1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* |
3 | * fs/eventpoll.c (Efficient event retrieval implementation) |
4 | * Copyright (C) 2001,...,2009 Davide Libenzi |
5 | * |
6 | * Davide Libenzi <davidel@xmailserver.org> |
7 | */ |
8 | |
9 | #include <linux/init.h> |
10 | #include <linux/kernel.h> |
11 | #include <linux/sched/signal.h> |
12 | #include <linux/fs.h> |
13 | #include <linux/file.h> |
14 | #include <linux/signal.h> |
15 | #include <linux/errno.h> |
16 | #include <linux/mm.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/poll.h> |
19 | #include <linux/string.h> |
20 | #include <linux/list.h> |
21 | #include <linux/hash.h> |
22 | #include <linux/spinlock.h> |
23 | #include <linux/syscalls.h> |
24 | #include <linux/rbtree.h> |
25 | #include <linux/wait.h> |
26 | #include <linux/eventpoll.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/bitops.h> |
29 | #include <linux/mutex.h> |
30 | #include <linux/anon_inodes.h> |
31 | #include <linux/device.h> |
32 | #include <linux/uaccess.h> |
33 | #include <asm/io.h> |
34 | #include <asm/mman.h> |
35 | #include <linux/atomic.h> |
36 | #include <linux/proc_fs.h> |
37 | #include <linux/seq_file.h> |
38 | #include <linux/compat.h> |
39 | #include <linux/rculist.h> |
40 | #include <net/busy_poll.h> |
41 | |
42 | /* |
43 | * LOCKING: |
44 | * There are three level of locking required by epoll : |
45 | * |
46 | * 1) epmutex (mutex) |
47 | * 2) ep->mtx (mutex) |
48 | * 3) ep->lock (rwlock) |
49 | * |
50 | * The acquire order is the one listed above, from 1 to 3. |
51 | * We need a rwlock (ep->lock) because we manipulate objects |
52 | * from inside the poll callback, that might be triggered from |
53 | * a wake_up() that in turn might be called from IRQ context. |
54 | * So we can't sleep inside the poll callback and hence we need |
55 | * a spinlock. During the event transfer loop (from kernel to |
56 | * user space) we could end up sleeping due a copy_to_user(), so |
57 | * we need a lock that will allow us to sleep. This lock is a |
58 | * mutex (ep->mtx). It is acquired during the event transfer loop, |
59 | * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). |
60 | * Then we also need a global mutex to serialize eventpoll_release_file() |
61 | * and ep_free(). |
62 | * This mutex is acquired by ep_free() during the epoll file |
63 | * cleanup path and it is also acquired by eventpoll_release_file() |
64 | * if a file has been pushed inside an epoll set and it is then |
65 | * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). |
66 | * It is also acquired when inserting an epoll fd onto another epoll |
67 | * fd. We do this so that we walk the epoll tree and ensure that this |
68 | * insertion does not create a cycle of epoll file descriptors, which |
69 | * could lead to deadlock. We need a global mutex to prevent two |
70 | * simultaneous inserts (A into B and B into A) from racing and |
71 | * constructing a cycle without either insert observing that it is |
72 | * going to. |
73 | * It is necessary to acquire multiple "ep->mtx"es at once in the |
74 | * case when one epoll fd is added to another. In this case, we |
75 | * always acquire the locks in the order of nesting (i.e. after |
76 | * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired |
77 | * before e2->mtx). Since we disallow cycles of epoll file |
78 | * descriptors, this ensures that the mutexes are well-ordered. In |
79 | * order to communicate this nesting to lockdep, when walking a tree |
80 | * of epoll file descriptors, we use the current recursion depth as |
81 | * the lockdep subkey. |
82 | * It is possible to drop the "ep->mtx" and to use the global |
83 | * mutex "epmutex" (together with "ep->lock") to have it working, |
84 | * but having "ep->mtx" will make the interface more scalable. |
85 | * Events that require holding "epmutex" are very rare, while for |
86 | * normal operations the epoll private "ep->mtx" will guarantee |
87 | * a better scalability. |
88 | */ |
89 | |
90 | /* Epoll private bits inside the event mask */ |
91 | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) |
92 | |
93 | #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) |
94 | |
95 | #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ |
96 | EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) |
97 | |
98 | /* Maximum number of nesting allowed inside epoll sets */ |
99 | #define EP_MAX_NESTS 4 |
100 | |
101 | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) |
102 | |
103 | #define EP_UNACTIVE_PTR ((void *) -1L) |
104 | |
105 | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) |
106 | |
107 | struct epoll_filefd { |
108 | struct file *file; |
109 | int fd; |
110 | } __packed; |
111 | |
112 | /* Wait structure used by the poll hooks */ |
113 | struct eppoll_entry { |
114 | /* List header used to link this structure to the "struct epitem" */ |
115 | struct eppoll_entry *next; |
116 | |
117 | /* The "base" pointer is set to the container "struct epitem" */ |
118 | struct epitem *base; |
119 | |
120 | /* |
121 | * Wait queue item that will be linked to the target file wait |
122 | * queue head. |
123 | */ |
124 | wait_queue_entry_t wait; |
125 | |
126 | /* The wait queue head that linked the "wait" wait queue item */ |
127 | wait_queue_head_t *whead; |
128 | }; |
129 | |
130 | /* |
131 | * Each file descriptor added to the eventpoll interface will |
132 | * have an entry of this type linked to the "rbr" RB tree. |
133 | * Avoid increasing the size of this struct, there can be many thousands |
134 | * of these on a server and we do not want this to take another cache line. |
135 | */ |
136 | struct epitem { |
137 | union { |
138 | /* RB tree node links this structure to the eventpoll RB tree */ |
139 | struct rb_node rbn; |
140 | /* Used to free the struct epitem */ |
141 | struct rcu_head rcu; |
142 | }; |
143 | |
144 | /* List header used to link this structure to the eventpoll ready list */ |
145 | struct list_head rdllink; |
146 | |
147 | /* |
148 | * Works together "struct eventpoll"->ovflist in keeping the |
149 | * single linked chain of items. |
150 | */ |
151 | struct epitem *next; |
152 | |
153 | /* The file descriptor information this item refers to */ |
154 | struct epoll_filefd ffd; |
155 | |
156 | /* List containing poll wait queues */ |
157 | struct eppoll_entry *pwqlist; |
158 | |
159 | /* The "container" of this item */ |
160 | struct eventpoll *ep; |
161 | |
162 | /* List header used to link this item to the "struct file" items list */ |
163 | struct hlist_node fllink; |
164 | |
165 | /* wakeup_source used when EPOLLWAKEUP is set */ |
166 | struct wakeup_source __rcu *ws; |
167 | |
168 | /* The structure that describe the interested events and the source fd */ |
169 | struct epoll_event event; |
170 | }; |
171 | |
172 | /* |
173 | * This structure is stored inside the "private_data" member of the file |
174 | * structure and represents the main data structure for the eventpoll |
175 | * interface. |
176 | */ |
177 | struct eventpoll { |
178 | /* |
179 | * This mutex is used to ensure that files are not removed |
180 | * while epoll is using them. This is held during the event |
181 | * collection loop, the file cleanup path, the epoll file exit |
182 | * code and the ctl operations. |
183 | */ |
184 | struct mutex mtx; |
185 | |
186 | /* Wait queue used by sys_epoll_wait() */ |
187 | wait_queue_head_t wq; |
188 | |
189 | /* Wait queue used by file->poll() */ |
190 | wait_queue_head_t poll_wait; |
191 | |
192 | /* List of ready file descriptors */ |
193 | struct list_head rdllist; |
194 | |
195 | /* Lock which protects rdllist and ovflist */ |
196 | rwlock_t lock; |
197 | |
198 | /* RB tree root used to store monitored fd structs */ |
199 | struct rb_root_cached rbr; |
200 | |
201 | /* |
202 | * This is a single linked list that chains all the "struct epitem" that |
203 | * happened while transferring ready events to userspace w/out |
204 | * holding ->lock. |
205 | */ |
206 | struct epitem *ovflist; |
207 | |
208 | /* wakeup_source used when ep_scan_ready_list is running */ |
209 | struct wakeup_source *ws; |
210 | |
211 | /* The user that created the eventpoll descriptor */ |
212 | struct user_struct *user; |
213 | |
214 | struct file *file; |
215 | |
216 | /* used to optimize loop detection check */ |
217 | u64 gen; |
218 | struct hlist_head refs; |
219 | |
220 | #ifdef CONFIG_NET_RX_BUSY_POLL |
221 | /* used to track busy poll napi_id */ |
222 | unsigned int napi_id; |
223 | #endif |
224 | |
225 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
226 | /* tracks wakeup nests for lockdep validation */ |
227 | u8 nests; |
228 | #endif |
229 | }; |
230 | |
231 | /* Wrapper struct used by poll queueing */ |
232 | struct ep_pqueue { |
233 | poll_table pt; |
234 | struct epitem *epi; |
235 | }; |
236 | |
237 | /* |
238 | * Configuration options available inside /proc/sys/fs/epoll/ |
239 | */ |
240 | /* Maximum number of epoll watched descriptors, per user */ |
241 | static long max_user_watches __read_mostly; |
242 | |
243 | /* |
244 | * This mutex is used to serialize ep_free() and eventpoll_release_file(). |
245 | */ |
246 | static DEFINE_MUTEX(epmutex); |
247 | |
248 | static u64 loop_check_gen = 0; |
249 | |
250 | /* Used to check for epoll file descriptor inclusion loops */ |
251 | static struct eventpoll *inserting_into; |
252 | |
253 | /* Slab cache used to allocate "struct epitem" */ |
254 | static struct kmem_cache *epi_cache __read_mostly; |
255 | |
256 | /* Slab cache used to allocate "struct eppoll_entry" */ |
257 | static struct kmem_cache *pwq_cache __read_mostly; |
258 | |
259 | /* |
260 | * List of files with newly added links, where we may need to limit the number |
261 | * of emanating paths. Protected by the epmutex. |
262 | */ |
263 | struct epitems_head { |
264 | struct hlist_head epitems; |
265 | struct epitems_head *next; |
266 | }; |
267 | static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; |
268 | |
269 | static struct kmem_cache *ephead_cache __read_mostly; |
270 | |
271 | static inline void free_ephead(struct epitems_head *head) |
272 | { |
273 | if (head) |
274 | kmem_cache_free(ephead_cache, head); |
275 | } |
276 | |
277 | static void list_file(struct file *file) |
278 | { |
279 | struct epitems_head *head; |
280 | |
281 | head = container_of(file->f_ep, struct epitems_head, epitems); |
282 | if (!head->next) { |
283 | head->next = tfile_check_list; |
284 | tfile_check_list = head; |
285 | } |
286 | } |
287 | |
288 | static void unlist_file(struct epitems_head *head) |
289 | { |
290 | struct epitems_head *to_free = head; |
291 | struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); |
292 | if (p) { |
293 | struct epitem *epi= container_of(p, struct epitem, fllink); |
294 | spin_lock(&epi->ffd.file->f_lock); |
295 | if (!hlist_empty(&head->epitems)) |
296 | to_free = NULL; |
297 | head->next = NULL; |
298 | spin_unlock(&epi->ffd.file->f_lock); |
299 | } |
300 | free_ephead(to_free); |
301 | } |
302 | |
303 | #ifdef CONFIG_SYSCTL |
304 | |
305 | #include <linux/sysctl.h> |
306 | |
307 | static long long_zero; |
308 | static long long_max = LONG_MAX; |
309 | |
310 | static struct ctl_table epoll_table[] = { |
311 | { |
312 | .procname = "max_user_watches" , |
313 | .data = &max_user_watches, |
314 | .maxlen = sizeof(max_user_watches), |
315 | .mode = 0644, |
316 | .proc_handler = proc_doulongvec_minmax, |
317 | .extra1 = &long_zero, |
318 | .extra2 = &long_max, |
319 | }, |
320 | { } |
321 | }; |
322 | |
323 | static void __init epoll_sysctls_init(void) |
324 | { |
325 | register_sysctl("fs/epoll" , epoll_table); |
326 | } |
327 | #else |
328 | #define epoll_sysctls_init() do { } while (0) |
329 | #endif /* CONFIG_SYSCTL */ |
330 | |
331 | static const struct file_operations eventpoll_fops; |
332 | |
333 | static inline int is_file_epoll(struct file *f) |
334 | { |
335 | return f->f_op == &eventpoll_fops; |
336 | } |
337 | |
338 | /* Setup the structure that is used as key for the RB tree */ |
339 | static inline void ep_set_ffd(struct epoll_filefd *ffd, |
340 | struct file *file, int fd) |
341 | { |
342 | ffd->file = file; |
343 | ffd->fd = fd; |
344 | } |
345 | |
346 | /* Compare RB tree keys */ |
347 | static inline int ep_cmp_ffd(struct epoll_filefd *p1, |
348 | struct epoll_filefd *p2) |
349 | { |
350 | return (p1->file > p2->file ? +1: |
351 | (p1->file < p2->file ? -1 : p1->fd - p2->fd)); |
352 | } |
353 | |
354 | /* Tells us if the item is currently linked */ |
355 | static inline int ep_is_linked(struct epitem *epi) |
356 | { |
357 | return !list_empty(&epi->rdllink); |
358 | } |
359 | |
360 | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) |
361 | { |
362 | return container_of(p, struct eppoll_entry, wait); |
363 | } |
364 | |
365 | /* Get the "struct epitem" from a wait queue pointer */ |
366 | static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) |
367 | { |
368 | return container_of(p, struct eppoll_entry, wait)->base; |
369 | } |
370 | |
371 | /** |
372 | * ep_events_available - Checks if ready events might be available. |
373 | * |
374 | * @ep: Pointer to the eventpoll context. |
375 | * |
376 | * Return: a value different than %zero if ready events are available, |
377 | * or %zero otherwise. |
378 | */ |
379 | static inline int ep_events_available(struct eventpoll *ep) |
380 | { |
381 | return !list_empty_careful(&ep->rdllist) || |
382 | READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; |
383 | } |
384 | |
385 | #ifdef CONFIG_NET_RX_BUSY_POLL |
386 | static bool ep_busy_loop_end(void *p, unsigned long start_time) |
387 | { |
388 | struct eventpoll *ep = p; |
389 | |
390 | return ep_events_available(ep) || busy_loop_timeout(start_time); |
391 | } |
392 | |
393 | /* |
394 | * Busy poll if globally on and supporting sockets found && no events, |
395 | * busy loop will return if need_resched or ep_events_available. |
396 | * |
397 | * we must do our busy polling with irqs enabled |
398 | */ |
399 | static bool ep_busy_loop(struct eventpoll *ep, int nonblock) |
400 | { |
401 | unsigned int napi_id = READ_ONCE(ep->napi_id); |
402 | |
403 | if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { |
404 | napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, |
405 | BUSY_POLL_BUDGET); |
406 | if (ep_events_available(ep)) |
407 | return true; |
408 | /* |
409 | * Busy poll timed out. Drop NAPI ID for now, we can add |
410 | * it back in when we have moved a socket with a valid NAPI |
411 | * ID onto the ready list. |
412 | */ |
413 | ep->napi_id = 0; |
414 | return false; |
415 | } |
416 | return false; |
417 | } |
418 | |
419 | /* |
420 | * Set epoll busy poll NAPI ID from sk. |
421 | */ |
422 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) |
423 | { |
424 | struct eventpoll *ep; |
425 | unsigned int napi_id; |
426 | struct socket *sock; |
427 | struct sock *sk; |
428 | |
429 | if (!net_busy_loop_on()) |
430 | return; |
431 | |
432 | sock = sock_from_file(epi->ffd.file); |
433 | if (!sock) |
434 | return; |
435 | |
436 | sk = sock->sk; |
437 | if (!sk) |
438 | return; |
439 | |
440 | napi_id = READ_ONCE(sk->sk_napi_id); |
441 | ep = epi->ep; |
442 | |
443 | /* Non-NAPI IDs can be rejected |
444 | * or |
445 | * Nothing to do if we already have this ID |
446 | */ |
447 | if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) |
448 | return; |
449 | |
450 | /* record NAPI ID for use in next busy poll */ |
451 | ep->napi_id = napi_id; |
452 | } |
453 | |
454 | #else |
455 | |
456 | static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) |
457 | { |
458 | return false; |
459 | } |
460 | |
461 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) |
462 | { |
463 | } |
464 | |
465 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
466 | |
467 | /* |
468 | * As described in commit 0ccf831cb lockdep: annotate epoll |
469 | * the use of wait queues used by epoll is done in a very controlled |
470 | * manner. Wake ups can nest inside each other, but are never done |
471 | * with the same locking. For example: |
472 | * |
473 | * dfd = socket(...); |
474 | * efd1 = epoll_create(); |
475 | * efd2 = epoll_create(); |
476 | * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); |
477 | * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); |
478 | * |
479 | * When a packet arrives to the device underneath "dfd", the net code will |
480 | * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a |
481 | * callback wakeup entry on that queue, and the wake_up() performed by the |
482 | * "dfd" net code will end up in ep_poll_callback(). At this point epoll |
483 | * (efd1) notices that it may have some event ready, so it needs to wake up |
484 | * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() |
485 | * that ends up in another wake_up(), after having checked about the |
486 | * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to |
487 | * avoid stack blasting. |
488 | * |
489 | * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle |
490 | * this special case of epoll. |
491 | */ |
492 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
493 | |
494 | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) |
495 | { |
496 | struct eventpoll *ep_src; |
497 | unsigned long flags; |
498 | u8 nests = 0; |
499 | |
500 | /* |
501 | * To set the subclass or nesting level for spin_lock_irqsave_nested() |
502 | * it might be natural to create a per-cpu nest count. However, since |
503 | * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can |
504 | * schedule() in the -rt kernel, the per-cpu variable are no longer |
505 | * protected. Thus, we are introducing a per eventpoll nest field. |
506 | * If we are not being call from ep_poll_callback(), epi is NULL and |
507 | * we are at the first level of nesting, 0. Otherwise, we are being |
508 | * called from ep_poll_callback() and if a previous wakeup source is |
509 | * not an epoll file itself, we are at depth 1 since the wakeup source |
510 | * is depth 0. If the wakeup source is a previous epoll file in the |
511 | * wakeup chain then we use its nests value and record ours as |
512 | * nests + 1. The previous epoll file nests value is stable since its |
513 | * already holding its own poll_wait.lock. |
514 | */ |
515 | if (epi) { |
516 | if ((is_file_epoll(epi->ffd.file))) { |
517 | ep_src = epi->ffd.file->private_data; |
518 | nests = ep_src->nests; |
519 | } else { |
520 | nests = 1; |
521 | } |
522 | } |
523 | spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); |
524 | ep->nests = nests + 1; |
525 | wake_up_locked_poll(&ep->poll_wait, EPOLLIN); |
526 | ep->nests = 0; |
527 | spin_unlock_irqrestore(&ep->poll_wait.lock, flags); |
528 | } |
529 | |
530 | #else |
531 | |
532 | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) |
533 | { |
534 | wake_up_poll(&ep->poll_wait, EPOLLIN); |
535 | } |
536 | |
537 | #endif |
538 | |
539 | static void ep_remove_wait_queue(struct eppoll_entry *pwq) |
540 | { |
541 | wait_queue_head_t *whead; |
542 | |
543 | rcu_read_lock(); |
544 | /* |
545 | * If it is cleared by POLLFREE, it should be rcu-safe. |
546 | * If we read NULL we need a barrier paired with |
547 | * smp_store_release() in ep_poll_callback(), otherwise |
548 | * we rely on whead->lock. |
549 | */ |
550 | whead = smp_load_acquire(&pwq->whead); |
551 | if (whead) |
552 | remove_wait_queue(whead, &pwq->wait); |
553 | rcu_read_unlock(); |
554 | } |
555 | |
556 | /* |
557 | * This function unregisters poll callbacks from the associated file |
558 | * descriptor. Must be called with "mtx" held (or "epmutex" if called from |
559 | * ep_free). |
560 | */ |
561 | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) |
562 | { |
563 | struct eppoll_entry **p = &epi->pwqlist; |
564 | struct eppoll_entry *pwq; |
565 | |
566 | while ((pwq = *p) != NULL) { |
567 | *p = pwq->next; |
568 | ep_remove_wait_queue(pwq); |
569 | kmem_cache_free(pwq_cache, pwq); |
570 | } |
571 | } |
572 | |
573 | /* call only when ep->mtx is held */ |
574 | static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) |
575 | { |
576 | return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); |
577 | } |
578 | |
579 | /* call only when ep->mtx is held */ |
580 | static inline void ep_pm_stay_awake(struct epitem *epi) |
581 | { |
582 | struct wakeup_source *ws = ep_wakeup_source(epi); |
583 | |
584 | if (ws) |
585 | __pm_stay_awake(ws); |
586 | } |
587 | |
588 | static inline bool ep_has_wakeup_source(struct epitem *epi) |
589 | { |
590 | return rcu_access_pointer(epi->ws) ? true : false; |
591 | } |
592 | |
593 | /* call when ep->mtx cannot be held (ep_poll_callback) */ |
594 | static inline void ep_pm_stay_awake_rcu(struct epitem *epi) |
595 | { |
596 | struct wakeup_source *ws; |
597 | |
598 | rcu_read_lock(); |
599 | ws = rcu_dereference(epi->ws); |
600 | if (ws) |
601 | __pm_stay_awake(ws); |
602 | rcu_read_unlock(); |
603 | } |
604 | |
605 | |
606 | /* |
607 | * ep->mutex needs to be held because we could be hit by |
608 | * eventpoll_release_file() and epoll_ctl(). |
609 | */ |
610 | static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) |
611 | { |
612 | /* |
613 | * Steal the ready list, and re-init the original one to the |
614 | * empty list. Also, set ep->ovflist to NULL so that events |
615 | * happening while looping w/out locks, are not lost. We cannot |
616 | * have the poll callback to queue directly on ep->rdllist, |
617 | * because we want the "sproc" callback to be able to do it |
618 | * in a lockless way. |
619 | */ |
620 | lockdep_assert_irqs_enabled(); |
621 | write_lock_irq(&ep->lock); |
622 | list_splice_init(&ep->rdllist, txlist); |
623 | WRITE_ONCE(ep->ovflist, NULL); |
624 | write_unlock_irq(&ep->lock); |
625 | } |
626 | |
627 | static void ep_done_scan(struct eventpoll *ep, |
628 | struct list_head *txlist) |
629 | { |
630 | struct epitem *epi, *nepi; |
631 | |
632 | write_lock_irq(&ep->lock); |
633 | /* |
634 | * During the time we spent inside the "sproc" callback, some |
635 | * other events might have been queued by the poll callback. |
636 | * We re-insert them inside the main ready-list here. |
637 | */ |
638 | for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; |
639 | nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { |
640 | /* |
641 | * We need to check if the item is already in the list. |
642 | * During the "sproc" callback execution time, items are |
643 | * queued into ->ovflist but the "txlist" might already |
644 | * contain them, and the list_splice() below takes care of them. |
645 | */ |
646 | if (!ep_is_linked(epi)) { |
647 | /* |
648 | * ->ovflist is LIFO, so we have to reverse it in order |
649 | * to keep in FIFO. |
650 | */ |
651 | list_add(&epi->rdllink, &ep->rdllist); |
652 | ep_pm_stay_awake(epi); |
653 | } |
654 | } |
655 | /* |
656 | * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after |
657 | * releasing the lock, events will be queued in the normal way inside |
658 | * ep->rdllist. |
659 | */ |
660 | WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); |
661 | |
662 | /* |
663 | * Quickly re-inject items left on "txlist". |
664 | */ |
665 | list_splice(txlist, &ep->rdllist); |
666 | __pm_relax(ep->ws); |
667 | |
668 | if (!list_empty(&ep->rdllist)) { |
669 | if (waitqueue_active(&ep->wq)) |
670 | wake_up(&ep->wq); |
671 | } |
672 | |
673 | write_unlock_irq(&ep->lock); |
674 | } |
675 | |
676 | static void epi_rcu_free(struct rcu_head *head) |
677 | { |
678 | struct epitem *epi = container_of(head, struct epitem, rcu); |
679 | kmem_cache_free(epi_cache, epi); |
680 | } |
681 | |
682 | /* |
683 | * Removes a "struct epitem" from the eventpoll RB tree and deallocates |
684 | * all the associated resources. Must be called with "mtx" held. |
685 | */ |
686 | static int ep_remove(struct eventpoll *ep, struct epitem *epi) |
687 | { |
688 | struct file *file = epi->ffd.file; |
689 | struct epitems_head *to_free; |
690 | struct hlist_head *head; |
691 | |
692 | lockdep_assert_irqs_enabled(); |
693 | |
694 | /* |
695 | * Removes poll wait queue hooks. |
696 | */ |
697 | ep_unregister_pollwait(ep, epi); |
698 | |
699 | /* Remove the current item from the list of epoll hooks */ |
700 | spin_lock(&file->f_lock); |
701 | to_free = NULL; |
702 | head = file->f_ep; |
703 | if (head->first == &epi->fllink && !epi->fllink.next) { |
704 | file->f_ep = NULL; |
705 | if (!is_file_epoll(file)) { |
706 | struct epitems_head *v; |
707 | v = container_of(head, struct epitems_head, epitems); |
708 | if (!smp_load_acquire(&v->next)) |
709 | to_free = v; |
710 | } |
711 | } |
712 | hlist_del_rcu(&epi->fllink); |
713 | spin_unlock(&file->f_lock); |
714 | free_ephead(to_free); |
715 | |
716 | rb_erase_cached(&epi->rbn, &ep->rbr); |
717 | |
718 | write_lock_irq(&ep->lock); |
719 | if (ep_is_linked(epi)) |
720 | list_del_init(&epi->rdllink); |
721 | write_unlock_irq(&ep->lock); |
722 | |
723 | wakeup_source_unregister(ep_wakeup_source(epi)); |
724 | /* |
725 | * At this point it is safe to free the eventpoll item. Use the union |
726 | * field epi->rcu, since we are trying to minimize the size of |
727 | * 'struct epitem'. The 'rbn' field is no longer in use. Protected by |
728 | * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make |
729 | * use of the rbn field. |
730 | */ |
731 | call_rcu(&epi->rcu, epi_rcu_free); |
732 | |
733 | percpu_counter_dec(&ep->user->epoll_watches); |
734 | |
735 | return 0; |
736 | } |
737 | |
738 | static void ep_free(struct eventpoll *ep) |
739 | { |
740 | struct rb_node *rbp; |
741 | struct epitem *epi; |
742 | |
743 | /* We need to release all tasks waiting for these file */ |
744 | if (waitqueue_active(&ep->poll_wait)) |
745 | ep_poll_safewake(ep, NULL); |
746 | |
747 | /* |
748 | * We need to lock this because we could be hit by |
749 | * eventpoll_release_file() while we're freeing the "struct eventpoll". |
750 | * We do not need to hold "ep->mtx" here because the epoll file |
751 | * is on the way to be removed and no one has references to it |
752 | * anymore. The only hit might come from eventpoll_release_file() but |
753 | * holding "epmutex" is sufficient here. |
754 | */ |
755 | mutex_lock(&epmutex); |
756 | |
757 | /* |
758 | * Walks through the whole tree by unregistering poll callbacks. |
759 | */ |
760 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
761 | epi = rb_entry(rbp, struct epitem, rbn); |
762 | |
763 | ep_unregister_pollwait(ep, epi); |
764 | cond_resched(); |
765 | } |
766 | |
767 | /* |
768 | * Walks through the whole tree by freeing each "struct epitem". At this |
769 | * point we are sure no poll callbacks will be lingering around, and also by |
770 | * holding "epmutex" we can be sure that no file cleanup code will hit |
771 | * us during this operation. So we can avoid the lock on "ep->lock". |
772 | * We do not need to lock ep->mtx, either, we only do it to prevent |
773 | * a lockdep warning. |
774 | */ |
775 | mutex_lock(&ep->mtx); |
776 | while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { |
777 | epi = rb_entry(rbp, struct epitem, rbn); |
778 | ep_remove(ep, epi); |
779 | cond_resched(); |
780 | } |
781 | mutex_unlock(&ep->mtx); |
782 | |
783 | mutex_unlock(&epmutex); |
784 | mutex_destroy(&ep->mtx); |
785 | free_uid(ep->user); |
786 | wakeup_source_unregister(ep->ws); |
787 | kfree(ep); |
788 | } |
789 | |
790 | static int ep_eventpoll_release(struct inode *inode, struct file *file) |
791 | { |
792 | struct eventpoll *ep = file->private_data; |
793 | |
794 | if (ep) |
795 | ep_free(ep); |
796 | |
797 | return 0; |
798 | } |
799 | |
800 | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); |
801 | |
802 | static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) |
803 | { |
804 | struct eventpoll *ep = file->private_data; |
805 | LIST_HEAD(txlist); |
806 | struct epitem *epi, *tmp; |
807 | poll_table pt; |
808 | __poll_t res = 0; |
809 | |
810 | init_poll_funcptr(&pt, NULL); |
811 | |
812 | /* Insert inside our poll wait queue */ |
813 | poll_wait(file, &ep->poll_wait, wait); |
814 | |
815 | /* |
816 | * Proceed to find out if wanted events are really available inside |
817 | * the ready list. |
818 | */ |
819 | mutex_lock_nested(&ep->mtx, depth); |
820 | ep_start_scan(ep, &txlist); |
821 | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { |
822 | if (ep_item_poll(epi, &pt, depth + 1)) { |
823 | res = EPOLLIN | EPOLLRDNORM; |
824 | break; |
825 | } else { |
826 | /* |
827 | * Item has been dropped into the ready list by the poll |
828 | * callback, but it's not actually ready, as far as |
829 | * caller requested events goes. We can remove it here. |
830 | */ |
831 | __pm_relax(ep_wakeup_source(epi)); |
832 | list_del_init(&epi->rdllink); |
833 | } |
834 | } |
835 | ep_done_scan(ep, &txlist); |
836 | mutex_unlock(&ep->mtx); |
837 | return res; |
838 | } |
839 | |
840 | /* |
841 | * Differs from ep_eventpoll_poll() in that internal callers already have |
842 | * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() |
843 | * is correctly annotated. |
844 | */ |
845 | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, |
846 | int depth) |
847 | { |
848 | struct file *file = epi->ffd.file; |
849 | __poll_t res; |
850 | |
851 | pt->_key = epi->event.events; |
852 | if (!is_file_epoll(file)) |
853 | res = vfs_poll(file, pt); |
854 | else |
855 | res = __ep_eventpoll_poll(file, pt, depth); |
856 | return res & epi->event.events; |
857 | } |
858 | |
859 | static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) |
860 | { |
861 | return __ep_eventpoll_poll(file, wait, 0); |
862 | } |
863 | |
864 | #ifdef CONFIG_PROC_FS |
865 | static void ep_show_fdinfo(struct seq_file *m, struct file *f) |
866 | { |
867 | struct eventpoll *ep = f->private_data; |
868 | struct rb_node *rbp; |
869 | |
870 | mutex_lock(&ep->mtx); |
871 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
872 | struct epitem *epi = rb_entry(rbp, struct epitem, rbn); |
873 | struct inode *inode = file_inode(epi->ffd.file); |
874 | |
875 | seq_printf(m, "tfd: %8d events: %8x data: %16llx " |
876 | " pos:%lli ino:%lx sdev:%x\n" , |
877 | epi->ffd.fd, epi->event.events, |
878 | (long long)epi->event.data, |
879 | (long long)epi->ffd.file->f_pos, |
880 | inode->i_ino, inode->i_sb->s_dev); |
881 | if (seq_has_overflowed(m)) |
882 | break; |
883 | } |
884 | mutex_unlock(&ep->mtx); |
885 | } |
886 | #endif |
887 | |
888 | /* File callbacks that implement the eventpoll file behaviour */ |
889 | static const struct file_operations eventpoll_fops = { |
890 | #ifdef CONFIG_PROC_FS |
891 | .show_fdinfo = ep_show_fdinfo, |
892 | #endif |
893 | .release = ep_eventpoll_release, |
894 | .poll = ep_eventpoll_poll, |
895 | .llseek = noop_llseek, |
896 | }; |
897 | |
898 | /* |
899 | * This is called from eventpoll_release() to unlink files from the eventpoll |
900 | * interface. We need to have this facility to cleanup correctly files that are |
901 | * closed without being removed from the eventpoll interface. |
902 | */ |
903 | void eventpoll_release_file(struct file *file) |
904 | { |
905 | struct eventpoll *ep; |
906 | struct epitem *epi; |
907 | struct hlist_node *next; |
908 | |
909 | /* |
910 | * We don't want to get "file->f_lock" because it is not |
911 | * necessary. It is not necessary because we're in the "struct file" |
912 | * cleanup path, and this means that no one is using this file anymore. |
913 | * So, for example, epoll_ctl() cannot hit here since if we reach this |
914 | * point, the file counter already went to zero and fget() would fail. |
915 | * The only hit might come from ep_free() but by holding the mutex |
916 | * will correctly serialize the operation. We do need to acquire |
917 | * "ep->mtx" after "epmutex" because ep_remove() requires it when called |
918 | * from anywhere but ep_free(). |
919 | * |
920 | * Besides, ep_remove() acquires the lock, so we can't hold it here. |
921 | */ |
922 | mutex_lock(&epmutex); |
923 | if (unlikely(!file->f_ep)) { |
924 | mutex_unlock(&epmutex); |
925 | return; |
926 | } |
927 | hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { |
928 | ep = epi->ep; |
929 | mutex_lock_nested(&ep->mtx, 0); |
930 | ep_remove(ep, epi); |
931 | mutex_unlock(&ep->mtx); |
932 | } |
933 | mutex_unlock(&epmutex); |
934 | } |
935 | |
936 | static int ep_alloc(struct eventpoll **pep) |
937 | { |
938 | int error; |
939 | struct user_struct *user; |
940 | struct eventpoll *ep; |
941 | |
942 | user = get_current_user(); |
943 | error = -ENOMEM; |
944 | ep = kzalloc(sizeof(*ep), GFP_KERNEL); |
945 | if (unlikely(!ep)) |
946 | goto free_uid; |
947 | |
948 | mutex_init(&ep->mtx); |
949 | rwlock_init(&ep->lock); |
950 | init_waitqueue_head(&ep->wq); |
951 | init_waitqueue_head(&ep->poll_wait); |
952 | INIT_LIST_HEAD(&ep->rdllist); |
953 | ep->rbr = RB_ROOT_CACHED; |
954 | ep->ovflist = EP_UNACTIVE_PTR; |
955 | ep->user = user; |
956 | |
957 | *pep = ep; |
958 | |
959 | return 0; |
960 | |
961 | free_uid: |
962 | free_uid(user); |
963 | return error; |
964 | } |
965 | |
966 | /* |
967 | * Search the file inside the eventpoll tree. The RB tree operations |
968 | * are protected by the "mtx" mutex, and ep_find() must be called with |
969 | * "mtx" held. |
970 | */ |
971 | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) |
972 | { |
973 | int kcmp; |
974 | struct rb_node *rbp; |
975 | struct epitem *epi, *epir = NULL; |
976 | struct epoll_filefd ffd; |
977 | |
978 | ep_set_ffd(&ffd, file, fd); |
979 | for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { |
980 | epi = rb_entry(rbp, struct epitem, rbn); |
981 | kcmp = ep_cmp_ffd(&ffd, &epi->ffd); |
982 | if (kcmp > 0) |
983 | rbp = rbp->rb_right; |
984 | else if (kcmp < 0) |
985 | rbp = rbp->rb_left; |
986 | else { |
987 | epir = epi; |
988 | break; |
989 | } |
990 | } |
991 | |
992 | return epir; |
993 | } |
994 | |
995 | #ifdef CONFIG_KCMP |
996 | static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) |
997 | { |
998 | struct rb_node *rbp; |
999 | struct epitem *epi; |
1000 | |
1001 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
1002 | epi = rb_entry(rbp, struct epitem, rbn); |
1003 | if (epi->ffd.fd == tfd) { |
1004 | if (toff == 0) |
1005 | return epi; |
1006 | else |
1007 | toff--; |
1008 | } |
1009 | cond_resched(); |
1010 | } |
1011 | |
1012 | return NULL; |
1013 | } |
1014 | |
1015 | struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, |
1016 | unsigned long toff) |
1017 | { |
1018 | struct file *file_raw; |
1019 | struct eventpoll *ep; |
1020 | struct epitem *epi; |
1021 | |
1022 | if (!is_file_epoll(file)) |
1023 | return ERR_PTR(-EINVAL); |
1024 | |
1025 | ep = file->private_data; |
1026 | |
1027 | mutex_lock(&ep->mtx); |
1028 | epi = ep_find_tfd(ep, tfd, toff); |
1029 | if (epi) |
1030 | file_raw = epi->ffd.file; |
1031 | else |
1032 | file_raw = ERR_PTR(-ENOENT); |
1033 | mutex_unlock(&ep->mtx); |
1034 | |
1035 | return file_raw; |
1036 | } |
1037 | #endif /* CONFIG_KCMP */ |
1038 | |
1039 | /* |
1040 | * Adds a new entry to the tail of the list in a lockless way, i.e. |
1041 | * multiple CPUs are allowed to call this function concurrently. |
1042 | * |
1043 | * Beware: it is necessary to prevent any other modifications of the |
1044 | * existing list until all changes are completed, in other words |
1045 | * concurrent list_add_tail_lockless() calls should be protected |
1046 | * with a read lock, where write lock acts as a barrier which |
1047 | * makes sure all list_add_tail_lockless() calls are fully |
1048 | * completed. |
1049 | * |
1050 | * Also an element can be locklessly added to the list only in one |
1051 | * direction i.e. either to the tail or to the head, otherwise |
1052 | * concurrent access will corrupt the list. |
1053 | * |
1054 | * Return: %false if element has been already added to the list, %true |
1055 | * otherwise. |
1056 | */ |
1057 | static inline bool list_add_tail_lockless(struct list_head *new, |
1058 | struct list_head *head) |
1059 | { |
1060 | struct list_head *prev; |
1061 | |
1062 | /* |
1063 | * This is simple 'new->next = head' operation, but cmpxchg() |
1064 | * is used in order to detect that same element has been just |
1065 | * added to the list from another CPU: the winner observes |
1066 | * new->next == new. |
1067 | */ |
1068 | if (cmpxchg(&new->next, new, head) != new) |
1069 | return false; |
1070 | |
1071 | /* |
1072 | * Initially ->next of a new element must be updated with the head |
1073 | * (we are inserting to the tail) and only then pointers are atomically |
1074 | * exchanged. XCHG guarantees memory ordering, thus ->next should be |
1075 | * updated before pointers are actually swapped and pointers are |
1076 | * swapped before prev->next is updated. |
1077 | */ |
1078 | |
1079 | prev = xchg(&head->prev, new); |
1080 | |
1081 | /* |
1082 | * It is safe to modify prev->next and new->prev, because a new element |
1083 | * is added only to the tail and new->next is updated before XCHG. |
1084 | */ |
1085 | |
1086 | prev->next = new; |
1087 | new->prev = prev; |
1088 | |
1089 | return true; |
1090 | } |
1091 | |
1092 | /* |
1093 | * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, |
1094 | * i.e. multiple CPUs are allowed to call this function concurrently. |
1095 | * |
1096 | * Return: %false if epi element has been already chained, %true otherwise. |
1097 | */ |
1098 | static inline bool chain_epi_lockless(struct epitem *epi) |
1099 | { |
1100 | struct eventpoll *ep = epi->ep; |
1101 | |
1102 | /* Fast preliminary check */ |
1103 | if (epi->next != EP_UNACTIVE_PTR) |
1104 | return false; |
1105 | |
1106 | /* Check that the same epi has not been just chained from another CPU */ |
1107 | if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) |
1108 | return false; |
1109 | |
1110 | /* Atomically exchange tail */ |
1111 | epi->next = xchg(&ep->ovflist, epi); |
1112 | |
1113 | return true; |
1114 | } |
1115 | |
1116 | /* |
1117 | * This is the callback that is passed to the wait queue wakeup |
1118 | * mechanism. It is called by the stored file descriptors when they |
1119 | * have events to report. |
1120 | * |
1121 | * This callback takes a read lock in order not to contend with concurrent |
1122 | * events from another file descriptor, thus all modifications to ->rdllist |
1123 | * or ->ovflist are lockless. Read lock is paired with the write lock from |
1124 | * ep_scan_ready_list(), which stops all list modifications and guarantees |
1125 | * that lists state is seen correctly. |
1126 | * |
1127 | * Another thing worth to mention is that ep_poll_callback() can be called |
1128 | * concurrently for the same @epi from different CPUs if poll table was inited |
1129 | * with several wait queues entries. Plural wakeup from different CPUs of a |
1130 | * single wait queue is serialized by wq.lock, but the case when multiple wait |
1131 | * queues are used should be detected accordingly. This is detected using |
1132 | * cmpxchg() operation. |
1133 | */ |
1134 | static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
1135 | { |
1136 | int pwake = 0; |
1137 | struct epitem *epi = ep_item_from_wait(wait); |
1138 | struct eventpoll *ep = epi->ep; |
1139 | __poll_t pollflags = key_to_poll(key); |
1140 | unsigned long flags; |
1141 | int ewake = 0; |
1142 | |
1143 | read_lock_irqsave(&ep->lock, flags); |
1144 | |
1145 | ep_set_busy_poll_napi_id(epi); |
1146 | |
1147 | /* |
1148 | * If the event mask does not contain any poll(2) event, we consider the |
1149 | * descriptor to be disabled. This condition is likely the effect of the |
1150 | * EPOLLONESHOT bit that disables the descriptor when an event is received, |
1151 | * until the next EPOLL_CTL_MOD will be issued. |
1152 | */ |
1153 | if (!(epi->event.events & ~EP_PRIVATE_BITS)) |
1154 | goto out_unlock; |
1155 | |
1156 | /* |
1157 | * Check the events coming with the callback. At this stage, not |
1158 | * every device reports the events in the "key" parameter of the |
1159 | * callback. We need to be able to handle both cases here, hence the |
1160 | * test for "key" != NULL before the event match test. |
1161 | */ |
1162 | if (pollflags && !(pollflags & epi->event.events)) |
1163 | goto out_unlock; |
1164 | |
1165 | /* |
1166 | * If we are transferring events to userspace, we can hold no locks |
1167 | * (because we're accessing user memory, and because of linux f_op->poll() |
1168 | * semantics). All the events that happen during that period of time are |
1169 | * chained in ep->ovflist and requeued later on. |
1170 | */ |
1171 | if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { |
1172 | if (chain_epi_lockless(epi)) |
1173 | ep_pm_stay_awake_rcu(epi); |
1174 | } else if (!ep_is_linked(epi)) { |
1175 | /* In the usual case, add event to ready list. */ |
1176 | if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) |
1177 | ep_pm_stay_awake_rcu(epi); |
1178 | } |
1179 | |
1180 | /* |
1181 | * Wake up ( if active ) both the eventpoll wait list and the ->poll() |
1182 | * wait list. |
1183 | */ |
1184 | if (waitqueue_active(&ep->wq)) { |
1185 | if ((epi->event.events & EPOLLEXCLUSIVE) && |
1186 | !(pollflags & POLLFREE)) { |
1187 | switch (pollflags & EPOLLINOUT_BITS) { |
1188 | case EPOLLIN: |
1189 | if (epi->event.events & EPOLLIN) |
1190 | ewake = 1; |
1191 | break; |
1192 | case EPOLLOUT: |
1193 | if (epi->event.events & EPOLLOUT) |
1194 | ewake = 1; |
1195 | break; |
1196 | case 0: |
1197 | ewake = 1; |
1198 | break; |
1199 | } |
1200 | } |
1201 | wake_up(&ep->wq); |
1202 | } |
1203 | if (waitqueue_active(&ep->poll_wait)) |
1204 | pwake++; |
1205 | |
1206 | out_unlock: |
1207 | read_unlock_irqrestore(&ep->lock, flags); |
1208 | |
1209 | /* We have to call this outside the lock */ |
1210 | if (pwake) |
1211 | ep_poll_safewake(ep, epi); |
1212 | |
1213 | if (!(epi->event.events & EPOLLEXCLUSIVE)) |
1214 | ewake = 1; |
1215 | |
1216 | if (pollflags & POLLFREE) { |
1217 | /* |
1218 | * If we race with ep_remove_wait_queue() it can miss |
1219 | * ->whead = NULL and do another remove_wait_queue() after |
1220 | * us, so we can't use __remove_wait_queue(). |
1221 | */ |
1222 | list_del_init(&wait->entry); |
1223 | /* |
1224 | * ->whead != NULL protects us from the race with ep_free() |
1225 | * or ep_remove(), ep_remove_wait_queue() takes whead->lock |
1226 | * held by the caller. Once we nullify it, nothing protects |
1227 | * ep/epi or even wait. |
1228 | */ |
1229 | smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); |
1230 | } |
1231 | |
1232 | return ewake; |
1233 | } |
1234 | |
1235 | /* |
1236 | * This is the callback that is used to add our wait queue to the |
1237 | * target file wakeup lists. |
1238 | */ |
1239 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, |
1240 | poll_table *pt) |
1241 | { |
1242 | struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); |
1243 | struct epitem *epi = epq->epi; |
1244 | struct eppoll_entry *pwq; |
1245 | |
1246 | if (unlikely(!epi)) // an earlier allocation has failed |
1247 | return; |
1248 | |
1249 | pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); |
1250 | if (unlikely(!pwq)) { |
1251 | epq->epi = NULL; |
1252 | return; |
1253 | } |
1254 | |
1255 | init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); |
1256 | pwq->whead = whead; |
1257 | pwq->base = epi; |
1258 | if (epi->event.events & EPOLLEXCLUSIVE) |
1259 | add_wait_queue_exclusive(whead, &pwq->wait); |
1260 | else |
1261 | add_wait_queue(whead, &pwq->wait); |
1262 | pwq->next = epi->pwqlist; |
1263 | epi->pwqlist = pwq; |
1264 | } |
1265 | |
1266 | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) |
1267 | { |
1268 | int kcmp; |
1269 | struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; |
1270 | struct epitem *epic; |
1271 | bool leftmost = true; |
1272 | |
1273 | while (*p) { |
1274 | parent = *p; |
1275 | epic = rb_entry(parent, struct epitem, rbn); |
1276 | kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); |
1277 | if (kcmp > 0) { |
1278 | p = &parent->rb_right; |
1279 | leftmost = false; |
1280 | } else |
1281 | p = &parent->rb_left; |
1282 | } |
1283 | rb_link_node(&epi->rbn, parent, p); |
1284 | rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); |
1285 | } |
1286 | |
1287 | |
1288 | |
1289 | #define PATH_ARR_SIZE 5 |
1290 | /* |
1291 | * These are the number paths of length 1 to 5, that we are allowing to emanate |
1292 | * from a single file of interest. For example, we allow 1000 paths of length |
1293 | * 1, to emanate from each file of interest. This essentially represents the |
1294 | * potential wakeup paths, which need to be limited in order to avoid massive |
1295 | * uncontrolled wakeup storms. The common use case should be a single ep which |
1296 | * is connected to n file sources. In this case each file source has 1 path |
1297 | * of length 1. Thus, the numbers below should be more than sufficient. These |
1298 | * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify |
1299 | * and delete can't add additional paths. Protected by the epmutex. |
1300 | */ |
1301 | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; |
1302 | static int path_count[PATH_ARR_SIZE]; |
1303 | |
1304 | static int path_count_inc(int nests) |
1305 | { |
1306 | /* Allow an arbitrary number of depth 1 paths */ |
1307 | if (nests == 0) |
1308 | return 0; |
1309 | |
1310 | if (++path_count[nests] > path_limits[nests]) |
1311 | return -1; |
1312 | return 0; |
1313 | } |
1314 | |
1315 | static void path_count_init(void) |
1316 | { |
1317 | int i; |
1318 | |
1319 | for (i = 0; i < PATH_ARR_SIZE; i++) |
1320 | path_count[i] = 0; |
1321 | } |
1322 | |
1323 | static int reverse_path_check_proc(struct hlist_head *refs, int depth) |
1324 | { |
1325 | int error = 0; |
1326 | struct epitem *epi; |
1327 | |
1328 | if (depth > EP_MAX_NESTS) /* too deep nesting */ |
1329 | return -1; |
1330 | |
1331 | /* CTL_DEL can remove links here, but that can't increase our count */ |
1332 | hlist_for_each_entry_rcu(epi, refs, fllink) { |
1333 | struct hlist_head *refs = &epi->ep->refs; |
1334 | if (hlist_empty(refs)) |
1335 | error = path_count_inc(depth); |
1336 | else |
1337 | error = reverse_path_check_proc(refs, depth + 1); |
1338 | if (error != 0) |
1339 | break; |
1340 | } |
1341 | return error; |
1342 | } |
1343 | |
1344 | /** |
1345 | * reverse_path_check - The tfile_check_list is list of epitem_head, which have |
1346 | * links that are proposed to be newly added. We need to |
1347 | * make sure that those added links don't add too many |
1348 | * paths such that we will spend all our time waking up |
1349 | * eventpoll objects. |
1350 | * |
1351 | * Return: %zero if the proposed links don't create too many paths, |
1352 | * %-1 otherwise. |
1353 | */ |
1354 | static int reverse_path_check(void) |
1355 | { |
1356 | struct epitems_head *p; |
1357 | |
1358 | for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { |
1359 | int error; |
1360 | path_count_init(); |
1361 | rcu_read_lock(); |
1362 | error = reverse_path_check_proc(&p->epitems, 0); |
1363 | rcu_read_unlock(); |
1364 | if (error) |
1365 | return error; |
1366 | } |
1367 | return 0; |
1368 | } |
1369 | |
1370 | static int ep_create_wakeup_source(struct epitem *epi) |
1371 | { |
1372 | struct name_snapshot n; |
1373 | struct wakeup_source *ws; |
1374 | |
1375 | if (!epi->ep->ws) { |
1376 | epi->ep->ws = wakeup_source_register(NULL, "eventpoll" ); |
1377 | if (!epi->ep->ws) |
1378 | return -ENOMEM; |
1379 | } |
1380 | |
1381 | take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); |
1382 | ws = wakeup_source_register(NULL, n.name.name); |
1383 | release_dentry_name_snapshot(&n); |
1384 | |
1385 | if (!ws) |
1386 | return -ENOMEM; |
1387 | rcu_assign_pointer(epi->ws, ws); |
1388 | |
1389 | return 0; |
1390 | } |
1391 | |
1392 | /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ |
1393 | static noinline void ep_destroy_wakeup_source(struct epitem *epi) |
1394 | { |
1395 | struct wakeup_source *ws = ep_wakeup_source(epi); |
1396 | |
1397 | RCU_INIT_POINTER(epi->ws, NULL); |
1398 | |
1399 | /* |
1400 | * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is |
1401 | * used internally by wakeup_source_remove, too (called by |
1402 | * wakeup_source_unregister), so we cannot use call_rcu |
1403 | */ |
1404 | synchronize_rcu(); |
1405 | wakeup_source_unregister(ws); |
1406 | } |
1407 | |
1408 | static int attach_epitem(struct file *file, struct epitem *epi) |
1409 | { |
1410 | struct epitems_head *to_free = NULL; |
1411 | struct hlist_head *head = NULL; |
1412 | struct eventpoll *ep = NULL; |
1413 | |
1414 | if (is_file_epoll(file)) |
1415 | ep = file->private_data; |
1416 | |
1417 | if (ep) { |
1418 | head = &ep->refs; |
1419 | } else if (!READ_ONCE(file->f_ep)) { |
1420 | allocate: |
1421 | to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); |
1422 | if (!to_free) |
1423 | return -ENOMEM; |
1424 | head = &to_free->epitems; |
1425 | } |
1426 | spin_lock(&file->f_lock); |
1427 | if (!file->f_ep) { |
1428 | if (unlikely(!head)) { |
1429 | spin_unlock(&file->f_lock); |
1430 | goto allocate; |
1431 | } |
1432 | file->f_ep = head; |
1433 | to_free = NULL; |
1434 | } |
1435 | hlist_add_head_rcu(&epi->fllink, file->f_ep); |
1436 | spin_unlock(&file->f_lock); |
1437 | free_ephead(to_free); |
1438 | return 0; |
1439 | } |
1440 | |
1441 | /* |
1442 | * Must be called with "mtx" held. |
1443 | */ |
1444 | static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, |
1445 | struct file *tfile, int fd, int full_check) |
1446 | { |
1447 | int error, pwake = 0; |
1448 | __poll_t revents; |
1449 | struct epitem *epi; |
1450 | struct ep_pqueue epq; |
1451 | struct eventpoll *tep = NULL; |
1452 | |
1453 | if (is_file_epoll(tfile)) |
1454 | tep = tfile->private_data; |
1455 | |
1456 | lockdep_assert_irqs_enabled(); |
1457 | |
1458 | if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, |
1459 | max_user_watches) >= 0)) |
1460 | return -ENOSPC; |
1461 | percpu_counter_inc(&ep->user->epoll_watches); |
1462 | |
1463 | if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { |
1464 | percpu_counter_dec(&ep->user->epoll_watches); |
1465 | return -ENOMEM; |
1466 | } |
1467 | |
1468 | /* Item initialization follow here ... */ |
1469 | INIT_LIST_HEAD(&epi->rdllink); |
1470 | epi->ep = ep; |
1471 | ep_set_ffd(&epi->ffd, tfile, fd); |
1472 | epi->event = *event; |
1473 | epi->next = EP_UNACTIVE_PTR; |
1474 | |
1475 | if (tep) |
1476 | mutex_lock_nested(&tep->mtx, 1); |
1477 | /* Add the current item to the list of active epoll hook for this file */ |
1478 | if (unlikely(attach_epitem(tfile, epi) < 0)) { |
1479 | if (tep) |
1480 | mutex_unlock(&tep->mtx); |
1481 | kmem_cache_free(epi_cache, epi); |
1482 | percpu_counter_dec(&ep->user->epoll_watches); |
1483 | return -ENOMEM; |
1484 | } |
1485 | |
1486 | if (full_check && !tep) |
1487 | list_file(tfile); |
1488 | |
1489 | /* |
1490 | * Add the current item to the RB tree. All RB tree operations are |
1491 | * protected by "mtx", and ep_insert() is called with "mtx" held. |
1492 | */ |
1493 | ep_rbtree_insert(ep, epi); |
1494 | if (tep) |
1495 | mutex_unlock(&tep->mtx); |
1496 | |
1497 | /* now check if we've created too many backpaths */ |
1498 | if (unlikely(full_check && reverse_path_check())) { |
1499 | ep_remove(ep, epi); |
1500 | return -EINVAL; |
1501 | } |
1502 | |
1503 | if (epi->event.events & EPOLLWAKEUP) { |
1504 | error = ep_create_wakeup_source(epi); |
1505 | if (error) { |
1506 | ep_remove(ep, epi); |
1507 | return error; |
1508 | } |
1509 | } |
1510 | |
1511 | /* Initialize the poll table using the queue callback */ |
1512 | epq.epi = epi; |
1513 | init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); |
1514 | |
1515 | /* |
1516 | * Attach the item to the poll hooks and get current event bits. |
1517 | * We can safely use the file* here because its usage count has |
1518 | * been increased by the caller of this function. Note that after |
1519 | * this operation completes, the poll callback can start hitting |
1520 | * the new item. |
1521 | */ |
1522 | revents = ep_item_poll(epi, &epq.pt, 1); |
1523 | |
1524 | /* |
1525 | * We have to check if something went wrong during the poll wait queue |
1526 | * install process. Namely an allocation for a wait queue failed due |
1527 | * high memory pressure. |
1528 | */ |
1529 | if (unlikely(!epq.epi)) { |
1530 | ep_remove(ep, epi); |
1531 | return -ENOMEM; |
1532 | } |
1533 | |
1534 | /* We have to drop the new item inside our item list to keep track of it */ |
1535 | write_lock_irq(&ep->lock); |
1536 | |
1537 | /* record NAPI ID of new item if present */ |
1538 | ep_set_busy_poll_napi_id(epi); |
1539 | |
1540 | /* If the file is already "ready" we drop it inside the ready list */ |
1541 | if (revents && !ep_is_linked(epi)) { |
1542 | list_add_tail(&epi->rdllink, &ep->rdllist); |
1543 | ep_pm_stay_awake(epi); |
1544 | |
1545 | /* Notify waiting tasks that events are available */ |
1546 | if (waitqueue_active(&ep->wq)) |
1547 | wake_up(&ep->wq); |
1548 | if (waitqueue_active(&ep->poll_wait)) |
1549 | pwake++; |
1550 | } |
1551 | |
1552 | write_unlock_irq(&ep->lock); |
1553 | |
1554 | /* We have to call this outside the lock */ |
1555 | if (pwake) |
1556 | ep_poll_safewake(ep, NULL); |
1557 | |
1558 | return 0; |
1559 | } |
1560 | |
1561 | /* |
1562 | * Modify the interest event mask by dropping an event if the new mask |
1563 | * has a match in the current file status. Must be called with "mtx" held. |
1564 | */ |
1565 | static int ep_modify(struct eventpoll *ep, struct epitem *epi, |
1566 | const struct epoll_event *event) |
1567 | { |
1568 | int pwake = 0; |
1569 | poll_table pt; |
1570 | |
1571 | lockdep_assert_irqs_enabled(); |
1572 | |
1573 | init_poll_funcptr(&pt, NULL); |
1574 | |
1575 | /* |
1576 | * Set the new event interest mask before calling f_op->poll(); |
1577 | * otherwise we might miss an event that happens between the |
1578 | * f_op->poll() call and the new event set registering. |
1579 | */ |
1580 | epi->event.events = event->events; /* need barrier below */ |
1581 | epi->event.data = event->data; /* protected by mtx */ |
1582 | if (epi->event.events & EPOLLWAKEUP) { |
1583 | if (!ep_has_wakeup_source(epi)) |
1584 | ep_create_wakeup_source(epi); |
1585 | } else if (ep_has_wakeup_source(epi)) { |
1586 | ep_destroy_wakeup_source(epi); |
1587 | } |
1588 | |
1589 | /* |
1590 | * The following barrier has two effects: |
1591 | * |
1592 | * 1) Flush epi changes above to other CPUs. This ensures |
1593 | * we do not miss events from ep_poll_callback if an |
1594 | * event occurs immediately after we call f_op->poll(). |
1595 | * We need this because we did not take ep->lock while |
1596 | * changing epi above (but ep_poll_callback does take |
1597 | * ep->lock). |
1598 | * |
1599 | * 2) We also need to ensure we do not miss _past_ events |
1600 | * when calling f_op->poll(). This barrier also |
1601 | * pairs with the barrier in wq_has_sleeper (see |
1602 | * comments for wq_has_sleeper). |
1603 | * |
1604 | * This barrier will now guarantee ep_poll_callback or f_op->poll |
1605 | * (or both) will notice the readiness of an item. |
1606 | */ |
1607 | smp_mb(); |
1608 | |
1609 | /* |
1610 | * Get current event bits. We can safely use the file* here because |
1611 | * its usage count has been increased by the caller of this function. |
1612 | * If the item is "hot" and it is not registered inside the ready |
1613 | * list, push it inside. |
1614 | */ |
1615 | if (ep_item_poll(epi, &pt, 1)) { |
1616 | write_lock_irq(&ep->lock); |
1617 | if (!ep_is_linked(epi)) { |
1618 | list_add_tail(&epi->rdllink, &ep->rdllist); |
1619 | ep_pm_stay_awake(epi); |
1620 | |
1621 | /* Notify waiting tasks that events are available */ |
1622 | if (waitqueue_active(&ep->wq)) |
1623 | wake_up(&ep->wq); |
1624 | if (waitqueue_active(&ep->poll_wait)) |
1625 | pwake++; |
1626 | } |
1627 | write_unlock_irq(&ep->lock); |
1628 | } |
1629 | |
1630 | /* We have to call this outside the lock */ |
1631 | if (pwake) |
1632 | ep_poll_safewake(ep, NULL); |
1633 | |
1634 | return 0; |
1635 | } |
1636 | |
1637 | static int ep_send_events(struct eventpoll *ep, |
1638 | struct epoll_event __user *events, int maxevents) |
1639 | { |
1640 | struct epitem *epi, *tmp; |
1641 | LIST_HEAD(txlist); |
1642 | poll_table pt; |
1643 | int res = 0; |
1644 | |
1645 | /* |
1646 | * Always short-circuit for fatal signals to allow threads to make a |
1647 | * timely exit without the chance of finding more events available and |
1648 | * fetching repeatedly. |
1649 | */ |
1650 | if (fatal_signal_pending(current)) |
1651 | return -EINTR; |
1652 | |
1653 | init_poll_funcptr(&pt, NULL); |
1654 | |
1655 | mutex_lock(&ep->mtx); |
1656 | ep_start_scan(ep, &txlist); |
1657 | |
1658 | /* |
1659 | * We can loop without lock because we are passed a task private list. |
1660 | * Items cannot vanish during the loop we are holding ep->mtx. |
1661 | */ |
1662 | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { |
1663 | struct wakeup_source *ws; |
1664 | __poll_t revents; |
1665 | |
1666 | if (res >= maxevents) |
1667 | break; |
1668 | |
1669 | /* |
1670 | * Activate ep->ws before deactivating epi->ws to prevent |
1671 | * triggering auto-suspend here (in case we reactive epi->ws |
1672 | * below). |
1673 | * |
1674 | * This could be rearranged to delay the deactivation of epi->ws |
1675 | * instead, but then epi->ws would temporarily be out of sync |
1676 | * with ep_is_linked(). |
1677 | */ |
1678 | ws = ep_wakeup_source(epi); |
1679 | if (ws) { |
1680 | if (ws->active) |
1681 | __pm_stay_awake(ep->ws); |
1682 | __pm_relax(ws); |
1683 | } |
1684 | |
1685 | list_del_init(&epi->rdllink); |
1686 | |
1687 | /* |
1688 | * If the event mask intersect the caller-requested one, |
1689 | * deliver the event to userspace. Again, we are holding ep->mtx, |
1690 | * so no operations coming from userspace can change the item. |
1691 | */ |
1692 | revents = ep_item_poll(epi, &pt, 1); |
1693 | if (!revents) |
1694 | continue; |
1695 | |
1696 | events = epoll_put_uevent(revents, epi->event.data, events); |
1697 | if (!events) { |
1698 | list_add(&epi->rdllink, &txlist); |
1699 | ep_pm_stay_awake(epi); |
1700 | if (!res) |
1701 | res = -EFAULT; |
1702 | break; |
1703 | } |
1704 | res++; |
1705 | if (epi->event.events & EPOLLONESHOT) |
1706 | epi->event.events &= EP_PRIVATE_BITS; |
1707 | else if (!(epi->event.events & EPOLLET)) { |
1708 | /* |
1709 | * If this file has been added with Level |
1710 | * Trigger mode, we need to insert back inside |
1711 | * the ready list, so that the next call to |
1712 | * epoll_wait() will check again the events |
1713 | * availability. At this point, no one can insert |
1714 | * into ep->rdllist besides us. The epoll_ctl() |
1715 | * callers are locked out by |
1716 | * ep_scan_ready_list() holding "mtx" and the |
1717 | * poll callback will queue them in ep->ovflist. |
1718 | */ |
1719 | list_add_tail(&epi->rdllink, &ep->rdllist); |
1720 | ep_pm_stay_awake(epi); |
1721 | } |
1722 | } |
1723 | ep_done_scan(ep, &txlist); |
1724 | mutex_unlock(&ep->mtx); |
1725 | |
1726 | return res; |
1727 | } |
1728 | |
1729 | static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) |
1730 | { |
1731 | struct timespec64 now; |
1732 | |
1733 | if (ms < 0) |
1734 | return NULL; |
1735 | |
1736 | if (!ms) { |
1737 | to->tv_sec = 0; |
1738 | to->tv_nsec = 0; |
1739 | return to; |
1740 | } |
1741 | |
1742 | to->tv_sec = ms / MSEC_PER_SEC; |
1743 | to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); |
1744 | |
1745 | ktime_get_ts64(&now); |
1746 | *to = timespec64_add_safe(now, *to); |
1747 | return to; |
1748 | } |
1749 | |
1750 | /* |
1751 | * autoremove_wake_function, but remove even on failure to wake up, because we |
1752 | * know that default_wake_function/ttwu will only fail if the thread is already |
1753 | * woken, and in that case the ep_poll loop will remove the entry anyways, not |
1754 | * try to reuse it. |
1755 | */ |
1756 | static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, |
1757 | unsigned int mode, int sync, void *key) |
1758 | { |
1759 | int ret = default_wake_function(wq_entry, mode, sync, key); |
1760 | |
1761 | list_del_init(&wq_entry->entry); |
1762 | return ret; |
1763 | } |
1764 | |
1765 | /** |
1766 | * ep_poll - Retrieves ready events, and delivers them to the caller-supplied |
1767 | * event buffer. |
1768 | * |
1769 | * @ep: Pointer to the eventpoll context. |
1770 | * @events: Pointer to the userspace buffer where the ready events should be |
1771 | * stored. |
1772 | * @maxevents: Size (in terms of number of events) of the caller event buffer. |
1773 | * @timeout: Maximum timeout for the ready events fetch operation, in |
1774 | * timespec. If the timeout is zero, the function will not block, |
1775 | * while if the @timeout ptr is NULL, the function will block |
1776 | * until at least one event has been retrieved (or an error |
1777 | * occurred). |
1778 | * |
1779 | * Return: the number of ready events which have been fetched, or an |
1780 | * error code, in case of error. |
1781 | */ |
1782 | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, |
1783 | int maxevents, struct timespec64 *timeout) |
1784 | { |
1785 | int res, eavail, timed_out = 0; |
1786 | u64 slack = 0; |
1787 | wait_queue_entry_t wait; |
1788 | ktime_t expires, *to = NULL; |
1789 | |
1790 | lockdep_assert_irqs_enabled(); |
1791 | |
1792 | if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { |
1793 | slack = select_estimate_accuracy(timeout); |
1794 | to = &expires; |
1795 | *to = timespec64_to_ktime(*timeout); |
1796 | } else if (timeout) { |
1797 | /* |
1798 | * Avoid the unnecessary trip to the wait queue loop, if the |
1799 | * caller specified a non blocking operation. |
1800 | */ |
1801 | timed_out = 1; |
1802 | } |
1803 | |
1804 | /* |
1805 | * This call is racy: We may or may not see events that are being added |
1806 | * to the ready list under the lock (e.g., in IRQ callbacks). For cases |
1807 | * with a non-zero timeout, this thread will check the ready list under |
1808 | * lock and will add to the wait queue. For cases with a zero |
1809 | * timeout, the user by definition should not care and will have to |
1810 | * recheck again. |
1811 | */ |
1812 | eavail = ep_events_available(ep); |
1813 | |
1814 | while (1) { |
1815 | if (eavail) { |
1816 | /* |
1817 | * Try to transfer events to user space. In case we get |
1818 | * 0 events and there's still timeout left over, we go |
1819 | * trying again in search of more luck. |
1820 | */ |
1821 | res = ep_send_events(ep, events, maxevents); |
1822 | if (res) |
1823 | return res; |
1824 | } |
1825 | |
1826 | if (timed_out) |
1827 | return 0; |
1828 | |
1829 | eavail = ep_busy_loop(ep, timed_out); |
1830 | if (eavail) |
1831 | continue; |
1832 | |
1833 | if (signal_pending(current)) |
1834 | return -EINTR; |
1835 | |
1836 | /* |
1837 | * Internally init_wait() uses autoremove_wake_function(), |
1838 | * thus wait entry is removed from the wait queue on each |
1839 | * wakeup. Why it is important? In case of several waiters |
1840 | * each new wakeup will hit the next waiter, giving it the |
1841 | * chance to harvest new event. Otherwise wakeup can be |
1842 | * lost. This is also good performance-wise, because on |
1843 | * normal wakeup path no need to call __remove_wait_queue() |
1844 | * explicitly, thus ep->lock is not taken, which halts the |
1845 | * event delivery. |
1846 | * |
1847 | * In fact, we now use an even more aggressive function that |
1848 | * unconditionally removes, because we don't reuse the wait |
1849 | * entry between loop iterations. This lets us also avoid the |
1850 | * performance issue if a process is killed, causing all of its |
1851 | * threads to wake up without being removed normally. |
1852 | */ |
1853 | init_wait(&wait); |
1854 | wait.func = ep_autoremove_wake_function; |
1855 | |
1856 | write_lock_irq(&ep->lock); |
1857 | /* |
1858 | * Barrierless variant, waitqueue_active() is called under |
1859 | * the same lock on wakeup ep_poll_callback() side, so it |
1860 | * is safe to avoid an explicit barrier. |
1861 | */ |
1862 | __set_current_state(TASK_INTERRUPTIBLE); |
1863 | |
1864 | /* |
1865 | * Do the final check under the lock. ep_scan_ready_list() |
1866 | * plays with two lists (->rdllist and ->ovflist) and there |
1867 | * is always a race when both lists are empty for short |
1868 | * period of time although events are pending, so lock is |
1869 | * important. |
1870 | */ |
1871 | eavail = ep_events_available(ep); |
1872 | if (!eavail) |
1873 | __add_wait_queue_exclusive(&ep->wq, &wait); |
1874 | |
1875 | write_unlock_irq(&ep->lock); |
1876 | |
1877 | if (!eavail) |
1878 | timed_out = !schedule_hrtimeout_range(to, slack, |
1879 | HRTIMER_MODE_ABS); |
1880 | __set_current_state(TASK_RUNNING); |
1881 | |
1882 | /* |
1883 | * We were woken up, thus go and try to harvest some events. |
1884 | * If timed out and still on the wait queue, recheck eavail |
1885 | * carefully under lock, below. |
1886 | */ |
1887 | eavail = 1; |
1888 | |
1889 | if (!list_empty_careful(&wait.entry)) { |
1890 | write_lock_irq(&ep->lock); |
1891 | /* |
1892 | * If the thread timed out and is not on the wait queue, |
1893 | * it means that the thread was woken up after its |
1894 | * timeout expired before it could reacquire the lock. |
1895 | * Thus, when wait.entry is empty, it needs to harvest |
1896 | * events. |
1897 | */ |
1898 | if (timed_out) |
1899 | eavail = list_empty(&wait.entry); |
1900 | __remove_wait_queue(&ep->wq, &wait); |
1901 | write_unlock_irq(&ep->lock); |
1902 | } |
1903 | } |
1904 | } |
1905 | |
1906 | /** |
1907 | * ep_loop_check_proc - verify that adding an epoll file inside another |
1908 | * epoll structure does not violate the constraints, in |
1909 | * terms of closed loops, or too deep chains (which can |
1910 | * result in excessive stack usage). |
1911 | * |
1912 | * @ep: the &struct eventpoll to be currently checked. |
1913 | * @depth: Current depth of the path being checked. |
1914 | * |
1915 | * Return: %zero if adding the epoll @file inside current epoll |
1916 | * structure @ep does not violate the constraints, or %-1 otherwise. |
1917 | */ |
1918 | static int ep_loop_check_proc(struct eventpoll *ep, int depth) |
1919 | { |
1920 | int error = 0; |
1921 | struct rb_node *rbp; |
1922 | struct epitem *epi; |
1923 | |
1924 | mutex_lock_nested(&ep->mtx, depth + 1); |
1925 | ep->gen = loop_check_gen; |
1926 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
1927 | epi = rb_entry(rbp, struct epitem, rbn); |
1928 | if (unlikely(is_file_epoll(epi->ffd.file))) { |
1929 | struct eventpoll *ep_tovisit; |
1930 | ep_tovisit = epi->ffd.file->private_data; |
1931 | if (ep_tovisit->gen == loop_check_gen) |
1932 | continue; |
1933 | if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) |
1934 | error = -1; |
1935 | else |
1936 | error = ep_loop_check_proc(ep_tovisit, depth + 1); |
1937 | if (error != 0) |
1938 | break; |
1939 | } else { |
1940 | /* |
1941 | * If we've reached a file that is not associated with |
1942 | * an ep, then we need to check if the newly added |
1943 | * links are going to add too many wakeup paths. We do |
1944 | * this by adding it to the tfile_check_list, if it's |
1945 | * not already there, and calling reverse_path_check() |
1946 | * during ep_insert(). |
1947 | */ |
1948 | list_file(epi->ffd.file); |
1949 | } |
1950 | } |
1951 | mutex_unlock(&ep->mtx); |
1952 | |
1953 | return error; |
1954 | } |
1955 | |
1956 | /** |
1957 | * ep_loop_check - Performs a check to verify that adding an epoll file (@to) |
1958 | * into another epoll file (represented by @ep) does not create |
1959 | * closed loops or too deep chains. |
1960 | * |
1961 | * @ep: Pointer to the epoll we are inserting into. |
1962 | * @to: Pointer to the epoll to be inserted. |
1963 | * |
1964 | * Return: %zero if adding the epoll @to inside the epoll @from |
1965 | * does not violate the constraints, or %-1 otherwise. |
1966 | */ |
1967 | static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) |
1968 | { |
1969 | inserting_into = ep; |
1970 | return ep_loop_check_proc(to, 0); |
1971 | } |
1972 | |
1973 | static void clear_tfile_check_list(void) |
1974 | { |
1975 | rcu_read_lock(); |
1976 | while (tfile_check_list != EP_UNACTIVE_PTR) { |
1977 | struct epitems_head *head = tfile_check_list; |
1978 | tfile_check_list = head->next; |
1979 | unlist_file(head); |
1980 | } |
1981 | rcu_read_unlock(); |
1982 | } |
1983 | |
1984 | /* |
1985 | * Open an eventpoll file descriptor. |
1986 | */ |
1987 | static int do_epoll_create(int flags) |
1988 | { |
1989 | int error, fd; |
1990 | struct eventpoll *ep = NULL; |
1991 | struct file *file; |
1992 | |
1993 | /* Check the EPOLL_* constant for consistency. */ |
1994 | BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); |
1995 | |
1996 | if (flags & ~EPOLL_CLOEXEC) |
1997 | return -EINVAL; |
1998 | /* |
1999 | * Create the internal data structure ("struct eventpoll"). |
2000 | */ |
2001 | error = ep_alloc(&ep); |
2002 | if (error < 0) |
2003 | return error; |
2004 | /* |
2005 | * Creates all the items needed to setup an eventpoll file. That is, |
2006 | * a file structure and a free file descriptor. |
2007 | */ |
2008 | fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); |
2009 | if (fd < 0) { |
2010 | error = fd; |
2011 | goto out_free_ep; |
2012 | } |
2013 | file = anon_inode_getfile("[eventpoll]" , &eventpoll_fops, ep, |
2014 | O_RDWR | (flags & O_CLOEXEC)); |
2015 | if (IS_ERR(file)) { |
2016 | error = PTR_ERR(file); |
2017 | goto out_free_fd; |
2018 | } |
2019 | ep->file = file; |
2020 | fd_install(fd, file); |
2021 | return fd; |
2022 | |
2023 | out_free_fd: |
2024 | put_unused_fd(fd); |
2025 | out_free_ep: |
2026 | ep_free(ep); |
2027 | return error; |
2028 | } |
2029 | |
2030 | SYSCALL_DEFINE1(epoll_create1, int, flags) |
2031 | { |
2032 | return do_epoll_create(flags); |
2033 | } |
2034 | |
2035 | SYSCALL_DEFINE1(epoll_create, int, size) |
2036 | { |
2037 | if (size <= 0) |
2038 | return -EINVAL; |
2039 | |
2040 | return do_epoll_create(0); |
2041 | } |
2042 | |
2043 | static inline int epoll_mutex_lock(struct mutex *mutex, int depth, |
2044 | bool nonblock) |
2045 | { |
2046 | if (!nonblock) { |
2047 | mutex_lock_nested(mutex, depth); |
2048 | return 0; |
2049 | } |
2050 | if (mutex_trylock(mutex)) |
2051 | return 0; |
2052 | return -EAGAIN; |
2053 | } |
2054 | |
2055 | int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, |
2056 | bool nonblock) |
2057 | { |
2058 | int error; |
2059 | int full_check = 0; |
2060 | struct fd f, tf; |
2061 | struct eventpoll *ep; |
2062 | struct epitem *epi; |
2063 | struct eventpoll *tep = NULL; |
2064 | |
2065 | error = -EBADF; |
2066 | f = fdget(epfd); |
2067 | if (!f.file) |
2068 | goto error_return; |
2069 | |
2070 | /* Get the "struct file *" for the target file */ |
2071 | tf = fdget(fd); |
2072 | if (!tf.file) |
2073 | goto error_fput; |
2074 | |
2075 | /* The target file descriptor must support poll */ |
2076 | error = -EPERM; |
2077 | if (!file_can_poll(tf.file)) |
2078 | goto error_tgt_fput; |
2079 | |
2080 | /* Check if EPOLLWAKEUP is allowed */ |
2081 | if (ep_op_has_event(op)) |
2082 | ep_take_care_of_epollwakeup(epds); |
2083 | |
2084 | /* |
2085 | * We have to check that the file structure underneath the file descriptor |
2086 | * the user passed to us _is_ an eventpoll file. And also we do not permit |
2087 | * adding an epoll file descriptor inside itself. |
2088 | */ |
2089 | error = -EINVAL; |
2090 | if (f.file == tf.file || !is_file_epoll(f.file)) |
2091 | goto error_tgt_fput; |
2092 | |
2093 | /* |
2094 | * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, |
2095 | * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. |
2096 | * Also, we do not currently supported nested exclusive wakeups. |
2097 | */ |
2098 | if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { |
2099 | if (op == EPOLL_CTL_MOD) |
2100 | goto error_tgt_fput; |
2101 | if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || |
2102 | (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) |
2103 | goto error_tgt_fput; |
2104 | } |
2105 | |
2106 | /* |
2107 | * At this point it is safe to assume that the "private_data" contains |
2108 | * our own data structure. |
2109 | */ |
2110 | ep = f.file->private_data; |
2111 | |
2112 | /* |
2113 | * When we insert an epoll file descriptor inside another epoll file |
2114 | * descriptor, there is the chance of creating closed loops, which are |
2115 | * better be handled here, than in more critical paths. While we are |
2116 | * checking for loops we also determine the list of files reachable |
2117 | * and hang them on the tfile_check_list, so we can check that we |
2118 | * haven't created too many possible wakeup paths. |
2119 | * |
2120 | * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when |
2121 | * the epoll file descriptor is attaching directly to a wakeup source, |
2122 | * unless the epoll file descriptor is nested. The purpose of taking the |
2123 | * 'epmutex' on add is to prevent complex toplogies such as loops and |
2124 | * deep wakeup paths from forming in parallel through multiple |
2125 | * EPOLL_CTL_ADD operations. |
2126 | */ |
2127 | error = epoll_mutex_lock(&ep->mtx, 0, nonblock); |
2128 | if (error) |
2129 | goto error_tgt_fput; |
2130 | if (op == EPOLL_CTL_ADD) { |
2131 | if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || |
2132 | is_file_epoll(tf.file)) { |
2133 | mutex_unlock(&ep->mtx); |
2134 | error = epoll_mutex_lock(&epmutex, 0, nonblock); |
2135 | if (error) |
2136 | goto error_tgt_fput; |
2137 | loop_check_gen++; |
2138 | full_check = 1; |
2139 | if (is_file_epoll(tf.file)) { |
2140 | tep = tf.file->private_data; |
2141 | error = -ELOOP; |
2142 | if (ep_loop_check(ep, tep) != 0) |
2143 | goto error_tgt_fput; |
2144 | } |
2145 | error = epoll_mutex_lock(&ep->mtx, 0, nonblock); |
2146 | if (error) |
2147 | goto error_tgt_fput; |
2148 | } |
2149 | } |
2150 | |
2151 | /* |
2152 | * Try to lookup the file inside our RB tree. Since we grabbed "mtx" |
2153 | * above, we can be sure to be able to use the item looked up by |
2154 | * ep_find() till we release the mutex. |
2155 | */ |
2156 | epi = ep_find(ep, tf.file, fd); |
2157 | |
2158 | error = -EINVAL; |
2159 | switch (op) { |
2160 | case EPOLL_CTL_ADD: |
2161 | if (!epi) { |
2162 | epds->events |= EPOLLERR | EPOLLHUP; |
2163 | error = ep_insert(ep, epds, tf.file, fd, full_check); |
2164 | } else |
2165 | error = -EEXIST; |
2166 | break; |
2167 | case EPOLL_CTL_DEL: |
2168 | if (epi) |
2169 | error = ep_remove(ep, epi); |
2170 | else |
2171 | error = -ENOENT; |
2172 | break; |
2173 | case EPOLL_CTL_MOD: |
2174 | if (epi) { |
2175 | if (!(epi->event.events & EPOLLEXCLUSIVE)) { |
2176 | epds->events |= EPOLLERR | EPOLLHUP; |
2177 | error = ep_modify(ep, epi, epds); |
2178 | } |
2179 | } else |
2180 | error = -ENOENT; |
2181 | break; |
2182 | } |
2183 | mutex_unlock(&ep->mtx); |
2184 | |
2185 | error_tgt_fput: |
2186 | if (full_check) { |
2187 | clear_tfile_check_list(); |
2188 | loop_check_gen++; |
2189 | mutex_unlock(&epmutex); |
2190 | } |
2191 | |
2192 | fdput(tf); |
2193 | error_fput: |
2194 | fdput(f); |
2195 | error_return: |
2196 | |
2197 | return error; |
2198 | } |
2199 | |
2200 | /* |
2201 | * The following function implements the controller interface for |
2202 | * the eventpoll file that enables the insertion/removal/change of |
2203 | * file descriptors inside the interest set. |
2204 | */ |
2205 | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, |
2206 | struct epoll_event __user *, event) |
2207 | { |
2208 | struct epoll_event epds; |
2209 | |
2210 | if (ep_op_has_event(op) && |
2211 | copy_from_user(&epds, event, sizeof(struct epoll_event))) |
2212 | return -EFAULT; |
2213 | |
2214 | return do_epoll_ctl(epfd, op, fd, &epds, false); |
2215 | } |
2216 | |
2217 | /* |
2218 | * Implement the event wait interface for the eventpoll file. It is the kernel |
2219 | * part of the user space epoll_wait(2). |
2220 | */ |
2221 | static int do_epoll_wait(int epfd, struct epoll_event __user *events, |
2222 | int maxevents, struct timespec64 *to) |
2223 | { |
2224 | int error; |
2225 | struct fd f; |
2226 | struct eventpoll *ep; |
2227 | |
2228 | /* The maximum number of event must be greater than zero */ |
2229 | if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) |
2230 | return -EINVAL; |
2231 | |
2232 | /* Verify that the area passed by the user is writeable */ |
2233 | if (!access_ok(events, maxevents * sizeof(struct epoll_event))) |
2234 | return -EFAULT; |
2235 | |
2236 | /* Get the "struct file *" for the eventpoll file */ |
2237 | f = fdget(epfd); |
2238 | if (!f.file) |
2239 | return -EBADF; |
2240 | |
2241 | /* |
2242 | * We have to check that the file structure underneath the fd |
2243 | * the user passed to us _is_ an eventpoll file. |
2244 | */ |
2245 | error = -EINVAL; |
2246 | if (!is_file_epoll(f.file)) |
2247 | goto error_fput; |
2248 | |
2249 | /* |
2250 | * At this point it is safe to assume that the "private_data" contains |
2251 | * our own data structure. |
2252 | */ |
2253 | ep = f.file->private_data; |
2254 | |
2255 | /* Time to fish for events ... */ |
2256 | error = ep_poll(ep, events, maxevents, to); |
2257 | |
2258 | error_fput: |
2259 | fdput(f); |
2260 | return error; |
2261 | } |
2262 | |
2263 | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, |
2264 | int, maxevents, int, timeout) |
2265 | { |
2266 | struct timespec64 to; |
2267 | |
2268 | return do_epoll_wait(epfd, events, maxevents, |
2269 | ep_timeout_to_timespec(&to, timeout)); |
2270 | } |
2271 | |
2272 | /* |
2273 | * Implement the event wait interface for the eventpoll file. It is the kernel |
2274 | * part of the user space epoll_pwait(2). |
2275 | */ |
2276 | static int do_epoll_pwait(int epfd, struct epoll_event __user *events, |
2277 | int maxevents, struct timespec64 *to, |
2278 | const sigset_t __user *sigmask, size_t sigsetsize) |
2279 | { |
2280 | int error; |
2281 | |
2282 | /* |
2283 | * If the caller wants a certain signal mask to be set during the wait, |
2284 | * we apply it here. |
2285 | */ |
2286 | error = set_user_sigmask(sigmask, sigsetsize); |
2287 | if (error) |
2288 | return error; |
2289 | |
2290 | error = do_epoll_wait(epfd, events, maxevents, to); |
2291 | |
2292 | restore_saved_sigmask_unless(error == -EINTR); |
2293 | |
2294 | return error; |
2295 | } |
2296 | |
2297 | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, |
2298 | int, maxevents, int, timeout, const sigset_t __user *, sigmask, |
2299 | size_t, sigsetsize) |
2300 | { |
2301 | struct timespec64 to; |
2302 | |
2303 | return do_epoll_pwait(epfd, events, maxevents, |
2304 | ep_timeout_to_timespec(&to, timeout), |
2305 | sigmask, sigsetsize); |
2306 | } |
2307 | |
2308 | SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, |
2309 | int, maxevents, const struct __kernel_timespec __user *, timeout, |
2310 | const sigset_t __user *, sigmask, size_t, sigsetsize) |
2311 | { |
2312 | struct timespec64 ts, *to = NULL; |
2313 | |
2314 | if (timeout) { |
2315 | if (get_timespec64(&ts, timeout)) |
2316 | return -EFAULT; |
2317 | to = &ts; |
2318 | if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
2319 | return -EINVAL; |
2320 | } |
2321 | |
2322 | return do_epoll_pwait(epfd, events, maxevents, to, |
2323 | sigmask, sigsetsize); |
2324 | } |
2325 | |
2326 | #ifdef CONFIG_COMPAT |
2327 | static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, |
2328 | int maxevents, struct timespec64 *timeout, |
2329 | const compat_sigset_t __user *sigmask, |
2330 | compat_size_t sigsetsize) |
2331 | { |
2332 | long err; |
2333 | |
2334 | /* |
2335 | * If the caller wants a certain signal mask to be set during the wait, |
2336 | * we apply it here. |
2337 | */ |
2338 | err = set_compat_user_sigmask(sigmask, sigsetsize); |
2339 | if (err) |
2340 | return err; |
2341 | |
2342 | err = do_epoll_wait(epfd, events, maxevents, timeout); |
2343 | |
2344 | restore_saved_sigmask_unless(err == -EINTR); |
2345 | |
2346 | return err; |
2347 | } |
2348 | |
2349 | COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, |
2350 | struct epoll_event __user *, events, |
2351 | int, maxevents, int, timeout, |
2352 | const compat_sigset_t __user *, sigmask, |
2353 | compat_size_t, sigsetsize) |
2354 | { |
2355 | struct timespec64 to; |
2356 | |
2357 | return do_compat_epoll_pwait(epfd, events, maxevents, |
2358 | ep_timeout_to_timespec(&to, timeout), |
2359 | sigmask, sigsetsize); |
2360 | } |
2361 | |
2362 | COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, |
2363 | struct epoll_event __user *, events, |
2364 | int, maxevents, |
2365 | const struct __kernel_timespec __user *, timeout, |
2366 | const compat_sigset_t __user *, sigmask, |
2367 | compat_size_t, sigsetsize) |
2368 | { |
2369 | struct timespec64 ts, *to = NULL; |
2370 | |
2371 | if (timeout) { |
2372 | if (get_timespec64(&ts, timeout)) |
2373 | return -EFAULT; |
2374 | to = &ts; |
2375 | if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
2376 | return -EINVAL; |
2377 | } |
2378 | |
2379 | return do_compat_epoll_pwait(epfd, events, maxevents, to, |
2380 | sigmask, sigsetsize); |
2381 | } |
2382 | |
2383 | #endif |
2384 | |
2385 | static int __init eventpoll_init(void) |
2386 | { |
2387 | struct sysinfo si; |
2388 | |
2389 | si_meminfo(&si); |
2390 | /* |
2391 | * Allows top 4% of lomem to be allocated for epoll watches (per user). |
2392 | */ |
2393 | max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / |
2394 | EP_ITEM_COST; |
2395 | BUG_ON(max_user_watches < 0); |
2396 | |
2397 | /* |
2398 | * We can have many thousands of epitems, so prevent this from |
2399 | * using an extra cache line on 64-bit (and smaller) CPUs |
2400 | */ |
2401 | BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); |
2402 | |
2403 | /* Allocates slab cache used to allocate "struct epitem" items */ |
2404 | epi_cache = kmem_cache_create("eventpoll_epi" , sizeof(struct epitem), |
2405 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2406 | |
2407 | /* Allocates slab cache used to allocate "struct eppoll_entry" */ |
2408 | pwq_cache = kmem_cache_create("eventpoll_pwq" , |
2409 | sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2410 | epoll_sysctls_init(); |
2411 | |
2412 | ephead_cache = kmem_cache_create("ep_head" , |
2413 | sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); |
2414 | |
2415 | return 0; |
2416 | } |
2417 | fs_initcall(eventpoll_init); |
2418 | |