| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/init.h> |
| 3 | |
| 4 | #include <linux/mm.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | #include <linux/smp.h> |
| 7 | #include <linux/interrupt.h> |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/cpu.h> |
| 10 | #include <linux/debugfs.h> |
| 11 | #include <linux/sched/smt.h> |
| 12 | #include <linux/task_work.h> |
| 13 | #include <linux/mmu_notifier.h> |
| 14 | #include <linux/mmu_context.h> |
| 15 | |
| 16 | #include <asm/tlbflush.h> |
| 17 | #include <asm/mmu_context.h> |
| 18 | #include <asm/nospec-branch.h> |
| 19 | #include <asm/cache.h> |
| 20 | #include <asm/cacheflush.h> |
| 21 | #include <asm/apic.h> |
| 22 | #include <asm/msr.h> |
| 23 | #include <asm/perf_event.h> |
| 24 | #include <asm/tlb.h> |
| 25 | |
| 26 | #include "mm_internal.h" |
| 27 | |
| 28 | #ifdef CONFIG_PARAVIRT |
| 29 | # define STATIC_NOPV |
| 30 | #else |
| 31 | # define STATIC_NOPV static |
| 32 | # define __flush_tlb_local native_flush_tlb_local |
| 33 | # define __flush_tlb_global native_flush_tlb_global |
| 34 | # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) |
| 35 | # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) |
| 36 | #endif |
| 37 | |
| 38 | /* |
| 39 | * TLB flushing, formerly SMP-only |
| 40 | * c/o Linus Torvalds. |
| 41 | * |
| 42 | * These mean you can really definitely utterly forget about |
| 43 | * writing to user space from interrupts. (Its not allowed anyway). |
| 44 | * |
| 45 | * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| 46 | * |
| 47 | * More scalable flush, from Andi Kleen |
| 48 | * |
| 49 | * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi |
| 50 | */ |
| 51 | |
| 52 | /* |
| 53 | * Bits to mangle the TIF_SPEC_* state into the mm pointer which is |
| 54 | * stored in cpu_tlb_state.last_user_mm_spec. |
| 55 | */ |
| 56 | #define LAST_USER_MM_IBPB 0x1UL |
| 57 | #define LAST_USER_MM_L1D_FLUSH 0x2UL |
| 58 | #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) |
| 59 | |
| 60 | /* Bits to set when tlbstate and flush is (re)initialized */ |
| 61 | #define LAST_USER_MM_INIT LAST_USER_MM_IBPB |
| 62 | |
| 63 | /* |
| 64 | * The x86 feature is called PCID (Process Context IDentifier). It is similar |
| 65 | * to what is traditionally called ASID on the RISC processors. |
| 66 | * |
| 67 | * We don't use the traditional ASID implementation, where each process/mm gets |
| 68 | * its own ASID and flush/restart when we run out of ASID space. |
| 69 | * |
| 70 | * Instead we have a small per-cpu array of ASIDs and cache the last few mm's |
| 71 | * that came by on this CPU, allowing cheaper switch_mm between processes on |
| 72 | * this CPU. |
| 73 | * |
| 74 | * We end up with different spaces for different things. To avoid confusion we |
| 75 | * use different names for each of them: |
| 76 | * |
| 77 | * ASID - [0, TLB_NR_DYN_ASIDS-1] |
| 78 | * the canonical identifier for an mm, dynamically allocated on each CPU |
| 79 | * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1] |
| 80 | * the canonical, global identifier for an mm, identical across all CPUs |
| 81 | * |
| 82 | * kPCID - [1, MAX_ASID_AVAILABLE] |
| 83 | * the value we write into the PCID part of CR3; corresponds to the |
| 84 | * ASID+1, because PCID 0 is special. |
| 85 | * |
| 86 | * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE] |
| 87 | * for KPTI each mm has two address spaces and thus needs two |
| 88 | * PCID values, but we can still do with a single ASID denomination |
| 89 | * for each mm. Corresponds to kPCID + 2048. |
| 90 | * |
| 91 | */ |
| 92 | |
| 93 | /* |
| 94 | * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for |
| 95 | * user/kernel switches |
| 96 | */ |
| 97 | #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION |
| 98 | # define PTI_CONSUMED_PCID_BITS 1 |
| 99 | #else |
| 100 | # define PTI_CONSUMED_PCID_BITS 0 |
| 101 | #endif |
| 102 | |
| 103 | #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) |
| 104 | |
| 105 | /* |
| 106 | * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account |
| 107 | * for them being zero-based. Another -1 is because PCID 0 is reserved for |
| 108 | * use by non-PCID-aware users. |
| 109 | */ |
| 110 | #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) |
| 111 | |
| 112 | /* |
| 113 | * Given @asid, compute kPCID |
| 114 | */ |
| 115 | static inline u16 kern_pcid(u16 asid) |
| 116 | { |
| 117 | VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); |
| 118 | |
| 119 | #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION |
| 120 | /* |
| 121 | * Make sure that the dynamic ASID space does not conflict with the |
| 122 | * bit we are using to switch between user and kernel ASIDs. |
| 123 | */ |
| 124 | BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); |
| 125 | |
| 126 | /* |
| 127 | * The ASID being passed in here should have respected the |
| 128 | * MAX_ASID_AVAILABLE and thus never have the switch bit set. |
| 129 | */ |
| 130 | VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); |
| 131 | #endif |
| 132 | /* |
| 133 | * The dynamically-assigned ASIDs that get passed in are small |
| 134 | * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, |
| 135 | * so do not bother to clear it. |
| 136 | * |
| 137 | * If PCID is on, ASID-aware code paths put the ASID+1 into the |
| 138 | * PCID bits. This serves two purposes. It prevents a nasty |
| 139 | * situation in which PCID-unaware code saves CR3, loads some other |
| 140 | * value (with PCID == 0), and then restores CR3, thus corrupting |
| 141 | * the TLB for ASID 0 if the saved ASID was nonzero. It also means |
| 142 | * that any bugs involving loading a PCID-enabled CR3 with |
| 143 | * CR4.PCIDE off will trigger deterministically. |
| 144 | */ |
| 145 | return asid + 1; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Given @asid, compute uPCID |
| 150 | */ |
| 151 | static inline u16 user_pcid(u16 asid) |
| 152 | { |
| 153 | u16 ret = kern_pcid(asid); |
| 154 | #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION |
| 155 | ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; |
| 156 | #endif |
| 157 | return ret; |
| 158 | } |
| 159 | |
| 160 | static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) |
| 161 | { |
| 162 | unsigned long cr3 = __sme_pa(pgd) | lam; |
| 163 | |
| 164 | if (static_cpu_has(X86_FEATURE_PCID)) { |
| 165 | cr3 |= kern_pcid(asid); |
| 166 | } else { |
| 167 | VM_WARN_ON_ONCE(asid != 0); |
| 168 | } |
| 169 | |
| 170 | return cr3; |
| 171 | } |
| 172 | |
| 173 | static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, |
| 174 | unsigned long lam) |
| 175 | { |
| 176 | /* |
| 177 | * Use boot_cpu_has() instead of this_cpu_has() as this function |
| 178 | * might be called during early boot. This should work even after |
| 179 | * boot because all CPU's the have same capabilities: |
| 180 | */ |
| 181 | VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); |
| 182 | return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | * We get here when we do something requiring a TLB invalidation |
| 187 | * but could not go invalidate all of the contexts. We do the |
| 188 | * necessary invalidation by clearing out the 'ctx_id' which |
| 189 | * forces a TLB flush when the context is loaded. |
| 190 | */ |
| 191 | static void clear_asid_other(void) |
| 192 | { |
| 193 | u16 asid; |
| 194 | |
| 195 | /* |
| 196 | * This is only expected to be set if we have disabled |
| 197 | * kernel _PAGE_GLOBAL pages. |
| 198 | */ |
| 199 | if (!static_cpu_has(X86_FEATURE_PTI)) { |
| 200 | WARN_ON_ONCE(1); |
| 201 | return; |
| 202 | } |
| 203 | |
| 204 | for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { |
| 205 | /* Do not need to flush the current asid */ |
| 206 | if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) |
| 207 | continue; |
| 208 | /* |
| 209 | * Make sure the next time we go to switch to |
| 210 | * this asid, we do a flush: |
| 211 | */ |
| 212 | this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); |
| 213 | } |
| 214 | this_cpu_write(cpu_tlbstate.invalidate_other, false); |
| 215 | } |
| 216 | |
| 217 | atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); |
| 218 | |
| 219 | struct new_asid { |
| 220 | unsigned int asid : 16; |
| 221 | unsigned int need_flush : 1; |
| 222 | }; |
| 223 | |
| 224 | static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen) |
| 225 | { |
| 226 | struct new_asid ns; |
| 227 | u16 asid; |
| 228 | |
| 229 | if (!static_cpu_has(X86_FEATURE_PCID)) { |
| 230 | ns.asid = 0; |
| 231 | ns.need_flush = 1; |
| 232 | return ns; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * TLB consistency for global ASIDs is maintained with hardware assisted |
| 237 | * remote TLB flushing. Global ASIDs are always up to date. |
| 238 | */ |
| 239 | if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { |
| 240 | u16 global_asid = mm_global_asid(mm: next); |
| 241 | |
| 242 | if (global_asid) { |
| 243 | ns.asid = global_asid; |
| 244 | ns.need_flush = 0; |
| 245 | return ns; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | if (this_cpu_read(cpu_tlbstate.invalidate_other)) |
| 250 | clear_asid_other(); |
| 251 | |
| 252 | for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { |
| 253 | if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != |
| 254 | next->context.ctx_id) |
| 255 | continue; |
| 256 | |
| 257 | ns.asid = asid; |
| 258 | ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen); |
| 259 | return ns; |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * We don't currently own an ASID slot on this CPU. |
| 264 | * Allocate a slot. |
| 265 | */ |
| 266 | ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; |
| 267 | if (ns.asid >= TLB_NR_DYN_ASIDS) { |
| 268 | ns.asid = 0; |
| 269 | this_cpu_write(cpu_tlbstate.next_asid, 1); |
| 270 | } |
| 271 | ns.need_flush = true; |
| 272 | |
| 273 | return ns; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Global ASIDs are allocated for multi-threaded processes that are |
| 278 | * active on multiple CPUs simultaneously, giving each of those |
| 279 | * processes the same PCID on every CPU, for use with hardware-assisted |
| 280 | * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR. |
| 281 | * |
| 282 | * These global ASIDs are held for the lifetime of the process. |
| 283 | */ |
| 284 | static DEFINE_RAW_SPINLOCK(global_asid_lock); |
| 285 | static u16 last_global_asid = MAX_ASID_AVAILABLE; |
| 286 | static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE); |
| 287 | static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE); |
| 288 | static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1; |
| 289 | |
| 290 | /* |
| 291 | * When the search for a free ASID in the global ASID space reaches |
| 292 | * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously |
| 293 | * freed global ASIDs are safe to re-use. |
| 294 | * |
| 295 | * This way the global flush only needs to happen at ASID rollover |
| 296 | * time, and not at ASID allocation time. |
| 297 | */ |
| 298 | static void reset_global_asid_space(void) |
| 299 | { |
| 300 | lockdep_assert_held(&global_asid_lock); |
| 301 | |
| 302 | invlpgb_flush_all_nonglobals(); |
| 303 | |
| 304 | /* |
| 305 | * The TLB flush above makes it safe to re-use the previously |
| 306 | * freed global ASIDs. |
| 307 | */ |
| 308 | bitmap_andnot(dst: global_asid_used, src1: global_asid_used, |
| 309 | src2: global_asid_freed, MAX_ASID_AVAILABLE); |
| 310 | bitmap_clear(map: global_asid_freed, start: 0, MAX_ASID_AVAILABLE); |
| 311 | |
| 312 | /* Restart the search from the start of global ASID space. */ |
| 313 | last_global_asid = TLB_NR_DYN_ASIDS; |
| 314 | } |
| 315 | |
| 316 | static u16 allocate_global_asid(void) |
| 317 | { |
| 318 | u16 asid; |
| 319 | |
| 320 | lockdep_assert_held(&global_asid_lock); |
| 321 | |
| 322 | /* The previous allocation hit the edge of available address space */ |
| 323 | if (last_global_asid >= MAX_ASID_AVAILABLE - 1) |
| 324 | reset_global_asid_space(); |
| 325 | |
| 326 | asid = find_next_zero_bit(addr: global_asid_used, MAX_ASID_AVAILABLE, offset: last_global_asid); |
| 327 | |
| 328 | if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) { |
| 329 | /* This should never happen. */ |
| 330 | VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n" , |
| 331 | global_asid_available); |
| 332 | return 0; |
| 333 | } |
| 334 | |
| 335 | /* Claim this global ASID. */ |
| 336 | __set_bit(asid, global_asid_used); |
| 337 | last_global_asid = asid; |
| 338 | global_asid_available--; |
| 339 | return asid; |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Check whether a process is currently active on more than @threshold CPUs. |
| 344 | * This is a cheap estimation on whether or not it may make sense to assign |
| 345 | * a global ASID to this process, and use broadcast TLB invalidation. |
| 346 | */ |
| 347 | static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold) |
| 348 | { |
| 349 | int count = 0; |
| 350 | int cpu; |
| 351 | |
| 352 | /* This quick check should eliminate most single threaded programs. */ |
| 353 | if (cpumask_weight(srcp: mm_cpumask(mm)) <= threshold) |
| 354 | return false; |
| 355 | |
| 356 | /* Slower check to make sure. */ |
| 357 | for_each_cpu(cpu, mm_cpumask(mm)) { |
| 358 | /* Skip the CPUs that aren't really running this process. */ |
| 359 | if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm) |
| 360 | continue; |
| 361 | |
| 362 | if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) |
| 363 | continue; |
| 364 | |
| 365 | if (++count > threshold) |
| 366 | return true; |
| 367 | } |
| 368 | return false; |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Assign a global ASID to the current process, protecting against |
| 373 | * races between multiple threads in the process. |
| 374 | */ |
| 375 | static void use_global_asid(struct mm_struct *mm) |
| 376 | { |
| 377 | u16 asid; |
| 378 | |
| 379 | guard(raw_spinlock_irqsave)(l: &global_asid_lock); |
| 380 | |
| 381 | /* This process is already using broadcast TLB invalidation. */ |
| 382 | if (mm_global_asid(mm)) |
| 383 | return; |
| 384 | |
| 385 | /* |
| 386 | * The last global ASID was consumed while waiting for the lock. |
| 387 | * |
| 388 | * If this fires, a more aggressive ASID reuse scheme might be |
| 389 | * needed. |
| 390 | */ |
| 391 | if (!global_asid_available) { |
| 392 | VM_WARN_ONCE(1, "Ran out of global ASIDs\n" ); |
| 393 | return; |
| 394 | } |
| 395 | |
| 396 | asid = allocate_global_asid(); |
| 397 | if (!asid) |
| 398 | return; |
| 399 | |
| 400 | mm_assign_global_asid(mm, asid); |
| 401 | } |
| 402 | |
| 403 | void mm_free_global_asid(struct mm_struct *mm) |
| 404 | { |
| 405 | if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 406 | return; |
| 407 | |
| 408 | if (!mm_global_asid(mm)) |
| 409 | return; |
| 410 | |
| 411 | guard(raw_spinlock_irqsave)(l: &global_asid_lock); |
| 412 | |
| 413 | /* The global ASID can be re-used only after flush at wrap-around. */ |
| 414 | #ifdef CONFIG_BROADCAST_TLB_FLUSH |
| 415 | __set_bit(mm->context.global_asid, global_asid_freed); |
| 416 | |
| 417 | mm->context.global_asid = 0; |
| 418 | global_asid_available++; |
| 419 | #endif |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * Is the mm transitioning from a CPU-local ASID to a global ASID? |
| 424 | */ |
| 425 | static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid) |
| 426 | { |
| 427 | u16 global_asid = mm_global_asid(mm); |
| 428 | |
| 429 | if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 430 | return false; |
| 431 | |
| 432 | /* Process is transitioning to a global ASID */ |
| 433 | if (global_asid && asid != global_asid) |
| 434 | return true; |
| 435 | |
| 436 | return false; |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86 |
| 441 | * systems have over 8k CPUs. Because of this potential ASID shortage, |
| 442 | * global ASIDs are handed out to processes that have frequent TLB |
| 443 | * flushes and are active on 4 or more CPUs simultaneously. |
| 444 | */ |
| 445 | static void consider_global_asid(struct mm_struct *mm) |
| 446 | { |
| 447 | if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 448 | return; |
| 449 | |
| 450 | /* Check every once in a while. */ |
| 451 | if ((current->pid & 0x1f) != (jiffies & 0x1f)) |
| 452 | return; |
| 453 | |
| 454 | /* |
| 455 | * Assign a global ASID if the process is active on |
| 456 | * 4 or more CPUs simultaneously. |
| 457 | */ |
| 458 | if (mm_active_cpus_exceeds(mm, threshold: 3)) |
| 459 | use_global_asid(mm); |
| 460 | } |
| 461 | |
| 462 | static void finish_asid_transition(struct flush_tlb_info *info) |
| 463 | { |
| 464 | struct mm_struct *mm = info->mm; |
| 465 | int bc_asid = mm_global_asid(mm); |
| 466 | int cpu; |
| 467 | |
| 468 | if (!mm_in_asid_transition(mm)) |
| 469 | return; |
| 470 | |
| 471 | for_each_cpu(cpu, mm_cpumask(mm)) { |
| 472 | /* |
| 473 | * The remote CPU is context switching. Wait for that to |
| 474 | * finish, to catch the unlikely case of it switching to |
| 475 | * the target mm with an out of date ASID. |
| 476 | */ |
| 477 | while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING) |
| 478 | cpu_relax(); |
| 479 | |
| 480 | if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm) |
| 481 | continue; |
| 482 | |
| 483 | /* |
| 484 | * If at least one CPU is not using the global ASID yet, |
| 485 | * send a TLB flush IPI. The IPI should cause stragglers |
| 486 | * to transition soon. |
| 487 | * |
| 488 | * This can race with the CPU switching to another task; |
| 489 | * that results in a (harmless) extra IPI. |
| 490 | */ |
| 491 | if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) { |
| 492 | flush_tlb_multi(cpumask: mm_cpumask(mm: info->mm), info); |
| 493 | return; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /* All the CPUs running this process are using the global ASID. */ |
| 498 | mm_clear_asid_transition(mm); |
| 499 | } |
| 500 | |
| 501 | static void broadcast_tlb_flush(struct flush_tlb_info *info) |
| 502 | { |
| 503 | bool pmd = info->stride_shift == PMD_SHIFT; |
| 504 | unsigned long asid = mm_global_asid(mm: info->mm); |
| 505 | unsigned long addr = info->start; |
| 506 | |
| 507 | /* |
| 508 | * TLB flushes with INVLPGB are kicked off asynchronously. |
| 509 | * The inc_mm_tlb_gen() guarantees page table updates are done |
| 510 | * before these TLB flushes happen. |
| 511 | */ |
| 512 | if (info->end == TLB_FLUSH_ALL) { |
| 513 | invlpgb_flush_single_pcid_nosync(pcid: kern_pcid(asid)); |
| 514 | /* Do any CPUs supporting INVLPGB need PTI? */ |
| 515 | if (cpu_feature_enabled(X86_FEATURE_PTI)) |
| 516 | invlpgb_flush_single_pcid_nosync(pcid: user_pcid(asid)); |
| 517 | } else do { |
| 518 | unsigned long nr = 1; |
| 519 | |
| 520 | if (info->stride_shift <= PMD_SHIFT) { |
| 521 | nr = (info->end - addr) >> info->stride_shift; |
| 522 | nr = clamp_val(nr, 1, invlpgb_count_max); |
| 523 | } |
| 524 | |
| 525 | invlpgb_flush_user_nr_nosync(pcid: kern_pcid(asid), addr, nr, stride: pmd); |
| 526 | if (cpu_feature_enabled(X86_FEATURE_PTI)) |
| 527 | invlpgb_flush_user_nr_nosync(pcid: user_pcid(asid), addr, nr, stride: pmd); |
| 528 | |
| 529 | addr += nr << info->stride_shift; |
| 530 | } while (addr < info->end); |
| 531 | |
| 532 | finish_asid_transition(info); |
| 533 | |
| 534 | /* Wait for the INVLPGBs kicked off above to finish. */ |
| 535 | __tlbsync(); |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Given an ASID, flush the corresponding user ASID. We can delay this |
| 540 | * until the next time we switch to it. |
| 541 | * |
| 542 | * See SWITCH_TO_USER_CR3. |
| 543 | */ |
| 544 | static inline void invalidate_user_asid(u16 asid) |
| 545 | { |
| 546 | /* There is no user ASID if address space separation is off */ |
| 547 | if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) |
| 548 | return; |
| 549 | |
| 550 | /* |
| 551 | * We only have a single ASID if PCID is off and the CR3 |
| 552 | * write will have flushed it. |
| 553 | */ |
| 554 | if (!cpu_feature_enabled(X86_FEATURE_PCID)) |
| 555 | return; |
| 556 | |
| 557 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 558 | return; |
| 559 | |
| 560 | __set_bit(kern_pcid(asid), |
| 561 | (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); |
| 562 | } |
| 563 | |
| 564 | static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, |
| 565 | bool need_flush) |
| 566 | { |
| 567 | unsigned long new_mm_cr3; |
| 568 | |
| 569 | if (need_flush) { |
| 570 | invalidate_user_asid(asid: new_asid); |
| 571 | new_mm_cr3 = build_cr3(pgd: pgdir, asid: new_asid, lam); |
| 572 | } else { |
| 573 | new_mm_cr3 = build_cr3_noflush(pgd: pgdir, asid: new_asid, lam); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * Caution: many callers of this function expect |
| 578 | * that load_cr3() is serializing and orders TLB |
| 579 | * fills with respect to the mm_cpumask writes. |
| 580 | */ |
| 581 | write_cr3(x: new_mm_cr3); |
| 582 | } |
| 583 | |
| 584 | void leave_mm(void) |
| 585 | { |
| 586 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 587 | |
| 588 | /* |
| 589 | * It's plausible that we're in lazy TLB mode while our mm is init_mm. |
| 590 | * If so, our callers still expect us to flush the TLB, but there |
| 591 | * aren't any user TLB entries in init_mm to worry about. |
| 592 | * |
| 593 | * This needs to happen before any other sanity checks due to |
| 594 | * intel_idle's shenanigans. |
| 595 | */ |
| 596 | if (loaded_mm == &init_mm) |
| 597 | return; |
| 598 | |
| 599 | /* Warn if we're not lazy. */ |
| 600 | WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); |
| 601 | |
| 602 | switch_mm(NULL, next: &init_mm, NULL); |
| 603 | } |
| 604 | EXPORT_SYMBOL_GPL(leave_mm); |
| 605 | |
| 606 | void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| 607 | struct task_struct *tsk) |
| 608 | { |
| 609 | unsigned long flags; |
| 610 | |
| 611 | local_irq_save(flags); |
| 612 | switch_mm_irqs_off(NULL, next, tsk); |
| 613 | local_irq_restore(flags); |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * Invoked from return to user/guest by a task that opted-in to L1D |
| 618 | * flushing but ended up running on an SMT enabled core due to wrong |
| 619 | * affinity settings or CPU hotplug. This is part of the paranoid L1D flush |
| 620 | * contract which this task requested. |
| 621 | */ |
| 622 | static void l1d_flush_force_sigbus(struct callback_head *ch) |
| 623 | { |
| 624 | force_sig(SIGBUS); |
| 625 | } |
| 626 | |
| 627 | static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, |
| 628 | struct task_struct *next) |
| 629 | { |
| 630 | /* Flush L1D if the outgoing task requests it */ |
| 631 | if (prev_mm & LAST_USER_MM_L1D_FLUSH) |
| 632 | wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); |
| 633 | |
| 634 | /* Check whether the incoming task opted in for L1D flush */ |
| 635 | if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) |
| 636 | return; |
| 637 | |
| 638 | /* |
| 639 | * Validate that it is not running on an SMT sibling as this would |
| 640 | * make the exercise pointless because the siblings share L1D. If |
| 641 | * it runs on a SMT sibling, notify it with SIGBUS on return to |
| 642 | * user/guest |
| 643 | */ |
| 644 | if (this_cpu_read(cpu_info.smt_active)) { |
| 645 | clear_ti_thread_flag(ti: &next->thread_info, TIF_SPEC_L1D_FLUSH); |
| 646 | next->l1d_flush_kill.func = l1d_flush_force_sigbus; |
| 647 | task_work_add(task: next, twork: &next->l1d_flush_kill, mode: TWA_RESUME); |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) |
| 652 | { |
| 653 | unsigned long next_tif = read_task_thread_flags(next); |
| 654 | unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; |
| 655 | |
| 656 | /* |
| 657 | * Ensure that the bit shift above works as expected and the two flags |
| 658 | * end up in bit 0 and 1. |
| 659 | */ |
| 660 | BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); |
| 661 | |
| 662 | return (unsigned long)next->mm | spec_bits; |
| 663 | } |
| 664 | |
| 665 | static void cond_mitigation(struct task_struct *next) |
| 666 | { |
| 667 | unsigned long prev_mm, next_mm; |
| 668 | |
| 669 | if (!next || !next->mm) |
| 670 | return; |
| 671 | |
| 672 | next_mm = mm_mangle_tif_spec_bits(next); |
| 673 | prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); |
| 674 | |
| 675 | /* |
| 676 | * Avoid user->user BTB/RSB poisoning by flushing them when switching |
| 677 | * between processes. This stops one process from doing Spectre-v2 |
| 678 | * attacks on another. |
| 679 | * |
| 680 | * Both, the conditional and the always IBPB mode use the mm |
| 681 | * pointer to avoid the IBPB when switching between tasks of the |
| 682 | * same process. Using the mm pointer instead of mm->context.ctx_id |
| 683 | * opens a hypothetical hole vs. mm_struct reuse, which is more or |
| 684 | * less impossible to control by an attacker. Aside of that it |
| 685 | * would only affect the first schedule so the theoretically |
| 686 | * exposed data is not really interesting. |
| 687 | */ |
| 688 | if (static_branch_likely(&switch_mm_cond_ibpb)) { |
| 689 | /* |
| 690 | * This is a bit more complex than the always mode because |
| 691 | * it has to handle two cases: |
| 692 | * |
| 693 | * 1) Switch from a user space task (potential attacker) |
| 694 | * which has TIF_SPEC_IB set to a user space task |
| 695 | * (potential victim) which has TIF_SPEC_IB not set. |
| 696 | * |
| 697 | * 2) Switch from a user space task (potential attacker) |
| 698 | * which has TIF_SPEC_IB not set to a user space task |
| 699 | * (potential victim) which has TIF_SPEC_IB set. |
| 700 | * |
| 701 | * This could be done by unconditionally issuing IBPB when |
| 702 | * a task which has TIF_SPEC_IB set is either scheduled in |
| 703 | * or out. Though that results in two flushes when: |
| 704 | * |
| 705 | * - the same user space task is scheduled out and later |
| 706 | * scheduled in again and only a kernel thread ran in |
| 707 | * between. |
| 708 | * |
| 709 | * - a user space task belonging to the same process is |
| 710 | * scheduled in after a kernel thread ran in between |
| 711 | * |
| 712 | * - a user space task belonging to the same process is |
| 713 | * scheduled in immediately. |
| 714 | * |
| 715 | * Optimize this with reasonably small overhead for the |
| 716 | * above cases. Mangle the TIF_SPEC_IB bit into the mm |
| 717 | * pointer of the incoming task which is stored in |
| 718 | * cpu_tlbstate.last_user_mm_spec for comparison. |
| 719 | * |
| 720 | * Issue IBPB only if the mm's are different and one or |
| 721 | * both have the IBPB bit set. |
| 722 | */ |
| 723 | if (next_mm != prev_mm && |
| 724 | (next_mm | prev_mm) & LAST_USER_MM_IBPB) |
| 725 | indirect_branch_prediction_barrier(); |
| 726 | } |
| 727 | |
| 728 | if (static_branch_unlikely(&switch_mm_always_ibpb)) { |
| 729 | /* |
| 730 | * Only flush when switching to a user space task with a |
| 731 | * different context than the user space task which ran |
| 732 | * last on this CPU. |
| 733 | */ |
| 734 | if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm) |
| 735 | indirect_branch_prediction_barrier(); |
| 736 | } |
| 737 | |
| 738 | if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { |
| 739 | /* |
| 740 | * Flush L1D when the outgoing task requested it and/or |
| 741 | * check whether the incoming task requested L1D flushing |
| 742 | * and ended up on an SMT sibling. |
| 743 | */ |
| 744 | if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) |
| 745 | l1d_flush_evaluate(prev_mm, next_mm, next); |
| 746 | } |
| 747 | |
| 748 | this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); |
| 749 | } |
| 750 | |
| 751 | #ifdef CONFIG_PERF_EVENTS |
| 752 | static inline void cr4_update_pce_mm(struct mm_struct *mm) |
| 753 | { |
| 754 | if (static_branch_unlikely(&rdpmc_always_available_key) || |
| 755 | (!static_branch_unlikely(&rdpmc_never_available_key) && |
| 756 | atomic_read(v: &mm->context.perf_rdpmc_allowed))) { |
| 757 | /* |
| 758 | * Clear the existing dirty counters to |
| 759 | * prevent the leak for an RDPMC task. |
| 760 | */ |
| 761 | perf_clear_dirty_counters(); |
| 762 | cr4_set_bits_irqsoff(X86_CR4_PCE); |
| 763 | } else |
| 764 | cr4_clear_bits_irqsoff(X86_CR4_PCE); |
| 765 | } |
| 766 | |
| 767 | void cr4_update_pce(void *ignored) |
| 768 | { |
| 769 | cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); |
| 770 | } |
| 771 | |
| 772 | #else |
| 773 | static inline void cr4_update_pce_mm(struct mm_struct *mm) { } |
| 774 | #endif |
| 775 | |
| 776 | /* |
| 777 | * This optimizes when not actually switching mm's. Some architectures use the |
| 778 | * 'unused' argument for this optimization, but x86 must use |
| 779 | * 'cpu_tlbstate.loaded_mm' instead because it does not always keep |
| 780 | * 'current->active_mm' up to date. |
| 781 | */ |
| 782 | void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next, |
| 783 | struct task_struct *tsk) |
| 784 | { |
| 785 | struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 786 | u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 787 | bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); |
| 788 | unsigned cpu = smp_processor_id(); |
| 789 | unsigned long new_lam; |
| 790 | struct new_asid ns; |
| 791 | u64 next_tlb_gen; |
| 792 | |
| 793 | |
| 794 | /* We don't want flush_tlb_func() to run concurrently with us. */ |
| 795 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
| 796 | WARN_ON_ONCE(!irqs_disabled()); |
| 797 | |
| 798 | /* |
| 799 | * Verify that CR3 is what we think it is. This will catch |
| 800 | * hypothetical buggy code that directly switches to swapper_pg_dir |
| 801 | * without going through leave_mm() / switch_mm_irqs_off() or that |
| 802 | * does something like write_cr3(read_cr3_pa()). |
| 803 | * |
| 804 | * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() |
| 805 | * isn't free. |
| 806 | */ |
| 807 | #ifdef CONFIG_DEBUG_VM |
| 808 | if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid, |
| 809 | tlbstate_lam_cr3_mask()))) { |
| 810 | /* |
| 811 | * If we were to BUG here, we'd be very likely to kill |
| 812 | * the system so hard that we don't see the call trace. |
| 813 | * Try to recover instead by ignoring the error and doing |
| 814 | * a global flush to minimize the chance of corruption. |
| 815 | * |
| 816 | * (This is far from being a fully correct recovery. |
| 817 | * Architecturally, the CPU could prefetch something |
| 818 | * back into an incorrect ASID slot and leave it there |
| 819 | * to cause trouble down the road. It's better than |
| 820 | * nothing, though.) |
| 821 | */ |
| 822 | __flush_tlb_all(); |
| 823 | } |
| 824 | #endif |
| 825 | if (was_lazy) |
| 826 | this_cpu_write(cpu_tlbstate_shared.is_lazy, false); |
| 827 | |
| 828 | /* |
| 829 | * The membarrier system call requires a full memory barrier and |
| 830 | * core serialization before returning to user-space, after |
| 831 | * storing to rq->curr, when changing mm. This is because |
| 832 | * membarrier() sends IPIs to all CPUs that are in the target mm |
| 833 | * to make them issue memory barriers. However, if another CPU |
| 834 | * switches to/from the target mm concurrently with |
| 835 | * membarrier(), it can cause that CPU not to receive an IPI |
| 836 | * when it really should issue a memory barrier. Writing to CR3 |
| 837 | * provides that full memory barrier and core serializing |
| 838 | * instruction. |
| 839 | */ |
| 840 | if (prev == next) { |
| 841 | /* Not actually switching mm's */ |
| 842 | VM_WARN_ON(is_dyn_asid(prev_asid) && |
| 843 | this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != |
| 844 | next->context.ctx_id); |
| 845 | |
| 846 | /* |
| 847 | * If this races with another thread that enables lam, 'new_lam' |
| 848 | * might not match tlbstate_lam_cr3_mask(). |
| 849 | */ |
| 850 | |
| 851 | /* |
| 852 | * Even in lazy TLB mode, the CPU should stay set in the |
| 853 | * mm_cpumask. The TLB shootdown code can figure out from |
| 854 | * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. |
| 855 | */ |
| 856 | if (IS_ENABLED(CONFIG_DEBUG_VM) && |
| 857 | WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) && |
| 858 | !cpumask_test_cpu(cpu, mm_cpumask(next)))) |
| 859 | cpumask_set_cpu(cpu, dstp: mm_cpumask(mm: next)); |
| 860 | |
| 861 | /* Check if the current mm is transitioning to a global ASID */ |
| 862 | if (mm_needs_global_asid(mm: next, asid: prev_asid)) { |
| 863 | next_tlb_gen = atomic64_read(v: &next->context.tlb_gen); |
| 864 | ns = choose_new_asid(next, next_tlb_gen); |
| 865 | goto reload_tlb; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * Broadcast TLB invalidation keeps this ASID up to date |
| 870 | * all the time. |
| 871 | */ |
| 872 | if (is_global_asid(asid: prev_asid)) |
| 873 | return; |
| 874 | |
| 875 | /* |
| 876 | * If the CPU is not in lazy TLB mode, we are just switching |
| 877 | * from one thread in a process to another thread in the same |
| 878 | * process. No TLB flush required. |
| 879 | */ |
| 880 | if (!was_lazy) |
| 881 | return; |
| 882 | |
| 883 | /* |
| 884 | * Read the tlb_gen to check whether a flush is needed. |
| 885 | * If the TLB is up to date, just use it. |
| 886 | * The barrier synchronizes with the tlb_gen increment in |
| 887 | * the TLB shootdown code. |
| 888 | */ |
| 889 | smp_mb(); |
| 890 | next_tlb_gen = atomic64_read(v: &next->context.tlb_gen); |
| 891 | if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == |
| 892 | next_tlb_gen) |
| 893 | return; |
| 894 | |
| 895 | /* |
| 896 | * TLB contents went out of date while we were in lazy |
| 897 | * mode. Fall through to the TLB switching code below. |
| 898 | */ |
| 899 | ns.asid = prev_asid; |
| 900 | ns.need_flush = true; |
| 901 | } else { |
| 902 | /* |
| 903 | * Apply process to process speculation vulnerability |
| 904 | * mitigations if applicable. |
| 905 | */ |
| 906 | cond_mitigation(next: tsk); |
| 907 | |
| 908 | /* |
| 909 | * Indicate that CR3 is about to change. nmi_uaccess_okay() |
| 910 | * and others are sensitive to the window where mm_cpumask(), |
| 911 | * CR3 and cpu_tlbstate.loaded_mm are not all in sync. |
| 912 | */ |
| 913 | this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); |
| 914 | barrier(); |
| 915 | |
| 916 | /* Start receiving IPIs and then read tlb_gen (and LAM below) */ |
| 917 | if (next != &init_mm && !cpumask_test_cpu(cpu, cpumask: mm_cpumask(mm: next))) |
| 918 | cpumask_set_cpu(cpu, dstp: mm_cpumask(mm: next)); |
| 919 | next_tlb_gen = atomic64_read(v: &next->context.tlb_gen); |
| 920 | |
| 921 | ns = choose_new_asid(next, next_tlb_gen); |
| 922 | } |
| 923 | |
| 924 | reload_tlb: |
| 925 | new_lam = mm_lam_cr3_mask(mm: next); |
| 926 | if (ns.need_flush) { |
| 927 | VM_WARN_ON_ONCE(is_global_asid(ns.asid)); |
| 928 | this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id); |
| 929 | this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen); |
| 930 | load_new_mm_cr3(pgdir: next->pgd, new_asid: ns.asid, lam: new_lam, need_flush: true); |
| 931 | |
| 932 | trace_tlb_flush(reason: TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); |
| 933 | } else { |
| 934 | /* The new ASID is already up to date. */ |
| 935 | load_new_mm_cr3(pgdir: next->pgd, new_asid: ns.asid, lam: new_lam, need_flush: false); |
| 936 | |
| 937 | trace_tlb_flush(reason: TLB_FLUSH_ON_TASK_SWITCH, pages: 0); |
| 938 | } |
| 939 | |
| 940 | /* Make sure we write CR3 before loaded_mm. */ |
| 941 | barrier(); |
| 942 | |
| 943 | this_cpu_write(cpu_tlbstate.loaded_mm, next); |
| 944 | this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid); |
| 945 | cpu_tlbstate_update_lam(lam: new_lam, mm_untag_mask(mm: next)); |
| 946 | |
| 947 | if (next != prev) { |
| 948 | cr4_update_pce_mm(mm: next); |
| 949 | switch_ldt(prev, next); |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | /* |
| 954 | * Please ignore the name of this function. It should be called |
| 955 | * switch_to_kernel_thread(). |
| 956 | * |
| 957 | * enter_lazy_tlb() is a hint from the scheduler that we are entering a |
| 958 | * kernel thread or other context without an mm. Acceptable implementations |
| 959 | * include doing nothing whatsoever, switching to init_mm, or various clever |
| 960 | * lazy tricks to try to minimize TLB flushes. |
| 961 | * |
| 962 | * The scheduler reserves the right to call enter_lazy_tlb() several times |
| 963 | * in a row. It will notify us that we're going back to a real mm by |
| 964 | * calling switch_mm_irqs_off(). |
| 965 | */ |
| 966 | void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) |
| 967 | { |
| 968 | if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) |
| 969 | return; |
| 970 | |
| 971 | this_cpu_write(cpu_tlbstate_shared.is_lazy, true); |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * Using a temporary mm allows to set temporary mappings that are not accessible |
| 976 | * by other CPUs. Such mappings are needed to perform sensitive memory writes |
| 977 | * that override the kernel memory protections (e.g., W^X), without exposing the |
| 978 | * temporary page-table mappings that are required for these write operations to |
| 979 | * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the |
| 980 | * mapping is torn down. Temporary mms can also be used for EFI runtime service |
| 981 | * calls or similar functionality. |
| 982 | * |
| 983 | * It is illegal to schedule while using a temporary mm -- the context switch |
| 984 | * code is unaware of the temporary mm and does not know how to context switch. |
| 985 | * Use a real (non-temporary) mm in a kernel thread if you need to sleep. |
| 986 | * |
| 987 | * Note: For sensitive memory writes, the temporary mm needs to be used |
| 988 | * exclusively by a single core, and IRQs should be disabled while the |
| 989 | * temporary mm is loaded, thereby preventing interrupt handler bugs from |
| 990 | * overriding the kernel memory protection. |
| 991 | */ |
| 992 | struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm) |
| 993 | { |
| 994 | struct mm_struct *prev_mm; |
| 995 | |
| 996 | lockdep_assert_preemption_disabled(); |
| 997 | guard(irqsave)(); |
| 998 | |
| 999 | /* |
| 1000 | * Make sure not to be in TLB lazy mode, as otherwise we'll end up |
| 1001 | * with a stale address space WITHOUT being in lazy mode after |
| 1002 | * restoring the previous mm. |
| 1003 | */ |
| 1004 | if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) |
| 1005 | leave_mm(); |
| 1006 | |
| 1007 | prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 1008 | switch_mm_irqs_off(NULL, next: temp_mm, current); |
| 1009 | |
| 1010 | /* |
| 1011 | * If breakpoints are enabled, disable them while the temporary mm is |
| 1012 | * used. Userspace might set up watchpoints on addresses that are used |
| 1013 | * in the temporary mm, which would lead to wrong signals being sent or |
| 1014 | * crashes. |
| 1015 | * |
| 1016 | * Note that breakpoints are not disabled selectively, which also causes |
| 1017 | * kernel breakpoints (e.g., perf's) to be disabled. This might be |
| 1018 | * undesirable, but still seems reasonable as the code that runs in the |
| 1019 | * temporary mm should be short. |
| 1020 | */ |
| 1021 | if (hw_breakpoint_active()) |
| 1022 | hw_breakpoint_disable(); |
| 1023 | |
| 1024 | return prev_mm; |
| 1025 | } |
| 1026 | |
| 1027 | void unuse_temporary_mm(struct mm_struct *prev_mm) |
| 1028 | { |
| 1029 | lockdep_assert_preemption_disabled(); |
| 1030 | guard(irqsave)(); |
| 1031 | |
| 1032 | /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */ |
| 1033 | cpumask_clear_cpu(smp_processor_id(), dstp: mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm))); |
| 1034 | |
| 1035 | switch_mm_irqs_off(NULL, next: prev_mm, current); |
| 1036 | |
| 1037 | /* |
| 1038 | * Restore the breakpoints if they were disabled before the temporary mm |
| 1039 | * was loaded. |
| 1040 | */ |
| 1041 | if (hw_breakpoint_active()) |
| 1042 | hw_breakpoint_restore(); |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Call this when reinitializing a CPU. It fixes the following potential |
| 1047 | * problems: |
| 1048 | * |
| 1049 | * - The ASID changed from what cpu_tlbstate thinks it is (most likely |
| 1050 | * because the CPU was taken down and came back up with CR3's PCID |
| 1051 | * bits clear. CPU hotplug can do this. |
| 1052 | * |
| 1053 | * - The TLB contains junk in slots corresponding to inactive ASIDs. |
| 1054 | * |
| 1055 | * - The CPU went so far out to lunch that it may have missed a TLB |
| 1056 | * flush. |
| 1057 | */ |
| 1058 | void initialize_tlbstate_and_flush(void) |
| 1059 | { |
| 1060 | int i; |
| 1061 | struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 1062 | u64 tlb_gen = atomic64_read(v: &init_mm.context.tlb_gen); |
| 1063 | unsigned long lam = mm_lam_cr3_mask(mm); |
| 1064 | unsigned long cr3 = __read_cr3(); |
| 1065 | |
| 1066 | /* Assert that CR3 already references the right mm. */ |
| 1067 | WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); |
| 1068 | |
| 1069 | /* LAM expected to be disabled */ |
| 1070 | WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); |
| 1071 | WARN_ON(lam); |
| 1072 | |
| 1073 | /* |
| 1074 | * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization |
| 1075 | * doesn't work like other CR4 bits because it can only be set from |
| 1076 | * long mode.) |
| 1077 | */ |
| 1078 | WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && |
| 1079 | !(cr4_read_shadow() & X86_CR4_PCIDE)); |
| 1080 | |
| 1081 | /* Disable LAM, force ASID 0 and force a TLB flush. */ |
| 1082 | write_cr3(x: build_cr3(pgd: mm->pgd, asid: 0, lam: 0)); |
| 1083 | |
| 1084 | /* Reinitialize tlbstate. */ |
| 1085 | this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); |
| 1086 | this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); |
| 1087 | this_cpu_write(cpu_tlbstate.next_asid, 1); |
| 1088 | this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); |
| 1089 | this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); |
| 1090 | cpu_tlbstate_update_lam(lam, mm_untag_mask(mm)); |
| 1091 | |
| 1092 | for (i = 1; i < TLB_NR_DYN_ASIDS; i++) |
| 1093 | this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * flush_tlb_func()'s memory ordering requirement is that any |
| 1098 | * TLB fills that happen after we flush the TLB are ordered after we |
| 1099 | * read active_mm's tlb_gen. We don't need any explicit barriers |
| 1100 | * because all x86 flush operations are serializing and the |
| 1101 | * atomic64_read operation won't be reordered by the compiler. |
| 1102 | */ |
| 1103 | static void flush_tlb_func(void *info) |
| 1104 | { |
| 1105 | /* |
| 1106 | * We have three different tlb_gen values in here. They are: |
| 1107 | * |
| 1108 | * - mm_tlb_gen: the latest generation. |
| 1109 | * - local_tlb_gen: the generation that this CPU has already caught |
| 1110 | * up to. |
| 1111 | * - f->new_tlb_gen: the generation that the requester of the flush |
| 1112 | * wants us to catch up to. |
| 1113 | */ |
| 1114 | const struct flush_tlb_info *f = info; |
| 1115 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 1116 | u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 1117 | u64 local_tlb_gen; |
| 1118 | bool local = smp_processor_id() == f->initiating_cpu; |
| 1119 | unsigned long nr_invalidate = 0; |
| 1120 | u64 mm_tlb_gen; |
| 1121 | |
| 1122 | /* This code cannot presently handle being reentered. */ |
| 1123 | VM_WARN_ON(!irqs_disabled()); |
| 1124 | |
| 1125 | if (!local) { |
| 1126 | inc_irq_stat(irq_tlb_count); |
| 1127 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); |
| 1128 | } |
| 1129 | |
| 1130 | /* The CPU was left in the mm_cpumask of the target mm. Clear it. */ |
| 1131 | if (f->mm && f->mm != loaded_mm) { |
| 1132 | cpumask_clear_cpu(raw_smp_processor_id(), dstp: mm_cpumask(mm: f->mm)); |
| 1133 | trace_tlb_flush(reason: TLB_REMOTE_WRONG_CPU, pages: 0); |
| 1134 | return; |
| 1135 | } |
| 1136 | |
| 1137 | if (unlikely(loaded_mm == &init_mm)) |
| 1138 | return; |
| 1139 | |
| 1140 | /* Reload the ASID if transitioning into or out of a global ASID */ |
| 1141 | if (mm_needs_global_asid(mm: loaded_mm, asid: loaded_mm_asid)) { |
| 1142 | switch_mm_irqs_off(NULL, next: loaded_mm, NULL); |
| 1143 | loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 1144 | } |
| 1145 | |
| 1146 | /* Broadcast ASIDs are always kept up to date with INVLPGB. */ |
| 1147 | if (is_global_asid(asid: loaded_mm_asid)) |
| 1148 | return; |
| 1149 | |
| 1150 | VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != |
| 1151 | loaded_mm->context.ctx_id); |
| 1152 | |
| 1153 | if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { |
| 1154 | /* |
| 1155 | * We're in lazy mode. We need to at least flush our |
| 1156 | * paging-structure cache to avoid speculatively reading |
| 1157 | * garbage into our TLB. Since switching to init_mm is barely |
| 1158 | * slower than a minimal flush, just switch to init_mm. |
| 1159 | * |
| 1160 | * This should be rare, with native_flush_tlb_multi() skipping |
| 1161 | * IPIs to lazy TLB mode CPUs. |
| 1162 | */ |
| 1163 | switch_mm_irqs_off(NULL, next: &init_mm, NULL); |
| 1164 | return; |
| 1165 | } |
| 1166 | |
| 1167 | local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); |
| 1168 | |
| 1169 | if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && |
| 1170 | f->new_tlb_gen <= local_tlb_gen)) { |
| 1171 | /* |
| 1172 | * The TLB is already up to date in respect to f->new_tlb_gen. |
| 1173 | * While the core might be still behind mm_tlb_gen, checking |
| 1174 | * mm_tlb_gen unnecessarily would have negative caching effects |
| 1175 | * so avoid it. |
| 1176 | */ |
| 1177 | return; |
| 1178 | } |
| 1179 | |
| 1180 | /* |
| 1181 | * Defer mm_tlb_gen reading as long as possible to avoid cache |
| 1182 | * contention. |
| 1183 | */ |
| 1184 | mm_tlb_gen = atomic64_read(v: &loaded_mm->context.tlb_gen); |
| 1185 | |
| 1186 | if (unlikely(local_tlb_gen == mm_tlb_gen)) { |
| 1187 | /* |
| 1188 | * There's nothing to do: we're already up to date. This can |
| 1189 | * happen if two concurrent flushes happen -- the first flush to |
| 1190 | * be handled can catch us all the way up, leaving no work for |
| 1191 | * the second flush. |
| 1192 | */ |
| 1193 | goto done; |
| 1194 | } |
| 1195 | |
| 1196 | WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); |
| 1197 | WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); |
| 1198 | |
| 1199 | /* |
| 1200 | * If we get to this point, we know that our TLB is out of date. |
| 1201 | * This does not strictly imply that we need to flush (it's |
| 1202 | * possible that f->new_tlb_gen <= local_tlb_gen), but we're |
| 1203 | * going to need to flush in the very near future, so we might |
| 1204 | * as well get it over with. |
| 1205 | * |
| 1206 | * The only question is whether to do a full or partial flush. |
| 1207 | * |
| 1208 | * We do a partial flush if requested and two extra conditions |
| 1209 | * are met: |
| 1210 | * |
| 1211 | * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that |
| 1212 | * we've always done all needed flushes to catch up to |
| 1213 | * local_tlb_gen. If, for example, local_tlb_gen == 2 and |
| 1214 | * f->new_tlb_gen == 3, then we know that the flush needed to bring |
| 1215 | * us up to date for tlb_gen 3 is the partial flush we're |
| 1216 | * processing. |
| 1217 | * |
| 1218 | * As an example of why this check is needed, suppose that there |
| 1219 | * are two concurrent flushes. The first is a full flush that |
| 1220 | * changes context.tlb_gen from 1 to 2. The second is a partial |
| 1221 | * flush that changes context.tlb_gen from 2 to 3. If they get |
| 1222 | * processed on this CPU in reverse order, we'll see |
| 1223 | * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. |
| 1224 | * If we were to use __flush_tlb_one_user() and set local_tlb_gen to |
| 1225 | * 3, we'd be break the invariant: we'd update local_tlb_gen above |
| 1226 | * 1 without the full flush that's needed for tlb_gen 2. |
| 1227 | * |
| 1228 | * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. |
| 1229 | * Partial TLB flushes are not all that much cheaper than full TLB |
| 1230 | * flushes, so it seems unlikely that it would be a performance win |
| 1231 | * to do a partial flush if that won't bring our TLB fully up to |
| 1232 | * date. By doing a full flush instead, we can increase |
| 1233 | * local_tlb_gen all the way to mm_tlb_gen and we can probably |
| 1234 | * avoid another flush in the very near future. |
| 1235 | */ |
| 1236 | if (f->end != TLB_FLUSH_ALL && |
| 1237 | f->new_tlb_gen == local_tlb_gen + 1 && |
| 1238 | f->new_tlb_gen == mm_tlb_gen) { |
| 1239 | /* Partial flush */ |
| 1240 | unsigned long addr = f->start; |
| 1241 | |
| 1242 | /* Partial flush cannot have invalid generations */ |
| 1243 | VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); |
| 1244 | |
| 1245 | /* Partial flush must have valid mm */ |
| 1246 | VM_WARN_ON(f->mm == NULL); |
| 1247 | |
| 1248 | nr_invalidate = (f->end - f->start) >> f->stride_shift; |
| 1249 | |
| 1250 | while (addr < f->end) { |
| 1251 | flush_tlb_one_user(addr); |
| 1252 | addr += 1UL << f->stride_shift; |
| 1253 | } |
| 1254 | if (local) |
| 1255 | count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); |
| 1256 | } else { |
| 1257 | /* Full flush. */ |
| 1258 | nr_invalidate = TLB_FLUSH_ALL; |
| 1259 | |
| 1260 | flush_tlb_local(); |
| 1261 | if (local) |
| 1262 | count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); |
| 1263 | } |
| 1264 | |
| 1265 | /* Both paths above update our state to mm_tlb_gen. */ |
| 1266 | this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); |
| 1267 | |
| 1268 | /* Tracing is done in a unified manner to reduce the code size */ |
| 1269 | done: |
| 1270 | trace_tlb_flush(reason: !local ? TLB_REMOTE_SHOOTDOWN : |
| 1271 | (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : |
| 1272 | TLB_LOCAL_MM_SHOOTDOWN, |
| 1273 | pages: nr_invalidate); |
| 1274 | } |
| 1275 | |
| 1276 | static bool should_flush_tlb(int cpu, void *data) |
| 1277 | { |
| 1278 | struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu); |
| 1279 | struct flush_tlb_info *info = data; |
| 1280 | |
| 1281 | /* |
| 1282 | * Order the 'loaded_mm' and 'is_lazy' against their |
| 1283 | * write ordering in switch_mm_irqs_off(). Ensure |
| 1284 | * 'is_lazy' is at least as new as 'loaded_mm'. |
| 1285 | */ |
| 1286 | smp_rmb(); |
| 1287 | |
| 1288 | /* Lazy TLB will get flushed at the next context switch. */ |
| 1289 | if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) |
| 1290 | return false; |
| 1291 | |
| 1292 | /* No mm means kernel memory flush. */ |
| 1293 | if (!info->mm) |
| 1294 | return true; |
| 1295 | |
| 1296 | /* |
| 1297 | * While switching, the remote CPU could have state from |
| 1298 | * either the prev or next mm. Assume the worst and flush. |
| 1299 | */ |
| 1300 | if (loaded_mm == LOADED_MM_SWITCHING) |
| 1301 | return true; |
| 1302 | |
| 1303 | /* The target mm is loaded, and the CPU is not lazy. */ |
| 1304 | if (loaded_mm == info->mm) |
| 1305 | return true; |
| 1306 | |
| 1307 | /* In cpumask, but not the loaded mm? Periodically remove by flushing. */ |
| 1308 | if (info->trim_cpumask) |
| 1309 | return true; |
| 1310 | |
| 1311 | return false; |
| 1312 | } |
| 1313 | |
| 1314 | static bool should_trim_cpumask(struct mm_struct *mm) |
| 1315 | { |
| 1316 | if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) { |
| 1317 | WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ); |
| 1318 | return true; |
| 1319 | } |
| 1320 | return false; |
| 1321 | } |
| 1322 | |
| 1323 | DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); |
| 1324 | EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); |
| 1325 | |
| 1326 | STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, |
| 1327 | const struct flush_tlb_info *info) |
| 1328 | { |
| 1329 | /* |
| 1330 | * Do accounting and tracing. Note that there are (and have always been) |
| 1331 | * cases in which a remote TLB flush will be traced, but eventually |
| 1332 | * would not happen. |
| 1333 | */ |
| 1334 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); |
| 1335 | if (info->end == TLB_FLUSH_ALL) |
| 1336 | trace_tlb_flush(reason: TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); |
| 1337 | else |
| 1338 | trace_tlb_flush(reason: TLB_REMOTE_SEND_IPI, |
| 1339 | pages: (info->end - info->start) >> PAGE_SHIFT); |
| 1340 | |
| 1341 | /* |
| 1342 | * If no page tables were freed, we can skip sending IPIs to |
| 1343 | * CPUs in lazy TLB mode. They will flush the CPU themselves |
| 1344 | * at the next context switch. |
| 1345 | * |
| 1346 | * However, if page tables are getting freed, we need to send the |
| 1347 | * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping |
| 1348 | * up on the new contents of what used to be page tables, while |
| 1349 | * doing a speculative memory access. |
| 1350 | */ |
| 1351 | if (info->freed_tables || mm_in_asid_transition(mm: info->mm)) |
| 1352 | on_each_cpu_mask(mask: cpumask, func: flush_tlb_func, info: (void *)info, wait: true); |
| 1353 | else |
| 1354 | on_each_cpu_cond_mask(cond_func: should_flush_tlb, func: flush_tlb_func, |
| 1355 | info: (void *)info, wait: 1, mask: cpumask); |
| 1356 | } |
| 1357 | |
| 1358 | void flush_tlb_multi(const struct cpumask *cpumask, |
| 1359 | const struct flush_tlb_info *info) |
| 1360 | { |
| 1361 | __flush_tlb_multi(cpumask, info); |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * See Documentation/arch/x86/tlb.rst for details. We choose 33 |
| 1366 | * because it is large enough to cover the vast majority (at |
| 1367 | * least 95%) of allocations, and is small enough that we are |
| 1368 | * confident it will not cause too much overhead. Each single |
| 1369 | * flush is about 100 ns, so this caps the maximum overhead at |
| 1370 | * _about_ 3,000 ns. |
| 1371 | * |
| 1372 | * This is in units of pages. |
| 1373 | */ |
| 1374 | unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; |
| 1375 | |
| 1376 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); |
| 1377 | |
| 1378 | #ifdef CONFIG_DEBUG_VM |
| 1379 | static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); |
| 1380 | #endif |
| 1381 | |
| 1382 | static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, |
| 1383 | unsigned long start, unsigned long end, |
| 1384 | unsigned int stride_shift, bool freed_tables, |
| 1385 | u64 new_tlb_gen) |
| 1386 | { |
| 1387 | struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); |
| 1388 | |
| 1389 | #ifdef CONFIG_DEBUG_VM |
| 1390 | /* |
| 1391 | * Ensure that the following code is non-reentrant and flush_tlb_info |
| 1392 | * is not overwritten. This means no TLB flushing is initiated by |
| 1393 | * interrupt handlers and machine-check exception handlers. |
| 1394 | */ |
| 1395 | BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); |
| 1396 | #endif |
| 1397 | |
| 1398 | /* |
| 1399 | * If the number of flushes is so large that a full flush |
| 1400 | * would be faster, do a full flush. |
| 1401 | */ |
| 1402 | if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) { |
| 1403 | start = 0; |
| 1404 | end = TLB_FLUSH_ALL; |
| 1405 | } |
| 1406 | |
| 1407 | info->start = start; |
| 1408 | info->end = end; |
| 1409 | info->mm = mm; |
| 1410 | info->stride_shift = stride_shift; |
| 1411 | info->freed_tables = freed_tables; |
| 1412 | info->new_tlb_gen = new_tlb_gen; |
| 1413 | info->initiating_cpu = smp_processor_id(); |
| 1414 | info->trim_cpumask = 0; |
| 1415 | |
| 1416 | return info; |
| 1417 | } |
| 1418 | |
| 1419 | static void put_flush_tlb_info(void) |
| 1420 | { |
| 1421 | #ifdef CONFIG_DEBUG_VM |
| 1422 | /* Complete reentrancy prevention checks */ |
| 1423 | barrier(); |
| 1424 | this_cpu_dec(flush_tlb_info_idx); |
| 1425 | #endif |
| 1426 | } |
| 1427 | |
| 1428 | void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, |
| 1429 | unsigned long end, unsigned int stride_shift, |
| 1430 | bool freed_tables) |
| 1431 | { |
| 1432 | struct flush_tlb_info *info; |
| 1433 | int cpu = get_cpu(); |
| 1434 | u64 new_tlb_gen; |
| 1435 | |
| 1436 | /* This is also a barrier that synchronizes with switch_mm(). */ |
| 1437 | new_tlb_gen = inc_mm_tlb_gen(mm); |
| 1438 | |
| 1439 | info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, |
| 1440 | new_tlb_gen); |
| 1441 | |
| 1442 | /* |
| 1443 | * flush_tlb_multi() is not optimized for the common case in which only |
| 1444 | * a local TLB flush is needed. Optimize this use-case by calling |
| 1445 | * flush_tlb_func_local() directly in this case. |
| 1446 | */ |
| 1447 | if (mm_global_asid(mm)) { |
| 1448 | broadcast_tlb_flush(info); |
| 1449 | } else if (cpumask_any_but(mask: mm_cpumask(mm), cpu) < nr_cpu_ids) { |
| 1450 | info->trim_cpumask = should_trim_cpumask(mm); |
| 1451 | flush_tlb_multi(cpumask: mm_cpumask(mm), info); |
| 1452 | consider_global_asid(mm); |
| 1453 | } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { |
| 1454 | lockdep_assert_irqs_enabled(); |
| 1455 | local_irq_disable(); |
| 1456 | flush_tlb_func(info); |
| 1457 | local_irq_enable(); |
| 1458 | } |
| 1459 | |
| 1460 | put_flush_tlb_info(); |
| 1461 | put_cpu(); |
| 1462 | mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); |
| 1463 | } |
| 1464 | |
| 1465 | static void do_flush_tlb_all(void *info) |
| 1466 | { |
| 1467 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); |
| 1468 | __flush_tlb_all(); |
| 1469 | } |
| 1470 | |
| 1471 | void flush_tlb_all(void) |
| 1472 | { |
| 1473 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); |
| 1474 | |
| 1475 | /* First try (faster) hardware-assisted TLB invalidation. */ |
| 1476 | if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 1477 | invlpgb_flush_all(); |
| 1478 | else |
| 1479 | /* Fall back to the IPI-based invalidation. */ |
| 1480 | on_each_cpu(func: do_flush_tlb_all, NULL, wait: 1); |
| 1481 | } |
| 1482 | |
| 1483 | /* Flush an arbitrarily large range of memory with INVLPGB. */ |
| 1484 | static void invlpgb_kernel_range_flush(struct flush_tlb_info *info) |
| 1485 | { |
| 1486 | unsigned long addr, nr; |
| 1487 | |
| 1488 | for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) { |
| 1489 | nr = (info->end - addr) >> PAGE_SHIFT; |
| 1490 | |
| 1491 | /* |
| 1492 | * INVLPGB has a limit on the size of ranges it can |
| 1493 | * flush. Break up large flushes. |
| 1494 | */ |
| 1495 | nr = clamp_val(nr, 1, invlpgb_count_max); |
| 1496 | |
| 1497 | invlpgb_flush_addr_nosync(addr, nr); |
| 1498 | } |
| 1499 | __tlbsync(); |
| 1500 | } |
| 1501 | |
| 1502 | static void do_kernel_range_flush(void *info) |
| 1503 | { |
| 1504 | struct flush_tlb_info *f = info; |
| 1505 | unsigned long addr; |
| 1506 | |
| 1507 | /* flush range by one by one 'invlpg' */ |
| 1508 | for (addr = f->start; addr < f->end; addr += PAGE_SIZE) |
| 1509 | flush_tlb_one_kernel(addr); |
| 1510 | } |
| 1511 | |
| 1512 | static void kernel_tlb_flush_all(struct flush_tlb_info *info) |
| 1513 | { |
| 1514 | if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 1515 | invlpgb_flush_all(); |
| 1516 | else |
| 1517 | on_each_cpu(func: do_flush_tlb_all, NULL, wait: 1); |
| 1518 | } |
| 1519 | |
| 1520 | static void kernel_tlb_flush_range(struct flush_tlb_info *info) |
| 1521 | { |
| 1522 | if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) |
| 1523 | invlpgb_kernel_range_flush(info); |
| 1524 | else |
| 1525 | on_each_cpu(func: do_kernel_range_flush, info, wait: 1); |
| 1526 | } |
| 1527 | |
| 1528 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| 1529 | { |
| 1530 | struct flush_tlb_info *info; |
| 1531 | |
| 1532 | guard(preempt)(); |
| 1533 | |
| 1534 | info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, freed_tables: false, |
| 1535 | TLB_GENERATION_INVALID); |
| 1536 | |
| 1537 | if (info->end == TLB_FLUSH_ALL) |
| 1538 | kernel_tlb_flush_all(info); |
| 1539 | else |
| 1540 | kernel_tlb_flush_range(info); |
| 1541 | |
| 1542 | put_flush_tlb_info(); |
| 1543 | } |
| 1544 | |
| 1545 | /* |
| 1546 | * This can be used from process context to figure out what the value of |
| 1547 | * CR3 is without needing to do a (slow) __read_cr3(). |
| 1548 | * |
| 1549 | * It's intended to be used for code like KVM that sneakily changes CR3 |
| 1550 | * and needs to restore it. It needs to be used very carefully. |
| 1551 | */ |
| 1552 | unsigned long __get_current_cr3_fast(void) |
| 1553 | { |
| 1554 | unsigned long cr3 = |
| 1555 | build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, |
| 1556 | this_cpu_read(cpu_tlbstate.loaded_mm_asid), |
| 1557 | lam: tlbstate_lam_cr3_mask()); |
| 1558 | |
| 1559 | /* For now, be very restrictive about when this can be called. */ |
| 1560 | VM_WARN_ON(in_nmi() || preemptible()); |
| 1561 | |
| 1562 | VM_BUG_ON(cr3 != __read_cr3()); |
| 1563 | return cr3; |
| 1564 | } |
| 1565 | EXPORT_SYMBOL_GPL(__get_current_cr3_fast); |
| 1566 | |
| 1567 | /* |
| 1568 | * Flush one page in the kernel mapping |
| 1569 | */ |
| 1570 | void flush_tlb_one_kernel(unsigned long addr) |
| 1571 | { |
| 1572 | count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); |
| 1573 | |
| 1574 | /* |
| 1575 | * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its |
| 1576 | * paravirt equivalent. Even with PCID, this is sufficient: we only |
| 1577 | * use PCID if we also use global PTEs for the kernel mapping, and |
| 1578 | * INVLPG flushes global translations across all address spaces. |
| 1579 | * |
| 1580 | * If PTI is on, then the kernel is mapped with non-global PTEs, and |
| 1581 | * __flush_tlb_one_user() will flush the given address for the current |
| 1582 | * kernel address space and for its usermode counterpart, but it does |
| 1583 | * not flush it for other address spaces. |
| 1584 | */ |
| 1585 | flush_tlb_one_user(addr); |
| 1586 | |
| 1587 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 1588 | return; |
| 1589 | |
| 1590 | /* |
| 1591 | * See above. We need to propagate the flush to all other address |
| 1592 | * spaces. In principle, we only need to propagate it to kernelmode |
| 1593 | * address spaces, but the extra bookkeeping we would need is not |
| 1594 | * worth it. |
| 1595 | */ |
| 1596 | this_cpu_write(cpu_tlbstate.invalidate_other, true); |
| 1597 | } |
| 1598 | |
| 1599 | /* |
| 1600 | * Flush one page in the user mapping |
| 1601 | */ |
| 1602 | STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) |
| 1603 | { |
| 1604 | u32 loaded_mm_asid; |
| 1605 | bool cpu_pcide; |
| 1606 | |
| 1607 | /* Flush 'addr' from the kernel PCID: */ |
| 1608 | invlpg(addr); |
| 1609 | |
| 1610 | /* If PTI is off there is no user PCID and nothing to flush. */ |
| 1611 | if (!static_cpu_has(X86_FEATURE_PTI)) |
| 1612 | return; |
| 1613 | |
| 1614 | loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); |
| 1615 | cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; |
| 1616 | |
| 1617 | /* |
| 1618 | * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check |
| 1619 | * 'cpu_pcide' to ensure that *this* CPU will not trigger those |
| 1620 | * #GP's even if called before CR4.PCIDE has been initialized. |
| 1621 | */ |
| 1622 | if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) |
| 1623 | invpcid_flush_one(pcid: user_pcid(asid: loaded_mm_asid), addr); |
| 1624 | else |
| 1625 | invalidate_user_asid(asid: loaded_mm_asid); |
| 1626 | } |
| 1627 | |
| 1628 | void flush_tlb_one_user(unsigned long addr) |
| 1629 | { |
| 1630 | __flush_tlb_one_user(addr); |
| 1631 | } |
| 1632 | |
| 1633 | /* |
| 1634 | * Flush everything |
| 1635 | */ |
| 1636 | STATIC_NOPV void native_flush_tlb_global(void) |
| 1637 | { |
| 1638 | unsigned long flags; |
| 1639 | |
| 1640 | if (static_cpu_has(X86_FEATURE_INVPCID)) { |
| 1641 | /* |
| 1642 | * Using INVPCID is considerably faster than a pair of writes |
| 1643 | * to CR4 sandwiched inside an IRQ flag save/restore. |
| 1644 | * |
| 1645 | * Note, this works with CR4.PCIDE=0 or 1. |
| 1646 | */ |
| 1647 | invpcid_flush_all(); |
| 1648 | return; |
| 1649 | } |
| 1650 | |
| 1651 | /* |
| 1652 | * Read-modify-write to CR4 - protect it from preemption and |
| 1653 | * from interrupts. (Use the raw variant because this code can |
| 1654 | * be called from deep inside debugging code.) |
| 1655 | */ |
| 1656 | raw_local_irq_save(flags); |
| 1657 | |
| 1658 | __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); |
| 1659 | |
| 1660 | raw_local_irq_restore(flags); |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * Flush the entire current user mapping |
| 1665 | */ |
| 1666 | STATIC_NOPV void native_flush_tlb_local(void) |
| 1667 | { |
| 1668 | /* |
| 1669 | * Preemption or interrupts must be disabled to protect the access |
| 1670 | * to the per CPU variable and to prevent being preempted between |
| 1671 | * read_cr3() and write_cr3(). |
| 1672 | */ |
| 1673 | WARN_ON_ONCE(preemptible()); |
| 1674 | |
| 1675 | invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); |
| 1676 | |
| 1677 | /* If current->mm == NULL then the read_cr3() "borrows" an mm */ |
| 1678 | native_write_cr3(val: __native_read_cr3()); |
| 1679 | } |
| 1680 | |
| 1681 | void flush_tlb_local(void) |
| 1682 | { |
| 1683 | __flush_tlb_local(); |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * Flush everything |
| 1688 | */ |
| 1689 | void __flush_tlb_all(void) |
| 1690 | { |
| 1691 | /* |
| 1692 | * This is to catch users with enabled preemption and the PGE feature |
| 1693 | * and don't trigger the warning in __native_flush_tlb(). |
| 1694 | */ |
| 1695 | VM_WARN_ON_ONCE(preemptible()); |
| 1696 | |
| 1697 | if (cpu_feature_enabled(X86_FEATURE_PGE)) { |
| 1698 | __flush_tlb_global(); |
| 1699 | } else { |
| 1700 | /* |
| 1701 | * !PGE -> !PCID (setup_pcid()), thus every flush is total. |
| 1702 | */ |
| 1703 | flush_tlb_local(); |
| 1704 | } |
| 1705 | } |
| 1706 | EXPORT_SYMBOL_GPL(__flush_tlb_all); |
| 1707 | |
| 1708 | void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) |
| 1709 | { |
| 1710 | struct flush_tlb_info *info; |
| 1711 | |
| 1712 | int cpu = get_cpu(); |
| 1713 | |
| 1714 | info = get_flush_tlb_info(NULL, start: 0, TLB_FLUSH_ALL, stride_shift: 0, freed_tables: false, |
| 1715 | TLB_GENERATION_INVALID); |
| 1716 | /* |
| 1717 | * flush_tlb_multi() is not optimized for the common case in which only |
| 1718 | * a local TLB flush is needed. Optimize this use-case by calling |
| 1719 | * flush_tlb_func_local() directly in this case. |
| 1720 | */ |
| 1721 | if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) { |
| 1722 | invlpgb_flush_all_nonglobals(); |
| 1723 | batch->unmapped_pages = false; |
| 1724 | } else if (cpumask_any_but(mask: &batch->cpumask, cpu) < nr_cpu_ids) { |
| 1725 | flush_tlb_multi(cpumask: &batch->cpumask, info); |
| 1726 | } else if (cpumask_test_cpu(cpu, cpumask: &batch->cpumask)) { |
| 1727 | lockdep_assert_irqs_enabled(); |
| 1728 | local_irq_disable(); |
| 1729 | flush_tlb_func(info); |
| 1730 | local_irq_enable(); |
| 1731 | } |
| 1732 | |
| 1733 | cpumask_clear(dstp: &batch->cpumask); |
| 1734 | |
| 1735 | put_flush_tlb_info(); |
| 1736 | put_cpu(); |
| 1737 | } |
| 1738 | |
| 1739 | /* |
| 1740 | * Blindly accessing user memory from NMI context can be dangerous |
| 1741 | * if we're in the middle of switching the current user task or |
| 1742 | * switching the loaded mm. It can also be dangerous if we |
| 1743 | * interrupted some kernel code that was temporarily using a |
| 1744 | * different mm. |
| 1745 | */ |
| 1746 | bool nmi_uaccess_okay(void) |
| 1747 | { |
| 1748 | struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 1749 | struct mm_struct *current_mm = current->mm; |
| 1750 | |
| 1751 | VM_WARN_ON_ONCE(!loaded_mm); |
| 1752 | |
| 1753 | /* |
| 1754 | * The condition we want to check is |
| 1755 | * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, |
| 1756 | * if we're running in a VM with shadow paging, and nmi_uaccess_okay() |
| 1757 | * is supposed to be reasonably fast. |
| 1758 | * |
| 1759 | * Instead, we check the almost equivalent but somewhat conservative |
| 1760 | * condition below, and we rely on the fact that switch_mm_irqs_off() |
| 1761 | * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. |
| 1762 | */ |
| 1763 | if (loaded_mm != current_mm) |
| 1764 | return false; |
| 1765 | |
| 1766 | VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa()); |
| 1767 | |
| 1768 | return true; |
| 1769 | } |
| 1770 | |
| 1771 | static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, |
| 1772 | size_t count, loff_t *ppos) |
| 1773 | { |
| 1774 | char buf[32]; |
| 1775 | unsigned int len; |
| 1776 | |
| 1777 | len = sprintf(buf, fmt: "%ld\n" , tlb_single_page_flush_ceiling); |
| 1778 | return simple_read_from_buffer(to: user_buf, count, ppos, from: buf, available: len); |
| 1779 | } |
| 1780 | |
| 1781 | static ssize_t tlbflush_write_file(struct file *file, |
| 1782 | const char __user *user_buf, size_t count, loff_t *ppos) |
| 1783 | { |
| 1784 | char buf[32]; |
| 1785 | ssize_t len; |
| 1786 | int ceiling; |
| 1787 | |
| 1788 | len = min(count, sizeof(buf) - 1); |
| 1789 | if (copy_from_user(to: buf, from: user_buf, n: len)) |
| 1790 | return -EFAULT; |
| 1791 | |
| 1792 | buf[len] = '\0'; |
| 1793 | if (kstrtoint(s: buf, base: 0, res: &ceiling)) |
| 1794 | return -EINVAL; |
| 1795 | |
| 1796 | if (ceiling < 0) |
| 1797 | return -EINVAL; |
| 1798 | |
| 1799 | tlb_single_page_flush_ceiling = ceiling; |
| 1800 | return count; |
| 1801 | } |
| 1802 | |
| 1803 | static const struct file_operations fops_tlbflush = { |
| 1804 | .read = tlbflush_read_file, |
| 1805 | .write = tlbflush_write_file, |
| 1806 | .llseek = default_llseek, |
| 1807 | }; |
| 1808 | |
| 1809 | static int __init create_tlb_single_page_flush_ceiling(void) |
| 1810 | { |
| 1811 | debugfs_create_file("tlb_single_page_flush_ceiling" , S_IRUSR | S_IWUSR, |
| 1812 | arch_debugfs_dir, NULL, &fops_tlbflush); |
| 1813 | return 0; |
| 1814 | } |
| 1815 | late_initcall(create_tlb_single_page_flush_ceiling); |
| 1816 | |