1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * Implementation of the Transmission Control Protocol(TCP). |
8 | * |
9 | * Authors: Ross Biro |
10 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
11 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
12 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
13 | * Florian La Roche, <flla@stud.uni-sb.de> |
14 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
15 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
16 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
17 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
18 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
19 | * Jorge Cwik, <jorge@laser.satlink.net> |
20 | * |
21 | * Fixes: |
22 | * Alan Cox : Numerous verify_area() calls |
23 | * Alan Cox : Set the ACK bit on a reset |
24 | * Alan Cox : Stopped it crashing if it closed while |
25 | * sk->inuse=1 and was trying to connect |
26 | * (tcp_err()). |
27 | * Alan Cox : All icmp error handling was broken |
28 | * pointers passed where wrong and the |
29 | * socket was looked up backwards. Nobody |
30 | * tested any icmp error code obviously. |
31 | * Alan Cox : tcp_err() now handled properly. It |
32 | * wakes people on errors. poll |
33 | * behaves and the icmp error race |
34 | * has gone by moving it into sock.c |
35 | * Alan Cox : tcp_send_reset() fixed to work for |
36 | * everything not just packets for |
37 | * unknown sockets. |
38 | * Alan Cox : tcp option processing. |
39 | * Alan Cox : Reset tweaked (still not 100%) [Had |
40 | * syn rule wrong] |
41 | * Herp Rosmanith : More reset fixes |
42 | * Alan Cox : No longer acks invalid rst frames. |
43 | * Acking any kind of RST is right out. |
44 | * Alan Cox : Sets an ignore me flag on an rst |
45 | * receive otherwise odd bits of prattle |
46 | * escape still |
47 | * Alan Cox : Fixed another acking RST frame bug. |
48 | * Should stop LAN workplace lockups. |
49 | * Alan Cox : Some tidyups using the new skb list |
50 | * facilities |
51 | * Alan Cox : sk->keepopen now seems to work |
52 | * Alan Cox : Pulls options out correctly on accepts |
53 | * Alan Cox : Fixed assorted sk->rqueue->next errors |
54 | * Alan Cox : PSH doesn't end a TCP read. Switched a |
55 | * bit to skb ops. |
56 | * Alan Cox : Tidied tcp_data to avoid a potential |
57 | * nasty. |
58 | * Alan Cox : Added some better commenting, as the |
59 | * tcp is hard to follow |
60 | * Alan Cox : Removed incorrect check for 20 * psh |
61 | * Michael O'Reilly : ack < copied bug fix. |
62 | * Johannes Stille : Misc tcp fixes (not all in yet). |
63 | * Alan Cox : FIN with no memory -> CRASH |
64 | * Alan Cox : Added socket option proto entries. |
65 | * Also added awareness of them to accept. |
66 | * Alan Cox : Added TCP options (SOL_TCP) |
67 | * Alan Cox : Switched wakeup calls to callbacks, |
68 | * so the kernel can layer network |
69 | * sockets. |
70 | * Alan Cox : Use ip_tos/ip_ttl settings. |
71 | * Alan Cox : Handle FIN (more) properly (we hope). |
72 | * Alan Cox : RST frames sent on unsynchronised |
73 | * state ack error. |
74 | * Alan Cox : Put in missing check for SYN bit. |
75 | * Alan Cox : Added tcp_select_window() aka NET2E |
76 | * window non shrink trick. |
77 | * Alan Cox : Added a couple of small NET2E timer |
78 | * fixes |
79 | * Charles Hedrick : TCP fixes |
80 | * Toomas Tamm : TCP window fixes |
81 | * Alan Cox : Small URG fix to rlogin ^C ack fight |
82 | * Charles Hedrick : Rewrote most of it to actually work |
83 | * Linus : Rewrote tcp_read() and URG handling |
84 | * completely |
85 | * Gerhard Koerting: Fixed some missing timer handling |
86 | * Matthew Dillon : Reworked TCP machine states as per RFC |
87 | * Gerhard Koerting: PC/TCP workarounds |
88 | * Adam Caldwell : Assorted timer/timing errors |
89 | * Matthew Dillon : Fixed another RST bug |
90 | * Alan Cox : Move to kernel side addressing changes. |
91 | * Alan Cox : Beginning work on TCP fastpathing |
92 | * (not yet usable) |
93 | * Arnt Gulbrandsen: Turbocharged tcp_check() routine. |
94 | * Alan Cox : TCP fast path debugging |
95 | * Alan Cox : Window clamping |
96 | * Michael Riepe : Bug in tcp_check() |
97 | * Matt Dillon : More TCP improvements and RST bug fixes |
98 | * Matt Dillon : Yet more small nasties remove from the |
99 | * TCP code (Be very nice to this man if |
100 | * tcp finally works 100%) 8) |
101 | * Alan Cox : BSD accept semantics. |
102 | * Alan Cox : Reset on closedown bug. |
103 | * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). |
104 | * Michael Pall : Handle poll() after URG properly in |
105 | * all cases. |
106 | * Michael Pall : Undo the last fix in tcp_read_urg() |
107 | * (multi URG PUSH broke rlogin). |
108 | * Michael Pall : Fix the multi URG PUSH problem in |
109 | * tcp_readable(), poll() after URG |
110 | * works now. |
111 | * Michael Pall : recv(...,MSG_OOB) never blocks in the |
112 | * BSD api. |
113 | * Alan Cox : Changed the semantics of sk->socket to |
114 | * fix a race and a signal problem with |
115 | * accept() and async I/O. |
116 | * Alan Cox : Relaxed the rules on tcp_sendto(). |
117 | * Yury Shevchuk : Really fixed accept() blocking problem. |
118 | * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for |
119 | * clients/servers which listen in on |
120 | * fixed ports. |
121 | * Alan Cox : Cleaned the above up and shrank it to |
122 | * a sensible code size. |
123 | * Alan Cox : Self connect lockup fix. |
124 | * Alan Cox : No connect to multicast. |
125 | * Ross Biro : Close unaccepted children on master |
126 | * socket close. |
127 | * Alan Cox : Reset tracing code. |
128 | * Alan Cox : Spurious resets on shutdown. |
129 | * Alan Cox : Giant 15 minute/60 second timer error |
130 | * Alan Cox : Small whoops in polling before an |
131 | * accept. |
132 | * Alan Cox : Kept the state trace facility since |
133 | * it's handy for debugging. |
134 | * Alan Cox : More reset handler fixes. |
135 | * Alan Cox : Started rewriting the code based on |
136 | * the RFC's for other useful protocol |
137 | * references see: Comer, KA9Q NOS, and |
138 | * for a reference on the difference |
139 | * between specifications and how BSD |
140 | * works see the 4.4lite source. |
141 | * A.N.Kuznetsov : Don't time wait on completion of tidy |
142 | * close. |
143 | * Linus Torvalds : Fin/Shutdown & copied_seq changes. |
144 | * Linus Torvalds : Fixed BSD port reuse to work first syn |
145 | * Alan Cox : Reimplemented timers as per the RFC |
146 | * and using multiple timers for sanity. |
147 | * Alan Cox : Small bug fixes, and a lot of new |
148 | * comments. |
149 | * Alan Cox : Fixed dual reader crash by locking |
150 | * the buffers (much like datagram.c) |
151 | * Alan Cox : Fixed stuck sockets in probe. A probe |
152 | * now gets fed up of retrying without |
153 | * (even a no space) answer. |
154 | * Alan Cox : Extracted closing code better |
155 | * Alan Cox : Fixed the closing state machine to |
156 | * resemble the RFC. |
157 | * Alan Cox : More 'per spec' fixes. |
158 | * Jorge Cwik : Even faster checksumming. |
159 | * Alan Cox : tcp_data() doesn't ack illegal PSH |
160 | * only frames. At least one pc tcp stack |
161 | * generates them. |
162 | * Alan Cox : Cache last socket. |
163 | * Alan Cox : Per route irtt. |
164 | * Matt Day : poll()->select() match BSD precisely on error |
165 | * Alan Cox : New buffers |
166 | * Marc Tamsky : Various sk->prot->retransmits and |
167 | * sk->retransmits misupdating fixed. |
168 | * Fixed tcp_write_timeout: stuck close, |
169 | * and TCP syn retries gets used now. |
170 | * Mark Yarvis : In tcp_read_wakeup(), don't send an |
171 | * ack if state is TCP_CLOSED. |
172 | * Alan Cox : Look up device on a retransmit - routes may |
173 | * change. Doesn't yet cope with MSS shrink right |
174 | * but it's a start! |
175 | * Marc Tamsky : Closing in closing fixes. |
176 | * Mike Shaver : RFC1122 verifications. |
177 | * Alan Cox : rcv_saddr errors. |
178 | * Alan Cox : Block double connect(). |
179 | * Alan Cox : Small hooks for enSKIP. |
180 | * Alexey Kuznetsov: Path MTU discovery. |
181 | * Alan Cox : Support soft errors. |
182 | * Alan Cox : Fix MTU discovery pathological case |
183 | * when the remote claims no mtu! |
184 | * Marc Tamsky : TCP_CLOSE fix. |
185 | * Colin (G3TNE) : Send a reset on syn ack replies in |
186 | * window but wrong (fixes NT lpd problems) |
187 | * Pedro Roque : Better TCP window handling, delayed ack. |
188 | * Joerg Reuter : No modification of locked buffers in |
189 | * tcp_do_retransmit() |
190 | * Eric Schenk : Changed receiver side silly window |
191 | * avoidance algorithm to BSD style |
192 | * algorithm. This doubles throughput |
193 | * against machines running Solaris, |
194 | * and seems to result in general |
195 | * improvement. |
196 | * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD |
197 | * Willy Konynenberg : Transparent proxying support. |
198 | * Mike McLagan : Routing by source |
199 | * Keith Owens : Do proper merging with partial SKB's in |
200 | * tcp_do_sendmsg to avoid burstiness. |
201 | * Eric Schenk : Fix fast close down bug with |
202 | * shutdown() followed by close(). |
203 | * Andi Kleen : Make poll agree with SIGIO |
204 | * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and |
205 | * lingertime == 0 (RFC 793 ABORT Call) |
206 | * Hirokazu Takahashi : Use copy_from_user() instead of |
207 | * csum_and_copy_from_user() if possible. |
208 | * |
209 | * Description of States: |
210 | * |
211 | * TCP_SYN_SENT sent a connection request, waiting for ack |
212 | * |
213 | * TCP_SYN_RECV received a connection request, sent ack, |
214 | * waiting for final ack in three-way handshake. |
215 | * |
216 | * TCP_ESTABLISHED connection established |
217 | * |
218 | * TCP_FIN_WAIT1 our side has shutdown, waiting to complete |
219 | * transmission of remaining buffered data |
220 | * |
221 | * TCP_FIN_WAIT2 all buffered data sent, waiting for remote |
222 | * to shutdown |
223 | * |
224 | * TCP_CLOSING both sides have shutdown but we still have |
225 | * data we have to finish sending |
226 | * |
227 | * TCP_TIME_WAIT timeout to catch resent junk before entering |
228 | * closed, can only be entered from FIN_WAIT2 |
229 | * or CLOSING. Required because the other end |
230 | * may not have gotten our last ACK causing it |
231 | * to retransmit the data packet (which we ignore) |
232 | * |
233 | * TCP_CLOSE_WAIT remote side has shutdown and is waiting for |
234 | * us to finish writing our data and to shutdown |
235 | * (we have to close() to move on to LAST_ACK) |
236 | * |
237 | * TCP_LAST_ACK out side has shutdown after remote has |
238 | * shutdown. There may still be data in our |
239 | * buffer that we have to finish sending |
240 | * |
241 | * TCP_CLOSE socket is finished |
242 | */ |
243 | |
244 | #define pr_fmt(fmt) "TCP: " fmt |
245 | |
246 | #include <crypto/hash.h> |
247 | #include <linux/kernel.h> |
248 | #include <linux/module.h> |
249 | #include <linux/types.h> |
250 | #include <linux/fcntl.h> |
251 | #include <linux/poll.h> |
252 | #include <linux/inet_diag.h> |
253 | #include <linux/init.h> |
254 | #include <linux/fs.h> |
255 | #include <linux/skbuff.h> |
256 | #include <linux/scatterlist.h> |
257 | #include <linux/splice.h> |
258 | #include <linux/net.h> |
259 | #include <linux/socket.h> |
260 | #include <linux/random.h> |
261 | #include <linux/memblock.h> |
262 | #include <linux/highmem.h> |
263 | #include <linux/cache.h> |
264 | #include <linux/err.h> |
265 | #include <linux/time.h> |
266 | #include <linux/slab.h> |
267 | #include <linux/errqueue.h> |
268 | #include <linux/static_key.h> |
269 | #include <linux/btf.h> |
270 | |
271 | #include <net/icmp.h> |
272 | #include <net/inet_common.h> |
273 | #include <net/tcp.h> |
274 | #include <net/mptcp.h> |
275 | #include <net/proto_memory.h> |
276 | #include <net/xfrm.h> |
277 | #include <net/ip.h> |
278 | #include <net/sock.h> |
279 | #include <net/rstreason.h> |
280 | |
281 | #include <linux/uaccess.h> |
282 | #include <asm/ioctls.h> |
283 | #include <net/busy_poll.h> |
284 | #include <net/hotdata.h> |
285 | #include <trace/events/tcp.h> |
286 | #include <net/rps.h> |
287 | |
288 | #include "../core/devmem.h" |
289 | |
290 | /* Track pending CMSGs. */ |
291 | enum { |
292 | TCP_CMSG_INQ = 1, |
293 | TCP_CMSG_TS = 2 |
294 | }; |
295 | |
296 | DEFINE_PER_CPU(unsigned int, tcp_orphan_count); |
297 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); |
298 | |
299 | DEFINE_PER_CPU(u32, tcp_tw_isn); |
300 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); |
301 | |
302 | long sysctl_tcp_mem[3] __read_mostly; |
303 | EXPORT_IPV6_MOD(sysctl_tcp_mem); |
304 | |
305 | atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ |
306 | EXPORT_IPV6_MOD(tcp_memory_allocated); |
307 | DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); |
308 | EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); |
309 | |
310 | #if IS_ENABLED(CONFIG_SMC) |
311 | DEFINE_STATIC_KEY_FALSE(tcp_have_smc); |
312 | EXPORT_SYMBOL(tcp_have_smc); |
313 | #endif |
314 | |
315 | /* |
316 | * Current number of TCP sockets. |
317 | */ |
318 | struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; |
319 | EXPORT_IPV6_MOD(tcp_sockets_allocated); |
320 | |
321 | /* |
322 | * TCP splice context |
323 | */ |
324 | struct tcp_splice_state { |
325 | struct pipe_inode_info *pipe; |
326 | size_t len; |
327 | unsigned int flags; |
328 | }; |
329 | |
330 | /* |
331 | * Pressure flag: try to collapse. |
332 | * Technical note: it is used by multiple contexts non atomically. |
333 | * All the __sk_mem_schedule() is of this nature: accounting |
334 | * is strict, actions are advisory and have some latency. |
335 | */ |
336 | unsigned long tcp_memory_pressure __read_mostly; |
337 | EXPORT_SYMBOL_GPL(tcp_memory_pressure); |
338 | |
339 | void tcp_enter_memory_pressure(struct sock *sk) |
340 | { |
341 | unsigned long val; |
342 | |
343 | if (READ_ONCE(tcp_memory_pressure)) |
344 | return; |
345 | val = jiffies; |
346 | |
347 | if (!val) |
348 | val--; |
349 | if (!cmpxchg(&tcp_memory_pressure, 0, val)) |
350 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); |
351 | } |
352 | EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); |
353 | |
354 | void tcp_leave_memory_pressure(struct sock *sk) |
355 | { |
356 | unsigned long val; |
357 | |
358 | if (!READ_ONCE(tcp_memory_pressure)) |
359 | return; |
360 | val = xchg(&tcp_memory_pressure, 0); |
361 | if (val) |
362 | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, |
363 | jiffies_to_msecs(jiffies - val)); |
364 | } |
365 | EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); |
366 | |
367 | /* Convert seconds to retransmits based on initial and max timeout */ |
368 | static u8 secs_to_retrans(int seconds, int timeout, int rto_max) |
369 | { |
370 | u8 res = 0; |
371 | |
372 | if (seconds > 0) { |
373 | int period = timeout; |
374 | |
375 | res = 1; |
376 | while (seconds > period && res < 255) { |
377 | res++; |
378 | timeout <<= 1; |
379 | if (timeout > rto_max) |
380 | timeout = rto_max; |
381 | period += timeout; |
382 | } |
383 | } |
384 | return res; |
385 | } |
386 | |
387 | /* Convert retransmits to seconds based on initial and max timeout */ |
388 | static int retrans_to_secs(u8 retrans, int timeout, int rto_max) |
389 | { |
390 | int period = 0; |
391 | |
392 | if (retrans > 0) { |
393 | period = timeout; |
394 | while (--retrans) { |
395 | timeout <<= 1; |
396 | if (timeout > rto_max) |
397 | timeout = rto_max; |
398 | period += timeout; |
399 | } |
400 | } |
401 | return period; |
402 | } |
403 | |
404 | static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) |
405 | { |
406 | u32 rate = READ_ONCE(tp->rate_delivered); |
407 | u32 intv = READ_ONCE(tp->rate_interval_us); |
408 | u64 rate64 = 0; |
409 | |
410 | if (rate && intv) { |
411 | rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; |
412 | do_div(rate64, intv); |
413 | } |
414 | return rate64; |
415 | } |
416 | |
417 | /* Address-family independent initialization for a tcp_sock. |
418 | * |
419 | * NOTE: A lot of things set to zero explicitly by call to |
420 | * sk_alloc() so need not be done here. |
421 | */ |
422 | void tcp_init_sock(struct sock *sk) |
423 | { |
424 | struct inet_connection_sock *icsk = inet_csk(sk); |
425 | struct tcp_sock *tp = tcp_sk(sk); |
426 | int rto_min_us, rto_max_ms; |
427 | |
428 | tp->out_of_order_queue = RB_ROOT; |
429 | sk->tcp_rtx_queue = RB_ROOT; |
430 | tcp_init_xmit_timers(sk); |
431 | INIT_LIST_HEAD(list: &tp->tsq_node); |
432 | INIT_LIST_HEAD(list: &tp->tsorted_sent_queue); |
433 | |
434 | icsk->icsk_rto = TCP_TIMEOUT_INIT; |
435 | |
436 | rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); |
437 | icsk->icsk_rto_max = msecs_to_jiffies(m: rto_max_ms); |
438 | |
439 | rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); |
440 | icsk->icsk_rto_min = usecs_to_jiffies(u: rto_min_us); |
441 | icsk->icsk_delack_max = TCP_DELACK_MAX; |
442 | tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); |
443 | minmax_reset(m: &tp->rtt_min, tcp_jiffies32, meas: ~0U); |
444 | |
445 | /* So many TCP implementations out there (incorrectly) count the |
446 | * initial SYN frame in their delayed-ACK and congestion control |
447 | * algorithms that we must have the following bandaid to talk |
448 | * efficiently to them. -DaveM |
449 | */ |
450 | tcp_snd_cwnd_set(tp, TCP_INIT_CWND); |
451 | |
452 | /* There's a bubble in the pipe until at least the first ACK. */ |
453 | tp->app_limited = ~0U; |
454 | tp->rate_app_limited = 1; |
455 | |
456 | /* See draft-stevens-tcpca-spec-01 for discussion of the |
457 | * initialization of these values. |
458 | */ |
459 | tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
460 | tp->snd_cwnd_clamp = ~0; |
461 | tp->mss_cache = TCP_MSS_DEFAULT; |
462 | |
463 | tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); |
464 | tcp_assign_congestion_control(sk); |
465 | |
466 | tp->tsoffset = 0; |
467 | tp->rack.reo_wnd_steps = 1; |
468 | |
469 | sk->sk_write_space = sk_stream_write_space; |
470 | sock_set_flag(sk, flag: SOCK_USE_WRITE_QUEUE); |
471 | |
472 | icsk->icsk_sync_mss = tcp_sync_mss; |
473 | |
474 | WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); |
475 | WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); |
476 | tcp_scaling_ratio_init(sk); |
477 | |
478 | set_bit(nr: SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags); |
479 | sk_sockets_allocated_inc(sk); |
480 | xa_init_flags(xa: &sk->sk_user_frags, XA_FLAGS_ALLOC1); |
481 | } |
482 | EXPORT_IPV6_MOD(tcp_init_sock); |
483 | |
484 | static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) |
485 | { |
486 | struct sk_buff *skb = tcp_write_queue_tail(sk); |
487 | u32 tsflags = sockc->tsflags; |
488 | |
489 | if (tsflags && skb) { |
490 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
491 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); |
492 | |
493 | sock_tx_timestamp(sk, sockc, tx_flags: &shinfo->tx_flags); |
494 | if (tsflags & SOF_TIMESTAMPING_TX_ACK) |
495 | tcb->txstamp_ack |= TSTAMP_ACK_SK; |
496 | if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) |
497 | shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; |
498 | } |
499 | |
500 | if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && |
501 | SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) |
502 | bpf_skops_tx_timestamping(sk, skb, op: BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); |
503 | } |
504 | |
505 | static bool tcp_stream_is_readable(struct sock *sk, int target) |
506 | { |
507 | if (tcp_epollin_ready(sk, target)) |
508 | return true; |
509 | return sk_is_readable(sk); |
510 | } |
511 | |
512 | /* |
513 | * Wait for a TCP event. |
514 | * |
515 | * Note that we don't need to lock the socket, as the upper poll layers |
516 | * take care of normal races (between the test and the event) and we don't |
517 | * go look at any of the socket buffers directly. |
518 | */ |
519 | __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) |
520 | { |
521 | __poll_t mask; |
522 | struct sock *sk = sock->sk; |
523 | const struct tcp_sock *tp = tcp_sk(sk); |
524 | u8 shutdown; |
525 | int state; |
526 | |
527 | sock_poll_wait(filp: file, sock, p: wait); |
528 | |
529 | state = inet_sk_state_load(sk); |
530 | if (state == TCP_LISTEN) |
531 | return inet_csk_listen_poll(sk); |
532 | |
533 | /* Socket is not locked. We are protected from async events |
534 | * by poll logic and correct handling of state changes |
535 | * made by other threads is impossible in any case. |
536 | */ |
537 | |
538 | mask = 0; |
539 | |
540 | /* |
541 | * EPOLLHUP is certainly not done right. But poll() doesn't |
542 | * have a notion of HUP in just one direction, and for a |
543 | * socket the read side is more interesting. |
544 | * |
545 | * Some poll() documentation says that EPOLLHUP is incompatible |
546 | * with the EPOLLOUT/POLLWR flags, so somebody should check this |
547 | * all. But careful, it tends to be safer to return too many |
548 | * bits than too few, and you can easily break real applications |
549 | * if you don't tell them that something has hung up! |
550 | * |
551 | * Check-me. |
552 | * |
553 | * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and |
554 | * our fs/select.c). It means that after we received EOF, |
555 | * poll always returns immediately, making impossible poll() on write() |
556 | * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP |
557 | * if and only if shutdown has been made in both directions. |
558 | * Actually, it is interesting to look how Solaris and DUX |
559 | * solve this dilemma. I would prefer, if EPOLLHUP were maskable, |
560 | * then we could set it on SND_SHUTDOWN. BTW examples given |
561 | * in Stevens' books assume exactly this behaviour, it explains |
562 | * why EPOLLHUP is incompatible with EPOLLOUT. --ANK |
563 | * |
564 | * NOTE. Check for TCP_CLOSE is added. The goal is to prevent |
565 | * blocking on fresh not-connected or disconnected socket. --ANK |
566 | */ |
567 | shutdown = READ_ONCE(sk->sk_shutdown); |
568 | if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) |
569 | mask |= EPOLLHUP; |
570 | if (shutdown & RCV_SHUTDOWN) |
571 | mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; |
572 | |
573 | /* Connected or passive Fast Open socket? */ |
574 | if (state != TCP_SYN_SENT && |
575 | (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { |
576 | int target = sock_rcvlowat(sk, waitall: 0, INT_MAX); |
577 | u16 urg_data = READ_ONCE(tp->urg_data); |
578 | |
579 | if (unlikely(urg_data) && |
580 | READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && |
581 | !sock_flag(sk, flag: SOCK_URGINLINE)) |
582 | target++; |
583 | |
584 | if (tcp_stream_is_readable(sk, target)) |
585 | mask |= EPOLLIN | EPOLLRDNORM; |
586 | |
587 | if (!(shutdown & SEND_SHUTDOWN)) { |
588 | if (__sk_stream_is_writeable(sk, wake: 1)) { |
589 | mask |= EPOLLOUT | EPOLLWRNORM; |
590 | } else { /* send SIGIO later */ |
591 | sk_set_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
592 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
593 | |
594 | /* Race breaker. If space is freed after |
595 | * wspace test but before the flags are set, |
596 | * IO signal will be lost. Memory barrier |
597 | * pairs with the input side. |
598 | */ |
599 | smp_mb__after_atomic(); |
600 | if (__sk_stream_is_writeable(sk, wake: 1)) |
601 | mask |= EPOLLOUT | EPOLLWRNORM; |
602 | } |
603 | } else |
604 | mask |= EPOLLOUT | EPOLLWRNORM; |
605 | |
606 | if (urg_data & TCP_URG_VALID) |
607 | mask |= EPOLLPRI; |
608 | } else if (state == TCP_SYN_SENT && |
609 | inet_test_bit(DEFER_CONNECT, sk)) { |
610 | /* Active TCP fastopen socket with defer_connect |
611 | * Return EPOLLOUT so application can call write() |
612 | * in order for kernel to generate SYN+data |
613 | */ |
614 | mask |= EPOLLOUT | EPOLLWRNORM; |
615 | } |
616 | /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ |
617 | smp_rmb(); |
618 | if (READ_ONCE(sk->sk_err) || |
619 | !skb_queue_empty_lockless(list: &sk->sk_error_queue)) |
620 | mask |= EPOLLERR; |
621 | |
622 | return mask; |
623 | } |
624 | EXPORT_SYMBOL(tcp_poll); |
625 | |
626 | int tcp_ioctl(struct sock *sk, int cmd, int *karg) |
627 | { |
628 | struct tcp_sock *tp = tcp_sk(sk); |
629 | int answ; |
630 | bool slow; |
631 | |
632 | switch (cmd) { |
633 | case SIOCINQ: |
634 | if (sk->sk_state == TCP_LISTEN) |
635 | return -EINVAL; |
636 | |
637 | slow = lock_sock_fast(sk); |
638 | answ = tcp_inq(sk); |
639 | unlock_sock_fast(sk, slow); |
640 | break; |
641 | case SIOCATMARK: |
642 | answ = READ_ONCE(tp->urg_data) && |
643 | READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); |
644 | break; |
645 | case SIOCOUTQ: |
646 | if (sk->sk_state == TCP_LISTEN) |
647 | return -EINVAL; |
648 | |
649 | if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) |
650 | answ = 0; |
651 | else |
652 | answ = READ_ONCE(tp->write_seq) - tp->snd_una; |
653 | break; |
654 | case SIOCOUTQNSD: |
655 | if (sk->sk_state == TCP_LISTEN) |
656 | return -EINVAL; |
657 | |
658 | if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) |
659 | answ = 0; |
660 | else |
661 | answ = READ_ONCE(tp->write_seq) - |
662 | READ_ONCE(tp->snd_nxt); |
663 | break; |
664 | default: |
665 | return -ENOIOCTLCMD; |
666 | } |
667 | |
668 | *karg = answ; |
669 | return 0; |
670 | } |
671 | EXPORT_IPV6_MOD(tcp_ioctl); |
672 | |
673 | void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) |
674 | { |
675 | TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; |
676 | tp->pushed_seq = tp->write_seq; |
677 | } |
678 | |
679 | static inline bool forced_push(const struct tcp_sock *tp) |
680 | { |
681 | return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); |
682 | } |
683 | |
684 | void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) |
685 | { |
686 | struct tcp_sock *tp = tcp_sk(sk); |
687 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); |
688 | |
689 | tcb->seq = tcb->end_seq = tp->write_seq; |
690 | tcb->tcp_flags = TCPHDR_ACK; |
691 | __skb_header_release(skb); |
692 | tcp_add_write_queue_tail(sk, skb); |
693 | sk_wmem_queued_add(sk, val: skb->truesize); |
694 | sk_mem_charge(sk, size: skb->truesize); |
695 | if (tp->nonagle & TCP_NAGLE_PUSH) |
696 | tp->nonagle &= ~TCP_NAGLE_PUSH; |
697 | |
698 | tcp_slow_start_after_idle_check(sk); |
699 | } |
700 | |
701 | static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) |
702 | { |
703 | if (flags & MSG_OOB) |
704 | tp->snd_up = tp->write_seq; |
705 | } |
706 | |
707 | /* If a not yet filled skb is pushed, do not send it if |
708 | * we have data packets in Qdisc or NIC queues : |
709 | * Because TX completion will happen shortly, it gives a chance |
710 | * to coalesce future sendmsg() payload into this skb, without |
711 | * need for a timer, and with no latency trade off. |
712 | * As packets containing data payload have a bigger truesize |
713 | * than pure acks (dataless) packets, the last checks prevent |
714 | * autocorking if we only have an ACK in Qdisc/NIC queues, |
715 | * or if TX completion was delayed after we processed ACK packet. |
716 | */ |
717 | static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, |
718 | int size_goal) |
719 | { |
720 | return skb->len < size_goal && |
721 | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && |
722 | !tcp_rtx_queue_empty(sk) && |
723 | refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize && |
724 | tcp_skb_can_collapse_to(skb); |
725 | } |
726 | |
727 | void tcp_push(struct sock *sk, int flags, int mss_now, |
728 | int nonagle, int size_goal) |
729 | { |
730 | struct tcp_sock *tp = tcp_sk(sk); |
731 | struct sk_buff *skb; |
732 | |
733 | skb = tcp_write_queue_tail(sk); |
734 | if (!skb) |
735 | return; |
736 | if (!(flags & MSG_MORE) || forced_push(tp)) |
737 | tcp_mark_push(tp, skb); |
738 | |
739 | tcp_mark_urg(tp, flags); |
740 | |
741 | if (tcp_should_autocork(sk, skb, size_goal)) { |
742 | |
743 | /* avoid atomic op if TSQ_THROTTLED bit is already set */ |
744 | if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { |
745 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); |
746 | set_bit(nr: TSQ_THROTTLED, addr: &sk->sk_tsq_flags); |
747 | smp_mb__after_atomic(); |
748 | } |
749 | /* It is possible TX completion already happened |
750 | * before we set TSQ_THROTTLED. |
751 | */ |
752 | if (refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize) |
753 | return; |
754 | } |
755 | |
756 | if (flags & MSG_MORE) |
757 | nonagle = TCP_NAGLE_CORK; |
758 | |
759 | __tcp_push_pending_frames(sk, cur_mss: mss_now, nonagle); |
760 | } |
761 | |
762 | static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, |
763 | unsigned int offset, size_t len) |
764 | { |
765 | struct tcp_splice_state *tss = rd_desc->arg.data; |
766 | int ret; |
767 | |
768 | ret = skb_splice_bits(skb, sk: skb->sk, offset, pipe: tss->pipe, |
769 | min(rd_desc->count, len), flags: tss->flags); |
770 | if (ret > 0) |
771 | rd_desc->count -= ret; |
772 | return ret; |
773 | } |
774 | |
775 | static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) |
776 | { |
777 | /* Store TCP splice context information in read_descriptor_t. */ |
778 | read_descriptor_t rd_desc = { |
779 | .arg.data = tss, |
780 | .count = tss->len, |
781 | }; |
782 | |
783 | return tcp_read_sock(sk, desc: &rd_desc, recv_actor: tcp_splice_data_recv); |
784 | } |
785 | |
786 | /** |
787 | * tcp_splice_read - splice data from TCP socket to a pipe |
788 | * @sock: socket to splice from |
789 | * @ppos: position (not valid) |
790 | * @pipe: pipe to splice to |
791 | * @len: number of bytes to splice |
792 | * @flags: splice modifier flags |
793 | * |
794 | * Description: |
795 | * Will read pages from given socket and fill them into a pipe. |
796 | * |
797 | **/ |
798 | ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, |
799 | struct pipe_inode_info *pipe, size_t len, |
800 | unsigned int flags) |
801 | { |
802 | struct sock *sk = sock->sk; |
803 | struct tcp_splice_state tss = { |
804 | .pipe = pipe, |
805 | .len = len, |
806 | .flags = flags, |
807 | }; |
808 | long timeo; |
809 | ssize_t spliced; |
810 | int ret; |
811 | |
812 | sock_rps_record_flow(sk); |
813 | /* |
814 | * We can't seek on a socket input |
815 | */ |
816 | if (unlikely(*ppos)) |
817 | return -ESPIPE; |
818 | |
819 | ret = spliced = 0; |
820 | |
821 | lock_sock(sk); |
822 | |
823 | timeo = sock_rcvtimeo(sk, noblock: sock->file->f_flags & O_NONBLOCK); |
824 | while (tss.len) { |
825 | ret = __tcp_splice_read(sk, tss: &tss); |
826 | if (ret < 0) |
827 | break; |
828 | else if (!ret) { |
829 | if (spliced) |
830 | break; |
831 | if (sock_flag(sk, flag: SOCK_DONE)) |
832 | break; |
833 | if (sk->sk_err) { |
834 | ret = sock_error(sk); |
835 | break; |
836 | } |
837 | if (sk->sk_shutdown & RCV_SHUTDOWN) |
838 | break; |
839 | if (sk->sk_state == TCP_CLOSE) { |
840 | /* |
841 | * This occurs when user tries to read |
842 | * from never connected socket. |
843 | */ |
844 | ret = -ENOTCONN; |
845 | break; |
846 | } |
847 | if (!timeo) { |
848 | ret = -EAGAIN; |
849 | break; |
850 | } |
851 | /* if __tcp_splice_read() got nothing while we have |
852 | * an skb in receive queue, we do not want to loop. |
853 | * This might happen with URG data. |
854 | */ |
855 | if (!skb_queue_empty(list: &sk->sk_receive_queue)) |
856 | break; |
857 | ret = sk_wait_data(sk, timeo: &timeo, NULL); |
858 | if (ret < 0) |
859 | break; |
860 | if (signal_pending(current)) { |
861 | ret = sock_intr_errno(timeo); |
862 | break; |
863 | } |
864 | continue; |
865 | } |
866 | tss.len -= ret; |
867 | spliced += ret; |
868 | |
869 | if (!tss.len || !timeo) |
870 | break; |
871 | release_sock(sk); |
872 | lock_sock(sk); |
873 | |
874 | if (sk->sk_err || sk->sk_state == TCP_CLOSE || |
875 | (sk->sk_shutdown & RCV_SHUTDOWN) || |
876 | signal_pending(current)) |
877 | break; |
878 | } |
879 | |
880 | release_sock(sk); |
881 | |
882 | if (spliced) |
883 | return spliced; |
884 | |
885 | return ret; |
886 | } |
887 | EXPORT_IPV6_MOD(tcp_splice_read); |
888 | |
889 | struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, |
890 | bool force_schedule) |
891 | { |
892 | struct sk_buff *skb; |
893 | |
894 | skb = alloc_skb_fclone(MAX_TCP_HEADER, priority: gfp); |
895 | if (likely(skb)) { |
896 | bool mem_scheduled; |
897 | |
898 | skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); |
899 | if (force_schedule) { |
900 | mem_scheduled = true; |
901 | sk_forced_mem_schedule(sk, size: skb->truesize); |
902 | } else { |
903 | mem_scheduled = sk_wmem_schedule(sk, size: skb->truesize); |
904 | } |
905 | if (likely(mem_scheduled)) { |
906 | skb_reserve(skb, MAX_TCP_HEADER); |
907 | skb->ip_summed = CHECKSUM_PARTIAL; |
908 | INIT_LIST_HEAD(list: &skb->tcp_tsorted_anchor); |
909 | return skb; |
910 | } |
911 | __kfree_skb(skb); |
912 | } else { |
913 | sk->sk_prot->enter_memory_pressure(sk); |
914 | sk_stream_moderate_sndbuf(sk); |
915 | } |
916 | return NULL; |
917 | } |
918 | |
919 | static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, |
920 | int large_allowed) |
921 | { |
922 | struct tcp_sock *tp = tcp_sk(sk); |
923 | u32 new_size_goal, size_goal; |
924 | |
925 | if (!large_allowed) |
926 | return mss_now; |
927 | |
928 | /* Note : tcp_tso_autosize() will eventually split this later */ |
929 | new_size_goal = tcp_bound_to_half_wnd(tp, pktsize: sk->sk_gso_max_size); |
930 | |
931 | /* We try hard to avoid divides here */ |
932 | size_goal = tp->gso_segs * mss_now; |
933 | if (unlikely(new_size_goal < size_goal || |
934 | new_size_goal >= size_goal + mss_now)) { |
935 | tp->gso_segs = min_t(u16, new_size_goal / mss_now, |
936 | sk->sk_gso_max_segs); |
937 | size_goal = tp->gso_segs * mss_now; |
938 | } |
939 | |
940 | return max(size_goal, mss_now); |
941 | } |
942 | |
943 | int tcp_send_mss(struct sock *sk, int *size_goal, int flags) |
944 | { |
945 | int mss_now; |
946 | |
947 | mss_now = tcp_current_mss(sk); |
948 | *size_goal = tcp_xmit_size_goal(sk, mss_now, large_allowed: !(flags & MSG_OOB)); |
949 | |
950 | return mss_now; |
951 | } |
952 | |
953 | /* In some cases, sendmsg() could have added an skb to the write queue, |
954 | * but failed adding payload on it. We need to remove it to consume less |
955 | * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger |
956 | * epoll() users. Another reason is that tcp_write_xmit() does not like |
957 | * finding an empty skb in the write queue. |
958 | */ |
959 | void tcp_remove_empty_skb(struct sock *sk) |
960 | { |
961 | struct sk_buff *skb = tcp_write_queue_tail(sk); |
962 | |
963 | if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { |
964 | tcp_unlink_write_queue(skb, sk); |
965 | if (tcp_write_queue_empty(sk)) |
966 | tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY); |
967 | tcp_wmem_free_skb(sk, skb); |
968 | } |
969 | } |
970 | |
971 | /* skb changing from pure zc to mixed, must charge zc */ |
972 | static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) |
973 | { |
974 | if (unlikely(skb_zcopy_pure(skb))) { |
975 | u32 extra = skb->truesize - |
976 | SKB_TRUESIZE(skb_end_offset(skb)); |
977 | |
978 | if (!sk_wmem_schedule(sk, size: extra)) |
979 | return -ENOMEM; |
980 | |
981 | sk_mem_charge(sk, size: extra); |
982 | skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; |
983 | } |
984 | return 0; |
985 | } |
986 | |
987 | |
988 | int tcp_wmem_schedule(struct sock *sk, int copy) |
989 | { |
990 | int left; |
991 | |
992 | if (likely(sk_wmem_schedule(sk, copy))) |
993 | return copy; |
994 | |
995 | /* We could be in trouble if we have nothing queued. |
996 | * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] |
997 | * to guarantee some progress. |
998 | */ |
999 | left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; |
1000 | if (left > 0) |
1001 | sk_forced_mem_schedule(sk, min(left, copy)); |
1002 | return min(copy, sk->sk_forward_alloc); |
1003 | } |
1004 | |
1005 | void tcp_free_fastopen_req(struct tcp_sock *tp) |
1006 | { |
1007 | if (tp->fastopen_req) { |
1008 | kfree(objp: tp->fastopen_req); |
1009 | tp->fastopen_req = NULL; |
1010 | } |
1011 | } |
1012 | |
1013 | int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, |
1014 | size_t size, struct ubuf_info *uarg) |
1015 | { |
1016 | struct tcp_sock *tp = tcp_sk(sk); |
1017 | struct inet_sock *inet = inet_sk(sk); |
1018 | struct sockaddr *uaddr = msg->msg_name; |
1019 | int err, flags; |
1020 | |
1021 | if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & |
1022 | TFO_CLIENT_ENABLE) || |
1023 | (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && |
1024 | uaddr->sa_family == AF_UNSPEC)) |
1025 | return -EOPNOTSUPP; |
1026 | if (tp->fastopen_req) |
1027 | return -EALREADY; /* Another Fast Open is in progress */ |
1028 | |
1029 | tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), |
1030 | sk->sk_allocation); |
1031 | if (unlikely(!tp->fastopen_req)) |
1032 | return -ENOBUFS; |
1033 | tp->fastopen_req->data = msg; |
1034 | tp->fastopen_req->size = size; |
1035 | tp->fastopen_req->uarg = uarg; |
1036 | |
1037 | if (inet_test_bit(DEFER_CONNECT, sk)) { |
1038 | err = tcp_connect(sk); |
1039 | /* Same failure procedure as in tcp_v4/6_connect */ |
1040 | if (err) { |
1041 | tcp_set_state(sk, state: TCP_CLOSE); |
1042 | inet->inet_dport = 0; |
1043 | sk->sk_route_caps = 0; |
1044 | } |
1045 | } |
1046 | flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; |
1047 | err = __inet_stream_connect(sock: sk->sk_socket, uaddr, |
1048 | addr_len: msg->msg_namelen, flags, is_sendmsg: 1); |
1049 | /* fastopen_req could already be freed in __inet_stream_connect |
1050 | * if the connection times out or gets rst |
1051 | */ |
1052 | if (tp->fastopen_req) { |
1053 | *copied = tp->fastopen_req->copied; |
1054 | tcp_free_fastopen_req(tp); |
1055 | inet_clear_bit(DEFER_CONNECT, sk); |
1056 | } |
1057 | return err; |
1058 | } |
1059 | |
1060 | int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) |
1061 | { |
1062 | struct net_devmem_dmabuf_binding *binding = NULL; |
1063 | struct tcp_sock *tp = tcp_sk(sk); |
1064 | struct ubuf_info *uarg = NULL; |
1065 | struct sk_buff *skb; |
1066 | struct sockcm_cookie sockc; |
1067 | int flags, err, copied = 0; |
1068 | int mss_now = 0, size_goal, copied_syn = 0; |
1069 | int process_backlog = 0; |
1070 | int sockc_err = 0; |
1071 | int zc = 0; |
1072 | long timeo; |
1073 | |
1074 | flags = msg->msg_flags; |
1075 | |
1076 | sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; |
1077 | if (msg->msg_controllen) { |
1078 | sockc_err = sock_cmsg_send(sk, msg, sockc: &sockc); |
1079 | /* Don't return error until MSG_FASTOPEN has been processed; |
1080 | * that may succeed even if the cmsg is invalid. |
1081 | */ |
1082 | } |
1083 | |
1084 | if ((flags & MSG_ZEROCOPY) && size) { |
1085 | if (msg->msg_ubuf) { |
1086 | uarg = msg->msg_ubuf; |
1087 | if (sk->sk_route_caps & NETIF_F_SG) |
1088 | zc = MSG_ZEROCOPY; |
1089 | } else if (sock_flag(sk, flag: SOCK_ZEROCOPY)) { |
1090 | skb = tcp_write_queue_tail(sk); |
1091 | uarg = msg_zerocopy_realloc(sk, size, uarg: skb_zcopy(skb), |
1092 | devmem: !sockc_err && sockc.dmabuf_id); |
1093 | if (!uarg) { |
1094 | err = -ENOBUFS; |
1095 | goto out_err; |
1096 | } |
1097 | if (sk->sk_route_caps & NETIF_F_SG) |
1098 | zc = MSG_ZEROCOPY; |
1099 | else |
1100 | uarg_to_msgzc(uarg)->zerocopy = 0; |
1101 | |
1102 | if (!sockc_err && sockc.dmabuf_id) { |
1103 | binding = net_devmem_get_binding(sk, dmabuf_id: sockc.dmabuf_id); |
1104 | if (IS_ERR(ptr: binding)) { |
1105 | err = PTR_ERR(ptr: binding); |
1106 | binding = NULL; |
1107 | goto out_err; |
1108 | } |
1109 | } |
1110 | } |
1111 | } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { |
1112 | if (sk->sk_route_caps & NETIF_F_SG) |
1113 | zc = MSG_SPLICE_PAGES; |
1114 | } |
1115 | |
1116 | if (!sockc_err && sockc.dmabuf_id && |
1117 | (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, flag: SOCK_ZEROCOPY))) { |
1118 | err = -EINVAL; |
1119 | goto out_err; |
1120 | } |
1121 | |
1122 | if (unlikely(flags & MSG_FASTOPEN || |
1123 | inet_test_bit(DEFER_CONNECT, sk)) && |
1124 | !tp->repair) { |
1125 | err = tcp_sendmsg_fastopen(sk, msg, copied: &copied_syn, size, uarg); |
1126 | if (err == -EINPROGRESS && copied_syn > 0) |
1127 | goto out; |
1128 | else if (err) |
1129 | goto out_err; |
1130 | } |
1131 | |
1132 | timeo = sock_sndtimeo(sk, noblock: flags & MSG_DONTWAIT); |
1133 | |
1134 | tcp_rate_check_app_limited(sk); /* is sending application-limited? */ |
1135 | |
1136 | /* Wait for a connection to finish. One exception is TCP Fast Open |
1137 | * (passive side) where data is allowed to be sent before a connection |
1138 | * is fully established. |
1139 | */ |
1140 | if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && |
1141 | !tcp_passive_fastopen(sk)) { |
1142 | err = sk_stream_wait_connect(sk, timeo_p: &timeo); |
1143 | if (err != 0) |
1144 | goto do_error; |
1145 | } |
1146 | |
1147 | if (unlikely(tp->repair)) { |
1148 | if (tp->repair_queue == TCP_RECV_QUEUE) { |
1149 | copied = tcp_send_rcvq(sk, msg, size); |
1150 | goto out_nopush; |
1151 | } |
1152 | |
1153 | err = -EINVAL; |
1154 | if (tp->repair_queue == TCP_NO_QUEUE) |
1155 | goto out_err; |
1156 | |
1157 | /* 'common' sending to sendq */ |
1158 | } |
1159 | |
1160 | if (sockc_err) { |
1161 | err = sockc_err; |
1162 | goto out_err; |
1163 | } |
1164 | |
1165 | /* This should be in poll */ |
1166 | sk_clear_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
1167 | |
1168 | /* Ok commence sending. */ |
1169 | copied = 0; |
1170 | |
1171 | restart: |
1172 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags); |
1173 | |
1174 | err = -EPIPE; |
1175 | if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) |
1176 | goto do_error; |
1177 | |
1178 | while (msg_data_left(msg)) { |
1179 | ssize_t copy = 0; |
1180 | |
1181 | skb = tcp_write_queue_tail(sk); |
1182 | if (skb) |
1183 | copy = size_goal - skb->len; |
1184 | |
1185 | trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); |
1186 | |
1187 | if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { |
1188 | bool first_skb; |
1189 | |
1190 | new_segment: |
1191 | if (!sk_stream_memory_free(sk)) |
1192 | goto wait_for_space; |
1193 | |
1194 | if (unlikely(process_backlog >= 16)) { |
1195 | process_backlog = 0; |
1196 | if (sk_flush_backlog(sk)) |
1197 | goto restart; |
1198 | } |
1199 | first_skb = tcp_rtx_and_write_queues_empty(sk); |
1200 | skb = tcp_stream_alloc_skb(sk, gfp: sk->sk_allocation, |
1201 | force_schedule: first_skb); |
1202 | if (!skb) |
1203 | goto wait_for_space; |
1204 | |
1205 | process_backlog++; |
1206 | |
1207 | #ifdef CONFIG_SKB_DECRYPTED |
1208 | skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); |
1209 | #endif |
1210 | tcp_skb_entail(sk, skb); |
1211 | copy = size_goal; |
1212 | |
1213 | /* All packets are restored as if they have |
1214 | * already been sent. skb_mstamp_ns isn't set to |
1215 | * avoid wrong rtt estimation. |
1216 | */ |
1217 | if (tp->repair) |
1218 | TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; |
1219 | } |
1220 | |
1221 | /* Try to append data to the end of skb. */ |
1222 | if (copy > msg_data_left(msg)) |
1223 | copy = msg_data_left(msg); |
1224 | |
1225 | if (zc == 0) { |
1226 | bool merge = true; |
1227 | int i = skb_shinfo(skb)->nr_frags; |
1228 | struct page_frag *pfrag = sk_page_frag(sk); |
1229 | |
1230 | if (!sk_page_frag_refill(sk, pfrag)) |
1231 | goto wait_for_space; |
1232 | |
1233 | if (!skb_can_coalesce(skb, i, page: pfrag->page, |
1234 | off: pfrag->offset)) { |
1235 | if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { |
1236 | tcp_mark_push(tp, skb); |
1237 | goto new_segment; |
1238 | } |
1239 | merge = false; |
1240 | } |
1241 | |
1242 | copy = min_t(int, copy, pfrag->size - pfrag->offset); |
1243 | |
1244 | if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { |
1245 | if (tcp_downgrade_zcopy_pure(sk, skb)) |
1246 | goto wait_for_space; |
1247 | skb_zcopy_downgrade_managed(skb); |
1248 | } |
1249 | |
1250 | copy = tcp_wmem_schedule(sk, copy); |
1251 | if (!copy) |
1252 | goto wait_for_space; |
1253 | |
1254 | err = skb_copy_to_page_nocache(sk, from: &msg->msg_iter, skb, |
1255 | page: pfrag->page, |
1256 | off: pfrag->offset, |
1257 | copy); |
1258 | if (err) |
1259 | goto do_error; |
1260 | |
1261 | /* Update the skb. */ |
1262 | if (merge) { |
1263 | skb_frag_size_add(frag: &skb_shinfo(skb)->frags[i - 1], delta: copy); |
1264 | } else { |
1265 | skb_fill_page_desc(skb, i, page: pfrag->page, |
1266 | off: pfrag->offset, size: copy); |
1267 | page_ref_inc(page: pfrag->page); |
1268 | } |
1269 | pfrag->offset += copy; |
1270 | } else if (zc == MSG_ZEROCOPY) { |
1271 | /* First append to a fragless skb builds initial |
1272 | * pure zerocopy skb |
1273 | */ |
1274 | if (!skb->len) |
1275 | skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; |
1276 | |
1277 | if (!skb_zcopy_pure(skb)) { |
1278 | copy = tcp_wmem_schedule(sk, copy); |
1279 | if (!copy) |
1280 | goto wait_for_space; |
1281 | } |
1282 | |
1283 | err = skb_zerocopy_iter_stream(sk, skb, msg, len: copy, uarg, |
1284 | binding); |
1285 | if (err == -EMSGSIZE || err == -EEXIST) { |
1286 | tcp_mark_push(tp, skb); |
1287 | goto new_segment; |
1288 | } |
1289 | if (err < 0) |
1290 | goto do_error; |
1291 | copy = err; |
1292 | } else if (zc == MSG_SPLICE_PAGES) { |
1293 | /* Splice in data if we can; copy if we can't. */ |
1294 | if (tcp_downgrade_zcopy_pure(sk, skb)) |
1295 | goto wait_for_space; |
1296 | copy = tcp_wmem_schedule(sk, copy); |
1297 | if (!copy) |
1298 | goto wait_for_space; |
1299 | |
1300 | err = skb_splice_from_iter(skb, iter: &msg->msg_iter, maxsize: copy, |
1301 | gfp: sk->sk_allocation); |
1302 | if (err < 0) { |
1303 | if (err == -EMSGSIZE) { |
1304 | tcp_mark_push(tp, skb); |
1305 | goto new_segment; |
1306 | } |
1307 | goto do_error; |
1308 | } |
1309 | copy = err; |
1310 | |
1311 | if (!(flags & MSG_NO_SHARED_FRAGS)) |
1312 | skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; |
1313 | |
1314 | sk_wmem_queued_add(sk, val: copy); |
1315 | sk_mem_charge(sk, size: copy); |
1316 | } |
1317 | |
1318 | if (!copied) |
1319 | TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; |
1320 | |
1321 | WRITE_ONCE(tp->write_seq, tp->write_seq + copy); |
1322 | TCP_SKB_CB(skb)->end_seq += copy; |
1323 | tcp_skb_pcount_set(skb, segs: 0); |
1324 | |
1325 | copied += copy; |
1326 | if (!msg_data_left(msg)) { |
1327 | if (unlikely(flags & MSG_EOR)) |
1328 | TCP_SKB_CB(skb)->eor = 1; |
1329 | goto out; |
1330 | } |
1331 | |
1332 | if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) |
1333 | continue; |
1334 | |
1335 | if (forced_push(tp)) { |
1336 | tcp_mark_push(tp, skb); |
1337 | __tcp_push_pending_frames(sk, cur_mss: mss_now, TCP_NAGLE_PUSH); |
1338 | } else if (skb == tcp_send_head(sk)) |
1339 | tcp_push_one(sk, mss_now); |
1340 | continue; |
1341 | |
1342 | wait_for_space: |
1343 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
1344 | tcp_remove_empty_skb(sk); |
1345 | if (copied) |
1346 | tcp_push(sk, flags: flags & ~MSG_MORE, mss_now, |
1347 | TCP_NAGLE_PUSH, size_goal); |
1348 | |
1349 | err = sk_stream_wait_memory(sk, timeo_p: &timeo); |
1350 | if (err != 0) |
1351 | goto do_error; |
1352 | |
1353 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags); |
1354 | } |
1355 | |
1356 | out: |
1357 | if (copied) { |
1358 | tcp_tx_timestamp(sk, sockc: &sockc); |
1359 | tcp_push(sk, flags, mss_now, nonagle: tp->nonagle, size_goal); |
1360 | } |
1361 | out_nopush: |
1362 | /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ |
1363 | if (uarg && !msg->msg_ubuf) |
1364 | net_zcopy_put(uarg); |
1365 | if (binding) |
1366 | net_devmem_dmabuf_binding_put(binding); |
1367 | return copied + copied_syn; |
1368 | |
1369 | do_error: |
1370 | tcp_remove_empty_skb(sk); |
1371 | |
1372 | if (copied + copied_syn) |
1373 | goto out; |
1374 | out_err: |
1375 | /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ |
1376 | if (uarg && !msg->msg_ubuf) |
1377 | net_zcopy_put_abort(uarg, have_uref: true); |
1378 | err = sk_stream_error(sk, flags, err); |
1379 | /* make sure we wake any epoll edge trigger waiter */ |
1380 | if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { |
1381 | sk->sk_write_space(sk); |
1382 | tcp_chrono_stop(sk, type: TCP_CHRONO_SNDBUF_LIMITED); |
1383 | } |
1384 | if (binding) |
1385 | net_devmem_dmabuf_binding_put(binding); |
1386 | |
1387 | return err; |
1388 | } |
1389 | EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); |
1390 | |
1391 | int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
1392 | { |
1393 | int ret; |
1394 | |
1395 | lock_sock(sk); |
1396 | ret = tcp_sendmsg_locked(sk, msg, size); |
1397 | release_sock(sk); |
1398 | |
1399 | return ret; |
1400 | } |
1401 | EXPORT_SYMBOL(tcp_sendmsg); |
1402 | |
1403 | void tcp_splice_eof(struct socket *sock) |
1404 | { |
1405 | struct sock *sk = sock->sk; |
1406 | struct tcp_sock *tp = tcp_sk(sk); |
1407 | int mss_now, size_goal; |
1408 | |
1409 | if (!tcp_write_queue_tail(sk)) |
1410 | return; |
1411 | |
1412 | lock_sock(sk); |
1413 | mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags: 0); |
1414 | tcp_push(sk, flags: 0, mss_now, nonagle: tp->nonagle, size_goal); |
1415 | release_sock(sk); |
1416 | } |
1417 | EXPORT_IPV6_MOD_GPL(tcp_splice_eof); |
1418 | |
1419 | /* |
1420 | * Handle reading urgent data. BSD has very simple semantics for |
1421 | * this, no blocking and very strange errors 8) |
1422 | */ |
1423 | |
1424 | static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) |
1425 | { |
1426 | struct tcp_sock *tp = tcp_sk(sk); |
1427 | |
1428 | /* No URG data to read. */ |
1429 | if (sock_flag(sk, flag: SOCK_URGINLINE) || !tp->urg_data || |
1430 | tp->urg_data == TCP_URG_READ) |
1431 | return -EINVAL; /* Yes this is right ! */ |
1432 | |
1433 | if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, flag: SOCK_DONE)) |
1434 | return -ENOTCONN; |
1435 | |
1436 | if (tp->urg_data & TCP_URG_VALID) { |
1437 | int err = 0; |
1438 | char c = tp->urg_data; |
1439 | |
1440 | if (!(flags & MSG_PEEK)) |
1441 | WRITE_ONCE(tp->urg_data, TCP_URG_READ); |
1442 | |
1443 | /* Read urgent data. */ |
1444 | msg->msg_flags |= MSG_OOB; |
1445 | |
1446 | if (len > 0) { |
1447 | if (!(flags & MSG_TRUNC)) |
1448 | err = memcpy_to_msg(msg, data: &c, len: 1); |
1449 | len = 1; |
1450 | } else |
1451 | msg->msg_flags |= MSG_TRUNC; |
1452 | |
1453 | return err ? -EFAULT : len; |
1454 | } |
1455 | |
1456 | if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) |
1457 | return 0; |
1458 | |
1459 | /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and |
1460 | * the available implementations agree in this case: |
1461 | * this call should never block, independent of the |
1462 | * blocking state of the socket. |
1463 | * Mike <pall@rz.uni-karlsruhe.de> |
1464 | */ |
1465 | return -EAGAIN; |
1466 | } |
1467 | |
1468 | static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) |
1469 | { |
1470 | struct sk_buff *skb; |
1471 | int copied = 0, err = 0; |
1472 | |
1473 | skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { |
1474 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len); |
1475 | if (err) |
1476 | return err; |
1477 | copied += skb->len; |
1478 | } |
1479 | |
1480 | skb_queue_walk(&sk->sk_write_queue, skb) { |
1481 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len); |
1482 | if (err) |
1483 | break; |
1484 | |
1485 | copied += skb->len; |
1486 | } |
1487 | |
1488 | return err ?: copied; |
1489 | } |
1490 | |
1491 | /* Clean up the receive buffer for full frames taken by the user, |
1492 | * then send an ACK if necessary. COPIED is the number of bytes |
1493 | * tcp_recvmsg has given to the user so far, it speeds up the |
1494 | * calculation of whether or not we must ACK for the sake of |
1495 | * a window update. |
1496 | */ |
1497 | void __tcp_cleanup_rbuf(struct sock *sk, int copied) |
1498 | { |
1499 | struct tcp_sock *tp = tcp_sk(sk); |
1500 | bool time_to_ack = false; |
1501 | |
1502 | if (inet_csk_ack_scheduled(sk)) { |
1503 | const struct inet_connection_sock *icsk = inet_csk(sk); |
1504 | |
1505 | if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ |
1506 | tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || |
1507 | /* |
1508 | * If this read emptied read buffer, we send ACK, if |
1509 | * connection is not bidirectional, user drained |
1510 | * receive buffer and there was a small segment |
1511 | * in queue. |
1512 | */ |
1513 | (copied > 0 && |
1514 | ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || |
1515 | ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && |
1516 | !inet_csk_in_pingpong_mode(sk))) && |
1517 | !atomic_read(v: &sk->sk_rmem_alloc))) |
1518 | time_to_ack = true; |
1519 | } |
1520 | |
1521 | /* We send an ACK if we can now advertise a non-zero window |
1522 | * which has been raised "significantly". |
1523 | * |
1524 | * Even if window raised up to infinity, do not send window open ACK |
1525 | * in states, where we will not receive more. It is useless. |
1526 | */ |
1527 | if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { |
1528 | __u32 rcv_window_now = tcp_receive_window(tp); |
1529 | |
1530 | /* Optimize, __tcp_select_window() is not cheap. */ |
1531 | if (2*rcv_window_now <= tp->window_clamp) { |
1532 | __u32 new_window = __tcp_select_window(sk); |
1533 | |
1534 | /* Send ACK now, if this read freed lots of space |
1535 | * in our buffer. Certainly, new_window is new window. |
1536 | * We can advertise it now, if it is not less than current one. |
1537 | * "Lots" means "at least twice" here. |
1538 | */ |
1539 | if (new_window && new_window >= 2 * rcv_window_now) |
1540 | time_to_ack = true; |
1541 | } |
1542 | } |
1543 | if (time_to_ack) |
1544 | tcp_send_ack(sk); |
1545 | } |
1546 | |
1547 | void tcp_cleanup_rbuf(struct sock *sk, int copied) |
1548 | { |
1549 | struct sk_buff *skb = skb_peek(list_: &sk->sk_receive_queue); |
1550 | struct tcp_sock *tp = tcp_sk(sk); |
1551 | |
1552 | WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), |
1553 | "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", |
1554 | tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); |
1555 | __tcp_cleanup_rbuf(sk, copied); |
1556 | } |
1557 | |
1558 | static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) |
1559 | { |
1560 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
1561 | if (likely(skb->destructor == sock_rfree)) { |
1562 | sock_rfree(skb); |
1563 | skb->destructor = NULL; |
1564 | skb->sk = NULL; |
1565 | return skb_attempt_defer_free(skb); |
1566 | } |
1567 | __kfree_skb(skb); |
1568 | } |
1569 | |
1570 | struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) |
1571 | { |
1572 | struct sk_buff *skb; |
1573 | u32 offset; |
1574 | |
1575 | while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) { |
1576 | offset = seq - TCP_SKB_CB(skb)->seq; |
1577 | if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { |
1578 | pr_err_once("%s: found a SYN, please report !\n", __func__); |
1579 | offset--; |
1580 | } |
1581 | if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { |
1582 | *off = offset; |
1583 | return skb; |
1584 | } |
1585 | /* This looks weird, but this can happen if TCP collapsing |
1586 | * splitted a fat GRO packet, while we released socket lock |
1587 | * in skb_splice_bits() |
1588 | */ |
1589 | tcp_eat_recv_skb(sk, skb); |
1590 | } |
1591 | return NULL; |
1592 | } |
1593 | EXPORT_SYMBOL(tcp_recv_skb); |
1594 | |
1595 | /* |
1596 | * This routine provides an alternative to tcp_recvmsg() for routines |
1597 | * that would like to handle copying from skbuffs directly in 'sendfile' |
1598 | * fashion. |
1599 | * Note: |
1600 | * - It is assumed that the socket was locked by the caller. |
1601 | * - The routine does not block. |
1602 | * - At present, there is no support for reading OOB data |
1603 | * or for 'peeking' the socket using this routine |
1604 | * (although both would be easy to implement). |
1605 | */ |
1606 | static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, |
1607 | sk_read_actor_t recv_actor, bool noack, |
1608 | u32 *copied_seq) |
1609 | { |
1610 | struct sk_buff *skb; |
1611 | struct tcp_sock *tp = tcp_sk(sk); |
1612 | u32 seq = *copied_seq; |
1613 | u32 offset; |
1614 | int copied = 0; |
1615 | |
1616 | if (sk->sk_state == TCP_LISTEN) |
1617 | return -ENOTCONN; |
1618 | while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { |
1619 | if (offset < skb->len) { |
1620 | int used; |
1621 | size_t len; |
1622 | |
1623 | len = skb->len - offset; |
1624 | /* Stop reading if we hit a patch of urgent data */ |
1625 | if (unlikely(tp->urg_data)) { |
1626 | u32 urg_offset = tp->urg_seq - seq; |
1627 | if (urg_offset < len) |
1628 | len = urg_offset; |
1629 | if (!len) |
1630 | break; |
1631 | } |
1632 | used = recv_actor(desc, skb, offset, len); |
1633 | if (used <= 0) { |
1634 | if (!copied) |
1635 | copied = used; |
1636 | break; |
1637 | } |
1638 | if (WARN_ON_ONCE(used > len)) |
1639 | used = len; |
1640 | seq += used; |
1641 | copied += used; |
1642 | offset += used; |
1643 | |
1644 | /* If recv_actor drops the lock (e.g. TCP splice |
1645 | * receive) the skb pointer might be invalid when |
1646 | * getting here: tcp_collapse might have deleted it |
1647 | * while aggregating skbs from the socket queue. |
1648 | */ |
1649 | skb = tcp_recv_skb(sk, seq - 1, &offset); |
1650 | if (!skb) |
1651 | break; |
1652 | /* TCP coalescing might have appended data to the skb. |
1653 | * Try to splice more frags |
1654 | */ |
1655 | if (offset + 1 != skb->len) |
1656 | continue; |
1657 | } |
1658 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
1659 | tcp_eat_recv_skb(sk, skb); |
1660 | ++seq; |
1661 | break; |
1662 | } |
1663 | tcp_eat_recv_skb(sk, skb); |
1664 | if (!desc->count) |
1665 | break; |
1666 | WRITE_ONCE(*copied_seq, seq); |
1667 | } |
1668 | WRITE_ONCE(*copied_seq, seq); |
1669 | |
1670 | if (noack) |
1671 | goto out; |
1672 | |
1673 | tcp_rcv_space_adjust(sk); |
1674 | |
1675 | /* Clean up data we have read: This will do ACK frames. */ |
1676 | if (copied > 0) { |
1677 | tcp_recv_skb(sk, seq, &offset); |
1678 | tcp_cleanup_rbuf(sk, copied); |
1679 | } |
1680 | out: |
1681 | return copied; |
1682 | } |
1683 | |
1684 | int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, |
1685 | sk_read_actor_t recv_actor) |
1686 | { |
1687 | return __tcp_read_sock(sk, desc, recv_actor, noack: false, |
1688 | copied_seq: &tcp_sk(sk)->copied_seq); |
1689 | } |
1690 | EXPORT_SYMBOL(tcp_read_sock); |
1691 | |
1692 | int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, |
1693 | sk_read_actor_t recv_actor, bool noack, |
1694 | u32 *copied_seq) |
1695 | { |
1696 | return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); |
1697 | } |
1698 | |
1699 | int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) |
1700 | { |
1701 | struct sk_buff *skb; |
1702 | int copied = 0; |
1703 | |
1704 | if (sk->sk_state == TCP_LISTEN) |
1705 | return -ENOTCONN; |
1706 | |
1707 | while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) { |
1708 | u8 tcp_flags; |
1709 | int used; |
1710 | |
1711 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
1712 | WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); |
1713 | tcp_flags = TCP_SKB_CB(skb)->tcp_flags; |
1714 | used = recv_actor(sk, skb); |
1715 | if (used < 0) { |
1716 | if (!copied) |
1717 | copied = used; |
1718 | break; |
1719 | } |
1720 | copied += used; |
1721 | |
1722 | if (tcp_flags & TCPHDR_FIN) |
1723 | break; |
1724 | } |
1725 | return copied; |
1726 | } |
1727 | EXPORT_IPV6_MOD(tcp_read_skb); |
1728 | |
1729 | void tcp_read_done(struct sock *sk, size_t len) |
1730 | { |
1731 | struct tcp_sock *tp = tcp_sk(sk); |
1732 | u32 seq = tp->copied_seq; |
1733 | struct sk_buff *skb; |
1734 | size_t left; |
1735 | u32 offset; |
1736 | |
1737 | if (sk->sk_state == TCP_LISTEN) |
1738 | return; |
1739 | |
1740 | left = len; |
1741 | while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { |
1742 | int used; |
1743 | |
1744 | used = min_t(size_t, skb->len - offset, left); |
1745 | seq += used; |
1746 | left -= used; |
1747 | |
1748 | if (skb->len > offset + used) |
1749 | break; |
1750 | |
1751 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
1752 | tcp_eat_recv_skb(sk, skb); |
1753 | ++seq; |
1754 | break; |
1755 | } |
1756 | tcp_eat_recv_skb(sk, skb); |
1757 | } |
1758 | WRITE_ONCE(tp->copied_seq, seq); |
1759 | |
1760 | tcp_rcv_space_adjust(sk); |
1761 | |
1762 | /* Clean up data we have read: This will do ACK frames. */ |
1763 | if (left != len) |
1764 | tcp_cleanup_rbuf(sk, copied: len - left); |
1765 | } |
1766 | EXPORT_SYMBOL(tcp_read_done); |
1767 | |
1768 | int tcp_peek_len(struct socket *sock) |
1769 | { |
1770 | return tcp_inq(sk: sock->sk); |
1771 | } |
1772 | EXPORT_IPV6_MOD(tcp_peek_len); |
1773 | |
1774 | /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ |
1775 | int tcp_set_rcvlowat(struct sock *sk, int val) |
1776 | { |
1777 | int space, cap; |
1778 | |
1779 | if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) |
1780 | cap = sk->sk_rcvbuf >> 1; |
1781 | else |
1782 | cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; |
1783 | val = min(val, cap); |
1784 | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
1785 | |
1786 | /* Check if we need to signal EPOLLIN right now */ |
1787 | tcp_data_ready(sk); |
1788 | |
1789 | if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) |
1790 | return 0; |
1791 | |
1792 | space = tcp_space_from_win(sk, win: val); |
1793 | if (space > sk->sk_rcvbuf) { |
1794 | WRITE_ONCE(sk->sk_rcvbuf, space); |
1795 | WRITE_ONCE(tcp_sk(sk)->window_clamp, val); |
1796 | } |
1797 | return 0; |
1798 | } |
1799 | EXPORT_IPV6_MOD(tcp_set_rcvlowat); |
1800 | |
1801 | void tcp_update_recv_tstamps(struct sk_buff *skb, |
1802 | struct scm_timestamping_internal *tss) |
1803 | { |
1804 | if (skb->tstamp) |
1805 | tss->ts[0] = ktime_to_timespec64(skb->tstamp); |
1806 | else |
1807 | tss->ts[0] = (struct timespec64) {0}; |
1808 | |
1809 | if (skb_hwtstamps(skb)->hwtstamp) |
1810 | tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); |
1811 | else |
1812 | tss->ts[2] = (struct timespec64) {0}; |
1813 | } |
1814 | |
1815 | #ifdef CONFIG_MMU |
1816 | static const struct vm_operations_struct tcp_vm_ops = { |
1817 | }; |
1818 | |
1819 | int tcp_mmap(struct file *file, struct socket *sock, |
1820 | struct vm_area_struct *vma) |
1821 | { |
1822 | if (vma->vm_flags & (VM_WRITE | VM_EXEC)) |
1823 | return -EPERM; |
1824 | vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); |
1825 | |
1826 | /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ |
1827 | vm_flags_set(vma, VM_MIXEDMAP); |
1828 | |
1829 | vma->vm_ops = &tcp_vm_ops; |
1830 | return 0; |
1831 | } |
1832 | EXPORT_IPV6_MOD(tcp_mmap); |
1833 | |
1834 | static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, |
1835 | u32 *offset_frag) |
1836 | { |
1837 | skb_frag_t *frag; |
1838 | |
1839 | if (unlikely(offset_skb >= skb->len)) |
1840 | return NULL; |
1841 | |
1842 | offset_skb -= skb_headlen(skb); |
1843 | if ((int)offset_skb < 0 || skb_has_frag_list(skb)) |
1844 | return NULL; |
1845 | |
1846 | frag = skb_shinfo(skb)->frags; |
1847 | while (offset_skb) { |
1848 | if (skb_frag_size(frag) > offset_skb) { |
1849 | *offset_frag = offset_skb; |
1850 | return frag; |
1851 | } |
1852 | offset_skb -= skb_frag_size(frag); |
1853 | ++frag; |
1854 | } |
1855 | *offset_frag = 0; |
1856 | return frag; |
1857 | } |
1858 | |
1859 | static bool can_map_frag(const skb_frag_t *frag) |
1860 | { |
1861 | struct page *page; |
1862 | |
1863 | if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) |
1864 | return false; |
1865 | |
1866 | page = skb_frag_page(frag); |
1867 | |
1868 | if (PageCompound(page) || page->mapping) |
1869 | return false; |
1870 | |
1871 | return true; |
1872 | } |
1873 | |
1874 | static int find_next_mappable_frag(const skb_frag_t *frag, |
1875 | int remaining_in_skb) |
1876 | { |
1877 | int offset = 0; |
1878 | |
1879 | if (likely(can_map_frag(frag))) |
1880 | return 0; |
1881 | |
1882 | while (offset < remaining_in_skb && !can_map_frag(frag)) { |
1883 | offset += skb_frag_size(frag); |
1884 | ++frag; |
1885 | } |
1886 | return offset; |
1887 | } |
1888 | |
1889 | static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, |
1890 | struct tcp_zerocopy_receive *zc, |
1891 | struct sk_buff *skb, u32 offset) |
1892 | { |
1893 | u32 frag_offset, partial_frag_remainder = 0; |
1894 | int mappable_offset; |
1895 | skb_frag_t *frag; |
1896 | |
1897 | /* worst case: skip to next skb. try to improve on this case below */ |
1898 | zc->recv_skip_hint = skb->len - offset; |
1899 | |
1900 | /* Find the frag containing this offset (and how far into that frag) */ |
1901 | frag = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &frag_offset); |
1902 | if (!frag) |
1903 | return; |
1904 | |
1905 | if (frag_offset) { |
1906 | struct skb_shared_info *info = skb_shinfo(skb); |
1907 | |
1908 | /* We read part of the last frag, must recvmsg() rest of skb. */ |
1909 | if (frag == &info->frags[info->nr_frags - 1]) |
1910 | return; |
1911 | |
1912 | /* Else, we must at least read the remainder in this frag. */ |
1913 | partial_frag_remainder = skb_frag_size(frag) - frag_offset; |
1914 | zc->recv_skip_hint -= partial_frag_remainder; |
1915 | ++frag; |
1916 | } |
1917 | |
1918 | /* partial_frag_remainder: If part way through a frag, must read rest. |
1919 | * mappable_offset: Bytes till next mappable frag, *not* counting bytes |
1920 | * in partial_frag_remainder. |
1921 | */ |
1922 | mappable_offset = find_next_mappable_frag(frag, remaining_in_skb: zc->recv_skip_hint); |
1923 | zc->recv_skip_hint = mappable_offset + partial_frag_remainder; |
1924 | } |
1925 | |
1926 | static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, |
1927 | int flags, struct scm_timestamping_internal *tss, |
1928 | int *cmsg_flags); |
1929 | static int receive_fallback_to_copy(struct sock *sk, |
1930 | struct tcp_zerocopy_receive *zc, int inq, |
1931 | struct scm_timestamping_internal *tss) |
1932 | { |
1933 | unsigned long copy_address = (unsigned long)zc->copybuf_address; |
1934 | struct msghdr msg = {}; |
1935 | int err; |
1936 | |
1937 | zc->length = 0; |
1938 | zc->recv_skip_hint = 0; |
1939 | |
1940 | if (copy_address != zc->copybuf_address) |
1941 | return -EINVAL; |
1942 | |
1943 | err = import_ubuf(ITER_DEST, buf: (void __user *)copy_address, len: inq, |
1944 | i: &msg.msg_iter); |
1945 | if (err) |
1946 | return err; |
1947 | |
1948 | err = tcp_recvmsg_locked(sk, msg: &msg, len: inq, MSG_DONTWAIT, |
1949 | tss, cmsg_flags: &zc->msg_flags); |
1950 | if (err < 0) |
1951 | return err; |
1952 | |
1953 | zc->copybuf_len = err; |
1954 | if (likely(zc->copybuf_len)) { |
1955 | struct sk_buff *skb; |
1956 | u32 offset; |
1957 | |
1958 | skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); |
1959 | if (skb) |
1960 | tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); |
1961 | } |
1962 | return 0; |
1963 | } |
1964 | |
1965 | static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, |
1966 | struct sk_buff *skb, u32 copylen, |
1967 | u32 *offset, u32 *seq) |
1968 | { |
1969 | unsigned long copy_address = (unsigned long)zc->copybuf_address; |
1970 | struct msghdr msg = {}; |
1971 | int err; |
1972 | |
1973 | if (copy_address != zc->copybuf_address) |
1974 | return -EINVAL; |
1975 | |
1976 | err = import_ubuf(ITER_DEST, buf: (void __user *)copy_address, len: copylen, |
1977 | i: &msg.msg_iter); |
1978 | if (err) |
1979 | return err; |
1980 | err = skb_copy_datagram_msg(from: skb, offset: *offset, msg: &msg, size: copylen); |
1981 | if (err) |
1982 | return err; |
1983 | zc->recv_skip_hint -= copylen; |
1984 | *offset += copylen; |
1985 | *seq += copylen; |
1986 | return (__s32)copylen; |
1987 | } |
1988 | |
1989 | static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, |
1990 | struct sock *sk, |
1991 | struct sk_buff *skb, |
1992 | u32 *seq, |
1993 | s32 copybuf_len, |
1994 | struct scm_timestamping_internal *tss) |
1995 | { |
1996 | u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); |
1997 | |
1998 | if (!copylen) |
1999 | return 0; |
2000 | /* skb is null if inq < PAGE_SIZE. */ |
2001 | if (skb) { |
2002 | offset = *seq - TCP_SKB_CB(skb)->seq; |
2003 | } else { |
2004 | skb = tcp_recv_skb(sk, *seq, &offset); |
2005 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
2006 | tcp_update_recv_tstamps(skb, tss); |
2007 | zc->msg_flags |= TCP_CMSG_TS; |
2008 | } |
2009 | } |
2010 | |
2011 | zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, offset: &offset, |
2012 | seq); |
2013 | return zc->copybuf_len < 0 ? 0 : copylen; |
2014 | } |
2015 | |
2016 | static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, |
2017 | struct page **pending_pages, |
2018 | unsigned long pages_remaining, |
2019 | unsigned long *address, |
2020 | u32 *length, |
2021 | u32 *seq, |
2022 | struct tcp_zerocopy_receive *zc, |
2023 | u32 total_bytes_to_map, |
2024 | int err) |
2025 | { |
2026 | /* At least one page did not map. Try zapping if we skipped earlier. */ |
2027 | if (err == -EBUSY && |
2028 | zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { |
2029 | u32 maybe_zap_len; |
2030 | |
2031 | maybe_zap_len = total_bytes_to_map - /* All bytes to map */ |
2032 | *length + /* Mapped or pending */ |
2033 | (pages_remaining * PAGE_SIZE); /* Failed map. */ |
2034 | zap_page_range_single(vma, address: *address, size: maybe_zap_len, NULL); |
2035 | err = 0; |
2036 | } |
2037 | |
2038 | if (!err) { |
2039 | unsigned long leftover_pages = pages_remaining; |
2040 | int bytes_mapped; |
2041 | |
2042 | /* We called zap_page_range_single, try to reinsert. */ |
2043 | err = vm_insert_pages(vma, addr: *address, |
2044 | pages: pending_pages, |
2045 | num: &pages_remaining); |
2046 | bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); |
2047 | *seq += bytes_mapped; |
2048 | *address += bytes_mapped; |
2049 | } |
2050 | if (err) { |
2051 | /* Either we were unable to zap, OR we zapped, retried an |
2052 | * insert, and still had an issue. Either ways, pages_remaining |
2053 | * is the number of pages we were unable to map, and we unroll |
2054 | * some state we speculatively touched before. |
2055 | */ |
2056 | const int bytes_not_mapped = PAGE_SIZE * pages_remaining; |
2057 | |
2058 | *length -= bytes_not_mapped; |
2059 | zc->recv_skip_hint += bytes_not_mapped; |
2060 | } |
2061 | return err; |
2062 | } |
2063 | |
2064 | static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, |
2065 | struct page **pages, |
2066 | unsigned int pages_to_map, |
2067 | unsigned long *address, |
2068 | u32 *length, |
2069 | u32 *seq, |
2070 | struct tcp_zerocopy_receive *zc, |
2071 | u32 total_bytes_to_map) |
2072 | { |
2073 | unsigned long pages_remaining = pages_to_map; |
2074 | unsigned int pages_mapped; |
2075 | unsigned int bytes_mapped; |
2076 | int err; |
2077 | |
2078 | err = vm_insert_pages(vma, addr: *address, pages, num: &pages_remaining); |
2079 | pages_mapped = pages_to_map - (unsigned int)pages_remaining; |
2080 | bytes_mapped = PAGE_SIZE * pages_mapped; |
2081 | /* Even if vm_insert_pages fails, it may have partially succeeded in |
2082 | * mapping (some but not all of the pages). |
2083 | */ |
2084 | *seq += bytes_mapped; |
2085 | *address += bytes_mapped; |
2086 | |
2087 | if (likely(!err)) |
2088 | return 0; |
2089 | |
2090 | /* Error: maybe zap and retry + rollback state for failed inserts. */ |
2091 | return tcp_zerocopy_vm_insert_batch_error(vma, pending_pages: pages + pages_mapped, |
2092 | pages_remaining, address, length, seq, zc, total_bytes_to_map, |
2093 | err); |
2094 | } |
2095 | |
2096 | #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) |
2097 | static void tcp_zc_finalize_rx_tstamp(struct sock *sk, |
2098 | struct tcp_zerocopy_receive *zc, |
2099 | struct scm_timestamping_internal *tss) |
2100 | { |
2101 | unsigned long msg_control_addr; |
2102 | struct msghdr cmsg_dummy; |
2103 | |
2104 | msg_control_addr = (unsigned long)zc->msg_control; |
2105 | cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; |
2106 | cmsg_dummy.msg_controllen = |
2107 | (__kernel_size_t)zc->msg_controllen; |
2108 | cmsg_dummy.msg_flags = in_compat_syscall() |
2109 | ? MSG_CMSG_COMPAT : 0; |
2110 | cmsg_dummy.msg_control_is_user = true; |
2111 | zc->msg_flags = 0; |
2112 | if (zc->msg_control == msg_control_addr && |
2113 | zc->msg_controllen == cmsg_dummy.msg_controllen) { |
2114 | tcp_recv_timestamp(msg: &cmsg_dummy, sk, tss); |
2115 | zc->msg_control = (__u64) |
2116 | ((uintptr_t)cmsg_dummy.msg_control_user); |
2117 | zc->msg_controllen = |
2118 | (__u64)cmsg_dummy.msg_controllen; |
2119 | zc->msg_flags = (__u32)cmsg_dummy.msg_flags; |
2120 | } |
2121 | } |
2122 | |
2123 | static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, |
2124 | unsigned long address, |
2125 | bool *mmap_locked) |
2126 | { |
2127 | struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); |
2128 | |
2129 | if (vma) { |
2130 | if (vma->vm_ops != &tcp_vm_ops) { |
2131 | vma_end_read(vma); |
2132 | return NULL; |
2133 | } |
2134 | *mmap_locked = false; |
2135 | return vma; |
2136 | } |
2137 | |
2138 | mmap_read_lock(mm); |
2139 | vma = vma_lookup(mm, addr: address); |
2140 | if (!vma || vma->vm_ops != &tcp_vm_ops) { |
2141 | mmap_read_unlock(mm); |
2142 | return NULL; |
2143 | } |
2144 | *mmap_locked = true; |
2145 | return vma; |
2146 | } |
2147 | |
2148 | #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 |
2149 | static int tcp_zerocopy_receive(struct sock *sk, |
2150 | struct tcp_zerocopy_receive *zc, |
2151 | struct scm_timestamping_internal *tss) |
2152 | { |
2153 | u32 length = 0, offset, vma_len, avail_len, copylen = 0; |
2154 | unsigned long address = (unsigned long)zc->address; |
2155 | struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; |
2156 | s32 copybuf_len = zc->copybuf_len; |
2157 | struct tcp_sock *tp = tcp_sk(sk); |
2158 | const skb_frag_t *frags = NULL; |
2159 | unsigned int pages_to_map = 0; |
2160 | struct vm_area_struct *vma; |
2161 | struct sk_buff *skb = NULL; |
2162 | u32 seq = tp->copied_seq; |
2163 | u32 total_bytes_to_map; |
2164 | int inq = tcp_inq(sk); |
2165 | bool mmap_locked; |
2166 | int ret; |
2167 | |
2168 | zc->copybuf_len = 0; |
2169 | zc->msg_flags = 0; |
2170 | |
2171 | if (address & (PAGE_SIZE - 1) || address != zc->address) |
2172 | return -EINVAL; |
2173 | |
2174 | if (sk->sk_state == TCP_LISTEN) |
2175 | return -ENOTCONN; |
2176 | |
2177 | sock_rps_record_flow(sk); |
2178 | |
2179 | if (inq && inq <= copybuf_len) |
2180 | return receive_fallback_to_copy(sk, zc, inq, tss); |
2181 | |
2182 | if (inq < PAGE_SIZE) { |
2183 | zc->length = 0; |
2184 | zc->recv_skip_hint = inq; |
2185 | if (!inq && sock_flag(sk, flag: SOCK_DONE)) |
2186 | return -EIO; |
2187 | return 0; |
2188 | } |
2189 | |
2190 | vma = find_tcp_vma(current->mm, address, mmap_locked: &mmap_locked); |
2191 | if (!vma) |
2192 | return -EINVAL; |
2193 | |
2194 | vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); |
2195 | avail_len = min_t(u32, vma_len, inq); |
2196 | total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); |
2197 | if (total_bytes_to_map) { |
2198 | if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) |
2199 | zap_page_range_single(vma, address, size: total_bytes_to_map, |
2200 | NULL); |
2201 | zc->length = total_bytes_to_map; |
2202 | zc->recv_skip_hint = 0; |
2203 | } else { |
2204 | zc->length = avail_len; |
2205 | zc->recv_skip_hint = avail_len; |
2206 | } |
2207 | ret = 0; |
2208 | while (length + PAGE_SIZE <= zc->length) { |
2209 | int mappable_offset; |
2210 | struct page *page; |
2211 | |
2212 | if (zc->recv_skip_hint < PAGE_SIZE) { |
2213 | u32 offset_frag; |
2214 | |
2215 | if (skb) { |
2216 | if (zc->recv_skip_hint > 0) |
2217 | break; |
2218 | skb = skb->next; |
2219 | offset = seq - TCP_SKB_CB(skb)->seq; |
2220 | } else { |
2221 | skb = tcp_recv_skb(sk, seq, &offset); |
2222 | } |
2223 | |
2224 | if (!skb_frags_readable(skb)) |
2225 | break; |
2226 | |
2227 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
2228 | tcp_update_recv_tstamps(skb, tss); |
2229 | zc->msg_flags |= TCP_CMSG_TS; |
2230 | } |
2231 | zc->recv_skip_hint = skb->len - offset; |
2232 | frags = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &offset_frag); |
2233 | if (!frags || offset_frag) |
2234 | break; |
2235 | } |
2236 | |
2237 | mappable_offset = find_next_mappable_frag(frag: frags, |
2238 | remaining_in_skb: zc->recv_skip_hint); |
2239 | if (mappable_offset) { |
2240 | zc->recv_skip_hint = mappable_offset; |
2241 | break; |
2242 | } |
2243 | page = skb_frag_page(frag: frags); |
2244 | if (WARN_ON_ONCE(!page)) |
2245 | break; |
2246 | |
2247 | prefetchw(x: page); |
2248 | pages[pages_to_map++] = page; |
2249 | length += PAGE_SIZE; |
2250 | zc->recv_skip_hint -= PAGE_SIZE; |
2251 | frags++; |
2252 | if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || |
2253 | zc->recv_skip_hint < PAGE_SIZE) { |
2254 | /* Either full batch, or we're about to go to next skb |
2255 | * (and we cannot unroll failed ops across skbs). |
2256 | */ |
2257 | ret = tcp_zerocopy_vm_insert_batch(vma, pages, |
2258 | pages_to_map, |
2259 | address: &address, length: &length, |
2260 | seq: &seq, zc, |
2261 | total_bytes_to_map); |
2262 | if (ret) |
2263 | goto out; |
2264 | pages_to_map = 0; |
2265 | } |
2266 | } |
2267 | if (pages_to_map) { |
2268 | ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, |
2269 | address: &address, length: &length, seq: &seq, |
2270 | zc, total_bytes_to_map); |
2271 | } |
2272 | out: |
2273 | if (mmap_locked) |
2274 | mmap_read_unlock(current->mm); |
2275 | else |
2276 | vma_end_read(vma); |
2277 | /* Try to copy straggler data. */ |
2278 | if (!ret) |
2279 | copylen = tcp_zc_handle_leftover(zc, sk, skb, seq: &seq, copybuf_len, tss); |
2280 | |
2281 | if (length + copylen) { |
2282 | WRITE_ONCE(tp->copied_seq, seq); |
2283 | tcp_rcv_space_adjust(sk); |
2284 | |
2285 | /* Clean up data we have read: This will do ACK frames. */ |
2286 | tcp_recv_skb(sk, seq, &offset); |
2287 | tcp_cleanup_rbuf(sk, copied: length + copylen); |
2288 | ret = 0; |
2289 | if (length == zc->length) |
2290 | zc->recv_skip_hint = 0; |
2291 | } else { |
2292 | if (!zc->recv_skip_hint && sock_flag(sk, flag: SOCK_DONE)) |
2293 | ret = -EIO; |
2294 | } |
2295 | zc->length = length; |
2296 | return ret; |
2297 | } |
2298 | #endif |
2299 | |
2300 | /* Similar to __sock_recv_timestamp, but does not require an skb */ |
2301 | void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, |
2302 | struct scm_timestamping_internal *tss) |
2303 | { |
2304 | int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
2305 | u32 tsflags = READ_ONCE(sk->sk_tsflags); |
2306 | bool has_timestamping = false; |
2307 | |
2308 | if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { |
2309 | if (sock_flag(sk, flag: SOCK_RCVTSTAMP)) { |
2310 | if (sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) { |
2311 | if (new_tstamp) { |
2312 | struct __kernel_timespec kts = { |
2313 | .tv_sec = tss->ts[0].tv_sec, |
2314 | .tv_nsec = tss->ts[0].tv_nsec, |
2315 | }; |
2316 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, |
2317 | len: sizeof(kts), data: &kts); |
2318 | } else { |
2319 | struct __kernel_old_timespec ts_old = { |
2320 | .tv_sec = tss->ts[0].tv_sec, |
2321 | .tv_nsec = tss->ts[0].tv_nsec, |
2322 | }; |
2323 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, |
2324 | len: sizeof(ts_old), data: &ts_old); |
2325 | } |
2326 | } else { |
2327 | if (new_tstamp) { |
2328 | struct __kernel_sock_timeval stv = { |
2329 | .tv_sec = tss->ts[0].tv_sec, |
2330 | .tv_usec = tss->ts[0].tv_nsec / 1000, |
2331 | }; |
2332 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, |
2333 | len: sizeof(stv), data: &stv); |
2334 | } else { |
2335 | struct __kernel_old_timeval tv = { |
2336 | .tv_sec = tss->ts[0].tv_sec, |
2337 | .tv_usec = tss->ts[0].tv_nsec / 1000, |
2338 | }; |
2339 | put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, |
2340 | len: sizeof(tv), data: &tv); |
2341 | } |
2342 | } |
2343 | } |
2344 | |
2345 | if (tsflags & SOF_TIMESTAMPING_SOFTWARE && |
2346 | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || |
2347 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) |
2348 | has_timestamping = true; |
2349 | else |
2350 | tss->ts[0] = (struct timespec64) {0}; |
2351 | } |
2352 | |
2353 | if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { |
2354 | if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && |
2355 | (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || |
2356 | !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) |
2357 | has_timestamping = true; |
2358 | else |
2359 | tss->ts[2] = (struct timespec64) {0}; |
2360 | } |
2361 | |
2362 | if (has_timestamping) { |
2363 | tss->ts[1] = (struct timespec64) {0}; |
2364 | if (sock_flag(sk, SOCK_TSTAMP_NEW)) |
2365 | put_cmsg_scm_timestamping64(msg, tss); |
2366 | else |
2367 | put_cmsg_scm_timestamping(msg, tss); |
2368 | } |
2369 | } |
2370 | |
2371 | static int tcp_inq_hint(struct sock *sk) |
2372 | { |
2373 | const struct tcp_sock *tp = tcp_sk(sk); |
2374 | u32 copied_seq = READ_ONCE(tp->copied_seq); |
2375 | u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); |
2376 | int inq; |
2377 | |
2378 | inq = rcv_nxt - copied_seq; |
2379 | if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { |
2380 | lock_sock(sk); |
2381 | inq = tp->rcv_nxt - tp->copied_seq; |
2382 | release_sock(sk); |
2383 | } |
2384 | /* After receiving a FIN, tell the user-space to continue reading |
2385 | * by returning a non-zero inq. |
2386 | */ |
2387 | if (inq == 0 && sock_flag(sk, flag: SOCK_DONE)) |
2388 | inq = 1; |
2389 | return inq; |
2390 | } |
2391 | |
2392 | /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ |
2393 | struct tcp_xa_pool { |
2394 | u8 max; /* max <= MAX_SKB_FRAGS */ |
2395 | u8 idx; /* idx <= max */ |
2396 | __u32 tokens[MAX_SKB_FRAGS]; |
2397 | netmem_ref netmems[MAX_SKB_FRAGS]; |
2398 | }; |
2399 | |
2400 | static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) |
2401 | { |
2402 | int i; |
2403 | |
2404 | /* Commit part that has been copied to user space. */ |
2405 | for (i = 0; i < p->idx; i++) |
2406 | __xa_cmpxchg(&sk->sk_user_frags, index: p->tokens[i], XA_ZERO_ENTRY, |
2407 | entry: (__force void *)p->netmems[i], GFP_KERNEL); |
2408 | /* Rollback what has been pre-allocated and is no longer needed. */ |
2409 | for (; i < p->max; i++) |
2410 | __xa_erase(&sk->sk_user_frags, index: p->tokens[i]); |
2411 | |
2412 | p->max = 0; |
2413 | p->idx = 0; |
2414 | } |
2415 | |
2416 | static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) |
2417 | { |
2418 | if (!p->max) |
2419 | return; |
2420 | |
2421 | xa_lock_bh(&sk->sk_user_frags); |
2422 | |
2423 | tcp_xa_pool_commit_locked(sk, p); |
2424 | |
2425 | xa_unlock_bh(&sk->sk_user_frags); |
2426 | } |
2427 | |
2428 | static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, |
2429 | unsigned int max_frags) |
2430 | { |
2431 | int err, k; |
2432 | |
2433 | if (p->idx < p->max) |
2434 | return 0; |
2435 | |
2436 | xa_lock_bh(&sk->sk_user_frags); |
2437 | |
2438 | tcp_xa_pool_commit_locked(sk, p); |
2439 | |
2440 | for (k = 0; k < max_frags; k++) { |
2441 | err = __xa_alloc(&sk->sk_user_frags, id: &p->tokens[k], |
2442 | XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); |
2443 | if (err) |
2444 | break; |
2445 | } |
2446 | |
2447 | xa_unlock_bh(&sk->sk_user_frags); |
2448 | |
2449 | p->max = k; |
2450 | p->idx = 0; |
2451 | return k ? 0 : err; |
2452 | } |
2453 | |
2454 | /* On error, returns the -errno. On success, returns number of bytes sent to the |
2455 | * user. May not consume all of @remaining_len. |
2456 | */ |
2457 | static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, |
2458 | unsigned int offset, struct msghdr *msg, |
2459 | int remaining_len) |
2460 | { |
2461 | struct dmabuf_cmsg dmabuf_cmsg = { 0 }; |
2462 | struct tcp_xa_pool tcp_xa_pool; |
2463 | unsigned int start; |
2464 | int i, copy, n; |
2465 | int sent = 0; |
2466 | int err = 0; |
2467 | |
2468 | tcp_xa_pool.max = 0; |
2469 | tcp_xa_pool.idx = 0; |
2470 | do { |
2471 | start = skb_headlen(skb); |
2472 | |
2473 | if (skb_frags_readable(skb)) { |
2474 | err = -ENODEV; |
2475 | goto out; |
2476 | } |
2477 | |
2478 | /* Copy header. */ |
2479 | copy = start - offset; |
2480 | if (copy > 0) { |
2481 | copy = min(copy, remaining_len); |
2482 | |
2483 | n = copy_to_iter(addr: skb->data + offset, bytes: copy, |
2484 | i: &msg->msg_iter); |
2485 | if (n != copy) { |
2486 | err = -EFAULT; |
2487 | goto out; |
2488 | } |
2489 | |
2490 | offset += copy; |
2491 | remaining_len -= copy; |
2492 | |
2493 | /* First a dmabuf_cmsg for # bytes copied to user |
2494 | * buffer. |
2495 | */ |
2496 | memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); |
2497 | dmabuf_cmsg.frag_size = copy; |
2498 | err = put_cmsg_notrunc(msg, SOL_SOCKET, |
2499 | SO_DEVMEM_LINEAR, |
2500 | len: sizeof(dmabuf_cmsg), |
2501 | data: &dmabuf_cmsg); |
2502 | if (err) |
2503 | goto out; |
2504 | |
2505 | sent += copy; |
2506 | |
2507 | if (remaining_len == 0) |
2508 | goto out; |
2509 | } |
2510 | |
2511 | /* after that, send information of dmabuf pages through a |
2512 | * sequence of cmsg |
2513 | */ |
2514 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
2515 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
2516 | struct net_iov *niov; |
2517 | u64 frag_offset; |
2518 | int end; |
2519 | |
2520 | /* !skb_frags_readable() should indicate that ALL the |
2521 | * frags in this skb are dmabuf net_iovs. We're checking |
2522 | * for that flag above, but also check individual frags |
2523 | * here. If the tcp stack is not setting |
2524 | * skb_frags_readable() correctly, we still don't want |
2525 | * to crash here. |
2526 | */ |
2527 | if (!skb_frag_net_iov(frag)) { |
2528 | net_err_ratelimited("Found non-dmabuf skb with net_iov"); |
2529 | err = -ENODEV; |
2530 | goto out; |
2531 | } |
2532 | |
2533 | niov = skb_frag_net_iov(frag); |
2534 | if (!net_is_devmem_iov(niov)) { |
2535 | err = -ENODEV; |
2536 | goto out; |
2537 | } |
2538 | |
2539 | end = start + skb_frag_size(frag); |
2540 | copy = end - offset; |
2541 | |
2542 | if (copy > 0) { |
2543 | copy = min(copy, remaining_len); |
2544 | |
2545 | frag_offset = net_iov_virtual_addr(niov) + |
2546 | skb_frag_off(frag) + offset - |
2547 | start; |
2548 | dmabuf_cmsg.frag_offset = frag_offset; |
2549 | dmabuf_cmsg.frag_size = copy; |
2550 | err = tcp_xa_pool_refill(sk, p: &tcp_xa_pool, |
2551 | skb_shinfo(skb)->nr_frags - i); |
2552 | if (err) |
2553 | goto out; |
2554 | |
2555 | /* Will perform the exchange later */ |
2556 | dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; |
2557 | dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); |
2558 | |
2559 | offset += copy; |
2560 | remaining_len -= copy; |
2561 | |
2562 | err = put_cmsg_notrunc(msg, SOL_SOCKET, |
2563 | SO_DEVMEM_DMABUF, |
2564 | len: sizeof(dmabuf_cmsg), |
2565 | data: &dmabuf_cmsg); |
2566 | if (err) |
2567 | goto out; |
2568 | |
2569 | atomic_long_inc(v: &niov->pp_ref_count); |
2570 | tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); |
2571 | |
2572 | sent += copy; |
2573 | |
2574 | if (remaining_len == 0) |
2575 | goto out; |
2576 | } |
2577 | start = end; |
2578 | } |
2579 | |
2580 | tcp_xa_pool_commit(sk, p: &tcp_xa_pool); |
2581 | if (!remaining_len) |
2582 | goto out; |
2583 | |
2584 | /* if remaining_len is not satisfied yet, we need to go to the |
2585 | * next frag in the frag_list to satisfy remaining_len. |
2586 | */ |
2587 | skb = skb_shinfo(skb)->frag_list ?: skb->next; |
2588 | |
2589 | offset = offset - start; |
2590 | } while (skb); |
2591 | |
2592 | if (remaining_len) { |
2593 | err = -EFAULT; |
2594 | goto out; |
2595 | } |
2596 | |
2597 | out: |
2598 | tcp_xa_pool_commit(sk, p: &tcp_xa_pool); |
2599 | if (!sent) |
2600 | sent = err; |
2601 | |
2602 | return sent; |
2603 | } |
2604 | |
2605 | /* |
2606 | * This routine copies from a sock struct into the user buffer. |
2607 | * |
2608 | * Technical note: in 2.3 we work on _locked_ socket, so that |
2609 | * tricks with *seq access order and skb->users are not required. |
2610 | * Probably, code can be easily improved even more. |
2611 | */ |
2612 | |
2613 | static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, |
2614 | int flags, struct scm_timestamping_internal *tss, |
2615 | int *cmsg_flags) |
2616 | { |
2617 | struct tcp_sock *tp = tcp_sk(sk); |
2618 | int last_copied_dmabuf = -1; /* uninitialized */ |
2619 | int copied = 0; |
2620 | u32 peek_seq; |
2621 | u32 *seq; |
2622 | unsigned long used; |
2623 | int err; |
2624 | int target; /* Read at least this many bytes */ |
2625 | long timeo; |
2626 | struct sk_buff *skb, *last; |
2627 | u32 peek_offset = 0; |
2628 | u32 urg_hole = 0; |
2629 | |
2630 | err = -ENOTCONN; |
2631 | if (sk->sk_state == TCP_LISTEN) |
2632 | goto out; |
2633 | |
2634 | if (tp->recvmsg_inq) { |
2635 | *cmsg_flags = TCP_CMSG_INQ; |
2636 | msg->msg_get_inq = 1; |
2637 | } |
2638 | timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT); |
2639 | |
2640 | /* Urgent data needs to be handled specially. */ |
2641 | if (flags & MSG_OOB) |
2642 | goto recv_urg; |
2643 | |
2644 | if (unlikely(tp->repair)) { |
2645 | err = -EPERM; |
2646 | if (!(flags & MSG_PEEK)) |
2647 | goto out; |
2648 | |
2649 | if (tp->repair_queue == TCP_SEND_QUEUE) |
2650 | goto recv_sndq; |
2651 | |
2652 | err = -EINVAL; |
2653 | if (tp->repair_queue == TCP_NO_QUEUE) |
2654 | goto out; |
2655 | |
2656 | /* 'common' recv queue MSG_PEEK-ing */ |
2657 | } |
2658 | |
2659 | seq = &tp->copied_seq; |
2660 | if (flags & MSG_PEEK) { |
2661 | peek_offset = max(sk_peek_offset(sk, flags), 0); |
2662 | peek_seq = tp->copied_seq + peek_offset; |
2663 | seq = &peek_seq; |
2664 | } |
2665 | |
2666 | target = sock_rcvlowat(sk, waitall: flags & MSG_WAITALL, len); |
2667 | |
2668 | do { |
2669 | u32 offset; |
2670 | |
2671 | /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ |
2672 | if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { |
2673 | if (copied) |
2674 | break; |
2675 | if (signal_pending(current)) { |
2676 | copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; |
2677 | break; |
2678 | } |
2679 | } |
2680 | |
2681 | /* Next get a buffer. */ |
2682 | |
2683 | last = skb_peek_tail(list_: &sk->sk_receive_queue); |
2684 | skb_queue_walk(&sk->sk_receive_queue, skb) { |
2685 | last = skb; |
2686 | /* Now that we have two receive queues this |
2687 | * shouldn't happen. |
2688 | */ |
2689 | if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), |
2690 | "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", |
2691 | *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, |
2692 | flags)) |
2693 | break; |
2694 | |
2695 | offset = *seq - TCP_SKB_CB(skb)->seq; |
2696 | if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { |
2697 | pr_err_once("%s: found a SYN, please report !\n", __func__); |
2698 | offset--; |
2699 | } |
2700 | if (offset < skb->len) |
2701 | goto found_ok_skb; |
2702 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
2703 | goto found_fin_ok; |
2704 | WARN(!(flags & MSG_PEEK), |
2705 | "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", |
2706 | *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); |
2707 | } |
2708 | |
2709 | /* Well, if we have backlog, try to process it now yet. */ |
2710 | |
2711 | if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) |
2712 | break; |
2713 | |
2714 | if (copied) { |
2715 | if (!timeo || |
2716 | sk->sk_err || |
2717 | sk->sk_state == TCP_CLOSE || |
2718 | (sk->sk_shutdown & RCV_SHUTDOWN) || |
2719 | signal_pending(current)) |
2720 | break; |
2721 | } else { |
2722 | if (sock_flag(sk, flag: SOCK_DONE)) |
2723 | break; |
2724 | |
2725 | if (sk->sk_err) { |
2726 | copied = sock_error(sk); |
2727 | break; |
2728 | } |
2729 | |
2730 | if (sk->sk_shutdown & RCV_SHUTDOWN) |
2731 | break; |
2732 | |
2733 | if (sk->sk_state == TCP_CLOSE) { |
2734 | /* This occurs when user tries to read |
2735 | * from never connected socket. |
2736 | */ |
2737 | copied = -ENOTCONN; |
2738 | break; |
2739 | } |
2740 | |
2741 | if (!timeo) { |
2742 | copied = -EAGAIN; |
2743 | break; |
2744 | } |
2745 | |
2746 | if (signal_pending(current)) { |
2747 | copied = sock_intr_errno(timeo); |
2748 | break; |
2749 | } |
2750 | } |
2751 | |
2752 | if (copied >= target) { |
2753 | /* Do not sleep, just process backlog. */ |
2754 | __sk_flush_backlog(sk); |
2755 | } else { |
2756 | tcp_cleanup_rbuf(sk, copied); |
2757 | err = sk_wait_data(sk, timeo: &timeo, skb: last); |
2758 | if (err < 0) { |
2759 | err = copied ? : err; |
2760 | goto out; |
2761 | } |
2762 | } |
2763 | |
2764 | if ((flags & MSG_PEEK) && |
2765 | (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { |
2766 | net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", |
2767 | current->comm, |
2768 | task_pid_nr(current)); |
2769 | peek_seq = tp->copied_seq + peek_offset; |
2770 | } |
2771 | continue; |
2772 | |
2773 | found_ok_skb: |
2774 | /* Ok so how much can we use? */ |
2775 | used = skb->len - offset; |
2776 | if (len < used) |
2777 | used = len; |
2778 | |
2779 | /* Do we have urgent data here? */ |
2780 | if (unlikely(tp->urg_data)) { |
2781 | u32 urg_offset = tp->urg_seq - *seq; |
2782 | if (urg_offset < used) { |
2783 | if (!urg_offset) { |
2784 | if (!sock_flag(sk, flag: SOCK_URGINLINE)) { |
2785 | WRITE_ONCE(*seq, *seq + 1); |
2786 | urg_hole++; |
2787 | offset++; |
2788 | used--; |
2789 | if (!used) |
2790 | goto skip_copy; |
2791 | } |
2792 | } else |
2793 | used = urg_offset; |
2794 | } |
2795 | } |
2796 | |
2797 | if (!(flags & MSG_TRUNC)) { |
2798 | if (last_copied_dmabuf != -1 && |
2799 | last_copied_dmabuf != !skb_frags_readable(skb)) |
2800 | break; |
2801 | |
2802 | if (skb_frags_readable(skb)) { |
2803 | err = skb_copy_datagram_msg(from: skb, offset, msg, |
2804 | size: used); |
2805 | if (err) { |
2806 | /* Exception. Bailout! */ |
2807 | if (!copied) |
2808 | copied = -EFAULT; |
2809 | break; |
2810 | } |
2811 | } else { |
2812 | if (!(flags & MSG_SOCK_DEVMEM)) { |
2813 | /* dmabuf skbs can only be received |
2814 | * with the MSG_SOCK_DEVMEM flag. |
2815 | */ |
2816 | if (!copied) |
2817 | copied = -EFAULT; |
2818 | |
2819 | break; |
2820 | } |
2821 | |
2822 | err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, |
2823 | remaining_len: used); |
2824 | if (err <= 0) { |
2825 | if (!copied) |
2826 | copied = -EFAULT; |
2827 | |
2828 | break; |
2829 | } |
2830 | used = err; |
2831 | } |
2832 | } |
2833 | |
2834 | last_copied_dmabuf = !skb_frags_readable(skb); |
2835 | |
2836 | WRITE_ONCE(*seq, *seq + used); |
2837 | copied += used; |
2838 | len -= used; |
2839 | if (flags & MSG_PEEK) |
2840 | sk_peek_offset_fwd(sk, val: used); |
2841 | else |
2842 | sk_peek_offset_bwd(sk, val: used); |
2843 | tcp_rcv_space_adjust(sk); |
2844 | |
2845 | skip_copy: |
2846 | if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { |
2847 | WRITE_ONCE(tp->urg_data, 0); |
2848 | tcp_fast_path_check(sk); |
2849 | } |
2850 | |
2851 | if (TCP_SKB_CB(skb)->has_rxtstamp) { |
2852 | tcp_update_recv_tstamps(skb, tss); |
2853 | *cmsg_flags |= TCP_CMSG_TS; |
2854 | } |
2855 | |
2856 | if (used + offset < skb->len) |
2857 | continue; |
2858 | |
2859 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
2860 | goto found_fin_ok; |
2861 | if (!(flags & MSG_PEEK)) |
2862 | tcp_eat_recv_skb(sk, skb); |
2863 | continue; |
2864 | |
2865 | found_fin_ok: |
2866 | /* Process the FIN. */ |
2867 | WRITE_ONCE(*seq, *seq + 1); |
2868 | if (!(flags & MSG_PEEK)) |
2869 | tcp_eat_recv_skb(sk, skb); |
2870 | break; |
2871 | } while (len > 0); |
2872 | |
2873 | /* According to UNIX98, msg_name/msg_namelen are ignored |
2874 | * on connected socket. I was just happy when found this 8) --ANK |
2875 | */ |
2876 | |
2877 | /* Clean up data we have read: This will do ACK frames. */ |
2878 | tcp_cleanup_rbuf(sk, copied); |
2879 | return copied; |
2880 | |
2881 | out: |
2882 | return err; |
2883 | |
2884 | recv_urg: |
2885 | err = tcp_recv_urg(sk, msg, len, flags); |
2886 | goto out; |
2887 | |
2888 | recv_sndq: |
2889 | err = tcp_peek_sndq(sk, msg, len); |
2890 | goto out; |
2891 | } |
2892 | |
2893 | int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, |
2894 | int *addr_len) |
2895 | { |
2896 | int cmsg_flags = 0, ret; |
2897 | struct scm_timestamping_internal tss; |
2898 | |
2899 | if (unlikely(flags & MSG_ERRQUEUE)) |
2900 | return inet_recv_error(sk, msg, len, addr_len); |
2901 | |
2902 | if (sk_can_busy_loop(sk) && |
2903 | skb_queue_empty_lockless(list: &sk->sk_receive_queue) && |
2904 | sk->sk_state == TCP_ESTABLISHED) |
2905 | sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT); |
2906 | |
2907 | lock_sock(sk); |
2908 | ret = tcp_recvmsg_locked(sk, msg, len, flags, tss: &tss, cmsg_flags: &cmsg_flags); |
2909 | release_sock(sk); |
2910 | |
2911 | if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { |
2912 | if (cmsg_flags & TCP_CMSG_TS) |
2913 | tcp_recv_timestamp(msg, sk, tss: &tss); |
2914 | if (msg->msg_get_inq) { |
2915 | msg->msg_inq = tcp_inq_hint(sk); |
2916 | if (cmsg_flags & TCP_CMSG_INQ) |
2917 | put_cmsg(msg, SOL_TCP, TCP_CM_INQ, |
2918 | len: sizeof(msg->msg_inq), data: &msg->msg_inq); |
2919 | } |
2920 | } |
2921 | return ret; |
2922 | } |
2923 | EXPORT_IPV6_MOD(tcp_recvmsg); |
2924 | |
2925 | void tcp_set_state(struct sock *sk, int state) |
2926 | { |
2927 | int oldstate = sk->sk_state; |
2928 | |
2929 | /* We defined a new enum for TCP states that are exported in BPF |
2930 | * so as not force the internal TCP states to be frozen. The |
2931 | * following checks will detect if an internal state value ever |
2932 | * differs from the BPF value. If this ever happens, then we will |
2933 | * need to remap the internal value to the BPF value before calling |
2934 | * tcp_call_bpf_2arg. |
2935 | */ |
2936 | BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); |
2937 | BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); |
2938 | BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); |
2939 | BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); |
2940 | BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); |
2941 | BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); |
2942 | BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); |
2943 | BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); |
2944 | BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); |
2945 | BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); |
2946 | BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); |
2947 | BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); |
2948 | BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); |
2949 | BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); |
2950 | |
2951 | /* bpf uapi header bpf.h defines an anonymous enum with values |
2952 | * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux |
2953 | * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. |
2954 | * But clang built vmlinux does not have this enum in DWARF |
2955 | * since clang removes the above code before generating IR/debuginfo. |
2956 | * Let us explicitly emit the type debuginfo to ensure the |
2957 | * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF |
2958 | * regardless of which compiler is used. |
2959 | */ |
2960 | BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); |
2961 | |
2962 | if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) |
2963 | tcp_call_bpf_2arg(sk, op: BPF_SOCK_OPS_STATE_CB, arg1: oldstate, arg2: state); |
2964 | |
2965 | switch (state) { |
2966 | case TCP_ESTABLISHED: |
2967 | if (oldstate != TCP_ESTABLISHED) |
2968 | TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
2969 | break; |
2970 | case TCP_CLOSE_WAIT: |
2971 | if (oldstate == TCP_SYN_RECV) |
2972 | TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
2973 | break; |
2974 | |
2975 | case TCP_CLOSE: |
2976 | if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) |
2977 | TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); |
2978 | |
2979 | sk->sk_prot->unhash(sk); |
2980 | if (inet_csk(sk)->icsk_bind_hash && |
2981 | !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) |
2982 | inet_put_port(sk); |
2983 | fallthrough; |
2984 | default: |
2985 | if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) |
2986 | TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); |
2987 | } |
2988 | |
2989 | /* Change state AFTER socket is unhashed to avoid closed |
2990 | * socket sitting in hash tables. |
2991 | */ |
2992 | inet_sk_state_store(sk, newstate: state); |
2993 | } |
2994 | EXPORT_SYMBOL_GPL(tcp_set_state); |
2995 | |
2996 | /* |
2997 | * State processing on a close. This implements the state shift for |
2998 | * sending our FIN frame. Note that we only send a FIN for some |
2999 | * states. A shutdown() may have already sent the FIN, or we may be |
3000 | * closed. |
3001 | */ |
3002 | |
3003 | static const unsigned char new_state[16] = { |
3004 | /* current state: new state: action: */ |
3005 | [0 /* (Invalid) */] = TCP_CLOSE, |
3006 | [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
3007 | [TCP_SYN_SENT] = TCP_CLOSE, |
3008 | [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
3009 | [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, |
3010 | [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, |
3011 | [TCP_TIME_WAIT] = TCP_CLOSE, |
3012 | [TCP_CLOSE] = TCP_CLOSE, |
3013 | [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, |
3014 | [TCP_LAST_ACK] = TCP_LAST_ACK, |
3015 | [TCP_LISTEN] = TCP_CLOSE, |
3016 | [TCP_CLOSING] = TCP_CLOSING, |
3017 | [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ |
3018 | }; |
3019 | |
3020 | static int tcp_close_state(struct sock *sk) |
3021 | { |
3022 | int next = (int)new_state[sk->sk_state]; |
3023 | int ns = next & TCP_STATE_MASK; |
3024 | |
3025 | tcp_set_state(sk, ns); |
3026 | |
3027 | return next & TCP_ACTION_FIN; |
3028 | } |
3029 | |
3030 | /* |
3031 | * Shutdown the sending side of a connection. Much like close except |
3032 | * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). |
3033 | */ |
3034 | |
3035 | void tcp_shutdown(struct sock *sk, int how) |
3036 | { |
3037 | /* We need to grab some memory, and put together a FIN, |
3038 | * and then put it into the queue to be sent. |
3039 | * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. |
3040 | */ |
3041 | if (!(how & SEND_SHUTDOWN)) |
3042 | return; |
3043 | |
3044 | /* If we've already sent a FIN, or it's a closed state, skip this. */ |
3045 | if ((1 << sk->sk_state) & |
3046 | (TCPF_ESTABLISHED | TCPF_SYN_SENT | |
3047 | TCPF_CLOSE_WAIT)) { |
3048 | /* Clear out any half completed packets. FIN if needed. */ |
3049 | if (tcp_close_state(sk)) |
3050 | tcp_send_fin(sk); |
3051 | } |
3052 | } |
3053 | EXPORT_IPV6_MOD(tcp_shutdown); |
3054 | |
3055 | int tcp_orphan_count_sum(void) |
3056 | { |
3057 | int i, total = 0; |
3058 | |
3059 | for_each_possible_cpu(i) |
3060 | total += per_cpu(tcp_orphan_count, i); |
3061 | |
3062 | return max(total, 0); |
3063 | } |
3064 | |
3065 | static int tcp_orphan_cache; |
3066 | static struct timer_list tcp_orphan_timer; |
3067 | #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) |
3068 | |
3069 | static void tcp_orphan_update(struct timer_list *unused) |
3070 | { |
3071 | WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); |
3072 | mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD); |
3073 | } |
3074 | |
3075 | static bool tcp_too_many_orphans(int shift) |
3076 | { |
3077 | return READ_ONCE(tcp_orphan_cache) << shift > |
3078 | READ_ONCE(sysctl_tcp_max_orphans); |
3079 | } |
3080 | |
3081 | static bool tcp_out_of_memory(const struct sock *sk) |
3082 | { |
3083 | if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && |
3084 | sk_memory_allocated(sk) > sk_prot_mem_limits(sk, index: 2)) |
3085 | return true; |
3086 | return false; |
3087 | } |
3088 | |
3089 | bool tcp_check_oom(const struct sock *sk, int shift) |
3090 | { |
3091 | bool too_many_orphans, out_of_socket_memory; |
3092 | |
3093 | too_many_orphans = tcp_too_many_orphans(shift); |
3094 | out_of_socket_memory = tcp_out_of_memory(sk); |
3095 | |
3096 | if (too_many_orphans) |
3097 | net_info_ratelimited("too many orphaned sockets\n"); |
3098 | if (out_of_socket_memory) |
3099 | net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); |
3100 | return too_many_orphans || out_of_socket_memory; |
3101 | } |
3102 | |
3103 | void __tcp_close(struct sock *sk, long timeout) |
3104 | { |
3105 | struct sk_buff *skb; |
3106 | int data_was_unread = 0; |
3107 | int state; |
3108 | |
3109 | WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
3110 | |
3111 | if (sk->sk_state == TCP_LISTEN) { |
3112 | tcp_set_state(sk, TCP_CLOSE); |
3113 | |
3114 | /* Special case. */ |
3115 | inet_csk_listen_stop(sk); |
3116 | |
3117 | goto adjudge_to_death; |
3118 | } |
3119 | |
3120 | /* We need to flush the recv. buffs. We do this only on the |
3121 | * descriptor close, not protocol-sourced closes, because the |
3122 | * reader process may not have drained the data yet! |
3123 | */ |
3124 | while ((skb = __skb_dequeue(list: &sk->sk_receive_queue)) != NULL) { |
3125 | u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; |
3126 | |
3127 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
3128 | len--; |
3129 | data_was_unread += len; |
3130 | __kfree_skb(skb); |
3131 | } |
3132 | |
3133 | /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ |
3134 | if (sk->sk_state == TCP_CLOSE) |
3135 | goto adjudge_to_death; |
3136 | |
3137 | /* As outlined in RFC 2525, section 2.17, we send a RST here because |
3138 | * data was lost. To witness the awful effects of the old behavior of |
3139 | * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk |
3140 | * GET in an FTP client, suspend the process, wait for the client to |
3141 | * advertise a zero window, then kill -9 the FTP client, wheee... |
3142 | * Note: timeout is always zero in such a case. |
3143 | */ |
3144 | if (unlikely(tcp_sk(sk)->repair)) { |
3145 | sk->sk_prot->disconnect(sk, 0); |
3146 | } else if (data_was_unread) { |
3147 | /* Unread data was tossed, zap the connection. */ |
3148 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); |
3149 | tcp_set_state(sk, TCP_CLOSE); |
3150 | tcp_send_active_reset(sk, priority: sk->sk_allocation, |
3151 | reason: SK_RST_REASON_TCP_ABORT_ON_CLOSE); |
3152 | } else if (sock_flag(sk, flag: SOCK_LINGER) && !sk->sk_lingertime) { |
3153 | /* Check zero linger _after_ checking for unread data. */ |
3154 | sk->sk_prot->disconnect(sk, 0); |
3155 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); |
3156 | } else if (tcp_close_state(sk)) { |
3157 | /* We FIN if the application ate all the data before |
3158 | * zapping the connection. |
3159 | */ |
3160 | |
3161 | /* RED-PEN. Formally speaking, we have broken TCP state |
3162 | * machine. State transitions: |
3163 | * |
3164 | * TCP_ESTABLISHED -> TCP_FIN_WAIT1 |
3165 | * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) |
3166 | * TCP_CLOSE_WAIT -> TCP_LAST_ACK |
3167 | * |
3168 | * are legal only when FIN has been sent (i.e. in window), |
3169 | * rather than queued out of window. Purists blame. |
3170 | * |
3171 | * F.e. "RFC state" is ESTABLISHED, |
3172 | * if Linux state is FIN-WAIT-1, but FIN is still not sent. |
3173 | * |
3174 | * The visible declinations are that sometimes |
3175 | * we enter time-wait state, when it is not required really |
3176 | * (harmless), do not send active resets, when they are |
3177 | * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when |
3178 | * they look as CLOSING or LAST_ACK for Linux) |
3179 | * Probably, I missed some more holelets. |
3180 | * --ANK |
3181 | * XXX (TFO) - To start off we don't support SYN+ACK+FIN |
3182 | * in a single packet! (May consider it later but will |
3183 | * probably need API support or TCP_CORK SYN-ACK until |
3184 | * data is written and socket is closed.) |
3185 | */ |
3186 | tcp_send_fin(sk); |
3187 | } |
3188 | |
3189 | sk_stream_wait_close(sk, timeo_p: timeout); |
3190 | |
3191 | adjudge_to_death: |
3192 | state = sk->sk_state; |
3193 | sock_hold(sk); |
3194 | sock_orphan(sk); |
3195 | |
3196 | local_bh_disable(); |
3197 | bh_lock_sock(sk); |
3198 | /* remove backlog if any, without releasing ownership. */ |
3199 | __release_sock(sk); |
3200 | |
3201 | this_cpu_inc(tcp_orphan_count); |
3202 | |
3203 | /* Have we already been destroyed by a softirq or backlog? */ |
3204 | if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) |
3205 | goto out; |
3206 | |
3207 | /* This is a (useful) BSD violating of the RFC. There is a |
3208 | * problem with TCP as specified in that the other end could |
3209 | * keep a socket open forever with no application left this end. |
3210 | * We use a 1 minute timeout (about the same as BSD) then kill |
3211 | * our end. If they send after that then tough - BUT: long enough |
3212 | * that we won't make the old 4*rto = almost no time - whoops |
3213 | * reset mistake. |
3214 | * |
3215 | * Nope, it was not mistake. It is really desired behaviour |
3216 | * f.e. on http servers, when such sockets are useless, but |
3217 | * consume significant resources. Let's do it with special |
3218 | * linger2 option. --ANK |
3219 | */ |
3220 | |
3221 | if (sk->sk_state == TCP_FIN_WAIT2) { |
3222 | struct tcp_sock *tp = tcp_sk(sk); |
3223 | if (READ_ONCE(tp->linger2) < 0) { |
3224 | tcp_set_state(sk, TCP_CLOSE); |
3225 | tcp_send_active_reset(sk, GFP_ATOMIC, |
3226 | reason: SK_RST_REASON_TCP_ABORT_ON_LINGER); |
3227 | __NET_INC_STATS(sock_net(sk), |
3228 | LINUX_MIB_TCPABORTONLINGER); |
3229 | } else { |
3230 | const int tmo = tcp_fin_time(sk); |
3231 | |
3232 | if (tmo > TCP_TIMEWAIT_LEN) { |
3233 | tcp_reset_keepalive_timer(sk, |
3234 | timeout: tmo - TCP_TIMEWAIT_LEN); |
3235 | } else { |
3236 | tcp_time_wait(sk, state: TCP_FIN_WAIT2, timeo: tmo); |
3237 | goto out; |
3238 | } |
3239 | } |
3240 | } |
3241 | if (sk->sk_state != TCP_CLOSE) { |
3242 | if (tcp_check_oom(sk, shift: 0)) { |
3243 | tcp_set_state(sk, TCP_CLOSE); |
3244 | tcp_send_active_reset(sk, GFP_ATOMIC, |
3245 | reason: SK_RST_REASON_TCP_ABORT_ON_MEMORY); |
3246 | __NET_INC_STATS(sock_net(sk), |
3247 | LINUX_MIB_TCPABORTONMEMORY); |
3248 | } else if (!check_net(net: sock_net(sk))) { |
3249 | /* Not possible to send reset; just close */ |
3250 | tcp_set_state(sk, TCP_CLOSE); |
3251 | } |
3252 | } |
3253 | |
3254 | if (sk->sk_state == TCP_CLOSE) { |
3255 | struct request_sock *req; |
3256 | |
3257 | req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, |
3258 | lockdep_sock_is_held(sk)); |
3259 | /* We could get here with a non-NULL req if the socket is |
3260 | * aborted (e.g., closed with unread data) before 3WHS |
3261 | * finishes. |
3262 | */ |
3263 | if (req) |
3264 | reqsk_fastopen_remove(sk, req, reset: false); |
3265 | inet_csk_destroy_sock(sk); |
3266 | } |
3267 | /* Otherwise, socket is reprieved until protocol close. */ |
3268 | |
3269 | out: |
3270 | bh_unlock_sock(sk); |
3271 | local_bh_enable(); |
3272 | } |
3273 | |
3274 | void tcp_close(struct sock *sk, long timeout) |
3275 | { |
3276 | lock_sock(sk); |
3277 | __tcp_close(sk, timeout); |
3278 | release_sock(sk); |
3279 | if (!sk->sk_net_refcnt) |
3280 | inet_csk_clear_xmit_timers_sync(sk); |
3281 | sock_put(sk); |
3282 | } |
3283 | EXPORT_SYMBOL(tcp_close); |
3284 | |
3285 | /* These states need RST on ABORT according to RFC793 */ |
3286 | |
3287 | static inline bool tcp_need_reset(int state) |
3288 | { |
3289 | return (1 << state) & |
3290 | (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | |
3291 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); |
3292 | } |
3293 | |
3294 | static void tcp_rtx_queue_purge(struct sock *sk) |
3295 | { |
3296 | struct rb_node *p = rb_first(&sk->tcp_rtx_queue); |
3297 | |
3298 | tcp_sk(sk)->highest_sack = NULL; |
3299 | while (p) { |
3300 | struct sk_buff *skb = rb_to_skb(p); |
3301 | |
3302 | p = rb_next(p); |
3303 | /* Since we are deleting whole queue, no need to |
3304 | * list_del(&skb->tcp_tsorted_anchor) |
3305 | */ |
3306 | tcp_rtx_queue_unlink(skb, sk); |
3307 | tcp_wmem_free_skb(sk, skb); |
3308 | } |
3309 | } |
3310 | |
3311 | void tcp_write_queue_purge(struct sock *sk) |
3312 | { |
3313 | struct sk_buff *skb; |
3314 | |
3315 | tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY); |
3316 | while ((skb = __skb_dequeue(list: &sk->sk_write_queue)) != NULL) { |
3317 | tcp_skb_tsorted_anchor_cleanup(skb); |
3318 | tcp_wmem_free_skb(sk, skb); |
3319 | } |
3320 | tcp_rtx_queue_purge(sk); |
3321 | INIT_LIST_HEAD(list: &tcp_sk(sk)->tsorted_sent_queue); |
3322 | tcp_clear_all_retrans_hints(tcp_sk(sk)); |
3323 | tcp_sk(sk)->packets_out = 0; |
3324 | inet_csk(sk)->icsk_backoff = 0; |
3325 | } |
3326 | |
3327 | int tcp_disconnect(struct sock *sk, int flags) |
3328 | { |
3329 | struct inet_sock *inet = inet_sk(sk); |
3330 | struct inet_connection_sock *icsk = inet_csk(sk); |
3331 | struct tcp_sock *tp = tcp_sk(sk); |
3332 | int old_state = sk->sk_state; |
3333 | u32 seq; |
3334 | |
3335 | if (old_state != TCP_CLOSE) |
3336 | tcp_set_state(sk, TCP_CLOSE); |
3337 | |
3338 | /* ABORT function of RFC793 */ |
3339 | if (old_state == TCP_LISTEN) { |
3340 | inet_csk_listen_stop(sk); |
3341 | } else if (unlikely(tp->repair)) { |
3342 | WRITE_ONCE(sk->sk_err, ECONNABORTED); |
3343 | } else if (tcp_need_reset(state: old_state)) { |
3344 | tcp_send_active_reset(sk, priority: gfp_any(), reason: SK_RST_REASON_TCP_STATE); |
3345 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
3346 | } else if (tp->snd_nxt != tp->write_seq && |
3347 | (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { |
3348 | /* The last check adjusts for discrepancy of Linux wrt. RFC |
3349 | * states |
3350 | */ |
3351 | tcp_send_active_reset(sk, priority: gfp_any(), |
3352 | reason: SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); |
3353 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
3354 | } else if (old_state == TCP_SYN_SENT) |
3355 | WRITE_ONCE(sk->sk_err, ECONNRESET); |
3356 | |
3357 | tcp_clear_xmit_timers(sk); |
3358 | __skb_queue_purge(list: &sk->sk_receive_queue); |
3359 | WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); |
3360 | WRITE_ONCE(tp->urg_data, 0); |
3361 | sk_set_peek_off(sk, val: -1); |
3362 | tcp_write_queue_purge(sk); |
3363 | tcp_fastopen_active_disable_ofo_check(sk); |
3364 | skb_rbtree_purge(root: &tp->out_of_order_queue); |
3365 | |
3366 | inet->inet_dport = 0; |
3367 | |
3368 | inet_bhash2_reset_saddr(sk); |
3369 | |
3370 | WRITE_ONCE(sk->sk_shutdown, 0); |
3371 | sock_reset_flag(sk, flag: SOCK_DONE); |
3372 | tp->srtt_us = 0; |
3373 | tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); |
3374 | tp->rcv_rtt_last_tsecr = 0; |
3375 | |
3376 | seq = tp->write_seq + tp->max_window + 2; |
3377 | if (!seq) |
3378 | seq = 1; |
3379 | WRITE_ONCE(tp->write_seq, seq); |
3380 | |
3381 | icsk->icsk_backoff = 0; |
3382 | icsk->icsk_probes_out = 0; |
3383 | icsk->icsk_probes_tstamp = 0; |
3384 | icsk->icsk_rto = TCP_TIMEOUT_INIT; |
3385 | WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); |
3386 | WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); |
3387 | tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
3388 | tcp_snd_cwnd_set(tp, TCP_INIT_CWND); |
3389 | tp->snd_cwnd_cnt = 0; |
3390 | tp->is_cwnd_limited = 0; |
3391 | tp->max_packets_out = 0; |
3392 | tp->window_clamp = 0; |
3393 | tp->delivered = 0; |
3394 | tp->delivered_ce = 0; |
3395 | if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) |
3396 | icsk->icsk_ca_ops->release(sk); |
3397 | memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); |
3398 | icsk->icsk_ca_initialized = 0; |
3399 | tcp_set_ca_state(sk, ca_state: TCP_CA_Open); |
3400 | tp->is_sack_reneg = 0; |
3401 | tcp_clear_retrans(tp); |
3402 | tp->total_retrans = 0; |
3403 | inet_csk_delack_init(sk); |
3404 | /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 |
3405 | * issue in __tcp_select_window() |
3406 | */ |
3407 | icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; |
3408 | memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); |
3409 | __sk_dst_reset(sk); |
3410 | dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); |
3411 | tcp_saved_syn_free(tp); |
3412 | tp->compressed_ack = 0; |
3413 | tp->segs_in = 0; |
3414 | tp->segs_out = 0; |
3415 | tp->bytes_sent = 0; |
3416 | tp->bytes_acked = 0; |
3417 | tp->bytes_received = 0; |
3418 | tp->bytes_retrans = 0; |
3419 | tp->data_segs_in = 0; |
3420 | tp->data_segs_out = 0; |
3421 | tp->duplicate_sack[0].start_seq = 0; |
3422 | tp->duplicate_sack[0].end_seq = 0; |
3423 | tp->dsack_dups = 0; |
3424 | tp->reord_seen = 0; |
3425 | tp->retrans_out = 0; |
3426 | tp->sacked_out = 0; |
3427 | tp->tlp_high_seq = 0; |
3428 | tp->last_oow_ack_time = 0; |
3429 | tp->plb_rehash = 0; |
3430 | /* There's a bubble in the pipe until at least the first ACK. */ |
3431 | tp->app_limited = ~0U; |
3432 | tp->rate_app_limited = 1; |
3433 | tp->rack.mstamp = 0; |
3434 | tp->rack.advanced = 0; |
3435 | tp->rack.reo_wnd_steps = 1; |
3436 | tp->rack.last_delivered = 0; |
3437 | tp->rack.reo_wnd_persist = 0; |
3438 | tp->rack.dsack_seen = 0; |
3439 | tp->syn_data_acked = 0; |
3440 | tp->syn_fastopen_child = 0; |
3441 | tp->rx_opt.saw_tstamp = 0; |
3442 | tp->rx_opt.dsack = 0; |
3443 | tp->rx_opt.num_sacks = 0; |
3444 | tp->rcv_ooopack = 0; |
3445 | |
3446 | |
3447 | /* Clean up fastopen related fields */ |
3448 | tcp_free_fastopen_req(tp); |
3449 | inet_clear_bit(DEFER_CONNECT, sk); |
3450 | tp->fastopen_client_fail = 0; |
3451 | |
3452 | WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); |
3453 | |
3454 | if (sk->sk_frag.page) { |
3455 | put_page(page: sk->sk_frag.page); |
3456 | sk->sk_frag.page = NULL; |
3457 | sk->sk_frag.offset = 0; |
3458 | } |
3459 | sk_error_report(sk); |
3460 | return 0; |
3461 | } |
3462 | EXPORT_SYMBOL(tcp_disconnect); |
3463 | |
3464 | static inline bool tcp_can_repair_sock(const struct sock *sk) |
3465 | { |
3466 | return sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN) && |
3467 | (sk->sk_state != TCP_LISTEN); |
3468 | } |
3469 | |
3470 | static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) |
3471 | { |
3472 | struct tcp_repair_window opt; |
3473 | |
3474 | if (!tp->repair) |
3475 | return -EPERM; |
3476 | |
3477 | if (len != sizeof(opt)) |
3478 | return -EINVAL; |
3479 | |
3480 | if (copy_from_sockptr(dst: &opt, src: optbuf, size: sizeof(opt))) |
3481 | return -EFAULT; |
3482 | |
3483 | if (opt.max_window < opt.snd_wnd) |
3484 | return -EINVAL; |
3485 | |
3486 | if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) |
3487 | return -EINVAL; |
3488 | |
3489 | if (after(opt.rcv_wup, tp->rcv_nxt)) |
3490 | return -EINVAL; |
3491 | |
3492 | tp->snd_wl1 = opt.snd_wl1; |
3493 | tp->snd_wnd = opt.snd_wnd; |
3494 | tp->max_window = opt.max_window; |
3495 | |
3496 | tp->rcv_wnd = opt.rcv_wnd; |
3497 | tp->rcv_wup = opt.rcv_wup; |
3498 | |
3499 | return 0; |
3500 | } |
3501 | |
3502 | static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, |
3503 | unsigned int len) |
3504 | { |
3505 | struct tcp_sock *tp = tcp_sk(sk); |
3506 | struct tcp_repair_opt opt; |
3507 | size_t offset = 0; |
3508 | |
3509 | while (len >= sizeof(opt)) { |
3510 | if (copy_from_sockptr_offset(dst: &opt, src: optbuf, offset, size: sizeof(opt))) |
3511 | return -EFAULT; |
3512 | |
3513 | offset += sizeof(opt); |
3514 | len -= sizeof(opt); |
3515 | |
3516 | switch (opt.opt_code) { |
3517 | case TCPOPT_MSS: |
3518 | tp->rx_opt.mss_clamp = opt.opt_val; |
3519 | tcp_mtup_init(sk); |
3520 | break; |
3521 | case TCPOPT_WINDOW: |
3522 | { |
3523 | u16 snd_wscale = opt.opt_val & 0xFFFF; |
3524 | u16 rcv_wscale = opt.opt_val >> 16; |
3525 | |
3526 | if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) |
3527 | return -EFBIG; |
3528 | |
3529 | tp->rx_opt.snd_wscale = snd_wscale; |
3530 | tp->rx_opt.rcv_wscale = rcv_wscale; |
3531 | tp->rx_opt.wscale_ok = 1; |
3532 | } |
3533 | break; |
3534 | case TCPOPT_SACK_PERM: |
3535 | if (opt.opt_val != 0) |
3536 | return -EINVAL; |
3537 | |
3538 | tp->rx_opt.sack_ok |= TCP_SACK_SEEN; |
3539 | break; |
3540 | case TCPOPT_TIMESTAMP: |
3541 | if (opt.opt_val != 0) |
3542 | return -EINVAL; |
3543 | |
3544 | tp->rx_opt.tstamp_ok = 1; |
3545 | break; |
3546 | } |
3547 | } |
3548 | |
3549 | return 0; |
3550 | } |
3551 | |
3552 | DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); |
3553 | EXPORT_IPV6_MOD(tcp_tx_delay_enabled); |
3554 | |
3555 | static void tcp_enable_tx_delay(void) |
3556 | { |
3557 | if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { |
3558 | static int __tcp_tx_delay_enabled = 0; |
3559 | |
3560 | if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { |
3561 | static_branch_enable(&tcp_tx_delay_enabled); |
3562 | pr_info("TCP_TX_DELAY enabled\n"); |
3563 | } |
3564 | } |
3565 | } |
3566 | |
3567 | /* When set indicates to always queue non-full frames. Later the user clears |
3568 | * this option and we transmit any pending partial frames in the queue. This is |
3569 | * meant to be used alongside sendfile() to get properly filled frames when the |
3570 | * user (for example) must write out headers with a write() call first and then |
3571 | * use sendfile to send out the data parts. |
3572 | * |
3573 | * TCP_CORK can be set together with TCP_NODELAY and it is stronger than |
3574 | * TCP_NODELAY. |
3575 | */ |
3576 | void __tcp_sock_set_cork(struct sock *sk, bool on) |
3577 | { |
3578 | struct tcp_sock *tp = tcp_sk(sk); |
3579 | |
3580 | if (on) { |
3581 | tp->nonagle |= TCP_NAGLE_CORK; |
3582 | } else { |
3583 | tp->nonagle &= ~TCP_NAGLE_CORK; |
3584 | if (tp->nonagle & TCP_NAGLE_OFF) |
3585 | tp->nonagle |= TCP_NAGLE_PUSH; |
3586 | tcp_push_pending_frames(sk); |
3587 | } |
3588 | } |
3589 | |
3590 | void tcp_sock_set_cork(struct sock *sk, bool on) |
3591 | { |
3592 | lock_sock(sk); |
3593 | __tcp_sock_set_cork(sk, on); |
3594 | release_sock(sk); |
3595 | } |
3596 | EXPORT_SYMBOL(tcp_sock_set_cork); |
3597 | |
3598 | /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is |
3599 | * remembered, but it is not activated until cork is cleared. |
3600 | * |
3601 | * However, when TCP_NODELAY is set we make an explicit push, which overrides |
3602 | * even TCP_CORK for currently queued segments. |
3603 | */ |
3604 | void __tcp_sock_set_nodelay(struct sock *sk, bool on) |
3605 | { |
3606 | if (on) { |
3607 | tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; |
3608 | tcp_push_pending_frames(sk); |
3609 | } else { |
3610 | tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; |
3611 | } |
3612 | } |
3613 | |
3614 | void tcp_sock_set_nodelay(struct sock *sk) |
3615 | { |
3616 | lock_sock(sk); |
3617 | __tcp_sock_set_nodelay(sk, on: true); |
3618 | release_sock(sk); |
3619 | } |
3620 | EXPORT_SYMBOL(tcp_sock_set_nodelay); |
3621 | |
3622 | static void __tcp_sock_set_quickack(struct sock *sk, int val) |
3623 | { |
3624 | if (!val) { |
3625 | inet_csk_enter_pingpong_mode(sk); |
3626 | return; |
3627 | } |
3628 | |
3629 | inet_csk_exit_pingpong_mode(sk); |
3630 | if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && |
3631 | inet_csk_ack_scheduled(sk)) { |
3632 | inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; |
3633 | tcp_cleanup_rbuf(sk, copied: 1); |
3634 | if (!(val & 1)) |
3635 | inet_csk_enter_pingpong_mode(sk); |
3636 | } |
3637 | } |
3638 | |
3639 | void tcp_sock_set_quickack(struct sock *sk, int val) |
3640 | { |
3641 | lock_sock(sk); |
3642 | __tcp_sock_set_quickack(sk, val); |
3643 | release_sock(sk); |
3644 | } |
3645 | EXPORT_SYMBOL(tcp_sock_set_quickack); |
3646 | |
3647 | int tcp_sock_set_syncnt(struct sock *sk, int val) |
3648 | { |
3649 | if (val < 1 || val > MAX_TCP_SYNCNT) |
3650 | return -EINVAL; |
3651 | |
3652 | WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); |
3653 | return 0; |
3654 | } |
3655 | EXPORT_SYMBOL(tcp_sock_set_syncnt); |
3656 | |
3657 | int tcp_sock_set_user_timeout(struct sock *sk, int val) |
3658 | { |
3659 | /* Cap the max time in ms TCP will retry or probe the window |
3660 | * before giving up and aborting (ETIMEDOUT) a connection. |
3661 | */ |
3662 | if (val < 0) |
3663 | return -EINVAL; |
3664 | |
3665 | WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); |
3666 | return 0; |
3667 | } |
3668 | EXPORT_SYMBOL(tcp_sock_set_user_timeout); |
3669 | |
3670 | int tcp_sock_set_keepidle_locked(struct sock *sk, int val) |
3671 | { |
3672 | struct tcp_sock *tp = tcp_sk(sk); |
3673 | |
3674 | if (val < 1 || val > MAX_TCP_KEEPIDLE) |
3675 | return -EINVAL; |
3676 | |
3677 | /* Paired with WRITE_ONCE() in keepalive_time_when() */ |
3678 | WRITE_ONCE(tp->keepalive_time, val * HZ); |
3679 | if (sock_flag(sk, flag: SOCK_KEEPOPEN) && |
3680 | !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { |
3681 | u32 elapsed = keepalive_time_elapsed(tp); |
3682 | |
3683 | if (tp->keepalive_time > elapsed) |
3684 | elapsed = tp->keepalive_time - elapsed; |
3685 | else |
3686 | elapsed = 0; |
3687 | tcp_reset_keepalive_timer(sk, timeout: elapsed); |
3688 | } |
3689 | |
3690 | return 0; |
3691 | } |
3692 | |
3693 | int tcp_sock_set_keepidle(struct sock *sk, int val) |
3694 | { |
3695 | int err; |
3696 | |
3697 | lock_sock(sk); |
3698 | err = tcp_sock_set_keepidle_locked(sk, val); |
3699 | release_sock(sk); |
3700 | return err; |
3701 | } |
3702 | EXPORT_SYMBOL(tcp_sock_set_keepidle); |
3703 | |
3704 | int tcp_sock_set_keepintvl(struct sock *sk, int val) |
3705 | { |
3706 | if (val < 1 || val > MAX_TCP_KEEPINTVL) |
3707 | return -EINVAL; |
3708 | |
3709 | WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); |
3710 | return 0; |
3711 | } |
3712 | EXPORT_SYMBOL(tcp_sock_set_keepintvl); |
3713 | |
3714 | int tcp_sock_set_keepcnt(struct sock *sk, int val) |
3715 | { |
3716 | if (val < 1 || val > MAX_TCP_KEEPCNT) |
3717 | return -EINVAL; |
3718 | |
3719 | /* Paired with READ_ONCE() in keepalive_probes() */ |
3720 | WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); |
3721 | return 0; |
3722 | } |
3723 | EXPORT_SYMBOL(tcp_sock_set_keepcnt); |
3724 | |
3725 | int tcp_set_window_clamp(struct sock *sk, int val) |
3726 | { |
3727 | u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; |
3728 | struct tcp_sock *tp = tcp_sk(sk); |
3729 | |
3730 | if (!val) { |
3731 | if (sk->sk_state != TCP_CLOSE) |
3732 | return -EINVAL; |
3733 | WRITE_ONCE(tp->window_clamp, 0); |
3734 | return 0; |
3735 | } |
3736 | |
3737 | old_window_clamp = tp->window_clamp; |
3738 | new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); |
3739 | |
3740 | if (new_window_clamp == old_window_clamp) |
3741 | return 0; |
3742 | |
3743 | WRITE_ONCE(tp->window_clamp, new_window_clamp); |
3744 | |
3745 | /* Need to apply the reserved mem provisioning only |
3746 | * when shrinking the window clamp. |
3747 | */ |
3748 | if (new_window_clamp < old_window_clamp) { |
3749 | __tcp_adjust_rcv_ssthresh(sk, new_ssthresh: new_window_clamp); |
3750 | } else { |
3751 | new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); |
3752 | tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); |
3753 | } |
3754 | return 0; |
3755 | } |
3756 | |
3757 | /* |
3758 | * Socket option code for TCP. |
3759 | */ |
3760 | int do_tcp_setsockopt(struct sock *sk, int level, int optname, |
3761 | sockptr_t optval, unsigned int optlen) |
3762 | { |
3763 | struct tcp_sock *tp = tcp_sk(sk); |
3764 | struct inet_connection_sock *icsk = inet_csk(sk); |
3765 | struct net *net = sock_net(sk); |
3766 | int val; |
3767 | int err = 0; |
3768 | |
3769 | /* These are data/string values, all the others are ints */ |
3770 | switch (optname) { |
3771 | case TCP_CONGESTION: { |
3772 | char name[TCP_CA_NAME_MAX]; |
3773 | |
3774 | if (optlen < 1) |
3775 | return -EINVAL; |
3776 | |
3777 | val = strncpy_from_sockptr(dst: name, src: optval, |
3778 | min_t(long, TCP_CA_NAME_MAX-1, optlen)); |
3779 | if (val < 0) |
3780 | return -EFAULT; |
3781 | name[val] = 0; |
3782 | |
3783 | sockopt_lock_sock(sk); |
3784 | err = tcp_set_congestion_control(sk, name, load: !has_current_bpf_ctx(), |
3785 | cap_net_admin: sockopt_ns_capable(ns: sock_net(sk)->user_ns, |
3786 | CAP_NET_ADMIN)); |
3787 | sockopt_release_sock(sk); |
3788 | return err; |
3789 | } |
3790 | case TCP_ULP: { |
3791 | char name[TCP_ULP_NAME_MAX]; |
3792 | |
3793 | if (optlen < 1) |
3794 | return -EINVAL; |
3795 | |
3796 | val = strncpy_from_sockptr(dst: name, src: optval, |
3797 | min_t(long, TCP_ULP_NAME_MAX - 1, |
3798 | optlen)); |
3799 | if (val < 0) |
3800 | return -EFAULT; |
3801 | name[val] = 0; |
3802 | |
3803 | sockopt_lock_sock(sk); |
3804 | err = tcp_set_ulp(sk, name); |
3805 | sockopt_release_sock(sk); |
3806 | return err; |
3807 | } |
3808 | case TCP_FASTOPEN_KEY: { |
3809 | __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; |
3810 | __u8 *backup_key = NULL; |
3811 | |
3812 | /* Allow a backup key as well to facilitate key rotation |
3813 | * First key is the active one. |
3814 | */ |
3815 | if (optlen != TCP_FASTOPEN_KEY_LENGTH && |
3816 | optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) |
3817 | return -EINVAL; |
3818 | |
3819 | if (copy_from_sockptr(dst: key, src: optval, size: optlen)) |
3820 | return -EFAULT; |
3821 | |
3822 | if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) |
3823 | backup_key = key + TCP_FASTOPEN_KEY_LENGTH; |
3824 | |
3825 | return tcp_fastopen_reset_cipher(net, sk, primary_key: key, backup_key); |
3826 | } |
3827 | default: |
3828 | /* fallthru */ |
3829 | break; |
3830 | } |
3831 | |
3832 | if (optlen < sizeof(int)) |
3833 | return -EINVAL; |
3834 | |
3835 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
3836 | return -EFAULT; |
3837 | |
3838 | /* Handle options that can be set without locking the socket. */ |
3839 | switch (optname) { |
3840 | case TCP_SYNCNT: |
3841 | return tcp_sock_set_syncnt(sk, val); |
3842 | case TCP_USER_TIMEOUT: |
3843 | return tcp_sock_set_user_timeout(sk, val); |
3844 | case TCP_KEEPINTVL: |
3845 | return tcp_sock_set_keepintvl(sk, val); |
3846 | case TCP_KEEPCNT: |
3847 | return tcp_sock_set_keepcnt(sk, val); |
3848 | case TCP_LINGER2: |
3849 | if (val < 0) |
3850 | WRITE_ONCE(tp->linger2, -1); |
3851 | else if (val > TCP_FIN_TIMEOUT_MAX / HZ) |
3852 | WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); |
3853 | else |
3854 | WRITE_ONCE(tp->linger2, val * HZ); |
3855 | return 0; |
3856 | case TCP_DEFER_ACCEPT: |
3857 | /* Translate value in seconds to number of retransmits */ |
3858 | WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, |
3859 | secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, |
3860 | TCP_RTO_MAX / HZ)); |
3861 | return 0; |
3862 | case TCP_RTO_MAX_MS: |
3863 | if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) |
3864 | return -EINVAL; |
3865 | WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); |
3866 | return 0; |
3867 | case TCP_RTO_MIN_US: { |
3868 | int rto_min = usecs_to_jiffies(u: val); |
3869 | |
3870 | if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) |
3871 | return -EINVAL; |
3872 | WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); |
3873 | return 0; |
3874 | } |
3875 | case TCP_DELACK_MAX_US: { |
3876 | int delack_max = usecs_to_jiffies(u: val); |
3877 | |
3878 | if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) |
3879 | return -EINVAL; |
3880 | WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); |
3881 | return 0; |
3882 | } |
3883 | } |
3884 | |
3885 | sockopt_lock_sock(sk); |
3886 | |
3887 | switch (optname) { |
3888 | case TCP_MAXSEG: |
3889 | /* Values greater than interface MTU won't take effect. However |
3890 | * at the point when this call is done we typically don't yet |
3891 | * know which interface is going to be used |
3892 | */ |
3893 | if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { |
3894 | err = -EINVAL; |
3895 | break; |
3896 | } |
3897 | tp->rx_opt.user_mss = val; |
3898 | break; |
3899 | |
3900 | case TCP_NODELAY: |
3901 | __tcp_sock_set_nodelay(sk, on: val); |
3902 | break; |
3903 | |
3904 | case TCP_THIN_LINEAR_TIMEOUTS: |
3905 | if (val < 0 || val > 1) |
3906 | err = -EINVAL; |
3907 | else |
3908 | tp->thin_lto = val; |
3909 | break; |
3910 | |
3911 | case TCP_THIN_DUPACK: |
3912 | if (val < 0 || val > 1) |
3913 | err = -EINVAL; |
3914 | break; |
3915 | |
3916 | case TCP_REPAIR: |
3917 | if (!tcp_can_repair_sock(sk)) |
3918 | err = -EPERM; |
3919 | else if (val == TCP_REPAIR_ON) { |
3920 | tp->repair = 1; |
3921 | sk->sk_reuse = SK_FORCE_REUSE; |
3922 | tp->repair_queue = TCP_NO_QUEUE; |
3923 | } else if (val == TCP_REPAIR_OFF) { |
3924 | tp->repair = 0; |
3925 | sk->sk_reuse = SK_NO_REUSE; |
3926 | tcp_send_window_probe(sk); |
3927 | } else if (val == TCP_REPAIR_OFF_NO_WP) { |
3928 | tp->repair = 0; |
3929 | sk->sk_reuse = SK_NO_REUSE; |
3930 | } else |
3931 | err = -EINVAL; |
3932 | |
3933 | break; |
3934 | |
3935 | case TCP_REPAIR_QUEUE: |
3936 | if (!tp->repair) |
3937 | err = -EPERM; |
3938 | else if ((unsigned int)val < TCP_QUEUES_NR) |
3939 | tp->repair_queue = val; |
3940 | else |
3941 | err = -EINVAL; |
3942 | break; |
3943 | |
3944 | case TCP_QUEUE_SEQ: |
3945 | if (sk->sk_state != TCP_CLOSE) { |
3946 | err = -EPERM; |
3947 | } else if (tp->repair_queue == TCP_SEND_QUEUE) { |
3948 | if (!tcp_rtx_queue_empty(sk)) |
3949 | err = -EPERM; |
3950 | else |
3951 | WRITE_ONCE(tp->write_seq, val); |
3952 | } else if (tp->repair_queue == TCP_RECV_QUEUE) { |
3953 | if (tp->rcv_nxt != tp->copied_seq) { |
3954 | err = -EPERM; |
3955 | } else { |
3956 | WRITE_ONCE(tp->rcv_nxt, val); |
3957 | WRITE_ONCE(tp->copied_seq, val); |
3958 | } |
3959 | } else { |
3960 | err = -EINVAL; |
3961 | } |
3962 | break; |
3963 | |
3964 | case TCP_REPAIR_OPTIONS: |
3965 | if (!tp->repair) |
3966 | err = -EINVAL; |
3967 | else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) |
3968 | err = tcp_repair_options_est(sk, optbuf: optval, len: optlen); |
3969 | else |
3970 | err = -EPERM; |
3971 | break; |
3972 | |
3973 | case TCP_CORK: |
3974 | __tcp_sock_set_cork(sk, on: val); |
3975 | break; |
3976 | |
3977 | case TCP_KEEPIDLE: |
3978 | err = tcp_sock_set_keepidle_locked(sk, val); |
3979 | break; |
3980 | case TCP_SAVE_SYN: |
3981 | /* 0: disable, 1: enable, 2: start from ether_header */ |
3982 | if (val < 0 || val > 2) |
3983 | err = -EINVAL; |
3984 | else |
3985 | tp->save_syn = val; |
3986 | break; |
3987 | |
3988 | case TCP_WINDOW_CLAMP: |
3989 | err = tcp_set_window_clamp(sk, val); |
3990 | break; |
3991 | |
3992 | case TCP_QUICKACK: |
3993 | __tcp_sock_set_quickack(sk, val); |
3994 | break; |
3995 | |
3996 | case TCP_AO_REPAIR: |
3997 | if (!tcp_can_repair_sock(sk)) { |
3998 | err = -EPERM; |
3999 | break; |
4000 | } |
4001 | err = tcp_ao_set_repair(sk, optval, optlen); |
4002 | break; |
4003 | #ifdef CONFIG_TCP_AO |
4004 | case TCP_AO_ADD_KEY: |
4005 | case TCP_AO_DEL_KEY: |
4006 | case TCP_AO_INFO: { |
4007 | /* If this is the first TCP-AO setsockopt() on the socket, |
4008 | * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR |
4009 | * in any state. |
4010 | */ |
4011 | if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) |
4012 | goto ao_parse; |
4013 | if (rcu_dereference_protected(tcp_sk(sk)->ao_info, |
4014 | lockdep_sock_is_held(sk))) |
4015 | goto ao_parse; |
4016 | if (tp->repair) |
4017 | goto ao_parse; |
4018 | err = -EISCONN; |
4019 | break; |
4020 | ao_parse: |
4021 | err = tp->af_specific->ao_parse(sk, optname, optval, optlen); |
4022 | break; |
4023 | } |
4024 | #endif |
4025 | #ifdef CONFIG_TCP_MD5SIG |
4026 | case TCP_MD5SIG: |
4027 | case TCP_MD5SIG_EXT: |
4028 | err = tp->af_specific->md5_parse(sk, optname, optval, optlen); |
4029 | break; |
4030 | #endif |
4031 | case TCP_FASTOPEN: |
4032 | if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | |
4033 | TCPF_LISTEN))) { |
4034 | tcp_fastopen_init_key_once(net); |
4035 | |
4036 | fastopen_queue_tune(sk, backlog: val); |
4037 | } else { |
4038 | err = -EINVAL; |
4039 | } |
4040 | break; |
4041 | case TCP_FASTOPEN_CONNECT: |
4042 | if (val > 1 || val < 0) { |
4043 | err = -EINVAL; |
4044 | } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & |
4045 | TFO_CLIENT_ENABLE) { |
4046 | if (sk->sk_state == TCP_CLOSE) |
4047 | tp->fastopen_connect = val; |
4048 | else |
4049 | err = -EINVAL; |
4050 | } else { |
4051 | err = -EOPNOTSUPP; |
4052 | } |
4053 | break; |
4054 | case TCP_FASTOPEN_NO_COOKIE: |
4055 | if (val > 1 || val < 0) |
4056 | err = -EINVAL; |
4057 | else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
4058 | err = -EINVAL; |
4059 | else |
4060 | tp->fastopen_no_cookie = val; |
4061 | break; |
4062 | case TCP_TIMESTAMP: |
4063 | if (!tp->repair) { |
4064 | err = -EPERM; |
4065 | break; |
4066 | } |
4067 | /* val is an opaque field, |
4068 | * and low order bit contains usec_ts enable bit. |
4069 | * Its a best effort, and we do not care if user makes an error. |
4070 | */ |
4071 | tp->tcp_usec_ts = val & 1; |
4072 | WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); |
4073 | break; |
4074 | case TCP_REPAIR_WINDOW: |
4075 | err = tcp_repair_set_window(tp, optbuf: optval, len: optlen); |
4076 | break; |
4077 | case TCP_NOTSENT_LOWAT: |
4078 | WRITE_ONCE(tp->notsent_lowat, val); |
4079 | sk->sk_write_space(sk); |
4080 | break; |
4081 | case TCP_INQ: |
4082 | if (val > 1 || val < 0) |
4083 | err = -EINVAL; |
4084 | else |
4085 | tp->recvmsg_inq = val; |
4086 | break; |
4087 | case TCP_TX_DELAY: |
4088 | if (val) |
4089 | tcp_enable_tx_delay(); |
4090 | WRITE_ONCE(tp->tcp_tx_delay, val); |
4091 | break; |
4092 | default: |
4093 | err = -ENOPROTOOPT; |
4094 | break; |
4095 | } |
4096 | |
4097 | sockopt_release_sock(sk); |
4098 | return err; |
4099 | } |
4100 | |
4101 | int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, |
4102 | unsigned int optlen) |
4103 | { |
4104 | const struct inet_connection_sock *icsk = inet_csk(sk); |
4105 | |
4106 | if (level != SOL_TCP) |
4107 | /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ |
4108 | return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, |
4109 | optval, optlen); |
4110 | return do_tcp_setsockopt(sk, level, optname, optval, optlen); |
4111 | } |
4112 | EXPORT_IPV6_MOD(tcp_setsockopt); |
4113 | |
4114 | static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, |
4115 | struct tcp_info *info) |
4116 | { |
4117 | u64 stats[__TCP_CHRONO_MAX], total = 0; |
4118 | enum tcp_chrono i; |
4119 | |
4120 | for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { |
4121 | stats[i] = tp->chrono_stat[i - 1]; |
4122 | if (i == tp->chrono_type) |
4123 | stats[i] += tcp_jiffies32 - tp->chrono_start; |
4124 | stats[i] *= USEC_PER_SEC / HZ; |
4125 | total += stats[i]; |
4126 | } |
4127 | |
4128 | info->tcpi_busy_time = total; |
4129 | info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; |
4130 | info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; |
4131 | } |
4132 | |
4133 | /* Return information about state of tcp endpoint in API format. */ |
4134 | void tcp_get_info(struct sock *sk, struct tcp_info *info) |
4135 | { |
4136 | const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ |
4137 | const struct inet_connection_sock *icsk = inet_csk(sk); |
4138 | unsigned long rate; |
4139 | u32 now; |
4140 | u64 rate64; |
4141 | bool slow; |
4142 | |
4143 | memset(info, 0, sizeof(*info)); |
4144 | if (sk->sk_type != SOCK_STREAM) |
4145 | return; |
4146 | |
4147 | info->tcpi_state = inet_sk_state_load(sk); |
4148 | |
4149 | /* Report meaningful fields for all TCP states, including listeners */ |
4150 | rate = READ_ONCE(sk->sk_pacing_rate); |
4151 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
4152 | info->tcpi_pacing_rate = rate64; |
4153 | |
4154 | rate = READ_ONCE(sk->sk_max_pacing_rate); |
4155 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
4156 | info->tcpi_max_pacing_rate = rate64; |
4157 | |
4158 | info->tcpi_reordering = tp->reordering; |
4159 | info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); |
4160 | |
4161 | if (info->tcpi_state == TCP_LISTEN) { |
4162 | /* listeners aliased fields : |
4163 | * tcpi_unacked -> Number of children ready for accept() |
4164 | * tcpi_sacked -> max backlog |
4165 | */ |
4166 | info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); |
4167 | info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); |
4168 | return; |
4169 | } |
4170 | |
4171 | slow = lock_sock_fast(sk); |
4172 | |
4173 | info->tcpi_ca_state = icsk->icsk_ca_state; |
4174 | info->tcpi_retransmits = icsk->icsk_retransmits; |
4175 | info->tcpi_probes = icsk->icsk_probes_out; |
4176 | info->tcpi_backoff = icsk->icsk_backoff; |
4177 | |
4178 | if (tp->rx_opt.tstamp_ok) |
4179 | info->tcpi_options |= TCPI_OPT_TIMESTAMPS; |
4180 | if (tcp_is_sack(tp)) |
4181 | info->tcpi_options |= TCPI_OPT_SACK; |
4182 | if (tp->rx_opt.wscale_ok) { |
4183 | info->tcpi_options |= TCPI_OPT_WSCALE; |
4184 | info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; |
4185 | info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; |
4186 | } |
4187 | |
4188 | if (tcp_ecn_mode_any(tp)) |
4189 | info->tcpi_options |= TCPI_OPT_ECN; |
4190 | if (tp->ecn_flags & TCP_ECN_SEEN) |
4191 | info->tcpi_options |= TCPI_OPT_ECN_SEEN; |
4192 | if (tp->syn_data_acked) |
4193 | info->tcpi_options |= TCPI_OPT_SYN_DATA; |
4194 | if (tp->tcp_usec_ts) |
4195 | info->tcpi_options |= TCPI_OPT_USEC_TS; |
4196 | if (tp->syn_fastopen_child) |
4197 | info->tcpi_options |= TCPI_OPT_TFO_CHILD; |
4198 | |
4199 | info->tcpi_rto = jiffies_to_usecs(j: icsk->icsk_rto); |
4200 | info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, |
4201 | tcp_delack_max(sk))); |
4202 | info->tcpi_snd_mss = tp->mss_cache; |
4203 | info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; |
4204 | |
4205 | info->tcpi_unacked = tp->packets_out; |
4206 | info->tcpi_sacked = tp->sacked_out; |
4207 | |
4208 | info->tcpi_lost = tp->lost_out; |
4209 | info->tcpi_retrans = tp->retrans_out; |
4210 | |
4211 | now = tcp_jiffies32; |
4212 | info->tcpi_last_data_sent = jiffies_to_msecs(j: now - tp->lsndtime); |
4213 | info->tcpi_last_data_recv = jiffies_to_msecs(j: now - icsk->icsk_ack.lrcvtime); |
4214 | info->tcpi_last_ack_recv = jiffies_to_msecs(j: now - tp->rcv_tstamp); |
4215 | |
4216 | info->tcpi_pmtu = icsk->icsk_pmtu_cookie; |
4217 | info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; |
4218 | info->tcpi_rtt = tp->srtt_us >> 3; |
4219 | info->tcpi_rttvar = tp->mdev_us >> 2; |
4220 | info->tcpi_snd_ssthresh = tp->snd_ssthresh; |
4221 | info->tcpi_advmss = tp->advmss; |
4222 | |
4223 | info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; |
4224 | info->tcpi_rcv_space = tp->rcvq_space.space; |
4225 | |
4226 | info->tcpi_total_retrans = tp->total_retrans; |
4227 | |
4228 | info->tcpi_bytes_acked = tp->bytes_acked; |
4229 | info->tcpi_bytes_received = tp->bytes_received; |
4230 | info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); |
4231 | tcp_get_info_chrono_stats(tp, info); |
4232 | |
4233 | info->tcpi_segs_out = tp->segs_out; |
4234 | |
4235 | /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ |
4236 | info->tcpi_segs_in = READ_ONCE(tp->segs_in); |
4237 | info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); |
4238 | |
4239 | info->tcpi_min_rtt = tcp_min_rtt(tp); |
4240 | info->tcpi_data_segs_out = tp->data_segs_out; |
4241 | |
4242 | info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; |
4243 | rate64 = tcp_compute_delivery_rate(tp); |
4244 | if (rate64) |
4245 | info->tcpi_delivery_rate = rate64; |
4246 | info->tcpi_delivered = tp->delivered; |
4247 | info->tcpi_delivered_ce = tp->delivered_ce; |
4248 | info->tcpi_bytes_sent = tp->bytes_sent; |
4249 | info->tcpi_bytes_retrans = tp->bytes_retrans; |
4250 | info->tcpi_dsack_dups = tp->dsack_dups; |
4251 | info->tcpi_reord_seen = tp->reord_seen; |
4252 | info->tcpi_rcv_ooopack = tp->rcv_ooopack; |
4253 | info->tcpi_snd_wnd = tp->snd_wnd; |
4254 | info->tcpi_rcv_wnd = tp->rcv_wnd; |
4255 | info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; |
4256 | info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; |
4257 | |
4258 | info->tcpi_total_rto = tp->total_rto; |
4259 | info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; |
4260 | info->tcpi_total_rto_time = tp->total_rto_time; |
4261 | if (tp->rto_stamp) |
4262 | info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; |
4263 | |
4264 | unlock_sock_fast(sk, slow); |
4265 | } |
4266 | EXPORT_SYMBOL_GPL(tcp_get_info); |
4267 | |
4268 | static size_t tcp_opt_stats_get_size(void) |
4269 | { |
4270 | return |
4271 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BUSY */ |
4272 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ |
4273 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ |
4274 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ |
4275 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ |
4276 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_PACING_RATE */ |
4277 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ |
4278 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_CWND */ |
4279 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORDERING */ |
4280 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_MIN_RTT */ |
4281 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ |
4282 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ |
4283 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ |
4284 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_CA_STATE */ |
4285 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ |
4286 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED */ |
4287 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ |
4288 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ |
4289 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ |
4290 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ |
4291 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ |
4292 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SRTT */ |
4293 | nla_total_size(payload: sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ |
4294 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ |
4295 | nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_EDT */ |
4296 | nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_TTL */ |
4297 | nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REHASH */ |
4298 | 0; |
4299 | } |
4300 | |
4301 | /* Returns TTL or hop limit of an incoming packet from skb. */ |
4302 | static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) |
4303 | { |
4304 | if (skb->protocol == htons(ETH_P_IP)) |
4305 | return ip_hdr(skb)->ttl; |
4306 | else if (skb->protocol == htons(ETH_P_IPV6)) |
4307 | return ipv6_hdr(skb)->hop_limit; |
4308 | else |
4309 | return 0; |
4310 | } |
4311 | |
4312 | struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, |
4313 | const struct sk_buff *orig_skb, |
4314 | const struct sk_buff *ack_skb) |
4315 | { |
4316 | const struct tcp_sock *tp = tcp_sk(sk); |
4317 | struct sk_buff *stats; |
4318 | struct tcp_info info; |
4319 | unsigned long rate; |
4320 | u64 rate64; |
4321 | |
4322 | stats = alloc_skb(size: tcp_opt_stats_get_size(), GFP_ATOMIC); |
4323 | if (!stats) |
4324 | return NULL; |
4325 | |
4326 | tcp_get_info_chrono_stats(tp, info: &info); |
4327 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BUSY, |
4328 | value: info.tcpi_busy_time, padattr: TCP_NLA_PAD); |
4329 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_RWND_LIMITED, |
4330 | value: info.tcpi_rwnd_limited, padattr: TCP_NLA_PAD); |
4331 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_SNDBUF_LIMITED, |
4332 | value: info.tcpi_sndbuf_limited, padattr: TCP_NLA_PAD); |
4333 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DATA_SEGS_OUT, |
4334 | value: tp->data_segs_out, padattr: TCP_NLA_PAD); |
4335 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_TOTAL_RETRANS, |
4336 | value: tp->total_retrans, padattr: TCP_NLA_PAD); |
4337 | |
4338 | rate = READ_ONCE(sk->sk_pacing_rate); |
4339 | rate64 = (rate != ~0UL) ? rate : ~0ULL; |
4340 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_PACING_RATE, value: rate64, padattr: TCP_NLA_PAD); |
4341 | |
4342 | rate64 = tcp_compute_delivery_rate(tp); |
4343 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE, value: rate64, padattr: TCP_NLA_PAD); |
4344 | |
4345 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_CWND, value: tcp_snd_cwnd(tp)); |
4346 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REORDERING, value: tp->reordering); |
4347 | nla_put_u32(skb: stats, attrtype: TCP_NLA_MIN_RTT, value: tcp_min_rtt(tp)); |
4348 | |
4349 | nla_put_u8(skb: stats, attrtype: TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); |
4350 | nla_put_u8(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE_APP_LMT, value: !!tp->rate_app_limited); |
4351 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_SSTHRESH, value: tp->snd_ssthresh); |
4352 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED, value: tp->delivered); |
4353 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED_CE, value: tp->delivered_ce); |
4354 | |
4355 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SNDQ_SIZE, value: tp->write_seq - tp->snd_una); |
4356 | nla_put_u8(skb: stats, attrtype: TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); |
4357 | |
4358 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_SENT, value: tp->bytes_sent, |
4359 | padattr: TCP_NLA_PAD); |
4360 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_RETRANS, value: tp->bytes_retrans, |
4361 | padattr: TCP_NLA_PAD); |
4362 | nla_put_u32(skb: stats, attrtype: TCP_NLA_DSACK_DUPS, value: tp->dsack_dups); |
4363 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REORD_SEEN, value: tp->reord_seen); |
4364 | nla_put_u32(skb: stats, attrtype: TCP_NLA_SRTT, value: tp->srtt_us >> 3); |
4365 | nla_put_u16(skb: stats, attrtype: TCP_NLA_TIMEOUT_REHASH, value: tp->timeout_rehash); |
4366 | nla_put_u32(skb: stats, attrtype: TCP_NLA_BYTES_NOTSENT, |
4367 | max_t(int, 0, tp->write_seq - tp->snd_nxt)); |
4368 | nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_EDT, value: orig_skb->skb_mstamp_ns, |
4369 | padattr: TCP_NLA_PAD); |
4370 | if (ack_skb) |
4371 | nla_put_u8(skb: stats, attrtype: TCP_NLA_TTL, |
4372 | value: tcp_skb_ttl_or_hop_limit(skb: ack_skb)); |
4373 | |
4374 | nla_put_u32(skb: stats, attrtype: TCP_NLA_REHASH, value: tp->plb_rehash + tp->timeout_rehash); |
4375 | return stats; |
4376 | } |
4377 | |
4378 | int do_tcp_getsockopt(struct sock *sk, int level, |
4379 | int optname, sockptr_t optval, sockptr_t optlen) |
4380 | { |
4381 | struct inet_connection_sock *icsk = inet_csk(sk); |
4382 | struct tcp_sock *tp = tcp_sk(sk); |
4383 | struct net *net = sock_net(sk); |
4384 | int val, len; |
4385 | |
4386 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4387 | return -EFAULT; |
4388 | |
4389 | if (len < 0) |
4390 | return -EINVAL; |
4391 | |
4392 | len = min_t(unsigned int, len, sizeof(int)); |
4393 | |
4394 | switch (optname) { |
4395 | case TCP_MAXSEG: |
4396 | val = tp->mss_cache; |
4397 | if (tp->rx_opt.user_mss && |
4398 | ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
4399 | val = tp->rx_opt.user_mss; |
4400 | if (tp->repair) |
4401 | val = tp->rx_opt.mss_clamp; |
4402 | break; |
4403 | case TCP_NODELAY: |
4404 | val = !!(tp->nonagle&TCP_NAGLE_OFF); |
4405 | break; |
4406 | case TCP_CORK: |
4407 | val = !!(tp->nonagle&TCP_NAGLE_CORK); |
4408 | break; |
4409 | case TCP_KEEPIDLE: |
4410 | val = keepalive_time_when(tp) / HZ; |
4411 | break; |
4412 | case TCP_KEEPINTVL: |
4413 | val = keepalive_intvl_when(tp) / HZ; |
4414 | break; |
4415 | case TCP_KEEPCNT: |
4416 | val = keepalive_probes(tp); |
4417 | break; |
4418 | case TCP_SYNCNT: |
4419 | val = READ_ONCE(icsk->icsk_syn_retries) ? : |
4420 | READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); |
4421 | break; |
4422 | case TCP_LINGER2: |
4423 | val = READ_ONCE(tp->linger2); |
4424 | if (val >= 0) |
4425 | val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; |
4426 | break; |
4427 | case TCP_DEFER_ACCEPT: |
4428 | val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); |
4429 | val = retrans_to_secs(retrans: val, TCP_TIMEOUT_INIT / HZ, |
4430 | TCP_RTO_MAX / HZ); |
4431 | break; |
4432 | case TCP_WINDOW_CLAMP: |
4433 | val = READ_ONCE(tp->window_clamp); |
4434 | break; |
4435 | case TCP_INFO: { |
4436 | struct tcp_info info; |
4437 | |
4438 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4439 | return -EFAULT; |
4440 | |
4441 | tcp_get_info(sk, &info); |
4442 | |
4443 | len = min_t(unsigned int, len, sizeof(info)); |
4444 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4445 | return -EFAULT; |
4446 | if (copy_to_sockptr(dst: optval, src: &info, size: len)) |
4447 | return -EFAULT; |
4448 | return 0; |
4449 | } |
4450 | case TCP_CC_INFO: { |
4451 | const struct tcp_congestion_ops *ca_ops; |
4452 | union tcp_cc_info info; |
4453 | size_t sz = 0; |
4454 | int attr; |
4455 | |
4456 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4457 | return -EFAULT; |
4458 | |
4459 | ca_ops = icsk->icsk_ca_ops; |
4460 | if (ca_ops && ca_ops->get_info) |
4461 | sz = ca_ops->get_info(sk, ~0U, &attr, &info); |
4462 | |
4463 | len = min_t(unsigned int, len, sz); |
4464 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4465 | return -EFAULT; |
4466 | if (copy_to_sockptr(dst: optval, src: &info, size: len)) |
4467 | return -EFAULT; |
4468 | return 0; |
4469 | } |
4470 | case TCP_QUICKACK: |
4471 | val = !inet_csk_in_pingpong_mode(sk); |
4472 | break; |
4473 | |
4474 | case TCP_CONGESTION: |
4475 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4476 | return -EFAULT; |
4477 | len = min_t(unsigned int, len, TCP_CA_NAME_MAX); |
4478 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4479 | return -EFAULT; |
4480 | if (copy_to_sockptr(dst: optval, src: icsk->icsk_ca_ops->name, size: len)) |
4481 | return -EFAULT; |
4482 | return 0; |
4483 | |
4484 | case TCP_ULP: |
4485 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4486 | return -EFAULT; |
4487 | len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); |
4488 | if (!icsk->icsk_ulp_ops) { |
4489 | len = 0; |
4490 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4491 | return -EFAULT; |
4492 | return 0; |
4493 | } |
4494 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4495 | return -EFAULT; |
4496 | if (copy_to_sockptr(dst: optval, src: icsk->icsk_ulp_ops->name, size: len)) |
4497 | return -EFAULT; |
4498 | return 0; |
4499 | |
4500 | case TCP_FASTOPEN_KEY: { |
4501 | u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; |
4502 | unsigned int key_len; |
4503 | |
4504 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4505 | return -EFAULT; |
4506 | |
4507 | key_len = tcp_fastopen_get_cipher(net, icsk, key) * |
4508 | TCP_FASTOPEN_KEY_LENGTH; |
4509 | len = min_t(unsigned int, len, key_len); |
4510 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4511 | return -EFAULT; |
4512 | if (copy_to_sockptr(dst: optval, src: key, size: len)) |
4513 | return -EFAULT; |
4514 | return 0; |
4515 | } |
4516 | case TCP_THIN_LINEAR_TIMEOUTS: |
4517 | val = tp->thin_lto; |
4518 | break; |
4519 | |
4520 | case TCP_THIN_DUPACK: |
4521 | val = 0; |
4522 | break; |
4523 | |
4524 | case TCP_REPAIR: |
4525 | val = tp->repair; |
4526 | break; |
4527 | |
4528 | case TCP_REPAIR_QUEUE: |
4529 | if (tp->repair) |
4530 | val = tp->repair_queue; |
4531 | else |
4532 | return -EINVAL; |
4533 | break; |
4534 | |
4535 | case TCP_REPAIR_WINDOW: { |
4536 | struct tcp_repair_window opt; |
4537 | |
4538 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4539 | return -EFAULT; |
4540 | |
4541 | if (len != sizeof(opt)) |
4542 | return -EINVAL; |
4543 | |
4544 | if (!tp->repair) |
4545 | return -EPERM; |
4546 | |
4547 | opt.snd_wl1 = tp->snd_wl1; |
4548 | opt.snd_wnd = tp->snd_wnd; |
4549 | opt.max_window = tp->max_window; |
4550 | opt.rcv_wnd = tp->rcv_wnd; |
4551 | opt.rcv_wup = tp->rcv_wup; |
4552 | |
4553 | if (copy_to_sockptr(dst: optval, src: &opt, size: len)) |
4554 | return -EFAULT; |
4555 | return 0; |
4556 | } |
4557 | case TCP_QUEUE_SEQ: |
4558 | if (tp->repair_queue == TCP_SEND_QUEUE) |
4559 | val = tp->write_seq; |
4560 | else if (tp->repair_queue == TCP_RECV_QUEUE) |
4561 | val = tp->rcv_nxt; |
4562 | else |
4563 | return -EINVAL; |
4564 | break; |
4565 | |
4566 | case TCP_USER_TIMEOUT: |
4567 | val = READ_ONCE(icsk->icsk_user_timeout); |
4568 | break; |
4569 | |
4570 | case TCP_FASTOPEN: |
4571 | val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); |
4572 | break; |
4573 | |
4574 | case TCP_FASTOPEN_CONNECT: |
4575 | val = tp->fastopen_connect; |
4576 | break; |
4577 | |
4578 | case TCP_FASTOPEN_NO_COOKIE: |
4579 | val = tp->fastopen_no_cookie; |
4580 | break; |
4581 | |
4582 | case TCP_TX_DELAY: |
4583 | val = READ_ONCE(tp->tcp_tx_delay); |
4584 | break; |
4585 | |
4586 | case TCP_TIMESTAMP: |
4587 | val = tcp_clock_ts(usec_ts: tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); |
4588 | if (tp->tcp_usec_ts) |
4589 | val |= 1; |
4590 | else |
4591 | val &= ~1; |
4592 | break; |
4593 | case TCP_NOTSENT_LOWAT: |
4594 | val = READ_ONCE(tp->notsent_lowat); |
4595 | break; |
4596 | case TCP_INQ: |
4597 | val = tp->recvmsg_inq; |
4598 | break; |
4599 | case TCP_SAVE_SYN: |
4600 | val = tp->save_syn; |
4601 | break; |
4602 | case TCP_SAVED_SYN: { |
4603 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4604 | return -EFAULT; |
4605 | |
4606 | sockopt_lock_sock(sk); |
4607 | if (tp->saved_syn) { |
4608 | if (len < tcp_saved_syn_len(saved_syn: tp->saved_syn)) { |
4609 | len = tcp_saved_syn_len(saved_syn: tp->saved_syn); |
4610 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
4611 | sockopt_release_sock(sk); |
4612 | return -EFAULT; |
4613 | } |
4614 | sockopt_release_sock(sk); |
4615 | return -EINVAL; |
4616 | } |
4617 | len = tcp_saved_syn_len(saved_syn: tp->saved_syn); |
4618 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
4619 | sockopt_release_sock(sk); |
4620 | return -EFAULT; |
4621 | } |
4622 | if (copy_to_sockptr(dst: optval, src: tp->saved_syn->data, size: len)) { |
4623 | sockopt_release_sock(sk); |
4624 | return -EFAULT; |
4625 | } |
4626 | tcp_saved_syn_free(tp); |
4627 | sockopt_release_sock(sk); |
4628 | } else { |
4629 | sockopt_release_sock(sk); |
4630 | len = 0; |
4631 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4632 | return -EFAULT; |
4633 | } |
4634 | return 0; |
4635 | } |
4636 | #ifdef CONFIG_MMU |
4637 | case TCP_ZEROCOPY_RECEIVE: { |
4638 | struct scm_timestamping_internal tss; |
4639 | struct tcp_zerocopy_receive zc = {}; |
4640 | int err; |
4641 | |
4642 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
4643 | return -EFAULT; |
4644 | if (len < 0 || |
4645 | len < offsetofend(struct tcp_zerocopy_receive, length)) |
4646 | return -EINVAL; |
4647 | if (unlikely(len > sizeof(zc))) { |
4648 | err = check_zeroed_sockptr(src: optval, offset: sizeof(zc), |
4649 | size: len - sizeof(zc)); |
4650 | if (err < 1) |
4651 | return err == 0 ? -EINVAL : err; |
4652 | len = sizeof(zc); |
4653 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4654 | return -EFAULT; |
4655 | } |
4656 | if (copy_from_sockptr(dst: &zc, src: optval, size: len)) |
4657 | return -EFAULT; |
4658 | if (zc.reserved) |
4659 | return -EINVAL; |
4660 | if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) |
4661 | return -EINVAL; |
4662 | sockopt_lock_sock(sk); |
4663 | err = tcp_zerocopy_receive(sk, zc: &zc, tss: &tss); |
4664 | err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, |
4665 | &zc, &len, err); |
4666 | sockopt_release_sock(sk); |
4667 | if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) |
4668 | goto zerocopy_rcv_cmsg; |
4669 | switch (len) { |
4670 | case offsetofend(struct tcp_zerocopy_receive, msg_flags): |
4671 | goto zerocopy_rcv_cmsg; |
4672 | case offsetofend(struct tcp_zerocopy_receive, msg_controllen): |
4673 | case offsetofend(struct tcp_zerocopy_receive, msg_control): |
4674 | case offsetofend(struct tcp_zerocopy_receive, flags): |
4675 | case offsetofend(struct tcp_zerocopy_receive, copybuf_len): |
4676 | case offsetofend(struct tcp_zerocopy_receive, copybuf_address): |
4677 | case offsetofend(struct tcp_zerocopy_receive, err): |
4678 | goto zerocopy_rcv_sk_err; |
4679 | case offsetofend(struct tcp_zerocopy_receive, inq): |
4680 | goto zerocopy_rcv_inq; |
4681 | case offsetofend(struct tcp_zerocopy_receive, length): |
4682 | default: |
4683 | goto zerocopy_rcv_out; |
4684 | } |
4685 | zerocopy_rcv_cmsg: |
4686 | if (zc.msg_flags & TCP_CMSG_TS) |
4687 | tcp_zc_finalize_rx_tstamp(sk, zc: &zc, tss: &tss); |
4688 | else |
4689 | zc.msg_flags = 0; |
4690 | zerocopy_rcv_sk_err: |
4691 | if (!err) |
4692 | zc.err = sock_error(sk); |
4693 | zerocopy_rcv_inq: |
4694 | zc.inq = tcp_inq_hint(sk); |
4695 | zerocopy_rcv_out: |
4696 | if (!err && copy_to_sockptr(dst: optval, src: &zc, size: len)) |
4697 | err = -EFAULT; |
4698 | return err; |
4699 | } |
4700 | #endif |
4701 | case TCP_AO_REPAIR: |
4702 | if (!tcp_can_repair_sock(sk)) |
4703 | return -EPERM; |
4704 | return tcp_ao_get_repair(sk, optval, optlen); |
4705 | case TCP_AO_GET_KEYS: |
4706 | case TCP_AO_INFO: { |
4707 | int err; |
4708 | |
4709 | sockopt_lock_sock(sk); |
4710 | if (optname == TCP_AO_GET_KEYS) |
4711 | err = tcp_ao_get_mkts(sk, optval, optlen); |
4712 | else |
4713 | err = tcp_ao_get_sock_info(sk, optval, optlen); |
4714 | sockopt_release_sock(sk); |
4715 | |
4716 | return err; |
4717 | } |
4718 | case TCP_IS_MPTCP: |
4719 | val = 0; |
4720 | break; |
4721 | case TCP_RTO_MAX_MS: |
4722 | val = jiffies_to_msecs(j: tcp_rto_max(sk)); |
4723 | break; |
4724 | case TCP_RTO_MIN_US: |
4725 | val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); |
4726 | break; |
4727 | case TCP_DELACK_MAX_US: |
4728 | val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); |
4729 | break; |
4730 | default: |
4731 | return -ENOPROTOOPT; |
4732 | } |
4733 | |
4734 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
4735 | return -EFAULT; |
4736 | if (copy_to_sockptr(dst: optval, src: &val, size: len)) |
4737 | return -EFAULT; |
4738 | return 0; |
4739 | } |
4740 | |
4741 | bool tcp_bpf_bypass_getsockopt(int level, int optname) |
4742 | { |
4743 | /* TCP do_tcp_getsockopt has optimized getsockopt implementation |
4744 | * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. |
4745 | */ |
4746 | if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) |
4747 | return true; |
4748 | |
4749 | return false; |
4750 | } |
4751 | EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); |
4752 | |
4753 | int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, |
4754 | int __user *optlen) |
4755 | { |
4756 | struct inet_connection_sock *icsk = inet_csk(sk); |
4757 | |
4758 | if (level != SOL_TCP) |
4759 | /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ |
4760 | return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, |
4761 | optval, optlen); |
4762 | return do_tcp_getsockopt(sk, level, optname, optval: USER_SOCKPTR(p: optval), |
4763 | optlen: USER_SOCKPTR(p: optlen)); |
4764 | } |
4765 | EXPORT_IPV6_MOD(tcp_getsockopt); |
4766 | |
4767 | #ifdef CONFIG_TCP_MD5SIG |
4768 | int tcp_md5_sigpool_id = -1; |
4769 | EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); |
4770 | |
4771 | int tcp_md5_alloc_sigpool(void) |
4772 | { |
4773 | size_t scratch_size; |
4774 | int ret; |
4775 | |
4776 | scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); |
4777 | ret = tcp_sigpool_alloc_ahash(alg: "md5", scratch_size); |
4778 | if (ret >= 0) { |
4779 | /* As long as any md5 sigpool was allocated, the return |
4780 | * id would stay the same. Re-write the id only for the case |
4781 | * when previously all MD5 keys were deleted and this call |
4782 | * allocates the first MD5 key, which may return a different |
4783 | * sigpool id than was used previously. |
4784 | */ |
4785 | WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ |
4786 | return 0; |
4787 | } |
4788 | return ret; |
4789 | } |
4790 | |
4791 | void tcp_md5_release_sigpool(void) |
4792 | { |
4793 | tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); |
4794 | } |
4795 | |
4796 | void tcp_md5_add_sigpool(void) |
4797 | { |
4798 | tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); |
4799 | } |
4800 | |
4801 | int tcp_md5_hash_key(struct tcp_sigpool *hp, |
4802 | const struct tcp_md5sig_key *key) |
4803 | { |
4804 | u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ |
4805 | struct scatterlist sg; |
4806 | |
4807 | sg_init_one(&sg, key->key, keylen); |
4808 | ahash_request_set_crypt(req: hp->req, src: &sg, NULL, nbytes: keylen); |
4809 | |
4810 | /* We use data_race() because tcp_md5_do_add() might change |
4811 | * key->key under us |
4812 | */ |
4813 | return data_race(crypto_ahash_update(hp->req)); |
4814 | } |
4815 | EXPORT_IPV6_MOD(tcp_md5_hash_key); |
4816 | |
4817 | /* Called with rcu_read_lock() */ |
4818 | static enum skb_drop_reason |
4819 | tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
4820 | const void *saddr, const void *daddr, |
4821 | int family, int l3index, const __u8 *hash_location) |
4822 | { |
4823 | /* This gets called for each TCP segment that has TCP-MD5 option. |
4824 | * We have 3 drop cases: |
4825 | * o No MD5 hash and one expected. |
4826 | * o MD5 hash and we're not expecting one. |
4827 | * o MD5 hash and its wrong. |
4828 | */ |
4829 | const struct tcp_sock *tp = tcp_sk(sk); |
4830 | struct tcp_md5sig_key *key; |
4831 | u8 newhash[16]; |
4832 | int genhash; |
4833 | |
4834 | key = tcp_md5_do_lookup(sk, l3index, addr: saddr, family); |
4835 | |
4836 | if (!key && hash_location) { |
4837 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); |
4838 | trace_tcp_hash_md5_unexpected(sk, skb); |
4839 | return SKB_DROP_REASON_TCP_MD5UNEXPECTED; |
4840 | } |
4841 | |
4842 | /* Check the signature. |
4843 | * To support dual stack listeners, we need to handle |
4844 | * IPv4-mapped case. |
4845 | */ |
4846 | if (family == AF_INET) |
4847 | genhash = tcp_v4_md5_hash_skb(md5_hash: newhash, key, NULL, skb); |
4848 | else |
4849 | genhash = tp->af_specific->calc_md5_hash(newhash, key, |
4850 | NULL, skb); |
4851 | if (genhash || memcmp(p: hash_location, q: newhash, size: 16) != 0) { |
4852 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); |
4853 | trace_tcp_hash_md5_mismatch(sk, skb); |
4854 | return SKB_DROP_REASON_TCP_MD5FAILURE; |
4855 | } |
4856 | return SKB_NOT_DROPPED_YET; |
4857 | } |
4858 | #else |
4859 | static inline enum skb_drop_reason |
4860 | tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
4861 | const void *saddr, const void *daddr, |
4862 | int family, int l3index, const __u8 *hash_location) |
4863 | { |
4864 | return SKB_NOT_DROPPED_YET; |
4865 | } |
4866 | |
4867 | #endif |
4868 | |
4869 | /* Called with rcu_read_lock() */ |
4870 | enum skb_drop_reason |
4871 | tcp_inbound_hash(struct sock *sk, const struct request_sock *req, |
4872 | const struct sk_buff *skb, |
4873 | const void *saddr, const void *daddr, |
4874 | int family, int dif, int sdif) |
4875 | { |
4876 | const struct tcphdr *th = tcp_hdr(skb); |
4877 | const struct tcp_ao_hdr *aoh; |
4878 | const __u8 *md5_location; |
4879 | int l3index; |
4880 | |
4881 | /* Invalid option or two times meet any of auth options */ |
4882 | if (tcp_parse_auth_options(th, md5_hash: &md5_location, aoh: &aoh)) { |
4883 | trace_tcp_hash_bad_header(sk, skb); |
4884 | return SKB_DROP_REASON_TCP_AUTH_HDR; |
4885 | } |
4886 | |
4887 | if (req) { |
4888 | if (tcp_rsk_used_ao(req) != !!aoh) { |
4889 | u8 keyid, rnext, maclen; |
4890 | |
4891 | if (aoh) { |
4892 | keyid = aoh->keyid; |
4893 | rnext = aoh->rnext_keyid; |
4894 | maclen = tcp_ao_hdr_maclen(aoh); |
4895 | } else { |
4896 | keyid = rnext = maclen = 0; |
4897 | } |
4898 | |
4899 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); |
4900 | trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); |
4901 | return SKB_DROP_REASON_TCP_AOFAILURE; |
4902 | } |
4903 | } |
4904 | |
4905 | /* sdif set, means packet ingressed via a device |
4906 | * in an L3 domain and dif is set to the l3mdev |
4907 | */ |
4908 | l3index = sdif ? dif : 0; |
4909 | |
4910 | /* Fast path: unsigned segments */ |
4911 | if (likely(!md5_location && !aoh)) { |
4912 | /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid |
4913 | * for the remote peer. On TCP-AO established connection |
4914 | * the last key is impossible to remove, so there's |
4915 | * always at least one current_key. |
4916 | */ |
4917 | if (tcp_ao_required(sk, saddr, family, l3index, stat_inc: true)) { |
4918 | trace_tcp_hash_ao_required(sk, skb); |
4919 | return SKB_DROP_REASON_TCP_AONOTFOUND; |
4920 | } |
4921 | if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { |
4922 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); |
4923 | trace_tcp_hash_md5_required(sk, skb); |
4924 | return SKB_DROP_REASON_TCP_MD5NOTFOUND; |
4925 | } |
4926 | return SKB_NOT_DROPPED_YET; |
4927 | } |
4928 | |
4929 | if (aoh) |
4930 | return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); |
4931 | |
4932 | return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, |
4933 | l3index, hash_location: md5_location); |
4934 | } |
4935 | EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); |
4936 | |
4937 | void tcp_done(struct sock *sk) |
4938 | { |
4939 | struct request_sock *req; |
4940 | |
4941 | /* We might be called with a new socket, after |
4942 | * inet_csk_prepare_forced_close() has been called |
4943 | * so we can not use lockdep_sock_is_held(sk) |
4944 | */ |
4945 | req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); |
4946 | |
4947 | if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) |
4948 | TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); |
4949 | |
4950 | tcp_set_state(sk, TCP_CLOSE); |
4951 | tcp_clear_xmit_timers(sk); |
4952 | if (req) |
4953 | reqsk_fastopen_remove(sk, req, reset: false); |
4954 | |
4955 | WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
4956 | |
4957 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
4958 | sk->sk_state_change(sk); |
4959 | else |
4960 | inet_csk_destroy_sock(sk); |
4961 | } |
4962 | EXPORT_SYMBOL_GPL(tcp_done); |
4963 | |
4964 | int tcp_abort(struct sock *sk, int err) |
4965 | { |
4966 | int state = inet_sk_state_load(sk); |
4967 | |
4968 | if (state == TCP_NEW_SYN_RECV) { |
4969 | struct request_sock *req = inet_reqsk(sk); |
4970 | |
4971 | local_bh_disable(); |
4972 | inet_csk_reqsk_queue_drop(sk: req->rsk_listener, req); |
4973 | local_bh_enable(); |
4974 | return 0; |
4975 | } |
4976 | if (state == TCP_TIME_WAIT) { |
4977 | struct inet_timewait_sock *tw = inet_twsk(sk); |
4978 | |
4979 | refcount_inc(r: &tw->tw_refcnt); |
4980 | local_bh_disable(); |
4981 | inet_twsk_deschedule_put(tw); |
4982 | local_bh_enable(); |
4983 | return 0; |
4984 | } |
4985 | |
4986 | /* BPF context ensures sock locking. */ |
4987 | if (!has_current_bpf_ctx()) |
4988 | /* Don't race with userspace socket closes such as tcp_close. */ |
4989 | lock_sock(sk); |
4990 | |
4991 | /* Avoid closing the same socket twice. */ |
4992 | if (sk->sk_state == TCP_CLOSE) { |
4993 | if (!has_current_bpf_ctx()) |
4994 | release_sock(sk); |
4995 | return -ENOENT; |
4996 | } |
4997 | |
4998 | if (sk->sk_state == TCP_LISTEN) { |
4999 | tcp_set_state(sk, TCP_CLOSE); |
5000 | inet_csk_listen_stop(sk); |
5001 | } |
5002 | |
5003 | /* Don't race with BH socket closes such as inet_csk_listen_stop. */ |
5004 | local_bh_disable(); |
5005 | bh_lock_sock(sk); |
5006 | |
5007 | if (tcp_need_reset(state: sk->sk_state)) |
5008 | tcp_send_active_reset(sk, GFP_ATOMIC, |
5009 | reason: SK_RST_REASON_TCP_STATE); |
5010 | tcp_done_with_error(sk, err); |
5011 | |
5012 | bh_unlock_sock(sk); |
5013 | local_bh_enable(); |
5014 | if (!has_current_bpf_ctx()) |
5015 | release_sock(sk); |
5016 | return 0; |
5017 | } |
5018 | EXPORT_SYMBOL_GPL(tcp_abort); |
5019 | |
5020 | extern struct tcp_congestion_ops tcp_reno; |
5021 | |
5022 | static __initdata unsigned long thash_entries; |
5023 | static int __init set_thash_entries(char *str) |
5024 | { |
5025 | ssize_t ret; |
5026 | |
5027 | if (!str) |
5028 | return 0; |
5029 | |
5030 | ret = kstrtoul(s: str, base: 0, res: &thash_entries); |
5031 | if (ret) |
5032 | return 0; |
5033 | |
5034 | return 1; |
5035 | } |
5036 | __setup("thash_entries=", set_thash_entries); |
5037 | |
5038 | static void __init tcp_init_mem(void) |
5039 | { |
5040 | unsigned long limit = nr_free_buffer_pages() / 16; |
5041 | |
5042 | limit = max(limit, 128UL); |
5043 | sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ |
5044 | sysctl_tcp_mem[1] = limit; /* 6.25 % */ |
5045 | sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ |
5046 | } |
5047 | |
5048 | static void __init tcp_struct_check(void) |
5049 | { |
5050 | /* TX read-mostly hotpath cache lines */ |
5051 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); |
5052 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); |
5053 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); |
5054 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); |
5055 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); |
5056 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); |
5057 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); |
5058 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); |
5059 | |
5060 | /* TXRX read-mostly hotpath cache lines */ |
5061 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); |
5062 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); |
5063 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); |
5064 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); |
5065 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); |
5066 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); |
5067 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); |
5068 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); |
5069 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); |
5070 | |
5071 | /* RX read-mostly hotpath cache lines */ |
5072 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); |
5073 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); |
5074 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); |
5075 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); |
5076 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); |
5077 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); |
5078 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); |
5079 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); |
5080 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); |
5081 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); |
5082 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); |
5083 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); |
5084 | #if IS_ENABLED(CONFIG_TLS_DEVICE) |
5085 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); |
5086 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); |
5087 | #else |
5088 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); |
5089 | #endif |
5090 | |
5091 | /* TX read-write hotpath cache lines */ |
5092 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); |
5093 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); |
5094 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); |
5095 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); |
5096 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); |
5097 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); |
5098 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); |
5099 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); |
5100 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); |
5101 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); |
5102 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); |
5103 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); |
5104 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); |
5105 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); |
5106 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); |
5107 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); |
5108 | |
5109 | /* TXRX read-write hotpath cache lines */ |
5110 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); |
5111 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); |
5112 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); |
5113 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); |
5114 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); |
5115 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); |
5116 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); |
5117 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); |
5118 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); |
5119 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); |
5120 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); |
5121 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); |
5122 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); |
5123 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); |
5124 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); |
5125 | |
5126 | /* 32bit arches with 8byte alignment on u64 fields might need padding |
5127 | * before tcp_clock_cache. |
5128 | */ |
5129 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); |
5130 | |
5131 | /* RX read-write hotpath cache lines */ |
5132 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); |
5133 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); |
5134 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); |
5135 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); |
5136 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); |
5137 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); |
5138 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); |
5139 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); |
5140 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); |
5141 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); |
5142 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); |
5143 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); |
5144 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); |
5145 | CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); |
5146 | CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); |
5147 | } |
5148 | |
5149 | void __init tcp_init(void) |
5150 | { |
5151 | int max_rshare, max_wshare, cnt; |
5152 | unsigned long limit; |
5153 | unsigned int i; |
5154 | |
5155 | BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); |
5156 | BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > |
5157 | sizeof_field(struct sk_buff, cb)); |
5158 | |
5159 | tcp_struct_check(); |
5160 | |
5161 | percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); |
5162 | |
5163 | timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); |
5164 | mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD); |
5165 | |
5166 | inet_hashinfo2_init(h: &tcp_hashinfo, name: "tcp_listen_portaddr_hash", |
5167 | numentries: thash_entries, scale: 21, /* one slot per 2 MB*/ |
5168 | low_limit: 0, high_limit: 64 * 1024); |
5169 | tcp_hashinfo.bind_bucket_cachep = |
5170 | kmem_cache_create("tcp_bind_bucket", |
5171 | sizeof(struct inet_bind_bucket), 0, |
5172 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | |
5173 | SLAB_ACCOUNT, |
5174 | NULL); |
5175 | tcp_hashinfo.bind2_bucket_cachep = |
5176 | kmem_cache_create("tcp_bind2_bucket", |
5177 | sizeof(struct inet_bind2_bucket), 0, |
5178 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | |
5179 | SLAB_ACCOUNT, |
5180 | NULL); |
5181 | |
5182 | /* Size and allocate the main established and bind bucket |
5183 | * hash tables. |
5184 | * |
5185 | * The methodology is similar to that of the buffer cache. |
5186 | */ |
5187 | tcp_hashinfo.ehash = |
5188 | alloc_large_system_hash(tablename: "TCP established", |
5189 | bucketsize: sizeof(struct inet_ehash_bucket), |
5190 | numentries: thash_entries, |
5191 | scale: 17, /* one slot per 128 KB of memory */ |
5192 | flags: 0, |
5193 | NULL, |
5194 | hash_mask: &tcp_hashinfo.ehash_mask, |
5195 | low_limit: 0, |
5196 | high_limit: thash_entries ? 0 : 512 * 1024); |
5197 | for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) |
5198 | INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); |
5199 | |
5200 | if (inet_ehash_locks_alloc(hashinfo: &tcp_hashinfo)) |
5201 | panic(fmt: "TCP: failed to alloc ehash_locks"); |
5202 | tcp_hashinfo.bhash = |
5203 | alloc_large_system_hash(tablename: "TCP bind", |
5204 | bucketsize: 2 * sizeof(struct inet_bind_hashbucket), |
5205 | numentries: tcp_hashinfo.ehash_mask + 1, |
5206 | scale: 17, /* one slot per 128 KB of memory */ |
5207 | flags: 0, |
5208 | hash_shift: &tcp_hashinfo.bhash_size, |
5209 | NULL, |
5210 | low_limit: 0, |
5211 | high_limit: 64 * 1024); |
5212 | tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; |
5213 | tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; |
5214 | for (i = 0; i < tcp_hashinfo.bhash_size; i++) { |
5215 | spin_lock_init(&tcp_hashinfo.bhash[i].lock); |
5216 | INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); |
5217 | spin_lock_init(&tcp_hashinfo.bhash2[i].lock); |
5218 | INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); |
5219 | } |
5220 | |
5221 | tcp_hashinfo.pernet = false; |
5222 | |
5223 | cnt = tcp_hashinfo.ehash_mask + 1; |
5224 | sysctl_tcp_max_orphans = cnt / 2; |
5225 | |
5226 | tcp_init_mem(); |
5227 | /* Set per-socket limits to no more than 1/128 the pressure threshold */ |
5228 | limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); |
5229 | max_wshare = min(4UL*1024*1024, limit); |
5230 | max_rshare = min(32UL*1024*1024, limit); |
5231 | |
5232 | init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; |
5233 | init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; |
5234 | init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); |
5235 | |
5236 | init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; |
5237 | init_net.ipv4.sysctl_tcp_rmem[1] = 131072; |
5238 | init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); |
5239 | |
5240 | pr_info("Hash tables configured (established %u bind %u)\n", |
5241 | tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); |
5242 | |
5243 | tcp_v4_init(); |
5244 | tcp_metrics_init(); |
5245 | BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); |
5246 | tcp_tasklet_init(); |
5247 | mptcp_init(); |
5248 | } |
5249 |
Definitions
- tcp_orphan_count
- tcp_tw_isn
- sysctl_tcp_mem
- tcp_memory_allocated
- tcp_memory_per_cpu_fw_alloc
- tcp_have_smc
- tcp_sockets_allocated
- tcp_splice_state
- tcp_memory_pressure
- tcp_enter_memory_pressure
- tcp_leave_memory_pressure
- secs_to_retrans
- retrans_to_secs
- tcp_compute_delivery_rate
- tcp_init_sock
- tcp_tx_timestamp
- tcp_stream_is_readable
- tcp_poll
- tcp_ioctl
- tcp_mark_push
- forced_push
- tcp_skb_entail
- tcp_mark_urg
- tcp_should_autocork
- tcp_push
- tcp_splice_data_recv
- __tcp_splice_read
- tcp_splice_read
- tcp_stream_alloc_skb
- tcp_xmit_size_goal
- tcp_send_mss
- tcp_remove_empty_skb
- tcp_downgrade_zcopy_pure
- tcp_wmem_schedule
- tcp_free_fastopen_req
- tcp_sendmsg_fastopen
- tcp_sendmsg_locked
- tcp_sendmsg
- tcp_splice_eof
- tcp_recv_urg
- tcp_peek_sndq
- __tcp_cleanup_rbuf
- tcp_cleanup_rbuf
- tcp_eat_recv_skb
- tcp_recv_skb
- __tcp_read_sock
- tcp_read_sock
- tcp_read_sock_noack
- tcp_read_skb
- tcp_read_done
- tcp_peek_len
- tcp_set_rcvlowat
- tcp_update_recv_tstamps
- tcp_vm_ops
- tcp_mmap
- skb_advance_to_frag
- can_map_frag
- find_next_mappable_frag
- tcp_zerocopy_set_hint_for_skb
- receive_fallback_to_copy
- tcp_copy_straggler_data
- tcp_zc_handle_leftover
- tcp_zerocopy_vm_insert_batch_error
- tcp_zerocopy_vm_insert_batch
- tcp_zc_finalize_rx_tstamp
- find_tcp_vma
- tcp_zerocopy_receive
- tcp_recv_timestamp
- tcp_inq_hint
- tcp_xa_pool
- tcp_xa_pool_commit_locked
- tcp_xa_pool_commit
- tcp_xa_pool_refill
- tcp_recvmsg_dmabuf
- tcp_recvmsg_locked
- tcp_recvmsg
- tcp_set_state
- new_state
- tcp_close_state
- tcp_shutdown
- tcp_orphan_count_sum
- tcp_orphan_cache
- tcp_orphan_timer
- tcp_orphan_update
- tcp_too_many_orphans
- tcp_out_of_memory
- tcp_check_oom
- __tcp_close
- tcp_close
- tcp_need_reset
- tcp_rtx_queue_purge
- tcp_write_queue_purge
- tcp_disconnect
- tcp_can_repair_sock
- tcp_repair_set_window
- tcp_repair_options_est
- tcp_tx_delay_enabled
- tcp_enable_tx_delay
- __tcp_sock_set_cork
- tcp_sock_set_cork
- __tcp_sock_set_nodelay
- tcp_sock_set_nodelay
- __tcp_sock_set_quickack
- tcp_sock_set_quickack
- tcp_sock_set_syncnt
- tcp_sock_set_user_timeout
- tcp_sock_set_keepidle_locked
- tcp_sock_set_keepidle
- tcp_sock_set_keepintvl
- tcp_sock_set_keepcnt
- tcp_set_window_clamp
- do_tcp_setsockopt
- tcp_setsockopt
- tcp_get_info_chrono_stats
- tcp_get_info
- tcp_opt_stats_get_size
- tcp_skb_ttl_or_hop_limit
- tcp_get_timestamping_opt_stats
- do_tcp_getsockopt
- tcp_bpf_bypass_getsockopt
- tcp_getsockopt
- tcp_md5_sigpool_id
- tcp_md5_alloc_sigpool
- tcp_md5_release_sigpool
- tcp_md5_add_sigpool
- tcp_md5_hash_key
- tcp_inbound_md5_hash
- tcp_inbound_hash
- tcp_done
- tcp_abort
- thash_entries
- set_thash_entries
- tcp_init_mem
- tcp_struct_check
Improve your Profiling and Debugging skills
Find out more