1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * linux/kernel/signal.c |
4 | * |
5 | * Copyright (C) 1991, 1992 Linus Torvalds |
6 | * |
7 | * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson |
8 | * |
9 | * 2003-06-02 Jim Houston - Concurrent Computer Corp. |
10 | * Changes to use preallocated sigqueue structures |
11 | * to allow signals to be sent reliably. |
12 | */ |
13 | |
14 | #include <linux/slab.h> |
15 | #include <linux/export.h> |
16 | #include <linux/init.h> |
17 | #include <linux/sched/mm.h> |
18 | #include <linux/sched/user.h> |
19 | #include <linux/sched/debug.h> |
20 | #include <linux/sched/task.h> |
21 | #include <linux/sched/task_stack.h> |
22 | #include <linux/sched/cputime.h> |
23 | #include <linux/file.h> |
24 | #include <linux/fs.h> |
25 | #include <linux/mm.h> |
26 | #include <linux/proc_fs.h> |
27 | #include <linux/tty.h> |
28 | #include <linux/binfmts.h> |
29 | #include <linux/coredump.h> |
30 | #include <linux/security.h> |
31 | #include <linux/syscalls.h> |
32 | #include <linux/ptrace.h> |
33 | #include <linux/signal.h> |
34 | #include <linux/signalfd.h> |
35 | #include <linux/ratelimit.h> |
36 | #include <linux/task_work.h> |
37 | #include <linux/capability.h> |
38 | #include <linux/freezer.h> |
39 | #include <linux/pid_namespace.h> |
40 | #include <linux/nsproxy.h> |
41 | #include <linux/user_namespace.h> |
42 | #include <linux/uprobes.h> |
43 | #include <linux/compat.h> |
44 | #include <linux/cn_proc.h> |
45 | #include <linux/compiler.h> |
46 | #include <linux/posix-timers.h> |
47 | #include <linux/cgroup.h> |
48 | #include <linux/audit.h> |
49 | #include <linux/sysctl.h> |
50 | #include <uapi/linux/pidfd.h> |
51 | |
52 | #define CREATE_TRACE_POINTS |
53 | #include <trace/events/signal.h> |
54 | |
55 | #include <asm/param.h> |
56 | #include <linux/uaccess.h> |
57 | #include <asm/unistd.h> |
58 | #include <asm/siginfo.h> |
59 | #include <asm/cacheflush.h> |
60 | #include <asm/syscall.h> /* for syscall_get_* */ |
61 | |
62 | /* |
63 | * SLAB caches for signal bits. |
64 | */ |
65 | |
66 | static struct kmem_cache *sigqueue_cachep; |
67 | |
68 | int print_fatal_signals __read_mostly; |
69 | |
70 | static void __user *sig_handler(struct task_struct *t, int sig) |
71 | { |
72 | return t->sighand->action[sig - 1].sa.sa_handler; |
73 | } |
74 | |
75 | static inline bool sig_handler_ignored(void __user *handler, int sig) |
76 | { |
77 | /* Is it explicitly or implicitly ignored? */ |
78 | return handler == SIG_IGN || |
79 | (handler == SIG_DFL && sig_kernel_ignore(sig)); |
80 | } |
81 | |
82 | static bool sig_task_ignored(struct task_struct *t, int sig, bool force) |
83 | { |
84 | void __user *handler; |
85 | |
86 | handler = sig_handler(t, sig); |
87 | |
88 | /* SIGKILL and SIGSTOP may not be sent to the global init */ |
89 | if (unlikely(is_global_init(t) && sig_kernel_only(sig))) |
90 | return true; |
91 | |
92 | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && |
93 | handler == SIG_DFL && !(force && sig_kernel_only(sig))) |
94 | return true; |
95 | |
96 | /* Only allow kernel generated signals to this kthread */ |
97 | if (unlikely((t->flags & PF_KTHREAD) && |
98 | (handler == SIG_KTHREAD_KERNEL) && !force)) |
99 | return true; |
100 | |
101 | return sig_handler_ignored(handler, sig); |
102 | } |
103 | |
104 | static bool sig_ignored(struct task_struct *t, int sig, bool force) |
105 | { |
106 | /* |
107 | * Blocked signals are never ignored, since the |
108 | * signal handler may change by the time it is |
109 | * unblocked. |
110 | */ |
111 | if (sigismember(set: &t->blocked, sig: sig) || sigismember(set: &t->real_blocked, sig: sig)) |
112 | return false; |
113 | |
114 | /* |
115 | * Tracers may want to know about even ignored signal unless it |
116 | * is SIGKILL which can't be reported anyway but can be ignored |
117 | * by SIGNAL_UNKILLABLE task. |
118 | */ |
119 | if (t->ptrace && sig != SIGKILL) |
120 | return false; |
121 | |
122 | return sig_task_ignored(t, sig, force); |
123 | } |
124 | |
125 | /* |
126 | * Re-calculate pending state from the set of locally pending |
127 | * signals, globally pending signals, and blocked signals. |
128 | */ |
129 | static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) |
130 | { |
131 | unsigned long ready; |
132 | long i; |
133 | |
134 | switch (_NSIG_WORDS) { |
135 | default: |
136 | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) |
137 | ready |= signal->sig[i] &~ blocked->sig[i]; |
138 | break; |
139 | |
140 | case 4: ready = signal->sig[3] &~ blocked->sig[3]; |
141 | ready |= signal->sig[2] &~ blocked->sig[2]; |
142 | ready |= signal->sig[1] &~ blocked->sig[1]; |
143 | ready |= signal->sig[0] &~ blocked->sig[0]; |
144 | break; |
145 | |
146 | case 2: ready = signal->sig[1] &~ blocked->sig[1]; |
147 | ready |= signal->sig[0] &~ blocked->sig[0]; |
148 | break; |
149 | |
150 | case 1: ready = signal->sig[0] &~ blocked->sig[0]; |
151 | } |
152 | return ready != 0; |
153 | } |
154 | |
155 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) |
156 | |
157 | static bool recalc_sigpending_tsk(struct task_struct *t) |
158 | { |
159 | if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || |
160 | PENDING(&t->pending, &t->blocked) || |
161 | PENDING(&t->signal->shared_pending, &t->blocked) || |
162 | cgroup_task_frozen(task: t)) { |
163 | set_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
164 | return true; |
165 | } |
166 | |
167 | /* |
168 | * We must never clear the flag in another thread, or in current |
169 | * when it's possible the current syscall is returning -ERESTART*. |
170 | * So we don't clear it here, and only callers who know they should do. |
171 | */ |
172 | return false; |
173 | } |
174 | |
175 | void recalc_sigpending(void) |
176 | { |
177 | if (!recalc_sigpending_tsk(current) && !freezing(current)) |
178 | clear_thread_flag(TIF_SIGPENDING); |
179 | |
180 | } |
181 | EXPORT_SYMBOL(recalc_sigpending); |
182 | |
183 | void calculate_sigpending(void) |
184 | { |
185 | /* Have any signals or users of TIF_SIGPENDING been delayed |
186 | * until after fork? |
187 | */ |
188 | spin_lock_irq(lock: ¤t->sighand->siglock); |
189 | set_tsk_thread_flag(current, TIF_SIGPENDING); |
190 | recalc_sigpending(); |
191 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
192 | } |
193 | |
194 | /* Given the mask, find the first available signal that should be serviced. */ |
195 | |
196 | #define SYNCHRONOUS_MASK \ |
197 | (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ |
198 | sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) |
199 | |
200 | int next_signal(struct sigpending *pending, sigset_t *mask) |
201 | { |
202 | unsigned long i, *s, *m, x; |
203 | int sig = 0; |
204 | |
205 | s = pending->signal.sig; |
206 | m = mask->sig; |
207 | |
208 | /* |
209 | * Handle the first word specially: it contains the |
210 | * synchronous signals that need to be dequeued first. |
211 | */ |
212 | x = *s &~ *m; |
213 | if (x) { |
214 | if (x & SYNCHRONOUS_MASK) |
215 | x &= SYNCHRONOUS_MASK; |
216 | sig = ffz(~x) + 1; |
217 | return sig; |
218 | } |
219 | |
220 | switch (_NSIG_WORDS) { |
221 | default: |
222 | for (i = 1; i < _NSIG_WORDS; ++i) { |
223 | x = *++s &~ *++m; |
224 | if (!x) |
225 | continue; |
226 | sig = ffz(~x) + i*_NSIG_BPW + 1; |
227 | break; |
228 | } |
229 | break; |
230 | |
231 | case 2: |
232 | x = s[1] &~ m[1]; |
233 | if (!x) |
234 | break; |
235 | sig = ffz(~x) + _NSIG_BPW + 1; |
236 | break; |
237 | |
238 | case 1: |
239 | /* Nothing to do */ |
240 | break; |
241 | } |
242 | |
243 | return sig; |
244 | } |
245 | |
246 | static inline void print_dropped_signal(int sig) |
247 | { |
248 | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); |
249 | |
250 | if (!print_fatal_signals) |
251 | return; |
252 | |
253 | if (!__ratelimit(&ratelimit_state)) |
254 | return; |
255 | |
256 | pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n" , |
257 | current->comm, current->pid, sig); |
258 | } |
259 | |
260 | /** |
261 | * task_set_jobctl_pending - set jobctl pending bits |
262 | * @task: target task |
263 | * @mask: pending bits to set |
264 | * |
265 | * Clear @mask from @task->jobctl. @mask must be subset of |
266 | * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | |
267 | * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is |
268 | * cleared. If @task is already being killed or exiting, this function |
269 | * becomes noop. |
270 | * |
271 | * CONTEXT: |
272 | * Must be called with @task->sighand->siglock held. |
273 | * |
274 | * RETURNS: |
275 | * %true if @mask is set, %false if made noop because @task was dying. |
276 | */ |
277 | bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) |
278 | { |
279 | BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | |
280 | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); |
281 | BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); |
282 | |
283 | if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) |
284 | return false; |
285 | |
286 | if (mask & JOBCTL_STOP_SIGMASK) |
287 | task->jobctl &= ~JOBCTL_STOP_SIGMASK; |
288 | |
289 | task->jobctl |= mask; |
290 | return true; |
291 | } |
292 | |
293 | /** |
294 | * task_clear_jobctl_trapping - clear jobctl trapping bit |
295 | * @task: target task |
296 | * |
297 | * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. |
298 | * Clear it and wake up the ptracer. Note that we don't need any further |
299 | * locking. @task->siglock guarantees that @task->parent points to the |
300 | * ptracer. |
301 | * |
302 | * CONTEXT: |
303 | * Must be called with @task->sighand->siglock held. |
304 | */ |
305 | void task_clear_jobctl_trapping(struct task_struct *task) |
306 | { |
307 | if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { |
308 | task->jobctl &= ~JOBCTL_TRAPPING; |
309 | smp_mb(); /* advised by wake_up_bit() */ |
310 | wake_up_bit(word: &task->jobctl, JOBCTL_TRAPPING_BIT); |
311 | } |
312 | } |
313 | |
314 | /** |
315 | * task_clear_jobctl_pending - clear jobctl pending bits |
316 | * @task: target task |
317 | * @mask: pending bits to clear |
318 | * |
319 | * Clear @mask from @task->jobctl. @mask must be subset of |
320 | * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other |
321 | * STOP bits are cleared together. |
322 | * |
323 | * If clearing of @mask leaves no stop or trap pending, this function calls |
324 | * task_clear_jobctl_trapping(). |
325 | * |
326 | * CONTEXT: |
327 | * Must be called with @task->sighand->siglock held. |
328 | */ |
329 | void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) |
330 | { |
331 | BUG_ON(mask & ~JOBCTL_PENDING_MASK); |
332 | |
333 | if (mask & JOBCTL_STOP_PENDING) |
334 | mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; |
335 | |
336 | task->jobctl &= ~mask; |
337 | |
338 | if (!(task->jobctl & JOBCTL_PENDING_MASK)) |
339 | task_clear_jobctl_trapping(task); |
340 | } |
341 | |
342 | /** |
343 | * task_participate_group_stop - participate in a group stop |
344 | * @task: task participating in a group stop |
345 | * |
346 | * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. |
347 | * Group stop states are cleared and the group stop count is consumed if |
348 | * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group |
349 | * stop, the appropriate `SIGNAL_*` flags are set. |
350 | * |
351 | * CONTEXT: |
352 | * Must be called with @task->sighand->siglock held. |
353 | * |
354 | * RETURNS: |
355 | * %true if group stop completion should be notified to the parent, %false |
356 | * otherwise. |
357 | */ |
358 | static bool task_participate_group_stop(struct task_struct *task) |
359 | { |
360 | struct signal_struct *sig = task->signal; |
361 | bool consume = task->jobctl & JOBCTL_STOP_CONSUME; |
362 | |
363 | WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); |
364 | |
365 | task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); |
366 | |
367 | if (!consume) |
368 | return false; |
369 | |
370 | if (!WARN_ON_ONCE(sig->group_stop_count == 0)) |
371 | sig->group_stop_count--; |
372 | |
373 | /* |
374 | * Tell the caller to notify completion iff we are entering into a |
375 | * fresh group stop. Read comment in do_signal_stop() for details. |
376 | */ |
377 | if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { |
378 | signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); |
379 | return true; |
380 | } |
381 | return false; |
382 | } |
383 | |
384 | void task_join_group_stop(struct task_struct *task) |
385 | { |
386 | unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; |
387 | struct signal_struct *sig = current->signal; |
388 | |
389 | if (sig->group_stop_count) { |
390 | sig->group_stop_count++; |
391 | mask |= JOBCTL_STOP_CONSUME; |
392 | } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) |
393 | return; |
394 | |
395 | /* Have the new thread join an on-going signal group stop */ |
396 | task_set_jobctl_pending(task, mask: mask | JOBCTL_STOP_PENDING); |
397 | } |
398 | |
399 | /* |
400 | * allocate a new signal queue record |
401 | * - this may be called without locks if and only if t == current, otherwise an |
402 | * appropriate lock must be held to stop the target task from exiting |
403 | */ |
404 | static struct sigqueue * |
405 | __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, |
406 | int override_rlimit, const unsigned int sigqueue_flags) |
407 | { |
408 | struct sigqueue *q = NULL; |
409 | struct ucounts *ucounts; |
410 | long sigpending; |
411 | |
412 | /* |
413 | * Protect access to @t credentials. This can go away when all |
414 | * callers hold rcu read lock. |
415 | * |
416 | * NOTE! A pending signal will hold on to the user refcount, |
417 | * and we get/put the refcount only when the sigpending count |
418 | * changes from/to zero. |
419 | */ |
420 | rcu_read_lock(); |
421 | ucounts = task_ucounts(t); |
422 | sigpending = inc_rlimit_get_ucounts(ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
423 | rcu_read_unlock(); |
424 | if (!sigpending) |
425 | return NULL; |
426 | |
427 | if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { |
428 | q = kmem_cache_alloc(cachep: sigqueue_cachep, flags: gfp_flags); |
429 | } else { |
430 | print_dropped_signal(sig); |
431 | } |
432 | |
433 | if (unlikely(q == NULL)) { |
434 | dec_rlimit_put_ucounts(ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
435 | } else { |
436 | INIT_LIST_HEAD(list: &q->list); |
437 | q->flags = sigqueue_flags; |
438 | q->ucounts = ucounts; |
439 | } |
440 | return q; |
441 | } |
442 | |
443 | static void __sigqueue_free(struct sigqueue *q) |
444 | { |
445 | if (q->flags & SIGQUEUE_PREALLOC) |
446 | return; |
447 | if (q->ucounts) { |
448 | dec_rlimit_put_ucounts(ucounts: q->ucounts, type: UCOUNT_RLIMIT_SIGPENDING); |
449 | q->ucounts = NULL; |
450 | } |
451 | kmem_cache_free(s: sigqueue_cachep, objp: q); |
452 | } |
453 | |
454 | void flush_sigqueue(struct sigpending *queue) |
455 | { |
456 | struct sigqueue *q; |
457 | |
458 | sigemptyset(set: &queue->signal); |
459 | while (!list_empty(head: &queue->list)) { |
460 | q = list_entry(queue->list.next, struct sigqueue , list); |
461 | list_del_init(entry: &q->list); |
462 | __sigqueue_free(q); |
463 | } |
464 | } |
465 | |
466 | /* |
467 | * Flush all pending signals for this kthread. |
468 | */ |
469 | void flush_signals(struct task_struct *t) |
470 | { |
471 | unsigned long flags; |
472 | |
473 | spin_lock_irqsave(&t->sighand->siglock, flags); |
474 | clear_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
475 | flush_sigqueue(queue: &t->pending); |
476 | flush_sigqueue(queue: &t->signal->shared_pending); |
477 | spin_unlock_irqrestore(lock: &t->sighand->siglock, flags); |
478 | } |
479 | EXPORT_SYMBOL(flush_signals); |
480 | |
481 | #ifdef CONFIG_POSIX_TIMERS |
482 | static void __flush_itimer_signals(struct sigpending *pending) |
483 | { |
484 | sigset_t signal, retain; |
485 | struct sigqueue *q, *n; |
486 | |
487 | signal = pending->signal; |
488 | sigemptyset(set: &retain); |
489 | |
490 | list_for_each_entry_safe(q, n, &pending->list, list) { |
491 | int sig = q->info.si_signo; |
492 | |
493 | if (likely(q->info.si_code != SI_TIMER)) { |
494 | sigaddset(set: &retain, sig: sig); |
495 | } else { |
496 | sigdelset(set: &signal, sig: sig); |
497 | list_del_init(entry: &q->list); |
498 | __sigqueue_free(q); |
499 | } |
500 | } |
501 | |
502 | sigorsets(r: &pending->signal, a: &signal, b: &retain); |
503 | } |
504 | |
505 | void flush_itimer_signals(void) |
506 | { |
507 | struct task_struct *tsk = current; |
508 | unsigned long flags; |
509 | |
510 | spin_lock_irqsave(&tsk->sighand->siglock, flags); |
511 | __flush_itimer_signals(pending: &tsk->pending); |
512 | __flush_itimer_signals(pending: &tsk->signal->shared_pending); |
513 | spin_unlock_irqrestore(lock: &tsk->sighand->siglock, flags); |
514 | } |
515 | #endif |
516 | |
517 | void ignore_signals(struct task_struct *t) |
518 | { |
519 | int i; |
520 | |
521 | for (i = 0; i < _NSIG; ++i) |
522 | t->sighand->action[i].sa.sa_handler = SIG_IGN; |
523 | |
524 | flush_signals(t); |
525 | } |
526 | |
527 | /* |
528 | * Flush all handlers for a task. |
529 | */ |
530 | |
531 | void |
532 | flush_signal_handlers(struct task_struct *t, int force_default) |
533 | { |
534 | int i; |
535 | struct k_sigaction *ka = &t->sighand->action[0]; |
536 | for (i = _NSIG ; i != 0 ; i--) { |
537 | if (force_default || ka->sa.sa_handler != SIG_IGN) |
538 | ka->sa.sa_handler = SIG_DFL; |
539 | ka->sa.sa_flags = 0; |
540 | #ifdef __ARCH_HAS_SA_RESTORER |
541 | ka->sa.sa_restorer = NULL; |
542 | #endif |
543 | sigemptyset(set: &ka->sa.sa_mask); |
544 | ka++; |
545 | } |
546 | } |
547 | |
548 | bool unhandled_signal(struct task_struct *tsk, int sig) |
549 | { |
550 | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; |
551 | if (is_global_init(tsk)) |
552 | return true; |
553 | |
554 | if (handler != SIG_IGN && handler != SIG_DFL) |
555 | return false; |
556 | |
557 | /* If dying, we handle all new signals by ignoring them */ |
558 | if (fatal_signal_pending(p: tsk)) |
559 | return false; |
560 | |
561 | /* if ptraced, let the tracer determine */ |
562 | return !tsk->ptrace; |
563 | } |
564 | |
565 | static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, |
566 | bool *resched_timer) |
567 | { |
568 | struct sigqueue *q, *first = NULL; |
569 | |
570 | /* |
571 | * Collect the siginfo appropriate to this signal. Check if |
572 | * there is another siginfo for the same signal. |
573 | */ |
574 | list_for_each_entry(q, &list->list, list) { |
575 | if (q->info.si_signo == sig) { |
576 | if (first) |
577 | goto still_pending; |
578 | first = q; |
579 | } |
580 | } |
581 | |
582 | sigdelset(set: &list->signal, sig: sig); |
583 | |
584 | if (first) { |
585 | still_pending: |
586 | list_del_init(entry: &first->list); |
587 | copy_siginfo(to: info, from: &first->info); |
588 | |
589 | *resched_timer = |
590 | (first->flags & SIGQUEUE_PREALLOC) && |
591 | (info->si_code == SI_TIMER) && |
592 | (info->si_sys_private); |
593 | |
594 | __sigqueue_free(q: first); |
595 | } else { |
596 | /* |
597 | * Ok, it wasn't in the queue. This must be |
598 | * a fast-pathed signal or we must have been |
599 | * out of queue space. So zero out the info. |
600 | */ |
601 | clear_siginfo(info); |
602 | info->si_signo = sig; |
603 | info->si_errno = 0; |
604 | info->si_code = SI_USER; |
605 | info->si_pid = 0; |
606 | info->si_uid = 0; |
607 | } |
608 | } |
609 | |
610 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, |
611 | kernel_siginfo_t *info, bool *resched_timer) |
612 | { |
613 | int sig = next_signal(pending, mask); |
614 | |
615 | if (sig) |
616 | collect_signal(sig, list: pending, info, resched_timer); |
617 | return sig; |
618 | } |
619 | |
620 | /* |
621 | * Dequeue a signal and return the element to the caller, which is |
622 | * expected to free it. |
623 | * |
624 | * All callers have to hold the siglock. |
625 | */ |
626 | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, |
627 | kernel_siginfo_t *info, enum pid_type *type) |
628 | { |
629 | bool resched_timer = false; |
630 | int signr; |
631 | |
632 | /* We only dequeue private signals from ourselves, we don't let |
633 | * signalfd steal them |
634 | */ |
635 | *type = PIDTYPE_PID; |
636 | signr = __dequeue_signal(pending: &tsk->pending, mask, info, resched_timer: &resched_timer); |
637 | if (!signr) { |
638 | *type = PIDTYPE_TGID; |
639 | signr = __dequeue_signal(pending: &tsk->signal->shared_pending, |
640 | mask, info, resched_timer: &resched_timer); |
641 | #ifdef CONFIG_POSIX_TIMERS |
642 | /* |
643 | * itimer signal ? |
644 | * |
645 | * itimers are process shared and we restart periodic |
646 | * itimers in the signal delivery path to prevent DoS |
647 | * attacks in the high resolution timer case. This is |
648 | * compliant with the old way of self-restarting |
649 | * itimers, as the SIGALRM is a legacy signal and only |
650 | * queued once. Changing the restart behaviour to |
651 | * restart the timer in the signal dequeue path is |
652 | * reducing the timer noise on heavy loaded !highres |
653 | * systems too. |
654 | */ |
655 | if (unlikely(signr == SIGALRM)) { |
656 | struct hrtimer *tmr = &tsk->signal->real_timer; |
657 | |
658 | if (!hrtimer_is_queued(timer: tmr) && |
659 | tsk->signal->it_real_incr != 0) { |
660 | hrtimer_forward(timer: tmr, now: tmr->base->get_time(), |
661 | interval: tsk->signal->it_real_incr); |
662 | hrtimer_restart(timer: tmr); |
663 | } |
664 | } |
665 | #endif |
666 | } |
667 | |
668 | recalc_sigpending(); |
669 | if (!signr) |
670 | return 0; |
671 | |
672 | if (unlikely(sig_kernel_stop(signr))) { |
673 | /* |
674 | * Set a marker that we have dequeued a stop signal. Our |
675 | * caller might release the siglock and then the pending |
676 | * stop signal it is about to process is no longer in the |
677 | * pending bitmasks, but must still be cleared by a SIGCONT |
678 | * (and overruled by a SIGKILL). So those cases clear this |
679 | * shared flag after we've set it. Note that this flag may |
680 | * remain set after the signal we return is ignored or |
681 | * handled. That doesn't matter because its only purpose |
682 | * is to alert stop-signal processing code when another |
683 | * processor has come along and cleared the flag. |
684 | */ |
685 | current->jobctl |= JOBCTL_STOP_DEQUEUED; |
686 | } |
687 | #ifdef CONFIG_POSIX_TIMERS |
688 | if (resched_timer) { |
689 | /* |
690 | * Release the siglock to ensure proper locking order |
691 | * of timer locks outside of siglocks. Note, we leave |
692 | * irqs disabled here, since the posix-timers code is |
693 | * about to disable them again anyway. |
694 | */ |
695 | spin_unlock(lock: &tsk->sighand->siglock); |
696 | posixtimer_rearm(info); |
697 | spin_lock(lock: &tsk->sighand->siglock); |
698 | |
699 | /* Don't expose the si_sys_private value to userspace */ |
700 | info->si_sys_private = 0; |
701 | } |
702 | #endif |
703 | return signr; |
704 | } |
705 | EXPORT_SYMBOL_GPL(dequeue_signal); |
706 | |
707 | static int dequeue_synchronous_signal(kernel_siginfo_t *info) |
708 | { |
709 | struct task_struct *tsk = current; |
710 | struct sigpending *pending = &tsk->pending; |
711 | struct sigqueue *q, *sync = NULL; |
712 | |
713 | /* |
714 | * Might a synchronous signal be in the queue? |
715 | */ |
716 | if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) |
717 | return 0; |
718 | |
719 | /* |
720 | * Return the first synchronous signal in the queue. |
721 | */ |
722 | list_for_each_entry(q, &pending->list, list) { |
723 | /* Synchronous signals have a positive si_code */ |
724 | if ((q->info.si_code > SI_USER) && |
725 | (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { |
726 | sync = q; |
727 | goto next; |
728 | } |
729 | } |
730 | return 0; |
731 | next: |
732 | /* |
733 | * Check if there is another siginfo for the same signal. |
734 | */ |
735 | list_for_each_entry_continue(q, &pending->list, list) { |
736 | if (q->info.si_signo == sync->info.si_signo) |
737 | goto still_pending; |
738 | } |
739 | |
740 | sigdelset(set: &pending->signal, sig: sync->info.si_signo); |
741 | recalc_sigpending(); |
742 | still_pending: |
743 | list_del_init(entry: &sync->list); |
744 | copy_siginfo(to: info, from: &sync->info); |
745 | __sigqueue_free(q: sync); |
746 | return info->si_signo; |
747 | } |
748 | |
749 | /* |
750 | * Tell a process that it has a new active signal.. |
751 | * |
752 | * NOTE! we rely on the previous spin_lock to |
753 | * lock interrupts for us! We can only be called with |
754 | * "siglock" held, and the local interrupt must |
755 | * have been disabled when that got acquired! |
756 | * |
757 | * No need to set need_resched since signal event passing |
758 | * goes through ->blocked |
759 | */ |
760 | void signal_wake_up_state(struct task_struct *t, unsigned int state) |
761 | { |
762 | lockdep_assert_held(&t->sighand->siglock); |
763 | |
764 | set_tsk_thread_flag(tsk: t, TIF_SIGPENDING); |
765 | |
766 | /* |
767 | * TASK_WAKEKILL also means wake it up in the stopped/traced/killable |
768 | * case. We don't check t->state here because there is a race with it |
769 | * executing another processor and just now entering stopped state. |
770 | * By using wake_up_state, we ensure the process will wake up and |
771 | * handle its death signal. |
772 | */ |
773 | if (!wake_up_state(tsk: t, state: state | TASK_INTERRUPTIBLE)) |
774 | kick_process(tsk: t); |
775 | } |
776 | |
777 | /* |
778 | * Remove signals in mask from the pending set and queue. |
779 | * Returns 1 if any signals were found. |
780 | * |
781 | * All callers must be holding the siglock. |
782 | */ |
783 | static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) |
784 | { |
785 | struct sigqueue *q, *n; |
786 | sigset_t m; |
787 | |
788 | sigandsets(r: &m, a: mask, b: &s->signal); |
789 | if (sigisemptyset(set: &m)) |
790 | return; |
791 | |
792 | sigandnsets(r: &s->signal, a: &s->signal, b: mask); |
793 | list_for_each_entry_safe(q, n, &s->list, list) { |
794 | if (sigismember(set: mask, sig: q->info.si_signo)) { |
795 | list_del_init(entry: &q->list); |
796 | __sigqueue_free(q); |
797 | } |
798 | } |
799 | } |
800 | |
801 | static inline int is_si_special(const struct kernel_siginfo *info) |
802 | { |
803 | return info <= SEND_SIG_PRIV; |
804 | } |
805 | |
806 | static inline bool si_fromuser(const struct kernel_siginfo *info) |
807 | { |
808 | return info == SEND_SIG_NOINFO || |
809 | (!is_si_special(info) && SI_FROMUSER(info)); |
810 | } |
811 | |
812 | /* |
813 | * called with RCU read lock from check_kill_permission() |
814 | */ |
815 | static bool kill_ok_by_cred(struct task_struct *t) |
816 | { |
817 | const struct cred *cred = current_cred(); |
818 | const struct cred *tcred = __task_cred(t); |
819 | |
820 | return uid_eq(left: cred->euid, right: tcred->suid) || |
821 | uid_eq(left: cred->euid, right: tcred->uid) || |
822 | uid_eq(left: cred->uid, right: tcred->suid) || |
823 | uid_eq(left: cred->uid, right: tcred->uid) || |
824 | ns_capable(ns: tcred->user_ns, CAP_KILL); |
825 | } |
826 | |
827 | /* |
828 | * Bad permissions for sending the signal |
829 | * - the caller must hold the RCU read lock |
830 | */ |
831 | static int check_kill_permission(int sig, struct kernel_siginfo *info, |
832 | struct task_struct *t) |
833 | { |
834 | struct pid *sid; |
835 | int error; |
836 | |
837 | if (!valid_signal(sig)) |
838 | return -EINVAL; |
839 | |
840 | if (!si_fromuser(info)) |
841 | return 0; |
842 | |
843 | error = audit_signal_info(sig, t); /* Let audit system see the signal */ |
844 | if (error) |
845 | return error; |
846 | |
847 | if (!same_thread_group(current, p2: t) && |
848 | !kill_ok_by_cred(t)) { |
849 | switch (sig) { |
850 | case SIGCONT: |
851 | sid = task_session(task: t); |
852 | /* |
853 | * We don't return the error if sid == NULL. The |
854 | * task was unhashed, the caller must notice this. |
855 | */ |
856 | if (!sid || sid == task_session(current)) |
857 | break; |
858 | fallthrough; |
859 | default: |
860 | return -EPERM; |
861 | } |
862 | } |
863 | |
864 | return security_task_kill(p: t, info, sig, NULL); |
865 | } |
866 | |
867 | /** |
868 | * ptrace_trap_notify - schedule trap to notify ptracer |
869 | * @t: tracee wanting to notify tracer |
870 | * |
871 | * This function schedules sticky ptrace trap which is cleared on the next |
872 | * TRAP_STOP to notify ptracer of an event. @t must have been seized by |
873 | * ptracer. |
874 | * |
875 | * If @t is running, STOP trap will be taken. If trapped for STOP and |
876 | * ptracer is listening for events, tracee is woken up so that it can |
877 | * re-trap for the new event. If trapped otherwise, STOP trap will be |
878 | * eventually taken without returning to userland after the existing traps |
879 | * are finished by PTRACE_CONT. |
880 | * |
881 | * CONTEXT: |
882 | * Must be called with @task->sighand->siglock held. |
883 | */ |
884 | static void ptrace_trap_notify(struct task_struct *t) |
885 | { |
886 | WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); |
887 | lockdep_assert_held(&t->sighand->siglock); |
888 | |
889 | task_set_jobctl_pending(task: t, JOBCTL_TRAP_NOTIFY); |
890 | ptrace_signal_wake_up(t, resume: t->jobctl & JOBCTL_LISTENING); |
891 | } |
892 | |
893 | /* |
894 | * Handle magic process-wide effects of stop/continue signals. Unlike |
895 | * the signal actions, these happen immediately at signal-generation |
896 | * time regardless of blocking, ignoring, or handling. This does the |
897 | * actual continuing for SIGCONT, but not the actual stopping for stop |
898 | * signals. The process stop is done as a signal action for SIG_DFL. |
899 | * |
900 | * Returns true if the signal should be actually delivered, otherwise |
901 | * it should be dropped. |
902 | */ |
903 | static bool prepare_signal(int sig, struct task_struct *p, bool force) |
904 | { |
905 | struct signal_struct *signal = p->signal; |
906 | struct task_struct *t; |
907 | sigset_t flush; |
908 | |
909 | if (signal->flags & SIGNAL_GROUP_EXIT) { |
910 | if (signal->core_state) |
911 | return sig == SIGKILL; |
912 | /* |
913 | * The process is in the middle of dying, drop the signal. |
914 | */ |
915 | return false; |
916 | } else if (sig_kernel_stop(sig)) { |
917 | /* |
918 | * This is a stop signal. Remove SIGCONT from all queues. |
919 | */ |
920 | siginitset(set: &flush, sigmask(SIGCONT)); |
921 | flush_sigqueue_mask(mask: &flush, s: &signal->shared_pending); |
922 | for_each_thread(p, t) |
923 | flush_sigqueue_mask(mask: &flush, s: &t->pending); |
924 | } else if (sig == SIGCONT) { |
925 | unsigned int why; |
926 | /* |
927 | * Remove all stop signals from all queues, wake all threads. |
928 | */ |
929 | siginitset(set: &flush, SIG_KERNEL_STOP_MASK); |
930 | flush_sigqueue_mask(mask: &flush, s: &signal->shared_pending); |
931 | for_each_thread(p, t) { |
932 | flush_sigqueue_mask(mask: &flush, s: &t->pending); |
933 | task_clear_jobctl_pending(task: t, JOBCTL_STOP_PENDING); |
934 | if (likely(!(t->ptrace & PT_SEIZED))) { |
935 | t->jobctl &= ~JOBCTL_STOPPED; |
936 | wake_up_state(tsk: t, __TASK_STOPPED); |
937 | } else |
938 | ptrace_trap_notify(t); |
939 | } |
940 | |
941 | /* |
942 | * Notify the parent with CLD_CONTINUED if we were stopped. |
943 | * |
944 | * If we were in the middle of a group stop, we pretend it |
945 | * was already finished, and then continued. Since SIGCHLD |
946 | * doesn't queue we report only CLD_STOPPED, as if the next |
947 | * CLD_CONTINUED was dropped. |
948 | */ |
949 | why = 0; |
950 | if (signal->flags & SIGNAL_STOP_STOPPED) |
951 | why |= SIGNAL_CLD_CONTINUED; |
952 | else if (signal->group_stop_count) |
953 | why |= SIGNAL_CLD_STOPPED; |
954 | |
955 | if (why) { |
956 | /* |
957 | * The first thread which returns from do_signal_stop() |
958 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
959 | * notify its parent. See get_signal(). |
960 | */ |
961 | signal_set_stop_flags(sig: signal, flags: why | SIGNAL_STOP_CONTINUED); |
962 | signal->group_stop_count = 0; |
963 | signal->group_exit_code = 0; |
964 | } |
965 | } |
966 | |
967 | return !sig_ignored(t: p, sig, force); |
968 | } |
969 | |
970 | /* |
971 | * Test if P wants to take SIG. After we've checked all threads with this, |
972 | * it's equivalent to finding no threads not blocking SIG. Any threads not |
973 | * blocking SIG were ruled out because they are not running and already |
974 | * have pending signals. Such threads will dequeue from the shared queue |
975 | * as soon as they're available, so putting the signal on the shared queue |
976 | * will be equivalent to sending it to one such thread. |
977 | */ |
978 | static inline bool wants_signal(int sig, struct task_struct *p) |
979 | { |
980 | if (sigismember(set: &p->blocked, sig: sig)) |
981 | return false; |
982 | |
983 | if (p->flags & PF_EXITING) |
984 | return false; |
985 | |
986 | if (sig == SIGKILL) |
987 | return true; |
988 | |
989 | if (task_is_stopped_or_traced(p)) |
990 | return false; |
991 | |
992 | return task_curr(p) || !task_sigpending(p); |
993 | } |
994 | |
995 | static void complete_signal(int sig, struct task_struct *p, enum pid_type type) |
996 | { |
997 | struct signal_struct *signal = p->signal; |
998 | struct task_struct *t; |
999 | |
1000 | /* |
1001 | * Now find a thread we can wake up to take the signal off the queue. |
1002 | * |
1003 | * Try the suggested task first (may or may not be the main thread). |
1004 | */ |
1005 | if (wants_signal(sig, p)) |
1006 | t = p; |
1007 | else if ((type == PIDTYPE_PID) || thread_group_empty(p)) |
1008 | /* |
1009 | * There is just one thread and it does not need to be woken. |
1010 | * It will dequeue unblocked signals before it runs again. |
1011 | */ |
1012 | return; |
1013 | else { |
1014 | /* |
1015 | * Otherwise try to find a suitable thread. |
1016 | */ |
1017 | t = signal->curr_target; |
1018 | while (!wants_signal(sig, p: t)) { |
1019 | t = next_thread(p: t); |
1020 | if (t == signal->curr_target) |
1021 | /* |
1022 | * No thread needs to be woken. |
1023 | * Any eligible threads will see |
1024 | * the signal in the queue soon. |
1025 | */ |
1026 | return; |
1027 | } |
1028 | signal->curr_target = t; |
1029 | } |
1030 | |
1031 | /* |
1032 | * Found a killable thread. If the signal will be fatal, |
1033 | * then start taking the whole group down immediately. |
1034 | */ |
1035 | if (sig_fatal(p, sig) && |
1036 | (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && |
1037 | !sigismember(set: &t->real_blocked, sig: sig) && |
1038 | (sig == SIGKILL || !p->ptrace)) { |
1039 | /* |
1040 | * This signal will be fatal to the whole group. |
1041 | */ |
1042 | if (!sig_kernel_coredump(sig)) { |
1043 | /* |
1044 | * Start a group exit and wake everybody up. |
1045 | * This way we don't have other threads |
1046 | * running and doing things after a slower |
1047 | * thread has the fatal signal pending. |
1048 | */ |
1049 | signal->flags = SIGNAL_GROUP_EXIT; |
1050 | signal->group_exit_code = sig; |
1051 | signal->group_stop_count = 0; |
1052 | __for_each_thread(signal, t) { |
1053 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
1054 | sigaddset(set: &t->pending.signal, SIGKILL); |
1055 | signal_wake_up(t, fatal: 1); |
1056 | } |
1057 | return; |
1058 | } |
1059 | } |
1060 | |
1061 | /* |
1062 | * The signal is already in the shared-pending queue. |
1063 | * Tell the chosen thread to wake up and dequeue it. |
1064 | */ |
1065 | signal_wake_up(t, fatal: sig == SIGKILL); |
1066 | return; |
1067 | } |
1068 | |
1069 | static inline bool legacy_queue(struct sigpending *signals, int sig) |
1070 | { |
1071 | return (sig < SIGRTMIN) && sigismember(set: &signals->signal, sig: sig); |
1072 | } |
1073 | |
1074 | static int __send_signal_locked(int sig, struct kernel_siginfo *info, |
1075 | struct task_struct *t, enum pid_type type, bool force) |
1076 | { |
1077 | struct sigpending *pending; |
1078 | struct sigqueue *q; |
1079 | int override_rlimit; |
1080 | int ret = 0, result; |
1081 | |
1082 | lockdep_assert_held(&t->sighand->siglock); |
1083 | |
1084 | result = TRACE_SIGNAL_IGNORED; |
1085 | if (!prepare_signal(sig, p: t, force)) |
1086 | goto ret; |
1087 | |
1088 | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; |
1089 | /* |
1090 | * Short-circuit ignored signals and support queuing |
1091 | * exactly one non-rt signal, so that we can get more |
1092 | * detailed information about the cause of the signal. |
1093 | */ |
1094 | result = TRACE_SIGNAL_ALREADY_PENDING; |
1095 | if (legacy_queue(signals: pending, sig)) |
1096 | goto ret; |
1097 | |
1098 | result = TRACE_SIGNAL_DELIVERED; |
1099 | /* |
1100 | * Skip useless siginfo allocation for SIGKILL and kernel threads. |
1101 | */ |
1102 | if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) |
1103 | goto out_set; |
1104 | |
1105 | /* |
1106 | * Real-time signals must be queued if sent by sigqueue, or |
1107 | * some other real-time mechanism. It is implementation |
1108 | * defined whether kill() does so. We attempt to do so, on |
1109 | * the principle of least surprise, but since kill is not |
1110 | * allowed to fail with EAGAIN when low on memory we just |
1111 | * make sure at least one signal gets delivered and don't |
1112 | * pass on the info struct. |
1113 | */ |
1114 | if (sig < SIGRTMIN) |
1115 | override_rlimit = (is_si_special(info) || info->si_code >= 0); |
1116 | else |
1117 | override_rlimit = 0; |
1118 | |
1119 | q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, sigqueue_flags: 0); |
1120 | |
1121 | if (q) { |
1122 | list_add_tail(new: &q->list, head: &pending->list); |
1123 | switch ((unsigned long) info) { |
1124 | case (unsigned long) SEND_SIG_NOINFO: |
1125 | clear_siginfo(info: &q->info); |
1126 | q->info.si_signo = sig; |
1127 | q->info.si_errno = 0; |
1128 | q->info.si_code = SI_USER; |
1129 | q->info.si_pid = task_tgid_nr_ns(current, |
1130 | ns: task_active_pid_ns(tsk: t)); |
1131 | rcu_read_lock(); |
1132 | q->info.si_uid = |
1133 | from_kuid_munged(task_cred_xxx(t, user_ns), |
1134 | current_uid()); |
1135 | rcu_read_unlock(); |
1136 | break; |
1137 | case (unsigned long) SEND_SIG_PRIV: |
1138 | clear_siginfo(info: &q->info); |
1139 | q->info.si_signo = sig; |
1140 | q->info.si_errno = 0; |
1141 | q->info.si_code = SI_KERNEL; |
1142 | q->info.si_pid = 0; |
1143 | q->info.si_uid = 0; |
1144 | break; |
1145 | default: |
1146 | copy_siginfo(to: &q->info, from: info); |
1147 | break; |
1148 | } |
1149 | } else if (!is_si_special(info) && |
1150 | sig >= SIGRTMIN && info->si_code != SI_USER) { |
1151 | /* |
1152 | * Queue overflow, abort. We may abort if the |
1153 | * signal was rt and sent by user using something |
1154 | * other than kill(). |
1155 | */ |
1156 | result = TRACE_SIGNAL_OVERFLOW_FAIL; |
1157 | ret = -EAGAIN; |
1158 | goto ret; |
1159 | } else { |
1160 | /* |
1161 | * This is a silent loss of information. We still |
1162 | * send the signal, but the *info bits are lost. |
1163 | */ |
1164 | result = TRACE_SIGNAL_LOSE_INFO; |
1165 | } |
1166 | |
1167 | out_set: |
1168 | signalfd_notify(tsk: t, sig); |
1169 | sigaddset(set: &pending->signal, sig: sig); |
1170 | |
1171 | /* Let multiprocess signals appear after on-going forks */ |
1172 | if (type > PIDTYPE_TGID) { |
1173 | struct multiprocess_signals *delayed; |
1174 | hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { |
1175 | sigset_t *signal = &delayed->signal; |
1176 | /* Can't queue both a stop and a continue signal */ |
1177 | if (sig == SIGCONT) |
1178 | sigdelsetmask(set: signal, SIG_KERNEL_STOP_MASK); |
1179 | else if (sig_kernel_stop(sig)) |
1180 | sigdelset(set: signal, SIGCONT); |
1181 | sigaddset(set: signal, sig: sig); |
1182 | } |
1183 | } |
1184 | |
1185 | complete_signal(sig, p: t, type); |
1186 | ret: |
1187 | trace_signal_generate(sig, info, task: t, group: type != PIDTYPE_PID, result); |
1188 | return ret; |
1189 | } |
1190 | |
1191 | static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) |
1192 | { |
1193 | bool ret = false; |
1194 | switch (siginfo_layout(sig: info->si_signo, si_code: info->si_code)) { |
1195 | case SIL_KILL: |
1196 | case SIL_CHLD: |
1197 | case SIL_RT: |
1198 | ret = true; |
1199 | break; |
1200 | case SIL_TIMER: |
1201 | case SIL_POLL: |
1202 | case SIL_FAULT: |
1203 | case SIL_FAULT_TRAPNO: |
1204 | case SIL_FAULT_MCEERR: |
1205 | case SIL_FAULT_BNDERR: |
1206 | case SIL_FAULT_PKUERR: |
1207 | case SIL_FAULT_PERF_EVENT: |
1208 | case SIL_SYS: |
1209 | ret = false; |
1210 | break; |
1211 | } |
1212 | return ret; |
1213 | } |
1214 | |
1215 | int send_signal_locked(int sig, struct kernel_siginfo *info, |
1216 | struct task_struct *t, enum pid_type type) |
1217 | { |
1218 | /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ |
1219 | bool force = false; |
1220 | |
1221 | if (info == SEND_SIG_NOINFO) { |
1222 | /* Force if sent from an ancestor pid namespace */ |
1223 | force = !task_pid_nr_ns(current, ns: task_active_pid_ns(tsk: t)); |
1224 | } else if (info == SEND_SIG_PRIV) { |
1225 | /* Don't ignore kernel generated signals */ |
1226 | force = true; |
1227 | } else if (has_si_pid_and_uid(info)) { |
1228 | /* SIGKILL and SIGSTOP is special or has ids */ |
1229 | struct user_namespace *t_user_ns; |
1230 | |
1231 | rcu_read_lock(); |
1232 | t_user_ns = task_cred_xxx(t, user_ns); |
1233 | if (current_user_ns() != t_user_ns) { |
1234 | kuid_t uid = make_kuid(current_user_ns(), uid: info->si_uid); |
1235 | info->si_uid = from_kuid_munged(to: t_user_ns, uid); |
1236 | } |
1237 | rcu_read_unlock(); |
1238 | |
1239 | /* A kernel generated signal? */ |
1240 | force = (info->si_code == SI_KERNEL); |
1241 | |
1242 | /* From an ancestor pid namespace? */ |
1243 | if (!task_pid_nr_ns(current, ns: task_active_pid_ns(tsk: t))) { |
1244 | info->si_pid = 0; |
1245 | force = true; |
1246 | } |
1247 | } |
1248 | return __send_signal_locked(sig, info, t, type, force); |
1249 | } |
1250 | |
1251 | static void print_fatal_signal(int signr) |
1252 | { |
1253 | struct pt_regs *regs = task_pt_regs(current); |
1254 | struct file *exe_file; |
1255 | |
1256 | exe_file = get_task_exe_file(current); |
1257 | if (exe_file) { |
1258 | pr_info("%pD: %s: potentially unexpected fatal signal %d.\n" , |
1259 | exe_file, current->comm, signr); |
1260 | fput(exe_file); |
1261 | } else { |
1262 | pr_info("%s: potentially unexpected fatal signal %d.\n" , |
1263 | current->comm, signr); |
1264 | } |
1265 | |
1266 | #if defined(__i386__) && !defined(__arch_um__) |
1267 | pr_info("code at %08lx: " , regs->ip); |
1268 | { |
1269 | int i; |
1270 | for (i = 0; i < 16; i++) { |
1271 | unsigned char insn; |
1272 | |
1273 | if (get_user(insn, (unsigned char *)(regs->ip + i))) |
1274 | break; |
1275 | pr_cont("%02x " , insn); |
1276 | } |
1277 | } |
1278 | pr_cont("\n" ); |
1279 | #endif |
1280 | preempt_disable(); |
1281 | show_regs(regs); |
1282 | preempt_enable(); |
1283 | } |
1284 | |
1285 | static int __init setup_print_fatal_signals(char *str) |
1286 | { |
1287 | get_option (str: &str, pint: &print_fatal_signals); |
1288 | |
1289 | return 1; |
1290 | } |
1291 | |
1292 | __setup("print-fatal-signals=" , setup_print_fatal_signals); |
1293 | |
1294 | int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, |
1295 | enum pid_type type) |
1296 | { |
1297 | unsigned long flags; |
1298 | int ret = -ESRCH; |
1299 | |
1300 | if (lock_task_sighand(task: p, flags: &flags)) { |
1301 | ret = send_signal_locked(sig, info, t: p, type); |
1302 | unlock_task_sighand(task: p, flags: &flags); |
1303 | } |
1304 | |
1305 | return ret; |
1306 | } |
1307 | |
1308 | enum sig_handler { |
1309 | HANDLER_CURRENT, /* If reachable use the current handler */ |
1310 | HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ |
1311 | HANDLER_EXIT, /* Only visible as the process exit code */ |
1312 | }; |
1313 | |
1314 | /* |
1315 | * Force a signal that the process can't ignore: if necessary |
1316 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
1317 | * |
1318 | * Note: If we unblock the signal, we always reset it to SIG_DFL, |
1319 | * since we do not want to have a signal handler that was blocked |
1320 | * be invoked when user space had explicitly blocked it. |
1321 | * |
1322 | * We don't want to have recursive SIGSEGV's etc, for example, |
1323 | * that is why we also clear SIGNAL_UNKILLABLE. |
1324 | */ |
1325 | static int |
1326 | force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, |
1327 | enum sig_handler handler) |
1328 | { |
1329 | unsigned long int flags; |
1330 | int ret, blocked, ignored; |
1331 | struct k_sigaction *action; |
1332 | int sig = info->si_signo; |
1333 | |
1334 | spin_lock_irqsave(&t->sighand->siglock, flags); |
1335 | action = &t->sighand->action[sig-1]; |
1336 | ignored = action->sa.sa_handler == SIG_IGN; |
1337 | blocked = sigismember(set: &t->blocked, sig: sig); |
1338 | if (blocked || ignored || (handler != HANDLER_CURRENT)) { |
1339 | action->sa.sa_handler = SIG_DFL; |
1340 | if (handler == HANDLER_EXIT) |
1341 | action->sa.sa_flags |= SA_IMMUTABLE; |
1342 | if (blocked) |
1343 | sigdelset(set: &t->blocked, sig: sig); |
1344 | } |
1345 | /* |
1346 | * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect |
1347 | * debugging to leave init killable. But HANDLER_EXIT is always fatal. |
1348 | */ |
1349 | if (action->sa.sa_handler == SIG_DFL && |
1350 | (!t->ptrace || (handler == HANDLER_EXIT))) |
1351 | t->signal->flags &= ~SIGNAL_UNKILLABLE; |
1352 | ret = send_signal_locked(sig, info, t, type: PIDTYPE_PID); |
1353 | /* This can happen if the signal was already pending and blocked */ |
1354 | if (!task_sigpending(p: t)) |
1355 | signal_wake_up(t, fatal: 0); |
1356 | spin_unlock_irqrestore(lock: &t->sighand->siglock, flags); |
1357 | |
1358 | return ret; |
1359 | } |
1360 | |
1361 | int force_sig_info(struct kernel_siginfo *info) |
1362 | { |
1363 | return force_sig_info_to_task(info, current, handler: HANDLER_CURRENT); |
1364 | } |
1365 | |
1366 | /* |
1367 | * Nuke all other threads in the group. |
1368 | */ |
1369 | int zap_other_threads(struct task_struct *p) |
1370 | { |
1371 | struct task_struct *t; |
1372 | int count = 0; |
1373 | |
1374 | p->signal->group_stop_count = 0; |
1375 | |
1376 | for_other_threads(p, t) { |
1377 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
1378 | /* Don't require de_thread to wait for the vhost_worker */ |
1379 | if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) |
1380 | count++; |
1381 | |
1382 | /* Don't bother with already dead threads */ |
1383 | if (t->exit_state) |
1384 | continue; |
1385 | sigaddset(set: &t->pending.signal, SIGKILL); |
1386 | signal_wake_up(t, fatal: 1); |
1387 | } |
1388 | |
1389 | return count; |
1390 | } |
1391 | |
1392 | struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, |
1393 | unsigned long *flags) |
1394 | { |
1395 | struct sighand_struct *sighand; |
1396 | |
1397 | rcu_read_lock(); |
1398 | for (;;) { |
1399 | sighand = rcu_dereference(tsk->sighand); |
1400 | if (unlikely(sighand == NULL)) |
1401 | break; |
1402 | |
1403 | /* |
1404 | * This sighand can be already freed and even reused, but |
1405 | * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which |
1406 | * initializes ->siglock: this slab can't go away, it has |
1407 | * the same object type, ->siglock can't be reinitialized. |
1408 | * |
1409 | * We need to ensure that tsk->sighand is still the same |
1410 | * after we take the lock, we can race with de_thread() or |
1411 | * __exit_signal(). In the latter case the next iteration |
1412 | * must see ->sighand == NULL. |
1413 | */ |
1414 | spin_lock_irqsave(&sighand->siglock, *flags); |
1415 | if (likely(sighand == rcu_access_pointer(tsk->sighand))) |
1416 | break; |
1417 | spin_unlock_irqrestore(lock: &sighand->siglock, flags: *flags); |
1418 | } |
1419 | rcu_read_unlock(); |
1420 | |
1421 | return sighand; |
1422 | } |
1423 | |
1424 | #ifdef CONFIG_LOCKDEP |
1425 | void lockdep_assert_task_sighand_held(struct task_struct *task) |
1426 | { |
1427 | struct sighand_struct *sighand; |
1428 | |
1429 | rcu_read_lock(); |
1430 | sighand = rcu_dereference(task->sighand); |
1431 | if (sighand) |
1432 | lockdep_assert_held(&sighand->siglock); |
1433 | else |
1434 | WARN_ON_ONCE(1); |
1435 | rcu_read_unlock(); |
1436 | } |
1437 | #endif |
1438 | |
1439 | /* |
1440 | * send signal info to all the members of a thread group or to the |
1441 | * individual thread if type == PIDTYPE_PID. |
1442 | */ |
1443 | int group_send_sig_info(int sig, struct kernel_siginfo *info, |
1444 | struct task_struct *p, enum pid_type type) |
1445 | { |
1446 | int ret; |
1447 | |
1448 | rcu_read_lock(); |
1449 | ret = check_kill_permission(sig, info, t: p); |
1450 | rcu_read_unlock(); |
1451 | |
1452 | if (!ret && sig) |
1453 | ret = do_send_sig_info(sig, info, p, type); |
1454 | |
1455 | return ret; |
1456 | } |
1457 | |
1458 | /* |
1459 | * __kill_pgrp_info() sends a signal to a process group: this is what the tty |
1460 | * control characters do (^C, ^Z etc) |
1461 | * - the caller must hold at least a readlock on tasklist_lock |
1462 | */ |
1463 | int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) |
1464 | { |
1465 | struct task_struct *p = NULL; |
1466 | int ret = -ESRCH; |
1467 | |
1468 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
1469 | int err = group_send_sig_info(sig, info, p, type: PIDTYPE_PGID); |
1470 | /* |
1471 | * If group_send_sig_info() succeeds at least once ret |
1472 | * becomes 0 and after that the code below has no effect. |
1473 | * Otherwise we return the last err or -ESRCH if this |
1474 | * process group is empty. |
1475 | */ |
1476 | if (ret) |
1477 | ret = err; |
1478 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
1479 | |
1480 | return ret; |
1481 | } |
1482 | |
1483 | static int kill_pid_info_type(int sig, struct kernel_siginfo *info, |
1484 | struct pid *pid, enum pid_type type) |
1485 | { |
1486 | int error = -ESRCH; |
1487 | struct task_struct *p; |
1488 | |
1489 | for (;;) { |
1490 | rcu_read_lock(); |
1491 | p = pid_task(pid, PIDTYPE_PID); |
1492 | if (p) |
1493 | error = group_send_sig_info(sig, info, p, type); |
1494 | rcu_read_unlock(); |
1495 | if (likely(!p || error != -ESRCH)) |
1496 | return error; |
1497 | /* |
1498 | * The task was unhashed in between, try again. If it |
1499 | * is dead, pid_task() will return NULL, if we race with |
1500 | * de_thread() it will find the new leader. |
1501 | */ |
1502 | } |
1503 | } |
1504 | |
1505 | int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) |
1506 | { |
1507 | return kill_pid_info_type(sig, info, pid, type: PIDTYPE_TGID); |
1508 | } |
1509 | |
1510 | static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) |
1511 | { |
1512 | int error; |
1513 | rcu_read_lock(); |
1514 | error = kill_pid_info(sig, info, pid: find_vpid(nr: pid)); |
1515 | rcu_read_unlock(); |
1516 | return error; |
1517 | } |
1518 | |
1519 | static inline bool kill_as_cred_perm(const struct cred *cred, |
1520 | struct task_struct *target) |
1521 | { |
1522 | const struct cred *pcred = __task_cred(target); |
1523 | |
1524 | return uid_eq(left: cred->euid, right: pcred->suid) || |
1525 | uid_eq(left: cred->euid, right: pcred->uid) || |
1526 | uid_eq(left: cred->uid, right: pcred->suid) || |
1527 | uid_eq(left: cred->uid, right: pcred->uid); |
1528 | } |
1529 | |
1530 | /* |
1531 | * The usb asyncio usage of siginfo is wrong. The glibc support |
1532 | * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. |
1533 | * AKA after the generic fields: |
1534 | * kernel_pid_t si_pid; |
1535 | * kernel_uid32_t si_uid; |
1536 | * sigval_t si_value; |
1537 | * |
1538 | * Unfortunately when usb generates SI_ASYNCIO it assumes the layout |
1539 | * after the generic fields is: |
1540 | * void __user *si_addr; |
1541 | * |
1542 | * This is a practical problem when there is a 64bit big endian kernel |
1543 | * and a 32bit userspace. As the 32bit address will encoded in the low |
1544 | * 32bits of the pointer. Those low 32bits will be stored at higher |
1545 | * address than appear in a 32 bit pointer. So userspace will not |
1546 | * see the address it was expecting for it's completions. |
1547 | * |
1548 | * There is nothing in the encoding that can allow |
1549 | * copy_siginfo_to_user32 to detect this confusion of formats, so |
1550 | * handle this by requiring the caller of kill_pid_usb_asyncio to |
1551 | * notice when this situration takes place and to store the 32bit |
1552 | * pointer in sival_int, instead of sival_addr of the sigval_t addr |
1553 | * parameter. |
1554 | */ |
1555 | int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, |
1556 | struct pid *pid, const struct cred *cred) |
1557 | { |
1558 | struct kernel_siginfo info; |
1559 | struct task_struct *p; |
1560 | unsigned long flags; |
1561 | int ret = -EINVAL; |
1562 | |
1563 | if (!valid_signal(sig)) |
1564 | return ret; |
1565 | |
1566 | clear_siginfo(info: &info); |
1567 | info.si_signo = sig; |
1568 | info.si_errno = errno; |
1569 | info.si_code = SI_ASYNCIO; |
1570 | *((sigval_t *)&info.si_pid) = addr; |
1571 | |
1572 | rcu_read_lock(); |
1573 | p = pid_task(pid, PIDTYPE_PID); |
1574 | if (!p) { |
1575 | ret = -ESRCH; |
1576 | goto out_unlock; |
1577 | } |
1578 | if (!kill_as_cred_perm(cred, target: p)) { |
1579 | ret = -EPERM; |
1580 | goto out_unlock; |
1581 | } |
1582 | ret = security_task_kill(p, info: &info, sig, cred); |
1583 | if (ret) |
1584 | goto out_unlock; |
1585 | |
1586 | if (sig) { |
1587 | if (lock_task_sighand(task: p, flags: &flags)) { |
1588 | ret = __send_signal_locked(sig, info: &info, t: p, type: PIDTYPE_TGID, force: false); |
1589 | unlock_task_sighand(task: p, flags: &flags); |
1590 | } else |
1591 | ret = -ESRCH; |
1592 | } |
1593 | out_unlock: |
1594 | rcu_read_unlock(); |
1595 | return ret; |
1596 | } |
1597 | EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); |
1598 | |
1599 | /* |
1600 | * kill_something_info() interprets pid in interesting ways just like kill(2). |
1601 | * |
1602 | * POSIX specifies that kill(-1,sig) is unspecified, but what we have |
1603 | * is probably wrong. Should make it like BSD or SYSV. |
1604 | */ |
1605 | |
1606 | static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) |
1607 | { |
1608 | int ret; |
1609 | |
1610 | if (pid > 0) |
1611 | return kill_proc_info(sig, info, pid); |
1612 | |
1613 | /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ |
1614 | if (pid == INT_MIN) |
1615 | return -ESRCH; |
1616 | |
1617 | read_lock(&tasklist_lock); |
1618 | if (pid != -1) { |
1619 | ret = __kill_pgrp_info(sig, info, |
1620 | pgrp: pid ? find_vpid(nr: -pid) : task_pgrp(current)); |
1621 | } else { |
1622 | int retval = 0, count = 0; |
1623 | struct task_struct * p; |
1624 | |
1625 | for_each_process(p) { |
1626 | if (task_pid_vnr(tsk: p) > 1 && |
1627 | !same_thread_group(p1: p, current)) { |
1628 | int err = group_send_sig_info(sig, info, p, |
1629 | type: PIDTYPE_MAX); |
1630 | ++count; |
1631 | if (err != -EPERM) |
1632 | retval = err; |
1633 | } |
1634 | } |
1635 | ret = count ? retval : -ESRCH; |
1636 | } |
1637 | read_unlock(&tasklist_lock); |
1638 | |
1639 | return ret; |
1640 | } |
1641 | |
1642 | /* |
1643 | * These are for backward compatibility with the rest of the kernel source. |
1644 | */ |
1645 | |
1646 | int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) |
1647 | { |
1648 | /* |
1649 | * Make sure legacy kernel users don't send in bad values |
1650 | * (normal paths check this in check_kill_permission). |
1651 | */ |
1652 | if (!valid_signal(sig)) |
1653 | return -EINVAL; |
1654 | |
1655 | return do_send_sig_info(sig, info, p, type: PIDTYPE_PID); |
1656 | } |
1657 | EXPORT_SYMBOL(send_sig_info); |
1658 | |
1659 | #define __si_special(priv) \ |
1660 | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) |
1661 | |
1662 | int |
1663 | send_sig(int sig, struct task_struct *p, int priv) |
1664 | { |
1665 | return send_sig_info(sig, __si_special(priv), p); |
1666 | } |
1667 | EXPORT_SYMBOL(send_sig); |
1668 | |
1669 | void force_sig(int sig) |
1670 | { |
1671 | struct kernel_siginfo info; |
1672 | |
1673 | clear_siginfo(info: &info); |
1674 | info.si_signo = sig; |
1675 | info.si_errno = 0; |
1676 | info.si_code = SI_KERNEL; |
1677 | info.si_pid = 0; |
1678 | info.si_uid = 0; |
1679 | force_sig_info(info: &info); |
1680 | } |
1681 | EXPORT_SYMBOL(force_sig); |
1682 | |
1683 | void force_fatal_sig(int sig) |
1684 | { |
1685 | struct kernel_siginfo info; |
1686 | |
1687 | clear_siginfo(info: &info); |
1688 | info.si_signo = sig; |
1689 | info.si_errno = 0; |
1690 | info.si_code = SI_KERNEL; |
1691 | info.si_pid = 0; |
1692 | info.si_uid = 0; |
1693 | force_sig_info_to_task(info: &info, current, handler: HANDLER_SIG_DFL); |
1694 | } |
1695 | |
1696 | void force_exit_sig(int sig) |
1697 | { |
1698 | struct kernel_siginfo info; |
1699 | |
1700 | clear_siginfo(info: &info); |
1701 | info.si_signo = sig; |
1702 | info.si_errno = 0; |
1703 | info.si_code = SI_KERNEL; |
1704 | info.si_pid = 0; |
1705 | info.si_uid = 0; |
1706 | force_sig_info_to_task(info: &info, current, handler: HANDLER_EXIT); |
1707 | } |
1708 | |
1709 | /* |
1710 | * When things go south during signal handling, we |
1711 | * will force a SIGSEGV. And if the signal that caused |
1712 | * the problem was already a SIGSEGV, we'll want to |
1713 | * make sure we don't even try to deliver the signal.. |
1714 | */ |
1715 | void force_sigsegv(int sig) |
1716 | { |
1717 | if (sig == SIGSEGV) |
1718 | force_fatal_sig(SIGSEGV); |
1719 | else |
1720 | force_sig(SIGSEGV); |
1721 | } |
1722 | |
1723 | int force_sig_fault_to_task(int sig, int code, void __user *addr, |
1724 | struct task_struct *t) |
1725 | { |
1726 | struct kernel_siginfo info; |
1727 | |
1728 | clear_siginfo(info: &info); |
1729 | info.si_signo = sig; |
1730 | info.si_errno = 0; |
1731 | info.si_code = code; |
1732 | info.si_addr = addr; |
1733 | return force_sig_info_to_task(info: &info, t, handler: HANDLER_CURRENT); |
1734 | } |
1735 | |
1736 | int force_sig_fault(int sig, int code, void __user *addr) |
1737 | { |
1738 | return force_sig_fault_to_task(sig, code, addr, current); |
1739 | } |
1740 | |
1741 | int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) |
1742 | { |
1743 | struct kernel_siginfo info; |
1744 | |
1745 | clear_siginfo(info: &info); |
1746 | info.si_signo = sig; |
1747 | info.si_errno = 0; |
1748 | info.si_code = code; |
1749 | info.si_addr = addr; |
1750 | return send_sig_info(info.si_signo, &info, t); |
1751 | } |
1752 | |
1753 | int force_sig_mceerr(int code, void __user *addr, short lsb) |
1754 | { |
1755 | struct kernel_siginfo info; |
1756 | |
1757 | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); |
1758 | clear_siginfo(info: &info); |
1759 | info.si_signo = SIGBUS; |
1760 | info.si_errno = 0; |
1761 | info.si_code = code; |
1762 | info.si_addr = addr; |
1763 | info.si_addr_lsb = lsb; |
1764 | return force_sig_info(info: &info); |
1765 | } |
1766 | |
1767 | int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) |
1768 | { |
1769 | struct kernel_siginfo info; |
1770 | |
1771 | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); |
1772 | clear_siginfo(info: &info); |
1773 | info.si_signo = SIGBUS; |
1774 | info.si_errno = 0; |
1775 | info.si_code = code; |
1776 | info.si_addr = addr; |
1777 | info.si_addr_lsb = lsb; |
1778 | return send_sig_info(info.si_signo, &info, t); |
1779 | } |
1780 | EXPORT_SYMBOL(send_sig_mceerr); |
1781 | |
1782 | int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) |
1783 | { |
1784 | struct kernel_siginfo info; |
1785 | |
1786 | clear_siginfo(info: &info); |
1787 | info.si_signo = SIGSEGV; |
1788 | info.si_errno = 0; |
1789 | info.si_code = SEGV_BNDERR; |
1790 | info.si_addr = addr; |
1791 | info.si_lower = lower; |
1792 | info.si_upper = upper; |
1793 | return force_sig_info(info: &info); |
1794 | } |
1795 | |
1796 | #ifdef SEGV_PKUERR |
1797 | int force_sig_pkuerr(void __user *addr, u32 pkey) |
1798 | { |
1799 | struct kernel_siginfo info; |
1800 | |
1801 | clear_siginfo(info: &info); |
1802 | info.si_signo = SIGSEGV; |
1803 | info.si_errno = 0; |
1804 | info.si_code = SEGV_PKUERR; |
1805 | info.si_addr = addr; |
1806 | info.si_pkey = pkey; |
1807 | return force_sig_info(info: &info); |
1808 | } |
1809 | #endif |
1810 | |
1811 | int send_sig_perf(void __user *addr, u32 type, u64 sig_data) |
1812 | { |
1813 | struct kernel_siginfo info; |
1814 | |
1815 | clear_siginfo(info: &info); |
1816 | info.si_signo = SIGTRAP; |
1817 | info.si_errno = 0; |
1818 | info.si_code = TRAP_PERF; |
1819 | info.si_addr = addr; |
1820 | info.si_perf_data = sig_data; |
1821 | info.si_perf_type = type; |
1822 | |
1823 | /* |
1824 | * Signals generated by perf events should not terminate the whole |
1825 | * process if SIGTRAP is blocked, however, delivering the signal |
1826 | * asynchronously is better than not delivering at all. But tell user |
1827 | * space if the signal was asynchronous, so it can clearly be |
1828 | * distinguished from normal synchronous ones. |
1829 | */ |
1830 | info.si_perf_flags = sigismember(set: ¤t->blocked, sig: info.si_signo) ? |
1831 | TRAP_PERF_FLAG_ASYNC : |
1832 | 0; |
1833 | |
1834 | return send_sig_info(info.si_signo, &info, current); |
1835 | } |
1836 | |
1837 | /** |
1838 | * force_sig_seccomp - signals the task to allow in-process syscall emulation |
1839 | * @syscall: syscall number to send to userland |
1840 | * @reason: filter-supplied reason code to send to userland (via si_errno) |
1841 | * @force_coredump: true to trigger a coredump |
1842 | * |
1843 | * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. |
1844 | */ |
1845 | int force_sig_seccomp(int syscall, int reason, bool force_coredump) |
1846 | { |
1847 | struct kernel_siginfo info; |
1848 | |
1849 | clear_siginfo(info: &info); |
1850 | info.si_signo = SIGSYS; |
1851 | info.si_code = SYS_SECCOMP; |
1852 | info.si_call_addr = (void __user *)KSTK_EIP(current); |
1853 | info.si_errno = reason; |
1854 | info.si_arch = syscall_get_arch(current); |
1855 | info.si_syscall = syscall; |
1856 | return force_sig_info_to_task(info: &info, current, |
1857 | handler: force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); |
1858 | } |
1859 | |
1860 | /* For the crazy architectures that include trap information in |
1861 | * the errno field, instead of an actual errno value. |
1862 | */ |
1863 | int force_sig_ptrace_errno_trap(int errno, void __user *addr) |
1864 | { |
1865 | struct kernel_siginfo info; |
1866 | |
1867 | clear_siginfo(info: &info); |
1868 | info.si_signo = SIGTRAP; |
1869 | info.si_errno = errno; |
1870 | info.si_code = TRAP_HWBKPT; |
1871 | info.si_addr = addr; |
1872 | return force_sig_info(info: &info); |
1873 | } |
1874 | |
1875 | /* For the rare architectures that include trap information using |
1876 | * si_trapno. |
1877 | */ |
1878 | int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) |
1879 | { |
1880 | struct kernel_siginfo info; |
1881 | |
1882 | clear_siginfo(info: &info); |
1883 | info.si_signo = sig; |
1884 | info.si_errno = 0; |
1885 | info.si_code = code; |
1886 | info.si_addr = addr; |
1887 | info.si_trapno = trapno; |
1888 | return force_sig_info(info: &info); |
1889 | } |
1890 | |
1891 | /* For the rare architectures that include trap information using |
1892 | * si_trapno. |
1893 | */ |
1894 | int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, |
1895 | struct task_struct *t) |
1896 | { |
1897 | struct kernel_siginfo info; |
1898 | |
1899 | clear_siginfo(info: &info); |
1900 | info.si_signo = sig; |
1901 | info.si_errno = 0; |
1902 | info.si_code = code; |
1903 | info.si_addr = addr; |
1904 | info.si_trapno = trapno; |
1905 | return send_sig_info(info.si_signo, &info, t); |
1906 | } |
1907 | |
1908 | static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) |
1909 | { |
1910 | int ret; |
1911 | read_lock(&tasklist_lock); |
1912 | ret = __kill_pgrp_info(sig, info, pgrp); |
1913 | read_unlock(&tasklist_lock); |
1914 | return ret; |
1915 | } |
1916 | |
1917 | int kill_pgrp(struct pid *pid, int sig, int priv) |
1918 | { |
1919 | return kill_pgrp_info(sig, __si_special(priv), pgrp: pid); |
1920 | } |
1921 | EXPORT_SYMBOL(kill_pgrp); |
1922 | |
1923 | int kill_pid(struct pid *pid, int sig, int priv) |
1924 | { |
1925 | return kill_pid_info(sig, __si_special(priv), pid); |
1926 | } |
1927 | EXPORT_SYMBOL(kill_pid); |
1928 | |
1929 | /* |
1930 | * These functions support sending signals using preallocated sigqueue |
1931 | * structures. This is needed "because realtime applications cannot |
1932 | * afford to lose notifications of asynchronous events, like timer |
1933 | * expirations or I/O completions". In the case of POSIX Timers |
1934 | * we allocate the sigqueue structure from the timer_create. If this |
1935 | * allocation fails we are able to report the failure to the application |
1936 | * with an EAGAIN error. |
1937 | */ |
1938 | struct sigqueue *sigqueue_alloc(void) |
1939 | { |
1940 | return __sigqueue_alloc(sig: -1, current, GFP_KERNEL, override_rlimit: 0, SIGQUEUE_PREALLOC); |
1941 | } |
1942 | |
1943 | void sigqueue_free(struct sigqueue *q) |
1944 | { |
1945 | unsigned long flags; |
1946 | spinlock_t *lock = ¤t->sighand->siglock; |
1947 | |
1948 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
1949 | /* |
1950 | * We must hold ->siglock while testing q->list |
1951 | * to serialize with collect_signal() or with |
1952 | * __exit_signal()->flush_sigqueue(). |
1953 | */ |
1954 | spin_lock_irqsave(lock, flags); |
1955 | q->flags &= ~SIGQUEUE_PREALLOC; |
1956 | /* |
1957 | * If it is queued it will be freed when dequeued, |
1958 | * like the "regular" sigqueue. |
1959 | */ |
1960 | if (!list_empty(head: &q->list)) |
1961 | q = NULL; |
1962 | spin_unlock_irqrestore(lock, flags); |
1963 | |
1964 | if (q) |
1965 | __sigqueue_free(q); |
1966 | } |
1967 | |
1968 | int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) |
1969 | { |
1970 | int sig = q->info.si_signo; |
1971 | struct sigpending *pending; |
1972 | struct task_struct *t; |
1973 | unsigned long flags; |
1974 | int ret, result; |
1975 | |
1976 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
1977 | |
1978 | ret = -1; |
1979 | rcu_read_lock(); |
1980 | |
1981 | /* |
1982 | * This function is used by POSIX timers to deliver a timer signal. |
1983 | * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID |
1984 | * set), the signal must be delivered to the specific thread (queues |
1985 | * into t->pending). |
1986 | * |
1987 | * Where type is not PIDTYPE_PID, signals must be delivered to the |
1988 | * process. In this case, prefer to deliver to current if it is in |
1989 | * the same thread group as the target process, which avoids |
1990 | * unnecessarily waking up a potentially idle task. |
1991 | */ |
1992 | t = pid_task(pid, type); |
1993 | if (!t) |
1994 | goto ret; |
1995 | if (type != PIDTYPE_PID && same_thread_group(p1: t, current)) |
1996 | t = current; |
1997 | if (!likely(lock_task_sighand(t, &flags))) |
1998 | goto ret; |
1999 | |
2000 | ret = 1; /* the signal is ignored */ |
2001 | result = TRACE_SIGNAL_IGNORED; |
2002 | if (!prepare_signal(sig, p: t, force: false)) |
2003 | goto out; |
2004 | |
2005 | ret = 0; |
2006 | if (unlikely(!list_empty(&q->list))) { |
2007 | /* |
2008 | * If an SI_TIMER entry is already queue just increment |
2009 | * the overrun count. |
2010 | */ |
2011 | BUG_ON(q->info.si_code != SI_TIMER); |
2012 | q->info.si_overrun++; |
2013 | result = TRACE_SIGNAL_ALREADY_PENDING; |
2014 | goto out; |
2015 | } |
2016 | q->info.si_overrun = 0; |
2017 | |
2018 | signalfd_notify(tsk: t, sig); |
2019 | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; |
2020 | list_add_tail(new: &q->list, head: &pending->list); |
2021 | sigaddset(set: &pending->signal, sig: sig); |
2022 | complete_signal(sig, p: t, type); |
2023 | result = TRACE_SIGNAL_DELIVERED; |
2024 | out: |
2025 | trace_signal_generate(sig, info: &q->info, task: t, group: type != PIDTYPE_PID, result); |
2026 | unlock_task_sighand(task: t, flags: &flags); |
2027 | ret: |
2028 | rcu_read_unlock(); |
2029 | return ret; |
2030 | } |
2031 | |
2032 | void do_notify_pidfd(struct task_struct *task) |
2033 | { |
2034 | struct pid *pid = task_pid(task); |
2035 | |
2036 | WARN_ON(task->exit_state == 0); |
2037 | |
2038 | __wake_up(wq_head: &pid->wait_pidfd, TASK_NORMAL, nr: 0, |
2039 | poll_to_key(EPOLLIN | EPOLLRDNORM)); |
2040 | } |
2041 | |
2042 | /* |
2043 | * Let a parent know about the death of a child. |
2044 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
2045 | * |
2046 | * Returns true if our parent ignored us and so we've switched to |
2047 | * self-reaping. |
2048 | */ |
2049 | bool do_notify_parent(struct task_struct *tsk, int sig) |
2050 | { |
2051 | struct kernel_siginfo info; |
2052 | unsigned long flags; |
2053 | struct sighand_struct *psig; |
2054 | bool autoreap = false; |
2055 | u64 utime, stime; |
2056 | |
2057 | WARN_ON_ONCE(sig == -1); |
2058 | |
2059 | /* do_notify_parent_cldstop should have been called instead. */ |
2060 | WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); |
2061 | |
2062 | WARN_ON_ONCE(!tsk->ptrace && |
2063 | (tsk->group_leader != tsk || !thread_group_empty(tsk))); |
2064 | /* |
2065 | * tsk is a group leader and has no threads, wake up the |
2066 | * non-PIDFD_THREAD waiters. |
2067 | */ |
2068 | if (thread_group_empty(p: tsk)) |
2069 | do_notify_pidfd(task: tsk); |
2070 | |
2071 | if (sig != SIGCHLD) { |
2072 | /* |
2073 | * This is only possible if parent == real_parent. |
2074 | * Check if it has changed security domain. |
2075 | */ |
2076 | if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) |
2077 | sig = SIGCHLD; |
2078 | } |
2079 | |
2080 | clear_siginfo(info: &info); |
2081 | info.si_signo = sig; |
2082 | info.si_errno = 0; |
2083 | /* |
2084 | * We are under tasklist_lock here so our parent is tied to |
2085 | * us and cannot change. |
2086 | * |
2087 | * task_active_pid_ns will always return the same pid namespace |
2088 | * until a task passes through release_task. |
2089 | * |
2090 | * write_lock() currently calls preempt_disable() which is the |
2091 | * same as rcu_read_lock(), but according to Oleg, this is not |
2092 | * correct to rely on this |
2093 | */ |
2094 | rcu_read_lock(); |
2095 | info.si_pid = task_pid_nr_ns(tsk, ns: task_active_pid_ns(tsk: tsk->parent)); |
2096 | info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), |
2097 | task_uid(tsk)); |
2098 | rcu_read_unlock(); |
2099 | |
2100 | task_cputime(t: tsk, utime: &utime, stime: &stime); |
2101 | info.si_utime = nsec_to_clock_t(x: utime + tsk->signal->utime); |
2102 | info.si_stime = nsec_to_clock_t(x: stime + tsk->signal->stime); |
2103 | |
2104 | info.si_status = tsk->exit_code & 0x7f; |
2105 | if (tsk->exit_code & 0x80) |
2106 | info.si_code = CLD_DUMPED; |
2107 | else if (tsk->exit_code & 0x7f) |
2108 | info.si_code = CLD_KILLED; |
2109 | else { |
2110 | info.si_code = CLD_EXITED; |
2111 | info.si_status = tsk->exit_code >> 8; |
2112 | } |
2113 | |
2114 | psig = tsk->parent->sighand; |
2115 | spin_lock_irqsave(&psig->siglock, flags); |
2116 | if (!tsk->ptrace && sig == SIGCHLD && |
2117 | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || |
2118 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { |
2119 | /* |
2120 | * We are exiting and our parent doesn't care. POSIX.1 |
2121 | * defines special semantics for setting SIGCHLD to SIG_IGN |
2122 | * or setting the SA_NOCLDWAIT flag: we should be reaped |
2123 | * automatically and not left for our parent's wait4 call. |
2124 | * Rather than having the parent do it as a magic kind of |
2125 | * signal handler, we just set this to tell do_exit that we |
2126 | * can be cleaned up without becoming a zombie. Note that |
2127 | * we still call __wake_up_parent in this case, because a |
2128 | * blocked sys_wait4 might now return -ECHILD. |
2129 | * |
2130 | * Whether we send SIGCHLD or not for SA_NOCLDWAIT |
2131 | * is implementation-defined: we do (if you don't want |
2132 | * it, just use SIG_IGN instead). |
2133 | */ |
2134 | autoreap = true; |
2135 | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) |
2136 | sig = 0; |
2137 | } |
2138 | /* |
2139 | * Send with __send_signal as si_pid and si_uid are in the |
2140 | * parent's namespaces. |
2141 | */ |
2142 | if (valid_signal(sig) && sig) |
2143 | __send_signal_locked(sig, info: &info, t: tsk->parent, type: PIDTYPE_TGID, force: false); |
2144 | __wake_up_parent(p: tsk, parent: tsk->parent); |
2145 | spin_unlock_irqrestore(lock: &psig->siglock, flags); |
2146 | |
2147 | return autoreap; |
2148 | } |
2149 | |
2150 | /** |
2151 | * do_notify_parent_cldstop - notify parent of stopped/continued state change |
2152 | * @tsk: task reporting the state change |
2153 | * @for_ptracer: the notification is for ptracer |
2154 | * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report |
2155 | * |
2156 | * Notify @tsk's parent that the stopped/continued state has changed. If |
2157 | * @for_ptracer is %false, @tsk's group leader notifies to its real parent. |
2158 | * If %true, @tsk reports to @tsk->parent which should be the ptracer. |
2159 | * |
2160 | * CONTEXT: |
2161 | * Must be called with tasklist_lock at least read locked. |
2162 | */ |
2163 | static void do_notify_parent_cldstop(struct task_struct *tsk, |
2164 | bool for_ptracer, int why) |
2165 | { |
2166 | struct kernel_siginfo info; |
2167 | unsigned long flags; |
2168 | struct task_struct *parent; |
2169 | struct sighand_struct *sighand; |
2170 | u64 utime, stime; |
2171 | |
2172 | if (for_ptracer) { |
2173 | parent = tsk->parent; |
2174 | } else { |
2175 | tsk = tsk->group_leader; |
2176 | parent = tsk->real_parent; |
2177 | } |
2178 | |
2179 | clear_siginfo(info: &info); |
2180 | info.si_signo = SIGCHLD; |
2181 | info.si_errno = 0; |
2182 | /* |
2183 | * see comment in do_notify_parent() about the following 4 lines |
2184 | */ |
2185 | rcu_read_lock(); |
2186 | info.si_pid = task_pid_nr_ns(tsk, ns: task_active_pid_ns(tsk: parent)); |
2187 | info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); |
2188 | rcu_read_unlock(); |
2189 | |
2190 | task_cputime(t: tsk, utime: &utime, stime: &stime); |
2191 | info.si_utime = nsec_to_clock_t(x: utime); |
2192 | info.si_stime = nsec_to_clock_t(x: stime); |
2193 | |
2194 | info.si_code = why; |
2195 | switch (why) { |
2196 | case CLD_CONTINUED: |
2197 | info.si_status = SIGCONT; |
2198 | break; |
2199 | case CLD_STOPPED: |
2200 | info.si_status = tsk->signal->group_exit_code & 0x7f; |
2201 | break; |
2202 | case CLD_TRAPPED: |
2203 | info.si_status = tsk->exit_code & 0x7f; |
2204 | break; |
2205 | default: |
2206 | BUG(); |
2207 | } |
2208 | |
2209 | sighand = parent->sighand; |
2210 | spin_lock_irqsave(&sighand->siglock, flags); |
2211 | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && |
2212 | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) |
2213 | send_signal_locked(SIGCHLD, info: &info, t: parent, type: PIDTYPE_TGID); |
2214 | /* |
2215 | * Even if SIGCHLD is not generated, we must wake up wait4 calls. |
2216 | */ |
2217 | __wake_up_parent(p: tsk, parent); |
2218 | spin_unlock_irqrestore(lock: &sighand->siglock, flags); |
2219 | } |
2220 | |
2221 | /* |
2222 | * This must be called with current->sighand->siglock held. |
2223 | * |
2224 | * This should be the path for all ptrace stops. |
2225 | * We always set current->last_siginfo while stopped here. |
2226 | * That makes it a way to test a stopped process for |
2227 | * being ptrace-stopped vs being job-control-stopped. |
2228 | * |
2229 | * Returns the signal the ptracer requested the code resume |
2230 | * with. If the code did not stop because the tracer is gone, |
2231 | * the stop signal remains unchanged unless clear_code. |
2232 | */ |
2233 | static int ptrace_stop(int exit_code, int why, unsigned long message, |
2234 | kernel_siginfo_t *info) |
2235 | __releases(¤t->sighand->siglock) |
2236 | __acquires(¤t->sighand->siglock) |
2237 | { |
2238 | bool gstop_done = false; |
2239 | |
2240 | if (arch_ptrace_stop_needed()) { |
2241 | /* |
2242 | * The arch code has something special to do before a |
2243 | * ptrace stop. This is allowed to block, e.g. for faults |
2244 | * on user stack pages. We can't keep the siglock while |
2245 | * calling arch_ptrace_stop, so we must release it now. |
2246 | * To preserve proper semantics, we must do this before |
2247 | * any signal bookkeeping like checking group_stop_count. |
2248 | */ |
2249 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2250 | arch_ptrace_stop(); |
2251 | spin_lock_irq(lock: ¤t->sighand->siglock); |
2252 | } |
2253 | |
2254 | /* |
2255 | * After this point ptrace_signal_wake_up or signal_wake_up |
2256 | * will clear TASK_TRACED if ptrace_unlink happens or a fatal |
2257 | * signal comes in. Handle previous ptrace_unlinks and fatal |
2258 | * signals here to prevent ptrace_stop sleeping in schedule. |
2259 | */ |
2260 | if (!current->ptrace || __fatal_signal_pending(current)) |
2261 | return exit_code; |
2262 | |
2263 | set_special_state(TASK_TRACED); |
2264 | current->jobctl |= JOBCTL_TRACED; |
2265 | |
2266 | /* |
2267 | * We're committing to trapping. TRACED should be visible before |
2268 | * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). |
2269 | * Also, transition to TRACED and updates to ->jobctl should be |
2270 | * atomic with respect to siglock and should be done after the arch |
2271 | * hook as siglock is released and regrabbed across it. |
2272 | * |
2273 | * TRACER TRACEE |
2274 | * |
2275 | * ptrace_attach() |
2276 | * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) |
2277 | * do_wait() |
2278 | * set_current_state() smp_wmb(); |
2279 | * ptrace_do_wait() |
2280 | * wait_task_stopped() |
2281 | * task_stopped_code() |
2282 | * [L] task_is_traced() [S] task_clear_jobctl_trapping(); |
2283 | */ |
2284 | smp_wmb(); |
2285 | |
2286 | current->ptrace_message = message; |
2287 | current->last_siginfo = info; |
2288 | current->exit_code = exit_code; |
2289 | |
2290 | /* |
2291 | * If @why is CLD_STOPPED, we're trapping to participate in a group |
2292 | * stop. Do the bookkeeping. Note that if SIGCONT was delievered |
2293 | * across siglock relocks since INTERRUPT was scheduled, PENDING |
2294 | * could be clear now. We act as if SIGCONT is received after |
2295 | * TASK_TRACED is entered - ignore it. |
2296 | */ |
2297 | if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) |
2298 | gstop_done = task_participate_group_stop(current); |
2299 | |
2300 | /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ |
2301 | task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); |
2302 | if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) |
2303 | task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); |
2304 | |
2305 | /* entering a trap, clear TRAPPING */ |
2306 | task_clear_jobctl_trapping(current); |
2307 | |
2308 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2309 | read_lock(&tasklist_lock); |
2310 | /* |
2311 | * Notify parents of the stop. |
2312 | * |
2313 | * While ptraced, there are two parents - the ptracer and |
2314 | * the real_parent of the group_leader. The ptracer should |
2315 | * know about every stop while the real parent is only |
2316 | * interested in the completion of group stop. The states |
2317 | * for the two don't interact with each other. Notify |
2318 | * separately unless they're gonna be duplicates. |
2319 | */ |
2320 | if (current->ptrace) |
2321 | do_notify_parent_cldstop(current, for_ptracer: true, why); |
2322 | if (gstop_done && (!current->ptrace || ptrace_reparented(current))) |
2323 | do_notify_parent_cldstop(current, for_ptracer: false, why); |
2324 | |
2325 | /* |
2326 | * The previous do_notify_parent_cldstop() invocation woke ptracer. |
2327 | * One a PREEMPTION kernel this can result in preemption requirement |
2328 | * which will be fulfilled after read_unlock() and the ptracer will be |
2329 | * put on the CPU. |
2330 | * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for |
2331 | * this task wait in schedule(). If this task gets preempted then it |
2332 | * remains enqueued on the runqueue. The ptracer will observe this and |
2333 | * then sleep for a delay of one HZ tick. In the meantime this task |
2334 | * gets scheduled, enters schedule() and will wait for the ptracer. |
2335 | * |
2336 | * This preemption point is not bad from a correctness point of |
2337 | * view but extends the runtime by one HZ tick time due to the |
2338 | * ptracer's sleep. The preempt-disable section ensures that there |
2339 | * will be no preemption between unlock and schedule() and so |
2340 | * improving the performance since the ptracer will observe that |
2341 | * the tracee is scheduled out once it gets on the CPU. |
2342 | * |
2343 | * On PREEMPT_RT locking tasklist_lock does not disable preemption. |
2344 | * Therefore the task can be preempted after do_notify_parent_cldstop() |
2345 | * before unlocking tasklist_lock so there is no benefit in doing this. |
2346 | * |
2347 | * In fact disabling preemption is harmful on PREEMPT_RT because |
2348 | * the spinlock_t in cgroup_enter_frozen() must not be acquired |
2349 | * with preemption disabled due to the 'sleeping' spinlock |
2350 | * substitution of RT. |
2351 | */ |
2352 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
2353 | preempt_disable(); |
2354 | read_unlock(&tasklist_lock); |
2355 | cgroup_enter_frozen(); |
2356 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
2357 | preempt_enable_no_resched(); |
2358 | schedule(); |
2359 | cgroup_leave_frozen(always_leave: true); |
2360 | |
2361 | /* |
2362 | * We are back. Now reacquire the siglock before touching |
2363 | * last_siginfo, so that we are sure to have synchronized with |
2364 | * any signal-sending on another CPU that wants to examine it. |
2365 | */ |
2366 | spin_lock_irq(lock: ¤t->sighand->siglock); |
2367 | exit_code = current->exit_code; |
2368 | current->last_siginfo = NULL; |
2369 | current->ptrace_message = 0; |
2370 | current->exit_code = 0; |
2371 | |
2372 | /* LISTENING can be set only during STOP traps, clear it */ |
2373 | current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); |
2374 | |
2375 | /* |
2376 | * Queued signals ignored us while we were stopped for tracing. |
2377 | * So check for any that we should take before resuming user mode. |
2378 | * This sets TIF_SIGPENDING, but never clears it. |
2379 | */ |
2380 | recalc_sigpending_tsk(current); |
2381 | return exit_code; |
2382 | } |
2383 | |
2384 | static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) |
2385 | { |
2386 | kernel_siginfo_t info; |
2387 | |
2388 | clear_siginfo(info: &info); |
2389 | info.si_signo = signr; |
2390 | info.si_code = exit_code; |
2391 | info.si_pid = task_pid_vnr(current); |
2392 | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); |
2393 | |
2394 | /* Let the debugger run. */ |
2395 | return ptrace_stop(exit_code, why, message, info: &info); |
2396 | } |
2397 | |
2398 | int ptrace_notify(int exit_code, unsigned long message) |
2399 | { |
2400 | int signr; |
2401 | |
2402 | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); |
2403 | if (unlikely(task_work_pending(current))) |
2404 | task_work_run(); |
2405 | |
2406 | spin_lock_irq(lock: ¤t->sighand->siglock); |
2407 | signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); |
2408 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2409 | return signr; |
2410 | } |
2411 | |
2412 | /** |
2413 | * do_signal_stop - handle group stop for SIGSTOP and other stop signals |
2414 | * @signr: signr causing group stop if initiating |
2415 | * |
2416 | * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr |
2417 | * and participate in it. If already set, participate in the existing |
2418 | * group stop. If participated in a group stop (and thus slept), %true is |
2419 | * returned with siglock released. |
2420 | * |
2421 | * If ptraced, this function doesn't handle stop itself. Instead, |
2422 | * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock |
2423 | * untouched. The caller must ensure that INTERRUPT trap handling takes |
2424 | * places afterwards. |
2425 | * |
2426 | * CONTEXT: |
2427 | * Must be called with @current->sighand->siglock held, which is released |
2428 | * on %true return. |
2429 | * |
2430 | * RETURNS: |
2431 | * %false if group stop is already cancelled or ptrace trap is scheduled. |
2432 | * %true if participated in group stop. |
2433 | */ |
2434 | static bool do_signal_stop(int signr) |
2435 | __releases(¤t->sighand->siglock) |
2436 | { |
2437 | struct signal_struct *sig = current->signal; |
2438 | |
2439 | if (!(current->jobctl & JOBCTL_STOP_PENDING)) { |
2440 | unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; |
2441 | struct task_struct *t; |
2442 | |
2443 | /* signr will be recorded in task->jobctl for retries */ |
2444 | WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); |
2445 | |
2446 | if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || |
2447 | unlikely(sig->flags & SIGNAL_GROUP_EXIT) || |
2448 | unlikely(sig->group_exec_task)) |
2449 | return false; |
2450 | /* |
2451 | * There is no group stop already in progress. We must |
2452 | * initiate one now. |
2453 | * |
2454 | * While ptraced, a task may be resumed while group stop is |
2455 | * still in effect and then receive a stop signal and |
2456 | * initiate another group stop. This deviates from the |
2457 | * usual behavior as two consecutive stop signals can't |
2458 | * cause two group stops when !ptraced. That is why we |
2459 | * also check !task_is_stopped(t) below. |
2460 | * |
2461 | * The condition can be distinguished by testing whether |
2462 | * SIGNAL_STOP_STOPPED is already set. Don't generate |
2463 | * group_exit_code in such case. |
2464 | * |
2465 | * This is not necessary for SIGNAL_STOP_CONTINUED because |
2466 | * an intervening stop signal is required to cause two |
2467 | * continued events regardless of ptrace. |
2468 | */ |
2469 | if (!(sig->flags & SIGNAL_STOP_STOPPED)) |
2470 | sig->group_exit_code = signr; |
2471 | |
2472 | sig->group_stop_count = 0; |
2473 | if (task_set_jobctl_pending(current, mask: signr | gstop)) |
2474 | sig->group_stop_count++; |
2475 | |
2476 | for_other_threads(current, t) { |
2477 | /* |
2478 | * Setting state to TASK_STOPPED for a group |
2479 | * stop is always done with the siglock held, |
2480 | * so this check has no races. |
2481 | */ |
2482 | if (!task_is_stopped(t) && |
2483 | task_set_jobctl_pending(task: t, mask: signr | gstop)) { |
2484 | sig->group_stop_count++; |
2485 | if (likely(!(t->ptrace & PT_SEIZED))) |
2486 | signal_wake_up(t, fatal: 0); |
2487 | else |
2488 | ptrace_trap_notify(t); |
2489 | } |
2490 | } |
2491 | } |
2492 | |
2493 | if (likely(!current->ptrace)) { |
2494 | int notify = 0; |
2495 | |
2496 | /* |
2497 | * If there are no other threads in the group, or if there |
2498 | * is a group stop in progress and we are the last to stop, |
2499 | * report to the parent. |
2500 | */ |
2501 | if (task_participate_group_stop(current)) |
2502 | notify = CLD_STOPPED; |
2503 | |
2504 | current->jobctl |= JOBCTL_STOPPED; |
2505 | set_special_state(TASK_STOPPED); |
2506 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2507 | |
2508 | /* |
2509 | * Notify the parent of the group stop completion. Because |
2510 | * we're not holding either the siglock or tasklist_lock |
2511 | * here, ptracer may attach inbetween; however, this is for |
2512 | * group stop and should always be delivered to the real |
2513 | * parent of the group leader. The new ptracer will get |
2514 | * its notification when this task transitions into |
2515 | * TASK_TRACED. |
2516 | */ |
2517 | if (notify) { |
2518 | read_lock(&tasklist_lock); |
2519 | do_notify_parent_cldstop(current, for_ptracer: false, why: notify); |
2520 | read_unlock(&tasklist_lock); |
2521 | } |
2522 | |
2523 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ |
2524 | cgroup_enter_frozen(); |
2525 | schedule(); |
2526 | return true; |
2527 | } else { |
2528 | /* |
2529 | * While ptraced, group stop is handled by STOP trap. |
2530 | * Schedule it and let the caller deal with it. |
2531 | */ |
2532 | task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); |
2533 | return false; |
2534 | } |
2535 | } |
2536 | |
2537 | /** |
2538 | * do_jobctl_trap - take care of ptrace jobctl traps |
2539 | * |
2540 | * When PT_SEIZED, it's used for both group stop and explicit |
2541 | * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with |
2542 | * accompanying siginfo. If stopped, lower eight bits of exit_code contain |
2543 | * the stop signal; otherwise, %SIGTRAP. |
2544 | * |
2545 | * When !PT_SEIZED, it's used only for group stop trap with stop signal |
2546 | * number as exit_code and no siginfo. |
2547 | * |
2548 | * CONTEXT: |
2549 | * Must be called with @current->sighand->siglock held, which may be |
2550 | * released and re-acquired before returning with intervening sleep. |
2551 | */ |
2552 | static void do_jobctl_trap(void) |
2553 | { |
2554 | struct signal_struct *signal = current->signal; |
2555 | int signr = current->jobctl & JOBCTL_STOP_SIGMASK; |
2556 | |
2557 | if (current->ptrace & PT_SEIZED) { |
2558 | if (!signal->group_stop_count && |
2559 | !(signal->flags & SIGNAL_STOP_STOPPED)) |
2560 | signr = SIGTRAP; |
2561 | WARN_ON_ONCE(!signr); |
2562 | ptrace_do_notify(signr, exit_code: signr | (PTRACE_EVENT_STOP << 8), |
2563 | CLD_STOPPED, message: 0); |
2564 | } else { |
2565 | WARN_ON_ONCE(!signr); |
2566 | ptrace_stop(exit_code: signr, CLD_STOPPED, message: 0, NULL); |
2567 | } |
2568 | } |
2569 | |
2570 | /** |
2571 | * do_freezer_trap - handle the freezer jobctl trap |
2572 | * |
2573 | * Puts the task into frozen state, if only the task is not about to quit. |
2574 | * In this case it drops JOBCTL_TRAP_FREEZE. |
2575 | * |
2576 | * CONTEXT: |
2577 | * Must be called with @current->sighand->siglock held, |
2578 | * which is always released before returning. |
2579 | */ |
2580 | static void do_freezer_trap(void) |
2581 | __releases(¤t->sighand->siglock) |
2582 | { |
2583 | /* |
2584 | * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, |
2585 | * let's make another loop to give it a chance to be handled. |
2586 | * In any case, we'll return back. |
2587 | */ |
2588 | if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != |
2589 | JOBCTL_TRAP_FREEZE) { |
2590 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2591 | return; |
2592 | } |
2593 | |
2594 | /* |
2595 | * Now we're sure that there is no pending fatal signal and no |
2596 | * pending traps. Clear TIF_SIGPENDING to not get out of schedule() |
2597 | * immediately (if there is a non-fatal signal pending), and |
2598 | * put the task into sleep. |
2599 | */ |
2600 | __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
2601 | clear_thread_flag(TIF_SIGPENDING); |
2602 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
2603 | cgroup_enter_frozen(); |
2604 | schedule(); |
2605 | } |
2606 | |
2607 | static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) |
2608 | { |
2609 | /* |
2610 | * We do not check sig_kernel_stop(signr) but set this marker |
2611 | * unconditionally because we do not know whether debugger will |
2612 | * change signr. This flag has no meaning unless we are going |
2613 | * to stop after return from ptrace_stop(). In this case it will |
2614 | * be checked in do_signal_stop(), we should only stop if it was |
2615 | * not cleared by SIGCONT while we were sleeping. See also the |
2616 | * comment in dequeue_signal(). |
2617 | */ |
2618 | current->jobctl |= JOBCTL_STOP_DEQUEUED; |
2619 | signr = ptrace_stop(exit_code: signr, CLD_TRAPPED, message: 0, info); |
2620 | |
2621 | /* We're back. Did the debugger cancel the sig? */ |
2622 | if (signr == 0) |
2623 | return signr; |
2624 | |
2625 | /* |
2626 | * Update the siginfo structure if the signal has |
2627 | * changed. If the debugger wanted something |
2628 | * specific in the siginfo structure then it should |
2629 | * have updated *info via PTRACE_SETSIGINFO. |
2630 | */ |
2631 | if (signr != info->si_signo) { |
2632 | clear_siginfo(info); |
2633 | info->si_signo = signr; |
2634 | info->si_errno = 0; |
2635 | info->si_code = SI_USER; |
2636 | rcu_read_lock(); |
2637 | info->si_pid = task_pid_vnr(current->parent); |
2638 | info->si_uid = from_kuid_munged(current_user_ns(), |
2639 | task_uid(current->parent)); |
2640 | rcu_read_unlock(); |
2641 | } |
2642 | |
2643 | /* If the (new) signal is now blocked, requeue it. */ |
2644 | if (sigismember(set: ¤t->blocked, sig: signr) || |
2645 | fatal_signal_pending(current)) { |
2646 | send_signal_locked(sig: signr, info, current, type); |
2647 | signr = 0; |
2648 | } |
2649 | |
2650 | return signr; |
2651 | } |
2652 | |
2653 | static void hide_si_addr_tag_bits(struct ksignal *ksig) |
2654 | { |
2655 | switch (siginfo_layout(sig: ksig->sig, si_code: ksig->info.si_code)) { |
2656 | case SIL_FAULT: |
2657 | case SIL_FAULT_TRAPNO: |
2658 | case SIL_FAULT_MCEERR: |
2659 | case SIL_FAULT_BNDERR: |
2660 | case SIL_FAULT_PKUERR: |
2661 | case SIL_FAULT_PERF_EVENT: |
2662 | ksig->info.si_addr = arch_untagged_si_addr( |
2663 | addr: ksig->info.si_addr, sig: ksig->sig, si_code: ksig->info.si_code); |
2664 | break; |
2665 | case SIL_KILL: |
2666 | case SIL_TIMER: |
2667 | case SIL_POLL: |
2668 | case SIL_CHLD: |
2669 | case SIL_RT: |
2670 | case SIL_SYS: |
2671 | break; |
2672 | } |
2673 | } |
2674 | |
2675 | bool get_signal(struct ksignal *ksig) |
2676 | { |
2677 | struct sighand_struct *sighand = current->sighand; |
2678 | struct signal_struct *signal = current->signal; |
2679 | int signr; |
2680 | |
2681 | clear_notify_signal(); |
2682 | if (unlikely(task_work_pending(current))) |
2683 | task_work_run(); |
2684 | |
2685 | if (!task_sigpending(current)) |
2686 | return false; |
2687 | |
2688 | if (unlikely(uprobe_deny_signal())) |
2689 | return false; |
2690 | |
2691 | /* |
2692 | * Do this once, we can't return to user-mode if freezing() == T. |
2693 | * do_signal_stop() and ptrace_stop() do freezable_schedule() and |
2694 | * thus do not need another check after return. |
2695 | */ |
2696 | try_to_freeze(); |
2697 | |
2698 | relock: |
2699 | spin_lock_irq(lock: &sighand->siglock); |
2700 | |
2701 | /* |
2702 | * Every stopped thread goes here after wakeup. Check to see if |
2703 | * we should notify the parent, prepare_signal(SIGCONT) encodes |
2704 | * the CLD_ si_code into SIGNAL_CLD_MASK bits. |
2705 | */ |
2706 | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { |
2707 | int why; |
2708 | |
2709 | if (signal->flags & SIGNAL_CLD_CONTINUED) |
2710 | why = CLD_CONTINUED; |
2711 | else |
2712 | why = CLD_STOPPED; |
2713 | |
2714 | signal->flags &= ~SIGNAL_CLD_MASK; |
2715 | |
2716 | spin_unlock_irq(lock: &sighand->siglock); |
2717 | |
2718 | /* |
2719 | * Notify the parent that we're continuing. This event is |
2720 | * always per-process and doesn't make whole lot of sense |
2721 | * for ptracers, who shouldn't consume the state via |
2722 | * wait(2) either, but, for backward compatibility, notify |
2723 | * the ptracer of the group leader too unless it's gonna be |
2724 | * a duplicate. |
2725 | */ |
2726 | read_lock(&tasklist_lock); |
2727 | do_notify_parent_cldstop(current, for_ptracer: false, why); |
2728 | |
2729 | if (ptrace_reparented(current->group_leader)) |
2730 | do_notify_parent_cldstop(current->group_leader, |
2731 | for_ptracer: true, why); |
2732 | read_unlock(&tasklist_lock); |
2733 | |
2734 | goto relock; |
2735 | } |
2736 | |
2737 | for (;;) { |
2738 | struct k_sigaction *ka; |
2739 | enum pid_type type; |
2740 | |
2741 | /* Has this task already been marked for death? */ |
2742 | if ((signal->flags & SIGNAL_GROUP_EXIT) || |
2743 | signal->group_exec_task) { |
2744 | signr = SIGKILL; |
2745 | sigdelset(set: ¤t->pending.signal, SIGKILL); |
2746 | trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, |
2747 | ka: &sighand->action[SIGKILL-1]); |
2748 | recalc_sigpending(); |
2749 | /* |
2750 | * implies do_group_exit() or return to PF_USER_WORKER, |
2751 | * no need to initialize ksig->info/etc. |
2752 | */ |
2753 | goto fatal; |
2754 | } |
2755 | |
2756 | if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && |
2757 | do_signal_stop(signr: 0)) |
2758 | goto relock; |
2759 | |
2760 | if (unlikely(current->jobctl & |
2761 | (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { |
2762 | if (current->jobctl & JOBCTL_TRAP_MASK) { |
2763 | do_jobctl_trap(); |
2764 | spin_unlock_irq(lock: &sighand->siglock); |
2765 | } else if (current->jobctl & JOBCTL_TRAP_FREEZE) |
2766 | do_freezer_trap(); |
2767 | |
2768 | goto relock; |
2769 | } |
2770 | |
2771 | /* |
2772 | * If the task is leaving the frozen state, let's update |
2773 | * cgroup counters and reset the frozen bit. |
2774 | */ |
2775 | if (unlikely(cgroup_task_frozen(current))) { |
2776 | spin_unlock_irq(lock: &sighand->siglock); |
2777 | cgroup_leave_frozen(always_leave: false); |
2778 | goto relock; |
2779 | } |
2780 | |
2781 | /* |
2782 | * Signals generated by the execution of an instruction |
2783 | * need to be delivered before any other pending signals |
2784 | * so that the instruction pointer in the signal stack |
2785 | * frame points to the faulting instruction. |
2786 | */ |
2787 | type = PIDTYPE_PID; |
2788 | signr = dequeue_synchronous_signal(info: &ksig->info); |
2789 | if (!signr) |
2790 | signr = dequeue_signal(current, ¤t->blocked, |
2791 | &ksig->info, &type); |
2792 | |
2793 | if (!signr) |
2794 | break; /* will return 0 */ |
2795 | |
2796 | if (unlikely(current->ptrace) && (signr != SIGKILL) && |
2797 | !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { |
2798 | signr = ptrace_signal(signr, info: &ksig->info, type); |
2799 | if (!signr) |
2800 | continue; |
2801 | } |
2802 | |
2803 | ka = &sighand->action[signr-1]; |
2804 | |
2805 | /* Trace actually delivered signals. */ |
2806 | trace_signal_deliver(sig: signr, info: &ksig->info, ka); |
2807 | |
2808 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
2809 | continue; |
2810 | if (ka->sa.sa_handler != SIG_DFL) { |
2811 | /* Run the handler. */ |
2812 | ksig->ka = *ka; |
2813 | |
2814 | if (ka->sa.sa_flags & SA_ONESHOT) |
2815 | ka->sa.sa_handler = SIG_DFL; |
2816 | |
2817 | break; /* will return non-zero "signr" value */ |
2818 | } |
2819 | |
2820 | /* |
2821 | * Now we are doing the default action for this signal. |
2822 | */ |
2823 | if (sig_kernel_ignore(signr)) /* Default is nothing. */ |
2824 | continue; |
2825 | |
2826 | /* |
2827 | * Global init gets no signals it doesn't want. |
2828 | * Container-init gets no signals it doesn't want from same |
2829 | * container. |
2830 | * |
2831 | * Note that if global/container-init sees a sig_kernel_only() |
2832 | * signal here, the signal must have been generated internally |
2833 | * or must have come from an ancestor namespace. In either |
2834 | * case, the signal cannot be dropped. |
2835 | */ |
2836 | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && |
2837 | !sig_kernel_only(signr)) |
2838 | continue; |
2839 | |
2840 | if (sig_kernel_stop(signr)) { |
2841 | /* |
2842 | * The default action is to stop all threads in |
2843 | * the thread group. The job control signals |
2844 | * do nothing in an orphaned pgrp, but SIGSTOP |
2845 | * always works. Note that siglock needs to be |
2846 | * dropped during the call to is_orphaned_pgrp() |
2847 | * because of lock ordering with tasklist_lock. |
2848 | * This allows an intervening SIGCONT to be posted. |
2849 | * We need to check for that and bail out if necessary. |
2850 | */ |
2851 | if (signr != SIGSTOP) { |
2852 | spin_unlock_irq(lock: &sighand->siglock); |
2853 | |
2854 | /* signals can be posted during this window */ |
2855 | |
2856 | if (is_current_pgrp_orphaned()) |
2857 | goto relock; |
2858 | |
2859 | spin_lock_irq(lock: &sighand->siglock); |
2860 | } |
2861 | |
2862 | if (likely(do_signal_stop(signr))) { |
2863 | /* It released the siglock. */ |
2864 | goto relock; |
2865 | } |
2866 | |
2867 | /* |
2868 | * We didn't actually stop, due to a race |
2869 | * with SIGCONT or something like that. |
2870 | */ |
2871 | continue; |
2872 | } |
2873 | |
2874 | fatal: |
2875 | spin_unlock_irq(lock: &sighand->siglock); |
2876 | if (unlikely(cgroup_task_frozen(current))) |
2877 | cgroup_leave_frozen(always_leave: true); |
2878 | |
2879 | /* |
2880 | * Anything else is fatal, maybe with a core dump. |
2881 | */ |
2882 | current->flags |= PF_SIGNALED; |
2883 | |
2884 | if (sig_kernel_coredump(signr)) { |
2885 | if (print_fatal_signals) |
2886 | print_fatal_signal(signr); |
2887 | proc_coredump_connector(current); |
2888 | /* |
2889 | * If it was able to dump core, this kills all |
2890 | * other threads in the group and synchronizes with |
2891 | * their demise. If we lost the race with another |
2892 | * thread getting here, it set group_exit_code |
2893 | * first and our do_group_exit call below will use |
2894 | * that value and ignore the one we pass it. |
2895 | */ |
2896 | do_coredump(siginfo: &ksig->info); |
2897 | } |
2898 | |
2899 | /* |
2900 | * PF_USER_WORKER threads will catch and exit on fatal signals |
2901 | * themselves. They have cleanup that must be performed, so we |
2902 | * cannot call do_exit() on their behalf. Note that ksig won't |
2903 | * be properly initialized, PF_USER_WORKER's shouldn't use it. |
2904 | */ |
2905 | if (current->flags & PF_USER_WORKER) |
2906 | goto out; |
2907 | |
2908 | /* |
2909 | * Death signals, no core dump. |
2910 | */ |
2911 | do_group_exit(signr); |
2912 | /* NOTREACHED */ |
2913 | } |
2914 | spin_unlock_irq(lock: &sighand->siglock); |
2915 | |
2916 | ksig->sig = signr; |
2917 | |
2918 | if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) |
2919 | hide_si_addr_tag_bits(ksig); |
2920 | out: |
2921 | return signr > 0; |
2922 | } |
2923 | |
2924 | /** |
2925 | * signal_delivered - called after signal delivery to update blocked signals |
2926 | * @ksig: kernel signal struct |
2927 | * @stepping: nonzero if debugger single-step or block-step in use |
2928 | * |
2929 | * This function should be called when a signal has successfully been |
2930 | * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask |
2931 | * is always blocked), and the signal itself is blocked unless %SA_NODEFER |
2932 | * is set in @ksig->ka.sa.sa_flags. Tracing is notified. |
2933 | */ |
2934 | static void signal_delivered(struct ksignal *ksig, int stepping) |
2935 | { |
2936 | sigset_t blocked; |
2937 | |
2938 | /* A signal was successfully delivered, and the |
2939 | saved sigmask was stored on the signal frame, |
2940 | and will be restored by sigreturn. So we can |
2941 | simply clear the restore sigmask flag. */ |
2942 | clear_restore_sigmask(); |
2943 | |
2944 | sigorsets(r: &blocked, a: ¤t->blocked, b: &ksig->ka.sa.sa_mask); |
2945 | if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) |
2946 | sigaddset(set: &blocked, sig: ksig->sig); |
2947 | set_current_blocked(&blocked); |
2948 | if (current->sas_ss_flags & SS_AUTODISARM) |
2949 | sas_ss_reset(current); |
2950 | if (stepping) |
2951 | ptrace_notify(SIGTRAP, message: 0); |
2952 | } |
2953 | |
2954 | void signal_setup_done(int failed, struct ksignal *ksig, int stepping) |
2955 | { |
2956 | if (failed) |
2957 | force_sigsegv(sig: ksig->sig); |
2958 | else |
2959 | signal_delivered(ksig, stepping); |
2960 | } |
2961 | |
2962 | /* |
2963 | * It could be that complete_signal() picked us to notify about the |
2964 | * group-wide signal. Other threads should be notified now to take |
2965 | * the shared signals in @which since we will not. |
2966 | */ |
2967 | static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) |
2968 | { |
2969 | sigset_t retarget; |
2970 | struct task_struct *t; |
2971 | |
2972 | sigandsets(r: &retarget, a: &tsk->signal->shared_pending.signal, b: which); |
2973 | if (sigisemptyset(set: &retarget)) |
2974 | return; |
2975 | |
2976 | for_other_threads(tsk, t) { |
2977 | if (t->flags & PF_EXITING) |
2978 | continue; |
2979 | |
2980 | if (!has_pending_signals(signal: &retarget, blocked: &t->blocked)) |
2981 | continue; |
2982 | /* Remove the signals this thread can handle. */ |
2983 | sigandsets(r: &retarget, a: &retarget, b: &t->blocked); |
2984 | |
2985 | if (!task_sigpending(p: t)) |
2986 | signal_wake_up(t, fatal: 0); |
2987 | |
2988 | if (sigisemptyset(set: &retarget)) |
2989 | break; |
2990 | } |
2991 | } |
2992 | |
2993 | void exit_signals(struct task_struct *tsk) |
2994 | { |
2995 | int group_stop = 0; |
2996 | sigset_t unblocked; |
2997 | |
2998 | /* |
2999 | * @tsk is about to have PF_EXITING set - lock out users which |
3000 | * expect stable threadgroup. |
3001 | */ |
3002 | cgroup_threadgroup_change_begin(tsk); |
3003 | |
3004 | if (thread_group_empty(p: tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { |
3005 | sched_mm_cid_exit_signals(t: tsk); |
3006 | tsk->flags |= PF_EXITING; |
3007 | cgroup_threadgroup_change_end(tsk); |
3008 | return; |
3009 | } |
3010 | |
3011 | spin_lock_irq(lock: &tsk->sighand->siglock); |
3012 | /* |
3013 | * From now this task is not visible for group-wide signals, |
3014 | * see wants_signal(), do_signal_stop(). |
3015 | */ |
3016 | sched_mm_cid_exit_signals(t: tsk); |
3017 | tsk->flags |= PF_EXITING; |
3018 | |
3019 | cgroup_threadgroup_change_end(tsk); |
3020 | |
3021 | if (!task_sigpending(p: tsk)) |
3022 | goto out; |
3023 | |
3024 | unblocked = tsk->blocked; |
3025 | signotset(set: &unblocked); |
3026 | retarget_shared_pending(tsk, which: &unblocked); |
3027 | |
3028 | if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && |
3029 | task_participate_group_stop(task: tsk)) |
3030 | group_stop = CLD_STOPPED; |
3031 | out: |
3032 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
3033 | |
3034 | /* |
3035 | * If group stop has completed, deliver the notification. This |
3036 | * should always go to the real parent of the group leader. |
3037 | */ |
3038 | if (unlikely(group_stop)) { |
3039 | read_lock(&tasklist_lock); |
3040 | do_notify_parent_cldstop(tsk, for_ptracer: false, why: group_stop); |
3041 | read_unlock(&tasklist_lock); |
3042 | } |
3043 | } |
3044 | |
3045 | /* |
3046 | * System call entry points. |
3047 | */ |
3048 | |
3049 | /** |
3050 | * sys_restart_syscall - restart a system call |
3051 | */ |
3052 | SYSCALL_DEFINE0(restart_syscall) |
3053 | { |
3054 | struct restart_block *restart = ¤t->restart_block; |
3055 | return restart->fn(restart); |
3056 | } |
3057 | |
3058 | long do_no_restart_syscall(struct restart_block *param) |
3059 | { |
3060 | return -EINTR; |
3061 | } |
3062 | |
3063 | static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) |
3064 | { |
3065 | if (task_sigpending(p: tsk) && !thread_group_empty(p: tsk)) { |
3066 | sigset_t newblocked; |
3067 | /* A set of now blocked but previously unblocked signals. */ |
3068 | sigandnsets(r: &newblocked, a: newset, b: ¤t->blocked); |
3069 | retarget_shared_pending(tsk, which: &newblocked); |
3070 | } |
3071 | tsk->blocked = *newset; |
3072 | recalc_sigpending(); |
3073 | } |
3074 | |
3075 | /** |
3076 | * set_current_blocked - change current->blocked mask |
3077 | * @newset: new mask |
3078 | * |
3079 | * It is wrong to change ->blocked directly, this helper should be used |
3080 | * to ensure the process can't miss a shared signal we are going to block. |
3081 | */ |
3082 | void set_current_blocked(sigset_t *newset) |
3083 | { |
3084 | sigdelsetmask(set: newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); |
3085 | __set_current_blocked(newset); |
3086 | } |
3087 | |
3088 | void __set_current_blocked(const sigset_t *newset) |
3089 | { |
3090 | struct task_struct *tsk = current; |
3091 | |
3092 | /* |
3093 | * In case the signal mask hasn't changed, there is nothing we need |
3094 | * to do. The current->blocked shouldn't be modified by other task. |
3095 | */ |
3096 | if (sigequalsets(set1: &tsk->blocked, set2: newset)) |
3097 | return; |
3098 | |
3099 | spin_lock_irq(lock: &tsk->sighand->siglock); |
3100 | __set_task_blocked(tsk, newset); |
3101 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
3102 | } |
3103 | |
3104 | /* |
3105 | * This is also useful for kernel threads that want to temporarily |
3106 | * (or permanently) block certain signals. |
3107 | * |
3108 | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel |
3109 | * interface happily blocks "unblockable" signals like SIGKILL |
3110 | * and friends. |
3111 | */ |
3112 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
3113 | { |
3114 | struct task_struct *tsk = current; |
3115 | sigset_t newset; |
3116 | |
3117 | /* Lockless, only current can change ->blocked, never from irq */ |
3118 | if (oldset) |
3119 | *oldset = tsk->blocked; |
3120 | |
3121 | switch (how) { |
3122 | case SIG_BLOCK: |
3123 | sigorsets(r: &newset, a: &tsk->blocked, b: set); |
3124 | break; |
3125 | case SIG_UNBLOCK: |
3126 | sigandnsets(r: &newset, a: &tsk->blocked, b: set); |
3127 | break; |
3128 | case SIG_SETMASK: |
3129 | newset = *set; |
3130 | break; |
3131 | default: |
3132 | return -EINVAL; |
3133 | } |
3134 | |
3135 | __set_current_blocked(newset: &newset); |
3136 | return 0; |
3137 | } |
3138 | EXPORT_SYMBOL(sigprocmask); |
3139 | |
3140 | /* |
3141 | * The api helps set app-provided sigmasks. |
3142 | * |
3143 | * This is useful for syscalls such as ppoll, pselect, io_pgetevents and |
3144 | * epoll_pwait where a new sigmask is passed from userland for the syscalls. |
3145 | * |
3146 | * Note that it does set_restore_sigmask() in advance, so it must be always |
3147 | * paired with restore_saved_sigmask_unless() before return from syscall. |
3148 | */ |
3149 | int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) |
3150 | { |
3151 | sigset_t kmask; |
3152 | |
3153 | if (!umask) |
3154 | return 0; |
3155 | if (sigsetsize != sizeof(sigset_t)) |
3156 | return -EINVAL; |
3157 | if (copy_from_user(to: &kmask, from: umask, n: sizeof(sigset_t))) |
3158 | return -EFAULT; |
3159 | |
3160 | set_restore_sigmask(); |
3161 | current->saved_sigmask = current->blocked; |
3162 | set_current_blocked(&kmask); |
3163 | |
3164 | return 0; |
3165 | } |
3166 | |
3167 | #ifdef CONFIG_COMPAT |
3168 | int set_compat_user_sigmask(const compat_sigset_t __user *umask, |
3169 | size_t sigsetsize) |
3170 | { |
3171 | sigset_t kmask; |
3172 | |
3173 | if (!umask) |
3174 | return 0; |
3175 | if (sigsetsize != sizeof(compat_sigset_t)) |
3176 | return -EINVAL; |
3177 | if (get_compat_sigset(set: &kmask, compat: umask)) |
3178 | return -EFAULT; |
3179 | |
3180 | set_restore_sigmask(); |
3181 | current->saved_sigmask = current->blocked; |
3182 | set_current_blocked(&kmask); |
3183 | |
3184 | return 0; |
3185 | } |
3186 | #endif |
3187 | |
3188 | /** |
3189 | * sys_rt_sigprocmask - change the list of currently blocked signals |
3190 | * @how: whether to add, remove, or set signals |
3191 | * @nset: stores pending signals |
3192 | * @oset: previous value of signal mask if non-null |
3193 | * @sigsetsize: size of sigset_t type |
3194 | */ |
3195 | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, |
3196 | sigset_t __user *, oset, size_t, sigsetsize) |
3197 | { |
3198 | sigset_t old_set, new_set; |
3199 | int error; |
3200 | |
3201 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
3202 | if (sigsetsize != sizeof(sigset_t)) |
3203 | return -EINVAL; |
3204 | |
3205 | old_set = current->blocked; |
3206 | |
3207 | if (nset) { |
3208 | if (copy_from_user(to: &new_set, from: nset, n: sizeof(sigset_t))) |
3209 | return -EFAULT; |
3210 | sigdelsetmask(set: &new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
3211 | |
3212 | error = sigprocmask(how, &new_set, NULL); |
3213 | if (error) |
3214 | return error; |
3215 | } |
3216 | |
3217 | if (oset) { |
3218 | if (copy_to_user(to: oset, from: &old_set, n: sizeof(sigset_t))) |
3219 | return -EFAULT; |
3220 | } |
3221 | |
3222 | return 0; |
3223 | } |
3224 | |
3225 | #ifdef CONFIG_COMPAT |
3226 | COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, |
3227 | compat_sigset_t __user *, oset, compat_size_t, sigsetsize) |
3228 | { |
3229 | sigset_t old_set = current->blocked; |
3230 | |
3231 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
3232 | if (sigsetsize != sizeof(sigset_t)) |
3233 | return -EINVAL; |
3234 | |
3235 | if (nset) { |
3236 | sigset_t new_set; |
3237 | int error; |
3238 | if (get_compat_sigset(set: &new_set, compat: nset)) |
3239 | return -EFAULT; |
3240 | sigdelsetmask(set: &new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
3241 | |
3242 | error = sigprocmask(how, &new_set, NULL); |
3243 | if (error) |
3244 | return error; |
3245 | } |
3246 | return oset ? put_compat_sigset(compat: oset, set: &old_set, size: sizeof(*oset)) : 0; |
3247 | } |
3248 | #endif |
3249 | |
3250 | static void do_sigpending(sigset_t *set) |
3251 | { |
3252 | spin_lock_irq(lock: ¤t->sighand->siglock); |
3253 | sigorsets(r: set, a: ¤t->pending.signal, |
3254 | b: ¤t->signal->shared_pending.signal); |
3255 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
3256 | |
3257 | /* Outside the lock because only this thread touches it. */ |
3258 | sigandsets(r: set, a: ¤t->blocked, b: set); |
3259 | } |
3260 | |
3261 | /** |
3262 | * sys_rt_sigpending - examine a pending signal that has been raised |
3263 | * while blocked |
3264 | * @uset: stores pending signals |
3265 | * @sigsetsize: size of sigset_t type or larger |
3266 | */ |
3267 | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) |
3268 | { |
3269 | sigset_t set; |
3270 | |
3271 | if (sigsetsize > sizeof(*uset)) |
3272 | return -EINVAL; |
3273 | |
3274 | do_sigpending(set: &set); |
3275 | |
3276 | if (copy_to_user(to: uset, from: &set, n: sigsetsize)) |
3277 | return -EFAULT; |
3278 | |
3279 | return 0; |
3280 | } |
3281 | |
3282 | #ifdef CONFIG_COMPAT |
3283 | COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, |
3284 | compat_size_t, sigsetsize) |
3285 | { |
3286 | sigset_t set; |
3287 | |
3288 | if (sigsetsize > sizeof(*uset)) |
3289 | return -EINVAL; |
3290 | |
3291 | do_sigpending(set: &set); |
3292 | |
3293 | return put_compat_sigset(compat: uset, set: &set, size: sigsetsize); |
3294 | } |
3295 | #endif |
3296 | |
3297 | static const struct { |
3298 | unsigned char limit, layout; |
3299 | } sig_sicodes[] = { |
3300 | [SIGILL] = { NSIGILL, SIL_FAULT }, |
3301 | [SIGFPE] = { NSIGFPE, SIL_FAULT }, |
3302 | [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, |
3303 | [SIGBUS] = { NSIGBUS, SIL_FAULT }, |
3304 | [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, |
3305 | #if defined(SIGEMT) |
3306 | [SIGEMT] = { NSIGEMT, SIL_FAULT }, |
3307 | #endif |
3308 | [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, |
3309 | [SIGPOLL] = { NSIGPOLL, SIL_POLL }, |
3310 | [SIGSYS] = { NSIGSYS, SIL_SYS }, |
3311 | }; |
3312 | |
3313 | static bool known_siginfo_layout(unsigned sig, int si_code) |
3314 | { |
3315 | if (si_code == SI_KERNEL) |
3316 | return true; |
3317 | else if ((si_code > SI_USER)) { |
3318 | if (sig_specific_sicodes(sig)) { |
3319 | if (si_code <= sig_sicodes[sig].limit) |
3320 | return true; |
3321 | } |
3322 | else if (si_code <= NSIGPOLL) |
3323 | return true; |
3324 | } |
3325 | else if (si_code >= SI_DETHREAD) |
3326 | return true; |
3327 | else if (si_code == SI_ASYNCNL) |
3328 | return true; |
3329 | return false; |
3330 | } |
3331 | |
3332 | enum siginfo_layout siginfo_layout(unsigned sig, int si_code) |
3333 | { |
3334 | enum siginfo_layout layout = SIL_KILL; |
3335 | if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { |
3336 | if ((sig < ARRAY_SIZE(sig_sicodes)) && |
3337 | (si_code <= sig_sicodes[sig].limit)) { |
3338 | layout = sig_sicodes[sig].layout; |
3339 | /* Handle the exceptions */ |
3340 | if ((sig == SIGBUS) && |
3341 | (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) |
3342 | layout = SIL_FAULT_MCEERR; |
3343 | else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) |
3344 | layout = SIL_FAULT_BNDERR; |
3345 | #ifdef SEGV_PKUERR |
3346 | else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) |
3347 | layout = SIL_FAULT_PKUERR; |
3348 | #endif |
3349 | else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) |
3350 | layout = SIL_FAULT_PERF_EVENT; |
3351 | else if (IS_ENABLED(CONFIG_SPARC) && |
3352 | (sig == SIGILL) && (si_code == ILL_ILLTRP)) |
3353 | layout = SIL_FAULT_TRAPNO; |
3354 | else if (IS_ENABLED(CONFIG_ALPHA) && |
3355 | ((sig == SIGFPE) || |
3356 | ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) |
3357 | layout = SIL_FAULT_TRAPNO; |
3358 | } |
3359 | else if (si_code <= NSIGPOLL) |
3360 | layout = SIL_POLL; |
3361 | } else { |
3362 | if (si_code == SI_TIMER) |
3363 | layout = SIL_TIMER; |
3364 | else if (si_code == SI_SIGIO) |
3365 | layout = SIL_POLL; |
3366 | else if (si_code < 0) |
3367 | layout = SIL_RT; |
3368 | } |
3369 | return layout; |
3370 | } |
3371 | |
3372 | static inline char __user *si_expansion(const siginfo_t __user *info) |
3373 | { |
3374 | return ((char __user *)info) + sizeof(struct kernel_siginfo); |
3375 | } |
3376 | |
3377 | int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) |
3378 | { |
3379 | char __user *expansion = si_expansion(info: to); |
3380 | if (copy_to_user(to, from , n: sizeof(struct kernel_siginfo))) |
3381 | return -EFAULT; |
3382 | if (clear_user(to: expansion, SI_EXPANSION_SIZE)) |
3383 | return -EFAULT; |
3384 | return 0; |
3385 | } |
3386 | |
3387 | static int post_copy_siginfo_from_user(kernel_siginfo_t *info, |
3388 | const siginfo_t __user *from) |
3389 | { |
3390 | if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { |
3391 | char __user *expansion = si_expansion(info: from); |
3392 | char buf[SI_EXPANSION_SIZE]; |
3393 | int i; |
3394 | /* |
3395 | * An unknown si_code might need more than |
3396 | * sizeof(struct kernel_siginfo) bytes. Verify all of the |
3397 | * extra bytes are 0. This guarantees copy_siginfo_to_user |
3398 | * will return this data to userspace exactly. |
3399 | */ |
3400 | if (copy_from_user(to: &buf, from: expansion, SI_EXPANSION_SIZE)) |
3401 | return -EFAULT; |
3402 | for (i = 0; i < SI_EXPANSION_SIZE; i++) { |
3403 | if (buf[i] != 0) |
3404 | return -E2BIG; |
3405 | } |
3406 | } |
3407 | return 0; |
3408 | } |
3409 | |
3410 | static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, |
3411 | const siginfo_t __user *from) |
3412 | { |
3413 | if (copy_from_user(to, from, n: sizeof(struct kernel_siginfo))) |
3414 | return -EFAULT; |
3415 | to->si_signo = signo; |
3416 | return post_copy_siginfo_from_user(info: to, from); |
3417 | } |
3418 | |
3419 | int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) |
3420 | { |
3421 | if (copy_from_user(to, from, n: sizeof(struct kernel_siginfo))) |
3422 | return -EFAULT; |
3423 | return post_copy_siginfo_from_user(info: to, from); |
3424 | } |
3425 | |
3426 | #ifdef CONFIG_COMPAT |
3427 | /** |
3428 | * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo |
3429 | * @to: compat siginfo destination |
3430 | * @from: kernel siginfo source |
3431 | * |
3432 | * Note: This function does not work properly for the SIGCHLD on x32, but |
3433 | * fortunately it doesn't have to. The only valid callers for this function are |
3434 | * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. |
3435 | * The latter does not care because SIGCHLD will never cause a coredump. |
3436 | */ |
3437 | void copy_siginfo_to_external32(struct compat_siginfo *to, |
3438 | const struct kernel_siginfo *from) |
3439 | { |
3440 | memset(to, 0, sizeof(*to)); |
3441 | |
3442 | to->si_signo = from->si_signo; |
3443 | to->si_errno = from->si_errno; |
3444 | to->si_code = from->si_code; |
3445 | switch(siginfo_layout(sig: from->si_signo, si_code: from->si_code)) { |
3446 | case SIL_KILL: |
3447 | to->si_pid = from->si_pid; |
3448 | to->si_uid = from->si_uid; |
3449 | break; |
3450 | case SIL_TIMER: |
3451 | to->si_tid = from->si_tid; |
3452 | to->si_overrun = from->si_overrun; |
3453 | to->si_int = from->si_int; |
3454 | break; |
3455 | case SIL_POLL: |
3456 | to->si_band = from->si_band; |
3457 | to->si_fd = from->si_fd; |
3458 | break; |
3459 | case SIL_FAULT: |
3460 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3461 | break; |
3462 | case SIL_FAULT_TRAPNO: |
3463 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3464 | to->si_trapno = from->si_trapno; |
3465 | break; |
3466 | case SIL_FAULT_MCEERR: |
3467 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3468 | to->si_addr_lsb = from->si_addr_lsb; |
3469 | break; |
3470 | case SIL_FAULT_BNDERR: |
3471 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3472 | to->si_lower = ptr_to_compat(uptr: from->si_lower); |
3473 | to->si_upper = ptr_to_compat(uptr: from->si_upper); |
3474 | break; |
3475 | case SIL_FAULT_PKUERR: |
3476 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3477 | to->si_pkey = from->si_pkey; |
3478 | break; |
3479 | case SIL_FAULT_PERF_EVENT: |
3480 | to->si_addr = ptr_to_compat(uptr: from->si_addr); |
3481 | to->si_perf_data = from->si_perf_data; |
3482 | to->si_perf_type = from->si_perf_type; |
3483 | to->si_perf_flags = from->si_perf_flags; |
3484 | break; |
3485 | case SIL_CHLD: |
3486 | to->si_pid = from->si_pid; |
3487 | to->si_uid = from->si_uid; |
3488 | to->si_status = from->si_status; |
3489 | to->si_utime = from->si_utime; |
3490 | to->si_stime = from->si_stime; |
3491 | break; |
3492 | case SIL_RT: |
3493 | to->si_pid = from->si_pid; |
3494 | to->si_uid = from->si_uid; |
3495 | to->si_int = from->si_int; |
3496 | break; |
3497 | case SIL_SYS: |
3498 | to->si_call_addr = ptr_to_compat(uptr: from->si_call_addr); |
3499 | to->si_syscall = from->si_syscall; |
3500 | to->si_arch = from->si_arch; |
3501 | break; |
3502 | } |
3503 | } |
3504 | |
3505 | int __copy_siginfo_to_user32(struct compat_siginfo __user *to, |
3506 | const struct kernel_siginfo *from) |
3507 | { |
3508 | struct compat_siginfo new; |
3509 | |
3510 | copy_siginfo_to_external32(to: &new, from); |
3511 | if (copy_to_user(to, from: &new, n: sizeof(struct compat_siginfo))) |
3512 | return -EFAULT; |
3513 | return 0; |
3514 | } |
3515 | |
3516 | static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, |
3517 | const struct compat_siginfo *from) |
3518 | { |
3519 | clear_siginfo(info: to); |
3520 | to->si_signo = from->si_signo; |
3521 | to->si_errno = from->si_errno; |
3522 | to->si_code = from->si_code; |
3523 | switch(siginfo_layout(sig: from->si_signo, si_code: from->si_code)) { |
3524 | case SIL_KILL: |
3525 | to->si_pid = from->si_pid; |
3526 | to->si_uid = from->si_uid; |
3527 | break; |
3528 | case SIL_TIMER: |
3529 | to->si_tid = from->si_tid; |
3530 | to->si_overrun = from->si_overrun; |
3531 | to->si_int = from->si_int; |
3532 | break; |
3533 | case SIL_POLL: |
3534 | to->si_band = from->si_band; |
3535 | to->si_fd = from->si_fd; |
3536 | break; |
3537 | case SIL_FAULT: |
3538 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3539 | break; |
3540 | case SIL_FAULT_TRAPNO: |
3541 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3542 | to->si_trapno = from->si_trapno; |
3543 | break; |
3544 | case SIL_FAULT_MCEERR: |
3545 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3546 | to->si_addr_lsb = from->si_addr_lsb; |
3547 | break; |
3548 | case SIL_FAULT_BNDERR: |
3549 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3550 | to->si_lower = compat_ptr(uptr: from->si_lower); |
3551 | to->si_upper = compat_ptr(uptr: from->si_upper); |
3552 | break; |
3553 | case SIL_FAULT_PKUERR: |
3554 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3555 | to->si_pkey = from->si_pkey; |
3556 | break; |
3557 | case SIL_FAULT_PERF_EVENT: |
3558 | to->si_addr = compat_ptr(uptr: from->si_addr); |
3559 | to->si_perf_data = from->si_perf_data; |
3560 | to->si_perf_type = from->si_perf_type; |
3561 | to->si_perf_flags = from->si_perf_flags; |
3562 | break; |
3563 | case SIL_CHLD: |
3564 | to->si_pid = from->si_pid; |
3565 | to->si_uid = from->si_uid; |
3566 | to->si_status = from->si_status; |
3567 | #ifdef CONFIG_X86_X32_ABI |
3568 | if (in_x32_syscall()) { |
3569 | to->si_utime = from->_sifields._sigchld_x32._utime; |
3570 | to->si_stime = from->_sifields._sigchld_x32._stime; |
3571 | } else |
3572 | #endif |
3573 | { |
3574 | to->si_utime = from->si_utime; |
3575 | to->si_stime = from->si_stime; |
3576 | } |
3577 | break; |
3578 | case SIL_RT: |
3579 | to->si_pid = from->si_pid; |
3580 | to->si_uid = from->si_uid; |
3581 | to->si_int = from->si_int; |
3582 | break; |
3583 | case SIL_SYS: |
3584 | to->si_call_addr = compat_ptr(uptr: from->si_call_addr); |
3585 | to->si_syscall = from->si_syscall; |
3586 | to->si_arch = from->si_arch; |
3587 | break; |
3588 | } |
3589 | return 0; |
3590 | } |
3591 | |
3592 | static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, |
3593 | const struct compat_siginfo __user *ufrom) |
3594 | { |
3595 | struct compat_siginfo from; |
3596 | |
3597 | if (copy_from_user(to: &from, from: ufrom, n: sizeof(struct compat_siginfo))) |
3598 | return -EFAULT; |
3599 | |
3600 | from.si_signo = signo; |
3601 | return post_copy_siginfo_from_user32(to, from: &from); |
3602 | } |
3603 | |
3604 | int copy_siginfo_from_user32(struct kernel_siginfo *to, |
3605 | const struct compat_siginfo __user *ufrom) |
3606 | { |
3607 | struct compat_siginfo from; |
3608 | |
3609 | if (copy_from_user(to: &from, from: ufrom, n: sizeof(struct compat_siginfo))) |
3610 | return -EFAULT; |
3611 | |
3612 | return post_copy_siginfo_from_user32(to, from: &from); |
3613 | } |
3614 | #endif /* CONFIG_COMPAT */ |
3615 | |
3616 | /** |
3617 | * do_sigtimedwait - wait for queued signals specified in @which |
3618 | * @which: queued signals to wait for |
3619 | * @info: if non-null, the signal's siginfo is returned here |
3620 | * @ts: upper bound on process time suspension |
3621 | */ |
3622 | static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, |
3623 | const struct timespec64 *ts) |
3624 | { |
3625 | ktime_t *to = NULL, timeout = KTIME_MAX; |
3626 | struct task_struct *tsk = current; |
3627 | sigset_t mask = *which; |
3628 | enum pid_type type; |
3629 | int sig, ret = 0; |
3630 | |
3631 | if (ts) { |
3632 | if (!timespec64_valid(ts)) |
3633 | return -EINVAL; |
3634 | timeout = timespec64_to_ktime(ts: *ts); |
3635 | to = &timeout; |
3636 | } |
3637 | |
3638 | /* |
3639 | * Invert the set of allowed signals to get those we want to block. |
3640 | */ |
3641 | sigdelsetmask(set: &mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); |
3642 | signotset(set: &mask); |
3643 | |
3644 | spin_lock_irq(lock: &tsk->sighand->siglock); |
3645 | sig = dequeue_signal(tsk, &mask, info, &type); |
3646 | if (!sig && timeout) { |
3647 | /* |
3648 | * None ready, temporarily unblock those we're interested |
3649 | * while we are sleeping in so that we'll be awakened when |
3650 | * they arrive. Unblocking is always fine, we can avoid |
3651 | * set_current_blocked(). |
3652 | */ |
3653 | tsk->real_blocked = tsk->blocked; |
3654 | sigandsets(r: &tsk->blocked, a: &tsk->blocked, b: &mask); |
3655 | recalc_sigpending(); |
3656 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
3657 | |
3658 | __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
3659 | ret = schedule_hrtimeout_range(expires: to, delta: tsk->timer_slack_ns, |
3660 | mode: HRTIMER_MODE_REL); |
3661 | spin_lock_irq(lock: &tsk->sighand->siglock); |
3662 | __set_task_blocked(tsk, newset: &tsk->real_blocked); |
3663 | sigemptyset(set: &tsk->real_blocked); |
3664 | sig = dequeue_signal(tsk, &mask, info, &type); |
3665 | } |
3666 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
3667 | |
3668 | if (sig) |
3669 | return sig; |
3670 | return ret ? -EINTR : -EAGAIN; |
3671 | } |
3672 | |
3673 | /** |
3674 | * sys_rt_sigtimedwait - synchronously wait for queued signals specified |
3675 | * in @uthese |
3676 | * @uthese: queued signals to wait for |
3677 | * @uinfo: if non-null, the signal's siginfo is returned here |
3678 | * @uts: upper bound on process time suspension |
3679 | * @sigsetsize: size of sigset_t type |
3680 | */ |
3681 | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, |
3682 | siginfo_t __user *, uinfo, |
3683 | const struct __kernel_timespec __user *, uts, |
3684 | size_t, sigsetsize) |
3685 | { |
3686 | sigset_t these; |
3687 | struct timespec64 ts; |
3688 | kernel_siginfo_t info; |
3689 | int ret; |
3690 | |
3691 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
3692 | if (sigsetsize != sizeof(sigset_t)) |
3693 | return -EINVAL; |
3694 | |
3695 | if (copy_from_user(to: &these, from: uthese, n: sizeof(these))) |
3696 | return -EFAULT; |
3697 | |
3698 | if (uts) { |
3699 | if (get_timespec64(ts: &ts, uts)) |
3700 | return -EFAULT; |
3701 | } |
3702 | |
3703 | ret = do_sigtimedwait(which: &these, info: &info, ts: uts ? &ts : NULL); |
3704 | |
3705 | if (ret > 0 && uinfo) { |
3706 | if (copy_siginfo_to_user(to: uinfo, from: &info)) |
3707 | ret = -EFAULT; |
3708 | } |
3709 | |
3710 | return ret; |
3711 | } |
3712 | |
3713 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3714 | SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, |
3715 | siginfo_t __user *, uinfo, |
3716 | const struct old_timespec32 __user *, uts, |
3717 | size_t, sigsetsize) |
3718 | { |
3719 | sigset_t these; |
3720 | struct timespec64 ts; |
3721 | kernel_siginfo_t info; |
3722 | int ret; |
3723 | |
3724 | if (sigsetsize != sizeof(sigset_t)) |
3725 | return -EINVAL; |
3726 | |
3727 | if (copy_from_user(to: &these, from: uthese, n: sizeof(these))) |
3728 | return -EFAULT; |
3729 | |
3730 | if (uts) { |
3731 | if (get_old_timespec32(&ts, uts)) |
3732 | return -EFAULT; |
3733 | } |
3734 | |
3735 | ret = do_sigtimedwait(which: &these, info: &info, ts: uts ? &ts : NULL); |
3736 | |
3737 | if (ret > 0 && uinfo) { |
3738 | if (copy_siginfo_to_user(to: uinfo, from: &info)) |
3739 | ret = -EFAULT; |
3740 | } |
3741 | |
3742 | return ret; |
3743 | } |
3744 | #endif |
3745 | |
3746 | #ifdef CONFIG_COMPAT |
3747 | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, |
3748 | struct compat_siginfo __user *, uinfo, |
3749 | struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) |
3750 | { |
3751 | sigset_t s; |
3752 | struct timespec64 t; |
3753 | kernel_siginfo_t info; |
3754 | long ret; |
3755 | |
3756 | if (sigsetsize != sizeof(sigset_t)) |
3757 | return -EINVAL; |
3758 | |
3759 | if (get_compat_sigset(set: &s, compat: uthese)) |
3760 | return -EFAULT; |
3761 | |
3762 | if (uts) { |
3763 | if (get_timespec64(ts: &t, uts)) |
3764 | return -EFAULT; |
3765 | } |
3766 | |
3767 | ret = do_sigtimedwait(which: &s, info: &info, ts: uts ? &t : NULL); |
3768 | |
3769 | if (ret > 0 && uinfo) { |
3770 | if (copy_siginfo_to_user32(to: uinfo, from: &info)) |
3771 | ret = -EFAULT; |
3772 | } |
3773 | |
3774 | return ret; |
3775 | } |
3776 | |
3777 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3778 | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, |
3779 | struct compat_siginfo __user *, uinfo, |
3780 | struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) |
3781 | { |
3782 | sigset_t s; |
3783 | struct timespec64 t; |
3784 | kernel_siginfo_t info; |
3785 | long ret; |
3786 | |
3787 | if (sigsetsize != sizeof(sigset_t)) |
3788 | return -EINVAL; |
3789 | |
3790 | if (get_compat_sigset(set: &s, compat: uthese)) |
3791 | return -EFAULT; |
3792 | |
3793 | if (uts) { |
3794 | if (get_old_timespec32(&t, uts)) |
3795 | return -EFAULT; |
3796 | } |
3797 | |
3798 | ret = do_sigtimedwait(which: &s, info: &info, ts: uts ? &t : NULL); |
3799 | |
3800 | if (ret > 0 && uinfo) { |
3801 | if (copy_siginfo_to_user32(to: uinfo, from: &info)) |
3802 | ret = -EFAULT; |
3803 | } |
3804 | |
3805 | return ret; |
3806 | } |
3807 | #endif |
3808 | #endif |
3809 | |
3810 | static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, |
3811 | enum pid_type type) |
3812 | { |
3813 | clear_siginfo(info); |
3814 | info->si_signo = sig; |
3815 | info->si_errno = 0; |
3816 | info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; |
3817 | info->si_pid = task_tgid_vnr(current); |
3818 | info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); |
3819 | } |
3820 | |
3821 | /** |
3822 | * sys_kill - send a signal to a process |
3823 | * @pid: the PID of the process |
3824 | * @sig: signal to be sent |
3825 | */ |
3826 | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) |
3827 | { |
3828 | struct kernel_siginfo info; |
3829 | |
3830 | prepare_kill_siginfo(sig, info: &info, type: PIDTYPE_TGID); |
3831 | |
3832 | return kill_something_info(sig, info: &info, pid); |
3833 | } |
3834 | |
3835 | /* |
3836 | * Verify that the signaler and signalee either are in the same pid namespace |
3837 | * or that the signaler's pid namespace is an ancestor of the signalee's pid |
3838 | * namespace. |
3839 | */ |
3840 | static bool access_pidfd_pidns(struct pid *pid) |
3841 | { |
3842 | struct pid_namespace *active = task_active_pid_ns(current); |
3843 | struct pid_namespace *p = ns_of_pid(pid); |
3844 | |
3845 | for (;;) { |
3846 | if (!p) |
3847 | return false; |
3848 | if (p == active) |
3849 | break; |
3850 | p = p->parent; |
3851 | } |
3852 | |
3853 | return true; |
3854 | } |
3855 | |
3856 | static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, |
3857 | siginfo_t __user *info) |
3858 | { |
3859 | #ifdef CONFIG_COMPAT |
3860 | /* |
3861 | * Avoid hooking up compat syscalls and instead handle necessary |
3862 | * conversions here. Note, this is a stop-gap measure and should not be |
3863 | * considered a generic solution. |
3864 | */ |
3865 | if (in_compat_syscall()) |
3866 | return copy_siginfo_from_user32( |
3867 | to: kinfo, ufrom: (struct compat_siginfo __user *)info); |
3868 | #endif |
3869 | return copy_siginfo_from_user(to: kinfo, from: info); |
3870 | } |
3871 | |
3872 | static struct pid *pidfd_to_pid(const struct file *file) |
3873 | { |
3874 | struct pid *pid; |
3875 | |
3876 | pid = pidfd_pid(file); |
3877 | if (!IS_ERR(ptr: pid)) |
3878 | return pid; |
3879 | |
3880 | return tgid_pidfd_to_pid(file); |
3881 | } |
3882 | |
3883 | #define PIDFD_SEND_SIGNAL_FLAGS \ |
3884 | (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ |
3885 | PIDFD_SIGNAL_PROCESS_GROUP) |
3886 | |
3887 | /** |
3888 | * sys_pidfd_send_signal - Signal a process through a pidfd |
3889 | * @pidfd: file descriptor of the process |
3890 | * @sig: signal to send |
3891 | * @info: signal info |
3892 | * @flags: future flags |
3893 | * |
3894 | * Send the signal to the thread group or to the individual thread depending |
3895 | * on PIDFD_THREAD. |
3896 | * In the future extension to @flags may be used to override the default scope |
3897 | * of @pidfd. |
3898 | * |
3899 | * Return: 0 on success, negative errno on failure |
3900 | */ |
3901 | SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, |
3902 | siginfo_t __user *, info, unsigned int, flags) |
3903 | { |
3904 | int ret; |
3905 | struct fd f; |
3906 | struct pid *pid; |
3907 | kernel_siginfo_t kinfo; |
3908 | enum pid_type type; |
3909 | |
3910 | /* Enforce flags be set to 0 until we add an extension. */ |
3911 | if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) |
3912 | return -EINVAL; |
3913 | |
3914 | /* Ensure that only a single signal scope determining flag is set. */ |
3915 | if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) |
3916 | return -EINVAL; |
3917 | |
3918 | f = fdget(fd: pidfd); |
3919 | if (!f.file) |
3920 | return -EBADF; |
3921 | |
3922 | /* Is this a pidfd? */ |
3923 | pid = pidfd_to_pid(file: f.file); |
3924 | if (IS_ERR(ptr: pid)) { |
3925 | ret = PTR_ERR(ptr: pid); |
3926 | goto err; |
3927 | } |
3928 | |
3929 | ret = -EINVAL; |
3930 | if (!access_pidfd_pidns(pid)) |
3931 | goto err; |
3932 | |
3933 | switch (flags) { |
3934 | case 0: |
3935 | /* Infer scope from the type of pidfd. */ |
3936 | if (f.file->f_flags & PIDFD_THREAD) |
3937 | type = PIDTYPE_PID; |
3938 | else |
3939 | type = PIDTYPE_TGID; |
3940 | break; |
3941 | case PIDFD_SIGNAL_THREAD: |
3942 | type = PIDTYPE_PID; |
3943 | break; |
3944 | case PIDFD_SIGNAL_THREAD_GROUP: |
3945 | type = PIDTYPE_TGID; |
3946 | break; |
3947 | case PIDFD_SIGNAL_PROCESS_GROUP: |
3948 | type = PIDTYPE_PGID; |
3949 | break; |
3950 | } |
3951 | |
3952 | if (info) { |
3953 | ret = copy_siginfo_from_user_any(kinfo: &kinfo, info); |
3954 | if (unlikely(ret)) |
3955 | goto err; |
3956 | |
3957 | ret = -EINVAL; |
3958 | if (unlikely(sig != kinfo.si_signo)) |
3959 | goto err; |
3960 | |
3961 | /* Only allow sending arbitrary signals to yourself. */ |
3962 | ret = -EPERM; |
3963 | if ((task_pid(current) != pid || type > PIDTYPE_TGID) && |
3964 | (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) |
3965 | goto err; |
3966 | } else { |
3967 | prepare_kill_siginfo(sig, info: &kinfo, type); |
3968 | } |
3969 | |
3970 | if (type == PIDTYPE_PGID) |
3971 | ret = kill_pgrp_info(sig, info: &kinfo, pgrp: pid); |
3972 | else |
3973 | ret = kill_pid_info_type(sig, info: &kinfo, pid, type); |
3974 | err: |
3975 | fdput(fd: f); |
3976 | return ret; |
3977 | } |
3978 | |
3979 | static int |
3980 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) |
3981 | { |
3982 | struct task_struct *p; |
3983 | int error = -ESRCH; |
3984 | |
3985 | rcu_read_lock(); |
3986 | p = find_task_by_vpid(nr: pid); |
3987 | if (p && (tgid <= 0 || task_tgid_vnr(tsk: p) == tgid)) { |
3988 | error = check_kill_permission(sig, info, t: p); |
3989 | /* |
3990 | * The null signal is a permissions and process existence |
3991 | * probe. No signal is actually delivered. |
3992 | */ |
3993 | if (!error && sig) { |
3994 | error = do_send_sig_info(sig, info, p, type: PIDTYPE_PID); |
3995 | /* |
3996 | * If lock_task_sighand() failed we pretend the task |
3997 | * dies after receiving the signal. The window is tiny, |
3998 | * and the signal is private anyway. |
3999 | */ |
4000 | if (unlikely(error == -ESRCH)) |
4001 | error = 0; |
4002 | } |
4003 | } |
4004 | rcu_read_unlock(); |
4005 | |
4006 | return error; |
4007 | } |
4008 | |
4009 | static int do_tkill(pid_t tgid, pid_t pid, int sig) |
4010 | { |
4011 | struct kernel_siginfo info; |
4012 | |
4013 | prepare_kill_siginfo(sig, info: &info, type: PIDTYPE_PID); |
4014 | |
4015 | return do_send_specific(tgid, pid, sig, info: &info); |
4016 | } |
4017 | |
4018 | /** |
4019 | * sys_tgkill - send signal to one specific thread |
4020 | * @tgid: the thread group ID of the thread |
4021 | * @pid: the PID of the thread |
4022 | * @sig: signal to be sent |
4023 | * |
4024 | * This syscall also checks the @tgid and returns -ESRCH even if the PID |
4025 | * exists but it's not belonging to the target process anymore. This |
4026 | * method solves the problem of threads exiting and PIDs getting reused. |
4027 | */ |
4028 | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) |
4029 | { |
4030 | /* This is only valid for single tasks */ |
4031 | if (pid <= 0 || tgid <= 0) |
4032 | return -EINVAL; |
4033 | |
4034 | return do_tkill(tgid, pid, sig); |
4035 | } |
4036 | |
4037 | /** |
4038 | * sys_tkill - send signal to one specific task |
4039 | * @pid: the PID of the task |
4040 | * @sig: signal to be sent |
4041 | * |
4042 | * Send a signal to only one task, even if it's a CLONE_THREAD task. |
4043 | */ |
4044 | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) |
4045 | { |
4046 | /* This is only valid for single tasks */ |
4047 | if (pid <= 0) |
4048 | return -EINVAL; |
4049 | |
4050 | return do_tkill(tgid: 0, pid, sig); |
4051 | } |
4052 | |
4053 | static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) |
4054 | { |
4055 | /* Not even root can pretend to send signals from the kernel. |
4056 | * Nor can they impersonate a kill()/tgkill(), which adds source info. |
4057 | */ |
4058 | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && |
4059 | (task_pid_vnr(current) != pid)) |
4060 | return -EPERM; |
4061 | |
4062 | /* POSIX.1b doesn't mention process groups. */ |
4063 | return kill_proc_info(sig, info, pid); |
4064 | } |
4065 | |
4066 | /** |
4067 | * sys_rt_sigqueueinfo - send signal information to a signal |
4068 | * @pid: the PID of the thread |
4069 | * @sig: signal to be sent |
4070 | * @uinfo: signal info to be sent |
4071 | */ |
4072 | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, |
4073 | siginfo_t __user *, uinfo) |
4074 | { |
4075 | kernel_siginfo_t info; |
4076 | int ret = __copy_siginfo_from_user(signo: sig, to: &info, from: uinfo); |
4077 | if (unlikely(ret)) |
4078 | return ret; |
4079 | return do_rt_sigqueueinfo(pid, sig, info: &info); |
4080 | } |
4081 | |
4082 | #ifdef CONFIG_COMPAT |
4083 | COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, |
4084 | compat_pid_t, pid, |
4085 | int, sig, |
4086 | struct compat_siginfo __user *, uinfo) |
4087 | { |
4088 | kernel_siginfo_t info; |
4089 | int ret = __copy_siginfo_from_user32(signo: sig, to: &info, ufrom: uinfo); |
4090 | if (unlikely(ret)) |
4091 | return ret; |
4092 | return do_rt_sigqueueinfo(pid, sig, info: &info); |
4093 | } |
4094 | #endif |
4095 | |
4096 | static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) |
4097 | { |
4098 | /* This is only valid for single tasks */ |
4099 | if (pid <= 0 || tgid <= 0) |
4100 | return -EINVAL; |
4101 | |
4102 | /* Not even root can pretend to send signals from the kernel. |
4103 | * Nor can they impersonate a kill()/tgkill(), which adds source info. |
4104 | */ |
4105 | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && |
4106 | (task_pid_vnr(current) != pid)) |
4107 | return -EPERM; |
4108 | |
4109 | return do_send_specific(tgid, pid, sig, info); |
4110 | } |
4111 | |
4112 | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, |
4113 | siginfo_t __user *, uinfo) |
4114 | { |
4115 | kernel_siginfo_t info; |
4116 | int ret = __copy_siginfo_from_user(signo: sig, to: &info, from: uinfo); |
4117 | if (unlikely(ret)) |
4118 | return ret; |
4119 | return do_rt_tgsigqueueinfo(tgid, pid, sig, info: &info); |
4120 | } |
4121 | |
4122 | #ifdef CONFIG_COMPAT |
4123 | COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, |
4124 | compat_pid_t, tgid, |
4125 | compat_pid_t, pid, |
4126 | int, sig, |
4127 | struct compat_siginfo __user *, uinfo) |
4128 | { |
4129 | kernel_siginfo_t info; |
4130 | int ret = __copy_siginfo_from_user32(signo: sig, to: &info, ufrom: uinfo); |
4131 | if (unlikely(ret)) |
4132 | return ret; |
4133 | return do_rt_tgsigqueueinfo(tgid, pid, sig, info: &info); |
4134 | } |
4135 | #endif |
4136 | |
4137 | /* |
4138 | * For kthreads only, must not be used if cloned with CLONE_SIGHAND |
4139 | */ |
4140 | void kernel_sigaction(int sig, __sighandler_t action) |
4141 | { |
4142 | spin_lock_irq(lock: ¤t->sighand->siglock); |
4143 | current->sighand->action[sig - 1].sa.sa_handler = action; |
4144 | if (action == SIG_IGN) { |
4145 | sigset_t mask; |
4146 | |
4147 | sigemptyset(set: &mask); |
4148 | sigaddset(set: &mask, sig: sig); |
4149 | |
4150 | flush_sigqueue_mask(mask: &mask, s: ¤t->signal->shared_pending); |
4151 | flush_sigqueue_mask(mask: &mask, s: ¤t->pending); |
4152 | recalc_sigpending(); |
4153 | } |
4154 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
4155 | } |
4156 | EXPORT_SYMBOL(kernel_sigaction); |
4157 | |
4158 | void __weak sigaction_compat_abi(struct k_sigaction *act, |
4159 | struct k_sigaction *oact) |
4160 | { |
4161 | } |
4162 | |
4163 | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) |
4164 | { |
4165 | struct task_struct *p = current, *t; |
4166 | struct k_sigaction *k; |
4167 | sigset_t mask; |
4168 | |
4169 | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) |
4170 | return -EINVAL; |
4171 | |
4172 | k = &p->sighand->action[sig-1]; |
4173 | |
4174 | spin_lock_irq(lock: &p->sighand->siglock); |
4175 | if (k->sa.sa_flags & SA_IMMUTABLE) { |
4176 | spin_unlock_irq(lock: &p->sighand->siglock); |
4177 | return -EINVAL; |
4178 | } |
4179 | if (oact) |
4180 | *oact = *k; |
4181 | |
4182 | /* |
4183 | * Make sure that we never accidentally claim to support SA_UNSUPPORTED, |
4184 | * e.g. by having an architecture use the bit in their uapi. |
4185 | */ |
4186 | BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); |
4187 | |
4188 | /* |
4189 | * Clear unknown flag bits in order to allow userspace to detect missing |
4190 | * support for flag bits and to allow the kernel to use non-uapi bits |
4191 | * internally. |
4192 | */ |
4193 | if (act) |
4194 | act->sa.sa_flags &= UAPI_SA_FLAGS; |
4195 | if (oact) |
4196 | oact->sa.sa_flags &= UAPI_SA_FLAGS; |
4197 | |
4198 | sigaction_compat_abi(act, oact); |
4199 | |
4200 | if (act) { |
4201 | sigdelsetmask(set: &act->sa.sa_mask, |
4202 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
4203 | *k = *act; |
4204 | /* |
4205 | * POSIX 3.3.1.3: |
4206 | * "Setting a signal action to SIG_IGN for a signal that is |
4207 | * pending shall cause the pending signal to be discarded, |
4208 | * whether or not it is blocked." |
4209 | * |
4210 | * "Setting a signal action to SIG_DFL for a signal that is |
4211 | * pending and whose default action is to ignore the signal |
4212 | * (for example, SIGCHLD), shall cause the pending signal to |
4213 | * be discarded, whether or not it is blocked" |
4214 | */ |
4215 | if (sig_handler_ignored(handler: sig_handler(t: p, sig), sig)) { |
4216 | sigemptyset(set: &mask); |
4217 | sigaddset(set: &mask, sig: sig); |
4218 | flush_sigqueue_mask(mask: &mask, s: &p->signal->shared_pending); |
4219 | for_each_thread(p, t) |
4220 | flush_sigqueue_mask(mask: &mask, s: &t->pending); |
4221 | } |
4222 | } |
4223 | |
4224 | spin_unlock_irq(lock: &p->sighand->siglock); |
4225 | return 0; |
4226 | } |
4227 | |
4228 | #ifdef CONFIG_DYNAMIC_SIGFRAME |
4229 | static inline void sigaltstack_lock(void) |
4230 | __acquires(¤t->sighand->siglock) |
4231 | { |
4232 | spin_lock_irq(lock: ¤t->sighand->siglock); |
4233 | } |
4234 | |
4235 | static inline void sigaltstack_unlock(void) |
4236 | __releases(¤t->sighand->siglock) |
4237 | { |
4238 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
4239 | } |
4240 | #else |
4241 | static inline void sigaltstack_lock(void) { } |
4242 | static inline void sigaltstack_unlock(void) { } |
4243 | #endif |
4244 | |
4245 | static int |
4246 | do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, |
4247 | size_t min_ss_size) |
4248 | { |
4249 | struct task_struct *t = current; |
4250 | int ret = 0; |
4251 | |
4252 | if (oss) { |
4253 | memset(oss, 0, sizeof(stack_t)); |
4254 | oss->ss_sp = (void __user *) t->sas_ss_sp; |
4255 | oss->ss_size = t->sas_ss_size; |
4256 | oss->ss_flags = sas_ss_flags(sp) | |
4257 | (current->sas_ss_flags & SS_FLAG_BITS); |
4258 | } |
4259 | |
4260 | if (ss) { |
4261 | void __user *ss_sp = ss->ss_sp; |
4262 | size_t ss_size = ss->ss_size; |
4263 | unsigned ss_flags = ss->ss_flags; |
4264 | int ss_mode; |
4265 | |
4266 | if (unlikely(on_sig_stack(sp))) |
4267 | return -EPERM; |
4268 | |
4269 | ss_mode = ss_flags & ~SS_FLAG_BITS; |
4270 | if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && |
4271 | ss_mode != 0)) |
4272 | return -EINVAL; |
4273 | |
4274 | /* |
4275 | * Return before taking any locks if no actual |
4276 | * sigaltstack changes were requested. |
4277 | */ |
4278 | if (t->sas_ss_sp == (unsigned long)ss_sp && |
4279 | t->sas_ss_size == ss_size && |
4280 | t->sas_ss_flags == ss_flags) |
4281 | return 0; |
4282 | |
4283 | sigaltstack_lock(); |
4284 | if (ss_mode == SS_DISABLE) { |
4285 | ss_size = 0; |
4286 | ss_sp = NULL; |
4287 | } else { |
4288 | if (unlikely(ss_size < min_ss_size)) |
4289 | ret = -ENOMEM; |
4290 | if (!sigaltstack_size_valid(ss_size)) |
4291 | ret = -ENOMEM; |
4292 | } |
4293 | if (!ret) { |
4294 | t->sas_ss_sp = (unsigned long) ss_sp; |
4295 | t->sas_ss_size = ss_size; |
4296 | t->sas_ss_flags = ss_flags; |
4297 | } |
4298 | sigaltstack_unlock(); |
4299 | } |
4300 | return ret; |
4301 | } |
4302 | |
4303 | SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) |
4304 | { |
4305 | stack_t new, old; |
4306 | int err; |
4307 | if (uss && copy_from_user(to: &new, from: uss, n: sizeof(stack_t))) |
4308 | return -EFAULT; |
4309 | err = do_sigaltstack(ss: uss ? &new : NULL, oss: uoss ? &old : NULL, |
4310 | current_user_stack_pointer(), |
4311 | MINSIGSTKSZ); |
4312 | if (!err && uoss && copy_to_user(to: uoss, from: &old, n: sizeof(stack_t))) |
4313 | err = -EFAULT; |
4314 | return err; |
4315 | } |
4316 | |
4317 | int restore_altstack(const stack_t __user *uss) |
4318 | { |
4319 | stack_t new; |
4320 | if (copy_from_user(to: &new, from: uss, n: sizeof(stack_t))) |
4321 | return -EFAULT; |
4322 | (void)do_sigaltstack(ss: &new, NULL, current_user_stack_pointer(), |
4323 | MINSIGSTKSZ); |
4324 | /* squash all but EFAULT for now */ |
4325 | return 0; |
4326 | } |
4327 | |
4328 | int __save_altstack(stack_t __user *uss, unsigned long sp) |
4329 | { |
4330 | struct task_struct *t = current; |
4331 | int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | |
4332 | __put_user(t->sas_ss_flags, &uss->ss_flags) | |
4333 | __put_user(t->sas_ss_size, &uss->ss_size); |
4334 | return err; |
4335 | } |
4336 | |
4337 | #ifdef CONFIG_COMPAT |
4338 | static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, |
4339 | compat_stack_t __user *uoss_ptr) |
4340 | { |
4341 | stack_t uss, uoss; |
4342 | int ret; |
4343 | |
4344 | if (uss_ptr) { |
4345 | compat_stack_t uss32; |
4346 | if (copy_from_user(to: &uss32, from: uss_ptr, n: sizeof(compat_stack_t))) |
4347 | return -EFAULT; |
4348 | uss.ss_sp = compat_ptr(uptr: uss32.ss_sp); |
4349 | uss.ss_flags = uss32.ss_flags; |
4350 | uss.ss_size = uss32.ss_size; |
4351 | } |
4352 | ret = do_sigaltstack(ss: uss_ptr ? &uss : NULL, oss: &uoss, |
4353 | compat_user_stack_pointer(), |
4354 | COMPAT_MINSIGSTKSZ); |
4355 | if (ret >= 0 && uoss_ptr) { |
4356 | compat_stack_t old; |
4357 | memset(&old, 0, sizeof(old)); |
4358 | old.ss_sp = ptr_to_compat(uptr: uoss.ss_sp); |
4359 | old.ss_flags = uoss.ss_flags; |
4360 | old.ss_size = uoss.ss_size; |
4361 | if (copy_to_user(to: uoss_ptr, from: &old, n: sizeof(compat_stack_t))) |
4362 | ret = -EFAULT; |
4363 | } |
4364 | return ret; |
4365 | } |
4366 | |
4367 | COMPAT_SYSCALL_DEFINE2(sigaltstack, |
4368 | const compat_stack_t __user *, uss_ptr, |
4369 | compat_stack_t __user *, uoss_ptr) |
4370 | { |
4371 | return do_compat_sigaltstack(uss_ptr, uoss_ptr); |
4372 | } |
4373 | |
4374 | int compat_restore_altstack(const compat_stack_t __user *uss) |
4375 | { |
4376 | int err = do_compat_sigaltstack(uss_ptr: uss, NULL); |
4377 | /* squash all but -EFAULT for now */ |
4378 | return err == -EFAULT ? err : 0; |
4379 | } |
4380 | |
4381 | int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) |
4382 | { |
4383 | int err; |
4384 | struct task_struct *t = current; |
4385 | err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), |
4386 | &uss->ss_sp) | |
4387 | __put_user(t->sas_ss_flags, &uss->ss_flags) | |
4388 | __put_user(t->sas_ss_size, &uss->ss_size); |
4389 | return err; |
4390 | } |
4391 | #endif |
4392 | |
4393 | #ifdef __ARCH_WANT_SYS_SIGPENDING |
4394 | |
4395 | /** |
4396 | * sys_sigpending - examine pending signals |
4397 | * @uset: where mask of pending signal is returned |
4398 | */ |
4399 | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) |
4400 | { |
4401 | sigset_t set; |
4402 | |
4403 | if (sizeof(old_sigset_t) > sizeof(*uset)) |
4404 | return -EINVAL; |
4405 | |
4406 | do_sigpending(set: &set); |
4407 | |
4408 | if (copy_to_user(to: uset, from: &set, n: sizeof(old_sigset_t))) |
4409 | return -EFAULT; |
4410 | |
4411 | return 0; |
4412 | } |
4413 | |
4414 | #ifdef CONFIG_COMPAT |
4415 | COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) |
4416 | { |
4417 | sigset_t set; |
4418 | |
4419 | do_sigpending(set: &set); |
4420 | |
4421 | return put_user(set.sig[0], set32); |
4422 | } |
4423 | #endif |
4424 | |
4425 | #endif |
4426 | |
4427 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK |
4428 | /** |
4429 | * sys_sigprocmask - examine and change blocked signals |
4430 | * @how: whether to add, remove, or set signals |
4431 | * @nset: signals to add or remove (if non-null) |
4432 | * @oset: previous value of signal mask if non-null |
4433 | * |
4434 | * Some platforms have their own version with special arguments; |
4435 | * others support only sys_rt_sigprocmask. |
4436 | */ |
4437 | |
4438 | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, |
4439 | old_sigset_t __user *, oset) |
4440 | { |
4441 | old_sigset_t old_set, new_set; |
4442 | sigset_t new_blocked; |
4443 | |
4444 | old_set = current->blocked.sig[0]; |
4445 | |
4446 | if (nset) { |
4447 | if (copy_from_user(to: &new_set, from: nset, n: sizeof(*nset))) |
4448 | return -EFAULT; |
4449 | |
4450 | new_blocked = current->blocked; |
4451 | |
4452 | switch (how) { |
4453 | case SIG_BLOCK: |
4454 | sigaddsetmask(set: &new_blocked, mask: new_set); |
4455 | break; |
4456 | case SIG_UNBLOCK: |
4457 | sigdelsetmask(set: &new_blocked, mask: new_set); |
4458 | break; |
4459 | case SIG_SETMASK: |
4460 | new_blocked.sig[0] = new_set; |
4461 | break; |
4462 | default: |
4463 | return -EINVAL; |
4464 | } |
4465 | |
4466 | set_current_blocked(&new_blocked); |
4467 | } |
4468 | |
4469 | if (oset) { |
4470 | if (copy_to_user(to: oset, from: &old_set, n: sizeof(*oset))) |
4471 | return -EFAULT; |
4472 | } |
4473 | |
4474 | return 0; |
4475 | } |
4476 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ |
4477 | |
4478 | #ifndef CONFIG_ODD_RT_SIGACTION |
4479 | /** |
4480 | * sys_rt_sigaction - alter an action taken by a process |
4481 | * @sig: signal to be sent |
4482 | * @act: new sigaction |
4483 | * @oact: used to save the previous sigaction |
4484 | * @sigsetsize: size of sigset_t type |
4485 | */ |
4486 | SYSCALL_DEFINE4(rt_sigaction, int, sig, |
4487 | const struct sigaction __user *, act, |
4488 | struct sigaction __user *, oact, |
4489 | size_t, sigsetsize) |
4490 | { |
4491 | struct k_sigaction new_sa, old_sa; |
4492 | int ret; |
4493 | |
4494 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
4495 | if (sigsetsize != sizeof(sigset_t)) |
4496 | return -EINVAL; |
4497 | |
4498 | if (act && copy_from_user(to: &new_sa.sa, from: act, n: sizeof(new_sa.sa))) |
4499 | return -EFAULT; |
4500 | |
4501 | ret = do_sigaction(sig, act: act ? &new_sa : NULL, oact: oact ? &old_sa : NULL); |
4502 | if (ret) |
4503 | return ret; |
4504 | |
4505 | if (oact && copy_to_user(to: oact, from: &old_sa.sa, n: sizeof(old_sa.sa))) |
4506 | return -EFAULT; |
4507 | |
4508 | return 0; |
4509 | } |
4510 | #ifdef CONFIG_COMPAT |
4511 | COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, |
4512 | const struct compat_sigaction __user *, act, |
4513 | struct compat_sigaction __user *, oact, |
4514 | compat_size_t, sigsetsize) |
4515 | { |
4516 | struct k_sigaction new_ka, old_ka; |
4517 | #ifdef __ARCH_HAS_SA_RESTORER |
4518 | compat_uptr_t restorer; |
4519 | #endif |
4520 | int ret; |
4521 | |
4522 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
4523 | if (sigsetsize != sizeof(compat_sigset_t)) |
4524 | return -EINVAL; |
4525 | |
4526 | if (act) { |
4527 | compat_uptr_t handler; |
4528 | ret = get_user(handler, &act->sa_handler); |
4529 | new_ka.sa.sa_handler = compat_ptr(uptr: handler); |
4530 | #ifdef __ARCH_HAS_SA_RESTORER |
4531 | ret |= get_user(restorer, &act->sa_restorer); |
4532 | new_ka.sa.sa_restorer = compat_ptr(uptr: restorer); |
4533 | #endif |
4534 | ret |= get_compat_sigset(set: &new_ka.sa.sa_mask, compat: &act->sa_mask); |
4535 | ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); |
4536 | if (ret) |
4537 | return -EFAULT; |
4538 | } |
4539 | |
4540 | ret = do_sigaction(sig, act: act ? &new_ka : NULL, oact: oact ? &old_ka : NULL); |
4541 | if (!ret && oact) { |
4542 | ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), |
4543 | &oact->sa_handler); |
4544 | ret |= put_compat_sigset(compat: &oact->sa_mask, set: &old_ka.sa.sa_mask, |
4545 | size: sizeof(oact->sa_mask)); |
4546 | ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); |
4547 | #ifdef __ARCH_HAS_SA_RESTORER |
4548 | ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), |
4549 | &oact->sa_restorer); |
4550 | #endif |
4551 | } |
4552 | return ret; |
4553 | } |
4554 | #endif |
4555 | #endif /* !CONFIG_ODD_RT_SIGACTION */ |
4556 | |
4557 | #ifdef CONFIG_OLD_SIGACTION |
4558 | SYSCALL_DEFINE3(sigaction, int, sig, |
4559 | const struct old_sigaction __user *, act, |
4560 | struct old_sigaction __user *, oact) |
4561 | { |
4562 | struct k_sigaction new_ka, old_ka; |
4563 | int ret; |
4564 | |
4565 | if (act) { |
4566 | old_sigset_t mask; |
4567 | if (!access_ok(act, sizeof(*act)) || |
4568 | __get_user(new_ka.sa.sa_handler, &act->sa_handler) || |
4569 | __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || |
4570 | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || |
4571 | __get_user(mask, &act->sa_mask)) |
4572 | return -EFAULT; |
4573 | #ifdef __ARCH_HAS_KA_RESTORER |
4574 | new_ka.ka_restorer = NULL; |
4575 | #endif |
4576 | siginitset(&new_ka.sa.sa_mask, mask); |
4577 | } |
4578 | |
4579 | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); |
4580 | |
4581 | if (!ret && oact) { |
4582 | if (!access_ok(oact, sizeof(*oact)) || |
4583 | __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || |
4584 | __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || |
4585 | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || |
4586 | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) |
4587 | return -EFAULT; |
4588 | } |
4589 | |
4590 | return ret; |
4591 | } |
4592 | #endif |
4593 | #ifdef CONFIG_COMPAT_OLD_SIGACTION |
4594 | COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, |
4595 | const struct compat_old_sigaction __user *, act, |
4596 | struct compat_old_sigaction __user *, oact) |
4597 | { |
4598 | struct k_sigaction new_ka, old_ka; |
4599 | int ret; |
4600 | compat_old_sigset_t mask; |
4601 | compat_uptr_t handler, restorer; |
4602 | |
4603 | if (act) { |
4604 | if (!access_ok(act, sizeof(*act)) || |
4605 | __get_user(handler, &act->sa_handler) || |
4606 | __get_user(restorer, &act->sa_restorer) || |
4607 | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || |
4608 | __get_user(mask, &act->sa_mask)) |
4609 | return -EFAULT; |
4610 | |
4611 | #ifdef __ARCH_HAS_KA_RESTORER |
4612 | new_ka.ka_restorer = NULL; |
4613 | #endif |
4614 | new_ka.sa.sa_handler = compat_ptr(uptr: handler); |
4615 | new_ka.sa.sa_restorer = compat_ptr(uptr: restorer); |
4616 | siginitset(set: &new_ka.sa.sa_mask, mask); |
4617 | } |
4618 | |
4619 | ret = do_sigaction(sig, act: act ? &new_ka : NULL, oact: oact ? &old_ka : NULL); |
4620 | |
4621 | if (!ret && oact) { |
4622 | if (!access_ok(oact, sizeof(*oact)) || |
4623 | __put_user(ptr_to_compat(old_ka.sa.sa_handler), |
4624 | &oact->sa_handler) || |
4625 | __put_user(ptr_to_compat(old_ka.sa.sa_restorer), |
4626 | &oact->sa_restorer) || |
4627 | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || |
4628 | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) |
4629 | return -EFAULT; |
4630 | } |
4631 | return ret; |
4632 | } |
4633 | #endif |
4634 | |
4635 | #ifdef CONFIG_SGETMASK_SYSCALL |
4636 | |
4637 | /* |
4638 | * For backwards compatibility. Functionality superseded by sigprocmask. |
4639 | */ |
4640 | SYSCALL_DEFINE0(sgetmask) |
4641 | { |
4642 | /* SMP safe */ |
4643 | return current->blocked.sig[0]; |
4644 | } |
4645 | |
4646 | SYSCALL_DEFINE1(ssetmask, int, newmask) |
4647 | { |
4648 | int old = current->blocked.sig[0]; |
4649 | sigset_t newset; |
4650 | |
4651 | siginitset(set: &newset, mask: newmask); |
4652 | set_current_blocked(&newset); |
4653 | |
4654 | return old; |
4655 | } |
4656 | #endif /* CONFIG_SGETMASK_SYSCALL */ |
4657 | |
4658 | #ifdef __ARCH_WANT_SYS_SIGNAL |
4659 | /* |
4660 | * For backwards compatibility. Functionality superseded by sigaction. |
4661 | */ |
4662 | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) |
4663 | { |
4664 | struct k_sigaction new_sa, old_sa; |
4665 | int ret; |
4666 | |
4667 | new_sa.sa.sa_handler = handler; |
4668 | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; |
4669 | sigemptyset(set: &new_sa.sa.sa_mask); |
4670 | |
4671 | ret = do_sigaction(sig, act: &new_sa, oact: &old_sa); |
4672 | |
4673 | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; |
4674 | } |
4675 | #endif /* __ARCH_WANT_SYS_SIGNAL */ |
4676 | |
4677 | #ifdef __ARCH_WANT_SYS_PAUSE |
4678 | |
4679 | SYSCALL_DEFINE0(pause) |
4680 | { |
4681 | while (!signal_pending(current)) { |
4682 | __set_current_state(TASK_INTERRUPTIBLE); |
4683 | schedule(); |
4684 | } |
4685 | return -ERESTARTNOHAND; |
4686 | } |
4687 | |
4688 | #endif |
4689 | |
4690 | static int sigsuspend(sigset_t *set) |
4691 | { |
4692 | current->saved_sigmask = current->blocked; |
4693 | set_current_blocked(set); |
4694 | |
4695 | while (!signal_pending(current)) { |
4696 | __set_current_state(TASK_INTERRUPTIBLE); |
4697 | schedule(); |
4698 | } |
4699 | set_restore_sigmask(); |
4700 | return -ERESTARTNOHAND; |
4701 | } |
4702 | |
4703 | /** |
4704 | * sys_rt_sigsuspend - replace the signal mask for a value with the |
4705 | * @unewset value until a signal is received |
4706 | * @unewset: new signal mask value |
4707 | * @sigsetsize: size of sigset_t type |
4708 | */ |
4709 | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) |
4710 | { |
4711 | sigset_t newset; |
4712 | |
4713 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
4714 | if (sigsetsize != sizeof(sigset_t)) |
4715 | return -EINVAL; |
4716 | |
4717 | if (copy_from_user(to: &newset, from: unewset, n: sizeof(newset))) |
4718 | return -EFAULT; |
4719 | return sigsuspend(set: &newset); |
4720 | } |
4721 | |
4722 | #ifdef CONFIG_COMPAT |
4723 | COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) |
4724 | { |
4725 | sigset_t newset; |
4726 | |
4727 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
4728 | if (sigsetsize != sizeof(sigset_t)) |
4729 | return -EINVAL; |
4730 | |
4731 | if (get_compat_sigset(set: &newset, compat: unewset)) |
4732 | return -EFAULT; |
4733 | return sigsuspend(set: &newset); |
4734 | } |
4735 | #endif |
4736 | |
4737 | #ifdef CONFIG_OLD_SIGSUSPEND |
4738 | SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) |
4739 | { |
4740 | sigset_t blocked; |
4741 | siginitset(&blocked, mask); |
4742 | return sigsuspend(&blocked); |
4743 | } |
4744 | #endif |
4745 | #ifdef CONFIG_OLD_SIGSUSPEND3 |
4746 | SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) |
4747 | { |
4748 | sigset_t blocked; |
4749 | siginitset(set: &blocked, mask); |
4750 | return sigsuspend(set: &blocked); |
4751 | } |
4752 | #endif |
4753 | |
4754 | __weak const char *arch_vma_name(struct vm_area_struct *vma) |
4755 | { |
4756 | return NULL; |
4757 | } |
4758 | |
4759 | static inline void siginfo_buildtime_checks(void) |
4760 | { |
4761 | BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); |
4762 | |
4763 | /* Verify the offsets in the two siginfos match */ |
4764 | #define CHECK_OFFSET(field) \ |
4765 | BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) |
4766 | |
4767 | /* kill */ |
4768 | CHECK_OFFSET(si_pid); |
4769 | CHECK_OFFSET(si_uid); |
4770 | |
4771 | /* timer */ |
4772 | CHECK_OFFSET(si_tid); |
4773 | CHECK_OFFSET(si_overrun); |
4774 | CHECK_OFFSET(si_value); |
4775 | |
4776 | /* rt */ |
4777 | CHECK_OFFSET(si_pid); |
4778 | CHECK_OFFSET(si_uid); |
4779 | CHECK_OFFSET(si_value); |
4780 | |
4781 | /* sigchld */ |
4782 | CHECK_OFFSET(si_pid); |
4783 | CHECK_OFFSET(si_uid); |
4784 | CHECK_OFFSET(si_status); |
4785 | CHECK_OFFSET(si_utime); |
4786 | CHECK_OFFSET(si_stime); |
4787 | |
4788 | /* sigfault */ |
4789 | CHECK_OFFSET(si_addr); |
4790 | CHECK_OFFSET(si_trapno); |
4791 | CHECK_OFFSET(si_addr_lsb); |
4792 | CHECK_OFFSET(si_lower); |
4793 | CHECK_OFFSET(si_upper); |
4794 | CHECK_OFFSET(si_pkey); |
4795 | CHECK_OFFSET(si_perf_data); |
4796 | CHECK_OFFSET(si_perf_type); |
4797 | CHECK_OFFSET(si_perf_flags); |
4798 | |
4799 | /* sigpoll */ |
4800 | CHECK_OFFSET(si_band); |
4801 | CHECK_OFFSET(si_fd); |
4802 | |
4803 | /* sigsys */ |
4804 | CHECK_OFFSET(si_call_addr); |
4805 | CHECK_OFFSET(si_syscall); |
4806 | CHECK_OFFSET(si_arch); |
4807 | #undef CHECK_OFFSET |
4808 | |
4809 | /* usb asyncio */ |
4810 | BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != |
4811 | offsetof(struct siginfo, si_addr)); |
4812 | if (sizeof(int) == sizeof(void __user *)) { |
4813 | BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != |
4814 | sizeof(void __user *)); |
4815 | } else { |
4816 | BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + |
4817 | sizeof_field(struct siginfo, si_uid)) != |
4818 | sizeof(void __user *)); |
4819 | BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != |
4820 | offsetof(struct siginfo, si_uid)); |
4821 | } |
4822 | #ifdef CONFIG_COMPAT |
4823 | BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != |
4824 | offsetof(struct compat_siginfo, si_addr)); |
4825 | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != |
4826 | sizeof(compat_uptr_t)); |
4827 | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != |
4828 | sizeof_field(struct siginfo, si_pid)); |
4829 | #endif |
4830 | } |
4831 | |
4832 | #if defined(CONFIG_SYSCTL) |
4833 | static struct ctl_table signal_debug_table[] = { |
4834 | #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE |
4835 | { |
4836 | .procname = "exception-trace" , |
4837 | .data = &show_unhandled_signals, |
4838 | .maxlen = sizeof(int), |
4839 | .mode = 0644, |
4840 | .proc_handler = proc_dointvec |
4841 | }, |
4842 | #endif |
4843 | { } |
4844 | }; |
4845 | |
4846 | static int __init init_signal_sysctls(void) |
4847 | { |
4848 | register_sysctl_init("debug" , signal_debug_table); |
4849 | return 0; |
4850 | } |
4851 | early_initcall(init_signal_sysctls); |
4852 | #endif /* CONFIG_SYSCTL */ |
4853 | |
4854 | void __init signals_init(void) |
4855 | { |
4856 | siginfo_buildtime_checks(); |
4857 | |
4858 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); |
4859 | } |
4860 | |
4861 | #ifdef CONFIG_KGDB_KDB |
4862 | #include <linux/kdb.h> |
4863 | /* |
4864 | * kdb_send_sig - Allows kdb to send signals without exposing |
4865 | * signal internals. This function checks if the required locks are |
4866 | * available before calling the main signal code, to avoid kdb |
4867 | * deadlocks. |
4868 | */ |
4869 | void kdb_send_sig(struct task_struct *t, int sig) |
4870 | { |
4871 | static struct task_struct *kdb_prev_t; |
4872 | int new_t, ret; |
4873 | if (!spin_trylock(lock: &t->sighand->siglock)) { |
4874 | kdb_printf("Can't do kill command now.\n" |
4875 | "The sigmask lock is held somewhere else in " |
4876 | "kernel, try again later\n" ); |
4877 | return; |
4878 | } |
4879 | new_t = kdb_prev_t != t; |
4880 | kdb_prev_t = t; |
4881 | if (!task_is_running(t) && new_t) { |
4882 | spin_unlock(lock: &t->sighand->siglock); |
4883 | kdb_printf("Process is not RUNNING, sending a signal from " |
4884 | "kdb risks deadlock\n" |
4885 | "on the run queue locks. " |
4886 | "The signal has _not_ been sent.\n" |
4887 | "Reissue the kill command if you want to risk " |
4888 | "the deadlock.\n" ); |
4889 | return; |
4890 | } |
4891 | ret = send_signal_locked(sig, SEND_SIG_PRIV, t, type: PIDTYPE_PID); |
4892 | spin_unlock(lock: &t->sighand->siglock); |
4893 | if (ret) |
4894 | kdb_printf("Fail to deliver Signal %d to process %d.\n" , |
4895 | sig, t->pid); |
4896 | else |
4897 | kdb_printf("Signal %d is sent to process %d.\n" , sig, t->pid); |
4898 | } |
4899 | #endif /* CONFIG_KGDB_KDB */ |
4900 | |