1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> |
4 | #include <linux/err.h> |
5 | #include <linux/spinlock.h> |
6 | |
7 | #include <linux/mm.h> |
8 | #include <linux/memremap.h> |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> |
11 | #include <linux/swap.h> |
12 | #include <linux/swapops.h> |
13 | #include <linux/secretmem.h> |
14 | |
15 | #include <linux/sched/signal.h> |
16 | #include <linux/rwsem.h> |
17 | #include <linux/hugetlb.h> |
18 | #include <linux/migrate.h> |
19 | #include <linux/mm_inline.h> |
20 | #include <linux/sched/mm.h> |
21 | #include <linux/shmem_fs.h> |
22 | |
23 | #include <asm/mmu_context.h> |
24 | #include <asm/tlbflush.h> |
25 | |
26 | #include "internal.h" |
27 | |
28 | struct follow_page_context { |
29 | struct dev_pagemap *pgmap; |
30 | unsigned int page_mask; |
31 | }; |
32 | |
33 | static inline void sanity_check_pinned_pages(struct page **pages, |
34 | unsigned long npages) |
35 | { |
36 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) |
37 | return; |
38 | |
39 | /* |
40 | * We only pin anonymous pages if they are exclusive. Once pinned, we |
41 | * can no longer turn them possibly shared and PageAnonExclusive() will |
42 | * stick around until the page is freed. |
43 | * |
44 | * We'd like to verify that our pinned anonymous pages are still mapped |
45 | * exclusively. The issue with anon THP is that we don't know how |
46 | * they are/were mapped when pinning them. However, for anon |
47 | * THP we can assume that either the given page (PTE-mapped THP) or |
48 | * the head page (PMD-mapped THP) should be PageAnonExclusive(). If |
49 | * neither is the case, there is certainly something wrong. |
50 | */ |
51 | for (; npages; npages--, pages++) { |
52 | struct page *page = *pages; |
53 | struct folio *folio = page_folio(page); |
54 | |
55 | if (is_zero_page(page) || |
56 | !folio_test_anon(folio)) |
57 | continue; |
58 | if (!folio_test_large(folio) || folio_test_hugetlb(folio)) |
59 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); |
60 | else |
61 | /* Either a PTE-mapped or a PMD-mapped THP. */ |
62 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && |
63 | !PageAnonExclusive(page), page); |
64 | } |
65 | } |
66 | |
67 | /* |
68 | * Return the folio with ref appropriately incremented, |
69 | * or NULL if that failed. |
70 | */ |
71 | static inline struct folio *try_get_folio(struct page *page, int refs) |
72 | { |
73 | struct folio *folio; |
74 | |
75 | retry: |
76 | folio = page_folio(page); |
77 | if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) |
78 | return NULL; |
79 | if (unlikely(!folio_ref_try_add_rcu(folio, refs))) |
80 | return NULL; |
81 | |
82 | /* |
83 | * At this point we have a stable reference to the folio; but it |
84 | * could be that between calling page_folio() and the refcount |
85 | * increment, the folio was split, in which case we'd end up |
86 | * holding a reference on a folio that has nothing to do with the page |
87 | * we were given anymore. |
88 | * So now that the folio is stable, recheck that the page still |
89 | * belongs to this folio. |
90 | */ |
91 | if (unlikely(page_folio(page) != folio)) { |
92 | if (!put_devmap_managed_page_refs(page: &folio->page, refs)) |
93 | folio_put_refs(folio, refs); |
94 | goto retry; |
95 | } |
96 | |
97 | return folio; |
98 | } |
99 | |
100 | /** |
101 | * try_grab_folio() - Attempt to get or pin a folio. |
102 | * @page: pointer to page to be grabbed |
103 | * @refs: the value to (effectively) add to the folio's refcount |
104 | * @flags: gup flags: these are the FOLL_* flag values. |
105 | * |
106 | * "grab" names in this file mean, "look at flags to decide whether to use |
107 | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. |
108 | * |
109 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the |
110 | * same time. (That's true throughout the get_user_pages*() and |
111 | * pin_user_pages*() APIs.) Cases: |
112 | * |
113 | * FOLL_GET: folio's refcount will be incremented by @refs. |
114 | * |
115 | * FOLL_PIN on large folios: folio's refcount will be incremented by |
116 | * @refs, and its pincount will be incremented by @refs. |
117 | * |
118 | * FOLL_PIN on single-page folios: folio's refcount will be incremented by |
119 | * @refs * GUP_PIN_COUNTING_BIAS. |
120 | * |
121 | * Return: The folio containing @page (with refcount appropriately |
122 | * incremented) for success, or NULL upon failure. If neither FOLL_GET |
123 | * nor FOLL_PIN was set, that's considered failure, and furthermore, |
124 | * a likely bug in the caller, so a warning is also emitted. |
125 | */ |
126 | struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) |
127 | { |
128 | struct folio *folio; |
129 | |
130 | if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) |
131 | return NULL; |
132 | |
133 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) |
134 | return NULL; |
135 | |
136 | if (flags & FOLL_GET) |
137 | return try_get_folio(page, refs); |
138 | |
139 | /* FOLL_PIN is set */ |
140 | |
141 | /* |
142 | * Don't take a pin on the zero page - it's not going anywhere |
143 | * and it is used in a *lot* of places. |
144 | */ |
145 | if (is_zero_page(page)) |
146 | return page_folio(page); |
147 | |
148 | folio = try_get_folio(page, refs); |
149 | if (!folio) |
150 | return NULL; |
151 | |
152 | /* |
153 | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a |
154 | * right zone, so fail and let the caller fall back to the slow |
155 | * path. |
156 | */ |
157 | if (unlikely((flags & FOLL_LONGTERM) && |
158 | !folio_is_longterm_pinnable(folio))) { |
159 | if (!put_devmap_managed_page_refs(page: &folio->page, refs)) |
160 | folio_put_refs(folio, refs); |
161 | return NULL; |
162 | } |
163 | |
164 | /* |
165 | * When pinning a large folio, use an exact count to track it. |
166 | * |
167 | * However, be sure to *also* increment the normal folio |
168 | * refcount field at least once, so that the folio really |
169 | * is pinned. That's why the refcount from the earlier |
170 | * try_get_folio() is left intact. |
171 | */ |
172 | if (folio_test_large(folio)) |
173 | atomic_add(i: refs, v: &folio->_pincount); |
174 | else |
175 | folio_ref_add(folio, |
176 | nr: refs * (GUP_PIN_COUNTING_BIAS - 1)); |
177 | /* |
178 | * Adjust the pincount before re-checking the PTE for changes. |
179 | * This is essentially a smp_mb() and is paired with a memory |
180 | * barrier in folio_try_share_anon_rmap_*(). |
181 | */ |
182 | smp_mb__after_atomic(); |
183 | |
184 | node_stat_mod_folio(folio, item: NR_FOLL_PIN_ACQUIRED, nr: refs); |
185 | |
186 | return folio; |
187 | } |
188 | |
189 | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) |
190 | { |
191 | if (flags & FOLL_PIN) { |
192 | if (is_zero_folio(folio)) |
193 | return; |
194 | node_stat_mod_folio(folio, item: NR_FOLL_PIN_RELEASED, nr: refs); |
195 | if (folio_test_large(folio)) |
196 | atomic_sub(i: refs, v: &folio->_pincount); |
197 | else |
198 | refs *= GUP_PIN_COUNTING_BIAS; |
199 | } |
200 | |
201 | if (!put_devmap_managed_page_refs(page: &folio->page, refs)) |
202 | folio_put_refs(folio, refs); |
203 | } |
204 | |
205 | /** |
206 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount |
207 | * @page: pointer to page to be grabbed |
208 | * @flags: gup flags: these are the FOLL_* flag values. |
209 | * |
210 | * This might not do anything at all, depending on the flags argument. |
211 | * |
212 | * "grab" names in this file mean, "look at flags to decide whether to use |
213 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. |
214 | * |
215 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same |
216 | * time. Cases: please see the try_grab_folio() documentation, with |
217 | * "refs=1". |
218 | * |
219 | * Return: 0 for success, or if no action was required (if neither FOLL_PIN |
220 | * nor FOLL_GET was set, nothing is done). A negative error code for failure: |
221 | * |
222 | * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not |
223 | * be grabbed. |
224 | */ |
225 | int __must_check try_grab_page(struct page *page, unsigned int flags) |
226 | { |
227 | struct folio *folio = page_folio(page); |
228 | |
229 | if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) |
230 | return -ENOMEM; |
231 | |
232 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) |
233 | return -EREMOTEIO; |
234 | |
235 | if (flags & FOLL_GET) |
236 | folio_ref_inc(folio); |
237 | else if (flags & FOLL_PIN) { |
238 | /* |
239 | * Don't take a pin on the zero page - it's not going anywhere |
240 | * and it is used in a *lot* of places. |
241 | */ |
242 | if (is_zero_page(page)) |
243 | return 0; |
244 | |
245 | /* |
246 | * Similar to try_grab_folio(): be sure to *also* |
247 | * increment the normal page refcount field at least once, |
248 | * so that the page really is pinned. |
249 | */ |
250 | if (folio_test_large(folio)) { |
251 | folio_ref_add(folio, nr: 1); |
252 | atomic_add(i: 1, v: &folio->_pincount); |
253 | } else { |
254 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); |
255 | } |
256 | |
257 | node_stat_mod_folio(folio, item: NR_FOLL_PIN_ACQUIRED, nr: 1); |
258 | } |
259 | |
260 | return 0; |
261 | } |
262 | |
263 | /** |
264 | * unpin_user_page() - release a dma-pinned page |
265 | * @page: pointer to page to be released |
266 | * |
267 | * Pages that were pinned via pin_user_pages*() must be released via either |
268 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so |
269 | * that such pages can be separately tracked and uniquely handled. In |
270 | * particular, interactions with RDMA and filesystems need special handling. |
271 | */ |
272 | void unpin_user_page(struct page *page) |
273 | { |
274 | sanity_check_pinned_pages(pages: &page, npages: 1); |
275 | gup_put_folio(page_folio(page), refs: 1, flags: FOLL_PIN); |
276 | } |
277 | EXPORT_SYMBOL(unpin_user_page); |
278 | |
279 | /** |
280 | * folio_add_pin - Try to get an additional pin on a pinned folio |
281 | * @folio: The folio to be pinned |
282 | * |
283 | * Get an additional pin on a folio we already have a pin on. Makes no change |
284 | * if the folio is a zero_page. |
285 | */ |
286 | void folio_add_pin(struct folio *folio) |
287 | { |
288 | if (is_zero_folio(folio)) |
289 | return; |
290 | |
291 | /* |
292 | * Similar to try_grab_folio(): be sure to *also* increment the normal |
293 | * page refcount field at least once, so that the page really is |
294 | * pinned. |
295 | */ |
296 | if (folio_test_large(folio)) { |
297 | WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); |
298 | folio_ref_inc(folio); |
299 | atomic_inc(v: &folio->_pincount); |
300 | } else { |
301 | WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); |
302 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); |
303 | } |
304 | } |
305 | |
306 | static inline struct folio *gup_folio_range_next(struct page *start, |
307 | unsigned long npages, unsigned long i, unsigned int *ntails) |
308 | { |
309 | struct page *next = nth_page(start, i); |
310 | struct folio *folio = page_folio(next); |
311 | unsigned int nr = 1; |
312 | |
313 | if (folio_test_large(folio)) |
314 | nr = min_t(unsigned int, npages - i, |
315 | folio_nr_pages(folio) - folio_page_idx(folio, next)); |
316 | |
317 | *ntails = nr; |
318 | return folio; |
319 | } |
320 | |
321 | static inline struct folio *gup_folio_next(struct page **list, |
322 | unsigned long npages, unsigned long i, unsigned int *ntails) |
323 | { |
324 | struct folio *folio = page_folio(list[i]); |
325 | unsigned int nr; |
326 | |
327 | for (nr = i + 1; nr < npages; nr++) { |
328 | if (page_folio(list[nr]) != folio) |
329 | break; |
330 | } |
331 | |
332 | *ntails = nr - i; |
333 | return folio; |
334 | } |
335 | |
336 | /** |
337 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
338 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
339 | * @npages: number of pages in the @pages array. |
340 | * @make_dirty: whether to mark the pages dirty |
341 | * |
342 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() |
343 | * variants called on that page. |
344 | * |
345 | * For each page in the @pages array, make that page (or its head page, if a |
346 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
347 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
348 | * possibly via unpin_user_pages(), for the non-dirty case. |
349 | * |
350 | * Please see the unpin_user_page() documentation for details. |
351 | * |
352 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
353 | * required, then the caller should a) verify that this is really correct, |
354 | * because _lock() is usually required, and b) hand code it: |
355 | * set_page_dirty_lock(), unpin_user_page(). |
356 | * |
357 | */ |
358 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
359 | bool make_dirty) |
360 | { |
361 | unsigned long i; |
362 | struct folio *folio; |
363 | unsigned int nr; |
364 | |
365 | if (!make_dirty) { |
366 | unpin_user_pages(pages, npages); |
367 | return; |
368 | } |
369 | |
370 | sanity_check_pinned_pages(pages, npages); |
371 | for (i = 0; i < npages; i += nr) { |
372 | folio = gup_folio_next(list: pages, npages, i, ntails: &nr); |
373 | /* |
374 | * Checking PageDirty at this point may race with |
375 | * clear_page_dirty_for_io(), but that's OK. Two key |
376 | * cases: |
377 | * |
378 | * 1) This code sees the page as already dirty, so it |
379 | * skips the call to set_page_dirty(). That could happen |
380 | * because clear_page_dirty_for_io() called |
381 | * page_mkclean(), followed by set_page_dirty(). |
382 | * However, now the page is going to get written back, |
383 | * which meets the original intention of setting it |
384 | * dirty, so all is well: clear_page_dirty_for_io() goes |
385 | * on to call TestClearPageDirty(), and write the page |
386 | * back. |
387 | * |
388 | * 2) This code sees the page as clean, so it calls |
389 | * set_page_dirty(). The page stays dirty, despite being |
390 | * written back, so it gets written back again in the |
391 | * next writeback cycle. This is harmless. |
392 | */ |
393 | if (!folio_test_dirty(folio)) { |
394 | folio_lock(folio); |
395 | folio_mark_dirty(folio); |
396 | folio_unlock(folio); |
397 | } |
398 | gup_put_folio(folio, refs: nr, flags: FOLL_PIN); |
399 | } |
400 | } |
401 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
402 | |
403 | /** |
404 | * unpin_user_page_range_dirty_lock() - release and optionally dirty |
405 | * gup-pinned page range |
406 | * |
407 | * @page: the starting page of a range maybe marked dirty, and definitely released. |
408 | * @npages: number of consecutive pages to release. |
409 | * @make_dirty: whether to mark the pages dirty |
410 | * |
411 | * "gup-pinned page range" refers to a range of pages that has had one of the |
412 | * pin_user_pages() variants called on that page. |
413 | * |
414 | * For the page ranges defined by [page .. page+npages], make that range (or |
415 | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the |
416 | * page range was previously listed as clean. |
417 | * |
418 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
419 | * required, then the caller should a) verify that this is really correct, |
420 | * because _lock() is usually required, and b) hand code it: |
421 | * set_page_dirty_lock(), unpin_user_page(). |
422 | * |
423 | */ |
424 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
425 | bool make_dirty) |
426 | { |
427 | unsigned long i; |
428 | struct folio *folio; |
429 | unsigned int nr; |
430 | |
431 | for (i = 0; i < npages; i += nr) { |
432 | folio = gup_folio_range_next(start: page, npages, i, ntails: &nr); |
433 | if (make_dirty && !folio_test_dirty(folio)) { |
434 | folio_lock(folio); |
435 | folio_mark_dirty(folio); |
436 | folio_unlock(folio); |
437 | } |
438 | gup_put_folio(folio, refs: nr, flags: FOLL_PIN); |
439 | } |
440 | } |
441 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); |
442 | |
443 | static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) |
444 | { |
445 | unsigned long i; |
446 | struct folio *folio; |
447 | unsigned int nr; |
448 | |
449 | /* |
450 | * Don't perform any sanity checks because we might have raced with |
451 | * fork() and some anonymous pages might now actually be shared -- |
452 | * which is why we're unpinning after all. |
453 | */ |
454 | for (i = 0; i < npages; i += nr) { |
455 | folio = gup_folio_next(list: pages, npages, i, ntails: &nr); |
456 | gup_put_folio(folio, refs: nr, flags: FOLL_PIN); |
457 | } |
458 | } |
459 | |
460 | /** |
461 | * unpin_user_pages() - release an array of gup-pinned pages. |
462 | * @pages: array of pages to be marked dirty and released. |
463 | * @npages: number of pages in the @pages array. |
464 | * |
465 | * For each page in the @pages array, release the page using unpin_user_page(). |
466 | * |
467 | * Please see the unpin_user_page() documentation for details. |
468 | */ |
469 | void unpin_user_pages(struct page **pages, unsigned long npages) |
470 | { |
471 | unsigned long i; |
472 | struct folio *folio; |
473 | unsigned int nr; |
474 | |
475 | /* |
476 | * If this WARN_ON() fires, then the system *might* be leaking pages (by |
477 | * leaving them pinned), but probably not. More likely, gup/pup returned |
478 | * a hard -ERRNO error to the caller, who erroneously passed it here. |
479 | */ |
480 | if (WARN_ON(IS_ERR_VALUE(npages))) |
481 | return; |
482 | |
483 | sanity_check_pinned_pages(pages, npages); |
484 | for (i = 0; i < npages; i += nr) { |
485 | folio = gup_folio_next(list: pages, npages, i, ntails: &nr); |
486 | gup_put_folio(folio, refs: nr, flags: FOLL_PIN); |
487 | } |
488 | } |
489 | EXPORT_SYMBOL(unpin_user_pages); |
490 | |
491 | /* |
492 | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's |
493 | * lifecycle. Avoid setting the bit unless necessary, or it might cause write |
494 | * cache bouncing on large SMP machines for concurrent pinned gups. |
495 | */ |
496 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) |
497 | { |
498 | if (!test_bit(MMF_HAS_PINNED, mm_flags)) |
499 | set_bit(MMF_HAS_PINNED, addr: mm_flags); |
500 | } |
501 | |
502 | #ifdef CONFIG_MMU |
503 | static struct page *no_page_table(struct vm_area_struct *vma, |
504 | unsigned int flags) |
505 | { |
506 | /* |
507 | * When core dumping an enormous anonymous area that nobody |
508 | * has touched so far, we don't want to allocate unnecessary pages or |
509 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
510 | * then get_dump_page() will return NULL to leave a hole in the dump. |
511 | * But we can only make this optimization where a hole would surely |
512 | * be zero-filled if handle_mm_fault() actually did handle it. |
513 | */ |
514 | if ((flags & FOLL_DUMP) && |
515 | (vma_is_anonymous(vma) || !vma->vm_ops->fault)) |
516 | return ERR_PTR(error: -EFAULT); |
517 | return NULL; |
518 | } |
519 | |
520 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
521 | pte_t *pte, unsigned int flags) |
522 | { |
523 | if (flags & FOLL_TOUCH) { |
524 | pte_t orig_entry = ptep_get(ptep: pte); |
525 | pte_t entry = orig_entry; |
526 | |
527 | if (flags & FOLL_WRITE) |
528 | entry = pte_mkdirty(pte: entry); |
529 | entry = pte_mkyoung(pte: entry); |
530 | |
531 | if (!pte_same(a: orig_entry, b: entry)) { |
532 | set_pte_at(vma->vm_mm, address, pte, entry); |
533 | update_mmu_cache(vma, addr: address, ptep: pte); |
534 | } |
535 | } |
536 | |
537 | /* Proper page table entry exists, but no corresponding struct page */ |
538 | return -EEXIST; |
539 | } |
540 | |
541 | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ |
542 | static inline bool can_follow_write_pte(pte_t pte, struct page *page, |
543 | struct vm_area_struct *vma, |
544 | unsigned int flags) |
545 | { |
546 | /* If the pte is writable, we can write to the page. */ |
547 | if (pte_write(pte)) |
548 | return true; |
549 | |
550 | /* Maybe FOLL_FORCE is set to override it? */ |
551 | if (!(flags & FOLL_FORCE)) |
552 | return false; |
553 | |
554 | /* But FOLL_FORCE has no effect on shared mappings */ |
555 | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) |
556 | return false; |
557 | |
558 | /* ... or read-only private ones */ |
559 | if (!(vma->vm_flags & VM_MAYWRITE)) |
560 | return false; |
561 | |
562 | /* ... or already writable ones that just need to take a write fault */ |
563 | if (vma->vm_flags & VM_WRITE) |
564 | return false; |
565 | |
566 | /* |
567 | * See can_change_pte_writable(): we broke COW and could map the page |
568 | * writable if we have an exclusive anonymous page ... |
569 | */ |
570 | if (!page || !PageAnon(page) || !PageAnonExclusive(page)) |
571 | return false; |
572 | |
573 | /* ... and a write-fault isn't required for other reasons. */ |
574 | if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) |
575 | return false; |
576 | return !userfaultfd_pte_wp(vma, pte); |
577 | } |
578 | |
579 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
580 | unsigned long address, pmd_t *pmd, unsigned int flags, |
581 | struct dev_pagemap **pgmap) |
582 | { |
583 | struct mm_struct *mm = vma->vm_mm; |
584 | struct page *page; |
585 | spinlock_t *ptl; |
586 | pte_t *ptep, pte; |
587 | int ret; |
588 | |
589 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
590 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == |
591 | (FOLL_PIN | FOLL_GET))) |
592 | return ERR_PTR(error: -EINVAL); |
593 | |
594 | ptep = pte_offset_map_lock(mm, pmd, addr: address, ptlp: &ptl); |
595 | if (!ptep) |
596 | return no_page_table(vma, flags); |
597 | pte = ptep_get(ptep); |
598 | if (!pte_present(a: pte)) |
599 | goto no_page; |
600 | if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) |
601 | goto no_page; |
602 | |
603 | page = vm_normal_page(vma, addr: address, pte); |
604 | |
605 | /* |
606 | * We only care about anon pages in can_follow_write_pte() and don't |
607 | * have to worry about pte_devmap() because they are never anon. |
608 | */ |
609 | if ((flags & FOLL_WRITE) && |
610 | !can_follow_write_pte(pte, page, vma, flags)) { |
611 | page = NULL; |
612 | goto out; |
613 | } |
614 | |
615 | if (!page && pte_devmap(a: pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
616 | /* |
617 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
618 | * case since they are only valid while holding the pgmap |
619 | * reference. |
620 | */ |
621 | *pgmap = get_dev_pagemap(pfn: pte_pfn(pte), pgmap: *pgmap); |
622 | if (*pgmap) |
623 | page = pte_page(pte); |
624 | else |
625 | goto no_page; |
626 | } else if (unlikely(!page)) { |
627 | if (flags & FOLL_DUMP) { |
628 | /* Avoid special (like zero) pages in core dumps */ |
629 | page = ERR_PTR(error: -EFAULT); |
630 | goto out; |
631 | } |
632 | |
633 | if (is_zero_pfn(pfn: pte_pfn(pte))) { |
634 | page = pte_page(pte); |
635 | } else { |
636 | ret = follow_pfn_pte(vma, address, pte: ptep, flags); |
637 | page = ERR_PTR(error: ret); |
638 | goto out; |
639 | } |
640 | } |
641 | |
642 | if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { |
643 | page = ERR_PTR(error: -EMLINK); |
644 | goto out; |
645 | } |
646 | |
647 | VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && |
648 | !PageAnonExclusive(page), page); |
649 | |
650 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
651 | ret = try_grab_page(page, flags); |
652 | if (unlikely(ret)) { |
653 | page = ERR_PTR(error: ret); |
654 | goto out; |
655 | } |
656 | |
657 | /* |
658 | * We need to make the page accessible if and only if we are going |
659 | * to access its content (the FOLL_PIN case). Please see |
660 | * Documentation/core-api/pin_user_pages.rst for details. |
661 | */ |
662 | if (flags & FOLL_PIN) { |
663 | ret = arch_make_page_accessible(page); |
664 | if (ret) { |
665 | unpin_user_page(page); |
666 | page = ERR_PTR(error: ret); |
667 | goto out; |
668 | } |
669 | } |
670 | if (flags & FOLL_TOUCH) { |
671 | if ((flags & FOLL_WRITE) && |
672 | !pte_dirty(pte) && !PageDirty(page)) |
673 | set_page_dirty(page); |
674 | /* |
675 | * pte_mkyoung() would be more correct here, but atomic care |
676 | * is needed to avoid losing the dirty bit: it is easier to use |
677 | * mark_page_accessed(). |
678 | */ |
679 | mark_page_accessed(page); |
680 | } |
681 | out: |
682 | pte_unmap_unlock(ptep, ptl); |
683 | return page; |
684 | no_page: |
685 | pte_unmap_unlock(ptep, ptl); |
686 | if (!pte_none(pte)) |
687 | return NULL; |
688 | return no_page_table(vma, flags); |
689 | } |
690 | |
691 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
692 | unsigned long address, pud_t *pudp, |
693 | unsigned int flags, |
694 | struct follow_page_context *ctx) |
695 | { |
696 | pmd_t *pmd, pmdval; |
697 | spinlock_t *ptl; |
698 | struct page *page; |
699 | struct mm_struct *mm = vma->vm_mm; |
700 | |
701 | pmd = pmd_offset(pud: pudp, address); |
702 | pmdval = pmdp_get_lockless(pmdp: pmd); |
703 | if (pmd_none(pmd: pmdval)) |
704 | return no_page_table(vma, flags); |
705 | if (!pmd_present(pmd: pmdval)) |
706 | return no_page_table(vma, flags); |
707 | if (pmd_devmap(pmd: pmdval)) { |
708 | ptl = pmd_lock(mm, pmd); |
709 | page = follow_devmap_pmd(vma, addr: address, pmd, flags, pgmap: &ctx->pgmap); |
710 | spin_unlock(lock: ptl); |
711 | if (page) |
712 | return page; |
713 | return no_page_table(vma, flags); |
714 | } |
715 | if (likely(!pmd_trans_huge(pmdval))) |
716 | return follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap); |
717 | |
718 | if (pmd_protnone(pmd: pmdval) && !gup_can_follow_protnone(vma, flags)) |
719 | return no_page_table(vma, flags); |
720 | |
721 | ptl = pmd_lock(mm, pmd); |
722 | if (unlikely(!pmd_present(*pmd))) { |
723 | spin_unlock(lock: ptl); |
724 | return no_page_table(vma, flags); |
725 | } |
726 | if (unlikely(!pmd_trans_huge(*pmd))) { |
727 | spin_unlock(lock: ptl); |
728 | return follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap); |
729 | } |
730 | if (flags & FOLL_SPLIT_PMD) { |
731 | spin_unlock(lock: ptl); |
732 | split_huge_pmd(vma, pmd, address); |
733 | /* If pmd was left empty, stuff a page table in there quickly */ |
734 | return pte_alloc(mm, pmd) ? ERR_PTR(error: -ENOMEM) : |
735 | follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap); |
736 | } |
737 | page = follow_trans_huge_pmd(vma, addr: address, pmd, flags); |
738 | spin_unlock(lock: ptl); |
739 | ctx->page_mask = HPAGE_PMD_NR - 1; |
740 | return page; |
741 | } |
742 | |
743 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
744 | unsigned long address, p4d_t *p4dp, |
745 | unsigned int flags, |
746 | struct follow_page_context *ctx) |
747 | { |
748 | pud_t *pud; |
749 | spinlock_t *ptl; |
750 | struct page *page; |
751 | struct mm_struct *mm = vma->vm_mm; |
752 | |
753 | pud = pud_offset(p4d: p4dp, address); |
754 | if (pud_none(pud: *pud)) |
755 | return no_page_table(vma, flags); |
756 | if (pud_devmap(pud: *pud)) { |
757 | ptl = pud_lock(mm, pud); |
758 | page = follow_devmap_pud(vma, addr: address, pud, flags, pgmap: &ctx->pgmap); |
759 | spin_unlock(lock: ptl); |
760 | if (page) |
761 | return page; |
762 | return no_page_table(vma, flags); |
763 | } |
764 | if (unlikely(pud_bad(*pud))) |
765 | return no_page_table(vma, flags); |
766 | |
767 | return follow_pmd_mask(vma, address, pudp: pud, flags, ctx); |
768 | } |
769 | |
770 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
771 | unsigned long address, pgd_t *pgdp, |
772 | unsigned int flags, |
773 | struct follow_page_context *ctx) |
774 | { |
775 | p4d_t *p4d; |
776 | |
777 | p4d = p4d_offset(pgd: pgdp, address); |
778 | if (p4d_none(p4d: *p4d)) |
779 | return no_page_table(vma, flags); |
780 | BUILD_BUG_ON(p4d_huge(*p4d)); |
781 | if (unlikely(p4d_bad(*p4d))) |
782 | return no_page_table(vma, flags); |
783 | |
784 | return follow_pud_mask(vma, address, p4dp: p4d, flags, ctx); |
785 | } |
786 | |
787 | /** |
788 | * follow_page_mask - look up a page descriptor from a user-virtual address |
789 | * @vma: vm_area_struct mapping @address |
790 | * @address: virtual address to look up |
791 | * @flags: flags modifying lookup behaviour |
792 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
793 | * pointer to output page_mask |
794 | * |
795 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
796 | * |
797 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
798 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. |
799 | * |
800 | * When getting an anonymous page and the caller has to trigger unsharing |
801 | * of a shared anonymous page first, -EMLINK is returned. The caller should |
802 | * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only |
803 | * relevant with FOLL_PIN and !FOLL_WRITE. |
804 | * |
805 | * On output, the @ctx->page_mask is set according to the size of the page. |
806 | * |
807 | * Return: the mapped (struct page *), %NULL if no mapping exists, or |
808 | * an error pointer if there is a mapping to something not represented |
809 | * by a page descriptor (see also vm_normal_page()). |
810 | */ |
811 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
812 | unsigned long address, unsigned int flags, |
813 | struct follow_page_context *ctx) |
814 | { |
815 | pgd_t *pgd; |
816 | struct mm_struct *mm = vma->vm_mm; |
817 | |
818 | ctx->page_mask = 0; |
819 | |
820 | /* |
821 | * Call hugetlb_follow_page_mask for hugetlb vmas as it will use |
822 | * special hugetlb page table walking code. This eliminates the |
823 | * need to check for hugetlb entries in the general walking code. |
824 | */ |
825 | if (is_vm_hugetlb_page(vma)) |
826 | return hugetlb_follow_page_mask(vma, address, flags, |
827 | page_mask: &ctx->page_mask); |
828 | |
829 | pgd = pgd_offset(mm, address); |
830 | |
831 | if (pgd_none(pgd: *pgd) || unlikely(pgd_bad(*pgd))) |
832 | return no_page_table(vma, flags); |
833 | |
834 | return follow_p4d_mask(vma, address, pgdp: pgd, flags, ctx); |
835 | } |
836 | |
837 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
838 | unsigned int foll_flags) |
839 | { |
840 | struct follow_page_context ctx = { NULL }; |
841 | struct page *page; |
842 | |
843 | if (vma_is_secretmem(vma)) |
844 | return NULL; |
845 | |
846 | if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) |
847 | return NULL; |
848 | |
849 | /* |
850 | * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect |
851 | * to fail on PROT_NONE-mapped pages. |
852 | */ |
853 | page = follow_page_mask(vma, address, flags: foll_flags, ctx: &ctx); |
854 | if (ctx.pgmap) |
855 | put_dev_pagemap(pgmap: ctx.pgmap); |
856 | return page; |
857 | } |
858 | |
859 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
860 | unsigned int gup_flags, struct vm_area_struct **vma, |
861 | struct page **page) |
862 | { |
863 | pgd_t *pgd; |
864 | p4d_t *p4d; |
865 | pud_t *pud; |
866 | pmd_t *pmd; |
867 | pte_t *pte; |
868 | pte_t entry; |
869 | int ret = -EFAULT; |
870 | |
871 | /* user gate pages are read-only */ |
872 | if (gup_flags & FOLL_WRITE) |
873 | return -EFAULT; |
874 | if (address > TASK_SIZE) |
875 | pgd = pgd_offset_k(address); |
876 | else |
877 | pgd = pgd_offset_gate(mm, address); |
878 | if (pgd_none(pgd: *pgd)) |
879 | return -EFAULT; |
880 | p4d = p4d_offset(pgd, address); |
881 | if (p4d_none(p4d: *p4d)) |
882 | return -EFAULT; |
883 | pud = pud_offset(p4d, address); |
884 | if (pud_none(pud: *pud)) |
885 | return -EFAULT; |
886 | pmd = pmd_offset(pud, address); |
887 | if (!pmd_present(pmd: *pmd)) |
888 | return -EFAULT; |
889 | pte = pte_offset_map(pmd, addr: address); |
890 | if (!pte) |
891 | return -EFAULT; |
892 | entry = ptep_get(ptep: pte); |
893 | if (pte_none(pte: entry)) |
894 | goto unmap; |
895 | *vma = get_gate_vma(mm); |
896 | if (!page) |
897 | goto out; |
898 | *page = vm_normal_page(vma: *vma, addr: address, pte: entry); |
899 | if (!*page) { |
900 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pfn: pte_pfn(pte: entry))) |
901 | goto unmap; |
902 | *page = pte_page(entry); |
903 | } |
904 | ret = try_grab_page(page: *page, flags: gup_flags); |
905 | if (unlikely(ret)) |
906 | goto unmap; |
907 | out: |
908 | ret = 0; |
909 | unmap: |
910 | pte_unmap(pte); |
911 | return ret; |
912 | } |
913 | |
914 | /* |
915 | * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not |
916 | * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set |
917 | * to 0 and -EBUSY returned. |
918 | */ |
919 | static int faultin_page(struct vm_area_struct *vma, |
920 | unsigned long address, unsigned int *flags, bool unshare, |
921 | int *locked) |
922 | { |
923 | unsigned int fault_flags = 0; |
924 | vm_fault_t ret; |
925 | |
926 | if (*flags & FOLL_NOFAULT) |
927 | return -EFAULT; |
928 | if (*flags & FOLL_WRITE) |
929 | fault_flags |= FAULT_FLAG_WRITE; |
930 | if (*flags & FOLL_REMOTE) |
931 | fault_flags |= FAULT_FLAG_REMOTE; |
932 | if (*flags & FOLL_UNLOCKABLE) { |
933 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
934 | /* |
935 | * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set |
936 | * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. |
937 | * That's because some callers may not be prepared to |
938 | * handle early exits caused by non-fatal signals. |
939 | */ |
940 | if (*flags & FOLL_INTERRUPTIBLE) |
941 | fault_flags |= FAULT_FLAG_INTERRUPTIBLE; |
942 | } |
943 | if (*flags & FOLL_NOWAIT) |
944 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; |
945 | if (*flags & FOLL_TRIED) { |
946 | /* |
947 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED |
948 | * can co-exist |
949 | */ |
950 | fault_flags |= FAULT_FLAG_TRIED; |
951 | } |
952 | if (unshare) { |
953 | fault_flags |= FAULT_FLAG_UNSHARE; |
954 | /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ |
955 | VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); |
956 | } |
957 | |
958 | ret = handle_mm_fault(vma, address, flags: fault_flags, NULL); |
959 | |
960 | if (ret & VM_FAULT_COMPLETED) { |
961 | /* |
962 | * With FAULT_FLAG_RETRY_NOWAIT we'll never release the |
963 | * mmap lock in the page fault handler. Sanity check this. |
964 | */ |
965 | WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); |
966 | *locked = 0; |
967 | |
968 | /* |
969 | * We should do the same as VM_FAULT_RETRY, but let's not |
970 | * return -EBUSY since that's not reflecting the reality of |
971 | * what has happened - we've just fully completed a page |
972 | * fault, with the mmap lock released. Use -EAGAIN to show |
973 | * that we want to take the mmap lock _again_. |
974 | */ |
975 | return -EAGAIN; |
976 | } |
977 | |
978 | if (ret & VM_FAULT_ERROR) { |
979 | int err = vm_fault_to_errno(vm_fault: ret, foll_flags: *flags); |
980 | |
981 | if (err) |
982 | return err; |
983 | BUG(); |
984 | } |
985 | |
986 | if (ret & VM_FAULT_RETRY) { |
987 | if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
988 | *locked = 0; |
989 | return -EBUSY; |
990 | } |
991 | |
992 | return 0; |
993 | } |
994 | |
995 | /* |
996 | * Writing to file-backed mappings which require folio dirty tracking using GUP |
997 | * is a fundamentally broken operation, as kernel write access to GUP mappings |
998 | * do not adhere to the semantics expected by a file system. |
999 | * |
1000 | * Consider the following scenario:- |
1001 | * |
1002 | * 1. A folio is written to via GUP which write-faults the memory, notifying |
1003 | * the file system and dirtying the folio. |
1004 | * 2. Later, writeback is triggered, resulting in the folio being cleaned and |
1005 | * the PTE being marked read-only. |
1006 | * 3. The GUP caller writes to the folio, as it is mapped read/write via the |
1007 | * direct mapping. |
1008 | * 4. The GUP caller, now done with the page, unpins it and sets it dirty |
1009 | * (though it does not have to). |
1010 | * |
1011 | * This results in both data being written to a folio without writenotify, and |
1012 | * the folio being dirtied unexpectedly (if the caller decides to do so). |
1013 | */ |
1014 | static bool writable_file_mapping_allowed(struct vm_area_struct *vma, |
1015 | unsigned long gup_flags) |
1016 | { |
1017 | /* |
1018 | * If we aren't pinning then no problematic write can occur. A long term |
1019 | * pin is the most egregious case so this is the case we disallow. |
1020 | */ |
1021 | if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != |
1022 | (FOLL_PIN | FOLL_LONGTERM)) |
1023 | return true; |
1024 | |
1025 | /* |
1026 | * If the VMA does not require dirty tracking then no problematic write |
1027 | * can occur either. |
1028 | */ |
1029 | return !vma_needs_dirty_tracking(vma); |
1030 | } |
1031 | |
1032 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
1033 | { |
1034 | vm_flags_t vm_flags = vma->vm_flags; |
1035 | int write = (gup_flags & FOLL_WRITE); |
1036 | int foreign = (gup_flags & FOLL_REMOTE); |
1037 | bool vma_anon = vma_is_anonymous(vma); |
1038 | |
1039 | if (vm_flags & (VM_IO | VM_PFNMAP)) |
1040 | return -EFAULT; |
1041 | |
1042 | if ((gup_flags & FOLL_ANON) && !vma_anon) |
1043 | return -EFAULT; |
1044 | |
1045 | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) |
1046 | return -EOPNOTSUPP; |
1047 | |
1048 | if (vma_is_secretmem(vma)) |
1049 | return -EFAULT; |
1050 | |
1051 | if (write) { |
1052 | if (!vma_anon && |
1053 | !writable_file_mapping_allowed(vma, gup_flags)) |
1054 | return -EFAULT; |
1055 | |
1056 | if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { |
1057 | if (!(gup_flags & FOLL_FORCE)) |
1058 | return -EFAULT; |
1059 | /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ |
1060 | if (is_vm_hugetlb_page(vma)) |
1061 | return -EFAULT; |
1062 | /* |
1063 | * We used to let the write,force case do COW in a |
1064 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could |
1065 | * set a breakpoint in a read-only mapping of an |
1066 | * executable, without corrupting the file (yet only |
1067 | * when that file had been opened for writing!). |
1068 | * Anon pages in shared mappings are surprising: now |
1069 | * just reject it. |
1070 | */ |
1071 | if (!is_cow_mapping(flags: vm_flags)) |
1072 | return -EFAULT; |
1073 | } |
1074 | } else if (!(vm_flags & VM_READ)) { |
1075 | if (!(gup_flags & FOLL_FORCE)) |
1076 | return -EFAULT; |
1077 | /* |
1078 | * Is there actually any vma we can reach here which does not |
1079 | * have VM_MAYREAD set? |
1080 | */ |
1081 | if (!(vm_flags & VM_MAYREAD)) |
1082 | return -EFAULT; |
1083 | } |
1084 | /* |
1085 | * gups are always data accesses, not instruction |
1086 | * fetches, so execute=false here |
1087 | */ |
1088 | if (!arch_vma_access_permitted(vma, write, execute: false, foreign)) |
1089 | return -EFAULT; |
1090 | return 0; |
1091 | } |
1092 | |
1093 | /* |
1094 | * This is "vma_lookup()", but with a warning if we would have |
1095 | * historically expanded the stack in the GUP code. |
1096 | */ |
1097 | static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, |
1098 | unsigned long addr) |
1099 | { |
1100 | #ifdef CONFIG_STACK_GROWSUP |
1101 | return vma_lookup(mm, addr); |
1102 | #else |
1103 | static volatile unsigned long next_warn; |
1104 | struct vm_area_struct *vma; |
1105 | unsigned long now, next; |
1106 | |
1107 | vma = find_vma(mm, addr); |
1108 | if (!vma || (addr >= vma->vm_start)) |
1109 | return vma; |
1110 | |
1111 | /* Only warn for half-way relevant accesses */ |
1112 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
1113 | return NULL; |
1114 | if (vma->vm_start - addr > 65536) |
1115 | return NULL; |
1116 | |
1117 | /* Let's not warn more than once an hour.. */ |
1118 | now = jiffies; next = next_warn; |
1119 | if (next && time_before(now, next)) |
1120 | return NULL; |
1121 | next_warn = now + 60*60*HZ; |
1122 | |
1123 | /* Let people know things may have changed. */ |
1124 | pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", |
1125 | current->comm, task_pid_nr(current), |
1126 | vma->vm_start, vma->vm_end, addr); |
1127 | dump_stack(); |
1128 | return NULL; |
1129 | #endif |
1130 | } |
1131 | |
1132 | /** |
1133 | * __get_user_pages() - pin user pages in memory |
1134 | * @mm: mm_struct of target mm |
1135 | * @start: starting user address |
1136 | * @nr_pages: number of pages from start to pin |
1137 | * @gup_flags: flags modifying pin behaviour |
1138 | * @pages: array that receives pointers to the pages pinned. |
1139 | * Should be at least nr_pages long. Or NULL, if caller |
1140 | * only intends to ensure the pages are faulted in. |
1141 | * @locked: whether we're still with the mmap_lock held |
1142 | * |
1143 | * Returns either number of pages pinned (which may be less than the |
1144 | * number requested), or an error. Details about the return value: |
1145 | * |
1146 | * -- If nr_pages is 0, returns 0. |
1147 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. |
1148 | * -- If nr_pages is >0, and some pages were pinned, returns the number of |
1149 | * pages pinned. Again, this may be less than nr_pages. |
1150 | * -- 0 return value is possible when the fault would need to be retried. |
1151 | * |
1152 | * The caller is responsible for releasing returned @pages, via put_page(). |
1153 | * |
1154 | * Must be called with mmap_lock held. It may be released. See below. |
1155 | * |
1156 | * __get_user_pages walks a process's page tables and takes a reference to |
1157 | * each struct page that each user address corresponds to at a given |
1158 | * instant. That is, it takes the page that would be accessed if a user |
1159 | * thread accesses the given user virtual address at that instant. |
1160 | * |
1161 | * This does not guarantee that the page exists in the user mappings when |
1162 | * __get_user_pages returns, and there may even be a completely different |
1163 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
1164 | * and subsequently re-faulted). However it does guarantee that the page |
1165 | * won't be freed completely. And mostly callers simply care that the page |
1166 | * contains data that was valid *at some point in time*. Typically, an IO |
1167 | * or similar operation cannot guarantee anything stronger anyway because |
1168 | * locks can't be held over the syscall boundary. |
1169 | * |
1170 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
1171 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
1172 | * appropriate) must be called after the page is finished with, and |
1173 | * before put_page is called. |
1174 | * |
1175 | * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may |
1176 | * be released. If this happens *@locked will be set to 0 on return. |
1177 | * |
1178 | * A caller using such a combination of @gup_flags must therefore hold the |
1179 | * mmap_lock for reading only, and recognize when it's been released. Otherwise, |
1180 | * it must be held for either reading or writing and will not be released. |
1181 | * |
1182 | * In most cases, get_user_pages or get_user_pages_fast should be used |
1183 | * instead of __get_user_pages. __get_user_pages should be used only if |
1184 | * you need some special @gup_flags. |
1185 | */ |
1186 | static long __get_user_pages(struct mm_struct *mm, |
1187 | unsigned long start, unsigned long nr_pages, |
1188 | unsigned int gup_flags, struct page **pages, |
1189 | int *locked) |
1190 | { |
1191 | long ret = 0, i = 0; |
1192 | struct vm_area_struct *vma = NULL; |
1193 | struct follow_page_context ctx = { NULL }; |
1194 | |
1195 | if (!nr_pages) |
1196 | return 0; |
1197 | |
1198 | start = untagged_addr_remote(mm, start); |
1199 | |
1200 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
1201 | |
1202 | do { |
1203 | struct page *page; |
1204 | unsigned int foll_flags = gup_flags; |
1205 | unsigned int page_increm; |
1206 | |
1207 | /* first iteration or cross vma bound */ |
1208 | if (!vma || start >= vma->vm_end) { |
1209 | /* |
1210 | * MADV_POPULATE_(READ|WRITE) wants to handle VMA |
1211 | * lookups+error reporting differently. |
1212 | */ |
1213 | if (gup_flags & FOLL_MADV_POPULATE) { |
1214 | vma = vma_lookup(mm, addr: start); |
1215 | if (!vma) { |
1216 | ret = -ENOMEM; |
1217 | goto out; |
1218 | } |
1219 | if (check_vma_flags(vma, gup_flags)) { |
1220 | ret = -EINVAL; |
1221 | goto out; |
1222 | } |
1223 | goto retry; |
1224 | } |
1225 | vma = gup_vma_lookup(mm, addr: start); |
1226 | if (!vma && in_gate_area(mm, addr: start)) { |
1227 | ret = get_gate_page(mm, address: start & PAGE_MASK, |
1228 | gup_flags, vma: &vma, |
1229 | page: pages ? &page : NULL); |
1230 | if (ret) |
1231 | goto out; |
1232 | ctx.page_mask = 0; |
1233 | goto next_page; |
1234 | } |
1235 | |
1236 | if (!vma) { |
1237 | ret = -EFAULT; |
1238 | goto out; |
1239 | } |
1240 | ret = check_vma_flags(vma, gup_flags); |
1241 | if (ret) |
1242 | goto out; |
1243 | } |
1244 | retry: |
1245 | /* |
1246 | * If we have a pending SIGKILL, don't keep faulting pages and |
1247 | * potentially allocating memory. |
1248 | */ |
1249 | if (fatal_signal_pending(current)) { |
1250 | ret = -EINTR; |
1251 | goto out; |
1252 | } |
1253 | cond_resched(); |
1254 | |
1255 | page = follow_page_mask(vma, address: start, flags: foll_flags, ctx: &ctx); |
1256 | if (!page || PTR_ERR(ptr: page) == -EMLINK) { |
1257 | ret = faultin_page(vma, address: start, flags: &foll_flags, |
1258 | unshare: PTR_ERR(ptr: page) == -EMLINK, locked); |
1259 | switch (ret) { |
1260 | case 0: |
1261 | goto retry; |
1262 | case -EBUSY: |
1263 | case -EAGAIN: |
1264 | ret = 0; |
1265 | fallthrough; |
1266 | case -EFAULT: |
1267 | case -ENOMEM: |
1268 | case -EHWPOISON: |
1269 | goto out; |
1270 | } |
1271 | BUG(); |
1272 | } else if (PTR_ERR(ptr: page) == -EEXIST) { |
1273 | /* |
1274 | * Proper page table entry exists, but no corresponding |
1275 | * struct page. If the caller expects **pages to be |
1276 | * filled in, bail out now, because that can't be done |
1277 | * for this page. |
1278 | */ |
1279 | if (pages) { |
1280 | ret = PTR_ERR(ptr: page); |
1281 | goto out; |
1282 | } |
1283 | } else if (IS_ERR(ptr: page)) { |
1284 | ret = PTR_ERR(ptr: page); |
1285 | goto out; |
1286 | } |
1287 | next_page: |
1288 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
1289 | if (page_increm > nr_pages) |
1290 | page_increm = nr_pages; |
1291 | |
1292 | if (pages) { |
1293 | struct page *subpage; |
1294 | unsigned int j; |
1295 | |
1296 | /* |
1297 | * This must be a large folio (and doesn't need to |
1298 | * be the whole folio; it can be part of it), do |
1299 | * the refcount work for all the subpages too. |
1300 | * |
1301 | * NOTE: here the page may not be the head page |
1302 | * e.g. when start addr is not thp-size aligned. |
1303 | * try_grab_folio() should have taken care of tail |
1304 | * pages. |
1305 | */ |
1306 | if (page_increm > 1) { |
1307 | struct folio *folio; |
1308 | |
1309 | /* |
1310 | * Since we already hold refcount on the |
1311 | * large folio, this should never fail. |
1312 | */ |
1313 | folio = try_grab_folio(page, refs: page_increm - 1, |
1314 | flags: foll_flags); |
1315 | if (WARN_ON_ONCE(!folio)) { |
1316 | /* |
1317 | * Release the 1st page ref if the |
1318 | * folio is problematic, fail hard. |
1319 | */ |
1320 | gup_put_folio(page_folio(page), refs: 1, |
1321 | flags: foll_flags); |
1322 | ret = -EFAULT; |
1323 | goto out; |
1324 | } |
1325 | } |
1326 | |
1327 | for (j = 0; j < page_increm; j++) { |
1328 | subpage = nth_page(page, j); |
1329 | pages[i + j] = subpage; |
1330 | flush_anon_page(vma, page: subpage, vmaddr: start + j * PAGE_SIZE); |
1331 | flush_dcache_page(page: subpage); |
1332 | } |
1333 | } |
1334 | |
1335 | i += page_increm; |
1336 | start += page_increm * PAGE_SIZE; |
1337 | nr_pages -= page_increm; |
1338 | } while (nr_pages); |
1339 | out: |
1340 | if (ctx.pgmap) |
1341 | put_dev_pagemap(pgmap: ctx.pgmap); |
1342 | return i ? i : ret; |
1343 | } |
1344 | |
1345 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1346 | unsigned int fault_flags) |
1347 | { |
1348 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1349 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); |
1350 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
1351 | |
1352 | if (!(vm_flags & vma->vm_flags)) |
1353 | return false; |
1354 | |
1355 | /* |
1356 | * The architecture might have a hardware protection |
1357 | * mechanism other than read/write that can deny access. |
1358 | * |
1359 | * gup always represents data access, not instruction |
1360 | * fetches, so execute=false here: |
1361 | */ |
1362 | if (!arch_vma_access_permitted(vma, write, execute: false, foreign)) |
1363 | return false; |
1364 | |
1365 | return true; |
1366 | } |
1367 | |
1368 | /** |
1369 | * fixup_user_fault() - manually resolve a user page fault |
1370 | * @mm: mm_struct of target mm |
1371 | * @address: user address |
1372 | * @fault_flags:flags to pass down to handle_mm_fault() |
1373 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
1374 | * does not allow retry. If NULL, the caller must guarantee |
1375 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. |
1376 | * |
1377 | * This is meant to be called in the specific scenario where for locking reasons |
1378 | * we try to access user memory in atomic context (within a pagefault_disable() |
1379 | * section), this returns -EFAULT, and we want to resolve the user fault before |
1380 | * trying again. |
1381 | * |
1382 | * Typically this is meant to be used by the futex code. |
1383 | * |
1384 | * The main difference with get_user_pages() is that this function will |
1385 | * unconditionally call handle_mm_fault() which will in turn perform all the |
1386 | * necessary SW fixup of the dirty and young bits in the PTE, while |
1387 | * get_user_pages() only guarantees to update these in the struct page. |
1388 | * |
1389 | * This is important for some architectures where those bits also gate the |
1390 | * access permission to the page because they are maintained in software. On |
1391 | * such architectures, gup() will not be enough to make a subsequent access |
1392 | * succeed. |
1393 | * |
1394 | * This function will not return with an unlocked mmap_lock. So it has not the |
1395 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). |
1396 | */ |
1397 | int fixup_user_fault(struct mm_struct *mm, |
1398 | unsigned long address, unsigned int fault_flags, |
1399 | bool *unlocked) |
1400 | { |
1401 | struct vm_area_struct *vma; |
1402 | vm_fault_t ret; |
1403 | |
1404 | address = untagged_addr_remote(mm, address); |
1405 | |
1406 | if (unlocked) |
1407 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
1408 | |
1409 | retry: |
1410 | vma = gup_vma_lookup(mm, addr: address); |
1411 | if (!vma) |
1412 | return -EFAULT; |
1413 | |
1414 | if (!vma_permits_fault(vma, fault_flags)) |
1415 | return -EFAULT; |
1416 | |
1417 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1418 | fatal_signal_pending(current)) |
1419 | return -EINTR; |
1420 | |
1421 | ret = handle_mm_fault(vma, address, flags: fault_flags, NULL); |
1422 | |
1423 | if (ret & VM_FAULT_COMPLETED) { |
1424 | /* |
1425 | * NOTE: it's a pity that we need to retake the lock here |
1426 | * to pair with the unlock() in the callers. Ideally we |
1427 | * could tell the callers so they do not need to unlock. |
1428 | */ |
1429 | mmap_read_lock(mm); |
1430 | *unlocked = true; |
1431 | return 0; |
1432 | } |
1433 | |
1434 | if (ret & VM_FAULT_ERROR) { |
1435 | int err = vm_fault_to_errno(vm_fault: ret, foll_flags: 0); |
1436 | |
1437 | if (err) |
1438 | return err; |
1439 | BUG(); |
1440 | } |
1441 | |
1442 | if (ret & VM_FAULT_RETRY) { |
1443 | mmap_read_lock(mm); |
1444 | *unlocked = true; |
1445 | fault_flags |= FAULT_FLAG_TRIED; |
1446 | goto retry; |
1447 | } |
1448 | |
1449 | return 0; |
1450 | } |
1451 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
1452 | |
1453 | /* |
1454 | * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is |
1455 | * specified, it'll also respond to generic signals. The caller of GUP |
1456 | * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. |
1457 | */ |
1458 | static bool gup_signal_pending(unsigned int flags) |
1459 | { |
1460 | if (fatal_signal_pending(current)) |
1461 | return true; |
1462 | |
1463 | if (!(flags & FOLL_INTERRUPTIBLE)) |
1464 | return false; |
1465 | |
1466 | return signal_pending(current); |
1467 | } |
1468 | |
1469 | /* |
1470 | * Locking: (*locked == 1) means that the mmap_lock has already been acquired by |
1471 | * the caller. This function may drop the mmap_lock. If it does so, then it will |
1472 | * set (*locked = 0). |
1473 | * |
1474 | * (*locked == 0) means that the caller expects this function to acquire and |
1475 | * drop the mmap_lock. Therefore, the value of *locked will still be zero when |
1476 | * the function returns, even though it may have changed temporarily during |
1477 | * function execution. |
1478 | * |
1479 | * Please note that this function, unlike __get_user_pages(), will not return 0 |
1480 | * for nr_pages > 0, unless FOLL_NOWAIT is used. |
1481 | */ |
1482 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
1483 | unsigned long start, |
1484 | unsigned long nr_pages, |
1485 | struct page **pages, |
1486 | int *locked, |
1487 | unsigned int flags) |
1488 | { |
1489 | long ret, pages_done; |
1490 | bool must_unlock = false; |
1491 | |
1492 | if (!nr_pages) |
1493 | return 0; |
1494 | |
1495 | /* |
1496 | * The internal caller expects GUP to manage the lock internally and the |
1497 | * lock must be released when this returns. |
1498 | */ |
1499 | if (!*locked) { |
1500 | if (mmap_read_lock_killable(mm)) |
1501 | return -EAGAIN; |
1502 | must_unlock = true; |
1503 | *locked = 1; |
1504 | } |
1505 | else |
1506 | mmap_assert_locked(mm); |
1507 | |
1508 | if (flags & FOLL_PIN) |
1509 | mm_set_has_pinned_flag(mm_flags: &mm->flags); |
1510 | |
1511 | /* |
1512 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior |
1513 | * is to set FOLL_GET if the caller wants pages[] filled in (but has |
1514 | * carelessly failed to specify FOLL_GET), so keep doing that, but only |
1515 | * for FOLL_GET, not for the newer FOLL_PIN. |
1516 | * |
1517 | * FOLL_PIN always expects pages to be non-null, but no need to assert |
1518 | * that here, as any failures will be obvious enough. |
1519 | */ |
1520 | if (pages && !(flags & FOLL_PIN)) |
1521 | flags |= FOLL_GET; |
1522 | |
1523 | pages_done = 0; |
1524 | for (;;) { |
1525 | ret = __get_user_pages(mm, start, nr_pages, gup_flags: flags, pages, |
1526 | locked); |
1527 | if (!(flags & FOLL_UNLOCKABLE)) { |
1528 | /* VM_FAULT_RETRY couldn't trigger, bypass */ |
1529 | pages_done = ret; |
1530 | break; |
1531 | } |
1532 | |
1533 | /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ |
1534 | if (!*locked) { |
1535 | BUG_ON(ret < 0); |
1536 | BUG_ON(ret >= nr_pages); |
1537 | } |
1538 | |
1539 | if (ret > 0) { |
1540 | nr_pages -= ret; |
1541 | pages_done += ret; |
1542 | if (!nr_pages) |
1543 | break; |
1544 | } |
1545 | if (*locked) { |
1546 | /* |
1547 | * VM_FAULT_RETRY didn't trigger or it was a |
1548 | * FOLL_NOWAIT. |
1549 | */ |
1550 | if (!pages_done) |
1551 | pages_done = ret; |
1552 | break; |
1553 | } |
1554 | /* |
1555 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. |
1556 | * For the prefault case (!pages) we only update counts. |
1557 | */ |
1558 | if (likely(pages)) |
1559 | pages += ret; |
1560 | start += ret << PAGE_SHIFT; |
1561 | |
1562 | /* The lock was temporarily dropped, so we must unlock later */ |
1563 | must_unlock = true; |
1564 | |
1565 | retry: |
1566 | /* |
1567 | * Repeat on the address that fired VM_FAULT_RETRY |
1568 | * with both FAULT_FLAG_ALLOW_RETRY and |
1569 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted |
1570 | * by fatal signals of even common signals, depending on |
1571 | * the caller's request. So we need to check it before we |
1572 | * start trying again otherwise it can loop forever. |
1573 | */ |
1574 | if (gup_signal_pending(flags)) { |
1575 | if (!pages_done) |
1576 | pages_done = -EINTR; |
1577 | break; |
1578 | } |
1579 | |
1580 | ret = mmap_read_lock_killable(mm); |
1581 | if (ret) { |
1582 | BUG_ON(ret > 0); |
1583 | if (!pages_done) |
1584 | pages_done = ret; |
1585 | break; |
1586 | } |
1587 | |
1588 | *locked = 1; |
1589 | ret = __get_user_pages(mm, start, nr_pages: 1, gup_flags: flags | FOLL_TRIED, |
1590 | pages, locked); |
1591 | if (!*locked) { |
1592 | /* Continue to retry until we succeeded */ |
1593 | BUG_ON(ret != 0); |
1594 | goto retry; |
1595 | } |
1596 | if (ret != 1) { |
1597 | BUG_ON(ret > 1); |
1598 | if (!pages_done) |
1599 | pages_done = ret; |
1600 | break; |
1601 | } |
1602 | nr_pages--; |
1603 | pages_done++; |
1604 | if (!nr_pages) |
1605 | break; |
1606 | if (likely(pages)) |
1607 | pages++; |
1608 | start += PAGE_SIZE; |
1609 | } |
1610 | if (must_unlock && *locked) { |
1611 | /* |
1612 | * We either temporarily dropped the lock, or the caller |
1613 | * requested that we both acquire and drop the lock. Either way, |
1614 | * we must now unlock, and notify the caller of that state. |
1615 | */ |
1616 | mmap_read_unlock(mm); |
1617 | *locked = 0; |
1618 | } |
1619 | |
1620 | /* |
1621 | * Failing to pin anything implies something has gone wrong (except when |
1622 | * FOLL_NOWAIT is specified). |
1623 | */ |
1624 | if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) |
1625 | return -EFAULT; |
1626 | |
1627 | return pages_done; |
1628 | } |
1629 | |
1630 | /** |
1631 | * populate_vma_page_range() - populate a range of pages in the vma. |
1632 | * @vma: target vma |
1633 | * @start: start address |
1634 | * @end: end address |
1635 | * @locked: whether the mmap_lock is still held |
1636 | * |
1637 | * This takes care of mlocking the pages too if VM_LOCKED is set. |
1638 | * |
1639 | * Return either number of pages pinned in the vma, or a negative error |
1640 | * code on error. |
1641 | * |
1642 | * vma->vm_mm->mmap_lock must be held. |
1643 | * |
1644 | * If @locked is NULL, it may be held for read or write and will |
1645 | * be unperturbed. |
1646 | * |
1647 | * If @locked is non-NULL, it must held for read only and may be |
1648 | * released. If it's released, *@locked will be set to 0. |
1649 | */ |
1650 | long populate_vma_page_range(struct vm_area_struct *vma, |
1651 | unsigned long start, unsigned long end, int *locked) |
1652 | { |
1653 | struct mm_struct *mm = vma->vm_mm; |
1654 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
1655 | int local_locked = 1; |
1656 | int gup_flags; |
1657 | long ret; |
1658 | |
1659 | VM_BUG_ON(!PAGE_ALIGNED(start)); |
1660 | VM_BUG_ON(!PAGE_ALIGNED(end)); |
1661 | VM_BUG_ON_VMA(start < vma->vm_start, vma); |
1662 | VM_BUG_ON_VMA(end > vma->vm_end, vma); |
1663 | mmap_assert_locked(mm); |
1664 | |
1665 | /* |
1666 | * Rightly or wrongly, the VM_LOCKONFAULT case has never used |
1667 | * faultin_page() to break COW, so it has no work to do here. |
1668 | */ |
1669 | if (vma->vm_flags & VM_LOCKONFAULT) |
1670 | return nr_pages; |
1671 | |
1672 | /* ... similarly, we've never faulted in PROT_NONE pages */ |
1673 | if (!vma_is_accessible(vma)) |
1674 | return -EFAULT; |
1675 | |
1676 | gup_flags = FOLL_TOUCH; |
1677 | /* |
1678 | * We want to touch writable mappings with a write fault in order |
1679 | * to break COW, except for shared mappings because these don't COW |
1680 | * and we would not want to dirty them for nothing. |
1681 | * |
1682 | * Otherwise, do a read fault, and use FOLL_FORCE in case it's not |
1683 | * readable (ie write-only or executable). |
1684 | */ |
1685 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) |
1686 | gup_flags |= FOLL_WRITE; |
1687 | else |
1688 | gup_flags |= FOLL_FORCE; |
1689 | |
1690 | if (locked) |
1691 | gup_flags |= FOLL_UNLOCKABLE; |
1692 | |
1693 | /* |
1694 | * We made sure addr is within a VMA, so the following will |
1695 | * not result in a stack expansion that recurses back here. |
1696 | */ |
1697 | ret = __get_user_pages(mm, start, nr_pages, gup_flags, |
1698 | NULL, locked: locked ? locked : &local_locked); |
1699 | lru_add_drain(); |
1700 | return ret; |
1701 | } |
1702 | |
1703 | /* |
1704 | * faultin_page_range() - populate (prefault) page tables inside the |
1705 | * given range readable/writable |
1706 | * |
1707 | * This takes care of mlocking the pages, too, if VM_LOCKED is set. |
1708 | * |
1709 | * @mm: the mm to populate page tables in |
1710 | * @start: start address |
1711 | * @end: end address |
1712 | * @write: whether to prefault readable or writable |
1713 | * @locked: whether the mmap_lock is still held |
1714 | * |
1715 | * Returns either number of processed pages in the MM, or a negative error |
1716 | * code on error (see __get_user_pages()). Note that this function reports |
1717 | * errors related to VMAs, such as incompatible mappings, as expected by |
1718 | * MADV_POPULATE_(READ|WRITE). |
1719 | * |
1720 | * The range must be page-aligned. |
1721 | * |
1722 | * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. |
1723 | */ |
1724 | long faultin_page_range(struct mm_struct *mm, unsigned long start, |
1725 | unsigned long end, bool write, int *locked) |
1726 | { |
1727 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
1728 | int gup_flags; |
1729 | long ret; |
1730 | |
1731 | VM_BUG_ON(!PAGE_ALIGNED(start)); |
1732 | VM_BUG_ON(!PAGE_ALIGNED(end)); |
1733 | mmap_assert_locked(mm); |
1734 | |
1735 | /* |
1736 | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark |
1737 | * the page dirty with FOLL_WRITE -- which doesn't make a |
1738 | * difference with !FOLL_FORCE, because the page is writable |
1739 | * in the page table. |
1740 | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit |
1741 | * a poisoned page. |
1742 | * !FOLL_FORCE: Require proper access permissions. |
1743 | */ |
1744 | gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | |
1745 | FOLL_MADV_POPULATE; |
1746 | if (write) |
1747 | gup_flags |= FOLL_WRITE; |
1748 | |
1749 | ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, |
1750 | flags: gup_flags); |
1751 | lru_add_drain(); |
1752 | return ret; |
1753 | } |
1754 | |
1755 | /* |
1756 | * __mm_populate - populate and/or mlock pages within a range of address space. |
1757 | * |
1758 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap |
1759 | * flags. VMAs must be already marked with the desired vm_flags, and |
1760 | * mmap_lock must not be held. |
1761 | */ |
1762 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) |
1763 | { |
1764 | struct mm_struct *mm = current->mm; |
1765 | unsigned long end, nstart, nend; |
1766 | struct vm_area_struct *vma = NULL; |
1767 | int locked = 0; |
1768 | long ret = 0; |
1769 | |
1770 | end = start + len; |
1771 | |
1772 | for (nstart = start; nstart < end; nstart = nend) { |
1773 | /* |
1774 | * We want to fault in pages for [nstart; end) address range. |
1775 | * Find first corresponding VMA. |
1776 | */ |
1777 | if (!locked) { |
1778 | locked = 1; |
1779 | mmap_read_lock(mm); |
1780 | vma = find_vma_intersection(mm, start_addr: nstart, end_addr: end); |
1781 | } else if (nstart >= vma->vm_end) |
1782 | vma = find_vma_intersection(mm, start_addr: vma->vm_end, end_addr: end); |
1783 | |
1784 | if (!vma) |
1785 | break; |
1786 | /* |
1787 | * Set [nstart; nend) to intersection of desired address |
1788 | * range with the first VMA. Also, skip undesirable VMA types. |
1789 | */ |
1790 | nend = min(end, vma->vm_end); |
1791 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
1792 | continue; |
1793 | if (nstart < vma->vm_start) |
1794 | nstart = vma->vm_start; |
1795 | /* |
1796 | * Now fault in a range of pages. populate_vma_page_range() |
1797 | * double checks the vma flags, so that it won't mlock pages |
1798 | * if the vma was already munlocked. |
1799 | */ |
1800 | ret = populate_vma_page_range(vma, start: nstart, end: nend, locked: &locked); |
1801 | if (ret < 0) { |
1802 | if (ignore_errors) { |
1803 | ret = 0; |
1804 | continue; /* continue at next VMA */ |
1805 | } |
1806 | break; |
1807 | } |
1808 | nend = nstart + ret * PAGE_SIZE; |
1809 | ret = 0; |
1810 | } |
1811 | if (locked) |
1812 | mmap_read_unlock(mm); |
1813 | return ret; /* 0 or negative error code */ |
1814 | } |
1815 | #else /* CONFIG_MMU */ |
1816 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
1817 | unsigned long nr_pages, struct page **pages, |
1818 | int *locked, unsigned int foll_flags) |
1819 | { |
1820 | struct vm_area_struct *vma; |
1821 | bool must_unlock = false; |
1822 | unsigned long vm_flags; |
1823 | long i; |
1824 | |
1825 | if (!nr_pages) |
1826 | return 0; |
1827 | |
1828 | /* |
1829 | * The internal caller expects GUP to manage the lock internally and the |
1830 | * lock must be released when this returns. |
1831 | */ |
1832 | if (!*locked) { |
1833 | if (mmap_read_lock_killable(mm)) |
1834 | return -EAGAIN; |
1835 | must_unlock = true; |
1836 | *locked = 1; |
1837 | } |
1838 | |
1839 | /* calculate required read or write permissions. |
1840 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
1841 | */ |
1842 | vm_flags = (foll_flags & FOLL_WRITE) ? |
1843 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1844 | vm_flags &= (foll_flags & FOLL_FORCE) ? |
1845 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
1846 | |
1847 | for (i = 0; i < nr_pages; i++) { |
1848 | vma = find_vma(mm, start); |
1849 | if (!vma) |
1850 | break; |
1851 | |
1852 | /* protect what we can, including chardevs */ |
1853 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
1854 | !(vm_flags & vma->vm_flags)) |
1855 | break; |
1856 | |
1857 | if (pages) { |
1858 | pages[i] = virt_to_page((void *)start); |
1859 | if (pages[i]) |
1860 | get_page(pages[i]); |
1861 | } |
1862 | |
1863 | start = (start + PAGE_SIZE) & PAGE_MASK; |
1864 | } |
1865 | |
1866 | if (must_unlock && *locked) { |
1867 | mmap_read_unlock(mm); |
1868 | *locked = 0; |
1869 | } |
1870 | |
1871 | return i ? : -EFAULT; |
1872 | } |
1873 | #endif /* !CONFIG_MMU */ |
1874 | |
1875 | /** |
1876 | * fault_in_writeable - fault in userspace address range for writing |
1877 | * @uaddr: start of address range |
1878 | * @size: size of address range |
1879 | * |
1880 | * Returns the number of bytes not faulted in (like copy_to_user() and |
1881 | * copy_from_user()). |
1882 | */ |
1883 | size_t fault_in_writeable(char __user *uaddr, size_t size) |
1884 | { |
1885 | char __user *start = uaddr, *end; |
1886 | |
1887 | if (unlikely(size == 0)) |
1888 | return 0; |
1889 | if (!user_write_access_begin(uaddr, size)) |
1890 | return size; |
1891 | if (!PAGE_ALIGNED(uaddr)) { |
1892 | unsafe_put_user(0, uaddr, out); |
1893 | uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); |
1894 | } |
1895 | end = (char __user *)PAGE_ALIGN((unsigned long)start + size); |
1896 | if (unlikely(end < start)) |
1897 | end = NULL; |
1898 | while (uaddr != end) { |
1899 | unsafe_put_user(0, uaddr, out); |
1900 | uaddr += PAGE_SIZE; |
1901 | } |
1902 | |
1903 | out: |
1904 | user_write_access_end(); |
1905 | if (size > uaddr - start) |
1906 | return size - (uaddr - start); |
1907 | return 0; |
1908 | } |
1909 | EXPORT_SYMBOL(fault_in_writeable); |
1910 | |
1911 | /** |
1912 | * fault_in_subpage_writeable - fault in an address range for writing |
1913 | * @uaddr: start of address range |
1914 | * @size: size of address range |
1915 | * |
1916 | * Fault in a user address range for writing while checking for permissions at |
1917 | * sub-page granularity (e.g. arm64 MTE). This function should be used when |
1918 | * the caller cannot guarantee forward progress of a copy_to_user() loop. |
1919 | * |
1920 | * Returns the number of bytes not faulted in (like copy_to_user() and |
1921 | * copy_from_user()). |
1922 | */ |
1923 | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) |
1924 | { |
1925 | size_t faulted_in; |
1926 | |
1927 | /* |
1928 | * Attempt faulting in at page granularity first for page table |
1929 | * permission checking. The arch-specific probe_subpage_writeable() |
1930 | * functions may not check for this. |
1931 | */ |
1932 | faulted_in = size - fault_in_writeable(uaddr, size); |
1933 | if (faulted_in) |
1934 | faulted_in -= probe_subpage_writeable(uaddr, size: faulted_in); |
1935 | |
1936 | return size - faulted_in; |
1937 | } |
1938 | EXPORT_SYMBOL(fault_in_subpage_writeable); |
1939 | |
1940 | /* |
1941 | * fault_in_safe_writeable - fault in an address range for writing |
1942 | * @uaddr: start of address range |
1943 | * @size: length of address range |
1944 | * |
1945 | * Faults in an address range for writing. This is primarily useful when we |
1946 | * already know that some or all of the pages in the address range aren't in |
1947 | * memory. |
1948 | * |
1949 | * Unlike fault_in_writeable(), this function is non-destructive. |
1950 | * |
1951 | * Note that we don't pin or otherwise hold the pages referenced that we fault |
1952 | * in. There's no guarantee that they'll stay in memory for any duration of |
1953 | * time. |
1954 | * |
1955 | * Returns the number of bytes not faulted in, like copy_to_user() and |
1956 | * copy_from_user(). |
1957 | */ |
1958 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) |
1959 | { |
1960 | unsigned long start = (unsigned long)uaddr, end; |
1961 | struct mm_struct *mm = current->mm; |
1962 | bool unlocked = false; |
1963 | |
1964 | if (unlikely(size == 0)) |
1965 | return 0; |
1966 | end = PAGE_ALIGN(start + size); |
1967 | if (end < start) |
1968 | end = 0; |
1969 | |
1970 | mmap_read_lock(mm); |
1971 | do { |
1972 | if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) |
1973 | break; |
1974 | start = (start + PAGE_SIZE) & PAGE_MASK; |
1975 | } while (start != end); |
1976 | mmap_read_unlock(mm); |
1977 | |
1978 | if (size > (unsigned long)uaddr - start) |
1979 | return size - ((unsigned long)uaddr - start); |
1980 | return 0; |
1981 | } |
1982 | EXPORT_SYMBOL(fault_in_safe_writeable); |
1983 | |
1984 | /** |
1985 | * fault_in_readable - fault in userspace address range for reading |
1986 | * @uaddr: start of user address range |
1987 | * @size: size of user address range |
1988 | * |
1989 | * Returns the number of bytes not faulted in (like copy_to_user() and |
1990 | * copy_from_user()). |
1991 | */ |
1992 | size_t fault_in_readable(const char __user *uaddr, size_t size) |
1993 | { |
1994 | const char __user *start = uaddr, *end; |
1995 | volatile char c; |
1996 | |
1997 | if (unlikely(size == 0)) |
1998 | return 0; |
1999 | if (!user_read_access_begin(uaddr, size)) |
2000 | return size; |
2001 | if (!PAGE_ALIGNED(uaddr)) { |
2002 | unsafe_get_user(c, uaddr, out); |
2003 | uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); |
2004 | } |
2005 | end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); |
2006 | if (unlikely(end < start)) |
2007 | end = NULL; |
2008 | while (uaddr != end) { |
2009 | unsafe_get_user(c, uaddr, out); |
2010 | uaddr += PAGE_SIZE; |
2011 | } |
2012 | |
2013 | out: |
2014 | user_read_access_end(); |
2015 | (void)c; |
2016 | if (size > uaddr - start) |
2017 | return size - (uaddr - start); |
2018 | return 0; |
2019 | } |
2020 | EXPORT_SYMBOL(fault_in_readable); |
2021 | |
2022 | /** |
2023 | * get_dump_page() - pin user page in memory while writing it to core dump |
2024 | * @addr: user address |
2025 | * |
2026 | * Returns struct page pointer of user page pinned for dump, |
2027 | * to be freed afterwards by put_page(). |
2028 | * |
2029 | * Returns NULL on any kind of failure - a hole must then be inserted into |
2030 | * the corefile, to preserve alignment with its headers; and also returns |
2031 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
2032 | * allowing a hole to be left in the corefile to save disk space. |
2033 | * |
2034 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
2035 | */ |
2036 | #ifdef CONFIG_ELF_CORE |
2037 | struct page *get_dump_page(unsigned long addr) |
2038 | { |
2039 | struct page *page; |
2040 | int locked = 0; |
2041 | int ret; |
2042 | |
2043 | ret = __get_user_pages_locked(current->mm, start: addr, nr_pages: 1, pages: &page, locked: &locked, |
2044 | flags: FOLL_FORCE | FOLL_DUMP | FOLL_GET); |
2045 | return (ret == 1) ? page : NULL; |
2046 | } |
2047 | #endif /* CONFIG_ELF_CORE */ |
2048 | |
2049 | #ifdef CONFIG_MIGRATION |
2050 | /* |
2051 | * Returns the number of collected pages. Return value is always >= 0. |
2052 | */ |
2053 | static unsigned long collect_longterm_unpinnable_pages( |
2054 | struct list_head *movable_page_list, |
2055 | unsigned long nr_pages, |
2056 | struct page **pages) |
2057 | { |
2058 | unsigned long i, collected = 0; |
2059 | struct folio *prev_folio = NULL; |
2060 | bool drain_allow = true; |
2061 | |
2062 | for (i = 0; i < nr_pages; i++) { |
2063 | struct folio *folio = page_folio(pages[i]); |
2064 | |
2065 | if (folio == prev_folio) |
2066 | continue; |
2067 | prev_folio = folio; |
2068 | |
2069 | if (folio_is_longterm_pinnable(folio)) |
2070 | continue; |
2071 | |
2072 | collected++; |
2073 | |
2074 | if (folio_is_device_coherent(folio)) |
2075 | continue; |
2076 | |
2077 | if (folio_test_hugetlb(folio)) { |
2078 | isolate_hugetlb(folio, list: movable_page_list); |
2079 | continue; |
2080 | } |
2081 | |
2082 | if (!folio_test_lru(folio) && drain_allow) { |
2083 | lru_add_drain_all(); |
2084 | drain_allow = false; |
2085 | } |
2086 | |
2087 | if (!folio_isolate_lru(folio)) |
2088 | continue; |
2089 | |
2090 | list_add_tail(new: &folio->lru, head: movable_page_list); |
2091 | node_stat_mod_folio(folio, |
2092 | item: NR_ISOLATED_ANON + folio_is_file_lru(folio), |
2093 | nr: folio_nr_pages(folio)); |
2094 | } |
2095 | |
2096 | return collected; |
2097 | } |
2098 | |
2099 | /* |
2100 | * Unpins all pages and migrates device coherent pages and movable_page_list. |
2101 | * Returns -EAGAIN if all pages were successfully migrated or -errno for failure |
2102 | * (or partial success). |
2103 | */ |
2104 | static int migrate_longterm_unpinnable_pages( |
2105 | struct list_head *movable_page_list, |
2106 | unsigned long nr_pages, |
2107 | struct page **pages) |
2108 | { |
2109 | int ret; |
2110 | unsigned long i; |
2111 | |
2112 | for (i = 0; i < nr_pages; i++) { |
2113 | struct folio *folio = page_folio(pages[i]); |
2114 | |
2115 | if (folio_is_device_coherent(folio)) { |
2116 | /* |
2117 | * Migration will fail if the page is pinned, so convert |
2118 | * the pin on the source page to a normal reference. |
2119 | */ |
2120 | pages[i] = NULL; |
2121 | folio_get(folio); |
2122 | gup_put_folio(folio, refs: 1, flags: FOLL_PIN); |
2123 | |
2124 | if (migrate_device_coherent_page(page: &folio->page)) { |
2125 | ret = -EBUSY; |
2126 | goto err; |
2127 | } |
2128 | |
2129 | continue; |
2130 | } |
2131 | |
2132 | /* |
2133 | * We can't migrate pages with unexpected references, so drop |
2134 | * the reference obtained by __get_user_pages_locked(). |
2135 | * Migrating pages have been added to movable_page_list after |
2136 | * calling folio_isolate_lru() which takes a reference so the |
2137 | * page won't be freed if it's migrating. |
2138 | */ |
2139 | unpin_user_page(pages[i]); |
2140 | pages[i] = NULL; |
2141 | } |
2142 | |
2143 | if (!list_empty(head: movable_page_list)) { |
2144 | struct migration_target_control mtc = { |
2145 | .nid = NUMA_NO_NODE, |
2146 | .gfp_mask = GFP_USER | __GFP_NOWARN, |
2147 | }; |
2148 | |
2149 | if (migrate_pages(l: movable_page_list, new: alloc_migration_target, |
2150 | NULL, private: (unsigned long)&mtc, mode: MIGRATE_SYNC, |
2151 | reason: MR_LONGTERM_PIN, NULL)) { |
2152 | ret = -ENOMEM; |
2153 | goto err; |
2154 | } |
2155 | } |
2156 | |
2157 | putback_movable_pages(l: movable_page_list); |
2158 | |
2159 | return -EAGAIN; |
2160 | |
2161 | err: |
2162 | for (i = 0; i < nr_pages; i++) |
2163 | if (pages[i]) |
2164 | unpin_user_page(pages[i]); |
2165 | putback_movable_pages(l: movable_page_list); |
2166 | |
2167 | return ret; |
2168 | } |
2169 | |
2170 | /* |
2171 | * Check whether all pages are *allowed* to be pinned. Rather confusingly, all |
2172 | * pages in the range are required to be pinned via FOLL_PIN, before calling |
2173 | * this routine. |
2174 | * |
2175 | * If any pages in the range are not allowed to be pinned, then this routine |
2176 | * will migrate those pages away, unpin all the pages in the range and return |
2177 | * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then |
2178 | * call this routine again. |
2179 | * |
2180 | * If an error other than -EAGAIN occurs, this indicates a migration failure. |
2181 | * The caller should give up, and propagate the error back up the call stack. |
2182 | * |
2183 | * If everything is OK and all pages in the range are allowed to be pinned, then |
2184 | * this routine leaves all pages pinned and returns zero for success. |
2185 | */ |
2186 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
2187 | struct page **pages) |
2188 | { |
2189 | unsigned long collected; |
2190 | LIST_HEAD(movable_page_list); |
2191 | |
2192 | collected = collect_longterm_unpinnable_pages(movable_page_list: &movable_page_list, |
2193 | nr_pages, pages); |
2194 | if (!collected) |
2195 | return 0; |
2196 | |
2197 | return migrate_longterm_unpinnable_pages(movable_page_list: &movable_page_list, nr_pages, |
2198 | pages); |
2199 | } |
2200 | #else |
2201 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
2202 | struct page **pages) |
2203 | { |
2204 | return 0; |
2205 | } |
2206 | #endif /* CONFIG_MIGRATION */ |
2207 | |
2208 | /* |
2209 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
2210 | * allows us to process the FOLL_LONGTERM flag. |
2211 | */ |
2212 | static long __gup_longterm_locked(struct mm_struct *mm, |
2213 | unsigned long start, |
2214 | unsigned long nr_pages, |
2215 | struct page **pages, |
2216 | int *locked, |
2217 | unsigned int gup_flags) |
2218 | { |
2219 | unsigned int flags; |
2220 | long rc, nr_pinned_pages; |
2221 | |
2222 | if (!(gup_flags & FOLL_LONGTERM)) |
2223 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
2224 | locked, flags: gup_flags); |
2225 | |
2226 | flags = memalloc_pin_save(); |
2227 | do { |
2228 | nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, |
2229 | pages, locked, |
2230 | flags: gup_flags); |
2231 | if (nr_pinned_pages <= 0) { |
2232 | rc = nr_pinned_pages; |
2233 | break; |
2234 | } |
2235 | |
2236 | /* FOLL_LONGTERM implies FOLL_PIN */ |
2237 | rc = check_and_migrate_movable_pages(nr_pages: nr_pinned_pages, pages); |
2238 | } while (rc == -EAGAIN); |
2239 | memalloc_pin_restore(flags); |
2240 | return rc ? rc : nr_pinned_pages; |
2241 | } |
2242 | |
2243 | /* |
2244 | * Check that the given flags are valid for the exported gup/pup interface, and |
2245 | * update them with the required flags that the caller must have set. |
2246 | */ |
2247 | static bool is_valid_gup_args(struct page **pages, int *locked, |
2248 | unsigned int *gup_flags_p, unsigned int to_set) |
2249 | { |
2250 | unsigned int gup_flags = *gup_flags_p; |
2251 | |
2252 | /* |
2253 | * These flags not allowed to be specified externally to the gup |
2254 | * interfaces: |
2255 | * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only |
2256 | * - FOLL_REMOTE is internal only and used on follow_page() |
2257 | * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL |
2258 | */ |
2259 | if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) |
2260 | return false; |
2261 | |
2262 | gup_flags |= to_set; |
2263 | if (locked) { |
2264 | /* At the external interface locked must be set */ |
2265 | if (WARN_ON_ONCE(*locked != 1)) |
2266 | return false; |
2267 | |
2268 | gup_flags |= FOLL_UNLOCKABLE; |
2269 | } |
2270 | |
2271 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2272 | if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == |
2273 | (FOLL_PIN | FOLL_GET))) |
2274 | return false; |
2275 | |
2276 | /* LONGTERM can only be specified when pinning */ |
2277 | if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) |
2278 | return false; |
2279 | |
2280 | /* Pages input must be given if using GET/PIN */ |
2281 | if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) |
2282 | return false; |
2283 | |
2284 | /* We want to allow the pgmap to be hot-unplugged at all times */ |
2285 | if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && |
2286 | (gup_flags & FOLL_PCI_P2PDMA))) |
2287 | return false; |
2288 | |
2289 | *gup_flags_p = gup_flags; |
2290 | return true; |
2291 | } |
2292 | |
2293 | #ifdef CONFIG_MMU |
2294 | /** |
2295 | * get_user_pages_remote() - pin user pages in memory |
2296 | * @mm: mm_struct of target mm |
2297 | * @start: starting user address |
2298 | * @nr_pages: number of pages from start to pin |
2299 | * @gup_flags: flags modifying lookup behaviour |
2300 | * @pages: array that receives pointers to the pages pinned. |
2301 | * Should be at least nr_pages long. Or NULL, if caller |
2302 | * only intends to ensure the pages are faulted in. |
2303 | * @locked: pointer to lock flag indicating whether lock is held and |
2304 | * subsequently whether VM_FAULT_RETRY functionality can be |
2305 | * utilised. Lock must initially be held. |
2306 | * |
2307 | * Returns either number of pages pinned (which may be less than the |
2308 | * number requested), or an error. Details about the return value: |
2309 | * |
2310 | * -- If nr_pages is 0, returns 0. |
2311 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. |
2312 | * -- If nr_pages is >0, and some pages were pinned, returns the number of |
2313 | * pages pinned. Again, this may be less than nr_pages. |
2314 | * |
2315 | * The caller is responsible for releasing returned @pages, via put_page(). |
2316 | * |
2317 | * Must be called with mmap_lock held for read or write. |
2318 | * |
2319 | * get_user_pages_remote walks a process's page tables and takes a reference |
2320 | * to each struct page that each user address corresponds to at a given |
2321 | * instant. That is, it takes the page that would be accessed if a user |
2322 | * thread accesses the given user virtual address at that instant. |
2323 | * |
2324 | * This does not guarantee that the page exists in the user mappings when |
2325 | * get_user_pages_remote returns, and there may even be a completely different |
2326 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
2327 | * and subsequently re-faulted). However it does guarantee that the page |
2328 | * won't be freed completely. And mostly callers simply care that the page |
2329 | * contains data that was valid *at some point in time*. Typically, an IO |
2330 | * or similar operation cannot guarantee anything stronger anyway because |
2331 | * locks can't be held over the syscall boundary. |
2332 | * |
2333 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
2334 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must |
2335 | * be called after the page is finished with, and before put_page is called. |
2336 | * |
2337 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
2338 | * to get a handle on the memory by some means other than accesses |
2339 | * via the user virtual addresses. The pages may be submitted for |
2340 | * DMA to devices or accessed via their kernel linear mapping (via the |
2341 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. |
2342 | * |
2343 | * See also get_user_pages_fast, for performance critical applications. |
2344 | * |
2345 | * get_user_pages_remote should be phased out in favor of |
2346 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
2347 | * should use get_user_pages_remote because it cannot pass |
2348 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
2349 | */ |
2350 | long get_user_pages_remote(struct mm_struct *mm, |
2351 | unsigned long start, unsigned long nr_pages, |
2352 | unsigned int gup_flags, struct page **pages, |
2353 | int *locked) |
2354 | { |
2355 | int local_locked = 1; |
2356 | |
2357 | if (!is_valid_gup_args(pages, locked, gup_flags_p: &gup_flags, |
2358 | to_set: FOLL_TOUCH | FOLL_REMOTE)) |
2359 | return -EINVAL; |
2360 | |
2361 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
2362 | locked: locked ? locked : &local_locked, |
2363 | flags: gup_flags); |
2364 | } |
2365 | EXPORT_SYMBOL(get_user_pages_remote); |
2366 | |
2367 | #else /* CONFIG_MMU */ |
2368 | long get_user_pages_remote(struct mm_struct *mm, |
2369 | unsigned long start, unsigned long nr_pages, |
2370 | unsigned int gup_flags, struct page **pages, |
2371 | int *locked) |
2372 | { |
2373 | return 0; |
2374 | } |
2375 | #endif /* !CONFIG_MMU */ |
2376 | |
2377 | /** |
2378 | * get_user_pages() - pin user pages in memory |
2379 | * @start: starting user address |
2380 | * @nr_pages: number of pages from start to pin |
2381 | * @gup_flags: flags modifying lookup behaviour |
2382 | * @pages: array that receives pointers to the pages pinned. |
2383 | * Should be at least nr_pages long. Or NULL, if caller |
2384 | * only intends to ensure the pages are faulted in. |
2385 | * |
2386 | * This is the same as get_user_pages_remote(), just with a less-flexible |
2387 | * calling convention where we assume that the mm being operated on belongs to |
2388 | * the current task, and doesn't allow passing of a locked parameter. We also |
2389 | * obviously don't pass FOLL_REMOTE in here. |
2390 | */ |
2391 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
2392 | unsigned int gup_flags, struct page **pages) |
2393 | { |
2394 | int locked = 1; |
2395 | |
2396 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_TOUCH)) |
2397 | return -EINVAL; |
2398 | |
2399 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
2400 | locked: &locked, flags: gup_flags); |
2401 | } |
2402 | EXPORT_SYMBOL(get_user_pages); |
2403 | |
2404 | /* |
2405 | * get_user_pages_unlocked() is suitable to replace the form: |
2406 | * |
2407 | * mmap_read_lock(mm); |
2408 | * get_user_pages(mm, ..., pages, NULL); |
2409 | * mmap_read_unlock(mm); |
2410 | * |
2411 | * with: |
2412 | * |
2413 | * get_user_pages_unlocked(mm, ..., pages); |
2414 | * |
2415 | * It is functionally equivalent to get_user_pages_fast so |
2416 | * get_user_pages_fast should be used instead if specific gup_flags |
2417 | * (e.g. FOLL_FORCE) are not required. |
2418 | */ |
2419 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2420 | struct page **pages, unsigned int gup_flags) |
2421 | { |
2422 | int locked = 0; |
2423 | |
2424 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, |
2425 | to_set: FOLL_TOUCH | FOLL_UNLOCKABLE)) |
2426 | return -EINVAL; |
2427 | |
2428 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
2429 | locked: &locked, flags: gup_flags); |
2430 | } |
2431 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2432 | |
2433 | /* |
2434 | * Fast GUP |
2435 | * |
2436 | * get_user_pages_fast attempts to pin user pages by walking the page |
2437 | * tables directly and avoids taking locks. Thus the walker needs to be |
2438 | * protected from page table pages being freed from under it, and should |
2439 | * block any THP splits. |
2440 | * |
2441 | * One way to achieve this is to have the walker disable interrupts, and |
2442 | * rely on IPIs from the TLB flushing code blocking before the page table |
2443 | * pages are freed. This is unsuitable for architectures that do not need |
2444 | * to broadcast an IPI when invalidating TLBs. |
2445 | * |
2446 | * Another way to achieve this is to batch up page table containing pages |
2447 | * belonging to more than one mm_user, then rcu_sched a callback to free those |
2448 | * pages. Disabling interrupts will allow the fast_gup walker to both block |
2449 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs |
2450 | * (which is a relatively rare event). The code below adopts this strategy. |
2451 | * |
2452 | * Before activating this code, please be aware that the following assumptions |
2453 | * are currently made: |
2454 | * |
2455 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
2456 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2457 | * |
2458 | * *) ptes can be read atomically by the architecture. |
2459 | * |
2460 | * *) access_ok is sufficient to validate userspace address ranges. |
2461 | * |
2462 | * The last two assumptions can be relaxed by the addition of helper functions. |
2463 | * |
2464 | * This code is based heavily on the PowerPC implementation by Nick Piggin. |
2465 | */ |
2466 | #ifdef CONFIG_HAVE_FAST_GUP |
2467 | |
2468 | /* |
2469 | * Used in the GUP-fast path to determine whether a pin is permitted for a |
2470 | * specific folio. |
2471 | * |
2472 | * This call assumes the caller has pinned the folio, that the lowest page table |
2473 | * level still points to this folio, and that interrupts have been disabled. |
2474 | * |
2475 | * Writing to pinned file-backed dirty tracked folios is inherently problematic |
2476 | * (see comment describing the writable_file_mapping_allowed() function). We |
2477 | * therefore try to avoid the most egregious case of a long-term mapping doing |
2478 | * so. |
2479 | * |
2480 | * This function cannot be as thorough as that one as the VMA is not available |
2481 | * in the fast path, so instead we whitelist known good cases and if in doubt, |
2482 | * fall back to the slow path. |
2483 | */ |
2484 | static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) |
2485 | { |
2486 | struct address_space *mapping; |
2487 | unsigned long mapping_flags; |
2488 | |
2489 | /* |
2490 | * If we aren't pinning then no problematic write can occur. A long term |
2491 | * pin is the most egregious case so this is the one we disallow. |
2492 | */ |
2493 | if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != |
2494 | (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) |
2495 | return true; |
2496 | |
2497 | /* The folio is pinned, so we can safely access folio fields. */ |
2498 | |
2499 | if (WARN_ON_ONCE(folio_test_slab(folio))) |
2500 | return false; |
2501 | |
2502 | /* hugetlb mappings do not require dirty-tracking. */ |
2503 | if (folio_test_hugetlb(folio)) |
2504 | return true; |
2505 | |
2506 | /* |
2507 | * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods |
2508 | * cannot proceed, which means no actions performed under RCU can |
2509 | * proceed either. |
2510 | * |
2511 | * inodes and thus their mappings are freed under RCU, which means the |
2512 | * mapping cannot be freed beneath us and thus we can safely dereference |
2513 | * it. |
2514 | */ |
2515 | lockdep_assert_irqs_disabled(); |
2516 | |
2517 | /* |
2518 | * However, there may be operations which _alter_ the mapping, so ensure |
2519 | * we read it once and only once. |
2520 | */ |
2521 | mapping = READ_ONCE(folio->mapping); |
2522 | |
2523 | /* |
2524 | * The mapping may have been truncated, in any case we cannot determine |
2525 | * if this mapping is safe - fall back to slow path to determine how to |
2526 | * proceed. |
2527 | */ |
2528 | if (!mapping) |
2529 | return false; |
2530 | |
2531 | /* Anonymous folios pose no problem. */ |
2532 | mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; |
2533 | if (mapping_flags) |
2534 | return mapping_flags & PAGE_MAPPING_ANON; |
2535 | |
2536 | /* |
2537 | * At this point, we know the mapping is non-null and points to an |
2538 | * address_space object. The only remaining whitelisted file system is |
2539 | * shmem. |
2540 | */ |
2541 | return shmem_mapping(mapping); |
2542 | } |
2543 | |
2544 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
2545 | unsigned int flags, |
2546 | struct page **pages) |
2547 | { |
2548 | while ((*nr) - nr_start) { |
2549 | struct page *page = pages[--(*nr)]; |
2550 | |
2551 | ClearPageReferenced(page); |
2552 | if (flags & FOLL_PIN) |
2553 | unpin_user_page(page); |
2554 | else |
2555 | put_page(page); |
2556 | } |
2557 | } |
2558 | |
2559 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2560 | /* |
2561 | * Fast-gup relies on pte change detection to avoid concurrent pgtable |
2562 | * operations. |
2563 | * |
2564 | * To pin the page, fast-gup needs to do below in order: |
2565 | * (1) pin the page (by prefetching pte), then (2) check pte not changed. |
2566 | * |
2567 | * For the rest of pgtable operations where pgtable updates can be racy |
2568 | * with fast-gup, we need to do (1) clear pte, then (2) check whether page |
2569 | * is pinned. |
2570 | * |
2571 | * Above will work for all pte-level operations, including THP split. |
2572 | * |
2573 | * For THP collapse, it's a bit more complicated because fast-gup may be |
2574 | * walking a pgtable page that is being freed (pte is still valid but pmd |
2575 | * can be cleared already). To avoid race in such condition, we need to |
2576 | * also check pmd here to make sure pmd doesn't change (corresponds to |
2577 | * pmdp_collapse_flush() in the THP collapse code path). |
2578 | */ |
2579 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
2580 | unsigned long end, unsigned int flags, |
2581 | struct page **pages, int *nr) |
2582 | { |
2583 | struct dev_pagemap *pgmap = NULL; |
2584 | int nr_start = *nr, ret = 0; |
2585 | pte_t *ptep, *ptem; |
2586 | |
2587 | ptem = ptep = pte_offset_map(pmd: &pmd, addr); |
2588 | if (!ptep) |
2589 | return 0; |
2590 | do { |
2591 | pte_t pte = ptep_get_lockless(ptep); |
2592 | struct page *page; |
2593 | struct folio *folio; |
2594 | |
2595 | /* |
2596 | * Always fallback to ordinary GUP on PROT_NONE-mapped pages: |
2597 | * pte_access_permitted() better should reject these pages |
2598 | * either way: otherwise, GUP-fast might succeed in |
2599 | * cases where ordinary GUP would fail due to VMA access |
2600 | * permissions. |
2601 | */ |
2602 | if (pte_protnone(pte)) |
2603 | goto pte_unmap; |
2604 | |
2605 | if (!pte_access_permitted(pte, write: flags & FOLL_WRITE)) |
2606 | goto pte_unmap; |
2607 | |
2608 | if (pte_devmap(a: pte)) { |
2609 | if (unlikely(flags & FOLL_LONGTERM)) |
2610 | goto pte_unmap; |
2611 | |
2612 | pgmap = get_dev_pagemap(pfn: pte_pfn(pte), pgmap); |
2613 | if (unlikely(!pgmap)) { |
2614 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2615 | goto pte_unmap; |
2616 | } |
2617 | } else if (pte_special(pte)) |
2618 | goto pte_unmap; |
2619 | |
2620 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
2621 | page = pte_page(pte); |
2622 | |
2623 | folio = try_grab_folio(page, refs: 1, flags); |
2624 | if (!folio) |
2625 | goto pte_unmap; |
2626 | |
2627 | if (unlikely(folio_is_secretmem(folio))) { |
2628 | gup_put_folio(folio, refs: 1, flags); |
2629 | goto pte_unmap; |
2630 | } |
2631 | |
2632 | if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || |
2633 | unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { |
2634 | gup_put_folio(folio, refs: 1, flags); |
2635 | goto pte_unmap; |
2636 | } |
2637 | |
2638 | if (!folio_fast_pin_allowed(folio, flags)) { |
2639 | gup_put_folio(folio, refs: 1, flags); |
2640 | goto pte_unmap; |
2641 | } |
2642 | |
2643 | if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { |
2644 | gup_put_folio(folio, refs: 1, flags); |
2645 | goto pte_unmap; |
2646 | } |
2647 | |
2648 | /* |
2649 | * We need to make the page accessible if and only if we are |
2650 | * going to access its content (the FOLL_PIN case). Please |
2651 | * see Documentation/core-api/pin_user_pages.rst for |
2652 | * details. |
2653 | */ |
2654 | if (flags & FOLL_PIN) { |
2655 | ret = arch_make_page_accessible(page); |
2656 | if (ret) { |
2657 | gup_put_folio(folio, refs: 1, flags); |
2658 | goto pte_unmap; |
2659 | } |
2660 | } |
2661 | folio_set_referenced(folio); |
2662 | pages[*nr] = page; |
2663 | (*nr)++; |
2664 | } while (ptep++, addr += PAGE_SIZE, addr != end); |
2665 | |
2666 | ret = 1; |
2667 | |
2668 | pte_unmap: |
2669 | if (pgmap) |
2670 | put_dev_pagemap(pgmap); |
2671 | pte_unmap(pte: ptem); |
2672 | return ret; |
2673 | } |
2674 | #else |
2675 | |
2676 | /* |
2677 | * If we can't determine whether or not a pte is special, then fail immediately |
2678 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not |
2679 | * to be special. |
2680 | * |
2681 | * For a futex to be placed on a THP tail page, get_futex_key requires a |
2682 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
2683 | * useful to have gup_huge_pmd even if we can't operate on ptes. |
2684 | */ |
2685 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
2686 | unsigned long end, unsigned int flags, |
2687 | struct page **pages, int *nr) |
2688 | { |
2689 | return 0; |
2690 | } |
2691 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2692 | |
2693 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
2694 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
2695 | unsigned long end, unsigned int flags, |
2696 | struct page **pages, int *nr) |
2697 | { |
2698 | int nr_start = *nr; |
2699 | struct dev_pagemap *pgmap = NULL; |
2700 | |
2701 | do { |
2702 | struct page *page = pfn_to_page(pfn); |
2703 | |
2704 | pgmap = get_dev_pagemap(pfn, pgmap); |
2705 | if (unlikely(!pgmap)) { |
2706 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2707 | break; |
2708 | } |
2709 | |
2710 | if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { |
2711 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2712 | break; |
2713 | } |
2714 | |
2715 | SetPageReferenced(page); |
2716 | pages[*nr] = page; |
2717 | if (unlikely(try_grab_page(page, flags))) { |
2718 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2719 | break; |
2720 | } |
2721 | (*nr)++; |
2722 | pfn++; |
2723 | } while (addr += PAGE_SIZE, addr != end); |
2724 | |
2725 | put_dev_pagemap(pgmap); |
2726 | return addr == end; |
2727 | } |
2728 | |
2729 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
2730 | unsigned long end, unsigned int flags, |
2731 | struct page **pages, int *nr) |
2732 | { |
2733 | unsigned long fault_pfn; |
2734 | int nr_start = *nr; |
2735 | |
2736 | fault_pfn = pmd_pfn(pmd: orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2737 | if (!__gup_device_huge(pfn: fault_pfn, addr, end, flags, pages, nr)) |
2738 | return 0; |
2739 | |
2740 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
2741 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2742 | return 0; |
2743 | } |
2744 | return 1; |
2745 | } |
2746 | |
2747 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
2748 | unsigned long end, unsigned int flags, |
2749 | struct page **pages, int *nr) |
2750 | { |
2751 | unsigned long fault_pfn; |
2752 | int nr_start = *nr; |
2753 | |
2754 | fault_pfn = pud_pfn(pud: orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2755 | if (!__gup_device_huge(pfn: fault_pfn, addr, end, flags, pages, nr)) |
2756 | return 0; |
2757 | |
2758 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
2759 | undo_dev_pagemap(nr, nr_start, flags, pages); |
2760 | return 0; |
2761 | } |
2762 | return 1; |
2763 | } |
2764 | #else |
2765 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
2766 | unsigned long end, unsigned int flags, |
2767 | struct page **pages, int *nr) |
2768 | { |
2769 | BUILD_BUG(); |
2770 | return 0; |
2771 | } |
2772 | |
2773 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
2774 | unsigned long end, unsigned int flags, |
2775 | struct page **pages, int *nr) |
2776 | { |
2777 | BUILD_BUG(); |
2778 | return 0; |
2779 | } |
2780 | #endif |
2781 | |
2782 | static int record_subpages(struct page *page, unsigned long addr, |
2783 | unsigned long end, struct page **pages) |
2784 | { |
2785 | int nr; |
2786 | |
2787 | for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) |
2788 | pages[nr] = nth_page(page, nr); |
2789 | |
2790 | return nr; |
2791 | } |
2792 | |
2793 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2794 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, |
2795 | unsigned long sz) |
2796 | { |
2797 | unsigned long __boundary = (addr + sz) & ~(sz-1); |
2798 | return (__boundary - 1 < end - 1) ? __boundary : end; |
2799 | } |
2800 | |
2801 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, |
2802 | unsigned long end, unsigned int flags, |
2803 | struct page **pages, int *nr) |
2804 | { |
2805 | unsigned long pte_end; |
2806 | struct page *page; |
2807 | struct folio *folio; |
2808 | pte_t pte; |
2809 | int refs; |
2810 | |
2811 | pte_end = (addr + sz) & ~(sz-1); |
2812 | if (pte_end < end) |
2813 | end = pte_end; |
2814 | |
2815 | pte = huge_ptep_get(ptep); |
2816 | |
2817 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
2818 | return 0; |
2819 | |
2820 | /* hugepages are never "special" */ |
2821 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
2822 | |
2823 | page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); |
2824 | refs = record_subpages(page, addr, end, pages + *nr); |
2825 | |
2826 | folio = try_grab_folio(page, refs, flags); |
2827 | if (!folio) |
2828 | return 0; |
2829 | |
2830 | if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { |
2831 | gup_put_folio(folio, refs, flags); |
2832 | return 0; |
2833 | } |
2834 | |
2835 | if (!folio_fast_pin_allowed(folio, flags)) { |
2836 | gup_put_folio(folio, refs, flags); |
2837 | return 0; |
2838 | } |
2839 | |
2840 | if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { |
2841 | gup_put_folio(folio, refs, flags); |
2842 | return 0; |
2843 | } |
2844 | |
2845 | *nr += refs; |
2846 | folio_set_referenced(folio); |
2847 | return 1; |
2848 | } |
2849 | |
2850 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, |
2851 | unsigned int pdshift, unsigned long end, unsigned int flags, |
2852 | struct page **pages, int *nr) |
2853 | { |
2854 | pte_t *ptep; |
2855 | unsigned long sz = 1UL << hugepd_shift(hugepd); |
2856 | unsigned long next; |
2857 | |
2858 | ptep = hugepte_offset(hugepd, addr, pdshift); |
2859 | do { |
2860 | next = hugepte_addr_end(addr, end, sz); |
2861 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
2862 | return 0; |
2863 | } while (ptep++, addr = next, addr != end); |
2864 | |
2865 | return 1; |
2866 | } |
2867 | #else |
2868 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, |
2869 | unsigned int pdshift, unsigned long end, unsigned int flags, |
2870 | struct page **pages, int *nr) |
2871 | { |
2872 | return 0; |
2873 | } |
2874 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ |
2875 | |
2876 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
2877 | unsigned long end, unsigned int flags, |
2878 | struct page **pages, int *nr) |
2879 | { |
2880 | struct page *page; |
2881 | struct folio *folio; |
2882 | int refs; |
2883 | |
2884 | if (!pmd_access_permitted(pmd: orig, write: flags & FOLL_WRITE)) |
2885 | return 0; |
2886 | |
2887 | if (pmd_devmap(pmd: orig)) { |
2888 | if (unlikely(flags & FOLL_LONGTERM)) |
2889 | return 0; |
2890 | return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, |
2891 | pages, nr); |
2892 | } |
2893 | |
2894 | page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); |
2895 | refs = record_subpages(page, addr, end, pages: pages + *nr); |
2896 | |
2897 | folio = try_grab_folio(page, refs, flags); |
2898 | if (!folio) |
2899 | return 0; |
2900 | |
2901 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
2902 | gup_put_folio(folio, refs, flags); |
2903 | return 0; |
2904 | } |
2905 | |
2906 | if (!folio_fast_pin_allowed(folio, flags)) { |
2907 | gup_put_folio(folio, refs, flags); |
2908 | return 0; |
2909 | } |
2910 | if (!pmd_write(pmd: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) { |
2911 | gup_put_folio(folio, refs, flags); |
2912 | return 0; |
2913 | } |
2914 | |
2915 | *nr += refs; |
2916 | folio_set_referenced(folio); |
2917 | return 1; |
2918 | } |
2919 | |
2920 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
2921 | unsigned long end, unsigned int flags, |
2922 | struct page **pages, int *nr) |
2923 | { |
2924 | struct page *page; |
2925 | struct folio *folio; |
2926 | int refs; |
2927 | |
2928 | if (!pud_access_permitted(pud: orig, write: flags & FOLL_WRITE)) |
2929 | return 0; |
2930 | |
2931 | if (pud_devmap(pud: orig)) { |
2932 | if (unlikely(flags & FOLL_LONGTERM)) |
2933 | return 0; |
2934 | return __gup_device_huge_pud(orig, pudp, addr, end, flags, |
2935 | pages, nr); |
2936 | } |
2937 | |
2938 | page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); |
2939 | refs = record_subpages(page, addr, end, pages: pages + *nr); |
2940 | |
2941 | folio = try_grab_folio(page, refs, flags); |
2942 | if (!folio) |
2943 | return 0; |
2944 | |
2945 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
2946 | gup_put_folio(folio, refs, flags); |
2947 | return 0; |
2948 | } |
2949 | |
2950 | if (!folio_fast_pin_allowed(folio, flags)) { |
2951 | gup_put_folio(folio, refs, flags); |
2952 | return 0; |
2953 | } |
2954 | |
2955 | if (!pud_write(pud: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) { |
2956 | gup_put_folio(folio, refs, flags); |
2957 | return 0; |
2958 | } |
2959 | |
2960 | *nr += refs; |
2961 | folio_set_referenced(folio); |
2962 | return 1; |
2963 | } |
2964 | |
2965 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
2966 | unsigned long end, unsigned int flags, |
2967 | struct page **pages, int *nr) |
2968 | { |
2969 | int refs; |
2970 | struct page *page; |
2971 | struct folio *folio; |
2972 | |
2973 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
2974 | return 0; |
2975 | |
2976 | BUILD_BUG_ON(pgd_devmap(orig)); |
2977 | |
2978 | page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
2979 | refs = record_subpages(page, addr, end, pages: pages + *nr); |
2980 | |
2981 | folio = try_grab_folio(page, refs, flags); |
2982 | if (!folio) |
2983 | return 0; |
2984 | |
2985 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { |
2986 | gup_put_folio(folio, refs, flags); |
2987 | return 0; |
2988 | } |
2989 | |
2990 | if (!pgd_write(pgd: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) { |
2991 | gup_put_folio(folio, refs, flags); |
2992 | return 0; |
2993 | } |
2994 | |
2995 | if (!folio_fast_pin_allowed(folio, flags)) { |
2996 | gup_put_folio(folio, refs, flags); |
2997 | return 0; |
2998 | } |
2999 | |
3000 | *nr += refs; |
3001 | folio_set_referenced(folio); |
3002 | return 1; |
3003 | } |
3004 | |
3005 | static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, |
3006 | unsigned int flags, struct page **pages, int *nr) |
3007 | { |
3008 | unsigned long next; |
3009 | pmd_t *pmdp; |
3010 | |
3011 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
3012 | do { |
3013 | pmd_t pmd = pmdp_get_lockless(pmdp); |
3014 | |
3015 | next = pmd_addr_end(addr, end); |
3016 | if (!pmd_present(pmd)) |
3017 | return 0; |
3018 | |
3019 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
3020 | pmd_devmap(pmd))) { |
3021 | /* See gup_pte_range() */ |
3022 | if (pmd_protnone(pmd)) |
3023 | return 0; |
3024 | |
3025 | if (!gup_huge_pmd(orig: pmd, pmdp, addr, end: next, flags, |
3026 | pages, nr)) |
3027 | return 0; |
3028 | |
3029 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
3030 | /* |
3031 | * architecture have different format for hugetlbfs |
3032 | * pmd format and THP pmd format |
3033 | */ |
3034 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, |
3035 | PMD_SHIFT, end: next, flags, pages, nr)) |
3036 | return 0; |
3037 | } else if (!gup_pte_range(pmd, pmdp, addr, end: next, flags, pages, nr)) |
3038 | return 0; |
3039 | } while (pmdp++, addr = next, addr != end); |
3040 | |
3041 | return 1; |
3042 | } |
3043 | |
3044 | static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, |
3045 | unsigned int flags, struct page **pages, int *nr) |
3046 | { |
3047 | unsigned long next; |
3048 | pud_t *pudp; |
3049 | |
3050 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
3051 | do { |
3052 | pud_t pud = READ_ONCE(*pudp); |
3053 | |
3054 | next = pud_addr_end(addr, end); |
3055 | if (unlikely(!pud_present(pud))) |
3056 | return 0; |
3057 | if (unlikely(pud_huge(pud) || pud_devmap(pud))) { |
3058 | if (!gup_huge_pud(orig: pud, pudp, addr, end: next, flags, |
3059 | pages, nr)) |
3060 | return 0; |
3061 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { |
3062 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, |
3063 | PUD_SHIFT, end: next, flags, pages, nr)) |
3064 | return 0; |
3065 | } else if (!gup_pmd_range(pudp, pud, addr, end: next, flags, pages, nr)) |
3066 | return 0; |
3067 | } while (pudp++, addr = next, addr != end); |
3068 | |
3069 | return 1; |
3070 | } |
3071 | |
3072 | static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, |
3073 | unsigned int flags, struct page **pages, int *nr) |
3074 | { |
3075 | unsigned long next; |
3076 | p4d_t *p4dp; |
3077 | |
3078 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
3079 | do { |
3080 | p4d_t p4d = READ_ONCE(*p4dp); |
3081 | |
3082 | next = p4d_addr_end(addr, end); |
3083 | if (p4d_none(p4d)) |
3084 | return 0; |
3085 | BUILD_BUG_ON(p4d_huge(p4d)); |
3086 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { |
3087 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, |
3088 | P4D_SHIFT, end: next, flags, pages, nr)) |
3089 | return 0; |
3090 | } else if (!gup_pud_range(p4dp, p4d, addr, end: next, flags, pages, nr)) |
3091 | return 0; |
3092 | } while (p4dp++, addr = next, addr != end); |
3093 | |
3094 | return 1; |
3095 | } |
3096 | |
3097 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
3098 | unsigned int flags, struct page **pages, int *nr) |
3099 | { |
3100 | unsigned long next; |
3101 | pgd_t *pgdp; |
3102 | |
3103 | pgdp = pgd_offset(current->mm, addr); |
3104 | do { |
3105 | pgd_t pgd = READ_ONCE(*pgdp); |
3106 | |
3107 | next = pgd_addr_end(addr, end); |
3108 | if (pgd_none(pgd)) |
3109 | return; |
3110 | if (unlikely(pgd_huge(pgd))) { |
3111 | if (!gup_huge_pgd(orig: pgd, pgdp, addr, end: next, flags, |
3112 | pages, nr)) |
3113 | return; |
3114 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { |
3115 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, |
3116 | PGDIR_SHIFT, end: next, flags, pages, nr)) |
3117 | return; |
3118 | } else if (!gup_p4d_range(pgdp, pgd, addr, end: next, flags, pages, nr)) |
3119 | return; |
3120 | } while (pgdp++, addr = next, addr != end); |
3121 | } |
3122 | #else |
3123 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, |
3124 | unsigned int flags, struct page **pages, int *nr) |
3125 | { |
3126 | } |
3127 | #endif /* CONFIG_HAVE_FAST_GUP */ |
3128 | |
3129 | #ifndef gup_fast_permitted |
3130 | /* |
3131 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
3132 | * we need to fall back to the slow version: |
3133 | */ |
3134 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
3135 | { |
3136 | return true; |
3137 | } |
3138 | #endif |
3139 | |
3140 | static unsigned long lockless_pages_from_mm(unsigned long start, |
3141 | unsigned long end, |
3142 | unsigned int gup_flags, |
3143 | struct page **pages) |
3144 | { |
3145 | unsigned long flags; |
3146 | int nr_pinned = 0; |
3147 | unsigned seq; |
3148 | |
3149 | if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || |
3150 | !gup_fast_permitted(start, end)) |
3151 | return 0; |
3152 | |
3153 | if (gup_flags & FOLL_PIN) { |
3154 | seq = raw_read_seqcount(¤t->mm->write_protect_seq); |
3155 | if (seq & 1) |
3156 | return 0; |
3157 | } |
3158 | |
3159 | /* |
3160 | * Disable interrupts. The nested form is used, in order to allow full, |
3161 | * general purpose use of this routine. |
3162 | * |
3163 | * With interrupts disabled, we block page table pages from being freed |
3164 | * from under us. See struct mmu_table_batch comments in |
3165 | * include/asm-generic/tlb.h for more details. |
3166 | * |
3167 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs |
3168 | * that come from THPs splitting. |
3169 | */ |
3170 | local_irq_save(flags); |
3171 | gup_pgd_range(addr: start, end, flags: gup_flags, pages, nr: &nr_pinned); |
3172 | local_irq_restore(flags); |
3173 | |
3174 | /* |
3175 | * When pinning pages for DMA there could be a concurrent write protect |
3176 | * from fork() via copy_page_range(), in this case always fail fast GUP. |
3177 | */ |
3178 | if (gup_flags & FOLL_PIN) { |
3179 | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { |
3180 | unpin_user_pages_lockless(pages, npages: nr_pinned); |
3181 | return 0; |
3182 | } else { |
3183 | sanity_check_pinned_pages(pages, npages: nr_pinned); |
3184 | } |
3185 | } |
3186 | return nr_pinned; |
3187 | } |
3188 | |
3189 | static int internal_get_user_pages_fast(unsigned long start, |
3190 | unsigned long nr_pages, |
3191 | unsigned int gup_flags, |
3192 | struct page **pages) |
3193 | { |
3194 | unsigned long len, end; |
3195 | unsigned long nr_pinned; |
3196 | int locked = 0; |
3197 | int ret; |
3198 | |
3199 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
3200 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
3201 | FOLL_FAST_ONLY | FOLL_NOFAULT | |
3202 | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) |
3203 | return -EINVAL; |
3204 | |
3205 | if (gup_flags & FOLL_PIN) |
3206 | mm_set_has_pinned_flag(mm_flags: ¤t->mm->flags); |
3207 | |
3208 | if (!(gup_flags & FOLL_FAST_ONLY)) |
3209 | might_lock_read(¤t->mm->mmap_lock); |
3210 | |
3211 | start = untagged_addr(start) & PAGE_MASK; |
3212 | len = nr_pages << PAGE_SHIFT; |
3213 | if (check_add_overflow(start, len, &end)) |
3214 | return -EOVERFLOW; |
3215 | if (end > TASK_SIZE_MAX) |
3216 | return -EFAULT; |
3217 | if (unlikely(!access_ok((void __user *)start, len))) |
3218 | return -EFAULT; |
3219 | |
3220 | nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); |
3221 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) |
3222 | return nr_pinned; |
3223 | |
3224 | /* Slow path: try to get the remaining pages with get_user_pages */ |
3225 | start += nr_pinned << PAGE_SHIFT; |
3226 | pages += nr_pinned; |
3227 | ret = __gup_longterm_locked(current->mm, start, nr_pages: nr_pages - nr_pinned, |
3228 | pages, locked: &locked, |
3229 | gup_flags: gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); |
3230 | if (ret < 0) { |
3231 | /* |
3232 | * The caller has to unpin the pages we already pinned so |
3233 | * returning -errno is not an option |
3234 | */ |
3235 | if (nr_pinned) |
3236 | return nr_pinned; |
3237 | return ret; |
3238 | } |
3239 | return ret + nr_pinned; |
3240 | } |
3241 | |
3242 | /** |
3243 | * get_user_pages_fast_only() - pin user pages in memory |
3244 | * @start: starting user address |
3245 | * @nr_pages: number of pages from start to pin |
3246 | * @gup_flags: flags modifying pin behaviour |
3247 | * @pages: array that receives pointers to the pages pinned. |
3248 | * Should be at least nr_pages long. |
3249 | * |
3250 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
3251 | * the regular GUP. |
3252 | * |
3253 | * If the architecture does not support this function, simply return with no |
3254 | * pages pinned. |
3255 | * |
3256 | * Careful, careful! COW breaking can go either way, so a non-write |
3257 | * access can get ambiguous page results. If you call this function without |
3258 | * 'write' set, you'd better be sure that you're ok with that ambiguity. |
3259 | */ |
3260 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
3261 | unsigned int gup_flags, struct page **pages) |
3262 | { |
3263 | /* |
3264 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, |
3265 | * because gup fast is always a "pin with a +1 page refcount" request. |
3266 | * |
3267 | * FOLL_FAST_ONLY is required in order to match the API description of |
3268 | * this routine: no fall back to regular ("slow") GUP. |
3269 | */ |
3270 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, |
3271 | to_set: FOLL_GET | FOLL_FAST_ONLY)) |
3272 | return -EINVAL; |
3273 | |
3274 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
3275 | } |
3276 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
3277 | |
3278 | /** |
3279 | * get_user_pages_fast() - pin user pages in memory |
3280 | * @start: starting user address |
3281 | * @nr_pages: number of pages from start to pin |
3282 | * @gup_flags: flags modifying pin behaviour |
3283 | * @pages: array that receives pointers to the pages pinned. |
3284 | * Should be at least nr_pages long. |
3285 | * |
3286 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
3287 | * If not successful, it will fall back to taking the lock and |
3288 | * calling get_user_pages(). |
3289 | * |
3290 | * Returns number of pages pinned. This may be fewer than the number requested. |
3291 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns |
3292 | * -errno. |
3293 | */ |
3294 | int get_user_pages_fast(unsigned long start, int nr_pages, |
3295 | unsigned int gup_flags, struct page **pages) |
3296 | { |
3297 | /* |
3298 | * The caller may or may not have explicitly set FOLL_GET; either way is |
3299 | * OK. However, internally (within mm/gup.c), gup fast variants must set |
3300 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" |
3301 | * request. |
3302 | */ |
3303 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_GET)) |
3304 | return -EINVAL; |
3305 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
3306 | } |
3307 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
3308 | |
3309 | /** |
3310 | * pin_user_pages_fast() - pin user pages in memory without taking locks |
3311 | * |
3312 | * @start: starting user address |
3313 | * @nr_pages: number of pages from start to pin |
3314 | * @gup_flags: flags modifying pin behaviour |
3315 | * @pages: array that receives pointers to the pages pinned. |
3316 | * Should be at least nr_pages long. |
3317 | * |
3318 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See |
3319 | * get_user_pages_fast() for documentation on the function arguments, because |
3320 | * the arguments here are identical. |
3321 | * |
3322 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
3323 | * see Documentation/core-api/pin_user_pages.rst for further details. |
3324 | * |
3325 | * Note that if a zero_page is amongst the returned pages, it will not have |
3326 | * pins in it and unpin_user_page() will not remove pins from it. |
3327 | */ |
3328 | int pin_user_pages_fast(unsigned long start, int nr_pages, |
3329 | unsigned int gup_flags, struct page **pages) |
3330 | { |
3331 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_PIN)) |
3332 | return -EINVAL; |
3333 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
3334 | } |
3335 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); |
3336 | |
3337 | /** |
3338 | * pin_user_pages_remote() - pin pages of a remote process |
3339 | * |
3340 | * @mm: mm_struct of target mm |
3341 | * @start: starting user address |
3342 | * @nr_pages: number of pages from start to pin |
3343 | * @gup_flags: flags modifying lookup behaviour |
3344 | * @pages: array that receives pointers to the pages pinned. |
3345 | * Should be at least nr_pages long. |
3346 | * @locked: pointer to lock flag indicating whether lock is held and |
3347 | * subsequently whether VM_FAULT_RETRY functionality can be |
3348 | * utilised. Lock must initially be held. |
3349 | * |
3350 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See |
3351 | * get_user_pages_remote() for documentation on the function arguments, because |
3352 | * the arguments here are identical. |
3353 | * |
3354 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
3355 | * see Documentation/core-api/pin_user_pages.rst for details. |
3356 | * |
3357 | * Note that if a zero_page is amongst the returned pages, it will not have |
3358 | * pins in it and unpin_user_page*() will not remove pins from it. |
3359 | */ |
3360 | long pin_user_pages_remote(struct mm_struct *mm, |
3361 | unsigned long start, unsigned long nr_pages, |
3362 | unsigned int gup_flags, struct page **pages, |
3363 | int *locked) |
3364 | { |
3365 | int local_locked = 1; |
3366 | |
3367 | if (!is_valid_gup_args(pages, locked, gup_flags_p: &gup_flags, |
3368 | to_set: FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) |
3369 | return 0; |
3370 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
3371 | locked: locked ? locked : &local_locked, |
3372 | gup_flags); |
3373 | } |
3374 | EXPORT_SYMBOL(pin_user_pages_remote); |
3375 | |
3376 | /** |
3377 | * pin_user_pages() - pin user pages in memory for use by other devices |
3378 | * |
3379 | * @start: starting user address |
3380 | * @nr_pages: number of pages from start to pin |
3381 | * @gup_flags: flags modifying lookup behaviour |
3382 | * @pages: array that receives pointers to the pages pinned. |
3383 | * Should be at least nr_pages long. |
3384 | * |
3385 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and |
3386 | * FOLL_PIN is set. |
3387 | * |
3388 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
3389 | * see Documentation/core-api/pin_user_pages.rst for details. |
3390 | * |
3391 | * Note that if a zero_page is amongst the returned pages, it will not have |
3392 | * pins in it and unpin_user_page*() will not remove pins from it. |
3393 | */ |
3394 | long pin_user_pages(unsigned long start, unsigned long nr_pages, |
3395 | unsigned int gup_flags, struct page **pages) |
3396 | { |
3397 | int locked = 1; |
3398 | |
3399 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_PIN)) |
3400 | return 0; |
3401 | return __gup_longterm_locked(current->mm, start, nr_pages, |
3402 | pages, locked: &locked, gup_flags); |
3403 | } |
3404 | EXPORT_SYMBOL(pin_user_pages); |
3405 | |
3406 | /* |
3407 | * pin_user_pages_unlocked() is the FOLL_PIN variant of |
3408 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets |
3409 | * FOLL_PIN and rejects FOLL_GET. |
3410 | * |
3411 | * Note that if a zero_page is amongst the returned pages, it will not have |
3412 | * pins in it and unpin_user_page*() will not remove pins from it. |
3413 | */ |
3414 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
3415 | struct page **pages, unsigned int gup_flags) |
3416 | { |
3417 | int locked = 0; |
3418 | |
3419 | if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, |
3420 | to_set: FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) |
3421 | return 0; |
3422 | |
3423 | return __gup_longterm_locked(current->mm, start, nr_pages, pages, |
3424 | locked: &locked, gup_flags); |
3425 | } |
3426 | EXPORT_SYMBOL(pin_user_pages_unlocked); |
3427 |
Definitions
- follow_page_context
- sanity_check_pinned_pages
- try_get_folio
- try_grab_folio
- gup_put_folio
- try_grab_page
- unpin_user_page
- folio_add_pin
- gup_folio_range_next
- gup_folio_next
- unpin_user_pages_dirty_lock
- unpin_user_page_range_dirty_lock
- unpin_user_pages_lockless
- unpin_user_pages
- mm_set_has_pinned_flag
- no_page_table
- follow_pfn_pte
- can_follow_write_pte
- follow_page_pte
- follow_pmd_mask
- follow_pud_mask
- follow_p4d_mask
- follow_page_mask
- follow_page
- get_gate_page
- faultin_page
- writable_file_mapping_allowed
- check_vma_flags
- gup_vma_lookup
- __get_user_pages
- vma_permits_fault
- fixup_user_fault
- gup_signal_pending
- __get_user_pages_locked
- populate_vma_page_range
- faultin_page_range
- __mm_populate
- fault_in_writeable
- fault_in_subpage_writeable
- fault_in_safe_writeable
- fault_in_readable
- get_dump_page
- collect_longterm_unpinnable_pages
- migrate_longterm_unpinnable_pages
- check_and_migrate_movable_pages
- __gup_longterm_locked
- is_valid_gup_args
- get_user_pages_remote
- get_user_pages
- get_user_pages_unlocked
- folio_fast_pin_allowed
- undo_dev_pagemap
- gup_pte_range
- __gup_device_huge
- __gup_device_huge_pmd
- __gup_device_huge_pud
- record_subpages
- gup_huge_pd
- gup_huge_pmd
- gup_huge_pud
- gup_huge_pgd
- gup_pmd_range
- gup_pud_range
- gup_p4d_range
- gup_pgd_range
- lockless_pages_from_mm
- internal_get_user_pages_fast
- get_user_pages_fast_only
- get_user_pages_fast
- pin_user_pages_fast
- pin_user_pages_remote
- pin_user_pages
Improve your Profiling and Debugging skills
Find out more