's lock or bail out if the need for this grace period
1018 * has already been recorded -- or if that grace period has in
1019 * fact already started. If there is already a grace period in
1020 * progress in a non-leaf node, no recording is needed because the
1021 * end of the grace period will scan the leaf rcu_node structures.
1022 * Note that rnp_start->lock must not be released.
1023 */
1024 raw_lockdep_assert_held_rcu_node(rnp_start);
1025 trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1026 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1027 if (rnp != rnp_start)
1028 raw_spin_lock_rcu_node(rnp);
1029 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1030 rcu_seq_started(sp: &rnp->gp_seq, s: gp_seq_req) ||
1031 (rnp != rnp_start &&
1032 rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)))) {
1033 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1034 TPS("Prestarted"));
1035 goto unlock_out;
1036 }
1037 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1038 if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq))) {
1039 /*
1040 * We just marked the leaf or internal node, and a
1041 * grace period is in progress, which means that
1042 * rcu_gp_cleanup() will see the marking. Bail to
1043 * reduce contention.
1044 */
1045 trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req,
1046 TPS("Startedleaf"));
1047 goto unlock_out;
1048 }
1049 if (rnp != rnp_start && rnp->parent != NULL)
1050 raw_spin_unlock_rcu_node(rnp);
1051 if (!rnp->parent)
1052 break; /* At root, and perhaps also leaf. */
1053 }
1054
1055 /* If GP already in progress, just leave, otherwise start one. */
1056 if (rcu_gp_in_progress()) {
1057 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1058 goto unlock_out;
1059 }
1060 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1061 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1062 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1063 if (!READ_ONCE(rcu_state.gp_kthread)) {
1064 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1065 goto unlock_out;
1066 }
1067 trace_rcu_grace_period(rcuname: rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1068 ret = true; /* Caller must wake GP kthread. */
1069unlock_out:
1070 /* Push furthest requested GP to leaf node and rcu_data structure. */
1071 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1072 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1073 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1074 }
1075 if (rnp != rnp_start)
1076 raw_spin_unlock_rcu_node(rnp);
1077 return ret;
1078}
1079
1080/*
1081 * Clean up any old requests for the just-ended grace period. Also return
1082 * whether any additional grace periods have been requested.
1083 */
1084static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1085{
1086 bool needmore;
1087 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1088
1089 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1090 if (!needmore)
1091 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1092 trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq,
1093 s: needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1094 return needmore;
1095}
1096
1097/*
1098 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1099 * interrupt or softirq handler, in which case we just might immediately
1100 * sleep upon return, resulting in a grace-period hang), and don't bother
1101 * awakening when there is nothing for the grace-period kthread to do
1102 * (as in several CPUs raced to awaken, we lost), and finally don't try
1103 * to awaken a kthread that has not yet been created. If all those checks
1104 * are passed, track some debug information and awaken.
1105 *
1106 * So why do the self-wakeup when in an interrupt or softirq handler
1107 * in the grace-period kthread's context? Because the kthread might have
1108 * been interrupted just as it was going to sleep, and just after the final
1109 * pre-sleep check of the awaken condition. In this case, a wakeup really
1110 * is required, and is therefore supplied.
1111 */
1112static void rcu_gp_kthread_wake(void)
1113{
1114 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1115
1116 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1117 !READ_ONCE(rcu_state.gp_flags) || !t)
1118 return;
1119 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1120 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1121 swake_up_one(q: &rcu_state.gp_wq);
1122}
1123
1124/*
1125 * If there is room, assign a ->gp_seq number to any callbacks on this
1126 * CPU that have not already been assigned. Also accelerate any callbacks
1127 * that were previously assigned a ->gp_seq number that has since proven
1128 * to be too conservative, which can happen if callbacks get assigned a
1129 * ->gp_seq number while RCU is idle, but with reference to a non-root
1130 * rcu_node structure. This function is idempotent, so it does not hurt
1131 * to call it repeatedly. Returns an flag saying that we should awaken
1132 * the RCU grace-period kthread.
1133 *
1134 * The caller must hold rnp->lock with interrupts disabled.
1135 */
1136static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1137{
1138 unsigned long gp_seq_req;
1139 bool ret = false;
1140
1141 rcu_lockdep_assert_cblist_protected(rdp);
1142 raw_lockdep_assert_held_rcu_node(rnp);
1143
1144 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1145 if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist))
1146 return false;
1147
1148 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPreAcc"));
1149
1150 /*
1151 * Callbacks are often registered with incomplete grace-period
1152 * information. Something about the fact that getting exact
1153 * information requires acquiring a global lock... RCU therefore
1154 * makes a conservative estimate of the grace period number at which
1155 * a given callback will become ready to invoke. The following
1156 * code checks this estimate and improves it when possible, thus
1157 * accelerating callback invocation to an earlier grace-period
1158 * number.
1159 */
1160 gp_seq_req = rcu_seq_snap(sp: &rcu_state.gp_seq);
1161 if (rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: gp_seq_req))
1162 ret = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req);
1163
1164 /* Trace depending on how much we were able to accelerate. */
1165 if (rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_WAIT_TAIL))
1166 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccWaitCB"));
1167 else
1168 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccReadyCB"));
1169
1170 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPostAcc"));
1171
1172 return ret;
1173}
1174
1175/*
1176 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1177 * rcu_node structure's ->lock be held. It consults the cached value
1178 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1179 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1180 * while holding the leaf rcu_node structure's ->lock.
1181 */
1182static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1183 struct rcu_data *rdp)
1184{
1185 unsigned long c;
1186 bool needwake;
1187
1188 rcu_lockdep_assert_cblist_protected(rdp);
1189 c = rcu_seq_snap(sp: &rcu_state.gp_seq);
1190 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1191 /* Old request still live, so mark recent callbacks. */
1192 (void)rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: c);
1193 return;
1194 }
1195 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1196 needwake = rcu_accelerate_cbs(rnp, rdp);
1197 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1198 if (needwake)
1199 rcu_gp_kthread_wake();
1200}
1201
1202/*
1203 * Move any callbacks whose grace period has completed to the
1204 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1205 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1206 * sublist. This function is idempotent, so it does not hurt to
1207 * invoke it repeatedly. As long as it is not invoked -too- often...
1208 * Returns true if the RCU grace-period kthread needs to be awakened.
1209 *
1210 * The caller must hold rnp->lock with interrupts disabled.
1211 */
1212static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1213{
1214 rcu_lockdep_assert_cblist_protected(rdp);
1215 raw_lockdep_assert_held_rcu_node(rnp);
1216
1217 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1218 if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist))
1219 return false;
1220
1221 /*
1222 * Find all callbacks whose ->gp_seq numbers indicate that they
1223 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1224 */
1225 rcu_segcblist_advance(rsclp: &rdp->cblist, seq: rnp->gp_seq);
1226
1227 /* Classify any remaining callbacks. */
1228 return rcu_accelerate_cbs(rnp, rdp);
1229}
1230
1231/*
1232 * Move and classify callbacks, but only if doing so won't require
1233 * that the RCU grace-period kthread be awakened.
1234 */
1235static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1236 struct rcu_data *rdp)
1237{
1238 rcu_lockdep_assert_cblist_protected(rdp);
1239 if (!rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1240 return;
1241 // The grace period cannot end while we hold the rcu_node lock.
1242 if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)))
1243 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1244 raw_spin_unlock_rcu_node(rnp);
1245}
1246
1247/*
1248 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1249 * quiescent state. This is intended to be invoked when the CPU notices
1250 * a new grace period.
1251 */
1252static void rcu_strict_gp_check_qs(void)
1253{
1254 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1255 rcu_read_lock();
1256 rcu_read_unlock();
1257 }
1258}
1259
1260/*
1261 * Update CPU-local rcu_data state to record the beginnings and ends of
1262 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1263 * structure corresponding to the current CPU, and must have irqs disabled.
1264 * Returns true if the grace-period kthread needs to be awakened.
1265 */
1266static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1267{
1268 bool ret = false;
1269 bool need_qs;
1270 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1271
1272 raw_lockdep_assert_held_rcu_node(rnp);
1273
1274 if (rdp->gp_seq == rnp->gp_seq)
1275 return false; /* Nothing to do. */
1276
1277 /* Handle the ends of any preceding grace periods first. */
1278 if (rcu_seq_completed_gp(old: rdp->gp_seq, new: rnp->gp_seq) ||
1279 unlikely(rdp->gpwrap)) {
1280 if (!offloaded)
1281 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1282 rdp->core_needs_qs = false;
1283 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuend"));
1284 } else {
1285 if (!offloaded)
1286 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1287 if (rdp->core_needs_qs)
1288 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1289 }
1290
1291 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1292 if (rcu_seq_new_gp(old: rdp->gp_seq, new: rnp->gp_seq) ||
1293 unlikely(rdp->gpwrap)) {
1294 /*
1295 * If the current grace period is waiting for this CPU,
1296 * set up to detect a quiescent state, otherwise don't
1297 * go looking for one.
1298 */
1299 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rnp->gp_seq, TPS("cpustart"));
1300 need_qs = !!(rnp->qsmask & rdp->grpmask);
1301 rdp->cpu_no_qs.b.norm = need_qs;
1302 rdp->core_needs_qs = need_qs;
1303 zero_cpu_stall_ticks(rdp);
1304 }
1305 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1306 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1307 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1308 if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap)
1309 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1310 WRITE_ONCE(rdp->gpwrap, false);
1311 rcu_gpnum_ovf(rnp, rdp);
1312 return ret;
1313}
1314
1315static void note_gp_changes(struct rcu_data *rdp)
1316{
1317 unsigned long flags;
1318 bool needwake;
1319 struct rcu_node *rnp;
1320
1321 local_irq_save(flags);
1322 rnp = rdp->mynode;
1323 if ((rdp->gp_seq == rcu_seq_current(sp: &rnp->gp_seq) &&
1324 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1325 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1326 local_irq_restore(flags);
1327 return;
1328 }
1329 needwake = __note_gp_changes(rnp, rdp);
1330 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1331 rcu_strict_gp_check_qs();
1332 if (needwake)
1333 rcu_gp_kthread_wake();
1334}
1335
1336static atomic_t *rcu_gp_slow_suppress;
1337
1338/* Register a counter to suppress debugging grace-period delays. */
1339void rcu_gp_slow_register(atomic_t *rgssp)
1340{
1341 WARN_ON_ONCE(rcu_gp_slow_suppress);
1342
1343 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1344}
1345EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1346
1347/* Unregister a counter, with NULL for not caring which. */
1348void rcu_gp_slow_unregister(atomic_t *rgssp)
1349{
1350 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1351
1352 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1353}
1354EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1355
1356static bool rcu_gp_slow_is_suppressed(void)
1357{
1358 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1359
1360 return rgssp && atomic_read(v: rgssp);
1361}
1362
1363static void rcu_gp_slow(int delay)
1364{
1365 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1366 !(rcu_seq_ctr(s: rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1367 schedule_timeout_idle(timeout: delay);
1368}
1369
1370static unsigned long sleep_duration;
1371
1372/* Allow rcutorture to stall the grace-period kthread. */
1373void rcu_gp_set_torture_wait(int duration)
1374{
1375 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1376 WRITE_ONCE(sleep_duration, duration);
1377}
1378EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1379
1380/* Actually implement the aforementioned wait. */
1381static void rcu_gp_torture_wait(void)
1382{
1383 unsigned long duration;
1384
1385 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1386 return;
1387 duration = xchg(&sleep_duration, 0UL);
1388 if (duration > 0) {
1389 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1390 schedule_timeout_idle(timeout: duration);
1391 pr_alert("%s: Wait complete\n", __func__);
1392 }
1393}
1394
1395/*
1396 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1397 * processing.
1398 */
1399static void rcu_strict_gp_boundary(void *unused)
1400{
1401 invoke_rcu_core();
1402}
1403
1404// Make the polled API aware of the beginning of a grace period.
1405static void rcu_poll_gp_seq_start(unsigned long *snap)
1406{
1407 struct rcu_node *rnp = rcu_get_root();
1408
1409 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1410 raw_lockdep_assert_held_rcu_node(rnp);
1411
1412 // If RCU was idle, note beginning of GP.
1413 if (!rcu_seq_state(s: rcu_state.gp_seq_polled))
1414 rcu_seq_start(sp: &rcu_state.gp_seq_polled);
1415
1416 // Either way, record current state.
1417 *snap = rcu_state.gp_seq_polled;
1418}
1419
1420// Make the polled API aware of the end of a grace period.
1421static void rcu_poll_gp_seq_end(unsigned long *snap)
1422{
1423 struct rcu_node *rnp = rcu_get_root();
1424
1425 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1426 raw_lockdep_assert_held_rcu_node(rnp);
1427
1428 // If the previously noted GP is still in effect, record the
1429 // end of that GP. Either way, zero counter to avoid counter-wrap
1430 // problems.
1431 if (*snap && *snap == rcu_state.gp_seq_polled) {
1432 rcu_seq_end(sp: &rcu_state.gp_seq_polled);
1433 rcu_state.gp_seq_polled_snap = 0;
1434 rcu_state.gp_seq_polled_exp_snap = 0;
1435 } else {
1436 *snap = 0;
1437 }
1438}
1439
1440// Make the polled API aware of the beginning of a grace period, but
1441// where caller does not hold the root rcu_node structure's lock.
1442static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1443{
1444 unsigned long flags;
1445 struct rcu_node *rnp = rcu_get_root();
1446
1447 if (rcu_init_invoked()) {
1448 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1449 lockdep_assert_irqs_enabled();
1450 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1451 }
1452 rcu_poll_gp_seq_start(snap);
1453 if (rcu_init_invoked())
1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455}
1456
1457// Make the polled API aware of the end of a grace period, but where
1458// caller does not hold the root rcu_node structure's lock.
1459static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1460{
1461 unsigned long flags;
1462 struct rcu_node *rnp = rcu_get_root();
1463
1464 if (rcu_init_invoked()) {
1465 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1466 lockdep_assert_irqs_enabled();
1467 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1468 }
1469 rcu_poll_gp_seq_end(snap);
1470 if (rcu_init_invoked())
1471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1472}
1473
1474/*
1475 * There is a single llist, which is used for handling
1476 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1477 * Within this llist, there are two tail pointers:
1478 *
1479 * wait tail: Tracks the set of nodes, which need to
1480 * wait for the current GP to complete.
1481 * done tail: Tracks the set of nodes, for which grace
1482 * period has elapsed. These nodes processing
1483 * will be done as part of the cleanup work
1484 * execution by a kworker.
1485 *
1486 * At every grace period init, a new wait node is added
1487 * to the llist. This wait node is used as wait tail
1488 * for this new grace period. Given that there are a fixed
1489 * number of wait nodes, if all wait nodes are in use
1490 * (which can happen when kworker callback processing
1491 * is delayed) and additional grace period is requested.
1492 * This means, a system is slow in processing callbacks.
1493 *
1494 * TODO: If a slow processing is detected, a first node
1495 * in the llist should be used as a wait-tail for this
1496 * grace period, therefore users which should wait due
1497 * to a slow process are handled by _this_ grace period
1498 * and not next.
1499 *
1500 * Below is an illustration of how the done and wait
1501 * tail pointers move from one set of rcu_synchronize nodes
1502 * to the other, as grace periods start and finish and
1503 * nodes are processed by kworker.
1504 *
1505 *
1506 * a. Initial llist callbacks list:
1507 *
1508 * +----------+ +--------+ +-------+
1509 * | | | | | |
1510 * | head |---------> | cb2 |--------->| cb1 |
1511 * | | | | | |
1512 * +----------+ +--------+ +-------+
1513 *
1514 *
1515 *
1516 * b. New GP1 Start:
1517 *
1518 * WAIT TAIL
1519 * |
1520 * |
1521 * v
1522 * +----------+ +--------+ +--------+ +-------+
1523 * | | | | | | | |
1524 * | head ------> wait |------> cb2 |------> | cb1 |
1525 * | | | head1 | | | | |
1526 * +----------+ +--------+ +--------+ +-------+
1527 *
1528 *
1529 *
1530 * c. GP completion:
1531 *
1532 * WAIT_TAIL == DONE_TAIL
1533 *
1534 * DONE TAIL
1535 * |
1536 * |
1537 * v
1538 * +----------+ +--------+ +--------+ +-------+
1539 * | | | | | | | |
1540 * | head ------> wait |------> cb2 |------> | cb1 |
1541 * | | | head1 | | | | |
1542 * +----------+ +--------+ +--------+ +-------+
1543 *
1544 *
1545 *
1546 * d. New callbacks and GP2 start:
1547 *
1548 * WAIT TAIL DONE TAIL
1549 * | |
1550 * | |
1551 * v v
1552 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1553 * | | | | | | | | | | | | | |
1554 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1555 * | | | head2| | | | | |head1| | | | |
1556 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1557 *
1558 *
1559 *
1560 * e. GP2 completion:
1561 *
1562 * WAIT_TAIL == DONE_TAIL
1563 * DONE TAIL
1564 * |
1565 * |
1566 * v
1567 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1568 * | | | | | | | | | | | | | |
1569 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1570 * | | | head2| | | | | |head1| | | | |
1571 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1572 *
1573 *
1574 * While the llist state transitions from d to e, a kworker
1575 * can start executing rcu_sr_normal_gp_cleanup_work() and
1576 * can observe either the old done tail (@c) or the new
1577 * done tail (@e). So, done tail updates and reads need
1578 * to use the rel-acq semantics. If the concurrent kworker
1579 * observes the old done tail, the newly queued work
1580 * execution will process the updated done tail. If the
1581 * concurrent kworker observes the new done tail, then
1582 * the newly queued work will skip processing the done
1583 * tail, as workqueue semantics guarantees that the new
1584 * work is executed only after the previous one completes.
1585 *
1586 * f. kworker callbacks processing complete:
1587 *
1588 *
1589 * DONE TAIL
1590 * |
1591 * |
1592 * v
1593 * +----------+ +--------+
1594 * | | | |
1595 * | head ------> wait |
1596 * | | | head2 |
1597 * +----------+ +--------+
1598 *
1599 */
1600static bool rcu_sr_is_wait_head(struct llist_node *node)
1601{
1602 return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1603 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1604}
1605
1606static struct llist_node *rcu_sr_get_wait_head(void)
1607{
1608 struct sr_wait_node *sr_wn;
1609 int i;
1610
1611 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1612 sr_wn = &(rcu_state.srs_wait_nodes)[i];
1613
1614 if (!atomic_cmpxchg_acquire(v: &sr_wn->inuse, old: 0, new: 1))
1615 return &sr_wn->node;
1616 }
1617
1618 return NULL;
1619}
1620
1621static void rcu_sr_put_wait_head(struct llist_node *node)
1622{
1623 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1624
1625 atomic_set_release(v: &sr_wn->inuse, i: 0);
1626}
1627
1628/* Disabled by default. */
1629static int rcu_normal_wake_from_gp;
1630module_param(rcu_normal_wake_from_gp, int, 0644);
1631static struct workqueue_struct *sync_wq;
1632
1633static void rcu_sr_normal_complete(struct llist_node *node)
1634{
1635 struct rcu_synchronize *rs = container_of(
1636 (struct rcu_head *) node, struct rcu_synchronize, head);
1637
1638 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1639 !poll_state_synchronize_rcu_full(&rs->oldstate),
1640 "A full grace period is not passed yet!\n");
1641
1642 /* Finally. */
1643 complete(&rs->completion);
1644}
1645
1646static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1647{
1648 struct llist_node *done, *rcu, *next, *head;
1649
1650 /*
1651 * This work execution can potentially execute
1652 * while a new done tail is being updated by
1653 * grace period kthread in rcu_sr_normal_gp_cleanup().
1654 * So, read and updates of done tail need to
1655 * follow acq-rel semantics.
1656 *
1657 * Given that wq semantics guarantees that a single work
1658 * cannot execute concurrently by multiple kworkers,
1659 * the done tail list manipulations are protected here.
1660 */
1661 done = smp_load_acquire(&rcu_state.srs_done_tail);
1662 if (WARN_ON_ONCE(!done))
1663 return;
1664
1665 WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1666 head = done->next;
1667 done->next = NULL;
1668
1669 /*
1670 * The dummy node, which is pointed to by the
1671 * done tail which is acq-read above is not removed
1672 * here. This allows lockless additions of new
1673 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1674 * while the cleanup work executes. The dummy
1675 * nodes is removed, in next round of cleanup
1676 * work execution.
1677 */
1678 llist_for_each_safe(rcu, next, head) {
1679 if (!rcu_sr_is_wait_head(node: rcu)) {
1680 rcu_sr_normal_complete(node: rcu);
1681 continue;
1682 }
1683
1684 rcu_sr_put_wait_head(node: rcu);
1685 }
1686
1687 /* Order list manipulations with atomic access. */
1688 atomic_dec_return_release(v: &rcu_state.srs_cleanups_pending);
1689}
1690
1691/*
1692 * Helper function for rcu_gp_cleanup().
1693 */
1694static void rcu_sr_normal_gp_cleanup(void)
1695{
1696 struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1697 int done = 0;
1698
1699 wait_tail = rcu_state.srs_wait_tail;
1700 if (wait_tail == NULL)
1701 return;
1702
1703 rcu_state.srs_wait_tail = NULL;
1704 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1705 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1706
1707 /*
1708 * Process (a) and (d) cases. See an illustration.
1709 */
1710 llist_for_each_safe(rcu, next, wait_tail->next) {
1711 if (rcu_sr_is_wait_head(node: rcu))
1712 break;
1713
1714 rcu_sr_normal_complete(node: rcu);
1715 // It can be last, update a next on this step.
1716 wait_tail->next = next;
1717
1718 if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1719 break;
1720 }
1721
1722 /*
1723 * Fast path, no more users to process except putting the second last
1724 * wait head if no inflight-workers. If there are in-flight workers,
1725 * they will remove the last wait head.
1726 *
1727 * Note that the ACQUIRE orders atomic access with list manipulation.
1728 */
1729 if (wait_tail->next && wait_tail->next->next == NULL &&
1730 rcu_sr_is_wait_head(node: wait_tail->next) &&
1731 !atomic_read_acquire(v: &rcu_state.srs_cleanups_pending)) {
1732 rcu_sr_put_wait_head(node: wait_tail->next);
1733 wait_tail->next = NULL;
1734 }
1735
1736 /* Concurrent sr_normal_gp_cleanup work might observe this update. */
1737 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1738 smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1739
1740 /*
1741 * We schedule a work in order to perform a final processing
1742 * of outstanding users(if still left) and releasing wait-heads
1743 * added by rcu_sr_normal_gp_init() call.
1744 */
1745 if (wait_tail->next) {
1746 atomic_inc(v: &rcu_state.srs_cleanups_pending);
1747 if (!queue_work(wq: sync_wq, work: &rcu_state.srs_cleanup_work))
1748 atomic_dec(v: &rcu_state.srs_cleanups_pending);
1749 }
1750}
1751
1752/*
1753 * Helper function for rcu_gp_init().
1754 */
1755static bool rcu_sr_normal_gp_init(void)
1756{
1757 struct llist_node *first;
1758 struct llist_node *wait_head;
1759 bool start_new_poll = false;
1760
1761 first = READ_ONCE(rcu_state.srs_next.first);
1762 if (!first || rcu_sr_is_wait_head(node: first))
1763 return start_new_poll;
1764
1765 wait_head = rcu_sr_get_wait_head();
1766 if (!wait_head) {
1767 // Kick another GP to retry.
1768 start_new_poll = true;
1769 return start_new_poll;
1770 }
1771
1772 /* Inject a wait-dummy-node. */
1773 llist_add(new: wait_head, head: &rcu_state.srs_next);
1774
1775 /*
1776 * A waiting list of rcu_synchronize nodes should be empty on
1777 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1778 * rolls it over. If not, it is a BUG, warn a user.
1779 */
1780 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1781 rcu_state.srs_wait_tail = wait_head;
1782 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1783
1784 return start_new_poll;
1785}
1786
1787static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1788{
1789 llist_add(new: (struct llist_node *) &rs->head, head: &rcu_state.srs_next);
1790}
1791
1792/*
1793 * Initialize a new grace period. Return false if no grace period required.
1794 */
1795static noinline_for_stack bool rcu_gp_init(void)
1796{
1797 unsigned long flags;
1798 unsigned long oldmask;
1799 unsigned long mask;
1800 struct rcu_data *rdp;
1801 struct rcu_node *rnp = rcu_get_root();
1802 bool start_new_poll;
1803 unsigned long old_gp_seq;
1804
1805 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1806 raw_spin_lock_irq_rcu_node(rnp);
1807 if (!rcu_state.gp_flags) {
1808 /* Spurious wakeup, tell caller to go back to sleep. */
1809 raw_spin_unlock_irq_rcu_node(rnp);
1810 return false;
1811 }
1812 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1813
1814 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1815 /*
1816 * Grace period already in progress, don't start another.
1817 * Not supposed to be able to happen.
1818 */
1819 raw_spin_unlock_irq_rcu_node(rnp);
1820 return false;
1821 }
1822
1823 /* Advance to a new grace period and initialize state. */
1824 record_gp_stall_check_time();
1825 /*
1826 * A new wait segment must be started before gp_seq advanced, so
1827 * that previous gp waiters won't observe the new gp_seq.
1828 */
1829 start_new_poll = rcu_sr_normal_gp_init();
1830 /* Record GP times before starting GP, hence rcu_seq_start(). */
1831 old_gp_seq = rcu_state.gp_seq;
1832 rcu_seq_start(sp: &rcu_state.gp_seq);
1833 /* Ensure that rcu_seq_done_exact() guardband doesn't give false positives. */
1834 WARN_ON_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1835 rcu_seq_done_exact(&old_gp_seq, rcu_seq_snap(&rcu_state.gp_seq)));
1836
1837 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1838 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("start"));
1839 rcu_poll_gp_seq_start(snap: &rcu_state.gp_seq_polled_snap);
1840 raw_spin_unlock_irq_rcu_node(rnp);
1841
1842 /*
1843 * The "start_new_poll" is set to true, only when this GP is not able
1844 * to handle anything and there are outstanding users. It happens when
1845 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1846 * separator to the llist, because there were no left any dummy-nodes.
1847 *
1848 * Number of dummy-nodes is fixed, it could be that we are run out of
1849 * them, if so we start a new pool request to repeat a try. It is rare
1850 * and it means that a system is doing a slow processing of callbacks.
1851 */
1852 if (start_new_poll)
1853 (void) start_poll_synchronize_rcu();
1854
1855 /*
1856 * Apply per-leaf buffered online and offline operations to
1857 * the rcu_node tree. Note that this new grace period need not
1858 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1859 * offlining path, when combined with checks in this function,
1860 * will handle CPUs that are currently going offline or that will
1861 * go offline later. Please also refer to "Hotplug CPU" section
1862 * of RCU's Requirements documentation.
1863 */
1864 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1865 /* Exclude CPU hotplug operations. */
1866 rcu_for_each_leaf_node(rnp) {
1867 local_irq_disable();
1868 arch_spin_lock(&rcu_state.ofl_lock);
1869 raw_spin_lock_rcu_node(rnp);
1870 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1871 !rnp->wait_blkd_tasks) {
1872 /* Nothing to do on this leaf rcu_node structure. */
1873 raw_spin_unlock_rcu_node(rnp);
1874 arch_spin_unlock(&rcu_state.ofl_lock);
1875 local_irq_enable();
1876 continue;
1877 }
1878
1879 /* Record old state, apply changes to ->qsmaskinit field. */
1880 oldmask = rnp->qsmaskinit;
1881 rnp->qsmaskinit = rnp->qsmaskinitnext;
1882
1883 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1884 if (!oldmask != !rnp->qsmaskinit) {
1885 if (!oldmask) { /* First online CPU for rcu_node. */
1886 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1887 rcu_init_new_rnp(rnp_leaf: rnp);
1888 } else if (rcu_preempt_has_tasks(rnp)) {
1889 rnp->wait_blkd_tasks = true; /* blocked tasks */
1890 } else { /* Last offline CPU and can propagate. */
1891 rcu_cleanup_dead_rnp(rnp_leaf: rnp);
1892 }
1893 }
1894
1895 /*
1896 * If all waited-on tasks from prior grace period are
1897 * done, and if all this rcu_node structure's CPUs are
1898 * still offline, propagate up the rcu_node tree and
1899 * clear ->wait_blkd_tasks. Otherwise, if one of this
1900 * rcu_node structure's CPUs has since come back online,
1901 * simply clear ->wait_blkd_tasks.
1902 */
1903 if (rnp->wait_blkd_tasks &&
1904 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1905 rnp->wait_blkd_tasks = false;
1906 if (!rnp->qsmaskinit)
1907 rcu_cleanup_dead_rnp(rnp_leaf: rnp);
1908 }
1909
1910 raw_spin_unlock_rcu_node(rnp);
1911 arch_spin_unlock(&rcu_state.ofl_lock);
1912 local_irq_enable();
1913 }
1914 rcu_gp_slow(delay: gp_preinit_delay); /* Races with CPU hotplug. */
1915
1916 /*
1917 * Set the quiescent-state-needed bits in all the rcu_node
1918 * structures for all currently online CPUs in breadth-first
1919 * order, starting from the root rcu_node structure, relying on the
1920 * layout of the tree within the rcu_state.node[] array. Note that
1921 * other CPUs will access only the leaves of the hierarchy, thus
1922 * seeing that no grace period is in progress, at least until the
1923 * corresponding leaf node has been initialized.
1924 *
1925 * The grace period cannot complete until the initialization
1926 * process finishes, because this kthread handles both.
1927 */
1928 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1929 rcu_for_each_node_breadth_first(rnp) {
1930 rcu_gp_slow(delay: gp_init_delay);
1931 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1932 rdp = this_cpu_ptr(&rcu_data);
1933 rcu_preempt_check_blocked_tasks(rnp);
1934 rnp->qsmask = rnp->qsmaskinit;
1935 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1936 if (rnp == rdp->mynode)
1937 (void)__note_gp_changes(rnp, rdp);
1938 rcu_preempt_boost_start_gp(rnp);
1939 trace_rcu_grace_period_init(rcuname: rcu_state.name, gp_seq: rnp->gp_seq,
1940 level: rnp->level, grplo: rnp->grplo,
1941 grphi: rnp->grphi, qsmask: rnp->qsmask);
1942 /* Quiescent states for tasks on any now-offline CPUs. */
1943 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1944 rnp->rcu_gp_init_mask = mask;
1945 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1946 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
1947 else
1948 raw_spin_unlock_irq_rcu_node(rnp);
1949 cond_resched_tasks_rcu_qs();
1950 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1951 }
1952
1953 // If strict, make all CPUs aware of new grace period.
1954 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1955 on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0);
1956
1957 return true;
1958}
1959
1960/*
1961 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1962 * time.
1963 */
1964static bool rcu_gp_fqs_check_wake(int *gfp)
1965{
1966 struct rcu_node *rnp = rcu_get_root();
1967
1968 // If under overload conditions, force an immediate FQS scan.
1969 if (*gfp & RCU_GP_FLAG_OVLD)
1970 return true;
1971
1972 // Someone like call_rcu() requested a force-quiescent-state scan.
1973 *gfp = READ_ONCE(rcu_state.gp_flags);
1974 if (*gfp & RCU_GP_FLAG_FQS)
1975 return true;
1976
1977 // The current grace period has completed.
1978 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1979 return true;
1980
1981 return false;
1982}
1983
1984/*
1985 * Do one round of quiescent-state forcing.
1986 */
1987static void rcu_gp_fqs(bool first_time)
1988{
1989 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1990 struct rcu_node *rnp = rcu_get_root();
1991
1992 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1993 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1994
1995 WARN_ON_ONCE(nr_fqs > 3);
1996 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1997 if (nr_fqs) {
1998 if (nr_fqs == 1) {
1999 WRITE_ONCE(rcu_state.jiffies_stall,
2000 jiffies + rcu_jiffies_till_stall_check());
2001 }
2002 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
2003 }
2004
2005 if (first_time) {
2006 /* Collect dyntick-idle snapshots. */
2007 force_qs_rnp(f: rcu_watching_snap_save);
2008 } else {
2009 /* Handle dyntick-idle and offline CPUs. */
2010 force_qs_rnp(f: rcu_watching_snap_recheck);
2011 }
2012 /* Clear flag to prevent immediate re-entry. */
2013 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2014 raw_spin_lock_irq_rcu_node(rnp);
2015 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
2016 raw_spin_unlock_irq_rcu_node(rnp);
2017 }
2018}
2019
2020/*
2021 * Loop doing repeated quiescent-state forcing until the grace period ends.
2022 */
2023static noinline_for_stack void rcu_gp_fqs_loop(void)
2024{
2025 bool first_gp_fqs = true;
2026 int gf = 0;
2027 unsigned long j;
2028 int ret;
2029 struct rcu_node *rnp = rcu_get_root();
2030
2031 j = READ_ONCE(jiffies_till_first_fqs);
2032 if (rcu_state.cbovld)
2033 gf = RCU_GP_FLAG_OVLD;
2034 ret = 0;
2035 for (;;) {
2036 if (rcu_state.cbovld) {
2037 j = (j + 2) / 3;
2038 if (j <= 0)
2039 j = 1;
2040 }
2041 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2042 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2043 /*
2044 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2045 * update; required for stall checks.
2046 */
2047 smp_wmb();
2048 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2049 jiffies + (j ? 3 * j : 2));
2050 }
2051 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2052 TPS("fqswait"));
2053 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2054 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2055 rcu_gp_fqs_check_wake(&gf), j);
2056 rcu_gp_torture_wait();
2057 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2058 /* Locking provides needed memory barriers. */
2059 /*
2060 * Exit the loop if the root rcu_node structure indicates that the grace period
2061 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
2062 * is required only for single-node rcu_node trees because readers blocking
2063 * the current grace period are queued only on leaf rcu_node structures.
2064 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2065 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2066 * the corresponding leaf nodes have passed through their quiescent state.
2067 */
2068 if (!READ_ONCE(rnp->qsmask) &&
2069 !rcu_preempt_blocked_readers_cgp(rnp))
2070 break;
2071 /* If time for quiescent-state forcing, do it. */
2072 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2073 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2074 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2075 TPS("fqsstart"));
2076 rcu_gp_fqs(first_time: first_gp_fqs);
2077 gf = 0;
2078 if (first_gp_fqs) {
2079 first_gp_fqs = false;
2080 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2081 }
2082 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2083 TPS("fqsend"));
2084 cond_resched_tasks_rcu_qs();
2085 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2086 ret = 0; /* Force full wait till next FQS. */
2087 j = READ_ONCE(jiffies_till_next_fqs);
2088 } else {
2089 /* Deal with stray signal. */
2090 cond_resched_tasks_rcu_qs();
2091 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2092 WARN_ON(signal_pending(current));
2093 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2094 TPS("fqswaitsig"));
2095 ret = 1; /* Keep old FQS timing. */
2096 j = jiffies;
2097 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2098 j = 1;
2099 else
2100 j = rcu_state.jiffies_force_qs - j;
2101 gf = 0;
2102 }
2103 }
2104}
2105
2106/*
2107 * Clean up after the old grace period.
2108 */
2109static noinline void rcu_gp_cleanup(void)
2110{
2111 int cpu;
2112 bool needgp = false;
2113 unsigned long gp_duration;
2114 unsigned long new_gp_seq;
2115 bool offloaded;
2116 struct rcu_data *rdp;
2117 struct rcu_node *rnp = rcu_get_root();
2118 struct swait_queue_head *sq;
2119
2120 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2121 raw_spin_lock_irq_rcu_node(rnp);
2122 rcu_state.gp_end = jiffies;
2123 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2124 if (gp_duration > rcu_state.gp_max)
2125 rcu_state.gp_max = gp_duration;
2126
2127 /*
2128 * We know the grace period is complete, but to everyone else
2129 * it appears to still be ongoing. But it is also the case
2130 * that to everyone else it looks like there is nothing that
2131 * they can do to advance the grace period. It is therefore
2132 * safe for us to drop the lock in order to mark the grace
2133 * period as completed in all of the rcu_node structures.
2134 */
2135 rcu_poll_gp_seq_end(snap: &rcu_state.gp_seq_polled_snap);
2136 raw_spin_unlock_irq_rcu_node(rnp);
2137
2138 /*
2139 * Propagate new ->gp_seq value to rcu_node structures so that
2140 * other CPUs don't have to wait until the start of the next grace
2141 * period to process their callbacks. This also avoids some nasty
2142 * RCU grace-period initialization races by forcing the end of
2143 * the current grace period to be completely recorded in all of
2144 * the rcu_node structures before the beginning of the next grace
2145 * period is recorded in any of the rcu_node structures.
2146 */
2147 new_gp_seq = rcu_state.gp_seq;
2148 rcu_seq_end(sp: &new_gp_seq);
2149 rcu_for_each_node_breadth_first(rnp) {
2150 raw_spin_lock_irq_rcu_node(rnp);
2151 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2152 dump_blkd_tasks(rnp, ncheck: 10);
2153 WARN_ON_ONCE(rnp->qsmask);
2154 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2155 if (!rnp->parent)
2156 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2157 rdp = this_cpu_ptr(&rcu_data);
2158 if (rnp == rdp->mynode)
2159 needgp = __note_gp_changes(rnp, rdp) || needgp;
2160 /* smp_mb() provided by prior unlock-lock pair. */
2161 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2162 // Reset overload indication for CPUs no longer overloaded
2163 if (rcu_is_leaf_node(rnp))
2164 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2165 rdp = per_cpu_ptr(&rcu_data, cpu);
2166 check_cb_ovld_locked(rdp, rnp);
2167 }
2168 sq = rcu_nocb_gp_get(rnp);
2169 raw_spin_unlock_irq_rcu_node(rnp);
2170 rcu_nocb_gp_cleanup(sq);
2171 cond_resched_tasks_rcu_qs();
2172 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2173 rcu_gp_slow(delay: gp_cleanup_delay);
2174 }
2175 rnp = rcu_get_root();
2176 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2177
2178 /* Declare grace period done, trace first to use old GP number. */
2179 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("end"));
2180 rcu_seq_end(sp: &rcu_state.gp_seq);
2181 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2182 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2183 /* Check for GP requests since above loop. */
2184 rdp = this_cpu_ptr(&rcu_data);
2185 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2186 trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq_needed,
2187 TPS("CleanupMore"));
2188 needgp = true;
2189 }
2190 /* Advance CBs to reduce false positives below. */
2191 offloaded = rcu_rdp_is_offloaded(rdp);
2192 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2193
2194 // We get here if a grace period was needed (“needgp”)
2195 // and the above call to rcu_accelerate_cbs() did not set
2196 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2197 // the need for another grace period).  The purpose
2198 // of the “offloaded” check is to avoid invoking
2199 // rcu_accelerate_cbs() on an offloaded CPU because we do not
2200 // hold the ->nocb_lock needed to safely access an offloaded
2201 // ->cblist.  We do not want to acquire that lock because
2202 // it can be heavily contended during callback floods.
2203
2204 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2205 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2206 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("newreq"));
2207 } else {
2208
2209 // We get here either if there is no need for an
2210 // additional grace period or if rcu_accelerate_cbs() has
2211 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2212 // So all we need to do is to clear all of the other
2213 // ->gp_flags bits.
2214
2215 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2216 }
2217 raw_spin_unlock_irq_rcu_node(rnp);
2218
2219 // Make synchronize_rcu() users aware of the end of old grace period.
2220 rcu_sr_normal_gp_cleanup();
2221
2222 // If strict, make all CPUs aware of the end of the old grace period.
2223 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2224 on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0);
2225}
2226
2227/*
2228 * Body of kthread that handles grace periods.
2229 */
2230static int __noreturn rcu_gp_kthread(void *unused)
2231{
2232 rcu_bind_gp_kthread();
2233 for (;;) {
2234
2235 /* Handle grace-period start. */
2236 for (;;) {
2237 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2238 TPS("reqwait"));
2239 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2240 swait_event_idle_exclusive(rcu_state.gp_wq,
2241 READ_ONCE(rcu_state.gp_flags) &
2242 RCU_GP_FLAG_INIT);
2243 rcu_gp_torture_wait();
2244 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2245 /* Locking provides needed memory barrier. */
2246 if (rcu_gp_init())
2247 break;
2248 cond_resched_tasks_rcu_qs();
2249 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2250 WARN_ON(signal_pending(current));
2251 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
2252 TPS("reqwaitsig"));
2253 }
2254
2255 /* Handle quiescent-state forcing. */
2256 rcu_gp_fqs_loop();
2257
2258 /* Handle grace-period end. */
2259 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2260 rcu_gp_cleanup();
2261 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2262 }
2263}
2264
2265/*
2266 * Report a full set of quiescent states to the rcu_state data structure.
2267 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2268 * another grace period is required. Whether we wake the grace-period
2269 * kthread or it awakens itself for the next round of quiescent-state
2270 * forcing, that kthread will clean up after the just-completed grace
2271 * period. Note that the caller must hold rnp->lock, which is released
2272 * before return.
2273 */
2274static void rcu_report_qs_rsp(unsigned long flags)
2275 __releases(rcu_get_root()->lock)
2276{
2277 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2278 WARN_ON_ONCE(!rcu_gp_in_progress());
2279 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2280 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2281 rcu_gp_kthread_wake();
2282}
2283
2284/*
2285 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2286 * Allows quiescent states for a group of CPUs to be reported at one go
2287 * to the specified rcu_node structure, though all the CPUs in the group
2288 * must be represented by the same rcu_node structure (which need not be a
2289 * leaf rcu_node structure, though it often will be). The gps parameter
2290 * is the grace-period snapshot, which means that the quiescent states
2291 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2292 * must be held upon entry, and it is released before return.
2293 *
2294 * As a special case, if mask is zero, the bit-already-cleared check is
2295 * disabled. This allows propagating quiescent state due to resumed tasks
2296 * during grace-period initialization.
2297 */
2298static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2299 unsigned long gps, unsigned long flags)
2300 __releases(rnp->lock)
2301{
2302 unsigned long oldmask = 0;
2303 struct rcu_node *rnp_c;
2304
2305 raw_lockdep_assert_held_rcu_node(rnp);
2306
2307 /* Walk up the rcu_node hierarchy. */
2308 for (;;) {
2309 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2310
2311 /*
2312 * Our bit has already been cleared, or the
2313 * relevant grace period is already over, so done.
2314 */
2315 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2316 return;
2317 }
2318 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2319 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2320 rcu_preempt_blocked_readers_cgp(rnp));
2321 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2322 trace_rcu_quiescent_state_report(rcuname: rcu_state.name, gp_seq: rnp->gp_seq,
2323 mask, qsmask: rnp->qsmask, level: rnp->level,
2324 grplo: rnp->grplo, grphi: rnp->grphi,
2325 gp_tasks: !!rnp->gp_tasks);
2326 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2327
2328 /* Other bits still set at this level, so done. */
2329 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2330 return;
2331 }
2332 rnp->completedqs = rnp->gp_seq;
2333 mask = rnp->grpmask;
2334 if (rnp->parent == NULL) {
2335
2336 /* No more levels. Exit loop holding root lock. */
2337
2338 break;
2339 }
2340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2341 rnp_c = rnp;
2342 rnp = rnp->parent;
2343 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2344 oldmask = READ_ONCE(rnp_c->qsmask);
2345 }
2346
2347 /*
2348 * Get here if we are the last CPU to pass through a quiescent
2349 * state for this grace period. Invoke rcu_report_qs_rsp()
2350 * to clean up and start the next grace period if one is needed.
2351 */
2352 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2353}
2354
2355/*
2356 * Record a quiescent state for all tasks that were previously queued
2357 * on the specified rcu_node structure and that were blocking the current
2358 * RCU grace period. The caller must hold the corresponding rnp->lock with
2359 * irqs disabled, and this lock is released upon return, but irqs remain
2360 * disabled.
2361 */
2362static void __maybe_unused
2363rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2364 __releases(rnp->lock)
2365{
2366 unsigned long gps;
2367 unsigned long mask;
2368 struct rcu_node *rnp_p;
2369
2370 raw_lockdep_assert_held_rcu_node(rnp);
2371 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2372 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2373 rnp->qsmask != 0) {
2374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2375 return; /* Still need more quiescent states! */
2376 }
2377
2378 rnp->completedqs = rnp->gp_seq;
2379 rnp_p = rnp->parent;
2380 if (rnp_p == NULL) {
2381 /*
2382 * Only one rcu_node structure in the tree, so don't
2383 * try to report up to its nonexistent parent!
2384 */
2385 rcu_report_qs_rsp(flags);
2386 return;
2387 }
2388
2389 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2390 gps = rnp->gp_seq;
2391 mask = rnp->grpmask;
2392 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2393 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2394 rcu_report_qs_rnp(mask, rnp: rnp_p, gps, flags);
2395}
2396
2397/*
2398 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2399 * structure. This must be called from the specified CPU.
2400 */
2401static void
2402rcu_report_qs_rdp(struct rcu_data *rdp)
2403{
2404 unsigned long flags;
2405 unsigned long mask;
2406 struct rcu_node *rnp;
2407
2408 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2409 rnp = rdp->mynode;
2410 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2411 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2412 rdp->gpwrap) {
2413
2414 /*
2415 * The grace period in which this quiescent state was
2416 * recorded has ended, so don't report it upwards.
2417 * We will instead need a new quiescent state that lies
2418 * within the current grace period.
2419 */
2420 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2422 return;
2423 }
2424 mask = rdp->grpmask;
2425 rdp->core_needs_qs = false;
2426 if ((rnp->qsmask & mask) == 0) {
2427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428 } else {
2429 /*
2430 * This GP can't end until cpu checks in, so all of our
2431 * callbacks can be processed during the next GP.
2432 *
2433 * NOCB kthreads have their own way to deal with that...
2434 */
2435 if (!rcu_rdp_is_offloaded(rdp)) {
2436 /*
2437 * The current GP has not yet ended, so it
2438 * should not be possible for rcu_accelerate_cbs()
2439 * to return true. So complain, but don't awaken.
2440 */
2441 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2442 }
2443
2444 rcu_disable_urgency_upon_qs(rdp);
2445 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
2446 /* ^^^ Released rnp->lock */
2447 }
2448}
2449
2450/*
2451 * Check to see if there is a new grace period of which this CPU
2452 * is not yet aware, and if so, set up local rcu_data state for it.
2453 * Otherwise, see if this CPU has just passed through its first
2454 * quiescent state for this grace period, and record that fact if so.
2455 */
2456static void
2457rcu_check_quiescent_state(struct rcu_data *rdp)
2458{
2459 /* Check for grace-period ends and beginnings. */
2460 note_gp_changes(rdp);
2461
2462 /*
2463 * Does this CPU still need to do its part for current grace period?
2464 * If no, return and let the other CPUs do their part as well.
2465 */
2466 if (!rdp->core_needs_qs)
2467 return;
2468
2469 /*
2470 * Was there a quiescent state since the beginning of the grace
2471 * period? If no, then exit and wait for the next call.
2472 */
2473 if (rdp->cpu_no_qs.b.norm)
2474 return;
2475
2476 /*
2477 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2478 * judge of that).
2479 */
2480 rcu_report_qs_rdp(rdp);
2481}
2482
2483/* Return true if callback-invocation time limit exceeded. */
2484static bool rcu_do_batch_check_time(long count, long tlimit,
2485 bool jlimit_check, unsigned long jlimit)
2486{
2487 // Invoke local_clock() only once per 32 consecutive callbacks.
2488 return unlikely(tlimit) &&
2489 (!likely(count & 31) ||
2490 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2491 jlimit_check && time_after(jiffies, jlimit))) &&
2492 local_clock() >= tlimit;
2493}
2494
2495/*
2496 * Invoke any RCU callbacks that have made it to the end of their grace
2497 * period. Throttle as specified by rdp->blimit.
2498 */
2499static void rcu_do_batch(struct rcu_data *rdp)
2500{
2501 long bl;
2502 long count = 0;
2503 int div;
2504 bool __maybe_unused empty;
2505 unsigned long flags;
2506 unsigned long jlimit;
2507 bool jlimit_check = false;
2508 long pending;
2509 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2510 struct rcu_head *rhp;
2511 long tlimit = 0;
2512
2513 /* If no callbacks are ready, just return. */
2514 if (!rcu_segcblist_ready_cbs(rsclp: &rdp->cblist)) {
2515 trace_rcu_batch_start(rcuname: rcu_state.name,
2516 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: 0);
2517 trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: 0,
2518 cb: !rcu_segcblist_empty(rsclp: &rdp->cblist),
2519 nr: need_resched(), iit: is_idle_task(current),
2520 risk: rcu_is_callbacks_kthread(rdp));
2521 return;
2522 }
2523
2524 /*
2525 * Extract the list of ready callbacks, disabling IRQs to prevent
2526 * races with call_rcu() from interrupt handlers. Leave the
2527 * callback counts, as rcu_barrier() needs to be conservative.
2528 *
2529 * Callbacks execution is fully ordered against preceding grace period
2530 * completion (materialized by rnp->gp_seq update) thanks to the
2531 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2532 * advancing. In NOCB mode this ordering is then further relayed through
2533 * the nocb locking that protects both callbacks advancing and extraction.
2534 */
2535 rcu_nocb_lock_irqsave(rdp, flags);
2536 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2537 pending = rcu_segcblist_get_seglen(rsclp: &rdp->cblist, RCU_DONE_TAIL);
2538 div = READ_ONCE(rcu_divisor);
2539 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2540 bl = max(rdp->blimit, pending >> div);
2541 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2542 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2543 const long npj = NSEC_PER_SEC / HZ;
2544 long rrn = READ_ONCE(rcu_resched_ns);
2545
2546 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2547 tlimit = local_clock() + rrn;
2548 jlimit = jiffies + (rrn + npj + 1) / npj;
2549 jlimit_check = true;
2550 }
2551 trace_rcu_batch_start(rcuname: rcu_state.name,
2552 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: bl);
2553 rcu_segcblist_extract_done_cbs(rsclp: &rdp->cblist, rclp: &rcl);
2554 if (rcu_rdp_is_offloaded(rdp))
2555 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
2556
2557 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbDequeued"));
2558 rcu_nocb_unlock_irqrestore(rdp, flags);
2559
2560 /* Invoke callbacks. */
2561 tick_dep_set_task(current, bit: TICK_DEP_BIT_RCU);
2562 rhp = rcu_cblist_dequeue(rclp: &rcl);
2563
2564 for (; rhp; rhp = rcu_cblist_dequeue(rclp: &rcl)) {
2565 rcu_callback_t f;
2566
2567 count++;
2568 debug_rcu_head_unqueue(head: rhp);
2569
2570 rcu_lock_acquire(map: &rcu_callback_map);
2571 trace_rcu_invoke_callback(rcuname: rcu_state.name, rhp);
2572
2573 f = rhp->func;
2574 debug_rcu_head_callback(rhp);
2575 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2576 f(rhp);
2577
2578 rcu_lock_release(map: &rcu_callback_map);
2579
2580 /*
2581 * Stop only if limit reached and CPU has something to do.
2582 */
2583 if (in_serving_softirq()) {
2584 if (count >= bl && (need_resched() || !is_idle_task(current)))
2585 break;
2586 /*
2587 * Make sure we don't spend too much time here and deprive other
2588 * softirq vectors of CPU cycles.
2589 */
2590 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2591 break;
2592 } else {
2593 // In rcuc/rcuoc context, so no worries about
2594 // depriving other softirq vectors of CPU cycles.
2595 local_bh_enable();
2596 lockdep_assert_irqs_enabled();
2597 cond_resched_tasks_rcu_qs();
2598 lockdep_assert_irqs_enabled();
2599 local_bh_disable();
2600 // But rcuc kthreads can delay quiescent-state
2601 // reporting, so check time limits for them.
2602 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2603 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2604 rdp->rcu_cpu_has_work = 1;
2605 break;
2606 }
2607 }
2608 }
2609
2610 rcu_nocb_lock_irqsave(rdp, flags);
2611 rdp->n_cbs_invoked += count;
2612 trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: count, cb: !!rcl.head, nr: need_resched(),
2613 iit: is_idle_task(current), risk: rcu_is_callbacks_kthread(rdp));
2614
2615 /* Update counts and requeue any remaining callbacks. */
2616 rcu_segcblist_insert_done_cbs(rsclp: &rdp->cblist, rclp: &rcl);
2617 rcu_segcblist_add_len(rsclp: &rdp->cblist, v: -count);
2618
2619 /* Reinstate batch limit if we have worked down the excess. */
2620 count = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
2621 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2622 rdp->blimit = blimit;
2623
2624 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2625 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2626 rdp->qlen_last_fqs_check = 0;
2627 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2628 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2629 rdp->qlen_last_fqs_check = count;
2630
2631 /*
2632 * The following usually indicates a double call_rcu(). To track
2633 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2634 */
2635 empty = rcu_segcblist_empty(rsclp: &rdp->cblist);
2636 WARN_ON_ONCE(count == 0 && !empty);
2637 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2638 count != 0 && empty);
2639 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2640 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2641
2642 rcu_nocb_unlock_irqrestore(rdp, flags);
2643
2644 tick_dep_clear_task(current, bit: TICK_DEP_BIT_RCU);
2645}
2646
2647/*
2648 * This function is invoked from each scheduling-clock interrupt,
2649 * and checks to see if this CPU is in a non-context-switch quiescent
2650 * state, for example, user mode or idle loop. It also schedules RCU
2651 * core processing. If the current grace period has gone on too long,
2652 * it will ask the scheduler to manufacture a context switch for the sole
2653 * purpose of providing the needed quiescent state.
2654 */
2655void rcu_sched_clock_irq(int user)
2656{
2657 unsigned long j;
2658
2659 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2660 j = jiffies;
2661 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2662 __this_cpu_write(rcu_data.last_sched_clock, j);
2663 }
2664 trace_rcu_utilization(TPS("Start scheduler-tick"));
2665 lockdep_assert_irqs_disabled();
2666 raw_cpu_inc(rcu_data.ticks_this_gp);
2667 /* The load-acquire pairs with the store-release setting to true. */
2668 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2669 /* Idle and userspace execution already are quiescent states. */
2670 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2671 set_tsk_need_resched(current);
2672 set_preempt_need_resched();
2673 }
2674 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2675 }
2676 rcu_flavor_sched_clock_irq(user);
2677 if (rcu_pending(user))
2678 invoke_rcu_core();
2679 if (user || rcu_is_cpu_rrupt_from_idle())
2680 rcu_note_voluntary_context_switch(current);
2681 lockdep_assert_irqs_disabled();
2682
2683 trace_rcu_utilization(TPS("End scheduler-tick"));
2684}
2685
2686/*
2687 * Scan the leaf rcu_node structures. For each structure on which all
2688 * CPUs have reported a quiescent state and on which there are tasks
2689 * blocking the current grace period, initiate RCU priority boosting.
2690 * Otherwise, invoke the specified function to check dyntick state for
2691 * each CPU that has not yet reported a quiescent state.
2692 */
2693static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2694{
2695 int cpu;
2696 unsigned long flags;
2697 struct rcu_node *rnp;
2698
2699 rcu_state.cbovld = rcu_state.cbovldnext;
2700 rcu_state.cbovldnext = false;
2701 rcu_for_each_leaf_node(rnp) {
2702 unsigned long mask = 0;
2703 unsigned long rsmask = 0;
2704
2705 cond_resched_tasks_rcu_qs();
2706 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2707 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2708 if (rnp->qsmask == 0) {
2709 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2710 /*
2711 * No point in scanning bits because they
2712 * are all zero. But we might need to
2713 * priority-boost blocked readers.
2714 */
2715 rcu_initiate_boost(rnp, flags);
2716 /* rcu_initiate_boost() releases rnp->lock */
2717 continue;
2718 }
2719 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2720 continue;
2721 }
2722 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2723 struct rcu_data *rdp;
2724 int ret;
2725
2726 rdp = per_cpu_ptr(&rcu_data, cpu);
2727 ret = f(rdp);
2728 if (ret > 0) {
2729 mask |= rdp->grpmask;
2730 rcu_disable_urgency_upon_qs(rdp);
2731 }
2732 if (ret < 0)
2733 rsmask |= rdp->grpmask;
2734 }
2735 if (mask != 0) {
2736 /* Idle/offline CPUs, report (releases rnp->lock). */
2737 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
2738 } else {
2739 /* Nothing to do here, so just drop the lock. */
2740 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2741 }
2742
2743 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2744 resched_cpu(cpu);
2745 }
2746}
2747
2748/*
2749 * Force quiescent states on reluctant CPUs, and also detect which
2750 * CPUs are in dyntick-idle mode.
2751 */
2752void rcu_force_quiescent_state(void)
2753{
2754 unsigned long flags;
2755 bool ret;
2756 struct rcu_node *rnp;
2757 struct rcu_node *rnp_old = NULL;
2758
2759 if (!rcu_gp_in_progress())
2760 return;
2761 /* Funnel through hierarchy to reduce memory contention. */
2762 rnp = raw_cpu_read(rcu_data.mynode);
2763 for (; rnp != NULL; rnp = rnp->parent) {
2764 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2765 !raw_spin_trylock(&rnp->fqslock);
2766 if (rnp_old != NULL)
2767 raw_spin_unlock(&rnp_old->fqslock);
2768 if (ret)
2769 return;
2770 rnp_old = rnp;
2771 }
2772 /* rnp_old == rcu_get_root(), rnp == NULL. */
2773
2774 /* Reached the root of the rcu_node tree, acquire lock. */
2775 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2776 raw_spin_unlock(&rnp_old->fqslock);
2777 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2778 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2779 return; /* Someone beat us to it. */
2780 }
2781 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2782 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2783 rcu_gp_kthread_wake();
2784}
2785EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2786
2787// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2788// grace periods.
2789static void strict_work_handler(struct work_struct *work)
2790{
2791 rcu_read_lock();
2792 rcu_read_unlock();
2793}
2794
2795/* Perform RCU core processing work for the current CPU. */
2796static __latent_entropy void rcu_core(void)
2797{
2798 unsigned long flags;
2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2800 struct rcu_node *rnp = rdp->mynode;
2801
2802 if (cpu_is_offline(smp_processor_id()))
2803 return;
2804 trace_rcu_utilization(TPS("Start RCU core"));
2805 WARN_ON_ONCE(!rdp->beenonline);
2806
2807 /* Report any deferred quiescent states if preemption enabled. */
2808 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2809 rcu_preempt_deferred_qs(current);
2810 } else if (rcu_preempt_need_deferred_qs(current)) {
2811 set_tsk_need_resched(current);
2812 set_preempt_need_resched();
2813 }
2814
2815 /* Update RCU state based on any recent quiescent states. */
2816 rcu_check_quiescent_state(rdp);
2817
2818 /* No grace period and unregistered callbacks? */
2819 if (!rcu_gp_in_progress() &&
2820 rcu_segcblist_is_enabled(rsclp: &rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2821 local_irq_save(flags);
2822 if (!rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL))
2823 rcu_accelerate_cbs_unlocked(rnp, rdp);
2824 local_irq_restore(flags);
2825 }
2826
2827 rcu_check_gp_start_stall(rnp, rdp, gpssdelay: rcu_jiffies_till_stall_check());
2828
2829 /* If there are callbacks ready, invoke them. */
2830 if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(rsclp: &rdp->cblist) &&
2831 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2832 rcu_do_batch(rdp);
2833 /* Re-invoke RCU core processing if there are callbacks remaining. */
2834 if (rcu_segcblist_ready_cbs(rsclp: &rdp->cblist))
2835 invoke_rcu_core();
2836 }
2837
2838 /* Do any needed deferred wakeups of rcuo kthreads. */
2839 do_nocb_deferred_wakeup(rdp);
2840 trace_rcu_utilization(TPS("End RCU core"));
2841
2842 // If strict GPs, schedule an RCU reader in a clean environment.
2843 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2844 queue_work_on(cpu: rdp->cpu, wq: rcu_gp_wq, work: &rdp->strict_work);
2845}
2846
2847static void rcu_core_si(void)
2848{
2849 rcu_core();
2850}
2851
2852static void rcu_wake_cond(struct task_struct *t, int status)
2853{
2854 /*
2855 * If the thread is yielding, only wake it when this
2856 * is invoked from idle
2857 */
2858 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2859 wake_up_process(tsk: t);
2860}
2861
2862static void invoke_rcu_core_kthread(void)
2863{
2864 struct task_struct *t;
2865 unsigned long flags;
2866
2867 local_irq_save(flags);
2868 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2869 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2870 if (t != NULL && t != current)
2871 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2872 local_irq_restore(flags);
2873}
2874
2875/*
2876 * Wake up this CPU's rcuc kthread to do RCU core processing.
2877 */
2878static void invoke_rcu_core(void)
2879{
2880 if (!cpu_online(smp_processor_id()))
2881 return;
2882 if (use_softirq)
2883 raise_softirq(nr: RCU_SOFTIRQ);
2884 else
2885 invoke_rcu_core_kthread();
2886}
2887
2888static void rcu_cpu_kthread_park(unsigned int cpu)
2889{
2890 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2891}
2892
2893static int rcu_cpu_kthread_should_run(unsigned int cpu)
2894{
2895 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2896}
2897
2898/*
2899 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2900 * the RCU softirq used in configurations of RCU that do not support RCU
2901 * priority boosting.
2902 */
2903static void rcu_cpu_kthread(unsigned int cpu)
2904{
2905 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2906 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2907 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2908 int spincnt;
2909
2910 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2911 for (spincnt = 0; spincnt < 10; spincnt++) {
2912 WRITE_ONCE(*j, jiffies);
2913 local_bh_disable();
2914 *statusp = RCU_KTHREAD_RUNNING;
2915 local_irq_disable();
2916 work = *workp;
2917 WRITE_ONCE(*workp, 0);
2918 local_irq_enable();
2919 if (work)
2920 rcu_core();
2921 local_bh_enable();
2922 if (!READ_ONCE(*workp)) {
2923 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2924 *statusp = RCU_KTHREAD_WAITING;
2925 return;
2926 }
2927 }
2928 *statusp = RCU_KTHREAD_YIELDING;
2929 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2930 schedule_timeout_idle(timeout: 2);
2931 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2932 *statusp = RCU_KTHREAD_WAITING;
2933 WRITE_ONCE(*j, jiffies);
2934}
2935
2936static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2937 .store = &rcu_data.rcu_cpu_kthread_task,
2938 .thread_should_run = rcu_cpu_kthread_should_run,
2939 .thread_fn = rcu_cpu_kthread,
2940 .thread_comm = "rcuc/%u",
2941 .setup = rcu_cpu_kthread_setup,
2942 .park = rcu_cpu_kthread_park,
2943};
2944
2945/*
2946 * Spawn per-CPU RCU core processing kthreads.
2947 */
2948static int __init rcu_spawn_core_kthreads(void)
2949{
2950 int cpu;
2951
2952 for_each_possible_cpu(cpu)
2953 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2954 if (use_softirq)
2955 return 0;
2956 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2957 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2958 return 0;
2959}
2960
2961static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2962{
2963 rcu_segcblist_enqueue(rsclp: &rdp->cblist, rhp: head);
2964 trace_rcu_callback(rcuname: rcu_state.name, rhp: head,
2965 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist));
2966 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCBQueued"));
2967}
2968
2969/*
2970 * Handle any core-RCU processing required by a call_rcu() invocation.
2971 */
2972static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2973 rcu_callback_t func, unsigned long flags)
2974{
2975 rcutree_enqueue(rdp, head, func);
2976 /*
2977 * If called from an extended quiescent state, invoke the RCU
2978 * core in order to force a re-evaluation of RCU's idleness.
2979 */
2980 if (!rcu_is_watching())
2981 invoke_rcu_core();
2982
2983 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2984 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2985 return;
2986
2987 /*
2988 * Force the grace period if too many callbacks or too long waiting.
2989 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2990 * if some other CPU has recently done so. Also, don't bother
2991 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2992 * is the only one waiting for a grace period to complete.
2993 */
2994 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2995 rdp->qlen_last_fqs_check + qhimark)) {
2996
2997 /* Are we ignoring a completed grace period? */
2998 note_gp_changes(rdp);
2999
3000 /* Start a new grace period if one not already started. */
3001 if (!rcu_gp_in_progress()) {
3002 rcu_accelerate_cbs_unlocked(rnp: rdp->mynode, rdp);
3003 } else {
3004 /* Give the grace period a kick. */
3005 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3006 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3007 rcu_segcblist_first_pend_cb(rsclp: &rdp->cblist) != head)
3008 rcu_force_quiescent_state();
3009 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3010 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
3011 }
3012 }
3013}
3014
3015/*
3016 * RCU callback function to leak a callback.
3017 */
3018static void rcu_leak_callback(struct rcu_head *rhp)
3019{
3020}
3021
3022/*
3023 * Check and if necessary update the leaf rcu_node structure's
3024 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3025 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
3026 * structure's ->lock.
3027 */
3028static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3029{
3030 raw_lockdep_assert_held_rcu_node(rnp);
3031 if (qovld_calc <= 0)
3032 return; // Early boot and wildcard value set.
3033 if (rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc)
3034 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3035 else
3036 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3037}
3038
3039/*
3040 * Check and if necessary update the leaf rcu_node structure's
3041 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3042 * number of queued RCU callbacks. No locks need be held, but the
3043 * caller must have disabled interrupts.
3044 *
3045 * Note that this function ignores the possibility that there are a lot
3046 * of callbacks all of which have already seen the end of their respective
3047 * grace periods. This omission is due to the need for no-CBs CPUs to
3048 * be holding ->nocb_lock to do this check, which is too heavy for a
3049 * common-case operation.
3050 */
3051static void check_cb_ovld(struct rcu_data *rdp)
3052{
3053 struct rcu_node *const rnp = rdp->mynode;
3054
3055 if (qovld_calc <= 0 ||
3056 ((rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc) ==
3057 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3058 return; // Early boot wildcard value or already set correctly.
3059 raw_spin_lock_rcu_node(rnp);
3060 check_cb_ovld_locked(rdp, rnp);
3061 raw_spin_unlock_rcu_node(rnp);
3062}
3063
3064static void
3065__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3066{
3067 static atomic_t doublefrees;
3068 unsigned long flags;
3069 bool lazy;
3070 struct rcu_data *rdp;
3071
3072 /* Misaligned rcu_head! */
3073 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3074
3075 if (debug_rcu_head_queue(head)) {
3076 /*
3077 * Probable double call_rcu(), so leak the callback.
3078 * Use rcu:rcu_callback trace event to find the previous
3079 * time callback was passed to call_rcu().
3080 */
3081 if (atomic_inc_return(v: &doublefrees) < 4) {
3082 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
3083 mem_dump_obj(object: head);
3084 }
3085 WRITE_ONCE(head->func, rcu_leak_callback);
3086 return;
3087 }
3088 head->func = func;
3089 head->next = NULL;
3090 kasan_record_aux_stack(ptr: head);
3091
3092 local_irq_save(flags);
3093 rdp = this_cpu_ptr(&rcu_data);
3094 RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!");
3095
3096 lazy = lazy_in && !rcu_async_should_hurry();
3097
3098 /* Add the callback to our list. */
3099 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3100 // This can trigger due to call_rcu() from offline CPU:
3101 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3102 WARN_ON_ONCE(!rcu_is_watching());
3103 // Very early boot, before rcu_init(). Initialize if needed
3104 // and then drop through to queue the callback.
3105 if (rcu_segcblist_empty(rsclp: &rdp->cblist))
3106 rcu_segcblist_init(rsclp: &rdp->cblist);
3107 }
3108
3109 check_cb_ovld(rdp);
3110
3111 if (unlikely(rcu_rdp_is_offloaded(rdp)))
3112 call_rcu_nocb(rdp, head, func, flags, lazy);
3113 else
3114 call_rcu_core(rdp, head, func, flags);
3115 local_irq_restore(flags);
3116}
3117
3118#ifdef CONFIG_RCU_LAZY
3119static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3120module_param(enable_rcu_lazy, bool, 0444);
3121
3122/**
3123 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3124 * flush all lazy callbacks (including the new one) to the main ->cblist while
3125 * doing so.
3126 *
3127 * @head: structure to be used for queueing the RCU updates.
3128 * @func: actual callback function to be invoked after the grace period
3129 *
3130 * The callback function will be invoked some time after a full grace
3131 * period elapses, in other words after all pre-existing RCU read-side
3132 * critical sections have completed.
3133 *
3134 * Use this API instead of call_rcu() if you don't want the callback to be
3135 * delayed for very long periods of time, which can happen on systems without
3136 * memory pressure and on systems which are lightly loaded or mostly idle.
3137 * This function will cause callbacks to be invoked sooner than later at the
3138 * expense of extra power. Other than that, this function is identical to, and
3139 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3140 * ordering and other functionality.
3141 */
3142void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3143{
3144 __call_rcu_common(head, func, lazy_in: false);
3145}
3146EXPORT_SYMBOL_GPL(call_rcu_hurry);
3147#else
3148#define enable_rcu_lazy false
3149#endif
3150
3151/**
3152 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3153 * By default the callbacks are 'lazy' and are kept hidden from the main
3154 * ->cblist to prevent starting of grace periods too soon.
3155 * If you desire grace periods to start very soon, use call_rcu_hurry().
3156 *
3157 * @head: structure to be used for queueing the RCU updates.
3158 * @func: actual callback function to be invoked after the grace period
3159 *
3160 * The callback function will be invoked some time after a full grace
3161 * period elapses, in other words after all pre-existing RCU read-side
3162 * critical sections have completed. However, the callback function
3163 * might well execute concurrently with RCU read-side critical sections
3164 * that started after call_rcu() was invoked.
3165 *
3166 * It is perfectly legal to repost an RCU callback, potentially with
3167 * a different callback function, from within its callback function.
3168 * The specified function will be invoked after another full grace period
3169 * has elapsed. This use case is similar in form to the common practice
3170 * of reposting a timer from within its own handler.
3171 *
3172 * RCU read-side critical sections are delimited by rcu_read_lock()
3173 * and rcu_read_unlock(), and may be nested. In addition, but only in
3174 * v5.0 and later, regions of code across which interrupts, preemption,
3175 * or softirqs have been disabled also serve as RCU read-side critical
3176 * sections. This includes hardware interrupt handlers, softirq handlers,
3177 * and NMI handlers.
3178 *
3179 * Note that all CPUs must agree that the grace period extended beyond
3180 * all pre-existing RCU read-side critical section. On systems with more
3181 * than one CPU, this means that when "func()" is invoked, each CPU is
3182 * guaranteed to have executed a full memory barrier since the end of its
3183 * last RCU read-side critical section whose beginning preceded the call
3184 * to call_rcu(). It also means that each CPU executing an RCU read-side
3185 * critical section that continues beyond the start of "func()" must have
3186 * executed a memory barrier after the call_rcu() but before the beginning
3187 * of that RCU read-side critical section. Note that these guarantees
3188 * include CPUs that are offline, idle, or executing in user mode, as
3189 * well as CPUs that are executing in the kernel.
3190 *
3191 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3192 * resulting RCU callback function "func()", then both CPU A and CPU B are
3193 * guaranteed to execute a full memory barrier during the time interval
3194 * between the call to call_rcu() and the invocation of "func()" -- even
3195 * if CPU A and CPU B are the same CPU (but again only if the system has
3196 * more than one CPU).
3197 *
3198 * Implementation of these memory-ordering guarantees is described here:
3199 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3200 *
3201 * Specific to call_rcu() (as opposed to the other call_rcu*() functions),
3202 * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many
3203 * seconds before starting the grace period needed by the corresponding
3204 * callback. This delay can significantly improve energy-efficiency
3205 * on low-utilization battery-powered devices. To avoid this delay,
3206 * in latency-sensitive kernel code, use call_rcu_hurry().
3207 */
3208void call_rcu(struct rcu_head *head, rcu_callback_t func)
3209{
3210 __call_rcu_common(head, func, lazy_in: enable_rcu_lazy);
3211}
3212EXPORT_SYMBOL_GPL(call_rcu);
3213
3214/*
3215 * During early boot, any blocking grace-period wait automatically
3216 * implies a grace period.
3217 *
3218 * Later on, this could in theory be the case for kernels built with
3219 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3220 * is not a common case. Furthermore, this optimization would cause
3221 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3222 * grace-period optimization is ignored once the scheduler is running.
3223 */
3224static int rcu_blocking_is_gp(void)
3225{
3226 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3227 might_sleep();
3228 return false;
3229 }
3230 return true;
3231}
3232
3233/*
3234 * Helper function for the synchronize_rcu() API.
3235 */
3236static void synchronize_rcu_normal(void)
3237{
3238 struct rcu_synchronize rs;
3239
3240 trace_rcu_sr_normal(rcuname: rcu_state.name, rhp: &rs.head, TPS("request"));
3241
3242 if (!READ_ONCE(rcu_normal_wake_from_gp)) {
3243 wait_rcu_gp(call_rcu_hurry);
3244 goto trace_complete_out;
3245 }
3246
3247 init_rcu_head_on_stack(head: &rs.head);
3248 init_completion(x: &rs.completion);
3249
3250 /*
3251 * This code might be preempted, therefore take a GP
3252 * snapshot before adding a request.
3253 */
3254 if (IS_ENABLED(CONFIG_PROVE_RCU))
3255 get_state_synchronize_rcu_full(rgosp: &rs.oldstate);
3256
3257 rcu_sr_normal_add_req(rs: &rs);
3258
3259 /* Kick a GP and start waiting. */
3260 (void) start_poll_synchronize_rcu();
3261
3262 /* Now we can wait. */
3263 wait_for_completion(&rs.completion);
3264 destroy_rcu_head_on_stack(head: &rs.head);
3265
3266trace_complete_out:
3267 trace_rcu_sr_normal(rcuname: rcu_state.name, rhp: &rs.head, TPS("complete"));
3268}
3269
3270/**
3271 * synchronize_rcu - wait until a grace period has elapsed.
3272 *
3273 * Control will return to the caller some time after a full grace
3274 * period has elapsed, in other words after all currently executing RCU
3275 * read-side critical sections have completed. Note, however, that
3276 * upon return from synchronize_rcu(), the caller might well be executing
3277 * concurrently with new RCU read-side critical sections that began while
3278 * synchronize_rcu() was waiting.
3279 *
3280 * RCU read-side critical sections are delimited by rcu_read_lock()
3281 * and rcu_read_unlock(), and may be nested. In addition, but only in
3282 * v5.0 and later, regions of code across which interrupts, preemption,
3283 * or softirqs have been disabled also serve as RCU read-side critical
3284 * sections. This includes hardware interrupt handlers, softirq handlers,
3285 * and NMI handlers.
3286 *
3287 * Note that this guarantee implies further memory-ordering guarantees.
3288 * On systems with more than one CPU, when synchronize_rcu() returns,
3289 * each CPU is guaranteed to have executed a full memory barrier since
3290 * the end of its last RCU read-side critical section whose beginning
3291 * preceded the call to synchronize_rcu(). In addition, each CPU having
3292 * an RCU read-side critical section that extends beyond the return from
3293 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3294 * after the beginning of synchronize_rcu() and before the beginning of
3295 * that RCU read-side critical section. Note that these guarantees include
3296 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3297 * that are executing in the kernel.
3298 *
3299 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3300 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3301 * to have executed a full memory barrier during the execution of
3302 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3303 * again only if the system has more than one CPU).
3304 *
3305 * Implementation of these memory-ordering guarantees is described here:
3306 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3307 */
3308void synchronize_rcu(void)
3309{
3310 unsigned long flags;
3311 struct rcu_node *rnp;
3312
3313 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3314 lock_is_held(&rcu_lock_map) ||
3315 lock_is_held(&rcu_sched_lock_map),
3316 "Illegal synchronize_rcu() in RCU read-side critical section");
3317 if (!rcu_blocking_is_gp()) {
3318 if (rcu_gp_is_expedited())
3319 synchronize_rcu_expedited();
3320 else
3321 synchronize_rcu_normal();
3322 return;
3323 }
3324
3325 // Context allows vacuous grace periods.
3326 // Note well that this code runs with !PREEMPT && !SMP.
3327 // In addition, all code that advances grace periods runs at
3328 // process level. Therefore, this normal GP overlaps with other
3329 // normal GPs only by being fully nested within them, which allows
3330 // reuse of ->gp_seq_polled_snap.
3331 rcu_poll_gp_seq_start_unlocked(snap: &rcu_state.gp_seq_polled_snap);
3332 rcu_poll_gp_seq_end_unlocked(snap: &rcu_state.gp_seq_polled_snap);
3333
3334 // Update the normal grace-period counters to record
3335 // this grace period, but only those used by the boot CPU.
3336 // The rcu_scheduler_starting() will take care of the rest of
3337 // these counters.
3338 local_irq_save(flags);
3339 WARN_ON_ONCE(num_online_cpus() > 1);
3340 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3341 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3342 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3343 local_irq_restore(flags);
3344}
3345EXPORT_SYMBOL_GPL(synchronize_rcu);
3346
3347/**
3348 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3349 * @rgosp: Place to put state cookie
3350 *
3351 * Stores into @rgosp a value that will always be treated by functions
3352 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3353 * has already completed.
3354 */
3355void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3356{
3357 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3358 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3359}
3360EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3361
3362/**
3363 * get_state_synchronize_rcu - Snapshot current RCU state
3364 *
3365 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3366 * or poll_state_synchronize_rcu() to determine whether or not a full
3367 * grace period has elapsed in the meantime.
3368 */
3369unsigned long get_state_synchronize_rcu(void)
3370{
3371 /*
3372 * Any prior manipulation of RCU-protected data must happen
3373 * before the load from ->gp_seq.
3374 */
3375 smp_mb(); /* ^^^ */
3376 return rcu_seq_snap(sp: &rcu_state.gp_seq_polled);
3377}
3378EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3379
3380/**
3381 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3382 * @rgosp: location to place combined normal/expedited grace-period state
3383 *
3384 * Places the normal and expedited grace-period states in @rgosp. This
3385 * state value can be passed to a later call to cond_synchronize_rcu_full()
3386 * or poll_state_synchronize_rcu_full() to determine whether or not a
3387 * grace period (whether normal or expedited) has elapsed in the meantime.
3388 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3389 * long, but is guaranteed to see all grace periods. In contrast, the
3390 * combined state occupies less memory, but can sometimes fail to take
3391 * grace periods into account.
3392 *
3393 * This does not guarantee that the needed grace period will actually
3394 * start.
3395 */
3396void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3397{
3398 /*
3399 * Any prior manipulation of RCU-protected data must happen
3400 * before the loads from ->gp_seq and ->expedited_sequence.
3401 */
3402 smp_mb(); /* ^^^ */
3403
3404 // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use
3405 // in poll_state_synchronize_rcu_full() notwithstanding. Use of
3406 // the latter here would result in too-short grace periods due to
3407 // interactions with newly onlined CPUs.
3408 rgosp->rgos_norm = rcu_seq_snap(sp: &rcu_state.gp_seq);
3409 rgosp->rgos_exp = rcu_seq_snap(sp: &rcu_state.expedited_sequence);
3410}
3411EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3412
3413/*
3414 * Helper function for start_poll_synchronize_rcu() and
3415 * start_poll_synchronize_rcu_full().
3416 */
3417static void start_poll_synchronize_rcu_common(void)
3418{
3419 unsigned long flags;
3420 bool needwake;
3421 struct rcu_data *rdp;
3422 struct rcu_node *rnp;
3423
3424 local_irq_save(flags);
3425 rdp = this_cpu_ptr(&rcu_data);
3426 rnp = rdp->mynode;
3427 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3428 // Note it is possible for a grace period to have elapsed between
3429 // the above call to get_state_synchronize_rcu() and the below call
3430 // to rcu_seq_snap. This is OK, the worst that happens is that we
3431 // get a grace period that no one needed. These accesses are ordered
3432 // by smp_mb(), and we are accessing them in the opposite order
3433 // from which they are updated at grace-period start, as required.
3434 needwake = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req: rcu_seq_snap(sp: &rcu_state.gp_seq));
3435 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3436 if (needwake)
3437 rcu_gp_kthread_wake();
3438}
3439
3440/**
3441 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3442 *
3443 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3444 * or poll_state_synchronize_rcu() to determine whether or not a full
3445 * grace period has elapsed in the meantime. If the needed grace period
3446 * is not already slated to start, notifies RCU core of the need for that
3447 * grace period.
3448 */
3449unsigned long start_poll_synchronize_rcu(void)
3450{
3451 unsigned long gp_seq = get_state_synchronize_rcu();
3452
3453 start_poll_synchronize_rcu_common();
3454 return gp_seq;
3455}
3456EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3457
3458/**
3459 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3460 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3461 *
3462 * Places the normal and expedited grace-period states in *@rgos. This
3463 * state value can be passed to a later call to cond_synchronize_rcu_full()
3464 * or poll_state_synchronize_rcu_full() to determine whether or not a
3465 * grace period (whether normal or expedited) has elapsed in the meantime.
3466 * If the needed grace period is not already slated to start, notifies
3467 * RCU core of the need for that grace period.
3468 */
3469void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3470{
3471 get_state_synchronize_rcu_full(rgosp);
3472
3473 start_poll_synchronize_rcu_common();
3474}
3475EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3476
3477/**
3478 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3479 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3480 *
3481 * If a full RCU grace period has elapsed since the earlier call from
3482 * which @oldstate was obtained, return @true, otherwise return @false.
3483 * If @false is returned, it is the caller's responsibility to invoke this
3484 * function later on until it does return @true. Alternatively, the caller
3485 * can explicitly wait for a grace period, for example, by passing @oldstate
3486 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3487 * on the one hand or by directly invoking either synchronize_rcu() or
3488 * synchronize_rcu_expedited() on the other.
3489 *
3490 * Yes, this function does not take counter wrap into account.
3491 * But counter wrap is harmless. If the counter wraps, we have waited for
3492 * more than a billion grace periods (and way more on a 64-bit system!).
3493 * Those needing to keep old state values for very long time periods
3494 * (many hours even on 32-bit systems) should check them occasionally and
3495 * either refresh them or set a flag indicating that the grace period has
3496 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3497 * to get a guaranteed-completed grace-period state.
3498 *
3499 * In addition, because oldstate compresses the grace-period state for
3500 * both normal and expedited grace periods into a single unsigned long,
3501 * it can miss a grace period when synchronize_rcu() runs concurrently
3502 * with synchronize_rcu_expedited(). If this is unacceptable, please
3503 * instead use the _full() variant of these polling APIs.
3504 *
3505 * This function provides the same memory-ordering guarantees that
3506 * would be provided by a synchronize_rcu() that was invoked at the call
3507 * to the function that provided @oldstate, and that returned at the end
3508 * of this function.
3509 */
3510bool poll_state_synchronize_rcu(unsigned long oldstate)
3511{
3512 if (oldstate == RCU_GET_STATE_COMPLETED ||
3513 rcu_seq_done_exact(sp: &rcu_state.gp_seq_polled, s: oldstate)) {
3514 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3515 return true;
3516 }
3517 return false;
3518}
3519EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3520
3521/**
3522 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3523 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3524 *
3525 * If a full RCU grace period has elapsed since the earlier call from
3526 * which *rgosp was obtained, return @true, otherwise return @false.
3527 * If @false is returned, it is the caller's responsibility to invoke this
3528 * function later on until it does return @true. Alternatively, the caller
3529 * can explicitly wait for a grace period, for example, by passing @rgosp
3530 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3531 *
3532 * Yes, this function does not take counter wrap into account.
3533 * But counter wrap is harmless. If the counter wraps, we have waited
3534 * for more than a billion grace periods (and way more on a 64-bit
3535 * system!). Those needing to keep rcu_gp_oldstate values for very
3536 * long time periods (many hours even on 32-bit systems) should check
3537 * them occasionally and either refresh them or set a flag indicating
3538 * that the grace period has completed. Alternatively, they can use
3539 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3540 * grace-period state.
3541 *
3542 * This function provides the same memory-ordering guarantees that would
3543 * be provided by a synchronize_rcu() that was invoked at the call to
3544 * the function that provided @rgosp, and that returned at the end of this
3545 * function. And this guarantee requires that the root rcu_node structure's
3546 * ->gp_seq field be checked instead of that of the rcu_state structure.
3547 * The problem is that the just-ending grace-period's callbacks can be
3548 * invoked between the time that the root rcu_node structure's ->gp_seq
3549 * field is updated and the time that the rcu_state structure's ->gp_seq
3550 * field is updated. Therefore, if a single synchronize_rcu() is to
3551 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3552 * then the root rcu_node structure is the one that needs to be polled.
3553 */
3554bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3555{
3556 struct rcu_node *rnp = rcu_get_root();
3557
3558 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3559 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3560 rcu_seq_done_exact(sp: &rnp->gp_seq, s: rgosp->rgos_norm) ||
3561 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3562 rcu_seq_done_exact(sp: &rcu_state.expedited_sequence, s: rgosp->rgos_exp)) {
3563 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3564 return true;
3565 }
3566 return false;
3567}
3568EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3569
3570/**
3571 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3572 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3573 *
3574 * If a full RCU grace period has elapsed since the earlier call to
3575 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3576 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3577 *
3578 * Yes, this function does not take counter wrap into account.
3579 * But counter wrap is harmless. If the counter wraps, we have waited for
3580 * more than 2 billion grace periods (and way more on a 64-bit system!),
3581 * so waiting for a couple of additional grace periods should be just fine.
3582 *
3583 * This function provides the same memory-ordering guarantees that
3584 * would be provided by a synchronize_rcu() that was invoked at the call
3585 * to the function that provided @oldstate and that returned at the end
3586 * of this function.
3587 */
3588void cond_synchronize_rcu(unsigned long oldstate)
3589{
3590 if (!poll_state_synchronize_rcu(oldstate))
3591 synchronize_rcu();
3592}
3593EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3594
3595/**
3596 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3597 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3598 *
3599 * If a full RCU grace period has elapsed since the call to
3600 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3601 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3602 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3603 * for a full grace period.
3604 *
3605 * Yes, this function does not take counter wrap into account.
3606 * But counter wrap is harmless. If the counter wraps, we have waited for
3607 * more than 2 billion grace periods (and way more on a 64-bit system!),
3608 * so waiting for a couple of additional grace periods should be just fine.
3609 *
3610 * This function provides the same memory-ordering guarantees that
3611 * would be provided by a synchronize_rcu() that was invoked at the call
3612 * to the function that provided @rgosp and that returned at the end of
3613 * this function.
3614 */
3615void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3616{
3617 if (!poll_state_synchronize_rcu_full(rgosp))
3618 synchronize_rcu();
3619}
3620EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3621
3622/*
3623 * Check to see if there is any immediate RCU-related work to be done by
3624 * the current CPU, returning 1 if so and zero otherwise. The checks are
3625 * in order of increasing expense: checks that can be carried out against
3626 * CPU-local state are performed first. However, we must check for CPU
3627 * stalls first, else we might not get a chance.
3628 */
3629static int rcu_pending(int user)
3630{
3631 bool gp_in_progress;
3632 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3633 struct rcu_node *rnp = rdp->mynode;
3634
3635 lockdep_assert_irqs_disabled();
3636
3637 /* Check for CPU stalls, if enabled. */
3638 check_cpu_stall(rdp);
3639
3640 /* Does this CPU need a deferred NOCB wakeup? */
3641 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3642 return 1;
3643
3644 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3645 gp_in_progress = rcu_gp_in_progress();
3646 if ((user || rcu_is_cpu_rrupt_from_idle() ||
3647 (gp_in_progress &&
3648 time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
3649 nohz_full_patience_delay_jiffies))) &&
3650 rcu_nohz_full_cpu())
3651 return 0;
3652
3653 /* Is the RCU core waiting for a quiescent state from this CPU? */
3654 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3655 return 1;
3656
3657 /* Does this CPU have callbacks ready to invoke? */
3658 if (!rcu_rdp_is_offloaded(rdp) &&
3659 rcu_segcblist_ready_cbs(rsclp: &rdp->cblist))
3660 return 1;
3661
3662 /* Has RCU gone idle with this CPU needing another grace period? */
3663 if (!gp_in_progress && rcu_segcblist_is_enabled(rsclp: &rdp->cblist) &&
3664 !rcu_rdp_is_offloaded(rdp) &&
3665 !rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL))
3666 return 1;
3667
3668 /* Have RCU grace period completed or started? */
3669 if (rcu_seq_current(sp: &rnp->gp_seq) != rdp->gp_seq ||
3670 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3671 return 1;
3672
3673 /* nothing to do */
3674 return 0;
3675}
3676
3677/*
3678 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3679 * the compiler is expected to optimize this away.
3680 */
3681static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3682{
3683 trace_rcu_barrier(rcuname: rcu_state.name, s, cpu,
3684 cnt: atomic_read(v: &rcu_state.barrier_cpu_count), done);
3685}
3686
3687/*
3688 * RCU callback function for rcu_barrier(). If we are last, wake
3689 * up the task executing rcu_barrier().
3690 *
3691 * Note that the value of rcu_state.barrier_sequence must be captured
3692 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3693 * other CPUs might count the value down to zero before this CPU gets
3694 * around to invoking rcu_barrier_trace(), which might result in bogus
3695 * data from the next instance of rcu_barrier().
3696 */
3697static void rcu_barrier_callback(struct rcu_head *rhp)
3698{
3699 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3700
3701 rhp->next = rhp; // Mark the callback as having been invoked.
3702 if (atomic_dec_and_test(v: &rcu_state.barrier_cpu_count)) {
3703 rcu_barrier_trace(TPS("LastCB"), cpu: -1, done: s);
3704 complete(&rcu_state.barrier_completion);
3705 } else {
3706 rcu_barrier_trace(TPS("CB"), cpu: -1, done: s);
3707 }
3708}
3709
3710/*
3711 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3712 */
3713static void rcu_barrier_entrain(struct rcu_data *rdp)
3714{
3715 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3716 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3717 bool wake_nocb = false;
3718 bool was_alldone = false;
3719
3720 lockdep_assert_held(&rcu_state.barrier_lock);
3721 if (rcu_seq_state(s: lseq) || !rcu_seq_state(s: gseq) || rcu_seq_ctr(s: lseq) != rcu_seq_ctr(s: gseq))
3722 return;
3723 rcu_barrier_trace(TPS("IRQ"), cpu: -1, done: rcu_state.barrier_sequence);
3724 rdp->barrier_head.func = rcu_barrier_callback;
3725 debug_rcu_head_queue(head: &rdp->barrier_head);
3726 rcu_nocb_lock(rdp);
3727 /*
3728 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3729 * queue. This way we don't wait for bypass timer that can reach seconds
3730 * if it's fully lazy.
3731 */
3732 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(rsclp: &rdp->cblist);
3733 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3734 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(rsclp: &rdp->cblist);
3735 if (rcu_segcblist_entrain(rsclp: &rdp->cblist, rhp: &rdp->barrier_head)) {
3736 atomic_inc(v: &rcu_state.barrier_cpu_count);
3737 } else {
3738 debug_rcu_head_unqueue(head: &rdp->barrier_head);
3739 rcu_barrier_trace(TPS("IRQNQ"), cpu: -1, done: rcu_state.barrier_sequence);
3740 }
3741 rcu_nocb_unlock(rdp);
3742 if (wake_nocb)
3743 wake_nocb_gp(rdp, force: false);
3744 smp_store_release(&rdp->barrier_seq_snap, gseq);
3745}
3746
3747/*
3748 * Called with preemption disabled, and from cross-cpu IRQ context.
3749 */
3750static void rcu_barrier_handler(void *cpu_in)
3751{
3752 uintptr_t cpu = (uintptr_t)cpu_in;
3753 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3754
3755 lockdep_assert_irqs_disabled();
3756 WARN_ON_ONCE(cpu != rdp->cpu);
3757 WARN_ON_ONCE(cpu != smp_processor_id());
3758 raw_spin_lock(&rcu_state.barrier_lock);
3759 rcu_barrier_entrain(rdp);
3760 raw_spin_unlock(&rcu_state.barrier_lock);
3761}
3762
3763/**
3764 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3765 *
3766 * Note that this primitive does not necessarily wait for an RCU grace period
3767 * to complete. For example, if there are no RCU callbacks queued anywhere
3768 * in the system, then rcu_barrier() is within its rights to return
3769 * immediately, without waiting for anything, much less an RCU grace period.
3770 */
3771void rcu_barrier(void)
3772{
3773 uintptr_t cpu;
3774 unsigned long flags;
3775 unsigned long gseq;
3776 struct rcu_data *rdp;
3777 unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence);
3778
3779 rcu_barrier_trace(TPS("Begin"), cpu: -1, done: s);
3780
3781 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3782 mutex_lock(&rcu_state.barrier_mutex);
3783
3784 /* Did someone else do our work for us? */
3785 if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) {
3786 rcu_barrier_trace(TPS("EarlyExit"), cpu: -1, done: rcu_state.barrier_sequence);
3787 smp_mb(); /* caller's subsequent code after above check. */
3788 mutex_unlock(lock: &rcu_state.barrier_mutex);
3789 return;
3790 }
3791
3792 /* Mark the start of the barrier operation. */
3793 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3794 rcu_seq_start(sp: &rcu_state.barrier_sequence);
3795 gseq = rcu_state.barrier_sequence;
3796 rcu_barrier_trace(TPS("Inc1"), cpu: -1, done: rcu_state.barrier_sequence);
3797
3798 /*
3799 * Initialize the count to two rather than to zero in order
3800 * to avoid a too-soon return to zero in case of an immediate
3801 * invocation of the just-enqueued callback (or preemption of
3802 * this task). Exclude CPU-hotplug operations to ensure that no
3803 * offline non-offloaded CPU has callbacks queued.
3804 */
3805 init_completion(x: &rcu_state.barrier_completion);
3806 atomic_set(v: &rcu_state.barrier_cpu_count, i: 2);
3807 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3808
3809 /*
3810 * Force each CPU with callbacks to register a new callback.
3811 * When that callback is invoked, we will know that all of the
3812 * corresponding CPU's preceding callbacks have been invoked.
3813 */
3814 for_each_possible_cpu(cpu) {
3815 rdp = per_cpu_ptr(&rcu_data, cpu);
3816retry:
3817 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3818 continue;
3819 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3820 if (!rcu_segcblist_n_cbs(rsclp: &rdp->cblist)) {
3821 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3822 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3823 rcu_barrier_trace(TPS("NQ"), cpu, done: rcu_state.barrier_sequence);
3824 continue;
3825 }
3826 if (!rcu_rdp_cpu_online(rdp)) {
3827 rcu_barrier_entrain(rdp);
3828 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3829 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3830 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, done: rcu_state.barrier_sequence);
3831 continue;
3832 }
3833 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3834 if (smp_call_function_single(cpuid: cpu, func: rcu_barrier_handler, info: (void *)cpu, wait: 1)) {
3835 schedule_timeout_uninterruptible(timeout: 1);
3836 goto retry;
3837 }
3838 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3839 rcu_barrier_trace(TPS("OnlineQ"), cpu, done: rcu_state.barrier_sequence);
3840 }
3841
3842 /*
3843 * Now that we have an rcu_barrier_callback() callback on each
3844 * CPU, and thus each counted, remove the initial count.
3845 */
3846 if (atomic_sub_and_test(i: 2, v: &rcu_state.barrier_cpu_count))
3847 complete(&rcu_state.barrier_completion);
3848
3849 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3850 wait_for_completion(&rcu_state.barrier_completion);
3851
3852 /* Mark the end of the barrier operation. */
3853 rcu_barrier_trace(TPS("Inc2"), cpu: -1, done: rcu_state.barrier_sequence);
3854 rcu_seq_end(sp: &rcu_state.barrier_sequence);
3855 gseq = rcu_state.barrier_sequence;
3856 for_each_possible_cpu(cpu) {
3857 rdp = per_cpu_ptr(&rcu_data, cpu);
3858
3859 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3860 }
3861
3862 /* Other rcu_barrier() invocations can now safely proceed. */
3863 mutex_unlock(lock: &rcu_state.barrier_mutex);
3864}
3865EXPORT_SYMBOL_GPL(rcu_barrier);
3866
3867static unsigned long rcu_barrier_last_throttle;
3868
3869/**
3870 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
3871 *
3872 * This can be thought of as guard rails around rcu_barrier() that
3873 * permits unrestricted userspace use, at least assuming the hardware's
3874 * try_cmpxchg() is robust. There will be at most one call per second to
3875 * rcu_barrier() system-wide from use of this function, which means that
3876 * callers might needlessly wait a second or three.
3877 *
3878 * This is intended for use by test suites to avoid OOM by flushing RCU
3879 * callbacks from the previous test before starting the next. See the
3880 * rcutree.do_rcu_barrier module parameter for more information.
3881 *
3882 * Why not simply make rcu_barrier() more scalable? That might be
3883 * the eventual endpoint, but let's keep it simple for the time being.
3884 * Note that the module parameter infrastructure serializes calls to a
3885 * given .set() function, but should concurrent .set() invocation ever be
3886 * possible, we are ready!
3887 */
3888static void rcu_barrier_throttled(void)
3889{
3890 unsigned long j = jiffies;
3891 unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
3892 unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence);
3893
3894 while (time_in_range(j, old, old + HZ / 16) ||
3895 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
3896 schedule_timeout_idle(HZ / 16);
3897 if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) {
3898 smp_mb(); /* caller's subsequent code after above check. */
3899 return;
3900 }
3901 j = jiffies;
3902 old = READ_ONCE(rcu_barrier_last_throttle);
3903 }
3904 rcu_barrier();
3905}
3906
3907/*
3908 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
3909 * request arrives. We insist on a true value to allow for possible
3910 * future expansion.
3911 */
3912static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
3913{
3914 bool b;
3915 int ret;
3916
3917 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
3918 return -EAGAIN;
3919 ret = kstrtobool(s: val, res: &b);
3920 if (!ret && b) {
3921 atomic_inc(v: (atomic_t *)kp->arg);
3922 rcu_barrier_throttled();
3923 atomic_dec(v: (atomic_t *)kp->arg);
3924 }
3925 return ret;
3926}
3927
3928/*
3929 * Output the number of outstanding rcutree.do_rcu_barrier requests.
3930 */
3931static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
3932{
3933 return sprintf(buf: buffer, fmt: "%d\n", atomic_read(v: (atomic_t *)kp->arg));
3934}
3935
3936static const struct kernel_param_ops do_rcu_barrier_ops = {
3937 .set = param_set_do_rcu_barrier,
3938 .get = param_get_do_rcu_barrier,
3939};
3940static atomic_t do_rcu_barrier;
3941module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
3942
3943/*
3944 * Compute the mask of online CPUs for the specified rcu_node structure.
3945 * This will not be stable unless the rcu_node structure's ->lock is
3946 * held, but the bit corresponding to the current CPU will be stable
3947 * in most contexts.
3948 */
3949static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
3950{
3951 return READ_ONCE(rnp->qsmaskinitnext);
3952}
3953
3954/*
3955 * Is the CPU corresponding to the specified rcu_data structure online
3956 * from RCU's perspective? This perspective is given by that structure's
3957 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
3958 */
3959static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
3960{
3961 return !!(rdp->grpmask & rcu_rnp_online_cpus(rnp: rdp->mynode));
3962}
3963
3964bool rcu_cpu_online(int cpu)
3965{
3966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3967
3968 return rcu_rdp_cpu_online(rdp);
3969}
3970
3971#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
3972
3973/*
3974 * Is the current CPU online as far as RCU is concerned?
3975 *
3976 * Disable preemption to avoid false positives that could otherwise
3977 * happen due to the current CPU number being sampled, this task being
3978 * preempted, its old CPU being taken offline, resuming on some other CPU,
3979 * then determining that its old CPU is now offline.
3980 *
3981 * Disable checking if in an NMI handler because we cannot safely
3982 * report errors from NMI handlers anyway. In addition, it is OK to use
3983 * RCU on an offline processor during initial boot, hence the check for
3984 * rcu_scheduler_fully_active.
3985 */
3986bool rcu_lockdep_current_cpu_online(void)
3987{
3988 struct rcu_data *rdp;
3989 bool ret = false;
3990
3991 if (in_nmi() || !rcu_scheduler_fully_active)
3992 return true;
3993 preempt_disable_notrace();
3994 rdp = this_cpu_ptr(&rcu_data);
3995 /*
3996 * Strictly, we care here about the case where the current CPU is
3997 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
3998 * not being up to date. So arch_spin_is_locked() might have a
3999 * false positive if it's held by some *other* CPU, but that's
4000 * OK because that just means a false *negative* on the warning.
4001 */
4002 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4003 ret = true;
4004 preempt_enable_notrace();
4005 return ret;
4006}
4007EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4008
4009#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4010
4011// Has rcu_init() been invoked? This is used (for example) to determine
4012// whether spinlocks may be acquired safely.
4013static bool rcu_init_invoked(void)
4014{
4015 return !!READ_ONCE(rcu_state.n_online_cpus);
4016}
4017
4018/*
4019 * All CPUs for the specified rcu_node structure have gone offline,
4020 * and all tasks that were preempted within an RCU read-side critical
4021 * section while running on one of those CPUs have since exited their RCU
4022 * read-side critical section. Some other CPU is reporting this fact with
4023 * the specified rcu_node structure's ->lock held and interrupts disabled.
4024 * This function therefore goes up the tree of rcu_node structures,
4025 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4026 * the leaf rcu_node structure's ->qsmaskinit field has already been
4027 * updated.
4028 *
4029 * This function does check that the specified rcu_node structure has
4030 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4031 * prematurely. That said, invoking it after the fact will cost you
4032 * a needless lock acquisition. So once it has done its work, don't
4033 * invoke it again.
4034 */
4035static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4036{
4037 long mask;
4038 struct rcu_node *rnp = rnp_leaf;
4039
4040 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4041 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4042 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4043 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4044 return;
4045 for (;;) {
4046 mask = rnp->grpmask;
4047 rnp = rnp->parent;
4048 if (!rnp)
4049 break;
4050 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4051 rnp->qsmaskinit &= ~mask;
4052 /* Between grace periods, so better already be zero! */
4053 WARN_ON_ONCE(rnp->qsmask);
4054 if (rnp->qsmaskinit) {
4055 raw_spin_unlock_rcu_node(rnp);
4056 /* irqs remain disabled. */
4057 return;
4058 }
4059 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4060 }
4061}
4062
4063/*
4064 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4065 * first CPU in a given leaf rcu_node structure coming online. The caller
4066 * must hold the corresponding leaf rcu_node ->lock with interrupts
4067 * disabled.
4068 */
4069static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4070{
4071 long mask;
4072 long oldmask;
4073 struct rcu_node *rnp = rnp_leaf;
4074
4075 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4076 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4077 for (;;) {
4078 mask = rnp->grpmask;
4079 rnp = rnp->parent;
4080 if (rnp == NULL)
4081 return;
4082 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4083 oldmask = rnp->qsmaskinit;
4084 rnp->qsmaskinit |= mask;
4085 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4086 if (oldmask)
4087 return;
4088 }
4089}
4090
4091/*
4092 * Do boot-time initialization of a CPU's per-CPU RCU data.
4093 */
4094static void __init
4095rcu_boot_init_percpu_data(int cpu)
4096{
4097 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4098 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4099
4100 /* Set up local state, ensuring consistent view of global state. */
4101 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4102 INIT_WORK(&rdp->strict_work, strict_work_handler);
4103 WARN_ON_ONCE(ct->nesting != 1);
4104 WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4105 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4106 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4107 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4108 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4109 rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4110 rdp->last_sched_clock = jiffies;
4111 rdp->cpu = cpu;
4112 rcu_boot_init_nocb_percpu_data(rdp);
4113}
4114
4115static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp)
4116{
4117 cpumask_var_t affinity;
4118 int cpu;
4119
4120 if (!zalloc_cpumask_var(mask: &affinity, GFP_KERNEL))
4121 return;
4122
4123 for_each_leaf_node_possible_cpu(rnp, cpu)
4124 cpumask_set_cpu(cpu, dstp: affinity);
4125
4126 kthread_affine_preferred(p: t, mask: affinity);
4127
4128 free_cpumask_var(mask: affinity);
4129}
4130
4131struct kthread_worker *rcu_exp_gp_kworker;
4132
4133static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4134{
4135 struct kthread_worker *kworker;
4136 const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4137 struct sched_param param = { .sched_priority = kthread_prio };
4138 int rnp_index = rnp - rcu_get_root();
4139
4140 if (rnp->exp_kworker)
4141 return;
4142
4143 kworker = kthread_create_worker(0, name, rnp_index);
4144 if (IS_ERR_OR_NULL(ptr: kworker)) {
4145 pr_err("Failed to create par gp kworker on %d/%d\n",
4146 rnp->grplo, rnp->grphi);
4147 return;
4148 }
4149 WRITE_ONCE(rnp->exp_kworker, kworker);
4150
4151 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4152 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4153
4154 rcu_thread_affine_rnp(t: kworker->task, rnp);
4155 wake_up_process(tsk: kworker->task);
4156}
4157
4158static void __init rcu_start_exp_gp_kworker(void)
4159{
4160 const char *name = "rcu_exp_gp_kthread_worker";
4161 struct sched_param param = { .sched_priority = kthread_prio };
4162
4163 rcu_exp_gp_kworker = kthread_run_worker(0, name);
4164 if (IS_ERR_OR_NULL(ptr: rcu_exp_gp_kworker)) {
4165 pr_err("Failed to create %s!\n", name);
4166 rcu_exp_gp_kworker = NULL;
4167 return;
4168 }
4169
4170 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4171 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4172}
4173
4174static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4175{
4176 if (rcu_scheduler_fully_active) {
4177 mutex_lock(&rnp->kthread_mutex);
4178 rcu_spawn_one_boost_kthread(rnp);
4179 rcu_spawn_exp_par_gp_kworker(rnp);
4180 mutex_unlock(lock: &rnp->kthread_mutex);
4181 }
4182}
4183
4184/*
4185 * Invoked early in the CPU-online process, when pretty much all services
4186 * are available. The incoming CPU is not present.
4187 *
4188 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4189 * offline event can be happening at a given time. Note also that we can
4190 * accept some slop in the rsp->gp_seq access due to the fact that this
4191 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4192 * And any offloaded callbacks are being numbered elsewhere.
4193 */
4194int rcutree_prepare_cpu(unsigned int cpu)
4195{
4196 unsigned long flags;
4197 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4198 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4199 struct rcu_node *rnp = rcu_get_root();
4200
4201 /* Set up local state, ensuring consistent view of global state. */
4202 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4203 rdp->qlen_last_fqs_check = 0;
4204 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4205 rdp->blimit = blimit;
4206 ct->nesting = 1; /* CPU not up, no tearing. */
4207 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4208
4209 /*
4210 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4211 * (re-)initialized.
4212 */
4213 if (!rcu_segcblist_is_enabled(rsclp: &rdp->cblist))
4214 rcu_segcblist_init(rsclp: &rdp->cblist); /* Re-enable callbacks. */
4215
4216 /*
4217 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4218 * propagation up the rcu_node tree will happen at the beginning
4219 * of the next grace period.
4220 */
4221 rnp = rdp->mynode;
4222 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4223 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4224 rdp->gp_seq_needed = rdp->gp_seq;
4225 rdp->cpu_no_qs.b.norm = true;
4226 rdp->core_needs_qs = false;
4227 rdp->rcu_iw_pending = false;
4228 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4229 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4230 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuonl"));
4231 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4232 rcu_spawn_rnp_kthreads(rnp);
4233 rcu_spawn_cpu_nocb_kthread(cpu);
4234 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4235 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4236
4237 return 0;
4238}
4239
4240/*
4241 * Has the specified (known valid) CPU ever been fully online?
4242 */
4243bool rcu_cpu_beenfullyonline(int cpu)
4244{
4245 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4246
4247 return smp_load_acquire(&rdp->beenonline);
4248}
4249
4250/*
4251 * Near the end of the CPU-online process. Pretty much all services
4252 * enabled, and the CPU is now very much alive.
4253 */
4254int rcutree_online_cpu(unsigned int cpu)
4255{
4256 unsigned long flags;
4257 struct rcu_data *rdp;
4258 struct rcu_node *rnp;
4259
4260 rdp = per_cpu_ptr(&rcu_data, cpu);
4261 rnp = rdp->mynode;
4262 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4263 rnp->ffmask |= rdp->grpmask;
4264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4265 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4266 return 0; /* Too early in boot for scheduler work. */
4267 sync_sched_exp_online_cleanup(cpu);
4268
4269 // Stop-machine done, so allow nohz_full to disable tick.
4270 tick_dep_clear(bit: TICK_DEP_BIT_RCU);
4271 return 0;
4272}
4273
4274/*
4275 * Mark the specified CPU as being online so that subsequent grace periods
4276 * (both expedited and normal) will wait on it. Note that this means that
4277 * incoming CPUs are not allowed to use RCU read-side critical sections
4278 * until this function is called. Failing to observe this restriction
4279 * will result in lockdep splats.
4280 *
4281 * Note that this function is special in that it is invoked directly
4282 * from the incoming CPU rather than from the cpuhp_step mechanism.
4283 * This is because this function must be invoked at a precise location.
4284 * This incoming CPU must not have enabled interrupts yet.
4285 *
4286 * This mirrors the effects of rcutree_report_cpu_dead().
4287 */
4288void rcutree_report_cpu_starting(unsigned int cpu)
4289{
4290 unsigned long mask;
4291 struct rcu_data *rdp;
4292 struct rcu_node *rnp;
4293 bool newcpu;
4294
4295 lockdep_assert_irqs_disabled();
4296 rdp = per_cpu_ptr(&rcu_data, cpu);
4297 if (rdp->cpu_started)
4298 return;
4299 rdp->cpu_started = true;
4300
4301 rnp = rdp->mynode;
4302 mask = rdp->grpmask;
4303 arch_spin_lock(&rcu_state.ofl_lock);
4304 rcu_watching_online();
4305 raw_spin_lock(&rcu_state.barrier_lock);
4306 raw_spin_lock_rcu_node(rnp);
4307 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4308 raw_spin_unlock(&rcu_state.barrier_lock);
4309 newcpu = !(rnp->expmaskinitnext & mask);
4310 rnp->expmaskinitnext |= mask;
4311 /* Allow lockless access for expedited grace periods. */
4312 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4313 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4314 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4315 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4316 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
4317
4318 /* An incoming CPU should never be blocking a grace period. */
4319 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4320 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4321 unsigned long flags;
4322
4323 local_irq_save(flags);
4324 rcu_disable_urgency_upon_qs(rdp);
4325 /* Report QS -after- changing ->qsmaskinitnext! */
4326 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
4327 } else {
4328 raw_spin_unlock_rcu_node(rnp);
4329 }
4330 arch_spin_unlock(&rcu_state.ofl_lock);
4331 smp_store_release(&rdp->beenonline, true);
4332 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4333}
4334
4335/*
4336 * The outgoing function has no further need of RCU, so remove it from
4337 * the rcu_node tree's ->qsmaskinitnext bit masks.
4338 *
4339 * Note that this function is special in that it is invoked directly
4340 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4341 * This is because this function must be invoked at a precise location.
4342 *
4343 * This mirrors the effect of rcutree_report_cpu_starting().
4344 */
4345void rcutree_report_cpu_dead(void)
4346{
4347 unsigned long flags;
4348 unsigned long mask;
4349 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4350 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4351
4352 /*
4353 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4354 * may introduce a new READ-side while it is actually off the QS masks.
4355 */
4356 lockdep_assert_irqs_disabled();
4357 // Do any dangling deferred wakeups.
4358 do_nocb_deferred_wakeup(rdp);
4359
4360 rcu_preempt_deferred_qs(current);
4361
4362 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4363 mask = rdp->grpmask;
4364 arch_spin_lock(&rcu_state.ofl_lock);
4365 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4366 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4367 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
4368 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4369 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4370 rcu_disable_urgency_upon_qs(rdp);
4371 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
4372 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4373 }
4374 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4375 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4376 arch_spin_unlock(&rcu_state.ofl_lock);
4377 rdp->cpu_started = false;
4378}
4379
4380#ifdef CONFIG_HOTPLUG_CPU
4381/*
4382 * The outgoing CPU has just passed through the dying-idle state, and we
4383 * are being invoked from the CPU that was IPIed to continue the offline
4384 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4385 */
4386void rcutree_migrate_callbacks(int cpu)
4387{
4388 unsigned long flags;
4389 struct rcu_data *my_rdp;
4390 struct rcu_node *my_rnp;
4391 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4392 bool needwake;
4393
4394 if (rcu_rdp_is_offloaded(rdp))
4395 return;
4396
4397 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4398 if (rcu_segcblist_empty(rsclp: &rdp->cblist)) {
4399 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4400 return; /* No callbacks to migrate. */
4401 }
4402
4403 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4404 rcu_barrier_entrain(rdp);
4405 my_rdp = this_cpu_ptr(&rcu_data);
4406 my_rnp = my_rdp->mynode;
4407 rcu_nocb_lock(rdp: my_rdp); /* irqs already disabled. */
4408 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4409 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4410 /* Leverage recent GPs and set GP for new callbacks. */
4411 needwake = rcu_advance_cbs(rnp: my_rnp, rdp) ||
4412 rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp);
4413 rcu_segcblist_merge(dst_rsclp: &my_rdp->cblist, src_rsclp: &rdp->cblist);
4414 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4415 needwake = needwake || rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp);
4416 rcu_segcblist_disable(rsclp: &rdp->cblist);
4417 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4418 check_cb_ovld_locked(rdp: my_rdp, rnp: my_rnp);
4419 if (rcu_rdp_is_offloaded(rdp: my_rdp)) {
4420 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4421 __call_rcu_nocb_wake(rdp: my_rdp, was_empty: true, flags);
4422 } else {
4423 rcu_nocb_unlock(rdp: my_rdp); /* irqs remain disabled. */
4424 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4425 }
4426 local_irq_restore(flags);
4427 if (needwake)
4428 rcu_gp_kthread_wake();
4429 lockdep_assert_irqs_enabled();
4430 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4431 !rcu_segcblist_empty(&rdp->cblist),
4432 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4433 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4434 rcu_segcblist_first_cb(&rdp->cblist));
4435}
4436
4437/*
4438 * The CPU has been completely removed, and some other CPU is reporting
4439 * this fact from process context. Do the remainder of the cleanup.
4440 * There can only be one CPU hotplug operation at a time, so no need for
4441 * explicit locking.
4442 */
4443int rcutree_dead_cpu(unsigned int cpu)
4444{
4445 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4446 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4447 // Stop-machine done, so allow nohz_full to disable tick.
4448 tick_dep_clear(bit: TICK_DEP_BIT_RCU);
4449 return 0;
4450}
4451
4452/*
4453 * Near the end of the offline process. Trace the fact that this CPU
4454 * is going offline.
4455 */
4456int rcutree_dying_cpu(unsigned int cpu)
4457{
4458 bool blkd;
4459 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4460 struct rcu_node *rnp = rdp->mynode;
4461
4462 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4463 trace_rcu_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq),
4464 gpevent: blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4465 return 0;
4466}
4467
4468/*
4469 * Near the beginning of the process. The CPU is still very much alive
4470 * with pretty much all services enabled.
4471 */
4472int rcutree_offline_cpu(unsigned int cpu)
4473{
4474 unsigned long flags;
4475 struct rcu_data *rdp;
4476 struct rcu_node *rnp;
4477
4478 rdp = per_cpu_ptr(&rcu_data, cpu);
4479 rnp = rdp->mynode;
4480 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4481 rnp->ffmask &= ~rdp->grpmask;
4482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4483
4484 // nohz_full CPUs need the tick for stop-machine to work quickly
4485 tick_dep_set(bit: TICK_DEP_BIT_RCU);
4486 return 0;
4487}
4488#endif /* #ifdef CONFIG_HOTPLUG_CPU */
4489
4490/*
4491 * On non-huge systems, use expedited RCU grace periods to make suspend
4492 * and hibernation run faster.
4493 */
4494static int rcu_pm_notify(struct notifier_block *self,
4495 unsigned long action, void *hcpu)
4496{
4497 switch (action) {
4498 case PM_HIBERNATION_PREPARE:
4499 case PM_SUSPEND_PREPARE:
4500 rcu_async_hurry();
4501 rcu_expedite_gp();
4502 break;
4503 case PM_POST_HIBERNATION:
4504 case PM_POST_SUSPEND:
4505 rcu_unexpedite_gp();
4506 rcu_async_relax();
4507 break;
4508 default:
4509 break;
4510 }
4511 return NOTIFY_OK;
4512}
4513
4514/*
4515 * Spawn the kthreads that handle RCU's grace periods.
4516 */
4517static int __init rcu_spawn_gp_kthread(void)
4518{
4519 unsigned long flags;
4520 struct rcu_node *rnp;
4521 struct sched_param sp;
4522 struct task_struct *t;
4523 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4524
4525 rcu_scheduler_fully_active = 1;
4526 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4527 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4528 return 0;
4529 if (kthread_prio) {
4530 sp.sched_priority = kthread_prio;
4531 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4532 }
4533 rnp = rcu_get_root();
4534 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4535 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4536 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4537 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4538 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4539 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4540 wake_up_process(tsk: t);
4541 /* This is a pre-SMP initcall, we expect a single CPU */
4542 WARN_ON(num_online_cpus() > 1);
4543 /*
4544 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4545 * due to rcu_scheduler_fully_active.
4546 */
4547 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4548 rcu_spawn_rnp_kthreads(rnp: rdp->mynode);
4549 rcu_spawn_core_kthreads();
4550 /* Create kthread worker for expedited GPs */
4551 rcu_start_exp_gp_kworker();
4552 return 0;
4553}
4554early_initcall(rcu_spawn_gp_kthread);
4555
4556/*
4557 * This function is invoked towards the end of the scheduler's
4558 * initialization process. Before this is called, the idle task might
4559 * contain synchronous grace-period primitives (during which time, this idle
4560 * task is booting the system, and such primitives are no-ops). After this
4561 * function is called, any synchronous grace-period primitives are run as
4562 * expedited, with the requesting task driving the grace period forward.
4563 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4564 * runtime RCU functionality.
4565 */
4566void rcu_scheduler_starting(void)
4567{
4568 unsigned long flags;
4569 struct rcu_node *rnp;
4570
4571 WARN_ON(num_online_cpus() != 1);
4572 WARN_ON(nr_context_switches() > 0);
4573 rcu_test_sync_prims();
4574
4575 // Fix up the ->gp_seq counters.
4576 local_irq_save(flags);
4577 rcu_for_each_node_breadth_first(rnp)
4578 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4579 local_irq_restore(flags);
4580
4581 // Switch out of early boot mode.
4582 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4583 rcu_test_sync_prims();
4584}
4585
4586/*
4587 * Helper function for rcu_init() that initializes the rcu_state structure.
4588 */
4589static void __init rcu_init_one(void)
4590{
4591 static const char * const buf[] = RCU_NODE_NAME_INIT;
4592 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4593 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4594 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4595
4596 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4597 int cpustride = 1;
4598 int i;
4599 int j;
4600 struct rcu_node *rnp;
4601
4602 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4603
4604 /* Silence gcc 4.8 false positive about array index out of range. */
4605 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4606 panic(fmt: "rcu_init_one: rcu_num_lvls out of range");
4607
4608 /* Initialize the level-tracking arrays. */
4609
4610 for (i = 1; i < rcu_num_lvls; i++)
4611 rcu_state.level[i] =
4612 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4613 rcu_init_levelspread(levelspread, levelcnt: num_rcu_lvl);
4614
4615 /* Initialize the elements themselves, starting from the leaves. */
4616
4617 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4618 cpustride *= levelspread[i];
4619 rnp = rcu_state.level[i];
4620 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4621 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4622 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4623 &rcu_node_class[i], buf[i]);
4624 raw_spin_lock_init(&rnp->fqslock);
4625 lockdep_set_class_and_name(&rnp->fqslock,
4626 &rcu_fqs_class[i], fqs[i]);
4627 rnp->gp_seq = rcu_state.gp_seq;
4628 rnp->gp_seq_needed = rcu_state.gp_seq;
4629 rnp->completedqs = rcu_state.gp_seq;
4630 rnp->qsmask = 0;
4631 rnp->qsmaskinit = 0;
4632 rnp->grplo = j * cpustride;
4633 rnp->grphi = (j + 1) * cpustride - 1;
4634 if (rnp->grphi >= nr_cpu_ids)
4635 rnp->grphi = nr_cpu_ids - 1;
4636 if (i == 0) {
4637 rnp->grpnum = 0;
4638 rnp->grpmask = 0;
4639 rnp->parent = NULL;
4640 } else {
4641 rnp->grpnum = j % levelspread[i - 1];
4642 rnp->grpmask = BIT(rnp->grpnum);
4643 rnp->parent = rcu_state.level[i - 1] +
4644 j / levelspread[i - 1];
4645 }
4646 rnp->level = i;
4647 INIT_LIST_HEAD(list: &rnp->blkd_tasks);
4648 rcu_init_one_nocb(rnp);
4649 init_waitqueue_head(&rnp->exp_wq[0]);
4650 init_waitqueue_head(&rnp->exp_wq[1]);
4651 init_waitqueue_head(&rnp->exp_wq[2]);
4652 init_waitqueue_head(&rnp->exp_wq[3]);
4653 spin_lock_init(&rnp->exp_lock);
4654 mutex_init(&rnp->kthread_mutex);
4655 raw_spin_lock_init(&rnp->exp_poll_lock);
4656 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4657 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4658 }
4659 }
4660
4661 init_swait_queue_head(&rcu_state.gp_wq);
4662 init_swait_queue_head(&rcu_state.expedited_wq);
4663 rnp = rcu_first_leaf_node();
4664 for_each_possible_cpu(i) {
4665 while (i > rnp->grphi)
4666 rnp++;
4667 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4668 per_cpu_ptr(&rcu_data, i)->barrier_head.next =
4669 &per_cpu_ptr(&rcu_data, i)->barrier_head;
4670 rcu_boot_init_percpu_data(cpu: i);
4671 }
4672}
4673
4674/*
4675 * Force priority from the kernel command-line into range.
4676 */
4677static void __init sanitize_kthread_prio(void)
4678{
4679 int kthread_prio_in = kthread_prio;
4680
4681 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4682 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4683 kthread_prio = 2;
4684 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4685 kthread_prio = 1;
4686 else if (kthread_prio < 0)
4687 kthread_prio = 0;
4688 else if (kthread_prio > 99)
4689 kthread_prio = 99;
4690
4691 if (kthread_prio != kthread_prio_in)
4692 pr_alert("%s: Limited prio to %d from %d\n",
4693 __func__, kthread_prio, kthread_prio_in);
4694}
4695
4696/*
4697 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4698 * replace the definitions in tree.h because those are needed to size
4699 * the ->node array in the rcu_state structure.
4700 */
4701void rcu_init_geometry(void)
4702{
4703 ulong d;
4704 int i;
4705 static unsigned long old_nr_cpu_ids;
4706 int rcu_capacity[RCU_NUM_LVLS];
4707 static bool initialized;
4708
4709 if (initialized) {
4710 /*
4711 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4712 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4713 */
4714 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4715 return;
4716 }
4717
4718 old_nr_cpu_ids = nr_cpu_ids;
4719 initialized = true;
4720
4721 /*
4722 * Initialize any unspecified boot parameters.
4723 * The default values of jiffies_till_first_fqs and
4724 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4725 * value, which is a function of HZ, then adding one for each
4726 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4727 */
4728 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4729 if (jiffies_till_first_fqs == ULONG_MAX)
4730 jiffies_till_first_fqs = d;
4731 if (jiffies_till_next_fqs == ULONG_MAX)
4732 jiffies_till_next_fqs = d;
4733 adjust_jiffies_till_sched_qs();
4734
4735 /* If the compile-time values are accurate, just leave. */
4736 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4737 nr_cpu_ids == NR_CPUS)
4738 return;
4739 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4740 rcu_fanout_leaf, nr_cpu_ids);
4741
4742 /*
4743 * The boot-time rcu_fanout_leaf parameter must be at least two
4744 * and cannot exceed the number of bits in the rcu_node masks.
4745 * Complain and fall back to the compile-time values if this
4746 * limit is exceeded.
4747 */
4748 if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
4749 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4750 WARN_ON(1);
4751 return;
4752 }
4753
4754 /*
4755 * Compute number of nodes that can be handled an rcu_node tree
4756 * with the given number of levels.
4757 */
4758 rcu_capacity[0] = rcu_fanout_leaf;
4759 for (i = 1; i < RCU_NUM_LVLS; i++)
4760 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4761
4762 /*
4763 * The tree must be able to accommodate the configured number of CPUs.
4764 * If this limit is exceeded, fall back to the compile-time values.
4765 */
4766 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4767 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4768 WARN_ON(1);
4769 return;
4770 }
4771
4772 /* Calculate the number of levels in the tree. */
4773 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4774 }
4775 rcu_num_lvls = i + 1;
4776
4777 /* Calculate the number of rcu_nodes at each level of the tree. */
4778 for (i = 0; i < rcu_num_lvls; i++) {
4779 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4780 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4781 }
4782
4783 /* Calculate the total number of rcu_node structures. */
4784 rcu_num_nodes = 0;
4785 for (i = 0; i < rcu_num_lvls; i++)
4786 rcu_num_nodes += num_rcu_lvl[i];
4787}
4788
4789/*
4790 * Dump out the structure of the rcu_node combining tree associated
4791 * with the rcu_state structure.
4792 */
4793static void __init rcu_dump_rcu_node_tree(void)
4794{
4795 int level = 0;
4796 struct rcu_node *rnp;
4797
4798 pr_info("rcu_node tree layout dump\n");
4799 pr_info(" ");
4800 rcu_for_each_node_breadth_first(rnp) {
4801 if (rnp->level != level) {
4802 pr_cont("\n");
4803 pr_info(" ");
4804 level = rnp->level;
4805 }
4806 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4807 }
4808 pr_cont("\n");
4809}
4810
4811struct workqueue_struct *rcu_gp_wq;
4812
4813void __init rcu_init(void)
4814{
4815 int cpu = smp_processor_id();
4816
4817 rcu_early_boot_tests();
4818
4819 rcu_bootup_announce();
4820 sanitize_kthread_prio();
4821 rcu_init_geometry();
4822 rcu_init_one();
4823 if (dump_tree)
4824 rcu_dump_rcu_node_tree();
4825 if (use_softirq)
4826 open_softirq(nr: RCU_SOFTIRQ, action: rcu_core_si);
4827
4828 /*
4829 * We don't need protection against CPU-hotplug here because
4830 * this is called early in boot, before either interrupts
4831 * or the scheduler are operational.
4832 */
4833 pm_notifier(rcu_pm_notify, 0);
4834 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4835 rcutree_prepare_cpu(cpu);
4836 rcutree_report_cpu_starting(cpu);
4837 rcutree_online_cpu(cpu);
4838
4839 /* Create workqueue for Tree SRCU and for expedited GPs. */
4840 rcu_gp_wq = alloc_workqueue(fmt: "rcu_gp", flags: WQ_MEM_RECLAIM, max_active: 0);
4841 WARN_ON(!rcu_gp_wq);
4842
4843 sync_wq = alloc_workqueue(fmt: "sync_wq", flags: WQ_MEM_RECLAIM, max_active: 0);
4844 WARN_ON(!sync_wq);
4845
4846 /* Fill in default value for rcutree.qovld boot parameter. */
4847 /* -After- the rcu_node ->lock fields are initialized! */
4848 if (qovld < 0)
4849 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4850 else
4851 qovld_calc = qovld;
4852
4853 // Kick-start in case any polled grace periods started early.
4854 (void)start_poll_synchronize_rcu_expedited();
4855
4856 rcu_test_sync_prims();
4857
4858 tasks_cblist_init_generic();
4859}
4860
4861#include "tree_stall.h"
4862#include "tree_exp.h"
4863#include "tree_nocb.h"
4864#include "tree_plugin.h"
4865

source code of linux/kernel/rcu/tree.c