1 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
---|---|
2 | /* |
3 | * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
4 | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 |
5 | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. |
6 | * |
7 | * This driver produces cryptographically secure pseudorandom data. It is divided |
8 | * into roughly six sections, each with a section header: |
9 | * |
10 | * - Initialization and readiness waiting. |
11 | * - Fast key erasure RNG, the "crng". |
12 | * - Entropy accumulation and extraction routines. |
13 | * - Entropy collection routines. |
14 | * - Userspace reader/writer interfaces. |
15 | * - Sysctl interface. |
16 | * |
17 | * The high level overview is that there is one input pool, into which |
18 | * various pieces of data are hashed. Prior to initialization, some of that |
19 | * data is then "credited" as having a certain number of bits of entropy. |
20 | * When enough bits of entropy are available, the hash is finalized and |
21 | * handed as a key to a stream cipher that expands it indefinitely for |
22 | * various consumers. This key is periodically refreshed as the various |
23 | * entropy collectors, described below, add data to the input pool. |
24 | */ |
25 | |
26 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
27 | |
28 | #include <linux/utsname.h> |
29 | #include <linux/module.h> |
30 | #include <linux/kernel.h> |
31 | #include <linux/major.h> |
32 | #include <linux/string.h> |
33 | #include <linux/fcntl.h> |
34 | #include <linux/slab.h> |
35 | #include <linux/random.h> |
36 | #include <linux/poll.h> |
37 | #include <linux/init.h> |
38 | #include <linux/fs.h> |
39 | #include <linux/blkdev.h> |
40 | #include <linux/interrupt.h> |
41 | #include <linux/mm.h> |
42 | #include <linux/nodemask.h> |
43 | #include <linux/spinlock.h> |
44 | #include <linux/kthread.h> |
45 | #include <linux/percpu.h> |
46 | #include <linux/ptrace.h> |
47 | #include <linux/workqueue.h> |
48 | #include <linux/irq.h> |
49 | #include <linux/ratelimit.h> |
50 | #include <linux/syscalls.h> |
51 | #include <linux/completion.h> |
52 | #include <linux/uuid.h> |
53 | #include <linux/uaccess.h> |
54 | #include <linux/suspend.h> |
55 | #include <linux/siphash.h> |
56 | #include <linux/sched/isolation.h> |
57 | #include <crypto/chacha.h> |
58 | #include <crypto/blake2s.h> |
59 | #ifdef CONFIG_VDSO_GETRANDOM |
60 | #include <vdso/getrandom.h> |
61 | #include <vdso/datapage.h> |
62 | #include <vdso/vsyscall.h> |
63 | #endif |
64 | #include <asm/archrandom.h> |
65 | #include <asm/processor.h> |
66 | #include <asm/irq.h> |
67 | #include <asm/irq_regs.h> |
68 | #include <asm/io.h> |
69 | |
70 | /********************************************************************* |
71 | * |
72 | * Initialization and readiness waiting. |
73 | * |
74 | * Much of the RNG infrastructure is devoted to various dependencies |
75 | * being able to wait until the RNG has collected enough entropy and |
76 | * is ready for safe consumption. |
77 | * |
78 | *********************************************************************/ |
79 | |
80 | /* |
81 | * crng_init is protected by base_crng->lock, and only increases |
82 | * its value (from empty->early->ready). |
83 | */ |
84 | static enum { |
85 | CRNG_EMPTY = 0, /* Little to no entropy collected */ |
86 | CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ |
87 | CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ |
88 | } crng_init __read_mostly = CRNG_EMPTY; |
89 | static DEFINE_STATIC_KEY_FALSE(crng_is_ready); |
90 | #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) |
91 | /* Various types of waiters for crng_init->CRNG_READY transition. */ |
92 | static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); |
93 | static struct fasync_struct *fasync; |
94 | static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); |
95 | |
96 | /* Control how we warn userspace. */ |
97 | static struct ratelimit_state urandom_warning = |
98 | RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); |
99 | static int ratelimit_disable __read_mostly = |
100 | IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); |
101 | module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); |
102 | MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); |
103 | |
104 | /* |
105 | * Returns whether or not the input pool has been seeded and thus guaranteed |
106 | * to supply cryptographically secure random numbers. This applies to: the |
107 | * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, |
108 | * u16,u32,u64,long} family of functions. |
109 | * |
110 | * Returns: true if the input pool has been seeded. |
111 | * false if the input pool has not been seeded. |
112 | */ |
113 | bool rng_is_initialized(void) |
114 | { |
115 | return crng_ready(); |
116 | } |
117 | EXPORT_SYMBOL(rng_is_initialized); |
118 | |
119 | static void __cold crng_set_ready(struct work_struct *work) |
120 | { |
121 | static_branch_enable(&crng_is_ready); |
122 | } |
123 | |
124 | /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ |
125 | static void try_to_generate_entropy(void); |
126 | |
127 | /* |
128 | * Wait for the input pool to be seeded and thus guaranteed to supply |
129 | * cryptographically secure random numbers. This applies to: the /dev/urandom |
130 | * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, |
131 | * long} family of functions. Using any of these functions without first |
132 | * calling this function forfeits the guarantee of security. |
133 | * |
134 | * Returns: 0 if the input pool has been seeded. |
135 | * -ERESTARTSYS if the function was interrupted by a signal. |
136 | */ |
137 | int wait_for_random_bytes(void) |
138 | { |
139 | while (!crng_ready()) { |
140 | int ret; |
141 | |
142 | try_to_generate_entropy(); |
143 | ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); |
144 | if (ret) |
145 | return ret > 0 ? 0 : ret; |
146 | } |
147 | return 0; |
148 | } |
149 | EXPORT_SYMBOL(wait_for_random_bytes); |
150 | |
151 | /* |
152 | * Add a callback function that will be invoked when the crng is initialised, |
153 | * or immediately if it already has been. Only use this is you are absolutely |
154 | * sure it is required. Most users should instead be able to test |
155 | * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. |
156 | */ |
157 | int __cold execute_with_initialized_rng(struct notifier_block *nb) |
158 | { |
159 | unsigned long flags; |
160 | int ret = 0; |
161 | |
162 | spin_lock_irqsave(&random_ready_notifier.lock, flags); |
163 | if (crng_ready()) |
164 | nb->notifier_call(nb, 0, NULL); |
165 | else |
166 | ret = raw_notifier_chain_register(nh: (struct raw_notifier_head *)&random_ready_notifier.head, nb); |
167 | spin_unlock_irqrestore(lock: &random_ready_notifier.lock, flags); |
168 | return ret; |
169 | } |
170 | |
171 | #define warn_unseeded_randomness() \ |
172 | if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ |
173 | printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ |
174 | __func__, (void *)_RET_IP_, crng_init) |
175 | |
176 | |
177 | /********************************************************************* |
178 | * |
179 | * Fast key erasure RNG, the "crng". |
180 | * |
181 | * These functions expand entropy from the entropy extractor into |
182 | * long streams for external consumption using the "fast key erasure" |
183 | * RNG described at <https://blog.cr.yp.to/20170723-random.html>. |
184 | * |
185 | * There are a few exported interfaces for use by other drivers: |
186 | * |
187 | * void get_random_bytes(void *buf, size_t len) |
188 | * u8 get_random_u8() |
189 | * u16 get_random_u16() |
190 | * u32 get_random_u32() |
191 | * u32 get_random_u32_below(u32 ceil) |
192 | * u32 get_random_u32_above(u32 floor) |
193 | * u32 get_random_u32_inclusive(u32 floor, u32 ceil) |
194 | * u64 get_random_u64() |
195 | * unsigned long get_random_long() |
196 | * |
197 | * These interfaces will return the requested number of random bytes |
198 | * into the given buffer or as a return value. This is equivalent to |
199 | * a read from /dev/urandom. The u8, u16, u32, u64, long family of |
200 | * functions may be higher performance for one-off random integers, |
201 | * because they do a bit of buffering and do not invoke reseeding |
202 | * until the buffer is emptied. |
203 | * |
204 | *********************************************************************/ |
205 | |
206 | enum { |
207 | CRNG_RESEED_START_INTERVAL = HZ, |
208 | CRNG_RESEED_INTERVAL = 60 * HZ |
209 | }; |
210 | |
211 | static struct { |
212 | u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); |
213 | unsigned long generation; |
214 | spinlock_t lock; |
215 | } base_crng = { |
216 | .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) |
217 | }; |
218 | |
219 | struct crng { |
220 | u8 key[CHACHA_KEY_SIZE]; |
221 | unsigned long generation; |
222 | local_lock_t lock; |
223 | }; |
224 | |
225 | static DEFINE_PER_CPU(struct crng, crngs) = { |
226 | .generation = ULONG_MAX, |
227 | .lock = INIT_LOCAL_LOCK(crngs.lock), |
228 | }; |
229 | |
230 | /* |
231 | * Return the interval until the next reseeding, which is normally |
232 | * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval |
233 | * proportional to the uptime. |
234 | */ |
235 | static unsigned int crng_reseed_interval(void) |
236 | { |
237 | static bool early_boot = true; |
238 | |
239 | if (unlikely(READ_ONCE(early_boot))) { |
240 | time64_t uptime = ktime_get_seconds(); |
241 | if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) |
242 | WRITE_ONCE(early_boot, false); |
243 | else |
244 | return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, |
245 | (unsigned int)uptime / 2 * HZ); |
246 | } |
247 | return CRNG_RESEED_INTERVAL; |
248 | } |
249 | |
250 | /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ |
251 | static void extract_entropy(void *buf, size_t len); |
252 | |
253 | /* This extracts a new crng key from the input pool. */ |
254 | static void crng_reseed(struct work_struct *work) |
255 | { |
256 | static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); |
257 | unsigned long flags; |
258 | unsigned long next_gen; |
259 | u8 key[CHACHA_KEY_SIZE]; |
260 | |
261 | /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ |
262 | if (likely(system_unbound_wq)) |
263 | queue_delayed_work(wq: system_unbound_wq, dwork: &next_reseed, delay: crng_reseed_interval()); |
264 | |
265 | extract_entropy(buf: key, len: sizeof(key)); |
266 | |
267 | /* |
268 | * We copy the new key into the base_crng, overwriting the old one, |
269 | * and update the generation counter. We avoid hitting ULONG_MAX, |
270 | * because the per-cpu crngs are initialized to ULONG_MAX, so this |
271 | * forces new CPUs that come online to always initialize. |
272 | */ |
273 | spin_lock_irqsave(&base_crng.lock, flags); |
274 | memcpy(base_crng.key, key, sizeof(base_crng.key)); |
275 | next_gen = base_crng.generation + 1; |
276 | if (next_gen == ULONG_MAX) |
277 | ++next_gen; |
278 | WRITE_ONCE(base_crng.generation, next_gen); |
279 | #ifdef CONFIG_VDSO_GETRANDOM |
280 | /* base_crng.generation's invalid value is ULONG_MAX, while |
281 | * vdso_k_rng_data->generation's invalid value is 0, so add one to the |
282 | * former to arrive at the latter. Use smp_store_release so that this |
283 | * is ordered with the write above to base_crng.generation. Pairs with |
284 | * the smp_rmb() before the syscall in the vDSO code. |
285 | * |
286 | * Cast to unsigned long for 32-bit architectures, since atomic 64-bit |
287 | * operations are not supported on those architectures. This is safe |
288 | * because base_crng.generation is a 32-bit value. On big-endian |
289 | * architectures it will be stored in the upper 32 bits, but that's okay |
290 | * because the vDSO side only checks whether the value changed, without |
291 | * actually using or interpreting the value. |
292 | */ |
293 | smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1); |
294 | #endif |
295 | if (!static_branch_likely(&crng_is_ready)) |
296 | crng_init = CRNG_READY; |
297 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
298 | memzero_explicit(s: key, count: sizeof(key)); |
299 | } |
300 | |
301 | /* |
302 | * This generates a ChaCha block using the provided key, and then |
303 | * immediately overwrites that key with half the block. It returns |
304 | * the resultant ChaCha state to the user, along with the second |
305 | * half of the block containing 32 bytes of random data that may |
306 | * be used; random_data_len may not be greater than 32. |
307 | * |
308 | * The returned ChaCha state contains within it a copy of the old |
309 | * key value, at index 4, so the state should always be zeroed out |
310 | * immediately after using in order to maintain forward secrecy. |
311 | * If the state cannot be erased in a timely manner, then it is |
312 | * safer to set the random_data parameter to &chacha_state->x[4] |
313 | * so that this function overwrites it before returning. |
314 | */ |
315 | static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], |
316 | struct chacha_state *chacha_state, |
317 | u8 *random_data, size_t random_data_len) |
318 | { |
319 | u8 first_block[CHACHA_BLOCK_SIZE]; |
320 | |
321 | BUG_ON(random_data_len > 32); |
322 | |
323 | chacha_init_consts(state: chacha_state); |
324 | memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE); |
325 | memset(&chacha_state->x[12], 0, sizeof(u32) * 4); |
326 | chacha20_block(state: chacha_state, out: first_block); |
327 | |
328 | memcpy(key, first_block, CHACHA_KEY_SIZE); |
329 | memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); |
330 | memzero_explicit(s: first_block, count: sizeof(first_block)); |
331 | } |
332 | |
333 | /* |
334 | * This function returns a ChaCha state that you may use for generating |
335 | * random data. It also returns up to 32 bytes on its own of random data |
336 | * that may be used; random_data_len may not be greater than 32. |
337 | */ |
338 | static void crng_make_state(struct chacha_state *chacha_state, |
339 | u8 *random_data, size_t random_data_len) |
340 | { |
341 | unsigned long flags; |
342 | struct crng *crng; |
343 | |
344 | BUG_ON(random_data_len > 32); |
345 | |
346 | /* |
347 | * For the fast path, we check whether we're ready, unlocked first, and |
348 | * then re-check once locked later. In the case where we're really not |
349 | * ready, we do fast key erasure with the base_crng directly, extracting |
350 | * when crng_init is CRNG_EMPTY. |
351 | */ |
352 | if (!crng_ready()) { |
353 | bool ready; |
354 | |
355 | spin_lock_irqsave(&base_crng.lock, flags); |
356 | ready = crng_ready(); |
357 | if (!ready) { |
358 | if (crng_init == CRNG_EMPTY) |
359 | extract_entropy(buf: base_crng.key, len: sizeof(base_crng.key)); |
360 | crng_fast_key_erasure(key: base_crng.key, chacha_state, |
361 | random_data, random_data_len); |
362 | } |
363 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
364 | if (!ready) |
365 | return; |
366 | } |
367 | |
368 | local_lock_irqsave(&crngs.lock, flags); |
369 | crng = raw_cpu_ptr(&crngs); |
370 | |
371 | /* |
372 | * If our per-cpu crng is older than the base_crng, then it means |
373 | * somebody reseeded the base_crng. In that case, we do fast key |
374 | * erasure on the base_crng, and use its output as the new key |
375 | * for our per-cpu crng. This brings us up to date with base_crng. |
376 | */ |
377 | if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { |
378 | spin_lock(lock: &base_crng.lock); |
379 | crng_fast_key_erasure(key: base_crng.key, chacha_state, |
380 | random_data: crng->key, random_data_len: sizeof(crng->key)); |
381 | crng->generation = base_crng.generation; |
382 | spin_unlock(lock: &base_crng.lock); |
383 | } |
384 | |
385 | /* |
386 | * Finally, when we've made it this far, our per-cpu crng has an up |
387 | * to date key, and we can do fast key erasure with it to produce |
388 | * some random data and a ChaCha state for the caller. All other |
389 | * branches of this function are "unlikely", so most of the time we |
390 | * should wind up here immediately. |
391 | */ |
392 | crng_fast_key_erasure(key: crng->key, chacha_state, random_data, random_data_len); |
393 | local_unlock_irqrestore(&crngs.lock, flags); |
394 | } |
395 | |
396 | static void _get_random_bytes(void *buf, size_t len) |
397 | { |
398 | struct chacha_state chacha_state; |
399 | u8 tmp[CHACHA_BLOCK_SIZE]; |
400 | size_t first_block_len; |
401 | |
402 | if (!len) |
403 | return; |
404 | |
405 | first_block_len = min_t(size_t, 32, len); |
406 | crng_make_state(chacha_state: &chacha_state, random_data: buf, random_data_len: first_block_len); |
407 | len -= first_block_len; |
408 | buf += first_block_len; |
409 | |
410 | while (len) { |
411 | if (len < CHACHA_BLOCK_SIZE) { |
412 | chacha20_block(state: &chacha_state, out: tmp); |
413 | memcpy(buf, tmp, len); |
414 | memzero_explicit(s: tmp, count: sizeof(tmp)); |
415 | break; |
416 | } |
417 | |
418 | chacha20_block(state: &chacha_state, out: buf); |
419 | if (unlikely(chacha_state.x[12] == 0)) |
420 | ++chacha_state.x[13]; |
421 | len -= CHACHA_BLOCK_SIZE; |
422 | buf += CHACHA_BLOCK_SIZE; |
423 | } |
424 | |
425 | chacha_zeroize_state(state: &chacha_state); |
426 | } |
427 | |
428 | /* |
429 | * This returns random bytes in arbitrary quantities. The quality of the |
430 | * random bytes is good as /dev/urandom. In order to ensure that the |
431 | * randomness provided by this function is okay, the function |
432 | * wait_for_random_bytes() should be called and return 0 at least once |
433 | * at any point prior. |
434 | */ |
435 | void get_random_bytes(void *buf, size_t len) |
436 | { |
437 | warn_unseeded_randomness(); |
438 | _get_random_bytes(buf, len); |
439 | } |
440 | EXPORT_SYMBOL(get_random_bytes); |
441 | |
442 | static ssize_t get_random_bytes_user(struct iov_iter *iter) |
443 | { |
444 | struct chacha_state chacha_state; |
445 | u8 block[CHACHA_BLOCK_SIZE]; |
446 | size_t ret = 0, copied; |
447 | |
448 | if (unlikely(!iov_iter_count(iter))) |
449 | return 0; |
450 | |
451 | /* |
452 | * Immediately overwrite the ChaCha key at index 4 with random |
453 | * bytes, in case userspace causes copy_to_iter() below to sleep |
454 | * forever, so that we still retain forward secrecy in that case. |
455 | */ |
456 | crng_make_state(chacha_state: &chacha_state, random_data: (u8 *)&chacha_state.x[4], |
457 | CHACHA_KEY_SIZE); |
458 | /* |
459 | * However, if we're doing a read of len <= 32, we don't need to |
460 | * use chacha_state after, so we can simply return those bytes to |
461 | * the user directly. |
462 | */ |
463 | if (iov_iter_count(i: iter) <= CHACHA_KEY_SIZE) { |
464 | ret = copy_to_iter(addr: &chacha_state.x[4], CHACHA_KEY_SIZE, i: iter); |
465 | goto out_zero_chacha; |
466 | } |
467 | |
468 | for (;;) { |
469 | chacha20_block(state: &chacha_state, out: block); |
470 | if (unlikely(chacha_state.x[12] == 0)) |
471 | ++chacha_state.x[13]; |
472 | |
473 | copied = copy_to_iter(addr: block, bytes: sizeof(block), i: iter); |
474 | ret += copied; |
475 | if (!iov_iter_count(i: iter) || copied != sizeof(block)) |
476 | break; |
477 | |
478 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
479 | if (ret % PAGE_SIZE == 0) { |
480 | if (signal_pending(current)) |
481 | break; |
482 | cond_resched(); |
483 | } |
484 | } |
485 | |
486 | memzero_explicit(s: block, count: sizeof(block)); |
487 | out_zero_chacha: |
488 | chacha_zeroize_state(state: &chacha_state); |
489 | return ret ? ret : -EFAULT; |
490 | } |
491 | |
492 | /* |
493 | * Batched entropy returns random integers. The quality of the random |
494 | * number is good as /dev/urandom. In order to ensure that the randomness |
495 | * provided by this function is okay, the function wait_for_random_bytes() |
496 | * should be called and return 0 at least once at any point prior. |
497 | */ |
498 | |
499 | #define DEFINE_BATCHED_ENTROPY(type) \ |
500 | struct batch_ ##type { \ |
501 | /* \ |
502 | * We make this 1.5x a ChaCha block, so that we get the \ |
503 | * remaining 32 bytes from fast key erasure, plus one full \ |
504 | * block from the detached ChaCha state. We can increase \ |
505 | * the size of this later if needed so long as we keep the \ |
506 | * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ |
507 | */ \ |
508 | type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ |
509 | local_lock_t lock; \ |
510 | unsigned long generation; \ |
511 | unsigned int position; \ |
512 | }; \ |
513 | \ |
514 | static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ |
515 | .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ |
516 | .position = UINT_MAX \ |
517 | }; \ |
518 | \ |
519 | type get_random_ ##type(void) \ |
520 | { \ |
521 | type ret; \ |
522 | unsigned long flags; \ |
523 | struct batch_ ##type *batch; \ |
524 | unsigned long next_gen; \ |
525 | \ |
526 | warn_unseeded_randomness(); \ |
527 | \ |
528 | if (!crng_ready()) { \ |
529 | _get_random_bytes(&ret, sizeof(ret)); \ |
530 | return ret; \ |
531 | } \ |
532 | \ |
533 | local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ |
534 | batch = raw_cpu_ptr(&batched_entropy_##type); \ |
535 | \ |
536 | next_gen = READ_ONCE(base_crng.generation); \ |
537 | if (batch->position >= ARRAY_SIZE(batch->entropy) || \ |
538 | next_gen != batch->generation) { \ |
539 | _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ |
540 | batch->position = 0; \ |
541 | batch->generation = next_gen; \ |
542 | } \ |
543 | \ |
544 | ret = batch->entropy[batch->position]; \ |
545 | batch->entropy[batch->position] = 0; \ |
546 | ++batch->position; \ |
547 | local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ |
548 | return ret; \ |
549 | } \ |
550 | EXPORT_SYMBOL(get_random_ ##type); |
551 | |
552 | DEFINE_BATCHED_ENTROPY(u8) |
553 | DEFINE_BATCHED_ENTROPY(u16) |
554 | DEFINE_BATCHED_ENTROPY(u32) |
555 | DEFINE_BATCHED_ENTROPY(u64) |
556 | |
557 | u32 __get_random_u32_below(u32 ceil) |
558 | { |
559 | /* |
560 | * This is the slow path for variable ceil. It is still fast, most of |
561 | * the time, by doing traditional reciprocal multiplication and |
562 | * opportunistically comparing the lower half to ceil itself, before |
563 | * falling back to computing a larger bound, and then rejecting samples |
564 | * whose lower half would indicate a range indivisible by ceil. The use |
565 | * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable |
566 | * in 32-bits. |
567 | */ |
568 | u32 rand = get_random_u32(); |
569 | u64 mult; |
570 | |
571 | /* |
572 | * This function is technically undefined for ceil == 0, and in fact |
573 | * for the non-underscored constant version in the header, we build bug |
574 | * on that. But for the non-constant case, it's convenient to have that |
575 | * evaluate to being a straight call to get_random_u32(), so that |
576 | * get_random_u32_inclusive() can work over its whole range without |
577 | * undefined behavior. |
578 | */ |
579 | if (unlikely(!ceil)) |
580 | return rand; |
581 | |
582 | mult = (u64)ceil * rand; |
583 | if (unlikely((u32)mult < ceil)) { |
584 | u32 bound = -ceil % ceil; |
585 | while (unlikely((u32)mult < bound)) |
586 | mult = (u64)ceil * get_random_u32(); |
587 | } |
588 | return mult >> 32; |
589 | } |
590 | EXPORT_SYMBOL(__get_random_u32_below); |
591 | |
592 | #ifdef CONFIG_SMP |
593 | /* |
594 | * This function is called when the CPU is coming up, with entry |
595 | * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. |
596 | */ |
597 | int __cold random_prepare_cpu(unsigned int cpu) |
598 | { |
599 | /* |
600 | * When the cpu comes back online, immediately invalidate both |
601 | * the per-cpu crng and all batches, so that we serve fresh |
602 | * randomness. |
603 | */ |
604 | per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; |
605 | per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; |
606 | per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; |
607 | per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; |
608 | per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; |
609 | return 0; |
610 | } |
611 | #endif |
612 | |
613 | |
614 | /********************************************************************** |
615 | * |
616 | * Entropy accumulation and extraction routines. |
617 | * |
618 | * Callers may add entropy via: |
619 | * |
620 | * static void mix_pool_bytes(const void *buf, size_t len) |
621 | * |
622 | * After which, if added entropy should be credited: |
623 | * |
624 | * static void credit_init_bits(size_t bits) |
625 | * |
626 | * Finally, extract entropy via: |
627 | * |
628 | * static void extract_entropy(void *buf, size_t len) |
629 | * |
630 | **********************************************************************/ |
631 | |
632 | enum { |
633 | POOL_BITS = BLAKE2S_HASH_SIZE * 8, |
634 | POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ |
635 | POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ |
636 | }; |
637 | |
638 | static struct { |
639 | struct blake2s_state hash; |
640 | spinlock_t lock; |
641 | unsigned int init_bits; |
642 | } input_pool = { |
643 | .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), |
644 | BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, |
645 | BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, |
646 | .hash.outlen = BLAKE2S_HASH_SIZE, |
647 | .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), |
648 | }; |
649 | |
650 | static void _mix_pool_bytes(const void *buf, size_t len) |
651 | { |
652 | blake2s_update(state: &input_pool.hash, in: buf, inlen: len); |
653 | } |
654 | |
655 | /* |
656 | * This function adds bytes into the input pool. It does not |
657 | * update the initialization bit counter; the caller should call |
658 | * credit_init_bits if this is appropriate. |
659 | */ |
660 | static void mix_pool_bytes(const void *buf, size_t len) |
661 | { |
662 | unsigned long flags; |
663 | |
664 | spin_lock_irqsave(&input_pool.lock, flags); |
665 | _mix_pool_bytes(buf, len); |
666 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
667 | } |
668 | |
669 | /* |
670 | * This is an HKDF-like construction for using the hashed collected entropy |
671 | * as a PRF key, that's then expanded block-by-block. |
672 | */ |
673 | static void extract_entropy(void *buf, size_t len) |
674 | { |
675 | unsigned long flags; |
676 | u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; |
677 | struct { |
678 | unsigned long rdseed[32 / sizeof(long)]; |
679 | size_t counter; |
680 | } block; |
681 | size_t i, longs; |
682 | |
683 | for (i = 0; i < ARRAY_SIZE(block.rdseed);) { |
684 | longs = arch_get_random_seed_longs(v: &block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); |
685 | if (longs) { |
686 | i += longs; |
687 | continue; |
688 | } |
689 | longs = arch_get_random_longs(v: &block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); |
690 | if (longs) { |
691 | i += longs; |
692 | continue; |
693 | } |
694 | block.rdseed[i++] = random_get_entropy(); |
695 | } |
696 | |
697 | spin_lock_irqsave(&input_pool.lock, flags); |
698 | |
699 | /* seed = HASHPRF(last_key, entropy_input) */ |
700 | blake2s_final(state: &input_pool.hash, out: seed); |
701 | |
702 | /* next_key = HASHPRF(seed, RDSEED || 0) */ |
703 | block.counter = 0; |
704 | blake2s(out: next_key, in: (u8 *)&block, key: seed, outlen: sizeof(next_key), inlen: sizeof(block), keylen: sizeof(seed)); |
705 | blake2s_init_key(state: &input_pool.hash, outlen: BLAKE2S_HASH_SIZE, key: next_key, keylen: sizeof(next_key)); |
706 | |
707 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
708 | memzero_explicit(s: next_key, count: sizeof(next_key)); |
709 | |
710 | while (len) { |
711 | i = min_t(size_t, len, BLAKE2S_HASH_SIZE); |
712 | /* output = HASHPRF(seed, RDSEED || ++counter) */ |
713 | ++block.counter; |
714 | blake2s(out: buf, in: (u8 *)&block, key: seed, outlen: i, inlen: sizeof(block), keylen: sizeof(seed)); |
715 | len -= i; |
716 | buf += i; |
717 | } |
718 | |
719 | memzero_explicit(s: seed, count: sizeof(seed)); |
720 | memzero_explicit(s: &block, count: sizeof(block)); |
721 | } |
722 | |
723 | #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) |
724 | |
725 | static void __cold _credit_init_bits(size_t bits) |
726 | { |
727 | static DECLARE_WORK(set_ready, crng_set_ready); |
728 | unsigned int new, orig, add; |
729 | unsigned long flags; |
730 | int m; |
731 | |
732 | if (!bits) |
733 | return; |
734 | |
735 | add = min_t(size_t, bits, POOL_BITS); |
736 | |
737 | orig = READ_ONCE(input_pool.init_bits); |
738 | do { |
739 | new = min_t(unsigned int, POOL_BITS, orig + add); |
740 | } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); |
741 | |
742 | if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { |
743 | crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ |
744 | if (static_key_initialized && system_unbound_wq) |
745 | queue_work(wq: system_unbound_wq, work: &set_ready); |
746 | atomic_notifier_call_chain(nh: &random_ready_notifier, val: 0, NULL); |
747 | #ifdef CONFIG_VDSO_GETRANDOM |
748 | WRITE_ONCE(vdso_k_rng_data->is_ready, true); |
749 | #endif |
750 | wake_up_interruptible(&crng_init_wait); |
751 | kill_fasync(&fasync, SIGIO, POLL_IN); |
752 | pr_notice("crng init done\n"); |
753 | m = ratelimit_state_get_miss(rs: &urandom_warning); |
754 | if (m) |
755 | pr_notice("%d urandom warning(s) missed due to ratelimiting\n", m); |
756 | } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { |
757 | spin_lock_irqsave(&base_crng.lock, flags); |
758 | /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ |
759 | if (crng_init == CRNG_EMPTY) { |
760 | extract_entropy(buf: base_crng.key, len: sizeof(base_crng.key)); |
761 | crng_init = CRNG_EARLY; |
762 | } |
763 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
764 | } |
765 | } |
766 | |
767 | |
768 | /********************************************************************** |
769 | * |
770 | * Entropy collection routines. |
771 | * |
772 | * The following exported functions are used for pushing entropy into |
773 | * the above entropy accumulation routines: |
774 | * |
775 | * void add_device_randomness(const void *buf, size_t len); |
776 | * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); |
777 | * void add_bootloader_randomness(const void *buf, size_t len); |
778 | * void add_vmfork_randomness(const void *unique_vm_id, size_t len); |
779 | * void add_interrupt_randomness(int irq); |
780 | * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); |
781 | * void add_disk_randomness(struct gendisk *disk); |
782 | * |
783 | * add_device_randomness() adds data to the input pool that |
784 | * is likely to differ between two devices (or possibly even per boot). |
785 | * This would be things like MAC addresses or serial numbers, or the |
786 | * read-out of the RTC. This does *not* credit any actual entropy to |
787 | * the pool, but it initializes the pool to different values for devices |
788 | * that might otherwise be identical and have very little entropy |
789 | * available to them (particularly common in the embedded world). |
790 | * |
791 | * add_hwgenerator_randomness() is for true hardware RNGs, and will credit |
792 | * entropy as specified by the caller. If the entropy pool is full it will |
793 | * block until more entropy is needed. |
794 | * |
795 | * add_bootloader_randomness() is called by bootloader drivers, such as EFI |
796 | * and device tree, and credits its input depending on whether or not the |
797 | * command line option 'random.trust_bootloader'. |
798 | * |
799 | * add_vmfork_randomness() adds a unique (but not necessarily secret) ID |
800 | * representing the current instance of a VM to the pool, without crediting, |
801 | * and then force-reseeds the crng so that it takes effect immediately. |
802 | * |
803 | * add_interrupt_randomness() uses the interrupt timing as random |
804 | * inputs to the entropy pool. Using the cycle counters and the irq source |
805 | * as inputs, it feeds the input pool roughly once a second or after 64 |
806 | * interrupts, crediting 1 bit of entropy for whichever comes first. |
807 | * |
808 | * add_input_randomness() uses the input layer interrupt timing, as well |
809 | * as the event type information from the hardware. |
810 | * |
811 | * add_disk_randomness() uses what amounts to the seek time of block |
812 | * layer request events, on a per-disk_devt basis, as input to the |
813 | * entropy pool. Note that high-speed solid state drives with very low |
814 | * seek times do not make for good sources of entropy, as their seek |
815 | * times are usually fairly consistent. |
816 | * |
817 | * The last two routines try to estimate how many bits of entropy |
818 | * to credit. They do this by keeping track of the first and second |
819 | * order deltas of the event timings. |
820 | * |
821 | **********************************************************************/ |
822 | |
823 | static bool trust_cpu __initdata = true; |
824 | static bool trust_bootloader __initdata = true; |
825 | static int __init parse_trust_cpu(char *arg) |
826 | { |
827 | return kstrtobool(s: arg, res: &trust_cpu); |
828 | } |
829 | static int __init parse_trust_bootloader(char *arg) |
830 | { |
831 | return kstrtobool(s: arg, res: &trust_bootloader); |
832 | } |
833 | early_param("random.trust_cpu", parse_trust_cpu); |
834 | early_param("random.trust_bootloader", parse_trust_bootloader); |
835 | |
836 | static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) |
837 | { |
838 | unsigned long flags, entropy = random_get_entropy(); |
839 | |
840 | /* |
841 | * Encode a representation of how long the system has been suspended, |
842 | * in a way that is distinct from prior system suspends. |
843 | */ |
844 | ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; |
845 | |
846 | spin_lock_irqsave(&input_pool.lock, flags); |
847 | _mix_pool_bytes(buf: &action, len: sizeof(action)); |
848 | _mix_pool_bytes(buf: stamps, len: sizeof(stamps)); |
849 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
850 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
851 | |
852 | if (crng_ready() && (action == PM_RESTORE_PREPARE || |
853 | (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && |
854 | !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { |
855 | crng_reseed(NULL); |
856 | pr_notice("crng reseeded on system resumption\n"); |
857 | } |
858 | return 0; |
859 | } |
860 | |
861 | static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; |
862 | |
863 | /* |
864 | * This is called extremely early, before time keeping functionality is |
865 | * available, but arch randomness is. Interrupts are not yet enabled. |
866 | */ |
867 | void __init random_init_early(const char *command_line) |
868 | { |
869 | unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; |
870 | size_t i, longs, arch_bits; |
871 | |
872 | #if defined(LATENT_ENTROPY_PLUGIN) |
873 | static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; |
874 | _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); |
875 | #endif |
876 | |
877 | for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { |
878 | longs = arch_get_random_seed_longs(v: entropy, ARRAY_SIZE(entropy) - i); |
879 | if (longs) { |
880 | _mix_pool_bytes(buf: entropy, len: sizeof(*entropy) * longs); |
881 | i += longs; |
882 | continue; |
883 | } |
884 | longs = arch_get_random_longs(v: entropy, ARRAY_SIZE(entropy) - i); |
885 | if (longs) { |
886 | _mix_pool_bytes(buf: entropy, len: sizeof(*entropy) * longs); |
887 | i += longs; |
888 | continue; |
889 | } |
890 | arch_bits -= sizeof(*entropy) * 8; |
891 | ++i; |
892 | } |
893 | |
894 | _mix_pool_bytes(buf: init_utsname(), len: sizeof(*(init_utsname()))); |
895 | _mix_pool_bytes(buf: command_line, strlen(command_line)); |
896 | |
897 | /* Reseed if already seeded by earlier phases. */ |
898 | if (crng_ready()) |
899 | crng_reseed(NULL); |
900 | else if (trust_cpu) |
901 | _credit_init_bits(bits: arch_bits); |
902 | } |
903 | |
904 | /* |
905 | * This is called a little bit after the prior function, and now there is |
906 | * access to timestamps counters. Interrupts are not yet enabled. |
907 | */ |
908 | void __init random_init(void) |
909 | { |
910 | unsigned long entropy = random_get_entropy(); |
911 | ktime_t now = ktime_get_real(); |
912 | |
913 | _mix_pool_bytes(buf: &now, len: sizeof(now)); |
914 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
915 | add_latent_entropy(); |
916 | |
917 | /* |
918 | * If we were initialized by the cpu or bootloader before jump labels |
919 | * or workqueues are initialized, then we should enable the static |
920 | * branch here, where it's guaranteed that these have been initialized. |
921 | */ |
922 | if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) |
923 | crng_set_ready(NULL); |
924 | |
925 | /* Reseed if already seeded by earlier phases. */ |
926 | if (crng_ready()) |
927 | crng_reseed(NULL); |
928 | |
929 | WARN_ON(register_pm_notifier(&pm_notifier)); |
930 | |
931 | WARN(!entropy, "Missing cycle counter and fallback timer; RNG " |
932 | "entropy collection will consequently suffer."); |
933 | } |
934 | |
935 | /* |
936 | * Add device- or boot-specific data to the input pool to help |
937 | * initialize it. |
938 | * |
939 | * None of this adds any entropy; it is meant to avoid the problem of |
940 | * the entropy pool having similar initial state across largely |
941 | * identical devices. |
942 | */ |
943 | void add_device_randomness(const void *buf, size_t len) |
944 | { |
945 | unsigned long entropy = random_get_entropy(); |
946 | unsigned long flags; |
947 | |
948 | spin_lock_irqsave(&input_pool.lock, flags); |
949 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
950 | _mix_pool_bytes(buf, len); |
951 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
952 | } |
953 | EXPORT_SYMBOL(add_device_randomness); |
954 | |
955 | /* |
956 | * Interface for in-kernel drivers of true hardware RNGs. Those devices |
957 | * may produce endless random bits, so this function will sleep for |
958 | * some amount of time after, if the sleep_after parameter is true. |
959 | */ |
960 | void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) |
961 | { |
962 | mix_pool_bytes(buf, len); |
963 | credit_init_bits(entropy); |
964 | |
965 | /* |
966 | * Throttle writing to once every reseed interval, unless we're not yet |
967 | * initialized or no entropy is credited. |
968 | */ |
969 | if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) |
970 | schedule_timeout_interruptible(timeout: crng_reseed_interval()); |
971 | } |
972 | EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |
973 | |
974 | /* |
975 | * Handle random seed passed by bootloader, and credit it depending |
976 | * on the command line option 'random.trust_bootloader'. |
977 | */ |
978 | void __init add_bootloader_randomness(const void *buf, size_t len) |
979 | { |
980 | mix_pool_bytes(buf, len); |
981 | if (trust_bootloader) |
982 | credit_init_bits(len * 8); |
983 | } |
984 | |
985 | #if IS_ENABLED(CONFIG_VMGENID) |
986 | static BLOCKING_NOTIFIER_HEAD(vmfork_chain); |
987 | |
988 | /* |
989 | * Handle a new unique VM ID, which is unique, not secret, so we |
990 | * don't credit it, but we do immediately force a reseed after so |
991 | * that it's used by the crng posthaste. |
992 | */ |
993 | void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) |
994 | { |
995 | add_device_randomness(unique_vm_id, len); |
996 | if (crng_ready()) { |
997 | crng_reseed(NULL); |
998 | pr_notice("crng reseeded due to virtual machine fork\n"); |
999 | } |
1000 | blocking_notifier_call_chain(nh: &vmfork_chain, val: 0, NULL); |
1001 | } |
1002 | #if IS_MODULE(CONFIG_VMGENID) |
1003 | EXPORT_SYMBOL_GPL(add_vmfork_randomness); |
1004 | #endif |
1005 | |
1006 | int __cold register_random_vmfork_notifier(struct notifier_block *nb) |
1007 | { |
1008 | return blocking_notifier_chain_register(nh: &vmfork_chain, nb); |
1009 | } |
1010 | EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); |
1011 | |
1012 | int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) |
1013 | { |
1014 | return blocking_notifier_chain_unregister(nh: &vmfork_chain, nb); |
1015 | } |
1016 | EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); |
1017 | #endif |
1018 | |
1019 | struct fast_pool { |
1020 | unsigned long pool[4]; |
1021 | unsigned long last; |
1022 | unsigned int count; |
1023 | struct timer_list mix; |
1024 | }; |
1025 | |
1026 | static void mix_interrupt_randomness(struct timer_list *work); |
1027 | |
1028 | static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { |
1029 | #ifdef CONFIG_64BIT |
1030 | #define FASTMIX_PERM SIPHASH_PERMUTATION |
1031 | .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, |
1032 | #else |
1033 | #define FASTMIX_PERM HSIPHASH_PERMUTATION |
1034 | .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, |
1035 | #endif |
1036 | .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) |
1037 | }; |
1038 | |
1039 | /* |
1040 | * This is [Half]SipHash-1-x, starting from an empty key. Because |
1041 | * the key is fixed, it assumes that its inputs are non-malicious, |
1042 | * and therefore this has no security on its own. s represents the |
1043 | * four-word SipHash state, while v represents a two-word input. |
1044 | */ |
1045 | static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) |
1046 | { |
1047 | s[3] ^= v1; |
1048 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
1049 | s[0] ^= v1; |
1050 | s[3] ^= v2; |
1051 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
1052 | s[0] ^= v2; |
1053 | } |
1054 | |
1055 | #ifdef CONFIG_SMP |
1056 | /* |
1057 | * This function is called when the CPU has just come online, with |
1058 | * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. |
1059 | */ |
1060 | int __cold random_online_cpu(unsigned int cpu) |
1061 | { |
1062 | /* |
1063 | * During CPU shutdown and before CPU onlining, add_interrupt_ |
1064 | * randomness() may schedule mix_interrupt_randomness(), and |
1065 | * set the MIX_INFLIGHT flag. However, because the worker can |
1066 | * be scheduled on a different CPU during this period, that |
1067 | * flag will never be cleared. For that reason, we zero out |
1068 | * the flag here, which runs just after workqueues are onlined |
1069 | * for the CPU again. This also has the effect of setting the |
1070 | * irq randomness count to zero so that new accumulated irqs |
1071 | * are fresh. |
1072 | */ |
1073 | per_cpu_ptr(&irq_randomness, cpu)->count = 0; |
1074 | return 0; |
1075 | } |
1076 | #endif |
1077 | |
1078 | static void mix_interrupt_randomness(struct timer_list *work) |
1079 | { |
1080 | struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); |
1081 | /* |
1082 | * The size of the copied stack pool is explicitly 2 longs so that we |
1083 | * only ever ingest half of the siphash output each time, retaining |
1084 | * the other half as the next "key" that carries over. The entropy is |
1085 | * supposed to be sufficiently dispersed between bits so on average |
1086 | * we don't wind up "losing" some. |
1087 | */ |
1088 | unsigned long pool[2]; |
1089 | unsigned int count; |
1090 | |
1091 | /* Check to see if we're running on the wrong CPU due to hotplug. */ |
1092 | local_irq_disable(); |
1093 | if (fast_pool != this_cpu_ptr(&irq_randomness)) { |
1094 | local_irq_enable(); |
1095 | return; |
1096 | } |
1097 | |
1098 | /* |
1099 | * Copy the pool to the stack so that the mixer always has a |
1100 | * consistent view, before we reenable irqs again. |
1101 | */ |
1102 | memcpy(pool, fast_pool->pool, sizeof(pool)); |
1103 | count = fast_pool->count; |
1104 | fast_pool->count = 0; |
1105 | fast_pool->last = jiffies; |
1106 | local_irq_enable(); |
1107 | |
1108 | mix_pool_bytes(buf: pool, len: sizeof(pool)); |
1109 | credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); |
1110 | |
1111 | memzero_explicit(s: pool, count: sizeof(pool)); |
1112 | } |
1113 | |
1114 | void add_interrupt_randomness(int irq) |
1115 | { |
1116 | enum { MIX_INFLIGHT = 1U << 31 }; |
1117 | unsigned long entropy = random_get_entropy(); |
1118 | struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); |
1119 | struct pt_regs *regs = get_irq_regs(); |
1120 | unsigned int new_count; |
1121 | |
1122 | fast_mix(s: fast_pool->pool, v1: entropy, |
1123 | v2: (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(y: irq)); |
1124 | new_count = ++fast_pool->count; |
1125 | |
1126 | if (new_count & MIX_INFLIGHT) |
1127 | return; |
1128 | |
1129 | if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) |
1130 | return; |
1131 | |
1132 | fast_pool->count |= MIX_INFLIGHT; |
1133 | if (!timer_pending(timer: &fast_pool->mix)) { |
1134 | fast_pool->mix.expires = jiffies; |
1135 | add_timer_on(timer: &fast_pool->mix, raw_smp_processor_id()); |
1136 | } |
1137 | } |
1138 | EXPORT_SYMBOL_GPL(add_interrupt_randomness); |
1139 | |
1140 | /* There is one of these per entropy source */ |
1141 | struct timer_rand_state { |
1142 | unsigned long last_time; |
1143 | long last_delta, last_delta2; |
1144 | }; |
1145 | |
1146 | /* |
1147 | * This function adds entropy to the entropy "pool" by using timing |
1148 | * delays. It uses the timer_rand_state structure to make an estimate |
1149 | * of how many bits of entropy this call has added to the pool. The |
1150 | * value "num" is also added to the pool; it should somehow describe |
1151 | * the type of event that just happened. |
1152 | */ |
1153 | static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) |
1154 | { |
1155 | unsigned long entropy = random_get_entropy(), now = jiffies, flags; |
1156 | long delta, delta2, delta3; |
1157 | unsigned int bits; |
1158 | |
1159 | /* |
1160 | * If we're in a hard IRQ, add_interrupt_randomness() will be called |
1161 | * sometime after, so mix into the fast pool. |
1162 | */ |
1163 | if (in_hardirq()) { |
1164 | fast_mix(this_cpu_ptr(&irq_randomness)->pool, v1: entropy, v2: num); |
1165 | } else { |
1166 | spin_lock_irqsave(&input_pool.lock, flags); |
1167 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
1168 | _mix_pool_bytes(buf: &num, len: sizeof(num)); |
1169 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
1170 | } |
1171 | |
1172 | if (crng_ready()) |
1173 | return; |
1174 | |
1175 | /* |
1176 | * Calculate number of bits of randomness we probably added. |
1177 | * We take into account the first, second and third-order deltas |
1178 | * in order to make our estimate. |
1179 | */ |
1180 | delta = now - READ_ONCE(state->last_time); |
1181 | WRITE_ONCE(state->last_time, now); |
1182 | |
1183 | delta2 = delta - READ_ONCE(state->last_delta); |
1184 | WRITE_ONCE(state->last_delta, delta); |
1185 | |
1186 | delta3 = delta2 - READ_ONCE(state->last_delta2); |
1187 | WRITE_ONCE(state->last_delta2, delta2); |
1188 | |
1189 | if (delta < 0) |
1190 | delta = -delta; |
1191 | if (delta2 < 0) |
1192 | delta2 = -delta2; |
1193 | if (delta3 < 0) |
1194 | delta3 = -delta3; |
1195 | if (delta > delta2) |
1196 | delta = delta2; |
1197 | if (delta > delta3) |
1198 | delta = delta3; |
1199 | |
1200 | /* |
1201 | * delta is now minimum absolute delta. Round down by 1 bit |
1202 | * on general principles, and limit entropy estimate to 11 bits. |
1203 | */ |
1204 | bits = min(fls(delta >> 1), 11); |
1205 | |
1206 | /* |
1207 | * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() |
1208 | * will run after this, which uses a different crediting scheme of 1 bit |
1209 | * per every 64 interrupts. In order to let that function do accounting |
1210 | * close to the one in this function, we credit a full 64/64 bit per bit, |
1211 | * and then subtract one to account for the extra one added. |
1212 | */ |
1213 | if (in_hardirq()) |
1214 | this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; |
1215 | else |
1216 | _credit_init_bits(bits); |
1217 | } |
1218 | |
1219 | void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) |
1220 | { |
1221 | static unsigned char last_value; |
1222 | static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; |
1223 | |
1224 | /* Ignore autorepeat and the like. */ |
1225 | if (value == last_value) |
1226 | return; |
1227 | |
1228 | last_value = value; |
1229 | add_timer_randomness(state: &input_timer_state, |
1230 | num: (type << 4) ^ code ^ (code >> 4) ^ value); |
1231 | } |
1232 | EXPORT_SYMBOL_GPL(add_input_randomness); |
1233 | |
1234 | #ifdef CONFIG_BLOCK |
1235 | void add_disk_randomness(struct gendisk *disk) |
1236 | { |
1237 | if (!disk || !disk->random) |
1238 | return; |
1239 | /* First major is 1, so we get >= 0x200 here. */ |
1240 | add_timer_randomness(state: disk->random, num: 0x100 + disk_devt(disk)); |
1241 | } |
1242 | EXPORT_SYMBOL_GPL(add_disk_randomness); |
1243 | |
1244 | void __cold rand_initialize_disk(struct gendisk *disk) |
1245 | { |
1246 | struct timer_rand_state *state; |
1247 | |
1248 | /* |
1249 | * If kzalloc returns null, we just won't use that entropy |
1250 | * source. |
1251 | */ |
1252 | state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); |
1253 | if (state) { |
1254 | state->last_time = INITIAL_JIFFIES; |
1255 | disk->random = state; |
1256 | } |
1257 | } |
1258 | #endif |
1259 | |
1260 | struct entropy_timer_state { |
1261 | unsigned long entropy; |
1262 | struct timer_list timer; |
1263 | atomic_t samples; |
1264 | unsigned int samples_per_bit; |
1265 | }; |
1266 | |
1267 | /* |
1268 | * Each time the timer fires, we expect that we got an unpredictable jump in |
1269 | * the cycle counter. Even if the timer is running on another CPU, the timer |
1270 | * activity will be touching the stack of the CPU that is generating entropy. |
1271 | * |
1272 | * Note that we don't re-arm the timer in the timer itself - we are happy to be |
1273 | * scheduled away, since that just makes the load more complex, but we do not |
1274 | * want the timer to keep ticking unless the entropy loop is running. |
1275 | * |
1276 | * So the re-arming always happens in the entropy loop itself. |
1277 | */ |
1278 | static void __cold entropy_timer(struct timer_list *timer) |
1279 | { |
1280 | struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); |
1281 | unsigned long entropy = random_get_entropy(); |
1282 | |
1283 | mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
1284 | if (atomic_inc_return(v: &state->samples) % state->samples_per_bit == 0) |
1285 | credit_init_bits(1); |
1286 | } |
1287 | |
1288 | /* |
1289 | * If we have an actual cycle counter, see if we can generate enough entropy |
1290 | * with timing noise. |
1291 | */ |
1292 | static void __cold try_to_generate_entropy(void) |
1293 | { |
1294 | enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; |
1295 | u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; |
1296 | struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); |
1297 | unsigned int i, num_different = 0; |
1298 | unsigned long last = random_get_entropy(); |
1299 | int cpu = -1; |
1300 | |
1301 | for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { |
1302 | stack->entropy = random_get_entropy(); |
1303 | if (stack->entropy != last) |
1304 | ++num_different; |
1305 | last = stack->entropy; |
1306 | } |
1307 | stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); |
1308 | if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) |
1309 | return; |
1310 | |
1311 | atomic_set(v: &stack->samples, i: 0); |
1312 | timer_setup_on_stack(&stack->timer, entropy_timer, 0); |
1313 | while (!crng_ready() && !signal_pending(current)) { |
1314 | /* |
1315 | * Check !timer_pending() and then ensure that any previous callback has finished |
1316 | * executing by checking timer_delete_sync_try(), before queueing the next one. |
1317 | */ |
1318 | if (!timer_pending(timer: &stack->timer) && timer_delete_sync_try(timer: &stack->timer) >= 0) { |
1319 | struct cpumask timer_cpus; |
1320 | unsigned int num_cpus; |
1321 | |
1322 | /* |
1323 | * Preemption must be disabled here, both to read the current CPU number |
1324 | * and to avoid scheduling a timer on a dead CPU. |
1325 | */ |
1326 | preempt_disable(); |
1327 | |
1328 | /* Only schedule callbacks on timer CPUs that are online. */ |
1329 | cpumask_and(dstp: &timer_cpus, src1p: housekeeping_cpumask(type: HK_TYPE_TIMER), cpu_online_mask); |
1330 | num_cpus = cpumask_weight(srcp: &timer_cpus); |
1331 | /* In very bizarre case of misconfiguration, fallback to all online. */ |
1332 | if (unlikely(num_cpus == 0)) { |
1333 | timer_cpus = *cpu_online_mask; |
1334 | num_cpus = cpumask_weight(srcp: &timer_cpus); |
1335 | } |
1336 | |
1337 | /* Basic CPU round-robin, which avoids the current CPU. */ |
1338 | do { |
1339 | cpu = cpumask_next(n: cpu, srcp: &timer_cpus); |
1340 | if (cpu >= nr_cpu_ids) |
1341 | cpu = cpumask_first(srcp: &timer_cpus); |
1342 | } while (cpu == smp_processor_id() && num_cpus > 1); |
1343 | |
1344 | /* Expiring the timer at `jiffies` means it's the next tick. */ |
1345 | stack->timer.expires = jiffies; |
1346 | |
1347 | add_timer_on(timer: &stack->timer, cpu); |
1348 | |
1349 | preempt_enable(); |
1350 | } |
1351 | mix_pool_bytes(buf: &stack->entropy, len: sizeof(stack->entropy)); |
1352 | schedule(); |
1353 | stack->entropy = random_get_entropy(); |
1354 | } |
1355 | mix_pool_bytes(buf: &stack->entropy, len: sizeof(stack->entropy)); |
1356 | |
1357 | timer_delete_sync(timer: &stack->timer); |
1358 | timer_destroy_on_stack(timer: &stack->timer); |
1359 | } |
1360 | |
1361 | |
1362 | /********************************************************************** |
1363 | * |
1364 | * Userspace reader/writer interfaces. |
1365 | * |
1366 | * getrandom(2) is the primary modern interface into the RNG and should |
1367 | * be used in preference to anything else. |
1368 | * |
1369 | * Reading from /dev/random has the same functionality as calling |
1370 | * getrandom(2) with flags=0. In earlier versions, however, it had |
1371 | * vastly different semantics and should therefore be avoided, to |
1372 | * prevent backwards compatibility issues. |
1373 | * |
1374 | * Reading from /dev/urandom has the same functionality as calling |
1375 | * getrandom(2) with flags=GRND_INSECURE. Because it does not block |
1376 | * waiting for the RNG to be ready, it should not be used. |
1377 | * |
1378 | * Writing to either /dev/random or /dev/urandom adds entropy to |
1379 | * the input pool but does not credit it. |
1380 | * |
1381 | * Polling on /dev/random indicates when the RNG is initialized, on |
1382 | * the read side, and when it wants new entropy, on the write side. |
1383 | * |
1384 | * Both /dev/random and /dev/urandom have the same set of ioctls for |
1385 | * adding entropy, getting the entropy count, zeroing the count, and |
1386 | * reseeding the crng. |
1387 | * |
1388 | **********************************************************************/ |
1389 | |
1390 | SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) |
1391 | { |
1392 | struct iov_iter iter; |
1393 | int ret; |
1394 | |
1395 | if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) |
1396 | return -EINVAL; |
1397 | |
1398 | /* |
1399 | * Requesting insecure and blocking randomness at the same time makes |
1400 | * no sense. |
1401 | */ |
1402 | if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) |
1403 | return -EINVAL; |
1404 | |
1405 | if (!crng_ready() && !(flags & GRND_INSECURE)) { |
1406 | if (flags & GRND_NONBLOCK) |
1407 | return -EAGAIN; |
1408 | ret = wait_for_random_bytes(); |
1409 | if (unlikely(ret)) |
1410 | return ret; |
1411 | } |
1412 | |
1413 | ret = import_ubuf(ITER_DEST, buf: ubuf, len, i: &iter); |
1414 | if (unlikely(ret)) |
1415 | return ret; |
1416 | return get_random_bytes_user(iter: &iter); |
1417 | } |
1418 | |
1419 | static __poll_t random_poll(struct file *file, poll_table *wait) |
1420 | { |
1421 | poll_wait(filp: file, wait_address: &crng_init_wait, p: wait); |
1422 | return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; |
1423 | } |
1424 | |
1425 | static ssize_t write_pool_user(struct iov_iter *iter) |
1426 | { |
1427 | u8 block[BLAKE2S_BLOCK_SIZE]; |
1428 | ssize_t ret = 0; |
1429 | size_t copied; |
1430 | |
1431 | if (unlikely(!iov_iter_count(iter))) |
1432 | return 0; |
1433 | |
1434 | for (;;) { |
1435 | copied = copy_from_iter(addr: block, bytes: sizeof(block), i: iter); |
1436 | ret += copied; |
1437 | mix_pool_bytes(buf: block, len: copied); |
1438 | if (!iov_iter_count(i: iter) || copied != sizeof(block)) |
1439 | break; |
1440 | |
1441 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
1442 | if (ret % PAGE_SIZE == 0) { |
1443 | if (signal_pending(current)) |
1444 | break; |
1445 | cond_resched(); |
1446 | } |
1447 | } |
1448 | |
1449 | memzero_explicit(s: block, count: sizeof(block)); |
1450 | return ret ? ret : -EFAULT; |
1451 | } |
1452 | |
1453 | static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) |
1454 | { |
1455 | return write_pool_user(iter); |
1456 | } |
1457 | |
1458 | static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
1459 | { |
1460 | static int maxwarn = 10; |
1461 | |
1462 | /* |
1463 | * Opportunistically attempt to initialize the RNG on platforms that |
1464 | * have fast cycle counters, but don't (for now) require it to succeed. |
1465 | */ |
1466 | if (!crng_ready()) |
1467 | try_to_generate_entropy(); |
1468 | |
1469 | if (!crng_ready()) { |
1470 | if (!ratelimit_disable && maxwarn <= 0) |
1471 | ratelimit_state_inc_miss(rs: &urandom_warning); |
1472 | else if (ratelimit_disable || __ratelimit(&urandom_warning)) { |
1473 | --maxwarn; |
1474 | pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", |
1475 | current->comm, iov_iter_count(iter)); |
1476 | } |
1477 | } |
1478 | |
1479 | return get_random_bytes_user(iter); |
1480 | } |
1481 | |
1482 | static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
1483 | { |
1484 | int ret; |
1485 | |
1486 | if (!crng_ready() && |
1487 | ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || |
1488 | (kiocb->ki_filp->f_flags & O_NONBLOCK))) |
1489 | return -EAGAIN; |
1490 | |
1491 | ret = wait_for_random_bytes(); |
1492 | if (ret != 0) |
1493 | return ret; |
1494 | return get_random_bytes_user(iter); |
1495 | } |
1496 | |
1497 | static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
1498 | { |
1499 | int __user *p = (int __user *)arg; |
1500 | int ent_count; |
1501 | |
1502 | switch (cmd) { |
1503 | case RNDGETENTCNT: |
1504 | /* Inherently racy, no point locking. */ |
1505 | if (put_user(input_pool.init_bits, p)) |
1506 | return -EFAULT; |
1507 | return 0; |
1508 | case RNDADDTOENTCNT: |
1509 | if (!capable(CAP_SYS_ADMIN)) |
1510 | return -EPERM; |
1511 | if (get_user(ent_count, p)) |
1512 | return -EFAULT; |
1513 | if (ent_count < 0) |
1514 | return -EINVAL; |
1515 | credit_init_bits(ent_count); |
1516 | return 0; |
1517 | case RNDADDENTROPY: { |
1518 | struct iov_iter iter; |
1519 | ssize_t ret; |
1520 | int len; |
1521 | |
1522 | if (!capable(CAP_SYS_ADMIN)) |
1523 | return -EPERM; |
1524 | if (get_user(ent_count, p++)) |
1525 | return -EFAULT; |
1526 | if (ent_count < 0) |
1527 | return -EINVAL; |
1528 | if (get_user(len, p++)) |
1529 | return -EFAULT; |
1530 | ret = import_ubuf(ITER_SOURCE, buf: p, len, i: &iter); |
1531 | if (unlikely(ret)) |
1532 | return ret; |
1533 | ret = write_pool_user(iter: &iter); |
1534 | if (unlikely(ret < 0)) |
1535 | return ret; |
1536 | /* Since we're crediting, enforce that it was all written into the pool. */ |
1537 | if (unlikely(ret != len)) |
1538 | return -EFAULT; |
1539 | credit_init_bits(ent_count); |
1540 | return 0; |
1541 | } |
1542 | case RNDZAPENTCNT: |
1543 | case RNDCLEARPOOL: |
1544 | /* No longer has any effect. */ |
1545 | if (!capable(CAP_SYS_ADMIN)) |
1546 | return -EPERM; |
1547 | return 0; |
1548 | case RNDRESEEDCRNG: |
1549 | if (!capable(CAP_SYS_ADMIN)) |
1550 | return -EPERM; |
1551 | if (!crng_ready()) |
1552 | return -ENODATA; |
1553 | crng_reseed(NULL); |
1554 | return 0; |
1555 | default: |
1556 | return -EINVAL; |
1557 | } |
1558 | } |
1559 | |
1560 | static int random_fasync(int fd, struct file *filp, int on) |
1561 | { |
1562 | return fasync_helper(fd, filp, on, &fasync); |
1563 | } |
1564 | |
1565 | const struct file_operations random_fops = { |
1566 | .read_iter = random_read_iter, |
1567 | .write_iter = random_write_iter, |
1568 | .poll = random_poll, |
1569 | .unlocked_ioctl = random_ioctl, |
1570 | .compat_ioctl = compat_ptr_ioctl, |
1571 | .fasync = random_fasync, |
1572 | .llseek = noop_llseek, |
1573 | .splice_read = copy_splice_read, |
1574 | .splice_write = iter_file_splice_write, |
1575 | }; |
1576 | |
1577 | const struct file_operations urandom_fops = { |
1578 | .read_iter = urandom_read_iter, |
1579 | .write_iter = random_write_iter, |
1580 | .unlocked_ioctl = random_ioctl, |
1581 | .compat_ioctl = compat_ptr_ioctl, |
1582 | .fasync = random_fasync, |
1583 | .llseek = noop_llseek, |
1584 | .splice_read = copy_splice_read, |
1585 | .splice_write = iter_file_splice_write, |
1586 | }; |
1587 | |
1588 | |
1589 | /******************************************************************** |
1590 | * |
1591 | * Sysctl interface. |
1592 | * |
1593 | * These are partly unused legacy knobs with dummy values to not break |
1594 | * userspace and partly still useful things. They are usually accessible |
1595 | * in /proc/sys/kernel/random/ and are as follows: |
1596 | * |
1597 | * - boot_id - a UUID representing the current boot. |
1598 | * |
1599 | * - uuid - a random UUID, different each time the file is read. |
1600 | * |
1601 | * - poolsize - the number of bits of entropy that the input pool can |
1602 | * hold, tied to the POOL_BITS constant. |
1603 | * |
1604 | * - entropy_avail - the number of bits of entropy currently in the |
1605 | * input pool. Always <= poolsize. |
1606 | * |
1607 | * - write_wakeup_threshold - the amount of entropy in the input pool |
1608 | * below which write polls to /dev/random will unblock, requesting |
1609 | * more entropy, tied to the POOL_READY_BITS constant. It is writable |
1610 | * to avoid breaking old userspaces, but writing to it does not |
1611 | * change any behavior of the RNG. |
1612 | * |
1613 | * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. |
1614 | * It is writable to avoid breaking old userspaces, but writing |
1615 | * to it does not change any behavior of the RNG. |
1616 | * |
1617 | ********************************************************************/ |
1618 | |
1619 | #ifdef CONFIG_SYSCTL |
1620 | |
1621 | #include <linux/sysctl.h> |
1622 | |
1623 | static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; |
1624 | static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; |
1625 | static int sysctl_poolsize = POOL_BITS; |
1626 | static u8 sysctl_bootid[UUID_SIZE]; |
1627 | |
1628 | /* |
1629 | * This function is used to return both the bootid UUID, and random |
1630 | * UUID. The difference is in whether table->data is NULL; if it is, |
1631 | * then a new UUID is generated and returned to the user. |
1632 | */ |
1633 | static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, |
1634 | size_t *lenp, loff_t *ppos) |
1635 | { |
1636 | u8 tmp_uuid[UUID_SIZE], *uuid; |
1637 | char uuid_string[UUID_STRING_LEN + 1]; |
1638 | struct ctl_table fake_table = { |
1639 | .data = uuid_string, |
1640 | .maxlen = UUID_STRING_LEN |
1641 | }; |
1642 | |
1643 | if (write) |
1644 | return -EPERM; |
1645 | |
1646 | uuid = table->data; |
1647 | if (!uuid) { |
1648 | uuid = tmp_uuid; |
1649 | generate_random_uuid(uuid); |
1650 | } else { |
1651 | static DEFINE_SPINLOCK(bootid_spinlock); |
1652 | |
1653 | spin_lock(lock: &bootid_spinlock); |
1654 | if (!uuid[8]) |
1655 | generate_random_uuid(uuid); |
1656 | spin_unlock(lock: &bootid_spinlock); |
1657 | } |
1658 | |
1659 | snprintf(buf: uuid_string, size: sizeof(uuid_string), fmt: "%pU", uuid); |
1660 | return proc_dostring(&fake_table, 0, buf, lenp, ppos); |
1661 | } |
1662 | |
1663 | /* The same as proc_dointvec, but writes don't change anything. */ |
1664 | static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, |
1665 | size_t *lenp, loff_t *ppos) |
1666 | { |
1667 | return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); |
1668 | } |
1669 | |
1670 | static const struct ctl_table random_table[] = { |
1671 | { |
1672 | .procname = "poolsize", |
1673 | .data = &sysctl_poolsize, |
1674 | .maxlen = sizeof(int), |
1675 | .mode = 0444, |
1676 | .proc_handler = proc_dointvec, |
1677 | }, |
1678 | { |
1679 | .procname = "entropy_avail", |
1680 | .data = &input_pool.init_bits, |
1681 | .maxlen = sizeof(int), |
1682 | .mode = 0444, |
1683 | .proc_handler = proc_dointvec, |
1684 | }, |
1685 | { |
1686 | .procname = "write_wakeup_threshold", |
1687 | .data = &sysctl_random_write_wakeup_bits, |
1688 | .maxlen = sizeof(int), |
1689 | .mode = 0644, |
1690 | .proc_handler = proc_do_rointvec, |
1691 | }, |
1692 | { |
1693 | .procname = "urandom_min_reseed_secs", |
1694 | .data = &sysctl_random_min_urandom_seed, |
1695 | .maxlen = sizeof(int), |
1696 | .mode = 0644, |
1697 | .proc_handler = proc_do_rointvec, |
1698 | }, |
1699 | { |
1700 | .procname = "boot_id", |
1701 | .data = &sysctl_bootid, |
1702 | .mode = 0444, |
1703 | .proc_handler = proc_do_uuid, |
1704 | }, |
1705 | { |
1706 | .procname = "uuid", |
1707 | .mode = 0444, |
1708 | .proc_handler = proc_do_uuid, |
1709 | }, |
1710 | }; |
1711 | |
1712 | /* |
1713 | * random_init() is called before sysctl_init(), |
1714 | * so we cannot call register_sysctl_init() in random_init() |
1715 | */ |
1716 | static int __init random_sysctls_init(void) |
1717 | { |
1718 | register_sysctl_init("kernel/random", random_table); |
1719 | return 0; |
1720 | } |
1721 | device_initcall(random_sysctls_init); |
1722 | #endif |
1723 |
Definitions
- crng_init
- crng_is_ready
- crng_init_wait
- fasync
- random_ready_notifier
- urandom_warning
- ratelimit_disable
- rng_is_initialized
- crng_set_ready
- wait_for_random_bytes
- execute_with_initialized_rng
- base_crng
- crng
- crngs
- crng_reseed_interval
- crng_reseed
- crng_fast_key_erasure
- crng_make_state
- _get_random_bytes
- get_random_bytes
- get_random_bytes_user
- __get_random_u32_below
- random_prepare_cpu
- input_pool
- _mix_pool_bytes
- mix_pool_bytes
- extract_entropy
- _credit_init_bits
- trust_cpu
- trust_bootloader
- parse_trust_cpu
- parse_trust_bootloader
- random_pm_notification
- pm_notifier
- random_init_early
- random_init
- add_device_randomness
- add_hwgenerator_randomness
- add_bootloader_randomness
- vmfork_chain
- add_vmfork_randomness
- register_random_vmfork_notifier
- unregister_random_vmfork_notifier
- fast_pool
- irq_randomness
- fast_mix
- random_online_cpu
- mix_interrupt_randomness
- add_interrupt_randomness
- timer_rand_state
- add_timer_randomness
- add_input_randomness
- add_disk_randomness
- rand_initialize_disk
- entropy_timer_state
- entropy_timer
- try_to_generate_entropy
- random_poll
- write_pool_user
- random_write_iter
- urandom_read_iter
- random_read_iter
- random_ioctl
- random_fasync
- random_fops
- urandom_fops
- sysctl_random_min_urandom_seed
- sysctl_random_write_wakeup_bits
- sysctl_poolsize
- sysctl_bootid
- proc_do_uuid
- proc_do_rointvec
- random_table
Improve your Profiling and Debugging skills
Find out more