1//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the IRTranslator class.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13#include "llvm/ADT/PostOrderIterator.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/ScopeExit.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Analysis/VectorUtils.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
28#include "llvm/CodeGen/GlobalISel/CallLowering.h"
29#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
30#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
31#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
32#include "llvm/CodeGen/LowLevelTypeUtils.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineOperand.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/RuntimeLibcalls.h"
42#include "llvm/CodeGen/StackProtector.h"
43#include "llvm/CodeGen/SwitchLoweringUtils.h"
44#include "llvm/CodeGen/TargetFrameLowering.h"
45#include "llvm/CodeGen/TargetInstrInfo.h"
46#include "llvm/CodeGen/TargetLowering.h"
47#include "llvm/CodeGen/TargetOpcodes.h"
48#include "llvm/CodeGen/TargetPassConfig.h"
49#include "llvm/CodeGen/TargetRegisterInfo.h"
50#include "llvm/CodeGen/TargetSubtargetInfo.h"
51#include "llvm/CodeGenTypes/LowLevelType.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/CFG.h"
54#include "llvm/IR/Constant.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DerivedTypes.h"
58#include "llvm/IR/DiagnosticInfo.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/GetElementPtrTypeIterator.h"
61#include "llvm/IR/InlineAsm.h"
62#include "llvm/IR/InstrTypes.h"
63#include "llvm/IR/Instructions.h"
64#include "llvm/IR/IntrinsicInst.h"
65#include "llvm/IR/Intrinsics.h"
66#include "llvm/IR/IntrinsicsAMDGPU.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/PatternMatch.h"
70#include "llvm/IR/Statepoint.h"
71#include "llvm/IR/Type.h"
72#include "llvm/IR/User.h"
73#include "llvm/IR/Value.h"
74#include "llvm/InitializePasses.h"
75#include "llvm/MC/MCContext.h"
76#include "llvm/Pass.h"
77#include "llvm/Support/Casting.h"
78#include "llvm/Support/CodeGen.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/Target/TargetIntrinsicInfo.h"
84#include "llvm/Target/TargetMachine.h"
85#include "llvm/Transforms/Utils/Local.h"
86#include "llvm/Transforms/Utils/MemoryOpRemark.h"
87#include <algorithm>
88#include <cassert>
89#include <cstdint>
90#include <iterator>
91#include <optional>
92#include <string>
93#include <utility>
94#include <vector>
95
96#define DEBUG_TYPE "irtranslator"
97
98using namespace llvm;
99
100static cl::opt<bool>
101 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
102 cl::desc("Should enable CSE in irtranslator"),
103 cl::Optional, cl::init(Val: false));
104char IRTranslator::ID = 0;
105
106INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
107 false, false)
108INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
109INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
110INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
111INITIALIZE_PASS_DEPENDENCY(StackProtector)
112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
113INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
114 false, false)
115
116static void reportTranslationError(MachineFunction &MF,
117 const TargetPassConfig &TPC,
118 OptimizationRemarkEmitter &ORE,
119 OptimizationRemarkMissed &R) {
120 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
121
122 // Print the function name explicitly if we don't have a debug location (which
123 // makes the diagnostic less useful) or if we're going to emit a raw error.
124 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
125 R << (" (in function: " + MF.getName() + ")").str();
126
127 if (TPC.isGlobalISelAbortEnabled())
128 report_fatal_error(reason: Twine(R.getMsg()));
129 else
130 ORE.emit(OptDiag&: R);
131}
132
133IRTranslator::IRTranslator(CodeGenOptLevel optlevel)
134 : MachineFunctionPass(ID), OptLevel(optlevel) {}
135
136#ifndef NDEBUG
137namespace {
138/// Verify that every instruction created has the same DILocation as the
139/// instruction being translated.
140class DILocationVerifier : public GISelChangeObserver {
141 const Instruction *CurrInst = nullptr;
142
143public:
144 DILocationVerifier() = default;
145 ~DILocationVerifier() = default;
146
147 const Instruction *getCurrentInst() const { return CurrInst; }
148 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
149
150 void erasingInstr(MachineInstr &MI) override {}
151 void changingInstr(MachineInstr &MI) override {}
152 void changedInstr(MachineInstr &MI) override {}
153
154 void createdInstr(MachineInstr &MI) override {
155 assert(getCurrentInst() && "Inserted instruction without a current MI");
156
157 // Only print the check message if we're actually checking it.
158#ifndef NDEBUG
159 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
160 << " was copied to " << MI);
161#endif
162 // We allow insts in the entry block to have no debug loc because
163 // they could have originated from constants, and we don't want a jumpy
164 // debug experience.
165 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
166 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) ||
167 (MI.isDebugInstr())) &&
168 "Line info was not transferred to all instructions");
169 }
170};
171} // namespace
172#endif // ifndef NDEBUG
173
174
175void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
176 AU.addRequired<StackProtector>();
177 AU.addRequired<TargetPassConfig>();
178 AU.addRequired<GISelCSEAnalysisWrapperPass>();
179 AU.addRequired<AssumptionCacheTracker>();
180 if (OptLevel != CodeGenOptLevel::None) {
181 AU.addRequired<BranchProbabilityInfoWrapperPass>();
182 AU.addRequired<AAResultsWrapperPass>();
183 }
184 AU.addRequired<TargetLibraryInfoWrapperPass>();
185 AU.addPreserved<TargetLibraryInfoWrapperPass>();
186 getSelectionDAGFallbackAnalysisUsage(AU);
187 MachineFunctionPass::getAnalysisUsage(AU);
188}
189
190IRTranslator::ValueToVRegInfo::VRegListT &
191IRTranslator::allocateVRegs(const Value &Val) {
192 auto VRegsIt = VMap.findVRegs(V: Val);
193 if (VRegsIt != VMap.vregs_end())
194 return *VRegsIt->second;
195 auto *Regs = VMap.getVRegs(V: Val);
196 auto *Offsets = VMap.getOffsets(V: Val);
197 SmallVector<LLT, 4> SplitTys;
198 computeValueLLTs(DL: *DL, Ty&: *Val.getType(), ValueTys&: SplitTys,
199 Offsets: Offsets->empty() ? Offsets : nullptr);
200 for (unsigned i = 0; i < SplitTys.size(); ++i)
201 Regs->push_back(Elt: 0);
202 return *Regs;
203}
204
205ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
206 auto VRegsIt = VMap.findVRegs(V: Val);
207 if (VRegsIt != VMap.vregs_end())
208 return *VRegsIt->second;
209
210 if (Val.getType()->isVoidTy())
211 return *VMap.getVRegs(V: Val);
212
213 // Create entry for this type.
214 auto *VRegs = VMap.getVRegs(V: Val);
215 auto *Offsets = VMap.getOffsets(V: Val);
216
217 if (!Val.getType()->isTokenTy())
218 assert(Val.getType()->isSized() &&
219 "Don't know how to create an empty vreg");
220
221 SmallVector<LLT, 4> SplitTys;
222 computeValueLLTs(DL: *DL, Ty&: *Val.getType(), ValueTys&: SplitTys,
223 Offsets: Offsets->empty() ? Offsets : nullptr);
224
225 if (!isa<Constant>(Val)) {
226 for (auto Ty : SplitTys)
227 VRegs->push_back(Elt: MRI->createGenericVirtualRegister(Ty));
228 return *VRegs;
229 }
230
231 if (Val.getType()->isAggregateType()) {
232 // UndefValue, ConstantAggregateZero
233 auto &C = cast<Constant>(Val);
234 unsigned Idx = 0;
235 while (auto Elt = C.getAggregateElement(Elt: Idx++)) {
236 auto EltRegs = getOrCreateVRegs(Val: *Elt);
237 llvm::copy(Range&: EltRegs, Out: std::back_inserter(x&: *VRegs));
238 }
239 } else {
240 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
241 VRegs->push_back(Elt: MRI->createGenericVirtualRegister(Ty: SplitTys[0]));
242 bool Success = translate(C: cast<Constant>(Val), Reg: VRegs->front());
243 if (!Success) {
244 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
245 MF->getFunction().getSubprogram(),
246 &MF->getFunction().getEntryBlock());
247 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
248 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
249 return *VRegs;
250 }
251 }
252
253 return *VRegs;
254}
255
256int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
257 auto MapEntry = FrameIndices.find(Val: &AI);
258 if (MapEntry != FrameIndices.end())
259 return MapEntry->second;
260
261 uint64_t ElementSize = DL->getTypeAllocSize(Ty: AI.getAllocatedType());
262 uint64_t Size =
263 ElementSize * cast<ConstantInt>(Val: AI.getArraySize())->getZExtValue();
264
265 // Always allocate at least one byte.
266 Size = std::max<uint64_t>(a: Size, b: 1u);
267
268 int &FI = FrameIndices[&AI];
269 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment: AI.getAlign(), isSpillSlot: false, Alloca: &AI);
270 return FI;
271}
272
273Align IRTranslator::getMemOpAlign(const Instruction &I) {
274 if (const StoreInst *SI = dyn_cast<StoreInst>(Val: &I))
275 return SI->getAlign();
276 if (const LoadInst *LI = dyn_cast<LoadInst>(Val: &I))
277 return LI->getAlign();
278 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Val: &I))
279 return AI->getAlign();
280 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Val: &I))
281 return AI->getAlign();
282
283 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
284 R << "unable to translate memop: " << ore::NV("Opcode", &I);
285 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
286 return Align(1);
287}
288
289MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
290 MachineBasicBlock *&MBB = BBToMBB[&BB];
291 assert(MBB && "BasicBlock was not encountered before");
292 return *MBB;
293}
294
295void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
296 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
297 MachinePreds[Edge].push_back(Elt: NewPred);
298}
299
300bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
301 MachineIRBuilder &MIRBuilder) {
302 // Get or create a virtual register for each value.
303 // Unless the value is a Constant => loadimm cst?
304 // or inline constant each time?
305 // Creation of a virtual register needs to have a size.
306 Register Op0 = getOrCreateVReg(Val: *U.getOperand(i: 0));
307 Register Op1 = getOrCreateVReg(Val: *U.getOperand(i: 1));
308 Register Res = getOrCreateVReg(Val: U);
309 uint32_t Flags = 0;
310 if (isa<Instruction>(Val: U)) {
311 const Instruction &I = cast<Instruction>(Val: U);
312 Flags = MachineInstr::copyFlagsFromInstruction(I);
313 }
314
315 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {Res}, SrcOps: {Op0, Op1}, Flags);
316 return true;
317}
318
319bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
320 MachineIRBuilder &MIRBuilder) {
321 Register Op0 = getOrCreateVReg(Val: *U.getOperand(i: 0));
322 Register Res = getOrCreateVReg(Val: U);
323 uint32_t Flags = 0;
324 if (isa<Instruction>(Val: U)) {
325 const Instruction &I = cast<Instruction>(Val: U);
326 Flags = MachineInstr::copyFlagsFromInstruction(I);
327 }
328 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {Res}, SrcOps: {Op0}, Flags);
329 return true;
330}
331
332bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
333 return translateUnaryOp(Opcode: TargetOpcode::G_FNEG, U, MIRBuilder);
334}
335
336bool IRTranslator::translateCompare(const User &U,
337 MachineIRBuilder &MIRBuilder) {
338 auto *CI = dyn_cast<CmpInst>(Val: &U);
339 Register Op0 = getOrCreateVReg(Val: *U.getOperand(i: 0));
340 Register Op1 = getOrCreateVReg(Val: *U.getOperand(i: 1));
341 Register Res = getOrCreateVReg(Val: U);
342 CmpInst::Predicate Pred =
343 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
344 cast<ConstantExpr>(Val: U).getPredicate());
345 if (CmpInst::isIntPredicate(P: Pred))
346 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
347 else if (Pred == CmpInst::FCMP_FALSE)
348 MIRBuilder.buildCopy(
349 Res, Op: getOrCreateVReg(Val: *Constant::getNullValue(Ty: U.getType())));
350 else if (Pred == CmpInst::FCMP_TRUE)
351 MIRBuilder.buildCopy(
352 Res, Op: getOrCreateVReg(Val: *Constant::getAllOnesValue(Ty: U.getType())));
353 else {
354 uint32_t Flags = 0;
355 if (CI)
356 Flags = MachineInstr::copyFlagsFromInstruction(I: *CI);
357 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
358 }
359
360 return true;
361}
362
363bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
364 const ReturnInst &RI = cast<ReturnInst>(Val: U);
365 const Value *Ret = RI.getReturnValue();
366 if (Ret && DL->getTypeStoreSize(Ty: Ret->getType()).isZero())
367 Ret = nullptr;
368
369 ArrayRef<Register> VRegs;
370 if (Ret)
371 VRegs = getOrCreateVRegs(Val: *Ret);
372
373 Register SwiftErrorVReg = 0;
374 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
375 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
376 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
377 }
378
379 // The target may mess up with the insertion point, but
380 // this is not important as a return is the last instruction
381 // of the block anyway.
382 return CLI->lowerReturn(MIRBuilder, Val: Ret, VRegs, FLI&: FuncInfo, SwiftErrorVReg);
383}
384
385void IRTranslator::emitBranchForMergedCondition(
386 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
387 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
388 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
389 // If the leaf of the tree is a comparison, merge the condition into
390 // the caseblock.
391 if (const CmpInst *BOp = dyn_cast<CmpInst>(Val: Cond)) {
392 CmpInst::Predicate Condition;
393 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Val: Cond)) {
394 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
395 } else {
396 const FCmpInst *FC = cast<FCmpInst>(Val: Cond);
397 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
398 }
399
400 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(i_nocapture: 0),
401 BOp->getOperand(i_nocapture: 1), nullptr, TBB, FBB, CurBB,
402 CurBuilder->getDebugLoc(), TProb, FProb);
403 SL->SwitchCases.push_back(x: CB);
404 return;
405 }
406
407 // Create a CaseBlock record representing this branch.
408 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
409 SwitchCG::CaseBlock CB(
410 Pred, false, Cond, ConstantInt::getTrue(Context&: MF->getFunction().getContext()),
411 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
412 SL->SwitchCases.push_back(x: CB);
413}
414
415static bool isValInBlock(const Value *V, const BasicBlock *BB) {
416 if (const Instruction *I = dyn_cast<Instruction>(Val: V))
417 return I->getParent() == BB;
418 return true;
419}
420
421void IRTranslator::findMergedConditions(
422 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
423 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
424 Instruction::BinaryOps Opc, BranchProbability TProb,
425 BranchProbability FProb, bool InvertCond) {
426 using namespace PatternMatch;
427 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
428 "Expected Opc to be AND/OR");
429 // Skip over not part of the tree and remember to invert op and operands at
430 // next level.
431 Value *NotCond;
432 if (match(V: Cond, P: m_OneUse(SubPattern: m_Not(V: m_Value(V&: NotCond)))) &&
433 isValInBlock(V: NotCond, BB: CurBB->getBasicBlock())) {
434 findMergedConditions(Cond: NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
435 InvertCond: !InvertCond);
436 return;
437 }
438
439 const Instruction *BOp = dyn_cast<Instruction>(Val: Cond);
440 const Value *BOpOp0, *BOpOp1;
441 // Compute the effective opcode for Cond, taking into account whether it needs
442 // to be inverted, e.g.
443 // and (not (or A, B)), C
444 // gets lowered as
445 // and (and (not A, not B), C)
446 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
447 if (BOp) {
448 BOpc = match(V: BOp, P: m_LogicalAnd(L: m_Value(V&: BOpOp0), R: m_Value(V&: BOpOp1)))
449 ? Instruction::And
450 : (match(V: BOp, P: m_LogicalOr(L: m_Value(V&: BOpOp0), R: m_Value(V&: BOpOp1)))
451 ? Instruction::Or
452 : (Instruction::BinaryOps)0);
453 if (InvertCond) {
454 if (BOpc == Instruction::And)
455 BOpc = Instruction::Or;
456 else if (BOpc == Instruction::Or)
457 BOpc = Instruction::And;
458 }
459 }
460
461 // If this node is not part of the or/and tree, emit it as a branch.
462 // Note that all nodes in the tree should have same opcode.
463 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
464 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
465 !isValInBlock(V: BOpOp0, BB: CurBB->getBasicBlock()) ||
466 !isValInBlock(V: BOpOp1, BB: CurBB->getBasicBlock())) {
467 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
468 InvertCond);
469 return;
470 }
471
472 // Create TmpBB after CurBB.
473 MachineFunction::iterator BBI(CurBB);
474 MachineBasicBlock *TmpBB =
475 MF->CreateMachineBasicBlock(BB: CurBB->getBasicBlock());
476 CurBB->getParent()->insert(MBBI: ++BBI, MBB: TmpBB);
477
478 if (Opc == Instruction::Or) {
479 // Codegen X | Y as:
480 // BB1:
481 // jmp_if_X TBB
482 // jmp TmpBB
483 // TmpBB:
484 // jmp_if_Y TBB
485 // jmp FBB
486 //
487
488 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
489 // The requirement is that
490 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
491 // = TrueProb for original BB.
492 // Assuming the original probabilities are A and B, one choice is to set
493 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
494 // A/(1+B) and 2B/(1+B). This choice assumes that
495 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
496 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
497 // TmpBB, but the math is more complicated.
498
499 auto NewTrueProb = TProb / 2;
500 auto NewFalseProb = TProb / 2 + FProb;
501 // Emit the LHS condition.
502 findMergedConditions(Cond: BOpOp0, TBB, FBB: TmpBB, CurBB, SwitchBB, Opc, TProb: NewTrueProb,
503 FProb: NewFalseProb, InvertCond);
504
505 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
506 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
507 BranchProbability::normalizeProbabilities(Begin: Probs.begin(), End: Probs.end());
508 // Emit the RHS condition into TmpBB.
509 findMergedConditions(Cond: BOpOp1, TBB, FBB, CurBB: TmpBB, SwitchBB, Opc, TProb: Probs[0],
510 FProb: Probs[1], InvertCond);
511 } else {
512 assert(Opc == Instruction::And && "Unknown merge op!");
513 // Codegen X & Y as:
514 // BB1:
515 // jmp_if_X TmpBB
516 // jmp FBB
517 // TmpBB:
518 // jmp_if_Y TBB
519 // jmp FBB
520 //
521 // This requires creation of TmpBB after CurBB.
522
523 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
524 // The requirement is that
525 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
526 // = FalseProb for original BB.
527 // Assuming the original probabilities are A and B, one choice is to set
528 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
529 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
530 // TrueProb for BB1 * FalseProb for TmpBB.
531
532 auto NewTrueProb = TProb + FProb / 2;
533 auto NewFalseProb = FProb / 2;
534 // Emit the LHS condition.
535 findMergedConditions(Cond: BOpOp0, TBB: TmpBB, FBB, CurBB, SwitchBB, Opc, TProb: NewTrueProb,
536 FProb: NewFalseProb, InvertCond);
537
538 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
539 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
540 BranchProbability::normalizeProbabilities(Begin: Probs.begin(), End: Probs.end());
541 // Emit the RHS condition into TmpBB.
542 findMergedConditions(Cond: BOpOp1, TBB, FBB, CurBB: TmpBB, SwitchBB, Opc, TProb: Probs[0],
543 FProb: Probs[1], InvertCond);
544 }
545}
546
547bool IRTranslator::shouldEmitAsBranches(
548 const std::vector<SwitchCG::CaseBlock> &Cases) {
549 // For multiple cases, it's better to emit as branches.
550 if (Cases.size() != 2)
551 return true;
552
553 // If this is two comparisons of the same values or'd or and'd together, they
554 // will get folded into a single comparison, so don't emit two blocks.
555 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
556 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
557 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
558 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
559 return false;
560 }
561
562 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
563 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
564 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
565 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
566 isa<Constant>(Val: Cases[0].CmpRHS) &&
567 cast<Constant>(Val: Cases[0].CmpRHS)->isNullValue()) {
568 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
569 Cases[0].TrueBB == Cases[1].ThisBB)
570 return false;
571 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
572 Cases[0].FalseBB == Cases[1].ThisBB)
573 return false;
574 }
575
576 return true;
577}
578
579bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
580 const BranchInst &BrInst = cast<BranchInst>(Val: U);
581 auto &CurMBB = MIRBuilder.getMBB();
582 auto *Succ0MBB = &getMBB(BB: *BrInst.getSuccessor(i: 0));
583
584 if (BrInst.isUnconditional()) {
585 // If the unconditional target is the layout successor, fallthrough.
586 if (OptLevel == CodeGenOptLevel::None ||
587 !CurMBB.isLayoutSuccessor(MBB: Succ0MBB))
588 MIRBuilder.buildBr(Dest&: *Succ0MBB);
589
590 // Link successors.
591 for (const BasicBlock *Succ : successors(I: &BrInst))
592 CurMBB.addSuccessor(Succ: &getMBB(BB: *Succ));
593 return true;
594 }
595
596 // If this condition is one of the special cases we handle, do special stuff
597 // now.
598 const Value *CondVal = BrInst.getCondition();
599 MachineBasicBlock *Succ1MBB = &getMBB(BB: *BrInst.getSuccessor(i: 1));
600
601 // If this is a series of conditions that are or'd or and'd together, emit
602 // this as a sequence of branches instead of setcc's with and/or operations.
603 // As long as jumps are not expensive (exceptions for multi-use logic ops,
604 // unpredictable branches, and vector extracts because those jumps are likely
605 // expensive for any target), this should improve performance.
606 // For example, instead of something like:
607 // cmp A, B
608 // C = seteq
609 // cmp D, E
610 // F = setle
611 // or C, F
612 // jnz foo
613 // Emit:
614 // cmp A, B
615 // je foo
616 // cmp D, E
617 // jle foo
618 using namespace PatternMatch;
619 const Instruction *CondI = dyn_cast<Instruction>(Val: CondVal);
620 if (!TLI->isJumpExpensive() && CondI && CondI->hasOneUse() &&
621 !BrInst.hasMetadata(KindID: LLVMContext::MD_unpredictable)) {
622 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
623 Value *Vec;
624 const Value *BOp0, *BOp1;
625 if (match(V: CondI, P: m_LogicalAnd(L: m_Value(V&: BOp0), R: m_Value(V&: BOp1))))
626 Opcode = Instruction::And;
627 else if (match(V: CondI, P: m_LogicalOr(L: m_Value(V&: BOp0), R: m_Value(V&: BOp1))))
628 Opcode = Instruction::Or;
629
630 if (Opcode && !(match(V: BOp0, P: m_ExtractElt(Val: m_Value(V&: Vec), Idx: m_Value())) &&
631 match(V: BOp1, P: m_ExtractElt(Val: m_Specific(V: Vec), Idx: m_Value())))) {
632 findMergedConditions(Cond: CondI, TBB: Succ0MBB, FBB: Succ1MBB, CurBB: &CurMBB, SwitchBB: &CurMBB, Opc: Opcode,
633 TProb: getEdgeProbability(Src: &CurMBB, Dst: Succ0MBB),
634 FProb: getEdgeProbability(Src: &CurMBB, Dst: Succ1MBB),
635 /*InvertCond=*/false);
636 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
637
638 // Allow some cases to be rejected.
639 if (shouldEmitAsBranches(Cases: SL->SwitchCases)) {
640 // Emit the branch for this block.
641 emitSwitchCase(CB&: SL->SwitchCases[0], SwitchBB: &CurMBB, MIB&: *CurBuilder);
642 SL->SwitchCases.erase(position: SL->SwitchCases.begin());
643 return true;
644 }
645
646 // Okay, we decided not to do this, remove any inserted MBB's and clear
647 // SwitchCases.
648 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
649 MF->erase(MBBI: SL->SwitchCases[I].ThisBB);
650
651 SL->SwitchCases.clear();
652 }
653 }
654
655 // Create a CaseBlock record representing this branch.
656 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
657 ConstantInt::getTrue(Context&: MF->getFunction().getContext()),
658 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
659 CurBuilder->getDebugLoc());
660
661 // Use emitSwitchCase to actually insert the fast branch sequence for this
662 // cond branch.
663 emitSwitchCase(CB, SwitchBB: &CurMBB, MIB&: *CurBuilder);
664 return true;
665}
666
667void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
668 MachineBasicBlock *Dst,
669 BranchProbability Prob) {
670 if (!FuncInfo.BPI) {
671 Src->addSuccessorWithoutProb(Succ: Dst);
672 return;
673 }
674 if (Prob.isUnknown())
675 Prob = getEdgeProbability(Src, Dst);
676 Src->addSuccessor(Succ: Dst, Prob);
677}
678
679BranchProbability
680IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
681 const MachineBasicBlock *Dst) const {
682 const BasicBlock *SrcBB = Src->getBasicBlock();
683 const BasicBlock *DstBB = Dst->getBasicBlock();
684 if (!FuncInfo.BPI) {
685 // If BPI is not available, set the default probability as 1 / N, where N is
686 // the number of successors.
687 auto SuccSize = std::max<uint32_t>(a: succ_size(BB: SrcBB), b: 1);
688 return BranchProbability(1, SuccSize);
689 }
690 return FuncInfo.BPI->getEdgeProbability(Src: SrcBB, Dst: DstBB);
691}
692
693bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
694 using namespace SwitchCG;
695 // Extract cases from the switch.
696 const SwitchInst &SI = cast<SwitchInst>(Val: U);
697 BranchProbabilityInfo *BPI = FuncInfo.BPI;
698 CaseClusterVector Clusters;
699 Clusters.reserve(n: SI.getNumCases());
700 for (const auto &I : SI.cases()) {
701 MachineBasicBlock *Succ = &getMBB(BB: *I.getCaseSuccessor());
702 assert(Succ && "Could not find successor mbb in mapping");
703 const ConstantInt *CaseVal = I.getCaseValue();
704 BranchProbability Prob =
705 BPI ? BPI->getEdgeProbability(Src: SI.getParent(), IndexInSuccessors: I.getSuccessorIndex())
706 : BranchProbability(1, SI.getNumCases() + 1);
707 Clusters.push_back(x: CaseCluster::range(Low: CaseVal, High: CaseVal, MBB: Succ, Prob));
708 }
709
710 MachineBasicBlock *DefaultMBB = &getMBB(BB: *SI.getDefaultDest());
711
712 // Cluster adjacent cases with the same destination. We do this at all
713 // optimization levels because it's cheap to do and will make codegen faster
714 // if there are many clusters.
715 sortAndRangeify(Clusters);
716
717 MachineBasicBlock *SwitchMBB = &getMBB(BB: *SI.getParent());
718
719 // If there is only the default destination, jump there directly.
720 if (Clusters.empty()) {
721 SwitchMBB->addSuccessor(Succ: DefaultMBB);
722 if (DefaultMBB != SwitchMBB->getNextNode())
723 MIB.buildBr(Dest&: *DefaultMBB);
724 return true;
725 }
726
727 SL->findJumpTables(Clusters, SI: &SI, SL: std::nullopt, DefaultMBB, PSI: nullptr, BFI: nullptr);
728 SL->findBitTestClusters(Clusters, SI: &SI);
729
730 LLVM_DEBUG({
731 dbgs() << "Case clusters: ";
732 for (const CaseCluster &C : Clusters) {
733 if (C.Kind == CC_JumpTable)
734 dbgs() << "JT:";
735 if (C.Kind == CC_BitTests)
736 dbgs() << "BT:";
737
738 C.Low->getValue().print(dbgs(), true);
739 if (C.Low != C.High) {
740 dbgs() << '-';
741 C.High->getValue().print(dbgs(), true);
742 }
743 dbgs() << ' ';
744 }
745 dbgs() << '\n';
746 });
747
748 assert(!Clusters.empty());
749 SwitchWorkList WorkList;
750 CaseClusterIt First = Clusters.begin();
751 CaseClusterIt Last = Clusters.end() - 1;
752 auto DefaultProb = getEdgeProbability(Src: SwitchMBB, Dst: DefaultMBB);
753 WorkList.push_back(Elt: {.MBB: SwitchMBB, .FirstCluster: First, .LastCluster: Last, .GE: nullptr, .LT: nullptr, .DefaultProb: DefaultProb});
754
755 while (!WorkList.empty()) {
756 SwitchWorkListItem W = WorkList.pop_back_val();
757
758 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
759 // For optimized builds, lower large range as a balanced binary tree.
760 if (NumClusters > 3 &&
761 MF->getTarget().getOptLevel() != CodeGenOptLevel::None &&
762 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
763 splitWorkItem(WorkList, W, Cond: SI.getCondition(), SwitchMBB, MIB);
764 continue;
765 }
766
767 if (!lowerSwitchWorkItem(W, Cond: SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
768 return false;
769 }
770 return true;
771}
772
773void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
774 const SwitchCG::SwitchWorkListItem &W,
775 Value *Cond, MachineBasicBlock *SwitchMBB,
776 MachineIRBuilder &MIB) {
777 using namespace SwitchCG;
778 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
779 "Clusters not sorted?");
780 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
781
782 auto [LastLeft, FirstRight, LeftProb, RightProb] =
783 SL->computeSplitWorkItemInfo(W);
784
785 // Use the first element on the right as pivot since we will make less-than
786 // comparisons against it.
787 CaseClusterIt PivotCluster = FirstRight;
788 assert(PivotCluster > W.FirstCluster);
789 assert(PivotCluster <= W.LastCluster);
790
791 CaseClusterIt FirstLeft = W.FirstCluster;
792 CaseClusterIt LastRight = W.LastCluster;
793
794 const ConstantInt *Pivot = PivotCluster->Low;
795
796 // New blocks will be inserted immediately after the current one.
797 MachineFunction::iterator BBI(W.MBB);
798 ++BBI;
799
800 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
801 // we can branch to its destination directly if it's squeezed exactly in
802 // between the known lower bound and Pivot - 1.
803 MachineBasicBlock *LeftMBB;
804 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
805 FirstLeft->Low == W.GE &&
806 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
807 LeftMBB = FirstLeft->MBB;
808 } else {
809 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(BB: W.MBB->getBasicBlock());
810 FuncInfo.MF->insert(MBBI: BBI, MBB: LeftMBB);
811 WorkList.push_back(
812 Elt: {.MBB: LeftMBB, .FirstCluster: FirstLeft, .LastCluster: LastLeft, .GE: W.GE, .LT: Pivot, .DefaultProb: W.DefaultProb / 2});
813 }
814
815 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
816 // single cluster, RHS.Low == Pivot, and we can branch to its destination
817 // directly if RHS.High equals the current upper bound.
818 MachineBasicBlock *RightMBB;
819 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT &&
820 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
821 RightMBB = FirstRight->MBB;
822 } else {
823 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(BB: W.MBB->getBasicBlock());
824 FuncInfo.MF->insert(MBBI: BBI, MBB: RightMBB);
825 WorkList.push_back(
826 Elt: {.MBB: RightMBB, .FirstCluster: FirstRight, .LastCluster: LastRight, .GE: Pivot, .LT: W.LT, .DefaultProb: W.DefaultProb / 2});
827 }
828
829 // Create the CaseBlock record that will be used to lower the branch.
830 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr,
831 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb,
832 RightProb);
833
834 if (W.MBB == SwitchMBB)
835 emitSwitchCase(CB, SwitchBB: SwitchMBB, MIB);
836 else
837 SL->SwitchCases.push_back(x: CB);
838}
839
840void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
841 MachineBasicBlock *MBB) {
842 // Emit the code for the jump table
843 assert(JT.Reg != -1U && "Should lower JT Header first!");
844 MachineIRBuilder MIB(*MBB->getParent());
845 MIB.setMBB(*MBB);
846 MIB.setDebugLoc(CurBuilder->getDebugLoc());
847
848 Type *PtrIRTy = PointerType::getUnqual(C&: MF->getFunction().getContext());
849 const LLT PtrTy = getLLTForType(Ty&: *PtrIRTy, DL: *DL);
850
851 auto Table = MIB.buildJumpTable(PtrTy, JTI: JT.JTI);
852 MIB.buildBrJT(TablePtr: Table.getReg(Idx: 0), JTI: JT.JTI, IndexReg: JT.Reg);
853}
854
855bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
856 SwitchCG::JumpTableHeader &JTH,
857 MachineBasicBlock *HeaderBB) {
858 MachineIRBuilder MIB(*HeaderBB->getParent());
859 MIB.setMBB(*HeaderBB);
860 MIB.setDebugLoc(CurBuilder->getDebugLoc());
861
862 const Value &SValue = *JTH.SValue;
863 // Subtract the lowest switch case value from the value being switched on.
864 const LLT SwitchTy = getLLTForType(Ty&: *SValue.getType(), DL: *DL);
865 Register SwitchOpReg = getOrCreateVReg(Val: SValue);
866 auto FirstCst = MIB.buildConstant(Res: SwitchTy, Val: JTH.First);
867 auto Sub = MIB.buildSub(Dst: {SwitchTy}, Src0: SwitchOpReg, Src1: FirstCst);
868
869 // This value may be smaller or larger than the target's pointer type, and
870 // therefore require extension or truncating.
871 auto *PtrIRTy = PointerType::getUnqual(C&: SValue.getContext());
872 const LLT PtrScalarTy = LLT::scalar(SizeInBits: DL->getTypeSizeInBits(Ty: PtrIRTy));
873 Sub = MIB.buildZExtOrTrunc(Res: PtrScalarTy, Op: Sub);
874
875 JT.Reg = Sub.getReg(Idx: 0);
876
877 if (JTH.FallthroughUnreachable) {
878 if (JT.MBB != HeaderBB->getNextNode())
879 MIB.buildBr(Dest&: *JT.MBB);
880 return true;
881 }
882
883 // Emit the range check for the jump table, and branch to the default block
884 // for the switch statement if the value being switched on exceeds the
885 // largest case in the switch.
886 auto Cst = getOrCreateVReg(
887 Val: *ConstantInt::get(Ty: SValue.getType(), V: JTH.Last - JTH.First));
888 Cst = MIB.buildZExtOrTrunc(Res: PtrScalarTy, Op: Cst).getReg(Idx: 0);
889 auto Cmp = MIB.buildICmp(Pred: CmpInst::ICMP_UGT, Res: LLT::scalar(SizeInBits: 1), Op0: Sub, Op1: Cst);
890
891 auto BrCond = MIB.buildBrCond(Tst: Cmp.getReg(Idx: 0), Dest&: *JT.Default);
892
893 // Avoid emitting unnecessary branches to the next block.
894 if (JT.MBB != HeaderBB->getNextNode())
895 BrCond = MIB.buildBr(Dest&: *JT.MBB);
896 return true;
897}
898
899void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
900 MachineBasicBlock *SwitchBB,
901 MachineIRBuilder &MIB) {
902 Register CondLHS = getOrCreateVReg(Val: *CB.CmpLHS);
903 Register Cond;
904 DebugLoc OldDbgLoc = MIB.getDebugLoc();
905 MIB.setDebugLoc(CB.DbgLoc);
906 MIB.setMBB(*CB.ThisBB);
907
908 if (CB.PredInfo.NoCmp) {
909 // Branch or fall through to TrueBB.
910 addSuccessorWithProb(Src: CB.ThisBB, Dst: CB.TrueBB, Prob: CB.TrueProb);
911 addMachineCFGPred(Edge: {SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
912 NewPred: CB.ThisBB);
913 CB.ThisBB->normalizeSuccProbs();
914 if (CB.TrueBB != CB.ThisBB->getNextNode())
915 MIB.buildBr(Dest&: *CB.TrueBB);
916 MIB.setDebugLoc(OldDbgLoc);
917 return;
918 }
919
920 const LLT i1Ty = LLT::scalar(SizeInBits: 1);
921 // Build the compare.
922 if (!CB.CmpMHS) {
923 const auto *CI = dyn_cast<ConstantInt>(Val: CB.CmpRHS);
924 // For conditional branch lowering, we might try to do something silly like
925 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
926 // just re-use the existing condition vreg.
927 if (MRI->getType(Reg: CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
928 CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
929 Cond = CondLHS;
930 } else {
931 Register CondRHS = getOrCreateVReg(Val: *CB.CmpRHS);
932 if (CmpInst::isFPPredicate(P: CB.PredInfo.Pred))
933 Cond =
934 MIB.buildFCmp(Pred: CB.PredInfo.Pred, Res: i1Ty, Op0: CondLHS, Op1: CondRHS).getReg(Idx: 0);
935 else
936 Cond =
937 MIB.buildICmp(Pred: CB.PredInfo.Pred, Res: i1Ty, Op0: CondLHS, Op1: CondRHS).getReg(Idx: 0);
938 }
939 } else {
940 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
941 "Can only handle SLE ranges");
942
943 const APInt& Low = cast<ConstantInt>(Val: CB.CmpLHS)->getValue();
944 const APInt& High = cast<ConstantInt>(Val: CB.CmpRHS)->getValue();
945
946 Register CmpOpReg = getOrCreateVReg(Val: *CB.CmpMHS);
947 if (cast<ConstantInt>(Val: CB.CmpLHS)->isMinValue(IsSigned: true)) {
948 Register CondRHS = getOrCreateVReg(Val: *CB.CmpRHS);
949 Cond =
950 MIB.buildICmp(Pred: CmpInst::ICMP_SLE, Res: i1Ty, Op0: CmpOpReg, Op1: CondRHS).getReg(Idx: 0);
951 } else {
952 const LLT CmpTy = MRI->getType(Reg: CmpOpReg);
953 auto Sub = MIB.buildSub(Dst: {CmpTy}, Src0: CmpOpReg, Src1: CondLHS);
954 auto Diff = MIB.buildConstant(Res: CmpTy, Val: High - Low);
955 Cond = MIB.buildICmp(Pred: CmpInst::ICMP_ULE, Res: i1Ty, Op0: Sub, Op1: Diff).getReg(Idx: 0);
956 }
957 }
958
959 // Update successor info
960 addSuccessorWithProb(Src: CB.ThisBB, Dst: CB.TrueBB, Prob: CB.TrueProb);
961
962 addMachineCFGPred(Edge: {SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
963 NewPred: CB.ThisBB);
964
965 // TrueBB and FalseBB are always different unless the incoming IR is
966 // degenerate. This only happens when running llc on weird IR.
967 if (CB.TrueBB != CB.FalseBB)
968 addSuccessorWithProb(Src: CB.ThisBB, Dst: CB.FalseBB, Prob: CB.FalseProb);
969 CB.ThisBB->normalizeSuccProbs();
970
971 addMachineCFGPred(Edge: {SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
972 NewPred: CB.ThisBB);
973
974 MIB.buildBrCond(Tst: Cond, Dest&: *CB.TrueBB);
975 MIB.buildBr(Dest&: *CB.FalseBB);
976 MIB.setDebugLoc(OldDbgLoc);
977}
978
979bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
980 MachineBasicBlock *SwitchMBB,
981 MachineBasicBlock *CurMBB,
982 MachineBasicBlock *DefaultMBB,
983 MachineIRBuilder &MIB,
984 MachineFunction::iterator BBI,
985 BranchProbability UnhandledProbs,
986 SwitchCG::CaseClusterIt I,
987 MachineBasicBlock *Fallthrough,
988 bool FallthroughUnreachable) {
989 using namespace SwitchCG;
990 MachineFunction *CurMF = SwitchMBB->getParent();
991 // FIXME: Optimize away range check based on pivot comparisons.
992 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
993 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
994 BranchProbability DefaultProb = W.DefaultProb;
995
996 // The jump block hasn't been inserted yet; insert it here.
997 MachineBasicBlock *JumpMBB = JT->MBB;
998 CurMF->insert(MBBI: BBI, MBB: JumpMBB);
999
1000 // Since the jump table block is separate from the switch block, we need
1001 // to keep track of it as a machine predecessor to the default block,
1002 // otherwise we lose the phi edges.
1003 addMachineCFGPred(Edge: {SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1004 NewPred: CurMBB);
1005 addMachineCFGPred(Edge: {SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1006 NewPred: JumpMBB);
1007
1008 auto JumpProb = I->Prob;
1009 auto FallthroughProb = UnhandledProbs;
1010
1011 // If the default statement is a target of the jump table, we evenly
1012 // distribute the default probability to successors of CurMBB. Also
1013 // update the probability on the edge from JumpMBB to Fallthrough.
1014 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
1015 SE = JumpMBB->succ_end();
1016 SI != SE; ++SI) {
1017 if (*SI == DefaultMBB) {
1018 JumpProb += DefaultProb / 2;
1019 FallthroughProb -= DefaultProb / 2;
1020 JumpMBB->setSuccProbability(I: SI, Prob: DefaultProb / 2);
1021 JumpMBB->normalizeSuccProbs();
1022 } else {
1023 // Also record edges from the jump table block to it's successors.
1024 addMachineCFGPred(Edge: {SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
1025 NewPred: JumpMBB);
1026 }
1027 }
1028
1029 if (FallthroughUnreachable)
1030 JTH->FallthroughUnreachable = true;
1031
1032 if (!JTH->FallthroughUnreachable)
1033 addSuccessorWithProb(Src: CurMBB, Dst: Fallthrough, Prob: FallthroughProb);
1034 addSuccessorWithProb(Src: CurMBB, Dst: JumpMBB, Prob: JumpProb);
1035 CurMBB->normalizeSuccProbs();
1036
1037 // The jump table header will be inserted in our current block, do the
1038 // range check, and fall through to our fallthrough block.
1039 JTH->HeaderBB = CurMBB;
1040 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
1041
1042 // If we're in the right place, emit the jump table header right now.
1043 if (CurMBB == SwitchMBB) {
1044 if (!emitJumpTableHeader(JT&: *JT, JTH&: *JTH, HeaderBB: CurMBB))
1045 return false;
1046 JTH->Emitted = true;
1047 }
1048 return true;
1049}
1050bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
1051 Value *Cond,
1052 MachineBasicBlock *Fallthrough,
1053 bool FallthroughUnreachable,
1054 BranchProbability UnhandledProbs,
1055 MachineBasicBlock *CurMBB,
1056 MachineIRBuilder &MIB,
1057 MachineBasicBlock *SwitchMBB) {
1058 using namespace SwitchCG;
1059 const Value *RHS, *LHS, *MHS;
1060 CmpInst::Predicate Pred;
1061 if (I->Low == I->High) {
1062 // Check Cond == I->Low.
1063 Pred = CmpInst::ICMP_EQ;
1064 LHS = Cond;
1065 RHS = I->Low;
1066 MHS = nullptr;
1067 } else {
1068 // Check I->Low <= Cond <= I->High.
1069 Pred = CmpInst::ICMP_SLE;
1070 LHS = I->Low;
1071 MHS = Cond;
1072 RHS = I->High;
1073 }
1074
1075 // If Fallthrough is unreachable, fold away the comparison.
1076 // The false probability is the sum of all unhandled cases.
1077 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
1078 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1079
1080 emitSwitchCase(CB, SwitchBB: SwitchMBB, MIB);
1081 return true;
1082}
1083
1084void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1085 MachineBasicBlock *SwitchBB) {
1086 MachineIRBuilder &MIB = *CurBuilder;
1087 MIB.setMBB(*SwitchBB);
1088
1089 // Subtract the minimum value.
1090 Register SwitchOpReg = getOrCreateVReg(Val: *B.SValue);
1091
1092 LLT SwitchOpTy = MRI->getType(Reg: SwitchOpReg);
1093 Register MinValReg = MIB.buildConstant(Res: SwitchOpTy, Val: B.First).getReg(Idx: 0);
1094 auto RangeSub = MIB.buildSub(Dst: SwitchOpTy, Src0: SwitchOpReg, Src1: MinValReg);
1095
1096 Type *PtrIRTy = PointerType::getUnqual(C&: MF->getFunction().getContext());
1097 const LLT PtrTy = getLLTForType(Ty&: *PtrIRTy, DL: *DL);
1098
1099 LLT MaskTy = SwitchOpTy;
1100 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1101 !llvm::has_single_bit<uint32_t>(Value: MaskTy.getSizeInBits()))
1102 MaskTy = LLT::scalar(SizeInBits: PtrTy.getSizeInBits());
1103 else {
1104 // Ensure that the type will fit the mask value.
1105 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1106 if (!isUIntN(N: SwitchOpTy.getSizeInBits(), x: B.Cases[I].Mask)) {
1107 // Switch table case range are encoded into series of masks.
1108 // Just use pointer type, it's guaranteed to fit.
1109 MaskTy = LLT::scalar(SizeInBits: PtrTy.getSizeInBits());
1110 break;
1111 }
1112 }
1113 }
1114 Register SubReg = RangeSub.getReg(Idx: 0);
1115 if (SwitchOpTy != MaskTy)
1116 SubReg = MIB.buildZExtOrTrunc(Res: MaskTy, Op: SubReg).getReg(Idx: 0);
1117
1118 B.RegVT = getMVTForLLT(Ty: MaskTy);
1119 B.Reg = SubReg;
1120
1121 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1122
1123 if (!B.FallthroughUnreachable)
1124 addSuccessorWithProb(Src: SwitchBB, Dst: B.Default, Prob: B.DefaultProb);
1125 addSuccessorWithProb(Src: SwitchBB, Dst: MBB, Prob: B.Prob);
1126
1127 SwitchBB->normalizeSuccProbs();
1128
1129 if (!B.FallthroughUnreachable) {
1130 // Conditional branch to the default block.
1131 auto RangeCst = MIB.buildConstant(Res: SwitchOpTy, Val: B.Range);
1132 auto RangeCmp = MIB.buildICmp(Pred: CmpInst::Predicate::ICMP_UGT, Res: LLT::scalar(SizeInBits: 1),
1133 Op0: RangeSub, Op1: RangeCst);
1134 MIB.buildBrCond(Tst: RangeCmp, Dest&: *B.Default);
1135 }
1136
1137 // Avoid emitting unnecessary branches to the next block.
1138 if (MBB != SwitchBB->getNextNode())
1139 MIB.buildBr(Dest&: *MBB);
1140}
1141
1142void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1143 MachineBasicBlock *NextMBB,
1144 BranchProbability BranchProbToNext,
1145 Register Reg, SwitchCG::BitTestCase &B,
1146 MachineBasicBlock *SwitchBB) {
1147 MachineIRBuilder &MIB = *CurBuilder;
1148 MIB.setMBB(*SwitchBB);
1149
1150 LLT SwitchTy = getLLTForMVT(Ty: BB.RegVT);
1151 Register Cmp;
1152 unsigned PopCount = llvm::popcount(Value: B.Mask);
1153 if (PopCount == 1) {
1154 // Testing for a single bit; just compare the shift count with what it
1155 // would need to be to shift a 1 bit in that position.
1156 auto MaskTrailingZeros =
1157 MIB.buildConstant(Res: SwitchTy, Val: llvm::countr_zero(Val: B.Mask));
1158 Cmp =
1159 MIB.buildICmp(Pred: ICmpInst::ICMP_EQ, Res: LLT::scalar(SizeInBits: 1), Op0: Reg, Op1: MaskTrailingZeros)
1160 .getReg(Idx: 0);
1161 } else if (PopCount == BB.Range) {
1162 // There is only one zero bit in the range, test for it directly.
1163 auto MaskTrailingOnes =
1164 MIB.buildConstant(Res: SwitchTy, Val: llvm::countr_one(Value: B.Mask));
1165 Cmp = MIB.buildICmp(Pred: CmpInst::ICMP_NE, Res: LLT::scalar(SizeInBits: 1), Op0: Reg, Op1: MaskTrailingOnes)
1166 .getReg(Idx: 0);
1167 } else {
1168 // Make desired shift.
1169 auto CstOne = MIB.buildConstant(Res: SwitchTy, Val: 1);
1170 auto SwitchVal = MIB.buildShl(Dst: SwitchTy, Src0: CstOne, Src1: Reg);
1171
1172 // Emit bit tests and jumps.
1173 auto CstMask = MIB.buildConstant(Res: SwitchTy, Val: B.Mask);
1174 auto AndOp = MIB.buildAnd(Dst: SwitchTy, Src0: SwitchVal, Src1: CstMask);
1175 auto CstZero = MIB.buildConstant(Res: SwitchTy, Val: 0);
1176 Cmp = MIB.buildICmp(Pred: CmpInst::ICMP_NE, Res: LLT::scalar(SizeInBits: 1), Op0: AndOp, Op1: CstZero)
1177 .getReg(Idx: 0);
1178 }
1179
1180 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1181 addSuccessorWithProb(Src: SwitchBB, Dst: B.TargetBB, Prob: B.ExtraProb);
1182 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1183 addSuccessorWithProb(Src: SwitchBB, Dst: NextMBB, Prob: BranchProbToNext);
1184 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1185 // one as they are relative probabilities (and thus work more like weights),
1186 // and hence we need to normalize them to let the sum of them become one.
1187 SwitchBB->normalizeSuccProbs();
1188
1189 // Record the fact that the IR edge from the header to the bit test target
1190 // will go through our new block. Neeeded for PHIs to have nodes added.
1191 addMachineCFGPred(Edge: {BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1192 NewPred: SwitchBB);
1193
1194 MIB.buildBrCond(Tst: Cmp, Dest&: *B.TargetBB);
1195
1196 // Avoid emitting unnecessary branches to the next block.
1197 if (NextMBB != SwitchBB->getNextNode())
1198 MIB.buildBr(Dest&: *NextMBB);
1199}
1200
1201bool IRTranslator::lowerBitTestWorkItem(
1202 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1203 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1204 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1205 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1206 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1207 bool FallthroughUnreachable) {
1208 using namespace SwitchCG;
1209 MachineFunction *CurMF = SwitchMBB->getParent();
1210 // FIXME: Optimize away range check based on pivot comparisons.
1211 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1212 // The bit test blocks haven't been inserted yet; insert them here.
1213 for (BitTestCase &BTC : BTB->Cases)
1214 CurMF->insert(MBBI: BBI, MBB: BTC.ThisBB);
1215
1216 // Fill in fields of the BitTestBlock.
1217 BTB->Parent = CurMBB;
1218 BTB->Default = Fallthrough;
1219
1220 BTB->DefaultProb = UnhandledProbs;
1221 // If the cases in bit test don't form a contiguous range, we evenly
1222 // distribute the probability on the edge to Fallthrough to two
1223 // successors of CurMBB.
1224 if (!BTB->ContiguousRange) {
1225 BTB->Prob += DefaultProb / 2;
1226 BTB->DefaultProb -= DefaultProb / 2;
1227 }
1228
1229 if (FallthroughUnreachable)
1230 BTB->FallthroughUnreachable = true;
1231
1232 // If we're in the right place, emit the bit test header right now.
1233 if (CurMBB == SwitchMBB) {
1234 emitBitTestHeader(B&: *BTB, SwitchBB: SwitchMBB);
1235 BTB->Emitted = true;
1236 }
1237 return true;
1238}
1239
1240bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1241 Value *Cond,
1242 MachineBasicBlock *SwitchMBB,
1243 MachineBasicBlock *DefaultMBB,
1244 MachineIRBuilder &MIB) {
1245 using namespace SwitchCG;
1246 MachineFunction *CurMF = FuncInfo.MF;
1247 MachineBasicBlock *NextMBB = nullptr;
1248 MachineFunction::iterator BBI(W.MBB);
1249 if (++BBI != FuncInfo.MF->end())
1250 NextMBB = &*BBI;
1251
1252 if (EnableOpts) {
1253 // Here, we order cases by probability so the most likely case will be
1254 // checked first. However, two clusters can have the same probability in
1255 // which case their relative ordering is non-deterministic. So we use Low
1256 // as a tie-breaker as clusters are guaranteed to never overlap.
1257 llvm::sort(Start: W.FirstCluster, End: W.LastCluster + 1,
1258 Comp: [](const CaseCluster &a, const CaseCluster &b) {
1259 return a.Prob != b.Prob
1260 ? a.Prob > b.Prob
1261 : a.Low->getValue().slt(RHS: b.Low->getValue());
1262 });
1263
1264 // Rearrange the case blocks so that the last one falls through if possible
1265 // without changing the order of probabilities.
1266 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1267 --I;
1268 if (I->Prob > W.LastCluster->Prob)
1269 break;
1270 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1271 std::swap(a&: *I, b&: *W.LastCluster);
1272 break;
1273 }
1274 }
1275 }
1276
1277 // Compute total probability.
1278 BranchProbability DefaultProb = W.DefaultProb;
1279 BranchProbability UnhandledProbs = DefaultProb;
1280 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1281 UnhandledProbs += I->Prob;
1282
1283 MachineBasicBlock *CurMBB = W.MBB;
1284 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1285 bool FallthroughUnreachable = false;
1286 MachineBasicBlock *Fallthrough;
1287 if (I == W.LastCluster) {
1288 // For the last cluster, fall through to the default destination.
1289 Fallthrough = DefaultMBB;
1290 FallthroughUnreachable = isa<UnreachableInst>(
1291 Val: DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1292 } else {
1293 Fallthrough = CurMF->CreateMachineBasicBlock(BB: CurMBB->getBasicBlock());
1294 CurMF->insert(MBBI: BBI, MBB: Fallthrough);
1295 }
1296 UnhandledProbs -= I->Prob;
1297
1298 switch (I->Kind) {
1299 case CC_BitTests: {
1300 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1301 DefaultProb, UnhandledProbs, I, Fallthrough,
1302 FallthroughUnreachable)) {
1303 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1304 return false;
1305 }
1306 break;
1307 }
1308
1309 case CC_JumpTable: {
1310 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1311 UnhandledProbs, I, Fallthrough,
1312 FallthroughUnreachable)) {
1313 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1314 return false;
1315 }
1316 break;
1317 }
1318 case CC_Range: {
1319 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1320 FallthroughUnreachable, UnhandledProbs,
1321 CurMBB, MIB, SwitchMBB)) {
1322 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1323 return false;
1324 }
1325 break;
1326 }
1327 }
1328 CurMBB = Fallthrough;
1329 }
1330
1331 return true;
1332}
1333
1334bool IRTranslator::translateIndirectBr(const User &U,
1335 MachineIRBuilder &MIRBuilder) {
1336 const IndirectBrInst &BrInst = cast<IndirectBrInst>(Val: U);
1337
1338 const Register Tgt = getOrCreateVReg(Val: *BrInst.getAddress());
1339 MIRBuilder.buildBrIndirect(Tgt);
1340
1341 // Link successors.
1342 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1343 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1344 for (const BasicBlock *Succ : successors(I: &BrInst)) {
1345 // It's legal for indirectbr instructions to have duplicate blocks in the
1346 // destination list. We don't allow this in MIR. Skip anything that's
1347 // already a successor.
1348 if (!AddedSuccessors.insert(Ptr: Succ).second)
1349 continue;
1350 CurBB.addSuccessor(Succ: &getMBB(BB: *Succ));
1351 }
1352
1353 return true;
1354}
1355
1356static bool isSwiftError(const Value *V) {
1357 if (auto Arg = dyn_cast<Argument>(Val: V))
1358 return Arg->hasSwiftErrorAttr();
1359 if (auto AI = dyn_cast<AllocaInst>(Val: V))
1360 return AI->isSwiftError();
1361 return false;
1362}
1363
1364bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1365 const LoadInst &LI = cast<LoadInst>(Val: U);
1366 TypeSize StoreSize = DL->getTypeStoreSize(Ty: LI.getType());
1367 if (StoreSize.isZero())
1368 return true;
1369
1370 ArrayRef<Register> Regs = getOrCreateVRegs(Val: LI);
1371 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V: LI);
1372 Register Base = getOrCreateVReg(Val: *LI.getPointerOperand());
1373 AAMDNodes AAInfo = LI.getAAMetadata();
1374
1375 const Value *Ptr = LI.getPointerOperand();
1376 Type *OffsetIRTy = DL->getIndexType(PtrTy: Ptr->getType());
1377 LLT OffsetTy = getLLTForType(Ty&: *OffsetIRTy, DL: *DL);
1378
1379 if (CLI->supportSwiftError() && isSwiftError(V: Ptr)) {
1380 assert(Regs.size() == 1 && "swifterror should be single pointer");
1381 Register VReg =
1382 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1383 MIRBuilder.buildCopy(Res: Regs[0], Op: VReg);
1384 return true;
1385 }
1386
1387 MachineMemOperand::Flags Flags =
1388 TLI->getLoadMemOperandFlags(LI, DL: *DL, AC, LibInfo);
1389 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1390 if (AA->pointsToConstantMemory(
1391 Loc: MemoryLocation(Ptr, LocationSize::precise(Value: StoreSize), AAInfo))) {
1392 Flags |= MachineMemOperand::MOInvariant;
1393 }
1394 }
1395
1396 const MDNode *Ranges =
1397 Regs.size() == 1 ? LI.getMetadata(KindID: LLVMContext::MD_range) : nullptr;
1398 for (unsigned i = 0; i < Regs.size(); ++i) {
1399 Register Addr;
1400 MIRBuilder.materializePtrAdd(Res&: Addr, Op0: Base, ValueTy: OffsetTy, Value: Offsets[i] / 8);
1401
1402 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1403 Align BaseAlign = getMemOpAlign(I: LI);
1404 auto MMO = MF->getMachineMemOperand(
1405 PtrInfo: Ptr, f: Flags, MemTy: MRI->getType(Reg: Regs[i]),
1406 base_alignment: commonAlignment(A: BaseAlign, Offset: Offsets[i] / 8), AAInfo, Ranges,
1407 SSID: LI.getSyncScopeID(), Ordering: LI.getOrdering());
1408 MIRBuilder.buildLoad(Res: Regs[i], Addr, MMO&: *MMO);
1409 }
1410
1411 return true;
1412}
1413
1414bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1415 const StoreInst &SI = cast<StoreInst>(Val: U);
1416 if (DL->getTypeStoreSize(Ty: SI.getValueOperand()->getType()) == 0)
1417 return true;
1418
1419 ArrayRef<Register> Vals = getOrCreateVRegs(Val: *SI.getValueOperand());
1420 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V: *SI.getValueOperand());
1421 Register Base = getOrCreateVReg(Val: *SI.getPointerOperand());
1422
1423 Type *OffsetIRTy = DL->getIndexType(PtrTy: SI.getPointerOperandType());
1424 LLT OffsetTy = getLLTForType(Ty&: *OffsetIRTy, DL: *DL);
1425
1426 if (CLI->supportSwiftError() && isSwiftError(V: SI.getPointerOperand())) {
1427 assert(Vals.size() == 1 && "swifterror should be single pointer");
1428
1429 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1430 SI.getPointerOperand());
1431 MIRBuilder.buildCopy(Res: VReg, Op: Vals[0]);
1432 return true;
1433 }
1434
1435 MachineMemOperand::Flags Flags = TLI->getStoreMemOperandFlags(SI, DL: *DL);
1436
1437 for (unsigned i = 0; i < Vals.size(); ++i) {
1438 Register Addr;
1439 MIRBuilder.materializePtrAdd(Res&: Addr, Op0: Base, ValueTy: OffsetTy, Value: Offsets[i] / 8);
1440
1441 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1442 Align BaseAlign = getMemOpAlign(I: SI);
1443 auto MMO = MF->getMachineMemOperand(
1444 PtrInfo: Ptr, f: Flags, MemTy: MRI->getType(Reg: Vals[i]),
1445 base_alignment: commonAlignment(A: BaseAlign, Offset: Offsets[i] / 8), AAInfo: SI.getAAMetadata(), Ranges: nullptr,
1446 SSID: SI.getSyncScopeID(), Ordering: SI.getOrdering());
1447 MIRBuilder.buildStore(Val: Vals[i], Addr, MMO&: *MMO);
1448 }
1449 return true;
1450}
1451
1452static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1453 const Value *Src = U.getOperand(i: 0);
1454 Type *Int32Ty = Type::getInt32Ty(C&: U.getContext());
1455
1456 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1457 // usual array element rather than looking into the actual aggregate.
1458 SmallVector<Value *, 1> Indices;
1459 Indices.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: 0));
1460
1461 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: &U)) {
1462 for (auto Idx : EVI->indices())
1463 Indices.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: Idx));
1464 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: &U)) {
1465 for (auto Idx : IVI->indices())
1466 Indices.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: Idx));
1467 } else {
1468 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1469 Indices.push_back(Elt: U.getOperand(i));
1470 }
1471
1472 return 8 * static_cast<uint64_t>(
1473 DL.getIndexedOffsetInType(ElemTy: Src->getType(), Indices));
1474}
1475
1476bool IRTranslator::translateExtractValue(const User &U,
1477 MachineIRBuilder &MIRBuilder) {
1478 const Value *Src = U.getOperand(i: 0);
1479 uint64_t Offset = getOffsetFromIndices(U, DL: *DL);
1480 ArrayRef<Register> SrcRegs = getOrCreateVRegs(Val: *Src);
1481 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V: *Src);
1482 unsigned Idx = llvm::lower_bound(Range&: Offsets, Value&: Offset) - Offsets.begin();
1483 auto &DstRegs = allocateVRegs(Val: U);
1484
1485 for (unsigned i = 0; i < DstRegs.size(); ++i)
1486 DstRegs[i] = SrcRegs[Idx++];
1487
1488 return true;
1489}
1490
1491bool IRTranslator::translateInsertValue(const User &U,
1492 MachineIRBuilder &MIRBuilder) {
1493 const Value *Src = U.getOperand(i: 0);
1494 uint64_t Offset = getOffsetFromIndices(U, DL: *DL);
1495 auto &DstRegs = allocateVRegs(Val: U);
1496 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(V: U);
1497 ArrayRef<Register> SrcRegs = getOrCreateVRegs(Val: *Src);
1498 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(Val: *U.getOperand(i: 1));
1499 auto *InsertedIt = InsertedRegs.begin();
1500
1501 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1502 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1503 DstRegs[i] = *InsertedIt++;
1504 else
1505 DstRegs[i] = SrcRegs[i];
1506 }
1507
1508 return true;
1509}
1510
1511bool IRTranslator::translateSelect(const User &U,
1512 MachineIRBuilder &MIRBuilder) {
1513 Register Tst = getOrCreateVReg(Val: *U.getOperand(i: 0));
1514 ArrayRef<Register> ResRegs = getOrCreateVRegs(Val: U);
1515 ArrayRef<Register> Op0Regs = getOrCreateVRegs(Val: *U.getOperand(i: 1));
1516 ArrayRef<Register> Op1Regs = getOrCreateVRegs(Val: *U.getOperand(i: 2));
1517
1518 uint32_t Flags = 0;
1519 if (const SelectInst *SI = dyn_cast<SelectInst>(Val: &U))
1520 Flags = MachineInstr::copyFlagsFromInstruction(I: *SI);
1521
1522 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1523 MIRBuilder.buildSelect(Res: ResRegs[i], Tst, Op0: Op0Regs[i], Op1: Op1Regs[i], Flags);
1524 }
1525
1526 return true;
1527}
1528
1529bool IRTranslator::translateCopy(const User &U, const Value &V,
1530 MachineIRBuilder &MIRBuilder) {
1531 Register Src = getOrCreateVReg(Val: V);
1532 auto &Regs = *VMap.getVRegs(V: U);
1533 if (Regs.empty()) {
1534 Regs.push_back(Elt: Src);
1535 VMap.getOffsets(V: U)->push_back(Elt: 0);
1536 } else {
1537 // If we already assigned a vreg for this instruction, we can't change that.
1538 // Emit a copy to satisfy the users we already emitted.
1539 MIRBuilder.buildCopy(Res: Regs[0], Op: Src);
1540 }
1541 return true;
1542}
1543
1544bool IRTranslator::translateBitCast(const User &U,
1545 MachineIRBuilder &MIRBuilder) {
1546 // If we're bitcasting to the source type, we can reuse the source vreg.
1547 if (getLLTForType(Ty&: *U.getOperand(i: 0)->getType(), DL: *DL) ==
1548 getLLTForType(Ty&: *U.getType(), DL: *DL)) {
1549 // If the source is a ConstantInt then it was probably created by
1550 // ConstantHoisting and we should leave it alone.
1551 if (isa<ConstantInt>(Val: U.getOperand(i: 0)))
1552 return translateCast(Opcode: TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1553 MIRBuilder);
1554 return translateCopy(U, V: *U.getOperand(i: 0), MIRBuilder);
1555 }
1556
1557 return translateCast(Opcode: TargetOpcode::G_BITCAST, U, MIRBuilder);
1558}
1559
1560bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1561 MachineIRBuilder &MIRBuilder) {
1562 if (U.getType()->getScalarType()->isBFloatTy() ||
1563 U.getOperand(i: 0)->getType()->getScalarType()->isBFloatTy())
1564 return false;
1565
1566 uint32_t Flags = 0;
1567 if (const Instruction *I = dyn_cast<Instruction>(Val: &U))
1568 Flags = MachineInstr::copyFlagsFromInstruction(I: *I);
1569
1570 Register Op = getOrCreateVReg(Val: *U.getOperand(i: 0));
1571 Register Res = getOrCreateVReg(Val: U);
1572 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {Res}, SrcOps: {Op}, Flags);
1573 return true;
1574}
1575
1576bool IRTranslator::translateGetElementPtr(const User &U,
1577 MachineIRBuilder &MIRBuilder) {
1578 Value &Op0 = *U.getOperand(i: 0);
1579 Register BaseReg = getOrCreateVReg(Val: Op0);
1580 Type *PtrIRTy = Op0.getType();
1581 LLT PtrTy = getLLTForType(Ty&: *PtrIRTy, DL: *DL);
1582 Type *OffsetIRTy = DL->getIndexType(PtrTy: PtrIRTy);
1583 LLT OffsetTy = getLLTForType(Ty&: *OffsetIRTy, DL: *DL);
1584
1585 uint32_t Flags = 0;
1586 if (isa<Instruction>(Val: U)) {
1587 const Instruction &I = cast<Instruction>(Val: U);
1588 Flags = MachineInstr::copyFlagsFromInstruction(I);
1589 }
1590
1591 // Normalize Vector GEP - all scalar operands should be converted to the
1592 // splat vector.
1593 unsigned VectorWidth = 0;
1594
1595 // True if we should use a splat vector; using VectorWidth alone is not
1596 // sufficient.
1597 bool WantSplatVector = false;
1598 if (auto *VT = dyn_cast<VectorType>(Val: U.getType())) {
1599 VectorWidth = cast<FixedVectorType>(Val: VT)->getNumElements();
1600 // We don't produce 1 x N vectors; those are treated as scalars.
1601 WantSplatVector = VectorWidth > 1;
1602 }
1603
1604 // We might need to splat the base pointer into a vector if the offsets
1605 // are vectors.
1606 if (WantSplatVector && !PtrTy.isVector()) {
1607 BaseReg = MIRBuilder
1608 .buildSplatBuildVector(Res: LLT::fixed_vector(NumElements: VectorWidth, ScalarTy: PtrTy),
1609 Src: BaseReg)
1610 .getReg(Idx: 0);
1611 PtrIRTy = FixedVectorType::get(ElementType: PtrIRTy, NumElts: VectorWidth);
1612 PtrTy = getLLTForType(Ty&: *PtrIRTy, DL: *DL);
1613 OffsetIRTy = DL->getIndexType(PtrTy: PtrIRTy);
1614 OffsetTy = getLLTForType(Ty&: *OffsetIRTy, DL: *DL);
1615 }
1616
1617 int64_t Offset = 0;
1618 for (gep_type_iterator GTI = gep_type_begin(GEP: &U), E = gep_type_end(GEP: &U);
1619 GTI != E; ++GTI) {
1620 const Value *Idx = GTI.getOperand();
1621 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1622 unsigned Field = cast<Constant>(Val: Idx)->getUniqueInteger().getZExtValue();
1623 Offset += DL->getStructLayout(Ty: StTy)->getElementOffset(Idx: Field);
1624 continue;
1625 } else {
1626 uint64_t ElementSize = GTI.getSequentialElementStride(DL: *DL);
1627
1628 // If this is a scalar constant or a splat vector of constants,
1629 // handle it quickly.
1630 if (const auto *CI = dyn_cast<ConstantInt>(Val: Idx)) {
1631 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1632 Offset += ElementSize * *Val;
1633 continue;
1634 }
1635 }
1636
1637 if (Offset != 0) {
1638 auto OffsetMIB = MIRBuilder.buildConstant(Res: {OffsetTy}, Val: Offset);
1639 BaseReg = MIRBuilder.buildPtrAdd(Res: PtrTy, Op0: BaseReg, Op1: OffsetMIB.getReg(Idx: 0))
1640 .getReg(Idx: 0);
1641 Offset = 0;
1642 }
1643
1644 Register IdxReg = getOrCreateVReg(Val: *Idx);
1645 LLT IdxTy = MRI->getType(Reg: IdxReg);
1646 if (IdxTy != OffsetTy) {
1647 if (!IdxTy.isVector() && WantSplatVector) {
1648 IdxReg = MIRBuilder
1649 .buildSplatBuildVector(Res: OffsetTy.changeElementType(NewEltTy: IdxTy),
1650 Src: IdxReg)
1651 .getReg(Idx: 0);
1652 }
1653
1654 IdxReg = MIRBuilder.buildSExtOrTrunc(Res: OffsetTy, Op: IdxReg).getReg(Idx: 0);
1655 }
1656
1657 // N = N + Idx * ElementSize;
1658 // Avoid doing it for ElementSize of 1.
1659 Register GepOffsetReg;
1660 if (ElementSize != 1) {
1661 auto ElementSizeMIB = MIRBuilder.buildConstant(
1662 Res: getLLTForType(Ty&: *OffsetIRTy, DL: *DL), Val: ElementSize);
1663 GepOffsetReg =
1664 MIRBuilder.buildMul(Dst: OffsetTy, Src0: IdxReg, Src1: ElementSizeMIB).getReg(Idx: 0);
1665 } else
1666 GepOffsetReg = IdxReg;
1667
1668 BaseReg = MIRBuilder.buildPtrAdd(Res: PtrTy, Op0: BaseReg, Op1: GepOffsetReg).getReg(Idx: 0);
1669 }
1670 }
1671
1672 if (Offset != 0) {
1673 auto OffsetMIB =
1674 MIRBuilder.buildConstant(Res: OffsetTy, Val: Offset);
1675
1676 if (int64_t(Offset) >= 0 && cast<GEPOperator>(Val: U).isInBounds())
1677 Flags |= MachineInstr::MIFlag::NoUWrap;
1678
1679 MIRBuilder.buildPtrAdd(Res: getOrCreateVReg(Val: U), Op0: BaseReg, Op1: OffsetMIB.getReg(Idx: 0),
1680 Flags);
1681 return true;
1682 }
1683
1684 MIRBuilder.buildCopy(Res: getOrCreateVReg(Val: U), Op: BaseReg);
1685 return true;
1686}
1687
1688bool IRTranslator::translateMemFunc(const CallInst &CI,
1689 MachineIRBuilder &MIRBuilder,
1690 unsigned Opcode) {
1691 const Value *SrcPtr = CI.getArgOperand(i: 1);
1692 // If the source is undef, then just emit a nop.
1693 if (isa<UndefValue>(Val: SrcPtr))
1694 return true;
1695
1696 SmallVector<Register, 3> SrcRegs;
1697
1698 unsigned MinPtrSize = UINT_MAX;
1699 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(x: AI) != AE; ++AI) {
1700 Register SrcReg = getOrCreateVReg(Val: **AI);
1701 LLT SrcTy = MRI->getType(Reg: SrcReg);
1702 if (SrcTy.isPointer())
1703 MinPtrSize = std::min<unsigned>(a: SrcTy.getSizeInBits(), b: MinPtrSize);
1704 SrcRegs.push_back(Elt: SrcReg);
1705 }
1706
1707 LLT SizeTy = LLT::scalar(SizeInBits: MinPtrSize);
1708
1709 // The size operand should be the minimum of the pointer sizes.
1710 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1711 if (MRI->getType(Reg: SizeOpReg) != SizeTy)
1712 SizeOpReg = MIRBuilder.buildZExtOrTrunc(Res: SizeTy, Op: SizeOpReg).getReg(Idx: 0);
1713
1714 auto ICall = MIRBuilder.buildInstr(Opcode);
1715 for (Register SrcReg : SrcRegs)
1716 ICall.addUse(RegNo: SrcReg);
1717
1718 Align DstAlign;
1719 Align SrcAlign;
1720 unsigned IsVol =
1721 cast<ConstantInt>(Val: CI.getArgOperand(i: CI.arg_size() - 1))->getZExtValue();
1722
1723 ConstantInt *CopySize = nullptr;
1724
1725 if (auto *MCI = dyn_cast<MemCpyInst>(Val: &CI)) {
1726 DstAlign = MCI->getDestAlign().valueOrOne();
1727 SrcAlign = MCI->getSourceAlign().valueOrOne();
1728 CopySize = dyn_cast<ConstantInt>(Val: MCI->getArgOperand(i: 2));
1729 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(Val: &CI)) {
1730 DstAlign = MCI->getDestAlign().valueOrOne();
1731 SrcAlign = MCI->getSourceAlign().valueOrOne();
1732 CopySize = dyn_cast<ConstantInt>(Val: MCI->getArgOperand(i: 2));
1733 } else if (auto *MMI = dyn_cast<MemMoveInst>(Val: &CI)) {
1734 DstAlign = MMI->getDestAlign().valueOrOne();
1735 SrcAlign = MMI->getSourceAlign().valueOrOne();
1736 CopySize = dyn_cast<ConstantInt>(Val: MMI->getArgOperand(i: 2));
1737 } else {
1738 auto *MSI = cast<MemSetInst>(Val: &CI);
1739 DstAlign = MSI->getDestAlign().valueOrOne();
1740 }
1741
1742 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1743 // We need to propagate the tail call flag from the IR inst as an argument.
1744 // Otherwise, we have to pessimize and assume later that we cannot tail call
1745 // any memory intrinsics.
1746 ICall.addImm(Val: CI.isTailCall() ? 1 : 0);
1747 }
1748
1749 // Create mem operands to store the alignment and volatile info.
1750 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1751 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1752 if (IsVol) {
1753 LoadFlags |= MachineMemOperand::MOVolatile;
1754 StoreFlags |= MachineMemOperand::MOVolatile;
1755 }
1756
1757 AAMDNodes AAInfo = CI.getAAMetadata();
1758 if (AA && CopySize &&
1759 AA->pointsToConstantMemory(Loc: MemoryLocation(
1760 SrcPtr, LocationSize::precise(Value: CopySize->getZExtValue()), AAInfo))) {
1761 LoadFlags |= MachineMemOperand::MOInvariant;
1762
1763 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1764 // but the previous usage implied it did. Probably should check
1765 // isDereferenceableAndAlignedPointer.
1766 LoadFlags |= MachineMemOperand::MODereferenceable;
1767 }
1768
1769 ICall.addMemOperand(
1770 MMO: MF->getMachineMemOperand(PtrInfo: MachinePointerInfo(CI.getArgOperand(i: 0)),
1771 F: StoreFlags, Size: 1, BaseAlignment: DstAlign, AAInfo));
1772 if (Opcode != TargetOpcode::G_MEMSET)
1773 ICall.addMemOperand(MMO: MF->getMachineMemOperand(
1774 PtrInfo: MachinePointerInfo(SrcPtr), F: LoadFlags, Size: 1, BaseAlignment: SrcAlign, AAInfo));
1775
1776 return true;
1777}
1778
1779bool IRTranslator::translateTrap(const CallInst &CI,
1780 MachineIRBuilder &MIRBuilder,
1781 unsigned Opcode) {
1782 StringRef TrapFuncName =
1783 CI.getAttributes().getFnAttr(Kind: "trap-func-name").getValueAsString();
1784 if (TrapFuncName.empty()) {
1785 if (Opcode == TargetOpcode::G_UBSANTRAP) {
1786 uint64_t Code = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 0))->getZExtValue();
1787 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {}, SrcOps: ArrayRef<llvm::SrcOp>{Code});
1788 } else {
1789 MIRBuilder.buildInstr(Opcode);
1790 }
1791 return true;
1792 }
1793
1794 CallLowering::CallLoweringInfo Info;
1795 if (Opcode == TargetOpcode::G_UBSANTRAP)
1796 Info.OrigArgs.push_back(Elt: {getOrCreateVRegs(Val: *CI.getArgOperand(i: 0)),
1797 CI.getArgOperand(i: 0)->getType(), 0});
1798
1799 Info.Callee = MachineOperand::CreateES(SymName: TrapFuncName.data());
1800 Info.CB = &CI;
1801 Info.OrigRet = {Register(), Type::getVoidTy(C&: CI.getContext()), 0};
1802 return CLI->lowerCall(MIRBuilder, Info);
1803}
1804
1805bool IRTranslator::translateVectorInterleave2Intrinsic(
1806 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1807 assert(CI.getIntrinsicID() == Intrinsic::experimental_vector_interleave2 &&
1808 "This function can only be called on the interleave2 intrinsic!");
1809 // Canonicalize interleave2 to G_SHUFFLE_VECTOR (similar to SelectionDAG).
1810 Register Op0 = getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 0));
1811 Register Op1 = getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 1));
1812 Register Res = getOrCreateVReg(Val: CI);
1813
1814 LLT OpTy = MRI->getType(Reg: Op0);
1815 MIRBuilder.buildShuffleVector(Res, Src1: Op0, Src2: Op1,
1816 Mask: createInterleaveMask(VF: OpTy.getNumElements(), NumVecs: 2));
1817
1818 return true;
1819}
1820
1821bool IRTranslator::translateVectorDeinterleave2Intrinsic(
1822 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1823 assert(CI.getIntrinsicID() == Intrinsic::experimental_vector_deinterleave2 &&
1824 "This function can only be called on the deinterleave2 intrinsic!");
1825 // Canonicalize deinterleave2 to shuffles that extract sub-vectors (similar to
1826 // SelectionDAG).
1827 Register Op = getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 0));
1828 auto Undef = MIRBuilder.buildUndef(Res: MRI->getType(Reg: Op));
1829 ArrayRef<Register> Res = getOrCreateVRegs(Val: CI);
1830
1831 LLT ResTy = MRI->getType(Reg: Res[0]);
1832 MIRBuilder.buildShuffleVector(Res: Res[0], Src1: Op, Src2: Undef,
1833 Mask: createStrideMask(Start: 0, Stride: 2, VF: ResTy.getNumElements()));
1834 MIRBuilder.buildShuffleVector(Res: Res[1], Src1: Op, Src2: Undef,
1835 Mask: createStrideMask(Start: 1, Stride: 2, VF: ResTy.getNumElements()));
1836
1837 return true;
1838}
1839
1840void IRTranslator::getStackGuard(Register DstReg,
1841 MachineIRBuilder &MIRBuilder) {
1842 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1843 MRI->setRegClass(Reg: DstReg, RC: TRI->getPointerRegClass(MF: *MF));
1844 auto MIB =
1845 MIRBuilder.buildInstr(Opc: TargetOpcode::LOAD_STACK_GUARD, DstOps: {DstReg}, SrcOps: {});
1846
1847 Value *Global = TLI->getSDagStackGuard(M: *MF->getFunction().getParent());
1848 if (!Global)
1849 return;
1850
1851 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1852 LLT PtrTy = LLT::pointer(AddressSpace: AddrSpace, SizeInBits: DL->getPointerSizeInBits(AS: AddrSpace));
1853
1854 MachinePointerInfo MPInfo(Global);
1855 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1856 MachineMemOperand::MODereferenceable;
1857 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1858 PtrInfo: MPInfo, f: Flags, MemTy: PtrTy, base_alignment: DL->getPointerABIAlignment(AS: AddrSpace));
1859 MIB.setMemRefs({MemRef});
1860}
1861
1862bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1863 MachineIRBuilder &MIRBuilder) {
1864 ArrayRef<Register> ResRegs = getOrCreateVRegs(Val: CI);
1865 MIRBuilder.buildInstr(
1866 Opc: Op, DstOps: {ResRegs[0], ResRegs[1]},
1867 SrcOps: {getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 0)), getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 1))});
1868
1869 return true;
1870}
1871
1872bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1873 MachineIRBuilder &MIRBuilder) {
1874 Register Dst = getOrCreateVReg(Val: CI);
1875 Register Src0 = getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 0));
1876 Register Src1 = getOrCreateVReg(Val: *CI.getOperand(i_nocapture: 1));
1877 uint64_t Scale = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 2))->getZExtValue();
1878 MIRBuilder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: { Src0, Src1, Scale });
1879 return true;
1880}
1881
1882unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1883 switch (ID) {
1884 default:
1885 break;
1886 case Intrinsic::bswap:
1887 return TargetOpcode::G_BSWAP;
1888 case Intrinsic::bitreverse:
1889 return TargetOpcode::G_BITREVERSE;
1890 case Intrinsic::fshl:
1891 return TargetOpcode::G_FSHL;
1892 case Intrinsic::fshr:
1893 return TargetOpcode::G_FSHR;
1894 case Intrinsic::ceil:
1895 return TargetOpcode::G_FCEIL;
1896 case Intrinsic::cos:
1897 return TargetOpcode::G_FCOS;
1898 case Intrinsic::ctpop:
1899 return TargetOpcode::G_CTPOP;
1900 case Intrinsic::exp:
1901 return TargetOpcode::G_FEXP;
1902 case Intrinsic::exp2:
1903 return TargetOpcode::G_FEXP2;
1904 case Intrinsic::exp10:
1905 return TargetOpcode::G_FEXP10;
1906 case Intrinsic::fabs:
1907 return TargetOpcode::G_FABS;
1908 case Intrinsic::copysign:
1909 return TargetOpcode::G_FCOPYSIGN;
1910 case Intrinsic::minnum:
1911 return TargetOpcode::G_FMINNUM;
1912 case Intrinsic::maxnum:
1913 return TargetOpcode::G_FMAXNUM;
1914 case Intrinsic::minimum:
1915 return TargetOpcode::G_FMINIMUM;
1916 case Intrinsic::maximum:
1917 return TargetOpcode::G_FMAXIMUM;
1918 case Intrinsic::canonicalize:
1919 return TargetOpcode::G_FCANONICALIZE;
1920 case Intrinsic::floor:
1921 return TargetOpcode::G_FFLOOR;
1922 case Intrinsic::fma:
1923 return TargetOpcode::G_FMA;
1924 case Intrinsic::log:
1925 return TargetOpcode::G_FLOG;
1926 case Intrinsic::log2:
1927 return TargetOpcode::G_FLOG2;
1928 case Intrinsic::log10:
1929 return TargetOpcode::G_FLOG10;
1930 case Intrinsic::ldexp:
1931 return TargetOpcode::G_FLDEXP;
1932 case Intrinsic::nearbyint:
1933 return TargetOpcode::G_FNEARBYINT;
1934 case Intrinsic::pow:
1935 return TargetOpcode::G_FPOW;
1936 case Intrinsic::powi:
1937 return TargetOpcode::G_FPOWI;
1938 case Intrinsic::rint:
1939 return TargetOpcode::G_FRINT;
1940 case Intrinsic::round:
1941 return TargetOpcode::G_INTRINSIC_ROUND;
1942 case Intrinsic::roundeven:
1943 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1944 case Intrinsic::sin:
1945 return TargetOpcode::G_FSIN;
1946 case Intrinsic::sqrt:
1947 return TargetOpcode::G_FSQRT;
1948 case Intrinsic::trunc:
1949 return TargetOpcode::G_INTRINSIC_TRUNC;
1950 case Intrinsic::readcyclecounter:
1951 return TargetOpcode::G_READCYCLECOUNTER;
1952 case Intrinsic::readsteadycounter:
1953 return TargetOpcode::G_READSTEADYCOUNTER;
1954 case Intrinsic::ptrmask:
1955 return TargetOpcode::G_PTRMASK;
1956 case Intrinsic::lrint:
1957 return TargetOpcode::G_INTRINSIC_LRINT;
1958 case Intrinsic::llrint:
1959 return TargetOpcode::G_INTRINSIC_LLRINT;
1960 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1961 case Intrinsic::vector_reduce_fmin:
1962 return TargetOpcode::G_VECREDUCE_FMIN;
1963 case Intrinsic::vector_reduce_fmax:
1964 return TargetOpcode::G_VECREDUCE_FMAX;
1965 case Intrinsic::vector_reduce_fminimum:
1966 return TargetOpcode::G_VECREDUCE_FMINIMUM;
1967 case Intrinsic::vector_reduce_fmaximum:
1968 return TargetOpcode::G_VECREDUCE_FMAXIMUM;
1969 case Intrinsic::vector_reduce_add:
1970 return TargetOpcode::G_VECREDUCE_ADD;
1971 case Intrinsic::vector_reduce_mul:
1972 return TargetOpcode::G_VECREDUCE_MUL;
1973 case Intrinsic::vector_reduce_and:
1974 return TargetOpcode::G_VECREDUCE_AND;
1975 case Intrinsic::vector_reduce_or:
1976 return TargetOpcode::G_VECREDUCE_OR;
1977 case Intrinsic::vector_reduce_xor:
1978 return TargetOpcode::G_VECREDUCE_XOR;
1979 case Intrinsic::vector_reduce_smax:
1980 return TargetOpcode::G_VECREDUCE_SMAX;
1981 case Intrinsic::vector_reduce_smin:
1982 return TargetOpcode::G_VECREDUCE_SMIN;
1983 case Intrinsic::vector_reduce_umax:
1984 return TargetOpcode::G_VECREDUCE_UMAX;
1985 case Intrinsic::vector_reduce_umin:
1986 return TargetOpcode::G_VECREDUCE_UMIN;
1987 case Intrinsic::lround:
1988 return TargetOpcode::G_LROUND;
1989 case Intrinsic::llround:
1990 return TargetOpcode::G_LLROUND;
1991 case Intrinsic::get_fpenv:
1992 return TargetOpcode::G_GET_FPENV;
1993 case Intrinsic::get_fpmode:
1994 return TargetOpcode::G_GET_FPMODE;
1995 }
1996 return Intrinsic::not_intrinsic;
1997}
1998
1999bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
2000 Intrinsic::ID ID,
2001 MachineIRBuilder &MIRBuilder) {
2002
2003 unsigned Op = getSimpleIntrinsicOpcode(ID);
2004
2005 // Is this a simple intrinsic?
2006 if (Op == Intrinsic::not_intrinsic)
2007 return false;
2008
2009 // Yes. Let's translate it.
2010 SmallVector<llvm::SrcOp, 4> VRegs;
2011 for (const auto &Arg : CI.args())
2012 VRegs.push_back(Elt: getOrCreateVReg(Val: *Arg));
2013
2014 MIRBuilder.buildInstr(Opc: Op, DstOps: {getOrCreateVReg(Val: CI)}, SrcOps: VRegs,
2015 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2016 return true;
2017}
2018
2019// TODO: Include ConstainedOps.def when all strict instructions are defined.
2020static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
2021 switch (ID) {
2022 case Intrinsic::experimental_constrained_fadd:
2023 return TargetOpcode::G_STRICT_FADD;
2024 case Intrinsic::experimental_constrained_fsub:
2025 return TargetOpcode::G_STRICT_FSUB;
2026 case Intrinsic::experimental_constrained_fmul:
2027 return TargetOpcode::G_STRICT_FMUL;
2028 case Intrinsic::experimental_constrained_fdiv:
2029 return TargetOpcode::G_STRICT_FDIV;
2030 case Intrinsic::experimental_constrained_frem:
2031 return TargetOpcode::G_STRICT_FREM;
2032 case Intrinsic::experimental_constrained_fma:
2033 return TargetOpcode::G_STRICT_FMA;
2034 case Intrinsic::experimental_constrained_sqrt:
2035 return TargetOpcode::G_STRICT_FSQRT;
2036 case Intrinsic::experimental_constrained_ldexp:
2037 return TargetOpcode::G_STRICT_FLDEXP;
2038 default:
2039 return 0;
2040 }
2041}
2042
2043bool IRTranslator::translateConstrainedFPIntrinsic(
2044 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
2045 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
2046
2047 unsigned Opcode = getConstrainedOpcode(ID: FPI.getIntrinsicID());
2048 if (!Opcode)
2049 return false;
2050
2051 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(I: FPI);
2052 if (EB == fp::ExceptionBehavior::ebIgnore)
2053 Flags |= MachineInstr::NoFPExcept;
2054
2055 SmallVector<llvm::SrcOp, 4> VRegs;
2056 VRegs.push_back(Elt: getOrCreateVReg(Val: *FPI.getArgOperand(i: 0)));
2057 if (!FPI.isUnaryOp())
2058 VRegs.push_back(Elt: getOrCreateVReg(Val: *FPI.getArgOperand(i: 1)));
2059 if (FPI.isTernaryOp())
2060 VRegs.push_back(Elt: getOrCreateVReg(Val: *FPI.getArgOperand(i: 2)));
2061
2062 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {getOrCreateVReg(Val: FPI)}, SrcOps: VRegs, Flags);
2063 return true;
2064}
2065
2066std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
2067 auto VRegs = getOrCreateVRegs(Val: Arg);
2068 if (VRegs.size() != 1)
2069 return std::nullopt;
2070
2071 // Arguments are lowered as a copy of a livein physical register.
2072 auto *VRegDef = MF->getRegInfo().getVRegDef(Reg: VRegs[0]);
2073 if (!VRegDef || !VRegDef->isCopy())
2074 return std::nullopt;
2075 return VRegDef->getOperand(i: 1).getReg().asMCReg();
2076}
2077
2078bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val,
2079 const DILocalVariable *Var,
2080 const DIExpression *Expr,
2081 const DebugLoc &DL,
2082 MachineIRBuilder &MIRBuilder) {
2083 auto *Arg = dyn_cast<Argument>(Val);
2084 if (!Arg)
2085 return false;
2086
2087 if (!Expr->isEntryValue())
2088 return false;
2089
2090 std::optional<MCRegister> PhysReg = getArgPhysReg(Arg&: *Arg);
2091 if (!PhysReg) {
2092 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value")
2093 << ": expression is entry_value but "
2094 << "couldn't find a physical register\n");
2095 LLVM_DEBUG(dbgs() << *Var << "\n");
2096 return true;
2097 }
2098
2099 if (isDeclare) {
2100 // Append an op deref to account for the fact that this is a dbg_declare.
2101 Expr = DIExpression::append(Expr, Ops: dwarf::DW_OP_deref);
2102 MF->setVariableDbgInfo(Var, Expr, Reg: *PhysReg, Loc: DL);
2103 } else {
2104 MIRBuilder.buildDirectDbgValue(Reg: *PhysReg, Variable: Var, Expr);
2105 }
2106
2107 return true;
2108}
2109
2110static unsigned getConvOpcode(Intrinsic::ID ID) {
2111 switch (ID) {
2112 default:
2113 llvm_unreachable("Unexpected intrinsic");
2114 case Intrinsic::experimental_convergence_anchor:
2115 return TargetOpcode::CONVERGENCECTRL_ANCHOR;
2116 case Intrinsic::experimental_convergence_entry:
2117 return TargetOpcode::CONVERGENCECTRL_ENTRY;
2118 case Intrinsic::experimental_convergence_loop:
2119 return TargetOpcode::CONVERGENCECTRL_LOOP;
2120 }
2121}
2122
2123bool IRTranslator::translateConvergenceControlIntrinsic(
2124 const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) {
2125 MachineInstrBuilder MIB = MIRBuilder.buildInstr(Opcode: getConvOpcode(ID));
2126 Register OutputReg = getOrCreateConvergenceTokenVReg(Token: CI);
2127 MIB.addDef(RegNo: OutputReg);
2128
2129 if (ID == Intrinsic::experimental_convergence_loop) {
2130 auto Bundle = CI.getOperandBundle(ID: LLVMContext::OB_convergencectrl);
2131 assert(Bundle && "Expected a convergence control token.");
2132 Register InputReg =
2133 getOrCreateConvergenceTokenVReg(Token: *Bundle->Inputs[0].get());
2134 MIB.addUse(RegNo: InputReg);
2135 }
2136
2137 return true;
2138}
2139
2140bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
2141 MachineIRBuilder &MIRBuilder) {
2142 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Val: &CI)) {
2143 if (ORE->enabled()) {
2144 if (MemoryOpRemark::canHandle(I: MI, TLI: *LibInfo)) {
2145 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2146 R.visit(I: MI);
2147 }
2148 }
2149 }
2150
2151 // If this is a simple intrinsic (that is, we just need to add a def of
2152 // a vreg, and uses for each arg operand, then translate it.
2153 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
2154 return true;
2155
2156 switch (ID) {
2157 default:
2158 break;
2159 case Intrinsic::lifetime_start:
2160 case Intrinsic::lifetime_end: {
2161 // No stack colouring in O0, discard region information.
2162 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None)
2163 return true;
2164
2165 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2166 : TargetOpcode::LIFETIME_END;
2167
2168 // Get the underlying objects for the location passed on the lifetime
2169 // marker.
2170 SmallVector<const Value *, 4> Allocas;
2171 getUnderlyingObjects(V: CI.getArgOperand(i: 1), Objects&: Allocas);
2172
2173 // Iterate over each underlying object, creating lifetime markers for each
2174 // static alloca. Quit if we find a non-static alloca.
2175 for (const Value *V : Allocas) {
2176 const AllocaInst *AI = dyn_cast<AllocaInst>(Val: V);
2177 if (!AI)
2178 continue;
2179
2180 if (!AI->isStaticAlloca())
2181 return true;
2182
2183 MIRBuilder.buildInstr(Opcode: Op).addFrameIndex(Idx: getOrCreateFrameIndex(AI: *AI));
2184 }
2185 return true;
2186 }
2187 case Intrinsic::dbg_declare: {
2188 const DbgDeclareInst &DI = cast<DbgDeclareInst>(Val: CI);
2189 assert(DI.getVariable() && "Missing variable");
2190 translateDbgDeclareRecord(Address: DI.getAddress(), HasArgList: DI.hasArgList(), Variable: DI.getVariable(),
2191 Expression: DI.getExpression(), DL: DI.getDebugLoc(), MIRBuilder);
2192 return true;
2193 }
2194 case Intrinsic::dbg_label: {
2195 const DbgLabelInst &DI = cast<DbgLabelInst>(Val: CI);
2196 assert(DI.getLabel() && "Missing label");
2197
2198 assert(DI.getLabel()->isValidLocationForIntrinsic(
2199 MIRBuilder.getDebugLoc()) &&
2200 "Expected inlined-at fields to agree");
2201
2202 MIRBuilder.buildDbgLabel(Label: DI.getLabel());
2203 return true;
2204 }
2205 case Intrinsic::vaend:
2206 // No target I know of cares about va_end. Certainly no in-tree target
2207 // does. Simplest intrinsic ever!
2208 return true;
2209 case Intrinsic::vastart: {
2210 Value *Ptr = CI.getArgOperand(i: 0);
2211 unsigned ListSize = TLI->getVaListSizeInBits(DL: *DL) / 8;
2212 Align Alignment = getKnownAlignment(V: Ptr, DL: *DL);
2213
2214 MIRBuilder.buildInstr(Opc: TargetOpcode::G_VASTART, DstOps: {}, SrcOps: {getOrCreateVReg(Val: *Ptr)})
2215 .addMemOperand(MMO: MF->getMachineMemOperand(PtrInfo: MachinePointerInfo(Ptr),
2216 F: MachineMemOperand::MOStore,
2217 Size: ListSize, BaseAlignment: Alignment));
2218 return true;
2219 }
2220 case Intrinsic::dbg_assign:
2221 // A dbg.assign is a dbg.value with more information about stack locations,
2222 // typically produced during optimisation of variables with leaked
2223 // addresses. We can treat it like a normal dbg_value intrinsic here; to
2224 // benefit from the full analysis of stack/SSA locations, GlobalISel would
2225 // need to register for and use the AssignmentTrackingAnalysis pass.
2226 LLVM_FALLTHROUGH;
2227 case Intrinsic::dbg_value: {
2228 // This form of DBG_VALUE is target-independent.
2229 const DbgValueInst &DI = cast<DbgValueInst>(Val: CI);
2230 translateDbgValueRecord(V: DI.getValue(), HasArgList: DI.hasArgList(), Variable: DI.getVariable(),
2231 Expression: DI.getExpression(), DL: DI.getDebugLoc(), MIRBuilder);
2232 return true;
2233 }
2234 case Intrinsic::uadd_with_overflow:
2235 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_UADDO, MIRBuilder);
2236 case Intrinsic::sadd_with_overflow:
2237 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_SADDO, MIRBuilder);
2238 case Intrinsic::usub_with_overflow:
2239 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_USUBO, MIRBuilder);
2240 case Intrinsic::ssub_with_overflow:
2241 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_SSUBO, MIRBuilder);
2242 case Intrinsic::umul_with_overflow:
2243 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_UMULO, MIRBuilder);
2244 case Intrinsic::smul_with_overflow:
2245 return translateOverflowIntrinsic(CI, Op: TargetOpcode::G_SMULO, MIRBuilder);
2246 case Intrinsic::uadd_sat:
2247 return translateBinaryOp(Opcode: TargetOpcode::G_UADDSAT, U: CI, MIRBuilder);
2248 case Intrinsic::sadd_sat:
2249 return translateBinaryOp(Opcode: TargetOpcode::G_SADDSAT, U: CI, MIRBuilder);
2250 case Intrinsic::usub_sat:
2251 return translateBinaryOp(Opcode: TargetOpcode::G_USUBSAT, U: CI, MIRBuilder);
2252 case Intrinsic::ssub_sat:
2253 return translateBinaryOp(Opcode: TargetOpcode::G_SSUBSAT, U: CI, MIRBuilder);
2254 case Intrinsic::ushl_sat:
2255 return translateBinaryOp(Opcode: TargetOpcode::G_USHLSAT, U: CI, MIRBuilder);
2256 case Intrinsic::sshl_sat:
2257 return translateBinaryOp(Opcode: TargetOpcode::G_SSHLSAT, U: CI, MIRBuilder);
2258 case Intrinsic::umin:
2259 return translateBinaryOp(Opcode: TargetOpcode::G_UMIN, U: CI, MIRBuilder);
2260 case Intrinsic::umax:
2261 return translateBinaryOp(Opcode: TargetOpcode::G_UMAX, U: CI, MIRBuilder);
2262 case Intrinsic::smin:
2263 return translateBinaryOp(Opcode: TargetOpcode::G_SMIN, U: CI, MIRBuilder);
2264 case Intrinsic::smax:
2265 return translateBinaryOp(Opcode: TargetOpcode::G_SMAX, U: CI, MIRBuilder);
2266 case Intrinsic::abs:
2267 // TODO: Preserve "int min is poison" arg in GMIR?
2268 return translateUnaryOp(Opcode: TargetOpcode::G_ABS, U: CI, MIRBuilder);
2269 case Intrinsic::smul_fix:
2270 return translateFixedPointIntrinsic(Op: TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2271 case Intrinsic::umul_fix:
2272 return translateFixedPointIntrinsic(Op: TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2273 case Intrinsic::smul_fix_sat:
2274 return translateFixedPointIntrinsic(Op: TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2275 case Intrinsic::umul_fix_sat:
2276 return translateFixedPointIntrinsic(Op: TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2277 case Intrinsic::sdiv_fix:
2278 return translateFixedPointIntrinsic(Op: TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2279 case Intrinsic::udiv_fix:
2280 return translateFixedPointIntrinsic(Op: TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2281 case Intrinsic::sdiv_fix_sat:
2282 return translateFixedPointIntrinsic(Op: TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2283 case Intrinsic::udiv_fix_sat:
2284 return translateFixedPointIntrinsic(Op: TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2285 case Intrinsic::fmuladd: {
2286 const TargetMachine &TM = MF->getTarget();
2287 Register Dst = getOrCreateVReg(Val: CI);
2288 Register Op0 = getOrCreateVReg(Val: *CI.getArgOperand(i: 0));
2289 Register Op1 = getOrCreateVReg(Val: *CI.getArgOperand(i: 1));
2290 Register Op2 = getOrCreateVReg(Val: *CI.getArgOperand(i: 2));
2291 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2292 TLI->isFMAFasterThanFMulAndFAdd(MF: *MF,
2293 TLI->getValueType(DL: *DL, Ty: CI.getType()))) {
2294 // TODO: Revisit this to see if we should move this part of the
2295 // lowering to the combiner.
2296 MIRBuilder.buildFMA(Dst, Src0: Op0, Src1: Op1, Src2: Op2,
2297 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2298 } else {
2299 LLT Ty = getLLTForType(Ty&: *CI.getType(), DL: *DL);
2300 auto FMul = MIRBuilder.buildFMul(
2301 Dst: Ty, Src0: Op0, Src1: Op1, Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2302 MIRBuilder.buildFAdd(Dst, Src0: FMul, Src1: Op2,
2303 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2304 }
2305 return true;
2306 }
2307 case Intrinsic::convert_from_fp16:
2308 // FIXME: This intrinsic should probably be removed from the IR.
2309 MIRBuilder.buildFPExt(Res: getOrCreateVReg(Val: CI),
2310 Op: getOrCreateVReg(Val: *CI.getArgOperand(i: 0)),
2311 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2312 return true;
2313 case Intrinsic::convert_to_fp16:
2314 // FIXME: This intrinsic should probably be removed from the IR.
2315 MIRBuilder.buildFPTrunc(Res: getOrCreateVReg(Val: CI),
2316 Op: getOrCreateVReg(Val: *CI.getArgOperand(i: 0)),
2317 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2318 return true;
2319 case Intrinsic::frexp: {
2320 ArrayRef<Register> VRegs = getOrCreateVRegs(Val: CI);
2321 MIRBuilder.buildFFrexp(Fract: VRegs[0], Exp: VRegs[1],
2322 Src: getOrCreateVReg(Val: *CI.getArgOperand(i: 0)),
2323 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2324 return true;
2325 }
2326 case Intrinsic::memcpy_inline:
2327 return translateMemFunc(CI, MIRBuilder, Opcode: TargetOpcode::G_MEMCPY_INLINE);
2328 case Intrinsic::memcpy:
2329 return translateMemFunc(CI, MIRBuilder, Opcode: TargetOpcode::G_MEMCPY);
2330 case Intrinsic::memmove:
2331 return translateMemFunc(CI, MIRBuilder, Opcode: TargetOpcode::G_MEMMOVE);
2332 case Intrinsic::memset:
2333 return translateMemFunc(CI, MIRBuilder, Opcode: TargetOpcode::G_MEMSET);
2334 case Intrinsic::eh_typeid_for: {
2335 GlobalValue *GV = ExtractTypeInfo(V: CI.getArgOperand(i: 0));
2336 Register Reg = getOrCreateVReg(Val: CI);
2337 unsigned TypeID = MF->getTypeIDFor(TI: GV);
2338 MIRBuilder.buildConstant(Res: Reg, Val: TypeID);
2339 return true;
2340 }
2341 case Intrinsic::objectsize:
2342 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2343
2344 case Intrinsic::is_constant:
2345 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2346
2347 case Intrinsic::stackguard:
2348 getStackGuard(DstReg: getOrCreateVReg(Val: CI), MIRBuilder);
2349 return true;
2350 case Intrinsic::stackprotector: {
2351 LLT PtrTy = getLLTForType(Ty&: *CI.getArgOperand(i: 0)->getType(), DL: *DL);
2352 Register GuardVal;
2353 if (TLI->useLoadStackGuardNode()) {
2354 GuardVal = MRI->createGenericVirtualRegister(Ty: PtrTy);
2355 getStackGuard(DstReg: GuardVal, MIRBuilder);
2356 } else
2357 GuardVal = getOrCreateVReg(Val: *CI.getArgOperand(i: 0)); // The guard's value.
2358
2359 AllocaInst *Slot = cast<AllocaInst>(Val: CI.getArgOperand(i: 1));
2360 int FI = getOrCreateFrameIndex(AI: *Slot);
2361 MF->getFrameInfo().setStackProtectorIndex(FI);
2362
2363 MIRBuilder.buildStore(
2364 Val: GuardVal, Addr: getOrCreateVReg(Val: *Slot),
2365 MMO&: *MF->getMachineMemOperand(PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI),
2366 f: MachineMemOperand::MOStore |
2367 MachineMemOperand::MOVolatile,
2368 MemTy: PtrTy, base_alignment: Align(8)));
2369 return true;
2370 }
2371 case Intrinsic::stacksave: {
2372 MIRBuilder.buildInstr(Opc: TargetOpcode::G_STACKSAVE, DstOps: {getOrCreateVReg(Val: CI)}, SrcOps: {});
2373 return true;
2374 }
2375 case Intrinsic::stackrestore: {
2376 MIRBuilder.buildInstr(Opc: TargetOpcode::G_STACKRESTORE, DstOps: {},
2377 SrcOps: {getOrCreateVReg(Val: *CI.getArgOperand(i: 0))});
2378 return true;
2379 }
2380 case Intrinsic::cttz:
2381 case Intrinsic::ctlz: {
2382 ConstantInt *Cst = cast<ConstantInt>(Val: CI.getArgOperand(i: 1));
2383 bool isTrailing = ID == Intrinsic::cttz;
2384 unsigned Opcode = isTrailing
2385 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2386 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2387 : Cst->isZero() ? TargetOpcode::G_CTLZ
2388 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2389 MIRBuilder.buildInstr(Opc: Opcode, DstOps: {getOrCreateVReg(Val: CI)},
2390 SrcOps: {getOrCreateVReg(Val: *CI.getArgOperand(i: 0))});
2391 return true;
2392 }
2393 case Intrinsic::invariant_start: {
2394 LLT PtrTy = getLLTForType(Ty&: *CI.getArgOperand(i: 0)->getType(), DL: *DL);
2395 Register Undef = MRI->createGenericVirtualRegister(Ty: PtrTy);
2396 MIRBuilder.buildUndef(Res: Undef);
2397 return true;
2398 }
2399 case Intrinsic::invariant_end:
2400 return true;
2401 case Intrinsic::expect:
2402 case Intrinsic::annotation:
2403 case Intrinsic::ptr_annotation:
2404 case Intrinsic::launder_invariant_group:
2405 case Intrinsic::strip_invariant_group: {
2406 // Drop the intrinsic, but forward the value.
2407 MIRBuilder.buildCopy(Res: getOrCreateVReg(Val: CI),
2408 Op: getOrCreateVReg(Val: *CI.getArgOperand(i: 0)));
2409 return true;
2410 }
2411 case Intrinsic::assume:
2412 case Intrinsic::experimental_noalias_scope_decl:
2413 case Intrinsic::var_annotation:
2414 case Intrinsic::sideeffect:
2415 // Discard annotate attributes, assumptions, and artificial side-effects.
2416 return true;
2417 case Intrinsic::read_volatile_register:
2418 case Intrinsic::read_register: {
2419 Value *Arg = CI.getArgOperand(i: 0);
2420 MIRBuilder
2421 .buildInstr(Opc: TargetOpcode::G_READ_REGISTER, DstOps: {getOrCreateVReg(Val: CI)}, SrcOps: {})
2422 .addMetadata(MD: cast<MDNode>(Val: cast<MetadataAsValue>(Val: Arg)->getMetadata()));
2423 return true;
2424 }
2425 case Intrinsic::write_register: {
2426 Value *Arg = CI.getArgOperand(i: 0);
2427 MIRBuilder.buildInstr(Opcode: TargetOpcode::G_WRITE_REGISTER)
2428 .addMetadata(MD: cast<MDNode>(Val: cast<MetadataAsValue>(Val: Arg)->getMetadata()))
2429 .addUse(RegNo: getOrCreateVReg(Val: *CI.getArgOperand(i: 1)));
2430 return true;
2431 }
2432 case Intrinsic::localescape: {
2433 MachineBasicBlock &EntryMBB = MF->front();
2434 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(Name: MF->getName());
2435
2436 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2437 // is the same on all targets.
2438 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2439 Value *Arg = CI.getArgOperand(i: Idx)->stripPointerCasts();
2440 if (isa<ConstantPointerNull>(Val: Arg))
2441 continue; // Skip null pointers. They represent a hole in index space.
2442
2443 int FI = getOrCreateFrameIndex(AI: *cast<AllocaInst>(Val: Arg));
2444 MCSymbol *FrameAllocSym =
2445 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(FuncName: EscapedName,
2446 Idx);
2447
2448 // This should be inserted at the start of the entry block.
2449 auto LocalEscape =
2450 MIRBuilder.buildInstrNoInsert(Opcode: TargetOpcode::LOCAL_ESCAPE)
2451 .addSym(Sym: FrameAllocSym)
2452 .addFrameIndex(Idx: FI);
2453
2454 EntryMBB.insert(I: EntryMBB.begin(), MI: LocalEscape);
2455 }
2456
2457 return true;
2458 }
2459 case Intrinsic::vector_reduce_fadd:
2460 case Intrinsic::vector_reduce_fmul: {
2461 // Need to check for the reassoc flag to decide whether we want a
2462 // sequential reduction opcode or not.
2463 Register Dst = getOrCreateVReg(Val: CI);
2464 Register ScalarSrc = getOrCreateVReg(Val: *CI.getArgOperand(i: 0));
2465 Register VecSrc = getOrCreateVReg(Val: *CI.getArgOperand(i: 1));
2466 unsigned Opc = 0;
2467 if (!CI.hasAllowReassoc()) {
2468 // The sequential ordering case.
2469 Opc = ID == Intrinsic::vector_reduce_fadd
2470 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2471 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2472 MIRBuilder.buildInstr(Opc, DstOps: {Dst}, SrcOps: {ScalarSrc, VecSrc},
2473 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2474 return true;
2475 }
2476 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2477 // since the associativity doesn't matter.
2478 unsigned ScalarOpc;
2479 if (ID == Intrinsic::vector_reduce_fadd) {
2480 Opc = TargetOpcode::G_VECREDUCE_FADD;
2481 ScalarOpc = TargetOpcode::G_FADD;
2482 } else {
2483 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2484 ScalarOpc = TargetOpcode::G_FMUL;
2485 }
2486 LLT DstTy = MRI->getType(Reg: Dst);
2487 auto Rdx = MIRBuilder.buildInstr(
2488 Opc, DstOps: {DstTy}, SrcOps: {VecSrc}, Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2489 MIRBuilder.buildInstr(Opc: ScalarOpc, DstOps: {Dst}, SrcOps: {ScalarSrc, Rdx},
2490 Flags: MachineInstr::copyFlagsFromInstruction(I: CI));
2491
2492 return true;
2493 }
2494 case Intrinsic::trap:
2495 return translateTrap(CI, MIRBuilder, Opcode: TargetOpcode::G_TRAP);
2496 case Intrinsic::debugtrap:
2497 return translateTrap(CI, MIRBuilder, Opcode: TargetOpcode::G_DEBUGTRAP);
2498 case Intrinsic::ubsantrap:
2499 return translateTrap(CI, MIRBuilder, Opcode: TargetOpcode::G_UBSANTRAP);
2500 case Intrinsic::allow_runtime_check:
2501 case Intrinsic::allow_ubsan_check:
2502 MIRBuilder.buildCopy(Res: getOrCreateVReg(Val: CI),
2503 Op: getOrCreateVReg(Val: *ConstantInt::getTrue(Ty: CI.getType())));
2504 return true;
2505 case Intrinsic::amdgcn_cs_chain:
2506 return translateCallBase(CB: CI, MIRBuilder);
2507 case Intrinsic::fptrunc_round: {
2508 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(I: CI);
2509
2510 // Convert the metadata argument to a constant integer
2511 Metadata *MD = cast<MetadataAsValue>(Val: CI.getArgOperand(i: 1))->getMetadata();
2512 std::optional<RoundingMode> RoundMode =
2513 convertStrToRoundingMode(cast<MDString>(Val: MD)->getString());
2514
2515 // Add the Rounding mode as an integer
2516 MIRBuilder
2517 .buildInstr(Opc: TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2518 DstOps: {getOrCreateVReg(Val: CI)},
2519 SrcOps: {getOrCreateVReg(Val: *CI.getArgOperand(i: 0))}, Flags)
2520 .addImm(Val: (int)*RoundMode);
2521
2522 return true;
2523 }
2524 case Intrinsic::is_fpclass: {
2525 Value *FpValue = CI.getOperand(i_nocapture: 0);
2526 ConstantInt *TestMaskValue = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 1));
2527
2528 MIRBuilder
2529 .buildInstr(Opc: TargetOpcode::G_IS_FPCLASS, DstOps: {getOrCreateVReg(Val: CI)},
2530 SrcOps: {getOrCreateVReg(Val: *FpValue)})
2531 .addImm(Val: TestMaskValue->getZExtValue());
2532
2533 return true;
2534 }
2535 case Intrinsic::set_fpenv: {
2536 Value *FPEnv = CI.getOperand(i_nocapture: 0);
2537 MIRBuilder.buildInstr(Opc: TargetOpcode::G_SET_FPENV, DstOps: {},
2538 SrcOps: {getOrCreateVReg(Val: *FPEnv)});
2539 return true;
2540 }
2541 case Intrinsic::reset_fpenv: {
2542 MIRBuilder.buildInstr(Opc: TargetOpcode::G_RESET_FPENV, DstOps: {}, SrcOps: {});
2543 return true;
2544 }
2545 case Intrinsic::set_fpmode: {
2546 Value *FPState = CI.getOperand(i_nocapture: 0);
2547 MIRBuilder.buildInstr(Opc: TargetOpcode::G_SET_FPMODE, DstOps: {},
2548 SrcOps: { getOrCreateVReg(Val: *FPState) });
2549 return true;
2550 }
2551 case Intrinsic::reset_fpmode: {
2552 MIRBuilder.buildInstr(Opc: TargetOpcode::G_RESET_FPMODE, DstOps: {}, SrcOps: {});
2553 return true;
2554 }
2555 case Intrinsic::vscale: {
2556 MIRBuilder.buildVScale(Res: getOrCreateVReg(Val: CI), MinElts: 1);
2557 return true;
2558 }
2559 case Intrinsic::prefetch: {
2560 Value *Addr = CI.getOperand(i_nocapture: 0);
2561 unsigned RW = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 1))->getZExtValue();
2562 unsigned Locality = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 2))->getZExtValue();
2563 unsigned CacheType = cast<ConstantInt>(Val: CI.getOperand(i_nocapture: 3))->getZExtValue();
2564
2565 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
2566 auto &MMO = *MF->getMachineMemOperand(PtrInfo: MachinePointerInfo(Addr), f: Flags,
2567 MemTy: LLT(), base_alignment: Align());
2568
2569 MIRBuilder.buildPrefetch(Addr: getOrCreateVReg(Val: *Addr), RW, Locality, CacheType,
2570 MMO);
2571
2572 return true;
2573 }
2574
2575 case Intrinsic::experimental_vector_interleave2:
2576 case Intrinsic::experimental_vector_deinterleave2: {
2577 // Both intrinsics have at least one operand.
2578 Value *Op0 = CI.getOperand(i_nocapture: 0);
2579 LLT ResTy = getLLTForType(Ty&: *Op0->getType(), DL: MIRBuilder.getDataLayout());
2580 if (!ResTy.isFixedVector())
2581 return false;
2582
2583 if (CI.getIntrinsicID() == Intrinsic::experimental_vector_interleave2)
2584 return translateVectorInterleave2Intrinsic(CI, MIRBuilder);
2585
2586 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder);
2587 }
2588
2589#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2590 case Intrinsic::INTRINSIC:
2591#include "llvm/IR/ConstrainedOps.def"
2592 return translateConstrainedFPIntrinsic(FPI: cast<ConstrainedFPIntrinsic>(Val: CI),
2593 MIRBuilder);
2594 case Intrinsic::experimental_convergence_anchor:
2595 case Intrinsic::experimental_convergence_entry:
2596 case Intrinsic::experimental_convergence_loop:
2597 return translateConvergenceControlIntrinsic(CI, ID, MIRBuilder);
2598 }
2599 return false;
2600}
2601
2602bool IRTranslator::translateInlineAsm(const CallBase &CB,
2603 MachineIRBuilder &MIRBuilder) {
2604
2605 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2606
2607 if (!ALI) {
2608 LLVM_DEBUG(
2609 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2610 return false;
2611 }
2612
2613 return ALI->lowerInlineAsm(
2614 MIRBuilder, CB, GetOrCreateVRegs: [&](const Value &Val) { return getOrCreateVRegs(Val); });
2615}
2616
2617bool IRTranslator::translateCallBase(const CallBase &CB,
2618 MachineIRBuilder &MIRBuilder) {
2619 ArrayRef<Register> Res = getOrCreateVRegs(Val: CB);
2620
2621 SmallVector<ArrayRef<Register>, 8> Args;
2622 Register SwiftInVReg = 0;
2623 Register SwiftErrorVReg = 0;
2624 for (const auto &Arg : CB.args()) {
2625 if (CLI->supportSwiftError() && isSwiftError(V: Arg)) {
2626 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2627 LLT Ty = getLLTForType(Ty&: *Arg->getType(), DL: *DL);
2628 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2629 MIRBuilder.buildCopy(Res: SwiftInVReg, Op: SwiftError.getOrCreateVRegUseAt(
2630 &CB, &MIRBuilder.getMBB(), Arg));
2631 Args.emplace_back(Args: ArrayRef(SwiftInVReg));
2632 SwiftErrorVReg =
2633 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2634 continue;
2635 }
2636 Args.push_back(Elt: getOrCreateVRegs(Val: *Arg));
2637 }
2638
2639 if (auto *CI = dyn_cast<CallInst>(Val: &CB)) {
2640 if (ORE->enabled()) {
2641 if (MemoryOpRemark::canHandle(I: CI, TLI: *LibInfo)) {
2642 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2643 R.visit(I: CI);
2644 }
2645 }
2646 }
2647
2648 Register ConvergenceCtrlToken = 0;
2649 if (auto Bundle = CB.getOperandBundle(ID: LLVMContext::OB_convergencectrl)) {
2650 const auto &Token = *Bundle->Inputs[0].get();
2651 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token);
2652 }
2653
2654 // We don't set HasCalls on MFI here yet because call lowering may decide to
2655 // optimize into tail calls. Instead, we defer that to selection where a final
2656 // scan is done to check if any instructions are calls.
2657 bool Success = CLI->lowerCall(
2658 MIRBuilder, Call: CB, ResRegs: Res, ArgRegs: Args, SwiftErrorVReg, ConvergenceCtrlToken,
2659 GetCalleeReg: [&]() { return getOrCreateVReg(Val: *CB.getCalledOperand()); });
2660
2661 // Check if we just inserted a tail call.
2662 if (Success) {
2663 assert(!HasTailCall && "Can't tail call return twice from block?");
2664 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2665 HasTailCall = TII->isTailCall(Inst: *std::prev(x: MIRBuilder.getInsertPt()));
2666 }
2667
2668 return Success;
2669}
2670
2671bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2672 const CallInst &CI = cast<CallInst>(Val: U);
2673 auto TII = MF->getTarget().getIntrinsicInfo();
2674 const Function *F = CI.getCalledFunction();
2675
2676 // FIXME: support Windows dllimport function calls and calls through
2677 // weak symbols.
2678 if (F && (F->hasDLLImportStorageClass() ||
2679 (MF->getTarget().getTargetTriple().isOSWindows() &&
2680 F->hasExternalWeakLinkage())))
2681 return false;
2682
2683 // FIXME: support control flow guard targets.
2684 if (CI.countOperandBundlesOfType(ID: LLVMContext::OB_cfguardtarget))
2685 return false;
2686
2687 // FIXME: support statepoints and related.
2688 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(Val: U))
2689 return false;
2690
2691 if (CI.isInlineAsm())
2692 return translateInlineAsm(CB: CI, MIRBuilder);
2693
2694 diagnoseDontCall(CI);
2695
2696 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2697 if (F && F->isIntrinsic()) {
2698 ID = F->getIntrinsicID();
2699 if (TII && ID == Intrinsic::not_intrinsic)
2700 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2701 }
2702
2703 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2704 return translateCallBase(CB: CI, MIRBuilder);
2705
2706 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2707
2708 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2709 return true;
2710
2711 ArrayRef<Register> ResultRegs;
2712 if (!CI.getType()->isVoidTy())
2713 ResultRegs = getOrCreateVRegs(Val: CI);
2714
2715 // Ignore the callsite attributes. Backend code is most likely not expecting
2716 // an intrinsic to sometimes have side effects and sometimes not.
2717 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, Res: ResultRegs);
2718 if (isa<FPMathOperator>(Val: CI))
2719 MIB->copyIRFlags(I: CI);
2720
2721 for (const auto &Arg : enumerate(First: CI.args())) {
2722 // If this is required to be an immediate, don't materialize it in a
2723 // register.
2724 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2725 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Arg.value())) {
2726 // imm arguments are more convenient than cimm (and realistically
2727 // probably sufficient), so use them.
2728 assert(CI->getBitWidth() <= 64 &&
2729 "large intrinsic immediates not handled");
2730 MIB.addImm(Val: CI->getSExtValue());
2731 } else {
2732 MIB.addFPImm(Val: cast<ConstantFP>(Val: Arg.value()));
2733 }
2734 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Val: Arg.value())) {
2735 auto *MD = MDVal->getMetadata();
2736 auto *MDN = dyn_cast<MDNode>(Val: MD);
2737 if (!MDN) {
2738 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(Val: MD))
2739 MDN = MDNode::get(Context&: MF->getFunction().getContext(), MDs: ConstMD);
2740 else // This was probably an MDString.
2741 return false;
2742 }
2743 MIB.addMetadata(MD: MDN);
2744 } else {
2745 ArrayRef<Register> VRegs = getOrCreateVRegs(Val: *Arg.value());
2746 if (VRegs.size() > 1)
2747 return false;
2748 MIB.addUse(RegNo: VRegs[0]);
2749 }
2750 }
2751
2752 // Add a MachineMemOperand if it is a target mem intrinsic.
2753 TargetLowering::IntrinsicInfo Info;
2754 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2755 if (TLI->getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2756 Align Alignment = Info.align.value_or(
2757 u: DL->getABITypeAlign(Ty: Info.memVT.getTypeForEVT(Context&: F->getContext())));
2758 LLT MemTy = Info.memVT.isSimple()
2759 ? getLLTForMVT(Ty: Info.memVT.getSimpleVT())
2760 : LLT::scalar(SizeInBits: Info.memVT.getStoreSizeInBits());
2761
2762 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2763 // didn't yield anything useful.
2764 MachinePointerInfo MPI;
2765 if (Info.ptrVal)
2766 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2767 else if (Info.fallbackAddressSpace)
2768 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2769 MIB.addMemOperand(
2770 MMO: MF->getMachineMemOperand(PtrInfo: MPI, f: Info.flags, MemTy, base_alignment: Alignment, AAInfo: CI.getAAMetadata()));
2771 }
2772
2773 if (CI.isConvergent()) {
2774 if (auto Bundle = CI.getOperandBundle(ID: LLVMContext::OB_convergencectrl)) {
2775 auto *Token = Bundle->Inputs[0].get();
2776 Register TokenReg = getOrCreateVReg(Val: *Token);
2777 MIB.addUse(RegNo: TokenReg, Flags: RegState::Implicit);
2778 }
2779 }
2780
2781 return true;
2782}
2783
2784bool IRTranslator::findUnwindDestinations(
2785 const BasicBlock *EHPadBB,
2786 BranchProbability Prob,
2787 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2788 &UnwindDests) {
2789 EHPersonality Personality = classifyEHPersonality(
2790 Pers: EHPadBB->getParent()->getFunction().getPersonalityFn());
2791 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2792 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2793 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2794 bool IsSEH = isAsynchronousEHPersonality(Pers: Personality);
2795
2796 if (IsWasmCXX) {
2797 // Ignore this for now.
2798 return false;
2799 }
2800
2801 while (EHPadBB) {
2802 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2803 BasicBlock *NewEHPadBB = nullptr;
2804 if (isa<LandingPadInst>(Val: Pad)) {
2805 // Stop on landingpads. They are not funclets.
2806 UnwindDests.emplace_back(Args: &getMBB(BB: *EHPadBB), Args&: Prob);
2807 break;
2808 }
2809 if (isa<CleanupPadInst>(Val: Pad)) {
2810 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2811 // personalities.
2812 UnwindDests.emplace_back(Args: &getMBB(BB: *EHPadBB), Args&: Prob);
2813 UnwindDests.back().first->setIsEHScopeEntry();
2814 UnwindDests.back().first->setIsEHFuncletEntry();
2815 break;
2816 }
2817 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: Pad)) {
2818 // Add the catchpad handlers to the possible destinations.
2819 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2820 UnwindDests.emplace_back(Args: &getMBB(BB: *CatchPadBB), Args&: Prob);
2821 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2822 if (IsMSVCCXX || IsCoreCLR)
2823 UnwindDests.back().first->setIsEHFuncletEntry();
2824 if (!IsSEH)
2825 UnwindDests.back().first->setIsEHScopeEntry();
2826 }
2827 NewEHPadBB = CatchSwitch->getUnwindDest();
2828 } else {
2829 continue;
2830 }
2831
2832 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2833 if (BPI && NewEHPadBB)
2834 Prob *= BPI->getEdgeProbability(Src: EHPadBB, Dst: NewEHPadBB);
2835 EHPadBB = NewEHPadBB;
2836 }
2837 return true;
2838}
2839
2840bool IRTranslator::translateInvoke(const User &U,
2841 MachineIRBuilder &MIRBuilder) {
2842 const InvokeInst &I = cast<InvokeInst>(Val: U);
2843 MCContext &Context = MF->getContext();
2844
2845 const BasicBlock *ReturnBB = I.getSuccessor(i: 0);
2846 const BasicBlock *EHPadBB = I.getSuccessor(i: 1);
2847
2848 const Function *Fn = I.getCalledFunction();
2849
2850 // FIXME: support invoking patchpoint and statepoint intrinsics.
2851 if (Fn && Fn->isIntrinsic())
2852 return false;
2853
2854 // FIXME: support whatever these are.
2855 if (I.countOperandBundlesOfType(ID: LLVMContext::OB_deopt))
2856 return false;
2857
2858 // FIXME: support control flow guard targets.
2859 if (I.countOperandBundlesOfType(ID: LLVMContext::OB_cfguardtarget))
2860 return false;
2861
2862 // FIXME: support Windows exception handling.
2863 if (!isa<LandingPadInst>(Val: EHPadBB->getFirstNonPHI()))
2864 return false;
2865
2866 // FIXME: support Windows dllimport function calls and calls through
2867 // weak symbols.
2868 if (Fn && (Fn->hasDLLImportStorageClass() ||
2869 (MF->getTarget().getTargetTriple().isOSWindows() &&
2870 Fn->hasExternalWeakLinkage())))
2871 return false;
2872
2873 bool LowerInlineAsm = I.isInlineAsm();
2874 bool NeedEHLabel = true;
2875
2876 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2877 // the region covered by the try.
2878 MCSymbol *BeginSymbol = nullptr;
2879 if (NeedEHLabel) {
2880 MIRBuilder.buildInstr(Opcode: TargetOpcode::G_INVOKE_REGION_START);
2881 BeginSymbol = Context.createTempSymbol();
2882 MIRBuilder.buildInstr(Opcode: TargetOpcode::EH_LABEL).addSym(Sym: BeginSymbol);
2883 }
2884
2885 if (LowerInlineAsm) {
2886 if (!translateInlineAsm(CB: I, MIRBuilder))
2887 return false;
2888 } else if (!translateCallBase(CB: I, MIRBuilder))
2889 return false;
2890
2891 MCSymbol *EndSymbol = nullptr;
2892 if (NeedEHLabel) {
2893 EndSymbol = Context.createTempSymbol();
2894 MIRBuilder.buildInstr(Opcode: TargetOpcode::EH_LABEL).addSym(Sym: EndSymbol);
2895 }
2896
2897 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2898 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2899 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2900 BranchProbability EHPadBBProb =
2901 BPI ? BPI->getEdgeProbability(Src: InvokeMBB->getBasicBlock(), Dst: EHPadBB)
2902 : BranchProbability::getZero();
2903
2904 if (!findUnwindDestinations(EHPadBB, Prob: EHPadBBProb, UnwindDests))
2905 return false;
2906
2907 MachineBasicBlock &EHPadMBB = getMBB(BB: *EHPadBB),
2908 &ReturnMBB = getMBB(BB: *ReturnBB);
2909 // Update successor info.
2910 addSuccessorWithProb(Src: InvokeMBB, Dst: &ReturnMBB);
2911 for (auto &UnwindDest : UnwindDests) {
2912 UnwindDest.first->setIsEHPad();
2913 addSuccessorWithProb(Src: InvokeMBB, Dst: UnwindDest.first, Prob: UnwindDest.second);
2914 }
2915 InvokeMBB->normalizeSuccProbs();
2916
2917 if (NeedEHLabel) {
2918 assert(BeginSymbol && "Expected a begin symbol!");
2919 assert(EndSymbol && "Expected an end symbol!");
2920 MF->addInvoke(LandingPad: &EHPadMBB, BeginLabel: BeginSymbol, EndLabel: EndSymbol);
2921 }
2922
2923 MIRBuilder.buildBr(Dest&: ReturnMBB);
2924 return true;
2925}
2926
2927bool IRTranslator::translateCallBr(const User &U,
2928 MachineIRBuilder &MIRBuilder) {
2929 // FIXME: Implement this.
2930 return false;
2931}
2932
2933bool IRTranslator::translateLandingPad(const User &U,
2934 MachineIRBuilder &MIRBuilder) {
2935 const LandingPadInst &LP = cast<LandingPadInst>(Val: U);
2936
2937 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2938
2939 MBB.setIsEHPad();
2940
2941 // If there aren't registers to copy the values into (e.g., during SjLj
2942 // exceptions), then don't bother.
2943 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2944 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 &&
2945 TLI->getExceptionSelectorRegister(PersonalityFn) == 0)
2946 return true;
2947
2948 // If landingpad's return type is token type, we don't create DAG nodes
2949 // for its exception pointer and selector value. The extraction of exception
2950 // pointer or selector value from token type landingpads is not currently
2951 // supported.
2952 if (LP.getType()->isTokenTy())
2953 return true;
2954
2955 // Add a label to mark the beginning of the landing pad. Deletion of the
2956 // landing pad can thus be detected via the MachineModuleInfo.
2957 MIRBuilder.buildInstr(Opcode: TargetOpcode::EH_LABEL)
2958 .addSym(Sym: MF->addLandingPad(LandingPad: &MBB));
2959
2960 // If the unwinder does not preserve all registers, ensure that the
2961 // function marks the clobbered registers as used.
2962 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2963 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(MF: *MF))
2964 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2965
2966 LLT Ty = getLLTForType(Ty&: *LP.getType(), DL: *DL);
2967 Register Undef = MRI->createGenericVirtualRegister(Ty);
2968 MIRBuilder.buildUndef(Res: Undef);
2969
2970 SmallVector<LLT, 2> Tys;
2971 for (Type *Ty : cast<StructType>(Val: LP.getType())->elements())
2972 Tys.push_back(Elt: getLLTForType(Ty&: *Ty, DL: *DL));
2973 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2974
2975 // Mark exception register as live in.
2976 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn);
2977 if (!ExceptionReg)
2978 return false;
2979
2980 MBB.addLiveIn(PhysReg: ExceptionReg);
2981 ArrayRef<Register> ResRegs = getOrCreateVRegs(Val: LP);
2982 MIRBuilder.buildCopy(Res: ResRegs[0], Op: ExceptionReg);
2983
2984 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn);
2985 if (!SelectorReg)
2986 return false;
2987
2988 MBB.addLiveIn(PhysReg: SelectorReg);
2989 Register PtrVReg = MRI->createGenericVirtualRegister(Ty: Tys[0]);
2990 MIRBuilder.buildCopy(Res: PtrVReg, Op: SelectorReg);
2991 MIRBuilder.buildCast(Dst: ResRegs[1], Src: PtrVReg);
2992
2993 return true;
2994}
2995
2996bool IRTranslator::translateAlloca(const User &U,
2997 MachineIRBuilder &MIRBuilder) {
2998 auto &AI = cast<AllocaInst>(Val: U);
2999
3000 if (AI.isSwiftError())
3001 return true;
3002
3003 if (AI.isStaticAlloca()) {
3004 Register Res = getOrCreateVReg(Val: AI);
3005 int FI = getOrCreateFrameIndex(AI);
3006 MIRBuilder.buildFrameIndex(Res, Idx: FI);
3007 return true;
3008 }
3009
3010 // FIXME: support stack probing for Windows.
3011 if (MF->getTarget().getTargetTriple().isOSWindows())
3012 return false;
3013
3014 // Now we're in the harder dynamic case.
3015 Register NumElts = getOrCreateVReg(Val: *AI.getArraySize());
3016 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
3017 LLT IntPtrTy = getLLTForType(Ty&: *IntPtrIRTy, DL: *DL);
3018 if (MRI->getType(Reg: NumElts) != IntPtrTy) {
3019 Register ExtElts = MRI->createGenericVirtualRegister(Ty: IntPtrTy);
3020 MIRBuilder.buildZExtOrTrunc(Res: ExtElts, Op: NumElts);
3021 NumElts = ExtElts;
3022 }
3023
3024 Type *Ty = AI.getAllocatedType();
3025
3026 Register AllocSize = MRI->createGenericVirtualRegister(Ty: IntPtrTy);
3027 Register TySize =
3028 getOrCreateVReg(Val: *ConstantInt::get(Ty: IntPtrIRTy, V: DL->getTypeAllocSize(Ty)));
3029 MIRBuilder.buildMul(Dst: AllocSize, Src0: NumElts, Src1: TySize);
3030
3031 // Round the size of the allocation up to the stack alignment size
3032 // by add SA-1 to the size. This doesn't overflow because we're computing
3033 // an address inside an alloca.
3034 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
3035 auto SAMinusOne = MIRBuilder.buildConstant(Res: IntPtrTy, Val: StackAlign.value() - 1);
3036 auto AllocAdd = MIRBuilder.buildAdd(Dst: IntPtrTy, Src0: AllocSize, Src1: SAMinusOne,
3037 Flags: MachineInstr::NoUWrap);
3038 auto AlignCst =
3039 MIRBuilder.buildConstant(Res: IntPtrTy, Val: ~(uint64_t)(StackAlign.value() - 1));
3040 auto AlignedAlloc = MIRBuilder.buildAnd(Dst: IntPtrTy, Src0: AllocAdd, Src1: AlignCst);
3041
3042 Align Alignment = std::max(a: AI.getAlign(), b: DL->getPrefTypeAlign(Ty));
3043 if (Alignment <= StackAlign)
3044 Alignment = Align(1);
3045 MIRBuilder.buildDynStackAlloc(Res: getOrCreateVReg(Val: AI), Size: AlignedAlloc, Alignment);
3046
3047 MF->getFrameInfo().CreateVariableSizedObject(Alignment, Alloca: &AI);
3048 assert(MF->getFrameInfo().hasVarSizedObjects());
3049 return true;
3050}
3051
3052bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
3053 // FIXME: We may need more info about the type. Because of how LLT works,
3054 // we're completely discarding the i64/double distinction here (amongst
3055 // others). Fortunately the ABIs I know of where that matters don't use va_arg
3056 // anyway but that's not guaranteed.
3057 MIRBuilder.buildInstr(Opc: TargetOpcode::G_VAARG, DstOps: {getOrCreateVReg(Val: U)},
3058 SrcOps: {getOrCreateVReg(Val: *U.getOperand(i: 0)),
3059 DL->getABITypeAlign(Ty: U.getType()).value()});
3060 return true;
3061}
3062
3063bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
3064 if (!MF->getTarget().Options.TrapUnreachable)
3065 return true;
3066
3067 auto &UI = cast<UnreachableInst>(Val: U);
3068 // We may be able to ignore unreachable behind a noreturn call.
3069 if (MF->getTarget().Options.NoTrapAfterNoreturn) {
3070 const BasicBlock &BB = *UI.getParent();
3071 if (&UI != &BB.front()) {
3072 BasicBlock::const_iterator PredI =
3073 std::prev(x: BasicBlock::const_iterator(UI));
3074 if (const CallInst *Call = dyn_cast<CallInst>(Val: &*PredI)) {
3075 if (Call->doesNotReturn())
3076 return true;
3077 }
3078 }
3079 }
3080
3081 MIRBuilder.buildTrap();
3082 return true;
3083}
3084
3085bool IRTranslator::translateInsertElement(const User &U,
3086 MachineIRBuilder &MIRBuilder) {
3087 // If it is a <1 x Ty> vector, use the scalar as it is
3088 // not a legal vector type in LLT.
3089 if (auto *FVT = dyn_cast<FixedVectorType>(Val: U.getType());
3090 FVT && FVT->getNumElements() == 1)
3091 return translateCopy(U, V: *U.getOperand(i: 1), MIRBuilder);
3092
3093 Register Res = getOrCreateVReg(Val: U);
3094 Register Val = getOrCreateVReg(Val: *U.getOperand(i: 0));
3095 Register Elt = getOrCreateVReg(Val: *U.getOperand(i: 1));
3096 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(DL: *DL).getSizeInBits();
3097 Register Idx;
3098 if (auto *CI = dyn_cast<ConstantInt>(Val: U.getOperand(i: 2))) {
3099 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3100 APInt NewIdx = CI->getValue().zextOrTrunc(width: PreferredVecIdxWidth);
3101 auto *NewIdxCI = ConstantInt::get(Context&: CI->getContext(), V: NewIdx);
3102 Idx = getOrCreateVReg(Val: *NewIdxCI);
3103 }
3104 }
3105 if (!Idx)
3106 Idx = getOrCreateVReg(Val: *U.getOperand(i: 2));
3107 if (MRI->getType(Reg: Idx).getSizeInBits() != PreferredVecIdxWidth) {
3108 const LLT VecIdxTy = LLT::scalar(SizeInBits: PreferredVecIdxWidth);
3109 Idx = MIRBuilder.buildZExtOrTrunc(Res: VecIdxTy, Op: Idx).getReg(Idx: 0);
3110 }
3111 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
3112 return true;
3113}
3114
3115bool IRTranslator::translateExtractElement(const User &U,
3116 MachineIRBuilder &MIRBuilder) {
3117 // If it is a <1 x Ty> vector, use the scalar as it is
3118 // not a legal vector type in LLT.
3119 if (cast<FixedVectorType>(Val: U.getOperand(i: 0)->getType())->getNumElements() == 1)
3120 return translateCopy(U, V: *U.getOperand(i: 0), MIRBuilder);
3121
3122 Register Res = getOrCreateVReg(Val: U);
3123 Register Val = getOrCreateVReg(Val: *U.getOperand(i: 0));
3124 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(DL: *DL).getSizeInBits();
3125 Register Idx;
3126 if (auto *CI = dyn_cast<ConstantInt>(Val: U.getOperand(i: 1))) {
3127 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3128 APInt NewIdx = CI->getValue().zextOrTrunc(width: PreferredVecIdxWidth);
3129 auto *NewIdxCI = ConstantInt::get(Context&: CI->getContext(), V: NewIdx);
3130 Idx = getOrCreateVReg(Val: *NewIdxCI);
3131 }
3132 }
3133 if (!Idx)
3134 Idx = getOrCreateVReg(Val: *U.getOperand(i: 1));
3135 if (MRI->getType(Reg: Idx).getSizeInBits() != PreferredVecIdxWidth) {
3136 const LLT VecIdxTy = LLT::scalar(SizeInBits: PreferredVecIdxWidth);
3137 Idx = MIRBuilder.buildZExtOrTrunc(Res: VecIdxTy, Op: Idx).getReg(Idx: 0);
3138 }
3139 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
3140 return true;
3141}
3142
3143bool IRTranslator::translateShuffleVector(const User &U,
3144 MachineIRBuilder &MIRBuilder) {
3145 // A ShuffleVector that has operates on scalable vectors is a splat vector
3146 // where the value of the splat vector is the 0th element of the first
3147 // operand, since the index mask operand is the zeroinitializer (undef and
3148 // poison are treated as zeroinitializer here).
3149 if (U.getOperand(i: 0)->getType()->isScalableTy()) {
3150 Value *Op0 = U.getOperand(i: 0);
3151 auto SplatVal = MIRBuilder.buildExtractVectorElementConstant(
3152 Res: LLT::scalar(SizeInBits: Op0->getType()->getScalarSizeInBits()),
3153 Val: getOrCreateVReg(Val: *Op0), Idx: 0);
3154 MIRBuilder.buildSplatVector(Res: getOrCreateVReg(Val: U), Val: SplatVal);
3155 return true;
3156 }
3157
3158 ArrayRef<int> Mask;
3159 if (auto *SVI = dyn_cast<ShuffleVectorInst>(Val: &U))
3160 Mask = SVI->getShuffleMask();
3161 else
3162 Mask = cast<ConstantExpr>(Val: U).getShuffleMask();
3163 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3164 MIRBuilder
3165 .buildInstr(Opc: TargetOpcode::G_SHUFFLE_VECTOR, DstOps: {getOrCreateVReg(Val: U)},
3166 SrcOps: {getOrCreateVReg(Val: *U.getOperand(i: 0)),
3167 getOrCreateVReg(Val: *U.getOperand(i: 1))})
3168 .addShuffleMask(Val: MaskAlloc);
3169 return true;
3170}
3171
3172bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
3173 const PHINode &PI = cast<PHINode>(Val: U);
3174
3175 SmallVector<MachineInstr *, 4> Insts;
3176 for (auto Reg : getOrCreateVRegs(Val: PI)) {
3177 auto MIB = MIRBuilder.buildInstr(Opc: TargetOpcode::G_PHI, DstOps: {Reg}, SrcOps: {});
3178 Insts.push_back(Elt: MIB.getInstr());
3179 }
3180
3181 PendingPHIs.emplace_back(Args: &PI, Args: std::move(Insts));
3182 return true;
3183}
3184
3185bool IRTranslator::translateAtomicCmpXchg(const User &U,
3186 MachineIRBuilder &MIRBuilder) {
3187 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(Val: U);
3188
3189 auto Flags = TLI->getAtomicMemOperandFlags(AI: I, DL: *DL);
3190
3191 auto Res = getOrCreateVRegs(Val: I);
3192 Register OldValRes = Res[0];
3193 Register SuccessRes = Res[1];
3194 Register Addr = getOrCreateVReg(Val: *I.getPointerOperand());
3195 Register Cmp = getOrCreateVReg(Val: *I.getCompareOperand());
3196 Register NewVal = getOrCreateVReg(Val: *I.getNewValOperand());
3197
3198 MIRBuilder.buildAtomicCmpXchgWithSuccess(
3199 OldValRes, SuccessRes, Addr, CmpVal: Cmp, NewVal,
3200 MMO&: *MF->getMachineMemOperand(
3201 PtrInfo: MachinePointerInfo(I.getPointerOperand()), f: Flags, MemTy: MRI->getType(Reg: Cmp),
3202 base_alignment: getMemOpAlign(I), AAInfo: I.getAAMetadata(), Ranges: nullptr, SSID: I.getSyncScopeID(),
3203 Ordering: I.getSuccessOrdering(), FailureOrdering: I.getFailureOrdering()));
3204 return true;
3205}
3206
3207bool IRTranslator::translateAtomicRMW(const User &U,
3208 MachineIRBuilder &MIRBuilder) {
3209 const AtomicRMWInst &I = cast<AtomicRMWInst>(Val: U);
3210 auto Flags = TLI->getAtomicMemOperandFlags(AI: I, DL: *DL);
3211
3212 Register Res = getOrCreateVReg(Val: I);
3213 Register Addr = getOrCreateVReg(Val: *I.getPointerOperand());
3214 Register Val = getOrCreateVReg(Val: *I.getValOperand());
3215
3216 unsigned Opcode = 0;
3217 switch (I.getOperation()) {
3218 default:
3219 return false;
3220 case AtomicRMWInst::Xchg:
3221 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3222 break;
3223 case AtomicRMWInst::Add:
3224 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3225 break;
3226 case AtomicRMWInst::Sub:
3227 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3228 break;
3229 case AtomicRMWInst::And:
3230 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3231 break;
3232 case AtomicRMWInst::Nand:
3233 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3234 break;
3235 case AtomicRMWInst::Or:
3236 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3237 break;
3238 case AtomicRMWInst::Xor:
3239 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3240 break;
3241 case AtomicRMWInst::Max:
3242 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3243 break;
3244 case AtomicRMWInst::Min:
3245 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3246 break;
3247 case AtomicRMWInst::UMax:
3248 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3249 break;
3250 case AtomicRMWInst::UMin:
3251 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3252 break;
3253 case AtomicRMWInst::FAdd:
3254 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3255 break;
3256 case AtomicRMWInst::FSub:
3257 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3258 break;
3259 case AtomicRMWInst::FMax:
3260 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3261 break;
3262 case AtomicRMWInst::FMin:
3263 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3264 break;
3265 case AtomicRMWInst::UIncWrap:
3266 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3267 break;
3268 case AtomicRMWInst::UDecWrap:
3269 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3270 break;
3271 }
3272
3273 MIRBuilder.buildAtomicRMW(
3274 Opcode, OldValRes: Res, Addr, Val,
3275 MMO&: *MF->getMachineMemOperand(PtrInfo: MachinePointerInfo(I.getPointerOperand()),
3276 f: Flags, MemTy: MRI->getType(Reg: Val), base_alignment: getMemOpAlign(I),
3277 AAInfo: I.getAAMetadata(), Ranges: nullptr, SSID: I.getSyncScopeID(),
3278 Ordering: I.getOrdering()));
3279 return true;
3280}
3281
3282bool IRTranslator::translateFence(const User &U,
3283 MachineIRBuilder &MIRBuilder) {
3284 const FenceInst &Fence = cast<FenceInst>(Val: U);
3285 MIRBuilder.buildFence(Ordering: static_cast<unsigned>(Fence.getOrdering()),
3286 Scope: Fence.getSyncScopeID());
3287 return true;
3288}
3289
3290bool IRTranslator::translateFreeze(const User &U,
3291 MachineIRBuilder &MIRBuilder) {
3292 const ArrayRef<Register> DstRegs = getOrCreateVRegs(Val: U);
3293 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(Val: *U.getOperand(i: 0));
3294
3295 assert(DstRegs.size() == SrcRegs.size() &&
3296 "Freeze with different source and destination type?");
3297
3298 for (unsigned I = 0; I < DstRegs.size(); ++I) {
3299 MIRBuilder.buildFreeze(Dst: DstRegs[I], Src: SrcRegs[I]);
3300 }
3301
3302 return true;
3303}
3304
3305void IRTranslator::finishPendingPhis() {
3306#ifndef NDEBUG
3307 DILocationVerifier Verifier;
3308 GISelObserverWrapper WrapperObserver(&Verifier);
3309 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3310#endif // ifndef NDEBUG
3311 for (auto &Phi : PendingPHIs) {
3312 const PHINode *PI = Phi.first;
3313 if (PI->getType()->isEmptyTy())
3314 continue;
3315 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3316 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3317 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3318#ifndef NDEBUG
3319 Verifier.setCurrentInst(PI);
3320#endif // ifndef NDEBUG
3321
3322 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3323 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3324 auto IRPred = PI->getIncomingBlock(i);
3325 ArrayRef<Register> ValRegs = getOrCreateVRegs(Val: *PI->getIncomingValue(i));
3326 for (auto *Pred : getMachinePredBBs(Edge: {IRPred, PI->getParent()})) {
3327 if (SeenPreds.count(Ptr: Pred) || !PhiMBB->isPredecessor(MBB: Pred))
3328 continue;
3329 SeenPreds.insert(Ptr: Pred);
3330 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3331 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3332 MIB.addUse(RegNo: ValRegs[j]);
3333 MIB.addMBB(MBB: Pred);
3334 }
3335 }
3336 }
3337 }
3338}
3339
3340void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList,
3341 const DILocalVariable *Variable,
3342 const DIExpression *Expression,
3343 const DebugLoc &DL,
3344 MachineIRBuilder &MIRBuilder) {
3345 assert(Variable->isValidLocationForIntrinsic(DL) &&
3346 "Expected inlined-at fields to agree");
3347 // Act as if we're handling a debug intrinsic.
3348 MIRBuilder.setDebugLoc(DL);
3349
3350 if (!V || HasArgList) {
3351 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
3352 // terminate any prior location.
3353 MIRBuilder.buildIndirectDbgValue(Reg: 0, Variable, Expr: Expression);
3354 return;
3355 }
3356
3357 if (const auto *CI = dyn_cast<Constant>(Val: V)) {
3358 MIRBuilder.buildConstDbgValue(C: *CI, Variable, Expr: Expression);
3359 return;
3360 }
3361
3362 if (auto *AI = dyn_cast<AllocaInst>(Val: V);
3363 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) {
3364 // If the value is an alloca and the expression starts with a
3365 // dereference, track a stack slot instead of a register, as registers
3366 // may be clobbered.
3367 auto ExprOperands = Expression->getElements();
3368 auto *ExprDerefRemoved =
3369 DIExpression::get(Context&: AI->getContext(), Elements: ExprOperands.drop_front());
3370 MIRBuilder.buildFIDbgValue(FI: getOrCreateFrameIndex(AI: *AI), Variable,
3371 Expr: ExprDerefRemoved);
3372 return;
3373 }
3374 if (translateIfEntryValueArgument(isDeclare: false, Val: V, Var: Variable, Expr: Expression, DL,
3375 MIRBuilder))
3376 return;
3377 for (Register Reg : getOrCreateVRegs(Val: *V)) {
3378 // FIXME: This does not handle register-indirect values at offset 0. The
3379 // direct/indirect thing shouldn't really be handled by something as
3380 // implicit as reg+noreg vs reg+imm in the first place, but it seems
3381 // pretty baked in right now.
3382 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expr: Expression);
3383 }
3384 return;
3385}
3386
3387void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList,
3388 const DILocalVariable *Variable,
3389 const DIExpression *Expression,
3390 const DebugLoc &DL,
3391 MachineIRBuilder &MIRBuilder) {
3392 if (!Address || isa<UndefValue>(Val: Address)) {
3393 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n");
3394 return;
3395 }
3396
3397 assert(Variable->isValidLocationForIntrinsic(DL) &&
3398 "Expected inlined-at fields to agree");
3399 auto AI = dyn_cast<AllocaInst>(Val: Address);
3400 if (AI && AI->isStaticAlloca()) {
3401 // Static allocas are tracked at the MF level, no need for DBG_VALUE
3402 // instructions (in fact, they get ignored if they *do* exist).
3403 MF->setVariableDbgInfo(Var: Variable, Expr: Expression,
3404 Slot: getOrCreateFrameIndex(AI: *AI), Loc: DL);
3405 return;
3406 }
3407
3408 if (translateIfEntryValueArgument(isDeclare: true, Val: Address, Var: Variable,
3409 Expr: Expression, DL,
3410 MIRBuilder))
3411 return;
3412
3413 // A dbg.declare describes the address of a source variable, so lower it
3414 // into an indirect DBG_VALUE.
3415 MIRBuilder.setDebugLoc(DL);
3416 MIRBuilder.buildIndirectDbgValue(Reg: getOrCreateVReg(Val: *Address),
3417 Variable, Expr: Expression);
3418 return;
3419}
3420
3421void IRTranslator::translateDbgInfo(const Instruction &Inst,
3422 MachineIRBuilder &MIRBuilder) {
3423 for (DbgRecord &DR : Inst.getDbgRecordRange()) {
3424 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) {
3425 MIRBuilder.setDebugLoc(DLR->getDebugLoc());
3426 assert(DLR->getLabel() && "Missing label");
3427 assert(DLR->getLabel()->isValidLocationForIntrinsic(
3428 MIRBuilder.getDebugLoc()) &&
3429 "Expected inlined-at fields to agree");
3430 MIRBuilder.buildDbgLabel(Label: DLR->getLabel());
3431 continue;
3432 }
3433 DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR);
3434 const DILocalVariable *Variable = DVR.getVariable();
3435 const DIExpression *Expression = DVR.getExpression();
3436 Value *V = DVR.getVariableLocationOp(OpIdx: 0);
3437 if (DVR.isDbgDeclare())
3438 translateDbgDeclareRecord(Address: V, HasArgList: DVR.hasArgList(), Variable, Expression,
3439 DL: DVR.getDebugLoc(), MIRBuilder);
3440 else
3441 translateDbgValueRecord(V, HasArgList: DVR.hasArgList(), Variable, Expression,
3442 DL: DVR.getDebugLoc(), MIRBuilder);
3443 }
3444}
3445
3446bool IRTranslator::translate(const Instruction &Inst) {
3447 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3448 CurBuilder->setPCSections(Inst.getMetadata(KindID: LLVMContext::MD_pcsections));
3449 CurBuilder->setMMRAMetadata(Inst.getMetadata(KindID: LLVMContext::MD_mmra));
3450
3451 if (TLI->fallBackToDAGISel(Inst))
3452 return false;
3453
3454 switch (Inst.getOpcode()) {
3455#define HANDLE_INST(NUM, OPCODE, CLASS) \
3456 case Instruction::OPCODE: \
3457 return translate##OPCODE(Inst, *CurBuilder.get());
3458#include "llvm/IR/Instruction.def"
3459 default:
3460 return false;
3461 }
3462}
3463
3464bool IRTranslator::translate(const Constant &C, Register Reg) {
3465 // We only emit constants into the entry block from here. To prevent jumpy
3466 // debug behaviour remove debug line.
3467 if (auto CurrInstDL = CurBuilder->getDL())
3468 EntryBuilder->setDebugLoc(DebugLoc());
3469
3470 if (auto CI = dyn_cast<ConstantInt>(Val: &C))
3471 EntryBuilder->buildConstant(Res: Reg, Val: *CI);
3472 else if (auto CF = dyn_cast<ConstantFP>(Val: &C))
3473 EntryBuilder->buildFConstant(Res: Reg, Val: *CF);
3474 else if (isa<UndefValue>(Val: C))
3475 EntryBuilder->buildUndef(Res: Reg);
3476 else if (isa<ConstantPointerNull>(Val: C))
3477 EntryBuilder->buildConstant(Res: Reg, Val: 0);
3478 else if (auto GV = dyn_cast<GlobalValue>(Val: &C))
3479 EntryBuilder->buildGlobalValue(Res: Reg, GV);
3480 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(Val: &C)) {
3481 if (!isa<FixedVectorType>(Val: CAZ->getType()))
3482 return false;
3483 // Return the scalar if it is a <1 x Ty> vector.
3484 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3485 if (NumElts == 1)
3486 return translateCopy(U: C, V: *CAZ->getElementValue(Idx: 0u), MIRBuilder&: *EntryBuilder);
3487 SmallVector<Register, 4> Ops;
3488 for (unsigned I = 0; I < NumElts; ++I) {
3489 Constant &Elt = *CAZ->getElementValue(Idx: I);
3490 Ops.push_back(Elt: getOrCreateVReg(Val: Elt));
3491 }
3492 EntryBuilder->buildBuildVector(Res: Reg, Ops);
3493 } else if (auto CV = dyn_cast<ConstantDataVector>(Val: &C)) {
3494 // Return the scalar if it is a <1 x Ty> vector.
3495 if (CV->getNumElements() == 1)
3496 return translateCopy(U: C, V: *CV->getElementAsConstant(i: 0), MIRBuilder&: *EntryBuilder);
3497 SmallVector<Register, 4> Ops;
3498 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3499 Constant &Elt = *CV->getElementAsConstant(i);
3500 Ops.push_back(Elt: getOrCreateVReg(Val: Elt));
3501 }
3502 EntryBuilder->buildBuildVector(Res: Reg, Ops);
3503 } else if (auto CE = dyn_cast<ConstantExpr>(Val: &C)) {
3504 switch(CE->getOpcode()) {
3505#define HANDLE_INST(NUM, OPCODE, CLASS) \
3506 case Instruction::OPCODE: \
3507 return translate##OPCODE(*CE, *EntryBuilder.get());
3508#include "llvm/IR/Instruction.def"
3509 default:
3510 return false;
3511 }
3512 } else if (auto CV = dyn_cast<ConstantVector>(Val: &C)) {
3513 if (CV->getNumOperands() == 1)
3514 return translateCopy(U: C, V: *CV->getOperand(i_nocapture: 0), MIRBuilder&: *EntryBuilder);
3515 SmallVector<Register, 4> Ops;
3516 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3517 Ops.push_back(Elt: getOrCreateVReg(Val: *CV->getOperand(i_nocapture: i)));
3518 }
3519 EntryBuilder->buildBuildVector(Res: Reg, Ops);
3520 } else if (auto *BA = dyn_cast<BlockAddress>(Val: &C)) {
3521 EntryBuilder->buildBlockAddress(Res: Reg, BA);
3522 } else
3523 return false;
3524
3525 return true;
3526}
3527
3528bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3529 MachineBasicBlock &MBB) {
3530 for (auto &BTB : SL->BitTestCases) {
3531 // Emit header first, if it wasn't already emitted.
3532 if (!BTB.Emitted)
3533 emitBitTestHeader(B&: BTB, SwitchBB: BTB.Parent);
3534
3535 BranchProbability UnhandledProb = BTB.Prob;
3536 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3537 UnhandledProb -= BTB.Cases[j].ExtraProb;
3538 // Set the current basic block to the mbb we wish to insert the code into
3539 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3540 // If all cases cover a contiguous range, it is not necessary to jump to
3541 // the default block after the last bit test fails. This is because the
3542 // range check during bit test header creation has guaranteed that every
3543 // case here doesn't go outside the range. In this case, there is no need
3544 // to perform the last bit test, as it will always be true. Instead, make
3545 // the second-to-last bit-test fall through to the target of the last bit
3546 // test, and delete the last bit test.
3547
3548 MachineBasicBlock *NextMBB;
3549 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3550 // Second-to-last bit-test with contiguous range: fall through to the
3551 // target of the final bit test.
3552 NextMBB = BTB.Cases[j + 1].TargetBB;
3553 } else if (j + 1 == ej) {
3554 // For the last bit test, fall through to Default.
3555 NextMBB = BTB.Default;
3556 } else {
3557 // Otherwise, fall through to the next bit test.
3558 NextMBB = BTB.Cases[j + 1].ThisBB;
3559 }
3560
3561 emitBitTestCase(BB&: BTB, NextMBB, BranchProbToNext: UnhandledProb, Reg: BTB.Reg, B&: BTB.Cases[j], SwitchBB: MBB);
3562
3563 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3564 // We need to record the replacement phi edge here that normally
3565 // happens in emitBitTestCase before we delete the case, otherwise the
3566 // phi edge will be lost.
3567 addMachineCFGPred(Edge: {BTB.Parent->getBasicBlock(),
3568 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3569 NewPred: MBB);
3570 // Since we're not going to use the final bit test, remove it.
3571 BTB.Cases.pop_back();
3572 break;
3573 }
3574 }
3575 // This is "default" BB. We have two jumps to it. From "header" BB and from
3576 // last "case" BB, unless the latter was skipped.
3577 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3578 BTB.Default->getBasicBlock()};
3579 addMachineCFGPred(Edge: HeaderToDefaultEdge, NewPred: BTB.Parent);
3580 if (!BTB.ContiguousRange) {
3581 addMachineCFGPred(Edge: HeaderToDefaultEdge, NewPred: BTB.Cases.back().ThisBB);
3582 }
3583 }
3584 SL->BitTestCases.clear();
3585
3586 for (auto &JTCase : SL->JTCases) {
3587 // Emit header first, if it wasn't already emitted.
3588 if (!JTCase.first.Emitted)
3589 emitJumpTableHeader(JT&: JTCase.second, JTH&: JTCase.first, HeaderBB: JTCase.first.HeaderBB);
3590
3591 emitJumpTable(JT&: JTCase.second, MBB: JTCase.second.MBB);
3592 }
3593 SL->JTCases.clear();
3594
3595 for (auto &SwCase : SL->SwitchCases)
3596 emitSwitchCase(CB&: SwCase, SwitchBB: &CurBuilder->getMBB(), MIB&: *CurBuilder);
3597 SL->SwitchCases.clear();
3598
3599 // Check if we need to generate stack-protector guard checks.
3600 StackProtector &SP = getAnalysis<StackProtector>();
3601 if (SP.shouldEmitSDCheck(BB)) {
3602 bool FunctionBasedInstrumentation =
3603 TLI->getSSPStackGuardCheck(M: *MF->getFunction().getParent());
3604 SPDescriptor.initialize(BB: &BB, MBB: &MBB, FunctionBasedInstrumentation);
3605 }
3606 // Handle stack protector.
3607 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3608 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3609 return false;
3610 } else if (SPDescriptor.shouldEmitStackProtector()) {
3611 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3612 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3613
3614 // Find the split point to split the parent mbb. At the same time copy all
3615 // physical registers used in the tail of parent mbb into virtual registers
3616 // before the split point and back into physical registers after the split
3617 // point. This prevents us needing to deal with Live-ins and many other
3618 // register allocation issues caused by us splitting the parent mbb. The
3619 // register allocator will clean up said virtual copies later on.
3620 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3621 BB: ParentMBB, TII: *MF->getSubtarget().getInstrInfo());
3622
3623 // Splice the terminator of ParentMBB into SuccessMBB.
3624 SuccessMBB->splice(Where: SuccessMBB->end(), Other: ParentMBB, From: SplitPoint,
3625 To: ParentMBB->end());
3626
3627 // Add compare/jump on neq/jump to the parent BB.
3628 if (!emitSPDescriptorParent(SPD&: SPDescriptor, ParentBB: ParentMBB))
3629 return false;
3630
3631 // CodeGen Failure MBB if we have not codegened it yet.
3632 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3633 if (FailureMBB->empty()) {
3634 if (!emitSPDescriptorFailure(SPD&: SPDescriptor, FailureBB: FailureMBB))
3635 return false;
3636 }
3637
3638 // Clear the Per-BB State.
3639 SPDescriptor.resetPerBBState();
3640 }
3641 return true;
3642}
3643
3644bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3645 MachineBasicBlock *ParentBB) {
3646 CurBuilder->setInsertPt(MBB&: *ParentBB, II: ParentBB->end());
3647 // First create the loads to the guard/stack slot for the comparison.
3648 Type *PtrIRTy = PointerType::getUnqual(C&: MF->getFunction().getContext());
3649 const LLT PtrTy = getLLTForType(Ty&: *PtrIRTy, DL: *DL);
3650 LLT PtrMemTy = getLLTForMVT(Ty: TLI->getPointerMemTy(DL: *DL));
3651
3652 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3653 int FI = MFI.getStackProtectorIndex();
3654
3655 Register Guard;
3656 Register StackSlotPtr = CurBuilder->buildFrameIndex(Res: PtrTy, Idx: FI).getReg(Idx: 0);
3657 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3658 Align Align = DL->getPrefTypeAlign(Ty: PointerType::getUnqual(C&: M.getContext()));
3659
3660 // Generate code to load the content of the guard slot.
3661 Register GuardVal =
3662 CurBuilder
3663 ->buildLoad(Res: PtrMemTy, Addr: StackSlotPtr,
3664 PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), Alignment: Align,
3665 MMOFlags: MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3666 .getReg(Idx: 0);
3667
3668 if (TLI->useStackGuardXorFP()) {
3669 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3670 return false;
3671 }
3672
3673 // Retrieve guard check function, nullptr if instrumentation is inlined.
3674 if (const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) {
3675 // This path is currently untestable on GlobalISel, since the only platform
3676 // that needs this seems to be Windows, and we fall back on that currently.
3677 // The code still lives here in case that changes.
3678 // Silence warning about unused variable until the code below that uses
3679 // 'GuardCheckFn' is enabled.
3680 (void)GuardCheckFn;
3681 return false;
3682#if 0
3683 // The target provides a guard check function to validate the guard value.
3684 // Generate a call to that function with the content of the guard slot as
3685 // argument.
3686 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3687 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3688 ISD::ArgFlagsTy Flags;
3689 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3690 Flags.setInReg();
3691 CallLowering::ArgInfo GuardArgInfo(
3692 {GuardVal, FnTy->getParamType(0), {Flags}});
3693
3694 CallLowering::CallLoweringInfo Info;
3695 Info.OrigArgs.push_back(GuardArgInfo);
3696 Info.CallConv = GuardCheckFn->getCallingConv();
3697 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3698 Info.OrigRet = {Register(), FnTy->getReturnType()};
3699 if (!CLI->lowerCall(MIRBuilder, Info)) {
3700 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3701 return false;
3702 }
3703 return true;
3704#endif
3705 }
3706
3707 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3708 // Otherwise, emit a volatile load to retrieve the stack guard value.
3709 if (TLI->useLoadStackGuardNode()) {
3710 Guard =
3711 MRI->createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: PtrTy.getSizeInBits()));
3712 getStackGuard(DstReg: Guard, MIRBuilder&: *CurBuilder);
3713 } else {
3714 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3715 const Value *IRGuard = TLI->getSDagStackGuard(M);
3716 Register GuardPtr = getOrCreateVReg(Val: *IRGuard);
3717
3718 Guard = CurBuilder
3719 ->buildLoad(Res: PtrMemTy, Addr: GuardPtr,
3720 PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), Alignment: Align,
3721 MMOFlags: MachineMemOperand::MOLoad |
3722 MachineMemOperand::MOVolatile)
3723 .getReg(Idx: 0);
3724 }
3725
3726 // Perform the comparison.
3727 auto Cmp =
3728 CurBuilder->buildICmp(Pred: CmpInst::ICMP_NE, Res: LLT::scalar(SizeInBits: 1), Op0: Guard, Op1: GuardVal);
3729 // If the guard/stackslot do not equal, branch to failure MBB.
3730 CurBuilder->buildBrCond(Tst: Cmp, Dest&: *SPD.getFailureMBB());
3731 // Otherwise branch to success MBB.
3732 CurBuilder->buildBr(Dest&: *SPD.getSuccessMBB());
3733 return true;
3734}
3735
3736bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3737 MachineBasicBlock *FailureBB) {
3738 CurBuilder->setInsertPt(MBB&: *FailureBB, II: FailureBB->end());
3739
3740 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3741 const char *Name = TLI->getLibcallName(Call: Libcall);
3742
3743 CallLowering::CallLoweringInfo Info;
3744 Info.CallConv = TLI->getLibcallCallingConv(Call: Libcall);
3745 Info.Callee = MachineOperand::CreateES(SymName: Name);
3746 Info.OrigRet = {Register(), Type::getVoidTy(C&: MF->getFunction().getContext()),
3747 0};
3748 if (!CLI->lowerCall(MIRBuilder&: *CurBuilder, Info)) {
3749 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3750 return false;
3751 }
3752
3753 // On PS4/PS5, the "return address" must still be within the calling
3754 // function, even if it's at the very end, so emit an explicit TRAP here.
3755 // WebAssembly needs an unreachable instruction after a non-returning call,
3756 // because the function return type can be different from __stack_chk_fail's
3757 // return type (void).
3758 const TargetMachine &TM = MF->getTarget();
3759 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3760 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3761 return false;
3762 }
3763 return true;
3764}
3765
3766void IRTranslator::finalizeFunction() {
3767 // Release the memory used by the different maps we
3768 // needed during the translation.
3769 PendingPHIs.clear();
3770 VMap.reset();
3771 FrameIndices.clear();
3772 MachinePreds.clear();
3773 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3774 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3775 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3776 EntryBuilder.reset();
3777 CurBuilder.reset();
3778 FuncInfo.clear();
3779 SPDescriptor.resetPerFunctionState();
3780}
3781
3782/// Returns true if a BasicBlock \p BB within a variadic function contains a
3783/// variadic musttail call.
3784static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3785 if (!IsVarArg)
3786 return false;
3787
3788 // Walk the block backwards, because tail calls usually only appear at the end
3789 // of a block.
3790 return llvm::any_of(Range: llvm::reverse(C: BB), P: [](const Instruction &I) {
3791 const auto *CI = dyn_cast<CallInst>(Val: &I);
3792 return CI && CI->isMustTailCall();
3793 });
3794}
3795
3796bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3797 MF = &CurMF;
3798 const Function &F = MF->getFunction();
3799 GISelCSEAnalysisWrapper &Wrapper =
3800 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3801 // Set the CSEConfig and run the analysis.
3802 GISelCSEInfo *CSEInfo = nullptr;
3803 TPC = &getAnalysis<TargetPassConfig>();
3804 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3805 ? EnableCSEInIRTranslator
3806 : TPC->isGISelCSEEnabled();
3807 TLI = MF->getSubtarget().getTargetLowering();
3808
3809 if (EnableCSE) {
3810 EntryBuilder = std::make_unique<CSEMIRBuilder>(args&: CurMF);
3811 CSEInfo = &Wrapper.get(CSEOpt: TPC->getCSEConfig());
3812 EntryBuilder->setCSEInfo(CSEInfo);
3813 CurBuilder = std::make_unique<CSEMIRBuilder>(args&: CurMF);
3814 CurBuilder->setCSEInfo(CSEInfo);
3815 } else {
3816 EntryBuilder = std::make_unique<MachineIRBuilder>();
3817 CurBuilder = std::make_unique<MachineIRBuilder>();
3818 }
3819 CLI = MF->getSubtarget().getCallLowering();
3820 CurBuilder->setMF(*MF);
3821 EntryBuilder->setMF(*MF);
3822 MRI = &MF->getRegInfo();
3823 DL = &F.getParent()->getDataLayout();
3824 ORE = std::make_unique<OptimizationRemarkEmitter>(args: &F);
3825 const TargetMachine &TM = MF->getTarget();
3826 TM.resetTargetOptions(F);
3827 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F);
3828 FuncInfo.MF = MF;
3829 if (EnableOpts) {
3830 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3831 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3832 } else {
3833 AA = nullptr;
3834 FuncInfo.BPI = nullptr;
3835 }
3836
3837 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3838 F&: MF->getFunction());
3839 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3840 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(MF&: *MF);
3841
3842 SL = std::make_unique<GISelSwitchLowering>(args: this, args&: FuncInfo);
3843 SL->init(tli: *TLI, tm: TM, dl: *DL);
3844
3845 assert(PendingPHIs.empty() && "stale PHIs");
3846
3847 // Targets which want to use big endian can enable it using
3848 // enableBigEndian()
3849 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3850 // Currently we don't properly handle big endian code.
3851 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3852 F.getSubprogram(), &F.getEntryBlock());
3853 R << "unable to translate in big endian mode";
3854 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
3855 }
3856
3857 // Release the per-function state when we return, whether we succeeded or not.
3858 auto FinalizeOnReturn = make_scope_exit(F: [this]() { finalizeFunction(); });
3859
3860 // Setup a separate basic-block for the arguments and constants
3861 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3862 MF->push_back(MBB: EntryBB);
3863 EntryBuilder->setMBB(*EntryBB);
3864
3865 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3866 SwiftError.setFunction(CurMF);
3867 SwiftError.createEntriesInEntryBlock(DbgLoc);
3868
3869 bool IsVarArg = F.isVarArg();
3870 bool HasMustTailInVarArgFn = false;
3871
3872 // Create all blocks, in IR order, to preserve the layout.
3873 for (const BasicBlock &BB: F) {
3874 auto *&MBB = BBToMBB[&BB];
3875
3876 MBB = MF->CreateMachineBasicBlock(BB: &BB);
3877 MF->push_back(MBB);
3878
3879 if (BB.hasAddressTaken())
3880 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3881
3882 if (!HasMustTailInVarArgFn)
3883 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3884 }
3885
3886 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3887
3888 // Make our arguments/constants entry block fallthrough to the IR entry block.
3889 EntryBB->addSuccessor(Succ: &getMBB(BB: F.front()));
3890
3891 if (CLI->fallBackToDAGISel(MF: *MF)) {
3892 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3893 F.getSubprogram(), &F.getEntryBlock());
3894 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3895 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
3896 return false;
3897 }
3898
3899 // Lower the actual args into this basic block.
3900 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3901 for (const Argument &Arg: F.args()) {
3902 if (DL->getTypeStoreSize(Ty: Arg.getType()).isZero())
3903 continue; // Don't handle zero sized types.
3904 ArrayRef<Register> VRegs = getOrCreateVRegs(Val: Arg);
3905 VRegArgs.push_back(Elt: VRegs);
3906
3907 if (Arg.hasSwiftErrorAttr()) {
3908 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3909 SwiftError.setCurrentVReg(MBB: EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3910 }
3911 }
3912
3913 if (!CLI->lowerFormalArguments(MIRBuilder&: *EntryBuilder, F, VRegs: VRegArgs, FLI&: FuncInfo)) {
3914 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3915 F.getSubprogram(), &F.getEntryBlock());
3916 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3917 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
3918 return false;
3919 }
3920
3921 // Need to visit defs before uses when translating instructions.
3922 GISelObserverWrapper WrapperObserver;
3923 if (EnableCSE && CSEInfo)
3924 WrapperObserver.addObserver(O: CSEInfo);
3925 {
3926 ReversePostOrderTraversal<const Function *> RPOT(&F);
3927#ifndef NDEBUG
3928 DILocationVerifier Verifier;
3929 WrapperObserver.addObserver(O: &Verifier);
3930#endif // ifndef NDEBUG
3931 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3932 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3933 for (const BasicBlock *BB : RPOT) {
3934 MachineBasicBlock &MBB = getMBB(BB: *BB);
3935 // Set the insertion point of all the following translations to
3936 // the end of this basic block.
3937 CurBuilder->setMBB(MBB);
3938 HasTailCall = false;
3939 for (const Instruction &Inst : *BB) {
3940 // If we translated a tail call in the last step, then we know
3941 // everything after the call is either a return, or something that is
3942 // handled by the call itself. (E.g. a lifetime marker or assume
3943 // intrinsic.) In this case, we should stop translating the block and
3944 // move on.
3945 if (HasTailCall)
3946 break;
3947#ifndef NDEBUG
3948 Verifier.setCurrentInst(&Inst);
3949#endif // ifndef NDEBUG
3950
3951 // Translate any debug-info attached to the instruction.
3952 translateDbgInfo(Inst, MIRBuilder&: *CurBuilder.get());
3953
3954 if (translate(Inst))
3955 continue;
3956
3957 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3958 Inst.getDebugLoc(), BB);
3959 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3960
3961 if (ORE->allowExtraAnalysis(PassName: "gisel-irtranslator")) {
3962 std::string InstStrStorage;
3963 raw_string_ostream InstStr(InstStrStorage);
3964 InstStr << Inst;
3965
3966 R << ": '" << InstStr.str() << "'";
3967 }
3968
3969 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
3970 return false;
3971 }
3972
3973 if (!finalizeBasicBlock(BB: *BB, MBB)) {
3974 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3975 BB->getTerminator()->getDebugLoc(), BB);
3976 R << "unable to translate basic block";
3977 reportTranslationError(MF&: *MF, TPC: *TPC, ORE&: *ORE, R);
3978 return false;
3979 }
3980 }
3981#ifndef NDEBUG
3982 WrapperObserver.removeObserver(O: &Verifier);
3983#endif
3984 }
3985
3986 finishPendingPhis();
3987
3988 SwiftError.propagateVRegs();
3989
3990 // Merge the argument lowering and constants block with its single
3991 // successor, the LLVM-IR entry block. We want the basic block to
3992 // be maximal.
3993 assert(EntryBB->succ_size() == 1 &&
3994 "Custom BB used for lowering should have only one successor");
3995 // Get the successor of the current entry block.
3996 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3997 assert(NewEntryBB.pred_size() == 1 &&
3998 "LLVM-IR entry block has a predecessor!?");
3999 // Move all the instruction from the current entry block to the
4000 // new entry block.
4001 NewEntryBB.splice(Where: NewEntryBB.begin(), Other: EntryBB, From: EntryBB->begin(),
4002 To: EntryBB->end());
4003
4004 // Update the live-in information for the new entry block.
4005 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
4006 NewEntryBB.addLiveIn(RegMaskPair: LiveIn);
4007 NewEntryBB.sortUniqueLiveIns();
4008
4009 // Get rid of the now empty basic block.
4010 EntryBB->removeSuccessor(Succ: &NewEntryBB);
4011 MF->remove(MBBI: EntryBB);
4012 MF->deleteMachineBasicBlock(MBB: EntryBB);
4013
4014 assert(&MF->front() == &NewEntryBB &&
4015 "New entry wasn't next in the list of basic block!");
4016
4017 // Initialize stack protector information.
4018 StackProtector &SP = getAnalysis<StackProtector>();
4019 SP.copyToMachineFrameInfo(MFI&: MF->getFrameInfo());
4020
4021 return false;
4022}
4023

source code of llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp