1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* |
3 | * fs/eventpoll.c (Efficient event retrieval implementation) |
4 | * Copyright (C) 2001,...,2009 Davide Libenzi |
5 | * |
6 | * Davide Libenzi <davidel@xmailserver.org> |
7 | */ |
8 | |
9 | #include <linux/init.h> |
10 | #include <linux/kernel.h> |
11 | #include <linux/sched/signal.h> |
12 | #include <linux/fs.h> |
13 | #include <linux/file.h> |
14 | #include <linux/signal.h> |
15 | #include <linux/errno.h> |
16 | #include <linux/mm.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/poll.h> |
19 | #include <linux/string.h> |
20 | #include <linux/list.h> |
21 | #include <linux/hash.h> |
22 | #include <linux/spinlock.h> |
23 | #include <linux/syscalls.h> |
24 | #include <linux/rbtree.h> |
25 | #include <linux/wait.h> |
26 | #include <linux/eventpoll.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/bitops.h> |
29 | #include <linux/mutex.h> |
30 | #include <linux/anon_inodes.h> |
31 | #include <linux/device.h> |
32 | #include <linux/uaccess.h> |
33 | #include <asm/io.h> |
34 | #include <asm/mman.h> |
35 | #include <linux/atomic.h> |
36 | #include <linux/proc_fs.h> |
37 | #include <linux/seq_file.h> |
38 | #include <linux/compat.h> |
39 | #include <linux/rculist.h> |
40 | #include <linux/capability.h> |
41 | #include <net/busy_poll.h> |
42 | |
43 | /* |
44 | * LOCKING: |
45 | * There are three level of locking required by epoll : |
46 | * |
47 | * 1) epnested_mutex (mutex) |
48 | * 2) ep->mtx (mutex) |
49 | * 3) ep->lock (rwlock) |
50 | * |
51 | * The acquire order is the one listed above, from 1 to 3. |
52 | * We need a rwlock (ep->lock) because we manipulate objects |
53 | * from inside the poll callback, that might be triggered from |
54 | * a wake_up() that in turn might be called from IRQ context. |
55 | * So we can't sleep inside the poll callback and hence we need |
56 | * a spinlock. During the event transfer loop (from kernel to |
57 | * user space) we could end up sleeping due a copy_to_user(), so |
58 | * we need a lock that will allow us to sleep. This lock is a |
59 | * mutex (ep->mtx). It is acquired during the event transfer loop, |
60 | * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). |
61 | * The epnested_mutex is acquired when inserting an epoll fd onto another |
62 | * epoll fd. We do this so that we walk the epoll tree and ensure that this |
63 | * insertion does not create a cycle of epoll file descriptors, which |
64 | * could lead to deadlock. We need a global mutex to prevent two |
65 | * simultaneous inserts (A into B and B into A) from racing and |
66 | * constructing a cycle without either insert observing that it is |
67 | * going to. |
68 | * It is necessary to acquire multiple "ep->mtx"es at once in the |
69 | * case when one epoll fd is added to another. In this case, we |
70 | * always acquire the locks in the order of nesting (i.e. after |
71 | * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired |
72 | * before e2->mtx). Since we disallow cycles of epoll file |
73 | * descriptors, this ensures that the mutexes are well-ordered. In |
74 | * order to communicate this nesting to lockdep, when walking a tree |
75 | * of epoll file descriptors, we use the current recursion depth as |
76 | * the lockdep subkey. |
77 | * It is possible to drop the "ep->mtx" and to use the global |
78 | * mutex "epnested_mutex" (together with "ep->lock") to have it working, |
79 | * but having "ep->mtx" will make the interface more scalable. |
80 | * Events that require holding "epnested_mutex" are very rare, while for |
81 | * normal operations the epoll private "ep->mtx" will guarantee |
82 | * a better scalability. |
83 | */ |
84 | |
85 | /* Epoll private bits inside the event mask */ |
86 | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) |
87 | |
88 | #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) |
89 | |
90 | #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ |
91 | EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) |
92 | |
93 | /* Maximum number of nesting allowed inside epoll sets */ |
94 | #define EP_MAX_NESTS 4 |
95 | |
96 | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) |
97 | |
98 | #define EP_UNACTIVE_PTR ((void *) -1L) |
99 | |
100 | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) |
101 | |
102 | struct epoll_filefd { |
103 | struct file *file; |
104 | int fd; |
105 | } __packed; |
106 | |
107 | /* Wait structure used by the poll hooks */ |
108 | struct eppoll_entry { |
109 | /* List header used to link this structure to the "struct epitem" */ |
110 | struct eppoll_entry *next; |
111 | |
112 | /* The "base" pointer is set to the container "struct epitem" */ |
113 | struct epitem *base; |
114 | |
115 | /* |
116 | * Wait queue item that will be linked to the target file wait |
117 | * queue head. |
118 | */ |
119 | wait_queue_entry_t wait; |
120 | |
121 | /* The wait queue head that linked the "wait" wait queue item */ |
122 | wait_queue_head_t *whead; |
123 | }; |
124 | |
125 | /* |
126 | * Each file descriptor added to the eventpoll interface will |
127 | * have an entry of this type linked to the "rbr" RB tree. |
128 | * Avoid increasing the size of this struct, there can be many thousands |
129 | * of these on a server and we do not want this to take another cache line. |
130 | */ |
131 | struct epitem { |
132 | union { |
133 | /* RB tree node links this structure to the eventpoll RB tree */ |
134 | struct rb_node rbn; |
135 | /* Used to free the struct epitem */ |
136 | struct rcu_head rcu; |
137 | }; |
138 | |
139 | /* List header used to link this structure to the eventpoll ready list */ |
140 | struct list_head rdllink; |
141 | |
142 | /* |
143 | * Works together "struct eventpoll"->ovflist in keeping the |
144 | * single linked chain of items. |
145 | */ |
146 | struct epitem *next; |
147 | |
148 | /* The file descriptor information this item refers to */ |
149 | struct epoll_filefd ffd; |
150 | |
151 | /* |
152 | * Protected by file->f_lock, true for to-be-released epitem already |
153 | * removed from the "struct file" items list; together with |
154 | * eventpoll->refcount orchestrates "struct eventpoll" disposal |
155 | */ |
156 | bool dying; |
157 | |
158 | /* List containing poll wait queues */ |
159 | struct eppoll_entry *pwqlist; |
160 | |
161 | /* The "container" of this item */ |
162 | struct eventpoll *ep; |
163 | |
164 | /* List header used to link this item to the "struct file" items list */ |
165 | struct hlist_node fllink; |
166 | |
167 | /* wakeup_source used when EPOLLWAKEUP is set */ |
168 | struct wakeup_source __rcu *ws; |
169 | |
170 | /* The structure that describe the interested events and the source fd */ |
171 | struct epoll_event event; |
172 | }; |
173 | |
174 | /* |
175 | * This structure is stored inside the "private_data" member of the file |
176 | * structure and represents the main data structure for the eventpoll |
177 | * interface. |
178 | */ |
179 | struct eventpoll { |
180 | /* |
181 | * This mutex is used to ensure that files are not removed |
182 | * while epoll is using them. This is held during the event |
183 | * collection loop, the file cleanup path, the epoll file exit |
184 | * code and the ctl operations. |
185 | */ |
186 | struct mutex mtx; |
187 | |
188 | /* Wait queue used by sys_epoll_wait() */ |
189 | wait_queue_head_t wq; |
190 | |
191 | /* Wait queue used by file->poll() */ |
192 | wait_queue_head_t poll_wait; |
193 | |
194 | /* List of ready file descriptors */ |
195 | struct list_head rdllist; |
196 | |
197 | /* Lock which protects rdllist and ovflist */ |
198 | rwlock_t lock; |
199 | |
200 | /* RB tree root used to store monitored fd structs */ |
201 | struct rb_root_cached rbr; |
202 | |
203 | /* |
204 | * This is a single linked list that chains all the "struct epitem" that |
205 | * happened while transferring ready events to userspace w/out |
206 | * holding ->lock. |
207 | */ |
208 | struct epitem *ovflist; |
209 | |
210 | /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ |
211 | struct wakeup_source *ws; |
212 | |
213 | /* The user that created the eventpoll descriptor */ |
214 | struct user_struct *user; |
215 | |
216 | struct file *file; |
217 | |
218 | /* used to optimize loop detection check */ |
219 | u64 gen; |
220 | struct hlist_head refs; |
221 | |
222 | /* |
223 | * usage count, used together with epitem->dying to |
224 | * orchestrate the disposal of this struct |
225 | */ |
226 | refcount_t refcount; |
227 | |
228 | #ifdef CONFIG_NET_RX_BUSY_POLL |
229 | /* used to track busy poll napi_id */ |
230 | unsigned int napi_id; |
231 | /* busy poll timeout */ |
232 | u32 busy_poll_usecs; |
233 | /* busy poll packet budget */ |
234 | u16 busy_poll_budget; |
235 | bool prefer_busy_poll; |
236 | #endif |
237 | |
238 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
239 | /* tracks wakeup nests for lockdep validation */ |
240 | u8 nests; |
241 | #endif |
242 | }; |
243 | |
244 | /* Wrapper struct used by poll queueing */ |
245 | struct ep_pqueue { |
246 | poll_table pt; |
247 | struct epitem *epi; |
248 | }; |
249 | |
250 | /* |
251 | * Configuration options available inside /proc/sys/fs/epoll/ |
252 | */ |
253 | /* Maximum number of epoll watched descriptors, per user */ |
254 | static long max_user_watches __read_mostly; |
255 | |
256 | /* Used for cycles detection */ |
257 | static DEFINE_MUTEX(epnested_mutex); |
258 | |
259 | static u64 loop_check_gen = 0; |
260 | |
261 | /* Used to check for epoll file descriptor inclusion loops */ |
262 | static struct eventpoll *inserting_into; |
263 | |
264 | /* Slab cache used to allocate "struct epitem" */ |
265 | static struct kmem_cache *epi_cache __ro_after_init; |
266 | |
267 | /* Slab cache used to allocate "struct eppoll_entry" */ |
268 | static struct kmem_cache *pwq_cache __ro_after_init; |
269 | |
270 | /* |
271 | * List of files with newly added links, where we may need to limit the number |
272 | * of emanating paths. Protected by the epnested_mutex. |
273 | */ |
274 | struct epitems_head { |
275 | struct hlist_head epitems; |
276 | struct epitems_head *next; |
277 | }; |
278 | static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; |
279 | |
280 | static struct kmem_cache *ephead_cache __ro_after_init; |
281 | |
282 | static inline void free_ephead(struct epitems_head *head) |
283 | { |
284 | if (head) |
285 | kmem_cache_free(s: ephead_cache, objp: head); |
286 | } |
287 | |
288 | static void list_file(struct file *file) |
289 | { |
290 | struct epitems_head *head; |
291 | |
292 | head = container_of(file->f_ep, struct epitems_head, epitems); |
293 | if (!head->next) { |
294 | head->next = tfile_check_list; |
295 | tfile_check_list = head; |
296 | } |
297 | } |
298 | |
299 | static void unlist_file(struct epitems_head *head) |
300 | { |
301 | struct epitems_head *to_free = head; |
302 | struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); |
303 | if (p) { |
304 | struct epitem *epi= container_of(p, struct epitem, fllink); |
305 | spin_lock(lock: &epi->ffd.file->f_lock); |
306 | if (!hlist_empty(h: &head->epitems)) |
307 | to_free = NULL; |
308 | head->next = NULL; |
309 | spin_unlock(lock: &epi->ffd.file->f_lock); |
310 | } |
311 | free_ephead(head: to_free); |
312 | } |
313 | |
314 | #ifdef CONFIG_SYSCTL |
315 | |
316 | #include <linux/sysctl.h> |
317 | |
318 | static long long_zero; |
319 | static long long_max = LONG_MAX; |
320 | |
321 | static struct ctl_table epoll_table[] = { |
322 | { |
323 | .procname = "max_user_watches" , |
324 | .data = &max_user_watches, |
325 | .maxlen = sizeof(max_user_watches), |
326 | .mode = 0644, |
327 | .proc_handler = proc_doulongvec_minmax, |
328 | .extra1 = &long_zero, |
329 | .extra2 = &long_max, |
330 | }, |
331 | }; |
332 | |
333 | static void __init epoll_sysctls_init(void) |
334 | { |
335 | register_sysctl("fs/epoll" , epoll_table); |
336 | } |
337 | #else |
338 | #define epoll_sysctls_init() do { } while (0) |
339 | #endif /* CONFIG_SYSCTL */ |
340 | |
341 | static const struct file_operations eventpoll_fops; |
342 | |
343 | static inline int is_file_epoll(struct file *f) |
344 | { |
345 | return f->f_op == &eventpoll_fops; |
346 | } |
347 | |
348 | /* Setup the structure that is used as key for the RB tree */ |
349 | static inline void ep_set_ffd(struct epoll_filefd *ffd, |
350 | struct file *file, int fd) |
351 | { |
352 | ffd->file = file; |
353 | ffd->fd = fd; |
354 | } |
355 | |
356 | /* Compare RB tree keys */ |
357 | static inline int ep_cmp_ffd(struct epoll_filefd *p1, |
358 | struct epoll_filefd *p2) |
359 | { |
360 | return (p1->file > p2->file ? +1: |
361 | (p1->file < p2->file ? -1 : p1->fd - p2->fd)); |
362 | } |
363 | |
364 | /* Tells us if the item is currently linked */ |
365 | static inline int ep_is_linked(struct epitem *epi) |
366 | { |
367 | return !list_empty(head: &epi->rdllink); |
368 | } |
369 | |
370 | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) |
371 | { |
372 | return container_of(p, struct eppoll_entry, wait); |
373 | } |
374 | |
375 | /* Get the "struct epitem" from a wait queue pointer */ |
376 | static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) |
377 | { |
378 | return container_of(p, struct eppoll_entry, wait)->base; |
379 | } |
380 | |
381 | /** |
382 | * ep_events_available - Checks if ready events might be available. |
383 | * |
384 | * @ep: Pointer to the eventpoll context. |
385 | * |
386 | * Return: a value different than %zero if ready events are available, |
387 | * or %zero otherwise. |
388 | */ |
389 | static inline int ep_events_available(struct eventpoll *ep) |
390 | { |
391 | return !list_empty_careful(head: &ep->rdllist) || |
392 | READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; |
393 | } |
394 | |
395 | #ifdef CONFIG_NET_RX_BUSY_POLL |
396 | /** |
397 | * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value |
398 | * from the epoll instance ep is preferred, but if it is not set fallback to |
399 | * the system-wide global via busy_loop_timeout. |
400 | * |
401 | * @start_time: The start time used to compute the remaining time until timeout. |
402 | * @ep: Pointer to the eventpoll context. |
403 | * |
404 | * Return: true if the timeout has expired, false otherwise. |
405 | */ |
406 | static bool busy_loop_ep_timeout(unsigned long start_time, |
407 | struct eventpoll *ep) |
408 | { |
409 | unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); |
410 | |
411 | if (bp_usec) { |
412 | unsigned long end_time = start_time + bp_usec; |
413 | unsigned long now = busy_loop_current_time(); |
414 | |
415 | return time_after(now, end_time); |
416 | } else { |
417 | return busy_loop_timeout(start_time); |
418 | } |
419 | } |
420 | |
421 | static bool ep_busy_loop_on(struct eventpoll *ep) |
422 | { |
423 | return !!ep->busy_poll_usecs || net_busy_loop_on(); |
424 | } |
425 | |
426 | static bool ep_busy_loop_end(void *p, unsigned long start_time) |
427 | { |
428 | struct eventpoll *ep = p; |
429 | |
430 | return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); |
431 | } |
432 | |
433 | /* |
434 | * Busy poll if globally on and supporting sockets found && no events, |
435 | * busy loop will return if need_resched or ep_events_available. |
436 | * |
437 | * we must do our busy polling with irqs enabled |
438 | */ |
439 | static bool ep_busy_loop(struct eventpoll *ep, int nonblock) |
440 | { |
441 | unsigned int napi_id = READ_ONCE(ep->napi_id); |
442 | u16 budget = READ_ONCE(ep->busy_poll_budget); |
443 | bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); |
444 | |
445 | if (!budget) |
446 | budget = BUSY_POLL_BUDGET; |
447 | |
448 | if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { |
449 | napi_busy_loop(napi_id, loop_end: nonblock ? NULL : ep_busy_loop_end, |
450 | loop_end_arg: ep, prefer_busy_poll, budget); |
451 | if (ep_events_available(ep)) |
452 | return true; |
453 | /* |
454 | * Busy poll timed out. Drop NAPI ID for now, we can add |
455 | * it back in when we have moved a socket with a valid NAPI |
456 | * ID onto the ready list. |
457 | */ |
458 | ep->napi_id = 0; |
459 | return false; |
460 | } |
461 | return false; |
462 | } |
463 | |
464 | /* |
465 | * Set epoll busy poll NAPI ID from sk. |
466 | */ |
467 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) |
468 | { |
469 | struct eventpoll *ep = epi->ep; |
470 | unsigned int napi_id; |
471 | struct socket *sock; |
472 | struct sock *sk; |
473 | |
474 | if (!ep_busy_loop_on(ep)) |
475 | return; |
476 | |
477 | sock = sock_from_file(file: epi->ffd.file); |
478 | if (!sock) |
479 | return; |
480 | |
481 | sk = sock->sk; |
482 | if (!sk) |
483 | return; |
484 | |
485 | napi_id = READ_ONCE(sk->sk_napi_id); |
486 | |
487 | /* Non-NAPI IDs can be rejected |
488 | * or |
489 | * Nothing to do if we already have this ID |
490 | */ |
491 | if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) |
492 | return; |
493 | |
494 | /* record NAPI ID for use in next busy poll */ |
495 | ep->napi_id = napi_id; |
496 | } |
497 | |
498 | static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, |
499 | unsigned long arg) |
500 | { |
501 | struct eventpoll *ep = file->private_data; |
502 | void __user *uarg = (void __user *)arg; |
503 | struct epoll_params epoll_params; |
504 | |
505 | switch (cmd) { |
506 | case EPIOCSPARAMS: |
507 | if (copy_from_user(to: &epoll_params, from: uarg, n: sizeof(epoll_params))) |
508 | return -EFAULT; |
509 | |
510 | /* pad byte must be zero */ |
511 | if (epoll_params.__pad) |
512 | return -EINVAL; |
513 | |
514 | if (epoll_params.busy_poll_usecs > S32_MAX) |
515 | return -EINVAL; |
516 | |
517 | if (epoll_params.prefer_busy_poll > 1) |
518 | return -EINVAL; |
519 | |
520 | if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && |
521 | !capable(CAP_NET_ADMIN)) |
522 | return -EPERM; |
523 | |
524 | WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); |
525 | WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); |
526 | WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); |
527 | return 0; |
528 | case EPIOCGPARAMS: |
529 | memset(&epoll_params, 0, sizeof(epoll_params)); |
530 | epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); |
531 | epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); |
532 | epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); |
533 | if (copy_to_user(to: uarg, from: &epoll_params, n: sizeof(epoll_params))) |
534 | return -EFAULT; |
535 | return 0; |
536 | default: |
537 | return -ENOIOCTLCMD; |
538 | } |
539 | } |
540 | |
541 | #else |
542 | |
543 | static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) |
544 | { |
545 | return false; |
546 | } |
547 | |
548 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) |
549 | { |
550 | } |
551 | |
552 | static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, |
553 | unsigned long arg) |
554 | { |
555 | return -EOPNOTSUPP; |
556 | } |
557 | |
558 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
559 | |
560 | /* |
561 | * As described in commit 0ccf831cb lockdep: annotate epoll |
562 | * the use of wait queues used by epoll is done in a very controlled |
563 | * manner. Wake ups can nest inside each other, but are never done |
564 | * with the same locking. For example: |
565 | * |
566 | * dfd = socket(...); |
567 | * efd1 = epoll_create(); |
568 | * efd2 = epoll_create(); |
569 | * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); |
570 | * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); |
571 | * |
572 | * When a packet arrives to the device underneath "dfd", the net code will |
573 | * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a |
574 | * callback wakeup entry on that queue, and the wake_up() performed by the |
575 | * "dfd" net code will end up in ep_poll_callback(). At this point epoll |
576 | * (efd1) notices that it may have some event ready, so it needs to wake up |
577 | * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() |
578 | * that ends up in another wake_up(), after having checked about the |
579 | * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid |
580 | * stack blasting. |
581 | * |
582 | * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle |
583 | * this special case of epoll. |
584 | */ |
585 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
586 | |
587 | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, |
588 | unsigned pollflags) |
589 | { |
590 | struct eventpoll *ep_src; |
591 | unsigned long flags; |
592 | u8 nests = 0; |
593 | |
594 | /* |
595 | * To set the subclass or nesting level for spin_lock_irqsave_nested() |
596 | * it might be natural to create a per-cpu nest count. However, since |
597 | * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can |
598 | * schedule() in the -rt kernel, the per-cpu variable are no longer |
599 | * protected. Thus, we are introducing a per eventpoll nest field. |
600 | * If we are not being call from ep_poll_callback(), epi is NULL and |
601 | * we are at the first level of nesting, 0. Otherwise, we are being |
602 | * called from ep_poll_callback() and if a previous wakeup source is |
603 | * not an epoll file itself, we are at depth 1 since the wakeup source |
604 | * is depth 0. If the wakeup source is a previous epoll file in the |
605 | * wakeup chain then we use its nests value and record ours as |
606 | * nests + 1. The previous epoll file nests value is stable since its |
607 | * already holding its own poll_wait.lock. |
608 | */ |
609 | if (epi) { |
610 | if ((is_file_epoll(f: epi->ffd.file))) { |
611 | ep_src = epi->ffd.file->private_data; |
612 | nests = ep_src->nests; |
613 | } else { |
614 | nests = 1; |
615 | } |
616 | } |
617 | spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); |
618 | ep->nests = nests + 1; |
619 | wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); |
620 | ep->nests = 0; |
621 | spin_unlock_irqrestore(lock: &ep->poll_wait.lock, flags); |
622 | } |
623 | |
624 | #else |
625 | |
626 | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, |
627 | __poll_t pollflags) |
628 | { |
629 | wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); |
630 | } |
631 | |
632 | #endif |
633 | |
634 | static void ep_remove_wait_queue(struct eppoll_entry *pwq) |
635 | { |
636 | wait_queue_head_t *whead; |
637 | |
638 | rcu_read_lock(); |
639 | /* |
640 | * If it is cleared by POLLFREE, it should be rcu-safe. |
641 | * If we read NULL we need a barrier paired with |
642 | * smp_store_release() in ep_poll_callback(), otherwise |
643 | * we rely on whead->lock. |
644 | */ |
645 | whead = smp_load_acquire(&pwq->whead); |
646 | if (whead) |
647 | remove_wait_queue(wq_head: whead, wq_entry: &pwq->wait); |
648 | rcu_read_unlock(); |
649 | } |
650 | |
651 | /* |
652 | * This function unregisters poll callbacks from the associated file |
653 | * descriptor. Must be called with "mtx" held. |
654 | */ |
655 | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) |
656 | { |
657 | struct eppoll_entry **p = &epi->pwqlist; |
658 | struct eppoll_entry *pwq; |
659 | |
660 | while ((pwq = *p) != NULL) { |
661 | *p = pwq->next; |
662 | ep_remove_wait_queue(pwq); |
663 | kmem_cache_free(s: pwq_cache, objp: pwq); |
664 | } |
665 | } |
666 | |
667 | /* call only when ep->mtx is held */ |
668 | static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) |
669 | { |
670 | return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); |
671 | } |
672 | |
673 | /* call only when ep->mtx is held */ |
674 | static inline void ep_pm_stay_awake(struct epitem *epi) |
675 | { |
676 | struct wakeup_source *ws = ep_wakeup_source(epi); |
677 | |
678 | if (ws) |
679 | __pm_stay_awake(ws); |
680 | } |
681 | |
682 | static inline bool ep_has_wakeup_source(struct epitem *epi) |
683 | { |
684 | return rcu_access_pointer(epi->ws) ? true : false; |
685 | } |
686 | |
687 | /* call when ep->mtx cannot be held (ep_poll_callback) */ |
688 | static inline void ep_pm_stay_awake_rcu(struct epitem *epi) |
689 | { |
690 | struct wakeup_source *ws; |
691 | |
692 | rcu_read_lock(); |
693 | ws = rcu_dereference(epi->ws); |
694 | if (ws) |
695 | __pm_stay_awake(ws); |
696 | rcu_read_unlock(); |
697 | } |
698 | |
699 | |
700 | /* |
701 | * ep->mutex needs to be held because we could be hit by |
702 | * eventpoll_release_file() and epoll_ctl(). |
703 | */ |
704 | static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) |
705 | { |
706 | /* |
707 | * Steal the ready list, and re-init the original one to the |
708 | * empty list. Also, set ep->ovflist to NULL so that events |
709 | * happening while looping w/out locks, are not lost. We cannot |
710 | * have the poll callback to queue directly on ep->rdllist, |
711 | * because we want the "sproc" callback to be able to do it |
712 | * in a lockless way. |
713 | */ |
714 | lockdep_assert_irqs_enabled(); |
715 | write_lock_irq(&ep->lock); |
716 | list_splice_init(list: &ep->rdllist, head: txlist); |
717 | WRITE_ONCE(ep->ovflist, NULL); |
718 | write_unlock_irq(&ep->lock); |
719 | } |
720 | |
721 | static void ep_done_scan(struct eventpoll *ep, |
722 | struct list_head *txlist) |
723 | { |
724 | struct epitem *epi, *nepi; |
725 | |
726 | write_lock_irq(&ep->lock); |
727 | /* |
728 | * During the time we spent inside the "sproc" callback, some |
729 | * other events might have been queued by the poll callback. |
730 | * We re-insert them inside the main ready-list here. |
731 | */ |
732 | for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; |
733 | nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { |
734 | /* |
735 | * We need to check if the item is already in the list. |
736 | * During the "sproc" callback execution time, items are |
737 | * queued into ->ovflist but the "txlist" might already |
738 | * contain them, and the list_splice() below takes care of them. |
739 | */ |
740 | if (!ep_is_linked(epi)) { |
741 | /* |
742 | * ->ovflist is LIFO, so we have to reverse it in order |
743 | * to keep in FIFO. |
744 | */ |
745 | list_add(new: &epi->rdllink, head: &ep->rdllist); |
746 | ep_pm_stay_awake(epi); |
747 | } |
748 | } |
749 | /* |
750 | * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after |
751 | * releasing the lock, events will be queued in the normal way inside |
752 | * ep->rdllist. |
753 | */ |
754 | WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); |
755 | |
756 | /* |
757 | * Quickly re-inject items left on "txlist". |
758 | */ |
759 | list_splice(list: txlist, head: &ep->rdllist); |
760 | __pm_relax(ws: ep->ws); |
761 | |
762 | if (!list_empty(head: &ep->rdllist)) { |
763 | if (waitqueue_active(wq_head: &ep->wq)) |
764 | wake_up(&ep->wq); |
765 | } |
766 | |
767 | write_unlock_irq(&ep->lock); |
768 | } |
769 | |
770 | static void ep_get(struct eventpoll *ep) |
771 | { |
772 | refcount_inc(r: &ep->refcount); |
773 | } |
774 | |
775 | /* |
776 | * Returns true if the event poll can be disposed |
777 | */ |
778 | static bool ep_refcount_dec_and_test(struct eventpoll *ep) |
779 | { |
780 | if (!refcount_dec_and_test(r: &ep->refcount)) |
781 | return false; |
782 | |
783 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); |
784 | return true; |
785 | } |
786 | |
787 | static void ep_free(struct eventpoll *ep) |
788 | { |
789 | mutex_destroy(lock: &ep->mtx); |
790 | free_uid(ep->user); |
791 | wakeup_source_unregister(ws: ep->ws); |
792 | kfree(objp: ep); |
793 | } |
794 | |
795 | /* |
796 | * Removes a "struct epitem" from the eventpoll RB tree and deallocates |
797 | * all the associated resources. Must be called with "mtx" held. |
798 | * If the dying flag is set, do the removal only if force is true. |
799 | * This prevents ep_clear_and_put() from dropping all the ep references |
800 | * while running concurrently with eventpoll_release_file(). |
801 | * Returns true if the eventpoll can be disposed. |
802 | */ |
803 | static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) |
804 | { |
805 | struct file *file = epi->ffd.file; |
806 | struct epitems_head *to_free; |
807 | struct hlist_head *head; |
808 | |
809 | lockdep_assert_irqs_enabled(); |
810 | |
811 | /* |
812 | * Removes poll wait queue hooks. |
813 | */ |
814 | ep_unregister_pollwait(ep, epi); |
815 | |
816 | /* Remove the current item from the list of epoll hooks */ |
817 | spin_lock(lock: &file->f_lock); |
818 | if (epi->dying && !force) { |
819 | spin_unlock(lock: &file->f_lock); |
820 | return false; |
821 | } |
822 | |
823 | to_free = NULL; |
824 | head = file->f_ep; |
825 | if (head->first == &epi->fllink && !epi->fllink.next) { |
826 | file->f_ep = NULL; |
827 | if (!is_file_epoll(f: file)) { |
828 | struct epitems_head *v; |
829 | v = container_of(head, struct epitems_head, epitems); |
830 | if (!smp_load_acquire(&v->next)) |
831 | to_free = v; |
832 | } |
833 | } |
834 | hlist_del_rcu(n: &epi->fllink); |
835 | spin_unlock(lock: &file->f_lock); |
836 | free_ephead(head: to_free); |
837 | |
838 | rb_erase_cached(node: &epi->rbn, root: &ep->rbr); |
839 | |
840 | write_lock_irq(&ep->lock); |
841 | if (ep_is_linked(epi)) |
842 | list_del_init(entry: &epi->rdllink); |
843 | write_unlock_irq(&ep->lock); |
844 | |
845 | wakeup_source_unregister(ws: ep_wakeup_source(epi)); |
846 | /* |
847 | * At this point it is safe to free the eventpoll item. Use the union |
848 | * field epi->rcu, since we are trying to minimize the size of |
849 | * 'struct epitem'. The 'rbn' field is no longer in use. Protected by |
850 | * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make |
851 | * use of the rbn field. |
852 | */ |
853 | kfree_rcu(epi, rcu); |
854 | |
855 | percpu_counter_dec(fbc: &ep->user->epoll_watches); |
856 | return ep_refcount_dec_and_test(ep); |
857 | } |
858 | |
859 | /* |
860 | * ep_remove variant for callers owing an additional reference to the ep |
861 | */ |
862 | static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) |
863 | { |
864 | WARN_ON_ONCE(__ep_remove(ep, epi, false)); |
865 | } |
866 | |
867 | static void ep_clear_and_put(struct eventpoll *ep) |
868 | { |
869 | struct rb_node *rbp, *next; |
870 | struct epitem *epi; |
871 | bool dispose; |
872 | |
873 | /* We need to release all tasks waiting for these file */ |
874 | if (waitqueue_active(wq_head: &ep->poll_wait)) |
875 | ep_poll_safewake(ep, NULL, pollflags: 0); |
876 | |
877 | mutex_lock(&ep->mtx); |
878 | |
879 | /* |
880 | * Walks through the whole tree by unregistering poll callbacks. |
881 | */ |
882 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
883 | epi = rb_entry(rbp, struct epitem, rbn); |
884 | |
885 | ep_unregister_pollwait(ep, epi); |
886 | cond_resched(); |
887 | } |
888 | |
889 | /* |
890 | * Walks through the whole tree and try to free each "struct epitem". |
891 | * Note that ep_remove_safe() will not remove the epitem in case of a |
892 | * racing eventpoll_release_file(); the latter will do the removal. |
893 | * At this point we are sure no poll callbacks will be lingering around. |
894 | * Since we still own a reference to the eventpoll struct, the loop can't |
895 | * dispose it. |
896 | */ |
897 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { |
898 | next = rb_next(rbp); |
899 | epi = rb_entry(rbp, struct epitem, rbn); |
900 | ep_remove_safe(ep, epi); |
901 | cond_resched(); |
902 | } |
903 | |
904 | dispose = ep_refcount_dec_and_test(ep); |
905 | mutex_unlock(lock: &ep->mtx); |
906 | |
907 | if (dispose) |
908 | ep_free(ep); |
909 | } |
910 | |
911 | static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, |
912 | unsigned long arg) |
913 | { |
914 | int ret; |
915 | |
916 | if (!is_file_epoll(f: file)) |
917 | return -EINVAL; |
918 | |
919 | switch (cmd) { |
920 | case EPIOCSPARAMS: |
921 | case EPIOCGPARAMS: |
922 | ret = ep_eventpoll_bp_ioctl(file, cmd, arg); |
923 | break; |
924 | default: |
925 | ret = -EINVAL; |
926 | break; |
927 | } |
928 | |
929 | return ret; |
930 | } |
931 | |
932 | static int ep_eventpoll_release(struct inode *inode, struct file *file) |
933 | { |
934 | struct eventpoll *ep = file->private_data; |
935 | |
936 | if (ep) |
937 | ep_clear_and_put(ep); |
938 | |
939 | return 0; |
940 | } |
941 | |
942 | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); |
943 | |
944 | static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) |
945 | { |
946 | struct eventpoll *ep = file->private_data; |
947 | LIST_HEAD(txlist); |
948 | struct epitem *epi, *tmp; |
949 | poll_table pt; |
950 | __poll_t res = 0; |
951 | |
952 | init_poll_funcptr(pt: &pt, NULL); |
953 | |
954 | /* Insert inside our poll wait queue */ |
955 | poll_wait(filp: file, wait_address: &ep->poll_wait, p: wait); |
956 | |
957 | /* |
958 | * Proceed to find out if wanted events are really available inside |
959 | * the ready list. |
960 | */ |
961 | mutex_lock_nested(lock: &ep->mtx, subclass: depth); |
962 | ep_start_scan(ep, txlist: &txlist); |
963 | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { |
964 | if (ep_item_poll(epi, pt: &pt, depth: depth + 1)) { |
965 | res = EPOLLIN | EPOLLRDNORM; |
966 | break; |
967 | } else { |
968 | /* |
969 | * Item has been dropped into the ready list by the poll |
970 | * callback, but it's not actually ready, as far as |
971 | * caller requested events goes. We can remove it here. |
972 | */ |
973 | __pm_relax(ws: ep_wakeup_source(epi)); |
974 | list_del_init(entry: &epi->rdllink); |
975 | } |
976 | } |
977 | ep_done_scan(ep, txlist: &txlist); |
978 | mutex_unlock(lock: &ep->mtx); |
979 | return res; |
980 | } |
981 | |
982 | /* |
983 | * Differs from ep_eventpoll_poll() in that internal callers already have |
984 | * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() |
985 | * is correctly annotated. |
986 | */ |
987 | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, |
988 | int depth) |
989 | { |
990 | struct file *file = epi->ffd.file; |
991 | __poll_t res; |
992 | |
993 | pt->_key = epi->event.events; |
994 | if (!is_file_epoll(f: file)) |
995 | res = vfs_poll(file, pt); |
996 | else |
997 | res = __ep_eventpoll_poll(file, wait: pt, depth); |
998 | return res & epi->event.events; |
999 | } |
1000 | |
1001 | static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) |
1002 | { |
1003 | return __ep_eventpoll_poll(file, wait, depth: 0); |
1004 | } |
1005 | |
1006 | #ifdef CONFIG_PROC_FS |
1007 | static void ep_show_fdinfo(struct seq_file *m, struct file *f) |
1008 | { |
1009 | struct eventpoll *ep = f->private_data; |
1010 | struct rb_node *rbp; |
1011 | |
1012 | mutex_lock(&ep->mtx); |
1013 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
1014 | struct epitem *epi = rb_entry(rbp, struct epitem, rbn); |
1015 | struct inode *inode = file_inode(f: epi->ffd.file); |
1016 | |
1017 | seq_printf(m, fmt: "tfd: %8d events: %8x data: %16llx " |
1018 | " pos:%lli ino:%lx sdev:%x\n" , |
1019 | epi->ffd.fd, epi->event.events, |
1020 | (long long)epi->event.data, |
1021 | (long long)epi->ffd.file->f_pos, |
1022 | inode->i_ino, inode->i_sb->s_dev); |
1023 | if (seq_has_overflowed(m)) |
1024 | break; |
1025 | } |
1026 | mutex_unlock(lock: &ep->mtx); |
1027 | } |
1028 | #endif |
1029 | |
1030 | /* File callbacks that implement the eventpoll file behaviour */ |
1031 | static const struct file_operations eventpoll_fops = { |
1032 | #ifdef CONFIG_PROC_FS |
1033 | .show_fdinfo = ep_show_fdinfo, |
1034 | #endif |
1035 | .release = ep_eventpoll_release, |
1036 | .poll = ep_eventpoll_poll, |
1037 | .llseek = noop_llseek, |
1038 | .unlocked_ioctl = ep_eventpoll_ioctl, |
1039 | .compat_ioctl = compat_ptr_ioctl, |
1040 | }; |
1041 | |
1042 | /* |
1043 | * This is called from eventpoll_release() to unlink files from the eventpoll |
1044 | * interface. We need to have this facility to cleanup correctly files that are |
1045 | * closed without being removed from the eventpoll interface. |
1046 | */ |
1047 | void eventpoll_release_file(struct file *file) |
1048 | { |
1049 | struct eventpoll *ep; |
1050 | struct epitem *epi; |
1051 | bool dispose; |
1052 | |
1053 | /* |
1054 | * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from |
1055 | * touching the epitems list before eventpoll_release_file() can access |
1056 | * the ep->mtx. |
1057 | */ |
1058 | again: |
1059 | spin_lock(lock: &file->f_lock); |
1060 | if (file->f_ep && file->f_ep->first) { |
1061 | epi = hlist_entry(file->f_ep->first, struct epitem, fllink); |
1062 | epi->dying = true; |
1063 | spin_unlock(lock: &file->f_lock); |
1064 | |
1065 | /* |
1066 | * ep access is safe as we still own a reference to the ep |
1067 | * struct |
1068 | */ |
1069 | ep = epi->ep; |
1070 | mutex_lock(&ep->mtx); |
1071 | dispose = __ep_remove(ep, epi, force: true); |
1072 | mutex_unlock(lock: &ep->mtx); |
1073 | |
1074 | if (dispose) |
1075 | ep_free(ep); |
1076 | goto again; |
1077 | } |
1078 | spin_unlock(lock: &file->f_lock); |
1079 | } |
1080 | |
1081 | static int ep_alloc(struct eventpoll **pep) |
1082 | { |
1083 | struct eventpoll *ep; |
1084 | |
1085 | ep = kzalloc(size: sizeof(*ep), GFP_KERNEL); |
1086 | if (unlikely(!ep)) |
1087 | return -ENOMEM; |
1088 | |
1089 | mutex_init(&ep->mtx); |
1090 | rwlock_init(&ep->lock); |
1091 | init_waitqueue_head(&ep->wq); |
1092 | init_waitqueue_head(&ep->poll_wait); |
1093 | INIT_LIST_HEAD(list: &ep->rdllist); |
1094 | ep->rbr = RB_ROOT_CACHED; |
1095 | ep->ovflist = EP_UNACTIVE_PTR; |
1096 | ep->user = get_current_user(); |
1097 | refcount_set(r: &ep->refcount, n: 1); |
1098 | |
1099 | *pep = ep; |
1100 | |
1101 | return 0; |
1102 | } |
1103 | |
1104 | /* |
1105 | * Search the file inside the eventpoll tree. The RB tree operations |
1106 | * are protected by the "mtx" mutex, and ep_find() must be called with |
1107 | * "mtx" held. |
1108 | */ |
1109 | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) |
1110 | { |
1111 | int kcmp; |
1112 | struct rb_node *rbp; |
1113 | struct epitem *epi, *epir = NULL; |
1114 | struct epoll_filefd ffd; |
1115 | |
1116 | ep_set_ffd(ffd: &ffd, file, fd); |
1117 | for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { |
1118 | epi = rb_entry(rbp, struct epitem, rbn); |
1119 | kcmp = ep_cmp_ffd(p1: &ffd, p2: &epi->ffd); |
1120 | if (kcmp > 0) |
1121 | rbp = rbp->rb_right; |
1122 | else if (kcmp < 0) |
1123 | rbp = rbp->rb_left; |
1124 | else { |
1125 | epir = epi; |
1126 | break; |
1127 | } |
1128 | } |
1129 | |
1130 | return epir; |
1131 | } |
1132 | |
1133 | #ifdef CONFIG_KCMP |
1134 | static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) |
1135 | { |
1136 | struct rb_node *rbp; |
1137 | struct epitem *epi; |
1138 | |
1139 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
1140 | epi = rb_entry(rbp, struct epitem, rbn); |
1141 | if (epi->ffd.fd == tfd) { |
1142 | if (toff == 0) |
1143 | return epi; |
1144 | else |
1145 | toff--; |
1146 | } |
1147 | cond_resched(); |
1148 | } |
1149 | |
1150 | return NULL; |
1151 | } |
1152 | |
1153 | struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, |
1154 | unsigned long toff) |
1155 | { |
1156 | struct file *file_raw; |
1157 | struct eventpoll *ep; |
1158 | struct epitem *epi; |
1159 | |
1160 | if (!is_file_epoll(f: file)) |
1161 | return ERR_PTR(error: -EINVAL); |
1162 | |
1163 | ep = file->private_data; |
1164 | |
1165 | mutex_lock(&ep->mtx); |
1166 | epi = ep_find_tfd(ep, tfd, toff); |
1167 | if (epi) |
1168 | file_raw = epi->ffd.file; |
1169 | else |
1170 | file_raw = ERR_PTR(error: -ENOENT); |
1171 | mutex_unlock(lock: &ep->mtx); |
1172 | |
1173 | return file_raw; |
1174 | } |
1175 | #endif /* CONFIG_KCMP */ |
1176 | |
1177 | /* |
1178 | * Adds a new entry to the tail of the list in a lockless way, i.e. |
1179 | * multiple CPUs are allowed to call this function concurrently. |
1180 | * |
1181 | * Beware: it is necessary to prevent any other modifications of the |
1182 | * existing list until all changes are completed, in other words |
1183 | * concurrent list_add_tail_lockless() calls should be protected |
1184 | * with a read lock, where write lock acts as a barrier which |
1185 | * makes sure all list_add_tail_lockless() calls are fully |
1186 | * completed. |
1187 | * |
1188 | * Also an element can be locklessly added to the list only in one |
1189 | * direction i.e. either to the tail or to the head, otherwise |
1190 | * concurrent access will corrupt the list. |
1191 | * |
1192 | * Return: %false if element has been already added to the list, %true |
1193 | * otherwise. |
1194 | */ |
1195 | static inline bool list_add_tail_lockless(struct list_head *new, |
1196 | struct list_head *head) |
1197 | { |
1198 | struct list_head *prev; |
1199 | |
1200 | /* |
1201 | * This is simple 'new->next = head' operation, but cmpxchg() |
1202 | * is used in order to detect that same element has been just |
1203 | * added to the list from another CPU: the winner observes |
1204 | * new->next == new. |
1205 | */ |
1206 | if (!try_cmpxchg(&new->next, &new, head)) |
1207 | return false; |
1208 | |
1209 | /* |
1210 | * Initially ->next of a new element must be updated with the head |
1211 | * (we are inserting to the tail) and only then pointers are atomically |
1212 | * exchanged. XCHG guarantees memory ordering, thus ->next should be |
1213 | * updated before pointers are actually swapped and pointers are |
1214 | * swapped before prev->next is updated. |
1215 | */ |
1216 | |
1217 | prev = xchg(&head->prev, new); |
1218 | |
1219 | /* |
1220 | * It is safe to modify prev->next and new->prev, because a new element |
1221 | * is added only to the tail and new->next is updated before XCHG. |
1222 | */ |
1223 | |
1224 | prev->next = new; |
1225 | new->prev = prev; |
1226 | |
1227 | return true; |
1228 | } |
1229 | |
1230 | /* |
1231 | * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, |
1232 | * i.e. multiple CPUs are allowed to call this function concurrently. |
1233 | * |
1234 | * Return: %false if epi element has been already chained, %true otherwise. |
1235 | */ |
1236 | static inline bool chain_epi_lockless(struct epitem *epi) |
1237 | { |
1238 | struct eventpoll *ep = epi->ep; |
1239 | |
1240 | /* Fast preliminary check */ |
1241 | if (epi->next != EP_UNACTIVE_PTR) |
1242 | return false; |
1243 | |
1244 | /* Check that the same epi has not been just chained from another CPU */ |
1245 | if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) |
1246 | return false; |
1247 | |
1248 | /* Atomically exchange tail */ |
1249 | epi->next = xchg(&ep->ovflist, epi); |
1250 | |
1251 | return true; |
1252 | } |
1253 | |
1254 | /* |
1255 | * This is the callback that is passed to the wait queue wakeup |
1256 | * mechanism. It is called by the stored file descriptors when they |
1257 | * have events to report. |
1258 | * |
1259 | * This callback takes a read lock in order not to contend with concurrent |
1260 | * events from another file descriptor, thus all modifications to ->rdllist |
1261 | * or ->ovflist are lockless. Read lock is paired with the write lock from |
1262 | * ep_start/done_scan(), which stops all list modifications and guarantees |
1263 | * that lists state is seen correctly. |
1264 | * |
1265 | * Another thing worth to mention is that ep_poll_callback() can be called |
1266 | * concurrently for the same @epi from different CPUs if poll table was inited |
1267 | * with several wait queues entries. Plural wakeup from different CPUs of a |
1268 | * single wait queue is serialized by wq.lock, but the case when multiple wait |
1269 | * queues are used should be detected accordingly. This is detected using |
1270 | * cmpxchg() operation. |
1271 | */ |
1272 | static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
1273 | { |
1274 | int pwake = 0; |
1275 | struct epitem *epi = ep_item_from_wait(p: wait); |
1276 | struct eventpoll *ep = epi->ep; |
1277 | __poll_t pollflags = key_to_poll(key); |
1278 | unsigned long flags; |
1279 | int ewake = 0; |
1280 | |
1281 | read_lock_irqsave(&ep->lock, flags); |
1282 | |
1283 | ep_set_busy_poll_napi_id(epi); |
1284 | |
1285 | /* |
1286 | * If the event mask does not contain any poll(2) event, we consider the |
1287 | * descriptor to be disabled. This condition is likely the effect of the |
1288 | * EPOLLONESHOT bit that disables the descriptor when an event is received, |
1289 | * until the next EPOLL_CTL_MOD will be issued. |
1290 | */ |
1291 | if (!(epi->event.events & ~EP_PRIVATE_BITS)) |
1292 | goto out_unlock; |
1293 | |
1294 | /* |
1295 | * Check the events coming with the callback. At this stage, not |
1296 | * every device reports the events in the "key" parameter of the |
1297 | * callback. We need to be able to handle both cases here, hence the |
1298 | * test for "key" != NULL before the event match test. |
1299 | */ |
1300 | if (pollflags && !(pollflags & epi->event.events)) |
1301 | goto out_unlock; |
1302 | |
1303 | /* |
1304 | * If we are transferring events to userspace, we can hold no locks |
1305 | * (because we're accessing user memory, and because of linux f_op->poll() |
1306 | * semantics). All the events that happen during that period of time are |
1307 | * chained in ep->ovflist and requeued later on. |
1308 | */ |
1309 | if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { |
1310 | if (chain_epi_lockless(epi)) |
1311 | ep_pm_stay_awake_rcu(epi); |
1312 | } else if (!ep_is_linked(epi)) { |
1313 | /* In the usual case, add event to ready list. */ |
1314 | if (list_add_tail_lockless(new: &epi->rdllink, head: &ep->rdllist)) |
1315 | ep_pm_stay_awake_rcu(epi); |
1316 | } |
1317 | |
1318 | /* |
1319 | * Wake up ( if active ) both the eventpoll wait list and the ->poll() |
1320 | * wait list. |
1321 | */ |
1322 | if (waitqueue_active(wq_head: &ep->wq)) { |
1323 | if ((epi->event.events & EPOLLEXCLUSIVE) && |
1324 | !(pollflags & POLLFREE)) { |
1325 | switch (pollflags & EPOLLINOUT_BITS) { |
1326 | case EPOLLIN: |
1327 | if (epi->event.events & EPOLLIN) |
1328 | ewake = 1; |
1329 | break; |
1330 | case EPOLLOUT: |
1331 | if (epi->event.events & EPOLLOUT) |
1332 | ewake = 1; |
1333 | break; |
1334 | case 0: |
1335 | ewake = 1; |
1336 | break; |
1337 | } |
1338 | } |
1339 | wake_up(&ep->wq); |
1340 | } |
1341 | if (waitqueue_active(wq_head: &ep->poll_wait)) |
1342 | pwake++; |
1343 | |
1344 | out_unlock: |
1345 | read_unlock_irqrestore(&ep->lock, flags); |
1346 | |
1347 | /* We have to call this outside the lock */ |
1348 | if (pwake) |
1349 | ep_poll_safewake(ep, epi, pollflags: pollflags & EPOLL_URING_WAKE); |
1350 | |
1351 | if (!(epi->event.events & EPOLLEXCLUSIVE)) |
1352 | ewake = 1; |
1353 | |
1354 | if (pollflags & POLLFREE) { |
1355 | /* |
1356 | * If we race with ep_remove_wait_queue() it can miss |
1357 | * ->whead = NULL and do another remove_wait_queue() after |
1358 | * us, so we can't use __remove_wait_queue(). |
1359 | */ |
1360 | list_del_init(entry: &wait->entry); |
1361 | /* |
1362 | * ->whead != NULL protects us from the race with |
1363 | * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() |
1364 | * takes whead->lock held by the caller. Once we nullify it, |
1365 | * nothing protects ep/epi or even wait. |
1366 | */ |
1367 | smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); |
1368 | } |
1369 | |
1370 | return ewake; |
1371 | } |
1372 | |
1373 | /* |
1374 | * This is the callback that is used to add our wait queue to the |
1375 | * target file wakeup lists. |
1376 | */ |
1377 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, |
1378 | poll_table *pt) |
1379 | { |
1380 | struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); |
1381 | struct epitem *epi = epq->epi; |
1382 | struct eppoll_entry *pwq; |
1383 | |
1384 | if (unlikely(!epi)) // an earlier allocation has failed |
1385 | return; |
1386 | |
1387 | pwq = kmem_cache_alloc(cachep: pwq_cache, GFP_KERNEL); |
1388 | if (unlikely(!pwq)) { |
1389 | epq->epi = NULL; |
1390 | return; |
1391 | } |
1392 | |
1393 | init_waitqueue_func_entry(wq_entry: &pwq->wait, func: ep_poll_callback); |
1394 | pwq->whead = whead; |
1395 | pwq->base = epi; |
1396 | if (epi->event.events & EPOLLEXCLUSIVE) |
1397 | add_wait_queue_exclusive(wq_head: whead, wq_entry: &pwq->wait); |
1398 | else |
1399 | add_wait_queue(wq_head: whead, wq_entry: &pwq->wait); |
1400 | pwq->next = epi->pwqlist; |
1401 | epi->pwqlist = pwq; |
1402 | } |
1403 | |
1404 | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) |
1405 | { |
1406 | int kcmp; |
1407 | struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; |
1408 | struct epitem *epic; |
1409 | bool leftmost = true; |
1410 | |
1411 | while (*p) { |
1412 | parent = *p; |
1413 | epic = rb_entry(parent, struct epitem, rbn); |
1414 | kcmp = ep_cmp_ffd(p1: &epi->ffd, p2: &epic->ffd); |
1415 | if (kcmp > 0) { |
1416 | p = &parent->rb_right; |
1417 | leftmost = false; |
1418 | } else |
1419 | p = &parent->rb_left; |
1420 | } |
1421 | rb_link_node(node: &epi->rbn, parent, rb_link: p); |
1422 | rb_insert_color_cached(node: &epi->rbn, root: &ep->rbr, leftmost); |
1423 | } |
1424 | |
1425 | |
1426 | |
1427 | #define PATH_ARR_SIZE 5 |
1428 | /* |
1429 | * These are the number paths of length 1 to 5, that we are allowing to emanate |
1430 | * from a single file of interest. For example, we allow 1000 paths of length |
1431 | * 1, to emanate from each file of interest. This essentially represents the |
1432 | * potential wakeup paths, which need to be limited in order to avoid massive |
1433 | * uncontrolled wakeup storms. The common use case should be a single ep which |
1434 | * is connected to n file sources. In this case each file source has 1 path |
1435 | * of length 1. Thus, the numbers below should be more than sufficient. These |
1436 | * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify |
1437 | * and delete can't add additional paths. Protected by the epnested_mutex. |
1438 | */ |
1439 | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; |
1440 | static int path_count[PATH_ARR_SIZE]; |
1441 | |
1442 | static int path_count_inc(int nests) |
1443 | { |
1444 | /* Allow an arbitrary number of depth 1 paths */ |
1445 | if (nests == 0) |
1446 | return 0; |
1447 | |
1448 | if (++path_count[nests] > path_limits[nests]) |
1449 | return -1; |
1450 | return 0; |
1451 | } |
1452 | |
1453 | static void path_count_init(void) |
1454 | { |
1455 | int i; |
1456 | |
1457 | for (i = 0; i < PATH_ARR_SIZE; i++) |
1458 | path_count[i] = 0; |
1459 | } |
1460 | |
1461 | static int reverse_path_check_proc(struct hlist_head *refs, int depth) |
1462 | { |
1463 | int error = 0; |
1464 | struct epitem *epi; |
1465 | |
1466 | if (depth > EP_MAX_NESTS) /* too deep nesting */ |
1467 | return -1; |
1468 | |
1469 | /* CTL_DEL can remove links here, but that can't increase our count */ |
1470 | hlist_for_each_entry_rcu(epi, refs, fllink) { |
1471 | struct hlist_head *refs = &epi->ep->refs; |
1472 | if (hlist_empty(h: refs)) |
1473 | error = path_count_inc(nests: depth); |
1474 | else |
1475 | error = reverse_path_check_proc(refs, depth: depth + 1); |
1476 | if (error != 0) |
1477 | break; |
1478 | } |
1479 | return error; |
1480 | } |
1481 | |
1482 | /** |
1483 | * reverse_path_check - The tfile_check_list is list of epitem_head, which have |
1484 | * links that are proposed to be newly added. We need to |
1485 | * make sure that those added links don't add too many |
1486 | * paths such that we will spend all our time waking up |
1487 | * eventpoll objects. |
1488 | * |
1489 | * Return: %zero if the proposed links don't create too many paths, |
1490 | * %-1 otherwise. |
1491 | */ |
1492 | static int reverse_path_check(void) |
1493 | { |
1494 | struct epitems_head *p; |
1495 | |
1496 | for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { |
1497 | int error; |
1498 | path_count_init(); |
1499 | rcu_read_lock(); |
1500 | error = reverse_path_check_proc(refs: &p->epitems, depth: 0); |
1501 | rcu_read_unlock(); |
1502 | if (error) |
1503 | return error; |
1504 | } |
1505 | return 0; |
1506 | } |
1507 | |
1508 | static int ep_create_wakeup_source(struct epitem *epi) |
1509 | { |
1510 | struct name_snapshot n; |
1511 | struct wakeup_source *ws; |
1512 | |
1513 | if (!epi->ep->ws) { |
1514 | epi->ep->ws = wakeup_source_register(NULL, name: "eventpoll" ); |
1515 | if (!epi->ep->ws) |
1516 | return -ENOMEM; |
1517 | } |
1518 | |
1519 | take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); |
1520 | ws = wakeup_source_register(NULL, name: n.name.name); |
1521 | release_dentry_name_snapshot(&n); |
1522 | |
1523 | if (!ws) |
1524 | return -ENOMEM; |
1525 | rcu_assign_pointer(epi->ws, ws); |
1526 | |
1527 | return 0; |
1528 | } |
1529 | |
1530 | /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ |
1531 | static noinline void ep_destroy_wakeup_source(struct epitem *epi) |
1532 | { |
1533 | struct wakeup_source *ws = ep_wakeup_source(epi); |
1534 | |
1535 | RCU_INIT_POINTER(epi->ws, NULL); |
1536 | |
1537 | /* |
1538 | * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is |
1539 | * used internally by wakeup_source_remove, too (called by |
1540 | * wakeup_source_unregister), so we cannot use call_rcu |
1541 | */ |
1542 | synchronize_rcu(); |
1543 | wakeup_source_unregister(ws); |
1544 | } |
1545 | |
1546 | static int attach_epitem(struct file *file, struct epitem *epi) |
1547 | { |
1548 | struct epitems_head *to_free = NULL; |
1549 | struct hlist_head *head = NULL; |
1550 | struct eventpoll *ep = NULL; |
1551 | |
1552 | if (is_file_epoll(f: file)) |
1553 | ep = file->private_data; |
1554 | |
1555 | if (ep) { |
1556 | head = &ep->refs; |
1557 | } else if (!READ_ONCE(file->f_ep)) { |
1558 | allocate: |
1559 | to_free = kmem_cache_zalloc(k: ephead_cache, GFP_KERNEL); |
1560 | if (!to_free) |
1561 | return -ENOMEM; |
1562 | head = &to_free->epitems; |
1563 | } |
1564 | spin_lock(lock: &file->f_lock); |
1565 | if (!file->f_ep) { |
1566 | if (unlikely(!head)) { |
1567 | spin_unlock(lock: &file->f_lock); |
1568 | goto allocate; |
1569 | } |
1570 | file->f_ep = head; |
1571 | to_free = NULL; |
1572 | } |
1573 | hlist_add_head_rcu(n: &epi->fllink, h: file->f_ep); |
1574 | spin_unlock(lock: &file->f_lock); |
1575 | free_ephead(head: to_free); |
1576 | return 0; |
1577 | } |
1578 | |
1579 | /* |
1580 | * Must be called with "mtx" held. |
1581 | */ |
1582 | static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, |
1583 | struct file *tfile, int fd, int full_check) |
1584 | { |
1585 | int error, pwake = 0; |
1586 | __poll_t revents; |
1587 | struct epitem *epi; |
1588 | struct ep_pqueue epq; |
1589 | struct eventpoll *tep = NULL; |
1590 | |
1591 | if (is_file_epoll(f: tfile)) |
1592 | tep = tfile->private_data; |
1593 | |
1594 | lockdep_assert_irqs_enabled(); |
1595 | |
1596 | if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, |
1597 | max_user_watches) >= 0)) |
1598 | return -ENOSPC; |
1599 | percpu_counter_inc(fbc: &ep->user->epoll_watches); |
1600 | |
1601 | if (!(epi = kmem_cache_zalloc(k: epi_cache, GFP_KERNEL))) { |
1602 | percpu_counter_dec(fbc: &ep->user->epoll_watches); |
1603 | return -ENOMEM; |
1604 | } |
1605 | |
1606 | /* Item initialization follow here ... */ |
1607 | INIT_LIST_HEAD(list: &epi->rdllink); |
1608 | epi->ep = ep; |
1609 | ep_set_ffd(ffd: &epi->ffd, file: tfile, fd); |
1610 | epi->event = *event; |
1611 | epi->next = EP_UNACTIVE_PTR; |
1612 | |
1613 | if (tep) |
1614 | mutex_lock_nested(lock: &tep->mtx, subclass: 1); |
1615 | /* Add the current item to the list of active epoll hook for this file */ |
1616 | if (unlikely(attach_epitem(tfile, epi) < 0)) { |
1617 | if (tep) |
1618 | mutex_unlock(lock: &tep->mtx); |
1619 | kmem_cache_free(s: epi_cache, objp: epi); |
1620 | percpu_counter_dec(fbc: &ep->user->epoll_watches); |
1621 | return -ENOMEM; |
1622 | } |
1623 | |
1624 | if (full_check && !tep) |
1625 | list_file(file: tfile); |
1626 | |
1627 | /* |
1628 | * Add the current item to the RB tree. All RB tree operations are |
1629 | * protected by "mtx", and ep_insert() is called with "mtx" held. |
1630 | */ |
1631 | ep_rbtree_insert(ep, epi); |
1632 | if (tep) |
1633 | mutex_unlock(lock: &tep->mtx); |
1634 | |
1635 | /* |
1636 | * ep_remove_safe() calls in the later error paths can't lead to |
1637 | * ep_free() as the ep file itself still holds an ep reference. |
1638 | */ |
1639 | ep_get(ep); |
1640 | |
1641 | /* now check if we've created too many backpaths */ |
1642 | if (unlikely(full_check && reverse_path_check())) { |
1643 | ep_remove_safe(ep, epi); |
1644 | return -EINVAL; |
1645 | } |
1646 | |
1647 | if (epi->event.events & EPOLLWAKEUP) { |
1648 | error = ep_create_wakeup_source(epi); |
1649 | if (error) { |
1650 | ep_remove_safe(ep, epi); |
1651 | return error; |
1652 | } |
1653 | } |
1654 | |
1655 | /* Initialize the poll table using the queue callback */ |
1656 | epq.epi = epi; |
1657 | init_poll_funcptr(pt: &epq.pt, qproc: ep_ptable_queue_proc); |
1658 | |
1659 | /* |
1660 | * Attach the item to the poll hooks and get current event bits. |
1661 | * We can safely use the file* here because its usage count has |
1662 | * been increased by the caller of this function. Note that after |
1663 | * this operation completes, the poll callback can start hitting |
1664 | * the new item. |
1665 | */ |
1666 | revents = ep_item_poll(epi, pt: &epq.pt, depth: 1); |
1667 | |
1668 | /* |
1669 | * We have to check if something went wrong during the poll wait queue |
1670 | * install process. Namely an allocation for a wait queue failed due |
1671 | * high memory pressure. |
1672 | */ |
1673 | if (unlikely(!epq.epi)) { |
1674 | ep_remove_safe(ep, epi); |
1675 | return -ENOMEM; |
1676 | } |
1677 | |
1678 | /* We have to drop the new item inside our item list to keep track of it */ |
1679 | write_lock_irq(&ep->lock); |
1680 | |
1681 | /* record NAPI ID of new item if present */ |
1682 | ep_set_busy_poll_napi_id(epi); |
1683 | |
1684 | /* If the file is already "ready" we drop it inside the ready list */ |
1685 | if (revents && !ep_is_linked(epi)) { |
1686 | list_add_tail(new: &epi->rdllink, head: &ep->rdllist); |
1687 | ep_pm_stay_awake(epi); |
1688 | |
1689 | /* Notify waiting tasks that events are available */ |
1690 | if (waitqueue_active(wq_head: &ep->wq)) |
1691 | wake_up(&ep->wq); |
1692 | if (waitqueue_active(wq_head: &ep->poll_wait)) |
1693 | pwake++; |
1694 | } |
1695 | |
1696 | write_unlock_irq(&ep->lock); |
1697 | |
1698 | /* We have to call this outside the lock */ |
1699 | if (pwake) |
1700 | ep_poll_safewake(ep, NULL, pollflags: 0); |
1701 | |
1702 | return 0; |
1703 | } |
1704 | |
1705 | /* |
1706 | * Modify the interest event mask by dropping an event if the new mask |
1707 | * has a match in the current file status. Must be called with "mtx" held. |
1708 | */ |
1709 | static int ep_modify(struct eventpoll *ep, struct epitem *epi, |
1710 | const struct epoll_event *event) |
1711 | { |
1712 | int pwake = 0; |
1713 | poll_table pt; |
1714 | |
1715 | lockdep_assert_irqs_enabled(); |
1716 | |
1717 | init_poll_funcptr(pt: &pt, NULL); |
1718 | |
1719 | /* |
1720 | * Set the new event interest mask before calling f_op->poll(); |
1721 | * otherwise we might miss an event that happens between the |
1722 | * f_op->poll() call and the new event set registering. |
1723 | */ |
1724 | epi->event.events = event->events; /* need barrier below */ |
1725 | epi->event.data = event->data; /* protected by mtx */ |
1726 | if (epi->event.events & EPOLLWAKEUP) { |
1727 | if (!ep_has_wakeup_source(epi)) |
1728 | ep_create_wakeup_source(epi); |
1729 | } else if (ep_has_wakeup_source(epi)) { |
1730 | ep_destroy_wakeup_source(epi); |
1731 | } |
1732 | |
1733 | /* |
1734 | * The following barrier has two effects: |
1735 | * |
1736 | * 1) Flush epi changes above to other CPUs. This ensures |
1737 | * we do not miss events from ep_poll_callback if an |
1738 | * event occurs immediately after we call f_op->poll(). |
1739 | * We need this because we did not take ep->lock while |
1740 | * changing epi above (but ep_poll_callback does take |
1741 | * ep->lock). |
1742 | * |
1743 | * 2) We also need to ensure we do not miss _past_ events |
1744 | * when calling f_op->poll(). This barrier also |
1745 | * pairs with the barrier in wq_has_sleeper (see |
1746 | * comments for wq_has_sleeper). |
1747 | * |
1748 | * This barrier will now guarantee ep_poll_callback or f_op->poll |
1749 | * (or both) will notice the readiness of an item. |
1750 | */ |
1751 | smp_mb(); |
1752 | |
1753 | /* |
1754 | * Get current event bits. We can safely use the file* here because |
1755 | * its usage count has been increased by the caller of this function. |
1756 | * If the item is "hot" and it is not registered inside the ready |
1757 | * list, push it inside. |
1758 | */ |
1759 | if (ep_item_poll(epi, pt: &pt, depth: 1)) { |
1760 | write_lock_irq(&ep->lock); |
1761 | if (!ep_is_linked(epi)) { |
1762 | list_add_tail(new: &epi->rdllink, head: &ep->rdllist); |
1763 | ep_pm_stay_awake(epi); |
1764 | |
1765 | /* Notify waiting tasks that events are available */ |
1766 | if (waitqueue_active(wq_head: &ep->wq)) |
1767 | wake_up(&ep->wq); |
1768 | if (waitqueue_active(wq_head: &ep->poll_wait)) |
1769 | pwake++; |
1770 | } |
1771 | write_unlock_irq(&ep->lock); |
1772 | } |
1773 | |
1774 | /* We have to call this outside the lock */ |
1775 | if (pwake) |
1776 | ep_poll_safewake(ep, NULL, pollflags: 0); |
1777 | |
1778 | return 0; |
1779 | } |
1780 | |
1781 | static int ep_send_events(struct eventpoll *ep, |
1782 | struct epoll_event __user *events, int maxevents) |
1783 | { |
1784 | struct epitem *epi, *tmp; |
1785 | LIST_HEAD(txlist); |
1786 | poll_table pt; |
1787 | int res = 0; |
1788 | |
1789 | /* |
1790 | * Always short-circuit for fatal signals to allow threads to make a |
1791 | * timely exit without the chance of finding more events available and |
1792 | * fetching repeatedly. |
1793 | */ |
1794 | if (fatal_signal_pending(current)) |
1795 | return -EINTR; |
1796 | |
1797 | init_poll_funcptr(pt: &pt, NULL); |
1798 | |
1799 | mutex_lock(&ep->mtx); |
1800 | ep_start_scan(ep, txlist: &txlist); |
1801 | |
1802 | /* |
1803 | * We can loop without lock because we are passed a task private list. |
1804 | * Items cannot vanish during the loop we are holding ep->mtx. |
1805 | */ |
1806 | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { |
1807 | struct wakeup_source *ws; |
1808 | __poll_t revents; |
1809 | |
1810 | if (res >= maxevents) |
1811 | break; |
1812 | |
1813 | /* |
1814 | * Activate ep->ws before deactivating epi->ws to prevent |
1815 | * triggering auto-suspend here (in case we reactive epi->ws |
1816 | * below). |
1817 | * |
1818 | * This could be rearranged to delay the deactivation of epi->ws |
1819 | * instead, but then epi->ws would temporarily be out of sync |
1820 | * with ep_is_linked(). |
1821 | */ |
1822 | ws = ep_wakeup_source(epi); |
1823 | if (ws) { |
1824 | if (ws->active) |
1825 | __pm_stay_awake(ws: ep->ws); |
1826 | __pm_relax(ws); |
1827 | } |
1828 | |
1829 | list_del_init(entry: &epi->rdllink); |
1830 | |
1831 | /* |
1832 | * If the event mask intersect the caller-requested one, |
1833 | * deliver the event to userspace. Again, we are holding ep->mtx, |
1834 | * so no operations coming from userspace can change the item. |
1835 | */ |
1836 | revents = ep_item_poll(epi, pt: &pt, depth: 1); |
1837 | if (!revents) |
1838 | continue; |
1839 | |
1840 | events = epoll_put_uevent(revents, data: epi->event.data, uevent: events); |
1841 | if (!events) { |
1842 | list_add(new: &epi->rdllink, head: &txlist); |
1843 | ep_pm_stay_awake(epi); |
1844 | if (!res) |
1845 | res = -EFAULT; |
1846 | break; |
1847 | } |
1848 | res++; |
1849 | if (epi->event.events & EPOLLONESHOT) |
1850 | epi->event.events &= EP_PRIVATE_BITS; |
1851 | else if (!(epi->event.events & EPOLLET)) { |
1852 | /* |
1853 | * If this file has been added with Level |
1854 | * Trigger mode, we need to insert back inside |
1855 | * the ready list, so that the next call to |
1856 | * epoll_wait() will check again the events |
1857 | * availability. At this point, no one can insert |
1858 | * into ep->rdllist besides us. The epoll_ctl() |
1859 | * callers are locked out by |
1860 | * ep_send_events() holding "mtx" and the |
1861 | * poll callback will queue them in ep->ovflist. |
1862 | */ |
1863 | list_add_tail(new: &epi->rdllink, head: &ep->rdllist); |
1864 | ep_pm_stay_awake(epi); |
1865 | } |
1866 | } |
1867 | ep_done_scan(ep, txlist: &txlist); |
1868 | mutex_unlock(lock: &ep->mtx); |
1869 | |
1870 | return res; |
1871 | } |
1872 | |
1873 | static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) |
1874 | { |
1875 | struct timespec64 now; |
1876 | |
1877 | if (ms < 0) |
1878 | return NULL; |
1879 | |
1880 | if (!ms) { |
1881 | to->tv_sec = 0; |
1882 | to->tv_nsec = 0; |
1883 | return to; |
1884 | } |
1885 | |
1886 | to->tv_sec = ms / MSEC_PER_SEC; |
1887 | to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); |
1888 | |
1889 | ktime_get_ts64(ts: &now); |
1890 | *to = timespec64_add_safe(lhs: now, rhs: *to); |
1891 | return to; |
1892 | } |
1893 | |
1894 | /* |
1895 | * autoremove_wake_function, but remove even on failure to wake up, because we |
1896 | * know that default_wake_function/ttwu will only fail if the thread is already |
1897 | * woken, and in that case the ep_poll loop will remove the entry anyways, not |
1898 | * try to reuse it. |
1899 | */ |
1900 | static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, |
1901 | unsigned int mode, int sync, void *key) |
1902 | { |
1903 | int ret = default_wake_function(wq_entry, mode, flags: sync, key); |
1904 | |
1905 | /* |
1906 | * Pairs with list_empty_careful in ep_poll, and ensures future loop |
1907 | * iterations see the cause of this wakeup. |
1908 | */ |
1909 | list_del_init_careful(entry: &wq_entry->entry); |
1910 | return ret; |
1911 | } |
1912 | |
1913 | /** |
1914 | * ep_poll - Retrieves ready events, and delivers them to the caller-supplied |
1915 | * event buffer. |
1916 | * |
1917 | * @ep: Pointer to the eventpoll context. |
1918 | * @events: Pointer to the userspace buffer where the ready events should be |
1919 | * stored. |
1920 | * @maxevents: Size (in terms of number of events) of the caller event buffer. |
1921 | * @timeout: Maximum timeout for the ready events fetch operation, in |
1922 | * timespec. If the timeout is zero, the function will not block, |
1923 | * while if the @timeout ptr is NULL, the function will block |
1924 | * until at least one event has been retrieved (or an error |
1925 | * occurred). |
1926 | * |
1927 | * Return: the number of ready events which have been fetched, or an |
1928 | * error code, in case of error. |
1929 | */ |
1930 | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, |
1931 | int maxevents, struct timespec64 *timeout) |
1932 | { |
1933 | int res, eavail, timed_out = 0; |
1934 | u64 slack = 0; |
1935 | wait_queue_entry_t wait; |
1936 | ktime_t expires, *to = NULL; |
1937 | |
1938 | lockdep_assert_irqs_enabled(); |
1939 | |
1940 | if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { |
1941 | slack = select_estimate_accuracy(tv: timeout); |
1942 | to = &expires; |
1943 | *to = timespec64_to_ktime(ts: *timeout); |
1944 | } else if (timeout) { |
1945 | /* |
1946 | * Avoid the unnecessary trip to the wait queue loop, if the |
1947 | * caller specified a non blocking operation. |
1948 | */ |
1949 | timed_out = 1; |
1950 | } |
1951 | |
1952 | /* |
1953 | * This call is racy: We may or may not see events that are being added |
1954 | * to the ready list under the lock (e.g., in IRQ callbacks). For cases |
1955 | * with a non-zero timeout, this thread will check the ready list under |
1956 | * lock and will add to the wait queue. For cases with a zero |
1957 | * timeout, the user by definition should not care and will have to |
1958 | * recheck again. |
1959 | */ |
1960 | eavail = ep_events_available(ep); |
1961 | |
1962 | while (1) { |
1963 | if (eavail) { |
1964 | /* |
1965 | * Try to transfer events to user space. In case we get |
1966 | * 0 events and there's still timeout left over, we go |
1967 | * trying again in search of more luck. |
1968 | */ |
1969 | res = ep_send_events(ep, events, maxevents); |
1970 | if (res) |
1971 | return res; |
1972 | } |
1973 | |
1974 | if (timed_out) |
1975 | return 0; |
1976 | |
1977 | eavail = ep_busy_loop(ep, nonblock: timed_out); |
1978 | if (eavail) |
1979 | continue; |
1980 | |
1981 | if (signal_pending(current)) |
1982 | return -EINTR; |
1983 | |
1984 | /* |
1985 | * Internally init_wait() uses autoremove_wake_function(), |
1986 | * thus wait entry is removed from the wait queue on each |
1987 | * wakeup. Why it is important? In case of several waiters |
1988 | * each new wakeup will hit the next waiter, giving it the |
1989 | * chance to harvest new event. Otherwise wakeup can be |
1990 | * lost. This is also good performance-wise, because on |
1991 | * normal wakeup path no need to call __remove_wait_queue() |
1992 | * explicitly, thus ep->lock is not taken, which halts the |
1993 | * event delivery. |
1994 | * |
1995 | * In fact, we now use an even more aggressive function that |
1996 | * unconditionally removes, because we don't reuse the wait |
1997 | * entry between loop iterations. This lets us also avoid the |
1998 | * performance issue if a process is killed, causing all of its |
1999 | * threads to wake up without being removed normally. |
2000 | */ |
2001 | init_wait(&wait); |
2002 | wait.func = ep_autoremove_wake_function; |
2003 | |
2004 | write_lock_irq(&ep->lock); |
2005 | /* |
2006 | * Barrierless variant, waitqueue_active() is called under |
2007 | * the same lock on wakeup ep_poll_callback() side, so it |
2008 | * is safe to avoid an explicit barrier. |
2009 | */ |
2010 | __set_current_state(TASK_INTERRUPTIBLE); |
2011 | |
2012 | /* |
2013 | * Do the final check under the lock. ep_start/done_scan() |
2014 | * plays with two lists (->rdllist and ->ovflist) and there |
2015 | * is always a race when both lists are empty for short |
2016 | * period of time although events are pending, so lock is |
2017 | * important. |
2018 | */ |
2019 | eavail = ep_events_available(ep); |
2020 | if (!eavail) |
2021 | __add_wait_queue_exclusive(wq_head: &ep->wq, wq_entry: &wait); |
2022 | |
2023 | write_unlock_irq(&ep->lock); |
2024 | |
2025 | if (!eavail) |
2026 | timed_out = !schedule_hrtimeout_range(expires: to, delta: slack, |
2027 | mode: HRTIMER_MODE_ABS); |
2028 | __set_current_state(TASK_RUNNING); |
2029 | |
2030 | /* |
2031 | * We were woken up, thus go and try to harvest some events. |
2032 | * If timed out and still on the wait queue, recheck eavail |
2033 | * carefully under lock, below. |
2034 | */ |
2035 | eavail = 1; |
2036 | |
2037 | if (!list_empty_careful(head: &wait.entry)) { |
2038 | write_lock_irq(&ep->lock); |
2039 | /* |
2040 | * If the thread timed out and is not on the wait queue, |
2041 | * it means that the thread was woken up after its |
2042 | * timeout expired before it could reacquire the lock. |
2043 | * Thus, when wait.entry is empty, it needs to harvest |
2044 | * events. |
2045 | */ |
2046 | if (timed_out) |
2047 | eavail = list_empty(head: &wait.entry); |
2048 | __remove_wait_queue(wq_head: &ep->wq, wq_entry: &wait); |
2049 | write_unlock_irq(&ep->lock); |
2050 | } |
2051 | } |
2052 | } |
2053 | |
2054 | /** |
2055 | * ep_loop_check_proc - verify that adding an epoll file inside another |
2056 | * epoll structure does not violate the constraints, in |
2057 | * terms of closed loops, or too deep chains (which can |
2058 | * result in excessive stack usage). |
2059 | * |
2060 | * @ep: the &struct eventpoll to be currently checked. |
2061 | * @depth: Current depth of the path being checked. |
2062 | * |
2063 | * Return: %zero if adding the epoll @file inside current epoll |
2064 | * structure @ep does not violate the constraints, or %-1 otherwise. |
2065 | */ |
2066 | static int ep_loop_check_proc(struct eventpoll *ep, int depth) |
2067 | { |
2068 | int error = 0; |
2069 | struct rb_node *rbp; |
2070 | struct epitem *epi; |
2071 | |
2072 | mutex_lock_nested(lock: &ep->mtx, subclass: depth + 1); |
2073 | ep->gen = loop_check_gen; |
2074 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
2075 | epi = rb_entry(rbp, struct epitem, rbn); |
2076 | if (unlikely(is_file_epoll(epi->ffd.file))) { |
2077 | struct eventpoll *ep_tovisit; |
2078 | ep_tovisit = epi->ffd.file->private_data; |
2079 | if (ep_tovisit->gen == loop_check_gen) |
2080 | continue; |
2081 | if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) |
2082 | error = -1; |
2083 | else |
2084 | error = ep_loop_check_proc(ep: ep_tovisit, depth: depth + 1); |
2085 | if (error != 0) |
2086 | break; |
2087 | } else { |
2088 | /* |
2089 | * If we've reached a file that is not associated with |
2090 | * an ep, then we need to check if the newly added |
2091 | * links are going to add too many wakeup paths. We do |
2092 | * this by adding it to the tfile_check_list, if it's |
2093 | * not already there, and calling reverse_path_check() |
2094 | * during ep_insert(). |
2095 | */ |
2096 | list_file(file: epi->ffd.file); |
2097 | } |
2098 | } |
2099 | mutex_unlock(lock: &ep->mtx); |
2100 | |
2101 | return error; |
2102 | } |
2103 | |
2104 | /** |
2105 | * ep_loop_check - Performs a check to verify that adding an epoll file (@to) |
2106 | * into another epoll file (represented by @ep) does not create |
2107 | * closed loops or too deep chains. |
2108 | * |
2109 | * @ep: Pointer to the epoll we are inserting into. |
2110 | * @to: Pointer to the epoll to be inserted. |
2111 | * |
2112 | * Return: %zero if adding the epoll @to inside the epoll @from |
2113 | * does not violate the constraints, or %-1 otherwise. |
2114 | */ |
2115 | static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) |
2116 | { |
2117 | inserting_into = ep; |
2118 | return ep_loop_check_proc(ep: to, depth: 0); |
2119 | } |
2120 | |
2121 | static void clear_tfile_check_list(void) |
2122 | { |
2123 | rcu_read_lock(); |
2124 | while (tfile_check_list != EP_UNACTIVE_PTR) { |
2125 | struct epitems_head *head = tfile_check_list; |
2126 | tfile_check_list = head->next; |
2127 | unlist_file(head); |
2128 | } |
2129 | rcu_read_unlock(); |
2130 | } |
2131 | |
2132 | /* |
2133 | * Open an eventpoll file descriptor. |
2134 | */ |
2135 | static int do_epoll_create(int flags) |
2136 | { |
2137 | int error, fd; |
2138 | struct eventpoll *ep = NULL; |
2139 | struct file *file; |
2140 | |
2141 | /* Check the EPOLL_* constant for consistency. */ |
2142 | BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); |
2143 | |
2144 | if (flags & ~EPOLL_CLOEXEC) |
2145 | return -EINVAL; |
2146 | /* |
2147 | * Create the internal data structure ("struct eventpoll"). |
2148 | */ |
2149 | error = ep_alloc(pep: &ep); |
2150 | if (error < 0) |
2151 | return error; |
2152 | /* |
2153 | * Creates all the items needed to setup an eventpoll file. That is, |
2154 | * a file structure and a free file descriptor. |
2155 | */ |
2156 | fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); |
2157 | if (fd < 0) { |
2158 | error = fd; |
2159 | goto out_free_ep; |
2160 | } |
2161 | file = anon_inode_getfile(name: "[eventpoll]" , fops: &eventpoll_fops, priv: ep, |
2162 | O_RDWR | (flags & O_CLOEXEC)); |
2163 | if (IS_ERR(ptr: file)) { |
2164 | error = PTR_ERR(ptr: file); |
2165 | goto out_free_fd; |
2166 | } |
2167 | #ifdef CONFIG_NET_RX_BUSY_POLL |
2168 | ep->busy_poll_usecs = 0; |
2169 | ep->busy_poll_budget = 0; |
2170 | ep->prefer_busy_poll = false; |
2171 | #endif |
2172 | ep->file = file; |
2173 | fd_install(fd, file); |
2174 | return fd; |
2175 | |
2176 | out_free_fd: |
2177 | put_unused_fd(fd); |
2178 | out_free_ep: |
2179 | ep_clear_and_put(ep); |
2180 | return error; |
2181 | } |
2182 | |
2183 | SYSCALL_DEFINE1(epoll_create1, int, flags) |
2184 | { |
2185 | return do_epoll_create(flags); |
2186 | } |
2187 | |
2188 | SYSCALL_DEFINE1(epoll_create, int, size) |
2189 | { |
2190 | if (size <= 0) |
2191 | return -EINVAL; |
2192 | |
2193 | return do_epoll_create(flags: 0); |
2194 | } |
2195 | |
2196 | #ifdef CONFIG_PM_SLEEP |
2197 | static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) |
2198 | { |
2199 | if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) |
2200 | epev->events &= ~EPOLLWAKEUP; |
2201 | } |
2202 | #else |
2203 | static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) |
2204 | { |
2205 | epev->events &= ~EPOLLWAKEUP; |
2206 | } |
2207 | #endif |
2208 | |
2209 | static inline int epoll_mutex_lock(struct mutex *mutex, int depth, |
2210 | bool nonblock) |
2211 | { |
2212 | if (!nonblock) { |
2213 | mutex_lock_nested(lock: mutex, subclass: depth); |
2214 | return 0; |
2215 | } |
2216 | if (mutex_trylock(lock: mutex)) |
2217 | return 0; |
2218 | return -EAGAIN; |
2219 | } |
2220 | |
2221 | int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, |
2222 | bool nonblock) |
2223 | { |
2224 | int error; |
2225 | int full_check = 0; |
2226 | struct fd f, tf; |
2227 | struct eventpoll *ep; |
2228 | struct epitem *epi; |
2229 | struct eventpoll *tep = NULL; |
2230 | |
2231 | error = -EBADF; |
2232 | f = fdget(fd: epfd); |
2233 | if (!f.file) |
2234 | goto error_return; |
2235 | |
2236 | /* Get the "struct file *" for the target file */ |
2237 | tf = fdget(fd); |
2238 | if (!tf.file) |
2239 | goto error_fput; |
2240 | |
2241 | /* The target file descriptor must support poll */ |
2242 | error = -EPERM; |
2243 | if (!file_can_poll(file: tf.file)) |
2244 | goto error_tgt_fput; |
2245 | |
2246 | /* Check if EPOLLWAKEUP is allowed */ |
2247 | if (ep_op_has_event(op)) |
2248 | ep_take_care_of_epollwakeup(epev: epds); |
2249 | |
2250 | /* |
2251 | * We have to check that the file structure underneath the file descriptor |
2252 | * the user passed to us _is_ an eventpoll file. And also we do not permit |
2253 | * adding an epoll file descriptor inside itself. |
2254 | */ |
2255 | error = -EINVAL; |
2256 | if (f.file == tf.file || !is_file_epoll(f: f.file)) |
2257 | goto error_tgt_fput; |
2258 | |
2259 | /* |
2260 | * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, |
2261 | * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. |
2262 | * Also, we do not currently supported nested exclusive wakeups. |
2263 | */ |
2264 | if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { |
2265 | if (op == EPOLL_CTL_MOD) |
2266 | goto error_tgt_fput; |
2267 | if (op == EPOLL_CTL_ADD && (is_file_epoll(f: tf.file) || |
2268 | (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) |
2269 | goto error_tgt_fput; |
2270 | } |
2271 | |
2272 | /* |
2273 | * At this point it is safe to assume that the "private_data" contains |
2274 | * our own data structure. |
2275 | */ |
2276 | ep = f.file->private_data; |
2277 | |
2278 | /* |
2279 | * When we insert an epoll file descriptor inside another epoll file |
2280 | * descriptor, there is the chance of creating closed loops, which are |
2281 | * better be handled here, than in more critical paths. While we are |
2282 | * checking for loops we also determine the list of files reachable |
2283 | * and hang them on the tfile_check_list, so we can check that we |
2284 | * haven't created too many possible wakeup paths. |
2285 | * |
2286 | * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when |
2287 | * the epoll file descriptor is attaching directly to a wakeup source, |
2288 | * unless the epoll file descriptor is nested. The purpose of taking the |
2289 | * 'epnested_mutex' on add is to prevent complex toplogies such as loops and |
2290 | * deep wakeup paths from forming in parallel through multiple |
2291 | * EPOLL_CTL_ADD operations. |
2292 | */ |
2293 | error = epoll_mutex_lock(mutex: &ep->mtx, depth: 0, nonblock); |
2294 | if (error) |
2295 | goto error_tgt_fput; |
2296 | if (op == EPOLL_CTL_ADD) { |
2297 | if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || |
2298 | is_file_epoll(f: tf.file)) { |
2299 | mutex_unlock(lock: &ep->mtx); |
2300 | error = epoll_mutex_lock(mutex: &epnested_mutex, depth: 0, nonblock); |
2301 | if (error) |
2302 | goto error_tgt_fput; |
2303 | loop_check_gen++; |
2304 | full_check = 1; |
2305 | if (is_file_epoll(f: tf.file)) { |
2306 | tep = tf.file->private_data; |
2307 | error = -ELOOP; |
2308 | if (ep_loop_check(ep, to: tep) != 0) |
2309 | goto error_tgt_fput; |
2310 | } |
2311 | error = epoll_mutex_lock(mutex: &ep->mtx, depth: 0, nonblock); |
2312 | if (error) |
2313 | goto error_tgt_fput; |
2314 | } |
2315 | } |
2316 | |
2317 | /* |
2318 | * Try to lookup the file inside our RB tree. Since we grabbed "mtx" |
2319 | * above, we can be sure to be able to use the item looked up by |
2320 | * ep_find() till we release the mutex. |
2321 | */ |
2322 | epi = ep_find(ep, file: tf.file, fd); |
2323 | |
2324 | error = -EINVAL; |
2325 | switch (op) { |
2326 | case EPOLL_CTL_ADD: |
2327 | if (!epi) { |
2328 | epds->events |= EPOLLERR | EPOLLHUP; |
2329 | error = ep_insert(ep, event: epds, tfile: tf.file, fd, full_check); |
2330 | } else |
2331 | error = -EEXIST; |
2332 | break; |
2333 | case EPOLL_CTL_DEL: |
2334 | if (epi) { |
2335 | /* |
2336 | * The eventpoll itself is still alive: the refcount |
2337 | * can't go to zero here. |
2338 | */ |
2339 | ep_remove_safe(ep, epi); |
2340 | error = 0; |
2341 | } else { |
2342 | error = -ENOENT; |
2343 | } |
2344 | break; |
2345 | case EPOLL_CTL_MOD: |
2346 | if (epi) { |
2347 | if (!(epi->event.events & EPOLLEXCLUSIVE)) { |
2348 | epds->events |= EPOLLERR | EPOLLHUP; |
2349 | error = ep_modify(ep, epi, event: epds); |
2350 | } |
2351 | } else |
2352 | error = -ENOENT; |
2353 | break; |
2354 | } |
2355 | mutex_unlock(lock: &ep->mtx); |
2356 | |
2357 | error_tgt_fput: |
2358 | if (full_check) { |
2359 | clear_tfile_check_list(); |
2360 | loop_check_gen++; |
2361 | mutex_unlock(lock: &epnested_mutex); |
2362 | } |
2363 | |
2364 | fdput(fd: tf); |
2365 | error_fput: |
2366 | fdput(fd: f); |
2367 | error_return: |
2368 | |
2369 | return error; |
2370 | } |
2371 | |
2372 | /* |
2373 | * The following function implements the controller interface for |
2374 | * the eventpoll file that enables the insertion/removal/change of |
2375 | * file descriptors inside the interest set. |
2376 | */ |
2377 | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, |
2378 | struct epoll_event __user *, event) |
2379 | { |
2380 | struct epoll_event epds; |
2381 | |
2382 | if (ep_op_has_event(op) && |
2383 | copy_from_user(to: &epds, from: event, n: sizeof(struct epoll_event))) |
2384 | return -EFAULT; |
2385 | |
2386 | return do_epoll_ctl(epfd, op, fd, epds: &epds, nonblock: false); |
2387 | } |
2388 | |
2389 | /* |
2390 | * Implement the event wait interface for the eventpoll file. It is the kernel |
2391 | * part of the user space epoll_wait(2). |
2392 | */ |
2393 | static int do_epoll_wait(int epfd, struct epoll_event __user *events, |
2394 | int maxevents, struct timespec64 *to) |
2395 | { |
2396 | int error; |
2397 | struct fd f; |
2398 | struct eventpoll *ep; |
2399 | |
2400 | /* The maximum number of event must be greater than zero */ |
2401 | if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) |
2402 | return -EINVAL; |
2403 | |
2404 | /* Verify that the area passed by the user is writeable */ |
2405 | if (!access_ok(events, maxevents * sizeof(struct epoll_event))) |
2406 | return -EFAULT; |
2407 | |
2408 | /* Get the "struct file *" for the eventpoll file */ |
2409 | f = fdget(fd: epfd); |
2410 | if (!f.file) |
2411 | return -EBADF; |
2412 | |
2413 | /* |
2414 | * We have to check that the file structure underneath the fd |
2415 | * the user passed to us _is_ an eventpoll file. |
2416 | */ |
2417 | error = -EINVAL; |
2418 | if (!is_file_epoll(f: f.file)) |
2419 | goto error_fput; |
2420 | |
2421 | /* |
2422 | * At this point it is safe to assume that the "private_data" contains |
2423 | * our own data structure. |
2424 | */ |
2425 | ep = f.file->private_data; |
2426 | |
2427 | /* Time to fish for events ... */ |
2428 | error = ep_poll(ep, events, maxevents, timeout: to); |
2429 | |
2430 | error_fput: |
2431 | fdput(fd: f); |
2432 | return error; |
2433 | } |
2434 | |
2435 | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, |
2436 | int, maxevents, int, timeout) |
2437 | { |
2438 | struct timespec64 to; |
2439 | |
2440 | return do_epoll_wait(epfd, events, maxevents, |
2441 | to: ep_timeout_to_timespec(to: &to, ms: timeout)); |
2442 | } |
2443 | |
2444 | /* |
2445 | * Implement the event wait interface for the eventpoll file. It is the kernel |
2446 | * part of the user space epoll_pwait(2). |
2447 | */ |
2448 | static int do_epoll_pwait(int epfd, struct epoll_event __user *events, |
2449 | int maxevents, struct timespec64 *to, |
2450 | const sigset_t __user *sigmask, size_t sigsetsize) |
2451 | { |
2452 | int error; |
2453 | |
2454 | /* |
2455 | * If the caller wants a certain signal mask to be set during the wait, |
2456 | * we apply it here. |
2457 | */ |
2458 | error = set_user_sigmask(umask: sigmask, sigsetsize); |
2459 | if (error) |
2460 | return error; |
2461 | |
2462 | error = do_epoll_wait(epfd, events, maxevents, to); |
2463 | |
2464 | restore_saved_sigmask_unless(interrupted: error == -EINTR); |
2465 | |
2466 | return error; |
2467 | } |
2468 | |
2469 | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, |
2470 | int, maxevents, int, timeout, const sigset_t __user *, sigmask, |
2471 | size_t, sigsetsize) |
2472 | { |
2473 | struct timespec64 to; |
2474 | |
2475 | return do_epoll_pwait(epfd, events, maxevents, |
2476 | to: ep_timeout_to_timespec(to: &to, ms: timeout), |
2477 | sigmask, sigsetsize); |
2478 | } |
2479 | |
2480 | SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, |
2481 | int, maxevents, const struct __kernel_timespec __user *, timeout, |
2482 | const sigset_t __user *, sigmask, size_t, sigsetsize) |
2483 | { |
2484 | struct timespec64 ts, *to = NULL; |
2485 | |
2486 | if (timeout) { |
2487 | if (get_timespec64(ts: &ts, uts: timeout)) |
2488 | return -EFAULT; |
2489 | to = &ts; |
2490 | if (poll_select_set_timeout(to, sec: ts.tv_sec, nsec: ts.tv_nsec)) |
2491 | return -EINVAL; |
2492 | } |
2493 | |
2494 | return do_epoll_pwait(epfd, events, maxevents, to, |
2495 | sigmask, sigsetsize); |
2496 | } |
2497 | |
2498 | #ifdef CONFIG_COMPAT |
2499 | static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, |
2500 | int maxevents, struct timespec64 *timeout, |
2501 | const compat_sigset_t __user *sigmask, |
2502 | compat_size_t sigsetsize) |
2503 | { |
2504 | long err; |
2505 | |
2506 | /* |
2507 | * If the caller wants a certain signal mask to be set during the wait, |
2508 | * we apply it here. |
2509 | */ |
2510 | err = set_compat_user_sigmask(umask: sigmask, sigsetsize); |
2511 | if (err) |
2512 | return err; |
2513 | |
2514 | err = do_epoll_wait(epfd, events, maxevents, to: timeout); |
2515 | |
2516 | restore_saved_sigmask_unless(interrupted: err == -EINTR); |
2517 | |
2518 | return err; |
2519 | } |
2520 | |
2521 | COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, |
2522 | struct epoll_event __user *, events, |
2523 | int, maxevents, int, timeout, |
2524 | const compat_sigset_t __user *, sigmask, |
2525 | compat_size_t, sigsetsize) |
2526 | { |
2527 | struct timespec64 to; |
2528 | |
2529 | return do_compat_epoll_pwait(epfd, events, maxevents, |
2530 | timeout: ep_timeout_to_timespec(to: &to, ms: timeout), |
2531 | sigmask, sigsetsize); |
2532 | } |
2533 | |
2534 | COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, |
2535 | struct epoll_event __user *, events, |
2536 | int, maxevents, |
2537 | const struct __kernel_timespec __user *, timeout, |
2538 | const compat_sigset_t __user *, sigmask, |
2539 | compat_size_t, sigsetsize) |
2540 | { |
2541 | struct timespec64 ts, *to = NULL; |
2542 | |
2543 | if (timeout) { |
2544 | if (get_timespec64(ts: &ts, uts: timeout)) |
2545 | return -EFAULT; |
2546 | to = &ts; |
2547 | if (poll_select_set_timeout(to, sec: ts.tv_sec, nsec: ts.tv_nsec)) |
2548 | return -EINVAL; |
2549 | } |
2550 | |
2551 | return do_compat_epoll_pwait(epfd, events, maxevents, timeout: to, |
2552 | sigmask, sigsetsize); |
2553 | } |
2554 | |
2555 | #endif |
2556 | |
2557 | static int __init eventpoll_init(void) |
2558 | { |
2559 | struct sysinfo si; |
2560 | |
2561 | si_meminfo(val: &si); |
2562 | /* |
2563 | * Allows top 4% of lomem to be allocated for epoll watches (per user). |
2564 | */ |
2565 | max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / |
2566 | EP_ITEM_COST; |
2567 | BUG_ON(max_user_watches < 0); |
2568 | |
2569 | /* |
2570 | * We can have many thousands of epitems, so prevent this from |
2571 | * using an extra cache line on 64-bit (and smaller) CPUs |
2572 | */ |
2573 | BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); |
2574 | |
2575 | /* Allocates slab cache used to allocate "struct epitem" items */ |
2576 | epi_cache = kmem_cache_create(name: "eventpoll_epi" , size: sizeof(struct epitem), |
2577 | align: 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2578 | |
2579 | /* Allocates slab cache used to allocate "struct eppoll_entry" */ |
2580 | pwq_cache = kmem_cache_create(name: "eventpoll_pwq" , |
2581 | size: sizeof(struct eppoll_entry), align: 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2582 | epoll_sysctls_init(); |
2583 | |
2584 | ephead_cache = kmem_cache_create(name: "ep_head" , |
2585 | size: sizeof(struct epitems_head), align: 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2586 | |
2587 | return 0; |
2588 | } |
2589 | fs_initcall(eventpoll_init); |
2590 | |