| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 4 | * operating system. INET is implemented using the BSD Socket |
| 5 | * interface as the means of communication with the user level. |
| 6 | * |
| 7 | * Implementation of the Transmission Control Protocol(TCP). |
| 8 | * |
| 9 | * Authors: Ross Biro |
| 10 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 11 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| 12 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| 13 | * Florian La Roche, <flla@stud.uni-sb.de> |
| 14 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| 15 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| 16 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| 17 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
| 18 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 19 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 20 | * |
| 21 | * Fixes: |
| 22 | * Alan Cox : Numerous verify_area() calls |
| 23 | * Alan Cox : Set the ACK bit on a reset |
| 24 | * Alan Cox : Stopped it crashing if it closed while |
| 25 | * sk->inuse=1 and was trying to connect |
| 26 | * (tcp_err()). |
| 27 | * Alan Cox : All icmp error handling was broken |
| 28 | * pointers passed where wrong and the |
| 29 | * socket was looked up backwards. Nobody |
| 30 | * tested any icmp error code obviously. |
| 31 | * Alan Cox : tcp_err() now handled properly. It |
| 32 | * wakes people on errors. poll |
| 33 | * behaves and the icmp error race |
| 34 | * has gone by moving it into sock.c |
| 35 | * Alan Cox : tcp_send_reset() fixed to work for |
| 36 | * everything not just packets for |
| 37 | * unknown sockets. |
| 38 | * Alan Cox : tcp option processing. |
| 39 | * Alan Cox : Reset tweaked (still not 100%) [Had |
| 40 | * syn rule wrong] |
| 41 | * Herp Rosmanith : More reset fixes |
| 42 | * Alan Cox : No longer acks invalid rst frames. |
| 43 | * Acking any kind of RST is right out. |
| 44 | * Alan Cox : Sets an ignore me flag on an rst |
| 45 | * receive otherwise odd bits of prattle |
| 46 | * escape still |
| 47 | * Alan Cox : Fixed another acking RST frame bug. |
| 48 | * Should stop LAN workplace lockups. |
| 49 | * Alan Cox : Some tidyups using the new skb list |
| 50 | * facilities |
| 51 | * Alan Cox : sk->keepopen now seems to work |
| 52 | * Alan Cox : Pulls options out correctly on accepts |
| 53 | * Alan Cox : Fixed assorted sk->rqueue->next errors |
| 54 | * Alan Cox : PSH doesn't end a TCP read. Switched a |
| 55 | * bit to skb ops. |
| 56 | * Alan Cox : Tidied tcp_data to avoid a potential |
| 57 | * nasty. |
| 58 | * Alan Cox : Added some better commenting, as the |
| 59 | * tcp is hard to follow |
| 60 | * Alan Cox : Removed incorrect check for 20 * psh |
| 61 | * Michael O'Reilly : ack < copied bug fix. |
| 62 | * Johannes Stille : Misc tcp fixes (not all in yet). |
| 63 | * Alan Cox : FIN with no memory -> CRASH |
| 64 | * Alan Cox : Added socket option proto entries. |
| 65 | * Also added awareness of them to accept. |
| 66 | * Alan Cox : Added TCP options (SOL_TCP) |
| 67 | * Alan Cox : Switched wakeup calls to callbacks, |
| 68 | * so the kernel can layer network |
| 69 | * sockets. |
| 70 | * Alan Cox : Use ip_tos/ip_ttl settings. |
| 71 | * Alan Cox : Handle FIN (more) properly (we hope). |
| 72 | * Alan Cox : RST frames sent on unsynchronised |
| 73 | * state ack error. |
| 74 | * Alan Cox : Put in missing check for SYN bit. |
| 75 | * Alan Cox : Added tcp_select_window() aka NET2E |
| 76 | * window non shrink trick. |
| 77 | * Alan Cox : Added a couple of small NET2E timer |
| 78 | * fixes |
| 79 | * Charles Hedrick : TCP fixes |
| 80 | * Toomas Tamm : TCP window fixes |
| 81 | * Alan Cox : Small URG fix to rlogin ^C ack fight |
| 82 | * Charles Hedrick : Rewrote most of it to actually work |
| 83 | * Linus : Rewrote tcp_read() and URG handling |
| 84 | * completely |
| 85 | * Gerhard Koerting: Fixed some missing timer handling |
| 86 | * Matthew Dillon : Reworked TCP machine states as per RFC |
| 87 | * Gerhard Koerting: PC/TCP workarounds |
| 88 | * Adam Caldwell : Assorted timer/timing errors |
| 89 | * Matthew Dillon : Fixed another RST bug |
| 90 | * Alan Cox : Move to kernel side addressing changes. |
| 91 | * Alan Cox : Beginning work on TCP fastpathing |
| 92 | * (not yet usable) |
| 93 | * Arnt Gulbrandsen: Turbocharged tcp_check() routine. |
| 94 | * Alan Cox : TCP fast path debugging |
| 95 | * Alan Cox : Window clamping |
| 96 | * Michael Riepe : Bug in tcp_check() |
| 97 | * Matt Dillon : More TCP improvements and RST bug fixes |
| 98 | * Matt Dillon : Yet more small nasties remove from the |
| 99 | * TCP code (Be very nice to this man if |
| 100 | * tcp finally works 100%) 8) |
| 101 | * Alan Cox : BSD accept semantics. |
| 102 | * Alan Cox : Reset on closedown bug. |
| 103 | * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). |
| 104 | * Michael Pall : Handle poll() after URG properly in |
| 105 | * all cases. |
| 106 | * Michael Pall : Undo the last fix in tcp_read_urg() |
| 107 | * (multi URG PUSH broke rlogin). |
| 108 | * Michael Pall : Fix the multi URG PUSH problem in |
| 109 | * tcp_readable(), poll() after URG |
| 110 | * works now. |
| 111 | * Michael Pall : recv(...,MSG_OOB) never blocks in the |
| 112 | * BSD api. |
| 113 | * Alan Cox : Changed the semantics of sk->socket to |
| 114 | * fix a race and a signal problem with |
| 115 | * accept() and async I/O. |
| 116 | * Alan Cox : Relaxed the rules on tcp_sendto(). |
| 117 | * Yury Shevchuk : Really fixed accept() blocking problem. |
| 118 | * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for |
| 119 | * clients/servers which listen in on |
| 120 | * fixed ports. |
| 121 | * Alan Cox : Cleaned the above up and shrank it to |
| 122 | * a sensible code size. |
| 123 | * Alan Cox : Self connect lockup fix. |
| 124 | * Alan Cox : No connect to multicast. |
| 125 | * Ross Biro : Close unaccepted children on master |
| 126 | * socket close. |
| 127 | * Alan Cox : Reset tracing code. |
| 128 | * Alan Cox : Spurious resets on shutdown. |
| 129 | * Alan Cox : Giant 15 minute/60 second timer error |
| 130 | * Alan Cox : Small whoops in polling before an |
| 131 | * accept. |
| 132 | * Alan Cox : Kept the state trace facility since |
| 133 | * it's handy for debugging. |
| 134 | * Alan Cox : More reset handler fixes. |
| 135 | * Alan Cox : Started rewriting the code based on |
| 136 | * the RFC's for other useful protocol |
| 137 | * references see: Comer, KA9Q NOS, and |
| 138 | * for a reference on the difference |
| 139 | * between specifications and how BSD |
| 140 | * works see the 4.4lite source. |
| 141 | * A.N.Kuznetsov : Don't time wait on completion of tidy |
| 142 | * close. |
| 143 | * Linus Torvalds : Fin/Shutdown & copied_seq changes. |
| 144 | * Linus Torvalds : Fixed BSD port reuse to work first syn |
| 145 | * Alan Cox : Reimplemented timers as per the RFC |
| 146 | * and using multiple timers for sanity. |
| 147 | * Alan Cox : Small bug fixes, and a lot of new |
| 148 | * comments. |
| 149 | * Alan Cox : Fixed dual reader crash by locking |
| 150 | * the buffers (much like datagram.c) |
| 151 | * Alan Cox : Fixed stuck sockets in probe. A probe |
| 152 | * now gets fed up of retrying without |
| 153 | * (even a no space) answer. |
| 154 | * Alan Cox : Extracted closing code better |
| 155 | * Alan Cox : Fixed the closing state machine to |
| 156 | * resemble the RFC. |
| 157 | * Alan Cox : More 'per spec' fixes. |
| 158 | * Jorge Cwik : Even faster checksumming. |
| 159 | * Alan Cox : tcp_data() doesn't ack illegal PSH |
| 160 | * only frames. At least one pc tcp stack |
| 161 | * generates them. |
| 162 | * Alan Cox : Cache last socket. |
| 163 | * Alan Cox : Per route irtt. |
| 164 | * Matt Day : poll()->select() match BSD precisely on error |
| 165 | * Alan Cox : New buffers |
| 166 | * Marc Tamsky : Various sk->prot->retransmits and |
| 167 | * sk->retransmits misupdating fixed. |
| 168 | * Fixed tcp_write_timeout: stuck close, |
| 169 | * and TCP syn retries gets used now. |
| 170 | * Mark Yarvis : In tcp_read_wakeup(), don't send an |
| 171 | * ack if state is TCP_CLOSED. |
| 172 | * Alan Cox : Look up device on a retransmit - routes may |
| 173 | * change. Doesn't yet cope with MSS shrink right |
| 174 | * but it's a start! |
| 175 | * Marc Tamsky : Closing in closing fixes. |
| 176 | * Mike Shaver : RFC1122 verifications. |
| 177 | * Alan Cox : rcv_saddr errors. |
| 178 | * Alan Cox : Block double connect(). |
| 179 | * Alan Cox : Small hooks for enSKIP. |
| 180 | * Alexey Kuznetsov: Path MTU discovery. |
| 181 | * Alan Cox : Support soft errors. |
| 182 | * Alan Cox : Fix MTU discovery pathological case |
| 183 | * when the remote claims no mtu! |
| 184 | * Marc Tamsky : TCP_CLOSE fix. |
| 185 | * Colin (G3TNE) : Send a reset on syn ack replies in |
| 186 | * window but wrong (fixes NT lpd problems) |
| 187 | * Pedro Roque : Better TCP window handling, delayed ack. |
| 188 | * Joerg Reuter : No modification of locked buffers in |
| 189 | * tcp_do_retransmit() |
| 190 | * Eric Schenk : Changed receiver side silly window |
| 191 | * avoidance algorithm to BSD style |
| 192 | * algorithm. This doubles throughput |
| 193 | * against machines running Solaris, |
| 194 | * and seems to result in general |
| 195 | * improvement. |
| 196 | * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD |
| 197 | * Willy Konynenberg : Transparent proxying support. |
| 198 | * Mike McLagan : Routing by source |
| 199 | * Keith Owens : Do proper merging with partial SKB's in |
| 200 | * tcp_do_sendmsg to avoid burstiness. |
| 201 | * Eric Schenk : Fix fast close down bug with |
| 202 | * shutdown() followed by close(). |
| 203 | * Andi Kleen : Make poll agree with SIGIO |
| 204 | * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and |
| 205 | * lingertime == 0 (RFC 793 ABORT Call) |
| 206 | * Hirokazu Takahashi : Use copy_from_user() instead of |
| 207 | * csum_and_copy_from_user() if possible. |
| 208 | * |
| 209 | * Description of States: |
| 210 | * |
| 211 | * TCP_SYN_SENT sent a connection request, waiting for ack |
| 212 | * |
| 213 | * TCP_SYN_RECV received a connection request, sent ack, |
| 214 | * waiting for final ack in three-way handshake. |
| 215 | * |
| 216 | * TCP_ESTABLISHED connection established |
| 217 | * |
| 218 | * TCP_FIN_WAIT1 our side has shutdown, waiting to complete |
| 219 | * transmission of remaining buffered data |
| 220 | * |
| 221 | * TCP_FIN_WAIT2 all buffered data sent, waiting for remote |
| 222 | * to shutdown |
| 223 | * |
| 224 | * TCP_CLOSING both sides have shutdown but we still have |
| 225 | * data we have to finish sending |
| 226 | * |
| 227 | * TCP_TIME_WAIT timeout to catch resent junk before entering |
| 228 | * closed, can only be entered from FIN_WAIT2 |
| 229 | * or CLOSING. Required because the other end |
| 230 | * may not have gotten our last ACK causing it |
| 231 | * to retransmit the data packet (which we ignore) |
| 232 | * |
| 233 | * TCP_CLOSE_WAIT remote side has shutdown and is waiting for |
| 234 | * us to finish writing our data and to shutdown |
| 235 | * (we have to close() to move on to LAST_ACK) |
| 236 | * |
| 237 | * TCP_LAST_ACK out side has shutdown after remote has |
| 238 | * shutdown. There may still be data in our |
| 239 | * buffer that we have to finish sending |
| 240 | * |
| 241 | * TCP_CLOSE socket is finished |
| 242 | */ |
| 243 | |
| 244 | #define pr_fmt(fmt) "TCP: " fmt |
| 245 | |
| 246 | #include <crypto/hash.h> |
| 247 | #include <linux/kernel.h> |
| 248 | #include <linux/module.h> |
| 249 | #include <linux/types.h> |
| 250 | #include <linux/fcntl.h> |
| 251 | #include <linux/poll.h> |
| 252 | #include <linux/inet_diag.h> |
| 253 | #include <linux/init.h> |
| 254 | #include <linux/fs.h> |
| 255 | #include <linux/skbuff.h> |
| 256 | #include <linux/scatterlist.h> |
| 257 | #include <linux/splice.h> |
| 258 | #include <linux/net.h> |
| 259 | #include <linux/socket.h> |
| 260 | #include <linux/random.h> |
| 261 | #include <linux/memblock.h> |
| 262 | #include <linux/highmem.h> |
| 263 | #include <linux/cache.h> |
| 264 | #include <linux/err.h> |
| 265 | #include <linux/time.h> |
| 266 | #include <linux/slab.h> |
| 267 | #include <linux/errqueue.h> |
| 268 | #include <linux/static_key.h> |
| 269 | #include <linux/btf.h> |
| 270 | |
| 271 | #include <net/icmp.h> |
| 272 | #include <net/inet_common.h> |
| 273 | #include <net/tcp.h> |
| 274 | #include <net/mptcp.h> |
| 275 | #include <net/proto_memory.h> |
| 276 | #include <net/xfrm.h> |
| 277 | #include <net/ip.h> |
| 278 | #include <net/sock.h> |
| 279 | #include <net/rstreason.h> |
| 280 | |
| 281 | #include <linux/uaccess.h> |
| 282 | #include <asm/ioctls.h> |
| 283 | #include <net/busy_poll.h> |
| 284 | #include <net/hotdata.h> |
| 285 | #include <trace/events/tcp.h> |
| 286 | #include <net/rps.h> |
| 287 | |
| 288 | #include "../core/devmem.h" |
| 289 | |
| 290 | /* Track pending CMSGs. */ |
| 291 | enum { |
| 292 | TCP_CMSG_INQ = 1, |
| 293 | TCP_CMSG_TS = 2 |
| 294 | }; |
| 295 | |
| 296 | DEFINE_PER_CPU(unsigned int, tcp_orphan_count); |
| 297 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); |
| 298 | |
| 299 | DEFINE_PER_CPU(u32, tcp_tw_isn); |
| 300 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); |
| 301 | |
| 302 | long sysctl_tcp_mem[3] __read_mostly; |
| 303 | EXPORT_IPV6_MOD(sysctl_tcp_mem); |
| 304 | |
| 305 | atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ |
| 306 | EXPORT_IPV6_MOD(tcp_memory_allocated); |
| 307 | DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); |
| 308 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); |
| 309 | |
| 310 | #if IS_ENABLED(CONFIG_SMC) |
| 311 | DEFINE_STATIC_KEY_FALSE(tcp_have_smc); |
| 312 | EXPORT_SYMBOL(tcp_have_smc); |
| 313 | #endif |
| 314 | |
| 315 | /* |
| 316 | * Current number of TCP sockets. |
| 317 | */ |
| 318 | struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; |
| 319 | EXPORT_IPV6_MOD(tcp_sockets_allocated); |
| 320 | |
| 321 | /* |
| 322 | * TCP splice context |
| 323 | */ |
| 324 | struct tcp_splice_state { |
| 325 | struct pipe_inode_info *pipe; |
| 326 | size_t len; |
| 327 | unsigned int flags; |
| 328 | }; |
| 329 | |
| 330 | /* |
| 331 | * Pressure flag: try to collapse. |
| 332 | * Technical note: it is used by multiple contexts non atomically. |
| 333 | * All the __sk_mem_schedule() is of this nature: accounting |
| 334 | * is strict, actions are advisory and have some latency. |
| 335 | */ |
| 336 | unsigned long tcp_memory_pressure __read_mostly; |
| 337 | EXPORT_SYMBOL_GPL(tcp_memory_pressure); |
| 338 | |
| 339 | void tcp_enter_memory_pressure(struct sock *sk) |
| 340 | { |
| 341 | unsigned long val; |
| 342 | |
| 343 | if (READ_ONCE(tcp_memory_pressure)) |
| 344 | return; |
| 345 | val = jiffies; |
| 346 | |
| 347 | if (!val) |
| 348 | val--; |
| 349 | if (!cmpxchg(&tcp_memory_pressure, 0, val)) |
| 350 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); |
| 351 | } |
| 352 | EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); |
| 353 | |
| 354 | void tcp_leave_memory_pressure(struct sock *sk) |
| 355 | { |
| 356 | unsigned long val; |
| 357 | |
| 358 | if (!READ_ONCE(tcp_memory_pressure)) |
| 359 | return; |
| 360 | val = xchg(&tcp_memory_pressure, 0); |
| 361 | if (val) |
| 362 | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, |
| 363 | jiffies_to_msecs(jiffies - val)); |
| 364 | } |
| 365 | EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); |
| 366 | |
| 367 | /* Convert seconds to retransmits based on initial and max timeout */ |
| 368 | static u8 secs_to_retrans(int seconds, int timeout, int rto_max) |
| 369 | { |
| 370 | u8 res = 0; |
| 371 | |
| 372 | if (seconds > 0) { |
| 373 | int period = timeout; |
| 374 | |
| 375 | res = 1; |
| 376 | while (seconds > period && res < 255) { |
| 377 | res++; |
| 378 | timeout <<= 1; |
| 379 | if (timeout > rto_max) |
| 380 | timeout = rto_max; |
| 381 | period += timeout; |
| 382 | } |
| 383 | } |
| 384 | return res; |
| 385 | } |
| 386 | |
| 387 | /* Convert retransmits to seconds based on initial and max timeout */ |
| 388 | static int retrans_to_secs(u8 retrans, int timeout, int rto_max) |
| 389 | { |
| 390 | int period = 0; |
| 391 | |
| 392 | if (retrans > 0) { |
| 393 | period = timeout; |
| 394 | while (--retrans) { |
| 395 | timeout <<= 1; |
| 396 | if (timeout > rto_max) |
| 397 | timeout = rto_max; |
| 398 | period += timeout; |
| 399 | } |
| 400 | } |
| 401 | return period; |
| 402 | } |
| 403 | |
| 404 | static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) |
| 405 | { |
| 406 | u32 rate = READ_ONCE(tp->rate_delivered); |
| 407 | u32 intv = READ_ONCE(tp->rate_interval_us); |
| 408 | u64 rate64 = 0; |
| 409 | |
| 410 | if (rate && intv) { |
| 411 | rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; |
| 412 | do_div(rate64, intv); |
| 413 | } |
| 414 | return rate64; |
| 415 | } |
| 416 | |
| 417 | /* Address-family independent initialization for a tcp_sock. |
| 418 | * |
| 419 | * NOTE: A lot of things set to zero explicitly by call to |
| 420 | * sk_alloc() so need not be done here. |
| 421 | */ |
| 422 | void tcp_init_sock(struct sock *sk) |
| 423 | { |
| 424 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 425 | struct tcp_sock *tp = tcp_sk(sk); |
| 426 | int rto_min_us, rto_max_ms; |
| 427 | |
| 428 | tp->out_of_order_queue = RB_ROOT; |
| 429 | sk->tcp_rtx_queue = RB_ROOT; |
| 430 | tcp_init_xmit_timers(sk); |
| 431 | INIT_LIST_HEAD(list: &tp->tsq_node); |
| 432 | INIT_LIST_HEAD(list: &tp->tsorted_sent_queue); |
| 433 | |
| 434 | icsk->icsk_rto = TCP_TIMEOUT_INIT; |
| 435 | |
| 436 | rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); |
| 437 | icsk->icsk_rto_max = msecs_to_jiffies(m: rto_max_ms); |
| 438 | |
| 439 | rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); |
| 440 | icsk->icsk_rto_min = usecs_to_jiffies(u: rto_min_us); |
| 441 | icsk->icsk_delack_max = TCP_DELACK_MAX; |
| 442 | tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); |
| 443 | minmax_reset(m: &tp->rtt_min, tcp_jiffies32, meas: ~0U); |
| 444 | |
| 445 | /* So many TCP implementations out there (incorrectly) count the |
| 446 | * initial SYN frame in their delayed-ACK and congestion control |
| 447 | * algorithms that we must have the following bandaid to talk |
| 448 | * efficiently to them. -DaveM |
| 449 | */ |
| 450 | tcp_snd_cwnd_set(tp, TCP_INIT_CWND); |
| 451 | |
| 452 | /* There's a bubble in the pipe until at least the first ACK. */ |
| 453 | tp->app_limited = ~0U; |
| 454 | tp->rate_app_limited = 1; |
| 455 | |
| 456 | /* See draft-stevens-tcpca-spec-01 for discussion of the |
| 457 | * initialization of these values. |
| 458 | */ |
| 459 | tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
| 460 | tp->snd_cwnd_clamp = ~0; |
| 461 | tp->mss_cache = TCP_MSS_DEFAULT; |
| 462 | |
| 463 | tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); |
| 464 | tcp_assign_congestion_control(sk); |
| 465 | |
| 466 | tp->tsoffset = 0; |
| 467 | tp->rack.reo_wnd_steps = 1; |
| 468 | |
| 469 | sk->sk_write_space = sk_stream_write_space; |
| 470 | sock_set_flag(sk, flag: SOCK_USE_WRITE_QUEUE); |
| 471 | |
| 472 | icsk->icsk_sync_mss = tcp_sync_mss; |
| 473 | |
| 474 | WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); |
| 475 | WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); |
| 476 | tcp_scaling_ratio_init(sk); |
| 477 | |
| 478 | set_bit(nr: SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags); |
| 479 | sk_sockets_allocated_inc(sk); |
| 480 | xa_init_flags(xa: &sk->sk_user_frags, XA_FLAGS_ALLOC1); |
| 481 | } |
| 482 | EXPORT_IPV6_MOD(tcp_init_sock); |
| 483 | |
| 484 | static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) |
| 485 | { |
| 486 | struct sk_buff *skb = tcp_write_queue_tail(sk); |
| 487 | u32 tsflags = sockc->tsflags; |
| 488 | |
| 489 | if (tsflags && skb) { |
| 490 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
| 491 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); |
| 492 | |
| 493 | sock_tx_timestamp(sk, sockc, tx_flags: &shinfo->tx_flags); |
| 494 | if (tsflags & SOF_TIMESTAMPING_TX_ACK) |
| 495 | tcb->txstamp_ack |= TSTAMP_ACK_SK; |
| 496 | if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) |
| 497 | shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; |
| 498 | } |
| 499 | |
| 500 | if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && |
| 501 | SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) |
| 502 | bpf_skops_tx_timestamping(sk, skb, op: BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); |
| 503 | } |
| 504 | |
| 505 | static bool tcp_stream_is_readable(struct sock *sk, int target) |
| 506 | { |
| 507 | if (tcp_epollin_ready(sk, target)) |
| 508 | return true; |
| 509 | return sk_is_readable(sk); |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * Wait for a TCP event. |
| 514 | * |
| 515 | * Note that we don't need to lock the socket, as the upper poll layers |
| 516 | * take care of normal races (between the test and the event) and we don't |
| 517 | * go look at any of the socket buffers directly. |
| 518 | */ |
| 519 | __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) |
| 520 | { |
| 521 | __poll_t mask; |
| 522 | struct sock *sk = sock->sk; |
| 523 | const struct tcp_sock *tp = tcp_sk(sk); |
| 524 | u8 shutdown; |
| 525 | int state; |
| 526 | |
| 527 | sock_poll_wait(filp: file, sock, p: wait); |
| 528 | |
| 529 | state = inet_sk_state_load(sk); |
| 530 | if (state == TCP_LISTEN) |
| 531 | return inet_csk_listen_poll(sk); |
| 532 | |
| 533 | /* Socket is not locked. We are protected from async events |
| 534 | * by poll logic and correct handling of state changes |
| 535 | * made by other threads is impossible in any case. |
| 536 | */ |
| 537 | |
| 538 | mask = 0; |
| 539 | |
| 540 | /* |
| 541 | * EPOLLHUP is certainly not done right. But poll() doesn't |
| 542 | * have a notion of HUP in just one direction, and for a |
| 543 | * socket the read side is more interesting. |
| 544 | * |
| 545 | * Some poll() documentation says that EPOLLHUP is incompatible |
| 546 | * with the EPOLLOUT/POLLWR flags, so somebody should check this |
| 547 | * all. But careful, it tends to be safer to return too many |
| 548 | * bits than too few, and you can easily break real applications |
| 549 | * if you don't tell them that something has hung up! |
| 550 | * |
| 551 | * Check-me. |
| 552 | * |
| 553 | * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and |
| 554 | * our fs/select.c). It means that after we received EOF, |
| 555 | * poll always returns immediately, making impossible poll() on write() |
| 556 | * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP |
| 557 | * if and only if shutdown has been made in both directions. |
| 558 | * Actually, it is interesting to look how Solaris and DUX |
| 559 | * solve this dilemma. I would prefer, if EPOLLHUP were maskable, |
| 560 | * then we could set it on SND_SHUTDOWN. BTW examples given |
| 561 | * in Stevens' books assume exactly this behaviour, it explains |
| 562 | * why EPOLLHUP is incompatible with EPOLLOUT. --ANK |
| 563 | * |
| 564 | * NOTE. Check for TCP_CLOSE is added. The goal is to prevent |
| 565 | * blocking on fresh not-connected or disconnected socket. --ANK |
| 566 | */ |
| 567 | shutdown = READ_ONCE(sk->sk_shutdown); |
| 568 | if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) |
| 569 | mask |= EPOLLHUP; |
| 570 | if (shutdown & RCV_SHUTDOWN) |
| 571 | mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; |
| 572 | |
| 573 | /* Connected or passive Fast Open socket? */ |
| 574 | if (state != TCP_SYN_SENT && |
| 575 | (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { |
| 576 | int target = sock_rcvlowat(sk, waitall: 0, INT_MAX); |
| 577 | u16 urg_data = READ_ONCE(tp->urg_data); |
| 578 | |
| 579 | if (unlikely(urg_data) && |
| 580 | READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && |
| 581 | !sock_flag(sk, flag: SOCK_URGINLINE)) |
| 582 | target++; |
| 583 | |
| 584 | if (tcp_stream_is_readable(sk, target)) |
| 585 | mask |= EPOLLIN | EPOLLRDNORM; |
| 586 | |
| 587 | if (!(shutdown & SEND_SHUTDOWN)) { |
| 588 | if (__sk_stream_is_writeable(sk, wake: 1)) { |
| 589 | mask |= EPOLLOUT | EPOLLWRNORM; |
| 590 | } else { /* send SIGIO later */ |
| 591 | sk_set_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
| 592 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
| 593 | |
| 594 | /* Race breaker. If space is freed after |
| 595 | * wspace test but before the flags are set, |
| 596 | * IO signal will be lost. Memory barrier |
| 597 | * pairs with the input side. |
| 598 | */ |
| 599 | smp_mb__after_atomic(); |
| 600 | if (__sk_stream_is_writeable(sk, wake: 1)) |
| 601 | mask |= EPOLLOUT | EPOLLWRNORM; |
| 602 | } |
| 603 | } else |
| 604 | mask |= EPOLLOUT | EPOLLWRNORM; |
| 605 | |
| 606 | if (urg_data & TCP_URG_VALID) |
| 607 | mask |= EPOLLPRI; |
| 608 | } else if (state == TCP_SYN_SENT && |
| 609 | inet_test_bit(DEFER_CONNECT, sk)) { |
| 610 | /* Active TCP fastopen socket with defer_connect |
| 611 | * Return EPOLLOUT so application can call write() |
| 612 | * in order for kernel to generate SYN+data |
| 613 | */ |
| 614 | mask |= EPOLLOUT | EPOLLWRNORM; |
| 615 | } |
| 616 | /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ |
| 617 | smp_rmb(); |
| 618 | if (READ_ONCE(sk->sk_err) || |
| 619 | !skb_queue_empty_lockless(list: &sk->sk_error_queue)) |
| 620 | mask |= EPOLLERR; |
| 621 | |
| 622 | return mask; |
| 623 | } |
| 624 | EXPORT_SYMBOL(tcp_poll); |
| 625 | |
| 626 | int tcp_ioctl(struct sock *sk, int cmd, int *karg) |
| 627 | { |
| 628 | struct tcp_sock *tp = tcp_sk(sk); |
| 629 | int answ; |
| 630 | bool slow; |
| 631 | |
| 632 | switch (cmd) { |
| 633 | case SIOCINQ: |
| 634 | if (sk->sk_state == TCP_LISTEN) |
| 635 | return -EINVAL; |
| 636 | |
| 637 | slow = lock_sock_fast(sk); |
| 638 | answ = tcp_inq(sk); |
| 639 | unlock_sock_fast(sk, slow); |
| 640 | break; |
| 641 | case SIOCATMARK: |
| 642 | answ = READ_ONCE(tp->urg_data) && |
| 643 | READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); |
| 644 | break; |
| 645 | case SIOCOUTQ: |
| 646 | if (sk->sk_state == TCP_LISTEN) |
| 647 | return -EINVAL; |
| 648 | |
| 649 | if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) |
| 650 | answ = 0; |
| 651 | else |
| 652 | answ = READ_ONCE(tp->write_seq) - tp->snd_una; |
| 653 | break; |
| 654 | case SIOCOUTQNSD: |
| 655 | if (sk->sk_state == TCP_LISTEN) |
| 656 | return -EINVAL; |
| 657 | |
| 658 | if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) |
| 659 | answ = 0; |
| 660 | else |
| 661 | answ = READ_ONCE(tp->write_seq) - |
| 662 | READ_ONCE(tp->snd_nxt); |
| 663 | break; |
| 664 | default: |
| 665 | return -ENOIOCTLCMD; |
| 666 | } |
| 667 | |
| 668 | *karg = answ; |
| 669 | return 0; |
| 670 | } |
| 671 | EXPORT_IPV6_MOD(tcp_ioctl); |
| 672 | |
| 673 | void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) |
| 674 | { |
| 675 | TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; |
| 676 | tp->pushed_seq = tp->write_seq; |
| 677 | } |
| 678 | |
| 679 | static inline bool forced_push(const struct tcp_sock *tp) |
| 680 | { |
| 681 | return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); |
| 682 | } |
| 683 | |
| 684 | void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) |
| 685 | { |
| 686 | struct tcp_sock *tp = tcp_sk(sk); |
| 687 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); |
| 688 | |
| 689 | tcb->seq = tcb->end_seq = tp->write_seq; |
| 690 | tcb->tcp_flags = TCPHDR_ACK; |
| 691 | __skb_header_release(skb); |
| 692 | tcp_add_write_queue_tail(sk, skb); |
| 693 | sk_wmem_queued_add(sk, val: skb->truesize); |
| 694 | sk_mem_charge(sk, size: skb->truesize); |
| 695 | if (tp->nonagle & TCP_NAGLE_PUSH) |
| 696 | tp->nonagle &= ~TCP_NAGLE_PUSH; |
| 697 | |
| 698 | tcp_slow_start_after_idle_check(sk); |
| 699 | } |
| 700 | |
| 701 | static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) |
| 702 | { |
| 703 | if (flags & MSG_OOB) |
| 704 | tp->snd_up = tp->write_seq; |
| 705 | } |
| 706 | |
| 707 | /* If a not yet filled skb is pushed, do not send it if |
| 708 | * we have data packets in Qdisc or NIC queues : |
| 709 | * Because TX completion will happen shortly, it gives a chance |
| 710 | * to coalesce future sendmsg() payload into this skb, without |
| 711 | * need for a timer, and with no latency trade off. |
| 712 | * As packets containing data payload have a bigger truesize |
| 713 | * than pure acks (dataless) packets, the last checks prevent |
| 714 | * autocorking if we only have an ACK in Qdisc/NIC queues, |
| 715 | * or if TX completion was delayed after we processed ACK packet. |
| 716 | */ |
| 717 | static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, |
| 718 | int size_goal) |
| 719 | { |
| 720 | return skb->len < size_goal && |
| 721 | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && |
| 722 | !tcp_rtx_queue_empty(sk) && |
| 723 | refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize && |
| 724 | tcp_skb_can_collapse_to(skb); |
| 725 | } |
| 726 | |
| 727 | void tcp_push(struct sock *sk, int flags, int mss_now, |
| 728 | int nonagle, int size_goal) |
| 729 | { |
| 730 | struct tcp_sock *tp = tcp_sk(sk); |
| 731 | struct sk_buff *skb; |
| 732 | |
| 733 | skb = tcp_write_queue_tail(sk); |
| 734 | if (!skb) |
| 735 | return; |
| 736 | if (!(flags & MSG_MORE) || forced_push(tp)) |
| 737 | tcp_mark_push(tp, skb); |
| 738 | |
| 739 | tcp_mark_urg(tp, flags); |
| 740 | |
| 741 | if (tcp_should_autocork(sk, skb, size_goal)) { |
| 742 | |
| 743 | /* avoid atomic op if TSQ_THROTTLED bit is already set */ |
| 744 | if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { |
| 745 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); |
| 746 | set_bit(nr: TSQ_THROTTLED, addr: &sk->sk_tsq_flags); |
| 747 | smp_mb__after_atomic(); |
| 748 | } |
| 749 | /* It is possible TX completion already happened |
| 750 | * before we set TSQ_THROTTLED. |
| 751 | */ |
| 752 | if (refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize) |
| 753 | return; |
| 754 | } |
| 755 | |
| 756 | if (flags & MSG_MORE) |
| 757 | nonagle = TCP_NAGLE_CORK; |
| 758 | |
| 759 | __tcp_push_pending_frames(sk, cur_mss: mss_now, nonagle); |
| 760 | } |
| 761 | |
| 762 | static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, |
| 763 | unsigned int offset, size_t len) |
| 764 | { |
| 765 | struct tcp_splice_state *tss = rd_desc->arg.data; |
| 766 | int ret; |
| 767 | |
| 768 | ret = skb_splice_bits(skb, sk: skb->sk, offset, pipe: tss->pipe, |
| 769 | min(rd_desc->count, len), flags: tss->flags); |
| 770 | if (ret > 0) |
| 771 | rd_desc->count -= ret; |
| 772 | return ret; |
| 773 | } |
| 774 | |
| 775 | static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) |
| 776 | { |
| 777 | /* Store TCP splice context information in read_descriptor_t. */ |
| 778 | read_descriptor_t rd_desc = { |
| 779 | .arg.data = tss, |
| 780 | .count = tss->len, |
| 781 | }; |
| 782 | |
| 783 | return tcp_read_sock(sk, desc: &rd_desc, recv_actor: tcp_splice_data_recv); |
| 784 | } |
| 785 | |
| 786 | /** |
| 787 | * tcp_splice_read - splice data from TCP socket to a pipe |
| 788 | * @sock: socket to splice from |
| 789 | * @ppos: position (not valid) |
| 790 | * @pipe: pipe to splice to |
| 791 | * @len: number of bytes to splice |
| 792 | * @flags: splice modifier flags |
| 793 | * |
| 794 | * Description: |
| 795 | * Will read pages from given socket and fill them into a pipe. |
| 796 | * |
| 797 | **/ |
| 798 | ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, |
| 799 | struct pipe_inode_info *pipe, size_t len, |
| 800 | unsigned int flags) |
| 801 | { |
| 802 | struct sock *sk = sock->sk; |
| 803 | struct tcp_splice_state tss = { |
| 804 | .pipe = pipe, |
| 805 | .len = len, |
| 806 | .flags = flags, |
| 807 | }; |
| 808 | long timeo; |
| 809 | ssize_t spliced; |
| 810 | int ret; |
| 811 | |
| 812 | sock_rps_record_flow(sk); |
| 813 | /* |
| 814 | * We can't seek on a socket input |
| 815 | */ |
| 816 | if (unlikely(*ppos)) |
| 817 | return -ESPIPE; |
| 818 | |
| 819 | ret = spliced = 0; |
| 820 | |
| 821 | lock_sock(sk); |
| 822 | |
| 823 | timeo = sock_rcvtimeo(sk, noblock: sock->file->f_flags & O_NONBLOCK); |
| 824 | while (tss.len) { |
| 825 | ret = __tcp_splice_read(sk, tss: &tss); |
| 826 | if (ret < 0) |
| 827 | break; |
| 828 | else if (!ret) { |
| 829 | if (spliced) |
| 830 | break; |
| 831 | if (sock_flag(sk, flag: SOCK_DONE)) |
| 832 | break; |
| 833 | if (sk->sk_err) { |
| 834 | ret = sock_error(sk); |
| 835 | break; |
| 836 | } |
| 837 | if (sk->sk_shutdown & RCV_SHUTDOWN) |
| 838 | break; |
| 839 | if (sk->sk_state == TCP_CLOSE) { |
| 840 | /* |
| 841 | * This occurs when user tries to read |
| 842 | * from never connected socket. |
| 843 | */ |
| 844 | ret = -ENOTCONN; |
| 845 | break; |
| 846 | } |
| 847 | if (!timeo) { |
| 848 | ret = -EAGAIN; |
| 849 | break; |
| 850 | } |
| 851 | /* if __tcp_splice_read() got nothing while we have |
| 852 | * an skb in receive queue, we do not want to loop. |
| 853 | * This might happen with URG data. |
| 854 | */ |
| 855 | if (!skb_queue_empty(list: &sk->sk_receive_queue)) |
| 856 | break; |
| 857 | ret = sk_wait_data(sk, timeo: &timeo, NULL); |
| 858 | if (ret < 0) |
| 859 | break; |
| 860 | if (signal_pending(current)) { |
| 861 | ret = sock_intr_errno(timeo); |
| 862 | break; |
| 863 | } |
| 864 | continue; |
| 865 | } |
| 866 | tss.len -= ret; |
| 867 | spliced += ret; |
| 868 | |
| 869 | if (!tss.len || !timeo) |
| 870 | break; |
| 871 | release_sock(sk); |
| 872 | lock_sock(sk); |
| 873 | |
| 874 | if (sk->sk_err || sk->sk_state == TCP_CLOSE || |
| 875 | (sk->sk_shutdown & RCV_SHUTDOWN) || |
| 876 | signal_pending(current)) |
| 877 | break; |
| 878 | } |
| 879 | |
| 880 | release_sock(sk); |
| 881 | |
| 882 | if (spliced) |
| 883 | return spliced; |
| 884 | |
| 885 | return ret; |
| 886 | } |
| 887 | EXPORT_IPV6_MOD(tcp_splice_read); |
| 888 | |
| 889 | struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, |
| 890 | bool force_schedule) |
| 891 | { |
| 892 | struct sk_buff *skb; |
| 893 | |
| 894 | skb = alloc_skb_fclone(MAX_TCP_HEADER, priority: gfp); |
| 895 | if (likely(skb)) { |
| 896 | bool mem_scheduled; |
| 897 | |
| 898 | skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); |
| 899 | if (force_schedule) { |
| 900 | mem_scheduled = true; |
| 901 | sk_forced_mem_schedule(sk, size: skb->truesize); |
| 902 | } else { |
| 903 | mem_scheduled = sk_wmem_schedule(sk, size: skb->truesize); |
| 904 | } |
| 905 | if (likely(mem_scheduled)) { |
| 906 | skb_reserve(skb, MAX_TCP_HEADER); |
| 907 | skb->ip_summed = CHECKSUM_PARTIAL; |
| 908 | INIT_LIST_HEAD(list: &skb->tcp_tsorted_anchor); |
| 909 | return skb; |
| 910 | } |
| 911 | __kfree_skb(skb); |
| 912 | } else { |
| 913 | sk->sk_prot->enter_memory_pressure(sk); |
| 914 | sk_stream_moderate_sndbuf(sk); |
| 915 | } |
| 916 | return NULL; |
| 917 | } |
| 918 | |
| 919 | static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, |
| 920 | int large_allowed) |
| 921 | { |
| 922 | struct tcp_sock *tp = tcp_sk(sk); |
| 923 | u32 new_size_goal, size_goal; |
| 924 | |
| 925 | if (!large_allowed) |
| 926 | return mss_now; |
| 927 | |
| 928 | /* Note : tcp_tso_autosize() will eventually split this later */ |
| 929 | new_size_goal = tcp_bound_to_half_wnd(tp, pktsize: sk->sk_gso_max_size); |
| 930 | |
| 931 | /* We try hard to avoid divides here */ |
| 932 | size_goal = tp->gso_segs * mss_now; |
| 933 | if (unlikely(new_size_goal < size_goal || |
| 934 | new_size_goal >= size_goal + mss_now)) { |
| 935 | tp->gso_segs = min_t(u16, new_size_goal / mss_now, |
| 936 | sk->sk_gso_max_segs); |
| 937 | size_goal = tp->gso_segs * mss_now; |
| 938 | } |
| 939 | |
| 940 | return max(size_goal, mss_now); |
| 941 | } |
| 942 | |
| 943 | int tcp_send_mss(struct sock *sk, int *size_goal, int flags) |
| 944 | { |
| 945 | int mss_now; |
| 946 | |
| 947 | mss_now = tcp_current_mss(sk); |
| 948 | *size_goal = tcp_xmit_size_goal(sk, mss_now, large_allowed: !(flags & MSG_OOB)); |
| 949 | |
| 950 | return mss_now; |
| 951 | } |
| 952 | |
| 953 | /* In some cases, sendmsg() could have added an skb to the write queue, |
| 954 | * but failed adding payload on it. We need to remove it to consume less |
| 955 | * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger |
| 956 | * epoll() users. Another reason is that tcp_write_xmit() does not like |
| 957 | * finding an empty skb in the write queue. |
| 958 | */ |
| 959 | void tcp_remove_empty_skb(struct sock *sk) |
| 960 | { |
| 961 | struct sk_buff *skb = tcp_write_queue_tail(sk); |
| 962 | |
| 963 | if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { |
| 964 | tcp_unlink_write_queue(skb, sk); |
| 965 | if (tcp_write_queue_empty(sk)) |
| 966 | tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY); |
| 967 | tcp_wmem_free_skb(sk, skb); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | /* skb changing from pure zc to mixed, must charge zc */ |
| 972 | static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) |
| 973 | { |
| 974 | if (unlikely(skb_zcopy_pure(skb))) { |
| 975 | u32 = skb->truesize - |
| 976 | SKB_TRUESIZE(skb_end_offset(skb)); |
| 977 | |
| 978 | if (!sk_wmem_schedule(sk, size: extra)) |
| 979 | return -ENOMEM; |
| 980 | |
| 981 | sk_mem_charge(sk, size: extra); |
| 982 | skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; |
| 983 | } |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | |
| 988 | int tcp_wmem_schedule(struct sock *sk, int copy) |
| 989 | { |
| 990 | int left; |
| 991 | |
| 992 | if (likely(sk_wmem_schedule(sk, copy))) |
| 993 | return copy; |
| 994 | |
| 995 | /* We could be in trouble if we have nothing queued. |
| 996 | * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] |
| 997 | * to guarantee some progress. |
| 998 | */ |
| 999 | left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; |
| 1000 | if (left > 0) |
| 1001 | sk_forced_mem_schedule(sk, min(left, copy)); |
| 1002 | return min(copy, sk->sk_forward_alloc); |
| 1003 | } |
| 1004 | |
| 1005 | void tcp_free_fastopen_req(struct tcp_sock *tp) |
| 1006 | { |
| 1007 | if (tp->fastopen_req) { |
| 1008 | kfree(objp: tp->fastopen_req); |
| 1009 | tp->fastopen_req = NULL; |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, |
| 1014 | size_t size, struct ubuf_info *uarg) |
| 1015 | { |
| 1016 | struct tcp_sock *tp = tcp_sk(sk); |
| 1017 | struct inet_sock *inet = inet_sk(sk); |
| 1018 | struct sockaddr *uaddr = msg->msg_name; |
| 1019 | int err, flags; |
| 1020 | |
| 1021 | if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & |
| 1022 | TFO_CLIENT_ENABLE) || |
| 1023 | (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && |
| 1024 | uaddr->sa_family == AF_UNSPEC)) |
| 1025 | return -EOPNOTSUPP; |
| 1026 | if (tp->fastopen_req) |
| 1027 | return -EALREADY; /* Another Fast Open is in progress */ |
| 1028 | |
| 1029 | tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), |
| 1030 | sk->sk_allocation); |
| 1031 | if (unlikely(!tp->fastopen_req)) |
| 1032 | return -ENOBUFS; |
| 1033 | tp->fastopen_req->data = msg; |
| 1034 | tp->fastopen_req->size = size; |
| 1035 | tp->fastopen_req->uarg = uarg; |
| 1036 | |
| 1037 | if (inet_test_bit(DEFER_CONNECT, sk)) { |
| 1038 | err = tcp_connect(sk); |
| 1039 | /* Same failure procedure as in tcp_v4/6_connect */ |
| 1040 | if (err) { |
| 1041 | tcp_set_state(sk, state: TCP_CLOSE); |
| 1042 | inet->inet_dport = 0; |
| 1043 | sk->sk_route_caps = 0; |
| 1044 | } |
| 1045 | } |
| 1046 | flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; |
| 1047 | err = __inet_stream_connect(sock: sk->sk_socket, uaddr, |
| 1048 | addr_len: msg->msg_namelen, flags, is_sendmsg: 1); |
| 1049 | /* fastopen_req could already be freed in __inet_stream_connect |
| 1050 | * if the connection times out or gets rst |
| 1051 | */ |
| 1052 | if (tp->fastopen_req) { |
| 1053 | *copied = tp->fastopen_req->copied; |
| 1054 | tcp_free_fastopen_req(tp); |
| 1055 | inet_clear_bit(DEFER_CONNECT, sk); |
| 1056 | } |
| 1057 | return err; |
| 1058 | } |
| 1059 | |
| 1060 | int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) |
| 1061 | { |
| 1062 | struct net_devmem_dmabuf_binding *binding = NULL; |
| 1063 | struct tcp_sock *tp = tcp_sk(sk); |
| 1064 | struct ubuf_info *uarg = NULL; |
| 1065 | struct sk_buff *skb; |
| 1066 | struct sockcm_cookie sockc; |
| 1067 | int flags, err, copied = 0; |
| 1068 | int mss_now = 0, size_goal, copied_syn = 0; |
| 1069 | int process_backlog = 0; |
| 1070 | int sockc_err = 0; |
| 1071 | int zc = 0; |
| 1072 | long timeo; |
| 1073 | |
| 1074 | flags = msg->msg_flags; |
| 1075 | |
| 1076 | sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; |
| 1077 | if (msg->msg_controllen) { |
| 1078 | sockc_err = sock_cmsg_send(sk, msg, sockc: &sockc); |
| 1079 | /* Don't return error until MSG_FASTOPEN has been processed; |
| 1080 | * that may succeed even if the cmsg is invalid. |
| 1081 | */ |
| 1082 | } |
| 1083 | |
| 1084 | if ((flags & MSG_ZEROCOPY) && size) { |
| 1085 | if (msg->msg_ubuf) { |
| 1086 | uarg = msg->msg_ubuf; |
| 1087 | if (sk->sk_route_caps & NETIF_F_SG) |
| 1088 | zc = MSG_ZEROCOPY; |
| 1089 | } else if (sock_flag(sk, flag: SOCK_ZEROCOPY)) { |
| 1090 | skb = tcp_write_queue_tail(sk); |
| 1091 | uarg = msg_zerocopy_realloc(sk, size, uarg: skb_zcopy(skb), |
| 1092 | devmem: !sockc_err && sockc.dmabuf_id); |
| 1093 | if (!uarg) { |
| 1094 | err = -ENOBUFS; |
| 1095 | goto out_err; |
| 1096 | } |
| 1097 | if (sk->sk_route_caps & NETIF_F_SG) |
| 1098 | zc = MSG_ZEROCOPY; |
| 1099 | else |
| 1100 | uarg_to_msgzc(uarg)->zerocopy = 0; |
| 1101 | |
| 1102 | if (!sockc_err && sockc.dmabuf_id) { |
| 1103 | binding = net_devmem_get_binding(sk, dmabuf_id: sockc.dmabuf_id); |
| 1104 | if (IS_ERR(ptr: binding)) { |
| 1105 | err = PTR_ERR(ptr: binding); |
| 1106 | binding = NULL; |
| 1107 | goto out_err; |
| 1108 | } |
| 1109 | } |
| 1110 | } |
| 1111 | } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { |
| 1112 | if (sk->sk_route_caps & NETIF_F_SG) |
| 1113 | zc = MSG_SPLICE_PAGES; |
| 1114 | } |
| 1115 | |
| 1116 | if (!sockc_err && sockc.dmabuf_id && |
| 1117 | (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, flag: SOCK_ZEROCOPY))) { |
| 1118 | err = -EINVAL; |
| 1119 | goto out_err; |
| 1120 | } |
| 1121 | |
| 1122 | if (unlikely(flags & MSG_FASTOPEN || |
| 1123 | inet_test_bit(DEFER_CONNECT, sk)) && |
| 1124 | !tp->repair) { |
| 1125 | err = tcp_sendmsg_fastopen(sk, msg, copied: &copied_syn, size, uarg); |
| 1126 | if (err == -EINPROGRESS && copied_syn > 0) |
| 1127 | goto out; |
| 1128 | else if (err) |
| 1129 | goto out_err; |
| 1130 | } |
| 1131 | |
| 1132 | timeo = sock_sndtimeo(sk, noblock: flags & MSG_DONTWAIT); |
| 1133 | |
| 1134 | tcp_rate_check_app_limited(sk); /* is sending application-limited? */ |
| 1135 | |
| 1136 | /* Wait for a connection to finish. One exception is TCP Fast Open |
| 1137 | * (passive side) where data is allowed to be sent before a connection |
| 1138 | * is fully established. |
| 1139 | */ |
| 1140 | if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && |
| 1141 | !tcp_passive_fastopen(sk)) { |
| 1142 | err = sk_stream_wait_connect(sk, timeo_p: &timeo); |
| 1143 | if (err != 0) |
| 1144 | goto do_error; |
| 1145 | } |
| 1146 | |
| 1147 | if (unlikely(tp->repair)) { |
| 1148 | if (tp->repair_queue == TCP_RECV_QUEUE) { |
| 1149 | copied = tcp_send_rcvq(sk, msg, size); |
| 1150 | goto out_nopush; |
| 1151 | } |
| 1152 | |
| 1153 | err = -EINVAL; |
| 1154 | if (tp->repair_queue == TCP_NO_QUEUE) |
| 1155 | goto out_err; |
| 1156 | |
| 1157 | /* 'common' sending to sendq */ |
| 1158 | } |
| 1159 | |
| 1160 | if (sockc_err) { |
| 1161 | err = sockc_err; |
| 1162 | goto out_err; |
| 1163 | } |
| 1164 | |
| 1165 | /* This should be in poll */ |
| 1166 | sk_clear_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
| 1167 | |
| 1168 | /* Ok commence sending. */ |
| 1169 | copied = 0; |
| 1170 | |
| 1171 | restart: |
| 1172 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags); |
| 1173 | |
| 1174 | err = -EPIPE; |
| 1175 | if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) |
| 1176 | goto do_error; |
| 1177 | |
| 1178 | while (msg_data_left(msg)) { |
| 1179 | ssize_t copy = 0; |
| 1180 | |
| 1181 | skb = tcp_write_queue_tail(sk); |
| 1182 | if (skb) |
| 1183 | copy = size_goal - skb->len; |
| 1184 | |
| 1185 | trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); |
| 1186 | |
| 1187 | if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { |
| 1188 | bool first_skb; |
| 1189 | |
| 1190 | new_segment: |
| 1191 | if (!sk_stream_memory_free(sk)) |
| 1192 | goto wait_for_space; |
| 1193 | |
| 1194 | if (unlikely(process_backlog >= 16)) { |
| 1195 | process_backlog = 0; |
| 1196 | if (sk_flush_backlog(sk)) |
| 1197 | goto restart; |
| 1198 | } |
| 1199 | first_skb = tcp_rtx_and_write_queues_empty(sk); |
| 1200 | skb = tcp_stream_alloc_skb(sk, gfp: sk->sk_allocation, |
| 1201 | force_schedule: first_skb); |
| 1202 | if (!skb) |
| 1203 | goto wait_for_space; |
| 1204 | |
| 1205 | process_backlog++; |
| 1206 | |
| 1207 | #ifdef CONFIG_SKB_DECRYPTED |
| 1208 | skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); |
| 1209 | #endif |
| 1210 | tcp_skb_entail(sk, skb); |
| 1211 | copy = size_goal; |
| 1212 | |
| 1213 | /* All packets are restored as if they have |
| 1214 | * already been sent. skb_mstamp_ns isn't set to |
| 1215 | * avoid wrong rtt estimation. |
| 1216 | */ |
| 1217 | if (tp->repair) |
| 1218 | TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; |
| 1219 | } |
| 1220 | |
| 1221 | /* Try to append data to the end of skb. */ |
| 1222 | if (copy > msg_data_left(msg)) |
| 1223 | copy = msg_data_left(msg); |
| 1224 | |
| 1225 | if (zc == 0) { |
| 1226 | bool merge = true; |
| 1227 | int i = skb_shinfo(skb)->nr_frags; |
| 1228 | struct page_frag *pfrag = sk_page_frag(sk); |
| 1229 | |
| 1230 | if (!sk_page_frag_refill(sk, pfrag)) |
| 1231 | goto wait_for_space; |
| 1232 | |
| 1233 | if (!skb_can_coalesce(skb, i, page: pfrag->page, |
| 1234 | off: pfrag->offset)) { |
| 1235 | if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { |
| 1236 | tcp_mark_push(tp, skb); |
| 1237 | goto new_segment; |
| 1238 | } |
| 1239 | merge = false; |
| 1240 | } |
| 1241 | |
| 1242 | copy = min_t(int, copy, pfrag->size - pfrag->offset); |
| 1243 | |
| 1244 | if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { |
| 1245 | if (tcp_downgrade_zcopy_pure(sk, skb)) |
| 1246 | goto wait_for_space; |
| 1247 | skb_zcopy_downgrade_managed(skb); |
| 1248 | } |
| 1249 | |
| 1250 | copy = tcp_wmem_schedule(sk, copy); |
| 1251 | if (!copy) |
| 1252 | goto wait_for_space; |
| 1253 | |
| 1254 | err = skb_copy_to_page_nocache(sk, from: &msg->msg_iter, skb, |
| 1255 | page: pfrag->page, |
| 1256 | off: pfrag->offset, |
| 1257 | copy); |
| 1258 | if (err) |
| 1259 | goto do_error; |
| 1260 | |
| 1261 | /* Update the skb. */ |
| 1262 | if (merge) { |
| 1263 | skb_frag_size_add(frag: &skb_shinfo(skb)->frags[i - 1], delta: copy); |
| 1264 | } else { |
| 1265 | skb_fill_page_desc(skb, i, page: pfrag->page, |
| 1266 | off: pfrag->offset, size: copy); |
| 1267 | page_ref_inc(page: pfrag->page); |
| 1268 | } |
| 1269 | pfrag->offset += copy; |
| 1270 | } else if (zc == MSG_ZEROCOPY) { |
| 1271 | /* First append to a fragless skb builds initial |
| 1272 | * pure zerocopy skb |
| 1273 | */ |
| 1274 | if (!skb->len) |
| 1275 | skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; |
| 1276 | |
| 1277 | if (!skb_zcopy_pure(skb)) { |
| 1278 | copy = tcp_wmem_schedule(sk, copy); |
| 1279 | if (!copy) |
| 1280 | goto wait_for_space; |
| 1281 | } |
| 1282 | |
| 1283 | err = skb_zerocopy_iter_stream(sk, skb, msg, len: copy, uarg, |
| 1284 | binding); |
| 1285 | if (err == -EMSGSIZE || err == -EEXIST) { |
| 1286 | tcp_mark_push(tp, skb); |
| 1287 | goto new_segment; |
| 1288 | } |
| 1289 | if (err < 0) |
| 1290 | goto do_error; |
| 1291 | copy = err; |
| 1292 | } else if (zc == MSG_SPLICE_PAGES) { |
| 1293 | /* Splice in data if we can; copy if we can't. */ |
| 1294 | if (tcp_downgrade_zcopy_pure(sk, skb)) |
| 1295 | goto wait_for_space; |
| 1296 | copy = tcp_wmem_schedule(sk, copy); |
| 1297 | if (!copy) |
| 1298 | goto wait_for_space; |
| 1299 | |
| 1300 | err = skb_splice_from_iter(skb, iter: &msg->msg_iter, maxsize: copy, |
| 1301 | gfp: sk->sk_allocation); |
| 1302 | if (err < 0) { |
| 1303 | if (err == -EMSGSIZE) { |
| 1304 | tcp_mark_push(tp, skb); |
| 1305 | goto new_segment; |
| 1306 | } |
| 1307 | goto do_error; |
| 1308 | } |
| 1309 | copy = err; |
| 1310 | |
| 1311 | if (!(flags & MSG_NO_SHARED_FRAGS)) |
| 1312 | skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; |
| 1313 | |
| 1314 | sk_wmem_queued_add(sk, val: copy); |
| 1315 | sk_mem_charge(sk, size: copy); |
| 1316 | } |
| 1317 | |
| 1318 | if (!copied) |
| 1319 | TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; |
| 1320 | |
| 1321 | WRITE_ONCE(tp->write_seq, tp->write_seq + copy); |
| 1322 | TCP_SKB_CB(skb)->end_seq += copy; |
| 1323 | tcp_skb_pcount_set(skb, segs: 0); |
| 1324 | |
| 1325 | copied += copy; |
| 1326 | if (!msg_data_left(msg)) { |
| 1327 | if (unlikely(flags & MSG_EOR)) |
| 1328 | TCP_SKB_CB(skb)->eor = 1; |
| 1329 | goto out; |
| 1330 | } |
| 1331 | |
| 1332 | if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) |
| 1333 | continue; |
| 1334 | |
| 1335 | if (forced_push(tp)) { |
| 1336 | tcp_mark_push(tp, skb); |
| 1337 | __tcp_push_pending_frames(sk, cur_mss: mss_now, TCP_NAGLE_PUSH); |
| 1338 | } else if (skb == tcp_send_head(sk)) |
| 1339 | tcp_push_one(sk, mss_now); |
| 1340 | continue; |
| 1341 | |
| 1342 | wait_for_space: |
| 1343 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
| 1344 | tcp_remove_empty_skb(sk); |
| 1345 | if (copied) |
| 1346 | tcp_push(sk, flags: flags & ~MSG_MORE, mss_now, |
| 1347 | TCP_NAGLE_PUSH, size_goal); |
| 1348 | |
| 1349 | err = sk_stream_wait_memory(sk, timeo_p: &timeo); |
| 1350 | if (err != 0) |
| 1351 | goto do_error; |
| 1352 | |
| 1353 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags); |
| 1354 | } |
| 1355 | |
| 1356 | out: |
| 1357 | if (copied) { |
| 1358 | tcp_tx_timestamp(sk, sockc: &sockc); |
| 1359 | tcp_push(sk, flags, mss_now, nonagle: tp->nonagle, size_goal); |
| 1360 | } |
| 1361 | out_nopush: |
| 1362 | /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ |
| 1363 | if (uarg && !msg->msg_ubuf) |
| 1364 | net_zcopy_put(uarg); |
| 1365 | if (binding) |
| 1366 | net_devmem_dmabuf_binding_put(binding); |
| 1367 | return copied + copied_syn; |
| 1368 | |
| 1369 | do_error: |
| 1370 | tcp_remove_empty_skb(sk); |
| 1371 | |
| 1372 | if (copied + copied_syn) |
| 1373 | goto out; |
| 1374 | out_err: |
| 1375 | /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ |
| 1376 | if (uarg && !msg->msg_ubuf) |
| 1377 | net_zcopy_put_abort(uarg, have_uref: true); |
| 1378 | err = sk_stream_error(sk, flags, err); |
| 1379 | /* make sure we wake any epoll edge trigger waiter */ |
| 1380 | if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { |
| 1381 | sk->sk_write_space(sk); |
| 1382 | tcp_chrono_stop(sk, type: TCP_CHRONO_SNDBUF_LIMITED); |
| 1383 | } |
| 1384 | if (binding) |
| 1385 | net_devmem_dmabuf_binding_put(binding); |
| 1386 | |
| 1387 | return err; |
| 1388 | } |
| 1389 | EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); |
| 1390 | |
| 1391 | int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| 1392 | { |
| 1393 | int ret; |
| 1394 | |
| 1395 | lock_sock(sk); |
| 1396 | ret = tcp_sendmsg_locked(sk, msg, size); |
| 1397 | release_sock(sk); |
| 1398 | |
| 1399 | return ret; |
| 1400 | } |
| 1401 | EXPORT_SYMBOL(tcp_sendmsg); |
| 1402 | |
| 1403 | void tcp_splice_eof(struct socket *sock) |
| 1404 | { |
| 1405 | struct sock *sk = sock->sk; |
| 1406 | struct tcp_sock *tp = tcp_sk(sk); |
| 1407 | int mss_now, size_goal; |
| 1408 | |
| 1409 | if (!tcp_write_queue_tail(sk)) |
| 1410 | return; |
| 1411 | |
| 1412 | lock_sock(sk); |
| 1413 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags: 0); |
| 1414 | tcp_push(sk, flags: 0, mss_now, nonagle: tp->nonagle, size_goal); |
| 1415 | release_sock(sk); |
| 1416 | } |
| 1417 | EXPORT_IPV6_MOD_GPL(tcp_splice_eof); |
| 1418 | |
| 1419 | /* |
| 1420 | * Handle reading urgent data. BSD has very simple semantics for |
| 1421 | * this, no blocking and very strange errors 8) |
| 1422 | */ |
| 1423 | |
| 1424 | static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) |
| 1425 | { |
| 1426 | struct tcp_sock *tp = tcp_sk(sk); |
| 1427 | |
| 1428 | /* No URG data to read. */ |
| 1429 | if (sock_flag(sk, flag: SOCK_URGINLINE) || !tp->urg_data || |
| 1430 | tp->urg_data == TCP_URG_READ) |
| 1431 | return -EINVAL; /* Yes this is right ! */ |
| 1432 | |
| 1433 | if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, flag: SOCK_DONE)) |
| 1434 | return -ENOTCONN; |
| 1435 | |
| 1436 | if (tp->urg_data & TCP_URG_VALID) { |
| 1437 | int err = 0; |
| 1438 | char c = tp->urg_data; |
| 1439 | |
| 1440 | if (!(flags & MSG_PEEK)) |
| 1441 | WRITE_ONCE(tp->urg_data, TCP_URG_READ); |
| 1442 | |
| 1443 | /* Read urgent data. */ |
| 1444 | msg->msg_flags |= MSG_OOB; |
| 1445 | |
| 1446 | if (len > 0) { |
| 1447 | if (!(flags & MSG_TRUNC)) |
| 1448 | err = memcpy_to_msg(msg, data: &c, len: 1); |
| 1449 | len = 1; |
| 1450 | } else |
| 1451 | msg->msg_flags |= MSG_TRUNC; |
| 1452 | |
| 1453 | return err ? -EFAULT : len; |
| 1454 | } |
| 1455 | |
| 1456 | if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) |
| 1457 | return 0; |
| 1458 | |
| 1459 | /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and |
| 1460 | * the available implementations agree in this case: |
| 1461 | * this call should never block, independent of the |
| 1462 | * blocking state of the socket. |
| 1463 | * Mike <pall@rz.uni-karlsruhe.de> |
| 1464 | */ |
| 1465 | return -EAGAIN; |
| 1466 | } |
| 1467 | |
| 1468 | static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) |
| 1469 | { |
| 1470 | struct sk_buff *skb; |
| 1471 | int copied = 0, err = 0; |
| 1472 | |
| 1473 | skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { |
| 1474 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len); |
| 1475 | if (err) |
| 1476 | return err; |
| 1477 | copied += skb->len; |
| 1478 | } |
| 1479 | |
| 1480 | skb_queue_walk(&sk->sk_write_queue, skb) { |
| 1481 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len); |
| 1482 | if (err) |
| 1483 | break; |
| 1484 | |
| 1485 | copied += skb->len; |
| 1486 | } |
| 1487 | |
| 1488 | return err ?: copied; |
| 1489 | } |
| 1490 | |
| 1491 | /* Clean up the receive buffer for full frames taken by the user, |
| 1492 | * then send an ACK if necessary. COPIED is the number of bytes |
| 1493 | * tcp_recvmsg has given to the user so far, it speeds up the |
| 1494 | * calculation of whether or not we must ACK for the sake of |
| 1495 | * a window update. |
| 1496 | */ |
| 1497 | void __tcp_cleanup_rbuf(struct sock *sk, int copied) |
| 1498 | { |
| 1499 | struct tcp_sock *tp = tcp_sk(sk); |
| 1500 | bool time_to_ack = false; |
| 1501 | |
| 1502 | if (inet_csk_ack_scheduled(sk)) { |
| 1503 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 1504 | |
| 1505 | if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ |
| 1506 | tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || |
| 1507 | /* |
| 1508 | * If this read emptied read buffer, we send ACK, if |
| 1509 | * connection is not bidirectional, user drained |
| 1510 | * receive buffer and there was a small segment |
| 1511 | * in queue. |
| 1512 | */ |
| 1513 | (copied > 0 && |
| 1514 | ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || |
| 1515 | ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && |
| 1516 | !inet_csk_in_pingpong_mode(sk))) && |
| 1517 | !atomic_read(v: &sk->sk_rmem_alloc))) |
| 1518 | time_to_ack = true; |
| 1519 | } |
| 1520 | |
| 1521 | /* We send an ACK if we can now advertise a non-zero window |
| 1522 | * which has been raised "significantly". |
| 1523 | * |
| 1524 | * Even if window raised up to infinity, do not send window open ACK |
| 1525 | * in states, where we will not receive more. It is useless. |
| 1526 | */ |
| 1527 | if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { |
| 1528 | __u32 rcv_window_now = tcp_receive_window(tp); |
| 1529 | |
| 1530 | /* Optimize, __tcp_select_window() is not cheap. */ |
| 1531 | if (2*rcv_window_now <= tp->window_clamp) { |
| 1532 | __u32 new_window = __tcp_select_window(sk); |
| 1533 | |
| 1534 | /* Send ACK now, if this read freed lots of space |
| 1535 | * in our buffer. Certainly, new_window is new window. |
| 1536 | * We can advertise it now, if it is not less than current one. |
| 1537 | * "Lots" means "at least twice" here. |
| 1538 | */ |
| 1539 | if (new_window && new_window >= 2 * rcv_window_now) |
| 1540 | time_to_ack = true; |
| 1541 | } |
| 1542 | } |
| 1543 | if (time_to_ack) |
| 1544 | tcp_send_ack(sk); |
| 1545 | } |
| 1546 | |
| 1547 | void tcp_cleanup_rbuf(struct sock *sk, int copied) |
| 1548 | { |
| 1549 | struct sk_buff *skb = skb_peek(list_: &sk->sk_receive_queue); |
| 1550 | struct tcp_sock *tp = tcp_sk(sk); |
| 1551 | |
| 1552 | WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), |
| 1553 | "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n" , |
| 1554 | tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); |
| 1555 | __tcp_cleanup_rbuf(sk, copied); |
| 1556 | } |
| 1557 | |
| 1558 | static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) |
| 1559 | { |
| 1560 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
| 1561 | if (likely(skb->destructor == sock_rfree)) { |
| 1562 | sock_rfree(skb); |
| 1563 | skb->destructor = NULL; |
| 1564 | skb->sk = NULL; |
| 1565 | return skb_attempt_defer_free(skb); |
| 1566 | } |
| 1567 | __kfree_skb(skb); |
| 1568 | } |
| 1569 | |
| 1570 | struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) |
| 1571 | { |
| 1572 | struct sk_buff *skb; |
| 1573 | u32 offset; |
| 1574 | |
| 1575 | while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) { |
| 1576 | offset = seq - TCP_SKB_CB(skb)->seq; |
| 1577 | if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { |
| 1578 | pr_err_once("%s: found a SYN, please report !\n" , __func__); |
| 1579 | offset--; |
| 1580 | } |
| 1581 | if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { |
| 1582 | *off = offset; |
| 1583 | return skb; |
| 1584 | } |
| 1585 | /* This looks weird, but this can happen if TCP collapsing |
| 1586 | * splitted a fat GRO packet, while we released socket lock |
| 1587 | * in skb_splice_bits() |
| 1588 | */ |
| 1589 | tcp_eat_recv_skb(sk, skb); |
| 1590 | } |
| 1591 | return NULL; |
| 1592 | } |
| 1593 | EXPORT_SYMBOL(tcp_recv_skb); |
| 1594 | |
| 1595 | /* |
| 1596 | * This routine provides an alternative to tcp_recvmsg() for routines |
| 1597 | * that would like to handle copying from skbuffs directly in 'sendfile' |
| 1598 | * fashion. |
| 1599 | * Note: |
| 1600 | * - It is assumed that the socket was locked by the caller. |
| 1601 | * - The routine does not block. |
| 1602 | * - At present, there is no support for reading OOB data |
| 1603 | * or for 'peeking' the socket using this routine |
| 1604 | * (although both would be easy to implement). |
| 1605 | */ |
| 1606 | static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, |
| 1607 | sk_read_actor_t recv_actor, bool noack, |
| 1608 | u32 *copied_seq) |
| 1609 | { |
| 1610 | struct sk_buff *skb; |
| 1611 | struct tcp_sock *tp = tcp_sk(sk); |
| 1612 | u32 seq = *copied_seq; |
| 1613 | u32 offset; |
| 1614 | int copied = 0; |
| 1615 | |
| 1616 | if (sk->sk_state == TCP_LISTEN) |
| 1617 | return -ENOTCONN; |
| 1618 | while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { |
| 1619 | if (offset < skb->len) { |
| 1620 | int used; |
| 1621 | size_t len; |
| 1622 | |
| 1623 | len = skb->len - offset; |
| 1624 | /* Stop reading if we hit a patch of urgent data */ |
| 1625 | if (unlikely(tp->urg_data)) { |
| 1626 | u32 urg_offset = tp->urg_seq - seq; |
| 1627 | if (urg_offset < len) |
| 1628 | len = urg_offset; |
| 1629 | if (!len) |
| 1630 | break; |
| 1631 | } |
| 1632 | used = recv_actor(desc, skb, offset, len); |
| 1633 | if (used <= 0) { |
| 1634 | if (!copied) |
| 1635 | copied = used; |
| 1636 | break; |
| 1637 | } |
| 1638 | if (WARN_ON_ONCE(used > len)) |
| 1639 | used = len; |
| 1640 | seq += used; |
| 1641 | copied += used; |
| 1642 | offset += used; |
| 1643 | |
| 1644 | /* If recv_actor drops the lock (e.g. TCP splice |
| 1645 | * receive) the skb pointer might be invalid when |
| 1646 | * getting here: tcp_collapse might have deleted it |
| 1647 | * while aggregating skbs from the socket queue. |
| 1648 | */ |
| 1649 | skb = tcp_recv_skb(sk, seq - 1, &offset); |
| 1650 | if (!skb) |
| 1651 | break; |
| 1652 | /* TCP coalescing might have appended data to the skb. |
| 1653 | * Try to splice more frags |
| 1654 | */ |
| 1655 | if (offset + 1 != skb->len) |
| 1656 | continue; |
| 1657 | } |
| 1658 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
| 1659 | tcp_eat_recv_skb(sk, skb); |
| 1660 | ++seq; |
| 1661 | break; |
| 1662 | } |
| 1663 | tcp_eat_recv_skb(sk, skb); |
| 1664 | if (!desc->count) |
| 1665 | break; |
| 1666 | WRITE_ONCE(*copied_seq, seq); |
| 1667 | } |
| 1668 | WRITE_ONCE(*copied_seq, seq); |
| 1669 | |
| 1670 | if (noack) |
| 1671 | goto out; |
| 1672 | |
| 1673 | tcp_rcv_space_adjust(sk); |
| 1674 | |
| 1675 | /* Clean up data we have read: This will do ACK frames. */ |
| 1676 | if (copied > 0) { |
| 1677 | tcp_recv_skb(sk, seq, &offset); |
| 1678 | tcp_cleanup_rbuf(sk, copied); |
| 1679 | } |
| 1680 | out: |
| 1681 | return copied; |
| 1682 | } |
| 1683 | |
| 1684 | int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, |
| 1685 | sk_read_actor_t recv_actor) |
| 1686 | { |
| 1687 | return __tcp_read_sock(sk, desc, recv_actor, noack: false, |
| 1688 | copied_seq: &tcp_sk(sk)->copied_seq); |
| 1689 | } |
| 1690 | EXPORT_SYMBOL(tcp_read_sock); |
| 1691 | |
| 1692 | int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, |
| 1693 | sk_read_actor_t recv_actor, bool noack, |
| 1694 | u32 *copied_seq) |
| 1695 | { |
| 1696 | return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); |
| 1697 | } |
| 1698 | |
| 1699 | int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) |
| 1700 | { |
| 1701 | struct sk_buff *skb; |
| 1702 | int copied = 0; |
| 1703 | |
| 1704 | if (sk->sk_state == TCP_LISTEN) |
| 1705 | return -ENOTCONN; |
| 1706 | |
| 1707 | while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) { |
| 1708 | u8 tcp_flags; |
| 1709 | int used; |
| 1710 | |
| 1711 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
| 1712 | WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); |
| 1713 | tcp_flags = TCP_SKB_CB(skb)->tcp_flags; |
| 1714 | used = recv_actor(sk, skb); |
| 1715 | if (used < 0) { |
| 1716 | if (!copied) |
| 1717 | copied = used; |
| 1718 | break; |
| 1719 | } |
| 1720 | copied += used; |
| 1721 | |
| 1722 | if (tcp_flags & TCPHDR_FIN) |
| 1723 | break; |
| 1724 | } |
| 1725 | return copied; |
| 1726 | } |
| 1727 | EXPORT_IPV6_MOD(tcp_read_skb); |
| 1728 | |
| 1729 | void tcp_read_done(struct sock *sk, size_t len) |
| 1730 | { |
| 1731 | struct tcp_sock *tp = tcp_sk(sk); |
| 1732 | u32 seq = tp->copied_seq; |
| 1733 | struct sk_buff *skb; |
| 1734 | size_t left; |
| 1735 | u32 offset; |
| 1736 | |
| 1737 | if (sk->sk_state == TCP_LISTEN) |
| 1738 | return; |
| 1739 | |
| 1740 | left = len; |
| 1741 | while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { |
| 1742 | int used; |
| 1743 | |
| 1744 | used = min_t(size_t, skb->len - offset, left); |
| 1745 | seq += used; |
| 1746 | left -= used; |
| 1747 | |
| 1748 | if (skb->len > offset + used) |
| 1749 | break; |
| 1750 | |
| 1751 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
| 1752 | tcp_eat_recv_skb(sk, skb); |
| 1753 | ++seq; |
| 1754 | break; |
| 1755 | } |
| 1756 | tcp_eat_recv_skb(sk, skb); |
| 1757 | } |
| 1758 | WRITE_ONCE(tp->copied_seq, seq); |
| 1759 | |
| 1760 | tcp_rcv_space_adjust(sk); |
| 1761 | |
| 1762 | /* Clean up data we have read: This will do ACK frames. */ |
| 1763 | if (left != len) |
| 1764 | tcp_cleanup_rbuf(sk, copied: len - left); |
| 1765 | } |
| 1766 | EXPORT_SYMBOL(tcp_read_done); |
| 1767 | |
| 1768 | int tcp_peek_len(struct socket *sock) |
| 1769 | { |
| 1770 | return tcp_inq(sk: sock->sk); |
| 1771 | } |
| 1772 | EXPORT_IPV6_MOD(tcp_peek_len); |
| 1773 | |
| 1774 | /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ |
| 1775 | int tcp_set_rcvlowat(struct sock *sk, int val) |
| 1776 | { |
| 1777 | int space, cap; |
| 1778 | |
| 1779 | if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) |
| 1780 | cap = sk->sk_rcvbuf >> 1; |
| 1781 | else |
| 1782 | cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; |
| 1783 | val = min(val, cap); |
| 1784 | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
| 1785 | |
| 1786 | /* Check if we need to signal EPOLLIN right now */ |
| 1787 | tcp_data_ready(sk); |
| 1788 | |
| 1789 | if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) |
| 1790 | return 0; |
| 1791 | |
| 1792 | space = tcp_space_from_win(sk, win: val); |
| 1793 | if (space > sk->sk_rcvbuf) { |
| 1794 | WRITE_ONCE(sk->sk_rcvbuf, space); |
| 1795 | WRITE_ONCE(tcp_sk(sk)->window_clamp, val); |
| 1796 | } |
| 1797 | return 0; |
| 1798 | } |
| 1799 | EXPORT_IPV6_MOD(tcp_set_rcvlowat); |
| 1800 | |
| 1801 | void tcp_update_recv_tstamps(struct sk_buff *skb, |
| 1802 | struct scm_timestamping_internal *tss) |
| 1803 | { |
| 1804 | if (skb->tstamp) |
| 1805 | tss->ts[0] = ktime_to_timespec64(skb->tstamp); |
| 1806 | else |
| 1807 | tss->ts[0] = (struct timespec64) {0}; |
| 1808 | |
| 1809 | if (skb_hwtstamps(skb)->hwtstamp) |
| 1810 | tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); |
| 1811 | else |
| 1812 | tss->ts[2] = (struct timespec64) {0}; |
| 1813 | } |
| 1814 | |
| 1815 | #ifdef CONFIG_MMU |
| 1816 | static const struct vm_operations_struct tcp_vm_ops = { |
| 1817 | }; |
| 1818 | |
| 1819 | int tcp_mmap(struct file *file, struct socket *sock, |
| 1820 | struct vm_area_struct *vma) |
| 1821 | { |
| 1822 | if (vma->vm_flags & (VM_WRITE | VM_EXEC)) |
| 1823 | return -EPERM; |
| 1824 | vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); |
| 1825 | |
| 1826 | /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ |
| 1827 | vm_flags_set(vma, VM_MIXEDMAP); |
| 1828 | |
| 1829 | vma->vm_ops = &tcp_vm_ops; |
| 1830 | return 0; |
| 1831 | } |
| 1832 | EXPORT_IPV6_MOD(tcp_mmap); |
| 1833 | |
| 1834 | static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, |
| 1835 | u32 *offset_frag) |
| 1836 | { |
| 1837 | skb_frag_t *frag; |
| 1838 | |
| 1839 | if (unlikely(offset_skb >= skb->len)) |
| 1840 | return NULL; |
| 1841 | |
| 1842 | offset_skb -= skb_headlen(skb); |
| 1843 | if ((int)offset_skb < 0 || skb_has_frag_list(skb)) |
| 1844 | return NULL; |
| 1845 | |
| 1846 | frag = skb_shinfo(skb)->frags; |
| 1847 | while (offset_skb) { |
| 1848 | if (skb_frag_size(frag) > offset_skb) { |
| 1849 | *offset_frag = offset_skb; |
| 1850 | return frag; |
| 1851 | } |
| 1852 | offset_skb -= skb_frag_size(frag); |
| 1853 | ++frag; |
| 1854 | } |
| 1855 | *offset_frag = 0; |
| 1856 | return frag; |
| 1857 | } |
| 1858 | |
| 1859 | static bool can_map_frag(const skb_frag_t *frag) |
| 1860 | { |
| 1861 | struct page *page; |
| 1862 | |
| 1863 | if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) |
| 1864 | return false; |
| 1865 | |
| 1866 | page = skb_frag_page(frag); |
| 1867 | |
| 1868 | if (PageCompound(page) || page->mapping) |
| 1869 | return false; |
| 1870 | |
| 1871 | return true; |
| 1872 | } |
| 1873 | |
| 1874 | static int find_next_mappable_frag(const skb_frag_t *frag, |
| 1875 | int remaining_in_skb) |
| 1876 | { |
| 1877 | int offset = 0; |
| 1878 | |
| 1879 | if (likely(can_map_frag(frag))) |
| 1880 | return 0; |
| 1881 | |
| 1882 | while (offset < remaining_in_skb && !can_map_frag(frag)) { |
| 1883 | offset += skb_frag_size(frag); |
| 1884 | ++frag; |
| 1885 | } |
| 1886 | return offset; |
| 1887 | } |
| 1888 | |
| 1889 | static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, |
| 1890 | struct tcp_zerocopy_receive *zc, |
| 1891 | struct sk_buff *skb, u32 offset) |
| 1892 | { |
| 1893 | u32 frag_offset, partial_frag_remainder = 0; |
| 1894 | int mappable_offset; |
| 1895 | skb_frag_t *frag; |
| 1896 | |
| 1897 | /* worst case: skip to next skb. try to improve on this case below */ |
| 1898 | zc->recv_skip_hint = skb->len - offset; |
| 1899 | |
| 1900 | /* Find the frag containing this offset (and how far into that frag) */ |
| 1901 | frag = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &frag_offset); |
| 1902 | if (!frag) |
| 1903 | return; |
| 1904 | |
| 1905 | if (frag_offset) { |
| 1906 | struct skb_shared_info *info = skb_shinfo(skb); |
| 1907 | |
| 1908 | /* We read part of the last frag, must recvmsg() rest of skb. */ |
| 1909 | if (frag == &info->frags[info->nr_frags - 1]) |
| 1910 | return; |
| 1911 | |
| 1912 | /* Else, we must at least read the remainder in this frag. */ |
| 1913 | partial_frag_remainder = skb_frag_size(frag) - frag_offset; |
| 1914 | zc->recv_skip_hint -= partial_frag_remainder; |
| 1915 | ++frag; |
| 1916 | } |
| 1917 | |
| 1918 | /* partial_frag_remainder: If part way through a frag, must read rest. |
| 1919 | * mappable_offset: Bytes till next mappable frag, *not* counting bytes |
| 1920 | * in partial_frag_remainder. |
| 1921 | */ |
| 1922 | mappable_offset = find_next_mappable_frag(frag, remaining_in_skb: zc->recv_skip_hint); |
| 1923 | zc->recv_skip_hint = mappable_offset + partial_frag_remainder; |
| 1924 | } |
| 1925 | |
| 1926 | static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, |
| 1927 | int flags, struct scm_timestamping_internal *tss, |
| 1928 | int *cmsg_flags); |
| 1929 | static int receive_fallback_to_copy(struct sock *sk, |
| 1930 | struct tcp_zerocopy_receive *zc, int inq, |
| 1931 | struct scm_timestamping_internal *tss) |
| 1932 | { |
| 1933 | unsigned long copy_address = (unsigned long)zc->copybuf_address; |
| 1934 | struct msghdr msg = {}; |
| 1935 | int err; |
| 1936 | |
| 1937 | zc->length = 0; |
| 1938 | zc->recv_skip_hint = 0; |
| 1939 | |
| 1940 | if (copy_address != zc->copybuf_address) |
| 1941 | return -EINVAL; |
| 1942 | |
| 1943 | err = import_ubuf(ITER_DEST, buf: (void __user *)copy_address, len: inq, |
| 1944 | i: &msg.msg_iter); |
| 1945 | if (err) |
| 1946 | return err; |
| 1947 | |
| 1948 | err = tcp_recvmsg_locked(sk, msg: &msg, len: inq, MSG_DONTWAIT, |
| 1949 | tss, cmsg_flags: &zc->msg_flags); |
| 1950 | if (err < 0) |
| 1951 | return err; |
| 1952 | |
| 1953 | zc->copybuf_len = err; |
| 1954 | if (likely(zc->copybuf_len)) { |
| 1955 | struct sk_buff *skb; |
| 1956 | u32 offset; |
| 1957 | |
| 1958 | skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); |
| 1959 | if (skb) |
| 1960 | tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); |
| 1961 | } |
| 1962 | return 0; |
| 1963 | } |
| 1964 | |
| 1965 | static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, |
| 1966 | struct sk_buff *skb, u32 copylen, |
| 1967 | u32 *offset, u32 *seq) |
| 1968 | { |
| 1969 | unsigned long copy_address = (unsigned long)zc->copybuf_address; |
| 1970 | struct msghdr msg = {}; |
| 1971 | int err; |
| 1972 | |
| 1973 | if (copy_address != zc->copybuf_address) |
| 1974 | return -EINVAL; |
| 1975 | |
| 1976 | err = import_ubuf(ITER_DEST, buf: (void __user *)copy_address, len: copylen, |
| 1977 | i: &msg.msg_iter); |
| 1978 | if (err) |
| 1979 | return err; |
| 1980 | err = skb_copy_datagram_msg(from: skb, offset: *offset, msg: &msg, size: copylen); |
| 1981 | if (err) |
| 1982 | return err; |
| 1983 | zc->recv_skip_hint -= copylen; |
| 1984 | *offset += copylen; |
| 1985 | *seq += copylen; |
| 1986 | return (__s32)copylen; |
| 1987 | } |
| 1988 | |
| 1989 | static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, |
| 1990 | struct sock *sk, |
| 1991 | struct sk_buff *skb, |
| 1992 | u32 *seq, |
| 1993 | s32 copybuf_len, |
| 1994 | struct scm_timestamping_internal *tss) |
| 1995 | { |
| 1996 | u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); |
| 1997 | |
| 1998 | if (!copylen) |
| 1999 | return 0; |
| 2000 | /* skb is null if inq < PAGE_SIZE. */ |
| 2001 | if (skb) { |
| 2002 | offset = *seq - TCP_SKB_CB(skb)->seq; |
| 2003 | } else { |
| 2004 | skb = tcp_recv_skb(sk, *seq, &offset); |
| 2005 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
| 2006 | tcp_update_recv_tstamps(skb, tss); |
| 2007 | zc->msg_flags |= TCP_CMSG_TS; |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, offset: &offset, |
| 2012 | seq); |
| 2013 | return zc->copybuf_len < 0 ? 0 : copylen; |
| 2014 | } |
| 2015 | |
| 2016 | static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, |
| 2017 | struct page **pending_pages, |
| 2018 | unsigned long pages_remaining, |
| 2019 | unsigned long *address, |
| 2020 | u32 *length, |
| 2021 | u32 *seq, |
| 2022 | struct tcp_zerocopy_receive *zc, |
| 2023 | u32 total_bytes_to_map, |
| 2024 | int err) |
| 2025 | { |
| 2026 | /* At least one page did not map. Try zapping if we skipped earlier. */ |
| 2027 | if (err == -EBUSY && |
| 2028 | zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { |
| 2029 | u32 maybe_zap_len; |
| 2030 | |
| 2031 | maybe_zap_len = total_bytes_to_map - /* All bytes to map */ |
| 2032 | *length + /* Mapped or pending */ |
| 2033 | (pages_remaining * PAGE_SIZE); /* Failed map. */ |
| 2034 | zap_page_range_single(vma, address: *address, size: maybe_zap_len, NULL); |
| 2035 | err = 0; |
| 2036 | } |
| 2037 | |
| 2038 | if (!err) { |
| 2039 | unsigned long leftover_pages = pages_remaining; |
| 2040 | int bytes_mapped; |
| 2041 | |
| 2042 | /* We called zap_page_range_single, try to reinsert. */ |
| 2043 | err = vm_insert_pages(vma, addr: *address, |
| 2044 | pages: pending_pages, |
| 2045 | num: &pages_remaining); |
| 2046 | bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); |
| 2047 | *seq += bytes_mapped; |
| 2048 | *address += bytes_mapped; |
| 2049 | } |
| 2050 | if (err) { |
| 2051 | /* Either we were unable to zap, OR we zapped, retried an |
| 2052 | * insert, and still had an issue. Either ways, pages_remaining |
| 2053 | * is the number of pages we were unable to map, and we unroll |
| 2054 | * some state we speculatively touched before. |
| 2055 | */ |
| 2056 | const int bytes_not_mapped = PAGE_SIZE * pages_remaining; |
| 2057 | |
| 2058 | *length -= bytes_not_mapped; |
| 2059 | zc->recv_skip_hint += bytes_not_mapped; |
| 2060 | } |
| 2061 | return err; |
| 2062 | } |
| 2063 | |
| 2064 | static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, |
| 2065 | struct page **pages, |
| 2066 | unsigned int pages_to_map, |
| 2067 | unsigned long *address, |
| 2068 | u32 *length, |
| 2069 | u32 *seq, |
| 2070 | struct tcp_zerocopy_receive *zc, |
| 2071 | u32 total_bytes_to_map) |
| 2072 | { |
| 2073 | unsigned long pages_remaining = pages_to_map; |
| 2074 | unsigned int pages_mapped; |
| 2075 | unsigned int bytes_mapped; |
| 2076 | int err; |
| 2077 | |
| 2078 | err = vm_insert_pages(vma, addr: *address, pages, num: &pages_remaining); |
| 2079 | pages_mapped = pages_to_map - (unsigned int)pages_remaining; |
| 2080 | bytes_mapped = PAGE_SIZE * pages_mapped; |
| 2081 | /* Even if vm_insert_pages fails, it may have partially succeeded in |
| 2082 | * mapping (some but not all of the pages). |
| 2083 | */ |
| 2084 | *seq += bytes_mapped; |
| 2085 | *address += bytes_mapped; |
| 2086 | |
| 2087 | if (likely(!err)) |
| 2088 | return 0; |
| 2089 | |
| 2090 | /* Error: maybe zap and retry + rollback state for failed inserts. */ |
| 2091 | return tcp_zerocopy_vm_insert_batch_error(vma, pending_pages: pages + pages_mapped, |
| 2092 | pages_remaining, address, length, seq, zc, total_bytes_to_map, |
| 2093 | err); |
| 2094 | } |
| 2095 | |
| 2096 | #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) |
| 2097 | static void tcp_zc_finalize_rx_tstamp(struct sock *sk, |
| 2098 | struct tcp_zerocopy_receive *zc, |
| 2099 | struct scm_timestamping_internal *tss) |
| 2100 | { |
| 2101 | unsigned long msg_control_addr; |
| 2102 | struct msghdr cmsg_dummy; |
| 2103 | |
| 2104 | msg_control_addr = (unsigned long)zc->msg_control; |
| 2105 | cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; |
| 2106 | cmsg_dummy.msg_controllen = |
| 2107 | (__kernel_size_t)zc->msg_controllen; |
| 2108 | cmsg_dummy.msg_flags = in_compat_syscall() |
| 2109 | ? MSG_CMSG_COMPAT : 0; |
| 2110 | cmsg_dummy.msg_control_is_user = true; |
| 2111 | zc->msg_flags = 0; |
| 2112 | if (zc->msg_control == msg_control_addr && |
| 2113 | zc->msg_controllen == cmsg_dummy.msg_controllen) { |
| 2114 | tcp_recv_timestamp(msg: &cmsg_dummy, sk, tss); |
| 2115 | zc->msg_control = (__u64) |
| 2116 | ((uintptr_t)cmsg_dummy.msg_control_user); |
| 2117 | zc->msg_controllen = |
| 2118 | (__u64)cmsg_dummy.msg_controllen; |
| 2119 | zc->msg_flags = (__u32)cmsg_dummy.msg_flags; |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, |
| 2124 | unsigned long address, |
| 2125 | bool *mmap_locked) |
| 2126 | { |
| 2127 | struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); |
| 2128 | |
| 2129 | if (vma) { |
| 2130 | if (vma->vm_ops != &tcp_vm_ops) { |
| 2131 | vma_end_read(vma); |
| 2132 | return NULL; |
| 2133 | } |
| 2134 | *mmap_locked = false; |
| 2135 | return vma; |
| 2136 | } |
| 2137 | |
| 2138 | mmap_read_lock(mm); |
| 2139 | vma = vma_lookup(mm, addr: address); |
| 2140 | if (!vma || vma->vm_ops != &tcp_vm_ops) { |
| 2141 | mmap_read_unlock(mm); |
| 2142 | return NULL; |
| 2143 | } |
| 2144 | *mmap_locked = true; |
| 2145 | return vma; |
| 2146 | } |
| 2147 | |
| 2148 | #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 |
| 2149 | static int tcp_zerocopy_receive(struct sock *sk, |
| 2150 | struct tcp_zerocopy_receive *zc, |
| 2151 | struct scm_timestamping_internal *tss) |
| 2152 | { |
| 2153 | u32 length = 0, offset, vma_len, avail_len, copylen = 0; |
| 2154 | unsigned long address = (unsigned long)zc->address; |
| 2155 | struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; |
| 2156 | s32 copybuf_len = zc->copybuf_len; |
| 2157 | struct tcp_sock *tp = tcp_sk(sk); |
| 2158 | const skb_frag_t *frags = NULL; |
| 2159 | unsigned int pages_to_map = 0; |
| 2160 | struct vm_area_struct *vma; |
| 2161 | struct sk_buff *skb = NULL; |
| 2162 | u32 seq = tp->copied_seq; |
| 2163 | u32 total_bytes_to_map; |
| 2164 | int inq = tcp_inq(sk); |
| 2165 | bool mmap_locked; |
| 2166 | int ret; |
| 2167 | |
| 2168 | zc->copybuf_len = 0; |
| 2169 | zc->msg_flags = 0; |
| 2170 | |
| 2171 | if (address & (PAGE_SIZE - 1) || address != zc->address) |
| 2172 | return -EINVAL; |
| 2173 | |
| 2174 | if (sk->sk_state == TCP_LISTEN) |
| 2175 | return -ENOTCONN; |
| 2176 | |
| 2177 | sock_rps_record_flow(sk); |
| 2178 | |
| 2179 | if (inq && inq <= copybuf_len) |
| 2180 | return receive_fallback_to_copy(sk, zc, inq, tss); |
| 2181 | |
| 2182 | if (inq < PAGE_SIZE) { |
| 2183 | zc->length = 0; |
| 2184 | zc->recv_skip_hint = inq; |
| 2185 | if (!inq && sock_flag(sk, flag: SOCK_DONE)) |
| 2186 | return -EIO; |
| 2187 | return 0; |
| 2188 | } |
| 2189 | |
| 2190 | vma = find_tcp_vma(current->mm, address, mmap_locked: &mmap_locked); |
| 2191 | if (!vma) |
| 2192 | return -EINVAL; |
| 2193 | |
| 2194 | vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); |
| 2195 | avail_len = min_t(u32, vma_len, inq); |
| 2196 | total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); |
| 2197 | if (total_bytes_to_map) { |
| 2198 | if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) |
| 2199 | zap_page_range_single(vma, address, size: total_bytes_to_map, |
| 2200 | NULL); |
| 2201 | zc->length = total_bytes_to_map; |
| 2202 | zc->recv_skip_hint = 0; |
| 2203 | } else { |
| 2204 | zc->length = avail_len; |
| 2205 | zc->recv_skip_hint = avail_len; |
| 2206 | } |
| 2207 | ret = 0; |
| 2208 | while (length + PAGE_SIZE <= zc->length) { |
| 2209 | int mappable_offset; |
| 2210 | struct page *page; |
| 2211 | |
| 2212 | if (zc->recv_skip_hint < PAGE_SIZE) { |
| 2213 | u32 offset_frag; |
| 2214 | |
| 2215 | if (skb) { |
| 2216 | if (zc->recv_skip_hint > 0) |
| 2217 | break; |
| 2218 | skb = skb->next; |
| 2219 | offset = seq - TCP_SKB_CB(skb)->seq; |
| 2220 | } else { |
| 2221 | skb = tcp_recv_skb(sk, seq, &offset); |
| 2222 | } |
| 2223 | |
| 2224 | if (!skb_frags_readable(skb)) |
| 2225 | break; |
| 2226 | |
| 2227 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
| 2228 | tcp_update_recv_tstamps(skb, tss); |
| 2229 | zc->msg_flags |= TCP_CMSG_TS; |
| 2230 | } |
| 2231 | zc->recv_skip_hint = skb->len - offset; |
| 2232 | frags = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &offset_frag); |
| 2233 | if (!frags || offset_frag) |
| 2234 | break; |
| 2235 | } |
| 2236 | |
| 2237 | mappable_offset = find_next_mappable_frag(frag: frags, |
| 2238 | remaining_in_skb: zc->recv_skip_hint); |
| 2239 | if (mappable_offset) { |
| 2240 | zc->recv_skip_hint = mappable_offset; |
| 2241 | break; |
| 2242 | } |
| 2243 | page = skb_frag_page(frag: frags); |
| 2244 | if (WARN_ON_ONCE(!page)) |
| 2245 | break; |
| 2246 | |
| 2247 | prefetchw(x: page); |
| 2248 | pages[pages_to_map++] = page; |
| 2249 | length += PAGE_SIZE; |
| 2250 | zc->recv_skip_hint -= PAGE_SIZE; |
| 2251 | frags++; |
| 2252 | if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || |
| 2253 | zc->recv_skip_hint < PAGE_SIZE) { |
| 2254 | /* Either full batch, or we're about to go to next skb |
| 2255 | * (and we cannot unroll failed ops across skbs). |
| 2256 | */ |
| 2257 | ret = tcp_zerocopy_vm_insert_batch(vma, pages, |
| 2258 | pages_to_map, |
| 2259 | address: &address, length: &length, |
| 2260 | seq: &seq, zc, |
| 2261 | total_bytes_to_map); |
| 2262 | if (ret) |
| 2263 | goto out; |
| 2264 | pages_to_map = 0; |
| 2265 | } |
| 2266 | } |
| 2267 | if (pages_to_map) { |
| 2268 | ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, |
| 2269 | address: &address, length: &length, seq: &seq, |
| 2270 | zc, total_bytes_to_map); |
| 2271 | } |
| 2272 | out: |
| 2273 | if (mmap_locked) |
| 2274 | mmap_read_unlock(current->mm); |
| 2275 | else |
| 2276 | vma_end_read(vma); |
| 2277 | /* Try to copy straggler data. */ |
| 2278 | if (!ret) |
| 2279 | copylen = tcp_zc_handle_leftover(zc, sk, skb, seq: &seq, copybuf_len, tss); |
| 2280 | |
| 2281 | if (length + copylen) { |
| 2282 | WRITE_ONCE(tp->copied_seq, seq); |
| 2283 | tcp_rcv_space_adjust(sk); |
| 2284 | |
| 2285 | /* Clean up data we have read: This will do ACK frames. */ |
| 2286 | tcp_recv_skb(sk, seq, &offset); |
| 2287 | tcp_cleanup_rbuf(sk, copied: length + copylen); |
| 2288 | ret = 0; |
| 2289 | if (length == zc->length) |
| 2290 | zc->recv_skip_hint = 0; |
| 2291 | } else { |
| 2292 | if (!zc->recv_skip_hint && sock_flag(sk, flag: SOCK_DONE)) |
| 2293 | ret = -EIO; |
| 2294 | } |
| 2295 | zc->length = length; |
| 2296 | return ret; |
| 2297 | } |
| 2298 | #endif |
| 2299 | |
| 2300 | /* Similar to __sock_recv_timestamp, but does not require an skb */ |
| 2301 | void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, |
| 2302 | struct scm_timestamping_internal *tss) |
| 2303 | { |
| 2304 | int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
| 2305 | u32 tsflags = READ_ONCE(sk->sk_tsflags); |
| 2306 | bool has_timestamping = false; |
| 2307 | |
| 2308 | if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { |
| 2309 | if (sock_flag(sk, flag: SOCK_RCVTSTAMP)) { |
| 2310 | if (sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) { |
| 2311 | if (new_tstamp) { |
| 2312 | struct __kernel_timespec kts = { |
| 2313 | .tv_sec = tss->ts[0].tv_sec, |
| 2314 | .tv_nsec = tss->ts[0].tv_nsec, |
| 2315 | }; |
| 2316 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, |
| 2317 | len: sizeof(kts), data: &kts); |
| 2318 | } else { |
| 2319 | struct __kernel_old_timespec ts_old = { |
| 2320 | .tv_sec = tss->ts[0].tv_sec, |
| 2321 | .tv_nsec = tss->ts[0].tv_nsec, |
| 2322 | }; |
| 2323 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, |
| 2324 | len: sizeof(ts_old), data: &ts_old); |
| 2325 | } |
| 2326 | } else { |
| 2327 | if (new_tstamp) { |
| 2328 | struct __kernel_sock_timeval stv = { |
| 2329 | .tv_sec = tss->ts[0].tv_sec, |
| 2330 | .tv_usec = tss->ts[0].tv_nsec / 1000, |
| 2331 | }; |
| 2332 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, |
| 2333 | len: sizeof(stv), data: &stv); |
| 2334 | } else { |
| 2335 | struct __kernel_old_timeval tv = { |
| 2336 | .tv_sec = tss->ts[0].tv_sec, |
| 2337 | .tv_usec = tss->ts[0].tv_nsec / 1000, |
| 2338 | }; |
| 2339 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, |
| 2340 | len: sizeof(tv), data: &tv); |
| 2341 | } |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | if (tsflags & SOF_TIMESTAMPING_SOFTWARE && |
| 2346 | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || |
| 2347 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) |
| 2348 | has_timestamping = true; |
| 2349 | else |
| 2350 | tss->ts[0] = (struct timespec64) {0}; |
| 2351 | } |
| 2352 | |
| 2353 | if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { |
| 2354 | if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && |
| 2355 | (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || |
| 2356 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) |
| 2357 | has_timestamping = true; |
| 2358 | else |
| 2359 | tss->ts[2] = (struct timespec64) {0}; |
| 2360 | } |
| 2361 | |
| 2362 | if (has_timestamping) { |
| 2363 | tss->ts[1] = (struct timespec64) {0}; |
| 2364 | if (sock_flag(sk, SOCK_TSTAMP_NEW)) |
| 2365 | put_cmsg_scm_timestamping64(msg, tss); |
| 2366 | else |
| 2367 | put_cmsg_scm_timestamping(msg, tss); |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | static int tcp_inq_hint(struct sock *sk) |
| 2372 | { |
| 2373 | const struct tcp_sock *tp = tcp_sk(sk); |
| 2374 | u32 copied_seq = READ_ONCE(tp->copied_seq); |
| 2375 | u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); |
| 2376 | int inq; |
| 2377 | |
| 2378 | inq = rcv_nxt - copied_seq; |
| 2379 | if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { |
| 2380 | lock_sock(sk); |
| 2381 | inq = tp->rcv_nxt - tp->copied_seq; |
| 2382 | release_sock(sk); |
| 2383 | } |
| 2384 | /* After receiving a FIN, tell the user-space to continue reading |
| 2385 | * by returning a non-zero inq. |
| 2386 | */ |
| 2387 | if (inq == 0 && sock_flag(sk, flag: SOCK_DONE)) |
| 2388 | inq = 1; |
| 2389 | return inq; |
| 2390 | } |
| 2391 | |
| 2392 | /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ |
| 2393 | struct tcp_xa_pool { |
| 2394 | u8 max; /* max <= MAX_SKB_FRAGS */ |
| 2395 | u8 idx; /* idx <= max */ |
| 2396 | __u32 tokens[MAX_SKB_FRAGS]; |
| 2397 | netmem_ref netmems[MAX_SKB_FRAGS]; |
| 2398 | }; |
| 2399 | |
| 2400 | static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) |
| 2401 | { |
| 2402 | int i; |
| 2403 | |
| 2404 | /* Commit part that has been copied to user space. */ |
| 2405 | for (i = 0; i < p->idx; i++) |
| 2406 | __xa_cmpxchg(&sk->sk_user_frags, index: p->tokens[i], XA_ZERO_ENTRY, |
| 2407 | entry: (__force void *)p->netmems[i], GFP_KERNEL); |
| 2408 | /* Rollback what has been pre-allocated and is no longer needed. */ |
| 2409 | for (; i < p->max; i++) |
| 2410 | __xa_erase(&sk->sk_user_frags, index: p->tokens[i]); |
| 2411 | |
| 2412 | p->max = 0; |
| 2413 | p->idx = 0; |
| 2414 | } |
| 2415 | |
| 2416 | static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) |
| 2417 | { |
| 2418 | if (!p->max) |
| 2419 | return; |
| 2420 | |
| 2421 | xa_lock_bh(&sk->sk_user_frags); |
| 2422 | |
| 2423 | tcp_xa_pool_commit_locked(sk, p); |
| 2424 | |
| 2425 | xa_unlock_bh(&sk->sk_user_frags); |
| 2426 | } |
| 2427 | |
| 2428 | static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, |
| 2429 | unsigned int max_frags) |
| 2430 | { |
| 2431 | int err, k; |
| 2432 | |
| 2433 | if (p->idx < p->max) |
| 2434 | return 0; |
| 2435 | |
| 2436 | xa_lock_bh(&sk->sk_user_frags); |
| 2437 | |
| 2438 | tcp_xa_pool_commit_locked(sk, p); |
| 2439 | |
| 2440 | for (k = 0; k < max_frags; k++) { |
| 2441 | err = __xa_alloc(&sk->sk_user_frags, id: &p->tokens[k], |
| 2442 | XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); |
| 2443 | if (err) |
| 2444 | break; |
| 2445 | } |
| 2446 | |
| 2447 | xa_unlock_bh(&sk->sk_user_frags); |
| 2448 | |
| 2449 | p->max = k; |
| 2450 | p->idx = 0; |
| 2451 | return k ? 0 : err; |
| 2452 | } |
| 2453 | |
| 2454 | /* On error, returns the -errno. On success, returns number of bytes sent to the |
| 2455 | * user. May not consume all of @remaining_len. |
| 2456 | */ |
| 2457 | static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, |
| 2458 | unsigned int offset, struct msghdr *msg, |
| 2459 | int remaining_len) |
| 2460 | { |
| 2461 | struct dmabuf_cmsg dmabuf_cmsg = { 0 }; |
| 2462 | struct tcp_xa_pool tcp_xa_pool; |
| 2463 | unsigned int start; |
| 2464 | int i, copy, n; |
| 2465 | int sent = 0; |
| 2466 | int err = 0; |
| 2467 | |
| 2468 | tcp_xa_pool.max = 0; |
| 2469 | tcp_xa_pool.idx = 0; |
| 2470 | do { |
| 2471 | start = skb_headlen(skb); |
| 2472 | |
| 2473 | if (skb_frags_readable(skb)) { |
| 2474 | err = -ENODEV; |
| 2475 | goto out; |
| 2476 | } |
| 2477 | |
| 2478 | /* Copy header. */ |
| 2479 | copy = start - offset; |
| 2480 | if (copy > 0) { |
| 2481 | copy = min(copy, remaining_len); |
| 2482 | |
| 2483 | n = copy_to_iter(addr: skb->data + offset, bytes: copy, |
| 2484 | i: &msg->msg_iter); |
| 2485 | if (n != copy) { |
| 2486 | err = -EFAULT; |
| 2487 | goto out; |
| 2488 | } |
| 2489 | |
| 2490 | offset += copy; |
| 2491 | remaining_len -= copy; |
| 2492 | |
| 2493 | /* First a dmabuf_cmsg for # bytes copied to user |
| 2494 | * buffer. |
| 2495 | */ |
| 2496 | memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); |
| 2497 | dmabuf_cmsg.frag_size = copy; |
| 2498 | err = put_cmsg_notrunc(msg, SOL_SOCKET, |
| 2499 | SO_DEVMEM_LINEAR, |
| 2500 | len: sizeof(dmabuf_cmsg), |
| 2501 | data: &dmabuf_cmsg); |
| 2502 | if (err) |
| 2503 | goto out; |
| 2504 | |
| 2505 | sent += copy; |
| 2506 | |
| 2507 | if (remaining_len == 0) |
| 2508 | goto out; |
| 2509 | } |
| 2510 | |
| 2511 | /* after that, send information of dmabuf pages through a |
| 2512 | * sequence of cmsg |
| 2513 | */ |
| 2514 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| 2515 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| 2516 | struct net_iov *niov; |
| 2517 | u64 frag_offset; |
| 2518 | int end; |
| 2519 | |
| 2520 | /* !skb_frags_readable() should indicate that ALL the |
| 2521 | * frags in this skb are dmabuf net_iovs. We're checking |
| 2522 | * for that flag above, but also check individual frags |
| 2523 | * here. If the tcp stack is not setting |
| 2524 | * skb_frags_readable() correctly, we still don't want |
| 2525 | * to crash here. |
| 2526 | */ |
| 2527 | if (!skb_frag_net_iov(frag)) { |
| 2528 | net_err_ratelimited("Found non-dmabuf skb with net_iov" ); |
| 2529 | err = -ENODEV; |
| 2530 | goto out; |
| 2531 | } |
| 2532 | |
| 2533 | niov = skb_frag_net_iov(frag); |
| 2534 | if (!net_is_devmem_iov(niov)) { |
| 2535 | err = -ENODEV; |
| 2536 | goto out; |
| 2537 | } |
| 2538 | |
| 2539 | end = start + skb_frag_size(frag); |
| 2540 | copy = end - offset; |
| 2541 | |
| 2542 | if (copy > 0) { |
| 2543 | copy = min(copy, remaining_len); |
| 2544 | |
| 2545 | frag_offset = net_iov_virtual_addr(niov) + |
| 2546 | skb_frag_off(frag) + offset - |
| 2547 | start; |
| 2548 | dmabuf_cmsg.frag_offset = frag_offset; |
| 2549 | dmabuf_cmsg.frag_size = copy; |
| 2550 | err = tcp_xa_pool_refill(sk, p: &tcp_xa_pool, |
| 2551 | skb_shinfo(skb)->nr_frags - i); |
| 2552 | if (err) |
| 2553 | goto out; |
| 2554 | |
| 2555 | /* Will perform the exchange later */ |
| 2556 | dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; |
| 2557 | dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); |
| 2558 | |
| 2559 | offset += copy; |
| 2560 | remaining_len -= copy; |
| 2561 | |
| 2562 | err = put_cmsg_notrunc(msg, SOL_SOCKET, |
| 2563 | SO_DEVMEM_DMABUF, |
| 2564 | len: sizeof(dmabuf_cmsg), |
| 2565 | data: &dmabuf_cmsg); |
| 2566 | if (err) |
| 2567 | goto out; |
| 2568 | |
| 2569 | atomic_long_inc(v: &niov->pp_ref_count); |
| 2570 | tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); |
| 2571 | |
| 2572 | sent += copy; |
| 2573 | |
| 2574 | if (remaining_len == 0) |
| 2575 | goto out; |
| 2576 | } |
| 2577 | start = end; |
| 2578 | } |
| 2579 | |
| 2580 | tcp_xa_pool_commit(sk, p: &tcp_xa_pool); |
| 2581 | if (!remaining_len) |
| 2582 | goto out; |
| 2583 | |
| 2584 | /* if remaining_len is not satisfied yet, we need to go to the |
| 2585 | * next frag in the frag_list to satisfy remaining_len. |
| 2586 | */ |
| 2587 | skb = skb_shinfo(skb)->frag_list ?: skb->next; |
| 2588 | |
| 2589 | offset = offset - start; |
| 2590 | } while (skb); |
| 2591 | |
| 2592 | if (remaining_len) { |
| 2593 | err = -EFAULT; |
| 2594 | goto out; |
| 2595 | } |
| 2596 | |
| 2597 | out: |
| 2598 | tcp_xa_pool_commit(sk, p: &tcp_xa_pool); |
| 2599 | if (!sent) |
| 2600 | sent = err; |
| 2601 | |
| 2602 | return sent; |
| 2603 | } |
| 2604 | |
| 2605 | /* |
| 2606 | * This routine copies from a sock struct into the user buffer. |
| 2607 | * |
| 2608 | * Technical note: in 2.3 we work on _locked_ socket, so that |
| 2609 | * tricks with *seq access order and skb->users are not required. |
| 2610 | * Probably, code can be easily improved even more. |
| 2611 | */ |
| 2612 | |
| 2613 | static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, |
| 2614 | int flags, struct scm_timestamping_internal *tss, |
| 2615 | int *cmsg_flags) |
| 2616 | { |
| 2617 | struct tcp_sock *tp = tcp_sk(sk); |
| 2618 | int last_copied_dmabuf = -1; /* uninitialized */ |
| 2619 | int copied = 0; |
| 2620 | u32 peek_seq; |
| 2621 | u32 *seq; |
| 2622 | unsigned long used; |
| 2623 | int err; |
| 2624 | int target; /* Read at least this many bytes */ |
| 2625 | long timeo; |
| 2626 | struct sk_buff *skb, *last; |
| 2627 | u32 peek_offset = 0; |
| 2628 | u32 urg_hole = 0; |
| 2629 | |
| 2630 | err = -ENOTCONN; |
| 2631 | if (sk->sk_state == TCP_LISTEN) |
| 2632 | goto out; |
| 2633 | |
| 2634 | if (tp->recvmsg_inq) { |
| 2635 | *cmsg_flags = TCP_CMSG_INQ; |
| 2636 | msg->msg_get_inq = 1; |
| 2637 | } |
| 2638 | timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT); |
| 2639 | |
| 2640 | /* Urgent data needs to be handled specially. */ |
| 2641 | if (flags & MSG_OOB) |
| 2642 | goto recv_urg; |
| 2643 | |
| 2644 | if (unlikely(tp->repair)) { |
| 2645 | err = -EPERM; |
| 2646 | if (!(flags & MSG_PEEK)) |
| 2647 | goto out; |
| 2648 | |
| 2649 | if (tp->repair_queue == TCP_SEND_QUEUE) |
| 2650 | goto recv_sndq; |
| 2651 | |
| 2652 | err = -EINVAL; |
| 2653 | if (tp->repair_queue == TCP_NO_QUEUE) |
| 2654 | goto out; |
| 2655 | |
| 2656 | /* 'common' recv queue MSG_PEEK-ing */ |
| 2657 | } |
| 2658 | |
| 2659 | seq = &tp->copied_seq; |
| 2660 | if (flags & MSG_PEEK) { |
| 2661 | peek_offset = max(sk_peek_offset(sk, flags), 0); |
| 2662 | peek_seq = tp->copied_seq + peek_offset; |
| 2663 | seq = &peek_seq; |
| 2664 | } |
| 2665 | |
| 2666 | target = sock_rcvlowat(sk, waitall: flags & MSG_WAITALL, len); |
| 2667 | |
| 2668 | do { |
| 2669 | u32 offset; |
| 2670 | |
| 2671 | /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ |
| 2672 | if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { |
| 2673 | if (copied) |
| 2674 | break; |
| 2675 | if (signal_pending(current)) { |
| 2676 | copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; |
| 2677 | break; |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | /* Next get a buffer. */ |
| 2682 | |
| 2683 | last = skb_peek_tail(list_: &sk->sk_receive_queue); |
| 2684 | skb_queue_walk(&sk->sk_receive_queue, skb) { |
| 2685 | last = skb; |
| 2686 | /* Now that we have two receive queues this |
| 2687 | * shouldn't happen. |
| 2688 | */ |
| 2689 | if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), |
| 2690 | "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n" , |
| 2691 | *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, |
| 2692 | flags)) |
| 2693 | break; |
| 2694 | |
| 2695 | offset = *seq - TCP_SKB_CB(skb)->seq; |
| 2696 | if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { |
| 2697 | pr_err_once("%s: found a SYN, please report !\n" , __func__); |
| 2698 | offset--; |
| 2699 | } |
| 2700 | if (offset < skb->len) |
| 2701 | goto found_ok_skb; |
| 2702 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 2703 | goto found_fin_ok; |
| 2704 | WARN(!(flags & MSG_PEEK), |
| 2705 | "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n" , |
| 2706 | *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); |
| 2707 | } |
| 2708 | |
| 2709 | /* Well, if we have backlog, try to process it now yet. */ |
| 2710 | |
| 2711 | if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) |
| 2712 | break; |
| 2713 | |
| 2714 | if (copied) { |
| 2715 | if (!timeo || |
| 2716 | sk->sk_err || |
| 2717 | sk->sk_state == TCP_CLOSE || |
| 2718 | (sk->sk_shutdown & RCV_SHUTDOWN) || |
| 2719 | signal_pending(current)) |
| 2720 | break; |
| 2721 | } else { |
| 2722 | if (sock_flag(sk, flag: SOCK_DONE)) |
| 2723 | break; |
| 2724 | |
| 2725 | if (sk->sk_err) { |
| 2726 | copied = sock_error(sk); |
| 2727 | break; |
| 2728 | } |
| 2729 | |
| 2730 | if (sk->sk_shutdown & RCV_SHUTDOWN) |
| 2731 | break; |
| 2732 | |
| 2733 | if (sk->sk_state == TCP_CLOSE) { |
| 2734 | /* This occurs when user tries to read |
| 2735 | * from never connected socket. |
| 2736 | */ |
| 2737 | copied = -ENOTCONN; |
| 2738 | break; |
| 2739 | } |
| 2740 | |
| 2741 | if (!timeo) { |
| 2742 | copied = -EAGAIN; |
| 2743 | break; |
| 2744 | } |
| 2745 | |
| 2746 | if (signal_pending(current)) { |
| 2747 | copied = sock_intr_errno(timeo); |
| 2748 | break; |
| 2749 | } |
| 2750 | } |
| 2751 | |
| 2752 | if (copied >= target) { |
| 2753 | /* Do not sleep, just process backlog. */ |
| 2754 | __sk_flush_backlog(sk); |
| 2755 | } else { |
| 2756 | tcp_cleanup_rbuf(sk, copied); |
| 2757 | err = sk_wait_data(sk, timeo: &timeo, skb: last); |
| 2758 | if (err < 0) { |
| 2759 | err = copied ? : err; |
| 2760 | goto out; |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | if ((flags & MSG_PEEK) && |
| 2765 | (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { |
| 2766 | net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n" , |
| 2767 | current->comm, |
| 2768 | task_pid_nr(current)); |
| 2769 | peek_seq = tp->copied_seq + peek_offset; |
| 2770 | } |
| 2771 | continue; |
| 2772 | |
| 2773 | found_ok_skb: |
| 2774 | /* Ok so how much can we use? */ |
| 2775 | used = skb->len - offset; |
| 2776 | if (len < used) |
| 2777 | used = len; |
| 2778 | |
| 2779 | /* Do we have urgent data here? */ |
| 2780 | if (unlikely(tp->urg_data)) { |
| 2781 | u32 urg_offset = tp->urg_seq - *seq; |
| 2782 | if (urg_offset < used) { |
| 2783 | if (!urg_offset) { |
| 2784 | if (!sock_flag(sk, flag: SOCK_URGINLINE)) { |
| 2785 | WRITE_ONCE(*seq, *seq + 1); |
| 2786 | urg_hole++; |
| 2787 | offset++; |
| 2788 | used--; |
| 2789 | if (!used) |
| 2790 | goto skip_copy; |
| 2791 | } |
| 2792 | } else |
| 2793 | used = urg_offset; |
| 2794 | } |
| 2795 | } |
| 2796 | |
| 2797 | if (!(flags & MSG_TRUNC)) { |
| 2798 | if (last_copied_dmabuf != -1 && |
| 2799 | last_copied_dmabuf != !skb_frags_readable(skb)) |
| 2800 | break; |
| 2801 | |
| 2802 | if (skb_frags_readable(skb)) { |
| 2803 | err = skb_copy_datagram_msg(from: skb, offset, msg, |
| 2804 | size: used); |
| 2805 | if (err) { |
| 2806 | /* Exception. Bailout! */ |
| 2807 | if (!copied) |
| 2808 | copied = -EFAULT; |
| 2809 | break; |
| 2810 | } |
| 2811 | } else { |
| 2812 | if (!(flags & MSG_SOCK_DEVMEM)) { |
| 2813 | /* dmabuf skbs can only be received |
| 2814 | * with the MSG_SOCK_DEVMEM flag. |
| 2815 | */ |
| 2816 | if (!copied) |
| 2817 | copied = -EFAULT; |
| 2818 | |
| 2819 | break; |
| 2820 | } |
| 2821 | |
| 2822 | err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, |
| 2823 | remaining_len: used); |
| 2824 | if (err <= 0) { |
| 2825 | if (!copied) |
| 2826 | copied = -EFAULT; |
| 2827 | |
| 2828 | break; |
| 2829 | } |
| 2830 | used = err; |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | last_copied_dmabuf = !skb_frags_readable(skb); |
| 2835 | |
| 2836 | WRITE_ONCE(*seq, *seq + used); |
| 2837 | copied += used; |
| 2838 | len -= used; |
| 2839 | if (flags & MSG_PEEK) |
| 2840 | sk_peek_offset_fwd(sk, val: used); |
| 2841 | else |
| 2842 | sk_peek_offset_bwd(sk, val: used); |
| 2843 | tcp_rcv_space_adjust(sk); |
| 2844 | |
| 2845 | skip_copy: |
| 2846 | if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { |
| 2847 | WRITE_ONCE(tp->urg_data, 0); |
| 2848 | tcp_fast_path_check(sk); |
| 2849 | } |
| 2850 | |
| 2851 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
| 2852 | tcp_update_recv_tstamps(skb, tss); |
| 2853 | *cmsg_flags |= TCP_CMSG_TS; |
| 2854 | } |
| 2855 | |
| 2856 | if (used + offset < skb->len) |
| 2857 | continue; |
| 2858 | |
| 2859 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 2860 | goto found_fin_ok; |
| 2861 | if (!(flags & MSG_PEEK)) |
| 2862 | tcp_eat_recv_skb(sk, skb); |
| 2863 | continue; |
| 2864 | |
| 2865 | found_fin_ok: |
| 2866 | /* Process the FIN. */ |
| 2867 | WRITE_ONCE(*seq, *seq + 1); |
| 2868 | if (!(flags & MSG_PEEK)) |
| 2869 | tcp_eat_recv_skb(sk, skb); |
| 2870 | break; |
| 2871 | } while (len > 0); |
| 2872 | |
| 2873 | /* According to UNIX98, msg_name/msg_namelen are ignored |
| 2874 | * on connected socket. I was just happy when found this 8) --ANK |
| 2875 | */ |
| 2876 | |
| 2877 | /* Clean up data we have read: This will do ACK frames. */ |
| 2878 | tcp_cleanup_rbuf(sk, copied); |
| 2879 | return copied; |
| 2880 | |
| 2881 | out: |
| 2882 | return err; |
| 2883 | |
| 2884 | recv_urg: |
| 2885 | err = tcp_recv_urg(sk, msg, len, flags); |
| 2886 | goto out; |
| 2887 | |
| 2888 | recv_sndq: |
| 2889 | err = tcp_peek_sndq(sk, msg, len); |
| 2890 | goto out; |
| 2891 | } |
| 2892 | |
| 2893 | int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, |
| 2894 | int *addr_len) |
| 2895 | { |
| 2896 | int cmsg_flags = 0, ret; |
| 2897 | struct scm_timestamping_internal tss; |
| 2898 | |
| 2899 | if (unlikely(flags & MSG_ERRQUEUE)) |
| 2900 | return inet_recv_error(sk, msg, len, addr_len); |
| 2901 | |
| 2902 | if (sk_can_busy_loop(sk) && |
| 2903 | skb_queue_empty_lockless(list: &sk->sk_receive_queue) && |
| 2904 | sk->sk_state == TCP_ESTABLISHED) |
| 2905 | sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT); |
| 2906 | |
| 2907 | lock_sock(sk); |
| 2908 | ret = tcp_recvmsg_locked(sk, msg, len, flags, tss: &tss, cmsg_flags: &cmsg_flags); |
| 2909 | release_sock(sk); |
| 2910 | |
| 2911 | if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { |
| 2912 | if (cmsg_flags & TCP_CMSG_TS) |
| 2913 | tcp_recv_timestamp(msg, sk, tss: &tss); |
| 2914 | if (msg->msg_get_inq) { |
| 2915 | msg->msg_inq = tcp_inq_hint(sk); |
| 2916 | if (cmsg_flags & TCP_CMSG_INQ) |
| 2917 | put_cmsg(msg, SOL_TCP, TCP_CM_INQ, |
| 2918 | len: sizeof(msg->msg_inq), data: &msg->msg_inq); |
| 2919 | } |
| 2920 | } |
| 2921 | return ret; |
| 2922 | } |
| 2923 | EXPORT_IPV6_MOD(tcp_recvmsg); |
| 2924 | |
| 2925 | void tcp_set_state(struct sock *sk, int state) |
| 2926 | { |
| 2927 | int oldstate = sk->sk_state; |
| 2928 | |
| 2929 | /* We defined a new enum for TCP states that are exported in BPF |
| 2930 | * so as not force the internal TCP states to be frozen. The |
| 2931 | * following checks will detect if an internal state value ever |
| 2932 | * differs from the BPF value. If this ever happens, then we will |
| 2933 | * need to remap the internal value to the BPF value before calling |
| 2934 | * tcp_call_bpf_2arg. |
| 2935 | */ |
| 2936 | BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); |
| 2937 | BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); |
| 2938 | BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); |
| 2939 | BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); |
| 2940 | BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); |
| 2941 | BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); |
| 2942 | BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); |
| 2943 | BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); |
| 2944 | BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); |
| 2945 | BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); |
| 2946 | BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); |
| 2947 | BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); |
| 2948 | BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); |
| 2949 | BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); |
| 2950 | |
| 2951 | /* bpf uapi header bpf.h defines an anonymous enum with values |
| 2952 | * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux |
| 2953 | * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. |
| 2954 | * But clang built vmlinux does not have this enum in DWARF |
| 2955 | * since clang removes the above code before generating IR/debuginfo. |
| 2956 | * Let us explicitly emit the type debuginfo to ensure the |
| 2957 | * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF |
| 2958 | * regardless of which compiler is used. |
| 2959 | */ |
| 2960 | BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); |
| 2961 | |
| 2962 | if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) |
| 2963 | tcp_call_bpf_2arg(sk, op: BPF_SOCK_OPS_STATE_CB, arg1: oldstate, arg2: state); |
| 2964 | |
| 2965 | switch (state) { |
| 2966 | case TCP_ESTABLISHED: |
| 2967 | if (oldstate != TCP_ESTABLISHED) |
| 2968 | TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
| 2969 | break; |
| 2970 | case TCP_CLOSE_WAIT: |
| 2971 | if (oldstate == TCP_SYN_RECV) |
| 2972 | TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
| 2973 | break; |
| 2974 | |
| 2975 | case TCP_CLOSE: |
| 2976 | if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) |
| 2977 | TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); |
| 2978 | |
| 2979 | sk->sk_prot->unhash(sk); |
| 2980 | if (inet_csk(sk)->icsk_bind_hash && |
| 2981 | !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) |
| 2982 | inet_put_port(sk); |
| 2983 | fallthrough; |
| 2984 | default: |
| 2985 | if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) |
| 2986 | TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
| 2987 | } |
| 2988 | |
| 2989 | /* Change state AFTER socket is unhashed to avoid closed |
| 2990 | * socket sitting in hash tables. |
| 2991 | */ |
| 2992 | inet_sk_state_store(sk, newstate: state); |
| 2993 | } |
| 2994 | EXPORT_SYMBOL_GPL(tcp_set_state); |
| 2995 | |
| 2996 | /* |
| 2997 | * State processing on a close. This implements the state shift for |
| 2998 | * sending our FIN frame. Note that we only send a FIN for some |
| 2999 | * states. A shutdown() may have already sent the FIN, or we may be |
| 3000 | * closed. |
| 3001 | */ |
| 3002 | |
| 3003 | static const unsigned char new_state[16] = { |
| 3004 | /* current state: new state: action: */ |
| 3005 | [0 /* (Invalid) */] = TCP_CLOSE, |
| 3006 | [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
| 3007 | [TCP_SYN_SENT] = TCP_CLOSE, |
| 3008 | [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
| 3009 | [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, |
| 3010 | [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, |
| 3011 | [TCP_TIME_WAIT] = TCP_CLOSE, |
| 3012 | [TCP_CLOSE] = TCP_CLOSE, |
| 3013 | [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, |
| 3014 | [TCP_LAST_ACK] = TCP_LAST_ACK, |
| 3015 | [TCP_LISTEN] = TCP_CLOSE, |
| 3016 | [TCP_CLOSING] = TCP_CLOSING, |
| 3017 | [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ |
| 3018 | }; |
| 3019 | |
| 3020 | static int tcp_close_state(struct sock *sk) |
| 3021 | { |
| 3022 | int next = (int)new_state[sk->sk_state]; |
| 3023 | int ns = next & TCP_STATE_MASK; |
| 3024 | |
| 3025 | tcp_set_state(sk, ns); |
| 3026 | |
| 3027 | return next & TCP_ACTION_FIN; |
| 3028 | } |
| 3029 | |
| 3030 | /* |
| 3031 | * Shutdown the sending side of a connection. Much like close except |
| 3032 | * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). |
| 3033 | */ |
| 3034 | |
| 3035 | void tcp_shutdown(struct sock *sk, int how) |
| 3036 | { |
| 3037 | /* We need to grab some memory, and put together a FIN, |
| 3038 | * and then put it into the queue to be sent. |
| 3039 | * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. |
| 3040 | */ |
| 3041 | if (!(how & SEND_SHUTDOWN)) |
| 3042 | return; |
| 3043 | |
| 3044 | /* If we've already sent a FIN, or it's a closed state, skip this. */ |
| 3045 | if ((1 << sk->sk_state) & |
| 3046 | (TCPF_ESTABLISHED | TCPF_SYN_SENT | |
| 3047 | TCPF_CLOSE_WAIT)) { |
| 3048 | /* Clear out any half completed packets. FIN if needed. */ |
| 3049 | if (tcp_close_state(sk)) |
| 3050 | tcp_send_fin(sk); |
| 3051 | } |
| 3052 | } |
| 3053 | EXPORT_IPV6_MOD(tcp_shutdown); |
| 3054 | |
| 3055 | int tcp_orphan_count_sum(void) |
| 3056 | { |
| 3057 | int i, total = 0; |
| 3058 | |
| 3059 | for_each_possible_cpu(i) |
| 3060 | total += per_cpu(tcp_orphan_count, i); |
| 3061 | |
| 3062 | return max(total, 0); |
| 3063 | } |
| 3064 | |
| 3065 | static int tcp_orphan_cache; |
| 3066 | static struct timer_list tcp_orphan_timer; |
| 3067 | #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) |
| 3068 | |
| 3069 | static void tcp_orphan_update(struct timer_list *unused) |
| 3070 | { |
| 3071 | WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); |
| 3072 | mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD); |
| 3073 | } |
| 3074 | |
| 3075 | static bool tcp_too_many_orphans(int shift) |
| 3076 | { |
| 3077 | return READ_ONCE(tcp_orphan_cache) << shift > |
| 3078 | READ_ONCE(sysctl_tcp_max_orphans); |
| 3079 | } |
| 3080 | |
| 3081 | static bool tcp_out_of_memory(const struct sock *sk) |
| 3082 | { |
| 3083 | if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && |
| 3084 | sk_memory_allocated(sk) > sk_prot_mem_limits(sk, index: 2)) |
| 3085 | return true; |
| 3086 | return false; |
| 3087 | } |
| 3088 | |
| 3089 | bool tcp_check_oom(const struct sock *sk, int shift) |
| 3090 | { |
| 3091 | bool too_many_orphans, out_of_socket_memory; |
| 3092 | |
| 3093 | too_many_orphans = tcp_too_many_orphans(shift); |
| 3094 | out_of_socket_memory = tcp_out_of_memory(sk); |
| 3095 | |
| 3096 | if (too_many_orphans) |
| 3097 | net_info_ratelimited("too many orphaned sockets\n" ); |
| 3098 | if (out_of_socket_memory) |
| 3099 | net_info_ratelimited("out of memory -- consider tuning tcp_mem\n" ); |
| 3100 | return too_many_orphans || out_of_socket_memory; |
| 3101 | } |
| 3102 | |
| 3103 | void __tcp_close(struct sock *sk, long timeout) |
| 3104 | { |
| 3105 | struct sk_buff *skb; |
| 3106 | int data_was_unread = 0; |
| 3107 | int state; |
| 3108 | |
| 3109 | WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
| 3110 | |
| 3111 | if (sk->sk_state == TCP_LISTEN) { |
| 3112 | tcp_set_state(sk, TCP_CLOSE); |
| 3113 | |
| 3114 | /* Special case. */ |
| 3115 | inet_csk_listen_stop(sk); |
| 3116 | |
| 3117 | goto adjudge_to_death; |
| 3118 | } |
| 3119 | |
| 3120 | /* We need to flush the recv. buffs. We do this only on the |
| 3121 | * descriptor close, not protocol-sourced closes, because the |
| 3122 | * reader process may not have drained the data yet! |
| 3123 | */ |
| 3124 | while ((skb = __skb_dequeue(list: &sk->sk_receive_queue)) != NULL) { |
| 3125 | u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; |
| 3126 | |
| 3127 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 3128 | len--; |
| 3129 | data_was_unread += len; |
| 3130 | __kfree_skb(skb); |
| 3131 | } |
| 3132 | |
| 3133 | /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ |
| 3134 | if (sk->sk_state == TCP_CLOSE) |
| 3135 | goto adjudge_to_death; |
| 3136 | |
| 3137 | /* As outlined in RFC 2525, section 2.17, we send a RST here because |
| 3138 | * data was lost. To witness the awful effects of the old behavior of |
| 3139 | * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk |
| 3140 | * GET in an FTP client, suspend the process, wait for the client to |
| 3141 | * advertise a zero window, then kill -9 the FTP client, wheee... |
| 3142 | * Note: timeout is always zero in such a case. |
| 3143 | */ |
| 3144 | if (unlikely(tcp_sk(sk)->repair)) { |
| 3145 | sk->sk_prot->disconnect(sk, 0); |
| 3146 | } else if (data_was_unread) { |
| 3147 | /* Unread data was tossed, zap the connection. */ |
| 3148 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); |
| 3149 | tcp_set_state(sk, TCP_CLOSE); |
| 3150 | tcp_send_active_reset(sk, priority: sk->sk_allocation, |
| 3151 | reason: SK_RST_REASON_TCP_ABORT_ON_CLOSE); |
| 3152 | } else if (sock_flag(sk, flag: SOCK_LINGER) && !sk->sk_lingertime) { |
| 3153 | /* Check zero linger _after_ checking for unread data. */ |
| 3154 | sk->sk_prot->disconnect(sk, 0); |
| 3155 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); |
| 3156 | } else if (tcp_close_state(sk)) { |
| 3157 | /* We FIN if the application ate all the data before |
| 3158 | * zapping the connection. |
| 3159 | */ |
| 3160 | |
| 3161 | /* RED-PEN. Formally speaking, we have broken TCP state |
| 3162 | * machine. State transitions: |
| 3163 | * |
| 3164 | * TCP_ESTABLISHED -> TCP_FIN_WAIT1 |
| 3165 | * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) |
| 3166 | * TCP_CLOSE_WAIT -> TCP_LAST_ACK |
| 3167 | * |
| 3168 | * are legal only when FIN has been sent (i.e. in window), |
| 3169 | * rather than queued out of window. Purists blame. |
| 3170 | * |
| 3171 | * F.e. "RFC state" is ESTABLISHED, |
| 3172 | * if Linux state is FIN-WAIT-1, but FIN is still not sent. |
| 3173 | * |
| 3174 | * The visible declinations are that sometimes |
| 3175 | * we enter time-wait state, when it is not required really |
| 3176 | * (harmless), do not send active resets, when they are |
| 3177 | * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when |
| 3178 | * they look as CLOSING or LAST_ACK for Linux) |
| 3179 | * Probably, I missed some more holelets. |
| 3180 | * --ANK |
| 3181 | * XXX (TFO) - To start off we don't support SYN+ACK+FIN |
| 3182 | * in a single packet! (May consider it later but will |
| 3183 | * probably need API support or TCP_CORK SYN-ACK until |
| 3184 | * data is written and socket is closed.) |
| 3185 | */ |
| 3186 | tcp_send_fin(sk); |
| 3187 | } |
| 3188 | |
| 3189 | sk_stream_wait_close(sk, timeo_p: timeout); |
| 3190 | |
| 3191 | adjudge_to_death: |
| 3192 | state = sk->sk_state; |
| 3193 | sock_hold(sk); |
| 3194 | sock_orphan(sk); |
| 3195 | |
| 3196 | local_bh_disable(); |
| 3197 | bh_lock_sock(sk); |
| 3198 | /* remove backlog if any, without releasing ownership. */ |
| 3199 | __release_sock(sk); |
| 3200 | |
| 3201 | this_cpu_inc(tcp_orphan_count); |
| 3202 | |
| 3203 | /* Have we already been destroyed by a softirq or backlog? */ |
| 3204 | if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) |
| 3205 | goto out; |
| 3206 | |
| 3207 | /* This is a (useful) BSD violating of the RFC. There is a |
| 3208 | * problem with TCP as specified in that the other end could |
| 3209 | * keep a socket open forever with no application left this end. |
| 3210 | * We use a 1 minute timeout (about the same as BSD) then kill |
| 3211 | * our end. If they send after that then tough - BUT: long enough |
| 3212 | * that we won't make the old 4*rto = almost no time - whoops |
| 3213 | * reset mistake. |
| 3214 | * |
| 3215 | * Nope, it was not mistake. It is really desired behaviour |
| 3216 | * f.e. on http servers, when such sockets are useless, but |
| 3217 | * consume significant resources. Let's do it with special |
| 3218 | * linger2 option. --ANK |
| 3219 | */ |
| 3220 | |
| 3221 | if (sk->sk_state == TCP_FIN_WAIT2) { |
| 3222 | struct tcp_sock *tp = tcp_sk(sk); |
| 3223 | if (READ_ONCE(tp->linger2) < 0) { |
| 3224 | tcp_set_state(sk, TCP_CLOSE); |
| 3225 | tcp_send_active_reset(sk, GFP_ATOMIC, |
| 3226 | reason: SK_RST_REASON_TCP_ABORT_ON_LINGER); |
| 3227 | __NET_INC_STATS(sock_net(sk), |
| 3228 | LINUX_MIB_TCPABORTONLINGER); |
| 3229 | } else { |
| 3230 | const int tmo = tcp_fin_time(sk); |
| 3231 | |
| 3232 | if (tmo > TCP_TIMEWAIT_LEN) { |
| 3233 | tcp_reset_keepalive_timer(sk, |
| 3234 | timeout: tmo - TCP_TIMEWAIT_LEN); |
| 3235 | } else { |
| 3236 | tcp_time_wait(sk, state: TCP_FIN_WAIT2, timeo: tmo); |
| 3237 | goto out; |
| 3238 | } |
| 3239 | } |
| 3240 | } |
| 3241 | if (sk->sk_state != TCP_CLOSE) { |
| 3242 | if (tcp_check_oom(sk, shift: 0)) { |
| 3243 | tcp_set_state(sk, TCP_CLOSE); |
| 3244 | tcp_send_active_reset(sk, GFP_ATOMIC, |
| 3245 | reason: SK_RST_REASON_TCP_ABORT_ON_MEMORY); |
| 3246 | __NET_INC_STATS(sock_net(sk), |
| 3247 | LINUX_MIB_TCPABORTONMEMORY); |
| 3248 | } else if (!check_net(net: sock_net(sk))) { |
| 3249 | /* Not possible to send reset; just close */ |
| 3250 | tcp_set_state(sk, TCP_CLOSE); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | if (sk->sk_state == TCP_CLOSE) { |
| 3255 | struct request_sock *req; |
| 3256 | |
| 3257 | req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, |
| 3258 | lockdep_sock_is_held(sk)); |
| 3259 | /* We could get here with a non-NULL req if the socket is |
| 3260 | * aborted (e.g., closed with unread data) before 3WHS |
| 3261 | * finishes. |
| 3262 | */ |
| 3263 | if (req) |
| 3264 | reqsk_fastopen_remove(sk, req, reset: false); |
| 3265 | inet_csk_destroy_sock(sk); |
| 3266 | } |
| 3267 | /* Otherwise, socket is reprieved until protocol close. */ |
| 3268 | |
| 3269 | out: |
| 3270 | bh_unlock_sock(sk); |
| 3271 | local_bh_enable(); |
| 3272 | } |
| 3273 | |
| 3274 | void tcp_close(struct sock *sk, long timeout) |
| 3275 | { |
| 3276 | lock_sock(sk); |
| 3277 | __tcp_close(sk, timeout); |
| 3278 | release_sock(sk); |
| 3279 | if (!sk->sk_net_refcnt) |
| 3280 | inet_csk_clear_xmit_timers_sync(sk); |
| 3281 | sock_put(sk); |
| 3282 | } |
| 3283 | EXPORT_SYMBOL(tcp_close); |
| 3284 | |
| 3285 | /* These states need RST on ABORT according to RFC793 */ |
| 3286 | |
| 3287 | static inline bool tcp_need_reset(int state) |
| 3288 | { |
| 3289 | return (1 << state) & |
| 3290 | (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | |
| 3291 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); |
| 3292 | } |
| 3293 | |
| 3294 | static void tcp_rtx_queue_purge(struct sock *sk) |
| 3295 | { |
| 3296 | struct rb_node *p = rb_first(&sk->tcp_rtx_queue); |
| 3297 | |
| 3298 | tcp_sk(sk)->highest_sack = NULL; |
| 3299 | while (p) { |
| 3300 | struct sk_buff *skb = rb_to_skb(p); |
| 3301 | |
| 3302 | p = rb_next(p); |
| 3303 | /* Since we are deleting whole queue, no need to |
| 3304 | * list_del(&skb->tcp_tsorted_anchor) |
| 3305 | */ |
| 3306 | tcp_rtx_queue_unlink(skb, sk); |
| 3307 | tcp_wmem_free_skb(sk, skb); |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | void tcp_write_queue_purge(struct sock *sk) |
| 3312 | { |
| 3313 | struct sk_buff *skb; |
| 3314 | |
| 3315 | tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY); |
| 3316 | while ((skb = __skb_dequeue(list: &sk->sk_write_queue)) != NULL) { |
| 3317 | tcp_skb_tsorted_anchor_cleanup(skb); |
| 3318 | tcp_wmem_free_skb(sk, skb); |
| 3319 | } |
| 3320 | tcp_rtx_queue_purge(sk); |
| 3321 | INIT_LIST_HEAD(list: &tcp_sk(sk)->tsorted_sent_queue); |
| 3322 | tcp_clear_all_retrans_hints(tcp_sk(sk)); |
| 3323 | tcp_sk(sk)->packets_out = 0; |
| 3324 | inet_csk(sk)->icsk_backoff = 0; |
| 3325 | } |
| 3326 | |
| 3327 | int tcp_disconnect(struct sock *sk, int flags) |
| 3328 | { |
| 3329 | struct inet_sock *inet = inet_sk(sk); |
| 3330 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 3331 | struct tcp_sock *tp = tcp_sk(sk); |
| 3332 | int old_state = sk->sk_state; |
| 3333 | u32 seq; |
| 3334 | |
| 3335 | if (old_state != TCP_CLOSE) |
| 3336 | tcp_set_state(sk, TCP_CLOSE); |
| 3337 | |
| 3338 | /* ABORT function of RFC793 */ |
| 3339 | if (old_state == TCP_LISTEN) { |
| 3340 | inet_csk_listen_stop(sk); |
| 3341 | } else if (unlikely(tp->repair)) { |
| 3342 | WRITE_ONCE(sk->sk_err, ECONNABORTED); |
| 3343 | } else if (tcp_need_reset(state: old_state)) { |
| 3344 | tcp_send_active_reset(sk, priority: gfp_any(), reason: SK_RST_REASON_TCP_STATE); |
| 3345 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
| 3346 | } else if (tp->snd_nxt != tp->write_seq && |
| 3347 | (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { |
| 3348 | /* The last check adjusts for discrepancy of Linux wrt. RFC |
| 3349 | * states |
| 3350 | */ |
| 3351 | tcp_send_active_reset(sk, priority: gfp_any(), |
| 3352 | reason: SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); |
| 3353 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
| 3354 | } else if (old_state == TCP_SYN_SENT) |
| 3355 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
| 3356 | |
| 3357 | tcp_clear_xmit_timers(sk); |
| 3358 | __skb_queue_purge(list: &sk->sk_receive_queue); |
| 3359 | WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); |
| 3360 | WRITE_ONCE(tp->urg_data, 0); |
| 3361 | sk_set_peek_off(sk, val: -1); |
| 3362 | tcp_write_queue_purge(sk); |
| 3363 | tcp_fastopen_active_disable_ofo_check(sk); |
| 3364 | skb_rbtree_purge(root: &tp->out_of_order_queue); |
| 3365 | |
| 3366 | inet->inet_dport = 0; |
| 3367 | |
| 3368 | inet_bhash2_reset_saddr(sk); |
| 3369 | |
| 3370 | WRITE_ONCE(sk->sk_shutdown, 0); |
| 3371 | sock_reset_flag(sk, flag: SOCK_DONE); |
| 3372 | tp->srtt_us = 0; |
| 3373 | tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); |
| 3374 | tp->rcv_rtt_last_tsecr = 0; |
| 3375 | |
| 3376 | seq = tp->write_seq + tp->max_window + 2; |
| 3377 | if (!seq) |
| 3378 | seq = 1; |
| 3379 | WRITE_ONCE(tp->write_seq, seq); |
| 3380 | |
| 3381 | icsk->icsk_backoff = 0; |
| 3382 | icsk->icsk_probes_out = 0; |
| 3383 | icsk->icsk_probes_tstamp = 0; |
| 3384 | icsk->icsk_rto = TCP_TIMEOUT_INIT; |
| 3385 | WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); |
| 3386 | WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); |
| 3387 | tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
| 3388 | tcp_snd_cwnd_set(tp, TCP_INIT_CWND); |
| 3389 | tp->snd_cwnd_cnt = 0; |
| 3390 | tp->is_cwnd_limited = 0; |
| 3391 | tp->max_packets_out = 0; |
| 3392 | tp->window_clamp = 0; |
| 3393 | tp->delivered = 0; |
| 3394 | tp->delivered_ce = 0; |
| 3395 | if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) |
| 3396 | icsk->icsk_ca_ops->release(sk); |
| 3397 | memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); |
| 3398 | icsk->icsk_ca_initialized = 0; |
| 3399 | tcp_set_ca_state(sk, ca_state: TCP_CA_Open); |
| 3400 | tp->is_sack_reneg = 0; |
| 3401 | tcp_clear_retrans(tp); |
| 3402 | tp->total_retrans = 0; |
| 3403 | inet_csk_delack_init(sk); |
| 3404 | /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 |
| 3405 | * issue in __tcp_select_window() |
| 3406 | */ |
| 3407 | icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; |
| 3408 | memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); |
| 3409 | __sk_dst_reset(sk); |
| 3410 | dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); |
| 3411 | tcp_saved_syn_free(tp); |
| 3412 | tp->compressed_ack = 0; |
| 3413 | tp->segs_in = 0; |
| 3414 | tp->segs_out = 0; |
| 3415 | tp->bytes_sent = 0; |
| 3416 | tp->bytes_acked = 0; |
| 3417 | tp->bytes_received = 0; |
| 3418 | tp->bytes_retrans = 0; |
| 3419 | tp->data_segs_in = 0; |
| 3420 | tp->data_segs_out = 0; |
| 3421 | tp->duplicate_sack[0].start_seq = 0; |
| 3422 | tp->duplicate_sack[0].end_seq = 0; |
| 3423 | tp->dsack_dups = 0; |
| 3424 | tp->reord_seen = 0; |
| 3425 | tp->retrans_out = 0; |
| 3426 | tp->sacked_out = 0; |
| 3427 | tp->tlp_high_seq = 0; |
| 3428 | tp->last_oow_ack_time = 0; |
| 3429 | tp->plb_rehash = 0; |
| 3430 | /* There's a bubble in the pipe until at least the first ACK. */ |
| 3431 | tp->app_limited = ~0U; |
| 3432 | tp->rate_app_limited = 1; |
| 3433 | tp->rack.mstamp = 0; |
| 3434 | tp->rack.advanced = 0; |
| 3435 | tp->rack.reo_wnd_steps = 1; |
| 3436 | tp->rack.last_delivered = 0; |
| 3437 | tp->rack.reo_wnd_persist = 0; |
| 3438 | tp->rack.dsack_seen = 0; |
| 3439 | tp->syn_data_acked = 0; |
| 3440 | tp->syn_fastopen_child = 0; |
| 3441 | tp->rx_opt.saw_tstamp = 0; |
| 3442 | tp->rx_opt.dsack = 0; |
| 3443 | tp->rx_opt.num_sacks = 0; |
| 3444 | tp->rcv_ooopack = 0; |
| 3445 | |
| 3446 | |
| 3447 | /* Clean up fastopen related fields */ |
| 3448 | tcp_free_fastopen_req(tp); |
| 3449 | inet_clear_bit(DEFER_CONNECT, sk); |
| 3450 | tp->fastopen_client_fail = 0; |
| 3451 | |
| 3452 | WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); |
| 3453 | |
| 3454 | if (sk->sk_frag.page) { |
| 3455 | put_page(page: sk->sk_frag.page); |
| 3456 | sk->sk_frag.page = NULL; |
| 3457 | sk->sk_frag.offset = 0; |
| 3458 | } |
| 3459 | sk_error_report(sk); |
| 3460 | return 0; |
| 3461 | } |
| 3462 | EXPORT_SYMBOL(tcp_disconnect); |
| 3463 | |
| 3464 | static inline bool tcp_can_repair_sock(const struct sock *sk) |
| 3465 | { |
| 3466 | return sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN) && |
| 3467 | (sk->sk_state != TCP_LISTEN); |
| 3468 | } |
| 3469 | |
| 3470 | static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) |
| 3471 | { |
| 3472 | struct tcp_repair_window opt; |
| 3473 | |
| 3474 | if (!tp->repair) |
| 3475 | return -EPERM; |
| 3476 | |
| 3477 | if (len != sizeof(opt)) |
| 3478 | return -EINVAL; |
| 3479 | |
| 3480 | if (copy_from_sockptr(dst: &opt, src: optbuf, size: sizeof(opt))) |
| 3481 | return -EFAULT; |
| 3482 | |
| 3483 | if (opt.max_window < opt.snd_wnd) |
| 3484 | return -EINVAL; |
| 3485 | |
| 3486 | if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) |
| 3487 | return -EINVAL; |
| 3488 | |
| 3489 | if (after(opt.rcv_wup, tp->rcv_nxt)) |
| 3490 | return -EINVAL; |
| 3491 | |
| 3492 | tp->snd_wl1 = opt.snd_wl1; |
| 3493 | tp->snd_wnd = opt.snd_wnd; |
| 3494 | tp->max_window = opt.max_window; |
| 3495 | |
| 3496 | tp->rcv_wnd = opt.rcv_wnd; |
| 3497 | tp->rcv_wup = opt.rcv_wup; |
| 3498 | |
| 3499 | return 0; |
| 3500 | } |
| 3501 | |
| 3502 | static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, |
| 3503 | unsigned int len) |
| 3504 | { |
| 3505 | struct tcp_sock *tp = tcp_sk(sk); |
| 3506 | struct tcp_repair_opt opt; |
| 3507 | size_t offset = 0; |
| 3508 | |
| 3509 | while (len >= sizeof(opt)) { |
| 3510 | if (copy_from_sockptr_offset(dst: &opt, src: optbuf, offset, size: sizeof(opt))) |
| 3511 | return -EFAULT; |
| 3512 | |
| 3513 | offset += sizeof(opt); |
| 3514 | len -= sizeof(opt); |
| 3515 | |
| 3516 | switch (opt.opt_code) { |
| 3517 | case TCPOPT_MSS: |
| 3518 | tp->rx_opt.mss_clamp = opt.opt_val; |
| 3519 | tcp_mtup_init(sk); |
| 3520 | break; |
| 3521 | case TCPOPT_WINDOW: |
| 3522 | { |
| 3523 | u16 snd_wscale = opt.opt_val & 0xFFFF; |
| 3524 | u16 rcv_wscale = opt.opt_val >> 16; |
| 3525 | |
| 3526 | if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) |
| 3527 | return -EFBIG; |
| 3528 | |
| 3529 | tp->rx_opt.snd_wscale = snd_wscale; |
| 3530 | tp->rx_opt.rcv_wscale = rcv_wscale; |
| 3531 | tp->rx_opt.wscale_ok = 1; |
| 3532 | } |
| 3533 | break; |
| 3534 | case TCPOPT_SACK_PERM: |
| 3535 | if (opt.opt_val != 0) |
| 3536 | return -EINVAL; |
| 3537 | |
| 3538 | tp->rx_opt.sack_ok |= TCP_SACK_SEEN; |
| 3539 | break; |
| 3540 | case TCPOPT_TIMESTAMP: |
| 3541 | if (opt.opt_val != 0) |
| 3542 | return -EINVAL; |
| 3543 | |
| 3544 | tp->rx_opt.tstamp_ok = 1; |
| 3545 | break; |
| 3546 | } |
| 3547 | } |
| 3548 | |
| 3549 | return 0; |
| 3550 | } |
| 3551 | |
| 3552 | DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); |
| 3553 | EXPORT_IPV6_MOD(tcp_tx_delay_enabled); |
| 3554 | |
| 3555 | static void tcp_enable_tx_delay(void) |
| 3556 | { |
| 3557 | if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { |
| 3558 | static int __tcp_tx_delay_enabled = 0; |
| 3559 | |
| 3560 | if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { |
| 3561 | static_branch_enable(&tcp_tx_delay_enabled); |
| 3562 | pr_info("TCP_TX_DELAY enabled\n" ); |
| 3563 | } |
| 3564 | } |
| 3565 | } |
| 3566 | |
| 3567 | /* When set indicates to always queue non-full frames. Later the user clears |
| 3568 | * this option and we transmit any pending partial frames in the queue. This is |
| 3569 | * meant to be used alongside sendfile() to get properly filled frames when the |
| 3570 | * user (for example) must write out headers with a write() call first and then |
| 3571 | * use sendfile to send out the data parts. |
| 3572 | * |
| 3573 | * TCP_CORK can be set together with TCP_NODELAY and it is stronger than |
| 3574 | * TCP_NODELAY. |
| 3575 | */ |
| 3576 | void __tcp_sock_set_cork(struct sock *sk, bool on) |
| 3577 | { |
| 3578 | struct tcp_sock *tp = tcp_sk(sk); |
| 3579 | |
| 3580 | if (on) { |
| 3581 | tp->nonagle |= TCP_NAGLE_CORK; |
| 3582 | } else { |
| 3583 | tp->nonagle &= ~TCP_NAGLE_CORK; |
| 3584 | if (tp->nonagle & TCP_NAGLE_OFF) |
| 3585 | tp->nonagle |= TCP_NAGLE_PUSH; |
| 3586 | tcp_push_pending_frames(sk); |
| 3587 | } |
| 3588 | } |
| 3589 | |
| 3590 | void tcp_sock_set_cork(struct sock *sk, bool on) |
| 3591 | { |
| 3592 | lock_sock(sk); |
| 3593 | __tcp_sock_set_cork(sk, on); |
| 3594 | release_sock(sk); |
| 3595 | } |
| 3596 | EXPORT_SYMBOL(tcp_sock_set_cork); |
| 3597 | |
| 3598 | /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is |
| 3599 | * remembered, but it is not activated until cork is cleared. |
| 3600 | * |
| 3601 | * However, when TCP_NODELAY is set we make an explicit push, which overrides |
| 3602 | * even TCP_CORK for currently queued segments. |
| 3603 | */ |
| 3604 | void __tcp_sock_set_nodelay(struct sock *sk, bool on) |
| 3605 | { |
| 3606 | if (on) { |
| 3607 | tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; |
| 3608 | tcp_push_pending_frames(sk); |
| 3609 | } else { |
| 3610 | tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; |
| 3611 | } |
| 3612 | } |
| 3613 | |
| 3614 | void tcp_sock_set_nodelay(struct sock *sk) |
| 3615 | { |
| 3616 | lock_sock(sk); |
| 3617 | __tcp_sock_set_nodelay(sk, on: true); |
| 3618 | release_sock(sk); |
| 3619 | } |
| 3620 | EXPORT_SYMBOL(tcp_sock_set_nodelay); |
| 3621 | |
| 3622 | static void __tcp_sock_set_quickack(struct sock *sk, int val) |
| 3623 | { |
| 3624 | if (!val) { |
| 3625 | inet_csk_enter_pingpong_mode(sk); |
| 3626 | return; |
| 3627 | } |
| 3628 | |
| 3629 | inet_csk_exit_pingpong_mode(sk); |
| 3630 | if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && |
| 3631 | inet_csk_ack_scheduled(sk)) { |
| 3632 | inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; |
| 3633 | tcp_cleanup_rbuf(sk, copied: 1); |
| 3634 | if (!(val & 1)) |
| 3635 | inet_csk_enter_pingpong_mode(sk); |
| 3636 | } |
| 3637 | } |
| 3638 | |
| 3639 | void tcp_sock_set_quickack(struct sock *sk, int val) |
| 3640 | { |
| 3641 | lock_sock(sk); |
| 3642 | __tcp_sock_set_quickack(sk, val); |
| 3643 | release_sock(sk); |
| 3644 | } |
| 3645 | EXPORT_SYMBOL(tcp_sock_set_quickack); |
| 3646 | |
| 3647 | int tcp_sock_set_syncnt(struct sock *sk, int val) |
| 3648 | { |
| 3649 | if (val < 1 || val > MAX_TCP_SYNCNT) |
| 3650 | return -EINVAL; |
| 3651 | |
| 3652 | WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); |
| 3653 | return 0; |
| 3654 | } |
| 3655 | EXPORT_SYMBOL(tcp_sock_set_syncnt); |
| 3656 | |
| 3657 | int tcp_sock_set_user_timeout(struct sock *sk, int val) |
| 3658 | { |
| 3659 | /* Cap the max time in ms TCP will retry or probe the window |
| 3660 | * before giving up and aborting (ETIMEDOUT) a connection. |
| 3661 | */ |
| 3662 | if (val < 0) |
| 3663 | return -EINVAL; |
| 3664 | |
| 3665 | WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); |
| 3666 | return 0; |
| 3667 | } |
| 3668 | EXPORT_SYMBOL(tcp_sock_set_user_timeout); |
| 3669 | |
| 3670 | int tcp_sock_set_keepidle_locked(struct sock *sk, int val) |
| 3671 | { |
| 3672 | struct tcp_sock *tp = tcp_sk(sk); |
| 3673 | |
| 3674 | if (val < 1 || val > MAX_TCP_KEEPIDLE) |
| 3675 | return -EINVAL; |
| 3676 | |
| 3677 | /* Paired with WRITE_ONCE() in keepalive_time_when() */ |
| 3678 | WRITE_ONCE(tp->keepalive_time, val * HZ); |
| 3679 | if (sock_flag(sk, flag: SOCK_KEEPOPEN) && |
| 3680 | !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { |
| 3681 | u32 elapsed = keepalive_time_elapsed(tp); |
| 3682 | |
| 3683 | if (tp->keepalive_time > elapsed) |
| 3684 | elapsed = tp->keepalive_time - elapsed; |
| 3685 | else |
| 3686 | elapsed = 0; |
| 3687 | tcp_reset_keepalive_timer(sk, timeout: elapsed); |
| 3688 | } |
| 3689 | |
| 3690 | return 0; |
| 3691 | } |
| 3692 | |
| 3693 | int tcp_sock_set_keepidle(struct sock *sk, int val) |
| 3694 | { |
| 3695 | int err; |
| 3696 | |
| 3697 | lock_sock(sk); |
| 3698 | err = tcp_sock_set_keepidle_locked(sk, val); |
| 3699 | release_sock(sk); |
| 3700 | return err; |
| 3701 | } |
| 3702 | EXPORT_SYMBOL(tcp_sock_set_keepidle); |
| 3703 | |
| 3704 | int tcp_sock_set_keepintvl(struct sock *sk, int val) |
| 3705 | { |
| 3706 | if (val < 1 || val > MAX_TCP_KEEPINTVL) |
| 3707 | return -EINVAL; |
| 3708 | |
| 3709 | WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); |
| 3710 | return 0; |
| 3711 | } |
| 3712 | EXPORT_SYMBOL(tcp_sock_set_keepintvl); |
| 3713 | |
| 3714 | int tcp_sock_set_keepcnt(struct sock *sk, int val) |
| 3715 | { |
| 3716 | if (val < 1 || val > MAX_TCP_KEEPCNT) |
| 3717 | return -EINVAL; |
| 3718 | |
| 3719 | /* Paired with READ_ONCE() in keepalive_probes() */ |
| 3720 | WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); |
| 3721 | return 0; |
| 3722 | } |
| 3723 | EXPORT_SYMBOL(tcp_sock_set_keepcnt); |
| 3724 | |
| 3725 | int tcp_set_window_clamp(struct sock *sk, int val) |
| 3726 | { |
| 3727 | u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; |
| 3728 | struct tcp_sock *tp = tcp_sk(sk); |
| 3729 | |
| 3730 | if (!val) { |
| 3731 | if (sk->sk_state != TCP_CLOSE) |
| 3732 | return -EINVAL; |
| 3733 | WRITE_ONCE(tp->window_clamp, 0); |
| 3734 | return 0; |
| 3735 | } |
| 3736 | |
| 3737 | old_window_clamp = tp->window_clamp; |
| 3738 | new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); |
| 3739 | |
| 3740 | if (new_window_clamp == old_window_clamp) |
| 3741 | return 0; |
| 3742 | |
| 3743 | WRITE_ONCE(tp->window_clamp, new_window_clamp); |
| 3744 | |
| 3745 | /* Need to apply the reserved mem provisioning only |
| 3746 | * when shrinking the window clamp. |
| 3747 | */ |
| 3748 | if (new_window_clamp < old_window_clamp) { |
| 3749 | __tcp_adjust_rcv_ssthresh(sk, new_ssthresh: new_window_clamp); |
| 3750 | } else { |
| 3751 | new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); |
| 3752 | tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); |
| 3753 | } |
| 3754 | return 0; |
| 3755 | } |
| 3756 | |
| 3757 | /* |
| 3758 | * Socket option code for TCP. |
| 3759 | */ |
| 3760 | int do_tcp_setsockopt(struct sock *sk, int level, int optname, |
| 3761 | sockptr_t optval, unsigned int optlen) |
| 3762 | { |
| 3763 | struct tcp_sock *tp = tcp_sk(sk); |
| 3764 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 3765 | struct net *net = sock_net(sk); |
| 3766 | int val; |
| 3767 | int err = 0; |
| 3768 | |
| 3769 | /* These are data/string values, all the others are ints */ |
| 3770 | switch (optname) { |
| 3771 | case TCP_CONGESTION: { |
| 3772 | char name[TCP_CA_NAME_MAX]; |
| 3773 | |
| 3774 | if (optlen < 1) |
| 3775 | return -EINVAL; |
| 3776 | |
| 3777 | val = strncpy_from_sockptr(dst: name, src: optval, |
| 3778 | min_t(long, TCP_CA_NAME_MAX-1, optlen)); |
| 3779 | if (val < 0) |
| 3780 | return -EFAULT; |
| 3781 | name[val] = 0; |
| 3782 | |
| 3783 | sockopt_lock_sock(sk); |
| 3784 | err = tcp_set_congestion_control(sk, name, load: !has_current_bpf_ctx(), |
| 3785 | cap_net_admin: sockopt_ns_capable(ns: sock_net(sk)->user_ns, |
| 3786 | CAP_NET_ADMIN)); |
| 3787 | sockopt_release_sock(sk); |
| 3788 | return err; |
| 3789 | } |
| 3790 | case TCP_ULP: { |
| 3791 | char name[TCP_ULP_NAME_MAX]; |
| 3792 | |
| 3793 | if (optlen < 1) |
| 3794 | return -EINVAL; |
| 3795 | |
| 3796 | val = strncpy_from_sockptr(dst: name, src: optval, |
| 3797 | min_t(long, TCP_ULP_NAME_MAX - 1, |
| 3798 | optlen)); |
| 3799 | if (val < 0) |
| 3800 | return -EFAULT; |
| 3801 | name[val] = 0; |
| 3802 | |
| 3803 | sockopt_lock_sock(sk); |
| 3804 | err = tcp_set_ulp(sk, name); |
| 3805 | sockopt_release_sock(sk); |
| 3806 | return err; |
| 3807 | } |
| 3808 | case TCP_FASTOPEN_KEY: { |
| 3809 | __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; |
| 3810 | __u8 *backup_key = NULL; |
| 3811 | |
| 3812 | /* Allow a backup key as well to facilitate key rotation |
| 3813 | * First key is the active one. |
| 3814 | */ |
| 3815 | if (optlen != TCP_FASTOPEN_KEY_LENGTH && |
| 3816 | optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) |
| 3817 | return -EINVAL; |
| 3818 | |
| 3819 | if (copy_from_sockptr(dst: key, src: optval, size: optlen)) |
| 3820 | return -EFAULT; |
| 3821 | |
| 3822 | if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) |
| 3823 | backup_key = key + TCP_FASTOPEN_KEY_LENGTH; |
| 3824 | |
| 3825 | return tcp_fastopen_reset_cipher(net, sk, primary_key: key, backup_key); |
| 3826 | } |
| 3827 | default: |
| 3828 | /* fallthru */ |
| 3829 | break; |
| 3830 | } |
| 3831 | |
| 3832 | if (optlen < sizeof(int)) |
| 3833 | return -EINVAL; |
| 3834 | |
| 3835 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
| 3836 | return -EFAULT; |
| 3837 | |
| 3838 | /* Handle options that can be set without locking the socket. */ |
| 3839 | switch (optname) { |
| 3840 | case TCP_SYNCNT: |
| 3841 | return tcp_sock_set_syncnt(sk, val); |
| 3842 | case TCP_USER_TIMEOUT: |
| 3843 | return tcp_sock_set_user_timeout(sk, val); |
| 3844 | case TCP_KEEPINTVL: |
| 3845 | return tcp_sock_set_keepintvl(sk, val); |
| 3846 | case TCP_KEEPCNT: |
| 3847 | return tcp_sock_set_keepcnt(sk, val); |
| 3848 | case TCP_LINGER2: |
| 3849 | if (val < 0) |
| 3850 | WRITE_ONCE(tp->linger2, -1); |
| 3851 | else if (val > TCP_FIN_TIMEOUT_MAX / HZ) |
| 3852 | WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); |
| 3853 | else |
| 3854 | WRITE_ONCE(tp->linger2, val * HZ); |
| 3855 | return 0; |
| 3856 | case TCP_DEFER_ACCEPT: |
| 3857 | /* Translate value in seconds to number of retransmits */ |
| 3858 | WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, |
| 3859 | secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, |
| 3860 | TCP_RTO_MAX / HZ)); |
| 3861 | return 0; |
| 3862 | case TCP_RTO_MAX_MS: |
| 3863 | if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) |
| 3864 | return -EINVAL; |
| 3865 | WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); |
| 3866 | return 0; |
| 3867 | case TCP_RTO_MIN_US: { |
| 3868 | int rto_min = usecs_to_jiffies(u: val); |
| 3869 | |
| 3870 | if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) |
| 3871 | return -EINVAL; |
| 3872 | WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); |
| 3873 | return 0; |
| 3874 | } |
| 3875 | case TCP_DELACK_MAX_US: { |
| 3876 | int delack_max = usecs_to_jiffies(u: val); |
| 3877 | |
| 3878 | if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) |
| 3879 | return -EINVAL; |
| 3880 | WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); |
| 3881 | return 0; |
| 3882 | } |
| 3883 | } |
| 3884 | |
| 3885 | sockopt_lock_sock(sk); |
| 3886 | |
| 3887 | switch (optname) { |
| 3888 | case TCP_MAXSEG: |
| 3889 | /* Values greater than interface MTU won't take effect. However |
| 3890 | * at the point when this call is done we typically don't yet |
| 3891 | * know which interface is going to be used |
| 3892 | */ |
| 3893 | if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { |
| 3894 | err = -EINVAL; |
| 3895 | break; |
| 3896 | } |
| 3897 | tp->rx_opt.user_mss = val; |
| 3898 | break; |
| 3899 | |
| 3900 | case TCP_NODELAY: |
| 3901 | __tcp_sock_set_nodelay(sk, on: val); |
| 3902 | break; |
| 3903 | |
| 3904 | case TCP_THIN_LINEAR_TIMEOUTS: |
| 3905 | if (val < 0 || val > 1) |
| 3906 | err = -EINVAL; |
| 3907 | else |
| 3908 | tp->thin_lto = val; |
| 3909 | break; |
| 3910 | |
| 3911 | case TCP_THIN_DUPACK: |
| 3912 | if (val < 0 || val > 1) |
| 3913 | err = -EINVAL; |
| 3914 | break; |
| 3915 | |
| 3916 | case TCP_REPAIR: |
| 3917 | if (!tcp_can_repair_sock(sk)) |
| 3918 | err = -EPERM; |
| 3919 | else if (val == TCP_REPAIR_ON) { |
| 3920 | tp->repair = 1; |
| 3921 | sk->sk_reuse = SK_FORCE_REUSE; |
| 3922 | tp->repair_queue = TCP_NO_QUEUE; |
| 3923 | } else if (val == TCP_REPAIR_OFF) { |
| 3924 | tp->repair = 0; |
| 3925 | sk->sk_reuse = SK_NO_REUSE; |
| 3926 | tcp_send_window_probe(sk); |
| 3927 | } else if (val == TCP_REPAIR_OFF_NO_WP) { |
| 3928 | tp->repair = 0; |
| 3929 | sk->sk_reuse = SK_NO_REUSE; |
| 3930 | } else |
| 3931 | err = -EINVAL; |
| 3932 | |
| 3933 | break; |
| 3934 | |
| 3935 | case TCP_REPAIR_QUEUE: |
| 3936 | if (!tp->repair) |
| 3937 | err = -EPERM; |
| 3938 | else if ((unsigned int)val < TCP_QUEUES_NR) |
| 3939 | tp->repair_queue = val; |
| 3940 | else |
| 3941 | err = -EINVAL; |
| 3942 | break; |
| 3943 | |
| 3944 | case TCP_QUEUE_SEQ: |
| 3945 | if (sk->sk_state != TCP_CLOSE) { |
| 3946 | err = -EPERM; |
| 3947 | } else if (tp->repair_queue == TCP_SEND_QUEUE) { |
| 3948 | if (!tcp_rtx_queue_empty(sk)) |
| 3949 | err = -EPERM; |
| 3950 | else |
| 3951 | WRITE_ONCE(tp->write_seq, val); |
| 3952 | } else if (tp->repair_queue == TCP_RECV_QUEUE) { |
| 3953 | if (tp->rcv_nxt != tp->copied_seq) { |
| 3954 | err = -EPERM; |
| 3955 | } else { |
| 3956 | WRITE_ONCE(tp->rcv_nxt, val); |
| 3957 | WRITE_ONCE(tp->copied_seq, val); |
| 3958 | } |
| 3959 | } else { |
| 3960 | err = -EINVAL; |
| 3961 | } |
| 3962 | break; |
| 3963 | |
| 3964 | case TCP_REPAIR_OPTIONS: |
| 3965 | if (!tp->repair) |
| 3966 | err = -EINVAL; |
| 3967 | else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) |
| 3968 | err = tcp_repair_options_est(sk, optbuf: optval, len: optlen); |
| 3969 | else |
| 3970 | err = -EPERM; |
| 3971 | break; |
| 3972 | |
| 3973 | case TCP_CORK: |
| 3974 | __tcp_sock_set_cork(sk, on: val); |
| 3975 | break; |
| 3976 | |
| 3977 | case TCP_KEEPIDLE: |
| 3978 | err = tcp_sock_set_keepidle_locked(sk, val); |
| 3979 | break; |
| 3980 | case TCP_SAVE_SYN: |
| 3981 | /* 0: disable, 1: enable, 2: start from ether_header */ |
| 3982 | if (val < 0 || val > 2) |
| 3983 | err = -EINVAL; |
| 3984 | else |
| 3985 | tp->save_syn = val; |
| 3986 | break; |
| 3987 | |
| 3988 | case TCP_WINDOW_CLAMP: |
| 3989 | err = tcp_set_window_clamp(sk, val); |
| 3990 | break; |
| 3991 | |
| 3992 | case TCP_QUICKACK: |
| 3993 | __tcp_sock_set_quickack(sk, val); |
| 3994 | break; |
| 3995 | |
| 3996 | case TCP_AO_REPAIR: |
| 3997 | if (!tcp_can_repair_sock(sk)) { |
| 3998 | err = -EPERM; |
| 3999 | break; |
| 4000 | } |
| 4001 | err = tcp_ao_set_repair(sk, optval, optlen); |
| 4002 | break; |
| 4003 | #ifdef CONFIG_TCP_AO |
| 4004 | case TCP_AO_ADD_KEY: |
| 4005 | case TCP_AO_DEL_KEY: |
| 4006 | case TCP_AO_INFO: { |
| 4007 | /* If this is the first TCP-AO setsockopt() on the socket, |
| 4008 | * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR |
| 4009 | * in any state. |
| 4010 | */ |
| 4011 | if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) |
| 4012 | goto ao_parse; |
| 4013 | if (rcu_dereference_protected(tcp_sk(sk)->ao_info, |
| 4014 | lockdep_sock_is_held(sk))) |
| 4015 | goto ao_parse; |
| 4016 | if (tp->repair) |
| 4017 | goto ao_parse; |
| 4018 | err = -EISCONN; |
| 4019 | break; |
| 4020 | ao_parse: |
| 4021 | err = tp->af_specific->ao_parse(sk, optname, optval, optlen); |
| 4022 | break; |
| 4023 | } |
| 4024 | #endif |
| 4025 | #ifdef CONFIG_TCP_MD5SIG |
| 4026 | case TCP_MD5SIG: |
| 4027 | case TCP_MD5SIG_EXT: |
| 4028 | err = tp->af_specific->md5_parse(sk, optname, optval, optlen); |
| 4029 | break; |
| 4030 | #endif |
| 4031 | case TCP_FASTOPEN: |
| 4032 | if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | |
| 4033 | TCPF_LISTEN))) { |
| 4034 | tcp_fastopen_init_key_once(net); |
| 4035 | |
| 4036 | fastopen_queue_tune(sk, backlog: val); |
| 4037 | } else { |
| 4038 | err = -EINVAL; |
| 4039 | } |
| 4040 | break; |
| 4041 | case TCP_FASTOPEN_CONNECT: |
| 4042 | if (val > 1 || val < 0) { |
| 4043 | err = -EINVAL; |
| 4044 | } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & |
| 4045 | TFO_CLIENT_ENABLE) { |
| 4046 | if (sk->sk_state == TCP_CLOSE) |
| 4047 | tp->fastopen_connect = val; |
| 4048 | else |
| 4049 | err = -EINVAL; |
| 4050 | } else { |
| 4051 | err = -EOPNOTSUPP; |
| 4052 | } |
| 4053 | break; |
| 4054 | case TCP_FASTOPEN_NO_COOKIE: |
| 4055 | if (val > 1 || val < 0) |
| 4056 | err = -EINVAL; |
| 4057 | else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
| 4058 | err = -EINVAL; |
| 4059 | else |
| 4060 | tp->fastopen_no_cookie = val; |
| 4061 | break; |
| 4062 | case TCP_TIMESTAMP: |
| 4063 | if (!tp->repair) { |
| 4064 | err = -EPERM; |
| 4065 | break; |
| 4066 | } |
| 4067 | /* val is an opaque field, |
| 4068 | * and low order bit contains usec_ts enable bit. |
| 4069 | * Its a best effort, and we do not care if user makes an error. |
| 4070 | */ |
| 4071 | tp->tcp_usec_ts = val & 1; |
| 4072 | WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); |
| 4073 | break; |
| 4074 | case TCP_REPAIR_WINDOW: |
| 4075 | err = tcp_repair_set_window(tp, optbuf: optval, len: optlen); |
| 4076 | break; |
| 4077 | case TCP_NOTSENT_LOWAT: |
| 4078 | WRITE_ONCE(tp->notsent_lowat, val); |
| 4079 | sk->sk_write_space(sk); |
| 4080 | break; |
| 4081 | case TCP_INQ: |
| 4082 | if (val > 1 || val < 0) |
| 4083 | err = -EINVAL; |
| 4084 | else |
| 4085 | tp->recvmsg_inq = val; |
| 4086 | break; |
| 4087 | case TCP_TX_DELAY: |
| 4088 | if (val) |
| 4089 | tcp_enable_tx_delay(); |
| 4090 | WRITE_ONCE(tp->tcp_tx_delay, val); |
| 4091 | break; |
| 4092 | default: |
| 4093 | err = -ENOPROTOOPT; |
| 4094 | break; |
| 4095 | } |
| 4096 | |
| 4097 | sockopt_release_sock(sk); |
| 4098 | return err; |
| 4099 | } |
| 4100 | |
| 4101 | int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, |
| 4102 | unsigned int optlen) |
| 4103 | { |
| 4104 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 4105 | |
| 4106 | if (level != SOL_TCP) |
| 4107 | /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ |
| 4108 | return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, |
| 4109 | optval, optlen); |
| 4110 | return do_tcp_setsockopt(sk, level, optname, optval, optlen); |
| 4111 | } |
| 4112 | EXPORT_IPV6_MOD(tcp_setsockopt); |
| 4113 | |
| 4114 | static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, |
| 4115 | struct tcp_info *info) |
| 4116 | { |
| 4117 | u64 stats[__TCP_CHRONO_MAX], total = 0; |
| 4118 | enum tcp_chrono i; |
| 4119 | |
| 4120 | for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { |
| 4121 | stats[i] = tp->chrono_stat[i - 1]; |
| 4122 | if (i == tp->chrono_type) |
| 4123 | stats[i] += tcp_jiffies32 - tp->chrono_start; |
| 4124 | stats[i] *= USEC_PER_SEC / HZ; |
| 4125 | total += stats[i]; |
| 4126 | } |
| 4127 | |
| 4128 | info->tcpi_busy_time = total; |
| 4129 | info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; |
| 4130 | info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; |
| 4131 | } |
| 4132 | |
| 4133 | /* Return information about state of tcp endpoint in API format. */ |
| 4134 | void tcp_get_info(struct sock *sk, struct tcp_info *info) |
| 4135 | { |
| 4136 | const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ |
| 4137 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 4138 | unsigned long rate; |
| 4139 | u32 now; |
| 4140 | u64 rate64; |
| 4141 | bool slow; |
| 4142 | |
| 4143 | memset(info, 0, sizeof(*info)); |
| 4144 | if (sk->sk_type != SOCK_STREAM) |
| 4145 | return; |
| 4146 | |
| 4147 | info->tcpi_state = inet_sk_state_load(sk); |
| 4148 | |
| 4149 | /* Report meaningful fields for all TCP states, including listeners */ |
| 4150 | rate = READ_ONCE(sk->sk_pacing_rate); |
| 4151 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
| 4152 | info->tcpi_pacing_rate = rate64; |
| 4153 | |
| 4154 | rate = READ_ONCE(sk->sk_max_pacing_rate); |
| 4155 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
| 4156 | info->tcpi_max_pacing_rate = rate64; |
| 4157 | |
| 4158 | info->tcpi_reordering = tp->reordering; |
| 4159 | info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); |
| 4160 | |
| 4161 | if (info->tcpi_state == TCP_LISTEN) { |
| 4162 | /* listeners aliased fields : |
| 4163 | * tcpi_unacked -> Number of children ready for accept() |
| 4164 | * tcpi_sacked -> max backlog |
| 4165 | */ |
| 4166 | info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); |
| 4167 | info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); |
| 4168 | return; |
| 4169 | } |
| 4170 | |
| 4171 | slow = lock_sock_fast(sk); |
| 4172 | |
| 4173 | info->tcpi_ca_state = icsk->icsk_ca_state; |
| 4174 | info->tcpi_retransmits = icsk->icsk_retransmits; |
| 4175 | info->tcpi_probes = icsk->icsk_probes_out; |
| 4176 | info->tcpi_backoff = icsk->icsk_backoff; |
| 4177 | |
| 4178 | if (tp->rx_opt.tstamp_ok) |
| 4179 | info->tcpi_options |= TCPI_OPT_TIMESTAMPS; |
| 4180 | if (tcp_is_sack(tp)) |
| 4181 | info->tcpi_options |= TCPI_OPT_SACK; |
| 4182 | if (tp->rx_opt.wscale_ok) { |
| 4183 | info->tcpi_options |= TCPI_OPT_WSCALE; |
| 4184 | info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; |
| 4185 | info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; |
| 4186 | } |
| 4187 | |
| 4188 | if (tcp_ecn_mode_any(tp)) |
| 4189 | info->tcpi_options |= TCPI_OPT_ECN; |
| 4190 | if (tp->ecn_flags & TCP_ECN_SEEN) |
| 4191 | info->tcpi_options |= TCPI_OPT_ECN_SEEN; |
| 4192 | if (tp->syn_data_acked) |
| 4193 | info->tcpi_options |= TCPI_OPT_SYN_DATA; |
| 4194 | if (tp->tcp_usec_ts) |
| 4195 | info->tcpi_options |= TCPI_OPT_USEC_TS; |
| 4196 | if (tp->syn_fastopen_child) |
| 4197 | info->tcpi_options |= TCPI_OPT_TFO_CHILD; |
| 4198 | |
| 4199 | info->tcpi_rto = jiffies_to_usecs(j: icsk->icsk_rto); |
| 4200 | info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, |
| 4201 | tcp_delack_max(sk))); |
| 4202 | info->tcpi_snd_mss = tp->mss_cache; |
| 4203 | info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; |
| 4204 | |
| 4205 | info->tcpi_unacked = tp->packets_out; |
| 4206 | info->tcpi_sacked = tp->sacked_out; |
| 4207 | |
| 4208 | info->tcpi_lost = tp->lost_out; |
| 4209 | info->tcpi_retrans = tp->retrans_out; |
| 4210 | |
| 4211 | now = tcp_jiffies32; |
| 4212 | info->tcpi_last_data_sent = jiffies_to_msecs(j: now - tp->lsndtime); |
| 4213 | info->tcpi_last_data_recv = jiffies_to_msecs(j: now - icsk->icsk_ack.lrcvtime); |
| 4214 | info->tcpi_last_ack_recv = jiffies_to_msecs(j: now - tp->rcv_tstamp); |
| 4215 | |
| 4216 | info->tcpi_pmtu = icsk->icsk_pmtu_cookie; |
| 4217 | info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; |
| 4218 | info->tcpi_rtt = tp->srtt_us >> 3; |
| 4219 | info->tcpi_rttvar = tp->mdev_us >> 2; |
| 4220 | info->tcpi_snd_ssthresh = tp->snd_ssthresh; |
| 4221 | info->tcpi_advmss = tp->advmss; |
| 4222 | |
| 4223 | info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; |
| 4224 | info->tcpi_rcv_space = tp->rcvq_space.space; |
| 4225 | |
| 4226 | info->tcpi_total_retrans = tp->total_retrans; |
| 4227 | |
| 4228 | info->tcpi_bytes_acked = tp->bytes_acked; |
| 4229 | info->tcpi_bytes_received = tp->bytes_received; |
| 4230 | info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); |
| 4231 | tcp_get_info_chrono_stats(tp, info); |
| 4232 | |
| 4233 | info->tcpi_segs_out = tp->segs_out; |
| 4234 | |
| 4235 | /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ |
| 4236 | info->tcpi_segs_in = READ_ONCE(tp->segs_in); |
| 4237 | info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); |
| 4238 | |
| 4239 | info->tcpi_min_rtt = tcp_min_rtt(tp); |
| 4240 | info->tcpi_data_segs_out = tp->data_segs_out; |
| 4241 | |
| 4242 | info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; |
| 4243 | rate64 = tcp_compute_delivery_rate(tp); |
| 4244 | if (rate64) |
| 4245 | info->tcpi_delivery_rate = rate64; |
| 4246 | info->tcpi_delivered = tp->delivered; |
| 4247 | info->tcpi_delivered_ce = tp->delivered_ce; |
| 4248 | info->tcpi_bytes_sent = tp->bytes_sent; |
| 4249 | info->tcpi_bytes_retrans = tp->bytes_retrans; |
| 4250 | info->tcpi_dsack_dups = tp->dsack_dups; |
| 4251 | info->tcpi_reord_seen = tp->reord_seen; |
| 4252 | info->tcpi_rcv_ooopack = tp->rcv_ooopack; |
| 4253 | info->tcpi_snd_wnd = tp->snd_wnd; |
| 4254 | info->tcpi_rcv_wnd = tp->rcv_wnd; |
| 4255 | info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; |
| 4256 | info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; |
| 4257 | |
| 4258 | info->tcpi_total_rto = tp->total_rto; |
| 4259 | info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; |
| 4260 | info->tcpi_total_rto_time = tp->total_rto_time; |
| 4261 | if (tp->rto_stamp) |
| 4262 | info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; |
| 4263 | |
| 4264 | unlock_sock_fast(sk, slow); |
| 4265 | } |
| 4266 | EXPORT_SYMBOL_GPL(tcp_get_info); |
| 4267 | |
| 4268 | static size_t tcp_opt_stats_get_size(void) |
| 4269 | { |
| 4270 | return |
| 4271 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BUSY */ |
| 4272 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ |
| 4273 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ |
| 4274 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ |
| 4275 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ |
| 4276 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_PACING_RATE */ |
| 4277 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ |
| 4278 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_CWND */ |
| 4279 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORDERING */ |
| 4280 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_MIN_RTT */ |
| 4281 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ |
| 4282 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ |
| 4283 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ |
| 4284 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_CA_STATE */ |
| 4285 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ |
| 4286 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED */ |
| 4287 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ |
| 4288 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ |
| 4289 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ |
| 4290 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ |
| 4291 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ |
| 4292 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SRTT */ |
| 4293 | nla_total_size(payload: sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ |
| 4294 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ |
| 4295 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_EDT */ |
| 4296 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_TTL */ |
| 4297 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REHASH */ |
| 4298 | 0; |
| 4299 | } |
| 4300 | |
| 4301 | /* Returns TTL or hop limit of an incoming packet from skb. */ |
| 4302 | static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) |
| 4303 | { |
| 4304 | if (skb->protocol == htons(ETH_P_IP)) |
| 4305 | return ip_hdr(skb)->ttl; |
| 4306 | else if (skb->protocol == htons(ETH_P_IPV6)) |
| 4307 | return ipv6_hdr(skb)->hop_limit; |
| 4308 | else |
| 4309 | return 0; |
| 4310 | } |
| 4311 | |
| 4312 | struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, |
| 4313 | const struct sk_buff *orig_skb, |
| 4314 | const struct sk_buff *ack_skb) |
| 4315 | { |
| 4316 | const struct tcp_sock *tp = tcp_sk(sk); |
| 4317 | struct sk_buff *stats; |
| 4318 | struct tcp_info info; |
| 4319 | unsigned long rate; |
| 4320 | u64 rate64; |
| 4321 | |
| 4322 | stats = alloc_skb(size: tcp_opt_stats_get_size(), GFP_ATOMIC); |
| 4323 | if (!stats) |
| 4324 | return NULL; |
| 4325 | |
| 4326 | tcp_get_info_chrono_stats(tp, info: &info); |
| 4327 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BUSY, |
| 4328 | value: info.tcpi_busy_time, padattr: TCP_NLA_PAD); |
| 4329 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_RWND_LIMITED, |
| 4330 | value: info.tcpi_rwnd_limited, padattr: TCP_NLA_PAD); |
| 4331 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_SNDBUF_LIMITED, |
| 4332 | value: info.tcpi_sndbuf_limited, padattr: TCP_NLA_PAD); |
| 4333 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DATA_SEGS_OUT, |
| 4334 | value: tp->data_segs_out, padattr: TCP_NLA_PAD); |
| 4335 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_TOTAL_RETRANS, |
| 4336 | value: tp->total_retrans, padattr: TCP_NLA_PAD); |
| 4337 | |
| 4338 | rate = READ_ONCE(sk->sk_pacing_rate); |
| 4339 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
| 4340 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_PACING_RATE, value: rate64, padattr: TCP_NLA_PAD); |
| 4341 | |
| 4342 | rate64 = tcp_compute_delivery_rate(tp); |
| 4343 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE, value: rate64, padattr: TCP_NLA_PAD); |
| 4344 | |
| 4345 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_CWND, value: tcp_snd_cwnd(tp)); |
| 4346 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REORDERING, value: tp->reordering); |
| 4347 | nla_put_u32(skb: stats, attrtype: TCP_NLA_MIN_RTT, value: tcp_min_rtt(tp)); |
| 4348 | |
| 4349 | nla_put_u8(skb: stats, attrtype: TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); |
| 4350 | nla_put_u8(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE_APP_LMT, value: !!tp->rate_app_limited); |
| 4351 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_SSTHRESH, value: tp->snd_ssthresh); |
| 4352 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED, value: tp->delivered); |
| 4353 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED_CE, value: tp->delivered_ce); |
| 4354 | |
| 4355 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SNDQ_SIZE, value: tp->write_seq - tp->snd_una); |
| 4356 | nla_put_u8(skb: stats, attrtype: TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); |
| 4357 | |
| 4358 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_SENT, value: tp->bytes_sent, |
| 4359 | padattr: TCP_NLA_PAD); |
| 4360 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_RETRANS, value: tp->bytes_retrans, |
| 4361 | padattr: TCP_NLA_PAD); |
| 4362 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DSACK_DUPS, value: tp->dsack_dups); |
| 4363 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REORD_SEEN, value: tp->reord_seen); |
| 4364 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SRTT, value: tp->srtt_us >> 3); |
| 4365 | nla_put_u16(skb: stats, attrtype: TCP_NLA_TIMEOUT_REHASH, value: tp->timeout_rehash); |
| 4366 | nla_put_u32(skb: stats, attrtype: TCP_NLA_BYTES_NOTSENT, |
| 4367 | max_t(int, 0, tp->write_seq - tp->snd_nxt)); |
| 4368 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_EDT, value: orig_skb->skb_mstamp_ns, |
| 4369 | padattr: TCP_NLA_PAD); |
| 4370 | if (ack_skb) |
| 4371 | nla_put_u8(skb: stats, attrtype: TCP_NLA_TTL, |
| 4372 | value: tcp_skb_ttl_or_hop_limit(skb: ack_skb)); |
| 4373 | |
| 4374 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REHASH, value: tp->plb_rehash + tp->timeout_rehash); |
| 4375 | return stats; |
| 4376 | } |
| 4377 | |
| 4378 | int do_tcp_getsockopt(struct sock *sk, int level, |
| 4379 | int optname, sockptr_t optval, sockptr_t optlen) |
| 4380 | { |
| 4381 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 4382 | struct tcp_sock *tp = tcp_sk(sk); |
| 4383 | struct net *net = sock_net(sk); |
| 4384 | int val, len; |
| 4385 | |
| 4386 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4387 | return -EFAULT; |
| 4388 | |
| 4389 | if (len < 0) |
| 4390 | return -EINVAL; |
| 4391 | |
| 4392 | len = min_t(unsigned int, len, sizeof(int)); |
| 4393 | |
| 4394 | switch (optname) { |
| 4395 | case TCP_MAXSEG: |
| 4396 | val = tp->mss_cache; |
| 4397 | if (tp->rx_opt.user_mss && |
| 4398 | ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
| 4399 | val = tp->rx_opt.user_mss; |
| 4400 | if (tp->repair) |
| 4401 | val = tp->rx_opt.mss_clamp; |
| 4402 | break; |
| 4403 | case TCP_NODELAY: |
| 4404 | val = !!(tp->nonagle&TCP_NAGLE_OFF); |
| 4405 | break; |
| 4406 | case TCP_CORK: |
| 4407 | val = !!(tp->nonagle&TCP_NAGLE_CORK); |
| 4408 | break; |
| 4409 | case TCP_KEEPIDLE: |
| 4410 | val = keepalive_time_when(tp) / HZ; |
| 4411 | break; |
| 4412 | case TCP_KEEPINTVL: |
| 4413 | val = keepalive_intvl_when(tp) / HZ; |
| 4414 | break; |
| 4415 | case TCP_KEEPCNT: |
| 4416 | val = keepalive_probes(tp); |
| 4417 | break; |
| 4418 | case TCP_SYNCNT: |
| 4419 | val = READ_ONCE(icsk->icsk_syn_retries) ? : |
| 4420 | READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); |
| 4421 | break; |
| 4422 | case TCP_LINGER2: |
| 4423 | val = READ_ONCE(tp->linger2); |
| 4424 | if (val >= 0) |
| 4425 | val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; |
| 4426 | break; |
| 4427 | case TCP_DEFER_ACCEPT: |
| 4428 | val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); |
| 4429 | val = retrans_to_secs(retrans: val, TCP_TIMEOUT_INIT / HZ, |
| 4430 | TCP_RTO_MAX / HZ); |
| 4431 | break; |
| 4432 | case TCP_WINDOW_CLAMP: |
| 4433 | val = READ_ONCE(tp->window_clamp); |
| 4434 | break; |
| 4435 | case TCP_INFO: { |
| 4436 | struct tcp_info info; |
| 4437 | |
| 4438 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4439 | return -EFAULT; |
| 4440 | |
| 4441 | tcp_get_info(sk, &info); |
| 4442 | |
| 4443 | len = min_t(unsigned int, len, sizeof(info)); |
| 4444 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4445 | return -EFAULT; |
| 4446 | if (copy_to_sockptr(dst: optval, src: &info, size: len)) |
| 4447 | return -EFAULT; |
| 4448 | return 0; |
| 4449 | } |
| 4450 | case TCP_CC_INFO: { |
| 4451 | const struct tcp_congestion_ops *ca_ops; |
| 4452 | union tcp_cc_info info; |
| 4453 | size_t sz = 0; |
| 4454 | int attr; |
| 4455 | |
| 4456 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4457 | return -EFAULT; |
| 4458 | |
| 4459 | ca_ops = icsk->icsk_ca_ops; |
| 4460 | if (ca_ops && ca_ops->get_info) |
| 4461 | sz = ca_ops->get_info(sk, ~0U, &attr, &info); |
| 4462 | |
| 4463 | len = min_t(unsigned int, len, sz); |
| 4464 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4465 | return -EFAULT; |
| 4466 | if (copy_to_sockptr(dst: optval, src: &info, size: len)) |
| 4467 | return -EFAULT; |
| 4468 | return 0; |
| 4469 | } |
| 4470 | case TCP_QUICKACK: |
| 4471 | val = !inet_csk_in_pingpong_mode(sk); |
| 4472 | break; |
| 4473 | |
| 4474 | case TCP_CONGESTION: |
| 4475 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4476 | return -EFAULT; |
| 4477 | len = min_t(unsigned int, len, TCP_CA_NAME_MAX); |
| 4478 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4479 | return -EFAULT; |
| 4480 | if (copy_to_sockptr(dst: optval, src: icsk->icsk_ca_ops->name, size: len)) |
| 4481 | return -EFAULT; |
| 4482 | return 0; |
| 4483 | |
| 4484 | case TCP_ULP: |
| 4485 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4486 | return -EFAULT; |
| 4487 | len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); |
| 4488 | if (!icsk->icsk_ulp_ops) { |
| 4489 | len = 0; |
| 4490 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4491 | return -EFAULT; |
| 4492 | return 0; |
| 4493 | } |
| 4494 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4495 | return -EFAULT; |
| 4496 | if (copy_to_sockptr(dst: optval, src: icsk->icsk_ulp_ops->name, size: len)) |
| 4497 | return -EFAULT; |
| 4498 | return 0; |
| 4499 | |
| 4500 | case TCP_FASTOPEN_KEY: { |
| 4501 | u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; |
| 4502 | unsigned int key_len; |
| 4503 | |
| 4504 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4505 | return -EFAULT; |
| 4506 | |
| 4507 | key_len = tcp_fastopen_get_cipher(net, icsk, key) * |
| 4508 | TCP_FASTOPEN_KEY_LENGTH; |
| 4509 | len = min_t(unsigned int, len, key_len); |
| 4510 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4511 | return -EFAULT; |
| 4512 | if (copy_to_sockptr(dst: optval, src: key, size: len)) |
| 4513 | return -EFAULT; |
| 4514 | return 0; |
| 4515 | } |
| 4516 | case TCP_THIN_LINEAR_TIMEOUTS: |
| 4517 | val = tp->thin_lto; |
| 4518 | break; |
| 4519 | |
| 4520 | case TCP_THIN_DUPACK: |
| 4521 | val = 0; |
| 4522 | break; |
| 4523 | |
| 4524 | case TCP_REPAIR: |
| 4525 | val = tp->repair; |
| 4526 | break; |
| 4527 | |
| 4528 | case TCP_REPAIR_QUEUE: |
| 4529 | if (tp->repair) |
| 4530 | val = tp->repair_queue; |
| 4531 | else |
| 4532 | return -EINVAL; |
| 4533 | break; |
| 4534 | |
| 4535 | case TCP_REPAIR_WINDOW: { |
| 4536 | struct tcp_repair_window opt; |
| 4537 | |
| 4538 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4539 | return -EFAULT; |
| 4540 | |
| 4541 | if (len != sizeof(opt)) |
| 4542 | return -EINVAL; |
| 4543 | |
| 4544 | if (!tp->repair) |
| 4545 | return -EPERM; |
| 4546 | |
| 4547 | opt.snd_wl1 = tp->snd_wl1; |
| 4548 | opt.snd_wnd = tp->snd_wnd; |
| 4549 | opt.max_window = tp->max_window; |
| 4550 | opt.rcv_wnd = tp->rcv_wnd; |
| 4551 | opt.rcv_wup = tp->rcv_wup; |
| 4552 | |
| 4553 | if (copy_to_sockptr(dst: optval, src: &opt, size: len)) |
| 4554 | return -EFAULT; |
| 4555 | return 0; |
| 4556 | } |
| 4557 | case TCP_QUEUE_SEQ: |
| 4558 | if (tp->repair_queue == TCP_SEND_QUEUE) |
| 4559 | val = tp->write_seq; |
| 4560 | else if (tp->repair_queue == TCP_RECV_QUEUE) |
| 4561 | val = tp->rcv_nxt; |
| 4562 | else |
| 4563 | return -EINVAL; |
| 4564 | break; |
| 4565 | |
| 4566 | case TCP_USER_TIMEOUT: |
| 4567 | val = READ_ONCE(icsk->icsk_user_timeout); |
| 4568 | break; |
| 4569 | |
| 4570 | case TCP_FASTOPEN: |
| 4571 | val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); |
| 4572 | break; |
| 4573 | |
| 4574 | case TCP_FASTOPEN_CONNECT: |
| 4575 | val = tp->fastopen_connect; |
| 4576 | break; |
| 4577 | |
| 4578 | case TCP_FASTOPEN_NO_COOKIE: |
| 4579 | val = tp->fastopen_no_cookie; |
| 4580 | break; |
| 4581 | |
| 4582 | case TCP_TX_DELAY: |
| 4583 | val = READ_ONCE(tp->tcp_tx_delay); |
| 4584 | break; |
| 4585 | |
| 4586 | case TCP_TIMESTAMP: |
| 4587 | val = tcp_clock_ts(usec_ts: tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); |
| 4588 | if (tp->tcp_usec_ts) |
| 4589 | val |= 1; |
| 4590 | else |
| 4591 | val &= ~1; |
| 4592 | break; |
| 4593 | case TCP_NOTSENT_LOWAT: |
| 4594 | val = READ_ONCE(tp->notsent_lowat); |
| 4595 | break; |
| 4596 | case TCP_INQ: |
| 4597 | val = tp->recvmsg_inq; |
| 4598 | break; |
| 4599 | case TCP_SAVE_SYN: |
| 4600 | val = tp->save_syn; |
| 4601 | break; |
| 4602 | case TCP_SAVED_SYN: { |
| 4603 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4604 | return -EFAULT; |
| 4605 | |
| 4606 | sockopt_lock_sock(sk); |
| 4607 | if (tp->saved_syn) { |
| 4608 | if (len < tcp_saved_syn_len(saved_syn: tp->saved_syn)) { |
| 4609 | len = tcp_saved_syn_len(saved_syn: tp->saved_syn); |
| 4610 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
| 4611 | sockopt_release_sock(sk); |
| 4612 | return -EFAULT; |
| 4613 | } |
| 4614 | sockopt_release_sock(sk); |
| 4615 | return -EINVAL; |
| 4616 | } |
| 4617 | len = tcp_saved_syn_len(saved_syn: tp->saved_syn); |
| 4618 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
| 4619 | sockopt_release_sock(sk); |
| 4620 | return -EFAULT; |
| 4621 | } |
| 4622 | if (copy_to_sockptr(dst: optval, src: tp->saved_syn->data, size: len)) { |
| 4623 | sockopt_release_sock(sk); |
| 4624 | return -EFAULT; |
| 4625 | } |
| 4626 | tcp_saved_syn_free(tp); |
| 4627 | sockopt_release_sock(sk); |
| 4628 | } else { |
| 4629 | sockopt_release_sock(sk); |
| 4630 | len = 0; |
| 4631 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4632 | return -EFAULT; |
| 4633 | } |
| 4634 | return 0; |
| 4635 | } |
| 4636 | #ifdef CONFIG_MMU |
| 4637 | case TCP_ZEROCOPY_RECEIVE: { |
| 4638 | struct scm_timestamping_internal tss; |
| 4639 | struct tcp_zerocopy_receive zc = {}; |
| 4640 | int err; |
| 4641 | |
| 4642 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 4643 | return -EFAULT; |
| 4644 | if (len < 0 || |
| 4645 | len < offsetofend(struct tcp_zerocopy_receive, length)) |
| 4646 | return -EINVAL; |
| 4647 | if (unlikely(len > sizeof(zc))) { |
| 4648 | err = check_zeroed_sockptr(src: optval, offset: sizeof(zc), |
| 4649 | size: len - sizeof(zc)); |
| 4650 | if (err < 1) |
| 4651 | return err == 0 ? -EINVAL : err; |
| 4652 | len = sizeof(zc); |
| 4653 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4654 | return -EFAULT; |
| 4655 | } |
| 4656 | if (copy_from_sockptr(dst: &zc, src: optval, size: len)) |
| 4657 | return -EFAULT; |
| 4658 | if (zc.reserved) |
| 4659 | return -EINVAL; |
| 4660 | if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) |
| 4661 | return -EINVAL; |
| 4662 | sockopt_lock_sock(sk); |
| 4663 | err = tcp_zerocopy_receive(sk, zc: &zc, tss: &tss); |
| 4664 | err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, |
| 4665 | &zc, &len, err); |
| 4666 | sockopt_release_sock(sk); |
| 4667 | if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) |
| 4668 | goto zerocopy_rcv_cmsg; |
| 4669 | switch (len) { |
| 4670 | case offsetofend(struct tcp_zerocopy_receive, msg_flags): |
| 4671 | goto zerocopy_rcv_cmsg; |
| 4672 | case offsetofend(struct tcp_zerocopy_receive, msg_controllen): |
| 4673 | case offsetofend(struct tcp_zerocopy_receive, msg_control): |
| 4674 | case offsetofend(struct tcp_zerocopy_receive, flags): |
| 4675 | case offsetofend(struct tcp_zerocopy_receive, copybuf_len): |
| 4676 | case offsetofend(struct tcp_zerocopy_receive, copybuf_address): |
| 4677 | case offsetofend(struct tcp_zerocopy_receive, err): |
| 4678 | goto zerocopy_rcv_sk_err; |
| 4679 | case offsetofend(struct tcp_zerocopy_receive, inq): |
| 4680 | goto zerocopy_rcv_inq; |
| 4681 | case offsetofend(struct tcp_zerocopy_receive, length): |
| 4682 | default: |
| 4683 | goto zerocopy_rcv_out; |
| 4684 | } |
| 4685 | zerocopy_rcv_cmsg: |
| 4686 | if (zc.msg_flags & TCP_CMSG_TS) |
| 4687 | tcp_zc_finalize_rx_tstamp(sk, zc: &zc, tss: &tss); |
| 4688 | else |
| 4689 | zc.msg_flags = 0; |
| 4690 | zerocopy_rcv_sk_err: |
| 4691 | if (!err) |
| 4692 | zc.err = sock_error(sk); |
| 4693 | zerocopy_rcv_inq: |
| 4694 | zc.inq = tcp_inq_hint(sk); |
| 4695 | zerocopy_rcv_out: |
| 4696 | if (!err && copy_to_sockptr(dst: optval, src: &zc, size: len)) |
| 4697 | err = -EFAULT; |
| 4698 | return err; |
| 4699 | } |
| 4700 | #endif |
| 4701 | case TCP_AO_REPAIR: |
| 4702 | if (!tcp_can_repair_sock(sk)) |
| 4703 | return -EPERM; |
| 4704 | return tcp_ao_get_repair(sk, optval, optlen); |
| 4705 | case TCP_AO_GET_KEYS: |
| 4706 | case TCP_AO_INFO: { |
| 4707 | int err; |
| 4708 | |
| 4709 | sockopt_lock_sock(sk); |
| 4710 | if (optname == TCP_AO_GET_KEYS) |
| 4711 | err = tcp_ao_get_mkts(sk, optval, optlen); |
| 4712 | else |
| 4713 | err = tcp_ao_get_sock_info(sk, optval, optlen); |
| 4714 | sockopt_release_sock(sk); |
| 4715 | |
| 4716 | return err; |
| 4717 | } |
| 4718 | case TCP_IS_MPTCP: |
| 4719 | val = 0; |
| 4720 | break; |
| 4721 | case TCP_RTO_MAX_MS: |
| 4722 | val = jiffies_to_msecs(j: tcp_rto_max(sk)); |
| 4723 | break; |
| 4724 | case TCP_RTO_MIN_US: |
| 4725 | val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); |
| 4726 | break; |
| 4727 | case TCP_DELACK_MAX_US: |
| 4728 | val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); |
| 4729 | break; |
| 4730 | default: |
| 4731 | return -ENOPROTOOPT; |
| 4732 | } |
| 4733 | |
| 4734 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 4735 | return -EFAULT; |
| 4736 | if (copy_to_sockptr(dst: optval, src: &val, size: len)) |
| 4737 | return -EFAULT; |
| 4738 | return 0; |
| 4739 | } |
| 4740 | |
| 4741 | bool tcp_bpf_bypass_getsockopt(int level, int optname) |
| 4742 | { |
| 4743 | /* TCP do_tcp_getsockopt has optimized getsockopt implementation |
| 4744 | * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. |
| 4745 | */ |
| 4746 | if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) |
| 4747 | return true; |
| 4748 | |
| 4749 | return false; |
| 4750 | } |
| 4751 | EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); |
| 4752 | |
| 4753 | int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, |
| 4754 | int __user *optlen) |
| 4755 | { |
| 4756 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 4757 | |
| 4758 | if (level != SOL_TCP) |
| 4759 | /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ |
| 4760 | return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, |
| 4761 | optval, optlen); |
| 4762 | return do_tcp_getsockopt(sk, level, optname, optval: USER_SOCKPTR(p: optval), |
| 4763 | optlen: USER_SOCKPTR(p: optlen)); |
| 4764 | } |
| 4765 | EXPORT_IPV6_MOD(tcp_getsockopt); |
| 4766 | |
| 4767 | #ifdef CONFIG_TCP_MD5SIG |
| 4768 | int tcp_md5_sigpool_id = -1; |
| 4769 | EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); |
| 4770 | |
| 4771 | int tcp_md5_alloc_sigpool(void) |
| 4772 | { |
| 4773 | size_t scratch_size; |
| 4774 | int ret; |
| 4775 | |
| 4776 | scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); |
| 4777 | ret = tcp_sigpool_alloc_ahash(alg: "md5" , scratch_size); |
| 4778 | if (ret >= 0) { |
| 4779 | /* As long as any md5 sigpool was allocated, the return |
| 4780 | * id would stay the same. Re-write the id only for the case |
| 4781 | * when previously all MD5 keys were deleted and this call |
| 4782 | * allocates the first MD5 key, which may return a different |
| 4783 | * sigpool id than was used previously. |
| 4784 | */ |
| 4785 | WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ |
| 4786 | return 0; |
| 4787 | } |
| 4788 | return ret; |
| 4789 | } |
| 4790 | |
| 4791 | void tcp_md5_release_sigpool(void) |
| 4792 | { |
| 4793 | tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); |
| 4794 | } |
| 4795 | |
| 4796 | void tcp_md5_add_sigpool(void) |
| 4797 | { |
| 4798 | tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); |
| 4799 | } |
| 4800 | |
| 4801 | int tcp_md5_hash_key(struct tcp_sigpool *hp, |
| 4802 | const struct tcp_md5sig_key *key) |
| 4803 | { |
| 4804 | u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ |
| 4805 | struct scatterlist sg; |
| 4806 | |
| 4807 | sg_init_one(&sg, key->key, keylen); |
| 4808 | ahash_request_set_crypt(req: hp->req, src: &sg, NULL, nbytes: keylen); |
| 4809 | |
| 4810 | /* We use data_race() because tcp_md5_do_add() might change |
| 4811 | * key->key under us |
| 4812 | */ |
| 4813 | return data_race(crypto_ahash_update(hp->req)); |
| 4814 | } |
| 4815 | EXPORT_IPV6_MOD(tcp_md5_hash_key); |
| 4816 | |
| 4817 | /* Called with rcu_read_lock() */ |
| 4818 | static enum skb_drop_reason |
| 4819 | tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
| 4820 | const void *saddr, const void *daddr, |
| 4821 | int family, int l3index, const __u8 *hash_location) |
| 4822 | { |
| 4823 | /* This gets called for each TCP segment that has TCP-MD5 option. |
| 4824 | * We have 3 drop cases: |
| 4825 | * o No MD5 hash and one expected. |
| 4826 | * o MD5 hash and we're not expecting one. |
| 4827 | * o MD5 hash and its wrong. |
| 4828 | */ |
| 4829 | const struct tcp_sock *tp = tcp_sk(sk); |
| 4830 | struct tcp_md5sig_key *key; |
| 4831 | u8 newhash[16]; |
| 4832 | int genhash; |
| 4833 | |
| 4834 | key = tcp_md5_do_lookup(sk, l3index, addr: saddr, family); |
| 4835 | |
| 4836 | if (!key && hash_location) { |
| 4837 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); |
| 4838 | trace_tcp_hash_md5_unexpected(sk, skb); |
| 4839 | return SKB_DROP_REASON_TCP_MD5UNEXPECTED; |
| 4840 | } |
| 4841 | |
| 4842 | /* Check the signature. |
| 4843 | * To support dual stack listeners, we need to handle |
| 4844 | * IPv4-mapped case. |
| 4845 | */ |
| 4846 | if (family == AF_INET) |
| 4847 | genhash = tcp_v4_md5_hash_skb(md5_hash: newhash, key, NULL, skb); |
| 4848 | else |
| 4849 | genhash = tp->af_specific->calc_md5_hash(newhash, key, |
| 4850 | NULL, skb); |
| 4851 | if (genhash || memcmp(p: hash_location, q: newhash, size: 16) != 0) { |
| 4852 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); |
| 4853 | trace_tcp_hash_md5_mismatch(sk, skb); |
| 4854 | return SKB_DROP_REASON_TCP_MD5FAILURE; |
| 4855 | } |
| 4856 | return SKB_NOT_DROPPED_YET; |
| 4857 | } |
| 4858 | #else |
| 4859 | static inline enum skb_drop_reason |
| 4860 | tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
| 4861 | const void *saddr, const void *daddr, |
| 4862 | int family, int l3index, const __u8 *hash_location) |
| 4863 | { |
| 4864 | return SKB_NOT_DROPPED_YET; |
| 4865 | } |
| 4866 | |
| 4867 | #endif |
| 4868 | |
| 4869 | /* Called with rcu_read_lock() */ |
| 4870 | enum skb_drop_reason |
| 4871 | tcp_inbound_hash(struct sock *sk, const struct request_sock *req, |
| 4872 | const struct sk_buff *skb, |
| 4873 | const void *saddr, const void *daddr, |
| 4874 | int family, int dif, int sdif) |
| 4875 | { |
| 4876 | const struct tcphdr *th = tcp_hdr(skb); |
| 4877 | const struct tcp_ao_hdr *aoh; |
| 4878 | const __u8 *md5_location; |
| 4879 | int l3index; |
| 4880 | |
| 4881 | /* Invalid option or two times meet any of auth options */ |
| 4882 | if (tcp_parse_auth_options(th, md5_hash: &md5_location, aoh: &aoh)) { |
| 4883 | trace_tcp_hash_bad_header(sk, skb); |
| 4884 | return SKB_DROP_REASON_TCP_AUTH_HDR; |
| 4885 | } |
| 4886 | |
| 4887 | if (req) { |
| 4888 | if (tcp_rsk_used_ao(req) != !!aoh) { |
| 4889 | u8 keyid, rnext, maclen; |
| 4890 | |
| 4891 | if (aoh) { |
| 4892 | keyid = aoh->keyid; |
| 4893 | rnext = aoh->rnext_keyid; |
| 4894 | maclen = tcp_ao_hdr_maclen(aoh); |
| 4895 | } else { |
| 4896 | keyid = rnext = maclen = 0; |
| 4897 | } |
| 4898 | |
| 4899 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); |
| 4900 | trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); |
| 4901 | return SKB_DROP_REASON_TCP_AOFAILURE; |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | /* sdif set, means packet ingressed via a device |
| 4906 | * in an L3 domain and dif is set to the l3mdev |
| 4907 | */ |
| 4908 | l3index = sdif ? dif : 0; |
| 4909 | |
| 4910 | /* Fast path: unsigned segments */ |
| 4911 | if (likely(!md5_location && !aoh)) { |
| 4912 | /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid |
| 4913 | * for the remote peer. On TCP-AO established connection |
| 4914 | * the last key is impossible to remove, so there's |
| 4915 | * always at least one current_key. |
| 4916 | */ |
| 4917 | if (tcp_ao_required(sk, saddr, family, l3index, stat_inc: true)) { |
| 4918 | trace_tcp_hash_ao_required(sk, skb); |
| 4919 | return SKB_DROP_REASON_TCP_AONOTFOUND; |
| 4920 | } |
| 4921 | if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { |
| 4922 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); |
| 4923 | trace_tcp_hash_md5_required(sk, skb); |
| 4924 | return SKB_DROP_REASON_TCP_MD5NOTFOUND; |
| 4925 | } |
| 4926 | return SKB_NOT_DROPPED_YET; |
| 4927 | } |
| 4928 | |
| 4929 | if (aoh) |
| 4930 | return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); |
| 4931 | |
| 4932 | return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, |
| 4933 | l3index, hash_location: md5_location); |
| 4934 | } |
| 4935 | EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); |
| 4936 | |
| 4937 | void tcp_done(struct sock *sk) |
| 4938 | { |
| 4939 | struct request_sock *req; |
| 4940 | |
| 4941 | /* We might be called with a new socket, after |
| 4942 | * inet_csk_prepare_forced_close() has been called |
| 4943 | * so we can not use lockdep_sock_is_held(sk) |
| 4944 | */ |
| 4945 | req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); |
| 4946 | |
| 4947 | if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) |
| 4948 | TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); |
| 4949 | |
| 4950 | tcp_set_state(sk, TCP_CLOSE); |
| 4951 | tcp_clear_xmit_timers(sk); |
| 4952 | if (req) |
| 4953 | reqsk_fastopen_remove(sk, req, reset: false); |
| 4954 | |
| 4955 | WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
| 4956 | |
| 4957 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
| 4958 | sk->sk_state_change(sk); |
| 4959 | else |
| 4960 | inet_csk_destroy_sock(sk); |
| 4961 | } |
| 4962 | EXPORT_SYMBOL_GPL(tcp_done); |
| 4963 | |
| 4964 | int tcp_abort(struct sock *sk, int err) |
| 4965 | { |
| 4966 | int state = inet_sk_state_load(sk); |
| 4967 | |
| 4968 | if (state == TCP_NEW_SYN_RECV) { |
| 4969 | struct request_sock *req = inet_reqsk(sk); |
| 4970 | |
| 4971 | local_bh_disable(); |
| 4972 | inet_csk_reqsk_queue_drop(sk: req->rsk_listener, req); |
| 4973 | local_bh_enable(); |
| 4974 | return 0; |
| 4975 | } |
| 4976 | if (state == TCP_TIME_WAIT) { |
| 4977 | struct inet_timewait_sock *tw = inet_twsk(sk); |
| 4978 | |
| 4979 | refcount_inc(r: &tw->tw_refcnt); |
| 4980 | local_bh_disable(); |
| 4981 | inet_twsk_deschedule_put(tw); |
| 4982 | local_bh_enable(); |
| 4983 | return 0; |
| 4984 | } |
| 4985 | |
| 4986 | /* BPF context ensures sock locking. */ |
| 4987 | if (!has_current_bpf_ctx()) |
| 4988 | /* Don't race with userspace socket closes such as tcp_close. */ |
| 4989 | lock_sock(sk); |
| 4990 | |
| 4991 | /* Avoid closing the same socket twice. */ |
| 4992 | if (sk->sk_state == TCP_CLOSE) { |
| 4993 | if (!has_current_bpf_ctx()) |
| 4994 | release_sock(sk); |
| 4995 | return -ENOENT; |
| 4996 | } |
| 4997 | |
| 4998 | if (sk->sk_state == TCP_LISTEN) { |
| 4999 | tcp_set_state(sk, TCP_CLOSE); |
| 5000 | inet_csk_listen_stop(sk); |
| 5001 | } |
| 5002 | |
| 5003 | /* Don't race with BH socket closes such as inet_csk_listen_stop. */ |
| 5004 | local_bh_disable(); |
| 5005 | bh_lock_sock(sk); |
| 5006 | |
| 5007 | if (tcp_need_reset(state: sk->sk_state)) |
| 5008 | tcp_send_active_reset(sk, GFP_ATOMIC, |
| 5009 | reason: SK_RST_REASON_TCP_STATE); |
| 5010 | tcp_done_with_error(sk, err); |
| 5011 | |
| 5012 | bh_unlock_sock(sk); |
| 5013 | local_bh_enable(); |
| 5014 | if (!has_current_bpf_ctx()) |
| 5015 | release_sock(sk); |
| 5016 | return 0; |
| 5017 | } |
| 5018 | EXPORT_SYMBOL_GPL(tcp_abort); |
| 5019 | |
| 5020 | extern struct tcp_congestion_ops tcp_reno; |
| 5021 | |
| 5022 | static __initdata unsigned long thash_entries; |
| 5023 | static int __init set_thash_entries(char *str) |
| 5024 | { |
| 5025 | ssize_t ret; |
| 5026 | |
| 5027 | if (!str) |
| 5028 | return 0; |
| 5029 | |
| 5030 | ret = kstrtoul(s: str, base: 0, res: &thash_entries); |
| 5031 | if (ret) |
| 5032 | return 0; |
| 5033 | |
| 5034 | return 1; |
| 5035 | } |
| 5036 | __setup("thash_entries=" , set_thash_entries); |
| 5037 | |
| 5038 | static void __init tcp_init_mem(void) |
| 5039 | { |
| 5040 | unsigned long limit = nr_free_buffer_pages() / 16; |
| 5041 | |
| 5042 | limit = max(limit, 128UL); |
| 5043 | sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ |
| 5044 | sysctl_tcp_mem[1] = limit; /* 6.25 % */ |
| 5045 | sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ |
| 5046 | } |
| 5047 | |
| 5048 | static void __init tcp_struct_check(void) |
| 5049 | { |
| 5050 | /* TX read-mostly hotpath cache lines */ |
| 5051 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); |
| 5052 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); |
| 5053 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); |
| 5054 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); |
| 5055 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); |
| 5056 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); |
| 5057 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); |
| 5058 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); |
| 5059 | |
| 5060 | /* TXRX read-mostly hotpath cache lines */ |
| 5061 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); |
| 5062 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); |
| 5063 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); |
| 5064 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); |
| 5065 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); |
| 5066 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); |
| 5067 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); |
| 5068 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); |
| 5069 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); |
| 5070 | |
| 5071 | /* RX read-mostly hotpath cache lines */ |
| 5072 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); |
| 5073 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); |
| 5074 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); |
| 5075 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); |
| 5076 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); |
| 5077 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); |
| 5078 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); |
| 5079 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); |
| 5080 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); |
| 5081 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); |
| 5082 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); |
| 5083 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); |
| 5084 | #if IS_ENABLED(CONFIG_TLS_DEVICE) |
| 5085 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); |
| 5086 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); |
| 5087 | #else |
| 5088 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); |
| 5089 | #endif |
| 5090 | |
| 5091 | /* TX read-write hotpath cache lines */ |
| 5092 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); |
| 5093 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); |
| 5094 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); |
| 5095 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); |
| 5096 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); |
| 5097 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); |
| 5098 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); |
| 5099 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); |
| 5100 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); |
| 5101 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); |
| 5102 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); |
| 5103 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); |
| 5104 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); |
| 5105 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); |
| 5106 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); |
| 5107 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); |
| 5108 | |
| 5109 | /* TXRX read-write hotpath cache lines */ |
| 5110 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); |
| 5111 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); |
| 5112 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); |
| 5113 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); |
| 5114 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); |
| 5115 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); |
| 5116 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); |
| 5117 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); |
| 5118 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); |
| 5119 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); |
| 5120 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); |
| 5121 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); |
| 5122 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); |
| 5123 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); |
| 5124 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); |
| 5125 | |
| 5126 | /* 32bit arches with 8byte alignment on u64 fields might need padding |
| 5127 | * before tcp_clock_cache. |
| 5128 | */ |
| 5129 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); |
| 5130 | |
| 5131 | /* RX read-write hotpath cache lines */ |
| 5132 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); |
| 5133 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); |
| 5134 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); |
| 5135 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); |
| 5136 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); |
| 5137 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); |
| 5138 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); |
| 5139 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); |
| 5140 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); |
| 5141 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); |
| 5142 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); |
| 5143 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); |
| 5144 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); |
| 5145 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); |
| 5146 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); |
| 5147 | } |
| 5148 | |
| 5149 | void __init tcp_init(void) |
| 5150 | { |
| 5151 | int max_rshare, max_wshare, cnt; |
| 5152 | unsigned long limit; |
| 5153 | unsigned int i; |
| 5154 | |
| 5155 | BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); |
| 5156 | BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > |
| 5157 | sizeof_field(struct sk_buff, cb)); |
| 5158 | |
| 5159 | tcp_struct_check(); |
| 5160 | |
| 5161 | percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); |
| 5162 | |
| 5163 | timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); |
| 5164 | mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD); |
| 5165 | |
| 5166 | inet_hashinfo2_init(h: &tcp_hashinfo, name: "tcp_listen_portaddr_hash" , |
| 5167 | numentries: thash_entries, scale: 21, /* one slot per 2 MB*/ |
| 5168 | low_limit: 0, high_limit: 64 * 1024); |
| 5169 | tcp_hashinfo.bind_bucket_cachep = |
| 5170 | kmem_cache_create("tcp_bind_bucket" , |
| 5171 | sizeof(struct inet_bind_bucket), 0, |
| 5172 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | |
| 5173 | SLAB_ACCOUNT, |
| 5174 | NULL); |
| 5175 | tcp_hashinfo.bind2_bucket_cachep = |
| 5176 | kmem_cache_create("tcp_bind2_bucket" , |
| 5177 | sizeof(struct inet_bind2_bucket), 0, |
| 5178 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | |
| 5179 | SLAB_ACCOUNT, |
| 5180 | NULL); |
| 5181 | |
| 5182 | /* Size and allocate the main established and bind bucket |
| 5183 | * hash tables. |
| 5184 | * |
| 5185 | * The methodology is similar to that of the buffer cache. |
| 5186 | */ |
| 5187 | tcp_hashinfo.ehash = |
| 5188 | alloc_large_system_hash(tablename: "TCP established" , |
| 5189 | bucketsize: sizeof(struct inet_ehash_bucket), |
| 5190 | numentries: thash_entries, |
| 5191 | scale: 17, /* one slot per 128 KB of memory */ |
| 5192 | flags: 0, |
| 5193 | NULL, |
| 5194 | hash_mask: &tcp_hashinfo.ehash_mask, |
| 5195 | low_limit: 0, |
| 5196 | high_limit: thash_entries ? 0 : 512 * 1024); |
| 5197 | for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) |
| 5198 | INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); |
| 5199 | |
| 5200 | if (inet_ehash_locks_alloc(hashinfo: &tcp_hashinfo)) |
| 5201 | panic(fmt: "TCP: failed to alloc ehash_locks" ); |
| 5202 | tcp_hashinfo.bhash = |
| 5203 | alloc_large_system_hash(tablename: "TCP bind" , |
| 5204 | bucketsize: 2 * sizeof(struct inet_bind_hashbucket), |
| 5205 | numentries: tcp_hashinfo.ehash_mask + 1, |
| 5206 | scale: 17, /* one slot per 128 KB of memory */ |
| 5207 | flags: 0, |
| 5208 | hash_shift: &tcp_hashinfo.bhash_size, |
| 5209 | NULL, |
| 5210 | low_limit: 0, |
| 5211 | high_limit: 64 * 1024); |
| 5212 | tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; |
| 5213 | tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; |
| 5214 | for (i = 0; i < tcp_hashinfo.bhash_size; i++) { |
| 5215 | spin_lock_init(&tcp_hashinfo.bhash[i].lock); |
| 5216 | INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); |
| 5217 | spin_lock_init(&tcp_hashinfo.bhash2[i].lock); |
| 5218 | INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); |
| 5219 | } |
| 5220 | |
| 5221 | tcp_hashinfo.pernet = false; |
| 5222 | |
| 5223 | cnt = tcp_hashinfo.ehash_mask + 1; |
| 5224 | sysctl_tcp_max_orphans = cnt / 2; |
| 5225 | |
| 5226 | tcp_init_mem(); |
| 5227 | /* Set per-socket limits to no more than 1/128 the pressure threshold */ |
| 5228 | limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); |
| 5229 | max_wshare = min(4UL*1024*1024, limit); |
| 5230 | max_rshare = min(32UL*1024*1024, limit); |
| 5231 | |
| 5232 | init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; |
| 5233 | init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; |
| 5234 | init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); |
| 5235 | |
| 5236 | init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; |
| 5237 | init_net.ipv4.sysctl_tcp_rmem[1] = 131072; |
| 5238 | init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); |
| 5239 | |
| 5240 | pr_info("Hash tables configured (established %u bind %u)\n" , |
| 5241 | tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); |
| 5242 | |
| 5243 | tcp_v4_init(); |
| 5244 | tcp_metrics_init(); |
| 5245 | BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); |
| 5246 | tcp_tasklet_init(); |
| 5247 | mptcp_init(); |
| 5248 | } |
| 5249 | |