1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/page_pool/helpers.h>
42#include <net/selftests.h>
43#include <net/tso.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
46#include <linux/icmp.h>
47#include <linux/spinlock.h>
48#include <linux/workqueue.h>
49#include <linux/bitops.h>
50#include <linux/io.h>
51#include <linux/irq.h>
52#include <linux/clk.h>
53#include <linux/crc32.h>
54#include <linux/platform_device.h>
55#include <linux/property.h>
56#include <linux/mdio.h>
57#include <linux/phy.h>
58#include <linux/fec.h>
59#include <linux/of.h>
60#include <linux/of_mdio.h>
61#include <linux/of_net.h>
62#include <linux/regulator/consumer.h>
63#include <linux/if_vlan.h>
64#include <linux/pinctrl/consumer.h>
65#include <linux/gpio/consumer.h>
66#include <linux/prefetch.h>
67#include <linux/mfd/syscon.h>
68#include <linux/regmap.h>
69#include <soc/imx/cpuidle.h>
70#include <linux/filter.h>
71#include <linux/bpf.h>
72#include <linux/bpf_trace.h>
73
74#include <asm/cacheflush.h>
75
76#include "fec.h"
77
78static void set_multicast_list(struct net_device *ndev);
79static void fec_enet_itr_coal_set(struct net_device *ndev);
80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84#define DRIVER_NAME "fec"
85
86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88#define FEC_ENET_RSEM_V 0x84
89#define FEC_ENET_RSFL_V 16
90#define FEC_ENET_RAEM_V 0x8
91#define FEC_ENET_RAFL_V 0x8
92#define FEC_ENET_OPD_V 0xFFF0
93#define FEC_MDIO_PM_TIMEOUT 100 /* ms */
94
95#define FEC_ENET_XDP_PASS 0
96#define FEC_ENET_XDP_CONSUMED BIT(0)
97#define FEC_ENET_XDP_TX BIT(1)
98#define FEC_ENET_XDP_REDIR BIT(2)
99
100struct fec_devinfo {
101 u32 quirks;
102};
103
104static const struct fec_devinfo fec_imx25_info = {
105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107};
108
109static const struct fec_devinfo fec_imx27_info = {
110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 FEC_QUIRK_HAS_MDIO_C45,
112};
113
114static const struct fec_devinfo fec_imx28_info = {
115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119};
120
121static const struct fec_devinfo fec_imx6q_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127};
128
129static const struct fec_devinfo fec_mvf600_info = {
130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 FEC_QUIRK_HAS_MDIO_C45,
132};
133
134static const struct fec_devinfo fec_imx6x_info = {
135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 FEC_QUIRK_HAS_MDIO_C45,
142};
143
144static const struct fec_devinfo fec_imx6ul_info = {
145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 FEC_QUIRK_HAS_MDIO_C45,
151};
152
153static const struct fec_devinfo fec_imx8mq_info = {
154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 FEC_QUIRK_HAS_MDIO_C45,
162};
163
164static const struct fec_devinfo fec_imx8qm_info = {
165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172};
173
174static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180};
181
182static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190};
191MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205};
206MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208static unsigned char macaddr[ETH_ALEN];
209module_param_array(macaddr, byte, NULL, 0);
210MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212#if defined(CONFIG_M5272)
213/*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217#if defined(CONFIG_NETtel)
218#define FEC_FLASHMAC 0xf0006006
219#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220#define FEC_FLASHMAC 0xf0006000
221#elif defined(CONFIG_CANCam)
222#define FEC_FLASHMAC 0xf0020000
223#elif defined (CONFIG_M5272C3)
224#define FEC_FLASHMAC (0xffe04000 + 4)
225#elif defined(CONFIG_MOD5272)
226#define FEC_FLASHMAC 0xffc0406b
227#else
228#define FEC_FLASHMAC 0
229#endif
230#endif /* CONFIG_M5272 */
231
232/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237#define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
238#define PKT_MINBUF_SIZE 64
239
240/* FEC receive acceleration */
241#define FEC_RACC_IPDIS BIT(1)
242#define FEC_RACC_PRODIS BIT(2)
243#define FEC_RACC_SHIFT16 BIT(7)
244#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246/* MIB Control Register */
247#define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
248
249/*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256 defined(CONFIG_ARM64)
257#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
258#else
259#define OPT_FRAME_SIZE 0
260#endif
261
262/* FEC MII MMFR bits definition */
263#define FEC_MMFR_ST (1 << 30)
264#define FEC_MMFR_ST_C45 (0)
265#define FEC_MMFR_OP_READ (2 << 28)
266#define FEC_MMFR_OP_READ_C45 (3 << 28)
267#define FEC_MMFR_OP_WRITE (1 << 28)
268#define FEC_MMFR_OP_ADDR_WRITE (0)
269#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
270#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
271#define FEC_MMFR_TA (2 << 16)
272#define FEC_MMFR_DATA(v) (v & 0xffff)
273/* FEC ECR bits definition */
274#define FEC_ECR_RESET BIT(0)
275#define FEC_ECR_ETHEREN BIT(1)
276#define FEC_ECR_MAGICEN BIT(2)
277#define FEC_ECR_SLEEP BIT(3)
278#define FEC_ECR_EN1588 BIT(4)
279#define FEC_ECR_BYTESWP BIT(8)
280/* FEC RCR bits definition */
281#define FEC_RCR_LOOP BIT(0)
282#define FEC_RCR_HALFDPX BIT(1)
283#define FEC_RCR_MII BIT(2)
284#define FEC_RCR_PROMISC BIT(3)
285#define FEC_RCR_BC_REJ BIT(4)
286#define FEC_RCR_FLOWCTL BIT(5)
287#define FEC_RCR_RMII BIT(8)
288#define FEC_RCR_10BASET BIT(9)
289/* TX WMARK bits */
290#define FEC_TXWMRK_STRFWD BIT(8)
291
292#define FEC_MII_TIMEOUT 30000 /* us */
293
294/* Transmitter timeout */
295#define TX_TIMEOUT (2 * HZ)
296
297#define FEC_PAUSE_FLAG_AUTONEG 0x1
298#define FEC_PAUSE_FLAG_ENABLE 0x2
299#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
300#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
301#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
302
303/* Max number of allowed TCP segments for software TSO */
304#define FEC_MAX_TSO_SEGS 100
305#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307#define IS_TSO_HEADER(txq, addr) \
308 ((addr >= txq->tso_hdrs_dma) && \
309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311static int mii_cnt;
312
313static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 struct bufdesc_prop *bd)
315{
316 return (bdp >= bd->last) ? bd->base
317 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
318}
319
320static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 struct bufdesc_prop *bd)
322{
323 return (bdp <= bd->base) ? bd->last
324 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
325}
326
327static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 struct bufdesc_prop *bd)
329{
330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331}
332
333static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334{
335 int entries;
336
337 entries = (((const char *)txq->dirty_tx -
338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340 return entries >= 0 ? entries : entries + txq->bd.ring_size;
341}
342
343static void swap_buffer(void *bufaddr, int len)
344{
345 int i;
346 unsigned int *buf = bufaddr;
347
348 for (i = 0; i < len; i += 4, buf++)
349 swab32s(p: buf);
350}
351
352static void fec_dump(struct net_device *ndev)
353{
354 struct fec_enet_private *fep = netdev_priv(dev: ndev);
355 struct bufdesc *bdp;
356 struct fec_enet_priv_tx_q *txq;
357 int index = 0;
358
359 netdev_info(dev: ndev, format: "TX ring dump\n");
360 pr_info("Nr SC addr len SKB\n");
361
362 txq = fep->tx_queue[0];
363 bdp = txq->bd.base;
364
365 do {
366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 index,
368 bdp == txq->bd.cur ? 'S' : ' ',
369 bdp == txq->dirty_tx ? 'H' : ' ',
370 fec16_to_cpu(bdp->cbd_sc),
371 fec32_to_cpu(bdp->cbd_bufaddr),
372 fec16_to_cpu(bdp->cbd_datlen),
373 txq->tx_buf[index].buf_p);
374 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
375 index++;
376 } while (bdp != txq->bd.base);
377}
378
379/*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
384static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 gfp_t gfp)
386{
387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388}
389
390static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 dma_addr_t handle)
392{
393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394}
395#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
396static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 gfp_t gfp)
398{
399 return dma_alloc_coherent(dev, size, dma_handle: handle, gfp);
400}
401
402static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 dma_addr_t handle)
404{
405 dma_free_coherent(dev, size, cpu_addr, dma_handle: handle);
406}
407#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409struct fec_dma_devres {
410 size_t size;
411 void *vaddr;
412 dma_addr_t dma_handle;
413};
414
415static void fec_dmam_release(struct device *dev, void *res)
416{
417 struct fec_dma_devres *this = res;
418
419 fec_dma_free(dev, size: this->size, cpu_addr: this->vaddr, handle: this->dma_handle);
420}
421
422static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 gfp_t gfp)
424{
425 struct fec_dma_devres *dr;
426 void *vaddr;
427
428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 if (!dr)
430 return NULL;
431 vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 if (!vaddr) {
433 devres_free(res: dr);
434 return NULL;
435 }
436 dr->vaddr = vaddr;
437 dr->dma_handle = *handle;
438 dr->size = size;
439 devres_add(dev, res: dr);
440 return vaddr;
441}
442
443static inline bool is_ipv4_pkt(struct sk_buff *skb)
444{
445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446}
447
448static int
449fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450{
451 /* Only run for packets requiring a checksum. */
452 if (skb->ip_summed != CHECKSUM_PARTIAL)
453 return 0;
454
455 if (unlikely(skb_cow_head(skb, 0)))
456 return -1;
457
458 if (is_ipv4_pkt(skb))
459 ip_hdr(skb)->check = 0;
460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462 return 0;
463}
464
465static int
466fec_enet_create_page_pool(struct fec_enet_private *fep,
467 struct fec_enet_priv_rx_q *rxq, int size)
468{
469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 struct page_pool_params pp_params = {
471 .order = 0,
472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 .pool_size = size,
474 .nid = dev_to_node(dev: &fep->pdev->dev),
475 .dev = &fep->pdev->dev,
476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 .offset = FEC_ENET_XDP_HEADROOM,
478 .max_len = FEC_ENET_RX_FRSIZE,
479 };
480 int err;
481
482 rxq->page_pool = page_pool_create(params: &pp_params);
483 if (IS_ERR(ptr: rxq->page_pool)) {
484 err = PTR_ERR(ptr: rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 err = xdp_rxq_info_reg(xdp_rxq: &rxq->xdp_rxq, dev: fep->netdev, queue_index: rxq->id, napi_id: 0);
490 if (err < 0)
491 goto err_free_pp;
492
493 err = xdp_rxq_info_reg_mem_model(xdp_rxq: &rxq->xdp_rxq, type: MEM_TYPE_PAGE_POOL,
494 allocator: rxq->page_pool);
495 if (err)
496 goto err_unregister_rxq;
497
498 return 0;
499
500err_unregister_rxq:
501 xdp_rxq_info_unreg(xdp_rxq: &rxq->xdp_rxq);
502err_free_pp:
503 page_pool_destroy(pool: rxq->page_pool);
504 rxq->page_pool = NULL;
505 return err;
506}
507
508static struct bufdesc *
509fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 struct sk_buff *skb,
511 struct net_device *ndev)
512{
513 struct fec_enet_private *fep = netdev_priv(dev: ndev);
514 struct bufdesc *bdp = txq->bd.cur;
515 struct bufdesc_ex *ebdp;
516 int nr_frags = skb_shinfo(skb)->nr_frags;
517 int frag, frag_len;
518 unsigned short status;
519 unsigned int estatus = 0;
520 skb_frag_t *this_frag;
521 unsigned int index;
522 void *bufaddr;
523 dma_addr_t addr;
524 int i;
525
526 for (frag = 0; frag < nr_frags; frag++) {
527 this_frag = &skb_shinfo(skb)->frags[frag];
528 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
529 ebdp = (struct bufdesc_ex *)bdp;
530
531 status = fec16_to_cpu(bdp->cbd_sc);
532 status &= ~BD_ENET_TX_STATS;
533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 frag_len = skb_frag_size(frag: &skb_shinfo(skb)->frags[frag]);
535
536 /* Handle the last BD specially */
537 if (frag == nr_frags - 1) {
538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 if (fep->bufdesc_ex) {
540 estatus |= BD_ENET_TX_INT;
541 if (unlikely(skb_shinfo(skb)->tx_flags &
542 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 estatus |= BD_ENET_TX_TS;
544 }
545 }
546
547 if (fep->bufdesc_ex) {
548 if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 if (skb->ip_summed == CHECKSUM_PARTIAL)
551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553 ebdp->cbd_bdu = 0;
554 ebdp->cbd_esc = cpu_to_fec32(estatus);
555 }
556
557 bufaddr = skb_frag_address(frag: this_frag);
558
559 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
560 if (((unsigned long) bufaddr) & fep->tx_align ||
561 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 bufaddr = txq->tx_bounce[index];
564
565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 swap_buffer(bufaddr, len: frag_len);
567 }
568
569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 DMA_TO_DEVICE);
571 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
572 if (net_ratelimit())
573 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
574 goto dma_mapping_error;
575 }
576
577 bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 /* Make sure the updates to rest of the descriptor are
580 * performed before transferring ownership.
581 */
582 wmb();
583 bdp->cbd_sc = cpu_to_fec16(status);
584 }
585
586 return bdp;
587dma_mapping_error:
588 bdp = txq->bd.cur;
589 for (i = 0; i < frag; i++) {
590 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 }
594 return ERR_PTR(error: -ENOMEM);
595}
596
597static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 struct sk_buff *skb, struct net_device *ndev)
599{
600 struct fec_enet_private *fep = netdev_priv(dev: ndev);
601 int nr_frags = skb_shinfo(skb)->nr_frags;
602 struct bufdesc *bdp, *last_bdp;
603 void *bufaddr;
604 dma_addr_t addr;
605 unsigned short status;
606 unsigned short buflen;
607 unsigned int estatus = 0;
608 unsigned int index;
609 int entries_free;
610
611 entries_free = fec_enet_get_free_txdesc_num(txq);
612 if (entries_free < MAX_SKB_FRAGS + 1) {
613 dev_kfree_skb_any(skb);
614 if (net_ratelimit())
615 netdev_err(dev: ndev, format: "NOT enough BD for SG!\n");
616 return NETDEV_TX_OK;
617 }
618
619 /* Protocol checksum off-load for TCP and UDP. */
620 if (fec_enet_clear_csum(skb, ndev)) {
621 dev_kfree_skb_any(skb);
622 return NETDEV_TX_OK;
623 }
624
625 /* Fill in a Tx ring entry */
626 bdp = txq->bd.cur;
627 last_bdp = bdp;
628 status = fec16_to_cpu(bdp->cbd_sc);
629 status &= ~BD_ENET_TX_STATS;
630
631 /* Set buffer length and buffer pointer */
632 bufaddr = skb->data;
633 buflen = skb_headlen(skb);
634
635 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
636 if (((unsigned long) bufaddr) & fep->tx_align ||
637 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 memcpy(txq->tx_bounce[index], skb->data, buflen);
639 bufaddr = txq->tx_bounce[index];
640
641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 swap_buffer(bufaddr, len: buflen);
643 }
644
645 /* Push the data cache so the CPM does not get stale memory data. */
646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
648 dev_kfree_skb_any(skb);
649 if (net_ratelimit())
650 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
651 return NETDEV_TX_OK;
652 }
653
654 if (nr_frags) {
655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 if (IS_ERR(ptr: last_bdp)) {
657 dma_unmap_single(&fep->pdev->dev, addr,
658 buflen, DMA_TO_DEVICE);
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
661 }
662 } else {
663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 if (fep->bufdesc_ex) {
665 estatus = BD_ENET_TX_INT;
666 if (unlikely(skb_shinfo(skb)->tx_flags &
667 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 estatus |= BD_ENET_TX_TS;
669 }
670 }
671 bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674 if (fep->bufdesc_ex) {
675
676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 fep->hwts_tx_en))
680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682 if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685 if (skb->ip_summed == CHECKSUM_PARTIAL)
686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688 ebdp->cbd_bdu = 0;
689 ebdp->cbd_esc = cpu_to_fec32(estatus);
690 }
691
692 index = fec_enet_get_bd_index(bdp: last_bdp, bd: &txq->bd);
693 /* Save skb pointer */
694 txq->tx_buf[index].buf_p = skb;
695
696 /* Make sure the updates to rest of the descriptor are performed before
697 * transferring ownership.
698 */
699 wmb();
700
701 /* Send it on its way. Tell FEC it's ready, interrupt when done,
702 * it's the last BD of the frame, and to put the CRC on the end.
703 */
704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 bdp->cbd_sc = cpu_to_fec16(status);
706
707 /* If this was the last BD in the ring, start at the beginning again. */
708 bdp = fec_enet_get_nextdesc(bdp: last_bdp, bd: &txq->bd);
709
710 skb_tx_timestamp(skb);
711
712 /* Make sure the update to bdp is performed before txq->bd.cur. */
713 wmb();
714 txq->bd.cur = bdp;
715
716 /* Trigger transmission start */
717 writel(val: 0, addr: txq->bd.reg_desc_active);
718
719 return 0;
720}
721
722static int
723fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 struct net_device *ndev,
725 struct bufdesc *bdp, int index, char *data,
726 int size, bool last_tcp, bool is_last)
727{
728 struct fec_enet_private *fep = netdev_priv(dev: ndev);
729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 unsigned short status;
731 unsigned int estatus = 0;
732 dma_addr_t addr;
733
734 status = fec16_to_cpu(bdp->cbd_sc);
735 status &= ~BD_ENET_TX_STATS;
736
737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738
739 if (((unsigned long) data) & fep->tx_align ||
740 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 memcpy(txq->tx_bounce[index], data, size);
742 data = txq->tx_bounce[index];
743
744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 swap_buffer(bufaddr: data, len: size);
746 }
747
748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
750 dev_kfree_skb_any(skb);
751 if (net_ratelimit())
752 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
753 return NETDEV_TX_OK;
754 }
755
756 bdp->cbd_datlen = cpu_to_fec16(size);
757 bdp->cbd_bufaddr = cpu_to_fec32(addr);
758
759 if (fep->bufdesc_ex) {
760 if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 if (skb->ip_summed == CHECKSUM_PARTIAL)
763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 ebdp->cbd_bdu = 0;
765 ebdp->cbd_esc = cpu_to_fec32(estatus);
766 }
767
768 /* Handle the last BD specially */
769 if (last_tcp)
770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 if (is_last) {
772 status |= BD_ENET_TX_INTR;
773 if (fep->bufdesc_ex)
774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 }
776
777 bdp->cbd_sc = cpu_to_fec16(status);
778
779 return 0;
780}
781
782static int
783fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 struct sk_buff *skb, struct net_device *ndev,
785 struct bufdesc *bdp, int index)
786{
787 struct fec_enet_private *fep = netdev_priv(dev: ndev);
788 int hdr_len = skb_tcp_all_headers(skb);
789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 void *bufaddr;
791 unsigned long dmabuf;
792 unsigned short status;
793 unsigned int estatus = 0;
794
795 status = fec16_to_cpu(bdp->cbd_sc);
796 status &= ~BD_ENET_TX_STATS;
797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798
799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 if (((unsigned long)bufaddr) & fep->tx_align ||
802 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 bufaddr = txq->tx_bounce[index];
805
806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 swap_buffer(bufaddr, len: hdr_len);
808
809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 hdr_len, DMA_TO_DEVICE);
811 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: dmabuf)) {
812 dev_kfree_skb_any(skb);
813 if (net_ratelimit())
814 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
815 return NETDEV_TX_OK;
816 }
817 }
818
819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821
822 if (fep->bufdesc_ex) {
823 if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 if (skb->ip_summed == CHECKSUM_PARTIAL)
826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 ebdp->cbd_bdu = 0;
828 ebdp->cbd_esc = cpu_to_fec32(estatus);
829 }
830
831 bdp->cbd_sc = cpu_to_fec16(status);
832
833 return 0;
834}
835
836static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 struct sk_buff *skb,
838 struct net_device *ndev)
839{
840 struct fec_enet_private *fep = netdev_priv(dev: ndev);
841 int hdr_len, total_len, data_left;
842 struct bufdesc *bdp = txq->bd.cur;
843 struct tso_t tso;
844 unsigned int index = 0;
845 int ret;
846
847 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
848 dev_kfree_skb_any(skb);
849 if (net_ratelimit())
850 netdev_err(dev: ndev, format: "NOT enough BD for TSO!\n");
851 return NETDEV_TX_OK;
852 }
853
854 /* Protocol checksum off-load for TCP and UDP. */
855 if (fec_enet_clear_csum(skb, ndev)) {
856 dev_kfree_skb_any(skb);
857 return NETDEV_TX_OK;
858 }
859
860 /* Initialize the TSO handler, and prepare the first payload */
861 hdr_len = tso_start(skb, tso: &tso);
862
863 total_len = skb->len - hdr_len;
864 while (total_len > 0) {
865 char *hdr;
866
867 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
868 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
869 total_len -= data_left;
870
871 /* prepare packet headers: MAC + IP + TCP */
872 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
873 tso_build_hdr(skb, hdr, tso: &tso, size: data_left, is_last: total_len == 0);
874 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
875 if (ret)
876 goto err_release;
877
878 while (data_left > 0) {
879 int size;
880
881 size = min_t(int, tso.size, data_left);
882 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
883 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
884 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
885 bdp, index,
886 data: tso.data, size,
887 last_tcp: size == data_left,
888 is_last: total_len == 0);
889 if (ret)
890 goto err_release;
891
892 data_left -= size;
893 tso_build_data(skb, tso: &tso, size);
894 }
895
896 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
897 }
898
899 /* Save skb pointer */
900 txq->tx_buf[index].buf_p = skb;
901
902 skb_tx_timestamp(skb);
903 txq->bd.cur = bdp;
904
905 /* Trigger transmission start */
906 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
907 !readl(addr: txq->bd.reg_desc_active) ||
908 !readl(addr: txq->bd.reg_desc_active) ||
909 !readl(addr: txq->bd.reg_desc_active) ||
910 !readl(addr: txq->bd.reg_desc_active))
911 writel(val: 0, addr: txq->bd.reg_desc_active);
912
913 return 0;
914
915err_release:
916 /* TODO: Release all used data descriptors for TSO */
917 return ret;
918}
919
920static netdev_tx_t
921fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
922{
923 struct fec_enet_private *fep = netdev_priv(dev: ndev);
924 int entries_free;
925 unsigned short queue;
926 struct fec_enet_priv_tx_q *txq;
927 struct netdev_queue *nq;
928 int ret;
929
930 queue = skb_get_queue_mapping(skb);
931 txq = fep->tx_queue[queue];
932 nq = netdev_get_tx_queue(dev: ndev, index: queue);
933
934 if (skb_is_gso(skb))
935 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
936 else
937 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
938 if (ret)
939 return ret;
940
941 entries_free = fec_enet_get_free_txdesc_num(txq);
942 if (entries_free <= txq->tx_stop_threshold)
943 netif_tx_stop_queue(dev_queue: nq);
944
945 return NETDEV_TX_OK;
946}
947
948/* Init RX & TX buffer descriptors
949 */
950static void fec_enet_bd_init(struct net_device *dev)
951{
952 struct fec_enet_private *fep = netdev_priv(dev);
953 struct fec_enet_priv_tx_q *txq;
954 struct fec_enet_priv_rx_q *rxq;
955 struct bufdesc *bdp;
956 unsigned int i;
957 unsigned int q;
958
959 for (q = 0; q < fep->num_rx_queues; q++) {
960 /* Initialize the receive buffer descriptors. */
961 rxq = fep->rx_queue[q];
962 bdp = rxq->bd.base;
963
964 for (i = 0; i < rxq->bd.ring_size; i++) {
965
966 /* Initialize the BD for every fragment in the page. */
967 if (bdp->cbd_bufaddr)
968 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
969 else
970 bdp->cbd_sc = cpu_to_fec16(0);
971 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
972 }
973
974 /* Set the last buffer to wrap */
975 bdp = fec_enet_get_prevdesc(bdp, bd: &rxq->bd);
976 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
977
978 rxq->bd.cur = rxq->bd.base;
979 }
980
981 for (q = 0; q < fep->num_tx_queues; q++) {
982 /* ...and the same for transmit */
983 txq = fep->tx_queue[q];
984 bdp = txq->bd.base;
985 txq->bd.cur = bdp;
986
987 for (i = 0; i < txq->bd.ring_size; i++) {
988 /* Initialize the BD for every fragment in the page. */
989 bdp->cbd_sc = cpu_to_fec16(0);
990 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
991 if (bdp->cbd_bufaddr &&
992 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
993 dma_unmap_single(&fep->pdev->dev,
994 fec32_to_cpu(bdp->cbd_bufaddr),
995 fec16_to_cpu(bdp->cbd_datlen),
996 DMA_TO_DEVICE);
997 if (txq->tx_buf[i].buf_p)
998 dev_kfree_skb_any(skb: txq->tx_buf[i].buf_p);
999 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000 if (bdp->cbd_bufaddr)
1001 dma_unmap_single(&fep->pdev->dev,
1002 fec32_to_cpu(bdp->cbd_bufaddr),
1003 fec16_to_cpu(bdp->cbd_datlen),
1004 DMA_TO_DEVICE);
1005
1006 if (txq->tx_buf[i].buf_p)
1007 xdp_return_frame(xdpf: txq->tx_buf[i].buf_p);
1008 } else {
1009 struct page *page = txq->tx_buf[i].buf_p;
1010
1011 if (page)
1012 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: false);
1013 }
1014
1015 txq->tx_buf[i].buf_p = NULL;
1016 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018 bdp->cbd_bufaddr = cpu_to_fec32(0);
1019 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1020 }
1021
1022 /* Set the last buffer to wrap */
1023 bdp = fec_enet_get_prevdesc(bdp, bd: &txq->bd);
1024 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025 txq->dirty_tx = bdp;
1026 }
1027}
1028
1029static void fec_enet_active_rxring(struct net_device *ndev)
1030{
1031 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1032 int i;
1033
1034 for (i = 0; i < fep->num_rx_queues; i++)
1035 writel(val: 0, addr: fep->rx_queue[i]->bd.reg_desc_active);
1036}
1037
1038static void fec_enet_enable_ring(struct net_device *ndev)
1039{
1040 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1041 struct fec_enet_priv_tx_q *txq;
1042 struct fec_enet_priv_rx_q *rxq;
1043 int i;
1044
1045 for (i = 0; i < fep->num_rx_queues; i++) {
1046 rxq = fep->rx_queue[i];
1047 writel(val: rxq->bd.dma, addr: fep->hwp + FEC_R_DES_START(i));
1048 writel(PKT_MAXBUF_SIZE, addr: fep->hwp + FEC_R_BUFF_SIZE(i));
1049
1050 /* enable DMA1/2 */
1051 if (i)
1052 writel(RCMR_MATCHEN | RCMR_CMP(i),
1053 addr: fep->hwp + FEC_RCMR(i));
1054 }
1055
1056 for (i = 0; i < fep->num_tx_queues; i++) {
1057 txq = fep->tx_queue[i];
1058 writel(val: txq->bd.dma, addr: fep->hwp + FEC_X_DES_START(i));
1059
1060 /* enable DMA1/2 */
1061 if (i)
1062 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063 addr: fep->hwp + FEC_DMA_CFG(i));
1064 }
1065}
1066
1067/*
1068 * This function is called to start or restart the FEC during a link
1069 * change, transmit timeout, or to reconfigure the FEC. The network
1070 * packet processing for this device must be stopped before this call.
1071 */
1072static void
1073fec_restart(struct net_device *ndev)
1074{
1075 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1076 u32 temp_mac[2];
1077 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078 u32 ecntl = FEC_ECR_ETHEREN;
1079
1080 /* Whack a reset. We should wait for this.
1081 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1082 * instead of reset MAC itself.
1083 */
1084 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1085 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1086 writel(val: 0, addr: fep->hwp + FEC_ECNTRL);
1087 } else {
1088 writel(val: 1, addr: fep->hwp + FEC_ECNTRL);
1089 udelay(10);
1090 }
1091
1092 /*
1093 * enet-mac reset will reset mac address registers too,
1094 * so need to reconfigure it.
1095 */
1096 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1097 writel(val: (__force u32)cpu_to_be32(temp_mac[0]),
1098 addr: fep->hwp + FEC_ADDR_LOW);
1099 writel(val: (__force u32)cpu_to_be32(temp_mac[1]),
1100 addr: fep->hwp + FEC_ADDR_HIGH);
1101
1102 /* Clear any outstanding interrupt, except MDIO. */
1103 writel(val: (0xffffffff & ~FEC_ENET_MII), addr: fep->hwp + FEC_IEVENT);
1104
1105 fec_enet_bd_init(dev: ndev);
1106
1107 fec_enet_enable_ring(ndev);
1108
1109 /* Enable MII mode */
1110 if (fep->full_duplex == DUPLEX_FULL) {
1111 /* FD enable */
1112 writel(val: 0x04, addr: fep->hwp + FEC_X_CNTRL);
1113 } else {
1114 /* No Rcv on Xmit */
1115 rcntl |= 0x02;
1116 writel(val: 0x0, addr: fep->hwp + FEC_X_CNTRL);
1117 }
1118
1119 /* Set MII speed */
1120 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
1121
1122#if !defined(CONFIG_M5272)
1123 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1124 u32 val = readl(addr: fep->hwp + FEC_RACC);
1125
1126 /* align IP header */
1127 val |= FEC_RACC_SHIFT16;
1128 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1129 /* set RX checksum */
1130 val |= FEC_RACC_OPTIONS;
1131 else
1132 val &= ~FEC_RACC_OPTIONS;
1133 writel(val, addr: fep->hwp + FEC_RACC);
1134 writel(PKT_MAXBUF_SIZE, addr: fep->hwp + FEC_FTRL);
1135 }
1136#endif
1137
1138 /*
1139 * The phy interface and speed need to get configured
1140 * differently on enet-mac.
1141 */
1142 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1143 /* Enable flow control and length check */
1144 rcntl |= 0x40000000 | 0x00000020;
1145
1146 /* RGMII, RMII or MII */
1147 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1148 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1149 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1150 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1151 rcntl |= (1 << 6);
1152 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1153 rcntl |= FEC_RCR_RMII;
1154 else
1155 rcntl &= ~FEC_RCR_RMII;
1156
1157 /* 1G, 100M or 10M */
1158 if (ndev->phydev) {
1159 if (ndev->phydev->speed == SPEED_1000)
1160 ecntl |= (1 << 5);
1161 else if (ndev->phydev->speed == SPEED_100)
1162 rcntl &= ~FEC_RCR_10BASET;
1163 else
1164 rcntl |= FEC_RCR_10BASET;
1165 }
1166 } else {
1167#ifdef FEC_MIIGSK_ENR
1168 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1169 u32 cfgr;
1170 /* disable the gasket and wait */
1171 writel(val: 0, addr: fep->hwp + FEC_MIIGSK_ENR);
1172 while (readl(addr: fep->hwp + FEC_MIIGSK_ENR) & 4)
1173 udelay(1);
1174
1175 /*
1176 * configure the gasket:
1177 * RMII, 50 MHz, no loopback, no echo
1178 * MII, 25 MHz, no loopback, no echo
1179 */
1180 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1181 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1182 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1183 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1184 writel(val: cfgr, addr: fep->hwp + FEC_MIIGSK_CFGR);
1185
1186 /* re-enable the gasket */
1187 writel(val: 2, addr: fep->hwp + FEC_MIIGSK_ENR);
1188 }
1189#endif
1190 }
1191
1192#if !defined(CONFIG_M5272)
1193 /* enable pause frame*/
1194 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1195 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1196 ndev->phydev && ndev->phydev->pause)) {
1197 rcntl |= FEC_RCR_FLOWCTL;
1198
1199 /* set FIFO threshold parameter to reduce overrun */
1200 writel(FEC_ENET_RSEM_V, addr: fep->hwp + FEC_R_FIFO_RSEM);
1201 writel(FEC_ENET_RSFL_V, addr: fep->hwp + FEC_R_FIFO_RSFL);
1202 writel(FEC_ENET_RAEM_V, addr: fep->hwp + FEC_R_FIFO_RAEM);
1203 writel(FEC_ENET_RAFL_V, addr: fep->hwp + FEC_R_FIFO_RAFL);
1204
1205 /* OPD */
1206 writel(FEC_ENET_OPD_V, addr: fep->hwp + FEC_OPD);
1207 } else {
1208 rcntl &= ~FEC_RCR_FLOWCTL;
1209 }
1210#endif /* !defined(CONFIG_M5272) */
1211
1212 writel(val: rcntl, addr: fep->hwp + FEC_R_CNTRL);
1213
1214 /* Setup multicast filter. */
1215 set_multicast_list(ndev);
1216#ifndef CONFIG_M5272
1217 writel(val: 0, addr: fep->hwp + FEC_HASH_TABLE_HIGH);
1218 writel(val: 0, addr: fep->hwp + FEC_HASH_TABLE_LOW);
1219#endif
1220
1221 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1222 /* enable ENET endian swap */
1223 ecntl |= FEC_ECR_BYTESWP;
1224 /* enable ENET store and forward mode */
1225 writel(FEC_TXWMRK_STRFWD, addr: fep->hwp + FEC_X_WMRK);
1226 }
1227
1228 if (fep->bufdesc_ex)
1229 ecntl |= FEC_ECR_EN1588;
1230
1231 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1232 fep->rgmii_txc_dly)
1233 ecntl |= FEC_ENET_TXC_DLY;
1234 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235 fep->rgmii_rxc_dly)
1236 ecntl |= FEC_ENET_RXC_DLY;
1237
1238#ifndef CONFIG_M5272
1239 /* Enable the MIB statistic event counters */
1240 writel(val: 0 << 31, addr: fep->hwp + FEC_MIB_CTRLSTAT);
1241#endif
1242
1243 /* And last, enable the transmit and receive processing */
1244 writel(val: ecntl, addr: fep->hwp + FEC_ECNTRL);
1245 fec_enet_active_rxring(ndev);
1246
1247 if (fep->bufdesc_ex)
1248 fec_ptp_start_cyclecounter(ndev);
1249
1250 /* Enable interrupts we wish to service */
1251 if (fep->link)
1252 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1253 else
1254 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1255
1256 /* Init the interrupt coalescing */
1257 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1258 fec_enet_itr_coal_set(ndev);
1259}
1260
1261static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1262{
1263 if (!(of_machine_is_compatible(compat: "fsl,imx8qm") ||
1264 of_machine_is_compatible(compat: "fsl,imx8qxp") ||
1265 of_machine_is_compatible(compat: "fsl,imx8dxl")))
1266 return 0;
1267
1268 return imx_scu_get_handle(ipc: &fep->ipc_handle);
1269}
1270
1271static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1272{
1273 struct device_node *np = fep->pdev->dev.of_node;
1274 u32 rsrc_id, val;
1275 int idx;
1276
1277 if (!np || !fep->ipc_handle)
1278 return;
1279
1280 idx = of_alias_get_id(np, stem: "ethernet");
1281 if (idx < 0)
1282 idx = 0;
1283 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1284
1285 val = enabled ? 1 : 0;
1286 imx_sc_misc_set_control(ipc: fep->ipc_handle, resource: rsrc_id, IMX_SC_C_IPG_STOP, val);
1287}
1288
1289static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1290{
1291 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1292 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1293
1294 if (stop_gpr->gpr) {
1295 if (enabled)
1296 regmap_update_bits(map: stop_gpr->gpr, reg: stop_gpr->reg,
1297 BIT(stop_gpr->bit),
1298 BIT(stop_gpr->bit));
1299 else
1300 regmap_update_bits(map: stop_gpr->gpr, reg: stop_gpr->reg,
1301 BIT(stop_gpr->bit), val: 0);
1302 } else if (pdata && pdata->sleep_mode_enable) {
1303 pdata->sleep_mode_enable(enabled);
1304 } else {
1305 fec_enet_ipg_stop_set(fep, enabled);
1306 }
1307}
1308
1309static void fec_irqs_disable(struct net_device *ndev)
1310{
1311 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1312
1313 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1314}
1315
1316static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1317{
1318 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1319
1320 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1321 writel(FEC_ENET_WAKEUP, addr: fep->hwp + FEC_IMASK);
1322}
1323
1324static void
1325fec_stop(struct net_device *ndev)
1326{
1327 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1328 u32 rmii_mode = readl(addr: fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1329 u32 val;
1330
1331 /* We cannot expect a graceful transmit stop without link !!! */
1332 if (fep->link) {
1333 writel(val: 1, addr: fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1334 udelay(10);
1335 if (!(readl(addr: fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1336 netdev_err(dev: ndev, format: "Graceful transmit stop did not complete!\n");
1337 }
1338
1339 /* Whack a reset. We should wait for this.
1340 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1341 * instead of reset MAC itself.
1342 */
1343 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1344 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1345 writel(val: 0, addr: fep->hwp + FEC_ECNTRL);
1346 } else {
1347 writel(FEC_ECR_RESET, addr: fep->hwp + FEC_ECNTRL);
1348 udelay(10);
1349 }
1350 } else {
1351 val = readl(addr: fep->hwp + FEC_ECNTRL);
1352 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1353 writel(val, addr: fep->hwp + FEC_ECNTRL);
1354 }
1355 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
1356 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1357
1358 /* We have to keep ENET enabled to have MII interrupt stay working */
1359 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1360 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1361 writel(FEC_ECR_ETHEREN, addr: fep->hwp + FEC_ECNTRL);
1362 writel(val: rmii_mode, addr: fep->hwp + FEC_R_CNTRL);
1363 }
1364}
1365
1366static void
1367fec_timeout(struct net_device *ndev, unsigned int txqueue)
1368{
1369 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1370
1371 fec_dump(ndev);
1372
1373 ndev->stats.tx_errors++;
1374
1375 schedule_work(work: &fep->tx_timeout_work);
1376}
1377
1378static void fec_enet_timeout_work(struct work_struct *work)
1379{
1380 struct fec_enet_private *fep =
1381 container_of(work, struct fec_enet_private, tx_timeout_work);
1382 struct net_device *ndev = fep->netdev;
1383
1384 rtnl_lock();
1385 if (netif_device_present(dev: ndev) || netif_running(dev: ndev)) {
1386 napi_disable(n: &fep->napi);
1387 netif_tx_lock_bh(dev: ndev);
1388 fec_restart(ndev);
1389 netif_tx_wake_all_queues(dev: ndev);
1390 netif_tx_unlock_bh(dev: ndev);
1391 napi_enable(n: &fep->napi);
1392 }
1393 rtnl_unlock();
1394}
1395
1396static void
1397fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1398 struct skb_shared_hwtstamps *hwtstamps)
1399{
1400 unsigned long flags;
1401 u64 ns;
1402
1403 spin_lock_irqsave(&fep->tmreg_lock, flags);
1404 ns = timecounter_cyc2time(tc: &fep->tc, cycle_tstamp: ts);
1405 spin_unlock_irqrestore(lock: &fep->tmreg_lock, flags);
1406
1407 memset(hwtstamps, 0, sizeof(*hwtstamps));
1408 hwtstamps->hwtstamp = ns_to_ktime(ns);
1409}
1410
1411static void
1412fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1413{
1414 struct fec_enet_private *fep;
1415 struct xdp_frame *xdpf;
1416 struct bufdesc *bdp;
1417 unsigned short status;
1418 struct sk_buff *skb;
1419 struct fec_enet_priv_tx_q *txq;
1420 struct netdev_queue *nq;
1421 int index = 0;
1422 int entries_free;
1423 struct page *page;
1424 int frame_len;
1425
1426 fep = netdev_priv(dev: ndev);
1427
1428 txq = fep->tx_queue[queue_id];
1429 /* get next bdp of dirty_tx */
1430 nq = netdev_get_tx_queue(dev: ndev, index: queue_id);
1431 bdp = txq->dirty_tx;
1432
1433 /* get next bdp of dirty_tx */
1434 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1435
1436 while (bdp != READ_ONCE(txq->bd.cur)) {
1437 /* Order the load of bd.cur and cbd_sc */
1438 rmb();
1439 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1440 if (status & BD_ENET_TX_READY)
1441 break;
1442
1443 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
1444
1445 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1446 skb = txq->tx_buf[index].buf_p;
1447 if (bdp->cbd_bufaddr &&
1448 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1449 dma_unmap_single(&fep->pdev->dev,
1450 fec32_to_cpu(bdp->cbd_bufaddr),
1451 fec16_to_cpu(bdp->cbd_datlen),
1452 DMA_TO_DEVICE);
1453 bdp->cbd_bufaddr = cpu_to_fec32(0);
1454 if (!skb)
1455 goto tx_buf_done;
1456 } else {
1457 /* Tx processing cannot call any XDP (or page pool) APIs if
1458 * the "budget" is 0. Because NAPI is called with budget of
1459 * 0 (such as netpoll) indicates we may be in an IRQ context,
1460 * however, we can't use the page pool from IRQ context.
1461 */
1462 if (unlikely(!budget))
1463 break;
1464
1465 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1466 xdpf = txq->tx_buf[index].buf_p;
1467 if (bdp->cbd_bufaddr)
1468 dma_unmap_single(&fep->pdev->dev,
1469 fec32_to_cpu(bdp->cbd_bufaddr),
1470 fec16_to_cpu(bdp->cbd_datlen),
1471 DMA_TO_DEVICE);
1472 } else {
1473 page = txq->tx_buf[index].buf_p;
1474 }
1475
1476 bdp->cbd_bufaddr = cpu_to_fec32(0);
1477 if (unlikely(!txq->tx_buf[index].buf_p)) {
1478 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1479 goto tx_buf_done;
1480 }
1481
1482 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1483 }
1484
1485 /* Check for errors. */
1486 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1487 BD_ENET_TX_RL | BD_ENET_TX_UN |
1488 BD_ENET_TX_CSL)) {
1489 ndev->stats.tx_errors++;
1490 if (status & BD_ENET_TX_HB) /* No heartbeat */
1491 ndev->stats.tx_heartbeat_errors++;
1492 if (status & BD_ENET_TX_LC) /* Late collision */
1493 ndev->stats.tx_window_errors++;
1494 if (status & BD_ENET_TX_RL) /* Retrans limit */
1495 ndev->stats.tx_aborted_errors++;
1496 if (status & BD_ENET_TX_UN) /* Underrun */
1497 ndev->stats.tx_fifo_errors++;
1498 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1499 ndev->stats.tx_carrier_errors++;
1500 } else {
1501 ndev->stats.tx_packets++;
1502
1503 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1504 ndev->stats.tx_bytes += skb->len;
1505 else
1506 ndev->stats.tx_bytes += frame_len;
1507 }
1508
1509 /* Deferred means some collisions occurred during transmit,
1510 * but we eventually sent the packet OK.
1511 */
1512 if (status & BD_ENET_TX_DEF)
1513 ndev->stats.collisions++;
1514
1515 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1516 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1517 * are to time stamp the packet, so we still need to check time
1518 * stamping enabled flag.
1519 */
1520 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1521 fep->hwts_tx_en) && fep->bufdesc_ex) {
1522 struct skb_shared_hwtstamps shhwtstamps;
1523 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1524
1525 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), hwtstamps: &shhwtstamps);
1526 skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps);
1527 }
1528
1529 /* Free the sk buffer associated with this last transmit */
1530 napi_consume_skb(skb, budget);
1531 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1532 xdp_return_frame_rx_napi(xdpf);
1533 } else { /* recycle pages of XDP_TX frames */
1534 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1535 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: true);
1536 }
1537
1538 txq->tx_buf[index].buf_p = NULL;
1539 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1540 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1541
1542tx_buf_done:
1543 /* Make sure the update to bdp and tx_buf are performed
1544 * before dirty_tx
1545 */
1546 wmb();
1547 txq->dirty_tx = bdp;
1548
1549 /* Update pointer to next buffer descriptor to be transmitted */
1550 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1551
1552 /* Since we have freed up a buffer, the ring is no longer full
1553 */
1554 if (netif_tx_queue_stopped(dev_queue: nq)) {
1555 entries_free = fec_enet_get_free_txdesc_num(txq);
1556 if (entries_free >= txq->tx_wake_threshold)
1557 netif_tx_wake_queue(dev_queue: nq);
1558 }
1559 }
1560
1561 /* ERR006358: Keep the transmitter going */
1562 if (bdp != txq->bd.cur &&
1563 readl(addr: txq->bd.reg_desc_active) == 0)
1564 writel(val: 0, addr: txq->bd.reg_desc_active);
1565}
1566
1567static void fec_enet_tx(struct net_device *ndev, int budget)
1568{
1569 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1570 int i;
1571
1572 /* Make sure that AVB queues are processed first. */
1573 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1574 fec_enet_tx_queue(ndev, queue_id: i, budget);
1575}
1576
1577static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1578 struct bufdesc *bdp, int index)
1579{
1580 struct page *new_page;
1581 dma_addr_t phys_addr;
1582
1583 new_page = page_pool_dev_alloc_pages(pool: rxq->page_pool);
1584 WARN_ON(!new_page);
1585 rxq->rx_skb_info[index].page = new_page;
1586
1587 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1588 phys_addr = page_pool_get_dma_addr(page: new_page) + FEC_ENET_XDP_HEADROOM;
1589 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1590}
1591
1592static u32
1593fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1594 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1595{
1596 unsigned int sync, len = xdp->data_end - xdp->data;
1597 u32 ret = FEC_ENET_XDP_PASS;
1598 struct page *page;
1599 int err;
1600 u32 act;
1601
1602 act = bpf_prog_run_xdp(prog, xdp);
1603
1604 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1605 * max len CPU touch
1606 */
1607 sync = xdp->data_end - xdp->data;
1608 sync = max(sync, len);
1609
1610 switch (act) {
1611 case XDP_PASS:
1612 rxq->stats[RX_XDP_PASS]++;
1613 ret = FEC_ENET_XDP_PASS;
1614 break;
1615
1616 case XDP_REDIRECT:
1617 rxq->stats[RX_XDP_REDIRECT]++;
1618 err = xdp_do_redirect(dev: fep->netdev, xdp, prog);
1619 if (unlikely(err))
1620 goto xdp_err;
1621
1622 ret = FEC_ENET_XDP_REDIR;
1623 break;
1624
1625 case XDP_TX:
1626 rxq->stats[RX_XDP_TX]++;
1627 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, dma_sync_len: sync);
1628 if (unlikely(err)) {
1629 rxq->stats[RX_XDP_TX_ERRORS]++;
1630 goto xdp_err;
1631 }
1632
1633 ret = FEC_ENET_XDP_TX;
1634 break;
1635
1636 default:
1637 bpf_warn_invalid_xdp_action(dev: fep->netdev, prog, act);
1638 fallthrough;
1639
1640 case XDP_ABORTED:
1641 fallthrough; /* handle aborts by dropping packet */
1642
1643 case XDP_DROP:
1644 rxq->stats[RX_XDP_DROP]++;
1645xdp_err:
1646 ret = FEC_ENET_XDP_CONSUMED;
1647 page = virt_to_head_page(x: xdp->data);
1648 page_pool_put_page(pool: rxq->page_pool, page, dma_sync_size: sync, allow_direct: true);
1649 if (act != XDP_DROP)
1650 trace_xdp_exception(dev: fep->netdev, xdp: prog, act);
1651 break;
1652 }
1653
1654 return ret;
1655}
1656
1657/* During a receive, the bd_rx.cur points to the current incoming buffer.
1658 * When we update through the ring, if the next incoming buffer has
1659 * not been given to the system, we just set the empty indicator,
1660 * effectively tossing the packet.
1661 */
1662static int
1663fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1664{
1665 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1666 struct fec_enet_priv_rx_q *rxq;
1667 struct bufdesc *bdp;
1668 unsigned short status;
1669 struct sk_buff *skb;
1670 ushort pkt_len;
1671 __u8 *data;
1672 int pkt_received = 0;
1673 struct bufdesc_ex *ebdp = NULL;
1674 bool vlan_packet_rcvd = false;
1675 u16 vlan_tag;
1676 int index = 0;
1677 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1678 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1679 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1680 u32 data_start = FEC_ENET_XDP_HEADROOM;
1681 int cpu = smp_processor_id();
1682 struct xdp_buff xdp;
1683 struct page *page;
1684 u32 sub_len = 4;
1685
1686#if !defined(CONFIG_M5272)
1687 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1688 * FEC_RACC_SHIFT16 is set by default in the probe function.
1689 */
1690 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1691 data_start += 2;
1692 sub_len += 2;
1693 }
1694#endif
1695
1696#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1697 /*
1698 * Hacky flush of all caches instead of using the DMA API for the TSO
1699 * headers.
1700 */
1701 flush_cache_all();
1702#endif
1703 rxq = fep->rx_queue[queue_id];
1704
1705 /* First, grab all of the stats for the incoming packet.
1706 * These get messed up if we get called due to a busy condition.
1707 */
1708 bdp = rxq->bd.cur;
1709 xdp_init_buff(xdp: &xdp, PAGE_SIZE, rxq: &rxq->xdp_rxq);
1710
1711 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1712
1713 if (pkt_received >= budget)
1714 break;
1715 pkt_received++;
1716
1717 writel(FEC_ENET_RXF_GET(queue_id), addr: fep->hwp + FEC_IEVENT);
1718
1719 /* Check for errors. */
1720 status ^= BD_ENET_RX_LAST;
1721 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1722 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1723 BD_ENET_RX_CL)) {
1724 ndev->stats.rx_errors++;
1725 if (status & BD_ENET_RX_OV) {
1726 /* FIFO overrun */
1727 ndev->stats.rx_fifo_errors++;
1728 goto rx_processing_done;
1729 }
1730 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1731 | BD_ENET_RX_LAST)) {
1732 /* Frame too long or too short. */
1733 ndev->stats.rx_length_errors++;
1734 if (status & BD_ENET_RX_LAST)
1735 netdev_err(dev: ndev, format: "rcv is not +last\n");
1736 }
1737 if (status & BD_ENET_RX_CR) /* CRC Error */
1738 ndev->stats.rx_crc_errors++;
1739 /* Report late collisions as a frame error. */
1740 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1741 ndev->stats.rx_frame_errors++;
1742 goto rx_processing_done;
1743 }
1744
1745 /* Process the incoming frame. */
1746 ndev->stats.rx_packets++;
1747 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1748 ndev->stats.rx_bytes += pkt_len;
1749
1750 index = fec_enet_get_bd_index(bdp, bd: &rxq->bd);
1751 page = rxq->rx_skb_info[index].page;
1752 dma_sync_single_for_cpu(dev: &fep->pdev->dev,
1753 fec32_to_cpu(bdp->cbd_bufaddr),
1754 size: pkt_len,
1755 dir: DMA_FROM_DEVICE);
1756 prefetch(page_address(page));
1757 fec_enet_update_cbd(rxq, bdp, index);
1758
1759 if (xdp_prog) {
1760 xdp_buff_clear_frags_flag(xdp: &xdp);
1761 /* subtract 16bit shift and FCS */
1762 xdp_prepare_buff(xdp: &xdp, page_address(page),
1763 headroom: data_start, data_len: pkt_len - sub_len, meta_valid: false);
1764 ret = fec_enet_run_xdp(fep, prog: xdp_prog, xdp: &xdp, rxq, cpu);
1765 xdp_result |= ret;
1766 if (ret != FEC_ENET_XDP_PASS)
1767 goto rx_processing_done;
1768 }
1769
1770 /* The packet length includes FCS, but we don't want to
1771 * include that when passing upstream as it messes up
1772 * bridging applications.
1773 */
1774 skb = build_skb(page_address(page), PAGE_SIZE);
1775 if (unlikely(!skb)) {
1776 page_pool_recycle_direct(pool: rxq->page_pool, page);
1777 ndev->stats.rx_dropped++;
1778
1779 netdev_err_once(ndev, "build_skb failed!\n");
1780 goto rx_processing_done;
1781 }
1782
1783 skb_reserve(skb, len: data_start);
1784 skb_put(skb, len: pkt_len - sub_len);
1785 skb_mark_for_recycle(skb);
1786
1787 if (unlikely(need_swap)) {
1788 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1789 swap_buffer(bufaddr: data, len: pkt_len);
1790 }
1791 data = skb->data;
1792
1793 /* Extract the enhanced buffer descriptor */
1794 ebdp = NULL;
1795 if (fep->bufdesc_ex)
1796 ebdp = (struct bufdesc_ex *)bdp;
1797
1798 /* If this is a VLAN packet remove the VLAN Tag */
1799 vlan_packet_rcvd = false;
1800 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1801 fep->bufdesc_ex &&
1802 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1803 /* Push and remove the vlan tag */
1804 struct vlan_hdr *vlan_header =
1805 (struct vlan_hdr *) (data + ETH_HLEN);
1806 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1807
1808 vlan_packet_rcvd = true;
1809
1810 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1811 skb_pull(skb, VLAN_HLEN);
1812 }
1813
1814 skb->protocol = eth_type_trans(skb, dev: ndev);
1815
1816 /* Get receive timestamp from the skb */
1817 if (fep->hwts_rx_en && fep->bufdesc_ex)
1818 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1819 hwtstamps: skb_hwtstamps(skb));
1820
1821 if (fep->bufdesc_ex &&
1822 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1823 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1824 /* don't check it */
1825 skb->ip_summed = CHECKSUM_UNNECESSARY;
1826 } else {
1827 skb_checksum_none_assert(skb);
1828 }
1829 }
1830
1831 /* Handle received VLAN packets */
1832 if (vlan_packet_rcvd)
1833 __vlan_hwaccel_put_tag(skb,
1834 htons(ETH_P_8021Q),
1835 vlan_tci: vlan_tag);
1836
1837 skb_record_rx_queue(skb, rx_queue: queue_id);
1838 napi_gro_receive(napi: &fep->napi, skb);
1839
1840rx_processing_done:
1841 /* Clear the status flags for this buffer */
1842 status &= ~BD_ENET_RX_STATS;
1843
1844 /* Mark the buffer empty */
1845 status |= BD_ENET_RX_EMPTY;
1846
1847 if (fep->bufdesc_ex) {
1848 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1849
1850 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1851 ebdp->cbd_prot = 0;
1852 ebdp->cbd_bdu = 0;
1853 }
1854 /* Make sure the updates to rest of the descriptor are
1855 * performed before transferring ownership.
1856 */
1857 wmb();
1858 bdp->cbd_sc = cpu_to_fec16(status);
1859
1860 /* Update BD pointer to next entry */
1861 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
1862
1863 /* Doing this here will keep the FEC running while we process
1864 * incoming frames. On a heavily loaded network, we should be
1865 * able to keep up at the expense of system resources.
1866 */
1867 writel(val: 0, addr: rxq->bd.reg_desc_active);
1868 }
1869 rxq->bd.cur = bdp;
1870
1871 if (xdp_result & FEC_ENET_XDP_REDIR)
1872 xdp_do_flush();
1873
1874 return pkt_received;
1875}
1876
1877static int fec_enet_rx(struct net_device *ndev, int budget)
1878{
1879 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1880 int i, done = 0;
1881
1882 /* Make sure that AVB queues are processed first. */
1883 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1884 done += fec_enet_rx_queue(ndev, budget: budget - done, queue_id: i);
1885
1886 return done;
1887}
1888
1889static bool fec_enet_collect_events(struct fec_enet_private *fep)
1890{
1891 uint int_events;
1892
1893 int_events = readl(addr: fep->hwp + FEC_IEVENT);
1894
1895 /* Don't clear MDIO events, we poll for those */
1896 int_events &= ~FEC_ENET_MII;
1897
1898 writel(val: int_events, addr: fep->hwp + FEC_IEVENT);
1899
1900 return int_events != 0;
1901}
1902
1903static irqreturn_t
1904fec_enet_interrupt(int irq, void *dev_id)
1905{
1906 struct net_device *ndev = dev_id;
1907 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1908 irqreturn_t ret = IRQ_NONE;
1909
1910 if (fec_enet_collect_events(fep) && fep->link) {
1911 ret = IRQ_HANDLED;
1912
1913 if (napi_schedule_prep(n: &fep->napi)) {
1914 /* Disable interrupts */
1915 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1916 __napi_schedule(n: &fep->napi);
1917 }
1918 }
1919
1920 return ret;
1921}
1922
1923static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1924{
1925 struct net_device *ndev = napi->dev;
1926 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1927 int done = 0;
1928
1929 do {
1930 done += fec_enet_rx(ndev, budget: budget - done);
1931 fec_enet_tx(ndev, budget);
1932 } while ((done < budget) && fec_enet_collect_events(fep));
1933
1934 if (done < budget) {
1935 napi_complete_done(n: napi, work_done: done);
1936 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1937 }
1938
1939 return done;
1940}
1941
1942/* ------------------------------------------------------------------------- */
1943static int fec_get_mac(struct net_device *ndev)
1944{
1945 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1946 unsigned char *iap, tmpaddr[ETH_ALEN];
1947 int ret;
1948
1949 /*
1950 * try to get mac address in following order:
1951 *
1952 * 1) module parameter via kernel command line in form
1953 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1954 */
1955 iap = macaddr;
1956
1957 /*
1958 * 2) from device tree data
1959 */
1960 if (!is_valid_ether_addr(addr: iap)) {
1961 struct device_node *np = fep->pdev->dev.of_node;
1962 if (np) {
1963 ret = of_get_mac_address(np, mac: tmpaddr);
1964 if (!ret)
1965 iap = tmpaddr;
1966 else if (ret == -EPROBE_DEFER)
1967 return ret;
1968 }
1969 }
1970
1971 /*
1972 * 3) from flash or fuse (via platform data)
1973 */
1974 if (!is_valid_ether_addr(addr: iap)) {
1975#ifdef CONFIG_M5272
1976 if (FEC_FLASHMAC)
1977 iap = (unsigned char *)FEC_FLASHMAC;
1978#else
1979 struct fec_platform_data *pdata = dev_get_platdata(dev: &fep->pdev->dev);
1980
1981 if (pdata)
1982 iap = (unsigned char *)&pdata->mac;
1983#endif
1984 }
1985
1986 /*
1987 * 4) FEC mac registers set by bootloader
1988 */
1989 if (!is_valid_ether_addr(addr: iap)) {
1990 *((__be32 *) &tmpaddr[0]) =
1991 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1992 *((__be16 *) &tmpaddr[4]) =
1993 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1994 iap = &tmpaddr[0];
1995 }
1996
1997 /*
1998 * 5) random mac address
1999 */
2000 if (!is_valid_ether_addr(addr: iap)) {
2001 /* Report it and use a random ethernet address instead */
2002 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2003 eth_hw_addr_random(dev: ndev);
2004 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2005 ndev->dev_addr);
2006 return 0;
2007 }
2008
2009 /* Adjust MAC if using macaddr */
2010 eth_hw_addr_gen(dev: ndev, base_addr: iap, id: iap == macaddr ? fep->dev_id : 0);
2011
2012 return 0;
2013}
2014
2015/* ------------------------------------------------------------------------- */
2016
2017/*
2018 * Phy section
2019 */
2020
2021/* LPI Sleep Ts count base on tx clk (clk_ref).
2022 * The lpi sleep cnt value = X us / (cycle_ns).
2023 */
2024static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2025{
2026 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2027
2028 return us * (fep->clk_ref_rate / 1000) / 1000;
2029}
2030
2031static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2032{
2033 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2034 struct ethtool_keee *p = &fep->eee;
2035 unsigned int sleep_cycle, wake_cycle;
2036
2037 if (enable) {
2038 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, us: p->tx_lpi_timer);
2039 wake_cycle = sleep_cycle;
2040 } else {
2041 sleep_cycle = 0;
2042 wake_cycle = 0;
2043 }
2044
2045 writel(val: sleep_cycle, addr: fep->hwp + FEC_LPI_SLEEP);
2046 writel(val: wake_cycle, addr: fep->hwp + FEC_LPI_WAKE);
2047
2048 return 0;
2049}
2050
2051static void fec_enet_adjust_link(struct net_device *ndev)
2052{
2053 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2054 struct phy_device *phy_dev = ndev->phydev;
2055 int status_change = 0;
2056
2057 /*
2058 * If the netdev is down, or is going down, we're not interested
2059 * in link state events, so just mark our idea of the link as down
2060 * and ignore the event.
2061 */
2062 if (!netif_running(dev: ndev) || !netif_device_present(dev: ndev)) {
2063 fep->link = 0;
2064 } else if (phy_dev->link) {
2065 if (!fep->link) {
2066 fep->link = phy_dev->link;
2067 status_change = 1;
2068 }
2069
2070 if (fep->full_duplex != phy_dev->duplex) {
2071 fep->full_duplex = phy_dev->duplex;
2072 status_change = 1;
2073 }
2074
2075 if (phy_dev->speed != fep->speed) {
2076 fep->speed = phy_dev->speed;
2077 status_change = 1;
2078 }
2079
2080 /* if any of the above changed restart the FEC */
2081 if (status_change) {
2082 netif_stop_queue(dev: ndev);
2083 napi_disable(n: &fep->napi);
2084 netif_tx_lock_bh(dev: ndev);
2085 fec_restart(ndev);
2086 netif_tx_wake_all_queues(dev: ndev);
2087 netif_tx_unlock_bh(dev: ndev);
2088 napi_enable(n: &fep->napi);
2089 }
2090 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2091 fec_enet_eee_mode_set(ndev, enable: phy_dev->enable_tx_lpi);
2092 } else {
2093 if (fep->link) {
2094 netif_stop_queue(dev: ndev);
2095 napi_disable(n: &fep->napi);
2096 netif_tx_lock_bh(dev: ndev);
2097 fec_stop(ndev);
2098 netif_tx_unlock_bh(dev: ndev);
2099 napi_enable(n: &fep->napi);
2100 fep->link = phy_dev->link;
2101 status_change = 1;
2102 }
2103 }
2104
2105 if (status_change)
2106 phy_print_status(phydev: phy_dev);
2107}
2108
2109static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2110{
2111 uint ievent;
2112 int ret;
2113
2114 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2115 ievent & FEC_ENET_MII, 2, 30000);
2116
2117 if (!ret)
2118 writel(FEC_ENET_MII, addr: fep->hwp + FEC_IEVENT);
2119
2120 return ret;
2121}
2122
2123static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2124{
2125 struct fec_enet_private *fep = bus->priv;
2126 struct device *dev = &fep->pdev->dev;
2127 int ret = 0, frame_start, frame_addr, frame_op;
2128
2129 ret = pm_runtime_resume_and_get(dev);
2130 if (ret < 0)
2131 return ret;
2132
2133 /* C22 read */
2134 frame_op = FEC_MMFR_OP_READ;
2135 frame_start = FEC_MMFR_ST;
2136 frame_addr = regnum;
2137
2138 /* start a read op */
2139 writel(val: frame_start | frame_op |
2140 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2141 FEC_MMFR_TA, addr: fep->hwp + FEC_MII_DATA);
2142
2143 /* wait for end of transfer */
2144 ret = fec_enet_mdio_wait(fep);
2145 if (ret) {
2146 netdev_err(dev: fep->netdev, format: "MDIO read timeout\n");
2147 goto out;
2148 }
2149
2150 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2151
2152out:
2153 pm_runtime_mark_last_busy(dev);
2154 pm_runtime_put_autosuspend(dev);
2155
2156 return ret;
2157}
2158
2159static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2160 int devad, int regnum)
2161{
2162 struct fec_enet_private *fep = bus->priv;
2163 struct device *dev = &fep->pdev->dev;
2164 int ret = 0, frame_start, frame_op;
2165
2166 ret = pm_runtime_resume_and_get(dev);
2167 if (ret < 0)
2168 return ret;
2169
2170 frame_start = FEC_MMFR_ST_C45;
2171
2172 /* write address */
2173 writel(val: frame_start | FEC_MMFR_OP_ADDR_WRITE |
2174 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2175 FEC_MMFR_TA | (regnum & 0xFFFF),
2176 addr: fep->hwp + FEC_MII_DATA);
2177
2178 /* wait for end of transfer */
2179 ret = fec_enet_mdio_wait(fep);
2180 if (ret) {
2181 netdev_err(dev: fep->netdev, format: "MDIO address write timeout\n");
2182 goto out;
2183 }
2184
2185 frame_op = FEC_MMFR_OP_READ_C45;
2186
2187 /* start a read op */
2188 writel(val: frame_start | frame_op |
2189 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2190 FEC_MMFR_TA, addr: fep->hwp + FEC_MII_DATA);
2191
2192 /* wait for end of transfer */
2193 ret = fec_enet_mdio_wait(fep);
2194 if (ret) {
2195 netdev_err(dev: fep->netdev, format: "MDIO read timeout\n");
2196 goto out;
2197 }
2198
2199 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2200
2201out:
2202 pm_runtime_mark_last_busy(dev);
2203 pm_runtime_put_autosuspend(dev);
2204
2205 return ret;
2206}
2207
2208static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2209 u16 value)
2210{
2211 struct fec_enet_private *fep = bus->priv;
2212 struct device *dev = &fep->pdev->dev;
2213 int ret, frame_start, frame_addr;
2214
2215 ret = pm_runtime_resume_and_get(dev);
2216 if (ret < 0)
2217 return ret;
2218
2219 /* C22 write */
2220 frame_start = FEC_MMFR_ST;
2221 frame_addr = regnum;
2222
2223 /* start a write op */
2224 writel(val: frame_start | FEC_MMFR_OP_WRITE |
2225 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2226 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2227 addr: fep->hwp + FEC_MII_DATA);
2228
2229 /* wait for end of transfer */
2230 ret = fec_enet_mdio_wait(fep);
2231 if (ret)
2232 netdev_err(dev: fep->netdev, format: "MDIO write timeout\n");
2233
2234 pm_runtime_mark_last_busy(dev);
2235 pm_runtime_put_autosuspend(dev);
2236
2237 return ret;
2238}
2239
2240static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2241 int devad, int regnum, u16 value)
2242{
2243 struct fec_enet_private *fep = bus->priv;
2244 struct device *dev = &fep->pdev->dev;
2245 int ret, frame_start;
2246
2247 ret = pm_runtime_resume_and_get(dev);
2248 if (ret < 0)
2249 return ret;
2250
2251 frame_start = FEC_MMFR_ST_C45;
2252
2253 /* write address */
2254 writel(val: frame_start | FEC_MMFR_OP_ADDR_WRITE |
2255 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2256 FEC_MMFR_TA | (regnum & 0xFFFF),
2257 addr: fep->hwp + FEC_MII_DATA);
2258
2259 /* wait for end of transfer */
2260 ret = fec_enet_mdio_wait(fep);
2261 if (ret) {
2262 netdev_err(dev: fep->netdev, format: "MDIO address write timeout\n");
2263 goto out;
2264 }
2265
2266 /* start a write op */
2267 writel(val: frame_start | FEC_MMFR_OP_WRITE |
2268 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2269 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2270 addr: fep->hwp + FEC_MII_DATA);
2271
2272 /* wait for end of transfer */
2273 ret = fec_enet_mdio_wait(fep);
2274 if (ret)
2275 netdev_err(dev: fep->netdev, format: "MDIO write timeout\n");
2276
2277out:
2278 pm_runtime_mark_last_busy(dev);
2279 pm_runtime_put_autosuspend(dev);
2280
2281 return ret;
2282}
2283
2284static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2285{
2286 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2287 struct phy_device *phy_dev = ndev->phydev;
2288
2289 if (phy_dev) {
2290 phy_reset_after_clk_enable(phydev: phy_dev);
2291 } else if (fep->phy_node) {
2292 /*
2293 * If the PHY still is not bound to the MAC, but there is
2294 * OF PHY node and a matching PHY device instance already,
2295 * use the OF PHY node to obtain the PHY device instance,
2296 * and then use that PHY device instance when triggering
2297 * the PHY reset.
2298 */
2299 phy_dev = of_phy_find_device(phy_np: fep->phy_node);
2300 phy_reset_after_clk_enable(phydev: phy_dev);
2301 put_device(dev: &phy_dev->mdio.dev);
2302 }
2303}
2304
2305static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2306{
2307 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2308 int ret;
2309
2310 if (enable) {
2311 ret = clk_prepare_enable(clk: fep->clk_enet_out);
2312 if (ret)
2313 return ret;
2314
2315 if (fep->clk_ptp) {
2316 mutex_lock(&fep->ptp_clk_mutex);
2317 ret = clk_prepare_enable(clk: fep->clk_ptp);
2318 if (ret) {
2319 mutex_unlock(lock: &fep->ptp_clk_mutex);
2320 goto failed_clk_ptp;
2321 } else {
2322 fep->ptp_clk_on = true;
2323 }
2324 mutex_unlock(lock: &fep->ptp_clk_mutex);
2325 }
2326
2327 ret = clk_prepare_enable(clk: fep->clk_ref);
2328 if (ret)
2329 goto failed_clk_ref;
2330
2331 ret = clk_prepare_enable(clk: fep->clk_2x_txclk);
2332 if (ret)
2333 goto failed_clk_2x_txclk;
2334
2335 fec_enet_phy_reset_after_clk_enable(ndev);
2336 } else {
2337 clk_disable_unprepare(clk: fep->clk_enet_out);
2338 if (fep->clk_ptp) {
2339 mutex_lock(&fep->ptp_clk_mutex);
2340 clk_disable_unprepare(clk: fep->clk_ptp);
2341 fep->ptp_clk_on = false;
2342 mutex_unlock(lock: &fep->ptp_clk_mutex);
2343 }
2344 clk_disable_unprepare(clk: fep->clk_ref);
2345 clk_disable_unprepare(clk: fep->clk_2x_txclk);
2346 }
2347
2348 return 0;
2349
2350failed_clk_2x_txclk:
2351 if (fep->clk_ref)
2352 clk_disable_unprepare(clk: fep->clk_ref);
2353failed_clk_ref:
2354 if (fep->clk_ptp) {
2355 mutex_lock(&fep->ptp_clk_mutex);
2356 clk_disable_unprepare(clk: fep->clk_ptp);
2357 fep->ptp_clk_on = false;
2358 mutex_unlock(lock: &fep->ptp_clk_mutex);
2359 }
2360failed_clk_ptp:
2361 clk_disable_unprepare(clk: fep->clk_enet_out);
2362
2363 return ret;
2364}
2365
2366static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2367 struct device_node *np)
2368{
2369 u32 rgmii_tx_delay, rgmii_rx_delay;
2370
2371 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2372 if (!of_property_read_u32(np, propname: "tx-internal-delay-ps", out_value: &rgmii_tx_delay)) {
2373 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2374 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2375 return -EINVAL;
2376 } else if (rgmii_tx_delay == 2000) {
2377 fep->rgmii_txc_dly = true;
2378 }
2379 }
2380
2381 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2382 if (!of_property_read_u32(np, propname: "rx-internal-delay-ps", out_value: &rgmii_rx_delay)) {
2383 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2384 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2385 return -EINVAL;
2386 } else if (rgmii_rx_delay == 2000) {
2387 fep->rgmii_rxc_dly = true;
2388 }
2389 }
2390
2391 return 0;
2392}
2393
2394static int fec_enet_mii_probe(struct net_device *ndev)
2395{
2396 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2397 struct phy_device *phy_dev = NULL;
2398 char mdio_bus_id[MII_BUS_ID_SIZE];
2399 char phy_name[MII_BUS_ID_SIZE + 3];
2400 int phy_id;
2401 int dev_id = fep->dev_id;
2402
2403 if (fep->phy_node) {
2404 phy_dev = of_phy_connect(dev: ndev, phy_np: fep->phy_node,
2405 hndlr: &fec_enet_adjust_link, flags: 0,
2406 iface: fep->phy_interface);
2407 if (!phy_dev) {
2408 netdev_err(dev: ndev, format: "Unable to connect to phy\n");
2409 return -ENODEV;
2410 }
2411 } else {
2412 /* check for attached phy */
2413 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2414 if (!mdiobus_is_registered_device(bus: fep->mii_bus, addr: phy_id))
2415 continue;
2416 if (dev_id--)
2417 continue;
2418 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2419 break;
2420 }
2421
2422 if (phy_id >= PHY_MAX_ADDR) {
2423 netdev_info(dev: ndev, format: "no PHY, assuming direct connection to switch\n");
2424 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2425 phy_id = 0;
2426 }
2427
2428 snprintf(buf: phy_name, size: sizeof(phy_name),
2429 PHY_ID_FMT, mdio_bus_id, phy_id);
2430 phy_dev = phy_connect(dev: ndev, bus_id: phy_name, handler: &fec_enet_adjust_link,
2431 interface: fep->phy_interface);
2432 }
2433
2434 if (IS_ERR(ptr: phy_dev)) {
2435 netdev_err(dev: ndev, format: "could not attach to PHY\n");
2436 return PTR_ERR(ptr: phy_dev);
2437 }
2438
2439 /* mask with MAC supported features */
2440 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2441 phy_set_max_speed(phydev: phy_dev, max_speed: 1000);
2442 phy_remove_link_mode(phydev: phy_dev,
2443 link_mode: ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2444#if !defined(CONFIG_M5272)
2445 phy_support_sym_pause(phydev: phy_dev);
2446#endif
2447 }
2448 else
2449 phy_set_max_speed(phydev: phy_dev, max_speed: 100);
2450
2451 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2452 phy_support_eee(phydev: phy_dev);
2453
2454 fep->link = 0;
2455 fep->full_duplex = 0;
2456
2457 phy_attached_info(phydev: phy_dev);
2458
2459 return 0;
2460}
2461
2462static int fec_enet_mii_init(struct platform_device *pdev)
2463{
2464 static struct mii_bus *fec0_mii_bus;
2465 struct net_device *ndev = platform_get_drvdata(pdev);
2466 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2467 bool suppress_preamble = false;
2468 struct phy_device *phydev;
2469 struct device_node *node;
2470 int err = -ENXIO;
2471 u32 mii_speed, holdtime;
2472 u32 bus_freq;
2473 int addr;
2474
2475 /*
2476 * The i.MX28 dual fec interfaces are not equal.
2477 * Here are the differences:
2478 *
2479 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2480 * - fec0 acts as the 1588 time master while fec1 is slave
2481 * - external phys can only be configured by fec0
2482 *
2483 * That is to say fec1 can not work independently. It only works
2484 * when fec0 is working. The reason behind this design is that the
2485 * second interface is added primarily for Switch mode.
2486 *
2487 * Because of the last point above, both phys are attached on fec0
2488 * mdio interface in board design, and need to be configured by
2489 * fec0 mii_bus.
2490 */
2491 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2492 /* fec1 uses fec0 mii_bus */
2493 if (mii_cnt && fec0_mii_bus) {
2494 fep->mii_bus = fec0_mii_bus;
2495 mii_cnt++;
2496 return 0;
2497 }
2498 return -ENOENT;
2499 }
2500
2501 bus_freq = 2500000; /* 2.5MHz by default */
2502 node = of_get_child_by_name(node: pdev->dev.of_node, name: "mdio");
2503 if (node) {
2504 of_property_read_u32(np: node, propname: "clock-frequency", out_value: &bus_freq);
2505 suppress_preamble = of_property_read_bool(np: node,
2506 propname: "suppress-preamble");
2507 }
2508
2509 /*
2510 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2511 *
2512 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2513 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2514 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2515 * document.
2516 */
2517 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2518 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2519 mii_speed--;
2520 if (mii_speed > 63) {
2521 dev_err(&pdev->dev,
2522 "fec clock (%lu) too fast to get right mii speed\n",
2523 clk_get_rate(fep->clk_ipg));
2524 err = -EINVAL;
2525 goto err_out;
2526 }
2527
2528 /*
2529 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2530 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2531 * versions are RAZ there, so just ignore the difference and write the
2532 * register always.
2533 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2534 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2535 * output.
2536 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2537 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2538 * holdtime cannot result in a value greater than 3.
2539 */
2540 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2541
2542 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2543
2544 if (suppress_preamble)
2545 fep->phy_speed |= BIT(7);
2546
2547 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2548 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2549 * MII event generation condition:
2550 * - writing MSCR:
2551 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2552 * mscr_reg_data_in[7:0] != 0
2553 * - writing MMFR:
2554 * - mscr[7:0]_not_zero
2555 */
2556 writel(val: 0, addr: fep->hwp + FEC_MII_DATA);
2557 }
2558
2559 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
2560
2561 /* Clear any pending transaction complete indication */
2562 writel(FEC_ENET_MII, addr: fep->hwp + FEC_IEVENT);
2563
2564 fep->mii_bus = mdiobus_alloc();
2565 if (fep->mii_bus == NULL) {
2566 err = -ENOMEM;
2567 goto err_out;
2568 }
2569
2570 fep->mii_bus->name = "fec_enet_mii_bus";
2571 fep->mii_bus->read = fec_enet_mdio_read_c22;
2572 fep->mii_bus->write = fec_enet_mdio_write_c22;
2573 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2574 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2575 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2576 }
2577 snprintf(buf: fep->mii_bus->id, MII_BUS_ID_SIZE, fmt: "%s-%x",
2578 pdev->name, fep->dev_id + 1);
2579 fep->mii_bus->priv = fep;
2580 fep->mii_bus->parent = &pdev->dev;
2581
2582 err = of_mdiobus_register(mdio: fep->mii_bus, np: node);
2583 if (err)
2584 goto err_out_free_mdiobus;
2585 of_node_put(node);
2586
2587 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2588 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2589 phydev = mdiobus_get_phy(bus: fep->mii_bus, addr);
2590 if (phydev)
2591 phydev->mac_managed_pm = true;
2592 }
2593
2594 mii_cnt++;
2595
2596 /* save fec0 mii_bus */
2597 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2598 fec0_mii_bus = fep->mii_bus;
2599
2600 return 0;
2601
2602err_out_free_mdiobus:
2603 mdiobus_free(bus: fep->mii_bus);
2604err_out:
2605 of_node_put(node);
2606 return err;
2607}
2608
2609static void fec_enet_mii_remove(struct fec_enet_private *fep)
2610{
2611 if (--mii_cnt == 0) {
2612 mdiobus_unregister(bus: fep->mii_bus);
2613 mdiobus_free(bus: fep->mii_bus);
2614 }
2615}
2616
2617static void fec_enet_get_drvinfo(struct net_device *ndev,
2618 struct ethtool_drvinfo *info)
2619{
2620 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2621
2622 strscpy(info->driver, fep->pdev->dev.driver->name,
2623 sizeof(info->driver));
2624 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2625}
2626
2627static int fec_enet_get_regs_len(struct net_device *ndev)
2628{
2629 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2630 struct resource *r;
2631 int s = 0;
2632
2633 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2634 if (r)
2635 s = resource_size(res: r);
2636
2637 return s;
2638}
2639
2640/* List of registers that can be safety be read to dump them with ethtool */
2641#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2642 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2643 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2644static __u32 fec_enet_register_version = 2;
2645static u32 fec_enet_register_offset[] = {
2646 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2647 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2648 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2649 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2650 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2651 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2652 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2653 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2654 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2655 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2656 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2657 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2658 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2659 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2660 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2661 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2662 RMON_T_P_GTE2048, RMON_T_OCTETS,
2663 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2664 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2665 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2666 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2667 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2668 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2669 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2670 RMON_R_P_GTE2048, RMON_R_OCTETS,
2671 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2672 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2673};
2674/* for i.MX6ul */
2675static u32 fec_enet_register_offset_6ul[] = {
2676 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2677 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2678 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2679 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2680 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2681 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2682 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2683 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2684 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2685 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2686 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2687 RMON_T_P_GTE2048, RMON_T_OCTETS,
2688 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2689 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2690 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2691 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2692 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2693 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2694 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2695 RMON_R_P_GTE2048, RMON_R_OCTETS,
2696 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2697 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2698};
2699#else
2700static __u32 fec_enet_register_version = 1;
2701static u32 fec_enet_register_offset[] = {
2702 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2703 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2704 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2705 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2706 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2707 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2708 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2709 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2710 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2711};
2712#endif
2713
2714static void fec_enet_get_regs(struct net_device *ndev,
2715 struct ethtool_regs *regs, void *regbuf)
2716{
2717 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2718 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2719 struct device *dev = &fep->pdev->dev;
2720 u32 *buf = (u32 *)regbuf;
2721 u32 i, off;
2722 int ret;
2723#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2724 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2725 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2726 u32 *reg_list;
2727 u32 reg_cnt;
2728
2729 if (!of_machine_is_compatible(compat: "fsl,imx6ul")) {
2730 reg_list = fec_enet_register_offset;
2731 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2732 } else {
2733 reg_list = fec_enet_register_offset_6ul;
2734 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2735 }
2736#else
2737 /* coldfire */
2738 static u32 *reg_list = fec_enet_register_offset;
2739 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2740#endif
2741 ret = pm_runtime_resume_and_get(dev);
2742 if (ret < 0)
2743 return;
2744
2745 regs->version = fec_enet_register_version;
2746
2747 memset(buf, 0, regs->len);
2748
2749 for (i = 0; i < reg_cnt; i++) {
2750 off = reg_list[i];
2751
2752 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2753 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2754 continue;
2755
2756 off >>= 2;
2757 buf[off] = readl(addr: &theregs[off]);
2758 }
2759
2760 pm_runtime_mark_last_busy(dev);
2761 pm_runtime_put_autosuspend(dev);
2762}
2763
2764static int fec_enet_get_ts_info(struct net_device *ndev,
2765 struct ethtool_ts_info *info)
2766{
2767 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2768
2769 if (fep->bufdesc_ex) {
2770
2771 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2772 SOF_TIMESTAMPING_RX_SOFTWARE |
2773 SOF_TIMESTAMPING_SOFTWARE |
2774 SOF_TIMESTAMPING_TX_HARDWARE |
2775 SOF_TIMESTAMPING_RX_HARDWARE |
2776 SOF_TIMESTAMPING_RAW_HARDWARE;
2777 if (fep->ptp_clock)
2778 info->phc_index = ptp_clock_index(ptp: fep->ptp_clock);
2779 else
2780 info->phc_index = -1;
2781
2782 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2783 (1 << HWTSTAMP_TX_ON);
2784
2785 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2786 (1 << HWTSTAMP_FILTER_ALL);
2787 return 0;
2788 } else {
2789 return ethtool_op_get_ts_info(dev: ndev, eti: info);
2790 }
2791}
2792
2793#if !defined(CONFIG_M5272)
2794
2795static void fec_enet_get_pauseparam(struct net_device *ndev,
2796 struct ethtool_pauseparam *pause)
2797{
2798 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2799
2800 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2801 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2802 pause->rx_pause = pause->tx_pause;
2803}
2804
2805static int fec_enet_set_pauseparam(struct net_device *ndev,
2806 struct ethtool_pauseparam *pause)
2807{
2808 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2809
2810 if (!ndev->phydev)
2811 return -ENODEV;
2812
2813 if (pause->tx_pause != pause->rx_pause) {
2814 netdev_info(dev: ndev,
2815 format: "hardware only support enable/disable both tx and rx");
2816 return -EINVAL;
2817 }
2818
2819 fep->pause_flag = 0;
2820
2821 /* tx pause must be same as rx pause */
2822 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2823 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2824
2825 phy_set_sym_pause(phydev: ndev->phydev, rx: pause->rx_pause, tx: pause->tx_pause,
2826 autoneg: pause->autoneg);
2827
2828 if (pause->autoneg) {
2829 if (netif_running(dev: ndev))
2830 fec_stop(ndev);
2831 phy_start_aneg(phydev: ndev->phydev);
2832 }
2833 if (netif_running(dev: ndev)) {
2834 napi_disable(n: &fep->napi);
2835 netif_tx_lock_bh(dev: ndev);
2836 fec_restart(ndev);
2837 netif_tx_wake_all_queues(dev: ndev);
2838 netif_tx_unlock_bh(dev: ndev);
2839 napi_enable(n: &fep->napi);
2840 }
2841
2842 return 0;
2843}
2844
2845static const struct fec_stat {
2846 char name[ETH_GSTRING_LEN];
2847 u16 offset;
2848} fec_stats[] = {
2849 /* RMON TX */
2850 { "tx_dropped", RMON_T_DROP },
2851 { "tx_packets", RMON_T_PACKETS },
2852 { "tx_broadcast", RMON_T_BC_PKT },
2853 { "tx_multicast", RMON_T_MC_PKT },
2854 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2855 { "tx_undersize", RMON_T_UNDERSIZE },
2856 { "tx_oversize", RMON_T_OVERSIZE },
2857 { "tx_fragment", RMON_T_FRAG },
2858 { "tx_jabber", RMON_T_JAB },
2859 { "tx_collision", RMON_T_COL },
2860 { "tx_64byte", RMON_T_P64 },
2861 { "tx_65to127byte", RMON_T_P65TO127 },
2862 { "tx_128to255byte", RMON_T_P128TO255 },
2863 { "tx_256to511byte", RMON_T_P256TO511 },
2864 { "tx_512to1023byte", RMON_T_P512TO1023 },
2865 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2866 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2867 { "tx_octets", RMON_T_OCTETS },
2868
2869 /* IEEE TX */
2870 { "IEEE_tx_drop", IEEE_T_DROP },
2871 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2872 { "IEEE_tx_1col", IEEE_T_1COL },
2873 { "IEEE_tx_mcol", IEEE_T_MCOL },
2874 { "IEEE_tx_def", IEEE_T_DEF },
2875 { "IEEE_tx_lcol", IEEE_T_LCOL },
2876 { "IEEE_tx_excol", IEEE_T_EXCOL },
2877 { "IEEE_tx_macerr", IEEE_T_MACERR },
2878 { "IEEE_tx_cserr", IEEE_T_CSERR },
2879 { "IEEE_tx_sqe", IEEE_T_SQE },
2880 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2881 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2882
2883 /* RMON RX */
2884 { "rx_packets", RMON_R_PACKETS },
2885 { "rx_broadcast", RMON_R_BC_PKT },
2886 { "rx_multicast", RMON_R_MC_PKT },
2887 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2888 { "rx_undersize", RMON_R_UNDERSIZE },
2889 { "rx_oversize", RMON_R_OVERSIZE },
2890 { "rx_fragment", RMON_R_FRAG },
2891 { "rx_jabber", RMON_R_JAB },
2892 { "rx_64byte", RMON_R_P64 },
2893 { "rx_65to127byte", RMON_R_P65TO127 },
2894 { "rx_128to255byte", RMON_R_P128TO255 },
2895 { "rx_256to511byte", RMON_R_P256TO511 },
2896 { "rx_512to1023byte", RMON_R_P512TO1023 },
2897 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2898 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2899 { "rx_octets", RMON_R_OCTETS },
2900
2901 /* IEEE RX */
2902 { "IEEE_rx_drop", IEEE_R_DROP },
2903 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2904 { "IEEE_rx_crc", IEEE_R_CRC },
2905 { "IEEE_rx_align", IEEE_R_ALIGN },
2906 { "IEEE_rx_macerr", IEEE_R_MACERR },
2907 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2908 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2909};
2910
2911#define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2912
2913static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2914 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2915 "rx_xdp_pass", /* RX_XDP_PASS, */
2916 "rx_xdp_drop", /* RX_XDP_DROP, */
2917 "rx_xdp_tx", /* RX_XDP_TX, */
2918 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2919 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2920 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2921};
2922
2923static void fec_enet_update_ethtool_stats(struct net_device *dev)
2924{
2925 struct fec_enet_private *fep = netdev_priv(dev);
2926 int i;
2927
2928 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2929 fep->ethtool_stats[i] = readl(addr: fep->hwp + fec_stats[i].offset);
2930}
2931
2932static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2933{
2934 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2935 struct fec_enet_priv_rx_q *rxq;
2936 int i, j;
2937
2938 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2939 rxq = fep->rx_queue[i];
2940
2941 for (j = 0; j < XDP_STATS_TOTAL; j++)
2942 xdp_stats[j] += rxq->stats[j];
2943 }
2944
2945 memcpy(data, xdp_stats, sizeof(xdp_stats));
2946}
2947
2948static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2949{
2950#ifdef CONFIG_PAGE_POOL_STATS
2951 struct page_pool_stats stats = {};
2952 struct fec_enet_priv_rx_q *rxq;
2953 int i;
2954
2955 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2956 rxq = fep->rx_queue[i];
2957
2958 if (!rxq->page_pool)
2959 continue;
2960
2961 page_pool_get_stats(pool: rxq->page_pool, stats: &stats);
2962 }
2963
2964 page_pool_ethtool_stats_get(data, stats: &stats);
2965#endif
2966}
2967
2968static void fec_enet_get_ethtool_stats(struct net_device *dev,
2969 struct ethtool_stats *stats, u64 *data)
2970{
2971 struct fec_enet_private *fep = netdev_priv(dev);
2972
2973 if (netif_running(dev))
2974 fec_enet_update_ethtool_stats(dev);
2975
2976 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2977 data += FEC_STATS_SIZE / sizeof(u64);
2978
2979 fec_enet_get_xdp_stats(fep, data);
2980 data += XDP_STATS_TOTAL;
2981
2982 fec_enet_page_pool_stats(fep, data);
2983}
2984
2985static void fec_enet_get_strings(struct net_device *netdev,
2986 u32 stringset, u8 *data)
2987{
2988 int i;
2989 switch (stringset) {
2990 case ETH_SS_STATS:
2991 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2992 ethtool_puts(data: &data, str: fec_stats[i].name);
2993 }
2994 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2995 ethtool_puts(data: &data, str: fec_xdp_stat_strs[i]);
2996 }
2997 page_pool_ethtool_stats_get_strings(data);
2998
2999 break;
3000 case ETH_SS_TEST:
3001 net_selftest_get_strings(data);
3002 break;
3003 }
3004}
3005
3006static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3007{
3008 int count;
3009
3010 switch (sset) {
3011 case ETH_SS_STATS:
3012 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3013 count += page_pool_ethtool_stats_get_count();
3014 return count;
3015
3016 case ETH_SS_TEST:
3017 return net_selftest_get_count();
3018 default:
3019 return -EOPNOTSUPP;
3020 }
3021}
3022
3023static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3024{
3025 struct fec_enet_private *fep = netdev_priv(dev);
3026 struct fec_enet_priv_rx_q *rxq;
3027 int i, j;
3028
3029 /* Disable MIB statistics counters */
3030 writel(FEC_MIB_CTRLSTAT_DISABLE, addr: fep->hwp + FEC_MIB_CTRLSTAT);
3031
3032 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3033 writel(val: 0, addr: fep->hwp + fec_stats[i].offset);
3034
3035 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3036 rxq = fep->rx_queue[i];
3037 for (j = 0; j < XDP_STATS_TOTAL; j++)
3038 rxq->stats[j] = 0;
3039 }
3040
3041 /* Don't disable MIB statistics counters */
3042 writel(val: 0, addr: fep->hwp + FEC_MIB_CTRLSTAT);
3043}
3044
3045#else /* !defined(CONFIG_M5272) */
3046#define FEC_STATS_SIZE 0
3047static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3048{
3049}
3050
3051static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3052{
3053}
3054#endif /* !defined(CONFIG_M5272) */
3055
3056/* ITR clock source is enet system clock (clk_ahb).
3057 * TCTT unit is cycle_ns * 64 cycle
3058 * So, the ICTT value = X us / (cycle_ns * 64)
3059 */
3060static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3061{
3062 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3063
3064 return us * (fep->itr_clk_rate / 64000) / 1000;
3065}
3066
3067/* Set threshold for interrupt coalescing */
3068static void fec_enet_itr_coal_set(struct net_device *ndev)
3069{
3070 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3071 int rx_itr, tx_itr;
3072
3073 /* Must be greater than zero to avoid unpredictable behavior */
3074 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3075 !fep->tx_time_itr || !fep->tx_pkts_itr)
3076 return;
3077
3078 /* Select enet system clock as Interrupt Coalescing
3079 * timer Clock Source
3080 */
3081 rx_itr = FEC_ITR_CLK_SEL;
3082 tx_itr = FEC_ITR_CLK_SEL;
3083
3084 /* set ICFT and ICTT */
3085 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3086 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3087 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3088 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3089
3090 rx_itr |= FEC_ITR_EN;
3091 tx_itr |= FEC_ITR_EN;
3092
3093 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC0);
3094 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC0);
3095 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3096 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC1);
3097 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC1);
3098 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC2);
3099 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC2);
3100 }
3101}
3102
3103static int fec_enet_get_coalesce(struct net_device *ndev,
3104 struct ethtool_coalesce *ec,
3105 struct kernel_ethtool_coalesce *kernel_coal,
3106 struct netlink_ext_ack *extack)
3107{
3108 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3109
3110 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3111 return -EOPNOTSUPP;
3112
3113 ec->rx_coalesce_usecs = fep->rx_time_itr;
3114 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3115
3116 ec->tx_coalesce_usecs = fep->tx_time_itr;
3117 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3118
3119 return 0;
3120}
3121
3122static int fec_enet_set_coalesce(struct net_device *ndev,
3123 struct ethtool_coalesce *ec,
3124 struct kernel_ethtool_coalesce *kernel_coal,
3125 struct netlink_ext_ack *extack)
3126{
3127 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3128 struct device *dev = &fep->pdev->dev;
3129 unsigned int cycle;
3130
3131 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3132 return -EOPNOTSUPP;
3133
3134 if (ec->rx_max_coalesced_frames > 255) {
3135 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3136 return -EINVAL;
3137 }
3138
3139 if (ec->tx_max_coalesced_frames > 255) {
3140 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3141 return -EINVAL;
3142 }
3143
3144 cycle = fec_enet_us_to_itr_clock(ndev, us: ec->rx_coalesce_usecs);
3145 if (cycle > 0xFFFF) {
3146 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3147 return -EINVAL;
3148 }
3149
3150 cycle = fec_enet_us_to_itr_clock(ndev, us: ec->tx_coalesce_usecs);
3151 if (cycle > 0xFFFF) {
3152 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3153 return -EINVAL;
3154 }
3155
3156 fep->rx_time_itr = ec->rx_coalesce_usecs;
3157 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3158
3159 fep->tx_time_itr = ec->tx_coalesce_usecs;
3160 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3161
3162 fec_enet_itr_coal_set(ndev);
3163
3164 return 0;
3165}
3166
3167static int
3168fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3169{
3170 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3171 struct ethtool_keee *p = &fep->eee;
3172
3173 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3174 return -EOPNOTSUPP;
3175
3176 if (!netif_running(dev: ndev))
3177 return -ENETDOWN;
3178
3179 edata->tx_lpi_timer = p->tx_lpi_timer;
3180
3181 return phy_ethtool_get_eee(phydev: ndev->phydev, data: edata);
3182}
3183
3184static int
3185fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3186{
3187 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3188 struct ethtool_keee *p = &fep->eee;
3189
3190 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3191 return -EOPNOTSUPP;
3192
3193 if (!netif_running(dev: ndev))
3194 return -ENETDOWN;
3195
3196 p->tx_lpi_timer = edata->tx_lpi_timer;
3197
3198 return phy_ethtool_set_eee(phydev: ndev->phydev, data: edata);
3199}
3200
3201static void
3202fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3203{
3204 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3205
3206 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3207 wol->supported = WAKE_MAGIC;
3208 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3209 } else {
3210 wol->supported = wol->wolopts = 0;
3211 }
3212}
3213
3214static int
3215fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3216{
3217 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3218
3219 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3220 return -EINVAL;
3221
3222 if (wol->wolopts & ~WAKE_MAGIC)
3223 return -EINVAL;
3224
3225 device_set_wakeup_enable(dev: &ndev->dev, enable: wol->wolopts & WAKE_MAGIC);
3226 if (device_may_wakeup(dev: &ndev->dev))
3227 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3228 else
3229 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3230
3231 return 0;
3232}
3233
3234static const struct ethtool_ops fec_enet_ethtool_ops = {
3235 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3236 ETHTOOL_COALESCE_MAX_FRAMES,
3237 .get_drvinfo = fec_enet_get_drvinfo,
3238 .get_regs_len = fec_enet_get_regs_len,
3239 .get_regs = fec_enet_get_regs,
3240 .nway_reset = phy_ethtool_nway_reset,
3241 .get_link = ethtool_op_get_link,
3242 .get_coalesce = fec_enet_get_coalesce,
3243 .set_coalesce = fec_enet_set_coalesce,
3244#ifndef CONFIG_M5272
3245 .get_pauseparam = fec_enet_get_pauseparam,
3246 .set_pauseparam = fec_enet_set_pauseparam,
3247 .get_strings = fec_enet_get_strings,
3248 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3249 .get_sset_count = fec_enet_get_sset_count,
3250#endif
3251 .get_ts_info = fec_enet_get_ts_info,
3252 .get_wol = fec_enet_get_wol,
3253 .set_wol = fec_enet_set_wol,
3254 .get_eee = fec_enet_get_eee,
3255 .set_eee = fec_enet_set_eee,
3256 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3257 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3258 .self_test = net_selftest,
3259};
3260
3261static void fec_enet_free_buffers(struct net_device *ndev)
3262{
3263 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3264 unsigned int i;
3265 struct fec_enet_priv_tx_q *txq;
3266 struct fec_enet_priv_rx_q *rxq;
3267 unsigned int q;
3268
3269 for (q = 0; q < fep->num_rx_queues; q++) {
3270 rxq = fep->rx_queue[q];
3271 for (i = 0; i < rxq->bd.ring_size; i++)
3272 page_pool_put_full_page(pool: rxq->page_pool, page: rxq->rx_skb_info[i].page, allow_direct: false);
3273
3274 for (i = 0; i < XDP_STATS_TOTAL; i++)
3275 rxq->stats[i] = 0;
3276
3277 if (xdp_rxq_info_is_reg(xdp_rxq: &rxq->xdp_rxq))
3278 xdp_rxq_info_unreg(xdp_rxq: &rxq->xdp_rxq);
3279 page_pool_destroy(pool: rxq->page_pool);
3280 rxq->page_pool = NULL;
3281 }
3282
3283 for (q = 0; q < fep->num_tx_queues; q++) {
3284 txq = fep->tx_queue[q];
3285 for (i = 0; i < txq->bd.ring_size; i++) {
3286 kfree(objp: txq->tx_bounce[i]);
3287 txq->tx_bounce[i] = NULL;
3288
3289 if (!txq->tx_buf[i].buf_p) {
3290 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3291 continue;
3292 }
3293
3294 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3295 dev_kfree_skb(txq->tx_buf[i].buf_p);
3296 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3297 xdp_return_frame(xdpf: txq->tx_buf[i].buf_p);
3298 } else {
3299 struct page *page = txq->tx_buf[i].buf_p;
3300
3301 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: false);
3302 }
3303
3304 txq->tx_buf[i].buf_p = NULL;
3305 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3306 }
3307 }
3308}
3309
3310static void fec_enet_free_queue(struct net_device *ndev)
3311{
3312 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3313 int i;
3314 struct fec_enet_priv_tx_q *txq;
3315
3316 for (i = 0; i < fep->num_tx_queues; i++)
3317 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3318 txq = fep->tx_queue[i];
3319 fec_dma_free(dev: &fep->pdev->dev,
3320 size: txq->bd.ring_size * TSO_HEADER_SIZE,
3321 cpu_addr: txq->tso_hdrs, handle: txq->tso_hdrs_dma);
3322 }
3323
3324 for (i = 0; i < fep->num_rx_queues; i++)
3325 kfree(objp: fep->rx_queue[i]);
3326 for (i = 0; i < fep->num_tx_queues; i++)
3327 kfree(objp: fep->tx_queue[i]);
3328}
3329
3330static int fec_enet_alloc_queue(struct net_device *ndev)
3331{
3332 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3333 int i;
3334 int ret = 0;
3335 struct fec_enet_priv_tx_q *txq;
3336
3337 for (i = 0; i < fep->num_tx_queues; i++) {
3338 txq = kzalloc(size: sizeof(*txq), GFP_KERNEL);
3339 if (!txq) {
3340 ret = -ENOMEM;
3341 goto alloc_failed;
3342 }
3343
3344 fep->tx_queue[i] = txq;
3345 txq->bd.ring_size = TX_RING_SIZE;
3346 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3347
3348 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3349 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3350
3351 txq->tso_hdrs = fec_dma_alloc(dev: &fep->pdev->dev,
3352 size: txq->bd.ring_size * TSO_HEADER_SIZE,
3353 handle: &txq->tso_hdrs_dma, GFP_KERNEL);
3354 if (!txq->tso_hdrs) {
3355 ret = -ENOMEM;
3356 goto alloc_failed;
3357 }
3358 }
3359
3360 for (i = 0; i < fep->num_rx_queues; i++) {
3361 fep->rx_queue[i] = kzalloc(size: sizeof(*fep->rx_queue[i]),
3362 GFP_KERNEL);
3363 if (!fep->rx_queue[i]) {
3364 ret = -ENOMEM;
3365 goto alloc_failed;
3366 }
3367
3368 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3369 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3370 }
3371 return ret;
3372
3373alloc_failed:
3374 fec_enet_free_queue(ndev);
3375 return ret;
3376}
3377
3378static int
3379fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3380{
3381 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3382 struct fec_enet_priv_rx_q *rxq;
3383 dma_addr_t phys_addr;
3384 struct bufdesc *bdp;
3385 struct page *page;
3386 int i, err;
3387
3388 rxq = fep->rx_queue[queue];
3389 bdp = rxq->bd.base;
3390
3391 err = fec_enet_create_page_pool(fep, rxq, size: rxq->bd.ring_size);
3392 if (err < 0) {
3393 netdev_err(dev: ndev, format: "%s failed queue %d (%d)\n", __func__, queue, err);
3394 return err;
3395 }
3396
3397 for (i = 0; i < rxq->bd.ring_size; i++) {
3398 page = page_pool_dev_alloc_pages(pool: rxq->page_pool);
3399 if (!page)
3400 goto err_alloc;
3401
3402 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3403 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3404
3405 rxq->rx_skb_info[i].page = page;
3406 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3407 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3408
3409 if (fep->bufdesc_ex) {
3410 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3411 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3412 }
3413
3414 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
3415 }
3416
3417 /* Set the last buffer to wrap. */
3418 bdp = fec_enet_get_prevdesc(bdp, bd: &rxq->bd);
3419 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3420 return 0;
3421
3422 err_alloc:
3423 fec_enet_free_buffers(ndev);
3424 return -ENOMEM;
3425}
3426
3427static int
3428fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3429{
3430 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3431 unsigned int i;
3432 struct bufdesc *bdp;
3433 struct fec_enet_priv_tx_q *txq;
3434
3435 txq = fep->tx_queue[queue];
3436 bdp = txq->bd.base;
3437 for (i = 0; i < txq->bd.ring_size; i++) {
3438 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3439 if (!txq->tx_bounce[i])
3440 goto err_alloc;
3441
3442 bdp->cbd_sc = cpu_to_fec16(0);
3443 bdp->cbd_bufaddr = cpu_to_fec32(0);
3444
3445 if (fep->bufdesc_ex) {
3446 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3447 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3448 }
3449
3450 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
3451 }
3452
3453 /* Set the last buffer to wrap. */
3454 bdp = fec_enet_get_prevdesc(bdp, bd: &txq->bd);
3455 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3456
3457 return 0;
3458
3459 err_alloc:
3460 fec_enet_free_buffers(ndev);
3461 return -ENOMEM;
3462}
3463
3464static int fec_enet_alloc_buffers(struct net_device *ndev)
3465{
3466 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3467 unsigned int i;
3468
3469 for (i = 0; i < fep->num_rx_queues; i++)
3470 if (fec_enet_alloc_rxq_buffers(ndev, queue: i))
3471 return -ENOMEM;
3472
3473 for (i = 0; i < fep->num_tx_queues; i++)
3474 if (fec_enet_alloc_txq_buffers(ndev, queue: i))
3475 return -ENOMEM;
3476 return 0;
3477}
3478
3479static int
3480fec_enet_open(struct net_device *ndev)
3481{
3482 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3483 int ret;
3484 bool reset_again;
3485
3486 ret = pm_runtime_resume_and_get(dev: &fep->pdev->dev);
3487 if (ret < 0)
3488 return ret;
3489
3490 pinctrl_pm_select_default_state(dev: &fep->pdev->dev);
3491 ret = fec_enet_clk_enable(ndev, enable: true);
3492 if (ret)
3493 goto clk_enable;
3494
3495 /* During the first fec_enet_open call the PHY isn't probed at this
3496 * point. Therefore the phy_reset_after_clk_enable() call within
3497 * fec_enet_clk_enable() fails. As we need this reset in order to be
3498 * sure the PHY is working correctly we check if we need to reset again
3499 * later when the PHY is probed
3500 */
3501 if (ndev->phydev && ndev->phydev->drv)
3502 reset_again = false;
3503 else
3504 reset_again = true;
3505
3506 /* I should reset the ring buffers here, but I don't yet know
3507 * a simple way to do that.
3508 */
3509
3510 ret = fec_enet_alloc_buffers(ndev);
3511 if (ret)
3512 goto err_enet_alloc;
3513
3514 /* Init MAC prior to mii bus probe */
3515 fec_restart(ndev);
3516
3517 /* Call phy_reset_after_clk_enable() again if it failed during
3518 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3519 */
3520 if (reset_again)
3521 fec_enet_phy_reset_after_clk_enable(ndev);
3522
3523 /* Probe and connect to PHY when open the interface */
3524 ret = fec_enet_mii_probe(ndev);
3525 if (ret)
3526 goto err_enet_mii_probe;
3527
3528 if (fep->quirks & FEC_QUIRK_ERR006687)
3529 imx6q_cpuidle_fec_irqs_used();
3530
3531 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3532 cpu_latency_qos_add_request(req: &fep->pm_qos_req, value: 0);
3533
3534 napi_enable(n: &fep->napi);
3535 phy_start(phydev: ndev->phydev);
3536 netif_tx_start_all_queues(dev: ndev);
3537
3538 device_set_wakeup_enable(dev: &ndev->dev, enable: fep->wol_flag &
3539 FEC_WOL_FLAG_ENABLE);
3540
3541 return 0;
3542
3543err_enet_mii_probe:
3544 fec_enet_free_buffers(ndev);
3545err_enet_alloc:
3546 fec_enet_clk_enable(ndev, enable: false);
3547clk_enable:
3548 pm_runtime_mark_last_busy(dev: &fep->pdev->dev);
3549 pm_runtime_put_autosuspend(dev: &fep->pdev->dev);
3550 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
3551 return ret;
3552}
3553
3554static int
3555fec_enet_close(struct net_device *ndev)
3556{
3557 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3558
3559 phy_stop(phydev: ndev->phydev);
3560
3561 if (netif_device_present(dev: ndev)) {
3562 napi_disable(n: &fep->napi);
3563 netif_tx_disable(dev: ndev);
3564 fec_stop(ndev);
3565 }
3566
3567 phy_disconnect(phydev: ndev->phydev);
3568
3569 if (fep->quirks & FEC_QUIRK_ERR006687)
3570 imx6q_cpuidle_fec_irqs_unused();
3571
3572 fec_enet_update_ethtool_stats(dev: ndev);
3573
3574 fec_enet_clk_enable(ndev, enable: false);
3575 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3576 cpu_latency_qos_remove_request(req: &fep->pm_qos_req);
3577
3578 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
3579 pm_runtime_mark_last_busy(dev: &fep->pdev->dev);
3580 pm_runtime_put_autosuspend(dev: &fep->pdev->dev);
3581
3582 fec_enet_free_buffers(ndev);
3583
3584 return 0;
3585}
3586
3587/* Set or clear the multicast filter for this adaptor.
3588 * Skeleton taken from sunlance driver.
3589 * The CPM Ethernet implementation allows Multicast as well as individual
3590 * MAC address filtering. Some of the drivers check to make sure it is
3591 * a group multicast address, and discard those that are not. I guess I
3592 * will do the same for now, but just remove the test if you want
3593 * individual filtering as well (do the upper net layers want or support
3594 * this kind of feature?).
3595 */
3596
3597#define FEC_HASH_BITS 6 /* #bits in hash */
3598
3599static void set_multicast_list(struct net_device *ndev)
3600{
3601 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3602 struct netdev_hw_addr *ha;
3603 unsigned int crc, tmp;
3604 unsigned char hash;
3605 unsigned int hash_high = 0, hash_low = 0;
3606
3607 if (ndev->flags & IFF_PROMISC) {
3608 tmp = readl(addr: fep->hwp + FEC_R_CNTRL);
3609 tmp |= 0x8;
3610 writel(val: tmp, addr: fep->hwp + FEC_R_CNTRL);
3611 return;
3612 }
3613
3614 tmp = readl(addr: fep->hwp + FEC_R_CNTRL);
3615 tmp &= ~0x8;
3616 writel(val: tmp, addr: fep->hwp + FEC_R_CNTRL);
3617
3618 if (ndev->flags & IFF_ALLMULTI) {
3619 /* Catch all multicast addresses, so set the
3620 * filter to all 1's
3621 */
3622 writel(val: 0xffffffff, addr: fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3623 writel(val: 0xffffffff, addr: fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3624
3625 return;
3626 }
3627
3628 /* Add the addresses in hash register */
3629 netdev_for_each_mc_addr(ha, ndev) {
3630 /* calculate crc32 value of mac address */
3631 crc = ether_crc_le(ndev->addr_len, ha->addr);
3632
3633 /* only upper 6 bits (FEC_HASH_BITS) are used
3634 * which point to specific bit in the hash registers
3635 */
3636 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3637
3638 if (hash > 31)
3639 hash_high |= 1 << (hash - 32);
3640 else
3641 hash_low |= 1 << hash;
3642 }
3643
3644 writel(val: hash_high, addr: fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3645 writel(val: hash_low, addr: fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3646}
3647
3648/* Set a MAC change in hardware. */
3649static int
3650fec_set_mac_address(struct net_device *ndev, void *p)
3651{
3652 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3653 struct sockaddr *addr = p;
3654
3655 if (addr) {
3656 if (!is_valid_ether_addr(addr: addr->sa_data))
3657 return -EADDRNOTAVAIL;
3658 eth_hw_addr_set(dev: ndev, addr: addr->sa_data);
3659 }
3660
3661 /* Add netif status check here to avoid system hang in below case:
3662 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3663 * After ethx down, fec all clocks are gated off and then register
3664 * access causes system hang.
3665 */
3666 if (!netif_running(dev: ndev))
3667 return 0;
3668
3669 writel(val: ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3670 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3671 addr: fep->hwp + FEC_ADDR_LOW);
3672 writel(val: (ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3673 addr: fep->hwp + FEC_ADDR_HIGH);
3674 return 0;
3675}
3676
3677#ifdef CONFIG_NET_POLL_CONTROLLER
3678/**
3679 * fec_poll_controller - FEC Poll controller function
3680 * @dev: The FEC network adapter
3681 *
3682 * Polled functionality used by netconsole and others in non interrupt mode
3683 *
3684 */
3685static void fec_poll_controller(struct net_device *dev)
3686{
3687 int i;
3688 struct fec_enet_private *fep = netdev_priv(dev);
3689
3690 for (i = 0; i < FEC_IRQ_NUM; i++) {
3691 if (fep->irq[i] > 0) {
3692 disable_irq(irq: fep->irq[i]);
3693 fec_enet_interrupt(irq: fep->irq[i], dev_id: dev);
3694 enable_irq(irq: fep->irq[i]);
3695 }
3696 }
3697}
3698#endif
3699
3700static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3701 netdev_features_t features)
3702{
3703 struct fec_enet_private *fep = netdev_priv(dev: netdev);
3704 netdev_features_t changed = features ^ netdev->features;
3705
3706 netdev->features = features;
3707
3708 /* Receive checksum has been changed */
3709 if (changed & NETIF_F_RXCSUM) {
3710 if (features & NETIF_F_RXCSUM)
3711 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3712 else
3713 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3714 }
3715}
3716
3717static int fec_set_features(struct net_device *netdev,
3718 netdev_features_t features)
3719{
3720 struct fec_enet_private *fep = netdev_priv(dev: netdev);
3721 netdev_features_t changed = features ^ netdev->features;
3722
3723 if (netif_running(dev: netdev) && changed & NETIF_F_RXCSUM) {
3724 napi_disable(n: &fep->napi);
3725 netif_tx_lock_bh(dev: netdev);
3726 fec_stop(ndev: netdev);
3727 fec_enet_set_netdev_features(netdev, features);
3728 fec_restart(ndev: netdev);
3729 netif_tx_wake_all_queues(dev: netdev);
3730 netif_tx_unlock_bh(dev: netdev);
3731 napi_enable(n: &fep->napi);
3732 } else {
3733 fec_enet_set_netdev_features(netdev, features);
3734 }
3735
3736 return 0;
3737}
3738
3739static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3740 struct net_device *sb_dev)
3741{
3742 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3743 u16 vlan_tag = 0;
3744
3745 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3746 return netdev_pick_tx(dev: ndev, skb, NULL);
3747
3748 /* VLAN is present in the payload.*/
3749 if (eth_type_vlan(ethertype: skb->protocol)) {
3750 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3751
3752 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3753 /* VLAN is present in the skb but not yet pushed in the payload.*/
3754 } else if (skb_vlan_tag_present(skb)) {
3755 vlan_tag = skb->vlan_tci;
3756 } else {
3757 return vlan_tag;
3758 }
3759
3760 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3761}
3762
3763static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3764{
3765 struct fec_enet_private *fep = netdev_priv(dev);
3766 bool is_run = netif_running(dev);
3767 struct bpf_prog *old_prog;
3768
3769 switch (bpf->command) {
3770 case XDP_SETUP_PROG:
3771 /* No need to support the SoCs that require to
3772 * do the frame swap because the performance wouldn't be
3773 * better than the skb mode.
3774 */
3775 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3776 return -EOPNOTSUPP;
3777
3778 if (!bpf->prog)
3779 xdp_features_clear_redirect_target(dev);
3780
3781 if (is_run) {
3782 napi_disable(n: &fep->napi);
3783 netif_tx_disable(dev);
3784 }
3785
3786 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3787 if (old_prog)
3788 bpf_prog_put(prog: old_prog);
3789
3790 fec_restart(ndev: dev);
3791
3792 if (is_run) {
3793 napi_enable(n: &fep->napi);
3794 netif_tx_start_all_queues(dev);
3795 }
3796
3797 if (bpf->prog)
3798 xdp_features_set_redirect_target(dev, support_sg: false);
3799
3800 return 0;
3801
3802 case XDP_SETUP_XSK_POOL:
3803 return -EOPNOTSUPP;
3804
3805 default:
3806 return -EOPNOTSUPP;
3807 }
3808}
3809
3810static int
3811fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3812{
3813 if (unlikely(index < 0))
3814 return 0;
3815
3816 return (index % fep->num_tx_queues);
3817}
3818
3819static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3820 struct fec_enet_priv_tx_q *txq,
3821 void *frame, u32 dma_sync_len,
3822 bool ndo_xmit)
3823{
3824 unsigned int index, status, estatus;
3825 struct bufdesc *bdp;
3826 dma_addr_t dma_addr;
3827 int entries_free;
3828 u16 frame_len;
3829
3830 entries_free = fec_enet_get_free_txdesc_num(txq);
3831 if (entries_free < MAX_SKB_FRAGS + 1) {
3832 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3833 return -EBUSY;
3834 }
3835
3836 /* Fill in a Tx ring entry */
3837 bdp = txq->bd.cur;
3838 status = fec16_to_cpu(bdp->cbd_sc);
3839 status &= ~BD_ENET_TX_STATS;
3840
3841 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
3842
3843 if (ndo_xmit) {
3844 struct xdp_frame *xdpf = frame;
3845
3846 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3847 xdpf->len, DMA_TO_DEVICE);
3848 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr))
3849 return -ENOMEM;
3850
3851 frame_len = xdpf->len;
3852 txq->tx_buf[index].buf_p = xdpf;
3853 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3854 } else {
3855 struct xdp_buff *xdpb = frame;
3856 struct page *page;
3857
3858 page = virt_to_page(xdpb->data);
3859 dma_addr = page_pool_get_dma_addr(page) +
3860 (xdpb->data - xdpb->data_hard_start);
3861 dma_sync_single_for_device(dev: &fep->pdev->dev, addr: dma_addr,
3862 size: dma_sync_len, dir: DMA_BIDIRECTIONAL);
3863 frame_len = xdpb->data_end - xdpb->data;
3864 txq->tx_buf[index].buf_p = page;
3865 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3866 }
3867
3868 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3869 if (fep->bufdesc_ex)
3870 estatus = BD_ENET_TX_INT;
3871
3872 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3873 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3874
3875 if (fep->bufdesc_ex) {
3876 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3877
3878 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3879 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3880
3881 ebdp->cbd_bdu = 0;
3882 ebdp->cbd_esc = cpu_to_fec32(estatus);
3883 }
3884
3885 /* Make sure the updates to rest of the descriptor are performed before
3886 * transferring ownership.
3887 */
3888 dma_wmb();
3889
3890 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3891 * it's the last BD of the frame, and to put the CRC on the end.
3892 */
3893 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3894 bdp->cbd_sc = cpu_to_fec16(status);
3895
3896 /* If this was the last BD in the ring, start at the beginning again. */
3897 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
3898
3899 /* Make sure the update to bdp are performed before txq->bd.cur. */
3900 dma_wmb();
3901
3902 txq->bd.cur = bdp;
3903
3904 /* Trigger transmission start */
3905 writel(val: 0, addr: txq->bd.reg_desc_active);
3906
3907 return 0;
3908}
3909
3910static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3911 int cpu, struct xdp_buff *xdp,
3912 u32 dma_sync_len)
3913{
3914 struct fec_enet_priv_tx_q *txq;
3915 struct netdev_queue *nq;
3916 int queue, ret;
3917
3918 queue = fec_enet_xdp_get_tx_queue(fep, index: cpu);
3919 txq = fep->tx_queue[queue];
3920 nq = netdev_get_tx_queue(dev: fep->netdev, index: queue);
3921
3922 __netif_tx_lock(txq: nq, cpu);
3923
3924 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3925 txq_trans_cond_update(txq: nq);
3926 ret = fec_enet_txq_xmit_frame(fep, txq, frame: xdp, dma_sync_len, ndo_xmit: false);
3927
3928 __netif_tx_unlock(txq: nq);
3929
3930 return ret;
3931}
3932
3933static int fec_enet_xdp_xmit(struct net_device *dev,
3934 int num_frames,
3935 struct xdp_frame **frames,
3936 u32 flags)
3937{
3938 struct fec_enet_private *fep = netdev_priv(dev);
3939 struct fec_enet_priv_tx_q *txq;
3940 int cpu = smp_processor_id();
3941 unsigned int sent_frames = 0;
3942 struct netdev_queue *nq;
3943 unsigned int queue;
3944 int i;
3945
3946 queue = fec_enet_xdp_get_tx_queue(fep, index: cpu);
3947 txq = fep->tx_queue[queue];
3948 nq = netdev_get_tx_queue(dev: fep->netdev, index: queue);
3949
3950 __netif_tx_lock(txq: nq, cpu);
3951
3952 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3953 txq_trans_cond_update(txq: nq);
3954 for (i = 0; i < num_frames; i++) {
3955 if (fec_enet_txq_xmit_frame(fep, txq, frame: frames[i], dma_sync_len: 0, ndo_xmit: true) < 0)
3956 break;
3957 sent_frames++;
3958 }
3959
3960 __netif_tx_unlock(txq: nq);
3961
3962 return sent_frames;
3963}
3964
3965static int fec_hwtstamp_get(struct net_device *ndev,
3966 struct kernel_hwtstamp_config *config)
3967{
3968 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3969
3970 if (!netif_running(dev: ndev))
3971 return -EINVAL;
3972
3973 if (!fep->bufdesc_ex)
3974 return -EOPNOTSUPP;
3975
3976 fec_ptp_get(ndev, config);
3977
3978 return 0;
3979}
3980
3981static int fec_hwtstamp_set(struct net_device *ndev,
3982 struct kernel_hwtstamp_config *config,
3983 struct netlink_ext_ack *extack)
3984{
3985 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3986
3987 if (!netif_running(dev: ndev))
3988 return -EINVAL;
3989
3990 if (!fep->bufdesc_ex)
3991 return -EOPNOTSUPP;
3992
3993 return fec_ptp_set(ndev, config, extack);
3994}
3995
3996static const struct net_device_ops fec_netdev_ops = {
3997 .ndo_open = fec_enet_open,
3998 .ndo_stop = fec_enet_close,
3999 .ndo_start_xmit = fec_enet_start_xmit,
4000 .ndo_select_queue = fec_enet_select_queue,
4001 .ndo_set_rx_mode = set_multicast_list,
4002 .ndo_validate_addr = eth_validate_addr,
4003 .ndo_tx_timeout = fec_timeout,
4004 .ndo_set_mac_address = fec_set_mac_address,
4005 .ndo_eth_ioctl = phy_do_ioctl_running,
4006#ifdef CONFIG_NET_POLL_CONTROLLER
4007 .ndo_poll_controller = fec_poll_controller,
4008#endif
4009 .ndo_set_features = fec_set_features,
4010 .ndo_bpf = fec_enet_bpf,
4011 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4012 .ndo_hwtstamp_get = fec_hwtstamp_get,
4013 .ndo_hwtstamp_set = fec_hwtstamp_set,
4014};
4015
4016static const unsigned short offset_des_active_rxq[] = {
4017 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4018};
4019
4020static const unsigned short offset_des_active_txq[] = {
4021 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4022};
4023
4024 /*
4025 * XXX: We need to clean up on failure exits here.
4026 *
4027 */
4028static int fec_enet_init(struct net_device *ndev)
4029{
4030 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4031 struct bufdesc *cbd_base;
4032 dma_addr_t bd_dma;
4033 int bd_size;
4034 unsigned int i;
4035 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4036 sizeof(struct bufdesc);
4037 unsigned dsize_log2 = __fls(word: dsize);
4038 int ret;
4039
4040 WARN_ON(dsize != (1 << dsize_log2));
4041#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4042 fep->rx_align = 0xf;
4043 fep->tx_align = 0xf;
4044#else
4045 fep->rx_align = 0x3;
4046 fep->tx_align = 0x3;
4047#endif
4048 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4049 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4050 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4051 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4052
4053 /* Check mask of the streaming and coherent API */
4054 ret = dma_set_mask_and_coherent(dev: &fep->pdev->dev, DMA_BIT_MASK(32));
4055 if (ret < 0) {
4056 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4057 return ret;
4058 }
4059
4060 ret = fec_enet_alloc_queue(ndev);
4061 if (ret)
4062 return ret;
4063
4064 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4065
4066 /* Allocate memory for buffer descriptors. */
4067 cbd_base = fec_dmam_alloc(dev: &fep->pdev->dev, size: bd_size, handle: &bd_dma,
4068 GFP_KERNEL);
4069 if (!cbd_base) {
4070 ret = -ENOMEM;
4071 goto free_queue_mem;
4072 }
4073
4074 /* Get the Ethernet address */
4075 ret = fec_get_mac(ndev);
4076 if (ret)
4077 goto free_queue_mem;
4078
4079 /* Set receive and transmit descriptor base. */
4080 for (i = 0; i < fep->num_rx_queues; i++) {
4081 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4082 unsigned size = dsize * rxq->bd.ring_size;
4083
4084 rxq->bd.qid = i;
4085 rxq->bd.base = cbd_base;
4086 rxq->bd.cur = cbd_base;
4087 rxq->bd.dma = bd_dma;
4088 rxq->bd.dsize = dsize;
4089 rxq->bd.dsize_log2 = dsize_log2;
4090 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4091 bd_dma += size;
4092 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4093 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4094 }
4095
4096 for (i = 0; i < fep->num_tx_queues; i++) {
4097 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4098 unsigned size = dsize * txq->bd.ring_size;
4099
4100 txq->bd.qid = i;
4101 txq->bd.base = cbd_base;
4102 txq->bd.cur = cbd_base;
4103 txq->bd.dma = bd_dma;
4104 txq->bd.dsize = dsize;
4105 txq->bd.dsize_log2 = dsize_log2;
4106 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4107 bd_dma += size;
4108 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4109 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4110 }
4111
4112
4113 /* The FEC Ethernet specific entries in the device structure */
4114 ndev->watchdog_timeo = TX_TIMEOUT;
4115 ndev->netdev_ops = &fec_netdev_ops;
4116 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4117
4118 writel(FEC_RX_DISABLED_IMASK, addr: fep->hwp + FEC_IMASK);
4119 netif_napi_add(dev: ndev, napi: &fep->napi, poll: fec_enet_rx_napi);
4120
4121 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4122 /* enable hw VLAN support */
4123 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4124
4125 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4126 netif_set_tso_max_segs(dev: ndev, FEC_MAX_TSO_SEGS);
4127
4128 /* enable hw accelerator */
4129 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4130 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4131 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4132 }
4133
4134 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4135 fep->tx_align = 0;
4136 fep->rx_align = 0x3f;
4137 }
4138
4139 ndev->hw_features = ndev->features;
4140
4141 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4142 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4143 NETDEV_XDP_ACT_REDIRECT;
4144
4145 fec_restart(ndev);
4146
4147 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4148 fec_enet_clear_ethtool_stats(dev: ndev);
4149 else
4150 fec_enet_update_ethtool_stats(dev: ndev);
4151
4152 return 0;
4153
4154free_queue_mem:
4155 fec_enet_free_queue(ndev);
4156 return ret;
4157}
4158
4159#ifdef CONFIG_OF
4160static int fec_reset_phy(struct platform_device *pdev)
4161{
4162 struct gpio_desc *phy_reset;
4163 int msec = 1, phy_post_delay = 0;
4164 struct device_node *np = pdev->dev.of_node;
4165 int err;
4166
4167 if (!np)
4168 return 0;
4169
4170 err = of_property_read_u32(np, propname: "phy-reset-duration", out_value: &msec);
4171 /* A sane reset duration should not be longer than 1s */
4172 if (!err && msec > 1000)
4173 msec = 1;
4174
4175 err = of_property_read_u32(np, propname: "phy-reset-post-delay", out_value: &phy_post_delay);
4176 /* valid reset duration should be less than 1s */
4177 if (!err && phy_post_delay > 1000)
4178 return -EINVAL;
4179
4180 phy_reset = devm_gpiod_get_optional(dev: &pdev->dev, con_id: "phy-reset",
4181 flags: GPIOD_OUT_HIGH);
4182 if (IS_ERR(ptr: phy_reset))
4183 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: phy_reset),
4184 fmt: "failed to get phy-reset-gpios\n");
4185
4186 if (!phy_reset)
4187 return 0;
4188
4189 if (msec > 20)
4190 msleep(msecs: msec);
4191 else
4192 usleep_range(min: msec * 1000, max: msec * 1000 + 1000);
4193
4194 gpiod_set_value_cansleep(desc: phy_reset, value: 0);
4195
4196 if (!phy_post_delay)
4197 return 0;
4198
4199 if (phy_post_delay > 20)
4200 msleep(msecs: phy_post_delay);
4201 else
4202 usleep_range(min: phy_post_delay * 1000,
4203 max: phy_post_delay * 1000 + 1000);
4204
4205 return 0;
4206}
4207#else /* CONFIG_OF */
4208static int fec_reset_phy(struct platform_device *pdev)
4209{
4210 /*
4211 * In case of platform probe, the reset has been done
4212 * by machine code.
4213 */
4214 return 0;
4215}
4216#endif /* CONFIG_OF */
4217
4218static void
4219fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4220{
4221 struct device_node *np = pdev->dev.of_node;
4222
4223 *num_tx = *num_rx = 1;
4224
4225 if (!np || !of_device_is_available(device: np))
4226 return;
4227
4228 /* parse the num of tx and rx queues */
4229 of_property_read_u32(np, propname: "fsl,num-tx-queues", out_value: num_tx);
4230
4231 of_property_read_u32(np, propname: "fsl,num-rx-queues", out_value: num_rx);
4232
4233 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4234 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4235 *num_tx);
4236 *num_tx = 1;
4237 return;
4238 }
4239
4240 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4241 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4242 *num_rx);
4243 *num_rx = 1;
4244 return;
4245 }
4246
4247}
4248
4249static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4250{
4251 int irq_cnt = platform_irq_count(pdev);
4252
4253 if (irq_cnt > FEC_IRQ_NUM)
4254 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4255 else if (irq_cnt == 2)
4256 irq_cnt = 1; /* last for pps */
4257 else if (irq_cnt <= 0)
4258 irq_cnt = 1; /* At least 1 irq is needed */
4259 return irq_cnt;
4260}
4261
4262static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4263{
4264 struct net_device *ndev = platform_get_drvdata(pdev);
4265 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4266
4267 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4268 fep->wake_irq = fep->irq[2];
4269 else
4270 fep->wake_irq = fep->irq[0];
4271}
4272
4273static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4274 struct device_node *np)
4275{
4276 struct device_node *gpr_np;
4277 u32 out_val[3];
4278 int ret = 0;
4279
4280 gpr_np = of_parse_phandle(np, phandle_name: "fsl,stop-mode", index: 0);
4281 if (!gpr_np)
4282 return 0;
4283
4284 ret = of_property_read_u32_array(np, propname: "fsl,stop-mode", out_values: out_val,
4285 ARRAY_SIZE(out_val));
4286 if (ret) {
4287 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4288 goto out;
4289 }
4290
4291 fep->stop_gpr.gpr = syscon_node_to_regmap(np: gpr_np);
4292 if (IS_ERR(ptr: fep->stop_gpr.gpr)) {
4293 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4294 ret = PTR_ERR(ptr: fep->stop_gpr.gpr);
4295 fep->stop_gpr.gpr = NULL;
4296 goto out;
4297 }
4298
4299 fep->stop_gpr.reg = out_val[1];
4300 fep->stop_gpr.bit = out_val[2];
4301
4302out:
4303 of_node_put(node: gpr_np);
4304
4305 return ret;
4306}
4307
4308static int
4309fec_probe(struct platform_device *pdev)
4310{
4311 struct fec_enet_private *fep;
4312 struct fec_platform_data *pdata;
4313 phy_interface_t interface;
4314 struct net_device *ndev;
4315 int i, irq, ret = 0;
4316 static int dev_id;
4317 struct device_node *np = pdev->dev.of_node, *phy_node;
4318 int num_tx_qs;
4319 int num_rx_qs;
4320 char irq_name[8];
4321 int irq_cnt;
4322 const struct fec_devinfo *dev_info;
4323
4324 fec_enet_get_queue_num(pdev, num_tx: &num_tx_qs, num_rx: &num_rx_qs);
4325
4326 /* Init network device */
4327 ndev = alloc_etherdev_mqs(sizeof_priv: sizeof(struct fec_enet_private) +
4328 FEC_STATS_SIZE, txqs: num_tx_qs, rxqs: num_rx_qs);
4329 if (!ndev)
4330 return -ENOMEM;
4331
4332 SET_NETDEV_DEV(ndev, &pdev->dev);
4333
4334 /* setup board info structure */
4335 fep = netdev_priv(dev: ndev);
4336
4337 dev_info = device_get_match_data(dev: &pdev->dev);
4338 if (!dev_info)
4339 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4340 if (dev_info)
4341 fep->quirks = dev_info->quirks;
4342
4343 fep->netdev = ndev;
4344 fep->num_rx_queues = num_rx_qs;
4345 fep->num_tx_queues = num_tx_qs;
4346
4347#if !defined(CONFIG_M5272)
4348 /* default enable pause frame auto negotiation */
4349 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4350 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4351#endif
4352
4353 /* Select default pin state */
4354 pinctrl_pm_select_default_state(dev: &pdev->dev);
4355
4356 fep->hwp = devm_platform_ioremap_resource(pdev, index: 0);
4357 if (IS_ERR(ptr: fep->hwp)) {
4358 ret = PTR_ERR(ptr: fep->hwp);
4359 goto failed_ioremap;
4360 }
4361
4362 fep->pdev = pdev;
4363 fep->dev_id = dev_id++;
4364
4365 platform_set_drvdata(pdev, data: ndev);
4366
4367 if ((of_machine_is_compatible(compat: "fsl,imx6q") ||
4368 of_machine_is_compatible(compat: "fsl,imx6dl")) &&
4369 !of_property_read_bool(np, propname: "fsl,err006687-workaround-present"))
4370 fep->quirks |= FEC_QUIRK_ERR006687;
4371
4372 ret = fec_enet_ipc_handle_init(fep);
4373 if (ret)
4374 goto failed_ipc_init;
4375
4376 if (of_property_read_bool(np, propname: "fsl,magic-packet"))
4377 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4378
4379 ret = fec_enet_init_stop_mode(fep, np);
4380 if (ret)
4381 goto failed_stop_mode;
4382
4383 phy_node = of_parse_phandle(np, phandle_name: "phy-handle", index: 0);
4384 if (!phy_node && of_phy_is_fixed_link(np)) {
4385 ret = of_phy_register_fixed_link(np);
4386 if (ret < 0) {
4387 dev_err(&pdev->dev,
4388 "broken fixed-link specification\n");
4389 goto failed_phy;
4390 }
4391 phy_node = of_node_get(node: np);
4392 }
4393 fep->phy_node = phy_node;
4394
4395 ret = of_get_phy_mode(np: pdev->dev.of_node, interface: &interface);
4396 if (ret) {
4397 pdata = dev_get_platdata(dev: &pdev->dev);
4398 if (pdata)
4399 fep->phy_interface = pdata->phy;
4400 else
4401 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4402 } else {
4403 fep->phy_interface = interface;
4404 }
4405
4406 ret = fec_enet_parse_rgmii_delay(fep, np);
4407 if (ret)
4408 goto failed_rgmii_delay;
4409
4410 fep->clk_ipg = devm_clk_get(dev: &pdev->dev, id: "ipg");
4411 if (IS_ERR(ptr: fep->clk_ipg)) {
4412 ret = PTR_ERR(ptr: fep->clk_ipg);
4413 goto failed_clk;
4414 }
4415
4416 fep->clk_ahb = devm_clk_get(dev: &pdev->dev, id: "ahb");
4417 if (IS_ERR(ptr: fep->clk_ahb)) {
4418 ret = PTR_ERR(ptr: fep->clk_ahb);
4419 goto failed_clk;
4420 }
4421
4422 fep->itr_clk_rate = clk_get_rate(clk: fep->clk_ahb);
4423
4424 /* enet_out is optional, depends on board */
4425 fep->clk_enet_out = devm_clk_get_optional(dev: &pdev->dev, id: "enet_out");
4426 if (IS_ERR(ptr: fep->clk_enet_out)) {
4427 ret = PTR_ERR(ptr: fep->clk_enet_out);
4428 goto failed_clk;
4429 }
4430
4431 fep->ptp_clk_on = false;
4432 mutex_init(&fep->ptp_clk_mutex);
4433
4434 /* clk_ref is optional, depends on board */
4435 fep->clk_ref = devm_clk_get_optional(dev: &pdev->dev, id: "enet_clk_ref");
4436 if (IS_ERR(ptr: fep->clk_ref)) {
4437 ret = PTR_ERR(ptr: fep->clk_ref);
4438 goto failed_clk;
4439 }
4440 fep->clk_ref_rate = clk_get_rate(clk: fep->clk_ref);
4441
4442 /* clk_2x_txclk is optional, depends on board */
4443 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4444 fep->clk_2x_txclk = devm_clk_get(dev: &pdev->dev, id: "enet_2x_txclk");
4445 if (IS_ERR(ptr: fep->clk_2x_txclk))
4446 fep->clk_2x_txclk = NULL;
4447 }
4448
4449 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4450 fep->clk_ptp = devm_clk_get(dev: &pdev->dev, id: "ptp");
4451 if (IS_ERR(ptr: fep->clk_ptp)) {
4452 fep->clk_ptp = NULL;
4453 fep->bufdesc_ex = false;
4454 }
4455
4456 ret = fec_enet_clk_enable(ndev, enable: true);
4457 if (ret)
4458 goto failed_clk;
4459
4460 ret = clk_prepare_enable(clk: fep->clk_ipg);
4461 if (ret)
4462 goto failed_clk_ipg;
4463 ret = clk_prepare_enable(clk: fep->clk_ahb);
4464 if (ret)
4465 goto failed_clk_ahb;
4466
4467 fep->reg_phy = devm_regulator_get_optional(dev: &pdev->dev, id: "phy");
4468 if (!IS_ERR(ptr: fep->reg_phy)) {
4469 ret = regulator_enable(regulator: fep->reg_phy);
4470 if (ret) {
4471 dev_err(&pdev->dev,
4472 "Failed to enable phy regulator: %d\n", ret);
4473 goto failed_regulator;
4474 }
4475 } else {
4476 if (PTR_ERR(ptr: fep->reg_phy) == -EPROBE_DEFER) {
4477 ret = -EPROBE_DEFER;
4478 goto failed_regulator;
4479 }
4480 fep->reg_phy = NULL;
4481 }
4482
4483 pm_runtime_set_autosuspend_delay(dev: &pdev->dev, FEC_MDIO_PM_TIMEOUT);
4484 pm_runtime_use_autosuspend(dev: &pdev->dev);
4485 pm_runtime_get_noresume(dev: &pdev->dev);
4486 pm_runtime_set_active(dev: &pdev->dev);
4487 pm_runtime_enable(dev: &pdev->dev);
4488
4489 ret = fec_reset_phy(pdev);
4490 if (ret)
4491 goto failed_reset;
4492
4493 irq_cnt = fec_enet_get_irq_cnt(pdev);
4494 if (fep->bufdesc_ex)
4495 fec_ptp_init(pdev, irq_idx: irq_cnt);
4496
4497 ret = fec_enet_init(ndev);
4498 if (ret)
4499 goto failed_init;
4500
4501 for (i = 0; i < irq_cnt; i++) {
4502 snprintf(buf: irq_name, size: sizeof(irq_name), fmt: "int%d", i);
4503 irq = platform_get_irq_byname_optional(dev: pdev, name: irq_name);
4504 if (irq < 0)
4505 irq = platform_get_irq(pdev, i);
4506 if (irq < 0) {
4507 ret = irq;
4508 goto failed_irq;
4509 }
4510 ret = devm_request_irq(dev: &pdev->dev, irq, handler: fec_enet_interrupt,
4511 irqflags: 0, devname: pdev->name, dev_id: ndev);
4512 if (ret)
4513 goto failed_irq;
4514
4515 fep->irq[i] = irq;
4516 }
4517
4518 /* Decide which interrupt line is wakeup capable */
4519 fec_enet_get_wakeup_irq(pdev);
4520
4521 ret = fec_enet_mii_init(pdev);
4522 if (ret)
4523 goto failed_mii_init;
4524
4525 /* Carrier starts down, phylib will bring it up */
4526 netif_carrier_off(dev: ndev);
4527 fec_enet_clk_enable(ndev, enable: false);
4528 pinctrl_pm_select_sleep_state(dev: &pdev->dev);
4529
4530 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4531
4532 ret = register_netdev(dev: ndev);
4533 if (ret)
4534 goto failed_register;
4535
4536 device_init_wakeup(dev: &ndev->dev, enable: fep->wol_flag &
4537 FEC_WOL_HAS_MAGIC_PACKET);
4538
4539 if (fep->bufdesc_ex && fep->ptp_clock)
4540 netdev_info(dev: ndev, format: "registered PHC device %d\n", fep->dev_id);
4541
4542 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4543
4544 pm_runtime_mark_last_busy(dev: &pdev->dev);
4545 pm_runtime_put_autosuspend(dev: &pdev->dev);
4546
4547 return 0;
4548
4549failed_register:
4550 fec_enet_mii_remove(fep);
4551failed_mii_init:
4552failed_irq:
4553failed_init:
4554 fec_ptp_stop(pdev);
4555failed_reset:
4556 pm_runtime_put_noidle(dev: &pdev->dev);
4557 pm_runtime_disable(dev: &pdev->dev);
4558 if (fep->reg_phy)
4559 regulator_disable(regulator: fep->reg_phy);
4560failed_regulator:
4561 clk_disable_unprepare(clk: fep->clk_ahb);
4562failed_clk_ahb:
4563 clk_disable_unprepare(clk: fep->clk_ipg);
4564failed_clk_ipg:
4565 fec_enet_clk_enable(ndev, enable: false);
4566failed_clk:
4567failed_rgmii_delay:
4568 if (of_phy_is_fixed_link(np))
4569 of_phy_deregister_fixed_link(np);
4570 of_node_put(node: phy_node);
4571failed_stop_mode:
4572failed_ipc_init:
4573failed_phy:
4574 dev_id--;
4575failed_ioremap:
4576 free_netdev(dev: ndev);
4577
4578 return ret;
4579}
4580
4581static void
4582fec_drv_remove(struct platform_device *pdev)
4583{
4584 struct net_device *ndev = platform_get_drvdata(pdev);
4585 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4586 struct device_node *np = pdev->dev.of_node;
4587 int ret;
4588
4589 ret = pm_runtime_get_sync(dev: &pdev->dev);
4590 if (ret < 0)
4591 dev_err(&pdev->dev,
4592 "Failed to resume device in remove callback (%pe)\n",
4593 ERR_PTR(ret));
4594
4595 cancel_work_sync(work: &fep->tx_timeout_work);
4596 fec_ptp_stop(pdev);
4597 unregister_netdev(dev: ndev);
4598 fec_enet_mii_remove(fep);
4599 if (fep->reg_phy)
4600 regulator_disable(regulator: fep->reg_phy);
4601
4602 if (of_phy_is_fixed_link(np))
4603 of_phy_deregister_fixed_link(np);
4604 of_node_put(node: fep->phy_node);
4605
4606 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4607 * disabling them again.
4608 */
4609 if (ret >= 0) {
4610 clk_disable_unprepare(clk: fep->clk_ahb);
4611 clk_disable_unprepare(clk: fep->clk_ipg);
4612 }
4613 pm_runtime_put_noidle(dev: &pdev->dev);
4614 pm_runtime_disable(dev: &pdev->dev);
4615
4616 free_netdev(dev: ndev);
4617}
4618
4619static int __maybe_unused fec_suspend(struct device *dev)
4620{
4621 struct net_device *ndev = dev_get_drvdata(dev);
4622 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4623 int ret;
4624
4625 rtnl_lock();
4626 if (netif_running(dev: ndev)) {
4627 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4628 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4629 phy_stop(phydev: ndev->phydev);
4630 napi_disable(n: &fep->napi);
4631 netif_tx_lock_bh(dev: ndev);
4632 netif_device_detach(dev: ndev);
4633 netif_tx_unlock_bh(dev: ndev);
4634 fec_stop(ndev);
4635 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4636 fec_irqs_disable(ndev);
4637 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
4638 } else {
4639 fec_irqs_disable_except_wakeup(ndev);
4640 if (fep->wake_irq > 0) {
4641 disable_irq(irq: fep->wake_irq);
4642 enable_irq_wake(irq: fep->wake_irq);
4643 }
4644 fec_enet_stop_mode(fep, enabled: true);
4645 }
4646 /* It's safe to disable clocks since interrupts are masked */
4647 fec_enet_clk_enable(ndev, enable: false);
4648
4649 fep->rpm_active = !pm_runtime_status_suspended(dev);
4650 if (fep->rpm_active) {
4651 ret = pm_runtime_force_suspend(dev);
4652 if (ret < 0) {
4653 rtnl_unlock();
4654 return ret;
4655 }
4656 }
4657 }
4658 rtnl_unlock();
4659
4660 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4661 regulator_disable(regulator: fep->reg_phy);
4662
4663 /* SOC supply clock to phy, when clock is disabled, phy link down
4664 * SOC control phy regulator, when regulator is disabled, phy link down
4665 */
4666 if (fep->clk_enet_out || fep->reg_phy)
4667 fep->link = 0;
4668
4669 return 0;
4670}
4671
4672static int __maybe_unused fec_resume(struct device *dev)
4673{
4674 struct net_device *ndev = dev_get_drvdata(dev);
4675 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4676 int ret;
4677 int val;
4678
4679 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4680 ret = regulator_enable(regulator: fep->reg_phy);
4681 if (ret)
4682 return ret;
4683 }
4684
4685 rtnl_lock();
4686 if (netif_running(dev: ndev)) {
4687 if (fep->rpm_active)
4688 pm_runtime_force_resume(dev);
4689
4690 ret = fec_enet_clk_enable(ndev, enable: true);
4691 if (ret) {
4692 rtnl_unlock();
4693 goto failed_clk;
4694 }
4695 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4696 fec_enet_stop_mode(fep, enabled: false);
4697 if (fep->wake_irq) {
4698 disable_irq_wake(irq: fep->wake_irq);
4699 enable_irq(irq: fep->wake_irq);
4700 }
4701
4702 val = readl(addr: fep->hwp + FEC_ECNTRL);
4703 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4704 writel(val, addr: fep->hwp + FEC_ECNTRL);
4705 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4706 } else {
4707 pinctrl_pm_select_default_state(dev: &fep->pdev->dev);
4708 }
4709 fec_restart(ndev);
4710 netif_tx_lock_bh(dev: ndev);
4711 netif_device_attach(dev: ndev);
4712 netif_tx_unlock_bh(dev: ndev);
4713 napi_enable(n: &fep->napi);
4714 phy_init_hw(phydev: ndev->phydev);
4715 phy_start(phydev: ndev->phydev);
4716 }
4717 rtnl_unlock();
4718
4719 return 0;
4720
4721failed_clk:
4722 if (fep->reg_phy)
4723 regulator_disable(regulator: fep->reg_phy);
4724 return ret;
4725}
4726
4727static int __maybe_unused fec_runtime_suspend(struct device *dev)
4728{
4729 struct net_device *ndev = dev_get_drvdata(dev);
4730 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4731
4732 clk_disable_unprepare(clk: fep->clk_ahb);
4733 clk_disable_unprepare(clk: fep->clk_ipg);
4734
4735 return 0;
4736}
4737
4738static int __maybe_unused fec_runtime_resume(struct device *dev)
4739{
4740 struct net_device *ndev = dev_get_drvdata(dev);
4741 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4742 int ret;
4743
4744 ret = clk_prepare_enable(clk: fep->clk_ahb);
4745 if (ret)
4746 return ret;
4747 ret = clk_prepare_enable(clk: fep->clk_ipg);
4748 if (ret)
4749 goto failed_clk_ipg;
4750
4751 return 0;
4752
4753failed_clk_ipg:
4754 clk_disable_unprepare(clk: fep->clk_ahb);
4755 return ret;
4756}
4757
4758static const struct dev_pm_ops fec_pm_ops = {
4759 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4760 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4761};
4762
4763static struct platform_driver fec_driver = {
4764 .driver = {
4765 .name = DRIVER_NAME,
4766 .pm = &fec_pm_ops,
4767 .of_match_table = fec_dt_ids,
4768 .suppress_bind_attrs = true,
4769 },
4770 .id_table = fec_devtype,
4771 .probe = fec_probe,
4772 .remove_new = fec_drv_remove,
4773};
4774
4775module_platform_driver(fec_driver);
4776
4777MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4778MODULE_LICENSE("GPL");
4779

source code of linux/drivers/net/ethernet/freescale/fec_main.c