1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20#include <linux/atomic.h>
21#include <linux/bpf_verifier.h>
22#include <linux/module.h>
23#include <linux/types.h>
24#include <linux/mm.h>
25#include <linux/fcntl.h>
26#include <linux/socket.h>
27#include <linux/sock_diag.h>
28#include <linux/in.h>
29#include <linux/inet.h>
30#include <linux/netdevice.h>
31#include <linux/if_packet.h>
32#include <linux/if_arp.h>
33#include <linux/gfp.h>
34#include <net/inet_common.h>
35#include <net/ip.h>
36#include <net/protocol.h>
37#include <net/netlink.h>
38#include <linux/skbuff.h>
39#include <linux/skmsg.h>
40#include <net/sock.h>
41#include <net/flow_dissector.h>
42#include <linux/errno.h>
43#include <linux/timer.h>
44#include <linux/uaccess.h>
45#include <asm/unaligned.h>
46#include <linux/filter.h>
47#include <linux/ratelimit.h>
48#include <linux/seccomp.h>
49#include <linux/if_vlan.h>
50#include <linux/bpf.h>
51#include <linux/btf.h>
52#include <net/sch_generic.h>
53#include <net/cls_cgroup.h>
54#include <net/dst_metadata.h>
55#include <net/dst.h>
56#include <net/sock_reuseport.h>
57#include <net/busy_poll.h>
58#include <net/tcp.h>
59#include <net/xfrm.h>
60#include <net/udp.h>
61#include <linux/bpf_trace.h>
62#include <net/xdp_sock.h>
63#include <linux/inetdevice.h>
64#include <net/inet_hashtables.h>
65#include <net/inet6_hashtables.h>
66#include <net/ip_fib.h>
67#include <net/nexthop.h>
68#include <net/flow.h>
69#include <net/arp.h>
70#include <net/ipv6.h>
71#include <net/net_namespace.h>
72#include <linux/seg6_local.h>
73#include <net/seg6.h>
74#include <net/seg6_local.h>
75#include <net/lwtunnel.h>
76#include <net/ipv6_stubs.h>
77#include <net/bpf_sk_storage.h>
78#include <net/transp_v6.h>
79#include <linux/btf_ids.h>
80#include <net/tls.h>
81#include <net/xdp.h>
82#include <net/mptcp.h>
83#include <net/netfilter/nf_conntrack_bpf.h>
84#include <net/netkit.h>
85#include <linux/un.h>
86#include <net/xdp_sock_drv.h>
87
88#include "dev.h"
89
90static const struct bpf_func_proto *
91bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
92
93int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
94{
95 if (in_compat_syscall()) {
96 struct compat_sock_fprog f32;
97
98 if (len != sizeof(f32))
99 return -EINVAL;
100 if (copy_from_sockptr(dst: &f32, src, size: sizeof(f32)))
101 return -EFAULT;
102 memset(dst, 0, sizeof(*dst));
103 dst->len = f32.len;
104 dst->filter = compat_ptr(uptr: f32.filter);
105 } else {
106 if (len != sizeof(*dst))
107 return -EINVAL;
108 if (copy_from_sockptr(dst, src, size: sizeof(*dst)))
109 return -EFAULT;
110 }
111
112 return 0;
113}
114EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
115
116/**
117 * sk_filter_trim_cap - run a packet through a socket filter
118 * @sk: sock associated with &sk_buff
119 * @skb: buffer to filter
120 * @cap: limit on how short the eBPF program may trim the packet
121 *
122 * Run the eBPF program and then cut skb->data to correct size returned by
123 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
124 * than pkt_len we keep whole skb->data. This is the socket level
125 * wrapper to bpf_prog_run. It returns 0 if the packet should
126 * be accepted or -EPERM if the packet should be tossed.
127 *
128 */
129int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
130{
131 int err;
132 struct sk_filter *filter;
133
134 /*
135 * If the skb was allocated from pfmemalloc reserves, only
136 * allow SOCK_MEMALLOC sockets to use it as this socket is
137 * helping free memory
138 */
139 if (skb_pfmemalloc(skb) && !sock_flag(sk, flag: SOCK_MEMALLOC)) {
140 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
141 return -ENOMEM;
142 }
143 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
144 if (err)
145 return err;
146
147 err = security_sock_rcv_skb(sk, skb);
148 if (err)
149 return err;
150
151 rcu_read_lock();
152 filter = rcu_dereference(sk->sk_filter);
153 if (filter) {
154 struct sock *save_sk = skb->sk;
155 unsigned int pkt_len;
156
157 skb->sk = sk;
158 pkt_len = bpf_prog_run_save_cb(prog: filter->prog, skb);
159 skb->sk = save_sk;
160 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
161 }
162 rcu_read_unlock();
163
164 return err;
165}
166EXPORT_SYMBOL(sk_filter_trim_cap);
167
168BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
169{
170 return skb_get_poff(skb);
171}
172
173BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
174{
175 struct nlattr *nla;
176
177 if (skb_is_nonlinear(skb))
178 return 0;
179
180 if (skb->len < sizeof(struct nlattr))
181 return 0;
182
183 if (a > skb->len - sizeof(struct nlattr))
184 return 0;
185
186 nla = nla_find(head: (struct nlattr *) &skb->data[a], len: skb->len - a, attrtype: x);
187 if (nla)
188 return (void *) nla - (void *) skb->data;
189
190 return 0;
191}
192
193BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
194{
195 struct nlattr *nla;
196
197 if (skb_is_nonlinear(skb))
198 return 0;
199
200 if (skb->len < sizeof(struct nlattr))
201 return 0;
202
203 if (a > skb->len - sizeof(struct nlattr))
204 return 0;
205
206 nla = (struct nlattr *) &skb->data[a];
207 if (!nla_ok(nla, remaining: skb->len - a))
208 return 0;
209
210 nla = nla_find_nested(nla, attrtype: x);
211 if (nla)
212 return (void *) nla - (void *) skb->data;
213
214 return 0;
215}
216
217BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
218 data, int, headlen, int, offset)
219{
220 u8 tmp, *ptr;
221 const int len = sizeof(tmp);
222
223 if (offset >= 0) {
224 if (headlen - offset >= len)
225 return *(u8 *)(data + offset);
226 if (!skb_copy_bits(skb, offset, to: &tmp, len: sizeof(tmp)))
227 return tmp;
228 } else {
229 ptr = bpf_internal_load_pointer_neg_helper(skb, k: offset, size: len);
230 if (likely(ptr))
231 return *(u8 *)ptr;
232 }
233
234 return -EFAULT;
235}
236
237BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
238 int, offset)
239{
240 return ____bpf_skb_load_helper_8(skb, data: skb->data, headlen: skb->len - skb->data_len,
241 offset);
242}
243
244BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
245 data, int, headlen, int, offset)
246{
247 __be16 tmp, *ptr;
248 const int len = sizeof(tmp);
249
250 if (offset >= 0) {
251 if (headlen - offset >= len)
252 return get_unaligned_be16(p: data + offset);
253 if (!skb_copy_bits(skb, offset, to: &tmp, len: sizeof(tmp)))
254 return be16_to_cpu(tmp);
255 } else {
256 ptr = bpf_internal_load_pointer_neg_helper(skb, k: offset, size: len);
257 if (likely(ptr))
258 return get_unaligned_be16(p: ptr);
259 }
260
261 return -EFAULT;
262}
263
264BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
265 int, offset)
266{
267 return ____bpf_skb_load_helper_16(skb, data: skb->data, headlen: skb->len - skb->data_len,
268 offset);
269}
270
271BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
272 data, int, headlen, int, offset)
273{
274 __be32 tmp, *ptr;
275 const int len = sizeof(tmp);
276
277 if (likely(offset >= 0)) {
278 if (headlen - offset >= len)
279 return get_unaligned_be32(p: data + offset);
280 if (!skb_copy_bits(skb, offset, to: &tmp, len: sizeof(tmp)))
281 return be32_to_cpu(tmp);
282 } else {
283 ptr = bpf_internal_load_pointer_neg_helper(skb, k: offset, size: len);
284 if (likely(ptr))
285 return get_unaligned_be32(p: ptr);
286 }
287
288 return -EFAULT;
289}
290
291BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
292 int, offset)
293{
294 return ____bpf_skb_load_helper_32(skb, data: skb->data, headlen: skb->len - skb->data_len,
295 offset);
296}
297
298static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
299 struct bpf_insn *insn_buf)
300{
301 struct bpf_insn *insn = insn_buf;
302
303 switch (skb_field) {
304 case SKF_AD_MARK:
305 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
306
307 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
308 offsetof(struct sk_buff, mark));
309 break;
310
311 case SKF_AD_PKTTYPE:
312 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
313 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
314#ifdef __BIG_ENDIAN_BITFIELD
315 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
316#endif
317 break;
318
319 case SKF_AD_QUEUE:
320 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
321
322 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 offsetof(struct sk_buff, queue_mapping));
324 break;
325
326 case SKF_AD_VLAN_TAG:
327 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
328
329 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
330 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
331 offsetof(struct sk_buff, vlan_tci));
332 break;
333 case SKF_AD_VLAN_TAG_PRESENT:
334 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
335 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
336 offsetof(struct sk_buff, vlan_all));
337 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
338 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
339 break;
340 }
341
342 return insn - insn_buf;
343}
344
345static bool convert_bpf_extensions(struct sock_filter *fp,
346 struct bpf_insn **insnp)
347{
348 struct bpf_insn *insn = *insnp;
349 u32 cnt;
350
351 switch (fp->k) {
352 case SKF_AD_OFF + SKF_AD_PROTOCOL:
353 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
354
355 /* A = *(u16 *) (CTX + offsetof(protocol)) */
356 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
357 offsetof(struct sk_buff, protocol));
358 /* A = ntohs(A) [emitting a nop or swap16] */
359 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
360 break;
361
362 case SKF_AD_OFF + SKF_AD_PKTTYPE:
363 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn_buf: insn);
364 insn += cnt - 1;
365 break;
366
367 case SKF_AD_OFF + SKF_AD_IFINDEX:
368 case SKF_AD_OFF + SKF_AD_HATYPE:
369 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
370 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
371
372 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
373 BPF_REG_TMP, BPF_REG_CTX,
374 offsetof(struct sk_buff, dev));
375 /* if (tmp != 0) goto pc + 1 */
376 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
377 *insn++ = BPF_EXIT_INSN();
378 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
379 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
380 offsetof(struct net_device, ifindex));
381 else
382 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
383 offsetof(struct net_device, type));
384 break;
385
386 case SKF_AD_OFF + SKF_AD_MARK:
387 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn_buf: insn);
388 insn += cnt - 1;
389 break;
390
391 case SKF_AD_OFF + SKF_AD_RXHASH:
392 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
393
394 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
395 offsetof(struct sk_buff, hash));
396 break;
397
398 case SKF_AD_OFF + SKF_AD_QUEUE:
399 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn_buf: insn);
400 insn += cnt - 1;
401 break;
402
403 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
404 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
405 BPF_REG_A, BPF_REG_CTX, insn_buf: insn);
406 insn += cnt - 1;
407 break;
408
409 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
410 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
411 BPF_REG_A, BPF_REG_CTX, insn_buf: insn);
412 insn += cnt - 1;
413 break;
414
415 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
416 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
417
418 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
419 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
420 offsetof(struct sk_buff, vlan_proto));
421 /* A = ntohs(A) [emitting a nop or swap16] */
422 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
423 break;
424
425 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426 case SKF_AD_OFF + SKF_AD_NLATTR:
427 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
428 case SKF_AD_OFF + SKF_AD_CPU:
429 case SKF_AD_OFF + SKF_AD_RANDOM:
430 /* arg1 = CTX */
431 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
432 /* arg2 = A */
433 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
434 /* arg3 = X */
435 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
436 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
437 switch (fp->k) {
438 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
439 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
440 break;
441 case SKF_AD_OFF + SKF_AD_NLATTR:
442 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
443 break;
444 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
445 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
446 break;
447 case SKF_AD_OFF + SKF_AD_CPU:
448 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
449 break;
450 case SKF_AD_OFF + SKF_AD_RANDOM:
451 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
452 bpf_user_rnd_init_once();
453 break;
454 }
455 break;
456
457 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
458 /* A ^= X */
459 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
460 break;
461
462 default:
463 /* This is just a dummy call to avoid letting the compiler
464 * evict __bpf_call_base() as an optimization. Placed here
465 * where no-one bothers.
466 */
467 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
468 return false;
469 }
470
471 *insnp = insn;
472 return true;
473}
474
475static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
476{
477 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
478 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
479 bool endian = BPF_SIZE(fp->code) == BPF_H ||
480 BPF_SIZE(fp->code) == BPF_W;
481 bool indirect = BPF_MODE(fp->code) == BPF_IND;
482 const int ip_align = NET_IP_ALIGN;
483 struct bpf_insn *insn = *insnp;
484 int offset = fp->k;
485
486 if (!indirect &&
487 ((unaligned_ok && offset >= 0) ||
488 (!unaligned_ok && offset >= 0 &&
489 offset + ip_align >= 0 &&
490 offset + ip_align % size == 0))) {
491 bool ldx_off_ok = offset <= S16_MAX;
492
493 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
494 if (offset)
495 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
496 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
497 size, 2 + endian + (!ldx_off_ok * 2));
498 if (ldx_off_ok) {
499 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 BPF_REG_D, offset);
501 } else {
502 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
503 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
504 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
505 BPF_REG_TMP, 0);
506 }
507 if (endian)
508 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
509 *insn++ = BPF_JMP_A(8);
510 }
511
512 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
513 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
514 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
515 if (!indirect) {
516 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
517 } else {
518 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
519 if (fp->k)
520 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
521 }
522
523 switch (BPF_SIZE(fp->code)) {
524 case BPF_B:
525 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
526 break;
527 case BPF_H:
528 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
529 break;
530 case BPF_W:
531 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
532 break;
533 default:
534 return false;
535 }
536
537 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
538 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
539 *insn = BPF_EXIT_INSN();
540
541 *insnp = insn;
542 return true;
543}
544
545/**
546 * bpf_convert_filter - convert filter program
547 * @prog: the user passed filter program
548 * @len: the length of the user passed filter program
549 * @new_prog: allocated 'struct bpf_prog' or NULL
550 * @new_len: pointer to store length of converted program
551 * @seen_ld_abs: bool whether we've seen ld_abs/ind
552 *
553 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
554 * style extended BPF (eBPF).
555 * Conversion workflow:
556 *
557 * 1) First pass for calculating the new program length:
558 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
559 *
560 * 2) 2nd pass to remap in two passes: 1st pass finds new
561 * jump offsets, 2nd pass remapping:
562 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
563 */
564static int bpf_convert_filter(struct sock_filter *prog, int len,
565 struct bpf_prog *new_prog, int *new_len,
566 bool *seen_ld_abs)
567{
568 int new_flen = 0, pass = 0, target, i, stack_off;
569 struct bpf_insn *new_insn, *first_insn = NULL;
570 struct sock_filter *fp;
571 int *addrs = NULL;
572 u8 bpf_src;
573
574 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
575 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
576
577 if (len <= 0 || len > BPF_MAXINSNS)
578 return -EINVAL;
579
580 if (new_prog) {
581 first_insn = new_prog->insnsi;
582 addrs = kcalloc(n: len, size: sizeof(*addrs),
583 GFP_KERNEL | __GFP_NOWARN);
584 if (!addrs)
585 return -ENOMEM;
586 }
587
588do_pass:
589 new_insn = first_insn;
590 fp = prog;
591
592 /* Classic BPF related prologue emission. */
593 if (new_prog) {
594 /* Classic BPF expects A and X to be reset first. These need
595 * to be guaranteed to be the first two instructions.
596 */
597 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
598 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
599
600 /* All programs must keep CTX in callee saved BPF_REG_CTX.
601 * In eBPF case it's done by the compiler, here we need to
602 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
603 */
604 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
605 if (*seen_ld_abs) {
606 /* For packet access in classic BPF, cache skb->data
607 * in callee-saved BPF R8 and skb->len - skb->data_len
608 * (headlen) in BPF R9. Since classic BPF is read-only
609 * on CTX, we only need to cache it once.
610 */
611 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
612 BPF_REG_D, BPF_REG_CTX,
613 offsetof(struct sk_buff, data));
614 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
615 offsetof(struct sk_buff, len));
616 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
617 offsetof(struct sk_buff, data_len));
618 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
619 }
620 } else {
621 new_insn += 3;
622 }
623
624 for (i = 0; i < len; fp++, i++) {
625 struct bpf_insn tmp_insns[32] = { };
626 struct bpf_insn *insn = tmp_insns;
627
628 if (addrs)
629 addrs[i] = new_insn - first_insn;
630
631 switch (fp->code) {
632 /* All arithmetic insns and skb loads map as-is. */
633 case BPF_ALU | BPF_ADD | BPF_X:
634 case BPF_ALU | BPF_ADD | BPF_K:
635 case BPF_ALU | BPF_SUB | BPF_X:
636 case BPF_ALU | BPF_SUB | BPF_K:
637 case BPF_ALU | BPF_AND | BPF_X:
638 case BPF_ALU | BPF_AND | BPF_K:
639 case BPF_ALU | BPF_OR | BPF_X:
640 case BPF_ALU | BPF_OR | BPF_K:
641 case BPF_ALU | BPF_LSH | BPF_X:
642 case BPF_ALU | BPF_LSH | BPF_K:
643 case BPF_ALU | BPF_RSH | BPF_X:
644 case BPF_ALU | BPF_RSH | BPF_K:
645 case BPF_ALU | BPF_XOR | BPF_X:
646 case BPF_ALU | BPF_XOR | BPF_K:
647 case BPF_ALU | BPF_MUL | BPF_X:
648 case BPF_ALU | BPF_MUL | BPF_K:
649 case BPF_ALU | BPF_DIV | BPF_X:
650 case BPF_ALU | BPF_DIV | BPF_K:
651 case BPF_ALU | BPF_MOD | BPF_X:
652 case BPF_ALU | BPF_MOD | BPF_K:
653 case BPF_ALU | BPF_NEG:
654 case BPF_LD | BPF_ABS | BPF_W:
655 case BPF_LD | BPF_ABS | BPF_H:
656 case BPF_LD | BPF_ABS | BPF_B:
657 case BPF_LD | BPF_IND | BPF_W:
658 case BPF_LD | BPF_IND | BPF_H:
659 case BPF_LD | BPF_IND | BPF_B:
660 /* Check for overloaded BPF extension and
661 * directly convert it if found, otherwise
662 * just move on with mapping.
663 */
664 if (BPF_CLASS(fp->code) == BPF_LD &&
665 BPF_MODE(fp->code) == BPF_ABS &&
666 convert_bpf_extensions(fp, insnp: &insn))
667 break;
668 if (BPF_CLASS(fp->code) == BPF_LD &&
669 convert_bpf_ld_abs(fp, insnp: &insn)) {
670 *seen_ld_abs = true;
671 break;
672 }
673
674 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
675 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
676 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
677 /* Error with exception code on div/mod by 0.
678 * For cBPF programs, this was always return 0.
679 */
680 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
681 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
682 *insn++ = BPF_EXIT_INSN();
683 }
684
685 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
686 break;
687
688 /* Jump transformation cannot use BPF block macros
689 * everywhere as offset calculation and target updates
690 * require a bit more work than the rest, i.e. jump
691 * opcodes map as-is, but offsets need adjustment.
692 */
693
694#define BPF_EMIT_JMP \
695 do { \
696 const s32 off_min = S16_MIN, off_max = S16_MAX; \
697 s32 off; \
698 \
699 if (target >= len || target < 0) \
700 goto err; \
701 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
702 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
703 off -= insn - tmp_insns; \
704 /* Reject anything not fitting into insn->off. */ \
705 if (off < off_min || off > off_max) \
706 goto err; \
707 insn->off = off; \
708 } while (0)
709
710 case BPF_JMP | BPF_JA:
711 target = i + fp->k + 1;
712 insn->code = fp->code;
713 BPF_EMIT_JMP;
714 break;
715
716 case BPF_JMP | BPF_JEQ | BPF_K:
717 case BPF_JMP | BPF_JEQ | BPF_X:
718 case BPF_JMP | BPF_JSET | BPF_K:
719 case BPF_JMP | BPF_JSET | BPF_X:
720 case BPF_JMP | BPF_JGT | BPF_K:
721 case BPF_JMP | BPF_JGT | BPF_X:
722 case BPF_JMP | BPF_JGE | BPF_K:
723 case BPF_JMP | BPF_JGE | BPF_X:
724 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
725 /* BPF immediates are signed, zero extend
726 * immediate into tmp register and use it
727 * in compare insn.
728 */
729 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
730
731 insn->dst_reg = BPF_REG_A;
732 insn->src_reg = BPF_REG_TMP;
733 bpf_src = BPF_X;
734 } else {
735 insn->dst_reg = BPF_REG_A;
736 insn->imm = fp->k;
737 bpf_src = BPF_SRC(fp->code);
738 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
739 }
740
741 /* Common case where 'jump_false' is next insn. */
742 if (fp->jf == 0) {
743 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
744 target = i + fp->jt + 1;
745 BPF_EMIT_JMP;
746 break;
747 }
748
749 /* Convert some jumps when 'jump_true' is next insn. */
750 if (fp->jt == 0) {
751 switch (BPF_OP(fp->code)) {
752 case BPF_JEQ:
753 insn->code = BPF_JMP | BPF_JNE | bpf_src;
754 break;
755 case BPF_JGT:
756 insn->code = BPF_JMP | BPF_JLE | bpf_src;
757 break;
758 case BPF_JGE:
759 insn->code = BPF_JMP | BPF_JLT | bpf_src;
760 break;
761 default:
762 goto jmp_rest;
763 }
764
765 target = i + fp->jf + 1;
766 BPF_EMIT_JMP;
767 break;
768 }
769jmp_rest:
770 /* Other jumps are mapped into two insns: Jxx and JA. */
771 target = i + fp->jt + 1;
772 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
773 BPF_EMIT_JMP;
774 insn++;
775
776 insn->code = BPF_JMP | BPF_JA;
777 target = i + fp->jf + 1;
778 BPF_EMIT_JMP;
779 break;
780
781 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
782 case BPF_LDX | BPF_MSH | BPF_B: {
783 struct sock_filter tmp = {
784 .code = BPF_LD | BPF_ABS | BPF_B,
785 .k = fp->k,
786 };
787
788 *seen_ld_abs = true;
789
790 /* X = A */
791 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
792 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
793 convert_bpf_ld_abs(fp: &tmp, insnp: &insn);
794 insn++;
795 /* A &= 0xf */
796 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
797 /* A <<= 2 */
798 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
799 /* tmp = X */
800 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
801 /* X = A */
802 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
803 /* A = tmp */
804 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
805 break;
806 }
807 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
808 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
809 */
810 case BPF_RET | BPF_A:
811 case BPF_RET | BPF_K:
812 if (BPF_RVAL(fp->code) == BPF_K)
813 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
814 0, fp->k);
815 *insn = BPF_EXIT_INSN();
816 break;
817
818 /* Store to stack. */
819 case BPF_ST:
820 case BPF_STX:
821 stack_off = fp->k * 4 + 4;
822 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
823 BPF_ST ? BPF_REG_A : BPF_REG_X,
824 -stack_off);
825 /* check_load_and_stores() verifies that classic BPF can
826 * load from stack only after write, so tracking
827 * stack_depth for ST|STX insns is enough
828 */
829 if (new_prog && new_prog->aux->stack_depth < stack_off)
830 new_prog->aux->stack_depth = stack_off;
831 break;
832
833 /* Load from stack. */
834 case BPF_LD | BPF_MEM:
835 case BPF_LDX | BPF_MEM:
836 stack_off = fp->k * 4 + 4;
837 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
838 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
839 -stack_off);
840 break;
841
842 /* A = K or X = K */
843 case BPF_LD | BPF_IMM:
844 case BPF_LDX | BPF_IMM:
845 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
846 BPF_REG_A : BPF_REG_X, fp->k);
847 break;
848
849 /* X = A */
850 case BPF_MISC | BPF_TAX:
851 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
852 break;
853
854 /* A = X */
855 case BPF_MISC | BPF_TXA:
856 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
857 break;
858
859 /* A = skb->len or X = skb->len */
860 case BPF_LD | BPF_W | BPF_LEN:
861 case BPF_LDX | BPF_W | BPF_LEN:
862 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
863 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
864 offsetof(struct sk_buff, len));
865 break;
866
867 /* Access seccomp_data fields. */
868 case BPF_LDX | BPF_ABS | BPF_W:
869 /* A = *(u32 *) (ctx + K) */
870 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
871 break;
872
873 /* Unknown instruction. */
874 default:
875 goto err;
876 }
877
878 insn++;
879 if (new_prog)
880 memcpy(new_insn, tmp_insns,
881 sizeof(*insn) * (insn - tmp_insns));
882 new_insn += insn - tmp_insns;
883 }
884
885 if (!new_prog) {
886 /* Only calculating new length. */
887 *new_len = new_insn - first_insn;
888 if (*seen_ld_abs)
889 *new_len += 4; /* Prologue bits. */
890 return 0;
891 }
892
893 pass++;
894 if (new_flen != new_insn - first_insn) {
895 new_flen = new_insn - first_insn;
896 if (pass > 2)
897 goto err;
898 goto do_pass;
899 }
900
901 kfree(objp: addrs);
902 BUG_ON(*new_len != new_flen);
903 return 0;
904err:
905 kfree(objp: addrs);
906 return -EINVAL;
907}
908
909/* Security:
910 *
911 * As we dont want to clear mem[] array for each packet going through
912 * __bpf_prog_run(), we check that filter loaded by user never try to read
913 * a cell if not previously written, and we check all branches to be sure
914 * a malicious user doesn't try to abuse us.
915 */
916static int check_load_and_stores(const struct sock_filter *filter, int flen)
917{
918 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
919 int pc, ret = 0;
920
921 BUILD_BUG_ON(BPF_MEMWORDS > 16);
922
923 masks = kmalloc_array(n: flen, size: sizeof(*masks), GFP_KERNEL);
924 if (!masks)
925 return -ENOMEM;
926
927 memset(masks, 0xff, flen * sizeof(*masks));
928
929 for (pc = 0; pc < flen; pc++) {
930 memvalid &= masks[pc];
931
932 switch (filter[pc].code) {
933 case BPF_ST:
934 case BPF_STX:
935 memvalid |= (1 << filter[pc].k);
936 break;
937 case BPF_LD | BPF_MEM:
938 case BPF_LDX | BPF_MEM:
939 if (!(memvalid & (1 << filter[pc].k))) {
940 ret = -EINVAL;
941 goto error;
942 }
943 break;
944 case BPF_JMP | BPF_JA:
945 /* A jump must set masks on target */
946 masks[pc + 1 + filter[pc].k] &= memvalid;
947 memvalid = ~0;
948 break;
949 case BPF_JMP | BPF_JEQ | BPF_K:
950 case BPF_JMP | BPF_JEQ | BPF_X:
951 case BPF_JMP | BPF_JGE | BPF_K:
952 case BPF_JMP | BPF_JGE | BPF_X:
953 case BPF_JMP | BPF_JGT | BPF_K:
954 case BPF_JMP | BPF_JGT | BPF_X:
955 case BPF_JMP | BPF_JSET | BPF_K:
956 case BPF_JMP | BPF_JSET | BPF_X:
957 /* A jump must set masks on targets */
958 masks[pc + 1 + filter[pc].jt] &= memvalid;
959 masks[pc + 1 + filter[pc].jf] &= memvalid;
960 memvalid = ~0;
961 break;
962 }
963 }
964error:
965 kfree(objp: masks);
966 return ret;
967}
968
969static bool chk_code_allowed(u16 code_to_probe)
970{
971 static const bool codes[] = {
972 /* 32 bit ALU operations */
973 [BPF_ALU | BPF_ADD | BPF_K] = true,
974 [BPF_ALU | BPF_ADD | BPF_X] = true,
975 [BPF_ALU | BPF_SUB | BPF_K] = true,
976 [BPF_ALU | BPF_SUB | BPF_X] = true,
977 [BPF_ALU | BPF_MUL | BPF_K] = true,
978 [BPF_ALU | BPF_MUL | BPF_X] = true,
979 [BPF_ALU | BPF_DIV | BPF_K] = true,
980 [BPF_ALU | BPF_DIV | BPF_X] = true,
981 [BPF_ALU | BPF_MOD | BPF_K] = true,
982 [BPF_ALU | BPF_MOD | BPF_X] = true,
983 [BPF_ALU | BPF_AND | BPF_K] = true,
984 [BPF_ALU | BPF_AND | BPF_X] = true,
985 [BPF_ALU | BPF_OR | BPF_K] = true,
986 [BPF_ALU | BPF_OR | BPF_X] = true,
987 [BPF_ALU | BPF_XOR | BPF_K] = true,
988 [BPF_ALU | BPF_XOR | BPF_X] = true,
989 [BPF_ALU | BPF_LSH | BPF_K] = true,
990 [BPF_ALU | BPF_LSH | BPF_X] = true,
991 [BPF_ALU | BPF_RSH | BPF_K] = true,
992 [BPF_ALU | BPF_RSH | BPF_X] = true,
993 [BPF_ALU | BPF_NEG] = true,
994 /* Load instructions */
995 [BPF_LD | BPF_W | BPF_ABS] = true,
996 [BPF_LD | BPF_H | BPF_ABS] = true,
997 [BPF_LD | BPF_B | BPF_ABS] = true,
998 [BPF_LD | BPF_W | BPF_LEN] = true,
999 [BPF_LD | BPF_W | BPF_IND] = true,
1000 [BPF_LD | BPF_H | BPF_IND] = true,
1001 [BPF_LD | BPF_B | BPF_IND] = true,
1002 [BPF_LD | BPF_IMM] = true,
1003 [BPF_LD | BPF_MEM] = true,
1004 [BPF_LDX | BPF_W | BPF_LEN] = true,
1005 [BPF_LDX | BPF_B | BPF_MSH] = true,
1006 [BPF_LDX | BPF_IMM] = true,
1007 [BPF_LDX | BPF_MEM] = true,
1008 /* Store instructions */
1009 [BPF_ST] = true,
1010 [BPF_STX] = true,
1011 /* Misc instructions */
1012 [BPF_MISC | BPF_TAX] = true,
1013 [BPF_MISC | BPF_TXA] = true,
1014 /* Return instructions */
1015 [BPF_RET | BPF_K] = true,
1016 [BPF_RET | BPF_A] = true,
1017 /* Jump instructions */
1018 [BPF_JMP | BPF_JA] = true,
1019 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1020 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1021 [BPF_JMP | BPF_JGE | BPF_K] = true,
1022 [BPF_JMP | BPF_JGE | BPF_X] = true,
1023 [BPF_JMP | BPF_JGT | BPF_K] = true,
1024 [BPF_JMP | BPF_JGT | BPF_X] = true,
1025 [BPF_JMP | BPF_JSET | BPF_K] = true,
1026 [BPF_JMP | BPF_JSET | BPF_X] = true,
1027 };
1028
1029 if (code_to_probe >= ARRAY_SIZE(codes))
1030 return false;
1031
1032 return codes[code_to_probe];
1033}
1034
1035static bool bpf_check_basics_ok(const struct sock_filter *filter,
1036 unsigned int flen)
1037{
1038 if (filter == NULL)
1039 return false;
1040 if (flen == 0 || flen > BPF_MAXINSNS)
1041 return false;
1042
1043 return true;
1044}
1045
1046/**
1047 * bpf_check_classic - verify socket filter code
1048 * @filter: filter to verify
1049 * @flen: length of filter
1050 *
1051 * Check the user's filter code. If we let some ugly
1052 * filter code slip through kaboom! The filter must contain
1053 * no references or jumps that are out of range, no illegal
1054 * instructions, and must end with a RET instruction.
1055 *
1056 * All jumps are forward as they are not signed.
1057 *
1058 * Returns 0 if the rule set is legal or -EINVAL if not.
1059 */
1060static int bpf_check_classic(const struct sock_filter *filter,
1061 unsigned int flen)
1062{
1063 bool anc_found;
1064 int pc;
1065
1066 /* Check the filter code now */
1067 for (pc = 0; pc < flen; pc++) {
1068 const struct sock_filter *ftest = &filter[pc];
1069
1070 /* May we actually operate on this code? */
1071 if (!chk_code_allowed(code_to_probe: ftest->code))
1072 return -EINVAL;
1073
1074 /* Some instructions need special checks */
1075 switch (ftest->code) {
1076 case BPF_ALU | BPF_DIV | BPF_K:
1077 case BPF_ALU | BPF_MOD | BPF_K:
1078 /* Check for division by zero */
1079 if (ftest->k == 0)
1080 return -EINVAL;
1081 break;
1082 case BPF_ALU | BPF_LSH | BPF_K:
1083 case BPF_ALU | BPF_RSH | BPF_K:
1084 if (ftest->k >= 32)
1085 return -EINVAL;
1086 break;
1087 case BPF_LD | BPF_MEM:
1088 case BPF_LDX | BPF_MEM:
1089 case BPF_ST:
1090 case BPF_STX:
1091 /* Check for invalid memory addresses */
1092 if (ftest->k >= BPF_MEMWORDS)
1093 return -EINVAL;
1094 break;
1095 case BPF_JMP | BPF_JA:
1096 /* Note, the large ftest->k might cause loops.
1097 * Compare this with conditional jumps below,
1098 * where offsets are limited. --ANK (981016)
1099 */
1100 if (ftest->k >= (unsigned int)(flen - pc - 1))
1101 return -EINVAL;
1102 break;
1103 case BPF_JMP | BPF_JEQ | BPF_K:
1104 case BPF_JMP | BPF_JEQ | BPF_X:
1105 case BPF_JMP | BPF_JGE | BPF_K:
1106 case BPF_JMP | BPF_JGE | BPF_X:
1107 case BPF_JMP | BPF_JGT | BPF_K:
1108 case BPF_JMP | BPF_JGT | BPF_X:
1109 case BPF_JMP | BPF_JSET | BPF_K:
1110 case BPF_JMP | BPF_JSET | BPF_X:
1111 /* Both conditionals must be safe */
1112 if (pc + ftest->jt + 1 >= flen ||
1113 pc + ftest->jf + 1 >= flen)
1114 return -EINVAL;
1115 break;
1116 case BPF_LD | BPF_W | BPF_ABS:
1117 case BPF_LD | BPF_H | BPF_ABS:
1118 case BPF_LD | BPF_B | BPF_ABS:
1119 anc_found = false;
1120 if (bpf_anc_helper(ftest) & BPF_ANC)
1121 anc_found = true;
1122 /* Ancillary operation unknown or unsupported */
1123 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1124 return -EINVAL;
1125 }
1126 }
1127
1128 /* Last instruction must be a RET code */
1129 switch (filter[flen - 1].code) {
1130 case BPF_RET | BPF_K:
1131 case BPF_RET | BPF_A:
1132 return check_load_and_stores(filter, flen);
1133 }
1134
1135 return -EINVAL;
1136}
1137
1138static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1139 const struct sock_fprog *fprog)
1140{
1141 unsigned int fsize = bpf_classic_proglen(fprog);
1142 struct sock_fprog_kern *fkprog;
1143
1144 fp->orig_prog = kmalloc(size: sizeof(*fkprog), GFP_KERNEL);
1145 if (!fp->orig_prog)
1146 return -ENOMEM;
1147
1148 fkprog = fp->orig_prog;
1149 fkprog->len = fprog->len;
1150
1151 fkprog->filter = kmemdup(p: fp->insns, size: fsize,
1152 GFP_KERNEL | __GFP_NOWARN);
1153 if (!fkprog->filter) {
1154 kfree(objp: fp->orig_prog);
1155 return -ENOMEM;
1156 }
1157
1158 return 0;
1159}
1160
1161static void bpf_release_orig_filter(struct bpf_prog *fp)
1162{
1163 struct sock_fprog_kern *fprog = fp->orig_prog;
1164
1165 if (fprog) {
1166 kfree(objp: fprog->filter);
1167 kfree(objp: fprog);
1168 }
1169}
1170
1171static void __bpf_prog_release(struct bpf_prog *prog)
1172{
1173 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1174 bpf_prog_put(prog);
1175 } else {
1176 bpf_release_orig_filter(fp: prog);
1177 bpf_prog_free(fp: prog);
1178 }
1179}
1180
1181static void __sk_filter_release(struct sk_filter *fp)
1182{
1183 __bpf_prog_release(prog: fp->prog);
1184 kfree(objp: fp);
1185}
1186
1187/**
1188 * sk_filter_release_rcu - Release a socket filter by rcu_head
1189 * @rcu: rcu_head that contains the sk_filter to free
1190 */
1191static void sk_filter_release_rcu(struct rcu_head *rcu)
1192{
1193 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1194
1195 __sk_filter_release(fp);
1196}
1197
1198/**
1199 * sk_filter_release - release a socket filter
1200 * @fp: filter to remove
1201 *
1202 * Remove a filter from a socket and release its resources.
1203 */
1204static void sk_filter_release(struct sk_filter *fp)
1205{
1206 if (refcount_dec_and_test(r: &fp->refcnt))
1207 call_rcu(head: &fp->rcu, func: sk_filter_release_rcu);
1208}
1209
1210void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1211{
1212 u32 filter_size = bpf_prog_size(proglen: fp->prog->len);
1213
1214 atomic_sub(i: filter_size, v: &sk->sk_omem_alloc);
1215 sk_filter_release(fp);
1216}
1217
1218/* try to charge the socket memory if there is space available
1219 * return true on success
1220 */
1221static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222{
1223 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1224 u32 filter_size = bpf_prog_size(proglen: fp->prog->len);
1225
1226 /* same check as in sock_kmalloc() */
1227 if (filter_size <= optmem_max &&
1228 atomic_read(v: &sk->sk_omem_alloc) + filter_size < optmem_max) {
1229 atomic_add(i: filter_size, v: &sk->sk_omem_alloc);
1230 return true;
1231 }
1232 return false;
1233}
1234
1235bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1236{
1237 if (!refcount_inc_not_zero(r: &fp->refcnt))
1238 return false;
1239
1240 if (!__sk_filter_charge(sk, fp)) {
1241 sk_filter_release(fp);
1242 return false;
1243 }
1244 return true;
1245}
1246
1247static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1248{
1249 struct sock_filter *old_prog;
1250 struct bpf_prog *old_fp;
1251 int err, new_len, old_len = fp->len;
1252 bool seen_ld_abs = false;
1253
1254 /* We are free to overwrite insns et al right here as it won't be used at
1255 * this point in time anymore internally after the migration to the eBPF
1256 * instruction representation.
1257 */
1258 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1259 sizeof(struct bpf_insn));
1260
1261 /* Conversion cannot happen on overlapping memory areas,
1262 * so we need to keep the user BPF around until the 2nd
1263 * pass. At this time, the user BPF is stored in fp->insns.
1264 */
1265 old_prog = kmemdup(p: fp->insns, size: old_len * sizeof(struct sock_filter),
1266 GFP_KERNEL | __GFP_NOWARN);
1267 if (!old_prog) {
1268 err = -ENOMEM;
1269 goto out_err;
1270 }
1271
1272 /* 1st pass: calculate the new program length. */
1273 err = bpf_convert_filter(prog: old_prog, len: old_len, NULL, new_len: &new_len,
1274 seen_ld_abs: &seen_ld_abs);
1275 if (err)
1276 goto out_err_free;
1277
1278 /* Expand fp for appending the new filter representation. */
1279 old_fp = fp;
1280 fp = bpf_prog_realloc(fp_old: old_fp, size: bpf_prog_size(proglen: new_len), gfp_extra_flags: 0);
1281 if (!fp) {
1282 /* The old_fp is still around in case we couldn't
1283 * allocate new memory, so uncharge on that one.
1284 */
1285 fp = old_fp;
1286 err = -ENOMEM;
1287 goto out_err_free;
1288 }
1289
1290 fp->len = new_len;
1291
1292 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1293 err = bpf_convert_filter(prog: old_prog, len: old_len, new_prog: fp, new_len: &new_len,
1294 seen_ld_abs: &seen_ld_abs);
1295 if (err)
1296 /* 2nd bpf_convert_filter() can fail only if it fails
1297 * to allocate memory, remapping must succeed. Note,
1298 * that at this time old_fp has already been released
1299 * by krealloc().
1300 */
1301 goto out_err_free;
1302
1303 fp = bpf_prog_select_runtime(fp, err: &err);
1304 if (err)
1305 goto out_err_free;
1306
1307 kfree(objp: old_prog);
1308 return fp;
1309
1310out_err_free:
1311 kfree(objp: old_prog);
1312out_err:
1313 __bpf_prog_release(prog: fp);
1314 return ERR_PTR(error: err);
1315}
1316
1317static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1318 bpf_aux_classic_check_t trans)
1319{
1320 int err;
1321
1322 fp->bpf_func = NULL;
1323 fp->jited = 0;
1324
1325 err = bpf_check_classic(filter: fp->insns, flen: fp->len);
1326 if (err) {
1327 __bpf_prog_release(prog: fp);
1328 return ERR_PTR(error: err);
1329 }
1330
1331 /* There might be additional checks and transformations
1332 * needed on classic filters, f.e. in case of seccomp.
1333 */
1334 if (trans) {
1335 err = trans(fp->insns, fp->len);
1336 if (err) {
1337 __bpf_prog_release(prog: fp);
1338 return ERR_PTR(error: err);
1339 }
1340 }
1341
1342 /* Probe if we can JIT compile the filter and if so, do
1343 * the compilation of the filter.
1344 */
1345 bpf_jit_compile(prog: fp);
1346
1347 /* JIT compiler couldn't process this filter, so do the eBPF translation
1348 * for the optimized interpreter.
1349 */
1350 if (!fp->jited)
1351 fp = bpf_migrate_filter(fp);
1352
1353 return fp;
1354}
1355
1356/**
1357 * bpf_prog_create - create an unattached filter
1358 * @pfp: the unattached filter that is created
1359 * @fprog: the filter program
1360 *
1361 * Create a filter independent of any socket. We first run some
1362 * sanity checks on it to make sure it does not explode on us later.
1363 * If an error occurs or there is insufficient memory for the filter
1364 * a negative errno code is returned. On success the return is zero.
1365 */
1366int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1367{
1368 unsigned int fsize = bpf_classic_proglen(fprog);
1369 struct bpf_prog *fp;
1370
1371 /* Make sure new filter is there and in the right amounts. */
1372 if (!bpf_check_basics_ok(filter: fprog->filter, flen: fprog->len))
1373 return -EINVAL;
1374
1375 fp = bpf_prog_alloc(size: bpf_prog_size(proglen: fprog->len), gfp_extra_flags: 0);
1376 if (!fp)
1377 return -ENOMEM;
1378
1379 memcpy(fp->insns, fprog->filter, fsize);
1380
1381 fp->len = fprog->len;
1382 /* Since unattached filters are not copied back to user
1383 * space through sk_get_filter(), we do not need to hold
1384 * a copy here, and can spare us the work.
1385 */
1386 fp->orig_prog = NULL;
1387
1388 /* bpf_prepare_filter() already takes care of freeing
1389 * memory in case something goes wrong.
1390 */
1391 fp = bpf_prepare_filter(fp, NULL);
1392 if (IS_ERR(ptr: fp))
1393 return PTR_ERR(ptr: fp);
1394
1395 *pfp = fp;
1396 return 0;
1397}
1398EXPORT_SYMBOL_GPL(bpf_prog_create);
1399
1400/**
1401 * bpf_prog_create_from_user - create an unattached filter from user buffer
1402 * @pfp: the unattached filter that is created
1403 * @fprog: the filter program
1404 * @trans: post-classic verifier transformation handler
1405 * @save_orig: save classic BPF program
1406 *
1407 * This function effectively does the same as bpf_prog_create(), only
1408 * that it builds up its insns buffer from user space provided buffer.
1409 * It also allows for passing a bpf_aux_classic_check_t handler.
1410 */
1411int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1412 bpf_aux_classic_check_t trans, bool save_orig)
1413{
1414 unsigned int fsize = bpf_classic_proglen(fprog);
1415 struct bpf_prog *fp;
1416 int err;
1417
1418 /* Make sure new filter is there and in the right amounts. */
1419 if (!bpf_check_basics_ok(filter: fprog->filter, flen: fprog->len))
1420 return -EINVAL;
1421
1422 fp = bpf_prog_alloc(size: bpf_prog_size(proglen: fprog->len), gfp_extra_flags: 0);
1423 if (!fp)
1424 return -ENOMEM;
1425
1426 if (copy_from_user(to: fp->insns, from: fprog->filter, n: fsize)) {
1427 __bpf_prog_free(fp);
1428 return -EFAULT;
1429 }
1430
1431 fp->len = fprog->len;
1432 fp->orig_prog = NULL;
1433
1434 if (save_orig) {
1435 err = bpf_prog_store_orig_filter(fp, fprog);
1436 if (err) {
1437 __bpf_prog_free(fp);
1438 return -ENOMEM;
1439 }
1440 }
1441
1442 /* bpf_prepare_filter() already takes care of freeing
1443 * memory in case something goes wrong.
1444 */
1445 fp = bpf_prepare_filter(fp, trans);
1446 if (IS_ERR(ptr: fp))
1447 return PTR_ERR(ptr: fp);
1448
1449 *pfp = fp;
1450 return 0;
1451}
1452EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1453
1454void bpf_prog_destroy(struct bpf_prog *fp)
1455{
1456 __bpf_prog_release(prog: fp);
1457}
1458EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1459
1460static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1461{
1462 struct sk_filter *fp, *old_fp;
1463
1464 fp = kmalloc(size: sizeof(*fp), GFP_KERNEL);
1465 if (!fp)
1466 return -ENOMEM;
1467
1468 fp->prog = prog;
1469
1470 if (!__sk_filter_charge(sk, fp)) {
1471 kfree(objp: fp);
1472 return -ENOMEM;
1473 }
1474 refcount_set(r: &fp->refcnt, n: 1);
1475
1476 old_fp = rcu_dereference_protected(sk->sk_filter,
1477 lockdep_sock_is_held(sk));
1478 rcu_assign_pointer(sk->sk_filter, fp);
1479
1480 if (old_fp)
1481 sk_filter_uncharge(sk, fp: old_fp);
1482
1483 return 0;
1484}
1485
1486static
1487struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1488{
1489 unsigned int fsize = bpf_classic_proglen(fprog);
1490 struct bpf_prog *prog;
1491 int err;
1492
1493 if (sock_flag(sk, flag: SOCK_FILTER_LOCKED))
1494 return ERR_PTR(error: -EPERM);
1495
1496 /* Make sure new filter is there and in the right amounts. */
1497 if (!bpf_check_basics_ok(filter: fprog->filter, flen: fprog->len))
1498 return ERR_PTR(error: -EINVAL);
1499
1500 prog = bpf_prog_alloc(size: bpf_prog_size(proglen: fprog->len), gfp_extra_flags: 0);
1501 if (!prog)
1502 return ERR_PTR(error: -ENOMEM);
1503
1504 if (copy_from_user(to: prog->insns, from: fprog->filter, n: fsize)) {
1505 __bpf_prog_free(fp: prog);
1506 return ERR_PTR(error: -EFAULT);
1507 }
1508
1509 prog->len = fprog->len;
1510
1511 err = bpf_prog_store_orig_filter(fp: prog, fprog);
1512 if (err) {
1513 __bpf_prog_free(fp: prog);
1514 return ERR_PTR(error: -ENOMEM);
1515 }
1516
1517 /* bpf_prepare_filter() already takes care of freeing
1518 * memory in case something goes wrong.
1519 */
1520 return bpf_prepare_filter(fp: prog, NULL);
1521}
1522
1523/**
1524 * sk_attach_filter - attach a socket filter
1525 * @fprog: the filter program
1526 * @sk: the socket to use
1527 *
1528 * Attach the user's filter code. We first run some sanity checks on
1529 * it to make sure it does not explode on us later. If an error
1530 * occurs or there is insufficient memory for the filter a negative
1531 * errno code is returned. On success the return is zero.
1532 */
1533int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1534{
1535 struct bpf_prog *prog = __get_filter(fprog, sk);
1536 int err;
1537
1538 if (IS_ERR(ptr: prog))
1539 return PTR_ERR(ptr: prog);
1540
1541 err = __sk_attach_prog(prog, sk);
1542 if (err < 0) {
1543 __bpf_prog_release(prog);
1544 return err;
1545 }
1546
1547 return 0;
1548}
1549EXPORT_SYMBOL_GPL(sk_attach_filter);
1550
1551int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1552{
1553 struct bpf_prog *prog = __get_filter(fprog, sk);
1554 int err, optmem_max;
1555
1556 if (IS_ERR(ptr: prog))
1557 return PTR_ERR(ptr: prog);
1558
1559 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1560 if (bpf_prog_size(proglen: prog->len) > optmem_max)
1561 err = -ENOMEM;
1562 else
1563 err = reuseport_attach_prog(sk, prog);
1564
1565 if (err)
1566 __bpf_prog_release(prog);
1567
1568 return err;
1569}
1570
1571static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1572{
1573 if (sock_flag(sk, flag: SOCK_FILTER_LOCKED))
1574 return ERR_PTR(error: -EPERM);
1575
1576 return bpf_prog_get_type(ufd, type: BPF_PROG_TYPE_SOCKET_FILTER);
1577}
1578
1579int sk_attach_bpf(u32 ufd, struct sock *sk)
1580{
1581 struct bpf_prog *prog = __get_bpf(ufd, sk);
1582 int err;
1583
1584 if (IS_ERR(ptr: prog))
1585 return PTR_ERR(ptr: prog);
1586
1587 err = __sk_attach_prog(prog, sk);
1588 if (err < 0) {
1589 bpf_prog_put(prog);
1590 return err;
1591 }
1592
1593 return 0;
1594}
1595
1596int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1597{
1598 struct bpf_prog *prog;
1599 int err, optmem_max;
1600
1601 if (sock_flag(sk, flag: SOCK_FILTER_LOCKED))
1602 return -EPERM;
1603
1604 prog = bpf_prog_get_type(ufd, type: BPF_PROG_TYPE_SOCKET_FILTER);
1605 if (PTR_ERR(ptr: prog) == -EINVAL)
1606 prog = bpf_prog_get_type(ufd, type: BPF_PROG_TYPE_SK_REUSEPORT);
1607 if (IS_ERR(ptr: prog))
1608 return PTR_ERR(ptr: prog);
1609
1610 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1611 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1612 * bpf prog (e.g. sockmap). It depends on the
1613 * limitation imposed by bpf_prog_load().
1614 * Hence, sysctl_optmem_max is not checked.
1615 */
1616 if ((sk->sk_type != SOCK_STREAM &&
1617 sk->sk_type != SOCK_DGRAM) ||
1618 (sk->sk_protocol != IPPROTO_UDP &&
1619 sk->sk_protocol != IPPROTO_TCP) ||
1620 (sk->sk_family != AF_INET &&
1621 sk->sk_family != AF_INET6)) {
1622 err = -ENOTSUPP;
1623 goto err_prog_put;
1624 }
1625 } else {
1626 /* BPF_PROG_TYPE_SOCKET_FILTER */
1627 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1628 if (bpf_prog_size(proglen: prog->len) > optmem_max) {
1629 err = -ENOMEM;
1630 goto err_prog_put;
1631 }
1632 }
1633
1634 err = reuseport_attach_prog(sk, prog);
1635err_prog_put:
1636 if (err)
1637 bpf_prog_put(prog);
1638
1639 return err;
1640}
1641
1642void sk_reuseport_prog_free(struct bpf_prog *prog)
1643{
1644 if (!prog)
1645 return;
1646
1647 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1648 bpf_prog_put(prog);
1649 else
1650 bpf_prog_destroy(prog);
1651}
1652
1653struct bpf_scratchpad {
1654 union {
1655 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1656 u8 buff[MAX_BPF_STACK];
1657 };
1658};
1659
1660static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1661
1662static inline int __bpf_try_make_writable(struct sk_buff *skb,
1663 unsigned int write_len)
1664{
1665 return skb_ensure_writable(skb, write_len);
1666}
1667
1668static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 unsigned int write_len)
1670{
1671 int err = __bpf_try_make_writable(skb, write_len);
1672
1673 bpf_compute_data_pointers(skb);
1674 return err;
1675}
1676
1677static int bpf_try_make_head_writable(struct sk_buff *skb)
1678{
1679 return bpf_try_make_writable(skb, write_len: skb_headlen(skb));
1680}
1681
1682static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683{
1684 if (skb_at_tc_ingress(skb))
1685 skb_postpush_rcsum(skb, start: skb_mac_header(skb), len: skb->mac_len);
1686}
1687
1688static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689{
1690 if (skb_at_tc_ingress(skb))
1691 skb_postpull_rcsum(skb, start: skb_mac_header(skb), len: skb->mac_len);
1692}
1693
1694BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 const void *, from, u32, len, u64, flags)
1696{
1697 void *ptr;
1698
1699 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 return -EINVAL;
1701 if (unlikely(offset > INT_MAX))
1702 return -EFAULT;
1703 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 return -EFAULT;
1705
1706 ptr = skb->data + offset;
1707 if (flags & BPF_F_RECOMPUTE_CSUM)
1708 __skb_postpull_rcsum(skb, start: ptr, len, off: offset);
1709
1710 memcpy(ptr, from, len);
1711
1712 if (flags & BPF_F_RECOMPUTE_CSUM)
1713 __skb_postpush_rcsum(skb, start: ptr, len, off: offset);
1714 if (flags & BPF_F_INVALIDATE_HASH)
1715 skb_clear_hash(skb);
1716
1717 return 0;
1718}
1719
1720static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 .func = bpf_skb_store_bytes,
1722 .gpl_only = false,
1723 .ret_type = RET_INTEGER,
1724 .arg1_type = ARG_PTR_TO_CTX,
1725 .arg2_type = ARG_ANYTHING,
1726 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1727 .arg4_type = ARG_CONST_SIZE,
1728 .arg5_type = ARG_ANYTHING,
1729};
1730
1731int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 u32 len, u64 flags)
1733{
1734 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735}
1736
1737BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 void *, to, u32, len)
1739{
1740 void *ptr;
1741
1742 if (unlikely(offset > INT_MAX))
1743 goto err_clear;
1744
1745 ptr = skb_header_pointer(skb, offset, len, buffer: to);
1746 if (unlikely(!ptr))
1747 goto err_clear;
1748 if (ptr != to)
1749 memcpy(to, ptr, len);
1750
1751 return 0;
1752err_clear:
1753 memset(to, 0, len);
1754 return -EFAULT;
1755}
1756
1757static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 .func = bpf_skb_load_bytes,
1759 .gpl_only = false,
1760 .ret_type = RET_INTEGER,
1761 .arg1_type = ARG_PTR_TO_CTX,
1762 .arg2_type = ARG_ANYTHING,
1763 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1764 .arg4_type = ARG_CONST_SIZE,
1765};
1766
1767int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768{
1769 return ____bpf_skb_load_bytes(skb, offset, to, len);
1770}
1771
1772BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 const struct bpf_flow_dissector *, ctx, u32, offset,
1774 void *, to, u32, len)
1775{
1776 void *ptr;
1777
1778 if (unlikely(offset > 0xffff))
1779 goto err_clear;
1780
1781 if (unlikely(!ctx->skb))
1782 goto err_clear;
1783
1784 ptr = skb_header_pointer(skb: ctx->skb, offset, len, buffer: to);
1785 if (unlikely(!ptr))
1786 goto err_clear;
1787 if (ptr != to)
1788 memcpy(to, ptr, len);
1789
1790 return 0;
1791err_clear:
1792 memset(to, 0, len);
1793 return -EFAULT;
1794}
1795
1796static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 .func = bpf_flow_dissector_load_bytes,
1798 .gpl_only = false,
1799 .ret_type = RET_INTEGER,
1800 .arg1_type = ARG_PTR_TO_CTX,
1801 .arg2_type = ARG_ANYTHING,
1802 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1803 .arg4_type = ARG_CONST_SIZE,
1804};
1805
1806BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 u32, offset, void *, to, u32, len, u32, start_header)
1808{
1809 u8 *end = skb_tail_pointer(skb);
1810 u8 *start, *ptr;
1811
1812 if (unlikely(offset > 0xffff))
1813 goto err_clear;
1814
1815 switch (start_header) {
1816 case BPF_HDR_START_MAC:
1817 if (unlikely(!skb_mac_header_was_set(skb)))
1818 goto err_clear;
1819 start = skb_mac_header(skb);
1820 break;
1821 case BPF_HDR_START_NET:
1822 start = skb_network_header(skb);
1823 break;
1824 default:
1825 goto err_clear;
1826 }
1827
1828 ptr = start + offset;
1829
1830 if (likely(ptr + len <= end)) {
1831 memcpy(to, ptr, len);
1832 return 0;
1833 }
1834
1835err_clear:
1836 memset(to, 0, len);
1837 return -EFAULT;
1838}
1839
1840static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 .func = bpf_skb_load_bytes_relative,
1842 .gpl_only = false,
1843 .ret_type = RET_INTEGER,
1844 .arg1_type = ARG_PTR_TO_CTX,
1845 .arg2_type = ARG_ANYTHING,
1846 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1847 .arg4_type = ARG_CONST_SIZE,
1848 .arg5_type = ARG_ANYTHING,
1849};
1850
1851BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852{
1853 /* Idea is the following: should the needed direct read/write
1854 * test fail during runtime, we can pull in more data and redo
1855 * again, since implicitly, we invalidate previous checks here.
1856 *
1857 * Or, since we know how much we need to make read/writeable,
1858 * this can be done once at the program beginning for direct
1859 * access case. By this we overcome limitations of only current
1860 * headroom being accessible.
1861 */
1862 return bpf_try_make_writable(skb, write_len: len ? : skb_headlen(skb));
1863}
1864
1865static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 .func = bpf_skb_pull_data,
1867 .gpl_only = false,
1868 .ret_type = RET_INTEGER,
1869 .arg1_type = ARG_PTR_TO_CTX,
1870 .arg2_type = ARG_ANYTHING,
1871};
1872
1873BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874{
1875 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876}
1877
1878static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 .func = bpf_sk_fullsock,
1880 .gpl_only = false,
1881 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1882 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1883};
1884
1885static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 unsigned int write_len)
1887{
1888 return __bpf_try_make_writable(skb, write_len);
1889}
1890
1891BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892{
1893 /* Idea is the following: should the needed direct read/write
1894 * test fail during runtime, we can pull in more data and redo
1895 * again, since implicitly, we invalidate previous checks here.
1896 *
1897 * Or, since we know how much we need to make read/writeable,
1898 * this can be done once at the program beginning for direct
1899 * access case. By this we overcome limitations of only current
1900 * headroom being accessible.
1901 */
1902 return sk_skb_try_make_writable(skb, write_len: len ? : skb_headlen(skb));
1903}
1904
1905static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 .func = sk_skb_pull_data,
1907 .gpl_only = false,
1908 .ret_type = RET_INTEGER,
1909 .arg1_type = ARG_PTR_TO_CTX,
1910 .arg2_type = ARG_ANYTHING,
1911};
1912
1913BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 u64, from, u64, to, u64, flags)
1915{
1916 __sum16 *ptr;
1917
1918 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 return -EINVAL;
1920 if (unlikely(offset > 0xffff || offset & 1))
1921 return -EFAULT;
1922 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 return -EFAULT;
1924
1925 ptr = (__sum16 *)(skb->data + offset);
1926 switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 case 0:
1928 if (unlikely(from != 0))
1929 return -EINVAL;
1930
1931 csum_replace_by_diff(sum: ptr, diff: to);
1932 break;
1933 case 2:
1934 csum_replace2(sum: ptr, old: from, new: to);
1935 break;
1936 case 4:
1937 csum_replace4(sum: ptr, from, to);
1938 break;
1939 default:
1940 return -EINVAL;
1941 }
1942
1943 return 0;
1944}
1945
1946static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 .func = bpf_l3_csum_replace,
1948 .gpl_only = false,
1949 .ret_type = RET_INTEGER,
1950 .arg1_type = ARG_PTR_TO_CTX,
1951 .arg2_type = ARG_ANYTHING,
1952 .arg3_type = ARG_ANYTHING,
1953 .arg4_type = ARG_ANYTHING,
1954 .arg5_type = ARG_ANYTHING,
1955};
1956
1957BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 u64, from, u64, to, u64, flags)
1959{
1960 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 __sum16 *ptr;
1964
1965 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 return -EINVAL;
1968 if (unlikely(offset > 0xffff || offset & 1))
1969 return -EFAULT;
1970 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 return -EFAULT;
1972
1973 ptr = (__sum16 *)(skb->data + offset);
1974 if (is_mmzero && !do_mforce && !*ptr)
1975 return 0;
1976
1977 switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 case 0:
1979 if (unlikely(from != 0))
1980 return -EINVAL;
1981
1982 inet_proto_csum_replace_by_diff(sum: ptr, skb, diff: to, pseudohdr: is_pseudo);
1983 break;
1984 case 2:
1985 inet_proto_csum_replace2(sum: ptr, skb, from, to, pseudohdr: is_pseudo);
1986 break;
1987 case 4:
1988 inet_proto_csum_replace4(sum: ptr, skb, from, to, pseudohdr: is_pseudo);
1989 break;
1990 default:
1991 return -EINVAL;
1992 }
1993
1994 if (is_mmzero && !*ptr)
1995 *ptr = CSUM_MANGLED_0;
1996 return 0;
1997}
1998
1999static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 .func = bpf_l4_csum_replace,
2001 .gpl_only = false,
2002 .ret_type = RET_INTEGER,
2003 .arg1_type = ARG_PTR_TO_CTX,
2004 .arg2_type = ARG_ANYTHING,
2005 .arg3_type = ARG_ANYTHING,
2006 .arg4_type = ARG_ANYTHING,
2007 .arg5_type = ARG_ANYTHING,
2008};
2009
2010BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 __be32 *, to, u32, to_size, __wsum, seed)
2012{
2013 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014 u32 diff_size = from_size + to_size;
2015 int i, j = 0;
2016
2017 /* This is quite flexible, some examples:
2018 *
2019 * from_size == 0, to_size > 0, seed := csum --> pushing data
2020 * from_size > 0, to_size == 0, seed := csum --> pulling data
2021 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2022 *
2023 * Even for diffing, from_size and to_size don't need to be equal.
2024 */
2025 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026 diff_size > sizeof(sp->diff)))
2027 return -EINVAL;
2028
2029 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030 sp->diff[j] = ~from[i];
2031 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2032 sp->diff[j] = to[i];
2033
2034 return csum_partial(buff: sp->diff, len: diff_size, sum: seed);
2035}
2036
2037static const struct bpf_func_proto bpf_csum_diff_proto = {
2038 .func = bpf_csum_diff,
2039 .gpl_only = false,
2040 .pkt_access = true,
2041 .ret_type = RET_INTEGER,
2042 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2044 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2046 .arg5_type = ARG_ANYTHING,
2047};
2048
2049BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050{
2051 /* The interface is to be used in combination with bpf_csum_diff()
2052 * for direct packet writes. csum rotation for alignment as well
2053 * as emulating csum_sub() can be done from the eBPF program.
2054 */
2055 if (skb->ip_summed == CHECKSUM_COMPLETE)
2056 return (skb->csum = csum_add(csum: skb->csum, addend: csum));
2057
2058 return -ENOTSUPP;
2059}
2060
2061static const struct bpf_func_proto bpf_csum_update_proto = {
2062 .func = bpf_csum_update,
2063 .gpl_only = false,
2064 .ret_type = RET_INTEGER,
2065 .arg1_type = ARG_PTR_TO_CTX,
2066 .arg2_type = ARG_ANYTHING,
2067};
2068
2069BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070{
2071 /* The interface is to be used in combination with bpf_skb_adjust_room()
2072 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073 * is passed as flags, for example.
2074 */
2075 switch (level) {
2076 case BPF_CSUM_LEVEL_INC:
2077 __skb_incr_checksum_unnecessary(skb);
2078 break;
2079 case BPF_CSUM_LEVEL_DEC:
2080 __skb_decr_checksum_unnecessary(skb);
2081 break;
2082 case BPF_CSUM_LEVEL_RESET:
2083 __skb_reset_checksum_unnecessary(skb);
2084 break;
2085 case BPF_CSUM_LEVEL_QUERY:
2086 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087 skb->csum_level : -EACCES;
2088 default:
2089 return -EINVAL;
2090 }
2091
2092 return 0;
2093}
2094
2095static const struct bpf_func_proto bpf_csum_level_proto = {
2096 .func = bpf_csum_level,
2097 .gpl_only = false,
2098 .ret_type = RET_INTEGER,
2099 .arg1_type = ARG_PTR_TO_CTX,
2100 .arg2_type = ARG_ANYTHING,
2101};
2102
2103static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104{
2105 return dev_forward_skb_nomtu(dev, skb);
2106}
2107
2108static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109 struct sk_buff *skb)
2110{
2111 int ret = ____dev_forward_skb(dev, skb, check_mtu: false);
2112
2113 if (likely(!ret)) {
2114 skb->dev = dev;
2115 ret = netif_rx(skb);
2116 }
2117
2118 return ret;
2119}
2120
2121static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122{
2123 int ret;
2124
2125 if (dev_xmit_recursion()) {
2126 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127 kfree_skb(skb);
2128 return -ENETDOWN;
2129 }
2130
2131 skb->dev = dev;
2132 skb_set_redirected_noclear(skb, from_ingress: skb_at_tc_ingress(skb));
2133 skb_clear_tstamp(skb);
2134
2135 dev_xmit_recursion_inc();
2136 ret = dev_queue_xmit(skb);
2137 dev_xmit_recursion_dec();
2138
2139 return ret;
2140}
2141
2142static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143 u32 flags)
2144{
2145 unsigned int mlen = skb_network_offset(skb);
2146
2147 if (unlikely(skb->len <= mlen)) {
2148 kfree_skb(skb);
2149 return -ERANGE;
2150 }
2151
2152 if (mlen) {
2153 __skb_pull(skb, len: mlen);
2154
2155 /* At ingress, the mac header has already been pulled once.
2156 * At egress, skb_pospull_rcsum has to be done in case that
2157 * the skb is originated from ingress (i.e. a forwarded skb)
2158 * to ensure that rcsum starts at net header.
2159 */
2160 if (!skb_at_tc_ingress(skb))
2161 skb_postpull_rcsum(skb, start: skb_mac_header(skb), len: mlen);
2162 }
2163 skb_pop_mac_header(skb);
2164 skb_reset_mac_len(skb);
2165 return flags & BPF_F_INGRESS ?
2166 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167}
2168
2169static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170 u32 flags)
2171{
2172 /* Verify that a link layer header is carried */
2173 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174 kfree_skb(skb);
2175 return -ERANGE;
2176 }
2177
2178 bpf_push_mac_rcsum(skb);
2179 return flags & BPF_F_INGRESS ?
2180 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181}
2182
2183static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184 u32 flags)
2185{
2186 if (dev_is_mac_header_xmit(dev))
2187 return __bpf_redirect_common(skb, dev, flags);
2188 else
2189 return __bpf_redirect_no_mac(skb, dev, flags);
2190}
2191
2192#if IS_ENABLED(CONFIG_IPV6)
2193static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194 struct net_device *dev, struct bpf_nh_params *nh)
2195{
2196 u32 hh_len = LL_RESERVED_SPACE(dev);
2197 const struct in6_addr *nexthop;
2198 struct dst_entry *dst = NULL;
2199 struct neighbour *neigh;
2200
2201 if (dev_xmit_recursion()) {
2202 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203 goto out_drop;
2204 }
2205
2206 skb->dev = dev;
2207 skb_clear_tstamp(skb);
2208
2209 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210 skb = skb_expand_head(skb, headroom: hh_len);
2211 if (!skb)
2212 return -ENOMEM;
2213 }
2214
2215 rcu_read_lock();
2216 if (!nh) {
2217 dst = skb_dst(skb);
2218 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2219 daddr: &ipv6_hdr(skb)->daddr);
2220 } else {
2221 nexthop = &nh->ipv6_nh;
2222 }
2223 neigh = ip_neigh_gw6(dev, addr: nexthop);
2224 if (likely(!IS_ERR(neigh))) {
2225 int ret;
2226
2227 sock_confirm_neigh(skb, n: neigh);
2228 local_bh_disable();
2229 dev_xmit_recursion_inc();
2230 ret = neigh_output(n: neigh, skb, skip_cache: false);
2231 dev_xmit_recursion_dec();
2232 local_bh_enable();
2233 rcu_read_unlock();
2234 return ret;
2235 }
2236 rcu_read_unlock_bh();
2237 if (dst)
2238 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239out_drop:
2240 kfree_skb(skb);
2241 return -ENETDOWN;
2242}
2243
2244static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245 struct bpf_nh_params *nh)
2246{
2247 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248 struct net *net = dev_net(dev);
2249 int err, ret = NET_XMIT_DROP;
2250
2251 if (!nh) {
2252 struct dst_entry *dst;
2253 struct flowi6 fl6 = {
2254 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2255 .flowi6_mark = skb->mark,
2256 .flowlabel = ip6_flowinfo(hdr: ip6h),
2257 .flowi6_oif = dev->ifindex,
2258 .flowi6_proto = ip6h->nexthdr,
2259 .daddr = ip6h->daddr,
2260 .saddr = ip6h->saddr,
2261 };
2262
2263 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264 if (IS_ERR(ptr: dst))
2265 goto out_drop;
2266
2267 skb_dst_set(skb, dst);
2268 } else if (nh->nh_family != AF_INET6) {
2269 goto out_drop;
2270 }
2271
2272 err = bpf_out_neigh_v6(net, skb, dev, nh);
2273 if (unlikely(net_xmit_eval(err)))
2274 dev->stats.tx_errors++;
2275 else
2276 ret = NET_XMIT_SUCCESS;
2277 goto out_xmit;
2278out_drop:
2279 dev->stats.tx_errors++;
2280 kfree_skb(skb);
2281out_xmit:
2282 return ret;
2283}
2284#else
2285static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286 struct bpf_nh_params *nh)
2287{
2288 kfree_skb(skb);
2289 return NET_XMIT_DROP;
2290}
2291#endif /* CONFIG_IPV6 */
2292
2293#if IS_ENABLED(CONFIG_INET)
2294static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295 struct net_device *dev, struct bpf_nh_params *nh)
2296{
2297 u32 hh_len = LL_RESERVED_SPACE(dev);
2298 struct neighbour *neigh;
2299 bool is_v6gw = false;
2300
2301 if (dev_xmit_recursion()) {
2302 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303 goto out_drop;
2304 }
2305
2306 skb->dev = dev;
2307 skb_clear_tstamp(skb);
2308
2309 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310 skb = skb_expand_head(skb, headroom: hh_len);
2311 if (!skb)
2312 return -ENOMEM;
2313 }
2314
2315 rcu_read_lock();
2316 if (!nh) {
2317 struct dst_entry *dst = skb_dst(skb);
2318 struct rtable *rt = container_of(dst, struct rtable, dst);
2319
2320 neigh = ip_neigh_for_gw(rt, skb, is_v6gw: &is_v6gw);
2321 } else if (nh->nh_family == AF_INET6) {
2322 neigh = ip_neigh_gw6(dev, addr: &nh->ipv6_nh);
2323 is_v6gw = true;
2324 } else if (nh->nh_family == AF_INET) {
2325 neigh = ip_neigh_gw4(dev, daddr: nh->ipv4_nh);
2326 } else {
2327 rcu_read_unlock();
2328 goto out_drop;
2329 }
2330
2331 if (likely(!IS_ERR(neigh))) {
2332 int ret;
2333
2334 sock_confirm_neigh(skb, n: neigh);
2335 local_bh_disable();
2336 dev_xmit_recursion_inc();
2337 ret = neigh_output(n: neigh, skb, skip_cache: is_v6gw);
2338 dev_xmit_recursion_dec();
2339 local_bh_enable();
2340 rcu_read_unlock();
2341 return ret;
2342 }
2343 rcu_read_unlock();
2344out_drop:
2345 kfree_skb(skb);
2346 return -ENETDOWN;
2347}
2348
2349static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350 struct bpf_nh_params *nh)
2351{
2352 const struct iphdr *ip4h = ip_hdr(skb);
2353 struct net *net = dev_net(dev);
2354 int err, ret = NET_XMIT_DROP;
2355
2356 if (!nh) {
2357 struct flowi4 fl4 = {
2358 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2359 .flowi4_mark = skb->mark,
2360 .flowi4_tos = RT_TOS(ip4h->tos),
2361 .flowi4_oif = dev->ifindex,
2362 .flowi4_proto = ip4h->protocol,
2363 .daddr = ip4h->daddr,
2364 .saddr = ip4h->saddr,
2365 };
2366 struct rtable *rt;
2367
2368 rt = ip_route_output_flow(net, flp: &fl4, NULL);
2369 if (IS_ERR(ptr: rt))
2370 goto out_drop;
2371 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372 ip_rt_put(rt);
2373 goto out_drop;
2374 }
2375
2376 skb_dst_set(skb, dst: &rt->dst);
2377 }
2378
2379 err = bpf_out_neigh_v4(net, skb, dev, nh);
2380 if (unlikely(net_xmit_eval(err)))
2381 dev->stats.tx_errors++;
2382 else
2383 ret = NET_XMIT_SUCCESS;
2384 goto out_xmit;
2385out_drop:
2386 dev->stats.tx_errors++;
2387 kfree_skb(skb);
2388out_xmit:
2389 return ret;
2390}
2391#else
2392static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393 struct bpf_nh_params *nh)
2394{
2395 kfree_skb(skb);
2396 return NET_XMIT_DROP;
2397}
2398#endif /* CONFIG_INET */
2399
2400static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401 struct bpf_nh_params *nh)
2402{
2403 struct ethhdr *ethh = eth_hdr(skb);
2404
2405 if (unlikely(skb->mac_header >= skb->network_header))
2406 goto out;
2407 bpf_push_mac_rcsum(skb);
2408 if (is_multicast_ether_addr(addr: ethh->h_dest))
2409 goto out;
2410
2411 skb_pull(skb, len: sizeof(*ethh));
2412 skb_unset_mac_header(skb);
2413 skb_reset_network_header(skb);
2414
2415 if (skb->protocol == htons(ETH_P_IP))
2416 return __bpf_redirect_neigh_v4(skb, dev, nh);
2417 else if (skb->protocol == htons(ETH_P_IPV6))
2418 return __bpf_redirect_neigh_v6(skb, dev, nh);
2419out:
2420 kfree_skb(skb);
2421 return -ENOTSUPP;
2422}
2423
2424/* Internal, non-exposed redirect flags. */
2425enum {
2426 BPF_F_NEIGH = (1ULL << 1),
2427 BPF_F_PEER = (1ULL << 2),
2428 BPF_F_NEXTHOP = (1ULL << 3),
2429#define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430};
2431
2432BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433{
2434 struct net_device *dev;
2435 struct sk_buff *clone;
2436 int ret;
2437
2438 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2439 return -EINVAL;
2440
2441 dev = dev_get_by_index_rcu(net: dev_net(dev: skb->dev), ifindex);
2442 if (unlikely(!dev))
2443 return -EINVAL;
2444
2445 clone = skb_clone(skb, GFP_ATOMIC);
2446 if (unlikely(!clone))
2447 return -ENOMEM;
2448
2449 /* For direct write, we need to keep the invariant that the skbs
2450 * we're dealing with need to be uncloned. Should uncloning fail
2451 * here, we need to free the just generated clone to unclone once
2452 * again.
2453 */
2454 ret = bpf_try_make_head_writable(skb);
2455 if (unlikely(ret)) {
2456 kfree_skb(skb: clone);
2457 return -ENOMEM;
2458 }
2459
2460 return __bpf_redirect(skb: clone, dev, flags);
2461}
2462
2463static const struct bpf_func_proto bpf_clone_redirect_proto = {
2464 .func = bpf_clone_redirect,
2465 .gpl_only = false,
2466 .ret_type = RET_INTEGER,
2467 .arg1_type = ARG_PTR_TO_CTX,
2468 .arg2_type = ARG_ANYTHING,
2469 .arg3_type = ARG_ANYTHING,
2470};
2471
2472DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2473EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2474
2475static struct net_device *skb_get_peer_dev(struct net_device *dev)
2476{
2477 const struct net_device_ops *ops = dev->netdev_ops;
2478
2479 if (likely(ops->ndo_get_peer_dev))
2480 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2481 netkit_peer_dev, dev);
2482 return NULL;
2483}
2484
2485int skb_do_redirect(struct sk_buff *skb)
2486{
2487 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2488 struct net *net = dev_net(dev: skb->dev);
2489 struct net_device *dev;
2490 u32 flags = ri->flags;
2491
2492 dev = dev_get_by_index_rcu(net, ifindex: ri->tgt_index);
2493 ri->tgt_index = 0;
2494 ri->flags = 0;
2495 if (unlikely(!dev))
2496 goto out_drop;
2497 if (flags & BPF_F_PEER) {
2498 if (unlikely(!skb_at_tc_ingress(skb)))
2499 goto out_drop;
2500 dev = skb_get_peer_dev(dev);
2501 if (unlikely(!dev ||
2502 !(dev->flags & IFF_UP) ||
2503 net_eq(net, dev_net(dev))))
2504 goto out_drop;
2505 skb->dev = dev;
2506 dev_sw_netstats_rx_add(dev, len: skb->len);
2507 return -EAGAIN;
2508 }
2509 return flags & BPF_F_NEIGH ?
2510 __bpf_redirect_neigh(skb, dev, nh: flags & BPF_F_NEXTHOP ?
2511 &ri->nh : NULL) :
2512 __bpf_redirect(skb, dev, flags);
2513out_drop:
2514 kfree_skb(skb);
2515 return -EINVAL;
2516}
2517
2518BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2519{
2520 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2521
2522 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2523 return TC_ACT_SHOT;
2524
2525 ri->flags = flags;
2526 ri->tgt_index = ifindex;
2527
2528 return TC_ACT_REDIRECT;
2529}
2530
2531static const struct bpf_func_proto bpf_redirect_proto = {
2532 .func = bpf_redirect,
2533 .gpl_only = false,
2534 .ret_type = RET_INTEGER,
2535 .arg1_type = ARG_ANYTHING,
2536 .arg2_type = ARG_ANYTHING,
2537};
2538
2539BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2540{
2541 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2542
2543 if (unlikely(flags))
2544 return TC_ACT_SHOT;
2545
2546 ri->flags = BPF_F_PEER;
2547 ri->tgt_index = ifindex;
2548
2549 return TC_ACT_REDIRECT;
2550}
2551
2552static const struct bpf_func_proto bpf_redirect_peer_proto = {
2553 .func = bpf_redirect_peer,
2554 .gpl_only = false,
2555 .ret_type = RET_INTEGER,
2556 .arg1_type = ARG_ANYTHING,
2557 .arg2_type = ARG_ANYTHING,
2558};
2559
2560BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2561 int, plen, u64, flags)
2562{
2563 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2564
2565 if (unlikely((plen && plen < sizeof(*params)) || flags))
2566 return TC_ACT_SHOT;
2567
2568 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2569 ri->tgt_index = ifindex;
2570
2571 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2572 if (plen)
2573 memcpy(&ri->nh, params, sizeof(ri->nh));
2574
2575 return TC_ACT_REDIRECT;
2576}
2577
2578static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2579 .func = bpf_redirect_neigh,
2580 .gpl_only = false,
2581 .ret_type = RET_INTEGER,
2582 .arg1_type = ARG_ANYTHING,
2583 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2584 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2585 .arg4_type = ARG_ANYTHING,
2586};
2587
2588BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2589{
2590 msg->apply_bytes = bytes;
2591 return 0;
2592}
2593
2594static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2595 .func = bpf_msg_apply_bytes,
2596 .gpl_only = false,
2597 .ret_type = RET_INTEGER,
2598 .arg1_type = ARG_PTR_TO_CTX,
2599 .arg2_type = ARG_ANYTHING,
2600};
2601
2602BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2603{
2604 msg->cork_bytes = bytes;
2605 return 0;
2606}
2607
2608static void sk_msg_reset_curr(struct sk_msg *msg)
2609{
2610 u32 i = msg->sg.start;
2611 u32 len = 0;
2612
2613 do {
2614 len += sk_msg_elem(msg, which: i)->length;
2615 sk_msg_iter_var_next(i);
2616 if (len >= msg->sg.size)
2617 break;
2618 } while (i != msg->sg.end);
2619
2620 msg->sg.curr = i;
2621 msg->sg.copybreak = 0;
2622}
2623
2624static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2625 .func = bpf_msg_cork_bytes,
2626 .gpl_only = false,
2627 .ret_type = RET_INTEGER,
2628 .arg1_type = ARG_PTR_TO_CTX,
2629 .arg2_type = ARG_ANYTHING,
2630};
2631
2632BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2633 u32, end, u64, flags)
2634{
2635 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2636 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2637 struct scatterlist *sge;
2638 u8 *raw, *to, *from;
2639 struct page *page;
2640
2641 if (unlikely(flags || end <= start))
2642 return -EINVAL;
2643
2644 /* First find the starting scatterlist element */
2645 i = msg->sg.start;
2646 do {
2647 offset += len;
2648 len = sk_msg_elem(msg, which: i)->length;
2649 if (start < offset + len)
2650 break;
2651 sk_msg_iter_var_next(i);
2652 } while (i != msg->sg.end);
2653
2654 if (unlikely(start >= offset + len))
2655 return -EINVAL;
2656
2657 first_sge = i;
2658 /* The start may point into the sg element so we need to also
2659 * account for the headroom.
2660 */
2661 bytes_sg_total = start - offset + bytes;
2662 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2663 goto out;
2664
2665 /* At this point we need to linearize multiple scatterlist
2666 * elements or a single shared page. Either way we need to
2667 * copy into a linear buffer exclusively owned by BPF. Then
2668 * place the buffer in the scatterlist and fixup the original
2669 * entries by removing the entries now in the linear buffer
2670 * and shifting the remaining entries. For now we do not try
2671 * to copy partial entries to avoid complexity of running out
2672 * of sg_entry slots. The downside is reading a single byte
2673 * will copy the entire sg entry.
2674 */
2675 do {
2676 copy += sk_msg_elem(msg, which: i)->length;
2677 sk_msg_iter_var_next(i);
2678 if (bytes_sg_total <= copy)
2679 break;
2680 } while (i != msg->sg.end);
2681 last_sge = i;
2682
2683 if (unlikely(bytes_sg_total > copy))
2684 return -EINVAL;
2685
2686 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2687 order: get_order(size: copy));
2688 if (unlikely(!page))
2689 return -ENOMEM;
2690
2691 raw = page_address(page);
2692 i = first_sge;
2693 do {
2694 sge = sk_msg_elem(msg, which: i);
2695 from = sg_virt(sg: sge);
2696 len = sge->length;
2697 to = raw + poffset;
2698
2699 memcpy(to, from, len);
2700 poffset += len;
2701 sge->length = 0;
2702 put_page(page: sg_page(sg: sge));
2703
2704 sk_msg_iter_var_next(i);
2705 } while (i != last_sge);
2706
2707 sg_set_page(sg: &msg->sg.data[first_sge], page, len: copy, offset: 0);
2708
2709 /* To repair sg ring we need to shift entries. If we only
2710 * had a single entry though we can just replace it and
2711 * be done. Otherwise walk the ring and shift the entries.
2712 */
2713 WARN_ON_ONCE(last_sge == first_sge);
2714 shift = last_sge > first_sge ?
2715 last_sge - first_sge - 1 :
2716 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2717 if (!shift)
2718 goto out;
2719
2720 i = first_sge;
2721 sk_msg_iter_var_next(i);
2722 do {
2723 u32 move_from;
2724
2725 if (i + shift >= NR_MSG_FRAG_IDS)
2726 move_from = i + shift - NR_MSG_FRAG_IDS;
2727 else
2728 move_from = i + shift;
2729 if (move_from == msg->sg.end)
2730 break;
2731
2732 msg->sg.data[i] = msg->sg.data[move_from];
2733 msg->sg.data[move_from].length = 0;
2734 msg->sg.data[move_from].page_link = 0;
2735 msg->sg.data[move_from].offset = 0;
2736 sk_msg_iter_var_next(i);
2737 } while (1);
2738
2739 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2740 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2741 msg->sg.end - shift;
2742out:
2743 sk_msg_reset_curr(msg);
2744 msg->data = sg_virt(sg: &msg->sg.data[first_sge]) + start - offset;
2745 msg->data_end = msg->data + bytes;
2746 return 0;
2747}
2748
2749static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2750 .func = bpf_msg_pull_data,
2751 .gpl_only = false,
2752 .ret_type = RET_INTEGER,
2753 .arg1_type = ARG_PTR_TO_CTX,
2754 .arg2_type = ARG_ANYTHING,
2755 .arg3_type = ARG_ANYTHING,
2756 .arg4_type = ARG_ANYTHING,
2757};
2758
2759BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2760 u32, len, u64, flags)
2761{
2762 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2763 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2764 u8 *raw, *to, *from;
2765 struct page *page;
2766
2767 if (unlikely(flags))
2768 return -EINVAL;
2769
2770 if (unlikely(len == 0))
2771 return 0;
2772
2773 /* First find the starting scatterlist element */
2774 i = msg->sg.start;
2775 do {
2776 offset += l;
2777 l = sk_msg_elem(msg, which: i)->length;
2778
2779 if (start < offset + l)
2780 break;
2781 sk_msg_iter_var_next(i);
2782 } while (i != msg->sg.end);
2783
2784 if (start >= offset + l)
2785 return -EINVAL;
2786
2787 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2788
2789 /* If no space available will fallback to copy, we need at
2790 * least one scatterlist elem available to push data into
2791 * when start aligns to the beginning of an element or two
2792 * when it falls inside an element. We handle the start equals
2793 * offset case because its the common case for inserting a
2794 * header.
2795 */
2796 if (!space || (space == 1 && start != offset))
2797 copy = msg->sg.data[i].length;
2798
2799 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2800 order: get_order(size: copy + len));
2801 if (unlikely(!page))
2802 return -ENOMEM;
2803
2804 if (copy) {
2805 int front, back;
2806
2807 raw = page_address(page);
2808
2809 psge = sk_msg_elem(msg, which: i);
2810 front = start - offset;
2811 back = psge->length - front;
2812 from = sg_virt(sg: psge);
2813
2814 if (front)
2815 memcpy(raw, from, front);
2816
2817 if (back) {
2818 from += front;
2819 to = raw + front + len;
2820
2821 memcpy(to, from, back);
2822 }
2823
2824 put_page(page: sg_page(sg: psge));
2825 } else if (start - offset) {
2826 psge = sk_msg_elem(msg, which: i);
2827 rsge = sk_msg_elem_cpy(msg, which: i);
2828
2829 psge->length = start - offset;
2830 rsge.length -= psge->length;
2831 rsge.offset += start;
2832
2833 sk_msg_iter_var_next(i);
2834 sg_unmark_end(sg: psge);
2835 sg_unmark_end(sg: &rsge);
2836 sk_msg_iter_next(msg, end);
2837 }
2838
2839 /* Slot(s) to place newly allocated data */
2840 new = i;
2841
2842 /* Shift one or two slots as needed */
2843 if (!copy) {
2844 sge = sk_msg_elem_cpy(msg, which: i);
2845
2846 sk_msg_iter_var_next(i);
2847 sg_unmark_end(sg: &sge);
2848 sk_msg_iter_next(msg, end);
2849
2850 nsge = sk_msg_elem_cpy(msg, which: i);
2851 if (rsge.length) {
2852 sk_msg_iter_var_next(i);
2853 nnsge = sk_msg_elem_cpy(msg, which: i);
2854 }
2855
2856 while (i != msg->sg.end) {
2857 msg->sg.data[i] = sge;
2858 sge = nsge;
2859 sk_msg_iter_var_next(i);
2860 if (rsge.length) {
2861 nsge = nnsge;
2862 nnsge = sk_msg_elem_cpy(msg, which: i);
2863 } else {
2864 nsge = sk_msg_elem_cpy(msg, which: i);
2865 }
2866 }
2867 }
2868
2869 /* Place newly allocated data buffer */
2870 sk_mem_charge(sk: msg->sk, size: len);
2871 msg->sg.size += len;
2872 __clear_bit(new, msg->sg.copy);
2873 sg_set_page(sg: &msg->sg.data[new], page, len: len + copy, offset: 0);
2874 if (rsge.length) {
2875 get_page(page: sg_page(sg: &rsge));
2876 sk_msg_iter_var_next(new);
2877 msg->sg.data[new] = rsge;
2878 }
2879
2880 sk_msg_reset_curr(msg);
2881 sk_msg_compute_data_pointers(msg);
2882 return 0;
2883}
2884
2885static const struct bpf_func_proto bpf_msg_push_data_proto = {
2886 .func = bpf_msg_push_data,
2887 .gpl_only = false,
2888 .ret_type = RET_INTEGER,
2889 .arg1_type = ARG_PTR_TO_CTX,
2890 .arg2_type = ARG_ANYTHING,
2891 .arg3_type = ARG_ANYTHING,
2892 .arg4_type = ARG_ANYTHING,
2893};
2894
2895static void sk_msg_shift_left(struct sk_msg *msg, int i)
2896{
2897 int prev;
2898
2899 do {
2900 prev = i;
2901 sk_msg_iter_var_next(i);
2902 msg->sg.data[prev] = msg->sg.data[i];
2903 } while (i != msg->sg.end);
2904
2905 sk_msg_iter_prev(msg, end);
2906}
2907
2908static void sk_msg_shift_right(struct sk_msg *msg, int i)
2909{
2910 struct scatterlist tmp, sge;
2911
2912 sk_msg_iter_next(msg, end);
2913 sge = sk_msg_elem_cpy(msg, which: i);
2914 sk_msg_iter_var_next(i);
2915 tmp = sk_msg_elem_cpy(msg, which: i);
2916
2917 while (i != msg->sg.end) {
2918 msg->sg.data[i] = sge;
2919 sk_msg_iter_var_next(i);
2920 sge = tmp;
2921 tmp = sk_msg_elem_cpy(msg, which: i);
2922 }
2923}
2924
2925BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2926 u32, len, u64, flags)
2927{
2928 u32 i = 0, l = 0, space, offset = 0;
2929 u64 last = start + len;
2930 int pop;
2931
2932 if (unlikely(flags))
2933 return -EINVAL;
2934
2935 /* First find the starting scatterlist element */
2936 i = msg->sg.start;
2937 do {
2938 offset += l;
2939 l = sk_msg_elem(msg, which: i)->length;
2940
2941 if (start < offset + l)
2942 break;
2943 sk_msg_iter_var_next(i);
2944 } while (i != msg->sg.end);
2945
2946 /* Bounds checks: start and pop must be inside message */
2947 if (start >= offset + l || last >= msg->sg.size)
2948 return -EINVAL;
2949
2950 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2951
2952 pop = len;
2953 /* --------------| offset
2954 * -| start |-------- len -------|
2955 *
2956 * |----- a ----|-------- pop -------|----- b ----|
2957 * |______________________________________________| length
2958 *
2959 *
2960 * a: region at front of scatter element to save
2961 * b: region at back of scatter element to save when length > A + pop
2962 * pop: region to pop from element, same as input 'pop' here will be
2963 * decremented below per iteration.
2964 *
2965 * Two top-level cases to handle when start != offset, first B is non
2966 * zero and second B is zero corresponding to when a pop includes more
2967 * than one element.
2968 *
2969 * Then if B is non-zero AND there is no space allocate space and
2970 * compact A, B regions into page. If there is space shift ring to
2971 * the right free'ing the next element in ring to place B, leaving
2972 * A untouched except to reduce length.
2973 */
2974 if (start != offset) {
2975 struct scatterlist *nsge, *sge = sk_msg_elem(msg, which: i);
2976 int a = start;
2977 int b = sge->length - pop - a;
2978
2979 sk_msg_iter_var_next(i);
2980
2981 if (pop < sge->length - a) {
2982 if (space) {
2983 sge->length = a;
2984 sk_msg_shift_right(msg, i);
2985 nsge = sk_msg_elem(msg, which: i);
2986 get_page(page: sg_page(sg: sge));
2987 sg_set_page(sg: nsge,
2988 page: sg_page(sg: sge),
2989 len: b, offset: sge->offset + pop + a);
2990 } else {
2991 struct page *page, *orig;
2992 u8 *to, *from;
2993
2994 page = alloc_pages(__GFP_NOWARN |
2995 __GFP_COMP | GFP_ATOMIC,
2996 order: get_order(size: a + b));
2997 if (unlikely(!page))
2998 return -ENOMEM;
2999
3000 sge->length = a;
3001 orig = sg_page(sg: sge);
3002 from = sg_virt(sg: sge);
3003 to = page_address(page);
3004 memcpy(to, from, a);
3005 memcpy(to + a, from + a + pop, b);
3006 sg_set_page(sg: sge, page, len: a + b, offset: 0);
3007 put_page(page: orig);
3008 }
3009 pop = 0;
3010 } else if (pop >= sge->length - a) {
3011 pop -= (sge->length - a);
3012 sge->length = a;
3013 }
3014 }
3015
3016 /* From above the current layout _must_ be as follows,
3017 *
3018 * -| offset
3019 * -| start
3020 *
3021 * |---- pop ---|---------------- b ------------|
3022 * |____________________________________________| length
3023 *
3024 * Offset and start of the current msg elem are equal because in the
3025 * previous case we handled offset != start and either consumed the
3026 * entire element and advanced to the next element OR pop == 0.
3027 *
3028 * Two cases to handle here are first pop is less than the length
3029 * leaving some remainder b above. Simply adjust the element's layout
3030 * in this case. Or pop >= length of the element so that b = 0. In this
3031 * case advance to next element decrementing pop.
3032 */
3033 while (pop) {
3034 struct scatterlist *sge = sk_msg_elem(msg, which: i);
3035
3036 if (pop < sge->length) {
3037 sge->length -= pop;
3038 sge->offset += pop;
3039 pop = 0;
3040 } else {
3041 pop -= sge->length;
3042 sk_msg_shift_left(msg, i);
3043 }
3044 sk_msg_iter_var_next(i);
3045 }
3046
3047 sk_mem_uncharge(sk: msg->sk, size: len - pop);
3048 msg->sg.size -= (len - pop);
3049 sk_msg_reset_curr(msg);
3050 sk_msg_compute_data_pointers(msg);
3051 return 0;
3052}
3053
3054static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3055 .func = bpf_msg_pop_data,
3056 .gpl_only = false,
3057 .ret_type = RET_INTEGER,
3058 .arg1_type = ARG_PTR_TO_CTX,
3059 .arg2_type = ARG_ANYTHING,
3060 .arg3_type = ARG_ANYTHING,
3061 .arg4_type = ARG_ANYTHING,
3062};
3063
3064#ifdef CONFIG_CGROUP_NET_CLASSID
3065BPF_CALL_0(bpf_get_cgroup_classid_curr)
3066{
3067 return __task_get_classid(current);
3068}
3069
3070const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3071 .func = bpf_get_cgroup_classid_curr,
3072 .gpl_only = false,
3073 .ret_type = RET_INTEGER,
3074};
3075
3076BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3077{
3078 struct sock *sk = skb_to_full_sk(skb);
3079
3080 if (!sk || !sk_fullsock(sk))
3081 return 0;
3082
3083 return sock_cgroup_classid(skcd: &sk->sk_cgrp_data);
3084}
3085
3086static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3087 .func = bpf_skb_cgroup_classid,
3088 .gpl_only = false,
3089 .ret_type = RET_INTEGER,
3090 .arg1_type = ARG_PTR_TO_CTX,
3091};
3092#endif
3093
3094BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3095{
3096 return task_get_classid(skb);
3097}
3098
3099static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3100 .func = bpf_get_cgroup_classid,
3101 .gpl_only = false,
3102 .ret_type = RET_INTEGER,
3103 .arg1_type = ARG_PTR_TO_CTX,
3104};
3105
3106BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3107{
3108 return dst_tclassid(skb);
3109}
3110
3111static const struct bpf_func_proto bpf_get_route_realm_proto = {
3112 .func = bpf_get_route_realm,
3113 .gpl_only = false,
3114 .ret_type = RET_INTEGER,
3115 .arg1_type = ARG_PTR_TO_CTX,
3116};
3117
3118BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3119{
3120 /* If skb_clear_hash() was called due to mangling, we can
3121 * trigger SW recalculation here. Later access to hash
3122 * can then use the inline skb->hash via context directly
3123 * instead of calling this helper again.
3124 */
3125 return skb_get_hash(skb);
3126}
3127
3128static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3129 .func = bpf_get_hash_recalc,
3130 .gpl_only = false,
3131 .ret_type = RET_INTEGER,
3132 .arg1_type = ARG_PTR_TO_CTX,
3133};
3134
3135BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3136{
3137 /* After all direct packet write, this can be used once for
3138 * triggering a lazy recalc on next skb_get_hash() invocation.
3139 */
3140 skb_clear_hash(skb);
3141 return 0;
3142}
3143
3144static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3145 .func = bpf_set_hash_invalid,
3146 .gpl_only = false,
3147 .ret_type = RET_INTEGER,
3148 .arg1_type = ARG_PTR_TO_CTX,
3149};
3150
3151BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3152{
3153 /* Set user specified hash as L4(+), so that it gets returned
3154 * on skb_get_hash() call unless BPF prog later on triggers a
3155 * skb_clear_hash().
3156 */
3157 __skb_set_sw_hash(skb, hash, is_l4: true);
3158 return 0;
3159}
3160
3161static const struct bpf_func_proto bpf_set_hash_proto = {
3162 .func = bpf_set_hash,
3163 .gpl_only = false,
3164 .ret_type = RET_INTEGER,
3165 .arg1_type = ARG_PTR_TO_CTX,
3166 .arg2_type = ARG_ANYTHING,
3167};
3168
3169BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3170 u16, vlan_tci)
3171{
3172 int ret;
3173
3174 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3175 vlan_proto != htons(ETH_P_8021AD)))
3176 vlan_proto = htons(ETH_P_8021Q);
3177
3178 bpf_push_mac_rcsum(skb);
3179 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3180 bpf_pull_mac_rcsum(skb);
3181
3182 bpf_compute_data_pointers(skb);
3183 return ret;
3184}
3185
3186static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3187 .func = bpf_skb_vlan_push,
3188 .gpl_only = false,
3189 .ret_type = RET_INTEGER,
3190 .arg1_type = ARG_PTR_TO_CTX,
3191 .arg2_type = ARG_ANYTHING,
3192 .arg3_type = ARG_ANYTHING,
3193};
3194
3195BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3196{
3197 int ret;
3198
3199 bpf_push_mac_rcsum(skb);
3200 ret = skb_vlan_pop(skb);
3201 bpf_pull_mac_rcsum(skb);
3202
3203 bpf_compute_data_pointers(skb);
3204 return ret;
3205}
3206
3207static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3208 .func = bpf_skb_vlan_pop,
3209 .gpl_only = false,
3210 .ret_type = RET_INTEGER,
3211 .arg1_type = ARG_PTR_TO_CTX,
3212};
3213
3214static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3215{
3216 /* Caller already did skb_cow() with len as headroom,
3217 * so no need to do it here.
3218 */
3219 skb_push(skb, len);
3220 memmove(skb->data, skb->data + len, off);
3221 memset(skb->data + off, 0, len);
3222
3223 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3224 * needed here as it does not change the skb->csum
3225 * result for checksum complete when summing over
3226 * zeroed blocks.
3227 */
3228 return 0;
3229}
3230
3231static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3232{
3233 void *old_data;
3234
3235 /* skb_ensure_writable() is not needed here, as we're
3236 * already working on an uncloned skb.
3237 */
3238 if (unlikely(!pskb_may_pull(skb, off + len)))
3239 return -ENOMEM;
3240
3241 old_data = skb->data;
3242 __skb_pull(skb, len);
3243 skb_postpull_rcsum(skb, start: old_data + off, len);
3244 memmove(skb->data, old_data, off);
3245
3246 return 0;
3247}
3248
3249static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3250{
3251 bool trans_same = skb->transport_header == skb->network_header;
3252 int ret;
3253
3254 /* There's no need for __skb_push()/__skb_pull() pair to
3255 * get to the start of the mac header as we're guaranteed
3256 * to always start from here under eBPF.
3257 */
3258 ret = bpf_skb_generic_push(skb, off, len);
3259 if (likely(!ret)) {
3260 skb->mac_header -= len;
3261 skb->network_header -= len;
3262 if (trans_same)
3263 skb->transport_header = skb->network_header;
3264 }
3265
3266 return ret;
3267}
3268
3269static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3270{
3271 bool trans_same = skb->transport_header == skb->network_header;
3272 int ret;
3273
3274 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3275 ret = bpf_skb_generic_pop(skb, off, len);
3276 if (likely(!ret)) {
3277 skb->mac_header += len;
3278 skb->network_header += len;
3279 if (trans_same)
3280 skb->transport_header = skb->network_header;
3281 }
3282
3283 return ret;
3284}
3285
3286static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3287{
3288 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3289 u32 off = skb_mac_header_len(skb);
3290 int ret;
3291
3292 ret = skb_cow(skb, headroom: len_diff);
3293 if (unlikely(ret < 0))
3294 return ret;
3295
3296 ret = bpf_skb_net_hdr_push(skb, off, len: len_diff);
3297 if (unlikely(ret < 0))
3298 return ret;
3299
3300 if (skb_is_gso(skb)) {
3301 struct skb_shared_info *shinfo = skb_shinfo(skb);
3302
3303 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3304 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3305 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3306 shinfo->gso_type |= SKB_GSO_TCPV6;
3307 }
3308 }
3309
3310 skb->protocol = htons(ETH_P_IPV6);
3311 skb_clear_hash(skb);
3312
3313 return 0;
3314}
3315
3316static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3317{
3318 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3319 u32 off = skb_mac_header_len(skb);
3320 int ret;
3321
3322 ret = skb_unclone(skb, GFP_ATOMIC);
3323 if (unlikely(ret < 0))
3324 return ret;
3325
3326 ret = bpf_skb_net_hdr_pop(skb, off, len: len_diff);
3327 if (unlikely(ret < 0))
3328 return ret;
3329
3330 if (skb_is_gso(skb)) {
3331 struct skb_shared_info *shinfo = skb_shinfo(skb);
3332
3333 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3334 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3335 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3336 shinfo->gso_type |= SKB_GSO_TCPV4;
3337 }
3338 }
3339
3340 skb->protocol = htons(ETH_P_IP);
3341 skb_clear_hash(skb);
3342
3343 return 0;
3344}
3345
3346static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3347{
3348 __be16 from_proto = skb->protocol;
3349
3350 if (from_proto == htons(ETH_P_IP) &&
3351 to_proto == htons(ETH_P_IPV6))
3352 return bpf_skb_proto_4_to_6(skb);
3353
3354 if (from_proto == htons(ETH_P_IPV6) &&
3355 to_proto == htons(ETH_P_IP))
3356 return bpf_skb_proto_6_to_4(skb);
3357
3358 return -ENOTSUPP;
3359}
3360
3361BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3362 u64, flags)
3363{
3364 int ret;
3365
3366 if (unlikely(flags))
3367 return -EINVAL;
3368
3369 /* General idea is that this helper does the basic groundwork
3370 * needed for changing the protocol, and eBPF program fills the
3371 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3372 * and other helpers, rather than passing a raw buffer here.
3373 *
3374 * The rationale is to keep this minimal and without a need to
3375 * deal with raw packet data. F.e. even if we would pass buffers
3376 * here, the program still needs to call the bpf_lX_csum_replace()
3377 * helpers anyway. Plus, this way we keep also separation of
3378 * concerns, since f.e. bpf_skb_store_bytes() should only take
3379 * care of stores.
3380 *
3381 * Currently, additional options and extension header space are
3382 * not supported, but flags register is reserved so we can adapt
3383 * that. For offloads, we mark packet as dodgy, so that headers
3384 * need to be verified first.
3385 */
3386 ret = bpf_skb_proto_xlat(skb, to_proto: proto);
3387 bpf_compute_data_pointers(skb);
3388 return ret;
3389}
3390
3391static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3392 .func = bpf_skb_change_proto,
3393 .gpl_only = false,
3394 .ret_type = RET_INTEGER,
3395 .arg1_type = ARG_PTR_TO_CTX,
3396 .arg2_type = ARG_ANYTHING,
3397 .arg3_type = ARG_ANYTHING,
3398};
3399
3400BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3401{
3402 /* We only allow a restricted subset to be changed for now. */
3403 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3404 !skb_pkt_type_ok(pkt_type)))
3405 return -EINVAL;
3406
3407 skb->pkt_type = pkt_type;
3408 return 0;
3409}
3410
3411static const struct bpf_func_proto bpf_skb_change_type_proto = {
3412 .func = bpf_skb_change_type,
3413 .gpl_only = false,
3414 .ret_type = RET_INTEGER,
3415 .arg1_type = ARG_PTR_TO_CTX,
3416 .arg2_type = ARG_ANYTHING,
3417};
3418
3419static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3420{
3421 switch (skb->protocol) {
3422 case htons(ETH_P_IP):
3423 return sizeof(struct iphdr);
3424 case htons(ETH_P_IPV6):
3425 return sizeof(struct ipv6hdr);
3426 default:
3427 return ~0U;
3428 }
3429}
3430
3431#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3432 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3433
3434#define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3435 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3436
3437#define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3438 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3439 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3440 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3441 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3442 BPF_F_ADJ_ROOM_ENCAP_L2( \
3443 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3444 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3445
3446static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3447 u64 flags)
3448{
3449 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3450 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3451 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3452 unsigned int gso_type = SKB_GSO_DODGY;
3453 int ret;
3454
3455 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3456 /* udp gso_size delineates datagrams, only allow if fixed */
3457 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3458 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3459 return -ENOTSUPP;
3460 }
3461
3462 ret = skb_cow_head(skb, headroom: len_diff);
3463 if (unlikely(ret < 0))
3464 return ret;
3465
3466 if (encap) {
3467 if (skb->protocol != htons(ETH_P_IP) &&
3468 skb->protocol != htons(ETH_P_IPV6))
3469 return -ENOTSUPP;
3470
3471 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3472 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3473 return -EINVAL;
3474
3475 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3476 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 return -EINVAL;
3478
3479 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3480 inner_mac_len < ETH_HLEN)
3481 return -EINVAL;
3482
3483 if (skb->encapsulation)
3484 return -EALREADY;
3485
3486 mac_len = skb->network_header - skb->mac_header;
3487 inner_net = skb->network_header;
3488 if (inner_mac_len > len_diff)
3489 return -EINVAL;
3490 inner_trans = skb->transport_header;
3491 }
3492
3493 ret = bpf_skb_net_hdr_push(skb, off, len: len_diff);
3494 if (unlikely(ret < 0))
3495 return ret;
3496
3497 if (encap) {
3498 skb->inner_mac_header = inner_net - inner_mac_len;
3499 skb->inner_network_header = inner_net;
3500 skb->inner_transport_header = inner_trans;
3501
3502 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3503 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3504 else
3505 skb_set_inner_protocol(skb, protocol: skb->protocol);
3506
3507 skb->encapsulation = 1;
3508 skb_set_network_header(skb, offset: mac_len);
3509
3510 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3511 gso_type |= SKB_GSO_UDP_TUNNEL;
3512 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3513 gso_type |= SKB_GSO_GRE;
3514 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3515 gso_type |= SKB_GSO_IPXIP6;
3516 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3517 gso_type |= SKB_GSO_IPXIP4;
3518
3519 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3520 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3521 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3522 sizeof(struct ipv6hdr) :
3523 sizeof(struct iphdr);
3524
3525 skb_set_transport_header(skb, offset: mac_len + nh_len);
3526 }
3527
3528 /* Match skb->protocol to new outer l3 protocol */
3529 if (skb->protocol == htons(ETH_P_IP) &&
3530 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3531 skb->protocol = htons(ETH_P_IPV6);
3532 else if (skb->protocol == htons(ETH_P_IPV6) &&
3533 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3534 skb->protocol = htons(ETH_P_IP);
3535 }
3536
3537 if (skb_is_gso(skb)) {
3538 struct skb_shared_info *shinfo = skb_shinfo(skb);
3539
3540 /* Due to header grow, MSS needs to be downgraded. */
3541 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3542 skb_decrease_gso_size(shinfo, decrement: len_diff);
3543
3544 /* Header must be checked, and gso_segs recomputed. */
3545 shinfo->gso_type |= gso_type;
3546 shinfo->gso_segs = 0;
3547 }
3548
3549 return 0;
3550}
3551
3552static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3553 u64 flags)
3554{
3555 int ret;
3556
3557 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3558 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3559 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3560 return -EINVAL;
3561
3562 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3563 /* udp gso_size delineates datagrams, only allow if fixed */
3564 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3565 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3566 return -ENOTSUPP;
3567 }
3568
3569 ret = skb_unclone(skb, GFP_ATOMIC);
3570 if (unlikely(ret < 0))
3571 return ret;
3572
3573 ret = bpf_skb_net_hdr_pop(skb, off, len: len_diff);
3574 if (unlikely(ret < 0))
3575 return ret;
3576
3577 /* Match skb->protocol to new outer l3 protocol */
3578 if (skb->protocol == htons(ETH_P_IP) &&
3579 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3580 skb->protocol = htons(ETH_P_IPV6);
3581 else if (skb->protocol == htons(ETH_P_IPV6) &&
3582 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3583 skb->protocol = htons(ETH_P_IP);
3584
3585 if (skb_is_gso(skb)) {
3586 struct skb_shared_info *shinfo = skb_shinfo(skb);
3587
3588 /* Due to header shrink, MSS can be upgraded. */
3589 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3590 skb_increase_gso_size(shinfo, increment: len_diff);
3591
3592 /* Header must be checked, and gso_segs recomputed. */
3593 shinfo->gso_type |= SKB_GSO_DODGY;
3594 shinfo->gso_segs = 0;
3595 }
3596
3597 return 0;
3598}
3599
3600#define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3601
3602BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3603 u32, mode, u64, flags)
3604{
3605 u32 len_diff_abs = abs(len_diff);
3606 bool shrink = len_diff < 0;
3607 int ret = 0;
3608
3609 if (unlikely(flags || mode))
3610 return -EINVAL;
3611 if (unlikely(len_diff_abs > 0xfffU))
3612 return -EFAULT;
3613
3614 if (!shrink) {
3615 ret = skb_cow(skb, headroom: len_diff);
3616 if (unlikely(ret < 0))
3617 return ret;
3618 __skb_push(skb, len: len_diff_abs);
3619 memset(skb->data, 0, len_diff_abs);
3620 } else {
3621 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3622 return -ENOMEM;
3623 __skb_pull(skb, len: len_diff_abs);
3624 }
3625 if (tls_sw_has_ctx_rx(sk: skb->sk)) {
3626 struct strp_msg *rxm = strp_msg(skb);
3627
3628 rxm->full_len += len_diff;
3629 }
3630 return ret;
3631}
3632
3633static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3634 .func = sk_skb_adjust_room,
3635 .gpl_only = false,
3636 .ret_type = RET_INTEGER,
3637 .arg1_type = ARG_PTR_TO_CTX,
3638 .arg2_type = ARG_ANYTHING,
3639 .arg3_type = ARG_ANYTHING,
3640 .arg4_type = ARG_ANYTHING,
3641};
3642
3643BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3644 u32, mode, u64, flags)
3645{
3646 u32 len_cur, len_diff_abs = abs(len_diff);
3647 u32 len_min = bpf_skb_net_base_len(skb);
3648 u32 len_max = BPF_SKB_MAX_LEN;
3649 __be16 proto = skb->protocol;
3650 bool shrink = len_diff < 0;
3651 u32 off;
3652 int ret;
3653
3654 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3655 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3656 return -EINVAL;
3657 if (unlikely(len_diff_abs > 0xfffU))
3658 return -EFAULT;
3659 if (unlikely(proto != htons(ETH_P_IP) &&
3660 proto != htons(ETH_P_IPV6)))
3661 return -ENOTSUPP;
3662
3663 off = skb_mac_header_len(skb);
3664 switch (mode) {
3665 case BPF_ADJ_ROOM_NET:
3666 off += bpf_skb_net_base_len(skb);
3667 break;
3668 case BPF_ADJ_ROOM_MAC:
3669 break;
3670 default:
3671 return -ENOTSUPP;
3672 }
3673
3674 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3675 if (!shrink)
3676 return -EINVAL;
3677
3678 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3679 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3680 len_min = sizeof(struct iphdr);
3681 break;
3682 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3683 len_min = sizeof(struct ipv6hdr);
3684 break;
3685 default:
3686 return -EINVAL;
3687 }
3688 }
3689
3690 len_cur = skb->len - skb_network_offset(skb);
3691 if ((shrink && (len_diff_abs >= len_cur ||
3692 len_cur - len_diff_abs < len_min)) ||
3693 (!shrink && (skb->len + len_diff_abs > len_max &&
3694 !skb_is_gso(skb))))
3695 return -ENOTSUPP;
3696
3697 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff: len_diff_abs, flags) :
3698 bpf_skb_net_grow(skb, off, len_diff: len_diff_abs, flags);
3699 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3700 __skb_reset_checksum_unnecessary(skb);
3701
3702 bpf_compute_data_pointers(skb);
3703 return ret;
3704}
3705
3706static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3707 .func = bpf_skb_adjust_room,
3708 .gpl_only = false,
3709 .ret_type = RET_INTEGER,
3710 .arg1_type = ARG_PTR_TO_CTX,
3711 .arg2_type = ARG_ANYTHING,
3712 .arg3_type = ARG_ANYTHING,
3713 .arg4_type = ARG_ANYTHING,
3714};
3715
3716static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3717{
3718 u32 min_len = skb_network_offset(skb);
3719
3720 if (skb_transport_header_was_set(skb))
3721 min_len = skb_transport_offset(skb);
3722 if (skb->ip_summed == CHECKSUM_PARTIAL)
3723 min_len = skb_checksum_start_offset(skb) +
3724 skb->csum_offset + sizeof(__sum16);
3725 return min_len;
3726}
3727
3728static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3729{
3730 unsigned int old_len = skb->len;
3731 int ret;
3732
3733 ret = __skb_grow_rcsum(skb, len: new_len);
3734 if (!ret)
3735 memset(skb->data + old_len, 0, new_len - old_len);
3736 return ret;
3737}
3738
3739static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3740{
3741 return __skb_trim_rcsum(skb, len: new_len);
3742}
3743
3744static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3745 u64 flags)
3746{
3747 u32 max_len = BPF_SKB_MAX_LEN;
3748 u32 min_len = __bpf_skb_min_len(skb);
3749 int ret;
3750
3751 if (unlikely(flags || new_len > max_len || new_len < min_len))
3752 return -EINVAL;
3753 if (skb->encapsulation)
3754 return -ENOTSUPP;
3755
3756 /* The basic idea of this helper is that it's performing the
3757 * needed work to either grow or trim an skb, and eBPF program
3758 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3759 * bpf_lX_csum_replace() and others rather than passing a raw
3760 * buffer here. This one is a slow path helper and intended
3761 * for replies with control messages.
3762 *
3763 * Like in bpf_skb_change_proto(), we want to keep this rather
3764 * minimal and without protocol specifics so that we are able
3765 * to separate concerns as in bpf_skb_store_bytes() should only
3766 * be the one responsible for writing buffers.
3767 *
3768 * It's really expected to be a slow path operation here for
3769 * control message replies, so we're implicitly linearizing,
3770 * uncloning and drop offloads from the skb by this.
3771 */
3772 ret = __bpf_try_make_writable(skb, write_len: skb->len);
3773 if (!ret) {
3774 if (new_len > skb->len)
3775 ret = bpf_skb_grow_rcsum(skb, new_len);
3776 else if (new_len < skb->len)
3777 ret = bpf_skb_trim_rcsum(skb, new_len);
3778 if (!ret && skb_is_gso(skb))
3779 skb_gso_reset(skb);
3780 }
3781 return ret;
3782}
3783
3784BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3785 u64, flags)
3786{
3787 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3788
3789 bpf_compute_data_pointers(skb);
3790 return ret;
3791}
3792
3793static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3794 .func = bpf_skb_change_tail,
3795 .gpl_only = false,
3796 .ret_type = RET_INTEGER,
3797 .arg1_type = ARG_PTR_TO_CTX,
3798 .arg2_type = ARG_ANYTHING,
3799 .arg3_type = ARG_ANYTHING,
3800};
3801
3802BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3803 u64, flags)
3804{
3805 return __bpf_skb_change_tail(skb, new_len, flags);
3806}
3807
3808static const struct bpf_func_proto sk_skb_change_tail_proto = {
3809 .func = sk_skb_change_tail,
3810 .gpl_only = false,
3811 .ret_type = RET_INTEGER,
3812 .arg1_type = ARG_PTR_TO_CTX,
3813 .arg2_type = ARG_ANYTHING,
3814 .arg3_type = ARG_ANYTHING,
3815};
3816
3817static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3818 u64 flags)
3819{
3820 u32 max_len = BPF_SKB_MAX_LEN;
3821 u32 new_len = skb->len + head_room;
3822 int ret;
3823
3824 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3825 new_len < skb->len))
3826 return -EINVAL;
3827
3828 ret = skb_cow(skb, headroom: head_room);
3829 if (likely(!ret)) {
3830 /* Idea for this helper is that we currently only
3831 * allow to expand on mac header. This means that
3832 * skb->protocol network header, etc, stay as is.
3833 * Compared to bpf_skb_change_tail(), we're more
3834 * flexible due to not needing to linearize or
3835 * reset GSO. Intention for this helper is to be
3836 * used by an L3 skb that needs to push mac header
3837 * for redirection into L2 device.
3838 */
3839 __skb_push(skb, len: head_room);
3840 memset(skb->data, 0, head_room);
3841 skb_reset_mac_header(skb);
3842 skb_reset_mac_len(skb);
3843 }
3844
3845 return ret;
3846}
3847
3848BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3849 u64, flags)
3850{
3851 int ret = __bpf_skb_change_head(skb, head_room, flags);
3852
3853 bpf_compute_data_pointers(skb);
3854 return ret;
3855}
3856
3857static const struct bpf_func_proto bpf_skb_change_head_proto = {
3858 .func = bpf_skb_change_head,
3859 .gpl_only = false,
3860 .ret_type = RET_INTEGER,
3861 .arg1_type = ARG_PTR_TO_CTX,
3862 .arg2_type = ARG_ANYTHING,
3863 .arg3_type = ARG_ANYTHING,
3864};
3865
3866BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3867 u64, flags)
3868{
3869 return __bpf_skb_change_head(skb, head_room, flags);
3870}
3871
3872static const struct bpf_func_proto sk_skb_change_head_proto = {
3873 .func = sk_skb_change_head,
3874 .gpl_only = false,
3875 .ret_type = RET_INTEGER,
3876 .arg1_type = ARG_PTR_TO_CTX,
3877 .arg2_type = ARG_ANYTHING,
3878 .arg3_type = ARG_ANYTHING,
3879};
3880
3881BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3882{
3883 return xdp_get_buff_len(xdp);
3884}
3885
3886static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3887 .func = bpf_xdp_get_buff_len,
3888 .gpl_only = false,
3889 .ret_type = RET_INTEGER,
3890 .arg1_type = ARG_PTR_TO_CTX,
3891};
3892
3893BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3894
3895const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3896 .func = bpf_xdp_get_buff_len,
3897 .gpl_only = false,
3898 .arg1_type = ARG_PTR_TO_BTF_ID,
3899 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3900};
3901
3902static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3903{
3904 return xdp_data_meta_unsupported(xdp) ? 0 :
3905 xdp->data - xdp->data_meta;
3906}
3907
3908BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3909{
3910 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3911 unsigned long metalen = xdp_get_metalen(xdp);
3912 void *data_start = xdp_frame_end + metalen;
3913 void *data = xdp->data + offset;
3914
3915 if (unlikely(data < data_start ||
3916 data > xdp->data_end - ETH_HLEN))
3917 return -EINVAL;
3918
3919 if (metalen)
3920 memmove(xdp->data_meta + offset,
3921 xdp->data_meta, metalen);
3922 xdp->data_meta += offset;
3923 xdp->data = data;
3924
3925 return 0;
3926}
3927
3928static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3929 .func = bpf_xdp_adjust_head,
3930 .gpl_only = false,
3931 .ret_type = RET_INTEGER,
3932 .arg1_type = ARG_PTR_TO_CTX,
3933 .arg2_type = ARG_ANYTHING,
3934};
3935
3936void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3937 void *buf, unsigned long len, bool flush)
3938{
3939 unsigned long ptr_len, ptr_off = 0;
3940 skb_frag_t *next_frag, *end_frag;
3941 struct skb_shared_info *sinfo;
3942 void *src, *dst;
3943 u8 *ptr_buf;
3944
3945 if (likely(xdp->data_end - xdp->data >= off + len)) {
3946 src = flush ? buf : xdp->data + off;
3947 dst = flush ? xdp->data + off : buf;
3948 memcpy(dst, src, len);
3949 return;
3950 }
3951
3952 sinfo = xdp_get_shared_info_from_buff(xdp);
3953 end_frag = &sinfo->frags[sinfo->nr_frags];
3954 next_frag = &sinfo->frags[0];
3955
3956 ptr_len = xdp->data_end - xdp->data;
3957 ptr_buf = xdp->data;
3958
3959 while (true) {
3960 if (off < ptr_off + ptr_len) {
3961 unsigned long copy_off = off - ptr_off;
3962 unsigned long copy_len = min(len, ptr_len - copy_off);
3963
3964 src = flush ? buf : ptr_buf + copy_off;
3965 dst = flush ? ptr_buf + copy_off : buf;
3966 memcpy(dst, src, copy_len);
3967
3968 off += copy_len;
3969 len -= copy_len;
3970 buf += copy_len;
3971 }
3972
3973 if (!len || next_frag == end_frag)
3974 break;
3975
3976 ptr_off += ptr_len;
3977 ptr_buf = skb_frag_address(frag: next_frag);
3978 ptr_len = skb_frag_size(frag: next_frag);
3979 next_frag++;
3980 }
3981}
3982
3983void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3984{
3985 u32 size = xdp->data_end - xdp->data;
3986 struct skb_shared_info *sinfo;
3987 void *addr = xdp->data;
3988 int i;
3989
3990 if (unlikely(offset > 0xffff || len > 0xffff))
3991 return ERR_PTR(error: -EFAULT);
3992
3993 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3994 return ERR_PTR(error: -EINVAL);
3995
3996 if (likely(offset < size)) /* linear area */
3997 goto out;
3998
3999 sinfo = xdp_get_shared_info_from_buff(xdp);
4000 offset -= size;
4001 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4002 u32 frag_size = skb_frag_size(frag: &sinfo->frags[i]);
4003
4004 if (offset < frag_size) {
4005 addr = skb_frag_address(frag: &sinfo->frags[i]);
4006 size = frag_size;
4007 break;
4008 }
4009 offset -= frag_size;
4010 }
4011out:
4012 return offset + len <= size ? addr + offset : NULL;
4013}
4014
4015BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4016 void *, buf, u32, len)
4017{
4018 void *ptr;
4019
4020 ptr = bpf_xdp_pointer(xdp, offset, len);
4021 if (IS_ERR(ptr))
4022 return PTR_ERR(ptr);
4023
4024 if (!ptr)
4025 bpf_xdp_copy_buf(xdp, off: offset, buf, len, flush: false);
4026 else
4027 memcpy(buf, ptr, len);
4028
4029 return 0;
4030}
4031
4032static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4033 .func = bpf_xdp_load_bytes,
4034 .gpl_only = false,
4035 .ret_type = RET_INTEGER,
4036 .arg1_type = ARG_PTR_TO_CTX,
4037 .arg2_type = ARG_ANYTHING,
4038 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4039 .arg4_type = ARG_CONST_SIZE,
4040};
4041
4042int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4043{
4044 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4045}
4046
4047BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4048 void *, buf, u32, len)
4049{
4050 void *ptr;
4051
4052 ptr = bpf_xdp_pointer(xdp, offset, len);
4053 if (IS_ERR(ptr))
4054 return PTR_ERR(ptr);
4055
4056 if (!ptr)
4057 bpf_xdp_copy_buf(xdp, off: offset, buf, len, flush: true);
4058 else
4059 memcpy(ptr, buf, len);
4060
4061 return 0;
4062}
4063
4064static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4065 .func = bpf_xdp_store_bytes,
4066 .gpl_only = false,
4067 .ret_type = RET_INTEGER,
4068 .arg1_type = ARG_PTR_TO_CTX,
4069 .arg2_type = ARG_ANYTHING,
4070 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4071 .arg4_type = ARG_CONST_SIZE,
4072};
4073
4074int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4075{
4076 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4077}
4078
4079static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4080{
4081 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4082 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4083 struct xdp_rxq_info *rxq = xdp->rxq;
4084 unsigned int tailroom;
4085
4086 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4087 return -EOPNOTSUPP;
4088
4089 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4090 if (unlikely(offset > tailroom))
4091 return -EINVAL;
4092
4093 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4094 skb_frag_size_add(frag, delta: offset);
4095 sinfo->xdp_frags_size += offset;
4096 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4097 xsk_buff_get_tail(first: xdp)->data_end += offset;
4098
4099 return 0;
4100}
4101
4102static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4103 struct xdp_mem_info *mem_info, bool release)
4104{
4105 struct xdp_buff *zc_frag = xsk_buff_get_tail(first: xdp);
4106
4107 if (release) {
4108 xsk_buff_del_tail(tail: zc_frag);
4109 __xdp_return(NULL, mem: mem_info, napi_direct: false, xdp: zc_frag);
4110 } else {
4111 zc_frag->data_end -= shrink;
4112 }
4113}
4114
4115static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4116 int shrink)
4117{
4118 struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4119 bool release = skb_frag_size(frag) == shrink;
4120
4121 if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4122 bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4123 goto out;
4124 }
4125
4126 if (release) {
4127 struct page *page = skb_frag_page(frag);
4128
4129 __xdp_return(page_address(page), mem: mem_info, napi_direct: false, NULL);
4130 }
4131
4132out:
4133 return release;
4134}
4135
4136static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4137{
4138 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4139 int i, n_frags_free = 0, len_free = 0;
4140
4141 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4142 return -EINVAL;
4143
4144 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4145 skb_frag_t *frag = &sinfo->frags[i];
4146 int shrink = min_t(int, offset, skb_frag_size(frag));
4147
4148 len_free += shrink;
4149 offset -= shrink;
4150 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4151 n_frags_free++;
4152 } else {
4153 skb_frag_size_sub(frag, delta: shrink);
4154 break;
4155 }
4156 }
4157 sinfo->nr_frags -= n_frags_free;
4158 sinfo->xdp_frags_size -= len_free;
4159
4160 if (unlikely(!sinfo->nr_frags)) {
4161 xdp_buff_clear_frags_flag(xdp);
4162 xdp->data_end -= offset;
4163 }
4164
4165 return 0;
4166}
4167
4168BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4169{
4170 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4171 void *data_end = xdp->data_end + offset;
4172
4173 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4174 if (offset < 0)
4175 return bpf_xdp_frags_shrink_tail(xdp, offset: -offset);
4176
4177 return bpf_xdp_frags_increase_tail(xdp, offset);
4178 }
4179
4180 /* Notice that xdp_data_hard_end have reserved some tailroom */
4181 if (unlikely(data_end > data_hard_end))
4182 return -EINVAL;
4183
4184 if (unlikely(data_end < xdp->data + ETH_HLEN))
4185 return -EINVAL;
4186
4187 /* Clear memory area on grow, can contain uninit kernel memory */
4188 if (offset > 0)
4189 memset(xdp->data_end, 0, offset);
4190
4191 xdp->data_end = data_end;
4192
4193 return 0;
4194}
4195
4196static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4197 .func = bpf_xdp_adjust_tail,
4198 .gpl_only = false,
4199 .ret_type = RET_INTEGER,
4200 .arg1_type = ARG_PTR_TO_CTX,
4201 .arg2_type = ARG_ANYTHING,
4202};
4203
4204BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4205{
4206 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4207 void *meta = xdp->data_meta + offset;
4208 unsigned long metalen = xdp->data - meta;
4209
4210 if (xdp_data_meta_unsupported(xdp))
4211 return -ENOTSUPP;
4212 if (unlikely(meta < xdp_frame_end ||
4213 meta > xdp->data))
4214 return -EINVAL;
4215 if (unlikely(xdp_metalen_invalid(metalen)))
4216 return -EACCES;
4217
4218 xdp->data_meta = meta;
4219
4220 return 0;
4221}
4222
4223static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4224 .func = bpf_xdp_adjust_meta,
4225 .gpl_only = false,
4226 .ret_type = RET_INTEGER,
4227 .arg1_type = ARG_PTR_TO_CTX,
4228 .arg2_type = ARG_ANYTHING,
4229};
4230
4231/**
4232 * DOC: xdp redirect
4233 *
4234 * XDP_REDIRECT works by a three-step process, implemented in the functions
4235 * below:
4236 *
4237 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4238 * of the redirect and store it (along with some other metadata) in a per-CPU
4239 * struct bpf_redirect_info.
4240 *
4241 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4242 * call xdp_do_redirect() which will use the information in struct
4243 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4244 * bulk queue structure.
4245 *
4246 * 3. Before exiting its NAPI poll loop, the driver will call
4247 * xdp_do_flush(), which will flush all the different bulk queues,
4248 * thus completing the redirect. Note that xdp_do_flush() must be
4249 * called before napi_complete_done() in the driver, as the
4250 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4251 * through to the xdp_do_flush() call for RCU protection of all
4252 * in-kernel data structures.
4253 */
4254/*
4255 * Pointers to the map entries will be kept around for this whole sequence of
4256 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4257 * the core code; instead, the RCU protection relies on everything happening
4258 * inside a single NAPI poll sequence, which means it's between a pair of calls
4259 * to local_bh_disable()/local_bh_enable().
4260 *
4261 * The map entries are marked as __rcu and the map code makes sure to
4262 * dereference those pointers with rcu_dereference_check() in a way that works
4263 * for both sections that to hold an rcu_read_lock() and sections that are
4264 * called from NAPI without a separate rcu_read_lock(). The code below does not
4265 * use RCU annotations, but relies on those in the map code.
4266 */
4267void xdp_do_flush(void)
4268{
4269 __dev_flush();
4270 __cpu_map_flush();
4271 __xsk_map_flush();
4272}
4273EXPORT_SYMBOL_GPL(xdp_do_flush);
4274
4275#if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
4276void xdp_do_check_flushed(struct napi_struct *napi)
4277{
4278 bool ret;
4279
4280 ret = dev_check_flush();
4281 ret |= cpu_map_check_flush();
4282 ret |= xsk_map_check_flush();
4283
4284 WARN_ONCE(ret, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4285 napi->poll);
4286}
4287#endif
4288
4289void bpf_clear_redirect_map(struct bpf_map *map)
4290{
4291 struct bpf_redirect_info *ri;
4292 int cpu;
4293
4294 for_each_possible_cpu(cpu) {
4295 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4296 /* Avoid polluting remote cacheline due to writes if
4297 * not needed. Once we pass this test, we need the
4298 * cmpxchg() to make sure it hasn't been changed in
4299 * the meantime by remote CPU.
4300 */
4301 if (unlikely(READ_ONCE(ri->map) == map))
4302 cmpxchg(&ri->map, map, NULL);
4303 }
4304}
4305
4306DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4307EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4308
4309u32 xdp_master_redirect(struct xdp_buff *xdp)
4310{
4311 struct net_device *master, *slave;
4312 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4313
4314 master = netdev_master_upper_dev_get_rcu(dev: xdp->rxq->dev);
4315 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4316 if (slave && slave != xdp->rxq->dev) {
4317 /* The target device is different from the receiving device, so
4318 * redirect it to the new device.
4319 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4320 * drivers to unmap the packet from their rx ring.
4321 */
4322 ri->tgt_index = slave->ifindex;
4323 ri->map_id = INT_MAX;
4324 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4325 return XDP_REDIRECT;
4326 }
4327 return XDP_TX;
4328}
4329EXPORT_SYMBOL_GPL(xdp_master_redirect);
4330
4331static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4332 struct net_device *dev,
4333 struct xdp_buff *xdp,
4334 struct bpf_prog *xdp_prog)
4335{
4336 enum bpf_map_type map_type = ri->map_type;
4337 void *fwd = ri->tgt_value;
4338 u32 map_id = ri->map_id;
4339 int err;
4340
4341 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4342 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4343
4344 err = __xsk_map_redirect(xs: fwd, xdp);
4345 if (unlikely(err))
4346 goto err;
4347
4348 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4349 return 0;
4350err:
4351 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4352 return err;
4353}
4354
4355static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4356 struct net_device *dev,
4357 struct xdp_frame *xdpf,
4358 struct bpf_prog *xdp_prog)
4359{
4360 enum bpf_map_type map_type = ri->map_type;
4361 void *fwd = ri->tgt_value;
4362 u32 map_id = ri->map_id;
4363 struct bpf_map *map;
4364 int err;
4365
4366 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4367 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4368
4369 if (unlikely(!xdpf)) {
4370 err = -EOVERFLOW;
4371 goto err;
4372 }
4373
4374 switch (map_type) {
4375 case BPF_MAP_TYPE_DEVMAP:
4376 fallthrough;
4377 case BPF_MAP_TYPE_DEVMAP_HASH:
4378 map = READ_ONCE(ri->map);
4379 if (unlikely(map)) {
4380 WRITE_ONCE(ri->map, NULL);
4381 err = dev_map_enqueue_multi(xdpf, dev_rx: dev, map,
4382 exclude_ingress: ri->flags & BPF_F_EXCLUDE_INGRESS);
4383 } else {
4384 err = dev_map_enqueue(dst: fwd, xdpf, dev_rx: dev);
4385 }
4386 break;
4387 case BPF_MAP_TYPE_CPUMAP:
4388 err = cpu_map_enqueue(rcpu: fwd, xdpf, dev_rx: dev);
4389 break;
4390 case BPF_MAP_TYPE_UNSPEC:
4391 if (map_id == INT_MAX) {
4392 fwd = dev_get_by_index_rcu(net: dev_net(dev), ifindex: ri->tgt_index);
4393 if (unlikely(!fwd)) {
4394 err = -EINVAL;
4395 break;
4396 }
4397 err = dev_xdp_enqueue(dev: fwd, xdpf, dev_rx: dev);
4398 break;
4399 }
4400 fallthrough;
4401 default:
4402 err = -EBADRQC;
4403 }
4404
4405 if (unlikely(err))
4406 goto err;
4407
4408 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4409 return 0;
4410err:
4411 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4412 return err;
4413}
4414
4415int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4416 struct bpf_prog *xdp_prog)
4417{
4418 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4419 enum bpf_map_type map_type = ri->map_type;
4420
4421 if (map_type == BPF_MAP_TYPE_XSKMAP)
4422 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4423
4424 return __xdp_do_redirect_frame(ri, dev, xdpf: xdp_convert_buff_to_frame(xdp),
4425 xdp_prog);
4426}
4427EXPORT_SYMBOL_GPL(xdp_do_redirect);
4428
4429int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4430 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4431{
4432 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4433 enum bpf_map_type map_type = ri->map_type;
4434
4435 if (map_type == BPF_MAP_TYPE_XSKMAP)
4436 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4437
4438 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4439}
4440EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4441
4442static int xdp_do_generic_redirect_map(struct net_device *dev,
4443 struct sk_buff *skb,
4444 struct xdp_buff *xdp,
4445 struct bpf_prog *xdp_prog,
4446 void *fwd,
4447 enum bpf_map_type map_type, u32 map_id)
4448{
4449 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4450 struct bpf_map *map;
4451 int err;
4452
4453 switch (map_type) {
4454 case BPF_MAP_TYPE_DEVMAP:
4455 fallthrough;
4456 case BPF_MAP_TYPE_DEVMAP_HASH:
4457 map = READ_ONCE(ri->map);
4458 if (unlikely(map)) {
4459 WRITE_ONCE(ri->map, NULL);
4460 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4461 exclude_ingress: ri->flags & BPF_F_EXCLUDE_INGRESS);
4462 } else {
4463 err = dev_map_generic_redirect(dst: fwd, skb, xdp_prog);
4464 }
4465 if (unlikely(err))
4466 goto err;
4467 break;
4468 case BPF_MAP_TYPE_XSKMAP:
4469 err = xsk_generic_rcv(xs: fwd, xdp);
4470 if (err)
4471 goto err;
4472 consume_skb(skb);
4473 break;
4474 case BPF_MAP_TYPE_CPUMAP:
4475 err = cpu_map_generic_redirect(rcpu: fwd, skb);
4476 if (unlikely(err))
4477 goto err;
4478 break;
4479 default:
4480 err = -EBADRQC;
4481 goto err;
4482 }
4483
4484 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4485 return 0;
4486err:
4487 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4488 return err;
4489}
4490
4491int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4492 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4493{
4494 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4495 enum bpf_map_type map_type = ri->map_type;
4496 void *fwd = ri->tgt_value;
4497 u32 map_id = ri->map_id;
4498 int err;
4499
4500 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4501 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4502
4503 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4504 fwd = dev_get_by_index_rcu(net: dev_net(dev), ifindex: ri->tgt_index);
4505 if (unlikely(!fwd)) {
4506 err = -EINVAL;
4507 goto err;
4508 }
4509
4510 err = xdp_ok_fwd_dev(fwd, pktlen: skb->len);
4511 if (unlikely(err))
4512 goto err;
4513
4514 skb->dev = fwd;
4515 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4516 generic_xdp_tx(skb, xdp_prog);
4517 return 0;
4518 }
4519
4520 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4521err:
4522 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4523 return err;
4524}
4525
4526BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4527{
4528 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4529
4530 if (unlikely(flags))
4531 return XDP_ABORTED;
4532
4533 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4534 * by map_idr) is used for ifindex based XDP redirect.
4535 */
4536 ri->tgt_index = ifindex;
4537 ri->map_id = INT_MAX;
4538 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4539
4540 return XDP_REDIRECT;
4541}
4542
4543static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4544 .func = bpf_xdp_redirect,
4545 .gpl_only = false,
4546 .ret_type = RET_INTEGER,
4547 .arg1_type = ARG_ANYTHING,
4548 .arg2_type = ARG_ANYTHING,
4549};
4550
4551BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4552 u64, flags)
4553{
4554 return map->ops->map_redirect(map, key, flags);
4555}
4556
4557static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4558 .func = bpf_xdp_redirect_map,
4559 .gpl_only = false,
4560 .ret_type = RET_INTEGER,
4561 .arg1_type = ARG_CONST_MAP_PTR,
4562 .arg2_type = ARG_ANYTHING,
4563 .arg3_type = ARG_ANYTHING,
4564};
4565
4566static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4567 unsigned long off, unsigned long len)
4568{
4569 void *ptr = skb_header_pointer(skb, offset: off, len, buffer: dst_buff);
4570
4571 if (unlikely(!ptr))
4572 return len;
4573 if (ptr != dst_buff)
4574 memcpy(dst_buff, ptr, len);
4575
4576 return 0;
4577}
4578
4579BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4580 u64, flags, void *, meta, u64, meta_size)
4581{
4582 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4583
4584 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4585 return -EINVAL;
4586 if (unlikely(!skb || skb_size > skb->len))
4587 return -EFAULT;
4588
4589 return bpf_event_output(map, flags, meta, meta_size, ctx: skb, ctx_size: skb_size,
4590 ctx_copy: bpf_skb_copy);
4591}
4592
4593static const struct bpf_func_proto bpf_skb_event_output_proto = {
4594 .func = bpf_skb_event_output,
4595 .gpl_only = true,
4596 .ret_type = RET_INTEGER,
4597 .arg1_type = ARG_PTR_TO_CTX,
4598 .arg2_type = ARG_CONST_MAP_PTR,
4599 .arg3_type = ARG_ANYTHING,
4600 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4601 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4602};
4603
4604BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4605
4606const struct bpf_func_proto bpf_skb_output_proto = {
4607 .func = bpf_skb_event_output,
4608 .gpl_only = true,
4609 .ret_type = RET_INTEGER,
4610 .arg1_type = ARG_PTR_TO_BTF_ID,
4611 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4612 .arg2_type = ARG_CONST_MAP_PTR,
4613 .arg3_type = ARG_ANYTHING,
4614 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4615 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4616};
4617
4618static unsigned short bpf_tunnel_key_af(u64 flags)
4619{
4620 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4621}
4622
4623BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4624 u32, size, u64, flags)
4625{
4626 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4627 u8 compat[sizeof(struct bpf_tunnel_key)];
4628 void *to_orig = to;
4629 int err;
4630
4631 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4632 BPF_F_TUNINFO_FLAGS)))) {
4633 err = -EINVAL;
4634 goto err_clear;
4635 }
4636 if (ip_tunnel_info_af(tun_info: info) != bpf_tunnel_key_af(flags)) {
4637 err = -EPROTO;
4638 goto err_clear;
4639 }
4640 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641 err = -EINVAL;
4642 switch (size) {
4643 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4644 case offsetof(struct bpf_tunnel_key, tunnel_label):
4645 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4646 goto set_compat;
4647 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4648 /* Fixup deprecated structure layouts here, so we have
4649 * a common path later on.
4650 */
4651 if (ip_tunnel_info_af(tun_info: info) != AF_INET)
4652 goto err_clear;
4653set_compat:
4654 to = (struct bpf_tunnel_key *)compat;
4655 break;
4656 default:
4657 goto err_clear;
4658 }
4659 }
4660
4661 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4662 to->tunnel_tos = info->key.tos;
4663 to->tunnel_ttl = info->key.ttl;
4664 if (flags & BPF_F_TUNINFO_FLAGS)
4665 to->tunnel_flags = info->key.tun_flags;
4666 else
4667 to->tunnel_ext = 0;
4668
4669 if (flags & BPF_F_TUNINFO_IPV6) {
4670 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4671 sizeof(to->remote_ipv6));
4672 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4673 sizeof(to->local_ipv6));
4674 to->tunnel_label = be32_to_cpu(info->key.label);
4675 } else {
4676 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4677 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4678 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4679 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4680 to->tunnel_label = 0;
4681 }
4682
4683 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4684 memcpy(to_orig, to, size);
4685
4686 return 0;
4687err_clear:
4688 memset(to_orig, 0, size);
4689 return err;
4690}
4691
4692static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4693 .func = bpf_skb_get_tunnel_key,
4694 .gpl_only = false,
4695 .ret_type = RET_INTEGER,
4696 .arg1_type = ARG_PTR_TO_CTX,
4697 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4698 .arg3_type = ARG_CONST_SIZE,
4699 .arg4_type = ARG_ANYTHING,
4700};
4701
4702BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4703{
4704 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4705 int err;
4706
4707 if (unlikely(!info ||
4708 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4709 err = -ENOENT;
4710 goto err_clear;
4711 }
4712 if (unlikely(size < info->options_len)) {
4713 err = -ENOMEM;
4714 goto err_clear;
4715 }
4716
4717 ip_tunnel_info_opts_get(to, info);
4718 if (size > info->options_len)
4719 memset(to + info->options_len, 0, size - info->options_len);
4720
4721 return info->options_len;
4722err_clear:
4723 memset(to, 0, size);
4724 return err;
4725}
4726
4727static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4728 .func = bpf_skb_get_tunnel_opt,
4729 .gpl_only = false,
4730 .ret_type = RET_INTEGER,
4731 .arg1_type = ARG_PTR_TO_CTX,
4732 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4733 .arg3_type = ARG_CONST_SIZE,
4734};
4735
4736static struct metadata_dst __percpu *md_dst;
4737
4738BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4739 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4740{
4741 struct metadata_dst *md = this_cpu_ptr(md_dst);
4742 u8 compat[sizeof(struct bpf_tunnel_key)];
4743 struct ip_tunnel_info *info;
4744
4745 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4746 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4747 BPF_F_NO_TUNNEL_KEY)))
4748 return -EINVAL;
4749 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4750 switch (size) {
4751 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4752 case offsetof(struct bpf_tunnel_key, tunnel_label):
4753 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4754 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4755 /* Fixup deprecated structure layouts here, so we have
4756 * a common path later on.
4757 */
4758 memcpy(compat, from, size);
4759 memset(compat + size, 0, sizeof(compat) - size);
4760 from = (const struct bpf_tunnel_key *) compat;
4761 break;
4762 default:
4763 return -EINVAL;
4764 }
4765 }
4766 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4767 from->tunnel_ext))
4768 return -EINVAL;
4769
4770 skb_dst_drop(skb);
4771 dst_hold(dst: (struct dst_entry *) md);
4772 skb_dst_set(skb, dst: (struct dst_entry *) md);
4773
4774 info = &md->u.tun_info;
4775 memset(info, 0, sizeof(*info));
4776 info->mode = IP_TUNNEL_INFO_TX;
4777
4778 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4779 if (flags & BPF_F_DONT_FRAGMENT)
4780 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4781 if (flags & BPF_F_ZERO_CSUM_TX)
4782 info->key.tun_flags &= ~TUNNEL_CSUM;
4783 if (flags & BPF_F_SEQ_NUMBER)
4784 info->key.tun_flags |= TUNNEL_SEQ;
4785 if (flags & BPF_F_NO_TUNNEL_KEY)
4786 info->key.tun_flags &= ~TUNNEL_KEY;
4787
4788 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4789 info->key.tos = from->tunnel_tos;
4790 info->key.ttl = from->tunnel_ttl;
4791
4792 if (flags & BPF_F_TUNINFO_IPV6) {
4793 info->mode |= IP_TUNNEL_INFO_IPV6;
4794 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4795 sizeof(from->remote_ipv6));
4796 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4797 sizeof(from->local_ipv6));
4798 info->key.label = cpu_to_be32(from->tunnel_label) &
4799 IPV6_FLOWLABEL_MASK;
4800 } else {
4801 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4802 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4803 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4804 }
4805
4806 return 0;
4807}
4808
4809static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4810 .func = bpf_skb_set_tunnel_key,
4811 .gpl_only = false,
4812 .ret_type = RET_INTEGER,
4813 .arg1_type = ARG_PTR_TO_CTX,
4814 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4815 .arg3_type = ARG_CONST_SIZE,
4816 .arg4_type = ARG_ANYTHING,
4817};
4818
4819BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4820 const u8 *, from, u32, size)
4821{
4822 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4823 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4824
4825 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4826 return -EINVAL;
4827 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4828 return -ENOMEM;
4829
4830 ip_tunnel_info_opts_set(info, from, len: size, TUNNEL_OPTIONS_PRESENT);
4831
4832 return 0;
4833}
4834
4835static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4836 .func = bpf_skb_set_tunnel_opt,
4837 .gpl_only = false,
4838 .ret_type = RET_INTEGER,
4839 .arg1_type = ARG_PTR_TO_CTX,
4840 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4841 .arg3_type = ARG_CONST_SIZE,
4842};
4843
4844static const struct bpf_func_proto *
4845bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4846{
4847 if (!md_dst) {
4848 struct metadata_dst __percpu *tmp;
4849
4850 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4851 type: METADATA_IP_TUNNEL,
4852 GFP_KERNEL);
4853 if (!tmp)
4854 return NULL;
4855 if (cmpxchg(&md_dst, NULL, tmp))
4856 metadata_dst_free_percpu(md_dst: tmp);
4857 }
4858
4859 switch (which) {
4860 case BPF_FUNC_skb_set_tunnel_key:
4861 return &bpf_skb_set_tunnel_key_proto;
4862 case BPF_FUNC_skb_set_tunnel_opt:
4863 return &bpf_skb_set_tunnel_opt_proto;
4864 default:
4865 return NULL;
4866 }
4867}
4868
4869BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4870 u32, idx)
4871{
4872 struct bpf_array *array = container_of(map, struct bpf_array, map);
4873 struct cgroup *cgrp;
4874 struct sock *sk;
4875
4876 sk = skb_to_full_sk(skb);
4877 if (!sk || !sk_fullsock(sk))
4878 return -ENOENT;
4879 if (unlikely(idx >= array->map.max_entries))
4880 return -E2BIG;
4881
4882 cgrp = READ_ONCE(array->ptrs[idx]);
4883 if (unlikely(!cgrp))
4884 return -EAGAIN;
4885
4886 return sk_under_cgroup_hierarchy(sk, ancestor: cgrp);
4887}
4888
4889static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4890 .func = bpf_skb_under_cgroup,
4891 .gpl_only = false,
4892 .ret_type = RET_INTEGER,
4893 .arg1_type = ARG_PTR_TO_CTX,
4894 .arg2_type = ARG_CONST_MAP_PTR,
4895 .arg3_type = ARG_ANYTHING,
4896};
4897
4898#ifdef CONFIG_SOCK_CGROUP_DATA
4899static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4900{
4901 struct cgroup *cgrp;
4902
4903 sk = sk_to_full_sk(sk);
4904 if (!sk || !sk_fullsock(sk))
4905 return 0;
4906
4907 cgrp = sock_cgroup_ptr(skcd: &sk->sk_cgrp_data);
4908 return cgroup_id(cgrp);
4909}
4910
4911BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4912{
4913 return __bpf_sk_cgroup_id(sk: skb->sk);
4914}
4915
4916static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4917 .func = bpf_skb_cgroup_id,
4918 .gpl_only = false,
4919 .ret_type = RET_INTEGER,
4920 .arg1_type = ARG_PTR_TO_CTX,
4921};
4922
4923static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4924 int ancestor_level)
4925{
4926 struct cgroup *ancestor;
4927 struct cgroup *cgrp;
4928
4929 sk = sk_to_full_sk(sk);
4930 if (!sk || !sk_fullsock(sk))
4931 return 0;
4932
4933 cgrp = sock_cgroup_ptr(skcd: &sk->sk_cgrp_data);
4934 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4935 if (!ancestor)
4936 return 0;
4937
4938 return cgroup_id(cgrp: ancestor);
4939}
4940
4941BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4942 ancestor_level)
4943{
4944 return __bpf_sk_ancestor_cgroup_id(sk: skb->sk, ancestor_level);
4945}
4946
4947static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4948 .func = bpf_skb_ancestor_cgroup_id,
4949 .gpl_only = false,
4950 .ret_type = RET_INTEGER,
4951 .arg1_type = ARG_PTR_TO_CTX,
4952 .arg2_type = ARG_ANYTHING,
4953};
4954
4955BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4956{
4957 return __bpf_sk_cgroup_id(sk);
4958}
4959
4960static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4961 .func = bpf_sk_cgroup_id,
4962 .gpl_only = false,
4963 .ret_type = RET_INTEGER,
4964 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965};
4966
4967BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4968{
4969 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4970}
4971
4972static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4973 .func = bpf_sk_ancestor_cgroup_id,
4974 .gpl_only = false,
4975 .ret_type = RET_INTEGER,
4976 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4977 .arg2_type = ARG_ANYTHING,
4978};
4979#endif
4980
4981static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4982 unsigned long off, unsigned long len)
4983{
4984 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4985
4986 bpf_xdp_copy_buf(xdp, off, buf: dst, len, flush: false);
4987 return 0;
4988}
4989
4990BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4991 u64, flags, void *, meta, u64, meta_size)
4992{
4993 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4994
4995 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4996 return -EINVAL;
4997
4998 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4999 return -EFAULT;
5000
5001 return bpf_event_output(map, flags, meta, meta_size, ctx: xdp,
5002 ctx_size: xdp_size, ctx_copy: bpf_xdp_copy);
5003}
5004
5005static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5006 .func = bpf_xdp_event_output,
5007 .gpl_only = true,
5008 .ret_type = RET_INTEGER,
5009 .arg1_type = ARG_PTR_TO_CTX,
5010 .arg2_type = ARG_CONST_MAP_PTR,
5011 .arg3_type = ARG_ANYTHING,
5012 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5013 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5014};
5015
5016BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5017
5018const struct bpf_func_proto bpf_xdp_output_proto = {
5019 .func = bpf_xdp_event_output,
5020 .gpl_only = true,
5021 .ret_type = RET_INTEGER,
5022 .arg1_type = ARG_PTR_TO_BTF_ID,
5023 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5024 .arg2_type = ARG_CONST_MAP_PTR,
5025 .arg3_type = ARG_ANYTHING,
5026 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5027 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5028};
5029
5030BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5031{
5032 return skb->sk ? __sock_gen_cookie(sk: skb->sk) : 0;
5033}
5034
5035static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5036 .func = bpf_get_socket_cookie,
5037 .gpl_only = false,
5038 .ret_type = RET_INTEGER,
5039 .arg1_type = ARG_PTR_TO_CTX,
5040};
5041
5042BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5043{
5044 return __sock_gen_cookie(sk: ctx->sk);
5045}
5046
5047static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5048 .func = bpf_get_socket_cookie_sock_addr,
5049 .gpl_only = false,
5050 .ret_type = RET_INTEGER,
5051 .arg1_type = ARG_PTR_TO_CTX,
5052};
5053
5054BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5055{
5056 return __sock_gen_cookie(sk: ctx);
5057}
5058
5059static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5060 .func = bpf_get_socket_cookie_sock,
5061 .gpl_only = false,
5062 .ret_type = RET_INTEGER,
5063 .arg1_type = ARG_PTR_TO_CTX,
5064};
5065
5066BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5067{
5068 return sk ? sock_gen_cookie(sk) : 0;
5069}
5070
5071const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5072 .func = bpf_get_socket_ptr_cookie,
5073 .gpl_only = false,
5074 .ret_type = RET_INTEGER,
5075 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5076};
5077
5078BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5079{
5080 return __sock_gen_cookie(sk: ctx->sk);
5081}
5082
5083static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5084 .func = bpf_get_socket_cookie_sock_ops,
5085 .gpl_only = false,
5086 .ret_type = RET_INTEGER,
5087 .arg1_type = ARG_PTR_TO_CTX,
5088};
5089
5090static u64 __bpf_get_netns_cookie(struct sock *sk)
5091{
5092 const struct net *net = sk ? sock_net(sk) : &init_net;
5093
5094 return net->net_cookie;
5095}
5096
5097BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5098{
5099 return __bpf_get_netns_cookie(sk: ctx);
5100}
5101
5102static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5103 .func = bpf_get_netns_cookie_sock,
5104 .gpl_only = false,
5105 .ret_type = RET_INTEGER,
5106 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5107};
5108
5109BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5110{
5111 return __bpf_get_netns_cookie(sk: ctx ? ctx->sk : NULL);
5112}
5113
5114static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5115 .func = bpf_get_netns_cookie_sock_addr,
5116 .gpl_only = false,
5117 .ret_type = RET_INTEGER,
5118 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5119};
5120
5121BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5122{
5123 return __bpf_get_netns_cookie(sk: ctx ? ctx->sk : NULL);
5124}
5125
5126static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5127 .func = bpf_get_netns_cookie_sock_ops,
5128 .gpl_only = false,
5129 .ret_type = RET_INTEGER,
5130 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5131};
5132
5133BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5134{
5135 return __bpf_get_netns_cookie(sk: ctx ? ctx->sk : NULL);
5136}
5137
5138static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5139 .func = bpf_get_netns_cookie_sk_msg,
5140 .gpl_only = false,
5141 .ret_type = RET_INTEGER,
5142 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5143};
5144
5145BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5146{
5147 struct sock *sk = sk_to_full_sk(sk: skb->sk);
5148 kuid_t kuid;
5149
5150 if (!sk || !sk_fullsock(sk))
5151 return overflowuid;
5152 kuid = sock_net_uid(net: sock_net(sk), sk);
5153 return from_kuid_munged(to: sock_net(sk)->user_ns, uid: kuid);
5154}
5155
5156static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5157 .func = bpf_get_socket_uid,
5158 .gpl_only = false,
5159 .ret_type = RET_INTEGER,
5160 .arg1_type = ARG_PTR_TO_CTX,
5161};
5162
5163static int sol_socket_sockopt(struct sock *sk, int optname,
5164 char *optval, int *optlen,
5165 bool getopt)
5166{
5167 switch (optname) {
5168 case SO_REUSEADDR:
5169 case SO_SNDBUF:
5170 case SO_RCVBUF:
5171 case SO_KEEPALIVE:
5172 case SO_PRIORITY:
5173 case SO_REUSEPORT:
5174 case SO_RCVLOWAT:
5175 case SO_MARK:
5176 case SO_MAX_PACING_RATE:
5177 case SO_BINDTOIFINDEX:
5178 case SO_TXREHASH:
5179 if (*optlen != sizeof(int))
5180 return -EINVAL;
5181 break;
5182 case SO_BINDTODEVICE:
5183 break;
5184 default:
5185 return -EINVAL;
5186 }
5187
5188 if (getopt) {
5189 if (optname == SO_BINDTODEVICE)
5190 return -EINVAL;
5191 return sk_getsockopt(sk, SOL_SOCKET, optname,
5192 optval: KERNEL_SOCKPTR(p: optval),
5193 optlen: KERNEL_SOCKPTR(p: optlen));
5194 }
5195
5196 return sk_setsockopt(sk, SOL_SOCKET, optname,
5197 optval: KERNEL_SOCKPTR(p: optval), optlen: *optlen);
5198}
5199
5200static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5201 char *optval, int optlen)
5202{
5203 struct tcp_sock *tp = tcp_sk(sk);
5204 unsigned long timeout;
5205 int val;
5206
5207 if (optlen != sizeof(int))
5208 return -EINVAL;
5209
5210 val = *(int *)optval;
5211
5212 /* Only some options are supported */
5213 switch (optname) {
5214 case TCP_BPF_IW:
5215 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5216 return -EINVAL;
5217 tcp_snd_cwnd_set(tp, val);
5218 break;
5219 case TCP_BPF_SNDCWND_CLAMP:
5220 if (val <= 0)
5221 return -EINVAL;
5222 tp->snd_cwnd_clamp = val;
5223 tp->snd_ssthresh = val;
5224 break;
5225 case TCP_BPF_DELACK_MAX:
5226 timeout = usecs_to_jiffies(u: val);
5227 if (timeout > TCP_DELACK_MAX ||
5228 timeout < TCP_TIMEOUT_MIN)
5229 return -EINVAL;
5230 inet_csk(sk)->icsk_delack_max = timeout;
5231 break;
5232 case TCP_BPF_RTO_MIN:
5233 timeout = usecs_to_jiffies(u: val);
5234 if (timeout > TCP_RTO_MIN ||
5235 timeout < TCP_TIMEOUT_MIN)
5236 return -EINVAL;
5237 inet_csk(sk)->icsk_rto_min = timeout;
5238 break;
5239 default:
5240 return -EINVAL;
5241 }
5242
5243 return 0;
5244}
5245
5246static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5247 int *optlen, bool getopt)
5248{
5249 struct tcp_sock *tp;
5250 int ret;
5251
5252 if (*optlen < 2)
5253 return -EINVAL;
5254
5255 if (getopt) {
5256 if (!inet_csk(sk)->icsk_ca_ops)
5257 return -EINVAL;
5258 /* BPF expects NULL-terminated tcp-cc string */
5259 optval[--(*optlen)] = '\0';
5260 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5261 optval: KERNEL_SOCKPTR(p: optval),
5262 optlen: KERNEL_SOCKPTR(p: optlen));
5263 }
5264
5265 /* "cdg" is the only cc that alloc a ptr
5266 * in inet_csk_ca area. The bpf-tcp-cc may
5267 * overwrite this ptr after switching to cdg.
5268 */
5269 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5270 return -ENOTSUPP;
5271
5272 /* It stops this looping
5273 *
5274 * .init => bpf_setsockopt(tcp_cc) => .init =>
5275 * bpf_setsockopt(tcp_cc)" => .init => ....
5276 *
5277 * The second bpf_setsockopt(tcp_cc) is not allowed
5278 * in order to break the loop when both .init
5279 * are the same bpf prog.
5280 *
5281 * This applies even the second bpf_setsockopt(tcp_cc)
5282 * does not cause a loop. This limits only the first
5283 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5284 * pick a fallback cc (eg. peer does not support ECN)
5285 * and the second '.init' cannot fallback to
5286 * another.
5287 */
5288 tp = tcp_sk(sk);
5289 if (tp->bpf_chg_cc_inprogress)
5290 return -EBUSY;
5291
5292 tp->bpf_chg_cc_inprogress = 1;
5293 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5294 optval: KERNEL_SOCKPTR(p: optval), optlen: *optlen);
5295 tp->bpf_chg_cc_inprogress = 0;
5296 return ret;
5297}
5298
5299static int sol_tcp_sockopt(struct sock *sk, int optname,
5300 char *optval, int *optlen,
5301 bool getopt)
5302{
5303 if (sk->sk_protocol != IPPROTO_TCP)
5304 return -EINVAL;
5305
5306 switch (optname) {
5307 case TCP_NODELAY:
5308 case TCP_MAXSEG:
5309 case TCP_KEEPIDLE:
5310 case TCP_KEEPINTVL:
5311 case TCP_KEEPCNT:
5312 case TCP_SYNCNT:
5313 case TCP_WINDOW_CLAMP:
5314 case TCP_THIN_LINEAR_TIMEOUTS:
5315 case TCP_USER_TIMEOUT:
5316 case TCP_NOTSENT_LOWAT:
5317 case TCP_SAVE_SYN:
5318 if (*optlen != sizeof(int))
5319 return -EINVAL;
5320 break;
5321 case TCP_CONGESTION:
5322 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5323 case TCP_SAVED_SYN:
5324 if (*optlen < 1)
5325 return -EINVAL;
5326 break;
5327 default:
5328 if (getopt)
5329 return -EINVAL;
5330 return bpf_sol_tcp_setsockopt(sk, optname, optval, optlen: *optlen);
5331 }
5332
5333 if (getopt) {
5334 if (optname == TCP_SAVED_SYN) {
5335 struct tcp_sock *tp = tcp_sk(sk);
5336
5337 if (!tp->saved_syn ||
5338 *optlen > tcp_saved_syn_len(saved_syn: tp->saved_syn))
5339 return -EINVAL;
5340 memcpy(optval, tp->saved_syn->data, *optlen);
5341 /* It cannot free tp->saved_syn here because it
5342 * does not know if the user space still needs it.
5343 */
5344 return 0;
5345 }
5346
5347 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5348 optval: KERNEL_SOCKPTR(p: optval),
5349 optlen: KERNEL_SOCKPTR(p: optlen));
5350 }
5351
5352 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5353 optval: KERNEL_SOCKPTR(p: optval), optlen: *optlen);
5354}
5355
5356static int sol_ip_sockopt(struct sock *sk, int optname,
5357 char *optval, int *optlen,
5358 bool getopt)
5359{
5360 if (sk->sk_family != AF_INET)
5361 return -EINVAL;
5362
5363 switch (optname) {
5364 case IP_TOS:
5365 if (*optlen != sizeof(int))
5366 return -EINVAL;
5367 break;
5368 default:
5369 return -EINVAL;
5370 }
5371
5372 if (getopt)
5373 return do_ip_getsockopt(sk, SOL_IP, optname,
5374 optval: KERNEL_SOCKPTR(p: optval),
5375 optlen: KERNEL_SOCKPTR(p: optlen));
5376
5377 return do_ip_setsockopt(sk, SOL_IP, optname,
5378 optval: KERNEL_SOCKPTR(p: optval), optlen: *optlen);
5379}
5380
5381static int sol_ipv6_sockopt(struct sock *sk, int optname,
5382 char *optval, int *optlen,
5383 bool getopt)
5384{
5385 if (sk->sk_family != AF_INET6)
5386 return -EINVAL;
5387
5388 switch (optname) {
5389 case IPV6_TCLASS:
5390 case IPV6_AUTOFLOWLABEL:
5391 if (*optlen != sizeof(int))
5392 return -EINVAL;
5393 break;
5394 default:
5395 return -EINVAL;
5396 }
5397
5398 if (getopt)
5399 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5400 KERNEL_SOCKPTR(p: optval),
5401 KERNEL_SOCKPTR(p: optlen));
5402
5403 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5404 KERNEL_SOCKPTR(p: optval), *optlen);
5405}
5406
5407static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5408 char *optval, int optlen)
5409{
5410 if (!sk_fullsock(sk))
5411 return -EINVAL;
5412
5413 if (level == SOL_SOCKET)
5414 return sol_socket_sockopt(sk, optname, optval, optlen: &optlen, getopt: false);
5415 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5416 return sol_ip_sockopt(sk, optname, optval, optlen: &optlen, getopt: false);
5417 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5418 return sol_ipv6_sockopt(sk, optname, optval, optlen: &optlen, getopt: false);
5419 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5420 return sol_tcp_sockopt(sk, optname, optval, optlen: &optlen, getopt: false);
5421
5422 return -EINVAL;
5423}
5424
5425static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5426 char *optval, int optlen)
5427{
5428 if (sk_fullsock(sk))
5429 sock_owned_by_me(sk);
5430 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5431}
5432
5433static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5434 char *optval, int optlen)
5435{
5436 int err, saved_optlen = optlen;
5437
5438 if (!sk_fullsock(sk)) {
5439 err = -EINVAL;
5440 goto done;
5441 }
5442
5443 if (level == SOL_SOCKET)
5444 err = sol_socket_sockopt(sk, optname, optval, optlen: &optlen, getopt: true);
5445 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5446 err = sol_tcp_sockopt(sk, optname, optval, optlen: &optlen, getopt: true);
5447 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5448 err = sol_ip_sockopt(sk, optname, optval, optlen: &optlen, getopt: true);
5449 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5450 err = sol_ipv6_sockopt(sk, optname, optval, optlen: &optlen, getopt: true);
5451 else
5452 err = -EINVAL;
5453
5454done:
5455 if (err)
5456 optlen = 0;
5457 if (optlen < saved_optlen)
5458 memset(optval + optlen, 0, saved_optlen - optlen);
5459 return err;
5460}
5461
5462static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5463 char *optval, int optlen)
5464{
5465 if (sk_fullsock(sk))
5466 sock_owned_by_me(sk);
5467 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5468}
5469
5470BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5471 int, optname, char *, optval, int, optlen)
5472{
5473 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5474}
5475
5476const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5477 .func = bpf_sk_setsockopt,
5478 .gpl_only = false,
5479 .ret_type = RET_INTEGER,
5480 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5481 .arg2_type = ARG_ANYTHING,
5482 .arg3_type = ARG_ANYTHING,
5483 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5484 .arg5_type = ARG_CONST_SIZE,
5485};
5486
5487BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5488 int, optname, char *, optval, int, optlen)
5489{
5490 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5491}
5492
5493const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5494 .func = bpf_sk_getsockopt,
5495 .gpl_only = false,
5496 .ret_type = RET_INTEGER,
5497 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5498 .arg2_type = ARG_ANYTHING,
5499 .arg3_type = ARG_ANYTHING,
5500 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5501 .arg5_type = ARG_CONST_SIZE,
5502};
5503
5504BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5505 int, optname, char *, optval, int, optlen)
5506{
5507 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5508}
5509
5510const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5511 .func = bpf_unlocked_sk_setsockopt,
5512 .gpl_only = false,
5513 .ret_type = RET_INTEGER,
5514 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5515 .arg2_type = ARG_ANYTHING,
5516 .arg3_type = ARG_ANYTHING,
5517 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5518 .arg5_type = ARG_CONST_SIZE,
5519};
5520
5521BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5522 int, optname, char *, optval, int, optlen)
5523{
5524 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5525}
5526
5527const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5528 .func = bpf_unlocked_sk_getsockopt,
5529 .gpl_only = false,
5530 .ret_type = RET_INTEGER,
5531 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5532 .arg2_type = ARG_ANYTHING,
5533 .arg3_type = ARG_ANYTHING,
5534 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5535 .arg5_type = ARG_CONST_SIZE,
5536};
5537
5538BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5539 int, level, int, optname, char *, optval, int, optlen)
5540{
5541 return _bpf_setsockopt(sk: ctx->sk, level, optname, optval, optlen);
5542}
5543
5544static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5545 .func = bpf_sock_addr_setsockopt,
5546 .gpl_only = false,
5547 .ret_type = RET_INTEGER,
5548 .arg1_type = ARG_PTR_TO_CTX,
5549 .arg2_type = ARG_ANYTHING,
5550 .arg3_type = ARG_ANYTHING,
5551 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5552 .arg5_type = ARG_CONST_SIZE,
5553};
5554
5555BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5556 int, level, int, optname, char *, optval, int, optlen)
5557{
5558 return _bpf_getsockopt(sk: ctx->sk, level, optname, optval, optlen);
5559}
5560
5561static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5562 .func = bpf_sock_addr_getsockopt,
5563 .gpl_only = false,
5564 .ret_type = RET_INTEGER,
5565 .arg1_type = ARG_PTR_TO_CTX,
5566 .arg2_type = ARG_ANYTHING,
5567 .arg3_type = ARG_ANYTHING,
5568 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5569 .arg5_type = ARG_CONST_SIZE,
5570};
5571
5572BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5573 int, level, int, optname, char *, optval, int, optlen)
5574{
5575 return _bpf_setsockopt(sk: bpf_sock->sk, level, optname, optval, optlen);
5576}
5577
5578static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5579 .func = bpf_sock_ops_setsockopt,
5580 .gpl_only = false,
5581 .ret_type = RET_INTEGER,
5582 .arg1_type = ARG_PTR_TO_CTX,
5583 .arg2_type = ARG_ANYTHING,
5584 .arg3_type = ARG_ANYTHING,
5585 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5586 .arg5_type = ARG_CONST_SIZE,
5587};
5588
5589static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5590 int optname, const u8 **start)
5591{
5592 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5593 const u8 *hdr_start;
5594 int ret;
5595
5596 if (syn_skb) {
5597 /* sk is a request_sock here */
5598
5599 if (optname == TCP_BPF_SYN) {
5600 hdr_start = syn_skb->data;
5601 ret = tcp_hdrlen(skb: syn_skb);
5602 } else if (optname == TCP_BPF_SYN_IP) {
5603 hdr_start = skb_network_header(skb: syn_skb);
5604 ret = skb_network_header_len(skb: syn_skb) +
5605 tcp_hdrlen(skb: syn_skb);
5606 } else {
5607 /* optname == TCP_BPF_SYN_MAC */
5608 hdr_start = skb_mac_header(skb: syn_skb);
5609 ret = skb_mac_header_len(skb: syn_skb) +
5610 skb_network_header_len(skb: syn_skb) +
5611 tcp_hdrlen(skb: syn_skb);
5612 }
5613 } else {
5614 struct sock *sk = bpf_sock->sk;
5615 struct saved_syn *saved_syn;
5616
5617 if (sk->sk_state == TCP_NEW_SYN_RECV)
5618 /* synack retransmit. bpf_sock->syn_skb will
5619 * not be available. It has to resort to
5620 * saved_syn (if it is saved).
5621 */
5622 saved_syn = inet_reqsk(sk)->saved_syn;
5623 else
5624 saved_syn = tcp_sk(sk)->saved_syn;
5625
5626 if (!saved_syn)
5627 return -ENOENT;
5628
5629 if (optname == TCP_BPF_SYN) {
5630 hdr_start = saved_syn->data +
5631 saved_syn->mac_hdrlen +
5632 saved_syn->network_hdrlen;
5633 ret = saved_syn->tcp_hdrlen;
5634 } else if (optname == TCP_BPF_SYN_IP) {
5635 hdr_start = saved_syn->data +
5636 saved_syn->mac_hdrlen;
5637 ret = saved_syn->network_hdrlen +
5638 saved_syn->tcp_hdrlen;
5639 } else {
5640 /* optname == TCP_BPF_SYN_MAC */
5641
5642 /* TCP_SAVE_SYN may not have saved the mac hdr */
5643 if (!saved_syn->mac_hdrlen)
5644 return -ENOENT;
5645
5646 hdr_start = saved_syn->data;
5647 ret = saved_syn->mac_hdrlen +
5648 saved_syn->network_hdrlen +
5649 saved_syn->tcp_hdrlen;
5650 }
5651 }
5652
5653 *start = hdr_start;
5654 return ret;
5655}
5656
5657BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5658 int, level, int, optname, char *, optval, int, optlen)
5659{
5660 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5661 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5662 int ret, copy_len = 0;
5663 const u8 *start;
5664
5665 ret = bpf_sock_ops_get_syn(bpf_sock, optname, start: &start);
5666 if (ret > 0) {
5667 copy_len = ret;
5668 if (optlen < copy_len) {
5669 copy_len = optlen;
5670 ret = -ENOSPC;
5671 }
5672
5673 memcpy(optval, start, copy_len);
5674 }
5675
5676 /* Zero out unused buffer at the end */
5677 memset(optval + copy_len, 0, optlen - copy_len);
5678
5679 return ret;
5680 }
5681
5682 return _bpf_getsockopt(sk: bpf_sock->sk, level, optname, optval, optlen);
5683}
5684
5685static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5686 .func = bpf_sock_ops_getsockopt,
5687 .gpl_only = false,
5688 .ret_type = RET_INTEGER,
5689 .arg1_type = ARG_PTR_TO_CTX,
5690 .arg2_type = ARG_ANYTHING,
5691 .arg3_type = ARG_ANYTHING,
5692 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5693 .arg5_type = ARG_CONST_SIZE,
5694};
5695
5696BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5697 int, argval)
5698{
5699 struct sock *sk = bpf_sock->sk;
5700 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5701
5702 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5703 return -EINVAL;
5704
5705 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5706
5707 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5708}
5709
5710static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5711 .func = bpf_sock_ops_cb_flags_set,
5712 .gpl_only = false,
5713 .ret_type = RET_INTEGER,
5714 .arg1_type = ARG_PTR_TO_CTX,
5715 .arg2_type = ARG_ANYTHING,
5716};
5717
5718const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5719EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5720
5721BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5722 int, addr_len)
5723{
5724#ifdef CONFIG_INET
5725 struct sock *sk = ctx->sk;
5726 u32 flags = BIND_FROM_BPF;
5727 int err;
5728
5729 err = -EINVAL;
5730 if (addr_len < offsetofend(struct sockaddr, sa_family))
5731 return err;
5732 if (addr->sa_family == AF_INET) {
5733 if (addr_len < sizeof(struct sockaddr_in))
5734 return err;
5735 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5736 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5737 return __inet_bind(sk, uaddr: addr, addr_len, flags);
5738#if IS_ENABLED(CONFIG_IPV6)
5739 } else if (addr->sa_family == AF_INET6) {
5740 if (addr_len < SIN6_LEN_RFC2133)
5741 return err;
5742 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5743 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5744 /* ipv6_bpf_stub cannot be NULL, since it's called from
5745 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5746 */
5747 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5748#endif /* CONFIG_IPV6 */
5749 }
5750#endif /* CONFIG_INET */
5751
5752 return -EAFNOSUPPORT;
5753}
5754
5755static const struct bpf_func_proto bpf_bind_proto = {
5756 .func = bpf_bind,
5757 .gpl_only = false,
5758 .ret_type = RET_INTEGER,
5759 .arg1_type = ARG_PTR_TO_CTX,
5760 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5761 .arg3_type = ARG_CONST_SIZE,
5762};
5763
5764#ifdef CONFIG_XFRM
5765
5766#if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5767 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5768
5769struct metadata_dst __percpu *xfrm_bpf_md_dst;
5770EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5771
5772#endif
5773
5774BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5775 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5776{
5777 const struct sec_path *sp = skb_sec_path(skb);
5778 const struct xfrm_state *x;
5779
5780 if (!sp || unlikely(index >= sp->len || flags))
5781 goto err_clear;
5782
5783 x = sp->xvec[index];
5784
5785 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5786 goto err_clear;
5787
5788 to->reqid = x->props.reqid;
5789 to->spi = x->id.spi;
5790 to->family = x->props.family;
5791 to->ext = 0;
5792
5793 if (to->family == AF_INET6) {
5794 memcpy(to->remote_ipv6, x->props.saddr.a6,
5795 sizeof(to->remote_ipv6));
5796 } else {
5797 to->remote_ipv4 = x->props.saddr.a4;
5798 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5799 }
5800
5801 return 0;
5802err_clear:
5803 memset(to, 0, size);
5804 return -EINVAL;
5805}
5806
5807static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5808 .func = bpf_skb_get_xfrm_state,
5809 .gpl_only = false,
5810 .ret_type = RET_INTEGER,
5811 .arg1_type = ARG_PTR_TO_CTX,
5812 .arg2_type = ARG_ANYTHING,
5813 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5814 .arg4_type = ARG_CONST_SIZE,
5815 .arg5_type = ARG_ANYTHING,
5816};
5817#endif
5818
5819#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5820static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5821{
5822 params->h_vlan_TCI = 0;
5823 params->h_vlan_proto = 0;
5824 if (mtu)
5825 params->mtu_result = mtu; /* union with tot_len */
5826
5827 return 0;
5828}
5829#endif
5830
5831#if IS_ENABLED(CONFIG_INET)
5832static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5833 u32 flags, bool check_mtu)
5834{
5835 struct fib_nh_common *nhc;
5836 struct in_device *in_dev;
5837 struct neighbour *neigh;
5838 struct net_device *dev;
5839 struct fib_result res;
5840 struct flowi4 fl4;
5841 u32 mtu = 0;
5842 int err;
5843
5844 dev = dev_get_by_index_rcu(net, ifindex: params->ifindex);
5845 if (unlikely(!dev))
5846 return -ENODEV;
5847
5848 /* verify forwarding is enabled on this interface */
5849 in_dev = __in_dev_get_rcu(dev);
5850 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5851 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5852
5853 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5854 fl4.flowi4_iif = 1;
5855 fl4.flowi4_oif = params->ifindex;
5856 } else {
5857 fl4.flowi4_iif = params->ifindex;
5858 fl4.flowi4_oif = 0;
5859 }
5860 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5861 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5862 fl4.flowi4_flags = 0;
5863
5864 fl4.flowi4_proto = params->l4_protocol;
5865 fl4.daddr = params->ipv4_dst;
5866 fl4.saddr = params->ipv4_src;
5867 fl4.fl4_sport = params->sport;
5868 fl4.fl4_dport = params->dport;
5869 fl4.flowi4_multipath_hash = 0;
5870
5871 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5872 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5873 struct fib_table *tb;
5874
5875 if (flags & BPF_FIB_LOOKUP_TBID) {
5876 tbid = params->tbid;
5877 /* zero out for vlan output */
5878 params->tbid = 0;
5879 }
5880
5881 tb = fib_get_table(net, id: tbid);
5882 if (unlikely(!tb))
5883 return BPF_FIB_LKUP_RET_NOT_FWDED;
5884
5885 err = fib_table_lookup(tb, flp: &fl4, res: &res, FIB_LOOKUP_NOREF);
5886 } else {
5887 fl4.flowi4_mark = 0;
5888 fl4.flowi4_secid = 0;
5889 fl4.flowi4_tun_key.tun_id = 0;
5890 fl4.flowi4_uid = sock_net_uid(net, NULL);
5891
5892 err = fib_lookup(net, flp: &fl4, res: &res, FIB_LOOKUP_NOREF);
5893 }
5894
5895 if (err) {
5896 /* map fib lookup errors to RTN_ type */
5897 if (err == -EINVAL)
5898 return BPF_FIB_LKUP_RET_BLACKHOLE;
5899 if (err == -EHOSTUNREACH)
5900 return BPF_FIB_LKUP_RET_UNREACHABLE;
5901 if (err == -EACCES)
5902 return BPF_FIB_LKUP_RET_PROHIBIT;
5903
5904 return BPF_FIB_LKUP_RET_NOT_FWDED;
5905 }
5906
5907 if (res.type != RTN_UNICAST)
5908 return BPF_FIB_LKUP_RET_NOT_FWDED;
5909
5910 if (fib_info_num_path(fi: res.fi) > 1)
5911 fib_select_path(net, res: &res, fl4: &fl4, NULL);
5912
5913 if (check_mtu) {
5914 mtu = ip_mtu_from_fib_result(res: &res, daddr: params->ipv4_dst);
5915 if (params->tot_len > mtu) {
5916 params->mtu_result = mtu; /* union with tot_len */
5917 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5918 }
5919 }
5920
5921 nhc = res.nhc;
5922
5923 /* do not handle lwt encaps right now */
5924 if (nhc->nhc_lwtstate)
5925 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5926
5927 dev = nhc->nhc_dev;
5928
5929 params->rt_metric = res.fi->fib_priority;
5930 params->ifindex = dev->ifindex;
5931
5932 if (flags & BPF_FIB_LOOKUP_SRC)
5933 params->ipv4_src = fib_result_prefsrc(net, res: &res);
5934
5935 /* xdp and cls_bpf programs are run in RCU-bh so
5936 * rcu_read_lock_bh is not needed here
5937 */
5938 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5939 if (nhc->nhc_gw_family)
5940 params->ipv4_dst = nhc->nhc_gw.ipv4;
5941 } else {
5942 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5943
5944 params->family = AF_INET6;
5945 *dst = nhc->nhc_gw.ipv6;
5946 }
5947
5948 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5949 goto set_fwd_params;
5950
5951 if (likely(nhc->nhc_gw_family != AF_INET6))
5952 neigh = __ipv4_neigh_lookup_noref(dev,
5953 key: (__force u32)params->ipv4_dst);
5954 else
5955 neigh = __ipv6_neigh_lookup_noref_stub(dev, pkey: params->ipv6_dst);
5956
5957 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5958 return BPF_FIB_LKUP_RET_NO_NEIGH;
5959 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5960 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5961
5962set_fwd_params:
5963 return bpf_fib_set_fwd_params(params, mtu);
5964}
5965#endif
5966
5967#if IS_ENABLED(CONFIG_IPV6)
5968static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5969 u32 flags, bool check_mtu)
5970{
5971 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5972 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5973 struct fib6_result res = {};
5974 struct neighbour *neigh;
5975 struct net_device *dev;
5976 struct inet6_dev *idev;
5977 struct flowi6 fl6;
5978 int strict = 0;
5979 int oif, err;
5980 u32 mtu = 0;
5981
5982 /* link local addresses are never forwarded */
5983 if (rt6_need_strict(daddr: dst) || rt6_need_strict(daddr: src))
5984 return BPF_FIB_LKUP_RET_NOT_FWDED;
5985
5986 dev = dev_get_by_index_rcu(net, ifindex: params->ifindex);
5987 if (unlikely(!dev))
5988 return -ENODEV;
5989
5990 idev = __in6_dev_get_safely(dev);
5991 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
5992 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5993
5994 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5995 fl6.flowi6_iif = 1;
5996 oif = fl6.flowi6_oif = params->ifindex;
5997 } else {
5998 oif = fl6.flowi6_iif = params->ifindex;
5999 fl6.flowi6_oif = 0;
6000 strict = RT6_LOOKUP_F_HAS_SADDR;
6001 }
6002 fl6.flowlabel = params->flowinfo;
6003 fl6.flowi6_scope = 0;
6004 fl6.flowi6_flags = 0;
6005 fl6.mp_hash = 0;
6006
6007 fl6.flowi6_proto = params->l4_protocol;
6008 fl6.daddr = *dst;
6009 fl6.saddr = *src;
6010 fl6.fl6_sport = params->sport;
6011 fl6.fl6_dport = params->dport;
6012
6013 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6014 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6015 struct fib6_table *tb;
6016
6017 if (flags & BPF_FIB_LOOKUP_TBID) {
6018 tbid = params->tbid;
6019 /* zero out for vlan output */
6020 params->tbid = 0;
6021 }
6022
6023 tb = ipv6_stub->fib6_get_table(net, tbid);
6024 if (unlikely(!tb))
6025 return BPF_FIB_LKUP_RET_NOT_FWDED;
6026
6027 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6028 strict);
6029 } else {
6030 fl6.flowi6_mark = 0;
6031 fl6.flowi6_secid = 0;
6032 fl6.flowi6_tun_key.tun_id = 0;
6033 fl6.flowi6_uid = sock_net_uid(net, NULL);
6034
6035 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6036 }
6037
6038 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6039 res.f6i == net->ipv6.fib6_null_entry))
6040 return BPF_FIB_LKUP_RET_NOT_FWDED;
6041
6042 switch (res.fib6_type) {
6043 /* only unicast is forwarded */
6044 case RTN_UNICAST:
6045 break;
6046 case RTN_BLACKHOLE:
6047 return BPF_FIB_LKUP_RET_BLACKHOLE;
6048 case RTN_UNREACHABLE:
6049 return BPF_FIB_LKUP_RET_UNREACHABLE;
6050 case RTN_PROHIBIT:
6051 return BPF_FIB_LKUP_RET_PROHIBIT;
6052 default:
6053 return BPF_FIB_LKUP_RET_NOT_FWDED;
6054 }
6055
6056 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6057 fl6.flowi6_oif != 0, NULL, strict);
6058
6059 if (check_mtu) {
6060 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6061 if (params->tot_len > mtu) {
6062 params->mtu_result = mtu; /* union with tot_len */
6063 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6064 }
6065 }
6066
6067 if (res.nh->fib_nh_lws)
6068 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6069
6070 if (res.nh->fib_nh_gw_family)
6071 *dst = res.nh->fib_nh_gw6;
6072
6073 dev = res.nh->fib_nh_dev;
6074 params->rt_metric = res.f6i->fib6_metric;
6075 params->ifindex = dev->ifindex;
6076
6077 if (flags & BPF_FIB_LOOKUP_SRC) {
6078 if (res.f6i->fib6_prefsrc.plen) {
6079 *src = res.f6i->fib6_prefsrc.addr;
6080 } else {
6081 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6082 &fl6.daddr, 0,
6083 src);
6084 if (err)
6085 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6086 }
6087 }
6088
6089 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6090 goto set_fwd_params;
6091
6092 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6093 * not needed here.
6094 */
6095 neigh = __ipv6_neigh_lookup_noref_stub(dev, pkey: dst);
6096 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6097 return BPF_FIB_LKUP_RET_NO_NEIGH;
6098 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6099 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6100
6101set_fwd_params:
6102 return bpf_fib_set_fwd_params(params, mtu);
6103}
6104#endif
6105
6106#define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6107 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6108 BPF_FIB_LOOKUP_SRC)
6109
6110BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6111 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6112{
6113 if (plen < sizeof(*params))
6114 return -EINVAL;
6115
6116 if (flags & ~BPF_FIB_LOOKUP_MASK)
6117 return -EINVAL;
6118
6119 switch (params->family) {
6120#if IS_ENABLED(CONFIG_INET)
6121 case AF_INET:
6122 return bpf_ipv4_fib_lookup(net: dev_net(dev: ctx->rxq->dev), params,
6123 flags, check_mtu: true);
6124#endif
6125#if IS_ENABLED(CONFIG_IPV6)
6126 case AF_INET6:
6127 return bpf_ipv6_fib_lookup(net: dev_net(dev: ctx->rxq->dev), params,
6128 flags, check_mtu: true);
6129#endif
6130 }
6131 return -EAFNOSUPPORT;
6132}
6133
6134static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6135 .func = bpf_xdp_fib_lookup,
6136 .gpl_only = true,
6137 .ret_type = RET_INTEGER,
6138 .arg1_type = ARG_PTR_TO_CTX,
6139 .arg2_type = ARG_PTR_TO_MEM,
6140 .arg3_type = ARG_CONST_SIZE,
6141 .arg4_type = ARG_ANYTHING,
6142};
6143
6144BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6145 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6146{
6147 struct net *net = dev_net(dev: skb->dev);
6148 int rc = -EAFNOSUPPORT;
6149 bool check_mtu = false;
6150
6151 if (plen < sizeof(*params))
6152 return -EINVAL;
6153
6154 if (flags & ~BPF_FIB_LOOKUP_MASK)
6155 return -EINVAL;
6156
6157 if (params->tot_len)
6158 check_mtu = true;
6159
6160 switch (params->family) {
6161#if IS_ENABLED(CONFIG_INET)
6162 case AF_INET:
6163 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6164 break;
6165#endif
6166#if IS_ENABLED(CONFIG_IPV6)
6167 case AF_INET6:
6168 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6169 break;
6170#endif
6171 }
6172
6173 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6174 struct net_device *dev;
6175
6176 /* When tot_len isn't provided by user, check skb
6177 * against MTU of FIB lookup resulting net_device
6178 */
6179 dev = dev_get_by_index_rcu(net, ifindex: params->ifindex);
6180 if (!is_skb_forwardable(dev, skb))
6181 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6182
6183 params->mtu_result = dev->mtu; /* union with tot_len */
6184 }
6185
6186 return rc;
6187}
6188
6189static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6190 .func = bpf_skb_fib_lookup,
6191 .gpl_only = true,
6192 .ret_type = RET_INTEGER,
6193 .arg1_type = ARG_PTR_TO_CTX,
6194 .arg2_type = ARG_PTR_TO_MEM,
6195 .arg3_type = ARG_CONST_SIZE,
6196 .arg4_type = ARG_ANYTHING,
6197};
6198
6199static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6200 u32 ifindex)
6201{
6202 struct net *netns = dev_net(dev: dev_curr);
6203
6204 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6205 if (ifindex == 0)
6206 return dev_curr;
6207
6208 return dev_get_by_index_rcu(net: netns, ifindex);
6209}
6210
6211BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6212 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6213{
6214 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6215 struct net_device *dev = skb->dev;
6216 int skb_len, dev_len;
6217 int mtu;
6218
6219 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6220 return -EINVAL;
6221
6222 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6223 return -EINVAL;
6224
6225 dev = __dev_via_ifindex(dev_curr: dev, ifindex);
6226 if (unlikely(!dev))
6227 return -ENODEV;
6228
6229 mtu = READ_ONCE(dev->mtu);
6230
6231 dev_len = mtu + dev->hard_header_len;
6232
6233 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6234 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6235
6236 skb_len += len_diff; /* minus result pass check */
6237 if (skb_len <= dev_len) {
6238 ret = BPF_MTU_CHK_RET_SUCCESS;
6239 goto out;
6240 }
6241 /* At this point, skb->len exceed MTU, but as it include length of all
6242 * segments, it can still be below MTU. The SKB can possibly get
6243 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6244 * must choose if segs are to be MTU checked.
6245 */
6246 if (skb_is_gso(skb)) {
6247 ret = BPF_MTU_CHK_RET_SUCCESS;
6248
6249 if (flags & BPF_MTU_CHK_SEGS &&
6250 !skb_gso_validate_network_len(skb, mtu))
6251 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6252 }
6253out:
6254 /* BPF verifier guarantees valid pointer */
6255 *mtu_len = mtu;
6256
6257 return ret;
6258}
6259
6260BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6261 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6262{
6263 struct net_device *dev = xdp->rxq->dev;
6264 int xdp_len = xdp->data_end - xdp->data;
6265 int ret = BPF_MTU_CHK_RET_SUCCESS;
6266 int mtu, dev_len;
6267
6268 /* XDP variant doesn't support multi-buffer segment check (yet) */
6269 if (unlikely(flags))
6270 return -EINVAL;
6271
6272 dev = __dev_via_ifindex(dev_curr: dev, ifindex);
6273 if (unlikely(!dev))
6274 return -ENODEV;
6275
6276 mtu = READ_ONCE(dev->mtu);
6277
6278 /* Add L2-header as dev MTU is L3 size */
6279 dev_len = mtu + dev->hard_header_len;
6280
6281 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6282 if (*mtu_len)
6283 xdp_len = *mtu_len + dev->hard_header_len;
6284
6285 xdp_len += len_diff; /* minus result pass check */
6286 if (xdp_len > dev_len)
6287 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6288
6289 /* BPF verifier guarantees valid pointer */
6290 *mtu_len = mtu;
6291
6292 return ret;
6293}
6294
6295static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6296 .func = bpf_skb_check_mtu,
6297 .gpl_only = true,
6298 .ret_type = RET_INTEGER,
6299 .arg1_type = ARG_PTR_TO_CTX,
6300 .arg2_type = ARG_ANYTHING,
6301 .arg3_type = ARG_PTR_TO_INT,
6302 .arg4_type = ARG_ANYTHING,
6303 .arg5_type = ARG_ANYTHING,
6304};
6305
6306static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6307 .func = bpf_xdp_check_mtu,
6308 .gpl_only = true,
6309 .ret_type = RET_INTEGER,
6310 .arg1_type = ARG_PTR_TO_CTX,
6311 .arg2_type = ARG_ANYTHING,
6312 .arg3_type = ARG_PTR_TO_INT,
6313 .arg4_type = ARG_ANYTHING,
6314 .arg5_type = ARG_ANYTHING,
6315};
6316
6317#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6318static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6319{
6320 int err;
6321 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6322
6323 if (!seg6_validate_srh(srh, len, reduced: false))
6324 return -EINVAL;
6325
6326 switch (type) {
6327 case BPF_LWT_ENCAP_SEG6_INLINE:
6328 if (skb->protocol != htons(ETH_P_IPV6))
6329 return -EBADMSG;
6330
6331 err = seg6_do_srh_inline(skb, osrh: srh);
6332 break;
6333 case BPF_LWT_ENCAP_SEG6:
6334 skb_reset_inner_headers(skb);
6335 skb->encapsulation = 1;
6336 err = seg6_do_srh_encap(skb, osrh: srh, IPPROTO_IPV6);
6337 break;
6338 default:
6339 return -EINVAL;
6340 }
6341
6342 bpf_compute_data_pointers(skb);
6343 if (err)
6344 return err;
6345
6346 skb_set_transport_header(skb, offset: sizeof(struct ipv6hdr));
6347
6348 return seg6_lookup_nexthop(skb, NULL, tbl_id: 0);
6349}
6350#endif /* CONFIG_IPV6_SEG6_BPF */
6351
6352#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6353static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6354 bool ingress)
6355{
6356 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6357}
6358#endif
6359
6360BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6361 u32, len)
6362{
6363 switch (type) {
6364#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6365 case BPF_LWT_ENCAP_SEG6:
6366 case BPF_LWT_ENCAP_SEG6_INLINE:
6367 return bpf_push_seg6_encap(skb, type, hdr, len);
6368#endif
6369#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6370 case BPF_LWT_ENCAP_IP:
6371 return bpf_push_ip_encap(skb, hdr, len, ingress: true /* ingress */);
6372#endif
6373 default:
6374 return -EINVAL;
6375 }
6376}
6377
6378BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6379 void *, hdr, u32, len)
6380{
6381 switch (type) {
6382#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6383 case BPF_LWT_ENCAP_IP:
6384 return bpf_push_ip_encap(skb, hdr, len, ingress: false /* egress */);
6385#endif
6386 default:
6387 return -EINVAL;
6388 }
6389}
6390
6391static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6392 .func = bpf_lwt_in_push_encap,
6393 .gpl_only = false,
6394 .ret_type = RET_INTEGER,
6395 .arg1_type = ARG_PTR_TO_CTX,
6396 .arg2_type = ARG_ANYTHING,
6397 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6398 .arg4_type = ARG_CONST_SIZE
6399};
6400
6401static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6402 .func = bpf_lwt_xmit_push_encap,
6403 .gpl_only = false,
6404 .ret_type = RET_INTEGER,
6405 .arg1_type = ARG_PTR_TO_CTX,
6406 .arg2_type = ARG_ANYTHING,
6407 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6408 .arg4_type = ARG_CONST_SIZE
6409};
6410
6411#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6412BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6413 const void *, from, u32, len)
6414{
6415 struct seg6_bpf_srh_state *srh_state =
6416 this_cpu_ptr(&seg6_bpf_srh_states);
6417 struct ipv6_sr_hdr *srh = srh_state->srh;
6418 void *srh_tlvs, *srh_end, *ptr;
6419 int srhoff = 0;
6420
6421 if (srh == NULL)
6422 return -EINVAL;
6423
6424 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6425 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6426
6427 ptr = skb->data + offset;
6428 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6429 srh_state->valid = false;
6430 else if (ptr < (void *)&srh->flags ||
6431 ptr + len > (void *)&srh->segments)
6432 return -EFAULT;
6433
6434 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6435 return -EFAULT;
6436 if (ipv6_find_hdr(skb, offset: &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6437 return -EINVAL;
6438 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6439
6440 memcpy(skb->data + offset, from, len);
6441 return 0;
6442}
6443
6444static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6445 .func = bpf_lwt_seg6_store_bytes,
6446 .gpl_only = false,
6447 .ret_type = RET_INTEGER,
6448 .arg1_type = ARG_PTR_TO_CTX,
6449 .arg2_type = ARG_ANYTHING,
6450 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6451 .arg4_type = ARG_CONST_SIZE
6452};
6453
6454static void bpf_update_srh_state(struct sk_buff *skb)
6455{
6456 struct seg6_bpf_srh_state *srh_state =
6457 this_cpu_ptr(&seg6_bpf_srh_states);
6458 int srhoff = 0;
6459
6460 if (ipv6_find_hdr(skb, offset: &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6461 srh_state->srh = NULL;
6462 } else {
6463 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6464 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6465 srh_state->valid = true;
6466 }
6467}
6468
6469BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6470 u32, action, void *, param, u32, param_len)
6471{
6472 struct seg6_bpf_srh_state *srh_state =
6473 this_cpu_ptr(&seg6_bpf_srh_states);
6474 int hdroff = 0;
6475 int err;
6476
6477 switch (action) {
6478 case SEG6_LOCAL_ACTION_END_X:
6479 if (!seg6_bpf_has_valid_srh(skb))
6480 return -EBADMSG;
6481 if (param_len != sizeof(struct in6_addr))
6482 return -EINVAL;
6483 return seg6_lookup_nexthop(skb, nhaddr: (struct in6_addr *)param, tbl_id: 0);
6484 case SEG6_LOCAL_ACTION_END_T:
6485 if (!seg6_bpf_has_valid_srh(skb))
6486 return -EBADMSG;
6487 if (param_len != sizeof(int))
6488 return -EINVAL;
6489 return seg6_lookup_nexthop(skb, NULL, tbl_id: *(int *)param);
6490 case SEG6_LOCAL_ACTION_END_DT6:
6491 if (!seg6_bpf_has_valid_srh(skb))
6492 return -EBADMSG;
6493 if (param_len != sizeof(int))
6494 return -EINVAL;
6495
6496 if (ipv6_find_hdr(skb, offset: &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6497 return -EBADMSG;
6498 if (!pskb_pull(skb, len: hdroff))
6499 return -EBADMSG;
6500
6501 skb_postpull_rcsum(skb, start: skb_network_header(skb), len: hdroff);
6502 skb_reset_network_header(skb);
6503 skb_reset_transport_header(skb);
6504 skb->encapsulation = 0;
6505
6506 bpf_compute_data_pointers(skb);
6507 bpf_update_srh_state(skb);
6508 return seg6_lookup_nexthop(skb, NULL, tbl_id: *(int *)param);
6509 case SEG6_LOCAL_ACTION_END_B6:
6510 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6511 return -EBADMSG;
6512 err = bpf_push_seg6_encap(skb, type: BPF_LWT_ENCAP_SEG6_INLINE,
6513 hdr: param, len: param_len);
6514 if (!err)
6515 bpf_update_srh_state(skb);
6516
6517 return err;
6518 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6519 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6520 return -EBADMSG;
6521 err = bpf_push_seg6_encap(skb, type: BPF_LWT_ENCAP_SEG6,
6522 hdr: param, len: param_len);
6523 if (!err)
6524 bpf_update_srh_state(skb);
6525
6526 return err;
6527 default:
6528 return -EINVAL;
6529 }
6530}
6531
6532static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6533 .func = bpf_lwt_seg6_action,
6534 .gpl_only = false,
6535 .ret_type = RET_INTEGER,
6536 .arg1_type = ARG_PTR_TO_CTX,
6537 .arg2_type = ARG_ANYTHING,
6538 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6539 .arg4_type = ARG_CONST_SIZE
6540};
6541
6542BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6543 s32, len)
6544{
6545 struct seg6_bpf_srh_state *srh_state =
6546 this_cpu_ptr(&seg6_bpf_srh_states);
6547 struct ipv6_sr_hdr *srh = srh_state->srh;
6548 void *srh_end, *srh_tlvs, *ptr;
6549 struct ipv6hdr *hdr;
6550 int srhoff = 0;
6551 int ret;
6552
6553 if (unlikely(srh == NULL))
6554 return -EINVAL;
6555
6556 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6557 ((srh->first_segment + 1) << 4));
6558 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6559 srh_state->hdrlen);
6560 ptr = skb->data + offset;
6561
6562 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6563 return -EFAULT;
6564 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6565 return -EFAULT;
6566
6567 if (len > 0) {
6568 ret = skb_cow_head(skb, headroom: len);
6569 if (unlikely(ret < 0))
6570 return ret;
6571
6572 ret = bpf_skb_net_hdr_push(skb, off: offset, len);
6573 } else {
6574 ret = bpf_skb_net_hdr_pop(skb, off: offset, len: -1 * len);
6575 }
6576
6577 bpf_compute_data_pointers(skb);
6578 if (unlikely(ret < 0))
6579 return ret;
6580
6581 hdr = (struct ipv6hdr *)skb->data;
6582 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6583
6584 if (ipv6_find_hdr(skb, offset: &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6585 return -EINVAL;
6586 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6587 srh_state->hdrlen += len;
6588 srh_state->valid = false;
6589 return 0;
6590}
6591
6592static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6593 .func = bpf_lwt_seg6_adjust_srh,
6594 .gpl_only = false,
6595 .ret_type = RET_INTEGER,
6596 .arg1_type = ARG_PTR_TO_CTX,
6597 .arg2_type = ARG_ANYTHING,
6598 .arg3_type = ARG_ANYTHING,
6599};
6600#endif /* CONFIG_IPV6_SEG6_BPF */
6601
6602#ifdef CONFIG_INET
6603static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6604 int dif, int sdif, u8 family, u8 proto)
6605{
6606 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6607 bool refcounted = false;
6608 struct sock *sk = NULL;
6609
6610 if (family == AF_INET) {
6611 __be32 src4 = tuple->ipv4.saddr;
6612 __be32 dst4 = tuple->ipv4.daddr;
6613
6614 if (proto == IPPROTO_TCP)
6615 sk = __inet_lookup(net, hashinfo: hinfo, NULL, doff: 0,
6616 saddr: src4, sport: tuple->ipv4.sport,
6617 daddr: dst4, dport: tuple->ipv4.dport,
6618 dif, sdif, refcounted: &refcounted);
6619 else
6620 sk = __udp4_lib_lookup(net, saddr: src4, sport: tuple->ipv4.sport,
6621 daddr: dst4, dport: tuple->ipv4.dport,
6622 dif, sdif, tbl: net->ipv4.udp_table, NULL);
6623#if IS_ENABLED(CONFIG_IPV6)
6624 } else {
6625 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6626 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6627
6628 if (proto == IPPROTO_TCP)
6629 sk = __inet6_lookup(net, hashinfo: hinfo, NULL, doff: 0,
6630 saddr: src6, sport: tuple->ipv6.sport,
6631 daddr: dst6, ntohs(tuple->ipv6.dport),
6632 dif, sdif, refcounted: &refcounted);
6633 else if (likely(ipv6_bpf_stub))
6634 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6635 src6, tuple->ipv6.sport,
6636 dst6, tuple->ipv6.dport,
6637 dif, sdif,
6638 net->ipv4.udp_table, NULL);
6639#endif
6640 }
6641
6642 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6643 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6644 sk = NULL;
6645 }
6646 return sk;
6647}
6648
6649/* bpf_skc_lookup performs the core lookup for different types of sockets,
6650 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6651 */
6652static struct sock *
6653__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6654 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6655 u64 flags, int sdif)
6656{
6657 struct sock *sk = NULL;
6658 struct net *net;
6659 u8 family;
6660
6661 if (len == sizeof(tuple->ipv4))
6662 family = AF_INET;
6663 else if (len == sizeof(tuple->ipv6))
6664 family = AF_INET6;
6665 else
6666 return NULL;
6667
6668 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6669 goto out;
6670
6671 if (sdif < 0) {
6672 if (family == AF_INET)
6673 sdif = inet_sdif(skb);
6674 else
6675 sdif = inet6_sdif(skb);
6676 }
6677
6678 if ((s32)netns_id < 0) {
6679 net = caller_net;
6680 sk = sk_lookup(net, tuple, dif: ifindex, sdif, family, proto);
6681 } else {
6682 net = get_net_ns_by_id(net: caller_net, id: netns_id);
6683 if (unlikely(!net))
6684 goto out;
6685 sk = sk_lookup(net, tuple, dif: ifindex, sdif, family, proto);
6686 put_net(net);
6687 }
6688
6689out:
6690 return sk;
6691}
6692
6693static struct sock *
6694__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6695 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6696 u64 flags, int sdif)
6697{
6698 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6699 ifindex, proto, netns_id, flags,
6700 sdif);
6701
6702 if (sk) {
6703 struct sock *sk2 = sk_to_full_sk(sk);
6704
6705 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6706 * sock refcnt is decremented to prevent a request_sock leak.
6707 */
6708 if (!sk_fullsock(sk: sk2))
6709 sk2 = NULL;
6710 if (sk2 != sk) {
6711 sock_gen_put(sk);
6712 /* Ensure there is no need to bump sk2 refcnt */
6713 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6714 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6715 return NULL;
6716 }
6717 sk = sk2;
6718 }
6719 }
6720
6721 return sk;
6722}
6723
6724static struct sock *
6725bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6726 u8 proto, u64 netns_id, u64 flags)
6727{
6728 struct net *caller_net;
6729 int ifindex;
6730
6731 if (skb->dev) {
6732 caller_net = dev_net(dev: skb->dev);
6733 ifindex = skb->dev->ifindex;
6734 } else {
6735 caller_net = sock_net(sk: skb->sk);
6736 ifindex = 0;
6737 }
6738
6739 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6740 netns_id, flags, sdif: -1);
6741}
6742
6743static struct sock *
6744bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6745 u8 proto, u64 netns_id, u64 flags)
6746{
6747 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6748 flags);
6749
6750 if (sk) {
6751 struct sock *sk2 = sk_to_full_sk(sk);
6752
6753 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6754 * sock refcnt is decremented to prevent a request_sock leak.
6755 */
6756 if (!sk_fullsock(sk: sk2))
6757 sk2 = NULL;
6758 if (sk2 != sk) {
6759 sock_gen_put(sk);
6760 /* Ensure there is no need to bump sk2 refcnt */
6761 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6762 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6763 return NULL;
6764 }
6765 sk = sk2;
6766 }
6767 }
6768
6769 return sk;
6770}
6771
6772BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6773 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6774{
6775 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6776 netns_id, flags);
6777}
6778
6779static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6780 .func = bpf_skc_lookup_tcp,
6781 .gpl_only = false,
6782 .pkt_access = true,
6783 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6784 .arg1_type = ARG_PTR_TO_CTX,
6785 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6786 .arg3_type = ARG_CONST_SIZE,
6787 .arg4_type = ARG_ANYTHING,
6788 .arg5_type = ARG_ANYTHING,
6789};
6790
6791BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6792 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6793{
6794 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6795 netns_id, flags);
6796}
6797
6798static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6799 .func = bpf_sk_lookup_tcp,
6800 .gpl_only = false,
6801 .pkt_access = true,
6802 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6803 .arg1_type = ARG_PTR_TO_CTX,
6804 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6805 .arg3_type = ARG_CONST_SIZE,
6806 .arg4_type = ARG_ANYTHING,
6807 .arg5_type = ARG_ANYTHING,
6808};
6809
6810BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6811 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6812{
6813 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6814 netns_id, flags);
6815}
6816
6817static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6818 .func = bpf_sk_lookup_udp,
6819 .gpl_only = false,
6820 .pkt_access = true,
6821 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6822 .arg1_type = ARG_PTR_TO_CTX,
6823 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6824 .arg3_type = ARG_CONST_SIZE,
6825 .arg4_type = ARG_ANYTHING,
6826 .arg5_type = ARG_ANYTHING,
6827};
6828
6829BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6830 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6831{
6832 struct net_device *dev = skb->dev;
6833 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6834 struct net *caller_net = dev_net(dev);
6835
6836 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6837 ifindex, IPPROTO_TCP, netns_id,
6838 flags, sdif);
6839}
6840
6841static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6842 .func = bpf_tc_skc_lookup_tcp,
6843 .gpl_only = false,
6844 .pkt_access = true,
6845 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6846 .arg1_type = ARG_PTR_TO_CTX,
6847 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6848 .arg3_type = ARG_CONST_SIZE,
6849 .arg4_type = ARG_ANYTHING,
6850 .arg5_type = ARG_ANYTHING,
6851};
6852
6853BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6854 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6855{
6856 struct net_device *dev = skb->dev;
6857 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6858 struct net *caller_net = dev_net(dev);
6859
6860 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6861 ifindex, IPPROTO_TCP, netns_id,
6862 flags, sdif);
6863}
6864
6865static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6866 .func = bpf_tc_sk_lookup_tcp,
6867 .gpl_only = false,
6868 .pkt_access = true,
6869 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6870 .arg1_type = ARG_PTR_TO_CTX,
6871 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6872 .arg3_type = ARG_CONST_SIZE,
6873 .arg4_type = ARG_ANYTHING,
6874 .arg5_type = ARG_ANYTHING,
6875};
6876
6877BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6878 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6879{
6880 struct net_device *dev = skb->dev;
6881 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6882 struct net *caller_net = dev_net(dev);
6883
6884 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6885 ifindex, IPPROTO_UDP, netns_id,
6886 flags, sdif);
6887}
6888
6889static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6890 .func = bpf_tc_sk_lookup_udp,
6891 .gpl_only = false,
6892 .pkt_access = true,
6893 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6894 .arg1_type = ARG_PTR_TO_CTX,
6895 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6896 .arg3_type = ARG_CONST_SIZE,
6897 .arg4_type = ARG_ANYTHING,
6898 .arg5_type = ARG_ANYTHING,
6899};
6900
6901BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6902{
6903 if (sk && sk_is_refcounted(sk))
6904 sock_gen_put(sk);
6905 return 0;
6906}
6907
6908static const struct bpf_func_proto bpf_sk_release_proto = {
6909 .func = bpf_sk_release,
6910 .gpl_only = false,
6911 .ret_type = RET_INTEGER,
6912 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6913};
6914
6915BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6916 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6917{
6918 struct net_device *dev = ctx->rxq->dev;
6919 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6920 struct net *caller_net = dev_net(dev);
6921
6922 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6923 ifindex, IPPROTO_UDP, netns_id,
6924 flags, sdif);
6925}
6926
6927static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6928 .func = bpf_xdp_sk_lookup_udp,
6929 .gpl_only = false,
6930 .pkt_access = true,
6931 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6932 .arg1_type = ARG_PTR_TO_CTX,
6933 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6934 .arg3_type = ARG_CONST_SIZE,
6935 .arg4_type = ARG_ANYTHING,
6936 .arg5_type = ARG_ANYTHING,
6937};
6938
6939BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6940 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6941{
6942 struct net_device *dev = ctx->rxq->dev;
6943 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6944 struct net *caller_net = dev_net(dev);
6945
6946 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6947 ifindex, IPPROTO_TCP, netns_id,
6948 flags, sdif);
6949}
6950
6951static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6952 .func = bpf_xdp_skc_lookup_tcp,
6953 .gpl_only = false,
6954 .pkt_access = true,
6955 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6956 .arg1_type = ARG_PTR_TO_CTX,
6957 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6958 .arg3_type = ARG_CONST_SIZE,
6959 .arg4_type = ARG_ANYTHING,
6960 .arg5_type = ARG_ANYTHING,
6961};
6962
6963BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6964 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6965{
6966 struct net_device *dev = ctx->rxq->dev;
6967 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6968 struct net *caller_net = dev_net(dev);
6969
6970 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6971 ifindex, IPPROTO_TCP, netns_id,
6972 flags, sdif);
6973}
6974
6975static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6976 .func = bpf_xdp_sk_lookup_tcp,
6977 .gpl_only = false,
6978 .pkt_access = true,
6979 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6980 .arg1_type = ARG_PTR_TO_CTX,
6981 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6982 .arg3_type = ARG_CONST_SIZE,
6983 .arg4_type = ARG_ANYTHING,
6984 .arg5_type = ARG_ANYTHING,
6985};
6986
6987BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6988 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6989{
6990 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6991 caller_net: sock_net(sk: ctx->sk), ifindex: 0,
6992 IPPROTO_TCP, netns_id, flags,
6993 sdif: -1);
6994}
6995
6996static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6997 .func = bpf_sock_addr_skc_lookup_tcp,
6998 .gpl_only = false,
6999 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7000 .arg1_type = ARG_PTR_TO_CTX,
7001 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7002 .arg3_type = ARG_CONST_SIZE,
7003 .arg4_type = ARG_ANYTHING,
7004 .arg5_type = ARG_ANYTHING,
7005};
7006
7007BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7008 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7009{
7010 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7011 caller_net: sock_net(sk: ctx->sk), ifindex: 0, IPPROTO_TCP,
7012 netns_id, flags, sdif: -1);
7013}
7014
7015static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7016 .func = bpf_sock_addr_sk_lookup_tcp,
7017 .gpl_only = false,
7018 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7019 .arg1_type = ARG_PTR_TO_CTX,
7020 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7021 .arg3_type = ARG_CONST_SIZE,
7022 .arg4_type = ARG_ANYTHING,
7023 .arg5_type = ARG_ANYTHING,
7024};
7025
7026BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7027 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7028{
7029 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7030 caller_net: sock_net(sk: ctx->sk), ifindex: 0, IPPROTO_UDP,
7031 netns_id, flags, sdif: -1);
7032}
7033
7034static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7035 .func = bpf_sock_addr_sk_lookup_udp,
7036 .gpl_only = false,
7037 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7038 .arg1_type = ARG_PTR_TO_CTX,
7039 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7040 .arg3_type = ARG_CONST_SIZE,
7041 .arg4_type = ARG_ANYTHING,
7042 .arg5_type = ARG_ANYTHING,
7043};
7044
7045bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7046 struct bpf_insn_access_aux *info)
7047{
7048 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7049 icsk_retransmits))
7050 return false;
7051
7052 if (off % size != 0)
7053 return false;
7054
7055 switch (off) {
7056 case offsetof(struct bpf_tcp_sock, bytes_received):
7057 case offsetof(struct bpf_tcp_sock, bytes_acked):
7058 return size == sizeof(__u64);
7059 default:
7060 return size == sizeof(__u32);
7061 }
7062}
7063
7064u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7065 const struct bpf_insn *si,
7066 struct bpf_insn *insn_buf,
7067 struct bpf_prog *prog, u32 *target_size)
7068{
7069 struct bpf_insn *insn = insn_buf;
7070
7071#define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7072 do { \
7073 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7074 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7075 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7076 si->dst_reg, si->src_reg, \
7077 offsetof(struct tcp_sock, FIELD)); \
7078 } while (0)
7079
7080#define BPF_INET_SOCK_GET_COMMON(FIELD) \
7081 do { \
7082 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7083 FIELD) > \
7084 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7085 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7086 struct inet_connection_sock, \
7087 FIELD), \
7088 si->dst_reg, si->src_reg, \
7089 offsetof( \
7090 struct inet_connection_sock, \
7091 FIELD)); \
7092 } while (0)
7093
7094 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7095
7096 switch (si->off) {
7097 case offsetof(struct bpf_tcp_sock, rtt_min):
7098 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7099 sizeof(struct minmax));
7100 BUILD_BUG_ON(sizeof(struct minmax) <
7101 sizeof(struct minmax_sample));
7102
7103 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7104 offsetof(struct tcp_sock, rtt_min) +
7105 offsetof(struct minmax_sample, v));
7106 break;
7107 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7108 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7109 break;
7110 case offsetof(struct bpf_tcp_sock, srtt_us):
7111 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7112 break;
7113 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7114 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7115 break;
7116 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7117 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7118 break;
7119 case offsetof(struct bpf_tcp_sock, snd_nxt):
7120 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7121 break;
7122 case offsetof(struct bpf_tcp_sock, snd_una):
7123 BPF_TCP_SOCK_GET_COMMON(snd_una);
7124 break;
7125 case offsetof(struct bpf_tcp_sock, mss_cache):
7126 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7127 break;
7128 case offsetof(struct bpf_tcp_sock, ecn_flags):
7129 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7130 break;
7131 case offsetof(struct bpf_tcp_sock, rate_delivered):
7132 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7133 break;
7134 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7135 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7136 break;
7137 case offsetof(struct bpf_tcp_sock, packets_out):
7138 BPF_TCP_SOCK_GET_COMMON(packets_out);
7139 break;
7140 case offsetof(struct bpf_tcp_sock, retrans_out):
7141 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7142 break;
7143 case offsetof(struct bpf_tcp_sock, total_retrans):
7144 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7145 break;
7146 case offsetof(struct bpf_tcp_sock, segs_in):
7147 BPF_TCP_SOCK_GET_COMMON(segs_in);
7148 break;
7149 case offsetof(struct bpf_tcp_sock, data_segs_in):
7150 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7151 break;
7152 case offsetof(struct bpf_tcp_sock, segs_out):
7153 BPF_TCP_SOCK_GET_COMMON(segs_out);
7154 break;
7155 case offsetof(struct bpf_tcp_sock, data_segs_out):
7156 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7157 break;
7158 case offsetof(struct bpf_tcp_sock, lost_out):
7159 BPF_TCP_SOCK_GET_COMMON(lost_out);
7160 break;
7161 case offsetof(struct bpf_tcp_sock, sacked_out):
7162 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7163 break;
7164 case offsetof(struct bpf_tcp_sock, bytes_received):
7165 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7166 break;
7167 case offsetof(struct bpf_tcp_sock, bytes_acked):
7168 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7169 break;
7170 case offsetof(struct bpf_tcp_sock, dsack_dups):
7171 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7172 break;
7173 case offsetof(struct bpf_tcp_sock, delivered):
7174 BPF_TCP_SOCK_GET_COMMON(delivered);
7175 break;
7176 case offsetof(struct bpf_tcp_sock, delivered_ce):
7177 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7178 break;
7179 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7180 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7181 break;
7182 }
7183
7184 return insn - insn_buf;
7185}
7186
7187BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7188{
7189 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7190 return (unsigned long)sk;
7191
7192 return (unsigned long)NULL;
7193}
7194
7195const struct bpf_func_proto bpf_tcp_sock_proto = {
7196 .func = bpf_tcp_sock,
7197 .gpl_only = false,
7198 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7199 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7200};
7201
7202BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7203{
7204 sk = sk_to_full_sk(sk);
7205
7206 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, flag: SOCK_RCU_FREE))
7207 return (unsigned long)sk;
7208
7209 return (unsigned long)NULL;
7210}
7211
7212static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7213 .func = bpf_get_listener_sock,
7214 .gpl_only = false,
7215 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7216 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7217};
7218
7219BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7220{
7221 unsigned int iphdr_len;
7222
7223 switch (skb_protocol(skb, skip_vlan: true)) {
7224 case cpu_to_be16(ETH_P_IP):
7225 iphdr_len = sizeof(struct iphdr);
7226 break;
7227 case cpu_to_be16(ETH_P_IPV6):
7228 iphdr_len = sizeof(struct ipv6hdr);
7229 break;
7230 default:
7231 return 0;
7232 }
7233
7234 if (skb_headlen(skb) < iphdr_len)
7235 return 0;
7236
7237 if (skb_cloned(skb) && !skb_clone_writable(skb, len: iphdr_len))
7238 return 0;
7239
7240 return INET_ECN_set_ce(skb);
7241}
7242
7243bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7244 struct bpf_insn_access_aux *info)
7245{
7246 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7247 return false;
7248
7249 if (off % size != 0)
7250 return false;
7251
7252 switch (off) {
7253 default:
7254 return size == sizeof(__u32);
7255 }
7256}
7257
7258u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7259 const struct bpf_insn *si,
7260 struct bpf_insn *insn_buf,
7261 struct bpf_prog *prog, u32 *target_size)
7262{
7263 struct bpf_insn *insn = insn_buf;
7264
7265#define BPF_XDP_SOCK_GET(FIELD) \
7266 do { \
7267 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7268 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7269 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7270 si->dst_reg, si->src_reg, \
7271 offsetof(struct xdp_sock, FIELD)); \
7272 } while (0)
7273
7274 switch (si->off) {
7275 case offsetof(struct bpf_xdp_sock, queue_id):
7276 BPF_XDP_SOCK_GET(queue_id);
7277 break;
7278 }
7279
7280 return insn - insn_buf;
7281}
7282
7283static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7284 .func = bpf_skb_ecn_set_ce,
7285 .gpl_only = false,
7286 .ret_type = RET_INTEGER,
7287 .arg1_type = ARG_PTR_TO_CTX,
7288};
7289
7290BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7291 struct tcphdr *, th, u32, th_len)
7292{
7293#ifdef CONFIG_SYN_COOKIES
7294 int ret;
7295
7296 if (unlikely(!sk || th_len < sizeof(*th)))
7297 return -EINVAL;
7298
7299 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7300 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7301 return -EINVAL;
7302
7303 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7304 return -EINVAL;
7305
7306 if (!th->ack || th->rst || th->syn)
7307 return -ENOENT;
7308
7309 if (unlikely(iph_len < sizeof(struct iphdr)))
7310 return -EINVAL;
7311
7312 if (tcp_synq_no_recent_overflow(sk))
7313 return -ENOENT;
7314
7315 /* Both struct iphdr and struct ipv6hdr have the version field at the
7316 * same offset so we can cast to the shorter header (struct iphdr).
7317 */
7318 switch (((struct iphdr *)iph)->version) {
7319 case 4:
7320 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7321 return -EINVAL;
7322
7323 ret = __cookie_v4_check(iph: (struct iphdr *)iph, th);
7324 break;
7325
7326#if IS_BUILTIN(CONFIG_IPV6)
7327 case 6:
7328 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7329 return -EINVAL;
7330
7331 if (sk->sk_family != AF_INET6)
7332 return -EINVAL;
7333
7334 ret = __cookie_v6_check(iph: (struct ipv6hdr *)iph, th);
7335 break;
7336#endif /* CONFIG_IPV6 */
7337
7338 default:
7339 return -EPROTONOSUPPORT;
7340 }
7341
7342 if (ret > 0)
7343 return 0;
7344
7345 return -ENOENT;
7346#else
7347 return -ENOTSUPP;
7348#endif
7349}
7350
7351static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7352 .func = bpf_tcp_check_syncookie,
7353 .gpl_only = true,
7354 .pkt_access = true,
7355 .ret_type = RET_INTEGER,
7356 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7357 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7358 .arg3_type = ARG_CONST_SIZE,
7359 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7360 .arg5_type = ARG_CONST_SIZE,
7361};
7362
7363BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7364 struct tcphdr *, th, u32, th_len)
7365{
7366#ifdef CONFIG_SYN_COOKIES
7367 u32 cookie;
7368 u16 mss;
7369
7370 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7371 return -EINVAL;
7372
7373 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7374 return -EINVAL;
7375
7376 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7377 return -ENOENT;
7378
7379 if (!th->syn || th->ack || th->fin || th->rst)
7380 return -EINVAL;
7381
7382 if (unlikely(iph_len < sizeof(struct iphdr)))
7383 return -EINVAL;
7384
7385 /* Both struct iphdr and struct ipv6hdr have the version field at the
7386 * same offset so we can cast to the shorter header (struct iphdr).
7387 */
7388 switch (((struct iphdr *)iph)->version) {
7389 case 4:
7390 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7391 return -EINVAL;
7392
7393 mss = tcp_v4_get_syncookie(sk, iph, th, cookie: &cookie);
7394 break;
7395
7396#if IS_BUILTIN(CONFIG_IPV6)
7397 case 6:
7398 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7399 return -EINVAL;
7400
7401 if (sk->sk_family != AF_INET6)
7402 return -EINVAL;
7403
7404 mss = tcp_v6_get_syncookie(sk, iph, th, cookie: &cookie);
7405 break;
7406#endif /* CONFIG_IPV6 */
7407
7408 default:
7409 return -EPROTONOSUPPORT;
7410 }
7411 if (mss == 0)
7412 return -ENOENT;
7413
7414 return cookie | ((u64)mss << 32);
7415#else
7416 return -EOPNOTSUPP;
7417#endif /* CONFIG_SYN_COOKIES */
7418}
7419
7420static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7421 .func = bpf_tcp_gen_syncookie,
7422 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7423 .pkt_access = true,
7424 .ret_type = RET_INTEGER,
7425 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7426 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7427 .arg3_type = ARG_CONST_SIZE,
7428 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7429 .arg5_type = ARG_CONST_SIZE,
7430};
7431
7432BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7433{
7434 if (!sk || flags != 0)
7435 return -EINVAL;
7436 if (!skb_at_tc_ingress(skb))
7437 return -EOPNOTSUPP;
7438 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7439 return -ENETUNREACH;
7440 if (sk_unhashed(sk))
7441 return -EOPNOTSUPP;
7442 if (sk_is_refcounted(sk) &&
7443 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7444 return -ENOENT;
7445
7446 skb_orphan(skb);
7447 skb->sk = sk;
7448 skb->destructor = sock_pfree;
7449
7450 return 0;
7451}
7452
7453static const struct bpf_func_proto bpf_sk_assign_proto = {
7454 .func = bpf_sk_assign,
7455 .gpl_only = false,
7456 .ret_type = RET_INTEGER,
7457 .arg1_type = ARG_PTR_TO_CTX,
7458 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7459 .arg3_type = ARG_ANYTHING,
7460};
7461
7462static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7463 u8 search_kind, const u8 *magic,
7464 u8 magic_len, bool *eol)
7465{
7466 u8 kind, kind_len;
7467
7468 *eol = false;
7469
7470 while (op < opend) {
7471 kind = op[0];
7472
7473 if (kind == TCPOPT_EOL) {
7474 *eol = true;
7475 return ERR_PTR(error: -ENOMSG);
7476 } else if (kind == TCPOPT_NOP) {
7477 op++;
7478 continue;
7479 }
7480
7481 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7482 /* Something is wrong in the received header.
7483 * Follow the TCP stack's tcp_parse_options()
7484 * and just bail here.
7485 */
7486 return ERR_PTR(error: -EFAULT);
7487
7488 kind_len = op[1];
7489 if (search_kind == kind) {
7490 if (!magic_len)
7491 return op;
7492
7493 if (magic_len > kind_len - 2)
7494 return ERR_PTR(error: -ENOMSG);
7495
7496 if (!memcmp(p: &op[2], q: magic, size: magic_len))
7497 return op;
7498 }
7499
7500 op += kind_len;
7501 }
7502
7503 return ERR_PTR(error: -ENOMSG);
7504}
7505
7506BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7507 void *, search_res, u32, len, u64, flags)
7508{
7509 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7510 const u8 *op, *opend, *magic, *search = search_res;
7511 u8 search_kind, search_len, copy_len, magic_len;
7512 int ret;
7513
7514 /* 2 byte is the minimal option len except TCPOPT_NOP and
7515 * TCPOPT_EOL which are useless for the bpf prog to learn
7516 * and this helper disallow loading them also.
7517 */
7518 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7519 return -EINVAL;
7520
7521 search_kind = search[0];
7522 search_len = search[1];
7523
7524 if (search_len > len || search_kind == TCPOPT_NOP ||
7525 search_kind == TCPOPT_EOL)
7526 return -EINVAL;
7527
7528 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7529 /* 16 or 32 bit magic. +2 for kind and kind length */
7530 if (search_len != 4 && search_len != 6)
7531 return -EINVAL;
7532 magic = &search[2];
7533 magic_len = search_len - 2;
7534 } else {
7535 if (search_len)
7536 return -EINVAL;
7537 magic = NULL;
7538 magic_len = 0;
7539 }
7540
7541 if (load_syn) {
7542 ret = bpf_sock_ops_get_syn(bpf_sock, optname: TCP_BPF_SYN, start: &op);
7543 if (ret < 0)
7544 return ret;
7545
7546 opend = op + ret;
7547 op += sizeof(struct tcphdr);
7548 } else {
7549 if (!bpf_sock->skb ||
7550 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7551 /* This bpf_sock->op cannot call this helper */
7552 return -EPERM;
7553
7554 opend = bpf_sock->skb_data_end;
7555 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7556 }
7557
7558 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7559 eol: &eol);
7560 if (IS_ERR(ptr: op))
7561 return PTR_ERR(ptr: op);
7562
7563 copy_len = op[1];
7564 ret = copy_len;
7565 if (copy_len > len) {
7566 ret = -ENOSPC;
7567 copy_len = len;
7568 }
7569
7570 memcpy(search_res, op, copy_len);
7571 return ret;
7572}
7573
7574static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7575 .func = bpf_sock_ops_load_hdr_opt,
7576 .gpl_only = false,
7577 .ret_type = RET_INTEGER,
7578 .arg1_type = ARG_PTR_TO_CTX,
7579 .arg2_type = ARG_PTR_TO_MEM,
7580 .arg3_type = ARG_CONST_SIZE,
7581 .arg4_type = ARG_ANYTHING,
7582};
7583
7584BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7585 const void *, from, u32, len, u64, flags)
7586{
7587 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7588 const u8 *op, *new_op, *magic = NULL;
7589 struct sk_buff *skb;
7590 bool eol;
7591
7592 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7593 return -EPERM;
7594
7595 if (len < 2 || flags)
7596 return -EINVAL;
7597
7598 new_op = from;
7599 new_kind = new_op[0];
7600 new_kind_len = new_op[1];
7601
7602 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7603 new_kind == TCPOPT_EOL)
7604 return -EINVAL;
7605
7606 if (new_kind_len > bpf_sock->remaining_opt_len)
7607 return -ENOSPC;
7608
7609 /* 253 is another experimental kind */
7610 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7611 if (new_kind_len < 4)
7612 return -EINVAL;
7613 /* Match for the 2 byte magic also.
7614 * RFC 6994: the magic could be 2 or 4 bytes.
7615 * Hence, matching by 2 byte only is on the
7616 * conservative side but it is the right
7617 * thing to do for the 'search-for-duplication'
7618 * purpose.
7619 */
7620 magic = &new_op[2];
7621 magic_len = 2;
7622 }
7623
7624 /* Check for duplication */
7625 skb = bpf_sock->skb;
7626 op = skb->data + sizeof(struct tcphdr);
7627 opend = bpf_sock->skb_data_end;
7628
7629 op = bpf_search_tcp_opt(op, opend, search_kind: new_kind, magic, magic_len,
7630 eol: &eol);
7631 if (!IS_ERR(ptr: op))
7632 return -EEXIST;
7633
7634 if (PTR_ERR(ptr: op) != -ENOMSG)
7635 return PTR_ERR(ptr: op);
7636
7637 if (eol)
7638 /* The option has been ended. Treat it as no more
7639 * header option can be written.
7640 */
7641 return -ENOSPC;
7642
7643 /* No duplication found. Store the header option. */
7644 memcpy(opend, from, new_kind_len);
7645
7646 bpf_sock->remaining_opt_len -= new_kind_len;
7647 bpf_sock->skb_data_end += new_kind_len;
7648
7649 return 0;
7650}
7651
7652static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7653 .func = bpf_sock_ops_store_hdr_opt,
7654 .gpl_only = false,
7655 .ret_type = RET_INTEGER,
7656 .arg1_type = ARG_PTR_TO_CTX,
7657 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7658 .arg3_type = ARG_CONST_SIZE,
7659 .arg4_type = ARG_ANYTHING,
7660};
7661
7662BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7663 u32, len, u64, flags)
7664{
7665 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7666 return -EPERM;
7667
7668 if (flags || len < 2)
7669 return -EINVAL;
7670
7671 if (len > bpf_sock->remaining_opt_len)
7672 return -ENOSPC;
7673
7674 bpf_sock->remaining_opt_len -= len;
7675
7676 return 0;
7677}
7678
7679static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7680 .func = bpf_sock_ops_reserve_hdr_opt,
7681 .gpl_only = false,
7682 .ret_type = RET_INTEGER,
7683 .arg1_type = ARG_PTR_TO_CTX,
7684 .arg2_type = ARG_ANYTHING,
7685 .arg3_type = ARG_ANYTHING,
7686};
7687
7688BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7689 u64, tstamp, u32, tstamp_type)
7690{
7691 /* skb_clear_delivery_time() is done for inet protocol */
7692 if (skb->protocol != htons(ETH_P_IP) &&
7693 skb->protocol != htons(ETH_P_IPV6))
7694 return -EOPNOTSUPP;
7695
7696 switch (tstamp_type) {
7697 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7698 if (!tstamp)
7699 return -EINVAL;
7700 skb->tstamp = tstamp;
7701 skb->mono_delivery_time = 1;
7702 break;
7703 case BPF_SKB_TSTAMP_UNSPEC:
7704 if (tstamp)
7705 return -EINVAL;
7706 skb->tstamp = 0;
7707 skb->mono_delivery_time = 0;
7708 break;
7709 default:
7710 return -EINVAL;
7711 }
7712
7713 return 0;
7714}
7715
7716static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7717 .func = bpf_skb_set_tstamp,
7718 .gpl_only = false,
7719 .ret_type = RET_INTEGER,
7720 .arg1_type = ARG_PTR_TO_CTX,
7721 .arg2_type = ARG_ANYTHING,
7722 .arg3_type = ARG_ANYTHING,
7723};
7724
7725#ifdef CONFIG_SYN_COOKIES
7726BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7727 struct tcphdr *, th, u32, th_len)
7728{
7729 u32 cookie;
7730 u16 mss;
7731
7732 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7733 return -EINVAL;
7734
7735 mss = tcp_parse_mss_option(th, user_mss: 0) ?: TCP_MSS_DEFAULT;
7736 cookie = __cookie_v4_init_sequence(iph, th, mssp: &mss);
7737
7738 return cookie | ((u64)mss << 32);
7739}
7740
7741static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7742 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7743 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7744 .pkt_access = true,
7745 .ret_type = RET_INTEGER,
7746 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7747 .arg1_size = sizeof(struct iphdr),
7748 .arg2_type = ARG_PTR_TO_MEM,
7749 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7750};
7751
7752BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7753 struct tcphdr *, th, u32, th_len)
7754{
7755#if IS_BUILTIN(CONFIG_IPV6)
7756 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7757 sizeof(struct ipv6hdr);
7758 u32 cookie;
7759 u16 mss;
7760
7761 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7762 return -EINVAL;
7763
7764 mss = tcp_parse_mss_option(th, user_mss: 0) ?: mss_clamp;
7765 cookie = __cookie_v6_init_sequence(iph, th, mssp: &mss);
7766
7767 return cookie | ((u64)mss << 32);
7768#else
7769 return -EPROTONOSUPPORT;
7770#endif
7771}
7772
7773static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7774 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7775 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7776 .pkt_access = true,
7777 .ret_type = RET_INTEGER,
7778 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7779 .arg1_size = sizeof(struct ipv6hdr),
7780 .arg2_type = ARG_PTR_TO_MEM,
7781 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7782};
7783
7784BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7785 struct tcphdr *, th)
7786{
7787 if (__cookie_v4_check(iph, th) > 0)
7788 return 0;
7789
7790 return -EACCES;
7791}
7792
7793static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7794 .func = bpf_tcp_raw_check_syncookie_ipv4,
7795 .gpl_only = true, /* __cookie_v4_check is GPL */
7796 .pkt_access = true,
7797 .ret_type = RET_INTEGER,
7798 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7799 .arg1_size = sizeof(struct iphdr),
7800 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7801 .arg2_size = sizeof(struct tcphdr),
7802};
7803
7804BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7805 struct tcphdr *, th)
7806{
7807#if IS_BUILTIN(CONFIG_IPV6)
7808 if (__cookie_v6_check(iph, th) > 0)
7809 return 0;
7810
7811 return -EACCES;
7812#else
7813 return -EPROTONOSUPPORT;
7814#endif
7815}
7816
7817static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7818 .func = bpf_tcp_raw_check_syncookie_ipv6,
7819 .gpl_only = true, /* __cookie_v6_check is GPL */
7820 .pkt_access = true,
7821 .ret_type = RET_INTEGER,
7822 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7823 .arg1_size = sizeof(struct ipv6hdr),
7824 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7825 .arg2_size = sizeof(struct tcphdr),
7826};
7827#endif /* CONFIG_SYN_COOKIES */
7828
7829#endif /* CONFIG_INET */
7830
7831bool bpf_helper_changes_pkt_data(void *func)
7832{
7833 if (func == bpf_skb_vlan_push ||
7834 func == bpf_skb_vlan_pop ||
7835 func == bpf_skb_store_bytes ||
7836 func == bpf_skb_change_proto ||
7837 func == bpf_skb_change_head ||
7838 func == sk_skb_change_head ||
7839 func == bpf_skb_change_tail ||
7840 func == sk_skb_change_tail ||
7841 func == bpf_skb_adjust_room ||
7842 func == sk_skb_adjust_room ||
7843 func == bpf_skb_pull_data ||
7844 func == sk_skb_pull_data ||
7845 func == bpf_clone_redirect ||
7846 func == bpf_l3_csum_replace ||
7847 func == bpf_l4_csum_replace ||
7848 func == bpf_xdp_adjust_head ||
7849 func == bpf_xdp_adjust_meta ||
7850 func == bpf_msg_pull_data ||
7851 func == bpf_msg_push_data ||
7852 func == bpf_msg_pop_data ||
7853 func == bpf_xdp_adjust_tail ||
7854#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7855 func == bpf_lwt_seg6_store_bytes ||
7856 func == bpf_lwt_seg6_adjust_srh ||
7857 func == bpf_lwt_seg6_action ||
7858#endif
7859#ifdef CONFIG_INET
7860 func == bpf_sock_ops_store_hdr_opt ||
7861#endif
7862 func == bpf_lwt_in_push_encap ||
7863 func == bpf_lwt_xmit_push_encap)
7864 return true;
7865
7866 return false;
7867}
7868
7869const struct bpf_func_proto bpf_event_output_data_proto __weak;
7870const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7871
7872static const struct bpf_func_proto *
7873sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7874{
7875 const struct bpf_func_proto *func_proto;
7876
7877 func_proto = cgroup_common_func_proto(func_id, prog);
7878 if (func_proto)
7879 return func_proto;
7880
7881 func_proto = cgroup_current_func_proto(func_id, prog);
7882 if (func_proto)
7883 return func_proto;
7884
7885 switch (func_id) {
7886 case BPF_FUNC_get_socket_cookie:
7887 return &bpf_get_socket_cookie_sock_proto;
7888 case BPF_FUNC_get_netns_cookie:
7889 return &bpf_get_netns_cookie_sock_proto;
7890 case BPF_FUNC_perf_event_output:
7891 return &bpf_event_output_data_proto;
7892 case BPF_FUNC_sk_storage_get:
7893 return &bpf_sk_storage_get_cg_sock_proto;
7894 case BPF_FUNC_ktime_get_coarse_ns:
7895 return &bpf_ktime_get_coarse_ns_proto;
7896 default:
7897 return bpf_base_func_proto(func_id, prog);
7898 }
7899}
7900
7901static const struct bpf_func_proto *
7902sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7903{
7904 const struct bpf_func_proto *func_proto;
7905
7906 func_proto = cgroup_common_func_proto(func_id, prog);
7907 if (func_proto)
7908 return func_proto;
7909
7910 func_proto = cgroup_current_func_proto(func_id, prog);
7911 if (func_proto)
7912 return func_proto;
7913
7914 switch (func_id) {
7915 case BPF_FUNC_bind:
7916 switch (prog->expected_attach_type) {
7917 case BPF_CGROUP_INET4_CONNECT:
7918 case BPF_CGROUP_INET6_CONNECT:
7919 return &bpf_bind_proto;
7920 default:
7921 return NULL;
7922 }
7923 case BPF_FUNC_get_socket_cookie:
7924 return &bpf_get_socket_cookie_sock_addr_proto;
7925 case BPF_FUNC_get_netns_cookie:
7926 return &bpf_get_netns_cookie_sock_addr_proto;
7927 case BPF_FUNC_perf_event_output:
7928 return &bpf_event_output_data_proto;
7929#ifdef CONFIG_INET
7930 case BPF_FUNC_sk_lookup_tcp:
7931 return &bpf_sock_addr_sk_lookup_tcp_proto;
7932 case BPF_FUNC_sk_lookup_udp:
7933 return &bpf_sock_addr_sk_lookup_udp_proto;
7934 case BPF_FUNC_sk_release:
7935 return &bpf_sk_release_proto;
7936 case BPF_FUNC_skc_lookup_tcp:
7937 return &bpf_sock_addr_skc_lookup_tcp_proto;
7938#endif /* CONFIG_INET */
7939 case BPF_FUNC_sk_storage_get:
7940 return &bpf_sk_storage_get_proto;
7941 case BPF_FUNC_sk_storage_delete:
7942 return &bpf_sk_storage_delete_proto;
7943 case BPF_FUNC_setsockopt:
7944 switch (prog->expected_attach_type) {
7945 case BPF_CGROUP_INET4_BIND:
7946 case BPF_CGROUP_INET6_BIND:
7947 case BPF_CGROUP_INET4_CONNECT:
7948 case BPF_CGROUP_INET6_CONNECT:
7949 case BPF_CGROUP_UNIX_CONNECT:
7950 case BPF_CGROUP_UDP4_RECVMSG:
7951 case BPF_CGROUP_UDP6_RECVMSG:
7952 case BPF_CGROUP_UNIX_RECVMSG:
7953 case BPF_CGROUP_UDP4_SENDMSG:
7954 case BPF_CGROUP_UDP6_SENDMSG:
7955 case BPF_CGROUP_UNIX_SENDMSG:
7956 case BPF_CGROUP_INET4_GETPEERNAME:
7957 case BPF_CGROUP_INET6_GETPEERNAME:
7958 case BPF_CGROUP_UNIX_GETPEERNAME:
7959 case BPF_CGROUP_INET4_GETSOCKNAME:
7960 case BPF_CGROUP_INET6_GETSOCKNAME:
7961 case BPF_CGROUP_UNIX_GETSOCKNAME:
7962 return &bpf_sock_addr_setsockopt_proto;
7963 default:
7964 return NULL;
7965 }
7966 case BPF_FUNC_getsockopt:
7967 switch (prog->expected_attach_type) {
7968 case BPF_CGROUP_INET4_BIND:
7969 case BPF_CGROUP_INET6_BIND:
7970 case BPF_CGROUP_INET4_CONNECT:
7971 case BPF_CGROUP_INET6_CONNECT:
7972 case BPF_CGROUP_UNIX_CONNECT:
7973 case BPF_CGROUP_UDP4_RECVMSG:
7974 case BPF_CGROUP_UDP6_RECVMSG:
7975 case BPF_CGROUP_UNIX_RECVMSG:
7976 case BPF_CGROUP_UDP4_SENDMSG:
7977 case BPF_CGROUP_UDP6_SENDMSG:
7978 case BPF_CGROUP_UNIX_SENDMSG:
7979 case BPF_CGROUP_INET4_GETPEERNAME:
7980 case BPF_CGROUP_INET6_GETPEERNAME:
7981 case BPF_CGROUP_UNIX_GETPEERNAME:
7982 case BPF_CGROUP_INET4_GETSOCKNAME:
7983 case BPF_CGROUP_INET6_GETSOCKNAME:
7984 case BPF_CGROUP_UNIX_GETSOCKNAME:
7985 return &bpf_sock_addr_getsockopt_proto;
7986 default:
7987 return NULL;
7988 }
7989 default:
7990 return bpf_sk_base_func_proto(func_id, prog);
7991 }
7992}
7993
7994static const struct bpf_func_proto *
7995sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7996{
7997 switch (func_id) {
7998 case BPF_FUNC_skb_load_bytes:
7999 return &bpf_skb_load_bytes_proto;
8000 case BPF_FUNC_skb_load_bytes_relative:
8001 return &bpf_skb_load_bytes_relative_proto;
8002 case BPF_FUNC_get_socket_cookie:
8003 return &bpf_get_socket_cookie_proto;
8004 case BPF_FUNC_get_socket_uid:
8005 return &bpf_get_socket_uid_proto;
8006 case BPF_FUNC_perf_event_output:
8007 return &bpf_skb_event_output_proto;
8008 default:
8009 return bpf_sk_base_func_proto(func_id, prog);
8010 }
8011}
8012
8013const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8014const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8015
8016static const struct bpf_func_proto *
8017cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8018{
8019 const struct bpf_func_proto *func_proto;
8020
8021 func_proto = cgroup_common_func_proto(func_id, prog);
8022 if (func_proto)
8023 return func_proto;
8024
8025 switch (func_id) {
8026 case BPF_FUNC_sk_fullsock:
8027 return &bpf_sk_fullsock_proto;
8028 case BPF_FUNC_sk_storage_get:
8029 return &bpf_sk_storage_get_proto;
8030 case BPF_FUNC_sk_storage_delete:
8031 return &bpf_sk_storage_delete_proto;
8032 case BPF_FUNC_perf_event_output:
8033 return &bpf_skb_event_output_proto;
8034#ifdef CONFIG_SOCK_CGROUP_DATA
8035 case BPF_FUNC_skb_cgroup_id:
8036 return &bpf_skb_cgroup_id_proto;
8037 case BPF_FUNC_skb_ancestor_cgroup_id:
8038 return &bpf_skb_ancestor_cgroup_id_proto;
8039 case BPF_FUNC_sk_cgroup_id:
8040 return &bpf_sk_cgroup_id_proto;
8041 case BPF_FUNC_sk_ancestor_cgroup_id:
8042 return &bpf_sk_ancestor_cgroup_id_proto;
8043#endif
8044#ifdef CONFIG_INET
8045 case BPF_FUNC_sk_lookup_tcp:
8046 return &bpf_sk_lookup_tcp_proto;
8047 case BPF_FUNC_sk_lookup_udp:
8048 return &bpf_sk_lookup_udp_proto;
8049 case BPF_FUNC_sk_release:
8050 return &bpf_sk_release_proto;
8051 case BPF_FUNC_skc_lookup_tcp:
8052 return &bpf_skc_lookup_tcp_proto;
8053 case BPF_FUNC_tcp_sock:
8054 return &bpf_tcp_sock_proto;
8055 case BPF_FUNC_get_listener_sock:
8056 return &bpf_get_listener_sock_proto;
8057 case BPF_FUNC_skb_ecn_set_ce:
8058 return &bpf_skb_ecn_set_ce_proto;
8059#endif
8060 default:
8061 return sk_filter_func_proto(func_id, prog);
8062 }
8063}
8064
8065static const struct bpf_func_proto *
8066tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8067{
8068 switch (func_id) {
8069 case BPF_FUNC_skb_store_bytes:
8070 return &bpf_skb_store_bytes_proto;
8071 case BPF_FUNC_skb_load_bytes:
8072 return &bpf_skb_load_bytes_proto;
8073 case BPF_FUNC_skb_load_bytes_relative:
8074 return &bpf_skb_load_bytes_relative_proto;
8075 case BPF_FUNC_skb_pull_data:
8076 return &bpf_skb_pull_data_proto;
8077 case BPF_FUNC_csum_diff:
8078 return &bpf_csum_diff_proto;
8079 case BPF_FUNC_csum_update:
8080 return &bpf_csum_update_proto;
8081 case BPF_FUNC_csum_level:
8082 return &bpf_csum_level_proto;
8083 case BPF_FUNC_l3_csum_replace:
8084 return &bpf_l3_csum_replace_proto;
8085 case BPF_FUNC_l4_csum_replace:
8086 return &bpf_l4_csum_replace_proto;
8087 case BPF_FUNC_clone_redirect:
8088 return &bpf_clone_redirect_proto;
8089 case BPF_FUNC_get_cgroup_classid:
8090 return &bpf_get_cgroup_classid_proto;
8091 case BPF_FUNC_skb_vlan_push:
8092 return &bpf_skb_vlan_push_proto;
8093 case BPF_FUNC_skb_vlan_pop:
8094 return &bpf_skb_vlan_pop_proto;
8095 case BPF_FUNC_skb_change_proto:
8096 return &bpf_skb_change_proto_proto;
8097 case BPF_FUNC_skb_change_type:
8098 return &bpf_skb_change_type_proto;
8099 case BPF_FUNC_skb_adjust_room:
8100 return &bpf_skb_adjust_room_proto;
8101 case BPF_FUNC_skb_change_tail:
8102 return &bpf_skb_change_tail_proto;
8103 case BPF_FUNC_skb_change_head:
8104 return &bpf_skb_change_head_proto;
8105 case BPF_FUNC_skb_get_tunnel_key:
8106 return &bpf_skb_get_tunnel_key_proto;
8107 case BPF_FUNC_skb_set_tunnel_key:
8108 return bpf_get_skb_set_tunnel_proto(which: func_id);
8109 case BPF_FUNC_skb_get_tunnel_opt:
8110 return &bpf_skb_get_tunnel_opt_proto;
8111 case BPF_FUNC_skb_set_tunnel_opt:
8112 return bpf_get_skb_set_tunnel_proto(which: func_id);
8113 case BPF_FUNC_redirect:
8114 return &bpf_redirect_proto;
8115 case BPF_FUNC_redirect_neigh:
8116 return &bpf_redirect_neigh_proto;
8117 case BPF_FUNC_redirect_peer:
8118 return &bpf_redirect_peer_proto;
8119 case BPF_FUNC_get_route_realm:
8120 return &bpf_get_route_realm_proto;
8121 case BPF_FUNC_get_hash_recalc:
8122 return &bpf_get_hash_recalc_proto;
8123 case BPF_FUNC_set_hash_invalid:
8124 return &bpf_set_hash_invalid_proto;
8125 case BPF_FUNC_set_hash:
8126 return &bpf_set_hash_proto;
8127 case BPF_FUNC_perf_event_output:
8128 return &bpf_skb_event_output_proto;
8129 case BPF_FUNC_get_smp_processor_id:
8130 return &bpf_get_smp_processor_id_proto;
8131 case BPF_FUNC_skb_under_cgroup:
8132 return &bpf_skb_under_cgroup_proto;
8133 case BPF_FUNC_get_socket_cookie:
8134 return &bpf_get_socket_cookie_proto;
8135 case BPF_FUNC_get_socket_uid:
8136 return &bpf_get_socket_uid_proto;
8137 case BPF_FUNC_fib_lookup:
8138 return &bpf_skb_fib_lookup_proto;
8139 case BPF_FUNC_check_mtu:
8140 return &bpf_skb_check_mtu_proto;
8141 case BPF_FUNC_sk_fullsock:
8142 return &bpf_sk_fullsock_proto;
8143 case BPF_FUNC_sk_storage_get:
8144 return &bpf_sk_storage_get_proto;
8145 case BPF_FUNC_sk_storage_delete:
8146 return &bpf_sk_storage_delete_proto;
8147#ifdef CONFIG_XFRM
8148 case BPF_FUNC_skb_get_xfrm_state:
8149 return &bpf_skb_get_xfrm_state_proto;
8150#endif
8151#ifdef CONFIG_CGROUP_NET_CLASSID
8152 case BPF_FUNC_skb_cgroup_classid:
8153 return &bpf_skb_cgroup_classid_proto;
8154#endif
8155#ifdef CONFIG_SOCK_CGROUP_DATA
8156 case BPF_FUNC_skb_cgroup_id:
8157 return &bpf_skb_cgroup_id_proto;
8158 case BPF_FUNC_skb_ancestor_cgroup_id:
8159 return &bpf_skb_ancestor_cgroup_id_proto;
8160#endif
8161#ifdef CONFIG_INET
8162 case BPF_FUNC_sk_lookup_tcp:
8163 return &bpf_tc_sk_lookup_tcp_proto;
8164 case BPF_FUNC_sk_lookup_udp:
8165 return &bpf_tc_sk_lookup_udp_proto;
8166 case BPF_FUNC_sk_release:
8167 return &bpf_sk_release_proto;
8168 case BPF_FUNC_tcp_sock:
8169 return &bpf_tcp_sock_proto;
8170 case BPF_FUNC_get_listener_sock:
8171 return &bpf_get_listener_sock_proto;
8172 case BPF_FUNC_skc_lookup_tcp:
8173 return &bpf_tc_skc_lookup_tcp_proto;
8174 case BPF_FUNC_tcp_check_syncookie:
8175 return &bpf_tcp_check_syncookie_proto;
8176 case BPF_FUNC_skb_ecn_set_ce:
8177 return &bpf_skb_ecn_set_ce_proto;
8178 case BPF_FUNC_tcp_gen_syncookie:
8179 return &bpf_tcp_gen_syncookie_proto;
8180 case BPF_FUNC_sk_assign:
8181 return &bpf_sk_assign_proto;
8182 case BPF_FUNC_skb_set_tstamp:
8183 return &bpf_skb_set_tstamp_proto;
8184#ifdef CONFIG_SYN_COOKIES
8185 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8186 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8187 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8188 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8189 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8190 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8191 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8192 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8193#endif
8194#endif
8195 default:
8196 return bpf_sk_base_func_proto(func_id, prog);
8197 }
8198}
8199
8200static const struct bpf_func_proto *
8201xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8202{
8203 switch (func_id) {
8204 case BPF_FUNC_perf_event_output:
8205 return &bpf_xdp_event_output_proto;
8206 case BPF_FUNC_get_smp_processor_id:
8207 return &bpf_get_smp_processor_id_proto;
8208 case BPF_FUNC_csum_diff:
8209 return &bpf_csum_diff_proto;
8210 case BPF_FUNC_xdp_adjust_head:
8211 return &bpf_xdp_adjust_head_proto;
8212 case BPF_FUNC_xdp_adjust_meta:
8213 return &bpf_xdp_adjust_meta_proto;
8214 case BPF_FUNC_redirect:
8215 return &bpf_xdp_redirect_proto;
8216 case BPF_FUNC_redirect_map:
8217 return &bpf_xdp_redirect_map_proto;
8218 case BPF_FUNC_xdp_adjust_tail:
8219 return &bpf_xdp_adjust_tail_proto;
8220 case BPF_FUNC_xdp_get_buff_len:
8221 return &bpf_xdp_get_buff_len_proto;
8222 case BPF_FUNC_xdp_load_bytes:
8223 return &bpf_xdp_load_bytes_proto;
8224 case BPF_FUNC_xdp_store_bytes:
8225 return &bpf_xdp_store_bytes_proto;
8226 case BPF_FUNC_fib_lookup:
8227 return &bpf_xdp_fib_lookup_proto;
8228 case BPF_FUNC_check_mtu:
8229 return &bpf_xdp_check_mtu_proto;
8230#ifdef CONFIG_INET
8231 case BPF_FUNC_sk_lookup_udp:
8232 return &bpf_xdp_sk_lookup_udp_proto;
8233 case BPF_FUNC_sk_lookup_tcp:
8234 return &bpf_xdp_sk_lookup_tcp_proto;
8235 case BPF_FUNC_sk_release:
8236 return &bpf_sk_release_proto;
8237 case BPF_FUNC_skc_lookup_tcp:
8238 return &bpf_xdp_skc_lookup_tcp_proto;
8239 case BPF_FUNC_tcp_check_syncookie:
8240 return &bpf_tcp_check_syncookie_proto;
8241 case BPF_FUNC_tcp_gen_syncookie:
8242 return &bpf_tcp_gen_syncookie_proto;
8243#ifdef CONFIG_SYN_COOKIES
8244 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8245 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8246 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8247 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8248 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8249 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8250 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8251 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8252#endif
8253#endif
8254 default:
8255 return bpf_sk_base_func_proto(func_id, prog);
8256 }
8257
8258#if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8259 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8260 * kfuncs are defined in two different modules, and we want to be able
8261 * to use them interchangeably with the same BTF type ID. Because modules
8262 * can't de-duplicate BTF IDs between each other, we need the type to be
8263 * referenced in the vmlinux BTF or the verifier will get confused about
8264 * the different types. So we add this dummy type reference which will
8265 * be included in vmlinux BTF, allowing both modules to refer to the
8266 * same type ID.
8267 */
8268 BTF_TYPE_EMIT(struct nf_conn___init);
8269#endif
8270}
8271
8272const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8273const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8274
8275static const struct bpf_func_proto *
8276sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277{
8278 const struct bpf_func_proto *func_proto;
8279
8280 func_proto = cgroup_common_func_proto(func_id, prog);
8281 if (func_proto)
8282 return func_proto;
8283
8284 switch (func_id) {
8285 case BPF_FUNC_setsockopt:
8286 return &bpf_sock_ops_setsockopt_proto;
8287 case BPF_FUNC_getsockopt:
8288 return &bpf_sock_ops_getsockopt_proto;
8289 case BPF_FUNC_sock_ops_cb_flags_set:
8290 return &bpf_sock_ops_cb_flags_set_proto;
8291 case BPF_FUNC_sock_map_update:
8292 return &bpf_sock_map_update_proto;
8293 case BPF_FUNC_sock_hash_update:
8294 return &bpf_sock_hash_update_proto;
8295 case BPF_FUNC_get_socket_cookie:
8296 return &bpf_get_socket_cookie_sock_ops_proto;
8297 case BPF_FUNC_perf_event_output:
8298 return &bpf_event_output_data_proto;
8299 case BPF_FUNC_sk_storage_get:
8300 return &bpf_sk_storage_get_proto;
8301 case BPF_FUNC_sk_storage_delete:
8302 return &bpf_sk_storage_delete_proto;
8303 case BPF_FUNC_get_netns_cookie:
8304 return &bpf_get_netns_cookie_sock_ops_proto;
8305#ifdef CONFIG_INET
8306 case BPF_FUNC_load_hdr_opt:
8307 return &bpf_sock_ops_load_hdr_opt_proto;
8308 case BPF_FUNC_store_hdr_opt:
8309 return &bpf_sock_ops_store_hdr_opt_proto;
8310 case BPF_FUNC_reserve_hdr_opt:
8311 return &bpf_sock_ops_reserve_hdr_opt_proto;
8312 case BPF_FUNC_tcp_sock:
8313 return &bpf_tcp_sock_proto;
8314#endif /* CONFIG_INET */
8315 default:
8316 return bpf_sk_base_func_proto(func_id, prog);
8317 }
8318}
8319
8320const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8321const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8322
8323static const struct bpf_func_proto *
8324sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8325{
8326 switch (func_id) {
8327 case BPF_FUNC_msg_redirect_map:
8328 return &bpf_msg_redirect_map_proto;
8329 case BPF_FUNC_msg_redirect_hash:
8330 return &bpf_msg_redirect_hash_proto;
8331 case BPF_FUNC_msg_apply_bytes:
8332 return &bpf_msg_apply_bytes_proto;
8333 case BPF_FUNC_msg_cork_bytes:
8334 return &bpf_msg_cork_bytes_proto;
8335 case BPF_FUNC_msg_pull_data:
8336 return &bpf_msg_pull_data_proto;
8337 case BPF_FUNC_msg_push_data:
8338 return &bpf_msg_push_data_proto;
8339 case BPF_FUNC_msg_pop_data:
8340 return &bpf_msg_pop_data_proto;
8341 case BPF_FUNC_perf_event_output:
8342 return &bpf_event_output_data_proto;
8343 case BPF_FUNC_get_current_uid_gid:
8344 return &bpf_get_current_uid_gid_proto;
8345 case BPF_FUNC_get_current_pid_tgid:
8346 return &bpf_get_current_pid_tgid_proto;
8347 case BPF_FUNC_sk_storage_get:
8348 return &bpf_sk_storage_get_proto;
8349 case BPF_FUNC_sk_storage_delete:
8350 return &bpf_sk_storage_delete_proto;
8351 case BPF_FUNC_get_netns_cookie:
8352 return &bpf_get_netns_cookie_sk_msg_proto;
8353#ifdef CONFIG_CGROUP_NET_CLASSID
8354 case BPF_FUNC_get_cgroup_classid:
8355 return &bpf_get_cgroup_classid_curr_proto;
8356#endif
8357 default:
8358 return bpf_sk_base_func_proto(func_id, prog);
8359 }
8360}
8361
8362const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8363const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8364
8365static const struct bpf_func_proto *
8366sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8367{
8368 switch (func_id) {
8369 case BPF_FUNC_skb_store_bytes:
8370 return &bpf_skb_store_bytes_proto;
8371 case BPF_FUNC_skb_load_bytes:
8372 return &bpf_skb_load_bytes_proto;
8373 case BPF_FUNC_skb_pull_data:
8374 return &sk_skb_pull_data_proto;
8375 case BPF_FUNC_skb_change_tail:
8376 return &sk_skb_change_tail_proto;
8377 case BPF_FUNC_skb_change_head:
8378 return &sk_skb_change_head_proto;
8379 case BPF_FUNC_skb_adjust_room:
8380 return &sk_skb_adjust_room_proto;
8381 case BPF_FUNC_get_socket_cookie:
8382 return &bpf_get_socket_cookie_proto;
8383 case BPF_FUNC_get_socket_uid:
8384 return &bpf_get_socket_uid_proto;
8385 case BPF_FUNC_sk_redirect_map:
8386 return &bpf_sk_redirect_map_proto;
8387 case BPF_FUNC_sk_redirect_hash:
8388 return &bpf_sk_redirect_hash_proto;
8389 case BPF_FUNC_perf_event_output:
8390 return &bpf_skb_event_output_proto;
8391#ifdef CONFIG_INET
8392 case BPF_FUNC_sk_lookup_tcp:
8393 return &bpf_sk_lookup_tcp_proto;
8394 case BPF_FUNC_sk_lookup_udp:
8395 return &bpf_sk_lookup_udp_proto;
8396 case BPF_FUNC_sk_release:
8397 return &bpf_sk_release_proto;
8398 case BPF_FUNC_skc_lookup_tcp:
8399 return &bpf_skc_lookup_tcp_proto;
8400#endif
8401 default:
8402 return bpf_sk_base_func_proto(func_id, prog);
8403 }
8404}
8405
8406static const struct bpf_func_proto *
8407flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8408{
8409 switch (func_id) {
8410 case BPF_FUNC_skb_load_bytes:
8411 return &bpf_flow_dissector_load_bytes_proto;
8412 default:
8413 return bpf_sk_base_func_proto(func_id, prog);
8414 }
8415}
8416
8417static const struct bpf_func_proto *
8418lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8419{
8420 switch (func_id) {
8421 case BPF_FUNC_skb_load_bytes:
8422 return &bpf_skb_load_bytes_proto;
8423 case BPF_FUNC_skb_pull_data:
8424 return &bpf_skb_pull_data_proto;
8425 case BPF_FUNC_csum_diff:
8426 return &bpf_csum_diff_proto;
8427 case BPF_FUNC_get_cgroup_classid:
8428 return &bpf_get_cgroup_classid_proto;
8429 case BPF_FUNC_get_route_realm:
8430 return &bpf_get_route_realm_proto;
8431 case BPF_FUNC_get_hash_recalc:
8432 return &bpf_get_hash_recalc_proto;
8433 case BPF_FUNC_perf_event_output:
8434 return &bpf_skb_event_output_proto;
8435 case BPF_FUNC_get_smp_processor_id:
8436 return &bpf_get_smp_processor_id_proto;
8437 case BPF_FUNC_skb_under_cgroup:
8438 return &bpf_skb_under_cgroup_proto;
8439 default:
8440 return bpf_sk_base_func_proto(func_id, prog);
8441 }
8442}
8443
8444static const struct bpf_func_proto *
8445lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8446{
8447 switch (func_id) {
8448 case BPF_FUNC_lwt_push_encap:
8449 return &bpf_lwt_in_push_encap_proto;
8450 default:
8451 return lwt_out_func_proto(func_id, prog);
8452 }
8453}
8454
8455static const struct bpf_func_proto *
8456lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8457{
8458 switch (func_id) {
8459 case BPF_FUNC_skb_get_tunnel_key:
8460 return &bpf_skb_get_tunnel_key_proto;
8461 case BPF_FUNC_skb_set_tunnel_key:
8462 return bpf_get_skb_set_tunnel_proto(which: func_id);
8463 case BPF_FUNC_skb_get_tunnel_opt:
8464 return &bpf_skb_get_tunnel_opt_proto;
8465 case BPF_FUNC_skb_set_tunnel_opt:
8466 return bpf_get_skb_set_tunnel_proto(which: func_id);
8467 case BPF_FUNC_redirect:
8468 return &bpf_redirect_proto;
8469 case BPF_FUNC_clone_redirect:
8470 return &bpf_clone_redirect_proto;
8471 case BPF_FUNC_skb_change_tail:
8472 return &bpf_skb_change_tail_proto;
8473 case BPF_FUNC_skb_change_head:
8474 return &bpf_skb_change_head_proto;
8475 case BPF_FUNC_skb_store_bytes:
8476 return &bpf_skb_store_bytes_proto;
8477 case BPF_FUNC_csum_update:
8478 return &bpf_csum_update_proto;
8479 case BPF_FUNC_csum_level:
8480 return &bpf_csum_level_proto;
8481 case BPF_FUNC_l3_csum_replace:
8482 return &bpf_l3_csum_replace_proto;
8483 case BPF_FUNC_l4_csum_replace:
8484 return &bpf_l4_csum_replace_proto;
8485 case BPF_FUNC_set_hash_invalid:
8486 return &bpf_set_hash_invalid_proto;
8487 case BPF_FUNC_lwt_push_encap:
8488 return &bpf_lwt_xmit_push_encap_proto;
8489 default:
8490 return lwt_out_func_proto(func_id, prog);
8491 }
8492}
8493
8494static const struct bpf_func_proto *
8495lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8496{
8497 switch (func_id) {
8498#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8499 case BPF_FUNC_lwt_seg6_store_bytes:
8500 return &bpf_lwt_seg6_store_bytes_proto;
8501 case BPF_FUNC_lwt_seg6_action:
8502 return &bpf_lwt_seg6_action_proto;
8503 case BPF_FUNC_lwt_seg6_adjust_srh:
8504 return &bpf_lwt_seg6_adjust_srh_proto;
8505#endif
8506 default:
8507 return lwt_out_func_proto(func_id, prog);
8508 }
8509}
8510
8511static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8512 const struct bpf_prog *prog,
8513 struct bpf_insn_access_aux *info)
8514{
8515 const int size_default = sizeof(__u32);
8516
8517 if (off < 0 || off >= sizeof(struct __sk_buff))
8518 return false;
8519
8520 /* The verifier guarantees that size > 0. */
8521 if (off % size != 0)
8522 return false;
8523
8524 switch (off) {
8525 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8526 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8527 return false;
8528 break;
8529 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8530 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8531 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8532 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8533 case bpf_ctx_range(struct __sk_buff, data):
8534 case bpf_ctx_range(struct __sk_buff, data_meta):
8535 case bpf_ctx_range(struct __sk_buff, data_end):
8536 if (size != size_default)
8537 return false;
8538 break;
8539 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8540 return false;
8541 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8542 if (type == BPF_WRITE || size != sizeof(__u64))
8543 return false;
8544 break;
8545 case bpf_ctx_range(struct __sk_buff, tstamp):
8546 if (size != sizeof(__u64))
8547 return false;
8548 break;
8549 case offsetof(struct __sk_buff, sk):
8550 if (type == BPF_WRITE || size != sizeof(__u64))
8551 return false;
8552 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8553 break;
8554 case offsetof(struct __sk_buff, tstamp_type):
8555 return false;
8556 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8557 /* Explicitly prohibit access to padding in __sk_buff. */
8558 return false;
8559 default:
8560 /* Only narrow read access allowed for now. */
8561 if (type == BPF_WRITE) {
8562 if (size != size_default)
8563 return false;
8564 } else {
8565 bpf_ctx_record_field_size(aux: info, size: size_default);
8566 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8567 return false;
8568 }
8569 }
8570
8571 return true;
8572}
8573
8574static bool sk_filter_is_valid_access(int off, int size,
8575 enum bpf_access_type type,
8576 const struct bpf_prog *prog,
8577 struct bpf_insn_access_aux *info)
8578{
8579 switch (off) {
8580 case bpf_ctx_range(struct __sk_buff, tc_classid):
8581 case bpf_ctx_range(struct __sk_buff, data):
8582 case bpf_ctx_range(struct __sk_buff, data_meta):
8583 case bpf_ctx_range(struct __sk_buff, data_end):
8584 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8585 case bpf_ctx_range(struct __sk_buff, tstamp):
8586 case bpf_ctx_range(struct __sk_buff, wire_len):
8587 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8588 return false;
8589 }
8590
8591 if (type == BPF_WRITE) {
8592 switch (off) {
8593 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8594 break;
8595 default:
8596 return false;
8597 }
8598 }
8599
8600 return bpf_skb_is_valid_access(off, size, type, prog, info);
8601}
8602
8603static bool cg_skb_is_valid_access(int off, int size,
8604 enum bpf_access_type type,
8605 const struct bpf_prog *prog,
8606 struct bpf_insn_access_aux *info)
8607{
8608 switch (off) {
8609 case bpf_ctx_range(struct __sk_buff, tc_classid):
8610 case bpf_ctx_range(struct __sk_buff, data_meta):
8611 case bpf_ctx_range(struct __sk_buff, wire_len):
8612 return false;
8613 case bpf_ctx_range(struct __sk_buff, data):
8614 case bpf_ctx_range(struct __sk_buff, data_end):
8615 if (!bpf_token_capable(token: prog->aux->token, CAP_BPF))
8616 return false;
8617 break;
8618 }
8619
8620 if (type == BPF_WRITE) {
8621 switch (off) {
8622 case bpf_ctx_range(struct __sk_buff, mark):
8623 case bpf_ctx_range(struct __sk_buff, priority):
8624 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8625 break;
8626 case bpf_ctx_range(struct __sk_buff, tstamp):
8627 if (!bpf_token_capable(token: prog->aux->token, CAP_BPF))
8628 return false;
8629 break;
8630 default:
8631 return false;
8632 }
8633 }
8634
8635 switch (off) {
8636 case bpf_ctx_range(struct __sk_buff, data):
8637 info->reg_type = PTR_TO_PACKET;
8638 break;
8639 case bpf_ctx_range(struct __sk_buff, data_end):
8640 info->reg_type = PTR_TO_PACKET_END;
8641 break;
8642 }
8643
8644 return bpf_skb_is_valid_access(off, size, type, prog, info);
8645}
8646
8647static bool lwt_is_valid_access(int off, int size,
8648 enum bpf_access_type type,
8649 const struct bpf_prog *prog,
8650 struct bpf_insn_access_aux *info)
8651{
8652 switch (off) {
8653 case bpf_ctx_range(struct __sk_buff, tc_classid):
8654 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8655 case bpf_ctx_range(struct __sk_buff, data_meta):
8656 case bpf_ctx_range(struct __sk_buff, tstamp):
8657 case bpf_ctx_range(struct __sk_buff, wire_len):
8658 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8659 return false;
8660 }
8661
8662 if (type == BPF_WRITE) {
8663 switch (off) {
8664 case bpf_ctx_range(struct __sk_buff, mark):
8665 case bpf_ctx_range(struct __sk_buff, priority):
8666 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8667 break;
8668 default:
8669 return false;
8670 }
8671 }
8672
8673 switch (off) {
8674 case bpf_ctx_range(struct __sk_buff, data):
8675 info->reg_type = PTR_TO_PACKET;
8676 break;
8677 case bpf_ctx_range(struct __sk_buff, data_end):
8678 info->reg_type = PTR_TO_PACKET_END;
8679 break;
8680 }
8681
8682 return bpf_skb_is_valid_access(off, size, type, prog, info);
8683}
8684
8685/* Attach type specific accesses */
8686static bool __sock_filter_check_attach_type(int off,
8687 enum bpf_access_type access_type,
8688 enum bpf_attach_type attach_type)
8689{
8690 switch (off) {
8691 case offsetof(struct bpf_sock, bound_dev_if):
8692 case offsetof(struct bpf_sock, mark):
8693 case offsetof(struct bpf_sock, priority):
8694 switch (attach_type) {
8695 case BPF_CGROUP_INET_SOCK_CREATE:
8696 case BPF_CGROUP_INET_SOCK_RELEASE:
8697 goto full_access;
8698 default:
8699 return false;
8700 }
8701 case bpf_ctx_range(struct bpf_sock, src_ip4):
8702 switch (attach_type) {
8703 case BPF_CGROUP_INET4_POST_BIND:
8704 goto read_only;
8705 default:
8706 return false;
8707 }
8708 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8709 switch (attach_type) {
8710 case BPF_CGROUP_INET6_POST_BIND:
8711 goto read_only;
8712 default:
8713 return false;
8714 }
8715 case bpf_ctx_range(struct bpf_sock, src_port):
8716 switch (attach_type) {
8717 case BPF_CGROUP_INET4_POST_BIND:
8718 case BPF_CGROUP_INET6_POST_BIND:
8719 goto read_only;
8720 default:
8721 return false;
8722 }
8723 }
8724read_only:
8725 return access_type == BPF_READ;
8726full_access:
8727 return true;
8728}
8729
8730bool bpf_sock_common_is_valid_access(int off, int size,
8731 enum bpf_access_type type,
8732 struct bpf_insn_access_aux *info)
8733{
8734 switch (off) {
8735 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8736 return false;
8737 default:
8738 return bpf_sock_is_valid_access(off, size, type, info);
8739 }
8740}
8741
8742bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8743 struct bpf_insn_access_aux *info)
8744{
8745 const int size_default = sizeof(__u32);
8746 int field_size;
8747
8748 if (off < 0 || off >= sizeof(struct bpf_sock))
8749 return false;
8750 if (off % size != 0)
8751 return false;
8752
8753 switch (off) {
8754 case offsetof(struct bpf_sock, state):
8755 case offsetof(struct bpf_sock, family):
8756 case offsetof(struct bpf_sock, type):
8757 case offsetof(struct bpf_sock, protocol):
8758 case offsetof(struct bpf_sock, src_port):
8759 case offsetof(struct bpf_sock, rx_queue_mapping):
8760 case bpf_ctx_range(struct bpf_sock, src_ip4):
8761 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8762 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8763 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8764 bpf_ctx_record_field_size(aux: info, size: size_default);
8765 return bpf_ctx_narrow_access_ok(off, size, size_default);
8766 case bpf_ctx_range(struct bpf_sock, dst_port):
8767 field_size = size == size_default ?
8768 size_default : sizeof_field(struct bpf_sock, dst_port);
8769 bpf_ctx_record_field_size(aux: info, size: field_size);
8770 return bpf_ctx_narrow_access_ok(off, size, size_default: field_size);
8771 case offsetofend(struct bpf_sock, dst_port) ...
8772 offsetof(struct bpf_sock, dst_ip4) - 1:
8773 return false;
8774 }
8775
8776 return size == size_default;
8777}
8778
8779static bool sock_filter_is_valid_access(int off, int size,
8780 enum bpf_access_type type,
8781 const struct bpf_prog *prog,
8782 struct bpf_insn_access_aux *info)
8783{
8784 if (!bpf_sock_is_valid_access(off, size, type, info))
8785 return false;
8786 return __sock_filter_check_attach_type(off, access_type: type,
8787 attach_type: prog->expected_attach_type);
8788}
8789
8790static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8791 const struct bpf_prog *prog)
8792{
8793 /* Neither direct read nor direct write requires any preliminary
8794 * action.
8795 */
8796 return 0;
8797}
8798
8799static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8800 const struct bpf_prog *prog, int drop_verdict)
8801{
8802 struct bpf_insn *insn = insn_buf;
8803
8804 if (!direct_write)
8805 return 0;
8806
8807 /* if (!skb->cloned)
8808 * goto start;
8809 *
8810 * (Fast-path, otherwise approximation that we might be
8811 * a clone, do the rest in helper.)
8812 */
8813 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8814 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8815 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8816
8817 /* ret = bpf_skb_pull_data(skb, 0); */
8818 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8819 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8820 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8821 BPF_FUNC_skb_pull_data);
8822 /* if (!ret)
8823 * goto restore;
8824 * return TC_ACT_SHOT;
8825 */
8826 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8827 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8828 *insn++ = BPF_EXIT_INSN();
8829
8830 /* restore: */
8831 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8832 /* start: */
8833 *insn++ = prog->insnsi[0];
8834
8835 return insn - insn_buf;
8836}
8837
8838static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8839 struct bpf_insn *insn_buf)
8840{
8841 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8842 struct bpf_insn *insn = insn_buf;
8843
8844 if (!indirect) {
8845 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8846 } else {
8847 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8848 if (orig->imm)
8849 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8850 }
8851 /* We're guaranteed here that CTX is in R6. */
8852 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8853
8854 switch (BPF_SIZE(orig->code)) {
8855 case BPF_B:
8856 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8857 break;
8858 case BPF_H:
8859 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8860 break;
8861 case BPF_W:
8862 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8863 break;
8864 }
8865
8866 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8867 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8868 *insn++ = BPF_EXIT_INSN();
8869
8870 return insn - insn_buf;
8871}
8872
8873static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8874 const struct bpf_prog *prog)
8875{
8876 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8877}
8878
8879static bool tc_cls_act_is_valid_access(int off, int size,
8880 enum bpf_access_type type,
8881 const struct bpf_prog *prog,
8882 struct bpf_insn_access_aux *info)
8883{
8884 if (type == BPF_WRITE) {
8885 switch (off) {
8886 case bpf_ctx_range(struct __sk_buff, mark):
8887 case bpf_ctx_range(struct __sk_buff, tc_index):
8888 case bpf_ctx_range(struct __sk_buff, priority):
8889 case bpf_ctx_range(struct __sk_buff, tc_classid):
8890 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8891 case bpf_ctx_range(struct __sk_buff, tstamp):
8892 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8893 break;
8894 default:
8895 return false;
8896 }
8897 }
8898
8899 switch (off) {
8900 case bpf_ctx_range(struct __sk_buff, data):
8901 info->reg_type = PTR_TO_PACKET;
8902 break;
8903 case bpf_ctx_range(struct __sk_buff, data_meta):
8904 info->reg_type = PTR_TO_PACKET_META;
8905 break;
8906 case bpf_ctx_range(struct __sk_buff, data_end):
8907 info->reg_type = PTR_TO_PACKET_END;
8908 break;
8909 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8910 return false;
8911 case offsetof(struct __sk_buff, tstamp_type):
8912 /* The convert_ctx_access() on reading and writing
8913 * __sk_buff->tstamp depends on whether the bpf prog
8914 * has used __sk_buff->tstamp_type or not.
8915 * Thus, we need to set prog->tstamp_type_access
8916 * earlier during is_valid_access() here.
8917 */
8918 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8919 return size == sizeof(__u8);
8920 }
8921
8922 return bpf_skb_is_valid_access(off, size, type, prog, info);
8923}
8924
8925DEFINE_MUTEX(nf_conn_btf_access_lock);
8926EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8927
8928int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8929 const struct bpf_reg_state *reg,
8930 int off, int size);
8931EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8932
8933static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8934 const struct bpf_reg_state *reg,
8935 int off, int size)
8936{
8937 int ret = -EACCES;
8938
8939 mutex_lock(&nf_conn_btf_access_lock);
8940 if (nfct_btf_struct_access)
8941 ret = nfct_btf_struct_access(log, reg, off, size);
8942 mutex_unlock(lock: &nf_conn_btf_access_lock);
8943
8944 return ret;
8945}
8946
8947static bool __is_valid_xdp_access(int off, int size)
8948{
8949 if (off < 0 || off >= sizeof(struct xdp_md))
8950 return false;
8951 if (off % size != 0)
8952 return false;
8953 if (size != sizeof(__u32))
8954 return false;
8955
8956 return true;
8957}
8958
8959static bool xdp_is_valid_access(int off, int size,
8960 enum bpf_access_type type,
8961 const struct bpf_prog *prog,
8962 struct bpf_insn_access_aux *info)
8963{
8964 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8965 switch (off) {
8966 case offsetof(struct xdp_md, egress_ifindex):
8967 return false;
8968 }
8969 }
8970
8971 if (type == BPF_WRITE) {
8972 if (bpf_prog_is_offloaded(aux: prog->aux)) {
8973 switch (off) {
8974 case offsetof(struct xdp_md, rx_queue_index):
8975 return __is_valid_xdp_access(off, size);
8976 }
8977 }
8978 return false;
8979 }
8980
8981 switch (off) {
8982 case offsetof(struct xdp_md, data):
8983 info->reg_type = PTR_TO_PACKET;
8984 break;
8985 case offsetof(struct xdp_md, data_meta):
8986 info->reg_type = PTR_TO_PACKET_META;
8987 break;
8988 case offsetof(struct xdp_md, data_end):
8989 info->reg_type = PTR_TO_PACKET_END;
8990 break;
8991 }
8992
8993 return __is_valid_xdp_access(off, size);
8994}
8995
8996void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8997{
8998 const u32 act_max = XDP_REDIRECT;
8999
9000 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9001 act > act_max ? "Illegal" : "Driver unsupported",
9002 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9003}
9004EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9005
9006static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9007 const struct bpf_reg_state *reg,
9008 int off, int size)
9009{
9010 int ret = -EACCES;
9011
9012 mutex_lock(&nf_conn_btf_access_lock);
9013 if (nfct_btf_struct_access)
9014 ret = nfct_btf_struct_access(log, reg, off, size);
9015 mutex_unlock(lock: &nf_conn_btf_access_lock);
9016
9017 return ret;
9018}
9019
9020static bool sock_addr_is_valid_access(int off, int size,
9021 enum bpf_access_type type,
9022 const struct bpf_prog *prog,
9023 struct bpf_insn_access_aux *info)
9024{
9025 const int size_default = sizeof(__u32);
9026
9027 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9028 return false;
9029 if (off % size != 0)
9030 return false;
9031
9032 /* Disallow access to fields not belonging to the attach type's address
9033 * family.
9034 */
9035 switch (off) {
9036 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9037 switch (prog->expected_attach_type) {
9038 case BPF_CGROUP_INET4_BIND:
9039 case BPF_CGROUP_INET4_CONNECT:
9040 case BPF_CGROUP_INET4_GETPEERNAME:
9041 case BPF_CGROUP_INET4_GETSOCKNAME:
9042 case BPF_CGROUP_UDP4_SENDMSG:
9043 case BPF_CGROUP_UDP4_RECVMSG:
9044 break;
9045 default:
9046 return false;
9047 }
9048 break;
9049 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9050 switch (prog->expected_attach_type) {
9051 case BPF_CGROUP_INET6_BIND:
9052 case BPF_CGROUP_INET6_CONNECT:
9053 case BPF_CGROUP_INET6_GETPEERNAME:
9054 case BPF_CGROUP_INET6_GETSOCKNAME:
9055 case BPF_CGROUP_UDP6_SENDMSG:
9056 case BPF_CGROUP_UDP6_RECVMSG:
9057 break;
9058 default:
9059 return false;
9060 }
9061 break;
9062 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9063 switch (prog->expected_attach_type) {
9064 case BPF_CGROUP_UDP4_SENDMSG:
9065 break;
9066 default:
9067 return false;
9068 }
9069 break;
9070 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9071 msg_src_ip6[3]):
9072 switch (prog->expected_attach_type) {
9073 case BPF_CGROUP_UDP6_SENDMSG:
9074 break;
9075 default:
9076 return false;
9077 }
9078 break;
9079 }
9080
9081 switch (off) {
9082 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9083 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9084 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9085 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9086 msg_src_ip6[3]):
9087 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9088 if (type == BPF_READ) {
9089 bpf_ctx_record_field_size(aux: info, size: size_default);
9090
9091 if (bpf_ctx_wide_access_ok(off, size,
9092 struct bpf_sock_addr,
9093 user_ip6))
9094 return true;
9095
9096 if (bpf_ctx_wide_access_ok(off, size,
9097 struct bpf_sock_addr,
9098 msg_src_ip6))
9099 return true;
9100
9101 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9102 return false;
9103 } else {
9104 if (bpf_ctx_wide_access_ok(off, size,
9105 struct bpf_sock_addr,
9106 user_ip6))
9107 return true;
9108
9109 if (bpf_ctx_wide_access_ok(off, size,
9110 struct bpf_sock_addr,
9111 msg_src_ip6))
9112 return true;
9113
9114 if (size != size_default)
9115 return false;
9116 }
9117 break;
9118 case offsetof(struct bpf_sock_addr, sk):
9119 if (type != BPF_READ)
9120 return false;
9121 if (size != sizeof(__u64))
9122 return false;
9123 info->reg_type = PTR_TO_SOCKET;
9124 break;
9125 default:
9126 if (type == BPF_READ) {
9127 if (size != size_default)
9128 return false;
9129 } else {
9130 return false;
9131 }
9132 }
9133
9134 return true;
9135}
9136
9137static bool sock_ops_is_valid_access(int off, int size,
9138 enum bpf_access_type type,
9139 const struct bpf_prog *prog,
9140 struct bpf_insn_access_aux *info)
9141{
9142 const int size_default = sizeof(__u32);
9143
9144 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9145 return false;
9146
9147 /* The verifier guarantees that size > 0. */
9148 if (off % size != 0)
9149 return false;
9150
9151 if (type == BPF_WRITE) {
9152 switch (off) {
9153 case offsetof(struct bpf_sock_ops, reply):
9154 case offsetof(struct bpf_sock_ops, sk_txhash):
9155 if (size != size_default)
9156 return false;
9157 break;
9158 default:
9159 return false;
9160 }
9161 } else {
9162 switch (off) {
9163 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9164 bytes_acked):
9165 if (size != sizeof(__u64))
9166 return false;
9167 break;
9168 case offsetof(struct bpf_sock_ops, sk):
9169 if (size != sizeof(__u64))
9170 return false;
9171 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9172 break;
9173 case offsetof(struct bpf_sock_ops, skb_data):
9174 if (size != sizeof(__u64))
9175 return false;
9176 info->reg_type = PTR_TO_PACKET;
9177 break;
9178 case offsetof(struct bpf_sock_ops, skb_data_end):
9179 if (size != sizeof(__u64))
9180 return false;
9181 info->reg_type = PTR_TO_PACKET_END;
9182 break;
9183 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9184 bpf_ctx_record_field_size(aux: info, size: size_default);
9185 return bpf_ctx_narrow_access_ok(off, size,
9186 size_default);
9187 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9188 if (size != sizeof(__u64))
9189 return false;
9190 break;
9191 default:
9192 if (size != size_default)
9193 return false;
9194 break;
9195 }
9196 }
9197
9198 return true;
9199}
9200
9201static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9202 const struct bpf_prog *prog)
9203{
9204 return bpf_unclone_prologue(insn_buf, direct_write, prog, drop_verdict: SK_DROP);
9205}
9206
9207static bool sk_skb_is_valid_access(int off, int size,
9208 enum bpf_access_type type,
9209 const struct bpf_prog *prog,
9210 struct bpf_insn_access_aux *info)
9211{
9212 switch (off) {
9213 case bpf_ctx_range(struct __sk_buff, tc_classid):
9214 case bpf_ctx_range(struct __sk_buff, data_meta):
9215 case bpf_ctx_range(struct __sk_buff, tstamp):
9216 case bpf_ctx_range(struct __sk_buff, wire_len):
9217 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9218 return false;
9219 }
9220
9221 if (type == BPF_WRITE) {
9222 switch (off) {
9223 case bpf_ctx_range(struct __sk_buff, tc_index):
9224 case bpf_ctx_range(struct __sk_buff, priority):
9225 break;
9226 default:
9227 return false;
9228 }
9229 }
9230
9231 switch (off) {
9232 case bpf_ctx_range(struct __sk_buff, mark):
9233 return false;
9234 case bpf_ctx_range(struct __sk_buff, data):
9235 info->reg_type = PTR_TO_PACKET;
9236 break;
9237 case bpf_ctx_range(struct __sk_buff, data_end):
9238 info->reg_type = PTR_TO_PACKET_END;
9239 break;
9240 }
9241
9242 return bpf_skb_is_valid_access(off, size, type, prog, info);
9243}
9244
9245static bool sk_msg_is_valid_access(int off, int size,
9246 enum bpf_access_type type,
9247 const struct bpf_prog *prog,
9248 struct bpf_insn_access_aux *info)
9249{
9250 if (type == BPF_WRITE)
9251 return false;
9252
9253 if (off % size != 0)
9254 return false;
9255
9256 switch (off) {
9257 case offsetof(struct sk_msg_md, data):
9258 info->reg_type = PTR_TO_PACKET;
9259 if (size != sizeof(__u64))
9260 return false;
9261 break;
9262 case offsetof(struct sk_msg_md, data_end):
9263 info->reg_type = PTR_TO_PACKET_END;
9264 if (size != sizeof(__u64))
9265 return false;
9266 break;
9267 case offsetof(struct sk_msg_md, sk):
9268 if (size != sizeof(__u64))
9269 return false;
9270 info->reg_type = PTR_TO_SOCKET;
9271 break;
9272 case bpf_ctx_range(struct sk_msg_md, family):
9273 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9274 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9275 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9276 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9277 case bpf_ctx_range(struct sk_msg_md, remote_port):
9278 case bpf_ctx_range(struct sk_msg_md, local_port):
9279 case bpf_ctx_range(struct sk_msg_md, size):
9280 if (size != sizeof(__u32))
9281 return false;
9282 break;
9283 default:
9284 return false;
9285 }
9286 return true;
9287}
9288
9289static bool flow_dissector_is_valid_access(int off, int size,
9290 enum bpf_access_type type,
9291 const struct bpf_prog *prog,
9292 struct bpf_insn_access_aux *info)
9293{
9294 const int size_default = sizeof(__u32);
9295
9296 if (off < 0 || off >= sizeof(struct __sk_buff))
9297 return false;
9298
9299 if (type == BPF_WRITE)
9300 return false;
9301
9302 switch (off) {
9303 case bpf_ctx_range(struct __sk_buff, data):
9304 if (size != size_default)
9305 return false;
9306 info->reg_type = PTR_TO_PACKET;
9307 return true;
9308 case bpf_ctx_range(struct __sk_buff, data_end):
9309 if (size != size_default)
9310 return false;
9311 info->reg_type = PTR_TO_PACKET_END;
9312 return true;
9313 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9314 if (size != sizeof(__u64))
9315 return false;
9316 info->reg_type = PTR_TO_FLOW_KEYS;
9317 return true;
9318 default:
9319 return false;
9320 }
9321}
9322
9323static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9324 const struct bpf_insn *si,
9325 struct bpf_insn *insn_buf,
9326 struct bpf_prog *prog,
9327 u32 *target_size)
9328
9329{
9330 struct bpf_insn *insn = insn_buf;
9331
9332 switch (si->off) {
9333 case offsetof(struct __sk_buff, data):
9334 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9335 si->dst_reg, si->src_reg,
9336 offsetof(struct bpf_flow_dissector, data));
9337 break;
9338
9339 case offsetof(struct __sk_buff, data_end):
9340 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9341 si->dst_reg, si->src_reg,
9342 offsetof(struct bpf_flow_dissector, data_end));
9343 break;
9344
9345 case offsetof(struct __sk_buff, flow_keys):
9346 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9347 si->dst_reg, si->src_reg,
9348 offsetof(struct bpf_flow_dissector, flow_keys));
9349 break;
9350 }
9351
9352 return insn - insn_buf;
9353}
9354
9355static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9356 struct bpf_insn *insn)
9357{
9358 __u8 value_reg = si->dst_reg;
9359 __u8 skb_reg = si->src_reg;
9360 /* AX is needed because src_reg and dst_reg could be the same */
9361 __u8 tmp_reg = BPF_REG_AX;
9362
9363 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9364 SKB_BF_MONO_TC_OFFSET);
9365 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9366 SKB_MONO_DELIVERY_TIME_MASK, 2);
9367 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9368 *insn++ = BPF_JMP_A(1);
9369 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9370
9371 return insn;
9372}
9373
9374static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9375 struct bpf_insn *insn)
9376{
9377 /* si->dst_reg = skb_shinfo(SKB); */
9378#ifdef NET_SKBUFF_DATA_USES_OFFSET
9379 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9380 BPF_REG_AX, skb_reg,
9381 offsetof(struct sk_buff, end));
9382 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9383 dst_reg, skb_reg,
9384 offsetof(struct sk_buff, head));
9385 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9386#else
9387 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9388 dst_reg, skb_reg,
9389 offsetof(struct sk_buff, end));
9390#endif
9391
9392 return insn;
9393}
9394
9395static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9396 const struct bpf_insn *si,
9397 struct bpf_insn *insn)
9398{
9399 __u8 value_reg = si->dst_reg;
9400 __u8 skb_reg = si->src_reg;
9401
9402#ifdef CONFIG_NET_XGRESS
9403 /* If the tstamp_type is read,
9404 * the bpf prog is aware the tstamp could have delivery time.
9405 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9406 */
9407 if (!prog->tstamp_type_access) {
9408 /* AX is needed because src_reg and dst_reg could be the same */
9409 __u8 tmp_reg = BPF_REG_AX;
9410
9411 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9412 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9413 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9414 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9415 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9416 /* skb->tc_at_ingress && skb->mono_delivery_time,
9417 * read 0 as the (rcv) timestamp.
9418 */
9419 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9420 *insn++ = BPF_JMP_A(1);
9421 }
9422#endif
9423
9424 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9425 offsetof(struct sk_buff, tstamp));
9426 return insn;
9427}
9428
9429static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9430 const struct bpf_insn *si,
9431 struct bpf_insn *insn)
9432{
9433 __u8 value_reg = si->src_reg;
9434 __u8 skb_reg = si->dst_reg;
9435
9436#ifdef CONFIG_NET_XGRESS
9437 /* If the tstamp_type is read,
9438 * the bpf prog is aware the tstamp could have delivery time.
9439 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9440 * Otherwise, writing at ingress will have to clear the
9441 * mono_delivery_time bit also.
9442 */
9443 if (!prog->tstamp_type_access) {
9444 __u8 tmp_reg = BPF_REG_AX;
9445
9446 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9447 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9448 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9449 /* goto <store> */
9450 *insn++ = BPF_JMP_A(2);
9451 /* <clear>: mono_delivery_time */
9452 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9453 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9454 }
9455#endif
9456
9457 /* <store>: skb->tstamp = tstamp */
9458 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9459 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9460 return insn;
9461}
9462
9463#define BPF_EMIT_STORE(size, si, off) \
9464 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9465 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9466
9467static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9468 const struct bpf_insn *si,
9469 struct bpf_insn *insn_buf,
9470 struct bpf_prog *prog, u32 *target_size)
9471{
9472 struct bpf_insn *insn = insn_buf;
9473 int off;
9474
9475 switch (si->off) {
9476 case offsetof(struct __sk_buff, len):
9477 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9478 bpf_target_off(struct sk_buff, len, 4,
9479 target_size));
9480 break;
9481
9482 case offsetof(struct __sk_buff, protocol):
9483 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9484 bpf_target_off(struct sk_buff, protocol, 2,
9485 target_size));
9486 break;
9487
9488 case offsetof(struct __sk_buff, vlan_proto):
9489 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9490 bpf_target_off(struct sk_buff, vlan_proto, 2,
9491 target_size));
9492 break;
9493
9494 case offsetof(struct __sk_buff, priority):
9495 if (type == BPF_WRITE)
9496 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9497 bpf_target_off(struct sk_buff, priority, 4,
9498 target_size));
9499 else
9500 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9501 bpf_target_off(struct sk_buff, priority, 4,
9502 target_size));
9503 break;
9504
9505 case offsetof(struct __sk_buff, ingress_ifindex):
9506 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9507 bpf_target_off(struct sk_buff, skb_iif, 4,
9508 target_size));
9509 break;
9510
9511 case offsetof(struct __sk_buff, ifindex):
9512 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9513 si->dst_reg, si->src_reg,
9514 offsetof(struct sk_buff, dev));
9515 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9516 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9517 bpf_target_off(struct net_device, ifindex, 4,
9518 target_size));
9519 break;
9520
9521 case offsetof(struct __sk_buff, hash):
9522 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9523 bpf_target_off(struct sk_buff, hash, 4,
9524 target_size));
9525 break;
9526
9527 case offsetof(struct __sk_buff, mark):
9528 if (type == BPF_WRITE)
9529 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9530 bpf_target_off(struct sk_buff, mark, 4,
9531 target_size));
9532 else
9533 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9534 bpf_target_off(struct sk_buff, mark, 4,
9535 target_size));
9536 break;
9537
9538 case offsetof(struct __sk_buff, pkt_type):
9539 *target_size = 1;
9540 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9541 PKT_TYPE_OFFSET);
9542 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9543#ifdef __BIG_ENDIAN_BITFIELD
9544 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9545#endif
9546 break;
9547
9548 case offsetof(struct __sk_buff, queue_mapping):
9549 if (type == BPF_WRITE) {
9550 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9551
9552 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9553 *insn++ = BPF_JMP_A(0); /* noop */
9554 break;
9555 }
9556
9557 if (BPF_CLASS(si->code) == BPF_STX)
9558 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9559 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9560 } else {
9561 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9562 bpf_target_off(struct sk_buff,
9563 queue_mapping,
9564 2, target_size));
9565 }
9566 break;
9567
9568 case offsetof(struct __sk_buff, vlan_present):
9569 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9570 bpf_target_off(struct sk_buff,
9571 vlan_all, 4, target_size));
9572 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9573 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9574 break;
9575
9576 case offsetof(struct __sk_buff, vlan_tci):
9577 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9578 bpf_target_off(struct sk_buff, vlan_tci, 2,
9579 target_size));
9580 break;
9581
9582 case offsetof(struct __sk_buff, cb[0]) ...
9583 offsetofend(struct __sk_buff, cb[4]) - 1:
9584 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9585 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9586 offsetof(struct qdisc_skb_cb, data)) %
9587 sizeof(__u64));
9588
9589 prog->cb_access = 1;
9590 off = si->off;
9591 off -= offsetof(struct __sk_buff, cb[0]);
9592 off += offsetof(struct sk_buff, cb);
9593 off += offsetof(struct qdisc_skb_cb, data);
9594 if (type == BPF_WRITE)
9595 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9596 else
9597 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9598 si->src_reg, off);
9599 break;
9600
9601 case offsetof(struct __sk_buff, tc_classid):
9602 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9603
9604 off = si->off;
9605 off -= offsetof(struct __sk_buff, tc_classid);
9606 off += offsetof(struct sk_buff, cb);
9607 off += offsetof(struct qdisc_skb_cb, tc_classid);
9608 *target_size = 2;
9609 if (type == BPF_WRITE)
9610 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9611 else
9612 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9613 si->src_reg, off);
9614 break;
9615
9616 case offsetof(struct __sk_buff, data):
9617 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9618 si->dst_reg, si->src_reg,
9619 offsetof(struct sk_buff, data));
9620 break;
9621
9622 case offsetof(struct __sk_buff, data_meta):
9623 off = si->off;
9624 off -= offsetof(struct __sk_buff, data_meta);
9625 off += offsetof(struct sk_buff, cb);
9626 off += offsetof(struct bpf_skb_data_end, data_meta);
9627 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9628 si->src_reg, off);
9629 break;
9630
9631 case offsetof(struct __sk_buff, data_end):
9632 off = si->off;
9633 off -= offsetof(struct __sk_buff, data_end);
9634 off += offsetof(struct sk_buff, cb);
9635 off += offsetof(struct bpf_skb_data_end, data_end);
9636 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9637 si->src_reg, off);
9638 break;
9639
9640 case offsetof(struct __sk_buff, tc_index):
9641#ifdef CONFIG_NET_SCHED
9642 if (type == BPF_WRITE)
9643 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9644 bpf_target_off(struct sk_buff, tc_index, 2,
9645 target_size));
9646 else
9647 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9648 bpf_target_off(struct sk_buff, tc_index, 2,
9649 target_size));
9650#else
9651 *target_size = 2;
9652 if (type == BPF_WRITE)
9653 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9654 else
9655 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9656#endif
9657 break;
9658
9659 case offsetof(struct __sk_buff, napi_id):
9660#if defined(CONFIG_NET_RX_BUSY_POLL)
9661 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9662 bpf_target_off(struct sk_buff, napi_id, 4,
9663 target_size));
9664 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9665 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9666#else
9667 *target_size = 4;
9668 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9669#endif
9670 break;
9671 case offsetof(struct __sk_buff, family):
9672 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9673
9674 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9675 si->dst_reg, si->src_reg,
9676 offsetof(struct sk_buff, sk));
9677 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9678 bpf_target_off(struct sock_common,
9679 skc_family,
9680 2, target_size));
9681 break;
9682 case offsetof(struct __sk_buff, remote_ip4):
9683 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9684
9685 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9686 si->dst_reg, si->src_reg,
9687 offsetof(struct sk_buff, sk));
9688 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9689 bpf_target_off(struct sock_common,
9690 skc_daddr,
9691 4, target_size));
9692 break;
9693 case offsetof(struct __sk_buff, local_ip4):
9694 BUILD_BUG_ON(sizeof_field(struct sock_common,
9695 skc_rcv_saddr) != 4);
9696
9697 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9698 si->dst_reg, si->src_reg,
9699 offsetof(struct sk_buff, sk));
9700 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9701 bpf_target_off(struct sock_common,
9702 skc_rcv_saddr,
9703 4, target_size));
9704 break;
9705 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9706 offsetof(struct __sk_buff, remote_ip6[3]):
9707#if IS_ENABLED(CONFIG_IPV6)
9708 BUILD_BUG_ON(sizeof_field(struct sock_common,
9709 skc_v6_daddr.s6_addr32[0]) != 4);
9710
9711 off = si->off;
9712 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9713
9714 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9715 si->dst_reg, si->src_reg,
9716 offsetof(struct sk_buff, sk));
9717 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9718 offsetof(struct sock_common,
9719 skc_v6_daddr.s6_addr32[0]) +
9720 off);
9721#else
9722 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9723#endif
9724 break;
9725 case offsetof(struct __sk_buff, local_ip6[0]) ...
9726 offsetof(struct __sk_buff, local_ip6[3]):
9727#if IS_ENABLED(CONFIG_IPV6)
9728 BUILD_BUG_ON(sizeof_field(struct sock_common,
9729 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9730
9731 off = si->off;
9732 off -= offsetof(struct __sk_buff, local_ip6[0]);
9733
9734 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9735 si->dst_reg, si->src_reg,
9736 offsetof(struct sk_buff, sk));
9737 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9738 offsetof(struct sock_common,
9739 skc_v6_rcv_saddr.s6_addr32[0]) +
9740 off);
9741#else
9742 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9743#endif
9744 break;
9745
9746 case offsetof(struct __sk_buff, remote_port):
9747 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9748
9749 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9750 si->dst_reg, si->src_reg,
9751 offsetof(struct sk_buff, sk));
9752 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9753 bpf_target_off(struct sock_common,
9754 skc_dport,
9755 2, target_size));
9756#ifndef __BIG_ENDIAN_BITFIELD
9757 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9758#endif
9759 break;
9760
9761 case offsetof(struct __sk_buff, local_port):
9762 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9763
9764 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9765 si->dst_reg, si->src_reg,
9766 offsetof(struct sk_buff, sk));
9767 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9768 bpf_target_off(struct sock_common,
9769 skc_num, 2, target_size));
9770 break;
9771
9772 case offsetof(struct __sk_buff, tstamp):
9773 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9774
9775 if (type == BPF_WRITE)
9776 insn = bpf_convert_tstamp_write(prog, si, insn);
9777 else
9778 insn = bpf_convert_tstamp_read(prog, si, insn);
9779 break;
9780
9781 case offsetof(struct __sk_buff, tstamp_type):
9782 insn = bpf_convert_tstamp_type_read(si, insn);
9783 break;
9784
9785 case offsetof(struct __sk_buff, gso_segs):
9786 insn = bpf_convert_shinfo_access(dst_reg: si->dst_reg, skb_reg: si->src_reg, insn);
9787 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9788 si->dst_reg, si->dst_reg,
9789 bpf_target_off(struct skb_shared_info,
9790 gso_segs, 2,
9791 target_size));
9792 break;
9793 case offsetof(struct __sk_buff, gso_size):
9794 insn = bpf_convert_shinfo_access(dst_reg: si->dst_reg, skb_reg: si->src_reg, insn);
9795 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9796 si->dst_reg, si->dst_reg,
9797 bpf_target_off(struct skb_shared_info,
9798 gso_size, 2,
9799 target_size));
9800 break;
9801 case offsetof(struct __sk_buff, wire_len):
9802 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9803
9804 off = si->off;
9805 off -= offsetof(struct __sk_buff, wire_len);
9806 off += offsetof(struct sk_buff, cb);
9807 off += offsetof(struct qdisc_skb_cb, pkt_len);
9808 *target_size = 4;
9809 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9810 break;
9811
9812 case offsetof(struct __sk_buff, sk):
9813 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9814 si->dst_reg, si->src_reg,
9815 offsetof(struct sk_buff, sk));
9816 break;
9817 case offsetof(struct __sk_buff, hwtstamp):
9818 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9819 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9820
9821 insn = bpf_convert_shinfo_access(dst_reg: si->dst_reg, skb_reg: si->src_reg, insn);
9822 *insn++ = BPF_LDX_MEM(BPF_DW,
9823 si->dst_reg, si->dst_reg,
9824 bpf_target_off(struct skb_shared_info,
9825 hwtstamps, 8,
9826 target_size));
9827 break;
9828 }
9829
9830 return insn - insn_buf;
9831}
9832
9833u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9834 const struct bpf_insn *si,
9835 struct bpf_insn *insn_buf,
9836 struct bpf_prog *prog, u32 *target_size)
9837{
9838 struct bpf_insn *insn = insn_buf;
9839 int off;
9840
9841 switch (si->off) {
9842 case offsetof(struct bpf_sock, bound_dev_if):
9843 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9844
9845 if (type == BPF_WRITE)
9846 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9847 offsetof(struct sock, sk_bound_dev_if));
9848 else
9849 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9850 offsetof(struct sock, sk_bound_dev_if));
9851 break;
9852
9853 case offsetof(struct bpf_sock, mark):
9854 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9855
9856 if (type == BPF_WRITE)
9857 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9858 offsetof(struct sock, sk_mark));
9859 else
9860 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9861 offsetof(struct sock, sk_mark));
9862 break;
9863
9864 case offsetof(struct bpf_sock, priority):
9865 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9866
9867 if (type == BPF_WRITE)
9868 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9869 offsetof(struct sock, sk_priority));
9870 else
9871 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9872 offsetof(struct sock, sk_priority));
9873 break;
9874
9875 case offsetof(struct bpf_sock, family):
9876 *insn++ = BPF_LDX_MEM(
9877 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9878 si->dst_reg, si->src_reg,
9879 bpf_target_off(struct sock_common,
9880 skc_family,
9881 sizeof_field(struct sock_common,
9882 skc_family),
9883 target_size));
9884 break;
9885
9886 case offsetof(struct bpf_sock, type):
9887 *insn++ = BPF_LDX_MEM(
9888 BPF_FIELD_SIZEOF(struct sock, sk_type),
9889 si->dst_reg, si->src_reg,
9890 bpf_target_off(struct sock, sk_type,
9891 sizeof_field(struct sock, sk_type),
9892 target_size));
9893 break;
9894
9895 case offsetof(struct bpf_sock, protocol):
9896 *insn++ = BPF_LDX_MEM(
9897 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9898 si->dst_reg, si->src_reg,
9899 bpf_target_off(struct sock, sk_protocol,
9900 sizeof_field(struct sock, sk_protocol),
9901 target_size));
9902 break;
9903
9904 case offsetof(struct bpf_sock, src_ip4):
9905 *insn++ = BPF_LDX_MEM(
9906 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9907 bpf_target_off(struct sock_common, skc_rcv_saddr,
9908 sizeof_field(struct sock_common,
9909 skc_rcv_saddr),
9910 target_size));
9911 break;
9912
9913 case offsetof(struct bpf_sock, dst_ip4):
9914 *insn++ = BPF_LDX_MEM(
9915 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9916 bpf_target_off(struct sock_common, skc_daddr,
9917 sizeof_field(struct sock_common,
9918 skc_daddr),
9919 target_size));
9920 break;
9921
9922 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9923#if IS_ENABLED(CONFIG_IPV6)
9924 off = si->off;
9925 off -= offsetof(struct bpf_sock, src_ip6[0]);
9926 *insn++ = BPF_LDX_MEM(
9927 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9928 bpf_target_off(
9929 struct sock_common,
9930 skc_v6_rcv_saddr.s6_addr32[0],
9931 sizeof_field(struct sock_common,
9932 skc_v6_rcv_saddr.s6_addr32[0]),
9933 target_size) + off);
9934#else
9935 (void)off;
9936 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9937#endif
9938 break;
9939
9940 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9941#if IS_ENABLED(CONFIG_IPV6)
9942 off = si->off;
9943 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9944 *insn++ = BPF_LDX_MEM(
9945 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9946 bpf_target_off(struct sock_common,
9947 skc_v6_daddr.s6_addr32[0],
9948 sizeof_field(struct sock_common,
9949 skc_v6_daddr.s6_addr32[0]),
9950 target_size) + off);
9951#else
9952 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9953 *target_size = 4;
9954#endif
9955 break;
9956
9957 case offsetof(struct bpf_sock, src_port):
9958 *insn++ = BPF_LDX_MEM(
9959 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9960 si->dst_reg, si->src_reg,
9961 bpf_target_off(struct sock_common, skc_num,
9962 sizeof_field(struct sock_common,
9963 skc_num),
9964 target_size));
9965 break;
9966
9967 case offsetof(struct bpf_sock, dst_port):
9968 *insn++ = BPF_LDX_MEM(
9969 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9970 si->dst_reg, si->src_reg,
9971 bpf_target_off(struct sock_common, skc_dport,
9972 sizeof_field(struct sock_common,
9973 skc_dport),
9974 target_size));
9975 break;
9976
9977 case offsetof(struct bpf_sock, state):
9978 *insn++ = BPF_LDX_MEM(
9979 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9980 si->dst_reg, si->src_reg,
9981 bpf_target_off(struct sock_common, skc_state,
9982 sizeof_field(struct sock_common,
9983 skc_state),
9984 target_size));
9985 break;
9986 case offsetof(struct bpf_sock, rx_queue_mapping):
9987#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9988 *insn++ = BPF_LDX_MEM(
9989 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9990 si->dst_reg, si->src_reg,
9991 bpf_target_off(struct sock, sk_rx_queue_mapping,
9992 sizeof_field(struct sock,
9993 sk_rx_queue_mapping),
9994 target_size));
9995 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9996 1);
9997 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9998#else
9999 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10000 *target_size = 2;
10001#endif
10002 break;
10003 }
10004
10005 return insn - insn_buf;
10006}
10007
10008static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10009 const struct bpf_insn *si,
10010 struct bpf_insn *insn_buf,
10011 struct bpf_prog *prog, u32 *target_size)
10012{
10013 struct bpf_insn *insn = insn_buf;
10014
10015 switch (si->off) {
10016 case offsetof(struct __sk_buff, ifindex):
10017 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10018 si->dst_reg, si->src_reg,
10019 offsetof(struct sk_buff, dev));
10020 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10021 bpf_target_off(struct net_device, ifindex, 4,
10022 target_size));
10023 break;
10024 default:
10025 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10026 target_size);
10027 }
10028
10029 return insn - insn_buf;
10030}
10031
10032static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10033 const struct bpf_insn *si,
10034 struct bpf_insn *insn_buf,
10035 struct bpf_prog *prog, u32 *target_size)
10036{
10037 struct bpf_insn *insn = insn_buf;
10038
10039 switch (si->off) {
10040 case offsetof(struct xdp_md, data):
10041 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10042 si->dst_reg, si->src_reg,
10043 offsetof(struct xdp_buff, data));
10044 break;
10045 case offsetof(struct xdp_md, data_meta):
10046 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10047 si->dst_reg, si->src_reg,
10048 offsetof(struct xdp_buff, data_meta));
10049 break;
10050 case offsetof(struct xdp_md, data_end):
10051 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10052 si->dst_reg, si->src_reg,
10053 offsetof(struct xdp_buff, data_end));
10054 break;
10055 case offsetof(struct xdp_md, ingress_ifindex):
10056 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10057 si->dst_reg, si->src_reg,
10058 offsetof(struct xdp_buff, rxq));
10059 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10060 si->dst_reg, si->dst_reg,
10061 offsetof(struct xdp_rxq_info, dev));
10062 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10063 offsetof(struct net_device, ifindex));
10064 break;
10065 case offsetof(struct xdp_md, rx_queue_index):
10066 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10067 si->dst_reg, si->src_reg,
10068 offsetof(struct xdp_buff, rxq));
10069 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10070 offsetof(struct xdp_rxq_info,
10071 queue_index));
10072 break;
10073 case offsetof(struct xdp_md, egress_ifindex):
10074 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10075 si->dst_reg, si->src_reg,
10076 offsetof(struct xdp_buff, txq));
10077 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10078 si->dst_reg, si->dst_reg,
10079 offsetof(struct xdp_txq_info, dev));
10080 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10081 offsetof(struct net_device, ifindex));
10082 break;
10083 }
10084
10085 return insn - insn_buf;
10086}
10087
10088/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10089 * context Structure, F is Field in context structure that contains a pointer
10090 * to Nested Structure of type NS that has the field NF.
10091 *
10092 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10093 * sure that SIZE is not greater than actual size of S.F.NF.
10094 *
10095 * If offset OFF is provided, the load happens from that offset relative to
10096 * offset of NF.
10097 */
10098#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10099 do { \
10100 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10101 si->src_reg, offsetof(S, F)); \
10102 *insn++ = BPF_LDX_MEM( \
10103 SIZE, si->dst_reg, si->dst_reg, \
10104 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10105 target_size) \
10106 + OFF); \
10107 } while (0)
10108
10109#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10110 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10111 BPF_FIELD_SIZEOF(NS, NF), 0)
10112
10113/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10114 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10115 *
10116 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10117 * "register" since two registers available in convert_ctx_access are not
10118 * enough: we can't override neither SRC, since it contains value to store, nor
10119 * DST since it contains pointer to context that may be used by later
10120 * instructions. But we need a temporary place to save pointer to nested
10121 * structure whose field we want to store to.
10122 */
10123#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10124 do { \
10125 int tmp_reg = BPF_REG_9; \
10126 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10127 --tmp_reg; \
10128 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10129 --tmp_reg; \
10130 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10131 offsetof(S, TF)); \
10132 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10133 si->dst_reg, offsetof(S, F)); \
10134 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10135 tmp_reg, si->src_reg, \
10136 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10137 target_size) \
10138 + OFF, \
10139 si->imm); \
10140 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10141 offsetof(S, TF)); \
10142 } while (0)
10143
10144#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10145 TF) \
10146 do { \
10147 if (type == BPF_WRITE) { \
10148 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10149 OFF, TF); \
10150 } else { \
10151 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10152 S, NS, F, NF, SIZE, OFF); \
10153 } \
10154 } while (0)
10155
10156#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10157 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10158 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10159
10160static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10161 const struct bpf_insn *si,
10162 struct bpf_insn *insn_buf,
10163 struct bpf_prog *prog, u32 *target_size)
10164{
10165 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10166 struct bpf_insn *insn = insn_buf;
10167
10168 switch (si->off) {
10169 case offsetof(struct bpf_sock_addr, user_family):
10170 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10171 struct sockaddr, uaddr, sa_family);
10172 break;
10173
10174 case offsetof(struct bpf_sock_addr, user_ip4):
10175 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10176 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10177 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10178 break;
10179
10180 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10181 off = si->off;
10182 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10183 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10184 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10185 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10186 tmp_reg);
10187 break;
10188
10189 case offsetof(struct bpf_sock_addr, user_port):
10190 /* To get port we need to know sa_family first and then treat
10191 * sockaddr as either sockaddr_in or sockaddr_in6.
10192 * Though we can simplify since port field has same offset and
10193 * size in both structures.
10194 * Here we check this invariant and use just one of the
10195 * structures if it's true.
10196 */
10197 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10198 offsetof(struct sockaddr_in6, sin6_port));
10199 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10200 sizeof_field(struct sockaddr_in6, sin6_port));
10201 /* Account for sin6_port being smaller than user_port. */
10202 port_size = min(port_size, BPF_LDST_BYTES(si));
10203 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10204 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10205 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10206 break;
10207
10208 case offsetof(struct bpf_sock_addr, family):
10209 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10210 struct sock, sk, sk_family);
10211 break;
10212
10213 case offsetof(struct bpf_sock_addr, type):
10214 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10215 struct sock, sk, sk_type);
10216 break;
10217
10218 case offsetof(struct bpf_sock_addr, protocol):
10219 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10220 struct sock, sk, sk_protocol);
10221 break;
10222
10223 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10224 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10225 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10226 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10227 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10228 break;
10229
10230 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10231 msg_src_ip6[3]):
10232 off = si->off;
10233 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10234 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10235 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10236 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10237 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10238 break;
10239 case offsetof(struct bpf_sock_addr, sk):
10240 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10241 si->dst_reg, si->src_reg,
10242 offsetof(struct bpf_sock_addr_kern, sk));
10243 break;
10244 }
10245
10246 return insn - insn_buf;
10247}
10248
10249static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10250 const struct bpf_insn *si,
10251 struct bpf_insn *insn_buf,
10252 struct bpf_prog *prog,
10253 u32 *target_size)
10254{
10255 struct bpf_insn *insn = insn_buf;
10256 int off;
10257
10258/* Helper macro for adding read access to tcp_sock or sock fields. */
10259#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10260 do { \
10261 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10262 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10263 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10264 if (si->dst_reg == reg || si->src_reg == reg) \
10265 reg--; \
10266 if (si->dst_reg == reg || si->src_reg == reg) \
10267 reg--; \
10268 if (si->dst_reg == si->src_reg) { \
10269 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10270 offsetof(struct bpf_sock_ops_kern, \
10271 temp)); \
10272 fullsock_reg = reg; \
10273 jmp += 2; \
10274 } \
10275 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10276 struct bpf_sock_ops_kern, \
10277 is_fullsock), \
10278 fullsock_reg, si->src_reg, \
10279 offsetof(struct bpf_sock_ops_kern, \
10280 is_fullsock)); \
10281 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10282 if (si->dst_reg == si->src_reg) \
10283 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10284 offsetof(struct bpf_sock_ops_kern, \
10285 temp)); \
10286 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10287 struct bpf_sock_ops_kern, sk),\
10288 si->dst_reg, si->src_reg, \
10289 offsetof(struct bpf_sock_ops_kern, sk));\
10290 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10291 OBJ_FIELD), \
10292 si->dst_reg, si->dst_reg, \
10293 offsetof(OBJ, OBJ_FIELD)); \
10294 if (si->dst_reg == si->src_reg) { \
10295 *insn++ = BPF_JMP_A(1); \
10296 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10297 offsetof(struct bpf_sock_ops_kern, \
10298 temp)); \
10299 } \
10300 } while (0)
10301
10302#define SOCK_OPS_GET_SK() \
10303 do { \
10304 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10305 if (si->dst_reg == reg || si->src_reg == reg) \
10306 reg--; \
10307 if (si->dst_reg == reg || si->src_reg == reg) \
10308 reg--; \
10309 if (si->dst_reg == si->src_reg) { \
10310 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10311 offsetof(struct bpf_sock_ops_kern, \
10312 temp)); \
10313 fullsock_reg = reg; \
10314 jmp += 2; \
10315 } \
10316 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10317 struct bpf_sock_ops_kern, \
10318 is_fullsock), \
10319 fullsock_reg, si->src_reg, \
10320 offsetof(struct bpf_sock_ops_kern, \
10321 is_fullsock)); \
10322 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10323 if (si->dst_reg == si->src_reg) \
10324 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10325 offsetof(struct bpf_sock_ops_kern, \
10326 temp)); \
10327 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10328 struct bpf_sock_ops_kern, sk),\
10329 si->dst_reg, si->src_reg, \
10330 offsetof(struct bpf_sock_ops_kern, sk));\
10331 if (si->dst_reg == si->src_reg) { \
10332 *insn++ = BPF_JMP_A(1); \
10333 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10334 offsetof(struct bpf_sock_ops_kern, \
10335 temp)); \
10336 } \
10337 } while (0)
10338
10339#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10340 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10341
10342/* Helper macro for adding write access to tcp_sock or sock fields.
10343 * The macro is called with two registers, dst_reg which contains a pointer
10344 * to ctx (context) and src_reg which contains the value that should be
10345 * stored. However, we need an additional register since we cannot overwrite
10346 * dst_reg because it may be used later in the program.
10347 * Instead we "borrow" one of the other register. We first save its value
10348 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10349 * it at the end of the macro.
10350 */
10351#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10352 do { \
10353 int reg = BPF_REG_9; \
10354 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10355 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10356 if (si->dst_reg == reg || si->src_reg == reg) \
10357 reg--; \
10358 if (si->dst_reg == reg || si->src_reg == reg) \
10359 reg--; \
10360 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10361 offsetof(struct bpf_sock_ops_kern, \
10362 temp)); \
10363 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10364 struct bpf_sock_ops_kern, \
10365 is_fullsock), \
10366 reg, si->dst_reg, \
10367 offsetof(struct bpf_sock_ops_kern, \
10368 is_fullsock)); \
10369 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10370 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10371 struct bpf_sock_ops_kern, sk),\
10372 reg, si->dst_reg, \
10373 offsetof(struct bpf_sock_ops_kern, sk));\
10374 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10375 BPF_MEM | BPF_CLASS(si->code), \
10376 reg, si->src_reg, \
10377 offsetof(OBJ, OBJ_FIELD), \
10378 si->imm); \
10379 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10380 offsetof(struct bpf_sock_ops_kern, \
10381 temp)); \
10382 } while (0)
10383
10384#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10385 do { \
10386 if (TYPE == BPF_WRITE) \
10387 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10388 else \
10389 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10390 } while (0)
10391
10392 switch (si->off) {
10393 case offsetof(struct bpf_sock_ops, op):
10394 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10395 op),
10396 si->dst_reg, si->src_reg,
10397 offsetof(struct bpf_sock_ops_kern, op));
10398 break;
10399
10400 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10401 offsetof(struct bpf_sock_ops, replylong[3]):
10402 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10403 sizeof_field(struct bpf_sock_ops_kern, reply));
10404 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10405 sizeof_field(struct bpf_sock_ops_kern, replylong));
10406 off = si->off;
10407 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10408 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10409 if (type == BPF_WRITE)
10410 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10411 else
10412 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10413 off);
10414 break;
10415
10416 case offsetof(struct bpf_sock_ops, family):
10417 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10418
10419 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10420 struct bpf_sock_ops_kern, sk),
10421 si->dst_reg, si->src_reg,
10422 offsetof(struct bpf_sock_ops_kern, sk));
10423 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10424 offsetof(struct sock_common, skc_family));
10425 break;
10426
10427 case offsetof(struct bpf_sock_ops, remote_ip4):
10428 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10429
10430 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10431 struct bpf_sock_ops_kern, sk),
10432 si->dst_reg, si->src_reg,
10433 offsetof(struct bpf_sock_ops_kern, sk));
10434 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10435 offsetof(struct sock_common, skc_daddr));
10436 break;
10437
10438 case offsetof(struct bpf_sock_ops, local_ip4):
10439 BUILD_BUG_ON(sizeof_field(struct sock_common,
10440 skc_rcv_saddr) != 4);
10441
10442 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10443 struct bpf_sock_ops_kern, sk),
10444 si->dst_reg, si->src_reg,
10445 offsetof(struct bpf_sock_ops_kern, sk));
10446 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10447 offsetof(struct sock_common,
10448 skc_rcv_saddr));
10449 break;
10450
10451 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10452 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10453#if IS_ENABLED(CONFIG_IPV6)
10454 BUILD_BUG_ON(sizeof_field(struct sock_common,
10455 skc_v6_daddr.s6_addr32[0]) != 4);
10456
10457 off = si->off;
10458 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10459 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10460 struct bpf_sock_ops_kern, sk),
10461 si->dst_reg, si->src_reg,
10462 offsetof(struct bpf_sock_ops_kern, sk));
10463 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10464 offsetof(struct sock_common,
10465 skc_v6_daddr.s6_addr32[0]) +
10466 off);
10467#else
10468 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10469#endif
10470 break;
10471
10472 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10473 offsetof(struct bpf_sock_ops, local_ip6[3]):
10474#if IS_ENABLED(CONFIG_IPV6)
10475 BUILD_BUG_ON(sizeof_field(struct sock_common,
10476 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10477
10478 off = si->off;
10479 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10480 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10481 struct bpf_sock_ops_kern, sk),
10482 si->dst_reg, si->src_reg,
10483 offsetof(struct bpf_sock_ops_kern, sk));
10484 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10485 offsetof(struct sock_common,
10486 skc_v6_rcv_saddr.s6_addr32[0]) +
10487 off);
10488#else
10489 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10490#endif
10491 break;
10492
10493 case offsetof(struct bpf_sock_ops, remote_port):
10494 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10495
10496 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10497 struct bpf_sock_ops_kern, sk),
10498 si->dst_reg, si->src_reg,
10499 offsetof(struct bpf_sock_ops_kern, sk));
10500 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10501 offsetof(struct sock_common, skc_dport));
10502#ifndef __BIG_ENDIAN_BITFIELD
10503 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10504#endif
10505 break;
10506
10507 case offsetof(struct bpf_sock_ops, local_port):
10508 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10509
10510 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10511 struct bpf_sock_ops_kern, sk),
10512 si->dst_reg, si->src_reg,
10513 offsetof(struct bpf_sock_ops_kern, sk));
10514 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10515 offsetof(struct sock_common, skc_num));
10516 break;
10517
10518 case offsetof(struct bpf_sock_ops, is_fullsock):
10519 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10520 struct bpf_sock_ops_kern,
10521 is_fullsock),
10522 si->dst_reg, si->src_reg,
10523 offsetof(struct bpf_sock_ops_kern,
10524 is_fullsock));
10525 break;
10526
10527 case offsetof(struct bpf_sock_ops, state):
10528 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10529
10530 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531 struct bpf_sock_ops_kern, sk),
10532 si->dst_reg, si->src_reg,
10533 offsetof(struct bpf_sock_ops_kern, sk));
10534 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10535 offsetof(struct sock_common, skc_state));
10536 break;
10537
10538 case offsetof(struct bpf_sock_ops, rtt_min):
10539 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10540 sizeof(struct minmax));
10541 BUILD_BUG_ON(sizeof(struct minmax) <
10542 sizeof(struct minmax_sample));
10543
10544 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10545 struct bpf_sock_ops_kern, sk),
10546 si->dst_reg, si->src_reg,
10547 offsetof(struct bpf_sock_ops_kern, sk));
10548 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10549 offsetof(struct tcp_sock, rtt_min) +
10550 sizeof_field(struct minmax_sample, t));
10551 break;
10552
10553 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10554 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10555 struct tcp_sock);
10556 break;
10557
10558 case offsetof(struct bpf_sock_ops, sk_txhash):
10559 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10560 struct sock, type);
10561 break;
10562 case offsetof(struct bpf_sock_ops, snd_cwnd):
10563 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10564 break;
10565 case offsetof(struct bpf_sock_ops, srtt_us):
10566 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10567 break;
10568 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10569 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10570 break;
10571 case offsetof(struct bpf_sock_ops, rcv_nxt):
10572 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10573 break;
10574 case offsetof(struct bpf_sock_ops, snd_nxt):
10575 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10576 break;
10577 case offsetof(struct bpf_sock_ops, snd_una):
10578 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10579 break;
10580 case offsetof(struct bpf_sock_ops, mss_cache):
10581 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10582 break;
10583 case offsetof(struct bpf_sock_ops, ecn_flags):
10584 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10585 break;
10586 case offsetof(struct bpf_sock_ops, rate_delivered):
10587 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10588 break;
10589 case offsetof(struct bpf_sock_ops, rate_interval_us):
10590 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10591 break;
10592 case offsetof(struct bpf_sock_ops, packets_out):
10593 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10594 break;
10595 case offsetof(struct bpf_sock_ops, retrans_out):
10596 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10597 break;
10598 case offsetof(struct bpf_sock_ops, total_retrans):
10599 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10600 break;
10601 case offsetof(struct bpf_sock_ops, segs_in):
10602 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10603 break;
10604 case offsetof(struct bpf_sock_ops, data_segs_in):
10605 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10606 break;
10607 case offsetof(struct bpf_sock_ops, segs_out):
10608 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10609 break;
10610 case offsetof(struct bpf_sock_ops, data_segs_out):
10611 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10612 break;
10613 case offsetof(struct bpf_sock_ops, lost_out):
10614 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10615 break;
10616 case offsetof(struct bpf_sock_ops, sacked_out):
10617 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10618 break;
10619 case offsetof(struct bpf_sock_ops, bytes_received):
10620 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10621 break;
10622 case offsetof(struct bpf_sock_ops, bytes_acked):
10623 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10624 break;
10625 case offsetof(struct bpf_sock_ops, sk):
10626 SOCK_OPS_GET_SK();
10627 break;
10628 case offsetof(struct bpf_sock_ops, skb_data_end):
10629 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10630 skb_data_end),
10631 si->dst_reg, si->src_reg,
10632 offsetof(struct bpf_sock_ops_kern,
10633 skb_data_end));
10634 break;
10635 case offsetof(struct bpf_sock_ops, skb_data):
10636 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10637 skb),
10638 si->dst_reg, si->src_reg,
10639 offsetof(struct bpf_sock_ops_kern,
10640 skb));
10641 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10642 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10643 si->dst_reg, si->dst_reg,
10644 offsetof(struct sk_buff, data));
10645 break;
10646 case offsetof(struct bpf_sock_ops, skb_len):
10647 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10648 skb),
10649 si->dst_reg, si->src_reg,
10650 offsetof(struct bpf_sock_ops_kern,
10651 skb));
10652 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10653 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10654 si->dst_reg, si->dst_reg,
10655 offsetof(struct sk_buff, len));
10656 break;
10657 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10658 off = offsetof(struct sk_buff, cb);
10659 off += offsetof(struct tcp_skb_cb, tcp_flags);
10660 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10661 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10662 skb),
10663 si->dst_reg, si->src_reg,
10664 offsetof(struct bpf_sock_ops_kern,
10665 skb));
10666 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10667 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10668 tcp_flags),
10669 si->dst_reg, si->dst_reg, off);
10670 break;
10671 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10672 struct bpf_insn *jmp_on_null_skb;
10673
10674 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10675 skb),
10676 si->dst_reg, si->src_reg,
10677 offsetof(struct bpf_sock_ops_kern,
10678 skb));
10679 /* Reserve one insn to test skb == NULL */
10680 jmp_on_null_skb = insn++;
10681 insn = bpf_convert_shinfo_access(dst_reg: si->dst_reg, skb_reg: si->dst_reg, insn);
10682 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10683 bpf_target_off(struct skb_shared_info,
10684 hwtstamps, 8,
10685 target_size));
10686 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10687 insn - jmp_on_null_skb - 1);
10688 break;
10689 }
10690 }
10691 return insn - insn_buf;
10692}
10693
10694/* data_end = skb->data + skb_headlen() */
10695static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10696 struct bpf_insn *insn)
10697{
10698 int reg;
10699 int temp_reg_off = offsetof(struct sk_buff, cb) +
10700 offsetof(struct sk_skb_cb, temp_reg);
10701
10702 if (si->src_reg == si->dst_reg) {
10703 /* We need an extra register, choose and save a register. */
10704 reg = BPF_REG_9;
10705 if (si->src_reg == reg || si->dst_reg == reg)
10706 reg--;
10707 if (si->src_reg == reg || si->dst_reg == reg)
10708 reg--;
10709 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10710 } else {
10711 reg = si->dst_reg;
10712 }
10713
10714 /* reg = skb->data */
10715 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10716 reg, si->src_reg,
10717 offsetof(struct sk_buff, data));
10718 /* AX = skb->len */
10719 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10720 BPF_REG_AX, si->src_reg,
10721 offsetof(struct sk_buff, len));
10722 /* reg = skb->data + skb->len */
10723 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10724 /* AX = skb->data_len */
10725 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10726 BPF_REG_AX, si->src_reg,
10727 offsetof(struct sk_buff, data_len));
10728
10729 /* reg = skb->data + skb->len - skb->data_len */
10730 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10731
10732 if (si->src_reg == si->dst_reg) {
10733 /* Restore the saved register */
10734 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10735 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10736 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10737 }
10738
10739 return insn;
10740}
10741
10742static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10743 const struct bpf_insn *si,
10744 struct bpf_insn *insn_buf,
10745 struct bpf_prog *prog, u32 *target_size)
10746{
10747 struct bpf_insn *insn = insn_buf;
10748 int off;
10749
10750 switch (si->off) {
10751 case offsetof(struct __sk_buff, data_end):
10752 insn = bpf_convert_data_end_access(si, insn);
10753 break;
10754 case offsetof(struct __sk_buff, cb[0]) ...
10755 offsetofend(struct __sk_buff, cb[4]) - 1:
10756 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10757 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10758 offsetof(struct sk_skb_cb, data)) %
10759 sizeof(__u64));
10760
10761 prog->cb_access = 1;
10762 off = si->off;
10763 off -= offsetof(struct __sk_buff, cb[0]);
10764 off += offsetof(struct sk_buff, cb);
10765 off += offsetof(struct sk_skb_cb, data);
10766 if (type == BPF_WRITE)
10767 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10768 else
10769 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10770 si->src_reg, off);
10771 break;
10772
10773
10774 default:
10775 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10776 target_size);
10777 }
10778
10779 return insn - insn_buf;
10780}
10781
10782static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10783 const struct bpf_insn *si,
10784 struct bpf_insn *insn_buf,
10785 struct bpf_prog *prog, u32 *target_size)
10786{
10787 struct bpf_insn *insn = insn_buf;
10788#if IS_ENABLED(CONFIG_IPV6)
10789 int off;
10790#endif
10791
10792 /* convert ctx uses the fact sg element is first in struct */
10793 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10794
10795 switch (si->off) {
10796 case offsetof(struct sk_msg_md, data):
10797 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10798 si->dst_reg, si->src_reg,
10799 offsetof(struct sk_msg, data));
10800 break;
10801 case offsetof(struct sk_msg_md, data_end):
10802 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10803 si->dst_reg, si->src_reg,
10804 offsetof(struct sk_msg, data_end));
10805 break;
10806 case offsetof(struct sk_msg_md, family):
10807 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10808
10809 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10810 struct sk_msg, sk),
10811 si->dst_reg, si->src_reg,
10812 offsetof(struct sk_msg, sk));
10813 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10814 offsetof(struct sock_common, skc_family));
10815 break;
10816
10817 case offsetof(struct sk_msg_md, remote_ip4):
10818 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10819
10820 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10821 struct sk_msg, sk),
10822 si->dst_reg, si->src_reg,
10823 offsetof(struct sk_msg, sk));
10824 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10825 offsetof(struct sock_common, skc_daddr));
10826 break;
10827
10828 case offsetof(struct sk_msg_md, local_ip4):
10829 BUILD_BUG_ON(sizeof_field(struct sock_common,
10830 skc_rcv_saddr) != 4);
10831
10832 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10833 struct sk_msg, sk),
10834 si->dst_reg, si->src_reg,
10835 offsetof(struct sk_msg, sk));
10836 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10837 offsetof(struct sock_common,
10838 skc_rcv_saddr));
10839 break;
10840
10841 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10842 offsetof(struct sk_msg_md, remote_ip6[3]):
10843#if IS_ENABLED(CONFIG_IPV6)
10844 BUILD_BUG_ON(sizeof_field(struct sock_common,
10845 skc_v6_daddr.s6_addr32[0]) != 4);
10846
10847 off = si->off;
10848 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10849 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10850 struct sk_msg, sk),
10851 si->dst_reg, si->src_reg,
10852 offsetof(struct sk_msg, sk));
10853 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10854 offsetof(struct sock_common,
10855 skc_v6_daddr.s6_addr32[0]) +
10856 off);
10857#else
10858 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10859#endif
10860 break;
10861
10862 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10863 offsetof(struct sk_msg_md, local_ip6[3]):
10864#if IS_ENABLED(CONFIG_IPV6)
10865 BUILD_BUG_ON(sizeof_field(struct sock_common,
10866 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10867
10868 off = si->off;
10869 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10870 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10871 struct sk_msg, sk),
10872 si->dst_reg, si->src_reg,
10873 offsetof(struct sk_msg, sk));
10874 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10875 offsetof(struct sock_common,
10876 skc_v6_rcv_saddr.s6_addr32[0]) +
10877 off);
10878#else
10879 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10880#endif
10881 break;
10882
10883 case offsetof(struct sk_msg_md, remote_port):
10884 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10885
10886 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10887 struct sk_msg, sk),
10888 si->dst_reg, si->src_reg,
10889 offsetof(struct sk_msg, sk));
10890 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10891 offsetof(struct sock_common, skc_dport));
10892#ifndef __BIG_ENDIAN_BITFIELD
10893 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10894#endif
10895 break;
10896
10897 case offsetof(struct sk_msg_md, local_port):
10898 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10899
10900 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10901 struct sk_msg, sk),
10902 si->dst_reg, si->src_reg,
10903 offsetof(struct sk_msg, sk));
10904 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10905 offsetof(struct sock_common, skc_num));
10906 break;
10907
10908 case offsetof(struct sk_msg_md, size):
10909 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10910 si->dst_reg, si->src_reg,
10911 offsetof(struct sk_msg_sg, size));
10912 break;
10913
10914 case offsetof(struct sk_msg_md, sk):
10915 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10916 si->dst_reg, si->src_reg,
10917 offsetof(struct sk_msg, sk));
10918 break;
10919 }
10920
10921 return insn - insn_buf;
10922}
10923
10924const struct bpf_verifier_ops sk_filter_verifier_ops = {
10925 .get_func_proto = sk_filter_func_proto,
10926 .is_valid_access = sk_filter_is_valid_access,
10927 .convert_ctx_access = bpf_convert_ctx_access,
10928 .gen_ld_abs = bpf_gen_ld_abs,
10929};
10930
10931const struct bpf_prog_ops sk_filter_prog_ops = {
10932 .test_run = bpf_prog_test_run_skb,
10933};
10934
10935const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10936 .get_func_proto = tc_cls_act_func_proto,
10937 .is_valid_access = tc_cls_act_is_valid_access,
10938 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10939 .gen_prologue = tc_cls_act_prologue,
10940 .gen_ld_abs = bpf_gen_ld_abs,
10941 .btf_struct_access = tc_cls_act_btf_struct_access,
10942};
10943
10944const struct bpf_prog_ops tc_cls_act_prog_ops = {
10945 .test_run = bpf_prog_test_run_skb,
10946};
10947
10948const struct bpf_verifier_ops xdp_verifier_ops = {
10949 .get_func_proto = xdp_func_proto,
10950 .is_valid_access = xdp_is_valid_access,
10951 .convert_ctx_access = xdp_convert_ctx_access,
10952 .gen_prologue = bpf_noop_prologue,
10953 .btf_struct_access = xdp_btf_struct_access,
10954};
10955
10956const struct bpf_prog_ops xdp_prog_ops = {
10957 .test_run = bpf_prog_test_run_xdp,
10958};
10959
10960const struct bpf_verifier_ops cg_skb_verifier_ops = {
10961 .get_func_proto = cg_skb_func_proto,
10962 .is_valid_access = cg_skb_is_valid_access,
10963 .convert_ctx_access = bpf_convert_ctx_access,
10964};
10965
10966const struct bpf_prog_ops cg_skb_prog_ops = {
10967 .test_run = bpf_prog_test_run_skb,
10968};
10969
10970const struct bpf_verifier_ops lwt_in_verifier_ops = {
10971 .get_func_proto = lwt_in_func_proto,
10972 .is_valid_access = lwt_is_valid_access,
10973 .convert_ctx_access = bpf_convert_ctx_access,
10974};
10975
10976const struct bpf_prog_ops lwt_in_prog_ops = {
10977 .test_run = bpf_prog_test_run_skb,
10978};
10979
10980const struct bpf_verifier_ops lwt_out_verifier_ops = {
10981 .get_func_proto = lwt_out_func_proto,
10982 .is_valid_access = lwt_is_valid_access,
10983 .convert_ctx_access = bpf_convert_ctx_access,
10984};
10985
10986const struct bpf_prog_ops lwt_out_prog_ops = {
10987 .test_run = bpf_prog_test_run_skb,
10988};
10989
10990const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10991 .get_func_proto = lwt_xmit_func_proto,
10992 .is_valid_access = lwt_is_valid_access,
10993 .convert_ctx_access = bpf_convert_ctx_access,
10994 .gen_prologue = tc_cls_act_prologue,
10995};
10996
10997const struct bpf_prog_ops lwt_xmit_prog_ops = {
10998 .test_run = bpf_prog_test_run_skb,
10999};
11000
11001const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11002 .get_func_proto = lwt_seg6local_func_proto,
11003 .is_valid_access = lwt_is_valid_access,
11004 .convert_ctx_access = bpf_convert_ctx_access,
11005};
11006
11007const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11008 .test_run = bpf_prog_test_run_skb,
11009};
11010
11011const struct bpf_verifier_ops cg_sock_verifier_ops = {
11012 .get_func_proto = sock_filter_func_proto,
11013 .is_valid_access = sock_filter_is_valid_access,
11014 .convert_ctx_access = bpf_sock_convert_ctx_access,
11015};
11016
11017const struct bpf_prog_ops cg_sock_prog_ops = {
11018};
11019
11020const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11021 .get_func_proto = sock_addr_func_proto,
11022 .is_valid_access = sock_addr_is_valid_access,
11023 .convert_ctx_access = sock_addr_convert_ctx_access,
11024};
11025
11026const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11027};
11028
11029const struct bpf_verifier_ops sock_ops_verifier_ops = {
11030 .get_func_proto = sock_ops_func_proto,
11031 .is_valid_access = sock_ops_is_valid_access,
11032 .convert_ctx_access = sock_ops_convert_ctx_access,
11033};
11034
11035const struct bpf_prog_ops sock_ops_prog_ops = {
11036};
11037
11038const struct bpf_verifier_ops sk_skb_verifier_ops = {
11039 .get_func_proto = sk_skb_func_proto,
11040 .is_valid_access = sk_skb_is_valid_access,
11041 .convert_ctx_access = sk_skb_convert_ctx_access,
11042 .gen_prologue = sk_skb_prologue,
11043};
11044
11045const struct bpf_prog_ops sk_skb_prog_ops = {
11046};
11047
11048const struct bpf_verifier_ops sk_msg_verifier_ops = {
11049 .get_func_proto = sk_msg_func_proto,
11050 .is_valid_access = sk_msg_is_valid_access,
11051 .convert_ctx_access = sk_msg_convert_ctx_access,
11052 .gen_prologue = bpf_noop_prologue,
11053};
11054
11055const struct bpf_prog_ops sk_msg_prog_ops = {
11056};
11057
11058const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11059 .get_func_proto = flow_dissector_func_proto,
11060 .is_valid_access = flow_dissector_is_valid_access,
11061 .convert_ctx_access = flow_dissector_convert_ctx_access,
11062};
11063
11064const struct bpf_prog_ops flow_dissector_prog_ops = {
11065 .test_run = bpf_prog_test_run_flow_dissector,
11066};
11067
11068int sk_detach_filter(struct sock *sk)
11069{
11070 int ret = -ENOENT;
11071 struct sk_filter *filter;
11072
11073 if (sock_flag(sk, flag: SOCK_FILTER_LOCKED))
11074 return -EPERM;
11075
11076 filter = rcu_dereference_protected(sk->sk_filter,
11077 lockdep_sock_is_held(sk));
11078 if (filter) {
11079 RCU_INIT_POINTER(sk->sk_filter, NULL);
11080 sk_filter_uncharge(sk, fp: filter);
11081 ret = 0;
11082 }
11083
11084 return ret;
11085}
11086EXPORT_SYMBOL_GPL(sk_detach_filter);
11087
11088int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11089{
11090 struct sock_fprog_kern *fprog;
11091 struct sk_filter *filter;
11092 int ret = 0;
11093
11094 sockopt_lock_sock(sk);
11095 filter = rcu_dereference_protected(sk->sk_filter,
11096 lockdep_sock_is_held(sk));
11097 if (!filter)
11098 goto out;
11099
11100 /* We're copying the filter that has been originally attached,
11101 * so no conversion/decode needed anymore. eBPF programs that
11102 * have no original program cannot be dumped through this.
11103 */
11104 ret = -EACCES;
11105 fprog = filter->prog->orig_prog;
11106 if (!fprog)
11107 goto out;
11108
11109 ret = fprog->len;
11110 if (!len)
11111 /* User space only enquires number of filter blocks. */
11112 goto out;
11113
11114 ret = -EINVAL;
11115 if (len < fprog->len)
11116 goto out;
11117
11118 ret = -EFAULT;
11119 if (copy_to_sockptr(dst: optval, src: fprog->filter, bpf_classic_proglen(fprog)))
11120 goto out;
11121
11122 /* Instead of bytes, the API requests to return the number
11123 * of filter blocks.
11124 */
11125 ret = fprog->len;
11126out:
11127 sockopt_release_sock(sk);
11128 return ret;
11129}
11130
11131#ifdef CONFIG_INET
11132static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11133 struct sock_reuseport *reuse,
11134 struct sock *sk, struct sk_buff *skb,
11135 struct sock *migrating_sk,
11136 u32 hash)
11137{
11138 reuse_kern->skb = skb;
11139 reuse_kern->sk = sk;
11140 reuse_kern->selected_sk = NULL;
11141 reuse_kern->migrating_sk = migrating_sk;
11142 reuse_kern->data_end = skb->data + skb_headlen(skb);
11143 reuse_kern->hash = hash;
11144 reuse_kern->reuseport_id = reuse->reuseport_id;
11145 reuse_kern->bind_inany = reuse->bind_inany;
11146}
11147
11148struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11149 struct bpf_prog *prog, struct sk_buff *skb,
11150 struct sock *migrating_sk,
11151 u32 hash)
11152{
11153 struct sk_reuseport_kern reuse_kern;
11154 enum sk_action action;
11155
11156 bpf_init_reuseport_kern(reuse_kern: &reuse_kern, reuse, sk, skb, migrating_sk, hash);
11157 action = bpf_prog_run(prog, ctx: &reuse_kern);
11158
11159 if (action == SK_PASS)
11160 return reuse_kern.selected_sk;
11161 else
11162 return ERR_PTR(error: -ECONNREFUSED);
11163}
11164
11165BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11166 struct bpf_map *, map, void *, key, u32, flags)
11167{
11168 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11169 struct sock_reuseport *reuse;
11170 struct sock *selected_sk;
11171
11172 selected_sk = map->ops->map_lookup_elem(map, key);
11173 if (!selected_sk)
11174 return -ENOENT;
11175
11176 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11177 if (!reuse) {
11178 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11179 if (sk_is_refcounted(sk: selected_sk))
11180 sock_put(sk: selected_sk);
11181
11182 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11183 * The only (!reuse) case here is - the sk has already been
11184 * unhashed (e.g. by close()), so treat it as -ENOENT.
11185 *
11186 * Other maps (e.g. sock_map) do not provide this guarantee and
11187 * the sk may never be in the reuseport group to begin with.
11188 */
11189 return is_sockarray ? -ENOENT : -EINVAL;
11190 }
11191
11192 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11193 struct sock *sk = reuse_kern->sk;
11194
11195 if (sk->sk_protocol != selected_sk->sk_protocol)
11196 return -EPROTOTYPE;
11197 else if (sk->sk_family != selected_sk->sk_family)
11198 return -EAFNOSUPPORT;
11199
11200 /* Catch all. Likely bound to a different sockaddr. */
11201 return -EBADFD;
11202 }
11203
11204 reuse_kern->selected_sk = selected_sk;
11205
11206 return 0;
11207}
11208
11209static const struct bpf_func_proto sk_select_reuseport_proto = {
11210 .func = sk_select_reuseport,
11211 .gpl_only = false,
11212 .ret_type = RET_INTEGER,
11213 .arg1_type = ARG_PTR_TO_CTX,
11214 .arg2_type = ARG_CONST_MAP_PTR,
11215 .arg3_type = ARG_PTR_TO_MAP_KEY,
11216 .arg4_type = ARG_ANYTHING,
11217};
11218
11219BPF_CALL_4(sk_reuseport_load_bytes,
11220 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11221 void *, to, u32, len)
11222{
11223 return ____bpf_skb_load_bytes(skb: reuse_kern->skb, offset, to, len);
11224}
11225
11226static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11227 .func = sk_reuseport_load_bytes,
11228 .gpl_only = false,
11229 .ret_type = RET_INTEGER,
11230 .arg1_type = ARG_PTR_TO_CTX,
11231 .arg2_type = ARG_ANYTHING,
11232 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11233 .arg4_type = ARG_CONST_SIZE,
11234};
11235
11236BPF_CALL_5(sk_reuseport_load_bytes_relative,
11237 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11238 void *, to, u32, len, u32, start_header)
11239{
11240 return ____bpf_skb_load_bytes_relative(skb: reuse_kern->skb, offset, to,
11241 len, start_header);
11242}
11243
11244static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11245 .func = sk_reuseport_load_bytes_relative,
11246 .gpl_only = false,
11247 .ret_type = RET_INTEGER,
11248 .arg1_type = ARG_PTR_TO_CTX,
11249 .arg2_type = ARG_ANYTHING,
11250 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11251 .arg4_type = ARG_CONST_SIZE,
11252 .arg5_type = ARG_ANYTHING,
11253};
11254
11255static const struct bpf_func_proto *
11256sk_reuseport_func_proto(enum bpf_func_id func_id,
11257 const struct bpf_prog *prog)
11258{
11259 switch (func_id) {
11260 case BPF_FUNC_sk_select_reuseport:
11261 return &sk_select_reuseport_proto;
11262 case BPF_FUNC_skb_load_bytes:
11263 return &sk_reuseport_load_bytes_proto;
11264 case BPF_FUNC_skb_load_bytes_relative:
11265 return &sk_reuseport_load_bytes_relative_proto;
11266 case BPF_FUNC_get_socket_cookie:
11267 return &bpf_get_socket_ptr_cookie_proto;
11268 case BPF_FUNC_ktime_get_coarse_ns:
11269 return &bpf_ktime_get_coarse_ns_proto;
11270 default:
11271 return bpf_base_func_proto(func_id, prog);
11272 }
11273}
11274
11275static bool
11276sk_reuseport_is_valid_access(int off, int size,
11277 enum bpf_access_type type,
11278 const struct bpf_prog *prog,
11279 struct bpf_insn_access_aux *info)
11280{
11281 const u32 size_default = sizeof(__u32);
11282
11283 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11284 off % size || type != BPF_READ)
11285 return false;
11286
11287 switch (off) {
11288 case offsetof(struct sk_reuseport_md, data):
11289 info->reg_type = PTR_TO_PACKET;
11290 return size == sizeof(__u64);
11291
11292 case offsetof(struct sk_reuseport_md, data_end):
11293 info->reg_type = PTR_TO_PACKET_END;
11294 return size == sizeof(__u64);
11295
11296 case offsetof(struct sk_reuseport_md, hash):
11297 return size == size_default;
11298
11299 case offsetof(struct sk_reuseport_md, sk):
11300 info->reg_type = PTR_TO_SOCKET;
11301 return size == sizeof(__u64);
11302
11303 case offsetof(struct sk_reuseport_md, migrating_sk):
11304 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11305 return size == sizeof(__u64);
11306
11307 /* Fields that allow narrowing */
11308 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11309 if (size < sizeof_field(struct sk_buff, protocol))
11310 return false;
11311 fallthrough;
11312 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11313 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11314 case bpf_ctx_range(struct sk_reuseport_md, len):
11315 bpf_ctx_record_field_size(aux: info, size: size_default);
11316 return bpf_ctx_narrow_access_ok(off, size, size_default);
11317
11318 default:
11319 return false;
11320 }
11321}
11322
11323#define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11324 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11325 si->dst_reg, si->src_reg, \
11326 bpf_target_off(struct sk_reuseport_kern, F, \
11327 sizeof_field(struct sk_reuseport_kern, F), \
11328 target_size)); \
11329 })
11330
11331#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11332 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11333 struct sk_buff, \
11334 skb, \
11335 SKB_FIELD)
11336
11337#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11338 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11339 struct sock, \
11340 sk, \
11341 SK_FIELD)
11342
11343static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11344 const struct bpf_insn *si,
11345 struct bpf_insn *insn_buf,
11346 struct bpf_prog *prog,
11347 u32 *target_size)
11348{
11349 struct bpf_insn *insn = insn_buf;
11350
11351 switch (si->off) {
11352 case offsetof(struct sk_reuseport_md, data):
11353 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11354 break;
11355
11356 case offsetof(struct sk_reuseport_md, len):
11357 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11358 break;
11359
11360 case offsetof(struct sk_reuseport_md, eth_protocol):
11361 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11362 break;
11363
11364 case offsetof(struct sk_reuseport_md, ip_protocol):
11365 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11366 break;
11367
11368 case offsetof(struct sk_reuseport_md, data_end):
11369 SK_REUSEPORT_LOAD_FIELD(data_end);
11370 break;
11371
11372 case offsetof(struct sk_reuseport_md, hash):
11373 SK_REUSEPORT_LOAD_FIELD(hash);
11374 break;
11375
11376 case offsetof(struct sk_reuseport_md, bind_inany):
11377 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11378 break;
11379
11380 case offsetof(struct sk_reuseport_md, sk):
11381 SK_REUSEPORT_LOAD_FIELD(sk);
11382 break;
11383
11384 case offsetof(struct sk_reuseport_md, migrating_sk):
11385 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11386 break;
11387 }
11388
11389 return insn - insn_buf;
11390}
11391
11392const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11393 .get_func_proto = sk_reuseport_func_proto,
11394 .is_valid_access = sk_reuseport_is_valid_access,
11395 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11396};
11397
11398const struct bpf_prog_ops sk_reuseport_prog_ops = {
11399};
11400
11401DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11402EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11403
11404BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11405 struct sock *, sk, u64, flags)
11406{
11407 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11408 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11409 return -EINVAL;
11410 if (unlikely(sk && sk_is_refcounted(sk)))
11411 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11412 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11413 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11414 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11415 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11416
11417 /* Check if socket is suitable for packet L3/L4 protocol */
11418 if (sk && sk->sk_protocol != ctx->protocol)
11419 return -EPROTOTYPE;
11420 if (sk && sk->sk_family != ctx->family &&
11421 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11422 return -EAFNOSUPPORT;
11423
11424 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11425 return -EEXIST;
11426
11427 /* Select socket as lookup result */
11428 ctx->selected_sk = sk;
11429 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11430 return 0;
11431}
11432
11433static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11434 .func = bpf_sk_lookup_assign,
11435 .gpl_only = false,
11436 .ret_type = RET_INTEGER,
11437 .arg1_type = ARG_PTR_TO_CTX,
11438 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11439 .arg3_type = ARG_ANYTHING,
11440};
11441
11442static const struct bpf_func_proto *
11443sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11444{
11445 switch (func_id) {
11446 case BPF_FUNC_perf_event_output:
11447 return &bpf_event_output_data_proto;
11448 case BPF_FUNC_sk_assign:
11449 return &bpf_sk_lookup_assign_proto;
11450 case BPF_FUNC_sk_release:
11451 return &bpf_sk_release_proto;
11452 default:
11453 return bpf_sk_base_func_proto(func_id, prog);
11454 }
11455}
11456
11457static bool sk_lookup_is_valid_access(int off, int size,
11458 enum bpf_access_type type,
11459 const struct bpf_prog *prog,
11460 struct bpf_insn_access_aux *info)
11461{
11462 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11463 return false;
11464 if (off % size != 0)
11465 return false;
11466 if (type != BPF_READ)
11467 return false;
11468
11469 switch (off) {
11470 case offsetof(struct bpf_sk_lookup, sk):
11471 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11472 return size == sizeof(__u64);
11473
11474 case bpf_ctx_range(struct bpf_sk_lookup, family):
11475 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11476 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11477 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11478 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11479 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11480 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11481 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11482 bpf_ctx_record_field_size(aux: info, size: sizeof(__u32));
11483 return bpf_ctx_narrow_access_ok(off, size, size_default: sizeof(__u32));
11484
11485 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11486 /* Allow 4-byte access to 2-byte field for backward compatibility */
11487 if (size == sizeof(__u32))
11488 return true;
11489 bpf_ctx_record_field_size(aux: info, size: sizeof(__be16));
11490 return bpf_ctx_narrow_access_ok(off, size, size_default: sizeof(__be16));
11491
11492 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11493 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11494 /* Allow access to zero padding for backward compatibility */
11495 bpf_ctx_record_field_size(aux: info, size: sizeof(__u16));
11496 return bpf_ctx_narrow_access_ok(off, size, size_default: sizeof(__u16));
11497
11498 default:
11499 return false;
11500 }
11501}
11502
11503static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11504 const struct bpf_insn *si,
11505 struct bpf_insn *insn_buf,
11506 struct bpf_prog *prog,
11507 u32 *target_size)
11508{
11509 struct bpf_insn *insn = insn_buf;
11510
11511 switch (si->off) {
11512 case offsetof(struct bpf_sk_lookup, sk):
11513 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11514 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11515 break;
11516
11517 case offsetof(struct bpf_sk_lookup, family):
11518 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11519 bpf_target_off(struct bpf_sk_lookup_kern,
11520 family, 2, target_size));
11521 break;
11522
11523 case offsetof(struct bpf_sk_lookup, protocol):
11524 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11525 bpf_target_off(struct bpf_sk_lookup_kern,
11526 protocol, 2, target_size));
11527 break;
11528
11529 case offsetof(struct bpf_sk_lookup, remote_ip4):
11530 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11531 bpf_target_off(struct bpf_sk_lookup_kern,
11532 v4.saddr, 4, target_size));
11533 break;
11534
11535 case offsetof(struct bpf_sk_lookup, local_ip4):
11536 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11537 bpf_target_off(struct bpf_sk_lookup_kern,
11538 v4.daddr, 4, target_size));
11539 break;
11540
11541 case bpf_ctx_range_till(struct bpf_sk_lookup,
11542 remote_ip6[0], remote_ip6[3]): {
11543#if IS_ENABLED(CONFIG_IPV6)
11544 int off = si->off;
11545
11546 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11547 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11548 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11549 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11550 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11551 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11552#else
11553 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11554#endif
11555 break;
11556 }
11557 case bpf_ctx_range_till(struct bpf_sk_lookup,
11558 local_ip6[0], local_ip6[3]): {
11559#if IS_ENABLED(CONFIG_IPV6)
11560 int off = si->off;
11561
11562 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11563 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11564 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11565 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11566 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11567 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11568#else
11569 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11570#endif
11571 break;
11572 }
11573 case offsetof(struct bpf_sk_lookup, remote_port):
11574 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11575 bpf_target_off(struct bpf_sk_lookup_kern,
11576 sport, 2, target_size));
11577 break;
11578
11579 case offsetofend(struct bpf_sk_lookup, remote_port):
11580 *target_size = 2;
11581 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11582 break;
11583
11584 case offsetof(struct bpf_sk_lookup, local_port):
11585 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11586 bpf_target_off(struct bpf_sk_lookup_kern,
11587 dport, 2, target_size));
11588 break;
11589
11590 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11591 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11592 bpf_target_off(struct bpf_sk_lookup_kern,
11593 ingress_ifindex, 4, target_size));
11594 break;
11595 }
11596
11597 return insn - insn_buf;
11598}
11599
11600const struct bpf_prog_ops sk_lookup_prog_ops = {
11601 .test_run = bpf_prog_test_run_sk_lookup,
11602};
11603
11604const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11605 .get_func_proto = sk_lookup_func_proto,
11606 .is_valid_access = sk_lookup_is_valid_access,
11607 .convert_ctx_access = sk_lookup_convert_ctx_access,
11608};
11609
11610#endif /* CONFIG_INET */
11611
11612DEFINE_BPF_DISPATCHER(xdp)
11613
11614void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11615{
11616 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), from: prev_prog, to: prog);
11617}
11618
11619BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11620#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11621BTF_SOCK_TYPE_xxx
11622#undef BTF_SOCK_TYPE
11623
11624BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11625{
11626 /* tcp6_sock type is not generated in dwarf and hence btf,
11627 * trigger an explicit type generation here.
11628 */
11629 BTF_TYPE_EMIT(struct tcp6_sock);
11630 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11631 sk->sk_family == AF_INET6)
11632 return (unsigned long)sk;
11633
11634 return (unsigned long)NULL;
11635}
11636
11637const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11638 .func = bpf_skc_to_tcp6_sock,
11639 .gpl_only = false,
11640 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11641 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11642 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11643};
11644
11645BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11646{
11647 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11648 return (unsigned long)sk;
11649
11650 return (unsigned long)NULL;
11651}
11652
11653const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11654 .func = bpf_skc_to_tcp_sock,
11655 .gpl_only = false,
11656 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11657 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11658 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11659};
11660
11661BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11662{
11663 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11664 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11665 */
11666 BTF_TYPE_EMIT(struct inet_timewait_sock);
11667 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11668
11669#ifdef CONFIG_INET
11670 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11671 return (unsigned long)sk;
11672#endif
11673
11674#if IS_BUILTIN(CONFIG_IPV6)
11675 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11676 return (unsigned long)sk;
11677#endif
11678
11679 return (unsigned long)NULL;
11680}
11681
11682const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11683 .func = bpf_skc_to_tcp_timewait_sock,
11684 .gpl_only = false,
11685 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11686 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11687 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11688};
11689
11690BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11691{
11692#ifdef CONFIG_INET
11693 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11694 return (unsigned long)sk;
11695#endif
11696
11697#if IS_BUILTIN(CONFIG_IPV6)
11698 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11699 return (unsigned long)sk;
11700#endif
11701
11702 return (unsigned long)NULL;
11703}
11704
11705const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11706 .func = bpf_skc_to_tcp_request_sock,
11707 .gpl_only = false,
11708 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11709 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11710 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11711};
11712
11713BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11714{
11715 /* udp6_sock type is not generated in dwarf and hence btf,
11716 * trigger an explicit type generation here.
11717 */
11718 BTF_TYPE_EMIT(struct udp6_sock);
11719 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11720 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11721 return (unsigned long)sk;
11722
11723 return (unsigned long)NULL;
11724}
11725
11726const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11727 .func = bpf_skc_to_udp6_sock,
11728 .gpl_only = false,
11729 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11730 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11731 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11732};
11733
11734BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11735{
11736 /* unix_sock type is not generated in dwarf and hence btf,
11737 * trigger an explicit type generation here.
11738 */
11739 BTF_TYPE_EMIT(struct unix_sock);
11740 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11741 return (unsigned long)sk;
11742
11743 return (unsigned long)NULL;
11744}
11745
11746const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11747 .func = bpf_skc_to_unix_sock,
11748 .gpl_only = false,
11749 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11750 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11751 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11752};
11753
11754BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11755{
11756 BTF_TYPE_EMIT(struct mptcp_sock);
11757 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11758}
11759
11760const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11761 .func = bpf_skc_to_mptcp_sock,
11762 .gpl_only = false,
11763 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11764 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11765 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11766};
11767
11768BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11769{
11770 return (unsigned long)sock_from_file(file);
11771}
11772
11773BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11774BTF_ID(struct, socket)
11775BTF_ID(struct, file)
11776
11777const struct bpf_func_proto bpf_sock_from_file_proto = {
11778 .func = bpf_sock_from_file,
11779 .gpl_only = false,
11780 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11781 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11782 .arg1_type = ARG_PTR_TO_BTF_ID,
11783 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11784};
11785
11786static const struct bpf_func_proto *
11787bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11788{
11789 const struct bpf_func_proto *func;
11790
11791 switch (func_id) {
11792 case BPF_FUNC_skc_to_tcp6_sock:
11793 func = &bpf_skc_to_tcp6_sock_proto;
11794 break;
11795 case BPF_FUNC_skc_to_tcp_sock:
11796 func = &bpf_skc_to_tcp_sock_proto;
11797 break;
11798 case BPF_FUNC_skc_to_tcp_timewait_sock:
11799 func = &bpf_skc_to_tcp_timewait_sock_proto;
11800 break;
11801 case BPF_FUNC_skc_to_tcp_request_sock:
11802 func = &bpf_skc_to_tcp_request_sock_proto;
11803 break;
11804 case BPF_FUNC_skc_to_udp6_sock:
11805 func = &bpf_skc_to_udp6_sock_proto;
11806 break;
11807 case BPF_FUNC_skc_to_unix_sock:
11808 func = &bpf_skc_to_unix_sock_proto;
11809 break;
11810 case BPF_FUNC_skc_to_mptcp_sock:
11811 func = &bpf_skc_to_mptcp_sock_proto;
11812 break;
11813 case BPF_FUNC_ktime_get_coarse_ns:
11814 return &bpf_ktime_get_coarse_ns_proto;
11815 default:
11816 return bpf_base_func_proto(func_id, prog);
11817 }
11818
11819 if (!bpf_token_capable(token: prog->aux->token, CAP_PERFMON))
11820 return NULL;
11821
11822 return func;
11823}
11824
11825__bpf_kfunc_start_defs();
11826__bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11827 struct bpf_dynptr_kern *ptr__uninit)
11828{
11829 if (flags) {
11830 bpf_dynptr_set_null(ptr: ptr__uninit);
11831 return -EINVAL;
11832 }
11833
11834 bpf_dynptr_init(ptr: ptr__uninit, data: skb, type: BPF_DYNPTR_TYPE_SKB, offset: 0, size: skb->len);
11835
11836 return 0;
11837}
11838
11839__bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11840 struct bpf_dynptr_kern *ptr__uninit)
11841{
11842 if (flags) {
11843 bpf_dynptr_set_null(ptr: ptr__uninit);
11844 return -EINVAL;
11845 }
11846
11847 bpf_dynptr_init(ptr: ptr__uninit, data: xdp, type: BPF_DYNPTR_TYPE_XDP, offset: 0, size: xdp_get_buff_len(xdp));
11848
11849 return 0;
11850}
11851
11852__bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11853 const u8 *sun_path, u32 sun_path__sz)
11854{
11855 struct sockaddr_un *un;
11856
11857 if (sa_kern->sk->sk_family != AF_UNIX)
11858 return -EINVAL;
11859
11860 /* We do not allow changing the address to unnamed or larger than the
11861 * maximum allowed address size for a unix sockaddr.
11862 */
11863 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11864 return -EINVAL;
11865
11866 un = (struct sockaddr_un *)sa_kern->uaddr;
11867 memcpy(un->sun_path, sun_path, sun_path__sz);
11868 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11869
11870 return 0;
11871}
11872
11873__bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct sk_buff *skb, struct sock *sk,
11874 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
11875{
11876#if IS_ENABLED(CONFIG_SYN_COOKIES)
11877 const struct request_sock_ops *ops;
11878 struct inet_request_sock *ireq;
11879 struct tcp_request_sock *treq;
11880 struct request_sock *req;
11881 struct net *net;
11882 __u16 min_mss;
11883 u32 tsoff = 0;
11884
11885 if (attrs__sz != sizeof(*attrs) ||
11886 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
11887 return -EINVAL;
11888
11889 if (!skb_at_tc_ingress(skb))
11890 return -EINVAL;
11891
11892 net = dev_net(dev: skb->dev);
11893 if (net != sock_net(sk))
11894 return -ENETUNREACH;
11895
11896 switch (skb->protocol) {
11897 case htons(ETH_P_IP):
11898 ops = &tcp_request_sock_ops;
11899 min_mss = 536;
11900 break;
11901#if IS_BUILTIN(CONFIG_IPV6)
11902 case htons(ETH_P_IPV6):
11903 ops = &tcp6_request_sock_ops;
11904 min_mss = IPV6_MIN_MTU - 60;
11905 break;
11906#endif
11907 default:
11908 return -EINVAL;
11909 }
11910
11911 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
11912 sk_is_mptcp(sk))
11913 return -EINVAL;
11914
11915 if (attrs->mss < min_mss)
11916 return -EINVAL;
11917
11918 if (attrs->wscale_ok) {
11919 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
11920 return -EINVAL;
11921
11922 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
11923 attrs->rcv_wscale > TCP_MAX_WSCALE)
11924 return -EINVAL;
11925 }
11926
11927 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
11928 return -EINVAL;
11929
11930 if (attrs->tstamp_ok) {
11931 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
11932 return -EINVAL;
11933
11934 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(usec_ts: attrs->usec_ts_ok, val: tcp_clock_ns());
11935 }
11936
11937 req = inet_reqsk_alloc(ops, sk_listener: sk, attach_listener: false);
11938 if (!req)
11939 return -ENOMEM;
11940
11941 ireq = inet_rsk(sk: req);
11942 treq = tcp_rsk(req);
11943
11944 req->rsk_listener = sk;
11945 req->syncookie = 1;
11946 req->mss = attrs->mss;
11947 req->ts_recent = attrs->rcv_tsval;
11948
11949 ireq->snd_wscale = attrs->snd_wscale;
11950 ireq->rcv_wscale = attrs->rcv_wscale;
11951 ireq->tstamp_ok = !!attrs->tstamp_ok;
11952 ireq->sack_ok = !!attrs->sack_ok;
11953 ireq->wscale_ok = !!attrs->wscale_ok;
11954 ireq->ecn_ok = !!attrs->ecn_ok;
11955
11956 treq->req_usec_ts = !!attrs->usec_ts_ok;
11957 treq->ts_off = tsoff;
11958
11959 skb_orphan(skb);
11960 skb->sk = req_to_sk(req);
11961 skb->destructor = sock_pfree;
11962
11963 return 0;
11964#else
11965 return -EOPNOTSUPP;
11966#endif
11967}
11968
11969__bpf_kfunc_end_defs();
11970
11971int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11972 struct bpf_dynptr_kern *ptr__uninit)
11973{
11974 int err;
11975
11976 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11977 if (err)
11978 return err;
11979
11980 bpf_dynptr_set_rdonly(ptr: ptr__uninit);
11981
11982 return 0;
11983}
11984
11985BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
11986BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11987BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
11988
11989BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
11990BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11991BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
11992
11993BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
11994BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11995BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
11996
11997BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
11998BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
11999BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12000
12001static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12002 .owner = THIS_MODULE,
12003 .set = &bpf_kfunc_check_set_skb,
12004};
12005
12006static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12007 .owner = THIS_MODULE,
12008 .set = &bpf_kfunc_check_set_xdp,
12009};
12010
12011static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12012 .owner = THIS_MODULE,
12013 .set = &bpf_kfunc_check_set_sock_addr,
12014};
12015
12016static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12017 .owner = THIS_MODULE,
12018 .set = &bpf_kfunc_check_set_tcp_reqsk,
12019};
12020
12021static int __init bpf_kfunc_init(void)
12022{
12023 int ret;
12024
12025 ret = register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SCHED_CLS, s: &bpf_kfunc_set_skb);
12026 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SCHED_ACT, s: &bpf_kfunc_set_skb);
12027 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SK_SKB, s: &bpf_kfunc_set_skb);
12028 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SOCKET_FILTER, s: &bpf_kfunc_set_skb);
12029 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_CGROUP_SKB, s: &bpf_kfunc_set_skb);
12030 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_LWT_OUT, s: &bpf_kfunc_set_skb);
12031 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_LWT_IN, s: &bpf_kfunc_set_skb);
12032 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_LWT_XMIT, s: &bpf_kfunc_set_skb);
12033 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_LWT_SEG6LOCAL, s: &bpf_kfunc_set_skb);
12034 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_NETFILTER, s: &bpf_kfunc_set_skb);
12035 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_XDP, s: &bpf_kfunc_set_xdp);
12036 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12037 s: &bpf_kfunc_set_sock_addr);
12038 return ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SCHED_CLS, s: &bpf_kfunc_set_tcp_reqsk);
12039}
12040late_initcall(bpf_kfunc_init);
12041
12042__bpf_kfunc_start_defs();
12043
12044/* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12045 *
12046 * The function expects a non-NULL pointer to a socket, and invokes the
12047 * protocol specific socket destroy handlers.
12048 *
12049 * The helper can only be called from BPF contexts that have acquired the socket
12050 * locks.
12051 *
12052 * Parameters:
12053 * @sock: Pointer to socket to be destroyed
12054 *
12055 * Return:
12056 * On error, may return EPROTONOSUPPORT, EINVAL.
12057 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12058 * 0 otherwise
12059 */
12060__bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12061{
12062 struct sock *sk = (struct sock *)sock;
12063
12064 /* The locking semantics that allow for synchronous execution of the
12065 * destroy handlers are only supported for TCP and UDP.
12066 * Supporting protocols will need to acquire sock lock in the BPF context
12067 * prior to invoking this kfunc.
12068 */
12069 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12070 sk->sk_protocol != IPPROTO_UDP))
12071 return -EOPNOTSUPP;
12072
12073 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12074}
12075
12076__bpf_kfunc_end_defs();
12077
12078BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
12079BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12080BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12081
12082static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12083{
12084 if (btf_id_set8_contains(set: &bpf_sk_iter_kfunc_ids, id: kfunc_id) &&
12085 prog->expected_attach_type != BPF_TRACE_ITER)
12086 return -EACCES;
12087 return 0;
12088}
12089
12090static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12091 .owner = THIS_MODULE,
12092 .set = &bpf_sk_iter_kfunc_ids,
12093 .filter = tracing_iter_filter,
12094};
12095
12096static int init_subsystem(void)
12097{
12098 return register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_TRACING, s: &bpf_sk_iter_kfunc_set);
12099}
12100late_initcall(init_subsystem);
12101

source code of linux/net/core/filter.c