| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PXV_DYNAMICS_CONTEXT_H |
| 31 | #define PXV_DYNAMICS_CONTEXT_H |
| 32 | |
| 33 | #include "CmPhysXCommon.h" |
| 34 | #include "PxSceneDesc.h" |
| 35 | #include "DyThresholdTable.h" |
| 36 | #include "PxcNpThreadContext.h" |
| 37 | #include "PxsSimulationController.h" |
| 38 | #include "DyConstraintWriteBack.h" |
| 39 | #include "PsAllocator.h" |
| 40 | |
| 41 | #define DY_MAX_VELOCITY_COUNT 4 |
| 42 | |
| 43 | namespace physx |
| 44 | { |
| 45 | |
| 46 | class PxsIslandManager; |
| 47 | class PxcNpMemBlockPool; |
| 48 | |
| 49 | namespace Cm |
| 50 | { |
| 51 | class EventProfiler; |
| 52 | class FlushPool; |
| 53 | } |
| 54 | |
| 55 | namespace IG |
| 56 | { |
| 57 | class SimpleIslandManager; |
| 58 | class IslandSim; |
| 59 | } |
| 60 | |
| 61 | template<typename T, typename P> class PxcThreadCoherentCache; |
| 62 | class PxcScratchAllocator; |
| 63 | struct PxvSimStats; |
| 64 | class PxTaskManager; |
| 65 | class PxcNpMemBlockPool; |
| 66 | struct PxgDynamicsMemoryConfig; |
| 67 | class PxsContactManagerOutputIterator; |
| 68 | struct PxsContactManagerOutput; |
| 69 | class PxsKernelWranglerManager; |
| 70 | class PxsHeapMemoryAllocator; |
| 71 | class PxsMemoryManager; |
| 72 | class PxsContactManager; |
| 73 | |
| 74 | |
| 75 | namespace Dy |
| 76 | { |
| 77 | |
| 78 | |
| 79 | class Context |
| 80 | { |
| 81 | PX_NOCOPY(Context) |
| 82 | public: |
| 83 | /** |
| 84 | \brief Returns the bounce threshold |
| 85 | \return The bounce threshold. |
| 86 | */ |
| 87 | PX_FORCE_INLINE PxReal getBounceThreshold() const { return mBounceThreshold; } |
| 88 | /** |
| 89 | \brief Returns the friction offset threshold |
| 90 | \return The friction offset threshold. |
| 91 | */ |
| 92 | PX_FORCE_INLINE PxReal getFrictionOffsetThreshold() const { return mFrictionOffsetThreshold; } |
| 93 | /** |
| 94 | \brief Returns the friction offset threshold |
| 95 | \return The friction offset threshold. |
| 96 | */ |
| 97 | PX_FORCE_INLINE PxReal getSolverOffsetSlop() const { return mSolverOffsetSlop; } |
| 98 | /** |
| 99 | \brief Returns the correlation distance |
| 100 | \return The correlation distance. |
| 101 | */ |
| 102 | PX_FORCE_INLINE PxReal getCorrelationDistance() const { return mCorrelationDistance; } |
| 103 | |
| 104 | /** |
| 105 | \brief Returns the CCD separation threshold |
| 106 | \return The CCD separation threshold. |
| 107 | */ |
| 108 | PX_FORCE_INLINE PxReal getCCDSeparationThreshold() const { return mCCDSeparationThreshold; } |
| 109 | |
| 110 | /** |
| 111 | \brief Sets the bounce threshold |
| 112 | \param[in] f The bounce threshold |
| 113 | */ |
| 114 | PX_FORCE_INLINE void setBounceThreshold(PxReal f) { mBounceThreshold = f; } |
| 115 | /** |
| 116 | \brief Sets the correlation distance |
| 117 | \param[in] f The correlation distance |
| 118 | */ |
| 119 | PX_FORCE_INLINE void setCorrelationDistance(PxReal f) { mCorrelationDistance = f; } |
| 120 | /** |
| 121 | \brief Sets the friction offset threshold |
| 122 | \param[in] offset The friction offset threshold |
| 123 | */ |
| 124 | PX_FORCE_INLINE void setFrictionOffsetThreshold(PxReal offset) { mFrictionOffsetThreshold = offset; } |
| 125 | /** |
| 126 | \brief Sets the solver offset slop |
| 127 | \param[in] offset The solver offset slop |
| 128 | */ |
| 129 | PX_FORCE_INLINE void setSolverOffsetSlop(PxReal offset) { mSolverOffsetSlop = offset; } |
| 130 | /** |
| 131 | \brief Sets the friction offset threshold |
| 132 | \param[in] offset The friction offset threshold |
| 133 | */ |
| 134 | PX_FORCE_INLINE void setCCDSeparationThreshold(PxReal offset) { mCCDSeparationThreshold = offset; } |
| 135 | |
| 136 | |
| 137 | /** |
| 138 | \brief Returns the solver batch size |
| 139 | \return The solver batch size. |
| 140 | */ |
| 141 | PX_FORCE_INLINE PxU32 getSolverBatchSize() const { return mSolverBatchSize; } |
| 142 | /** |
| 143 | \brief Sets the solver batch size |
| 144 | \param[in] f The solver batch size |
| 145 | */ |
| 146 | PX_FORCE_INLINE void setSolverBatchSize(PxU32 f) { mSolverBatchSize = f; } |
| 147 | |
| 148 | /** |
| 149 | \brief Returns the solver batch size |
| 150 | \return The solver batch size. |
| 151 | */ |
| 152 | PX_FORCE_INLINE PxU32 getSolverArticBatchSize() const { return mSolverArticBatchSize; } |
| 153 | /** |
| 154 | \brief Sets the solver batch size |
| 155 | \param[in] f The solver batch size |
| 156 | */ |
| 157 | PX_FORCE_INLINE void setSolverArticBatchSize(PxU32 f) { mSolverArticBatchSize = f; } |
| 158 | |
| 159 | |
| 160 | |
| 161 | /** |
| 162 | \brief Returns the maximum solver constraint size |
| 163 | \return The maximum solver constraint size in this island in bytes. |
| 164 | */ |
| 165 | PX_FORCE_INLINE PxU32 getMaxSolverConstraintSize() const { return mMaxSolverConstraintSize; } |
| 166 | |
| 167 | /** |
| 168 | \brief Returns the friction model being used. |
| 169 | \return The friction model being used. |
| 170 | */ |
| 171 | PX_FORCE_INLINE PxFrictionType::Enum getFrictionType() const { return mFrictionType; } |
| 172 | |
| 173 | /** |
| 174 | \brief Returns the threshold stream |
| 175 | \return The threshold stream |
| 176 | */ |
| 177 | PX_FORCE_INLINE ThresholdStream& getThresholdStream() { return *mThresholdStream; } |
| 178 | |
| 179 | PX_FORCE_INLINE ThresholdStream& getForceChangedThresholdStream() { return *mForceChangedThresholdStream; } |
| 180 | |
| 181 | /** |
| 182 | \brief Returns the threshold table |
| 183 | \return The threshold table |
| 184 | */ |
| 185 | PX_FORCE_INLINE ThresholdTable& getThresholdTable() { return mThresholdTable; } |
| 186 | |
| 187 | /** |
| 188 | \brief Sets the friction model to be used. |
| 189 | \param[in] f The friction model to be used. |
| 190 | */ |
| 191 | PX_FORCE_INLINE void setFrictionType(PxFrictionType::Enum f) { mFrictionType = f; } |
| 192 | |
| 193 | /** |
| 194 | \brief Destroys this dynamics context |
| 195 | */ |
| 196 | virtual void destroy() = 0; |
| 197 | |
| 198 | |
| 199 | |
| 200 | PX_FORCE_INLINE PxcDataStreamPool& getContactStreamPool() { return mContactStreamPool; } |
| 201 | |
| 202 | PX_FORCE_INLINE PxcDataStreamPool& getPatchStreamPool() { return mPatchStreamPool; } |
| 203 | |
| 204 | PX_FORCE_INLINE PxcDataStreamPool& getForceStreamPool() { return mForceStreamPool; } |
| 205 | |
| 206 | PX_FORCE_INLINE Ps::Array<Dy::ConstraintWriteback, Ps::VirtualAllocator>& getConstraintWriteBackPool() { return mConstraintWriteBackPool; } |
| 207 | |
| 208 | |
| 209 | /** |
| 210 | \brief Returns the current frame's timestep |
| 211 | \return The current frame's timestep. |
| 212 | */ |
| 213 | PX_FORCE_INLINE PxReal getDt() const { return mDt; } |
| 214 | /** |
| 215 | \brief Returns 1/(current frame's timestep) |
| 216 | \return 1/(current frame's timestep). |
| 217 | */ |
| 218 | PX_FORCE_INLINE PxReal getInvDt() const { return mInvDt; } |
| 219 | |
| 220 | PX_FORCE_INLINE PxReal getMaxBiasCoefficient() const { return mMaxBiasCoefficient; } |
| 221 | |
| 222 | PX_FORCE_INLINE PxVec3 getGravity() const { return mGravity; } |
| 223 | |
| 224 | |
| 225 | |
| 226 | /** |
| 227 | \brief The entry point for the constraint solver. |
| 228 | \param[in] dt The simulation time-step |
| 229 | \param[in] continuation The continuation task for the solver |
| 230 | \param[in] processLostTouchTask The task that processes lost touches |
| 231 | |
| 232 | This method is called after the island generation has completed. Its main responsibilities are: |
| 233 | (1) Reserving the solver body pools |
| 234 | (2) Initializing the static and kinematic solver bodies, which are shared resources between islands. |
| 235 | (3) Construct the solver task chains for each island |
| 236 | |
| 237 | Each island is solved as an independent solver task chain. In addition, large islands may be solved using multiple parallel tasks. |
| 238 | Island solving is asynchronous. Once all islands have been solved, the continuation task will be called. |
| 239 | |
| 240 | */ |
| 241 | virtual void update(IG::SimpleIslandManager& simpleIslandManager, PxBaseTask* continuation, PxBaseTask* processLostTouchTask, |
| 242 | PxsContactManager** foundPatchManagers, PxU32 nbFoundPatchManagers, PxsContactManager** lostPatchManagers, PxU32 nbLostPatchManagers, PxU32 maxPatchesPerCM, |
| 243 | PxsContactManagerOutputIterator& iterator, PxsContactManagerOutput* gpuOutputs, const PxReal dt, const PxVec3& gravity, const PxU32 bitMapWordCounts) = 0; |
| 244 | |
| 245 | virtual void processLostPatches(IG::SimpleIslandManager& simpleIslandManager, PxsContactManager** lostPatchManagers, PxU32 nbLostPatchManagers, PxsContactManagerOutputIterator& iterator) = 0; |
| 246 | |
| 247 | |
| 248 | /** |
| 249 | \brief This method copy gpu solver body data to cpu body core |
| 250 | */ |
| 251 | virtual void updateBodyCore(PxBaseTask* continuation) = 0; |
| 252 | |
| 253 | /** |
| 254 | \brief Called after update's task chain has completed. This collects the results of the solver together |
| 255 | */ |
| 256 | virtual void mergeResults() = 0; |
| 257 | |
| 258 | virtual void setSimulationController(PxsSimulationController* simulationController) = 0; |
| 259 | |
| 260 | virtual void getDataStreamBase(void*& contactStreamBase, void*& patchStreamBase, void*& forceAndIndiceStreamBase) = 0; |
| 261 | |
| 262 | void createThresholdStream(Ps::VirtualAllocatorCallback& callback) { PX_ASSERT(mThresholdStream == NULL); mThresholdStream = PX_PLACEMENT_NEW(PX_ALLOC(sizeof(ThresholdStream), PX_DEBUG_EXP("ThresholdStream" )), ThresholdStream(callback));} |
| 263 | |
| 264 | void createForceChangeThresholdStream(Ps::VirtualAllocatorCallback& callback) { PX_ASSERT(mForceChangedThresholdStream == NULL); mForceChangedThresholdStream = PX_PLACEMENT_NEW(PX_ALLOC(sizeof(ThresholdStream), PX_DEBUG_EXP("ThresholdStream" )), ThresholdStream(callback));} |
| 265 | |
| 266 | |
| 267 | |
| 268 | protected: |
| 269 | |
| 270 | Context(IG::IslandSim* accurateIslandSim, Ps::VirtualAllocatorCallback* allocatorCallback, |
| 271 | PxvSimStats& simStats, bool enableStabilization, bool useEnhancedDeterminism, bool useAdaptiveForce, |
| 272 | const PxReal maxBiasCoefficient) : |
| 273 | mThresholdStream(NULL), |
| 274 | mForceChangedThresholdStream(NULL), |
| 275 | mAccurateIslandSim(accurateIslandSim), |
| 276 | mDt (1.0f), |
| 277 | mInvDt (1.0f), |
| 278 | mMaxBiasCoefficient (maxBiasCoefficient), |
| 279 | mEnableStabilization (enableStabilization), |
| 280 | mUseEnhancedDeterminism (useEnhancedDeterminism), |
| 281 | mUseAdaptiveForce (useAdaptiveForce), |
| 282 | mBounceThreshold(-2.0f), |
| 283 | mSolverBatchSize(32), |
| 284 | mConstraintWriteBackPool(Ps::VirtualAllocator(allocatorCallback)), |
| 285 | mSimStats(simStats) |
| 286 | { |
| 287 | } |
| 288 | |
| 289 | virtual ~Context() |
| 290 | { |
| 291 | if(mThresholdStream) |
| 292 | { |
| 293 | mThresholdStream->~ThresholdStream(); |
| 294 | PX_FREE(mThresholdStream); |
| 295 | } |
| 296 | mThresholdStream = NULL; |
| 297 | if(mForceChangedThresholdStream) |
| 298 | { |
| 299 | mForceChangedThresholdStream->~ThresholdStream(); |
| 300 | PX_FREE(mForceChangedThresholdStream); |
| 301 | } |
| 302 | mForceChangedThresholdStream = NULL; |
| 303 | } |
| 304 | |
| 305 | ThresholdStream* mThresholdStream; |
| 306 | ThresholdStream* mForceChangedThresholdStream; |
| 307 | ThresholdTable mThresholdTable; |
| 308 | |
| 309 | IG::IslandSim* mAccurateIslandSim; |
| 310 | PxsSimulationController* mSimulationController; |
| 311 | /** |
| 312 | \brief Time-step. |
| 313 | */ |
| 314 | PxReal mDt; |
| 315 | /** |
| 316 | \brief 1/time-step. |
| 317 | */ |
| 318 | PxReal mInvDt; |
| 319 | |
| 320 | PxReal mMaxBiasCoefficient; |
| 321 | |
| 322 | const bool mEnableStabilization; |
| 323 | |
| 324 | const bool mUseEnhancedDeterminism; |
| 325 | |
| 326 | const bool mUseAdaptiveForce; |
| 327 | |
| 328 | PxVec3 mGravity; |
| 329 | /** |
| 330 | \brief max solver constraint size |
| 331 | */ |
| 332 | PxU32 mMaxSolverConstraintSize; |
| 333 | |
| 334 | /** |
| 335 | \brief Threshold controlling the relative velocity at which the solver transitions between restitution and bias for solving normal contact constraint. |
| 336 | */ |
| 337 | PxReal mBounceThreshold; |
| 338 | /** |
| 339 | \brief Threshold controlling whether friction anchors are constructed or not. If the separation is above mFrictionOffsetThreshold, the contact will not be considered to become a friction anchor |
| 340 | */ |
| 341 | PxReal mFrictionOffsetThreshold; |
| 342 | |
| 343 | /** |
| 344 | \brief Tolerance used to zero offsets along an axis if it is below this threshold. Used to compensate for small numerical divergence inside contact gen. |
| 345 | */ |
| 346 | PxReal mSolverOffsetSlop; |
| 347 | |
| 348 | /** |
| 349 | \brief Threshold controlling whether distant contacts are processed using bias, restitution or a combination of the two. This only has effect on pairs involving bodies that have enabled speculative CCD simulation mode. |
| 350 | */ |
| 351 | PxReal mCCDSeparationThreshold; |
| 352 | |
| 353 | /** |
| 354 | \brief Threshold for controlling friction correlation |
| 355 | */ |
| 356 | PxReal mCorrelationDistance; |
| 357 | /** |
| 358 | \brief The minimum size of an island to generate a solver task chain. |
| 359 | */ |
| 360 | PxU32 mSolverBatchSize; |
| 361 | |
| 362 | /** |
| 363 | \brief The minimum number of articulations required to generate a solver task chain. |
| 364 | */ |
| 365 | PxU32 mSolverArticBatchSize; |
| 366 | |
| 367 | /** |
| 368 | \brief The current friction model being used |
| 369 | */ |
| 370 | PxFrictionType::Enum mFrictionType; |
| 371 | |
| 372 | /** |
| 373 | \brief Structure to encapsulate contact stream allocations. Used by GPU solver to reference pre-allocated pinned host memory |
| 374 | */ |
| 375 | PxcDataStreamPool mContactStreamPool; |
| 376 | |
| 377 | /** |
| 378 | \brief Struct to encapsulate the contact patch stream allocations. Used by GPU solver to reference pre-allocated pinned host memory |
| 379 | */ |
| 380 | |
| 381 | PxcDataStreamPool mPatchStreamPool; |
| 382 | |
| 383 | /** |
| 384 | \brief Structure to encapsulate force stream allocations. Used by GPU solver to reference pre-allocated pinned host memory for force reports. |
| 385 | */ |
| 386 | PxcDataStreamPool mForceStreamPool; |
| 387 | |
| 388 | /** |
| 389 | \brief Structure to encapsulate constraint write back allocations. Used by GPU/CPU solver to reference pre-allocated pinned host memory for breakable joint reports. |
| 390 | */ |
| 391 | Ps::Array<Dy::ConstraintWriteback, Ps::VirtualAllocator> mConstraintWriteBackPool; |
| 392 | |
| 393 | PxvSimStats& mSimStats; |
| 394 | |
| 395 | |
| 396 | }; |
| 397 | |
| 398 | Context* createDynamicsContext( PxcNpMemBlockPool* memBlockPool, |
| 399 | PxcScratchAllocator& scratchAllocator, Cm::FlushPool& taskPool, |
| 400 | PxvSimStats& simStats, PxTaskManager* taskManager, Ps::VirtualAllocatorCallback* allocatorCallback, PxsMaterialManager* materialManager, |
| 401 | IG::IslandSim* accurateIslandSim, PxU64 contextID, |
| 402 | const bool enableStabilization, const bool useEnhancedDeterminism, const bool useAdaptiveForce, const PxReal maxBiasCoefficient, |
| 403 | const bool frictionEveryIteration |
| 404 | ); |
| 405 | |
| 406 | Context* createTGSDynamicsContext(PxcNpMemBlockPool* memBlockPool, |
| 407 | PxcScratchAllocator& scratchAllocator, Cm::FlushPool& taskPool, |
| 408 | PxvSimStats& simStats, PxTaskManager* taskManager, Ps::VirtualAllocatorCallback* allocatorCallback, PxsMaterialManager* materialManager, |
| 409 | IG::IslandSim* accurateIslandSim, PxU64 contextID, |
| 410 | const bool enableStabilization, const bool useEnhancedDeterminism, const bool useAdaptiveForce, const PxReal lengthScale |
| 411 | ); |
| 412 | |
| 413 | |
| 414 | } |
| 415 | |
| 416 | } |
| 417 | |
| 418 | #endif |
| 419 | |
| 420 | |