1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/secretmem.h>
14
15#include <linux/sched/signal.h>
16#include <linux/rwsem.h>
17#include <linux/hugetlb.h>
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
21#include <linux/shmem_fs.h>
22
23#include <asm/mmu_context.h>
24#include <asm/tlbflush.h>
25
26#include "internal.h"
27
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
67/*
68 * Return the folio with ref appropriately incremented,
69 * or NULL if that failed.
70 */
71static inline struct folio *try_get_folio(struct page *page, int refs)
72{
73 struct folio *folio;
74
75retry:
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 return NULL;
79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 return NULL;
81
82 /*
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
87 * we were given anymore.
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
90 */
91 if (unlikely(page_folio(page) != folio)) {
92 if (!put_devmap_managed_page_refs(page: &folio->page, refs))
93 folio_put_refs(folio, refs);
94 goto retry;
95 }
96
97 return folio;
98}
99
100/**
101 * try_grab_folio() - Attempt to get or pin a folio.
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the folio's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
113 * FOLL_GET: folio's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on large folios: folio's refcount will be incremented by
116 * @refs, and its pincount will be incremented by @refs.
117 *
118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
119 * @refs * GUP_PIN_COUNTING_BIAS.
120 *
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
125 */
126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127{
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
136 if (flags & FOLL_GET)
137 return try_get_folio(page, refs);
138
139 /* FOLL_PIN is set */
140
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
147
148 folio = try_get_folio(page, refs);
149 if (!folio)
150 return NULL;
151
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(page: &folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
162 }
163
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(i: refs, v: &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 nr: refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
183
184 node_stat_mod_folio(folio, item: NR_FOLL_PIN_ACQUIRED, nr: refs);
185
186 return folio;
187}
188
189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190{
191 if (flags & FOLL_PIN) {
192 if (is_zero_folio(folio))
193 return;
194 node_stat_mod_folio(folio, item: NR_FOLL_PIN_RELEASED, nr: refs);
195 if (folio_test_large(folio))
196 atomic_sub(i: refs, v: &folio->_pincount);
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
201 if (!put_devmap_managed_page_refs(page: &folio->page, refs))
202 folio_put_refs(folio, refs);
203}
204
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216 * time. Cases: please see the try_grab_folio() documentation, with
217 * "refs=1".
218 *
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
224 */
225int __must_check try_grab_page(struct page *page, unsigned int flags)
226{
227 struct folio *folio = page_folio(page);
228
229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 return -ENOMEM;
231
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
234
235 if (flags & FOLL_GET)
236 folio_ref_inc(folio);
237 else if (flags & FOLL_PIN) {
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
245 /*
246 * Similar to try_grab_folio(): be sure to *also*
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
249 */
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, nr: 1);
252 atomic_add(i: 1, v: &folio->_pincount);
253 } else {
254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 }
256
257 node_stat_mod_folio(folio, item: NR_FOLL_PIN_ACQUIRED, nr: 1);
258 }
259
260 return 0;
261}
262
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
274 sanity_check_pinned_pages(pages: &page, npages: 1);
275 gup_put_folio(page_folio(page), refs: 1, flags: FOLL_PIN);
276}
277EXPORT_SYMBOL(unpin_user_page);
278
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(v: &folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
306static inline struct folio *gup_folio_range_next(struct page *start,
307 unsigned long npages, unsigned long i, unsigned int *ntails)
308{
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
311 unsigned int nr = 1;
312
313 if (folio_test_large(folio))
314 nr = min_t(unsigned int, npages - i,
315 folio_nr_pages(folio) - folio_page_idx(folio, next));
316
317 *ntails = nr;
318 return folio;
319}
320
321static inline struct folio *gup_folio_next(struct page **list,
322 unsigned long npages, unsigned long i, unsigned int *ntails)
323{
324 struct folio *folio = page_folio(list[i]);
325 unsigned int nr;
326
327 for (nr = i + 1; nr < npages; nr++) {
328 if (page_folio(list[nr]) != folio)
329 break;
330 }
331
332 *ntails = nr - i;
333 return folio;
334}
335
336/**
337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338 * @pages: array of pages to be maybe marked dirty, and definitely released.
339 * @npages: number of pages in the @pages array.
340 * @make_dirty: whether to mark the pages dirty
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
346 * compound page) dirty, if @make_dirty is true, and if the page was previously
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
349 *
350 * Please see the unpin_user_page() documentation for details.
351 *
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
355 * set_page_dirty_lock(), unpin_user_page().
356 *
357 */
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
360{
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
364
365 if (!make_dirty) {
366 unpin_user_pages(pages, npages);
367 return;
368 }
369
370 sanity_check_pinned_pages(pages, npages);
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(list: pages, npages, i, ntails: &nr);
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, refs: nr, flags: FOLL_PIN);
399 }
400}
401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(start: page, npages, i, ntails: &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, refs: nr, flags: FOLL_PIN);
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(list: pages, npages, i, ntails: &nr);
456 gup_put_folio(folio, refs: nr, flags: FOLL_PIN);
457 }
458}
459
460/**
461 * unpin_user_pages() - release an array of gup-pinned pages.
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
465 * For each page in the @pages array, release the page using unpin_user_page().
466 *
467 * Please see the unpin_user_page() documentation for details.
468 */
469void unpin_user_pages(struct page **pages, unsigned long npages)
470{
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
474
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
482
483 sanity_check_pinned_pages(pages, npages);
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(list: pages, npages, i, ntails: &nr);
486 gup_put_folio(folio, refs: nr, flags: FOLL_PIN);
487 }
488}
489EXPORT_SYMBOL(unpin_user_pages);
490
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, addr: mm_flags);
500}
501
502#ifdef CONFIG_MMU
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
505{
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 return ERR_PTR(error: -EFAULT);
517 return NULL;
518}
519
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
523 if (flags & FOLL_TOUCH) {
524 pte_t orig_entry = ptep_get(ptep: pte);
525 pte_t entry = orig_entry;
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(pte: entry);
529 entry = pte_mkyoung(pte: entry);
530
531 if (!pte_same(a: orig_entry, b: entry)) {
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, addr: address, ptep: pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
545{
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
577}
578
579static struct page *follow_page_pte(struct vm_area_struct *vma,
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
587 int ret;
588
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(error: -EINVAL);
593
594 ptep = pte_offset_map_lock(mm, pmd, addr: address, ptlp: &ptl);
595 if (!ptep)
596 return no_page_table(vma, flags);
597 pte = ptep_get(ptep);
598 if (!pte_present(a: pte))
599 goto no_page;
600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 goto no_page;
602
603 page = vm_normal_page(vma, addr: address, pte);
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
615 if (!page && pte_devmap(a: pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 /*
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
620 */
621 *pgmap = get_dev_pagemap(pfn: pte_pfn(pte), pgmap: *pgmap);
622 if (*pgmap)
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(error: -EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pfn: pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
636 ret = follow_pfn_pte(vma, address, pte: ptep, flags);
637 page = ERR_PTR(error: ret);
638 goto out;
639 }
640 }
641
642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 page = ERR_PTR(error: -EMLINK);
644 goto out;
645 }
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(error: ret);
654 goto out;
655 }
656
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(error: ret);
667 goto out;
668 }
669 }
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
681out:
682 pte_unmap_unlock(ptep, ptl);
683 return page;
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
693 unsigned int flags,
694 struct follow_page_context *ctx)
695{
696 pmd_t *pmd, pmdval;
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
701 pmd = pmd_offset(pud: pudp, address);
702 pmdval = pmdp_get_lockless(pmdp: pmd);
703 if (pmd_none(pmd: pmdval))
704 return no_page_table(vma, flags);
705 if (!pmd_present(pmd: pmdval))
706 return no_page_table(vma, flags);
707 if (pmd_devmap(pmd: pmdval)) {
708 ptl = pmd_lock(mm, pmd);
709 page = follow_devmap_pmd(vma, addr: address, pmd, flags, pgmap: &ctx->pgmap);
710 spin_unlock(lock: ptl);
711 if (page)
712 return page;
713 }
714 if (likely(!pmd_trans_huge(pmdval)))
715 return follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap);
716
717 if (pmd_protnone(pmd: pmdval) && !gup_can_follow_protnone(vma, flags))
718 return no_page_table(vma, flags);
719
720 ptl = pmd_lock(mm, pmd);
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(lock: ptl);
723 return no_page_table(vma, flags);
724 }
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(lock: ptl);
727 return follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap);
728 }
729 if (flags & FOLL_SPLIT_PMD) {
730 spin_unlock(lock: ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(error: -ENOMEM) :
734 follow_page_pte(vma, address, pmd, flags, pgmap: &ctx->pgmap);
735 }
736 page = follow_trans_huge_pmd(vma, addr: address, pmd, flags);
737 spin_unlock(lock: ptl);
738 ctx->page_mask = HPAGE_PMD_NR - 1;
739 return page;
740}
741
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
744 unsigned int flags,
745 struct follow_page_context *ctx)
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4d: p4dp, address);
753 if (pud_none(pud: *pud))
754 return no_page_table(vma, flags);
755 if (pud_devmap(pud: *pud)) {
756 ptl = pud_lock(mm, pud);
757 page = follow_devmap_pud(vma, addr: address, pud, flags, pgmap: &ctx->pgmap);
758 spin_unlock(lock: ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
765 return follow_pmd_mask(vma, address, pudp: pud, flags, ctx);
766}
767
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
770 unsigned int flags,
771 struct follow_page_context *ctx)
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgd: pgdp, address);
776 if (p4d_none(p4d: *p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
782 return follow_pud_mask(vma, address, p4dp: p4d, flags, ctx);
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
809static struct page *follow_page_mask(struct vm_area_struct *vma,
810 unsigned long address, unsigned int flags,
811 struct follow_page_context *ctx)
812{
813 pgd_t *pgd;
814 struct mm_struct *mm = vma->vm_mm;
815
816 ctx->page_mask = 0;
817
818 /*
819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 * special hugetlb page table walking code. This eliminates the
821 * need to check for hugetlb entries in the general walking code.
822 */
823 if (is_vm_hugetlb_page(vma))
824 return hugetlb_follow_page_mask(vma, address, flags,
825 page_mask: &ctx->page_mask);
826
827 pgd = pgd_offset(mm, address);
828
829 if (pgd_none(pgd: *pgd) || unlikely(pgd_bad(*pgd)))
830 return no_page_table(vma, flags);
831
832 return follow_p4d_mask(vma, address, pgdp: pgd, flags, ctx);
833}
834
835struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
836 unsigned int foll_flags)
837{
838 struct follow_page_context ctx = { NULL };
839 struct page *page;
840
841 if (vma_is_secretmem(vma))
842 return NULL;
843
844 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
845 return NULL;
846
847 /*
848 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
849 * to fail on PROT_NONE-mapped pages.
850 */
851 page = follow_page_mask(vma, address, flags: foll_flags, ctx: &ctx);
852 if (ctx.pgmap)
853 put_dev_pagemap(pgmap: ctx.pgmap);
854 return page;
855}
856
857static int get_gate_page(struct mm_struct *mm, unsigned long address,
858 unsigned int gup_flags, struct vm_area_struct **vma,
859 struct page **page)
860{
861 pgd_t *pgd;
862 p4d_t *p4d;
863 pud_t *pud;
864 pmd_t *pmd;
865 pte_t *pte;
866 pte_t entry;
867 int ret = -EFAULT;
868
869 /* user gate pages are read-only */
870 if (gup_flags & FOLL_WRITE)
871 return -EFAULT;
872 if (address > TASK_SIZE)
873 pgd = pgd_offset_k(address);
874 else
875 pgd = pgd_offset_gate(mm, address);
876 if (pgd_none(pgd: *pgd))
877 return -EFAULT;
878 p4d = p4d_offset(pgd, address);
879 if (p4d_none(p4d: *p4d))
880 return -EFAULT;
881 pud = pud_offset(p4d, address);
882 if (pud_none(pud: *pud))
883 return -EFAULT;
884 pmd = pmd_offset(pud, address);
885 if (!pmd_present(pmd: *pmd))
886 return -EFAULT;
887 pte = pte_offset_map(pmd, addr: address);
888 if (!pte)
889 return -EFAULT;
890 entry = ptep_get(ptep: pte);
891 if (pte_none(pte: entry))
892 goto unmap;
893 *vma = get_gate_vma(mm);
894 if (!page)
895 goto out;
896 *page = vm_normal_page(vma: *vma, addr: address, pte: entry);
897 if (!*page) {
898 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pfn: pte_pfn(pte: entry)))
899 goto unmap;
900 *page = pte_page(entry);
901 }
902 ret = try_grab_page(page: *page, flags: gup_flags);
903 if (unlikely(ret))
904 goto unmap;
905out:
906 ret = 0;
907unmap:
908 pte_unmap(pte);
909 return ret;
910}
911
912/*
913 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
914 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
915 * to 0 and -EBUSY returned.
916 */
917static int faultin_page(struct vm_area_struct *vma,
918 unsigned long address, unsigned int *flags, bool unshare,
919 int *locked)
920{
921 unsigned int fault_flags = 0;
922 vm_fault_t ret;
923
924 if (*flags & FOLL_NOFAULT)
925 return -EFAULT;
926 if (*flags & FOLL_WRITE)
927 fault_flags |= FAULT_FLAG_WRITE;
928 if (*flags & FOLL_REMOTE)
929 fault_flags |= FAULT_FLAG_REMOTE;
930 if (*flags & FOLL_UNLOCKABLE) {
931 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
932 /*
933 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
934 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
935 * That's because some callers may not be prepared to
936 * handle early exits caused by non-fatal signals.
937 */
938 if (*flags & FOLL_INTERRUPTIBLE)
939 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
940 }
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
943 if (*flags & FOLL_TRIED) {
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
950 if (unshare) {
951 fault_flags |= FAULT_FLAG_UNSHARE;
952 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
953 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
954 }
955
956 ret = handle_mm_fault(vma, address, flags: fault_flags, NULL);
957
958 if (ret & VM_FAULT_COMPLETED) {
959 /*
960 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
961 * mmap lock in the page fault handler. Sanity check this.
962 */
963 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
964 *locked = 0;
965
966 /*
967 * We should do the same as VM_FAULT_RETRY, but let's not
968 * return -EBUSY since that's not reflecting the reality of
969 * what has happened - we've just fully completed a page
970 * fault, with the mmap lock released. Use -EAGAIN to show
971 * that we want to take the mmap lock _again_.
972 */
973 return -EAGAIN;
974 }
975
976 if (ret & VM_FAULT_ERROR) {
977 int err = vm_fault_to_errno(vm_fault: ret, foll_flags: *flags);
978
979 if (err)
980 return err;
981 BUG();
982 }
983
984 if (ret & VM_FAULT_RETRY) {
985 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
986 *locked = 0;
987 return -EBUSY;
988 }
989
990 return 0;
991}
992
993/*
994 * Writing to file-backed mappings which require folio dirty tracking using GUP
995 * is a fundamentally broken operation, as kernel write access to GUP mappings
996 * do not adhere to the semantics expected by a file system.
997 *
998 * Consider the following scenario:-
999 *
1000 * 1. A folio is written to via GUP which write-faults the memory, notifying
1001 * the file system and dirtying the folio.
1002 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1003 * the PTE being marked read-only.
1004 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1005 * direct mapping.
1006 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1007 * (though it does not have to).
1008 *
1009 * This results in both data being written to a folio without writenotify, and
1010 * the folio being dirtied unexpectedly (if the caller decides to do so).
1011 */
1012static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1013 unsigned long gup_flags)
1014{
1015 /*
1016 * If we aren't pinning then no problematic write can occur. A long term
1017 * pin is the most egregious case so this is the case we disallow.
1018 */
1019 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1020 (FOLL_PIN | FOLL_LONGTERM))
1021 return true;
1022
1023 /*
1024 * If the VMA does not require dirty tracking then no problematic write
1025 * can occur either.
1026 */
1027 return !vma_needs_dirty_tracking(vma);
1028}
1029
1030static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1031{
1032 vm_flags_t vm_flags = vma->vm_flags;
1033 int write = (gup_flags & FOLL_WRITE);
1034 int foreign = (gup_flags & FOLL_REMOTE);
1035 bool vma_anon = vma_is_anonymous(vma);
1036
1037 if (vm_flags & (VM_IO | VM_PFNMAP))
1038 return -EFAULT;
1039
1040 if ((gup_flags & FOLL_ANON) && !vma_anon)
1041 return -EFAULT;
1042
1043 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1044 return -EOPNOTSUPP;
1045
1046 if (vma_is_secretmem(vma))
1047 return -EFAULT;
1048
1049 if (write) {
1050 if (!vma_anon &&
1051 !writable_file_mapping_allowed(vma, gup_flags))
1052 return -EFAULT;
1053
1054 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1055 if (!(gup_flags & FOLL_FORCE))
1056 return -EFAULT;
1057 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1058 if (is_vm_hugetlb_page(vma))
1059 return -EFAULT;
1060 /*
1061 * We used to let the write,force case do COW in a
1062 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1063 * set a breakpoint in a read-only mapping of an
1064 * executable, without corrupting the file (yet only
1065 * when that file had been opened for writing!).
1066 * Anon pages in shared mappings are surprising: now
1067 * just reject it.
1068 */
1069 if (!is_cow_mapping(flags: vm_flags))
1070 return -EFAULT;
1071 }
1072 } else if (!(vm_flags & VM_READ)) {
1073 if (!(gup_flags & FOLL_FORCE))
1074 return -EFAULT;
1075 /*
1076 * Is there actually any vma we can reach here which does not
1077 * have VM_MAYREAD set?
1078 */
1079 if (!(vm_flags & VM_MAYREAD))
1080 return -EFAULT;
1081 }
1082 /*
1083 * gups are always data accesses, not instruction
1084 * fetches, so execute=false here
1085 */
1086 if (!arch_vma_access_permitted(vma, write, execute: false, foreign))
1087 return -EFAULT;
1088 return 0;
1089}
1090
1091/*
1092 * This is "vma_lookup()", but with a warning if we would have
1093 * historically expanded the stack in the GUP code.
1094 */
1095static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1096 unsigned long addr)
1097{
1098#ifdef CONFIG_STACK_GROWSUP
1099 return vma_lookup(mm, addr);
1100#else
1101 static volatile unsigned long next_warn;
1102 struct vm_area_struct *vma;
1103 unsigned long now, next;
1104
1105 vma = find_vma(mm, addr);
1106 if (!vma || (addr >= vma->vm_start))
1107 return vma;
1108
1109 /* Only warn for half-way relevant accesses */
1110 if (!(vma->vm_flags & VM_GROWSDOWN))
1111 return NULL;
1112 if (vma->vm_start - addr > 65536)
1113 return NULL;
1114
1115 /* Let's not warn more than once an hour.. */
1116 now = jiffies; next = next_warn;
1117 if (next && time_before(now, next))
1118 return NULL;
1119 next_warn = now + 60*60*HZ;
1120
1121 /* Let people know things may have changed. */
1122 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1123 current->comm, task_pid_nr(current),
1124 vma->vm_start, vma->vm_end, addr);
1125 dump_stack();
1126 return NULL;
1127#endif
1128}
1129
1130/**
1131 * __get_user_pages() - pin user pages in memory
1132 * @mm: mm_struct of target mm
1133 * @start: starting user address
1134 * @nr_pages: number of pages from start to pin
1135 * @gup_flags: flags modifying pin behaviour
1136 * @pages: array that receives pointers to the pages pinned.
1137 * Should be at least nr_pages long. Or NULL, if caller
1138 * only intends to ensure the pages are faulted in.
1139 * @locked: whether we're still with the mmap_lock held
1140 *
1141 * Returns either number of pages pinned (which may be less than the
1142 * number requested), or an error. Details about the return value:
1143 *
1144 * -- If nr_pages is 0, returns 0.
1145 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1146 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1147 * pages pinned. Again, this may be less than nr_pages.
1148 * -- 0 return value is possible when the fault would need to be retried.
1149 *
1150 * The caller is responsible for releasing returned @pages, via put_page().
1151 *
1152 * Must be called with mmap_lock held. It may be released. See below.
1153 *
1154 * __get_user_pages walks a process's page tables and takes a reference to
1155 * each struct page that each user address corresponds to at a given
1156 * instant. That is, it takes the page that would be accessed if a user
1157 * thread accesses the given user virtual address at that instant.
1158 *
1159 * This does not guarantee that the page exists in the user mappings when
1160 * __get_user_pages returns, and there may even be a completely different
1161 * page there in some cases (eg. if mmapped pagecache has been invalidated
1162 * and subsequently re-faulted). However it does guarantee that the page
1163 * won't be freed completely. And mostly callers simply care that the page
1164 * contains data that was valid *at some point in time*. Typically, an IO
1165 * or similar operation cannot guarantee anything stronger anyway because
1166 * locks can't be held over the syscall boundary.
1167 *
1168 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1169 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1170 * appropriate) must be called after the page is finished with, and
1171 * before put_page is called.
1172 *
1173 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1174 * be released. If this happens *@locked will be set to 0 on return.
1175 *
1176 * A caller using such a combination of @gup_flags must therefore hold the
1177 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1178 * it must be held for either reading or writing and will not be released.
1179 *
1180 * In most cases, get_user_pages or get_user_pages_fast should be used
1181 * instead of __get_user_pages. __get_user_pages should be used only if
1182 * you need some special @gup_flags.
1183 */
1184static long __get_user_pages(struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 unsigned int gup_flags, struct page **pages,
1187 int *locked)
1188{
1189 long ret = 0, i = 0;
1190 struct vm_area_struct *vma = NULL;
1191 struct follow_page_context ctx = { NULL };
1192
1193 if (!nr_pages)
1194 return 0;
1195
1196 start = untagged_addr_remote(mm, start);
1197
1198 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1199
1200 do {
1201 struct page *page;
1202 unsigned int foll_flags = gup_flags;
1203 unsigned int page_increm;
1204
1205 /* first iteration or cross vma bound */
1206 if (!vma || start >= vma->vm_end) {
1207 vma = gup_vma_lookup(mm, addr: start);
1208 if (!vma && in_gate_area(mm, addr: start)) {
1209 ret = get_gate_page(mm, address: start & PAGE_MASK,
1210 gup_flags, vma: &vma,
1211 page: pages ? &page : NULL);
1212 if (ret)
1213 goto out;
1214 ctx.page_mask = 0;
1215 goto next_page;
1216 }
1217
1218 if (!vma) {
1219 ret = -EFAULT;
1220 goto out;
1221 }
1222 ret = check_vma_flags(vma, gup_flags);
1223 if (ret)
1224 goto out;
1225 }
1226retry:
1227 /*
1228 * If we have a pending SIGKILL, don't keep faulting pages and
1229 * potentially allocating memory.
1230 */
1231 if (fatal_signal_pending(current)) {
1232 ret = -EINTR;
1233 goto out;
1234 }
1235 cond_resched();
1236
1237 page = follow_page_mask(vma, address: start, flags: foll_flags, ctx: &ctx);
1238 if (!page || PTR_ERR(ptr: page) == -EMLINK) {
1239 ret = faultin_page(vma, address: start, flags: &foll_flags,
1240 unshare: PTR_ERR(ptr: page) == -EMLINK, locked);
1241 switch (ret) {
1242 case 0:
1243 goto retry;
1244 case -EBUSY:
1245 case -EAGAIN:
1246 ret = 0;
1247 fallthrough;
1248 case -EFAULT:
1249 case -ENOMEM:
1250 case -EHWPOISON:
1251 goto out;
1252 }
1253 BUG();
1254 } else if (PTR_ERR(ptr: page) == -EEXIST) {
1255 /*
1256 * Proper page table entry exists, but no corresponding
1257 * struct page. If the caller expects **pages to be
1258 * filled in, bail out now, because that can't be done
1259 * for this page.
1260 */
1261 if (pages) {
1262 ret = PTR_ERR(ptr: page);
1263 goto out;
1264 }
1265 } else if (IS_ERR(ptr: page)) {
1266 ret = PTR_ERR(ptr: page);
1267 goto out;
1268 }
1269next_page:
1270 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1271 if (page_increm > nr_pages)
1272 page_increm = nr_pages;
1273
1274 if (pages) {
1275 struct page *subpage;
1276 unsigned int j;
1277
1278 /*
1279 * This must be a large folio (and doesn't need to
1280 * be the whole folio; it can be part of it), do
1281 * the refcount work for all the subpages too.
1282 *
1283 * NOTE: here the page may not be the head page
1284 * e.g. when start addr is not thp-size aligned.
1285 * try_grab_folio() should have taken care of tail
1286 * pages.
1287 */
1288 if (page_increm > 1) {
1289 struct folio *folio;
1290
1291 /*
1292 * Since we already hold refcount on the
1293 * large folio, this should never fail.
1294 */
1295 folio = try_grab_folio(page, refs: page_increm - 1,
1296 flags: foll_flags);
1297 if (WARN_ON_ONCE(!folio)) {
1298 /*
1299 * Release the 1st page ref if the
1300 * folio is problematic, fail hard.
1301 */
1302 gup_put_folio(page_folio(page), refs: 1,
1303 flags: foll_flags);
1304 ret = -EFAULT;
1305 goto out;
1306 }
1307 }
1308
1309 for (j = 0; j < page_increm; j++) {
1310 subpage = nth_page(page, j);
1311 pages[i + j] = subpage;
1312 flush_anon_page(vma, page: subpage, vmaddr: start + j * PAGE_SIZE);
1313 flush_dcache_page(page: subpage);
1314 }
1315 }
1316
1317 i += page_increm;
1318 start += page_increm * PAGE_SIZE;
1319 nr_pages -= page_increm;
1320 } while (nr_pages);
1321out:
1322 if (ctx.pgmap)
1323 put_dev_pagemap(pgmap: ctx.pgmap);
1324 return i ? i : ret;
1325}
1326
1327static bool vma_permits_fault(struct vm_area_struct *vma,
1328 unsigned int fault_flags)
1329{
1330 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1331 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1332 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1333
1334 if (!(vm_flags & vma->vm_flags))
1335 return false;
1336
1337 /*
1338 * The architecture might have a hardware protection
1339 * mechanism other than read/write that can deny access.
1340 *
1341 * gup always represents data access, not instruction
1342 * fetches, so execute=false here:
1343 */
1344 if (!arch_vma_access_permitted(vma, write, execute: false, foreign))
1345 return false;
1346
1347 return true;
1348}
1349
1350/**
1351 * fixup_user_fault() - manually resolve a user page fault
1352 * @mm: mm_struct of target mm
1353 * @address: user address
1354 * @fault_flags:flags to pass down to handle_mm_fault()
1355 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1356 * does not allow retry. If NULL, the caller must guarantee
1357 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1358 *
1359 * This is meant to be called in the specific scenario where for locking reasons
1360 * we try to access user memory in atomic context (within a pagefault_disable()
1361 * section), this returns -EFAULT, and we want to resolve the user fault before
1362 * trying again.
1363 *
1364 * Typically this is meant to be used by the futex code.
1365 *
1366 * The main difference with get_user_pages() is that this function will
1367 * unconditionally call handle_mm_fault() which will in turn perform all the
1368 * necessary SW fixup of the dirty and young bits in the PTE, while
1369 * get_user_pages() only guarantees to update these in the struct page.
1370 *
1371 * This is important for some architectures where those bits also gate the
1372 * access permission to the page because they are maintained in software. On
1373 * such architectures, gup() will not be enough to make a subsequent access
1374 * succeed.
1375 *
1376 * This function will not return with an unlocked mmap_lock. So it has not the
1377 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1378 */
1379int fixup_user_fault(struct mm_struct *mm,
1380 unsigned long address, unsigned int fault_flags,
1381 bool *unlocked)
1382{
1383 struct vm_area_struct *vma;
1384 vm_fault_t ret;
1385
1386 address = untagged_addr_remote(mm, address);
1387
1388 if (unlocked)
1389 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1390
1391retry:
1392 vma = gup_vma_lookup(mm, addr: address);
1393 if (!vma)
1394 return -EFAULT;
1395
1396 if (!vma_permits_fault(vma, fault_flags))
1397 return -EFAULT;
1398
1399 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1400 fatal_signal_pending(current))
1401 return -EINTR;
1402
1403 ret = handle_mm_fault(vma, address, flags: fault_flags, NULL);
1404
1405 if (ret & VM_FAULT_COMPLETED) {
1406 /*
1407 * NOTE: it's a pity that we need to retake the lock here
1408 * to pair with the unlock() in the callers. Ideally we
1409 * could tell the callers so they do not need to unlock.
1410 */
1411 mmap_read_lock(mm);
1412 *unlocked = true;
1413 return 0;
1414 }
1415
1416 if (ret & VM_FAULT_ERROR) {
1417 int err = vm_fault_to_errno(vm_fault: ret, foll_flags: 0);
1418
1419 if (err)
1420 return err;
1421 BUG();
1422 }
1423
1424 if (ret & VM_FAULT_RETRY) {
1425 mmap_read_lock(mm);
1426 *unlocked = true;
1427 fault_flags |= FAULT_FLAG_TRIED;
1428 goto retry;
1429 }
1430
1431 return 0;
1432}
1433EXPORT_SYMBOL_GPL(fixup_user_fault);
1434
1435/*
1436 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1437 * specified, it'll also respond to generic signals. The caller of GUP
1438 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1439 */
1440static bool gup_signal_pending(unsigned int flags)
1441{
1442 if (fatal_signal_pending(current))
1443 return true;
1444
1445 if (!(flags & FOLL_INTERRUPTIBLE))
1446 return false;
1447
1448 return signal_pending(current);
1449}
1450
1451/*
1452 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1453 * the caller. This function may drop the mmap_lock. If it does so, then it will
1454 * set (*locked = 0).
1455 *
1456 * (*locked == 0) means that the caller expects this function to acquire and
1457 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1458 * the function returns, even though it may have changed temporarily during
1459 * function execution.
1460 *
1461 * Please note that this function, unlike __get_user_pages(), will not return 0
1462 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1463 */
1464static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1465 unsigned long start,
1466 unsigned long nr_pages,
1467 struct page **pages,
1468 int *locked,
1469 unsigned int flags)
1470{
1471 long ret, pages_done;
1472 bool must_unlock = false;
1473
1474 if (!nr_pages)
1475 return 0;
1476
1477 /*
1478 * The internal caller expects GUP to manage the lock internally and the
1479 * lock must be released when this returns.
1480 */
1481 if (!*locked) {
1482 if (mmap_read_lock_killable(mm))
1483 return -EAGAIN;
1484 must_unlock = true;
1485 *locked = 1;
1486 }
1487 else
1488 mmap_assert_locked(mm);
1489
1490 if (flags & FOLL_PIN)
1491 mm_set_has_pinned_flag(mm_flags: &mm->flags);
1492
1493 /*
1494 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1495 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1496 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1497 * for FOLL_GET, not for the newer FOLL_PIN.
1498 *
1499 * FOLL_PIN always expects pages to be non-null, but no need to assert
1500 * that here, as any failures will be obvious enough.
1501 */
1502 if (pages && !(flags & FOLL_PIN))
1503 flags |= FOLL_GET;
1504
1505 pages_done = 0;
1506 for (;;) {
1507 ret = __get_user_pages(mm, start, nr_pages, gup_flags: flags, pages,
1508 locked);
1509 if (!(flags & FOLL_UNLOCKABLE)) {
1510 /* VM_FAULT_RETRY couldn't trigger, bypass */
1511 pages_done = ret;
1512 break;
1513 }
1514
1515 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1516 if (!*locked) {
1517 BUG_ON(ret < 0);
1518 BUG_ON(ret >= nr_pages);
1519 }
1520
1521 if (ret > 0) {
1522 nr_pages -= ret;
1523 pages_done += ret;
1524 if (!nr_pages)
1525 break;
1526 }
1527 if (*locked) {
1528 /*
1529 * VM_FAULT_RETRY didn't trigger or it was a
1530 * FOLL_NOWAIT.
1531 */
1532 if (!pages_done)
1533 pages_done = ret;
1534 break;
1535 }
1536 /*
1537 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1538 * For the prefault case (!pages) we only update counts.
1539 */
1540 if (likely(pages))
1541 pages += ret;
1542 start += ret << PAGE_SHIFT;
1543
1544 /* The lock was temporarily dropped, so we must unlock later */
1545 must_unlock = true;
1546
1547retry:
1548 /*
1549 * Repeat on the address that fired VM_FAULT_RETRY
1550 * with both FAULT_FLAG_ALLOW_RETRY and
1551 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1552 * by fatal signals of even common signals, depending on
1553 * the caller's request. So we need to check it before we
1554 * start trying again otherwise it can loop forever.
1555 */
1556 if (gup_signal_pending(flags)) {
1557 if (!pages_done)
1558 pages_done = -EINTR;
1559 break;
1560 }
1561
1562 ret = mmap_read_lock_killable(mm);
1563 if (ret) {
1564 BUG_ON(ret > 0);
1565 if (!pages_done)
1566 pages_done = ret;
1567 break;
1568 }
1569
1570 *locked = 1;
1571 ret = __get_user_pages(mm, start, nr_pages: 1, gup_flags: flags | FOLL_TRIED,
1572 pages, locked);
1573 if (!*locked) {
1574 /* Continue to retry until we succeeded */
1575 BUG_ON(ret != 0);
1576 goto retry;
1577 }
1578 if (ret != 1) {
1579 BUG_ON(ret > 1);
1580 if (!pages_done)
1581 pages_done = ret;
1582 break;
1583 }
1584 nr_pages--;
1585 pages_done++;
1586 if (!nr_pages)
1587 break;
1588 if (likely(pages))
1589 pages++;
1590 start += PAGE_SIZE;
1591 }
1592 if (must_unlock && *locked) {
1593 /*
1594 * We either temporarily dropped the lock, or the caller
1595 * requested that we both acquire and drop the lock. Either way,
1596 * we must now unlock, and notify the caller of that state.
1597 */
1598 mmap_read_unlock(mm);
1599 *locked = 0;
1600 }
1601
1602 /*
1603 * Failing to pin anything implies something has gone wrong (except when
1604 * FOLL_NOWAIT is specified).
1605 */
1606 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1607 return -EFAULT;
1608
1609 return pages_done;
1610}
1611
1612/**
1613 * populate_vma_page_range() - populate a range of pages in the vma.
1614 * @vma: target vma
1615 * @start: start address
1616 * @end: end address
1617 * @locked: whether the mmap_lock is still held
1618 *
1619 * This takes care of mlocking the pages too if VM_LOCKED is set.
1620 *
1621 * Return either number of pages pinned in the vma, or a negative error
1622 * code on error.
1623 *
1624 * vma->vm_mm->mmap_lock must be held.
1625 *
1626 * If @locked is NULL, it may be held for read or write and will
1627 * be unperturbed.
1628 *
1629 * If @locked is non-NULL, it must held for read only and may be
1630 * released. If it's released, *@locked will be set to 0.
1631 */
1632long populate_vma_page_range(struct vm_area_struct *vma,
1633 unsigned long start, unsigned long end, int *locked)
1634{
1635 struct mm_struct *mm = vma->vm_mm;
1636 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1637 int local_locked = 1;
1638 int gup_flags;
1639 long ret;
1640
1641 VM_BUG_ON(!PAGE_ALIGNED(start));
1642 VM_BUG_ON(!PAGE_ALIGNED(end));
1643 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1644 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1645 mmap_assert_locked(mm);
1646
1647 /*
1648 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1649 * faultin_page() to break COW, so it has no work to do here.
1650 */
1651 if (vma->vm_flags & VM_LOCKONFAULT)
1652 return nr_pages;
1653
1654 gup_flags = FOLL_TOUCH;
1655 /*
1656 * We want to touch writable mappings with a write fault in order
1657 * to break COW, except for shared mappings because these don't COW
1658 * and we would not want to dirty them for nothing.
1659 */
1660 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1661 gup_flags |= FOLL_WRITE;
1662
1663 /*
1664 * We want mlock to succeed for regions that have any permissions
1665 * other than PROT_NONE.
1666 */
1667 if (vma_is_accessible(vma))
1668 gup_flags |= FOLL_FORCE;
1669
1670 if (locked)
1671 gup_flags |= FOLL_UNLOCKABLE;
1672
1673 /*
1674 * We made sure addr is within a VMA, so the following will
1675 * not result in a stack expansion that recurses back here.
1676 */
1677 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1678 NULL, locked: locked ? locked : &local_locked);
1679 lru_add_drain();
1680 return ret;
1681}
1682
1683/*
1684 * faultin_vma_page_range() - populate (prefault) page tables inside the
1685 * given VMA range readable/writable
1686 *
1687 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1688 *
1689 * @vma: target vma
1690 * @start: start address
1691 * @end: end address
1692 * @write: whether to prefault readable or writable
1693 * @locked: whether the mmap_lock is still held
1694 *
1695 * Returns either number of processed pages in the vma, or a negative error
1696 * code on error (see __get_user_pages()).
1697 *
1698 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1699 * covered by the VMA. If it's released, *@locked will be set to 0.
1700 */
1701long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1702 unsigned long end, bool write, int *locked)
1703{
1704 struct mm_struct *mm = vma->vm_mm;
1705 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1706 int gup_flags;
1707 long ret;
1708
1709 VM_BUG_ON(!PAGE_ALIGNED(start));
1710 VM_BUG_ON(!PAGE_ALIGNED(end));
1711 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1712 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1713 mmap_assert_locked(mm);
1714
1715 /*
1716 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1717 * the page dirty with FOLL_WRITE -- which doesn't make a
1718 * difference with !FOLL_FORCE, because the page is writable
1719 * in the page table.
1720 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1721 * a poisoned page.
1722 * !FOLL_FORCE: Require proper access permissions.
1723 */
1724 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1725 if (write)
1726 gup_flags |= FOLL_WRITE;
1727
1728 /*
1729 * We want to report -EINVAL instead of -EFAULT for any permission
1730 * problems or incompatible mappings.
1731 */
1732 if (check_vma_flags(vma, gup_flags))
1733 return -EINVAL;
1734
1735 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1736 NULL, locked);
1737 lru_add_drain();
1738 return ret;
1739}
1740
1741/*
1742 * __mm_populate - populate and/or mlock pages within a range of address space.
1743 *
1744 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1745 * flags. VMAs must be already marked with the desired vm_flags, and
1746 * mmap_lock must not be held.
1747 */
1748int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1749{
1750 struct mm_struct *mm = current->mm;
1751 unsigned long end, nstart, nend;
1752 struct vm_area_struct *vma = NULL;
1753 int locked = 0;
1754 long ret = 0;
1755
1756 end = start + len;
1757
1758 for (nstart = start; nstart < end; nstart = nend) {
1759 /*
1760 * We want to fault in pages for [nstart; end) address range.
1761 * Find first corresponding VMA.
1762 */
1763 if (!locked) {
1764 locked = 1;
1765 mmap_read_lock(mm);
1766 vma = find_vma_intersection(mm, start_addr: nstart, end_addr: end);
1767 } else if (nstart >= vma->vm_end)
1768 vma = find_vma_intersection(mm, start_addr: vma->vm_end, end_addr: end);
1769
1770 if (!vma)
1771 break;
1772 /*
1773 * Set [nstart; nend) to intersection of desired address
1774 * range with the first VMA. Also, skip undesirable VMA types.
1775 */
1776 nend = min(end, vma->vm_end);
1777 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1778 continue;
1779 if (nstart < vma->vm_start)
1780 nstart = vma->vm_start;
1781 /*
1782 * Now fault in a range of pages. populate_vma_page_range()
1783 * double checks the vma flags, so that it won't mlock pages
1784 * if the vma was already munlocked.
1785 */
1786 ret = populate_vma_page_range(vma, start: nstart, end: nend, locked: &locked);
1787 if (ret < 0) {
1788 if (ignore_errors) {
1789 ret = 0;
1790 continue; /* continue at next VMA */
1791 }
1792 break;
1793 }
1794 nend = nstart + ret * PAGE_SIZE;
1795 ret = 0;
1796 }
1797 if (locked)
1798 mmap_read_unlock(mm);
1799 return ret; /* 0 or negative error code */
1800}
1801#else /* CONFIG_MMU */
1802static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1803 unsigned long nr_pages, struct page **pages,
1804 int *locked, unsigned int foll_flags)
1805{
1806 struct vm_area_struct *vma;
1807 bool must_unlock = false;
1808 unsigned long vm_flags;
1809 long i;
1810
1811 if (!nr_pages)
1812 return 0;
1813
1814 /*
1815 * The internal caller expects GUP to manage the lock internally and the
1816 * lock must be released when this returns.
1817 */
1818 if (!*locked) {
1819 if (mmap_read_lock_killable(mm))
1820 return -EAGAIN;
1821 must_unlock = true;
1822 *locked = 1;
1823 }
1824
1825 /* calculate required read or write permissions.
1826 * If FOLL_FORCE is set, we only require the "MAY" flags.
1827 */
1828 vm_flags = (foll_flags & FOLL_WRITE) ?
1829 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1830 vm_flags &= (foll_flags & FOLL_FORCE) ?
1831 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1832
1833 for (i = 0; i < nr_pages; i++) {
1834 vma = find_vma(mm, start);
1835 if (!vma)
1836 break;
1837
1838 /* protect what we can, including chardevs */
1839 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1840 !(vm_flags & vma->vm_flags))
1841 break;
1842
1843 if (pages) {
1844 pages[i] = virt_to_page((void *)start);
1845 if (pages[i])
1846 get_page(pages[i]);
1847 }
1848
1849 start = (start + PAGE_SIZE) & PAGE_MASK;
1850 }
1851
1852 if (must_unlock && *locked) {
1853 mmap_read_unlock(mm);
1854 *locked = 0;
1855 }
1856
1857 return i ? : -EFAULT;
1858}
1859#endif /* !CONFIG_MMU */
1860
1861/**
1862 * fault_in_writeable - fault in userspace address range for writing
1863 * @uaddr: start of address range
1864 * @size: size of address range
1865 *
1866 * Returns the number of bytes not faulted in (like copy_to_user() and
1867 * copy_from_user()).
1868 */
1869size_t fault_in_writeable(char __user *uaddr, size_t size)
1870{
1871 char __user *start = uaddr, *end;
1872
1873 if (unlikely(size == 0))
1874 return 0;
1875 if (!user_write_access_begin(uaddr, size))
1876 return size;
1877 if (!PAGE_ALIGNED(uaddr)) {
1878 unsafe_put_user(0, uaddr, out);
1879 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1880 }
1881 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1882 if (unlikely(end < start))
1883 end = NULL;
1884 while (uaddr != end) {
1885 unsafe_put_user(0, uaddr, out);
1886 uaddr += PAGE_SIZE;
1887 }
1888
1889out:
1890 user_write_access_end();
1891 if (size > uaddr - start)
1892 return size - (uaddr - start);
1893 return 0;
1894}
1895EXPORT_SYMBOL(fault_in_writeable);
1896
1897/**
1898 * fault_in_subpage_writeable - fault in an address range for writing
1899 * @uaddr: start of address range
1900 * @size: size of address range
1901 *
1902 * Fault in a user address range for writing while checking for permissions at
1903 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1904 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1905 *
1906 * Returns the number of bytes not faulted in (like copy_to_user() and
1907 * copy_from_user()).
1908 */
1909size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1910{
1911 size_t faulted_in;
1912
1913 /*
1914 * Attempt faulting in at page granularity first for page table
1915 * permission checking. The arch-specific probe_subpage_writeable()
1916 * functions may not check for this.
1917 */
1918 faulted_in = size - fault_in_writeable(uaddr, size);
1919 if (faulted_in)
1920 faulted_in -= probe_subpage_writeable(uaddr, size: faulted_in);
1921
1922 return size - faulted_in;
1923}
1924EXPORT_SYMBOL(fault_in_subpage_writeable);
1925
1926/*
1927 * fault_in_safe_writeable - fault in an address range for writing
1928 * @uaddr: start of address range
1929 * @size: length of address range
1930 *
1931 * Faults in an address range for writing. This is primarily useful when we
1932 * already know that some or all of the pages in the address range aren't in
1933 * memory.
1934 *
1935 * Unlike fault_in_writeable(), this function is non-destructive.
1936 *
1937 * Note that we don't pin or otherwise hold the pages referenced that we fault
1938 * in. There's no guarantee that they'll stay in memory for any duration of
1939 * time.
1940 *
1941 * Returns the number of bytes not faulted in, like copy_to_user() and
1942 * copy_from_user().
1943 */
1944size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1945{
1946 unsigned long start = (unsigned long)uaddr, end;
1947 struct mm_struct *mm = current->mm;
1948 bool unlocked = false;
1949
1950 if (unlikely(size == 0))
1951 return 0;
1952 end = PAGE_ALIGN(start + size);
1953 if (end < start)
1954 end = 0;
1955
1956 mmap_read_lock(mm);
1957 do {
1958 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1959 break;
1960 start = (start + PAGE_SIZE) & PAGE_MASK;
1961 } while (start != end);
1962 mmap_read_unlock(mm);
1963
1964 if (size > (unsigned long)uaddr - start)
1965 return size - ((unsigned long)uaddr - start);
1966 return 0;
1967}
1968EXPORT_SYMBOL(fault_in_safe_writeable);
1969
1970/**
1971 * fault_in_readable - fault in userspace address range for reading
1972 * @uaddr: start of user address range
1973 * @size: size of user address range
1974 *
1975 * Returns the number of bytes not faulted in (like copy_to_user() and
1976 * copy_from_user()).
1977 */
1978size_t fault_in_readable(const char __user *uaddr, size_t size)
1979{
1980 const char __user *start = uaddr, *end;
1981 volatile char c;
1982
1983 if (unlikely(size == 0))
1984 return 0;
1985 if (!user_read_access_begin(uaddr, size))
1986 return size;
1987 if (!PAGE_ALIGNED(uaddr)) {
1988 unsafe_get_user(c, uaddr, out);
1989 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1990 }
1991 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1992 if (unlikely(end < start))
1993 end = NULL;
1994 while (uaddr != end) {
1995 unsafe_get_user(c, uaddr, out);
1996 uaddr += PAGE_SIZE;
1997 }
1998
1999out:
2000 user_read_access_end();
2001 (void)c;
2002 if (size > uaddr - start)
2003 return size - (uaddr - start);
2004 return 0;
2005}
2006EXPORT_SYMBOL(fault_in_readable);
2007
2008/**
2009 * get_dump_page() - pin user page in memory while writing it to core dump
2010 * @addr: user address
2011 *
2012 * Returns struct page pointer of user page pinned for dump,
2013 * to be freed afterwards by put_page().
2014 *
2015 * Returns NULL on any kind of failure - a hole must then be inserted into
2016 * the corefile, to preserve alignment with its headers; and also returns
2017 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2018 * allowing a hole to be left in the corefile to save disk space.
2019 *
2020 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2021 */
2022#ifdef CONFIG_ELF_CORE
2023struct page *get_dump_page(unsigned long addr)
2024{
2025 struct page *page;
2026 int locked = 0;
2027 int ret;
2028
2029 ret = __get_user_pages_locked(current->mm, start: addr, nr_pages: 1, pages: &page, locked: &locked,
2030 flags: FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2031 return (ret == 1) ? page : NULL;
2032}
2033#endif /* CONFIG_ELF_CORE */
2034
2035#ifdef CONFIG_MIGRATION
2036/*
2037 * Returns the number of collected pages. Return value is always >= 0.
2038 */
2039static unsigned long collect_longterm_unpinnable_pages(
2040 struct list_head *movable_page_list,
2041 unsigned long nr_pages,
2042 struct page **pages)
2043{
2044 unsigned long i, collected = 0;
2045 struct folio *prev_folio = NULL;
2046 bool drain_allow = true;
2047
2048 for (i = 0; i < nr_pages; i++) {
2049 struct folio *folio = page_folio(pages[i]);
2050
2051 if (folio == prev_folio)
2052 continue;
2053 prev_folio = folio;
2054
2055 if (folio_is_longterm_pinnable(folio))
2056 continue;
2057
2058 collected++;
2059
2060 if (folio_is_device_coherent(folio))
2061 continue;
2062
2063 if (folio_test_hugetlb(folio)) {
2064 isolate_hugetlb(folio, list: movable_page_list);
2065 continue;
2066 }
2067
2068 if (!folio_test_lru(folio) && drain_allow) {
2069 lru_add_drain_all();
2070 drain_allow = false;
2071 }
2072
2073 if (!folio_isolate_lru(folio))
2074 continue;
2075
2076 list_add_tail(new: &folio->lru, head: movable_page_list);
2077 node_stat_mod_folio(folio,
2078 item: NR_ISOLATED_ANON + folio_is_file_lru(folio),
2079 nr: folio_nr_pages(folio));
2080 }
2081
2082 return collected;
2083}
2084
2085/*
2086 * Unpins all pages and migrates device coherent pages and movable_page_list.
2087 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2088 * (or partial success).
2089 */
2090static int migrate_longterm_unpinnable_pages(
2091 struct list_head *movable_page_list,
2092 unsigned long nr_pages,
2093 struct page **pages)
2094{
2095 int ret;
2096 unsigned long i;
2097
2098 for (i = 0; i < nr_pages; i++) {
2099 struct folio *folio = page_folio(pages[i]);
2100
2101 if (folio_is_device_coherent(folio)) {
2102 /*
2103 * Migration will fail if the page is pinned, so convert
2104 * the pin on the source page to a normal reference.
2105 */
2106 pages[i] = NULL;
2107 folio_get(folio);
2108 gup_put_folio(folio, refs: 1, flags: FOLL_PIN);
2109
2110 if (migrate_device_coherent_page(page: &folio->page)) {
2111 ret = -EBUSY;
2112 goto err;
2113 }
2114
2115 continue;
2116 }
2117
2118 /*
2119 * We can't migrate pages with unexpected references, so drop
2120 * the reference obtained by __get_user_pages_locked().
2121 * Migrating pages have been added to movable_page_list after
2122 * calling folio_isolate_lru() which takes a reference so the
2123 * page won't be freed if it's migrating.
2124 */
2125 unpin_user_page(pages[i]);
2126 pages[i] = NULL;
2127 }
2128
2129 if (!list_empty(head: movable_page_list)) {
2130 struct migration_target_control mtc = {
2131 .nid = NUMA_NO_NODE,
2132 .gfp_mask = GFP_USER | __GFP_NOWARN,
2133 };
2134
2135 if (migrate_pages(l: movable_page_list, new: alloc_migration_target,
2136 NULL, private: (unsigned long)&mtc, mode: MIGRATE_SYNC,
2137 reason: MR_LONGTERM_PIN, NULL)) {
2138 ret = -ENOMEM;
2139 goto err;
2140 }
2141 }
2142
2143 putback_movable_pages(l: movable_page_list);
2144
2145 return -EAGAIN;
2146
2147err:
2148 for (i = 0; i < nr_pages; i++)
2149 if (pages[i])
2150 unpin_user_page(pages[i]);
2151 putback_movable_pages(l: movable_page_list);
2152
2153 return ret;
2154}
2155
2156/*
2157 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2158 * pages in the range are required to be pinned via FOLL_PIN, before calling
2159 * this routine.
2160 *
2161 * If any pages in the range are not allowed to be pinned, then this routine
2162 * will migrate those pages away, unpin all the pages in the range and return
2163 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2164 * call this routine again.
2165 *
2166 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2167 * The caller should give up, and propagate the error back up the call stack.
2168 *
2169 * If everything is OK and all pages in the range are allowed to be pinned, then
2170 * this routine leaves all pages pinned and returns zero for success.
2171 */
2172static long check_and_migrate_movable_pages(unsigned long nr_pages,
2173 struct page **pages)
2174{
2175 unsigned long collected;
2176 LIST_HEAD(movable_page_list);
2177
2178 collected = collect_longterm_unpinnable_pages(movable_page_list: &movable_page_list,
2179 nr_pages, pages);
2180 if (!collected)
2181 return 0;
2182
2183 return migrate_longterm_unpinnable_pages(movable_page_list: &movable_page_list, nr_pages,
2184 pages);
2185}
2186#else
2187static long check_and_migrate_movable_pages(unsigned long nr_pages,
2188 struct page **pages)
2189{
2190 return 0;
2191}
2192#endif /* CONFIG_MIGRATION */
2193
2194/*
2195 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2196 * allows us to process the FOLL_LONGTERM flag.
2197 */
2198static long __gup_longterm_locked(struct mm_struct *mm,
2199 unsigned long start,
2200 unsigned long nr_pages,
2201 struct page **pages,
2202 int *locked,
2203 unsigned int gup_flags)
2204{
2205 unsigned int flags;
2206 long rc, nr_pinned_pages;
2207
2208 if (!(gup_flags & FOLL_LONGTERM))
2209 return __get_user_pages_locked(mm, start, nr_pages, pages,
2210 locked, flags: gup_flags);
2211
2212 flags = memalloc_pin_save();
2213 do {
2214 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2215 pages, locked,
2216 flags: gup_flags);
2217 if (nr_pinned_pages <= 0) {
2218 rc = nr_pinned_pages;
2219 break;
2220 }
2221
2222 /* FOLL_LONGTERM implies FOLL_PIN */
2223 rc = check_and_migrate_movable_pages(nr_pages: nr_pinned_pages, pages);
2224 } while (rc == -EAGAIN);
2225 memalloc_pin_restore(flags);
2226 return rc ? rc : nr_pinned_pages;
2227}
2228
2229/*
2230 * Check that the given flags are valid for the exported gup/pup interface, and
2231 * update them with the required flags that the caller must have set.
2232 */
2233static bool is_valid_gup_args(struct page **pages, int *locked,
2234 unsigned int *gup_flags_p, unsigned int to_set)
2235{
2236 unsigned int gup_flags = *gup_flags_p;
2237
2238 /*
2239 * These flags not allowed to be specified externally to the gup
2240 * interfaces:
2241 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2242 * - FOLL_REMOTE is internal only and used on follow_page()
2243 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2244 */
2245 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2246 return false;
2247
2248 gup_flags |= to_set;
2249 if (locked) {
2250 /* At the external interface locked must be set */
2251 if (WARN_ON_ONCE(*locked != 1))
2252 return false;
2253
2254 gup_flags |= FOLL_UNLOCKABLE;
2255 }
2256
2257 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2258 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2259 (FOLL_PIN | FOLL_GET)))
2260 return false;
2261
2262 /* LONGTERM can only be specified when pinning */
2263 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2264 return false;
2265
2266 /* Pages input must be given if using GET/PIN */
2267 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2268 return false;
2269
2270 /* We want to allow the pgmap to be hot-unplugged at all times */
2271 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2272 (gup_flags & FOLL_PCI_P2PDMA)))
2273 return false;
2274
2275 *gup_flags_p = gup_flags;
2276 return true;
2277}
2278
2279#ifdef CONFIG_MMU
2280/**
2281 * get_user_pages_remote() - pin user pages in memory
2282 * @mm: mm_struct of target mm
2283 * @start: starting user address
2284 * @nr_pages: number of pages from start to pin
2285 * @gup_flags: flags modifying lookup behaviour
2286 * @pages: array that receives pointers to the pages pinned.
2287 * Should be at least nr_pages long. Or NULL, if caller
2288 * only intends to ensure the pages are faulted in.
2289 * @locked: pointer to lock flag indicating whether lock is held and
2290 * subsequently whether VM_FAULT_RETRY functionality can be
2291 * utilised. Lock must initially be held.
2292 *
2293 * Returns either number of pages pinned (which may be less than the
2294 * number requested), or an error. Details about the return value:
2295 *
2296 * -- If nr_pages is 0, returns 0.
2297 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2298 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2299 * pages pinned. Again, this may be less than nr_pages.
2300 *
2301 * The caller is responsible for releasing returned @pages, via put_page().
2302 *
2303 * Must be called with mmap_lock held for read or write.
2304 *
2305 * get_user_pages_remote walks a process's page tables and takes a reference
2306 * to each struct page that each user address corresponds to at a given
2307 * instant. That is, it takes the page that would be accessed if a user
2308 * thread accesses the given user virtual address at that instant.
2309 *
2310 * This does not guarantee that the page exists in the user mappings when
2311 * get_user_pages_remote returns, and there may even be a completely different
2312 * page there in some cases (eg. if mmapped pagecache has been invalidated
2313 * and subsequently re-faulted). However it does guarantee that the page
2314 * won't be freed completely. And mostly callers simply care that the page
2315 * contains data that was valid *at some point in time*. Typically, an IO
2316 * or similar operation cannot guarantee anything stronger anyway because
2317 * locks can't be held over the syscall boundary.
2318 *
2319 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2320 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2321 * be called after the page is finished with, and before put_page is called.
2322 *
2323 * get_user_pages_remote is typically used for fewer-copy IO operations,
2324 * to get a handle on the memory by some means other than accesses
2325 * via the user virtual addresses. The pages may be submitted for
2326 * DMA to devices or accessed via their kernel linear mapping (via the
2327 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2328 *
2329 * See also get_user_pages_fast, for performance critical applications.
2330 *
2331 * get_user_pages_remote should be phased out in favor of
2332 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2333 * should use get_user_pages_remote because it cannot pass
2334 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2335 */
2336long get_user_pages_remote(struct mm_struct *mm,
2337 unsigned long start, unsigned long nr_pages,
2338 unsigned int gup_flags, struct page **pages,
2339 int *locked)
2340{
2341 int local_locked = 1;
2342
2343 if (!is_valid_gup_args(pages, locked, gup_flags_p: &gup_flags,
2344 to_set: FOLL_TOUCH | FOLL_REMOTE))
2345 return -EINVAL;
2346
2347 return __get_user_pages_locked(mm, start, nr_pages, pages,
2348 locked: locked ? locked : &local_locked,
2349 flags: gup_flags);
2350}
2351EXPORT_SYMBOL(get_user_pages_remote);
2352
2353#else /* CONFIG_MMU */
2354long get_user_pages_remote(struct mm_struct *mm,
2355 unsigned long start, unsigned long nr_pages,
2356 unsigned int gup_flags, struct page **pages,
2357 int *locked)
2358{
2359 return 0;
2360}
2361#endif /* !CONFIG_MMU */
2362
2363/**
2364 * get_user_pages() - pin user pages in memory
2365 * @start: starting user address
2366 * @nr_pages: number of pages from start to pin
2367 * @gup_flags: flags modifying lookup behaviour
2368 * @pages: array that receives pointers to the pages pinned.
2369 * Should be at least nr_pages long. Or NULL, if caller
2370 * only intends to ensure the pages are faulted in.
2371 *
2372 * This is the same as get_user_pages_remote(), just with a less-flexible
2373 * calling convention where we assume that the mm being operated on belongs to
2374 * the current task, and doesn't allow passing of a locked parameter. We also
2375 * obviously don't pass FOLL_REMOTE in here.
2376 */
2377long get_user_pages(unsigned long start, unsigned long nr_pages,
2378 unsigned int gup_flags, struct page **pages)
2379{
2380 int locked = 1;
2381
2382 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_TOUCH))
2383 return -EINVAL;
2384
2385 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2386 locked: &locked, flags: gup_flags);
2387}
2388EXPORT_SYMBOL(get_user_pages);
2389
2390/*
2391 * get_user_pages_unlocked() is suitable to replace the form:
2392 *
2393 * mmap_read_lock(mm);
2394 * get_user_pages(mm, ..., pages, NULL);
2395 * mmap_read_unlock(mm);
2396 *
2397 * with:
2398 *
2399 * get_user_pages_unlocked(mm, ..., pages);
2400 *
2401 * It is functionally equivalent to get_user_pages_fast so
2402 * get_user_pages_fast should be used instead if specific gup_flags
2403 * (e.g. FOLL_FORCE) are not required.
2404 */
2405long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2406 struct page **pages, unsigned int gup_flags)
2407{
2408 int locked = 0;
2409
2410 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags,
2411 to_set: FOLL_TOUCH | FOLL_UNLOCKABLE))
2412 return -EINVAL;
2413
2414 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2415 locked: &locked, flags: gup_flags);
2416}
2417EXPORT_SYMBOL(get_user_pages_unlocked);
2418
2419/*
2420 * Fast GUP
2421 *
2422 * get_user_pages_fast attempts to pin user pages by walking the page
2423 * tables directly and avoids taking locks. Thus the walker needs to be
2424 * protected from page table pages being freed from under it, and should
2425 * block any THP splits.
2426 *
2427 * One way to achieve this is to have the walker disable interrupts, and
2428 * rely on IPIs from the TLB flushing code blocking before the page table
2429 * pages are freed. This is unsuitable for architectures that do not need
2430 * to broadcast an IPI when invalidating TLBs.
2431 *
2432 * Another way to achieve this is to batch up page table containing pages
2433 * belonging to more than one mm_user, then rcu_sched a callback to free those
2434 * pages. Disabling interrupts will allow the fast_gup walker to both block
2435 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2436 * (which is a relatively rare event). The code below adopts this strategy.
2437 *
2438 * Before activating this code, please be aware that the following assumptions
2439 * are currently made:
2440 *
2441 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2442 * free pages containing page tables or TLB flushing requires IPI broadcast.
2443 *
2444 * *) ptes can be read atomically by the architecture.
2445 *
2446 * *) access_ok is sufficient to validate userspace address ranges.
2447 *
2448 * The last two assumptions can be relaxed by the addition of helper functions.
2449 *
2450 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2451 */
2452#ifdef CONFIG_HAVE_FAST_GUP
2453
2454/*
2455 * Used in the GUP-fast path to determine whether a pin is permitted for a
2456 * specific folio.
2457 *
2458 * This call assumes the caller has pinned the folio, that the lowest page table
2459 * level still points to this folio, and that interrupts have been disabled.
2460 *
2461 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2462 * (see comment describing the writable_file_mapping_allowed() function). We
2463 * therefore try to avoid the most egregious case of a long-term mapping doing
2464 * so.
2465 *
2466 * This function cannot be as thorough as that one as the VMA is not available
2467 * in the fast path, so instead we whitelist known good cases and if in doubt,
2468 * fall back to the slow path.
2469 */
2470static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2471{
2472 struct address_space *mapping;
2473 unsigned long mapping_flags;
2474
2475 /*
2476 * If we aren't pinning then no problematic write can occur. A long term
2477 * pin is the most egregious case so this is the one we disallow.
2478 */
2479 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2480 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2481 return true;
2482
2483 /* The folio is pinned, so we can safely access folio fields. */
2484
2485 if (WARN_ON_ONCE(folio_test_slab(folio)))
2486 return false;
2487
2488 /* hugetlb mappings do not require dirty-tracking. */
2489 if (folio_test_hugetlb(folio))
2490 return true;
2491
2492 /*
2493 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2494 * cannot proceed, which means no actions performed under RCU can
2495 * proceed either.
2496 *
2497 * inodes and thus their mappings are freed under RCU, which means the
2498 * mapping cannot be freed beneath us and thus we can safely dereference
2499 * it.
2500 */
2501 lockdep_assert_irqs_disabled();
2502
2503 /*
2504 * However, there may be operations which _alter_ the mapping, so ensure
2505 * we read it once and only once.
2506 */
2507 mapping = READ_ONCE(folio->mapping);
2508
2509 /*
2510 * The mapping may have been truncated, in any case we cannot determine
2511 * if this mapping is safe - fall back to slow path to determine how to
2512 * proceed.
2513 */
2514 if (!mapping)
2515 return false;
2516
2517 /* Anonymous folios pose no problem. */
2518 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2519 if (mapping_flags)
2520 return mapping_flags & PAGE_MAPPING_ANON;
2521
2522 /*
2523 * At this point, we know the mapping is non-null and points to an
2524 * address_space object. The only remaining whitelisted file system is
2525 * shmem.
2526 */
2527 return shmem_mapping(mapping);
2528}
2529
2530static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2531 unsigned int flags,
2532 struct page **pages)
2533{
2534 while ((*nr) - nr_start) {
2535 struct page *page = pages[--(*nr)];
2536
2537 ClearPageReferenced(page);
2538 if (flags & FOLL_PIN)
2539 unpin_user_page(page);
2540 else
2541 put_page(page);
2542 }
2543}
2544
2545#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2546/*
2547 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2548 * operations.
2549 *
2550 * To pin the page, fast-gup needs to do below in order:
2551 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2552 *
2553 * For the rest of pgtable operations where pgtable updates can be racy
2554 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2555 * is pinned.
2556 *
2557 * Above will work for all pte-level operations, including THP split.
2558 *
2559 * For THP collapse, it's a bit more complicated because fast-gup may be
2560 * walking a pgtable page that is being freed (pte is still valid but pmd
2561 * can be cleared already). To avoid race in such condition, we need to
2562 * also check pmd here to make sure pmd doesn't change (corresponds to
2563 * pmdp_collapse_flush() in the THP collapse code path).
2564 */
2565static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2566 unsigned long end, unsigned int flags,
2567 struct page **pages, int *nr)
2568{
2569 struct dev_pagemap *pgmap = NULL;
2570 int nr_start = *nr, ret = 0;
2571 pte_t *ptep, *ptem;
2572
2573 ptem = ptep = pte_offset_map(pmd: &pmd, addr);
2574 if (!ptep)
2575 return 0;
2576 do {
2577 pte_t pte = ptep_get_lockless(ptep);
2578 struct page *page;
2579 struct folio *folio;
2580
2581 /*
2582 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2583 * pte_access_permitted() better should reject these pages
2584 * either way: otherwise, GUP-fast might succeed in
2585 * cases where ordinary GUP would fail due to VMA access
2586 * permissions.
2587 */
2588 if (pte_protnone(pte))
2589 goto pte_unmap;
2590
2591 if (!pte_access_permitted(pte, write: flags & FOLL_WRITE))
2592 goto pte_unmap;
2593
2594 if (pte_devmap(a: pte)) {
2595 if (unlikely(flags & FOLL_LONGTERM))
2596 goto pte_unmap;
2597
2598 pgmap = get_dev_pagemap(pfn: pte_pfn(pte), pgmap);
2599 if (unlikely(!pgmap)) {
2600 undo_dev_pagemap(nr, nr_start, flags, pages);
2601 goto pte_unmap;
2602 }
2603 } else if (pte_special(pte))
2604 goto pte_unmap;
2605
2606 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2607 page = pte_page(pte);
2608
2609 folio = try_grab_folio(page, refs: 1, flags);
2610 if (!folio)
2611 goto pte_unmap;
2612
2613 if (unlikely(folio_is_secretmem(folio))) {
2614 gup_put_folio(folio, refs: 1, flags);
2615 goto pte_unmap;
2616 }
2617
2618 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2619 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2620 gup_put_folio(folio, refs: 1, flags);
2621 goto pte_unmap;
2622 }
2623
2624 if (!folio_fast_pin_allowed(folio, flags)) {
2625 gup_put_folio(folio, refs: 1, flags);
2626 goto pte_unmap;
2627 }
2628
2629 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2630 gup_put_folio(folio, refs: 1, flags);
2631 goto pte_unmap;
2632 }
2633
2634 /*
2635 * We need to make the page accessible if and only if we are
2636 * going to access its content (the FOLL_PIN case). Please
2637 * see Documentation/core-api/pin_user_pages.rst for
2638 * details.
2639 */
2640 if (flags & FOLL_PIN) {
2641 ret = arch_make_page_accessible(page);
2642 if (ret) {
2643 gup_put_folio(folio, refs: 1, flags);
2644 goto pte_unmap;
2645 }
2646 }
2647 folio_set_referenced(folio);
2648 pages[*nr] = page;
2649 (*nr)++;
2650 } while (ptep++, addr += PAGE_SIZE, addr != end);
2651
2652 ret = 1;
2653
2654pte_unmap:
2655 if (pgmap)
2656 put_dev_pagemap(pgmap);
2657 pte_unmap(pte: ptem);
2658 return ret;
2659}
2660#else
2661
2662/*
2663 * If we can't determine whether or not a pte is special, then fail immediately
2664 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2665 * to be special.
2666 *
2667 * For a futex to be placed on a THP tail page, get_futex_key requires a
2668 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2669 * useful to have gup_huge_pmd even if we can't operate on ptes.
2670 */
2671static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2672 unsigned long end, unsigned int flags,
2673 struct page **pages, int *nr)
2674{
2675 return 0;
2676}
2677#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2678
2679#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2680static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2681 unsigned long end, unsigned int flags,
2682 struct page **pages, int *nr)
2683{
2684 int nr_start = *nr;
2685 struct dev_pagemap *pgmap = NULL;
2686
2687 do {
2688 struct page *page = pfn_to_page(pfn);
2689
2690 pgmap = get_dev_pagemap(pfn, pgmap);
2691 if (unlikely(!pgmap)) {
2692 undo_dev_pagemap(nr, nr_start, flags, pages);
2693 break;
2694 }
2695
2696 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2697 undo_dev_pagemap(nr, nr_start, flags, pages);
2698 break;
2699 }
2700
2701 SetPageReferenced(page);
2702 pages[*nr] = page;
2703 if (unlikely(try_grab_page(page, flags))) {
2704 undo_dev_pagemap(nr, nr_start, flags, pages);
2705 break;
2706 }
2707 (*nr)++;
2708 pfn++;
2709 } while (addr += PAGE_SIZE, addr != end);
2710
2711 put_dev_pagemap(pgmap);
2712 return addr == end;
2713}
2714
2715static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2716 unsigned long end, unsigned int flags,
2717 struct page **pages, int *nr)
2718{
2719 unsigned long fault_pfn;
2720 int nr_start = *nr;
2721
2722 fault_pfn = pmd_pfn(pmd: orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2723 if (!__gup_device_huge(pfn: fault_pfn, addr, end, flags, pages, nr))
2724 return 0;
2725
2726 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2727 undo_dev_pagemap(nr, nr_start, flags, pages);
2728 return 0;
2729 }
2730 return 1;
2731}
2732
2733static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2734 unsigned long end, unsigned int flags,
2735 struct page **pages, int *nr)
2736{
2737 unsigned long fault_pfn;
2738 int nr_start = *nr;
2739
2740 fault_pfn = pud_pfn(pud: orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2741 if (!__gup_device_huge(pfn: fault_pfn, addr, end, flags, pages, nr))
2742 return 0;
2743
2744 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2745 undo_dev_pagemap(nr, nr_start, flags, pages);
2746 return 0;
2747 }
2748 return 1;
2749}
2750#else
2751static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2752 unsigned long end, unsigned int flags,
2753 struct page **pages, int *nr)
2754{
2755 BUILD_BUG();
2756 return 0;
2757}
2758
2759static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2760 unsigned long end, unsigned int flags,
2761 struct page **pages, int *nr)
2762{
2763 BUILD_BUG();
2764 return 0;
2765}
2766#endif
2767
2768static int record_subpages(struct page *page, unsigned long addr,
2769 unsigned long end, struct page **pages)
2770{
2771 int nr;
2772
2773 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2774 pages[nr] = nth_page(page, nr);
2775
2776 return nr;
2777}
2778
2779#ifdef CONFIG_ARCH_HAS_HUGEPD
2780static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2781 unsigned long sz)
2782{
2783 unsigned long __boundary = (addr + sz) & ~(sz-1);
2784 return (__boundary - 1 < end - 1) ? __boundary : end;
2785}
2786
2787static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2788 unsigned long end, unsigned int flags,
2789 struct page **pages, int *nr)
2790{
2791 unsigned long pte_end;
2792 struct page *page;
2793 struct folio *folio;
2794 pte_t pte;
2795 int refs;
2796
2797 pte_end = (addr + sz) & ~(sz-1);
2798 if (pte_end < end)
2799 end = pte_end;
2800
2801 pte = huge_ptep_get(ptep);
2802
2803 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2804 return 0;
2805
2806 /* hugepages are never "special" */
2807 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2808
2809 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2810 refs = record_subpages(page, addr, end, pages + *nr);
2811
2812 folio = try_grab_folio(page, refs, flags);
2813 if (!folio)
2814 return 0;
2815
2816 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2817 gup_put_folio(folio, refs, flags);
2818 return 0;
2819 }
2820
2821 if (!folio_fast_pin_allowed(folio, flags)) {
2822 gup_put_folio(folio, refs, flags);
2823 return 0;
2824 }
2825
2826 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2827 gup_put_folio(folio, refs, flags);
2828 return 0;
2829 }
2830
2831 *nr += refs;
2832 folio_set_referenced(folio);
2833 return 1;
2834}
2835
2836static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2837 unsigned int pdshift, unsigned long end, unsigned int flags,
2838 struct page **pages, int *nr)
2839{
2840 pte_t *ptep;
2841 unsigned long sz = 1UL << hugepd_shift(hugepd);
2842 unsigned long next;
2843
2844 ptep = hugepte_offset(hugepd, addr, pdshift);
2845 do {
2846 next = hugepte_addr_end(addr, end, sz);
2847 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2848 return 0;
2849 } while (ptep++, addr = next, addr != end);
2850
2851 return 1;
2852}
2853#else
2854static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2855 unsigned int pdshift, unsigned long end, unsigned int flags,
2856 struct page **pages, int *nr)
2857{
2858 return 0;
2859}
2860#endif /* CONFIG_ARCH_HAS_HUGEPD */
2861
2862static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2863 unsigned long end, unsigned int flags,
2864 struct page **pages, int *nr)
2865{
2866 struct page *page;
2867 struct folio *folio;
2868 int refs;
2869
2870 if (!pmd_access_permitted(pmd: orig, write: flags & FOLL_WRITE))
2871 return 0;
2872
2873 if (pmd_devmap(pmd: orig)) {
2874 if (unlikely(flags & FOLL_LONGTERM))
2875 return 0;
2876 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2877 pages, nr);
2878 }
2879
2880 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2881 refs = record_subpages(page, addr, end, pages: pages + *nr);
2882
2883 folio = try_grab_folio(page, refs, flags);
2884 if (!folio)
2885 return 0;
2886
2887 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2888 gup_put_folio(folio, refs, flags);
2889 return 0;
2890 }
2891
2892 if (!folio_fast_pin_allowed(folio, flags)) {
2893 gup_put_folio(folio, refs, flags);
2894 return 0;
2895 }
2896 if (!pmd_write(pmd: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) {
2897 gup_put_folio(folio, refs, flags);
2898 return 0;
2899 }
2900
2901 *nr += refs;
2902 folio_set_referenced(folio);
2903 return 1;
2904}
2905
2906static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2907 unsigned long end, unsigned int flags,
2908 struct page **pages, int *nr)
2909{
2910 struct page *page;
2911 struct folio *folio;
2912 int refs;
2913
2914 if (!pud_access_permitted(pud: orig, write: flags & FOLL_WRITE))
2915 return 0;
2916
2917 if (pud_devmap(pud: orig)) {
2918 if (unlikely(flags & FOLL_LONGTERM))
2919 return 0;
2920 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2921 pages, nr);
2922 }
2923
2924 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2925 refs = record_subpages(page, addr, end, pages: pages + *nr);
2926
2927 folio = try_grab_folio(page, refs, flags);
2928 if (!folio)
2929 return 0;
2930
2931 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2932 gup_put_folio(folio, refs, flags);
2933 return 0;
2934 }
2935
2936 if (!folio_fast_pin_allowed(folio, flags)) {
2937 gup_put_folio(folio, refs, flags);
2938 return 0;
2939 }
2940
2941 if (!pud_write(pud: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) {
2942 gup_put_folio(folio, refs, flags);
2943 return 0;
2944 }
2945
2946 *nr += refs;
2947 folio_set_referenced(folio);
2948 return 1;
2949}
2950
2951static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2952 unsigned long end, unsigned int flags,
2953 struct page **pages, int *nr)
2954{
2955 int refs;
2956 struct page *page;
2957 struct folio *folio;
2958
2959 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2960 return 0;
2961
2962 BUILD_BUG_ON(pgd_devmap(orig));
2963
2964 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2965 refs = record_subpages(page, addr, end, pages: pages + *nr);
2966
2967 folio = try_grab_folio(page, refs, flags);
2968 if (!folio)
2969 return 0;
2970
2971 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2972 gup_put_folio(folio, refs, flags);
2973 return 0;
2974 }
2975
2976 if (!pgd_write(pgd: orig) && gup_must_unshare(NULL, flags, page: &folio->page)) {
2977 gup_put_folio(folio, refs, flags);
2978 return 0;
2979 }
2980
2981 if (!folio_fast_pin_allowed(folio, flags)) {
2982 gup_put_folio(folio, refs, flags);
2983 return 0;
2984 }
2985
2986 *nr += refs;
2987 folio_set_referenced(folio);
2988 return 1;
2989}
2990
2991static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2992 unsigned int flags, struct page **pages, int *nr)
2993{
2994 unsigned long next;
2995 pmd_t *pmdp;
2996
2997 pmdp = pmd_offset_lockless(pudp, pud, addr);
2998 do {
2999 pmd_t pmd = pmdp_get_lockless(pmdp);
3000
3001 next = pmd_addr_end(addr, end);
3002 if (!pmd_present(pmd))
3003 return 0;
3004
3005 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3006 pmd_devmap(pmd))) {
3007 /* See gup_pte_range() */
3008 if (pmd_protnone(pmd))
3009 return 0;
3010
3011 if (!gup_huge_pmd(orig: pmd, pmdp, addr, end: next, flags,
3012 pages, nr))
3013 return 0;
3014
3015 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3016 /*
3017 * architecture have different format for hugetlbfs
3018 * pmd format and THP pmd format
3019 */
3020 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3021 PMD_SHIFT, end: next, flags, pages, nr))
3022 return 0;
3023 } else if (!gup_pte_range(pmd, pmdp, addr, end: next, flags, pages, nr))
3024 return 0;
3025 } while (pmdp++, addr = next, addr != end);
3026
3027 return 1;
3028}
3029
3030static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3031 unsigned int flags, struct page **pages, int *nr)
3032{
3033 unsigned long next;
3034 pud_t *pudp;
3035
3036 pudp = pud_offset_lockless(p4dp, p4d, addr);
3037 do {
3038 pud_t pud = READ_ONCE(*pudp);
3039
3040 next = pud_addr_end(addr, end);
3041 if (unlikely(!pud_present(pud)))
3042 return 0;
3043 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3044 if (!gup_huge_pud(orig: pud, pudp, addr, end: next, flags,
3045 pages, nr))
3046 return 0;
3047 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3048 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3049 PUD_SHIFT, end: next, flags, pages, nr))
3050 return 0;
3051 } else if (!gup_pmd_range(pudp, pud, addr, end: next, flags, pages, nr))
3052 return 0;
3053 } while (pudp++, addr = next, addr != end);
3054
3055 return 1;
3056}
3057
3058static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3059 unsigned int flags, struct page **pages, int *nr)
3060{
3061 unsigned long next;
3062 p4d_t *p4dp;
3063
3064 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3065 do {
3066 p4d_t p4d = READ_ONCE(*p4dp);
3067
3068 next = p4d_addr_end(addr, end);
3069 if (p4d_none(p4d))
3070 return 0;
3071 BUILD_BUG_ON(p4d_huge(p4d));
3072 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3073 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3074 P4D_SHIFT, end: next, flags, pages, nr))
3075 return 0;
3076 } else if (!gup_pud_range(p4dp, p4d, addr, end: next, flags, pages, nr))
3077 return 0;
3078 } while (p4dp++, addr = next, addr != end);
3079
3080 return 1;
3081}
3082
3083static void gup_pgd_range(unsigned long addr, unsigned long end,
3084 unsigned int flags, struct page **pages, int *nr)
3085{
3086 unsigned long next;
3087 pgd_t *pgdp;
3088
3089 pgdp = pgd_offset(current->mm, addr);
3090 do {
3091 pgd_t pgd = READ_ONCE(*pgdp);
3092
3093 next = pgd_addr_end(addr, end);
3094 if (pgd_none(pgd))
3095 return;
3096 if (unlikely(pgd_huge(pgd))) {
3097 if (!gup_huge_pgd(orig: pgd, pgdp, addr, end: next, flags,
3098 pages, nr))
3099 return;
3100 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3101 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3102 PGDIR_SHIFT, end: next, flags, pages, nr))
3103 return;
3104 } else if (!gup_p4d_range(pgdp, pgd, addr, end: next, flags, pages, nr))
3105 return;
3106 } while (pgdp++, addr = next, addr != end);
3107}
3108#else
3109static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3110 unsigned int flags, struct page **pages, int *nr)
3111{
3112}
3113#endif /* CONFIG_HAVE_FAST_GUP */
3114
3115#ifndef gup_fast_permitted
3116/*
3117 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3118 * we need to fall back to the slow version:
3119 */
3120static bool gup_fast_permitted(unsigned long start, unsigned long end)
3121{
3122 return true;
3123}
3124#endif
3125
3126static unsigned long lockless_pages_from_mm(unsigned long start,
3127 unsigned long end,
3128 unsigned int gup_flags,
3129 struct page **pages)
3130{
3131 unsigned long flags;
3132 int nr_pinned = 0;
3133 unsigned seq;
3134
3135 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3136 !gup_fast_permitted(start, end))
3137 return 0;
3138
3139 if (gup_flags & FOLL_PIN) {
3140 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3141 if (seq & 1)
3142 return 0;
3143 }
3144
3145 /*
3146 * Disable interrupts. The nested form is used, in order to allow full,
3147 * general purpose use of this routine.
3148 *
3149 * With interrupts disabled, we block page table pages from being freed
3150 * from under us. See struct mmu_table_batch comments in
3151 * include/asm-generic/tlb.h for more details.
3152 *
3153 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3154 * that come from THPs splitting.
3155 */
3156 local_irq_save(flags);
3157 gup_pgd_range(addr: start, end, flags: gup_flags, pages, nr: &nr_pinned);
3158 local_irq_restore(flags);
3159
3160 /*
3161 * When pinning pages for DMA there could be a concurrent write protect
3162 * from fork() via copy_page_range(), in this case always fail fast GUP.
3163 */
3164 if (gup_flags & FOLL_PIN) {
3165 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3166 unpin_user_pages_lockless(pages, npages: nr_pinned);
3167 return 0;
3168 } else {
3169 sanity_check_pinned_pages(pages, npages: nr_pinned);
3170 }
3171 }
3172 return nr_pinned;
3173}
3174
3175static int internal_get_user_pages_fast(unsigned long start,
3176 unsigned long nr_pages,
3177 unsigned int gup_flags,
3178 struct page **pages)
3179{
3180 unsigned long len, end;
3181 unsigned long nr_pinned;
3182 int locked = 0;
3183 int ret;
3184
3185 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3186 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3187 FOLL_FAST_ONLY | FOLL_NOFAULT |
3188 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3189 return -EINVAL;
3190
3191 if (gup_flags & FOLL_PIN)
3192 mm_set_has_pinned_flag(mm_flags: &current->mm->flags);
3193
3194 if (!(gup_flags & FOLL_FAST_ONLY))
3195 might_lock_read(&current->mm->mmap_lock);
3196
3197 start = untagged_addr(start) & PAGE_MASK;
3198 len = nr_pages << PAGE_SHIFT;
3199 if (check_add_overflow(start, len, &end))
3200 return -EOVERFLOW;
3201 if (end > TASK_SIZE_MAX)
3202 return -EFAULT;
3203 if (unlikely(!access_ok((void __user *)start, len)))
3204 return -EFAULT;
3205
3206 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3207 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3208 return nr_pinned;
3209
3210 /* Slow path: try to get the remaining pages with get_user_pages */
3211 start += nr_pinned << PAGE_SHIFT;
3212 pages += nr_pinned;
3213 ret = __gup_longterm_locked(current->mm, start, nr_pages: nr_pages - nr_pinned,
3214 pages, locked: &locked,
3215 gup_flags: gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3216 if (ret < 0) {
3217 /*
3218 * The caller has to unpin the pages we already pinned so
3219 * returning -errno is not an option
3220 */
3221 if (nr_pinned)
3222 return nr_pinned;
3223 return ret;
3224 }
3225 return ret + nr_pinned;
3226}
3227
3228/**
3229 * get_user_pages_fast_only() - pin user pages in memory
3230 * @start: starting user address
3231 * @nr_pages: number of pages from start to pin
3232 * @gup_flags: flags modifying pin behaviour
3233 * @pages: array that receives pointers to the pages pinned.
3234 * Should be at least nr_pages long.
3235 *
3236 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3237 * the regular GUP.
3238 *
3239 * If the architecture does not support this function, simply return with no
3240 * pages pinned.
3241 *
3242 * Careful, careful! COW breaking can go either way, so a non-write
3243 * access can get ambiguous page results. If you call this function without
3244 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3245 */
3246int get_user_pages_fast_only(unsigned long start, int nr_pages,
3247 unsigned int gup_flags, struct page **pages)
3248{
3249 /*
3250 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3251 * because gup fast is always a "pin with a +1 page refcount" request.
3252 *
3253 * FOLL_FAST_ONLY is required in order to match the API description of
3254 * this routine: no fall back to regular ("slow") GUP.
3255 */
3256 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags,
3257 to_set: FOLL_GET | FOLL_FAST_ONLY))
3258 return -EINVAL;
3259
3260 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3261}
3262EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3263
3264/**
3265 * get_user_pages_fast() - pin user pages in memory
3266 * @start: starting user address
3267 * @nr_pages: number of pages from start to pin
3268 * @gup_flags: flags modifying pin behaviour
3269 * @pages: array that receives pointers to the pages pinned.
3270 * Should be at least nr_pages long.
3271 *
3272 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3273 * If not successful, it will fall back to taking the lock and
3274 * calling get_user_pages().
3275 *
3276 * Returns number of pages pinned. This may be fewer than the number requested.
3277 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3278 * -errno.
3279 */
3280int get_user_pages_fast(unsigned long start, int nr_pages,
3281 unsigned int gup_flags, struct page **pages)
3282{
3283 /*
3284 * The caller may or may not have explicitly set FOLL_GET; either way is
3285 * OK. However, internally (within mm/gup.c), gup fast variants must set
3286 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3287 * request.
3288 */
3289 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_GET))
3290 return -EINVAL;
3291 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3292}
3293EXPORT_SYMBOL_GPL(get_user_pages_fast);
3294
3295/**
3296 * pin_user_pages_fast() - pin user pages in memory without taking locks
3297 *
3298 * @start: starting user address
3299 * @nr_pages: number of pages from start to pin
3300 * @gup_flags: flags modifying pin behaviour
3301 * @pages: array that receives pointers to the pages pinned.
3302 * Should be at least nr_pages long.
3303 *
3304 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3305 * get_user_pages_fast() for documentation on the function arguments, because
3306 * the arguments here are identical.
3307 *
3308 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3309 * see Documentation/core-api/pin_user_pages.rst for further details.
3310 *
3311 * Note that if a zero_page is amongst the returned pages, it will not have
3312 * pins in it and unpin_user_page() will not remove pins from it.
3313 */
3314int pin_user_pages_fast(unsigned long start, int nr_pages,
3315 unsigned int gup_flags, struct page **pages)
3316{
3317 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_PIN))
3318 return -EINVAL;
3319 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3320}
3321EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3322
3323/**
3324 * pin_user_pages_remote() - pin pages of a remote process
3325 *
3326 * @mm: mm_struct of target mm
3327 * @start: starting user address
3328 * @nr_pages: number of pages from start to pin
3329 * @gup_flags: flags modifying lookup behaviour
3330 * @pages: array that receives pointers to the pages pinned.
3331 * Should be at least nr_pages long.
3332 * @locked: pointer to lock flag indicating whether lock is held and
3333 * subsequently whether VM_FAULT_RETRY functionality can be
3334 * utilised. Lock must initially be held.
3335 *
3336 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3337 * get_user_pages_remote() for documentation on the function arguments, because
3338 * the arguments here are identical.
3339 *
3340 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3341 * see Documentation/core-api/pin_user_pages.rst for details.
3342 *
3343 * Note that if a zero_page is amongst the returned pages, it will not have
3344 * pins in it and unpin_user_page*() will not remove pins from it.
3345 */
3346long pin_user_pages_remote(struct mm_struct *mm,
3347 unsigned long start, unsigned long nr_pages,
3348 unsigned int gup_flags, struct page **pages,
3349 int *locked)
3350{
3351 int local_locked = 1;
3352
3353 if (!is_valid_gup_args(pages, locked, gup_flags_p: &gup_flags,
3354 to_set: FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3355 return 0;
3356 return __gup_longterm_locked(mm, start, nr_pages, pages,
3357 locked: locked ? locked : &local_locked,
3358 gup_flags);
3359}
3360EXPORT_SYMBOL(pin_user_pages_remote);
3361
3362/**
3363 * pin_user_pages() - pin user pages in memory for use by other devices
3364 *
3365 * @start: starting user address
3366 * @nr_pages: number of pages from start to pin
3367 * @gup_flags: flags modifying lookup behaviour
3368 * @pages: array that receives pointers to the pages pinned.
3369 * Should be at least nr_pages long.
3370 *
3371 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3372 * FOLL_PIN is set.
3373 *
3374 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3375 * see Documentation/core-api/pin_user_pages.rst for details.
3376 *
3377 * Note that if a zero_page is amongst the returned pages, it will not have
3378 * pins in it and unpin_user_page*() will not remove pins from it.
3379 */
3380long pin_user_pages(unsigned long start, unsigned long nr_pages,
3381 unsigned int gup_flags, struct page **pages)
3382{
3383 int locked = 1;
3384
3385 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags, to_set: FOLL_PIN))
3386 return 0;
3387 return __gup_longterm_locked(current->mm, start, nr_pages,
3388 pages, locked: &locked, gup_flags);
3389}
3390EXPORT_SYMBOL(pin_user_pages);
3391
3392/*
3393 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3394 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3395 * FOLL_PIN and rejects FOLL_GET.
3396 *
3397 * Note that if a zero_page is amongst the returned pages, it will not have
3398 * pins in it and unpin_user_page*() will not remove pins from it.
3399 */
3400long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3401 struct page **pages, unsigned int gup_flags)
3402{
3403 int locked = 0;
3404
3405 if (!is_valid_gup_args(pages, NULL, gup_flags_p: &gup_flags,
3406 to_set: FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3407 return 0;
3408
3409 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3410 locked: &locked, gup_flags);
3411}
3412EXPORT_SYMBOL(pin_user_pages_unlocked);
3413

source code of linux/mm/gup.c