| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | |
| 31 | #include "foundation/PxPreprocessor.h" |
| 32 | #include "PsVecMath.h" |
| 33 | #include "DyArticulationContactPrep.h" |
| 34 | #include "DySolverConstraintDesc.h" |
| 35 | #include "DySolverConstraint1D.h" |
| 36 | #include "DySolverContact.h" |
| 37 | #include "DySolverContactPF.h" |
| 38 | #include "DyArticulationHelper.h" |
| 39 | #include "PxcNpWorkUnit.h" |
| 40 | #include "PxsMaterialManager.h" |
| 41 | #include "PxsMaterialCombiner.h" |
| 42 | #include "DyCorrelationBuffer.h" |
| 43 | #include "DySolverConstraintExtShared.h" |
| 44 | |
| 45 | using namespace physx; |
| 46 | using namespace Gu; |
| 47 | |
| 48 | // constraint-gen only, since these use getVelocityFast methods |
| 49 | // which aren't valid during the solver phase |
| 50 | |
| 51 | namespace physx |
| 52 | { |
| 53 | |
| 54 | namespace Dy |
| 55 | { |
| 56 | |
| 57 | |
| 58 | bool setupFinalizeExtSolverContactsCoulomb( |
| 59 | const ContactBuffer& buffer, |
| 60 | const CorrelationBuffer& c, |
| 61 | const PxTransform& bodyFrame0, |
| 62 | const PxTransform& bodyFrame1, |
| 63 | PxU8* workspace, |
| 64 | PxReal invDt, |
| 65 | PxReal bounceThresholdF32, |
| 66 | const SolverExtBody& b0, |
| 67 | const SolverExtBody& b1, |
| 68 | PxU32 frictionCountPerPoint, |
| 69 | PxReal invMassScale0, PxReal invInertiaScale0, |
| 70 | PxReal invMassScale1, PxReal invInertiaScale1, |
| 71 | PxReal restDist, |
| 72 | PxReal ccdMaxDistance, |
| 73 | Cm::SpatialVectorF* Z) |
| 74 | { |
| 75 | // NOTE II: the friction patches are sparse (some of them have no contact patches, and |
| 76 | // therefore did not get written back to the cache) but the patch addresses are dense, |
| 77 | // corresponding to valid patches |
| 78 | |
| 79 | const FloatV ccdMaxSeparation = FLoad(f: ccdMaxDistance); |
| 80 | |
| 81 | PxU8* PX_RESTRICT ptr = workspace; |
| 82 | |
| 83 | const PxF32 maxPenBias0 = b0.mLinkIndex == PxSolverConstraintDesc::NO_LINK ? b0.mBodyData->penBiasClamp : b0.mArticulation->getLinkMaxPenBias(linkID: b0.mLinkIndex); |
| 84 | const PxF32 maxPenBias1 = b1.mLinkIndex == PxSolverConstraintDesc::NO_LINK ? b1.mBodyData->penBiasClamp : b1.mArticulation->getLinkMaxPenBias(linkID: b1.mLinkIndex); |
| 85 | |
| 86 | const FloatV maxPenBias = FLoad(f: PxMax(a: maxPenBias0, b: maxPenBias1)/invDt); |
| 87 | |
| 88 | const FloatV restDistance = FLoad(f: restDist); |
| 89 | const FloatV bounceThreshold = FLoad(f: bounceThresholdF32); |
| 90 | |
| 91 | const Cm::SpatialVectorV vel0 = b0.getVelocity(); |
| 92 | const Cm::SpatialVectorV vel1 = b1.getVelocity(); |
| 93 | |
| 94 | const FloatV invDtV = FLoad(f: invDt); |
| 95 | const FloatV pt8 = FLoad(f: 0.8f); |
| 96 | |
| 97 | const FloatV invDtp8 = FMul(a: invDtV, b: pt8); |
| 98 | |
| 99 | const Vec3V bodyFrame0p = V3LoadU(f: bodyFrame0.p); |
| 100 | const Vec3V bodyFrame1p = V3LoadU(f: bodyFrame1.p); |
| 101 | |
| 102 | Ps::prefetchLine(ptr: c.contactID); |
| 103 | Ps::prefetchLine(ptr: c.contactID, offset: 128); |
| 104 | |
| 105 | const PxU32 frictionPatchCount = c.frictionPatchCount; |
| 106 | |
| 107 | const PxU32 pointStride = sizeof(SolverContactPointExt); |
| 108 | const PxU32 frictionStride = sizeof(SolverContactFrictionExt); |
| 109 | const PxU8 = DY_SC_TYPE_EXT_CONTACT; |
| 110 | const PxU8 = DY_SC_TYPE_EXT_FRICTION; |
| 111 | |
| 112 | const FloatV d0 = FLoad(f: invMassScale0); |
| 113 | const FloatV d1 = FLoad(f: invMassScale1); |
| 114 | const FloatV angD0 = FLoad(f: invInertiaScale0); |
| 115 | const FloatV angD1 = FLoad(f: invInertiaScale1); |
| 116 | |
| 117 | PxU8 flags = 0; |
| 118 | |
| 119 | for(PxU32 i=0;i< frictionPatchCount;i++) |
| 120 | { |
| 121 | const PxU32 contactCount = c.frictionPatchContactCounts[i]; |
| 122 | if(contactCount == 0) |
| 123 | continue; |
| 124 | |
| 125 | const Gu::ContactPoint* contactBase0 = buffer.contacts + c.contactPatches[c.correlationListHeads[i]].start; |
| 126 | |
| 127 | const Vec3V normalV = Ps::aos::V3LoadA(f: contactBase0->normal); |
| 128 | const Vec3V normal = V3LoadA(f: contactBase0->normal); |
| 129 | |
| 130 | const PxReal combinedRestitution = contactBase0->restitution; |
| 131 | |
| 132 | |
| 133 | SolverContactCoulombHeader* PX_RESTRICT = reinterpret_cast<SolverContactCoulombHeader*>(ptr); |
| 134 | ptr += sizeof(SolverContactCoulombHeader); |
| 135 | |
| 136 | Ps::prefetchLine(ptr, offset: 128); |
| 137 | Ps::prefetchLine(ptr, offset: 256); |
| 138 | Ps::prefetchLine(ptr, offset: 384); |
| 139 | |
| 140 | const FloatV restitution = FLoad(f: combinedRestitution); |
| 141 | |
| 142 | |
| 143 | header->numNormalConstr = PxU8(contactCount); |
| 144 | header->type = pointHeaderType; |
| 145 | //header->setRestitution(combinedRestitution); |
| 146 | |
| 147 | header->setDominance0(d0); |
| 148 | header->setDominance1(d1); |
| 149 | header->angDom0 = invInertiaScale0; |
| 150 | header->angDom1 = invInertiaScale1; |
| 151 | header->flags = flags; |
| 152 | |
| 153 | header->setNormal(normalV); |
| 154 | |
| 155 | for(PxU32 patch=c.correlationListHeads[i]; |
| 156 | patch!=CorrelationBuffer::LIST_END; |
| 157 | patch = c.contactPatches[patch].next) |
| 158 | { |
| 159 | const PxU32 count = c.contactPatches[patch].count; |
| 160 | const Gu::ContactPoint* contactBase = buffer.contacts + c.contactPatches[patch].start; |
| 161 | |
| 162 | PxU8* p = ptr; |
| 163 | for(PxU32 j=0;j<count;j++) |
| 164 | { |
| 165 | const Gu::ContactPoint& contact = contactBase[j]; |
| 166 | |
| 167 | SolverContactPointExt* PX_RESTRICT solverContact = reinterpret_cast<SolverContactPointExt*>(p); |
| 168 | p += pointStride; |
| 169 | |
| 170 | setupExtSolverContact(b0, b1, d0, d1, angD0, angD1, bodyFrame0p, bodyFrame1p, normal, invDt: invDtV, invDtp8, restDistance, maxPenBias, restitution, |
| 171 | bounceThreshold, contact, solverContact&: *solverContact, ccdMaxSeparation, Z, v0: vel0, v1: vel1); |
| 172 | } |
| 173 | ptr = p; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | //construct all the frictions |
| 178 | |
| 179 | PxU8* PX_RESTRICT ptr2 = workspace; |
| 180 | |
| 181 | const PxF32 orthoThreshold = 0.70710678f; |
| 182 | const PxF32 eps = 0.00001f; |
| 183 | bool hasFriction = false; |
| 184 | |
| 185 | for(PxU32 i=0;i< frictionPatchCount;i++) |
| 186 | { |
| 187 | const PxU32 contactCount = c.frictionPatchContactCounts[i]; |
| 188 | if(contactCount == 0) |
| 189 | continue; |
| 190 | |
| 191 | SolverContactCoulombHeader* = reinterpret_cast<SolverContactCoulombHeader*>(ptr2); |
| 192 | header->frictionOffset = PxU16(ptr - ptr2); |
| 193 | ptr2 += sizeof(SolverContactCoulombHeader) + header->numNormalConstr * pointStride; |
| 194 | |
| 195 | const Gu::ContactPoint* contactBase0 = buffer.contacts + c.contactPatches[c.correlationListHeads[i]].start; |
| 196 | |
| 197 | PxVec3 normal = contactBase0->normal; |
| 198 | |
| 199 | const PxReal staticFriction = contactBase0->staticFriction; |
| 200 | const bool disableStrongFriction = !!(contactBase0->materialFlags & PxMaterialFlag::eDISABLE_FRICTION); |
| 201 | const bool haveFriction = (disableStrongFriction == 0); |
| 202 | |
| 203 | SolverFrictionHeader* = reinterpret_cast<SolverFrictionHeader*>(ptr); |
| 204 | frictionHeader->numNormalConstr = Ps::to8(value: c.frictionPatchContactCounts[i]); |
| 205 | frictionHeader->numFrictionConstr = Ps::to8(value: haveFriction ? c.frictionPatchContactCounts[i] * frictionCountPerPoint : 0); |
| 206 | frictionHeader->flags = flags; |
| 207 | ptr += sizeof(SolverFrictionHeader); |
| 208 | PxF32* forceBuffer = reinterpret_cast<PxF32*>(ptr); |
| 209 | ptr += frictionHeader->getAppliedForcePaddingSize(numConstr: c.frictionPatchContactCounts[i]); |
| 210 | PxMemZero(dest: forceBuffer, count: sizeof(PxF32) * c.frictionPatchContactCounts[i]); |
| 211 | Ps::prefetchLine(ptr, offset: 128); |
| 212 | Ps::prefetchLine(ptr, offset: 256); |
| 213 | Ps::prefetchLine(ptr, offset: 384); |
| 214 | |
| 215 | |
| 216 | const PxVec3 t0Fallback1(0.f, -normal.z, normal.y); |
| 217 | const PxVec3 t0Fallback2(-normal.y, normal.x, 0.f) ; |
| 218 | const PxVec3 tFallback1 = orthoThreshold > PxAbs(a: normal.x) ? t0Fallback1 : t0Fallback2; |
| 219 | const PxVec3 vrel = b0.getLinVel() - b1.getLinVel(); |
| 220 | const PxVec3 t0_ = vrel - normal * (normal.dot(v: vrel)); |
| 221 | const PxReal sqDist = t0_.dot(v: t0_); |
| 222 | const PxVec3 tDir0 = (sqDist > eps ? t0_: tFallback1).getNormalized(); |
| 223 | const PxVec3 tDir1 = tDir0.cross(v: normal); |
| 224 | PxVec3 tFallback[2] = {tDir0, tDir1}; |
| 225 | |
| 226 | PxU32 ind = 0; |
| 227 | |
| 228 | if(haveFriction) |
| 229 | { |
| 230 | hasFriction = true; |
| 231 | frictionHeader->setStaticFriction(staticFriction); |
| 232 | frictionHeader->invMass0D0 = invMassScale0; |
| 233 | frictionHeader->invMass1D1 = invMassScale1; |
| 234 | frictionHeader->angDom0 = invInertiaScale0; |
| 235 | frictionHeader->angDom1 = invInertiaScale1; |
| 236 | frictionHeader->type = frictionHeaderType; |
| 237 | |
| 238 | PxU32 totalPatchContactCount = 0; |
| 239 | |
| 240 | for(PxU32 patch=c.correlationListHeads[i]; |
| 241 | patch!=CorrelationBuffer::LIST_END; |
| 242 | patch = c.contactPatches[patch].next) |
| 243 | { |
| 244 | const PxU32 count = c.contactPatches[patch].count; |
| 245 | const PxU32 start = c.contactPatches[patch].start; |
| 246 | const Gu::ContactPoint* contactBase = buffer.contacts + start; |
| 247 | |
| 248 | PxU8* p = ptr; |
| 249 | |
| 250 | for(PxU32 j =0; j < count; j++) |
| 251 | { |
| 252 | const Gu::ContactPoint& contact = contactBase[j]; |
| 253 | const Vec3V ra = V3Sub(a: V3LoadA(f: contact.point), b: bodyFrame0p); |
| 254 | const Vec3V rb = V3Sub(a: V3LoadA(f: contact.point), b: bodyFrame1p); |
| 255 | |
| 256 | const Vec3V targetVel = V3LoadA(f: contact.targetVel); |
| 257 | const Vec3V pVRa = V3Add(a: vel0.linear, b: V3Cross(a: vel0.angular, b: ra)); |
| 258 | const Vec3V pVRb = V3Add(a: vel1.linear, b: V3Cross(a: vel1.angular, b: rb)); |
| 259 | //const PxVec3 vrel = pVRa - pVRb; |
| 260 | |
| 261 | for(PxU32 k = 0; k < frictionCountPerPoint; ++k) |
| 262 | { |
| 263 | SolverContactFrictionExt* PX_RESTRICT f0 = reinterpret_cast<SolverContactFrictionExt*>(p); |
| 264 | p += frictionStride; |
| 265 | |
| 266 | Vec3V t0 = V3LoadU(f: tFallback[ind]); |
| 267 | ind = 1 - ind; |
| 268 | const Vec3V raXn = V3Cross(a: ra, b: t0); |
| 269 | const Vec3V rbXn = V3Cross(a: rb, b: t0); |
| 270 | Cm::SpatialVectorV deltaV0, deltaV1; |
| 271 | |
| 272 | const Cm::SpatialVectorV resp0 = createImpulseResponseVector(linear: t0, angular: raXn, body: b0); |
| 273 | const Cm::SpatialVectorV resp1 = createImpulseResponseVector(linear: V3Neg(f: t0), angular: V3Neg(f: rbXn), body: b1); |
| 274 | |
| 275 | FloatV unitResponse = getImpulseResponse(b0, impulse0: resp0, deltaV0, dom0: d0, angDom0: angD0, |
| 276 | b1, impulse1: resp1, deltaV1, dom1: d1, angDom1: angD1, Z: reinterpret_cast<Cm::SpatialVectorV*>(Z)); |
| 277 | |
| 278 | FloatV tv = V3Dot(a: targetVel, b: t0); |
| 279 | if(b0.mLinkIndex == PxSolverConstraintDesc::NO_LINK) |
| 280 | tv = FAdd(a: tv, b: V3Dot(a: pVRa, b: t0)); |
| 281 | else if(b1.mLinkIndex == PxSolverConstraintDesc::NO_LINK) |
| 282 | tv = FSub(a: tv, b: V3Dot(a: pVRb, b: t0)); |
| 283 | |
| 284 | const FloatV recipResponse = FSel(c: FIsGrtr(a: unitResponse, b: FZero()), a: FRecip(a: unitResponse), b: FZero()); |
| 285 | |
| 286 | f0->raXnXYZ_velMultiplierW = V4SetW(v: Vec4V_From_Vec3V(f: resp0.angular), f: recipResponse); |
| 287 | f0->rbXnXYZ_biasW = V4SetW(v: V4Neg(f: Vec4V_From_Vec3V(f: resp1.angular)), f: FZero()); |
| 288 | f0->normalXYZ_appliedForceW = V4SetW(v: Vec4V_From_Vec3V(f: t0), f: FZero()); |
| 289 | FStore(a: tv, f: &f0->targetVel); |
| 290 | f0->linDeltaVA = deltaV0.linear; |
| 291 | f0->angDeltaVA = deltaV0.angular; |
| 292 | f0->linDeltaVB = deltaV1.linear; |
| 293 | f0->angDeltaVB = deltaV1.angular; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | totalPatchContactCount += c.contactPatches[patch].count; |
| 298 | |
| 299 | ptr = p; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | //PX_ASSERT(ptr - workspace == n.solverConstraintSize); |
| 304 | return hasFriction; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | } |
| 309 | |
| 310 | } |
| 311 | |