| 1 | /* |
| 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| 4 | * |
| 5 | * Pentium III FXSR, SSE support |
| 6 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * Handle hardware traps and faults. |
| 11 | */ |
| 12 | |
| 13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 14 | |
| 15 | #include <linux/context_tracking.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/kallsyms.h> |
| 18 | #include <linux/kmsan.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/kprobes.h> |
| 21 | #include <linux/uaccess.h> |
| 22 | #include <linux/kdebug.h> |
| 23 | #include <linux/kgdb.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/export.h> |
| 26 | #include <linux/ptrace.h> |
| 27 | #include <linux/uprobes.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/kexec.h> |
| 32 | #include <linux/sched.h> |
| 33 | #include <linux/sched/task_stack.h> |
| 34 | #include <linux/timer.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/bug.h> |
| 37 | #include <linux/nmi.h> |
| 38 | #include <linux/mm.h> |
| 39 | #include <linux/smp.h> |
| 40 | #include <linux/cpu.h> |
| 41 | #include <linux/io.h> |
| 42 | #include <linux/hardirq.h> |
| 43 | #include <linux/atomic.h> |
| 44 | #include <linux/iommu.h> |
| 45 | #include <linux/ubsan.h> |
| 46 | |
| 47 | #include <asm/stacktrace.h> |
| 48 | #include <asm/processor.h> |
| 49 | #include <asm/debugreg.h> |
| 50 | #include <asm/realmode.h> |
| 51 | #include <asm/text-patching.h> |
| 52 | #include <asm/ftrace.h> |
| 53 | #include <asm/traps.h> |
| 54 | #include <asm/desc.h> |
| 55 | #include <asm/fred.h> |
| 56 | #include <asm/fpu/api.h> |
| 57 | #include <asm/cpu.h> |
| 58 | #include <asm/cpu_entry_area.h> |
| 59 | #include <asm/mce.h> |
| 60 | #include <asm/fixmap.h> |
| 61 | #include <asm/mach_traps.h> |
| 62 | #include <asm/alternative.h> |
| 63 | #include <asm/fpu/xstate.h> |
| 64 | #include <asm/vm86.h> |
| 65 | #include <asm/umip.h> |
| 66 | #include <asm/insn.h> |
| 67 | #include <asm/insn-eval.h> |
| 68 | #include <asm/vdso.h> |
| 69 | #include <asm/tdx.h> |
| 70 | #include <asm/cfi.h> |
| 71 | #include <asm/msr.h> |
| 72 | |
| 73 | #ifdef CONFIG_X86_64 |
| 74 | #include <asm/x86_init.h> |
| 75 | #else |
| 76 | #include <asm/processor-flags.h> |
| 77 | #include <asm/setup.h> |
| 78 | #endif |
| 79 | |
| 80 | #include <asm/proto.h> |
| 81 | |
| 82 | DECLARE_BITMAP(system_vectors, NR_VECTORS); |
| 83 | |
| 84 | __always_inline int is_valid_bugaddr(unsigned long addr) |
| 85 | { |
| 86 | if (addr < TASK_SIZE_MAX) |
| 87 | return 0; |
| 88 | |
| 89 | /* |
| 90 | * We got #UD, if the text isn't readable we'd have gotten |
| 91 | * a different exception. |
| 92 | */ |
| 93 | return *(unsigned short *)addr == INSN_UD2; |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * Check for UD1 or UD2, accounting for Address Size Override Prefixes. |
| 98 | * If it's a UD1, further decode to determine its use: |
| 99 | * |
| 100 | * FineIBT: ea (bad) |
| 101 | * FineIBT: f0 75 f9 lock jne . - 6 |
| 102 | * UBSan{0}: 67 0f b9 00 ud1 (%eax),%eax |
| 103 | * UBSan{10}: 67 0f b9 40 10 ud1 0x10(%eax),%eax |
| 104 | * static_call: 0f b9 cc ud1 %esp,%ecx |
| 105 | * |
| 106 | * Notably UBSAN uses EAX, static_call uses ECX. |
| 107 | */ |
| 108 | __always_inline int decode_bug(unsigned long addr, s32 *imm, int *len) |
| 109 | { |
| 110 | unsigned long start = addr; |
| 111 | bool lock = false; |
| 112 | u8 v; |
| 113 | |
| 114 | if (addr < TASK_SIZE_MAX) |
| 115 | return BUG_NONE; |
| 116 | |
| 117 | v = *(u8 *)(addr++); |
| 118 | if (v == INSN_ASOP) |
| 119 | v = *(u8 *)(addr++); |
| 120 | |
| 121 | if (v == INSN_LOCK) { |
| 122 | lock = true; |
| 123 | v = *(u8 *)(addr++); |
| 124 | } |
| 125 | |
| 126 | switch (v) { |
| 127 | case 0x70 ... 0x7f: /* Jcc.d8 */ |
| 128 | addr += 1; /* d8 */ |
| 129 | *len = addr - start; |
| 130 | WARN_ON_ONCE(!lock); |
| 131 | return BUG_LOCK; |
| 132 | |
| 133 | case 0xea: |
| 134 | *len = addr - start; |
| 135 | return BUG_EA; |
| 136 | |
| 137 | case OPCODE_ESCAPE: |
| 138 | break; |
| 139 | |
| 140 | default: |
| 141 | return BUG_NONE; |
| 142 | } |
| 143 | |
| 144 | v = *(u8 *)(addr++); |
| 145 | if (v == SECOND_BYTE_OPCODE_UD2) { |
| 146 | *len = addr - start; |
| 147 | return BUG_UD2; |
| 148 | } |
| 149 | |
| 150 | if (v != SECOND_BYTE_OPCODE_UD1) |
| 151 | return BUG_NONE; |
| 152 | |
| 153 | *imm = 0; |
| 154 | v = *(u8 *)(addr++); /* ModRM */ |
| 155 | |
| 156 | if (X86_MODRM_MOD(v) != 3 && X86_MODRM_RM(v) == 4) |
| 157 | addr++; /* SIB */ |
| 158 | |
| 159 | /* Decode immediate, if present */ |
| 160 | switch (X86_MODRM_MOD(v)) { |
| 161 | case 0: if (X86_MODRM_RM(v) == 5) |
| 162 | addr += 4; /* RIP + disp32 */ |
| 163 | break; |
| 164 | |
| 165 | case 1: *imm = *(s8 *)addr; |
| 166 | addr += 1; |
| 167 | break; |
| 168 | |
| 169 | case 2: *imm = *(s32 *)addr; |
| 170 | addr += 4; |
| 171 | break; |
| 172 | |
| 173 | case 3: break; |
| 174 | } |
| 175 | |
| 176 | /* record instruction length */ |
| 177 | *len = addr - start; |
| 178 | |
| 179 | if (X86_MODRM_REG(v) == 0) /* EAX */ |
| 180 | return BUG_UD1_UBSAN; |
| 181 | |
| 182 | return BUG_UD1; |
| 183 | } |
| 184 | |
| 185 | |
| 186 | static nokprobe_inline int |
| 187 | do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, |
| 188 | struct pt_regs *regs, long error_code) |
| 189 | { |
| 190 | if (v8086_mode(regs)) { |
| 191 | /* |
| 192 | * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| 193 | * On nmi (interrupt 2), do_trap should not be called. |
| 194 | */ |
| 195 | if (trapnr < X86_TRAP_UD) { |
| 196 | if (!handle_vm86_trap(a: (struct kernel_vm86_regs *) regs, |
| 197 | b: error_code, c: trapnr)) |
| 198 | return 0; |
| 199 | } |
| 200 | } else if (!user_mode(regs)) { |
| 201 | if (fixup_exception(regs, trapnr, error_code, fault_addr: 0)) |
| 202 | return 0; |
| 203 | |
| 204 | tsk->thread.error_code = error_code; |
| 205 | tsk->thread.trap_nr = trapnr; |
| 206 | die(str, regs, error_code); |
| 207 | } else { |
| 208 | if (fixup_vdso_exception(regs, trapnr, error_code, fault_addr: 0)) |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * We want error_code and trap_nr set for userspace faults and |
| 214 | * kernelspace faults which result in die(), but not |
| 215 | * kernelspace faults which are fixed up. die() gives the |
| 216 | * process no chance to handle the signal and notice the |
| 217 | * kernel fault information, so that won't result in polluting |
| 218 | * the information about previously queued, but not yet |
| 219 | * delivered, faults. See also exc_general_protection below. |
| 220 | */ |
| 221 | tsk->thread.error_code = error_code; |
| 222 | tsk->thread.trap_nr = trapnr; |
| 223 | |
| 224 | return -1; |
| 225 | } |
| 226 | |
| 227 | static void show_signal(struct task_struct *tsk, int signr, |
| 228 | const char *type, const char *desc, |
| 229 | struct pt_regs *regs, long error_code) |
| 230 | { |
| 231 | if (show_unhandled_signals && unhandled_signal(tsk, sig: signr) && |
| 232 | printk_ratelimit()) { |
| 233 | pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx" , |
| 234 | tsk->comm, task_pid_nr(tsk), type, desc, |
| 235 | regs->ip, regs->sp, error_code); |
| 236 | print_vma_addr(KERN_CONT " in " , rip: regs->ip); |
| 237 | pr_cont("\n" ); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | static void |
| 242 | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| 243 | long error_code, int sicode, void __user *addr) |
| 244 | { |
| 245 | struct task_struct *tsk = current; |
| 246 | |
| 247 | if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| 248 | return; |
| 249 | |
| 250 | show_signal(tsk, signr, type: "trap " , desc: str, regs, error_code); |
| 251 | |
| 252 | if (!sicode) |
| 253 | force_sig(signr); |
| 254 | else |
| 255 | force_sig_fault(sig: signr, code: sicode, addr); |
| 256 | } |
| 257 | NOKPROBE_SYMBOL(do_trap); |
| 258 | |
| 259 | static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| 260 | unsigned long trapnr, int signr, int sicode, void __user *addr) |
| 261 | { |
| 262 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU" ); |
| 263 | |
| 264 | if (notify_die(val: DIE_TRAP, str, regs, err: error_code, trap: trapnr, sig: signr) != |
| 265 | NOTIFY_STOP) { |
| 266 | cond_local_irq_enable(regs); |
| 267 | do_trap(trapnr, signr, str, regs, error_code, sicode, addr); |
| 268 | cond_local_irq_disable(regs); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Posix requires to provide the address of the faulting instruction for |
| 274 | * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. |
| 275 | * |
| 276 | * This address is usually regs->ip, but when an uprobe moved the code out |
| 277 | * of line then regs->ip points to the XOL code which would confuse |
| 278 | * anything which analyzes the fault address vs. the unmodified binary. If |
| 279 | * a trap happened in XOL code then uprobe maps regs->ip back to the |
| 280 | * original instruction address. |
| 281 | */ |
| 282 | static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) |
| 283 | { |
| 284 | return (void __user *)uprobe_get_trap_addr(regs); |
| 285 | } |
| 286 | |
| 287 | DEFINE_IDTENTRY(exc_divide_error) |
| 288 | { |
| 289 | do_error_trap(regs, error_code: 0, str: "divide error" , X86_TRAP_DE, SIGFPE, |
| 290 | FPE_INTDIV, addr: error_get_trap_addr(regs)); |
| 291 | } |
| 292 | |
| 293 | DEFINE_IDTENTRY(exc_overflow) |
| 294 | { |
| 295 | do_error_trap(regs, error_code: 0, str: "overflow" , X86_TRAP_OF, SIGSEGV, sicode: 0, NULL); |
| 296 | } |
| 297 | |
| 298 | #ifdef CONFIG_X86_F00F_BUG |
| 299 | void handle_invalid_op(struct pt_regs *regs) |
| 300 | #else |
| 301 | static inline void handle_invalid_op(struct pt_regs *regs) |
| 302 | #endif |
| 303 | { |
| 304 | do_error_trap(regs, error_code: 0, str: "invalid opcode" , X86_TRAP_UD, SIGILL, |
| 305 | ILL_ILLOPN, addr: error_get_trap_addr(regs)); |
| 306 | } |
| 307 | |
| 308 | static noinstr bool handle_bug(struct pt_regs *regs) |
| 309 | { |
| 310 | unsigned long addr = regs->ip; |
| 311 | bool handled = false; |
| 312 | int ud_type, ud_len; |
| 313 | s32 ud_imm; |
| 314 | |
| 315 | ud_type = decode_bug(addr, imm: &ud_imm, len: &ud_len); |
| 316 | if (ud_type == BUG_NONE) |
| 317 | return handled; |
| 318 | |
| 319 | /* |
| 320 | * All lies, just get the WARN/BUG out. |
| 321 | */ |
| 322 | instrumentation_begin(); |
| 323 | /* |
| 324 | * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() |
| 325 | * is a rare case that uses @regs without passing them to |
| 326 | * irqentry_enter(). |
| 327 | */ |
| 328 | kmsan_unpoison_entry_regs(regs); |
| 329 | /* |
| 330 | * Since we're emulating a CALL with exceptions, restore the interrupt |
| 331 | * state to what it was at the exception site. |
| 332 | */ |
| 333 | if (regs->flags & X86_EFLAGS_IF) |
| 334 | raw_local_irq_enable(); |
| 335 | |
| 336 | switch (ud_type) { |
| 337 | case BUG_UD2: |
| 338 | if (report_bug(bug_addr: regs->ip, regs) == BUG_TRAP_TYPE_WARN) { |
| 339 | handled = true; |
| 340 | break; |
| 341 | } |
| 342 | fallthrough; |
| 343 | |
| 344 | case BUG_EA: |
| 345 | case BUG_LOCK: |
| 346 | if (handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { |
| 347 | handled = true; |
| 348 | break; |
| 349 | } |
| 350 | break; |
| 351 | |
| 352 | case BUG_UD1_UBSAN: |
| 353 | if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { |
| 354 | pr_crit("%s at %pS\n" , |
| 355 | report_ubsan_failure(ud_imm), |
| 356 | (void *)regs->ip); |
| 357 | } |
| 358 | break; |
| 359 | |
| 360 | default: |
| 361 | break; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * When continuing, and regs->ip hasn't changed, move it to the next |
| 366 | * instruction. When not continuing execution, restore the instruction |
| 367 | * pointer. |
| 368 | */ |
| 369 | if (handled) { |
| 370 | if (regs->ip == addr) |
| 371 | regs->ip += ud_len; |
| 372 | } else { |
| 373 | regs->ip = addr; |
| 374 | } |
| 375 | |
| 376 | if (regs->flags & X86_EFLAGS_IF) |
| 377 | raw_local_irq_disable(); |
| 378 | instrumentation_end(); |
| 379 | |
| 380 | return handled; |
| 381 | } |
| 382 | |
| 383 | DEFINE_IDTENTRY_RAW(exc_invalid_op) |
| 384 | { |
| 385 | irqentry_state_t state; |
| 386 | |
| 387 | /* |
| 388 | * We use UD2 as a short encoding for 'CALL __WARN', as such |
| 389 | * handle it before exception entry to avoid recursive WARN |
| 390 | * in case exception entry is the one triggering WARNs. |
| 391 | */ |
| 392 | if (!user_mode(regs) && handle_bug(regs)) |
| 393 | return; |
| 394 | |
| 395 | state = irqentry_enter(regs); |
| 396 | instrumentation_begin(); |
| 397 | handle_invalid_op(regs); |
| 398 | instrumentation_end(); |
| 399 | irqentry_exit(regs, state); |
| 400 | } |
| 401 | |
| 402 | DEFINE_IDTENTRY(exc_coproc_segment_overrun) |
| 403 | { |
| 404 | do_error_trap(regs, error_code: 0, str: "coprocessor segment overrun" , |
| 405 | X86_TRAP_OLD_MF, SIGFPE, sicode: 0, NULL); |
| 406 | } |
| 407 | |
| 408 | DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) |
| 409 | { |
| 410 | do_error_trap(regs, error_code, str: "invalid TSS" , X86_TRAP_TS, SIGSEGV, |
| 411 | sicode: 0, NULL); |
| 412 | } |
| 413 | |
| 414 | DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) |
| 415 | { |
| 416 | do_error_trap(regs, error_code, str: "segment not present" , X86_TRAP_NP, |
| 417 | SIGBUS, sicode: 0, NULL); |
| 418 | } |
| 419 | |
| 420 | DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) |
| 421 | { |
| 422 | do_error_trap(regs, error_code, str: "stack segment" , X86_TRAP_SS, SIGBUS, |
| 423 | sicode: 0, NULL); |
| 424 | } |
| 425 | |
| 426 | DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) |
| 427 | { |
| 428 | char *str = "alignment check" ; |
| 429 | |
| 430 | if (notify_die(val: DIE_TRAP, str, regs, err: error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) |
| 431 | return; |
| 432 | |
| 433 | if (!user_mode(regs)) |
| 434 | die("Split lock detected\n" , regs, error_code); |
| 435 | |
| 436 | local_irq_enable(); |
| 437 | |
| 438 | if (handle_user_split_lock(regs, error_code)) |
| 439 | goto out; |
| 440 | |
| 441 | do_trap(X86_TRAP_AC, SIGBUS, str: "alignment check" , regs, |
| 442 | error_code, BUS_ADRALN, NULL); |
| 443 | |
| 444 | out: |
| 445 | local_irq_disable(); |
| 446 | } |
| 447 | |
| 448 | #ifdef CONFIG_VMAP_STACK |
| 449 | __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, |
| 450 | unsigned long fault_address, |
| 451 | struct stack_info *info) |
| 452 | { |
| 453 | const char *name = stack_type_name(type: info->type); |
| 454 | |
| 455 | printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n" , |
| 456 | name, (void *)fault_address, info->begin, info->end); |
| 457 | |
| 458 | die("stack guard page" , regs, 0); |
| 459 | |
| 460 | /* Be absolutely certain we don't return. */ |
| 461 | panic(fmt: "%s stack guard hit" , name); |
| 462 | } |
| 463 | #endif |
| 464 | |
| 465 | /* |
| 466 | * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64 |
| 467 | * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch |
| 468 | * between configs triggers objtool warnings. |
| 469 | * |
| 470 | * This is a temporary hack until we have compiler or plugin support for |
| 471 | * annotating noreturns. |
| 472 | */ |
| 473 | #ifdef CONFIG_X86_ESPFIX64 |
| 474 | #define always_true() true |
| 475 | #else |
| 476 | bool always_true(void); |
| 477 | bool __weak always_true(void) { return true; } |
| 478 | #endif |
| 479 | |
| 480 | /* |
| 481 | * Runs on an IST stack for x86_64 and on a special task stack for x86_32. |
| 482 | * |
| 483 | * On x86_64, this is more or less a normal kernel entry. Notwithstanding the |
| 484 | * SDM's warnings about double faults being unrecoverable, returning works as |
| 485 | * expected. Presumably what the SDM actually means is that the CPU may get |
| 486 | * the register state wrong on entry, so returning could be a bad idea. |
| 487 | * |
| 488 | * Various CPU engineers have promised that double faults due to an IRET fault |
| 489 | * while the stack is read-only are, in fact, recoverable. |
| 490 | * |
| 491 | * On x86_32, this is entered through a task gate, and regs are synthesized |
| 492 | * from the TSS. Returning is, in principle, okay, but changes to regs will |
| 493 | * be lost. If, for some reason, we need to return to a context with modified |
| 494 | * regs, the shim code could be adjusted to synchronize the registers. |
| 495 | * |
| 496 | * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs |
| 497 | * to be read before doing anything else. |
| 498 | */ |
| 499 | DEFINE_IDTENTRY_DF(exc_double_fault) |
| 500 | { |
| 501 | static const char str[] = "double fault" ; |
| 502 | struct task_struct *tsk = current; |
| 503 | |
| 504 | #ifdef CONFIG_VMAP_STACK |
| 505 | unsigned long address = read_cr2(); |
| 506 | struct stack_info info; |
| 507 | #endif |
| 508 | |
| 509 | #ifdef CONFIG_X86_ESPFIX64 |
| 510 | extern unsigned char native_irq_return_iret[]; |
| 511 | |
| 512 | /* |
| 513 | * If IRET takes a non-IST fault on the espfix64 stack, then we |
| 514 | * end up promoting it to a doublefault. In that case, take |
| 515 | * advantage of the fact that we're not using the normal (TSS.sp0) |
| 516 | * stack right now. We can write a fake #GP(0) frame at TSS.sp0 |
| 517 | * and then modify our own IRET frame so that, when we return, |
| 518 | * we land directly at the #GP(0) vector with the stack already |
| 519 | * set up according to its expectations. |
| 520 | * |
| 521 | * The net result is that our #GP handler will think that we |
| 522 | * entered from usermode with the bad user context. |
| 523 | * |
| 524 | * No need for nmi_enter() here because we don't use RCU. |
| 525 | */ |
| 526 | if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
| 527 | regs->cs == __KERNEL_CS && |
| 528 | regs->ip == (unsigned long)native_irq_return_iret) |
| 529 | { |
| 530 | struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| 531 | unsigned long *p = (unsigned long *)regs->sp; |
| 532 | |
| 533 | /* |
| 534 | * regs->sp points to the failing IRET frame on the |
| 535 | * ESPFIX64 stack. Copy it to the entry stack. This fills |
| 536 | * in gpregs->ss through gpregs->ip. |
| 537 | * |
| 538 | */ |
| 539 | gpregs->ip = p[0]; |
| 540 | gpregs->cs = p[1]; |
| 541 | gpregs->flags = p[2]; |
| 542 | gpregs->sp = p[3]; |
| 543 | gpregs->ss = p[4]; |
| 544 | gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| 545 | |
| 546 | /* |
| 547 | * Adjust our frame so that we return straight to the #GP |
| 548 | * vector with the expected RSP value. This is safe because |
| 549 | * we won't enable interrupts or schedule before we invoke |
| 550 | * general_protection, so nothing will clobber the stack |
| 551 | * frame we just set up. |
| 552 | * |
| 553 | * We will enter general_protection with kernel GSBASE, |
| 554 | * which is what the stub expects, given that the faulting |
| 555 | * RIP will be the IRET instruction. |
| 556 | */ |
| 557 | regs->ip = (unsigned long)asm_exc_general_protection; |
| 558 | regs->sp = (unsigned long)&gpregs->orig_ax; |
| 559 | |
| 560 | return; |
| 561 | } |
| 562 | #endif |
| 563 | |
| 564 | irqentry_nmi_enter(regs); |
| 565 | instrumentation_begin(); |
| 566 | notify_die(val: DIE_TRAP, str, regs, err: error_code, X86_TRAP_DF, SIGSEGV); |
| 567 | |
| 568 | tsk->thread.error_code = error_code; |
| 569 | tsk->thread.trap_nr = X86_TRAP_DF; |
| 570 | |
| 571 | #ifdef CONFIG_VMAP_STACK |
| 572 | /* |
| 573 | * If we overflow the stack into a guard page, the CPU will fail |
| 574 | * to deliver #PF and will send #DF instead. Similarly, if we |
| 575 | * take any non-IST exception while too close to the bottom of |
| 576 | * the stack, the processor will get a page fault while |
| 577 | * delivering the exception and will generate a double fault. |
| 578 | * |
| 579 | * According to the SDM (footnote in 6.15 under "Interrupt 14 - |
| 580 | * Page-Fault Exception (#PF): |
| 581 | * |
| 582 | * Processors update CR2 whenever a page fault is detected. If a |
| 583 | * second page fault occurs while an earlier page fault is being |
| 584 | * delivered, the faulting linear address of the second fault will |
| 585 | * overwrite the contents of CR2 (replacing the previous |
| 586 | * address). These updates to CR2 occur even if the page fault |
| 587 | * results in a double fault or occurs during the delivery of a |
| 588 | * double fault. |
| 589 | * |
| 590 | * The logic below has a small possibility of incorrectly diagnosing |
| 591 | * some errors as stack overflows. For example, if the IDT or GDT |
| 592 | * gets corrupted such that #GP delivery fails due to a bad descriptor |
| 593 | * causing #GP and we hit this condition while CR2 coincidentally |
| 594 | * points to the stack guard page, we'll think we overflowed the |
| 595 | * stack. Given that we're going to panic one way or another |
| 596 | * if this happens, this isn't necessarily worth fixing. |
| 597 | * |
| 598 | * If necessary, we could improve the test by only diagnosing |
| 599 | * a stack overflow if the saved RSP points within 47 bytes of |
| 600 | * the bottom of the stack: if RSP == tsk_stack + 48 and we |
| 601 | * take an exception, the stack is already aligned and there |
| 602 | * will be enough room SS, RSP, RFLAGS, CS, RIP, and a |
| 603 | * possible error code, so a stack overflow would *not* double |
| 604 | * fault. With any less space left, exception delivery could |
| 605 | * fail, and, as a practical matter, we've overflowed the |
| 606 | * stack even if the actual trigger for the double fault was |
| 607 | * something else. |
| 608 | */ |
| 609 | if (get_stack_guard_info(stack: (void *)address, info: &info)) |
| 610 | handle_stack_overflow(regs, fault_address: address, info: &info); |
| 611 | #endif |
| 612 | |
| 613 | pr_emerg("PANIC: double fault, error_code: 0x%lx\n" , error_code); |
| 614 | die("double fault" , regs, error_code); |
| 615 | if (always_true()) |
| 616 | panic(fmt: "Machine halted." ); |
| 617 | instrumentation_end(); |
| 618 | } |
| 619 | |
| 620 | DEFINE_IDTENTRY(exc_bounds) |
| 621 | { |
| 622 | if (notify_die(val: DIE_TRAP, str: "bounds" , regs, err: 0, |
| 623 | X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| 624 | return; |
| 625 | cond_local_irq_enable(regs); |
| 626 | |
| 627 | if (!user_mode(regs)) |
| 628 | die("bounds" , regs, 0); |
| 629 | |
| 630 | do_trap(X86_TRAP_BR, SIGSEGV, str: "bounds" , regs, error_code: 0, sicode: 0, NULL); |
| 631 | |
| 632 | cond_local_irq_disable(regs); |
| 633 | } |
| 634 | |
| 635 | enum kernel_gp_hint { |
| 636 | GP_NO_HINT, |
| 637 | GP_NON_CANONICAL, |
| 638 | GP_CANONICAL |
| 639 | }; |
| 640 | |
| 641 | /* |
| 642 | * When an uncaught #GP occurs, try to determine the memory address accessed by |
| 643 | * the instruction and return that address to the caller. Also, try to figure |
| 644 | * out whether any part of the access to that address was non-canonical. |
| 645 | */ |
| 646 | static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, |
| 647 | unsigned long *addr) |
| 648 | { |
| 649 | u8 insn_buf[MAX_INSN_SIZE]; |
| 650 | struct insn insn; |
| 651 | int ret; |
| 652 | |
| 653 | if (copy_from_kernel_nofault(dst: insn_buf, src: (void *)regs->ip, |
| 654 | MAX_INSN_SIZE)) |
| 655 | return GP_NO_HINT; |
| 656 | |
| 657 | ret = insn_decode_kernel(&insn, insn_buf); |
| 658 | if (ret < 0) |
| 659 | return GP_NO_HINT; |
| 660 | |
| 661 | *addr = (unsigned long)insn_get_addr_ref(insn: &insn, regs); |
| 662 | if (*addr == -1UL) |
| 663 | return GP_NO_HINT; |
| 664 | |
| 665 | #ifdef CONFIG_X86_64 |
| 666 | /* |
| 667 | * Check that: |
| 668 | * - the operand is not in the kernel half |
| 669 | * - the last byte of the operand is not in the user canonical half |
| 670 | */ |
| 671 | if (*addr < ~__VIRTUAL_MASK && |
| 672 | *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) |
| 673 | return GP_NON_CANONICAL; |
| 674 | #endif |
| 675 | |
| 676 | return GP_CANONICAL; |
| 677 | } |
| 678 | |
| 679 | #define GPFSTR "general protection fault" |
| 680 | |
| 681 | static bool fixup_iopl_exception(struct pt_regs *regs) |
| 682 | { |
| 683 | struct thread_struct *t = ¤t->thread; |
| 684 | unsigned char byte; |
| 685 | unsigned long ip; |
| 686 | |
| 687 | if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) |
| 688 | return false; |
| 689 | |
| 690 | if (insn_get_effective_ip(regs, ip: &ip)) |
| 691 | return false; |
| 692 | |
| 693 | if (get_user(byte, (const char __user *)ip)) |
| 694 | return false; |
| 695 | |
| 696 | if (byte != 0xfa && byte != 0xfb) |
| 697 | return false; |
| 698 | |
| 699 | if (!t->iopl_warn && printk_ratelimit()) { |
| 700 | pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx" , |
| 701 | current->comm, task_pid_nr(current), ip); |
| 702 | print_vma_addr(KERN_CONT " in " , rip: ip); |
| 703 | pr_cont("\n" ); |
| 704 | t->iopl_warn = 1; |
| 705 | } |
| 706 | |
| 707 | regs->ip += 1; |
| 708 | return true; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * The unprivileged ENQCMD instruction generates #GPs if the |
| 713 | * IA32_PASID MSR has not been populated. If possible, populate |
| 714 | * the MSR from a PASID previously allocated to the mm. |
| 715 | */ |
| 716 | static bool try_fixup_enqcmd_gp(void) |
| 717 | { |
| 718 | #ifdef CONFIG_ARCH_HAS_CPU_PASID |
| 719 | u32 pasid; |
| 720 | |
| 721 | /* |
| 722 | * MSR_IA32_PASID is managed using XSAVE. Directly |
| 723 | * writing to the MSR is only possible when fpregs |
| 724 | * are valid and the fpstate is not. This is |
| 725 | * guaranteed when handling a userspace exception |
| 726 | * in *before* interrupts are re-enabled. |
| 727 | */ |
| 728 | lockdep_assert_irqs_disabled(); |
| 729 | |
| 730 | /* |
| 731 | * Hardware without ENQCMD will not generate |
| 732 | * #GPs that can be fixed up here. |
| 733 | */ |
| 734 | if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) |
| 735 | return false; |
| 736 | |
| 737 | /* |
| 738 | * If the mm has not been allocated a |
| 739 | * PASID, the #GP can not be fixed up. |
| 740 | */ |
| 741 | if (!mm_valid_pasid(current->mm)) |
| 742 | return false; |
| 743 | |
| 744 | pasid = mm_get_enqcmd_pasid(current->mm); |
| 745 | |
| 746 | /* |
| 747 | * Did this thread already have its PASID activated? |
| 748 | * If so, the #GP must be from something else. |
| 749 | */ |
| 750 | if (current->pasid_activated) |
| 751 | return false; |
| 752 | |
| 753 | wrmsrq(MSR_IA32_PASID, val: pasid | MSR_IA32_PASID_VALID); |
| 754 | current->pasid_activated = 1; |
| 755 | |
| 756 | return true; |
| 757 | #else |
| 758 | return false; |
| 759 | #endif |
| 760 | } |
| 761 | |
| 762 | static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, |
| 763 | unsigned long error_code, const char *str, |
| 764 | unsigned long address) |
| 765 | { |
| 766 | if (fixup_exception(regs, trapnr, error_code, fault_addr: address)) |
| 767 | return true; |
| 768 | |
| 769 | current->thread.error_code = error_code; |
| 770 | current->thread.trap_nr = trapnr; |
| 771 | |
| 772 | /* |
| 773 | * To be potentially processing a kprobe fault and to trust the result |
| 774 | * from kprobe_running(), we have to be non-preemptible. |
| 775 | */ |
| 776 | if (!preemptible() && kprobe_running() && |
| 777 | kprobe_fault_handler(regs, trapnr)) |
| 778 | return true; |
| 779 | |
| 780 | return notify_die(val: DIE_GPF, str, regs, err: error_code, trap: trapnr, SIGSEGV) == NOTIFY_STOP; |
| 781 | } |
| 782 | |
| 783 | static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, |
| 784 | unsigned long error_code, const char *str) |
| 785 | { |
| 786 | current->thread.error_code = error_code; |
| 787 | current->thread.trap_nr = trapnr; |
| 788 | show_signal(current, SIGSEGV, type: "" , desc: str, regs, error_code); |
| 789 | force_sig(SIGSEGV); |
| 790 | } |
| 791 | |
| 792 | DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) |
| 793 | { |
| 794 | char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; |
| 795 | enum kernel_gp_hint hint = GP_NO_HINT; |
| 796 | unsigned long gp_addr; |
| 797 | |
| 798 | if (user_mode(regs) && try_fixup_enqcmd_gp()) |
| 799 | return; |
| 800 | |
| 801 | cond_local_irq_enable(regs); |
| 802 | |
| 803 | if (static_cpu_has(X86_FEATURE_UMIP)) { |
| 804 | if (user_mode(regs) && fixup_umip_exception(regs)) |
| 805 | goto exit; |
| 806 | } |
| 807 | |
| 808 | if (v8086_mode(regs)) { |
| 809 | local_irq_enable(); |
| 810 | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| 811 | local_irq_disable(); |
| 812 | return; |
| 813 | } |
| 814 | |
| 815 | if (user_mode(regs)) { |
| 816 | if (fixup_iopl_exception(regs)) |
| 817 | goto exit; |
| 818 | |
| 819 | if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, fault_addr: 0)) |
| 820 | goto exit; |
| 821 | |
| 822 | gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, str: desc); |
| 823 | goto exit; |
| 824 | } |
| 825 | |
| 826 | if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, str: desc, address: 0)) |
| 827 | goto exit; |
| 828 | |
| 829 | if (error_code) |
| 830 | snprintf(buf: desc, size: sizeof(desc), fmt: "segment-related " GPFSTR); |
| 831 | else |
| 832 | hint = get_kernel_gp_address(regs, addr: &gp_addr); |
| 833 | |
| 834 | if (hint != GP_NO_HINT) |
| 835 | snprintf(buf: desc, size: sizeof(desc), GPFSTR ", %s 0x%lx" , |
| 836 | (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" |
| 837 | : "maybe for address" , |
| 838 | gp_addr); |
| 839 | |
| 840 | /* |
| 841 | * KASAN is interested only in the non-canonical case, clear it |
| 842 | * otherwise. |
| 843 | */ |
| 844 | if (hint != GP_NON_CANONICAL) |
| 845 | gp_addr = 0; |
| 846 | |
| 847 | die_addr(str: desc, regs, err: error_code, gp_addr); |
| 848 | |
| 849 | exit: |
| 850 | cond_local_irq_disable(regs); |
| 851 | } |
| 852 | |
| 853 | static bool do_int3(struct pt_regs *regs) |
| 854 | { |
| 855 | int res; |
| 856 | |
| 857 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| 858 | if (kgdb_ll_trap(cmd: DIE_INT3, str: "int3" , regs, err: 0, X86_TRAP_BP, |
| 859 | SIGTRAP) == NOTIFY_STOP) |
| 860 | return true; |
| 861 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| 862 | |
| 863 | #ifdef CONFIG_KPROBES |
| 864 | if (kprobe_int3_handler(regs)) |
| 865 | return true; |
| 866 | #endif |
| 867 | res = notify_die(val: DIE_INT3, str: "int3" , regs, err: 0, X86_TRAP_BP, SIGTRAP); |
| 868 | |
| 869 | return res == NOTIFY_STOP; |
| 870 | } |
| 871 | NOKPROBE_SYMBOL(do_int3); |
| 872 | |
| 873 | static void do_int3_user(struct pt_regs *regs) |
| 874 | { |
| 875 | if (do_int3(regs)) |
| 876 | return; |
| 877 | |
| 878 | cond_local_irq_enable(regs); |
| 879 | do_trap(X86_TRAP_BP, SIGTRAP, str: "int3" , regs, error_code: 0, sicode: 0, NULL); |
| 880 | cond_local_irq_disable(regs); |
| 881 | } |
| 882 | |
| 883 | DEFINE_IDTENTRY_RAW(exc_int3) |
| 884 | { |
| 885 | /* |
| 886 | * smp_text_poke_int3_handler() is completely self contained code; it does (and |
| 887 | * must) *NOT* call out to anything, lest it hits upon yet another |
| 888 | * INT3. |
| 889 | */ |
| 890 | if (smp_text_poke_int3_handler(regs)) |
| 891 | return; |
| 892 | |
| 893 | /* |
| 894 | * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() |
| 895 | * and therefore can trigger INT3, hence smp_text_poke_int3_handler() must |
| 896 | * be done before. If the entry came from kernel mode, then use |
| 897 | * nmi_enter() because the INT3 could have been hit in any context |
| 898 | * including NMI. |
| 899 | */ |
| 900 | if (user_mode(regs)) { |
| 901 | irqentry_enter_from_user_mode(regs); |
| 902 | instrumentation_begin(); |
| 903 | do_int3_user(regs); |
| 904 | instrumentation_end(); |
| 905 | irqentry_exit_to_user_mode(regs); |
| 906 | } else { |
| 907 | irqentry_state_t irq_state = irqentry_nmi_enter(regs); |
| 908 | |
| 909 | instrumentation_begin(); |
| 910 | if (!do_int3(regs)) |
| 911 | die("int3" , regs, 0); |
| 912 | instrumentation_end(); |
| 913 | irqentry_nmi_exit(regs, irq_state); |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | #ifdef CONFIG_X86_64 |
| 918 | /* |
| 919 | * Help handler running on a per-cpu (IST or entry trampoline) stack |
| 920 | * to switch to the normal thread stack if the interrupted code was in |
| 921 | * user mode. The actual stack switch is done in entry_64.S |
| 922 | */ |
| 923 | asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) |
| 924 | { |
| 925 | struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1; |
| 926 | if (regs != eregs) |
| 927 | *regs = *eregs; |
| 928 | return regs; |
| 929 | } |
| 930 | |
| 931 | #ifdef CONFIG_AMD_MEM_ENCRYPT |
| 932 | asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) |
| 933 | { |
| 934 | unsigned long sp, *stack; |
| 935 | struct stack_info info; |
| 936 | struct pt_regs *regs_ret; |
| 937 | |
| 938 | /* |
| 939 | * In the SYSCALL entry path the RSP value comes from user-space - don't |
| 940 | * trust it and switch to the current kernel stack |
| 941 | */ |
| 942 | if (ip_within_syscall_gap(regs)) { |
| 943 | sp = current_top_of_stack(); |
| 944 | goto sync; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * From here on the RSP value is trusted. Now check whether entry |
| 949 | * happened from a safe stack. Not safe are the entry or unknown stacks, |
| 950 | * use the fall-back stack instead in this case. |
| 951 | */ |
| 952 | sp = regs->sp; |
| 953 | stack = (unsigned long *)sp; |
| 954 | |
| 955 | if (!get_stack_info_noinstr(stack, current, info: &info) || info.type == STACK_TYPE_ENTRY || |
| 956 | info.type > STACK_TYPE_EXCEPTION_LAST) |
| 957 | sp = __this_cpu_ist_top_va(VC2); |
| 958 | |
| 959 | sync: |
| 960 | /* |
| 961 | * Found a safe stack - switch to it as if the entry didn't happen via |
| 962 | * IST stack. The code below only copies pt_regs, the real switch happens |
| 963 | * in assembly code. |
| 964 | */ |
| 965 | sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); |
| 966 | |
| 967 | regs_ret = (struct pt_regs *)sp; |
| 968 | *regs_ret = *regs; |
| 969 | |
| 970 | return regs_ret; |
| 971 | } |
| 972 | #endif |
| 973 | |
| 974 | asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) |
| 975 | { |
| 976 | struct pt_regs tmp, *new_stack; |
| 977 | |
| 978 | /* |
| 979 | * This is called from entry_64.S early in handling a fault |
| 980 | * caused by a bad iret to user mode. To handle the fault |
| 981 | * correctly, we want to move our stack frame to where it would |
| 982 | * be had we entered directly on the entry stack (rather than |
| 983 | * just below the IRET frame) and we want to pretend that the |
| 984 | * exception came from the IRET target. |
| 985 | */ |
| 986 | new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| 987 | |
| 988 | /* Copy the IRET target to the temporary storage. */ |
| 989 | __memcpy(to: &tmp.ip, from: (void *)bad_regs->sp, len: 5*8); |
| 990 | |
| 991 | /* Copy the remainder of the stack from the current stack. */ |
| 992 | __memcpy(to: &tmp, from: bad_regs, offsetof(struct pt_regs, ip)); |
| 993 | |
| 994 | /* Update the entry stack */ |
| 995 | __memcpy(to: new_stack, from: &tmp, len: sizeof(tmp)); |
| 996 | |
| 997 | BUG_ON(!user_mode(new_stack)); |
| 998 | return new_stack; |
| 999 | } |
| 1000 | #endif |
| 1001 | |
| 1002 | static bool is_sysenter_singlestep(struct pt_regs *regs) |
| 1003 | { |
| 1004 | /* |
| 1005 | * We don't try for precision here. If we're anywhere in the region of |
| 1006 | * code that can be single-stepped in the SYSENTER entry path, then |
| 1007 | * assume that this is a useless single-step trap due to SYSENTER |
| 1008 | * being invoked with TF set. (We don't know in advance exactly |
| 1009 | * which instructions will be hit because BTF could plausibly |
| 1010 | * be set.) |
| 1011 | */ |
| 1012 | #ifdef CONFIG_X86_32 |
| 1013 | return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < |
| 1014 | (unsigned long)__end_SYSENTER_singlestep_region - |
| 1015 | (unsigned long)__begin_SYSENTER_singlestep_region; |
| 1016 | #elif defined(CONFIG_IA32_EMULATION) |
| 1017 | return (regs->ip - (unsigned long)entry_SYSENTER_compat) < |
| 1018 | (unsigned long)__end_entry_SYSENTER_compat - |
| 1019 | (unsigned long)entry_SYSENTER_compat; |
| 1020 | #else |
| 1021 | return false; |
| 1022 | #endif |
| 1023 | } |
| 1024 | |
| 1025 | static __always_inline unsigned long debug_read_clear_dr6(void) |
| 1026 | { |
| 1027 | unsigned long dr6; |
| 1028 | |
| 1029 | /* |
| 1030 | * The Intel SDM says: |
| 1031 | * |
| 1032 | * Certain debug exceptions may clear bits 0-3. The remaining |
| 1033 | * contents of the DR6 register are never cleared by the |
| 1034 | * processor. To avoid confusion in identifying debug |
| 1035 | * exceptions, debug handlers should clear the register before |
| 1036 | * returning to the interrupted task. |
| 1037 | * |
| 1038 | * Keep it simple: clear DR6 immediately. |
| 1039 | */ |
| 1040 | get_debugreg(dr6, 6); |
| 1041 | set_debugreg(DR6_RESERVED, reg: 6); |
| 1042 | dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ |
| 1043 | |
| 1044 | return dr6; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Our handling of the processor debug registers is non-trivial. |
| 1049 | * We do not clear them on entry and exit from the kernel. Therefore |
| 1050 | * it is possible to get a watchpoint trap here from inside the kernel. |
| 1051 | * However, the code in ./ptrace.c has ensured that the user can |
| 1052 | * only set watchpoints on userspace addresses. Therefore the in-kernel |
| 1053 | * watchpoint trap can only occur in code which is reading/writing |
| 1054 | * from user space. Such code must not hold kernel locks (since it |
| 1055 | * can equally take a page fault), therefore it is safe to call |
| 1056 | * force_sig_info even though that claims and releases locks. |
| 1057 | * |
| 1058 | * Code in ./signal.c ensures that the debug control register |
| 1059 | * is restored before we deliver any signal, and therefore that |
| 1060 | * user code runs with the correct debug control register even though |
| 1061 | * we clear it here. |
| 1062 | * |
| 1063 | * Being careful here means that we don't have to be as careful in a |
| 1064 | * lot of more complicated places (task switching can be a bit lazy |
| 1065 | * about restoring all the debug state, and ptrace doesn't have to |
| 1066 | * find every occurrence of the TF bit that could be saved away even |
| 1067 | * by user code) |
| 1068 | * |
| 1069 | * May run on IST stack. |
| 1070 | */ |
| 1071 | |
| 1072 | static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) |
| 1073 | { |
| 1074 | /* |
| 1075 | * Notifiers will clear bits in @dr6 to indicate the event has been |
| 1076 | * consumed - hw_breakpoint_handler(), single_stop_cont(). |
| 1077 | * |
| 1078 | * Notifiers will set bits in @virtual_dr6 to indicate the desire |
| 1079 | * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). |
| 1080 | */ |
| 1081 | if (notify_die(val: DIE_DEBUG, str: "debug" , regs, err: (long)dr6, trap: 0, SIGTRAP) == NOTIFY_STOP) |
| 1082 | return true; |
| 1083 | |
| 1084 | return false; |
| 1085 | } |
| 1086 | |
| 1087 | static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) |
| 1088 | { |
| 1089 | /* |
| 1090 | * Disable breakpoints during exception handling; recursive exceptions |
| 1091 | * are exceedingly 'fun'. |
| 1092 | * |
| 1093 | * Since this function is NOKPROBE, and that also applies to |
| 1094 | * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a |
| 1095 | * HW_BREAKPOINT_W on our stack) |
| 1096 | * |
| 1097 | * Entry text is excluded for HW_BP_X and cpu_entry_area, which |
| 1098 | * includes the entry stack is excluded for everything. |
| 1099 | * |
| 1100 | * For FRED, nested #DB should just work fine. But when a watchpoint or |
| 1101 | * breakpoint is set in the code path which is executed by #DB handler, |
| 1102 | * it results in an endless recursion and stack overflow. Thus we stay |
| 1103 | * with the IDT approach, i.e., save DR7 and disable #DB. |
| 1104 | */ |
| 1105 | unsigned long dr7 = local_db_save(); |
| 1106 | irqentry_state_t irq_state = irqentry_nmi_enter(regs); |
| 1107 | instrumentation_begin(); |
| 1108 | |
| 1109 | /* |
| 1110 | * If something gets miswired and we end up here for a user mode |
| 1111 | * #DB, we will malfunction. |
| 1112 | */ |
| 1113 | WARN_ON_ONCE(user_mode(regs)); |
| 1114 | |
| 1115 | if (test_thread_flag(TIF_BLOCKSTEP)) { |
| 1116 | /* |
| 1117 | * The SDM says "The processor clears the BTF flag when it |
| 1118 | * generates a debug exception." but PTRACE_BLOCKSTEP requested |
| 1119 | * it for userspace, but we just took a kernel #DB, so re-set |
| 1120 | * BTF. |
| 1121 | */ |
| 1122 | unsigned long debugctl; |
| 1123 | |
| 1124 | rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); |
| 1125 | debugctl |= DEBUGCTLMSR_BTF; |
| 1126 | wrmsrq(MSR_IA32_DEBUGCTLMSR, val: debugctl); |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * Catch SYSENTER with TF set and clear DR_STEP. If this hit a |
| 1131 | * watchpoint at the same time then that will still be handled. |
| 1132 | */ |
| 1133 | if (!cpu_feature_enabled(X86_FEATURE_FRED) && |
| 1134 | (dr6 & DR_STEP) && is_sysenter_singlestep(regs)) |
| 1135 | dr6 &= ~DR_STEP; |
| 1136 | |
| 1137 | /* |
| 1138 | * The kernel doesn't use INT1 |
| 1139 | */ |
| 1140 | if (!dr6) |
| 1141 | goto out; |
| 1142 | |
| 1143 | if (notify_debug(regs, dr6: &dr6)) |
| 1144 | goto out; |
| 1145 | |
| 1146 | /* |
| 1147 | * The kernel doesn't use TF single-step outside of: |
| 1148 | * |
| 1149 | * - Kprobes, consumed through kprobe_debug_handler() |
| 1150 | * - KGDB, consumed through notify_debug() |
| 1151 | * |
| 1152 | * So if we get here with DR_STEP set, something is wonky. |
| 1153 | * |
| 1154 | * A known way to trigger this is through QEMU's GDB stub, |
| 1155 | * which leaks #DB into the guest and causes IST recursion. |
| 1156 | */ |
| 1157 | if (WARN_ON_ONCE(dr6 & DR_STEP)) |
| 1158 | regs->flags &= ~X86_EFLAGS_TF; |
| 1159 | out: |
| 1160 | instrumentation_end(); |
| 1161 | irqentry_nmi_exit(regs, irq_state); |
| 1162 | |
| 1163 | local_db_restore(dr7); |
| 1164 | } |
| 1165 | |
| 1166 | static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) |
| 1167 | { |
| 1168 | bool icebp; |
| 1169 | |
| 1170 | /* |
| 1171 | * If something gets miswired and we end up here for a kernel mode |
| 1172 | * #DB, we will malfunction. |
| 1173 | */ |
| 1174 | WARN_ON_ONCE(!user_mode(regs)); |
| 1175 | |
| 1176 | /* |
| 1177 | * NB: We can't easily clear DR7 here because |
| 1178 | * irqentry_exit_to_usermode() can invoke ptrace, schedule, access |
| 1179 | * user memory, etc. This means that a recursive #DB is possible. If |
| 1180 | * this happens, that #DB will hit exc_debug_kernel() and clear DR7. |
| 1181 | * Since we're not on the IST stack right now, everything will be |
| 1182 | * fine. |
| 1183 | */ |
| 1184 | |
| 1185 | irqentry_enter_from_user_mode(regs); |
| 1186 | instrumentation_begin(); |
| 1187 | |
| 1188 | /* |
| 1189 | * Start the virtual/ptrace DR6 value with just the DR_STEP mask |
| 1190 | * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. |
| 1191 | * |
| 1192 | * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) |
| 1193 | * even if it is not the result of PTRACE_SINGLESTEP. |
| 1194 | */ |
| 1195 | current->thread.virtual_dr6 = (dr6 & DR_STEP); |
| 1196 | |
| 1197 | /* |
| 1198 | * The SDM says "The processor clears the BTF flag when it |
| 1199 | * generates a debug exception." Clear TIF_BLOCKSTEP to keep |
| 1200 | * TIF_BLOCKSTEP in sync with the hardware BTF flag. |
| 1201 | */ |
| 1202 | clear_thread_flag(TIF_BLOCKSTEP); |
| 1203 | |
| 1204 | /* |
| 1205 | * If dr6 has no reason to give us about the origin of this trap, |
| 1206 | * then it's very likely the result of an icebp/int01 trap. |
| 1207 | * User wants a sigtrap for that. |
| 1208 | */ |
| 1209 | icebp = !dr6; |
| 1210 | |
| 1211 | if (notify_debug(regs, dr6: &dr6)) |
| 1212 | goto out; |
| 1213 | |
| 1214 | /* It's safe to allow irq's after DR6 has been saved */ |
| 1215 | local_irq_enable(); |
| 1216 | |
| 1217 | if (v8086_mode(regs)) { |
| 1218 | handle_vm86_trap(a: (struct kernel_vm86_regs *)regs, b: 0, X86_TRAP_DB); |
| 1219 | goto out_irq; |
| 1220 | } |
| 1221 | |
| 1222 | /* #DB for bus lock can only be triggered from userspace. */ |
| 1223 | if (dr6 & DR_BUS_LOCK) |
| 1224 | handle_bus_lock(regs); |
| 1225 | |
| 1226 | /* Add the virtual_dr6 bits for signals. */ |
| 1227 | dr6 |= current->thread.virtual_dr6; |
| 1228 | if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) |
| 1229 | send_sigtrap(regs, error_code: 0, si_code: get_si_code(condition: dr6)); |
| 1230 | |
| 1231 | out_irq: |
| 1232 | local_irq_disable(); |
| 1233 | out: |
| 1234 | instrumentation_end(); |
| 1235 | irqentry_exit_to_user_mode(regs); |
| 1236 | } |
| 1237 | |
| 1238 | #ifdef CONFIG_X86_64 |
| 1239 | /* IST stack entry */ |
| 1240 | DEFINE_IDTENTRY_DEBUG(exc_debug) |
| 1241 | { |
| 1242 | exc_debug_kernel(regs, dr6: debug_read_clear_dr6()); |
| 1243 | } |
| 1244 | |
| 1245 | /* User entry, runs on regular task stack */ |
| 1246 | DEFINE_IDTENTRY_DEBUG_USER(exc_debug) |
| 1247 | { |
| 1248 | exc_debug_user(regs, dr6: debug_read_clear_dr6()); |
| 1249 | } |
| 1250 | |
| 1251 | #ifdef CONFIG_X86_FRED |
| 1252 | /* |
| 1253 | * When occurred on different ring level, i.e., from user or kernel |
| 1254 | * context, #DB needs to be handled on different stack: User #DB on |
| 1255 | * current task stack, while kernel #DB on a dedicated stack. |
| 1256 | * |
| 1257 | * This is exactly how FRED event delivery invokes an exception |
| 1258 | * handler: ring 3 event on level 0 stack, i.e., current task stack; |
| 1259 | * ring 0 event on the #DB dedicated stack specified in the |
| 1260 | * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception |
| 1261 | * entry stub doesn't do stack switch. |
| 1262 | */ |
| 1263 | DEFINE_FREDENTRY_DEBUG(exc_debug) |
| 1264 | { |
| 1265 | /* |
| 1266 | * FRED #DB stores DR6 on the stack in the format which |
| 1267 | * debug_read_clear_dr6() returns for the IDT entry points. |
| 1268 | */ |
| 1269 | unsigned long dr6 = fred_event_data(regs); |
| 1270 | |
| 1271 | if (user_mode(regs)) |
| 1272 | exc_debug_user(regs, dr6); |
| 1273 | else |
| 1274 | exc_debug_kernel(regs, dr6); |
| 1275 | } |
| 1276 | #endif /* CONFIG_X86_FRED */ |
| 1277 | |
| 1278 | #else |
| 1279 | /* 32 bit does not have separate entry points. */ |
| 1280 | DEFINE_IDTENTRY_RAW(exc_debug) |
| 1281 | { |
| 1282 | unsigned long dr6 = debug_read_clear_dr6(); |
| 1283 | |
| 1284 | if (user_mode(regs)) |
| 1285 | exc_debug_user(regs, dr6); |
| 1286 | else |
| 1287 | exc_debug_kernel(regs, dr6); |
| 1288 | } |
| 1289 | #endif |
| 1290 | |
| 1291 | /* |
| 1292 | * Note that we play around with the 'TS' bit in an attempt to get |
| 1293 | * the correct behaviour even in the presence of the asynchronous |
| 1294 | * IRQ13 behaviour |
| 1295 | */ |
| 1296 | static void math_error(struct pt_regs *regs, int trapnr) |
| 1297 | { |
| 1298 | struct task_struct *task = current; |
| 1299 | struct fpu *fpu = x86_task_fpu(task); |
| 1300 | int si_code; |
| 1301 | char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| 1302 | "simd exception" ; |
| 1303 | |
| 1304 | cond_local_irq_enable(regs); |
| 1305 | |
| 1306 | if (!user_mode(regs)) { |
| 1307 | if (fixup_exception(regs, trapnr, error_code: 0, fault_addr: 0)) |
| 1308 | goto exit; |
| 1309 | |
| 1310 | task->thread.error_code = 0; |
| 1311 | task->thread.trap_nr = trapnr; |
| 1312 | |
| 1313 | if (notify_die(val: DIE_TRAP, str, regs, err: 0, trap: trapnr, |
| 1314 | SIGFPE) != NOTIFY_STOP) |
| 1315 | die(str, regs, 0); |
| 1316 | goto exit; |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * Synchronize the FPU register state to the memory register state |
| 1321 | * if necessary. This allows the exception handler to inspect it. |
| 1322 | */ |
| 1323 | fpu_sync_fpstate(fpu); |
| 1324 | |
| 1325 | task->thread.trap_nr = trapnr; |
| 1326 | task->thread.error_code = 0; |
| 1327 | |
| 1328 | si_code = fpu__exception_code(fpu, trap_nr: trapnr); |
| 1329 | /* Retry when we get spurious exceptions: */ |
| 1330 | if (!si_code) |
| 1331 | goto exit; |
| 1332 | |
| 1333 | if (fixup_vdso_exception(regs, trapnr, error_code: 0, fault_addr: 0)) |
| 1334 | goto exit; |
| 1335 | |
| 1336 | force_sig_fault(SIGFPE, code: si_code, |
| 1337 | addr: (void __user *)uprobe_get_trap_addr(regs)); |
| 1338 | exit: |
| 1339 | cond_local_irq_disable(regs); |
| 1340 | } |
| 1341 | |
| 1342 | DEFINE_IDTENTRY(exc_coprocessor_error) |
| 1343 | { |
| 1344 | math_error(regs, X86_TRAP_MF); |
| 1345 | } |
| 1346 | |
| 1347 | DEFINE_IDTENTRY(exc_simd_coprocessor_error) |
| 1348 | { |
| 1349 | if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { |
| 1350 | /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ |
| 1351 | if (!static_cpu_has(X86_FEATURE_XMM)) { |
| 1352 | __exc_general_protection(regs, error_code: 0); |
| 1353 | return; |
| 1354 | } |
| 1355 | } |
| 1356 | math_error(regs, X86_TRAP_XF); |
| 1357 | } |
| 1358 | |
| 1359 | DEFINE_IDTENTRY(exc_spurious_interrupt_bug) |
| 1360 | { |
| 1361 | /* |
| 1362 | * This addresses a Pentium Pro Erratum: |
| 1363 | * |
| 1364 | * PROBLEM: If the APIC subsystem is configured in mixed mode with |
| 1365 | * Virtual Wire mode implemented through the local APIC, an |
| 1366 | * interrupt vector of 0Fh (Intel reserved encoding) may be |
| 1367 | * generated by the local APIC (Int 15). This vector may be |
| 1368 | * generated upon receipt of a spurious interrupt (an interrupt |
| 1369 | * which is removed before the system receives the INTA sequence) |
| 1370 | * instead of the programmed 8259 spurious interrupt vector. |
| 1371 | * |
| 1372 | * IMPLICATION: The spurious interrupt vector programmed in the |
| 1373 | * 8259 is normally handled by an operating system's spurious |
| 1374 | * interrupt handler. However, a vector of 0Fh is unknown to some |
| 1375 | * operating systems, which would crash if this erratum occurred. |
| 1376 | * |
| 1377 | * In theory this could be limited to 32bit, but the handler is not |
| 1378 | * hurting and who knows which other CPUs suffer from this. |
| 1379 | */ |
| 1380 | } |
| 1381 | |
| 1382 | static bool handle_xfd_event(struct pt_regs *regs) |
| 1383 | { |
| 1384 | u64 xfd_err; |
| 1385 | int err; |
| 1386 | |
| 1387 | if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) |
| 1388 | return false; |
| 1389 | |
| 1390 | rdmsrq(MSR_IA32_XFD_ERR, xfd_err); |
| 1391 | if (!xfd_err) |
| 1392 | return false; |
| 1393 | |
| 1394 | wrmsrq(MSR_IA32_XFD_ERR, val: 0); |
| 1395 | |
| 1396 | /* Die if that happens in kernel space */ |
| 1397 | if (WARN_ON(!user_mode(regs))) |
| 1398 | return false; |
| 1399 | |
| 1400 | local_irq_enable(); |
| 1401 | |
| 1402 | err = xfd_enable_feature(xfd_err); |
| 1403 | |
| 1404 | switch (err) { |
| 1405 | case -EPERM: |
| 1406 | force_sig_fault(SIGILL, ILL_ILLOPC, addr: error_get_trap_addr(regs)); |
| 1407 | break; |
| 1408 | case -EFAULT: |
| 1409 | force_sig(SIGSEGV); |
| 1410 | break; |
| 1411 | } |
| 1412 | |
| 1413 | local_irq_disable(); |
| 1414 | return true; |
| 1415 | } |
| 1416 | |
| 1417 | DEFINE_IDTENTRY(exc_device_not_available) |
| 1418 | { |
| 1419 | unsigned long cr0 = read_cr0(); |
| 1420 | |
| 1421 | if (handle_xfd_event(regs)) |
| 1422 | return; |
| 1423 | |
| 1424 | #ifdef CONFIG_MATH_EMULATION |
| 1425 | if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { |
| 1426 | struct math_emu_info info = { }; |
| 1427 | |
| 1428 | cond_local_irq_enable(regs); |
| 1429 | |
| 1430 | info.regs = regs; |
| 1431 | math_emulate(&info); |
| 1432 | |
| 1433 | cond_local_irq_disable(regs); |
| 1434 | return; |
| 1435 | } |
| 1436 | #endif |
| 1437 | |
| 1438 | /* This should not happen. */ |
| 1439 | if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set" )) { |
| 1440 | /* Try to fix it up and carry on. */ |
| 1441 | write_cr0(x: cr0 & ~X86_CR0_TS); |
| 1442 | } else { |
| 1443 | /* |
| 1444 | * Something terrible happened, and we're better off trying |
| 1445 | * to kill the task than getting stuck in a never-ending |
| 1446 | * loop of #NM faults. |
| 1447 | */ |
| 1448 | die("unexpected #NM exception" , regs, 0); |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | #ifdef CONFIG_INTEL_TDX_GUEST |
| 1453 | |
| 1454 | #define VE_FAULT_STR "VE fault" |
| 1455 | |
| 1456 | static void ve_raise_fault(struct pt_regs *regs, long error_code, |
| 1457 | unsigned long address) |
| 1458 | { |
| 1459 | if (user_mode(regs)) { |
| 1460 | gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); |
| 1461 | return; |
| 1462 | } |
| 1463 | |
| 1464 | if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, |
| 1465 | VE_FAULT_STR, address)) { |
| 1466 | return; |
| 1467 | } |
| 1468 | |
| 1469 | die_addr(VE_FAULT_STR, regs, err: error_code, gp_addr: address); |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * Virtualization Exceptions (#VE) are delivered to TDX guests due to |
| 1474 | * specific guest actions which may happen in either user space or the |
| 1475 | * kernel: |
| 1476 | * |
| 1477 | * * Specific instructions (WBINVD, for example) |
| 1478 | * * Specific MSR accesses |
| 1479 | * * Specific CPUID leaf accesses |
| 1480 | * * Access to specific guest physical addresses |
| 1481 | * |
| 1482 | * In the settings that Linux will run in, virtualization exceptions are |
| 1483 | * never generated on accesses to normal, TD-private memory that has been |
| 1484 | * accepted (by BIOS or with tdx_enc_status_changed()). |
| 1485 | * |
| 1486 | * Syscall entry code has a critical window where the kernel stack is not |
| 1487 | * yet set up. Any exception in this window leads to hard to debug issues |
| 1488 | * and can be exploited for privilege escalation. Exceptions in the NMI |
| 1489 | * entry code also cause issues. Returning from the exception handler with |
| 1490 | * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. |
| 1491 | * |
| 1492 | * For these reasons, the kernel avoids #VEs during the syscall gap and |
| 1493 | * the NMI entry code. Entry code paths do not access TD-shared memory, |
| 1494 | * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves |
| 1495 | * that might generate #VE. VMM can remove memory from TD at any point, |
| 1496 | * but access to unaccepted (or missing) private memory leads to VM |
| 1497 | * termination, not to #VE. |
| 1498 | * |
| 1499 | * Similarly to page faults and breakpoints, #VEs are allowed in NMI |
| 1500 | * handlers once the kernel is ready to deal with nested NMIs. |
| 1501 | * |
| 1502 | * During #VE delivery, all interrupts, including NMIs, are blocked until |
| 1503 | * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads |
| 1504 | * the VE info. |
| 1505 | * |
| 1506 | * If a guest kernel action which would normally cause a #VE occurs in |
| 1507 | * the interrupt-disabled region before TDGETVEINFO, a #DF (fault |
| 1508 | * exception) is delivered to the guest which will result in an oops. |
| 1509 | * |
| 1510 | * The entry code has been audited carefully for following these expectations. |
| 1511 | * Changes in the entry code have to be audited for correctness vs. this |
| 1512 | * aspect. Similarly to #PF, #VE in these places will expose kernel to |
| 1513 | * privilege escalation or may lead to random crashes. |
| 1514 | */ |
| 1515 | DEFINE_IDTENTRY(exc_virtualization_exception) |
| 1516 | { |
| 1517 | struct ve_info ve; |
| 1518 | |
| 1519 | /* |
| 1520 | * NMIs/Machine-checks/Interrupts will be in a disabled state |
| 1521 | * till TDGETVEINFO TDCALL is executed. This ensures that VE |
| 1522 | * info cannot be overwritten by a nested #VE. |
| 1523 | */ |
| 1524 | tdx_get_ve_info(ve: &ve); |
| 1525 | |
| 1526 | cond_local_irq_enable(regs); |
| 1527 | |
| 1528 | /* |
| 1529 | * If tdx_handle_virt_exception() could not process |
| 1530 | * it successfully, treat it as #GP(0) and handle it. |
| 1531 | */ |
| 1532 | if (!tdx_handle_virt_exception(regs, ve: &ve)) |
| 1533 | ve_raise_fault(regs, error_code: 0, address: ve.gla); |
| 1534 | |
| 1535 | cond_local_irq_disable(regs); |
| 1536 | } |
| 1537 | |
| 1538 | #endif |
| 1539 | |
| 1540 | #ifdef CONFIG_X86_32 |
| 1541 | DEFINE_IDTENTRY_SW(iret_error) |
| 1542 | { |
| 1543 | local_irq_enable(); |
| 1544 | if (notify_die(DIE_TRAP, "iret exception" , regs, 0, |
| 1545 | X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| 1546 | do_trap(X86_TRAP_IRET, SIGILL, "iret exception" , regs, 0, |
| 1547 | ILL_BADSTK, (void __user *)NULL); |
| 1548 | } |
| 1549 | local_irq_disable(); |
| 1550 | } |
| 1551 | #endif |
| 1552 | |
| 1553 | void __init trap_init(void) |
| 1554 | { |
| 1555 | /* Init cpu_entry_area before IST entries are set up */ |
| 1556 | setup_cpu_entry_areas(); |
| 1557 | |
| 1558 | /* Init GHCB memory pages when running as an SEV-ES guest */ |
| 1559 | sev_es_init_vc_handling(); |
| 1560 | |
| 1561 | /* Initialize TSS before setting up traps so ISTs work */ |
| 1562 | cpu_init_exception_handling(boot_cpu: true); |
| 1563 | |
| 1564 | /* Setup traps as cpu_init() might #GP */ |
| 1565 | if (!cpu_feature_enabled(X86_FEATURE_FRED)) |
| 1566 | idt_setup_traps(); |
| 1567 | |
| 1568 | cpu_init(); |
| 1569 | } |
| 1570 | |