1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24#include <linux/uaccess.h>
25#include <linux/types.h>
26#include <linux/cache.h>
27#include <linux/capability.h>
28#include <linux/errno.h>
29#include <linux/mm.h>
30#include <linux/kernel.h>
31#include <linux/fcntl.h>
32#include <linux/stat.h>
33#include <linux/socket.h>
34#include <linux/in.h>
35#include <linux/inet.h>
36#include <linux/netdevice.h>
37#include <linux/inetdevice.h>
38#include <linux/igmp.h>
39#include <linux/proc_fs.h>
40#include <linux/seq_file.h>
41#include <linux/mroute.h>
42#include <linux/init.h>
43#include <linux/if_ether.h>
44#include <linux/slab.h>
45#include <net/net_namespace.h>
46#include <net/ip.h>
47#include <net/protocol.h>
48#include <linux/skbuff.h>
49#include <net/route.h>
50#include <net/icmp.h>
51#include <net/udp.h>
52#include <net/raw.h>
53#include <linux/notifier.h>
54#include <linux/if_arp.h>
55#include <linux/netfilter_ipv4.h>
56#include <linux/compat.h>
57#include <linux/export.h>
58#include <linux/rhashtable.h>
59#include <net/ip_tunnels.h>
60#include <net/checksum.h>
61#include <net/netlink.h>
62#include <net/fib_rules.h>
63#include <linux/netconf.h>
64#include <net/rtnh.h>
65
66#include <linux/nospec.h>
67
68struct ipmr_rule {
69 struct fib_rule common;
70};
71
72struct ipmr_result {
73 struct mr_table *mrt;
74};
75
76/* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80static DEFINE_SPINLOCK(mrt_lock);
81
82static struct net_device *vif_dev_read(const struct vif_device *vif)
83{
84 return rcu_dereference(vif->dev);
85}
86
87/* Multicast router control variables */
88
89/* Special spinlock for queue of unresolved entries */
90static DEFINE_SPINLOCK(mfc_unres_lock);
91
92/* We return to original Alan's scheme. Hash table of resolved
93 * entries is changed only in process context and protected
94 * with weak lock mrt_lock. Queue of unresolved entries is protected
95 * with strong spinlock mfc_unres_lock.
96 *
97 * In this case data path is free of exclusive locks at all.
98 */
99
100static struct kmem_cache *mrt_cachep __ro_after_init;
101
102static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103static void ipmr_free_table(struct mr_table *mrt);
104
105static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 struct net_device *dev, struct sk_buff *skb,
107 struct mfc_cache *cache, int local);
108static int ipmr_cache_report(const struct mr_table *mrt,
109 struct sk_buff *pkt, vifi_t vifi, int assert);
110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113static void mroute_clean_tables(struct mr_table *mrt, int flags);
114static void ipmr_expire_process(struct timer_list *t);
115
116#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117#define ipmr_for_each_table(mrt, net) \
118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
119 lockdep_rtnl_is_held() || \
120 list_empty(&net->ipv4.mr_tables))
121
122static struct mr_table *ipmr_mr_table_iter(struct net *net,
123 struct mr_table *mrt)
124{
125 struct mr_table *ret;
126
127 if (!mrt)
128 ret = list_entry_rcu(net->ipv4.mr_tables.next,
129 struct mr_table, list);
130 else
131 ret = list_entry_rcu(mrt->list.next,
132 struct mr_table, list);
133
134 if (&ret->list == &net->ipv4.mr_tables)
135 return NULL;
136 return ret;
137}
138
139static struct mr_table *ipmr_get_table(struct net *net, u32 id)
140{
141 struct mr_table *mrt;
142
143 ipmr_for_each_table(mrt, net) {
144 if (mrt->id == id)
145 return mrt;
146 }
147 return NULL;
148}
149
150static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
151 struct mr_table **mrt)
152{
153 int err;
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = {
156 .result = &res,
157 .flags = FIB_LOOKUP_NOREF,
158 };
159
160 /* update flow if oif or iif point to device enslaved to l3mdev */
161 l3mdev_update_flow(net, fl: flowi4_to_flowi(fl4: flp4));
162
163 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
164 flowi4_to_flowi(fl4: flp4), flags: 0, &arg);
165 if (err < 0)
166 return err;
167 *mrt = res.mrt;
168 return 0;
169}
170
171static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
172 int flags, struct fib_lookup_arg *arg)
173{
174 struct ipmr_result *res = arg->result;
175 struct mr_table *mrt;
176
177 switch (rule->action) {
178 case FR_ACT_TO_TBL:
179 break;
180 case FR_ACT_UNREACHABLE:
181 return -ENETUNREACH;
182 case FR_ACT_PROHIBIT:
183 return -EACCES;
184 case FR_ACT_BLACKHOLE:
185 default:
186 return -EINVAL;
187 }
188
189 arg->table = fib_rule_get_table(rule, arg);
190
191 mrt = ipmr_get_table(net: rule->fr_net, id: arg->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196}
197
198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199{
200 return 1;
201}
202
203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb,
205 struct netlink_ext_ack *extack)
206{
207 return 0;
208}
209
210static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
212{
213 return 1;
214}
215
216static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
218{
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
223}
224
225static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .owner = THIS_MODULE,
236};
237
238static int __net_init ipmr_rules_init(struct net *net)
239{
240 struct fib_rules_ops *ops;
241 struct mr_table *mrt;
242 int err;
243
244 ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 if (IS_ERR(ptr: ops))
246 return PTR_ERR(ptr: ops);
247
248 INIT_LIST_HEAD(list: &net->ipv4.mr_tables);
249
250 mrt = ipmr_new_table(net, id: RT_TABLE_DEFAULT);
251 if (IS_ERR(ptr: mrt)) {
252 err = PTR_ERR(ptr: mrt);
253 goto err1;
254 }
255
256 err = fib_default_rule_add(ops, pref: 0x7fff, table: RT_TABLE_DEFAULT);
257 if (err < 0)
258 goto err2;
259
260 net->ipv4.mr_rules_ops = ops;
261 return 0;
262
263err2:
264 rtnl_lock();
265 ipmr_free_table(mrt);
266 rtnl_unlock();
267err1:
268 fib_rules_unregister(ops);
269 return err;
270}
271
272static void __net_exit ipmr_rules_exit(struct net *net)
273{
274 struct mr_table *mrt, *next;
275
276 ASSERT_RTNL();
277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
278 list_del(entry: &mrt->list);
279 ipmr_free_table(mrt);
280 }
281 fib_rules_unregister(net->ipv4.mr_rules_ops);
282}
283
284static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
285 struct netlink_ext_ack *extack)
286{
287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
288}
289
290static unsigned int ipmr_rules_seq_read(struct net *net)
291{
292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
293}
294
295bool ipmr_rule_default(const struct fib_rule *rule)
296{
297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298}
299EXPORT_SYMBOL(ipmr_rule_default);
300#else
301#define ipmr_for_each_table(mrt, net) \
302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303
304static struct mr_table *ipmr_mr_table_iter(struct net *net,
305 struct mr_table *mrt)
306{
307 if (!mrt)
308 return net->ipv4.mrt;
309 return NULL;
310}
311
312static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313{
314 return net->ipv4.mrt;
315}
316
317static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
318 struct mr_table **mrt)
319{
320 *mrt = net->ipv4.mrt;
321 return 0;
322}
323
324static int __net_init ipmr_rules_init(struct net *net)
325{
326 struct mr_table *mrt;
327
328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
329 if (IS_ERR(mrt))
330 return PTR_ERR(mrt);
331 net->ipv4.mrt = mrt;
332 return 0;
333}
334
335static void __net_exit ipmr_rules_exit(struct net *net)
336{
337 ASSERT_RTNL();
338 ipmr_free_table(net->ipv4.mrt);
339 net->ipv4.mrt = NULL;
340}
341
342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 struct netlink_ext_ack *extack)
344{
345 return 0;
346}
347
348static unsigned int ipmr_rules_seq_read(struct net *net)
349{
350 return 0;
351}
352
353bool ipmr_rule_default(const struct fib_rule *rule)
354{
355 return true;
356}
357EXPORT_SYMBOL(ipmr_rule_default);
358#endif
359
360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 const void *ptr)
362{
363 const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 const struct mfc_cache *c = ptr;
365
366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 cmparg->mfc_origin != c->mfc_origin;
368}
369
370static const struct rhashtable_params ipmr_rht_params = {
371 .head_offset = offsetof(struct mr_mfc, mnode),
372 .key_offset = offsetof(struct mfc_cache, cmparg),
373 .key_len = sizeof(struct mfc_cache_cmp_arg),
374 .nelem_hint = 3,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
377};
378
379static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
381{
382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(new: &mrt->list, head: &net->ipv4.mr_tables);
384#endif
385}
386
387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
390};
391
392static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395};
396
397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398{
399 struct mr_table *mrt;
400
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(error: -EINVAL);
404
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
408
409 return mr_table_alloc(net, id, ops: &ipmr_mr_table_ops,
410 expire_func: ipmr_expire_process, table_set: ipmr_new_table_set);
411}
412
413static void ipmr_free_table(struct mr_table *mrt)
414{
415 timer_shutdown_sync(timer: &mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 rhltable_destroy(hlt: &mrt->mfc_hash);
419 kfree(objp: mrt);
420}
421
422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423
424/* Initialize ipmr pimreg/tunnel in_device */
425static bool ipmr_init_vif_indev(const struct net_device *dev)
426{
427 struct in_device *in_dev;
428
429 ASSERT_RTNL();
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (!in_dev)
433 return false;
434 ipv4_devconf_setall(in_dev);
435 neigh_parms_data_state_setall(p: in_dev->arp_parms);
436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437
438 return true;
439}
440
441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442{
443 struct net_device *tunnel_dev, *new_dev;
444 struct ip_tunnel_parm p = { };
445 int err;
446
447 tunnel_dev = __dev_get_by_name(net, name: "tunl0");
448 if (!tunnel_dev)
449 goto out;
450
451 p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 p.iph.version = 4;
454 p.iph.ihl = 5;
455 p.iph.protocol = IPPROTO_IPIP;
456 sprintf(buf: p.name, fmt: "dvmrp%d", v->vifc_vifi);
457
458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 goto out;
460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 SIOCADDTUNNEL);
462 if (err)
463 goto out;
464
465 new_dev = __dev_get_by_name(net, name: p.name);
466 if (!new_dev)
467 goto out;
468
469 new_dev->flags |= IFF_MULTICAST;
470 if (!ipmr_init_vif_indev(dev: new_dev))
471 goto out_unregister;
472 if (dev_open(dev: new_dev, NULL))
473 goto out_unregister;
474 dev_hold(dev: new_dev);
475 err = dev_set_allmulti(dev: new_dev, inc: 1);
476 if (err) {
477 dev_close(dev: new_dev);
478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCDELTUNNEL);
480 dev_put(dev: new_dev);
481 new_dev = ERR_PTR(error: err);
482 }
483 return new_dev;
484
485out_unregister:
486 unregister_netdevice(dev: new_dev);
487out:
488 return ERR_PTR(error: -ENOBUFS);
489}
490
491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493{
494 struct net *net = dev_net(dev);
495 struct mr_table *mrt;
496 struct flowi4 fl4 = {
497 .flowi4_oif = dev->ifindex,
498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
499 .flowi4_mark = skb->mark,
500 };
501 int err;
502
503 err = ipmr_fib_lookup(net, flp4: &fl4, mrt: &mrt);
504 if (err < 0) {
505 kfree_skb(skb);
506 return err;
507 }
508
509 DEV_STATS_ADD(dev, tx_bytes, skb->len);
510 DEV_STATS_INC(dev, tx_packets);
511 rcu_read_lock();
512
513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
514 ipmr_cache_report(mrt, pkt: skb, READ_ONCE(mrt->mroute_reg_vif_num),
515 IGMPMSG_WHOLEPKT);
516
517 rcu_read_unlock();
518 kfree_skb(skb);
519 return NETDEV_TX_OK;
520}
521
522static int reg_vif_get_iflink(const struct net_device *dev)
523{
524 return 0;
525}
526
527static const struct net_device_ops reg_vif_netdev_ops = {
528 .ndo_start_xmit = reg_vif_xmit,
529 .ndo_get_iflink = reg_vif_get_iflink,
530};
531
532static void reg_vif_setup(struct net_device *dev)
533{
534 dev->type = ARPHRD_PIMREG;
535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
536 dev->flags = IFF_NOARP;
537 dev->netdev_ops = &reg_vif_netdev_ops;
538 dev->needs_free_netdev = true;
539 dev->features |= NETIF_F_NETNS_LOCAL;
540}
541
542static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
543{
544 struct net_device *dev;
545 char name[IFNAMSIZ];
546
547 if (mrt->id == RT_TABLE_DEFAULT)
548 sprintf(buf: name, fmt: "pimreg");
549 else
550 sprintf(buf: name, fmt: "pimreg%u", mrt->id);
551
552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
553
554 if (!dev)
555 return NULL;
556
557 dev_net_set(dev, net);
558
559 if (register_netdevice(dev)) {
560 free_netdev(dev);
561 return NULL;
562 }
563
564 if (!ipmr_init_vif_indev(dev))
565 goto failure;
566 if (dev_open(dev, NULL))
567 goto failure;
568
569 dev_hold(dev);
570
571 return dev;
572
573failure:
574 unregister_netdevice(dev);
575 return NULL;
576}
577
578/* called with rcu_read_lock() */
579static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
580 unsigned int pimlen)
581{
582 struct net_device *reg_dev = NULL;
583 struct iphdr *encap;
584 int vif_num;
585
586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
587 /* Check that:
588 * a. packet is really sent to a multicast group
589 * b. packet is not a NULL-REGISTER
590 * c. packet is not truncated
591 */
592 if (!ipv4_is_multicast(addr: encap->daddr) ||
593 encap->tot_len == 0 ||
594 ntohs(encap->tot_len) + pimlen > skb->len)
595 return 1;
596
597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
599 if (vif_num >= 0)
600 reg_dev = vif_dev_read(vif: &mrt->vif_table[vif_num]);
601 if (!reg_dev)
602 return 1;
603
604 skb->mac_header = skb->network_header;
605 skb_pull(skb, len: (u8 *)encap - skb->data);
606 skb_reset_network_header(skb);
607 skb->protocol = htons(ETH_P_IP);
608 skb->ip_summed = CHECKSUM_NONE;
609
610 skb_tunnel_rx(skb, dev: reg_dev, net: dev_net(dev: reg_dev));
611
612 netif_rx(skb);
613
614 return NET_RX_SUCCESS;
615}
616#else
617static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
618{
619 return NULL;
620}
621#endif
622
623static int call_ipmr_vif_entry_notifiers(struct net *net,
624 enum fib_event_type event_type,
625 struct vif_device *vif,
626 struct net_device *vif_dev,
627 vifi_t vif_index, u32 tb_id)
628{
629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
630 vif, vif_dev, vif_index, tb_id,
631 ipmr_seq: &net->ipv4.ipmr_seq);
632}
633
634static int call_ipmr_mfc_entry_notifiers(struct net *net,
635 enum fib_event_type event_type,
636 struct mfc_cache *mfc, u32 tb_id)
637{
638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
639 mfc: &mfc->_c, tb_id, ipmr_seq: &net->ipv4.ipmr_seq);
640}
641
642/**
643 * vif_delete - Delete a VIF entry
644 * @mrt: Table to delete from
645 * @vifi: VIF identifier to delete
646 * @notify: Set to 1, if the caller is a notifier_call
647 * @head: if unregistering the VIF, place it on this queue
648 */
649static int vif_delete(struct mr_table *mrt, int vifi, int notify,
650 struct list_head *head)
651{
652 struct net *net = read_pnet(pnet: &mrt->net);
653 struct vif_device *v;
654 struct net_device *dev;
655 struct in_device *in_dev;
656
657 if (vifi < 0 || vifi >= mrt->maxvif)
658 return -EADDRNOTAVAIL;
659
660 v = &mrt->vif_table[vifi];
661
662 dev = rtnl_dereference(v->dev);
663 if (!dev)
664 return -EADDRNOTAVAIL;
665
666 spin_lock(lock: &mrt_lock);
667 call_ipmr_vif_entry_notifiers(net, event_type: FIB_EVENT_VIF_DEL, vif: v, vif_dev: dev,
668 vif_index: vifi, tb_id: mrt->id);
669 RCU_INIT_POINTER(v->dev, NULL);
670
671 if (vifi == mrt->mroute_reg_vif_num) {
672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
674 }
675 if (vifi + 1 == mrt->maxvif) {
676 int tmp;
677
678 for (tmp = vifi - 1; tmp >= 0; tmp--) {
679 if (VIF_EXISTS(mrt, tmp))
680 break;
681 }
682 WRITE_ONCE(mrt->maxvif, tmp + 1);
683 }
684
685 spin_unlock(lock: &mrt_lock);
686
687 dev_set_allmulti(dev, inc: -1);
688
689 in_dev = __in_dev_get_rtnl(dev);
690 if (in_dev) {
691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
692 inet_netconf_notify_devconf(net: dev_net(dev), RTM_NEWNETCONF,
693 type: NETCONFA_MC_FORWARDING,
694 ifindex: dev->ifindex, devconf: &in_dev->cnf);
695 ip_rt_multicast_event(in_dev);
696 }
697
698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
699 unregister_netdevice_queue(dev, head);
700
701 netdev_put(dev, tracker: &v->dev_tracker);
702 return 0;
703}
704
705static void ipmr_cache_free_rcu(struct rcu_head *head)
706{
707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
708
709 kmem_cache_free(s: mrt_cachep, objp: (struct mfc_cache *)c);
710}
711
712static void ipmr_cache_free(struct mfc_cache *c)
713{
714 call_rcu(head: &c->_c.rcu, func: ipmr_cache_free_rcu);
715}
716
717/* Destroy an unresolved cache entry, killing queued skbs
718 * and reporting error to netlink readers.
719 */
720static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
721{
722 struct net *net = read_pnet(pnet: &mrt->net);
723 struct sk_buff *skb;
724 struct nlmsgerr *e;
725
726 atomic_dec(v: &mrt->cache_resolve_queue_len);
727
728 while ((skb = skb_dequeue(list: &c->_c.mfc_un.unres.unresolved))) {
729 if (ip_hdr(skb)->version == 0) {
730 struct nlmsghdr *nlh = skb_pull(skb,
731 len: sizeof(struct iphdr));
732 nlh->nlmsg_type = NLMSG_ERROR;
733 nlh->nlmsg_len = nlmsg_msg_size(payload: sizeof(struct nlmsgerr));
734 skb_trim(skb, len: nlh->nlmsg_len);
735 e = nlmsg_data(nlh);
736 e->error = -ETIMEDOUT;
737 memset(&e->msg, 0, sizeof(e->msg));
738
739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
740 } else {
741 kfree_skb(skb);
742 }
743 }
744
745 ipmr_cache_free(c);
746}
747
748/* Timer process for the unresolved queue. */
749static void ipmr_expire_process(struct timer_list *t)
750{
751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
752 struct mr_mfc *c, *next;
753 unsigned long expires;
754 unsigned long now;
755
756 if (!spin_trylock(lock: &mfc_unres_lock)) {
757 mod_timer(timer: &mrt->ipmr_expire_timer, expires: jiffies+HZ/10);
758 return;
759 }
760
761 if (list_empty(head: &mrt->mfc_unres_queue))
762 goto out;
763
764 now = jiffies;
765 expires = 10*HZ;
766
767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
768 if (time_after(c->mfc_un.unres.expires, now)) {
769 unsigned long interval = c->mfc_un.unres.expires - now;
770 if (interval < expires)
771 expires = interval;
772 continue;
773 }
774
775 list_del(entry: &c->list);
776 mroute_netlink_event(mrt, mfc: (struct mfc_cache *)c, RTM_DELROUTE);
777 ipmr_destroy_unres(mrt, c: (struct mfc_cache *)c);
778 }
779
780 if (!list_empty(head: &mrt->mfc_unres_queue))
781 mod_timer(timer: &mrt->ipmr_expire_timer, expires: jiffies + expires);
782
783out:
784 spin_unlock(lock: &mfc_unres_lock);
785}
786
787/* Fill oifs list. It is called under locked mrt_lock. */
788static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
789 unsigned char *ttls)
790{
791 int vifi;
792
793 cache->mfc_un.res.minvif = MAXVIFS;
794 cache->mfc_un.res.maxvif = 0;
795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
796
797 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
798 if (VIF_EXISTS(mrt, vifi) &&
799 ttls[vifi] && ttls[vifi] < 255) {
800 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
801 if (cache->mfc_un.res.minvif > vifi)
802 cache->mfc_un.res.minvif = vifi;
803 if (cache->mfc_un.res.maxvif <= vifi)
804 cache->mfc_un.res.maxvif = vifi + 1;
805 }
806 }
807 cache->mfc_un.res.lastuse = jiffies;
808}
809
810static int vif_add(struct net *net, struct mr_table *mrt,
811 struct vifctl *vifc, int mrtsock)
812{
813 struct netdev_phys_item_id ppid = { };
814 int vifi = vifc->vifc_vifi;
815 struct vif_device *v = &mrt->vif_table[vifi];
816 struct net_device *dev;
817 struct in_device *in_dev;
818 int err;
819
820 /* Is vif busy ? */
821 if (VIF_EXISTS(mrt, vifi))
822 return -EADDRINUSE;
823
824 switch (vifc->vifc_flags) {
825 case VIFF_REGISTER:
826 if (!ipmr_pimsm_enabled())
827 return -EINVAL;
828 /* Special Purpose VIF in PIM
829 * All the packets will be sent to the daemon
830 */
831 if (mrt->mroute_reg_vif_num >= 0)
832 return -EADDRINUSE;
833 dev = ipmr_reg_vif(net, mrt);
834 if (!dev)
835 return -ENOBUFS;
836 err = dev_set_allmulti(dev, inc: 1);
837 if (err) {
838 unregister_netdevice(dev);
839 dev_put(dev);
840 return err;
841 }
842 break;
843 case VIFF_TUNNEL:
844 dev = ipmr_new_tunnel(net, v: vifc);
845 if (IS_ERR(ptr: dev))
846 return PTR_ERR(ptr: dev);
847 break;
848 case VIFF_USE_IFINDEX:
849 case 0:
850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
851 dev = dev_get_by_index(net, ifindex: vifc->vifc_lcl_ifindex);
852 if (dev && !__in_dev_get_rtnl(dev)) {
853 dev_put(dev);
854 return -EADDRNOTAVAIL;
855 }
856 } else {
857 dev = ip_dev_find(net, addr: vifc->vifc_lcl_addr.s_addr);
858 }
859 if (!dev)
860 return -EADDRNOTAVAIL;
861 err = dev_set_allmulti(dev, inc: 1);
862 if (err) {
863 dev_put(dev);
864 return err;
865 }
866 break;
867 default:
868 return -EINVAL;
869 }
870
871 in_dev = __in_dev_get_rtnl(dev);
872 if (!in_dev) {
873 dev_put(dev);
874 return -EADDRNOTAVAIL;
875 }
876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, type: NETCONFA_MC_FORWARDING,
878 ifindex: dev->ifindex, devconf: &in_dev->cnf);
879 ip_rt_multicast_event(in_dev);
880
881 /* Fill in the VIF structures */
882 vif_device_init(v, dev, rate_limit: vifc->vifc_rate_limit,
883 threshold: vifc->vifc_threshold,
884 flags: vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
885 get_iflink_mask: (VIFF_TUNNEL | VIFF_REGISTER));
886
887 err = dev_get_port_parent_id(dev, ppid: &ppid, recurse: true);
888 if (err == 0) {
889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
890 v->dev_parent_id.id_len = ppid.id_len;
891 } else {
892 v->dev_parent_id.id_len = 0;
893 }
894
895 v->local = vifc->vifc_lcl_addr.s_addr;
896 v->remote = vifc->vifc_rmt_addr.s_addr;
897
898 /* And finish update writing critical data */
899 spin_lock(lock: &mrt_lock);
900 rcu_assign_pointer(v->dev, dev);
901 netdev_tracker_alloc(dev, tracker: &v->dev_tracker, GFP_ATOMIC);
902 if (v->flags & VIFF_REGISTER) {
903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
905 }
906 if (vifi+1 > mrt->maxvif)
907 WRITE_ONCE(mrt->maxvif, vifi + 1);
908 spin_unlock(lock: &mrt_lock);
909 call_ipmr_vif_entry_notifiers(net, event_type: FIB_EVENT_VIF_ADD, vif: v, vif_dev: dev,
910 vif_index: vifi, tb_id: mrt->id);
911 return 0;
912}
913
914/* called with rcu_read_lock() */
915static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
916 __be32 origin,
917 __be32 mcastgrp)
918{
919 struct mfc_cache_cmp_arg arg = {
920 .mfc_mcastgrp = mcastgrp,
921 .mfc_origin = origin
922 };
923
924 return mr_mfc_find(mrt, hasharg: &arg);
925}
926
927/* Look for a (*,G) entry */
928static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
929 __be32 mcastgrp, int vifi)
930{
931 struct mfc_cache_cmp_arg arg = {
932 .mfc_mcastgrp = mcastgrp,
933 .mfc_origin = htonl(INADDR_ANY)
934 };
935
936 if (mcastgrp == htonl(INADDR_ANY))
937 return mr_mfc_find_any_parent(mrt, vifi);
938 return mr_mfc_find_any(mrt, vifi, hasharg: &arg);
939}
940
941/* Look for a (S,G,iif) entry if parent != -1 */
942static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
943 __be32 origin, __be32 mcastgrp,
944 int parent)
945{
946 struct mfc_cache_cmp_arg arg = {
947 .mfc_mcastgrp = mcastgrp,
948 .mfc_origin = origin,
949 };
950
951 return mr_mfc_find_parent(mrt, hasharg: &arg, parent);
952}
953
954/* Allocate a multicast cache entry */
955static struct mfc_cache *ipmr_cache_alloc(void)
956{
957 struct mfc_cache *c = kmem_cache_zalloc(k: mrt_cachep, GFP_KERNEL);
958
959 if (c) {
960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
961 c->_c.mfc_un.res.minvif = MAXVIFS;
962 c->_c.free = ipmr_cache_free_rcu;
963 refcount_set(r: &c->_c.mfc_un.res.refcount, n: 1);
964 }
965 return c;
966}
967
968static struct mfc_cache *ipmr_cache_alloc_unres(void)
969{
970 struct mfc_cache *c = kmem_cache_zalloc(k: mrt_cachep, GFP_ATOMIC);
971
972 if (c) {
973 skb_queue_head_init(list: &c->_c.mfc_un.unres.unresolved);
974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
975 }
976 return c;
977}
978
979/* A cache entry has gone into a resolved state from queued */
980static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
981 struct mfc_cache *uc, struct mfc_cache *c)
982{
983 struct sk_buff *skb;
984 struct nlmsgerr *e;
985
986 /* Play the pending entries through our router */
987 while ((skb = __skb_dequeue(list: &uc->_c.mfc_un.unres.unresolved))) {
988 if (ip_hdr(skb)->version == 0) {
989 struct nlmsghdr *nlh = skb_pull(skb,
990 len: sizeof(struct iphdr));
991
992 if (mr_fill_mroute(mrt, skb, c: &c->_c,
993 rtm: nlmsg_data(nlh)) > 0) {
994 nlh->nlmsg_len = skb_tail_pointer(skb) -
995 (u8 *)nlh;
996 } else {
997 nlh->nlmsg_type = NLMSG_ERROR;
998 nlh->nlmsg_len = nlmsg_msg_size(payload: sizeof(struct nlmsgerr));
999 skb_trim(skb, len: nlh->nlmsg_len);
1000 e = nlmsg_data(nlh);
1001 e->error = -EMSGSIZE;
1002 memset(&e->msg, 0, sizeof(e->msg));
1003 }
1004
1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006 } else {
1007 rcu_read_lock();
1008 ip_mr_forward(net, mrt, dev: skb->dev, skb, cache: c, local: 0);
1009 rcu_read_unlock();
1010 }
1011 }
1012}
1013
1014/* Bounce a cache query up to mrouted and netlink.
1015 *
1016 * Called under rcu_read_lock().
1017 */
1018static int ipmr_cache_report(const struct mr_table *mrt,
1019 struct sk_buff *pkt, vifi_t vifi, int assert)
1020{
1021 const int ihl = ip_hdrlen(skb: pkt);
1022 struct sock *mroute_sk;
1023 struct igmphdr *igmp;
1024 struct igmpmsg *msg;
1025 struct sk_buff *skb;
1026 int ret;
1027
1028 mroute_sk = rcu_dereference(mrt->mroute_sk);
1029 if (!mroute_sk)
1030 return -EINVAL;
1031
1032 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1033 skb = skb_realloc_headroom(skb: pkt, headroom: sizeof(struct iphdr));
1034 else
1035 skb = alloc_skb(size: 128, GFP_ATOMIC);
1036
1037 if (!skb)
1038 return -ENOBUFS;
1039
1040 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1041 /* Ugly, but we have no choice with this interface.
1042 * Duplicate old header, fix ihl, length etc.
1043 * And all this only to mangle msg->im_msgtype and
1044 * to set msg->im_mbz to "mbz" :-)
1045 */
1046 skb_push(skb, len: sizeof(struct iphdr));
1047 skb_reset_network_header(skb);
1048 skb_reset_transport_header(skb);
1049 msg = (struct igmpmsg *)skb_network_header(skb);
1050 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1051 msg->im_msgtype = assert;
1052 msg->im_mbz = 0;
1053 if (assert == IGMPMSG_WRVIFWHOLE) {
1054 msg->im_vif = vifi;
1055 msg->im_vif_hi = vifi >> 8;
1056 } else {
1057 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1058 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1059
1060 msg->im_vif = vif_num;
1061 msg->im_vif_hi = vif_num >> 8;
1062 }
1063 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1064 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1065 sizeof(struct iphdr));
1066 } else {
1067 /* Copy the IP header */
1068 skb_set_network_header(skb, offset: skb->len);
1069 skb_put(skb, len: ihl);
1070 skb_copy_to_linear_data(skb, from: pkt->data, len: ihl);
1071 /* Flag to the kernel this is a route add */
1072 ip_hdr(skb)->protocol = 0;
1073 msg = (struct igmpmsg *)skb_network_header(skb);
1074 msg->im_vif = vifi;
1075 msg->im_vif_hi = vifi >> 8;
1076 ipv4_pktinfo_prepare(sk: mroute_sk, skb: pkt, drop_dst: false);
1077 memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1078 /* Add our header */
1079 igmp = skb_put(skb, len: sizeof(struct igmphdr));
1080 igmp->type = assert;
1081 msg->im_msgtype = assert;
1082 igmp->code = 0;
1083 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1084 skb->transport_header = skb->network_header;
1085 }
1086
1087 igmpmsg_netlink_event(mrt, pkt: skb);
1088
1089 /* Deliver to mrouted */
1090 ret = sock_queue_rcv_skb(sk: mroute_sk, skb);
1091
1092 if (ret < 0) {
1093 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1094 kfree_skb(skb);
1095 }
1096
1097 return ret;
1098}
1099
1100/* Queue a packet for resolution. It gets locked cache entry! */
1101/* Called under rcu_read_lock() */
1102static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1103 struct sk_buff *skb, struct net_device *dev)
1104{
1105 const struct iphdr *iph = ip_hdr(skb);
1106 struct mfc_cache *c;
1107 bool found = false;
1108 int err;
1109
1110 spin_lock_bh(lock: &mfc_unres_lock);
1111 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1112 if (c->mfc_mcastgrp == iph->daddr &&
1113 c->mfc_origin == iph->saddr) {
1114 found = true;
1115 break;
1116 }
1117 }
1118
1119 if (!found) {
1120 /* Create a new entry if allowable */
1121 c = ipmr_cache_alloc_unres();
1122 if (!c) {
1123 spin_unlock_bh(lock: &mfc_unres_lock);
1124
1125 kfree_skb(skb);
1126 return -ENOBUFS;
1127 }
1128
1129 /* Fill in the new cache entry */
1130 c->_c.mfc_parent = -1;
1131 c->mfc_origin = iph->saddr;
1132 c->mfc_mcastgrp = iph->daddr;
1133
1134 /* Reflect first query at mrouted. */
1135 err = ipmr_cache_report(mrt, pkt: skb, vifi, IGMPMSG_NOCACHE);
1136
1137 if (err < 0) {
1138 /* If the report failed throw the cache entry
1139 out - Brad Parker
1140 */
1141 spin_unlock_bh(lock: &mfc_unres_lock);
1142
1143 ipmr_cache_free(c);
1144 kfree_skb(skb);
1145 return err;
1146 }
1147
1148 atomic_inc(v: &mrt->cache_resolve_queue_len);
1149 list_add(new: &c->_c.list, head: &mrt->mfc_unres_queue);
1150 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1151
1152 if (atomic_read(v: &mrt->cache_resolve_queue_len) == 1)
1153 mod_timer(timer: &mrt->ipmr_expire_timer,
1154 expires: c->_c.mfc_un.unres.expires);
1155 }
1156
1157 /* See if we can append the packet */
1158 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1159 kfree_skb(skb);
1160 err = -ENOBUFS;
1161 } else {
1162 if (dev) {
1163 skb->dev = dev;
1164 skb->skb_iif = dev->ifindex;
1165 }
1166 skb_queue_tail(list: &c->_c.mfc_un.unres.unresolved, newsk: skb);
1167 err = 0;
1168 }
1169
1170 spin_unlock_bh(lock: &mfc_unres_lock);
1171 return err;
1172}
1173
1174/* MFC cache manipulation by user space mroute daemon */
1175
1176static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1177{
1178 struct net *net = read_pnet(pnet: &mrt->net);
1179 struct mfc_cache *c;
1180
1181 /* The entries are added/deleted only under RTNL */
1182 rcu_read_lock();
1183 c = ipmr_cache_find_parent(mrt, origin: mfc->mfcc_origin.s_addr,
1184 mcastgrp: mfc->mfcc_mcastgrp.s_addr, parent);
1185 rcu_read_unlock();
1186 if (!c)
1187 return -ENOENT;
1188 rhltable_remove(hlt: &mrt->mfc_hash, list: &c->_c.mnode, params: ipmr_rht_params);
1189 list_del_rcu(entry: &c->_c.list);
1190 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_DEL, mfc: c, tb_id: mrt->id);
1191 mroute_netlink_event(mrt, mfc: c, RTM_DELROUTE);
1192 mr_cache_put(c: &c->_c);
1193
1194 return 0;
1195}
1196
1197static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1198 struct mfcctl *mfc, int mrtsock, int parent)
1199{
1200 struct mfc_cache *uc, *c;
1201 struct mr_mfc *_uc;
1202 bool found;
1203 int ret;
1204
1205 if (mfc->mfcc_parent >= MAXVIFS)
1206 return -ENFILE;
1207
1208 /* The entries are added/deleted only under RTNL */
1209 rcu_read_lock();
1210 c = ipmr_cache_find_parent(mrt, origin: mfc->mfcc_origin.s_addr,
1211 mcastgrp: mfc->mfcc_mcastgrp.s_addr, parent);
1212 rcu_read_unlock();
1213 if (c) {
1214 spin_lock(lock: &mrt_lock);
1215 c->_c.mfc_parent = mfc->mfcc_parent;
1216 ipmr_update_thresholds(mrt, cache: &c->_c, ttls: mfc->mfcc_ttls);
1217 if (!mrtsock)
1218 c->_c.mfc_flags |= MFC_STATIC;
1219 spin_unlock(lock: &mrt_lock);
1220 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_REPLACE, mfc: c,
1221 tb_id: mrt->id);
1222 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1223 return 0;
1224 }
1225
1226 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1227 !ipv4_is_multicast(addr: mfc->mfcc_mcastgrp.s_addr))
1228 return -EINVAL;
1229
1230 c = ipmr_cache_alloc();
1231 if (!c)
1232 return -ENOMEM;
1233
1234 c->mfc_origin = mfc->mfcc_origin.s_addr;
1235 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1236 c->_c.mfc_parent = mfc->mfcc_parent;
1237 ipmr_update_thresholds(mrt, cache: &c->_c, ttls: mfc->mfcc_ttls);
1238 if (!mrtsock)
1239 c->_c.mfc_flags |= MFC_STATIC;
1240
1241 ret = rhltable_insert_key(hlt: &mrt->mfc_hash, key: &c->cmparg, list: &c->_c.mnode,
1242 params: ipmr_rht_params);
1243 if (ret) {
1244 pr_err("ipmr: rhtable insert error %d\n", ret);
1245 ipmr_cache_free(c);
1246 return ret;
1247 }
1248 list_add_tail_rcu(new: &c->_c.list, head: &mrt->mfc_cache_list);
1249 /* Check to see if we resolved a queued list. If so we
1250 * need to send on the frames and tidy up.
1251 */
1252 found = false;
1253 spin_lock_bh(lock: &mfc_unres_lock);
1254 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1255 uc = (struct mfc_cache *)_uc;
1256 if (uc->mfc_origin == c->mfc_origin &&
1257 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1258 list_del(entry: &_uc->list);
1259 atomic_dec(v: &mrt->cache_resolve_queue_len);
1260 found = true;
1261 break;
1262 }
1263 }
1264 if (list_empty(head: &mrt->mfc_unres_queue))
1265 del_timer(timer: &mrt->ipmr_expire_timer);
1266 spin_unlock_bh(lock: &mfc_unres_lock);
1267
1268 if (found) {
1269 ipmr_cache_resolve(net, mrt, uc, c);
1270 ipmr_cache_free(c: uc);
1271 }
1272 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_ADD, mfc: c, tb_id: mrt->id);
1273 mroute_netlink_event(mrt, mfc: c, RTM_NEWROUTE);
1274 return 0;
1275}
1276
1277/* Close the multicast socket, and clear the vif tables etc */
1278static void mroute_clean_tables(struct mr_table *mrt, int flags)
1279{
1280 struct net *net = read_pnet(pnet: &mrt->net);
1281 struct mr_mfc *c, *tmp;
1282 struct mfc_cache *cache;
1283 LIST_HEAD(list);
1284 int i;
1285
1286 /* Shut down all active vif entries */
1287 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1288 for (i = 0; i < mrt->maxvif; i++) {
1289 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1290 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1291 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1292 continue;
1293 vif_delete(mrt, vifi: i, notify: 0, head: &list);
1294 }
1295 unregister_netdevice_many(head: &list);
1296 }
1297
1298 /* Wipe the cache */
1299 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1300 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1301 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1302 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1303 continue;
1304 rhltable_remove(hlt: &mrt->mfc_hash, list: &c->mnode, params: ipmr_rht_params);
1305 list_del_rcu(entry: &c->list);
1306 cache = (struct mfc_cache *)c;
1307 call_ipmr_mfc_entry_notifiers(net, event_type: FIB_EVENT_ENTRY_DEL, mfc: cache,
1308 tb_id: mrt->id);
1309 mroute_netlink_event(mrt, mfc: cache, RTM_DELROUTE);
1310 mr_cache_put(c);
1311 }
1312 }
1313
1314 if (flags & MRT_FLUSH_MFC) {
1315 if (atomic_read(v: &mrt->cache_resolve_queue_len) != 0) {
1316 spin_lock_bh(lock: &mfc_unres_lock);
1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1318 list_del(entry: &c->list);
1319 cache = (struct mfc_cache *)c;
1320 mroute_netlink_event(mrt, mfc: cache, RTM_DELROUTE);
1321 ipmr_destroy_unres(mrt, c: cache);
1322 }
1323 spin_unlock_bh(lock: &mfc_unres_lock);
1324 }
1325 }
1326}
1327
1328/* called from ip_ra_control(), before an RCU grace period,
1329 * we don't need to call synchronize_rcu() here
1330 */
1331static void mrtsock_destruct(struct sock *sk)
1332{
1333 struct net *net = sock_net(sk);
1334 struct mr_table *mrt;
1335
1336 rtnl_lock();
1337 ipmr_for_each_table(mrt, net) {
1338 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1339 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1340 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1341 type: NETCONFA_MC_FORWARDING,
1342 NETCONFA_IFINDEX_ALL,
1343 devconf: net->ipv4.devconf_all);
1344 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1345 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1346 }
1347 }
1348 rtnl_unlock();
1349}
1350
1351/* Socket options and virtual interface manipulation. The whole
1352 * virtual interface system is a complete heap, but unfortunately
1353 * that's how BSD mrouted happens to think. Maybe one day with a proper
1354 * MOSPF/PIM router set up we can clean this up.
1355 */
1356
1357int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1358 unsigned int optlen)
1359{
1360 struct net *net = sock_net(sk);
1361 int val, ret = 0, parent = 0;
1362 struct mr_table *mrt;
1363 struct vifctl vif;
1364 struct mfcctl mfc;
1365 bool do_wrvifwhole;
1366 u32 uval;
1367
1368 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1369 rtnl_lock();
1370 if (sk->sk_type != SOCK_RAW ||
1371 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1372 ret = -EOPNOTSUPP;
1373 goto out_unlock;
1374 }
1375
1376 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1377 if (!mrt) {
1378 ret = -ENOENT;
1379 goto out_unlock;
1380 }
1381 if (optname != MRT_INIT) {
1382 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1383 !ns_capable(ns: net->user_ns, CAP_NET_ADMIN)) {
1384 ret = -EACCES;
1385 goto out_unlock;
1386 }
1387 }
1388
1389 switch (optname) {
1390 case MRT_INIT:
1391 if (optlen != sizeof(int)) {
1392 ret = -EINVAL;
1393 break;
1394 }
1395 if (rtnl_dereference(mrt->mroute_sk)) {
1396 ret = -EADDRINUSE;
1397 break;
1398 }
1399
1400 ret = ip_ra_control(sk, on: 1, destructor: mrtsock_destruct);
1401 if (ret == 0) {
1402 rcu_assign_pointer(mrt->mroute_sk, sk);
1403 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1404 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1405 type: NETCONFA_MC_FORWARDING,
1406 NETCONFA_IFINDEX_ALL,
1407 devconf: net->ipv4.devconf_all);
1408 }
1409 break;
1410 case MRT_DONE:
1411 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1412 ret = -EACCES;
1413 } else {
1414 /* We need to unlock here because mrtsock_destruct takes
1415 * care of rtnl itself and we can't change that due to
1416 * the IP_ROUTER_ALERT setsockopt which runs without it.
1417 */
1418 rtnl_unlock();
1419 ret = ip_ra_control(sk, on: 0, NULL);
1420 goto out;
1421 }
1422 break;
1423 case MRT_ADD_VIF:
1424 case MRT_DEL_VIF:
1425 if (optlen != sizeof(vif)) {
1426 ret = -EINVAL;
1427 break;
1428 }
1429 if (copy_from_sockptr(dst: &vif, src: optval, size: sizeof(vif))) {
1430 ret = -EFAULT;
1431 break;
1432 }
1433 if (vif.vifc_vifi >= MAXVIFS) {
1434 ret = -ENFILE;
1435 break;
1436 }
1437 if (optname == MRT_ADD_VIF) {
1438 ret = vif_add(net, mrt, vifc: &vif,
1439 mrtsock: sk == rtnl_dereference(mrt->mroute_sk));
1440 } else {
1441 ret = vif_delete(mrt, vifi: vif.vifc_vifi, notify: 0, NULL);
1442 }
1443 break;
1444 /* Manipulate the forwarding caches. These live
1445 * in a sort of kernel/user symbiosis.
1446 */
1447 case MRT_ADD_MFC:
1448 case MRT_DEL_MFC:
1449 parent = -1;
1450 fallthrough;
1451 case MRT_ADD_MFC_PROXY:
1452 case MRT_DEL_MFC_PROXY:
1453 if (optlen != sizeof(mfc)) {
1454 ret = -EINVAL;
1455 break;
1456 }
1457 if (copy_from_sockptr(dst: &mfc, src: optval, size: sizeof(mfc))) {
1458 ret = -EFAULT;
1459 break;
1460 }
1461 if (parent == 0)
1462 parent = mfc.mfcc_parent;
1463 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1464 ret = ipmr_mfc_delete(mrt, mfc: &mfc, parent);
1465 else
1466 ret = ipmr_mfc_add(net, mrt, mfc: &mfc,
1467 mrtsock: sk == rtnl_dereference(mrt->mroute_sk),
1468 parent);
1469 break;
1470 case MRT_FLUSH:
1471 if (optlen != sizeof(val)) {
1472 ret = -EINVAL;
1473 break;
1474 }
1475 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1476 ret = -EFAULT;
1477 break;
1478 }
1479 mroute_clean_tables(mrt, flags: val);
1480 break;
1481 /* Control PIM assert. */
1482 case MRT_ASSERT:
1483 if (optlen != sizeof(val)) {
1484 ret = -EINVAL;
1485 break;
1486 }
1487 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1488 ret = -EFAULT;
1489 break;
1490 }
1491 mrt->mroute_do_assert = val;
1492 break;
1493 case MRT_PIM:
1494 if (!ipmr_pimsm_enabled()) {
1495 ret = -ENOPROTOOPT;
1496 break;
1497 }
1498 if (optlen != sizeof(val)) {
1499 ret = -EINVAL;
1500 break;
1501 }
1502 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) {
1503 ret = -EFAULT;
1504 break;
1505 }
1506
1507 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1508 val = !!val;
1509 if (val != mrt->mroute_do_pim) {
1510 mrt->mroute_do_pim = val;
1511 mrt->mroute_do_assert = val;
1512 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1513 }
1514 break;
1515 case MRT_TABLE:
1516 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1517 ret = -ENOPROTOOPT;
1518 break;
1519 }
1520 if (optlen != sizeof(uval)) {
1521 ret = -EINVAL;
1522 break;
1523 }
1524 if (copy_from_sockptr(dst: &uval, src: optval, size: sizeof(uval))) {
1525 ret = -EFAULT;
1526 break;
1527 }
1528
1529 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1530 ret = -EBUSY;
1531 } else {
1532 mrt = ipmr_new_table(net, id: uval);
1533 if (IS_ERR(ptr: mrt))
1534 ret = PTR_ERR(ptr: mrt);
1535 else
1536 raw_sk(sk)->ipmr_table = uval;
1537 }
1538 break;
1539 /* Spurious command, or MRT_VERSION which you cannot set. */
1540 default:
1541 ret = -ENOPROTOOPT;
1542 }
1543out_unlock:
1544 rtnl_unlock();
1545out:
1546 return ret;
1547}
1548
1549/* Execute if this ioctl is a special mroute ioctl */
1550int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1551{
1552 switch (cmd) {
1553 /* These userspace buffers will be consumed by ipmr_ioctl() */
1554 case SIOCGETVIFCNT: {
1555 struct sioc_vif_req buffer;
1556
1557 return sock_ioctl_inout(sk, cmd, arg, karg: &buffer,
1558 size: sizeof(buffer));
1559 }
1560 case SIOCGETSGCNT: {
1561 struct sioc_sg_req buffer;
1562
1563 return sock_ioctl_inout(sk, cmd, arg, karg: &buffer,
1564 size: sizeof(buffer));
1565 }
1566 }
1567 /* return code > 0 means that the ioctl was not executed */
1568 return 1;
1569}
1570
1571/* Getsock opt support for the multicast routing system. */
1572int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1573 sockptr_t optlen)
1574{
1575 int olr;
1576 int val;
1577 struct net *net = sock_net(sk);
1578 struct mr_table *mrt;
1579
1580 if (sk->sk_type != SOCK_RAW ||
1581 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1582 return -EOPNOTSUPP;
1583
1584 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1585 if (!mrt)
1586 return -ENOENT;
1587
1588 switch (optname) {
1589 case MRT_VERSION:
1590 val = 0x0305;
1591 break;
1592 case MRT_PIM:
1593 if (!ipmr_pimsm_enabled())
1594 return -ENOPROTOOPT;
1595 val = mrt->mroute_do_pim;
1596 break;
1597 case MRT_ASSERT:
1598 val = mrt->mroute_do_assert;
1599 break;
1600 default:
1601 return -ENOPROTOOPT;
1602 }
1603
1604 if (copy_from_sockptr(dst: &olr, src: optlen, size: sizeof(int)))
1605 return -EFAULT;
1606 if (olr < 0)
1607 return -EINVAL;
1608
1609 olr = min_t(unsigned int, olr, sizeof(int));
1610
1611 if (copy_to_sockptr(dst: optlen, src: &olr, size: sizeof(int)))
1612 return -EFAULT;
1613 if (copy_to_sockptr(dst: optval, src: &val, size: olr))
1614 return -EFAULT;
1615 return 0;
1616}
1617
1618/* The IP multicast ioctl support routines. */
1619int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1620{
1621 struct vif_device *vif;
1622 struct mfc_cache *c;
1623 struct net *net = sock_net(sk);
1624 struct sioc_vif_req *vr;
1625 struct sioc_sg_req *sr;
1626 struct mr_table *mrt;
1627
1628 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1629 if (!mrt)
1630 return -ENOENT;
1631
1632 switch (cmd) {
1633 case SIOCGETVIFCNT:
1634 vr = (struct sioc_vif_req *)arg;
1635 if (vr->vifi >= mrt->maxvif)
1636 return -EINVAL;
1637 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1638 rcu_read_lock();
1639 vif = &mrt->vif_table[vr->vifi];
1640 if (VIF_EXISTS(mrt, vr->vifi)) {
1641 vr->icount = READ_ONCE(vif->pkt_in);
1642 vr->ocount = READ_ONCE(vif->pkt_out);
1643 vr->ibytes = READ_ONCE(vif->bytes_in);
1644 vr->obytes = READ_ONCE(vif->bytes_out);
1645 rcu_read_unlock();
1646
1647 return 0;
1648 }
1649 rcu_read_unlock();
1650 return -EADDRNOTAVAIL;
1651 case SIOCGETSGCNT:
1652 sr = (struct sioc_sg_req *)arg;
1653
1654 rcu_read_lock();
1655 c = ipmr_cache_find(mrt, origin: sr->src.s_addr, mcastgrp: sr->grp.s_addr);
1656 if (c) {
1657 sr->pktcnt = c->_c.mfc_un.res.pkt;
1658 sr->bytecnt = c->_c.mfc_un.res.bytes;
1659 sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1660 rcu_read_unlock();
1661 return 0;
1662 }
1663 rcu_read_unlock();
1664 return -EADDRNOTAVAIL;
1665 default:
1666 return -ENOIOCTLCMD;
1667 }
1668}
1669
1670#ifdef CONFIG_COMPAT
1671struct compat_sioc_sg_req {
1672 struct in_addr src;
1673 struct in_addr grp;
1674 compat_ulong_t pktcnt;
1675 compat_ulong_t bytecnt;
1676 compat_ulong_t wrong_if;
1677};
1678
1679struct compat_sioc_vif_req {
1680 vifi_t vifi; /* Which iface */
1681 compat_ulong_t icount;
1682 compat_ulong_t ocount;
1683 compat_ulong_t ibytes;
1684 compat_ulong_t obytes;
1685};
1686
1687int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1688{
1689 struct compat_sioc_sg_req sr;
1690 struct compat_sioc_vif_req vr;
1691 struct vif_device *vif;
1692 struct mfc_cache *c;
1693 struct net *net = sock_net(sk);
1694 struct mr_table *mrt;
1695
1696 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1697 if (!mrt)
1698 return -ENOENT;
1699
1700 switch (cmd) {
1701 case SIOCGETVIFCNT:
1702 if (copy_from_user(to: &vr, from: arg, n: sizeof(vr)))
1703 return -EFAULT;
1704 if (vr.vifi >= mrt->maxvif)
1705 return -EINVAL;
1706 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1707 rcu_read_lock();
1708 vif = &mrt->vif_table[vr.vifi];
1709 if (VIF_EXISTS(mrt, vr.vifi)) {
1710 vr.icount = READ_ONCE(vif->pkt_in);
1711 vr.ocount = READ_ONCE(vif->pkt_out);
1712 vr.ibytes = READ_ONCE(vif->bytes_in);
1713 vr.obytes = READ_ONCE(vif->bytes_out);
1714 rcu_read_unlock();
1715
1716 if (copy_to_user(to: arg, from: &vr, n: sizeof(vr)))
1717 return -EFAULT;
1718 return 0;
1719 }
1720 rcu_read_unlock();
1721 return -EADDRNOTAVAIL;
1722 case SIOCGETSGCNT:
1723 if (copy_from_user(to: &sr, from: arg, n: sizeof(sr)))
1724 return -EFAULT;
1725
1726 rcu_read_lock();
1727 c = ipmr_cache_find(mrt, origin: sr.src.s_addr, mcastgrp: sr.grp.s_addr);
1728 if (c) {
1729 sr.pktcnt = c->_c.mfc_un.res.pkt;
1730 sr.bytecnt = c->_c.mfc_un.res.bytes;
1731 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1732 rcu_read_unlock();
1733
1734 if (copy_to_user(to: arg, from: &sr, n: sizeof(sr)))
1735 return -EFAULT;
1736 return 0;
1737 }
1738 rcu_read_unlock();
1739 return -EADDRNOTAVAIL;
1740 default:
1741 return -ENOIOCTLCMD;
1742 }
1743}
1744#endif
1745
1746static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1747{
1748 struct net_device *dev = netdev_notifier_info_to_dev(info: ptr);
1749 struct net *net = dev_net(dev);
1750 struct mr_table *mrt;
1751 struct vif_device *v;
1752 int ct;
1753
1754 if (event != NETDEV_UNREGISTER)
1755 return NOTIFY_DONE;
1756
1757 ipmr_for_each_table(mrt, net) {
1758 v = &mrt->vif_table[0];
1759 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1760 if (rcu_access_pointer(v->dev) == dev)
1761 vif_delete(mrt, vifi: ct, notify: 1, NULL);
1762 }
1763 }
1764 return NOTIFY_DONE;
1765}
1766
1767static struct notifier_block ip_mr_notifier = {
1768 .notifier_call = ipmr_device_event,
1769};
1770
1771/* Encapsulate a packet by attaching a valid IPIP header to it.
1772 * This avoids tunnel drivers and other mess and gives us the speed so
1773 * important for multicast video.
1774 */
1775static void ip_encap(struct net *net, struct sk_buff *skb,
1776 __be32 saddr, __be32 daddr)
1777{
1778 struct iphdr *iph;
1779 const struct iphdr *old_iph = ip_hdr(skb);
1780
1781 skb_push(skb, len: sizeof(struct iphdr));
1782 skb->transport_header = skb->network_header;
1783 skb_reset_network_header(skb);
1784 iph = ip_hdr(skb);
1785
1786 iph->version = 4;
1787 iph->tos = old_iph->tos;
1788 iph->ttl = old_iph->ttl;
1789 iph->frag_off = 0;
1790 iph->daddr = daddr;
1791 iph->saddr = saddr;
1792 iph->protocol = IPPROTO_IPIP;
1793 iph->ihl = 5;
1794 iph->tot_len = htons(skb->len);
1795 ip_select_ident(net, skb, NULL);
1796 ip_send_check(ip: iph);
1797
1798 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1799 nf_reset_ct(skb);
1800}
1801
1802static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1803 struct sk_buff *skb)
1804{
1805 struct ip_options *opt = &(IPCB(skb)->opt);
1806
1807 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1808
1809 if (unlikely(opt->optlen))
1810 ip_forward_options(skb);
1811
1812 return dst_output(net, sk, skb);
1813}
1814
1815#ifdef CONFIG_NET_SWITCHDEV
1816static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1817 int in_vifi, int out_vifi)
1818{
1819 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1820 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1821
1822 if (!skb->offload_l3_fwd_mark)
1823 return false;
1824 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1825 return false;
1826 return netdev_phys_item_id_same(a: &out_vif->dev_parent_id,
1827 b: &in_vif->dev_parent_id);
1828}
1829#else
1830static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1831 int in_vifi, int out_vifi)
1832{
1833 return false;
1834}
1835#endif
1836
1837/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1838
1839static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1840 int in_vifi, struct sk_buff *skb, int vifi)
1841{
1842 const struct iphdr *iph = ip_hdr(skb);
1843 struct vif_device *vif = &mrt->vif_table[vifi];
1844 struct net_device *vif_dev;
1845 struct net_device *dev;
1846 struct rtable *rt;
1847 struct flowi4 fl4;
1848 int encap = 0;
1849
1850 vif_dev = vif_dev_read(vif);
1851 if (!vif_dev)
1852 goto out_free;
1853
1854 if (vif->flags & VIFF_REGISTER) {
1855 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1856 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1857 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1858 DEV_STATS_INC(vif_dev, tx_packets);
1859 ipmr_cache_report(mrt, pkt: skb, vifi, IGMPMSG_WHOLEPKT);
1860 goto out_free;
1861 }
1862
1863 if (ipmr_forward_offloaded(skb, mrt, in_vifi, out_vifi: vifi))
1864 goto out_free;
1865
1866 if (vif->flags & VIFF_TUNNEL) {
1867 rt = ip_route_output_ports(net, fl4: &fl4, NULL,
1868 daddr: vif->remote, saddr: vif->local,
1869 dport: 0, sport: 0,
1870 IPPROTO_IPIP,
1871 RT_TOS(iph->tos), oif: vif->link);
1872 if (IS_ERR(ptr: rt))
1873 goto out_free;
1874 encap = sizeof(struct iphdr);
1875 } else {
1876 rt = ip_route_output_ports(net, fl4: &fl4, NULL, daddr: iph->daddr, saddr: 0,
1877 dport: 0, sport: 0,
1878 IPPROTO_IPIP,
1879 RT_TOS(iph->tos), oif: vif->link);
1880 if (IS_ERR(ptr: rt))
1881 goto out_free;
1882 }
1883
1884 dev = rt->dst.dev;
1885
1886 if (skb->len+encap > dst_mtu(dst: &rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1887 /* Do not fragment multicasts. Alas, IPv4 does not
1888 * allow to send ICMP, so that packets will disappear
1889 * to blackhole.
1890 */
1891 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1892 ip_rt_put(rt);
1893 goto out_free;
1894 }
1895
1896 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1897
1898 if (skb_cow(skb, headroom: encap)) {
1899 ip_rt_put(rt);
1900 goto out_free;
1901 }
1902
1903 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1904 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1905
1906 skb_dst_drop(skb);
1907 skb_dst_set(skb, dst: &rt->dst);
1908 ip_decrease_ttl(iph: ip_hdr(skb));
1909
1910 /* FIXME: forward and output firewalls used to be called here.
1911 * What do we do with netfilter? -- RR
1912 */
1913 if (vif->flags & VIFF_TUNNEL) {
1914 ip_encap(net, skb, saddr: vif->local, daddr: vif->remote);
1915 /* FIXME: extra output firewall step used to be here. --RR */
1916 DEV_STATS_INC(vif_dev, tx_packets);
1917 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1918 }
1919
1920 IPCB(skb)->flags |= IPSKB_FORWARDED;
1921
1922 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1923 * not only before forwarding, but after forwarding on all output
1924 * interfaces. It is clear, if mrouter runs a multicasting
1925 * program, it should receive packets not depending to what interface
1926 * program is joined.
1927 * If we will not make it, the program will have to join on all
1928 * interfaces. On the other hand, multihoming host (or router, but
1929 * not mrouter) cannot join to more than one interface - it will
1930 * result in receiving multiple packets.
1931 */
1932 NF_HOOK(pf: NFPROTO_IPV4, hook: NF_INET_FORWARD,
1933 net, NULL, skb, in: skb->dev, out: dev,
1934 okfn: ipmr_forward_finish);
1935 return;
1936
1937out_free:
1938 kfree_skb(skb);
1939}
1940
1941/* Called with mrt_lock or rcu_read_lock() */
1942static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1943{
1944 int ct;
1945 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1946 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1947 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1948 break;
1949 }
1950 return ct;
1951}
1952
1953/* "local" means that we should preserve one skb (for local delivery) */
1954/* Called uner rcu_read_lock() */
1955static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1956 struct net_device *dev, struct sk_buff *skb,
1957 struct mfc_cache *c, int local)
1958{
1959 int true_vifi = ipmr_find_vif(mrt, dev);
1960 int psend = -1;
1961 int vif, ct;
1962
1963 vif = c->_c.mfc_parent;
1964 c->_c.mfc_un.res.pkt++;
1965 c->_c.mfc_un.res.bytes += skb->len;
1966 c->_c.mfc_un.res.lastuse = jiffies;
1967
1968 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1969 struct mfc_cache *cache_proxy;
1970
1971 /* For an (*,G) entry, we only check that the incoming
1972 * interface is part of the static tree.
1973 */
1974 cache_proxy = mr_mfc_find_any_parent(mrt, vifi: vif);
1975 if (cache_proxy &&
1976 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1977 goto forward;
1978 }
1979
1980 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1981 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1982 if (rt_is_output_route(rt: skb_rtable(skb))) {
1983 /* It is our own packet, looped back.
1984 * Very complicated situation...
1985 *
1986 * The best workaround until routing daemons will be
1987 * fixed is not to redistribute packet, if it was
1988 * send through wrong interface. It means, that
1989 * multicast applications WILL NOT work for
1990 * (S,G), which have default multicast route pointing
1991 * to wrong oif. In any case, it is not a good
1992 * idea to use multicasting applications on router.
1993 */
1994 goto dont_forward;
1995 }
1996
1997 c->_c.mfc_un.res.wrong_if++;
1998
1999 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2000 /* pimsm uses asserts, when switching from RPT to SPT,
2001 * so that we cannot check that packet arrived on an oif.
2002 * It is bad, but otherwise we would need to move pretty
2003 * large chunk of pimd to kernel. Ough... --ANK
2004 */
2005 (mrt->mroute_do_pim ||
2006 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2007 time_after(jiffies,
2008 c->_c.mfc_un.res.last_assert +
2009 MFC_ASSERT_THRESH)) {
2010 c->_c.mfc_un.res.last_assert = jiffies;
2011 ipmr_cache_report(mrt, pkt: skb, vifi: true_vifi, IGMPMSG_WRONGVIF);
2012 if (mrt->mroute_do_wrvifwhole)
2013 ipmr_cache_report(mrt, pkt: skb, vifi: true_vifi,
2014 IGMPMSG_WRVIFWHOLE);
2015 }
2016 goto dont_forward;
2017 }
2018
2019forward:
2020 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2021 mrt->vif_table[vif].pkt_in + 1);
2022 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2023 mrt->vif_table[vif].bytes_in + skb->len);
2024
2025 /* Forward the frame */
2026 if (c->mfc_origin == htonl(INADDR_ANY) &&
2027 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2028 if (true_vifi >= 0 &&
2029 true_vifi != c->_c.mfc_parent &&
2030 ip_hdr(skb)->ttl >
2031 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2032 /* It's an (*,*) entry and the packet is not coming from
2033 * the upstream: forward the packet to the upstream
2034 * only.
2035 */
2036 psend = c->_c.mfc_parent;
2037 goto last_forward;
2038 }
2039 goto dont_forward;
2040 }
2041 for (ct = c->_c.mfc_un.res.maxvif - 1;
2042 ct >= c->_c.mfc_un.res.minvif; ct--) {
2043 /* For (*,G) entry, don't forward to the incoming interface */
2044 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2045 ct != true_vifi) &&
2046 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2047 if (psend != -1) {
2048 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2049
2050 if (skb2)
2051 ipmr_queue_xmit(net, mrt, in_vifi: true_vifi,
2052 skb: skb2, vifi: psend);
2053 }
2054 psend = ct;
2055 }
2056 }
2057last_forward:
2058 if (psend != -1) {
2059 if (local) {
2060 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061
2062 if (skb2)
2063 ipmr_queue_xmit(net, mrt, in_vifi: true_vifi, skb: skb2,
2064 vifi: psend);
2065 } else {
2066 ipmr_queue_xmit(net, mrt, in_vifi: true_vifi, skb, vifi: psend);
2067 return;
2068 }
2069 }
2070
2071dont_forward:
2072 if (!local)
2073 kfree_skb(skb);
2074}
2075
2076static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2077{
2078 struct rtable *rt = skb_rtable(skb);
2079 struct iphdr *iph = ip_hdr(skb);
2080 struct flowi4 fl4 = {
2081 .daddr = iph->daddr,
2082 .saddr = iph->saddr,
2083 .flowi4_tos = RT_TOS(iph->tos),
2084 .flowi4_oif = (rt_is_output_route(rt) ?
2085 skb->dev->ifindex : 0),
2086 .flowi4_iif = (rt_is_output_route(rt) ?
2087 LOOPBACK_IFINDEX :
2088 skb->dev->ifindex),
2089 .flowi4_mark = skb->mark,
2090 };
2091 struct mr_table *mrt;
2092 int err;
2093
2094 err = ipmr_fib_lookup(net, flp4: &fl4, mrt: &mrt);
2095 if (err)
2096 return ERR_PTR(error: err);
2097 return mrt;
2098}
2099
2100/* Multicast packets for forwarding arrive here
2101 * Called with rcu_read_lock();
2102 */
2103int ip_mr_input(struct sk_buff *skb)
2104{
2105 struct mfc_cache *cache;
2106 struct net *net = dev_net(dev: skb->dev);
2107 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2108 struct mr_table *mrt;
2109 struct net_device *dev;
2110
2111 /* skb->dev passed in is the loX master dev for vrfs.
2112 * As there are no vifs associated with loopback devices,
2113 * get the proper interface that does have a vif associated with it.
2114 */
2115 dev = skb->dev;
2116 if (netif_is_l3_master(dev: skb->dev)) {
2117 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2118 if (!dev) {
2119 kfree_skb(skb);
2120 return -ENODEV;
2121 }
2122 }
2123
2124 /* Packet is looped back after forward, it should not be
2125 * forwarded second time, but still can be delivered locally.
2126 */
2127 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2128 goto dont_forward;
2129
2130 mrt = ipmr_rt_fib_lookup(net, skb);
2131 if (IS_ERR(ptr: mrt)) {
2132 kfree_skb(skb);
2133 return PTR_ERR(ptr: mrt);
2134 }
2135 if (!local) {
2136 if (IPCB(skb)->opt.router_alert) {
2137 if (ip_call_ra_chain(skb))
2138 return 0;
2139 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2140 /* IGMPv1 (and broken IGMPv2 implementations sort of
2141 * Cisco IOS <= 11.2(8)) do not put router alert
2142 * option to IGMP packets destined to routable
2143 * groups. It is very bad, because it means
2144 * that we can forward NO IGMP messages.
2145 */
2146 struct sock *mroute_sk;
2147
2148 mroute_sk = rcu_dereference(mrt->mroute_sk);
2149 if (mroute_sk) {
2150 nf_reset_ct(skb);
2151 raw_rcv(mroute_sk, skb);
2152 return 0;
2153 }
2154 }
2155 }
2156
2157 /* already under rcu_read_lock() */
2158 cache = ipmr_cache_find(mrt, origin: ip_hdr(skb)->saddr, mcastgrp: ip_hdr(skb)->daddr);
2159 if (!cache) {
2160 int vif = ipmr_find_vif(mrt, dev);
2161
2162 if (vif >= 0)
2163 cache = ipmr_cache_find_any(mrt, mcastgrp: ip_hdr(skb)->daddr,
2164 vifi: vif);
2165 }
2166
2167 /* No usable cache entry */
2168 if (!cache) {
2169 int vif;
2170
2171 if (local) {
2172 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2173 ip_local_deliver(skb);
2174 if (!skb2)
2175 return -ENOBUFS;
2176 skb = skb2;
2177 }
2178
2179 vif = ipmr_find_vif(mrt, dev);
2180 if (vif >= 0)
2181 return ipmr_cache_unresolved(mrt, vifi: vif, skb, dev);
2182 kfree_skb(skb);
2183 return -ENODEV;
2184 }
2185
2186 ip_mr_forward(net, mrt, dev, skb, c: cache, local);
2187
2188 if (local)
2189 return ip_local_deliver(skb);
2190
2191 return 0;
2192
2193dont_forward:
2194 if (local)
2195 return ip_local_deliver(skb);
2196 kfree_skb(skb);
2197 return 0;
2198}
2199
2200#ifdef CONFIG_IP_PIMSM_V1
2201/* Handle IGMP messages of PIMv1 */
2202int pim_rcv_v1(struct sk_buff *skb)
2203{
2204 struct igmphdr *pim;
2205 struct net *net = dev_net(dev: skb->dev);
2206 struct mr_table *mrt;
2207
2208 if (!pskb_may_pull(skb, len: sizeof(*pim) + sizeof(struct iphdr)))
2209 goto drop;
2210
2211 pim = igmp_hdr(skb);
2212
2213 mrt = ipmr_rt_fib_lookup(net, skb);
2214 if (IS_ERR(ptr: mrt))
2215 goto drop;
2216 if (!mrt->mroute_do_pim ||
2217 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2218 goto drop;
2219
2220 if (__pim_rcv(mrt, skb, pimlen: sizeof(*pim))) {
2221drop:
2222 kfree_skb(skb);
2223 }
2224 return 0;
2225}
2226#endif
2227
2228#ifdef CONFIG_IP_PIMSM_V2
2229static int pim_rcv(struct sk_buff *skb)
2230{
2231 struct pimreghdr *pim;
2232 struct net *net = dev_net(dev: skb->dev);
2233 struct mr_table *mrt;
2234
2235 if (!pskb_may_pull(skb, len: sizeof(*pim) + sizeof(struct iphdr)))
2236 goto drop;
2237
2238 pim = (struct pimreghdr *)skb_transport_header(skb);
2239 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2240 (pim->flags & PIM_NULL_REGISTER) ||
2241 (ip_compute_csum(buff: (void *)pim, len: sizeof(*pim)) != 0 &&
2242 csum_fold(sum: skb_checksum(skb, offset: 0, len: skb->len, csum: 0))))
2243 goto drop;
2244
2245 mrt = ipmr_rt_fib_lookup(net, skb);
2246 if (IS_ERR(ptr: mrt))
2247 goto drop;
2248 if (__pim_rcv(mrt, skb, pimlen: sizeof(*pim))) {
2249drop:
2250 kfree_skb(skb);
2251 }
2252 return 0;
2253}
2254#endif
2255
2256int ipmr_get_route(struct net *net, struct sk_buff *skb,
2257 __be32 saddr, __be32 daddr,
2258 struct rtmsg *rtm, u32 portid)
2259{
2260 struct mfc_cache *cache;
2261 struct mr_table *mrt;
2262 int err;
2263
2264 mrt = ipmr_get_table(net, id: RT_TABLE_DEFAULT);
2265 if (!mrt)
2266 return -ENOENT;
2267
2268 rcu_read_lock();
2269 cache = ipmr_cache_find(mrt, origin: saddr, mcastgrp: daddr);
2270 if (!cache && skb->dev) {
2271 int vif = ipmr_find_vif(mrt, dev: skb->dev);
2272
2273 if (vif >= 0)
2274 cache = ipmr_cache_find_any(mrt, mcastgrp: daddr, vifi: vif);
2275 }
2276 if (!cache) {
2277 struct sk_buff *skb2;
2278 struct iphdr *iph;
2279 struct net_device *dev;
2280 int vif = -1;
2281
2282 dev = skb->dev;
2283 if (dev)
2284 vif = ipmr_find_vif(mrt, dev);
2285 if (vif < 0) {
2286 rcu_read_unlock();
2287 return -ENODEV;
2288 }
2289
2290 skb2 = skb_realloc_headroom(skb, headroom: sizeof(struct iphdr));
2291 if (!skb2) {
2292 rcu_read_unlock();
2293 return -ENOMEM;
2294 }
2295
2296 NETLINK_CB(skb2).portid = portid;
2297 skb_push(skb: skb2, len: sizeof(struct iphdr));
2298 skb_reset_network_header(skb: skb2);
2299 iph = ip_hdr(skb: skb2);
2300 iph->ihl = sizeof(struct iphdr) >> 2;
2301 iph->saddr = saddr;
2302 iph->daddr = daddr;
2303 iph->version = 0;
2304 err = ipmr_cache_unresolved(mrt, vifi: vif, skb: skb2, dev);
2305 rcu_read_unlock();
2306 return err;
2307 }
2308
2309 err = mr_fill_mroute(mrt, skb, c: &cache->_c, rtm);
2310 rcu_read_unlock();
2311 return err;
2312}
2313
2314static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2315 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2316 int flags)
2317{
2318 struct nlmsghdr *nlh;
2319 struct rtmsg *rtm;
2320 int err;
2321
2322 nlh = nlmsg_put(skb, portid, seq, type: cmd, payload: sizeof(*rtm), flags);
2323 if (!nlh)
2324 return -EMSGSIZE;
2325
2326 rtm = nlmsg_data(nlh);
2327 rtm->rtm_family = RTNL_FAMILY_IPMR;
2328 rtm->rtm_dst_len = 32;
2329 rtm->rtm_src_len = 32;
2330 rtm->rtm_tos = 0;
2331 rtm->rtm_table = mrt->id;
2332 if (nla_put_u32(skb, attrtype: RTA_TABLE, value: mrt->id))
2333 goto nla_put_failure;
2334 rtm->rtm_type = RTN_MULTICAST;
2335 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2336 if (c->_c.mfc_flags & MFC_STATIC)
2337 rtm->rtm_protocol = RTPROT_STATIC;
2338 else
2339 rtm->rtm_protocol = RTPROT_MROUTED;
2340 rtm->rtm_flags = 0;
2341
2342 if (nla_put_in_addr(skb, attrtype: RTA_SRC, addr: c->mfc_origin) ||
2343 nla_put_in_addr(skb, attrtype: RTA_DST, addr: c->mfc_mcastgrp))
2344 goto nla_put_failure;
2345 err = mr_fill_mroute(mrt, skb, c: &c->_c, rtm);
2346 /* do not break the dump if cache is unresolved */
2347 if (err < 0 && err != -ENOENT)
2348 goto nla_put_failure;
2349
2350 nlmsg_end(skb, nlh);
2351 return 0;
2352
2353nla_put_failure:
2354 nlmsg_cancel(skb, nlh);
2355 return -EMSGSIZE;
2356}
2357
2358static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2359 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2360 int flags)
2361{
2362 return ipmr_fill_mroute(mrt, skb, portid, seq, c: (struct mfc_cache *)c,
2363 cmd, flags);
2364}
2365
2366static size_t mroute_msgsize(bool unresolved, int maxvif)
2367{
2368 size_t len =
2369 NLMSG_ALIGN(sizeof(struct rtmsg))
2370 + nla_total_size(payload: 4) /* RTA_TABLE */
2371 + nla_total_size(payload: 4) /* RTA_SRC */
2372 + nla_total_size(payload: 4) /* RTA_DST */
2373 ;
2374
2375 if (!unresolved)
2376 len = len
2377 + nla_total_size(payload: 4) /* RTA_IIF */
2378 + nla_total_size(payload: 0) /* RTA_MULTIPATH */
2379 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2380 /* RTA_MFC_STATS */
2381 + nla_total_size_64bit(payload: sizeof(struct rta_mfc_stats))
2382 ;
2383
2384 return len;
2385}
2386
2387static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2388 int cmd)
2389{
2390 struct net *net = read_pnet(pnet: &mrt->net);
2391 struct sk_buff *skb;
2392 int err = -ENOBUFS;
2393
2394 skb = nlmsg_new(payload: mroute_msgsize(unresolved: mfc->_c.mfc_parent >= MAXVIFS,
2395 maxvif: mrt->maxvif),
2396 GFP_ATOMIC);
2397 if (!skb)
2398 goto errout;
2399
2400 err = ipmr_fill_mroute(mrt, skb, portid: 0, seq: 0, c: mfc, cmd, flags: 0);
2401 if (err < 0)
2402 goto errout;
2403
2404 rtnl_notify(skb, net, pid: 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2405 return;
2406
2407errout:
2408 kfree_skb(skb);
2409 if (err < 0)
2410 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, error: err);
2411}
2412
2413static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2414{
2415 size_t len =
2416 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2417 + nla_total_size(payload: 1) /* IPMRA_CREPORT_MSGTYPE */
2418 + nla_total_size(payload: 4) /* IPMRA_CREPORT_VIF_ID */
2419 + nla_total_size(payload: 4) /* IPMRA_CREPORT_SRC_ADDR */
2420 + nla_total_size(payload: 4) /* IPMRA_CREPORT_DST_ADDR */
2421 + nla_total_size(payload: 4) /* IPMRA_CREPORT_TABLE */
2422 /* IPMRA_CREPORT_PKT */
2423 + nla_total_size(payload: payloadlen)
2424 ;
2425
2426 return len;
2427}
2428
2429static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2430{
2431 struct net *net = read_pnet(pnet: &mrt->net);
2432 struct nlmsghdr *nlh;
2433 struct rtgenmsg *rtgenm;
2434 struct igmpmsg *msg;
2435 struct sk_buff *skb;
2436 struct nlattr *nla;
2437 int payloadlen;
2438
2439 payloadlen = pkt->len - sizeof(struct igmpmsg);
2440 msg = (struct igmpmsg *)skb_network_header(skb: pkt);
2441
2442 skb = nlmsg_new(payload: igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2443 if (!skb)
2444 goto errout;
2445
2446 nlh = nlmsg_put(skb, portid: 0, seq: 0, RTM_NEWCACHEREPORT,
2447 payload: sizeof(struct rtgenmsg), flags: 0);
2448 if (!nlh)
2449 goto errout;
2450 rtgenm = nlmsg_data(nlh);
2451 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2452 if (nla_put_u8(skb, attrtype: IPMRA_CREPORT_MSGTYPE, value: msg->im_msgtype) ||
2453 nla_put_u32(skb, attrtype: IPMRA_CREPORT_VIF_ID, value: msg->im_vif | (msg->im_vif_hi << 8)) ||
2454 nla_put_in_addr(skb, attrtype: IPMRA_CREPORT_SRC_ADDR,
2455 addr: msg->im_src.s_addr) ||
2456 nla_put_in_addr(skb, attrtype: IPMRA_CREPORT_DST_ADDR,
2457 addr: msg->im_dst.s_addr) ||
2458 nla_put_u32(skb, attrtype: IPMRA_CREPORT_TABLE, value: mrt->id))
2459 goto nla_put_failure;
2460
2461 nla = nla_reserve(skb, attrtype: IPMRA_CREPORT_PKT, attrlen: payloadlen);
2462 if (!nla || skb_copy_bits(skb: pkt, offset: sizeof(struct igmpmsg),
2463 to: nla_data(nla), len: payloadlen))
2464 goto nla_put_failure;
2465
2466 nlmsg_end(skb, nlh);
2467
2468 rtnl_notify(skb, net, pid: 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2469 return;
2470
2471nla_put_failure:
2472 nlmsg_cancel(skb, nlh);
2473errout:
2474 kfree_skb(skb);
2475 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, error: -ENOBUFS);
2476}
2477
2478static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2479 const struct nlmsghdr *nlh,
2480 struct nlattr **tb,
2481 struct netlink_ext_ack *extack)
2482{
2483 struct rtmsg *rtm;
2484 int i, err;
2485
2486 if (nlh->nlmsg_len < nlmsg_msg_size(payload: sizeof(*rtm))) {
2487 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2488 return -EINVAL;
2489 }
2490
2491 if (!netlink_strict_get_check(skb))
2492 return nlmsg_parse_deprecated(nlh, hdrlen: sizeof(*rtm), tb, RTA_MAX,
2493 policy: rtm_ipv4_policy, extack);
2494
2495 rtm = nlmsg_data(nlh);
2496 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2497 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2498 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2499 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2500 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2501 return -EINVAL;
2502 }
2503
2504 err = nlmsg_parse_deprecated_strict(nlh, hdrlen: sizeof(*rtm), tb, RTA_MAX,
2505 policy: rtm_ipv4_policy, extack);
2506 if (err)
2507 return err;
2508
2509 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2510 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2511 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2512 return -EINVAL;
2513 }
2514
2515 for (i = 0; i <= RTA_MAX; i++) {
2516 if (!tb[i])
2517 continue;
2518
2519 switch (i) {
2520 case RTA_SRC:
2521 case RTA_DST:
2522 case RTA_TABLE:
2523 break;
2524 default:
2525 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2526 return -EINVAL;
2527 }
2528 }
2529
2530 return 0;
2531}
2532
2533static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2534 struct netlink_ext_ack *extack)
2535{
2536 struct net *net = sock_net(sk: in_skb->sk);
2537 struct nlattr *tb[RTA_MAX + 1];
2538 struct sk_buff *skb = NULL;
2539 struct mfc_cache *cache;
2540 struct mr_table *mrt;
2541 __be32 src, grp;
2542 u32 tableid;
2543 int err;
2544
2545 err = ipmr_rtm_valid_getroute_req(skb: in_skb, nlh, tb, extack);
2546 if (err < 0)
2547 goto errout;
2548
2549 src = tb[RTA_SRC] ? nla_get_in_addr(nla: tb[RTA_SRC]) : 0;
2550 grp = tb[RTA_DST] ? nla_get_in_addr(nla: tb[RTA_DST]) : 0;
2551 tableid = tb[RTA_TABLE] ? nla_get_u32(nla: tb[RTA_TABLE]) : 0;
2552
2553 mrt = ipmr_get_table(net, id: tableid ? tableid : RT_TABLE_DEFAULT);
2554 if (!mrt) {
2555 err = -ENOENT;
2556 goto errout_free;
2557 }
2558
2559 /* entries are added/deleted only under RTNL */
2560 rcu_read_lock();
2561 cache = ipmr_cache_find(mrt, origin: src, mcastgrp: grp);
2562 rcu_read_unlock();
2563 if (!cache) {
2564 err = -ENOENT;
2565 goto errout_free;
2566 }
2567
2568 skb = nlmsg_new(payload: mroute_msgsize(unresolved: false, maxvif: mrt->maxvif), GFP_KERNEL);
2569 if (!skb) {
2570 err = -ENOBUFS;
2571 goto errout_free;
2572 }
2573
2574 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2575 seq: nlh->nlmsg_seq, c: cache,
2576 RTM_NEWROUTE, flags: 0);
2577 if (err < 0)
2578 goto errout_free;
2579
2580 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2581
2582errout:
2583 return err;
2584
2585errout_free:
2586 kfree_skb(skb);
2587 goto errout;
2588}
2589
2590static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2591{
2592 struct fib_dump_filter filter = {
2593 .rtnl_held = true,
2594 };
2595 int err;
2596
2597 if (cb->strict_check) {
2598 err = ip_valid_fib_dump_req(net: sock_net(sk: skb->sk), nlh: cb->nlh,
2599 filter: &filter, cb);
2600 if (err < 0)
2601 return err;
2602 }
2603
2604 if (filter.table_id) {
2605 struct mr_table *mrt;
2606
2607 mrt = ipmr_get_table(net: sock_net(sk: skb->sk), id: filter.table_id);
2608 if (!mrt) {
2609 if (rtnl_msg_family(nlh: cb->nlh) != RTNL_FAMILY_IPMR)
2610 return skb->len;
2611
2612 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2613 return -ENOENT;
2614 }
2615 err = mr_table_dump(mrt, skb, cb, fill: _ipmr_fill_mroute,
2616 lock: &mfc_unres_lock, filter: &filter);
2617 return skb->len ? : err;
2618 }
2619
2620 return mr_rtm_dumproute(skb, cb, iter: ipmr_mr_table_iter,
2621 fill: _ipmr_fill_mroute, lock: &mfc_unres_lock, filter: &filter);
2622}
2623
2624static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2625 [RTA_SRC] = { .type = NLA_U32 },
2626 [RTA_DST] = { .type = NLA_U32 },
2627 [RTA_IIF] = { .type = NLA_U32 },
2628 [RTA_TABLE] = { .type = NLA_U32 },
2629 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2630};
2631
2632static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2633{
2634 switch (rtm_protocol) {
2635 case RTPROT_STATIC:
2636 case RTPROT_MROUTED:
2637 return true;
2638 }
2639 return false;
2640}
2641
2642static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2643{
2644 struct rtnexthop *rtnh = nla_data(nla);
2645 int remaining = nla_len(nla), vifi = 0;
2646
2647 while (rtnh_ok(rtnh, remaining)) {
2648 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2649 if (++vifi == MAXVIFS)
2650 break;
2651 rtnh = rtnh_next(rtnh, remaining: &remaining);
2652 }
2653
2654 return remaining > 0 ? -EINVAL : vifi;
2655}
2656
2657/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2658static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2659 struct mfcctl *mfcc, int *mrtsock,
2660 struct mr_table **mrtret,
2661 struct netlink_ext_ack *extack)
2662{
2663 struct net_device *dev = NULL;
2664 u32 tblid = RT_TABLE_DEFAULT;
2665 struct mr_table *mrt;
2666 struct nlattr *attr;
2667 struct rtmsg *rtm;
2668 int ret, rem;
2669
2670 ret = nlmsg_validate_deprecated(nlh, hdrlen: sizeof(*rtm), RTA_MAX,
2671 policy: rtm_ipmr_policy, extack);
2672 if (ret < 0)
2673 goto out;
2674 rtm = nlmsg_data(nlh);
2675
2676 ret = -EINVAL;
2677 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2678 rtm->rtm_type != RTN_MULTICAST ||
2679 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2680 !ipmr_rtm_validate_proto(rtm_protocol: rtm->rtm_protocol))
2681 goto out;
2682
2683 memset(mfcc, 0, sizeof(*mfcc));
2684 mfcc->mfcc_parent = -1;
2685 ret = 0;
2686 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2687 switch (nla_type(nla: attr)) {
2688 case RTA_SRC:
2689 mfcc->mfcc_origin.s_addr = nla_get_be32(nla: attr);
2690 break;
2691 case RTA_DST:
2692 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(nla: attr);
2693 break;
2694 case RTA_IIF:
2695 dev = __dev_get_by_index(net, ifindex: nla_get_u32(nla: attr));
2696 if (!dev) {
2697 ret = -ENODEV;
2698 goto out;
2699 }
2700 break;
2701 case RTA_MULTIPATH:
2702 if (ipmr_nla_get_ttls(nla: attr, mfcc) < 0) {
2703 ret = -EINVAL;
2704 goto out;
2705 }
2706 break;
2707 case RTA_PREFSRC:
2708 ret = 1;
2709 break;
2710 case RTA_TABLE:
2711 tblid = nla_get_u32(nla: attr);
2712 break;
2713 }
2714 }
2715 mrt = ipmr_get_table(net, id: tblid);
2716 if (!mrt) {
2717 ret = -ENOENT;
2718 goto out;
2719 }
2720 *mrtret = mrt;
2721 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2722 if (dev)
2723 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2724
2725out:
2726 return ret;
2727}
2728
2729/* takes care of both newroute and delroute */
2730static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2731 struct netlink_ext_ack *extack)
2732{
2733 struct net *net = sock_net(sk: skb->sk);
2734 int ret, mrtsock, parent;
2735 struct mr_table *tbl;
2736 struct mfcctl mfcc;
2737
2738 mrtsock = 0;
2739 tbl = NULL;
2740 ret = rtm_to_ipmr_mfcc(net, nlh, mfcc: &mfcc, mrtsock: &mrtsock, mrtret: &tbl, extack);
2741 if (ret < 0)
2742 return ret;
2743
2744 parent = ret ? mfcc.mfcc_parent : -1;
2745 if (nlh->nlmsg_type == RTM_NEWROUTE)
2746 return ipmr_mfc_add(net, mrt: tbl, mfc: &mfcc, mrtsock, parent);
2747 else
2748 return ipmr_mfc_delete(mrt: tbl, mfc: &mfcc, parent);
2749}
2750
2751static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2752{
2753 u32 queue_len = atomic_read(v: &mrt->cache_resolve_queue_len);
2754
2755 if (nla_put_u32(skb, attrtype: IPMRA_TABLE_ID, value: mrt->id) ||
2756 nla_put_u32(skb, attrtype: IPMRA_TABLE_CACHE_RES_QUEUE_LEN, value: queue_len) ||
2757 nla_put_s32(skb, attrtype: IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2758 value: mrt->mroute_reg_vif_num) ||
2759 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_ASSERT,
2760 value: mrt->mroute_do_assert) ||
2761 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_PIM, value: mrt->mroute_do_pim) ||
2762 nla_put_u8(skb, attrtype: IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2763 value: mrt->mroute_do_wrvifwhole))
2764 return false;
2765
2766 return true;
2767}
2768
2769static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2770{
2771 struct net_device *vif_dev;
2772 struct nlattr *vif_nest;
2773 struct vif_device *vif;
2774
2775 vif = &mrt->vif_table[vifid];
2776 vif_dev = rtnl_dereference(vif->dev);
2777 /* if the VIF doesn't exist just continue */
2778 if (!vif_dev)
2779 return true;
2780
2781 vif_nest = nla_nest_start_noflag(skb, attrtype: IPMRA_VIF);
2782 if (!vif_nest)
2783 return false;
2784
2785 if (nla_put_u32(skb, attrtype: IPMRA_VIFA_IFINDEX, value: vif_dev->ifindex) ||
2786 nla_put_u32(skb, attrtype: IPMRA_VIFA_VIF_ID, value: vifid) ||
2787 nla_put_u16(skb, attrtype: IPMRA_VIFA_FLAGS, value: vif->flags) ||
2788 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_BYTES_IN, value: vif->bytes_in,
2789 padattr: IPMRA_VIFA_PAD) ||
2790 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_BYTES_OUT, value: vif->bytes_out,
2791 padattr: IPMRA_VIFA_PAD) ||
2792 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_PACKETS_IN, value: vif->pkt_in,
2793 padattr: IPMRA_VIFA_PAD) ||
2794 nla_put_u64_64bit(skb, attrtype: IPMRA_VIFA_PACKETS_OUT, value: vif->pkt_out,
2795 padattr: IPMRA_VIFA_PAD) ||
2796 nla_put_be32(skb, attrtype: IPMRA_VIFA_LOCAL_ADDR, value: vif->local) ||
2797 nla_put_be32(skb, attrtype: IPMRA_VIFA_REMOTE_ADDR, value: vif->remote)) {
2798 nla_nest_cancel(skb, start: vif_nest);
2799 return false;
2800 }
2801 nla_nest_end(skb, start: vif_nest);
2802
2803 return true;
2804}
2805
2806static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2807 struct netlink_ext_ack *extack)
2808{
2809 struct ifinfomsg *ifm;
2810
2811 if (nlh->nlmsg_len < nlmsg_msg_size(payload: sizeof(*ifm))) {
2812 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2813 return -EINVAL;
2814 }
2815
2816 if (nlmsg_attrlen(nlh, hdrlen: sizeof(*ifm))) {
2817 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2818 return -EINVAL;
2819 }
2820
2821 ifm = nlmsg_data(nlh);
2822 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2823 ifm->ifi_change || ifm->ifi_index) {
2824 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2825 return -EINVAL;
2826 }
2827
2828 return 0;
2829}
2830
2831static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2832{
2833 struct net *net = sock_net(sk: skb->sk);
2834 struct nlmsghdr *nlh = NULL;
2835 unsigned int t = 0, s_t;
2836 unsigned int e = 0, s_e;
2837 struct mr_table *mrt;
2838
2839 if (cb->strict_check) {
2840 int err = ipmr_valid_dumplink(nlh: cb->nlh, extack: cb->extack);
2841
2842 if (err < 0)
2843 return err;
2844 }
2845
2846 s_t = cb->args[0];
2847 s_e = cb->args[1];
2848
2849 ipmr_for_each_table(mrt, net) {
2850 struct nlattr *vifs, *af;
2851 struct ifinfomsg *hdr;
2852 u32 i;
2853
2854 if (t < s_t)
2855 goto skip_table;
2856 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2857 seq: cb->nlh->nlmsg_seq, RTM_NEWLINK,
2858 payload: sizeof(*hdr), NLM_F_MULTI);
2859 if (!nlh)
2860 break;
2861
2862 hdr = nlmsg_data(nlh);
2863 memset(hdr, 0, sizeof(*hdr));
2864 hdr->ifi_family = RTNL_FAMILY_IPMR;
2865
2866 af = nla_nest_start_noflag(skb, attrtype: IFLA_AF_SPEC);
2867 if (!af) {
2868 nlmsg_cancel(skb, nlh);
2869 goto out;
2870 }
2871
2872 if (!ipmr_fill_table(mrt, skb)) {
2873 nlmsg_cancel(skb, nlh);
2874 goto out;
2875 }
2876
2877 vifs = nla_nest_start_noflag(skb, attrtype: IPMRA_TABLE_VIFS);
2878 if (!vifs) {
2879 nla_nest_end(skb, start: af);
2880 nlmsg_end(skb, nlh);
2881 goto out;
2882 }
2883 for (i = 0; i < mrt->maxvif; i++) {
2884 if (e < s_e)
2885 goto skip_entry;
2886 if (!ipmr_fill_vif(mrt, vifid: i, skb)) {
2887 nla_nest_end(skb, start: vifs);
2888 nla_nest_end(skb, start: af);
2889 nlmsg_end(skb, nlh);
2890 goto out;
2891 }
2892skip_entry:
2893 e++;
2894 }
2895 s_e = 0;
2896 e = 0;
2897 nla_nest_end(skb, start: vifs);
2898 nla_nest_end(skb, start: af);
2899 nlmsg_end(skb, nlh);
2900skip_table:
2901 t++;
2902 }
2903
2904out:
2905 cb->args[1] = e;
2906 cb->args[0] = t;
2907
2908 return skb->len;
2909}
2910
2911#ifdef CONFIG_PROC_FS
2912/* The /proc interfaces to multicast routing :
2913 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2914 */
2915
2916static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2917 __acquires(RCU)
2918{
2919 struct mr_vif_iter *iter = seq->private;
2920 struct net *net = seq_file_net(seq);
2921 struct mr_table *mrt;
2922
2923 mrt = ipmr_get_table(net, id: RT_TABLE_DEFAULT);
2924 if (!mrt)
2925 return ERR_PTR(error: -ENOENT);
2926
2927 iter->mrt = mrt;
2928
2929 rcu_read_lock();
2930 return mr_vif_seq_start(seq, pos);
2931}
2932
2933static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2934 __releases(RCU)
2935{
2936 rcu_read_unlock();
2937}
2938
2939static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2940{
2941 struct mr_vif_iter *iter = seq->private;
2942 struct mr_table *mrt = iter->mrt;
2943
2944 if (v == SEQ_START_TOKEN) {
2945 seq_puts(m: seq,
2946 s: "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2947 } else {
2948 const struct vif_device *vif = v;
2949 const struct net_device *vif_dev;
2950 const char *name;
2951
2952 vif_dev = vif_dev_read(vif);
2953 name = vif_dev ? vif_dev->name : "none";
2954 seq_printf(m: seq,
2955 fmt: "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2956 vif - mrt->vif_table,
2957 name, vif->bytes_in, vif->pkt_in,
2958 vif->bytes_out, vif->pkt_out,
2959 vif->flags, vif->local, vif->remote);
2960 }
2961 return 0;
2962}
2963
2964static const struct seq_operations ipmr_vif_seq_ops = {
2965 .start = ipmr_vif_seq_start,
2966 .next = mr_vif_seq_next,
2967 .stop = ipmr_vif_seq_stop,
2968 .show = ipmr_vif_seq_show,
2969};
2970
2971static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2972{
2973 struct net *net = seq_file_net(seq);
2974 struct mr_table *mrt;
2975
2976 mrt = ipmr_get_table(net, id: RT_TABLE_DEFAULT);
2977 if (!mrt)
2978 return ERR_PTR(error: -ENOENT);
2979
2980 return mr_mfc_seq_start(seq, pos, mrt, lock: &mfc_unres_lock);
2981}
2982
2983static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2984{
2985 int n;
2986
2987 if (v == SEQ_START_TOKEN) {
2988 seq_puts(m: seq,
2989 s: "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2990 } else {
2991 const struct mfc_cache *mfc = v;
2992 const struct mr_mfc_iter *it = seq->private;
2993 const struct mr_table *mrt = it->mrt;
2994
2995 seq_printf(m: seq, fmt: "%08X %08X %-3hd",
2996 (__force u32) mfc->mfc_mcastgrp,
2997 (__force u32) mfc->mfc_origin,
2998 mfc->_c.mfc_parent);
2999
3000 if (it->cache != &mrt->mfc_unres_queue) {
3001 seq_printf(m: seq, fmt: " %8lu %8lu %8lu",
3002 mfc->_c.mfc_un.res.pkt,
3003 mfc->_c.mfc_un.res.bytes,
3004 mfc->_c.mfc_un.res.wrong_if);
3005 for (n = mfc->_c.mfc_un.res.minvif;
3006 n < mfc->_c.mfc_un.res.maxvif; n++) {
3007 if (VIF_EXISTS(mrt, n) &&
3008 mfc->_c.mfc_un.res.ttls[n] < 255)
3009 seq_printf(m: seq,
3010 fmt: " %2d:%-3d",
3011 n, mfc->_c.mfc_un.res.ttls[n]);
3012 }
3013 } else {
3014 /* unresolved mfc_caches don't contain
3015 * pkt, bytes and wrong_if values
3016 */
3017 seq_printf(m: seq, fmt: " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3018 }
3019 seq_putc(m: seq, c: '\n');
3020 }
3021 return 0;
3022}
3023
3024static const struct seq_operations ipmr_mfc_seq_ops = {
3025 .start = ipmr_mfc_seq_start,
3026 .next = mr_mfc_seq_next,
3027 .stop = mr_mfc_seq_stop,
3028 .show = ipmr_mfc_seq_show,
3029};
3030#endif
3031
3032#ifdef CONFIG_IP_PIMSM_V2
3033static const struct net_protocol pim_protocol = {
3034 .handler = pim_rcv,
3035};
3036#endif
3037
3038static unsigned int ipmr_seq_read(struct net *net)
3039{
3040 ASSERT_RTNL();
3041
3042 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3043}
3044
3045static int ipmr_dump(struct net *net, struct notifier_block *nb,
3046 struct netlink_ext_ack *extack)
3047{
3048 return mr_dump(net, nb, RTNL_FAMILY_IPMR, rules_dump: ipmr_rules_dump,
3049 mr_iter: ipmr_mr_table_iter, extack);
3050}
3051
3052static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3053 .family = RTNL_FAMILY_IPMR,
3054 .fib_seq_read = ipmr_seq_read,
3055 .fib_dump = ipmr_dump,
3056 .owner = THIS_MODULE,
3057};
3058
3059static int __net_init ipmr_notifier_init(struct net *net)
3060{
3061 struct fib_notifier_ops *ops;
3062
3063 net->ipv4.ipmr_seq = 0;
3064
3065 ops = fib_notifier_ops_register(tmpl: &ipmr_notifier_ops_template, net);
3066 if (IS_ERR(ptr: ops))
3067 return PTR_ERR(ptr: ops);
3068 net->ipv4.ipmr_notifier_ops = ops;
3069
3070 return 0;
3071}
3072
3073static void __net_exit ipmr_notifier_exit(struct net *net)
3074{
3075 fib_notifier_ops_unregister(ops: net->ipv4.ipmr_notifier_ops);
3076 net->ipv4.ipmr_notifier_ops = NULL;
3077}
3078
3079/* Setup for IP multicast routing */
3080static int __net_init ipmr_net_init(struct net *net)
3081{
3082 int err;
3083
3084 err = ipmr_notifier_init(net);
3085 if (err)
3086 goto ipmr_notifier_fail;
3087
3088 err = ipmr_rules_init(net);
3089 if (err < 0)
3090 goto ipmr_rules_fail;
3091
3092#ifdef CONFIG_PROC_FS
3093 err = -ENOMEM;
3094 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3095 sizeof(struct mr_vif_iter)))
3096 goto proc_vif_fail;
3097 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3098 sizeof(struct mr_mfc_iter)))
3099 goto proc_cache_fail;
3100#endif
3101 return 0;
3102
3103#ifdef CONFIG_PROC_FS
3104proc_cache_fail:
3105 remove_proc_entry("ip_mr_vif", net->proc_net);
3106proc_vif_fail:
3107 rtnl_lock();
3108 ipmr_rules_exit(net);
3109 rtnl_unlock();
3110#endif
3111ipmr_rules_fail:
3112 ipmr_notifier_exit(net);
3113ipmr_notifier_fail:
3114 return err;
3115}
3116
3117static void __net_exit ipmr_net_exit(struct net *net)
3118{
3119#ifdef CONFIG_PROC_FS
3120 remove_proc_entry("ip_mr_cache", net->proc_net);
3121 remove_proc_entry("ip_mr_vif", net->proc_net);
3122#endif
3123 ipmr_notifier_exit(net);
3124}
3125
3126static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3127{
3128 struct net *net;
3129
3130 rtnl_lock();
3131 list_for_each_entry(net, net_list, exit_list)
3132 ipmr_rules_exit(net);
3133 rtnl_unlock();
3134}
3135
3136static struct pernet_operations ipmr_net_ops = {
3137 .init = ipmr_net_init,
3138 .exit = ipmr_net_exit,
3139 .exit_batch = ipmr_net_exit_batch,
3140};
3141
3142int __init ip_mr_init(void)
3143{
3144 int err;
3145
3146 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3147
3148 err = register_pernet_subsys(&ipmr_net_ops);
3149 if (err)
3150 goto reg_pernet_fail;
3151
3152 err = register_netdevice_notifier(nb: &ip_mr_notifier);
3153 if (err)
3154 goto reg_notif_fail;
3155#ifdef CONFIG_IP_PIMSM_V2
3156 if (inet_add_protocol(prot: &pim_protocol, IPPROTO_PIM) < 0) {
3157 pr_err("%s: can't add PIM protocol\n", __func__);
3158 err = -EAGAIN;
3159 goto add_proto_fail;
3160 }
3161#endif
3162 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3163 ipmr_rtm_getroute, ipmr_rtm_dumproute, flags: 0);
3164 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3165 ipmr_rtm_route, NULL, flags: 0);
3166 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3167 ipmr_rtm_route, NULL, flags: 0);
3168
3169 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3170 NULL, ipmr_rtm_dumplink, flags: 0);
3171 return 0;
3172
3173#ifdef CONFIG_IP_PIMSM_V2
3174add_proto_fail:
3175 unregister_netdevice_notifier(nb: &ip_mr_notifier);
3176#endif
3177reg_notif_fail:
3178 unregister_pernet_subsys(&ipmr_net_ops);
3179reg_pernet_fail:
3180 kmem_cache_destroy(s: mrt_cachep);
3181 return err;
3182}
3183

source code of linux/net/ipv4/ipmr.c