1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include <linux/unicode.h>
44#include "swap.h"
45
46static struct vfsmount *shm_mnt __ro_after_init;
47
48#ifdef CONFIG_SHMEM
49/*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55#include <linux/xattr.h>
56#include <linux/exportfs.h>
57#include <linux/posix_acl.h>
58#include <linux/posix_acl_xattr.h>
59#include <linux/mman.h>
60#include <linux/string.h>
61#include <linux/slab.h>
62#include <linux/backing-dev.h>
63#include <linux/writeback.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/rmap.h>
81#include <linux/uuid.h>
82#include <linux/quotaops.h>
83#include <linux/rcupdate_wait.h>
84
85#include <linux/uaccess.h>
86
87#include "internal.h"
88
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
94/* Pretend that one inode + its dentry occupy this much memory */
95#define BOGO_INODE_SIZE 1024
96
97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98#define SHORT_SYMLINK_LEN 128
99
100/*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111};
112
113struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126#if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129#endif
130#define SHMEM_SEEN_BLOCKS 1
131#define SHMEM_SEEN_INODES 2
132#define SHMEM_SEEN_HUGE 4
133#define SHMEM_SEEN_INUMS 8
134#define SHMEM_SEEN_NOSWAP 16
135#define SHMEM_SEEN_QUOTA 32
136};
137
138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
139static unsigned long huge_shmem_orders_always __read_mostly;
140static unsigned long huge_shmem_orders_madvise __read_mostly;
141static unsigned long huge_shmem_orders_inherit __read_mostly;
142static unsigned long huge_shmem_orders_within_size __read_mostly;
143static bool shmem_orders_configured __initdata;
144#endif
145
146#ifdef CONFIG_TMPFS
147static unsigned long shmem_default_max_blocks(void)
148{
149 return totalram_pages() / 2;
150}
151
152static unsigned long shmem_default_max_inodes(void)
153{
154 unsigned long nr_pages = totalram_pages();
155
156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 ULONG_MAX / BOGO_INODE_SIZE);
158}
159#endif
160
161static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 struct vm_area_struct *vma, vm_fault_t *fault_type);
164
165static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166{
167 return sb->s_fs_info;
168}
169
170/*
171 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172 * for shared memory and for shared anonymous (/dev/zero) mappings
173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174 * consistent with the pre-accounting of private mappings ...
175 */
176static inline int shmem_acct_size(unsigned long flags, loff_t size)
177{
178 return (flags & VM_NORESERVE) ?
179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180}
181
182static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183{
184 if (!(flags & VM_NORESERVE))
185 vm_unacct_memory(VM_ACCT(size));
186}
187
188static inline int shmem_reacct_size(unsigned long flags,
189 loff_t oldsize, loff_t newsize)
190{
191 if (!(flags & VM_NORESERVE)) {
192 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 return security_vm_enough_memory_mm(current->mm,
194 VM_ACCT(newsize) - VM_ACCT(oldsize));
195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 }
198 return 0;
199}
200
201/*
202 * ... whereas tmpfs objects are accounted incrementally as
203 * pages are allocated, in order to allow large sparse files.
204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206 */
207static inline int shmem_acct_blocks(unsigned long flags, long pages)
208{
209 if (!(flags & VM_NORESERVE))
210 return 0;
211
212 return security_vm_enough_memory_mm(current->mm,
213 pages: pages * VM_ACCT(PAGE_SIZE));
214}
215
216static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217{
218 if (flags & VM_NORESERVE)
219 vm_unacct_memory(pages: pages * VM_ACCT(PAGE_SIZE));
220}
221
222static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223{
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
226 int err = -ENOSPC;
227
228 if (shmem_acct_blocks(flags: info->flags, pages))
229 return err;
230
231 might_sleep(); /* when quotas */
232 if (sbinfo->max_blocks) {
233 if (!percpu_counter_limited_add(fbc: &sbinfo->used_blocks,
234 limit: sbinfo->max_blocks, amount: pages))
235 goto unacct;
236
237 err = dquot_alloc_block_nodirty(inode, nr: pages);
238 if (err) {
239 percpu_counter_sub(fbc: &sbinfo->used_blocks, amount: pages);
240 goto unacct;
241 }
242 } else {
243 err = dquot_alloc_block_nodirty(inode, nr: pages);
244 if (err)
245 goto unacct;
246 }
247
248 return 0;
249
250unacct:
251 shmem_unacct_blocks(flags: info->flags, pages);
252 return err;
253}
254
255static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256{
257 struct shmem_inode_info *info = SHMEM_I(inode);
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
259
260 might_sleep(); /* when quotas */
261 dquot_free_block_nodirty(inode, nr: pages);
262
263 if (sbinfo->max_blocks)
264 percpu_counter_sub(fbc: &sbinfo->used_blocks, amount: pages);
265 shmem_unacct_blocks(flags: info->flags, pages);
266}
267
268static const struct super_operations shmem_ops;
269static const struct address_space_operations shmem_aops;
270static const struct file_operations shmem_file_operations;
271static const struct inode_operations shmem_inode_operations;
272static const struct inode_operations shmem_dir_inode_operations;
273static const struct inode_operations shmem_special_inode_operations;
274static const struct vm_operations_struct shmem_vm_ops;
275static const struct vm_operations_struct shmem_anon_vm_ops;
276static struct file_system_type shmem_fs_type;
277
278bool shmem_mapping(struct address_space *mapping)
279{
280 return mapping->a_ops == &shmem_aops;
281}
282EXPORT_SYMBOL_GPL(shmem_mapping);
283
284bool vma_is_anon_shmem(struct vm_area_struct *vma)
285{
286 return vma->vm_ops == &shmem_anon_vm_ops;
287}
288
289bool vma_is_shmem(struct vm_area_struct *vma)
290{
291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292}
293
294static LIST_HEAD(shmem_swaplist);
295static DEFINE_MUTEX(shmem_swaplist_mutex);
296
297#ifdef CONFIG_TMPFS_QUOTA
298
299static int shmem_enable_quotas(struct super_block *sb,
300 unsigned short quota_types)
301{
302 int type, err = 0;
303
304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 if (!(quota_types & (1 << type)))
307 continue;
308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 DQUOT_USAGE_ENABLED |
310 DQUOT_LIMITS_ENABLED);
311 if (err)
312 goto out_err;
313 }
314 return 0;
315
316out_err:
317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 type, err);
319 for (type--; type >= 0; type--)
320 dquot_quota_off(sb, type);
321 return err;
322}
323
324static void shmem_disable_quotas(struct super_block *sb)
325{
326 int type;
327
328 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 dquot_quota_off(sb, type);
330}
331
332static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333{
334 return SHMEM_I(inode)->i_dquot;
335}
336#endif /* CONFIG_TMPFS_QUOTA */
337
338/*
339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340 * produces a novel ino for the newly allocated inode.
341 *
342 * It may also be called when making a hard link to permit the space needed by
343 * each dentry. However, in that case, no new inode number is needed since that
344 * internally draws from another pool of inode numbers (currently global
345 * get_next_ino()). This case is indicated by passing NULL as inop.
346 */
347#define SHMEM_INO_BATCH 1024
348static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349{
350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 ino_t ino;
352
353 if (!(sb->s_flags & SB_KERNMOUNT)) {
354 raw_spin_lock(&sbinfo->stat_lock);
355 if (sbinfo->max_inodes) {
356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 raw_spin_unlock(&sbinfo->stat_lock);
358 return -ENOSPC;
359 }
360 sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 }
362 if (inop) {
363 ino = sbinfo->next_ino++;
364 if (unlikely(is_zero_ino(ino)))
365 ino = sbinfo->next_ino++;
366 if (unlikely(!sbinfo->full_inums &&
367 ino > UINT_MAX)) {
368 /*
369 * Emulate get_next_ino uint wraparound for
370 * compatibility
371 */
372 if (IS_ENABLED(CONFIG_64BIT))
373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 __func__, MINOR(sb->s_dev));
375 sbinfo->next_ino = 1;
376 ino = sbinfo->next_ino++;
377 }
378 *inop = ino;
379 }
380 raw_spin_unlock(&sbinfo->stat_lock);
381 } else if (inop) {
382 /*
383 * __shmem_file_setup, one of our callers, is lock-free: it
384 * doesn't hold stat_lock in shmem_reserve_inode since
385 * max_inodes is always 0, and is called from potentially
386 * unknown contexts. As such, use a per-cpu batched allocator
387 * which doesn't require the per-sb stat_lock unless we are at
388 * the batch boundary.
389 *
390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 * shmem mounts are not exposed to userspace, so we don't need
392 * to worry about things like glibc compatibility.
393 */
394 ino_t *next_ino;
395
396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 ino = *next_ino;
398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 raw_spin_lock(&sbinfo->stat_lock);
400 ino = sbinfo->next_ino;
401 sbinfo->next_ino += SHMEM_INO_BATCH;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 if (unlikely(is_zero_ino(ino)))
404 ino++;
405 }
406 *inop = ino;
407 *next_ino = ++ino;
408 put_cpu();
409 }
410
411 return 0;
412}
413
414static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415{
416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 if (sbinfo->max_inodes) {
418 raw_spin_lock(&sbinfo->stat_lock);
419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 raw_spin_unlock(&sbinfo->stat_lock);
421 }
422}
423
424/**
425 * shmem_recalc_inode - recalculate the block usage of an inode
426 * @inode: inode to recalc
427 * @alloced: the change in number of pages allocated to inode
428 * @swapped: the change in number of pages swapped from inode
429 *
430 * We have to calculate the free blocks since the mm can drop
431 * undirtied hole pages behind our back.
432 *
433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435 */
436static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437{
438 struct shmem_inode_info *info = SHMEM_I(inode);
439 long freed;
440
441 spin_lock(lock: &info->lock);
442 info->alloced += alloced;
443 info->swapped += swapped;
444 freed = info->alloced - info->swapped -
445 READ_ONCE(inode->i_mapping->nrpages);
446 /*
447 * Special case: whereas normally shmem_recalc_inode() is called
448 * after i_mapping->nrpages has already been adjusted (up or down),
449 * shmem_writeout() has to raise swapped before nrpages is lowered -
450 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 * been freed. Compensate here, to avoid the need for a followup call.
452 */
453 if (swapped > 0)
454 freed += swapped;
455 if (freed > 0)
456 info->alloced -= freed;
457 spin_unlock(lock: &info->lock);
458
459 /* The quota case may block */
460 if (freed > 0)
461 shmem_inode_unacct_blocks(inode, pages: freed);
462}
463
464bool shmem_charge(struct inode *inode, long pages)
465{
466 struct address_space *mapping = inode->i_mapping;
467
468 if (shmem_inode_acct_blocks(inode, pages))
469 return false;
470
471 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 xa_lock_irq(&mapping->i_pages);
473 mapping->nrpages += pages;
474 xa_unlock_irq(&mapping->i_pages);
475
476 shmem_recalc_inode(inode, alloced: pages, swapped: 0);
477 return true;
478}
479
480void shmem_uncharge(struct inode *inode, long pages)
481{
482 /* pages argument is currently unused: keep it to help debugging */
483 /* nrpages adjustment done by __filemap_remove_folio() or caller */
484
485 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
486}
487
488/*
489 * Replace item expected in xarray by a new item, while holding xa_lock.
490 */
491static int shmem_replace_entry(struct address_space *mapping,
492 pgoff_t index, void *expected, void *replacement)
493{
494 XA_STATE(xas, &mapping->i_pages, index);
495 void *item;
496
497 VM_BUG_ON(!expected);
498 VM_BUG_ON(!replacement);
499 item = xas_load(&xas);
500 if (item != expected)
501 return -ENOENT;
502 xas_store(&xas, entry: replacement);
503 return 0;
504}
505
506/*
507 * Sometimes, before we decide whether to proceed or to fail, we must check
508 * that an entry was not already brought back from swap by a racing thread.
509 *
510 * Checking folio is not enough: by the time a swapcache folio is locked, it
511 * might be reused, and again be swapcache, using the same swap as before.
512 */
513static bool shmem_confirm_swap(struct address_space *mapping,
514 pgoff_t index, swp_entry_t swap)
515{
516 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(entry: swap);
517}
518
519/*
520 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521 *
522 * SHMEM_HUGE_NEVER:
523 * disables huge pages for the mount;
524 * SHMEM_HUGE_ALWAYS:
525 * enables huge pages for the mount;
526 * SHMEM_HUGE_WITHIN_SIZE:
527 * only allocate huge pages if the page will be fully within i_size,
528 * also respect madvise() hints;
529 * SHMEM_HUGE_ADVISE:
530 * only allocate huge pages if requested with madvise();
531 */
532
533#define SHMEM_HUGE_NEVER 0
534#define SHMEM_HUGE_ALWAYS 1
535#define SHMEM_HUGE_WITHIN_SIZE 2
536#define SHMEM_HUGE_ADVISE 3
537
538/*
539 * Special values.
540 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541 *
542 * SHMEM_HUGE_DENY:
543 * disables huge on shm_mnt and all mounts, for emergency use;
544 * SHMEM_HUGE_FORCE:
545 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546 *
547 */
548#define SHMEM_HUGE_DENY (-1)
549#define SHMEM_HUGE_FORCE (-2)
550
551#ifdef CONFIG_TRANSPARENT_HUGEPAGE
552/* ifdef here to avoid bloating shmem.o when not necessary */
553
554static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
556
557/**
558 * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
559 * @mapping: Target address_space.
560 * @index: The page index.
561 * @write_end: end of a write, could extend inode size.
562 *
563 * This returns huge orders for folios (when supported) based on the file size
564 * which the mapping currently allows at the given index. The index is relevant
565 * due to alignment considerations the mapping might have. The returned order
566 * may be less than the size passed.
567 *
568 * Return: The orders.
569 */
570static inline unsigned int
571shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
572{
573 unsigned int order;
574 size_t size;
575
576 if (!mapping_large_folio_support(mapping) || !write_end)
577 return 0;
578
579 /* Calculate the write size based on the write_end */
580 size = write_end - (index << PAGE_SHIFT);
581 order = filemap_get_order(size);
582 if (!order)
583 return 0;
584
585 /* If we're not aligned, allocate a smaller folio */
586 if (index & ((1UL << order) - 1))
587 order = __ffs(index);
588
589 order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
590 return order > 0 ? BIT(order + 1) - 1 : 0;
591}
592
593static unsigned int shmem_get_orders_within_size(struct inode *inode,
594 unsigned long within_size_orders, pgoff_t index,
595 loff_t write_end)
596{
597 pgoff_t aligned_index;
598 unsigned long order;
599 loff_t i_size;
600
601 order = highest_order(orders: within_size_orders);
602 while (within_size_orders) {
603 aligned_index = round_up(index + 1, 1 << order);
604 i_size = max(write_end, i_size_read(inode));
605 i_size = round_up(i_size, PAGE_SIZE);
606 if (i_size >> PAGE_SHIFT >= aligned_index)
607 return within_size_orders;
608
609 order = next_order(orders: &within_size_orders, prev: order);
610 }
611
612 return 0;
613}
614
615static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
616 loff_t write_end, bool shmem_huge_force,
617 struct vm_area_struct *vma,
618 unsigned long vm_flags)
619{
620 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
621 0 : BIT(HPAGE_PMD_ORDER);
622 unsigned long within_size_orders;
623
624 if (!S_ISREG(inode->i_mode))
625 return 0;
626 if (shmem_huge == SHMEM_HUGE_DENY)
627 return 0;
628 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
629 return maybe_pmd_order;
630
631 /*
632 * The huge order allocation for anon shmem is controlled through
633 * the mTHP interface, so we still use PMD-sized huge order to
634 * check whether global control is enabled.
635 *
636 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
637 * allocate huge pages due to lack of a write size hint.
638 *
639 * Otherwise, tmpfs will allow getting a highest order hint based on
640 * the size of write and fallocate paths, then will try each allowable
641 * huge orders.
642 */
643 switch (SHMEM_SB(sb: inode->i_sb)->huge) {
644 case SHMEM_HUGE_ALWAYS:
645 if (vma)
646 return maybe_pmd_order;
647
648 return shmem_mapping_size_orders(mapping: inode->i_mapping, index, write_end);
649 case SHMEM_HUGE_WITHIN_SIZE:
650 if (vma)
651 within_size_orders = maybe_pmd_order;
652 else
653 within_size_orders = shmem_mapping_size_orders(mapping: inode->i_mapping,
654 index, write_end);
655
656 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
657 index, write_end);
658 if (within_size_orders > 0)
659 return within_size_orders;
660
661 fallthrough;
662 case SHMEM_HUGE_ADVISE:
663 if (vm_flags & VM_HUGEPAGE)
664 return maybe_pmd_order;
665 fallthrough;
666 default:
667 return 0;
668 }
669}
670
671static int shmem_parse_huge(const char *str)
672{
673 int huge;
674
675 if (!str)
676 return -EINVAL;
677
678 if (!strcmp(str, "never"))
679 huge = SHMEM_HUGE_NEVER;
680 else if (!strcmp(str, "always"))
681 huge = SHMEM_HUGE_ALWAYS;
682 else if (!strcmp(str, "within_size"))
683 huge = SHMEM_HUGE_WITHIN_SIZE;
684 else if (!strcmp(str, "advise"))
685 huge = SHMEM_HUGE_ADVISE;
686 else if (!strcmp(str, "deny"))
687 huge = SHMEM_HUGE_DENY;
688 else if (!strcmp(str, "force"))
689 huge = SHMEM_HUGE_FORCE;
690 else
691 return -EINVAL;
692
693 if (!has_transparent_hugepage() &&
694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
695 return -EINVAL;
696
697 /* Do not override huge allocation policy with non-PMD sized mTHP */
698 if (huge == SHMEM_HUGE_FORCE &&
699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
700 return -EINVAL;
701
702 return huge;
703}
704
705#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
706static const char *shmem_format_huge(int huge)
707{
708 switch (huge) {
709 case SHMEM_HUGE_NEVER:
710 return "never";
711 case SHMEM_HUGE_ALWAYS:
712 return "always";
713 case SHMEM_HUGE_WITHIN_SIZE:
714 return "within_size";
715 case SHMEM_HUGE_ADVISE:
716 return "advise";
717 case SHMEM_HUGE_DENY:
718 return "deny";
719 case SHMEM_HUGE_FORCE:
720 return "force";
721 default:
722 VM_BUG_ON(1);
723 return "bad_val";
724 }
725}
726#endif
727
728static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
729 struct shrink_control *sc, unsigned long nr_to_free)
730{
731 LIST_HEAD(list), *pos, *next;
732 struct inode *inode;
733 struct shmem_inode_info *info;
734 struct folio *folio;
735 unsigned long batch = sc ? sc->nr_to_scan : 128;
736 unsigned long split = 0, freed = 0;
737
738 if (list_empty(head: &sbinfo->shrinklist))
739 return SHRINK_STOP;
740
741 spin_lock(lock: &sbinfo->shrinklist_lock);
742 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
743 info = list_entry(pos, struct shmem_inode_info, shrinklist);
744
745 /* pin the inode */
746 inode = igrab(&info->vfs_inode);
747
748 /* inode is about to be evicted */
749 if (!inode) {
750 list_del_init(entry: &info->shrinklist);
751 goto next;
752 }
753
754 list_move(list: &info->shrinklist, head: &list);
755next:
756 sbinfo->shrinklist_len--;
757 if (!--batch)
758 break;
759 }
760 spin_unlock(lock: &sbinfo->shrinklist_lock);
761
762 list_for_each_safe(pos, next, &list) {
763 pgoff_t next, end;
764 loff_t i_size;
765 int ret;
766
767 info = list_entry(pos, struct shmem_inode_info, shrinklist);
768 inode = &info->vfs_inode;
769
770 if (nr_to_free && freed >= nr_to_free)
771 goto move_back;
772
773 i_size = i_size_read(inode);
774 folio = filemap_get_entry(mapping: inode->i_mapping, index: i_size / PAGE_SIZE);
775 if (!folio || xa_is_value(entry: folio))
776 goto drop;
777
778 /* No large folio at the end of the file: nothing to split */
779 if (!folio_test_large(folio)) {
780 folio_put(folio);
781 goto drop;
782 }
783
784 /* Check if there is anything to gain from splitting */
785 next = folio_next_index(folio);
786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
787 if (end <= folio->index || end >= next) {
788 folio_put(folio);
789 goto drop;
790 }
791
792 /*
793 * Move the inode on the list back to shrinklist if we failed
794 * to lock the page at this time.
795 *
796 * Waiting for the lock may lead to deadlock in the
797 * reclaim path.
798 */
799 if (!folio_trylock(folio)) {
800 folio_put(folio);
801 goto move_back;
802 }
803
804 ret = split_folio(folio);
805 folio_unlock(folio);
806 folio_put(folio);
807
808 /* If split failed move the inode on the list back to shrinklist */
809 if (ret)
810 goto move_back;
811
812 freed += next - end;
813 split++;
814drop:
815 list_del_init(entry: &info->shrinklist);
816 goto put;
817move_back:
818 /*
819 * Make sure the inode is either on the global list or deleted
820 * from any local list before iput() since it could be deleted
821 * in another thread once we put the inode (then the local list
822 * is corrupted).
823 */
824 spin_lock(lock: &sbinfo->shrinklist_lock);
825 list_move(list: &info->shrinklist, head: &sbinfo->shrinklist);
826 sbinfo->shrinklist_len++;
827 spin_unlock(lock: &sbinfo->shrinklist_lock);
828put:
829 iput(inode);
830 }
831
832 return split;
833}
834
835static long shmem_unused_huge_scan(struct super_block *sb,
836 struct shrink_control *sc)
837{
838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
839
840 if (!READ_ONCE(sbinfo->shrinklist_len))
841 return SHRINK_STOP;
842
843 return shmem_unused_huge_shrink(sbinfo, sc, nr_to_free: 0);
844}
845
846static long shmem_unused_huge_count(struct super_block *sb,
847 struct shrink_control *sc)
848{
849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
850 return READ_ONCE(sbinfo->shrinklist_len);
851}
852#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
853
854#define shmem_huge SHMEM_HUGE_DENY
855
856static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
857 struct shrink_control *sc, unsigned long nr_to_free)
858{
859 return 0;
860}
861
862static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
863 loff_t write_end, bool shmem_huge_force,
864 struct vm_area_struct *vma,
865 unsigned long vm_flags)
866{
867 return 0;
868}
869#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870
871static void shmem_update_stats(struct folio *folio, int nr_pages)
872{
873 if (folio_test_pmd_mappable(folio))
874 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM_THPS, val: nr_pages);
875 __lruvec_stat_mod_folio(folio, idx: NR_FILE_PAGES, val: nr_pages);
876 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM, val: nr_pages);
877}
878
879/*
880 * Somewhat like filemap_add_folio, but error if expected item has gone.
881 */
882static int shmem_add_to_page_cache(struct folio *folio,
883 struct address_space *mapping,
884 pgoff_t index, void *expected, gfp_t gfp)
885{
886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
887 long nr = folio_nr_pages(folio);
888
889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
892
893 folio_ref_add(folio, nr);
894 folio->mapping = mapping;
895 folio->index = index;
896
897 gfp &= GFP_RECLAIM_MASK;
898 folio_throttle_swaprate(folio, gfp);
899
900 do {
901 xas_lock_irq(&xas);
902 if (expected != xas_find_conflict(&xas)) {
903 xas_set_err(xas: &xas, err: -EEXIST);
904 goto unlock;
905 }
906 if (expected && xas_find_conflict(&xas)) {
907 xas_set_err(xas: &xas, err: -EEXIST);
908 goto unlock;
909 }
910 xas_store(&xas, entry: folio);
911 if (xas_error(xas: &xas))
912 goto unlock;
913 shmem_update_stats(folio, nr_pages: nr);
914 mapping->nrpages += nr;
915unlock:
916 xas_unlock_irq(&xas);
917 } while (xas_nomem(&xas, gfp));
918
919 if (xas_error(xas: &xas)) {
920 folio->mapping = NULL;
921 folio_ref_sub(folio, nr);
922 return xas_error(xas: &xas);
923 }
924
925 return 0;
926}
927
928/*
929 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
930 */
931static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
932{
933 struct address_space *mapping = folio->mapping;
934 long nr = folio_nr_pages(folio);
935 int error;
936
937 xa_lock_irq(&mapping->i_pages);
938 error = shmem_replace_entry(mapping, index: folio->index, expected: folio, replacement: radswap);
939 folio->mapping = NULL;
940 mapping->nrpages -= nr;
941 shmem_update_stats(folio, nr_pages: -nr);
942 xa_unlock_irq(&mapping->i_pages);
943 folio_put_refs(folio, refs: nr);
944 BUG_ON(error);
945}
946
947/*
948 * Remove swap entry from page cache, free the swap and its page cache. Returns
949 * the number of pages being freed. 0 means entry not found in XArray (0 pages
950 * being freed).
951 */
952static long shmem_free_swap(struct address_space *mapping,
953 pgoff_t index, void *radswap)
954{
955 int order = xa_get_order(&mapping->i_pages, index);
956 void *old;
957
958 old = xa_cmpxchg_irq(xa: &mapping->i_pages, index, old: radswap, NULL, gfp: 0);
959 if (old != radswap)
960 return 0;
961 free_swap_and_cache_nr(entry: radix_to_swp_entry(arg: radswap), nr: 1 << order);
962
963 return 1 << order;
964}
965
966/*
967 * Determine (in bytes) how many of the shmem object's pages mapped by the
968 * given offsets are swapped out.
969 *
970 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
971 * as long as the inode doesn't go away and racy results are not a problem.
972 */
973unsigned long shmem_partial_swap_usage(struct address_space *mapping,
974 pgoff_t start, pgoff_t end)
975{
976 XA_STATE(xas, &mapping->i_pages, start);
977 struct page *page;
978 unsigned long swapped = 0;
979 unsigned long max = end - 1;
980
981 rcu_read_lock();
982 xas_for_each(&xas, page, max) {
983 if (xas_retry(xas: &xas, entry: page))
984 continue;
985 if (xa_is_value(entry: page))
986 swapped += 1 << xas_get_order(xas: &xas);
987 if (xas.xa_index == max)
988 break;
989 if (need_resched()) {
990 xas_pause(&xas);
991 cond_resched_rcu();
992 }
993 }
994 rcu_read_unlock();
995
996 return swapped << PAGE_SHIFT;
997}
998
999/*
1000 * Determine (in bytes) how many of the shmem object's pages mapped by the
1001 * given vma is swapped out.
1002 *
1003 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1004 * as long as the inode doesn't go away and racy results are not a problem.
1005 */
1006unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1007{
1008 struct inode *inode = file_inode(f: vma->vm_file);
1009 struct shmem_inode_info *info = SHMEM_I(inode);
1010 struct address_space *mapping = inode->i_mapping;
1011 unsigned long swapped;
1012
1013 /* Be careful as we don't hold info->lock */
1014 swapped = READ_ONCE(info->swapped);
1015
1016 /*
1017 * The easier cases are when the shmem object has nothing in swap, or
1018 * the vma maps it whole. Then we can simply use the stats that we
1019 * already track.
1020 */
1021 if (!swapped)
1022 return 0;
1023
1024 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1025 return swapped << PAGE_SHIFT;
1026
1027 /* Here comes the more involved part */
1028 return shmem_partial_swap_usage(mapping, start: vma->vm_pgoff,
1029 end: vma->vm_pgoff + vma_pages(vma));
1030}
1031
1032/*
1033 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1034 */
1035void shmem_unlock_mapping(struct address_space *mapping)
1036{
1037 struct folio_batch fbatch;
1038 pgoff_t index = 0;
1039
1040 folio_batch_init(fbatch: &fbatch);
1041 /*
1042 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1043 */
1044 while (!mapping_unevictable(mapping) &&
1045 filemap_get_folios(mapping, start: &index, end: ~0UL, fbatch: &fbatch)) {
1046 check_move_unevictable_folios(fbatch: &fbatch);
1047 folio_batch_release(fbatch: &fbatch);
1048 cond_resched();
1049 }
1050}
1051
1052static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1053{
1054 struct folio *folio;
1055
1056 /*
1057 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1058 * beyond i_size, and reports fallocated folios as holes.
1059 */
1060 folio = filemap_get_entry(mapping: inode->i_mapping, index);
1061 if (!folio)
1062 return folio;
1063 if (!xa_is_value(entry: folio)) {
1064 folio_lock(folio);
1065 if (folio->mapping == inode->i_mapping)
1066 return folio;
1067 /* The folio has been swapped out */
1068 folio_unlock(folio);
1069 folio_put(folio);
1070 }
1071 /*
1072 * But read a folio back from swap if any of it is within i_size
1073 * (although in some cases this is just a waste of time).
1074 */
1075 folio = NULL;
1076 shmem_get_folio(inode, index, write_end: 0, foliop: &folio, sgp: SGP_READ);
1077 return folio;
1078}
1079
1080/*
1081 * Remove range of pages and swap entries from page cache, and free them.
1082 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1083 */
1084static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1085 bool unfalloc)
1086{
1087 struct address_space *mapping = inode->i_mapping;
1088 struct shmem_inode_info *info = SHMEM_I(inode);
1089 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1091 struct folio_batch fbatch;
1092 pgoff_t indices[PAGEVEC_SIZE];
1093 struct folio *folio;
1094 bool same_folio;
1095 long nr_swaps_freed = 0;
1096 pgoff_t index;
1097 int i;
1098
1099 if (lend == -1)
1100 end = -1; /* unsigned, so actually very big */
1101
1102 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1103 info->fallocend = start;
1104
1105 folio_batch_init(fbatch: &fbatch);
1106 index = start;
1107 while (index < end && find_lock_entries(mapping, start: &index, end: end - 1,
1108 fbatch: &fbatch, indices)) {
1109 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
1110 folio = fbatch.folios[i];
1111
1112 if (xa_is_value(entry: folio)) {
1113 if (unfalloc)
1114 continue;
1115 nr_swaps_freed += shmem_free_swap(mapping,
1116 index: indices[i], radswap: folio);
1117 continue;
1118 }
1119
1120 if (!unfalloc || !folio_test_uptodate(folio))
1121 truncate_inode_folio(mapping, folio);
1122 folio_unlock(folio);
1123 }
1124 folio_batch_remove_exceptionals(fbatch: &fbatch);
1125 folio_batch_release(fbatch: &fbatch);
1126 cond_resched();
1127 }
1128
1129 /*
1130 * When undoing a failed fallocate, we want none of the partial folio
1131 * zeroing and splitting below, but shall want to truncate the whole
1132 * folio when !uptodate indicates that it was added by this fallocate,
1133 * even when [lstart, lend] covers only a part of the folio.
1134 */
1135 if (unfalloc)
1136 goto whole_folios;
1137
1138 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1139 folio = shmem_get_partial_folio(inode, index: lstart >> PAGE_SHIFT);
1140 if (folio) {
1141 same_folio = lend < folio_pos(folio) + folio_size(folio);
1142 folio_mark_dirty(folio);
1143 if (!truncate_inode_partial_folio(folio, start: lstart, end: lend)) {
1144 start = folio_next_index(folio);
1145 if (same_folio)
1146 end = folio->index;
1147 }
1148 folio_unlock(folio);
1149 folio_put(folio);
1150 folio = NULL;
1151 }
1152
1153 if (!same_folio)
1154 folio = shmem_get_partial_folio(inode, index: lend >> PAGE_SHIFT);
1155 if (folio) {
1156 folio_mark_dirty(folio);
1157 if (!truncate_inode_partial_folio(folio, start: lstart, end: lend))
1158 end = folio->index;
1159 folio_unlock(folio);
1160 folio_put(folio);
1161 }
1162
1163whole_folios:
1164
1165 index = start;
1166 while (index < end) {
1167 cond_resched();
1168
1169 if (!find_get_entries(mapping, start: &index, end: end - 1, fbatch: &fbatch,
1170 indices)) {
1171 /* If all gone or hole-punch or unfalloc, we're done */
1172 if (index == start || end != -1)
1173 break;
1174 /* But if truncating, restart to make sure all gone */
1175 index = start;
1176 continue;
1177 }
1178 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
1179 folio = fbatch.folios[i];
1180
1181 if (xa_is_value(entry: folio)) {
1182 long swaps_freed;
1183
1184 if (unfalloc)
1185 continue;
1186 swaps_freed = shmem_free_swap(mapping, index: indices[i], radswap: folio);
1187 if (!swaps_freed) {
1188 /* Swap was replaced by page: retry */
1189 index = indices[i];
1190 break;
1191 }
1192 nr_swaps_freed += swaps_freed;
1193 continue;
1194 }
1195
1196 folio_lock(folio);
1197
1198 if (!unfalloc || !folio_test_uptodate(folio)) {
1199 if (folio_mapping(folio) != mapping) {
1200 /* Page was replaced by swap: retry */
1201 folio_unlock(folio);
1202 index = indices[i];
1203 break;
1204 }
1205 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1206 folio);
1207
1208 if (!folio_test_large(folio)) {
1209 truncate_inode_folio(mapping, folio);
1210 } else if (truncate_inode_partial_folio(folio, start: lstart, end: lend)) {
1211 /*
1212 * If we split a page, reset the loop so
1213 * that we pick up the new sub pages.
1214 * Otherwise the THP was entirely
1215 * dropped or the target range was
1216 * zeroed, so just continue the loop as
1217 * is.
1218 */
1219 if (!folio_test_large(folio)) {
1220 folio_unlock(folio);
1221 index = start;
1222 break;
1223 }
1224 }
1225 }
1226 folio_unlock(folio);
1227 }
1228 folio_batch_remove_exceptionals(fbatch: &fbatch);
1229 folio_batch_release(fbatch: &fbatch);
1230 }
1231
1232 shmem_recalc_inode(inode, alloced: 0, swapped: -nr_swaps_freed);
1233}
1234
1235void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1236{
1237 shmem_undo_range(inode, lstart, lend, unfalloc: false);
1238 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
1239 inode_inc_iversion(inode);
1240}
1241EXPORT_SYMBOL_GPL(shmem_truncate_range);
1242
1243static int shmem_getattr(struct mnt_idmap *idmap,
1244 const struct path *path, struct kstat *stat,
1245 u32 request_mask, unsigned int query_flags)
1246{
1247 struct inode *inode = path->dentry->d_inode;
1248 struct shmem_inode_info *info = SHMEM_I(inode);
1249
1250 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1251 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
1252
1253 if (info->fsflags & FS_APPEND_FL)
1254 stat->attributes |= STATX_ATTR_APPEND;
1255 if (info->fsflags & FS_IMMUTABLE_FL)
1256 stat->attributes |= STATX_ATTR_IMMUTABLE;
1257 if (info->fsflags & FS_NODUMP_FL)
1258 stat->attributes |= STATX_ATTR_NODUMP;
1259 stat->attributes_mask |= (STATX_ATTR_APPEND |
1260 STATX_ATTR_IMMUTABLE |
1261 STATX_ATTR_NODUMP);
1262 generic_fillattr(idmap, request_mask, inode, stat);
1263
1264 if (shmem_huge_global_enabled(inode, index: 0, write_end: 0, shmem_huge_force: false, NULL, vm_flags: 0))
1265 stat->blksize = HPAGE_PMD_SIZE;
1266
1267 if (request_mask & STATX_BTIME) {
1268 stat->result_mask |= STATX_BTIME;
1269 stat->btime.tv_sec = info->i_crtime.tv_sec;
1270 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1271 }
1272
1273 return 0;
1274}
1275
1276static int shmem_setattr(struct mnt_idmap *idmap,
1277 struct dentry *dentry, struct iattr *attr)
1278{
1279 struct inode *inode = d_inode(dentry);
1280 struct shmem_inode_info *info = SHMEM_I(inode);
1281 int error;
1282 bool update_mtime = false;
1283 bool update_ctime = true;
1284
1285 error = setattr_prepare(idmap, dentry, attr);
1286 if (error)
1287 return error;
1288
1289 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1290 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1291 return -EPERM;
1292 }
1293 }
1294
1295 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1296 loff_t oldsize = inode->i_size;
1297 loff_t newsize = attr->ia_size;
1298
1299 /* protected by i_rwsem */
1300 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1301 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1302 return -EPERM;
1303
1304 if (newsize != oldsize) {
1305 error = shmem_reacct_size(flags: SHMEM_I(inode)->flags,
1306 oldsize, newsize);
1307 if (error)
1308 return error;
1309 i_size_write(inode, i_size: newsize);
1310 update_mtime = true;
1311 } else {
1312 update_ctime = false;
1313 }
1314 if (newsize <= oldsize) {
1315 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1316 if (oldsize > holebegin)
1317 unmap_mapping_range(mapping: inode->i_mapping,
1318 holebegin, holelen: 0, even_cows: 1);
1319 if (info->alloced)
1320 shmem_truncate_range(inode,
1321 newsize, (loff_t)-1);
1322 /* unmap again to remove racily COWed private pages */
1323 if (oldsize > holebegin)
1324 unmap_mapping_range(mapping: inode->i_mapping,
1325 holebegin, holelen: 0, even_cows: 1);
1326 }
1327 }
1328
1329 if (is_quota_modification(idmap, inode, ia: attr)) {
1330 error = dquot_initialize(inode);
1331 if (error)
1332 return error;
1333 }
1334
1335 /* Transfer quota accounting */
1336 if (i_uid_needs_update(idmap, attr, inode) ||
1337 i_gid_needs_update(idmap, attr, inode)) {
1338 error = dquot_transfer(idmap, inode, iattr: attr);
1339 if (error)
1340 return error;
1341 }
1342
1343 setattr_copy(idmap, inode, attr);
1344 if (attr->ia_valid & ATTR_MODE)
1345 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1346 if (!error && update_ctime) {
1347 inode_set_ctime_current(inode);
1348 if (update_mtime)
1349 inode_set_mtime_to_ts(inode, ts: inode_get_ctime(inode));
1350 inode_inc_iversion(inode);
1351 }
1352 return error;
1353}
1354
1355static void shmem_evict_inode(struct inode *inode)
1356{
1357 struct shmem_inode_info *info = SHMEM_I(inode);
1358 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1359 size_t freed = 0;
1360
1361 if (shmem_mapping(inode->i_mapping)) {
1362 shmem_unacct_size(flags: info->flags, size: inode->i_size);
1363 inode->i_size = 0;
1364 mapping_set_exiting(mapping: inode->i_mapping);
1365 shmem_truncate_range(inode, 0, (loff_t)-1);
1366 if (!list_empty(head: &info->shrinklist)) {
1367 spin_lock(lock: &sbinfo->shrinklist_lock);
1368 if (!list_empty(head: &info->shrinklist)) {
1369 list_del_init(entry: &info->shrinklist);
1370 sbinfo->shrinklist_len--;
1371 }
1372 spin_unlock(lock: &sbinfo->shrinklist_lock);
1373 }
1374 while (!list_empty(head: &info->swaplist)) {
1375 /* Wait while shmem_unuse() is scanning this inode... */
1376 wait_var_event(&info->stop_eviction,
1377 !atomic_read(&info->stop_eviction));
1378 mutex_lock(&shmem_swaplist_mutex);
1379 /* ...but beware of the race if we peeked too early */
1380 if (!atomic_read(v: &info->stop_eviction))
1381 list_del_init(entry: &info->swaplist);
1382 mutex_unlock(lock: &shmem_swaplist_mutex);
1383 }
1384 }
1385
1386 simple_xattrs_free(xattrs: &info->xattrs, freed_space: sbinfo->max_inodes ? &freed : NULL);
1387 shmem_free_inode(sb: inode->i_sb, freed_ispace: freed);
1388 WARN_ON(inode->i_blocks);
1389 clear_inode(inode);
1390#ifdef CONFIG_TMPFS_QUOTA
1391 dquot_free_inode(inode);
1392 dquot_drop(inode);
1393#endif
1394}
1395
1396static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1397 pgoff_t start, struct folio_batch *fbatch,
1398 pgoff_t *indices, unsigned int type)
1399{
1400 XA_STATE(xas, &mapping->i_pages, start);
1401 struct folio *folio;
1402 swp_entry_t entry;
1403
1404 rcu_read_lock();
1405 xas_for_each(&xas, folio, ULONG_MAX) {
1406 if (xas_retry(xas: &xas, entry: folio))
1407 continue;
1408
1409 if (!xa_is_value(entry: folio))
1410 continue;
1411
1412 entry = radix_to_swp_entry(arg: folio);
1413 /*
1414 * swapin error entries can be found in the mapping. But they're
1415 * deliberately ignored here as we've done everything we can do.
1416 */
1417 if (swp_type(entry) != type)
1418 continue;
1419
1420 indices[folio_batch_count(fbatch)] = xas.xa_index;
1421 if (!folio_batch_add(fbatch, folio))
1422 break;
1423
1424 if (need_resched()) {
1425 xas_pause(&xas);
1426 cond_resched_rcu();
1427 }
1428 }
1429 rcu_read_unlock();
1430
1431 return folio_batch_count(fbatch);
1432}
1433
1434/*
1435 * Move the swapped pages for an inode to page cache. Returns the count
1436 * of pages swapped in, or the error in case of failure.
1437 */
1438static int shmem_unuse_swap_entries(struct inode *inode,
1439 struct folio_batch *fbatch, pgoff_t *indices)
1440{
1441 int i = 0;
1442 int ret = 0;
1443 int error = 0;
1444 struct address_space *mapping = inode->i_mapping;
1445
1446 for (i = 0; i < folio_batch_count(fbatch); i++) {
1447 struct folio *folio = fbatch->folios[i];
1448
1449 error = shmem_swapin_folio(inode, index: indices[i], foliop: &folio, sgp: SGP_CACHE,
1450 gfp: mapping_gfp_mask(mapping), NULL, NULL);
1451 if (error == 0) {
1452 folio_unlock(folio);
1453 folio_put(folio);
1454 ret++;
1455 }
1456 if (error == -ENOMEM)
1457 break;
1458 error = 0;
1459 }
1460 return error ? error : ret;
1461}
1462
1463/*
1464 * If swap found in inode, free it and move page from swapcache to filecache.
1465 */
1466static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1467{
1468 struct address_space *mapping = inode->i_mapping;
1469 pgoff_t start = 0;
1470 struct folio_batch fbatch;
1471 pgoff_t indices[PAGEVEC_SIZE];
1472 int ret = 0;
1473
1474 do {
1475 folio_batch_init(fbatch: &fbatch);
1476 if (!shmem_find_swap_entries(mapping, start, fbatch: &fbatch,
1477 indices, type)) {
1478 ret = 0;
1479 break;
1480 }
1481
1482 ret = shmem_unuse_swap_entries(inode, fbatch: &fbatch, indices);
1483 if (ret < 0)
1484 break;
1485
1486 start = indices[folio_batch_count(fbatch: &fbatch) - 1];
1487 } while (true);
1488
1489 return ret;
1490}
1491
1492/*
1493 * Read all the shared memory data that resides in the swap
1494 * device 'type' back into memory, so the swap device can be
1495 * unused.
1496 */
1497int shmem_unuse(unsigned int type)
1498{
1499 struct shmem_inode_info *info, *next;
1500 int error = 0;
1501
1502 if (list_empty(head: &shmem_swaplist))
1503 return 0;
1504
1505 mutex_lock(&shmem_swaplist_mutex);
1506start_over:
1507 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1508 if (!info->swapped) {
1509 list_del_init(entry: &info->swaplist);
1510 continue;
1511 }
1512 /*
1513 * Drop the swaplist mutex while searching the inode for swap;
1514 * but before doing so, make sure shmem_evict_inode() will not
1515 * remove placeholder inode from swaplist, nor let it be freed
1516 * (igrab() would protect from unlink, but not from unmount).
1517 */
1518 atomic_inc(v: &info->stop_eviction);
1519 mutex_unlock(lock: &shmem_swaplist_mutex);
1520
1521 error = shmem_unuse_inode(inode: &info->vfs_inode, type);
1522 cond_resched();
1523
1524 mutex_lock(&shmem_swaplist_mutex);
1525 if (atomic_dec_and_test(v: &info->stop_eviction))
1526 wake_up_var(var: &info->stop_eviction);
1527 if (error)
1528 break;
1529 if (list_empty(head: &info->swaplist))
1530 goto start_over;
1531 next = list_next_entry(info, swaplist);
1532 if (!info->swapped)
1533 list_del_init(entry: &info->swaplist);
1534 }
1535 mutex_unlock(lock: &shmem_swaplist_mutex);
1536
1537 return error;
1538}
1539
1540/**
1541 * shmem_writeout - Write the folio to swap
1542 * @folio: The folio to write
1543 * @wbc: How writeback is to be done
1544 *
1545 * Move the folio from the page cache to the swap cache.
1546 */
1547int shmem_writeout(struct folio *folio, struct writeback_control *wbc)
1548{
1549 struct address_space *mapping = folio->mapping;
1550 struct inode *inode = mapping->host;
1551 struct shmem_inode_info *info = SHMEM_I(inode);
1552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1553 pgoff_t index;
1554 int nr_pages;
1555 bool split = false;
1556
1557 if (WARN_ON_ONCE(!wbc->for_reclaim))
1558 goto redirty;
1559
1560 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1561 goto redirty;
1562
1563 if (!total_swap_pages)
1564 goto redirty;
1565
1566 /*
1567 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1568 * split when swapping.
1569 *
1570 * And shrinkage of pages beyond i_size does not split swap, so
1571 * swapout of a large folio crossing i_size needs to split too
1572 * (unless fallocate has been used to preallocate beyond EOF).
1573 */
1574 if (folio_test_large(folio)) {
1575 index = shmem_fallocend(inode,
1576 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1577 if ((index > folio->index && index < folio_next_index(folio)) ||
1578 !IS_ENABLED(CONFIG_THP_SWAP))
1579 split = true;
1580 }
1581
1582 if (split) {
1583try_split:
1584 /* Ensure the subpages are still dirty */
1585 folio_test_set_dirty(folio);
1586 if (split_folio_to_list(folio, list: wbc->list))
1587 goto redirty;
1588 folio_clear_dirty(folio);
1589 }
1590
1591 index = folio->index;
1592 nr_pages = folio_nr_pages(folio);
1593
1594 /*
1595 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1596 * value into swapfile.c, the only way we can correctly account for a
1597 * fallocated folio arriving here is now to initialize it and write it.
1598 *
1599 * That's okay for a folio already fallocated earlier, but if we have
1600 * not yet completed the fallocation, then (a) we want to keep track
1601 * of this folio in case we have to undo it, and (b) it may not be a
1602 * good idea to continue anyway, once we're pushing into swap. So
1603 * reactivate the folio, and let shmem_fallocate() quit when too many.
1604 */
1605 if (!folio_test_uptodate(folio)) {
1606 if (inode->i_private) {
1607 struct shmem_falloc *shmem_falloc;
1608 spin_lock(lock: &inode->i_lock);
1609 shmem_falloc = inode->i_private;
1610 if (shmem_falloc &&
1611 !shmem_falloc->waitq &&
1612 index >= shmem_falloc->start &&
1613 index < shmem_falloc->next)
1614 shmem_falloc->nr_unswapped += nr_pages;
1615 else
1616 shmem_falloc = NULL;
1617 spin_unlock(lock: &inode->i_lock);
1618 if (shmem_falloc)
1619 goto redirty;
1620 }
1621 folio_zero_range(folio, start: 0, length: folio_size(folio));
1622 flush_dcache_folio(folio);
1623 folio_mark_uptodate(folio);
1624 }
1625
1626 /*
1627 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1628 * if it's not already there. Do it now before the folio is
1629 * moved to swap cache, when its pagelock no longer protects
1630 * the inode from eviction. But don't unlock the mutex until
1631 * we've incremented swapped, because shmem_unuse_inode() will
1632 * prune a !swapped inode from the swaplist under this mutex.
1633 */
1634 mutex_lock(&shmem_swaplist_mutex);
1635 if (list_empty(head: &info->swaplist))
1636 list_add(new: &info->swaplist, head: &shmem_swaplist);
1637
1638 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1639 shmem_recalc_inode(inode, alloced: 0, swapped: nr_pages);
1640 swap_shmem_alloc(folio->swap, nr_pages);
1641 shmem_delete_from_page_cache(folio, radswap: swp_to_radix_entry(entry: folio->swap));
1642
1643 mutex_unlock(lock: &shmem_swaplist_mutex);
1644 BUG_ON(folio_mapped(folio));
1645 return swap_writeout(folio, wbc);
1646 }
1647 if (!info->swapped)
1648 list_del_init(entry: &info->swaplist);
1649 mutex_unlock(lock: &shmem_swaplist_mutex);
1650 if (nr_pages > 1)
1651 goto try_split;
1652redirty:
1653 folio_mark_dirty(folio);
1654 if (wbc->for_reclaim)
1655 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1656 folio_unlock(folio);
1657 return 0;
1658}
1659EXPORT_SYMBOL_GPL(shmem_writeout);
1660
1661#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1662static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1663{
1664 char buffer[64];
1665
1666 if (!mpol || mpol->mode == MPOL_DEFAULT)
1667 return; /* show nothing */
1668
1669 mpol_to_str(buffer, maxlen: sizeof(buffer), pol: mpol);
1670
1671 seq_printf(m: seq, fmt: ",mpol=%s", buffer);
1672}
1673
1674static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1675{
1676 struct mempolicy *mpol = NULL;
1677 if (sbinfo->mpol) {
1678 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1679 mpol = sbinfo->mpol;
1680 mpol_get(pol: mpol);
1681 raw_spin_unlock(&sbinfo->stat_lock);
1682 }
1683 return mpol;
1684}
1685#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1686static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1687{
1688}
1689static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1690{
1691 return NULL;
1692}
1693#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1694
1695static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1696 pgoff_t index, unsigned int order, pgoff_t *ilx);
1697
1698static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1699 struct shmem_inode_info *info, pgoff_t index)
1700{
1701 struct mempolicy *mpol;
1702 pgoff_t ilx;
1703 struct folio *folio;
1704
1705 mpol = shmem_get_pgoff_policy(info, index, order: 0, ilx: &ilx);
1706 folio = swap_cluster_readahead(entry: swap, flag: gfp, mpol, ilx);
1707 mpol_cond_put(pol: mpol);
1708
1709 return folio;
1710}
1711
1712/*
1713 * Make sure huge_gfp is always more limited than limit_gfp.
1714 * Some of the flags set permissions, while others set limitations.
1715 */
1716static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1717{
1718 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1719 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1720 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1721 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1722
1723 /* Allow allocations only from the originally specified zones. */
1724 result |= zoneflags;
1725
1726 /*
1727 * Minimize the result gfp by taking the union with the deny flags,
1728 * and the intersection of the allow flags.
1729 */
1730 result |= (limit_gfp & denyflags);
1731 result |= (huge_gfp & limit_gfp) & allowflags;
1732
1733 return result;
1734}
1735
1736#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1737bool shmem_hpage_pmd_enabled(void)
1738{
1739 if (shmem_huge == SHMEM_HUGE_DENY)
1740 return false;
1741 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1742 return true;
1743 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1744 return true;
1745 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1746 return true;
1747 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1748 shmem_huge != SHMEM_HUGE_NEVER)
1749 return true;
1750
1751 return false;
1752}
1753
1754unsigned long shmem_allowable_huge_orders(struct inode *inode,
1755 struct vm_area_struct *vma, pgoff_t index,
1756 loff_t write_end, bool shmem_huge_force)
1757{
1758 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1759 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1760 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1761 unsigned int global_orders;
1762
1763 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1764 return 0;
1765
1766 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1767 shmem_huge_force, vma, vm_flags);
1768 /* Tmpfs huge pages allocation */
1769 if (!vma || !vma_is_anon_shmem(vma))
1770 return global_orders;
1771
1772 /*
1773 * Following the 'deny' semantics of the top level, force the huge
1774 * option off from all mounts.
1775 */
1776 if (shmem_huge == SHMEM_HUGE_DENY)
1777 return 0;
1778
1779 /*
1780 * Only allow inherit orders if the top-level value is 'force', which
1781 * means non-PMD sized THP can not override 'huge' mount option now.
1782 */
1783 if (shmem_huge == SHMEM_HUGE_FORCE)
1784 return READ_ONCE(huge_shmem_orders_inherit);
1785
1786 /* Allow mTHP that will be fully within i_size. */
1787 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, write_end: 0);
1788
1789 if (vm_flags & VM_HUGEPAGE)
1790 mask |= READ_ONCE(huge_shmem_orders_madvise);
1791
1792 if (global_orders > 0)
1793 mask |= READ_ONCE(huge_shmem_orders_inherit);
1794
1795 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1796}
1797
1798static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1799 struct address_space *mapping, pgoff_t index,
1800 unsigned long orders)
1801{
1802 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1803 pgoff_t aligned_index;
1804 unsigned long pages;
1805 int order;
1806
1807 if (vma) {
1808 orders = thp_vma_suitable_orders(vma, addr: vmf->address, orders);
1809 if (!orders)
1810 return 0;
1811 }
1812
1813 /* Find the highest order that can add into the page cache */
1814 order = highest_order(orders);
1815 while (orders) {
1816 pages = 1UL << order;
1817 aligned_index = round_down(index, pages);
1818 /*
1819 * Check for conflict before waiting on a huge allocation.
1820 * Conflict might be that a huge page has just been allocated
1821 * and added to page cache by a racing thread, or that there
1822 * is already at least one small page in the huge extent.
1823 * Be careful to retry when appropriate, but not forever!
1824 * Elsewhere -EEXIST would be the right code, but not here.
1825 */
1826 if (!xa_find(xa: &mapping->i_pages, index: &aligned_index,
1827 max: aligned_index + pages - 1, XA_PRESENT))
1828 break;
1829 order = next_order(orders: &orders, prev: order);
1830 }
1831
1832 return orders;
1833}
1834#else
1835static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1836 struct address_space *mapping, pgoff_t index,
1837 unsigned long orders)
1838{
1839 return 0;
1840}
1841#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1842
1843static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1844 struct shmem_inode_info *info, pgoff_t index)
1845{
1846 struct mempolicy *mpol;
1847 pgoff_t ilx;
1848 struct folio *folio;
1849
1850 mpol = shmem_get_pgoff_policy(info, index, order, ilx: &ilx);
1851 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1852 mpol_cond_put(pol: mpol);
1853
1854 return folio;
1855}
1856
1857static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1858 gfp_t gfp, struct inode *inode, pgoff_t index,
1859 struct mm_struct *fault_mm, unsigned long orders)
1860{
1861 struct address_space *mapping = inode->i_mapping;
1862 struct shmem_inode_info *info = SHMEM_I(inode);
1863 unsigned long suitable_orders = 0;
1864 struct folio *folio = NULL;
1865 long pages;
1866 int error, order;
1867
1868 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1869 orders = 0;
1870
1871 if (orders > 0) {
1872 suitable_orders = shmem_suitable_orders(inode, vmf,
1873 mapping, index, orders);
1874
1875 order = highest_order(orders: suitable_orders);
1876 while (suitable_orders) {
1877 pages = 1UL << order;
1878 index = round_down(index, pages);
1879 folio = shmem_alloc_folio(gfp, order, info, index);
1880 if (folio)
1881 goto allocated;
1882
1883 if (pages == HPAGE_PMD_NR)
1884 count_vm_event(item: THP_FILE_FALLBACK);
1885 count_mthp_stat(order, item: MTHP_STAT_SHMEM_FALLBACK);
1886 order = next_order(orders: &suitable_orders, prev: order);
1887 }
1888 } else {
1889 pages = 1;
1890 folio = shmem_alloc_folio(gfp, order: 0, info, index);
1891 }
1892 if (!folio)
1893 return ERR_PTR(error: -ENOMEM);
1894
1895allocated:
1896 __folio_set_locked(folio);
1897 __folio_set_swapbacked(folio);
1898
1899 gfp &= GFP_RECLAIM_MASK;
1900 error = mem_cgroup_charge(folio, mm: fault_mm, gfp);
1901 if (error) {
1902 if (xa_find(xa: &mapping->i_pages, index: &index,
1903 max: index + pages - 1, XA_PRESENT)) {
1904 error = -EEXIST;
1905 } else if (pages > 1) {
1906 if (pages == HPAGE_PMD_NR) {
1907 count_vm_event(item: THP_FILE_FALLBACK);
1908 count_vm_event(item: THP_FILE_FALLBACK_CHARGE);
1909 }
1910 count_mthp_stat(order: folio_order(folio), item: MTHP_STAT_SHMEM_FALLBACK);
1911 count_mthp_stat(order: folio_order(folio), item: MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1912 }
1913 goto unlock;
1914 }
1915
1916 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1917 if (error)
1918 goto unlock;
1919
1920 error = shmem_inode_acct_blocks(inode, pages);
1921 if (error) {
1922 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
1923 long freed;
1924 /*
1925 * Try to reclaim some space by splitting a few
1926 * large folios beyond i_size on the filesystem.
1927 */
1928 shmem_unused_huge_shrink(sbinfo, NULL, nr_to_free: pages);
1929 /*
1930 * And do a shmem_recalc_inode() to account for freed pages:
1931 * except our folio is there in cache, so not quite balanced.
1932 */
1933 spin_lock(lock: &info->lock);
1934 freed = pages + info->alloced - info->swapped -
1935 READ_ONCE(mapping->nrpages);
1936 if (freed > 0)
1937 info->alloced -= freed;
1938 spin_unlock(lock: &info->lock);
1939 if (freed > 0)
1940 shmem_inode_unacct_blocks(inode, pages: freed);
1941 error = shmem_inode_acct_blocks(inode, pages);
1942 if (error) {
1943 filemap_remove_folio(folio);
1944 goto unlock;
1945 }
1946 }
1947
1948 shmem_recalc_inode(inode, alloced: pages, swapped: 0);
1949 folio_add_lru(folio);
1950 return folio;
1951
1952unlock:
1953 folio_unlock(folio);
1954 folio_put(folio);
1955 return ERR_PTR(error);
1956}
1957
1958static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1959 struct vm_area_struct *vma, pgoff_t index,
1960 swp_entry_t entry, int order, gfp_t gfp)
1961{
1962 struct shmem_inode_info *info = SHMEM_I(inode);
1963 struct folio *new;
1964 void *shadow;
1965 int nr_pages;
1966
1967 /*
1968 * We have arrived here because our zones are constrained, so don't
1969 * limit chance of success with further cpuset and node constraints.
1970 */
1971 gfp &= ~GFP_CONSTRAINT_MASK;
1972 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1973 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1974
1975 gfp = limit_gfp_mask(huge_gfp, limit_gfp: gfp);
1976 }
1977
1978 new = shmem_alloc_folio(gfp, order, info, index);
1979 if (!new)
1980 return ERR_PTR(error: -ENOMEM);
1981
1982 nr_pages = folio_nr_pages(folio: new);
1983 if (mem_cgroup_swapin_charge_folio(folio: new, mm: vma ? vma->vm_mm : NULL,
1984 gfp, entry)) {
1985 folio_put(folio: new);
1986 return ERR_PTR(error: -ENOMEM);
1987 }
1988
1989 /*
1990 * Prevent parallel swapin from proceeding with the swap cache flag.
1991 *
1992 * Of course there is another possible concurrent scenario as well,
1993 * that is to say, the swap cache flag of a large folio has already
1994 * been set by swapcache_prepare(), while another thread may have
1995 * already split the large swap entry stored in the shmem mapping.
1996 * In this case, shmem_add_to_page_cache() will help identify the
1997 * concurrent swapin and return -EEXIST.
1998 */
1999 if (swapcache_prepare(entry, nr: nr_pages)) {
2000 folio_put(folio: new);
2001 return ERR_PTR(error: -EEXIST);
2002 }
2003
2004 __folio_set_locked(folio: new);
2005 __folio_set_swapbacked(folio: new);
2006 new->swap = entry;
2007
2008 memcg1_swapin(entry, nr_pages);
2009 shadow = get_shadow_from_swap_cache(entry);
2010 if (shadow)
2011 workingset_refault(folio: new, shadow);
2012 folio_add_lru(new);
2013 swap_read_folio(folio: new, NULL);
2014 return new;
2015}
2016
2017/*
2018 * When a page is moved from swapcache to shmem filecache (either by the
2019 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2020 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2021 * ignorance of the mapping it belongs to. If that mapping has special
2022 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2023 * we may need to copy to a suitable page before moving to filecache.
2024 *
2025 * In a future release, this may well be extended to respect cpuset and
2026 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2027 * but for now it is a simple matter of zone.
2028 */
2029static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2030{
2031 return folio_zonenum(folio) > gfp_zone(flags: gfp);
2032}
2033
2034static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2035 struct shmem_inode_info *info, pgoff_t index,
2036 struct vm_area_struct *vma)
2037{
2038 struct folio *new, *old = *foliop;
2039 swp_entry_t entry = old->swap;
2040 struct address_space *swap_mapping = swap_address_space(entry);
2041 pgoff_t swap_index = swap_cache_index(entry);
2042 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2043 int nr_pages = folio_nr_pages(folio: old);
2044 int error = 0, i;
2045
2046 /*
2047 * We have arrived here because our zones are constrained, so don't
2048 * limit chance of success by further cpuset and node constraints.
2049 */
2050 gfp &= ~GFP_CONSTRAINT_MASK;
2051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2052 if (nr_pages > 1) {
2053 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2054
2055 gfp = limit_gfp_mask(huge_gfp, limit_gfp: gfp);
2056 }
2057#endif
2058
2059 new = shmem_alloc_folio(gfp, order: folio_order(folio: old), info, index);
2060 if (!new)
2061 return -ENOMEM;
2062
2063 folio_ref_add(folio: new, nr: nr_pages);
2064 folio_copy(dst: new, src: old);
2065 flush_dcache_folio(folio: new);
2066
2067 __folio_set_locked(folio: new);
2068 __folio_set_swapbacked(folio: new);
2069 folio_mark_uptodate(folio: new);
2070 new->swap = entry;
2071 folio_set_swapcache(folio: new);
2072
2073 /* Swap cache still stores N entries instead of a high-order entry */
2074 xa_lock_irq(&swap_mapping->i_pages);
2075 for (i = 0; i < nr_pages; i++) {
2076 void *item = xas_load(&xas);
2077
2078 if (item != old) {
2079 error = -ENOENT;
2080 break;
2081 }
2082
2083 xas_store(&xas, entry: new);
2084 xas_next(xas: &xas);
2085 }
2086 if (!error) {
2087 mem_cgroup_replace_folio(old, new);
2088 shmem_update_stats(folio: new, nr_pages);
2089 shmem_update_stats(folio: old, nr_pages: -nr_pages);
2090 }
2091 xa_unlock_irq(&swap_mapping->i_pages);
2092
2093 if (unlikely(error)) {
2094 /*
2095 * Is this possible? I think not, now that our callers
2096 * check both the swapcache flag and folio->private
2097 * after getting the folio lock; but be defensive.
2098 * Reverse old to newpage for clear and free.
2099 */
2100 old = new;
2101 } else {
2102 folio_add_lru(new);
2103 *foliop = new;
2104 }
2105
2106 folio_clear_swapcache(folio: old);
2107 old->private = NULL;
2108
2109 folio_unlock(folio: old);
2110 /*
2111 * The old folio are removed from swap cache, drop the 'nr_pages'
2112 * reference, as well as one temporary reference getting from swap
2113 * cache.
2114 */
2115 folio_put_refs(folio: old, refs: nr_pages + 1);
2116 return error;
2117}
2118
2119static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2120 struct folio *folio, swp_entry_t swap,
2121 bool skip_swapcache)
2122{
2123 struct address_space *mapping = inode->i_mapping;
2124 swp_entry_t swapin_error;
2125 void *old;
2126 int nr_pages;
2127
2128 swapin_error = make_poisoned_swp_entry();
2129 old = xa_cmpxchg_irq(xa: &mapping->i_pages, index,
2130 old: swp_to_radix_entry(entry: swap),
2131 entry: swp_to_radix_entry(entry: swapin_error), gfp: 0);
2132 if (old != swp_to_radix_entry(entry: swap))
2133 return;
2134
2135 nr_pages = folio_nr_pages(folio);
2136 folio_wait_writeback(folio);
2137 if (!skip_swapcache)
2138 delete_from_swap_cache(folio);
2139 /*
2140 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2141 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2142 * in shmem_evict_inode().
2143 */
2144 shmem_recalc_inode(inode, alloced: -nr_pages, swapped: -nr_pages);
2145 swap_free_nr(entry: swap, nr_pages);
2146}
2147
2148static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2149 swp_entry_t swap, gfp_t gfp)
2150{
2151 struct address_space *mapping = inode->i_mapping;
2152 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2153 int split_order = 0, entry_order;
2154 int i;
2155
2156 /* Convert user data gfp flags to xarray node gfp flags */
2157 gfp &= GFP_RECLAIM_MASK;
2158
2159 for (;;) {
2160 void *old = NULL;
2161 int cur_order;
2162 pgoff_t swap_index;
2163
2164 xas_lock_irq(&xas);
2165 old = xas_load(&xas);
2166 if (!xa_is_value(entry: old) || swp_to_radix_entry(entry: swap) != old) {
2167 xas_set_err(xas: &xas, err: -EEXIST);
2168 goto unlock;
2169 }
2170
2171 entry_order = xas_get_order(xas: &xas);
2172
2173 if (!entry_order)
2174 goto unlock;
2175
2176 /* Try to split large swap entry in pagecache */
2177 cur_order = entry_order;
2178 swap_index = round_down(index, 1 << entry_order);
2179
2180 split_order = xas_try_split_min_order(order: cur_order);
2181
2182 while (cur_order > 0) {
2183 pgoff_t aligned_index =
2184 round_down(index, 1 << cur_order);
2185 pgoff_t swap_offset = aligned_index - swap_index;
2186
2187 xas_set_order(xas: &xas, index, order: split_order);
2188 xas_try_split(xas: &xas, entry: old, order: cur_order);
2189 if (xas_error(xas: &xas))
2190 goto unlock;
2191
2192 /*
2193 * Re-set the swap entry after splitting, and the swap
2194 * offset of the original large entry must be continuous.
2195 */
2196 for (i = 0; i < 1 << cur_order;
2197 i += (1 << split_order)) {
2198 swp_entry_t tmp;
2199
2200 tmp = swp_entry(type: swp_type(entry: swap),
2201 offset: swp_offset(entry: swap) + swap_offset +
2202 i);
2203 __xa_store(&mapping->i_pages, index: aligned_index + i,
2204 entry: swp_to_radix_entry(entry: tmp), 0);
2205 }
2206 cur_order = split_order;
2207 split_order = xas_try_split_min_order(order: split_order);
2208 }
2209
2210unlock:
2211 xas_unlock_irq(&xas);
2212
2213 if (!xas_nomem(&xas, gfp))
2214 break;
2215 }
2216
2217 if (xas_error(xas: &xas))
2218 return xas_error(xas: &xas);
2219
2220 return entry_order;
2221}
2222
2223/*
2224 * Swap in the folio pointed to by *foliop.
2225 * Caller has to make sure that *foliop contains a valid swapped folio.
2226 * Returns 0 and the folio in foliop if success. On failure, returns the
2227 * error code and NULL in *foliop.
2228 */
2229static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2230 struct folio **foliop, enum sgp_type sgp,
2231 gfp_t gfp, struct vm_area_struct *vma,
2232 vm_fault_t *fault_type)
2233{
2234 struct address_space *mapping = inode->i_mapping;
2235 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2236 struct shmem_inode_info *info = SHMEM_I(inode);
2237 struct swap_info_struct *si;
2238 struct folio *folio = NULL;
2239 bool skip_swapcache = false;
2240 swp_entry_t swap;
2241 int error, nr_pages, order, split_order;
2242
2243 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2244 swap = radix_to_swp_entry(arg: *foliop);
2245 *foliop = NULL;
2246
2247 if (is_poisoned_swp_entry(entry: swap))
2248 return -EIO;
2249
2250 si = get_swap_device(entry: swap);
2251 if (!si) {
2252 if (!shmem_confirm_swap(mapping, index, swap))
2253 return -EEXIST;
2254 else
2255 return -EINVAL;
2256 }
2257
2258 /* Look it up and read it in.. */
2259 folio = swap_cache_get_folio(entry: swap, NULL, addr: 0);
2260 order = xa_get_order(&mapping->i_pages, index);
2261 if (!folio) {
2262 bool fallback_order0 = false;
2263
2264 /* Or update major stats only when swapin succeeds?? */
2265 if (fault_type) {
2266 *fault_type |= VM_FAULT_MAJOR;
2267 count_vm_event(item: PGMAJFAULT);
2268 count_memcg_event_mm(mm: fault_mm, idx: PGMAJFAULT);
2269 }
2270
2271 /*
2272 * If uffd is active for the vma, we need per-page fault
2273 * fidelity to maintain the uffd semantics, then fallback
2274 * to swapin order-0 folio, as well as for zswap case.
2275 */
2276 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2277 !zswap_never_enabled()))
2278 fallback_order0 = true;
2279
2280 /* Skip swapcache for synchronous device. */
2281 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2282 folio = shmem_swap_alloc_folio(inode, vma, index, entry: swap, order, gfp);
2283 if (!IS_ERR(ptr: folio)) {
2284 skip_swapcache = true;
2285 goto alloced;
2286 }
2287
2288 /*
2289 * Fallback to swapin order-0 folio unless the swap entry
2290 * already exists.
2291 */
2292 error = PTR_ERR(ptr: folio);
2293 folio = NULL;
2294 if (error == -EEXIST)
2295 goto failed;
2296 }
2297
2298 /*
2299 * Now swap device can only swap in order 0 folio, then we
2300 * should split the large swap entry stored in the pagecache
2301 * if necessary.
2302 */
2303 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2304 if (split_order < 0) {
2305 error = split_order;
2306 goto failed;
2307 }
2308
2309 /*
2310 * If the large swap entry has already been split, it is
2311 * necessary to recalculate the new swap entry based on
2312 * the old order alignment.
2313 */
2314 if (split_order > 0) {
2315 pgoff_t offset = index - round_down(index, 1 << split_order);
2316
2317 swap = swp_entry(type: swp_type(entry: swap), offset: swp_offset(entry: swap) + offset);
2318 }
2319
2320 /* Here we actually start the io */
2321 folio = shmem_swapin_cluster(swap, gfp, info, index);
2322 if (!folio) {
2323 error = -ENOMEM;
2324 goto failed;
2325 }
2326 } else if (order != folio_order(folio)) {
2327 /*
2328 * Swap readahead may swap in order 0 folios into swapcache
2329 * asynchronously, while the shmem mapping can still stores
2330 * large swap entries. In such cases, we should split the
2331 * large swap entry to prevent possible data corruption.
2332 */
2333 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2334 if (split_order < 0) {
2335 folio_put(folio);
2336 folio = NULL;
2337 error = split_order;
2338 goto failed;
2339 }
2340
2341 /*
2342 * If the large swap entry has already been split, it is
2343 * necessary to recalculate the new swap entry based on
2344 * the old order alignment.
2345 */
2346 if (split_order > 0) {
2347 pgoff_t offset = index - round_down(index, 1 << split_order);
2348
2349 swap = swp_entry(type: swp_type(entry: swap), offset: swp_offset(entry: swap) + offset);
2350 }
2351 }
2352
2353alloced:
2354 /* We have to do this with folio locked to prevent races */
2355 folio_lock(folio);
2356 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2357 folio->swap.val != swap.val ||
2358 !shmem_confirm_swap(mapping, index, swap) ||
2359 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2360 error = -EEXIST;
2361 goto unlock;
2362 }
2363 if (!folio_test_uptodate(folio)) {
2364 error = -EIO;
2365 goto failed;
2366 }
2367 folio_wait_writeback(folio);
2368 nr_pages = folio_nr_pages(folio);
2369
2370 /*
2371 * Some architectures may have to restore extra metadata to the
2372 * folio after reading from swap.
2373 */
2374 arch_swap_restore(entry: folio_swap(entry: swap, folio), folio);
2375
2376 if (shmem_should_replace_folio(folio, gfp)) {
2377 error = shmem_replace_folio(foliop: &folio, gfp, info, index, vma);
2378 if (error)
2379 goto failed;
2380 }
2381
2382 error = shmem_add_to_page_cache(folio, mapping,
2383 round_down(index, nr_pages),
2384 expected: swp_to_radix_entry(entry: swap), gfp);
2385 if (error)
2386 goto failed;
2387
2388 shmem_recalc_inode(inode, alloced: 0, swapped: -nr_pages);
2389
2390 if (sgp == SGP_WRITE)
2391 folio_mark_accessed(folio);
2392
2393 if (skip_swapcache) {
2394 folio->swap.val = 0;
2395 swapcache_clear(si, entry: swap, nr: nr_pages);
2396 } else {
2397 delete_from_swap_cache(folio);
2398 }
2399 folio_mark_dirty(folio);
2400 swap_free_nr(entry: swap, nr_pages);
2401 put_swap_device(si);
2402
2403 *foliop = folio;
2404 return 0;
2405failed:
2406 if (!shmem_confirm_swap(mapping, index, swap))
2407 error = -EEXIST;
2408 if (error == -EIO)
2409 shmem_set_folio_swapin_error(inode, index, folio, swap,
2410 skip_swapcache);
2411unlock:
2412 if (skip_swapcache)
2413 swapcache_clear(si, entry: swap, nr: folio_nr_pages(folio));
2414 if (folio) {
2415 folio_unlock(folio);
2416 folio_put(folio);
2417 }
2418 put_swap_device(si);
2419
2420 return error;
2421}
2422
2423/*
2424 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2425 *
2426 * If we allocate a new one we do not mark it dirty. That's up to the
2427 * vm. If we swap it in we mark it dirty since we also free the swap
2428 * entry since a page cannot live in both the swap and page cache.
2429 *
2430 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2431 */
2432static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2433 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2434 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2435{
2436 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2437 struct mm_struct *fault_mm;
2438 struct folio *folio;
2439 int error;
2440 bool alloced;
2441 unsigned long orders = 0;
2442
2443 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2444 return -EINVAL;
2445
2446 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2447 return -EFBIG;
2448repeat:
2449 if (sgp <= SGP_CACHE &&
2450 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2451 return -EINVAL;
2452
2453 alloced = false;
2454 fault_mm = vma ? vma->vm_mm : NULL;
2455
2456 folio = filemap_get_entry(mapping: inode->i_mapping, index);
2457 if (folio && vma && userfaultfd_minor(vma)) {
2458 if (!xa_is_value(entry: folio))
2459 folio_put(folio);
2460 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2461 return 0;
2462 }
2463
2464 if (xa_is_value(entry: folio)) {
2465 error = shmem_swapin_folio(inode, index, foliop: &folio,
2466 sgp, gfp, vma, fault_type);
2467 if (error == -EEXIST)
2468 goto repeat;
2469
2470 *foliop = folio;
2471 return error;
2472 }
2473
2474 if (folio) {
2475 folio_lock(folio);
2476
2477 /* Has the folio been truncated or swapped out? */
2478 if (unlikely(folio->mapping != inode->i_mapping)) {
2479 folio_unlock(folio);
2480 folio_put(folio);
2481 goto repeat;
2482 }
2483 if (sgp == SGP_WRITE)
2484 folio_mark_accessed(folio);
2485 if (folio_test_uptodate(folio))
2486 goto out;
2487 /* fallocated folio */
2488 if (sgp != SGP_READ)
2489 goto clear;
2490 folio_unlock(folio);
2491 folio_put(folio);
2492 }
2493
2494 /*
2495 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2496 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2497 */
2498 *foliop = NULL;
2499 if (sgp == SGP_READ)
2500 return 0;
2501 if (sgp == SGP_NOALLOC)
2502 return -ENOENT;
2503
2504 /*
2505 * Fast cache lookup and swap lookup did not find it: allocate.
2506 */
2507
2508 if (vma && userfaultfd_missing(vma)) {
2509 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2510 return 0;
2511 }
2512
2513 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2514 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, shmem_huge_force: false);
2515 if (orders > 0) {
2516 gfp_t huge_gfp;
2517
2518 huge_gfp = vma_thp_gfp_mask(vma);
2519 huge_gfp = limit_gfp_mask(huge_gfp, limit_gfp: gfp);
2520 folio = shmem_alloc_and_add_folio(vmf, gfp: huge_gfp,
2521 inode, index, fault_mm, orders);
2522 if (!IS_ERR(ptr: folio)) {
2523 if (folio_test_pmd_mappable(folio))
2524 count_vm_event(item: THP_FILE_ALLOC);
2525 count_mthp_stat(order: folio_order(folio), item: MTHP_STAT_SHMEM_ALLOC);
2526 goto alloced;
2527 }
2528 if (PTR_ERR(ptr: folio) == -EEXIST)
2529 goto repeat;
2530 }
2531
2532 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, orders: 0);
2533 if (IS_ERR(ptr: folio)) {
2534 error = PTR_ERR(ptr: folio);
2535 if (error == -EEXIST)
2536 goto repeat;
2537 folio = NULL;
2538 goto unlock;
2539 }
2540
2541alloced:
2542 alloced = true;
2543 if (folio_test_large(folio) &&
2544 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2545 folio_next_index(folio)) {
2546 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
2547 struct shmem_inode_info *info = SHMEM_I(inode);
2548 /*
2549 * Part of the large folio is beyond i_size: subject
2550 * to shrink under memory pressure.
2551 */
2552 spin_lock(lock: &sbinfo->shrinklist_lock);
2553 /*
2554 * _careful to defend against unlocked access to
2555 * ->shrink_list in shmem_unused_huge_shrink()
2556 */
2557 if (list_empty_careful(head: &info->shrinklist)) {
2558 list_add_tail(new: &info->shrinklist,
2559 head: &sbinfo->shrinklist);
2560 sbinfo->shrinklist_len++;
2561 }
2562 spin_unlock(lock: &sbinfo->shrinklist_lock);
2563 }
2564
2565 if (sgp == SGP_WRITE)
2566 folio_set_referenced(folio);
2567 /*
2568 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2569 */
2570 if (sgp == SGP_FALLOC)
2571 sgp = SGP_WRITE;
2572clear:
2573 /*
2574 * Let SGP_WRITE caller clear ends if write does not fill folio;
2575 * but SGP_FALLOC on a folio fallocated earlier must initialize
2576 * it now, lest undo on failure cancel our earlier guarantee.
2577 */
2578 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2579 long i, n = folio_nr_pages(folio);
2580
2581 for (i = 0; i < n; i++)
2582 clear_highpage(folio_page(folio, i));
2583 flush_dcache_folio(folio);
2584 folio_mark_uptodate(folio);
2585 }
2586
2587 /* Perhaps the file has been truncated since we checked */
2588 if (sgp <= SGP_CACHE &&
2589 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2590 error = -EINVAL;
2591 goto unlock;
2592 }
2593out:
2594 *foliop = folio;
2595 return 0;
2596
2597 /*
2598 * Error recovery.
2599 */
2600unlock:
2601 if (alloced)
2602 filemap_remove_folio(folio);
2603 shmem_recalc_inode(inode, alloced: 0, swapped: 0);
2604 if (folio) {
2605 folio_unlock(folio);
2606 folio_put(folio);
2607 }
2608 return error;
2609}
2610
2611/**
2612 * shmem_get_folio - find, and lock a shmem folio.
2613 * @inode: inode to search
2614 * @index: the page index.
2615 * @write_end: end of a write, could extend inode size
2616 * @foliop: pointer to the folio if found
2617 * @sgp: SGP_* flags to control behavior
2618 *
2619 * Looks up the page cache entry at @inode & @index. If a folio is
2620 * present, it is returned locked with an increased refcount.
2621 *
2622 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2623 * before unlocking the folio to ensure that the folio is not reclaimed.
2624 * There is no need to reserve space before calling folio_mark_dirty().
2625 *
2626 * When no folio is found, the behavior depends on @sgp:
2627 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2628 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2629 * - for all other flags a new folio is allocated, inserted into the
2630 * page cache and returned locked in @foliop.
2631 *
2632 * Context: May sleep.
2633 * Return: 0 if successful, else a negative error code.
2634 */
2635int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2636 struct folio **foliop, enum sgp_type sgp)
2637{
2638 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2639 gfp: mapping_gfp_mask(mapping: inode->i_mapping), NULL, NULL);
2640}
2641EXPORT_SYMBOL_GPL(shmem_get_folio);
2642
2643/*
2644 * This is like autoremove_wake_function, but it removes the wait queue
2645 * entry unconditionally - even if something else had already woken the
2646 * target.
2647 */
2648static int synchronous_wake_function(wait_queue_entry_t *wait,
2649 unsigned int mode, int sync, void *key)
2650{
2651 int ret = default_wake_function(wq_entry: wait, mode, flags: sync, key);
2652 list_del_init(entry: &wait->entry);
2653 return ret;
2654}
2655
2656/*
2657 * Trinity finds that probing a hole which tmpfs is punching can
2658 * prevent the hole-punch from ever completing: which in turn
2659 * locks writers out with its hold on i_rwsem. So refrain from
2660 * faulting pages into the hole while it's being punched. Although
2661 * shmem_undo_range() does remove the additions, it may be unable to
2662 * keep up, as each new page needs its own unmap_mapping_range() call,
2663 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2664 *
2665 * It does not matter if we sometimes reach this check just before the
2666 * hole-punch begins, so that one fault then races with the punch:
2667 * we just need to make racing faults a rare case.
2668 *
2669 * The implementation below would be much simpler if we just used a
2670 * standard mutex or completion: but we cannot take i_rwsem in fault,
2671 * and bloating every shmem inode for this unlikely case would be sad.
2672 */
2673static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2674{
2675 struct shmem_falloc *shmem_falloc;
2676 struct file *fpin = NULL;
2677 vm_fault_t ret = 0;
2678
2679 spin_lock(lock: &inode->i_lock);
2680 shmem_falloc = inode->i_private;
2681 if (shmem_falloc &&
2682 shmem_falloc->waitq &&
2683 vmf->pgoff >= shmem_falloc->start &&
2684 vmf->pgoff < shmem_falloc->next) {
2685 wait_queue_head_t *shmem_falloc_waitq;
2686 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2687
2688 ret = VM_FAULT_NOPAGE;
2689 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2690 shmem_falloc_waitq = shmem_falloc->waitq;
2691 prepare_to_wait(wq_head: shmem_falloc_waitq, wq_entry: &shmem_fault_wait,
2692 TASK_UNINTERRUPTIBLE);
2693 spin_unlock(lock: &inode->i_lock);
2694 schedule();
2695
2696 /*
2697 * shmem_falloc_waitq points into the shmem_fallocate()
2698 * stack of the hole-punching task: shmem_falloc_waitq
2699 * is usually invalid by the time we reach here, but
2700 * finish_wait() does not dereference it in that case;
2701 * though i_lock needed lest racing with wake_up_all().
2702 */
2703 spin_lock(lock: &inode->i_lock);
2704 finish_wait(wq_head: shmem_falloc_waitq, wq_entry: &shmem_fault_wait);
2705 }
2706 spin_unlock(lock: &inode->i_lock);
2707 if (fpin) {
2708 fput(fpin);
2709 ret = VM_FAULT_RETRY;
2710 }
2711 return ret;
2712}
2713
2714static vm_fault_t shmem_fault(struct vm_fault *vmf)
2715{
2716 struct inode *inode = file_inode(f: vmf->vma->vm_file);
2717 gfp_t gfp = mapping_gfp_mask(mapping: inode->i_mapping);
2718 struct folio *folio = NULL;
2719 vm_fault_t ret = 0;
2720 int err;
2721
2722 /*
2723 * Trinity finds that probing a hole which tmpfs is punching can
2724 * prevent the hole-punch from ever completing: noted in i_private.
2725 */
2726 if (unlikely(inode->i_private)) {
2727 ret = shmem_falloc_wait(vmf, inode);
2728 if (ret)
2729 return ret;
2730 }
2731
2732 WARN_ON_ONCE(vmf->page != NULL);
2733 err = shmem_get_folio_gfp(inode, index: vmf->pgoff, write_end: 0, foliop: &folio, sgp: SGP_CACHE,
2734 gfp, vmf, fault_type: &ret);
2735 if (err)
2736 return vmf_error(err);
2737 if (folio) {
2738 vmf->page = folio_file_page(folio, index: vmf->pgoff);
2739 ret |= VM_FAULT_LOCKED;
2740 }
2741 return ret;
2742}
2743
2744unsigned long shmem_get_unmapped_area(struct file *file,
2745 unsigned long uaddr, unsigned long len,
2746 unsigned long pgoff, unsigned long flags)
2747{
2748 unsigned long addr;
2749 unsigned long offset;
2750 unsigned long inflated_len;
2751 unsigned long inflated_addr;
2752 unsigned long inflated_offset;
2753 unsigned long hpage_size;
2754
2755 if (len > TASK_SIZE)
2756 return -ENOMEM;
2757
2758 addr = mm_get_unmapped_area(current->mm, filp: file, addr: uaddr, len, pgoff,
2759 flags);
2760
2761 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2762 return addr;
2763 if (IS_ERR_VALUE(addr))
2764 return addr;
2765 if (addr & ~PAGE_MASK)
2766 return addr;
2767 if (addr > TASK_SIZE - len)
2768 return addr;
2769
2770 if (shmem_huge == SHMEM_HUGE_DENY)
2771 return addr;
2772 if (flags & MAP_FIXED)
2773 return addr;
2774 /*
2775 * Our priority is to support MAP_SHARED mapped hugely;
2776 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2777 * But if caller specified an address hint and we allocated area there
2778 * successfully, respect that as before.
2779 */
2780 if (uaddr == addr)
2781 return addr;
2782
2783 hpage_size = HPAGE_PMD_SIZE;
2784 if (shmem_huge != SHMEM_HUGE_FORCE) {
2785 struct super_block *sb;
2786 unsigned long __maybe_unused hpage_orders;
2787 int order = 0;
2788
2789 if (file) {
2790 VM_BUG_ON(file->f_op != &shmem_file_operations);
2791 sb = file_inode(f: file)->i_sb;
2792 } else {
2793 /*
2794 * Called directly from mm/mmap.c, or drivers/char/mem.c
2795 * for "/dev/zero", to create a shared anonymous object.
2796 */
2797 if (IS_ERR(ptr: shm_mnt))
2798 return addr;
2799 sb = shm_mnt->mnt_sb;
2800
2801 /*
2802 * Find the highest mTHP order used for anonymous shmem to
2803 * provide a suitable alignment address.
2804 */
2805#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2806 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2807 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2808 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2809 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2810 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2811
2812 if (hpage_orders > 0) {
2813 order = highest_order(orders: hpage_orders);
2814 hpage_size = PAGE_SIZE << order;
2815 }
2816#endif
2817 }
2818 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2819 return addr;
2820 }
2821
2822 if (len < hpage_size)
2823 return addr;
2824
2825 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2826 if (offset && offset + len < 2 * hpage_size)
2827 return addr;
2828 if ((addr & (hpage_size - 1)) == offset)
2829 return addr;
2830
2831 inflated_len = len + hpage_size - PAGE_SIZE;
2832 if (inflated_len > TASK_SIZE)
2833 return addr;
2834 if (inflated_len < len)
2835 return addr;
2836
2837 inflated_addr = mm_get_unmapped_area(current->mm, NULL, addr: uaddr,
2838 len: inflated_len, pgoff: 0, flags);
2839 if (IS_ERR_VALUE(inflated_addr))
2840 return addr;
2841 if (inflated_addr & ~PAGE_MASK)
2842 return addr;
2843
2844 inflated_offset = inflated_addr & (hpage_size - 1);
2845 inflated_addr += offset - inflated_offset;
2846 if (inflated_offset > offset)
2847 inflated_addr += hpage_size;
2848
2849 if (inflated_addr > TASK_SIZE - len)
2850 return addr;
2851 return inflated_addr;
2852}
2853
2854#ifdef CONFIG_NUMA
2855static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2856{
2857 struct inode *inode = file_inode(f: vma->vm_file);
2858 return mpol_set_shared_policy(sp: &SHMEM_I(inode)->policy, vma, mpol);
2859}
2860
2861static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2862 unsigned long addr, pgoff_t *ilx)
2863{
2864 struct inode *inode = file_inode(f: vma->vm_file);
2865 pgoff_t index;
2866
2867 /*
2868 * Bias interleave by inode number to distribute better across nodes;
2869 * but this interface is independent of which page order is used, so
2870 * supplies only that bias, letting caller apply the offset (adjusted
2871 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2872 */
2873 *ilx = inode->i_ino;
2874 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2875 return mpol_shared_policy_lookup(sp: &SHMEM_I(inode)->policy, idx: index);
2876}
2877
2878static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2879 pgoff_t index, unsigned int order, pgoff_t *ilx)
2880{
2881 struct mempolicy *mpol;
2882
2883 /* Bias interleave by inode number to distribute better across nodes */
2884 *ilx = info->vfs_inode.i_ino + (index >> order);
2885
2886 mpol = mpol_shared_policy_lookup(sp: &info->policy, idx: index);
2887 return mpol ? mpol : get_task_policy(current);
2888}
2889#else
2890static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2891 pgoff_t index, unsigned int order, pgoff_t *ilx)
2892{
2893 *ilx = 0;
2894 return NULL;
2895}
2896#endif /* CONFIG_NUMA */
2897
2898int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2899{
2900 struct inode *inode = file_inode(f: file);
2901 struct shmem_inode_info *info = SHMEM_I(inode);
2902 int retval = -ENOMEM;
2903
2904 /*
2905 * What serializes the accesses to info->flags?
2906 * ipc_lock_object() when called from shmctl_do_lock(),
2907 * no serialization needed when called from shm_destroy().
2908 */
2909 if (lock && !(info->flags & VM_LOCKED)) {
2910 if (!user_shm_lock(inode->i_size, ucounts))
2911 goto out_nomem;
2912 info->flags |= VM_LOCKED;
2913 mapping_set_unevictable(mapping: file->f_mapping);
2914 }
2915 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2916 user_shm_unlock(inode->i_size, ucounts);
2917 info->flags &= ~VM_LOCKED;
2918 mapping_clear_unevictable(mapping: file->f_mapping);
2919 }
2920 retval = 0;
2921
2922out_nomem:
2923 return retval;
2924}
2925
2926static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2927{
2928 struct inode *inode = file_inode(f: file);
2929
2930 file_accessed(file);
2931 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2932 if (inode->i_nlink)
2933 vma->vm_ops = &shmem_vm_ops;
2934 else
2935 vma->vm_ops = &shmem_anon_vm_ops;
2936 return 0;
2937}
2938
2939static int shmem_file_open(struct inode *inode, struct file *file)
2940{
2941 file->f_mode |= FMODE_CAN_ODIRECT;
2942 return generic_file_open(inode, filp: file);
2943}
2944
2945#ifdef CONFIG_TMPFS_XATTR
2946static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2947
2948#if IS_ENABLED(CONFIG_UNICODE)
2949/*
2950 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2951 *
2952 * The casefold file attribute needs some special checks. I can just be added to
2953 * an empty dir, and can't be removed from a non-empty dir.
2954 */
2955static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2956 struct dentry *dentry, unsigned int *i_flags)
2957{
2958 unsigned int old = inode->i_flags;
2959 struct super_block *sb = inode->i_sb;
2960
2961 if (fsflags & FS_CASEFOLD_FL) {
2962 if (!(old & S_CASEFOLD)) {
2963 if (!sb->s_encoding)
2964 return -EOPNOTSUPP;
2965
2966 if (!S_ISDIR(inode->i_mode))
2967 return -ENOTDIR;
2968
2969 if (dentry && !simple_empty(dentry))
2970 return -ENOTEMPTY;
2971 }
2972
2973 *i_flags = *i_flags | S_CASEFOLD;
2974 } else if (old & S_CASEFOLD) {
2975 if (dentry && !simple_empty(dentry))
2976 return -ENOTEMPTY;
2977 }
2978
2979 return 0;
2980}
2981#else
2982static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2983 struct dentry *dentry, unsigned int *i_flags)
2984{
2985 if (fsflags & FS_CASEFOLD_FL)
2986 return -EOPNOTSUPP;
2987
2988 return 0;
2989}
2990#endif
2991
2992/*
2993 * chattr's fsflags are unrelated to extended attributes,
2994 * but tmpfs has chosen to enable them under the same config option.
2995 */
2996static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2997{
2998 unsigned int i_flags = 0;
2999 int ret;
3000
3001 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, i_flags: &i_flags);
3002 if (ret)
3003 return ret;
3004
3005 if (fsflags & FS_NOATIME_FL)
3006 i_flags |= S_NOATIME;
3007 if (fsflags & FS_APPEND_FL)
3008 i_flags |= S_APPEND;
3009 if (fsflags & FS_IMMUTABLE_FL)
3010 i_flags |= S_IMMUTABLE;
3011 /*
3012 * But FS_NODUMP_FL does not require any action in i_flags.
3013 */
3014 inode_set_flags(inode, flags: i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3015
3016 return 0;
3017}
3018#else
3019static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3020{
3021}
3022#define shmem_initxattrs NULL
3023#endif
3024
3025static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3026{
3027 return &SHMEM_I(inode)->dir_offsets;
3028}
3029
3030static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3031 struct super_block *sb,
3032 struct inode *dir, umode_t mode,
3033 dev_t dev, unsigned long flags)
3034{
3035 struct inode *inode;
3036 struct shmem_inode_info *info;
3037 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3038 ino_t ino;
3039 int err;
3040
3041 err = shmem_reserve_inode(sb, inop: &ino);
3042 if (err)
3043 return ERR_PTR(error: err);
3044
3045 inode = new_inode(sb);
3046 if (!inode) {
3047 shmem_free_inode(sb, freed_ispace: 0);
3048 return ERR_PTR(error: -ENOSPC);
3049 }
3050
3051 inode->i_ino = ino;
3052 inode_init_owner(idmap, inode, dir, mode);
3053 inode->i_blocks = 0;
3054 simple_inode_init_ts(inode);
3055 inode->i_generation = get_random_u32();
3056 info = SHMEM_I(inode);
3057 memset(info, 0, (char *)inode - (char *)info);
3058 spin_lock_init(&info->lock);
3059 atomic_set(v: &info->stop_eviction, i: 0);
3060 info->seals = F_SEAL_SEAL;
3061 info->flags = flags & VM_NORESERVE;
3062 info->i_crtime = inode_get_mtime(inode);
3063 info->fsflags = (dir == NULL) ? 0 :
3064 SHMEM_I(inode: dir)->fsflags & SHMEM_FL_INHERITED;
3065 if (info->fsflags)
3066 shmem_set_inode_flags(inode, fsflags: info->fsflags, NULL);
3067 INIT_LIST_HEAD(list: &info->shrinklist);
3068 INIT_LIST_HEAD(list: &info->swaplist);
3069 simple_xattrs_init(xattrs: &info->xattrs);
3070 cache_no_acl(inode);
3071 if (sbinfo->noswap)
3072 mapping_set_unevictable(mapping: inode->i_mapping);
3073
3074 /* Don't consider 'deny' for emergencies and 'force' for testing */
3075 if (sbinfo->huge)
3076 mapping_set_large_folios(mapping: inode->i_mapping);
3077
3078 switch (mode & S_IFMT) {
3079 default:
3080 inode->i_op = &shmem_special_inode_operations;
3081 init_special_inode(inode, mode, dev);
3082 break;
3083 case S_IFREG:
3084 inode->i_mapping->a_ops = &shmem_aops;
3085 inode->i_op = &shmem_inode_operations;
3086 inode->i_fop = &shmem_file_operations;
3087 mpol_shared_policy_init(sp: &info->policy,
3088 mpol: shmem_get_sbmpol(sbinfo));
3089 break;
3090 case S_IFDIR:
3091 inc_nlink(inode);
3092 /* Some things misbehave if size == 0 on a directory */
3093 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3094 inode->i_op = &shmem_dir_inode_operations;
3095 inode->i_fop = &simple_offset_dir_operations;
3096 simple_offset_init(octx: shmem_get_offset_ctx(inode));
3097 break;
3098 case S_IFLNK:
3099 /*
3100 * Must not load anything in the rbtree,
3101 * mpol_free_shared_policy will not be called.
3102 */
3103 mpol_shared_policy_init(sp: &info->policy, NULL);
3104 break;
3105 }
3106
3107 lockdep_annotate_inode_mutex_key(inode);
3108 return inode;
3109}
3110
3111#ifdef CONFIG_TMPFS_QUOTA
3112static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3113 struct super_block *sb, struct inode *dir,
3114 umode_t mode, dev_t dev, unsigned long flags)
3115{
3116 int err;
3117 struct inode *inode;
3118
3119 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3120 if (IS_ERR(ptr: inode))
3121 return inode;
3122
3123 err = dquot_initialize(inode);
3124 if (err)
3125 goto errout;
3126
3127 err = dquot_alloc_inode(inode);
3128 if (err) {
3129 dquot_drop(inode);
3130 goto errout;
3131 }
3132 return inode;
3133
3134errout:
3135 inode->i_flags |= S_NOQUOTA;
3136 iput(inode);
3137 return ERR_PTR(error: err);
3138}
3139#else
3140static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3141 struct super_block *sb, struct inode *dir,
3142 umode_t mode, dev_t dev, unsigned long flags)
3143{
3144 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3145}
3146#endif /* CONFIG_TMPFS_QUOTA */
3147
3148#ifdef CONFIG_USERFAULTFD
3149int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3150 struct vm_area_struct *dst_vma,
3151 unsigned long dst_addr,
3152 unsigned long src_addr,
3153 uffd_flags_t flags,
3154 struct folio **foliop)
3155{
3156 struct inode *inode = file_inode(f: dst_vma->vm_file);
3157 struct shmem_inode_info *info = SHMEM_I(inode);
3158 struct address_space *mapping = inode->i_mapping;
3159 gfp_t gfp = mapping_gfp_mask(mapping);
3160 pgoff_t pgoff = linear_page_index(vma: dst_vma, address: dst_addr);
3161 void *page_kaddr;
3162 struct folio *folio;
3163 int ret;
3164 pgoff_t max_off;
3165
3166 if (shmem_inode_acct_blocks(inode, pages: 1)) {
3167 /*
3168 * We may have got a page, returned -ENOENT triggering a retry,
3169 * and now we find ourselves with -ENOMEM. Release the page, to
3170 * avoid a BUG_ON in our caller.
3171 */
3172 if (unlikely(*foliop)) {
3173 folio_put(folio: *foliop);
3174 *foliop = NULL;
3175 }
3176 return -ENOMEM;
3177 }
3178
3179 if (!*foliop) {
3180 ret = -ENOMEM;
3181 folio = shmem_alloc_folio(gfp, order: 0, info, index: pgoff);
3182 if (!folio)
3183 goto out_unacct_blocks;
3184
3185 if (uffd_flags_mode_is(flags, expected: MFILL_ATOMIC_COPY)) {
3186 page_kaddr = kmap_local_folio(folio, offset: 0);
3187 /*
3188 * The read mmap_lock is held here. Despite the
3189 * mmap_lock being read recursive a deadlock is still
3190 * possible if a writer has taken a lock. For example:
3191 *
3192 * process A thread 1 takes read lock on own mmap_lock
3193 * process A thread 2 calls mmap, blocks taking write lock
3194 * process B thread 1 takes page fault, read lock on own mmap lock
3195 * process B thread 2 calls mmap, blocks taking write lock
3196 * process A thread 1 blocks taking read lock on process B
3197 * process B thread 1 blocks taking read lock on process A
3198 *
3199 * Disable page faults to prevent potential deadlock
3200 * and retry the copy outside the mmap_lock.
3201 */
3202 pagefault_disable();
3203 ret = copy_from_user(to: page_kaddr,
3204 from: (const void __user *)src_addr,
3205 PAGE_SIZE);
3206 pagefault_enable();
3207 kunmap_local(page_kaddr);
3208
3209 /* fallback to copy_from_user outside mmap_lock */
3210 if (unlikely(ret)) {
3211 *foliop = folio;
3212 ret = -ENOENT;
3213 /* don't free the page */
3214 goto out_unacct_blocks;
3215 }
3216
3217 flush_dcache_folio(folio);
3218 } else { /* ZEROPAGE */
3219 clear_user_highpage(page: &folio->page, vaddr: dst_addr);
3220 }
3221 } else {
3222 folio = *foliop;
3223 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3224 *foliop = NULL;
3225 }
3226
3227 VM_BUG_ON(folio_test_locked(folio));
3228 VM_BUG_ON(folio_test_swapbacked(folio));
3229 __folio_set_locked(folio);
3230 __folio_set_swapbacked(folio);
3231 __folio_mark_uptodate(folio);
3232
3233 ret = -EFAULT;
3234 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3235 if (unlikely(pgoff >= max_off))
3236 goto out_release;
3237
3238 ret = mem_cgroup_charge(folio, mm: dst_vma->vm_mm, gfp);
3239 if (ret)
3240 goto out_release;
3241 ret = shmem_add_to_page_cache(folio, mapping, index: pgoff, NULL, gfp);
3242 if (ret)
3243 goto out_release;
3244
3245 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3246 page: &folio->page, newly_allocated: true, flags);
3247 if (ret)
3248 goto out_delete_from_cache;
3249
3250 shmem_recalc_inode(inode, alloced: 1, swapped: 0);
3251 folio_unlock(folio);
3252 return 0;
3253out_delete_from_cache:
3254 filemap_remove_folio(folio);
3255out_release:
3256 folio_unlock(folio);
3257 folio_put(folio);
3258out_unacct_blocks:
3259 shmem_inode_unacct_blocks(inode, pages: 1);
3260 return ret;
3261}
3262#endif /* CONFIG_USERFAULTFD */
3263
3264#ifdef CONFIG_TMPFS
3265static const struct inode_operations shmem_symlink_inode_operations;
3266static const struct inode_operations shmem_short_symlink_operations;
3267
3268static int
3269shmem_write_begin(struct file *file, struct address_space *mapping,
3270 loff_t pos, unsigned len,
3271 struct folio **foliop, void **fsdata)
3272{
3273 struct inode *inode = mapping->host;
3274 struct shmem_inode_info *info = SHMEM_I(inode);
3275 pgoff_t index = pos >> PAGE_SHIFT;
3276 struct folio *folio;
3277 int ret = 0;
3278
3279 /* i_rwsem is held by caller */
3280 if (unlikely(info->seals & (F_SEAL_GROW |
3281 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3282 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3283 return -EPERM;
3284 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3285 return -EPERM;
3286 }
3287
3288 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3289 if (ret)
3290 return ret;
3291
3292 if (folio_contain_hwpoisoned_page(folio)) {
3293 folio_unlock(folio);
3294 folio_put(folio);
3295 return -EIO;
3296 }
3297
3298 *foliop = folio;
3299 return 0;
3300}
3301
3302static int
3303shmem_write_end(struct file *file, struct address_space *mapping,
3304 loff_t pos, unsigned len, unsigned copied,
3305 struct folio *folio, void *fsdata)
3306{
3307 struct inode *inode = mapping->host;
3308
3309 if (pos + copied > inode->i_size)
3310 i_size_write(inode, i_size: pos + copied);
3311
3312 if (!folio_test_uptodate(folio)) {
3313 if (copied < folio_size(folio)) {
3314 size_t from = offset_in_folio(folio, pos);
3315 folio_zero_segments(folio, start1: 0, xend1: from,
3316 start2: from + copied, xend2: folio_size(folio));
3317 }
3318 folio_mark_uptodate(folio);
3319 }
3320 folio_mark_dirty(folio);
3321 folio_unlock(folio);
3322 folio_put(folio);
3323
3324 return copied;
3325}
3326
3327static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3328{
3329 struct file *file = iocb->ki_filp;
3330 struct inode *inode = file_inode(f: file);
3331 struct address_space *mapping = inode->i_mapping;
3332 pgoff_t index;
3333 unsigned long offset;
3334 int error = 0;
3335 ssize_t retval = 0;
3336
3337 for (;;) {
3338 struct folio *folio = NULL;
3339 struct page *page = NULL;
3340 unsigned long nr, ret;
3341 loff_t end_offset, i_size = i_size_read(inode);
3342 bool fallback_page_copy = false;
3343 size_t fsize;
3344
3345 if (unlikely(iocb->ki_pos >= i_size))
3346 break;
3347
3348 index = iocb->ki_pos >> PAGE_SHIFT;
3349 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3350 if (error) {
3351 if (error == -EINVAL)
3352 error = 0;
3353 break;
3354 }
3355 if (folio) {
3356 folio_unlock(folio);
3357
3358 page = folio_file_page(folio, index);
3359 if (PageHWPoison(page)) {
3360 folio_put(folio);
3361 error = -EIO;
3362 break;
3363 }
3364
3365 if (folio_test_large(folio) &&
3366 folio_test_has_hwpoisoned(folio))
3367 fallback_page_copy = true;
3368 }
3369
3370 /*
3371 * We must evaluate after, since reads (unlike writes)
3372 * are called without i_rwsem protection against truncate
3373 */
3374 i_size = i_size_read(inode);
3375 if (unlikely(iocb->ki_pos >= i_size)) {
3376 if (folio)
3377 folio_put(folio);
3378 break;
3379 }
3380 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3381 if (folio && likely(!fallback_page_copy))
3382 fsize = folio_size(folio);
3383 else
3384 fsize = PAGE_SIZE;
3385 offset = iocb->ki_pos & (fsize - 1);
3386 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3387
3388 if (folio) {
3389 /*
3390 * If users can be writing to this page using arbitrary
3391 * virtual addresses, take care about potential aliasing
3392 * before reading the page on the kernel side.
3393 */
3394 if (mapping_writably_mapped(mapping)) {
3395 if (likely(!fallback_page_copy))
3396 flush_dcache_folio(folio);
3397 else
3398 flush_dcache_page(page);
3399 }
3400
3401 /*
3402 * Mark the folio accessed if we read the beginning.
3403 */
3404 if (!offset)
3405 folio_mark_accessed(folio);
3406 /*
3407 * Ok, we have the page, and it's up-to-date, so
3408 * now we can copy it to user space...
3409 */
3410 if (likely(!fallback_page_copy))
3411 ret = copy_folio_to_iter(folio, offset, bytes: nr, i: to);
3412 else
3413 ret = copy_page_to_iter(page, offset, bytes: nr, i: to);
3414 folio_put(folio);
3415 } else if (user_backed_iter(i: to)) {
3416 /*
3417 * Copy to user tends to be so well optimized, but
3418 * clear_user() not so much, that it is noticeably
3419 * faster to copy the zero page instead of clearing.
3420 */
3421 ret = copy_page_to_iter(ZERO_PAGE(0), offset, bytes: nr, i: to);
3422 } else {
3423 /*
3424 * But submitting the same page twice in a row to
3425 * splice() - or others? - can result in confusion:
3426 * so don't attempt that optimization on pipes etc.
3427 */
3428 ret = iov_iter_zero(bytes: nr, to);
3429 }
3430
3431 retval += ret;
3432 iocb->ki_pos += ret;
3433
3434 if (!iov_iter_count(i: to))
3435 break;
3436 if (ret < nr) {
3437 error = -EFAULT;
3438 break;
3439 }
3440 cond_resched();
3441 }
3442
3443 file_accessed(file);
3444 return retval ? retval : error;
3445}
3446
3447static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3448{
3449 struct file *file = iocb->ki_filp;
3450 struct inode *inode = file->f_mapping->host;
3451 ssize_t ret;
3452
3453 inode_lock(inode);
3454 ret = generic_write_checks(iocb, from);
3455 if (ret <= 0)
3456 goto unlock;
3457 ret = file_remove_privs(file);
3458 if (ret)
3459 goto unlock;
3460 ret = file_update_time(file);
3461 if (ret)
3462 goto unlock;
3463 ret = generic_perform_write(iocb, from);
3464unlock:
3465 inode_unlock(inode);
3466 return ret;
3467}
3468
3469static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3470 struct pipe_buffer *buf)
3471{
3472 return true;
3473}
3474
3475static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3476 struct pipe_buffer *buf)
3477{
3478}
3479
3480static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3481 struct pipe_buffer *buf)
3482{
3483 return false;
3484}
3485
3486static const struct pipe_buf_operations zero_pipe_buf_ops = {
3487 .release = zero_pipe_buf_release,
3488 .try_steal = zero_pipe_buf_try_steal,
3489 .get = zero_pipe_buf_get,
3490};
3491
3492static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3493 loff_t fpos, size_t size)
3494{
3495 size_t offset = fpos & ~PAGE_MASK;
3496
3497 size = min_t(size_t, size, PAGE_SIZE - offset);
3498
3499 if (!pipe_is_full(pipe)) {
3500 struct pipe_buffer *buf = pipe_head_buf(pipe);
3501
3502 *buf = (struct pipe_buffer) {
3503 .ops = &zero_pipe_buf_ops,
3504 .page = ZERO_PAGE(0),
3505 .offset = offset,
3506 .len = size,
3507 };
3508 pipe->head++;
3509 }
3510
3511 return size;
3512}
3513
3514static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3515 struct pipe_inode_info *pipe,
3516 size_t len, unsigned int flags)
3517{
3518 struct inode *inode = file_inode(f: in);
3519 struct address_space *mapping = inode->i_mapping;
3520 struct folio *folio = NULL;
3521 size_t total_spliced = 0, used, npages, n, part;
3522 loff_t isize;
3523 int error = 0;
3524
3525 /* Work out how much data we can actually add into the pipe */
3526 used = pipe_buf_usage(pipe);
3527 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3528 len = min_t(size_t, len, npages * PAGE_SIZE);
3529
3530 do {
3531 bool fallback_page_splice = false;
3532 struct page *page = NULL;
3533 pgoff_t index;
3534 size_t size;
3535
3536 if (*ppos >= i_size_read(inode))
3537 break;
3538
3539 index = *ppos >> PAGE_SHIFT;
3540 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3541 if (error) {
3542 if (error == -EINVAL)
3543 error = 0;
3544 break;
3545 }
3546 if (folio) {
3547 folio_unlock(folio);
3548
3549 page = folio_file_page(folio, index);
3550 if (PageHWPoison(page)) {
3551 error = -EIO;
3552 break;
3553 }
3554
3555 if (folio_test_large(folio) &&
3556 folio_test_has_hwpoisoned(folio))
3557 fallback_page_splice = true;
3558 }
3559
3560 /*
3561 * i_size must be checked after we know the pages are Uptodate.
3562 *
3563 * Checking i_size after the check allows us to calculate
3564 * the correct value for "nr", which means the zero-filled
3565 * part of the page is not copied back to userspace (unless
3566 * another truncate extends the file - this is desired though).
3567 */
3568 isize = i_size_read(inode);
3569 if (unlikely(*ppos >= isize))
3570 break;
3571 /*
3572 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3573 * pages.
3574 */
3575 size = len;
3576 if (unlikely(fallback_page_splice)) {
3577 size_t offset = *ppos & ~PAGE_MASK;
3578
3579 size = umin(size, PAGE_SIZE - offset);
3580 }
3581 part = min_t(loff_t, isize - *ppos, size);
3582
3583 if (folio) {
3584 /*
3585 * If users can be writing to this page using arbitrary
3586 * virtual addresses, take care about potential aliasing
3587 * before reading the page on the kernel side.
3588 */
3589 if (mapping_writably_mapped(mapping)) {
3590 if (likely(!fallback_page_splice))
3591 flush_dcache_folio(folio);
3592 else
3593 flush_dcache_page(page);
3594 }
3595 folio_mark_accessed(folio);
3596 /*
3597 * Ok, we have the page, and it's up-to-date, so we can
3598 * now splice it into the pipe.
3599 */
3600 n = splice_folio_into_pipe(pipe, folio, fpos: *ppos, size: part);
3601 folio_put(folio);
3602 folio = NULL;
3603 } else {
3604 n = splice_zeropage_into_pipe(pipe, fpos: *ppos, size: part);
3605 }
3606
3607 if (!n)
3608 break;
3609 len -= n;
3610 total_spliced += n;
3611 *ppos += n;
3612 in->f_ra.prev_pos = *ppos;
3613 if (pipe_is_full(pipe))
3614 break;
3615
3616 cond_resched();
3617 } while (len);
3618
3619 if (folio)
3620 folio_put(folio);
3621
3622 file_accessed(file: in);
3623 return total_spliced ? total_spliced : error;
3624}
3625
3626static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3627{
3628 struct address_space *mapping = file->f_mapping;
3629 struct inode *inode = mapping->host;
3630
3631 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3632 return generic_file_llseek_size(file, offset, whence,
3633 MAX_LFS_FILESIZE, eof: i_size_read(inode));
3634 if (offset < 0)
3635 return -ENXIO;
3636
3637 inode_lock(inode);
3638 /* We're holding i_rwsem so we can access i_size directly */
3639 offset = mapping_seek_hole_data(mapping, start: offset, end: inode->i_size, whence);
3640 if (offset >= 0)
3641 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3642 inode_unlock(inode);
3643 return offset;
3644}
3645
3646static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3647 loff_t len)
3648{
3649 struct inode *inode = file_inode(f: file);
3650 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
3651 struct shmem_inode_info *info = SHMEM_I(inode);
3652 struct shmem_falloc shmem_falloc;
3653 pgoff_t start, index, end, undo_fallocend;
3654 int error;
3655
3656 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3657 return -EOPNOTSUPP;
3658
3659 inode_lock(inode);
3660
3661 if (mode & FALLOC_FL_PUNCH_HOLE) {
3662 struct address_space *mapping = file->f_mapping;
3663 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3664 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3666
3667 /* protected by i_rwsem */
3668 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3669 error = -EPERM;
3670 goto out;
3671 }
3672
3673 shmem_falloc.waitq = &shmem_falloc_waitq;
3674 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3675 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3676 spin_lock(lock: &inode->i_lock);
3677 inode->i_private = &shmem_falloc;
3678 spin_unlock(lock: &inode->i_lock);
3679
3680 if ((u64)unmap_end > (u64)unmap_start)
3681 unmap_mapping_range(mapping, holebegin: unmap_start,
3682 holelen: 1 + unmap_end - unmap_start, even_cows: 0);
3683 shmem_truncate_range(inode, offset, offset + len - 1);
3684 /* No need to unmap again: hole-punching leaves COWed pages */
3685
3686 spin_lock(lock: &inode->i_lock);
3687 inode->i_private = NULL;
3688 wake_up_all(&shmem_falloc_waitq);
3689 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3690 spin_unlock(lock: &inode->i_lock);
3691 error = 0;
3692 goto out;
3693 }
3694
3695 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3696 error = inode_newsize_ok(inode, offset: offset + len);
3697 if (error)
3698 goto out;
3699
3700 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3701 error = -EPERM;
3702 goto out;
3703 }
3704
3705 start = offset >> PAGE_SHIFT;
3706 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3707 /* Try to avoid a swapstorm if len is impossible to satisfy */
3708 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3709 error = -ENOSPC;
3710 goto out;
3711 }
3712
3713 shmem_falloc.waitq = NULL;
3714 shmem_falloc.start = start;
3715 shmem_falloc.next = start;
3716 shmem_falloc.nr_falloced = 0;
3717 shmem_falloc.nr_unswapped = 0;
3718 spin_lock(lock: &inode->i_lock);
3719 inode->i_private = &shmem_falloc;
3720 spin_unlock(lock: &inode->i_lock);
3721
3722 /*
3723 * info->fallocend is only relevant when huge pages might be
3724 * involved: to prevent split_huge_page() freeing fallocated
3725 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3726 */
3727 undo_fallocend = info->fallocend;
3728 if (info->fallocend < end)
3729 info->fallocend = end;
3730
3731 for (index = start; index < end; ) {
3732 struct folio *folio;
3733
3734 /*
3735 * Check for fatal signal so that we abort early in OOM
3736 * situations. We don't want to abort in case of non-fatal
3737 * signals as large fallocate can take noticeable time and
3738 * e.g. periodic timers may result in fallocate constantly
3739 * restarting.
3740 */
3741 if (fatal_signal_pending(current))
3742 error = -EINTR;
3743 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3744 error = -ENOMEM;
3745 else
3746 error = shmem_get_folio(inode, index, offset + len,
3747 &folio, SGP_FALLOC);
3748 if (error) {
3749 info->fallocend = undo_fallocend;
3750 /* Remove the !uptodate folios we added */
3751 if (index > start) {
3752 shmem_undo_range(inode,
3753 lstart: (loff_t)start << PAGE_SHIFT,
3754 lend: ((loff_t)index << PAGE_SHIFT) - 1, unfalloc: true);
3755 }
3756 goto undone;
3757 }
3758
3759 /*
3760 * Here is a more important optimization than it appears:
3761 * a second SGP_FALLOC on the same large folio will clear it,
3762 * making it uptodate and un-undoable if we fail later.
3763 */
3764 index = folio_next_index(folio);
3765 /* Beware 32-bit wraparound */
3766 if (!index)
3767 index--;
3768
3769 /*
3770 * Inform shmem_writeout() how far we have reached.
3771 * No need for lock or barrier: we have the page lock.
3772 */
3773 if (!folio_test_uptodate(folio))
3774 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3775 shmem_falloc.next = index;
3776
3777 /*
3778 * If !uptodate, leave it that way so that freeable folios
3779 * can be recognized if we need to rollback on error later.
3780 * But mark it dirty so that memory pressure will swap rather
3781 * than free the folios we are allocating (and SGP_CACHE folios
3782 * might still be clean: we now need to mark those dirty too).
3783 */
3784 folio_mark_dirty(folio);
3785 folio_unlock(folio);
3786 folio_put(folio);
3787 cond_resched();
3788 }
3789
3790 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3791 i_size_write(inode, i_size: offset + len);
3792undone:
3793 spin_lock(lock: &inode->i_lock);
3794 inode->i_private = NULL;
3795 spin_unlock(lock: &inode->i_lock);
3796out:
3797 if (!error)
3798 file_modified(file);
3799 inode_unlock(inode);
3800 return error;
3801}
3802
3803static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3804{
3805 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: dentry->d_sb);
3806
3807 buf->f_type = TMPFS_MAGIC;
3808 buf->f_bsize = PAGE_SIZE;
3809 buf->f_namelen = NAME_MAX;
3810 if (sbinfo->max_blocks) {
3811 buf->f_blocks = sbinfo->max_blocks;
3812 buf->f_bavail =
3813 buf->f_bfree = sbinfo->max_blocks -
3814 percpu_counter_sum(fbc: &sbinfo->used_blocks);
3815 }
3816 if (sbinfo->max_inodes) {
3817 buf->f_files = sbinfo->max_inodes;
3818 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3819 }
3820 /* else leave those fields 0 like simple_statfs */
3821
3822 buf->f_fsid = uuid_to_fsid(uuid: dentry->d_sb->s_uuid.b);
3823
3824 return 0;
3825}
3826
3827/*
3828 * File creation. Allocate an inode, and we're done..
3829 */
3830static int
3831shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3832 struct dentry *dentry, umode_t mode, dev_t dev)
3833{
3834 struct inode *inode;
3835 int error;
3836
3837 if (!generic_ci_validate_strict_name(dir, name: &dentry->d_name))
3838 return -EINVAL;
3839
3840 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, mode, dev, VM_NORESERVE);
3841 if (IS_ERR(ptr: inode))
3842 return PTR_ERR(ptr: inode);
3843
3844 error = simple_acl_create(dir, inode);
3845 if (error)
3846 goto out_iput;
3847 error = security_inode_init_security(inode, dir, qstr: &dentry->d_name,
3848 initxattrs: shmem_initxattrs, NULL);
3849 if (error && error != -EOPNOTSUPP)
3850 goto out_iput;
3851
3852 error = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
3853 if (error)
3854 goto out_iput;
3855
3856 dir->i_size += BOGO_DIRENT_SIZE;
3857 inode_set_mtime_to_ts(inode: dir, ts: inode_set_ctime_current(inode: dir));
3858 inode_inc_iversion(inode: dir);
3859
3860 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3861 d_add(dentry, inode);
3862 else
3863 d_instantiate(dentry, inode);
3864
3865 dget(dentry); /* Extra count - pin the dentry in core */
3866 return error;
3867
3868out_iput:
3869 iput(inode);
3870 return error;
3871}
3872
3873static int
3874shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3875 struct file *file, umode_t mode)
3876{
3877 struct inode *inode;
3878 int error;
3879
3880 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, mode, dev: 0, VM_NORESERVE);
3881 if (IS_ERR(ptr: inode)) {
3882 error = PTR_ERR(ptr: inode);
3883 goto err_out;
3884 }
3885 error = security_inode_init_security(inode, dir, NULL,
3886 initxattrs: shmem_initxattrs, NULL);
3887 if (error && error != -EOPNOTSUPP)
3888 goto out_iput;
3889 error = simple_acl_create(dir, inode);
3890 if (error)
3891 goto out_iput;
3892 d_tmpfile(file, inode);
3893
3894err_out:
3895 return finish_open_simple(file, error);
3896out_iput:
3897 iput(inode);
3898 return error;
3899}
3900
3901static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3902 struct dentry *dentry, umode_t mode)
3903{
3904 int error;
3905
3906 error = shmem_mknod(idmap, dir, dentry, mode: mode | S_IFDIR, dev: 0);
3907 if (error)
3908 return ERR_PTR(error);
3909 inc_nlink(inode: dir);
3910 return NULL;
3911}
3912
3913static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3914 struct dentry *dentry, umode_t mode, bool excl)
3915{
3916 return shmem_mknod(idmap, dir, dentry, mode: mode | S_IFREG, dev: 0);
3917}
3918
3919/*
3920 * Link a file..
3921 */
3922static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3923 struct dentry *dentry)
3924{
3925 struct inode *inode = d_inode(dentry: old_dentry);
3926 int ret = 0;
3927
3928 /*
3929 * No ordinary (disk based) filesystem counts links as inodes;
3930 * but each new link needs a new dentry, pinning lowmem, and
3931 * tmpfs dentries cannot be pruned until they are unlinked.
3932 * But if an O_TMPFILE file is linked into the tmpfs, the
3933 * first link must skip that, to get the accounting right.
3934 */
3935 if (inode->i_nlink) {
3936 ret = shmem_reserve_inode(sb: inode->i_sb, NULL);
3937 if (ret)
3938 goto out;
3939 }
3940
3941 ret = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
3942 if (ret) {
3943 if (inode->i_nlink)
3944 shmem_free_inode(sb: inode->i_sb, freed_ispace: 0);
3945 goto out;
3946 }
3947
3948 dir->i_size += BOGO_DIRENT_SIZE;
3949 inode_set_mtime_to_ts(inode: dir,
3950 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
3951 inode_inc_iversion(inode: dir);
3952 inc_nlink(inode);
3953 ihold(inode); /* New dentry reference */
3954 dget(dentry); /* Extra pinning count for the created dentry */
3955 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3956 d_add(dentry, inode);
3957 else
3958 d_instantiate(dentry, inode);
3959out:
3960 return ret;
3961}
3962
3963static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3964{
3965 struct inode *inode = d_inode(dentry);
3966
3967 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3968 shmem_free_inode(sb: inode->i_sb, freed_ispace: 0);
3969
3970 simple_offset_remove(octx: shmem_get_offset_ctx(inode: dir), dentry);
3971
3972 dir->i_size -= BOGO_DIRENT_SIZE;
3973 inode_set_mtime_to_ts(inode: dir,
3974 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
3975 inode_inc_iversion(inode: dir);
3976 drop_nlink(inode);
3977 dput(dentry); /* Undo the count from "create" - does all the work */
3978
3979 /*
3980 * For now, VFS can't deal with case-insensitive negative dentries, so
3981 * we invalidate them
3982 */
3983 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3984 d_invalidate(dentry);
3985
3986 return 0;
3987}
3988
3989static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3990{
3991 if (!simple_empty(dentry))
3992 return -ENOTEMPTY;
3993
3994 drop_nlink(inode: d_inode(dentry));
3995 drop_nlink(inode: dir);
3996 return shmem_unlink(dir, dentry);
3997}
3998
3999static int shmem_whiteout(struct mnt_idmap *idmap,
4000 struct inode *old_dir, struct dentry *old_dentry)
4001{
4002 struct dentry *whiteout;
4003 int error;
4004
4005 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4006 if (!whiteout)
4007 return -ENOMEM;
4008
4009 error = shmem_mknod(idmap, dir: old_dir, dentry: whiteout,
4010 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4011 dput(whiteout);
4012 if (error)
4013 return error;
4014
4015 /*
4016 * Cheat and hash the whiteout while the old dentry is still in
4017 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4018 *
4019 * d_lookup() will consistently find one of them at this point,
4020 * not sure which one, but that isn't even important.
4021 */
4022 d_rehash(whiteout);
4023 return 0;
4024}
4025
4026/*
4027 * The VFS layer already does all the dentry stuff for rename,
4028 * we just have to decrement the usage count for the target if
4029 * it exists so that the VFS layer correctly free's it when it
4030 * gets overwritten.
4031 */
4032static int shmem_rename2(struct mnt_idmap *idmap,
4033 struct inode *old_dir, struct dentry *old_dentry,
4034 struct inode *new_dir, struct dentry *new_dentry,
4035 unsigned int flags)
4036{
4037 struct inode *inode = d_inode(dentry: old_dentry);
4038 int they_are_dirs = S_ISDIR(inode->i_mode);
4039 int error;
4040
4041 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4042 return -EINVAL;
4043
4044 if (flags & RENAME_EXCHANGE)
4045 return simple_offset_rename_exchange(old_dir, old_dentry,
4046 new_dir, new_dentry);
4047
4048 if (!simple_empty(new_dentry))
4049 return -ENOTEMPTY;
4050
4051 if (flags & RENAME_WHITEOUT) {
4052 error = shmem_whiteout(idmap, old_dir, old_dentry);
4053 if (error)
4054 return error;
4055 }
4056
4057 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4058 if (error)
4059 return error;
4060
4061 if (d_really_is_positive(dentry: new_dentry)) {
4062 (void) shmem_unlink(dir: new_dir, dentry: new_dentry);
4063 if (they_are_dirs) {
4064 drop_nlink(inode: d_inode(dentry: new_dentry));
4065 drop_nlink(inode: old_dir);
4066 }
4067 } else if (they_are_dirs) {
4068 drop_nlink(inode: old_dir);
4069 inc_nlink(inode: new_dir);
4070 }
4071
4072 old_dir->i_size -= BOGO_DIRENT_SIZE;
4073 new_dir->i_size += BOGO_DIRENT_SIZE;
4074 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4075 inode_inc_iversion(inode: old_dir);
4076 inode_inc_iversion(inode: new_dir);
4077 return 0;
4078}
4079
4080static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4081 struct dentry *dentry, const char *symname)
4082{
4083 int error;
4084 int len;
4085 struct inode *inode;
4086 struct folio *folio;
4087 char *link;
4088
4089 len = strlen(symname) + 1;
4090 if (len > PAGE_SIZE)
4091 return -ENAMETOOLONG;
4092
4093 inode = shmem_get_inode(idmap, sb: dir->i_sb, dir, S_IFLNK | 0777, dev: 0,
4094 VM_NORESERVE);
4095 if (IS_ERR(ptr: inode))
4096 return PTR_ERR(ptr: inode);
4097
4098 error = security_inode_init_security(inode, dir, qstr: &dentry->d_name,
4099 initxattrs: shmem_initxattrs, NULL);
4100 if (error && error != -EOPNOTSUPP)
4101 goto out_iput;
4102
4103 error = simple_offset_add(octx: shmem_get_offset_ctx(inode: dir), dentry);
4104 if (error)
4105 goto out_iput;
4106
4107 inode->i_size = len-1;
4108 if (len <= SHORT_SYMLINK_LEN) {
4109 link = kmemdup(symname, len, GFP_KERNEL);
4110 if (!link) {
4111 error = -ENOMEM;
4112 goto out_remove_offset;
4113 }
4114 inode->i_op = &shmem_short_symlink_operations;
4115 inode_set_cached_link(inode, link, linklen: len - 1);
4116 } else {
4117 inode_nohighmem(inode);
4118 inode->i_mapping->a_ops = &shmem_aops;
4119 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4120 if (error)
4121 goto out_remove_offset;
4122 inode->i_op = &shmem_symlink_inode_operations;
4123 memcpy(folio_address(folio), symname, len);
4124 folio_mark_uptodate(folio);
4125 folio_mark_dirty(folio);
4126 folio_unlock(folio);
4127 folio_put(folio);
4128 }
4129 dir->i_size += BOGO_DIRENT_SIZE;
4130 inode_set_mtime_to_ts(inode: dir, ts: inode_set_ctime_current(inode: dir));
4131 inode_inc_iversion(inode: dir);
4132 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4133 d_add(dentry, inode);
4134 else
4135 d_instantiate(dentry, inode);
4136 dget(dentry);
4137 return 0;
4138
4139out_remove_offset:
4140 simple_offset_remove(octx: shmem_get_offset_ctx(inode: dir), dentry);
4141out_iput:
4142 iput(inode);
4143 return error;
4144}
4145
4146static void shmem_put_link(void *arg)
4147{
4148 folio_mark_accessed(arg);
4149 folio_put(folio: arg);
4150}
4151
4152static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4153 struct delayed_call *done)
4154{
4155 struct folio *folio = NULL;
4156 int error;
4157
4158 if (!dentry) {
4159 folio = filemap_get_folio(mapping: inode->i_mapping, index: 0);
4160 if (IS_ERR(ptr: folio))
4161 return ERR_PTR(error: -ECHILD);
4162 if (PageHWPoison(folio_page(folio, 0)) ||
4163 !folio_test_uptodate(folio)) {
4164 folio_put(folio);
4165 return ERR_PTR(error: -ECHILD);
4166 }
4167 } else {
4168 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4169 if (error)
4170 return ERR_PTR(error);
4171 if (!folio)
4172 return ERR_PTR(error: -ECHILD);
4173 if (PageHWPoison(folio_page(folio, 0))) {
4174 folio_unlock(folio);
4175 folio_put(folio);
4176 return ERR_PTR(error: -ECHILD);
4177 }
4178 folio_unlock(folio);
4179 }
4180 set_delayed_call(call: done, fn: shmem_put_link, arg: folio);
4181 return folio_address(folio);
4182}
4183
4184#ifdef CONFIG_TMPFS_XATTR
4185
4186static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4187{
4188 struct shmem_inode_info *info = SHMEM_I(inode: d_inode(dentry));
4189
4190 fileattr_fill_flags(fa, flags: info->fsflags & SHMEM_FL_USER_VISIBLE);
4191
4192 return 0;
4193}
4194
4195static int shmem_fileattr_set(struct mnt_idmap *idmap,
4196 struct dentry *dentry, struct fileattr *fa)
4197{
4198 struct inode *inode = d_inode(dentry);
4199 struct shmem_inode_info *info = SHMEM_I(inode);
4200 int ret, flags;
4201
4202 if (fileattr_has_fsx(fa))
4203 return -EOPNOTSUPP;
4204 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4205 return -EOPNOTSUPP;
4206
4207 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4208 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4209
4210 ret = shmem_set_inode_flags(inode, fsflags: flags, dentry);
4211
4212 if (ret)
4213 return ret;
4214
4215 info->fsflags = flags;
4216
4217 inode_set_ctime_current(inode);
4218 inode_inc_iversion(inode);
4219 return 0;
4220}
4221
4222/*
4223 * Superblocks without xattr inode operations may get some security.* xattr
4224 * support from the LSM "for free". As soon as we have any other xattrs
4225 * like ACLs, we also need to implement the security.* handlers at
4226 * filesystem level, though.
4227 */
4228
4229/*
4230 * Callback for security_inode_init_security() for acquiring xattrs.
4231 */
4232static int shmem_initxattrs(struct inode *inode,
4233 const struct xattr *xattr_array, void *fs_info)
4234{
4235 struct shmem_inode_info *info = SHMEM_I(inode);
4236 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
4237 const struct xattr *xattr;
4238 struct simple_xattr *new_xattr;
4239 size_t ispace = 0;
4240 size_t len;
4241
4242 if (sbinfo->max_inodes) {
4243 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4244 ispace += simple_xattr_space(name: xattr->name,
4245 size: xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4246 }
4247 if (ispace) {
4248 raw_spin_lock(&sbinfo->stat_lock);
4249 if (sbinfo->free_ispace < ispace)
4250 ispace = 0;
4251 else
4252 sbinfo->free_ispace -= ispace;
4253 raw_spin_unlock(&sbinfo->stat_lock);
4254 if (!ispace)
4255 return -ENOSPC;
4256 }
4257 }
4258
4259 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4260 new_xattr = simple_xattr_alloc(value: xattr->value, size: xattr->value_len);
4261 if (!new_xattr)
4262 break;
4263
4264 len = strlen(xattr->name) + 1;
4265 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4266 GFP_KERNEL_ACCOUNT);
4267 if (!new_xattr->name) {
4268 kvfree(addr: new_xattr);
4269 break;
4270 }
4271
4272 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4273 XATTR_SECURITY_PREFIX_LEN);
4274 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4275 xattr->name, len);
4276
4277 simple_xattr_add(xattrs: &info->xattrs, new_xattr);
4278 }
4279
4280 if (xattr->name != NULL) {
4281 if (ispace) {
4282 raw_spin_lock(&sbinfo->stat_lock);
4283 sbinfo->free_ispace += ispace;
4284 raw_spin_unlock(&sbinfo->stat_lock);
4285 }
4286 simple_xattrs_free(xattrs: &info->xattrs, NULL);
4287 return -ENOMEM;
4288 }
4289
4290 return 0;
4291}
4292
4293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4294 struct dentry *unused, struct inode *inode,
4295 const char *name, void *buffer, size_t size)
4296{
4297 struct shmem_inode_info *info = SHMEM_I(inode);
4298
4299 name = xattr_full_name(handler, name);
4300 return simple_xattr_get(xattrs: &info->xattrs, name, buffer, size);
4301}
4302
4303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4304 struct mnt_idmap *idmap,
4305 struct dentry *unused, struct inode *inode,
4306 const char *name, const void *value,
4307 size_t size, int flags)
4308{
4309 struct shmem_inode_info *info = SHMEM_I(inode);
4310 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: inode->i_sb);
4311 struct simple_xattr *old_xattr;
4312 size_t ispace = 0;
4313
4314 name = xattr_full_name(handler, name);
4315 if (value && sbinfo->max_inodes) {
4316 ispace = simple_xattr_space(name, size);
4317 raw_spin_lock(&sbinfo->stat_lock);
4318 if (sbinfo->free_ispace < ispace)
4319 ispace = 0;
4320 else
4321 sbinfo->free_ispace -= ispace;
4322 raw_spin_unlock(&sbinfo->stat_lock);
4323 if (!ispace)
4324 return -ENOSPC;
4325 }
4326
4327 old_xattr = simple_xattr_set(xattrs: &info->xattrs, name, value, size, flags);
4328 if (!IS_ERR(ptr: old_xattr)) {
4329 ispace = 0;
4330 if (old_xattr && sbinfo->max_inodes)
4331 ispace = simple_xattr_space(name: old_xattr->name,
4332 size: old_xattr->size);
4333 simple_xattr_free(xattr: old_xattr);
4334 old_xattr = NULL;
4335 inode_set_ctime_current(inode);
4336 inode_inc_iversion(inode);
4337 }
4338 if (ispace) {
4339 raw_spin_lock(&sbinfo->stat_lock);
4340 sbinfo->free_ispace += ispace;
4341 raw_spin_unlock(&sbinfo->stat_lock);
4342 }
4343 return PTR_ERR(ptr: old_xattr);
4344}
4345
4346static const struct xattr_handler shmem_security_xattr_handler = {
4347 .prefix = XATTR_SECURITY_PREFIX,
4348 .get = shmem_xattr_handler_get,
4349 .set = shmem_xattr_handler_set,
4350};
4351
4352static const struct xattr_handler shmem_trusted_xattr_handler = {
4353 .prefix = XATTR_TRUSTED_PREFIX,
4354 .get = shmem_xattr_handler_get,
4355 .set = shmem_xattr_handler_set,
4356};
4357
4358static const struct xattr_handler shmem_user_xattr_handler = {
4359 .prefix = XATTR_USER_PREFIX,
4360 .get = shmem_xattr_handler_get,
4361 .set = shmem_xattr_handler_set,
4362};
4363
4364static const struct xattr_handler * const shmem_xattr_handlers[] = {
4365 &shmem_security_xattr_handler,
4366 &shmem_trusted_xattr_handler,
4367 &shmem_user_xattr_handler,
4368 NULL
4369};
4370
4371static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4372{
4373 struct shmem_inode_info *info = SHMEM_I(inode: d_inode(dentry));
4374 return simple_xattr_list(inode: d_inode(dentry), xattrs: &info->xattrs, buffer, size);
4375}
4376#endif /* CONFIG_TMPFS_XATTR */
4377
4378static const struct inode_operations shmem_short_symlink_operations = {
4379 .getattr = shmem_getattr,
4380 .setattr = shmem_setattr,
4381 .get_link = simple_get_link,
4382#ifdef CONFIG_TMPFS_XATTR
4383 .listxattr = shmem_listxattr,
4384#endif
4385};
4386
4387static const struct inode_operations shmem_symlink_inode_operations = {
4388 .getattr = shmem_getattr,
4389 .setattr = shmem_setattr,
4390 .get_link = shmem_get_link,
4391#ifdef CONFIG_TMPFS_XATTR
4392 .listxattr = shmem_listxattr,
4393#endif
4394};
4395
4396static struct dentry *shmem_get_parent(struct dentry *child)
4397{
4398 return ERR_PTR(error: -ESTALE);
4399}
4400
4401static int shmem_match(struct inode *ino, void *vfh)
4402{
4403 __u32 *fh = vfh;
4404 __u64 inum = fh[2];
4405 inum = (inum << 32) | fh[1];
4406 return ino->i_ino == inum && fh[0] == ino->i_generation;
4407}
4408
4409/* Find any alias of inode, but prefer a hashed alias */
4410static struct dentry *shmem_find_alias(struct inode *inode)
4411{
4412 struct dentry *alias = d_find_alias(inode);
4413
4414 return alias ?: d_find_any_alias(inode);
4415}
4416
4417static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4418 struct fid *fid, int fh_len, int fh_type)
4419{
4420 struct inode *inode;
4421 struct dentry *dentry = NULL;
4422 u64 inum;
4423
4424 if (fh_len < 3)
4425 return NULL;
4426
4427 inum = fid->raw[2];
4428 inum = (inum << 32) | fid->raw[1];
4429
4430 inode = ilookup5(sb, hashval: (unsigned long)(inum + fid->raw[0]),
4431 test: shmem_match, data: fid->raw);
4432 if (inode) {
4433 dentry = shmem_find_alias(inode);
4434 iput(inode);
4435 }
4436
4437 return dentry;
4438}
4439
4440static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4441 struct inode *parent)
4442{
4443 if (*len < 3) {
4444 *len = 3;
4445 return FILEID_INVALID;
4446 }
4447
4448 if (inode_unhashed(inode)) {
4449 /* Unfortunately insert_inode_hash is not idempotent,
4450 * so as we hash inodes here rather than at creation
4451 * time, we need a lock to ensure we only try
4452 * to do it once
4453 */
4454 static DEFINE_SPINLOCK(lock);
4455 spin_lock(lock: &lock);
4456 if (inode_unhashed(inode))
4457 __insert_inode_hash(inode,
4458 hashval: inode->i_ino + inode->i_generation);
4459 spin_unlock(lock: &lock);
4460 }
4461
4462 fh[0] = inode->i_generation;
4463 fh[1] = inode->i_ino;
4464 fh[2] = ((__u64)inode->i_ino) >> 32;
4465
4466 *len = 3;
4467 return 1;
4468}
4469
4470static const struct export_operations shmem_export_ops = {
4471 .get_parent = shmem_get_parent,
4472 .encode_fh = shmem_encode_fh,
4473 .fh_to_dentry = shmem_fh_to_dentry,
4474};
4475
4476enum shmem_param {
4477 Opt_gid,
4478 Opt_huge,
4479 Opt_mode,
4480 Opt_mpol,
4481 Opt_nr_blocks,
4482 Opt_nr_inodes,
4483 Opt_size,
4484 Opt_uid,
4485 Opt_inode32,
4486 Opt_inode64,
4487 Opt_noswap,
4488 Opt_quota,
4489 Opt_usrquota,
4490 Opt_grpquota,
4491 Opt_usrquota_block_hardlimit,
4492 Opt_usrquota_inode_hardlimit,
4493 Opt_grpquota_block_hardlimit,
4494 Opt_grpquota_inode_hardlimit,
4495 Opt_casefold_version,
4496 Opt_casefold,
4497 Opt_strict_encoding,
4498};
4499
4500static const struct constant_table shmem_param_enums_huge[] = {
4501 {"never", SHMEM_HUGE_NEVER },
4502 {"always", SHMEM_HUGE_ALWAYS },
4503 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4504 {"advise", SHMEM_HUGE_ADVISE },
4505 {}
4506};
4507
4508const struct fs_parameter_spec shmem_fs_parameters[] = {
4509 fsparam_gid ("gid", Opt_gid),
4510 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4511 fsparam_u32oct("mode", Opt_mode),
4512 fsparam_string("mpol", Opt_mpol),
4513 fsparam_string("nr_blocks", Opt_nr_blocks),
4514 fsparam_string("nr_inodes", Opt_nr_inodes),
4515 fsparam_string("size", Opt_size),
4516 fsparam_uid ("uid", Opt_uid),
4517 fsparam_flag ("inode32", Opt_inode32),
4518 fsparam_flag ("inode64", Opt_inode64),
4519 fsparam_flag ("noswap", Opt_noswap),
4520#ifdef CONFIG_TMPFS_QUOTA
4521 fsparam_flag ("quota", Opt_quota),
4522 fsparam_flag ("usrquota", Opt_usrquota),
4523 fsparam_flag ("grpquota", Opt_grpquota),
4524 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4525 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4526 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4527 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4528#endif
4529 fsparam_string("casefold", Opt_casefold_version),
4530 fsparam_flag ("casefold", Opt_casefold),
4531 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4532 {}
4533};
4534
4535#if IS_ENABLED(CONFIG_UNICODE)
4536static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4537 bool latest_version)
4538{
4539 struct shmem_options *ctx = fc->fs_private;
4540 int version = UTF8_LATEST;
4541 struct unicode_map *encoding;
4542 char *version_str = param->string + 5;
4543
4544 if (!latest_version) {
4545 if (strncmp(param->string, "utf8-", 5))
4546 return invalfc(fc, "Only UTF-8 encodings are supported "
4547 "in the format: utf8-<version number>");
4548
4549 version = utf8_parse_version(version: version_str);
4550 if (version < 0)
4551 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4552 }
4553
4554 encoding = utf8_load(version);
4555
4556 if (IS_ERR(ptr: encoding)) {
4557 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4558 unicode_major(version), unicode_minor(version),
4559 unicode_rev(version));
4560 }
4561
4562 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4563 unicode_major(version), unicode_minor(version), unicode_rev(version));
4564
4565 ctx->encoding = encoding;
4566
4567 return 0;
4568}
4569#else
4570static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4571 bool latest_version)
4572{
4573 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4574}
4575#endif
4576
4577static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4578{
4579 struct shmem_options *ctx = fc->fs_private;
4580 struct fs_parse_result result;
4581 unsigned long long size;
4582 char *rest;
4583 int opt;
4584 kuid_t kuid;
4585 kgid_t kgid;
4586
4587 opt = fs_parse(fc, desc: shmem_fs_parameters, param, result: &result);
4588 if (opt < 0)
4589 return opt;
4590
4591 switch (opt) {
4592 case Opt_size:
4593 size = memparse(ptr: param->string, retptr: &rest);
4594 if (*rest == '%') {
4595 size <<= PAGE_SHIFT;
4596 size *= totalram_pages();
4597 do_div(size, 100);
4598 rest++;
4599 }
4600 if (*rest)
4601 goto bad_value;
4602 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4603 ctx->seen |= SHMEM_SEEN_BLOCKS;
4604 break;
4605 case Opt_nr_blocks:
4606 ctx->blocks = memparse(ptr: param->string, retptr: &rest);
4607 if (*rest || ctx->blocks > LONG_MAX)
4608 goto bad_value;
4609 ctx->seen |= SHMEM_SEEN_BLOCKS;
4610 break;
4611 case Opt_nr_inodes:
4612 ctx->inodes = memparse(ptr: param->string, retptr: &rest);
4613 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4614 goto bad_value;
4615 ctx->seen |= SHMEM_SEEN_INODES;
4616 break;
4617 case Opt_mode:
4618 ctx->mode = result.uint_32 & 07777;
4619 break;
4620 case Opt_uid:
4621 kuid = result.uid;
4622
4623 /*
4624 * The requested uid must be representable in the
4625 * filesystem's idmapping.
4626 */
4627 if (!kuid_has_mapping(ns: fc->user_ns, uid: kuid))
4628 goto bad_value;
4629
4630 ctx->uid = kuid;
4631 break;
4632 case Opt_gid:
4633 kgid = result.gid;
4634
4635 /*
4636 * The requested gid must be representable in the
4637 * filesystem's idmapping.
4638 */
4639 if (!kgid_has_mapping(ns: fc->user_ns, gid: kgid))
4640 goto bad_value;
4641
4642 ctx->gid = kgid;
4643 break;
4644 case Opt_huge:
4645 ctx->huge = result.uint_32;
4646 if (ctx->huge != SHMEM_HUGE_NEVER &&
4647 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4648 has_transparent_hugepage()))
4649 goto unsupported_parameter;
4650 ctx->seen |= SHMEM_SEEN_HUGE;
4651 break;
4652 case Opt_mpol:
4653 if (IS_ENABLED(CONFIG_NUMA)) {
4654 mpol_put(pol: ctx->mpol);
4655 ctx->mpol = NULL;
4656 if (mpol_parse_str(str: param->string, mpol: &ctx->mpol))
4657 goto bad_value;
4658 break;
4659 }
4660 goto unsupported_parameter;
4661 case Opt_inode32:
4662 ctx->full_inums = false;
4663 ctx->seen |= SHMEM_SEEN_INUMS;
4664 break;
4665 case Opt_inode64:
4666 if (sizeof(ino_t) < 8) {
4667 return invalfc(fc,
4668 "Cannot use inode64 with <64bit inums in kernel\n");
4669 }
4670 ctx->full_inums = true;
4671 ctx->seen |= SHMEM_SEEN_INUMS;
4672 break;
4673 case Opt_noswap:
4674 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4675 return invalfc(fc,
4676 "Turning off swap in unprivileged tmpfs mounts unsupported");
4677 }
4678 ctx->noswap = true;
4679 ctx->seen |= SHMEM_SEEN_NOSWAP;
4680 break;
4681 case Opt_quota:
4682 if (fc->user_ns != &init_user_ns)
4683 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4684 ctx->seen |= SHMEM_SEEN_QUOTA;
4685 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4686 break;
4687 case Opt_usrquota:
4688 if (fc->user_ns != &init_user_ns)
4689 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4690 ctx->seen |= SHMEM_SEEN_QUOTA;
4691 ctx->quota_types |= QTYPE_MASK_USR;
4692 break;
4693 case Opt_grpquota:
4694 if (fc->user_ns != &init_user_ns)
4695 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4696 ctx->seen |= SHMEM_SEEN_QUOTA;
4697 ctx->quota_types |= QTYPE_MASK_GRP;
4698 break;
4699 case Opt_usrquota_block_hardlimit:
4700 size = memparse(ptr: param->string, retptr: &rest);
4701 if (*rest || !size)
4702 goto bad_value;
4703 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4704 return invalfc(fc,
4705 "User quota block hardlimit too large.");
4706 ctx->qlimits.usrquota_bhardlimit = size;
4707 break;
4708 case Opt_grpquota_block_hardlimit:
4709 size = memparse(ptr: param->string, retptr: &rest);
4710 if (*rest || !size)
4711 goto bad_value;
4712 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4713 return invalfc(fc,
4714 "Group quota block hardlimit too large.");
4715 ctx->qlimits.grpquota_bhardlimit = size;
4716 break;
4717 case Opt_usrquota_inode_hardlimit:
4718 size = memparse(ptr: param->string, retptr: &rest);
4719 if (*rest || !size)
4720 goto bad_value;
4721 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4722 return invalfc(fc,
4723 "User quota inode hardlimit too large.");
4724 ctx->qlimits.usrquota_ihardlimit = size;
4725 break;
4726 case Opt_grpquota_inode_hardlimit:
4727 size = memparse(ptr: param->string, retptr: &rest);
4728 if (*rest || !size)
4729 goto bad_value;
4730 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4731 return invalfc(fc,
4732 "Group quota inode hardlimit too large.");
4733 ctx->qlimits.grpquota_ihardlimit = size;
4734 break;
4735 case Opt_casefold_version:
4736 return shmem_parse_opt_casefold(fc, param, latest_version: false);
4737 case Opt_casefold:
4738 return shmem_parse_opt_casefold(fc, param, latest_version: true);
4739 case Opt_strict_encoding:
4740#if IS_ENABLED(CONFIG_UNICODE)
4741 ctx->strict_encoding = true;
4742 break;
4743#else
4744 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4745#endif
4746 }
4747 return 0;
4748
4749unsupported_parameter:
4750 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4751bad_value:
4752 return invalfc(fc, "Bad value for '%s'", param->key);
4753}
4754
4755static char *shmem_next_opt(char **s)
4756{
4757 char *sbegin = *s;
4758 char *p;
4759
4760 if (sbegin == NULL)
4761 return NULL;
4762
4763 /*
4764 * NUL-terminate this option: unfortunately,
4765 * mount options form a comma-separated list,
4766 * but mpol's nodelist may also contain commas.
4767 */
4768 for (;;) {
4769 p = strchr(*s, ',');
4770 if (p == NULL)
4771 break;
4772 *s = p + 1;
4773 if (!isdigit(c: *(p+1))) {
4774 *p = '\0';
4775 return sbegin;
4776 }
4777 }
4778
4779 *s = NULL;
4780 return sbegin;
4781}
4782
4783static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4784{
4785 return vfs_parse_monolithic_sep(fc, data, sep: shmem_next_opt);
4786}
4787
4788/*
4789 * Reconfigure a shmem filesystem.
4790 */
4791static int shmem_reconfigure(struct fs_context *fc)
4792{
4793 struct shmem_options *ctx = fc->fs_private;
4794 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: fc->root->d_sb);
4795 unsigned long used_isp;
4796 struct mempolicy *mpol = NULL;
4797 const char *err;
4798
4799 raw_spin_lock(&sbinfo->stat_lock);
4800 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4801
4802 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4803 if (!sbinfo->max_blocks) {
4804 err = "Cannot retroactively limit size";
4805 goto out;
4806 }
4807 if (percpu_counter_compare(fbc: &sbinfo->used_blocks,
4808 rhs: ctx->blocks) > 0) {
4809 err = "Too small a size for current use";
4810 goto out;
4811 }
4812 }
4813 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4814 if (!sbinfo->max_inodes) {
4815 err = "Cannot retroactively limit inodes";
4816 goto out;
4817 }
4818 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4819 err = "Too few inodes for current use";
4820 goto out;
4821 }
4822 }
4823
4824 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4825 sbinfo->next_ino > UINT_MAX) {
4826 err = "Current inum too high to switch to 32-bit inums";
4827 goto out;
4828 }
4829 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4830 err = "Cannot disable swap on remount";
4831 goto out;
4832 }
4833 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4834 err = "Cannot enable swap on remount if it was disabled on first mount";
4835 goto out;
4836 }
4837
4838 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4839 !sb_any_quota_loaded(sb: fc->root->d_sb)) {
4840 err = "Cannot enable quota on remount";
4841 goto out;
4842 }
4843
4844#ifdef CONFIG_TMPFS_QUOTA
4845#define CHANGED_LIMIT(name) \
4846 (ctx->qlimits.name## hardlimit && \
4847 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4848
4849 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4850 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4851 err = "Cannot change global quota limit on remount";
4852 goto out;
4853 }
4854#endif /* CONFIG_TMPFS_QUOTA */
4855
4856 if (ctx->seen & SHMEM_SEEN_HUGE)
4857 sbinfo->huge = ctx->huge;
4858 if (ctx->seen & SHMEM_SEEN_INUMS)
4859 sbinfo->full_inums = ctx->full_inums;
4860 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4861 sbinfo->max_blocks = ctx->blocks;
4862 if (ctx->seen & SHMEM_SEEN_INODES) {
4863 sbinfo->max_inodes = ctx->inodes;
4864 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4865 }
4866
4867 /*
4868 * Preserve previous mempolicy unless mpol remount option was specified.
4869 */
4870 if (ctx->mpol) {
4871 mpol = sbinfo->mpol;
4872 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4873 ctx->mpol = NULL;
4874 }
4875
4876 if (ctx->noswap)
4877 sbinfo->noswap = true;
4878
4879 raw_spin_unlock(&sbinfo->stat_lock);
4880 mpol_put(pol: mpol);
4881 return 0;
4882out:
4883 raw_spin_unlock(&sbinfo->stat_lock);
4884 return invalfc(fc, "%s", err);
4885}
4886
4887static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4888{
4889 struct shmem_sb_info *sbinfo = SHMEM_SB(sb: root->d_sb);
4890 struct mempolicy *mpol;
4891
4892 if (sbinfo->max_blocks != shmem_default_max_blocks())
4893 seq_printf(m: seq, fmt: ",size=%luk", K(sbinfo->max_blocks));
4894 if (sbinfo->max_inodes != shmem_default_max_inodes())
4895 seq_printf(m: seq, fmt: ",nr_inodes=%lu", sbinfo->max_inodes);
4896 if (sbinfo->mode != (0777 | S_ISVTX))
4897 seq_printf(m: seq, fmt: ",mode=%03ho", sbinfo->mode);
4898 if (!uid_eq(left: sbinfo->uid, GLOBAL_ROOT_UID))
4899 seq_printf(seq, ",uid=%u",
4900 from_kuid_munged(&init_user_ns, sbinfo->uid));
4901 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4902 seq_printf(seq, ",gid=%u",
4903 from_kgid_munged(&init_user_ns, sbinfo->gid));
4904
4905 /*
4906 * Showing inode{64,32} might be useful even if it's the system default,
4907 * since then people don't have to resort to checking both here and
4908 * /proc/config.gz to confirm 64-bit inums were successfully applied
4909 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4910 *
4911 * We hide it when inode64 isn't the default and we are using 32-bit
4912 * inodes, since that probably just means the feature isn't even under
4913 * consideration.
4914 *
4915 * As such:
4916 *
4917 * +-----------------+-----------------+
4918 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4919 * +------------------+-----------------+-----------------+
4920 * | full_inums=true | show | show |
4921 * | full_inums=false | show | hide |
4922 * +------------------+-----------------+-----------------+
4923 *
4924 */
4925 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4926 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4927#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4928 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4929 if (sbinfo->huge)
4930 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4931#endif
4932 mpol = shmem_get_sbmpol(sbinfo);
4933 shmem_show_mpol(seq, mpol);
4934 mpol_put(mpol);
4935 if (sbinfo->noswap)
4936 seq_printf(seq, ",noswap");
4937#ifdef CONFIG_TMPFS_QUOTA
4938 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4939 seq_printf(seq, ",usrquota");
4940 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4941 seq_printf(seq, ",grpquota");
4942 if (sbinfo->qlimits.usrquota_bhardlimit)
4943 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4944 sbinfo->qlimits.usrquota_bhardlimit);
4945 if (sbinfo->qlimits.grpquota_bhardlimit)
4946 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4947 sbinfo->qlimits.grpquota_bhardlimit);
4948 if (sbinfo->qlimits.usrquota_ihardlimit)
4949 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4950 sbinfo->qlimits.usrquota_ihardlimit);
4951 if (sbinfo->qlimits.grpquota_ihardlimit)
4952 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4953 sbinfo->qlimits.grpquota_ihardlimit);
4954#endif
4955 return 0;
4956}
4957
4958#endif /* CONFIG_TMPFS */
4959
4960static void shmem_put_super(struct super_block *sb)
4961{
4962 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4963
4964#if IS_ENABLED(CONFIG_UNICODE)
4965 if (sb->s_encoding)
4966 utf8_unload(um: sb->s_encoding);
4967#endif
4968
4969#ifdef CONFIG_TMPFS_QUOTA
4970 shmem_disable_quotas(sb);
4971#endif
4972 free_percpu(pdata: sbinfo->ino_batch);
4973 percpu_counter_destroy(fbc: &sbinfo->used_blocks);
4974 mpol_put(pol: sbinfo->mpol);
4975 kfree(objp: sbinfo);
4976 sb->s_fs_info = NULL;
4977}
4978
4979#if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4980static const struct dentry_operations shmem_ci_dentry_ops = {
4981 .d_hash = generic_ci_d_hash,
4982 .d_compare = generic_ci_d_compare,
4983 .d_delete = always_delete_dentry,
4984};
4985#endif
4986
4987static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4988{
4989 struct shmem_options *ctx = fc->fs_private;
4990 struct inode *inode;
4991 struct shmem_sb_info *sbinfo;
4992 int error = -ENOMEM;
4993
4994 /* Round up to L1_CACHE_BYTES to resist false sharing */
4995 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4996 L1_CACHE_BYTES), GFP_KERNEL);
4997 if (!sbinfo)
4998 return error;
4999
5000 sb->s_fs_info = sbinfo;
5001
5002#ifdef CONFIG_TMPFS
5003 /*
5004 * Per default we only allow half of the physical ram per
5005 * tmpfs instance, limiting inodes to one per page of lowmem;
5006 * but the internal instance is left unlimited.
5007 */
5008 if (!(sb->s_flags & SB_KERNMOUNT)) {
5009 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5010 ctx->blocks = shmem_default_max_blocks();
5011 if (!(ctx->seen & SHMEM_SEEN_INODES))
5012 ctx->inodes = shmem_default_max_inodes();
5013 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5014 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5015 sbinfo->noswap = ctx->noswap;
5016 } else {
5017 sb->s_flags |= SB_NOUSER;
5018 }
5019 sb->s_export_op = &shmem_export_ops;
5020 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5021
5022#if IS_ENABLED(CONFIG_UNICODE)
5023 if (!ctx->encoding && ctx->strict_encoding) {
5024 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5025 error = -EINVAL;
5026 goto failed;
5027 }
5028
5029 if (ctx->encoding) {
5030 sb->s_encoding = ctx->encoding;
5031 sb->s_d_op = &shmem_ci_dentry_ops;
5032 if (ctx->strict_encoding)
5033 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5034 }
5035#endif
5036
5037#else
5038 sb->s_flags |= SB_NOUSER;
5039#endif /* CONFIG_TMPFS */
5040 sbinfo->max_blocks = ctx->blocks;
5041 sbinfo->max_inodes = ctx->inodes;
5042 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5043 if (sb->s_flags & SB_KERNMOUNT) {
5044 sbinfo->ino_batch = alloc_percpu(ino_t);
5045 if (!sbinfo->ino_batch)
5046 goto failed;
5047 }
5048 sbinfo->uid = ctx->uid;
5049 sbinfo->gid = ctx->gid;
5050 sbinfo->full_inums = ctx->full_inums;
5051 sbinfo->mode = ctx->mode;
5052#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5053 if (ctx->seen & SHMEM_SEEN_HUGE)
5054 sbinfo->huge = ctx->huge;
5055 else
5056 sbinfo->huge = tmpfs_huge;
5057#endif
5058 sbinfo->mpol = ctx->mpol;
5059 ctx->mpol = NULL;
5060
5061 raw_spin_lock_init(&sbinfo->stat_lock);
5062 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5063 goto failed;
5064 spin_lock_init(&sbinfo->shrinklist_lock);
5065 INIT_LIST_HEAD(list: &sbinfo->shrinklist);
5066
5067 sb->s_maxbytes = MAX_LFS_FILESIZE;
5068 sb->s_blocksize = PAGE_SIZE;
5069 sb->s_blocksize_bits = PAGE_SHIFT;
5070 sb->s_magic = TMPFS_MAGIC;
5071 sb->s_op = &shmem_ops;
5072 sb->s_time_gran = 1;
5073#ifdef CONFIG_TMPFS_XATTR
5074 sb->s_xattr = shmem_xattr_handlers;
5075#endif
5076#ifdef CONFIG_TMPFS_POSIX_ACL
5077 sb->s_flags |= SB_POSIXACL;
5078#endif
5079 uuid_t uuid;
5080 uuid_gen(u: &uuid);
5081 super_set_uuid(sb, uuid: uuid.b, len: sizeof(uuid));
5082
5083#ifdef CONFIG_TMPFS_QUOTA
5084 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5085 sb->dq_op = &shmem_quota_operations;
5086 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5087 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5088
5089 /* Copy the default limits from ctx into sbinfo */
5090 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5091 sizeof(struct shmem_quota_limits));
5092
5093 if (shmem_enable_quotas(sb, quota_types: ctx->quota_types))
5094 goto failed;
5095 }
5096#endif /* CONFIG_TMPFS_QUOTA */
5097
5098 inode = shmem_get_inode(idmap: &nop_mnt_idmap, sb, NULL,
5099 S_IFDIR | sbinfo->mode, dev: 0, VM_NORESERVE);
5100 if (IS_ERR(ptr: inode)) {
5101 error = PTR_ERR(ptr: inode);
5102 goto failed;
5103 }
5104 inode->i_uid = sbinfo->uid;
5105 inode->i_gid = sbinfo->gid;
5106 sb->s_root = d_make_root(inode);
5107 if (!sb->s_root)
5108 goto failed;
5109 return 0;
5110
5111failed:
5112 shmem_put_super(sb);
5113 return error;
5114}
5115
5116static int shmem_get_tree(struct fs_context *fc)
5117{
5118 return get_tree_nodev(fc, fill_super: shmem_fill_super);
5119}
5120
5121static void shmem_free_fc(struct fs_context *fc)
5122{
5123 struct shmem_options *ctx = fc->fs_private;
5124
5125 if (ctx) {
5126 mpol_put(pol: ctx->mpol);
5127 kfree(objp: ctx);
5128 }
5129}
5130
5131static const struct fs_context_operations shmem_fs_context_ops = {
5132 .free = shmem_free_fc,
5133 .get_tree = shmem_get_tree,
5134#ifdef CONFIG_TMPFS
5135 .parse_monolithic = shmem_parse_monolithic,
5136 .parse_param = shmem_parse_one,
5137 .reconfigure = shmem_reconfigure,
5138#endif
5139};
5140
5141static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5142
5143static struct inode *shmem_alloc_inode(struct super_block *sb)
5144{
5145 struct shmem_inode_info *info;
5146 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5147 if (!info)
5148 return NULL;
5149 return &info->vfs_inode;
5150}
5151
5152static void shmem_free_in_core_inode(struct inode *inode)
5153{
5154 if (S_ISLNK(inode->i_mode))
5155 kfree(objp: inode->i_link);
5156 kmem_cache_free(s: shmem_inode_cachep, objp: SHMEM_I(inode));
5157}
5158
5159static void shmem_destroy_inode(struct inode *inode)
5160{
5161 if (S_ISREG(inode->i_mode))
5162 mpol_free_shared_policy(sp: &SHMEM_I(inode)->policy);
5163 if (S_ISDIR(inode->i_mode))
5164 simple_offset_destroy(octx: shmem_get_offset_ctx(inode));
5165}
5166
5167static void shmem_init_inode(void *foo)
5168{
5169 struct shmem_inode_info *info = foo;
5170 inode_init_once(&info->vfs_inode);
5171}
5172
5173static void __init shmem_init_inodecache(void)
5174{
5175 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5176 sizeof(struct shmem_inode_info),
5177 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5178}
5179
5180static void __init shmem_destroy_inodecache(void)
5181{
5182 kmem_cache_destroy(s: shmem_inode_cachep);
5183}
5184
5185/* Keep the page in page cache instead of truncating it */
5186static int shmem_error_remove_folio(struct address_space *mapping,
5187 struct folio *folio)
5188{
5189 return 0;
5190}
5191
5192static const struct address_space_operations shmem_aops = {
5193 .dirty_folio = noop_dirty_folio,
5194#ifdef CONFIG_TMPFS
5195 .write_begin = shmem_write_begin,
5196 .write_end = shmem_write_end,
5197#endif
5198#ifdef CONFIG_MIGRATION
5199 .migrate_folio = migrate_folio,
5200#endif
5201 .error_remove_folio = shmem_error_remove_folio,
5202};
5203
5204static const struct file_operations shmem_file_operations = {
5205 .mmap = shmem_mmap,
5206 .open = shmem_file_open,
5207 .get_unmapped_area = shmem_get_unmapped_area,
5208#ifdef CONFIG_TMPFS
5209 .llseek = shmem_file_llseek,
5210 .read_iter = shmem_file_read_iter,
5211 .write_iter = shmem_file_write_iter,
5212 .fsync = noop_fsync,
5213 .splice_read = shmem_file_splice_read,
5214 .splice_write = iter_file_splice_write,
5215 .fallocate = shmem_fallocate,
5216#endif
5217};
5218
5219static const struct inode_operations shmem_inode_operations = {
5220 .getattr = shmem_getattr,
5221 .setattr = shmem_setattr,
5222#ifdef CONFIG_TMPFS_XATTR
5223 .listxattr = shmem_listxattr,
5224 .set_acl = simple_set_acl,
5225 .fileattr_get = shmem_fileattr_get,
5226 .fileattr_set = shmem_fileattr_set,
5227#endif
5228};
5229
5230static const struct inode_operations shmem_dir_inode_operations = {
5231#ifdef CONFIG_TMPFS
5232 .getattr = shmem_getattr,
5233 .create = shmem_create,
5234 .lookup = simple_lookup,
5235 .link = shmem_link,
5236 .unlink = shmem_unlink,
5237 .symlink = shmem_symlink,
5238 .mkdir = shmem_mkdir,
5239 .rmdir = shmem_rmdir,
5240 .mknod = shmem_mknod,
5241 .rename = shmem_rename2,
5242 .tmpfile = shmem_tmpfile,
5243 .get_offset_ctx = shmem_get_offset_ctx,
5244#endif
5245#ifdef CONFIG_TMPFS_XATTR
5246 .listxattr = shmem_listxattr,
5247 .fileattr_get = shmem_fileattr_get,
5248 .fileattr_set = shmem_fileattr_set,
5249#endif
5250#ifdef CONFIG_TMPFS_POSIX_ACL
5251 .setattr = shmem_setattr,
5252 .set_acl = simple_set_acl,
5253#endif
5254};
5255
5256static const struct inode_operations shmem_special_inode_operations = {
5257 .getattr = shmem_getattr,
5258#ifdef CONFIG_TMPFS_XATTR
5259 .listxattr = shmem_listxattr,
5260#endif
5261#ifdef CONFIG_TMPFS_POSIX_ACL
5262 .setattr = shmem_setattr,
5263 .set_acl = simple_set_acl,
5264#endif
5265};
5266
5267static const struct super_operations shmem_ops = {
5268 .alloc_inode = shmem_alloc_inode,
5269 .free_inode = shmem_free_in_core_inode,
5270 .destroy_inode = shmem_destroy_inode,
5271#ifdef CONFIG_TMPFS
5272 .statfs = shmem_statfs,
5273 .show_options = shmem_show_options,
5274#endif
5275#ifdef CONFIG_TMPFS_QUOTA
5276 .get_dquots = shmem_get_dquots,
5277#endif
5278 .evict_inode = shmem_evict_inode,
5279 .drop_inode = generic_delete_inode,
5280 .put_super = shmem_put_super,
5281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5282 .nr_cached_objects = shmem_unused_huge_count,
5283 .free_cached_objects = shmem_unused_huge_scan,
5284#endif
5285};
5286
5287static const struct vm_operations_struct shmem_vm_ops = {
5288 .fault = shmem_fault,
5289 .map_pages = filemap_map_pages,
5290#ifdef CONFIG_NUMA
5291 .set_policy = shmem_set_policy,
5292 .get_policy = shmem_get_policy,
5293#endif
5294};
5295
5296static const struct vm_operations_struct shmem_anon_vm_ops = {
5297 .fault = shmem_fault,
5298 .map_pages = filemap_map_pages,
5299#ifdef CONFIG_NUMA
5300 .set_policy = shmem_set_policy,
5301 .get_policy = shmem_get_policy,
5302#endif
5303};
5304
5305int shmem_init_fs_context(struct fs_context *fc)
5306{
5307 struct shmem_options *ctx;
5308
5309 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5310 if (!ctx)
5311 return -ENOMEM;
5312
5313 ctx->mode = 0777 | S_ISVTX;
5314 ctx->uid = current_fsuid();
5315 ctx->gid = current_fsgid();
5316
5317#if IS_ENABLED(CONFIG_UNICODE)
5318 ctx->encoding = NULL;
5319#endif
5320
5321 fc->fs_private = ctx;
5322 fc->ops = &shmem_fs_context_ops;
5323 return 0;
5324}
5325
5326static struct file_system_type shmem_fs_type = {
5327 .owner = THIS_MODULE,
5328 .name = "tmpfs",
5329 .init_fs_context = shmem_init_fs_context,
5330#ifdef CONFIG_TMPFS
5331 .parameters = shmem_fs_parameters,
5332#endif
5333 .kill_sb = kill_litter_super,
5334 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5335};
5336
5337#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5338
5339#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5340{ \
5341 .attr = { .name = __stringify(_name), .mode = _mode }, \
5342 .show = _show, \
5343 .store = _store, \
5344}
5345
5346#define TMPFS_ATTR_W(_name, _store) \
5347 static struct kobj_attribute tmpfs_attr_##_name = \
5348 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5349
5350#define TMPFS_ATTR_RW(_name, _show, _store) \
5351 static struct kobj_attribute tmpfs_attr_##_name = \
5352 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5353
5354#define TMPFS_ATTR_RO(_name, _show) \
5355 static struct kobj_attribute tmpfs_attr_##_name = \
5356 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5357
5358#if IS_ENABLED(CONFIG_UNICODE)
5359static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5360 char *buf)
5361{
5362 return sysfs_emit(buf, fmt: "supported\n");
5363}
5364TMPFS_ATTR_RO(casefold, casefold_show);
5365#endif
5366
5367static struct attribute *tmpfs_attributes[] = {
5368#if IS_ENABLED(CONFIG_UNICODE)
5369 &tmpfs_attr_casefold.attr,
5370#endif
5371 NULL
5372};
5373
5374static const struct attribute_group tmpfs_attribute_group = {
5375 .attrs = tmpfs_attributes,
5376 .name = "features"
5377};
5378
5379static struct kobject *tmpfs_kobj;
5380
5381static int __init tmpfs_sysfs_init(void)
5382{
5383 int ret;
5384
5385 tmpfs_kobj = kobject_create_and_add(name: "tmpfs", parent: fs_kobj);
5386 if (!tmpfs_kobj)
5387 return -ENOMEM;
5388
5389 ret = sysfs_create_group(kobj: tmpfs_kobj, grp: &tmpfs_attribute_group);
5390 if (ret)
5391 kobject_put(kobj: tmpfs_kobj);
5392
5393 return ret;
5394}
5395#endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5396
5397void __init shmem_init(void)
5398{
5399 int error;
5400
5401 shmem_init_inodecache();
5402
5403#ifdef CONFIG_TMPFS_QUOTA
5404 register_quota_format(fmt: &shmem_quota_format);
5405#endif
5406
5407 error = register_filesystem(&shmem_fs_type);
5408 if (error) {
5409 pr_err("Could not register tmpfs\n");
5410 goto out2;
5411 }
5412
5413 shm_mnt = kern_mount(&shmem_fs_type);
5414 if (IS_ERR(ptr: shm_mnt)) {
5415 error = PTR_ERR(ptr: shm_mnt);
5416 pr_err("Could not kern_mount tmpfs\n");
5417 goto out1;
5418 }
5419
5420#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5421 error = tmpfs_sysfs_init();
5422 if (error) {
5423 pr_err("Could not init tmpfs sysfs\n");
5424 goto out1;
5425 }
5426#endif
5427
5428#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5429 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5430 SHMEM_SB(sb: shm_mnt->mnt_sb)->huge = shmem_huge;
5431 else
5432 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5433
5434 /*
5435 * Default to setting PMD-sized THP to inherit the global setting and
5436 * disable all other multi-size THPs.
5437 */
5438 if (!shmem_orders_configured)
5439 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5440#endif
5441 return;
5442
5443out1:
5444 unregister_filesystem(&shmem_fs_type);
5445out2:
5446#ifdef CONFIG_TMPFS_QUOTA
5447 unregister_quota_format(fmt: &shmem_quota_format);
5448#endif
5449 shmem_destroy_inodecache();
5450 shm_mnt = ERR_PTR(error);
5451}
5452
5453#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5454static ssize_t shmem_enabled_show(struct kobject *kobj,
5455 struct kobj_attribute *attr, char *buf)
5456{
5457 static const int values[] = {
5458 SHMEM_HUGE_ALWAYS,
5459 SHMEM_HUGE_WITHIN_SIZE,
5460 SHMEM_HUGE_ADVISE,
5461 SHMEM_HUGE_NEVER,
5462 SHMEM_HUGE_DENY,
5463 SHMEM_HUGE_FORCE,
5464 };
5465 int len = 0;
5466 int i;
5467
5468 for (i = 0; i < ARRAY_SIZE(values); i++) {
5469 len += sysfs_emit_at(buf, at: len,
5470 fmt: shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5471 i ? " " : "", shmem_format_huge(huge: values[i]));
5472 }
5473 len += sysfs_emit_at(buf, at: len, fmt: "\n");
5474
5475 return len;
5476}
5477
5478static ssize_t shmem_enabled_store(struct kobject *kobj,
5479 struct kobj_attribute *attr, const char *buf, size_t count)
5480{
5481 char tmp[16];
5482 int huge, err;
5483
5484 if (count + 1 > sizeof(tmp))
5485 return -EINVAL;
5486 memcpy(tmp, buf, count);
5487 tmp[count] = '\0';
5488 if (count && tmp[count - 1] == '\n')
5489 tmp[count - 1] = '\0';
5490
5491 huge = shmem_parse_huge(str: tmp);
5492 if (huge == -EINVAL)
5493 return huge;
5494
5495 shmem_huge = huge;
5496 if (shmem_huge > SHMEM_HUGE_DENY)
5497 SHMEM_SB(sb: shm_mnt->mnt_sb)->huge = shmem_huge;
5498
5499 err = start_stop_khugepaged();
5500 return err ? err : count;
5501}
5502
5503struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5504static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5505
5506static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5507 struct kobj_attribute *attr, char *buf)
5508{
5509 int order = to_thpsize(kobj)->order;
5510 const char *output;
5511
5512 if (test_bit(order, &huge_shmem_orders_always))
5513 output = "[always] inherit within_size advise never";
5514 else if (test_bit(order, &huge_shmem_orders_inherit))
5515 output = "always [inherit] within_size advise never";
5516 else if (test_bit(order, &huge_shmem_orders_within_size))
5517 output = "always inherit [within_size] advise never";
5518 else if (test_bit(order, &huge_shmem_orders_madvise))
5519 output = "always inherit within_size [advise] never";
5520 else
5521 output = "always inherit within_size advise [never]";
5522
5523 return sysfs_emit(buf, fmt: "%s\n", output);
5524}
5525
5526static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5527 struct kobj_attribute *attr,
5528 const char *buf, size_t count)
5529{
5530 int order = to_thpsize(kobj)->order;
5531 ssize_t ret = count;
5532
5533 if (sysfs_streq(s1: buf, s2: "always")) {
5534 spin_lock(lock: &huge_shmem_orders_lock);
5535 clear_bit(nr: order, addr: &huge_shmem_orders_inherit);
5536 clear_bit(nr: order, addr: &huge_shmem_orders_madvise);
5537 clear_bit(nr: order, addr: &huge_shmem_orders_within_size);
5538 set_bit(nr: order, addr: &huge_shmem_orders_always);
5539 spin_unlock(lock: &huge_shmem_orders_lock);
5540 } else if (sysfs_streq(s1: buf, s2: "inherit")) {
5541 /* Do not override huge allocation policy with non-PMD sized mTHP */
5542 if (shmem_huge == SHMEM_HUGE_FORCE &&
5543 order != HPAGE_PMD_ORDER)
5544 return -EINVAL;
5545
5546 spin_lock(lock: &huge_shmem_orders_lock);
5547 clear_bit(nr: order, addr: &huge_shmem_orders_always);
5548 clear_bit(nr: order, addr: &huge_shmem_orders_madvise);
5549 clear_bit(nr: order, addr: &huge_shmem_orders_within_size);
5550 set_bit(nr: order, addr: &huge_shmem_orders_inherit);
5551 spin_unlock(lock: &huge_shmem_orders_lock);
5552 } else if (sysfs_streq(s1: buf, s2: "within_size")) {
5553 spin_lock(lock: &huge_shmem_orders_lock);
5554 clear_bit(nr: order, addr: &huge_shmem_orders_always);
5555 clear_bit(nr: order, addr: &huge_shmem_orders_inherit);
5556 clear_bit(nr: order, addr: &huge_shmem_orders_madvise);
5557 set_bit(nr: order, addr: &huge_shmem_orders_within_size);
5558 spin_unlock(lock: &huge_shmem_orders_lock);
5559 } else if (sysfs_streq(s1: buf, s2: "advise")) {
5560 spin_lock(lock: &huge_shmem_orders_lock);
5561 clear_bit(nr: order, addr: &huge_shmem_orders_always);
5562 clear_bit(nr: order, addr: &huge_shmem_orders_inherit);
5563 clear_bit(nr: order, addr: &huge_shmem_orders_within_size);
5564 set_bit(nr: order, addr: &huge_shmem_orders_madvise);
5565 spin_unlock(lock: &huge_shmem_orders_lock);
5566 } else if (sysfs_streq(s1: buf, s2: "never")) {
5567 spin_lock(lock: &huge_shmem_orders_lock);
5568 clear_bit(nr: order, addr: &huge_shmem_orders_always);
5569 clear_bit(nr: order, addr: &huge_shmem_orders_inherit);
5570 clear_bit(nr: order, addr: &huge_shmem_orders_within_size);
5571 clear_bit(nr: order, addr: &huge_shmem_orders_madvise);
5572 spin_unlock(lock: &huge_shmem_orders_lock);
5573 } else {
5574 ret = -EINVAL;
5575 }
5576
5577 if (ret > 0) {
5578 int err = start_stop_khugepaged();
5579
5580 if (err)
5581 ret = err;
5582 }
5583 return ret;
5584}
5585
5586struct kobj_attribute thpsize_shmem_enabled_attr =
5587 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5588#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5589
5590#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5591
5592static int __init setup_transparent_hugepage_shmem(char *str)
5593{
5594 int huge;
5595
5596 huge = shmem_parse_huge(str);
5597 if (huge == -EINVAL) {
5598 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5599 return huge;
5600 }
5601
5602 shmem_huge = huge;
5603 return 1;
5604}
5605__setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5606
5607static int __init setup_transparent_hugepage_tmpfs(char *str)
5608{
5609 int huge;
5610
5611 huge = shmem_parse_huge(str);
5612 if (huge < 0) {
5613 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5614 return huge;
5615 }
5616
5617 tmpfs_huge = huge;
5618 return 1;
5619}
5620__setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5621
5622static char str_dup[PAGE_SIZE] __initdata;
5623static int __init setup_thp_shmem(char *str)
5624{
5625 char *token, *range, *policy, *subtoken;
5626 unsigned long always, inherit, madvise, within_size;
5627 char *start_size, *end_size;
5628 int start, end, nr;
5629 char *p;
5630
5631 if (!str || strlen(str) + 1 > PAGE_SIZE)
5632 goto err;
5633 strscpy(str_dup, str);
5634
5635 always = huge_shmem_orders_always;
5636 inherit = huge_shmem_orders_inherit;
5637 madvise = huge_shmem_orders_madvise;
5638 within_size = huge_shmem_orders_within_size;
5639 p = str_dup;
5640 while ((token = strsep(&p, ";")) != NULL) {
5641 range = strsep(&token, ":");
5642 policy = token;
5643
5644 if (!policy)
5645 goto err;
5646
5647 while ((subtoken = strsep(&range, ",")) != NULL) {
5648 if (strchr(subtoken, '-')) {
5649 start_size = strsep(&subtoken, "-");
5650 end_size = subtoken;
5651
5652 start = get_order_from_str(size_str: start_size,
5653 THP_ORDERS_ALL_FILE_DEFAULT);
5654 end = get_order_from_str(size_str: end_size,
5655 THP_ORDERS_ALL_FILE_DEFAULT);
5656 } else {
5657 start_size = end_size = subtoken;
5658 start = end = get_order_from_str(size_str: subtoken,
5659 THP_ORDERS_ALL_FILE_DEFAULT);
5660 }
5661
5662 if (start < 0) {
5663 pr_err("invalid size %s in thp_shmem boot parameter\n",
5664 start_size);
5665 goto err;
5666 }
5667
5668 if (end < 0) {
5669 pr_err("invalid size %s in thp_shmem boot parameter\n",
5670 end_size);
5671 goto err;
5672 }
5673
5674 if (start > end)
5675 goto err;
5676
5677 nr = end - start + 1;
5678 if (!strcmp(policy, "always")) {
5679 bitmap_set(map: &always, start, nbits: nr);
5680 bitmap_clear(map: &inherit, start, nbits: nr);
5681 bitmap_clear(map: &madvise, start, nbits: nr);
5682 bitmap_clear(map: &within_size, start, nbits: nr);
5683 } else if (!strcmp(policy, "advise")) {
5684 bitmap_set(map: &madvise, start, nbits: nr);
5685 bitmap_clear(map: &inherit, start, nbits: nr);
5686 bitmap_clear(map: &always, start, nbits: nr);
5687 bitmap_clear(map: &within_size, start, nbits: nr);
5688 } else if (!strcmp(policy, "inherit")) {
5689 bitmap_set(map: &inherit, start, nbits: nr);
5690 bitmap_clear(map: &madvise, start, nbits: nr);
5691 bitmap_clear(map: &always, start, nbits: nr);
5692 bitmap_clear(map: &within_size, start, nbits: nr);
5693 } else if (!strcmp(policy, "within_size")) {
5694 bitmap_set(map: &within_size, start, nbits: nr);
5695 bitmap_clear(map: &inherit, start, nbits: nr);
5696 bitmap_clear(map: &madvise, start, nbits: nr);
5697 bitmap_clear(map: &always, start, nbits: nr);
5698 } else if (!strcmp(policy, "never")) {
5699 bitmap_clear(map: &inherit, start, nbits: nr);
5700 bitmap_clear(map: &madvise, start, nbits: nr);
5701 bitmap_clear(map: &always, start, nbits: nr);
5702 bitmap_clear(map: &within_size, start, nbits: nr);
5703 } else {
5704 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5705 goto err;
5706 }
5707 }
5708 }
5709
5710 huge_shmem_orders_always = always;
5711 huge_shmem_orders_madvise = madvise;
5712 huge_shmem_orders_inherit = inherit;
5713 huge_shmem_orders_within_size = within_size;
5714 shmem_orders_configured = true;
5715 return 1;
5716
5717err:
5718 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5719 return 0;
5720}
5721__setup("thp_shmem=", setup_thp_shmem);
5722
5723#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5724
5725#else /* !CONFIG_SHMEM */
5726
5727/*
5728 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5729 *
5730 * This is intended for small system where the benefits of the full
5731 * shmem code (swap-backed and resource-limited) are outweighed by
5732 * their complexity. On systems without swap this code should be
5733 * effectively equivalent, but much lighter weight.
5734 */
5735
5736static struct file_system_type shmem_fs_type = {
5737 .name = "tmpfs",
5738 .init_fs_context = ramfs_init_fs_context,
5739 .parameters = ramfs_fs_parameters,
5740 .kill_sb = ramfs_kill_sb,
5741 .fs_flags = FS_USERNS_MOUNT,
5742};
5743
5744void __init shmem_init(void)
5745{
5746 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5747
5748 shm_mnt = kern_mount(&shmem_fs_type);
5749 BUG_ON(IS_ERR(shm_mnt));
5750}
5751
5752int shmem_unuse(unsigned int type)
5753{
5754 return 0;
5755}
5756
5757int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5758{
5759 return 0;
5760}
5761
5762void shmem_unlock_mapping(struct address_space *mapping)
5763{
5764}
5765
5766#ifdef CONFIG_MMU
5767unsigned long shmem_get_unmapped_area(struct file *file,
5768 unsigned long addr, unsigned long len,
5769 unsigned long pgoff, unsigned long flags)
5770{
5771 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5772}
5773#endif
5774
5775void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5776{
5777 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5778}
5779EXPORT_SYMBOL_GPL(shmem_truncate_range);
5780
5781#define shmem_vm_ops generic_file_vm_ops
5782#define shmem_anon_vm_ops generic_file_vm_ops
5783#define shmem_file_operations ramfs_file_operations
5784#define shmem_acct_size(flags, size) 0
5785#define shmem_unacct_size(flags, size) do {} while (0)
5786
5787static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5788 struct super_block *sb, struct inode *dir,
5789 umode_t mode, dev_t dev, unsigned long flags)
5790{
5791 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5792 return inode ? inode : ERR_PTR(-ENOSPC);
5793}
5794
5795#endif /* CONFIG_SHMEM */
5796
5797/* common code */
5798
5799static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5800 loff_t size, unsigned long flags, unsigned int i_flags)
5801{
5802 struct inode *inode;
5803 struct file *res;
5804
5805 if (IS_ERR(ptr: mnt))
5806 return ERR_CAST(ptr: mnt);
5807
5808 if (size < 0 || size > MAX_LFS_FILESIZE)
5809 return ERR_PTR(error: -EINVAL);
5810
5811 if (is_idmapped_mnt(mnt))
5812 return ERR_PTR(error: -EINVAL);
5813
5814 if (shmem_acct_size(flags, size))
5815 return ERR_PTR(error: -ENOMEM);
5816
5817 inode = shmem_get_inode(idmap: &nop_mnt_idmap, sb: mnt->mnt_sb, NULL,
5818 S_IFREG | S_IRWXUGO, dev: 0, flags);
5819 if (IS_ERR(ptr: inode)) {
5820 shmem_unacct_size(flags, size);
5821 return ERR_CAST(ptr: inode);
5822 }
5823 inode->i_flags |= i_flags;
5824 inode->i_size = size;
5825 clear_nlink(inode); /* It is unlinked */
5826 res = ERR_PTR(error: ramfs_nommu_expand_for_mapping(inode, newsize: size));
5827 if (!IS_ERR(ptr: res))
5828 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5829 &shmem_file_operations);
5830 if (IS_ERR(ptr: res))
5831 iput(inode);
5832 return res;
5833}
5834
5835/**
5836 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5837 * kernel internal. There will be NO LSM permission checks against the
5838 * underlying inode. So users of this interface must do LSM checks at a
5839 * higher layer. The users are the big_key and shm implementations. LSM
5840 * checks are provided at the key or shm level rather than the inode.
5841 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5842 * @size: size to be set for the file
5843 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5844 */
5845struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5846{
5847 return __shmem_file_setup(mnt: shm_mnt, name, size, flags, S_PRIVATE);
5848}
5849EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5850
5851/**
5852 * shmem_file_setup - get an unlinked file living in tmpfs
5853 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5854 * @size: size to be set for the file
5855 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5856 */
5857struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5858{
5859 return __shmem_file_setup(mnt: shm_mnt, name, size, flags, i_flags: 0);
5860}
5861EXPORT_SYMBOL_GPL(shmem_file_setup);
5862
5863/**
5864 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5865 * @mnt: the tmpfs mount where the file will be created
5866 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5867 * @size: size to be set for the file
5868 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5869 */
5870struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5871 loff_t size, unsigned long flags)
5872{
5873 return __shmem_file_setup(mnt, name, size, flags, i_flags: 0);
5874}
5875EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5876
5877/**
5878 * shmem_zero_setup - setup a shared anonymous mapping
5879 * @vma: the vma to be mmapped is prepared by do_mmap
5880 */
5881int shmem_zero_setup(struct vm_area_struct *vma)
5882{
5883 struct file *file;
5884 loff_t size = vma->vm_end - vma->vm_start;
5885
5886 /*
5887 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5888 * between XFS directory reading and selinux: since this file is only
5889 * accessible to the user through its mapping, use S_PRIVATE flag to
5890 * bypass file security, in the same way as shmem_kernel_file_setup().
5891 */
5892 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5893 if (IS_ERR(ptr: file))
5894 return PTR_ERR(ptr: file);
5895
5896 if (vma->vm_file)
5897 fput(vma->vm_file);
5898 vma->vm_file = file;
5899 vma->vm_ops = &shmem_anon_vm_ops;
5900
5901 return 0;
5902}
5903
5904/**
5905 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5906 * @mapping: the folio's address_space
5907 * @index: the folio index
5908 * @gfp: the page allocator flags to use if allocating
5909 *
5910 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5911 * with any new page allocations done using the specified allocation flags.
5912 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5913 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5914 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5915 *
5916 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5917 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5918 */
5919struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5920 pgoff_t index, gfp_t gfp)
5921{
5922#ifdef CONFIG_SHMEM
5923 struct inode *inode = mapping->host;
5924 struct folio *folio;
5925 int error;
5926
5927 error = shmem_get_folio_gfp(inode, index, write_end: 0, foliop: &folio, sgp: SGP_CACHE,
5928 gfp, NULL, NULL);
5929 if (error)
5930 return ERR_PTR(error);
5931
5932 folio_unlock(folio);
5933 return folio;
5934#else
5935 /*
5936 * The tiny !SHMEM case uses ramfs without swap
5937 */
5938 return mapping_read_folio_gfp(mapping, index, gfp);
5939#endif
5940}
5941EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5942
5943struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5944 pgoff_t index, gfp_t gfp)
5945{
5946 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5947 struct page *page;
5948
5949 if (IS_ERR(ptr: folio))
5950 return &folio->page;
5951
5952 page = folio_file_page(folio, index);
5953 if (PageHWPoison(page)) {
5954 folio_put(folio);
5955 return ERR_PTR(error: -EIO);
5956 }
5957
5958 return page;
5959}
5960EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5961

source code of linux/mm/shmem.c