1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/sched/signal.h>
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
29#include <linux/mutex.h>
30#include <linux/anon_inodes.h>
31#include <linux/device.h>
32#include <linux/uaccess.h>
33#include <asm/io.h>
34#include <asm/mman.h>
35#include <linux/atomic.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/compat.h>
39#include <linux/rculist.h>
40#include <linux/capability.h>
41#include <net/busy_poll.h>
42
43/*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epnested_mutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
83 */
84
85/* Epoll private bits inside the event mask */
86#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93/* Maximum number of nesting allowed inside epoll sets */
94#define EP_MAX_NESTS 4
95
96#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98#define EP_UNACTIVE_PTR ((void *) -1L)
99
100#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102struct epoll_filefd {
103 struct file *file;
104 int fd;
105} __packed;
106
107/* Wait structure used by the poll hooks */
108struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
111
112 /* The "base" pointer is set to the container "struct epitem" */
113 struct epitem *base;
114
115 /*
116 * Wait queue item that will be linked to the target file wait
117 * queue head.
118 */
119 wait_queue_entry_t wait;
120
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
123};
124
125/*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
130 */
131struct epitem {
132 union {
133 /* RB tree node links this structure to the eventpoll RB tree */
134 struct rb_node rbn;
135 /* Used to free the struct epitem */
136 struct rcu_head rcu;
137 };
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
147
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
151 /*
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 */
156 bool dying;
157
158 /* List containing poll wait queues */
159 struct eppoll_entry *pwqlist;
160
161 /* The "container" of this item */
162 struct eventpoll *ep;
163
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink;
166
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu *ws;
169
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event;
172};
173
174/*
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
177 * interface.
178 */
179struct eventpoll {
180 /*
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
185 */
186 struct mutex mtx;
187
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq;
190
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait;
193
194 /* List of ready file descriptors */
195 struct list_head rdllist;
196
197 /* Lock which protects rdllist and ovflist */
198 rwlock_t lock;
199
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr;
202
203 /*
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
206 * holding ->lock.
207 */
208 struct epitem *ovflist;
209
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source *ws;
212
213 /* The user that created the eventpoll descriptor */
214 struct user_struct *user;
215
216 struct file *file;
217
218 /* used to optimize loop detection check */
219 u64 gen;
220 struct hlist_head refs;
221
222 /*
223 * usage count, used together with epitem->dying to
224 * orchestrate the disposal of this struct
225 */
226 refcount_t refcount;
227
228#ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id;
231 /* busy poll timeout */
232 u32 busy_poll_usecs;
233 /* busy poll packet budget */
234 u16 busy_poll_budget;
235 bool prefer_busy_poll;
236#endif
237
238#ifdef CONFIG_DEBUG_LOCK_ALLOC
239 /* tracks wakeup nests for lockdep validation */
240 u8 nests;
241#endif
242};
243
244/* Wrapper struct used by poll queueing */
245struct ep_pqueue {
246 poll_table pt;
247 struct epitem *epi;
248};
249
250/*
251 * Configuration options available inside /proc/sys/fs/epoll/
252 */
253/* Maximum number of epoll watched descriptors, per user */
254static long max_user_watches __read_mostly;
255
256/* Used for cycles detection */
257static DEFINE_MUTEX(epnested_mutex);
258
259static u64 loop_check_gen = 0;
260
261/* Used to check for epoll file descriptor inclusion loops */
262static struct eventpoll *inserting_into;
263
264/* Slab cache used to allocate "struct epitem" */
265static struct kmem_cache *epi_cache __ro_after_init;
266
267/* Slab cache used to allocate "struct eppoll_entry" */
268static struct kmem_cache *pwq_cache __ro_after_init;
269
270/*
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epnested_mutex.
273 */
274struct epitems_head {
275 struct hlist_head epitems;
276 struct epitems_head *next;
277};
278static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279
280static struct kmem_cache *ephead_cache __ro_after_init;
281
282static inline void free_ephead(struct epitems_head *head)
283{
284 if (head)
285 kmem_cache_free(s: ephead_cache, objp: head);
286}
287
288static void list_file(struct file *file)
289{
290 struct epitems_head *head;
291
292 head = container_of(file->f_ep, struct epitems_head, epitems);
293 if (!head->next) {
294 head->next = tfile_check_list;
295 tfile_check_list = head;
296 }
297}
298
299static void unlist_file(struct epitems_head *head)
300{
301 struct epitems_head *to_free = head;
302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303 if (p) {
304 struct epitem *epi= container_of(p, struct epitem, fllink);
305 spin_lock(lock: &epi->ffd.file->f_lock);
306 if (!hlist_empty(h: &head->epitems))
307 to_free = NULL;
308 head->next = NULL;
309 spin_unlock(lock: &epi->ffd.file->f_lock);
310 }
311 free_ephead(head: to_free);
312}
313
314#ifdef CONFIG_SYSCTL
315
316#include <linux/sysctl.h>
317
318static long long_zero;
319static long long_max = LONG_MAX;
320
321static struct ctl_table epoll_table[] = {
322 {
323 .procname = "max_user_watches",
324 .data = &max_user_watches,
325 .maxlen = sizeof(max_user_watches),
326 .mode = 0644,
327 .proc_handler = proc_doulongvec_minmax,
328 .extra1 = &long_zero,
329 .extra2 = &long_max,
330 },
331};
332
333static void __init epoll_sysctls_init(void)
334{
335 register_sysctl("fs/epoll", epoll_table);
336}
337#else
338#define epoll_sysctls_init() do { } while (0)
339#endif /* CONFIG_SYSCTL */
340
341static const struct file_operations eventpoll_fops;
342
343static inline int is_file_epoll(struct file *f)
344{
345 return f->f_op == &eventpoll_fops;
346}
347
348/* Setup the structure that is used as key for the RB tree */
349static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 struct file *file, int fd)
351{
352 ffd->file = file;
353 ffd->fd = fd;
354}
355
356/* Compare RB tree keys */
357static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 struct epoll_filefd *p2)
359{
360 return (p1->file > p2->file ? +1:
361 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362}
363
364/* Tells us if the item is currently linked */
365static inline int ep_is_linked(struct epitem *epi)
366{
367 return !list_empty(head: &epi->rdllink);
368}
369
370static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371{
372 return container_of(p, struct eppoll_entry, wait);
373}
374
375/* Get the "struct epitem" from a wait queue pointer */
376static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377{
378 return container_of(p, struct eppoll_entry, wait)->base;
379}
380
381/**
382 * ep_events_available - Checks if ready events might be available.
383 *
384 * @ep: Pointer to the eventpoll context.
385 *
386 * Return: a value different than %zero if ready events are available,
387 * or %zero otherwise.
388 */
389static inline int ep_events_available(struct eventpoll *ep)
390{
391 return !list_empty_careful(head: &ep->rdllist) ||
392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393}
394
395#ifdef CONFIG_NET_RX_BUSY_POLL
396/**
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
400 *
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
403 *
404 * Return: true if the timeout has expired, false otherwise.
405 */
406static bool busy_loop_ep_timeout(unsigned long start_time,
407 struct eventpoll *ep)
408{
409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410
411 if (bp_usec) {
412 unsigned long end_time = start_time + bp_usec;
413 unsigned long now = busy_loop_current_time();
414
415 return time_after(now, end_time);
416 } else {
417 return busy_loop_timeout(start_time);
418 }
419}
420
421static bool ep_busy_loop_on(struct eventpoll *ep)
422{
423 return !!ep->busy_poll_usecs || net_busy_loop_on();
424}
425
426static bool ep_busy_loop_end(void *p, unsigned long start_time)
427{
428 struct eventpoll *ep = p;
429
430 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
431}
432
433/*
434 * Busy poll if globally on and supporting sockets found && no events,
435 * busy loop will return if need_resched or ep_events_available.
436 *
437 * we must do our busy polling with irqs enabled
438 */
439static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
440{
441 unsigned int napi_id = READ_ONCE(ep->napi_id);
442 u16 budget = READ_ONCE(ep->busy_poll_budget);
443 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
444
445 if (!budget)
446 budget = BUSY_POLL_BUDGET;
447
448 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
449 napi_busy_loop(napi_id, loop_end: nonblock ? NULL : ep_busy_loop_end,
450 loop_end_arg: ep, prefer_busy_poll, budget);
451 if (ep_events_available(ep))
452 return true;
453 /*
454 * Busy poll timed out. Drop NAPI ID for now, we can add
455 * it back in when we have moved a socket with a valid NAPI
456 * ID onto the ready list.
457 */
458 ep->napi_id = 0;
459 return false;
460 }
461 return false;
462}
463
464/*
465 * Set epoll busy poll NAPI ID from sk.
466 */
467static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
468{
469 struct eventpoll *ep = epi->ep;
470 unsigned int napi_id;
471 struct socket *sock;
472 struct sock *sk;
473
474 if (!ep_busy_loop_on(ep))
475 return;
476
477 sock = sock_from_file(file: epi->ffd.file);
478 if (!sock)
479 return;
480
481 sk = sock->sk;
482 if (!sk)
483 return;
484
485 napi_id = READ_ONCE(sk->sk_napi_id);
486
487 /* Non-NAPI IDs can be rejected
488 * or
489 * Nothing to do if we already have this ID
490 */
491 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
492 return;
493
494 /* record NAPI ID for use in next busy poll */
495 ep->napi_id = napi_id;
496}
497
498static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
499 unsigned long arg)
500{
501 struct eventpoll *ep = file->private_data;
502 void __user *uarg = (void __user *)arg;
503 struct epoll_params epoll_params;
504
505 switch (cmd) {
506 case EPIOCSPARAMS:
507 if (copy_from_user(to: &epoll_params, from: uarg, n: sizeof(epoll_params)))
508 return -EFAULT;
509
510 /* pad byte must be zero */
511 if (epoll_params.__pad)
512 return -EINVAL;
513
514 if (epoll_params.busy_poll_usecs > S32_MAX)
515 return -EINVAL;
516
517 if (epoll_params.prefer_busy_poll > 1)
518 return -EINVAL;
519
520 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
521 !capable(CAP_NET_ADMIN))
522 return -EPERM;
523
524 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
525 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
526 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
527 return 0;
528 case EPIOCGPARAMS:
529 memset(&epoll_params, 0, sizeof(epoll_params));
530 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
531 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
532 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
533 if (copy_to_user(to: uarg, from: &epoll_params, n: sizeof(epoll_params)))
534 return -EFAULT;
535 return 0;
536 default:
537 return -ENOIOCTLCMD;
538 }
539}
540
541#else
542
543static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
544{
545 return false;
546}
547
548static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
549{
550}
551
552static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
553 unsigned long arg)
554{
555 return -EOPNOTSUPP;
556}
557
558#endif /* CONFIG_NET_RX_BUSY_POLL */
559
560/*
561 * As described in commit 0ccf831cb lockdep: annotate epoll
562 * the use of wait queues used by epoll is done in a very controlled
563 * manner. Wake ups can nest inside each other, but are never done
564 * with the same locking. For example:
565 *
566 * dfd = socket(...);
567 * efd1 = epoll_create();
568 * efd2 = epoll_create();
569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
571 *
572 * When a packet arrives to the device underneath "dfd", the net code will
573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
574 * callback wakeup entry on that queue, and the wake_up() performed by the
575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
576 * (efd1) notices that it may have some event ready, so it needs to wake up
577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
578 * that ends up in another wake_up(), after having checked about the
579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
580 * stack blasting.
581 *
582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
583 * this special case of epoll.
584 */
585#ifdef CONFIG_DEBUG_LOCK_ALLOC
586
587static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
588 unsigned pollflags)
589{
590 struct eventpoll *ep_src;
591 unsigned long flags;
592 u8 nests = 0;
593
594 /*
595 * To set the subclass or nesting level for spin_lock_irqsave_nested()
596 * it might be natural to create a per-cpu nest count. However, since
597 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
598 * schedule() in the -rt kernel, the per-cpu variable are no longer
599 * protected. Thus, we are introducing a per eventpoll nest field.
600 * If we are not being call from ep_poll_callback(), epi is NULL and
601 * we are at the first level of nesting, 0. Otherwise, we are being
602 * called from ep_poll_callback() and if a previous wakeup source is
603 * not an epoll file itself, we are at depth 1 since the wakeup source
604 * is depth 0. If the wakeup source is a previous epoll file in the
605 * wakeup chain then we use its nests value and record ours as
606 * nests + 1. The previous epoll file nests value is stable since its
607 * already holding its own poll_wait.lock.
608 */
609 if (epi) {
610 if ((is_file_epoll(f: epi->ffd.file))) {
611 ep_src = epi->ffd.file->private_data;
612 nests = ep_src->nests;
613 } else {
614 nests = 1;
615 }
616 }
617 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
618 ep->nests = nests + 1;
619 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
620 ep->nests = 0;
621 spin_unlock_irqrestore(lock: &ep->poll_wait.lock, flags);
622}
623
624#else
625
626static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
627 __poll_t pollflags)
628{
629 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
630}
631
632#endif
633
634static void ep_remove_wait_queue(struct eppoll_entry *pwq)
635{
636 wait_queue_head_t *whead;
637
638 rcu_read_lock();
639 /*
640 * If it is cleared by POLLFREE, it should be rcu-safe.
641 * If we read NULL we need a barrier paired with
642 * smp_store_release() in ep_poll_callback(), otherwise
643 * we rely on whead->lock.
644 */
645 whead = smp_load_acquire(&pwq->whead);
646 if (whead)
647 remove_wait_queue(wq_head: whead, wq_entry: &pwq->wait);
648 rcu_read_unlock();
649}
650
651/*
652 * This function unregisters poll callbacks from the associated file
653 * descriptor. Must be called with "mtx" held.
654 */
655static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
656{
657 struct eppoll_entry **p = &epi->pwqlist;
658 struct eppoll_entry *pwq;
659
660 while ((pwq = *p) != NULL) {
661 *p = pwq->next;
662 ep_remove_wait_queue(pwq);
663 kmem_cache_free(s: pwq_cache, objp: pwq);
664 }
665}
666
667/* call only when ep->mtx is held */
668static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
669{
670 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
671}
672
673/* call only when ep->mtx is held */
674static inline void ep_pm_stay_awake(struct epitem *epi)
675{
676 struct wakeup_source *ws = ep_wakeup_source(epi);
677
678 if (ws)
679 __pm_stay_awake(ws);
680}
681
682static inline bool ep_has_wakeup_source(struct epitem *epi)
683{
684 return rcu_access_pointer(epi->ws) ? true : false;
685}
686
687/* call when ep->mtx cannot be held (ep_poll_callback) */
688static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
689{
690 struct wakeup_source *ws;
691
692 rcu_read_lock();
693 ws = rcu_dereference(epi->ws);
694 if (ws)
695 __pm_stay_awake(ws);
696 rcu_read_unlock();
697}
698
699
700/*
701 * ep->mutex needs to be held because we could be hit by
702 * eventpoll_release_file() and epoll_ctl().
703 */
704static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
705{
706 /*
707 * Steal the ready list, and re-init the original one to the
708 * empty list. Also, set ep->ovflist to NULL so that events
709 * happening while looping w/out locks, are not lost. We cannot
710 * have the poll callback to queue directly on ep->rdllist,
711 * because we want the "sproc" callback to be able to do it
712 * in a lockless way.
713 */
714 lockdep_assert_irqs_enabled();
715 write_lock_irq(&ep->lock);
716 list_splice_init(list: &ep->rdllist, head: txlist);
717 WRITE_ONCE(ep->ovflist, NULL);
718 write_unlock_irq(&ep->lock);
719}
720
721static void ep_done_scan(struct eventpoll *ep,
722 struct list_head *txlist)
723{
724 struct epitem *epi, *nepi;
725
726 write_lock_irq(&ep->lock);
727 /*
728 * During the time we spent inside the "sproc" callback, some
729 * other events might have been queued by the poll callback.
730 * We re-insert them inside the main ready-list here.
731 */
732 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
733 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
734 /*
735 * We need to check if the item is already in the list.
736 * During the "sproc" callback execution time, items are
737 * queued into ->ovflist but the "txlist" might already
738 * contain them, and the list_splice() below takes care of them.
739 */
740 if (!ep_is_linked(epi)) {
741 /*
742 * ->ovflist is LIFO, so we have to reverse it in order
743 * to keep in FIFO.
744 */
745 list_add(new: &epi->rdllink, head: &ep->rdllist);
746 ep_pm_stay_awake(epi);
747 }
748 }
749 /*
750 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
751 * releasing the lock, events will be queued in the normal way inside
752 * ep->rdllist.
753 */
754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
755
756 /*
757 * Quickly re-inject items left on "txlist".
758 */
759 list_splice(list: txlist, head: &ep->rdllist);
760 __pm_relax(ws: ep->ws);
761
762 if (!list_empty(head: &ep->rdllist)) {
763 if (waitqueue_active(wq_head: &ep->wq))
764 wake_up(&ep->wq);
765 }
766
767 write_unlock_irq(&ep->lock);
768}
769
770static void ep_get(struct eventpoll *ep)
771{
772 refcount_inc(r: &ep->refcount);
773}
774
775/*
776 * Returns true if the event poll can be disposed
777 */
778static bool ep_refcount_dec_and_test(struct eventpoll *ep)
779{
780 if (!refcount_dec_and_test(r: &ep->refcount))
781 return false;
782
783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
784 return true;
785}
786
787static void ep_free(struct eventpoll *ep)
788{
789 mutex_destroy(lock: &ep->mtx);
790 free_uid(ep->user);
791 wakeup_source_unregister(ws: ep->ws);
792 kfree(objp: ep);
793}
794
795/*
796 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
797 * all the associated resources. Must be called with "mtx" held.
798 * If the dying flag is set, do the removal only if force is true.
799 * This prevents ep_clear_and_put() from dropping all the ep references
800 * while running concurrently with eventpoll_release_file().
801 * Returns true if the eventpoll can be disposed.
802 */
803static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
804{
805 struct file *file = epi->ffd.file;
806 struct epitems_head *to_free;
807 struct hlist_head *head;
808
809 lockdep_assert_irqs_enabled();
810
811 /*
812 * Removes poll wait queue hooks.
813 */
814 ep_unregister_pollwait(ep, epi);
815
816 /* Remove the current item from the list of epoll hooks */
817 spin_lock(lock: &file->f_lock);
818 if (epi->dying && !force) {
819 spin_unlock(lock: &file->f_lock);
820 return false;
821 }
822
823 to_free = NULL;
824 head = file->f_ep;
825 if (head->first == &epi->fllink && !epi->fllink.next) {
826 file->f_ep = NULL;
827 if (!is_file_epoll(f: file)) {
828 struct epitems_head *v;
829 v = container_of(head, struct epitems_head, epitems);
830 if (!smp_load_acquire(&v->next))
831 to_free = v;
832 }
833 }
834 hlist_del_rcu(n: &epi->fllink);
835 spin_unlock(lock: &file->f_lock);
836 free_ephead(head: to_free);
837
838 rb_erase_cached(node: &epi->rbn, root: &ep->rbr);
839
840 write_lock_irq(&ep->lock);
841 if (ep_is_linked(epi))
842 list_del_init(entry: &epi->rdllink);
843 write_unlock_irq(&ep->lock);
844
845 wakeup_source_unregister(ws: ep_wakeup_source(epi));
846 /*
847 * At this point it is safe to free the eventpoll item. Use the union
848 * field epi->rcu, since we are trying to minimize the size of
849 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
850 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
851 * use of the rbn field.
852 */
853 kfree_rcu(epi, rcu);
854
855 percpu_counter_dec(fbc: &ep->user->epoll_watches);
856 return ep_refcount_dec_and_test(ep);
857}
858
859/*
860 * ep_remove variant for callers owing an additional reference to the ep
861 */
862static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
863{
864 WARN_ON_ONCE(__ep_remove(ep, epi, false));
865}
866
867static void ep_clear_and_put(struct eventpoll *ep)
868{
869 struct rb_node *rbp, *next;
870 struct epitem *epi;
871 bool dispose;
872
873 /* We need to release all tasks waiting for these file */
874 if (waitqueue_active(wq_head: &ep->poll_wait))
875 ep_poll_safewake(ep, NULL, pollflags: 0);
876
877 mutex_lock(&ep->mtx);
878
879 /*
880 * Walks through the whole tree by unregistering poll callbacks.
881 */
882 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
883 epi = rb_entry(rbp, struct epitem, rbn);
884
885 ep_unregister_pollwait(ep, epi);
886 cond_resched();
887 }
888
889 /*
890 * Walks through the whole tree and try to free each "struct epitem".
891 * Note that ep_remove_safe() will not remove the epitem in case of a
892 * racing eventpoll_release_file(); the latter will do the removal.
893 * At this point we are sure no poll callbacks will be lingering around.
894 * Since we still own a reference to the eventpoll struct, the loop can't
895 * dispose it.
896 */
897 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
898 next = rb_next(rbp);
899 epi = rb_entry(rbp, struct epitem, rbn);
900 ep_remove_safe(ep, epi);
901 cond_resched();
902 }
903
904 dispose = ep_refcount_dec_and_test(ep);
905 mutex_unlock(lock: &ep->mtx);
906
907 if (dispose)
908 ep_free(ep);
909}
910
911static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912 unsigned long arg)
913{
914 int ret;
915
916 if (!is_file_epoll(f: file))
917 return -EINVAL;
918
919 switch (cmd) {
920 case EPIOCSPARAMS:
921 case EPIOCGPARAMS:
922 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923 break;
924 default:
925 ret = -EINVAL;
926 break;
927 }
928
929 return ret;
930}
931
932static int ep_eventpoll_release(struct inode *inode, struct file *file)
933{
934 struct eventpoll *ep = file->private_data;
935
936 if (ep)
937 ep_clear_and_put(ep);
938
939 return 0;
940}
941
942static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943
944static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945{
946 struct eventpoll *ep = file->private_data;
947 LIST_HEAD(txlist);
948 struct epitem *epi, *tmp;
949 poll_table pt;
950 __poll_t res = 0;
951
952 init_poll_funcptr(pt: &pt, NULL);
953
954 /* Insert inside our poll wait queue */
955 poll_wait(filp: file, wait_address: &ep->poll_wait, p: wait);
956
957 /*
958 * Proceed to find out if wanted events are really available inside
959 * the ready list.
960 */
961 mutex_lock_nested(lock: &ep->mtx, subclass: depth);
962 ep_start_scan(ep, txlist: &txlist);
963 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964 if (ep_item_poll(epi, pt: &pt, depth: depth + 1)) {
965 res = EPOLLIN | EPOLLRDNORM;
966 break;
967 } else {
968 /*
969 * Item has been dropped into the ready list by the poll
970 * callback, but it's not actually ready, as far as
971 * caller requested events goes. We can remove it here.
972 */
973 __pm_relax(ws: ep_wakeup_source(epi));
974 list_del_init(entry: &epi->rdllink);
975 }
976 }
977 ep_done_scan(ep, txlist: &txlist);
978 mutex_unlock(lock: &ep->mtx);
979 return res;
980}
981
982/*
983 * Differs from ep_eventpoll_poll() in that internal callers already have
984 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
985 * is correctly annotated.
986 */
987static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
988 int depth)
989{
990 struct file *file = epi->ffd.file;
991 __poll_t res;
992
993 pt->_key = epi->event.events;
994 if (!is_file_epoll(f: file))
995 res = vfs_poll(file, pt);
996 else
997 res = __ep_eventpoll_poll(file, wait: pt, depth);
998 return res & epi->event.events;
999}
1000
1001static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1002{
1003 return __ep_eventpoll_poll(file, wait, depth: 0);
1004}
1005
1006#ifdef CONFIG_PROC_FS
1007static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1008{
1009 struct eventpoll *ep = f->private_data;
1010 struct rb_node *rbp;
1011
1012 mutex_lock(&ep->mtx);
1013 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1014 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1015 struct inode *inode = file_inode(f: epi->ffd.file);
1016
1017 seq_printf(m, fmt: "tfd: %8d events: %8x data: %16llx "
1018 " pos:%lli ino:%lx sdev:%x\n",
1019 epi->ffd.fd, epi->event.events,
1020 (long long)epi->event.data,
1021 (long long)epi->ffd.file->f_pos,
1022 inode->i_ino, inode->i_sb->s_dev);
1023 if (seq_has_overflowed(m))
1024 break;
1025 }
1026 mutex_unlock(lock: &ep->mtx);
1027}
1028#endif
1029
1030/* File callbacks that implement the eventpoll file behaviour */
1031static const struct file_operations eventpoll_fops = {
1032#ifdef CONFIG_PROC_FS
1033 .show_fdinfo = ep_show_fdinfo,
1034#endif
1035 .release = ep_eventpoll_release,
1036 .poll = ep_eventpoll_poll,
1037 .llseek = noop_llseek,
1038 .unlocked_ioctl = ep_eventpoll_ioctl,
1039 .compat_ioctl = compat_ptr_ioctl,
1040};
1041
1042/*
1043 * This is called from eventpoll_release() to unlink files from the eventpoll
1044 * interface. We need to have this facility to cleanup correctly files that are
1045 * closed without being removed from the eventpoll interface.
1046 */
1047void eventpoll_release_file(struct file *file)
1048{
1049 struct eventpoll *ep;
1050 struct epitem *epi;
1051 bool dispose;
1052
1053 /*
1054 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1055 * touching the epitems list before eventpoll_release_file() can access
1056 * the ep->mtx.
1057 */
1058again:
1059 spin_lock(lock: &file->f_lock);
1060 if (file->f_ep && file->f_ep->first) {
1061 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1062 epi->dying = true;
1063 spin_unlock(lock: &file->f_lock);
1064
1065 /*
1066 * ep access is safe as we still own a reference to the ep
1067 * struct
1068 */
1069 ep = epi->ep;
1070 mutex_lock(&ep->mtx);
1071 dispose = __ep_remove(ep, epi, force: true);
1072 mutex_unlock(lock: &ep->mtx);
1073
1074 if (dispose)
1075 ep_free(ep);
1076 goto again;
1077 }
1078 spin_unlock(lock: &file->f_lock);
1079}
1080
1081static int ep_alloc(struct eventpoll **pep)
1082{
1083 struct eventpoll *ep;
1084
1085 ep = kzalloc(size: sizeof(*ep), GFP_KERNEL);
1086 if (unlikely(!ep))
1087 return -ENOMEM;
1088
1089 mutex_init(&ep->mtx);
1090 rwlock_init(&ep->lock);
1091 init_waitqueue_head(&ep->wq);
1092 init_waitqueue_head(&ep->poll_wait);
1093 INIT_LIST_HEAD(list: &ep->rdllist);
1094 ep->rbr = RB_ROOT_CACHED;
1095 ep->ovflist = EP_UNACTIVE_PTR;
1096 ep->user = get_current_user();
1097 refcount_set(r: &ep->refcount, n: 1);
1098
1099 *pep = ep;
1100
1101 return 0;
1102}
1103
1104/*
1105 * Search the file inside the eventpoll tree. The RB tree operations
1106 * are protected by the "mtx" mutex, and ep_find() must be called with
1107 * "mtx" held.
1108 */
1109static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1110{
1111 int kcmp;
1112 struct rb_node *rbp;
1113 struct epitem *epi, *epir = NULL;
1114 struct epoll_filefd ffd;
1115
1116 ep_set_ffd(ffd: &ffd, file, fd);
1117 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1118 epi = rb_entry(rbp, struct epitem, rbn);
1119 kcmp = ep_cmp_ffd(p1: &ffd, p2: &epi->ffd);
1120 if (kcmp > 0)
1121 rbp = rbp->rb_right;
1122 else if (kcmp < 0)
1123 rbp = rbp->rb_left;
1124 else {
1125 epir = epi;
1126 break;
1127 }
1128 }
1129
1130 return epir;
1131}
1132
1133#ifdef CONFIG_KCMP
1134static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1135{
1136 struct rb_node *rbp;
1137 struct epitem *epi;
1138
1139 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1140 epi = rb_entry(rbp, struct epitem, rbn);
1141 if (epi->ffd.fd == tfd) {
1142 if (toff == 0)
1143 return epi;
1144 else
1145 toff--;
1146 }
1147 cond_resched();
1148 }
1149
1150 return NULL;
1151}
1152
1153struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1154 unsigned long toff)
1155{
1156 struct file *file_raw;
1157 struct eventpoll *ep;
1158 struct epitem *epi;
1159
1160 if (!is_file_epoll(f: file))
1161 return ERR_PTR(error: -EINVAL);
1162
1163 ep = file->private_data;
1164
1165 mutex_lock(&ep->mtx);
1166 epi = ep_find_tfd(ep, tfd, toff);
1167 if (epi)
1168 file_raw = epi->ffd.file;
1169 else
1170 file_raw = ERR_PTR(error: -ENOENT);
1171 mutex_unlock(lock: &ep->mtx);
1172
1173 return file_raw;
1174}
1175#endif /* CONFIG_KCMP */
1176
1177/*
1178 * Adds a new entry to the tail of the list in a lockless way, i.e.
1179 * multiple CPUs are allowed to call this function concurrently.
1180 *
1181 * Beware: it is necessary to prevent any other modifications of the
1182 * existing list until all changes are completed, in other words
1183 * concurrent list_add_tail_lockless() calls should be protected
1184 * with a read lock, where write lock acts as a barrier which
1185 * makes sure all list_add_tail_lockless() calls are fully
1186 * completed.
1187 *
1188 * Also an element can be locklessly added to the list only in one
1189 * direction i.e. either to the tail or to the head, otherwise
1190 * concurrent access will corrupt the list.
1191 *
1192 * Return: %false if element has been already added to the list, %true
1193 * otherwise.
1194 */
1195static inline bool list_add_tail_lockless(struct list_head *new,
1196 struct list_head *head)
1197{
1198 struct list_head *prev;
1199
1200 /*
1201 * This is simple 'new->next = head' operation, but cmpxchg()
1202 * is used in order to detect that same element has been just
1203 * added to the list from another CPU: the winner observes
1204 * new->next == new.
1205 */
1206 if (!try_cmpxchg(&new->next, &new, head))
1207 return false;
1208
1209 /*
1210 * Initially ->next of a new element must be updated with the head
1211 * (we are inserting to the tail) and only then pointers are atomically
1212 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1213 * updated before pointers are actually swapped and pointers are
1214 * swapped before prev->next is updated.
1215 */
1216
1217 prev = xchg(&head->prev, new);
1218
1219 /*
1220 * It is safe to modify prev->next and new->prev, because a new element
1221 * is added only to the tail and new->next is updated before XCHG.
1222 */
1223
1224 prev->next = new;
1225 new->prev = prev;
1226
1227 return true;
1228}
1229
1230/*
1231 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1232 * i.e. multiple CPUs are allowed to call this function concurrently.
1233 *
1234 * Return: %false if epi element has been already chained, %true otherwise.
1235 */
1236static inline bool chain_epi_lockless(struct epitem *epi)
1237{
1238 struct eventpoll *ep = epi->ep;
1239
1240 /* Fast preliminary check */
1241 if (epi->next != EP_UNACTIVE_PTR)
1242 return false;
1243
1244 /* Check that the same epi has not been just chained from another CPU */
1245 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1246 return false;
1247
1248 /* Atomically exchange tail */
1249 epi->next = xchg(&ep->ovflist, epi);
1250
1251 return true;
1252}
1253
1254/*
1255 * This is the callback that is passed to the wait queue wakeup
1256 * mechanism. It is called by the stored file descriptors when they
1257 * have events to report.
1258 *
1259 * This callback takes a read lock in order not to contend with concurrent
1260 * events from another file descriptor, thus all modifications to ->rdllist
1261 * or ->ovflist are lockless. Read lock is paired with the write lock from
1262 * ep_start/done_scan(), which stops all list modifications and guarantees
1263 * that lists state is seen correctly.
1264 *
1265 * Another thing worth to mention is that ep_poll_callback() can be called
1266 * concurrently for the same @epi from different CPUs if poll table was inited
1267 * with several wait queues entries. Plural wakeup from different CPUs of a
1268 * single wait queue is serialized by wq.lock, but the case when multiple wait
1269 * queues are used should be detected accordingly. This is detected using
1270 * cmpxchg() operation.
1271 */
1272static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1273{
1274 int pwake = 0;
1275 struct epitem *epi = ep_item_from_wait(p: wait);
1276 struct eventpoll *ep = epi->ep;
1277 __poll_t pollflags = key_to_poll(key);
1278 unsigned long flags;
1279 int ewake = 0;
1280
1281 read_lock_irqsave(&ep->lock, flags);
1282
1283 ep_set_busy_poll_napi_id(epi);
1284
1285 /*
1286 * If the event mask does not contain any poll(2) event, we consider the
1287 * descriptor to be disabled. This condition is likely the effect of the
1288 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1289 * until the next EPOLL_CTL_MOD will be issued.
1290 */
1291 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1292 goto out_unlock;
1293
1294 /*
1295 * Check the events coming with the callback. At this stage, not
1296 * every device reports the events in the "key" parameter of the
1297 * callback. We need to be able to handle both cases here, hence the
1298 * test for "key" != NULL before the event match test.
1299 */
1300 if (pollflags && !(pollflags & epi->event.events))
1301 goto out_unlock;
1302
1303 /*
1304 * If we are transferring events to userspace, we can hold no locks
1305 * (because we're accessing user memory, and because of linux f_op->poll()
1306 * semantics). All the events that happen during that period of time are
1307 * chained in ep->ovflist and requeued later on.
1308 */
1309 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1310 if (chain_epi_lockless(epi))
1311 ep_pm_stay_awake_rcu(epi);
1312 } else if (!ep_is_linked(epi)) {
1313 /* In the usual case, add event to ready list. */
1314 if (list_add_tail_lockless(new: &epi->rdllink, head: &ep->rdllist))
1315 ep_pm_stay_awake_rcu(epi);
1316 }
1317
1318 /*
1319 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1320 * wait list.
1321 */
1322 if (waitqueue_active(wq_head: &ep->wq)) {
1323 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1324 !(pollflags & POLLFREE)) {
1325 switch (pollflags & EPOLLINOUT_BITS) {
1326 case EPOLLIN:
1327 if (epi->event.events & EPOLLIN)
1328 ewake = 1;
1329 break;
1330 case EPOLLOUT:
1331 if (epi->event.events & EPOLLOUT)
1332 ewake = 1;
1333 break;
1334 case 0:
1335 ewake = 1;
1336 break;
1337 }
1338 }
1339 wake_up(&ep->wq);
1340 }
1341 if (waitqueue_active(wq_head: &ep->poll_wait))
1342 pwake++;
1343
1344out_unlock:
1345 read_unlock_irqrestore(&ep->lock, flags);
1346
1347 /* We have to call this outside the lock */
1348 if (pwake)
1349 ep_poll_safewake(ep, epi, pollflags: pollflags & EPOLL_URING_WAKE);
1350
1351 if (!(epi->event.events & EPOLLEXCLUSIVE))
1352 ewake = 1;
1353
1354 if (pollflags & POLLFREE) {
1355 /*
1356 * If we race with ep_remove_wait_queue() it can miss
1357 * ->whead = NULL and do another remove_wait_queue() after
1358 * us, so we can't use __remove_wait_queue().
1359 */
1360 list_del_init(entry: &wait->entry);
1361 /*
1362 * ->whead != NULL protects us from the race with
1363 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1364 * takes whead->lock held by the caller. Once we nullify it,
1365 * nothing protects ep/epi or even wait.
1366 */
1367 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1368 }
1369
1370 return ewake;
1371}
1372
1373/*
1374 * This is the callback that is used to add our wait queue to the
1375 * target file wakeup lists.
1376 */
1377static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1378 poll_table *pt)
1379{
1380 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1381 struct epitem *epi = epq->epi;
1382 struct eppoll_entry *pwq;
1383
1384 if (unlikely(!epi)) // an earlier allocation has failed
1385 return;
1386
1387 pwq = kmem_cache_alloc(cachep: pwq_cache, GFP_KERNEL);
1388 if (unlikely(!pwq)) {
1389 epq->epi = NULL;
1390 return;
1391 }
1392
1393 init_waitqueue_func_entry(wq_entry: &pwq->wait, func: ep_poll_callback);
1394 pwq->whead = whead;
1395 pwq->base = epi;
1396 if (epi->event.events & EPOLLEXCLUSIVE)
1397 add_wait_queue_exclusive(wq_head: whead, wq_entry: &pwq->wait);
1398 else
1399 add_wait_queue(wq_head: whead, wq_entry: &pwq->wait);
1400 pwq->next = epi->pwqlist;
1401 epi->pwqlist = pwq;
1402}
1403
1404static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1405{
1406 int kcmp;
1407 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1408 struct epitem *epic;
1409 bool leftmost = true;
1410
1411 while (*p) {
1412 parent = *p;
1413 epic = rb_entry(parent, struct epitem, rbn);
1414 kcmp = ep_cmp_ffd(p1: &epi->ffd, p2: &epic->ffd);
1415 if (kcmp > 0) {
1416 p = &parent->rb_right;
1417 leftmost = false;
1418 } else
1419 p = &parent->rb_left;
1420 }
1421 rb_link_node(node: &epi->rbn, parent, rb_link: p);
1422 rb_insert_color_cached(node: &epi->rbn, root: &ep->rbr, leftmost);
1423}
1424
1425
1426
1427#define PATH_ARR_SIZE 5
1428/*
1429 * These are the number paths of length 1 to 5, that we are allowing to emanate
1430 * from a single file of interest. For example, we allow 1000 paths of length
1431 * 1, to emanate from each file of interest. This essentially represents the
1432 * potential wakeup paths, which need to be limited in order to avoid massive
1433 * uncontrolled wakeup storms. The common use case should be a single ep which
1434 * is connected to n file sources. In this case each file source has 1 path
1435 * of length 1. Thus, the numbers below should be more than sufficient. These
1436 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1437 * and delete can't add additional paths. Protected by the epnested_mutex.
1438 */
1439static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1440static int path_count[PATH_ARR_SIZE];
1441
1442static int path_count_inc(int nests)
1443{
1444 /* Allow an arbitrary number of depth 1 paths */
1445 if (nests == 0)
1446 return 0;
1447
1448 if (++path_count[nests] > path_limits[nests])
1449 return -1;
1450 return 0;
1451}
1452
1453static void path_count_init(void)
1454{
1455 int i;
1456
1457 for (i = 0; i < PATH_ARR_SIZE; i++)
1458 path_count[i] = 0;
1459}
1460
1461static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1462{
1463 int error = 0;
1464 struct epitem *epi;
1465
1466 if (depth > EP_MAX_NESTS) /* too deep nesting */
1467 return -1;
1468
1469 /* CTL_DEL can remove links here, but that can't increase our count */
1470 hlist_for_each_entry_rcu(epi, refs, fllink) {
1471 struct hlist_head *refs = &epi->ep->refs;
1472 if (hlist_empty(h: refs))
1473 error = path_count_inc(nests: depth);
1474 else
1475 error = reverse_path_check_proc(refs, depth: depth + 1);
1476 if (error != 0)
1477 break;
1478 }
1479 return error;
1480}
1481
1482/**
1483 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1484 * links that are proposed to be newly added. We need to
1485 * make sure that those added links don't add too many
1486 * paths such that we will spend all our time waking up
1487 * eventpoll objects.
1488 *
1489 * Return: %zero if the proposed links don't create too many paths,
1490 * %-1 otherwise.
1491 */
1492static int reverse_path_check(void)
1493{
1494 struct epitems_head *p;
1495
1496 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1497 int error;
1498 path_count_init();
1499 rcu_read_lock();
1500 error = reverse_path_check_proc(refs: &p->epitems, depth: 0);
1501 rcu_read_unlock();
1502 if (error)
1503 return error;
1504 }
1505 return 0;
1506}
1507
1508static int ep_create_wakeup_source(struct epitem *epi)
1509{
1510 struct name_snapshot n;
1511 struct wakeup_source *ws;
1512
1513 if (!epi->ep->ws) {
1514 epi->ep->ws = wakeup_source_register(NULL, name: "eventpoll");
1515 if (!epi->ep->ws)
1516 return -ENOMEM;
1517 }
1518
1519 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1520 ws = wakeup_source_register(NULL, name: n.name.name);
1521 release_dentry_name_snapshot(&n);
1522
1523 if (!ws)
1524 return -ENOMEM;
1525 rcu_assign_pointer(epi->ws, ws);
1526
1527 return 0;
1528}
1529
1530/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1531static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1532{
1533 struct wakeup_source *ws = ep_wakeup_source(epi);
1534
1535 RCU_INIT_POINTER(epi->ws, NULL);
1536
1537 /*
1538 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1539 * used internally by wakeup_source_remove, too (called by
1540 * wakeup_source_unregister), so we cannot use call_rcu
1541 */
1542 synchronize_rcu();
1543 wakeup_source_unregister(ws);
1544}
1545
1546static int attach_epitem(struct file *file, struct epitem *epi)
1547{
1548 struct epitems_head *to_free = NULL;
1549 struct hlist_head *head = NULL;
1550 struct eventpoll *ep = NULL;
1551
1552 if (is_file_epoll(f: file))
1553 ep = file->private_data;
1554
1555 if (ep) {
1556 head = &ep->refs;
1557 } else if (!READ_ONCE(file->f_ep)) {
1558allocate:
1559 to_free = kmem_cache_zalloc(k: ephead_cache, GFP_KERNEL);
1560 if (!to_free)
1561 return -ENOMEM;
1562 head = &to_free->epitems;
1563 }
1564 spin_lock(lock: &file->f_lock);
1565 if (!file->f_ep) {
1566 if (unlikely(!head)) {
1567 spin_unlock(lock: &file->f_lock);
1568 goto allocate;
1569 }
1570 file->f_ep = head;
1571 to_free = NULL;
1572 }
1573 hlist_add_head_rcu(n: &epi->fllink, h: file->f_ep);
1574 spin_unlock(lock: &file->f_lock);
1575 free_ephead(head: to_free);
1576 return 0;
1577}
1578
1579/*
1580 * Must be called with "mtx" held.
1581 */
1582static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1583 struct file *tfile, int fd, int full_check)
1584{
1585 int error, pwake = 0;
1586 __poll_t revents;
1587 struct epitem *epi;
1588 struct ep_pqueue epq;
1589 struct eventpoll *tep = NULL;
1590
1591 if (is_file_epoll(f: tfile))
1592 tep = tfile->private_data;
1593
1594 lockdep_assert_irqs_enabled();
1595
1596 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1597 max_user_watches) >= 0))
1598 return -ENOSPC;
1599 percpu_counter_inc(fbc: &ep->user->epoll_watches);
1600
1601 if (!(epi = kmem_cache_zalloc(k: epi_cache, GFP_KERNEL))) {
1602 percpu_counter_dec(fbc: &ep->user->epoll_watches);
1603 return -ENOMEM;
1604 }
1605
1606 /* Item initialization follow here ... */
1607 INIT_LIST_HEAD(list: &epi->rdllink);
1608 epi->ep = ep;
1609 ep_set_ffd(ffd: &epi->ffd, file: tfile, fd);
1610 epi->event = *event;
1611 epi->next = EP_UNACTIVE_PTR;
1612
1613 if (tep)
1614 mutex_lock_nested(lock: &tep->mtx, subclass: 1);
1615 /* Add the current item to the list of active epoll hook for this file */
1616 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1617 if (tep)
1618 mutex_unlock(lock: &tep->mtx);
1619 kmem_cache_free(s: epi_cache, objp: epi);
1620 percpu_counter_dec(fbc: &ep->user->epoll_watches);
1621 return -ENOMEM;
1622 }
1623
1624 if (full_check && !tep)
1625 list_file(file: tfile);
1626
1627 /*
1628 * Add the current item to the RB tree. All RB tree operations are
1629 * protected by "mtx", and ep_insert() is called with "mtx" held.
1630 */
1631 ep_rbtree_insert(ep, epi);
1632 if (tep)
1633 mutex_unlock(lock: &tep->mtx);
1634
1635 /*
1636 * ep_remove_safe() calls in the later error paths can't lead to
1637 * ep_free() as the ep file itself still holds an ep reference.
1638 */
1639 ep_get(ep);
1640
1641 /* now check if we've created too many backpaths */
1642 if (unlikely(full_check && reverse_path_check())) {
1643 ep_remove_safe(ep, epi);
1644 return -EINVAL;
1645 }
1646
1647 if (epi->event.events & EPOLLWAKEUP) {
1648 error = ep_create_wakeup_source(epi);
1649 if (error) {
1650 ep_remove_safe(ep, epi);
1651 return error;
1652 }
1653 }
1654
1655 /* Initialize the poll table using the queue callback */
1656 epq.epi = epi;
1657 init_poll_funcptr(pt: &epq.pt, qproc: ep_ptable_queue_proc);
1658
1659 /*
1660 * Attach the item to the poll hooks and get current event bits.
1661 * We can safely use the file* here because its usage count has
1662 * been increased by the caller of this function. Note that after
1663 * this operation completes, the poll callback can start hitting
1664 * the new item.
1665 */
1666 revents = ep_item_poll(epi, pt: &epq.pt, depth: 1);
1667
1668 /*
1669 * We have to check if something went wrong during the poll wait queue
1670 * install process. Namely an allocation for a wait queue failed due
1671 * high memory pressure.
1672 */
1673 if (unlikely(!epq.epi)) {
1674 ep_remove_safe(ep, epi);
1675 return -ENOMEM;
1676 }
1677
1678 /* We have to drop the new item inside our item list to keep track of it */
1679 write_lock_irq(&ep->lock);
1680
1681 /* record NAPI ID of new item if present */
1682 ep_set_busy_poll_napi_id(epi);
1683
1684 /* If the file is already "ready" we drop it inside the ready list */
1685 if (revents && !ep_is_linked(epi)) {
1686 list_add_tail(new: &epi->rdllink, head: &ep->rdllist);
1687 ep_pm_stay_awake(epi);
1688
1689 /* Notify waiting tasks that events are available */
1690 if (waitqueue_active(wq_head: &ep->wq))
1691 wake_up(&ep->wq);
1692 if (waitqueue_active(wq_head: &ep->poll_wait))
1693 pwake++;
1694 }
1695
1696 write_unlock_irq(&ep->lock);
1697
1698 /* We have to call this outside the lock */
1699 if (pwake)
1700 ep_poll_safewake(ep, NULL, pollflags: 0);
1701
1702 return 0;
1703}
1704
1705/*
1706 * Modify the interest event mask by dropping an event if the new mask
1707 * has a match in the current file status. Must be called with "mtx" held.
1708 */
1709static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1710 const struct epoll_event *event)
1711{
1712 int pwake = 0;
1713 poll_table pt;
1714
1715 lockdep_assert_irqs_enabled();
1716
1717 init_poll_funcptr(pt: &pt, NULL);
1718
1719 /*
1720 * Set the new event interest mask before calling f_op->poll();
1721 * otherwise we might miss an event that happens between the
1722 * f_op->poll() call and the new event set registering.
1723 */
1724 epi->event.events = event->events; /* need barrier below */
1725 epi->event.data = event->data; /* protected by mtx */
1726 if (epi->event.events & EPOLLWAKEUP) {
1727 if (!ep_has_wakeup_source(epi))
1728 ep_create_wakeup_source(epi);
1729 } else if (ep_has_wakeup_source(epi)) {
1730 ep_destroy_wakeup_source(epi);
1731 }
1732
1733 /*
1734 * The following barrier has two effects:
1735 *
1736 * 1) Flush epi changes above to other CPUs. This ensures
1737 * we do not miss events from ep_poll_callback if an
1738 * event occurs immediately after we call f_op->poll().
1739 * We need this because we did not take ep->lock while
1740 * changing epi above (but ep_poll_callback does take
1741 * ep->lock).
1742 *
1743 * 2) We also need to ensure we do not miss _past_ events
1744 * when calling f_op->poll(). This barrier also
1745 * pairs with the barrier in wq_has_sleeper (see
1746 * comments for wq_has_sleeper).
1747 *
1748 * This barrier will now guarantee ep_poll_callback or f_op->poll
1749 * (or both) will notice the readiness of an item.
1750 */
1751 smp_mb();
1752
1753 /*
1754 * Get current event bits. We can safely use the file* here because
1755 * its usage count has been increased by the caller of this function.
1756 * If the item is "hot" and it is not registered inside the ready
1757 * list, push it inside.
1758 */
1759 if (ep_item_poll(epi, pt: &pt, depth: 1)) {
1760 write_lock_irq(&ep->lock);
1761 if (!ep_is_linked(epi)) {
1762 list_add_tail(new: &epi->rdllink, head: &ep->rdllist);
1763 ep_pm_stay_awake(epi);
1764
1765 /* Notify waiting tasks that events are available */
1766 if (waitqueue_active(wq_head: &ep->wq))
1767 wake_up(&ep->wq);
1768 if (waitqueue_active(wq_head: &ep->poll_wait))
1769 pwake++;
1770 }
1771 write_unlock_irq(&ep->lock);
1772 }
1773
1774 /* We have to call this outside the lock */
1775 if (pwake)
1776 ep_poll_safewake(ep, NULL, pollflags: 0);
1777
1778 return 0;
1779}
1780
1781static int ep_send_events(struct eventpoll *ep,
1782 struct epoll_event __user *events, int maxevents)
1783{
1784 struct epitem *epi, *tmp;
1785 LIST_HEAD(txlist);
1786 poll_table pt;
1787 int res = 0;
1788
1789 /*
1790 * Always short-circuit for fatal signals to allow threads to make a
1791 * timely exit without the chance of finding more events available and
1792 * fetching repeatedly.
1793 */
1794 if (fatal_signal_pending(current))
1795 return -EINTR;
1796
1797 init_poll_funcptr(pt: &pt, NULL);
1798
1799 mutex_lock(&ep->mtx);
1800 ep_start_scan(ep, txlist: &txlist);
1801
1802 /*
1803 * We can loop without lock because we are passed a task private list.
1804 * Items cannot vanish during the loop we are holding ep->mtx.
1805 */
1806 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1807 struct wakeup_source *ws;
1808 __poll_t revents;
1809
1810 if (res >= maxevents)
1811 break;
1812
1813 /*
1814 * Activate ep->ws before deactivating epi->ws to prevent
1815 * triggering auto-suspend here (in case we reactive epi->ws
1816 * below).
1817 *
1818 * This could be rearranged to delay the deactivation of epi->ws
1819 * instead, but then epi->ws would temporarily be out of sync
1820 * with ep_is_linked().
1821 */
1822 ws = ep_wakeup_source(epi);
1823 if (ws) {
1824 if (ws->active)
1825 __pm_stay_awake(ws: ep->ws);
1826 __pm_relax(ws);
1827 }
1828
1829 list_del_init(entry: &epi->rdllink);
1830
1831 /*
1832 * If the event mask intersect the caller-requested one,
1833 * deliver the event to userspace. Again, we are holding ep->mtx,
1834 * so no operations coming from userspace can change the item.
1835 */
1836 revents = ep_item_poll(epi, pt: &pt, depth: 1);
1837 if (!revents)
1838 continue;
1839
1840 events = epoll_put_uevent(revents, data: epi->event.data, uevent: events);
1841 if (!events) {
1842 list_add(new: &epi->rdllink, head: &txlist);
1843 ep_pm_stay_awake(epi);
1844 if (!res)
1845 res = -EFAULT;
1846 break;
1847 }
1848 res++;
1849 if (epi->event.events & EPOLLONESHOT)
1850 epi->event.events &= EP_PRIVATE_BITS;
1851 else if (!(epi->event.events & EPOLLET)) {
1852 /*
1853 * If this file has been added with Level
1854 * Trigger mode, we need to insert back inside
1855 * the ready list, so that the next call to
1856 * epoll_wait() will check again the events
1857 * availability. At this point, no one can insert
1858 * into ep->rdllist besides us. The epoll_ctl()
1859 * callers are locked out by
1860 * ep_send_events() holding "mtx" and the
1861 * poll callback will queue them in ep->ovflist.
1862 */
1863 list_add_tail(new: &epi->rdllink, head: &ep->rdllist);
1864 ep_pm_stay_awake(epi);
1865 }
1866 }
1867 ep_done_scan(ep, txlist: &txlist);
1868 mutex_unlock(lock: &ep->mtx);
1869
1870 return res;
1871}
1872
1873static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1874{
1875 struct timespec64 now;
1876
1877 if (ms < 0)
1878 return NULL;
1879
1880 if (!ms) {
1881 to->tv_sec = 0;
1882 to->tv_nsec = 0;
1883 return to;
1884 }
1885
1886 to->tv_sec = ms / MSEC_PER_SEC;
1887 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1888
1889 ktime_get_ts64(ts: &now);
1890 *to = timespec64_add_safe(lhs: now, rhs: *to);
1891 return to;
1892}
1893
1894/*
1895 * autoremove_wake_function, but remove even on failure to wake up, because we
1896 * know that default_wake_function/ttwu will only fail if the thread is already
1897 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1898 * try to reuse it.
1899 */
1900static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1901 unsigned int mode, int sync, void *key)
1902{
1903 int ret = default_wake_function(wq_entry, mode, flags: sync, key);
1904
1905 /*
1906 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1907 * iterations see the cause of this wakeup.
1908 */
1909 list_del_init_careful(entry: &wq_entry->entry);
1910 return ret;
1911}
1912
1913/**
1914 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1915 * event buffer.
1916 *
1917 * @ep: Pointer to the eventpoll context.
1918 * @events: Pointer to the userspace buffer where the ready events should be
1919 * stored.
1920 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1921 * @timeout: Maximum timeout for the ready events fetch operation, in
1922 * timespec. If the timeout is zero, the function will not block,
1923 * while if the @timeout ptr is NULL, the function will block
1924 * until at least one event has been retrieved (or an error
1925 * occurred).
1926 *
1927 * Return: the number of ready events which have been fetched, or an
1928 * error code, in case of error.
1929 */
1930static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1931 int maxevents, struct timespec64 *timeout)
1932{
1933 int res, eavail, timed_out = 0;
1934 u64 slack = 0;
1935 wait_queue_entry_t wait;
1936 ktime_t expires, *to = NULL;
1937
1938 lockdep_assert_irqs_enabled();
1939
1940 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1941 slack = select_estimate_accuracy(tv: timeout);
1942 to = &expires;
1943 *to = timespec64_to_ktime(ts: *timeout);
1944 } else if (timeout) {
1945 /*
1946 * Avoid the unnecessary trip to the wait queue loop, if the
1947 * caller specified a non blocking operation.
1948 */
1949 timed_out = 1;
1950 }
1951
1952 /*
1953 * This call is racy: We may or may not see events that are being added
1954 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1955 * with a non-zero timeout, this thread will check the ready list under
1956 * lock and will add to the wait queue. For cases with a zero
1957 * timeout, the user by definition should not care and will have to
1958 * recheck again.
1959 */
1960 eavail = ep_events_available(ep);
1961
1962 while (1) {
1963 if (eavail) {
1964 /*
1965 * Try to transfer events to user space. In case we get
1966 * 0 events and there's still timeout left over, we go
1967 * trying again in search of more luck.
1968 */
1969 res = ep_send_events(ep, events, maxevents);
1970 if (res)
1971 return res;
1972 }
1973
1974 if (timed_out)
1975 return 0;
1976
1977 eavail = ep_busy_loop(ep, nonblock: timed_out);
1978 if (eavail)
1979 continue;
1980
1981 if (signal_pending(current))
1982 return -EINTR;
1983
1984 /*
1985 * Internally init_wait() uses autoremove_wake_function(),
1986 * thus wait entry is removed from the wait queue on each
1987 * wakeup. Why it is important? In case of several waiters
1988 * each new wakeup will hit the next waiter, giving it the
1989 * chance to harvest new event. Otherwise wakeup can be
1990 * lost. This is also good performance-wise, because on
1991 * normal wakeup path no need to call __remove_wait_queue()
1992 * explicitly, thus ep->lock is not taken, which halts the
1993 * event delivery.
1994 *
1995 * In fact, we now use an even more aggressive function that
1996 * unconditionally removes, because we don't reuse the wait
1997 * entry between loop iterations. This lets us also avoid the
1998 * performance issue if a process is killed, causing all of its
1999 * threads to wake up without being removed normally.
2000 */
2001 init_wait(&wait);
2002 wait.func = ep_autoremove_wake_function;
2003
2004 write_lock_irq(&ep->lock);
2005 /*
2006 * Barrierless variant, waitqueue_active() is called under
2007 * the same lock on wakeup ep_poll_callback() side, so it
2008 * is safe to avoid an explicit barrier.
2009 */
2010 __set_current_state(TASK_INTERRUPTIBLE);
2011
2012 /*
2013 * Do the final check under the lock. ep_start/done_scan()
2014 * plays with two lists (->rdllist and ->ovflist) and there
2015 * is always a race when both lists are empty for short
2016 * period of time although events are pending, so lock is
2017 * important.
2018 */
2019 eavail = ep_events_available(ep);
2020 if (!eavail)
2021 __add_wait_queue_exclusive(wq_head: &ep->wq, wq_entry: &wait);
2022
2023 write_unlock_irq(&ep->lock);
2024
2025 if (!eavail)
2026 timed_out = !schedule_hrtimeout_range(expires: to, delta: slack,
2027 mode: HRTIMER_MODE_ABS);
2028 __set_current_state(TASK_RUNNING);
2029
2030 /*
2031 * We were woken up, thus go and try to harvest some events.
2032 * If timed out and still on the wait queue, recheck eavail
2033 * carefully under lock, below.
2034 */
2035 eavail = 1;
2036
2037 if (!list_empty_careful(head: &wait.entry)) {
2038 write_lock_irq(&ep->lock);
2039 /*
2040 * If the thread timed out and is not on the wait queue,
2041 * it means that the thread was woken up after its
2042 * timeout expired before it could reacquire the lock.
2043 * Thus, when wait.entry is empty, it needs to harvest
2044 * events.
2045 */
2046 if (timed_out)
2047 eavail = list_empty(head: &wait.entry);
2048 __remove_wait_queue(wq_head: &ep->wq, wq_entry: &wait);
2049 write_unlock_irq(&ep->lock);
2050 }
2051 }
2052}
2053
2054/**
2055 * ep_loop_check_proc - verify that adding an epoll file inside another
2056 * epoll structure does not violate the constraints, in
2057 * terms of closed loops, or too deep chains (which can
2058 * result in excessive stack usage).
2059 *
2060 * @ep: the &struct eventpoll to be currently checked.
2061 * @depth: Current depth of the path being checked.
2062 *
2063 * Return: %zero if adding the epoll @file inside current epoll
2064 * structure @ep does not violate the constraints, or %-1 otherwise.
2065 */
2066static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2067{
2068 int error = 0;
2069 struct rb_node *rbp;
2070 struct epitem *epi;
2071
2072 mutex_lock_nested(lock: &ep->mtx, subclass: depth + 1);
2073 ep->gen = loop_check_gen;
2074 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2075 epi = rb_entry(rbp, struct epitem, rbn);
2076 if (unlikely(is_file_epoll(epi->ffd.file))) {
2077 struct eventpoll *ep_tovisit;
2078 ep_tovisit = epi->ffd.file->private_data;
2079 if (ep_tovisit->gen == loop_check_gen)
2080 continue;
2081 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2082 error = -1;
2083 else
2084 error = ep_loop_check_proc(ep: ep_tovisit, depth: depth + 1);
2085 if (error != 0)
2086 break;
2087 } else {
2088 /*
2089 * If we've reached a file that is not associated with
2090 * an ep, then we need to check if the newly added
2091 * links are going to add too many wakeup paths. We do
2092 * this by adding it to the tfile_check_list, if it's
2093 * not already there, and calling reverse_path_check()
2094 * during ep_insert().
2095 */
2096 list_file(file: epi->ffd.file);
2097 }
2098 }
2099 mutex_unlock(lock: &ep->mtx);
2100
2101 return error;
2102}
2103
2104/**
2105 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2106 * into another epoll file (represented by @ep) does not create
2107 * closed loops or too deep chains.
2108 *
2109 * @ep: Pointer to the epoll we are inserting into.
2110 * @to: Pointer to the epoll to be inserted.
2111 *
2112 * Return: %zero if adding the epoll @to inside the epoll @from
2113 * does not violate the constraints, or %-1 otherwise.
2114 */
2115static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2116{
2117 inserting_into = ep;
2118 return ep_loop_check_proc(ep: to, depth: 0);
2119}
2120
2121static void clear_tfile_check_list(void)
2122{
2123 rcu_read_lock();
2124 while (tfile_check_list != EP_UNACTIVE_PTR) {
2125 struct epitems_head *head = tfile_check_list;
2126 tfile_check_list = head->next;
2127 unlist_file(head);
2128 }
2129 rcu_read_unlock();
2130}
2131
2132/*
2133 * Open an eventpoll file descriptor.
2134 */
2135static int do_epoll_create(int flags)
2136{
2137 int error, fd;
2138 struct eventpoll *ep = NULL;
2139 struct file *file;
2140
2141 /* Check the EPOLL_* constant for consistency. */
2142 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2143
2144 if (flags & ~EPOLL_CLOEXEC)
2145 return -EINVAL;
2146 /*
2147 * Create the internal data structure ("struct eventpoll").
2148 */
2149 error = ep_alloc(pep: &ep);
2150 if (error < 0)
2151 return error;
2152 /*
2153 * Creates all the items needed to setup an eventpoll file. That is,
2154 * a file structure and a free file descriptor.
2155 */
2156 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2157 if (fd < 0) {
2158 error = fd;
2159 goto out_free_ep;
2160 }
2161 file = anon_inode_getfile(name: "[eventpoll]", fops: &eventpoll_fops, priv: ep,
2162 O_RDWR | (flags & O_CLOEXEC));
2163 if (IS_ERR(ptr: file)) {
2164 error = PTR_ERR(ptr: file);
2165 goto out_free_fd;
2166 }
2167#ifdef CONFIG_NET_RX_BUSY_POLL
2168 ep->busy_poll_usecs = 0;
2169 ep->busy_poll_budget = 0;
2170 ep->prefer_busy_poll = false;
2171#endif
2172 ep->file = file;
2173 fd_install(fd, file);
2174 return fd;
2175
2176out_free_fd:
2177 put_unused_fd(fd);
2178out_free_ep:
2179 ep_clear_and_put(ep);
2180 return error;
2181}
2182
2183SYSCALL_DEFINE1(epoll_create1, int, flags)
2184{
2185 return do_epoll_create(flags);
2186}
2187
2188SYSCALL_DEFINE1(epoll_create, int, size)
2189{
2190 if (size <= 0)
2191 return -EINVAL;
2192
2193 return do_epoll_create(flags: 0);
2194}
2195
2196#ifdef CONFIG_PM_SLEEP
2197static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2198{
2199 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2200 epev->events &= ~EPOLLWAKEUP;
2201}
2202#else
2203static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2204{
2205 epev->events &= ~EPOLLWAKEUP;
2206}
2207#endif
2208
2209static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2210 bool nonblock)
2211{
2212 if (!nonblock) {
2213 mutex_lock_nested(lock: mutex, subclass: depth);
2214 return 0;
2215 }
2216 if (mutex_trylock(lock: mutex))
2217 return 0;
2218 return -EAGAIN;
2219}
2220
2221int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2222 bool nonblock)
2223{
2224 int error;
2225 int full_check = 0;
2226 struct fd f, tf;
2227 struct eventpoll *ep;
2228 struct epitem *epi;
2229 struct eventpoll *tep = NULL;
2230
2231 error = -EBADF;
2232 f = fdget(fd: epfd);
2233 if (!f.file)
2234 goto error_return;
2235
2236 /* Get the "struct file *" for the target file */
2237 tf = fdget(fd);
2238 if (!tf.file)
2239 goto error_fput;
2240
2241 /* The target file descriptor must support poll */
2242 error = -EPERM;
2243 if (!file_can_poll(file: tf.file))
2244 goto error_tgt_fput;
2245
2246 /* Check if EPOLLWAKEUP is allowed */
2247 if (ep_op_has_event(op))
2248 ep_take_care_of_epollwakeup(epev: epds);
2249
2250 /*
2251 * We have to check that the file structure underneath the file descriptor
2252 * the user passed to us _is_ an eventpoll file. And also we do not permit
2253 * adding an epoll file descriptor inside itself.
2254 */
2255 error = -EINVAL;
2256 if (f.file == tf.file || !is_file_epoll(f: f.file))
2257 goto error_tgt_fput;
2258
2259 /*
2260 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2261 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2262 * Also, we do not currently supported nested exclusive wakeups.
2263 */
2264 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2265 if (op == EPOLL_CTL_MOD)
2266 goto error_tgt_fput;
2267 if (op == EPOLL_CTL_ADD && (is_file_epoll(f: tf.file) ||
2268 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2269 goto error_tgt_fput;
2270 }
2271
2272 /*
2273 * At this point it is safe to assume that the "private_data" contains
2274 * our own data structure.
2275 */
2276 ep = f.file->private_data;
2277
2278 /*
2279 * When we insert an epoll file descriptor inside another epoll file
2280 * descriptor, there is the chance of creating closed loops, which are
2281 * better be handled here, than in more critical paths. While we are
2282 * checking for loops we also determine the list of files reachable
2283 * and hang them on the tfile_check_list, so we can check that we
2284 * haven't created too many possible wakeup paths.
2285 *
2286 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2287 * the epoll file descriptor is attaching directly to a wakeup source,
2288 * unless the epoll file descriptor is nested. The purpose of taking the
2289 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2290 * deep wakeup paths from forming in parallel through multiple
2291 * EPOLL_CTL_ADD operations.
2292 */
2293 error = epoll_mutex_lock(mutex: &ep->mtx, depth: 0, nonblock);
2294 if (error)
2295 goto error_tgt_fput;
2296 if (op == EPOLL_CTL_ADD) {
2297 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2298 is_file_epoll(f: tf.file)) {
2299 mutex_unlock(lock: &ep->mtx);
2300 error = epoll_mutex_lock(mutex: &epnested_mutex, depth: 0, nonblock);
2301 if (error)
2302 goto error_tgt_fput;
2303 loop_check_gen++;
2304 full_check = 1;
2305 if (is_file_epoll(f: tf.file)) {
2306 tep = tf.file->private_data;
2307 error = -ELOOP;
2308 if (ep_loop_check(ep, to: tep) != 0)
2309 goto error_tgt_fput;
2310 }
2311 error = epoll_mutex_lock(mutex: &ep->mtx, depth: 0, nonblock);
2312 if (error)
2313 goto error_tgt_fput;
2314 }
2315 }
2316
2317 /*
2318 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2319 * above, we can be sure to be able to use the item looked up by
2320 * ep_find() till we release the mutex.
2321 */
2322 epi = ep_find(ep, file: tf.file, fd);
2323
2324 error = -EINVAL;
2325 switch (op) {
2326 case EPOLL_CTL_ADD:
2327 if (!epi) {
2328 epds->events |= EPOLLERR | EPOLLHUP;
2329 error = ep_insert(ep, event: epds, tfile: tf.file, fd, full_check);
2330 } else
2331 error = -EEXIST;
2332 break;
2333 case EPOLL_CTL_DEL:
2334 if (epi) {
2335 /*
2336 * The eventpoll itself is still alive: the refcount
2337 * can't go to zero here.
2338 */
2339 ep_remove_safe(ep, epi);
2340 error = 0;
2341 } else {
2342 error = -ENOENT;
2343 }
2344 break;
2345 case EPOLL_CTL_MOD:
2346 if (epi) {
2347 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2348 epds->events |= EPOLLERR | EPOLLHUP;
2349 error = ep_modify(ep, epi, event: epds);
2350 }
2351 } else
2352 error = -ENOENT;
2353 break;
2354 }
2355 mutex_unlock(lock: &ep->mtx);
2356
2357error_tgt_fput:
2358 if (full_check) {
2359 clear_tfile_check_list();
2360 loop_check_gen++;
2361 mutex_unlock(lock: &epnested_mutex);
2362 }
2363
2364 fdput(fd: tf);
2365error_fput:
2366 fdput(fd: f);
2367error_return:
2368
2369 return error;
2370}
2371
2372/*
2373 * The following function implements the controller interface for
2374 * the eventpoll file that enables the insertion/removal/change of
2375 * file descriptors inside the interest set.
2376 */
2377SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2378 struct epoll_event __user *, event)
2379{
2380 struct epoll_event epds;
2381
2382 if (ep_op_has_event(op) &&
2383 copy_from_user(to: &epds, from: event, n: sizeof(struct epoll_event)))
2384 return -EFAULT;
2385
2386 return do_epoll_ctl(epfd, op, fd, epds: &epds, nonblock: false);
2387}
2388
2389/*
2390 * Implement the event wait interface for the eventpoll file. It is the kernel
2391 * part of the user space epoll_wait(2).
2392 */
2393static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2394 int maxevents, struct timespec64 *to)
2395{
2396 int error;
2397 struct fd f;
2398 struct eventpoll *ep;
2399
2400 /* The maximum number of event must be greater than zero */
2401 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2402 return -EINVAL;
2403
2404 /* Verify that the area passed by the user is writeable */
2405 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2406 return -EFAULT;
2407
2408 /* Get the "struct file *" for the eventpoll file */
2409 f = fdget(fd: epfd);
2410 if (!f.file)
2411 return -EBADF;
2412
2413 /*
2414 * We have to check that the file structure underneath the fd
2415 * the user passed to us _is_ an eventpoll file.
2416 */
2417 error = -EINVAL;
2418 if (!is_file_epoll(f: f.file))
2419 goto error_fput;
2420
2421 /*
2422 * At this point it is safe to assume that the "private_data" contains
2423 * our own data structure.
2424 */
2425 ep = f.file->private_data;
2426
2427 /* Time to fish for events ... */
2428 error = ep_poll(ep, events, maxevents, timeout: to);
2429
2430error_fput:
2431 fdput(fd: f);
2432 return error;
2433}
2434
2435SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2436 int, maxevents, int, timeout)
2437{
2438 struct timespec64 to;
2439
2440 return do_epoll_wait(epfd, events, maxevents,
2441 to: ep_timeout_to_timespec(to: &to, ms: timeout));
2442}
2443
2444/*
2445 * Implement the event wait interface for the eventpoll file. It is the kernel
2446 * part of the user space epoll_pwait(2).
2447 */
2448static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2449 int maxevents, struct timespec64 *to,
2450 const sigset_t __user *sigmask, size_t sigsetsize)
2451{
2452 int error;
2453
2454 /*
2455 * If the caller wants a certain signal mask to be set during the wait,
2456 * we apply it here.
2457 */
2458 error = set_user_sigmask(umask: sigmask, sigsetsize);
2459 if (error)
2460 return error;
2461
2462 error = do_epoll_wait(epfd, events, maxevents, to);
2463
2464 restore_saved_sigmask_unless(interrupted: error == -EINTR);
2465
2466 return error;
2467}
2468
2469SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2470 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2471 size_t, sigsetsize)
2472{
2473 struct timespec64 to;
2474
2475 return do_epoll_pwait(epfd, events, maxevents,
2476 to: ep_timeout_to_timespec(to: &to, ms: timeout),
2477 sigmask, sigsetsize);
2478}
2479
2480SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2481 int, maxevents, const struct __kernel_timespec __user *, timeout,
2482 const sigset_t __user *, sigmask, size_t, sigsetsize)
2483{
2484 struct timespec64 ts, *to = NULL;
2485
2486 if (timeout) {
2487 if (get_timespec64(ts: &ts, uts: timeout))
2488 return -EFAULT;
2489 to = &ts;
2490 if (poll_select_set_timeout(to, sec: ts.tv_sec, nsec: ts.tv_nsec))
2491 return -EINVAL;
2492 }
2493
2494 return do_epoll_pwait(epfd, events, maxevents, to,
2495 sigmask, sigsetsize);
2496}
2497
2498#ifdef CONFIG_COMPAT
2499static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2500 int maxevents, struct timespec64 *timeout,
2501 const compat_sigset_t __user *sigmask,
2502 compat_size_t sigsetsize)
2503{
2504 long err;
2505
2506 /*
2507 * If the caller wants a certain signal mask to be set during the wait,
2508 * we apply it here.
2509 */
2510 err = set_compat_user_sigmask(umask: sigmask, sigsetsize);
2511 if (err)
2512 return err;
2513
2514 err = do_epoll_wait(epfd, events, maxevents, to: timeout);
2515
2516 restore_saved_sigmask_unless(interrupted: err == -EINTR);
2517
2518 return err;
2519}
2520
2521COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2522 struct epoll_event __user *, events,
2523 int, maxevents, int, timeout,
2524 const compat_sigset_t __user *, sigmask,
2525 compat_size_t, sigsetsize)
2526{
2527 struct timespec64 to;
2528
2529 return do_compat_epoll_pwait(epfd, events, maxevents,
2530 timeout: ep_timeout_to_timespec(to: &to, ms: timeout),
2531 sigmask, sigsetsize);
2532}
2533
2534COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2535 struct epoll_event __user *, events,
2536 int, maxevents,
2537 const struct __kernel_timespec __user *, timeout,
2538 const compat_sigset_t __user *, sigmask,
2539 compat_size_t, sigsetsize)
2540{
2541 struct timespec64 ts, *to = NULL;
2542
2543 if (timeout) {
2544 if (get_timespec64(ts: &ts, uts: timeout))
2545 return -EFAULT;
2546 to = &ts;
2547 if (poll_select_set_timeout(to, sec: ts.tv_sec, nsec: ts.tv_nsec))
2548 return -EINVAL;
2549 }
2550
2551 return do_compat_epoll_pwait(epfd, events, maxevents, timeout: to,
2552 sigmask, sigsetsize);
2553}
2554
2555#endif
2556
2557static int __init eventpoll_init(void)
2558{
2559 struct sysinfo si;
2560
2561 si_meminfo(val: &si);
2562 /*
2563 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2564 */
2565 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2566 EP_ITEM_COST;
2567 BUG_ON(max_user_watches < 0);
2568
2569 /*
2570 * We can have many thousands of epitems, so prevent this from
2571 * using an extra cache line on 64-bit (and smaller) CPUs
2572 */
2573 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2574
2575 /* Allocates slab cache used to allocate "struct epitem" items */
2576 epi_cache = kmem_cache_create(name: "eventpoll_epi", size: sizeof(struct epitem),
2577 align: 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2578
2579 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2580 pwq_cache = kmem_cache_create(name: "eventpoll_pwq",
2581 size: sizeof(struct eppoll_entry), align: 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2582 epoll_sysctls_init();
2583
2584 ephead_cache = kmem_cache_create(name: "ep_head",
2585 size: sizeof(struct epitems_head), align: 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2586
2587 return 0;
2588}
2589fs_initcall(eventpoll_init);
2590

source code of linux/fs/eventpoll.c