1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* Copyright(c) 2013 - 2018 Intel Corporation. */ |
3 | |
4 | #include <linux/bpf_trace.h> |
5 | #include <linux/prefetch.h> |
6 | #include <linux/sctp.h> |
7 | #include <net/mpls.h> |
8 | #include <net/xdp.h> |
9 | #include "i40e_txrx_common.h" |
10 | #include "i40e_trace.h" |
11 | #include "i40e_xsk.h" |
12 | |
13 | #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) |
14 | /** |
15 | * i40e_fdir - Generate a Flow Director descriptor based on fdata |
16 | * @tx_ring: Tx ring to send buffer on |
17 | * @fdata: Flow director filter data |
18 | * @add: Indicate if we are adding a rule or deleting one |
19 | * |
20 | **/ |
21 | static void i40e_fdir(struct i40e_ring *tx_ring, |
22 | struct i40e_fdir_filter *fdata, bool add) |
23 | { |
24 | struct i40e_filter_program_desc *fdir_desc; |
25 | struct i40e_pf *pf = tx_ring->vsi->back; |
26 | u32 flex_ptype, dtype_cmd; |
27 | u16 i; |
28 | |
29 | /* grab the next descriptor */ |
30 | i = tx_ring->next_to_use; |
31 | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); |
32 | |
33 | i++; |
34 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
35 | |
36 | flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index); |
37 | |
38 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK, |
39 | fdata->flex_off); |
40 | |
41 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype); |
42 | |
43 | /* Use LAN VSI Id if not programmed by user */ |
44 | flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, |
45 | fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id); |
46 | |
47 | dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; |
48 | |
49 | dtype_cmd |= add ? |
50 | I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << |
51 | I40E_TXD_FLTR_QW1_PCMD_SHIFT : |
52 | I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << |
53 | I40E_TXD_FLTR_QW1_PCMD_SHIFT; |
54 | |
55 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl); |
56 | |
57 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK, |
58 | fdata->fd_status); |
59 | |
60 | if (fdata->cnt_index) { |
61 | dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; |
62 | dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
63 | fdata->cnt_index); |
64 | } |
65 | |
66 | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); |
67 | fdir_desc->rsvd = cpu_to_le32(0); |
68 | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); |
69 | fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); |
70 | } |
71 | |
72 | #define I40E_FD_CLEAN_DELAY 10 |
73 | /** |
74 | * i40e_program_fdir_filter - Program a Flow Director filter |
75 | * @fdir_data: Packet data that will be filter parameters |
76 | * @raw_packet: the pre-allocated packet buffer for FDir |
77 | * @pf: The PF pointer |
78 | * @add: True for add/update, False for remove |
79 | **/ |
80 | static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, |
81 | u8 *raw_packet, struct i40e_pf *pf, |
82 | bool add) |
83 | { |
84 | struct i40e_tx_buffer *tx_buf, *first; |
85 | struct i40e_tx_desc *tx_desc; |
86 | struct i40e_ring *tx_ring; |
87 | struct i40e_vsi *vsi; |
88 | struct device *dev; |
89 | dma_addr_t dma; |
90 | u32 td_cmd = 0; |
91 | u16 i; |
92 | |
93 | /* find existing FDIR VSI */ |
94 | vsi = i40e_find_vsi_by_type(pf, type: I40E_VSI_FDIR); |
95 | if (!vsi) |
96 | return -ENOENT; |
97 | |
98 | tx_ring = vsi->tx_rings[0]; |
99 | dev = tx_ring->dev; |
100 | |
101 | /* we need two descriptors to add/del a filter and we can wait */ |
102 | for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { |
103 | if (!i) |
104 | return -EAGAIN; |
105 | msleep_interruptible(msecs: 1); |
106 | } |
107 | |
108 | dma = dma_map_single(dev, raw_packet, |
109 | I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); |
110 | if (dma_mapping_error(dev, dma_addr: dma)) |
111 | goto dma_fail; |
112 | |
113 | /* grab the next descriptor */ |
114 | i = tx_ring->next_to_use; |
115 | first = &tx_ring->tx_bi[i]; |
116 | i40e_fdir(tx_ring, fdata: fdir_data, add); |
117 | |
118 | /* Now program a dummy descriptor */ |
119 | i = tx_ring->next_to_use; |
120 | tx_desc = I40E_TX_DESC(tx_ring, i); |
121 | tx_buf = &tx_ring->tx_bi[i]; |
122 | |
123 | tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; |
124 | |
125 | memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); |
126 | |
127 | /* record length, and DMA address */ |
128 | dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); |
129 | dma_unmap_addr_set(tx_buf, dma, dma); |
130 | |
131 | tx_desc->buffer_addr = cpu_to_le64(dma); |
132 | td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; |
133 | |
134 | tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; |
135 | tx_buf->raw_buf = (void *)raw_packet; |
136 | |
137 | tx_desc->cmd_type_offset_bsz = |
138 | build_ctob(td_cmd, td_offset: 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, td_tag: 0); |
139 | |
140 | /* Force memory writes to complete before letting h/w |
141 | * know there are new descriptors to fetch. |
142 | */ |
143 | wmb(); |
144 | |
145 | /* Mark the data descriptor to be watched */ |
146 | first->next_to_watch = tx_desc; |
147 | |
148 | writel(val: tx_ring->next_to_use, addr: tx_ring->tail); |
149 | return 0; |
150 | |
151 | dma_fail: |
152 | return -1; |
153 | } |
154 | |
155 | /** |
156 | * i40e_create_dummy_packet - Constructs dummy packet for HW |
157 | * @dummy_packet: preallocated space for dummy packet |
158 | * @ipv4: is layer 3 packet of version 4 or 6 |
159 | * @l4proto: next level protocol used in data portion of l3 |
160 | * @data: filter data |
161 | * |
162 | * Returns address of layer 4 protocol dummy packet. |
163 | **/ |
164 | static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, |
165 | struct i40e_fdir_filter *data) |
166 | { |
167 | bool is_vlan = !!data->vlan_tag; |
168 | struct vlan_hdr vlan = {}; |
169 | struct ipv6hdr ipv6 = {}; |
170 | struct ethhdr eth = {}; |
171 | struct iphdr ip = {}; |
172 | u8 *tmp; |
173 | |
174 | if (ipv4) { |
175 | eth.h_proto = cpu_to_be16(ETH_P_IP); |
176 | ip.protocol = l4proto; |
177 | ip.version = 0x4; |
178 | ip.ihl = 0x5; |
179 | |
180 | ip.daddr = data->dst_ip; |
181 | ip.saddr = data->src_ip; |
182 | } else { |
183 | eth.h_proto = cpu_to_be16(ETH_P_IPV6); |
184 | ipv6.nexthdr = l4proto; |
185 | ipv6.version = 0x6; |
186 | |
187 | memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, |
188 | sizeof(__be32) * 4); |
189 | memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, |
190 | sizeof(__be32) * 4); |
191 | } |
192 | |
193 | if (is_vlan) { |
194 | vlan.h_vlan_TCI = data->vlan_tag; |
195 | vlan.h_vlan_encapsulated_proto = eth.h_proto; |
196 | eth.h_proto = data->vlan_etype; |
197 | } |
198 | |
199 | tmp = dummy_packet; |
200 | memcpy(tmp, ð, sizeof(eth)); |
201 | tmp += sizeof(eth); |
202 | |
203 | if (is_vlan) { |
204 | memcpy(tmp, &vlan, sizeof(vlan)); |
205 | tmp += sizeof(vlan); |
206 | } |
207 | |
208 | if (ipv4) { |
209 | memcpy(tmp, &ip, sizeof(ip)); |
210 | tmp += sizeof(ip); |
211 | } else { |
212 | memcpy(tmp, &ipv6, sizeof(ipv6)); |
213 | tmp += sizeof(ipv6); |
214 | } |
215 | |
216 | return tmp; |
217 | } |
218 | |
219 | /** |
220 | * i40e_create_dummy_udp_packet - helper function to create UDP packet |
221 | * @raw_packet: preallocated space for dummy packet |
222 | * @ipv4: is layer 3 packet of version 4 or 6 |
223 | * @l4proto: next level protocol used in data portion of l3 |
224 | * @data: filter data |
225 | * |
226 | * Helper function to populate udp fields. |
227 | **/ |
228 | static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, |
229 | struct i40e_fdir_filter *data) |
230 | { |
231 | struct udphdr *udp; |
232 | u8 *tmp; |
233 | |
234 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_UDP, data); |
235 | udp = (struct udphdr *)(tmp); |
236 | udp->dest = data->dst_port; |
237 | udp->source = data->src_port; |
238 | } |
239 | |
240 | /** |
241 | * i40e_create_dummy_tcp_packet - helper function to create TCP packet |
242 | * @raw_packet: preallocated space for dummy packet |
243 | * @ipv4: is layer 3 packet of version 4 or 6 |
244 | * @l4proto: next level protocol used in data portion of l3 |
245 | * @data: filter data |
246 | * |
247 | * Helper function to populate tcp fields. |
248 | **/ |
249 | static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, |
250 | struct i40e_fdir_filter *data) |
251 | { |
252 | struct tcphdr *tcp; |
253 | u8 *tmp; |
254 | /* Dummy tcp packet */ |
255 | static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
256 | 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; |
257 | |
258 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_TCP, data); |
259 | |
260 | tcp = (struct tcphdr *)tmp; |
261 | memcpy(tcp, tcp_packet, sizeof(tcp_packet)); |
262 | tcp->dest = data->dst_port; |
263 | tcp->source = data->src_port; |
264 | } |
265 | |
266 | /** |
267 | * i40e_create_dummy_sctp_packet - helper function to create SCTP packet |
268 | * @raw_packet: preallocated space for dummy packet |
269 | * @ipv4: is layer 3 packet of version 4 or 6 |
270 | * @l4proto: next level protocol used in data portion of l3 |
271 | * @data: filter data |
272 | * |
273 | * Helper function to populate sctp fields. |
274 | **/ |
275 | static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, |
276 | u8 l4proto, |
277 | struct i40e_fdir_filter *data) |
278 | { |
279 | struct sctphdr *sctp; |
280 | u8 *tmp; |
281 | |
282 | tmp = i40e_create_dummy_packet(dummy_packet: raw_packet, ipv4, IPPROTO_SCTP, data); |
283 | |
284 | sctp = (struct sctphdr *)tmp; |
285 | sctp->dest = data->dst_port; |
286 | sctp->source = data->src_port; |
287 | } |
288 | |
289 | /** |
290 | * i40e_prepare_fdir_filter - Prepare and program fdir filter |
291 | * @pf: physical function to attach filter to |
292 | * @fd_data: filter data |
293 | * @add: add or delete filter |
294 | * @packet_addr: address of dummy packet, used in filtering |
295 | * @payload_offset: offset from dummy packet address to user defined data |
296 | * @pctype: Packet type for which filter is used |
297 | * |
298 | * Helper function to offset data of dummy packet, program it and |
299 | * handle errors. |
300 | **/ |
301 | static int i40e_prepare_fdir_filter(struct i40e_pf *pf, |
302 | struct i40e_fdir_filter *fd_data, |
303 | bool add, char *packet_addr, |
304 | int payload_offset, u8 pctype) |
305 | { |
306 | int ret; |
307 | |
308 | if (fd_data->flex_filter) { |
309 | u8 *payload; |
310 | __be16 pattern = fd_data->flex_word; |
311 | u16 off = fd_data->flex_offset; |
312 | |
313 | payload = packet_addr + payload_offset; |
314 | |
315 | /* If user provided vlan, offset payload by vlan header length */ |
316 | if (!!fd_data->vlan_tag) |
317 | payload += VLAN_HLEN; |
318 | |
319 | *((__force __be16 *)(payload + off)) = pattern; |
320 | } |
321 | |
322 | fd_data->pctype = pctype; |
323 | ret = i40e_program_fdir_filter(fdir_data: fd_data, raw_packet: packet_addr, pf, add); |
324 | if (ret) { |
325 | dev_info(&pf->pdev->dev, |
326 | "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", |
327 | fd_data->pctype, fd_data->fd_id, ret); |
328 | /* Free the packet buffer since it wasn't added to the ring */ |
329 | return -EOPNOTSUPP; |
330 | } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { |
331 | if (add) |
332 | dev_info(&pf->pdev->dev, |
333 | "Filter OK for PCTYPE %d loc = %d\n", |
334 | fd_data->pctype, fd_data->fd_id); |
335 | else |
336 | dev_info(&pf->pdev->dev, |
337 | "Filter deleted for PCTYPE %d loc = %d\n", |
338 | fd_data->pctype, fd_data->fd_id); |
339 | } |
340 | |
341 | return ret; |
342 | } |
343 | |
344 | /** |
345 | * i40e_change_filter_num - Prepare and program fdir filter |
346 | * @ipv4: is layer 3 packet of version 4 or 6 |
347 | * @add: add or delete filter |
348 | * @ipv4_filter_num: field to update |
349 | * @ipv6_filter_num: field to update |
350 | * |
351 | * Update filter number field for pf. |
352 | **/ |
353 | static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, |
354 | u16 *ipv6_filter_num) |
355 | { |
356 | if (add) { |
357 | if (ipv4) |
358 | (*ipv4_filter_num)++; |
359 | else |
360 | (*ipv6_filter_num)++; |
361 | } else { |
362 | if (ipv4) |
363 | (*ipv4_filter_num)--; |
364 | else |
365 | (*ipv6_filter_num)--; |
366 | } |
367 | } |
368 | |
369 | #define I40E_UDPIP_DUMMY_PACKET_LEN 42 |
370 | #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 |
371 | /** |
372 | * i40e_add_del_fdir_udp - Add/Remove UDP filters |
373 | * @vsi: pointer to the targeted VSI |
374 | * @fd_data: the flow director data required for the FDir descriptor |
375 | * @add: true adds a filter, false removes it |
376 | * @ipv4: true is v4, false is v6 |
377 | * |
378 | * Returns 0 if the filters were successfully added or removed |
379 | **/ |
380 | static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, |
381 | struct i40e_fdir_filter *fd_data, |
382 | bool add, |
383 | bool ipv4) |
384 | { |
385 | struct i40e_pf *pf = vsi->back; |
386 | u8 *raw_packet; |
387 | int ret; |
388 | |
389 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
390 | if (!raw_packet) |
391 | return -ENOMEM; |
392 | |
393 | i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, data: fd_data); |
394 | |
395 | if (ipv4) |
396 | ret = i40e_prepare_fdir_filter |
397 | (pf, fd_data, add, packet_addr: raw_packet, |
398 | I40E_UDPIP_DUMMY_PACKET_LEN, |
399 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_UDP); |
400 | else |
401 | ret = i40e_prepare_fdir_filter |
402 | (pf, fd_data, add, packet_addr: raw_packet, |
403 | I40E_UDPIP6_DUMMY_PACKET_LEN, |
404 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_UDP); |
405 | |
406 | if (ret) { |
407 | kfree(objp: raw_packet); |
408 | return ret; |
409 | } |
410 | |
411 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_udp4_filter_cnt, |
412 | ipv6_filter_num: &pf->fd_udp6_filter_cnt); |
413 | |
414 | return 0; |
415 | } |
416 | |
417 | #define I40E_TCPIP_DUMMY_PACKET_LEN 54 |
418 | #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 |
419 | /** |
420 | * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters |
421 | * @vsi: pointer to the targeted VSI |
422 | * @fd_data: the flow director data required for the FDir descriptor |
423 | * @add: true adds a filter, false removes it |
424 | * @ipv4: true is v4, false is v6 |
425 | * |
426 | * Returns 0 if the filters were successfully added or removed |
427 | **/ |
428 | static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, |
429 | struct i40e_fdir_filter *fd_data, |
430 | bool add, |
431 | bool ipv4) |
432 | { |
433 | struct i40e_pf *pf = vsi->back; |
434 | u8 *raw_packet; |
435 | int ret; |
436 | |
437 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
438 | if (!raw_packet) |
439 | return -ENOMEM; |
440 | |
441 | i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, data: fd_data); |
442 | if (ipv4) |
443 | ret = i40e_prepare_fdir_filter |
444 | (pf, fd_data, add, packet_addr: raw_packet, |
445 | I40E_TCPIP_DUMMY_PACKET_LEN, |
446 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_TCP); |
447 | else |
448 | ret = i40e_prepare_fdir_filter |
449 | (pf, fd_data, add, packet_addr: raw_packet, |
450 | I40E_TCPIP6_DUMMY_PACKET_LEN, |
451 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_TCP); |
452 | |
453 | if (ret) { |
454 | kfree(objp: raw_packet); |
455 | return ret; |
456 | } |
457 | |
458 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_tcp4_filter_cnt, |
459 | ipv6_filter_num: &pf->fd_tcp6_filter_cnt); |
460 | |
461 | if (add) { |
462 | if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && |
463 | I40E_DEBUG_FD & pf->hw.debug_mask) |
464 | dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); |
465 | set_bit(nr: __I40E_FD_ATR_AUTO_DISABLED, addr: pf->state); |
466 | } |
467 | return 0; |
468 | } |
469 | |
470 | #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 |
471 | #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 |
472 | /** |
473 | * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for |
474 | * a specific flow spec |
475 | * @vsi: pointer to the targeted VSI |
476 | * @fd_data: the flow director data required for the FDir descriptor |
477 | * @add: true adds a filter, false removes it |
478 | * @ipv4: true is v4, false is v6 |
479 | * |
480 | * Returns 0 if the filters were successfully added or removed |
481 | **/ |
482 | static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, |
483 | struct i40e_fdir_filter *fd_data, |
484 | bool add, |
485 | bool ipv4) |
486 | { |
487 | struct i40e_pf *pf = vsi->back; |
488 | u8 *raw_packet; |
489 | int ret; |
490 | |
491 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
492 | if (!raw_packet) |
493 | return -ENOMEM; |
494 | |
495 | i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, data: fd_data); |
496 | |
497 | if (ipv4) |
498 | ret = i40e_prepare_fdir_filter |
499 | (pf, fd_data, add, packet_addr: raw_packet, |
500 | I40E_SCTPIP_DUMMY_PACKET_LEN, |
501 | pctype: I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); |
502 | else |
503 | ret = i40e_prepare_fdir_filter |
504 | (pf, fd_data, add, packet_addr: raw_packet, |
505 | I40E_SCTPIP6_DUMMY_PACKET_LEN, |
506 | pctype: I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); |
507 | |
508 | if (ret) { |
509 | kfree(objp: raw_packet); |
510 | return ret; |
511 | } |
512 | |
513 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_sctp4_filter_cnt, |
514 | ipv6_filter_num: &pf->fd_sctp6_filter_cnt); |
515 | |
516 | return 0; |
517 | } |
518 | |
519 | #define I40E_IP_DUMMY_PACKET_LEN 34 |
520 | #define I40E_IP6_DUMMY_PACKET_LEN 54 |
521 | /** |
522 | * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for |
523 | * a specific flow spec |
524 | * @vsi: pointer to the targeted VSI |
525 | * @fd_data: the flow director data required for the FDir descriptor |
526 | * @add: true adds a filter, false removes it |
527 | * @ipv4: true is v4, false is v6 |
528 | * |
529 | * Returns 0 if the filters were successfully added or removed |
530 | **/ |
531 | static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, |
532 | struct i40e_fdir_filter *fd_data, |
533 | bool add, |
534 | bool ipv4) |
535 | { |
536 | struct i40e_pf *pf = vsi->back; |
537 | int payload_offset; |
538 | u8 *raw_packet; |
539 | int iter_start; |
540 | int iter_end; |
541 | int ret; |
542 | int i; |
543 | |
544 | if (ipv4) { |
545 | iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; |
546 | iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; |
547 | } else { |
548 | iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; |
549 | iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; |
550 | } |
551 | |
552 | for (i = iter_start; i <= iter_end; i++) { |
553 | raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); |
554 | if (!raw_packet) |
555 | return -ENOMEM; |
556 | |
557 | /* IPv6 no header option differs from IPv4 */ |
558 | (void)i40e_create_dummy_packet |
559 | (dummy_packet: raw_packet, ipv4, l4proto: (ipv4) ? IPPROTO_IP : IPPROTO_NONE, |
560 | data: fd_data); |
561 | |
562 | payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : |
563 | I40E_IP6_DUMMY_PACKET_LEN; |
564 | ret = i40e_prepare_fdir_filter(pf, fd_data, add, packet_addr: raw_packet, |
565 | payload_offset, pctype: i); |
566 | if (ret) |
567 | goto err; |
568 | } |
569 | |
570 | i40e_change_filter_num(ipv4, add, ipv4_filter_num: &pf->fd_ip4_filter_cnt, |
571 | ipv6_filter_num: &pf->fd_ip6_filter_cnt); |
572 | |
573 | return 0; |
574 | err: |
575 | kfree(objp: raw_packet); |
576 | return ret; |
577 | } |
578 | |
579 | /** |
580 | * i40e_add_del_fdir - Build raw packets to add/del fdir filter |
581 | * @vsi: pointer to the targeted VSI |
582 | * @input: filter to add or delete |
583 | * @add: true adds a filter, false removes it |
584 | * |
585 | **/ |
586 | int i40e_add_del_fdir(struct i40e_vsi *vsi, |
587 | struct i40e_fdir_filter *input, bool add) |
588 | { |
589 | enum ip_ver { ipv6 = 0, ipv4 = 1 }; |
590 | struct i40e_pf *pf = vsi->back; |
591 | int ret; |
592 | |
593 | switch (input->flow_type & ~FLOW_EXT) { |
594 | case TCP_V4_FLOW: |
595 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4); |
596 | break; |
597 | case UDP_V4_FLOW: |
598 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4); |
599 | break; |
600 | case SCTP_V4_FLOW: |
601 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4); |
602 | break; |
603 | case TCP_V6_FLOW: |
604 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4: ipv6); |
605 | break; |
606 | case UDP_V6_FLOW: |
607 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4: ipv6); |
608 | break; |
609 | case SCTP_V6_FLOW: |
610 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4: ipv6); |
611 | break; |
612 | case IP_USER_FLOW: |
613 | switch (input->ipl4_proto) { |
614 | case IPPROTO_TCP: |
615 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4); |
616 | break; |
617 | case IPPROTO_UDP: |
618 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4); |
619 | break; |
620 | case IPPROTO_SCTP: |
621 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4); |
622 | break; |
623 | case IPPROTO_IP: |
624 | ret = i40e_add_del_fdir_ip(vsi, fd_data: input, add, ipv4); |
625 | break; |
626 | default: |
627 | /* We cannot support masking based on protocol */ |
628 | dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", |
629 | input->ipl4_proto); |
630 | return -EINVAL; |
631 | } |
632 | break; |
633 | case IPV6_USER_FLOW: |
634 | switch (input->ipl4_proto) { |
635 | case IPPROTO_TCP: |
636 | ret = i40e_add_del_fdir_tcp(vsi, fd_data: input, add, ipv4: ipv6); |
637 | break; |
638 | case IPPROTO_UDP: |
639 | ret = i40e_add_del_fdir_udp(vsi, fd_data: input, add, ipv4: ipv6); |
640 | break; |
641 | case IPPROTO_SCTP: |
642 | ret = i40e_add_del_fdir_sctp(vsi, fd_data: input, add, ipv4: ipv6); |
643 | break; |
644 | case IPPROTO_IP: |
645 | ret = i40e_add_del_fdir_ip(vsi, fd_data: input, add, ipv4: ipv6); |
646 | break; |
647 | default: |
648 | /* We cannot support masking based on protocol */ |
649 | dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n", |
650 | input->ipl4_proto); |
651 | return -EINVAL; |
652 | } |
653 | break; |
654 | default: |
655 | dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", |
656 | input->flow_type); |
657 | return -EINVAL; |
658 | } |
659 | |
660 | /* The buffer allocated here will be normally be freed by |
661 | * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit |
662 | * completion. In the event of an error adding the buffer to the FDIR |
663 | * ring, it will immediately be freed. It may also be freed by |
664 | * i40e_clean_tx_ring() when closing the VSI. |
665 | */ |
666 | return ret; |
667 | } |
668 | |
669 | /** |
670 | * i40e_fd_handle_status - check the Programming Status for FD |
671 | * @rx_ring: the Rx ring for this descriptor |
672 | * @qword0_raw: qword0 |
673 | * @qword1: qword1 after le_to_cpu |
674 | * @prog_id: the id originally used for programming |
675 | * |
676 | * This is used to verify if the FD programming or invalidation |
677 | * requested by SW to the HW is successful or not and take actions accordingly. |
678 | **/ |
679 | static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, |
680 | u64 qword1, u8 prog_id) |
681 | { |
682 | struct i40e_pf *pf = rx_ring->vsi->back; |
683 | struct pci_dev *pdev = pf->pdev; |
684 | struct i40e_16b_rx_wb_qw0 *qw0; |
685 | u32 fcnt_prog, fcnt_avail; |
686 | u32 error; |
687 | |
688 | qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; |
689 | error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1); |
690 | |
691 | if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { |
692 | pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); |
693 | if (qw0->hi_dword.fd_id != 0 || |
694 | (I40E_DEBUG_FD & pf->hw.debug_mask)) |
695 | dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", |
696 | pf->fd_inv); |
697 | |
698 | /* Check if the programming error is for ATR. |
699 | * If so, auto disable ATR and set a state for |
700 | * flush in progress. Next time we come here if flush is in |
701 | * progress do nothing, once flush is complete the state will |
702 | * be cleared. |
703 | */ |
704 | if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) |
705 | return; |
706 | |
707 | pf->fd_add_err++; |
708 | /* store the current atr filter count */ |
709 | pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); |
710 | |
711 | if (qw0->hi_dword.fd_id == 0 && |
712 | test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { |
713 | /* These set_bit() calls aren't atomic with the |
714 | * test_bit() here, but worse case we potentially |
715 | * disable ATR and queue a flush right after SB |
716 | * support is re-enabled. That shouldn't cause an |
717 | * issue in practice |
718 | */ |
719 | set_bit(nr: __I40E_FD_ATR_AUTO_DISABLED, addr: pf->state); |
720 | set_bit(nr: __I40E_FD_FLUSH_REQUESTED, addr: pf->state); |
721 | } |
722 | |
723 | /* filter programming failed most likely due to table full */ |
724 | fcnt_prog = i40e_get_global_fd_count(pf); |
725 | fcnt_avail = pf->fdir_pf_filter_count; |
726 | /* If ATR is running fcnt_prog can quickly change, |
727 | * if we are very close to full, it makes sense to disable |
728 | * FD ATR/SB and then re-enable it when there is room. |
729 | */ |
730 | if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { |
731 | if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && |
732 | !test_and_set_bit(nr: __I40E_FD_SB_AUTO_DISABLED, |
733 | addr: pf->state)) |
734 | if (I40E_DEBUG_FD & pf->hw.debug_mask) |
735 | dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); |
736 | } |
737 | } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { |
738 | if (I40E_DEBUG_FD & pf->hw.debug_mask) |
739 | dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", |
740 | qw0->hi_dword.fd_id); |
741 | } |
742 | } |
743 | |
744 | /** |
745 | * i40e_unmap_and_free_tx_resource - Release a Tx buffer |
746 | * @ring: the ring that owns the buffer |
747 | * @tx_buffer: the buffer to free |
748 | **/ |
749 | static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, |
750 | struct i40e_tx_buffer *tx_buffer) |
751 | { |
752 | if (tx_buffer->skb) { |
753 | if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) |
754 | kfree(objp: tx_buffer->raw_buf); |
755 | else if (ring_is_xdp(ring)) |
756 | xdp_return_frame(xdpf: tx_buffer->xdpf); |
757 | else |
758 | dev_kfree_skb_any(skb: tx_buffer->skb); |
759 | if (dma_unmap_len(tx_buffer, len)) |
760 | dma_unmap_single(ring->dev, |
761 | dma_unmap_addr(tx_buffer, dma), |
762 | dma_unmap_len(tx_buffer, len), |
763 | DMA_TO_DEVICE); |
764 | } else if (dma_unmap_len(tx_buffer, len)) { |
765 | dma_unmap_page(ring->dev, |
766 | dma_unmap_addr(tx_buffer, dma), |
767 | dma_unmap_len(tx_buffer, len), |
768 | DMA_TO_DEVICE); |
769 | } |
770 | |
771 | tx_buffer->next_to_watch = NULL; |
772 | tx_buffer->skb = NULL; |
773 | dma_unmap_len_set(tx_buffer, len, 0); |
774 | /* tx_buffer must be completely set up in the transmit path */ |
775 | } |
776 | |
777 | /** |
778 | * i40e_clean_tx_ring - Free any empty Tx buffers |
779 | * @tx_ring: ring to be cleaned |
780 | **/ |
781 | void i40e_clean_tx_ring(struct i40e_ring *tx_ring) |
782 | { |
783 | unsigned long bi_size; |
784 | u16 i; |
785 | |
786 | if (ring_is_xdp(ring: tx_ring) && tx_ring->xsk_pool) { |
787 | i40e_xsk_clean_tx_ring(tx_ring); |
788 | } else { |
789 | /* ring already cleared, nothing to do */ |
790 | if (!tx_ring->tx_bi) |
791 | return; |
792 | |
793 | /* Free all the Tx ring sk_buffs */ |
794 | for (i = 0; i < tx_ring->count; i++) |
795 | i40e_unmap_and_free_tx_resource(ring: tx_ring, |
796 | tx_buffer: &tx_ring->tx_bi[i]); |
797 | } |
798 | |
799 | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
800 | memset(tx_ring->tx_bi, 0, bi_size); |
801 | |
802 | /* Zero out the descriptor ring */ |
803 | memset(tx_ring->desc, 0, tx_ring->size); |
804 | |
805 | tx_ring->next_to_use = 0; |
806 | tx_ring->next_to_clean = 0; |
807 | |
808 | if (!tx_ring->netdev) |
809 | return; |
810 | |
811 | /* cleanup Tx queue statistics */ |
812 | netdev_tx_reset_queue(q: txring_txq(ring: tx_ring)); |
813 | } |
814 | |
815 | /** |
816 | * i40e_free_tx_resources - Free Tx resources per queue |
817 | * @tx_ring: Tx descriptor ring for a specific queue |
818 | * |
819 | * Free all transmit software resources |
820 | **/ |
821 | void i40e_free_tx_resources(struct i40e_ring *tx_ring) |
822 | { |
823 | i40e_clean_tx_ring(tx_ring); |
824 | kfree(objp: tx_ring->tx_bi); |
825 | tx_ring->tx_bi = NULL; |
826 | |
827 | if (tx_ring->desc) { |
828 | dma_free_coherent(dev: tx_ring->dev, size: tx_ring->size, |
829 | cpu_addr: tx_ring->desc, dma_handle: tx_ring->dma); |
830 | tx_ring->desc = NULL; |
831 | } |
832 | } |
833 | |
834 | /** |
835 | * i40e_get_tx_pending - how many tx descriptors not processed |
836 | * @ring: the ring of descriptors |
837 | * @in_sw: use SW variables |
838 | * |
839 | * Since there is no access to the ring head register |
840 | * in XL710, we need to use our local copies |
841 | **/ |
842 | u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) |
843 | { |
844 | u32 head, tail; |
845 | |
846 | if (!in_sw) { |
847 | head = i40e_get_head(tx_ring: ring); |
848 | tail = readl(addr: ring->tail); |
849 | } else { |
850 | head = ring->next_to_clean; |
851 | tail = ring->next_to_use; |
852 | } |
853 | |
854 | if (head != tail) |
855 | return (head < tail) ? |
856 | tail - head : (tail + ring->count - head); |
857 | |
858 | return 0; |
859 | } |
860 | |
861 | /** |
862 | * i40e_detect_recover_hung - Function to detect and recover hung_queues |
863 | * @vsi: pointer to vsi struct with tx queues |
864 | * |
865 | * VSI has netdev and netdev has TX queues. This function is to check each of |
866 | * those TX queues if they are hung, trigger recovery by issuing SW interrupt. |
867 | **/ |
868 | void i40e_detect_recover_hung(struct i40e_vsi *vsi) |
869 | { |
870 | struct i40e_ring *tx_ring = NULL; |
871 | struct net_device *netdev; |
872 | unsigned int i; |
873 | int packets; |
874 | |
875 | if (!vsi) |
876 | return; |
877 | |
878 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
879 | return; |
880 | |
881 | netdev = vsi->netdev; |
882 | if (!netdev) |
883 | return; |
884 | |
885 | if (!netif_carrier_ok(dev: netdev)) |
886 | return; |
887 | |
888 | for (i = 0; i < vsi->num_queue_pairs; i++) { |
889 | tx_ring = vsi->tx_rings[i]; |
890 | if (tx_ring && tx_ring->desc) { |
891 | /* If packet counter has not changed the queue is |
892 | * likely stalled, so force an interrupt for this |
893 | * queue. |
894 | * |
895 | * prev_pkt_ctr would be negative if there was no |
896 | * pending work. |
897 | */ |
898 | packets = tx_ring->stats.packets & INT_MAX; |
899 | if (tx_ring->tx_stats.prev_pkt_ctr == packets) { |
900 | i40e_force_wb(vsi, q_vector: tx_ring->q_vector); |
901 | continue; |
902 | } |
903 | |
904 | /* Memory barrier between read of packet count and call |
905 | * to i40e_get_tx_pending() |
906 | */ |
907 | smp_rmb(); |
908 | tx_ring->tx_stats.prev_pkt_ctr = |
909 | i40e_get_tx_pending(ring: tx_ring, in_sw: true) ? packets : -1; |
910 | } |
911 | } |
912 | } |
913 | |
914 | /** |
915 | * i40e_clean_tx_irq - Reclaim resources after transmit completes |
916 | * @vsi: the VSI we care about |
917 | * @tx_ring: Tx ring to clean |
918 | * @napi_budget: Used to determine if we are in netpoll |
919 | * @tx_cleaned: Out parameter set to the number of TXes cleaned |
920 | * |
921 | * Returns true if there's any budget left (e.g. the clean is finished) |
922 | **/ |
923 | static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, |
924 | struct i40e_ring *tx_ring, int napi_budget, |
925 | unsigned int *tx_cleaned) |
926 | { |
927 | int i = tx_ring->next_to_clean; |
928 | struct i40e_tx_buffer *tx_buf; |
929 | struct i40e_tx_desc *tx_head; |
930 | struct i40e_tx_desc *tx_desc; |
931 | unsigned int total_bytes = 0, total_packets = 0; |
932 | unsigned int budget = vsi->work_limit; |
933 | |
934 | tx_buf = &tx_ring->tx_bi[i]; |
935 | tx_desc = I40E_TX_DESC(tx_ring, i); |
936 | i -= tx_ring->count; |
937 | |
938 | tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); |
939 | |
940 | do { |
941 | struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; |
942 | |
943 | /* if next_to_watch is not set then there is no work pending */ |
944 | if (!eop_desc) |
945 | break; |
946 | |
947 | /* prevent any other reads prior to eop_desc */ |
948 | smp_rmb(); |
949 | |
950 | i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); |
951 | /* we have caught up to head, no work left to do */ |
952 | if (tx_head == tx_desc) |
953 | break; |
954 | |
955 | /* clear next_to_watch to prevent false hangs */ |
956 | tx_buf->next_to_watch = NULL; |
957 | |
958 | /* update the statistics for this packet */ |
959 | total_bytes += tx_buf->bytecount; |
960 | total_packets += tx_buf->gso_segs; |
961 | |
962 | /* free the skb/XDP data */ |
963 | if (ring_is_xdp(ring: tx_ring)) |
964 | xdp_return_frame(xdpf: tx_buf->xdpf); |
965 | else |
966 | napi_consume_skb(skb: tx_buf->skb, budget: napi_budget); |
967 | |
968 | /* unmap skb header data */ |
969 | dma_unmap_single(tx_ring->dev, |
970 | dma_unmap_addr(tx_buf, dma), |
971 | dma_unmap_len(tx_buf, len), |
972 | DMA_TO_DEVICE); |
973 | |
974 | /* clear tx_buffer data */ |
975 | tx_buf->skb = NULL; |
976 | dma_unmap_len_set(tx_buf, len, 0); |
977 | |
978 | /* unmap remaining buffers */ |
979 | while (tx_desc != eop_desc) { |
980 | i40e_trace(clean_tx_irq_unmap, |
981 | tx_ring, tx_desc, tx_buf); |
982 | |
983 | tx_buf++; |
984 | tx_desc++; |
985 | i++; |
986 | if (unlikely(!i)) { |
987 | i -= tx_ring->count; |
988 | tx_buf = tx_ring->tx_bi; |
989 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
990 | } |
991 | |
992 | /* unmap any remaining paged data */ |
993 | if (dma_unmap_len(tx_buf, len)) { |
994 | dma_unmap_page(tx_ring->dev, |
995 | dma_unmap_addr(tx_buf, dma), |
996 | dma_unmap_len(tx_buf, len), |
997 | DMA_TO_DEVICE); |
998 | dma_unmap_len_set(tx_buf, len, 0); |
999 | } |
1000 | } |
1001 | |
1002 | /* move us one more past the eop_desc for start of next pkt */ |
1003 | tx_buf++; |
1004 | tx_desc++; |
1005 | i++; |
1006 | if (unlikely(!i)) { |
1007 | i -= tx_ring->count; |
1008 | tx_buf = tx_ring->tx_bi; |
1009 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
1010 | } |
1011 | |
1012 | prefetch(tx_desc); |
1013 | |
1014 | /* update budget accounting */ |
1015 | budget--; |
1016 | } while (likely(budget)); |
1017 | |
1018 | i += tx_ring->count; |
1019 | tx_ring->next_to_clean = i; |
1020 | i40e_update_tx_stats(tx_ring, total_packets, total_bytes); |
1021 | i40e_arm_wb(tx_ring, vsi, budget); |
1022 | |
1023 | if (ring_is_xdp(ring: tx_ring)) |
1024 | return !!budget; |
1025 | |
1026 | /* notify netdev of completed buffers */ |
1027 | netdev_tx_completed_queue(dev_queue: txring_txq(ring: tx_ring), |
1028 | pkts: total_packets, bytes: total_bytes); |
1029 | |
1030 | #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
1031 | if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
1032 | (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
1033 | /* Make sure that anybody stopping the queue after this |
1034 | * sees the new next_to_clean. |
1035 | */ |
1036 | smp_mb(); |
1037 | if (__netif_subqueue_stopped(dev: tx_ring->netdev, |
1038 | queue_index: tx_ring->queue_index) && |
1039 | !test_bit(__I40E_VSI_DOWN, vsi->state)) { |
1040 | netif_wake_subqueue(dev: tx_ring->netdev, |
1041 | queue_index: tx_ring->queue_index); |
1042 | ++tx_ring->tx_stats.restart_queue; |
1043 | } |
1044 | } |
1045 | |
1046 | *tx_cleaned = total_packets; |
1047 | return !!budget; |
1048 | } |
1049 | |
1050 | /** |
1051 | * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled |
1052 | * @vsi: the VSI we care about |
1053 | * @q_vector: the vector on which to enable writeback |
1054 | * |
1055 | **/ |
1056 | static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, |
1057 | struct i40e_q_vector *q_vector) |
1058 | { |
1059 | u16 flags = q_vector->tx.ring[0].flags; |
1060 | u32 val; |
1061 | |
1062 | if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) |
1063 | return; |
1064 | |
1065 | if (q_vector->arm_wb_state) |
1066 | return; |
1067 | |
1068 | if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
1069 | val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | |
1070 | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ |
1071 | |
1072 | wr32(&vsi->back->hw, |
1073 | I40E_PFINT_DYN_CTLN(q_vector->reg_idx), |
1074 | val); |
1075 | } else { |
1076 | val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | |
1077 | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ |
1078 | |
1079 | wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); |
1080 | } |
1081 | q_vector->arm_wb_state = true; |
1082 | } |
1083 | |
1084 | /** |
1085 | * i40e_force_wb - Issue SW Interrupt so HW does a wb |
1086 | * @vsi: the VSI we care about |
1087 | * @q_vector: the vector on which to force writeback |
1088 | * |
1089 | **/ |
1090 | void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) |
1091 | { |
1092 | if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
1093 | u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | |
1094 | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ |
1095 | I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | |
1096 | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; |
1097 | /* allow 00 to be written to the index */ |
1098 | |
1099 | wr32(&vsi->back->hw, |
1100 | I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); |
1101 | } else { |
1102 | u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | |
1103 | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ |
1104 | I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | |
1105 | I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; |
1106 | /* allow 00 to be written to the index */ |
1107 | |
1108 | wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); |
1109 | } |
1110 | } |
1111 | |
1112 | static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, |
1113 | struct i40e_ring_container *rc) |
1114 | { |
1115 | return &q_vector->rx == rc; |
1116 | } |
1117 | |
1118 | static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) |
1119 | { |
1120 | unsigned int divisor; |
1121 | |
1122 | switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { |
1123 | case I40E_LINK_SPEED_40GB: |
1124 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; |
1125 | break; |
1126 | case I40E_LINK_SPEED_25GB: |
1127 | case I40E_LINK_SPEED_20GB: |
1128 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; |
1129 | break; |
1130 | default: |
1131 | case I40E_LINK_SPEED_10GB: |
1132 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; |
1133 | break; |
1134 | case I40E_LINK_SPEED_1GB: |
1135 | case I40E_LINK_SPEED_100MB: |
1136 | divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; |
1137 | break; |
1138 | } |
1139 | |
1140 | return divisor; |
1141 | } |
1142 | |
1143 | /** |
1144 | * i40e_update_itr - update the dynamic ITR value based on statistics |
1145 | * @q_vector: structure containing interrupt and ring information |
1146 | * @rc: structure containing ring performance data |
1147 | * |
1148 | * Stores a new ITR value based on packets and byte |
1149 | * counts during the last interrupt. The advantage of per interrupt |
1150 | * computation is faster updates and more accurate ITR for the current |
1151 | * traffic pattern. Constants in this function were computed |
1152 | * based on theoretical maximum wire speed and thresholds were set based |
1153 | * on testing data as well as attempting to minimize response time |
1154 | * while increasing bulk throughput. |
1155 | **/ |
1156 | static void i40e_update_itr(struct i40e_q_vector *q_vector, |
1157 | struct i40e_ring_container *rc) |
1158 | { |
1159 | unsigned int avg_wire_size, packets, bytes, itr; |
1160 | unsigned long next_update = jiffies; |
1161 | |
1162 | /* If we don't have any rings just leave ourselves set for maximum |
1163 | * possible latency so we take ourselves out of the equation. |
1164 | */ |
1165 | if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) |
1166 | return; |
1167 | |
1168 | /* For Rx we want to push the delay up and default to low latency. |
1169 | * for Tx we want to pull the delay down and default to high latency. |
1170 | */ |
1171 | itr = i40e_container_is_rx(q_vector, rc) ? |
1172 | I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : |
1173 | I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; |
1174 | |
1175 | /* If we didn't update within up to 1 - 2 jiffies we can assume |
1176 | * that either packets are coming in so slow there hasn't been |
1177 | * any work, or that there is so much work that NAPI is dealing |
1178 | * with interrupt moderation and we don't need to do anything. |
1179 | */ |
1180 | if (time_after(next_update, rc->next_update)) |
1181 | goto clear_counts; |
1182 | |
1183 | /* If itr_countdown is set it means we programmed an ITR within |
1184 | * the last 4 interrupt cycles. This has a side effect of us |
1185 | * potentially firing an early interrupt. In order to work around |
1186 | * this we need to throw out any data received for a few |
1187 | * interrupts following the update. |
1188 | */ |
1189 | if (q_vector->itr_countdown) { |
1190 | itr = rc->target_itr; |
1191 | goto clear_counts; |
1192 | } |
1193 | |
1194 | packets = rc->total_packets; |
1195 | bytes = rc->total_bytes; |
1196 | |
1197 | if (i40e_container_is_rx(q_vector, rc)) { |
1198 | /* If Rx there are 1 to 4 packets and bytes are less than |
1199 | * 9000 assume insufficient data to use bulk rate limiting |
1200 | * approach unless Tx is already in bulk rate limiting. We |
1201 | * are likely latency driven. |
1202 | */ |
1203 | if (packets && packets < 4 && bytes < 9000 && |
1204 | (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { |
1205 | itr = I40E_ITR_ADAPTIVE_LATENCY; |
1206 | goto adjust_by_size; |
1207 | } |
1208 | } else if (packets < 4) { |
1209 | /* If we have Tx and Rx ITR maxed and Tx ITR is running in |
1210 | * bulk mode and we are receiving 4 or fewer packets just |
1211 | * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so |
1212 | * that the Rx can relax. |
1213 | */ |
1214 | if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && |
1215 | (q_vector->rx.target_itr & I40E_ITR_MASK) == |
1216 | I40E_ITR_ADAPTIVE_MAX_USECS) |
1217 | goto clear_counts; |
1218 | } else if (packets > 32) { |
1219 | /* If we have processed over 32 packets in a single interrupt |
1220 | * for Tx assume we need to switch over to "bulk" mode. |
1221 | */ |
1222 | rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; |
1223 | } |
1224 | |
1225 | /* We have no packets to actually measure against. This means |
1226 | * either one of the other queues on this vector is active or |
1227 | * we are a Tx queue doing TSO with too high of an interrupt rate. |
1228 | * |
1229 | * Between 4 and 56 we can assume that our current interrupt delay |
1230 | * is only slightly too low. As such we should increase it by a small |
1231 | * fixed amount. |
1232 | */ |
1233 | if (packets < 56) { |
1234 | itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; |
1235 | if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { |
1236 | itr &= I40E_ITR_ADAPTIVE_LATENCY; |
1237 | itr += I40E_ITR_ADAPTIVE_MAX_USECS; |
1238 | } |
1239 | goto clear_counts; |
1240 | } |
1241 | |
1242 | if (packets <= 256) { |
1243 | itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); |
1244 | itr &= I40E_ITR_MASK; |
1245 | |
1246 | /* Between 56 and 112 is our "goldilocks" zone where we are |
1247 | * working out "just right". Just report that our current |
1248 | * ITR is good for us. |
1249 | */ |
1250 | if (packets <= 112) |
1251 | goto clear_counts; |
1252 | |
1253 | /* If packet count is 128 or greater we are likely looking |
1254 | * at a slight overrun of the delay we want. Try halving |
1255 | * our delay to see if that will cut the number of packets |
1256 | * in half per interrupt. |
1257 | */ |
1258 | itr /= 2; |
1259 | itr &= I40E_ITR_MASK; |
1260 | if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) |
1261 | itr = I40E_ITR_ADAPTIVE_MIN_USECS; |
1262 | |
1263 | goto clear_counts; |
1264 | } |
1265 | |
1266 | /* The paths below assume we are dealing with a bulk ITR since |
1267 | * number of packets is greater than 256. We are just going to have |
1268 | * to compute a value and try to bring the count under control, |
1269 | * though for smaller packet sizes there isn't much we can do as |
1270 | * NAPI polling will likely be kicking in sooner rather than later. |
1271 | */ |
1272 | itr = I40E_ITR_ADAPTIVE_BULK; |
1273 | |
1274 | adjust_by_size: |
1275 | /* If packet counts are 256 or greater we can assume we have a gross |
1276 | * overestimation of what the rate should be. Instead of trying to fine |
1277 | * tune it just use the formula below to try and dial in an exact value |
1278 | * give the current packet size of the frame. |
1279 | */ |
1280 | avg_wire_size = bytes / packets; |
1281 | |
1282 | /* The following is a crude approximation of: |
1283 | * wmem_default / (size + overhead) = desired_pkts_per_int |
1284 | * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate |
1285 | * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value |
1286 | * |
1287 | * Assuming wmem_default is 212992 and overhead is 640 bytes per |
1288 | * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the |
1289 | * formula down to |
1290 | * |
1291 | * (170 * (size + 24)) / (size + 640) = ITR |
1292 | * |
1293 | * We first do some math on the packet size and then finally bitshift |
1294 | * by 8 after rounding up. We also have to account for PCIe link speed |
1295 | * difference as ITR scales based on this. |
1296 | */ |
1297 | if (avg_wire_size <= 60) { |
1298 | /* Start at 250k ints/sec */ |
1299 | avg_wire_size = 4096; |
1300 | } else if (avg_wire_size <= 380) { |
1301 | /* 250K ints/sec to 60K ints/sec */ |
1302 | avg_wire_size *= 40; |
1303 | avg_wire_size += 1696; |
1304 | } else if (avg_wire_size <= 1084) { |
1305 | /* 60K ints/sec to 36K ints/sec */ |
1306 | avg_wire_size *= 15; |
1307 | avg_wire_size += 11452; |
1308 | } else if (avg_wire_size <= 1980) { |
1309 | /* 36K ints/sec to 30K ints/sec */ |
1310 | avg_wire_size *= 5; |
1311 | avg_wire_size += 22420; |
1312 | } else { |
1313 | /* plateau at a limit of 30K ints/sec */ |
1314 | avg_wire_size = 32256; |
1315 | } |
1316 | |
1317 | /* If we are in low latency mode halve our delay which doubles the |
1318 | * rate to somewhere between 100K to 16K ints/sec |
1319 | */ |
1320 | if (itr & I40E_ITR_ADAPTIVE_LATENCY) |
1321 | avg_wire_size /= 2; |
1322 | |
1323 | /* Resultant value is 256 times larger than it needs to be. This |
1324 | * gives us room to adjust the value as needed to either increase |
1325 | * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. |
1326 | * |
1327 | * Use addition as we have already recorded the new latency flag |
1328 | * for the ITR value. |
1329 | */ |
1330 | itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * |
1331 | I40E_ITR_ADAPTIVE_MIN_INC; |
1332 | |
1333 | if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { |
1334 | itr &= I40E_ITR_ADAPTIVE_LATENCY; |
1335 | itr += I40E_ITR_ADAPTIVE_MAX_USECS; |
1336 | } |
1337 | |
1338 | clear_counts: |
1339 | /* write back value */ |
1340 | rc->target_itr = itr; |
1341 | |
1342 | /* next update should occur within next jiffy */ |
1343 | rc->next_update = next_update + 1; |
1344 | |
1345 | rc->total_bytes = 0; |
1346 | rc->total_packets = 0; |
1347 | } |
1348 | |
1349 | static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) |
1350 | { |
1351 | return &rx_ring->rx_bi[idx]; |
1352 | } |
1353 | |
1354 | /** |
1355 | * i40e_reuse_rx_page - page flip buffer and store it back on the ring |
1356 | * @rx_ring: rx descriptor ring to store buffers on |
1357 | * @old_buff: donor buffer to have page reused |
1358 | * |
1359 | * Synchronizes page for reuse by the adapter |
1360 | **/ |
1361 | static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, |
1362 | struct i40e_rx_buffer *old_buff) |
1363 | { |
1364 | struct i40e_rx_buffer *new_buff; |
1365 | u16 nta = rx_ring->next_to_alloc; |
1366 | |
1367 | new_buff = i40e_rx_bi(rx_ring, idx: nta); |
1368 | |
1369 | /* update, and store next to alloc */ |
1370 | nta++; |
1371 | rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
1372 | |
1373 | /* transfer page from old buffer to new buffer */ |
1374 | new_buff->dma = old_buff->dma; |
1375 | new_buff->page = old_buff->page; |
1376 | new_buff->page_offset = old_buff->page_offset; |
1377 | new_buff->pagecnt_bias = old_buff->pagecnt_bias; |
1378 | |
1379 | /* clear contents of buffer_info */ |
1380 | old_buff->page = NULL; |
1381 | } |
1382 | |
1383 | /** |
1384 | * i40e_clean_programming_status - clean the programming status descriptor |
1385 | * @rx_ring: the rx ring that has this descriptor |
1386 | * @qword0_raw: qword0 |
1387 | * @qword1: qword1 representing status_error_len in CPU ordering |
1388 | * |
1389 | * Flow director should handle FD_FILTER_STATUS to check its filter programming |
1390 | * status being successful or not and take actions accordingly. FCoE should |
1391 | * handle its context/filter programming/invalidation status and take actions. |
1392 | * |
1393 | * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. |
1394 | **/ |
1395 | void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, |
1396 | u64 qword1) |
1397 | { |
1398 | u8 id; |
1399 | |
1400 | id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1); |
1401 | |
1402 | if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) |
1403 | i40e_fd_handle_status(rx_ring, qword0_raw, qword1, prog_id: id); |
1404 | } |
1405 | |
1406 | /** |
1407 | * i40e_setup_tx_descriptors - Allocate the Tx descriptors |
1408 | * @tx_ring: the tx ring to set up |
1409 | * |
1410 | * Return 0 on success, negative on error |
1411 | **/ |
1412 | int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) |
1413 | { |
1414 | struct device *dev = tx_ring->dev; |
1415 | int bi_size; |
1416 | |
1417 | if (!dev) |
1418 | return -ENOMEM; |
1419 | |
1420 | /* warn if we are about to overwrite the pointer */ |
1421 | WARN_ON(tx_ring->tx_bi); |
1422 | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; |
1423 | tx_ring->tx_bi = kzalloc(size: bi_size, GFP_KERNEL); |
1424 | if (!tx_ring->tx_bi) |
1425 | goto err; |
1426 | |
1427 | u64_stats_init(syncp: &tx_ring->syncp); |
1428 | |
1429 | /* round up to nearest 4K */ |
1430 | tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); |
1431 | /* add u32 for head writeback, align after this takes care of |
1432 | * guaranteeing this is at least one cache line in size |
1433 | */ |
1434 | tx_ring->size += sizeof(u32); |
1435 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
1436 | tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size, |
1437 | dma_handle: &tx_ring->dma, GFP_KERNEL); |
1438 | if (!tx_ring->desc) { |
1439 | dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
1440 | tx_ring->size); |
1441 | goto err; |
1442 | } |
1443 | |
1444 | tx_ring->next_to_use = 0; |
1445 | tx_ring->next_to_clean = 0; |
1446 | tx_ring->tx_stats.prev_pkt_ctr = -1; |
1447 | return 0; |
1448 | |
1449 | err: |
1450 | kfree(objp: tx_ring->tx_bi); |
1451 | tx_ring->tx_bi = NULL; |
1452 | return -ENOMEM; |
1453 | } |
1454 | |
1455 | static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) |
1456 | { |
1457 | memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); |
1458 | } |
1459 | |
1460 | /** |
1461 | * i40e_clean_rx_ring - Free Rx buffers |
1462 | * @rx_ring: ring to be cleaned |
1463 | **/ |
1464 | void i40e_clean_rx_ring(struct i40e_ring *rx_ring) |
1465 | { |
1466 | u16 i; |
1467 | |
1468 | /* ring already cleared, nothing to do */ |
1469 | if (!rx_ring->rx_bi) |
1470 | return; |
1471 | |
1472 | if (rx_ring->xsk_pool) { |
1473 | i40e_xsk_clean_rx_ring(rx_ring); |
1474 | goto skip_free; |
1475 | } |
1476 | |
1477 | /* Free all the Rx ring sk_buffs */ |
1478 | for (i = 0; i < rx_ring->count; i++) { |
1479 | struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, idx: i); |
1480 | |
1481 | if (!rx_bi->page) |
1482 | continue; |
1483 | |
1484 | /* Invalidate cache lines that may have been written to by |
1485 | * device so that we avoid corrupting memory. |
1486 | */ |
1487 | dma_sync_single_range_for_cpu(dev: rx_ring->dev, |
1488 | addr: rx_bi->dma, |
1489 | offset: rx_bi->page_offset, |
1490 | size: rx_ring->rx_buf_len, |
1491 | dir: DMA_FROM_DEVICE); |
1492 | |
1493 | /* free resources associated with mapping */ |
1494 | dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_bi->dma, |
1495 | i40e_rx_pg_size(rx_ring), |
1496 | dir: DMA_FROM_DEVICE, |
1497 | I40E_RX_DMA_ATTR); |
1498 | |
1499 | __page_frag_cache_drain(page: rx_bi->page, count: rx_bi->pagecnt_bias); |
1500 | |
1501 | rx_bi->page = NULL; |
1502 | rx_bi->page_offset = 0; |
1503 | } |
1504 | |
1505 | skip_free: |
1506 | if (rx_ring->xsk_pool) |
1507 | i40e_clear_rx_bi_zc(rx_ring); |
1508 | else |
1509 | i40e_clear_rx_bi(rx_ring); |
1510 | |
1511 | /* Zero out the descriptor ring */ |
1512 | memset(rx_ring->desc, 0, rx_ring->size); |
1513 | |
1514 | rx_ring->next_to_alloc = 0; |
1515 | rx_ring->next_to_clean = 0; |
1516 | rx_ring->next_to_process = 0; |
1517 | rx_ring->next_to_use = 0; |
1518 | } |
1519 | |
1520 | /** |
1521 | * i40e_free_rx_resources - Free Rx resources |
1522 | * @rx_ring: ring to clean the resources from |
1523 | * |
1524 | * Free all receive software resources |
1525 | **/ |
1526 | void i40e_free_rx_resources(struct i40e_ring *rx_ring) |
1527 | { |
1528 | i40e_clean_rx_ring(rx_ring); |
1529 | if (rx_ring->vsi->type == I40E_VSI_MAIN) |
1530 | xdp_rxq_info_unreg(xdp_rxq: &rx_ring->xdp_rxq); |
1531 | rx_ring->xdp_prog = NULL; |
1532 | kfree(objp: rx_ring->rx_bi); |
1533 | rx_ring->rx_bi = NULL; |
1534 | |
1535 | if (rx_ring->desc) { |
1536 | dma_free_coherent(dev: rx_ring->dev, size: rx_ring->size, |
1537 | cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma); |
1538 | rx_ring->desc = NULL; |
1539 | } |
1540 | } |
1541 | |
1542 | /** |
1543 | * i40e_setup_rx_descriptors - Allocate Rx descriptors |
1544 | * @rx_ring: Rx descriptor ring (for a specific queue) to setup |
1545 | * |
1546 | * Returns 0 on success, negative on failure |
1547 | **/ |
1548 | int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) |
1549 | { |
1550 | struct device *dev = rx_ring->dev; |
1551 | |
1552 | u64_stats_init(syncp: &rx_ring->syncp); |
1553 | |
1554 | /* Round up to nearest 4K */ |
1555 | rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); |
1556 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
1557 | rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size, |
1558 | dma_handle: &rx_ring->dma, GFP_KERNEL); |
1559 | |
1560 | if (!rx_ring->desc) { |
1561 | dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
1562 | rx_ring->size); |
1563 | return -ENOMEM; |
1564 | } |
1565 | |
1566 | rx_ring->next_to_alloc = 0; |
1567 | rx_ring->next_to_clean = 0; |
1568 | rx_ring->next_to_process = 0; |
1569 | rx_ring->next_to_use = 0; |
1570 | |
1571 | rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; |
1572 | |
1573 | rx_ring->rx_bi = |
1574 | kcalloc(n: rx_ring->count, size: sizeof(*rx_ring->rx_bi), GFP_KERNEL); |
1575 | if (!rx_ring->rx_bi) |
1576 | return -ENOMEM; |
1577 | |
1578 | return 0; |
1579 | } |
1580 | |
1581 | /** |
1582 | * i40e_release_rx_desc - Store the new tail and head values |
1583 | * @rx_ring: ring to bump |
1584 | * @val: new head index |
1585 | **/ |
1586 | void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) |
1587 | { |
1588 | rx_ring->next_to_use = val; |
1589 | |
1590 | /* update next to alloc since we have filled the ring */ |
1591 | rx_ring->next_to_alloc = val; |
1592 | |
1593 | /* Force memory writes to complete before letting h/w |
1594 | * know there are new descriptors to fetch. (Only |
1595 | * applicable for weak-ordered memory model archs, |
1596 | * such as IA-64). |
1597 | */ |
1598 | wmb(); |
1599 | writel(val, addr: rx_ring->tail); |
1600 | } |
1601 | |
1602 | #if (PAGE_SIZE >= 8192) |
1603 | static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, |
1604 | unsigned int size) |
1605 | { |
1606 | unsigned int truesize; |
1607 | |
1608 | truesize = rx_ring->rx_offset ? |
1609 | SKB_DATA_ALIGN(size + rx_ring->rx_offset) + |
1610 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : |
1611 | SKB_DATA_ALIGN(size); |
1612 | return truesize; |
1613 | } |
1614 | #endif |
1615 | |
1616 | /** |
1617 | * i40e_alloc_mapped_page - recycle or make a new page |
1618 | * @rx_ring: ring to use |
1619 | * @bi: rx_buffer struct to modify |
1620 | * |
1621 | * Returns true if the page was successfully allocated or |
1622 | * reused. |
1623 | **/ |
1624 | static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, |
1625 | struct i40e_rx_buffer *bi) |
1626 | { |
1627 | struct page *page = bi->page; |
1628 | dma_addr_t dma; |
1629 | |
1630 | /* since we are recycling buffers we should seldom need to alloc */ |
1631 | if (likely(page)) { |
1632 | rx_ring->rx_stats.page_reuse_count++; |
1633 | return true; |
1634 | } |
1635 | |
1636 | /* alloc new page for storage */ |
1637 | page = dev_alloc_pages(order: i40e_rx_pg_order(ring: rx_ring)); |
1638 | if (unlikely(!page)) { |
1639 | rx_ring->rx_stats.alloc_page_failed++; |
1640 | return false; |
1641 | } |
1642 | |
1643 | rx_ring->rx_stats.page_alloc_count++; |
1644 | |
1645 | /* map page for use */ |
1646 | dma = dma_map_page_attrs(dev: rx_ring->dev, page, offset: 0, |
1647 | i40e_rx_pg_size(rx_ring), |
1648 | dir: DMA_FROM_DEVICE, |
1649 | I40E_RX_DMA_ATTR); |
1650 | |
1651 | /* if mapping failed free memory back to system since |
1652 | * there isn't much point in holding memory we can't use |
1653 | */ |
1654 | if (dma_mapping_error(dev: rx_ring->dev, dma_addr: dma)) { |
1655 | __free_pages(page, order: i40e_rx_pg_order(ring: rx_ring)); |
1656 | rx_ring->rx_stats.alloc_page_failed++; |
1657 | return false; |
1658 | } |
1659 | |
1660 | bi->dma = dma; |
1661 | bi->page = page; |
1662 | bi->page_offset = rx_ring->rx_offset; |
1663 | page_ref_add(page, USHRT_MAX - 1); |
1664 | bi->pagecnt_bias = USHRT_MAX; |
1665 | |
1666 | return true; |
1667 | } |
1668 | |
1669 | /** |
1670 | * i40e_alloc_rx_buffers - Replace used receive buffers |
1671 | * @rx_ring: ring to place buffers on |
1672 | * @cleaned_count: number of buffers to replace |
1673 | * |
1674 | * Returns false if all allocations were successful, true if any fail |
1675 | **/ |
1676 | bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) |
1677 | { |
1678 | u16 ntu = rx_ring->next_to_use; |
1679 | union i40e_rx_desc *rx_desc; |
1680 | struct i40e_rx_buffer *bi; |
1681 | |
1682 | /* do nothing if no valid netdev defined */ |
1683 | if (!rx_ring->netdev || !cleaned_count) |
1684 | return false; |
1685 | |
1686 | rx_desc = I40E_RX_DESC(rx_ring, ntu); |
1687 | bi = i40e_rx_bi(rx_ring, idx: ntu); |
1688 | |
1689 | do { |
1690 | if (!i40e_alloc_mapped_page(rx_ring, bi)) |
1691 | goto no_buffers; |
1692 | |
1693 | /* sync the buffer for use by the device */ |
1694 | dma_sync_single_range_for_device(dev: rx_ring->dev, addr: bi->dma, |
1695 | offset: bi->page_offset, |
1696 | size: rx_ring->rx_buf_len, |
1697 | dir: DMA_FROM_DEVICE); |
1698 | |
1699 | /* Refresh the desc even if buffer_addrs didn't change |
1700 | * because each write-back erases this info. |
1701 | */ |
1702 | rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
1703 | |
1704 | rx_desc++; |
1705 | bi++; |
1706 | ntu++; |
1707 | if (unlikely(ntu == rx_ring->count)) { |
1708 | rx_desc = I40E_RX_DESC(rx_ring, 0); |
1709 | bi = i40e_rx_bi(rx_ring, idx: 0); |
1710 | ntu = 0; |
1711 | } |
1712 | |
1713 | /* clear the status bits for the next_to_use descriptor */ |
1714 | rx_desc->wb.qword1.status_error_len = 0; |
1715 | |
1716 | cleaned_count--; |
1717 | } while (cleaned_count); |
1718 | |
1719 | if (rx_ring->next_to_use != ntu) |
1720 | i40e_release_rx_desc(rx_ring, val: ntu); |
1721 | |
1722 | return false; |
1723 | |
1724 | no_buffers: |
1725 | if (rx_ring->next_to_use != ntu) |
1726 | i40e_release_rx_desc(rx_ring, val: ntu); |
1727 | |
1728 | /* make sure to come back via polling to try again after |
1729 | * allocation failure |
1730 | */ |
1731 | return true; |
1732 | } |
1733 | |
1734 | /** |
1735 | * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum |
1736 | * @vsi: the VSI we care about |
1737 | * @skb: skb currently being received and modified |
1738 | * @rx_desc: the receive descriptor |
1739 | **/ |
1740 | static inline void i40e_rx_checksum(struct i40e_vsi *vsi, |
1741 | struct sk_buff *skb, |
1742 | union i40e_rx_desc *rx_desc) |
1743 | { |
1744 | struct i40e_rx_ptype_decoded decoded; |
1745 | u32 rx_error, rx_status; |
1746 | bool ipv4, ipv6; |
1747 | u8 ptype; |
1748 | u64 qword; |
1749 | |
1750 | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
1751 | ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); |
1752 | rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword); |
1753 | rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); |
1754 | decoded = decode_rx_desc_ptype(ptype); |
1755 | |
1756 | skb->ip_summed = CHECKSUM_NONE; |
1757 | |
1758 | skb_checksum_none_assert(skb); |
1759 | |
1760 | /* Rx csum enabled and ip headers found? */ |
1761 | if (!(vsi->netdev->features & NETIF_F_RXCSUM)) |
1762 | return; |
1763 | |
1764 | /* did the hardware decode the packet and checksum? */ |
1765 | if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) |
1766 | return; |
1767 | |
1768 | /* both known and outer_ip must be set for the below code to work */ |
1769 | if (!(decoded.known && decoded.outer_ip)) |
1770 | return; |
1771 | |
1772 | ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && |
1773 | (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); |
1774 | ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && |
1775 | (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); |
1776 | |
1777 | if (ipv4 && |
1778 | (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | |
1779 | BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) |
1780 | goto checksum_fail; |
1781 | |
1782 | /* likely incorrect csum if alternate IP extension headers found */ |
1783 | if (ipv6 && |
1784 | rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) |
1785 | /* don't increment checksum err here, non-fatal err */ |
1786 | return; |
1787 | |
1788 | /* there was some L4 error, count error and punt packet to the stack */ |
1789 | if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) |
1790 | goto checksum_fail; |
1791 | |
1792 | /* handle packets that were not able to be checksummed due |
1793 | * to arrival speed, in this case the stack can compute |
1794 | * the csum. |
1795 | */ |
1796 | if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) |
1797 | return; |
1798 | |
1799 | /* If there is an outer header present that might contain a checksum |
1800 | * we need to bump the checksum level by 1 to reflect the fact that |
1801 | * we are indicating we validated the inner checksum. |
1802 | */ |
1803 | if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) |
1804 | skb->csum_level = 1; |
1805 | |
1806 | /* Only report checksum unnecessary for TCP, UDP, or SCTP */ |
1807 | switch (decoded.inner_prot) { |
1808 | case I40E_RX_PTYPE_INNER_PROT_TCP: |
1809 | case I40E_RX_PTYPE_INNER_PROT_UDP: |
1810 | case I40E_RX_PTYPE_INNER_PROT_SCTP: |
1811 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
1812 | fallthrough; |
1813 | default: |
1814 | break; |
1815 | } |
1816 | |
1817 | return; |
1818 | |
1819 | checksum_fail: |
1820 | vsi->back->hw_csum_rx_error++; |
1821 | } |
1822 | |
1823 | /** |
1824 | * i40e_ptype_to_htype - get a hash type |
1825 | * @ptype: the ptype value from the descriptor |
1826 | * |
1827 | * Returns a hash type to be used by skb_set_hash |
1828 | **/ |
1829 | static inline int i40e_ptype_to_htype(u8 ptype) |
1830 | { |
1831 | struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); |
1832 | |
1833 | if (!decoded.known) |
1834 | return PKT_HASH_TYPE_NONE; |
1835 | |
1836 | if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
1837 | decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) |
1838 | return PKT_HASH_TYPE_L4; |
1839 | else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && |
1840 | decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) |
1841 | return PKT_HASH_TYPE_L3; |
1842 | else |
1843 | return PKT_HASH_TYPE_L2; |
1844 | } |
1845 | |
1846 | /** |
1847 | * i40e_rx_hash - set the hash value in the skb |
1848 | * @ring: descriptor ring |
1849 | * @rx_desc: specific descriptor |
1850 | * @skb: skb currently being received and modified |
1851 | * @rx_ptype: Rx packet type |
1852 | **/ |
1853 | static inline void i40e_rx_hash(struct i40e_ring *ring, |
1854 | union i40e_rx_desc *rx_desc, |
1855 | struct sk_buff *skb, |
1856 | u8 rx_ptype) |
1857 | { |
1858 | u32 hash; |
1859 | const __le64 rss_mask = |
1860 | cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << |
1861 | I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); |
1862 | |
1863 | if (!(ring->netdev->features & NETIF_F_RXHASH)) |
1864 | return; |
1865 | |
1866 | if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { |
1867 | hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); |
1868 | skb_set_hash(skb, hash, type: i40e_ptype_to_htype(ptype: rx_ptype)); |
1869 | } |
1870 | } |
1871 | |
1872 | /** |
1873 | * i40e_process_skb_fields - Populate skb header fields from Rx descriptor |
1874 | * @rx_ring: rx descriptor ring packet is being transacted on |
1875 | * @rx_desc: pointer to the EOP Rx descriptor |
1876 | * @skb: pointer to current skb being populated |
1877 | * |
1878 | * This function checks the ring, descriptor, and packet information in |
1879 | * order to populate the hash, checksum, VLAN, protocol, and |
1880 | * other fields within the skb. |
1881 | **/ |
1882 | void i40e_process_skb_fields(struct i40e_ring *rx_ring, |
1883 | union i40e_rx_desc *rx_desc, struct sk_buff *skb) |
1884 | { |
1885 | u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
1886 | u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); |
1887 | u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; |
1888 | u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status); |
1889 | u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); |
1890 | |
1891 | if (unlikely(tsynvalid)) |
1892 | i40e_ptp_rx_hwtstamp(pf: rx_ring->vsi->back, skb, index: tsyn); |
1893 | |
1894 | i40e_rx_hash(ring: rx_ring, rx_desc, skb, rx_ptype); |
1895 | |
1896 | i40e_rx_checksum(vsi: rx_ring->vsi, skb, rx_desc); |
1897 | |
1898 | skb_record_rx_queue(skb, rx_queue: rx_ring->queue_index); |
1899 | |
1900 | if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { |
1901 | __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; |
1902 | |
1903 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
1904 | le16_to_cpu(vlan_tag)); |
1905 | } |
1906 | |
1907 | /* modifies the skb - consumes the enet header */ |
1908 | skb->protocol = eth_type_trans(skb, dev: rx_ring->netdev); |
1909 | } |
1910 | |
1911 | /** |
1912 | * i40e_cleanup_headers - Correct empty headers |
1913 | * @rx_ring: rx descriptor ring packet is being transacted on |
1914 | * @skb: pointer to current skb being fixed |
1915 | * @rx_desc: pointer to the EOP Rx descriptor |
1916 | * |
1917 | * In addition if skb is not at least 60 bytes we need to pad it so that |
1918 | * it is large enough to qualify as a valid Ethernet frame. |
1919 | * |
1920 | * Returns true if an error was encountered and skb was freed. |
1921 | **/ |
1922 | static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, |
1923 | union i40e_rx_desc *rx_desc) |
1924 | |
1925 | { |
1926 | /* ERR_MASK will only have valid bits if EOP set, and |
1927 | * what we are doing here is actually checking |
1928 | * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in |
1929 | * the error field |
1930 | */ |
1931 | if (unlikely(i40e_test_staterr(rx_desc, |
1932 | BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { |
1933 | dev_kfree_skb_any(skb); |
1934 | return true; |
1935 | } |
1936 | |
1937 | /* if eth_skb_pad returns an error the skb was freed */ |
1938 | if (eth_skb_pad(skb)) |
1939 | return true; |
1940 | |
1941 | return false; |
1942 | } |
1943 | |
1944 | /** |
1945 | * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx |
1946 | * @rx_buffer: buffer containing the page |
1947 | * @rx_stats: rx stats structure for the rx ring |
1948 | * |
1949 | * If page is reusable, we have a green light for calling i40e_reuse_rx_page, |
1950 | * which will assign the current buffer to the buffer that next_to_alloc is |
1951 | * pointing to; otherwise, the DMA mapping needs to be destroyed and |
1952 | * page freed. |
1953 | * |
1954 | * rx_stats will be updated to indicate whether the page was waived |
1955 | * or busy if it could not be reused. |
1956 | */ |
1957 | static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, |
1958 | struct i40e_rx_queue_stats *rx_stats) |
1959 | { |
1960 | unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; |
1961 | struct page *page = rx_buffer->page; |
1962 | |
1963 | /* Is any reuse possible? */ |
1964 | if (!dev_page_is_reusable(page)) { |
1965 | rx_stats->page_waive_count++; |
1966 | return false; |
1967 | } |
1968 | |
1969 | #if (PAGE_SIZE < 8192) |
1970 | /* if we are only owner of page we can reuse it */ |
1971 | if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) { |
1972 | rx_stats->page_busy_count++; |
1973 | return false; |
1974 | } |
1975 | #else |
1976 | #define I40E_LAST_OFFSET \ |
1977 | (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) |
1978 | if (rx_buffer->page_offset > I40E_LAST_OFFSET) { |
1979 | rx_stats->page_busy_count++; |
1980 | return false; |
1981 | } |
1982 | #endif |
1983 | |
1984 | /* If we have drained the page fragment pool we need to update |
1985 | * the pagecnt_bias and page count so that we fully restock the |
1986 | * number of references the driver holds. |
1987 | */ |
1988 | if (unlikely(pagecnt_bias == 1)) { |
1989 | page_ref_add(page, USHRT_MAX - 1); |
1990 | rx_buffer->pagecnt_bias = USHRT_MAX; |
1991 | } |
1992 | |
1993 | return true; |
1994 | } |
1995 | |
1996 | /** |
1997 | * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region |
1998 | * @rx_buffer: Rx buffer to adjust |
1999 | * @truesize: Size of adjustment |
2000 | **/ |
2001 | static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer, |
2002 | unsigned int truesize) |
2003 | { |
2004 | #if (PAGE_SIZE < 8192) |
2005 | rx_buffer->page_offset ^= truesize; |
2006 | #else |
2007 | rx_buffer->page_offset += truesize; |
2008 | #endif |
2009 | } |
2010 | |
2011 | /** |
2012 | * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use |
2013 | * @rx_ring: rx descriptor ring to transact packets on |
2014 | * @size: size of buffer to add to skb |
2015 | * |
2016 | * This function will pull an Rx buffer from the ring and synchronize it |
2017 | * for use by the CPU. |
2018 | */ |
2019 | static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, |
2020 | const unsigned int size) |
2021 | { |
2022 | struct i40e_rx_buffer *rx_buffer; |
2023 | |
2024 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_process); |
2025 | rx_buffer->page_count = |
2026 | #if (PAGE_SIZE < 8192) |
2027 | page_count(page: rx_buffer->page); |
2028 | #else |
2029 | 0; |
2030 | #endif |
2031 | prefetch_page_address(page: rx_buffer->page); |
2032 | |
2033 | /* we are reusing so sync this buffer for CPU use */ |
2034 | dma_sync_single_range_for_cpu(dev: rx_ring->dev, |
2035 | addr: rx_buffer->dma, |
2036 | offset: rx_buffer->page_offset, |
2037 | size, |
2038 | dir: DMA_FROM_DEVICE); |
2039 | |
2040 | /* We have pulled a buffer for use, so decrement pagecnt_bias */ |
2041 | rx_buffer->pagecnt_bias--; |
2042 | |
2043 | return rx_buffer; |
2044 | } |
2045 | |
2046 | /** |
2047 | * i40e_put_rx_buffer - Clean up used buffer and either recycle or free |
2048 | * @rx_ring: rx descriptor ring to transact packets on |
2049 | * @rx_buffer: rx buffer to pull data from |
2050 | * |
2051 | * This function will clean up the contents of the rx_buffer. It will |
2052 | * either recycle the buffer or unmap it and free the associated resources. |
2053 | */ |
2054 | static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, |
2055 | struct i40e_rx_buffer *rx_buffer) |
2056 | { |
2057 | if (i40e_can_reuse_rx_page(rx_buffer, rx_stats: &rx_ring->rx_stats)) { |
2058 | /* hand second half of page back to the ring */ |
2059 | i40e_reuse_rx_page(rx_ring, old_buff: rx_buffer); |
2060 | } else { |
2061 | /* we are not reusing the buffer so unmap it */ |
2062 | dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_buffer->dma, |
2063 | i40e_rx_pg_size(rx_ring), |
2064 | dir: DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); |
2065 | __page_frag_cache_drain(page: rx_buffer->page, |
2066 | count: rx_buffer->pagecnt_bias); |
2067 | /* clear contents of buffer_info */ |
2068 | rx_buffer->page = NULL; |
2069 | } |
2070 | } |
2071 | |
2072 | /** |
2073 | * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error |
2074 | * @rx_ring: Rx descriptor ring to transact packets on |
2075 | * @xdp_res: Result of the XDP program |
2076 | * @xdp: xdp_buff pointing to the data |
2077 | **/ |
2078 | static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res, |
2079 | struct xdp_buff *xdp) |
2080 | { |
2081 | u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; |
2082 | u32 next = rx_ring->next_to_clean, i = 0; |
2083 | struct i40e_rx_buffer *rx_buffer; |
2084 | |
2085 | xdp->flags = 0; |
2086 | |
2087 | while (1) { |
2088 | rx_buffer = i40e_rx_bi(rx_ring, idx: next); |
2089 | if (++next == rx_ring->count) |
2090 | next = 0; |
2091 | |
2092 | if (!rx_buffer->page) |
2093 | continue; |
2094 | |
2095 | if (xdp_res != I40E_XDP_CONSUMED) |
2096 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
2097 | else if (i++ <= nr_frags) |
2098 | rx_buffer->pagecnt_bias++; |
2099 | |
2100 | /* EOP buffer will be put in i40e_clean_rx_irq() */ |
2101 | if (next == rx_ring->next_to_process) |
2102 | return; |
2103 | |
2104 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
2105 | } |
2106 | } |
2107 | |
2108 | /** |
2109 | * i40e_construct_skb - Allocate skb and populate it |
2110 | * @rx_ring: rx descriptor ring to transact packets on |
2111 | * @xdp: xdp_buff pointing to the data |
2112 | * |
2113 | * This function allocates an skb. It then populates it with the page |
2114 | * data from the current receive descriptor, taking care to set up the |
2115 | * skb correctly. |
2116 | */ |
2117 | static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, |
2118 | struct xdp_buff *xdp) |
2119 | { |
2120 | unsigned int size = xdp->data_end - xdp->data; |
2121 | struct i40e_rx_buffer *rx_buffer; |
2122 | struct skb_shared_info *sinfo; |
2123 | unsigned int headlen; |
2124 | struct sk_buff *skb; |
2125 | u32 nr_frags = 0; |
2126 | |
2127 | /* prefetch first cache line of first page */ |
2128 | net_prefetch(p: xdp->data); |
2129 | |
2130 | /* Note, we get here by enabling legacy-rx via: |
2131 | * |
2132 | * ethtool --set-priv-flags <dev> legacy-rx on |
2133 | * |
2134 | * In this mode, we currently get 0 extra XDP headroom as |
2135 | * opposed to having legacy-rx off, where we process XDP |
2136 | * packets going to stack via i40e_build_skb(). The latter |
2137 | * provides us currently with 192 bytes of headroom. |
2138 | * |
2139 | * For i40e_construct_skb() mode it means that the |
2140 | * xdp->data_meta will always point to xdp->data, since |
2141 | * the helper cannot expand the head. Should this ever |
2142 | * change in future for legacy-rx mode on, then lets also |
2143 | * add xdp->data_meta handling here. |
2144 | */ |
2145 | |
2146 | /* allocate a skb to store the frags */ |
2147 | skb = __napi_alloc_skb(napi: &rx_ring->q_vector->napi, |
2148 | I40E_RX_HDR_SIZE, |
2149 | GFP_ATOMIC | __GFP_NOWARN); |
2150 | if (unlikely(!skb)) |
2151 | return NULL; |
2152 | |
2153 | /* Determine available headroom for copy */ |
2154 | headlen = size; |
2155 | if (headlen > I40E_RX_HDR_SIZE) |
2156 | headlen = eth_get_headlen(dev: skb->dev, data: xdp->data, |
2157 | I40E_RX_HDR_SIZE); |
2158 | |
2159 | /* align pull length to size of long to optimize memcpy performance */ |
2160 | memcpy(__skb_put(skb, headlen), xdp->data, |
2161 | ALIGN(headlen, sizeof(long))); |
2162 | |
2163 | if (unlikely(xdp_buff_has_frags(xdp))) { |
2164 | sinfo = xdp_get_shared_info_from_buff(xdp); |
2165 | nr_frags = sinfo->nr_frags; |
2166 | } |
2167 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_clean); |
2168 | /* update all of the pointers */ |
2169 | size -= headlen; |
2170 | if (size) { |
2171 | if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { |
2172 | dev_kfree_skb(skb); |
2173 | return NULL; |
2174 | } |
2175 | skb_add_rx_frag(skb, i: 0, page: rx_buffer->page, |
2176 | off: rx_buffer->page_offset + headlen, |
2177 | size, truesize: xdp->frame_sz); |
2178 | /* buffer is used by skb, update page_offset */ |
2179 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
2180 | } else { |
2181 | /* buffer is unused, reset bias back to rx_buffer */ |
2182 | rx_buffer->pagecnt_bias++; |
2183 | } |
2184 | |
2185 | if (unlikely(xdp_buff_has_frags(xdp))) { |
2186 | struct skb_shared_info *skinfo = skb_shinfo(skb); |
2187 | |
2188 | memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], |
2189 | sizeof(skb_frag_t) * nr_frags); |
2190 | |
2191 | xdp_update_skb_shared_info(skb, nr_frags: skinfo->nr_frags + nr_frags, |
2192 | size: sinfo->xdp_frags_size, |
2193 | truesize: nr_frags * xdp->frame_sz, |
2194 | pfmemalloc: xdp_buff_is_frag_pfmemalloc(xdp)); |
2195 | |
2196 | /* First buffer has already been processed, so bump ntc */ |
2197 | if (++rx_ring->next_to_clean == rx_ring->count) |
2198 | rx_ring->next_to_clean = 0; |
2199 | |
2200 | i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); |
2201 | } |
2202 | |
2203 | return skb; |
2204 | } |
2205 | |
2206 | /** |
2207 | * i40e_build_skb - Build skb around an existing buffer |
2208 | * @rx_ring: Rx descriptor ring to transact packets on |
2209 | * @xdp: xdp_buff pointing to the data |
2210 | * |
2211 | * This function builds an skb around an existing Rx buffer, taking care |
2212 | * to set up the skb correctly and avoid any memcpy overhead. |
2213 | */ |
2214 | static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, |
2215 | struct xdp_buff *xdp) |
2216 | { |
2217 | unsigned int metasize = xdp->data - xdp->data_meta; |
2218 | struct skb_shared_info *sinfo; |
2219 | struct sk_buff *skb; |
2220 | u32 nr_frags; |
2221 | |
2222 | /* Prefetch first cache line of first page. If xdp->data_meta |
2223 | * is unused, this points exactly as xdp->data, otherwise we |
2224 | * likely have a consumer accessing first few bytes of meta |
2225 | * data, and then actual data. |
2226 | */ |
2227 | net_prefetch(p: xdp->data_meta); |
2228 | |
2229 | if (unlikely(xdp_buff_has_frags(xdp))) { |
2230 | sinfo = xdp_get_shared_info_from_buff(xdp); |
2231 | nr_frags = sinfo->nr_frags; |
2232 | } |
2233 | |
2234 | /* build an skb around the page buffer */ |
2235 | skb = napi_build_skb(data: xdp->data_hard_start, frag_size: xdp->frame_sz); |
2236 | if (unlikely(!skb)) |
2237 | return NULL; |
2238 | |
2239 | /* update pointers within the skb to store the data */ |
2240 | skb_reserve(skb, len: xdp->data - xdp->data_hard_start); |
2241 | __skb_put(skb, len: xdp->data_end - xdp->data); |
2242 | if (metasize) |
2243 | skb_metadata_set(skb, meta_len: metasize); |
2244 | |
2245 | if (unlikely(xdp_buff_has_frags(xdp))) { |
2246 | xdp_update_skb_shared_info(skb, nr_frags, |
2247 | size: sinfo->xdp_frags_size, |
2248 | truesize: nr_frags * xdp->frame_sz, |
2249 | pfmemalloc: xdp_buff_is_frag_pfmemalloc(xdp)); |
2250 | |
2251 | i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); |
2252 | } else { |
2253 | struct i40e_rx_buffer *rx_buffer; |
2254 | |
2255 | rx_buffer = i40e_rx_bi(rx_ring, idx: rx_ring->next_to_clean); |
2256 | /* buffer is used by skb, update page_offset */ |
2257 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
2258 | } |
2259 | |
2260 | return skb; |
2261 | } |
2262 | |
2263 | /** |
2264 | * i40e_is_non_eop - process handling of non-EOP buffers |
2265 | * @rx_ring: Rx ring being processed |
2266 | * @rx_desc: Rx descriptor for current buffer |
2267 | * |
2268 | * If the buffer is an EOP buffer, this function exits returning false, |
2269 | * otherwise return true indicating that this is in fact a non-EOP buffer. |
2270 | */ |
2271 | bool i40e_is_non_eop(struct i40e_ring *rx_ring, |
2272 | union i40e_rx_desc *rx_desc) |
2273 | { |
2274 | /* if we are the last buffer then there is nothing else to do */ |
2275 | #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) |
2276 | if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) |
2277 | return false; |
2278 | |
2279 | rx_ring->rx_stats.non_eop_descs++; |
2280 | |
2281 | return true; |
2282 | } |
2283 | |
2284 | static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, |
2285 | struct i40e_ring *xdp_ring); |
2286 | |
2287 | int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) |
2288 | { |
2289 | struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); |
2290 | |
2291 | if (unlikely(!xdpf)) |
2292 | return I40E_XDP_CONSUMED; |
2293 | |
2294 | return i40e_xmit_xdp_ring(xdpf, xdp_ring); |
2295 | } |
2296 | |
2297 | /** |
2298 | * i40e_run_xdp - run an XDP program |
2299 | * @rx_ring: Rx ring being processed |
2300 | * @xdp: XDP buffer containing the frame |
2301 | * @xdp_prog: XDP program to run |
2302 | **/ |
2303 | static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) |
2304 | { |
2305 | int err, result = I40E_XDP_PASS; |
2306 | struct i40e_ring *xdp_ring; |
2307 | u32 act; |
2308 | |
2309 | if (!xdp_prog) |
2310 | goto xdp_out; |
2311 | |
2312 | prefetchw(x: xdp->data_hard_start); /* xdp_frame write */ |
2313 | |
2314 | act = bpf_prog_run_xdp(prog: xdp_prog, xdp); |
2315 | switch (act) { |
2316 | case XDP_PASS: |
2317 | break; |
2318 | case XDP_TX: |
2319 | xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; |
2320 | result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); |
2321 | if (result == I40E_XDP_CONSUMED) |
2322 | goto out_failure; |
2323 | break; |
2324 | case XDP_REDIRECT: |
2325 | err = xdp_do_redirect(dev: rx_ring->netdev, xdp, prog: xdp_prog); |
2326 | if (err) |
2327 | goto out_failure; |
2328 | result = I40E_XDP_REDIR; |
2329 | break; |
2330 | default: |
2331 | bpf_warn_invalid_xdp_action(dev: rx_ring->netdev, prog: xdp_prog, act); |
2332 | fallthrough; |
2333 | case XDP_ABORTED: |
2334 | out_failure: |
2335 | trace_xdp_exception(dev: rx_ring->netdev, xdp: xdp_prog, act); |
2336 | fallthrough; /* handle aborts by dropping packet */ |
2337 | case XDP_DROP: |
2338 | result = I40E_XDP_CONSUMED; |
2339 | break; |
2340 | } |
2341 | xdp_out: |
2342 | return result; |
2343 | } |
2344 | |
2345 | /** |
2346 | * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register |
2347 | * @xdp_ring: XDP Tx ring |
2348 | * |
2349 | * This function updates the XDP Tx ring tail register. |
2350 | **/ |
2351 | void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) |
2352 | { |
2353 | /* Force memory writes to complete before letting h/w |
2354 | * know there are new descriptors to fetch. |
2355 | */ |
2356 | wmb(); |
2357 | writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); |
2358 | } |
2359 | |
2360 | /** |
2361 | * i40e_update_rx_stats - Update Rx ring statistics |
2362 | * @rx_ring: rx descriptor ring |
2363 | * @total_rx_bytes: number of bytes received |
2364 | * @total_rx_packets: number of packets received |
2365 | * |
2366 | * This function updates the Rx ring statistics. |
2367 | **/ |
2368 | void i40e_update_rx_stats(struct i40e_ring *rx_ring, |
2369 | unsigned int total_rx_bytes, |
2370 | unsigned int total_rx_packets) |
2371 | { |
2372 | u64_stats_update_begin(syncp: &rx_ring->syncp); |
2373 | rx_ring->stats.packets += total_rx_packets; |
2374 | rx_ring->stats.bytes += total_rx_bytes; |
2375 | u64_stats_update_end(syncp: &rx_ring->syncp); |
2376 | rx_ring->q_vector->rx.total_packets += total_rx_packets; |
2377 | rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
2378 | } |
2379 | |
2380 | /** |
2381 | * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map |
2382 | * @rx_ring: Rx ring |
2383 | * @xdp_res: Result of the receive batch |
2384 | * |
2385 | * This function bumps XDP Tx tail and/or flush redirect map, and |
2386 | * should be called when a batch of packets has been processed in the |
2387 | * napi loop. |
2388 | **/ |
2389 | void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) |
2390 | { |
2391 | if (xdp_res & I40E_XDP_REDIR) |
2392 | xdp_do_flush(); |
2393 | |
2394 | if (xdp_res & I40E_XDP_TX) { |
2395 | struct i40e_ring *xdp_ring = |
2396 | rx_ring->vsi->xdp_rings[rx_ring->queue_index]; |
2397 | |
2398 | i40e_xdp_ring_update_tail(xdp_ring); |
2399 | } |
2400 | } |
2401 | |
2402 | /** |
2403 | * i40e_inc_ntp: Advance the next_to_process index |
2404 | * @rx_ring: Rx ring |
2405 | **/ |
2406 | static void i40e_inc_ntp(struct i40e_ring *rx_ring) |
2407 | { |
2408 | u32 ntp = rx_ring->next_to_process + 1; |
2409 | |
2410 | ntp = (ntp < rx_ring->count) ? ntp : 0; |
2411 | rx_ring->next_to_process = ntp; |
2412 | prefetch(I40E_RX_DESC(rx_ring, ntp)); |
2413 | } |
2414 | |
2415 | /** |
2416 | * i40e_add_xdp_frag: Add a frag to xdp_buff |
2417 | * @xdp: xdp_buff pointing to the data |
2418 | * @nr_frags: return number of buffers for the packet |
2419 | * @rx_buffer: rx_buffer holding data of the current frag |
2420 | * @size: size of data of current frag |
2421 | */ |
2422 | static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags, |
2423 | struct i40e_rx_buffer *rx_buffer, u32 size) |
2424 | { |
2425 | struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); |
2426 | |
2427 | if (!xdp_buff_has_frags(xdp)) { |
2428 | sinfo->nr_frags = 0; |
2429 | sinfo->xdp_frags_size = 0; |
2430 | xdp_buff_set_frags_flag(xdp); |
2431 | } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) { |
2432 | /* Overflowing packet: All frags need to be dropped */ |
2433 | return -ENOMEM; |
2434 | } |
2435 | |
2436 | __skb_fill_page_desc_noacc(shinfo: sinfo, i: sinfo->nr_frags++, page: rx_buffer->page, |
2437 | off: rx_buffer->page_offset, size); |
2438 | |
2439 | sinfo->xdp_frags_size += size; |
2440 | |
2441 | if (page_is_pfmemalloc(page: rx_buffer->page)) |
2442 | xdp_buff_set_frag_pfmemalloc(xdp); |
2443 | *nr_frags = sinfo->nr_frags; |
2444 | |
2445 | return 0; |
2446 | } |
2447 | |
2448 | /** |
2449 | * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc |
2450 | * @rx_ring: rx descriptor ring to transact packets on |
2451 | * @xdp: xdp_buff pointing to the data |
2452 | * @rx_buffer: rx_buffer of eop desc |
2453 | */ |
2454 | static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring, |
2455 | struct xdp_buff *xdp, |
2456 | struct i40e_rx_buffer *rx_buffer) |
2457 | { |
2458 | i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp); |
2459 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
2460 | rx_ring->next_to_clean = rx_ring->next_to_process; |
2461 | xdp->data = NULL; |
2462 | } |
2463 | |
2464 | /** |
2465 | * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
2466 | * @rx_ring: rx descriptor ring to transact packets on |
2467 | * @budget: Total limit on number of packets to process |
2468 | * @rx_cleaned: Out parameter of the number of packets processed |
2469 | * |
2470 | * This function provides a "bounce buffer" approach to Rx interrupt |
2471 | * processing. The advantage to this is that on systems that have |
2472 | * expensive overhead for IOMMU access this provides a means of avoiding |
2473 | * it by maintaining the mapping of the page to the system. |
2474 | * |
2475 | * Returns amount of work completed |
2476 | **/ |
2477 | static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget, |
2478 | unsigned int *rx_cleaned) |
2479 | { |
2480 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
2481 | u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); |
2482 | u16 clean_threshold = rx_ring->count / 2; |
2483 | unsigned int offset = rx_ring->rx_offset; |
2484 | struct xdp_buff *xdp = &rx_ring->xdp; |
2485 | unsigned int xdp_xmit = 0; |
2486 | struct bpf_prog *xdp_prog; |
2487 | bool failure = false; |
2488 | int xdp_res = 0; |
2489 | |
2490 | xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
2491 | |
2492 | while (likely(total_rx_packets < (unsigned int)budget)) { |
2493 | u16 ntp = rx_ring->next_to_process; |
2494 | struct i40e_rx_buffer *rx_buffer; |
2495 | union i40e_rx_desc *rx_desc; |
2496 | struct sk_buff *skb; |
2497 | unsigned int size; |
2498 | u32 nfrags = 0; |
2499 | bool neop; |
2500 | u64 qword; |
2501 | |
2502 | /* return some buffers to hardware, one at a time is too slow */ |
2503 | if (cleaned_count >= clean_threshold) { |
2504 | failure = failure || |
2505 | i40e_alloc_rx_buffers(rx_ring, cleaned_count); |
2506 | cleaned_count = 0; |
2507 | } |
2508 | |
2509 | rx_desc = I40E_RX_DESC(rx_ring, ntp); |
2510 | |
2511 | /* status_error_len will always be zero for unused descriptors |
2512 | * because it's cleared in cleanup, and overlaps with hdr_addr |
2513 | * which is always zero because packet split isn't used, if the |
2514 | * hardware wrote DD then the length will be non-zero |
2515 | */ |
2516 | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
2517 | |
2518 | /* This memory barrier is needed to keep us from reading |
2519 | * any other fields out of the rx_desc until we have |
2520 | * verified the descriptor has been written back. |
2521 | */ |
2522 | dma_rmb(); |
2523 | |
2524 | if (i40e_rx_is_programming_status(qword1: qword)) { |
2525 | i40e_clean_programming_status(rx_ring, |
2526 | qword0_raw: rx_desc->raw.qword[0], |
2527 | qword1: qword); |
2528 | rx_buffer = i40e_rx_bi(rx_ring, idx: ntp); |
2529 | i40e_inc_ntp(rx_ring); |
2530 | i40e_reuse_rx_page(rx_ring, old_buff: rx_buffer); |
2531 | /* Update ntc and bump cleaned count if not in the |
2532 | * middle of mb packet. |
2533 | */ |
2534 | if (rx_ring->next_to_clean == ntp) { |
2535 | rx_ring->next_to_clean = |
2536 | rx_ring->next_to_process; |
2537 | cleaned_count++; |
2538 | } |
2539 | continue; |
2540 | } |
2541 | |
2542 | size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword); |
2543 | if (!size) |
2544 | break; |
2545 | |
2546 | i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp); |
2547 | /* retrieve a buffer from the ring */ |
2548 | rx_buffer = i40e_get_rx_buffer(rx_ring, size); |
2549 | |
2550 | neop = i40e_is_non_eop(rx_ring, rx_desc); |
2551 | i40e_inc_ntp(rx_ring); |
2552 | |
2553 | if (!xdp->data) { |
2554 | unsigned char *hard_start; |
2555 | |
2556 | hard_start = page_address(rx_buffer->page) + |
2557 | rx_buffer->page_offset - offset; |
2558 | xdp_prepare_buff(xdp, hard_start, headroom: offset, data_len: size, meta_valid: true); |
2559 | #if (PAGE_SIZE > 4096) |
2560 | /* At larger PAGE_SIZE, frame_sz depend on len size */ |
2561 | xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size); |
2562 | #endif |
2563 | } else if (i40e_add_xdp_frag(xdp, nr_frags: &nfrags, rx_buffer, size) && |
2564 | !neop) { |
2565 | /* Overflowing packet: Drop all frags on EOP */ |
2566 | i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); |
2567 | break; |
2568 | } |
2569 | |
2570 | if (neop) |
2571 | continue; |
2572 | |
2573 | xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog); |
2574 | |
2575 | if (xdp_res) { |
2576 | xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); |
2577 | |
2578 | if (unlikely(xdp_buff_has_frags(xdp))) { |
2579 | i40e_process_rx_buffs(rx_ring, xdp_res, xdp); |
2580 | size = xdp_get_buff_len(xdp); |
2581 | } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { |
2582 | i40e_rx_buffer_flip(rx_buffer, truesize: xdp->frame_sz); |
2583 | } else { |
2584 | rx_buffer->pagecnt_bias++; |
2585 | } |
2586 | total_rx_bytes += size; |
2587 | } else { |
2588 | if (ring_uses_build_skb(ring: rx_ring)) |
2589 | skb = i40e_build_skb(rx_ring, xdp); |
2590 | else |
2591 | skb = i40e_construct_skb(rx_ring, xdp); |
2592 | |
2593 | /* drop if we failed to retrieve a buffer */ |
2594 | if (!skb) { |
2595 | rx_ring->rx_stats.alloc_buff_failed++; |
2596 | i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); |
2597 | break; |
2598 | } |
2599 | |
2600 | if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) |
2601 | goto process_next; |
2602 | |
2603 | /* probably a little skewed due to removing CRC */ |
2604 | total_rx_bytes += skb->len; |
2605 | |
2606 | /* populate checksum, VLAN, and protocol */ |
2607 | i40e_process_skb_fields(rx_ring, rx_desc, skb); |
2608 | |
2609 | i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp); |
2610 | napi_gro_receive(napi: &rx_ring->q_vector->napi, skb); |
2611 | } |
2612 | |
2613 | /* update budget accounting */ |
2614 | total_rx_packets++; |
2615 | process_next: |
2616 | cleaned_count += nfrags + 1; |
2617 | i40e_put_rx_buffer(rx_ring, rx_buffer); |
2618 | rx_ring->next_to_clean = rx_ring->next_to_process; |
2619 | |
2620 | xdp->data = NULL; |
2621 | } |
2622 | |
2623 | i40e_finalize_xdp_rx(rx_ring, xdp_res: xdp_xmit); |
2624 | |
2625 | i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); |
2626 | |
2627 | *rx_cleaned = total_rx_packets; |
2628 | |
2629 | /* guarantee a trip back through this routine if there was a failure */ |
2630 | return failure ? budget : (int)total_rx_packets; |
2631 | } |
2632 | |
2633 | /** |
2634 | * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register |
2635 | * @itr_idx: interrupt throttling index |
2636 | * @interval: interrupt throttling interval value in usecs |
2637 | * @force_swint: force software interrupt |
2638 | * |
2639 | * The function builds a value for I40E_PFINT_DYN_CTLN register that |
2640 | * is used to update interrupt throttling interval for specified ITR index |
2641 | * and optionally enforces a software interrupt. If the @itr_idx is equal |
2642 | * to I40E_ITR_NONE then no interval change is applied and only @force_swint |
2643 | * parameter is taken into account. If the interval change and enforced |
2644 | * software interrupt are not requested then the built value just enables |
2645 | * appropriate vector interrupt. |
2646 | **/ |
2647 | static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval, |
2648 | bool force_swint) |
2649 | { |
2650 | u32 val; |
2651 | |
2652 | /* We don't bother with setting the CLEARPBA bit as the data sheet |
2653 | * points out doing so is "meaningless since it was already |
2654 | * auto-cleared". The auto-clearing happens when the interrupt is |
2655 | * asserted. |
2656 | * |
2657 | * Hardware errata 28 for also indicates that writing to a |
2658 | * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear |
2659 | * an event in the PBA anyway so we need to rely on the automask |
2660 | * to hold pending events for us until the interrupt is re-enabled |
2661 | * |
2662 | * We have to shift the given value as it is reported in microseconds |
2663 | * and the register value is recorded in 2 microsecond units. |
2664 | */ |
2665 | interval >>= 1; |
2666 | |
2667 | /* 1. Enable vector interrupt |
2668 | * 2. Update the interval for the specified ITR index |
2669 | * (I40E_ITR_NONE in the register is used to indicate that |
2670 | * no interval update is requested) |
2671 | */ |
2672 | val = I40E_PFINT_DYN_CTLN_INTENA_MASK | |
2673 | FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) | |
2674 | FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval); |
2675 | |
2676 | /* 3. Enforce software interrupt trigger if requested |
2677 | * (These software interrupts rate is limited by ITR2 that is |
2678 | * set to 20K interrupts per second) |
2679 | */ |
2680 | if (force_swint) |
2681 | val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | |
2682 | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK | |
2683 | FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK, |
2684 | I40E_SW_ITR); |
2685 | |
2686 | return val; |
2687 | } |
2688 | |
2689 | /* The act of updating the ITR will cause it to immediately trigger. In order |
2690 | * to prevent this from throwing off adaptive update statistics we defer the |
2691 | * update so that it can only happen so often. So after either Tx or Rx are |
2692 | * updated we make the adaptive scheme wait until either the ITR completely |
2693 | * expires via the next_update expiration or we have been through at least |
2694 | * 3 interrupts. |
2695 | */ |
2696 | #define ITR_COUNTDOWN_START 3 |
2697 | |
2698 | /** |
2699 | * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt |
2700 | * @vsi: the VSI we care about |
2701 | * @q_vector: q_vector for which itr is being updated and interrupt enabled |
2702 | * |
2703 | **/ |
2704 | static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, |
2705 | struct i40e_q_vector *q_vector) |
2706 | { |
2707 | enum i40e_dyn_idx itr_idx = I40E_ITR_NONE; |
2708 | struct i40e_hw *hw = &vsi->back->hw; |
2709 | u16 interval = 0; |
2710 | u32 itr_val; |
2711 | |
2712 | /* If we don't have MSIX, then we only need to re-enable icr0 */ |
2713 | if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { |
2714 | i40e_irq_dynamic_enable_icr0(pf: vsi->back); |
2715 | return; |
2716 | } |
2717 | |
2718 | /* These will do nothing if dynamic updates are not enabled */ |
2719 | i40e_update_itr(q_vector, rc: &q_vector->tx); |
2720 | i40e_update_itr(q_vector, rc: &q_vector->rx); |
2721 | |
2722 | /* This block of logic allows us to get away with only updating |
2723 | * one ITR value with each interrupt. The idea is to perform a |
2724 | * pseudo-lazy update with the following criteria. |
2725 | * |
2726 | * 1. Rx is given higher priority than Tx if both are in same state |
2727 | * 2. If we must reduce an ITR that is given highest priority. |
2728 | * 3. We then give priority to increasing ITR based on amount. |
2729 | */ |
2730 | if (q_vector->rx.target_itr < q_vector->rx.current_itr) { |
2731 | /* Rx ITR needs to be reduced, this is highest priority */ |
2732 | itr_idx = I40E_RX_ITR; |
2733 | interval = q_vector->rx.target_itr; |
2734 | q_vector->rx.current_itr = q_vector->rx.target_itr; |
2735 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
2736 | } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || |
2737 | ((q_vector->rx.target_itr - q_vector->rx.current_itr) < |
2738 | (q_vector->tx.target_itr - q_vector->tx.current_itr))) { |
2739 | /* Tx ITR needs to be reduced, this is second priority |
2740 | * Tx ITR needs to be increased more than Rx, fourth priority |
2741 | */ |
2742 | itr_idx = I40E_TX_ITR; |
2743 | interval = q_vector->tx.target_itr; |
2744 | q_vector->tx.current_itr = q_vector->tx.target_itr; |
2745 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
2746 | } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { |
2747 | /* Rx ITR needs to be increased, third priority */ |
2748 | itr_idx = I40E_RX_ITR; |
2749 | interval = q_vector->rx.target_itr; |
2750 | q_vector->rx.current_itr = q_vector->rx.target_itr; |
2751 | q_vector->itr_countdown = ITR_COUNTDOWN_START; |
2752 | } else { |
2753 | /* No ITR update, lowest priority */ |
2754 | if (q_vector->itr_countdown) |
2755 | q_vector->itr_countdown--; |
2756 | } |
2757 | |
2758 | /* Do not update interrupt control register if VSI is down */ |
2759 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
2760 | return; |
2761 | |
2762 | /* Update ITR interval if necessary and enforce software interrupt |
2763 | * if we are exiting busy poll. |
2764 | */ |
2765 | if (q_vector->in_busy_poll) { |
2766 | itr_val = i40e_buildreg_itr(itr_idx, interval, force_swint: true); |
2767 | q_vector->in_busy_poll = false; |
2768 | } else { |
2769 | itr_val = i40e_buildreg_itr(itr_idx, interval, force_swint: false); |
2770 | } |
2771 | wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val); |
2772 | } |
2773 | |
2774 | /** |
2775 | * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine |
2776 | * @napi: napi struct with our devices info in it |
2777 | * @budget: amount of work driver is allowed to do this pass, in packets |
2778 | * |
2779 | * This function will clean all queues associated with a q_vector. |
2780 | * |
2781 | * Returns the amount of work done |
2782 | **/ |
2783 | int i40e_napi_poll(struct napi_struct *napi, int budget) |
2784 | { |
2785 | struct i40e_q_vector *q_vector = |
2786 | container_of(napi, struct i40e_q_vector, napi); |
2787 | struct i40e_vsi *vsi = q_vector->vsi; |
2788 | struct i40e_ring *ring; |
2789 | bool tx_clean_complete = true; |
2790 | bool rx_clean_complete = true; |
2791 | unsigned int tx_cleaned = 0; |
2792 | unsigned int rx_cleaned = 0; |
2793 | bool clean_complete = true; |
2794 | bool arm_wb = false; |
2795 | int budget_per_ring; |
2796 | int work_done = 0; |
2797 | |
2798 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) { |
2799 | napi_complete(n: napi); |
2800 | return 0; |
2801 | } |
2802 | |
2803 | /* Since the actual Tx work is minimal, we can give the Tx a larger |
2804 | * budget and be more aggressive about cleaning up the Tx descriptors. |
2805 | */ |
2806 | i40e_for_each_ring(ring, q_vector->tx) { |
2807 | bool wd = ring->xsk_pool ? |
2808 | i40e_clean_xdp_tx_irq(vsi, tx_ring: ring) : |
2809 | i40e_clean_tx_irq(vsi, tx_ring: ring, napi_budget: budget, tx_cleaned: &tx_cleaned); |
2810 | |
2811 | if (!wd) { |
2812 | clean_complete = tx_clean_complete = false; |
2813 | continue; |
2814 | } |
2815 | arm_wb |= ring->arm_wb; |
2816 | ring->arm_wb = false; |
2817 | } |
2818 | |
2819 | /* Handle case where we are called by netpoll with a budget of 0 */ |
2820 | if (budget <= 0) |
2821 | goto tx_only; |
2822 | |
2823 | /* normally we have 1 Rx ring per q_vector */ |
2824 | if (unlikely(q_vector->num_ringpairs > 1)) |
2825 | /* We attempt to distribute budget to each Rx queue fairly, but |
2826 | * don't allow the budget to go below 1 because that would exit |
2827 | * polling early. |
2828 | */ |
2829 | budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); |
2830 | else |
2831 | /* Max of 1 Rx ring in this q_vector so give it the budget */ |
2832 | budget_per_ring = budget; |
2833 | |
2834 | i40e_for_each_ring(ring, q_vector->rx) { |
2835 | int cleaned = ring->xsk_pool ? |
2836 | i40e_clean_rx_irq_zc(rx_ring: ring, budget: budget_per_ring) : |
2837 | i40e_clean_rx_irq(rx_ring: ring, budget: budget_per_ring, rx_cleaned: &rx_cleaned); |
2838 | |
2839 | work_done += cleaned; |
2840 | /* if we clean as many as budgeted, we must not be done */ |
2841 | if (cleaned >= budget_per_ring) |
2842 | clean_complete = rx_clean_complete = false; |
2843 | } |
2844 | |
2845 | if (!i40e_enabled_xdp_vsi(vsi)) |
2846 | trace_i40e_napi_poll(napi, q: q_vector, budget, budget_per_ring, rx_cleaned, |
2847 | tx_cleaned, rx_clean_complete, tx_clean_complete); |
2848 | |
2849 | /* If work not completed, return budget and polling will return */ |
2850 | if (!clean_complete) { |
2851 | int cpu_id = smp_processor_id(); |
2852 | |
2853 | /* It is possible that the interrupt affinity has changed but, |
2854 | * if the cpu is pegged at 100%, polling will never exit while |
2855 | * traffic continues and the interrupt will be stuck on this |
2856 | * cpu. We check to make sure affinity is correct before we |
2857 | * continue to poll, otherwise we must stop polling so the |
2858 | * interrupt can move to the correct cpu. |
2859 | */ |
2860 | if (!cpumask_test_cpu(cpu: cpu_id, cpumask: &q_vector->affinity_mask)) { |
2861 | /* Tell napi that we are done polling */ |
2862 | napi_complete_done(n: napi, work_done); |
2863 | |
2864 | /* Force an interrupt */ |
2865 | i40e_force_wb(vsi, q_vector); |
2866 | |
2867 | /* Return budget-1 so that polling stops */ |
2868 | return budget - 1; |
2869 | } |
2870 | tx_only: |
2871 | if (arm_wb) { |
2872 | q_vector->tx.ring[0].tx_stats.tx_force_wb++; |
2873 | i40e_enable_wb_on_itr(vsi, q_vector); |
2874 | } |
2875 | return budget; |
2876 | } |
2877 | |
2878 | if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR) |
2879 | q_vector->arm_wb_state = false; |
2880 | |
2881 | /* Exit the polling mode, but don't re-enable interrupts if stack might |
2882 | * poll us due to busy-polling |
2883 | */ |
2884 | if (likely(napi_complete_done(napi, work_done))) |
2885 | i40e_update_enable_itr(vsi, q_vector); |
2886 | else |
2887 | q_vector->in_busy_poll = true; |
2888 | |
2889 | return min(work_done, budget - 1); |
2890 | } |
2891 | |
2892 | /** |
2893 | * i40e_atr - Add a Flow Director ATR filter |
2894 | * @tx_ring: ring to add programming descriptor to |
2895 | * @skb: send buffer |
2896 | * @tx_flags: send tx flags |
2897 | **/ |
2898 | static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, |
2899 | u32 tx_flags) |
2900 | { |
2901 | struct i40e_filter_program_desc *fdir_desc; |
2902 | struct i40e_pf *pf = tx_ring->vsi->back; |
2903 | union { |
2904 | unsigned char *network; |
2905 | struct iphdr *ipv4; |
2906 | struct ipv6hdr *ipv6; |
2907 | } hdr; |
2908 | struct tcphdr *th; |
2909 | unsigned int hlen; |
2910 | u32 flex_ptype, dtype_cmd; |
2911 | int l4_proto; |
2912 | u16 i; |
2913 | |
2914 | /* make sure ATR is enabled */ |
2915 | if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) |
2916 | return; |
2917 | |
2918 | if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) |
2919 | return; |
2920 | |
2921 | /* if sampling is disabled do nothing */ |
2922 | if (!tx_ring->atr_sample_rate) |
2923 | return; |
2924 | |
2925 | /* Currently only IPv4/IPv6 with TCP is supported */ |
2926 | if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) |
2927 | return; |
2928 | |
2929 | /* snag network header to get L4 type and address */ |
2930 | hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? |
2931 | skb_inner_network_header(skb) : skb_network_header(skb); |
2932 | |
2933 | /* Note: tx_flags gets modified to reflect inner protocols in |
2934 | * tx_enable_csum function if encap is enabled. |
2935 | */ |
2936 | if (tx_flags & I40E_TX_FLAGS_IPV4) { |
2937 | /* access ihl as u8 to avoid unaligned access on ia64 */ |
2938 | hlen = (hdr.network[0] & 0x0F) << 2; |
2939 | l4_proto = hdr.ipv4->protocol; |
2940 | } else { |
2941 | /* find the start of the innermost ipv6 header */ |
2942 | unsigned int inner_hlen = hdr.network - skb->data; |
2943 | unsigned int h_offset = inner_hlen; |
2944 | |
2945 | /* this function updates h_offset to the end of the header */ |
2946 | l4_proto = |
2947 | ipv6_find_hdr(skb, offset: &h_offset, IPPROTO_TCP, NULL, NULL); |
2948 | /* hlen will contain our best estimate of the tcp header */ |
2949 | hlen = h_offset - inner_hlen; |
2950 | } |
2951 | |
2952 | if (l4_proto != IPPROTO_TCP) |
2953 | return; |
2954 | |
2955 | th = (struct tcphdr *)(hdr.network + hlen); |
2956 | |
2957 | /* Due to lack of space, no more new filters can be programmed */ |
2958 | if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) |
2959 | return; |
2960 | if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) { |
2961 | /* HW ATR eviction will take care of removing filters on FIN |
2962 | * and RST packets. |
2963 | */ |
2964 | if (th->fin || th->rst) |
2965 | return; |
2966 | } |
2967 | |
2968 | tx_ring->atr_count++; |
2969 | |
2970 | /* sample on all syn/fin/rst packets or once every atr sample rate */ |
2971 | if (!th->fin && |
2972 | !th->syn && |
2973 | !th->rst && |
2974 | (tx_ring->atr_count < tx_ring->atr_sample_rate)) |
2975 | return; |
2976 | |
2977 | tx_ring->atr_count = 0; |
2978 | |
2979 | /* grab the next descriptor */ |
2980 | i = tx_ring->next_to_use; |
2981 | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); |
2982 | |
2983 | i++; |
2984 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
2985 | |
2986 | flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, |
2987 | tx_ring->queue_index); |
2988 | flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? |
2989 | (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << |
2990 | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : |
2991 | (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << |
2992 | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); |
2993 | |
2994 | flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; |
2995 | |
2996 | dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; |
2997 | |
2998 | dtype_cmd |= (th->fin || th->rst) ? |
2999 | (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << |
3000 | I40E_TXD_FLTR_QW1_PCMD_SHIFT) : |
3001 | (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << |
3002 | I40E_TXD_FLTR_QW1_PCMD_SHIFT); |
3003 | |
3004 | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << |
3005 | I40E_TXD_FLTR_QW1_DEST_SHIFT; |
3006 | |
3007 | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << |
3008 | I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; |
3009 | |
3010 | dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; |
3011 | if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) |
3012 | dtype_cmd |= |
3013 | FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
3014 | I40E_FD_ATR_STAT_IDX(pf->hw.pf_id)); |
3015 | else |
3016 | dtype_cmd |= |
3017 | FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, |
3018 | I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id)); |
3019 | |
3020 | if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) |
3021 | dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; |
3022 | |
3023 | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); |
3024 | fdir_desc->rsvd = cpu_to_le32(0); |
3025 | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); |
3026 | fdir_desc->fd_id = cpu_to_le32(0); |
3027 | } |
3028 | |
3029 | /** |
3030 | * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW |
3031 | * @skb: send buffer |
3032 | * @tx_ring: ring to send buffer on |
3033 | * @flags: the tx flags to be set |
3034 | * |
3035 | * Checks the skb and set up correspondingly several generic transmit flags |
3036 | * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
3037 | * |
3038 | * Returns error code indicate the frame should be dropped upon error and the |
3039 | * otherwise returns 0 to indicate the flags has been set properly. |
3040 | **/ |
3041 | static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, |
3042 | struct i40e_ring *tx_ring, |
3043 | u32 *flags) |
3044 | { |
3045 | __be16 protocol = skb->protocol; |
3046 | u32 tx_flags = 0; |
3047 | |
3048 | if (protocol == htons(ETH_P_8021Q) && |
3049 | !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
3050 | /* When HW VLAN acceleration is turned off by the user the |
3051 | * stack sets the protocol to 8021q so that the driver |
3052 | * can take any steps required to support the SW only |
3053 | * VLAN handling. In our case the driver doesn't need |
3054 | * to take any further steps so just set the protocol |
3055 | * to the encapsulated ethertype. |
3056 | */ |
3057 | skb->protocol = vlan_get_protocol(skb); |
3058 | goto out; |
3059 | } |
3060 | |
3061 | /* if we have a HW VLAN tag being added, default to the HW one */ |
3062 | if (skb_vlan_tag_present(skb)) { |
3063 | tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; |
3064 | tx_flags |= I40E_TX_FLAGS_HW_VLAN; |
3065 | /* else if it is a SW VLAN, check the next protocol and store the tag */ |
3066 | } else if (protocol == htons(ETH_P_8021Q)) { |
3067 | struct vlan_hdr *vhdr, _vhdr; |
3068 | |
3069 | vhdr = skb_header_pointer(skb, ETH_HLEN, len: sizeof(_vhdr), buffer: &_vhdr); |
3070 | if (!vhdr) |
3071 | return -EINVAL; |
3072 | |
3073 | protocol = vhdr->h_vlan_encapsulated_proto; |
3074 | tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; |
3075 | tx_flags |= I40E_TX_FLAGS_SW_VLAN; |
3076 | } |
3077 | |
3078 | if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags)) |
3079 | goto out; |
3080 | |
3081 | /* Insert 802.1p priority into VLAN header */ |
3082 | if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || |
3083 | (skb->priority != TC_PRIO_CONTROL)) { |
3084 | tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; |
3085 | tx_flags |= (skb->priority & 0x7) << |
3086 | I40E_TX_FLAGS_VLAN_PRIO_SHIFT; |
3087 | if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { |
3088 | struct vlan_ethhdr *vhdr; |
3089 | int rc; |
3090 | |
3091 | rc = skb_cow_head(skb, headroom: 0); |
3092 | if (rc < 0) |
3093 | return rc; |
3094 | vhdr = skb_vlan_eth_hdr(skb); |
3095 | vhdr->h_vlan_TCI = htons(tx_flags >> |
3096 | I40E_TX_FLAGS_VLAN_SHIFT); |
3097 | } else { |
3098 | tx_flags |= I40E_TX_FLAGS_HW_VLAN; |
3099 | } |
3100 | } |
3101 | |
3102 | out: |
3103 | *flags = tx_flags; |
3104 | return 0; |
3105 | } |
3106 | |
3107 | /** |
3108 | * i40e_tso - set up the tso context descriptor |
3109 | * @first: pointer to first Tx buffer for xmit |
3110 | * @hdr_len: ptr to the size of the packet header |
3111 | * @cd_type_cmd_tso_mss: Quad Word 1 |
3112 | * |
3113 | * Returns 0 if no TSO can happen, 1 if tso is going, or error |
3114 | **/ |
3115 | static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, |
3116 | u64 *cd_type_cmd_tso_mss) |
3117 | { |
3118 | struct sk_buff *skb = first->skb; |
3119 | u64 cd_cmd, cd_tso_len, cd_mss; |
3120 | __be16 protocol; |
3121 | union { |
3122 | struct iphdr *v4; |
3123 | struct ipv6hdr *v6; |
3124 | unsigned char *hdr; |
3125 | } ip; |
3126 | union { |
3127 | struct tcphdr *tcp; |
3128 | struct udphdr *udp; |
3129 | unsigned char *hdr; |
3130 | } l4; |
3131 | u32 paylen, l4_offset; |
3132 | u16 gso_size; |
3133 | int err; |
3134 | |
3135 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
3136 | return 0; |
3137 | |
3138 | if (!skb_is_gso(skb)) |
3139 | return 0; |
3140 | |
3141 | err = skb_cow_head(skb, headroom: 0); |
3142 | if (err < 0) |
3143 | return err; |
3144 | |
3145 | protocol = vlan_get_protocol(skb); |
3146 | |
3147 | if (eth_p_mpls(eth_type: protocol)) |
3148 | ip.hdr = skb_inner_network_header(skb); |
3149 | else |
3150 | ip.hdr = skb_network_header(skb); |
3151 | l4.hdr = skb_checksum_start(skb); |
3152 | |
3153 | /* initialize outer IP header fields */ |
3154 | if (ip.v4->version == 4) { |
3155 | ip.v4->tot_len = 0; |
3156 | ip.v4->check = 0; |
3157 | |
3158 | first->tx_flags |= I40E_TX_FLAGS_TSO; |
3159 | } else { |
3160 | ip.v6->payload_len = 0; |
3161 | first->tx_flags |= I40E_TX_FLAGS_TSO; |
3162 | } |
3163 | |
3164 | if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
3165 | SKB_GSO_GRE_CSUM | |
3166 | SKB_GSO_IPXIP4 | |
3167 | SKB_GSO_IPXIP6 | |
3168 | SKB_GSO_UDP_TUNNEL | |
3169 | SKB_GSO_UDP_TUNNEL_CSUM)) { |
3170 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
3171 | (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { |
3172 | l4.udp->len = 0; |
3173 | |
3174 | /* determine offset of outer transport header */ |
3175 | l4_offset = l4.hdr - skb->data; |
3176 | |
3177 | /* remove payload length from outer checksum */ |
3178 | paylen = skb->len - l4_offset; |
3179 | csum_replace_by_diff(sum: &l4.udp->check, |
3180 | diff: (__force __wsum)htonl(paylen)); |
3181 | } |
3182 | |
3183 | /* reset pointers to inner headers */ |
3184 | ip.hdr = skb_inner_network_header(skb); |
3185 | l4.hdr = skb_inner_transport_header(skb); |
3186 | |
3187 | /* initialize inner IP header fields */ |
3188 | if (ip.v4->version == 4) { |
3189 | ip.v4->tot_len = 0; |
3190 | ip.v4->check = 0; |
3191 | } else { |
3192 | ip.v6->payload_len = 0; |
3193 | } |
3194 | } |
3195 | |
3196 | /* determine offset of inner transport header */ |
3197 | l4_offset = l4.hdr - skb->data; |
3198 | |
3199 | /* remove payload length from inner checksum */ |
3200 | paylen = skb->len - l4_offset; |
3201 | |
3202 | if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
3203 | csum_replace_by_diff(sum: &l4.udp->check, diff: (__force __wsum)htonl(paylen)); |
3204 | /* compute length of segmentation header */ |
3205 | *hdr_len = sizeof(*l4.udp) + l4_offset; |
3206 | } else { |
3207 | csum_replace_by_diff(sum: &l4.tcp->check, diff: (__force __wsum)htonl(paylen)); |
3208 | /* compute length of segmentation header */ |
3209 | *hdr_len = (l4.tcp->doff * 4) + l4_offset; |
3210 | } |
3211 | |
3212 | /* pull values out of skb_shinfo */ |
3213 | gso_size = skb_shinfo(skb)->gso_size; |
3214 | |
3215 | /* update GSO size and bytecount with header size */ |
3216 | first->gso_segs = skb_shinfo(skb)->gso_segs; |
3217 | first->bytecount += (first->gso_segs - 1) * *hdr_len; |
3218 | |
3219 | /* find the field values */ |
3220 | cd_cmd = I40E_TX_CTX_DESC_TSO; |
3221 | cd_tso_len = skb->len - *hdr_len; |
3222 | cd_mss = gso_size; |
3223 | *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | |
3224 | (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | |
3225 | (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); |
3226 | return 1; |
3227 | } |
3228 | |
3229 | /** |
3230 | * i40e_tsyn - set up the tsyn context descriptor |
3231 | * @tx_ring: ptr to the ring to send |
3232 | * @skb: ptr to the skb we're sending |
3233 | * @tx_flags: the collected send information |
3234 | * @cd_type_cmd_tso_mss: Quad Word 1 |
3235 | * |
3236 | * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen |
3237 | **/ |
3238 | static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, |
3239 | u32 tx_flags, u64 *cd_type_cmd_tso_mss) |
3240 | { |
3241 | struct i40e_pf *pf; |
3242 | |
3243 | if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) |
3244 | return 0; |
3245 | |
3246 | /* Tx timestamps cannot be sampled when doing TSO */ |
3247 | if (tx_flags & I40E_TX_FLAGS_TSO) |
3248 | return 0; |
3249 | |
3250 | /* only timestamp the outbound packet if the user has requested it and |
3251 | * we are not already transmitting a packet to be timestamped |
3252 | */ |
3253 | pf = i40e_netdev_to_pf(netdev: tx_ring->netdev); |
3254 | if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) |
3255 | return 0; |
3256 | |
3257 | if (pf->ptp_tx && |
3258 | !test_and_set_bit_lock(nr: __I40E_PTP_TX_IN_PROGRESS, addr: pf->state)) { |
3259 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
3260 | pf->ptp_tx_start = jiffies; |
3261 | pf->ptp_tx_skb = skb_get(skb); |
3262 | } else { |
3263 | pf->tx_hwtstamp_skipped++; |
3264 | return 0; |
3265 | } |
3266 | |
3267 | *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << |
3268 | I40E_TXD_CTX_QW1_CMD_SHIFT; |
3269 | |
3270 | return 1; |
3271 | } |
3272 | |
3273 | /** |
3274 | * i40e_tx_enable_csum - Enable Tx checksum offloads |
3275 | * @skb: send buffer |
3276 | * @tx_flags: pointer to Tx flags currently set |
3277 | * @td_cmd: Tx descriptor command bits to set |
3278 | * @td_offset: Tx descriptor header offsets to set |
3279 | * @tx_ring: Tx descriptor ring |
3280 | * @cd_tunneling: ptr to context desc bits |
3281 | **/ |
3282 | static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, |
3283 | u32 *td_cmd, u32 *td_offset, |
3284 | struct i40e_ring *tx_ring, |
3285 | u32 *cd_tunneling) |
3286 | { |
3287 | union { |
3288 | struct iphdr *v4; |
3289 | struct ipv6hdr *v6; |
3290 | unsigned char *hdr; |
3291 | } ip; |
3292 | union { |
3293 | struct tcphdr *tcp; |
3294 | struct udphdr *udp; |
3295 | unsigned char *hdr; |
3296 | } l4; |
3297 | unsigned char *exthdr; |
3298 | u32 offset, cmd = 0; |
3299 | __be16 frag_off; |
3300 | __be16 protocol; |
3301 | u8 l4_proto = 0; |
3302 | |
3303 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
3304 | return 0; |
3305 | |
3306 | protocol = vlan_get_protocol(skb); |
3307 | |
3308 | if (eth_p_mpls(eth_type: protocol)) { |
3309 | ip.hdr = skb_inner_network_header(skb); |
3310 | l4.hdr = skb_checksum_start(skb); |
3311 | } else { |
3312 | ip.hdr = skb_network_header(skb); |
3313 | l4.hdr = skb_transport_header(skb); |
3314 | } |
3315 | |
3316 | /* set the tx_flags to indicate the IP protocol type. this is |
3317 | * required so that checksum header computation below is accurate. |
3318 | */ |
3319 | if (ip.v4->version == 4) |
3320 | *tx_flags |= I40E_TX_FLAGS_IPV4; |
3321 | else |
3322 | *tx_flags |= I40E_TX_FLAGS_IPV6; |
3323 | |
3324 | /* compute outer L2 header size */ |
3325 | offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; |
3326 | |
3327 | if (skb->encapsulation) { |
3328 | u32 tunnel = 0; |
3329 | /* define outer network header type */ |
3330 | if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
3331 | tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? |
3332 | I40E_TX_CTX_EXT_IP_IPV4 : |
3333 | I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; |
3334 | |
3335 | l4_proto = ip.v4->protocol; |
3336 | } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
3337 | int ret; |
3338 | |
3339 | tunnel |= I40E_TX_CTX_EXT_IP_IPV6; |
3340 | |
3341 | exthdr = ip.hdr + sizeof(*ip.v6); |
3342 | l4_proto = ip.v6->nexthdr; |
3343 | ret = ipv6_skip_exthdr(skb, start: exthdr - skb->data, |
3344 | nexthdrp: &l4_proto, frag_offp: &frag_off); |
3345 | if (ret < 0) |
3346 | return -1; |
3347 | } |
3348 | |
3349 | /* define outer transport */ |
3350 | switch (l4_proto) { |
3351 | case IPPROTO_UDP: |
3352 | tunnel |= I40E_TXD_CTX_UDP_TUNNELING; |
3353 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
3354 | break; |
3355 | case IPPROTO_GRE: |
3356 | tunnel |= I40E_TXD_CTX_GRE_TUNNELING; |
3357 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
3358 | break; |
3359 | case IPPROTO_IPIP: |
3360 | case IPPROTO_IPV6: |
3361 | *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; |
3362 | l4.hdr = skb_inner_network_header(skb); |
3363 | break; |
3364 | default: |
3365 | if (*tx_flags & I40E_TX_FLAGS_TSO) |
3366 | return -1; |
3367 | |
3368 | skb_checksum_help(skb); |
3369 | return 0; |
3370 | } |
3371 | |
3372 | /* compute outer L3 header size */ |
3373 | tunnel |= ((l4.hdr - ip.hdr) / 4) << |
3374 | I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; |
3375 | |
3376 | /* switch IP header pointer from outer to inner header */ |
3377 | ip.hdr = skb_inner_network_header(skb); |
3378 | |
3379 | /* compute tunnel header size */ |
3380 | tunnel |= ((ip.hdr - l4.hdr) / 2) << |
3381 | I40E_TXD_CTX_QW0_NATLEN_SHIFT; |
3382 | |
3383 | /* indicate if we need to offload outer UDP header */ |
3384 | if ((*tx_flags & I40E_TX_FLAGS_TSO) && |
3385 | !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
3386 | (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) |
3387 | tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; |
3388 | |
3389 | /* record tunnel offload values */ |
3390 | *cd_tunneling |= tunnel; |
3391 | |
3392 | /* switch L4 header pointer from outer to inner */ |
3393 | l4.hdr = skb_inner_transport_header(skb); |
3394 | l4_proto = 0; |
3395 | |
3396 | /* reset type as we transition from outer to inner headers */ |
3397 | *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); |
3398 | if (ip.v4->version == 4) |
3399 | *tx_flags |= I40E_TX_FLAGS_IPV4; |
3400 | if (ip.v6->version == 6) |
3401 | *tx_flags |= I40E_TX_FLAGS_IPV6; |
3402 | } |
3403 | |
3404 | /* Enable IP checksum offloads */ |
3405 | if (*tx_flags & I40E_TX_FLAGS_IPV4) { |
3406 | l4_proto = ip.v4->protocol; |
3407 | /* the stack computes the IP header already, the only time we |
3408 | * need the hardware to recompute it is in the case of TSO. |
3409 | */ |
3410 | cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? |
3411 | I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : |
3412 | I40E_TX_DESC_CMD_IIPT_IPV4; |
3413 | } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { |
3414 | cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; |
3415 | |
3416 | exthdr = ip.hdr + sizeof(*ip.v6); |
3417 | l4_proto = ip.v6->nexthdr; |
3418 | if (l4.hdr != exthdr) |
3419 | ipv6_skip_exthdr(skb, start: exthdr - skb->data, |
3420 | nexthdrp: &l4_proto, frag_offp: &frag_off); |
3421 | } |
3422 | |
3423 | /* compute inner L3 header size */ |
3424 | offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; |
3425 | |
3426 | /* Enable L4 checksum offloads */ |
3427 | switch (l4_proto) { |
3428 | case IPPROTO_TCP: |
3429 | /* enable checksum offloads */ |
3430 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; |
3431 | offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
3432 | break; |
3433 | case IPPROTO_SCTP: |
3434 | /* enable SCTP checksum offload */ |
3435 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; |
3436 | offset |= (sizeof(struct sctphdr) >> 2) << |
3437 | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
3438 | break; |
3439 | case IPPROTO_UDP: |
3440 | /* enable UDP checksum offload */ |
3441 | cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; |
3442 | offset |= (sizeof(struct udphdr) >> 2) << |
3443 | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
3444 | break; |
3445 | default: |
3446 | if (*tx_flags & I40E_TX_FLAGS_TSO) |
3447 | return -1; |
3448 | skb_checksum_help(skb); |
3449 | return 0; |
3450 | } |
3451 | |
3452 | *td_cmd |= cmd; |
3453 | *td_offset |= offset; |
3454 | |
3455 | return 1; |
3456 | } |
3457 | |
3458 | /** |
3459 | * i40e_create_tx_ctx - Build the Tx context descriptor |
3460 | * @tx_ring: ring to create the descriptor on |
3461 | * @cd_type_cmd_tso_mss: Quad Word 1 |
3462 | * @cd_tunneling: Quad Word 0 - bits 0-31 |
3463 | * @cd_l2tag2: Quad Word 0 - bits 32-63 |
3464 | **/ |
3465 | static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, |
3466 | const u64 cd_type_cmd_tso_mss, |
3467 | const u32 cd_tunneling, const u32 cd_l2tag2) |
3468 | { |
3469 | struct i40e_tx_context_desc *context_desc; |
3470 | int i = tx_ring->next_to_use; |
3471 | |
3472 | if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && |
3473 | !cd_tunneling && !cd_l2tag2) |
3474 | return; |
3475 | |
3476 | /* grab the next descriptor */ |
3477 | context_desc = I40E_TX_CTXTDESC(tx_ring, i); |
3478 | |
3479 | i++; |
3480 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
3481 | |
3482 | /* cpu_to_le32 and assign to struct fields */ |
3483 | context_desc->tunneling_params = cpu_to_le32(cd_tunneling); |
3484 | context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); |
3485 | context_desc->rsvd = cpu_to_le16(0); |
3486 | context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); |
3487 | } |
3488 | |
3489 | /** |
3490 | * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions |
3491 | * @tx_ring: the ring to be checked |
3492 | * @size: the size buffer we want to assure is available |
3493 | * |
3494 | * Returns -EBUSY if a stop is needed, else 0 |
3495 | **/ |
3496 | int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
3497 | { |
3498 | netif_stop_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index); |
3499 | /* Memory barrier before checking head and tail */ |
3500 | smp_mb(); |
3501 | |
3502 | ++tx_ring->tx_stats.tx_stopped; |
3503 | |
3504 | /* Check again in a case another CPU has just made room available. */ |
3505 | if (likely(I40E_DESC_UNUSED(tx_ring) < size)) |
3506 | return -EBUSY; |
3507 | |
3508 | /* A reprieve! - use start_queue because it doesn't call schedule */ |
3509 | netif_start_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index); |
3510 | ++tx_ring->tx_stats.restart_queue; |
3511 | return 0; |
3512 | } |
3513 | |
3514 | /** |
3515 | * __i40e_chk_linearize - Check if there are more than 8 buffers per packet |
3516 | * @skb: send buffer |
3517 | * |
3518 | * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire |
3519 | * and so we need to figure out the cases where we need to linearize the skb. |
3520 | * |
3521 | * For TSO we need to count the TSO header and segment payload separately. |
3522 | * As such we need to check cases where we have 7 fragments or more as we |
3523 | * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
3524 | * the segment payload in the first descriptor, and another 7 for the |
3525 | * fragments. |
3526 | **/ |
3527 | bool __i40e_chk_linearize(struct sk_buff *skb) |
3528 | { |
3529 | const skb_frag_t *frag, *stale; |
3530 | int nr_frags, sum; |
3531 | |
3532 | /* no need to check if number of frags is less than 7 */ |
3533 | nr_frags = skb_shinfo(skb)->nr_frags; |
3534 | if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) |
3535 | return false; |
3536 | |
3537 | /* We need to walk through the list and validate that each group |
3538 | * of 6 fragments totals at least gso_size. |
3539 | */ |
3540 | nr_frags -= I40E_MAX_BUFFER_TXD - 2; |
3541 | frag = &skb_shinfo(skb)->frags[0]; |
3542 | |
3543 | /* Initialize size to the negative value of gso_size minus 1. We |
3544 | * use this as the worst case scenerio in which the frag ahead |
3545 | * of us only provides one byte which is why we are limited to 6 |
3546 | * descriptors for a single transmit as the header and previous |
3547 | * fragment are already consuming 2 descriptors. |
3548 | */ |
3549 | sum = 1 - skb_shinfo(skb)->gso_size; |
3550 | |
3551 | /* Add size of frags 0 through 4 to create our initial sum */ |
3552 | sum += skb_frag_size(frag: frag++); |
3553 | sum += skb_frag_size(frag: frag++); |
3554 | sum += skb_frag_size(frag: frag++); |
3555 | sum += skb_frag_size(frag: frag++); |
3556 | sum += skb_frag_size(frag: frag++); |
3557 | |
3558 | /* Walk through fragments adding latest fragment, testing it, and |
3559 | * then removing stale fragments from the sum. |
3560 | */ |
3561 | for (stale = &skb_shinfo(skb)->frags[0];; stale++) { |
3562 | int stale_size = skb_frag_size(frag: stale); |
3563 | |
3564 | sum += skb_frag_size(frag: frag++); |
3565 | |
3566 | /* The stale fragment may present us with a smaller |
3567 | * descriptor than the actual fragment size. To account |
3568 | * for that we need to remove all the data on the front and |
3569 | * figure out what the remainder would be in the last |
3570 | * descriptor associated with the fragment. |
3571 | */ |
3572 | if (stale_size > I40E_MAX_DATA_PER_TXD) { |
3573 | int align_pad = -(skb_frag_off(frag: stale)) & |
3574 | (I40E_MAX_READ_REQ_SIZE - 1); |
3575 | |
3576 | sum -= align_pad; |
3577 | stale_size -= align_pad; |
3578 | |
3579 | do { |
3580 | sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; |
3581 | stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; |
3582 | } while (stale_size > I40E_MAX_DATA_PER_TXD); |
3583 | } |
3584 | |
3585 | /* if sum is negative we failed to make sufficient progress */ |
3586 | if (sum < 0) |
3587 | return true; |
3588 | |
3589 | if (!nr_frags--) |
3590 | break; |
3591 | |
3592 | sum -= stale_size; |
3593 | } |
3594 | |
3595 | return false; |
3596 | } |
3597 | |
3598 | /** |
3599 | * i40e_tx_map - Build the Tx descriptor |
3600 | * @tx_ring: ring to send buffer on |
3601 | * @skb: send buffer |
3602 | * @first: first buffer info buffer to use |
3603 | * @tx_flags: collected send information |
3604 | * @hdr_len: size of the packet header |
3605 | * @td_cmd: the command field in the descriptor |
3606 | * @td_offset: offset for checksum or crc |
3607 | * |
3608 | * Returns 0 on success, -1 on failure to DMA |
3609 | **/ |
3610 | static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, |
3611 | struct i40e_tx_buffer *first, u32 tx_flags, |
3612 | const u8 hdr_len, u32 td_cmd, u32 td_offset) |
3613 | { |
3614 | unsigned int data_len = skb->data_len; |
3615 | unsigned int size = skb_headlen(skb); |
3616 | skb_frag_t *frag; |
3617 | struct i40e_tx_buffer *tx_bi; |
3618 | struct i40e_tx_desc *tx_desc; |
3619 | u16 i = tx_ring->next_to_use; |
3620 | u32 td_tag = 0; |
3621 | dma_addr_t dma; |
3622 | u16 desc_count = 1; |
3623 | |
3624 | if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { |
3625 | td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; |
3626 | td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags); |
3627 | } |
3628 | |
3629 | first->tx_flags = tx_flags; |
3630 | |
3631 | dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
3632 | |
3633 | tx_desc = I40E_TX_DESC(tx_ring, i); |
3634 | tx_bi = first; |
3635 | |
3636 | for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
3637 | unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; |
3638 | |
3639 | if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma)) |
3640 | goto dma_error; |
3641 | |
3642 | /* record length, and DMA address */ |
3643 | dma_unmap_len_set(tx_bi, len, size); |
3644 | dma_unmap_addr_set(tx_bi, dma, dma); |
3645 | |
3646 | /* align size to end of page */ |
3647 | max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); |
3648 | tx_desc->buffer_addr = cpu_to_le64(dma); |
3649 | |
3650 | while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { |
3651 | tx_desc->cmd_type_offset_bsz = |
3652 | build_ctob(td_cmd, td_offset, |
3653 | size: max_data, td_tag); |
3654 | |
3655 | tx_desc++; |
3656 | i++; |
3657 | desc_count++; |
3658 | |
3659 | if (i == tx_ring->count) { |
3660 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
3661 | i = 0; |
3662 | } |
3663 | |
3664 | dma += max_data; |
3665 | size -= max_data; |
3666 | |
3667 | max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; |
3668 | tx_desc->buffer_addr = cpu_to_le64(dma); |
3669 | } |
3670 | |
3671 | if (likely(!data_len)) |
3672 | break; |
3673 | |
3674 | tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
3675 | size, td_tag); |
3676 | |
3677 | tx_desc++; |
3678 | i++; |
3679 | desc_count++; |
3680 | |
3681 | if (i == tx_ring->count) { |
3682 | tx_desc = I40E_TX_DESC(tx_ring, 0); |
3683 | i = 0; |
3684 | } |
3685 | |
3686 | size = skb_frag_size(frag); |
3687 | data_len -= size; |
3688 | |
3689 | dma = skb_frag_dma_map(dev: tx_ring->dev, frag, offset: 0, size, |
3690 | dir: DMA_TO_DEVICE); |
3691 | |
3692 | tx_bi = &tx_ring->tx_bi[i]; |
3693 | } |
3694 | |
3695 | netdev_tx_sent_queue(dev_queue: txring_txq(ring: tx_ring), bytes: first->bytecount); |
3696 | |
3697 | i++; |
3698 | if (i == tx_ring->count) |
3699 | i = 0; |
3700 | |
3701 | tx_ring->next_to_use = i; |
3702 | |
3703 | i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); |
3704 | |
3705 | /* write last descriptor with EOP bit */ |
3706 | td_cmd |= I40E_TX_DESC_CMD_EOP; |
3707 | |
3708 | /* We OR these values together to check both against 4 (WB_STRIDE) |
3709 | * below. This is safe since we don't re-use desc_count afterwards. |
3710 | */ |
3711 | desc_count |= ++tx_ring->packet_stride; |
3712 | |
3713 | if (desc_count >= WB_STRIDE) { |
3714 | /* write last descriptor with RS bit set */ |
3715 | td_cmd |= I40E_TX_DESC_CMD_RS; |
3716 | tx_ring->packet_stride = 0; |
3717 | } |
3718 | |
3719 | tx_desc->cmd_type_offset_bsz = |
3720 | build_ctob(td_cmd, td_offset, size, td_tag); |
3721 | |
3722 | skb_tx_timestamp(skb); |
3723 | |
3724 | /* Force memory writes to complete before letting h/w know there |
3725 | * are new descriptors to fetch. |
3726 | * |
3727 | * We also use this memory barrier to make certain all of the |
3728 | * status bits have been updated before next_to_watch is written. |
3729 | */ |
3730 | wmb(); |
3731 | |
3732 | /* set next_to_watch value indicating a packet is present */ |
3733 | first->next_to_watch = tx_desc; |
3734 | |
3735 | /* notify HW of packet */ |
3736 | if (netif_xmit_stopped(dev_queue: txring_txq(ring: tx_ring)) || !netdev_xmit_more()) { |
3737 | writel(val: i, addr: tx_ring->tail); |
3738 | } |
3739 | |
3740 | return 0; |
3741 | |
3742 | dma_error: |
3743 | dev_info(tx_ring->dev, "TX DMA map failed\n"); |
3744 | |
3745 | /* clear dma mappings for failed tx_bi map */ |
3746 | for (;;) { |
3747 | tx_bi = &tx_ring->tx_bi[i]; |
3748 | i40e_unmap_and_free_tx_resource(ring: tx_ring, tx_buffer: tx_bi); |
3749 | if (tx_bi == first) |
3750 | break; |
3751 | if (i == 0) |
3752 | i = tx_ring->count; |
3753 | i--; |
3754 | } |
3755 | |
3756 | tx_ring->next_to_use = i; |
3757 | |
3758 | return -1; |
3759 | } |
3760 | |
3761 | static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, |
3762 | const struct sk_buff *skb, |
3763 | u16 num_tx_queues) |
3764 | { |
3765 | u32 jhash_initval_salt = 0xd631614b; |
3766 | u32 hash; |
3767 | |
3768 | if (skb->sk && skb->sk->sk_hash) |
3769 | hash = skb->sk->sk_hash; |
3770 | else |
3771 | hash = (__force u16)skb->protocol ^ skb->hash; |
3772 | |
3773 | hash = jhash_1word(a: hash, initval: jhash_initval_salt); |
3774 | |
3775 | return (u16)(((u64)hash * num_tx_queues) >> 32); |
3776 | } |
3777 | |
3778 | u16 i40e_lan_select_queue(struct net_device *netdev, |
3779 | struct sk_buff *skb, |
3780 | struct net_device __always_unused *sb_dev) |
3781 | { |
3782 | struct i40e_netdev_priv *np = netdev_priv(dev: netdev); |
3783 | struct i40e_vsi *vsi = np->vsi; |
3784 | struct i40e_hw *hw; |
3785 | u16 qoffset; |
3786 | u16 qcount; |
3787 | u8 tclass; |
3788 | u16 hash; |
3789 | u8 prio; |
3790 | |
3791 | /* is DCB enabled at all? */ |
3792 | if (vsi->tc_config.numtc == 1 || |
3793 | i40e_is_tc_mqprio_enabled(pf: vsi->back)) |
3794 | return netdev_pick_tx(dev: netdev, skb, sb_dev); |
3795 | |
3796 | prio = skb->priority; |
3797 | hw = &vsi->back->hw; |
3798 | tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; |
3799 | /* sanity check */ |
3800 | if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) |
3801 | tclass = 0; |
3802 | |
3803 | /* select a queue assigned for the given TC */ |
3804 | qcount = vsi->tc_config.tc_info[tclass].qcount; |
3805 | hash = i40e_swdcb_skb_tx_hash(dev: netdev, skb, num_tx_queues: qcount); |
3806 | |
3807 | qoffset = vsi->tc_config.tc_info[tclass].qoffset; |
3808 | return qoffset + hash; |
3809 | } |
3810 | |
3811 | /** |
3812 | * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring |
3813 | * @xdpf: data to transmit |
3814 | * @xdp_ring: XDP Tx ring |
3815 | **/ |
3816 | static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, |
3817 | struct i40e_ring *xdp_ring) |
3818 | { |
3819 | struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(frame: xdpf); |
3820 | u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; |
3821 | u16 i = 0, index = xdp_ring->next_to_use; |
3822 | struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index]; |
3823 | struct i40e_tx_buffer *tx_bi = tx_head; |
3824 | struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index); |
3825 | void *data = xdpf->data; |
3826 | u32 size = xdpf->len; |
3827 | |
3828 | if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) { |
3829 | xdp_ring->tx_stats.tx_busy++; |
3830 | return I40E_XDP_CONSUMED; |
3831 | } |
3832 | |
3833 | tx_head->bytecount = xdp_get_frame_len(xdpf); |
3834 | tx_head->gso_segs = 1; |
3835 | tx_head->xdpf = xdpf; |
3836 | |
3837 | for (;;) { |
3838 | dma_addr_t dma; |
3839 | |
3840 | dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); |
3841 | if (dma_mapping_error(dev: xdp_ring->dev, dma_addr: dma)) |
3842 | goto unmap; |
3843 | |
3844 | /* record length, and DMA address */ |
3845 | dma_unmap_len_set(tx_bi, len, size); |
3846 | dma_unmap_addr_set(tx_bi, dma, dma); |
3847 | |
3848 | tx_desc->buffer_addr = cpu_to_le64(dma); |
3849 | tx_desc->cmd_type_offset_bsz = |
3850 | build_ctob(td_cmd: I40E_TX_DESC_CMD_ICRC, td_offset: 0, size, td_tag: 0); |
3851 | |
3852 | if (++index == xdp_ring->count) |
3853 | index = 0; |
3854 | |
3855 | if (i == nr_frags) |
3856 | break; |
3857 | |
3858 | tx_bi = &xdp_ring->tx_bi[index]; |
3859 | tx_desc = I40E_TX_DESC(xdp_ring, index); |
3860 | |
3861 | data = skb_frag_address(frag: &sinfo->frags[i]); |
3862 | size = skb_frag_size(frag: &sinfo->frags[i]); |
3863 | i++; |
3864 | } |
3865 | |
3866 | tx_desc->cmd_type_offset_bsz |= |
3867 | cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); |
3868 | |
3869 | /* Make certain all of the status bits have been updated |
3870 | * before next_to_watch is written. |
3871 | */ |
3872 | smp_wmb(); |
3873 | |
3874 | xdp_ring->xdp_tx_active++; |
3875 | |
3876 | tx_head->next_to_watch = tx_desc; |
3877 | xdp_ring->next_to_use = index; |
3878 | |
3879 | return I40E_XDP_TX; |
3880 | |
3881 | unmap: |
3882 | for (;;) { |
3883 | tx_bi = &xdp_ring->tx_bi[index]; |
3884 | if (dma_unmap_len(tx_bi, len)) |
3885 | dma_unmap_page(xdp_ring->dev, |
3886 | dma_unmap_addr(tx_bi, dma), |
3887 | dma_unmap_len(tx_bi, len), |
3888 | DMA_TO_DEVICE); |
3889 | dma_unmap_len_set(tx_bi, len, 0); |
3890 | if (tx_bi == tx_head) |
3891 | break; |
3892 | |
3893 | if (!index) |
3894 | index += xdp_ring->count; |
3895 | index--; |
3896 | } |
3897 | |
3898 | return I40E_XDP_CONSUMED; |
3899 | } |
3900 | |
3901 | /** |
3902 | * i40e_xmit_frame_ring - Sends buffer on Tx ring |
3903 | * @skb: send buffer |
3904 | * @tx_ring: ring to send buffer on |
3905 | * |
3906 | * Returns NETDEV_TX_OK if sent, else an error code |
3907 | **/ |
3908 | static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, |
3909 | struct i40e_ring *tx_ring) |
3910 | { |
3911 | u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; |
3912 | u32 cd_tunneling = 0, cd_l2tag2 = 0; |
3913 | struct i40e_tx_buffer *first; |
3914 | u32 td_offset = 0; |
3915 | u32 tx_flags = 0; |
3916 | u32 td_cmd = 0; |
3917 | u8 hdr_len = 0; |
3918 | int tso, count; |
3919 | int tsyn; |
3920 | |
3921 | /* prefetch the data, we'll need it later */ |
3922 | prefetch(skb->data); |
3923 | |
3924 | i40e_trace(xmit_frame_ring, skb, tx_ring); |
3925 | |
3926 | count = i40e_xmit_descriptor_count(skb); |
3927 | if (i40e_chk_linearize(skb, count)) { |
3928 | if (__skb_linearize(skb)) { |
3929 | dev_kfree_skb_any(skb); |
3930 | return NETDEV_TX_OK; |
3931 | } |
3932 | count = i40e_txd_use_count(size: skb->len); |
3933 | tx_ring->tx_stats.tx_linearize++; |
3934 | } |
3935 | |
3936 | /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, |
3937 | * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, |
3938 | * + 4 desc gap to avoid the cache line where head is, |
3939 | * + 1 desc for context descriptor, |
3940 | * otherwise try next time |
3941 | */ |
3942 | if (i40e_maybe_stop_tx(tx_ring, size: count + 4 + 1)) { |
3943 | tx_ring->tx_stats.tx_busy++; |
3944 | return NETDEV_TX_BUSY; |
3945 | } |
3946 | |
3947 | /* record the location of the first descriptor for this packet */ |
3948 | first = &tx_ring->tx_bi[tx_ring->next_to_use]; |
3949 | first->skb = skb; |
3950 | first->bytecount = skb->len; |
3951 | first->gso_segs = 1; |
3952 | |
3953 | /* prepare the xmit flags */ |
3954 | if (i40e_tx_prepare_vlan_flags(skb, tx_ring, flags: &tx_flags)) |
3955 | goto out_drop; |
3956 | |
3957 | tso = i40e_tso(first, hdr_len: &hdr_len, cd_type_cmd_tso_mss: &cd_type_cmd_tso_mss); |
3958 | |
3959 | if (tso < 0) |
3960 | goto out_drop; |
3961 | else if (tso) |
3962 | tx_flags |= I40E_TX_FLAGS_TSO; |
3963 | |
3964 | /* Always offload the checksum, since it's in the data descriptor */ |
3965 | tso = i40e_tx_enable_csum(skb, tx_flags: &tx_flags, td_cmd: &td_cmd, td_offset: &td_offset, |
3966 | tx_ring, cd_tunneling: &cd_tunneling); |
3967 | if (tso < 0) |
3968 | goto out_drop; |
3969 | |
3970 | tsyn = i40e_tsyn(tx_ring, skb, tx_flags, cd_type_cmd_tso_mss: &cd_type_cmd_tso_mss); |
3971 | |
3972 | if (tsyn) |
3973 | tx_flags |= I40E_TX_FLAGS_TSYN; |
3974 | |
3975 | /* always enable CRC insertion offload */ |
3976 | td_cmd |= I40E_TX_DESC_CMD_ICRC; |
3977 | |
3978 | i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, |
3979 | cd_tunneling, cd_l2tag2); |
3980 | |
3981 | /* Add Flow Director ATR if it's enabled. |
3982 | * |
3983 | * NOTE: this must always be directly before the data descriptor. |
3984 | */ |
3985 | i40e_atr(tx_ring, skb, tx_flags); |
3986 | |
3987 | if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, |
3988 | td_cmd, td_offset)) |
3989 | goto cleanup_tx_tstamp; |
3990 | |
3991 | return NETDEV_TX_OK; |
3992 | |
3993 | out_drop: |
3994 | i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); |
3995 | dev_kfree_skb_any(skb: first->skb); |
3996 | first->skb = NULL; |
3997 | cleanup_tx_tstamp: |
3998 | if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { |
3999 | struct i40e_pf *pf = i40e_netdev_to_pf(netdev: tx_ring->netdev); |
4000 | |
4001 | dev_kfree_skb_any(skb: pf->ptp_tx_skb); |
4002 | pf->ptp_tx_skb = NULL; |
4003 | clear_bit_unlock(nr: __I40E_PTP_TX_IN_PROGRESS, addr: pf->state); |
4004 | } |
4005 | |
4006 | return NETDEV_TX_OK; |
4007 | } |
4008 | |
4009 | /** |
4010 | * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer |
4011 | * @skb: send buffer |
4012 | * @netdev: network interface device structure |
4013 | * |
4014 | * Returns NETDEV_TX_OK if sent, else an error code |
4015 | **/ |
4016 | netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
4017 | { |
4018 | struct i40e_netdev_priv *np = netdev_priv(dev: netdev); |
4019 | struct i40e_vsi *vsi = np->vsi; |
4020 | struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; |
4021 | |
4022 | /* hardware can't handle really short frames, hardware padding works |
4023 | * beyond this point |
4024 | */ |
4025 | if (skb_put_padto(skb, I40E_MIN_TX_LEN)) |
4026 | return NETDEV_TX_OK; |
4027 | |
4028 | return i40e_xmit_frame_ring(skb, tx_ring); |
4029 | } |
4030 | |
4031 | /** |
4032 | * i40e_xdp_xmit - Implements ndo_xdp_xmit |
4033 | * @dev: netdev |
4034 | * @n: number of frames |
4035 | * @frames: array of XDP buffer pointers |
4036 | * @flags: XDP extra info |
4037 | * |
4038 | * Returns number of frames successfully sent. Failed frames |
4039 | * will be free'ed by XDP core. |
4040 | * |
4041 | * For error cases, a negative errno code is returned and no-frames |
4042 | * are transmitted (caller must handle freeing frames). |
4043 | **/ |
4044 | int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, |
4045 | u32 flags) |
4046 | { |
4047 | struct i40e_netdev_priv *np = netdev_priv(dev); |
4048 | unsigned int queue_index = smp_processor_id(); |
4049 | struct i40e_vsi *vsi = np->vsi; |
4050 | struct i40e_pf *pf = vsi->back; |
4051 | struct i40e_ring *xdp_ring; |
4052 | int nxmit = 0; |
4053 | int i; |
4054 | |
4055 | if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
4056 | return -ENETDOWN; |
4057 | |
4058 | if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || |
4059 | test_bit(__I40E_CONFIG_BUSY, pf->state)) |
4060 | return -ENXIO; |
4061 | |
4062 | if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
4063 | return -EINVAL; |
4064 | |
4065 | xdp_ring = vsi->xdp_rings[queue_index]; |
4066 | |
4067 | for (i = 0; i < n; i++) { |
4068 | struct xdp_frame *xdpf = frames[i]; |
4069 | int err; |
4070 | |
4071 | err = i40e_xmit_xdp_ring(xdpf, xdp_ring); |
4072 | if (err != I40E_XDP_TX) |
4073 | break; |
4074 | nxmit++; |
4075 | } |
4076 | |
4077 | if (unlikely(flags & XDP_XMIT_FLUSH)) |
4078 | i40e_xdp_ring_update_tail(xdp_ring); |
4079 | |
4080 | return nxmit; |
4081 | } |
4082 |
Definitions
- i40e_fdir
- i40e_program_fdir_filter
- i40e_create_dummy_packet
- i40e_create_dummy_udp_packet
- i40e_create_dummy_tcp_packet
- i40e_create_dummy_sctp_packet
- i40e_prepare_fdir_filter
- i40e_change_filter_num
- i40e_add_del_fdir_udp
- i40e_add_del_fdir_tcp
- i40e_add_del_fdir_sctp
- i40e_add_del_fdir_ip
- i40e_add_del_fdir
- i40e_fd_handle_status
- i40e_unmap_and_free_tx_resource
- i40e_clean_tx_ring
- i40e_free_tx_resources
- i40e_get_tx_pending
- i40e_detect_recover_hung
- i40e_clean_tx_irq
- i40e_enable_wb_on_itr
- i40e_force_wb
- i40e_container_is_rx
- i40e_itr_divisor
- i40e_update_itr
- i40e_rx_bi
- i40e_reuse_rx_page
- i40e_clean_programming_status
- i40e_setup_tx_descriptors
- i40e_clear_rx_bi
- i40e_clean_rx_ring
- i40e_free_rx_resources
- i40e_setup_rx_descriptors
- i40e_release_rx_desc
- i40e_alloc_mapped_page
- i40e_alloc_rx_buffers
- i40e_rx_checksum
- i40e_ptype_to_htype
- i40e_rx_hash
- i40e_process_skb_fields
- i40e_cleanup_headers
- i40e_can_reuse_rx_page
- i40e_rx_buffer_flip
- i40e_get_rx_buffer
- i40e_put_rx_buffer
- i40e_process_rx_buffs
- i40e_construct_skb
- i40e_build_skb
- i40e_is_non_eop
- i40e_xmit_xdp_tx_ring
- i40e_run_xdp
- i40e_xdp_ring_update_tail
- i40e_update_rx_stats
- i40e_finalize_xdp_rx
- i40e_inc_ntp
- i40e_add_xdp_frag
- i40e_consume_xdp_buff
- i40e_clean_rx_irq
- i40e_buildreg_itr
- i40e_update_enable_itr
- i40e_napi_poll
- i40e_atr
- i40e_tx_prepare_vlan_flags
- i40e_tso
- i40e_tsyn
- i40e_tx_enable_csum
- i40e_create_tx_ctx
- __i40e_maybe_stop_tx
- __i40e_chk_linearize
- i40e_tx_map
- i40e_swdcb_skb_tx_hash
- i40e_lan_select_queue
- i40e_xmit_xdp_ring
- i40e_xmit_frame_ring
- i40e_lan_xmit_frame
Improve your Profiling and Debugging skills
Find out more