| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* cpu_feature_enabled() cannot be used this early */ |
| 3 | #define USE_EARLY_PGTABLE_L5 |
| 4 | |
| 5 | #include <linux/memblock.h> |
| 6 | #include <linux/linkage.h> |
| 7 | #include <linux/bitops.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/export.h> |
| 10 | #include <linux/percpu.h> |
| 11 | #include <linux/string.h> |
| 12 | #include <linux/ctype.h> |
| 13 | #include <linux/delay.h> |
| 14 | #include <linux/sched/mm.h> |
| 15 | #include <linux/sched/clock.h> |
| 16 | #include <linux/sched/task.h> |
| 17 | #include <linux/sched/smt.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/kprobes.h> |
| 20 | #include <linux/kgdb.h> |
| 21 | #include <linux/mem_encrypt.h> |
| 22 | #include <linux/smp.h> |
| 23 | #include <linux/cpu.h> |
| 24 | #include <linux/io.h> |
| 25 | #include <linux/syscore_ops.h> |
| 26 | #include <linux/pgtable.h> |
| 27 | #include <linux/stackprotector.h> |
| 28 | #include <linux/utsname.h> |
| 29 | |
| 30 | #include <asm/alternative.h> |
| 31 | #include <asm/cmdline.h> |
| 32 | #include <asm/cpuid/api.h> |
| 33 | #include <asm/perf_event.h> |
| 34 | #include <asm/mmu_context.h> |
| 35 | #include <asm/doublefault.h> |
| 36 | #include <asm/archrandom.h> |
| 37 | #include <asm/hypervisor.h> |
| 38 | #include <asm/processor.h> |
| 39 | #include <asm/tlbflush.h> |
| 40 | #include <asm/debugreg.h> |
| 41 | #include <asm/sections.h> |
| 42 | #include <asm/vsyscall.h> |
| 43 | #include <linux/topology.h> |
| 44 | #include <linux/cpumask.h> |
| 45 | #include <linux/atomic.h> |
| 46 | #include <asm/proto.h> |
| 47 | #include <asm/setup.h> |
| 48 | #include <asm/apic.h> |
| 49 | #include <asm/desc.h> |
| 50 | #include <asm/fpu/api.h> |
| 51 | #include <asm/mtrr.h> |
| 52 | #include <asm/hwcap2.h> |
| 53 | #include <linux/numa.h> |
| 54 | #include <asm/numa.h> |
| 55 | #include <asm/asm.h> |
| 56 | #include <asm/bugs.h> |
| 57 | #include <asm/cpu.h> |
| 58 | #include <asm/mce.h> |
| 59 | #include <asm/msr.h> |
| 60 | #include <asm/cacheinfo.h> |
| 61 | #include <asm/memtype.h> |
| 62 | #include <asm/microcode.h> |
| 63 | #include <asm/intel-family.h> |
| 64 | #include <asm/cpu_device_id.h> |
| 65 | #include <asm/fred.h> |
| 66 | #include <asm/uv/uv.h> |
| 67 | #include <asm/ia32.h> |
| 68 | #include <asm/set_memory.h> |
| 69 | #include <asm/traps.h> |
| 70 | #include <asm/sev.h> |
| 71 | #include <asm/tdx.h> |
| 72 | #include <asm/posted_intr.h> |
| 73 | #include <asm/runtime-const.h> |
| 74 | |
| 75 | #include "cpu.h" |
| 76 | |
| 77 | DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); |
| 78 | EXPORT_PER_CPU_SYMBOL(cpu_info); |
| 79 | |
| 80 | u32 elf_hwcap2 __read_mostly; |
| 81 | |
| 82 | /* Number of siblings per CPU package */ |
| 83 | unsigned int __max_threads_per_core __ro_after_init = 1; |
| 84 | EXPORT_SYMBOL(__max_threads_per_core); |
| 85 | |
| 86 | unsigned int __max_dies_per_package __ro_after_init = 1; |
| 87 | EXPORT_SYMBOL(__max_dies_per_package); |
| 88 | |
| 89 | unsigned int __max_logical_packages __ro_after_init = 1; |
| 90 | EXPORT_SYMBOL(__max_logical_packages); |
| 91 | |
| 92 | unsigned int __num_cores_per_package __ro_after_init = 1; |
| 93 | EXPORT_SYMBOL(__num_cores_per_package); |
| 94 | |
| 95 | unsigned int __num_threads_per_package __ro_after_init = 1; |
| 96 | EXPORT_SYMBOL(__num_threads_per_package); |
| 97 | |
| 98 | static struct ppin_info { |
| 99 | int feature; |
| 100 | int msr_ppin_ctl; |
| 101 | int msr_ppin; |
| 102 | } ppin_info[] = { |
| 103 | [X86_VENDOR_INTEL] = { |
| 104 | .feature = X86_FEATURE_INTEL_PPIN, |
| 105 | .msr_ppin_ctl = MSR_PPIN_CTL, |
| 106 | .msr_ppin = MSR_PPIN |
| 107 | }, |
| 108 | [X86_VENDOR_AMD] = { |
| 109 | .feature = X86_FEATURE_AMD_PPIN, |
| 110 | .msr_ppin_ctl = MSR_AMD_PPIN_CTL, |
| 111 | .msr_ppin = MSR_AMD_PPIN |
| 112 | }, |
| 113 | }; |
| 114 | |
| 115 | static const struct x86_cpu_id ppin_cpuids[] = { |
| 116 | X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]), |
| 117 | X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]), |
| 118 | |
| 119 | /* Legacy models without CPUID enumeration */ |
| 120 | X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]), |
| 121 | X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]), |
| 122 | X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]), |
| 123 | X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]), |
| 124 | X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]), |
| 125 | X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]), |
| 126 | X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]), |
| 127 | X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), |
| 128 | X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), |
| 129 | X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]), |
| 130 | X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]), |
| 131 | |
| 132 | {} |
| 133 | }; |
| 134 | |
| 135 | static void ppin_init(struct cpuinfo_x86 *c) |
| 136 | { |
| 137 | const struct x86_cpu_id *id; |
| 138 | unsigned long long val; |
| 139 | struct ppin_info *info; |
| 140 | |
| 141 | id = x86_match_cpu(match: ppin_cpuids); |
| 142 | if (!id) |
| 143 | return; |
| 144 | |
| 145 | /* |
| 146 | * Testing the presence of the MSR is not enough. Need to check |
| 147 | * that the PPIN_CTL allows reading of the PPIN. |
| 148 | */ |
| 149 | info = (struct ppin_info *)id->driver_data; |
| 150 | |
| 151 | if (rdmsrq_safe(msr: info->msr_ppin_ctl, p: &val)) |
| 152 | goto clear_ppin; |
| 153 | |
| 154 | if ((val & 3UL) == 1UL) { |
| 155 | /* PPIN locked in disabled mode */ |
| 156 | goto clear_ppin; |
| 157 | } |
| 158 | |
| 159 | /* If PPIN is disabled, try to enable */ |
| 160 | if (!(val & 2UL)) { |
| 161 | wrmsrq_safe(msr: info->msr_ppin_ctl, val: val | 2UL); |
| 162 | rdmsrq_safe(msr: info->msr_ppin_ctl, p: &val); |
| 163 | } |
| 164 | |
| 165 | /* Is the enable bit set? */ |
| 166 | if (val & 2UL) { |
| 167 | c->ppin = native_rdmsrq(msr: info->msr_ppin); |
| 168 | set_cpu_cap(c, info->feature); |
| 169 | return; |
| 170 | } |
| 171 | |
| 172 | clear_ppin: |
| 173 | setup_clear_cpu_cap(info->feature); |
| 174 | } |
| 175 | |
| 176 | static void default_init(struct cpuinfo_x86 *c) |
| 177 | { |
| 178 | #ifdef CONFIG_X86_64 |
| 179 | cpu_detect_cache_sizes(c); |
| 180 | #else |
| 181 | /* Not much we can do here... */ |
| 182 | /* Check if at least it has cpuid */ |
| 183 | if (c->cpuid_level == -1) { |
| 184 | /* No cpuid. It must be an ancient CPU */ |
| 185 | if (c->x86 == 4) |
| 186 | strcpy(c->x86_model_id, "486" ); |
| 187 | else if (c->x86 == 3) |
| 188 | strcpy(c->x86_model_id, "386" ); |
| 189 | } |
| 190 | #endif |
| 191 | } |
| 192 | |
| 193 | static const struct cpu_dev default_cpu = { |
| 194 | .c_init = default_init, |
| 195 | .c_vendor = "Unknown" , |
| 196 | .c_x86_vendor = X86_VENDOR_UNKNOWN, |
| 197 | }; |
| 198 | |
| 199 | static const struct cpu_dev *this_cpu = &default_cpu; |
| 200 | |
| 201 | DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { |
| 202 | #ifdef CONFIG_X86_64 |
| 203 | /* |
| 204 | * We need valid kernel segments for data and code in long mode too |
| 205 | * IRET will check the segment types kkeil 2000/10/28 |
| 206 | * Also sysret mandates a special GDT layout |
| 207 | * |
| 208 | * TLS descriptors are currently at a different place compared to i386. |
| 209 | * Hopefully nobody expects them at a fixed place (Wine?) |
| 210 | */ |
| 211 | [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), |
| 212 | [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff), |
| 213 | [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff), |
| 214 | [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), |
| 215 | [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff), |
| 216 | [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff), |
| 217 | #else |
| 218 | [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), |
| 219 | [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), |
| 220 | [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), |
| 221 | [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff), |
| 222 | /* |
| 223 | * Segments used for calling PnP BIOS have byte granularity. |
| 224 | * They code segments and data segments have fixed 64k limits, |
| 225 | * the transfer segment sizes are set at run time. |
| 226 | */ |
| 227 | [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), |
| 228 | [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), |
| 229 | [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff), |
| 230 | [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), |
| 231 | [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), |
| 232 | /* |
| 233 | * The APM segments have byte granularity and their bases |
| 234 | * are set at run time. All have 64k limits. |
| 235 | */ |
| 236 | [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), |
| 237 | [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), |
| 238 | [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff), |
| 239 | |
| 240 | [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), |
| 241 | [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), |
| 242 | #endif |
| 243 | } }; |
| 244 | EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); |
| 245 | SYM_PIC_ALIAS(gdt_page); |
| 246 | |
| 247 | #ifdef CONFIG_X86_64 |
| 248 | static int __init x86_nopcid_setup(char *s) |
| 249 | { |
| 250 | /* nopcid doesn't accept parameters */ |
| 251 | if (s) |
| 252 | return -EINVAL; |
| 253 | |
| 254 | /* do not emit a message if the feature is not present */ |
| 255 | if (!boot_cpu_has(X86_FEATURE_PCID)) |
| 256 | return 0; |
| 257 | |
| 258 | setup_clear_cpu_cap(X86_FEATURE_PCID); |
| 259 | pr_info("nopcid: PCID feature disabled\n" ); |
| 260 | return 0; |
| 261 | } |
| 262 | early_param("nopcid" , x86_nopcid_setup); |
| 263 | #endif |
| 264 | |
| 265 | static int __init x86_noinvpcid_setup(char *s) |
| 266 | { |
| 267 | /* noinvpcid doesn't accept parameters */ |
| 268 | if (s) |
| 269 | return -EINVAL; |
| 270 | |
| 271 | /* do not emit a message if the feature is not present */ |
| 272 | if (!boot_cpu_has(X86_FEATURE_INVPCID)) |
| 273 | return 0; |
| 274 | |
| 275 | setup_clear_cpu_cap(X86_FEATURE_INVPCID); |
| 276 | pr_info("noinvpcid: INVPCID feature disabled\n" ); |
| 277 | return 0; |
| 278 | } |
| 279 | early_param("noinvpcid" , x86_noinvpcid_setup); |
| 280 | |
| 281 | /* Standard macro to see if a specific flag is changeable */ |
| 282 | static inline bool flag_is_changeable_p(unsigned long flag) |
| 283 | { |
| 284 | unsigned long f1, f2; |
| 285 | |
| 286 | if (!IS_ENABLED(CONFIG_X86_32)) |
| 287 | return true; |
| 288 | |
| 289 | /* |
| 290 | * Cyrix and IDT cpus allow disabling of CPUID |
| 291 | * so the code below may return different results |
| 292 | * when it is executed before and after enabling |
| 293 | * the CPUID. Add "volatile" to not allow gcc to |
| 294 | * optimize the subsequent calls to this function. |
| 295 | */ |
| 296 | asm volatile ("pushfl \n\t" |
| 297 | "pushfl \n\t" |
| 298 | "popl %0 \n\t" |
| 299 | "movl %0, %1 \n\t" |
| 300 | "xorl %2, %0 \n\t" |
| 301 | "pushl %0 \n\t" |
| 302 | "popfl \n\t" |
| 303 | "pushfl \n\t" |
| 304 | "popl %0 \n\t" |
| 305 | "popfl \n\t" |
| 306 | |
| 307 | : "=&r" (f1), "=&r" (f2) |
| 308 | : "ir" (flag)); |
| 309 | |
| 310 | return (f1 ^ f2) & flag; |
| 311 | } |
| 312 | |
| 313 | #ifdef CONFIG_X86_32 |
| 314 | static int cachesize_override = -1; |
| 315 | static int disable_x86_serial_nr = 1; |
| 316 | |
| 317 | static int __init cachesize_setup(char *str) |
| 318 | { |
| 319 | get_option(&str, &cachesize_override); |
| 320 | return 1; |
| 321 | } |
| 322 | __setup("cachesize=" , cachesize_setup); |
| 323 | |
| 324 | /* Probe for the CPUID instruction */ |
| 325 | bool cpuid_feature(void) |
| 326 | { |
| 327 | return flag_is_changeable_p(X86_EFLAGS_ID); |
| 328 | } |
| 329 | |
| 330 | static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
| 331 | { |
| 332 | unsigned long lo, hi; |
| 333 | |
| 334 | if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) |
| 335 | return; |
| 336 | |
| 337 | /* Disable processor serial number: */ |
| 338 | |
| 339 | rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
| 340 | lo |= 0x200000; |
| 341 | wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
| 342 | |
| 343 | pr_notice("CPU serial number disabled.\n" ); |
| 344 | clear_cpu_cap(c, X86_FEATURE_PN); |
| 345 | |
| 346 | /* Disabling the serial number may affect the cpuid level */ |
| 347 | c->cpuid_level = cpuid_eax(0); |
| 348 | } |
| 349 | |
| 350 | static int __init x86_serial_nr_setup(char *s) |
| 351 | { |
| 352 | disable_x86_serial_nr = 0; |
| 353 | return 1; |
| 354 | } |
| 355 | __setup("serialnumber" , x86_serial_nr_setup); |
| 356 | #else |
| 357 | static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
| 358 | { |
| 359 | } |
| 360 | #endif |
| 361 | |
| 362 | static __always_inline void setup_smep(struct cpuinfo_x86 *c) |
| 363 | { |
| 364 | if (cpu_has(c, X86_FEATURE_SMEP)) |
| 365 | cr4_set_bits(X86_CR4_SMEP); |
| 366 | } |
| 367 | |
| 368 | static __always_inline void setup_smap(struct cpuinfo_x86 *c) |
| 369 | { |
| 370 | unsigned long eflags = native_save_fl(); |
| 371 | |
| 372 | /* This should have been cleared long ago */ |
| 373 | BUG_ON(eflags & X86_EFLAGS_AC); |
| 374 | |
| 375 | if (cpu_has(c, X86_FEATURE_SMAP)) |
| 376 | cr4_set_bits(X86_CR4_SMAP); |
| 377 | } |
| 378 | |
| 379 | static __always_inline void setup_umip(struct cpuinfo_x86 *c) |
| 380 | { |
| 381 | /* Check the boot processor, plus build option for UMIP. */ |
| 382 | if (!cpu_feature_enabled(X86_FEATURE_UMIP)) |
| 383 | goto out; |
| 384 | |
| 385 | /* Check the current processor's cpuid bits. */ |
| 386 | if (!cpu_has(c, X86_FEATURE_UMIP)) |
| 387 | goto out; |
| 388 | |
| 389 | cr4_set_bits(X86_CR4_UMIP); |
| 390 | |
| 391 | pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n" ); |
| 392 | |
| 393 | return; |
| 394 | |
| 395 | out: |
| 396 | /* |
| 397 | * Make sure UMIP is disabled in case it was enabled in a |
| 398 | * previous boot (e.g., via kexec). |
| 399 | */ |
| 400 | cr4_clear_bits(X86_CR4_UMIP); |
| 401 | } |
| 402 | |
| 403 | /* These bits should not change their value after CPU init is finished. */ |
| 404 | static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | |
| 405 | X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED; |
| 406 | static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); |
| 407 | static unsigned long cr4_pinned_bits __ro_after_init; |
| 408 | |
| 409 | void native_write_cr0(unsigned long val) |
| 410 | { |
| 411 | unsigned long bits_missing = 0; |
| 412 | |
| 413 | set_register: |
| 414 | asm volatile("mov %0,%%cr0" : "+r" (val) : : "memory" ); |
| 415 | |
| 416 | if (static_branch_likely(&cr_pinning)) { |
| 417 | if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { |
| 418 | bits_missing = X86_CR0_WP; |
| 419 | val |= bits_missing; |
| 420 | goto set_register; |
| 421 | } |
| 422 | /* Warn after we've set the missing bits. */ |
| 423 | WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n" ); |
| 424 | } |
| 425 | } |
| 426 | EXPORT_SYMBOL(native_write_cr0); |
| 427 | |
| 428 | void __no_profile native_write_cr4(unsigned long val) |
| 429 | { |
| 430 | unsigned long bits_changed = 0; |
| 431 | |
| 432 | set_register: |
| 433 | asm volatile("mov %0,%%cr4" : "+r" (val) : : "memory" ); |
| 434 | |
| 435 | if (static_branch_likely(&cr_pinning)) { |
| 436 | if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { |
| 437 | bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; |
| 438 | val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; |
| 439 | goto set_register; |
| 440 | } |
| 441 | /* Warn after we've corrected the changed bits. */ |
| 442 | WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n" , |
| 443 | bits_changed); |
| 444 | } |
| 445 | } |
| 446 | #if IS_MODULE(CONFIG_LKDTM) |
| 447 | EXPORT_SYMBOL_GPL(native_write_cr4); |
| 448 | #endif |
| 449 | |
| 450 | void cr4_update_irqsoff(unsigned long set, unsigned long clear) |
| 451 | { |
| 452 | unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); |
| 453 | |
| 454 | lockdep_assert_irqs_disabled(); |
| 455 | |
| 456 | newval = (cr4 & ~clear) | set; |
| 457 | if (newval != cr4) { |
| 458 | this_cpu_write(cpu_tlbstate.cr4, newval); |
| 459 | __write_cr4(x: newval); |
| 460 | } |
| 461 | } |
| 462 | EXPORT_SYMBOL(cr4_update_irqsoff); |
| 463 | |
| 464 | /* Read the CR4 shadow. */ |
| 465 | unsigned long cr4_read_shadow(void) |
| 466 | { |
| 467 | return this_cpu_read(cpu_tlbstate.cr4); |
| 468 | } |
| 469 | EXPORT_SYMBOL_GPL(cr4_read_shadow); |
| 470 | |
| 471 | void cr4_init(void) |
| 472 | { |
| 473 | unsigned long cr4 = __read_cr4(); |
| 474 | |
| 475 | if (boot_cpu_has(X86_FEATURE_PCID)) |
| 476 | cr4 |= X86_CR4_PCIDE; |
| 477 | if (static_branch_likely(&cr_pinning)) |
| 478 | cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; |
| 479 | |
| 480 | __write_cr4(x: cr4); |
| 481 | |
| 482 | /* Initialize cr4 shadow for this CPU. */ |
| 483 | this_cpu_write(cpu_tlbstate.cr4, cr4); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Once CPU feature detection is finished (and boot params have been |
| 488 | * parsed), record any of the sensitive CR bits that are set, and |
| 489 | * enable CR pinning. |
| 490 | */ |
| 491 | static void __init setup_cr_pinning(void) |
| 492 | { |
| 493 | cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; |
| 494 | static_key_enable(key: &cr_pinning.key); |
| 495 | } |
| 496 | |
| 497 | static __init int x86_nofsgsbase_setup(char *arg) |
| 498 | { |
| 499 | /* Require an exact match without trailing characters. */ |
| 500 | if (strlen(arg)) |
| 501 | return 0; |
| 502 | |
| 503 | /* Do not emit a message if the feature is not present. */ |
| 504 | if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) |
| 505 | return 1; |
| 506 | |
| 507 | setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); |
| 508 | pr_info("FSGSBASE disabled via kernel command line\n" ); |
| 509 | return 1; |
| 510 | } |
| 511 | __setup("nofsgsbase" , x86_nofsgsbase_setup); |
| 512 | |
| 513 | /* |
| 514 | * Protection Keys are not available in 32-bit mode. |
| 515 | */ |
| 516 | static bool pku_disabled; |
| 517 | |
| 518 | static __always_inline void setup_pku(struct cpuinfo_x86 *c) |
| 519 | { |
| 520 | if (c == &boot_cpu_data) { |
| 521 | if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU)) |
| 522 | return; |
| 523 | /* |
| 524 | * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid |
| 525 | * bit to be set. Enforce it. |
| 526 | */ |
| 527 | setup_force_cpu_cap(X86_FEATURE_OSPKE); |
| 528 | |
| 529 | } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) { |
| 530 | return; |
| 531 | } |
| 532 | |
| 533 | cr4_set_bits(X86_CR4_PKE); |
| 534 | /* Load the default PKRU value */ |
| 535 | pkru_write_default(); |
| 536 | } |
| 537 | |
| 538 | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS |
| 539 | static __init int setup_disable_pku(char *arg) |
| 540 | { |
| 541 | /* |
| 542 | * Do not clear the X86_FEATURE_PKU bit. All of the |
| 543 | * runtime checks are against OSPKE so clearing the |
| 544 | * bit does nothing. |
| 545 | * |
| 546 | * This way, we will see "pku" in cpuinfo, but not |
| 547 | * "ospke", which is exactly what we want. It shows |
| 548 | * that the CPU has PKU, but the OS has not enabled it. |
| 549 | * This happens to be exactly how a system would look |
| 550 | * if we disabled the config option. |
| 551 | */ |
| 552 | pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n" ); |
| 553 | pku_disabled = true; |
| 554 | return 1; |
| 555 | } |
| 556 | __setup("nopku" , setup_disable_pku); |
| 557 | #endif |
| 558 | |
| 559 | #ifdef CONFIG_X86_KERNEL_IBT |
| 560 | |
| 561 | __noendbr u64 ibt_save(bool disable) |
| 562 | { |
| 563 | u64 msr = 0; |
| 564 | |
| 565 | if (cpu_feature_enabled(X86_FEATURE_IBT)) { |
| 566 | rdmsrq(MSR_IA32_S_CET, msr); |
| 567 | if (disable) |
| 568 | wrmsrq(MSR_IA32_S_CET, val: msr & ~CET_ENDBR_EN); |
| 569 | } |
| 570 | |
| 571 | return msr; |
| 572 | } |
| 573 | |
| 574 | __noendbr void ibt_restore(u64 save) |
| 575 | { |
| 576 | u64 msr; |
| 577 | |
| 578 | if (cpu_feature_enabled(X86_FEATURE_IBT)) { |
| 579 | rdmsrq(MSR_IA32_S_CET, msr); |
| 580 | msr &= ~CET_ENDBR_EN; |
| 581 | msr |= (save & CET_ENDBR_EN); |
| 582 | wrmsrq(MSR_IA32_S_CET, val: msr); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | #endif |
| 587 | |
| 588 | static __always_inline void setup_cet(struct cpuinfo_x86 *c) |
| 589 | { |
| 590 | bool user_shstk, kernel_ibt; |
| 591 | |
| 592 | if (!IS_ENABLED(CONFIG_X86_CET)) |
| 593 | return; |
| 594 | |
| 595 | kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT); |
| 596 | user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) && |
| 597 | IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK); |
| 598 | |
| 599 | if (!kernel_ibt && !user_shstk) |
| 600 | return; |
| 601 | |
| 602 | if (user_shstk) |
| 603 | set_cpu_cap(c, X86_FEATURE_USER_SHSTK); |
| 604 | |
| 605 | if (kernel_ibt) |
| 606 | wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN); |
| 607 | else |
| 608 | wrmsrq(MSR_IA32_S_CET, val: 0); |
| 609 | |
| 610 | cr4_set_bits(X86_CR4_CET); |
| 611 | |
| 612 | if (kernel_ibt && ibt_selftest()) { |
| 613 | pr_err("IBT selftest: Failed!\n" ); |
| 614 | wrmsrq(MSR_IA32_S_CET, val: 0); |
| 615 | setup_clear_cpu_cap(X86_FEATURE_IBT); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | __noendbr void cet_disable(void) |
| 620 | { |
| 621 | if (!(cpu_feature_enabled(X86_FEATURE_IBT) || |
| 622 | cpu_feature_enabled(X86_FEATURE_SHSTK))) |
| 623 | return; |
| 624 | |
| 625 | wrmsrq(MSR_IA32_S_CET, val: 0); |
| 626 | wrmsrq(MSR_IA32_U_CET, val: 0); |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * Some CPU features depend on higher CPUID levels, which may not always |
| 631 | * be available due to CPUID level capping or broken virtualization |
| 632 | * software. Add those features to this table to auto-disable them. |
| 633 | */ |
| 634 | struct cpuid_dependent_feature { |
| 635 | u32 feature; |
| 636 | u32 level; |
| 637 | }; |
| 638 | |
| 639 | static const struct cpuid_dependent_feature |
| 640 | cpuid_dependent_features[] = { |
| 641 | { X86_FEATURE_MWAIT, CPUID_LEAF_MWAIT }, |
| 642 | { X86_FEATURE_DCA, CPUID_LEAF_DCA }, |
| 643 | { X86_FEATURE_XSAVE, CPUID_LEAF_XSTATE }, |
| 644 | { 0, 0 } |
| 645 | }; |
| 646 | |
| 647 | static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) |
| 648 | { |
| 649 | const struct cpuid_dependent_feature *df; |
| 650 | |
| 651 | for (df = cpuid_dependent_features; df->feature; df++) { |
| 652 | |
| 653 | if (!cpu_has(c, df->feature)) |
| 654 | continue; |
| 655 | /* |
| 656 | * Note: cpuid_level is set to -1 if unavailable, but |
| 657 | * extended_extended_level is set to 0 if unavailable |
| 658 | * and the legitimate extended levels are all negative |
| 659 | * when signed; hence the weird messing around with |
| 660 | * signs here... |
| 661 | */ |
| 662 | if (!((s32)df->level < 0 ? |
| 663 | (u32)df->level > (u32)c->extended_cpuid_level : |
| 664 | (s32)df->level > (s32)c->cpuid_level)) |
| 665 | continue; |
| 666 | |
| 667 | clear_cpu_cap(c, bit: df->feature); |
| 668 | if (!warn) |
| 669 | continue; |
| 670 | |
| 671 | pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n" , |
| 672 | x86_cap_flags[df->feature], df->level); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * Naming convention should be: <Name> [(<Codename>)] |
| 678 | * This table only is used unless init_<vendor>() below doesn't set it; |
| 679 | * in particular, if CPUID levels 0x80000002..4 are supported, this |
| 680 | * isn't used |
| 681 | */ |
| 682 | |
| 683 | /* Look up CPU names by table lookup. */ |
| 684 | static const char *table_lookup_model(struct cpuinfo_x86 *c) |
| 685 | { |
| 686 | #ifdef CONFIG_X86_32 |
| 687 | const struct legacy_cpu_model_info *info; |
| 688 | |
| 689 | if (c->x86_model >= 16) |
| 690 | return NULL; /* Range check */ |
| 691 | |
| 692 | if (!this_cpu) |
| 693 | return NULL; |
| 694 | |
| 695 | info = this_cpu->legacy_models; |
| 696 | |
| 697 | while (info->family) { |
| 698 | if (info->family == c->x86) |
| 699 | return info->model_names[c->x86_model]; |
| 700 | info++; |
| 701 | } |
| 702 | #endif |
| 703 | return NULL; /* Not found */ |
| 704 | } |
| 705 | |
| 706 | /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ |
| 707 | __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); |
| 708 | __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); |
| 709 | |
| 710 | #ifdef CONFIG_X86_32 |
| 711 | /* The 32-bit entry code needs to find cpu_entry_area. */ |
| 712 | DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); |
| 713 | #endif |
| 714 | |
| 715 | /* Load the original GDT from the per-cpu structure */ |
| 716 | void load_direct_gdt(int cpu) |
| 717 | { |
| 718 | struct desc_ptr gdt_descr; |
| 719 | |
| 720 | gdt_descr.address = (long)get_cpu_gdt_rw(cpu); |
| 721 | gdt_descr.size = GDT_SIZE - 1; |
| 722 | load_gdt(dtr: &gdt_descr); |
| 723 | } |
| 724 | EXPORT_SYMBOL_GPL(load_direct_gdt); |
| 725 | |
| 726 | /* Load a fixmap remapping of the per-cpu GDT */ |
| 727 | void load_fixmap_gdt(int cpu) |
| 728 | { |
| 729 | struct desc_ptr gdt_descr; |
| 730 | |
| 731 | gdt_descr.address = (long)get_cpu_gdt_ro(cpu); |
| 732 | gdt_descr.size = GDT_SIZE - 1; |
| 733 | load_gdt(dtr: &gdt_descr); |
| 734 | } |
| 735 | EXPORT_SYMBOL_GPL(load_fixmap_gdt); |
| 736 | |
| 737 | /** |
| 738 | * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base |
| 739 | * @cpu: The CPU number for which this is invoked |
| 740 | * |
| 741 | * Invoked during early boot to switch from early GDT and early per CPU to |
| 742 | * the direct GDT and the runtime per CPU area. On 32-bit the percpu base |
| 743 | * switch is implicit by loading the direct GDT. On 64bit this requires |
| 744 | * to update GSBASE. |
| 745 | */ |
| 746 | void __init switch_gdt_and_percpu_base(int cpu) |
| 747 | { |
| 748 | load_direct_gdt(cpu); |
| 749 | |
| 750 | #ifdef CONFIG_X86_64 |
| 751 | /* |
| 752 | * No need to load %gs. It is already correct. |
| 753 | * |
| 754 | * Writing %gs on 64bit would zero GSBASE which would make any per |
| 755 | * CPU operation up to the point of the wrmsrq() fault. |
| 756 | * |
| 757 | * Set GSBASE to the new offset. Until the wrmsrq() happens the |
| 758 | * early mapping is still valid. That means the GSBASE update will |
| 759 | * lose any prior per CPU data which was not copied over in |
| 760 | * setup_per_cpu_areas(). |
| 761 | * |
| 762 | * This works even with stackprotector enabled because the |
| 763 | * per CPU stack canary is 0 in both per CPU areas. |
| 764 | */ |
| 765 | wrmsrq(MSR_GS_BASE, val: cpu_kernelmode_gs_base(cpu)); |
| 766 | #else |
| 767 | /* |
| 768 | * %fs is already set to __KERNEL_PERCPU, but after switching GDT |
| 769 | * it is required to load FS again so that the 'hidden' part is |
| 770 | * updated from the new GDT. Up to this point the early per CPU |
| 771 | * translation is active. Any content of the early per CPU data |
| 772 | * which was not copied over in setup_per_cpu_areas() is lost. |
| 773 | */ |
| 774 | loadsegment(fs, __KERNEL_PERCPU); |
| 775 | #endif |
| 776 | } |
| 777 | |
| 778 | static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; |
| 779 | |
| 780 | static void get_model_name(struct cpuinfo_x86 *c) |
| 781 | { |
| 782 | unsigned int *v; |
| 783 | char *p, *q, *s; |
| 784 | |
| 785 | if (c->extended_cpuid_level < 0x80000004) |
| 786 | return; |
| 787 | |
| 788 | v = (unsigned int *)c->x86_model_id; |
| 789 | cpuid(op: 0x80000002, eax: &v[0], ebx: &v[1], ecx: &v[2], edx: &v[3]); |
| 790 | cpuid(op: 0x80000003, eax: &v[4], ebx: &v[5], ecx: &v[6], edx: &v[7]); |
| 791 | cpuid(op: 0x80000004, eax: &v[8], ebx: &v[9], ecx: &v[10], edx: &v[11]); |
| 792 | c->x86_model_id[48] = 0; |
| 793 | |
| 794 | /* Trim whitespace */ |
| 795 | p = q = s = &c->x86_model_id[0]; |
| 796 | |
| 797 | while (*p == ' ') |
| 798 | p++; |
| 799 | |
| 800 | while (*p) { |
| 801 | /* Note the last non-whitespace index */ |
| 802 | if (!isspace(*p)) |
| 803 | s = q; |
| 804 | |
| 805 | *q++ = *p++; |
| 806 | } |
| 807 | |
| 808 | *(s + 1) = '\0'; |
| 809 | } |
| 810 | |
| 811 | void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) |
| 812 | { |
| 813 | unsigned int n, dummy, ebx, ecx, edx, l2size; |
| 814 | |
| 815 | n = c->extended_cpuid_level; |
| 816 | |
| 817 | if (n >= 0x80000005) { |
| 818 | cpuid(op: 0x80000005, eax: &dummy, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 819 | c->x86_cache_size = (ecx>>24) + (edx>>24); |
| 820 | #ifdef CONFIG_X86_64 |
| 821 | /* On K8 L1 TLB is inclusive, so don't count it */ |
| 822 | c->x86_tlbsize = 0; |
| 823 | #endif |
| 824 | } |
| 825 | |
| 826 | if (n < 0x80000006) /* Some chips just has a large L1. */ |
| 827 | return; |
| 828 | |
| 829 | cpuid(op: 0x80000006, eax: &dummy, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 830 | l2size = ecx >> 16; |
| 831 | |
| 832 | #ifdef CONFIG_X86_64 |
| 833 | c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); |
| 834 | #else |
| 835 | /* do processor-specific cache resizing */ |
| 836 | if (this_cpu->legacy_cache_size) |
| 837 | l2size = this_cpu->legacy_cache_size(c, l2size); |
| 838 | |
| 839 | /* Allow user to override all this if necessary. */ |
| 840 | if (cachesize_override != -1) |
| 841 | l2size = cachesize_override; |
| 842 | |
| 843 | if (l2size == 0) |
| 844 | return; /* Again, no L2 cache is possible */ |
| 845 | #endif |
| 846 | |
| 847 | c->x86_cache_size = l2size; |
| 848 | } |
| 849 | |
| 850 | u16 __read_mostly tlb_lli_4k; |
| 851 | u16 __read_mostly tlb_lli_2m; |
| 852 | u16 __read_mostly tlb_lli_4m; |
| 853 | u16 __read_mostly tlb_lld_4k; |
| 854 | u16 __read_mostly tlb_lld_2m; |
| 855 | u16 __read_mostly tlb_lld_4m; |
| 856 | u16 __read_mostly tlb_lld_1g; |
| 857 | |
| 858 | static void cpu_detect_tlb(struct cpuinfo_x86 *c) |
| 859 | { |
| 860 | if (this_cpu->c_detect_tlb) |
| 861 | this_cpu->c_detect_tlb(c); |
| 862 | |
| 863 | pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" , |
| 864 | tlb_lli_4k, tlb_lli_2m, tlb_lli_4m); |
| 865 | |
| 866 | pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n" , |
| 867 | tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g); |
| 868 | } |
| 869 | |
| 870 | void get_cpu_vendor(struct cpuinfo_x86 *c) |
| 871 | { |
| 872 | char *v = c->x86_vendor_id; |
| 873 | int i; |
| 874 | |
| 875 | for (i = 0; i < X86_VENDOR_NUM; i++) { |
| 876 | if (!cpu_devs[i]) |
| 877 | break; |
| 878 | |
| 879 | if (!strcmp(v, cpu_devs[i]->c_ident[0]) || |
| 880 | (cpu_devs[i]->c_ident[1] && |
| 881 | !strcmp(v, cpu_devs[i]->c_ident[1]))) { |
| 882 | |
| 883 | this_cpu = cpu_devs[i]; |
| 884 | c->x86_vendor = this_cpu->c_x86_vendor; |
| 885 | return; |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ |
| 890 | "CPU: Your system may be unstable.\n" , v); |
| 891 | |
| 892 | c->x86_vendor = X86_VENDOR_UNKNOWN; |
| 893 | this_cpu = &default_cpu; |
| 894 | } |
| 895 | |
| 896 | void cpu_detect(struct cpuinfo_x86 *c) |
| 897 | { |
| 898 | /* Get vendor name */ |
| 899 | cpuid(op: 0x00000000, eax: (unsigned int *)&c->cpuid_level, |
| 900 | ebx: (unsigned int *)&c->x86_vendor_id[0], |
| 901 | ecx: (unsigned int *)&c->x86_vendor_id[8], |
| 902 | edx: (unsigned int *)&c->x86_vendor_id[4]); |
| 903 | |
| 904 | c->x86 = 4; |
| 905 | /* Intel-defined flags: level 0x00000001 */ |
| 906 | if (c->cpuid_level >= 0x00000001) { |
| 907 | u32 junk, tfms, cap0, misc; |
| 908 | |
| 909 | cpuid(op: 0x00000001, eax: &tfms, ebx: &misc, ecx: &junk, edx: &cap0); |
| 910 | c->x86 = x86_family(sig: tfms); |
| 911 | c->x86_model = x86_model(sig: tfms); |
| 912 | c->x86_stepping = x86_stepping(sig: tfms); |
| 913 | |
| 914 | if (cap0 & (1<<19)) { |
| 915 | c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; |
| 916 | c->x86_cache_alignment = c->x86_clflush_size; |
| 917 | } |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | static void apply_forced_caps(struct cpuinfo_x86 *c) |
| 922 | { |
| 923 | int i; |
| 924 | |
| 925 | for (i = 0; i < NCAPINTS + NBUGINTS; i++) { |
| 926 | c->x86_capability[i] &= ~cpu_caps_cleared[i]; |
| 927 | c->x86_capability[i] |= cpu_caps_set[i]; |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | static void init_speculation_control(struct cpuinfo_x86 *c) |
| 932 | { |
| 933 | /* |
| 934 | * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, |
| 935 | * and they also have a different bit for STIBP support. Also, |
| 936 | * a hypervisor might have set the individual AMD bits even on |
| 937 | * Intel CPUs, for finer-grained selection of what's available. |
| 938 | */ |
| 939 | if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { |
| 940 | set_cpu_cap(c, X86_FEATURE_IBRS); |
| 941 | set_cpu_cap(c, X86_FEATURE_IBPB); |
| 942 | set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); |
| 943 | } |
| 944 | |
| 945 | if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) |
| 946 | set_cpu_cap(c, X86_FEATURE_STIBP); |
| 947 | |
| 948 | if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || |
| 949 | cpu_has(c, X86_FEATURE_VIRT_SSBD)) |
| 950 | set_cpu_cap(c, X86_FEATURE_SSBD); |
| 951 | |
| 952 | if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { |
| 953 | set_cpu_cap(c, X86_FEATURE_IBRS); |
| 954 | set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); |
| 955 | } |
| 956 | |
| 957 | if (cpu_has(c, X86_FEATURE_AMD_IBPB)) |
| 958 | set_cpu_cap(c, X86_FEATURE_IBPB); |
| 959 | |
| 960 | if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { |
| 961 | set_cpu_cap(c, X86_FEATURE_STIBP); |
| 962 | set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); |
| 963 | } |
| 964 | |
| 965 | if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { |
| 966 | set_cpu_cap(c, X86_FEATURE_SSBD); |
| 967 | set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); |
| 968 | clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | void get_cpu_cap(struct cpuinfo_x86 *c) |
| 973 | { |
| 974 | u32 eax, ebx, ecx, edx; |
| 975 | |
| 976 | /* Intel-defined flags: level 0x00000001 */ |
| 977 | if (c->cpuid_level >= 0x00000001) { |
| 978 | cpuid(op: 0x00000001, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 979 | |
| 980 | c->x86_capability[CPUID_1_ECX] = ecx; |
| 981 | c->x86_capability[CPUID_1_EDX] = edx; |
| 982 | } |
| 983 | |
| 984 | /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ |
| 985 | if (c->cpuid_level >= 0x00000006) |
| 986 | c->x86_capability[CPUID_6_EAX] = cpuid_eax(op: 0x00000006); |
| 987 | |
| 988 | /* Additional Intel-defined flags: level 0x00000007 */ |
| 989 | if (c->cpuid_level >= 0x00000007) { |
| 990 | cpuid_count(op: 0x00000007, count: 0, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 991 | c->x86_capability[CPUID_7_0_EBX] = ebx; |
| 992 | c->x86_capability[CPUID_7_ECX] = ecx; |
| 993 | c->x86_capability[CPUID_7_EDX] = edx; |
| 994 | |
| 995 | /* Check valid sub-leaf index before accessing it */ |
| 996 | if (eax >= 1) { |
| 997 | cpuid_count(op: 0x00000007, count: 1, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 998 | c->x86_capability[CPUID_7_1_EAX] = eax; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | /* Extended state features: level 0x0000000d */ |
| 1003 | if (c->cpuid_level >= 0x0000000d) { |
| 1004 | cpuid_count(op: 0x0000000d, count: 1, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 1005 | |
| 1006 | c->x86_capability[CPUID_D_1_EAX] = eax; |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | * Check if extended CPUID leaves are implemented: Max extended |
| 1011 | * CPUID leaf must be in the 0x80000001-0x8000ffff range. |
| 1012 | */ |
| 1013 | eax = cpuid_eax(op: 0x80000000); |
| 1014 | c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0; |
| 1015 | |
| 1016 | if (c->extended_cpuid_level >= 0x80000001) { |
| 1017 | cpuid(op: 0x80000001, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 1018 | |
| 1019 | c->x86_capability[CPUID_8000_0001_ECX] = ecx; |
| 1020 | c->x86_capability[CPUID_8000_0001_EDX] = edx; |
| 1021 | } |
| 1022 | |
| 1023 | if (c->extended_cpuid_level >= 0x80000007) { |
| 1024 | cpuid(op: 0x80000007, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 1025 | |
| 1026 | c->x86_capability[CPUID_8000_0007_EBX] = ebx; |
| 1027 | c->x86_power = edx; |
| 1028 | } |
| 1029 | |
| 1030 | if (c->extended_cpuid_level >= 0x80000008) { |
| 1031 | cpuid(op: 0x80000008, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 1032 | c->x86_capability[CPUID_8000_0008_EBX] = ebx; |
| 1033 | } |
| 1034 | |
| 1035 | if (c->extended_cpuid_level >= 0x8000000a) |
| 1036 | c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(op: 0x8000000a); |
| 1037 | |
| 1038 | if (c->extended_cpuid_level >= 0x8000001f) |
| 1039 | c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(op: 0x8000001f); |
| 1040 | |
| 1041 | if (c->extended_cpuid_level >= 0x80000021) |
| 1042 | c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(op: 0x80000021); |
| 1043 | |
| 1044 | init_scattered_cpuid_features(c); |
| 1045 | init_speculation_control(c); |
| 1046 | |
| 1047 | /* |
| 1048 | * Clear/Set all flags overridden by options, after probe. |
| 1049 | * This needs to happen each time we re-probe, which may happen |
| 1050 | * several times during CPU initialization. |
| 1051 | */ |
| 1052 | apply_forced_caps(c); |
| 1053 | } |
| 1054 | |
| 1055 | void get_cpu_address_sizes(struct cpuinfo_x86 *c) |
| 1056 | { |
| 1057 | u32 eax, ebx, ecx, edx; |
| 1058 | |
| 1059 | if (!cpu_has(c, X86_FEATURE_CPUID) || |
| 1060 | (c->extended_cpuid_level < 0x80000008)) { |
| 1061 | if (IS_ENABLED(CONFIG_X86_64)) { |
| 1062 | c->x86_clflush_size = 64; |
| 1063 | c->x86_phys_bits = 36; |
| 1064 | c->x86_virt_bits = 48; |
| 1065 | } else { |
| 1066 | c->x86_clflush_size = 32; |
| 1067 | c->x86_virt_bits = 32; |
| 1068 | c->x86_phys_bits = 32; |
| 1069 | |
| 1070 | if (cpu_has(c, X86_FEATURE_PAE) || |
| 1071 | cpu_has(c, X86_FEATURE_PSE36)) |
| 1072 | c->x86_phys_bits = 36; |
| 1073 | } |
| 1074 | } else { |
| 1075 | cpuid(op: 0x80000008, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx); |
| 1076 | |
| 1077 | c->x86_virt_bits = (eax >> 8) & 0xff; |
| 1078 | c->x86_phys_bits = eax & 0xff; |
| 1079 | |
| 1080 | /* Provide a sane default if not enumerated: */ |
| 1081 | if (!c->x86_clflush_size) |
| 1082 | c->x86_clflush_size = 32; |
| 1083 | } |
| 1084 | |
| 1085 | c->x86_cache_bits = c->x86_phys_bits; |
| 1086 | c->x86_cache_alignment = c->x86_clflush_size; |
| 1087 | } |
| 1088 | |
| 1089 | static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) |
| 1090 | { |
| 1091 | int i; |
| 1092 | |
| 1093 | /* |
| 1094 | * First of all, decide if this is a 486 or higher |
| 1095 | * It's a 486 if we can modify the AC flag |
| 1096 | */ |
| 1097 | if (flag_is_changeable_p(X86_EFLAGS_AC)) |
| 1098 | c->x86 = 4; |
| 1099 | else |
| 1100 | c->x86 = 3; |
| 1101 | |
| 1102 | for (i = 0; i < X86_VENDOR_NUM; i++) |
| 1103 | if (cpu_devs[i] && cpu_devs[i]->c_identify) { |
| 1104 | c->x86_vendor_id[0] = 0; |
| 1105 | cpu_devs[i]->c_identify(c); |
| 1106 | if (c->x86_vendor_id[0]) { |
| 1107 | get_cpu_vendor(c); |
| 1108 | break; |
| 1109 | } |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | #define NO_SPECULATION BIT(0) |
| 1114 | #define NO_MELTDOWN BIT(1) |
| 1115 | #define NO_SSB BIT(2) |
| 1116 | #define NO_L1TF BIT(3) |
| 1117 | #define NO_MDS BIT(4) |
| 1118 | #define MSBDS_ONLY BIT(5) |
| 1119 | #define NO_SWAPGS BIT(6) |
| 1120 | #define NO_ITLB_MULTIHIT BIT(7) |
| 1121 | #define NO_SPECTRE_V2 BIT(8) |
| 1122 | #define NO_MMIO BIT(9) |
| 1123 | #define NO_EIBRS_PBRSB BIT(10) |
| 1124 | #define NO_BHI BIT(11) |
| 1125 | |
| 1126 | #define VULNWL(vendor, family, model, whitelist) \ |
| 1127 | X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) |
| 1128 | |
| 1129 | #define VULNWL_INTEL(vfm, whitelist) \ |
| 1130 | X86_MATCH_VFM(vfm, whitelist) |
| 1131 | |
| 1132 | #define VULNWL_AMD(family, whitelist) \ |
| 1133 | VULNWL(AMD, family, X86_MODEL_ANY, whitelist) |
| 1134 | |
| 1135 | #define VULNWL_HYGON(family, whitelist) \ |
| 1136 | VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) |
| 1137 | |
| 1138 | static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { |
| 1139 | VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), |
| 1140 | VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), |
| 1141 | VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), |
| 1142 | VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), |
| 1143 | VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION), |
| 1144 | VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION), |
| 1145 | |
| 1146 | /* Intel Family 6 */ |
| 1147 | VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO), |
| 1148 | VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO), |
| 1149 | VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO), |
| 1150 | VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO), |
| 1151 | |
| 1152 | VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), |
| 1153 | VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), |
| 1154 | VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), |
| 1155 | VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), |
| 1156 | VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), |
| 1157 | |
| 1158 | VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1159 | VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1160 | VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1161 | VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1162 | VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1163 | VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1164 | |
| 1165 | VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB), |
| 1166 | |
| 1167 | VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY), |
| 1168 | VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), |
| 1169 | |
| 1170 | VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), |
| 1171 | VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), |
| 1172 | VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), |
| 1173 | |
| 1174 | /* |
| 1175 | * Technically, swapgs isn't serializing on AMD (despite it previously |
| 1176 | * being documented as such in the APM). But according to AMD, %gs is |
| 1177 | * updated non-speculatively, and the issuing of %gs-relative memory |
| 1178 | * operands will be blocked until the %gs update completes, which is |
| 1179 | * good enough for our purposes. |
| 1180 | */ |
| 1181 | |
| 1182 | VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB), |
| 1183 | VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB), |
| 1184 | VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB), |
| 1185 | |
| 1186 | /* AMD Family 0xf - 0x12 */ |
| 1187 | VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), |
| 1188 | VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), |
| 1189 | VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), |
| 1190 | VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), |
| 1191 | |
| 1192 | /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ |
| 1193 | VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), |
| 1194 | VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), |
| 1195 | |
| 1196 | /* Zhaoxin Family 7 */ |
| 1197 | VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), |
| 1198 | VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), |
| 1199 | {} |
| 1200 | }; |
| 1201 | |
| 1202 | #define VULNBL(vendor, family, model, blacklist) \ |
| 1203 | X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist) |
| 1204 | |
| 1205 | #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues) \ |
| 1206 | X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues) |
| 1207 | |
| 1208 | #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues) \ |
| 1209 | X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues) |
| 1210 | |
| 1211 | #define VULNBL_AMD(family, blacklist) \ |
| 1212 | VULNBL(AMD, family, X86_MODEL_ANY, blacklist) |
| 1213 | |
| 1214 | #define VULNBL_HYGON(family, blacklist) \ |
| 1215 | VULNBL(HYGON, family, X86_MODEL_ANY, blacklist) |
| 1216 | |
| 1217 | #define SRBDS BIT(0) |
| 1218 | /* CPU is affected by X86_BUG_MMIO_STALE_DATA */ |
| 1219 | #define MMIO BIT(1) |
| 1220 | /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ |
| 1221 | #define MMIO_SBDS BIT(2) |
| 1222 | /* CPU is affected by RETbleed, speculating where you would not expect it */ |
| 1223 | #define RETBLEED BIT(3) |
| 1224 | /* CPU is affected by SMT (cross-thread) return predictions */ |
| 1225 | #define SMT_RSB BIT(4) |
| 1226 | /* CPU is affected by SRSO */ |
| 1227 | #define SRSO BIT(5) |
| 1228 | /* CPU is affected by GDS */ |
| 1229 | #define GDS BIT(6) |
| 1230 | /* CPU is affected by Register File Data Sampling */ |
| 1231 | #define RFDS BIT(7) |
| 1232 | /* CPU is affected by Indirect Target Selection */ |
| 1233 | #define ITS BIT(8) |
| 1234 | /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */ |
| 1235 | #define ITS_NATIVE_ONLY BIT(9) |
| 1236 | |
| 1237 | static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { |
| 1238 | VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE, X86_STEP_MAX, SRBDS), |
| 1239 | VULNBL_INTEL_STEPS(INTEL_HASWELL, X86_STEP_MAX, SRBDS), |
| 1240 | VULNBL_INTEL_STEPS(INTEL_HASWELL_L, X86_STEP_MAX, SRBDS), |
| 1241 | VULNBL_INTEL_STEPS(INTEL_HASWELL_G, X86_STEP_MAX, SRBDS), |
| 1242 | VULNBL_INTEL_STEPS(INTEL_HASWELL_X, X86_STEP_MAX, MMIO), |
| 1243 | VULNBL_INTEL_STEPS(INTEL_BROADWELL_D, X86_STEP_MAX, MMIO), |
| 1244 | VULNBL_INTEL_STEPS(INTEL_BROADWELL_G, X86_STEP_MAX, SRBDS), |
| 1245 | VULNBL_INTEL_STEPS(INTEL_BROADWELL_X, X86_STEP_MAX, MMIO), |
| 1246 | VULNBL_INTEL_STEPS(INTEL_BROADWELL, X86_STEP_MAX, SRBDS), |
| 1247 | VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, 0x5, MMIO | RETBLEED | GDS), |
| 1248 | VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS), |
| 1249 | VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS), |
| 1250 | VULNBL_INTEL_STEPS(INTEL_SKYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS), |
| 1251 | VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, 0xb, MMIO | RETBLEED | GDS | SRBDS), |
| 1252 | VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS), |
| 1253 | VULNBL_INTEL_STEPS(INTEL_KABYLAKE, 0xc, MMIO | RETBLEED | GDS | SRBDS), |
| 1254 | VULNBL_INTEL_STEPS(INTEL_KABYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS), |
| 1255 | VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L, X86_STEP_MAX, RETBLEED), |
| 1256 | VULNBL_INTEL_STEPS(INTEL_ICELAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY), |
| 1257 | VULNBL_INTEL_STEPS(INTEL_ICELAKE_D, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY), |
| 1258 | VULNBL_INTEL_STEPS(INTEL_ICELAKE_X, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY), |
| 1259 | VULNBL_INTEL_STEPS(INTEL_COMETLAKE, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS), |
| 1260 | VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, 0x0, MMIO | RETBLEED | ITS), |
| 1261 | VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS), |
| 1262 | VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY), |
| 1263 | VULNBL_INTEL_STEPS(INTEL_TIGERLAKE, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY), |
| 1264 | VULNBL_INTEL_STEPS(INTEL_LAKEFIELD, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED), |
| 1265 | VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY), |
| 1266 | VULNBL_INTEL_TYPE(INTEL_ALDERLAKE, ATOM, RFDS), |
| 1267 | VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L, X86_STEP_MAX, RFDS), |
| 1268 | VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE, ATOM, RFDS), |
| 1269 | VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P, X86_STEP_MAX, RFDS), |
| 1270 | VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S, X86_STEP_MAX, RFDS), |
| 1271 | VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT, X86_STEP_MAX, RFDS), |
| 1272 | VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS), |
| 1273 | VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MAX, MMIO | RFDS), |
| 1274 | VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS), |
| 1275 | VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT, X86_STEP_MAX, RFDS), |
| 1276 | VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D, X86_STEP_MAX, RFDS), |
| 1277 | VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX, RFDS), |
| 1278 | |
| 1279 | VULNBL_AMD(0x15, RETBLEED), |
| 1280 | VULNBL_AMD(0x16, RETBLEED), |
| 1281 | VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO), |
| 1282 | VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO), |
| 1283 | VULNBL_AMD(0x19, SRSO), |
| 1284 | VULNBL_AMD(0x1a, SRSO), |
| 1285 | {} |
| 1286 | }; |
| 1287 | |
| 1288 | static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) |
| 1289 | { |
| 1290 | const struct x86_cpu_id *m = x86_match_cpu(match: table); |
| 1291 | |
| 1292 | return m && !!(m->driver_data & which); |
| 1293 | } |
| 1294 | |
| 1295 | u64 x86_read_arch_cap_msr(void) |
| 1296 | { |
| 1297 | u64 x86_arch_cap_msr = 0; |
| 1298 | |
| 1299 | if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) |
| 1300 | rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr); |
| 1301 | |
| 1302 | return x86_arch_cap_msr; |
| 1303 | } |
| 1304 | |
| 1305 | static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr) |
| 1306 | { |
| 1307 | return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO && |
| 1308 | x86_arch_cap_msr & ARCH_CAP_PSDP_NO && |
| 1309 | x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO); |
| 1310 | } |
| 1311 | |
| 1312 | static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr) |
| 1313 | { |
| 1314 | /* The "immunity" bit trumps everything else: */ |
| 1315 | if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO) |
| 1316 | return false; |
| 1317 | |
| 1318 | /* |
| 1319 | * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to |
| 1320 | * indicate that mitigation is needed because guest is running on a |
| 1321 | * vulnerable hardware or may migrate to such hardware: |
| 1322 | */ |
| 1323 | if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) |
| 1324 | return true; |
| 1325 | |
| 1326 | /* Only consult the blacklist when there is no enumeration: */ |
| 1327 | return cpu_matches(table: cpu_vuln_blacklist, RFDS); |
| 1328 | } |
| 1329 | |
| 1330 | static bool __init vulnerable_to_its(u64 x86_arch_cap_msr) |
| 1331 | { |
| 1332 | /* The "immunity" bit trumps everything else: */ |
| 1333 | if (x86_arch_cap_msr & ARCH_CAP_ITS_NO) |
| 1334 | return false; |
| 1335 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 1336 | return false; |
| 1337 | |
| 1338 | /* None of the affected CPUs have BHI_CTRL */ |
| 1339 | if (boot_cpu_has(X86_FEATURE_BHI_CTRL)) |
| 1340 | return false; |
| 1341 | |
| 1342 | /* |
| 1343 | * If a VMM did not expose ITS_NO, assume that a guest could |
| 1344 | * be running on a vulnerable hardware or may migrate to such |
| 1345 | * hardware. |
| 1346 | */ |
| 1347 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 1348 | return true; |
| 1349 | |
| 1350 | if (cpu_matches(table: cpu_vuln_blacklist, ITS)) |
| 1351 | return true; |
| 1352 | |
| 1353 | return false; |
| 1354 | } |
| 1355 | |
| 1356 | static struct x86_cpu_id cpu_latest_microcode[] = { |
| 1357 | #include "microcode/intel-ucode-defs.h" |
| 1358 | {} |
| 1359 | }; |
| 1360 | |
| 1361 | static bool __init cpu_has_old_microcode(void) |
| 1362 | { |
| 1363 | const struct x86_cpu_id *m = x86_match_cpu(match: cpu_latest_microcode); |
| 1364 | |
| 1365 | /* Give unknown CPUs a pass: */ |
| 1366 | if (!m) { |
| 1367 | /* Intel CPUs should be in the list. Warn if not: */ |
| 1368 | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) |
| 1369 | pr_info("x86/CPU: Model not found in latest microcode list\n" ); |
| 1370 | return false; |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * Hosts usually lie to guests with a super high microcode |
| 1375 | * version. Just ignore what hosts tell guests: |
| 1376 | */ |
| 1377 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 1378 | return false; |
| 1379 | |
| 1380 | /* Consider all debug microcode to be old: */ |
| 1381 | if (boot_cpu_data.microcode & BIT(31)) |
| 1382 | return true; |
| 1383 | |
| 1384 | /* Give new microcode a pass: */ |
| 1385 | if (boot_cpu_data.microcode >= m->driver_data) |
| 1386 | return false; |
| 1387 | |
| 1388 | /* Uh oh, too old: */ |
| 1389 | return true; |
| 1390 | } |
| 1391 | |
| 1392 | static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) |
| 1393 | { |
| 1394 | u64 x86_arch_cap_msr = x86_read_arch_cap_msr(); |
| 1395 | |
| 1396 | if (cpu_has_old_microcode()) { |
| 1397 | pr_warn("x86/CPU: Running old microcode\n" ); |
| 1398 | setup_force_cpu_bug(X86_BUG_OLD_MICROCODE); |
| 1399 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| 1400 | } |
| 1401 | |
| 1402 | /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ |
| 1403 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && |
| 1404 | !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO)) |
| 1405 | setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); |
| 1406 | |
| 1407 | if (cpu_matches(table: cpu_vuln_whitelist, NO_SPECULATION)) |
| 1408 | return; |
| 1409 | |
| 1410 | setup_force_cpu_bug(X86_BUG_SPECTRE_V1); |
| 1411 | |
| 1412 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_SPECTRE_V2)) { |
| 1413 | setup_force_cpu_bug(X86_BUG_SPECTRE_V2); |
| 1414 | setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER); |
| 1415 | } |
| 1416 | |
| 1417 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_SSB) && |
| 1418 | !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) && |
| 1419 | !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) |
| 1420 | setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); |
| 1421 | |
| 1422 | /* |
| 1423 | * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature |
| 1424 | * flag and protect from vendor-specific bugs via the whitelist. |
| 1425 | * |
| 1426 | * Don't use AutoIBRS when SNP is enabled because it degrades host |
| 1427 | * userspace indirect branch performance. |
| 1428 | */ |
| 1429 | if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) || |
| 1430 | (cpu_has(c, X86_FEATURE_AUTOIBRS) && |
| 1431 | !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) { |
| 1432 | setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); |
| 1433 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_EIBRS_PBRSB) && |
| 1434 | !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO)) |
| 1435 | setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB); |
| 1436 | } |
| 1437 | |
| 1438 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_MDS) && |
| 1439 | !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) { |
| 1440 | setup_force_cpu_bug(X86_BUG_MDS); |
| 1441 | if (cpu_matches(table: cpu_vuln_whitelist, MSBDS_ONLY)) |
| 1442 | setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); |
| 1443 | } |
| 1444 | |
| 1445 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_SWAPGS)) |
| 1446 | setup_force_cpu_bug(X86_BUG_SWAPGS); |
| 1447 | |
| 1448 | /* |
| 1449 | * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: |
| 1450 | * - TSX is supported or |
| 1451 | * - TSX_CTRL is present |
| 1452 | * |
| 1453 | * TSX_CTRL check is needed for cases when TSX could be disabled before |
| 1454 | * the kernel boot e.g. kexec. |
| 1455 | * TSX_CTRL check alone is not sufficient for cases when the microcode |
| 1456 | * update is not present or running as guest that don't get TSX_CTRL. |
| 1457 | */ |
| 1458 | if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) && |
| 1459 | (cpu_has(c, X86_FEATURE_RTM) || |
| 1460 | (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))) |
| 1461 | setup_force_cpu_bug(X86_BUG_TAA); |
| 1462 | |
| 1463 | /* |
| 1464 | * SRBDS affects CPUs which support RDRAND or RDSEED and are listed |
| 1465 | * in the vulnerability blacklist. |
| 1466 | * |
| 1467 | * Some of the implications and mitigation of Shared Buffers Data |
| 1468 | * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as |
| 1469 | * SRBDS. |
| 1470 | */ |
| 1471 | if ((cpu_has(c, X86_FEATURE_RDRAND) || |
| 1472 | cpu_has(c, X86_FEATURE_RDSEED)) && |
| 1473 | cpu_matches(table: cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) |
| 1474 | setup_force_cpu_bug(X86_BUG_SRBDS); |
| 1475 | |
| 1476 | /* |
| 1477 | * Processor MMIO Stale Data bug enumeration |
| 1478 | * |
| 1479 | * Affected CPU list is generally enough to enumerate the vulnerability, |
| 1480 | * but for virtualization case check for ARCH_CAP MSR bits also, VMM may |
| 1481 | * not want the guest to enumerate the bug. |
| 1482 | */ |
| 1483 | if (!arch_cap_mmio_immune(x86_arch_cap_msr)) { |
| 1484 | if (cpu_matches(table: cpu_vuln_blacklist, MMIO)) |
| 1485 | setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); |
| 1486 | } |
| 1487 | |
| 1488 | if (!cpu_has(c, X86_FEATURE_BTC_NO)) { |
| 1489 | if (cpu_matches(table: cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA)) |
| 1490 | setup_force_cpu_bug(X86_BUG_RETBLEED); |
| 1491 | } |
| 1492 | |
| 1493 | if (cpu_matches(table: cpu_vuln_blacklist, SMT_RSB)) |
| 1494 | setup_force_cpu_bug(X86_BUG_SMT_RSB); |
| 1495 | |
| 1496 | if (!cpu_has(c, X86_FEATURE_SRSO_NO)) { |
| 1497 | if (cpu_matches(table: cpu_vuln_blacklist, SRSO)) |
| 1498 | setup_force_cpu_bug(X86_BUG_SRSO); |
| 1499 | } |
| 1500 | |
| 1501 | /* |
| 1502 | * Check if CPU is vulnerable to GDS. If running in a virtual machine on |
| 1503 | * an affected processor, the VMM may have disabled the use of GATHER by |
| 1504 | * disabling AVX2. The only way to do this in HW is to clear XCR0[2], |
| 1505 | * which means that AVX will be disabled. |
| 1506 | */ |
| 1507 | if (cpu_matches(table: cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) && |
| 1508 | boot_cpu_has(X86_FEATURE_AVX)) |
| 1509 | setup_force_cpu_bug(X86_BUG_GDS); |
| 1510 | |
| 1511 | if (vulnerable_to_rfds(x86_arch_cap_msr)) |
| 1512 | setup_force_cpu_bug(X86_BUG_RFDS); |
| 1513 | |
| 1514 | /* |
| 1515 | * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with |
| 1516 | * BHI_NO still need to use the BHI mitigation to prevent Intra-mode |
| 1517 | * attacks. When virtualized, eIBRS could be hidden, assume vulnerable. |
| 1518 | */ |
| 1519 | if (!cpu_matches(table: cpu_vuln_whitelist, NO_BHI) && |
| 1520 | (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) || |
| 1521 | boot_cpu_has(X86_FEATURE_HYPERVISOR))) |
| 1522 | setup_force_cpu_bug(X86_BUG_BHI); |
| 1523 | |
| 1524 | if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET)) |
| 1525 | setup_force_cpu_bug(X86_BUG_IBPB_NO_RET); |
| 1526 | |
| 1527 | if (vulnerable_to_its(x86_arch_cap_msr)) { |
| 1528 | setup_force_cpu_bug(X86_BUG_ITS); |
| 1529 | if (cpu_matches(table: cpu_vuln_blacklist, ITS_NATIVE_ONLY)) |
| 1530 | setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY); |
| 1531 | } |
| 1532 | |
| 1533 | if (cpu_matches(table: cpu_vuln_whitelist, NO_MELTDOWN)) |
| 1534 | return; |
| 1535 | |
| 1536 | /* Rogue Data Cache Load? No! */ |
| 1537 | if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO) |
| 1538 | return; |
| 1539 | |
| 1540 | setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); |
| 1541 | |
| 1542 | if (cpu_matches(table: cpu_vuln_whitelist, NO_L1TF)) |
| 1543 | return; |
| 1544 | |
| 1545 | setup_force_cpu_bug(X86_BUG_L1TF); |
| 1546 | } |
| 1547 | |
| 1548 | /* |
| 1549 | * The NOPL instruction is supposed to exist on all CPUs of family >= 6; |
| 1550 | * unfortunately, that's not true in practice because of early VIA |
| 1551 | * chips and (more importantly) broken virtualizers that are not easy |
| 1552 | * to detect. In the latter case it doesn't even *fail* reliably, so |
| 1553 | * probing for it doesn't even work. Disable it completely on 32-bit |
| 1554 | * unless we can find a reliable way to detect all the broken cases. |
| 1555 | * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). |
| 1556 | */ |
| 1557 | static void detect_nopl(void) |
| 1558 | { |
| 1559 | #ifdef CONFIG_X86_32 |
| 1560 | setup_clear_cpu_cap(X86_FEATURE_NOPL); |
| 1561 | #else |
| 1562 | setup_force_cpu_cap(X86_FEATURE_NOPL); |
| 1563 | #endif |
| 1564 | } |
| 1565 | |
| 1566 | static inline bool parse_set_clear_cpuid(char *arg, bool set) |
| 1567 | { |
| 1568 | char *opt; |
| 1569 | int taint = 0; |
| 1570 | |
| 1571 | while (arg) { |
| 1572 | bool found __maybe_unused = false; |
| 1573 | unsigned int bit; |
| 1574 | |
| 1575 | opt = strsep(&arg, "," ); |
| 1576 | |
| 1577 | /* |
| 1578 | * Handle naked numbers first for feature flags which don't |
| 1579 | * have names. It doesn't make sense for a bug not to have a |
| 1580 | * name so don't handle bug flags here. |
| 1581 | */ |
| 1582 | if (!kstrtouint(s: opt, base: 10, res: &bit)) { |
| 1583 | if (bit < NCAPINTS * 32) { |
| 1584 | |
| 1585 | if (set) { |
| 1586 | pr_warn("setcpuid: force-enabling CPU feature flag:" ); |
| 1587 | setup_force_cpu_cap(bit); |
| 1588 | } else { |
| 1589 | pr_warn("clearcpuid: force-disabling CPU feature flag:" ); |
| 1590 | setup_clear_cpu_cap(bit); |
| 1591 | } |
| 1592 | /* empty-string, i.e., ""-defined feature flags */ |
| 1593 | if (!x86_cap_flags[bit]) |
| 1594 | pr_cont(" %d:%d\n" , bit >> 5, bit & 31); |
| 1595 | else |
| 1596 | pr_cont(" %s\n" , x86_cap_flags[bit]); |
| 1597 | |
| 1598 | taint++; |
| 1599 | } |
| 1600 | /* |
| 1601 | * The assumption is that there are no feature names with only |
| 1602 | * numbers in the name thus go to the next argument. |
| 1603 | */ |
| 1604 | continue; |
| 1605 | } |
| 1606 | |
| 1607 | for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) { |
| 1608 | const char *flag; |
| 1609 | const char *kind; |
| 1610 | |
| 1611 | if (bit < 32 * NCAPINTS) { |
| 1612 | flag = x86_cap_flags[bit]; |
| 1613 | kind = "feature" ; |
| 1614 | } else { |
| 1615 | kind = "bug" ; |
| 1616 | flag = x86_bug_flags[bit - (32 * NCAPINTS)]; |
| 1617 | } |
| 1618 | |
| 1619 | if (!flag) |
| 1620 | continue; |
| 1621 | |
| 1622 | if (strcmp(flag, opt)) |
| 1623 | continue; |
| 1624 | |
| 1625 | if (set) { |
| 1626 | pr_warn("setcpuid: force-enabling CPU %s flag: %s\n" , |
| 1627 | kind, flag); |
| 1628 | setup_force_cpu_cap(bit); |
| 1629 | } else { |
| 1630 | pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n" , |
| 1631 | kind, flag); |
| 1632 | setup_clear_cpu_cap(bit); |
| 1633 | } |
| 1634 | taint++; |
| 1635 | found = true; |
| 1636 | break; |
| 1637 | } |
| 1638 | |
| 1639 | if (!found) |
| 1640 | pr_warn("%s: unknown CPU flag: %s" , set ? "setcpuid" : "clearcpuid" , opt); |
| 1641 | } |
| 1642 | |
| 1643 | return taint; |
| 1644 | } |
| 1645 | |
| 1646 | |
| 1647 | /* |
| 1648 | * We parse cpu parameters early because fpu__init_system() is executed |
| 1649 | * before parse_early_param(). |
| 1650 | */ |
| 1651 | static void __init cpu_parse_early_param(void) |
| 1652 | { |
| 1653 | bool cpuid_taint = false; |
| 1654 | char arg[128]; |
| 1655 | int arglen; |
| 1656 | |
| 1657 | #ifdef CONFIG_X86_32 |
| 1658 | if (cmdline_find_option_bool(boot_command_line, "no387" )) |
| 1659 | #ifdef CONFIG_MATH_EMULATION |
| 1660 | setup_clear_cpu_cap(X86_FEATURE_FPU); |
| 1661 | #else |
| 1662 | pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n" ); |
| 1663 | #endif |
| 1664 | |
| 1665 | if (cmdline_find_option_bool(boot_command_line, "nofxsr" )) |
| 1666 | setup_clear_cpu_cap(X86_FEATURE_FXSR); |
| 1667 | #endif |
| 1668 | |
| 1669 | if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "noxsave" )) |
| 1670 | setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| 1671 | |
| 1672 | if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "noxsaveopt" )) |
| 1673 | setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
| 1674 | |
| 1675 | if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "noxsaves" )) |
| 1676 | setup_clear_cpu_cap(X86_FEATURE_XSAVES); |
| 1677 | |
| 1678 | if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "nousershstk" )) |
| 1679 | setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK); |
| 1680 | |
| 1681 | /* Minimize the gap between FRED is available and available but disabled. */ |
| 1682 | arglen = cmdline_find_option(cmdline_ptr: boot_command_line, option: "fred" , buffer: arg, bufsize: sizeof(arg)); |
| 1683 | if (arglen != 2 || strncmp(arg, "on" , 2)) |
| 1684 | setup_clear_cpu_cap(X86_FEATURE_FRED); |
| 1685 | |
| 1686 | arglen = cmdline_find_option(cmdline_ptr: boot_command_line, option: "clearcpuid" , buffer: arg, bufsize: sizeof(arg)); |
| 1687 | if (arglen > 0) |
| 1688 | cpuid_taint |= parse_set_clear_cpuid(arg, set: false); |
| 1689 | |
| 1690 | arglen = cmdline_find_option(cmdline_ptr: boot_command_line, option: "setcpuid" , buffer: arg, bufsize: sizeof(arg)); |
| 1691 | if (arglen > 0) |
| 1692 | cpuid_taint |= parse_set_clear_cpuid(arg, set: true); |
| 1693 | |
| 1694 | if (cpuid_taint) { |
| 1695 | pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n" ); |
| 1696 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | /* |
| 1701 | * Do minimum CPU detection early. |
| 1702 | * Fields really needed: vendor, cpuid_level, family, model, mask, |
| 1703 | * cache alignment. |
| 1704 | * The others are not touched to avoid unwanted side effects. |
| 1705 | * |
| 1706 | * WARNING: this function is only called on the boot CPU. Don't add code |
| 1707 | * here that is supposed to run on all CPUs. |
| 1708 | */ |
| 1709 | static void __init early_identify_cpu(struct cpuinfo_x86 *c) |
| 1710 | { |
| 1711 | memset(&c->x86_capability, 0, sizeof(c->x86_capability)); |
| 1712 | c->extended_cpuid_level = 0; |
| 1713 | |
| 1714 | if (!cpuid_feature()) |
| 1715 | identify_cpu_without_cpuid(c); |
| 1716 | |
| 1717 | /* cyrix could have cpuid enabled via c_identify()*/ |
| 1718 | if (cpuid_feature()) { |
| 1719 | cpu_detect(c); |
| 1720 | get_cpu_vendor(c); |
| 1721 | intel_unlock_cpuid_leafs(c); |
| 1722 | get_cpu_cap(c); |
| 1723 | setup_force_cpu_cap(X86_FEATURE_CPUID); |
| 1724 | get_cpu_address_sizes(c); |
| 1725 | cpu_parse_early_param(); |
| 1726 | |
| 1727 | cpu_init_topology(c); |
| 1728 | |
| 1729 | if (this_cpu->c_early_init) |
| 1730 | this_cpu->c_early_init(c); |
| 1731 | |
| 1732 | c->cpu_index = 0; |
| 1733 | filter_cpuid_features(c, warn: false); |
| 1734 | check_cpufeature_deps(c); |
| 1735 | |
| 1736 | if (this_cpu->c_bsp_init) |
| 1737 | this_cpu->c_bsp_init(c); |
| 1738 | } else { |
| 1739 | setup_clear_cpu_cap(X86_FEATURE_CPUID); |
| 1740 | get_cpu_address_sizes(c); |
| 1741 | cpu_init_topology(c); |
| 1742 | } |
| 1743 | |
| 1744 | setup_force_cpu_cap(X86_FEATURE_ALWAYS); |
| 1745 | |
| 1746 | cpu_set_bug_bits(c); |
| 1747 | |
| 1748 | sld_setup(c); |
| 1749 | |
| 1750 | #ifdef CONFIG_X86_32 |
| 1751 | /* |
| 1752 | * Regardless of whether PCID is enumerated, the SDM says |
| 1753 | * that it can't be enabled in 32-bit mode. |
| 1754 | */ |
| 1755 | setup_clear_cpu_cap(X86_FEATURE_PCID); |
| 1756 | #endif |
| 1757 | |
| 1758 | /* |
| 1759 | * Later in the boot process pgtable_l5_enabled() relies on |
| 1760 | * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not |
| 1761 | * enabled by this point we need to clear the feature bit to avoid |
| 1762 | * false-positives at the later stage. |
| 1763 | * |
| 1764 | * pgtable_l5_enabled() can be false here for several reasons: |
| 1765 | * - 5-level paging is disabled compile-time; |
| 1766 | * - it's 32-bit kernel; |
| 1767 | * - machine doesn't support 5-level paging; |
| 1768 | * - user specified 'no5lvl' in kernel command line. |
| 1769 | */ |
| 1770 | if (!pgtable_l5_enabled()) |
| 1771 | setup_clear_cpu_cap(X86_FEATURE_LA57); |
| 1772 | |
| 1773 | detect_nopl(); |
| 1774 | } |
| 1775 | |
| 1776 | void __init init_cpu_devs(void) |
| 1777 | { |
| 1778 | const struct cpu_dev *const *cdev; |
| 1779 | int count = 0; |
| 1780 | |
| 1781 | for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { |
| 1782 | const struct cpu_dev *cpudev = *cdev; |
| 1783 | |
| 1784 | if (count >= X86_VENDOR_NUM) |
| 1785 | break; |
| 1786 | cpu_devs[count] = cpudev; |
| 1787 | count++; |
| 1788 | } |
| 1789 | } |
| 1790 | |
| 1791 | void __init early_cpu_init(void) |
| 1792 | { |
| 1793 | #ifdef CONFIG_PROCESSOR_SELECT |
| 1794 | unsigned int i, j; |
| 1795 | |
| 1796 | pr_info("KERNEL supported cpus:\n" ); |
| 1797 | #endif |
| 1798 | |
| 1799 | init_cpu_devs(); |
| 1800 | |
| 1801 | #ifdef CONFIG_PROCESSOR_SELECT |
| 1802 | for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) { |
| 1803 | for (j = 0; j < 2; j++) { |
| 1804 | if (!cpu_devs[i]->c_ident[j]) |
| 1805 | continue; |
| 1806 | pr_info(" %s %s\n" , cpu_devs[i]->c_vendor, |
| 1807 | cpu_devs[i]->c_ident[j]); |
| 1808 | } |
| 1809 | } |
| 1810 | #endif |
| 1811 | |
| 1812 | early_identify_cpu(c: &boot_cpu_data); |
| 1813 | } |
| 1814 | |
| 1815 | static bool detect_null_seg_behavior(void) |
| 1816 | { |
| 1817 | /* |
| 1818 | * Empirically, writing zero to a segment selector on AMD does |
| 1819 | * not clear the base, whereas writing zero to a segment |
| 1820 | * selector on Intel does clear the base. Intel's behavior |
| 1821 | * allows slightly faster context switches in the common case |
| 1822 | * where GS is unused by the prev and next threads. |
| 1823 | * |
| 1824 | * Since neither vendor documents this anywhere that I can see, |
| 1825 | * detect it directly instead of hard-coding the choice by |
| 1826 | * vendor. |
| 1827 | * |
| 1828 | * I've designated AMD's behavior as the "bug" because it's |
| 1829 | * counterintuitive and less friendly. |
| 1830 | */ |
| 1831 | |
| 1832 | unsigned long old_base, tmp; |
| 1833 | rdmsrq(MSR_FS_BASE, old_base); |
| 1834 | wrmsrq(MSR_FS_BASE, val: 1); |
| 1835 | loadsegment(fs, 0); |
| 1836 | rdmsrq(MSR_FS_BASE, tmp); |
| 1837 | wrmsrq(MSR_FS_BASE, val: old_base); |
| 1838 | return tmp == 0; |
| 1839 | } |
| 1840 | |
| 1841 | void check_null_seg_clears_base(struct cpuinfo_x86 *c) |
| 1842 | { |
| 1843 | /* BUG_NULL_SEG is only relevant with 64bit userspace */ |
| 1844 | if (!IS_ENABLED(CONFIG_X86_64)) |
| 1845 | return; |
| 1846 | |
| 1847 | if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE)) |
| 1848 | return; |
| 1849 | |
| 1850 | /* |
| 1851 | * CPUID bit above wasn't set. If this kernel is still running |
| 1852 | * as a HV guest, then the HV has decided not to advertize |
| 1853 | * that CPUID bit for whatever reason. For example, one |
| 1854 | * member of the migration pool might be vulnerable. Which |
| 1855 | * means, the bug is present: set the BUG flag and return. |
| 1856 | */ |
| 1857 | if (cpu_has(c, X86_FEATURE_HYPERVISOR)) { |
| 1858 | set_cpu_bug(c, X86_BUG_NULL_SEG); |
| 1859 | return; |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * Zen2 CPUs also have this behaviour, but no CPUID bit. |
| 1864 | * 0x18 is the respective family for Hygon. |
| 1865 | */ |
| 1866 | if ((c->x86 == 0x17 || c->x86 == 0x18) && |
| 1867 | detect_null_seg_behavior()) |
| 1868 | return; |
| 1869 | |
| 1870 | /* All the remaining ones are affected */ |
| 1871 | set_cpu_bug(c, X86_BUG_NULL_SEG); |
| 1872 | } |
| 1873 | |
| 1874 | static void generic_identify(struct cpuinfo_x86 *c) |
| 1875 | { |
| 1876 | c->extended_cpuid_level = 0; |
| 1877 | |
| 1878 | if (!cpuid_feature()) |
| 1879 | identify_cpu_without_cpuid(c); |
| 1880 | |
| 1881 | /* cyrix could have cpuid enabled via c_identify()*/ |
| 1882 | if (!cpuid_feature()) |
| 1883 | return; |
| 1884 | |
| 1885 | cpu_detect(c); |
| 1886 | |
| 1887 | get_cpu_vendor(c); |
| 1888 | intel_unlock_cpuid_leafs(c); |
| 1889 | get_cpu_cap(c); |
| 1890 | |
| 1891 | get_cpu_address_sizes(c); |
| 1892 | |
| 1893 | get_model_name(c); /* Default name */ |
| 1894 | |
| 1895 | /* |
| 1896 | * ESPFIX is a strange bug. All real CPUs have it. Paravirt |
| 1897 | * systems that run Linux at CPL > 0 may or may not have the |
| 1898 | * issue, but, even if they have the issue, there's absolutely |
| 1899 | * nothing we can do about it because we can't use the real IRET |
| 1900 | * instruction. |
| 1901 | * |
| 1902 | * NB: For the time being, only 32-bit kernels support |
| 1903 | * X86_BUG_ESPFIX as such. 64-bit kernels directly choose |
| 1904 | * whether to apply espfix using paravirt hooks. If any |
| 1905 | * non-paravirt system ever shows up that does *not* have the |
| 1906 | * ESPFIX issue, we can change this. |
| 1907 | */ |
| 1908 | #ifdef CONFIG_X86_32 |
| 1909 | set_cpu_bug(c, X86_BUG_ESPFIX); |
| 1910 | #endif |
| 1911 | } |
| 1912 | |
| 1913 | /* |
| 1914 | * This does the hard work of actually picking apart the CPU stuff... |
| 1915 | */ |
| 1916 | static void identify_cpu(struct cpuinfo_x86 *c) |
| 1917 | { |
| 1918 | int i; |
| 1919 | |
| 1920 | c->loops_per_jiffy = loops_per_jiffy; |
| 1921 | c->x86_cache_size = 0; |
| 1922 | c->x86_vendor = X86_VENDOR_UNKNOWN; |
| 1923 | c->x86_model = c->x86_stepping = 0; /* So far unknown... */ |
| 1924 | c->x86_vendor_id[0] = '\0'; /* Unset */ |
| 1925 | c->x86_model_id[0] = '\0'; /* Unset */ |
| 1926 | #ifdef CONFIG_X86_64 |
| 1927 | c->x86_clflush_size = 64; |
| 1928 | c->x86_phys_bits = 36; |
| 1929 | c->x86_virt_bits = 48; |
| 1930 | #else |
| 1931 | c->cpuid_level = -1; /* CPUID not detected */ |
| 1932 | c->x86_clflush_size = 32; |
| 1933 | c->x86_phys_bits = 32; |
| 1934 | c->x86_virt_bits = 32; |
| 1935 | #endif |
| 1936 | c->x86_cache_alignment = c->x86_clflush_size; |
| 1937 | memset(&c->x86_capability, 0, sizeof(c->x86_capability)); |
| 1938 | #ifdef CONFIG_X86_VMX_FEATURE_NAMES |
| 1939 | memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); |
| 1940 | #endif |
| 1941 | |
| 1942 | generic_identify(c); |
| 1943 | |
| 1944 | cpu_parse_topology(c); |
| 1945 | |
| 1946 | if (this_cpu->c_identify) |
| 1947 | this_cpu->c_identify(c); |
| 1948 | |
| 1949 | /* Clear/Set all flags overridden by options, after probe */ |
| 1950 | apply_forced_caps(c); |
| 1951 | |
| 1952 | /* |
| 1953 | * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and |
| 1954 | * Hygon will clear it in ->c_init() below. |
| 1955 | */ |
| 1956 | set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); |
| 1957 | |
| 1958 | /* |
| 1959 | * Vendor-specific initialization. In this section we |
| 1960 | * canonicalize the feature flags, meaning if there are |
| 1961 | * features a certain CPU supports which CPUID doesn't |
| 1962 | * tell us, CPUID claiming incorrect flags, or other bugs, |
| 1963 | * we handle them here. |
| 1964 | * |
| 1965 | * At the end of this section, c->x86_capability better |
| 1966 | * indicate the features this CPU genuinely supports! |
| 1967 | */ |
| 1968 | if (this_cpu->c_init) |
| 1969 | this_cpu->c_init(c); |
| 1970 | |
| 1971 | bus_lock_init(); |
| 1972 | |
| 1973 | /* Disable the PN if appropriate */ |
| 1974 | squash_the_stupid_serial_number(c); |
| 1975 | |
| 1976 | /* Set up SMEP/SMAP/UMIP */ |
| 1977 | setup_smep(c); |
| 1978 | setup_smap(c); |
| 1979 | setup_umip(c); |
| 1980 | |
| 1981 | /* Enable FSGSBASE instructions if available. */ |
| 1982 | if (cpu_has(c, X86_FEATURE_FSGSBASE)) { |
| 1983 | cr4_set_bits(X86_CR4_FSGSBASE); |
| 1984 | elf_hwcap2 |= HWCAP2_FSGSBASE; |
| 1985 | } |
| 1986 | |
| 1987 | /* |
| 1988 | * The vendor-specific functions might have changed features. |
| 1989 | * Now we do "generic changes." |
| 1990 | */ |
| 1991 | |
| 1992 | /* Filter out anything that depends on CPUID levels we don't have */ |
| 1993 | filter_cpuid_features(c, warn: true); |
| 1994 | |
| 1995 | /* Check for unmet dependencies based on the CPUID dependency table */ |
| 1996 | check_cpufeature_deps(c); |
| 1997 | |
| 1998 | /* If the model name is still unset, do table lookup. */ |
| 1999 | if (!c->x86_model_id[0]) { |
| 2000 | const char *p; |
| 2001 | p = table_lookup_model(c); |
| 2002 | if (p) |
| 2003 | strcpy(p: c->x86_model_id, q: p); |
| 2004 | else |
| 2005 | /* Last resort... */ |
| 2006 | sprintf(buf: c->x86_model_id, fmt: "%02x/%02x" , |
| 2007 | c->x86, c->x86_model); |
| 2008 | } |
| 2009 | |
| 2010 | x86_init_rdrand(c); |
| 2011 | setup_pku(c); |
| 2012 | setup_cet(c); |
| 2013 | |
| 2014 | /* |
| 2015 | * Clear/Set all flags overridden by options, need do it |
| 2016 | * before following smp all cpus cap AND. |
| 2017 | */ |
| 2018 | apply_forced_caps(c); |
| 2019 | |
| 2020 | /* |
| 2021 | * On SMP, boot_cpu_data holds the common feature set between |
| 2022 | * all CPUs; so make sure that we indicate which features are |
| 2023 | * common between the CPUs. The first time this routine gets |
| 2024 | * executed, c == &boot_cpu_data. |
| 2025 | */ |
| 2026 | if (c != &boot_cpu_data) { |
| 2027 | /* AND the already accumulated flags with these */ |
| 2028 | for (i = 0; i < NCAPINTS; i++) |
| 2029 | boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
| 2030 | |
| 2031 | /* OR, i.e. replicate the bug flags */ |
| 2032 | for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) |
| 2033 | c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; |
| 2034 | } |
| 2035 | |
| 2036 | ppin_init(c); |
| 2037 | |
| 2038 | /* Init Machine Check Exception if available. */ |
| 2039 | mcheck_cpu_init(c); |
| 2040 | |
| 2041 | numa_add_cpu(smp_processor_id()); |
| 2042 | } |
| 2043 | |
| 2044 | /* |
| 2045 | * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions |
| 2046 | * on 32-bit kernels: |
| 2047 | */ |
| 2048 | #ifdef CONFIG_X86_32 |
| 2049 | void enable_sep_cpu(void) |
| 2050 | { |
| 2051 | struct tss_struct *tss; |
| 2052 | int cpu; |
| 2053 | |
| 2054 | if (!boot_cpu_has(X86_FEATURE_SEP)) |
| 2055 | return; |
| 2056 | |
| 2057 | cpu = get_cpu(); |
| 2058 | tss = &per_cpu(cpu_tss_rw, cpu); |
| 2059 | |
| 2060 | /* |
| 2061 | * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- |
| 2062 | * see the big comment in struct x86_hw_tss's definition. |
| 2063 | */ |
| 2064 | |
| 2065 | tss->x86_tss.ss1 = __KERNEL_CS; |
| 2066 | wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1); |
| 2067 | wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); |
| 2068 | wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32); |
| 2069 | |
| 2070 | put_cpu(); |
| 2071 | } |
| 2072 | #endif |
| 2073 | |
| 2074 | static __init void identify_boot_cpu(void) |
| 2075 | { |
| 2076 | identify_cpu(c: &boot_cpu_data); |
| 2077 | if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) |
| 2078 | pr_info("CET detected: Indirect Branch Tracking enabled\n" ); |
| 2079 | #ifdef CONFIG_X86_32 |
| 2080 | enable_sep_cpu(); |
| 2081 | #endif |
| 2082 | cpu_detect_tlb(c: &boot_cpu_data); |
| 2083 | setup_cr_pinning(); |
| 2084 | |
| 2085 | tsx_init(); |
| 2086 | tdx_init(); |
| 2087 | lkgs_init(); |
| 2088 | } |
| 2089 | |
| 2090 | void identify_secondary_cpu(unsigned int cpu) |
| 2091 | { |
| 2092 | struct cpuinfo_x86 *c = &cpu_data(cpu); |
| 2093 | |
| 2094 | /* Copy boot_cpu_data only on the first bringup */ |
| 2095 | if (!c->initialized) |
| 2096 | *c = boot_cpu_data; |
| 2097 | c->cpu_index = cpu; |
| 2098 | |
| 2099 | identify_cpu(c); |
| 2100 | #ifdef CONFIG_X86_32 |
| 2101 | enable_sep_cpu(); |
| 2102 | #endif |
| 2103 | x86_spec_ctrl_setup_ap(); |
| 2104 | update_srbds_msr(); |
| 2105 | if (boot_cpu_has_bug(X86_BUG_GDS)) |
| 2106 | update_gds_msr(); |
| 2107 | |
| 2108 | tsx_ap_init(); |
| 2109 | c->initialized = true; |
| 2110 | } |
| 2111 | |
| 2112 | void print_cpu_info(struct cpuinfo_x86 *c) |
| 2113 | { |
| 2114 | const char *vendor = NULL; |
| 2115 | |
| 2116 | if (c->x86_vendor < X86_VENDOR_NUM) { |
| 2117 | vendor = this_cpu->c_vendor; |
| 2118 | } else { |
| 2119 | if (c->cpuid_level >= 0) |
| 2120 | vendor = c->x86_vendor_id; |
| 2121 | } |
| 2122 | |
| 2123 | if (vendor && !strstr(c->x86_model_id, vendor)) |
| 2124 | pr_cont("%s " , vendor); |
| 2125 | |
| 2126 | if (c->x86_model_id[0]) |
| 2127 | pr_cont("%s" , c->x86_model_id); |
| 2128 | else |
| 2129 | pr_cont("%d86" , c->x86); |
| 2130 | |
| 2131 | pr_cont(" (family: 0x%x, model: 0x%x" , c->x86, c->x86_model); |
| 2132 | |
| 2133 | if (c->x86_stepping || c->cpuid_level >= 0) |
| 2134 | pr_cont(", stepping: 0x%x)\n" , c->x86_stepping); |
| 2135 | else |
| 2136 | pr_cont(")\n" ); |
| 2137 | } |
| 2138 | |
| 2139 | /* |
| 2140 | * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param(). |
| 2141 | * These dummy functions prevent them from becoming an environment variable for |
| 2142 | * init. |
| 2143 | */ |
| 2144 | |
| 2145 | static __init int setup_clearcpuid(char *arg) |
| 2146 | { |
| 2147 | return 1; |
| 2148 | } |
| 2149 | __setup("clearcpuid=" , setup_clearcpuid); |
| 2150 | |
| 2151 | static __init int setup_setcpuid(char *arg) |
| 2152 | { |
| 2153 | return 1; |
| 2154 | } |
| 2155 | __setup("setcpuid=" , setup_setcpuid); |
| 2156 | |
| 2157 | DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task; |
| 2158 | EXPORT_PER_CPU_SYMBOL(current_task); |
| 2159 | EXPORT_PER_CPU_SYMBOL(const_current_task); |
| 2160 | |
| 2161 | DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT; |
| 2162 | EXPORT_PER_CPU_SYMBOL(__preempt_count); |
| 2163 | |
| 2164 | DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK; |
| 2165 | |
| 2166 | #ifdef CONFIG_X86_64 |
| 2167 | /* |
| 2168 | * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING |
| 2169 | * so that this space is reserved in the hot cache section even when the |
| 2170 | * mitigation is disabled. |
| 2171 | */ |
| 2172 | DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth); |
| 2173 | EXPORT_PER_CPU_SYMBOL(__x86_call_depth); |
| 2174 | |
| 2175 | static void wrmsrq_cstar(unsigned long val) |
| 2176 | { |
| 2177 | /* |
| 2178 | * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR |
| 2179 | * is so far ignored by the CPU, but raises a #VE trap in a TDX |
| 2180 | * guest. Avoid the pointless write on all Intel CPUs. |
| 2181 | */ |
| 2182 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 2183 | wrmsrq(MSR_CSTAR, val); |
| 2184 | } |
| 2185 | |
| 2186 | static inline void idt_syscall_init(void) |
| 2187 | { |
| 2188 | wrmsrq(MSR_LSTAR, val: (unsigned long)entry_SYSCALL_64); |
| 2189 | |
| 2190 | if (ia32_enabled()) { |
| 2191 | wrmsrq_cstar(val: (unsigned long)entry_SYSCALL_compat); |
| 2192 | /* |
| 2193 | * This only works on Intel CPUs. |
| 2194 | * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. |
| 2195 | * This does not cause SYSENTER to jump to the wrong location, because |
| 2196 | * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). |
| 2197 | */ |
| 2198 | wrmsrq_safe(MSR_IA32_SYSENTER_CS, val: (u64)__KERNEL_CS); |
| 2199 | wrmsrq_safe(MSR_IA32_SYSENTER_ESP, |
| 2200 | val: (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); |
| 2201 | wrmsrq_safe(MSR_IA32_SYSENTER_EIP, val: (u64)entry_SYSENTER_compat); |
| 2202 | } else { |
| 2203 | wrmsrq_cstar(val: (unsigned long)entry_SYSCALL32_ignore); |
| 2204 | wrmsrq_safe(MSR_IA32_SYSENTER_CS, val: (u64)GDT_ENTRY_INVALID_SEG); |
| 2205 | wrmsrq_safe(MSR_IA32_SYSENTER_ESP, val: 0ULL); |
| 2206 | wrmsrq_safe(MSR_IA32_SYSENTER_EIP, val: 0ULL); |
| 2207 | } |
| 2208 | |
| 2209 | /* |
| 2210 | * Flags to clear on syscall; clear as much as possible |
| 2211 | * to minimize user space-kernel interference. |
| 2212 | */ |
| 2213 | wrmsrq(MSR_SYSCALL_MASK, |
| 2214 | X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF| |
| 2215 | X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF| |
| 2216 | X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF| |
| 2217 | X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF| |
| 2218 | X86_EFLAGS_AC|X86_EFLAGS_ID); |
| 2219 | } |
| 2220 | |
| 2221 | /* May not be marked __init: used by software suspend */ |
| 2222 | void syscall_init(void) |
| 2223 | { |
| 2224 | /* The default user and kernel segments */ |
| 2225 | wrmsr(MSR_STAR, low: 0, high: (__USER32_CS << 16) | __KERNEL_CS); |
| 2226 | |
| 2227 | /* |
| 2228 | * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and |
| 2229 | * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED |
| 2230 | * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit |
| 2231 | * instruction to return to ring 3 (both sysexit and sysret cause |
| 2232 | * #UD when FRED is enabled). |
| 2233 | */ |
| 2234 | if (!cpu_feature_enabled(X86_FEATURE_FRED)) |
| 2235 | idt_syscall_init(); |
| 2236 | } |
| 2237 | #endif /* CONFIG_X86_64 */ |
| 2238 | |
| 2239 | #ifdef CONFIG_STACKPROTECTOR |
| 2240 | DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard); |
| 2241 | #ifndef CONFIG_SMP |
| 2242 | EXPORT_PER_CPU_SYMBOL(__stack_chk_guard); |
| 2243 | #endif |
| 2244 | #endif |
| 2245 | |
| 2246 | /* |
| 2247 | * Clear all 6 debug registers: |
| 2248 | */ |
| 2249 | static void clear_all_debug_regs(void) |
| 2250 | { |
| 2251 | int i; |
| 2252 | |
| 2253 | for (i = 0; i < 8; i++) { |
| 2254 | /* Ignore db4, db5 */ |
| 2255 | if ((i == 4) || (i == 5)) |
| 2256 | continue; |
| 2257 | |
| 2258 | set_debugreg(val: 0, reg: i); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | #ifdef CONFIG_KGDB |
| 2263 | /* |
| 2264 | * Restore debug regs if using kgdbwait and you have a kernel debugger |
| 2265 | * connection established. |
| 2266 | */ |
| 2267 | static void dbg_restore_debug_regs(void) |
| 2268 | { |
| 2269 | if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) |
| 2270 | arch_kgdb_ops.correct_hw_break(); |
| 2271 | } |
| 2272 | #else /* ! CONFIG_KGDB */ |
| 2273 | #define dbg_restore_debug_regs() |
| 2274 | #endif /* ! CONFIG_KGDB */ |
| 2275 | |
| 2276 | static inline void setup_getcpu(int cpu) |
| 2277 | { |
| 2278 | unsigned long cpudata = vdso_encode_cpunode(cpu, node: early_cpu_to_node(cpu)); |
| 2279 | struct desc_struct d = { }; |
| 2280 | |
| 2281 | if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID)) |
| 2282 | wrmsrq(MSR_TSC_AUX, val: cpudata); |
| 2283 | |
| 2284 | /* Store CPU and node number in limit. */ |
| 2285 | d.limit0 = cpudata; |
| 2286 | d.limit1 = cpudata >> 16; |
| 2287 | |
| 2288 | d.type = 5; /* RO data, expand down, accessed */ |
| 2289 | d.dpl = 3; /* Visible to user code */ |
| 2290 | d.s = 1; /* Not a system segment */ |
| 2291 | d.p = 1; /* Present */ |
| 2292 | d.d = 1; /* 32-bit */ |
| 2293 | |
| 2294 | write_gdt_entry(dt: get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, desc: &d, type: DESCTYPE_S); |
| 2295 | } |
| 2296 | |
| 2297 | #ifdef CONFIG_X86_64 |
| 2298 | static inline void tss_setup_ist(struct tss_struct *tss) |
| 2299 | { |
| 2300 | /* Set up the per-CPU TSS IST stacks */ |
| 2301 | tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); |
| 2302 | tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); |
| 2303 | tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); |
| 2304 | tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); |
| 2305 | /* Only mapped when SEV-ES is active */ |
| 2306 | tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC); |
| 2307 | } |
| 2308 | #else /* CONFIG_X86_64 */ |
| 2309 | static inline void tss_setup_ist(struct tss_struct *tss) { } |
| 2310 | #endif /* !CONFIG_X86_64 */ |
| 2311 | |
| 2312 | static inline void tss_setup_io_bitmap(struct tss_struct *tss) |
| 2313 | { |
| 2314 | tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; |
| 2315 | |
| 2316 | #ifdef CONFIG_X86_IOPL_IOPERM |
| 2317 | tss->io_bitmap.prev_max = 0; |
| 2318 | tss->io_bitmap.prev_sequence = 0; |
| 2319 | memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); |
| 2320 | /* |
| 2321 | * Invalidate the extra array entry past the end of the all |
| 2322 | * permission bitmap as required by the hardware. |
| 2323 | */ |
| 2324 | tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; |
| 2325 | #endif |
| 2326 | } |
| 2327 | |
| 2328 | /* |
| 2329 | * Setup everything needed to handle exceptions from the IDT, including the IST |
| 2330 | * exceptions which use paranoid_entry(). |
| 2331 | */ |
| 2332 | void cpu_init_exception_handling(bool boot_cpu) |
| 2333 | { |
| 2334 | struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); |
| 2335 | int cpu = raw_smp_processor_id(); |
| 2336 | |
| 2337 | /* paranoid_entry() gets the CPU number from the GDT */ |
| 2338 | setup_getcpu(cpu); |
| 2339 | |
| 2340 | /* For IDT mode, IST vectors need to be set in TSS. */ |
| 2341 | if (!cpu_feature_enabled(X86_FEATURE_FRED)) |
| 2342 | tss_setup_ist(tss); |
| 2343 | tss_setup_io_bitmap(tss); |
| 2344 | set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); |
| 2345 | |
| 2346 | load_TR_desc(); |
| 2347 | |
| 2348 | /* GHCB needs to be setup to handle #VC. */ |
| 2349 | setup_ghcb(); |
| 2350 | |
| 2351 | if (cpu_feature_enabled(X86_FEATURE_FRED)) { |
| 2352 | /* The boot CPU has enabled FRED during early boot */ |
| 2353 | if (!boot_cpu) |
| 2354 | cpu_init_fred_exceptions(); |
| 2355 | |
| 2356 | cpu_init_fred_rsps(); |
| 2357 | } else { |
| 2358 | load_current_idt(); |
| 2359 | } |
| 2360 | } |
| 2361 | |
| 2362 | void __init cpu_init_replace_early_idt(void) |
| 2363 | { |
| 2364 | if (cpu_feature_enabled(X86_FEATURE_FRED)) |
| 2365 | cpu_init_fred_exceptions(); |
| 2366 | else |
| 2367 | idt_setup_early_pf(); |
| 2368 | } |
| 2369 | |
| 2370 | /* |
| 2371 | * cpu_init() initializes state that is per-CPU. Some data is already |
| 2372 | * initialized (naturally) in the bootstrap process, such as the GDT. We |
| 2373 | * reload it nevertheless, this function acts as a 'CPU state barrier', |
| 2374 | * nothing should get across. |
| 2375 | */ |
| 2376 | void cpu_init(void) |
| 2377 | { |
| 2378 | struct task_struct *cur = current; |
| 2379 | int cpu = raw_smp_processor_id(); |
| 2380 | |
| 2381 | #ifdef CONFIG_NUMA |
| 2382 | if (this_cpu_read(numa_node) == 0 && |
| 2383 | early_cpu_to_node(cpu) != NUMA_NO_NODE) |
| 2384 | set_numa_node(early_cpu_to_node(cpu)); |
| 2385 | #endif |
| 2386 | pr_debug("Initializing CPU#%d\n" , cpu); |
| 2387 | |
| 2388 | if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || |
| 2389 | boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) |
| 2390 | cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
| 2391 | |
| 2392 | if (IS_ENABLED(CONFIG_X86_64)) { |
| 2393 | loadsegment(fs, 0); |
| 2394 | memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); |
| 2395 | syscall_init(); |
| 2396 | |
| 2397 | wrmsrq(MSR_FS_BASE, val: 0); |
| 2398 | wrmsrq(MSR_KERNEL_GS_BASE, val: 0); |
| 2399 | barrier(); |
| 2400 | |
| 2401 | x2apic_setup(); |
| 2402 | |
| 2403 | intel_posted_msi_init(); |
| 2404 | } |
| 2405 | |
| 2406 | mmgrab(mm: &init_mm); |
| 2407 | cur->active_mm = &init_mm; |
| 2408 | BUG_ON(cur->mm); |
| 2409 | initialize_tlbstate_and_flush(); |
| 2410 | enter_lazy_tlb(mm: &init_mm, tsk: cur); |
| 2411 | |
| 2412 | /* |
| 2413 | * sp0 points to the entry trampoline stack regardless of what task |
| 2414 | * is running. |
| 2415 | */ |
| 2416 | load_sp0(sp0: (unsigned long)(cpu_entry_stack(cpu) + 1)); |
| 2417 | |
| 2418 | load_mm_ldt(mm: &init_mm); |
| 2419 | |
| 2420 | clear_all_debug_regs(); |
| 2421 | dbg_restore_debug_regs(); |
| 2422 | |
| 2423 | doublefault_init_cpu_tss(); |
| 2424 | |
| 2425 | if (is_uv_system()) |
| 2426 | uv_cpu_init(); |
| 2427 | |
| 2428 | load_fixmap_gdt(cpu); |
| 2429 | } |
| 2430 | |
| 2431 | #ifdef CONFIG_MICROCODE_LATE_LOADING |
| 2432 | /** |
| 2433 | * store_cpu_caps() - Store a snapshot of CPU capabilities |
| 2434 | * @curr_info: Pointer where to store it |
| 2435 | * |
| 2436 | * Returns: None |
| 2437 | */ |
| 2438 | void store_cpu_caps(struct cpuinfo_x86 *curr_info) |
| 2439 | { |
| 2440 | /* Reload CPUID max function as it might've changed. */ |
| 2441 | curr_info->cpuid_level = cpuid_eax(op: 0); |
| 2442 | |
| 2443 | /* Copy all capability leafs and pick up the synthetic ones. */ |
| 2444 | memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability, |
| 2445 | sizeof(curr_info->x86_capability)); |
| 2446 | |
| 2447 | /* Get the hardware CPUID leafs */ |
| 2448 | get_cpu_cap(c: curr_info); |
| 2449 | } |
| 2450 | |
| 2451 | /** |
| 2452 | * microcode_check() - Check if any CPU capabilities changed after an update. |
| 2453 | * @prev_info: CPU capabilities stored before an update. |
| 2454 | * |
| 2455 | * The microcode loader calls this upon late microcode load to recheck features, |
| 2456 | * only when microcode has been updated. Caller holds and CPU hotplug lock. |
| 2457 | * |
| 2458 | * Return: None |
| 2459 | */ |
| 2460 | void microcode_check(struct cpuinfo_x86 *prev_info) |
| 2461 | { |
| 2462 | struct cpuinfo_x86 curr_info; |
| 2463 | |
| 2464 | perf_check_microcode(); |
| 2465 | |
| 2466 | amd_check_microcode(); |
| 2467 | |
| 2468 | store_cpu_caps(curr_info: &curr_info); |
| 2469 | |
| 2470 | if (!memcmp(p: &prev_info->x86_capability, q: &curr_info.x86_capability, |
| 2471 | size: sizeof(prev_info->x86_capability))) |
| 2472 | return; |
| 2473 | |
| 2474 | pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n" ); |
| 2475 | pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n" ); |
| 2476 | } |
| 2477 | #endif |
| 2478 | |
| 2479 | /* |
| 2480 | * Invoked from core CPU hotplug code after hotplug operations |
| 2481 | */ |
| 2482 | void arch_smt_update(void) |
| 2483 | { |
| 2484 | /* Handle the speculative execution misfeatures */ |
| 2485 | cpu_bugs_smt_update(); |
| 2486 | /* Check whether IPI broadcasting can be enabled */ |
| 2487 | apic_smt_update(); |
| 2488 | } |
| 2489 | |
| 2490 | void __init arch_cpu_finalize_init(void) |
| 2491 | { |
| 2492 | struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); |
| 2493 | |
| 2494 | identify_boot_cpu(); |
| 2495 | |
| 2496 | select_idle_routine(); |
| 2497 | |
| 2498 | /* |
| 2499 | * identify_boot_cpu() initialized SMT support information, let the |
| 2500 | * core code know. |
| 2501 | */ |
| 2502 | cpu_smt_set_num_threads(num_threads: __max_threads_per_core, max_threads: __max_threads_per_core); |
| 2503 | |
| 2504 | if (!IS_ENABLED(CONFIG_SMP)) { |
| 2505 | pr_info("CPU: " ); |
| 2506 | print_cpu_info(c: &boot_cpu_data); |
| 2507 | } |
| 2508 | |
| 2509 | cpu_select_mitigations(); |
| 2510 | |
| 2511 | arch_smt_update(); |
| 2512 | |
| 2513 | if (IS_ENABLED(CONFIG_X86_32)) { |
| 2514 | /* |
| 2515 | * Check whether this is a real i386 which is not longer |
| 2516 | * supported and fixup the utsname. |
| 2517 | */ |
| 2518 | if (boot_cpu_data.x86 < 4) |
| 2519 | panic(fmt: "Kernel requires i486+ for 'invlpg' and other features" ); |
| 2520 | |
| 2521 | init_utsname()->machine[1] = |
| 2522 | '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); |
| 2523 | } |
| 2524 | |
| 2525 | /* |
| 2526 | * Must be before alternatives because it might set or clear |
| 2527 | * feature bits. |
| 2528 | */ |
| 2529 | fpu__init_system(); |
| 2530 | fpu__init_cpu(); |
| 2531 | |
| 2532 | /* |
| 2533 | * Ensure that access to the per CPU representation has the initial |
| 2534 | * boot CPU configuration. |
| 2535 | */ |
| 2536 | *c = boot_cpu_data; |
| 2537 | c->initialized = true; |
| 2538 | |
| 2539 | alternative_instructions(); |
| 2540 | |
| 2541 | if (IS_ENABLED(CONFIG_X86_64)) { |
| 2542 | unsigned long USER_PTR_MAX = TASK_SIZE_MAX; |
| 2543 | |
| 2544 | /* |
| 2545 | * Enable this when LAM is gated on LASS support |
| 2546 | if (cpu_feature_enabled(X86_FEATURE_LAM)) |
| 2547 | USER_PTR_MAX = (1ul << 63) - PAGE_SIZE; |
| 2548 | */ |
| 2549 | runtime_const_init(ptr, USER_PTR_MAX); |
| 2550 | |
| 2551 | /* |
| 2552 | * Make sure the first 2MB area is not mapped by huge pages |
| 2553 | * There are typically fixed size MTRRs in there and overlapping |
| 2554 | * MTRRs into large pages causes slow downs. |
| 2555 | * |
| 2556 | * Right now we don't do that with gbpages because there seems |
| 2557 | * very little benefit for that case. |
| 2558 | */ |
| 2559 | if (!direct_gbpages) |
| 2560 | set_memory_4k(addr: (unsigned long)__va(0), numpages: 1); |
| 2561 | } else { |
| 2562 | fpu__init_check_bugs(); |
| 2563 | } |
| 2564 | |
| 2565 | /* |
| 2566 | * This needs to be called before any devices perform DMA |
| 2567 | * operations that might use the SWIOTLB bounce buffers. It will |
| 2568 | * mark the bounce buffers as decrypted so that their usage will |
| 2569 | * not cause "plain-text" data to be decrypted when accessed. It |
| 2570 | * must be called after late_time_init() so that Hyper-V x86/x64 |
| 2571 | * hypercalls work when the SWIOTLB bounce buffers are decrypted. |
| 2572 | */ |
| 2573 | mem_encrypt_init(); |
| 2574 | } |
| 2575 | |