| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright(c) 2013 - 2018 Intel Corporation. */ |
| 3 | |
| 4 | #include <linux/bpf_trace.h> |
| 5 | #include <linux/net/intel/libie/rx.h> |
| 6 | #include <linux/prefetch.h> |
| 7 | #include <linux/sctp.h> |
| 8 | #include <net/mpls.h> |
| 9 | #include <net/xdp.h> |
| 10 | #include "i40e_txrx_common.h" |
| 11 | #include "i40e_trace.h" |
| 12 | #include "i40e_xsk.h" |
| 13 | |
| 14 | #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) |
| 15 | /** |
| 16 | * i40e_fdir - Generate a Flow Director descriptor based on fdata |
| 17 | * @tx_ring: Tx ring to send buffer on |
| 18 | * @fdata: Flow director filter data |
| 19 | * @add: Indicate if we are adding a rule or deleting one |
| 20 | * |
| 21 | **/ |
| 22 | static void i40e_fdir(struct i40e_ring *tx_ring, |
| 23 | struct i40e_fdir_filter *fdata, bool add) |
| 24 | { |
| 25 | struct i40e_filter_program_desc *fdir_desc; |
| 26 | struct i40e_pf *pf = tx_ring->vsi->back; |
| 27 | u32 flex_ptype, dtype_cmd, vsi_id; |
| 28 | u16 i; |
| 29 | |
| 30 | /* grab the next descriptor */ |
| 31 | i = tx_ring->next_to_use; |
| 32 | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); |
| 33 | |
| 34 | i++; |
| 35 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| 36 | |
| 37 | flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index); |
| 38 | |
| 39 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK, |
| 40 | fdata->flex_off); |
| 41 | |
| 42 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype); |
| 43 | |
| 44 | /* Use LAN VSI Id if not programmed by user */ |
| 45 | vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id; |
| 46 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id); |
| 47 | |
| 48 | dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; |
| 49 | |
| 50 | dtype_cmd |= add ? |
| 51 | I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << |
| 52 | I40E_TXD_FLTR_QW1_PCMD_SHIFT : |
| 53 | I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << |
| 54 | I40E_TXD_FLTR_QW1_PCMD_SHIFT; |
| 55 | |
| 56 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl); |
| 57 | |
| 58 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK, |
| 59 | fdata->fd_status); |
| 60 | |
| 61 | if (fdata->cnt_index) { |
| 62 | dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; |
| 63 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
| 64 | fdata->cnt_index); |
| 65 | } |
| 66 | |
| 67 | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); |
| 68 | fdir_desc->rsvd = cpu_to_le32(0); |
| 69 | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); |
| 70 | fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); |
| 71 | } |
| 72 | |
| 73 | #define I40E_FD_CLEAN_DELAY 10 |
| 74 | /** |
| 75 | * i40e_program_fdir_filter - Program a Flow Director filter |
| 76 | * @fdir_data: Packet data that will be filter parameters |
| 77 | * @raw_packet: the pre-allocated packet buffer for FDir |
| 78 | * @pf: The PF pointer |
| 79 | * @add: True for add/update, False for remove |
| 80 | **/ |
| 81 | static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, |
| 82 | u8 *raw_packet, struct i40e_pf *pf, |
| 83 | bool add) |
| 84 | { |
| 85 | struct i40e_tx_buffer *tx_buf, *first; |
| 86 | struct i40e_tx_desc *tx_desc; |
| 87 | struct i40e_ring *tx_ring; |
| 88 | struct i40e_vsi *vsi; |
| 89 | struct device *dev; |
| 90 | dma_addr_t dma; |
| 91 | u32 td_cmd = 0; |
| 92 | u16 i; |
| 93 | |
| 94 | /* find existing FDIR VSI */ |
| 95 | vsi = i40e_find_vsi_by_type(pf, type: I40E_VSI_FDIR); |
| 96 | if (!vsi) |
| 97 | return -ENOENT; |
| 98 | |
| 99 | tx_ring = vsi->tx_rings[0]; |
| 100 | dev = tx_ring->dev; |
| 101 | |
| 102 | /* we need two descriptors to add/del a filter and we can wait */ |
| 103 | for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { |
| 104 | if (!i) |
| 105 | return -EAGAIN; |
| 106 | msleep_interruptible(msecs: 1); |
| 107 | } |
| 108 | |
| 109 | dma = dma_map_single(dev, raw_packet, |
| 110 | I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); |
| 111 | if (dma_mapping_error(dev, dma_addr: dma)) |
| 112 | goto dma_fail; |
| 113 | |
| 114 | /* grab the next descriptor */ |
| 115 | i = tx_ring->next_to_use; |
| 116 | first = &tx_ring->tx_bi[i]; |
| 117 | i40e_fdir(tx_ring, fdata: fdir_data, add); |
| 118 | |
| 119 | /* Now program a dummy descriptor */ |
| 120 | i = tx_ring->next_to_use; |
| 121 | tx_desc = I40E_TX_DESC(tx_ring, i); |
| 122 | tx_buf = &tx_ring->tx_bi[i]; |
| 123 | |
| 124 | tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; |
| 125 | |
| 126 | memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); |
| 127 | |
| 128 | /* record length, and DMA address */ |
| 129 | dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); |
| 130 | dma_unmap_addr_set(tx_buf, dma, dma); |
| 131 | |
| 132 | tx_desc->buffer_addr = cpu_to_le64(dma); |
| 133 | td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; |
| 134 | |
| 135 | tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; |
| 136 | tx_buf->raw_buf = (void *)raw_packet; |
| 137 | |
| 138 | tx_desc->cmd_type_offset_bsz = |
| 139 | build_ctob(td_cmd, td_offset: 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, td_tag: 0); |
| 140 | |
| 141 | /* Force memory writes to complete before letting h/w |
| 142 | * know there are new descriptors to fetch. |
| 143 | */ |
| 144 | wmb(); |
| 145 | |
| 146 | /* Mark the data descriptor to be watched */ |
| 147 | first->next_to_watch = tx_desc; |
| 148 | |
| 149 | writel(val: tx_ring->next_to_use, addr: tx_ring->tail); |
| 150 | return 0; |
| 151 | |
| 152 | dma_fail: |
| 153 | return -1; |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | * i40e_create_dummy_packet - Constructs dummy packet for HW |
| 158 | * @dummy_packet: preallocated space for dummy packet |
| 159 | * @ipv4: is layer 3 packet of version 4 or 6 |
| 160 | * @l4proto: next level protocol used in data portion of l3 |
| 161 | * @data: filter data |
| 162 | * |
| 163 | * Returns address of layer 4 protocol dummy packet. |
| 164 | **/ |
| 165 | static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, |
| 166 | struct i40e_fdir_filter *data) |
| 167 | { |
| 168 | bool is_vlan = !!data->vlan_tag; |
| 169 | struct vlan_hdr vlan = {}; |
| 170 | struct ipv6hdr ipv6 = {}; |
| 171 | struct ethhdr eth = {}; |
| 172 | struct iphdr ip = {}; |
| 173 | u8 *tmp; |
| 174 | |
| 175 | if (ipv4) { |
| 176 | eth.h_proto = cpu_to_be16(ETH_P_IP); |
| 177 | ip.protocol = l4proto; |
| 178 | ip.version = 0x4; |
| 179 | ip.ihl = 0x5; |
| 180 | |
| 181 | ip.daddr = data->dst_ip; |
| 182 | ip.saddr = data->src_ip; |
| 183 | } else { |
| 184 | eth.h_proto = cpu_to_be16(ETH_P_IPV6); |
| 185 | ipv6.nexthdr = l4proto; |
| 186 | ipv6.version = 0x6; |
| 187 | |
| 188 | memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, |
| 189 | sizeof(__be32) * 4); |
| 190 | memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, |
| 191 | sizeof(__be32) * 4); |
| 192 | } |
| 193 | |
| 194 | if (is_vlan) { |
| 195 | vlan.h_vlan_TCI = data->vlan_tag; |
| 196 | vlan.h_vlan_encapsulated_proto = eth.h_proto; |
| 197 | eth.h_proto = data->vlan_etype; |
| 198 | } |
| 199 | |
| 200 | tmp = dummy_packet; |
| 201 | memcpy(tmp, ð, sizeof(eth)); |
| 202 | tmp += sizeof(eth); |
| 203 | |
| 204 | if (is_vlan) { |
| 205 | memcpy(tmp, &vlan, sizeof(vlan)); |
| 206 | tmp += sizeof(vlan); |
| 207 | } |
| 208 | |
| 209 | if (ipv4) { |
| 210 | memcpy(tmp, &ip, sizeof(ip)); |
| 211 | tmp += sizeof(ip); |
| 212 | } else { |
| 213 | memcpy(tmp, &ipv6, sizeof(ipv6)); |
| 214 | tmp += sizeof(ipv6); |
| 215 | } |
| 216 | |
| 217 | return tmp; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * i40e_create_dummy_udp_packet - helper function to create UDP packet |
| 222 | * @raw_packet: preallocated space for dummy packet |
| 223 | * @ipv4: is layer 3 packet of version 4 or 6 |
| 224 | * @l4proto: next level protocol used in data portion of l3 |
| 225 | * @data: filter data |
| 226 | * |
| 227 | * Helper function to populate udp fields. |
| 228 | **/ |
| 229 | static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, |
| 230 | struct i40e_fdir_filter *data) |
| 231 | { |
| 232 | struct udphdr *udp; |
| 233 | u8 *tmp; |
| 234 | |
| 235 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_UDP, data); |
| 236 | udp = (struct udphdr *)(tmp); |
| 237 | udp->dest = data->dst_port; |
| 238 | udp->source = data->src_port; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | * i40e_create_dummy_tcp_packet - helper function to create TCP packet |
| 243 | * @raw_packet: preallocated space for dummy packet |
| 244 | * @ipv4: is layer 3 packet of version 4 or 6 |
| 245 | * @l4proto: next level protocol used in data portion of l3 |
| 246 | * @data: filter data |
| 247 | * |
| 248 | * Helper function to populate tcp fields. |
| 249 | **/ |
| 250 | static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, |
| 251 | struct i40e_fdir_filter *data) |
| 252 | { |
| 253 | struct tcphdr *tcp; |
| 254 | u8 *tmp; |
| 255 | /* Dummy tcp packet */ |
| 256 | static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 257 | 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; |
| 258 | |
| 259 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_TCP, data); |
| 260 | |
| 261 | tcp = (struct tcphdr *)tmp; |
| 262 | memcpy(tcp, tcp_packet, sizeof(tcp_packet)); |
| 263 | tcp->dest = data->dst_port; |
| 264 | tcp->source = data->src_port; |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * i40e_create_dummy_sctp_packet - helper function to create SCTP packet |
| 269 | * @raw_packet: preallocated space for dummy packet |
| 270 | * @ipv4: is layer 3 packet of version 4 or 6 |
| 271 | * @l4proto: next level protocol used in data portion of l3 |
| 272 | * @data: filter data |
| 273 | * |
| 274 | * Helper function to populate sctp fields. |
| 275 | **/ |
| 276 | static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, |
| 277 | u8 l4proto, |
| 278 | struct i40e_fdir_filter *data) |
| 279 | { |
| 280 | struct sctphdr *sctp; |
| 281 | u8 *tmp; |
| 282 | |
| 283 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_SCTP, data); |
| 284 | |
| 285 | sctp = (struct sctphdr *)tmp; |
| 286 | sctp->dest = data->dst_port; |
| 287 | sctp->source = data->src_port; |
| 288 | } |
| 289 | |
| 290 | /** |
| 291 | * i40e_prepare_fdir_filter - Prepare and program fdir filter |
| 292 | * @pf: physical function to attach filter to |
| 293 | * @fd_data: filter data |
| 294 | * @add: add or delete filter |
| 295 | * @packet_addr: address of dummy packet, used in filtering |
| 296 | * @payload_offset: offset from dummy packet address to user defined data |
| 297 | * @pctype: Packet type for which filter is used |
| 298 | * |
| 299 | * Helper function to offset data of dummy packet, program it and |
| 300 | * handle errors. |
| 301 | **/ |
| 302 | static int i40e_prepare_fdir_filter(struct i40e_pf *pf, |
| 303 | struct i40e_fdir_filter *fd_data, |
| 304 | bool add, char *packet_addr, |
| 305 | int payload_offset, u8 pctype) |
| 306 | { |
| 307 | int ret; |
| 308 | |
| 309 | if (fd_data->flex_filter) { |
| 310 | u8 *payload; |
| 311 | __be16 pattern = fd_data->flex_word; |
| 312 | u16 off = fd_data->flex_offset; |
| 313 | |
| 314 | payload = packet_addr + payload_offset; |
| 315 | |
| 316 | /* If user provided vlan, offset payload by vlan header length */ |
| 317 | if (!!fd_data->vlan_tag) |
| 318 | payload += VLAN_HLEN; |
| 319 | |
| 320 | *((__force __be16 *)(payload + off)) = pattern; |
| 321 | } |
| 322 | |
| 323 | fd_data->pctype = pctype; |
| 324 | ret = i40e_program_fdir_filter(fdir_data: fd_data, raw_packet: packet_addr, pf, add); |
| 325 | if (ret) { |
| 326 | dev_info(&pf->pdev->dev, |
| 327 | "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n" , |
| 328 | fd_data->pctype, fd_data->fd_id, ret); |
| 329 | /* Free the packet buffer since it wasn't added to the ring */ |
| 330 | return -EOPNOTSUPP; |
| 331 | } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { |
| 332 | if (add) |
| 333 | dev_info(&pf->pdev->dev, |
| 334 | "Filter OK for PCTYPE %d loc = %d\n" , |
| 335 | fd_data->pctype, fd_data->fd_id); |
| 336 | else |
| 337 | dev_info(&pf->pdev->dev, |
| 338 | "Filter deleted for PCTYPE %d loc = %d\n" , |
| 339 | fd_data->pctype, fd_data->fd_id); |
| 340 | } |
| 341 | |
| 342 | return ret; |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * i40e_change_filter_num - Prepare and program fdir filter |
| 347 | * @ipv4: is layer 3 packet of version 4 or 6 |
| 348 | * @add: add or delete filter |
| 349 | * @ipv4_filter_num: field to update |
| 350 | * @ipv6_filter_num: field to update |
| 351 | * |
| 352 | * Update filter number field for pf. |
| 353 | **/ |
| 354 | static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, |
| 355 | u16 *ipv6_filter_num) |
| 356 | { |
| 357 | if (add) { |
| 358 | if (ipv4) |
| 359 | (*ipv4_filter_num)++; |
| 360 | else |
| 361 | (*ipv6_filter_num)++; |
| 362 | } else { |
| 363 | if (ipv4) |
| 364 | (*ipv4_filter_num)--; |
| 365 | else |
| 366 | (*ipv6_filter_num)--; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | #define I40E_UDPIP_DUMMY_PACKET_LEN 42 |
| 371 | #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 |
| 372 | /** |
| 373 | * i40e_add_del_fdir_udp - Add/Remove UDP filters |
| 374 | * @vsi: pointer to the targeted VSI |
| 375 | * @fd_data: the flow director data required for the FDir descriptor |
| 376 | * @add: true adds a filter, false removes it |
| 377 | * @ipv4: true is v4, false is v6 |
| 378 | * |
| 379 | * Returns 0 if the filters were successfully added or removed |
| 380 | **/ |
| 381 | static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, |
| 382 | struct i40e_fdir_filter *fd_data, |
| 383 | bool add, |
| 384 | bool ipv4) |
| 385 | { |
| 386 | struct i40e_pf *pf = vsi->back; |
| 387 | u8 *raw_packet; |
| 388 | int ret; |
| 389 | |
| 390 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
| 391 | if (!raw_packet) |
| 392 | return -ENOMEM; |
| 393 | |
| 394 | i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, data: fd_data); |
| 395 | |
| 396 | if (ipv4) |
| 397 | ret = i40e_prepare_fdir_filter |
| 398 | (pf, fd_data, add, packet_addr: raw_packet, |
| 399 | I40E_UDPIP_DUMMY_PACKET_LEN, |
| 400 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_UDP); |
| 401 | else |
| 402 | ret = i40e_prepare_fdir_filter |
| 403 | (pf, fd_data, add, packet_addr: raw_packet, |
| 404 | I40E_UDPIP6_DUMMY_PACKET_LEN, |
| 405 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_UDP); |
| 406 | |
| 407 | if (ret) { |
| 408 | kfree(objp: raw_packet); |
| 409 | return ret; |
| 410 | } |
| 411 | |
| 412 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_udp4_filter_cnt, |
| 413 | ipv6_filter_num: &pf->fd_udp6_filter_cnt); |
| 414 | |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | #define I40E_TCPIP_DUMMY_PACKET_LEN 54 |
| 419 | #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 |
| 420 | /** |
| 421 | * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters |
| 422 | * @vsi: pointer to the targeted VSI |
| 423 | * @fd_data: the flow director data required for the FDir descriptor |
| 424 | * @add: true adds a filter, false removes it |
| 425 | * @ipv4: true is v4, false is v6 |
| 426 | * |
| 427 | * Returns 0 if the filters were successfully added or removed |
| 428 | **/ |
| 429 | static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, |
| 430 | struct i40e_fdir_filter *fd_data, |
| 431 | bool add, |
| 432 | bool ipv4) |
| 433 | { |
| 434 | struct i40e_pf *pf = vsi->back; |
| 435 | u8 *raw_packet; |
| 436 | int ret; |
| 437 | |
| 438 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
| 439 | if (!raw_packet) |
| 440 | return -ENOMEM; |
| 441 | |
| 442 | i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, data: fd_data); |
| 443 | if (ipv4) |
| 444 | ret = i40e_prepare_fdir_filter |
| 445 | (pf, fd_data, add, packet_addr: raw_packet, |
| 446 | I40E_TCPIP_DUMMY_PACKET_LEN, |
| 447 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_TCP); |
| 448 | else |
| 449 | ret = i40e_prepare_fdir_filter |
| 450 | (pf, fd_data, add, packet_addr: raw_packet, |
| 451 | I40E_TCPIP6_DUMMY_PACKET_LEN, |
| 452 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_TCP); |
| 453 | |
| 454 | if (ret) { |
| 455 | kfree(objp: raw_packet); |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_tcp4_filter_cnt, |
| 460 | ipv6_filter_num: &pf->fd_tcp6_filter_cnt); |
| 461 | |
| 462 | if (add) { |
| 463 | if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && |
| 464 | I40E_DEBUG_FD & pf->hw.debug_mask) |
| 465 | dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n" ); |
| 466 | set_bit(nr: __I40E_FD_ATR_AUTO_DISABLED, addr: pf->state); |
| 467 | } |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 |
| 472 | #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 |
| 473 | /** |
| 474 | * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for |
| 475 | * a specific flow spec |
| 476 | * @vsi: pointer to the targeted VSI |
| 477 | * @fd_data: the flow director data required for the FDir descriptor |
| 478 | * @add: true adds a filter, false removes it |
| 479 | * @ipv4: true is v4, false is v6 |
| 480 | * |
| 481 | * Returns 0 if the filters were successfully added or removed |
| 482 | **/ |
| 483 | static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, |
| 484 | struct i40e_fdir_filter *fd_data, |
| 485 | bool add, |
| 486 | bool ipv4) |
| 487 | { |
| 488 | struct i40e_pf *pf = vsi->back; |
| 489 | u8 *raw_packet; |
| 490 | int ret; |
| 491 | |
| 492 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
| 493 | if (!raw_packet) |
| 494 | return -ENOMEM; |
| 495 | |
| 496 | i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, data: fd_data); |
| 497 | |
| 498 | if (ipv4) |
| 499 | ret = i40e_prepare_fdir_filter |
| 500 | (pf, fd_data, add, packet_addr: raw_packet, |
| 501 | I40E_SCTPIP_DUMMY_PACKET_LEN, |
| 502 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); |
| 503 | else |
| 504 | ret = i40e_prepare_fdir_filter |
| 505 | (pf, fd_data, add, packet_addr: raw_packet, |
| 506 | I40E_SCTPIP6_DUMMY_PACKET_LEN, |
| 507 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); |
| 508 | |
| 509 | if (ret) { |
| 510 | kfree(objp: raw_packet); |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_sctp4_filter_cnt, |
| 515 | ipv6_filter_num: &pf->fd_sctp6_filter_cnt); |
| 516 | |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | #define I40E_IP_DUMMY_PACKET_LEN 34 |
| 521 | #define I40E_IP6_DUMMY_PACKET_LEN 54 |
| 522 | /** |
| 523 | * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for |
| 524 | * a specific flow spec |
| 525 | * @vsi: pointer to the targeted VSI |
| 526 | * @fd_data: the flow director data required for the FDir descriptor |
| 527 | * @add: true adds a filter, false removes it |
| 528 | * @ipv4: true is v4, false is v6 |
| 529 | * |
| 530 | * Returns 0 if the filters were successfully added or removed |
| 531 | **/ |
| 532 | static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, |
| 533 | struct i40e_fdir_filter *fd_data, |
| 534 | bool add, |
| 535 | bool ipv4) |
| 536 | { |
| 537 | struct i40e_pf *pf = vsi->back; |
| 538 | int payload_offset; |
| 539 | u8 *raw_packet; |
| 540 | int iter_start; |
| 541 | int iter_end; |
| 542 | int ret; |
| 543 | int i; |
| 544 | |
| 545 | if (ipv4) { |
| 546 | iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; |
| 547 | iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; |
| 548 | } else { |
| 549 | iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; |
| 550 | iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; |
| 551 | } |
| 552 | |
| 553 | for (i = iter_start; i <= iter_end; i++) { |
| 554 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
| 555 | if (!raw_packet) |
| 556 | return -ENOMEM; |
| 557 | |
| 558 | /* IPv6 no header option differs from IPv4 */ |
| 559 | (void)i40e_create_dummy_packet |
| 560 | (dummy_packet: raw_packet, ipv4, l4proto: (ipv4) ? IPPROTO_IP : IPPROTO_NONE, |
| 561 | data: fd_data); |
| 562 | |
| 563 | payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : |
| 564 | I40E_IP6_DUMMY_PACKET_LEN; |
| 565 | ret = i40e_prepare_fdir_filter(pf, fd_data, add, packet_addr: raw_packet, |
| 566 | payload_offset, pctype: i); |
| 567 | if (ret) |
| 568 | goto err; |
| 569 | } |
| 570 | |
| 571 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_ip4_filter_cnt, |
| 572 | ipv6_filter_num: &pf->fd_ip6_filter_cnt); |
| 573 | |
| 574 | return 0; |
| 575 | err: |
| 576 | kfree(objp: raw_packet); |
| 577 | return ret; |
| 578 | } |
| 579 | |
| 580 | /** |
| 581 | * i40e_add_del_fdir - Build raw packets to add/del fdir filter |
| 582 | * @vsi: pointer to the targeted VSI |
| 583 | * @input: filter to add or delete |
| 584 | * @add: true adds a filter, false removes it |
| 585 | * |
| 586 | **/ |
| 587 | int i40e_add_del_fdir(struct i40e_vsi *vsi, |
| 588 | struct i40e_fdir_filter *input, bool add) |
| 589 | { |
| 590 | enum ip_ver { ipv6 = 0, ipv4 = 1 }; |
| 591 | struct i40e_pf *pf = vsi->back; |
| 592 | int ret; |
| 593 | |
| 594 | switch (input->flow_type & ~FLOW_EXT) { |
| 595 | case TCP_V4_FLOW: |
| 596 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4); |
| 597 | break; |
| 598 | case UDP_V4_FLOW: |
| 599 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4); |
| 600 | break; |
| 601 | case SCTP_V4_FLOW: |
| 602 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4); |
| 603 | break; |
| 604 | case TCP_V6_FLOW: |
| 605 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4: ipv6); |
| 606 | break; |
| 607 | case UDP_V6_FLOW: |
| 608 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4: ipv6); |
| 609 | break; |
| 610 | case SCTP_V6_FLOW: |
| 611 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4: ipv6); |
| 612 | break; |
| 613 | case IP_USER_FLOW: |
| 614 | switch (input->ipl4_proto) { |
| 615 | case IPPROTO_TCP: |
| 616 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4); |
| 617 | break; |
| 618 | case IPPROTO_UDP: |
| 619 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4); |
| 620 | break; |
| 621 | case IPPROTO_SCTP: |
| 622 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4); |
| 623 | break; |
| 624 | case IPPROTO_IP: |
| 625 | ret = i40e_add_del_fdir_ip(vsi, fd_data: input, add, ipv4); |
| 626 | break; |
| 627 | default: |
| 628 | /* We cannot support masking based on protocol */ |
| 629 | dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n" , |
| 630 | input->ipl4_proto); |
| 631 | return -EINVAL; |
| 632 | } |
| 633 | break; |
| 634 | case IPV6_USER_FLOW: |
| 635 | switch (input->ipl4_proto) { |
| 636 | case IPPROTO_TCP: |
| 637 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4: ipv6); |
| 638 | break; |
| 639 | case IPPROTO_UDP: |
| 640 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4: ipv6); |
| 641 | break; |
| 642 | case IPPROTO_SCTP: |
| 643 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4: ipv6); |
| 644 | break; |
| 645 | case IPPROTO_IP: |
| 646 | ret = i40e_add_del_fdir_ip(vsi, fd_data: input, add, ipv4: ipv6); |
| 647 | break; |
| 648 | default: |
| 649 | /* We cannot support masking based on protocol */ |
| 650 | dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n" , |
| 651 | input->ipl4_proto); |
| 652 | return -EINVAL; |
| 653 | } |
| 654 | break; |
| 655 | default: |
| 656 | dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n" , |
| 657 | input->flow_type); |
| 658 | return -EINVAL; |
| 659 | } |
| 660 | |
| 661 | /* The buffer allocated here will be normally be freed by |
| 662 | * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit |
| 663 | * completion. In the event of an error adding the buffer to the FDIR |
| 664 | * ring, it will immediately be freed. It may also be freed by |
| 665 | * i40e_clean_tx_ring() when closing the VSI. |
| 666 | */ |
| 667 | return ret; |
| 668 | } |
| 669 | |
| 670 | /** |
| 671 | * i40e_fd_handle_status - check the Programming Status for FD |
| 672 | * @rx_ring: the Rx ring for this descriptor |
| 673 | * @qword0_raw: qword0 |
| 674 | * @qword1: qword1 after le_to_cpu |
| 675 | * @prog_id: the id originally used for programming |
| 676 | * |
| 677 | * This is used to verify if the FD programming or invalidation |
| 678 | * requested by SW to the HW is successful or not and take actions accordingly. |
| 679 | **/ |
| 680 | static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, |
| 681 | u64 qword1, u8 prog_id) |
| 682 | { |
| 683 | struct i40e_pf *pf = rx_ring->vsi->back; |
| 684 | struct pci_dev *pdev = pf->pdev; |
| 685 | struct i40e_16b_rx_wb_qw0 *qw0; |
| 686 | u32 fcnt_prog, fcnt_avail; |
| 687 | u32 error; |
| 688 | |
| 689 | qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; |
| 690 | error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1); |
| 691 | |
| 692 | if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { |
| 693 | pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); |
| 694 | if (qw0->hi_dword.fd_id != 0 || |
| 695 | (I40E_DEBUG_FD & pf->hw.debug_mask)) |
| 696 | dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n" , |
| 697 | pf->fd_inv); |
| 698 | |
| 699 | /* Check if the programming error is for ATR. |
| 700 | * If so, auto disable ATR and set a state for |
| 701 | * flush in progress. Next time we come here if flush is in |
| 702 | * progress do nothing, once flush is complete the state will |
| 703 | * be cleared. |
| 704 | */ |
| 705 | if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) |
| 706 | return; |
| 707 | |
| 708 | pf->fd_add_err++; |
| 709 | /* store the current atr filter count */ |
| 710 | pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); |
| 711 | |
| 712 | if (qw0->hi_dword.fd_id == 0 && |
| 713 | test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { |
| 714 | /* These set_bit() calls aren't atomic with the |
| 715 | * test_bit() here, but worse case we potentially |
| 716 | * disable ATR and queue a flush right after SB |
| 717 | * support is re-enabled. That shouldn't cause an |
| 718 | * issue in practice |
| 719 | */ |
| 720 | set_bit(nr: __I40E_FD_ATR_AUTO_DISABLED, addr: pf->state); |
| 721 | set_bit(nr: __I40E_FD_FLUSH_REQUESTED, addr: pf->state); |
| 722 | } |
| 723 | |
| 724 | /* filter programming failed most likely due to table full */ |
| 725 | fcnt_prog = i40e_get_global_fd_count(pf); |
| 726 | fcnt_avail = pf->fdir_pf_filter_count; |
| 727 | /* If ATR is running fcnt_prog can quickly change, |
| 728 | * if we are very close to full, it makes sense to disable |
| 729 | * FD ATR/SB and then re-enable it when there is room. |
| 730 | */ |
| 731 | if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { |
| 732 | if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && |
| 733 | !test_and_set_bit(nr: __I40E_FD_SB_AUTO_DISABLED, |
| 734 | addr: pf->state)) |
| 735 | if (I40E_DEBUG_FD & pf->hw.debug_mask) |
| 736 | dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n" ); |
| 737 | } |
| 738 | } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { |
| 739 | if (I40E_DEBUG_FD & pf->hw.debug_mask) |
| 740 | dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n" , |
| 741 | qw0->hi_dword.fd_id); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | /** |
| 746 | * i40e_unmap_and_free_tx_resource - Release a Tx buffer |
| 747 | * @ring: the ring that owns the buffer |
| 748 | * @tx_buffer: the buffer to free |
| 749 | **/ |
| 750 | static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, |
| 751 | struct i40e_tx_buffer *tx_buffer) |
| 752 | { |
| 753 | if (tx_buffer->skb) { |
| 754 | if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) |
| 755 | kfree(objp: tx_buffer->raw_buf); |
| 756 | else if (ring_is_xdp(ring)) |
| 757 | xdp_return_frame(xdpf: tx_buffer->xdpf); |
| 758 | else |
| 759 | dev_kfree_skb_any(skb: tx_buffer->skb); |
| 760 | if (dma_unmap_len(tx_buffer, len)) |
| 761 | dma_unmap_single(ring->dev, |
| 762 | dma_unmap_addr(tx_buffer, dma), |
| 763 | dma_unmap_len(tx_buffer, len), |
| 764 | DMA_TO_DEVICE); |
| 765 | } else if (dma_unmap_len(tx_buffer, len)) { |
| 766 | dma_unmap_page(ring->dev, |
| 767 | dma_unmap_addr(tx_buffer, dma), |
| 768 | dma_unmap_len(tx_buffer, len), |
| 769 | DMA_TO_DEVICE); |
| 770 | } |
| 771 | |
| 772 | tx_buffer->next_to_watch = NULL; |
| 773 | tx_buffer->skb = NULL; |
| 774 | dma_unmap_len_set(tx_buffer, len, 0); |
| 775 | /* tx_buffer must be completely set up in the transmit path */ |
| 776 | } |
| 777 | |
| 778 | /** |
| 779 | * i40e_clean_tx_ring - Free any empty Tx buffers |
| 780 | * @tx_ring: ring to be cleaned |
| 781 | **/ |
| 782 | void i40e_clean_tx_ring(struct i40e_ring *tx_ring) |
| 783 | { |
| 784 | unsigned long bi_size; |
| 785 | u16 i; |
| 786 | |
| 787 | if (ring_is_xdp(ring: tx_ring) && tx_ring->xsk_pool) { |
| 788 | i40e_xsk_clean_tx_ring(tx_ring); |
| 789 | } else { |
| 790 | /* ring already cleared, nothing to do */ |
| 791 | if (!tx_ring->tx_bi) |
| 792 | return; |
| 793 | |
| 794 | /* Free all the Tx ring sk_buffs */ |
| 795 | for (i = 0; i < tx_ring->count; i++) |
| 796 | i40e_unmap_and_free_tx_resource(ring: tx_ring, |
| 797 | tx_buffer: &tx_ring->tx_bi[i]); |
| 798 | } |
| 799 | |
| 800 | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
| 801 | memset(tx_ring->tx_bi, 0, bi_size); |
| 802 | |
| 803 | /* Zero out the descriptor ring */ |
| 804 | memset(tx_ring->desc, 0, tx_ring->size); |
| 805 | |
| 806 | tx_ring->next_to_use = 0; |
| 807 | tx_ring->next_to_clean = 0; |
| 808 | |
| 809 | if (!tx_ring->netdev) |
| 810 | return; |
| 811 | |
| 812 | /* cleanup Tx queue statistics */ |
| 813 | netdev_tx_reset_queue(q: txring_txq(ring: tx_ring)); |
| 814 | } |
| 815 | |
| 816 | /** |
| 817 | * i40e_free_tx_resources - Free Tx resources per queue |
| 818 | * @tx_ring: Tx descriptor ring for a specific queue |
| 819 | * |
| 820 | * Free all transmit software resources |
| 821 | **/ |
| 822 | void i40e_free_tx_resources(struct i40e_ring *tx_ring) |
| 823 | { |
| 824 | i40e_clean_tx_ring(tx_ring); |
| 825 | kfree(objp: tx_ring->tx_bi); |
| 826 | tx_ring->tx_bi = NULL; |
| 827 | |
| 828 | if (tx_ring->desc) { |
| 829 | dma_free_coherent(dev: tx_ring->dev, size: tx_ring->size, |
| 830 | cpu_addr: tx_ring->desc, dma_handle: tx_ring->dma); |
| 831 | tx_ring->desc = NULL; |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * i40e_get_tx_pending - how many tx descriptors not processed |
| 837 | * @ring: the ring of descriptors |
| 838 | * @in_sw: use SW variables |
| 839 | * |
| 840 | * Since there is no access to the ring head register |
| 841 | * in XL710, we need to use our local copies |
| 842 | **/ |
| 843 | u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) |
| 844 | { |
| 845 | u32 head, tail; |
| 846 | |
| 847 | if (!in_sw) { |
| 848 | head = i40e_get_head(tx_ring: ring); |
| 849 | tail = readl(addr: ring->tail); |
| 850 | } else { |
| 851 | head = ring->next_to_clean; |
| 852 | tail = ring->next_to_use; |
| 853 | } |
| 854 | |
| 855 | if (head != tail) |
| 856 | return (head < tail) ? |
| 857 | tail - head : (tail + ring->count - head); |
| 858 | |
| 859 | return 0; |
| 860 | } |
| 861 | |
| 862 | /** |
| 863 | * i40e_detect_recover_hung - Function to detect and recover hung_queues |
| 864 | * @pf: pointer to PF struct |
| 865 | * |
| 866 | * LAN VSI has netdev and netdev has TX queues. This function is to check |
| 867 | * each of those TX queues if they are hung, trigger recovery by issuing |
| 868 | * SW interrupt. |
| 869 | **/ |
| 870 | void i40e_detect_recover_hung(struct i40e_pf *pf) |
| 871 | { |
| 872 | struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); |
| 873 | struct i40e_ring *tx_ring = NULL; |
| 874 | struct net_device *netdev; |
| 875 | unsigned int i; |
| 876 | int packets; |
| 877 | |
| 878 | if (!vsi) |
| 879 | return; |
| 880 | |
| 881 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
| 882 | return; |
| 883 | |
| 884 | netdev = vsi->netdev; |
| 885 | if (!netdev) |
| 886 | return; |
| 887 | |
| 888 | if (!netif_carrier_ok(dev: netdev)) |
| 889 | return; |
| 890 | |
| 891 | for (i = 0; i < vsi->num_queue_pairs; i++) { |
| 892 | tx_ring = vsi->tx_rings[i]; |
| 893 | if (tx_ring && tx_ring->desc) { |
| 894 | /* If packet counter has not changed the queue is |
| 895 | * likely stalled, so force an interrupt for this |
| 896 | * queue. |
| 897 | * |
| 898 | * prev_pkt_ctr would be negative if there was no |
| 899 | * pending work. |
| 900 | */ |
| 901 | packets = tx_ring->stats.packets & INT_MAX; |
| 902 | if (tx_ring->tx_stats.prev_pkt_ctr == packets) { |
| 903 | i40e_force_wb(vsi, q_vector: tx_ring->q_vector); |
| 904 | continue; |
| 905 | } |
| 906 | |
| 907 | /* Memory barrier between read of packet count and call |
| 908 | * to i40e_get_tx_pending() |
| 909 | */ |
| 910 | smp_rmb(); |
| 911 | tx_ring->tx_stats.prev_pkt_ctr = |
| 912 | i40e_get_tx_pending(ring: tx_ring, in_sw: true) ? packets : -1; |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | /** |
| 918 | * i40e_clean_tx_irq - Reclaim resources after transmit completes |
| 919 | * @vsi: the VSI we care about |
| 920 | * @tx_ring: Tx ring to clean |
| 921 | * @napi_budget: Used to determine if we are in netpoll |
| 922 | * @tx_cleaned: Out parameter set to the number of TXes cleaned |
| 923 | * |
| 924 | * Returns true if there's any budget left (e.g. the clean is finished) |
| 925 | **/ |
| 926 | static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, |
| 927 | struct i40e_ring *tx_ring, int napi_budget, |
| 928 | unsigned int *tx_cleaned) |
| 929 | { |
| 930 | int i = tx_ring->next_to_clean; |
| 931 | struct i40e_tx_buffer *tx_buf; |
| 932 | struct i40e_tx_desc *tx_head; |
| 933 | struct i40e_tx_desc *tx_desc; |
| 934 | unsigned int total_bytes = 0, total_packets = 0; |
| 935 | unsigned int budget = vsi->work_limit; |
| 936 | |
| 937 | tx_buf = &tx_ring->tx_bi[i]; |
| 938 | tx_desc = I40E_TX_DESC(tx_ring, i); |
| 939 | i -= tx_ring->count; |
| 940 | |
| 941 | tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); |
| 942 | |
| 943 | do { |
| 944 | struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; |
| 945 | |
| 946 | /* if next_to_watch is not set then there is no work pending */ |
| 947 | if (!eop_desc) |
| 948 | break; |
| 949 | |
| 950 | /* prevent any other reads prior to eop_desc */ |
| 951 | smp_rmb(); |
| 952 | |
| 953 | i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); |
| 954 | /* we have caught up to head, no work left to do */ |
| 955 | if (tx_head == tx_desc) |
| 956 | break; |
| 957 | |
| 958 | /* clear next_to_watch to prevent false hangs */ |
| 959 | tx_buf->next_to_watch = NULL; |
| 960 | |
| 961 | /* update the statistics for this packet */ |
| 962 | total_bytes += tx_buf->bytecount; |
| 963 | total_packets += tx_buf->gso_segs; |
| 964 | |
| 965 | /* free the skb/XDP data */ |
| 966 | if (ring_is_xdp(ring: tx_ring)) |
| 967 | xdp_return_frame(xdpf: tx_buf->xdpf); |
| 968 | else |
| 969 | napi_consume_skb(skb: tx_buf->skb, budget: napi_budget); |
| 970 | |
| 971 | /* unmap skb header data */ |
| 972 | dma_unmap_single(tx_ring->dev, |
| 973 | dma_unmap_addr(tx_buf, dma), |
| 974 | dma_unmap_len(tx_buf, len), |
| 975 | DMA_TO_DEVICE); |
| 976 | |
| 977 | /* clear tx_buffer data */ |
| 978 | tx_buf->skb = NULL; |
| 979 | dma_unmap_len_set(tx_buf, len, 0); |
| 980 | |
| 981 | /* unmap remaining buffers */ |
| 982 | while (tx_desc != eop_desc) { |
| 983 | i40e_trace(clean_tx_irq_unmap, |
| 984 | tx_ring, tx_desc, tx_buf); |
| 985 | |
| 986 | tx_buf++; |
| 987 | tx_desc++; |
| 988 | i++; |
| 989 | if (unlikely(!i)) { |
| 990 | i -= tx_ring->count; |
| 991 | tx_buf = tx_ring->tx_bi; |
| 992 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
| 993 | } |
| 994 | |
| 995 | /* unmap any remaining paged data */ |
| 996 | if (dma_unmap_len(tx_buf, len)) { |
| 997 | dma_unmap_page(tx_ring->dev, |
| 998 | dma_unmap_addr(tx_buf, dma), |
| 999 | dma_unmap_len(tx_buf, len), |
| 1000 | DMA_TO_DEVICE); |
| 1001 | dma_unmap_len_set(tx_buf, len, 0); |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | /* move us one more past the eop_desc for start of next pkt */ |
| 1006 | tx_buf++; |
| 1007 | tx_desc++; |
| 1008 | i++; |
| 1009 | if (unlikely(!i)) { |
| 1010 | i -= tx_ring->count; |
| 1011 | tx_buf = tx_ring->tx_bi; |
| 1012 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
| 1013 | } |
| 1014 | |
| 1015 | prefetch(tx_desc); |
| 1016 | |
| 1017 | /* update budget accounting */ |
| 1018 | budget--; |
| 1019 | } while (likely(budget)); |
| 1020 | |
| 1021 | i += tx_ring->count; |
| 1022 | tx_ring->next_to_clean = i; |
| 1023 | i40e_update_tx_stats(tx_ring, total_packets, total_bytes); |
| 1024 | i40e_arm_wb(tx_ring, vsi, budget); |
| 1025 | |
| 1026 | if (ring_is_xdp(ring: tx_ring)) |
| 1027 | return !!budget; |
| 1028 | |
| 1029 | /* notify netdev of completed buffers */ |
| 1030 | netdev_tx_completed_queue(dev_queue: txring_txq(ring: tx_ring), |
| 1031 | pkts: total_packets, bytes: total_bytes); |
| 1032 | |
| 1033 | #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| 1034 | if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
| 1035 | (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| 1036 | /* Make sure that anybody stopping the queue after this |
| 1037 | * sees the new next_to_clean. |
| 1038 | */ |
| 1039 | smp_mb(); |
| 1040 | if (__netif_subqueue_stopped(dev: tx_ring->netdev, |
| 1041 | queue_index: tx_ring->queue_index) && |
| 1042 | !test_bit(__I40E_VSI_DOWN, vsi->state)) { |
| 1043 | netif_wake_subqueue(dev: tx_ring->netdev, |
| 1044 | queue_index: tx_ring->queue_index); |
| 1045 | ++tx_ring->tx_stats.restart_queue; |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | *tx_cleaned = total_packets; |
| 1050 | return !!budget; |
| 1051 | } |
| 1052 | |
| 1053 | /** |
| 1054 | * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled |
| 1055 | * @vsi: the VSI we care about |
| 1056 | * @q_vector: the vector on which to enable writeback |
| 1057 | * |
| 1058 | **/ |
| 1059 | static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, |
| 1060 | struct i40e_q_vector *q_vector) |
| 1061 | { |
| 1062 | u16 flags = q_vector->tx.ring[0].flags; |
| 1063 | u32 val; |
| 1064 | |
| 1065 | if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) |
| 1066 | return; |
| 1067 | |
| 1068 | if (q_vector->arm_wb_state) |
| 1069 | return; |
| 1070 | |
| 1071 | if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
| 1072 | val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | |
| 1073 | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ |
| 1074 | |
| 1075 | wr32(&vsi->back->hw, |
| 1076 | I40E_PFINT_DYN_CTLN(q_vector->reg_idx), |
| 1077 | val); |
| 1078 | } else { |
| 1079 | val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | |
| 1080 | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ |
| 1081 | |
| 1082 | wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); |
| 1083 | } |
| 1084 | q_vector->arm_wb_state = true; |
| 1085 | } |
| 1086 | |
| 1087 | /** |
| 1088 | * i40e_force_wb - Issue SW Interrupt so HW does a wb |
| 1089 | * @vsi: the VSI we care about |
| 1090 | * @q_vector: the vector on which to force writeback |
| 1091 | * |
| 1092 | **/ |
| 1093 | void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) |
| 1094 | { |
| 1095 | if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
| 1096 | u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | |
| 1097 | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ |
| 1098 | I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | |
| 1099 | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; |
| 1100 | /* allow 00 to be written to the index */ |
| 1101 | |
| 1102 | wr32(&vsi->back->hw, |
| 1103 | I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); |
| 1104 | } else { |
| 1105 | u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | |
| 1106 | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ |
| 1107 | I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | |
| 1108 | I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; |
| 1109 | /* allow 00 to be written to the index */ |
| 1110 | |
| 1111 | wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, |
| 1116 | struct i40e_ring_container *rc) |
| 1117 | { |
| 1118 | return &q_vector->rx == rc; |
| 1119 | } |
| 1120 | |
| 1121 | static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) |
| 1122 | { |
| 1123 | unsigned int divisor; |
| 1124 | |
| 1125 | switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { |
| 1126 | case I40E_LINK_SPEED_40GB: |
| 1127 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; |
| 1128 | break; |
| 1129 | case I40E_LINK_SPEED_25GB: |
| 1130 | case I40E_LINK_SPEED_20GB: |
| 1131 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; |
| 1132 | break; |
| 1133 | default: |
| 1134 | case I40E_LINK_SPEED_10GB: |
| 1135 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; |
| 1136 | break; |
| 1137 | case I40E_LINK_SPEED_1GB: |
| 1138 | case I40E_LINK_SPEED_100MB: |
| 1139 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; |
| 1140 | break; |
| 1141 | } |
| 1142 | |
| 1143 | return divisor; |
| 1144 | } |
| 1145 | |
| 1146 | /** |
| 1147 | * i40e_update_itr - update the dynamic ITR value based on statistics |
| 1148 | * @q_vector: structure containing interrupt and ring information |
| 1149 | * @rc: structure containing ring performance data |
| 1150 | * |
| 1151 | * Stores a new ITR value based on packets and byte |
| 1152 | * counts during the last interrupt. The advantage of per interrupt |
| 1153 | * computation is faster updates and more accurate ITR for the current |
| 1154 | * traffic pattern. Constants in this function were computed |
| 1155 | * based on theoretical maximum wire speed and thresholds were set based |
| 1156 | * on testing data as well as attempting to minimize response time |
| 1157 | * while increasing bulk throughput. |
| 1158 | **/ |
| 1159 | static void i40e_update_itr(struct i40e_q_vector *q_vector, |
| 1160 | struct i40e_ring_container *rc) |
| 1161 | { |
| 1162 | unsigned int avg_wire_size, packets, bytes, itr; |
| 1163 | unsigned long next_update = jiffies; |
| 1164 | |
| 1165 | /* If we don't have any rings just leave ourselves set for maximum |
| 1166 | * possible latency so we take ourselves out of the equation. |
| 1167 | */ |
| 1168 | if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) |
| 1169 | return; |
| 1170 | |
| 1171 | /* For Rx we want to push the delay up and default to low latency. |
| 1172 | * for Tx we want to pull the delay down and default to high latency. |
| 1173 | */ |
| 1174 | itr = i40e_container_is_rx(q_vector, rc) ? |
| 1175 | I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : |
| 1176 | I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; |
| 1177 | |
| 1178 | /* If we didn't update within up to 1 - 2 jiffies we can assume |
| 1179 | * that either packets are coming in so slow there hasn't been |
| 1180 | * any work, or that there is so much work that NAPI is dealing |
| 1181 | * with interrupt moderation and we don't need to do anything. |
| 1182 | */ |
| 1183 | if (time_after(next_update, rc->next_update)) |
| 1184 | goto clear_counts; |
| 1185 | |
| 1186 | /* If itr_countdown is set it means we programmed an ITR within |
| 1187 | * the last 4 interrupt cycles. This has a side effect of us |
| 1188 | * potentially firing an early interrupt. In order to work around |
| 1189 | * this we need to throw out any data received for a few |
| 1190 | * interrupts following the update. |
| 1191 | */ |
| 1192 | if (q_vector->itr_countdown) { |
| 1193 | itr = rc->target_itr; |
| 1194 | goto clear_counts; |
| 1195 | } |
| 1196 | |
| 1197 | packets = rc->total_packets; |
| 1198 | bytes = rc->total_bytes; |
| 1199 | |
| 1200 | if (i40e_container_is_rx(q_vector, rc)) { |
| 1201 | /* If Rx there are 1 to 4 packets and bytes are less than |
| 1202 | * 9000 assume insufficient data to use bulk rate limiting |
| 1203 | * approach unless Tx is already in bulk rate limiting. We |
| 1204 | * are likely latency driven. |
| 1205 | */ |
| 1206 | if (packets && packets < 4 && bytes < 9000 && |
| 1207 | (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { |
| 1208 | itr = I40E_ITR_ADAPTIVE_LATENCY; |
| 1209 | goto adjust_by_size; |
| 1210 | } |
| 1211 | } else if (packets < 4) { |
| 1212 | /* If we have Tx and Rx ITR maxed and Tx ITR is running in |
| 1213 | * bulk mode and we are receiving 4 or fewer packets just |
| 1214 | * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so |
| 1215 | * that the Rx can relax. |
| 1216 | */ |
| 1217 | if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && |
| 1218 | (q_vector->rx.target_itr & I40E_ITR_MASK) == |
| 1219 | I40E_ITR_ADAPTIVE_MAX_USECS) |
| 1220 | goto clear_counts; |
| 1221 | } else if (packets > 32) { |
| 1222 | /* If we have processed over 32 packets in a single interrupt |
| 1223 | * for Tx assume we need to switch over to "bulk" mode. |
| 1224 | */ |
| 1225 | rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; |
| 1226 | } |
| 1227 | |
| 1228 | /* We have no packets to actually measure against. This means |
| 1229 | * either one of the other queues on this vector is active or |
| 1230 | * we are a Tx queue doing TSO with too high of an interrupt rate. |
| 1231 | * |
| 1232 | * Between 4 and 56 we can assume that our current interrupt delay |
| 1233 | * is only slightly too low. As such we should increase it by a small |
| 1234 | * fixed amount. |
| 1235 | */ |
| 1236 | if (packets < 56) { |
| 1237 | itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; |
| 1238 | if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { |
| 1239 | itr &= I40E_ITR_ADAPTIVE_LATENCY; |
| 1240 | itr += I40E_ITR_ADAPTIVE_MAX_USECS; |
| 1241 | } |
| 1242 | goto clear_counts; |
| 1243 | } |
| 1244 | |
| 1245 | if (packets <= 256) { |
| 1246 | itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); |
| 1247 | itr &= I40E_ITR_MASK; |
| 1248 | |
| 1249 | /* Between 56 and 112 is our "goldilocks" zone where we are |
| 1250 | * working out "just right". Just report that our current |
| 1251 | * ITR is good for us. |
| 1252 | */ |
| 1253 | if (packets <= 112) |
| 1254 | goto clear_counts; |
| 1255 | |
| 1256 | /* If packet count is 128 or greater we are likely looking |
| 1257 | * at a slight overrun of the delay we want. Try halving |
| 1258 | * our delay to see if that will cut the number of packets |
| 1259 | * in half per interrupt. |
| 1260 | */ |
| 1261 | itr /= 2; |
| 1262 | itr &= I40E_ITR_MASK; |
| 1263 | if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) |
| 1264 | itr = I40E_ITR_ADAPTIVE_MIN_USECS; |
| 1265 | |
| 1266 | goto clear_counts; |
| 1267 | } |
| 1268 | |
| 1269 | /* The paths below assume we are dealing with a bulk ITR since |
| 1270 | * number of packets is greater than 256. We are just going to have |
| 1271 | * to compute a value and try to bring the count under control, |
| 1272 | * though for smaller packet sizes there isn't much we can do as |
| 1273 | * NAPI polling will likely be kicking in sooner rather than later. |
| 1274 | */ |
| 1275 | itr = I40E_ITR_ADAPTIVE_BULK; |
| 1276 | |
| 1277 | adjust_by_size: |
| 1278 | /* If packet counts are 256 or greater we can assume we have a gross |
| 1279 | * overestimation of what the rate should be. Instead of trying to fine |
| 1280 | * tune it just use the formula below to try and dial in an exact value |
| 1281 | * give the current packet size of the frame. |
| 1282 | */ |
| 1283 | avg_wire_size = bytes / packets; |
| 1284 | |
| 1285 | /* The following is a crude approximation of: |
| 1286 | * wmem_default / (size + overhead) = desired_pkts_per_int |
| 1287 | * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate |
| 1288 | * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value |
| 1289 | * |
| 1290 | * Assuming wmem_default is 212992 and overhead is 640 bytes per |
| 1291 | * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the |
| 1292 | * formula down to |
| 1293 | * |
| 1294 | * (170 * (size + 24)) / (size + 640) = ITR |
| 1295 | * |
| 1296 | * We first do some math on the packet size and then finally bitshift |
| 1297 | * by 8 after rounding up. We also have to account for PCIe link speed |
| 1298 | * difference as ITR scales based on this. |
| 1299 | */ |
| 1300 | if (avg_wire_size <= 60) { |
| 1301 | /* Start at 250k ints/sec */ |
| 1302 | avg_wire_size = 4096; |
| 1303 | } else if (avg_wire_size <= 380) { |
| 1304 | /* 250K ints/sec to 60K ints/sec */ |
| 1305 | avg_wire_size *= 40; |
| 1306 | avg_wire_size += 1696; |
| 1307 | } else if (avg_wire_size <= 1084) { |
| 1308 | /* 60K ints/sec to 36K ints/sec */ |
| 1309 | avg_wire_size *= 15; |
| 1310 | avg_wire_size += 11452; |
| 1311 | } else if (avg_wire_size <= 1980) { |
| 1312 | /* 36K ints/sec to 30K ints/sec */ |
| 1313 | avg_wire_size *= 5; |
| 1314 | avg_wire_size += 22420; |
| 1315 | } else { |
| 1316 | /* plateau at a limit of 30K ints/sec */ |
| 1317 | avg_wire_size = 32256; |
| 1318 | } |
| 1319 | |
| 1320 | /* If we are in low latency mode halve our delay which doubles the |
| 1321 | * rate to somewhere between 100K to 16K ints/sec |
| 1322 | */ |
| 1323 | if (itr & I40E_ITR_ADAPTIVE_LATENCY) |
| 1324 | avg_wire_size /= 2; |
| 1325 | |
| 1326 | /* Resultant value is 256 times larger than it needs to be. This |
| 1327 | * gives us room to adjust the value as needed to either increase |
| 1328 | * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. |
| 1329 | * |
| 1330 | * Use addition as we have already recorded the new latency flag |
| 1331 | * for the ITR value. |
| 1332 | */ |
| 1333 | itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * |
| 1334 | I40E_ITR_ADAPTIVE_MIN_INC; |
| 1335 | |
| 1336 | if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { |
| 1337 | itr &= I40E_ITR_ADAPTIVE_LATENCY; |
| 1338 | itr += I40E_ITR_ADAPTIVE_MAX_USECS; |
| 1339 | } |
| 1340 | |
| 1341 | clear_counts: |
| 1342 | /* write back value */ |
| 1343 | rc->target_itr = itr; |
| 1344 | |
| 1345 | /* next update should occur within next jiffy */ |
| 1346 | rc->next_update = next_update + 1; |
| 1347 | |
| 1348 | rc->total_bytes = 0; |
| 1349 | rc->total_packets = 0; |
| 1350 | } |
| 1351 | |
| 1352 | static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) |
| 1353 | { |
| 1354 | return &rx_ring->rx_bi[idx]; |
| 1355 | } |
| 1356 | |
| 1357 | /** |
| 1358 | * i40e_reuse_rx_page - page flip buffer and store it back on the ring |
| 1359 | * @rx_ring: rx descriptor ring to store buffers on |
| 1360 | * @old_buff: donor buffer to have page reused |
| 1361 | * |
| 1362 | * Synchronizes page for reuse by the adapter |
| 1363 | **/ |
| 1364 | static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, |
| 1365 | struct i40e_rx_buffer *old_buff) |
| 1366 | { |
| 1367 | struct i40e_rx_buffer *new_buff; |
| 1368 | u16 nta = rx_ring->next_to_alloc; |
| 1369 | |
| 1370 | new_buff = i40e_rx_bi(rx_ring, idx: nta); |
| 1371 | |
| 1372 | /* update, and store next to alloc */ |
| 1373 | nta++; |
| 1374 | rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| 1375 | |
| 1376 | /* transfer page from old buffer to new buffer */ |
| 1377 | new_buff->dma = old_buff->dma; |
| 1378 | new_buff->page = old_buff->page; |
| 1379 | new_buff->page_offset = old_buff->page_offset; |
| 1380 | new_buff->pagecnt_bias = old_buff->pagecnt_bias; |
| 1381 | |
| 1382 | /* clear contents of buffer_info */ |
| 1383 | old_buff->page = NULL; |
| 1384 | } |
| 1385 | |
| 1386 | /** |
| 1387 | * i40e_clean_programming_status - clean the programming status descriptor |
| 1388 | * @rx_ring: the rx ring that has this descriptor |
| 1389 | * @qword0_raw: qword0 |
| 1390 | * @qword1: qword1 representing status_error_len in CPU ordering |
| 1391 | * |
| 1392 | * Flow director should handle FD_FILTER_STATUS to check its filter programming |
| 1393 | * status being successful or not and take actions accordingly. FCoE should |
| 1394 | * handle its context/filter programming/invalidation status and take actions. |
| 1395 | * |
| 1396 | * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. |
| 1397 | **/ |
| 1398 | void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, |
| 1399 | u64 qword1) |
| 1400 | { |
| 1401 | u8 id; |
| 1402 | |
| 1403 | id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1); |
| 1404 | |
| 1405 | if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) |
| 1406 | i40e_fd_handle_status(rx_ring, qword0_raw, qword1, prog_id: id); |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * i40e_setup_tx_descriptors - Allocate the Tx descriptors |
| 1411 | * @tx_ring: the tx ring to set up |
| 1412 | * |
| 1413 | * Return 0 on success, negative on error |
| 1414 | **/ |
| 1415 | int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) |
| 1416 | { |
| 1417 | struct device *dev = tx_ring->dev; |
| 1418 | int bi_size; |
| 1419 | |
| 1420 | if (!dev) |
| 1421 | return -ENOMEM; |
| 1422 | |
| 1423 | /* warn if we are about to overwrite the pointer */ |
| 1424 | WARN_ON(tx_ring->tx_bi); |
| 1425 | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
| 1426 | tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); |
| 1427 | if (!tx_ring->tx_bi) |
| 1428 | goto err; |
| 1429 | |
| 1430 | u64_stats_init(syncp: &tx_ring->syncp); |
| 1431 | |
| 1432 | /* round up to nearest 4K */ |
| 1433 | tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); |
| 1434 | /* add u32 for head writeback, align after this takes care of |
| 1435 | * guaranteeing this is at least one cache line in size |
| 1436 | */ |
| 1437 | tx_ring->size += sizeof(u32); |
| 1438 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 1439 | tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size, |
| 1440 | dma_handle: &tx_ring->dma, GFP_KERNEL); |
| 1441 | if (!tx_ring->desc) { |
| 1442 | dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n" , |
| 1443 | tx_ring->size); |
| 1444 | goto err; |
| 1445 | } |
| 1446 | |
| 1447 | tx_ring->next_to_use = 0; |
| 1448 | tx_ring->next_to_clean = 0; |
| 1449 | tx_ring->tx_stats.prev_pkt_ctr = -1; |
| 1450 | return 0; |
| 1451 | |
| 1452 | err: |
| 1453 | kfree(objp: tx_ring->tx_bi); |
| 1454 | tx_ring->tx_bi = NULL; |
| 1455 | return -ENOMEM; |
| 1456 | } |
| 1457 | |
| 1458 | static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) |
| 1459 | { |
| 1460 | memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); |
| 1461 | } |
| 1462 | |
| 1463 | /** |
| 1464 | * i40e_clean_rx_ring - Free Rx buffers |
| 1465 | * @rx_ring: ring to be cleaned |
| 1466 | **/ |
| 1467 | void i40e_clean_rx_ring(struct i40e_ring *rx_ring) |
| 1468 | { |
| 1469 | u16 i; |
| 1470 | |
| 1471 | /* ring already cleared, nothing to do */ |
| 1472 | if (!rx_ring->rx_bi) |
| 1473 | return; |
| 1474 | |
| 1475 | if (rx_ring->xsk_pool) { |
| 1476 | i40e_xsk_clean_rx_ring(rx_ring); |
| 1477 | goto skip_free; |
| 1478 | } |
| 1479 | |
| 1480 | /* Free all the Rx ring sk_buffs */ |
| 1481 | for (i = 0; i < rx_ring->count; i++) { |
| 1482 | struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, idx: i); |
| 1483 | |
| 1484 | if (!rx_bi->page) |
| 1485 | continue; |
| 1486 | |
| 1487 | /* Invalidate cache lines that may have been written to by |
| 1488 | * device so that we avoid corrupting memory. |
| 1489 | */ |
| 1490 | dma_sync_single_range_for_cpu(dev: rx_ring->dev, |
| 1491 | addr: rx_bi->dma, |
| 1492 | offset: rx_bi->page_offset, |
| 1493 | size: rx_ring->rx_buf_len, |
| 1494 | dir: DMA_FROM_DEVICE); |
| 1495 | |
| 1496 | /* free resources associated with mapping */ |
| 1497 | dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_bi->dma, |
| 1498 | i40e_rx_pg_size(rx_ring), |
| 1499 | dir: DMA_FROM_DEVICE, |
| 1500 | I40E_RX_DMA_ATTR); |
| 1501 | |
| 1502 | __page_frag_cache_drain(page: rx_bi->page, count: rx_bi->pagecnt_bias); |
| 1503 | |
| 1504 | rx_bi->page = NULL; |
| 1505 | rx_bi->page_offset = 0; |
| 1506 | } |
| 1507 | |
| 1508 | skip_free: |
| 1509 | if (rx_ring->xsk_pool) |
| 1510 | i40e_clear_rx_bi_zc(rx_ring); |
| 1511 | else |
| 1512 | i40e_clear_rx_bi(rx_ring); |
| 1513 | |
| 1514 | /* Zero out the descriptor ring */ |
| 1515 | memset(rx_ring->desc, 0, rx_ring->size); |
| 1516 | |
| 1517 | rx_ring->next_to_alloc = 0; |
| 1518 | rx_ring->next_to_clean = 0; |
| 1519 | rx_ring->next_to_process = 0; |
| 1520 | rx_ring->next_to_use = 0; |
| 1521 | } |
| 1522 | |
| 1523 | /** |
| 1524 | * i40e_free_rx_resources - Free Rx resources |
| 1525 | * @rx_ring: ring to clean the resources from |
| 1526 | * |
| 1527 | * Free all receive software resources |
| 1528 | **/ |
| 1529 | void i40e_free_rx_resources(struct i40e_ring *rx_ring) |
| 1530 | { |
| 1531 | i40e_clean_rx_ring(rx_ring); |
| 1532 | if (rx_ring->vsi->type == I40E_VSI_MAIN) |
| 1533 | xdp_rxq_info_unreg(xdp_rxq: &rx_ring->xdp_rxq); |
| 1534 | rx_ring->xdp_prog = NULL; |
| 1535 | kfree(objp: rx_ring->rx_bi); |
| 1536 | rx_ring->rx_bi = NULL; |
| 1537 | |
| 1538 | if (rx_ring->desc) { |
| 1539 | dma_free_coherent(dev: rx_ring->dev, size: rx_ring->size, |
| 1540 | cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma); |
| 1541 | rx_ring->desc = NULL; |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | /** |
| 1546 | * i40e_setup_rx_descriptors - Allocate Rx descriptors |
| 1547 | * @rx_ring: Rx descriptor ring (for a specific queue) to setup |
| 1548 | * |
| 1549 | * Returns 0 on success, negative on failure |
| 1550 | **/ |
| 1551 | int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) |
| 1552 | { |
| 1553 | struct device *dev = rx_ring->dev; |
| 1554 | |
| 1555 | u64_stats_init(syncp: &rx_ring->syncp); |
| 1556 | |
| 1557 | /* Round up to nearest 4K */ |
| 1558 | rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); |
| 1559 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
| 1560 | rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size, |
| 1561 | dma_handle: &rx_ring->dma, GFP_KERNEL); |
| 1562 | |
| 1563 | if (!rx_ring->desc) { |
| 1564 | dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n" , |
| 1565 | rx_ring->size); |
| 1566 | return -ENOMEM; |
| 1567 | } |
| 1568 | |
| 1569 | rx_ring->next_to_alloc = 0; |
| 1570 | rx_ring->next_to_clean = 0; |
| 1571 | rx_ring->next_to_process = 0; |
| 1572 | rx_ring->next_to_use = 0; |
| 1573 | |
| 1574 | rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; |
| 1575 | |
| 1576 | rx_ring->rx_bi = |
| 1577 | kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL); |
| 1578 | if (!rx_ring->rx_bi) |
| 1579 | return -ENOMEM; |
| 1580 | |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | /** |
| 1585 | * i40e_release_rx_desc - Store the new tail and head values |
| 1586 | * @rx_ring: ring to bump |
| 1587 | * @val: new head index |
| 1588 | **/ |
| 1589 | void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) |
| 1590 | { |
| 1591 | rx_ring->next_to_use = val; |
| 1592 | |
| 1593 | /* update next to alloc since we have filled the ring */ |
| 1594 | rx_ring->next_to_alloc = val; |
| 1595 | |
| 1596 | /* Force memory writes to complete before letting h/w |
| 1597 | * know there are new descriptors to fetch. (Only |
| 1598 | * applicable for weak-ordered memory model archs, |
| 1599 | * such as IA-64). |
| 1600 | */ |
| 1601 | wmb(); |
| 1602 | writel(val, addr: rx_ring->tail); |
| 1603 | } |
| 1604 | |
| 1605 | #if (PAGE_SIZE >= 8192) |
| 1606 | static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, |
| 1607 | unsigned int size) |
| 1608 | { |
| 1609 | unsigned int truesize; |
| 1610 | |
| 1611 | truesize = rx_ring->rx_offset ? |
| 1612 | SKB_DATA_ALIGN(size + rx_ring->rx_offset) + |
| 1613 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : |
| 1614 | SKB_DATA_ALIGN(size); |
| 1615 | return truesize; |
| 1616 | } |
| 1617 | #endif |
| 1618 | |
| 1619 | /** |
| 1620 | * i40e_alloc_mapped_page - recycle or make a new page |
| 1621 | * @rx_ring: ring to use |
| 1622 | * @bi: rx_buffer struct to modify |
| 1623 | * |
| 1624 | * Returns true if the page was successfully allocated or |
| 1625 | * reused. |
| 1626 | **/ |
| 1627 | static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, |
| 1628 | struct i40e_rx_buffer *bi) |
| 1629 | { |
| 1630 | struct page *page = bi->page; |
| 1631 | dma_addr_t dma; |
| 1632 | |
| 1633 | /* since we are recycling buffers we should seldom need to alloc */ |
| 1634 | if (likely(page)) { |
| 1635 | rx_ring->rx_stats.page_reuse_count++; |
| 1636 | return true; |
| 1637 | } |
| 1638 | |
| 1639 | /* alloc new page for storage */ |
| 1640 | page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); |
| 1641 | if (unlikely(!page)) { |
| 1642 | rx_ring->rx_stats.alloc_page_failed++; |
| 1643 | return false; |
| 1644 | } |
| 1645 | |
| 1646 | rx_ring->rx_stats.page_alloc_count++; |
| 1647 | |
| 1648 | /* map page for use */ |
| 1649 | dma = dma_map_page_attrs(dev: rx_ring->dev, page, offset: 0, |
| 1650 | i40e_rx_pg_size(rx_ring), |
| 1651 | dir: DMA_FROM_DEVICE, |
| 1652 | I40E_RX_DMA_ATTR); |
| 1653 | |
| 1654 | /* if mapping failed free memory back to system since |
| 1655 | * there isn't much point in holding memory we can't use |
| 1656 | */ |
| 1657 | if (dma_mapping_error(dev: rx_ring->dev, dma_addr: dma)) { |
| 1658 | __free_pages(page, order: i40e_rx_pg_order(ring: rx_ring)); |
| 1659 | rx_ring->rx_stats.alloc_page_failed++; |
| 1660 | return false; |
| 1661 | } |
| 1662 | |
| 1663 | bi->dma = dma; |
| 1664 | bi->page = page; |
| 1665 | bi->page_offset = rx_ring->rx_offset; |
| 1666 | page_ref_add(page, USHRT_MAX - 1); |
| 1667 | bi->pagecnt_bias = USHRT_MAX; |
| 1668 | |
| 1669 | return true; |
| 1670 | } |
| 1671 | |
| 1672 | /** |
| 1673 | * i40e_alloc_rx_buffers - Replace used receive buffers |
| 1674 | * @rx_ring: ring to place buffers on |
| 1675 | * @cleaned_count: number of buffers to replace |
| 1676 | * |
| 1677 | * Returns false if all allocations were successful, true if any fail |
| 1678 | **/ |
| 1679 | bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) |
| 1680 | { |
| 1681 | u16 ntu = rx_ring->next_to_use; |
| 1682 | union i40e_rx_desc *rx_desc; |
| 1683 | struct i40e_rx_buffer *bi; |
| 1684 | |
| 1685 | /* do nothing if no valid netdev defined */ |
| 1686 | if (!rx_ring->netdev || !cleaned_count) |
| 1687 | return false; |
| 1688 | |
| 1689 | rx_desc = I40E_RX_DESC(rx_ring, ntu); |
| 1690 | bi = i40e_rx_bi(rx_ring, idx: ntu); |
| 1691 | |
| 1692 | do { |
| 1693 | if (!i40e_alloc_mapped_page(rx_ring, bi)) |
| 1694 | goto no_buffers; |
| 1695 | |
| 1696 | /* sync the buffer for use by the device */ |
| 1697 | dma_sync_single_range_for_device(dev: rx_ring->dev, addr: bi->dma, |
| 1698 | offset: bi->page_offset, |
| 1699 | size: rx_ring->rx_buf_len, |
| 1700 | dir: DMA_FROM_DEVICE); |
| 1701 | |
| 1702 | /* Refresh the desc even if buffer_addrs didn't change |
| 1703 | * because each write-back erases this info. |
| 1704 | */ |
| 1705 | rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| 1706 | |
| 1707 | rx_desc++; |
| 1708 | bi++; |
| 1709 | ntu++; |
| 1710 | if (unlikely(ntu == rx_ring->count)) { |
| 1711 | rx_desc = I40E_RX_DESC(rx_ring, 0); |
| 1712 | bi = i40e_rx_bi(rx_ring, idx: 0); |
| 1713 | ntu = 0; |
| 1714 | } |
| 1715 | |
| 1716 | /* clear the status bits for the next_to_use descriptor */ |
| 1717 | rx_desc->wb.qword1.status_error_len = 0; |
| 1718 | |
| 1719 | cleaned_count--; |
| 1720 | } while (cleaned_count); |
| 1721 | |
| 1722 | if (rx_ring->next_to_use != ntu) |
| 1723 | i40e_release_rx_desc(rx_ring, val: ntu); |
| 1724 | |
| 1725 | return false; |
| 1726 | |
| 1727 | no_buffers: |
| 1728 | if (rx_ring->next_to_use != ntu) |
| 1729 | i40e_release_rx_desc(rx_ring, val: ntu); |
| 1730 | |
| 1731 | /* make sure to come back via polling to try again after |
| 1732 | * allocation failure |
| 1733 | */ |
| 1734 | return true; |
| 1735 | } |
| 1736 | |
| 1737 | /** |
| 1738 | * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum |
| 1739 | * @vsi: the VSI we care about |
| 1740 | * @skb: skb currently being received and modified |
| 1741 | * @rx_desc: the receive descriptor |
| 1742 | **/ |
| 1743 | static inline void i40e_rx_checksum(struct i40e_vsi *vsi, |
| 1744 | struct sk_buff *skb, |
| 1745 | union i40e_rx_desc *rx_desc) |
| 1746 | { |
| 1747 | struct libeth_rx_pt decoded; |
| 1748 | u32 rx_error, rx_status; |
| 1749 | bool ipv4, ipv6; |
| 1750 | u8 ptype; |
| 1751 | u64 qword; |
| 1752 | |
| 1753 | skb->ip_summed = CHECKSUM_NONE; |
| 1754 | |
| 1755 | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| 1756 | ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); |
| 1757 | |
| 1758 | decoded = libie_rx_pt_parse(pt: ptype); |
| 1759 | if (!libeth_rx_pt_has_checksum(dev: vsi->netdev, pt: decoded)) |
| 1760 | return; |
| 1761 | |
| 1762 | rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword); |
| 1763 | rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); |
| 1764 | |
| 1765 | /* did the hardware decode the packet and checksum? */ |
| 1766 | if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) |
| 1767 | return; |
| 1768 | |
| 1769 | ipv4 = libeth_rx_pt_get_ip_ver(pt: decoded) == LIBETH_RX_PT_OUTER_IPV4; |
| 1770 | ipv6 = libeth_rx_pt_get_ip_ver(pt: decoded) == LIBETH_RX_PT_OUTER_IPV6; |
| 1771 | |
| 1772 | if (ipv4 && |
| 1773 | (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | |
| 1774 | BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) |
| 1775 | goto checksum_fail; |
| 1776 | |
| 1777 | /* likely incorrect csum if alternate IP extension headers found */ |
| 1778 | if (ipv6 && |
| 1779 | rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) |
| 1780 | /* don't increment checksum err here, non-fatal err */ |
| 1781 | return; |
| 1782 | |
| 1783 | /* there was some L4 error, count error and punt packet to the stack */ |
| 1784 | if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) |
| 1785 | goto checksum_fail; |
| 1786 | |
| 1787 | /* handle packets that were not able to be checksummed due |
| 1788 | * to arrival speed, in this case the stack can compute |
| 1789 | * the csum. |
| 1790 | */ |
| 1791 | if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) |
| 1792 | return; |
| 1793 | |
| 1794 | /* If there is an outer header present that might contain a checksum |
| 1795 | * we need to bump the checksum level by 1 to reflect the fact that |
| 1796 | * we are indicating we validated the inner checksum. |
| 1797 | */ |
| 1798 | if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT) |
| 1799 | skb->csum_level = 1; |
| 1800 | |
| 1801 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1802 | return; |
| 1803 | |
| 1804 | checksum_fail: |
| 1805 | vsi->back->hw_csum_rx_error++; |
| 1806 | } |
| 1807 | |
| 1808 | /** |
| 1809 | * i40e_rx_hash - set the hash value in the skb |
| 1810 | * @ring: descriptor ring |
| 1811 | * @rx_desc: specific descriptor |
| 1812 | * @skb: skb currently being received and modified |
| 1813 | * @rx_ptype: Rx packet type |
| 1814 | **/ |
| 1815 | static inline void i40e_rx_hash(struct i40e_ring *ring, |
| 1816 | union i40e_rx_desc *rx_desc, |
| 1817 | struct sk_buff *skb, |
| 1818 | u8 rx_ptype) |
| 1819 | { |
| 1820 | struct libeth_rx_pt decoded; |
| 1821 | u32 hash; |
| 1822 | const __le64 = |
| 1823 | cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << |
| 1824 | I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); |
| 1825 | |
| 1826 | decoded = libie_rx_pt_parse(pt: rx_ptype); |
| 1827 | if (!libeth_rx_pt_has_hash(dev: ring->netdev, pt: decoded)) |
| 1828 | return; |
| 1829 | |
| 1830 | if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { |
| 1831 | hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); |
| 1832 | libeth_rx_pt_set_hash(skb, hash, pt: decoded); |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | /** |
| 1837 | * i40e_process_skb_fields - Populate skb header fields from Rx descriptor |
| 1838 | * @rx_ring: rx descriptor ring packet is being transacted on |
| 1839 | * @rx_desc: pointer to the EOP Rx descriptor |
| 1840 | * @skb: pointer to current skb being populated |
| 1841 | * |
| 1842 | * This function checks the ring, descriptor, and packet information in |
| 1843 | * order to populate the hash, checksum, VLAN, protocol, and |
| 1844 | * other fields within the skb. |
| 1845 | **/ |
| 1846 | void i40e_process_skb_fields(struct i40e_ring *rx_ring, |
| 1847 | union i40e_rx_desc *rx_desc, struct sk_buff *skb) |
| 1848 | { |
| 1849 | u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| 1850 | u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); |
| 1851 | u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; |
| 1852 | u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status); |
| 1853 | u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); |
| 1854 | |
| 1855 | if (unlikely(tsynvalid)) |
| 1856 | i40e_ptp_rx_hwtstamp(pf: rx_ring->vsi->back, skb, index: tsyn); |
| 1857 | |
| 1858 | i40e_rx_hash(ring: rx_ring, rx_desc, skb, rx_ptype); |
| 1859 | |
| 1860 | i40e_rx_checksum(vsi: rx_ring->vsi, skb, rx_desc); |
| 1861 | |
| 1862 | skb_record_rx_queue(skb, rx_queue: rx_ring->queue_index); |
| 1863 | |
| 1864 | if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { |
| 1865 | __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; |
| 1866 | |
| 1867 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| 1868 | le16_to_cpu(vlan_tag)); |
| 1869 | } |
| 1870 | |
| 1871 | /* modifies the skb - consumes the enet header */ |
| 1872 | skb->protocol = eth_type_trans(skb, dev: rx_ring->netdev); |
| 1873 | } |
| 1874 | |
| 1875 | /** |
| 1876 | * i40e_cleanup_headers - Correct empty headers |
| 1877 | * @rx_ring: rx descriptor ring packet is being transacted on |
| 1878 | * @skb: pointer to current skb being fixed |
| 1879 | * @rx_desc: pointer to the EOP Rx descriptor |
| 1880 | * |
| 1881 | * In addition if skb is not at least 60 bytes we need to pad it so that |
| 1882 | * it is large enough to qualify as a valid Ethernet frame. |
| 1883 | * |
| 1884 | * Returns true if an error was encountered and skb was freed. |
| 1885 | **/ |
| 1886 | static bool (struct i40e_ring *rx_ring, struct sk_buff *skb, |
| 1887 | union i40e_rx_desc *rx_desc) |
| 1888 | |
| 1889 | { |
| 1890 | /* ERR_MASK will only have valid bits if EOP set, and |
| 1891 | * what we are doing here is actually checking |
| 1892 | * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in |
| 1893 | * the error field |
| 1894 | */ |
| 1895 | if (unlikely(i40e_test_staterr(rx_desc, |
| 1896 | BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { |
| 1897 | dev_kfree_skb_any(skb); |
| 1898 | return true; |
| 1899 | } |
| 1900 | |
| 1901 | /* if eth_skb_pad returns an error the skb was freed */ |
| 1902 | if (eth_skb_pad(skb)) |
| 1903 | return true; |
| 1904 | |
| 1905 | return false; |
| 1906 | } |
| 1907 | |
| 1908 | /** |
| 1909 | * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx |
| 1910 | * @rx_buffer: buffer containing the page |
| 1911 | * @rx_stats: rx stats structure for the rx ring |
| 1912 | * |
| 1913 | * If page is reusable, we have a green light for calling i40e_reuse_rx_page, |
| 1914 | * which will assign the current buffer to the buffer that next_to_alloc is |
| 1915 | * pointing to; otherwise, the DMA mapping needs to be destroyed and |
| 1916 | * page freed. |
| 1917 | * |
| 1918 | * rx_stats will be updated to indicate whether the page was waived |
| 1919 | * or busy if it could not be reused. |
| 1920 | */ |
| 1921 | static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, |
| 1922 | struct i40e_rx_queue_stats *rx_stats) |
| 1923 | { |
| 1924 | unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; |
| 1925 | struct page *page = rx_buffer->page; |
| 1926 | |
| 1927 | /* Is any reuse possible? */ |
| 1928 | if (!dev_page_is_reusable(page)) { |
| 1929 | rx_stats->page_waive_count++; |
| 1930 | return false; |
| 1931 | } |
| 1932 | |
| 1933 | #if (PAGE_SIZE < 8192) |
| 1934 | /* if we are only owner of page we can reuse it */ |
| 1935 | if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) { |
| 1936 | rx_stats->page_busy_count++; |
| 1937 | return false; |
| 1938 | } |
| 1939 | #else |
| 1940 | #define I40E_LAST_OFFSET \ |
| 1941 | (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) |
| 1942 | if (rx_buffer->page_offset > I40E_LAST_OFFSET) { |
| 1943 | rx_stats->page_busy_count++; |
| 1944 | return false; |
| 1945 | } |
| 1946 | #endif |
| 1947 | |
| 1948 | /* If we have drained the page fragment pool we need to update |
| 1949 | * the pagecnt_bias and page count so that we fully restock the |
| 1950 | * number of references the driver holds. |
| 1951 | */ |
| 1952 | if (unlikely(pagecnt_bias == 1)) { |
| 1953 | page_ref_add(page, USHRT_MAX - 1); |
| 1954 | rx_buffer->pagecnt_bias = USHRT_MAX; |
| 1955 | } |
| 1956 | |
| 1957 | return true; |
| 1958 | } |
| 1959 | |
| 1960 | /** |
| 1961 | * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region |
| 1962 | * @rx_buffer: Rx buffer to adjust |
| 1963 | * @truesize: Size of adjustment |
| 1964 | **/ |
| 1965 | static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer, |
| 1966 | unsigned int truesize) |
| 1967 | { |
| 1968 | #if (PAGE_SIZE < 8192) |
| 1969 | rx_buffer->page_offset ^= truesize; |
| 1970 | #else |
| 1971 | rx_buffer->page_offset += truesize; |
| 1972 | #endif |
| 1973 | } |
| 1974 | |
| 1975 | /** |
| 1976 | * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use |
| 1977 | * @rx_ring: rx descriptor ring to transact packets on |
| 1978 | * @size: size of buffer to add to skb |
| 1979 | * |
| 1980 | * This function will pull an Rx buffer from the ring and synchronize it |
| 1981 | * for use by the CPU. |
| 1982 | */ |
| 1983 | static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, |
| 1984 | const unsigned int size) |
| 1985 | { |
| 1986 | struct i40e_rx_buffer *rx_buffer; |
| 1987 | |
| 1988 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_process); |
| 1989 | rx_buffer->page_count = |
| 1990 | #if (PAGE_SIZE < 8192) |
| 1991 | page_count(page: rx_buffer->page); |
| 1992 | #else |
| 1993 | 0; |
| 1994 | #endif |
| 1995 | prefetch_page_address(page: rx_buffer->page); |
| 1996 | |
| 1997 | /* we are reusing so sync this buffer for CPU use */ |
| 1998 | dma_sync_single_range_for_cpu(dev: rx_ring->dev, |
| 1999 | addr: rx_buffer->dma, |
| 2000 | offset: rx_buffer->page_offset, |
| 2001 | size, |
| 2002 | dir: DMA_FROM_DEVICE); |
| 2003 | |
| 2004 | /* We have pulled a buffer for use, so decrement pagecnt_bias */ |
| 2005 | rx_buffer->pagecnt_bias--; |
| 2006 | |
| 2007 | return rx_buffer; |
| 2008 | } |
| 2009 | |
| 2010 | /** |
| 2011 | * i40e_put_rx_buffer - Clean up used buffer and either recycle or free |
| 2012 | * @rx_ring: rx descriptor ring to transact packets on |
| 2013 | * @rx_buffer: rx buffer to pull data from |
| 2014 | * |
| 2015 | * This function will clean up the contents of the rx_buffer. It will |
| 2016 | * either recycle the buffer or unmap it and free the associated resources. |
| 2017 | */ |
| 2018 | static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, |
| 2019 | struct i40e_rx_buffer *rx_buffer) |
| 2020 | { |
| 2021 | if (i40e_can_reuse_rx_page(rx_buffer, rx_stats: &rx_ring->rx_stats)) { |
| 2022 | /* hand second half of page back to the ring */ |
| 2023 | i40e_reuse_rx_page(rx_ring, old_buff: rx_buffer); |
| 2024 | } else { |
| 2025 | /* we are not reusing the buffer so unmap it */ |
| 2026 | dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_buffer->dma, |
| 2027 | i40e_rx_pg_size(rx_ring), |
| 2028 | dir: DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); |
| 2029 | __page_frag_cache_drain(page: rx_buffer->page, |
| 2030 | count: rx_buffer->pagecnt_bias); |
| 2031 | /* clear contents of buffer_info */ |
| 2032 | rx_buffer->page = NULL; |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | /** |
| 2037 | * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error |
| 2038 | * @rx_ring: Rx descriptor ring to transact packets on |
| 2039 | * @xdp_res: Result of the XDP program |
| 2040 | * @xdp: xdp_buff pointing to the data |
| 2041 | **/ |
| 2042 | static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res, |
| 2043 | struct xdp_buff *xdp) |
| 2044 | { |
| 2045 | u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; |
| 2046 | u32 next = rx_ring->next_to_clean, i = 0; |
| 2047 | struct i40e_rx_buffer *rx_buffer; |
| 2048 | |
| 2049 | xdp->flags = 0; |
| 2050 | |
| 2051 | while (1) { |
| 2052 | rx_buffer = i40e_rx_bi(rx_ring, idx: next); |
| 2053 | if (++next == rx_ring->count) |
| 2054 | next = 0; |
| 2055 | |
| 2056 | if (!rx_buffer->page) |
| 2057 | continue; |
| 2058 | |
| 2059 | if (xdp_res != I40E_XDP_CONSUMED) |
| 2060 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
| 2061 | else if (i++ <= nr_frags) |
| 2062 | rx_buffer->pagecnt_bias++; |
| 2063 | |
| 2064 | /* EOP buffer will be put in i40e_clean_rx_irq() */ |
| 2065 | if (next == rx_ring->next_to_process) |
| 2066 | return; |
| 2067 | |
| 2068 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | /** |
| 2073 | * i40e_construct_skb - Allocate skb and populate it |
| 2074 | * @rx_ring: rx descriptor ring to transact packets on |
| 2075 | * @xdp: xdp_buff pointing to the data |
| 2076 | * |
| 2077 | * This function allocates an skb. It then populates it with the page |
| 2078 | * data from the current receive descriptor, taking care to set up the |
| 2079 | * skb correctly. |
| 2080 | */ |
| 2081 | static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, |
| 2082 | struct xdp_buff *xdp) |
| 2083 | { |
| 2084 | unsigned int size = xdp->data_end - xdp->data; |
| 2085 | struct i40e_rx_buffer *rx_buffer; |
| 2086 | struct skb_shared_info *sinfo; |
| 2087 | unsigned int headlen; |
| 2088 | struct sk_buff *skb; |
| 2089 | u32 nr_frags = 0; |
| 2090 | |
| 2091 | /* prefetch first cache line of first page */ |
| 2092 | net_prefetch(p: xdp->data); |
| 2093 | |
| 2094 | /* Note, we get here by enabling legacy-rx via: |
| 2095 | * |
| 2096 | * ethtool --set-priv-flags <dev> legacy-rx on |
| 2097 | * |
| 2098 | * In this mode, we currently get 0 extra XDP headroom as |
| 2099 | * opposed to having legacy-rx off, where we process XDP |
| 2100 | * packets going to stack via i40e_build_skb(). The latter |
| 2101 | * provides us currently with 192 bytes of headroom. |
| 2102 | * |
| 2103 | * For i40e_construct_skb() mode it means that the |
| 2104 | * xdp->data_meta will always point to xdp->data, since |
| 2105 | * the helper cannot expand the head. Should this ever |
| 2106 | * change in future for legacy-rx mode on, then lets also |
| 2107 | * add xdp->data_meta handling here. |
| 2108 | */ |
| 2109 | |
| 2110 | /* allocate a skb to store the frags */ |
| 2111 | skb = napi_alloc_skb(napi: &rx_ring->q_vector->napi, I40E_RX_HDR_SIZE); |
| 2112 | if (unlikely(!skb)) |
| 2113 | return NULL; |
| 2114 | |
| 2115 | /* Determine available headroom for copy */ |
| 2116 | headlen = size; |
| 2117 | if (headlen > I40E_RX_HDR_SIZE) |
| 2118 | headlen = eth_get_headlen(dev: skb->dev, data: xdp->data, |
| 2119 | I40E_RX_HDR_SIZE); |
| 2120 | |
| 2121 | /* align pull length to size of long to optimize memcpy performance */ |
| 2122 | memcpy(__skb_put(skb, headlen), xdp->data, |
| 2123 | ALIGN(headlen, sizeof(long))); |
| 2124 | |
| 2125 | if (unlikely(xdp_buff_has_frags(xdp))) { |
| 2126 | sinfo = xdp_get_shared_info_from_buff(xdp); |
| 2127 | nr_frags = sinfo->nr_frags; |
| 2128 | } |
| 2129 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_clean); |
| 2130 | /* update all of the pointers */ |
| 2131 | size -= headlen; |
| 2132 | if (size) { |
| 2133 | if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { |
| 2134 | dev_kfree_skb(skb); |
| 2135 | return NULL; |
| 2136 | } |
| 2137 | skb_add_rx_frag(skb, i: 0, page: rx_buffer->page, |
| 2138 | off: rx_buffer->page_offset + headlen, |
| 2139 | size, truesize: xdp->frame_sz); |
| 2140 | /* buffer is used by skb, update page_offset */ |
| 2141 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
| 2142 | } else { |
| 2143 | /* buffer is unused, reset bias back to rx_buffer */ |
| 2144 | rx_buffer->pagecnt_bias++; |
| 2145 | } |
| 2146 | |
| 2147 | if (unlikely(xdp_buff_has_frags(xdp))) { |
| 2148 | struct skb_shared_info *skinfo = skb_shinfo(skb); |
| 2149 | |
| 2150 | memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], |
| 2151 | sizeof(skb_frag_t) * nr_frags); |
| 2152 | |
| 2153 | xdp_update_skb_shared_info(skb, nr_frags: skinfo->nr_frags + nr_frags, |
| 2154 | size: sinfo->xdp_frags_size, |
| 2155 | truesize: nr_frags * xdp->frame_sz, |
| 2156 | pfmemalloc: xdp_buff_is_frag_pfmemalloc(xdp)); |
| 2157 | |
| 2158 | /* First buffer has already been processed, so bump ntc */ |
| 2159 | if (++rx_ring->next_to_clean == rx_ring->count) |
| 2160 | rx_ring->next_to_clean = 0; |
| 2161 | |
| 2162 | i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); |
| 2163 | } |
| 2164 | |
| 2165 | return skb; |
| 2166 | } |
| 2167 | |
| 2168 | /** |
| 2169 | * i40e_build_skb - Build skb around an existing buffer |
| 2170 | * @rx_ring: Rx descriptor ring to transact packets on |
| 2171 | * @xdp: xdp_buff pointing to the data |
| 2172 | * |
| 2173 | * This function builds an skb around an existing Rx buffer, taking care |
| 2174 | * to set up the skb correctly and avoid any memcpy overhead. |
| 2175 | */ |
| 2176 | static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, |
| 2177 | struct xdp_buff *xdp) |
| 2178 | { |
| 2179 | unsigned int metasize = xdp->data - xdp->data_meta; |
| 2180 | struct skb_shared_info *sinfo; |
| 2181 | struct sk_buff *skb; |
| 2182 | u32 nr_frags; |
| 2183 | |
| 2184 | /* Prefetch first cache line of first page. If xdp->data_meta |
| 2185 | * is unused, this points exactly as xdp->data, otherwise we |
| 2186 | * likely have a consumer accessing first few bytes of meta |
| 2187 | * data, and then actual data. |
| 2188 | */ |
| 2189 | net_prefetch(p: xdp->data_meta); |
| 2190 | |
| 2191 | if (unlikely(xdp_buff_has_frags(xdp))) { |
| 2192 | sinfo = xdp_get_shared_info_from_buff(xdp); |
| 2193 | nr_frags = sinfo->nr_frags; |
| 2194 | } |
| 2195 | |
| 2196 | /* build an skb around the page buffer */ |
| 2197 | skb = napi_build_skb(data: xdp->data_hard_start, frag_size: xdp->frame_sz); |
| 2198 | if (unlikely(!skb)) |
| 2199 | return NULL; |
| 2200 | |
| 2201 | /* update pointers within the skb to store the data */ |
| 2202 | skb_reserve(skb, len: xdp->data - xdp->data_hard_start); |
| 2203 | __skb_put(skb, len: xdp->data_end - xdp->data); |
| 2204 | if (metasize) |
| 2205 | skb_metadata_set(skb, meta_len: metasize); |
| 2206 | |
| 2207 | if (unlikely(xdp_buff_has_frags(xdp))) { |
| 2208 | xdp_update_skb_shared_info(skb, nr_frags, |
| 2209 | size: sinfo->xdp_frags_size, |
| 2210 | truesize: nr_frags * xdp->frame_sz, |
| 2211 | pfmemalloc: xdp_buff_is_frag_pfmemalloc(xdp)); |
| 2212 | |
| 2213 | i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); |
| 2214 | } else { |
| 2215 | struct i40e_rx_buffer *rx_buffer; |
| 2216 | |
| 2217 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_clean); |
| 2218 | /* buffer is used by skb, update page_offset */ |
| 2219 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
| 2220 | } |
| 2221 | |
| 2222 | return skb; |
| 2223 | } |
| 2224 | |
| 2225 | /** |
| 2226 | * i40e_is_non_eop - process handling of non-EOP buffers |
| 2227 | * @rx_ring: Rx ring being processed |
| 2228 | * @rx_desc: Rx descriptor for current buffer |
| 2229 | * |
| 2230 | * If the buffer is an EOP buffer, this function exits returning false, |
| 2231 | * otherwise return true indicating that this is in fact a non-EOP buffer. |
| 2232 | */ |
| 2233 | bool i40e_is_non_eop(struct i40e_ring *rx_ring, |
| 2234 | union i40e_rx_desc *rx_desc) |
| 2235 | { |
| 2236 | /* if we are the last buffer then there is nothing else to do */ |
| 2237 | #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) |
| 2238 | if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) |
| 2239 | return false; |
| 2240 | |
| 2241 | rx_ring->rx_stats.non_eop_descs++; |
| 2242 | |
| 2243 | return true; |
| 2244 | } |
| 2245 | |
| 2246 | static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, |
| 2247 | struct i40e_ring *xdp_ring); |
| 2248 | |
| 2249 | int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) |
| 2250 | { |
| 2251 | struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); |
| 2252 | |
| 2253 | if (unlikely(!xdpf)) |
| 2254 | return I40E_XDP_CONSUMED; |
| 2255 | |
| 2256 | return i40e_xmit_xdp_ring(xdpf, xdp_ring); |
| 2257 | } |
| 2258 | |
| 2259 | /** |
| 2260 | * i40e_run_xdp - run an XDP program |
| 2261 | * @rx_ring: Rx ring being processed |
| 2262 | * @xdp: XDP buffer containing the frame |
| 2263 | * @xdp_prog: XDP program to run |
| 2264 | **/ |
| 2265 | static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) |
| 2266 | { |
| 2267 | int err, result = I40E_XDP_PASS; |
| 2268 | struct i40e_ring *xdp_ring; |
| 2269 | u32 act; |
| 2270 | |
| 2271 | if (!xdp_prog) |
| 2272 | goto xdp_out; |
| 2273 | |
| 2274 | prefetchw(x: xdp->data_hard_start); /* xdp_frame write */ |
| 2275 | |
| 2276 | act = bpf_prog_run_xdp(prog: xdp_prog, xdp); |
| 2277 | switch (act) { |
| 2278 | case XDP_PASS: |
| 2279 | break; |
| 2280 | case XDP_TX: |
| 2281 | xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; |
| 2282 | result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); |
| 2283 | if (result == I40E_XDP_CONSUMED) |
| 2284 | goto out_failure; |
| 2285 | break; |
| 2286 | case XDP_REDIRECT: |
| 2287 | err = xdp_do_redirect(dev: rx_ring->netdev, xdp, prog: xdp_prog); |
| 2288 | if (err) |
| 2289 | goto out_failure; |
| 2290 | result = I40E_XDP_REDIR; |
| 2291 | break; |
| 2292 | default: |
| 2293 | bpf_warn_invalid_xdp_action(dev: rx_ring->netdev, prog: xdp_prog, act); |
| 2294 | fallthrough; |
| 2295 | case XDP_ABORTED: |
| 2296 | out_failure: |
| 2297 | trace_xdp_exception(dev: rx_ring->netdev, xdp: xdp_prog, act); |
| 2298 | fallthrough; /* handle aborts by dropping packet */ |
| 2299 | case XDP_DROP: |
| 2300 | result = I40E_XDP_CONSUMED; |
| 2301 | break; |
| 2302 | } |
| 2303 | xdp_out: |
| 2304 | return result; |
| 2305 | } |
| 2306 | |
| 2307 | /** |
| 2308 | * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register |
| 2309 | * @xdp_ring: XDP Tx ring |
| 2310 | * |
| 2311 | * This function updates the XDP Tx ring tail register. |
| 2312 | **/ |
| 2313 | void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) |
| 2314 | { |
| 2315 | /* Force memory writes to complete before letting h/w |
| 2316 | * know there are new descriptors to fetch. |
| 2317 | */ |
| 2318 | wmb(); |
| 2319 | writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); |
| 2320 | } |
| 2321 | |
| 2322 | /** |
| 2323 | * i40e_update_rx_stats - Update Rx ring statistics |
| 2324 | * @rx_ring: rx descriptor ring |
| 2325 | * @total_rx_bytes: number of bytes received |
| 2326 | * @total_rx_packets: number of packets received |
| 2327 | * |
| 2328 | * This function updates the Rx ring statistics. |
| 2329 | **/ |
| 2330 | void i40e_update_rx_stats(struct i40e_ring *rx_ring, |
| 2331 | unsigned int total_rx_bytes, |
| 2332 | unsigned int total_rx_packets) |
| 2333 | { |
| 2334 | u64_stats_update_begin(syncp: &rx_ring->syncp); |
| 2335 | rx_ring->stats.packets += total_rx_packets; |
| 2336 | rx_ring->stats.bytes += total_rx_bytes; |
| 2337 | u64_stats_update_end(syncp: &rx_ring->syncp); |
| 2338 | rx_ring->q_vector->rx.total_packets += total_rx_packets; |
| 2339 | rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| 2340 | } |
| 2341 | |
| 2342 | /** |
| 2343 | * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map |
| 2344 | * @rx_ring: Rx ring |
| 2345 | * @xdp_res: Result of the receive batch |
| 2346 | * |
| 2347 | * This function bumps XDP Tx tail and/or flush redirect map, and |
| 2348 | * should be called when a batch of packets has been processed in the |
| 2349 | * napi loop. |
| 2350 | **/ |
| 2351 | void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) |
| 2352 | { |
| 2353 | if (xdp_res & I40E_XDP_REDIR) |
| 2354 | xdp_do_flush(); |
| 2355 | |
| 2356 | if (xdp_res & I40E_XDP_TX) { |
| 2357 | struct i40e_ring *xdp_ring = |
| 2358 | rx_ring->vsi->xdp_rings[rx_ring->queue_index]; |
| 2359 | |
| 2360 | i40e_xdp_ring_update_tail(xdp_ring); |
| 2361 | } |
| 2362 | } |
| 2363 | |
| 2364 | /** |
| 2365 | * i40e_inc_ntp: Advance the next_to_process index |
| 2366 | * @rx_ring: Rx ring |
| 2367 | **/ |
| 2368 | static void i40e_inc_ntp(struct i40e_ring *rx_ring) |
| 2369 | { |
| 2370 | u32 ntp = rx_ring->next_to_process + 1; |
| 2371 | |
| 2372 | ntp = (ntp < rx_ring->count) ? ntp : 0; |
| 2373 | rx_ring->next_to_process = ntp; |
| 2374 | prefetch(I40E_RX_DESC(rx_ring, ntp)); |
| 2375 | } |
| 2376 | |
| 2377 | /** |
| 2378 | * i40e_add_xdp_frag: Add a frag to xdp_buff |
| 2379 | * @xdp: xdp_buff pointing to the data |
| 2380 | * @nr_frags: return number of buffers for the packet |
| 2381 | * @rx_buffer: rx_buffer holding data of the current frag |
| 2382 | * @size: size of data of current frag |
| 2383 | */ |
| 2384 | static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags, |
| 2385 | struct i40e_rx_buffer *rx_buffer, u32 size) |
| 2386 | { |
| 2387 | struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); |
| 2388 | |
| 2389 | if (!xdp_buff_has_frags(xdp)) { |
| 2390 | sinfo->nr_frags = 0; |
| 2391 | sinfo->xdp_frags_size = 0; |
| 2392 | xdp_buff_set_frags_flag(xdp); |
| 2393 | } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) { |
| 2394 | /* Overflowing packet: All frags need to be dropped */ |
| 2395 | return -ENOMEM; |
| 2396 | } |
| 2397 | |
| 2398 | __skb_fill_page_desc_noacc(shinfo: sinfo, i: sinfo->nr_frags++, page: rx_buffer->page, |
| 2399 | off: rx_buffer->page_offset, size); |
| 2400 | |
| 2401 | sinfo->xdp_frags_size += size; |
| 2402 | |
| 2403 | if (page_is_pfmemalloc(page: rx_buffer->page)) |
| 2404 | xdp_buff_set_frag_pfmemalloc(xdp); |
| 2405 | *nr_frags = sinfo->nr_frags; |
| 2406 | |
| 2407 | return 0; |
| 2408 | } |
| 2409 | |
| 2410 | /** |
| 2411 | * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc |
| 2412 | * @rx_ring: rx descriptor ring to transact packets on |
| 2413 | * @xdp: xdp_buff pointing to the data |
| 2414 | * @rx_buffer: rx_buffer of eop desc |
| 2415 | */ |
| 2416 | static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring, |
| 2417 | struct xdp_buff *xdp, |
| 2418 | struct i40e_rx_buffer *rx_buffer) |
| 2419 | { |
| 2420 | i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp); |
| 2421 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
| 2422 | rx_ring->next_to_clean = rx_ring->next_to_process; |
| 2423 | xdp->data = NULL; |
| 2424 | } |
| 2425 | |
| 2426 | /** |
| 2427 | * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| 2428 | * @rx_ring: rx descriptor ring to transact packets on |
| 2429 | * @budget: Total limit on number of packets to process |
| 2430 | * @rx_cleaned: Out parameter of the number of packets processed |
| 2431 | * |
| 2432 | * This function provides a "bounce buffer" approach to Rx interrupt |
| 2433 | * processing. The advantage to this is that on systems that have |
| 2434 | * expensive overhead for IOMMU access this provides a means of avoiding |
| 2435 | * it by maintaining the mapping of the page to the system. |
| 2436 | * |
| 2437 | * Returns amount of work completed |
| 2438 | **/ |
| 2439 | static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget, |
| 2440 | unsigned int *rx_cleaned) |
| 2441 | { |
| 2442 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| 2443 | u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); |
| 2444 | u16 clean_threshold = rx_ring->count / 2; |
| 2445 | unsigned int offset = rx_ring->rx_offset; |
| 2446 | struct xdp_buff *xdp = &rx_ring->xdp; |
| 2447 | unsigned int xdp_xmit = 0; |
| 2448 | struct bpf_prog *xdp_prog; |
| 2449 | bool failure = false; |
| 2450 | int xdp_res = 0; |
| 2451 | |
| 2452 | xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| 2453 | |
| 2454 | while (likely(total_rx_packets < (unsigned int)budget)) { |
| 2455 | u16 ntp = rx_ring->next_to_process; |
| 2456 | struct i40e_rx_buffer *rx_buffer; |
| 2457 | union i40e_rx_desc *rx_desc; |
| 2458 | struct sk_buff *skb; |
| 2459 | unsigned int size; |
| 2460 | u32 nfrags = 0; |
| 2461 | bool neop; |
| 2462 | u64 qword; |
| 2463 | |
| 2464 | /* return some buffers to hardware, one at a time is too slow */ |
| 2465 | if (cleaned_count >= clean_threshold) { |
| 2466 | failure = failure || |
| 2467 | i40e_alloc_rx_buffers(rx_ring, cleaned_count); |
| 2468 | cleaned_count = 0; |
| 2469 | } |
| 2470 | |
| 2471 | rx_desc = I40E_RX_DESC(rx_ring, ntp); |
| 2472 | |
| 2473 | /* status_error_len will always be zero for unused descriptors |
| 2474 | * because it's cleared in cleanup, and overlaps with hdr_addr |
| 2475 | * which is always zero because packet split isn't used, if the |
| 2476 | * hardware wrote DD then the length will be non-zero |
| 2477 | */ |
| 2478 | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| 2479 | |
| 2480 | /* This memory barrier is needed to keep us from reading |
| 2481 | * any other fields out of the rx_desc until we have |
| 2482 | * verified the descriptor has been written back. |
| 2483 | */ |
| 2484 | dma_rmb(); |
| 2485 | |
| 2486 | if (i40e_rx_is_programming_status(qword1: qword)) { |
| 2487 | i40e_clean_programming_status(rx_ring, |
| 2488 | qword0_raw: rx_desc->raw.qword[0], |
| 2489 | qword1: qword); |
| 2490 | rx_buffer = i40e_rx_bi(rx_ring, idx: ntp); |
| 2491 | i40e_inc_ntp(rx_ring); |
| 2492 | i40e_reuse_rx_page(rx_ring, old_buff: rx_buffer); |
| 2493 | /* Update ntc and bump cleaned count if not in the |
| 2494 | * middle of mb packet. |
| 2495 | */ |
| 2496 | if (rx_ring->next_to_clean == ntp) { |
| 2497 | rx_ring->next_to_clean = |
| 2498 | rx_ring->next_to_process; |
| 2499 | cleaned_count++; |
| 2500 | } |
| 2501 | continue; |
| 2502 | } |
| 2503 | |
| 2504 | size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword); |
| 2505 | if (!size) |
| 2506 | break; |
| 2507 | |
| 2508 | i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp); |
| 2509 | /* retrieve a buffer from the ring */ |
| 2510 | rx_buffer = i40e_get_rx_buffer(rx_ring, size); |
| 2511 | |
| 2512 | neop = i40e_is_non_eop(rx_ring, rx_desc); |
| 2513 | i40e_inc_ntp(rx_ring); |
| 2514 | |
| 2515 | if (!xdp->data) { |
| 2516 | unsigned char *hard_start; |
| 2517 | |
| 2518 | hard_start = page_address(rx_buffer->page) + |
| 2519 | rx_buffer->page_offset - offset; |
| 2520 | xdp_prepare_buff(xdp, hard_start, headroom: offset, data_len: size, meta_valid: true); |
| 2521 | #if (PAGE_SIZE > 4096) |
| 2522 | /* At larger PAGE_SIZE, frame_sz depend on len size */ |
| 2523 | xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size); |
| 2524 | #endif |
| 2525 | } else if (i40e_add_xdp_frag(xdp, nr_frags: &nfrags, rx_buffer, size) && |
| 2526 | !neop) { |
| 2527 | /* Overflowing packet: Drop all frags on EOP */ |
| 2528 | i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); |
| 2529 | break; |
| 2530 | } |
| 2531 | |
| 2532 | if (neop) |
| 2533 | continue; |
| 2534 | |
| 2535 | xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog); |
| 2536 | |
| 2537 | if (xdp_res) { |
| 2538 | xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); |
| 2539 | |
| 2540 | if (unlikely(xdp_buff_has_frags(xdp))) { |
| 2541 | i40e_process_rx_buffs(rx_ring, xdp_res, xdp); |
| 2542 | size = xdp_get_buff_len(xdp); |
| 2543 | } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { |
| 2544 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
| 2545 | } else { |
| 2546 | rx_buffer->pagecnt_bias++; |
| 2547 | } |
| 2548 | total_rx_bytes += size; |
| 2549 | } else { |
| 2550 | if (ring_uses_build_skb(ring: rx_ring)) |
| 2551 | skb = i40e_build_skb(rx_ring, xdp); |
| 2552 | else |
| 2553 | skb = i40e_construct_skb(rx_ring, xdp); |
| 2554 | |
| 2555 | /* drop if we failed to retrieve a buffer */ |
| 2556 | if (!skb) { |
| 2557 | rx_ring->rx_stats.alloc_buff_failed++; |
| 2558 | i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); |
| 2559 | break; |
| 2560 | } |
| 2561 | |
| 2562 | if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) |
| 2563 | goto process_next; |
| 2564 | |
| 2565 | /* probably a little skewed due to removing CRC */ |
| 2566 | total_rx_bytes += skb->len; |
| 2567 | |
| 2568 | /* populate checksum, VLAN, and protocol */ |
| 2569 | i40e_process_skb_fields(rx_ring, rx_desc, skb); |
| 2570 | |
| 2571 | i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp); |
| 2572 | napi_gro_receive(napi: &rx_ring->q_vector->napi, skb); |
| 2573 | } |
| 2574 | |
| 2575 | /* update budget accounting */ |
| 2576 | total_rx_packets++; |
| 2577 | process_next: |
| 2578 | cleaned_count += nfrags + 1; |
| 2579 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
| 2580 | rx_ring->next_to_clean = rx_ring->next_to_process; |
| 2581 | |
| 2582 | xdp->data = NULL; |
| 2583 | } |
| 2584 | |
| 2585 | i40e_finalize_xdp_rx(rx_ring, xdp_res: xdp_xmit); |
| 2586 | |
| 2587 | i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); |
| 2588 | |
| 2589 | *rx_cleaned = total_rx_packets; |
| 2590 | |
| 2591 | /* guarantee a trip back through this routine if there was a failure */ |
| 2592 | return failure ? budget : (int)total_rx_packets; |
| 2593 | } |
| 2594 | |
| 2595 | /** |
| 2596 | * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register |
| 2597 | * @itr_idx: interrupt throttling index |
| 2598 | * @interval: interrupt throttling interval value in usecs |
| 2599 | * @force_swint: force software interrupt |
| 2600 | * |
| 2601 | * The function builds a value for I40E_PFINT_DYN_CTLN register that |
| 2602 | * is used to update interrupt throttling interval for specified ITR index |
| 2603 | * and optionally enforces a software interrupt. If the @itr_idx is equal |
| 2604 | * to I40E_ITR_NONE then no interval change is applied and only @force_swint |
| 2605 | * parameter is taken into account. If the interval change and enforced |
| 2606 | * software interrupt are not requested then the built value just enables |
| 2607 | * appropriate vector interrupt. |
| 2608 | **/ |
| 2609 | static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval, |
| 2610 | bool force_swint) |
| 2611 | { |
| 2612 | u32 val; |
| 2613 | |
| 2614 | /* We don't bother with setting the CLEARPBA bit as the data sheet |
| 2615 | * points out doing so is "meaningless since it was already |
| 2616 | * auto-cleared". The auto-clearing happens when the interrupt is |
| 2617 | * asserted. |
| 2618 | * |
| 2619 | * Hardware errata 28 for also indicates that writing to a |
| 2620 | * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear |
| 2621 | * an event in the PBA anyway so we need to rely on the automask |
| 2622 | * to hold pending events for us until the interrupt is re-enabled |
| 2623 | * |
| 2624 | * We have to shift the given value as it is reported in microseconds |
| 2625 | * and the register value is recorded in 2 microsecond units. |
| 2626 | */ |
| 2627 | interval >>= 1; |
| 2628 | |
| 2629 | /* 1. Enable vector interrupt |
| 2630 | * 2. Update the interval for the specified ITR index |
| 2631 | * (I40E_ITR_NONE in the register is used to indicate that |
| 2632 | * no interval update is requested) |
| 2633 | */ |
| 2634 | val = I40E_PFINT_DYN_CTLN_INTENA_MASK | |
| 2635 | FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) | |
| 2636 | FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval); |
| 2637 | |
| 2638 | /* 3. Enforce software interrupt trigger if requested |
| 2639 | * (These software interrupts rate is limited by ITR2 that is |
| 2640 | * set to 20K interrupts per second) |
| 2641 | */ |
| 2642 | if (force_swint) |
| 2643 | val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | |
| 2644 | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK | |
| 2645 | FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK, |
| 2646 | I40E_SW_ITR); |
| 2647 | |
| 2648 | return val; |
| 2649 | } |
| 2650 | |
| 2651 | /* The act of updating the ITR will cause it to immediately trigger. In order |
| 2652 | * to prevent this from throwing off adaptive update statistics we defer the |
| 2653 | * update so that it can only happen so often. So after either Tx or Rx are |
| 2654 | * updated we make the adaptive scheme wait until either the ITR completely |
| 2655 | * expires via the next_update expiration or we have been through at least |
| 2656 | * 3 interrupts. |
| 2657 | */ |
| 2658 | #define ITR_COUNTDOWN_START 3 |
| 2659 | |
| 2660 | /** |
| 2661 | * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt |
| 2662 | * @vsi: the VSI we care about |
| 2663 | * @q_vector: q_vector for which itr is being updated and interrupt enabled |
| 2664 | * |
| 2665 | **/ |
| 2666 | static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, |
| 2667 | struct i40e_q_vector *q_vector) |
| 2668 | { |
| 2669 | enum i40e_dyn_idx itr_idx = I40E_ITR_NONE; |
| 2670 | struct i40e_hw *hw = &vsi->back->hw; |
| 2671 | u16 interval = 0; |
| 2672 | u32 itr_val; |
| 2673 | |
| 2674 | /* If we don't have MSIX, then we only need to re-enable icr0 */ |
| 2675 | if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
| 2676 | i40e_irq_dynamic_enable_icr0(pf: vsi->back); |
| 2677 | return; |
| 2678 | } |
| 2679 | |
| 2680 | /* These will do nothing if dynamic updates are not enabled */ |
| 2681 | i40e_update_itr(q_vector, rc: &q_vector->tx); |
| 2682 | i40e_update_itr(q_vector, rc: &q_vector->rx); |
| 2683 | |
| 2684 | /* This block of logic allows us to get away with only updating |
| 2685 | * one ITR value with each interrupt. The idea is to perform a |
| 2686 | * pseudo-lazy update with the following criteria. |
| 2687 | * |
| 2688 | * 1. Rx is given higher priority than Tx if both are in same state |
| 2689 | * 2. If we must reduce an ITR that is given highest priority. |
| 2690 | * 3. We then give priority to increasing ITR based on amount. |
| 2691 | */ |
| 2692 | if (q_vector->rx.target_itr < q_vector->rx.current_itr) { |
| 2693 | /* Rx ITR needs to be reduced, this is highest priority */ |
| 2694 | itr_idx = I40E_RX_ITR; |
| 2695 | interval = q_vector->rx.target_itr; |
| 2696 | q_vector->rx.current_itr = q_vector->rx.target_itr; |
| 2697 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| 2698 | } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || |
| 2699 | ((q_vector->rx.target_itr - q_vector->rx.current_itr) < |
| 2700 | (q_vector->tx.target_itr - q_vector->tx.current_itr))) { |
| 2701 | /* Tx ITR needs to be reduced, this is second priority |
| 2702 | * Tx ITR needs to be increased more than Rx, fourth priority |
| 2703 | */ |
| 2704 | itr_idx = I40E_TX_ITR; |
| 2705 | interval = q_vector->tx.target_itr; |
| 2706 | q_vector->tx.current_itr = q_vector->tx.target_itr; |
| 2707 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| 2708 | } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { |
| 2709 | /* Rx ITR needs to be increased, third priority */ |
| 2710 | itr_idx = I40E_RX_ITR; |
| 2711 | interval = q_vector->rx.target_itr; |
| 2712 | q_vector->rx.current_itr = q_vector->rx.target_itr; |
| 2713 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| 2714 | } else { |
| 2715 | /* No ITR update, lowest priority */ |
| 2716 | if (q_vector->itr_countdown) |
| 2717 | q_vector->itr_countdown--; |
| 2718 | } |
| 2719 | |
| 2720 | /* Do not update interrupt control register if VSI is down */ |
| 2721 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
| 2722 | return; |
| 2723 | |
| 2724 | /* Update ITR interval if necessary and enforce software interrupt |
| 2725 | * if we are exiting busy poll. |
| 2726 | */ |
| 2727 | if (q_vector->in_busy_poll) { |
| 2728 | itr_val = i40e_buildreg_itr(itr_idx, interval, force_swint: true); |
| 2729 | q_vector->in_busy_poll = false; |
| 2730 | } else { |
| 2731 | itr_val = i40e_buildreg_itr(itr_idx, interval, force_swint: false); |
| 2732 | } |
| 2733 | wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val); |
| 2734 | } |
| 2735 | |
| 2736 | /** |
| 2737 | * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine |
| 2738 | * @napi: napi struct with our devices info in it |
| 2739 | * @budget: amount of work driver is allowed to do this pass, in packets |
| 2740 | * |
| 2741 | * This function will clean all queues associated with a q_vector. |
| 2742 | * |
| 2743 | * Returns the amount of work done |
| 2744 | **/ |
| 2745 | int i40e_napi_poll(struct napi_struct *napi, int budget) |
| 2746 | { |
| 2747 | struct i40e_q_vector *q_vector = |
| 2748 | container_of(napi, struct i40e_q_vector, napi); |
| 2749 | struct i40e_vsi *vsi = q_vector->vsi; |
| 2750 | struct i40e_ring *ring; |
| 2751 | bool tx_clean_complete = true; |
| 2752 | bool rx_clean_complete = true; |
| 2753 | unsigned int tx_cleaned = 0; |
| 2754 | unsigned int rx_cleaned = 0; |
| 2755 | bool clean_complete = true; |
| 2756 | bool arm_wb = false; |
| 2757 | int budget_per_ring; |
| 2758 | int work_done = 0; |
| 2759 | |
| 2760 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) { |
| 2761 | napi_complete(n: napi); |
| 2762 | return 0; |
| 2763 | } |
| 2764 | |
| 2765 | /* Since the actual Tx work is minimal, we can give the Tx a larger |
| 2766 | * budget and be more aggressive about cleaning up the Tx descriptors. |
| 2767 | */ |
| 2768 | i40e_for_each_ring(ring, q_vector->tx) { |
| 2769 | bool wd = ring->xsk_pool ? |
| 2770 | i40e_clean_xdp_tx_irq(vsi, tx_ring: ring) : |
| 2771 | i40e_clean_tx_irq(vsi, tx_ring: ring, napi_budget: budget, tx_cleaned: &tx_cleaned); |
| 2772 | |
| 2773 | if (!wd) { |
| 2774 | clean_complete = tx_clean_complete = false; |
| 2775 | continue; |
| 2776 | } |
| 2777 | arm_wb |= ring->arm_wb; |
| 2778 | ring->arm_wb = false; |
| 2779 | } |
| 2780 | |
| 2781 | /* Handle case where we are called by netpoll with a budget of 0 */ |
| 2782 | if (budget <= 0) |
| 2783 | goto tx_only; |
| 2784 | |
| 2785 | /* normally we have 1 Rx ring per q_vector */ |
| 2786 | if (unlikely(q_vector->num_ringpairs > 1)) |
| 2787 | /* We attempt to distribute budget to each Rx queue fairly, but |
| 2788 | * don't allow the budget to go below 1 because that would exit |
| 2789 | * polling early. |
| 2790 | */ |
| 2791 | budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); |
| 2792 | else |
| 2793 | /* Max of 1 Rx ring in this q_vector so give it the budget */ |
| 2794 | budget_per_ring = budget; |
| 2795 | |
| 2796 | i40e_for_each_ring(ring, q_vector->rx) { |
| 2797 | int cleaned = ring->xsk_pool ? |
| 2798 | i40e_clean_rx_irq_zc(rx_ring: ring, budget: budget_per_ring) : |
| 2799 | i40e_clean_rx_irq(rx_ring: ring, budget: budget_per_ring, rx_cleaned: &rx_cleaned); |
| 2800 | |
| 2801 | work_done += cleaned; |
| 2802 | /* if we clean as many as budgeted, we must not be done */ |
| 2803 | if (cleaned >= budget_per_ring) |
| 2804 | clean_complete = rx_clean_complete = false; |
| 2805 | } |
| 2806 | |
| 2807 | if (!i40e_enabled_xdp_vsi(vsi)) |
| 2808 | trace_i40e_napi_poll(napi, q: q_vector, budget, budget_per_ring, rx_cleaned, |
| 2809 | tx_cleaned, rx_clean_complete, tx_clean_complete); |
| 2810 | |
| 2811 | /* If work not completed, return budget and polling will return */ |
| 2812 | if (!clean_complete) { |
| 2813 | int cpu_id = smp_processor_id(); |
| 2814 | |
| 2815 | /* It is possible that the interrupt affinity has changed but, |
| 2816 | * if the cpu is pegged at 100%, polling will never exit while |
| 2817 | * traffic continues and the interrupt will be stuck on this |
| 2818 | * cpu. We check to make sure affinity is correct before we |
| 2819 | * continue to poll, otherwise we must stop polling so the |
| 2820 | * interrupt can move to the correct cpu. |
| 2821 | */ |
| 2822 | if (!cpumask_test_cpu(cpu: cpu_id, cpumask: &q_vector->affinity_mask)) { |
| 2823 | /* Tell napi that we are done polling */ |
| 2824 | napi_complete_done(n: napi, work_done); |
| 2825 | |
| 2826 | /* Force an interrupt */ |
| 2827 | i40e_force_wb(vsi, q_vector); |
| 2828 | |
| 2829 | /* Return budget-1 so that polling stops */ |
| 2830 | return budget - 1; |
| 2831 | } |
| 2832 | tx_only: |
| 2833 | if (arm_wb) { |
| 2834 | q_vector->tx.ring[0].tx_stats.tx_force_wb++; |
| 2835 | i40e_enable_wb_on_itr(vsi, q_vector); |
| 2836 | } |
| 2837 | return budget; |
| 2838 | } |
| 2839 | |
| 2840 | if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR) |
| 2841 | q_vector->arm_wb_state = false; |
| 2842 | |
| 2843 | /* Exit the polling mode, but don't re-enable interrupts if stack might |
| 2844 | * poll us due to busy-polling |
| 2845 | */ |
| 2846 | if (likely(napi_complete_done(napi, work_done))) |
| 2847 | i40e_update_enable_itr(vsi, q_vector); |
| 2848 | else |
| 2849 | q_vector->in_busy_poll = true; |
| 2850 | |
| 2851 | return min(work_done, budget - 1); |
| 2852 | } |
| 2853 | |
| 2854 | /** |
| 2855 | * i40e_atr - Add a Flow Director ATR filter |
| 2856 | * @tx_ring: ring to add programming descriptor to |
| 2857 | * @skb: send buffer |
| 2858 | * @tx_flags: send tx flags |
| 2859 | **/ |
| 2860 | static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| 2861 | u32 tx_flags) |
| 2862 | { |
| 2863 | struct i40e_filter_program_desc *fdir_desc; |
| 2864 | struct i40e_pf *pf = tx_ring->vsi->back; |
| 2865 | union { |
| 2866 | unsigned char *network; |
| 2867 | struct iphdr *ipv4; |
| 2868 | struct ipv6hdr *ipv6; |
| 2869 | } hdr; |
| 2870 | struct tcphdr *th; |
| 2871 | unsigned int hlen; |
| 2872 | u32 flex_ptype, dtype_cmd; |
| 2873 | int l4_proto; |
| 2874 | u16 i; |
| 2875 | |
| 2876 | /* make sure ATR is enabled */ |
| 2877 | if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) |
| 2878 | return; |
| 2879 | |
| 2880 | if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) |
| 2881 | return; |
| 2882 | |
| 2883 | /* if sampling is disabled do nothing */ |
| 2884 | if (!tx_ring->atr_sample_rate) |
| 2885 | return; |
| 2886 | |
| 2887 | /* Currently only IPv4/IPv6 with TCP is supported */ |
| 2888 | if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) |
| 2889 | return; |
| 2890 | |
| 2891 | /* snag network header to get L4 type and address */ |
| 2892 | hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? |
| 2893 | skb_inner_network_header(skb) : skb_network_header(skb); |
| 2894 | |
| 2895 | /* Note: tx_flags gets modified to reflect inner protocols in |
| 2896 | * tx_enable_csum function if encap is enabled. |
| 2897 | */ |
| 2898 | if (tx_flags & I40E_TX_FLAGS_IPV4) { |
| 2899 | /* access ihl as u8 to avoid unaligned access on ia64 */ |
| 2900 | hlen = (hdr.network[0] & 0x0F) << 2; |
| 2901 | l4_proto = hdr.ipv4->protocol; |
| 2902 | } else { |
| 2903 | /* find the start of the innermost ipv6 header */ |
| 2904 | unsigned int inner_hlen = hdr.network - skb->data; |
| 2905 | unsigned int h_offset = inner_hlen; |
| 2906 | |
| 2907 | /* this function updates h_offset to the end of the header */ |
| 2908 | l4_proto = |
| 2909 | ipv6_find_hdr(skb, offset: &h_offset, IPPROTO_TCP, NULL, NULL); |
| 2910 | /* hlen will contain our best estimate of the tcp header */ |
| 2911 | hlen = h_offset - inner_hlen; |
| 2912 | } |
| 2913 | |
| 2914 | if (l4_proto != IPPROTO_TCP) |
| 2915 | return; |
| 2916 | |
| 2917 | th = (struct tcphdr *)(hdr.network + hlen); |
| 2918 | |
| 2919 | /* Due to lack of space, no more new filters can be programmed */ |
| 2920 | if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) |
| 2921 | return; |
| 2922 | if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) { |
| 2923 | /* HW ATR eviction will take care of removing filters on FIN |
| 2924 | * and RST packets. |
| 2925 | */ |
| 2926 | if (th->fin || th->rst) |
| 2927 | return; |
| 2928 | } |
| 2929 | |
| 2930 | tx_ring->atr_count++; |
| 2931 | |
| 2932 | /* sample on all syn/fin/rst packets or once every atr sample rate */ |
| 2933 | if (!th->fin && |
| 2934 | !th->syn && |
| 2935 | !th->rst && |
| 2936 | (tx_ring->atr_count < tx_ring->atr_sample_rate)) |
| 2937 | return; |
| 2938 | |
| 2939 | tx_ring->atr_count = 0; |
| 2940 | |
| 2941 | /* grab the next descriptor */ |
| 2942 | i = tx_ring->next_to_use; |
| 2943 | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); |
| 2944 | |
| 2945 | i++; |
| 2946 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| 2947 | |
| 2948 | flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, |
| 2949 | tx_ring->queue_index); |
| 2950 | flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? |
| 2951 | (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << |
| 2952 | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : |
| 2953 | (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << |
| 2954 | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); |
| 2955 | |
| 2956 | flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; |
| 2957 | |
| 2958 | dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; |
| 2959 | |
| 2960 | dtype_cmd |= (th->fin || th->rst) ? |
| 2961 | (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << |
| 2962 | I40E_TXD_FLTR_QW1_PCMD_SHIFT) : |
| 2963 | (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << |
| 2964 | I40E_TXD_FLTR_QW1_PCMD_SHIFT); |
| 2965 | |
| 2966 | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << |
| 2967 | I40E_TXD_FLTR_QW1_DEST_SHIFT; |
| 2968 | |
| 2969 | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << |
| 2970 | I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; |
| 2971 | |
| 2972 | dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; |
| 2973 | if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) |
| 2974 | dtype_cmd |= |
| 2975 | FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
| 2976 | I40E_FD_ATR_STAT_IDX(pf->hw.pf_id)); |
| 2977 | else |
| 2978 | dtype_cmd |= |
| 2979 | FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
| 2980 | I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id)); |
| 2981 | |
| 2982 | if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) |
| 2983 | dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; |
| 2984 | |
| 2985 | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); |
| 2986 | fdir_desc->rsvd = cpu_to_le32(0); |
| 2987 | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); |
| 2988 | fdir_desc->fd_id = cpu_to_le32(0); |
| 2989 | } |
| 2990 | |
| 2991 | /** |
| 2992 | * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW |
| 2993 | * @skb: send buffer |
| 2994 | * @tx_ring: ring to send buffer on |
| 2995 | * @flags: the tx flags to be set |
| 2996 | * |
| 2997 | * Checks the skb and set up correspondingly several generic transmit flags |
| 2998 | * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
| 2999 | * |
| 3000 | * Returns error code indicate the frame should be dropped upon error and the |
| 3001 | * otherwise returns 0 to indicate the flags has been set properly. |
| 3002 | **/ |
| 3003 | static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, |
| 3004 | struct i40e_ring *tx_ring, |
| 3005 | u32 *flags) |
| 3006 | { |
| 3007 | __be16 protocol = skb->protocol; |
| 3008 | u32 tx_flags = 0; |
| 3009 | |
| 3010 | if (protocol == htons(ETH_P_8021Q) && |
| 3011 | !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
| 3012 | /* When HW VLAN acceleration is turned off by the user the |
| 3013 | * stack sets the protocol to 8021q so that the driver |
| 3014 | * can take any steps required to support the SW only |
| 3015 | * VLAN handling. In our case the driver doesn't need |
| 3016 | * to take any further steps so just set the protocol |
| 3017 | * to the encapsulated ethertype. |
| 3018 | */ |
| 3019 | skb->protocol = vlan_get_protocol(skb); |
| 3020 | goto out; |
| 3021 | } |
| 3022 | |
| 3023 | /* if we have a HW VLAN tag being added, default to the HW one */ |
| 3024 | if (skb_vlan_tag_present(skb)) { |
| 3025 | tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; |
| 3026 | tx_flags |= I40E_TX_FLAGS_HW_VLAN; |
| 3027 | /* else if it is a SW VLAN, check the next protocol and store the tag */ |
| 3028 | } else if (protocol == htons(ETH_P_8021Q)) { |
| 3029 | struct vlan_hdr *vhdr, _vhdr; |
| 3030 | |
| 3031 | vhdr = skb_header_pointer(skb, ETH_HLEN, len: sizeof(_vhdr), buffer: &_vhdr); |
| 3032 | if (!vhdr) |
| 3033 | return -EINVAL; |
| 3034 | |
| 3035 | protocol = vhdr->h_vlan_encapsulated_proto; |
| 3036 | tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; |
| 3037 | tx_flags |= I40E_TX_FLAGS_SW_VLAN; |
| 3038 | } |
| 3039 | |
| 3040 | if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags)) |
| 3041 | goto out; |
| 3042 | |
| 3043 | /* Insert 802.1p priority into VLAN header */ |
| 3044 | if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || |
| 3045 | (skb->priority != TC_PRIO_CONTROL)) { |
| 3046 | tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; |
| 3047 | tx_flags |= (skb->priority & 0x7) << |
| 3048 | I40E_TX_FLAGS_VLAN_PRIO_SHIFT; |
| 3049 | if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { |
| 3050 | struct vlan_ethhdr *vhdr; |
| 3051 | int rc; |
| 3052 | |
| 3053 | rc = skb_cow_head(skb, headroom: 0); |
| 3054 | if (rc < 0) |
| 3055 | return rc; |
| 3056 | vhdr = skb_vlan_eth_hdr(skb); |
| 3057 | vhdr->h_vlan_TCI = htons(tx_flags >> |
| 3058 | I40E_TX_FLAGS_VLAN_SHIFT); |
| 3059 | } else { |
| 3060 | tx_flags |= I40E_TX_FLAGS_HW_VLAN; |
| 3061 | } |
| 3062 | } |
| 3063 | |
| 3064 | out: |
| 3065 | *flags = tx_flags; |
| 3066 | return 0; |
| 3067 | } |
| 3068 | |
| 3069 | /** |
| 3070 | * i40e_tso - set up the tso context descriptor |
| 3071 | * @first: pointer to first Tx buffer for xmit |
| 3072 | * @hdr_len: ptr to the size of the packet header |
| 3073 | * @cd_type_cmd_tso_mss: Quad Word 1 |
| 3074 | * |
| 3075 | * Returns 0 if no TSO can happen, 1 if tso is going, or error |
| 3076 | **/ |
| 3077 | static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, |
| 3078 | u64 *cd_type_cmd_tso_mss) |
| 3079 | { |
| 3080 | struct sk_buff *skb = first->skb; |
| 3081 | u64 cd_cmd, cd_tso_len, cd_mss; |
| 3082 | __be16 protocol; |
| 3083 | union { |
| 3084 | struct iphdr *v4; |
| 3085 | struct ipv6hdr *v6; |
| 3086 | unsigned char *hdr; |
| 3087 | } ip; |
| 3088 | union { |
| 3089 | struct tcphdr *tcp; |
| 3090 | struct udphdr *udp; |
| 3091 | unsigned char *hdr; |
| 3092 | } l4; |
| 3093 | u32 paylen, l4_offset; |
| 3094 | u16 gso_size; |
| 3095 | int err; |
| 3096 | |
| 3097 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 3098 | return 0; |
| 3099 | |
| 3100 | if (!skb_is_gso(skb)) |
| 3101 | return 0; |
| 3102 | |
| 3103 | err = skb_cow_head(skb, headroom: 0); |
| 3104 | if (err < 0) |
| 3105 | return err; |
| 3106 | |
| 3107 | protocol = vlan_get_protocol(skb); |
| 3108 | |
| 3109 | if (eth_p_mpls(eth_type: protocol)) |
| 3110 | ip.hdr = skb_inner_network_header(skb); |
| 3111 | else |
| 3112 | ip.hdr = skb_network_header(skb); |
| 3113 | l4.hdr = skb_checksum_start(skb); |
| 3114 | |
| 3115 | /* initialize outer IP header fields */ |
| 3116 | if (ip.v4->version == 4) { |
| 3117 | ip.v4->tot_len = 0; |
| 3118 | ip.v4->check = 0; |
| 3119 | |
| 3120 | first->tx_flags |= I40E_TX_FLAGS_TSO; |
| 3121 | } else { |
| 3122 | ip.v6->payload_len = 0; |
| 3123 | first->tx_flags |= I40E_TX_FLAGS_TSO; |
| 3124 | } |
| 3125 | |
| 3126 | if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| 3127 | SKB_GSO_GRE_CSUM | |
| 3128 | SKB_GSO_IPXIP4 | |
| 3129 | SKB_GSO_IPXIP6 | |
| 3130 | SKB_GSO_UDP_TUNNEL | |
| 3131 | SKB_GSO_UDP_TUNNEL_CSUM)) { |
| 3132 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| 3133 | (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { |
| 3134 | l4.udp->len = 0; |
| 3135 | |
| 3136 | /* determine offset of outer transport header */ |
| 3137 | l4_offset = l4.hdr - skb->data; |
| 3138 | |
| 3139 | /* remove payload length from outer checksum */ |
| 3140 | paylen = skb->len - l4_offset; |
| 3141 | csum_replace_by_diff(sum: &l4.udp->check, |
| 3142 | diff: (__force __wsum)htonl(paylen)); |
| 3143 | } |
| 3144 | |
| 3145 | /* reset pointers to inner headers */ |
| 3146 | ip.hdr = skb_inner_network_header(skb); |
| 3147 | l4.hdr = skb_inner_transport_header(skb); |
| 3148 | |
| 3149 | /* initialize inner IP header fields */ |
| 3150 | if (ip.v4->version == 4) { |
| 3151 | ip.v4->tot_len = 0; |
| 3152 | ip.v4->check = 0; |
| 3153 | } else { |
| 3154 | ip.v6->payload_len = 0; |
| 3155 | } |
| 3156 | } |
| 3157 | |
| 3158 | /* determine offset of inner transport header */ |
| 3159 | l4_offset = l4.hdr - skb->data; |
| 3160 | |
| 3161 | /* remove payload length from inner checksum */ |
| 3162 | paylen = skb->len - l4_offset; |
| 3163 | |
| 3164 | if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| 3165 | csum_replace_by_diff(sum: &l4.udp->check, diff: (__force __wsum)htonl(paylen)); |
| 3166 | /* compute length of segmentation header */ |
| 3167 | *hdr_len = sizeof(*l4.udp) + l4_offset; |
| 3168 | } else { |
| 3169 | csum_replace_by_diff(sum: &l4.tcp->check, diff: (__force __wsum)htonl(paylen)); |
| 3170 | /* compute length of segmentation header */ |
| 3171 | *hdr_len = (l4.tcp->doff * 4) + l4_offset; |
| 3172 | } |
| 3173 | |
| 3174 | /* pull values out of skb_shinfo */ |
| 3175 | gso_size = skb_shinfo(skb)->gso_size; |
| 3176 | |
| 3177 | /* update GSO size and bytecount with header size */ |
| 3178 | first->gso_segs = skb_shinfo(skb)->gso_segs; |
| 3179 | first->bytecount += (first->gso_segs - 1) * *hdr_len; |
| 3180 | |
| 3181 | /* find the field values */ |
| 3182 | cd_cmd = I40E_TX_CTX_DESC_TSO; |
| 3183 | cd_tso_len = skb->len - *hdr_len; |
| 3184 | cd_mss = gso_size; |
| 3185 | *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | |
| 3186 | (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | |
| 3187 | (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); |
| 3188 | return 1; |
| 3189 | } |
| 3190 | |
| 3191 | /** |
| 3192 | * i40e_tsyn - set up the tsyn context descriptor |
| 3193 | * @tx_ring: ptr to the ring to send |
| 3194 | * @skb: ptr to the skb we're sending |
| 3195 | * @tx_flags: the collected send information |
| 3196 | * @cd_type_cmd_tso_mss: Quad Word 1 |
| 3197 | * |
| 3198 | * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen |
| 3199 | **/ |
| 3200 | static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| 3201 | u32 tx_flags, u64 *cd_type_cmd_tso_mss) |
| 3202 | { |
| 3203 | struct i40e_pf *pf; |
| 3204 | |
| 3205 | if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) |
| 3206 | return 0; |
| 3207 | |
| 3208 | /* Tx timestamps cannot be sampled when doing TSO */ |
| 3209 | if (tx_flags & I40E_TX_FLAGS_TSO) |
| 3210 | return 0; |
| 3211 | |
| 3212 | /* only timestamp the outbound packet if the user has requested it and |
| 3213 | * we are not already transmitting a packet to be timestamped |
| 3214 | */ |
| 3215 | pf = i40e_netdev_to_pf(netdev: tx_ring->netdev); |
| 3216 | if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) |
| 3217 | return 0; |
| 3218 | |
| 3219 | if (pf->ptp_tx && |
| 3220 | !test_and_set_bit_lock(nr: __I40E_PTP_TX_IN_PROGRESS, addr: pf->state)) { |
| 3221 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| 3222 | pf->ptp_tx_start = jiffies; |
| 3223 | pf->ptp_tx_skb = skb_get(skb); |
| 3224 | } else { |
| 3225 | pf->tx_hwtstamp_skipped++; |
| 3226 | return 0; |
| 3227 | } |
| 3228 | |
| 3229 | *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << |
| 3230 | I40E_TXD_CTX_QW1_CMD_SHIFT; |
| 3231 | |
| 3232 | return 1; |
| 3233 | } |
| 3234 | |
| 3235 | /** |
| 3236 | * i40e_tx_enable_csum - Enable Tx checksum offloads |
| 3237 | * @skb: send buffer |
| 3238 | * @tx_flags: pointer to Tx flags currently set |
| 3239 | * @td_cmd: Tx descriptor command bits to set |
| 3240 | * @td_offset: Tx descriptor header offsets to set |
| 3241 | * @tx_ring: Tx descriptor ring |
| 3242 | * @cd_tunneling: ptr to context desc bits |
| 3243 | **/ |
| 3244 | static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, |
| 3245 | u32 *td_cmd, u32 *td_offset, |
| 3246 | struct i40e_ring *tx_ring, |
| 3247 | u32 *cd_tunneling) |
| 3248 | { |
| 3249 | union { |
| 3250 | struct iphdr *v4; |
| 3251 | struct ipv6hdr *v6; |
| 3252 | unsigned char *hdr; |
| 3253 | } ip; |
| 3254 | union { |
| 3255 | struct tcphdr *tcp; |
| 3256 | struct udphdr *udp; |
| 3257 | unsigned char *hdr; |
| 3258 | } l4; |
| 3259 | unsigned char *exthdr; |
| 3260 | u32 offset, cmd = 0; |
| 3261 | __be16 frag_off; |
| 3262 | __be16 protocol; |
| 3263 | u8 l4_proto = 0; |
| 3264 | |
| 3265 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 3266 | return 0; |
| 3267 | |
| 3268 | protocol = vlan_get_protocol(skb); |
| 3269 | |
| 3270 | if (eth_p_mpls(eth_type: protocol)) { |
| 3271 | ip.hdr = skb_inner_network_header(skb); |
| 3272 | l4.hdr = skb_checksum_start(skb); |
| 3273 | } else { |
| 3274 | ip.hdr = skb_network_header(skb); |
| 3275 | l4.hdr = skb_transport_header(skb); |
| 3276 | } |
| 3277 | |
| 3278 | /* set the tx_flags to indicate the IP protocol type. this is |
| 3279 | * required so that checksum header computation below is accurate. |
| 3280 | */ |
| 3281 | if (ip.v4->version == 4) |
| 3282 | *tx_flags |= I40E_TX_FLAGS_IPV4; |
| 3283 | else |
| 3284 | *tx_flags |= I40E_TX_FLAGS_IPV6; |
| 3285 | |
| 3286 | /* compute outer L2 header size */ |
| 3287 | offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; |
| 3288 | |
| 3289 | if (skb->encapsulation) { |
| 3290 | u32 tunnel = 0; |
| 3291 | /* define outer network header type */ |
| 3292 | if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
| 3293 | tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? |
| 3294 | I40E_TX_CTX_EXT_IP_IPV4 : |
| 3295 | I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; |
| 3296 | |
| 3297 | l4_proto = ip.v4->protocol; |
| 3298 | } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
| 3299 | int ret; |
| 3300 | |
| 3301 | tunnel |= I40E_TX_CTX_EXT_IP_IPV6; |
| 3302 | |
| 3303 | exthdr = ip.hdr + sizeof(*ip.v6); |
| 3304 | l4_proto = ip.v6->nexthdr; |
| 3305 | ret = ipv6_skip_exthdr(skb, start: exthdr - skb->data, |
| 3306 | nexthdrp: &l4_proto, frag_offp: &frag_off); |
| 3307 | if (ret < 0) |
| 3308 | return -1; |
| 3309 | } |
| 3310 | |
| 3311 | /* define outer transport */ |
| 3312 | switch (l4_proto) { |
| 3313 | case IPPROTO_UDP: |
| 3314 | tunnel |= I40E_TXD_CTX_UDP_TUNNELING; |
| 3315 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
| 3316 | break; |
| 3317 | case IPPROTO_GRE: |
| 3318 | tunnel |= I40E_TXD_CTX_GRE_TUNNELING; |
| 3319 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
| 3320 | break; |
| 3321 | case IPPROTO_IPIP: |
| 3322 | case IPPROTO_IPV6: |
| 3323 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
| 3324 | l4.hdr = skb_inner_network_header(skb); |
| 3325 | break; |
| 3326 | default: |
| 3327 | if (*tx_flags & I40E_TX_FLAGS_TSO) |
| 3328 | return -1; |
| 3329 | |
| 3330 | skb_checksum_help(skb); |
| 3331 | return 0; |
| 3332 | } |
| 3333 | |
| 3334 | /* compute outer L3 header size */ |
| 3335 | tunnel |= ((l4.hdr - ip.hdr) / 4) << |
| 3336 | I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; |
| 3337 | |
| 3338 | /* switch IP header pointer from outer to inner header */ |
| 3339 | ip.hdr = skb_inner_network_header(skb); |
| 3340 | |
| 3341 | /* compute tunnel header size */ |
| 3342 | tunnel |= ((ip.hdr - l4.hdr) / 2) << |
| 3343 | I40E_TXD_CTX_QW0_NATLEN_SHIFT; |
| 3344 | |
| 3345 | /* indicate if we need to offload outer UDP header */ |
| 3346 | if ((*tx_flags & I40E_TX_FLAGS_TSO) && |
| 3347 | !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| 3348 | (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) |
| 3349 | tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; |
| 3350 | |
| 3351 | /* record tunnel offload values */ |
| 3352 | *cd_tunneling |= tunnel; |
| 3353 | |
| 3354 | /* switch L4 header pointer from outer to inner */ |
| 3355 | l4.hdr = skb_inner_transport_header(skb); |
| 3356 | l4_proto = 0; |
| 3357 | |
| 3358 | /* reset type as we transition from outer to inner headers */ |
| 3359 | *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); |
| 3360 | if (ip.v4->version == 4) |
| 3361 | *tx_flags |= I40E_TX_FLAGS_IPV4; |
| 3362 | if (ip.v6->version == 6) |
| 3363 | *tx_flags |= I40E_TX_FLAGS_IPV6; |
| 3364 | } |
| 3365 | |
| 3366 | /* Enable IP checksum offloads */ |
| 3367 | if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
| 3368 | l4_proto = ip.v4->protocol; |
| 3369 | /* the stack computes the IP header already, the only time we |
| 3370 | * need the hardware to recompute it is in the case of TSO. |
| 3371 | */ |
| 3372 | cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? |
| 3373 | I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : |
| 3374 | I40E_TX_DESC_CMD_IIPT_IPV4; |
| 3375 | } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
| 3376 | cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; |
| 3377 | |
| 3378 | exthdr = ip.hdr + sizeof(*ip.v6); |
| 3379 | l4_proto = ip.v6->nexthdr; |
| 3380 | if (l4.hdr != exthdr) |
| 3381 | ipv6_skip_exthdr(skb, start: exthdr - skb->data, |
| 3382 | nexthdrp: &l4_proto, frag_offp: &frag_off); |
| 3383 | } |
| 3384 | |
| 3385 | /* compute inner L3 header size */ |
| 3386 | offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; |
| 3387 | |
| 3388 | /* Enable L4 checksum offloads */ |
| 3389 | switch (l4_proto) { |
| 3390 | case IPPROTO_TCP: |
| 3391 | /* enable checksum offloads */ |
| 3392 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; |
| 3393 | offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| 3394 | break; |
| 3395 | case IPPROTO_SCTP: |
| 3396 | /* enable SCTP checksum offload */ |
| 3397 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; |
| 3398 | offset |= (sizeof(struct sctphdr) >> 2) << |
| 3399 | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| 3400 | break; |
| 3401 | case IPPROTO_UDP: |
| 3402 | /* enable UDP checksum offload */ |
| 3403 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; |
| 3404 | offset |= (sizeof(struct udphdr) >> 2) << |
| 3405 | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| 3406 | break; |
| 3407 | default: |
| 3408 | if (*tx_flags & I40E_TX_FLAGS_TSO) |
| 3409 | return -1; |
| 3410 | skb_checksum_help(skb); |
| 3411 | return 0; |
| 3412 | } |
| 3413 | |
| 3414 | *td_cmd |= cmd; |
| 3415 | *td_offset |= offset; |
| 3416 | |
| 3417 | return 1; |
| 3418 | } |
| 3419 | |
| 3420 | /** |
| 3421 | * i40e_create_tx_ctx - Build the Tx context descriptor |
| 3422 | * @tx_ring: ring to create the descriptor on |
| 3423 | * @cd_type_cmd_tso_mss: Quad Word 1 |
| 3424 | * @cd_tunneling: Quad Word 0 - bits 0-31 |
| 3425 | * @cd_l2tag2: Quad Word 0 - bits 32-63 |
| 3426 | **/ |
| 3427 | static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, |
| 3428 | const u64 cd_type_cmd_tso_mss, |
| 3429 | const u32 cd_tunneling, const u32 cd_l2tag2) |
| 3430 | { |
| 3431 | struct i40e_tx_context_desc *context_desc; |
| 3432 | int i = tx_ring->next_to_use; |
| 3433 | |
| 3434 | if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && |
| 3435 | !cd_tunneling && !cd_l2tag2) |
| 3436 | return; |
| 3437 | |
| 3438 | /* grab the next descriptor */ |
| 3439 | context_desc = I40E_TX_CTXTDESC(tx_ring, i); |
| 3440 | |
| 3441 | i++; |
| 3442 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| 3443 | |
| 3444 | /* cpu_to_le32 and assign to struct fields */ |
| 3445 | context_desc->tunneling_params = cpu_to_le32(cd_tunneling); |
| 3446 | context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); |
| 3447 | context_desc->rsvd = cpu_to_le16(0); |
| 3448 | context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); |
| 3449 | } |
| 3450 | |
| 3451 | /** |
| 3452 | * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions |
| 3453 | * @tx_ring: the ring to be checked |
| 3454 | * @size: the size buffer we want to assure is available |
| 3455 | * |
| 3456 | * Returns -EBUSY if a stop is needed, else 0 |
| 3457 | **/ |
| 3458 | int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
| 3459 | { |
| 3460 | netif_stop_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index); |
| 3461 | /* Memory barrier before checking head and tail */ |
| 3462 | smp_mb(); |
| 3463 | |
| 3464 | ++tx_ring->tx_stats.tx_stopped; |
| 3465 | |
| 3466 | /* Check again in a case another CPU has just made room available. */ |
| 3467 | if (likely(I40E_DESC_UNUSED(tx_ring) < size)) |
| 3468 | return -EBUSY; |
| 3469 | |
| 3470 | /* A reprieve! - use start_queue because it doesn't call schedule */ |
| 3471 | netif_start_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index); |
| 3472 | ++tx_ring->tx_stats.restart_queue; |
| 3473 | return 0; |
| 3474 | } |
| 3475 | |
| 3476 | /** |
| 3477 | * __i40e_chk_linearize - Check if there are more than 8 buffers per packet |
| 3478 | * @skb: send buffer |
| 3479 | * |
| 3480 | * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire |
| 3481 | * and so we need to figure out the cases where we need to linearize the skb. |
| 3482 | * |
| 3483 | * For TSO we need to count the TSO header and segment payload separately. |
| 3484 | * As such we need to check cases where we have 7 fragments or more as we |
| 3485 | * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
| 3486 | * the segment payload in the first descriptor, and another 7 for the |
| 3487 | * fragments. |
| 3488 | **/ |
| 3489 | bool __i40e_chk_linearize(struct sk_buff *skb) |
| 3490 | { |
| 3491 | const skb_frag_t *frag, *stale; |
| 3492 | int nr_frags, sum; |
| 3493 | |
| 3494 | /* no need to check if number of frags is less than 7 */ |
| 3495 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 3496 | if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) |
| 3497 | return false; |
| 3498 | |
| 3499 | /* We need to walk through the list and validate that each group |
| 3500 | * of 6 fragments totals at least gso_size. |
| 3501 | */ |
| 3502 | nr_frags -= I40E_MAX_BUFFER_TXD - 2; |
| 3503 | frag = &skb_shinfo(skb)->frags[0]; |
| 3504 | |
| 3505 | /* Initialize size to the negative value of gso_size minus 1. We |
| 3506 | * use this as the worst case scenerio in which the frag ahead |
| 3507 | * of us only provides one byte which is why we are limited to 6 |
| 3508 | * descriptors for a single transmit as the header and previous |
| 3509 | * fragment are already consuming 2 descriptors. |
| 3510 | */ |
| 3511 | sum = 1 - skb_shinfo(skb)->gso_size; |
| 3512 | |
| 3513 | /* Add size of frags 0 through 4 to create our initial sum */ |
| 3514 | sum += skb_frag_size(frag: frag++); |
| 3515 | sum += skb_frag_size(frag: frag++); |
| 3516 | sum += skb_frag_size(frag: frag++); |
| 3517 | sum += skb_frag_size(frag: frag++); |
| 3518 | sum += skb_frag_size(frag: frag++); |
| 3519 | |
| 3520 | /* Walk through fragments adding latest fragment, testing it, and |
| 3521 | * then removing stale fragments from the sum. |
| 3522 | */ |
| 3523 | for (stale = &skb_shinfo(skb)->frags[0];; stale++) { |
| 3524 | int stale_size = skb_frag_size(frag: stale); |
| 3525 | |
| 3526 | sum += skb_frag_size(frag: frag++); |
| 3527 | |
| 3528 | /* The stale fragment may present us with a smaller |
| 3529 | * descriptor than the actual fragment size. To account |
| 3530 | * for that we need to remove all the data on the front and |
| 3531 | * figure out what the remainder would be in the last |
| 3532 | * descriptor associated with the fragment. |
| 3533 | */ |
| 3534 | if (stale_size > I40E_MAX_DATA_PER_TXD) { |
| 3535 | int align_pad = -(skb_frag_off(frag: stale)) & |
| 3536 | (I40E_MAX_READ_REQ_SIZE - 1); |
| 3537 | |
| 3538 | sum -= align_pad; |
| 3539 | stale_size -= align_pad; |
| 3540 | |
| 3541 | do { |
| 3542 | sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; |
| 3543 | stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; |
| 3544 | } while (stale_size > I40E_MAX_DATA_PER_TXD); |
| 3545 | } |
| 3546 | |
| 3547 | /* if sum is negative we failed to make sufficient progress */ |
| 3548 | if (sum < 0) |
| 3549 | return true; |
| 3550 | |
| 3551 | if (!nr_frags--) |
| 3552 | break; |
| 3553 | |
| 3554 | sum -= stale_size; |
| 3555 | } |
| 3556 | |
| 3557 | return false; |
| 3558 | } |
| 3559 | |
| 3560 | /** |
| 3561 | * i40e_tx_map - Build the Tx descriptor |
| 3562 | * @tx_ring: ring to send buffer on |
| 3563 | * @skb: send buffer |
| 3564 | * @first: first buffer info buffer to use |
| 3565 | * @tx_flags: collected send information |
| 3566 | * @hdr_len: size of the packet header |
| 3567 | * @td_cmd: the command field in the descriptor |
| 3568 | * @td_offset: offset for checksum or crc |
| 3569 | * |
| 3570 | * Returns 0 on success, -1 on failure to DMA |
| 3571 | **/ |
| 3572 | static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| 3573 | struct i40e_tx_buffer *first, u32 tx_flags, |
| 3574 | const u8 hdr_len, u32 td_cmd, u32 td_offset) |
| 3575 | { |
| 3576 | unsigned int data_len = skb->data_len; |
| 3577 | unsigned int size = skb_headlen(skb); |
| 3578 | skb_frag_t *frag; |
| 3579 | struct i40e_tx_buffer *tx_bi; |
| 3580 | struct i40e_tx_desc *tx_desc; |
| 3581 | u16 i = tx_ring->next_to_use; |
| 3582 | u32 td_tag = 0; |
| 3583 | dma_addr_t dma; |
| 3584 | u16 desc_count = 1; |
| 3585 | |
| 3586 | if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { |
| 3587 | td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; |
| 3588 | td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags); |
| 3589 | } |
| 3590 | |
| 3591 | first->tx_flags = tx_flags; |
| 3592 | |
| 3593 | dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| 3594 | |
| 3595 | tx_desc = I40E_TX_DESC(tx_ring, i); |
| 3596 | tx_bi = first; |
| 3597 | |
| 3598 | for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| 3599 | unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; |
| 3600 | |
| 3601 | if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma)) |
| 3602 | goto dma_error; |
| 3603 | |
| 3604 | /* record length, and DMA address */ |
| 3605 | dma_unmap_len_set(tx_bi, len, size); |
| 3606 | dma_unmap_addr_set(tx_bi, dma, dma); |
| 3607 | |
| 3608 | /* align size to end of page */ |
| 3609 | max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); |
| 3610 | tx_desc->buffer_addr = cpu_to_le64(dma); |
| 3611 | |
| 3612 | while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { |
| 3613 | tx_desc->cmd_type_offset_bsz = |
| 3614 | build_ctob(td_cmd, td_offset, |
| 3615 | size: max_data, td_tag); |
| 3616 | |
| 3617 | tx_desc++; |
| 3618 | i++; |
| 3619 | desc_count++; |
| 3620 | |
| 3621 | if (i == tx_ring->count) { |
| 3622 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
| 3623 | i = 0; |
| 3624 | } |
| 3625 | |
| 3626 | dma += max_data; |
| 3627 | size -= max_data; |
| 3628 | |
| 3629 | max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; |
| 3630 | tx_desc->buffer_addr = cpu_to_le64(dma); |
| 3631 | } |
| 3632 | |
| 3633 | if (likely(!data_len)) |
| 3634 | break; |
| 3635 | |
| 3636 | tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
| 3637 | size, td_tag); |
| 3638 | |
| 3639 | tx_desc++; |
| 3640 | i++; |
| 3641 | desc_count++; |
| 3642 | |
| 3643 | if (i == tx_ring->count) { |
| 3644 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
| 3645 | i = 0; |
| 3646 | } |
| 3647 | |
| 3648 | size = skb_frag_size(frag); |
| 3649 | data_len -= size; |
| 3650 | |
| 3651 | dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| 3652 | DMA_TO_DEVICE); |
| 3653 | |
| 3654 | tx_bi = &tx_ring->tx_bi[i]; |
| 3655 | } |
| 3656 | |
| 3657 | netdev_tx_sent_queue(dev_queue: txring_txq(ring: tx_ring), bytes: first->bytecount); |
| 3658 | |
| 3659 | i++; |
| 3660 | if (i == tx_ring->count) |
| 3661 | i = 0; |
| 3662 | |
| 3663 | tx_ring->next_to_use = i; |
| 3664 | |
| 3665 | i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| 3666 | |
| 3667 | /* write last descriptor with EOP bit */ |
| 3668 | td_cmd |= I40E_TX_DESC_CMD_EOP; |
| 3669 | |
| 3670 | /* We OR these values together to check both against 4 (WB_STRIDE) |
| 3671 | * below. This is safe since we don't re-use desc_count afterwards. |
| 3672 | */ |
| 3673 | desc_count |= ++tx_ring->packet_stride; |
| 3674 | |
| 3675 | if (desc_count >= WB_STRIDE) { |
| 3676 | /* write last descriptor with RS bit set */ |
| 3677 | td_cmd |= I40E_TX_DESC_CMD_RS; |
| 3678 | tx_ring->packet_stride = 0; |
| 3679 | } |
| 3680 | |
| 3681 | tx_desc->cmd_type_offset_bsz = |
| 3682 | build_ctob(td_cmd, td_offset, size, td_tag); |
| 3683 | |
| 3684 | skb_tx_timestamp(skb); |
| 3685 | |
| 3686 | /* Force memory writes to complete before letting h/w know there |
| 3687 | * are new descriptors to fetch. |
| 3688 | * |
| 3689 | * We also use this memory barrier to make certain all of the |
| 3690 | * status bits have been updated before next_to_watch is written. |
| 3691 | */ |
| 3692 | wmb(); |
| 3693 | |
| 3694 | /* set next_to_watch value indicating a packet is present */ |
| 3695 | first->next_to_watch = tx_desc; |
| 3696 | |
| 3697 | /* notify HW of packet */ |
| 3698 | if (netif_xmit_stopped(dev_queue: txring_txq(ring: tx_ring)) || !netdev_xmit_more()) { |
| 3699 | writel(val: i, addr: tx_ring->tail); |
| 3700 | } |
| 3701 | |
| 3702 | return 0; |
| 3703 | |
| 3704 | dma_error: |
| 3705 | dev_info(tx_ring->dev, "TX DMA map failed\n" ); |
| 3706 | |
| 3707 | /* clear dma mappings for failed tx_bi map */ |
| 3708 | for (;;) { |
| 3709 | tx_bi = &tx_ring->tx_bi[i]; |
| 3710 | i40e_unmap_and_free_tx_resource(ring: tx_ring, tx_buffer: tx_bi); |
| 3711 | if (tx_bi == first) |
| 3712 | break; |
| 3713 | if (i == 0) |
| 3714 | i = tx_ring->count; |
| 3715 | i--; |
| 3716 | } |
| 3717 | |
| 3718 | tx_ring->next_to_use = i; |
| 3719 | |
| 3720 | return -1; |
| 3721 | } |
| 3722 | |
| 3723 | static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, |
| 3724 | const struct sk_buff *skb, |
| 3725 | u16 num_tx_queues) |
| 3726 | { |
| 3727 | u32 jhash_initval_salt = 0xd631614b; |
| 3728 | u32 hash; |
| 3729 | |
| 3730 | if (skb->sk && skb->sk->sk_hash) |
| 3731 | hash = skb->sk->sk_hash; |
| 3732 | else |
| 3733 | hash = (__force u16)skb->protocol ^ skb->hash; |
| 3734 | |
| 3735 | hash = jhash_1word(a: hash, initval: jhash_initval_salt); |
| 3736 | |
| 3737 | return (u16)(((u64)hash * num_tx_queues) >> 32); |
| 3738 | } |
| 3739 | |
| 3740 | u16 i40e_lan_select_queue(struct net_device *netdev, |
| 3741 | struct sk_buff *skb, |
| 3742 | struct net_device __always_unused *sb_dev) |
| 3743 | { |
| 3744 | struct i40e_netdev_priv *np = netdev_priv(dev: netdev); |
| 3745 | struct i40e_vsi *vsi = np->vsi; |
| 3746 | struct i40e_hw *hw; |
| 3747 | u16 qoffset; |
| 3748 | u16 qcount; |
| 3749 | u8 tclass; |
| 3750 | u16 hash; |
| 3751 | u8 prio; |
| 3752 | |
| 3753 | /* is DCB enabled at all? */ |
| 3754 | if (vsi->tc_config.numtc == 1 || |
| 3755 | i40e_is_tc_mqprio_enabled(pf: vsi->back)) |
| 3756 | return netdev_pick_tx(dev: netdev, skb, sb_dev); |
| 3757 | |
| 3758 | prio = skb->priority; |
| 3759 | hw = &vsi->back->hw; |
| 3760 | tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; |
| 3761 | /* sanity check */ |
| 3762 | if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) |
| 3763 | tclass = 0; |
| 3764 | |
| 3765 | /* select a queue assigned for the given TC */ |
| 3766 | qcount = vsi->tc_config.tc_info[tclass].qcount; |
| 3767 | hash = i40e_swdcb_skb_tx_hash(dev: netdev, skb, num_tx_queues: qcount); |
| 3768 | |
| 3769 | qoffset = vsi->tc_config.tc_info[tclass].qoffset; |
| 3770 | return qoffset + hash; |
| 3771 | } |
| 3772 | |
| 3773 | /** |
| 3774 | * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring |
| 3775 | * @xdpf: data to transmit |
| 3776 | * @xdp_ring: XDP Tx ring |
| 3777 | **/ |
| 3778 | static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, |
| 3779 | struct i40e_ring *xdp_ring) |
| 3780 | { |
| 3781 | struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(frame: xdpf); |
| 3782 | u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; |
| 3783 | u16 i = 0, index = xdp_ring->next_to_use; |
| 3784 | struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index]; |
| 3785 | struct i40e_tx_buffer *tx_bi = tx_head; |
| 3786 | struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index); |
| 3787 | void *data = xdpf->data; |
| 3788 | u32 size = xdpf->len; |
| 3789 | |
| 3790 | if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) { |
| 3791 | xdp_ring->tx_stats.tx_busy++; |
| 3792 | return I40E_XDP_CONSUMED; |
| 3793 | } |
| 3794 | |
| 3795 | tx_head->bytecount = xdp_get_frame_len(xdpf); |
| 3796 | tx_head->gso_segs = 1; |
| 3797 | tx_head->xdpf = xdpf; |
| 3798 | |
| 3799 | for (;;) { |
| 3800 | dma_addr_t dma; |
| 3801 | |
| 3802 | dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); |
| 3803 | if (dma_mapping_error(dev: xdp_ring->dev, dma_addr: dma)) |
| 3804 | goto unmap; |
| 3805 | |
| 3806 | /* record length, and DMA address */ |
| 3807 | dma_unmap_len_set(tx_bi, len, size); |
| 3808 | dma_unmap_addr_set(tx_bi, dma, dma); |
| 3809 | |
| 3810 | tx_desc->buffer_addr = cpu_to_le64(dma); |
| 3811 | tx_desc->cmd_type_offset_bsz = |
| 3812 | build_ctob(td_cmd: I40E_TX_DESC_CMD_ICRC, td_offset: 0, size, td_tag: 0); |
| 3813 | |
| 3814 | if (++index == xdp_ring->count) |
| 3815 | index = 0; |
| 3816 | |
| 3817 | if (i == nr_frags) |
| 3818 | break; |
| 3819 | |
| 3820 | tx_bi = &xdp_ring->tx_bi[index]; |
| 3821 | tx_desc = I40E_TX_DESC(xdp_ring, index); |
| 3822 | |
| 3823 | data = skb_frag_address(frag: &sinfo->frags[i]); |
| 3824 | size = skb_frag_size(frag: &sinfo->frags[i]); |
| 3825 | i++; |
| 3826 | } |
| 3827 | |
| 3828 | tx_desc->cmd_type_offset_bsz |= |
| 3829 | cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); |
| 3830 | |
| 3831 | /* Make certain all of the status bits have been updated |
| 3832 | * before next_to_watch is written. |
| 3833 | */ |
| 3834 | smp_wmb(); |
| 3835 | |
| 3836 | xdp_ring->xdp_tx_active++; |
| 3837 | |
| 3838 | tx_head->next_to_watch = tx_desc; |
| 3839 | xdp_ring->next_to_use = index; |
| 3840 | |
| 3841 | return I40E_XDP_TX; |
| 3842 | |
| 3843 | unmap: |
| 3844 | for (;;) { |
| 3845 | tx_bi = &xdp_ring->tx_bi[index]; |
| 3846 | if (dma_unmap_len(tx_bi, len)) |
| 3847 | dma_unmap_page(xdp_ring->dev, |
| 3848 | dma_unmap_addr(tx_bi, dma), |
| 3849 | dma_unmap_len(tx_bi, len), |
| 3850 | DMA_TO_DEVICE); |
| 3851 | dma_unmap_len_set(tx_bi, len, 0); |
| 3852 | if (tx_bi == tx_head) |
| 3853 | break; |
| 3854 | |
| 3855 | if (!index) |
| 3856 | index += xdp_ring->count; |
| 3857 | index--; |
| 3858 | } |
| 3859 | |
| 3860 | return I40E_XDP_CONSUMED; |
| 3861 | } |
| 3862 | |
| 3863 | /** |
| 3864 | * i40e_xmit_frame_ring - Sends buffer on Tx ring |
| 3865 | * @skb: send buffer |
| 3866 | * @tx_ring: ring to send buffer on |
| 3867 | * |
| 3868 | * Returns NETDEV_TX_OK if sent, else an error code |
| 3869 | **/ |
| 3870 | static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, |
| 3871 | struct i40e_ring *tx_ring) |
| 3872 | { |
| 3873 | u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; |
| 3874 | u32 cd_tunneling = 0, cd_l2tag2 = 0; |
| 3875 | struct i40e_tx_buffer *first; |
| 3876 | u32 td_offset = 0; |
| 3877 | u32 tx_flags = 0; |
| 3878 | u32 td_cmd = 0; |
| 3879 | u8 hdr_len = 0; |
| 3880 | int tso, count; |
| 3881 | int tsyn; |
| 3882 | |
| 3883 | /* prefetch the data, we'll need it later */ |
| 3884 | prefetch(skb->data); |
| 3885 | |
| 3886 | i40e_trace(xmit_frame_ring, skb, tx_ring); |
| 3887 | |
| 3888 | count = i40e_xmit_descriptor_count(skb); |
| 3889 | if (i40e_chk_linearize(skb, count)) { |
| 3890 | if (__skb_linearize(skb)) { |
| 3891 | dev_kfree_skb_any(skb); |
| 3892 | return NETDEV_TX_OK; |
| 3893 | } |
| 3894 | count = i40e_txd_use_count(size: skb->len); |
| 3895 | tx_ring->tx_stats.tx_linearize++; |
| 3896 | } |
| 3897 | |
| 3898 | /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, |
| 3899 | * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, |
| 3900 | * + 4 desc gap to avoid the cache line where head is, |
| 3901 | * + 1 desc for context descriptor, |
| 3902 | * otherwise try next time |
| 3903 | */ |
| 3904 | if (i40e_maybe_stop_tx(tx_ring, size: count + 4 + 1)) { |
| 3905 | tx_ring->tx_stats.tx_busy++; |
| 3906 | return NETDEV_TX_BUSY; |
| 3907 | } |
| 3908 | |
| 3909 | /* record the location of the first descriptor for this packet */ |
| 3910 | first = &tx_ring->tx_bi[tx_ring->next_to_use]; |
| 3911 | first->skb = skb; |
| 3912 | first->bytecount = skb->len; |
| 3913 | first->gso_segs = 1; |
| 3914 | |
| 3915 | /* prepare the xmit flags */ |
| 3916 | if (i40e_tx_prepare_vlan_flags(skb, tx_ring, flags: &tx_flags)) |
| 3917 | goto out_drop; |
| 3918 | |
| 3919 | tso = i40e_tso(first, hdr_len: &hdr_len, cd_type_cmd_tso_mss: &cd_type_cmd_tso_mss); |
| 3920 | |
| 3921 | if (tso < 0) |
| 3922 | goto out_drop; |
| 3923 | else if (tso) |
| 3924 | tx_flags |= I40E_TX_FLAGS_TSO; |
| 3925 | |
| 3926 | /* Always offload the checksum, since it's in the data descriptor */ |
| 3927 | tso = i40e_tx_enable_csum(skb, tx_flags: &tx_flags, td_cmd: &td_cmd, td_offset: &td_offset, |
| 3928 | tx_ring, cd_tunneling: &cd_tunneling); |
| 3929 | if (tso < 0) |
| 3930 | goto out_drop; |
| 3931 | |
| 3932 | tsyn = i40e_tsyn(tx_ring, skb, tx_flags, cd_type_cmd_tso_mss: &cd_type_cmd_tso_mss); |
| 3933 | |
| 3934 | if (tsyn) |
| 3935 | tx_flags |= I40E_TX_FLAGS_TSYN; |
| 3936 | |
| 3937 | /* always enable CRC insertion offload */ |
| 3938 | td_cmd |= I40E_TX_DESC_CMD_ICRC; |
| 3939 | |
| 3940 | i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, |
| 3941 | cd_tunneling, cd_l2tag2); |
| 3942 | |
| 3943 | /* Add Flow Director ATR if it's enabled. |
| 3944 | * |
| 3945 | * NOTE: this must always be directly before the data descriptor. |
| 3946 | */ |
| 3947 | i40e_atr(tx_ring, skb, tx_flags); |
| 3948 | |
| 3949 | if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, |
| 3950 | td_cmd, td_offset)) |
| 3951 | goto cleanup_tx_tstamp; |
| 3952 | |
| 3953 | return NETDEV_TX_OK; |
| 3954 | |
| 3955 | out_drop: |
| 3956 | i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); |
| 3957 | dev_kfree_skb_any(skb: first->skb); |
| 3958 | first->skb = NULL; |
| 3959 | cleanup_tx_tstamp: |
| 3960 | if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { |
| 3961 | struct i40e_pf *pf = i40e_netdev_to_pf(netdev: tx_ring->netdev); |
| 3962 | |
| 3963 | dev_kfree_skb_any(skb: pf->ptp_tx_skb); |
| 3964 | pf->ptp_tx_skb = NULL; |
| 3965 | clear_bit_unlock(nr: __I40E_PTP_TX_IN_PROGRESS, addr: pf->state); |
| 3966 | } |
| 3967 | |
| 3968 | return NETDEV_TX_OK; |
| 3969 | } |
| 3970 | |
| 3971 | /** |
| 3972 | * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer |
| 3973 | * @skb: send buffer |
| 3974 | * @netdev: network interface device structure |
| 3975 | * |
| 3976 | * Returns NETDEV_TX_OK if sent, else an error code |
| 3977 | **/ |
| 3978 | netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
| 3979 | { |
| 3980 | struct i40e_netdev_priv *np = netdev_priv(dev: netdev); |
| 3981 | struct i40e_vsi *vsi = np->vsi; |
| 3982 | struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; |
| 3983 | |
| 3984 | /* hardware can't handle really short frames, hardware padding works |
| 3985 | * beyond this point |
| 3986 | */ |
| 3987 | if (skb_put_padto(skb, I40E_MIN_TX_LEN)) |
| 3988 | return NETDEV_TX_OK; |
| 3989 | |
| 3990 | return i40e_xmit_frame_ring(skb, tx_ring); |
| 3991 | } |
| 3992 | |
| 3993 | /** |
| 3994 | * i40e_xdp_xmit - Implements ndo_xdp_xmit |
| 3995 | * @dev: netdev |
| 3996 | * @n: number of frames |
| 3997 | * @frames: array of XDP buffer pointers |
| 3998 | * @flags: XDP extra info |
| 3999 | * |
| 4000 | * Returns number of frames successfully sent. Failed frames |
| 4001 | * will be free'ed by XDP core. |
| 4002 | * |
| 4003 | * For error cases, a negative errno code is returned and no-frames |
| 4004 | * are transmitted (caller must handle freeing frames). |
| 4005 | **/ |
| 4006 | int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, |
| 4007 | u32 flags) |
| 4008 | { |
| 4009 | struct i40e_netdev_priv *np = netdev_priv(dev); |
| 4010 | unsigned int queue_index = smp_processor_id(); |
| 4011 | struct i40e_vsi *vsi = np->vsi; |
| 4012 | struct i40e_pf *pf = vsi->back; |
| 4013 | struct i40e_ring *xdp_ring; |
| 4014 | int nxmit = 0; |
| 4015 | int i; |
| 4016 | |
| 4017 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
| 4018 | return -ENETDOWN; |
| 4019 | |
| 4020 | if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || |
| 4021 | test_bit(__I40E_CONFIG_BUSY, pf->state)) |
| 4022 | return -ENXIO; |
| 4023 | |
| 4024 | if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
| 4025 | return -EINVAL; |
| 4026 | |
| 4027 | xdp_ring = vsi->xdp_rings[queue_index]; |
| 4028 | |
| 4029 | for (i = 0; i < n; i++) { |
| 4030 | struct xdp_frame *xdpf = frames[i]; |
| 4031 | int err; |
| 4032 | |
| 4033 | err = i40e_xmit_xdp_ring(xdpf, xdp_ring); |
| 4034 | if (err != I40E_XDP_TX) |
| 4035 | break; |
| 4036 | nxmit++; |
| 4037 | } |
| 4038 | |
| 4039 | if (unlikely(flags & XDP_XMIT_FLUSH)) |
| 4040 | i40e_xdp_ring_update_tail(xdp_ring); |
| 4041 | |
| 4042 | return nxmit; |
| 4043 | } |
| 4044 | |