1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include "swap.h"
44
45static struct vfsmount *shm_mnt __ro_after_init;
46
47#ifdef CONFIG_SHMEM
48/*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54#include <linux/xattr.h>
55#include <linux/exportfs.h>
56#include <linux/posix_acl.h>
57#include <linux/posix_acl_xattr.h>
58#include <linux/mman.h>
59#include <linux/string.h>
60#include <linux/slab.h>
61#include <linux/backing-dev.h>
62#include <linux/writeback.h>
63#include <linux/pagevec.h>
64#include <linux/percpu_counter.h>
65#include <linux/falloc.h>
66#include <linux/splice.h>
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
71#include <linux/ctype.h>
72#include <linux/migrate.h>
73#include <linux/highmem.h>
74#include <linux/seq_file.h>
75#include <linux/magic.h>
76#include <linux/syscalls.h>
77#include <linux/fcntl.h>
78#include <uapi/linux/memfd.h>
79#include <linux/rmap.h>
80#include <linux/uuid.h>
81#include <linux/quotaops.h>
82
83#include <linux/uaccess.h>
84
85#include "internal.h"
86
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
93/* Pretend that one inode + its dentry occupy this much memory */
94#define BOGO_INODE_SIZE 1024
95
96/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97#define SHORT_SYMLINK_LEN 128
98
99/*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110};
111
112struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125#define SHMEM_SEEN_BLOCKS 1
126#define SHMEM_SEEN_INODES 2
127#define SHMEM_SEEN_HUGE 4
128#define SHMEM_SEEN_INUMS 8
129#define SHMEM_SEEN_NOSWAP 16
130#define SHMEM_SEEN_QUOTA 32
131};
132
133#ifdef CONFIG_TMPFS
134static unsigned long shmem_default_max_blocks(void)
135{
136 return totalram_pages() / 2;
137}
138
139static unsigned long shmem_default_max_inodes(void)
140{
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145}
146#endif
147
148static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
150 struct mm_struct *fault_mm, vm_fault_t *fault_type);
151
152static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
153{
154 return sb->s_fs_info;
155}
156
157/*
158 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
159 * for shared memory and for shared anonymous (/dev/zero) mappings
160 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
161 * consistent with the pre-accounting of private mappings ...
162 */
163static inline int shmem_acct_size(unsigned long flags, loff_t size)
164{
165 return (flags & VM_NORESERVE) ?
166 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
167}
168
169static inline void shmem_unacct_size(unsigned long flags, loff_t size)
170{
171 if (!(flags & VM_NORESERVE))
172 vm_unacct_memory(VM_ACCT(size));
173}
174
175static inline int shmem_reacct_size(unsigned long flags,
176 loff_t oldsize, loff_t newsize)
177{
178 if (!(flags & VM_NORESERVE)) {
179 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
180 return security_vm_enough_memory_mm(current->mm,
181 VM_ACCT(newsize) - VM_ACCT(oldsize));
182 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
183 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
184 }
185 return 0;
186}
187
188/*
189 * ... whereas tmpfs objects are accounted incrementally as
190 * pages are allocated, in order to allow large sparse files.
191 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
192 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
193 */
194static inline int shmem_acct_blocks(unsigned long flags, long pages)
195{
196 if (!(flags & VM_NORESERVE))
197 return 0;
198
199 return security_vm_enough_memory_mm(current->mm,
200 pages: pages * VM_ACCT(PAGE_SIZE));
201}
202
203static inline void shmem_unacct_blocks(unsigned long flags, long pages)
204{
205 if (flags & VM_NORESERVE)
206 vm_unacct_memory(pages: pages * VM_ACCT(PAGE_SIZE));
207}
208
209static int shmem_inode_acct_blocks(struct inode *inode, long pages)
210{
211 struct shmem_inode_info *info = SHMEM_I(inode);
212 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
213 int err = -ENOSPC;
214
215 if (shmem_acct_blocks(flags: info->flags, pages))
216 return err;
217
218 might_sleep(); /* when quotas */
219 if (sbinfo->max_blocks) {
220 if (!percpu_counter_limited_add(fbc: &sbinfo->used_blocks,
221 limit: sbinfo->max_blocks, amount: pages))
222 goto unacct;
223
224 err = dquot_alloc_block_nodirty(inode, nr: pages);
225 if (err) {
226 percpu_counter_sub(fbc: &sbinfo->used_blocks, amount: pages);
227 goto unacct;
228 }
229 } else {
230 err = dquot_alloc_block_nodirty(inode, nr: pages);
231 if (err)
232 goto unacct;
233 }
234
235 return 0;
236
237unacct:
238 shmem_unacct_blocks(flags: info->flags, pages);
239 return err;
240}
241
242static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
243{
244 struct shmem_inode_info *info = SHMEM_I(inode);
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
246
247 might_sleep(); /* when quotas */
248 dquot_free_block_nodirty(inode, nr: pages);
249
250 if (sbinfo->max_blocks)
251 percpu_counter_sub(fbc: &sbinfo->used_blocks, amount: pages);
252 shmem_unacct_blocks(flags: info->flags, pages);
253}
254
255static const struct super_operations shmem_ops;
256const struct address_space_operations shmem_aops;
257static const struct file_operations shmem_file_operations;
258static const struct inode_operations shmem_inode_operations;
259static const struct inode_operations shmem_dir_inode_operations;
260static const struct inode_operations shmem_special_inode_operations;
261static const struct vm_operations_struct shmem_vm_ops;
262static const struct vm_operations_struct shmem_anon_vm_ops;
263static struct file_system_type shmem_fs_type;
264
265bool vma_is_anon_shmem(struct vm_area_struct *vma)
266{
267 return vma->vm_ops == &shmem_anon_vm_ops;
268}
269
270bool vma_is_shmem(struct vm_area_struct *vma)
271{
272 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
273}
274
275static LIST_HEAD(shmem_swaplist);
276static DEFINE_MUTEX(shmem_swaplist_mutex);
277
278#ifdef CONFIG_TMPFS_QUOTA
279
280static int shmem_enable_quotas(struct super_block *sb,
281 unsigned short quota_types)
282{
283 int type, err = 0;
284
285 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
286 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
287 if (!(quota_types & (1 << type)))
288 continue;
289 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
290 DQUOT_USAGE_ENABLED |
291 DQUOT_LIMITS_ENABLED);
292 if (err)
293 goto out_err;
294 }
295 return 0;
296
297out_err:
298 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
299 type, err);
300 for (type--; type >= 0; type--)
301 dquot_quota_off(sb, type);
302 return err;
303}
304
305static void shmem_disable_quotas(struct super_block *sb)
306{
307 int type;
308
309 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
310 dquot_quota_off(sb, type);
311}
312
313static struct dquot **shmem_get_dquots(struct inode *inode)
314{
315 return SHMEM_I(inode)->i_dquot;
316}
317#endif /* CONFIG_TMPFS_QUOTA */
318
319/*
320 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
321 * produces a novel ino for the newly allocated inode.
322 *
323 * It may also be called when making a hard link to permit the space needed by
324 * each dentry. However, in that case, no new inode number is needed since that
325 * internally draws from another pool of inode numbers (currently global
326 * get_next_ino()). This case is indicated by passing NULL as inop.
327 */
328#define SHMEM_INO_BATCH 1024
329static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
330{
331 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
332 ino_t ino;
333
334 if (!(sb->s_flags & SB_KERNMOUNT)) {
335 raw_spin_lock(&sbinfo->stat_lock);
336 if (sbinfo->max_inodes) {
337 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
338 raw_spin_unlock(&sbinfo->stat_lock);
339 return -ENOSPC;
340 }
341 sbinfo->free_ispace -= BOGO_INODE_SIZE;
342 }
343 if (inop) {
344 ino = sbinfo->next_ino++;
345 if (unlikely(is_zero_ino(ino)))
346 ino = sbinfo->next_ino++;
347 if (unlikely(!sbinfo->full_inums &&
348 ino > UINT_MAX)) {
349 /*
350 * Emulate get_next_ino uint wraparound for
351 * compatibility
352 */
353 if (IS_ENABLED(CONFIG_64BIT))
354 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
355 __func__, MINOR(sb->s_dev));
356 sbinfo->next_ino = 1;
357 ino = sbinfo->next_ino++;
358 }
359 *inop = ino;
360 }
361 raw_spin_unlock(&sbinfo->stat_lock);
362 } else if (inop) {
363 /*
364 * __shmem_file_setup, one of our callers, is lock-free: it
365 * doesn't hold stat_lock in shmem_reserve_inode since
366 * max_inodes is always 0, and is called from potentially
367 * unknown contexts. As such, use a per-cpu batched allocator
368 * which doesn't require the per-sb stat_lock unless we are at
369 * the batch boundary.
370 *
371 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
372 * shmem mounts are not exposed to userspace, so we don't need
373 * to worry about things like glibc compatibility.
374 */
375 ino_t *next_ino;
376
377 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
378 ino = *next_ino;
379 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
380 raw_spin_lock(&sbinfo->stat_lock);
381 ino = sbinfo->next_ino;
382 sbinfo->next_ino += SHMEM_INO_BATCH;
383 raw_spin_unlock(&sbinfo->stat_lock);
384 if (unlikely(is_zero_ino(ino)))
385 ino++;
386 }
387 *inop = ino;
388 *next_ino = ++ino;
389 put_cpu();
390 }
391
392 return 0;
393}
394
395static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
396{
397 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
398 if (sbinfo->max_inodes) {
399 raw_spin_lock(&sbinfo->stat_lock);
400 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 }
403}
404
405/**
406 * shmem_recalc_inode - recalculate the block usage of an inode
407 * @inode: inode to recalc
408 * @alloced: the change in number of pages allocated to inode
409 * @swapped: the change in number of pages swapped from inode
410 *
411 * We have to calculate the free blocks since the mm can drop
412 * undirtied hole pages behind our back.
413 *
414 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
415 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
416 */
417static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
418{
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 long freed;
421
422 spin_lock(lock: &info->lock);
423 info->alloced += alloced;
424 info->swapped += swapped;
425 freed = info->alloced - info->swapped -
426 READ_ONCE(inode->i_mapping->nrpages);
427 /*
428 * Special case: whereas normally shmem_recalc_inode() is called
429 * after i_mapping->nrpages has already been adjusted (up or down),
430 * shmem_writepage() has to raise swapped before nrpages is lowered -
431 * to stop a racing shmem_recalc_inode() from thinking that a page has
432 * been freed. Compensate here, to avoid the need for a followup call.
433 */
434 if (swapped > 0)
435 freed += swapped;
436 if (freed > 0)
437 info->alloced -= freed;
438 spin_unlock(lock: &info->lock);
439
440 /* The quota case may block */
441 if (freed > 0)
442 shmem_inode_unacct_blocks(inode, pages: freed);
443}
444
445bool shmem_charge(struct inode *inode, long pages)
446{
447 struct address_space *mapping = inode->i_mapping;
448
449 if (shmem_inode_acct_blocks(inode, pages))
450 return false;
451
452 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
453 xa_lock_irq(&mapping->i_pages);
454 mapping->nrpages += pages;
455 xa_unlock_irq(&mapping->i_pages);
456
457 shmem_recalc_inode(inode, alloced: pages, swapped: 0);
458 return true;
459}
460
461void shmem_uncharge(struct inode *inode, long pages)
462{
463 /* pages argument is currently unused: keep it to help debugging */
464 /* nrpages adjustment done by __filemap_remove_folio() or caller */
465
466 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
467}
468
469/*
470 * Replace item expected in xarray by a new item, while holding xa_lock.
471 */
472static int shmem_replace_entry(struct address_space *mapping,
473 pgoff_t index, void *expected, void *replacement)
474{
475 XA_STATE(xas, &mapping->i_pages, index);
476 void *item;
477
478 VM_BUG_ON(!expected);
479 VM_BUG_ON(!replacement);
480 item = xas_load(&xas);
481 if (item != expected)
482 return -ENOENT;
483 xas_store(&xas, entry: replacement);
484 return 0;
485}
486
487/*
488 * Sometimes, before we decide whether to proceed or to fail, we must check
489 * that an entry was not already brought back from swap by a racing thread.
490 *
491 * Checking page is not enough: by the time a SwapCache page is locked, it
492 * might be reused, and again be SwapCache, using the same swap as before.
493 */
494static bool shmem_confirm_swap(struct address_space *mapping,
495 pgoff_t index, swp_entry_t swap)
496{
497 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(entry: swap);
498}
499
500/*
501 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
502 *
503 * SHMEM_HUGE_NEVER:
504 * disables huge pages for the mount;
505 * SHMEM_HUGE_ALWAYS:
506 * enables huge pages for the mount;
507 * SHMEM_HUGE_WITHIN_SIZE:
508 * only allocate huge pages if the page will be fully within i_size,
509 * also respect fadvise()/madvise() hints;
510 * SHMEM_HUGE_ADVISE:
511 * only allocate huge pages if requested with fadvise()/madvise();
512 */
513
514#define SHMEM_HUGE_NEVER 0
515#define SHMEM_HUGE_ALWAYS 1
516#define SHMEM_HUGE_WITHIN_SIZE 2
517#define SHMEM_HUGE_ADVISE 3
518
519/*
520 * Special values.
521 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
522 *
523 * SHMEM_HUGE_DENY:
524 * disables huge on shm_mnt and all mounts, for emergency use;
525 * SHMEM_HUGE_FORCE:
526 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
527 *
528 */
529#define SHMEM_HUGE_DENY (-1)
530#define SHMEM_HUGE_FORCE (-2)
531
532#ifdef CONFIG_TRANSPARENT_HUGEPAGE
533/* ifdef here to avoid bloating shmem.o when not necessary */
534
535static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
536
537bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
538 struct mm_struct *mm, unsigned long vm_flags)
539{
540 loff_t i_size;
541
542 if (!S_ISREG(inode->i_mode))
543 return false;
544 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
545 return false;
546 if (shmem_huge == SHMEM_HUGE_DENY)
547 return false;
548 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
549 return true;
550
551 switch (SHMEM_SB(sb: inode->i_sb)->huge) {
552 case SHMEM_HUGE_ALWAYS:
553 return true;
554 case SHMEM_HUGE_WITHIN_SIZE:
555 index = round_up(index + 1, HPAGE_PMD_NR);
556 i_size = round_up(i_size_read(inode), PAGE_SIZE);
557 if (i_size >> PAGE_SHIFT >= index)
558 return true;
559 fallthrough;
560 case SHMEM_HUGE_ADVISE:
561 if (mm && (vm_flags & VM_HUGEPAGE))
562 return true;
563 fallthrough;
564 default:
565 return false;
566 }
567}
568
569#if defined(CONFIG_SYSFS)
570static int shmem_parse_huge(const char *str)
571{
572 if (!strcmp(str, "never"))
573 return SHMEM_HUGE_NEVER;
574 if (!strcmp(str, "always"))
575 return SHMEM_HUGE_ALWAYS;
576 if (!strcmp(str, "within_size"))
577 return SHMEM_HUGE_WITHIN_SIZE;
578 if (!strcmp(str, "advise"))
579 return SHMEM_HUGE_ADVISE;
580 if (!strcmp(str, "deny"))
581 return SHMEM_HUGE_DENY;
582 if (!strcmp(str, "force"))
583 return SHMEM_HUGE_FORCE;
584 return -EINVAL;
585}
586#endif
587
588#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
589static const char *shmem_format_huge(int huge)
590{
591 switch (huge) {
592 case SHMEM_HUGE_NEVER:
593 return "never";
594 case SHMEM_HUGE_ALWAYS:
595 return "always";
596 case SHMEM_HUGE_WITHIN_SIZE:
597 return "within_size";
598 case SHMEM_HUGE_ADVISE:
599 return "advise";
600 case SHMEM_HUGE_DENY:
601 return "deny";
602 case SHMEM_HUGE_FORCE:
603 return "force";
604 default:
605 VM_BUG_ON(1);
606 return "bad_val";
607 }
608}
609#endif
610
611static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
612 struct shrink_control *sc, unsigned long nr_to_split)
613{
614 LIST_HEAD(list), *pos, *next;
615 LIST_HEAD(to_remove);
616 struct inode *inode;
617 struct shmem_inode_info *info;
618 struct folio *folio;
619 unsigned long batch = sc ? sc->nr_to_scan : 128;
620 int split = 0;
621
622 if (list_empty(head: &sbinfo->shrinklist))
623 return SHRINK_STOP;
624
625 spin_lock(lock: &sbinfo->shrinklist_lock);
626 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
627 info = list_entry(pos, struct shmem_inode_info, shrinklist);
628
629 /* pin the inode */
630 inode = igrab(&info->vfs_inode);
631
632 /* inode is about to be evicted */
633 if (!inode) {
634 list_del_init(entry: &info->shrinklist);
635 goto next;
636 }
637
638 /* Check if there's anything to gain */
639 if (round_up(inode->i_size, PAGE_SIZE) ==
640 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
641 list_move(list: &info->shrinklist, head: &to_remove);
642 goto next;
643 }
644
645 list_move(list: &info->shrinklist, head: &list);
646next:
647 sbinfo->shrinklist_len--;
648 if (!--batch)
649 break;
650 }
651 spin_unlock(lock: &sbinfo->shrinklist_lock);
652
653 list_for_each_safe(pos, next, &to_remove) {
654 info = list_entry(pos, struct shmem_inode_info, shrinklist);
655 inode = &info->vfs_inode;
656 list_del_init(entry: &info->shrinklist);
657 iput(inode);
658 }
659
660 list_for_each_safe(pos, next, &list) {
661 int ret;
662 pgoff_t index;
663
664 info = list_entry(pos, struct shmem_inode_info, shrinklist);
665 inode = &info->vfs_inode;
666
667 if (nr_to_split && split >= nr_to_split)
668 goto move_back;
669
670 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
671 folio = filemap_get_folio(mapping: inode->i_mapping, index);
672 if (IS_ERR(ptr: folio))
673 goto drop;
674
675 /* No huge page at the end of the file: nothing to split */
676 if (!folio_test_large(folio)) {
677 folio_put(folio);
678 goto drop;
679 }
680
681 /*
682 * Move the inode on the list back to shrinklist if we failed
683 * to lock the page at this time.
684 *
685 * Waiting for the lock may lead to deadlock in the
686 * reclaim path.
687 */
688 if (!folio_trylock(folio)) {
689 folio_put(folio);
690 goto move_back;
691 }
692
693 ret = split_folio(folio);
694 folio_unlock(folio);
695 folio_put(folio);
696
697 /* If split failed move the inode on the list back to shrinklist */
698 if (ret)
699 goto move_back;
700
701 split++;
702drop:
703 list_del_init(entry: &info->shrinklist);
704 goto put;
705move_back:
706 /*
707 * Make sure the inode is either on the global list or deleted
708 * from any local list before iput() since it could be deleted
709 * in another thread once we put the inode (then the local list
710 * is corrupted).
711 */
712 spin_lock(lock: &sbinfo->shrinklist_lock);
713 list_move(list: &info->shrinklist, head: &sbinfo->shrinklist);
714 sbinfo->shrinklist_len++;
715 spin_unlock(lock: &sbinfo->shrinklist_lock);
716put:
717 iput(inode);
718 }
719
720 return split;
721}
722
723static long shmem_unused_huge_scan(struct super_block *sb,
724 struct shrink_control *sc)
725{
726 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
727
728 if (!READ_ONCE(sbinfo->shrinklist_len))
729 return SHRINK_STOP;
730
731 return shmem_unused_huge_shrink(sbinfo, sc, nr_to_split: 0);
732}
733
734static long shmem_unused_huge_count(struct super_block *sb,
735 struct shrink_control *sc)
736{
737 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
738 return READ_ONCE(sbinfo->shrinklist_len);
739}
740#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
741
742#define shmem_huge SHMEM_HUGE_DENY
743
744bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
745 struct mm_struct *mm, unsigned long vm_flags)
746{
747 return false;
748}
749
750static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
751 struct shrink_control *sc, unsigned long nr_to_split)
752{
753 return 0;
754}
755#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
756
757/*
758 * Somewhat like filemap_add_folio, but error if expected item has gone.
759 */
760static int shmem_add_to_page_cache(struct folio *folio,
761 struct address_space *mapping,
762 pgoff_t index, void *expected, gfp_t gfp)
763{
764 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
765 long nr = folio_nr_pages(folio);
766
767 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
768 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
770 VM_BUG_ON(expected && folio_test_large(folio));
771
772 folio_ref_add(folio, nr);
773 folio->mapping = mapping;
774 folio->index = index;
775
776 gfp &= GFP_RECLAIM_MASK;
777 folio_throttle_swaprate(folio, gfp);
778
779 do {
780 xas_lock_irq(&xas);
781 if (expected != xas_find_conflict(&xas)) {
782 xas_set_err(xas: &xas, err: -EEXIST);
783 goto unlock;
784 }
785 if (expected && xas_find_conflict(&xas)) {
786 xas_set_err(xas: &xas, err: -EEXIST);
787 goto unlock;
788 }
789 xas_store(&xas, entry: folio);
790 if (xas_error(xas: &xas))
791 goto unlock;
792 if (folio_test_pmd_mappable(folio))
793 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM_THPS, val: nr);
794 __lruvec_stat_mod_folio(folio, idx: NR_FILE_PAGES, val: nr);
795 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM, val: nr);
796 mapping->nrpages += nr;
797unlock:
798 xas_unlock_irq(&xas);
799 } while (xas_nomem(&xas, gfp));
800
801 if (xas_error(xas: &xas)) {
802 folio->mapping = NULL;
803 folio_ref_sub(folio, nr);
804 return xas_error(xas: &xas);
805 }
806
807 return 0;
808}
809
810/*
811 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
812 */
813static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
814{
815 struct address_space *mapping = folio->mapping;
816 long nr = folio_nr_pages(folio);
817 int error;
818
819 xa_lock_irq(&mapping->i_pages);
820 error = shmem_replace_entry(mapping, index: folio->index, expected: folio, replacement: radswap);
821 folio->mapping = NULL;
822 mapping->nrpages -= nr;
823 __lruvec_stat_mod_folio(folio, idx: NR_FILE_PAGES, val: -nr);
824 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM, val: -nr);
825 xa_unlock_irq(&mapping->i_pages);
826 folio_put(folio);
827 BUG_ON(error);
828}
829
830/*
831 * Remove swap entry from page cache, free the swap and its page cache.
832 */
833static int shmem_free_swap(struct address_space *mapping,
834 pgoff_t index, void *radswap)
835{
836 void *old;
837
838 old = xa_cmpxchg_irq(xa: &mapping->i_pages, index, old: radswap, NULL, gfp: 0);
839 if (old != radswap)
840 return -ENOENT;
841 free_swap_and_cache(radix_to_swp_entry(arg: radswap));
842 return 0;
843}
844
845/*
846 * Determine (in bytes) how many of the shmem object's pages mapped by the
847 * given offsets are swapped out.
848 *
849 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
850 * as long as the inode doesn't go away and racy results are not a problem.
851 */
852unsigned long shmem_partial_swap_usage(struct address_space *mapping,
853 pgoff_t start, pgoff_t end)
854{
855 XA_STATE(xas, &mapping->i_pages, start);
856 struct page *page;
857 unsigned long swapped = 0;
858 unsigned long max = end - 1;
859
860 rcu_read_lock();
861 xas_for_each(&xas, page, max) {
862 if (xas_retry(xas: &xas, entry: page))
863 continue;
864 if (xa_is_value(entry: page))
865 swapped++;
866 if (xas.xa_index == max)
867 break;
868 if (need_resched()) {
869 xas_pause(&xas);
870 cond_resched_rcu();
871 }
872 }
873 rcu_read_unlock();
874
875 return swapped << PAGE_SHIFT;
876}
877
878/*
879 * Determine (in bytes) how many of the shmem object's pages mapped by the
880 * given vma is swapped out.
881 *
882 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
883 * as long as the inode doesn't go away and racy results are not a problem.
884 */
885unsigned long shmem_swap_usage(struct vm_area_struct *vma)
886{
887 struct inode *inode = file_inode(f: vma->vm_file);
888 struct shmem_inode_info *info = SHMEM_I(inode);
889 struct address_space *mapping = inode->i_mapping;
890 unsigned long swapped;
891
892 /* Be careful as we don't hold info->lock */
893 swapped = READ_ONCE(info->swapped);
894
895 /*
896 * The easier cases are when the shmem object has nothing in swap, or
897 * the vma maps it whole. Then we can simply use the stats that we
898 * already track.
899 */
900 if (!swapped)
901 return 0;
902
903 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
904 return swapped << PAGE_SHIFT;
905
906 /* Here comes the more involved part */
907 return shmem_partial_swap_usage(mapping, start: vma->vm_pgoff,
908 end: vma->vm_pgoff + vma_pages(vma));
909}
910
911/*
912 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
913 */
914void shmem_unlock_mapping(struct address_space *mapping)
915{
916 struct folio_batch fbatch;
917 pgoff_t index = 0;
918
919 folio_batch_init(fbatch: &fbatch);
920 /*
921 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
922 */
923 while (!mapping_unevictable(mapping) &&
924 filemap_get_folios(mapping, start: &index, end: ~0UL, fbatch: &fbatch)) {
925 check_move_unevictable_folios(fbatch: &fbatch);
926 folio_batch_release(fbatch: &fbatch);
927 cond_resched();
928 }
929}
930
931static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
932{
933 struct folio *folio;
934
935 /*
936 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
937 * beyond i_size, and reports fallocated folios as holes.
938 */
939 folio = filemap_get_entry(mapping: inode->i_mapping, index);
940 if (!folio)
941 return folio;
942 if (!xa_is_value(entry: folio)) {
943 folio_lock(folio);
944 if (folio->mapping == inode->i_mapping)
945 return folio;
946 /* The folio has been swapped out */
947 folio_unlock(folio);
948 folio_put(folio);
949 }
950 /*
951 * But read a folio back from swap if any of it is within i_size
952 * (although in some cases this is just a waste of time).
953 */
954 folio = NULL;
955 shmem_get_folio(inode, index, foliop: &folio, sgp: SGP_READ);
956 return folio;
957}
958
959/*
960 * Remove range of pages and swap entries from page cache, and free them.
961 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
962 */
963static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
964 bool unfalloc)
965{
966 struct address_space *mapping = inode->i_mapping;
967 struct shmem_inode_info *info = SHMEM_I(inode);
968 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
970 struct folio_batch fbatch;
971 pgoff_t indices[PAGEVEC_SIZE];
972 struct folio *folio;
973 bool same_folio;
974 long nr_swaps_freed = 0;
975 pgoff_t index;
976 int i;
977
978 if (lend == -1)
979 end = -1; /* unsigned, so actually very big */
980
981 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
982 info->fallocend = start;
983
984 folio_batch_init(fbatch: &fbatch);
985 index = start;
986 while (index < end && find_lock_entries(mapping, start: &index, end: end - 1,
987 fbatch: &fbatch, indices)) {
988 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
989 folio = fbatch.folios[i];
990
991 if (xa_is_value(entry: folio)) {
992 if (unfalloc)
993 continue;
994 nr_swaps_freed += !shmem_free_swap(mapping,
995 index: indices[i], radswap: folio);
996 continue;
997 }
998
999 if (!unfalloc || !folio_test_uptodate(folio))
1000 truncate_inode_folio(mapping, folio);
1001 folio_unlock(folio);
1002 }
1003 folio_batch_remove_exceptionals(fbatch: &fbatch);
1004 folio_batch_release(fbatch: &fbatch);
1005 cond_resched();
1006 }
1007
1008 /*
1009 * When undoing a failed fallocate, we want none of the partial folio
1010 * zeroing and splitting below, but shall want to truncate the whole
1011 * folio when !uptodate indicates that it was added by this fallocate,
1012 * even when [lstart, lend] covers only a part of the folio.
1013 */
1014 if (unfalloc)
1015 goto whole_folios;
1016
1017 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1018 folio = shmem_get_partial_folio(inode, index: lstart >> PAGE_SHIFT);
1019 if (folio) {
1020 same_folio = lend < folio_pos(folio) + folio_size(folio);
1021 folio_mark_dirty(folio);
1022 if (!truncate_inode_partial_folio(folio, start: lstart, end: lend)) {
1023 start = folio_next_index(folio);
1024 if (same_folio)
1025 end = folio->index;
1026 }
1027 folio_unlock(folio);
1028 folio_put(folio);
1029 folio = NULL;
1030 }
1031
1032 if (!same_folio)
1033 folio = shmem_get_partial_folio(inode, index: lend >> PAGE_SHIFT);
1034 if (folio) {
1035 folio_mark_dirty(folio);
1036 if (!truncate_inode_partial_folio(folio, start: lstart, end: lend))
1037 end = folio->index;
1038 folio_unlock(folio);
1039 folio_put(folio);
1040 }
1041
1042whole_folios:
1043
1044 index = start;
1045 while (index < end) {
1046 cond_resched();
1047
1048 if (!find_get_entries(mapping, start: &index, end: end - 1, fbatch: &fbatch,
1049 indices)) {
1050 /* If all gone or hole-punch or unfalloc, we're done */
1051 if (index == start || end != -1)
1052 break;
1053 /* But if truncating, restart to make sure all gone */
1054 index = start;
1055 continue;
1056 }
1057 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
1058 folio = fbatch.folios[i];
1059
1060 if (xa_is_value(entry: folio)) {
1061 if (unfalloc)
1062 continue;
1063 if (shmem_free_swap(mapping, index: indices[i], radswap: folio)) {
1064 /* Swap was replaced by page: retry */
1065 index = indices[i];
1066 break;
1067 }
1068 nr_swaps_freed++;
1069 continue;
1070 }
1071
1072 folio_lock(folio);
1073
1074 if (!unfalloc || !folio_test_uptodate(folio)) {
1075 if (folio_mapping(folio) != mapping) {
1076 /* Page was replaced by swap: retry */
1077 folio_unlock(folio);
1078 index = indices[i];
1079 break;
1080 }
1081 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1082 folio);
1083 truncate_inode_folio(mapping, folio);
1084 }
1085 folio_unlock(folio);
1086 }
1087 folio_batch_remove_exceptionals(fbatch: &fbatch);
1088 folio_batch_release(fbatch: &fbatch);
1089 }
1090
1091 shmem_recalc_inode(inode, alloced: 0, swapped: -nr_swaps_freed);
1092}
1093
1094void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1095{
1096 shmem_undo_range(inode, lstart, lend, unfalloc: false);
1097 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
1098 inode_inc_iversion(inode);
1099}
1100EXPORT_SYMBOL_GPL(shmem_truncate_range);
1101
1102static int shmem_getattr(struct mnt_idmap *idmap,
1103 const struct path *path, struct kstat *stat,
1104 u32 request_mask, unsigned int query_flags)
1105{
1106 struct inode *inode = path->dentry->d_inode;
1107 struct shmem_inode_info *info = SHMEM_I(inode);
1108
1109 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1110 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
1111
1112 if (info->fsflags & FS_APPEND_FL)
1113 stat->attributes |= STATX_ATTR_APPEND;
1114 if (info->fsflags & FS_IMMUTABLE_FL)
1115 stat->attributes |= STATX_ATTR_IMMUTABLE;
1116 if (info->fsflags & FS_NODUMP_FL)
1117 stat->attributes |= STATX_ATTR_NODUMP;
1118 stat->attributes_mask |= (STATX_ATTR_APPEND |
1119 STATX_ATTR_IMMUTABLE |
1120 STATX_ATTR_NODUMP);
1121 generic_fillattr(idmap, request_mask, inode, stat);
1122
1123 if (shmem_is_huge(inode, index: 0, shmem_huge_force: false, NULL, vm_flags: 0))
1124 stat->blksize = HPAGE_PMD_SIZE;
1125
1126 if (request_mask & STATX_BTIME) {
1127 stat->result_mask |= STATX_BTIME;
1128 stat->btime.tv_sec = info->i_crtime.tv_sec;
1129 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1130 }
1131
1132 return 0;
1133}
1134
1135static int shmem_setattr(struct mnt_idmap *idmap,
1136 struct dentry *dentry, struct iattr *attr)
1137{
1138 struct inode *inode = d_inode(dentry);
1139 struct shmem_inode_info *info = SHMEM_I(inode);
1140 int error;
1141 bool update_mtime = false;
1142 bool update_ctime = true;
1143
1144 error = setattr_prepare(idmap, dentry, attr);
1145 if (error)
1146 return error;
1147
1148 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1149 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1150 return -EPERM;
1151 }
1152 }
1153
1154 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1155 loff_t oldsize = inode->i_size;
1156 loff_t newsize = attr->ia_size;
1157
1158 /* protected by i_rwsem */
1159 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1160 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1161 return -EPERM;
1162
1163 if (newsize != oldsize) {
1164 error = shmem_reacct_size(flags: SHMEM_I(inode)->flags,
1165 oldsize, newsize);
1166 if (error)
1167 return error;
1168 i_size_write(inode, i_size: newsize);
1169 update_mtime = true;
1170 } else {
1171 update_ctime = false;
1172 }
1173 if (newsize <= oldsize) {
1174 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1175 if (oldsize > holebegin)
1176 unmap_mapping_range(mapping: inode->i_mapping,
1177 holebegin, holelen: 0, even_cows: 1);
1178 if (info->alloced)
1179 shmem_truncate_range(inode,
1180 newsize, (loff_t)-1);
1181 /* unmap again to remove racily COWed private pages */
1182 if (oldsize > holebegin)
1183 unmap_mapping_range(mapping: inode->i_mapping,
1184 holebegin, holelen: 0, even_cows: 1);
1185 }
1186 }
1187
1188 if (is_quota_modification(idmap, inode, ia: attr)) {
1189 error = dquot_initialize(inode);
1190 if (error)
1191 return error;
1192 }
1193
1194 /* Transfer quota accounting */
1195 if (i_uid_needs_update(idmap, attr, inode) ||
1196 i_gid_needs_update(idmap, attr, inode)) {
1197 error = dquot_transfer(idmap, inode, iattr: attr);
1198 if (error)
1199 return error;
1200 }
1201
1202 setattr_copy(idmap, inode, attr);
1203 if (attr->ia_valid & ATTR_MODE)
1204 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1205 if (!error && update_ctime) {
1206 inode_set_ctime_current(inode);
1207 if (update_mtime)
1208 inode_set_mtime_to_ts(inode, ts: inode_get_ctime(inode));
1209 inode_inc_iversion(inode);
1210 }
1211 return error;
1212}
1213
1214static void shmem_evict_inode(struct inode *inode)
1215{
1216 struct shmem_inode_info *info = SHMEM_I(inode);
1217 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1218 size_t freed = 0;
1219
1220 if (shmem_mapping(mapping: inode->i_mapping)) {
1221 shmem_unacct_size(flags: info->flags, size: inode->i_size);
1222 inode->i_size = 0;
1223 mapping_set_exiting(mapping: inode->i_mapping);
1224 shmem_truncate_range(inode, 0, (loff_t)-1);
1225 if (!list_empty(head: &info->shrinklist)) {
1226 spin_lock(lock: &sbinfo->shrinklist_lock);
1227 if (!list_empty(head: &info->shrinklist)) {
1228 list_del_init(entry: &info->shrinklist);
1229 sbinfo->shrinklist_len--;
1230 }
1231 spin_unlock(lock: &sbinfo->shrinklist_lock);
1232 }
1233 while (!list_empty(head: &info->swaplist)) {
1234 /* Wait while shmem_unuse() is scanning this inode... */
1235 wait_var_event(&info->stop_eviction,
1236 !atomic_read(&info->stop_eviction));
1237 mutex_lock(&shmem_swaplist_mutex);
1238 /* ...but beware of the race if we peeked too early */
1239 if (!atomic_read(v: &info->stop_eviction))
1240 list_del_init(entry: &info->swaplist);
1241 mutex_unlock(lock: &shmem_swaplist_mutex);
1242 }
1243 }
1244
1245 simple_xattrs_free(xattrs: &info->xattrs, freed_space: sbinfo->max_inodes ? &freed : NULL);
1246 shmem_free_inode(sb: inode->i_sb, freed_ispace: freed);
1247 WARN_ON(inode->i_blocks);
1248 clear_inode(inode);
1249#ifdef CONFIG_TMPFS_QUOTA
1250 dquot_free_inode(inode);
1251 dquot_drop(inode);
1252#endif
1253}
1254
1255static int shmem_find_swap_entries(struct address_space *mapping,
1256 pgoff_t start, struct folio_batch *fbatch,
1257 pgoff_t *indices, unsigned int type)
1258{
1259 XA_STATE(xas, &mapping->i_pages, start);
1260 struct folio *folio;
1261 swp_entry_t entry;
1262
1263 rcu_read_lock();
1264 xas_for_each(&xas, folio, ULONG_MAX) {
1265 if (xas_retry(xas: &xas, entry: folio))
1266 continue;
1267
1268 if (!xa_is_value(entry: folio))
1269 continue;
1270
1271 entry = radix_to_swp_entry(arg: folio);
1272 /*
1273 * swapin error entries can be found in the mapping. But they're
1274 * deliberately ignored here as we've done everything we can do.
1275 */
1276 if (swp_type(entry) != type)
1277 continue;
1278
1279 indices[folio_batch_count(fbatch)] = xas.xa_index;
1280 if (!folio_batch_add(fbatch, folio))
1281 break;
1282
1283 if (need_resched()) {
1284 xas_pause(&xas);
1285 cond_resched_rcu();
1286 }
1287 }
1288 rcu_read_unlock();
1289
1290 return xas.xa_index;
1291}
1292
1293/*
1294 * Move the swapped pages for an inode to page cache. Returns the count
1295 * of pages swapped in, or the error in case of failure.
1296 */
1297static int shmem_unuse_swap_entries(struct inode *inode,
1298 struct folio_batch *fbatch, pgoff_t *indices)
1299{
1300 int i = 0;
1301 int ret = 0;
1302 int error = 0;
1303 struct address_space *mapping = inode->i_mapping;
1304
1305 for (i = 0; i < folio_batch_count(fbatch); i++) {
1306 struct folio *folio = fbatch->folios[i];
1307
1308 if (!xa_is_value(entry: folio))
1309 continue;
1310 error = shmem_swapin_folio(inode, index: indices[i], foliop: &folio, sgp: SGP_CACHE,
1311 gfp: mapping_gfp_mask(mapping), NULL, NULL);
1312 if (error == 0) {
1313 folio_unlock(folio);
1314 folio_put(folio);
1315 ret++;
1316 }
1317 if (error == -ENOMEM)
1318 break;
1319 error = 0;
1320 }
1321 return error ? error : ret;
1322}
1323
1324/*
1325 * If swap found in inode, free it and move page from swapcache to filecache.
1326 */
1327static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1328{
1329 struct address_space *mapping = inode->i_mapping;
1330 pgoff_t start = 0;
1331 struct folio_batch fbatch;
1332 pgoff_t indices[PAGEVEC_SIZE];
1333 int ret = 0;
1334
1335 do {
1336 folio_batch_init(fbatch: &fbatch);
1337 shmem_find_swap_entries(mapping, start, fbatch: &fbatch, indices, type);
1338 if (folio_batch_count(fbatch: &fbatch) == 0) {
1339 ret = 0;
1340 break;
1341 }
1342
1343 ret = shmem_unuse_swap_entries(inode, fbatch: &fbatch, indices);
1344 if (ret < 0)
1345 break;
1346
1347 start = indices[folio_batch_count(fbatch: &fbatch) - 1];
1348 } while (true);
1349
1350 return ret;
1351}
1352
1353/*
1354 * Read all the shared memory data that resides in the swap
1355 * device 'type' back into memory, so the swap device can be
1356 * unused.
1357 */
1358int shmem_unuse(unsigned int type)
1359{
1360 struct shmem_inode_info *info, *next;
1361 int error = 0;
1362
1363 if (list_empty(head: &shmem_swaplist))
1364 return 0;
1365
1366 mutex_lock(&shmem_swaplist_mutex);
1367 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1368 if (!info->swapped) {
1369 list_del_init(entry: &info->swaplist);
1370 continue;
1371 }
1372 /*
1373 * Drop the swaplist mutex while searching the inode for swap;
1374 * but before doing so, make sure shmem_evict_inode() will not
1375 * remove placeholder inode from swaplist, nor let it be freed
1376 * (igrab() would protect from unlink, but not from unmount).
1377 */
1378 atomic_inc(v: &info->stop_eviction);
1379 mutex_unlock(lock: &shmem_swaplist_mutex);
1380
1381 error = shmem_unuse_inode(inode: &info->vfs_inode, type);
1382 cond_resched();
1383
1384 mutex_lock(&shmem_swaplist_mutex);
1385 next = list_next_entry(info, swaplist);
1386 if (!info->swapped)
1387 list_del_init(entry: &info->swaplist);
1388 if (atomic_dec_and_test(v: &info->stop_eviction))
1389 wake_up_var(var: &info->stop_eviction);
1390 if (error)
1391 break;
1392 }
1393 mutex_unlock(lock: &shmem_swaplist_mutex);
1394
1395 return error;
1396}
1397
1398/*
1399 * Move the page from the page cache to the swap cache.
1400 */
1401static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1402{
1403 struct folio *folio = page_folio(page);
1404 struct address_space *mapping = folio->mapping;
1405 struct inode *inode = mapping->host;
1406 struct shmem_inode_info *info = SHMEM_I(inode);
1407 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1408 swp_entry_t swap;
1409 pgoff_t index;
1410
1411 /*
1412 * Our capabilities prevent regular writeback or sync from ever calling
1413 * shmem_writepage; but a stacking filesystem might use ->writepage of
1414 * its underlying filesystem, in which case tmpfs should write out to
1415 * swap only in response to memory pressure, and not for the writeback
1416 * threads or sync.
1417 */
1418 if (WARN_ON_ONCE(!wbc->for_reclaim))
1419 goto redirty;
1420
1421 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1422 goto redirty;
1423
1424 if (!total_swap_pages)
1425 goto redirty;
1426
1427 /*
1428 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1429 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1430 * and its shmem_writeback() needs them to be split when swapping.
1431 */
1432 if (folio_test_large(folio)) {
1433 /* Ensure the subpages are still dirty */
1434 folio_test_set_dirty(folio);
1435 if (split_huge_page(page) < 0)
1436 goto redirty;
1437 folio = page_folio(page);
1438 folio_clear_dirty(folio);
1439 }
1440
1441 index = folio->index;
1442
1443 /*
1444 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1445 * value into swapfile.c, the only way we can correctly account for a
1446 * fallocated folio arriving here is now to initialize it and write it.
1447 *
1448 * That's okay for a folio already fallocated earlier, but if we have
1449 * not yet completed the fallocation, then (a) we want to keep track
1450 * of this folio in case we have to undo it, and (b) it may not be a
1451 * good idea to continue anyway, once we're pushing into swap. So
1452 * reactivate the folio, and let shmem_fallocate() quit when too many.
1453 */
1454 if (!folio_test_uptodate(folio)) {
1455 if (inode->i_private) {
1456 struct shmem_falloc *shmem_falloc;
1457 spin_lock(lock: &inode->i_lock);
1458 shmem_falloc = inode->i_private;
1459 if (shmem_falloc &&
1460 !shmem_falloc->waitq &&
1461 index >= shmem_falloc->start &&
1462 index < shmem_falloc->next)
1463 shmem_falloc->nr_unswapped++;
1464 else
1465 shmem_falloc = NULL;
1466 spin_unlock(lock: &inode->i_lock);
1467 if (shmem_falloc)
1468 goto redirty;
1469 }
1470 folio_zero_range(folio, start: 0, length: folio_size(folio));
1471 flush_dcache_folio(folio);
1472 folio_mark_uptodate(folio);
1473 }
1474
1475 swap = folio_alloc_swap(folio);
1476 if (!swap.val)
1477 goto redirty;
1478
1479 /*
1480 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1481 * if it's not already there. Do it now before the folio is
1482 * moved to swap cache, when its pagelock no longer protects
1483 * the inode from eviction. But don't unlock the mutex until
1484 * we've incremented swapped, because shmem_unuse_inode() will
1485 * prune a !swapped inode from the swaplist under this mutex.
1486 */
1487 mutex_lock(&shmem_swaplist_mutex);
1488 if (list_empty(head: &info->swaplist))
1489 list_add(new: &info->swaplist, head: &shmem_swaplist);
1490
1491 if (add_to_swap_cache(folio, entry: swap,
1492 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1493 NULL) == 0) {
1494 shmem_recalc_inode(inode, alloced: 0, swapped: 1);
1495 swap_shmem_alloc(swap);
1496 shmem_delete_from_page_cache(folio, radswap: swp_to_radix_entry(entry: swap));
1497
1498 mutex_unlock(lock: &shmem_swaplist_mutex);
1499 BUG_ON(folio_mapped(folio));
1500 swap_writepage(page: &folio->page, wbc);
1501 return 0;
1502 }
1503
1504 mutex_unlock(lock: &shmem_swaplist_mutex);
1505 put_swap_folio(folio, entry: swap);
1506redirty:
1507 folio_mark_dirty(folio);
1508 if (wbc->for_reclaim)
1509 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1510 folio_unlock(folio);
1511 return 0;
1512}
1513
1514#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1515static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1516{
1517 char buffer[64];
1518
1519 if (!mpol || mpol->mode == MPOL_DEFAULT)
1520 return; /* show nothing */
1521
1522 mpol_to_str(buffer, maxlen: sizeof(buffer), pol: mpol);
1523
1524 seq_printf(m: seq, fmt: ",mpol=%s", buffer);
1525}
1526
1527static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1528{
1529 struct mempolicy *mpol = NULL;
1530 if (sbinfo->mpol) {
1531 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1532 mpol = sbinfo->mpol;
1533 mpol_get(pol: mpol);
1534 raw_spin_unlock(&sbinfo->stat_lock);
1535 }
1536 return mpol;
1537}
1538#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1539static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1540{
1541}
1542static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1543{
1544 return NULL;
1545}
1546#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1547
1548static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1549 pgoff_t index, unsigned int order, pgoff_t *ilx);
1550
1551static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1552 struct shmem_inode_info *info, pgoff_t index)
1553{
1554 struct mempolicy *mpol;
1555 pgoff_t ilx;
1556 struct page *page;
1557
1558 mpol = shmem_get_pgoff_policy(info, index, order: 0, ilx: &ilx);
1559 page = swap_cluster_readahead(entry: swap, flag: gfp, mpol, ilx);
1560 mpol_cond_put(pol: mpol);
1561
1562 if (!page)
1563 return NULL;
1564 return page_folio(page);
1565}
1566
1567/*
1568 * Make sure huge_gfp is always more limited than limit_gfp.
1569 * Some of the flags set permissions, while others set limitations.
1570 */
1571static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1572{
1573 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1574 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1575 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1576 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1577
1578 /* Allow allocations only from the originally specified zones. */
1579 result |= zoneflags;
1580
1581 /*
1582 * Minimize the result gfp by taking the union with the deny flags,
1583 * and the intersection of the allow flags.
1584 */
1585 result |= (limit_gfp & denyflags);
1586 result |= (huge_gfp & limit_gfp) & allowflags;
1587
1588 return result;
1589}
1590
1591static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1592 struct shmem_inode_info *info, pgoff_t index)
1593{
1594 struct mempolicy *mpol;
1595 pgoff_t ilx;
1596 struct page *page;
1597
1598 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, ilx: &ilx);
1599 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, nid: numa_node_id());
1600 mpol_cond_put(pol: mpol);
1601
1602 return page_rmappable_folio(page);
1603}
1604
1605static struct folio *shmem_alloc_folio(gfp_t gfp,
1606 struct shmem_inode_info *info, pgoff_t index)
1607{
1608 struct mempolicy *mpol;
1609 pgoff_t ilx;
1610 struct page *page;
1611
1612 mpol = shmem_get_pgoff_policy(info, index, order: 0, ilx: &ilx);
1613 page = alloc_pages_mpol(gfp, order: 0, mpol, ilx, nid: numa_node_id());
1614 mpol_cond_put(pol: mpol);
1615
1616 return (struct folio *)page;
1617}
1618
1619static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1620 struct inode *inode, pgoff_t index,
1621 struct mm_struct *fault_mm, bool huge)
1622{
1623 struct address_space *mapping = inode->i_mapping;
1624 struct shmem_inode_info *info = SHMEM_I(inode);
1625 struct folio *folio;
1626 long pages;
1627 int error;
1628
1629 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1630 huge = false;
1631
1632 if (huge) {
1633 pages = HPAGE_PMD_NR;
1634 index = round_down(index, HPAGE_PMD_NR);
1635
1636 /*
1637 * Check for conflict before waiting on a huge allocation.
1638 * Conflict might be that a huge page has just been allocated
1639 * and added to page cache by a racing thread, or that there
1640 * is already at least one small page in the huge extent.
1641 * Be careful to retry when appropriate, but not forever!
1642 * Elsewhere -EEXIST would be the right code, but not here.
1643 */
1644 if (xa_find(xa: &mapping->i_pages, index: &index,
1645 max: index + HPAGE_PMD_NR - 1, XA_PRESENT))
1646 return ERR_PTR(error: -E2BIG);
1647
1648 folio = shmem_alloc_hugefolio(gfp, info, index);
1649 if (!folio)
1650 count_vm_event(item: THP_FILE_FALLBACK);
1651 } else {
1652 pages = 1;
1653 folio = shmem_alloc_folio(gfp, info, index);
1654 }
1655 if (!folio)
1656 return ERR_PTR(error: -ENOMEM);
1657
1658 __folio_set_locked(folio);
1659 __folio_set_swapbacked(folio);
1660
1661 gfp &= GFP_RECLAIM_MASK;
1662 error = mem_cgroup_charge(folio, mm: fault_mm, gfp);
1663 if (error) {
1664 if (xa_find(xa: &mapping->i_pages, index: &index,
1665 max: index + pages - 1, XA_PRESENT)) {
1666 error = -EEXIST;
1667 } else if (huge) {
1668 count_vm_event(item: THP_FILE_FALLBACK);
1669 count_vm_event(item: THP_FILE_FALLBACK_CHARGE);
1670 }
1671 goto unlock;
1672 }
1673
1674 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1675 if (error)
1676 goto unlock;
1677
1678 error = shmem_inode_acct_blocks(inode, pages);
1679 if (error) {
1680 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1681 long freed;
1682 /*
1683 * Try to reclaim some space by splitting a few
1684 * large folios beyond i_size on the filesystem.
1685 */
1686 shmem_unused_huge_shrink(sbinfo, NULL, nr_to_split: 2);
1687 /*
1688 * And do a shmem_recalc_inode() to account for freed pages:
1689 * except our folio is there in cache, so not quite balanced.
1690 */
1691 spin_lock(lock: &info->lock);
1692 freed = pages + info->alloced - info->swapped -
1693 READ_ONCE(mapping->nrpages);
1694 if (freed > 0)
1695 info->alloced -= freed;
1696 spin_unlock(lock: &info->lock);
1697 if (freed > 0)
1698 shmem_inode_unacct_blocks(inode, pages: freed);
1699 error = shmem_inode_acct_blocks(inode, pages);
1700 if (error) {
1701 filemap_remove_folio(folio);
1702 goto unlock;
1703 }
1704 }
1705
1706 shmem_recalc_inode(inode, alloced: pages, swapped: 0);
1707 folio_add_lru(folio);
1708 return folio;
1709
1710unlock:
1711 folio_unlock(folio);
1712 folio_put(folio);
1713 return ERR_PTR(error);
1714}
1715
1716/*
1717 * When a page is moved from swapcache to shmem filecache (either by the
1718 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1719 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1720 * ignorance of the mapping it belongs to. If that mapping has special
1721 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1722 * we may need to copy to a suitable page before moving to filecache.
1723 *
1724 * In a future release, this may well be extended to respect cpuset and
1725 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1726 * but for now it is a simple matter of zone.
1727 */
1728static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1729{
1730 return folio_zonenum(folio) > gfp_zone(flags: gfp);
1731}
1732
1733static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1734 struct shmem_inode_info *info, pgoff_t index)
1735{
1736 struct folio *old, *new;
1737 struct address_space *swap_mapping;
1738 swp_entry_t entry;
1739 pgoff_t swap_index;
1740 int error;
1741
1742 old = *foliop;
1743 entry = old->swap;
1744 swap_index = swp_offset(entry);
1745 swap_mapping = swap_address_space(entry);
1746
1747 /*
1748 * We have arrived here because our zones are constrained, so don't
1749 * limit chance of success by further cpuset and node constraints.
1750 */
1751 gfp &= ~GFP_CONSTRAINT_MASK;
1752 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1753 new = shmem_alloc_folio(gfp, info, index);
1754 if (!new)
1755 return -ENOMEM;
1756
1757 folio_get(folio: new);
1758 folio_copy(dst: new, src: old);
1759 flush_dcache_folio(folio: new);
1760
1761 __folio_set_locked(folio: new);
1762 __folio_set_swapbacked(folio: new);
1763 folio_mark_uptodate(folio: new);
1764 new->swap = entry;
1765 folio_set_swapcache(folio: new);
1766
1767 /*
1768 * Our caller will very soon move newpage out of swapcache, but it's
1769 * a nice clean interface for us to replace oldpage by newpage there.
1770 */
1771 xa_lock_irq(&swap_mapping->i_pages);
1772 error = shmem_replace_entry(mapping: swap_mapping, index: swap_index, expected: old, replacement: new);
1773 if (!error) {
1774 mem_cgroup_migrate(old, new);
1775 __lruvec_stat_mod_folio(folio: new, idx: NR_FILE_PAGES, val: 1);
1776 __lruvec_stat_mod_folio(folio: new, idx: NR_SHMEM, val: 1);
1777 __lruvec_stat_mod_folio(folio: old, idx: NR_FILE_PAGES, val: -1);
1778 __lruvec_stat_mod_folio(folio: old, idx: NR_SHMEM, val: -1);
1779 }
1780 xa_unlock_irq(&swap_mapping->i_pages);
1781
1782 if (unlikely(error)) {
1783 /*
1784 * Is this possible? I think not, now that our callers check
1785 * both PageSwapCache and page_private after getting page lock;
1786 * but be defensive. Reverse old to newpage for clear and free.
1787 */
1788 old = new;
1789 } else {
1790 folio_add_lru(new);
1791 *foliop = new;
1792 }
1793
1794 folio_clear_swapcache(folio: old);
1795 old->private = NULL;
1796
1797 folio_unlock(folio: old);
1798 folio_put_refs(folio: old, refs: 2);
1799 return error;
1800}
1801
1802static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1803 struct folio *folio, swp_entry_t swap)
1804{
1805 struct address_space *mapping = inode->i_mapping;
1806 swp_entry_t swapin_error;
1807 void *old;
1808
1809 swapin_error = make_poisoned_swp_entry();
1810 old = xa_cmpxchg_irq(xa: &mapping->i_pages, index,
1811 old: swp_to_radix_entry(entry: swap),
1812 entry: swp_to_radix_entry(entry: swapin_error), gfp: 0);
1813 if (old != swp_to_radix_entry(entry: swap))
1814 return;
1815
1816 folio_wait_writeback(folio);
1817 delete_from_swap_cache(folio);
1818 /*
1819 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1820 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1821 * in shmem_evict_inode().
1822 */
1823 shmem_recalc_inode(inode, alloced: -1, swapped: -1);
1824 swap_free(swap);
1825}
1826
1827/*
1828 * Swap in the folio pointed to by *foliop.
1829 * Caller has to make sure that *foliop contains a valid swapped folio.
1830 * Returns 0 and the folio in foliop if success. On failure, returns the
1831 * error code and NULL in *foliop.
1832 */
1833static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1834 struct folio **foliop, enum sgp_type sgp,
1835 gfp_t gfp, struct mm_struct *fault_mm,
1836 vm_fault_t *fault_type)
1837{
1838 struct address_space *mapping = inode->i_mapping;
1839 struct shmem_inode_info *info = SHMEM_I(inode);
1840 struct swap_info_struct *si;
1841 struct folio *folio = NULL;
1842 swp_entry_t swap;
1843 int error;
1844
1845 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1846 swap = radix_to_swp_entry(arg: *foliop);
1847 *foliop = NULL;
1848
1849 if (is_poisoned_swp_entry(entry: swap))
1850 return -EIO;
1851
1852 si = get_swap_device(entry: swap);
1853 if (!si) {
1854 if (!shmem_confirm_swap(mapping, index, swap))
1855 return -EEXIST;
1856 else
1857 return -EINVAL;
1858 }
1859
1860 /* Look it up and read it in.. */
1861 folio = swap_cache_get_folio(entry: swap, NULL, addr: 0);
1862 if (!folio) {
1863 /* Or update major stats only when swapin succeeds?? */
1864 if (fault_type) {
1865 *fault_type |= VM_FAULT_MAJOR;
1866 count_vm_event(item: PGMAJFAULT);
1867 count_memcg_event_mm(mm: fault_mm, idx: PGMAJFAULT);
1868 }
1869 /* Here we actually start the io */
1870 folio = shmem_swapin_cluster(swap, gfp, info, index);
1871 if (!folio) {
1872 error = -ENOMEM;
1873 goto failed;
1874 }
1875 }
1876
1877 /* We have to do this with folio locked to prevent races */
1878 folio_lock(folio);
1879 if (!folio_test_swapcache(folio) ||
1880 folio->swap.val != swap.val ||
1881 !shmem_confirm_swap(mapping, index, swap)) {
1882 error = -EEXIST;
1883 goto unlock;
1884 }
1885 if (!folio_test_uptodate(folio)) {
1886 error = -EIO;
1887 goto failed;
1888 }
1889 folio_wait_writeback(folio);
1890
1891 /*
1892 * Some architectures may have to restore extra metadata to the
1893 * folio after reading from swap.
1894 */
1895 arch_swap_restore(entry: swap, folio);
1896
1897 if (shmem_should_replace_folio(folio, gfp)) {
1898 error = shmem_replace_folio(foliop: &folio, gfp, info, index);
1899 if (error)
1900 goto failed;
1901 }
1902
1903 error = shmem_add_to_page_cache(folio, mapping, index,
1904 expected: swp_to_radix_entry(entry: swap), gfp);
1905 if (error)
1906 goto failed;
1907
1908 shmem_recalc_inode(inode, alloced: 0, swapped: -1);
1909
1910 if (sgp == SGP_WRITE)
1911 folio_mark_accessed(folio);
1912
1913 delete_from_swap_cache(folio);
1914 folio_mark_dirty(folio);
1915 swap_free(swap);
1916 put_swap_device(si);
1917
1918 *foliop = folio;
1919 return 0;
1920failed:
1921 if (!shmem_confirm_swap(mapping, index, swap))
1922 error = -EEXIST;
1923 if (error == -EIO)
1924 shmem_set_folio_swapin_error(inode, index, folio, swap);
1925unlock:
1926 if (folio) {
1927 folio_unlock(folio);
1928 folio_put(folio);
1929 }
1930 put_swap_device(si);
1931
1932 return error;
1933}
1934
1935/*
1936 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1937 *
1938 * If we allocate a new one we do not mark it dirty. That's up to the
1939 * vm. If we swap it in we mark it dirty since we also free the swap
1940 * entry since a page cannot live in both the swap and page cache.
1941 *
1942 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1943 */
1944static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1945 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1946 struct vm_fault *vmf, vm_fault_t *fault_type)
1947{
1948 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1949 struct mm_struct *fault_mm;
1950 struct folio *folio;
1951 int error;
1952 bool alloced;
1953
1954 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1955 return -EFBIG;
1956repeat:
1957 if (sgp <= SGP_CACHE &&
1958 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1959 return -EINVAL;
1960
1961 alloced = false;
1962 fault_mm = vma ? vma->vm_mm : NULL;
1963
1964 folio = filemap_get_entry(mapping: inode->i_mapping, index);
1965 if (folio && vma && userfaultfd_minor(vma)) {
1966 if (!xa_is_value(entry: folio))
1967 folio_put(folio);
1968 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1969 return 0;
1970 }
1971
1972 if (xa_is_value(entry: folio)) {
1973 error = shmem_swapin_folio(inode, index, foliop: &folio,
1974 sgp, gfp, fault_mm, fault_type);
1975 if (error == -EEXIST)
1976 goto repeat;
1977
1978 *foliop = folio;
1979 return error;
1980 }
1981
1982 if (folio) {
1983 folio_lock(folio);
1984
1985 /* Has the folio been truncated or swapped out? */
1986 if (unlikely(folio->mapping != inode->i_mapping)) {
1987 folio_unlock(folio);
1988 folio_put(folio);
1989 goto repeat;
1990 }
1991 if (sgp == SGP_WRITE)
1992 folio_mark_accessed(folio);
1993 if (folio_test_uptodate(folio))
1994 goto out;
1995 /* fallocated folio */
1996 if (sgp != SGP_READ)
1997 goto clear;
1998 folio_unlock(folio);
1999 folio_put(folio);
2000 }
2001
2002 /*
2003 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2004 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2005 */
2006 *foliop = NULL;
2007 if (sgp == SGP_READ)
2008 return 0;
2009 if (sgp == SGP_NOALLOC)
2010 return -ENOENT;
2011
2012 /*
2013 * Fast cache lookup and swap lookup did not find it: allocate.
2014 */
2015
2016 if (vma && userfaultfd_missing(vma)) {
2017 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2018 return 0;
2019 }
2020
2021 if (shmem_is_huge(inode, index, shmem_huge_force: false, mm: fault_mm,
2022 vm_flags: vma ? vma->vm_flags : 0)) {
2023 gfp_t huge_gfp;
2024
2025 huge_gfp = vma_thp_gfp_mask(vma);
2026 huge_gfp = limit_gfp_mask(huge_gfp, limit_gfp: gfp);
2027 folio = shmem_alloc_and_add_folio(gfp: huge_gfp,
2028 inode, index, fault_mm, huge: true);
2029 if (!IS_ERR(ptr: folio)) {
2030 count_vm_event(item: THP_FILE_ALLOC);
2031 goto alloced;
2032 }
2033 if (PTR_ERR(ptr: folio) == -EEXIST)
2034 goto repeat;
2035 }
2036
2037 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, huge: false);
2038 if (IS_ERR(ptr: folio)) {
2039 error = PTR_ERR(ptr: folio);
2040 if (error == -EEXIST)
2041 goto repeat;
2042 folio = NULL;
2043 goto unlock;
2044 }
2045
2046alloced:
2047 alloced = true;
2048 if (folio_test_pmd_mappable(folio) &&
2049 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2050 folio_next_index(folio) - 1) {
2051 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
2052 struct shmem_inode_info *info = SHMEM_I(inode);
2053 /*
2054 * Part of the large folio is beyond i_size: subject
2055 * to shrink under memory pressure.
2056 */
2057 spin_lock(lock: &sbinfo->shrinklist_lock);
2058 /*
2059 * _careful to defend against unlocked access to
2060 * ->shrink_list in shmem_unused_huge_shrink()
2061 */
2062 if (list_empty_careful(head: &info->shrinklist)) {
2063 list_add_tail(new: &info->shrinklist,
2064 head: &sbinfo->shrinklist);
2065 sbinfo->shrinklist_len++;
2066 }
2067 spin_unlock(lock: &sbinfo->shrinklist_lock);
2068 }
2069
2070 if (sgp == SGP_WRITE)
2071 folio_set_referenced(folio);
2072 /*
2073 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2074 */
2075 if (sgp == SGP_FALLOC)
2076 sgp = SGP_WRITE;
2077clear:
2078 /*
2079 * Let SGP_WRITE caller clear ends if write does not fill folio;
2080 * but SGP_FALLOC on a folio fallocated earlier must initialize
2081 * it now, lest undo on failure cancel our earlier guarantee.
2082 */
2083 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2084 long i, n = folio_nr_pages(folio);
2085
2086 for (i = 0; i < n; i++)
2087 clear_highpage(folio_page(folio, i));
2088 flush_dcache_folio(folio);
2089 folio_mark_uptodate(folio);
2090 }
2091
2092 /* Perhaps the file has been truncated since we checked */
2093 if (sgp <= SGP_CACHE &&
2094 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2095 error = -EINVAL;
2096 goto unlock;
2097 }
2098out:
2099 *foliop = folio;
2100 return 0;
2101
2102 /*
2103 * Error recovery.
2104 */
2105unlock:
2106 if (alloced)
2107 filemap_remove_folio(folio);
2108 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
2109 if (folio) {
2110 folio_unlock(folio);
2111 folio_put(folio);
2112 }
2113 return error;
2114}
2115
2116int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2117 enum sgp_type sgp)
2118{
2119 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2120 gfp: mapping_gfp_mask(mapping: inode->i_mapping), NULL, NULL);
2121}
2122
2123/*
2124 * This is like autoremove_wake_function, but it removes the wait queue
2125 * entry unconditionally - even if something else had already woken the
2126 * target.
2127 */
2128static int synchronous_wake_function(wait_queue_entry_t *wait,
2129 unsigned int mode, int sync, void *key)
2130{
2131 int ret = default_wake_function(wq_entry: wait, mode, flags: sync, key);
2132 list_del_init(entry: &wait->entry);
2133 return ret;
2134}
2135
2136/*
2137 * Trinity finds that probing a hole which tmpfs is punching can
2138 * prevent the hole-punch from ever completing: which in turn
2139 * locks writers out with its hold on i_rwsem. So refrain from
2140 * faulting pages into the hole while it's being punched. Although
2141 * shmem_undo_range() does remove the additions, it may be unable to
2142 * keep up, as each new page needs its own unmap_mapping_range() call,
2143 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2144 *
2145 * It does not matter if we sometimes reach this check just before the
2146 * hole-punch begins, so that one fault then races with the punch:
2147 * we just need to make racing faults a rare case.
2148 *
2149 * The implementation below would be much simpler if we just used a
2150 * standard mutex or completion: but we cannot take i_rwsem in fault,
2151 * and bloating every shmem inode for this unlikely case would be sad.
2152 */
2153static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2154{
2155 struct shmem_falloc *shmem_falloc;
2156 struct file *fpin = NULL;
2157 vm_fault_t ret = 0;
2158
2159 spin_lock(lock: &inode->i_lock);
2160 shmem_falloc = inode->i_private;
2161 if (shmem_falloc &&
2162 shmem_falloc->waitq &&
2163 vmf->pgoff >= shmem_falloc->start &&
2164 vmf->pgoff < shmem_falloc->next) {
2165 wait_queue_head_t *shmem_falloc_waitq;
2166 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2167
2168 ret = VM_FAULT_NOPAGE;
2169 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2170 shmem_falloc_waitq = shmem_falloc->waitq;
2171 prepare_to_wait(wq_head: shmem_falloc_waitq, wq_entry: &shmem_fault_wait,
2172 TASK_UNINTERRUPTIBLE);
2173 spin_unlock(lock: &inode->i_lock);
2174 schedule();
2175
2176 /*
2177 * shmem_falloc_waitq points into the shmem_fallocate()
2178 * stack of the hole-punching task: shmem_falloc_waitq
2179 * is usually invalid by the time we reach here, but
2180 * finish_wait() does not dereference it in that case;
2181 * though i_lock needed lest racing with wake_up_all().
2182 */
2183 spin_lock(lock: &inode->i_lock);
2184 finish_wait(wq_head: shmem_falloc_waitq, wq_entry: &shmem_fault_wait);
2185 }
2186 spin_unlock(lock: &inode->i_lock);
2187 if (fpin) {
2188 fput(fpin);
2189 ret = VM_FAULT_RETRY;
2190 }
2191 return ret;
2192}
2193
2194static vm_fault_t shmem_fault(struct vm_fault *vmf)
2195{
2196 struct inode *inode = file_inode(f: vmf->vma->vm_file);
2197 gfp_t gfp = mapping_gfp_mask(mapping: inode->i_mapping);
2198 struct folio *folio = NULL;
2199 vm_fault_t ret = 0;
2200 int err;
2201
2202 /*
2203 * Trinity finds that probing a hole which tmpfs is punching can
2204 * prevent the hole-punch from ever completing: noted in i_private.
2205 */
2206 if (unlikely(inode->i_private)) {
2207 ret = shmem_falloc_wait(vmf, inode);
2208 if (ret)
2209 return ret;
2210 }
2211
2212 WARN_ON_ONCE(vmf->page != NULL);
2213 err = shmem_get_folio_gfp(inode, index: vmf->pgoff, foliop: &folio, sgp: SGP_CACHE,
2214 gfp, vmf, fault_type: &ret);
2215 if (err)
2216 return vmf_error(err);
2217 if (folio) {
2218 vmf->page = folio_file_page(folio, index: vmf->pgoff);
2219 ret |= VM_FAULT_LOCKED;
2220 }
2221 return ret;
2222}
2223
2224unsigned long shmem_get_unmapped_area(struct file *file,
2225 unsigned long uaddr, unsigned long len,
2226 unsigned long pgoff, unsigned long flags)
2227{
2228 unsigned long (*get_area)(struct file *,
2229 unsigned long, unsigned long, unsigned long, unsigned long);
2230 unsigned long addr;
2231 unsigned long offset;
2232 unsigned long inflated_len;
2233 unsigned long inflated_addr;
2234 unsigned long inflated_offset;
2235
2236 if (len > TASK_SIZE)
2237 return -ENOMEM;
2238
2239 get_area = current->mm->get_unmapped_area;
2240 addr = get_area(file, uaddr, len, pgoff, flags);
2241
2242 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2243 return addr;
2244 if (IS_ERR_VALUE(addr))
2245 return addr;
2246 if (addr & ~PAGE_MASK)
2247 return addr;
2248 if (addr > TASK_SIZE - len)
2249 return addr;
2250
2251 if (shmem_huge == SHMEM_HUGE_DENY)
2252 return addr;
2253 if (len < HPAGE_PMD_SIZE)
2254 return addr;
2255 if (flags & MAP_FIXED)
2256 return addr;
2257 /*
2258 * Our priority is to support MAP_SHARED mapped hugely;
2259 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2260 * But if caller specified an address hint and we allocated area there
2261 * successfully, respect that as before.
2262 */
2263 if (uaddr == addr)
2264 return addr;
2265
2266 if (shmem_huge != SHMEM_HUGE_FORCE) {
2267 struct super_block *sb;
2268
2269 if (file) {
2270 VM_BUG_ON(file->f_op != &shmem_file_operations);
2271 sb = file_inode(f: file)->i_sb;
2272 } else {
2273 /*
2274 * Called directly from mm/mmap.c, or drivers/char/mem.c
2275 * for "/dev/zero", to create a shared anonymous object.
2276 */
2277 if (IS_ERR(ptr: shm_mnt))
2278 return addr;
2279 sb = shm_mnt->mnt_sb;
2280 }
2281 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2282 return addr;
2283 }
2284
2285 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2286 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2287 return addr;
2288 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2289 return addr;
2290
2291 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2292 if (inflated_len > TASK_SIZE)
2293 return addr;
2294 if (inflated_len < len)
2295 return addr;
2296
2297 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2298 if (IS_ERR_VALUE(inflated_addr))
2299 return addr;
2300 if (inflated_addr & ~PAGE_MASK)
2301 return addr;
2302
2303 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2304 inflated_addr += offset - inflated_offset;
2305 if (inflated_offset > offset)
2306 inflated_addr += HPAGE_PMD_SIZE;
2307
2308 if (inflated_addr > TASK_SIZE - len)
2309 return addr;
2310 return inflated_addr;
2311}
2312
2313#ifdef CONFIG_NUMA
2314static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2315{
2316 struct inode *inode = file_inode(f: vma->vm_file);
2317 return mpol_set_shared_policy(sp: &SHMEM_I(inode)->policy, vma, mpol);
2318}
2319
2320static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2321 unsigned long addr, pgoff_t *ilx)
2322{
2323 struct inode *inode = file_inode(f: vma->vm_file);
2324 pgoff_t index;
2325
2326 /*
2327 * Bias interleave by inode number to distribute better across nodes;
2328 * but this interface is independent of which page order is used, so
2329 * supplies only that bias, letting caller apply the offset (adjusted
2330 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2331 */
2332 *ilx = inode->i_ino;
2333 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2334 return mpol_shared_policy_lookup(sp: &SHMEM_I(inode)->policy, idx: index);
2335}
2336
2337static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2338 pgoff_t index, unsigned int order, pgoff_t *ilx)
2339{
2340 struct mempolicy *mpol;
2341
2342 /* Bias interleave by inode number to distribute better across nodes */
2343 *ilx = info->vfs_inode.i_ino + (index >> order);
2344
2345 mpol = mpol_shared_policy_lookup(sp: &info->policy, idx: index);
2346 return mpol ? mpol : get_task_policy(current);
2347}
2348#else
2349static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2350 pgoff_t index, unsigned int order, pgoff_t *ilx)
2351{
2352 *ilx = 0;
2353 return NULL;
2354}
2355#endif /* CONFIG_NUMA */
2356
2357int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2358{
2359 struct inode *inode = file_inode(f: file);
2360 struct shmem_inode_info *info = SHMEM_I(inode);
2361 int retval = -ENOMEM;
2362
2363 /*
2364 * What serializes the accesses to info->flags?
2365 * ipc_lock_object() when called from shmctl_do_lock(),
2366 * no serialization needed when called from shm_destroy().
2367 */
2368 if (lock && !(info->flags & VM_LOCKED)) {
2369 if (!user_shm_lock(inode->i_size, ucounts))
2370 goto out_nomem;
2371 info->flags |= VM_LOCKED;
2372 mapping_set_unevictable(mapping: file->f_mapping);
2373 }
2374 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2375 user_shm_unlock(inode->i_size, ucounts);
2376 info->flags &= ~VM_LOCKED;
2377 mapping_clear_unevictable(mapping: file->f_mapping);
2378 }
2379 retval = 0;
2380
2381out_nomem:
2382 return retval;
2383}
2384
2385static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2386{
2387 struct inode *inode = file_inode(f: file);
2388 struct shmem_inode_info *info = SHMEM_I(inode);
2389 int ret;
2390
2391 ret = seal_check_write(seals: info->seals, vma);
2392 if (ret)
2393 return ret;
2394
2395 /* arm64 - allow memory tagging on RAM-based files */
2396 vm_flags_set(vma, VM_MTE_ALLOWED);
2397
2398 file_accessed(file);
2399 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2400 if (inode->i_nlink)
2401 vma->vm_ops = &shmem_vm_ops;
2402 else
2403 vma->vm_ops = &shmem_anon_vm_ops;
2404 return 0;
2405}
2406
2407static int shmem_file_open(struct inode *inode, struct file *file)
2408{
2409 file->f_mode |= FMODE_CAN_ODIRECT;
2410 return generic_file_open(inode, filp: file);
2411}
2412
2413#ifdef CONFIG_TMPFS_XATTR
2414static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2415
2416/*
2417 * chattr's fsflags are unrelated to extended attributes,
2418 * but tmpfs has chosen to enable them under the same config option.
2419 */
2420static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2421{
2422 unsigned int i_flags = 0;
2423
2424 if (fsflags & FS_NOATIME_FL)
2425 i_flags |= S_NOATIME;
2426 if (fsflags & FS_APPEND_FL)
2427 i_flags |= S_APPEND;
2428 if (fsflags & FS_IMMUTABLE_FL)
2429 i_flags |= S_IMMUTABLE;
2430 /*
2431 * But FS_NODUMP_FL does not require any action in i_flags.
2432 */
2433 inode_set_flags(inode, flags: i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2434}
2435#else
2436static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2437{
2438}
2439#define shmem_initxattrs NULL
2440#endif
2441
2442static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2443{
2444 return &SHMEM_I(inode)->dir_offsets;
2445}
2446
2447static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2448 struct super_block *sb,
2449 struct inode *dir, umode_t mode,
2450 dev_t dev, unsigned long flags)
2451{
2452 struct inode *inode;
2453 struct shmem_inode_info *info;
2454 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2455 ino_t ino;
2456 int err;
2457
2458 err = shmem_reserve_inode(sb, inop: &ino);
2459 if (err)
2460 return ERR_PTR(error: err);
2461
2462 inode = new_inode(sb);
2463 if (!inode) {
2464 shmem_free_inode(sb, freed_ispace: 0);
2465 return ERR_PTR(error: -ENOSPC);
2466 }
2467
2468 inode->i_ino = ino;
2469 inode_init_owner(idmap, inode, dir, mode);
2470 inode->i_blocks = 0;
2471 simple_inode_init_ts(inode);
2472 inode->i_generation = get_random_u32();
2473 info = SHMEM_I(inode);
2474 memset(info, 0, (char *)inode - (char *)info);
2475 spin_lock_init(&info->lock);
2476 atomic_set(v: &info->stop_eviction, i: 0);
2477 info->seals = F_SEAL_SEAL;
2478 info->flags = flags & VM_NORESERVE;
2479 info->i_crtime = inode_get_mtime(inode);
2480 info->fsflags = (dir == NULL) ? 0 :
2481 SHMEM_I(inode: dir)->fsflags & SHMEM_FL_INHERITED;
2482 if (info->fsflags)
2483 shmem_set_inode_flags(inode, fsflags: info->fsflags);
2484 INIT_LIST_HEAD(list: &info->shrinklist);
2485 INIT_LIST_HEAD(list: &info->swaplist);
2486 simple_xattrs_init(xattrs: &info->xattrs);
2487 cache_no_acl(inode);
2488 if (sbinfo->noswap)
2489 mapping_set_unevictable(mapping: inode->i_mapping);
2490 mapping_set_large_folios(mapping: inode->i_mapping);
2491
2492 switch (mode & S_IFMT) {
2493 default:
2494 inode->i_op = &shmem_special_inode_operations;
2495 init_special_inode(inode, mode, dev);
2496 break;
2497 case S_IFREG:
2498 inode->i_mapping->a_ops = &shmem_aops;
2499 inode->i_op = &shmem_inode_operations;
2500 inode->i_fop = &shmem_file_operations;
2501 mpol_shared_policy_init(sp: &info->policy,
2502 mpol: shmem_get_sbmpol(sbinfo));
2503 break;
2504 case S_IFDIR:
2505 inc_nlink(inode);
2506 /* Some things misbehave if size == 0 on a directory */
2507 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2508 inode->i_op = &shmem_dir_inode_operations;
2509 inode->i_fop = &simple_offset_dir_operations;
2510 simple_offset_init(octx: shmem_get_offset_ctx(inode));
2511 break;
2512 case S_IFLNK:
2513 /*
2514 * Must not load anything in the rbtree,
2515 * mpol_free_shared_policy will not be called.
2516 */
2517 mpol_shared_policy_init(sp: &info->policy, NULL);
2518 break;
2519 }
2520
2521 lockdep_annotate_inode_mutex_key(inode);
2522 return inode;
2523}
2524
2525#ifdef CONFIG_TMPFS_QUOTA
2526static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2527 struct super_block *sb, struct inode *dir,
2528 umode_t mode, dev_t dev, unsigned long flags)
2529{
2530 int err;
2531 struct inode *inode;
2532
2533 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2534 if (IS_ERR(ptr: inode))
2535 return inode;
2536
2537 err = dquot_initialize(inode);
2538 if (err)
2539 goto errout;
2540
2541 err = dquot_alloc_inode(inode);
2542 if (err) {
2543 dquot_drop(inode);
2544 goto errout;
2545 }
2546 return inode;
2547
2548errout:
2549 inode->i_flags |= S_NOQUOTA;
2550 iput(inode);
2551 return ERR_PTR(error: err);
2552}
2553#else
2554static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2555 struct super_block *sb, struct inode *dir,
2556 umode_t mode, dev_t dev, unsigned long flags)
2557{
2558 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2559}
2560#endif /* CONFIG_TMPFS_QUOTA */
2561
2562#ifdef CONFIG_USERFAULTFD
2563int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2564 struct vm_area_struct *dst_vma,
2565 unsigned long dst_addr,
2566 unsigned long src_addr,
2567 uffd_flags_t flags,
2568 struct folio **foliop)
2569{
2570 struct inode *inode = file_inode(f: dst_vma->vm_file);
2571 struct shmem_inode_info *info = SHMEM_I(inode);
2572 struct address_space *mapping = inode->i_mapping;
2573 gfp_t gfp = mapping_gfp_mask(mapping);
2574 pgoff_t pgoff = linear_page_index(vma: dst_vma, address: dst_addr);
2575 void *page_kaddr;
2576 struct folio *folio;
2577 int ret;
2578 pgoff_t max_off;
2579
2580 if (shmem_inode_acct_blocks(inode, pages: 1)) {
2581 /*
2582 * We may have got a page, returned -ENOENT triggering a retry,
2583 * and now we find ourselves with -ENOMEM. Release the page, to
2584 * avoid a BUG_ON in our caller.
2585 */
2586 if (unlikely(*foliop)) {
2587 folio_put(folio: *foliop);
2588 *foliop = NULL;
2589 }
2590 return -ENOMEM;
2591 }
2592
2593 if (!*foliop) {
2594 ret = -ENOMEM;
2595 folio = shmem_alloc_folio(gfp, info, index: pgoff);
2596 if (!folio)
2597 goto out_unacct_blocks;
2598
2599 if (uffd_flags_mode_is(flags, expected: MFILL_ATOMIC_COPY)) {
2600 page_kaddr = kmap_local_folio(folio, offset: 0);
2601 /*
2602 * The read mmap_lock is held here. Despite the
2603 * mmap_lock being read recursive a deadlock is still
2604 * possible if a writer has taken a lock. For example:
2605 *
2606 * process A thread 1 takes read lock on own mmap_lock
2607 * process A thread 2 calls mmap, blocks taking write lock
2608 * process B thread 1 takes page fault, read lock on own mmap lock
2609 * process B thread 2 calls mmap, blocks taking write lock
2610 * process A thread 1 blocks taking read lock on process B
2611 * process B thread 1 blocks taking read lock on process A
2612 *
2613 * Disable page faults to prevent potential deadlock
2614 * and retry the copy outside the mmap_lock.
2615 */
2616 pagefault_disable();
2617 ret = copy_from_user(to: page_kaddr,
2618 from: (const void __user *)src_addr,
2619 PAGE_SIZE);
2620 pagefault_enable();
2621 kunmap_local(page_kaddr);
2622
2623 /* fallback to copy_from_user outside mmap_lock */
2624 if (unlikely(ret)) {
2625 *foliop = folio;
2626 ret = -ENOENT;
2627 /* don't free the page */
2628 goto out_unacct_blocks;
2629 }
2630
2631 flush_dcache_folio(folio);
2632 } else { /* ZEROPAGE */
2633 clear_user_highpage(page: &folio->page, vaddr: dst_addr);
2634 }
2635 } else {
2636 folio = *foliop;
2637 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2638 *foliop = NULL;
2639 }
2640
2641 VM_BUG_ON(folio_test_locked(folio));
2642 VM_BUG_ON(folio_test_swapbacked(folio));
2643 __folio_set_locked(folio);
2644 __folio_set_swapbacked(folio);
2645 __folio_mark_uptodate(folio);
2646
2647 ret = -EFAULT;
2648 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2649 if (unlikely(pgoff >= max_off))
2650 goto out_release;
2651
2652 ret = mem_cgroup_charge(folio, mm: dst_vma->vm_mm, gfp);
2653 if (ret)
2654 goto out_release;
2655 ret = shmem_add_to_page_cache(folio, mapping, index: pgoff, NULL, gfp);
2656 if (ret)
2657 goto out_release;
2658
2659 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2660 page: &folio->page, newly_allocated: true, flags);
2661 if (ret)
2662 goto out_delete_from_cache;
2663
2664 shmem_recalc_inode(inode, alloced: 1, swapped: 0);
2665 folio_unlock(folio);
2666 return 0;
2667out_delete_from_cache:
2668 filemap_remove_folio(folio);
2669out_release:
2670 folio_unlock(folio);
2671 folio_put(folio);
2672out_unacct_blocks:
2673 shmem_inode_unacct_blocks(inode, pages: 1);
2674 return ret;
2675}
2676#endif /* CONFIG_USERFAULTFD */
2677
2678#ifdef CONFIG_TMPFS
2679static const struct inode_operations shmem_symlink_inode_operations;
2680static const struct inode_operations shmem_short_symlink_operations;
2681
2682static int
2683shmem_write_begin(struct file *file, struct address_space *mapping,
2684 loff_t pos, unsigned len,
2685 struct page **pagep, void **fsdata)
2686{
2687 struct inode *inode = mapping->host;
2688 struct shmem_inode_info *info = SHMEM_I(inode);
2689 pgoff_t index = pos >> PAGE_SHIFT;
2690 struct folio *folio;
2691 int ret = 0;
2692
2693 /* i_rwsem is held by caller */
2694 if (unlikely(info->seals & (F_SEAL_GROW |
2695 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2696 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2697 return -EPERM;
2698 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2699 return -EPERM;
2700 }
2701
2702 ret = shmem_get_folio(inode, index, foliop: &folio, sgp: SGP_WRITE);
2703 if (ret)
2704 return ret;
2705
2706 *pagep = folio_file_page(folio, index);
2707 if (PageHWPoison(page: *pagep)) {
2708 folio_unlock(folio);
2709 folio_put(folio);
2710 *pagep = NULL;
2711 return -EIO;
2712 }
2713
2714 return 0;
2715}
2716
2717static int
2718shmem_write_end(struct file *file, struct address_space *mapping,
2719 loff_t pos, unsigned len, unsigned copied,
2720 struct page *page, void *fsdata)
2721{
2722 struct folio *folio = page_folio(page);
2723 struct inode *inode = mapping->host;
2724
2725 if (pos + copied > inode->i_size)
2726 i_size_write(inode, i_size: pos + copied);
2727
2728 if (!folio_test_uptodate(folio)) {
2729 if (copied < folio_size(folio)) {
2730 size_t from = offset_in_folio(folio, pos);
2731 folio_zero_segments(folio, start1: 0, xend1: from,
2732 start2: from + copied, xend2: folio_size(folio));
2733 }
2734 folio_mark_uptodate(folio);
2735 }
2736 folio_mark_dirty(folio);
2737 folio_unlock(folio);
2738 folio_put(folio);
2739
2740 return copied;
2741}
2742
2743static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2744{
2745 struct file *file = iocb->ki_filp;
2746 struct inode *inode = file_inode(f: file);
2747 struct address_space *mapping = inode->i_mapping;
2748 pgoff_t index;
2749 unsigned long offset;
2750 int error = 0;
2751 ssize_t retval = 0;
2752 loff_t *ppos = &iocb->ki_pos;
2753
2754 index = *ppos >> PAGE_SHIFT;
2755 offset = *ppos & ~PAGE_MASK;
2756
2757 for (;;) {
2758 struct folio *folio = NULL;
2759 struct page *page = NULL;
2760 pgoff_t end_index;
2761 unsigned long nr, ret;
2762 loff_t i_size = i_size_read(inode);
2763
2764 end_index = i_size >> PAGE_SHIFT;
2765 if (index > end_index)
2766 break;
2767 if (index == end_index) {
2768 nr = i_size & ~PAGE_MASK;
2769 if (nr <= offset)
2770 break;
2771 }
2772
2773 error = shmem_get_folio(inode, index, foliop: &folio, sgp: SGP_READ);
2774 if (error) {
2775 if (error == -EINVAL)
2776 error = 0;
2777 break;
2778 }
2779 if (folio) {
2780 folio_unlock(folio);
2781
2782 page = folio_file_page(folio, index);
2783 if (PageHWPoison(page)) {
2784 folio_put(folio);
2785 error = -EIO;
2786 break;
2787 }
2788 }
2789
2790 /*
2791 * We must evaluate after, since reads (unlike writes)
2792 * are called without i_rwsem protection against truncate
2793 */
2794 nr = PAGE_SIZE;
2795 i_size = i_size_read(inode);
2796 end_index = i_size >> PAGE_SHIFT;
2797 if (index == end_index) {
2798 nr = i_size & ~PAGE_MASK;
2799 if (nr <= offset) {
2800 if (folio)
2801 folio_put(folio);
2802 break;
2803 }
2804 }
2805 nr -= offset;
2806
2807 if (folio) {
2808 /*
2809 * If users can be writing to this page using arbitrary
2810 * virtual addresses, take care about potential aliasing
2811 * before reading the page on the kernel side.
2812 */
2813 if (mapping_writably_mapped(mapping))
2814 flush_dcache_page(page);
2815 /*
2816 * Mark the page accessed if we read the beginning.
2817 */
2818 if (!offset)
2819 folio_mark_accessed(folio);
2820 /*
2821 * Ok, we have the page, and it's up-to-date, so
2822 * now we can copy it to user space...
2823 */
2824 ret = copy_page_to_iter(page, offset, bytes: nr, i: to);
2825 folio_put(folio);
2826
2827 } else if (user_backed_iter(i: to)) {
2828 /*
2829 * Copy to user tends to be so well optimized, but
2830 * clear_user() not so much, that it is noticeably
2831 * faster to copy the zero page instead of clearing.
2832 */
2833 ret = copy_page_to_iter(ZERO_PAGE(0), offset, bytes: nr, i: to);
2834 } else {
2835 /*
2836 * But submitting the same page twice in a row to
2837 * splice() - or others? - can result in confusion:
2838 * so don't attempt that optimization on pipes etc.
2839 */
2840 ret = iov_iter_zero(bytes: nr, to);
2841 }
2842
2843 retval += ret;
2844 offset += ret;
2845 index += offset >> PAGE_SHIFT;
2846 offset &= ~PAGE_MASK;
2847
2848 if (!iov_iter_count(i: to))
2849 break;
2850 if (ret < nr) {
2851 error = -EFAULT;
2852 break;
2853 }
2854 cond_resched();
2855 }
2856
2857 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2858 file_accessed(file);
2859 return retval ? retval : error;
2860}
2861
2862static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2863{
2864 struct file *file = iocb->ki_filp;
2865 struct inode *inode = file->f_mapping->host;
2866 ssize_t ret;
2867
2868 inode_lock(inode);
2869 ret = generic_write_checks(iocb, from);
2870 if (ret <= 0)
2871 goto unlock;
2872 ret = file_remove_privs(file);
2873 if (ret)
2874 goto unlock;
2875 ret = file_update_time(file);
2876 if (ret)
2877 goto unlock;
2878 ret = generic_perform_write(iocb, from);
2879unlock:
2880 inode_unlock(inode);
2881 return ret;
2882}
2883
2884static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2885 struct pipe_buffer *buf)
2886{
2887 return true;
2888}
2889
2890static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2891 struct pipe_buffer *buf)
2892{
2893}
2894
2895static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2896 struct pipe_buffer *buf)
2897{
2898 return false;
2899}
2900
2901static const struct pipe_buf_operations zero_pipe_buf_ops = {
2902 .release = zero_pipe_buf_release,
2903 .try_steal = zero_pipe_buf_try_steal,
2904 .get = zero_pipe_buf_get,
2905};
2906
2907static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2908 loff_t fpos, size_t size)
2909{
2910 size_t offset = fpos & ~PAGE_MASK;
2911
2912 size = min_t(size_t, size, PAGE_SIZE - offset);
2913
2914 if (!pipe_full(head: pipe->head, tail: pipe->tail, limit: pipe->max_usage)) {
2915 struct pipe_buffer *buf = pipe_head_buf(pipe);
2916
2917 *buf = (struct pipe_buffer) {
2918 .ops = &zero_pipe_buf_ops,
2919 .page = ZERO_PAGE(0),
2920 .offset = offset,
2921 .len = size,
2922 };
2923 pipe->head++;
2924 }
2925
2926 return size;
2927}
2928
2929static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2930 struct pipe_inode_info *pipe,
2931 size_t len, unsigned int flags)
2932{
2933 struct inode *inode = file_inode(f: in);
2934 struct address_space *mapping = inode->i_mapping;
2935 struct folio *folio = NULL;
2936 size_t total_spliced = 0, used, npages, n, part;
2937 loff_t isize;
2938 int error = 0;
2939
2940 /* Work out how much data we can actually add into the pipe */
2941 used = pipe_occupancy(head: pipe->head, tail: pipe->tail);
2942 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2943 len = min_t(size_t, len, npages * PAGE_SIZE);
2944
2945 do {
2946 if (*ppos >= i_size_read(inode))
2947 break;
2948
2949 error = shmem_get_folio(inode, index: *ppos / PAGE_SIZE, foliop: &folio,
2950 sgp: SGP_READ);
2951 if (error) {
2952 if (error == -EINVAL)
2953 error = 0;
2954 break;
2955 }
2956 if (folio) {
2957 folio_unlock(folio);
2958
2959 if (folio_test_hwpoison(folio) ||
2960 (folio_test_large(folio) &&
2961 folio_test_has_hwpoisoned(folio))) {
2962 error = -EIO;
2963 break;
2964 }
2965 }
2966
2967 /*
2968 * i_size must be checked after we know the pages are Uptodate.
2969 *
2970 * Checking i_size after the check allows us to calculate
2971 * the correct value for "nr", which means the zero-filled
2972 * part of the page is not copied back to userspace (unless
2973 * another truncate extends the file - this is desired though).
2974 */
2975 isize = i_size_read(inode);
2976 if (unlikely(*ppos >= isize))
2977 break;
2978 part = min_t(loff_t, isize - *ppos, len);
2979
2980 if (folio) {
2981 /*
2982 * If users can be writing to this page using arbitrary
2983 * virtual addresses, take care about potential aliasing
2984 * before reading the page on the kernel side.
2985 */
2986 if (mapping_writably_mapped(mapping))
2987 flush_dcache_folio(folio);
2988 folio_mark_accessed(folio);
2989 /*
2990 * Ok, we have the page, and it's up-to-date, so we can
2991 * now splice it into the pipe.
2992 */
2993 n = splice_folio_into_pipe(pipe, folio, fpos: *ppos, size: part);
2994 folio_put(folio);
2995 folio = NULL;
2996 } else {
2997 n = splice_zeropage_into_pipe(pipe, fpos: *ppos, size: part);
2998 }
2999
3000 if (!n)
3001 break;
3002 len -= n;
3003 total_spliced += n;
3004 *ppos += n;
3005 in->f_ra.prev_pos = *ppos;
3006 if (pipe_full(head: pipe->head, tail: pipe->tail, limit: pipe->max_usage))
3007 break;
3008
3009 cond_resched();
3010 } while (len);
3011
3012 if (folio)
3013 folio_put(folio);
3014
3015 file_accessed(file: in);
3016 return total_spliced ? total_spliced : error;
3017}
3018
3019static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3020{
3021 struct address_space *mapping = file->f_mapping;
3022 struct inode *inode = mapping->host;
3023
3024 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3025 return generic_file_llseek_size(file, offset, whence,
3026 MAX_LFS_FILESIZE, eof: i_size_read(inode));
3027 if (offset < 0)
3028 return -ENXIO;
3029
3030 inode_lock(inode);
3031 /* We're holding i_rwsem so we can access i_size directly */
3032 offset = mapping_seek_hole_data(mapping, start: offset, end: inode->i_size, whence);
3033 if (offset >= 0)
3034 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3035 inode_unlock(inode);
3036 return offset;
3037}
3038
3039static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3040 loff_t len)
3041{
3042 struct inode *inode = file_inode(f: file);
3043 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
3044 struct shmem_inode_info *info = SHMEM_I(inode);
3045 struct shmem_falloc shmem_falloc;
3046 pgoff_t start, index, end, undo_fallocend;
3047 int error;
3048
3049 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3050 return -EOPNOTSUPP;
3051
3052 inode_lock(inode);
3053
3054 if (mode & FALLOC_FL_PUNCH_HOLE) {
3055 struct address_space *mapping = file->f_mapping;
3056 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3057 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3058 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3059
3060 /* protected by i_rwsem */
3061 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3062 error = -EPERM;
3063 goto out;
3064 }
3065
3066 shmem_falloc.waitq = &shmem_falloc_waitq;
3067 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3068 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3069 spin_lock(lock: &inode->i_lock);
3070 inode->i_private = &shmem_falloc;
3071 spin_unlock(lock: &inode->i_lock);
3072
3073 if ((u64)unmap_end > (u64)unmap_start)
3074 unmap_mapping_range(mapping, holebegin: unmap_start,
3075 holelen: 1 + unmap_end - unmap_start, even_cows: 0);
3076 shmem_truncate_range(inode, offset, offset + len - 1);
3077 /* No need to unmap again: hole-punching leaves COWed pages */
3078
3079 spin_lock(lock: &inode->i_lock);
3080 inode->i_private = NULL;
3081 wake_up_all(&shmem_falloc_waitq);
3082 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3083 spin_unlock(lock: &inode->i_lock);
3084 error = 0;
3085 goto out;
3086 }
3087
3088 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3089 error = inode_newsize_ok(inode, offset: offset + len);
3090 if (error)
3091 goto out;
3092
3093 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3094 error = -EPERM;
3095 goto out;
3096 }
3097
3098 start = offset >> PAGE_SHIFT;
3099 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3100 /* Try to avoid a swapstorm if len is impossible to satisfy */
3101 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3102 error = -ENOSPC;
3103 goto out;
3104 }
3105
3106 shmem_falloc.waitq = NULL;
3107 shmem_falloc.start = start;
3108 shmem_falloc.next = start;
3109 shmem_falloc.nr_falloced = 0;
3110 shmem_falloc.nr_unswapped = 0;
3111 spin_lock(lock: &inode->i_lock);
3112 inode->i_private = &shmem_falloc;
3113 spin_unlock(lock: &inode->i_lock);
3114
3115 /*
3116 * info->fallocend is only relevant when huge pages might be
3117 * involved: to prevent split_huge_page() freeing fallocated
3118 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3119 */
3120 undo_fallocend = info->fallocend;
3121 if (info->fallocend < end)
3122 info->fallocend = end;
3123
3124 for (index = start; index < end; ) {
3125 struct folio *folio;
3126
3127 /*
3128 * Good, the fallocate(2) manpage permits EINTR: we may have
3129 * been interrupted because we are using up too much memory.
3130 */
3131 if (signal_pending(current))
3132 error = -EINTR;
3133 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3134 error = -ENOMEM;
3135 else
3136 error = shmem_get_folio(inode, index, foliop: &folio,
3137 sgp: SGP_FALLOC);
3138 if (error) {
3139 info->fallocend = undo_fallocend;
3140 /* Remove the !uptodate folios we added */
3141 if (index > start) {
3142 shmem_undo_range(inode,
3143 lstart: (loff_t)start << PAGE_SHIFT,
3144 lend: ((loff_t)index << PAGE_SHIFT) - 1, unfalloc: true);
3145 }
3146 goto undone;
3147 }
3148
3149 /*
3150 * Here is a more important optimization than it appears:
3151 * a second SGP_FALLOC on the same large folio will clear it,
3152 * making it uptodate and un-undoable if we fail later.
3153 */
3154 index = folio_next_index(folio);
3155 /* Beware 32-bit wraparound */
3156 if (!index)
3157 index--;
3158
3159 /*
3160 * Inform shmem_writepage() how far we have reached.
3161 * No need for lock or barrier: we have the page lock.
3162 */
3163 if (!folio_test_uptodate(folio))
3164 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3165 shmem_falloc.next = index;
3166
3167 /*
3168 * If !uptodate, leave it that way so that freeable folios
3169 * can be recognized if we need to rollback on error later.
3170 * But mark it dirty so that memory pressure will swap rather
3171 * than free the folios we are allocating (and SGP_CACHE folios
3172 * might still be clean: we now need to mark those dirty too).
3173 */
3174 folio_mark_dirty(folio);
3175 folio_unlock(folio);
3176 folio_put(folio);
3177 cond_resched();
3178 }
3179
3180 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3181 i_size_write(inode, i_size: offset + len);
3182undone:
3183 spin_lock(lock: &inode->i_lock);
3184 inode->i_private = NULL;
3185 spin_unlock(lock: &inode->i_lock);
3186out:
3187 if (!error)
3188 file_modified(file);
3189 inode_unlock(inode);
3190 return error;
3191}
3192
3193static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3194{
3195 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: dentry->d_sb);
3196
3197 buf->f_type = TMPFS_MAGIC;
3198 buf->f_bsize = PAGE_SIZE;
3199 buf->f_namelen = NAME_MAX;
3200 if (sbinfo->max_blocks) {
3201 buf->f_blocks = sbinfo->max_blocks;
3202 buf->f_bavail =
3203 buf->f_bfree = sbinfo->max_blocks -
3204 percpu_counter_sum(fbc: &sbinfo->used_blocks);
3205 }
3206 if (sbinfo->max_inodes) {
3207 buf->f_files = sbinfo->max_inodes;
3208 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3209 }
3210 /* else leave those fields 0 like simple_statfs */
3211
3212 buf->f_fsid = uuid_to_fsid(uuid: dentry->d_sb->s_uuid.b);
3213
3214 return 0;
3215}
3216
3217/*
3218 * File creation. Allocate an inode, and we're done..
3219 */
3220static int
3221shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3222 struct dentry *dentry, umode_t mode, dev_t dev)
3223{
3224 struct inode *inode;
3225 int error;
3226
3227 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, mode, dev, VM_NORESERVE);
3228 if (IS_ERR(ptr: inode))
3229 return PTR_ERR(ptr: inode);
3230
3231 error = simple_acl_create(dir, inode);
3232 if (error)
3233 goto out_iput;
3234 error = security_inode_init_security(inode, dir, qstr: &dentry->d_name,
3235 initxattrs: shmem_initxattrs, NULL);
3236 if (error && error != -EOPNOTSUPP)
3237 goto out_iput;
3238
3239 error = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
3240 if (error)
3241 goto out_iput;
3242
3243 dir->i_size += BOGO_DIRENT_SIZE;
3244 inode_set_mtime_to_ts(inode: dir, ts: inode_set_ctime_current(inode: dir));
3245 inode_inc_iversion(inode: dir);
3246 d_instantiate(dentry, inode);
3247 dget(dentry); /* Extra count - pin the dentry in core */
3248 return error;
3249
3250out_iput:
3251 iput(inode);
3252 return error;
3253}
3254
3255static int
3256shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3257 struct file *file, umode_t mode)
3258{
3259 struct inode *inode;
3260 int error;
3261
3262 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, mode, dev: 0, VM_NORESERVE);
3263 if (IS_ERR(ptr: inode)) {
3264 error = PTR_ERR(ptr: inode);
3265 goto err_out;
3266 }
3267 error = security_inode_init_security(inode, dir, NULL,
3268 initxattrs: shmem_initxattrs, NULL);
3269 if (error && error != -EOPNOTSUPP)
3270 goto out_iput;
3271 error = simple_acl_create(dir, inode);
3272 if (error)
3273 goto out_iput;
3274 d_tmpfile(file, inode);
3275
3276err_out:
3277 return finish_open_simple(file, error);
3278out_iput:
3279 iput(inode);
3280 return error;
3281}
3282
3283static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3284 struct dentry *dentry, umode_t mode)
3285{
3286 int error;
3287
3288 error = shmem_mknod(idmap, dir, dentry, mode: mode | S_IFDIR, dev: 0);
3289 if (error)
3290 return error;
3291 inc_nlink(inode: dir);
3292 return 0;
3293}
3294
3295static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3296 struct dentry *dentry, umode_t mode, bool excl)
3297{
3298 return shmem_mknod(idmap, dir, dentry, mode: mode | S_IFREG, dev: 0);
3299}
3300
3301/*
3302 * Link a file..
3303 */
3304static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3305 struct dentry *dentry)
3306{
3307 struct inode *inode = d_inode(dentry: old_dentry);
3308 int ret = 0;
3309
3310 /*
3311 * No ordinary (disk based) filesystem counts links as inodes;
3312 * but each new link needs a new dentry, pinning lowmem, and
3313 * tmpfs dentries cannot be pruned until they are unlinked.
3314 * But if an O_TMPFILE file is linked into the tmpfs, the
3315 * first link must skip that, to get the accounting right.
3316 */
3317 if (inode->i_nlink) {
3318 ret = shmem_reserve_inode(sb: inode->i_sb, NULL);
3319 if (ret)
3320 goto out;
3321 }
3322
3323 ret = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
3324 if (ret) {
3325 if (inode->i_nlink)
3326 shmem_free_inode(sb: inode->i_sb, freed_ispace: 0);
3327 goto out;
3328 }
3329
3330 dir->i_size += BOGO_DIRENT_SIZE;
3331 inode_set_mtime_to_ts(inode: dir,
3332 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
3333 inode_inc_iversion(inode: dir);
3334 inc_nlink(inode);
3335 ihold(inode); /* New dentry reference */
3336 dget(dentry); /* Extra pinning count for the created dentry */
3337 d_instantiate(dentry, inode);
3338out:
3339 return ret;
3340}
3341
3342static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3343{
3344 struct inode *inode = d_inode(dentry);
3345
3346 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3347 shmem_free_inode(sb: inode->i_sb, freed_ispace: 0);
3348
3349 simple_offset_remove(octx: shmem_get_offset_ctx(inode: dir), dentry);
3350
3351 dir->i_size -= BOGO_DIRENT_SIZE;
3352 inode_set_mtime_to_ts(inode: dir,
3353 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
3354 inode_inc_iversion(inode: dir);
3355 drop_nlink(inode);
3356 dput(dentry); /* Undo the count from "create" - does all the work */
3357 return 0;
3358}
3359
3360static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3361{
3362 if (!simple_empty(dentry))
3363 return -ENOTEMPTY;
3364
3365 drop_nlink(inode: d_inode(dentry));
3366 drop_nlink(inode: dir);
3367 return shmem_unlink(dir, dentry);
3368}
3369
3370static int shmem_whiteout(struct mnt_idmap *idmap,
3371 struct inode *old_dir, struct dentry *old_dentry)
3372{
3373 struct dentry *whiteout;
3374 int error;
3375
3376 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3377 if (!whiteout)
3378 return -ENOMEM;
3379
3380 error = shmem_mknod(idmap, dir: old_dir, dentry: whiteout,
3381 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3382 dput(whiteout);
3383 if (error)
3384 return error;
3385
3386 /*
3387 * Cheat and hash the whiteout while the old dentry is still in
3388 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3389 *
3390 * d_lookup() will consistently find one of them at this point,
3391 * not sure which one, but that isn't even important.
3392 */
3393 d_rehash(whiteout);
3394 return 0;
3395}
3396
3397/*
3398 * The VFS layer already does all the dentry stuff for rename,
3399 * we just have to decrement the usage count for the target if
3400 * it exists so that the VFS layer correctly free's it when it
3401 * gets overwritten.
3402 */
3403static int shmem_rename2(struct mnt_idmap *idmap,
3404 struct inode *old_dir, struct dentry *old_dentry,
3405 struct inode *new_dir, struct dentry *new_dentry,
3406 unsigned int flags)
3407{
3408 struct inode *inode = d_inode(dentry: old_dentry);
3409 int they_are_dirs = S_ISDIR(inode->i_mode);
3410 int error;
3411
3412 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3413 return -EINVAL;
3414
3415 if (flags & RENAME_EXCHANGE)
3416 return simple_offset_rename_exchange(old_dir, old_dentry,
3417 new_dir, new_dentry);
3418
3419 if (!simple_empty(new_dentry))
3420 return -ENOTEMPTY;
3421
3422 if (flags & RENAME_WHITEOUT) {
3423 error = shmem_whiteout(idmap, old_dir, old_dentry);
3424 if (error)
3425 return error;
3426 }
3427
3428 simple_offset_remove(octx: shmem_get_offset_ctx(inode: old_dir), dentry: old_dentry);
3429 error = simple_offset_add(octx: shmem_get_offset_ctx(inode: new_dir), dentry: old_dentry);
3430 if (error)
3431 return error;
3432
3433 if (d_really_is_positive(dentry: new_dentry)) {
3434 (void) shmem_unlink(dir: new_dir, dentry: new_dentry);
3435 if (they_are_dirs) {
3436 drop_nlink(inode: d_inode(dentry: new_dentry));
3437 drop_nlink(inode: old_dir);
3438 }
3439 } else if (they_are_dirs) {
3440 drop_nlink(inode: old_dir);
3441 inc_nlink(inode: new_dir);
3442 }
3443
3444 old_dir->i_size -= BOGO_DIRENT_SIZE;
3445 new_dir->i_size += BOGO_DIRENT_SIZE;
3446 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3447 inode_inc_iversion(inode: old_dir);
3448 inode_inc_iversion(inode: new_dir);
3449 return 0;
3450}
3451
3452static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3453 struct dentry *dentry, const char *symname)
3454{
3455 int error;
3456 int len;
3457 struct inode *inode;
3458 struct folio *folio;
3459
3460 len = strlen(symname) + 1;
3461 if (len > PAGE_SIZE)
3462 return -ENAMETOOLONG;
3463
3464 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, S_IFLNK | 0777, dev: 0,
3465 VM_NORESERVE);
3466 if (IS_ERR(ptr: inode))
3467 return PTR_ERR(ptr: inode);
3468
3469 error = security_inode_init_security(inode, dir, qstr: &dentry->d_name,
3470 initxattrs: shmem_initxattrs, NULL);
3471 if (error && error != -EOPNOTSUPP)
3472 goto out_iput;
3473
3474 error = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
3475 if (error)
3476 goto out_iput;
3477
3478 inode->i_size = len-1;
3479 if (len <= SHORT_SYMLINK_LEN) {
3480 inode->i_link = kmemdup(p: symname, size: len, GFP_KERNEL);
3481 if (!inode->i_link) {
3482 error = -ENOMEM;
3483 goto out_remove_offset;
3484 }
3485 inode->i_op = &shmem_short_symlink_operations;
3486 } else {
3487 inode_nohighmem(inode);
3488 error = shmem_get_folio(inode, index: 0, foliop: &folio, sgp: SGP_WRITE);
3489 if (error)
3490 goto out_remove_offset;
3491 inode->i_mapping->a_ops = &shmem_aops;
3492 inode->i_op = &shmem_symlink_inode_operations;
3493 memcpy(folio_address(folio), symname, len);
3494 folio_mark_uptodate(folio);
3495 folio_mark_dirty(folio);
3496 folio_unlock(folio);
3497 folio_put(folio);
3498 }
3499 dir->i_size += BOGO_DIRENT_SIZE;
3500 inode_set_mtime_to_ts(inode: dir, ts: inode_set_ctime_current(inode: dir));
3501 inode_inc_iversion(inode: dir);
3502 d_instantiate(dentry, inode);
3503 dget(dentry);
3504 return 0;
3505
3506out_remove_offset:
3507 simple_offset_remove(octx: shmem_get_offset_ctx(inode: dir), dentry);
3508out_iput:
3509 iput(inode);
3510 return error;
3511}
3512
3513static void shmem_put_link(void *arg)
3514{
3515 folio_mark_accessed(arg);
3516 folio_put(folio: arg);
3517}
3518
3519static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3520 struct delayed_call *done)
3521{
3522 struct folio *folio = NULL;
3523 int error;
3524
3525 if (!dentry) {
3526 folio = filemap_get_folio(mapping: inode->i_mapping, index: 0);
3527 if (IS_ERR(ptr: folio))
3528 return ERR_PTR(error: -ECHILD);
3529 if (PageHWPoison(folio_page(folio, 0)) ||
3530 !folio_test_uptodate(folio)) {
3531 folio_put(folio);
3532 return ERR_PTR(error: -ECHILD);
3533 }
3534 } else {
3535 error = shmem_get_folio(inode, index: 0, foliop: &folio, sgp: SGP_READ);
3536 if (error)
3537 return ERR_PTR(error);
3538 if (!folio)
3539 return ERR_PTR(error: -ECHILD);
3540 if (PageHWPoison(folio_page(folio, 0))) {
3541 folio_unlock(folio);
3542 folio_put(folio);
3543 return ERR_PTR(error: -ECHILD);
3544 }
3545 folio_unlock(folio);
3546 }
3547 set_delayed_call(call: done, fn: shmem_put_link, arg: folio);
3548 return folio_address(folio);
3549}
3550
3551#ifdef CONFIG_TMPFS_XATTR
3552
3553static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3554{
3555 struct shmem_inode_info *info = SHMEM_I(inode: d_inode(dentry));
3556
3557 fileattr_fill_flags(fa, flags: info->fsflags & SHMEM_FL_USER_VISIBLE);
3558
3559 return 0;
3560}
3561
3562static int shmem_fileattr_set(struct mnt_idmap *idmap,
3563 struct dentry *dentry, struct fileattr *fa)
3564{
3565 struct inode *inode = d_inode(dentry);
3566 struct shmem_inode_info *info = SHMEM_I(inode);
3567
3568 if (fileattr_has_fsx(fa))
3569 return -EOPNOTSUPP;
3570 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3571 return -EOPNOTSUPP;
3572
3573 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3574 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3575
3576 shmem_set_inode_flags(inode, fsflags: info->fsflags);
3577 inode_set_ctime_current(inode);
3578 inode_inc_iversion(inode);
3579 return 0;
3580}
3581
3582/*
3583 * Superblocks without xattr inode operations may get some security.* xattr
3584 * support from the LSM "for free". As soon as we have any other xattrs
3585 * like ACLs, we also need to implement the security.* handlers at
3586 * filesystem level, though.
3587 */
3588
3589/*
3590 * Callback for security_inode_init_security() for acquiring xattrs.
3591 */
3592static int shmem_initxattrs(struct inode *inode,
3593 const struct xattr *xattr_array, void *fs_info)
3594{
3595 struct shmem_inode_info *info = SHMEM_I(inode);
3596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
3597 const struct xattr *xattr;
3598 struct simple_xattr *new_xattr;
3599 size_t ispace = 0;
3600 size_t len;
3601
3602 if (sbinfo->max_inodes) {
3603 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3604 ispace += simple_xattr_space(name: xattr->name,
3605 size: xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3606 }
3607 if (ispace) {
3608 raw_spin_lock(&sbinfo->stat_lock);
3609 if (sbinfo->free_ispace < ispace)
3610 ispace = 0;
3611 else
3612 sbinfo->free_ispace -= ispace;
3613 raw_spin_unlock(&sbinfo->stat_lock);
3614 if (!ispace)
3615 return -ENOSPC;
3616 }
3617 }
3618
3619 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3620 new_xattr = simple_xattr_alloc(value: xattr->value, size: xattr->value_len);
3621 if (!new_xattr)
3622 break;
3623
3624 len = strlen(xattr->name) + 1;
3625 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3626 GFP_KERNEL_ACCOUNT);
3627 if (!new_xattr->name) {
3628 kvfree(addr: new_xattr);
3629 break;
3630 }
3631
3632 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3633 XATTR_SECURITY_PREFIX_LEN);
3634 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3635 xattr->name, len);
3636
3637 simple_xattr_add(xattrs: &info->xattrs, new_xattr);
3638 }
3639
3640 if (xattr->name != NULL) {
3641 if (ispace) {
3642 raw_spin_lock(&sbinfo->stat_lock);
3643 sbinfo->free_ispace += ispace;
3644 raw_spin_unlock(&sbinfo->stat_lock);
3645 }
3646 simple_xattrs_free(xattrs: &info->xattrs, NULL);
3647 return -ENOMEM;
3648 }
3649
3650 return 0;
3651}
3652
3653static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3654 struct dentry *unused, struct inode *inode,
3655 const char *name, void *buffer, size_t size)
3656{
3657 struct shmem_inode_info *info = SHMEM_I(inode);
3658
3659 name = xattr_full_name(handler, name);
3660 return simple_xattr_get(xattrs: &info->xattrs, name, buffer, size);
3661}
3662
3663static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3664 struct mnt_idmap *idmap,
3665 struct dentry *unused, struct inode *inode,
3666 const char *name, const void *value,
3667 size_t size, int flags)
3668{
3669 struct shmem_inode_info *info = SHMEM_I(inode);
3670 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
3671 struct simple_xattr *old_xattr;
3672 size_t ispace = 0;
3673
3674 name = xattr_full_name(handler, name);
3675 if (value && sbinfo->max_inodes) {
3676 ispace = simple_xattr_space(name, size);
3677 raw_spin_lock(&sbinfo->stat_lock);
3678 if (sbinfo->free_ispace < ispace)
3679 ispace = 0;
3680 else
3681 sbinfo->free_ispace -= ispace;
3682 raw_spin_unlock(&sbinfo->stat_lock);
3683 if (!ispace)
3684 return -ENOSPC;
3685 }
3686
3687 old_xattr = simple_xattr_set(xattrs: &info->xattrs, name, value, size, flags);
3688 if (!IS_ERR(ptr: old_xattr)) {
3689 ispace = 0;
3690 if (old_xattr && sbinfo->max_inodes)
3691 ispace = simple_xattr_space(name: old_xattr->name,
3692 size: old_xattr->size);
3693 simple_xattr_free(xattr: old_xattr);
3694 old_xattr = NULL;
3695 inode_set_ctime_current(inode);
3696 inode_inc_iversion(inode);
3697 }
3698 if (ispace) {
3699 raw_spin_lock(&sbinfo->stat_lock);
3700 sbinfo->free_ispace += ispace;
3701 raw_spin_unlock(&sbinfo->stat_lock);
3702 }
3703 return PTR_ERR(ptr: old_xattr);
3704}
3705
3706static const struct xattr_handler shmem_security_xattr_handler = {
3707 .prefix = XATTR_SECURITY_PREFIX,
3708 .get = shmem_xattr_handler_get,
3709 .set = shmem_xattr_handler_set,
3710};
3711
3712static const struct xattr_handler shmem_trusted_xattr_handler = {
3713 .prefix = XATTR_TRUSTED_PREFIX,
3714 .get = shmem_xattr_handler_get,
3715 .set = shmem_xattr_handler_set,
3716};
3717
3718static const struct xattr_handler shmem_user_xattr_handler = {
3719 .prefix = XATTR_USER_PREFIX,
3720 .get = shmem_xattr_handler_get,
3721 .set = shmem_xattr_handler_set,
3722};
3723
3724static const struct xattr_handler * const shmem_xattr_handlers[] = {
3725 &shmem_security_xattr_handler,
3726 &shmem_trusted_xattr_handler,
3727 &shmem_user_xattr_handler,
3728 NULL
3729};
3730
3731static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3732{
3733 struct shmem_inode_info *info = SHMEM_I(inode: d_inode(dentry));
3734 return simple_xattr_list(inode: d_inode(dentry), xattrs: &info->xattrs, buffer, size);
3735}
3736#endif /* CONFIG_TMPFS_XATTR */
3737
3738static const struct inode_operations shmem_short_symlink_operations = {
3739 .getattr = shmem_getattr,
3740 .setattr = shmem_setattr,
3741 .get_link = simple_get_link,
3742#ifdef CONFIG_TMPFS_XATTR
3743 .listxattr = shmem_listxattr,
3744#endif
3745};
3746
3747static const struct inode_operations shmem_symlink_inode_operations = {
3748 .getattr = shmem_getattr,
3749 .setattr = shmem_setattr,
3750 .get_link = shmem_get_link,
3751#ifdef CONFIG_TMPFS_XATTR
3752 .listxattr = shmem_listxattr,
3753#endif
3754};
3755
3756static struct dentry *shmem_get_parent(struct dentry *child)
3757{
3758 return ERR_PTR(error: -ESTALE);
3759}
3760
3761static int shmem_match(struct inode *ino, void *vfh)
3762{
3763 __u32 *fh = vfh;
3764 __u64 inum = fh[2];
3765 inum = (inum << 32) | fh[1];
3766 return ino->i_ino == inum && fh[0] == ino->i_generation;
3767}
3768
3769/* Find any alias of inode, but prefer a hashed alias */
3770static struct dentry *shmem_find_alias(struct inode *inode)
3771{
3772 struct dentry *alias = d_find_alias(inode);
3773
3774 return alias ?: d_find_any_alias(inode);
3775}
3776
3777static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3778 struct fid *fid, int fh_len, int fh_type)
3779{
3780 struct inode *inode;
3781 struct dentry *dentry = NULL;
3782 u64 inum;
3783
3784 if (fh_len < 3)
3785 return NULL;
3786
3787 inum = fid->raw[2];
3788 inum = (inum << 32) | fid->raw[1];
3789
3790 inode = ilookup5(sb, hashval: (unsigned long)(inum + fid->raw[0]),
3791 test: shmem_match, data: fid->raw);
3792 if (inode) {
3793 dentry = shmem_find_alias(inode);
3794 iput(inode);
3795 }
3796
3797 return dentry;
3798}
3799
3800static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3801 struct inode *parent)
3802{
3803 if (*len < 3) {
3804 *len = 3;
3805 return FILEID_INVALID;
3806 }
3807
3808 if (inode_unhashed(inode)) {
3809 /* Unfortunately insert_inode_hash is not idempotent,
3810 * so as we hash inodes here rather than at creation
3811 * time, we need a lock to ensure we only try
3812 * to do it once
3813 */
3814 static DEFINE_SPINLOCK(lock);
3815 spin_lock(lock: &lock);
3816 if (inode_unhashed(inode))
3817 __insert_inode_hash(inode,
3818 hashval: inode->i_ino + inode->i_generation);
3819 spin_unlock(lock: &lock);
3820 }
3821
3822 fh[0] = inode->i_generation;
3823 fh[1] = inode->i_ino;
3824 fh[2] = ((__u64)inode->i_ino) >> 32;
3825
3826 *len = 3;
3827 return 1;
3828}
3829
3830static const struct export_operations shmem_export_ops = {
3831 .get_parent = shmem_get_parent,
3832 .encode_fh = shmem_encode_fh,
3833 .fh_to_dentry = shmem_fh_to_dentry,
3834};
3835
3836enum shmem_param {
3837 Opt_gid,
3838 Opt_huge,
3839 Opt_mode,
3840 Opt_mpol,
3841 Opt_nr_blocks,
3842 Opt_nr_inodes,
3843 Opt_size,
3844 Opt_uid,
3845 Opt_inode32,
3846 Opt_inode64,
3847 Opt_noswap,
3848 Opt_quota,
3849 Opt_usrquota,
3850 Opt_grpquota,
3851 Opt_usrquota_block_hardlimit,
3852 Opt_usrquota_inode_hardlimit,
3853 Opt_grpquota_block_hardlimit,
3854 Opt_grpquota_inode_hardlimit,
3855};
3856
3857static const struct constant_table shmem_param_enums_huge[] = {
3858 {"never", SHMEM_HUGE_NEVER },
3859 {"always", SHMEM_HUGE_ALWAYS },
3860 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3861 {"advise", SHMEM_HUGE_ADVISE },
3862 {}
3863};
3864
3865const struct fs_parameter_spec shmem_fs_parameters[] = {
3866 fsparam_u32 ("gid", Opt_gid),
3867 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3868 fsparam_u32oct("mode", Opt_mode),
3869 fsparam_string("mpol", Opt_mpol),
3870 fsparam_string("nr_blocks", Opt_nr_blocks),
3871 fsparam_string("nr_inodes", Opt_nr_inodes),
3872 fsparam_string("size", Opt_size),
3873 fsparam_u32 ("uid", Opt_uid),
3874 fsparam_flag ("inode32", Opt_inode32),
3875 fsparam_flag ("inode64", Opt_inode64),
3876 fsparam_flag ("noswap", Opt_noswap),
3877#ifdef CONFIG_TMPFS_QUOTA
3878 fsparam_flag ("quota", Opt_quota),
3879 fsparam_flag ("usrquota", Opt_usrquota),
3880 fsparam_flag ("grpquota", Opt_grpquota),
3881 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3882 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3883 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3884 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3885#endif
3886 {}
3887};
3888
3889static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3890{
3891 struct shmem_options *ctx = fc->fs_private;
3892 struct fs_parse_result result;
3893 unsigned long long size;
3894 char *rest;
3895 int opt;
3896 kuid_t kuid;
3897 kgid_t kgid;
3898
3899 opt = fs_parse(fc, desc: shmem_fs_parameters, param, result: &result);
3900 if (opt < 0)
3901 return opt;
3902
3903 switch (opt) {
3904 case Opt_size:
3905 size = memparse(ptr: param->string, retptr: &rest);
3906 if (*rest == '%') {
3907 size <<= PAGE_SHIFT;
3908 size *= totalram_pages();
3909 do_div(size, 100);
3910 rest++;
3911 }
3912 if (*rest)
3913 goto bad_value;
3914 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3915 ctx->seen |= SHMEM_SEEN_BLOCKS;
3916 break;
3917 case Opt_nr_blocks:
3918 ctx->blocks = memparse(ptr: param->string, retptr: &rest);
3919 if (*rest || ctx->blocks > LONG_MAX)
3920 goto bad_value;
3921 ctx->seen |= SHMEM_SEEN_BLOCKS;
3922 break;
3923 case Opt_nr_inodes:
3924 ctx->inodes = memparse(ptr: param->string, retptr: &rest);
3925 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3926 goto bad_value;
3927 ctx->seen |= SHMEM_SEEN_INODES;
3928 break;
3929 case Opt_mode:
3930 ctx->mode = result.uint_32 & 07777;
3931 break;
3932 case Opt_uid:
3933 kuid = make_kuid(current_user_ns(), uid: result.uint_32);
3934 if (!uid_valid(uid: kuid))
3935 goto bad_value;
3936
3937 /*
3938 * The requested uid must be representable in the
3939 * filesystem's idmapping.
3940 */
3941 if (!kuid_has_mapping(ns: fc->user_ns, uid: kuid))
3942 goto bad_value;
3943
3944 ctx->uid = kuid;
3945 break;
3946 case Opt_gid:
3947 kgid = make_kgid(current_user_ns(), gid: result.uint_32);
3948 if (!gid_valid(gid: kgid))
3949 goto bad_value;
3950
3951 /*
3952 * The requested gid must be representable in the
3953 * filesystem's idmapping.
3954 */
3955 if (!kgid_has_mapping(ns: fc->user_ns, gid: kgid))
3956 goto bad_value;
3957
3958 ctx->gid = kgid;
3959 break;
3960 case Opt_huge:
3961 ctx->huge = result.uint_32;
3962 if (ctx->huge != SHMEM_HUGE_NEVER &&
3963 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3964 has_transparent_hugepage()))
3965 goto unsupported_parameter;
3966 ctx->seen |= SHMEM_SEEN_HUGE;
3967 break;
3968 case Opt_mpol:
3969 if (IS_ENABLED(CONFIG_NUMA)) {
3970 mpol_put(pol: ctx->mpol);
3971 ctx->mpol = NULL;
3972 if (mpol_parse_str(str: param->string, mpol: &ctx->mpol))
3973 goto bad_value;
3974 break;
3975 }
3976 goto unsupported_parameter;
3977 case Opt_inode32:
3978 ctx->full_inums = false;
3979 ctx->seen |= SHMEM_SEEN_INUMS;
3980 break;
3981 case Opt_inode64:
3982 if (sizeof(ino_t) < 8) {
3983 return invalfc(fc,
3984 "Cannot use inode64 with <64bit inums in kernel\n");
3985 }
3986 ctx->full_inums = true;
3987 ctx->seen |= SHMEM_SEEN_INUMS;
3988 break;
3989 case Opt_noswap:
3990 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3991 return invalfc(fc,
3992 "Turning off swap in unprivileged tmpfs mounts unsupported");
3993 }
3994 ctx->noswap = true;
3995 ctx->seen |= SHMEM_SEEN_NOSWAP;
3996 break;
3997 case Opt_quota:
3998 if (fc->user_ns != &init_user_ns)
3999 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4000 ctx->seen |= SHMEM_SEEN_QUOTA;
4001 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4002 break;
4003 case Opt_usrquota:
4004 if (fc->user_ns != &init_user_ns)
4005 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4006 ctx->seen |= SHMEM_SEEN_QUOTA;
4007 ctx->quota_types |= QTYPE_MASK_USR;
4008 break;
4009 case Opt_grpquota:
4010 if (fc->user_ns != &init_user_ns)
4011 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4012 ctx->seen |= SHMEM_SEEN_QUOTA;
4013 ctx->quota_types |= QTYPE_MASK_GRP;
4014 break;
4015 case Opt_usrquota_block_hardlimit:
4016 size = memparse(ptr: param->string, retptr: &rest);
4017 if (*rest || !size)
4018 goto bad_value;
4019 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4020 return invalfc(fc,
4021 "User quota block hardlimit too large.");
4022 ctx->qlimits.usrquota_bhardlimit = size;
4023 break;
4024 case Opt_grpquota_block_hardlimit:
4025 size = memparse(ptr: param->string, retptr: &rest);
4026 if (*rest || !size)
4027 goto bad_value;
4028 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4029 return invalfc(fc,
4030 "Group quota block hardlimit too large.");
4031 ctx->qlimits.grpquota_bhardlimit = size;
4032 break;
4033 case Opt_usrquota_inode_hardlimit:
4034 size = memparse(ptr: param->string, retptr: &rest);
4035 if (*rest || !size)
4036 goto bad_value;
4037 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4038 return invalfc(fc,
4039 "User quota inode hardlimit too large.");
4040 ctx->qlimits.usrquota_ihardlimit = size;
4041 break;
4042 case Opt_grpquota_inode_hardlimit:
4043 size = memparse(ptr: param->string, retptr: &rest);
4044 if (*rest || !size)
4045 goto bad_value;
4046 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4047 return invalfc(fc,
4048 "Group quota inode hardlimit too large.");
4049 ctx->qlimits.grpquota_ihardlimit = size;
4050 break;
4051 }
4052 return 0;
4053
4054unsupported_parameter:
4055 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4056bad_value:
4057 return invalfc(fc, "Bad value for '%s'", param->key);
4058}
4059
4060static int shmem_parse_options(struct fs_context *fc, void *data)
4061{
4062 char *options = data;
4063
4064 if (options) {
4065 int err = security_sb_eat_lsm_opts(options, mnt_opts: &fc->security);
4066 if (err)
4067 return err;
4068 }
4069
4070 while (options != NULL) {
4071 char *this_char = options;
4072 for (;;) {
4073 /*
4074 * NUL-terminate this option: unfortunately,
4075 * mount options form a comma-separated list,
4076 * but mpol's nodelist may also contain commas.
4077 */
4078 options = strchr(options, ',');
4079 if (options == NULL)
4080 break;
4081 options++;
4082 if (!isdigit(c: *options)) {
4083 options[-1] = '\0';
4084 break;
4085 }
4086 }
4087 if (*this_char) {
4088 char *value = strchr(this_char, '=');
4089 size_t len = 0;
4090 int err;
4091
4092 if (value) {
4093 *value++ = '\0';
4094 len = strlen(value);
4095 }
4096 err = vfs_parse_fs_string(fc, key: this_char, value, v_size: len);
4097 if (err < 0)
4098 return err;
4099 }
4100 }
4101 return 0;
4102}
4103
4104/*
4105 * Reconfigure a shmem filesystem.
4106 */
4107static int shmem_reconfigure(struct fs_context *fc)
4108{
4109 struct shmem_options *ctx = fc->fs_private;
4110 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: fc->root->d_sb);
4111 unsigned long used_isp;
4112 struct mempolicy *mpol = NULL;
4113 const char *err;
4114
4115 raw_spin_lock(&sbinfo->stat_lock);
4116 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4117
4118 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4119 if (!sbinfo->max_blocks) {
4120 err = "Cannot retroactively limit size";
4121 goto out;
4122 }
4123 if (percpu_counter_compare(fbc: &sbinfo->used_blocks,
4124 rhs: ctx->blocks) > 0) {
4125 err = "Too small a size for current use";
4126 goto out;
4127 }
4128 }
4129 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4130 if (!sbinfo->max_inodes) {
4131 err = "Cannot retroactively limit inodes";
4132 goto out;
4133 }
4134 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4135 err = "Too few inodes for current use";
4136 goto out;
4137 }
4138 }
4139
4140 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4141 sbinfo->next_ino > UINT_MAX) {
4142 err = "Current inum too high to switch to 32-bit inums";
4143 goto out;
4144 }
4145 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4146 err = "Cannot disable swap on remount";
4147 goto out;
4148 }
4149 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4150 err = "Cannot enable swap on remount if it was disabled on first mount";
4151 goto out;
4152 }
4153
4154 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4155 !sb_any_quota_loaded(sb: fc->root->d_sb)) {
4156 err = "Cannot enable quota on remount";
4157 goto out;
4158 }
4159
4160#ifdef CONFIG_TMPFS_QUOTA
4161#define CHANGED_LIMIT(name) \
4162 (ctx->qlimits.name## hardlimit && \
4163 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4164
4165 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4166 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4167 err = "Cannot change global quota limit on remount";
4168 goto out;
4169 }
4170#endif /* CONFIG_TMPFS_QUOTA */
4171
4172 if (ctx->seen & SHMEM_SEEN_HUGE)
4173 sbinfo->huge = ctx->huge;
4174 if (ctx->seen & SHMEM_SEEN_INUMS)
4175 sbinfo->full_inums = ctx->full_inums;
4176 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4177 sbinfo->max_blocks = ctx->blocks;
4178 if (ctx->seen & SHMEM_SEEN_INODES) {
4179 sbinfo->max_inodes = ctx->inodes;
4180 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4181 }
4182
4183 /*
4184 * Preserve previous mempolicy unless mpol remount option was specified.
4185 */
4186 if (ctx->mpol) {
4187 mpol = sbinfo->mpol;
4188 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4189 ctx->mpol = NULL;
4190 }
4191
4192 if (ctx->noswap)
4193 sbinfo->noswap = true;
4194
4195 raw_spin_unlock(&sbinfo->stat_lock);
4196 mpol_put(pol: mpol);
4197 return 0;
4198out:
4199 raw_spin_unlock(&sbinfo->stat_lock);
4200 return invalfc(fc, "%s", err);
4201}
4202
4203static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4204{
4205 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: root->d_sb);
4206 struct mempolicy *mpol;
4207
4208 if (sbinfo->max_blocks != shmem_default_max_blocks())
4209 seq_printf(m: seq, fmt: ",size=%luk", K(sbinfo->max_blocks));
4210 if (sbinfo->max_inodes != shmem_default_max_inodes())
4211 seq_printf(m: seq, fmt: ",nr_inodes=%lu", sbinfo->max_inodes);
4212 if (sbinfo->mode != (0777 | S_ISVTX))
4213 seq_printf(m: seq, fmt: ",mode=%03ho", sbinfo->mode);
4214 if (!uid_eq(left: sbinfo->uid, GLOBAL_ROOT_UID))
4215 seq_printf(seq, ",uid=%u",
4216 from_kuid_munged(&init_user_ns, sbinfo->uid));
4217 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4218 seq_printf(seq, ",gid=%u",
4219 from_kgid_munged(&init_user_ns, sbinfo->gid));
4220
4221 /*
4222 * Showing inode{64,32} might be useful even if it's the system default,
4223 * since then people don't have to resort to checking both here and
4224 * /proc/config.gz to confirm 64-bit inums were successfully applied
4225 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4226 *
4227 * We hide it when inode64 isn't the default and we are using 32-bit
4228 * inodes, since that probably just means the feature isn't even under
4229 * consideration.
4230 *
4231 * As such:
4232 *
4233 * +-----------------+-----------------+
4234 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4235 * +------------------+-----------------+-----------------+
4236 * | full_inums=true | show | show |
4237 * | full_inums=false | show | hide |
4238 * +------------------+-----------------+-----------------+
4239 *
4240 */
4241 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4242 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4243#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4244 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4245 if (sbinfo->huge)
4246 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4247#endif
4248 mpol = shmem_get_sbmpol(sbinfo);
4249 shmem_show_mpol(seq, mpol);
4250 mpol_put(mpol);
4251 if (sbinfo->noswap)
4252 seq_printf(seq, ",noswap");
4253 return 0;
4254}
4255
4256#endif /* CONFIG_TMPFS */
4257
4258static void shmem_put_super(struct super_block *sb)
4259{
4260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4261
4262#ifdef CONFIG_TMPFS_QUOTA
4263 shmem_disable_quotas(sb);
4264#endif
4265 free_percpu(pdata: sbinfo->ino_batch);
4266 percpu_counter_destroy(fbc: &sbinfo->used_blocks);
4267 mpol_put(pol: sbinfo->mpol);
4268 kfree(objp: sbinfo);
4269 sb->s_fs_info = NULL;
4270}
4271
4272static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4273{
4274 struct shmem_options *ctx = fc->fs_private;
4275 struct inode *inode;
4276 struct shmem_sb_info *sbinfo;
4277 int error = -ENOMEM;
4278
4279 /* Round up to L1_CACHE_BYTES to resist false sharing */
4280 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4281 L1_CACHE_BYTES), GFP_KERNEL);
4282 if (!sbinfo)
4283 return error;
4284
4285 sb->s_fs_info = sbinfo;
4286
4287#ifdef CONFIG_TMPFS
4288 /*
4289 * Per default we only allow half of the physical ram per
4290 * tmpfs instance, limiting inodes to one per page of lowmem;
4291 * but the internal instance is left unlimited.
4292 */
4293 if (!(sb->s_flags & SB_KERNMOUNT)) {
4294 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4295 ctx->blocks = shmem_default_max_blocks();
4296 if (!(ctx->seen & SHMEM_SEEN_INODES))
4297 ctx->inodes = shmem_default_max_inodes();
4298 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4299 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4300 sbinfo->noswap = ctx->noswap;
4301 } else {
4302 sb->s_flags |= SB_NOUSER;
4303 }
4304 sb->s_export_op = &shmem_export_ops;
4305 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4306#else
4307 sb->s_flags |= SB_NOUSER;
4308#endif
4309 sbinfo->max_blocks = ctx->blocks;
4310 sbinfo->max_inodes = ctx->inodes;
4311 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4312 if (sb->s_flags & SB_KERNMOUNT) {
4313 sbinfo->ino_batch = alloc_percpu(ino_t);
4314 if (!sbinfo->ino_batch)
4315 goto failed;
4316 }
4317 sbinfo->uid = ctx->uid;
4318 sbinfo->gid = ctx->gid;
4319 sbinfo->full_inums = ctx->full_inums;
4320 sbinfo->mode = ctx->mode;
4321 sbinfo->huge = ctx->huge;
4322 sbinfo->mpol = ctx->mpol;
4323 ctx->mpol = NULL;
4324
4325 raw_spin_lock_init(&sbinfo->stat_lock);
4326 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4327 goto failed;
4328 spin_lock_init(&sbinfo->shrinklist_lock);
4329 INIT_LIST_HEAD(list: &sbinfo->shrinklist);
4330
4331 sb->s_maxbytes = MAX_LFS_FILESIZE;
4332 sb->s_blocksize = PAGE_SIZE;
4333 sb->s_blocksize_bits = PAGE_SHIFT;
4334 sb->s_magic = TMPFS_MAGIC;
4335 sb->s_op = &shmem_ops;
4336 sb->s_time_gran = 1;
4337#ifdef CONFIG_TMPFS_XATTR
4338 sb->s_xattr = shmem_xattr_handlers;
4339#endif
4340#ifdef CONFIG_TMPFS_POSIX_ACL
4341 sb->s_flags |= SB_POSIXACL;
4342#endif
4343 uuid_gen(u: &sb->s_uuid);
4344
4345#ifdef CONFIG_TMPFS_QUOTA
4346 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4347 sb->dq_op = &shmem_quota_operations;
4348 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4349 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4350
4351 /* Copy the default limits from ctx into sbinfo */
4352 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4353 sizeof(struct shmem_quota_limits));
4354
4355 if (shmem_enable_quotas(sb, quota_types: ctx->quota_types))
4356 goto failed;
4357 }
4358#endif /* CONFIG_TMPFS_QUOTA */
4359
4360 inode = shmem_get_inode(idmap: &nop_mnt_idmap, sb, NULL,
4361 S_IFDIR | sbinfo->mode, dev: 0, VM_NORESERVE);
4362 if (IS_ERR(ptr: inode)) {
4363 error = PTR_ERR(ptr: inode);
4364 goto failed;
4365 }
4366 inode->i_uid = sbinfo->uid;
4367 inode->i_gid = sbinfo->gid;
4368 sb->s_root = d_make_root(inode);
4369 if (!sb->s_root)
4370 goto failed;
4371 return 0;
4372
4373failed:
4374 shmem_put_super(sb);
4375 return error;
4376}
4377
4378static int shmem_get_tree(struct fs_context *fc)
4379{
4380 return get_tree_nodev(fc, fill_super: shmem_fill_super);
4381}
4382
4383static void shmem_free_fc(struct fs_context *fc)
4384{
4385 struct shmem_options *ctx = fc->fs_private;
4386
4387 if (ctx) {
4388 mpol_put(pol: ctx->mpol);
4389 kfree(objp: ctx);
4390 }
4391}
4392
4393static const struct fs_context_operations shmem_fs_context_ops = {
4394 .free = shmem_free_fc,
4395 .get_tree = shmem_get_tree,
4396#ifdef CONFIG_TMPFS
4397 .parse_monolithic = shmem_parse_options,
4398 .parse_param = shmem_parse_one,
4399 .reconfigure = shmem_reconfigure,
4400#endif
4401};
4402
4403static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4404
4405static struct inode *shmem_alloc_inode(struct super_block *sb)
4406{
4407 struct shmem_inode_info *info;
4408 info = alloc_inode_sb(sb, cache: shmem_inode_cachep, GFP_KERNEL);
4409 if (!info)
4410 return NULL;
4411 return &info->vfs_inode;
4412}
4413
4414static void shmem_free_in_core_inode(struct inode *inode)
4415{
4416 if (S_ISLNK(inode->i_mode))
4417 kfree(objp: inode->i_link);
4418 kmem_cache_free(s: shmem_inode_cachep, objp: SHMEM_I(inode));
4419}
4420
4421static void shmem_destroy_inode(struct inode *inode)
4422{
4423 if (S_ISREG(inode->i_mode))
4424 mpol_free_shared_policy(sp: &SHMEM_I(inode)->policy);
4425 if (S_ISDIR(inode->i_mode))
4426 simple_offset_destroy(octx: shmem_get_offset_ctx(inode));
4427}
4428
4429static void shmem_init_inode(void *foo)
4430{
4431 struct shmem_inode_info *info = foo;
4432 inode_init_once(&info->vfs_inode);
4433}
4434
4435static void __init shmem_init_inodecache(void)
4436{
4437 shmem_inode_cachep = kmem_cache_create(name: "shmem_inode_cache",
4438 size: sizeof(struct shmem_inode_info),
4439 align: 0, SLAB_PANIC|SLAB_ACCOUNT, ctor: shmem_init_inode);
4440}
4441
4442static void __init shmem_destroy_inodecache(void)
4443{
4444 kmem_cache_destroy(s: shmem_inode_cachep);
4445}
4446
4447/* Keep the page in page cache instead of truncating it */
4448static int shmem_error_remove_page(struct address_space *mapping,
4449 struct page *page)
4450{
4451 return 0;
4452}
4453
4454const struct address_space_operations shmem_aops = {
4455 .writepage = shmem_writepage,
4456 .dirty_folio = noop_dirty_folio,
4457#ifdef CONFIG_TMPFS
4458 .write_begin = shmem_write_begin,
4459 .write_end = shmem_write_end,
4460#endif
4461#ifdef CONFIG_MIGRATION
4462 .migrate_folio = migrate_folio,
4463#endif
4464 .error_remove_page = shmem_error_remove_page,
4465};
4466EXPORT_SYMBOL(shmem_aops);
4467
4468static const struct file_operations shmem_file_operations = {
4469 .mmap = shmem_mmap,
4470 .open = shmem_file_open,
4471 .get_unmapped_area = shmem_get_unmapped_area,
4472#ifdef CONFIG_TMPFS
4473 .llseek = shmem_file_llseek,
4474 .read_iter = shmem_file_read_iter,
4475 .write_iter = shmem_file_write_iter,
4476 .fsync = noop_fsync,
4477 .splice_read = shmem_file_splice_read,
4478 .splice_write = iter_file_splice_write,
4479 .fallocate = shmem_fallocate,
4480#endif
4481};
4482
4483static const struct inode_operations shmem_inode_operations = {
4484 .getattr = shmem_getattr,
4485 .setattr = shmem_setattr,
4486#ifdef CONFIG_TMPFS_XATTR
4487 .listxattr = shmem_listxattr,
4488 .set_acl = simple_set_acl,
4489 .fileattr_get = shmem_fileattr_get,
4490 .fileattr_set = shmem_fileattr_set,
4491#endif
4492};
4493
4494static const struct inode_operations shmem_dir_inode_operations = {
4495#ifdef CONFIG_TMPFS
4496 .getattr = shmem_getattr,
4497 .create = shmem_create,
4498 .lookup = simple_lookup,
4499 .link = shmem_link,
4500 .unlink = shmem_unlink,
4501 .symlink = shmem_symlink,
4502 .mkdir = shmem_mkdir,
4503 .rmdir = shmem_rmdir,
4504 .mknod = shmem_mknod,
4505 .rename = shmem_rename2,
4506 .tmpfile = shmem_tmpfile,
4507 .get_offset_ctx = shmem_get_offset_ctx,
4508#endif
4509#ifdef CONFIG_TMPFS_XATTR
4510 .listxattr = shmem_listxattr,
4511 .fileattr_get = shmem_fileattr_get,
4512 .fileattr_set = shmem_fileattr_set,
4513#endif
4514#ifdef CONFIG_TMPFS_POSIX_ACL
4515 .setattr = shmem_setattr,
4516 .set_acl = simple_set_acl,
4517#endif
4518};
4519
4520static const struct inode_operations shmem_special_inode_operations = {
4521 .getattr = shmem_getattr,
4522#ifdef CONFIG_TMPFS_XATTR
4523 .listxattr = shmem_listxattr,
4524#endif
4525#ifdef CONFIG_TMPFS_POSIX_ACL
4526 .setattr = shmem_setattr,
4527 .set_acl = simple_set_acl,
4528#endif
4529};
4530
4531static const struct super_operations shmem_ops = {
4532 .alloc_inode = shmem_alloc_inode,
4533 .free_inode = shmem_free_in_core_inode,
4534 .destroy_inode = shmem_destroy_inode,
4535#ifdef CONFIG_TMPFS
4536 .statfs = shmem_statfs,
4537 .show_options = shmem_show_options,
4538#endif
4539#ifdef CONFIG_TMPFS_QUOTA
4540 .get_dquots = shmem_get_dquots,
4541#endif
4542 .evict_inode = shmem_evict_inode,
4543 .drop_inode = generic_delete_inode,
4544 .put_super = shmem_put_super,
4545#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4546 .nr_cached_objects = shmem_unused_huge_count,
4547 .free_cached_objects = shmem_unused_huge_scan,
4548#endif
4549};
4550
4551static const struct vm_operations_struct shmem_vm_ops = {
4552 .fault = shmem_fault,
4553 .map_pages = filemap_map_pages,
4554#ifdef CONFIG_NUMA
4555 .set_policy = shmem_set_policy,
4556 .get_policy = shmem_get_policy,
4557#endif
4558};
4559
4560static const struct vm_operations_struct shmem_anon_vm_ops = {
4561 .fault = shmem_fault,
4562 .map_pages = filemap_map_pages,
4563#ifdef CONFIG_NUMA
4564 .set_policy = shmem_set_policy,
4565 .get_policy = shmem_get_policy,
4566#endif
4567};
4568
4569int shmem_init_fs_context(struct fs_context *fc)
4570{
4571 struct shmem_options *ctx;
4572
4573 ctx = kzalloc(size: sizeof(struct shmem_options), GFP_KERNEL);
4574 if (!ctx)
4575 return -ENOMEM;
4576
4577 ctx->mode = 0777 | S_ISVTX;
4578 ctx->uid = current_fsuid();
4579 ctx->gid = current_fsgid();
4580
4581 fc->fs_private = ctx;
4582 fc->ops = &shmem_fs_context_ops;
4583 return 0;
4584}
4585
4586static struct file_system_type shmem_fs_type = {
4587 .owner = THIS_MODULE,
4588 .name = "tmpfs",
4589 .init_fs_context = shmem_init_fs_context,
4590#ifdef CONFIG_TMPFS
4591 .parameters = shmem_fs_parameters,
4592#endif
4593 .kill_sb = kill_litter_super,
4594 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4595};
4596
4597void __init shmem_init(void)
4598{
4599 int error;
4600
4601 shmem_init_inodecache();
4602
4603#ifdef CONFIG_TMPFS_QUOTA
4604 error = register_quota_format(fmt: &shmem_quota_format);
4605 if (error < 0) {
4606 pr_err("Could not register quota format\n");
4607 goto out3;
4608 }
4609#endif
4610
4611 error = register_filesystem(&shmem_fs_type);
4612 if (error) {
4613 pr_err("Could not register tmpfs\n");
4614 goto out2;
4615 }
4616
4617 shm_mnt = kern_mount(&shmem_fs_type);
4618 if (IS_ERR(ptr: shm_mnt)) {
4619 error = PTR_ERR(ptr: shm_mnt);
4620 pr_err("Could not kern_mount tmpfs\n");
4621 goto out1;
4622 }
4623
4624#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4625 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4626 SHMEM_SB(sb: shm_mnt->mnt_sb)->huge = shmem_huge;
4627 else
4628 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4629#endif
4630 return;
4631
4632out1:
4633 unregister_filesystem(&shmem_fs_type);
4634out2:
4635#ifdef CONFIG_TMPFS_QUOTA
4636 unregister_quota_format(fmt: &shmem_quota_format);
4637out3:
4638#endif
4639 shmem_destroy_inodecache();
4640 shm_mnt = ERR_PTR(error);
4641}
4642
4643#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4644static ssize_t shmem_enabled_show(struct kobject *kobj,
4645 struct kobj_attribute *attr, char *buf)
4646{
4647 static const int values[] = {
4648 SHMEM_HUGE_ALWAYS,
4649 SHMEM_HUGE_WITHIN_SIZE,
4650 SHMEM_HUGE_ADVISE,
4651 SHMEM_HUGE_NEVER,
4652 SHMEM_HUGE_DENY,
4653 SHMEM_HUGE_FORCE,
4654 };
4655 int len = 0;
4656 int i;
4657
4658 for (i = 0; i < ARRAY_SIZE(values); i++) {
4659 len += sysfs_emit_at(buf, at: len,
4660 fmt: shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4661 i ? " " : "", shmem_format_huge(huge: values[i]));
4662 }
4663 len += sysfs_emit_at(buf, at: len, fmt: "\n");
4664
4665 return len;
4666}
4667
4668static ssize_t shmem_enabled_store(struct kobject *kobj,
4669 struct kobj_attribute *attr, const char *buf, size_t count)
4670{
4671 char tmp[16];
4672 int huge;
4673
4674 if (count + 1 > sizeof(tmp))
4675 return -EINVAL;
4676 memcpy(tmp, buf, count);
4677 tmp[count] = '\0';
4678 if (count && tmp[count - 1] == '\n')
4679 tmp[count - 1] = '\0';
4680
4681 huge = shmem_parse_huge(str: tmp);
4682 if (huge == -EINVAL)
4683 return -EINVAL;
4684 if (!has_transparent_hugepage() &&
4685 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4686 return -EINVAL;
4687
4688 shmem_huge = huge;
4689 if (shmem_huge > SHMEM_HUGE_DENY)
4690 SHMEM_SB(sb: shm_mnt->mnt_sb)->huge = shmem_huge;
4691 return count;
4692}
4693
4694struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4695#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4696
4697#else /* !CONFIG_SHMEM */
4698
4699/*
4700 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4701 *
4702 * This is intended for small system where the benefits of the full
4703 * shmem code (swap-backed and resource-limited) are outweighed by
4704 * their complexity. On systems without swap this code should be
4705 * effectively equivalent, but much lighter weight.
4706 */
4707
4708static struct file_system_type shmem_fs_type = {
4709 .name = "tmpfs",
4710 .init_fs_context = ramfs_init_fs_context,
4711 .parameters = ramfs_fs_parameters,
4712 .kill_sb = ramfs_kill_sb,
4713 .fs_flags = FS_USERNS_MOUNT,
4714};
4715
4716void __init shmem_init(void)
4717{
4718 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4719
4720 shm_mnt = kern_mount(&shmem_fs_type);
4721 BUG_ON(IS_ERR(shm_mnt));
4722}
4723
4724int shmem_unuse(unsigned int type)
4725{
4726 return 0;
4727}
4728
4729int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4730{
4731 return 0;
4732}
4733
4734void shmem_unlock_mapping(struct address_space *mapping)
4735{
4736}
4737
4738#ifdef CONFIG_MMU
4739unsigned long shmem_get_unmapped_area(struct file *file,
4740 unsigned long addr, unsigned long len,
4741 unsigned long pgoff, unsigned long flags)
4742{
4743 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4744}
4745#endif
4746
4747void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4748{
4749 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4750}
4751EXPORT_SYMBOL_GPL(shmem_truncate_range);
4752
4753#define shmem_vm_ops generic_file_vm_ops
4754#define shmem_anon_vm_ops generic_file_vm_ops
4755#define shmem_file_operations ramfs_file_operations
4756#define shmem_acct_size(flags, size) 0
4757#define shmem_unacct_size(flags, size) do {} while (0)
4758
4759static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4760 struct super_block *sb, struct inode *dir,
4761 umode_t mode, dev_t dev, unsigned long flags)
4762{
4763 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4764 return inode ? inode : ERR_PTR(-ENOSPC);
4765}
4766
4767#endif /* CONFIG_SHMEM */
4768
4769/* common code */
4770
4771static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4772 loff_t size, unsigned long flags, unsigned int i_flags)
4773{
4774 struct inode *inode;
4775 struct file *res;
4776
4777 if (IS_ERR(ptr: mnt))
4778 return ERR_CAST(ptr: mnt);
4779
4780 if (size < 0 || size > MAX_LFS_FILESIZE)
4781 return ERR_PTR(error: -EINVAL);
4782
4783 if (shmem_acct_size(flags, size))
4784 return ERR_PTR(error: -ENOMEM);
4785
4786 if (is_idmapped_mnt(mnt))
4787 return ERR_PTR(error: -EINVAL);
4788
4789 inode = shmem_get_inode(idmap: &nop_mnt_idmap, sb: mnt->mnt_sb, NULL,
4790 S_IFREG | S_IRWXUGO, dev: 0, flags);
4791 if (IS_ERR(ptr: inode)) {
4792 shmem_unacct_size(flags, size);
4793 return ERR_CAST(ptr: inode);
4794 }
4795 inode->i_flags |= i_flags;
4796 inode->i_size = size;
4797 clear_nlink(inode); /* It is unlinked */
4798 res = ERR_PTR(error: ramfs_nommu_expand_for_mapping(inode, newsize: size));
4799 if (!IS_ERR(ptr: res))
4800 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4801 &shmem_file_operations);
4802 if (IS_ERR(ptr: res))
4803 iput(inode);
4804 return res;
4805}
4806
4807/**
4808 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4809 * kernel internal. There will be NO LSM permission checks against the
4810 * underlying inode. So users of this interface must do LSM checks at a
4811 * higher layer. The users are the big_key and shm implementations. LSM
4812 * checks are provided at the key or shm level rather than the inode.
4813 * @name: name for dentry (to be seen in /proc/<pid>/maps
4814 * @size: size to be set for the file
4815 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4816 */
4817struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4818{
4819 return __shmem_file_setup(mnt: shm_mnt, name, size, flags, S_PRIVATE);
4820}
4821
4822/**
4823 * shmem_file_setup - get an unlinked file living in tmpfs
4824 * @name: name for dentry (to be seen in /proc/<pid>/maps
4825 * @size: size to be set for the file
4826 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4827 */
4828struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4829{
4830 return __shmem_file_setup(mnt: shm_mnt, name, size, flags, i_flags: 0);
4831}
4832EXPORT_SYMBOL_GPL(shmem_file_setup);
4833
4834/**
4835 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4836 * @mnt: the tmpfs mount where the file will be created
4837 * @name: name for dentry (to be seen in /proc/<pid>/maps
4838 * @size: size to be set for the file
4839 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840 */
4841struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4842 loff_t size, unsigned long flags)
4843{
4844 return __shmem_file_setup(mnt, name, size, flags, i_flags: 0);
4845}
4846EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4847
4848/**
4849 * shmem_zero_setup - setup a shared anonymous mapping
4850 * @vma: the vma to be mmapped is prepared by do_mmap
4851 */
4852int shmem_zero_setup(struct vm_area_struct *vma)
4853{
4854 struct file *file;
4855 loff_t size = vma->vm_end - vma->vm_start;
4856
4857 /*
4858 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4859 * between XFS directory reading and selinux: since this file is only
4860 * accessible to the user through its mapping, use S_PRIVATE flag to
4861 * bypass file security, in the same way as shmem_kernel_file_setup().
4862 */
4863 file = shmem_kernel_file_setup(name: "dev/zero", size, flags: vma->vm_flags);
4864 if (IS_ERR(ptr: file))
4865 return PTR_ERR(ptr: file);
4866
4867 if (vma->vm_file)
4868 fput(vma->vm_file);
4869 vma->vm_file = file;
4870 vma->vm_ops = &shmem_anon_vm_ops;
4871
4872 return 0;
4873}
4874
4875/**
4876 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4877 * @mapping: the folio's address_space
4878 * @index: the folio index
4879 * @gfp: the page allocator flags to use if allocating
4880 *
4881 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4882 * with any new page allocations done using the specified allocation flags.
4883 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4884 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4885 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4886 *
4887 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4888 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4889 */
4890struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4891 pgoff_t index, gfp_t gfp)
4892{
4893#ifdef CONFIG_SHMEM
4894 struct inode *inode = mapping->host;
4895 struct folio *folio;
4896 int error;
4897
4898 BUG_ON(!shmem_mapping(mapping));
4899 error = shmem_get_folio_gfp(inode, index, foliop: &folio, sgp: SGP_CACHE,
4900 gfp, NULL, NULL);
4901 if (error)
4902 return ERR_PTR(error);
4903
4904 folio_unlock(folio);
4905 return folio;
4906#else
4907 /*
4908 * The tiny !SHMEM case uses ramfs without swap
4909 */
4910 return mapping_read_folio_gfp(mapping, index, gfp);
4911#endif
4912}
4913EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4914
4915struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4916 pgoff_t index, gfp_t gfp)
4917{
4918 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4919 struct page *page;
4920
4921 if (IS_ERR(ptr: folio))
4922 return &folio->page;
4923
4924 page = folio_file_page(folio, index);
4925 if (PageHWPoison(page)) {
4926 folio_put(folio);
4927 return ERR_PTR(error: -EIO);
4928 }
4929
4930 return page;
4931}
4932EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4933

source code of linux/mm/shmem.c