1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of TargetFrameLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86FrameLowering.h"
14#include "MCTargetDesc/X86MCTargetDesc.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrInfo.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/LivePhysRegs.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/WinEHFuncInfo.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/EHPersonalities.h"
30#include "llvm/IR/Function.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCObjectFileInfo.h"
33#include "llvm/MC/MCSymbol.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/LEB128.h"
36#include "llvm/Target/TargetOptions.h"
37#include <cstdlib>
38
39#define DEBUG_TYPE "x86-fl"
40
41STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
42STATISTIC(NumFrameExtraProbe,
43 "Number of extra stack probes generated in prologue");
44STATISTIC(NumFunctionUsingPush2Pop2, "Number of funtions using push2/pop2");
45
46using namespace llvm;
47
48X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
49 MaybeAlign StackAlignOverride)
50 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
51 STI.is64Bit() ? -8 : -4),
52 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
53 // Cache a bunch of frame-related predicates for this subtarget.
54 SlotSize = TRI->getSlotSize();
55 Is64Bit = STI.is64Bit();
56 IsLP64 = STI.isTarget64BitLP64();
57 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
58 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
59 StackPtr = TRI->getStackRegister();
60}
61
62bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
63 return !MF.getFrameInfo().hasVarSizedObjects() &&
64 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
65 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
66}
67
68/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
69/// call frame pseudos can be simplified. Having a FP, as in the default
70/// implementation, is not sufficient here since we can't always use it.
71/// Use a more nuanced condition.
72bool X86FrameLowering::canSimplifyCallFramePseudos(
73 const MachineFunction &MF) const {
74 return hasReservedCallFrame(MF) ||
75 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
76 (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
77 TRI->hasBasePointer(MF);
78}
79
80// needsFrameIndexResolution - Do we need to perform FI resolution for
81// this function. Normally, this is required only when the function
82// has any stack objects. However, FI resolution actually has another job,
83// not apparent from the title - it resolves callframesetup/destroy
84// that were not simplified earlier.
85// So, this is required for x86 functions that have push sequences even
86// when there are no stack objects.
87bool X86FrameLowering::needsFrameIndexResolution(
88 const MachineFunction &MF) const {
89 return MF.getFrameInfo().hasStackObjects() ||
90 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
91}
92
93/// hasFP - Return true if the specified function should have a dedicated frame
94/// pointer register. This is true if the function has variable sized allocas
95/// or if frame pointer elimination is disabled.
96bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
97 const MachineFrameInfo &MFI = MF.getFrameInfo();
98 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
99 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
100 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
101 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
102 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
103 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
104 MFI.hasStackMap() || MFI.hasPatchPoint() ||
105 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
106}
107
108static unsigned getSUBriOpcode(bool IsLP64) {
109 return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri;
110}
111
112static unsigned getADDriOpcode(bool IsLP64) {
113 return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri;
114}
115
116static unsigned getSUBrrOpcode(bool IsLP64) {
117 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
118}
119
120static unsigned getADDrrOpcode(bool IsLP64) {
121 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
122}
123
124static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
125 return IsLP64 ? X86::AND64ri32 : X86::AND32ri;
126}
127
128static unsigned getLEArOpcode(bool IsLP64) {
129 return IsLP64 ? X86::LEA64r : X86::LEA32r;
130}
131
132static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
133 if (Use64BitReg) {
134 if (isUInt<32>(x: Imm))
135 return X86::MOV32ri64;
136 if (isInt<32>(x: Imm))
137 return X86::MOV64ri32;
138 return X86::MOV64ri;
139 }
140 return X86::MOV32ri;
141}
142
143// Push-Pop Acceleration (PPX) hint is used to indicate that the POP reads the
144// value written by the PUSH from the stack. The processor tracks these marked
145// instructions internally and fast-forwards register data between matching PUSH
146// and POP instructions, without going through memory or through the training
147// loop of the Fast Store Forwarding Predictor (FSFP). Instead, a more efficient
148// memory-renaming optimization can be used.
149//
150// The PPX hint is purely a performance hint. Instructions with this hint have
151// the same functional semantics as those without. PPX hints set by the
152// compiler that violate the balancing rule may turn off the PPX optimization,
153// but they will not affect program semantics.
154//
155// Hence, PPX is used for balanced spill/reloads (Exceptions and setjmp/longjmp
156// are not considered).
157//
158// PUSH2 and POP2 are instructions for (respectively) pushing/popping 2
159// GPRs at a time to/from the stack.
160static unsigned getPUSHOpcode(const X86Subtarget &ST) {
161 return ST.is64Bit() ? (ST.hasPPX() ? X86::PUSHP64r : X86::PUSH64r)
162 : X86::PUSH32r;
163}
164static unsigned getPOPOpcode(const X86Subtarget &ST) {
165 return ST.is64Bit() ? (ST.hasPPX() ? X86::POPP64r : X86::POP64r)
166 : X86::POP32r;
167}
168static unsigned getPUSH2Opcode(const X86Subtarget &ST) {
169 return ST.hasPPX() ? X86::PUSH2P : X86::PUSH2;
170}
171static unsigned getPOP2Opcode(const X86Subtarget &ST) {
172 return ST.hasPPX() ? X86::POP2P : X86::POP2;
173}
174
175static bool isEAXLiveIn(MachineBasicBlock &MBB) {
176 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
177 unsigned Reg = RegMask.PhysReg;
178
179 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
180 Reg == X86::AH || Reg == X86::AL)
181 return true;
182 }
183
184 return false;
185}
186
187/// Check if the flags need to be preserved before the terminators.
188/// This would be the case, if the eflags is live-in of the region
189/// composed by the terminators or live-out of that region, without
190/// being defined by a terminator.
191static bool
192flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
193 for (const MachineInstr &MI : MBB.terminators()) {
194 bool BreakNext = false;
195 for (const MachineOperand &MO : MI.operands()) {
196 if (!MO.isReg())
197 continue;
198 Register Reg = MO.getReg();
199 if (Reg != X86::EFLAGS)
200 continue;
201
202 // This terminator needs an eflags that is not defined
203 // by a previous another terminator:
204 // EFLAGS is live-in of the region composed by the terminators.
205 if (!MO.isDef())
206 return true;
207 // This terminator defines the eflags, i.e., we don't need to preserve it.
208 // However, we still need to check this specific terminator does not
209 // read a live-in value.
210 BreakNext = true;
211 }
212 // We found a definition of the eflags, no need to preserve them.
213 if (BreakNext)
214 return false;
215 }
216
217 // None of the terminators use or define the eflags.
218 // Check if they are live-out, that would imply we need to preserve them.
219 for (const MachineBasicBlock *Succ : MBB.successors())
220 if (Succ->isLiveIn(X86::Reg: EFLAGS))
221 return true;
222
223 return false;
224}
225
226/// emitSPUpdate - Emit a series of instructions to increment / decrement the
227/// stack pointer by a constant value.
228void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
229 MachineBasicBlock::iterator &MBBI,
230 const DebugLoc &DL, int64_t NumBytes,
231 bool InEpilogue) const {
232 bool isSub = NumBytes < 0;
233 uint64_t Offset = isSub ? -NumBytes : NumBytes;
234 MachineInstr::MIFlag Flag =
235 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
236
237 uint64_t Chunk = (1LL << 31) - 1;
238
239 MachineFunction &MF = *MBB.getParent();
240 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
241 const X86TargetLowering &TLI = *STI.getTargetLowering();
242 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
243
244 // It's ok to not take into account large chunks when probing, as the
245 // allocation is split in smaller chunks anyway.
246 if (EmitInlineStackProbe && !InEpilogue) {
247
248 // This pseudo-instruction is going to be expanded, potentially using a
249 // loop, by inlineStackProbe().
250 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
251 return;
252 } else if (Offset > Chunk) {
253 // Rather than emit a long series of instructions for large offsets,
254 // load the offset into a register and do one sub/add
255 unsigned Reg = 0;
256 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
257
258 if (isSub && !isEAXLiveIn(MBB))
259 Reg = Rax;
260 else
261 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
262
263 unsigned AddSubRROpc =
264 isSub ? getSUBrrOpcode(IsLP64: Is64Bit) : getADDrrOpcode(IsLP64: Is64Bit);
265 if (Reg) {
266 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Use64BitReg: Is64Bit, Imm: Offset)), Reg)
267 .addImm(Offset)
268 .setMIFlag(Flag);
269 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
270 .addReg(StackPtr)
271 .addReg(Reg);
272 MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead.
273 return;
274 } else if (Offset > 8 * Chunk) {
275 // If we would need more than 8 add or sub instructions (a >16GB stack
276 // frame), it's worth spilling RAX to materialize this immediate.
277 // pushq %rax
278 // movabsq +-$Offset+-SlotSize, %rax
279 // addq %rsp, %rax
280 // xchg %rax, (%rsp)
281 // movq (%rsp), %rsp
282 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
283 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
284 .addReg(Rax, RegState::Kill)
285 .setMIFlag(Flag);
286 // Subtract is not commutative, so negate the offset and always use add.
287 // Subtract 8 less and add 8 more to account for the PUSH we just did.
288 if (isSub)
289 Offset = -(Offset - SlotSize);
290 else
291 Offset = Offset + SlotSize;
292 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Use64BitReg: Is64Bit, Imm: Offset)), Rax)
293 .addImm(Offset)
294 .setMIFlag(Flag);
295 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
296 .addReg(Rax)
297 .addReg(StackPtr);
298 MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead.
299 // Exchange the new SP in RAX with the top of the stack.
300 addRegOffset(
301 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
302 StackPtr, false, 0);
303 // Load new SP from the top of the stack into RSP.
304 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
305 StackPtr, false, 0);
306 return;
307 }
308 }
309
310 while (Offset) {
311 uint64_t ThisVal = std::min(a: Offset, b: Chunk);
312 if (ThisVal == SlotSize) {
313 // Use push / pop for slot sized adjustments as a size optimization. We
314 // need to find a dead register when using pop.
315 unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
316 : TRI->findDeadCallerSavedReg(MBB, MBBI);
317 if (Reg) {
318 unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
319 : (Is64Bit ? X86::POP64r : X86::POP32r);
320 BuildMI(MBB, MBBI, DL, TII.get(Opc))
321 .addReg(Reg, getDefRegState(B: !isSub) | getUndefRegState(B: isSub))
322 .setMIFlag(Flag);
323 Offset -= ThisVal;
324 continue;
325 }
326 }
327
328 BuildStackAdjustment(MBB, MBBI, DL, Offset: isSub ? -ThisVal : ThisVal, InEpilogue)
329 .setMIFlag(Flag);
330
331 Offset -= ThisVal;
332 }
333}
334
335MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
336 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
337 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
338 assert(Offset != 0 && "zero offset stack adjustment requested");
339
340 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
341 // is tricky.
342 bool UseLEA;
343 if (!InEpilogue) {
344 // Check if inserting the prologue at the beginning
345 // of MBB would require to use LEA operations.
346 // We need to use LEA operations if EFLAGS is live in, because
347 // it means an instruction will read it before it gets defined.
348 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
349 } else {
350 // If we can use LEA for SP but we shouldn't, check that none
351 // of the terminators uses the eflags. Otherwise we will insert
352 // a ADD that will redefine the eflags and break the condition.
353 // Alternatively, we could move the ADD, but this may not be possible
354 // and is an optimization anyway.
355 UseLEA = canUseLEAForSPInEpilogue(MF: *MBB.getParent());
356 if (UseLEA && !STI.useLeaForSP())
357 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
358 // If that assert breaks, that means we do not do the right thing
359 // in canUseAsEpilogue.
360 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
361 "We shouldn't have allowed this insertion point");
362 }
363
364 MachineInstrBuilder MI;
365 if (UseLEA) {
366 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
367 TII.get(getLEArOpcode(IsLP64: Uses64BitFramePtr)),
368 StackPtr),
369 StackPtr, false, Offset);
370 } else {
371 bool IsSub = Offset < 0;
372 uint64_t AbsOffset = IsSub ? -Offset : Offset;
373 const unsigned Opc = IsSub ? getSUBriOpcode(IsLP64: Uses64BitFramePtr)
374 : getADDriOpcode(IsLP64: Uses64BitFramePtr);
375 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
376 .addReg(StackPtr)
377 .addImm(AbsOffset);
378 MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead.
379 }
380 return MI;
381}
382
383int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
384 MachineBasicBlock::iterator &MBBI,
385 bool doMergeWithPrevious) const {
386 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
387 (!doMergeWithPrevious && MBBI == MBB.end()))
388 return 0;
389
390 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(x: MBBI) : MBBI;
391
392 PI = skipDebugInstructionsBackward(It: PI, Begin: MBB.begin());
393 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
394 // instruction, and that there are no DBG_VALUE or other instructions between
395 // ADD/SUB/LEA and its corresponding CFI instruction.
396 /* TODO: Add support for the case where there are multiple CFI instructions
397 below the ADD/SUB/LEA, e.g.:
398 ...
399 add
400 cfi_def_cfa_offset
401 cfi_offset
402 ...
403 */
404 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
405 PI = std::prev(x: PI);
406
407 unsigned Opc = PI->getOpcode();
408 int Offset = 0;
409
410 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) &&
411 PI->getOperand(0).getReg() == StackPtr) {
412 assert(PI->getOperand(1).getReg() == StackPtr);
413 Offset = PI->getOperand(i: 2).getImm();
414 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
415 PI->getOperand(0).getReg() == StackPtr &&
416 PI->getOperand(1).getReg() == StackPtr &&
417 PI->getOperand(2).getImm() == 1 &&
418 PI->getOperand(3).getReg() == X86::NoRegister &&
419 PI->getOperand(5).getReg() == X86::NoRegister) {
420 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
421 Offset = PI->getOperand(i: 4).getImm();
422 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) &&
423 PI->getOperand(0).getReg() == StackPtr) {
424 assert(PI->getOperand(1).getReg() == StackPtr);
425 Offset = -PI->getOperand(i: 2).getImm();
426 } else
427 return 0;
428
429 PI = MBB.erase(I: PI);
430 if (PI != MBB.end() && PI->isCFIInstruction()) {
431 auto CIs = MBB.getParent()->getFrameInstructions();
432 MCCFIInstruction CI = CIs[PI->getOperand(i: 0).getCFIIndex()];
433 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
434 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
435 PI = MBB.erase(I: PI);
436 }
437 if (!doMergeWithPrevious)
438 MBBI = skipDebugInstructionsForward(It: PI, End: MBB.end());
439
440 return Offset;
441}
442
443void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
444 MachineBasicBlock::iterator MBBI,
445 const DebugLoc &DL,
446 const MCCFIInstruction &CFIInst,
447 MachineInstr::MIFlag Flag) const {
448 MachineFunction &MF = *MBB.getParent();
449 unsigned CFIIndex = MF.addFrameInst(Inst: CFIInst);
450
451 if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
452 MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
453
454 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
455 .addCFIIndex(CFIIndex)
456 .setMIFlag(Flag);
457}
458
459/// Emits Dwarf Info specifying offsets of callee saved registers and
460/// frame pointer. This is called only when basic block sections are enabled.
461void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
462 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
463 MachineFunction &MF = *MBB.getParent();
464 if (!hasFP(MF)) {
465 emitCalleeSavedFrameMoves(MBB, MBBI, DL: DebugLoc{}, IsPrologue: true);
466 return;
467 }
468 const MachineModuleInfo &MMI = MF.getMMI();
469 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
470 const Register FramePtr = TRI->getFrameRegister(MF);
471 const Register MachineFramePtr =
472 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64))
473 : FramePtr;
474 unsigned DwarfReg = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true);
475 // Offset = space for return address + size of the frame pointer itself.
476 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
477 BuildCFI(MBB, MBBI, DL: DebugLoc{},
478 CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfReg, Offset: -Offset));
479 emitCalleeSavedFrameMoves(MBB, MBBI, DL: DebugLoc{}, IsPrologue: true);
480}
481
482void X86FrameLowering::emitCalleeSavedFrameMoves(
483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
484 const DebugLoc &DL, bool IsPrologue) const {
485 MachineFunction &MF = *MBB.getParent();
486 MachineFrameInfo &MFI = MF.getFrameInfo();
487 MachineModuleInfo &MMI = MF.getMMI();
488 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
489 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
490
491 // Add callee saved registers to move list.
492 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
493
494 // Calculate offsets.
495 for (const CalleeSavedInfo &I : CSI) {
496 int64_t Offset = MFI.getObjectOffset(ObjectIdx: I.getFrameIdx());
497 Register Reg = I.getReg();
498 unsigned DwarfReg = MRI->getDwarfRegNum(RegNum: Reg, isEH: true);
499
500 if (IsPrologue) {
501 if (X86FI->getStackPtrSaveMI()) {
502 // +2*SlotSize because there is return address and ebp at the bottom
503 // of the stack.
504 // | retaddr |
505 // | ebp |
506 // | |<--ebp
507 Offset += 2 * SlotSize;
508 SmallString<64> CfaExpr;
509 CfaExpr.push_back(Elt: dwarf::DW_CFA_expression);
510 uint8_t buffer[16];
511 CfaExpr.append(in_start: buffer, in_end: buffer + encodeULEB128(Value: DwarfReg, p: buffer));
512 CfaExpr.push_back(Elt: 2);
513 Register FramePtr = TRI->getFrameRegister(MF);
514 const Register MachineFramePtr =
515 STI.isTarget64BitILP32()
516 ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64))
517 : FramePtr;
518 unsigned DwarfFramePtr = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true);
519 CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
520 CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: Offset, p: buffer));
521 BuildCFI(MBB, MBBI, DL,
522 CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: CfaExpr.str()),
523 Flag: MachineInstr::FrameSetup);
524 } else {
525 BuildCFI(MBB, MBBI, DL,
526 CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfReg, Offset));
527 }
528 } else {
529 BuildCFI(MBB, MBBI, DL,
530 CFIInst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfReg));
531 }
532 }
533 if (auto *MI = X86FI->getStackPtrSaveMI()) {
534 int FI = MI->getOperand(i: 1).getIndex();
535 int64_t Offset = MFI.getObjectOffset(ObjectIdx: FI) + 2 * SlotSize;
536 SmallString<64> CfaExpr;
537 Register FramePtr = TRI->getFrameRegister(MF);
538 const Register MachineFramePtr =
539 STI.isTarget64BitILP32()
540 ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64))
541 : FramePtr;
542 unsigned DwarfFramePtr = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true);
543 CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
544 uint8_t buffer[16];
545 CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: Offset, p: buffer));
546 CfaExpr.push_back(Elt: dwarf::DW_OP_deref);
547
548 SmallString<64> DefCfaExpr;
549 DefCfaExpr.push_back(Elt: dwarf::DW_CFA_def_cfa_expression);
550 DefCfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: CfaExpr.size(), p: buffer));
551 DefCfaExpr.append(RHS: CfaExpr.str());
552 // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref
553 BuildCFI(MBB, MBBI, DL,
554 CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: DefCfaExpr.str()),
555 Flag: MachineInstr::FrameSetup);
556 }
557}
558
559void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
560 MachineBasicBlock &MBB) const {
561 const MachineFunction &MF = *MBB.getParent();
562
563 // Insertion point.
564 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
565
566 // Fake a debug loc.
567 DebugLoc DL;
568 if (MBBI != MBB.end())
569 DL = MBBI->getDebugLoc();
570
571 // Zero out FP stack if referenced. Do this outside of the loop below so that
572 // it's done only once.
573 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
574 for (MCRegister Reg : RegsToZero.set_bits()) {
575 if (!X86::RFP80RegClass.contains(Reg))
576 continue;
577
578 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
579 for (unsigned i = 0; i != NumFPRegs; ++i)
580 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
581
582 for (unsigned i = 0; i != NumFPRegs; ++i)
583 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
584 break;
585 }
586
587 // For GPRs, we only care to clear out the 32-bit register.
588 BitVector GPRsToZero(TRI->getNumRegs());
589 for (MCRegister Reg : RegsToZero.set_bits())
590 if (TRI->isGeneralPurposeRegister(MF, Reg)) {
591 GPRsToZero.set(getX86SubSuperRegister(Reg, Size: 32));
592 RegsToZero.reset(Idx: Reg);
593 }
594
595 // Zero out the GPRs first.
596 for (MCRegister Reg : GPRsToZero.set_bits())
597 TII.buildClearRegister(Reg, MBB, MBBI, DL);
598
599 // Zero out the remaining registers.
600 for (MCRegister Reg : RegsToZero.set_bits())
601 TII.buildClearRegister(Reg, MBB, Iter: MBBI, DL);
602}
603
604void X86FrameLowering::emitStackProbe(
605 MachineFunction &MF, MachineBasicBlock &MBB,
606 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
607 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
608 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
609 if (STI.isTargetWindowsCoreCLR()) {
610 if (InProlog) {
611 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
612 .addImm(0 /* no explicit stack size */);
613 } else {
614 emitStackProbeInline(MF, MBB, MBBI, DL, InProlog: false);
615 }
616 } else {
617 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
618 }
619}
620
621bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
622 return STI.isOSWindows() && !STI.isTargetWin64();
623}
624
625void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
626 MachineBasicBlock &PrologMBB) const {
627 auto Where = llvm::find_if(Range&: PrologMBB, P: [](MachineInstr &MI) {
628 return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
629 });
630 if (Where != PrologMBB.end()) {
631 DebugLoc DL = PrologMBB.findDebugLoc(MBBI: Where);
632 emitStackProbeInline(MF, MBB&: PrologMBB, MBBI: Where, DL, InProlog: true);
633 Where->eraseFromParent();
634 }
635}
636
637void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
638 MachineBasicBlock &MBB,
639 MachineBasicBlock::iterator MBBI,
640 const DebugLoc &DL,
641 bool InProlog) const {
642 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
643 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
644 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
645 else
646 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
647}
648
649void X86FrameLowering::emitStackProbeInlineGeneric(
650 MachineFunction &MF, MachineBasicBlock &MBB,
651 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
652 MachineInstr &AllocWithProbe = *MBBI;
653 uint64_t Offset = AllocWithProbe.getOperand(i: 0).getImm();
654
655 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
656 const X86TargetLowering &TLI = *STI.getTargetLowering();
657 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
658 "different expansion expected for CoreCLR 64 bit");
659
660 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
661 uint64_t ProbeChunk = StackProbeSize * 8;
662
663 uint64_t MaxAlign =
664 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
665
666 // Synthesize a loop or unroll it, depending on the number of iterations.
667 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
668 // between the unaligned rsp and current rsp.
669 if (Offset > ProbeChunk) {
670 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
671 Align: MaxAlign % StackProbeSize);
672 } else {
673 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
674 Align: MaxAlign % StackProbeSize);
675 }
676}
677
678void X86FrameLowering::emitStackProbeInlineGenericBlock(
679 MachineFunction &MF, MachineBasicBlock &MBB,
680 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
681 uint64_t AlignOffset) const {
682
683 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
684 const bool HasFP = hasFP(MF);
685 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
686 const X86TargetLowering &TLI = *STI.getTargetLowering();
687 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
688 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
689
690 uint64_t CurrentOffset = 0;
691
692 assert(AlignOffset < StackProbeSize);
693
694 // If the offset is so small it fits within a page, there's nothing to do.
695 if (StackProbeSize < Offset + AlignOffset) {
696
697 uint64_t StackAdjustment = StackProbeSize - AlignOffset;
698 BuildStackAdjustment(MBB, MBBI, DL, Offset: -StackAdjustment, /*InEpilogue=*/false)
699 .setMIFlag(MachineInstr::FrameSetup);
700 if (!HasFP && NeedsDwarfCFI) {
701 BuildCFI(
702 MBB, MBBI, DL,
703 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackAdjustment));
704 }
705
706 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
707 .setMIFlag(MachineInstr::FrameSetup),
708 StackPtr, false, 0)
709 .addImm(0)
710 .setMIFlag(MachineInstr::FrameSetup);
711 NumFrameExtraProbe++;
712 CurrentOffset = StackProbeSize - AlignOffset;
713 }
714
715 // For the next N - 1 pages, just probe. I tried to take advantage of
716 // natural probes but it implies much more logic and there was very few
717 // interesting natural probes to interleave.
718 while (CurrentOffset + StackProbeSize < Offset) {
719 BuildStackAdjustment(MBB, MBBI, DL, Offset: -StackProbeSize, /*InEpilogue=*/false)
720 .setMIFlag(MachineInstr::FrameSetup);
721
722 if (!HasFP && NeedsDwarfCFI) {
723 BuildCFI(
724 MBB, MBBI, DL,
725 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackProbeSize));
726 }
727 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
728 .setMIFlag(MachineInstr::FrameSetup),
729 StackPtr, false, 0)
730 .addImm(0)
731 .setMIFlag(MachineInstr::FrameSetup);
732 NumFrameExtraProbe++;
733 CurrentOffset += StackProbeSize;
734 }
735
736 // No need to probe the tail, it is smaller than a Page.
737 uint64_t ChunkSize = Offset - CurrentOffset;
738 if (ChunkSize == SlotSize) {
739 // Use push for slot sized adjustments as a size optimization,
740 // like emitSPUpdate does when not probing.
741 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX;
742 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
743 BuildMI(MBB, MBBI, DL, TII.get(Opc))
744 .addReg(Reg, RegState::Undef)
745 .setMIFlag(MachineInstr::FrameSetup);
746 } else {
747 BuildStackAdjustment(MBB, MBBI, DL, Offset: -ChunkSize, /*InEpilogue=*/false)
748 .setMIFlag(MachineInstr::FrameSetup);
749 }
750 // No need to adjust Dwarf CFA offset here, the last position of the stack has
751 // been defined
752}
753
754void X86FrameLowering::emitStackProbeInlineGenericLoop(
755 MachineFunction &MF, MachineBasicBlock &MBB,
756 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
757 uint64_t AlignOffset) const {
758 assert(Offset && "null offset");
759
760 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
761 MachineBasicBlock::LQR_Live &&
762 "Inline stack probe loop will clobber live EFLAGS.");
763
764 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
765 const bool HasFP = hasFP(MF);
766 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
767 const X86TargetLowering &TLI = *STI.getTargetLowering();
768 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
769 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
770
771 if (AlignOffset) {
772 if (AlignOffset < StackProbeSize) {
773 // Perform a first smaller allocation followed by a probe.
774 BuildStackAdjustment(MBB, MBBI, DL, Offset: -AlignOffset, /*InEpilogue=*/false)
775 .setMIFlag(MachineInstr::FrameSetup);
776
777 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
778 .setMIFlag(MachineInstr::FrameSetup),
779 StackPtr, false, 0)
780 .addImm(0)
781 .setMIFlag(MachineInstr::FrameSetup);
782 NumFrameExtraProbe++;
783 Offset -= AlignOffset;
784 }
785 }
786
787 // Synthesize a loop
788 NumFrameLoopProbe++;
789 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
790
791 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB);
792 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB);
793
794 MachineFunction::iterator MBBIter = ++MBB.getIterator();
795 MF.insert(MBBI: MBBIter, MBB: testMBB);
796 MF.insert(MBBI: MBBIter, MBB: tailMBB);
797
798 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
799 : Is64Bit ? X86::R11D
800 : X86::EAX;
801
802 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
803 .addReg(StackPtr)
804 .setMIFlag(MachineInstr::FrameSetup);
805
806 // save loop bound
807 {
808 const unsigned BoundOffset = alignDown(Value: Offset, Align: StackProbeSize);
809 const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr);
810 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
811 .addReg(FinalStackProbed)
812 .addImm(BoundOffset)
813 .setMIFlag(MachineInstr::FrameSetup);
814
815 // while in the loop, use loop-invariant reg for CFI,
816 // instead of the stack pointer, which changes during the loop
817 if (!HasFP && NeedsDwarfCFI) {
818 // x32 uses the same DWARF register numbers as x86-64,
819 // so there isn't a register number for r11d, we must use r11 instead
820 const Register DwarfFinalStackProbed =
821 STI.isTarget64BitILP32()
822 ? Register(getX86SubSuperRegister(Reg: FinalStackProbed, Size: 64))
823 : FinalStackProbed;
824
825 BuildCFI(MBB, MBBI, DL,
826 CFIInst: MCCFIInstruction::createDefCfaRegister(
827 L: nullptr, Register: TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
828 BuildCFI(MBB, MBBI, DL,
829 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: BoundOffset));
830 }
831 }
832
833 // allocate a page
834 BuildStackAdjustment(MBB&: *testMBB, MBBI: testMBB->end(), DL, Offset: -StackProbeSize,
835 /*InEpilogue=*/false)
836 .setMIFlag(MachineInstr::FrameSetup);
837
838 // touch the page
839 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
840 .setMIFlag(MachineInstr::FrameSetup),
841 StackPtr, false, 0)
842 .addImm(0)
843 .setMIFlag(MachineInstr::FrameSetup);
844
845 // cmp with stack pointer bound
846 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
847 .addReg(StackPtr)
848 .addReg(FinalStackProbed)
849 .setMIFlag(MachineInstr::FrameSetup);
850
851 // jump
852 BuildMI(testMBB, DL, TII.get(X86::JCC_1))
853 .addMBB(testMBB)
854 .addImm(X86::COND_NE)
855 .setMIFlag(MachineInstr::FrameSetup);
856 testMBB->addSuccessor(Succ: testMBB);
857 testMBB->addSuccessor(Succ: tailMBB);
858
859 // BB management
860 tailMBB->splice(Where: tailMBB->end(), Other: &MBB, From: MBBI, To: MBB.end());
861 tailMBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB);
862 MBB.addSuccessor(Succ: testMBB);
863
864 // handle tail
865 const uint64_t TailOffset = Offset % StackProbeSize;
866 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
867 if (TailOffset) {
868 BuildStackAdjustment(MBB&: *tailMBB, MBBI: TailMBBIter, DL, Offset: -TailOffset,
869 /*InEpilogue=*/false)
870 .setMIFlag(MachineInstr::FrameSetup);
871 }
872
873 // after the loop, switch back to stack pointer for CFI
874 if (!HasFP && NeedsDwarfCFI) {
875 // x32 uses the same DWARF register numbers as x86-64,
876 // so there isn't a register number for esp, we must use rsp instead
877 const Register DwarfStackPtr =
878 STI.isTarget64BitILP32()
879 ? Register(getX86SubSuperRegister(Reg: StackPtr, Size: 64))
880 : Register(StackPtr);
881
882 BuildCFI(MBB&: *tailMBB, MBBI: TailMBBIter, DL,
883 CFIInst: MCCFIInstruction::createDefCfaRegister(
884 L: nullptr, Register: TRI->getDwarfRegNum(DwarfStackPtr, true)));
885 }
886
887 // Update Live In information
888 fullyRecomputeLiveIns(MBBs: {tailMBB, testMBB});
889}
890
891void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
892 MachineFunction &MF, MachineBasicBlock &MBB,
893 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
894 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
895 assert(STI.is64Bit() && "different expansion needed for 32 bit");
896 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
897 const TargetInstrInfo &TII = *STI.getInstrInfo();
898 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
899
900 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
901 MachineBasicBlock::LQR_Live &&
902 "Inline stack probe loop will clobber live EFLAGS.");
903
904 // RAX contains the number of bytes of desired stack adjustment.
905 // The handling here assumes this value has already been updated so as to
906 // maintain stack alignment.
907 //
908 // We need to exit with RSP modified by this amount and execute suitable
909 // page touches to notify the OS that we're growing the stack responsibly.
910 // All stack probing must be done without modifying RSP.
911 //
912 // MBB:
913 // SizeReg = RAX;
914 // ZeroReg = 0
915 // CopyReg = RSP
916 // Flags, TestReg = CopyReg - SizeReg
917 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
918 // LimitReg = gs magic thread env access
919 // if FinalReg >= LimitReg goto ContinueMBB
920 // RoundBB:
921 // RoundReg = page address of FinalReg
922 // LoopMBB:
923 // LoopReg = PHI(LimitReg,ProbeReg)
924 // ProbeReg = LoopReg - PageSize
925 // [ProbeReg] = 0
926 // if (ProbeReg > RoundReg) goto LoopMBB
927 // ContinueMBB:
928 // RSP = RSP - RAX
929 // [rest of original MBB]
930
931 // Set up the new basic blocks
932 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB);
933 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB);
934 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB);
935
936 MachineFunction::iterator MBBIter = std::next(x: MBB.getIterator());
937 MF.insert(MBBI: MBBIter, MBB: RoundMBB);
938 MF.insert(MBBI: MBBIter, MBB: LoopMBB);
939 MF.insert(MBBI: MBBIter, MBB: ContinueMBB);
940
941 // Split MBB and move the tail portion down to ContinueMBB.
942 MachineBasicBlock::iterator BeforeMBBI = std::prev(x: MBBI);
943 ContinueMBB->splice(Where: ContinueMBB->begin(), Other: &MBB, From: MBBI, To: MBB.end());
944 ContinueMBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB);
945
946 // Some useful constants
947 const int64_t ThreadEnvironmentStackLimit = 0x10;
948 const int64_t PageSize = 0x1000;
949 const int64_t PageMask = ~(PageSize - 1);
950
951 // Registers we need. For the normal case we use virtual
952 // registers. For the prolog expansion we use RAX, RCX and RDX.
953 MachineRegisterInfo &MRI = MF.getRegInfo();
954 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
955 const Register
956 SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass),
957 ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
958 CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
959 TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
960 FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
961 RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
962 LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
963 JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
964 ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass);
965
966 // SP-relative offsets where we can save RCX and RDX.
967 int64_t RCXShadowSlot = 0;
968 int64_t RDXShadowSlot = 0;
969
970 // If inlining in the prolog, save RCX and RDX.
971 if (InProlog) {
972 // Compute the offsets. We need to account for things already
973 // pushed onto the stack at this point: return address, frame
974 // pointer (if used), and callee saves.
975 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
976 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
977 const bool HasFP = hasFP(MF);
978
979 // Check if we need to spill RCX and/or RDX.
980 // Here we assume that no earlier prologue instruction changes RCX and/or
981 // RDX, so checking the block live-ins is enough.
982 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
983 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
984 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
985 // Assign the initial slot to both registers, then change RDX's slot if both
986 // need to be spilled.
987 if (IsRCXLiveIn)
988 RCXShadowSlot = InitSlot;
989 if (IsRDXLiveIn)
990 RDXShadowSlot = InitSlot;
991 if (IsRDXLiveIn && IsRCXLiveIn)
992 RDXShadowSlot += 8;
993 // Emit the saves if needed.
994 if (IsRCXLiveIn)
995 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
996 RCXShadowSlot)
997 .addReg(X86::RCX);
998 if (IsRDXLiveIn)
999 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
1000 RDXShadowSlot)
1001 .addReg(X86::RDX);
1002 } else {
1003 // Not in the prolog. Copy RAX to a virtual reg.
1004 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
1005 }
1006
1007 // Add code to MBB to check for overflow and set the new target stack pointer
1008 // to zero if so.
1009 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
1010 .addReg(ZeroReg, RegState::Undef)
1011 .addReg(ZeroReg, RegState::Undef);
1012 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
1013 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
1014 .addReg(CopyReg)
1015 .addReg(SizeReg);
1016 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
1017 .addReg(TestReg)
1018 .addReg(ZeroReg)
1019 .addImm(X86::COND_B);
1020
1021 // FinalReg now holds final stack pointer value, or zero if
1022 // allocation would overflow. Compare against the current stack
1023 // limit from the thread environment block. Note this limit is the
1024 // lowest touched page on the stack, not the point at which the OS
1025 // will cause an overflow exception, so this is just an optimization
1026 // to avoid unnecessarily touching pages that are below the current
1027 // SP but already committed to the stack by the OS.
1028 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
1029 .addReg(0)
1030 .addImm(1)
1031 .addReg(0)
1032 .addImm(ThreadEnvironmentStackLimit)
1033 .addReg(X86::GS);
1034 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
1035 // Jump if the desired stack pointer is at or above the stack limit.
1036 BuildMI(&MBB, DL, TII.get(X86::JCC_1))
1037 .addMBB(ContinueMBB)
1038 .addImm(X86::COND_AE);
1039
1040 // Add code to roundMBB to round the final stack pointer to a page boundary.
1041 RoundMBB->addLiveIn(PhysReg: FinalReg);
1042 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
1043 .addReg(FinalReg)
1044 .addImm(PageMask);
1045 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
1046
1047 // LimitReg now holds the current stack limit, RoundedReg page-rounded
1048 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
1049 // and probe until we reach RoundedReg.
1050 if (!InProlog) {
1051 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
1052 .addReg(LimitReg)
1053 .addMBB(RoundMBB)
1054 .addReg(ProbeReg)
1055 .addMBB(LoopMBB);
1056 }
1057
1058 LoopMBB->addLiveIn(PhysReg: JoinReg);
1059 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
1060 false, -PageSize);
1061
1062 // Probe by storing a byte onto the stack.
1063 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
1064 .addReg(ProbeReg)
1065 .addImm(1)
1066 .addReg(0)
1067 .addImm(0)
1068 .addReg(0)
1069 .addImm(0);
1070
1071 LoopMBB->addLiveIn(PhysReg: RoundedReg);
1072 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
1073 .addReg(RoundedReg)
1074 .addReg(ProbeReg);
1075 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1))
1076 .addMBB(LoopMBB)
1077 .addImm(X86::COND_NE);
1078
1079 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
1080
1081 // If in prolog, restore RDX and RCX.
1082 if (InProlog) {
1083 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
1084 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1085 TII.get(X86::MOV64rm), X86::RCX),
1086 X86::RSP, false, RCXShadowSlot);
1087 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
1088 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1089 TII.get(X86::MOV64rm), X86::RDX),
1090 X86::RSP, false, RDXShadowSlot);
1091 }
1092
1093 // Now that the probing is done, add code to continueMBB to update
1094 // the stack pointer for real.
1095 ContinueMBB->addLiveIn(PhysReg: SizeReg);
1096 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
1097 .addReg(X86::RSP)
1098 .addReg(SizeReg);
1099
1100 // Add the control flow edges we need.
1101 MBB.addSuccessor(Succ: ContinueMBB);
1102 MBB.addSuccessor(Succ: RoundMBB);
1103 RoundMBB->addSuccessor(Succ: LoopMBB);
1104 LoopMBB->addSuccessor(Succ: ContinueMBB);
1105 LoopMBB->addSuccessor(Succ: LoopMBB);
1106
1107 // Mark all the instructions added to the prolog as frame setup.
1108 if (InProlog) {
1109 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
1110 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
1111 }
1112 for (MachineInstr &MI : *RoundMBB) {
1113 MI.setFlag(MachineInstr::FrameSetup);
1114 }
1115 for (MachineInstr &MI : *LoopMBB) {
1116 MI.setFlag(MachineInstr::FrameSetup);
1117 }
1118 for (MachineInstr &MI :
1119 llvm::make_range(x: ContinueMBB->begin(), y: ContinueMBBI)) {
1120 MI.setFlag(MachineInstr::FrameSetup);
1121 }
1122 }
1123}
1124
1125void X86FrameLowering::emitStackProbeCall(
1126 MachineFunction &MF, MachineBasicBlock &MBB,
1127 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
1128 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
1129 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1130
1131 // FIXME: Add indirect thunk support and remove this.
1132 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1133 report_fatal_error(reason: "Emitting stack probe calls on 64-bit with the large "
1134 "code model and indirect thunks not yet implemented.");
1135
1136 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
1137 MachineBasicBlock::LQR_Live &&
1138 "Stack probe calls will clobber live EFLAGS.");
1139
1140 unsigned CallOp;
1141 if (Is64Bit)
1142 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1143 else
1144 CallOp = X86::CALLpcrel32;
1145
1146 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1147
1148 MachineInstrBuilder CI;
1149 MachineBasicBlock::iterator ExpansionMBBI = std::prev(x: MBBI);
1150
1151 // All current stack probes take AX and SP as input, clobber flags, and
1152 // preserve all registers. x86_64 probes leave RSP unmodified.
1153 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1154 // For the large code model, we have to call through a register. Use R11,
1155 // as it is scratch in all supported calling conventions.
1156 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1157 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1158 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1159 } else {
1160 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1161 .addExternalSymbol(MF.createExternalSymbolName(Name: Symbol));
1162 }
1163
1164 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1165 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1166 CI.addReg(AX, RegState::Implicit)
1167 .addReg(SP, RegState::Implicit)
1168 .addReg(AX, RegState::Define | RegState::Implicit)
1169 .addReg(SP, RegState::Define | RegState::Implicit)
1170 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1171
1172 MachineInstr *ModInst = CI;
1173 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1174 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1175 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1176 // themselves. They also does not clobber %rax so we can reuse it when
1177 // adjusting %rsp.
1178 // All other platforms do not specify a particular ABI for the stack probe
1179 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1180 ModInst =
1181 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(IsLP64: Uses64BitFramePtr)), SP)
1182 .addReg(SP)
1183 .addReg(AX);
1184 }
1185
1186 // DebugInfo variable locations -- if there's an instruction number for the
1187 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
1188 // modifies SP.
1189 if (InstrNum) {
1190 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1191 // Label destination operand of the subtract.
1192 MF.makeDebugValueSubstitution(*InstrNum,
1193 {ModInst->getDebugInstrNum(), 0});
1194 } else {
1195 // Label the call. The operand number is the penultimate operand, zero
1196 // based.
1197 unsigned SPDefOperand = ModInst->getNumOperands() - 2;
1198 MF.makeDebugValueSubstitution(
1199 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
1200 }
1201 }
1202
1203 if (InProlog) {
1204 // Apply the frame setup flag to all inserted instrs.
1205 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1206 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1207 }
1208}
1209
1210static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1211 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1212 // and might require smaller successive adjustments.
1213 const uint64_t Win64MaxSEHOffset = 128;
1214 uint64_t SEHFrameOffset = std::min(a: SPAdjust, b: Win64MaxSEHOffset);
1215 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1216 return SEHFrameOffset & -16;
1217}
1218
1219// If we're forcing a stack realignment we can't rely on just the frame
1220// info, we need to know the ABI stack alignment as well in case we
1221// have a call out. Otherwise just make sure we have some alignment - we'll
1222// go with the minimum SlotSize.
1223uint64_t
1224X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1225 const MachineFrameInfo &MFI = MF.getFrameInfo();
1226 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1227 Align StackAlign = getStackAlign();
1228 bool HasRealign = MF.getFunction().hasFnAttribute(Kind: "stackrealign");
1229 if (HasRealign) {
1230 if (MFI.hasCalls())
1231 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1232 else if (MaxAlign < SlotSize)
1233 MaxAlign = Align(SlotSize);
1234 }
1235
1236 if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) {
1237 if (HasRealign)
1238 MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16);
1239 else
1240 MaxAlign = Align(16);
1241 }
1242 return MaxAlign.value();
1243}
1244
1245void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1246 MachineBasicBlock::iterator MBBI,
1247 const DebugLoc &DL, unsigned Reg,
1248 uint64_t MaxAlign) const {
1249 uint64_t Val = -MaxAlign;
1250 unsigned AndOp = getANDriOpcode(IsLP64: Uses64BitFramePtr, Imm: Val);
1251
1252 MachineFunction &MF = *MBB.getParent();
1253 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1254 const X86TargetLowering &TLI = *STI.getTargetLowering();
1255 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1256 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1257
1258 // We want to make sure that (in worst case) less than StackProbeSize bytes
1259 // are not probed after the AND. This assumption is used in
1260 // emitStackProbeInlineGeneric.
1261 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1262 {
1263 NumFrameLoopProbe++;
1264 MachineBasicBlock *entryMBB =
1265 MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock());
1266 MachineBasicBlock *headMBB =
1267 MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock());
1268 MachineBasicBlock *bodyMBB =
1269 MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock());
1270 MachineBasicBlock *footMBB =
1271 MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock());
1272
1273 MachineFunction::iterator MBBIter = MBB.getIterator();
1274 MF.insert(MBBI: MBBIter, MBB: entryMBB);
1275 MF.insert(MBBI: MBBIter, MBB: headMBB);
1276 MF.insert(MBBI: MBBIter, MBB: bodyMBB);
1277 MF.insert(MBBI: MBBIter, MBB: footMBB);
1278 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1279 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1280 : Is64Bit ? X86::R11D
1281 : X86::EAX;
1282
1283 // Setup entry block
1284 {
1285
1286 entryMBB->splice(Where: entryMBB->end(), Other: &MBB, From: MBB.begin(), To: MBBI);
1287 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1288 .addReg(StackPtr)
1289 .setMIFlag(MachineInstr::FrameSetup);
1290 MachineInstr *MI =
1291 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1292 .addReg(FinalStackProbed)
1293 .addImm(Val)
1294 .setMIFlag(MachineInstr::FrameSetup);
1295
1296 // The EFLAGS implicit def is dead.
1297 MI->getOperand(i: 3).setIsDead();
1298
1299 BuildMI(entryMBB, DL,
1300 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1301 .addReg(FinalStackProbed)
1302 .addReg(StackPtr)
1303 .setMIFlag(MachineInstr::FrameSetup);
1304 BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1305 .addMBB(&MBB)
1306 .addImm(X86::COND_E)
1307 .setMIFlag(MachineInstr::FrameSetup);
1308 entryMBB->addSuccessor(Succ: headMBB);
1309 entryMBB->addSuccessor(Succ: &MBB);
1310 }
1311
1312 // Loop entry block
1313
1314 {
1315 const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr);
1316 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1317 .addReg(StackPtr)
1318 .addImm(StackProbeSize)
1319 .setMIFlag(MachineInstr::FrameSetup);
1320
1321 BuildMI(headMBB, DL,
1322 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1323 .addReg(StackPtr)
1324 .addReg(FinalStackProbed)
1325 .setMIFlag(MachineInstr::FrameSetup);
1326
1327 // jump to the footer if StackPtr < FinalStackProbed
1328 BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1329 .addMBB(footMBB)
1330 .addImm(X86::COND_B)
1331 .setMIFlag(MachineInstr::FrameSetup);
1332
1333 headMBB->addSuccessor(Succ: bodyMBB);
1334 headMBB->addSuccessor(Succ: footMBB);
1335 }
1336
1337 // setup loop body
1338 {
1339 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1340 .setMIFlag(MachineInstr::FrameSetup),
1341 StackPtr, false, 0)
1342 .addImm(0)
1343 .setMIFlag(MachineInstr::FrameSetup);
1344
1345 const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr);
1346 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1347 .addReg(StackPtr)
1348 .addImm(StackProbeSize)
1349 .setMIFlag(MachineInstr::FrameSetup);
1350
1351 // cmp with stack pointer bound
1352 BuildMI(bodyMBB, DL,
1353 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1354 .addReg(FinalStackProbed)
1355 .addReg(StackPtr)
1356 .setMIFlag(MachineInstr::FrameSetup);
1357
1358 // jump back while FinalStackProbed < StackPtr
1359 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1360 .addMBB(bodyMBB)
1361 .addImm(X86::COND_B)
1362 .setMIFlag(MachineInstr::FrameSetup);
1363 bodyMBB->addSuccessor(Succ: bodyMBB);
1364 bodyMBB->addSuccessor(Succ: footMBB);
1365 }
1366
1367 // setup loop footer
1368 {
1369 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1370 .addReg(FinalStackProbed)
1371 .setMIFlag(MachineInstr::FrameSetup);
1372 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1373 .setMIFlag(MachineInstr::FrameSetup),
1374 StackPtr, false, 0)
1375 .addImm(0)
1376 .setMIFlag(MachineInstr::FrameSetup);
1377 footMBB->addSuccessor(Succ: &MBB);
1378 }
1379
1380 fullyRecomputeLiveIns(MBBs: {footMBB, bodyMBB, headMBB, &MBB});
1381 }
1382 } else {
1383 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1384 .addReg(Reg)
1385 .addImm(Val)
1386 .setMIFlag(MachineInstr::FrameSetup);
1387
1388 // The EFLAGS implicit def is dead.
1389 MI->getOperand(i: 3).setIsDead();
1390 }
1391}
1392
1393bool X86FrameLowering::has128ByteRedZone(const MachineFunction &MF) const {
1394 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1395 // clobbered by any interrupt handler.
1396 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1397 "MF used frame lowering for wrong subtarget");
1398 const Function &Fn = MF.getFunction();
1399 const bool IsWin64CC = STI.isCallingConvWin64(CC: Fn.getCallingConv());
1400 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1401}
1402
1403/// Return true if we need to use the restricted Windows x64 prologue and
1404/// epilogue code patterns that can be described with WinCFI (.seh_*
1405/// directives).
1406bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1407 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1408}
1409
1410bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1411 return !isWin64Prologue(MF) && MF.needsFrameMoves();
1412}
1413
1414/// Return true if an opcode is part of the REP group of instructions
1415static bool isOpcodeRep(unsigned Opcode) {
1416 switch (Opcode) {
1417 case X86::REPNE_PREFIX:
1418 case X86::REP_MOVSB_32:
1419 case X86::REP_MOVSB_64:
1420 case X86::REP_MOVSD_32:
1421 case X86::REP_MOVSD_64:
1422 case X86::REP_MOVSQ_32:
1423 case X86::REP_MOVSQ_64:
1424 case X86::REP_MOVSW_32:
1425 case X86::REP_MOVSW_64:
1426 case X86::REP_PREFIX:
1427 case X86::REP_STOSB_32:
1428 case X86::REP_STOSB_64:
1429 case X86::REP_STOSD_32:
1430 case X86::REP_STOSD_64:
1431 case X86::REP_STOSQ_32:
1432 case X86::REP_STOSQ_64:
1433 case X86::REP_STOSW_32:
1434 case X86::REP_STOSW_64:
1435 return true;
1436 default:
1437 break;
1438 }
1439 return false;
1440}
1441
1442/// emitPrologue - Push callee-saved registers onto the stack, which
1443/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1444/// space for local variables. Also emit labels used by the exception handler to
1445/// generate the exception handling frames.
1446
1447/*
1448 Here's a gist of what gets emitted:
1449
1450 ; Establish frame pointer, if needed
1451 [if needs FP]
1452 push %rbp
1453 .cfi_def_cfa_offset 16
1454 .cfi_offset %rbp, -16
1455 .seh_pushreg %rpb
1456 mov %rsp, %rbp
1457 .cfi_def_cfa_register %rbp
1458
1459 ; Spill general-purpose registers
1460 [for all callee-saved GPRs]
1461 pushq %<reg>
1462 [if not needs FP]
1463 .cfi_def_cfa_offset (offset from RETADDR)
1464 .seh_pushreg %<reg>
1465
1466 ; If the required stack alignment > default stack alignment
1467 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1468 ; of unknown size in the stack frame.
1469 [if stack needs re-alignment]
1470 and $MASK, %rsp
1471
1472 ; Allocate space for locals
1473 [if target is Windows and allocated space > 4096 bytes]
1474 ; Windows needs special care for allocations larger
1475 ; than one page.
1476 mov $NNN, %rax
1477 call ___chkstk_ms/___chkstk
1478 sub %rax, %rsp
1479 [else]
1480 sub $NNN, %rsp
1481
1482 [if needs FP]
1483 .seh_stackalloc (size of XMM spill slots)
1484 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1485 [else]
1486 .seh_stackalloc NNN
1487
1488 ; Spill XMMs
1489 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1490 ; they may get spilled on any platform, if the current function
1491 ; calls @llvm.eh.unwind.init
1492 [if needs FP]
1493 [for all callee-saved XMM registers]
1494 movaps %<xmm reg>, -MMM(%rbp)
1495 [for all callee-saved XMM registers]
1496 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1497 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1498 [else]
1499 [for all callee-saved XMM registers]
1500 movaps %<xmm reg>, KKK(%rsp)
1501 [for all callee-saved XMM registers]
1502 .seh_savexmm %<xmm reg>, KKK
1503
1504 .seh_endprologue
1505
1506 [if needs base pointer]
1507 mov %rsp, %rbx
1508 [if needs to restore base pointer]
1509 mov %rsp, -MMM(%rbp)
1510
1511 ; Emit CFI info
1512 [if needs FP]
1513 [for all callee-saved registers]
1514 .cfi_offset %<reg>, (offset from %rbp)
1515 [else]
1516 .cfi_def_cfa_offset (offset from RETADDR)
1517 [for all callee-saved registers]
1518 .cfi_offset %<reg>, (offset from %rsp)
1519
1520 Notes:
1521 - .seh directives are emitted only for Windows 64 ABI
1522 - .cv_fpo directives are emitted on win32 when emitting CodeView
1523 - .cfi directives are emitted for all other ABIs
1524 - for 32-bit code, substitute %e?? registers for %r??
1525*/
1526
1527void X86FrameLowering::emitPrologue(MachineFunction &MF,
1528 MachineBasicBlock &MBB) const {
1529 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1530 "MF used frame lowering for wrong subtarget");
1531 MachineBasicBlock::iterator MBBI = MBB.begin();
1532 MachineFrameInfo &MFI = MF.getFrameInfo();
1533 const Function &Fn = MF.getFunction();
1534 MachineModuleInfo &MMI = MF.getMMI();
1535 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1536 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1537 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1538 bool IsFunclet = MBB.isEHFuncletEntry();
1539 EHPersonality Personality = EHPersonality::Unknown;
1540 if (Fn.hasPersonalityFn())
1541 Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn());
1542 bool FnHasClrFunclet =
1543 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1544 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1545 bool HasFP = hasFP(MF);
1546 bool IsWin64Prologue = isWin64Prologue(MF);
1547 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1548 // FIXME: Emit FPO data for EH funclets.
1549 bool NeedsWinFPO =
1550 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1551 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1552 bool NeedsDwarfCFI = needsDwarfCFI(MF);
1553 Register FramePtr = TRI->getFrameRegister(MF);
1554 const Register MachineFramePtr =
1555 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64))
1556 : FramePtr;
1557 Register BasePtr = TRI->getBaseRegister();
1558 bool HasWinCFI = false;
1559
1560 // Debug location must be unknown since the first debug location is used
1561 // to determine the end of the prologue.
1562 DebugLoc DL;
1563 Register ArgBaseReg;
1564
1565 // Emit extra prolog for argument stack slot reference.
1566 if (auto *MI = X86FI->getStackPtrSaveMI()) {
1567 // MI is lea instruction that created in X86ArgumentStackSlotPass.
1568 // Creat extra prolog for stack realignment.
1569 ArgBaseReg = MI->getOperand(i: 0).getReg();
1570 // leal 4(%esp), %basereg
1571 // .cfi_def_cfa %basereg, 0
1572 // andl $-128, %esp
1573 // pushl -4(%basereg)
1574 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r),
1575 ArgBaseReg)
1576 .addUse(StackPtr)
1577 .addImm(1)
1578 .addUse(X86::NoRegister)
1579 .addImm(SlotSize)
1580 .addUse(X86::NoRegister)
1581 .setMIFlag(MachineInstr::FrameSetup);
1582 if (NeedsDwarfCFI) {
1583 // .cfi_def_cfa %basereg, 0
1584 unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true);
1585 BuildCFI(MBB, MBBI, DL,
1586 CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: 0),
1587 Flag: MachineInstr::FrameSetup);
1588 }
1589 BuildStackAlignAND(MBB, MBBI, DL, Reg: StackPtr, MaxAlign);
1590 int64_t Offset = -(int64_t)SlotSize;
1591 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm))
1592 .addReg(ArgBaseReg)
1593 .addImm(1)
1594 .addReg(X86::NoRegister)
1595 .addImm(Offset)
1596 .addReg(X86::NoRegister)
1597 .setMIFlag(MachineInstr::FrameSetup);
1598 }
1599
1600 // Space reserved for stack-based arguments when making a (ABI-guaranteed)
1601 // tail call.
1602 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
1603 if (TailCallArgReserveSize && IsWin64Prologue)
1604 report_fatal_error(reason: "Can't handle guaranteed tail call under win64 yet");
1605
1606 const bool EmitStackProbeCall =
1607 STI.getTargetLowering()->hasStackProbeSymbol(MF);
1608 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1609
1610 if (HasFP && X86FI->hasSwiftAsyncContext()) {
1611 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1612 case SwiftAsyncFramePointerMode::DeploymentBased:
1613 if (STI.swiftAsyncContextIsDynamicallySet()) {
1614 // The special symbol below is absolute and has a *value* suitable to be
1615 // combined with the frame pointer directly.
1616 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
1617 .addUse(MachineFramePtr)
1618 .addUse(X86::RIP)
1619 .addImm(1)
1620 .addUse(X86::NoRegister)
1621 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1622 X86II::MO_GOTPCREL)
1623 .addUse(X86::NoRegister);
1624 break;
1625 }
1626 [[fallthrough]];
1627
1628 case SwiftAsyncFramePointerMode::Always:
1629 assert(
1630 !IsWin64Prologue &&
1631 "win64 prologue does not set the bit 60 in the saved frame pointer");
1632 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
1633 .addUse(MachineFramePtr)
1634 .addImm(60)
1635 .setMIFlag(MachineInstr::FrameSetup);
1636 break;
1637
1638 case SwiftAsyncFramePointerMode::Never:
1639 break;
1640 }
1641 }
1642
1643 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1644 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1645 // stack alignment.
1646 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1647 Fn.arg_size() == 2) {
1648 StackSize += 8;
1649 MFI.setStackSize(StackSize);
1650
1651 // Update the stack pointer by pushing a register. This is the instruction
1652 // emitted that would be end up being emitted by a call to `emitSPUpdate`.
1653 // Hard-coding the update to a push avoids emitting a second
1654 // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack
1655 // probing isn't needed anyways for an 8-byte update.
1656 // Pushing a register leaves us in a similar situation to a regular
1657 // function call where we know that the address at (rsp-8) is writeable.
1658 // That way we avoid any off-by-ones with stack probing for additional
1659 // stack pointer updates later on.
1660 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1661 .addReg(X86::RAX, RegState::Undef)
1662 .setMIFlag(MachineInstr::FrameSetup);
1663 }
1664
1665 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1666 // function, and use up to 128 bytes of stack space, don't have a frame
1667 // pointer, calls, or dynamic alloca then we do not need to adjust the
1668 // stack pointer (we fit in the Red Zone). We also check that we don't
1669 // push and pop from the stack.
1670 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1671 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1672 !MFI.adjustsStack() && // No calls.
1673 !EmitStackProbeCall && // No stack probes.
1674 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1675 !MF.shouldSplitStack()) { // Regular stack
1676 uint64_t MinSize =
1677 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
1678 if (HasFP)
1679 MinSize += SlotSize;
1680 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1681 StackSize = std::max(a: MinSize, b: StackSize > 128 ? StackSize - 128 : 0);
1682 MFI.setStackSize(StackSize);
1683 }
1684
1685 // Insert stack pointer adjustment for later moving of return addr. Only
1686 // applies to tail call optimized functions where the callee argument stack
1687 // size is bigger than the callers.
1688 if (TailCallArgReserveSize != 0) {
1689 BuildStackAdjustment(MBB, MBBI, DL, Offset: -(int)TailCallArgReserveSize,
1690 /*InEpilogue=*/false)
1691 .setMIFlag(MachineInstr::FrameSetup);
1692 }
1693
1694 // Mapping for machine moves:
1695 //
1696 // DST: VirtualFP AND
1697 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1698 // ELSE => DW_CFA_def_cfa
1699 //
1700 // SRC: VirtualFP AND
1701 // DST: Register => DW_CFA_def_cfa_register
1702 //
1703 // ELSE
1704 // OFFSET < 0 => DW_CFA_offset_extended_sf
1705 // REG < 64 => DW_CFA_offset + Reg
1706 // ELSE => DW_CFA_offset_extended
1707
1708 uint64_t NumBytes = 0;
1709 int stackGrowth = -SlotSize;
1710
1711 // Find the funclet establisher parameter
1712 Register Establisher = X86::NoRegister;
1713 if (IsClrFunclet)
1714 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1715 else if (IsFunclet)
1716 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1717
1718 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1719 // Immediately spill establisher into the home slot.
1720 // The runtime cares about this.
1721 // MOV64mr %rdx, 16(%rsp)
1722 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1723 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1724 .addReg(Establisher)
1725 .setMIFlag(MachineInstr::FrameSetup);
1726 MBB.addLiveIn(PhysReg: Establisher);
1727 }
1728
1729 if (HasFP) {
1730 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1731
1732 // Calculate required stack adjustment.
1733 uint64_t FrameSize = StackSize - SlotSize;
1734 NumBytes =
1735 FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1736
1737 // Callee-saved registers are pushed on stack before the stack is realigned.
1738 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1739 NumBytes = alignTo(Value: NumBytes, Align: MaxAlign);
1740
1741 // Save EBP/RBP into the appropriate stack slot.
1742 BuildMI(MBB, MBBI, DL,
1743 TII.get(getPUSHOpcode(ST: MF.getSubtarget<X86Subtarget>())))
1744 .addReg(MachineFramePtr, RegState::Kill)
1745 .setMIFlag(MachineInstr::FrameSetup);
1746
1747 if (NeedsDwarfCFI && !ArgBaseReg.isValid()) {
1748 // Mark the place where EBP/RBP was saved.
1749 // Define the current CFA rule to use the provided offset.
1750 assert(StackSize);
1751 BuildCFI(MBB, MBBI, DL,
1752 CFIInst: MCCFIInstruction::cfiDefCfaOffset(
1753 L: nullptr, Offset: -2 * stackGrowth + (int)TailCallArgReserveSize),
1754 Flag: MachineInstr::FrameSetup);
1755
1756 // Change the rule for the FramePtr to be an "offset" rule.
1757 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1758 BuildCFI(MBB, MBBI, DL,
1759 CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfFramePtr,
1760 Offset: 2 * stackGrowth -
1761 (int)TailCallArgReserveSize),
1762 Flag: MachineInstr::FrameSetup);
1763 }
1764
1765 if (NeedsWinCFI) {
1766 HasWinCFI = true;
1767 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1768 .addImm(FramePtr)
1769 .setMIFlag(MachineInstr::FrameSetup);
1770 }
1771
1772 if (!IsFunclet) {
1773 if (X86FI->hasSwiftAsyncContext()) {
1774 assert(!IsWin64Prologue &&
1775 "win64 prologue does not store async context right below rbp");
1776 const auto &Attrs = MF.getFunction().getAttributes();
1777
1778 // Before we update the live frame pointer we have to ensure there's a
1779 // valid (or null) asynchronous context in its slot just before FP in
1780 // the frame record, so store it now.
1781 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1782 // We have an initial context in r14, store it just before the frame
1783 // pointer.
1784 MBB.addLiveIn(X86::R14);
1785 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1786 .addReg(X86::R14)
1787 .setMIFlag(MachineInstr::FrameSetup);
1788 } else {
1789 // No initial context, store null so that there's no pointer that
1790 // could be misused.
1791 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32))
1792 .addImm(0)
1793 .setMIFlag(MachineInstr::FrameSetup);
1794 }
1795
1796 if (NeedsWinCFI) {
1797 HasWinCFI = true;
1798 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1799 .addImm(X86::R14)
1800 .setMIFlag(MachineInstr::FrameSetup);
1801 }
1802
1803 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1804 .addUse(X86::RSP)
1805 .addImm(1)
1806 .addUse(X86::NoRegister)
1807 .addImm(8)
1808 .addUse(X86::NoRegister)
1809 .setMIFlag(MachineInstr::FrameSetup);
1810 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP)
1811 .addUse(X86::RSP)
1812 .addImm(8)
1813 .setMIFlag(MachineInstr::FrameSetup);
1814 }
1815
1816 if (!IsWin64Prologue && !IsFunclet) {
1817 // Update EBP with the new base value.
1818 if (!X86FI->hasSwiftAsyncContext())
1819 BuildMI(MBB, MBBI, DL,
1820 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1821 FramePtr)
1822 .addReg(StackPtr)
1823 .setMIFlag(MachineInstr::FrameSetup);
1824
1825 if (NeedsDwarfCFI) {
1826 if (ArgBaseReg.isValid()) {
1827 SmallString<64> CfaExpr;
1828 CfaExpr.push_back(Elt: dwarf::DW_CFA_expression);
1829 uint8_t buffer[16];
1830 unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true);
1831 CfaExpr.append(in_start: buffer, in_end: buffer + encodeULEB128(Value: DwarfReg, p: buffer));
1832 CfaExpr.push_back(Elt: 2);
1833 CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
1834 CfaExpr.push_back(Elt: 0);
1835 // DW_CFA_expression: reg5 DW_OP_breg5 +0
1836 BuildCFI(MBB, MBBI, DL,
1837 CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: CfaExpr.str()),
1838 Flag: MachineInstr::FrameSetup);
1839 } else {
1840 // Mark effective beginning of when frame pointer becomes valid.
1841 // Define the current CFA to use the EBP/RBP register.
1842 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1843 BuildCFI(
1844 MBB, MBBI, DL,
1845 CFIInst: MCCFIInstruction::createDefCfaRegister(L: nullptr, Register: DwarfFramePtr),
1846 Flag: MachineInstr::FrameSetup);
1847 }
1848 }
1849
1850 if (NeedsWinFPO) {
1851 // .cv_fpo_setframe $FramePtr
1852 HasWinCFI = true;
1853 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1854 .addImm(FramePtr)
1855 .addImm(0)
1856 .setMIFlag(MachineInstr::FrameSetup);
1857 }
1858 }
1859 }
1860 } else {
1861 assert(!IsFunclet && "funclets without FPs not yet implemented");
1862 NumBytes =
1863 StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1864 }
1865
1866 // Update the offset adjustment, which is mainly used by codeview to translate
1867 // from ESP to VFRAME relative local variable offsets.
1868 if (!IsFunclet) {
1869 if (HasFP && TRI->hasStackRealignment(MF))
1870 MFI.setOffsetAdjustment(-NumBytes);
1871 else
1872 MFI.setOffsetAdjustment(-StackSize);
1873 }
1874
1875 // For EH funclets, only allocate enough space for outgoing calls. Save the
1876 // NumBytes value that we would've used for the parent frame.
1877 unsigned ParentFrameNumBytes = NumBytes;
1878 if (IsFunclet)
1879 NumBytes = getWinEHFuncletFrameSize(MF);
1880
1881 // Skip the callee-saved push instructions.
1882 bool PushedRegs = false;
1883 int StackOffset = 2 * stackGrowth;
1884 MachineBasicBlock::const_iterator LastCSPush = MBBI;
1885 auto IsCSPush = [&](const MachineBasicBlock::iterator &MBBI) {
1886 if (MBBI == MBB.end() || !MBBI->getFlag(Flag: MachineInstr::FrameSetup))
1887 return false;
1888 unsigned Opc = MBBI->getOpcode();
1889 return Opc == X86::PUSH32r || Opc == X86::PUSH64r || Opc == X86::PUSHP64r ||
1890 Opc == X86::PUSH2 || Opc == X86::PUSH2P;
1891 };
1892
1893 while (IsCSPush(MBBI)) {
1894 PushedRegs = true;
1895 Register Reg = MBBI->getOperand(i: 0).getReg();
1896 LastCSPush = MBBI;
1897 ++MBBI;
1898 unsigned Opc = LastCSPush->getOpcode();
1899
1900 if (!HasFP && NeedsDwarfCFI) {
1901 // Mark callee-saved push instruction.
1902 // Define the current CFA rule to use the provided offset.
1903 assert(StackSize);
1904 // Compared to push, push2 introduces more stack offset (one more
1905 // register).
1906 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P)
1907 StackOffset += stackGrowth;
1908 BuildCFI(MBB, MBBI, DL,
1909 CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: -StackOffset),
1910 Flag: MachineInstr::FrameSetup);
1911 StackOffset += stackGrowth;
1912 }
1913
1914 if (NeedsWinCFI) {
1915 HasWinCFI = true;
1916 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1917 .addImm(Reg)
1918 .setMIFlag(MachineInstr::FrameSetup);
1919 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P)
1920 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1921 .addImm(LastCSPush->getOperand(1).getReg())
1922 .setMIFlag(MachineInstr::FrameSetup);
1923 }
1924 }
1925
1926 // Realign stack after we pushed callee-saved registers (so that we'll be
1927 // able to calculate their offsets from the frame pointer).
1928 // Don't do this for Win64, it needs to realign the stack after the prologue.
1929 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) &&
1930 !ArgBaseReg.isValid()) {
1931 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1932 BuildStackAlignAND(MBB, MBBI, DL, Reg: StackPtr, MaxAlign);
1933
1934 if (NeedsWinCFI) {
1935 HasWinCFI = true;
1936 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1937 .addImm(MaxAlign)
1938 .setMIFlag(MachineInstr::FrameSetup);
1939 }
1940 }
1941
1942 // If there is an SUB32ri of ESP immediately before this instruction, merge
1943 // the two. This can be the case when tail call elimination is enabled and
1944 // the callee has more arguments then the caller.
1945 NumBytes -= mergeSPUpdates(MBB, MBBI, doMergeWithPrevious: true);
1946
1947 // Adjust stack pointer: ESP -= numbytes.
1948
1949 // Windows and cygwin/mingw require a prologue helper routine when allocating
1950 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1951 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1952 // stack and adjust the stack pointer in one go. The 64-bit version of
1953 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1954 // responsible for adjusting the stack pointer. Touching the stack at 4K
1955 // increments is necessary to ensure that the guard pages used by the OS
1956 // virtual memory manager are allocated in correct sequence.
1957 uint64_t AlignedNumBytes = NumBytes;
1958 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1959 AlignedNumBytes = alignTo(Value: AlignedNumBytes, Align: MaxAlign);
1960 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1961 assert(!X86FI->getUsesRedZone() &&
1962 "The Red Zone is not accounted for in stack probes");
1963
1964 // Check whether EAX is livein for this block.
1965 bool isEAXAlive = isEAXLiveIn(MBB);
1966
1967 if (isEAXAlive) {
1968 if (Is64Bit) {
1969 // Save RAX
1970 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1971 .addReg(X86::RAX, RegState::Kill)
1972 .setMIFlag(MachineInstr::FrameSetup);
1973 } else {
1974 // Save EAX
1975 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1976 .addReg(X86::EAX, RegState::Kill)
1977 .setMIFlag(MachineInstr::FrameSetup);
1978 }
1979 }
1980
1981 if (Is64Bit) {
1982 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1983 // Function prologue is responsible for adjusting the stack pointer.
1984 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1985 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
1986 .addImm(Alloc)
1987 .setMIFlag(MachineInstr::FrameSetup);
1988 } else {
1989 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1990 // We'll also use 4 already allocated bytes for EAX.
1991 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1992 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1993 .setMIFlag(MachineInstr::FrameSetup);
1994 }
1995
1996 // Call __chkstk, __chkstk_ms, or __alloca.
1997 emitStackProbe(MF, MBB, MBBI, DL, InProlog: true);
1998
1999 if (isEAXAlive) {
2000 // Restore RAX/EAX
2001 MachineInstr *MI;
2002 if (Is64Bit)
2003 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
2004 StackPtr, false, NumBytes - 8);
2005 else
2006 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
2007 StackPtr, false, NumBytes - 4);
2008 MI->setFlag(MachineInstr::FrameSetup);
2009 MBB.insert(I: MBBI, MI);
2010 }
2011 } else if (NumBytes) {
2012 emitSPUpdate(MBB, MBBI, DL, NumBytes: -(int64_t)NumBytes, /*InEpilogue=*/false);
2013 }
2014
2015 if (NeedsWinCFI && NumBytes) {
2016 HasWinCFI = true;
2017 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
2018 .addImm(NumBytes)
2019 .setMIFlag(MachineInstr::FrameSetup);
2020 }
2021
2022 int SEHFrameOffset = 0;
2023 unsigned SPOrEstablisher;
2024 if (IsFunclet) {
2025 if (IsClrFunclet) {
2026 // The establisher parameter passed to a CLR funclet is actually a pointer
2027 // to the (mostly empty) frame of its nearest enclosing funclet; we have
2028 // to find the root function establisher frame by loading the PSPSym from
2029 // the intermediate frame.
2030 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
2031 MachinePointerInfo NoInfo;
2032 MBB.addLiveIn(PhysReg: Establisher);
2033 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
2034 Establisher, false, PSPSlotOffset)
2035 .addMemOperand(MF.getMachineMemOperand(
2036 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
2037 ;
2038 // Save the root establisher back into the current funclet's (mostly
2039 // empty) frame, in case a sub-funclet or the GC needs it.
2040 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
2041 false, PSPSlotOffset)
2042 .addReg(Establisher)
2043 .addMemOperand(MF.getMachineMemOperand(
2044 NoInfo,
2045 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2046 SlotSize, Align(SlotSize)));
2047 }
2048 SPOrEstablisher = Establisher;
2049 } else {
2050 SPOrEstablisher = StackPtr;
2051 }
2052
2053 if (IsWin64Prologue && HasFP) {
2054 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
2055 // this calculation on the incoming establisher, which holds the value of
2056 // RSP from the parent frame at the end of the prologue.
2057 SEHFrameOffset = calculateSetFPREG(SPAdjust: ParentFrameNumBytes);
2058 if (SEHFrameOffset)
2059 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
2060 SPOrEstablisher, false, SEHFrameOffset);
2061 else
2062 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
2063 .addReg(SPOrEstablisher);
2064
2065 // If this is not a funclet, emit the CFI describing our frame pointer.
2066 if (NeedsWinCFI && !IsFunclet) {
2067 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
2068 HasWinCFI = true;
2069 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
2070 .addImm(FramePtr)
2071 .addImm(SEHFrameOffset)
2072 .setMIFlag(MachineInstr::FrameSetup);
2073 if (isAsynchronousEHPersonality(Pers: Personality))
2074 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
2075 }
2076 } else if (IsFunclet && STI.is32Bit()) {
2077 // Reset EBP / ESI to something good for funclets.
2078 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
2079 // If we're a catch funclet, we can be returned to via catchret. Save ESP
2080 // into the registration node so that the runtime will restore it for us.
2081 if (!MBB.isCleanupFuncletEntry()) {
2082 assert(Personality == EHPersonality::MSVC_CXX);
2083 Register FrameReg;
2084 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
2085 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
2086 // ESP is the first field, so no extra displacement is needed.
2087 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
2088 false, EHRegOffset)
2089 .addReg(X86::ESP);
2090 }
2091 }
2092
2093 while (MBBI != MBB.end() && MBBI->getFlag(Flag: MachineInstr::FrameSetup)) {
2094 const MachineInstr &FrameInstr = *MBBI;
2095 ++MBBI;
2096
2097 if (NeedsWinCFI) {
2098 int FI;
2099 if (Register Reg = TII.isStoreToStackSlot(MI: FrameInstr, FrameIndex&: FI)) {
2100 if (X86::FR64RegClass.contains(Reg)) {
2101 int Offset;
2102 Register IgnoredFrameReg;
2103 if (IsWin64Prologue && IsFunclet)
2104 Offset = getWin64EHFrameIndexRef(MF, FI, SPReg&: IgnoredFrameReg);
2105 else
2106 Offset =
2107 getFrameIndexReference(MF, FI, FrameReg&: IgnoredFrameReg).getFixed() +
2108 SEHFrameOffset;
2109
2110 HasWinCFI = true;
2111 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
2112 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
2113 .addImm(Reg)
2114 .addImm(Offset)
2115 .setMIFlag(MachineInstr::FrameSetup);
2116 }
2117 }
2118 }
2119 }
2120
2121 if (NeedsWinCFI && HasWinCFI)
2122 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
2123 .setMIFlag(MachineInstr::FrameSetup);
2124
2125 if (FnHasClrFunclet && !IsFunclet) {
2126 // Save the so-called Initial-SP (i.e. the value of the stack pointer
2127 // immediately after the prolog) into the PSPSlot so that funclets
2128 // and the GC can recover it.
2129 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
2130 auto PSPInfo = MachinePointerInfo::getFixedStack(
2131 MF, FI: MF.getWinEHFuncInfo()->PSPSymFrameIdx);
2132 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
2133 PSPSlotOffset)
2134 .addReg(StackPtr)
2135 .addMemOperand(MF.getMachineMemOperand(
2136 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2137 SlotSize, Align(SlotSize)));
2138 }
2139
2140 // Realign stack after we spilled callee-saved registers (so that we'll be
2141 // able to calculate their offsets from the frame pointer).
2142 // Win64 requires aligning the stack after the prologue.
2143 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
2144 assert(HasFP && "There should be a frame pointer if stack is realigned.");
2145 BuildStackAlignAND(MBB, MBBI, DL, Reg: SPOrEstablisher, MaxAlign);
2146 }
2147
2148 // We already dealt with stack realignment and funclets above.
2149 if (IsFunclet && STI.is32Bit())
2150 return;
2151
2152 // If we need a base pointer, set it up here. It's whatever the value
2153 // of the stack pointer is at this point. Any variable size objects
2154 // will be allocated after this, so we can still use the base pointer
2155 // to reference locals.
2156 if (TRI->hasBasePointer(MF)) {
2157 // Update the base pointer with the current stack pointer.
2158 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
2159 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
2160 .addReg(SPOrEstablisher)
2161 .setMIFlag(MachineInstr::FrameSetup);
2162 if (X86FI->getRestoreBasePointer()) {
2163 // Stash value of base pointer. Saving RSP instead of EBP shortens
2164 // dependence chain. Used by SjLj EH.
2165 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2166 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true,
2167 X86FI->getRestoreBasePointerOffset())
2168 .addReg(SPOrEstablisher)
2169 .setMIFlag(MachineInstr::FrameSetup);
2170 }
2171
2172 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
2173 // Stash the value of the frame pointer relative to the base pointer for
2174 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
2175 // it recovers the frame pointer from the base pointer rather than the
2176 // other way around.
2177 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2178 Register UsedReg;
2179 int Offset =
2180 getFrameIndexReference(MF, FI: X86FI->getSEHFramePtrSaveIndex(), FrameReg&: UsedReg)
2181 .getFixed();
2182 assert(UsedReg == BasePtr);
2183 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
2184 .addReg(FramePtr)
2185 .setMIFlag(MachineInstr::FrameSetup);
2186 }
2187 }
2188 if (ArgBaseReg.isValid()) {
2189 // Save argument base pointer.
2190 auto *MI = X86FI->getStackPtrSaveMI();
2191 int FI = MI->getOperand(i: 1).getIndex();
2192 unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
2193 // movl %basereg, offset(%ebp)
2194 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI)
2195 .addReg(ArgBaseReg)
2196 .setMIFlag(MachineInstr::FrameSetup);
2197 }
2198
2199 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
2200 // Mark end of stack pointer adjustment.
2201 if (!HasFP && NumBytes) {
2202 // Define the current CFA rule to use the provided offset.
2203 assert(StackSize);
2204 BuildCFI(
2205 MBB, MBBI, DL,
2206 CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: StackSize - stackGrowth),
2207 Flag: MachineInstr::FrameSetup);
2208 }
2209
2210 // Emit DWARF info specifying the offsets of the callee-saved registers.
2211 emitCalleeSavedFrameMoves(MBB, MBBI, DL, IsPrologue: true);
2212 }
2213
2214 // X86 Interrupt handling function cannot assume anything about the direction
2215 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
2216 // in each prologue of interrupt handler function.
2217 //
2218 // Create "cld" instruction only in these cases:
2219 // 1. The interrupt handling function uses any of the "rep" instructions.
2220 // 2. Interrupt handling function calls another function.
2221 // 3. If there are any inline asm blocks, as we do not know what they do
2222 //
2223 // TODO: We should also emit cld if we detect the use of std, but as of now,
2224 // the compiler does not even emit that instruction or even define it, so in
2225 // practice, this would only happen with inline asm, which we cover anyway.
2226 if (Fn.getCallingConv() == CallingConv::X86_INTR) {
2227 bool NeedsCLD = false;
2228
2229 for (const MachineBasicBlock &B : MF) {
2230 for (const MachineInstr &MI : B) {
2231 if (MI.isCall()) {
2232 NeedsCLD = true;
2233 break;
2234 }
2235
2236 if (isOpcodeRep(Opcode: MI.getOpcode())) {
2237 NeedsCLD = true;
2238 break;
2239 }
2240
2241 if (MI.isInlineAsm()) {
2242 // TODO: Parse asm for rep instructions or call sites?
2243 // For now, let's play it safe and emit a cld instruction
2244 // just in case.
2245 NeedsCLD = true;
2246 break;
2247 }
2248 }
2249 }
2250
2251 if (NeedsCLD) {
2252 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
2253 .setMIFlag(MachineInstr::FrameSetup);
2254 }
2255 }
2256
2257 // At this point we know if the function has WinCFI or not.
2258 MF.setHasWinCFI(HasWinCFI);
2259}
2260
2261bool X86FrameLowering::canUseLEAForSPInEpilogue(
2262 const MachineFunction &MF) const {
2263 // We can't use LEA instructions for adjusting the stack pointer if we don't
2264 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
2265 // to deallocate the stack.
2266 // This means that we can use LEA for SP in two situations:
2267 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
2268 // 2. We *have* a frame pointer which means we are permitted to use LEA.
2269 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
2270}
2271
2272static bool isFuncletReturnInstr(MachineInstr &MI) {
2273 switch (MI.getOpcode()) {
2274 case X86::CATCHRET:
2275 case X86::CLEANUPRET:
2276 return true;
2277 default:
2278 return false;
2279 }
2280 llvm_unreachable("impossible");
2281}
2282
2283// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
2284// stack. It holds a pointer to the bottom of the root function frame. The
2285// establisher frame pointer passed to a nested funclet may point to the
2286// (mostly empty) frame of its parent funclet, but it will need to find
2287// the frame of the root function to access locals. To facilitate this,
2288// every funclet copies the pointer to the bottom of the root function
2289// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
2290// same offset for the PSPSym in the root function frame that's used in the
2291// funclets' frames allows each funclet to dynamically accept any ancestor
2292// frame as its establisher argument (the runtime doesn't guarantee the
2293// immediate parent for some reason lost to history), and also allows the GC,
2294// which uses the PSPSym for some bookkeeping, to find it in any funclet's
2295// frame with only a single offset reported for the entire method.
2296unsigned
2297X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2298 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2299 Register SPReg;
2300 int Offset = getFrameIndexReferencePreferSP(MF, FI: Info.PSPSymFrameIdx, FrameReg&: SPReg,
2301 /*IgnoreSPUpdates*/ true)
2302 .getFixed();
2303 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
2304 return static_cast<unsigned>(Offset);
2305}
2306
2307unsigned
2308X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2309 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2310 // This is the size of the pushed CSRs.
2311 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2312 // This is the size of callee saved XMMs.
2313 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2314 unsigned XMMSize =
2315 WinEHXMMSlotInfo.size() * TRI->getSpillSize(X86::VR128RegClass);
2316 // This is the amount of stack a funclet needs to allocate.
2317 unsigned UsedSize;
2318 EHPersonality Personality =
2319 classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn());
2320 if (Personality == EHPersonality::CoreCLR) {
2321 // CLR funclets need to hold enough space to include the PSPSym, at the
2322 // same offset from the stack pointer (immediately after the prolog) as it
2323 // resides at in the main function.
2324 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2325 } else {
2326 // Other funclets just need enough stack for outgoing call arguments.
2327 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2328 }
2329 // RBP is not included in the callee saved register block. After pushing RBP,
2330 // everything is 16 byte aligned. Everything we allocate before an outgoing
2331 // call must also be 16 byte aligned.
2332 unsigned FrameSizeMinusRBP = alignTo(Size: CSSize + UsedSize, A: getStackAlign());
2333 // Subtract out the size of the callee saved registers. This is how much stack
2334 // each funclet will allocate.
2335 return FrameSizeMinusRBP + XMMSize - CSSize;
2336}
2337
2338static bool isTailCallOpcode(unsigned Opc) {
2339 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2340 Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 ||
2341 Opc == X86::TCRETURNdi64 || Opc == X86::TCRETURNmi64;
2342}
2343
2344void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2345 MachineBasicBlock &MBB) const {
2346 const MachineFrameInfo &MFI = MF.getFrameInfo();
2347 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2348 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2349 MachineBasicBlock::iterator MBBI = Terminator;
2350 DebugLoc DL;
2351 if (MBBI != MBB.end())
2352 DL = MBBI->getDebugLoc();
2353 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2354 const bool Is64BitILP32 = STI.isTarget64BitILP32();
2355 Register FramePtr = TRI->getFrameRegister(MF);
2356 Register MachineFramePtr =
2357 Is64BitILP32 ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) : FramePtr;
2358
2359 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2360 bool NeedsWin64CFI =
2361 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2362 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(MI&: *MBBI);
2363
2364 // Get the number of bytes to allocate from the FrameInfo.
2365 uint64_t StackSize = MFI.getStackSize();
2366 uint64_t MaxAlign = calculateMaxStackAlign(MF);
2367 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2368 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
2369 bool HasFP = hasFP(MF);
2370 uint64_t NumBytes = 0;
2371
2372 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2373 !MF.getTarget().getTargetTriple().isOSWindows()) &&
2374 MF.needsFrameMoves();
2375
2376 Register ArgBaseReg;
2377 if (auto *MI = X86FI->getStackPtrSaveMI()) {
2378 unsigned Opc = X86::LEA32r;
2379 Register StackReg = X86::ESP;
2380 ArgBaseReg = MI->getOperand(i: 0).getReg();
2381 if (STI.is64Bit()) {
2382 Opc = X86::LEA64r;
2383 StackReg = X86::RSP;
2384 }
2385 // leal -4(%basereg), %esp
2386 // .cfi_def_cfa %esp, 4
2387 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg)
2388 .addUse(ArgBaseReg)
2389 .addImm(1)
2390 .addUse(X86::NoRegister)
2391 .addImm(-(int64_t)SlotSize)
2392 .addUse(X86::NoRegister)
2393 .setMIFlag(MachineInstr::FrameDestroy);
2394 if (NeedsDwarfCFI) {
2395 unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true);
2396 BuildCFI(MBB, MBBI, DL,
2397 CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: SlotSize),
2398 Flag: MachineInstr::FrameDestroy);
2399 --MBBI;
2400 }
2401 --MBBI;
2402 }
2403
2404 if (IsFunclet) {
2405 assert(HasFP && "EH funclets without FP not yet implemented");
2406 NumBytes = getWinEHFuncletFrameSize(MF);
2407 } else if (HasFP) {
2408 // Calculate required stack adjustment.
2409 uint64_t FrameSize = StackSize - SlotSize;
2410 NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
2411
2412 // Callee-saved registers were pushed on stack before the stack was
2413 // realigned.
2414 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2415 NumBytes = alignTo(Value: FrameSize, Align: MaxAlign);
2416 } else {
2417 NumBytes = StackSize - CSSize - TailCallArgReserveSize;
2418 }
2419 uint64_t SEHStackAllocAmt = NumBytes;
2420
2421 // AfterPop is the position to insert .cfi_restore.
2422 MachineBasicBlock::iterator AfterPop = MBBI;
2423 if (HasFP) {
2424 if (X86FI->hasSwiftAsyncContext()) {
2425 // Discard the context.
2426 int Offset = 16 + mergeSPUpdates(MBB, MBBI, doMergeWithPrevious: true);
2427 emitSPUpdate(MBB, MBBI, DL, NumBytes: Offset, /*InEpilogue*/ true);
2428 }
2429 // Pop EBP.
2430 BuildMI(MBB, MBBI, DL,
2431 TII.get(getPOPOpcode(ST: MF.getSubtarget<X86Subtarget>())),
2432 MachineFramePtr)
2433 .setMIFlag(MachineInstr::FrameDestroy);
2434
2435 // We need to reset FP to its untagged state on return. Bit 60 is currently
2436 // used to show the presence of an extended frame.
2437 if (X86FI->hasSwiftAsyncContext()) {
2438 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), MachineFramePtr)
2439 .addUse(MachineFramePtr)
2440 .addImm(60)
2441 .setMIFlag(MachineInstr::FrameDestroy);
2442 }
2443
2444 if (NeedsDwarfCFI) {
2445 if (!ArgBaseReg.isValid()) {
2446 unsigned DwarfStackPtr =
2447 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2448 BuildCFI(MBB, MBBI, DL,
2449 CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: SlotSize),
2450 Flag: MachineInstr::FrameDestroy);
2451 }
2452 if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2453 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2454 BuildCFI(MBB, MBBI: AfterPop, DL,
2455 CFIInst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfFramePtr),
2456 Flag: MachineInstr::FrameDestroy);
2457 --MBBI;
2458 --AfterPop;
2459 }
2460 --MBBI;
2461 }
2462 }
2463
2464 MachineBasicBlock::iterator FirstCSPop = MBBI;
2465 // Skip the callee-saved pop instructions.
2466 while (MBBI != MBB.begin()) {
2467 MachineBasicBlock::iterator PI = std::prev(x: MBBI);
2468 unsigned Opc = PI->getOpcode();
2469
2470 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2471 if (!PI->getFlag(MachineInstr::FrameDestroy) ||
2472 (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::BTR64ri8 &&
2473 Opc != X86::ADD64ri32 && Opc != X86::POPP64r && Opc != X86::POP2 &&
2474 Opc != X86::POP2P && Opc != X86::LEA64r))
2475 break;
2476 FirstCSPop = PI;
2477 }
2478
2479 --MBBI;
2480 }
2481 if (ArgBaseReg.isValid()) {
2482 // Restore argument base pointer.
2483 auto *MI = X86FI->getStackPtrSaveMI();
2484 int FI = MI->getOperand(i: 1).getIndex();
2485 unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm;
2486 // movl offset(%ebp), %basereg
2487 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI)
2488 .setMIFlag(MachineInstr::FrameDestroy);
2489 }
2490 MBBI = FirstCSPop;
2491
2492 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2493 emitCatchRetReturnValue(MBB, MBBI: FirstCSPop, CatchRet: &*Terminator);
2494
2495 if (MBBI != MBB.end())
2496 DL = MBBI->getDebugLoc();
2497 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2498 // instruction, merge the two instructions.
2499 if (NumBytes || MFI.hasVarSizedObjects())
2500 NumBytes += mergeSPUpdates(MBB, MBBI, doMergeWithPrevious: true);
2501
2502 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2503 // slot before popping them off! Same applies for the case, when stack was
2504 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2505 // will not do realignment or dynamic stack allocation.
2506 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2507 !IsFunclet) {
2508 if (TRI->hasStackRealignment(MF))
2509 MBBI = FirstCSPop;
2510 unsigned SEHFrameOffset = calculateSetFPREG(SPAdjust: SEHStackAllocAmt);
2511 uint64_t LEAAmount =
2512 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2513
2514 if (X86FI->hasSwiftAsyncContext())
2515 LEAAmount -= 16;
2516
2517 // There are only two legal forms of epilogue:
2518 // - add SEHAllocationSize, %rsp
2519 // - lea SEHAllocationSize(%FramePtr), %rsp
2520 //
2521 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2522 // However, we may use this sequence if we have a frame pointer because the
2523 // effects of the prologue can safely be undone.
2524 if (LEAAmount != 0) {
2525 unsigned Opc = getLEArOpcode(IsLP64: Uses64BitFramePtr);
2526 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr,
2527 false, LEAAmount);
2528 --MBBI;
2529 } else {
2530 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2531 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr).addReg(FramePtr);
2532 --MBBI;
2533 }
2534 } else if (NumBytes) {
2535 // Adjust stack pointer back: ESP += numbytes.
2536 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2537 if (!HasFP && NeedsDwarfCFI) {
2538 // Define the current CFA rule to use the provided offset.
2539 BuildCFI(MBB, MBBI, DL,
2540 CFIInst: MCCFIInstruction::cfiDefCfaOffset(
2541 L: nullptr, Offset: CSSize + TailCallArgReserveSize + SlotSize),
2542 Flag: MachineInstr::FrameDestroy);
2543 }
2544 --MBBI;
2545 }
2546
2547 // Windows unwinder will not invoke function's exception handler if IP is
2548 // either in prologue or in epilogue. This behavior causes a problem when a
2549 // call immediately precedes an epilogue, because the return address points
2550 // into the epilogue. To cope with that, we insert an epilogue marker here,
2551 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2552 // final emitted code.
2553 if (NeedsWin64CFI && MF.hasWinCFI())
2554 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2555
2556 if (!HasFP && NeedsDwarfCFI) {
2557 MBBI = FirstCSPop;
2558 int64_t Offset = -CSSize - SlotSize;
2559 // Mark callee-saved pop instruction.
2560 // Define the current CFA rule to use the provided offset.
2561 while (MBBI != MBB.end()) {
2562 MachineBasicBlock::iterator PI = MBBI;
2563 unsigned Opc = PI->getOpcode();
2564 ++MBBI;
2565 if (Opc == X86::POP32r || Opc == X86::POP64r || Opc == X86::POPP64r ||
2566 Opc == X86::POP2 || Opc == X86::POP2P) {
2567 Offset += SlotSize;
2568 // Compared to pop, pop2 introduces more stack offset (one more
2569 // register).
2570 if (Opc == X86::POP2 || Opc == X86::POP2P)
2571 Offset += SlotSize;
2572 BuildCFI(MBB, MBBI, DL,
2573 CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: -Offset),
2574 Flag: MachineInstr::FrameDestroy);
2575 }
2576 }
2577 }
2578
2579 // Emit DWARF info specifying the restores of the callee-saved registers.
2580 // For epilogue with return inside or being other block without successor,
2581 // no need to generate .cfi_restore for callee-saved registers.
2582 if (NeedsDwarfCFI && !MBB.succ_empty())
2583 emitCalleeSavedFrameMoves(MBB, MBBI: AfterPop, DL, IsPrologue: false);
2584
2585 if (Terminator == MBB.end() || !isTailCallOpcode(Opc: Terminator->getOpcode())) {
2586 // Add the return addr area delta back since we are not tail calling.
2587 int Offset = -1 * X86FI->getTCReturnAddrDelta();
2588 assert(Offset >= 0 && "TCDelta should never be positive");
2589 if (Offset) {
2590 // Check for possible merge with preceding ADD instruction.
2591 Offset += mergeSPUpdates(MBB, MBBI&: Terminator, doMergeWithPrevious: true);
2592 emitSPUpdate(MBB, MBBI&: Terminator, DL, NumBytes: Offset, /*InEpilogue=*/true);
2593 }
2594 }
2595
2596 // Emit tilerelease for AMX kernel.
2597 if (X86FI->hasVirtualTileReg())
2598 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2599}
2600
2601StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2602 int FI,
2603 Register &FrameReg) const {
2604 const MachineFrameInfo &MFI = MF.getFrameInfo();
2605
2606 bool IsFixed = MFI.isFixedObjectIndex(ObjectIdx: FI);
2607 // We can't calculate offset from frame pointer if the stack is realigned,
2608 // so enforce usage of stack/base pointer. The base pointer is used when we
2609 // have dynamic allocas in addition to dynamic realignment.
2610 if (TRI->hasBasePointer(MF))
2611 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2612 else if (TRI->hasStackRealignment(MF))
2613 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2614 else
2615 FrameReg = TRI->getFrameRegister(MF);
2616
2617 // Offset will hold the offset from the stack pointer at function entry to the
2618 // object.
2619 // We need to factor in additional offsets applied during the prologue to the
2620 // frame, base, and stack pointer depending on which is used.
2621 int Offset = MFI.getObjectOffset(ObjectIdx: FI) - getOffsetOfLocalArea();
2622 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2623 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2624 uint64_t StackSize = MFI.getStackSize();
2625 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2626 int64_t FPDelta = 0;
2627
2628 // In an x86 interrupt, remove the offset we added to account for the return
2629 // address from any stack object allocated in the caller's frame. Interrupts
2630 // do not have a standard return address. Fixed objects in the current frame,
2631 // such as SSE register spills, should not get this treatment.
2632 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2633 Offset >= 0) {
2634 Offset += getOffsetOfLocalArea();
2635 }
2636
2637 if (IsWin64Prologue) {
2638 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2639
2640 // Calculate required stack adjustment.
2641 uint64_t FrameSize = StackSize - SlotSize;
2642 // If required, include space for extra hidden slot for stashing base
2643 // pointer.
2644 if (X86FI->getRestoreBasePointer())
2645 FrameSize += SlotSize;
2646 uint64_t NumBytes = FrameSize - CSSize;
2647
2648 uint64_t SEHFrameOffset = calculateSetFPREG(SPAdjust: NumBytes);
2649 if (FI && FI == X86FI->getFAIndex())
2650 return StackOffset::getFixed(Fixed: -SEHFrameOffset);
2651
2652 // FPDelta is the offset from the "traditional" FP location of the old base
2653 // pointer followed by return address and the location required by the
2654 // restricted Win64 prologue.
2655 // Add FPDelta to all offsets below that go through the frame pointer.
2656 FPDelta = FrameSize - SEHFrameOffset;
2657 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2658 "FPDelta isn't aligned per the Win64 ABI!");
2659 }
2660
2661 if (FrameReg == TRI->getFramePtr()) {
2662 // Skip saved EBP/RBP
2663 Offset += SlotSize;
2664
2665 // Account for restricted Windows prologue.
2666 Offset += FPDelta;
2667
2668 // Skip the RETADDR move area
2669 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2670 if (TailCallReturnAddrDelta < 0)
2671 Offset -= TailCallReturnAddrDelta;
2672
2673 return StackOffset::getFixed(Fixed: Offset);
2674 }
2675
2676 // FrameReg is either the stack pointer or a base pointer. But the base is
2677 // located at the end of the statically known StackSize so the distinction
2678 // doesn't really matter.
2679 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
2680 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2681 return StackOffset::getFixed(Fixed: Offset + StackSize);
2682}
2683
2684int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2685 Register &FrameReg) const {
2686 const MachineFrameInfo &MFI = MF.getFrameInfo();
2687 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2688 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2689 const auto it = WinEHXMMSlotInfo.find(Val: FI);
2690
2691 if (it == WinEHXMMSlotInfo.end())
2692 return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2693
2694 FrameReg = TRI->getStackRegister();
2695 return alignDown(Value: MFI.getMaxCallFrameSize(), Align: getStackAlign().value()) +
2696 it->second;
2697}
2698
2699StackOffset
2700X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2701 Register &FrameReg,
2702 int Adjustment) const {
2703 const MachineFrameInfo &MFI = MF.getFrameInfo();
2704 FrameReg = TRI->getStackRegister();
2705 return StackOffset::getFixed(Fixed: MFI.getObjectOffset(ObjectIdx: FI) -
2706 getOffsetOfLocalArea() + Adjustment);
2707}
2708
2709StackOffset
2710X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2711 int FI, Register &FrameReg,
2712 bool IgnoreSPUpdates) const {
2713
2714 const MachineFrameInfo &MFI = MF.getFrameInfo();
2715 // Does not include any dynamic realign.
2716 const uint64_t StackSize = MFI.getStackSize();
2717 // LLVM arranges the stack as follows:
2718 // ...
2719 // ARG2
2720 // ARG1
2721 // RETADDR
2722 // PUSH RBP <-- RBP points here
2723 // PUSH CSRs
2724 // ~~~~~~~ <-- possible stack realignment (non-win64)
2725 // ...
2726 // STACK OBJECTS
2727 // ... <-- RSP after prologue points here
2728 // ~~~~~~~ <-- possible stack realignment (win64)
2729 //
2730 // if (hasVarSizedObjects()):
2731 // ... <-- "base pointer" (ESI/RBX) points here
2732 // DYNAMIC ALLOCAS
2733 // ... <-- RSP points here
2734 //
2735 // Case 1: In the simple case of no stack realignment and no dynamic
2736 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2737 // with fixed offsets from RSP.
2738 //
2739 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2740 // stack objects are addressed with RBP and regular stack objects with RSP.
2741 //
2742 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2743 // to address stack arguments for outgoing calls and nothing else. The "base
2744 // pointer" points to local variables, and RBP points to fixed objects.
2745 //
2746 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2747 // answer we give is relative to the SP after the prologue, and not the
2748 // SP in the middle of the function.
2749
2750 if (MFI.isFixedObjectIndex(ObjectIdx: FI) && TRI->hasStackRealignment(MF) &&
2751 !STI.isTargetWin64())
2752 return getFrameIndexReference(MF, FI, FrameReg);
2753
2754 // If !hasReservedCallFrame the function might have SP adjustement in the
2755 // body. So, even though the offset is statically known, it depends on where
2756 // we are in the function.
2757 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2758 return getFrameIndexReference(MF, FI, FrameReg);
2759
2760 // We don't handle tail calls, and shouldn't be seeing them either.
2761 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2762 "we don't handle this case!");
2763
2764 // This is how the math works out:
2765 //
2766 // %rsp grows (i.e. gets lower) left to right. Each box below is
2767 // one word (eight bytes). Obj0 is the stack slot we're trying to
2768 // get to.
2769 //
2770 // ----------------------------------
2771 // | BP | Obj0 | Obj1 | ... | ObjN |
2772 // ----------------------------------
2773 // ^ ^ ^ ^
2774 // A B C E
2775 //
2776 // A is the incoming stack pointer.
2777 // (B - A) is the local area offset (-8 for x86-64) [1]
2778 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2779 //
2780 // |(E - B)| is the StackSize (absolute value, positive). For a
2781 // stack that grown down, this works out to be (B - E). [3]
2782 //
2783 // E is also the value of %rsp after stack has been set up, and we
2784 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2785 // (C - E) == (C - A) - (B - A) + (B - E)
2786 // { Using [1], [2] and [3] above }
2787 // == getObjectOffset - LocalAreaOffset + StackSize
2788
2789 return getFrameIndexReferenceSP(MF, FI, FrameReg, Adjustment: StackSize);
2790}
2791
2792bool X86FrameLowering::assignCalleeSavedSpillSlots(
2793 MachineFunction &MF, const TargetRegisterInfo *TRI,
2794 std::vector<CalleeSavedInfo> &CSI) const {
2795 MachineFrameInfo &MFI = MF.getFrameInfo();
2796 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2797
2798 unsigned CalleeSavedFrameSize = 0;
2799 unsigned XMMCalleeSavedFrameSize = 0;
2800 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2801 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2802
2803 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2804
2805 if (TailCallReturnAddrDelta < 0) {
2806 // create RETURNADDR area
2807 // arg
2808 // arg
2809 // RETADDR
2810 // { ...
2811 // RETADDR area
2812 // ...
2813 // }
2814 // [EBP]
2815 MFI.CreateFixedObject(Size: -TailCallReturnAddrDelta,
2816 SPOffset: TailCallReturnAddrDelta - SlotSize, IsImmutable: true);
2817 }
2818
2819 // Spill the BasePtr if it's used.
2820 if (this->TRI->hasBasePointer(MF)) {
2821 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2822 if (MF.hasEHFunclets()) {
2823 int FI = MFI.CreateSpillStackObject(Size: SlotSize, Alignment: Align(SlotSize));
2824 X86FI->setHasSEHFramePtrSave(true);
2825 X86FI->setSEHFramePtrSaveIndex(FI);
2826 }
2827 }
2828
2829 if (hasFP(MF)) {
2830 // emitPrologue always spills frame register the first thing.
2831 SpillSlotOffset -= SlotSize;
2832 MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset);
2833
2834 // The async context lives directly before the frame pointer, and we
2835 // allocate a second slot to preserve stack alignment.
2836 if (X86FI->hasSwiftAsyncContext()) {
2837 SpillSlotOffset -= SlotSize;
2838 MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset);
2839 SpillSlotOffset -= SlotSize;
2840 }
2841
2842 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2843 // the frame register, we can delete it from CSI list and not have to worry
2844 // about avoiding it later.
2845 Register FPReg = TRI->getFrameRegister(MF);
2846 for (unsigned i = 0; i < CSI.size(); ++i) {
2847 if (TRI->regsOverlap(RegA: CSI[i].getReg(), RegB: FPReg)) {
2848 CSI.erase(position: CSI.begin() + i);
2849 break;
2850 }
2851 }
2852 }
2853
2854 // Strategy:
2855 // 1. Use push2 when
2856 // a) number of CSR > 1 if no need padding
2857 // b) number of CSR > 2 if need padding
2858 // 2. When the number of CSR push is odd
2859 // a. Start to use push2 from the 1st push if stack is 16B aligned.
2860 // b. Start to use push2 from the 2nd push if stack is not 16B aligned.
2861 // 3. When the number of CSR push is even, start to use push2 from the 1st
2862 // push and make the stack 16B aligned before the push
2863 unsigned NumRegsForPush2 = 0;
2864 if (STI.hasPush2Pop2()) {
2865 unsigned NumCSGPR = llvm::count_if(Range&: CSI, P: [](const CalleeSavedInfo &I) {
2866 return X86::GR64RegClass.contains(I.getReg());
2867 });
2868 bool NeedPadding = (SpillSlotOffset % 16 != 0) && (NumCSGPR % 2 == 0);
2869 bool UsePush2Pop2 = NeedPadding ? NumCSGPR > 2 : NumCSGPR > 1;
2870 X86FI->setPadForPush2Pop2(NeedPadding && UsePush2Pop2);
2871 NumRegsForPush2 = UsePush2Pop2 ? alignDown(Value: NumCSGPR, Align: 2) : 0;
2872 if (X86FI->padForPush2Pop2()) {
2873 SpillSlotOffset -= SlotSize;
2874 MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset);
2875 }
2876 }
2877
2878 // Assign slots for GPRs. It increases frame size.
2879 for (CalleeSavedInfo &I : llvm::reverse(C&: CSI)) {
2880 Register Reg = I.getReg();
2881
2882 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2883 continue;
2884
2885 // A CSR is a candidate for push2/pop2 when it's slot offset is 16B aligned
2886 // or only an odd number of registers in the candidates.
2887 if (X86FI->getNumCandidatesForPush2Pop2() < NumRegsForPush2 &&
2888 (SpillSlotOffset % 16 == 0 ||
2889 X86FI->getNumCandidatesForPush2Pop2() % 2))
2890 X86FI->addCandidateForPush2Pop2(Reg);
2891
2892 SpillSlotOffset -= SlotSize;
2893 CalleeSavedFrameSize += SlotSize;
2894
2895 int SlotIndex = MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset);
2896 I.setFrameIdx(SlotIndex);
2897 }
2898
2899 // Adjust the offset of spill slot as we know the accurate callee saved frame
2900 // size.
2901 if (X86FI->getRestoreBasePointer()) {
2902 SpillSlotOffset -= SlotSize;
2903 CalleeSavedFrameSize += SlotSize;
2904
2905 MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset);
2906 // TODO: saving the slot index is better?
2907 X86FI->setRestoreBasePointer(CalleeSavedFrameSize);
2908 }
2909 assert(X86FI->getNumCandidatesForPush2Pop2() % 2 == 0 &&
2910 "Expect even candidates for push2/pop2");
2911 if (X86FI->getNumCandidatesForPush2Pop2())
2912 ++NumFunctionUsingPush2Pop2;
2913 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2914 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2915
2916 // Assign slots for XMMs.
2917 for (CalleeSavedInfo &I : llvm::reverse(C&: CSI)) {
2918 Register Reg = I.getReg();
2919 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2920 continue;
2921
2922 // If this is k-register make sure we lookup via the largest legal type.
2923 MVT VT = MVT::Other;
2924 if (X86::VK16RegClass.contains(Reg))
2925 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2926
2927 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2928 unsigned Size = TRI->getSpillSize(RC: *RC);
2929 Align Alignment = TRI->getSpillAlign(RC: *RC);
2930 // ensure alignment
2931 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2932 SpillSlotOffset = -alignTo(Size: -SpillSlotOffset, A: Alignment);
2933
2934 // spill into slot
2935 SpillSlotOffset -= Size;
2936 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SPOffset: SpillSlotOffset);
2937 I.setFrameIdx(SlotIndex);
2938 MFI.ensureMaxAlignment(Alignment);
2939
2940 // Save the start offset and size of XMM in stack frame for funclets.
2941 if (X86::VR128RegClass.contains(Reg)) {
2942 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2943 XMMCalleeSavedFrameSize += Size;
2944 }
2945 }
2946
2947 return true;
2948}
2949
2950bool X86FrameLowering::spillCalleeSavedRegisters(
2951 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2952 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2953 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2954
2955 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2956 // for us, and there are no XMM CSRs on Win32.
2957 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2958 return true;
2959
2960 // Push GPRs. It increases frame size.
2961 const MachineFunction &MF = *MBB.getParent();
2962 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2963 if (X86FI->padForPush2Pop2())
2964 emitSPUpdate(MBB, MBBI&: MI, DL, NumBytes: -(int64_t)SlotSize, /*InEpilogue=*/false);
2965
2966 // Update LiveIn of the basic block and decide whether we can add a kill flag
2967 // to the use.
2968 auto UpdateLiveInCheckCanKill = [&](Register Reg) {
2969 const MachineRegisterInfo &MRI = MF.getRegInfo();
2970 // Do not set a kill flag on values that are also marked as live-in. This
2971 // happens with the @llvm-returnaddress intrinsic and with arguments
2972 // passed in callee saved registers.
2973 // Omitting the kill flags is conservatively correct even if the live-in
2974 // is not used after all.
2975 if (MRI.isLiveIn(Reg))
2976 return false;
2977 MBB.addLiveIn(PhysReg: Reg);
2978 // Check if any subregister is live-in
2979 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg)
2980 if (MRI.isLiveIn(Reg: *AReg))
2981 return false;
2982 return true;
2983 };
2984 auto UpdateLiveInGetKillRegState = [&](Register Reg) {
2985 return getKillRegState(B: UpdateLiveInCheckCanKill(Reg));
2986 };
2987
2988 for (auto RI = CSI.rbegin(), RE = CSI.rend(); RI != RE; ++RI) {
2989 Register Reg = RI->getReg();
2990 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2991 continue;
2992
2993 if (X86FI->isCandidateForPush2Pop2(Reg)) {
2994 Register Reg2 = (++RI)->getReg();
2995 BuildMI(MBB, MI, DL, TII.get(getPUSH2Opcode(ST: STI)))
2996 .addReg(Reg, UpdateLiveInGetKillRegState(Reg))
2997 .addReg(Reg2, UpdateLiveInGetKillRegState(Reg2))
2998 .setMIFlag(MachineInstr::FrameSetup);
2999 } else {
3000 BuildMI(MBB, MI, DL, TII.get(getPUSHOpcode(ST: STI)))
3001 .addReg(Reg, UpdateLiveInGetKillRegState(Reg))
3002 .setMIFlag(MachineInstr::FrameSetup);
3003 }
3004 }
3005
3006 if (X86FI->getRestoreBasePointer()) {
3007 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
3008 Register BaseReg = this->TRI->getBaseRegister();
3009 BuildMI(MBB, MI, DL, TII.get(Opc))
3010 .addReg(BaseReg, getKillRegState(B: true))
3011 .setMIFlag(MachineInstr::FrameSetup);
3012 }
3013
3014 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
3015 // It can be done by spilling XMMs to stack frame.
3016 for (const CalleeSavedInfo &I : llvm::reverse(C&: CSI)) {
3017 Register Reg = I.getReg();
3018 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
3019 continue;
3020
3021 // If this is k-register make sure we lookup via the largest legal type.
3022 MVT VT = MVT::Other;
3023 if (X86::VK16RegClass.contains(Reg))
3024 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
3025
3026 // Add the callee-saved register as live-in. It's killed at the spill.
3027 MBB.addLiveIn(PhysReg: Reg);
3028 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
3029
3030 TII.storeRegToStackSlot(MBB, MI, SrcReg: Reg, isKill: true, FrameIndex: I.getFrameIdx(), RC, TRI,
3031 VReg: Register());
3032 --MI;
3033 MI->setFlag(MachineInstr::FrameSetup);
3034 ++MI;
3035 }
3036
3037 return true;
3038}
3039
3040void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
3041 MachineBasicBlock::iterator MBBI,
3042 MachineInstr *CatchRet) const {
3043 // SEH shouldn't use catchret.
3044 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
3045 MBB.getParent()->getFunction().getPersonalityFn())) &&
3046 "SEH should not use CATCHRET");
3047 const DebugLoc &DL = CatchRet->getDebugLoc();
3048 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(i: 0).getMBB();
3049
3050 // Fill EAX/RAX with the address of the target block.
3051 if (STI.is64Bit()) {
3052 // LEA64r CatchRetTarget(%rip), %rax
3053 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
3054 .addReg(X86::RIP)
3055 .addImm(0)
3056 .addReg(0)
3057 .addMBB(CatchRetTarget)
3058 .addReg(0);
3059 } else {
3060 // MOV32ri $CatchRetTarget, %eax
3061 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
3062 .addMBB(CatchRetTarget);
3063 }
3064
3065 // Record that we've taken the address of CatchRetTarget and no longer just
3066 // reference it in a terminator.
3067 CatchRetTarget->setMachineBlockAddressTaken();
3068}
3069
3070bool X86FrameLowering::restoreCalleeSavedRegisters(
3071 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
3072 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3073 if (CSI.empty())
3074 return false;
3075
3076 if (MI != MBB.end() && isFuncletReturnInstr(MI&: *MI) && STI.isOSWindows()) {
3077 // Don't restore CSRs in 32-bit EH funclets. Matches
3078 // spillCalleeSavedRegisters.
3079 if (STI.is32Bit())
3080 return true;
3081 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
3082 // funclets. emitEpilogue transforms these to normal jumps.
3083 if (MI->getOpcode() == X86::CATCHRET) {
3084 const Function &F = MBB.getParent()->getFunction();
3085 bool IsSEH = isAsynchronousEHPersonality(
3086 Pers: classifyEHPersonality(Pers: F.getPersonalityFn()));
3087 if (IsSEH)
3088 return true;
3089 }
3090 }
3091
3092 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
3093
3094 // Reload XMMs from stack frame.
3095 for (const CalleeSavedInfo &I : CSI) {
3096 Register Reg = I.getReg();
3097 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
3098 continue;
3099
3100 // If this is k-register make sure we lookup via the largest legal type.
3101 MVT VT = MVT::Other;
3102 if (X86::VK16RegClass.contains(Reg))
3103 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
3104
3105 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
3106 TII.loadRegFromStackSlot(MBB, MI, DestReg: Reg, FrameIndex: I.getFrameIdx(), RC, TRI,
3107 VReg: Register());
3108 }
3109
3110 // Clear the stack slot for spill base pointer register.
3111 MachineFunction &MF = *MBB.getParent();
3112 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3113 if (X86FI->getRestoreBasePointer()) {
3114 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
3115 Register BaseReg = this->TRI->getBaseRegister();
3116 BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg)
3117 .setMIFlag(MachineInstr::FrameDestroy);
3118 }
3119
3120 // POP GPRs.
3121 for (auto I = CSI.begin(), E = CSI.end(); I != E; ++I) {
3122 Register Reg = I->getReg();
3123 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
3124 continue;
3125
3126 if (X86FI->isCandidateForPush2Pop2(Reg))
3127 BuildMI(MBB, MI, DL, TII.get(getPOP2Opcode(ST: STI)), Reg)
3128 .addReg((++I)->getReg(), RegState::Define)
3129 .setMIFlag(MachineInstr::FrameDestroy);
3130 else
3131 BuildMI(MBB, MI, DL, TII.get(getPOPOpcode(ST: STI)), Reg)
3132 .setMIFlag(MachineInstr::FrameDestroy);
3133 }
3134 if (X86FI->padForPush2Pop2())
3135 emitSPUpdate(MBB, MBBI&: MI, DL, NumBytes: SlotSize, /*InEpilogue=*/true);
3136
3137 return true;
3138}
3139
3140void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
3141 BitVector &SavedRegs,
3142 RegScavenger *RS) const {
3143 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3144
3145 // Spill the BasePtr if it's used.
3146 if (TRI->hasBasePointer(MF)) {
3147 Register BasePtr = TRI->getBaseRegister();
3148 if (STI.isTarget64BitILP32())
3149 BasePtr = getX86SubSuperRegister(Reg: BasePtr, Size: 64);
3150 SavedRegs.set(BasePtr);
3151 }
3152}
3153
3154static bool HasNestArgument(const MachineFunction *MF) {
3155 const Function &F = MF->getFunction();
3156 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3157 I++) {
3158 if (I->hasNestAttr() && !I->use_empty())
3159 return true;
3160 }
3161 return false;
3162}
3163
3164/// GetScratchRegister - Get a temp register for performing work in the
3165/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
3166/// and the properties of the function either one or two registers will be
3167/// needed. Set primary to true for the first register, false for the second.
3168static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64,
3169 const MachineFunction &MF, bool Primary) {
3170 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
3171
3172 // Erlang stuff.
3173 if (CallingConvention == CallingConv::HiPE) {
3174 if (Is64Bit)
3175 return Primary ? X86::R14 : X86::R13;
3176 else
3177 return Primary ? X86::EBX : X86::EDI;
3178 }
3179
3180 if (Is64Bit) {
3181 if (IsLP64)
3182 return Primary ? X86::R11 : X86::R12;
3183 else
3184 return Primary ? X86::R11D : X86::R12D;
3185 }
3186
3187 bool IsNested = HasNestArgument(MF: &MF);
3188
3189 if (CallingConvention == CallingConv::X86_FastCall ||
3190 CallingConvention == CallingConv::Fast ||
3191 CallingConvention == CallingConv::Tail) {
3192 if (IsNested)
3193 report_fatal_error(reason: "Segmented stacks does not support fastcall with "
3194 "nested function.");
3195 return Primary ? X86::EAX : X86::ECX;
3196 }
3197 if (IsNested)
3198 return Primary ? X86::EDX : X86::EAX;
3199 return Primary ? X86::ECX : X86::EAX;
3200}
3201
3202// The stack limit in the TCB is set to this many bytes above the actual stack
3203// limit.
3204static const uint64_t kSplitStackAvailable = 256;
3205
3206void X86FrameLowering::adjustForSegmentedStacks(
3207 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3208 MachineFrameInfo &MFI = MF.getFrameInfo();
3209 uint64_t StackSize;
3210 unsigned TlsReg, TlsOffset;
3211 DebugLoc DL;
3212
3213 // To support shrink-wrapping we would need to insert the new blocks
3214 // at the right place and update the branches to PrologueMBB.
3215 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3216
3217 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true);
3218 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3219 "Scratch register is live-in");
3220
3221 if (MF.getFunction().isVarArg())
3222 report_fatal_error(reason: "Segmented stacks do not support vararg functions.");
3223 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
3224 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
3225 !STI.isTargetDragonFly())
3226 report_fatal_error(reason: "Segmented stacks not supported on this platform.");
3227
3228 // Eventually StackSize will be calculated by a link-time pass; which will
3229 // also decide whether checking code needs to be injected into this particular
3230 // prologue.
3231 StackSize = MFI.getStackSize();
3232
3233 if (!MFI.needsSplitStackProlog())
3234 return;
3235
3236 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
3237 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
3238 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3239 bool IsNested = false;
3240
3241 // We need to know if the function has a nest argument only in 64 bit mode.
3242 if (Is64Bit)
3243 IsNested = HasNestArgument(MF: &MF);
3244
3245 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
3246 // allocMBB needs to be last (terminating) instruction.
3247
3248 for (const auto &LI : PrologueMBB.liveins()) {
3249 allocMBB->addLiveIn(RegMaskPair: LI);
3250 checkMBB->addLiveIn(RegMaskPair: LI);
3251 }
3252
3253 if (IsNested)
3254 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
3255
3256 MF.push_front(MBB: allocMBB);
3257 MF.push_front(MBB: checkMBB);
3258
3259 // When the frame size is less than 256 we just compare the stack
3260 // boundary directly to the value of the stack pointer, per gcc.
3261 bool CompareStackPointer = StackSize < kSplitStackAvailable;
3262
3263 // Read the limit off the current stacklet off the stack_guard location.
3264 if (Is64Bit) {
3265 if (STI.isTargetLinux()) {
3266 TlsReg = X86::FS;
3267 TlsOffset = IsLP64 ? 0x70 : 0x40;
3268 } else if (STI.isTargetDarwin()) {
3269 TlsReg = X86::GS;
3270 TlsOffset = 0x60 + 90 * 8; // See pthread_machdep.h. Steal TLS slot 90.
3271 } else if (STI.isTargetWin64()) {
3272 TlsReg = X86::GS;
3273 TlsOffset = 0x28; // pvArbitrary, reserved for application use
3274 } else if (STI.isTargetFreeBSD()) {
3275 TlsReg = X86::FS;
3276 TlsOffset = 0x18;
3277 } else if (STI.isTargetDragonFly()) {
3278 TlsReg = X86::FS;
3279 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
3280 } else {
3281 report_fatal_error(reason: "Segmented stacks not supported on this platform.");
3282 }
3283
3284 if (CompareStackPointer)
3285 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
3286 else
3287 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r),
3288 ScratchReg)
3289 .addReg(X86::RSP)
3290 .addImm(1)
3291 .addReg(0)
3292 .addImm(-StackSize)
3293 .addReg(0);
3294
3295 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm))
3296 .addReg(ScratchReg)
3297 .addReg(0)
3298 .addImm(1)
3299 .addReg(0)
3300 .addImm(TlsOffset)
3301 .addReg(TlsReg);
3302 } else {
3303 if (STI.isTargetLinux()) {
3304 TlsReg = X86::GS;
3305 TlsOffset = 0x30;
3306 } else if (STI.isTargetDarwin()) {
3307 TlsReg = X86::GS;
3308 TlsOffset = 0x48 + 90 * 4;
3309 } else if (STI.isTargetWin32()) {
3310 TlsReg = X86::FS;
3311 TlsOffset = 0x14; // pvArbitrary, reserved for application use
3312 } else if (STI.isTargetDragonFly()) {
3313 TlsReg = X86::FS;
3314 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
3315 } else if (STI.isTargetFreeBSD()) {
3316 report_fatal_error(reason: "Segmented stacks not supported on FreeBSD i386.");
3317 } else {
3318 report_fatal_error(reason: "Segmented stacks not supported on this platform.");
3319 }
3320
3321 if (CompareStackPointer)
3322 ScratchReg = X86::ESP;
3323 else
3324 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg)
3325 .addReg(X86::ESP)
3326 .addImm(1)
3327 .addReg(0)
3328 .addImm(-StackSize)
3329 .addReg(0);
3330
3331 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
3332 STI.isTargetDragonFly()) {
3333 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3334 .addReg(ScratchReg)
3335 .addReg(0)
3336 .addImm(0)
3337 .addReg(0)
3338 .addImm(TlsOffset)
3339 .addReg(TlsReg);
3340 } else if (STI.isTargetDarwin()) {
3341
3342 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
3343 unsigned ScratchReg2;
3344 bool SaveScratch2;
3345 if (CompareStackPointer) {
3346 // The primary scratch register is available for holding the TLS offset.
3347 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true);
3348 SaveScratch2 = false;
3349 } else {
3350 // Need to use a second register to hold the TLS offset
3351 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: false);
3352
3353 // Unfortunately, with fastcc the second scratch register may hold an
3354 // argument.
3355 SaveScratch2 = MF.getRegInfo().isLiveIn(Reg: ScratchReg2);
3356 }
3357
3358 // If Scratch2 is live-in then it needs to be saved.
3359 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
3360 "Scratch register is live-in and not saved");
3361
3362 if (SaveScratch2)
3363 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
3364 .addReg(ScratchReg2, RegState::Kill);
3365
3366 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
3367 .addImm(TlsOffset);
3368 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3369 .addReg(ScratchReg)
3370 .addReg(ScratchReg2)
3371 .addImm(1)
3372 .addReg(0)
3373 .addImm(0)
3374 .addReg(TlsReg);
3375
3376 if (SaveScratch2)
3377 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
3378 }
3379 }
3380
3381 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
3382 // It jumps to normal execution of the function body.
3383 BuildMI(checkMBB, DL, TII.get(X86::JCC_1))
3384 .addMBB(&PrologueMBB)
3385 .addImm(X86::COND_A);
3386
3387 // On 32 bit we first push the arguments size and then the frame size. On 64
3388 // bit, we pass the stack frame size in r10 and the argument size in r11.
3389 if (Is64Bit) {
3390 // Functions with nested arguments use R10, so it needs to be saved across
3391 // the call to _morestack
3392
3393 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
3394 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
3395 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
3396 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
3397
3398 if (IsNested)
3399 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
3400
3401 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(Use64BitReg: IsLP64, Imm: StackSize)), Reg10)
3402 .addImm(StackSize);
3403 BuildMI(allocMBB, DL,
3404 TII.get(getMOVriOpcode(Use64BitReg: IsLP64, Imm: X86FI->getArgumentStackSize())),
3405 Reg11)
3406 .addImm(X86FI->getArgumentStackSize());
3407 } else {
3408 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i))
3409 .addImm(X86FI->getArgumentStackSize());
3410 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)).addImm(StackSize);
3411 }
3412
3413 // __morestack is in libgcc
3414 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3415 // Under the large code model, we cannot assume that __morestack lives
3416 // within 2^31 bytes of the call site, so we cannot use pc-relative
3417 // addressing. We cannot perform the call via a temporary register,
3418 // as the rax register may be used to store the static chain, and all
3419 // other suitable registers may be either callee-save or used for
3420 // parameter passing. We cannot use the stack at this point either
3421 // because __morestack manipulates the stack directly.
3422 //
3423 // To avoid these issues, perform an indirect call via a read-only memory
3424 // location containing the address.
3425 //
3426 // This solution is not perfect, as it assumes that the .rodata section
3427 // is laid out within 2^31 bytes of each function body, but this seems
3428 // to be sufficient for JIT.
3429 // FIXME: Add retpoline support and remove the error here..
3430 if (STI.useIndirectThunkCalls())
3431 report_fatal_error(reason: "Emitting morestack calls on 64-bit with the large "
3432 "code model and thunks not yet implemented.");
3433 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3434 .addReg(X86::RIP)
3435 .addImm(0)
3436 .addReg(0)
3437 .addExternalSymbol("__morestack_addr")
3438 .addReg(0);
3439 } else {
3440 if (Is64Bit)
3441 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3442 .addExternalSymbol("__morestack");
3443 else
3444 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3445 .addExternalSymbol("__morestack");
3446 }
3447
3448 if (IsNested)
3449 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3450 else
3451 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3452
3453 allocMBB->addSuccessor(Succ: &PrologueMBB);
3454
3455 checkMBB->addSuccessor(Succ: allocMBB, Prob: BranchProbability::getZero());
3456 checkMBB->addSuccessor(Succ: &PrologueMBB, Prob: BranchProbability::getOne());
3457
3458#ifdef EXPENSIVE_CHECKS
3459 MF.verify();
3460#endif
3461}
3462
3463/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3464/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3465/// to fields it needs, through a named metadata node "hipe.literals" containing
3466/// name-value pairs.
3467static unsigned getHiPELiteral(NamedMDNode *HiPELiteralsMD,
3468 const StringRef LiteralName) {
3469 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3470 MDNode *Node = HiPELiteralsMD->getOperand(i);
3471 if (Node->getNumOperands() != 2)
3472 continue;
3473 MDString *NodeName = dyn_cast<MDString>(Val: Node->getOperand(I: 0));
3474 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Val: Node->getOperand(I: 1));
3475 if (!NodeName || !NodeVal)
3476 continue;
3477 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(Val: NodeVal->getValue());
3478 if (ValConst && NodeName->getString() == LiteralName) {
3479 return ValConst->getZExtValue();
3480 }
3481 }
3482
3483 report_fatal_error(reason: "HiPE literal " + LiteralName +
3484 " required but not provided");
3485}
3486
3487// Return true if there are no non-ehpad successors to MBB and there are no
3488// non-meta instructions between MBBI and MBB.end().
3489static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3490 MachineBasicBlock::const_iterator MBBI) {
3491 return llvm::all_of(
3492 Range: MBB.successors(),
3493 P: [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3494 std::all_of(first: MBBI, last: MBB.end(), pred: [](const MachineInstr &MI) {
3495 return MI.isMetaInstruction();
3496 });
3497}
3498
3499/// Erlang programs may need a special prologue to handle the stack size they
3500/// might need at runtime. That is because Erlang/OTP does not implement a C
3501/// stack but uses a custom implementation of hybrid stack/heap architecture.
3502/// (for more information see Eric Stenman's Ph.D. thesis:
3503/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3504///
3505/// CheckStack:
3506/// temp0 = sp - MaxStack
3507/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3508/// OldStart:
3509/// ...
3510/// IncStack:
3511/// call inc_stack # doubles the stack space
3512/// temp0 = sp - MaxStack
3513/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3514void X86FrameLowering::adjustForHiPEPrologue(
3515 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3516 MachineFrameInfo &MFI = MF.getFrameInfo();
3517 DebugLoc DL;
3518
3519 // To support shrink-wrapping we would need to insert the new blocks
3520 // at the right place and update the branches to PrologueMBB.
3521 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3522
3523 // HiPE-specific values
3524 NamedMDNode *HiPELiteralsMD =
3525 MF.getMMI().getModule()->getNamedMetadata(Name: "hipe.literals");
3526 if (!HiPELiteralsMD)
3527 report_fatal_error(
3528 reason: "Can't generate HiPE prologue without runtime parameters");
3529 const unsigned HipeLeafWords = getHiPELiteral(
3530 HiPELiteralsMD, LiteralName: Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3531 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3532 const unsigned Guaranteed = HipeLeafWords * SlotSize;
3533 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs
3534 ? MF.getFunction().arg_size() - CCRegisteredArgs
3535 : 0;
3536 unsigned MaxStack = MFI.getStackSize() + CallerStkArity * SlotSize + SlotSize;
3537
3538 assert(STI.isTargetLinux() &&
3539 "HiPE prologue is only supported on Linux operating systems.");
3540
3541 // Compute the largest caller's frame that is needed to fit the callees'
3542 // frames. This 'MaxStack' is computed from:
3543 //
3544 // a) the fixed frame size, which is the space needed for all spilled temps,
3545 // b) outgoing on-stack parameter areas, and
3546 // c) the minimum stack space this function needs to make available for the
3547 // functions it calls (a tunable ABI property).
3548 if (MFI.hasCalls()) {
3549 unsigned MoreStackForCalls = 0;
3550
3551 for (auto &MBB : MF) {
3552 for (auto &MI : MBB) {
3553 if (!MI.isCall())
3554 continue;
3555
3556 // Get callee operand.
3557 const MachineOperand &MO = MI.getOperand(i: 0);
3558
3559 // Only take account of global function calls (no closures etc.).
3560 if (!MO.isGlobal())
3561 continue;
3562
3563 const Function *F = dyn_cast<Function>(Val: MO.getGlobal());
3564 if (!F)
3565 continue;
3566
3567 // Do not update 'MaxStack' for primitive and built-in functions
3568 // (encoded with names either starting with "erlang."/"bif_" or not
3569 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3570 // "_", such as the BIF "suspend_0") as they are executed on another
3571 // stack.
3572 if (F->getName().contains(Other: "erlang.") || F->getName().contains(Other: "bif_") ||
3573 F->getName().find_first_of(Chars: "._") == StringRef::npos)
3574 continue;
3575
3576 unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs
3577 ? F->arg_size() - CCRegisteredArgs
3578 : 0;
3579 if (HipeLeafWords - 1 > CalleeStkArity)
3580 MoreStackForCalls =
3581 std::max(a: MoreStackForCalls,
3582 b: (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3583 }
3584 }
3585 MaxStack += MoreStackForCalls;
3586 }
3587
3588 // If the stack frame needed is larger than the guaranteed then runtime checks
3589 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3590 if (MaxStack > Guaranteed) {
3591 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3592 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3593
3594 for (const auto &LI : PrologueMBB.liveins()) {
3595 stackCheckMBB->addLiveIn(RegMaskPair: LI);
3596 incStackMBB->addLiveIn(RegMaskPair: LI);
3597 }
3598
3599 MF.push_front(MBB: incStackMBB);
3600 MF.push_front(MBB: stackCheckMBB);
3601
3602 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3603 unsigned LEAop, CMPop, CALLop;
3604 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, LiteralName: "P_NSP_LIMIT");
3605 if (Is64Bit) {
3606 SPReg = X86::RSP;
3607 PReg = X86::RBP;
3608 LEAop = X86::LEA64r;
3609 CMPop = X86::CMP64rm;
3610 CALLop = X86::CALL64pcrel32;
3611 } else {
3612 SPReg = X86::ESP;
3613 PReg = X86::EBP;
3614 LEAop = X86::LEA32r;
3615 CMPop = X86::CMP32rm;
3616 CALLop = X86::CALLpcrel32;
3617 }
3618
3619 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true);
3620 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3621 "HiPE prologue scratch register is live-in");
3622
3623 // Create new MBB for StackCheck:
3624 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg,
3625 false, -MaxStack);
3626 // SPLimitOffset is in a fixed heap location (pointed by BP).
3627 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)).addReg(ScratchReg),
3628 PReg, false, SPLimitOffset);
3629 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1))
3630 .addMBB(&PrologueMBB)
3631 .addImm(X86::COND_AE);
3632
3633 // Create new MBB for IncStack:
3634 BuildMI(incStackMBB, DL, TII.get(CALLop)).addExternalSymbol("inc_stack_0");
3635 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg,
3636 false, -MaxStack);
3637 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)).addReg(ScratchReg),
3638 PReg, false, SPLimitOffset);
3639 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1))
3640 .addMBB(incStackMBB)
3641 .addImm(X86::COND_LE);
3642
3643 stackCheckMBB->addSuccessor(Succ: &PrologueMBB, Prob: {99, 100});
3644 stackCheckMBB->addSuccessor(Succ: incStackMBB, Prob: {1, 100});
3645 incStackMBB->addSuccessor(Succ: &PrologueMBB, Prob: {99, 100});
3646 incStackMBB->addSuccessor(Succ: incStackMBB, Prob: {1, 100});
3647 }
3648#ifdef EXPENSIVE_CHECKS
3649 MF.verify();
3650#endif
3651}
3652
3653bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3654 MachineBasicBlock::iterator MBBI,
3655 const DebugLoc &DL,
3656 int Offset) const {
3657 if (Offset <= 0)
3658 return false;
3659
3660 if (Offset % SlotSize)
3661 return false;
3662
3663 int NumPops = Offset / SlotSize;
3664 // This is only worth it if we have at most 2 pops.
3665 if (NumPops != 1 && NumPops != 2)
3666 return false;
3667
3668 // Handle only the trivial case where the adjustment directly follows
3669 // a call. This is the most common one, anyway.
3670 if (MBBI == MBB.begin())
3671 return false;
3672 MachineBasicBlock::iterator Prev = std::prev(x: MBBI);
3673 if (!Prev->isCall() || !Prev->getOperand(i: 1).isRegMask())
3674 return false;
3675
3676 unsigned Regs[2];
3677 unsigned FoundRegs = 0;
3678
3679 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3680 const MachineOperand &RegMask = Prev->getOperand(i: 1);
3681
3682 auto &RegClass =
3683 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3684 // Try to find up to NumPops free registers.
3685 for (auto Candidate : RegClass) {
3686 // Poor man's liveness:
3687 // Since we're immediately after a call, any register that is clobbered
3688 // by the call and not defined by it can be considered dead.
3689 if (!RegMask.clobbersPhysReg(Candidate))
3690 continue;
3691
3692 // Don't clobber reserved registers
3693 if (MRI.isReserved(Candidate))
3694 continue;
3695
3696 bool IsDef = false;
3697 for (const MachineOperand &MO : Prev->implicit_operands()) {
3698 if (MO.isReg() && MO.isDef() &&
3699 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3700 IsDef = true;
3701 break;
3702 }
3703 }
3704
3705 if (IsDef)
3706 continue;
3707
3708 Regs[FoundRegs++] = Candidate;
3709 if (FoundRegs == (unsigned)NumPops)
3710 break;
3711 }
3712
3713 if (FoundRegs == 0)
3714 return false;
3715
3716 // If we found only one free register, but need two, reuse the same one twice.
3717 while (FoundRegs < (unsigned)NumPops)
3718 Regs[FoundRegs++] = Regs[0];
3719
3720 for (int i = 0; i < NumPops; ++i)
3721 BuildMI(MBB, MBBI, DL, TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r),
3722 Regs[i]);
3723
3724 return true;
3725}
3726
3727MachineBasicBlock::iterator X86FrameLowering::eliminateCallFramePseudoInstr(
3728 MachineFunction &MF, MachineBasicBlock &MBB,
3729 MachineBasicBlock::iterator I) const {
3730 bool reserveCallFrame = hasReservedCallFrame(MF);
3731 unsigned Opcode = I->getOpcode();
3732 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3733 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3734 uint64_t Amount = TII.getFrameSize(*I);
3735 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(I: *I) : 0;
3736 I = MBB.erase(I);
3737 auto InsertPos = skipDebugInstructionsForward(It: I, End: MBB.end());
3738
3739 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3740 // typically because the function is marked noreturn (abort, throw,
3741 // assert_fail, etc).
3742 if (isDestroy && blockEndIsUnreachable(MBB, MBBI: I))
3743 return I;
3744
3745 if (!reserveCallFrame) {
3746 // If the stack pointer can be changed after prologue, turn the
3747 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3748 // adjcallstackdown instruction into 'add ESP, <amt>'
3749
3750 // We need to keep the stack aligned properly. To do this, we round the
3751 // amount of space needed for the outgoing arguments up to the next
3752 // alignment boundary.
3753 Amount = alignTo(Size: Amount, A: getStackAlign());
3754
3755 const Function &F = MF.getFunction();
3756 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3757 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3758
3759 // If we have any exception handlers in this function, and we adjust
3760 // the SP before calls, we may need to indicate this to the unwinder
3761 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3762 // Amount == 0, because the preceding function may have set a non-0
3763 // GNU_ARGS_SIZE.
3764 // TODO: We don't need to reset this between subsequent functions,
3765 // if it didn't change.
3766 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3767
3768 if (HasDwarfEHHandlers && !isDestroy &&
3769 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3770 BuildCFI(MBB, MBBI: InsertPos, DL,
3771 CFIInst: MCCFIInstruction::createGnuArgsSize(L: nullptr, Size: Amount));
3772
3773 if (Amount == 0)
3774 return I;
3775
3776 // Factor out the amount that gets handled inside the sequence
3777 // (Pushes of argument for frame setup, callee pops for frame destroy)
3778 Amount -= InternalAmt;
3779
3780 // TODO: This is needed only if we require precise CFA.
3781 // If this is a callee-pop calling convention, emit a CFA adjust for
3782 // the amount the callee popped.
3783 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3784 BuildCFI(MBB, MBBI: InsertPos, DL,
3785 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: -InternalAmt));
3786
3787 // Add Amount to SP to destroy a frame, or subtract to setup.
3788 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3789
3790 if (StackAdjustment) {
3791 // Merge with any previous or following adjustment instruction. Note: the
3792 // instructions merged with here do not have CFI, so their stack
3793 // adjustments do not feed into CfaAdjustment.
3794 StackAdjustment += mergeSPUpdates(MBB, MBBI&: InsertPos, doMergeWithPrevious: true);
3795 StackAdjustment += mergeSPUpdates(MBB, MBBI&: InsertPos, doMergeWithPrevious: false);
3796
3797 if (StackAdjustment) {
3798 if (!(F.hasMinSize() &&
3799 adjustStackWithPops(MBB, MBBI: InsertPos, DL, Offset: StackAdjustment)))
3800 BuildStackAdjustment(MBB, MBBI: InsertPos, DL, Offset: StackAdjustment,
3801 /*InEpilogue=*/false);
3802 }
3803 }
3804
3805 if (DwarfCFI && !hasFP(MF)) {
3806 // If we don't have FP, but need to generate unwind information,
3807 // we need to set the correct CFA offset after the stack adjustment.
3808 // How much we adjust the CFA offset depends on whether we're emitting
3809 // CFI only for EH purposes or for debugging. EH only requires the CFA
3810 // offset to be correct at each call site, while for debugging we want
3811 // it to be more precise.
3812
3813 int64_t CfaAdjustment = -StackAdjustment;
3814 // TODO: When not using precise CFA, we also need to adjust for the
3815 // InternalAmt here.
3816 if (CfaAdjustment) {
3817 BuildCFI(
3818 MBB, MBBI: InsertPos, DL,
3819 CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: CfaAdjustment));
3820 }
3821 }
3822
3823 return I;
3824 }
3825
3826 if (InternalAmt) {
3827 MachineBasicBlock::iterator CI = I;
3828 MachineBasicBlock::iterator B = MBB.begin();
3829 while (CI != B && !std::prev(x: CI)->isCall())
3830 --CI;
3831 BuildStackAdjustment(MBB, MBBI: CI, DL, Offset: -InternalAmt, /*InEpilogue=*/false);
3832 }
3833
3834 return I;
3835}
3836
3837bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3838 assert(MBB.getParent() && "Block is not attached to a function!");
3839 const MachineFunction &MF = *MBB.getParent();
3840 if (!MBB.isLiveIn(X86::EFLAGS))
3841 return true;
3842
3843 // If stack probes have to loop inline or call, that will clobber EFLAGS.
3844 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock.
3845 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
3846 const X86TargetLowering &TLI = *STI.getTargetLowering();
3847 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF))
3848 return false;
3849
3850 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3851 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3852}
3853
3854bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3855 assert(MBB.getParent() && "Block is not attached to a function!");
3856
3857 // Win64 has strict requirements in terms of epilogue and we are
3858 // not taking a chance at messing with them.
3859 // I.e., unless this block is already an exit block, we can't use
3860 // it as an epilogue.
3861 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3862 return false;
3863
3864 // Swift async context epilogue has a BTR instruction that clobbers parts of
3865 // EFLAGS.
3866 const MachineFunction &MF = *MBB.getParent();
3867 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3868 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3869
3870 if (canUseLEAForSPInEpilogue(MF: *MBB.getParent()))
3871 return true;
3872
3873 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3874 // clobbers the EFLAGS. Check that we do not need to preserve it,
3875 // otherwise, conservatively assume this is not
3876 // safe to insert the epilogue here.
3877 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3878}
3879
3880bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3881 // If we may need to emit frameless compact unwind information, give
3882 // up as this is currently broken: PR25614.
3883 bool CompactUnwind =
3884 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3885 nullptr;
3886 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3887 !CompactUnwind) &&
3888 // The lowering of segmented stack and HiPE only support entry
3889 // blocks as prologue blocks: PR26107. This limitation may be
3890 // lifted if we fix:
3891 // - adjustForSegmentedStacks
3892 // - adjustForHiPEPrologue
3893 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3894 !MF.shouldSplitStack();
3895}
3896
3897MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3898 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3899 const DebugLoc &DL, bool RestoreSP) const {
3900 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3901 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3902 assert(STI.is32Bit() && !Uses64BitFramePtr &&
3903 "restoring EBP/ESI on non-32-bit target");
3904
3905 MachineFunction &MF = *MBB.getParent();
3906 Register FramePtr = TRI->getFrameRegister(MF);
3907 Register BasePtr = TRI->getBaseRegister();
3908 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3909 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3910 MachineFrameInfo &MFI = MF.getFrameInfo();
3911
3912 // FIXME: Don't set FrameSetup flag in catchret case.
3913
3914 int FI = FuncInfo.EHRegNodeFrameIndex;
3915 int EHRegSize = MFI.getObjectSize(ObjectIdx: FI);
3916
3917 if (RestoreSP) {
3918 // MOV32rm -EHRegSize(%ebp), %esp
3919 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3920 X86::EBP, true, -EHRegSize)
3921 .setMIFlag(MachineInstr::FrameSetup);
3922 }
3923
3924 Register UsedReg;
3925 int EHRegOffset = getFrameIndexReference(MF, FI, FrameReg&: UsedReg).getFixed();
3926 int EndOffset = -EHRegOffset - EHRegSize;
3927 FuncInfo.EHRegNodeEndOffset = EndOffset;
3928
3929 if (UsedReg == FramePtr) {
3930 // ADD $offset, %ebp
3931 unsigned ADDri = getADDriOpcode(IsLP64: false);
3932 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3933 .addReg(FramePtr)
3934 .addImm(EndOffset)
3935 .setMIFlag(MachineInstr::FrameSetup)
3936 ->getOperand(3)
3937 .setIsDead();
3938 assert(EndOffset >= 0 &&
3939 "end of registration object above normal EBP position!");
3940 } else if (UsedReg == BasePtr) {
3941 // LEA offset(%ebp), %esi
3942 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3943 FramePtr, false, EndOffset)
3944 .setMIFlag(MachineInstr::FrameSetup);
3945 // MOV32rm SavedEBPOffset(%esi), %ebp
3946 assert(X86FI->getHasSEHFramePtrSave());
3947 int Offset =
3948 getFrameIndexReference(MF, FI: X86FI->getSEHFramePtrSaveIndex(), FrameReg&: UsedReg)
3949 .getFixed();
3950 assert(UsedReg == BasePtr);
3951 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3952 UsedReg, true, Offset)
3953 .setMIFlag(MachineInstr::FrameSetup);
3954 } else {
3955 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3956 }
3957 return MBBI;
3958}
3959
3960int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3961 return TRI->getSlotSize();
3962}
3963
3964Register
3965X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3966 return StackPtr;
3967}
3968
3969TargetFrameLowering::DwarfFrameBase
3970X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const {
3971 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
3972 Register FrameRegister = RI->getFrameRegister(MF);
3973 if (getInitialCFARegister(MF) == FrameRegister &&
3974 MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) {
3975 DwarfFrameBase FrameBase;
3976 FrameBase.Kind = DwarfFrameBase::CFA;
3977 FrameBase.Location.Offset =
3978 -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF);
3979 return FrameBase;
3980 }
3981
3982 return DwarfFrameBase{.Kind: DwarfFrameBase::Register, .Location: {.Reg: FrameRegister}};
3983}
3984
3985namespace {
3986// Struct used by orderFrameObjects to help sort the stack objects.
3987struct X86FrameSortingObject {
3988 bool IsValid = false; // true if we care about this Object.
3989 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3990 unsigned ObjectSize = 0; // Size of Object in bytes.
3991 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3992 unsigned ObjectNumUses = 0; // Object static number of uses.
3993};
3994
3995// The comparison function we use for std::sort to order our local
3996// stack symbols. The current algorithm is to use an estimated
3997// "density". This takes into consideration the size and number of
3998// uses each object has in order to roughly minimize code size.
3999// So, for example, an object of size 16B that is referenced 5 times
4000// will get higher priority than 4 4B objects referenced 1 time each.
4001// It's not perfect and we may be able to squeeze a few more bytes out of
4002// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
4003// fringe end can have special consideration, given their size is less
4004// important, etc.), but the algorithmic complexity grows too much to be
4005// worth the extra gains we get. This gets us pretty close.
4006// The final order leaves us with objects with highest priority going
4007// at the end of our list.
4008struct X86FrameSortingComparator {
4009 inline bool operator()(const X86FrameSortingObject &A,
4010 const X86FrameSortingObject &B) const {
4011 uint64_t DensityAScaled, DensityBScaled;
4012
4013 // For consistency in our comparison, all invalid objects are placed
4014 // at the end. This also allows us to stop walking when we hit the
4015 // first invalid item after it's all sorted.
4016 if (!A.IsValid)
4017 return false;
4018 if (!B.IsValid)
4019 return true;
4020
4021 // The density is calculated by doing :
4022 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
4023 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
4024 // Since this approach may cause inconsistencies in
4025 // the floating point <, >, == comparisons, depending on the floating
4026 // point model with which the compiler was built, we're going
4027 // to scale both sides by multiplying with
4028 // A.ObjectSize * B.ObjectSize. This ends up factoring away
4029 // the division and, with it, the need for any floating point
4030 // arithmetic.
4031 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
4032 static_cast<uint64_t>(B.ObjectSize);
4033 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
4034 static_cast<uint64_t>(A.ObjectSize);
4035
4036 // If the two densities are equal, prioritize highest alignment
4037 // objects. This allows for similar alignment objects
4038 // to be packed together (given the same density).
4039 // There's room for improvement here, also, since we can pack
4040 // similar alignment (different density) objects next to each
4041 // other to save padding. This will also require further
4042 // complexity/iterations, and the overall gain isn't worth it,
4043 // in general. Something to keep in mind, though.
4044 if (DensityAScaled == DensityBScaled)
4045 return A.ObjectAlignment < B.ObjectAlignment;
4046
4047 return DensityAScaled < DensityBScaled;
4048 }
4049};
4050} // namespace
4051
4052// Order the symbols in the local stack.
4053// We want to place the local stack objects in some sort of sensible order.
4054// The heuristic we use is to try and pack them according to static number
4055// of uses and size of object in order to minimize code size.
4056void X86FrameLowering::orderFrameObjects(
4057 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4058 const MachineFrameInfo &MFI = MF.getFrameInfo();
4059
4060 // Don't waste time if there's nothing to do.
4061 if (ObjectsToAllocate.empty())
4062 return;
4063
4064 // Create an array of all MFI objects. We won't need all of these
4065 // objects, but we're going to create a full array of them to make
4066 // it easier to index into when we're counting "uses" down below.
4067 // We want to be able to easily/cheaply access an object by simply
4068 // indexing into it, instead of having to search for it every time.
4069 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
4070
4071 // Walk the objects we care about and mark them as such in our working
4072 // struct.
4073 for (auto &Obj : ObjectsToAllocate) {
4074 SortingObjects[Obj].IsValid = true;
4075 SortingObjects[Obj].ObjectIndex = Obj;
4076 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(ObjectIdx: Obj);
4077 // Set the size.
4078 int ObjectSize = MFI.getObjectSize(ObjectIdx: Obj);
4079 if (ObjectSize == 0)
4080 // Variable size. Just use 4.
4081 SortingObjects[Obj].ObjectSize = 4;
4082 else
4083 SortingObjects[Obj].ObjectSize = ObjectSize;
4084 }
4085
4086 // Count the number of uses for each object.
4087 for (auto &MBB : MF) {
4088 for (auto &MI : MBB) {
4089 if (MI.isDebugInstr())
4090 continue;
4091 for (const MachineOperand &MO : MI.operands()) {
4092 // Check to see if it's a local stack symbol.
4093 if (!MO.isFI())
4094 continue;
4095 int Index = MO.getIndex();
4096 // Check to see if it falls within our range, and is tagged
4097 // to require ordering.
4098 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
4099 SortingObjects[Index].IsValid)
4100 SortingObjects[Index].ObjectNumUses++;
4101 }
4102 }
4103 }
4104
4105 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
4106 // info).
4107 llvm::stable_sort(Range&: SortingObjects, C: X86FrameSortingComparator());
4108
4109 // Now modify the original list to represent the final order that
4110 // we want. The order will depend on whether we're going to access them
4111 // from the stack pointer or the frame pointer. For SP, the list should
4112 // end up with the END containing objects that we want with smaller offsets.
4113 // For FP, it should be flipped.
4114 int i = 0;
4115 for (auto &Obj : SortingObjects) {
4116 // All invalid items are sorted at the end, so it's safe to stop.
4117 if (!Obj.IsValid)
4118 break;
4119 ObjectsToAllocate[i++] = Obj.ObjectIndex;
4120 }
4121
4122 // Flip it if we're accessing off of the FP.
4123 if (!TRI->hasStackRealignment(MF) && hasFP(MF))
4124 std::reverse(first: ObjectsToAllocate.begin(), last: ObjectsToAllocate.end());
4125}
4126
4127unsigned
4128X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
4129 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
4130 unsigned Offset = 16;
4131 // RBP is immediately pushed.
4132 Offset += SlotSize;
4133 // All callee-saved registers are then pushed.
4134 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
4135 // Every funclet allocates enough stack space for the largest outgoing call.
4136 Offset += getWinEHFuncletFrameSize(MF);
4137 return Offset;
4138}
4139
4140void X86FrameLowering::processFunctionBeforeFrameFinalized(
4141 MachineFunction &MF, RegScavenger *RS) const {
4142 // Mark the function as not having WinCFI. We will set it back to true in
4143 // emitPrologue if it gets called and emits CFI.
4144 MF.setHasWinCFI(false);
4145
4146 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
4147 // aligned. The format doesn't support misaligned stack adjustments.
4148 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
4149 MF.getFrameInfo().ensureMaxAlignment(Alignment: Align(SlotSize));
4150
4151 // If this function isn't doing Win64-style C++ EH, we don't need to do
4152 // anything.
4153 if (STI.is64Bit() && MF.hasEHFunclets() &&
4154 classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn()) ==
4155 EHPersonality::MSVC_CXX) {
4156 adjustFrameForMsvcCxxEh(MF);
4157 }
4158}
4159
4160void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
4161 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
4162 // relative to RSP after the prologue. Find the offset of the last fixed
4163 // object, so that we can allocate a slot immediately following it. If there
4164 // were no fixed objects, use offset -SlotSize, which is immediately after the
4165 // return address. Fixed objects have negative frame indices.
4166 MachineFrameInfo &MFI = MF.getFrameInfo();
4167 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4168 int64_t MinFixedObjOffset = -SlotSize;
4169 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
4170 MinFixedObjOffset = std::min(a: MinFixedObjOffset, b: MFI.getObjectOffset(ObjectIdx: I));
4171
4172 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
4173 for (WinEHHandlerType &H : TBME.HandlerArray) {
4174 int FrameIndex = H.CatchObj.FrameIndex;
4175 if (FrameIndex != INT_MAX) {
4176 // Ensure alignment.
4177 unsigned Align = MFI.getObjectAlign(ObjectIdx: FrameIndex).value();
4178 MinFixedObjOffset -= std::abs(i: MinFixedObjOffset) % Align;
4179 MinFixedObjOffset -= MFI.getObjectSize(ObjectIdx: FrameIndex);
4180 MFI.setObjectOffset(ObjectIdx: FrameIndex, SPOffset: MinFixedObjOffset);
4181 }
4182 }
4183 }
4184
4185 // Ensure alignment.
4186 MinFixedObjOffset -= std::abs(i: MinFixedObjOffset) % 8;
4187 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
4188 int UnwindHelpFI =
4189 MFI.CreateFixedObject(Size: SlotSize, SPOffset: UnwindHelpOffset, /*IsImmutable=*/false);
4190 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4191
4192 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
4193 // other frame setup instructions.
4194 MachineBasicBlock &MBB = MF.front();
4195 auto MBBI = MBB.begin();
4196 while (MBBI != MBB.end() && MBBI->getFlag(Flag: MachineInstr::FrameSetup))
4197 ++MBBI;
4198
4199 DebugLoc DL = MBB.findDebugLoc(MBBI);
4200 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
4201 UnwindHelpFI)
4202 .addImm(-2);
4203}
4204
4205void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4206 MachineFunction &MF, RegScavenger *RS) const {
4207 auto *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4208
4209 if (STI.is32Bit() && MF.hasEHFunclets())
4210 restoreWinEHStackPointersInParent(MF);
4211 // We have emitted prolog and epilog. Don't need stack pointer saving
4212 // instruction any more.
4213 if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) {
4214 MI->eraseFromParent();
4215 X86FI->setStackPtrSaveMI(nullptr);
4216 }
4217}
4218
4219void X86FrameLowering::restoreWinEHStackPointersInParent(
4220 MachineFunction &MF) const {
4221 // 32-bit functions have to restore stack pointers when control is transferred
4222 // back to the parent function. These blocks are identified as eh pads that
4223 // are not funclet entries.
4224 bool IsSEH = isAsynchronousEHPersonality(
4225 Pers: classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn()));
4226 for (MachineBasicBlock &MBB : MF) {
4227 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
4228 if (NeedsRestore)
4229 restoreWin32EHStackPointers(MBB, MBBI: MBB.begin(), DL: DebugLoc(),
4230 /*RestoreSP=*/IsSEH);
4231 }
4232}
4233

source code of llvm/lib/Target/X86/X86FrameLowering.cpp