1 | // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later |
---|---|
2 | /* |
3 | * Copyright 2008 - 2016 Freescale Semiconductor Inc. |
4 | * Copyright 2020 NXP |
5 | */ |
6 | |
7 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
8 | |
9 | #include <linux/init.h> |
10 | #include <linux/mod_devicetable.h> |
11 | #include <linux/module.h> |
12 | #include <linux/of_mdio.h> |
13 | #include <linux/of_net.h> |
14 | #include <linux/io.h> |
15 | #include <linux/if_arp.h> |
16 | #include <linux/if_vlan.h> |
17 | #include <linux/icmp.h> |
18 | #include <linux/ip.h> |
19 | #include <linux/ipv6.h> |
20 | #include <linux/platform_device.h> |
21 | #include <linux/udp.h> |
22 | #include <linux/tcp.h> |
23 | #include <linux/net.h> |
24 | #include <linux/skbuff.h> |
25 | #include <linux/etherdevice.h> |
26 | #include <linux/if_ether.h> |
27 | #include <linux/highmem.h> |
28 | #include <linux/percpu.h> |
29 | #include <linux/dma-mapping.h> |
30 | #include <linux/sort.h> |
31 | #include <linux/phy_fixed.h> |
32 | #include <linux/bpf.h> |
33 | #include <linux/bpf_trace.h> |
34 | #include <soc/fsl/bman.h> |
35 | #include <soc/fsl/qman.h> |
36 | #include "fman.h" |
37 | #include "fman_port.h" |
38 | #include "mac.h" |
39 | #include "dpaa_eth.h" |
40 | |
41 | /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files |
42 | * using trace events only need to #include <trace/events/sched.h> |
43 | */ |
44 | #define CREATE_TRACE_POINTS |
45 | #include "dpaa_eth_trace.h" |
46 | |
47 | static int debug = -1; |
48 | module_param(debug, int, 0444); |
49 | MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); |
50 | |
51 | static u16 tx_timeout = 1000; |
52 | module_param(tx_timeout, ushort, 0444); |
53 | MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); |
54 | |
55 | #define FM_FD_STAT_RX_ERRORS \ |
56 | (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ |
57 | FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ |
58 | FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ |
59 | FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ |
60 | FM_FD_ERR_PRS_HDR_ERR) |
61 | |
62 | #define FM_FD_STAT_TX_ERRORS \ |
63 | (FM_FD_ERR_UNSUPPORTED_FORMAT | \ |
64 | FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) |
65 | |
66 | #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ |
67 | NETIF_MSG_LINK | NETIF_MSG_IFUP | \ |
68 | NETIF_MSG_IFDOWN | NETIF_MSG_HW) |
69 | |
70 | #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 |
71 | /* Ingress congestion threshold on FMan ports |
72 | * The size in bytes of the ingress tail-drop threshold on FMan ports. |
73 | * Traffic piling up above this value will be rejected by QMan and discarded |
74 | * by FMan. |
75 | */ |
76 | |
77 | /* Size in bytes of the FQ taildrop threshold */ |
78 | #define DPAA_FQ_TD 0x200000 |
79 | |
80 | #define DPAA_CS_THRESHOLD_1G 0x06000000 |
81 | /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 |
82 | * The size in bytes of the egress Congestion State notification threshold on |
83 | * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a |
84 | * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), |
85 | * and the larger the frame size, the more acute the problem. |
86 | * So we have to find a balance between these factors: |
87 | * - avoiding the device staying congested for a prolonged time (risking |
88 | * the netdev watchdog to fire - see also the tx_timeout module param); |
89 | * - affecting performance of protocols such as TCP, which otherwise |
90 | * behave well under the congestion notification mechanism; |
91 | * - preventing the Tx cores from tightly-looping (as if the congestion |
92 | * threshold was too low to be effective); |
93 | * - running out of memory if the CS threshold is set too high. |
94 | */ |
95 | |
96 | #define DPAA_CS_THRESHOLD_10G 0x10000000 |
97 | /* The size in bytes of the egress Congestion State notification threshold on |
98 | * 10G ports, range 0x1000 .. 0x10000000 |
99 | */ |
100 | |
101 | /* Largest value that the FQD's OAL field can hold */ |
102 | #define FSL_QMAN_MAX_OAL 127 |
103 | |
104 | /* Default alignment for start of data in an Rx FD */ |
105 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
106 | /* aligning data start to 64 avoids DMA transaction splits, unless the buffer |
107 | * is crossing a 4k page boundary |
108 | */ |
109 | #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) |
110 | /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary |
111 | * crossings; also, all SG fragments except the last must have a size multiple |
112 | * of 256 to avoid DMA transaction splits |
113 | */ |
114 | #define DPAA_A050385_ALIGN 256 |
115 | #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ |
116 | DPAA_A050385_ALIGN : 16) |
117 | #else |
118 | #define DPAA_FD_DATA_ALIGNMENT 16 |
119 | #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT |
120 | #endif |
121 | |
122 | /* The DPAA requires 256 bytes reserved and mapped for the SGT */ |
123 | #define DPAA_SGT_SIZE 256 |
124 | |
125 | /* Values for the L3R field of the FM Parse Results |
126 | */ |
127 | /* L3 Type field: First IP Present IPv4 */ |
128 | #define FM_L3_PARSE_RESULT_IPV4 0x8000 |
129 | /* L3 Type field: First IP Present IPv6 */ |
130 | #define FM_L3_PARSE_RESULT_IPV6 0x4000 |
131 | /* Values for the L4R field of the FM Parse Results */ |
132 | /* L4 Type field: UDP */ |
133 | #define FM_L4_PARSE_RESULT_UDP 0x40 |
134 | /* L4 Type field: TCP */ |
135 | #define FM_L4_PARSE_RESULT_TCP 0x20 |
136 | |
137 | /* FD status field indicating whether the FM Parser has attempted to validate |
138 | * the L4 csum of the frame. |
139 | * Note that having this bit set doesn't necessarily imply that the checksum |
140 | * is valid. One would have to check the parse results to find that out. |
141 | */ |
142 | #define FM_FD_STAT_L4CV 0x00000004 |
143 | |
144 | #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ |
145 | #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ |
146 | |
147 | #define FSL_DPAA_BPID_INV 0xff |
148 | #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 |
149 | #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 |
150 | |
151 | #define DPAA_TX_PRIV_DATA_SIZE 16 |
152 | #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) |
153 | #define DPAA_TIME_STAMP_SIZE 8 |
154 | #define DPAA_HASH_RESULTS_SIZE 8 |
155 | #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ |
156 | + DPAA_HASH_RESULTS_SIZE) |
157 | #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ |
158 | XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) |
159 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
160 | #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) |
161 | #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ |
162 | DPAA_RX_PRIV_DATA_A050385_SIZE : \ |
163 | DPAA_RX_PRIV_DATA_DEFAULT_SIZE) |
164 | #else |
165 | #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE |
166 | #endif |
167 | |
168 | #define DPAA_ETH_PCD_RXQ_NUM 128 |
169 | |
170 | #define DPAA_ENQUEUE_RETRIES 100000 |
171 | |
172 | enum port_type {RX, TX}; |
173 | |
174 | struct fm_port_fqs { |
175 | struct dpaa_fq *tx_defq; |
176 | struct dpaa_fq *tx_errq; |
177 | struct dpaa_fq *rx_defq; |
178 | struct dpaa_fq *rx_errq; |
179 | struct dpaa_fq *rx_pcdq; |
180 | }; |
181 | |
182 | /* All the dpa bps in use at any moment */ |
183 | static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; |
184 | |
185 | #define DPAA_BP_RAW_SIZE 4096 |
186 | |
187 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
188 | #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ |
189 | ~(DPAA_A050385_ALIGN - 1)) |
190 | #else |
191 | #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) |
192 | #endif |
193 | |
194 | static int dpaa_max_frm; |
195 | |
196 | static int dpaa_rx_extra_headroom; |
197 | |
198 | #define dpaa_get_max_mtu() \ |
199 | (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) |
200 | |
201 | static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); |
202 | |
203 | static int dpaa_netdev_init(struct net_device *net_dev, |
204 | const struct net_device_ops *dpaa_ops, |
205 | u16 tx_timeout) |
206 | { |
207 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
208 | struct device *dev = net_dev->dev.parent; |
209 | struct mac_device *mac_dev = priv->mac_dev; |
210 | struct dpaa_percpu_priv *percpu_priv; |
211 | const u8 *mac_addr; |
212 | int i, err; |
213 | |
214 | /* Although we access another CPU's private data here |
215 | * we do it at initialization so it is safe |
216 | */ |
217 | for_each_possible_cpu(i) { |
218 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
219 | percpu_priv->net_dev = net_dev; |
220 | } |
221 | |
222 | net_dev->netdev_ops = dpaa_ops; |
223 | mac_addr = mac_dev->addr; |
224 | |
225 | net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; |
226 | net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; |
227 | |
228 | net_dev->min_mtu = ETH_MIN_MTU; |
229 | net_dev->max_mtu = dpaa_get_max_mtu(); |
230 | |
231 | net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
232 | NETIF_F_RXHASH); |
233 | |
234 | net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; |
235 | /* The kernels enables GSO automatically, if we declare NETIF_F_SG. |
236 | * For conformity, we'll still declare GSO explicitly. |
237 | */ |
238 | net_dev->features |= NETIF_F_GSO; |
239 | net_dev->features |= NETIF_F_RXCSUM; |
240 | |
241 | net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
242 | net_dev->lltx = true; |
243 | /* we do not want shared skbs on TX */ |
244 | net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; |
245 | |
246 | net_dev->features |= net_dev->hw_features; |
247 | net_dev->vlan_features = net_dev->features; |
248 | |
249 | net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | |
250 | NETDEV_XDP_ACT_REDIRECT | |
251 | NETDEV_XDP_ACT_NDO_XMIT; |
252 | |
253 | if (is_valid_ether_addr(addr: mac_addr)) { |
254 | memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); |
255 | eth_hw_addr_set(dev: net_dev, addr: mac_addr); |
256 | } else { |
257 | eth_hw_addr_random(dev: net_dev); |
258 | err = mac_dev->change_addr(mac_dev->fman_mac, |
259 | (const enet_addr_t *)net_dev->dev_addr); |
260 | if (err) { |
261 | dev_err(dev, "Failed to set random MAC address\n"); |
262 | return -EINVAL; |
263 | } |
264 | dev_info(dev, "Using random MAC address: %pM\n", |
265 | net_dev->dev_addr); |
266 | } |
267 | |
268 | net_dev->ethtool_ops = &dpaa_ethtool_ops; |
269 | |
270 | net_dev->needed_headroom = priv->tx_headroom; |
271 | net_dev->watchdog_timeo = msecs_to_jiffies(m: tx_timeout); |
272 | |
273 | /* The rest of the config is filled in by the mac device already */ |
274 | mac_dev->phylink_config.dev = &net_dev->dev; |
275 | mac_dev->phylink_config.type = PHYLINK_NETDEV; |
276 | mac_dev->update_speed = dpaa_eth_cgr_set_speed; |
277 | mac_dev->phylink = phylink_create(&mac_dev->phylink_config, |
278 | dev_fwnode(mac_dev->dev), |
279 | mac_dev->phy_if, |
280 | mac_dev->phylink_ops); |
281 | if (IS_ERR(ptr: mac_dev->phylink)) { |
282 | err = PTR_ERR(ptr: mac_dev->phylink); |
283 | dev_err_probe(dev, err, fmt: "Could not create phylink\n"); |
284 | return err; |
285 | } |
286 | |
287 | /* start without the RUNNING flag, phylib controls it later */ |
288 | netif_carrier_off(dev: net_dev); |
289 | |
290 | err = register_netdev(dev: net_dev); |
291 | if (err < 0) { |
292 | dev_err(dev, "register_netdev() = %d\n", err); |
293 | phylink_destroy(mac_dev->phylink); |
294 | return err; |
295 | } |
296 | |
297 | return 0; |
298 | } |
299 | |
300 | static int dpaa_stop(struct net_device *net_dev) |
301 | { |
302 | struct mac_device *mac_dev; |
303 | struct dpaa_priv *priv; |
304 | int i, error; |
305 | int err = 0; |
306 | |
307 | priv = netdev_priv(dev: net_dev); |
308 | mac_dev = priv->mac_dev; |
309 | |
310 | netif_tx_stop_all_queues(dev: net_dev); |
311 | /* Allow the Fman (Tx) port to process in-flight frames before we |
312 | * try switching it off. |
313 | */ |
314 | msleep(msecs: 200); |
315 | |
316 | phylink_stop(mac_dev->phylink); |
317 | mac_dev->disable(mac_dev->fman_mac); |
318 | |
319 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
320 | error = fman_port_disable(port: mac_dev->port[i]); |
321 | if (error) |
322 | err = error; |
323 | } |
324 | |
325 | phylink_disconnect_phy(mac_dev->phylink); |
326 | net_dev->phydev = NULL; |
327 | |
328 | msleep(msecs: 200); |
329 | |
330 | return err; |
331 | } |
332 | |
333 | static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) |
334 | { |
335 | struct dpaa_percpu_priv *percpu_priv; |
336 | const struct dpaa_priv *priv; |
337 | |
338 | priv = netdev_priv(dev: net_dev); |
339 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
340 | |
341 | netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", |
342 | jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); |
343 | |
344 | percpu_priv->stats.tx_errors++; |
345 | } |
346 | |
347 | /* Calculates the statistics for the given device by adding the statistics |
348 | * collected by each CPU. |
349 | */ |
350 | static void dpaa_get_stats64(struct net_device *net_dev, |
351 | struct rtnl_link_stats64 *s) |
352 | { |
353 | int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); |
354 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
355 | struct dpaa_percpu_priv *percpu_priv; |
356 | u64 *netstats = (u64 *)s; |
357 | u64 *cpustats; |
358 | int i, j; |
359 | |
360 | for_each_possible_cpu(i) { |
361 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
362 | |
363 | cpustats = (u64 *)&percpu_priv->stats; |
364 | |
365 | /* add stats from all CPUs */ |
366 | for (j = 0; j < numstats; j++) |
367 | netstats[j] += cpustats[j]; |
368 | } |
369 | } |
370 | |
371 | static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, |
372 | void *type_data) |
373 | { |
374 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
375 | int num_txqs_per_tc = dpaa_num_txqs_per_tc(); |
376 | struct tc_mqprio_qopt *mqprio = type_data; |
377 | u8 num_tc; |
378 | int i; |
379 | |
380 | if (type != TC_SETUP_QDISC_MQPRIO) |
381 | return -EOPNOTSUPP; |
382 | |
383 | mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; |
384 | num_tc = mqprio->num_tc; |
385 | |
386 | if (num_tc == priv->num_tc) |
387 | return 0; |
388 | |
389 | if (!num_tc) { |
390 | netdev_reset_tc(dev: net_dev); |
391 | goto out; |
392 | } |
393 | |
394 | if (num_tc > DPAA_TC_NUM) { |
395 | netdev_err(dev: net_dev, format: "Too many traffic classes: max %d supported.\n", |
396 | DPAA_TC_NUM); |
397 | return -EINVAL; |
398 | } |
399 | |
400 | netdev_set_num_tc(dev: net_dev, num_tc); |
401 | |
402 | for (i = 0; i < num_tc; i++) |
403 | netdev_set_tc_queue(dev: net_dev, tc: i, count: num_txqs_per_tc, |
404 | offset: i * num_txqs_per_tc); |
405 | |
406 | out: |
407 | priv->num_tc = num_tc ? : 1; |
408 | netif_set_real_num_tx_queues(dev: net_dev, txq: priv->num_tc * num_txqs_per_tc); |
409 | return 0; |
410 | } |
411 | |
412 | static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) |
413 | { |
414 | struct dpaa_eth_data *eth_data; |
415 | struct device *dpaa_dev; |
416 | struct mac_device *mac_dev; |
417 | |
418 | dpaa_dev = &pdev->dev; |
419 | eth_data = dpaa_dev->platform_data; |
420 | if (!eth_data) { |
421 | dev_err(dpaa_dev, "eth_data missing\n"); |
422 | return ERR_PTR(error: -ENODEV); |
423 | } |
424 | mac_dev = eth_data->mac_dev; |
425 | if (!mac_dev) { |
426 | dev_err(dpaa_dev, "mac_dev missing\n"); |
427 | return ERR_PTR(error: -EINVAL); |
428 | } |
429 | |
430 | return mac_dev; |
431 | } |
432 | |
433 | static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) |
434 | { |
435 | const struct dpaa_priv *priv; |
436 | struct mac_device *mac_dev; |
437 | struct sockaddr old_addr; |
438 | int err; |
439 | |
440 | priv = netdev_priv(dev: net_dev); |
441 | |
442 | memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); |
443 | |
444 | err = eth_mac_addr(dev: net_dev, p: addr); |
445 | if (err < 0) { |
446 | netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); |
447 | return err; |
448 | } |
449 | |
450 | mac_dev = priv->mac_dev; |
451 | |
452 | err = mac_dev->change_addr(mac_dev->fman_mac, |
453 | (const enet_addr_t *)net_dev->dev_addr); |
454 | if (err < 0) { |
455 | netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", |
456 | err); |
457 | /* reverting to previous address */ |
458 | eth_mac_addr(dev: net_dev, p: &old_addr); |
459 | |
460 | return err; |
461 | } |
462 | |
463 | return 0; |
464 | } |
465 | |
466 | static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr) |
467 | { |
468 | const struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
469 | |
470 | return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac, |
471 | (enet_addr_t *)addr); |
472 | } |
473 | |
474 | static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr) |
475 | { |
476 | const struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
477 | |
478 | return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac, |
479 | (enet_addr_t *)addr); |
480 | } |
481 | |
482 | static void dpaa_set_rx_mode(struct net_device *net_dev) |
483 | { |
484 | const struct dpaa_priv *priv; |
485 | int err; |
486 | |
487 | priv = netdev_priv(dev: net_dev); |
488 | |
489 | if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { |
490 | priv->mac_dev->promisc = !priv->mac_dev->promisc; |
491 | err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, |
492 | priv->mac_dev->promisc); |
493 | if (err < 0) |
494 | netif_err(priv, drv, net_dev, |
495 | "mac_dev->set_promisc() = %d\n", |
496 | err); |
497 | } |
498 | |
499 | if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { |
500 | priv->mac_dev->allmulti = !priv->mac_dev->allmulti; |
501 | err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, |
502 | priv->mac_dev->allmulti); |
503 | if (err < 0) |
504 | netif_err(priv, drv, net_dev, |
505 | "mac_dev->set_allmulti() = %d\n", |
506 | err); |
507 | } |
508 | |
509 | err = __dev_mc_sync(dev: net_dev, sync: dpaa_addr_sync, unsync: dpaa_addr_unsync); |
510 | if (err < 0) |
511 | netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n", |
512 | err); |
513 | } |
514 | |
515 | static struct dpaa_bp *dpaa_bpid2pool(int bpid) |
516 | { |
517 | if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) |
518 | return NULL; |
519 | |
520 | return dpaa_bp_array[bpid]; |
521 | } |
522 | |
523 | /* checks if this bpool is already allocated */ |
524 | static bool dpaa_bpid2pool_use(int bpid) |
525 | { |
526 | if (dpaa_bpid2pool(bpid)) { |
527 | refcount_inc(r: &dpaa_bp_array[bpid]->refs); |
528 | return true; |
529 | } |
530 | |
531 | return false; |
532 | } |
533 | |
534 | /* called only once per bpid by dpaa_bp_alloc_pool() */ |
535 | static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) |
536 | { |
537 | dpaa_bp_array[bpid] = dpaa_bp; |
538 | refcount_set(r: &dpaa_bp->refs, n: 1); |
539 | } |
540 | |
541 | static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) |
542 | { |
543 | int err; |
544 | |
545 | if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { |
546 | pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", |
547 | __func__); |
548 | return -EINVAL; |
549 | } |
550 | |
551 | /* If the pool is already specified, we only create one per bpid */ |
552 | if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && |
553 | dpaa_bpid2pool_use(bpid: dpaa_bp->bpid)) |
554 | return 0; |
555 | |
556 | if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { |
557 | dpaa_bp->pool = bman_new_pool(); |
558 | if (!dpaa_bp->pool) { |
559 | pr_err("%s: bman_new_pool() failed\n", |
560 | __func__); |
561 | return -ENODEV; |
562 | } |
563 | |
564 | dpaa_bp->bpid = (u8)bman_get_bpid(pool: dpaa_bp->pool); |
565 | } |
566 | |
567 | if (dpaa_bp->seed_cb) { |
568 | err = dpaa_bp->seed_cb(dpaa_bp); |
569 | if (err) |
570 | goto pool_seed_failed; |
571 | } |
572 | |
573 | dpaa_bpid2pool_map(bpid: dpaa_bp->bpid, dpaa_bp); |
574 | |
575 | return 0; |
576 | |
577 | pool_seed_failed: |
578 | pr_err("%s: pool seeding failed\n", __func__); |
579 | bman_free_pool(pool: dpaa_bp->pool); |
580 | |
581 | return err; |
582 | } |
583 | |
584 | /* remove and free all the buffers from the given buffer pool */ |
585 | static void dpaa_bp_drain(struct dpaa_bp *bp) |
586 | { |
587 | u8 num = 8; |
588 | int ret; |
589 | |
590 | do { |
591 | struct bm_buffer bmb[8]; |
592 | int i; |
593 | |
594 | ret = bman_acquire(pool: bp->pool, bufs: bmb, num); |
595 | if (ret < 0) { |
596 | if (num == 8) { |
597 | /* we have less than 8 buffers left; |
598 | * drain them one by one |
599 | */ |
600 | num = 1; |
601 | ret = 1; |
602 | continue; |
603 | } else { |
604 | /* Pool is fully drained */ |
605 | break; |
606 | } |
607 | } |
608 | |
609 | if (bp->free_buf_cb) |
610 | for (i = 0; i < num; i++) |
611 | bp->free_buf_cb(bp, &bmb[i]); |
612 | } while (ret > 0); |
613 | } |
614 | |
615 | static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) |
616 | { |
617 | struct dpaa_bp *bp = dpaa_bpid2pool(bpid: dpaa_bp->bpid); |
618 | |
619 | /* the mapping between bpid and dpaa_bp is done very late in the |
620 | * allocation procedure; if something failed before the mapping, the bp |
621 | * was not configured, therefore we don't need the below instructions |
622 | */ |
623 | if (!bp) |
624 | return; |
625 | |
626 | if (!refcount_dec_and_test(r: &bp->refs)) |
627 | return; |
628 | |
629 | if (bp->free_buf_cb) |
630 | dpaa_bp_drain(bp); |
631 | |
632 | dpaa_bp_array[bp->bpid] = NULL; |
633 | bman_free_pool(pool: bp->pool); |
634 | } |
635 | |
636 | static void dpaa_bps_free(struct dpaa_priv *priv) |
637 | { |
638 | dpaa_bp_free(dpaa_bp: priv->dpaa_bp); |
639 | } |
640 | |
641 | /* Use multiple WQs for FQ assignment: |
642 | * - Tx Confirmation queues go to WQ1. |
643 | * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance |
644 | * to be scheduled, in case there are many more FQs in WQ6). |
645 | * - Rx Default goes to WQ6. |
646 | * - Tx queues go to different WQs depending on their priority. Equal |
647 | * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and |
648 | * WQ0 (highest priority). |
649 | * This ensures that Tx-confirmed buffers are timely released. In particular, |
650 | * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they |
651 | * are greatly outnumbered by other FQs in the system, while |
652 | * dequeue scheduling is round-robin. |
653 | */ |
654 | static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) |
655 | { |
656 | switch (fq->fq_type) { |
657 | case FQ_TYPE_TX_CONFIRM: |
658 | case FQ_TYPE_TX_CONF_MQ: |
659 | fq->wq = 1; |
660 | break; |
661 | case FQ_TYPE_RX_ERROR: |
662 | case FQ_TYPE_TX_ERROR: |
663 | fq->wq = 5; |
664 | break; |
665 | case FQ_TYPE_RX_DEFAULT: |
666 | case FQ_TYPE_RX_PCD: |
667 | fq->wq = 6; |
668 | break; |
669 | case FQ_TYPE_TX: |
670 | switch (idx / dpaa_num_txqs_per_tc()) { |
671 | case 0: |
672 | /* Low priority (best effort) */ |
673 | fq->wq = 6; |
674 | break; |
675 | case 1: |
676 | /* Medium priority */ |
677 | fq->wq = 2; |
678 | break; |
679 | case 2: |
680 | /* High priority */ |
681 | fq->wq = 1; |
682 | break; |
683 | case 3: |
684 | /* Very high priority */ |
685 | fq->wq = 0; |
686 | break; |
687 | default: |
688 | WARN(1, "Too many TX FQs: more than %zu!\n", |
689 | dpaa_max_num_txqs()); |
690 | } |
691 | break; |
692 | default: |
693 | WARN(1, "Invalid FQ type %d for FQID %d!\n", |
694 | fq->fq_type, fq->fqid); |
695 | } |
696 | } |
697 | |
698 | static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, |
699 | u32 start, u32 count, |
700 | struct list_head *list, |
701 | enum dpaa_fq_type fq_type) |
702 | { |
703 | struct dpaa_fq *dpaa_fq; |
704 | int i; |
705 | |
706 | dpaa_fq = devm_kcalloc(dev, n: count, size: sizeof(*dpaa_fq), |
707 | GFP_KERNEL); |
708 | if (!dpaa_fq) |
709 | return NULL; |
710 | |
711 | for (i = 0; i < count; i++) { |
712 | dpaa_fq[i].fq_type = fq_type; |
713 | dpaa_fq[i].fqid = start ? start + i : 0; |
714 | list_add_tail(new: &dpaa_fq[i].list, head: list); |
715 | } |
716 | |
717 | for (i = 0; i < count; i++) |
718 | dpaa_assign_wq(fq: dpaa_fq + i, idx: i); |
719 | |
720 | return dpaa_fq; |
721 | } |
722 | |
723 | static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, |
724 | struct fm_port_fqs *port_fqs) |
725 | { |
726 | struct dpaa_fq *dpaa_fq; |
727 | u32 fq_base, fq_base_aligned, i; |
728 | |
729 | dpaa_fq = dpaa_fq_alloc(dev, start: 0, count: 1, list, fq_type: FQ_TYPE_RX_ERROR); |
730 | if (!dpaa_fq) |
731 | goto fq_alloc_failed; |
732 | |
733 | port_fqs->rx_errq = &dpaa_fq[0]; |
734 | |
735 | dpaa_fq = dpaa_fq_alloc(dev, start: 0, count: 1, list, fq_type: FQ_TYPE_RX_DEFAULT); |
736 | if (!dpaa_fq) |
737 | goto fq_alloc_failed; |
738 | |
739 | port_fqs->rx_defq = &dpaa_fq[0]; |
740 | |
741 | /* the PCD FQIDs range needs to be aligned for correct operation */ |
742 | if (qman_alloc_fqid_range(result: &fq_base, count: 2 * DPAA_ETH_PCD_RXQ_NUM)) |
743 | goto fq_alloc_failed; |
744 | |
745 | fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); |
746 | |
747 | for (i = fq_base; i < fq_base_aligned; i++) |
748 | qman_release_fqid(fqid: i); |
749 | |
750 | for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; |
751 | i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) |
752 | qman_release_fqid(fqid: i); |
753 | |
754 | dpaa_fq = dpaa_fq_alloc(dev, start: fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, |
755 | list, fq_type: FQ_TYPE_RX_PCD); |
756 | if (!dpaa_fq) |
757 | goto fq_alloc_failed; |
758 | |
759 | port_fqs->rx_pcdq = &dpaa_fq[0]; |
760 | |
761 | if (!dpaa_fq_alloc(dev, start: 0, count: dpaa_max_num_txqs(), list, |
762 | fq_type: FQ_TYPE_TX_CONF_MQ)) |
763 | goto fq_alloc_failed; |
764 | |
765 | dpaa_fq = dpaa_fq_alloc(dev, start: 0, count: 1, list, fq_type: FQ_TYPE_TX_ERROR); |
766 | if (!dpaa_fq) |
767 | goto fq_alloc_failed; |
768 | |
769 | port_fqs->tx_errq = &dpaa_fq[0]; |
770 | |
771 | dpaa_fq = dpaa_fq_alloc(dev, start: 0, count: 1, list, fq_type: FQ_TYPE_TX_CONFIRM); |
772 | if (!dpaa_fq) |
773 | goto fq_alloc_failed; |
774 | |
775 | port_fqs->tx_defq = &dpaa_fq[0]; |
776 | |
777 | if (!dpaa_fq_alloc(dev, start: 0, count: dpaa_max_num_txqs(), list, fq_type: FQ_TYPE_TX)) |
778 | goto fq_alloc_failed; |
779 | |
780 | return 0; |
781 | |
782 | fq_alloc_failed: |
783 | dev_err(dev, "dpaa_fq_alloc() failed\n"); |
784 | return -ENOMEM; |
785 | } |
786 | |
787 | static u32 rx_pool_channel; |
788 | static DEFINE_SPINLOCK(rx_pool_channel_init); |
789 | |
790 | static int dpaa_get_channel(void) |
791 | { |
792 | spin_lock(lock: &rx_pool_channel_init); |
793 | if (!rx_pool_channel) { |
794 | u32 pool; |
795 | int ret; |
796 | |
797 | ret = qman_alloc_pool(&pool); |
798 | |
799 | if (!ret) |
800 | rx_pool_channel = pool; |
801 | } |
802 | spin_unlock(lock: &rx_pool_channel_init); |
803 | if (!rx_pool_channel) |
804 | return -ENOMEM; |
805 | return rx_pool_channel; |
806 | } |
807 | |
808 | static void dpaa_release_channel(void) |
809 | { |
810 | qman_release_pool(id: rx_pool_channel); |
811 | } |
812 | |
813 | static void dpaa_eth_add_channel(u16 channel, struct device *dev) |
814 | { |
815 | u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); |
816 | const cpumask_t *cpus = qman_affine_cpus(); |
817 | struct qman_portal *portal; |
818 | int cpu; |
819 | |
820 | for_each_cpu_and(cpu, cpus, cpu_online_mask) { |
821 | portal = qman_get_affine_portal(cpu); |
822 | qman_p_static_dequeue_add(p: portal, pools: pool); |
823 | qman_start_using_portal(p: portal, dev); |
824 | } |
825 | } |
826 | |
827 | /* Congestion group state change notification callback. |
828 | * Stops the device's egress queues while they are congested and |
829 | * wakes them upon exiting congested state. |
830 | * Also updates some CGR-related stats. |
831 | */ |
832 | static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, |
833 | int congested) |
834 | { |
835 | struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, |
836 | struct dpaa_priv, cgr_data.cgr); |
837 | |
838 | if (congested) { |
839 | priv->cgr_data.congestion_start_jiffies = jiffies; |
840 | netif_tx_stop_all_queues(dev: priv->net_dev); |
841 | priv->cgr_data.cgr_congested_count++; |
842 | } else { |
843 | priv->cgr_data.congested_jiffies += |
844 | (jiffies - priv->cgr_data.congestion_start_jiffies); |
845 | netif_tx_wake_all_queues(dev: priv->net_dev); |
846 | } |
847 | } |
848 | |
849 | static int dpaa_eth_cgr_init(struct dpaa_priv *priv) |
850 | { |
851 | struct qm_mcc_initcgr initcgr; |
852 | u32 cs_th; |
853 | int err; |
854 | |
855 | err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); |
856 | if (err < 0) { |
857 | if (netif_msg_drv(priv)) |
858 | pr_err("%s: Error %d allocating CGR ID\n", |
859 | __func__, err); |
860 | goto out_error; |
861 | } |
862 | priv->cgr_data.cgr.cb = dpaa_eth_cgscn; |
863 | |
864 | /* Enable Congestion State Change Notifications and CS taildrop */ |
865 | memset(&initcgr, 0, sizeof(initcgr)); |
866 | initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); |
867 | initcgr.cgr.cscn_en = QM_CGR_EN; |
868 | |
869 | /* Set different thresholds based on the configured MAC speed. |
870 | * This may turn suboptimal if the MAC is reconfigured at another |
871 | * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up |
872 | * callback. |
873 | */ |
874 | if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) |
875 | cs_th = DPAA_CS_THRESHOLD_10G; |
876 | else |
877 | cs_th = DPAA_CS_THRESHOLD_1G; |
878 | qm_cgr_cs_thres_set64(th: &initcgr.cgr.cs_thres, val: cs_th, roundup: 1); |
879 | |
880 | initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
881 | initcgr.cgr.cstd_en = QM_CGR_EN; |
882 | |
883 | err = qman_create_cgr(cgr: &priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, |
884 | opts: &initcgr); |
885 | if (err < 0) { |
886 | if (netif_msg_drv(priv)) |
887 | pr_err("%s: Error %d creating CGR with ID %d\n", |
888 | __func__, err, priv->cgr_data.cgr.cgrid); |
889 | qman_release_cgrid(id: priv->cgr_data.cgr.cgrid); |
890 | goto out_error; |
891 | } |
892 | if (netif_msg_drv(priv)) |
893 | pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", |
894 | priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, |
895 | priv->cgr_data.cgr.chan); |
896 | |
897 | out_error: |
898 | return err; |
899 | } |
900 | |
901 | static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) |
902 | { |
903 | struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); |
904 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
905 | struct qm_mcc_initcgr opts = { }; |
906 | u32 cs_th; |
907 | int err; |
908 | |
909 | opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); |
910 | switch (speed) { |
911 | case SPEED_10000: |
912 | cs_th = DPAA_CS_THRESHOLD_10G; |
913 | break; |
914 | case SPEED_1000: |
915 | default: |
916 | cs_th = DPAA_CS_THRESHOLD_1G; |
917 | break; |
918 | } |
919 | qm_cgr_cs_thres_set64(th: &opts.cgr.cs_thres, val: cs_th, roundup: 1); |
920 | |
921 | err = qman_update_cgr_safe(cgr: &priv->cgr_data.cgr, opts: &opts); |
922 | if (err) |
923 | netdev_err(dev: net_dev, format: "could not update speed: %d\n", err); |
924 | } |
925 | |
926 | static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, |
927 | struct dpaa_fq *fq, |
928 | const struct qman_fq *template) |
929 | { |
930 | fq->fq_base = *template; |
931 | fq->net_dev = priv->net_dev; |
932 | |
933 | fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; |
934 | fq->channel = priv->channel; |
935 | } |
936 | |
937 | static inline void dpaa_setup_egress(const struct dpaa_priv *priv, |
938 | struct dpaa_fq *fq, |
939 | struct fman_port *port, |
940 | const struct qman_fq *template) |
941 | { |
942 | fq->fq_base = *template; |
943 | fq->net_dev = priv->net_dev; |
944 | |
945 | if (port) { |
946 | fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; |
947 | fq->channel = (u16)fman_port_get_qman_channel_id(port); |
948 | } else { |
949 | fq->flags = QMAN_FQ_FLAG_NO_MODIFY; |
950 | } |
951 | } |
952 | |
953 | static int dpaa_fq_setup(struct dpaa_priv *priv, |
954 | const struct dpaa_fq_cbs *fq_cbs, |
955 | struct fman_port *tx_port) |
956 | { |
957 | int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; |
958 | const cpumask_t *affine_cpus = qman_affine_cpus(); |
959 | struct dpaa_fq *fq; |
960 | u16 *channels; |
961 | |
962 | channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); |
963 | if (!channels) |
964 | return -ENOMEM; |
965 | |
966 | for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) |
967 | channels[num_portals++] = qman_affine_channel(cpu); |
968 | |
969 | if (num_portals == 0) |
970 | dev_err(priv->net_dev->dev.parent, |
971 | "No Qman software (affine) channels found\n"); |
972 | |
973 | /* Initialize each FQ in the list */ |
974 | list_for_each_entry(fq, &priv->dpaa_fq_list, list) { |
975 | switch (fq->fq_type) { |
976 | case FQ_TYPE_RX_DEFAULT: |
977 | dpaa_setup_ingress(priv, fq, template: &fq_cbs->rx_defq); |
978 | break; |
979 | case FQ_TYPE_RX_ERROR: |
980 | dpaa_setup_ingress(priv, fq, template: &fq_cbs->rx_errq); |
981 | break; |
982 | case FQ_TYPE_RX_PCD: |
983 | if (!num_portals) |
984 | continue; |
985 | dpaa_setup_ingress(priv, fq, template: &fq_cbs->rx_defq); |
986 | fq->channel = channels[portal_cnt++ % num_portals]; |
987 | break; |
988 | case FQ_TYPE_TX: |
989 | dpaa_setup_egress(priv, fq, port: tx_port, |
990 | template: &fq_cbs->egress_ern); |
991 | priv->egress_fqs[egress_cnt++] = &fq->fq_base; |
992 | break; |
993 | case FQ_TYPE_TX_CONF_MQ: |
994 | priv->conf_fqs[conf_cnt++] = &fq->fq_base; |
995 | fallthrough; |
996 | case FQ_TYPE_TX_CONFIRM: |
997 | dpaa_setup_ingress(priv, fq, template: &fq_cbs->tx_defq); |
998 | break; |
999 | case FQ_TYPE_TX_ERROR: |
1000 | dpaa_setup_ingress(priv, fq, template: &fq_cbs->tx_errq); |
1001 | break; |
1002 | default: |
1003 | dev_warn(priv->net_dev->dev.parent, |
1004 | "Unknown FQ type detected!\n"); |
1005 | break; |
1006 | } |
1007 | } |
1008 | |
1009 | kfree(objp: channels); |
1010 | |
1011 | return 0; |
1012 | } |
1013 | |
1014 | static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, |
1015 | struct qman_fq *tx_fq) |
1016 | { |
1017 | int i; |
1018 | |
1019 | for (i = 0; i < dpaa_max_num_txqs(); i++) |
1020 | if (priv->egress_fqs[i] == tx_fq) |
1021 | return i; |
1022 | |
1023 | return -EINVAL; |
1024 | } |
1025 | |
1026 | static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) |
1027 | { |
1028 | const struct dpaa_priv *priv; |
1029 | struct qman_fq *confq = NULL; |
1030 | struct qm_mcc_initfq initfq; |
1031 | struct device *dev; |
1032 | struct qman_fq *fq; |
1033 | int queue_id; |
1034 | int err; |
1035 | |
1036 | priv = netdev_priv(dev: dpaa_fq->net_dev); |
1037 | dev = dpaa_fq->net_dev->dev.parent; |
1038 | |
1039 | if (dpaa_fq->fqid == 0) |
1040 | dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; |
1041 | |
1042 | dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); |
1043 | |
1044 | err = qman_create_fq(fqid: dpaa_fq->fqid, flags: dpaa_fq->flags, fq: &dpaa_fq->fq_base); |
1045 | if (err) { |
1046 | dev_err(dev, "qman_create_fq() failed\n"); |
1047 | return err; |
1048 | } |
1049 | fq = &dpaa_fq->fq_base; |
1050 | |
1051 | if (dpaa_fq->init) { |
1052 | memset(&initfq, 0, sizeof(initfq)); |
1053 | |
1054 | initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); |
1055 | /* Note: we may get to keep an empty FQ in cache */ |
1056 | initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); |
1057 | |
1058 | /* Try to reduce the number of portal interrupts for |
1059 | * Tx Confirmation FQs. |
1060 | */ |
1061 | if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) |
1062 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); |
1063 | |
1064 | /* FQ placement */ |
1065 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); |
1066 | |
1067 | qm_fqd_set_destwq(fqd: &initfq.fqd, ch: dpaa_fq->channel, wq: dpaa_fq->wq); |
1068 | |
1069 | /* Put all egress queues in a congestion group of their own. |
1070 | * Sensu stricto, the Tx confirmation queues are Rx FQs, |
1071 | * rather than Tx - but they nonetheless account for the |
1072 | * memory footprint on behalf of egress traffic. We therefore |
1073 | * place them in the netdev's CGR, along with the Tx FQs. |
1074 | */ |
1075 | if (dpaa_fq->fq_type == FQ_TYPE_TX || |
1076 | dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || |
1077 | dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { |
1078 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
1079 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
1080 | initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; |
1081 | /* Set a fixed overhead accounting, in an attempt to |
1082 | * reduce the impact of fixed-size skb shells and the |
1083 | * driver's needed headroom on system memory. This is |
1084 | * especially the case when the egress traffic is |
1085 | * composed of small datagrams. |
1086 | * Unfortunately, QMan's OAL value is capped to an |
1087 | * insufficient value, but even that is better than |
1088 | * no overhead accounting at all. |
1089 | */ |
1090 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
1091 | qm_fqd_set_oac(fqd: &initfq.fqd, QM_OAC_CG); |
1092 | qm_fqd_set_oal(fqd: &initfq.fqd, |
1093 | min(sizeof(struct sk_buff) + |
1094 | priv->tx_headroom, |
1095 | (size_t)FSL_QMAN_MAX_OAL)); |
1096 | } |
1097 | |
1098 | if (td_enable) { |
1099 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); |
1100 | qm_fqd_set_taildrop(fqd: &initfq.fqd, DPAA_FQ_TD, roundup: 1); |
1101 | initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); |
1102 | } |
1103 | |
1104 | if (dpaa_fq->fq_type == FQ_TYPE_TX) { |
1105 | queue_id = dpaa_tx_fq_to_id(priv, tx_fq: &dpaa_fq->fq_base); |
1106 | if (queue_id >= 0) |
1107 | confq = priv->conf_fqs[queue_id]; |
1108 | if (confq) { |
1109 | initfq.we_mask |= |
1110 | cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
1111 | /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) |
1112 | * A2V=1 (contextA A2 field is valid) |
1113 | * A0V=1 (contextA A0 field is valid) |
1114 | * B0V=1 (contextB field is valid) |
1115 | * ContextA A2: EBD=1 (deallocate buffers inside FMan) |
1116 | * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) |
1117 | */ |
1118 | qm_fqd_context_a_set64(fqd: &initfq.fqd, |
1119 | addr: 0x1e00000080000000ULL); |
1120 | } |
1121 | } |
1122 | |
1123 | /* Put all the ingress queues in our "ingress CGR". */ |
1124 | if (priv->use_ingress_cgr && |
1125 | (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || |
1126 | dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || |
1127 | dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { |
1128 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
1129 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
1130 | initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; |
1131 | /* Set a fixed overhead accounting, just like for the |
1132 | * egress CGR. |
1133 | */ |
1134 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
1135 | qm_fqd_set_oac(fqd: &initfq.fqd, QM_OAC_CG); |
1136 | qm_fqd_set_oal(fqd: &initfq.fqd, |
1137 | min(sizeof(struct sk_buff) + |
1138 | priv->tx_headroom, |
1139 | (size_t)FSL_QMAN_MAX_OAL)); |
1140 | } |
1141 | |
1142 | /* Initialization common to all ingress queues */ |
1143 | if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { |
1144 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
1145 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | |
1146 | QM_FQCTRL_CTXASTASHING); |
1147 | initfq.fqd.context_a.stashing.exclusive = |
1148 | QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | |
1149 | QM_STASHING_EXCL_ANNOTATION; |
1150 | qm_fqd_set_stashing(fqd: &initfq.fqd, as: 1, ds: 2, |
1151 | DIV_ROUND_UP(sizeof(struct qman_fq), |
1152 | 64)); |
1153 | } |
1154 | |
1155 | err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, opts: &initfq); |
1156 | if (err < 0) { |
1157 | dev_err(dev, "qman_init_fq(%u) = %d\n", |
1158 | qman_fq_fqid(fq), err); |
1159 | qman_destroy_fq(fq); |
1160 | return err; |
1161 | } |
1162 | } |
1163 | |
1164 | dpaa_fq->fqid = qman_fq_fqid(fq); |
1165 | |
1166 | if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || |
1167 | dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { |
1168 | err = xdp_rxq_info_reg(xdp_rxq: &dpaa_fq->xdp_rxq, dev: dpaa_fq->net_dev, |
1169 | queue_index: dpaa_fq->fqid, napi_id: 0); |
1170 | if (err) { |
1171 | dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); |
1172 | return err; |
1173 | } |
1174 | |
1175 | err = xdp_rxq_info_reg_mem_model(xdp_rxq: &dpaa_fq->xdp_rxq, |
1176 | type: MEM_TYPE_PAGE_ORDER0, NULL); |
1177 | if (err) { |
1178 | dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", |
1179 | err); |
1180 | xdp_rxq_info_unreg(xdp_rxq: &dpaa_fq->xdp_rxq); |
1181 | return err; |
1182 | } |
1183 | } |
1184 | |
1185 | return 0; |
1186 | } |
1187 | |
1188 | static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) |
1189 | { |
1190 | const struct dpaa_priv *priv; |
1191 | struct dpaa_fq *dpaa_fq; |
1192 | int err, error; |
1193 | |
1194 | err = 0; |
1195 | |
1196 | dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
1197 | priv = netdev_priv(dev: dpaa_fq->net_dev); |
1198 | |
1199 | if (dpaa_fq->init) { |
1200 | err = qman_retire_fq(fq, NULL); |
1201 | if (err < 0 && netif_msg_drv(priv)) |
1202 | dev_err(dev, "qman_retire_fq(%u) = %d\n", |
1203 | qman_fq_fqid(fq), err); |
1204 | |
1205 | error = qman_oos_fq(fq); |
1206 | if (error < 0 && netif_msg_drv(priv)) { |
1207 | dev_err(dev, "qman_oos_fq(%u) = %d\n", |
1208 | qman_fq_fqid(fq), error); |
1209 | if (err >= 0) |
1210 | err = error; |
1211 | } |
1212 | } |
1213 | |
1214 | if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || |
1215 | dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && |
1216 | xdp_rxq_info_is_reg(xdp_rxq: &dpaa_fq->xdp_rxq)) |
1217 | xdp_rxq_info_unreg(xdp_rxq: &dpaa_fq->xdp_rxq); |
1218 | |
1219 | qman_destroy_fq(fq); |
1220 | list_del(entry: &dpaa_fq->list); |
1221 | |
1222 | return err; |
1223 | } |
1224 | |
1225 | static int dpaa_fq_free(struct device *dev, struct list_head *list) |
1226 | { |
1227 | struct dpaa_fq *dpaa_fq, *tmp; |
1228 | int err, error; |
1229 | |
1230 | err = 0; |
1231 | list_for_each_entry_safe(dpaa_fq, tmp, list, list) { |
1232 | error = dpaa_fq_free_entry(dev, fq: (struct qman_fq *)dpaa_fq); |
1233 | if (error < 0 && err >= 0) |
1234 | err = error; |
1235 | } |
1236 | |
1237 | return err; |
1238 | } |
1239 | |
1240 | static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, |
1241 | struct dpaa_fq *defq, |
1242 | struct dpaa_buffer_layout *buf_layout) |
1243 | { |
1244 | struct fman_buffer_prefix_content buf_prefix_content; |
1245 | struct fman_port_params params; |
1246 | int err; |
1247 | |
1248 | memset(¶ms, 0, sizeof(params)); |
1249 | memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
1250 | |
1251 | buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
1252 | buf_prefix_content.pass_prs_result = true; |
1253 | buf_prefix_content.pass_hash_result = true; |
1254 | buf_prefix_content.pass_time_stamp = true; |
1255 | buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; |
1256 | |
1257 | params.specific_params.non_rx_params.err_fqid = errq->fqid; |
1258 | params.specific_params.non_rx_params.dflt_fqid = defq->fqid; |
1259 | |
1260 | err = fman_port_config(port, params: ¶ms); |
1261 | if (err) { |
1262 | pr_err("%s: fman_port_config failed\n", __func__); |
1263 | return err; |
1264 | } |
1265 | |
1266 | err = fman_port_cfg_buf_prefix_content(port, buffer_prefix_content: &buf_prefix_content); |
1267 | if (err) { |
1268 | pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
1269 | __func__); |
1270 | return err; |
1271 | } |
1272 | |
1273 | err = fman_port_init(port); |
1274 | if (err) |
1275 | pr_err("%s: fm_port_init failed\n", __func__); |
1276 | |
1277 | return err; |
1278 | } |
1279 | |
1280 | static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, |
1281 | struct dpaa_fq *errq, |
1282 | struct dpaa_fq *defq, struct dpaa_fq *pcdq, |
1283 | struct dpaa_buffer_layout *buf_layout) |
1284 | { |
1285 | struct fman_buffer_prefix_content buf_prefix_content; |
1286 | struct fman_port_rx_params *rx_p; |
1287 | struct fman_port_params params; |
1288 | int err; |
1289 | |
1290 | memset(¶ms, 0, sizeof(params)); |
1291 | memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
1292 | |
1293 | buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
1294 | buf_prefix_content.pass_prs_result = true; |
1295 | buf_prefix_content.pass_hash_result = true; |
1296 | buf_prefix_content.pass_time_stamp = true; |
1297 | buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; |
1298 | |
1299 | rx_p = ¶ms.specific_params.rx_params; |
1300 | rx_p->err_fqid = errq->fqid; |
1301 | rx_p->dflt_fqid = defq->fqid; |
1302 | if (pcdq) { |
1303 | rx_p->pcd_base_fqid = pcdq->fqid; |
1304 | rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; |
1305 | } |
1306 | |
1307 | rx_p->ext_buf_pools.num_of_pools_used = 1; |
1308 | rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; |
1309 | rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; |
1310 | |
1311 | err = fman_port_config(port, params: ¶ms); |
1312 | if (err) { |
1313 | pr_err("%s: fman_port_config failed\n", __func__); |
1314 | return err; |
1315 | } |
1316 | |
1317 | err = fman_port_cfg_buf_prefix_content(port, buffer_prefix_content: &buf_prefix_content); |
1318 | if (err) { |
1319 | pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
1320 | __func__); |
1321 | return err; |
1322 | } |
1323 | |
1324 | err = fman_port_init(port); |
1325 | if (err) |
1326 | pr_err("%s: fm_port_init failed\n", __func__); |
1327 | |
1328 | return err; |
1329 | } |
1330 | |
1331 | static int dpaa_eth_init_ports(struct mac_device *mac_dev, |
1332 | struct dpaa_bp *bp, |
1333 | struct fm_port_fqs *port_fqs, |
1334 | struct dpaa_buffer_layout *buf_layout, |
1335 | struct device *dev) |
1336 | { |
1337 | struct fman_port *rxport = mac_dev->port[RX]; |
1338 | struct fman_port *txport = mac_dev->port[TX]; |
1339 | int err; |
1340 | |
1341 | err = dpaa_eth_init_tx_port(port: txport, errq: port_fqs->tx_errq, |
1342 | defq: port_fqs->tx_defq, buf_layout: &buf_layout[TX]); |
1343 | if (err) |
1344 | return err; |
1345 | |
1346 | err = dpaa_eth_init_rx_port(port: rxport, bp, errq: port_fqs->rx_errq, |
1347 | defq: port_fqs->rx_defq, pcdq: port_fqs->rx_pcdq, |
1348 | buf_layout: &buf_layout[RX]); |
1349 | |
1350 | return err; |
1351 | } |
1352 | |
1353 | static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, |
1354 | struct bm_buffer *bmb, int cnt) |
1355 | { |
1356 | int err; |
1357 | |
1358 | err = bman_release(pool: dpaa_bp->pool, bufs: bmb, num: cnt); |
1359 | /* Should never occur, address anyway to avoid leaking the buffers */ |
1360 | if (WARN_ON(err) && dpaa_bp->free_buf_cb) |
1361 | while (cnt-- > 0) |
1362 | dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); |
1363 | |
1364 | return cnt; |
1365 | } |
1366 | |
1367 | static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) |
1368 | { |
1369 | struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; |
1370 | struct dpaa_bp *dpaa_bp; |
1371 | int i = 0, j; |
1372 | |
1373 | memset(bmb, 0, sizeof(bmb)); |
1374 | |
1375 | do { |
1376 | dpaa_bp = dpaa_bpid2pool(bpid: sgt[i].bpid); |
1377 | if (!dpaa_bp) |
1378 | return; |
1379 | |
1380 | j = 0; |
1381 | do { |
1382 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
1383 | |
1384 | bm_buffer_set64(buf: &bmb[j], addr: qm_sg_entry_get64(sg: &sgt[i])); |
1385 | |
1386 | j++; i++; |
1387 | } while (j < ARRAY_SIZE(bmb) && |
1388 | !qm_sg_entry_is_final(sg: &sgt[i - 1]) && |
1389 | sgt[i - 1].bpid == sgt[i].bpid); |
1390 | |
1391 | dpaa_bman_release(dpaa_bp, bmb, cnt: j); |
1392 | } while (!qm_sg_entry_is_final(sg: &sgt[i - 1])); |
1393 | } |
1394 | |
1395 | static void dpaa_fd_release(const struct net_device *net_dev, |
1396 | const struct qm_fd *fd) |
1397 | { |
1398 | struct qm_sg_entry *sgt; |
1399 | struct dpaa_bp *dpaa_bp; |
1400 | struct bm_buffer bmb; |
1401 | dma_addr_t addr; |
1402 | void *vaddr; |
1403 | |
1404 | bmb.data = 0; |
1405 | bm_buffer_set64(buf: &bmb, addr: qm_fd_addr(fd)); |
1406 | |
1407 | dpaa_bp = dpaa_bpid2pool(bpid: fd->bpid); |
1408 | if (!dpaa_bp) |
1409 | return; |
1410 | |
1411 | if (qm_fd_get_format(fd) == qm_fd_sg) { |
1412 | vaddr = phys_to_virt(address: qm_fd_addr(fd)); |
1413 | sgt = vaddr + qm_fd_get_offset(fd); |
1414 | |
1415 | dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), |
1416 | DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); |
1417 | |
1418 | dpaa_release_sgt_members(sgt); |
1419 | |
1420 | addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, |
1421 | virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, |
1422 | DMA_FROM_DEVICE); |
1423 | if (dma_mapping_error(dev: dpaa_bp->priv->rx_dma_dev, dma_addr: addr)) { |
1424 | netdev_err(dev: net_dev, format: "DMA mapping failed\n"); |
1425 | return; |
1426 | } |
1427 | bm_buffer_set64(buf: &bmb, addr); |
1428 | } |
1429 | |
1430 | dpaa_bman_release(dpaa_bp, bmb: &bmb, cnt: 1); |
1431 | } |
1432 | |
1433 | static void count_ern(struct dpaa_percpu_priv *percpu_priv, |
1434 | const union qm_mr_entry *msg) |
1435 | { |
1436 | switch (msg->ern.rc & QM_MR_RC_MASK) { |
1437 | case QM_MR_RC_CGR_TAILDROP: |
1438 | percpu_priv->ern_cnt.cg_tdrop++; |
1439 | break; |
1440 | case QM_MR_RC_WRED: |
1441 | percpu_priv->ern_cnt.wred++; |
1442 | break; |
1443 | case QM_MR_RC_ERROR: |
1444 | percpu_priv->ern_cnt.err_cond++; |
1445 | break; |
1446 | case QM_MR_RC_ORPWINDOW_EARLY: |
1447 | percpu_priv->ern_cnt.early_window++; |
1448 | break; |
1449 | case QM_MR_RC_ORPWINDOW_LATE: |
1450 | percpu_priv->ern_cnt.late_window++; |
1451 | break; |
1452 | case QM_MR_RC_FQ_TAILDROP: |
1453 | percpu_priv->ern_cnt.fq_tdrop++; |
1454 | break; |
1455 | case QM_MR_RC_ORPWINDOW_RETIRED: |
1456 | percpu_priv->ern_cnt.fq_retired++; |
1457 | break; |
1458 | case QM_MR_RC_ORP_ZERO: |
1459 | percpu_priv->ern_cnt.orp_zero++; |
1460 | break; |
1461 | } |
1462 | } |
1463 | |
1464 | /* Turn on HW checksum computation for this outgoing frame. |
1465 | * If the current protocol is not something we support in this regard |
1466 | * (or if the stack has already computed the SW checksum), we do nothing. |
1467 | * |
1468 | * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value |
1469 | * otherwise. |
1470 | * |
1471 | * Note that this function may modify the fd->cmd field and the skb data buffer |
1472 | * (the Parse Results area). |
1473 | */ |
1474 | static int dpaa_enable_tx_csum(struct dpaa_priv *priv, |
1475 | struct sk_buff *skb, |
1476 | struct qm_fd *fd, |
1477 | void *parse_results) |
1478 | { |
1479 | struct fman_prs_result *parse_result; |
1480 | u16 ethertype = ntohs(skb->protocol); |
1481 | struct ipv6hdr *ipv6h = NULL; |
1482 | struct iphdr *iph; |
1483 | int retval = 0; |
1484 | u8 l4_proto; |
1485 | |
1486 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
1487 | return 0; |
1488 | |
1489 | /* Note: L3 csum seems to be already computed in sw, but we can't choose |
1490 | * L4 alone from the FM configuration anyway. |
1491 | */ |
1492 | |
1493 | /* Fill in some fields of the Parse Results array, so the FMan |
1494 | * can find them as if they came from the FMan Parser. |
1495 | */ |
1496 | parse_result = (struct fman_prs_result *)parse_results; |
1497 | |
1498 | /* If we're dealing with VLAN, get the real Ethernet type */ |
1499 | if (ethertype == ETH_P_8021Q) |
1500 | ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); |
1501 | |
1502 | /* Fill in the relevant L3 parse result fields |
1503 | * and read the L4 protocol type |
1504 | */ |
1505 | switch (ethertype) { |
1506 | case ETH_P_IP: |
1507 | parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); |
1508 | iph = ip_hdr(skb); |
1509 | WARN_ON(!iph); |
1510 | l4_proto = iph->protocol; |
1511 | break; |
1512 | case ETH_P_IPV6: |
1513 | parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); |
1514 | ipv6h = ipv6_hdr(skb); |
1515 | WARN_ON(!ipv6h); |
1516 | l4_proto = ipv6h->nexthdr; |
1517 | break; |
1518 | default: |
1519 | /* We shouldn't even be here */ |
1520 | if (net_ratelimit()) |
1521 | netif_alert(priv, tx_err, priv->net_dev, |
1522 | "Can't compute HW csum for L3 proto 0x%x\n", |
1523 | ntohs(skb->protocol)); |
1524 | retval = -EIO; |
1525 | goto return_error; |
1526 | } |
1527 | |
1528 | /* Fill in the relevant L4 parse result fields */ |
1529 | switch (l4_proto) { |
1530 | case IPPROTO_UDP: |
1531 | parse_result->l4r = FM_L4_PARSE_RESULT_UDP; |
1532 | break; |
1533 | case IPPROTO_TCP: |
1534 | parse_result->l4r = FM_L4_PARSE_RESULT_TCP; |
1535 | break; |
1536 | default: |
1537 | if (net_ratelimit()) |
1538 | netif_alert(priv, tx_err, priv->net_dev, |
1539 | "Can't compute HW csum for L4 proto 0x%x\n", |
1540 | l4_proto); |
1541 | retval = -EIO; |
1542 | goto return_error; |
1543 | } |
1544 | |
1545 | /* At index 0 is IPOffset_1 as defined in the Parse Results */ |
1546 | parse_result->ip_off[0] = (u8)skb_network_offset(skb); |
1547 | parse_result->l4_off = (u8)skb_transport_offset(skb); |
1548 | |
1549 | /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ |
1550 | fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); |
1551 | |
1552 | /* On P1023 and similar platforms fd->cmd interpretation could |
1553 | * be disabled by setting CONTEXT_A bit ICMD; currently this bit |
1554 | * is not set so we do not need to check; in the future, if/when |
1555 | * using context_a we need to check this bit |
1556 | */ |
1557 | |
1558 | return_error: |
1559 | return retval; |
1560 | } |
1561 | |
1562 | static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) |
1563 | { |
1564 | struct net_device *net_dev = dpaa_bp->priv->net_dev; |
1565 | struct bm_buffer bmb[8]; |
1566 | dma_addr_t addr; |
1567 | struct page *p; |
1568 | u8 i; |
1569 | |
1570 | for (i = 0; i < 8; i++) { |
1571 | p = dev_alloc_pages(0); |
1572 | if (unlikely(!p)) { |
1573 | netdev_err(dev: net_dev, format: "dev_alloc_pages() failed\n"); |
1574 | goto release_previous_buffs; |
1575 | } |
1576 | |
1577 | addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, |
1578 | DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); |
1579 | if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, |
1580 | addr))) { |
1581 | netdev_err(dev: net_dev, format: "DMA map failed\n"); |
1582 | goto release_previous_buffs; |
1583 | } |
1584 | |
1585 | bmb[i].data = 0; |
1586 | bm_buffer_set64(buf: &bmb[i], addr); |
1587 | } |
1588 | |
1589 | release_bufs: |
1590 | return dpaa_bman_release(dpaa_bp, bmb, cnt: i); |
1591 | |
1592 | release_previous_buffs: |
1593 | WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); |
1594 | |
1595 | bm_buffer_set64(buf: &bmb[i], addr: 0); |
1596 | /* Avoid releasing a completely null buffer; bman_release() requires |
1597 | * at least one buffer. |
1598 | */ |
1599 | if (likely(i)) |
1600 | goto release_bufs; |
1601 | |
1602 | return 0; |
1603 | } |
1604 | |
1605 | static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) |
1606 | { |
1607 | int i; |
1608 | |
1609 | /* Give each CPU an allotment of "config_count" buffers */ |
1610 | for_each_possible_cpu(i) { |
1611 | int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); |
1612 | int j; |
1613 | |
1614 | /* Although we access another CPU's counters here |
1615 | * we do it at boot time so it is safe |
1616 | */ |
1617 | for (j = 0; j < dpaa_bp->config_count; j += 8) |
1618 | *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); |
1619 | } |
1620 | return 0; |
1621 | } |
1622 | |
1623 | /* Add buffers/(pages) for Rx processing whenever bpool count falls below |
1624 | * REFILL_THRESHOLD. |
1625 | */ |
1626 | static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) |
1627 | { |
1628 | int count = *countptr; |
1629 | int new_bufs; |
1630 | |
1631 | if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { |
1632 | do { |
1633 | new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); |
1634 | if (unlikely(!new_bufs)) { |
1635 | /* Avoid looping forever if we've temporarily |
1636 | * run out of memory. We'll try again at the |
1637 | * next NAPI cycle. |
1638 | */ |
1639 | break; |
1640 | } |
1641 | count += new_bufs; |
1642 | } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); |
1643 | |
1644 | *countptr = count; |
1645 | if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) |
1646 | return -ENOMEM; |
1647 | } |
1648 | |
1649 | return 0; |
1650 | } |
1651 | |
1652 | static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) |
1653 | { |
1654 | struct dpaa_bp *dpaa_bp; |
1655 | int *countptr; |
1656 | |
1657 | dpaa_bp = priv->dpaa_bp; |
1658 | if (!dpaa_bp) |
1659 | return -EINVAL; |
1660 | countptr = this_cpu_ptr(dpaa_bp->percpu_count); |
1661 | |
1662 | return dpaa_eth_refill_bpool(dpaa_bp, countptr); |
1663 | } |
1664 | |
1665 | /* Cleanup function for outgoing frame descriptors that were built on Tx path, |
1666 | * either contiguous frames or scatter/gather ones. |
1667 | * Skb freeing is not handled here. |
1668 | * |
1669 | * This function may be called on error paths in the Tx function, so guard |
1670 | * against cases when not all fd relevant fields were filled in. To avoid |
1671 | * reading the invalid transmission timestamp for the error paths set ts to |
1672 | * false. |
1673 | * |
1674 | * Return the skb backpointer, since for S/G frames the buffer containing it |
1675 | * gets freed here. |
1676 | * |
1677 | * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer |
1678 | * and return NULL in this case. |
1679 | */ |
1680 | static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, |
1681 | const struct qm_fd *fd, bool ts) |
1682 | { |
1683 | const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
1684 | struct device *dev = priv->net_dev->dev.parent; |
1685 | struct skb_shared_hwtstamps shhwtstamps; |
1686 | dma_addr_t addr = qm_fd_addr(fd); |
1687 | void *vaddr = phys_to_virt(address: addr); |
1688 | const struct qm_sg_entry *sgt; |
1689 | struct dpaa_eth_swbp *swbp; |
1690 | struct sk_buff *skb; |
1691 | u64 ns; |
1692 | int i; |
1693 | |
1694 | if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { |
1695 | dma_unmap_page(priv->tx_dma_dev, addr, |
1696 | qm_fd_get_offset(fd) + DPAA_SGT_SIZE, |
1697 | dma_dir); |
1698 | |
1699 | /* The sgt buffer has been allocated with netdev_alloc_frag(), |
1700 | * it's from lowmem. |
1701 | */ |
1702 | sgt = vaddr + qm_fd_get_offset(fd); |
1703 | |
1704 | /* sgt[0] is from lowmem, was dma_map_single()-ed */ |
1705 | dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), |
1706 | qm_sg_entry_get_len(&sgt[0]), dma_dir); |
1707 | |
1708 | /* remaining pages were mapped with skb_frag_dma_map() */ |
1709 | for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && |
1710 | !qm_sg_entry_is_final(sg: &sgt[i - 1]); i++) { |
1711 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
1712 | |
1713 | dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), |
1714 | qm_sg_entry_get_len(&sgt[i]), dma_dir); |
1715 | } |
1716 | } else { |
1717 | dma_unmap_single(priv->tx_dma_dev, addr, |
1718 | qm_fd_get_offset(fd) + qm_fd_get_length(fd), |
1719 | dma_dir); |
1720 | } |
1721 | |
1722 | swbp = (struct dpaa_eth_swbp *)vaddr; |
1723 | skb = swbp->skb; |
1724 | |
1725 | /* No skb backpointer is set when running XDP. An xdp_frame |
1726 | * backpointer is saved instead. |
1727 | */ |
1728 | if (!skb) { |
1729 | xdp_return_frame(xdpf: swbp->xdpf); |
1730 | return NULL; |
1731 | } |
1732 | |
1733 | /* DMA unmapping is required before accessing the HW provided info */ |
1734 | if (ts && priv->tx_tstamp && |
1735 | skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
1736 | memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
1737 | |
1738 | if (!fman_port_get_tstamp(port: priv->mac_dev->port[TX], data: vaddr, |
1739 | tstamp: &ns)) { |
1740 | shhwtstamps.hwtstamp = ns_to_ktime(ns); |
1741 | skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps); |
1742 | } else { |
1743 | dev_warn(dev, "fman_port_get_tstamp failed!\n"); |
1744 | } |
1745 | } |
1746 | |
1747 | if (qm_fd_get_format(fd) == qm_fd_sg) |
1748 | /* Free the page that we allocated on Tx for the SGT */ |
1749 | free_pages(addr: (unsigned long)vaddr, order: 0); |
1750 | |
1751 | return skb; |
1752 | } |
1753 | |
1754 | static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) |
1755 | { |
1756 | /* The parser has run and performed L4 checksum validation. |
1757 | * We know there were no parser errors (and implicitly no |
1758 | * L4 csum error), otherwise we wouldn't be here. |
1759 | */ |
1760 | if ((priv->net_dev->features & NETIF_F_RXCSUM) && |
1761 | (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) |
1762 | return CHECKSUM_UNNECESSARY; |
1763 | |
1764 | /* We're here because either the parser didn't run or the L4 checksum |
1765 | * was not verified. This may include the case of a UDP frame with |
1766 | * checksum zero or an L4 proto other than TCP/UDP |
1767 | */ |
1768 | return CHECKSUM_NONE; |
1769 | } |
1770 | |
1771 | #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) |
1772 | |
1773 | /* Build a linear skb around the received buffer. |
1774 | * We are guaranteed there is enough room at the end of the data buffer to |
1775 | * accommodate the shared info area of the skb. |
1776 | */ |
1777 | static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, |
1778 | const struct qm_fd *fd) |
1779 | { |
1780 | ssize_t fd_off = qm_fd_get_offset(fd); |
1781 | dma_addr_t addr = qm_fd_addr(fd); |
1782 | struct dpaa_bp *dpaa_bp; |
1783 | struct sk_buff *skb; |
1784 | void *vaddr; |
1785 | |
1786 | vaddr = phys_to_virt(address: addr); |
1787 | WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
1788 | |
1789 | dpaa_bp = dpaa_bpid2pool(bpid: fd->bpid); |
1790 | if (!dpaa_bp) |
1791 | goto free_buffer; |
1792 | |
1793 | skb = build_skb(data: vaddr, frag_size: dpaa_bp->size + |
1794 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); |
1795 | if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) |
1796 | goto free_buffer; |
1797 | skb_reserve(skb, len: fd_off); |
1798 | skb_put(skb, len: qm_fd_get_length(fd)); |
1799 | |
1800 | skb->ip_summed = rx_csum_offload(priv, fd); |
1801 | |
1802 | return skb; |
1803 | |
1804 | free_buffer: |
1805 | free_pages(addr: (unsigned long)vaddr, order: 0); |
1806 | return NULL; |
1807 | } |
1808 | |
1809 | /* Build an skb with the data of the first S/G entry in the linear portion and |
1810 | * the rest of the frame as skb fragments. |
1811 | * |
1812 | * The page fragment holding the S/G Table is recycled here. |
1813 | */ |
1814 | static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, |
1815 | const struct qm_fd *fd) |
1816 | { |
1817 | ssize_t fd_off = qm_fd_get_offset(fd); |
1818 | dma_addr_t addr = qm_fd_addr(fd); |
1819 | const struct qm_sg_entry *sgt; |
1820 | struct page *page, *head_page; |
1821 | struct dpaa_bp *dpaa_bp; |
1822 | void *vaddr, *sg_vaddr; |
1823 | struct sk_buff *skb; |
1824 | dma_addr_t sg_addr; |
1825 | int page_offset; |
1826 | unsigned int sz; |
1827 | int *count_ptr; |
1828 | int i, j; |
1829 | |
1830 | vaddr = phys_to_virt(address: addr); |
1831 | WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
1832 | |
1833 | /* Iterate through the SGT entries and add data buffers to the skb */ |
1834 | sgt = vaddr + fd_off; |
1835 | skb = NULL; |
1836 | for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { |
1837 | /* Extension bit is not supported */ |
1838 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
1839 | |
1840 | sg_addr = qm_sg_addr(sg: &sgt[i]); |
1841 | sg_vaddr = phys_to_virt(address: sg_addr); |
1842 | WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); |
1843 | |
1844 | dma_unmap_page(priv->rx_dma_dev, sg_addr, |
1845 | DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); |
1846 | |
1847 | /* We may use multiple Rx pools */ |
1848 | dpaa_bp = dpaa_bpid2pool(bpid: sgt[i].bpid); |
1849 | if (!dpaa_bp) |
1850 | goto free_buffers; |
1851 | |
1852 | if (!skb) { |
1853 | sz = dpaa_bp->size + |
1854 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
1855 | skb = build_skb(data: sg_vaddr, frag_size: sz); |
1856 | if (WARN_ON(!skb)) |
1857 | goto free_buffers; |
1858 | |
1859 | skb->ip_summed = rx_csum_offload(priv, fd); |
1860 | |
1861 | /* Make sure forwarded skbs will have enough space |
1862 | * on Tx, if extra headers are added. |
1863 | */ |
1864 | WARN_ON(fd_off != priv->rx_headroom); |
1865 | /* The offset to data start within the buffer holding |
1866 | * the SGT should always be equal to the offset to data |
1867 | * start within the first buffer holding the frame. |
1868 | */ |
1869 | WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i])); |
1870 | skb_reserve(skb, len: fd_off); |
1871 | skb_put(skb, len: qm_sg_entry_get_len(sg: &sgt[i])); |
1872 | } else { |
1873 | /* Not the first S/G entry; all data from buffer will |
1874 | * be added in an skb fragment; fragment index is offset |
1875 | * by one since first S/G entry was incorporated in the |
1876 | * linear part of the skb. |
1877 | * |
1878 | * Caution: 'page' may be a tail page. |
1879 | */ |
1880 | page = virt_to_page(sg_vaddr); |
1881 | head_page = virt_to_head_page(x: sg_vaddr); |
1882 | |
1883 | /* Compute offset of sg_vaddr in (possibly tail) page */ |
1884 | page_offset = ((unsigned long)sg_vaddr & |
1885 | (PAGE_SIZE - 1)) + |
1886 | (page_address(page) - page_address(head_page)); |
1887 | |
1888 | /* Non-initial SGT entries should not have a buffer |
1889 | * offset. |
1890 | */ |
1891 | WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i])); |
1892 | |
1893 | /* skb_add_rx_frag() does no checking on the page; if |
1894 | * we pass it a tail page, we'll end up with |
1895 | * bad page accounting and eventually with segfaults. |
1896 | */ |
1897 | skb_add_rx_frag(skb, i: i - 1, page: head_page, off: page_offset, |
1898 | size: qm_sg_entry_get_len(sg: &sgt[i]), |
1899 | truesize: dpaa_bp->size); |
1900 | } |
1901 | |
1902 | /* Update the pool count for the current {cpu x bpool} */ |
1903 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
1904 | (*count_ptr)--; |
1905 | |
1906 | if (qm_sg_entry_is_final(sg: &sgt[i])) |
1907 | break; |
1908 | } |
1909 | WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); |
1910 | |
1911 | /* free the SG table buffer */ |
1912 | free_pages(addr: (unsigned long)vaddr, order: 0); |
1913 | |
1914 | return skb; |
1915 | |
1916 | free_buffers: |
1917 | /* free all the SG entries */ |
1918 | for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { |
1919 | sg_addr = qm_sg_addr(sg: &sgt[j]); |
1920 | sg_vaddr = phys_to_virt(address: sg_addr); |
1921 | /* all pages 0..i were unmaped */ |
1922 | if (j > i) |
1923 | dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), |
1924 | DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); |
1925 | free_pages(addr: (unsigned long)sg_vaddr, order: 0); |
1926 | /* counters 0..i-1 were decremented */ |
1927 | if (j >= i) { |
1928 | dpaa_bp = dpaa_bpid2pool(bpid: sgt[j].bpid); |
1929 | if (dpaa_bp) { |
1930 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
1931 | (*count_ptr)--; |
1932 | } |
1933 | } |
1934 | |
1935 | if (qm_sg_entry_is_final(sg: &sgt[j])) |
1936 | break; |
1937 | } |
1938 | /* free the SGT fragment */ |
1939 | free_pages(addr: (unsigned long)vaddr, order: 0); |
1940 | |
1941 | return NULL; |
1942 | } |
1943 | |
1944 | static int skb_to_contig_fd(struct dpaa_priv *priv, |
1945 | struct sk_buff *skb, struct qm_fd *fd, |
1946 | int *offset) |
1947 | { |
1948 | struct net_device *net_dev = priv->net_dev; |
1949 | enum dma_data_direction dma_dir; |
1950 | struct dpaa_eth_swbp *swbp; |
1951 | unsigned char *buff_start; |
1952 | dma_addr_t addr; |
1953 | int err; |
1954 | |
1955 | /* We are guaranteed to have at least tx_headroom bytes |
1956 | * available, so just use that for offset. |
1957 | */ |
1958 | fd->bpid = FSL_DPAA_BPID_INV; |
1959 | buff_start = skb->data - priv->tx_headroom; |
1960 | dma_dir = DMA_TO_DEVICE; |
1961 | |
1962 | swbp = (struct dpaa_eth_swbp *)buff_start; |
1963 | swbp->skb = skb; |
1964 | |
1965 | /* Enable L3/L4 hardware checksum computation. |
1966 | * |
1967 | * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
1968 | * need to write into the skb. |
1969 | */ |
1970 | err = dpaa_enable_tx_csum(priv, skb, fd, |
1971 | parse_results: buff_start + DPAA_TX_PRIV_DATA_SIZE); |
1972 | if (unlikely(err < 0)) { |
1973 | if (net_ratelimit()) |
1974 | netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
1975 | err); |
1976 | return err; |
1977 | } |
1978 | |
1979 | /* Fill in the rest of the FD fields */ |
1980 | qm_fd_set_contig(fd, priv->tx_headroom, skb->len); |
1981 | fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
1982 | |
1983 | /* Map the entire buffer size that may be seen by FMan, but no more */ |
1984 | addr = dma_map_single(priv->tx_dma_dev, buff_start, |
1985 | priv->tx_headroom + skb->len, dma_dir); |
1986 | if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { |
1987 | if (net_ratelimit()) |
1988 | netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); |
1989 | return -EINVAL; |
1990 | } |
1991 | qm_fd_addr_set64(fd, addr); |
1992 | |
1993 | return 0; |
1994 | } |
1995 | |
1996 | static int skb_to_sg_fd(struct dpaa_priv *priv, |
1997 | struct sk_buff *skb, struct qm_fd *fd) |
1998 | { |
1999 | const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
2000 | const int nr_frags = skb_shinfo(skb)->nr_frags; |
2001 | struct net_device *net_dev = priv->net_dev; |
2002 | struct dpaa_eth_swbp *swbp; |
2003 | struct qm_sg_entry *sgt; |
2004 | void *buff_start; |
2005 | skb_frag_t *frag; |
2006 | dma_addr_t addr; |
2007 | size_t frag_len; |
2008 | struct page *p; |
2009 | int i, j, err; |
2010 | |
2011 | /* get a page to store the SGTable */ |
2012 | p = dev_alloc_pages(0); |
2013 | if (unlikely(!p)) { |
2014 | netdev_err(dev: net_dev, format: "dev_alloc_pages() failed\n"); |
2015 | return -ENOMEM; |
2016 | } |
2017 | buff_start = page_address(p); |
2018 | |
2019 | /* Enable L3/L4 hardware checksum computation. |
2020 | * |
2021 | * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
2022 | * need to write into the skb. |
2023 | */ |
2024 | err = dpaa_enable_tx_csum(priv, skb, fd, |
2025 | parse_results: buff_start + DPAA_TX_PRIV_DATA_SIZE); |
2026 | if (unlikely(err < 0)) { |
2027 | if (net_ratelimit()) |
2028 | netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
2029 | err); |
2030 | goto csum_failed; |
2031 | } |
2032 | |
2033 | /* SGT[0] is used by the linear part */ |
2034 | sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); |
2035 | frag_len = skb_headlen(skb); |
2036 | qm_sg_entry_set_len(sg: &sgt[0], len: frag_len); |
2037 | sgt[0].bpid = FSL_DPAA_BPID_INV; |
2038 | sgt[0].offset = 0; |
2039 | addr = dma_map_single(priv->tx_dma_dev, skb->data, |
2040 | skb_headlen(skb), dma_dir); |
2041 | if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { |
2042 | netdev_err(dev: priv->net_dev, format: "DMA mapping failed\n"); |
2043 | err = -EINVAL; |
2044 | goto sg0_map_failed; |
2045 | } |
2046 | qm_sg_entry_set64(sg: &sgt[0], addr); |
2047 | |
2048 | /* populate the rest of SGT entries */ |
2049 | for (i = 0; i < nr_frags; i++) { |
2050 | frag = &skb_shinfo(skb)->frags[i]; |
2051 | frag_len = skb_frag_size(frag); |
2052 | WARN_ON(!skb_frag_page(frag)); |
2053 | addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, |
2054 | frag_len, dma_dir); |
2055 | if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { |
2056 | netdev_err(dev: priv->net_dev, format: "DMA mapping failed\n"); |
2057 | err = -EINVAL; |
2058 | goto sg_map_failed; |
2059 | } |
2060 | |
2061 | qm_sg_entry_set_len(sg: &sgt[i + 1], len: frag_len); |
2062 | sgt[i + 1].bpid = FSL_DPAA_BPID_INV; |
2063 | sgt[i + 1].offset = 0; |
2064 | |
2065 | /* keep the offset in the address */ |
2066 | qm_sg_entry_set64(sg: &sgt[i + 1], addr); |
2067 | } |
2068 | |
2069 | /* Set the final bit in the last used entry of the SGT */ |
2070 | qm_sg_entry_set_f(sg: &sgt[nr_frags], len: frag_len); |
2071 | |
2072 | /* set fd offset to priv->tx_headroom */ |
2073 | qm_fd_set_sg(fd, priv->tx_headroom, skb->len); |
2074 | |
2075 | /* DMA map the SGT page */ |
2076 | swbp = (struct dpaa_eth_swbp *)buff_start; |
2077 | swbp->skb = skb; |
2078 | |
2079 | addr = dma_map_page(priv->tx_dma_dev, p, 0, |
2080 | priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); |
2081 | if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { |
2082 | netdev_err(dev: priv->net_dev, format: "DMA mapping failed\n"); |
2083 | err = -EINVAL; |
2084 | goto sgt_map_failed; |
2085 | } |
2086 | |
2087 | fd->bpid = FSL_DPAA_BPID_INV; |
2088 | fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
2089 | qm_fd_addr_set64(fd, addr); |
2090 | |
2091 | return 0; |
2092 | |
2093 | sgt_map_failed: |
2094 | sg_map_failed: |
2095 | for (j = 0; j < i; j++) |
2096 | dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), |
2097 | qm_sg_entry_get_len(&sgt[j]), dma_dir); |
2098 | sg0_map_failed: |
2099 | csum_failed: |
2100 | free_pages(addr: (unsigned long)buff_start, order: 0); |
2101 | |
2102 | return err; |
2103 | } |
2104 | |
2105 | static inline int dpaa_xmit(struct dpaa_priv *priv, |
2106 | struct rtnl_link_stats64 *percpu_stats, |
2107 | int queue, |
2108 | struct qm_fd *fd) |
2109 | { |
2110 | struct qman_fq *egress_fq; |
2111 | int err, i; |
2112 | |
2113 | egress_fq = priv->egress_fqs[queue]; |
2114 | if (fd->bpid == FSL_DPAA_BPID_INV) |
2115 | fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); |
2116 | |
2117 | /* Trace this Tx fd */ |
2118 | trace_dpaa_tx_fd(netdev: priv->net_dev, fq: egress_fq, fd); |
2119 | |
2120 | for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { |
2121 | err = qman_enqueue(fq: egress_fq, fd); |
2122 | if (err != -EBUSY) |
2123 | break; |
2124 | } |
2125 | |
2126 | if (unlikely(err < 0)) { |
2127 | percpu_stats->tx_fifo_errors++; |
2128 | return err; |
2129 | } |
2130 | |
2131 | percpu_stats->tx_packets++; |
2132 | percpu_stats->tx_bytes += qm_fd_get_length(fd); |
2133 | |
2134 | return 0; |
2135 | } |
2136 | |
2137 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
2138 | static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) |
2139 | { |
2140 | struct dpaa_priv *priv = netdev_priv(net_dev); |
2141 | struct sk_buff *new_skb, *skb = *s; |
2142 | unsigned char *start, i; |
2143 | |
2144 | /* check linear buffer alignment */ |
2145 | if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) |
2146 | goto workaround; |
2147 | |
2148 | /* linear buffers just need to have an aligned start */ |
2149 | if (!skb_is_nonlinear(skb)) |
2150 | return 0; |
2151 | |
2152 | /* linear data size for nonlinear skbs needs to be aligned */ |
2153 | if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) |
2154 | goto workaround; |
2155 | |
2156 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
2157 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
2158 | |
2159 | /* all fragments need to have aligned start addresses */ |
2160 | if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) |
2161 | goto workaround; |
2162 | |
2163 | /* all but last fragment need to have aligned sizes */ |
2164 | if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && |
2165 | (i < skb_shinfo(skb)->nr_frags - 1)) |
2166 | goto workaround; |
2167 | } |
2168 | |
2169 | return 0; |
2170 | |
2171 | workaround: |
2172 | /* copy all the skb content into a new linear buffer */ |
2173 | new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + |
2174 | priv->tx_headroom); |
2175 | if (!new_skb) |
2176 | return -ENOMEM; |
2177 | |
2178 | /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ |
2179 | skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); |
2180 | |
2181 | /* Workaround for DPAA_A050385 requires data start to be aligned */ |
2182 | start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); |
2183 | if (start - new_skb->data) |
2184 | skb_reserve(new_skb, start - new_skb->data); |
2185 | |
2186 | skb_put(new_skb, skb->len); |
2187 | skb_copy_bits(skb, 0, new_skb->data, skb->len); |
2188 | skb_copy_header(new_skb, skb); |
2189 | new_skb->dev = skb->dev; |
2190 | |
2191 | /* Copy relevant timestamp info from the old skb to the new */ |
2192 | if (priv->tx_tstamp) { |
2193 | skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; |
2194 | skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; |
2195 | skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; |
2196 | if (skb->sk) |
2197 | skb_set_owner_w(new_skb, skb->sk); |
2198 | } |
2199 | |
2200 | /* We move the headroom when we align it so we have to reset the |
2201 | * network and transport header offsets relative to the new data |
2202 | * pointer. The checksum offload relies on these offsets. |
2203 | */ |
2204 | skb_set_network_header(new_skb, skb_network_offset(skb)); |
2205 | skb_set_transport_header(new_skb, skb_transport_offset(skb)); |
2206 | |
2207 | dev_kfree_skb(skb); |
2208 | *s = new_skb; |
2209 | |
2210 | return 0; |
2211 | } |
2212 | |
2213 | static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, |
2214 | struct xdp_frame **init_xdpf) |
2215 | { |
2216 | struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; |
2217 | void *new_buff, *aligned_data; |
2218 | struct page *p; |
2219 | u32 data_shift; |
2220 | int headroom; |
2221 | |
2222 | /* Check the data alignment and make sure the headroom is large |
2223 | * enough to store the xdpf backpointer. Use an aligned headroom |
2224 | * value. |
2225 | * |
2226 | * Due to alignment constraints, we give XDP access to the full 256 |
2227 | * byte frame headroom. If the XDP program uses all of it, copy the |
2228 | * data to a new buffer and make room for storing the backpointer. |
2229 | */ |
2230 | if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && |
2231 | xdpf->headroom >= priv->tx_headroom) { |
2232 | xdpf->headroom = priv->tx_headroom; |
2233 | return 0; |
2234 | } |
2235 | |
2236 | /* Try to move the data inside the buffer just enough to align it and |
2237 | * store the xdpf backpointer. If the available headroom isn't large |
2238 | * enough, resort to allocating a new buffer and copying the data. |
2239 | */ |
2240 | aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); |
2241 | data_shift = xdpf->data - aligned_data; |
2242 | |
2243 | /* The XDP frame's headroom needs to be large enough to accommodate |
2244 | * shifting the data as well as storing the xdpf backpointer. |
2245 | */ |
2246 | if (xdpf->headroom >= data_shift + priv->tx_headroom) { |
2247 | memmove(aligned_data, xdpf->data, xdpf->len); |
2248 | xdpf->data = aligned_data; |
2249 | xdpf->headroom = priv->tx_headroom; |
2250 | return 0; |
2251 | } |
2252 | |
2253 | /* The new xdp_frame is stored in the new buffer. Reserve enough space |
2254 | * in the headroom for storing it along with the driver's private |
2255 | * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to |
2256 | * guarantee the data's alignment in the buffer. |
2257 | */ |
2258 | headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, |
2259 | DPAA_FD_DATA_ALIGNMENT); |
2260 | |
2261 | /* Assure the extended headroom and data don't overflow the buffer, |
2262 | * while maintaining the mandatory tailroom. |
2263 | */ |
2264 | if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - |
2265 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
2266 | return -ENOMEM; |
2267 | |
2268 | p = dev_alloc_pages(0); |
2269 | if (unlikely(!p)) |
2270 | return -ENOMEM; |
2271 | |
2272 | /* Copy the data to the new buffer at a properly aligned offset */ |
2273 | new_buff = page_address(p); |
2274 | memcpy(new_buff + headroom, xdpf->data, xdpf->len); |
2275 | |
2276 | /* Create an XDP frame around the new buffer in a similar fashion |
2277 | * to xdp_convert_buff_to_frame. |
2278 | */ |
2279 | new_xdpf = new_buff; |
2280 | new_xdpf->data = new_buff + headroom; |
2281 | new_xdpf->len = xdpf->len; |
2282 | new_xdpf->headroom = priv->tx_headroom; |
2283 | new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; |
2284 | new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0; |
2285 | |
2286 | /* Release the initial buffer */ |
2287 | xdp_return_frame_rx_napi(xdpf); |
2288 | |
2289 | *init_xdpf = new_xdpf; |
2290 | return 0; |
2291 | } |
2292 | #endif |
2293 | |
2294 | static netdev_tx_t |
2295 | dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) |
2296 | { |
2297 | const int queue_mapping = skb_get_queue_mapping(skb); |
2298 | struct rtnl_link_stats64 *percpu_stats; |
2299 | struct dpaa_percpu_priv *percpu_priv; |
2300 | struct netdev_queue *txq; |
2301 | struct dpaa_priv *priv; |
2302 | struct qm_fd fd; |
2303 | bool nonlinear; |
2304 | int offset = 0; |
2305 | int err = 0; |
2306 | |
2307 | priv = netdev_priv(dev: net_dev); |
2308 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2309 | percpu_stats = &percpu_priv->stats; |
2310 | |
2311 | qm_fd_clear_fd(fd: &fd); |
2312 | |
2313 | /* Packet data is always read as 32-bit words, so zero out any part of |
2314 | * the skb which might be sent if we have to pad the packet |
2315 | */ |
2316 | if (__skb_put_padto(skb, ETH_ZLEN, free_on_error: false)) |
2317 | goto enomem; |
2318 | |
2319 | nonlinear = skb_is_nonlinear(skb); |
2320 | if (!nonlinear) { |
2321 | /* We're going to store the skb backpointer at the beginning |
2322 | * of the data buffer, so we need a privately owned skb |
2323 | * |
2324 | * We've made sure skb is not shared in dev->priv_flags, |
2325 | * we need to verify the skb head is not cloned |
2326 | */ |
2327 | if (skb_cow_head(skb, headroom: priv->tx_headroom)) |
2328 | goto enomem; |
2329 | |
2330 | WARN_ON(skb_is_nonlinear(skb)); |
2331 | } |
2332 | |
2333 | /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; |
2334 | * make sure we don't feed FMan with more fragments than it supports. |
2335 | */ |
2336 | if (unlikely(nonlinear && |
2337 | (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { |
2338 | /* If the egress skb contains more fragments than we support |
2339 | * we have no choice but to linearize it ourselves. |
2340 | */ |
2341 | if (__skb_linearize(skb)) |
2342 | goto enomem; |
2343 | |
2344 | nonlinear = skb_is_nonlinear(skb); |
2345 | } |
2346 | |
2347 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
2348 | if (unlikely(fman_has_errata_a050385())) { |
2349 | if (dpaa_a050385_wa_skb(net_dev, &skb)) |
2350 | goto enomem; |
2351 | nonlinear = skb_is_nonlinear(skb); |
2352 | } |
2353 | #endif |
2354 | |
2355 | if (nonlinear) { |
2356 | /* Just create a S/G fd based on the skb */ |
2357 | err = skb_to_sg_fd(priv, skb, fd: &fd); |
2358 | percpu_priv->tx_frag_skbuffs++; |
2359 | } else { |
2360 | /* Create a contig FD from this skb */ |
2361 | err = skb_to_contig_fd(priv, skb, fd: &fd, offset: &offset); |
2362 | } |
2363 | if (unlikely(err < 0)) |
2364 | goto skb_to_fd_failed; |
2365 | |
2366 | txq = netdev_get_tx_queue(dev: net_dev, index: queue_mapping); |
2367 | |
2368 | /* LLTX requires to do our own update of trans_start */ |
2369 | txq_trans_cond_update(txq); |
2370 | |
2371 | if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
2372 | fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); |
2373 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
2374 | } |
2375 | |
2376 | if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) |
2377 | return NETDEV_TX_OK; |
2378 | |
2379 | dpaa_cleanup_tx_fd(priv, fd: &fd, ts: false); |
2380 | skb_to_fd_failed: |
2381 | enomem: |
2382 | percpu_stats->tx_errors++; |
2383 | dev_kfree_skb(skb); |
2384 | return NETDEV_TX_OK; |
2385 | } |
2386 | |
2387 | static void dpaa_rx_error(struct net_device *net_dev, |
2388 | const struct dpaa_priv *priv, |
2389 | struct dpaa_percpu_priv *percpu_priv, |
2390 | const struct qm_fd *fd, |
2391 | u32 fqid) |
2392 | { |
2393 | if (net_ratelimit()) |
2394 | netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", |
2395 | be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); |
2396 | |
2397 | percpu_priv->stats.rx_errors++; |
2398 | |
2399 | if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) |
2400 | percpu_priv->rx_errors.dme++; |
2401 | if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) |
2402 | percpu_priv->rx_errors.fpe++; |
2403 | if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) |
2404 | percpu_priv->rx_errors.fse++; |
2405 | if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) |
2406 | percpu_priv->rx_errors.phe++; |
2407 | |
2408 | dpaa_fd_release(net_dev, fd); |
2409 | } |
2410 | |
2411 | static void dpaa_tx_error(struct net_device *net_dev, |
2412 | const struct dpaa_priv *priv, |
2413 | struct dpaa_percpu_priv *percpu_priv, |
2414 | const struct qm_fd *fd, |
2415 | u32 fqid) |
2416 | { |
2417 | struct sk_buff *skb; |
2418 | |
2419 | if (net_ratelimit()) |
2420 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
2421 | be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); |
2422 | |
2423 | percpu_priv->stats.tx_errors++; |
2424 | |
2425 | skb = dpaa_cleanup_tx_fd(priv, fd, ts: false); |
2426 | dev_kfree_skb(skb); |
2427 | } |
2428 | |
2429 | static int dpaa_eth_poll(struct napi_struct *napi, int budget) |
2430 | { |
2431 | struct dpaa_napi_portal *np = |
2432 | container_of(napi, struct dpaa_napi_portal, napi); |
2433 | int cleaned; |
2434 | |
2435 | np->xdp_act = 0; |
2436 | |
2437 | cleaned = qman_p_poll_dqrr(p: np->p, limit: budget); |
2438 | |
2439 | if (np->xdp_act & XDP_REDIRECT) |
2440 | xdp_do_flush(); |
2441 | |
2442 | if (cleaned < budget) { |
2443 | napi_complete_done(n: napi, work_done: cleaned); |
2444 | qman_p_irqsource_add(p: np->p, QM_PIRQ_DQRI); |
2445 | } else if (np->down) { |
2446 | qman_p_irqsource_add(p: np->p, QM_PIRQ_DQRI); |
2447 | } |
2448 | |
2449 | return cleaned; |
2450 | } |
2451 | |
2452 | static void dpaa_tx_conf(struct net_device *net_dev, |
2453 | const struct dpaa_priv *priv, |
2454 | struct dpaa_percpu_priv *percpu_priv, |
2455 | const struct qm_fd *fd, |
2456 | u32 fqid) |
2457 | { |
2458 | struct sk_buff *skb; |
2459 | |
2460 | if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { |
2461 | if (net_ratelimit()) |
2462 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
2463 | be32_to_cpu(fd->status) & |
2464 | FM_FD_STAT_TX_ERRORS); |
2465 | |
2466 | percpu_priv->stats.tx_errors++; |
2467 | } |
2468 | |
2469 | percpu_priv->tx_confirm++; |
2470 | |
2471 | skb = dpaa_cleanup_tx_fd(priv, fd, ts: true); |
2472 | |
2473 | consume_skb(skb); |
2474 | } |
2475 | |
2476 | static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, |
2477 | struct qman_portal *portal, bool sched_napi) |
2478 | { |
2479 | if (sched_napi) { |
2480 | /* Disable QMan IRQ and invoke NAPI */ |
2481 | qman_p_irqsource_remove(p: portal, QM_PIRQ_DQRI); |
2482 | |
2483 | percpu_priv->np.p = portal; |
2484 | napi_schedule(n: &percpu_priv->np.napi); |
2485 | percpu_priv->in_interrupt++; |
2486 | return 1; |
2487 | } |
2488 | return 0; |
2489 | } |
2490 | |
2491 | static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, |
2492 | struct qman_fq *fq, |
2493 | const struct qm_dqrr_entry *dq, |
2494 | bool sched_napi) |
2495 | { |
2496 | struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
2497 | struct dpaa_percpu_priv *percpu_priv; |
2498 | struct net_device *net_dev; |
2499 | struct dpaa_bp *dpaa_bp; |
2500 | struct dpaa_priv *priv; |
2501 | |
2502 | net_dev = dpaa_fq->net_dev; |
2503 | priv = netdev_priv(dev: net_dev); |
2504 | dpaa_bp = dpaa_bpid2pool(bpid: dq->fd.bpid); |
2505 | if (!dpaa_bp) |
2506 | return qman_cb_dqrr_consume; |
2507 | |
2508 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2509 | |
2510 | if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) |
2511 | return qman_cb_dqrr_stop; |
2512 | |
2513 | dpaa_eth_refill_bpools(priv); |
2514 | dpaa_rx_error(net_dev, priv, percpu_priv, fd: &dq->fd, fqid: fq->fqid); |
2515 | |
2516 | return qman_cb_dqrr_consume; |
2517 | } |
2518 | |
2519 | static int dpaa_xdp_xmit_frame(struct net_device *net_dev, |
2520 | struct xdp_frame *xdpf) |
2521 | { |
2522 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
2523 | struct rtnl_link_stats64 *percpu_stats; |
2524 | struct dpaa_percpu_priv *percpu_priv; |
2525 | struct dpaa_eth_swbp *swbp; |
2526 | struct netdev_queue *txq; |
2527 | void *buff_start; |
2528 | struct qm_fd fd; |
2529 | dma_addr_t addr; |
2530 | int err; |
2531 | |
2532 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2533 | percpu_stats = &percpu_priv->stats; |
2534 | |
2535 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
2536 | if (unlikely(fman_has_errata_a050385())) { |
2537 | if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { |
2538 | err = -ENOMEM; |
2539 | goto out_error; |
2540 | } |
2541 | } |
2542 | #endif |
2543 | |
2544 | if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { |
2545 | err = -EINVAL; |
2546 | goto out_error; |
2547 | } |
2548 | |
2549 | buff_start = xdpf->data - xdpf->headroom; |
2550 | |
2551 | /* Leave empty the skb backpointer at the start of the buffer. |
2552 | * Save the XDP frame for easy cleanup on confirmation. |
2553 | */ |
2554 | swbp = (struct dpaa_eth_swbp *)buff_start; |
2555 | swbp->skb = NULL; |
2556 | swbp->xdpf = xdpf; |
2557 | |
2558 | qm_fd_clear_fd(fd: &fd); |
2559 | fd.bpid = FSL_DPAA_BPID_INV; |
2560 | fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
2561 | qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); |
2562 | |
2563 | addr = dma_map_single(priv->tx_dma_dev, buff_start, |
2564 | xdpf->headroom + xdpf->len, |
2565 | DMA_TO_DEVICE); |
2566 | if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { |
2567 | err = -EINVAL; |
2568 | goto out_error; |
2569 | } |
2570 | |
2571 | qm_fd_addr_set64(fd: &fd, addr); |
2572 | |
2573 | /* Bump the trans_start */ |
2574 | txq = netdev_get_tx_queue(dev: net_dev, smp_processor_id()); |
2575 | txq_trans_cond_update(txq); |
2576 | |
2577 | err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), fd: &fd); |
2578 | if (err) { |
2579 | dma_unmap_single(priv->tx_dma_dev, addr, |
2580 | qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), |
2581 | DMA_TO_DEVICE); |
2582 | goto out_error; |
2583 | } |
2584 | |
2585 | return 0; |
2586 | |
2587 | out_error: |
2588 | percpu_stats->tx_errors++; |
2589 | return err; |
2590 | } |
2591 | |
2592 | static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, |
2593 | struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) |
2594 | { |
2595 | ssize_t fd_off = qm_fd_get_offset(fd); |
2596 | struct bpf_prog *xdp_prog; |
2597 | struct xdp_frame *xdpf; |
2598 | struct xdp_buff xdp; |
2599 | u32 xdp_act; |
2600 | int err; |
2601 | |
2602 | xdp_prog = READ_ONCE(priv->xdp_prog); |
2603 | if (!xdp_prog) |
2604 | return XDP_PASS; |
2605 | |
2606 | xdp_init_buff(xdp: &xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, |
2607 | rxq: &dpaa_fq->xdp_rxq); |
2608 | xdp_prepare_buff(xdp: &xdp, hard_start: vaddr + fd_off - XDP_PACKET_HEADROOM, |
2609 | XDP_PACKET_HEADROOM, data_len: qm_fd_get_length(fd), meta_valid: true); |
2610 | |
2611 | /* We reserve a fixed headroom of 256 bytes under the erratum and we |
2612 | * offer it all to XDP programs to use. If no room is left for the |
2613 | * xdpf backpointer on TX, we will need to copy the data. |
2614 | * Disable metadata support since data realignments might be required |
2615 | * and the information can be lost. |
2616 | */ |
2617 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
2618 | if (unlikely(fman_has_errata_a050385())) { |
2619 | xdp_set_data_meta_invalid(&xdp); |
2620 | xdp.data_hard_start = vaddr; |
2621 | xdp.frame_sz = DPAA_BP_RAW_SIZE; |
2622 | } |
2623 | #endif |
2624 | |
2625 | xdp_act = bpf_prog_run_xdp(prog: xdp_prog, xdp: &xdp); |
2626 | |
2627 | /* Update the length and the offset of the FD */ |
2628 | qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); |
2629 | |
2630 | switch (xdp_act) { |
2631 | case XDP_PASS: |
2632 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
2633 | *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : |
2634 | xdp.data - xdp.data_meta; |
2635 | #else |
2636 | *xdp_meta_len = xdp.data - xdp.data_meta; |
2637 | #endif |
2638 | break; |
2639 | case XDP_TX: |
2640 | /* We can access the full headroom when sending the frame |
2641 | * back out |
2642 | */ |
2643 | xdp.data_hard_start = vaddr; |
2644 | xdp.frame_sz = DPAA_BP_RAW_SIZE; |
2645 | xdpf = xdp_convert_buff_to_frame(xdp: &xdp); |
2646 | if (unlikely(!xdpf)) { |
2647 | free_pages(addr: (unsigned long)vaddr, order: 0); |
2648 | break; |
2649 | } |
2650 | |
2651 | if (dpaa_xdp_xmit_frame(net_dev: priv->net_dev, xdpf)) |
2652 | xdp_return_frame_rx_napi(xdpf); |
2653 | |
2654 | break; |
2655 | case XDP_REDIRECT: |
2656 | /* Allow redirect to use the full headroom */ |
2657 | xdp.data_hard_start = vaddr; |
2658 | xdp.frame_sz = DPAA_BP_RAW_SIZE; |
2659 | |
2660 | err = xdp_do_redirect(dev: priv->net_dev, xdp: &xdp, prog: xdp_prog); |
2661 | if (err) { |
2662 | trace_xdp_exception(dev: priv->net_dev, xdp: xdp_prog, act: xdp_act); |
2663 | free_pages(addr: (unsigned long)vaddr, order: 0); |
2664 | } |
2665 | break; |
2666 | default: |
2667 | bpf_warn_invalid_xdp_action(dev: priv->net_dev, prog: xdp_prog, act: xdp_act); |
2668 | fallthrough; |
2669 | case XDP_ABORTED: |
2670 | trace_xdp_exception(dev: priv->net_dev, xdp: xdp_prog, act: xdp_act); |
2671 | fallthrough; |
2672 | case XDP_DROP: |
2673 | /* Free the buffer */ |
2674 | free_pages(addr: (unsigned long)vaddr, order: 0); |
2675 | break; |
2676 | } |
2677 | |
2678 | return xdp_act; |
2679 | } |
2680 | |
2681 | static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, |
2682 | struct qman_fq *fq, |
2683 | const struct qm_dqrr_entry *dq, |
2684 | bool sched_napi) |
2685 | { |
2686 | bool ts_valid = false, hash_valid = false; |
2687 | struct skb_shared_hwtstamps *shhwtstamps; |
2688 | unsigned int skb_len, xdp_meta_len = 0; |
2689 | struct rtnl_link_stats64 *percpu_stats; |
2690 | struct dpaa_percpu_priv *percpu_priv; |
2691 | const struct qm_fd *fd = &dq->fd; |
2692 | dma_addr_t addr = qm_fd_addr(fd); |
2693 | struct dpaa_napi_portal *np; |
2694 | enum qm_fd_format fd_format; |
2695 | struct net_device *net_dev; |
2696 | u32 fd_status, hash_offset; |
2697 | struct qm_sg_entry *sgt; |
2698 | struct dpaa_bp *dpaa_bp; |
2699 | struct dpaa_fq *dpaa_fq; |
2700 | struct dpaa_priv *priv; |
2701 | struct sk_buff *skb; |
2702 | int *count_ptr; |
2703 | u32 xdp_act; |
2704 | void *vaddr; |
2705 | u32 hash; |
2706 | u64 ns; |
2707 | |
2708 | dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
2709 | fd_status = be32_to_cpu(fd->status); |
2710 | fd_format = qm_fd_get_format(fd); |
2711 | net_dev = dpaa_fq->net_dev; |
2712 | priv = netdev_priv(dev: net_dev); |
2713 | dpaa_bp = dpaa_bpid2pool(bpid: dq->fd.bpid); |
2714 | if (!dpaa_bp) |
2715 | return qman_cb_dqrr_consume; |
2716 | |
2717 | /* Trace the Rx fd */ |
2718 | trace_dpaa_rx_fd(netdev: net_dev, fq, fd: &dq->fd); |
2719 | |
2720 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2721 | percpu_stats = &percpu_priv->stats; |
2722 | np = &percpu_priv->np; |
2723 | |
2724 | if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) |
2725 | return qman_cb_dqrr_stop; |
2726 | |
2727 | /* Make sure we didn't run out of buffers */ |
2728 | if (unlikely(dpaa_eth_refill_bpools(priv))) { |
2729 | /* Unable to refill the buffer pool due to insufficient |
2730 | * system memory. Just release the frame back into the pool, |
2731 | * otherwise we'll soon end up with an empty buffer pool. |
2732 | */ |
2733 | dpaa_fd_release(net_dev, fd: &dq->fd); |
2734 | return qman_cb_dqrr_consume; |
2735 | } |
2736 | |
2737 | if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { |
2738 | if (net_ratelimit()) |
2739 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
2740 | fd_status & FM_FD_STAT_RX_ERRORS); |
2741 | |
2742 | percpu_stats->rx_errors++; |
2743 | dpaa_fd_release(net_dev, fd); |
2744 | return qman_cb_dqrr_consume; |
2745 | } |
2746 | |
2747 | dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, |
2748 | DMA_FROM_DEVICE); |
2749 | |
2750 | /* prefetch the first 64 bytes of the frame or the SGT start */ |
2751 | vaddr = phys_to_virt(address: addr); |
2752 | prefetch(vaddr + qm_fd_get_offset(fd)); |
2753 | |
2754 | /* The only FD types that we may receive are contig and S/G */ |
2755 | WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); |
2756 | |
2757 | /* Account for either the contig buffer or the SGT buffer (depending on |
2758 | * which case we were in) having been removed from the pool. |
2759 | */ |
2760 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
2761 | (*count_ptr)--; |
2762 | |
2763 | /* Extract the timestamp stored in the headroom before running XDP */ |
2764 | if (priv->rx_tstamp) { |
2765 | if (!fman_port_get_tstamp(port: priv->mac_dev->port[RX], data: vaddr, tstamp: &ns)) |
2766 | ts_valid = true; |
2767 | else |
2768 | WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); |
2769 | } |
2770 | |
2771 | /* Extract the hash stored in the headroom before running XDP */ |
2772 | if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && |
2773 | !fman_port_get_hash_result_offset(port: priv->mac_dev->port[RX], |
2774 | offset: &hash_offset)) { |
2775 | hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset)); |
2776 | hash_valid = true; |
2777 | } |
2778 | |
2779 | if (likely(fd_format == qm_fd_contig)) { |
2780 | xdp_act = dpaa_run_xdp(priv, fd: (struct qm_fd *)fd, vaddr, |
2781 | dpaa_fq, xdp_meta_len: &xdp_meta_len); |
2782 | np->xdp_act |= xdp_act; |
2783 | if (xdp_act != XDP_PASS) { |
2784 | percpu_stats->rx_packets++; |
2785 | percpu_stats->rx_bytes += qm_fd_get_length(fd); |
2786 | return qman_cb_dqrr_consume; |
2787 | } |
2788 | skb = contig_fd_to_skb(priv, fd); |
2789 | } else { |
2790 | /* XDP doesn't support S/G frames. Return the fragments to the |
2791 | * buffer pool and release the SGT. |
2792 | */ |
2793 | if (READ_ONCE(priv->xdp_prog)) { |
2794 | WARN_ONCE(1, "S/G frames not supported under XDP\n"); |
2795 | sgt = vaddr + qm_fd_get_offset(fd); |
2796 | dpaa_release_sgt_members(sgt); |
2797 | free_pages(addr: (unsigned long)vaddr, order: 0); |
2798 | return qman_cb_dqrr_consume; |
2799 | } |
2800 | skb = sg_fd_to_skb(priv, fd); |
2801 | } |
2802 | if (!skb) |
2803 | return qman_cb_dqrr_consume; |
2804 | |
2805 | if (xdp_meta_len) |
2806 | skb_metadata_set(skb, meta_len: xdp_meta_len); |
2807 | |
2808 | /* Set the previously extracted timestamp */ |
2809 | if (ts_valid) { |
2810 | shhwtstamps = skb_hwtstamps(skb); |
2811 | memset(shhwtstamps, 0, sizeof(*shhwtstamps)); |
2812 | shhwtstamps->hwtstamp = ns_to_ktime(ns); |
2813 | } |
2814 | |
2815 | skb->protocol = eth_type_trans(skb, dev: net_dev); |
2816 | |
2817 | /* Set the previously extracted hash */ |
2818 | if (hash_valid) { |
2819 | enum pkt_hash_types type; |
2820 | |
2821 | /* if L4 exists, it was used in the hash generation */ |
2822 | type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? |
2823 | PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; |
2824 | skb_set_hash(skb, hash, type); |
2825 | } |
2826 | |
2827 | skb_len = skb->len; |
2828 | |
2829 | if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { |
2830 | percpu_stats->rx_dropped++; |
2831 | return qman_cb_dqrr_consume; |
2832 | } |
2833 | |
2834 | percpu_stats->rx_packets++; |
2835 | percpu_stats->rx_bytes += skb_len; |
2836 | |
2837 | return qman_cb_dqrr_consume; |
2838 | } |
2839 | |
2840 | static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, |
2841 | struct qman_fq *fq, |
2842 | const struct qm_dqrr_entry *dq, |
2843 | bool sched_napi) |
2844 | { |
2845 | struct dpaa_percpu_priv *percpu_priv; |
2846 | struct net_device *net_dev; |
2847 | struct dpaa_priv *priv; |
2848 | |
2849 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
2850 | priv = netdev_priv(dev: net_dev); |
2851 | |
2852 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2853 | |
2854 | if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) |
2855 | return qman_cb_dqrr_stop; |
2856 | |
2857 | dpaa_tx_error(net_dev, priv, percpu_priv, fd: &dq->fd, fqid: fq->fqid); |
2858 | |
2859 | return qman_cb_dqrr_consume; |
2860 | } |
2861 | |
2862 | static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, |
2863 | struct qman_fq *fq, |
2864 | const struct qm_dqrr_entry *dq, |
2865 | bool sched_napi) |
2866 | { |
2867 | struct dpaa_percpu_priv *percpu_priv; |
2868 | struct net_device *net_dev; |
2869 | struct dpaa_priv *priv; |
2870 | |
2871 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
2872 | priv = netdev_priv(dev: net_dev); |
2873 | |
2874 | /* Trace the fd */ |
2875 | trace_dpaa_tx_conf_fd(netdev: net_dev, fq, fd: &dq->fd); |
2876 | |
2877 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2878 | |
2879 | if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) |
2880 | return qman_cb_dqrr_stop; |
2881 | |
2882 | dpaa_tx_conf(net_dev, priv, percpu_priv, fd: &dq->fd, fqid: fq->fqid); |
2883 | |
2884 | return qman_cb_dqrr_consume; |
2885 | } |
2886 | |
2887 | static void egress_ern(struct qman_portal *portal, |
2888 | struct qman_fq *fq, |
2889 | const union qm_mr_entry *msg) |
2890 | { |
2891 | const struct qm_fd *fd = &msg->ern.fd; |
2892 | struct dpaa_percpu_priv *percpu_priv; |
2893 | const struct dpaa_priv *priv; |
2894 | struct net_device *net_dev; |
2895 | struct sk_buff *skb; |
2896 | |
2897 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
2898 | priv = netdev_priv(dev: net_dev); |
2899 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
2900 | |
2901 | percpu_priv->stats.tx_dropped++; |
2902 | percpu_priv->stats.tx_fifo_errors++; |
2903 | count_ern(percpu_priv, msg); |
2904 | |
2905 | skb = dpaa_cleanup_tx_fd(priv, fd, ts: false); |
2906 | dev_kfree_skb_any(skb); |
2907 | } |
2908 | |
2909 | static const struct dpaa_fq_cbs dpaa_fq_cbs = { |
2910 | .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, |
2911 | .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, |
2912 | .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, |
2913 | .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, |
2914 | .egress_ern = { .cb = { .ern = egress_ern } } |
2915 | }; |
2916 | |
2917 | static void dpaa_eth_napi_enable(struct dpaa_priv *priv) |
2918 | { |
2919 | struct dpaa_percpu_priv *percpu_priv; |
2920 | int i; |
2921 | |
2922 | for_each_online_cpu(i) { |
2923 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
2924 | |
2925 | percpu_priv->np.down = false; |
2926 | napi_enable(n: &percpu_priv->np.napi); |
2927 | } |
2928 | } |
2929 | |
2930 | static void dpaa_eth_napi_disable(struct dpaa_priv *priv) |
2931 | { |
2932 | struct dpaa_percpu_priv *percpu_priv; |
2933 | int i; |
2934 | |
2935 | for_each_online_cpu(i) { |
2936 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
2937 | |
2938 | percpu_priv->np.down = true; |
2939 | napi_disable(n: &percpu_priv->np.napi); |
2940 | } |
2941 | } |
2942 | |
2943 | static int dpaa_open(struct net_device *net_dev) |
2944 | { |
2945 | struct mac_device *mac_dev; |
2946 | struct dpaa_priv *priv; |
2947 | int err, i; |
2948 | |
2949 | priv = netdev_priv(dev: net_dev); |
2950 | mac_dev = priv->mac_dev; |
2951 | dpaa_eth_napi_enable(priv); |
2952 | |
2953 | err = phylink_of_phy_connect(mac_dev->phylink, |
2954 | mac_dev->dev->of_node, flags: 0); |
2955 | if (err) |
2956 | goto phy_init_failed; |
2957 | |
2958 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
2959 | err = fman_port_enable(port: mac_dev->port[i]); |
2960 | if (err) |
2961 | goto mac_start_failed; |
2962 | } |
2963 | |
2964 | err = priv->mac_dev->enable(mac_dev->fman_mac); |
2965 | if (err < 0) { |
2966 | netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); |
2967 | goto mac_start_failed; |
2968 | } |
2969 | phylink_start(mac_dev->phylink); |
2970 | |
2971 | netif_tx_start_all_queues(dev: net_dev); |
2972 | |
2973 | return 0; |
2974 | |
2975 | mac_start_failed: |
2976 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) |
2977 | fman_port_disable(port: mac_dev->port[i]); |
2978 | phylink_disconnect_phy(mac_dev->phylink); |
2979 | |
2980 | phy_init_failed: |
2981 | dpaa_eth_napi_disable(priv); |
2982 | |
2983 | return err; |
2984 | } |
2985 | |
2986 | static int dpaa_eth_stop(struct net_device *net_dev) |
2987 | { |
2988 | struct dpaa_priv *priv; |
2989 | int err; |
2990 | |
2991 | err = dpaa_stop(net_dev); |
2992 | |
2993 | priv = netdev_priv(dev: net_dev); |
2994 | dpaa_eth_napi_disable(priv); |
2995 | |
2996 | return err; |
2997 | } |
2998 | |
2999 | static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) |
3000 | { |
3001 | int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; |
3002 | |
3003 | /* We do not support S/G fragments when XDP is enabled. |
3004 | * Limit the MTU in relation to the buffer size. |
3005 | */ |
3006 | if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { |
3007 | dev_warn(priv->net_dev->dev.parent, |
3008 | "The maximum MTU for XDP is %d\n", |
3009 | max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); |
3010 | return false; |
3011 | } |
3012 | |
3013 | return true; |
3014 | } |
3015 | |
3016 | static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) |
3017 | { |
3018 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
3019 | |
3020 | if (priv->xdp_prog && !xdp_validate_mtu(priv, mtu: new_mtu)) |
3021 | return -EINVAL; |
3022 | |
3023 | WRITE_ONCE(net_dev->mtu, new_mtu); |
3024 | return 0; |
3025 | } |
3026 | |
3027 | static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) |
3028 | { |
3029 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
3030 | struct bpf_prog *old_prog; |
3031 | int err; |
3032 | bool up; |
3033 | |
3034 | /* S/G fragments are not supported in XDP-mode */ |
3035 | if (bpf->prog && !xdp_validate_mtu(priv, mtu: net_dev->mtu)) { |
3036 | NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); |
3037 | return -EINVAL; |
3038 | } |
3039 | |
3040 | up = netif_running(dev: net_dev); |
3041 | |
3042 | if (up) |
3043 | dpaa_eth_stop(net_dev); |
3044 | |
3045 | old_prog = xchg(&priv->xdp_prog, bpf->prog); |
3046 | if (old_prog) |
3047 | bpf_prog_put(prog: old_prog); |
3048 | |
3049 | if (up) { |
3050 | err = dpaa_open(net_dev); |
3051 | if (err) { |
3052 | NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); |
3053 | return err; |
3054 | } |
3055 | } |
3056 | |
3057 | return 0; |
3058 | } |
3059 | |
3060 | static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) |
3061 | { |
3062 | switch (xdp->command) { |
3063 | case XDP_SETUP_PROG: |
3064 | return dpaa_setup_xdp(net_dev, bpf: xdp); |
3065 | default: |
3066 | return -EINVAL; |
3067 | } |
3068 | } |
3069 | |
3070 | static int dpaa_xdp_xmit(struct net_device *net_dev, int n, |
3071 | struct xdp_frame **frames, u32 flags) |
3072 | { |
3073 | struct xdp_frame *xdpf; |
3074 | int i, nxmit = 0; |
3075 | |
3076 | if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
3077 | return -EINVAL; |
3078 | |
3079 | if (!netif_running(dev: net_dev)) |
3080 | return -ENETDOWN; |
3081 | |
3082 | for (i = 0; i < n; i++) { |
3083 | xdpf = frames[i]; |
3084 | if (dpaa_xdp_xmit_frame(net_dev, xdpf)) |
3085 | break; |
3086 | nxmit++; |
3087 | } |
3088 | |
3089 | return nxmit; |
3090 | } |
3091 | |
3092 | static int dpaa_hwtstamp_get(struct net_device *dev, |
3093 | struct kernel_hwtstamp_config *config) |
3094 | { |
3095 | struct dpaa_priv *priv = netdev_priv(dev); |
3096 | |
3097 | config->tx_type = priv->tx_tstamp ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; |
3098 | config->rx_filter = priv->rx_tstamp ? HWTSTAMP_FILTER_ALL : |
3099 | HWTSTAMP_FILTER_NONE; |
3100 | |
3101 | return 0; |
3102 | } |
3103 | |
3104 | static int dpaa_hwtstamp_set(struct net_device *dev, |
3105 | struct kernel_hwtstamp_config *config, |
3106 | struct netlink_ext_ack *extack) |
3107 | { |
3108 | struct dpaa_priv *priv = netdev_priv(dev); |
3109 | |
3110 | switch (config->tx_type) { |
3111 | case HWTSTAMP_TX_OFF: |
3112 | /* Couldn't disable rx/tx timestamping separately. |
3113 | * Do nothing here. |
3114 | */ |
3115 | priv->tx_tstamp = false; |
3116 | break; |
3117 | case HWTSTAMP_TX_ON: |
3118 | priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); |
3119 | priv->tx_tstamp = true; |
3120 | break; |
3121 | default: |
3122 | return -ERANGE; |
3123 | } |
3124 | |
3125 | if (config->rx_filter == HWTSTAMP_FILTER_NONE) { |
3126 | /* Couldn't disable rx/tx timestamping separately. |
3127 | * Do nothing here. |
3128 | */ |
3129 | priv->rx_tstamp = false; |
3130 | } else { |
3131 | priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); |
3132 | priv->rx_tstamp = true; |
3133 | /* TS is set for all frame types, not only those requested */ |
3134 | config->rx_filter = HWTSTAMP_FILTER_ALL; |
3135 | } |
3136 | |
3137 | return 0; |
3138 | } |
3139 | |
3140 | static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) |
3141 | { |
3142 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
3143 | |
3144 | return phylink_mii_ioctl(priv->mac_dev->phylink, rq, cmd); |
3145 | } |
3146 | |
3147 | static const struct net_device_ops dpaa_ops = { |
3148 | .ndo_open = dpaa_open, |
3149 | .ndo_start_xmit = dpaa_start_xmit, |
3150 | .ndo_stop = dpaa_eth_stop, |
3151 | .ndo_tx_timeout = dpaa_tx_timeout, |
3152 | .ndo_get_stats64 = dpaa_get_stats64, |
3153 | .ndo_change_carrier = fixed_phy_change_carrier, |
3154 | .ndo_set_mac_address = dpaa_set_mac_address, |
3155 | .ndo_validate_addr = eth_validate_addr, |
3156 | .ndo_set_rx_mode = dpaa_set_rx_mode, |
3157 | .ndo_eth_ioctl = dpaa_ioctl, |
3158 | .ndo_setup_tc = dpaa_setup_tc, |
3159 | .ndo_change_mtu = dpaa_change_mtu, |
3160 | .ndo_bpf = dpaa_xdp, |
3161 | .ndo_xdp_xmit = dpaa_xdp_xmit, |
3162 | .ndo_hwtstamp_get = dpaa_hwtstamp_get, |
3163 | .ndo_hwtstamp_set = dpaa_hwtstamp_set, |
3164 | }; |
3165 | |
3166 | static int dpaa_napi_add(struct net_device *net_dev) |
3167 | { |
3168 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
3169 | struct dpaa_percpu_priv *percpu_priv; |
3170 | int cpu; |
3171 | |
3172 | for_each_possible_cpu(cpu) { |
3173 | percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
3174 | |
3175 | netif_napi_add(dev: net_dev, napi: &percpu_priv->np.napi, poll: dpaa_eth_poll); |
3176 | } |
3177 | |
3178 | return 0; |
3179 | } |
3180 | |
3181 | static void dpaa_napi_del(struct net_device *net_dev) |
3182 | { |
3183 | struct dpaa_priv *priv = netdev_priv(dev: net_dev); |
3184 | struct dpaa_percpu_priv *percpu_priv; |
3185 | int cpu; |
3186 | |
3187 | for_each_possible_cpu(cpu) { |
3188 | percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
3189 | |
3190 | __netif_napi_del(napi: &percpu_priv->np.napi); |
3191 | } |
3192 | synchronize_net(); |
3193 | } |
3194 | |
3195 | static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, |
3196 | struct bm_buffer *bmb) |
3197 | { |
3198 | dma_addr_t addr = bm_buf_addr(buf: bmb); |
3199 | |
3200 | dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, |
3201 | DMA_FROM_DEVICE); |
3202 | |
3203 | skb_free_frag(phys_to_virt(address: addr)); |
3204 | } |
3205 | |
3206 | /* Alloc the dpaa_bp struct and configure default values */ |
3207 | static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) |
3208 | { |
3209 | struct dpaa_bp *dpaa_bp; |
3210 | |
3211 | dpaa_bp = devm_kzalloc(dev, size: sizeof(*dpaa_bp), GFP_KERNEL); |
3212 | if (!dpaa_bp) |
3213 | return ERR_PTR(error: -ENOMEM); |
3214 | |
3215 | dpaa_bp->bpid = FSL_DPAA_BPID_INV; |
3216 | dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); |
3217 | if (!dpaa_bp->percpu_count) |
3218 | return ERR_PTR(error: -ENOMEM); |
3219 | |
3220 | dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; |
3221 | |
3222 | dpaa_bp->seed_cb = dpaa_bp_seed; |
3223 | dpaa_bp->free_buf_cb = dpaa_bp_free_pf; |
3224 | |
3225 | return dpaa_bp; |
3226 | } |
3227 | |
3228 | /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. |
3229 | * We won't be sending congestion notifications to FMan; for now, we just use |
3230 | * this CGR to generate enqueue rejections to FMan in order to drop the frames |
3231 | * before they reach our ingress queues and eat up memory. |
3232 | */ |
3233 | static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) |
3234 | { |
3235 | struct qm_mcc_initcgr initcgr; |
3236 | u32 cs_th; |
3237 | int err; |
3238 | |
3239 | err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); |
3240 | if (err < 0) { |
3241 | if (netif_msg_drv(priv)) |
3242 | pr_err("Error %d allocating CGR ID\n", err); |
3243 | goto out_error; |
3244 | } |
3245 | |
3246 | /* Enable CS TD, but disable Congestion State Change Notifications. */ |
3247 | memset(&initcgr, 0, sizeof(initcgr)); |
3248 | initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); |
3249 | initcgr.cgr.cscn_en = QM_CGR_EN; |
3250 | cs_th = DPAA_INGRESS_CS_THRESHOLD; |
3251 | qm_cgr_cs_thres_set64(th: &initcgr.cgr.cs_thres, val: cs_th, roundup: 1); |
3252 | |
3253 | initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
3254 | initcgr.cgr.cstd_en = QM_CGR_EN; |
3255 | |
3256 | /* This CGR will be associated with the SWP affined to the current CPU. |
3257 | * However, we'll place all our ingress FQs in it. |
3258 | */ |
3259 | err = qman_create_cgr(cgr: &priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, |
3260 | opts: &initcgr); |
3261 | if (err < 0) { |
3262 | if (netif_msg_drv(priv)) |
3263 | pr_err("Error %d creating ingress CGR with ID %d\n", |
3264 | err, priv->ingress_cgr.cgrid); |
3265 | qman_release_cgrid(id: priv->ingress_cgr.cgrid); |
3266 | goto out_error; |
3267 | } |
3268 | if (netif_msg_drv(priv)) |
3269 | pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", |
3270 | priv->ingress_cgr.cgrid, priv->mac_dev->addr); |
3271 | |
3272 | priv->use_ingress_cgr = true; |
3273 | |
3274 | out_error: |
3275 | return err; |
3276 | } |
3277 | |
3278 | static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, |
3279 | enum port_type port) |
3280 | { |
3281 | u16 headroom; |
3282 | |
3283 | /* The frame headroom must accommodate: |
3284 | * - the driver private data area |
3285 | * - parse results, hash results, timestamp if selected |
3286 | * If either hash results or time stamp are selected, both will |
3287 | * be copied to/from the frame headroom, as TS is located between PR and |
3288 | * HR in the IC and IC copy size has a granularity of 16bytes |
3289 | * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) |
3290 | * |
3291 | * Also make sure the headroom is a multiple of data_align bytes |
3292 | */ |
3293 | headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); |
3294 | |
3295 | if (port == RX) { |
3296 | #ifdef CONFIG_DPAA_ERRATUM_A050385 |
3297 | if (unlikely(fman_has_errata_a050385())) |
3298 | headroom = XDP_PACKET_HEADROOM; |
3299 | #endif |
3300 | |
3301 | return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); |
3302 | } else { |
3303 | return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); |
3304 | } |
3305 | } |
3306 | |
3307 | static int dpaa_eth_probe(struct platform_device *pdev) |
3308 | { |
3309 | struct net_device *net_dev = NULL; |
3310 | struct dpaa_bp *dpaa_bp = NULL; |
3311 | struct dpaa_fq *dpaa_fq, *tmp; |
3312 | struct dpaa_priv *priv = NULL; |
3313 | struct fm_port_fqs port_fqs; |
3314 | struct mac_device *mac_dev; |
3315 | int err = 0, channel; |
3316 | struct device *dev; |
3317 | |
3318 | dev = &pdev->dev; |
3319 | |
3320 | err = bman_is_probed(); |
3321 | if (!err) |
3322 | return -EPROBE_DEFER; |
3323 | if (err < 0) { |
3324 | dev_err(dev, "failing probe due to bman probe error\n"); |
3325 | return -ENODEV; |
3326 | } |
3327 | err = qman_is_probed(); |
3328 | if (!err) |
3329 | return -EPROBE_DEFER; |
3330 | if (err < 0) { |
3331 | dev_err(dev, "failing probe due to qman probe error\n"); |
3332 | return -ENODEV; |
3333 | } |
3334 | err = bman_portals_probed(); |
3335 | if (!err) |
3336 | return -EPROBE_DEFER; |
3337 | if (err < 0) { |
3338 | dev_err(dev, |
3339 | "failing probe due to bman portals probe error\n"); |
3340 | return -ENODEV; |
3341 | } |
3342 | err = qman_portals_probed(); |
3343 | if (!err) |
3344 | return -EPROBE_DEFER; |
3345 | if (err < 0) { |
3346 | dev_err(dev, |
3347 | "failing probe due to qman portals probe error\n"); |
3348 | return -ENODEV; |
3349 | } |
3350 | |
3351 | /* Allocate this early, so we can store relevant information in |
3352 | * the private area |
3353 | */ |
3354 | net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs()); |
3355 | if (!net_dev) { |
3356 | dev_err(dev, "alloc_etherdev_mq() failed\n"); |
3357 | return -ENOMEM; |
3358 | } |
3359 | |
3360 | /* Do this here, so we can be verbose early */ |
3361 | SET_NETDEV_DEV(net_dev, dev->parent); |
3362 | dev_set_drvdata(dev, data: net_dev); |
3363 | |
3364 | priv = netdev_priv(dev: net_dev); |
3365 | priv->net_dev = net_dev; |
3366 | |
3367 | priv->msg_enable = netif_msg_init(debug_value: debug, DPAA_MSG_DEFAULT); |
3368 | |
3369 | priv->egress_fqs = devm_kcalloc(dev, n: dpaa_max_num_txqs(), |
3370 | size: sizeof(*priv->egress_fqs), |
3371 | GFP_KERNEL); |
3372 | if (!priv->egress_fqs) { |
3373 | err = -ENOMEM; |
3374 | goto free_netdev; |
3375 | } |
3376 | |
3377 | priv->conf_fqs = devm_kcalloc(dev, n: dpaa_max_num_txqs(), |
3378 | size: sizeof(*priv->conf_fqs), |
3379 | GFP_KERNEL); |
3380 | if (!priv->conf_fqs) { |
3381 | err = -ENOMEM; |
3382 | goto free_netdev; |
3383 | } |
3384 | |
3385 | mac_dev = dpaa_mac_dev_get(pdev); |
3386 | if (IS_ERR(ptr: mac_dev)) { |
3387 | netdev_err(dev: net_dev, format: "dpaa_mac_dev_get() failed\n"); |
3388 | err = PTR_ERR(ptr: mac_dev); |
3389 | goto free_netdev; |
3390 | } |
3391 | |
3392 | /* Devices used for DMA mapping */ |
3393 | priv->rx_dma_dev = fman_port_get_device(port: mac_dev->port[RX]); |
3394 | priv->tx_dma_dev = fman_port_get_device(port: mac_dev->port[TX]); |
3395 | err = dma_coerce_mask_and_coherent(dev: priv->rx_dma_dev, DMA_BIT_MASK(40)); |
3396 | if (!err) |
3397 | err = dma_coerce_mask_and_coherent(dev: priv->tx_dma_dev, |
3398 | DMA_BIT_MASK(40)); |
3399 | if (err) { |
3400 | netdev_err(dev: net_dev, format: "dma_coerce_mask_and_coherent() failed\n"); |
3401 | goto free_netdev; |
3402 | } |
3403 | |
3404 | /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, |
3405 | * we choose conservatively and let the user explicitly set a higher |
3406 | * MTU via ifconfig. Otherwise, the user may end up with different MTUs |
3407 | * in the same LAN. |
3408 | * If on the other hand fsl_fm_max_frm has been chosen below 1500, |
3409 | * start with the maximum allowed. |
3410 | */ |
3411 | net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); |
3412 | |
3413 | netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", |
3414 | net_dev->mtu); |
3415 | |
3416 | priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ |
3417 | priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ |
3418 | |
3419 | /* bp init */ |
3420 | dpaa_bp = dpaa_bp_alloc(dev); |
3421 | if (IS_ERR(ptr: dpaa_bp)) { |
3422 | err = PTR_ERR(ptr: dpaa_bp); |
3423 | goto free_dpaa_bps; |
3424 | } |
3425 | /* the raw size of the buffers used for reception */ |
3426 | dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; |
3427 | /* avoid runtime computations by keeping the usable size here */ |
3428 | dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); |
3429 | dpaa_bp->priv = priv; |
3430 | |
3431 | err = dpaa_bp_alloc_pool(dpaa_bp); |
3432 | if (err < 0) |
3433 | goto free_dpaa_bps; |
3434 | priv->dpaa_bp = dpaa_bp; |
3435 | |
3436 | INIT_LIST_HEAD(list: &priv->dpaa_fq_list); |
3437 | |
3438 | memset(&port_fqs, 0, sizeof(port_fqs)); |
3439 | |
3440 | err = dpaa_alloc_all_fqs(dev, list: &priv->dpaa_fq_list, port_fqs: &port_fqs); |
3441 | if (err < 0) { |
3442 | dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); |
3443 | goto free_dpaa_bps; |
3444 | } |
3445 | |
3446 | priv->mac_dev = mac_dev; |
3447 | |
3448 | channel = dpaa_get_channel(); |
3449 | if (channel < 0) { |
3450 | dev_err(dev, "dpaa_get_channel() failed\n"); |
3451 | err = channel; |
3452 | goto free_dpaa_bps; |
3453 | } |
3454 | |
3455 | priv->channel = (u16)channel; |
3456 | |
3457 | /* Walk the CPUs with affine portals |
3458 | * and add this pool channel to each's dequeue mask. |
3459 | */ |
3460 | dpaa_eth_add_channel(channel: priv->channel, dev: &pdev->dev); |
3461 | |
3462 | err = dpaa_fq_setup(priv, fq_cbs: &dpaa_fq_cbs, tx_port: priv->mac_dev->port[TX]); |
3463 | if (err) |
3464 | goto free_dpaa_bps; |
3465 | |
3466 | /* Create a congestion group for this netdev, with |
3467 | * dynamically-allocated CGR ID. |
3468 | * Must be executed after probing the MAC, but before |
3469 | * assigning the egress FQs to the CGRs. |
3470 | */ |
3471 | err = dpaa_eth_cgr_init(priv); |
3472 | if (err < 0) { |
3473 | dev_err(dev, "Error initializing CGR\n"); |
3474 | goto free_dpaa_bps; |
3475 | } |
3476 | |
3477 | err = dpaa_ingress_cgr_init(priv); |
3478 | if (err < 0) { |
3479 | dev_err(dev, "Error initializing ingress CGR\n"); |
3480 | goto delete_egress_cgr; |
3481 | } |
3482 | |
3483 | /* Add the FQs to the interface, and make them active */ |
3484 | list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { |
3485 | err = dpaa_fq_init(dpaa_fq, td_enable: false); |
3486 | if (err < 0) |
3487 | goto free_dpaa_fqs; |
3488 | } |
3489 | |
3490 | priv->tx_headroom = dpaa_get_headroom(bl: priv->buf_layout, port: TX); |
3491 | priv->rx_headroom = dpaa_get_headroom(bl: priv->buf_layout, port: RX); |
3492 | |
3493 | /* All real interfaces need their ports initialized */ |
3494 | err = dpaa_eth_init_ports(mac_dev, bp: dpaa_bp, port_fqs: &port_fqs, |
3495 | buf_layout: &priv->buf_layout[0], dev); |
3496 | if (err) |
3497 | goto free_dpaa_fqs; |
3498 | |
3499 | /* Rx traffic distribution based on keygen hashing defaults to on */ |
3500 | priv->keygen_in_use = true; |
3501 | |
3502 | priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); |
3503 | if (!priv->percpu_priv) { |
3504 | dev_err(dev, "devm_alloc_percpu() failed\n"); |
3505 | err = -ENOMEM; |
3506 | goto free_dpaa_fqs; |
3507 | } |
3508 | |
3509 | priv->num_tc = 1; |
3510 | netif_set_real_num_tx_queues(dev: net_dev, |
3511 | txq: priv->num_tc * dpaa_num_txqs_per_tc()); |
3512 | |
3513 | /* Initialize NAPI */ |
3514 | err = dpaa_napi_add(net_dev); |
3515 | if (err < 0) |
3516 | goto delete_dpaa_napi; |
3517 | |
3518 | err = dpaa_netdev_init(net_dev, dpaa_ops: &dpaa_ops, tx_timeout); |
3519 | if (err < 0) |
3520 | goto delete_dpaa_napi; |
3521 | |
3522 | dpaa_eth_sysfs_init(dev: &net_dev->dev); |
3523 | |
3524 | netif_info(priv, probe, net_dev, "Probed interface %s\n", |
3525 | net_dev->name); |
3526 | |
3527 | return 0; |
3528 | |
3529 | delete_dpaa_napi: |
3530 | dpaa_napi_del(net_dev); |
3531 | free_dpaa_fqs: |
3532 | dpaa_fq_free(dev, list: &priv->dpaa_fq_list); |
3533 | qman_delete_cgr_safe(cgr: &priv->ingress_cgr); |
3534 | qman_release_cgrid(id: priv->ingress_cgr.cgrid); |
3535 | delete_egress_cgr: |
3536 | qman_delete_cgr_safe(cgr: &priv->cgr_data.cgr); |
3537 | qman_release_cgrid(id: priv->cgr_data.cgr.cgrid); |
3538 | free_dpaa_bps: |
3539 | dpaa_bps_free(priv); |
3540 | free_netdev: |
3541 | dev_set_drvdata(dev, NULL); |
3542 | free_netdev(dev: net_dev); |
3543 | |
3544 | return err; |
3545 | } |
3546 | |
3547 | static void dpaa_remove(struct platform_device *pdev) |
3548 | { |
3549 | struct net_device *net_dev; |
3550 | struct dpaa_priv *priv; |
3551 | struct device *dev; |
3552 | int err; |
3553 | |
3554 | dev = &pdev->dev; |
3555 | net_dev = dev_get_drvdata(dev); |
3556 | |
3557 | priv = netdev_priv(dev: net_dev); |
3558 | |
3559 | dpaa_eth_sysfs_remove(dev); |
3560 | |
3561 | dev_set_drvdata(dev, NULL); |
3562 | unregister_netdev(dev: net_dev); |
3563 | phylink_destroy(priv->mac_dev->phylink); |
3564 | |
3565 | err = dpaa_fq_free(dev, list: &priv->dpaa_fq_list); |
3566 | if (err) |
3567 | dev_err(dev, "Failed to free FQs on remove (%pE)\n", |
3568 | ERR_PTR(err)); |
3569 | |
3570 | qman_delete_cgr_safe(cgr: &priv->ingress_cgr); |
3571 | qman_release_cgrid(id: priv->ingress_cgr.cgrid); |
3572 | qman_delete_cgr_safe(cgr: &priv->cgr_data.cgr); |
3573 | qman_release_cgrid(id: priv->cgr_data.cgr.cgrid); |
3574 | |
3575 | dpaa_napi_del(net_dev); |
3576 | |
3577 | dpaa_bps_free(priv); |
3578 | |
3579 | free_netdev(dev: net_dev); |
3580 | } |
3581 | |
3582 | static const struct platform_device_id dpaa_devtype[] = { |
3583 | { |
3584 | .name = "dpaa-ethernet", |
3585 | .driver_data = 0, |
3586 | }, { |
3587 | } |
3588 | }; |
3589 | MODULE_DEVICE_TABLE(platform, dpaa_devtype); |
3590 | |
3591 | static struct platform_driver dpaa_driver = { |
3592 | .driver = { |
3593 | .name = KBUILD_MODNAME, |
3594 | }, |
3595 | .id_table = dpaa_devtype, |
3596 | .probe = dpaa_eth_probe, |
3597 | .remove = dpaa_remove |
3598 | }; |
3599 | |
3600 | static int __init dpaa_load(void) |
3601 | { |
3602 | int err; |
3603 | |
3604 | pr_debug("FSL DPAA Ethernet driver\n"); |
3605 | |
3606 | /* initialize dpaa_eth mirror values */ |
3607 | dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); |
3608 | dpaa_max_frm = fman_get_max_frm(); |
3609 | |
3610 | err = platform_driver_register(&dpaa_driver); |
3611 | if (err < 0) |
3612 | pr_err("Error, platform_driver_register() = %d\n", err); |
3613 | |
3614 | return err; |
3615 | } |
3616 | module_init(dpaa_load); |
3617 | |
3618 | static void __exit dpaa_unload(void) |
3619 | { |
3620 | platform_driver_unregister(&dpaa_driver); |
3621 | |
3622 | /* Only one channel is used and needs to be released after all |
3623 | * interfaces are removed |
3624 | */ |
3625 | dpaa_release_channel(); |
3626 | } |
3627 | module_exit(dpaa_unload); |
3628 | |
3629 | MODULE_LICENSE("Dual BSD/GPL"); |
3630 | MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); |
3631 |
Definitions
- debug
- tx_timeout
- port_type
- fm_port_fqs
- dpaa_bp_array
- dpaa_max_frm
- dpaa_rx_extra_headroom
- dpaa_netdev_init
- dpaa_stop
- dpaa_tx_timeout
- dpaa_get_stats64
- dpaa_setup_tc
- dpaa_mac_dev_get
- dpaa_set_mac_address
- dpaa_addr_sync
- dpaa_addr_unsync
- dpaa_set_rx_mode
- dpaa_bpid2pool
- dpaa_bpid2pool_use
- dpaa_bpid2pool_map
- dpaa_bp_alloc_pool
- dpaa_bp_drain
- dpaa_bp_free
- dpaa_bps_free
- dpaa_assign_wq
- dpaa_fq_alloc
- dpaa_alloc_all_fqs
- rx_pool_channel
- rx_pool_channel_init
- dpaa_get_channel
- dpaa_release_channel
- dpaa_eth_add_channel
- dpaa_eth_cgscn
- dpaa_eth_cgr_init
- dpaa_eth_cgr_set_speed
- dpaa_setup_ingress
- dpaa_setup_egress
- dpaa_fq_setup
- dpaa_tx_fq_to_id
- dpaa_fq_init
- dpaa_fq_free_entry
- dpaa_fq_free
- dpaa_eth_init_tx_port
- dpaa_eth_init_rx_port
- dpaa_eth_init_ports
- dpaa_bman_release
- dpaa_release_sgt_members
- dpaa_fd_release
- count_ern
- dpaa_enable_tx_csum
- dpaa_bp_add_8_bufs
- dpaa_bp_seed
- dpaa_eth_refill_bpool
- dpaa_eth_refill_bpools
- dpaa_cleanup_tx_fd
- rx_csum_offload
- contig_fd_to_skb
- sg_fd_to_skb
- skb_to_contig_fd
- skb_to_sg_fd
- dpaa_xmit
- dpaa_start_xmit
- dpaa_rx_error
- dpaa_tx_error
- dpaa_eth_poll
- dpaa_tx_conf
- dpaa_eth_napi_schedule
- rx_error_dqrr
- dpaa_xdp_xmit_frame
- dpaa_run_xdp
- rx_default_dqrr
- conf_error_dqrr
- conf_dflt_dqrr
- egress_ern
- dpaa_fq_cbs
- dpaa_eth_napi_enable
- dpaa_eth_napi_disable
- dpaa_open
- dpaa_eth_stop
- xdp_validate_mtu
- dpaa_change_mtu
- dpaa_setup_xdp
- dpaa_xdp
- dpaa_xdp_xmit
- dpaa_hwtstamp_get
- dpaa_hwtstamp_set
- dpaa_ioctl
- dpaa_ops
- dpaa_napi_add
- dpaa_napi_del
- dpaa_bp_free_pf
- dpaa_bp_alloc
- dpaa_ingress_cgr_init
- dpaa_get_headroom
- dpaa_eth_probe
- dpaa_remove
- dpaa_devtype
- dpaa_driver
- dpaa_load
Improve your Profiling and Debugging skills
Find out more