| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * kernel/sched/core.c |
| 4 | * |
| 5 | * Core kernel CPU scheduler code |
| 6 | * |
| 7 | * Copyright (C) 1991-2002 Linus Torvalds |
| 8 | * Copyright (C) 1998-2024 Ingo Molnar, Red Hat |
| 9 | */ |
| 10 | #include <linux/highmem.h> |
| 11 | #include <linux/hrtimer_api.h> |
| 12 | #include <linux/ktime_api.h> |
| 13 | #include <linux/sched/signal.h> |
| 14 | #include <linux/syscalls_api.h> |
| 15 | #include <linux/debug_locks.h> |
| 16 | #include <linux/prefetch.h> |
| 17 | #include <linux/capability.h> |
| 18 | #include <linux/pgtable_api.h> |
| 19 | #include <linux/wait_bit.h> |
| 20 | #include <linux/jiffies.h> |
| 21 | #include <linux/spinlock_api.h> |
| 22 | #include <linux/cpumask_api.h> |
| 23 | #include <linux/lockdep_api.h> |
| 24 | #include <linux/hardirq.h> |
| 25 | #include <linux/softirq.h> |
| 26 | #include <linux/refcount_api.h> |
| 27 | #include <linux/topology.h> |
| 28 | #include <linux/sched/clock.h> |
| 29 | #include <linux/sched/cond_resched.h> |
| 30 | #include <linux/sched/cputime.h> |
| 31 | #include <linux/sched/debug.h> |
| 32 | #include <linux/sched/hotplug.h> |
| 33 | #include <linux/sched/init.h> |
| 34 | #include <linux/sched/isolation.h> |
| 35 | #include <linux/sched/loadavg.h> |
| 36 | #include <linux/sched/mm.h> |
| 37 | #include <linux/sched/nohz.h> |
| 38 | #include <linux/sched/rseq_api.h> |
| 39 | #include <linux/sched/rt.h> |
| 40 | |
| 41 | #include <linux/blkdev.h> |
| 42 | #include <linux/context_tracking.h> |
| 43 | #include <linux/cpuset.h> |
| 44 | #include <linux/delayacct.h> |
| 45 | #include <linux/init_task.h> |
| 46 | #include <linux/interrupt.h> |
| 47 | #include <linux/ioprio.h> |
| 48 | #include <linux/kallsyms.h> |
| 49 | #include <linux/kcov.h> |
| 50 | #include <linux/kprobes.h> |
| 51 | #include <linux/llist_api.h> |
| 52 | #include <linux/mmu_context.h> |
| 53 | #include <linux/mmzone.h> |
| 54 | #include <linux/mutex_api.h> |
| 55 | #include <linux/nmi.h> |
| 56 | #include <linux/nospec.h> |
| 57 | #include <linux/perf_event_api.h> |
| 58 | #include <linux/profile.h> |
| 59 | #include <linux/psi.h> |
| 60 | #include <linux/rcuwait_api.h> |
| 61 | #include <linux/rseq.h> |
| 62 | #include <linux/sched/wake_q.h> |
| 63 | #include <linux/scs.h> |
| 64 | #include <linux/slab.h> |
| 65 | #include <linux/syscalls.h> |
| 66 | #include <linux/vtime.h> |
| 67 | #include <linux/wait_api.h> |
| 68 | #include <linux/workqueue_api.h> |
| 69 | #include <linux/livepatch_sched.h> |
| 70 | |
| 71 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 72 | # ifdef CONFIG_GENERIC_ENTRY |
| 73 | # include <linux/entry-common.h> |
| 74 | # endif |
| 75 | #endif |
| 76 | |
| 77 | #include <uapi/linux/sched/types.h> |
| 78 | |
| 79 | #include <asm/irq_regs.h> |
| 80 | #include <asm/switch_to.h> |
| 81 | #include <asm/tlb.h> |
| 82 | |
| 83 | #define CREATE_TRACE_POINTS |
| 84 | #include <linux/sched/rseq_api.h> |
| 85 | #include <trace/events/sched.h> |
| 86 | #include <trace/events/ipi.h> |
| 87 | #undef CREATE_TRACE_POINTS |
| 88 | |
| 89 | #include "sched.h" |
| 90 | #include "stats.h" |
| 91 | |
| 92 | #include "autogroup.h" |
| 93 | #include "pelt.h" |
| 94 | #include "smp.h" |
| 95 | |
| 96 | #include "../workqueue_internal.h" |
| 97 | #include "../../io_uring/io-wq.h" |
| 98 | #include "../smpboot.h" |
| 99 | |
| 100 | EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); |
| 101 | EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); |
| 102 | |
| 103 | /* |
| 104 | * Export tracepoints that act as a bare tracehook (ie: have no trace event |
| 105 | * associated with them) to allow external modules to probe them. |
| 106 | */ |
| 107 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); |
| 108 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); |
| 109 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); |
| 110 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); |
| 111 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); |
| 112 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); |
| 113 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); |
| 114 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); |
| 115 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); |
| 116 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); |
| 117 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); |
| 118 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); |
| 119 | |
| 120 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 121 | |
| 122 | /* |
| 123 | * Debugging: various feature bits |
| 124 | * |
| 125 | * If SCHED_DEBUG is disabled, each compilation unit has its own copy of |
| 126 | * sysctl_sched_features, defined in sched.h, to allow constants propagation |
| 127 | * at compile time and compiler optimization based on features default. |
| 128 | */ |
| 129 | #define SCHED_FEAT(name, enabled) \ |
| 130 | (1UL << __SCHED_FEAT_##name) * enabled | |
| 131 | __read_mostly unsigned int sysctl_sched_features = |
| 132 | #include "features.h" |
| 133 | 0; |
| 134 | #undef SCHED_FEAT |
| 135 | |
| 136 | /* |
| 137 | * Print a warning if need_resched is set for the given duration (if |
| 138 | * LATENCY_WARN is enabled). |
| 139 | * |
| 140 | * If sysctl_resched_latency_warn_once is set, only one warning will be shown |
| 141 | * per boot. |
| 142 | */ |
| 143 | __read_mostly int sysctl_resched_latency_warn_ms = 100; |
| 144 | __read_mostly int sysctl_resched_latency_warn_once = 1; |
| 145 | |
| 146 | /* |
| 147 | * Number of tasks to iterate in a single balance run. |
| 148 | * Limited because this is done with IRQs disabled. |
| 149 | */ |
| 150 | __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; |
| 151 | |
| 152 | __read_mostly int scheduler_running; |
| 153 | |
| 154 | #ifdef CONFIG_SCHED_CORE |
| 155 | |
| 156 | DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); |
| 157 | |
| 158 | /* kernel prio, less is more */ |
| 159 | static inline int __task_prio(const struct task_struct *p) |
| 160 | { |
| 161 | if (p->sched_class == &stop_sched_class) /* trumps deadline */ |
| 162 | return -2; |
| 163 | |
| 164 | if (p->dl_server) |
| 165 | return -1; /* deadline */ |
| 166 | |
| 167 | if (rt_or_dl_prio(prio: p->prio)) |
| 168 | return p->prio; /* [-1, 99] */ |
| 169 | |
| 170 | if (p->sched_class == &idle_sched_class) |
| 171 | return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ |
| 172 | |
| 173 | if (task_on_scx(p)) |
| 174 | return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ |
| 175 | |
| 176 | return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * l(a,b) |
| 181 | * le(a,b) := !l(b,a) |
| 182 | * g(a,b) := l(b,a) |
| 183 | * ge(a,b) := !l(a,b) |
| 184 | */ |
| 185 | |
| 186 | /* real prio, less is less */ |
| 187 | static inline bool prio_less(const struct task_struct *a, |
| 188 | const struct task_struct *b, bool in_fi) |
| 189 | { |
| 190 | |
| 191 | int pa = __task_prio(p: a), pb = __task_prio(p: b); |
| 192 | |
| 193 | if (-pa < -pb) |
| 194 | return true; |
| 195 | |
| 196 | if (-pb < -pa) |
| 197 | return false; |
| 198 | |
| 199 | if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ |
| 200 | const struct sched_dl_entity *a_dl, *b_dl; |
| 201 | |
| 202 | a_dl = &a->dl; |
| 203 | /* |
| 204 | * Since,'a' and 'b' can be CFS tasks served by DL server, |
| 205 | * __task_prio() can return -1 (for DL) even for those. In that |
| 206 | * case, get to the dl_server's DL entity. |
| 207 | */ |
| 208 | if (a->dl_server) |
| 209 | a_dl = a->dl_server; |
| 210 | |
| 211 | b_dl = &b->dl; |
| 212 | if (b->dl_server) |
| 213 | b_dl = b->dl_server; |
| 214 | |
| 215 | return !dl_time_before(a: a_dl->deadline, b: b_dl->deadline); |
| 216 | } |
| 217 | |
| 218 | if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ |
| 219 | return cfs_prio_less(a, b, fi: in_fi); |
| 220 | |
| 221 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 222 | if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ |
| 223 | return scx_prio_less(a, b, in_fi); |
| 224 | #endif |
| 225 | |
| 226 | return false; |
| 227 | } |
| 228 | |
| 229 | static inline bool __sched_core_less(const struct task_struct *a, |
| 230 | const struct task_struct *b) |
| 231 | { |
| 232 | if (a->core_cookie < b->core_cookie) |
| 233 | return true; |
| 234 | |
| 235 | if (a->core_cookie > b->core_cookie) |
| 236 | return false; |
| 237 | |
| 238 | /* flip prio, so high prio is leftmost */ |
| 239 | if (prio_less(a: b, b: a, in_fi: !!task_rq(a)->core->core_forceidle_count)) |
| 240 | return true; |
| 241 | |
| 242 | return false; |
| 243 | } |
| 244 | |
| 245 | #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) |
| 246 | |
| 247 | static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) |
| 248 | { |
| 249 | return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); |
| 250 | } |
| 251 | |
| 252 | static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) |
| 253 | { |
| 254 | const struct task_struct *p = __node_2_sc(node); |
| 255 | unsigned long cookie = (unsigned long)key; |
| 256 | |
| 257 | if (cookie < p->core_cookie) |
| 258 | return -1; |
| 259 | |
| 260 | if (cookie > p->core_cookie) |
| 261 | return 1; |
| 262 | |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | void sched_core_enqueue(struct rq *rq, struct task_struct *p) |
| 267 | { |
| 268 | if (p->se.sched_delayed) |
| 269 | return; |
| 270 | |
| 271 | rq->core->core_task_seq++; |
| 272 | |
| 273 | if (!p->core_cookie) |
| 274 | return; |
| 275 | |
| 276 | rb_add(node: &p->core_node, tree: &rq->core_tree, less: rb_sched_core_less); |
| 277 | } |
| 278 | |
| 279 | void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) |
| 280 | { |
| 281 | if (p->se.sched_delayed) |
| 282 | return; |
| 283 | |
| 284 | rq->core->core_task_seq++; |
| 285 | |
| 286 | if (sched_core_enqueued(p)) { |
| 287 | rb_erase(&p->core_node, &rq->core_tree); |
| 288 | RB_CLEAR_NODE(&p->core_node); |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Migrating the last task off the cpu, with the cpu in forced idle |
| 293 | * state. Reschedule to create an accounting edge for forced idle, |
| 294 | * and re-examine whether the core is still in forced idle state. |
| 295 | */ |
| 296 | if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && |
| 297 | rq->core->core_forceidle_count && rq->curr == rq->idle) |
| 298 | resched_curr(rq); |
| 299 | } |
| 300 | |
| 301 | static int sched_task_is_throttled(struct task_struct *p, int cpu) |
| 302 | { |
| 303 | if (p->sched_class->task_is_throttled) |
| 304 | return p->sched_class->task_is_throttled(p, cpu); |
| 305 | |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) |
| 310 | { |
| 311 | struct rb_node *node = &p->core_node; |
| 312 | int cpu = task_cpu(p); |
| 313 | |
| 314 | do { |
| 315 | node = rb_next(node); |
| 316 | if (!node) |
| 317 | return NULL; |
| 318 | |
| 319 | p = __node_2_sc(node); |
| 320 | if (p->core_cookie != cookie) |
| 321 | return NULL; |
| 322 | |
| 323 | } while (sched_task_is_throttled(p, cpu)); |
| 324 | |
| 325 | return p; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Find left-most (aka, highest priority) and unthrottled task matching @cookie. |
| 330 | * If no suitable task is found, NULL will be returned. |
| 331 | */ |
| 332 | static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) |
| 333 | { |
| 334 | struct task_struct *p; |
| 335 | struct rb_node *node; |
| 336 | |
| 337 | node = rb_find_first(key: (void *)cookie, tree: &rq->core_tree, cmp: rb_sched_core_cmp); |
| 338 | if (!node) |
| 339 | return NULL; |
| 340 | |
| 341 | p = __node_2_sc(node); |
| 342 | if (!sched_task_is_throttled(p, cpu: rq->cpu)) |
| 343 | return p; |
| 344 | |
| 345 | return sched_core_next(p, cookie); |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Magic required such that: |
| 350 | * |
| 351 | * raw_spin_rq_lock(rq); |
| 352 | * ... |
| 353 | * raw_spin_rq_unlock(rq); |
| 354 | * |
| 355 | * ends up locking and unlocking the _same_ lock, and all CPUs |
| 356 | * always agree on what rq has what lock. |
| 357 | * |
| 358 | * XXX entirely possible to selectively enable cores, don't bother for now. |
| 359 | */ |
| 360 | |
| 361 | static DEFINE_MUTEX(sched_core_mutex); |
| 362 | static atomic_t sched_core_count; |
| 363 | static struct cpumask sched_core_mask; |
| 364 | |
| 365 | static void sched_core_lock(int cpu, unsigned long *flags) |
| 366 | { |
| 367 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 368 | int t, i = 0; |
| 369 | |
| 370 | local_irq_save(*flags); |
| 371 | for_each_cpu(t, smt_mask) |
| 372 | raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); |
| 373 | } |
| 374 | |
| 375 | static void sched_core_unlock(int cpu, unsigned long *flags) |
| 376 | { |
| 377 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 378 | int t; |
| 379 | |
| 380 | for_each_cpu(t, smt_mask) |
| 381 | raw_spin_unlock(&cpu_rq(t)->__lock); |
| 382 | local_irq_restore(*flags); |
| 383 | } |
| 384 | |
| 385 | static void __sched_core_flip(bool enabled) |
| 386 | { |
| 387 | unsigned long flags; |
| 388 | int cpu, t; |
| 389 | |
| 390 | cpus_read_lock(); |
| 391 | |
| 392 | /* |
| 393 | * Toggle the online cores, one by one. |
| 394 | */ |
| 395 | cpumask_copy(dstp: &sched_core_mask, cpu_online_mask); |
| 396 | for_each_cpu(cpu, &sched_core_mask) { |
| 397 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 398 | |
| 399 | sched_core_lock(cpu, flags: &flags); |
| 400 | |
| 401 | for_each_cpu(t, smt_mask) |
| 402 | cpu_rq(t)->core_enabled = enabled; |
| 403 | |
| 404 | cpu_rq(cpu)->core->core_forceidle_start = 0; |
| 405 | |
| 406 | sched_core_unlock(cpu, flags: &flags); |
| 407 | |
| 408 | cpumask_andnot(dstp: &sched_core_mask, src1p: &sched_core_mask, src2p: smt_mask); |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Toggle the offline CPUs. |
| 413 | */ |
| 414 | for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) |
| 415 | cpu_rq(cpu)->core_enabled = enabled; |
| 416 | |
| 417 | cpus_read_unlock(); |
| 418 | } |
| 419 | |
| 420 | static void sched_core_assert_empty(void) |
| 421 | { |
| 422 | int cpu; |
| 423 | |
| 424 | for_each_possible_cpu(cpu) |
| 425 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); |
| 426 | } |
| 427 | |
| 428 | static void __sched_core_enable(void) |
| 429 | { |
| 430 | static_branch_enable(&__sched_core_enabled); |
| 431 | /* |
| 432 | * Ensure all previous instances of raw_spin_rq_*lock() have finished |
| 433 | * and future ones will observe !sched_core_disabled(). |
| 434 | */ |
| 435 | synchronize_rcu(); |
| 436 | __sched_core_flip(enabled: true); |
| 437 | sched_core_assert_empty(); |
| 438 | } |
| 439 | |
| 440 | static void __sched_core_disable(void) |
| 441 | { |
| 442 | sched_core_assert_empty(); |
| 443 | __sched_core_flip(enabled: false); |
| 444 | static_branch_disable(&__sched_core_enabled); |
| 445 | } |
| 446 | |
| 447 | void sched_core_get(void) |
| 448 | { |
| 449 | if (atomic_inc_not_zero(v: &sched_core_count)) |
| 450 | return; |
| 451 | |
| 452 | mutex_lock(&sched_core_mutex); |
| 453 | if (!atomic_read(v: &sched_core_count)) |
| 454 | __sched_core_enable(); |
| 455 | |
| 456 | smp_mb__before_atomic(); |
| 457 | atomic_inc(v: &sched_core_count); |
| 458 | mutex_unlock(lock: &sched_core_mutex); |
| 459 | } |
| 460 | |
| 461 | static void __sched_core_put(struct work_struct *work) |
| 462 | { |
| 463 | if (atomic_dec_and_mutex_lock(cnt: &sched_core_count, lock: &sched_core_mutex)) { |
| 464 | __sched_core_disable(); |
| 465 | mutex_unlock(lock: &sched_core_mutex); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | void sched_core_put(void) |
| 470 | { |
| 471 | static DECLARE_WORK(_work, __sched_core_put); |
| 472 | |
| 473 | /* |
| 474 | * "There can be only one" |
| 475 | * |
| 476 | * Either this is the last one, or we don't actually need to do any |
| 477 | * 'work'. If it is the last *again*, we rely on |
| 478 | * WORK_STRUCT_PENDING_BIT. |
| 479 | */ |
| 480 | if (!atomic_add_unless(v: &sched_core_count, a: -1, u: 1)) |
| 481 | schedule_work(work: &_work); |
| 482 | } |
| 483 | |
| 484 | #else /* !CONFIG_SCHED_CORE */ |
| 485 | |
| 486 | static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } |
| 487 | static inline void |
| 488 | sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } |
| 489 | |
| 490 | #endif /* CONFIG_SCHED_CORE */ |
| 491 | |
| 492 | /* need a wrapper since we may need to trace from modules */ |
| 493 | EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); |
| 494 | |
| 495 | /* Call via the helper macro trace_set_current_state. */ |
| 496 | void __trace_set_current_state(int state_value) |
| 497 | { |
| 498 | trace_sched_set_state_tp(current, state: state_value); |
| 499 | } |
| 500 | EXPORT_SYMBOL(__trace_set_current_state); |
| 501 | |
| 502 | /* |
| 503 | * Serialization rules: |
| 504 | * |
| 505 | * Lock order: |
| 506 | * |
| 507 | * p->pi_lock |
| 508 | * rq->lock |
| 509 | * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) |
| 510 | * |
| 511 | * rq1->lock |
| 512 | * rq2->lock where: rq1 < rq2 |
| 513 | * |
| 514 | * Regular state: |
| 515 | * |
| 516 | * Normal scheduling state is serialized by rq->lock. __schedule() takes the |
| 517 | * local CPU's rq->lock, it optionally removes the task from the runqueue and |
| 518 | * always looks at the local rq data structures to find the most eligible task |
| 519 | * to run next. |
| 520 | * |
| 521 | * Task enqueue is also under rq->lock, possibly taken from another CPU. |
| 522 | * Wakeups from another LLC domain might use an IPI to transfer the enqueue to |
| 523 | * the local CPU to avoid bouncing the runqueue state around [ see |
| 524 | * ttwu_queue_wakelist() ] |
| 525 | * |
| 526 | * Task wakeup, specifically wakeups that involve migration, are horribly |
| 527 | * complicated to avoid having to take two rq->locks. |
| 528 | * |
| 529 | * Special state: |
| 530 | * |
| 531 | * System-calls and anything external will use task_rq_lock() which acquires |
| 532 | * both p->pi_lock and rq->lock. As a consequence the state they change is |
| 533 | * stable while holding either lock: |
| 534 | * |
| 535 | * - sched_setaffinity()/ |
| 536 | * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed |
| 537 | * - set_user_nice(): p->se.load, p->*prio |
| 538 | * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, |
| 539 | * p->se.load, p->rt_priority, |
| 540 | * p->dl.dl_{runtime, deadline, period, flags, bw, density} |
| 541 | * - sched_setnuma(): p->numa_preferred_nid |
| 542 | * - sched_move_task(): p->sched_task_group |
| 543 | * - uclamp_update_active() p->uclamp* |
| 544 | * |
| 545 | * p->state <- TASK_*: |
| 546 | * |
| 547 | * is changed locklessly using set_current_state(), __set_current_state() or |
| 548 | * set_special_state(), see their respective comments, or by |
| 549 | * try_to_wake_up(). This latter uses p->pi_lock to serialize against |
| 550 | * concurrent self. |
| 551 | * |
| 552 | * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: |
| 553 | * |
| 554 | * is set by activate_task() and cleared by deactivate_task(), under |
| 555 | * rq->lock. Non-zero indicates the task is runnable, the special |
| 556 | * ON_RQ_MIGRATING state is used for migration without holding both |
| 557 | * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). |
| 558 | * |
| 559 | * Additionally it is possible to be ->on_rq but still be considered not |
| 560 | * runnable when p->se.sched_delayed is true. These tasks are on the runqueue |
| 561 | * but will be dequeued as soon as they get picked again. See the |
| 562 | * task_is_runnable() helper. |
| 563 | * |
| 564 | * p->on_cpu <- { 0, 1 }: |
| 565 | * |
| 566 | * is set by prepare_task() and cleared by finish_task() such that it will be |
| 567 | * set before p is scheduled-in and cleared after p is scheduled-out, both |
| 568 | * under rq->lock. Non-zero indicates the task is running on its CPU. |
| 569 | * |
| 570 | * [ The astute reader will observe that it is possible for two tasks on one |
| 571 | * CPU to have ->on_cpu = 1 at the same time. ] |
| 572 | * |
| 573 | * task_cpu(p): is changed by set_task_cpu(), the rules are: |
| 574 | * |
| 575 | * - Don't call set_task_cpu() on a blocked task: |
| 576 | * |
| 577 | * We don't care what CPU we're not running on, this simplifies hotplug, |
| 578 | * the CPU assignment of blocked tasks isn't required to be valid. |
| 579 | * |
| 580 | * - for try_to_wake_up(), called under p->pi_lock: |
| 581 | * |
| 582 | * This allows try_to_wake_up() to only take one rq->lock, see its comment. |
| 583 | * |
| 584 | * - for migration called under rq->lock: |
| 585 | * [ see task_on_rq_migrating() in task_rq_lock() ] |
| 586 | * |
| 587 | * o move_queued_task() |
| 588 | * o detach_task() |
| 589 | * |
| 590 | * - for migration called under double_rq_lock(): |
| 591 | * |
| 592 | * o __migrate_swap_task() |
| 593 | * o push_rt_task() / pull_rt_task() |
| 594 | * o push_dl_task() / pull_dl_task() |
| 595 | * o dl_task_offline_migration() |
| 596 | * |
| 597 | */ |
| 598 | |
| 599 | void raw_spin_rq_lock_nested(struct rq *rq, int subclass) |
| 600 | { |
| 601 | raw_spinlock_t *lock; |
| 602 | |
| 603 | /* Matches synchronize_rcu() in __sched_core_enable() */ |
| 604 | preempt_disable(); |
| 605 | if (sched_core_disabled()) { |
| 606 | raw_spin_lock_nested(&rq->__lock, subclass); |
| 607 | /* preempt_count *MUST* be > 1 */ |
| 608 | preempt_enable_no_resched(); |
| 609 | return; |
| 610 | } |
| 611 | |
| 612 | for (;;) { |
| 613 | lock = __rq_lockp(rq); |
| 614 | raw_spin_lock_nested(lock, subclass); |
| 615 | if (likely(lock == __rq_lockp(rq))) { |
| 616 | /* preempt_count *MUST* be > 1 */ |
| 617 | preempt_enable_no_resched(); |
| 618 | return; |
| 619 | } |
| 620 | raw_spin_unlock(lock); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | bool raw_spin_rq_trylock(struct rq *rq) |
| 625 | { |
| 626 | raw_spinlock_t *lock; |
| 627 | bool ret; |
| 628 | |
| 629 | /* Matches synchronize_rcu() in __sched_core_enable() */ |
| 630 | preempt_disable(); |
| 631 | if (sched_core_disabled()) { |
| 632 | ret = raw_spin_trylock(&rq->__lock); |
| 633 | preempt_enable(); |
| 634 | return ret; |
| 635 | } |
| 636 | |
| 637 | for (;;) { |
| 638 | lock = __rq_lockp(rq); |
| 639 | ret = raw_spin_trylock(lock); |
| 640 | if (!ret || (likely(lock == __rq_lockp(rq)))) { |
| 641 | preempt_enable(); |
| 642 | return ret; |
| 643 | } |
| 644 | raw_spin_unlock(lock); |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | void raw_spin_rq_unlock(struct rq *rq) |
| 649 | { |
| 650 | raw_spin_unlock(rq_lockp(rq)); |
| 651 | } |
| 652 | |
| 653 | #ifdef CONFIG_SMP |
| 654 | /* |
| 655 | * double_rq_lock - safely lock two runqueues |
| 656 | */ |
| 657 | void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 658 | { |
| 659 | lockdep_assert_irqs_disabled(); |
| 660 | |
| 661 | if (rq_order_less(rq1: rq2, rq2: rq1)) |
| 662 | swap(rq1, rq2); |
| 663 | |
| 664 | raw_spin_rq_lock(rq: rq1); |
| 665 | if (__rq_lockp(rq: rq1) != __rq_lockp(rq: rq2)) |
| 666 | raw_spin_rq_lock_nested(rq: rq2, SINGLE_DEPTH_NESTING); |
| 667 | |
| 668 | double_rq_clock_clear_update(rq1, rq2); |
| 669 | } |
| 670 | #endif |
| 671 | |
| 672 | /* |
| 673 | * __task_rq_lock - lock the rq @p resides on. |
| 674 | */ |
| 675 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 676 | __acquires(rq->lock) |
| 677 | { |
| 678 | struct rq *rq; |
| 679 | |
| 680 | lockdep_assert_held(&p->pi_lock); |
| 681 | |
| 682 | for (;;) { |
| 683 | rq = task_rq(p); |
| 684 | raw_spin_rq_lock(rq); |
| 685 | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { |
| 686 | rq_pin_lock(rq, rf); |
| 687 | return rq; |
| 688 | } |
| 689 | raw_spin_rq_unlock(rq); |
| 690 | |
| 691 | while (unlikely(task_on_rq_migrating(p))) |
| 692 | cpu_relax(); |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. |
| 698 | */ |
| 699 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 700 | __acquires(p->pi_lock) |
| 701 | __acquires(rq->lock) |
| 702 | { |
| 703 | struct rq *rq; |
| 704 | |
| 705 | for (;;) { |
| 706 | raw_spin_lock_irqsave(&p->pi_lock, rf->flags); |
| 707 | rq = task_rq(p); |
| 708 | raw_spin_rq_lock(rq); |
| 709 | /* |
| 710 | * move_queued_task() task_rq_lock() |
| 711 | * |
| 712 | * ACQUIRE (rq->lock) |
| 713 | * [S] ->on_rq = MIGRATING [L] rq = task_rq() |
| 714 | * WMB (__set_task_cpu()) ACQUIRE (rq->lock); |
| 715 | * [S] ->cpu = new_cpu [L] task_rq() |
| 716 | * [L] ->on_rq |
| 717 | * RELEASE (rq->lock) |
| 718 | * |
| 719 | * If we observe the old CPU in task_rq_lock(), the acquire of |
| 720 | * the old rq->lock will fully serialize against the stores. |
| 721 | * |
| 722 | * If we observe the new CPU in task_rq_lock(), the address |
| 723 | * dependency headed by '[L] rq = task_rq()' and the acquire |
| 724 | * will pair with the WMB to ensure we then also see migrating. |
| 725 | */ |
| 726 | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { |
| 727 | rq_pin_lock(rq, rf); |
| 728 | return rq; |
| 729 | } |
| 730 | raw_spin_rq_unlock(rq); |
| 731 | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| 732 | |
| 733 | while (unlikely(task_on_rq_migrating(p))) |
| 734 | cpu_relax(); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * RQ-clock updating methods: |
| 740 | */ |
| 741 | |
| 742 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
| 743 | { |
| 744 | /* |
| 745 | * In theory, the compile should just see 0 here, and optimize out the call |
| 746 | * to sched_rt_avg_update. But I don't trust it... |
| 747 | */ |
| 748 | s64 __maybe_unused steal = 0, irq_delta = 0; |
| 749 | |
| 750 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 751 | if (irqtime_enabled()) { |
| 752 | irq_delta = irq_time_read(cpu: cpu_of(rq)) - rq->prev_irq_time; |
| 753 | |
| 754 | /* |
| 755 | * Since irq_time is only updated on {soft,}irq_exit, we might run into |
| 756 | * this case when a previous update_rq_clock() happened inside a |
| 757 | * {soft,}IRQ region. |
| 758 | * |
| 759 | * When this happens, we stop ->clock_task and only update the |
| 760 | * prev_irq_time stamp to account for the part that fit, so that a next |
| 761 | * update will consume the rest. This ensures ->clock_task is |
| 762 | * monotonic. |
| 763 | * |
| 764 | * It does however cause some slight miss-attribution of {soft,}IRQ |
| 765 | * time, a more accurate solution would be to update the irq_time using |
| 766 | * the current rq->clock timestamp, except that would require using |
| 767 | * atomic ops. |
| 768 | */ |
| 769 | if (irq_delta > delta) |
| 770 | irq_delta = delta; |
| 771 | |
| 772 | rq->prev_irq_time += irq_delta; |
| 773 | delta -= irq_delta; |
| 774 | delayacct_irq(task: rq->curr, delta: irq_delta); |
| 775 | } |
| 776 | #endif |
| 777 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| 778 | if (static_key_false(key: (¶virt_steal_rq_enabled))) { |
| 779 | u64 prev_steal; |
| 780 | |
| 781 | steal = prev_steal = paravirt_steal_clock(cpu: cpu_of(rq)); |
| 782 | steal -= rq->prev_steal_time_rq; |
| 783 | |
| 784 | if (unlikely(steal > delta)) |
| 785 | steal = delta; |
| 786 | |
| 787 | rq->prev_steal_time_rq = prev_steal; |
| 788 | delta -= steal; |
| 789 | } |
| 790 | #endif |
| 791 | |
| 792 | rq->clock_task += delta; |
| 793 | |
| 794 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| 795 | if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) |
| 796 | update_irq_load_avg(rq, running: irq_delta + steal); |
| 797 | #endif |
| 798 | update_rq_clock_pelt(rq, delta); |
| 799 | } |
| 800 | |
| 801 | void update_rq_clock(struct rq *rq) |
| 802 | { |
| 803 | s64 delta; |
| 804 | u64 clock; |
| 805 | |
| 806 | lockdep_assert_rq_held(rq); |
| 807 | |
| 808 | if (rq->clock_update_flags & RQCF_ACT_SKIP) |
| 809 | return; |
| 810 | |
| 811 | if (sched_feat(WARN_DOUBLE_CLOCK)) |
| 812 | WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); |
| 813 | rq->clock_update_flags |= RQCF_UPDATED; |
| 814 | |
| 815 | clock = sched_clock_cpu(cpu: cpu_of(rq)); |
| 816 | scx_rq_clock_update(rq, clock); |
| 817 | |
| 818 | delta = clock - rq->clock; |
| 819 | if (delta < 0) |
| 820 | return; |
| 821 | rq->clock += delta; |
| 822 | |
| 823 | update_rq_clock_task(rq, delta); |
| 824 | } |
| 825 | |
| 826 | #ifdef CONFIG_SCHED_HRTICK |
| 827 | /* |
| 828 | * Use HR-timers to deliver accurate preemption points. |
| 829 | */ |
| 830 | |
| 831 | static void hrtick_clear(struct rq *rq) |
| 832 | { |
| 833 | if (hrtimer_active(timer: &rq->hrtick_timer)) |
| 834 | hrtimer_cancel(timer: &rq->hrtick_timer); |
| 835 | } |
| 836 | |
| 837 | /* |
| 838 | * High-resolution timer tick. |
| 839 | * Runs from hardirq context with interrupts disabled. |
| 840 | */ |
| 841 | static enum hrtimer_restart hrtick(struct hrtimer *timer) |
| 842 | { |
| 843 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
| 844 | struct rq_flags rf; |
| 845 | |
| 846 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
| 847 | |
| 848 | rq_lock(rq, rf: &rf); |
| 849 | update_rq_clock(rq); |
| 850 | rq->donor->sched_class->task_tick(rq, rq->curr, 1); |
| 851 | rq_unlock(rq, rf: &rf); |
| 852 | |
| 853 | return HRTIMER_NORESTART; |
| 854 | } |
| 855 | |
| 856 | #ifdef CONFIG_SMP |
| 857 | |
| 858 | static void __hrtick_restart(struct rq *rq) |
| 859 | { |
| 860 | struct hrtimer *timer = &rq->hrtick_timer; |
| 861 | ktime_t time = rq->hrtick_time; |
| 862 | |
| 863 | hrtimer_start(timer, tim: time, mode: HRTIMER_MODE_ABS_PINNED_HARD); |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * called from hardirq (IPI) context |
| 868 | */ |
| 869 | static void __hrtick_start(void *arg) |
| 870 | { |
| 871 | struct rq *rq = arg; |
| 872 | struct rq_flags rf; |
| 873 | |
| 874 | rq_lock(rq, rf: &rf); |
| 875 | __hrtick_restart(rq); |
| 876 | rq_unlock(rq, rf: &rf); |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Called to set the hrtick timer state. |
| 881 | * |
| 882 | * called with rq->lock held and IRQs disabled |
| 883 | */ |
| 884 | void hrtick_start(struct rq *rq, u64 delay) |
| 885 | { |
| 886 | struct hrtimer *timer = &rq->hrtick_timer; |
| 887 | s64 delta; |
| 888 | |
| 889 | /* |
| 890 | * Don't schedule slices shorter than 10000ns, that just |
| 891 | * doesn't make sense and can cause timer DoS. |
| 892 | */ |
| 893 | delta = max_t(s64, delay, 10000LL); |
| 894 | rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); |
| 895 | |
| 896 | if (rq == this_rq()) |
| 897 | __hrtick_restart(rq); |
| 898 | else |
| 899 | smp_call_function_single_async(cpu: cpu_of(rq), csd: &rq->hrtick_csd); |
| 900 | } |
| 901 | |
| 902 | #else |
| 903 | /* |
| 904 | * Called to set the hrtick timer state. |
| 905 | * |
| 906 | * called with rq->lock held and IRQs disabled |
| 907 | */ |
| 908 | void hrtick_start(struct rq *rq, u64 delay) |
| 909 | { |
| 910 | /* |
| 911 | * Don't schedule slices shorter than 10000ns, that just |
| 912 | * doesn't make sense. Rely on vruntime for fairness. |
| 913 | */ |
| 914 | delay = max_t(u64, delay, 10000LL); |
| 915 | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), |
| 916 | HRTIMER_MODE_REL_PINNED_HARD); |
| 917 | } |
| 918 | |
| 919 | #endif /* CONFIG_SMP */ |
| 920 | |
| 921 | static void hrtick_rq_init(struct rq *rq) |
| 922 | { |
| 923 | #ifdef CONFIG_SMP |
| 924 | INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); |
| 925 | #endif |
| 926 | hrtimer_setup(timer: &rq->hrtick_timer, function: hrtick, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD); |
| 927 | } |
| 928 | #else /* CONFIG_SCHED_HRTICK */ |
| 929 | static inline void hrtick_clear(struct rq *rq) |
| 930 | { |
| 931 | } |
| 932 | |
| 933 | static inline void hrtick_rq_init(struct rq *rq) |
| 934 | { |
| 935 | } |
| 936 | #endif /* CONFIG_SCHED_HRTICK */ |
| 937 | |
| 938 | /* |
| 939 | * try_cmpxchg based fetch_or() macro so it works for different integer types: |
| 940 | */ |
| 941 | #define fetch_or(ptr, mask) \ |
| 942 | ({ \ |
| 943 | typeof(ptr) _ptr = (ptr); \ |
| 944 | typeof(mask) _mask = (mask); \ |
| 945 | typeof(*_ptr) _val = *_ptr; \ |
| 946 | \ |
| 947 | do { \ |
| 948 | } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ |
| 949 | _val; \ |
| 950 | }) |
| 951 | |
| 952 | #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) |
| 953 | /* |
| 954 | * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, |
| 955 | * this avoids any races wrt polling state changes and thereby avoids |
| 956 | * spurious IPIs. |
| 957 | */ |
| 958 | static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) |
| 959 | { |
| 960 | return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); |
| 961 | } |
| 962 | |
| 963 | /* |
| 964 | * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. |
| 965 | * |
| 966 | * If this returns true, then the idle task promises to call |
| 967 | * sched_ttwu_pending() and reschedule soon. |
| 968 | */ |
| 969 | static bool set_nr_if_polling(struct task_struct *p) |
| 970 | { |
| 971 | struct thread_info *ti = task_thread_info(p); |
| 972 | typeof(ti->flags) val = READ_ONCE(ti->flags); |
| 973 | |
| 974 | do { |
| 975 | if (!(val & _TIF_POLLING_NRFLAG)) |
| 976 | return false; |
| 977 | if (val & _TIF_NEED_RESCHED) |
| 978 | return true; |
| 979 | } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); |
| 980 | |
| 981 | return true; |
| 982 | } |
| 983 | |
| 984 | #else |
| 985 | static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) |
| 986 | { |
| 987 | set_ti_thread_flag(ti, tif); |
| 988 | return true; |
| 989 | } |
| 990 | |
| 991 | #ifdef CONFIG_SMP |
| 992 | static inline bool set_nr_if_polling(struct task_struct *p) |
| 993 | { |
| 994 | return false; |
| 995 | } |
| 996 | #endif |
| 997 | #endif |
| 998 | |
| 999 | static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) |
| 1000 | { |
| 1001 | struct wake_q_node *node = &task->wake_q; |
| 1002 | |
| 1003 | /* |
| 1004 | * Atomically grab the task, if ->wake_q is !nil already it means |
| 1005 | * it's already queued (either by us or someone else) and will get the |
| 1006 | * wakeup due to that. |
| 1007 | * |
| 1008 | * In order to ensure that a pending wakeup will observe our pending |
| 1009 | * state, even in the failed case, an explicit smp_mb() must be used. |
| 1010 | */ |
| 1011 | smp_mb__before_atomic(); |
| 1012 | if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) |
| 1013 | return false; |
| 1014 | |
| 1015 | /* |
| 1016 | * The head is context local, there can be no concurrency. |
| 1017 | */ |
| 1018 | *head->lastp = node; |
| 1019 | head->lastp = &node->next; |
| 1020 | return true; |
| 1021 | } |
| 1022 | |
| 1023 | /** |
| 1024 | * wake_q_add() - queue a wakeup for 'later' waking. |
| 1025 | * @head: the wake_q_head to add @task to |
| 1026 | * @task: the task to queue for 'later' wakeup |
| 1027 | * |
| 1028 | * Queue a task for later wakeup, most likely by the wake_up_q() call in the |
| 1029 | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come |
| 1030 | * instantly. |
| 1031 | * |
| 1032 | * This function must be used as-if it were wake_up_process(); IOW the task |
| 1033 | * must be ready to be woken at this location. |
| 1034 | */ |
| 1035 | void wake_q_add(struct wake_q_head *head, struct task_struct *task) |
| 1036 | { |
| 1037 | if (__wake_q_add(head, task)) |
| 1038 | get_task_struct(t: task); |
| 1039 | } |
| 1040 | |
| 1041 | /** |
| 1042 | * wake_q_add_safe() - safely queue a wakeup for 'later' waking. |
| 1043 | * @head: the wake_q_head to add @task to |
| 1044 | * @task: the task to queue for 'later' wakeup |
| 1045 | * |
| 1046 | * Queue a task for later wakeup, most likely by the wake_up_q() call in the |
| 1047 | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come |
| 1048 | * instantly. |
| 1049 | * |
| 1050 | * This function must be used as-if it were wake_up_process(); IOW the task |
| 1051 | * must be ready to be woken at this location. |
| 1052 | * |
| 1053 | * This function is essentially a task-safe equivalent to wake_q_add(). Callers |
| 1054 | * that already hold reference to @task can call the 'safe' version and trust |
| 1055 | * wake_q to do the right thing depending whether or not the @task is already |
| 1056 | * queued for wakeup. |
| 1057 | */ |
| 1058 | void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) |
| 1059 | { |
| 1060 | if (!__wake_q_add(head, task)) |
| 1061 | put_task_struct(t: task); |
| 1062 | } |
| 1063 | |
| 1064 | void wake_up_q(struct wake_q_head *head) |
| 1065 | { |
| 1066 | struct wake_q_node *node = head->first; |
| 1067 | |
| 1068 | while (node != WAKE_Q_TAIL) { |
| 1069 | struct task_struct *task; |
| 1070 | |
| 1071 | task = container_of(node, struct task_struct, wake_q); |
| 1072 | node = node->next; |
| 1073 | /* pairs with cmpxchg_relaxed() in __wake_q_add() */ |
| 1074 | WRITE_ONCE(task->wake_q.next, NULL); |
| 1075 | /* Task can safely be re-inserted now. */ |
| 1076 | |
| 1077 | /* |
| 1078 | * wake_up_process() executes a full barrier, which pairs with |
| 1079 | * the queueing in wake_q_add() so as not to miss wakeups. |
| 1080 | */ |
| 1081 | wake_up_process(tsk: task); |
| 1082 | put_task_struct(t: task); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | /* |
| 1087 | * resched_curr - mark rq's current task 'to be rescheduled now'. |
| 1088 | * |
| 1089 | * On UP this means the setting of the need_resched flag, on SMP it |
| 1090 | * might also involve a cross-CPU call to trigger the scheduler on |
| 1091 | * the target CPU. |
| 1092 | */ |
| 1093 | static void __resched_curr(struct rq *rq, int tif) |
| 1094 | { |
| 1095 | struct task_struct *curr = rq->curr; |
| 1096 | struct thread_info *cti = task_thread_info(curr); |
| 1097 | int cpu; |
| 1098 | |
| 1099 | lockdep_assert_rq_held(rq); |
| 1100 | |
| 1101 | /* |
| 1102 | * Always immediately preempt the idle task; no point in delaying doing |
| 1103 | * actual work. |
| 1104 | */ |
| 1105 | if (is_idle_task(p: curr) && tif == TIF_NEED_RESCHED_LAZY) |
| 1106 | tif = TIF_NEED_RESCHED; |
| 1107 | |
| 1108 | if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) |
| 1109 | return; |
| 1110 | |
| 1111 | cpu = cpu_of(rq); |
| 1112 | |
| 1113 | if (cpu == smp_processor_id()) { |
| 1114 | set_ti_thread_flag(ti: cti, flag: tif); |
| 1115 | if (tif == TIF_NEED_RESCHED) |
| 1116 | set_preempt_need_resched(); |
| 1117 | return; |
| 1118 | } |
| 1119 | |
| 1120 | if (set_nr_and_not_polling(ti: cti, tif)) { |
| 1121 | if (tif == TIF_NEED_RESCHED) |
| 1122 | smp_send_reschedule(cpu); |
| 1123 | } else { |
| 1124 | trace_sched_wake_idle_without_ipi(cpu); |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | void resched_curr(struct rq *rq) |
| 1129 | { |
| 1130 | __resched_curr(rq, TIF_NEED_RESCHED); |
| 1131 | } |
| 1132 | |
| 1133 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 1134 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); |
| 1135 | static __always_inline bool dynamic_preempt_lazy(void) |
| 1136 | { |
| 1137 | return static_branch_unlikely(&sk_dynamic_preempt_lazy); |
| 1138 | } |
| 1139 | #else |
| 1140 | static __always_inline bool dynamic_preempt_lazy(void) |
| 1141 | { |
| 1142 | return IS_ENABLED(CONFIG_PREEMPT_LAZY); |
| 1143 | } |
| 1144 | #endif |
| 1145 | |
| 1146 | static __always_inline int get_lazy_tif_bit(void) |
| 1147 | { |
| 1148 | if (dynamic_preempt_lazy()) |
| 1149 | return TIF_NEED_RESCHED_LAZY; |
| 1150 | |
| 1151 | return TIF_NEED_RESCHED; |
| 1152 | } |
| 1153 | |
| 1154 | void resched_curr_lazy(struct rq *rq) |
| 1155 | { |
| 1156 | __resched_curr(rq, tif: get_lazy_tif_bit()); |
| 1157 | } |
| 1158 | |
| 1159 | void resched_cpu(int cpu) |
| 1160 | { |
| 1161 | struct rq *rq = cpu_rq(cpu); |
| 1162 | unsigned long flags; |
| 1163 | |
| 1164 | raw_spin_rq_lock_irqsave(rq, flags); |
| 1165 | if (cpu_online(cpu) || cpu == smp_processor_id()) |
| 1166 | resched_curr(rq); |
| 1167 | raw_spin_rq_unlock_irqrestore(rq, flags); |
| 1168 | } |
| 1169 | |
| 1170 | #ifdef CONFIG_SMP |
| 1171 | #ifdef CONFIG_NO_HZ_COMMON |
| 1172 | /* |
| 1173 | * In the semi idle case, use the nearest busy CPU for migrating timers |
| 1174 | * from an idle CPU. This is good for power-savings. |
| 1175 | * |
| 1176 | * We don't do similar optimization for completely idle system, as |
| 1177 | * selecting an idle CPU will add more delays to the timers than intended |
| 1178 | * (as that CPU's timer base may not be up to date wrt jiffies etc). |
| 1179 | */ |
| 1180 | int get_nohz_timer_target(void) |
| 1181 | { |
| 1182 | int i, cpu = smp_processor_id(), default_cpu = -1; |
| 1183 | struct sched_domain *sd; |
| 1184 | const struct cpumask *hk_mask; |
| 1185 | |
| 1186 | if (housekeeping_cpu(cpu, type: HK_TYPE_KERNEL_NOISE)) { |
| 1187 | if (!idle_cpu(cpu)) |
| 1188 | return cpu; |
| 1189 | default_cpu = cpu; |
| 1190 | } |
| 1191 | |
| 1192 | hk_mask = housekeeping_cpumask(type: HK_TYPE_KERNEL_NOISE); |
| 1193 | |
| 1194 | guard(rcu)(); |
| 1195 | |
| 1196 | for_each_domain(cpu, sd) { |
| 1197 | for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { |
| 1198 | if (cpu == i) |
| 1199 | continue; |
| 1200 | |
| 1201 | if (!idle_cpu(cpu: i)) |
| 1202 | return i; |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | if (default_cpu == -1) |
| 1207 | default_cpu = housekeeping_any_cpu(type: HK_TYPE_KERNEL_NOISE); |
| 1208 | |
| 1209 | return default_cpu; |
| 1210 | } |
| 1211 | |
| 1212 | /* |
| 1213 | * When add_timer_on() enqueues a timer into the timer wheel of an |
| 1214 | * idle CPU then this timer might expire before the next timer event |
| 1215 | * which is scheduled to wake up that CPU. In case of a completely |
| 1216 | * idle system the next event might even be infinite time into the |
| 1217 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
| 1218 | * leaves the inner idle loop so the newly added timer is taken into |
| 1219 | * account when the CPU goes back to idle and evaluates the timer |
| 1220 | * wheel for the next timer event. |
| 1221 | */ |
| 1222 | static void wake_up_idle_cpu(int cpu) |
| 1223 | { |
| 1224 | struct rq *rq = cpu_rq(cpu); |
| 1225 | |
| 1226 | if (cpu == smp_processor_id()) |
| 1227 | return; |
| 1228 | |
| 1229 | /* |
| 1230 | * Set TIF_NEED_RESCHED and send an IPI if in the non-polling |
| 1231 | * part of the idle loop. This forces an exit from the idle loop |
| 1232 | * and a round trip to schedule(). Now this could be optimized |
| 1233 | * because a simple new idle loop iteration is enough to |
| 1234 | * re-evaluate the next tick. Provided some re-ordering of tick |
| 1235 | * nohz functions that would need to follow TIF_NR_POLLING |
| 1236 | * clearing: |
| 1237 | * |
| 1238 | * - On most architectures, a simple fetch_or on ti::flags with a |
| 1239 | * "0" value would be enough to know if an IPI needs to be sent. |
| 1240 | * |
| 1241 | * - x86 needs to perform a last need_resched() check between |
| 1242 | * monitor and mwait which doesn't take timers into account. |
| 1243 | * There a dedicated TIF_TIMER flag would be required to |
| 1244 | * fetch_or here and be checked along with TIF_NEED_RESCHED |
| 1245 | * before mwait(). |
| 1246 | * |
| 1247 | * However, remote timer enqueue is not such a frequent event |
| 1248 | * and testing of the above solutions didn't appear to report |
| 1249 | * much benefits. |
| 1250 | */ |
| 1251 | if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) |
| 1252 | smp_send_reschedule(cpu); |
| 1253 | else |
| 1254 | trace_sched_wake_idle_without_ipi(cpu); |
| 1255 | } |
| 1256 | |
| 1257 | static bool wake_up_full_nohz_cpu(int cpu) |
| 1258 | { |
| 1259 | /* |
| 1260 | * We just need the target to call irq_exit() and re-evaluate |
| 1261 | * the next tick. The nohz full kick at least implies that. |
| 1262 | * If needed we can still optimize that later with an |
| 1263 | * empty IRQ. |
| 1264 | */ |
| 1265 | if (cpu_is_offline(cpu)) |
| 1266 | return true; /* Don't try to wake offline CPUs. */ |
| 1267 | if (tick_nohz_full_cpu(cpu)) { |
| 1268 | if (cpu != smp_processor_id() || |
| 1269 | tick_nohz_tick_stopped()) |
| 1270 | tick_nohz_full_kick_cpu(cpu); |
| 1271 | return true; |
| 1272 | } |
| 1273 | |
| 1274 | return false; |
| 1275 | } |
| 1276 | |
| 1277 | /* |
| 1278 | * Wake up the specified CPU. If the CPU is going offline, it is the |
| 1279 | * caller's responsibility to deal with the lost wakeup, for example, |
| 1280 | * by hooking into the CPU_DEAD notifier like timers and hrtimers do. |
| 1281 | */ |
| 1282 | void wake_up_nohz_cpu(int cpu) |
| 1283 | { |
| 1284 | if (!wake_up_full_nohz_cpu(cpu)) |
| 1285 | wake_up_idle_cpu(cpu); |
| 1286 | } |
| 1287 | |
| 1288 | static void nohz_csd_func(void *info) |
| 1289 | { |
| 1290 | struct rq *rq = info; |
| 1291 | int cpu = cpu_of(rq); |
| 1292 | unsigned int flags; |
| 1293 | |
| 1294 | /* |
| 1295 | * Release the rq::nohz_csd. |
| 1296 | */ |
| 1297 | flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); |
| 1298 | WARN_ON(!(flags & NOHZ_KICK_MASK)); |
| 1299 | |
| 1300 | rq->idle_balance = idle_cpu(cpu); |
| 1301 | if (rq->idle_balance) { |
| 1302 | rq->nohz_idle_balance = flags; |
| 1303 | __raise_softirq_irqoff(nr: SCHED_SOFTIRQ); |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 1308 | |
| 1309 | #ifdef CONFIG_NO_HZ_FULL |
| 1310 | static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) |
| 1311 | { |
| 1312 | if (rq->nr_running != 1) |
| 1313 | return false; |
| 1314 | |
| 1315 | if (p->sched_class != &fair_sched_class) |
| 1316 | return false; |
| 1317 | |
| 1318 | if (!task_on_rq_queued(p)) |
| 1319 | return false; |
| 1320 | |
| 1321 | return true; |
| 1322 | } |
| 1323 | |
| 1324 | bool sched_can_stop_tick(struct rq *rq) |
| 1325 | { |
| 1326 | int fifo_nr_running; |
| 1327 | |
| 1328 | /* Deadline tasks, even if single, need the tick */ |
| 1329 | if (rq->dl.dl_nr_running) |
| 1330 | return false; |
| 1331 | |
| 1332 | /* |
| 1333 | * If there are more than one RR tasks, we need the tick to affect the |
| 1334 | * actual RR behaviour. |
| 1335 | */ |
| 1336 | if (rq->rt.rr_nr_running) { |
| 1337 | if (rq->rt.rr_nr_running == 1) |
| 1338 | return true; |
| 1339 | else |
| 1340 | return false; |
| 1341 | } |
| 1342 | |
| 1343 | /* |
| 1344 | * If there's no RR tasks, but FIFO tasks, we can skip the tick, no |
| 1345 | * forced preemption between FIFO tasks. |
| 1346 | */ |
| 1347 | fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; |
| 1348 | if (fifo_nr_running) |
| 1349 | return true; |
| 1350 | |
| 1351 | /* |
| 1352 | * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks |
| 1353 | * left. For CFS, if there's more than one we need the tick for |
| 1354 | * involuntary preemption. For SCX, ask. |
| 1355 | */ |
| 1356 | if (scx_enabled() && !scx_can_stop_tick(rq)) |
| 1357 | return false; |
| 1358 | |
| 1359 | if (rq->cfs.h_nr_queued > 1) |
| 1360 | return false; |
| 1361 | |
| 1362 | /* |
| 1363 | * If there is one task and it has CFS runtime bandwidth constraints |
| 1364 | * and it's on the cpu now we don't want to stop the tick. |
| 1365 | * This check prevents clearing the bit if a newly enqueued task here is |
| 1366 | * dequeued by migrating while the constrained task continues to run. |
| 1367 | * E.g. going from 2->1 without going through pick_next_task(). |
| 1368 | */ |
| 1369 | if (__need_bw_check(rq, rq->curr)) { |
| 1370 | if (cfs_task_bw_constrained(rq->curr)) |
| 1371 | return false; |
| 1372 | } |
| 1373 | |
| 1374 | return true; |
| 1375 | } |
| 1376 | #endif /* CONFIG_NO_HZ_FULL */ |
| 1377 | #endif /* CONFIG_SMP */ |
| 1378 | |
| 1379 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ |
| 1380 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) |
| 1381 | /* |
| 1382 | * Iterate task_group tree rooted at *from, calling @down when first entering a |
| 1383 | * node and @up when leaving it for the final time. |
| 1384 | * |
| 1385 | * Caller must hold rcu_lock or sufficient equivalent. |
| 1386 | */ |
| 1387 | int walk_tg_tree_from(struct task_group *from, |
| 1388 | tg_visitor down, tg_visitor up, void *data) |
| 1389 | { |
| 1390 | struct task_group *parent, *child; |
| 1391 | int ret; |
| 1392 | |
| 1393 | parent = from; |
| 1394 | |
| 1395 | down: |
| 1396 | ret = (*down)(parent, data); |
| 1397 | if (ret) |
| 1398 | goto out; |
| 1399 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
| 1400 | parent = child; |
| 1401 | goto down; |
| 1402 | |
| 1403 | up: |
| 1404 | continue; |
| 1405 | } |
| 1406 | ret = (*up)(parent, data); |
| 1407 | if (ret || parent == from) |
| 1408 | goto out; |
| 1409 | |
| 1410 | child = parent; |
| 1411 | parent = parent->parent; |
| 1412 | if (parent) |
| 1413 | goto up; |
| 1414 | out: |
| 1415 | return ret; |
| 1416 | } |
| 1417 | |
| 1418 | int tg_nop(struct task_group *tg, void *data) |
| 1419 | { |
| 1420 | return 0; |
| 1421 | } |
| 1422 | #endif |
| 1423 | |
| 1424 | void set_load_weight(struct task_struct *p, bool update_load) |
| 1425 | { |
| 1426 | int prio = p->static_prio - MAX_RT_PRIO; |
| 1427 | struct load_weight lw; |
| 1428 | |
| 1429 | if (task_has_idle_policy(p)) { |
| 1430 | lw.weight = scale_load(WEIGHT_IDLEPRIO); |
| 1431 | lw.inv_weight = WMULT_IDLEPRIO; |
| 1432 | } else { |
| 1433 | lw.weight = scale_load(sched_prio_to_weight[prio]); |
| 1434 | lw.inv_weight = sched_prio_to_wmult[prio]; |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * SCHED_OTHER tasks have to update their load when changing their |
| 1439 | * weight |
| 1440 | */ |
| 1441 | if (update_load && p->sched_class->reweight_task) |
| 1442 | p->sched_class->reweight_task(task_rq(p), p, &lw); |
| 1443 | else |
| 1444 | p->se.load = lw; |
| 1445 | } |
| 1446 | |
| 1447 | #ifdef CONFIG_UCLAMP_TASK |
| 1448 | /* |
| 1449 | * Serializes updates of utilization clamp values |
| 1450 | * |
| 1451 | * The (slow-path) user-space triggers utilization clamp value updates which |
| 1452 | * can require updates on (fast-path) scheduler's data structures used to |
| 1453 | * support enqueue/dequeue operations. |
| 1454 | * While the per-CPU rq lock protects fast-path update operations, user-space |
| 1455 | * requests are serialized using a mutex to reduce the risk of conflicting |
| 1456 | * updates or API abuses. |
| 1457 | */ |
| 1458 | static __maybe_unused DEFINE_MUTEX(uclamp_mutex); |
| 1459 | |
| 1460 | /* Max allowed minimum utilization */ |
| 1461 | static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; |
| 1462 | |
| 1463 | /* Max allowed maximum utilization */ |
| 1464 | static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; |
| 1465 | |
| 1466 | /* |
| 1467 | * By default RT tasks run at the maximum performance point/capacity of the |
| 1468 | * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to |
| 1469 | * SCHED_CAPACITY_SCALE. |
| 1470 | * |
| 1471 | * This knob allows admins to change the default behavior when uclamp is being |
| 1472 | * used. In battery powered devices, particularly, running at the maximum |
| 1473 | * capacity and frequency will increase energy consumption and shorten the |
| 1474 | * battery life. |
| 1475 | * |
| 1476 | * This knob only affects RT tasks that their uclamp_se->user_defined == false. |
| 1477 | * |
| 1478 | * This knob will not override the system default sched_util_clamp_min defined |
| 1479 | * above. |
| 1480 | */ |
| 1481 | unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; |
| 1482 | |
| 1483 | /* All clamps are required to be less or equal than these values */ |
| 1484 | static struct uclamp_se uclamp_default[UCLAMP_CNT]; |
| 1485 | |
| 1486 | /* |
| 1487 | * This static key is used to reduce the uclamp overhead in the fast path. It |
| 1488 | * primarily disables the call to uclamp_rq_{inc, dec}() in |
| 1489 | * enqueue/dequeue_task(). |
| 1490 | * |
| 1491 | * This allows users to continue to enable uclamp in their kernel config with |
| 1492 | * minimum uclamp overhead in the fast path. |
| 1493 | * |
| 1494 | * As soon as userspace modifies any of the uclamp knobs, the static key is |
| 1495 | * enabled, since we have an actual users that make use of uclamp |
| 1496 | * functionality. |
| 1497 | * |
| 1498 | * The knobs that would enable this static key are: |
| 1499 | * |
| 1500 | * * A task modifying its uclamp value with sched_setattr(). |
| 1501 | * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. |
| 1502 | * * An admin modifying the cgroup cpu.uclamp.{min, max} |
| 1503 | */ |
| 1504 | DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); |
| 1505 | |
| 1506 | static inline unsigned int |
| 1507 | uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, |
| 1508 | unsigned int clamp_value) |
| 1509 | { |
| 1510 | /* |
| 1511 | * Avoid blocked utilization pushing up the frequency when we go |
| 1512 | * idle (which drops the max-clamp) by retaining the last known |
| 1513 | * max-clamp. |
| 1514 | */ |
| 1515 | if (clamp_id == UCLAMP_MAX) { |
| 1516 | rq->uclamp_flags |= UCLAMP_FLAG_IDLE; |
| 1517 | return clamp_value; |
| 1518 | } |
| 1519 | |
| 1520 | return uclamp_none(clamp_id: UCLAMP_MIN); |
| 1521 | } |
| 1522 | |
| 1523 | static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, |
| 1524 | unsigned int clamp_value) |
| 1525 | { |
| 1526 | /* Reset max-clamp retention only on idle exit */ |
| 1527 | if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) |
| 1528 | return; |
| 1529 | |
| 1530 | uclamp_rq_set(rq, clamp_id, value: clamp_value); |
| 1531 | } |
| 1532 | |
| 1533 | static inline |
| 1534 | unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, |
| 1535 | unsigned int clamp_value) |
| 1536 | { |
| 1537 | struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; |
| 1538 | int bucket_id = UCLAMP_BUCKETS - 1; |
| 1539 | |
| 1540 | /* |
| 1541 | * Since both min and max clamps are max aggregated, find the |
| 1542 | * top most bucket with tasks in. |
| 1543 | */ |
| 1544 | for ( ; bucket_id >= 0; bucket_id--) { |
| 1545 | if (!bucket[bucket_id].tasks) |
| 1546 | continue; |
| 1547 | return bucket[bucket_id].value; |
| 1548 | } |
| 1549 | |
| 1550 | /* No tasks -- default clamp values */ |
| 1551 | return uclamp_idle_value(rq, clamp_id, clamp_value); |
| 1552 | } |
| 1553 | |
| 1554 | static void __uclamp_update_util_min_rt_default(struct task_struct *p) |
| 1555 | { |
| 1556 | unsigned int default_util_min; |
| 1557 | struct uclamp_se *uc_se; |
| 1558 | |
| 1559 | lockdep_assert_held(&p->pi_lock); |
| 1560 | |
| 1561 | uc_se = &p->uclamp_req[UCLAMP_MIN]; |
| 1562 | |
| 1563 | /* Only sync if user didn't override the default */ |
| 1564 | if (uc_se->user_defined) |
| 1565 | return; |
| 1566 | |
| 1567 | default_util_min = sysctl_sched_uclamp_util_min_rt_default; |
| 1568 | uclamp_se_set(uc_se, value: default_util_min, user_defined: false); |
| 1569 | } |
| 1570 | |
| 1571 | static void uclamp_update_util_min_rt_default(struct task_struct *p) |
| 1572 | { |
| 1573 | if (!rt_task(p)) |
| 1574 | return; |
| 1575 | |
| 1576 | /* Protect updates to p->uclamp_* */ |
| 1577 | guard(task_rq_lock)(l: p); |
| 1578 | __uclamp_update_util_min_rt_default(p); |
| 1579 | } |
| 1580 | |
| 1581 | static inline struct uclamp_se |
| 1582 | uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) |
| 1583 | { |
| 1584 | /* Copy by value as we could modify it */ |
| 1585 | struct uclamp_se uc_req = p->uclamp_req[clamp_id]; |
| 1586 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 1587 | unsigned int tg_min, tg_max, value; |
| 1588 | |
| 1589 | /* |
| 1590 | * Tasks in autogroups or root task group will be |
| 1591 | * restricted by system defaults. |
| 1592 | */ |
| 1593 | if (task_group_is_autogroup(tg: task_group(p))) |
| 1594 | return uc_req; |
| 1595 | if (task_group(p) == &root_task_group) |
| 1596 | return uc_req; |
| 1597 | |
| 1598 | tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; |
| 1599 | tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; |
| 1600 | value = uc_req.value; |
| 1601 | value = clamp(value, tg_min, tg_max); |
| 1602 | uclamp_se_set(uc_se: &uc_req, value, user_defined: false); |
| 1603 | #endif |
| 1604 | |
| 1605 | return uc_req; |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * The effective clamp bucket index of a task depends on, by increasing |
| 1610 | * priority: |
| 1611 | * - the task specific clamp value, when explicitly requested from userspace |
| 1612 | * - the task group effective clamp value, for tasks not either in the root |
| 1613 | * group or in an autogroup |
| 1614 | * - the system default clamp value, defined by the sysadmin |
| 1615 | */ |
| 1616 | static inline struct uclamp_se |
| 1617 | uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) |
| 1618 | { |
| 1619 | struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); |
| 1620 | struct uclamp_se uc_max = uclamp_default[clamp_id]; |
| 1621 | |
| 1622 | /* System default restrictions always apply */ |
| 1623 | if (unlikely(uc_req.value > uc_max.value)) |
| 1624 | return uc_max; |
| 1625 | |
| 1626 | return uc_req; |
| 1627 | } |
| 1628 | |
| 1629 | unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) |
| 1630 | { |
| 1631 | struct uclamp_se uc_eff; |
| 1632 | |
| 1633 | /* Task currently refcounted: use back-annotated (effective) value */ |
| 1634 | if (p->uclamp[clamp_id].active) |
| 1635 | return (unsigned long)p->uclamp[clamp_id].value; |
| 1636 | |
| 1637 | uc_eff = uclamp_eff_get(p, clamp_id); |
| 1638 | |
| 1639 | return (unsigned long)uc_eff.value; |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * When a task is enqueued on a rq, the clamp bucket currently defined by the |
| 1644 | * task's uclamp::bucket_id is refcounted on that rq. This also immediately |
| 1645 | * updates the rq's clamp value if required. |
| 1646 | * |
| 1647 | * Tasks can have a task-specific value requested from user-space, track |
| 1648 | * within each bucket the maximum value for tasks refcounted in it. |
| 1649 | * This "local max aggregation" allows to track the exact "requested" value |
| 1650 | * for each bucket when all its RUNNABLE tasks require the same clamp. |
| 1651 | */ |
| 1652 | static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, |
| 1653 | enum uclamp_id clamp_id) |
| 1654 | { |
| 1655 | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; |
| 1656 | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; |
| 1657 | struct uclamp_bucket *bucket; |
| 1658 | |
| 1659 | lockdep_assert_rq_held(rq); |
| 1660 | |
| 1661 | /* Update task effective clamp */ |
| 1662 | p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); |
| 1663 | |
| 1664 | bucket = &uc_rq->bucket[uc_se->bucket_id]; |
| 1665 | bucket->tasks++; |
| 1666 | uc_se->active = true; |
| 1667 | |
| 1668 | uclamp_idle_reset(rq, clamp_id, clamp_value: uc_se->value); |
| 1669 | |
| 1670 | /* |
| 1671 | * Local max aggregation: rq buckets always track the max |
| 1672 | * "requested" clamp value of its RUNNABLE tasks. |
| 1673 | */ |
| 1674 | if (bucket->tasks == 1 || uc_se->value > bucket->value) |
| 1675 | bucket->value = uc_se->value; |
| 1676 | |
| 1677 | if (uc_se->value > uclamp_rq_get(rq, clamp_id)) |
| 1678 | uclamp_rq_set(rq, clamp_id, value: uc_se->value); |
| 1679 | } |
| 1680 | |
| 1681 | /* |
| 1682 | * When a task is dequeued from a rq, the clamp bucket refcounted by the task |
| 1683 | * is released. If this is the last task reference counting the rq's max |
| 1684 | * active clamp value, then the rq's clamp value is updated. |
| 1685 | * |
| 1686 | * Both refcounted tasks and rq's cached clamp values are expected to be |
| 1687 | * always valid. If it's detected they are not, as defensive programming, |
| 1688 | * enforce the expected state and warn. |
| 1689 | */ |
| 1690 | static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, |
| 1691 | enum uclamp_id clamp_id) |
| 1692 | { |
| 1693 | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; |
| 1694 | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; |
| 1695 | struct uclamp_bucket *bucket; |
| 1696 | unsigned int bkt_clamp; |
| 1697 | unsigned int rq_clamp; |
| 1698 | |
| 1699 | lockdep_assert_rq_held(rq); |
| 1700 | |
| 1701 | /* |
| 1702 | * If sched_uclamp_used was enabled after task @p was enqueued, |
| 1703 | * we could end up with unbalanced call to uclamp_rq_dec_id(). |
| 1704 | * |
| 1705 | * In this case the uc_se->active flag should be false since no uclamp |
| 1706 | * accounting was performed at enqueue time and we can just return |
| 1707 | * here. |
| 1708 | * |
| 1709 | * Need to be careful of the following enqueue/dequeue ordering |
| 1710 | * problem too |
| 1711 | * |
| 1712 | * enqueue(taskA) |
| 1713 | * // sched_uclamp_used gets enabled |
| 1714 | * enqueue(taskB) |
| 1715 | * dequeue(taskA) |
| 1716 | * // Must not decrement bucket->tasks here |
| 1717 | * dequeue(taskB) |
| 1718 | * |
| 1719 | * where we could end up with stale data in uc_se and |
| 1720 | * bucket[uc_se->bucket_id]. |
| 1721 | * |
| 1722 | * The following check here eliminates the possibility of such race. |
| 1723 | */ |
| 1724 | if (unlikely(!uc_se->active)) |
| 1725 | return; |
| 1726 | |
| 1727 | bucket = &uc_rq->bucket[uc_se->bucket_id]; |
| 1728 | |
| 1729 | WARN_ON_ONCE(!bucket->tasks); |
| 1730 | if (likely(bucket->tasks)) |
| 1731 | bucket->tasks--; |
| 1732 | |
| 1733 | uc_se->active = false; |
| 1734 | |
| 1735 | /* |
| 1736 | * Keep "local max aggregation" simple and accept to (possibly) |
| 1737 | * overboost some RUNNABLE tasks in the same bucket. |
| 1738 | * The rq clamp bucket value is reset to its base value whenever |
| 1739 | * there are no more RUNNABLE tasks refcounting it. |
| 1740 | */ |
| 1741 | if (likely(bucket->tasks)) |
| 1742 | return; |
| 1743 | |
| 1744 | rq_clamp = uclamp_rq_get(rq, clamp_id); |
| 1745 | /* |
| 1746 | * Defensive programming: this should never happen. If it happens, |
| 1747 | * e.g. due to future modification, warn and fix up the expected value. |
| 1748 | */ |
| 1749 | WARN_ON_ONCE(bucket->value > rq_clamp); |
| 1750 | if (bucket->value >= rq_clamp) { |
| 1751 | bkt_clamp = uclamp_rq_max_value(rq, clamp_id, clamp_value: uc_se->value); |
| 1752 | uclamp_rq_set(rq, clamp_id, value: bkt_clamp); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) |
| 1757 | { |
| 1758 | enum uclamp_id clamp_id; |
| 1759 | |
| 1760 | /* |
| 1761 | * Avoid any overhead until uclamp is actually used by the userspace. |
| 1762 | * |
| 1763 | * The condition is constructed such that a NOP is generated when |
| 1764 | * sched_uclamp_used is disabled. |
| 1765 | */ |
| 1766 | if (!uclamp_is_used()) |
| 1767 | return; |
| 1768 | |
| 1769 | if (unlikely(!p->sched_class->uclamp_enabled)) |
| 1770 | return; |
| 1771 | |
| 1772 | /* Only inc the delayed task which being woken up. */ |
| 1773 | if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) |
| 1774 | return; |
| 1775 | |
| 1776 | for_each_clamp_id(clamp_id) |
| 1777 | uclamp_rq_inc_id(rq, p, clamp_id); |
| 1778 | |
| 1779 | /* Reset clamp idle holding when there is one RUNNABLE task */ |
| 1780 | if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) |
| 1781 | rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; |
| 1782 | } |
| 1783 | |
| 1784 | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) |
| 1785 | { |
| 1786 | enum uclamp_id clamp_id; |
| 1787 | |
| 1788 | /* |
| 1789 | * Avoid any overhead until uclamp is actually used by the userspace. |
| 1790 | * |
| 1791 | * The condition is constructed such that a NOP is generated when |
| 1792 | * sched_uclamp_used is disabled. |
| 1793 | */ |
| 1794 | if (!uclamp_is_used()) |
| 1795 | return; |
| 1796 | |
| 1797 | if (unlikely(!p->sched_class->uclamp_enabled)) |
| 1798 | return; |
| 1799 | |
| 1800 | if (p->se.sched_delayed) |
| 1801 | return; |
| 1802 | |
| 1803 | for_each_clamp_id(clamp_id) |
| 1804 | uclamp_rq_dec_id(rq, p, clamp_id); |
| 1805 | } |
| 1806 | |
| 1807 | static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, |
| 1808 | enum uclamp_id clamp_id) |
| 1809 | { |
| 1810 | if (!p->uclamp[clamp_id].active) |
| 1811 | return; |
| 1812 | |
| 1813 | uclamp_rq_dec_id(rq, p, clamp_id); |
| 1814 | uclamp_rq_inc_id(rq, p, clamp_id); |
| 1815 | |
| 1816 | /* |
| 1817 | * Make sure to clear the idle flag if we've transiently reached 0 |
| 1818 | * active tasks on rq. |
| 1819 | */ |
| 1820 | if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) |
| 1821 | rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; |
| 1822 | } |
| 1823 | |
| 1824 | static inline void |
| 1825 | uclamp_update_active(struct task_struct *p) |
| 1826 | { |
| 1827 | enum uclamp_id clamp_id; |
| 1828 | struct rq_flags rf; |
| 1829 | struct rq *rq; |
| 1830 | |
| 1831 | /* |
| 1832 | * Lock the task and the rq where the task is (or was) queued. |
| 1833 | * |
| 1834 | * We might lock the (previous) rq of a !RUNNABLE task, but that's the |
| 1835 | * price to pay to safely serialize util_{min,max} updates with |
| 1836 | * enqueues, dequeues and migration operations. |
| 1837 | * This is the same locking schema used by __set_cpus_allowed_ptr(). |
| 1838 | */ |
| 1839 | rq = task_rq_lock(p, rf: &rf); |
| 1840 | |
| 1841 | /* |
| 1842 | * Setting the clamp bucket is serialized by task_rq_lock(). |
| 1843 | * If the task is not yet RUNNABLE and its task_struct is not |
| 1844 | * affecting a valid clamp bucket, the next time it's enqueued, |
| 1845 | * it will already see the updated clamp bucket value. |
| 1846 | */ |
| 1847 | for_each_clamp_id(clamp_id) |
| 1848 | uclamp_rq_reinc_id(rq, p, clamp_id); |
| 1849 | |
| 1850 | task_rq_unlock(rq, p, rf: &rf); |
| 1851 | } |
| 1852 | |
| 1853 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 1854 | static inline void |
| 1855 | uclamp_update_active_tasks(struct cgroup_subsys_state *css) |
| 1856 | { |
| 1857 | struct css_task_iter it; |
| 1858 | struct task_struct *p; |
| 1859 | |
| 1860 | css_task_iter_start(css, flags: 0, it: &it); |
| 1861 | while ((p = css_task_iter_next(it: &it))) |
| 1862 | uclamp_update_active(p); |
| 1863 | css_task_iter_end(it: &it); |
| 1864 | } |
| 1865 | |
| 1866 | static void cpu_util_update_eff(struct cgroup_subsys_state *css); |
| 1867 | #endif |
| 1868 | |
| 1869 | #ifdef CONFIG_SYSCTL |
| 1870 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 1871 | static void uclamp_update_root_tg(void) |
| 1872 | { |
| 1873 | struct task_group *tg = &root_task_group; |
| 1874 | |
| 1875 | uclamp_se_set(uc_se: &tg->uclamp_req[UCLAMP_MIN], |
| 1876 | value: sysctl_sched_uclamp_util_min, user_defined: false); |
| 1877 | uclamp_se_set(uc_se: &tg->uclamp_req[UCLAMP_MAX], |
| 1878 | value: sysctl_sched_uclamp_util_max, user_defined: false); |
| 1879 | |
| 1880 | guard(rcu)(); |
| 1881 | cpu_util_update_eff(css: &root_task_group.css); |
| 1882 | } |
| 1883 | #else |
| 1884 | static void uclamp_update_root_tg(void) { } |
| 1885 | #endif |
| 1886 | |
| 1887 | static void uclamp_sync_util_min_rt_default(void) |
| 1888 | { |
| 1889 | struct task_struct *g, *p; |
| 1890 | |
| 1891 | /* |
| 1892 | * copy_process() sysctl_uclamp |
| 1893 | * uclamp_min_rt = X; |
| 1894 | * write_lock(&tasklist_lock) read_lock(&tasklist_lock) |
| 1895 | * // link thread smp_mb__after_spinlock() |
| 1896 | * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); |
| 1897 | * sched_post_fork() for_each_process_thread() |
| 1898 | * __uclamp_sync_rt() __uclamp_sync_rt() |
| 1899 | * |
| 1900 | * Ensures that either sched_post_fork() will observe the new |
| 1901 | * uclamp_min_rt or for_each_process_thread() will observe the new |
| 1902 | * task. |
| 1903 | */ |
| 1904 | read_lock(&tasklist_lock); |
| 1905 | smp_mb__after_spinlock(); |
| 1906 | read_unlock(&tasklist_lock); |
| 1907 | |
| 1908 | guard(rcu)(); |
| 1909 | for_each_process_thread(g, p) |
| 1910 | uclamp_update_util_min_rt_default(p); |
| 1911 | } |
| 1912 | |
| 1913 | static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, |
| 1914 | void *buffer, size_t *lenp, loff_t *ppos) |
| 1915 | { |
| 1916 | bool update_root_tg = false; |
| 1917 | int old_min, old_max, old_min_rt; |
| 1918 | int result; |
| 1919 | |
| 1920 | guard(mutex)(T: &uclamp_mutex); |
| 1921 | |
| 1922 | old_min = sysctl_sched_uclamp_util_min; |
| 1923 | old_max = sysctl_sched_uclamp_util_max; |
| 1924 | old_min_rt = sysctl_sched_uclamp_util_min_rt_default; |
| 1925 | |
| 1926 | result = proc_dointvec(table, write, buffer, lenp, ppos); |
| 1927 | if (result) |
| 1928 | goto undo; |
| 1929 | if (!write) |
| 1930 | return 0; |
| 1931 | |
| 1932 | if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || |
| 1933 | sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || |
| 1934 | sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { |
| 1935 | |
| 1936 | result = -EINVAL; |
| 1937 | goto undo; |
| 1938 | } |
| 1939 | |
| 1940 | if (old_min != sysctl_sched_uclamp_util_min) { |
| 1941 | uclamp_se_set(uc_se: &uclamp_default[UCLAMP_MIN], |
| 1942 | value: sysctl_sched_uclamp_util_min, user_defined: false); |
| 1943 | update_root_tg = true; |
| 1944 | } |
| 1945 | if (old_max != sysctl_sched_uclamp_util_max) { |
| 1946 | uclamp_se_set(uc_se: &uclamp_default[UCLAMP_MAX], |
| 1947 | value: sysctl_sched_uclamp_util_max, user_defined: false); |
| 1948 | update_root_tg = true; |
| 1949 | } |
| 1950 | |
| 1951 | if (update_root_tg) { |
| 1952 | sched_uclamp_enable(); |
| 1953 | uclamp_update_root_tg(); |
| 1954 | } |
| 1955 | |
| 1956 | if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { |
| 1957 | sched_uclamp_enable(); |
| 1958 | uclamp_sync_util_min_rt_default(); |
| 1959 | } |
| 1960 | |
| 1961 | /* |
| 1962 | * We update all RUNNABLE tasks only when task groups are in use. |
| 1963 | * Otherwise, keep it simple and do just a lazy update at each next |
| 1964 | * task enqueue time. |
| 1965 | */ |
| 1966 | return 0; |
| 1967 | |
| 1968 | undo: |
| 1969 | sysctl_sched_uclamp_util_min = old_min; |
| 1970 | sysctl_sched_uclamp_util_max = old_max; |
| 1971 | sysctl_sched_uclamp_util_min_rt_default = old_min_rt; |
| 1972 | return result; |
| 1973 | } |
| 1974 | #endif |
| 1975 | |
| 1976 | static void uclamp_fork(struct task_struct *p) |
| 1977 | { |
| 1978 | enum uclamp_id clamp_id; |
| 1979 | |
| 1980 | /* |
| 1981 | * We don't need to hold task_rq_lock() when updating p->uclamp_* here |
| 1982 | * as the task is still at its early fork stages. |
| 1983 | */ |
| 1984 | for_each_clamp_id(clamp_id) |
| 1985 | p->uclamp[clamp_id].active = false; |
| 1986 | |
| 1987 | if (likely(!p->sched_reset_on_fork)) |
| 1988 | return; |
| 1989 | |
| 1990 | for_each_clamp_id(clamp_id) { |
| 1991 | uclamp_se_set(uc_se: &p->uclamp_req[clamp_id], |
| 1992 | value: uclamp_none(clamp_id), user_defined: false); |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | static void uclamp_post_fork(struct task_struct *p) |
| 1997 | { |
| 1998 | uclamp_update_util_min_rt_default(p); |
| 1999 | } |
| 2000 | |
| 2001 | static void __init init_uclamp_rq(struct rq *rq) |
| 2002 | { |
| 2003 | enum uclamp_id clamp_id; |
| 2004 | struct uclamp_rq *uc_rq = rq->uclamp; |
| 2005 | |
| 2006 | for_each_clamp_id(clamp_id) { |
| 2007 | uc_rq[clamp_id] = (struct uclamp_rq) { |
| 2008 | .value = uclamp_none(clamp_id) |
| 2009 | }; |
| 2010 | } |
| 2011 | |
| 2012 | rq->uclamp_flags = UCLAMP_FLAG_IDLE; |
| 2013 | } |
| 2014 | |
| 2015 | static void __init init_uclamp(void) |
| 2016 | { |
| 2017 | struct uclamp_se uc_max = {}; |
| 2018 | enum uclamp_id clamp_id; |
| 2019 | int cpu; |
| 2020 | |
| 2021 | for_each_possible_cpu(cpu) |
| 2022 | init_uclamp_rq(cpu_rq(cpu)); |
| 2023 | |
| 2024 | for_each_clamp_id(clamp_id) { |
| 2025 | uclamp_se_set(uc_se: &init_task.uclamp_req[clamp_id], |
| 2026 | value: uclamp_none(clamp_id), user_defined: false); |
| 2027 | } |
| 2028 | |
| 2029 | /* System defaults allow max clamp values for both indexes */ |
| 2030 | uclamp_se_set(uc_se: &uc_max, value: uclamp_none(clamp_id: UCLAMP_MAX), user_defined: false); |
| 2031 | for_each_clamp_id(clamp_id) { |
| 2032 | uclamp_default[clamp_id] = uc_max; |
| 2033 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 2034 | root_task_group.uclamp_req[clamp_id] = uc_max; |
| 2035 | root_task_group.uclamp[clamp_id] = uc_max; |
| 2036 | #endif |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | #else /* !CONFIG_UCLAMP_TASK */ |
| 2041 | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } |
| 2042 | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } |
| 2043 | static inline void uclamp_fork(struct task_struct *p) { } |
| 2044 | static inline void uclamp_post_fork(struct task_struct *p) { } |
| 2045 | static inline void init_uclamp(void) { } |
| 2046 | #endif /* CONFIG_UCLAMP_TASK */ |
| 2047 | |
| 2048 | bool sched_task_on_rq(struct task_struct *p) |
| 2049 | { |
| 2050 | return task_on_rq_queued(p); |
| 2051 | } |
| 2052 | |
| 2053 | unsigned long get_wchan(struct task_struct *p) |
| 2054 | { |
| 2055 | unsigned long ip = 0; |
| 2056 | unsigned int state; |
| 2057 | |
| 2058 | if (!p || p == current) |
| 2059 | return 0; |
| 2060 | |
| 2061 | /* Only get wchan if task is blocked and we can keep it that way. */ |
| 2062 | raw_spin_lock_irq(&p->pi_lock); |
| 2063 | state = READ_ONCE(p->__state); |
| 2064 | smp_rmb(); /* see try_to_wake_up() */ |
| 2065 | if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) |
| 2066 | ip = __get_wchan(p); |
| 2067 | raw_spin_unlock_irq(&p->pi_lock); |
| 2068 | |
| 2069 | return ip; |
| 2070 | } |
| 2071 | |
| 2072 | void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
| 2073 | { |
| 2074 | if (!(flags & ENQUEUE_NOCLOCK)) |
| 2075 | update_rq_clock(rq); |
| 2076 | |
| 2077 | /* |
| 2078 | * Can be before ->enqueue_task() because uclamp considers the |
| 2079 | * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared |
| 2080 | * in ->enqueue_task(). |
| 2081 | */ |
| 2082 | uclamp_rq_inc(rq, p, flags); |
| 2083 | |
| 2084 | p->sched_class->enqueue_task(rq, p, flags); |
| 2085 | |
| 2086 | psi_enqueue(p, flags); |
| 2087 | |
| 2088 | if (!(flags & ENQUEUE_RESTORE)) |
| 2089 | sched_info_enqueue(rq, t: p); |
| 2090 | |
| 2091 | if (sched_core_enabled(rq)) |
| 2092 | sched_core_enqueue(rq, p); |
| 2093 | } |
| 2094 | |
| 2095 | /* |
| 2096 | * Must only return false when DEQUEUE_SLEEP. |
| 2097 | */ |
| 2098 | inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
| 2099 | { |
| 2100 | if (sched_core_enabled(rq)) |
| 2101 | sched_core_dequeue(rq, p, flags); |
| 2102 | |
| 2103 | if (!(flags & DEQUEUE_NOCLOCK)) |
| 2104 | update_rq_clock(rq); |
| 2105 | |
| 2106 | if (!(flags & DEQUEUE_SAVE)) |
| 2107 | sched_info_dequeue(rq, t: p); |
| 2108 | |
| 2109 | psi_dequeue(p, flags); |
| 2110 | |
| 2111 | /* |
| 2112 | * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' |
| 2113 | * and mark the task ->sched_delayed. |
| 2114 | */ |
| 2115 | uclamp_rq_dec(rq, p); |
| 2116 | return p->sched_class->dequeue_task(rq, p, flags); |
| 2117 | } |
| 2118 | |
| 2119 | void activate_task(struct rq *rq, struct task_struct *p, int flags) |
| 2120 | { |
| 2121 | if (task_on_rq_migrating(p)) |
| 2122 | flags |= ENQUEUE_MIGRATED; |
| 2123 | if (flags & ENQUEUE_MIGRATED) |
| 2124 | sched_mm_cid_migrate_to(dst_rq: rq, t: p); |
| 2125 | |
| 2126 | enqueue_task(rq, p, flags); |
| 2127 | |
| 2128 | WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); |
| 2129 | ASSERT_EXCLUSIVE_WRITER(p->on_rq); |
| 2130 | } |
| 2131 | |
| 2132 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
| 2133 | { |
| 2134 | WARN_ON_ONCE(flags & DEQUEUE_SLEEP); |
| 2135 | |
| 2136 | WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); |
| 2137 | ASSERT_EXCLUSIVE_WRITER(p->on_rq); |
| 2138 | |
| 2139 | /* |
| 2140 | * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* |
| 2141 | * dequeue_task() and cleared *after* enqueue_task(). |
| 2142 | */ |
| 2143 | |
| 2144 | dequeue_task(rq, p, flags); |
| 2145 | } |
| 2146 | |
| 2147 | static void block_task(struct rq *rq, struct task_struct *p, int flags) |
| 2148 | { |
| 2149 | if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) |
| 2150 | __block_task(rq, p); |
| 2151 | } |
| 2152 | |
| 2153 | /** |
| 2154 | * task_curr - is this task currently executing on a CPU? |
| 2155 | * @p: the task in question. |
| 2156 | * |
| 2157 | * Return: 1 if the task is currently executing. 0 otherwise. |
| 2158 | */ |
| 2159 | inline int task_curr(const struct task_struct *p) |
| 2160 | { |
| 2161 | return cpu_curr(task_cpu(p)) == p; |
| 2162 | } |
| 2163 | |
| 2164 | /* |
| 2165 | * ->switching_to() is called with the pi_lock and rq_lock held and must not |
| 2166 | * mess with locking. |
| 2167 | */ |
| 2168 | void check_class_changing(struct rq *rq, struct task_struct *p, |
| 2169 | const struct sched_class *prev_class) |
| 2170 | { |
| 2171 | if (prev_class != p->sched_class && p->sched_class->switching_to) |
| 2172 | p->sched_class->switching_to(rq, p); |
| 2173 | } |
| 2174 | |
| 2175 | /* |
| 2176 | * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, |
| 2177 | * use the balance_callback list if you want balancing. |
| 2178 | * |
| 2179 | * this means any call to check_class_changed() must be followed by a call to |
| 2180 | * balance_callback(). |
| 2181 | */ |
| 2182 | void check_class_changed(struct rq *rq, struct task_struct *p, |
| 2183 | const struct sched_class *prev_class, |
| 2184 | int oldprio) |
| 2185 | { |
| 2186 | if (prev_class != p->sched_class) { |
| 2187 | if (prev_class->switched_from) |
| 2188 | prev_class->switched_from(rq, p); |
| 2189 | |
| 2190 | p->sched_class->switched_to(rq, p); |
| 2191 | } else if (oldprio != p->prio || dl_task(p)) |
| 2192 | p->sched_class->prio_changed(rq, p, oldprio); |
| 2193 | } |
| 2194 | |
| 2195 | void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) |
| 2196 | { |
| 2197 | struct task_struct *donor = rq->donor; |
| 2198 | |
| 2199 | if (p->sched_class == donor->sched_class) |
| 2200 | donor->sched_class->wakeup_preempt(rq, p, flags); |
| 2201 | else if (sched_class_above(p->sched_class, donor->sched_class)) |
| 2202 | resched_curr(rq); |
| 2203 | |
| 2204 | /* |
| 2205 | * A queue event has occurred, and we're going to schedule. In |
| 2206 | * this case, we can save a useless back to back clock update. |
| 2207 | */ |
| 2208 | if (task_on_rq_queued(p: donor) && test_tsk_need_resched(tsk: rq->curr)) |
| 2209 | rq_clock_skip_update(rq); |
| 2210 | } |
| 2211 | |
| 2212 | static __always_inline |
| 2213 | int __task_state_match(struct task_struct *p, unsigned int state) |
| 2214 | { |
| 2215 | if (READ_ONCE(p->__state) & state) |
| 2216 | return 1; |
| 2217 | |
| 2218 | if (READ_ONCE(p->saved_state) & state) |
| 2219 | return -1; |
| 2220 | |
| 2221 | return 0; |
| 2222 | } |
| 2223 | |
| 2224 | static __always_inline |
| 2225 | int task_state_match(struct task_struct *p, unsigned int state) |
| 2226 | { |
| 2227 | /* |
| 2228 | * Serialize against current_save_and_set_rtlock_wait_state(), |
| 2229 | * current_restore_rtlock_saved_state(), and __refrigerator(). |
| 2230 | */ |
| 2231 | guard(raw_spinlock_irq)(l: &p->pi_lock); |
| 2232 | return __task_state_match(p, state); |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | * wait_task_inactive - wait for a thread to unschedule. |
| 2237 | * |
| 2238 | * Wait for the thread to block in any of the states set in @match_state. |
| 2239 | * If it changes, i.e. @p might have woken up, then return zero. When we |
| 2240 | * succeed in waiting for @p to be off its CPU, we return a positive number |
| 2241 | * (its total switch count). If a second call a short while later returns the |
| 2242 | * same number, the caller can be sure that @p has remained unscheduled the |
| 2243 | * whole time. |
| 2244 | * |
| 2245 | * The caller must ensure that the task *will* unschedule sometime soon, |
| 2246 | * else this function might spin for a *long* time. This function can't |
| 2247 | * be called with interrupts off, or it may introduce deadlock with |
| 2248 | * smp_call_function() if an IPI is sent by the same process we are |
| 2249 | * waiting to become inactive. |
| 2250 | */ |
| 2251 | unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) |
| 2252 | { |
| 2253 | int running, queued, match; |
| 2254 | struct rq_flags rf; |
| 2255 | unsigned long ncsw; |
| 2256 | struct rq *rq; |
| 2257 | |
| 2258 | for (;;) { |
| 2259 | /* |
| 2260 | * We do the initial early heuristics without holding |
| 2261 | * any task-queue locks at all. We'll only try to get |
| 2262 | * the runqueue lock when things look like they will |
| 2263 | * work out! |
| 2264 | */ |
| 2265 | rq = task_rq(p); |
| 2266 | |
| 2267 | /* |
| 2268 | * If the task is actively running on another CPU |
| 2269 | * still, just relax and busy-wait without holding |
| 2270 | * any locks. |
| 2271 | * |
| 2272 | * NOTE! Since we don't hold any locks, it's not |
| 2273 | * even sure that "rq" stays as the right runqueue! |
| 2274 | * But we don't care, since "task_on_cpu()" will |
| 2275 | * return false if the runqueue has changed and p |
| 2276 | * is actually now running somewhere else! |
| 2277 | */ |
| 2278 | while (task_on_cpu(rq, p)) { |
| 2279 | if (!task_state_match(p, state: match_state)) |
| 2280 | return 0; |
| 2281 | cpu_relax(); |
| 2282 | } |
| 2283 | |
| 2284 | /* |
| 2285 | * Ok, time to look more closely! We need the rq |
| 2286 | * lock now, to be *sure*. If we're wrong, we'll |
| 2287 | * just go back and repeat. |
| 2288 | */ |
| 2289 | rq = task_rq_lock(p, rf: &rf); |
| 2290 | /* |
| 2291 | * If task is sched_delayed, force dequeue it, to avoid always |
| 2292 | * hitting the tick timeout in the queued case |
| 2293 | */ |
| 2294 | if (p->se.sched_delayed) |
| 2295 | dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); |
| 2296 | trace_sched_wait_task(p); |
| 2297 | running = task_on_cpu(rq, p); |
| 2298 | queued = task_on_rq_queued(p); |
| 2299 | ncsw = 0; |
| 2300 | if ((match = __task_state_match(p, state: match_state))) { |
| 2301 | /* |
| 2302 | * When matching on p->saved_state, consider this task |
| 2303 | * still queued so it will wait. |
| 2304 | */ |
| 2305 | if (match < 0) |
| 2306 | queued = 1; |
| 2307 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
| 2308 | } |
| 2309 | task_rq_unlock(rq, p, rf: &rf); |
| 2310 | |
| 2311 | /* |
| 2312 | * If it changed from the expected state, bail out now. |
| 2313 | */ |
| 2314 | if (unlikely(!ncsw)) |
| 2315 | break; |
| 2316 | |
| 2317 | /* |
| 2318 | * Was it really running after all now that we |
| 2319 | * checked with the proper locks actually held? |
| 2320 | * |
| 2321 | * Oops. Go back and try again.. |
| 2322 | */ |
| 2323 | if (unlikely(running)) { |
| 2324 | cpu_relax(); |
| 2325 | continue; |
| 2326 | } |
| 2327 | |
| 2328 | /* |
| 2329 | * It's not enough that it's not actively running, |
| 2330 | * it must be off the runqueue _entirely_, and not |
| 2331 | * preempted! |
| 2332 | * |
| 2333 | * So if it was still runnable (but just not actively |
| 2334 | * running right now), it's preempted, and we should |
| 2335 | * yield - it could be a while. |
| 2336 | */ |
| 2337 | if (unlikely(queued)) { |
| 2338 | ktime_t to = NSEC_PER_SEC / HZ; |
| 2339 | |
| 2340 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2341 | schedule_hrtimeout(expires: &to, mode: HRTIMER_MODE_REL_HARD); |
| 2342 | continue; |
| 2343 | } |
| 2344 | |
| 2345 | /* |
| 2346 | * Ahh, all good. It wasn't running, and it wasn't |
| 2347 | * runnable, which means that it will never become |
| 2348 | * running in the future either. We're all done! |
| 2349 | */ |
| 2350 | break; |
| 2351 | } |
| 2352 | |
| 2353 | return ncsw; |
| 2354 | } |
| 2355 | |
| 2356 | #ifdef CONFIG_SMP |
| 2357 | |
| 2358 | static void |
| 2359 | __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); |
| 2360 | |
| 2361 | static void migrate_disable_switch(struct rq *rq, struct task_struct *p) |
| 2362 | { |
| 2363 | struct affinity_context ac = { |
| 2364 | .new_mask = cpumask_of(rq->cpu), |
| 2365 | .flags = SCA_MIGRATE_DISABLE, |
| 2366 | }; |
| 2367 | |
| 2368 | if (likely(!p->migration_disabled)) |
| 2369 | return; |
| 2370 | |
| 2371 | if (p->cpus_ptr != &p->cpus_mask) |
| 2372 | return; |
| 2373 | |
| 2374 | /* |
| 2375 | * Violates locking rules! See comment in __do_set_cpus_allowed(). |
| 2376 | */ |
| 2377 | __do_set_cpus_allowed(p, ctx: &ac); |
| 2378 | } |
| 2379 | |
| 2380 | void migrate_disable(void) |
| 2381 | { |
| 2382 | struct task_struct *p = current; |
| 2383 | |
| 2384 | if (p->migration_disabled) { |
| 2385 | #ifdef CONFIG_DEBUG_PREEMPT |
| 2386 | /* |
| 2387 | *Warn about overflow half-way through the range. |
| 2388 | */ |
| 2389 | WARN_ON_ONCE((s16)p->migration_disabled < 0); |
| 2390 | #endif |
| 2391 | p->migration_disabled++; |
| 2392 | return; |
| 2393 | } |
| 2394 | |
| 2395 | guard(preempt)(); |
| 2396 | this_rq()->nr_pinned++; |
| 2397 | p->migration_disabled = 1; |
| 2398 | } |
| 2399 | EXPORT_SYMBOL_GPL(migrate_disable); |
| 2400 | |
| 2401 | void migrate_enable(void) |
| 2402 | { |
| 2403 | struct task_struct *p = current; |
| 2404 | struct affinity_context ac = { |
| 2405 | .new_mask = &p->cpus_mask, |
| 2406 | .flags = SCA_MIGRATE_ENABLE, |
| 2407 | }; |
| 2408 | |
| 2409 | #ifdef CONFIG_DEBUG_PREEMPT |
| 2410 | /* |
| 2411 | * Check both overflow from migrate_disable() and superfluous |
| 2412 | * migrate_enable(). |
| 2413 | */ |
| 2414 | if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) |
| 2415 | return; |
| 2416 | #endif |
| 2417 | |
| 2418 | if (p->migration_disabled > 1) { |
| 2419 | p->migration_disabled--; |
| 2420 | return; |
| 2421 | } |
| 2422 | |
| 2423 | /* |
| 2424 | * Ensure stop_task runs either before or after this, and that |
| 2425 | * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). |
| 2426 | */ |
| 2427 | guard(preempt)(); |
| 2428 | if (p->cpus_ptr != &p->cpus_mask) |
| 2429 | __set_cpus_allowed_ptr(p, ctx: &ac); |
| 2430 | /* |
| 2431 | * Mustn't clear migration_disabled() until cpus_ptr points back at the |
| 2432 | * regular cpus_mask, otherwise things that race (eg. |
| 2433 | * select_fallback_rq) get confused. |
| 2434 | */ |
| 2435 | barrier(); |
| 2436 | p->migration_disabled = 0; |
| 2437 | this_rq()->nr_pinned--; |
| 2438 | } |
| 2439 | EXPORT_SYMBOL_GPL(migrate_enable); |
| 2440 | |
| 2441 | static inline bool rq_has_pinned_tasks(struct rq *rq) |
| 2442 | { |
| 2443 | return rq->nr_pinned; |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * Per-CPU kthreads are allowed to run on !active && online CPUs, see |
| 2448 | * __set_cpus_allowed_ptr() and select_fallback_rq(). |
| 2449 | */ |
| 2450 | static inline bool is_cpu_allowed(struct task_struct *p, int cpu) |
| 2451 | { |
| 2452 | /* When not in the task's cpumask, no point in looking further. */ |
| 2453 | if (!task_allowed_on_cpu(p, cpu)) |
| 2454 | return false; |
| 2455 | |
| 2456 | /* migrate_disabled() must be allowed to finish. */ |
| 2457 | if (is_migration_disabled(p)) |
| 2458 | return cpu_online(cpu); |
| 2459 | |
| 2460 | /* Non kernel threads are not allowed during either online or offline. */ |
| 2461 | if (!(p->flags & PF_KTHREAD)) |
| 2462 | return cpu_active(cpu); |
| 2463 | |
| 2464 | /* KTHREAD_IS_PER_CPU is always allowed. */ |
| 2465 | if (kthread_is_per_cpu(k: p)) |
| 2466 | return cpu_online(cpu); |
| 2467 | |
| 2468 | /* Regular kernel threads don't get to stay during offline. */ |
| 2469 | if (cpu_dying(cpu)) |
| 2470 | return false; |
| 2471 | |
| 2472 | /* But are allowed during online. */ |
| 2473 | return cpu_online(cpu); |
| 2474 | } |
| 2475 | |
| 2476 | /* |
| 2477 | * This is how migration works: |
| 2478 | * |
| 2479 | * 1) we invoke migration_cpu_stop() on the target CPU using |
| 2480 | * stop_one_cpu(). |
| 2481 | * 2) stopper starts to run (implicitly forcing the migrated thread |
| 2482 | * off the CPU) |
| 2483 | * 3) it checks whether the migrated task is still in the wrong runqueue. |
| 2484 | * 4) if it's in the wrong runqueue then the migration thread removes |
| 2485 | * it and puts it into the right queue. |
| 2486 | * 5) stopper completes and stop_one_cpu() returns and the migration |
| 2487 | * is done. |
| 2488 | */ |
| 2489 | |
| 2490 | /* |
| 2491 | * move_queued_task - move a queued task to new rq. |
| 2492 | * |
| 2493 | * Returns (locked) new rq. Old rq's lock is released. |
| 2494 | */ |
| 2495 | static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, |
| 2496 | struct task_struct *p, int new_cpu) |
| 2497 | { |
| 2498 | lockdep_assert_rq_held(rq); |
| 2499 | |
| 2500 | deactivate_task(rq, p, DEQUEUE_NOCLOCK); |
| 2501 | set_task_cpu(p, cpu: new_cpu); |
| 2502 | rq_unlock(rq, rf); |
| 2503 | |
| 2504 | rq = cpu_rq(new_cpu); |
| 2505 | |
| 2506 | rq_lock(rq, rf); |
| 2507 | WARN_ON_ONCE(task_cpu(p) != new_cpu); |
| 2508 | activate_task(rq, p, flags: 0); |
| 2509 | wakeup_preempt(rq, p, flags: 0); |
| 2510 | |
| 2511 | return rq; |
| 2512 | } |
| 2513 | |
| 2514 | struct migration_arg { |
| 2515 | struct task_struct *task; |
| 2516 | int dest_cpu; |
| 2517 | struct set_affinity_pending *pending; |
| 2518 | }; |
| 2519 | |
| 2520 | /* |
| 2521 | * @refs: number of wait_for_completion() |
| 2522 | * @stop_pending: is @stop_work in use |
| 2523 | */ |
| 2524 | struct set_affinity_pending { |
| 2525 | refcount_t refs; |
| 2526 | unsigned int stop_pending; |
| 2527 | struct completion done; |
| 2528 | struct cpu_stop_work stop_work; |
| 2529 | struct migration_arg arg; |
| 2530 | }; |
| 2531 | |
| 2532 | /* |
| 2533 | * Move (not current) task off this CPU, onto the destination CPU. We're doing |
| 2534 | * this because either it can't run here any more (set_cpus_allowed() |
| 2535 | * away from this CPU, or CPU going down), or because we're |
| 2536 | * attempting to rebalance this task on exec (sched_exec). |
| 2537 | * |
| 2538 | * So we race with normal scheduler movements, but that's OK, as long |
| 2539 | * as the task is no longer on this CPU. |
| 2540 | */ |
| 2541 | static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, |
| 2542 | struct task_struct *p, int dest_cpu) |
| 2543 | { |
| 2544 | /* Affinity changed (again). */ |
| 2545 | if (!is_cpu_allowed(p, cpu: dest_cpu)) |
| 2546 | return rq; |
| 2547 | |
| 2548 | rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu); |
| 2549 | |
| 2550 | return rq; |
| 2551 | } |
| 2552 | |
| 2553 | /* |
| 2554 | * migration_cpu_stop - this will be executed by a high-prio stopper thread |
| 2555 | * and performs thread migration by bumping thread off CPU then |
| 2556 | * 'pushing' onto another runqueue. |
| 2557 | */ |
| 2558 | static int migration_cpu_stop(void *data) |
| 2559 | { |
| 2560 | struct migration_arg *arg = data; |
| 2561 | struct set_affinity_pending *pending = arg->pending; |
| 2562 | struct task_struct *p = arg->task; |
| 2563 | struct rq *rq = this_rq(); |
| 2564 | bool complete = false; |
| 2565 | struct rq_flags rf; |
| 2566 | |
| 2567 | /* |
| 2568 | * The original target CPU might have gone down and we might |
| 2569 | * be on another CPU but it doesn't matter. |
| 2570 | */ |
| 2571 | local_irq_save(rf.flags); |
| 2572 | /* |
| 2573 | * We need to explicitly wake pending tasks before running |
| 2574 | * __migrate_task() such that we will not miss enforcing cpus_ptr |
| 2575 | * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. |
| 2576 | */ |
| 2577 | flush_smp_call_function_queue(); |
| 2578 | |
| 2579 | raw_spin_lock(&p->pi_lock); |
| 2580 | rq_lock(rq, rf: &rf); |
| 2581 | |
| 2582 | /* |
| 2583 | * If we were passed a pending, then ->stop_pending was set, thus |
| 2584 | * p->migration_pending must have remained stable. |
| 2585 | */ |
| 2586 | WARN_ON_ONCE(pending && pending != p->migration_pending); |
| 2587 | |
| 2588 | /* |
| 2589 | * If task_rq(p) != rq, it cannot be migrated here, because we're |
| 2590 | * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because |
| 2591 | * we're holding p->pi_lock. |
| 2592 | */ |
| 2593 | if (task_rq(p) == rq) { |
| 2594 | if (is_migration_disabled(p)) |
| 2595 | goto out; |
| 2596 | |
| 2597 | if (pending) { |
| 2598 | p->migration_pending = NULL; |
| 2599 | complete = true; |
| 2600 | |
| 2601 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask)) |
| 2602 | goto out; |
| 2603 | } |
| 2604 | |
| 2605 | if (task_on_rq_queued(p)) { |
| 2606 | update_rq_clock(rq); |
| 2607 | rq = __migrate_task(rq, rf: &rf, p, dest_cpu: arg->dest_cpu); |
| 2608 | } else { |
| 2609 | p->wake_cpu = arg->dest_cpu; |
| 2610 | } |
| 2611 | |
| 2612 | /* |
| 2613 | * XXX __migrate_task() can fail, at which point we might end |
| 2614 | * up running on a dodgy CPU, AFAICT this can only happen |
| 2615 | * during CPU hotplug, at which point we'll get pushed out |
| 2616 | * anyway, so it's probably not a big deal. |
| 2617 | */ |
| 2618 | |
| 2619 | } else if (pending) { |
| 2620 | /* |
| 2621 | * This happens when we get migrated between migrate_enable()'s |
| 2622 | * preempt_enable() and scheduling the stopper task. At that |
| 2623 | * point we're a regular task again and not current anymore. |
| 2624 | * |
| 2625 | * A !PREEMPT kernel has a giant hole here, which makes it far |
| 2626 | * more likely. |
| 2627 | */ |
| 2628 | |
| 2629 | /* |
| 2630 | * The task moved before the stopper got to run. We're holding |
| 2631 | * ->pi_lock, so the allowed mask is stable - if it got |
| 2632 | * somewhere allowed, we're done. |
| 2633 | */ |
| 2634 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: p->cpus_ptr)) { |
| 2635 | p->migration_pending = NULL; |
| 2636 | complete = true; |
| 2637 | goto out; |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * When migrate_enable() hits a rq mis-match we can't reliably |
| 2642 | * determine is_migration_disabled() and so have to chase after |
| 2643 | * it. |
| 2644 | */ |
| 2645 | WARN_ON_ONCE(!pending->stop_pending); |
| 2646 | preempt_disable(); |
| 2647 | task_rq_unlock(rq, p, rf: &rf); |
| 2648 | stop_one_cpu_nowait(cpu: task_cpu(p), fn: migration_cpu_stop, |
| 2649 | arg: &pending->arg, work_buf: &pending->stop_work); |
| 2650 | preempt_enable(); |
| 2651 | return 0; |
| 2652 | } |
| 2653 | out: |
| 2654 | if (pending) |
| 2655 | pending->stop_pending = false; |
| 2656 | task_rq_unlock(rq, p, rf: &rf); |
| 2657 | |
| 2658 | if (complete) |
| 2659 | complete_all(&pending->done); |
| 2660 | |
| 2661 | return 0; |
| 2662 | } |
| 2663 | |
| 2664 | int push_cpu_stop(void *arg) |
| 2665 | { |
| 2666 | struct rq *lowest_rq = NULL, *rq = this_rq(); |
| 2667 | struct task_struct *p = arg; |
| 2668 | |
| 2669 | raw_spin_lock_irq(&p->pi_lock); |
| 2670 | raw_spin_rq_lock(rq); |
| 2671 | |
| 2672 | if (task_rq(p) != rq) |
| 2673 | goto out_unlock; |
| 2674 | |
| 2675 | if (is_migration_disabled(p)) { |
| 2676 | p->migration_flags |= MDF_PUSH; |
| 2677 | goto out_unlock; |
| 2678 | } |
| 2679 | |
| 2680 | p->migration_flags &= ~MDF_PUSH; |
| 2681 | |
| 2682 | if (p->sched_class->find_lock_rq) |
| 2683 | lowest_rq = p->sched_class->find_lock_rq(p, rq); |
| 2684 | |
| 2685 | if (!lowest_rq) |
| 2686 | goto out_unlock; |
| 2687 | |
| 2688 | // XXX validate p is still the highest prio task |
| 2689 | if (task_rq(p) == rq) { |
| 2690 | move_queued_task_locked(src_rq: rq, dst_rq: lowest_rq, task: p); |
| 2691 | resched_curr(rq: lowest_rq); |
| 2692 | } |
| 2693 | |
| 2694 | double_unlock_balance(this_rq: rq, busiest: lowest_rq); |
| 2695 | |
| 2696 | out_unlock: |
| 2697 | rq->push_busy = false; |
| 2698 | raw_spin_rq_unlock(rq); |
| 2699 | raw_spin_unlock_irq(&p->pi_lock); |
| 2700 | |
| 2701 | put_task_struct(t: p); |
| 2702 | return 0; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * sched_class::set_cpus_allowed must do the below, but is not required to |
| 2707 | * actually call this function. |
| 2708 | */ |
| 2709 | void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) |
| 2710 | { |
| 2711 | if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { |
| 2712 | p->cpus_ptr = ctx->new_mask; |
| 2713 | return; |
| 2714 | } |
| 2715 | |
| 2716 | cpumask_copy(dstp: &p->cpus_mask, srcp: ctx->new_mask); |
| 2717 | p->nr_cpus_allowed = cpumask_weight(srcp: ctx->new_mask); |
| 2718 | |
| 2719 | /* |
| 2720 | * Swap in a new user_cpus_ptr if SCA_USER flag set |
| 2721 | */ |
| 2722 | if (ctx->flags & SCA_USER) |
| 2723 | swap(p->user_cpus_ptr, ctx->user_mask); |
| 2724 | } |
| 2725 | |
| 2726 | static void |
| 2727 | __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) |
| 2728 | { |
| 2729 | struct rq *rq = task_rq(p); |
| 2730 | bool queued, running; |
| 2731 | |
| 2732 | /* |
| 2733 | * This here violates the locking rules for affinity, since we're only |
| 2734 | * supposed to change these variables while holding both rq->lock and |
| 2735 | * p->pi_lock. |
| 2736 | * |
| 2737 | * HOWEVER, it magically works, because ttwu() is the only code that |
| 2738 | * accesses these variables under p->pi_lock and only does so after |
| 2739 | * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() |
| 2740 | * before finish_task(). |
| 2741 | * |
| 2742 | * XXX do further audits, this smells like something putrid. |
| 2743 | */ |
| 2744 | if (ctx->flags & SCA_MIGRATE_DISABLE) |
| 2745 | WARN_ON_ONCE(!p->on_cpu); |
| 2746 | else |
| 2747 | lockdep_assert_held(&p->pi_lock); |
| 2748 | |
| 2749 | queued = task_on_rq_queued(p); |
| 2750 | running = task_current_donor(rq, p); |
| 2751 | |
| 2752 | if (queued) { |
| 2753 | /* |
| 2754 | * Because __kthread_bind() calls this on blocked tasks without |
| 2755 | * holding rq->lock. |
| 2756 | */ |
| 2757 | lockdep_assert_rq_held(rq); |
| 2758 | dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); |
| 2759 | } |
| 2760 | if (running) |
| 2761 | put_prev_task(rq, prev: p); |
| 2762 | |
| 2763 | p->sched_class->set_cpus_allowed(p, ctx); |
| 2764 | mm_set_cpus_allowed(mm: p->mm, cpumask: ctx->new_mask); |
| 2765 | |
| 2766 | if (queued) |
| 2767 | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| 2768 | if (running) |
| 2769 | set_next_task(rq, next: p); |
| 2770 | } |
| 2771 | |
| 2772 | /* |
| 2773 | * Used for kthread_bind() and select_fallback_rq(), in both cases the user |
| 2774 | * affinity (if any) should be destroyed too. |
| 2775 | */ |
| 2776 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
| 2777 | { |
| 2778 | struct affinity_context ac = { |
| 2779 | .new_mask = new_mask, |
| 2780 | .user_mask = NULL, |
| 2781 | .flags = SCA_USER, /* clear the user requested mask */ |
| 2782 | }; |
| 2783 | union cpumask_rcuhead { |
| 2784 | cpumask_t cpumask; |
| 2785 | struct rcu_head rcu; |
| 2786 | }; |
| 2787 | |
| 2788 | __do_set_cpus_allowed(p, ctx: &ac); |
| 2789 | |
| 2790 | /* |
| 2791 | * Because this is called with p->pi_lock held, it is not possible |
| 2792 | * to use kfree() here (when PREEMPT_RT=y), therefore punt to using |
| 2793 | * kfree_rcu(). |
| 2794 | */ |
| 2795 | kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); |
| 2796 | } |
| 2797 | |
| 2798 | int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, |
| 2799 | int node) |
| 2800 | { |
| 2801 | cpumask_t *user_mask; |
| 2802 | unsigned long flags; |
| 2803 | |
| 2804 | /* |
| 2805 | * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's |
| 2806 | * may differ by now due to racing. |
| 2807 | */ |
| 2808 | dst->user_cpus_ptr = NULL; |
| 2809 | |
| 2810 | /* |
| 2811 | * This check is racy and losing the race is a valid situation. |
| 2812 | * It is not worth the extra overhead of taking the pi_lock on |
| 2813 | * every fork/clone. |
| 2814 | */ |
| 2815 | if (data_race(!src->user_cpus_ptr)) |
| 2816 | return 0; |
| 2817 | |
| 2818 | user_mask = alloc_user_cpus_ptr(node); |
| 2819 | if (!user_mask) |
| 2820 | return -ENOMEM; |
| 2821 | |
| 2822 | /* |
| 2823 | * Use pi_lock to protect content of user_cpus_ptr |
| 2824 | * |
| 2825 | * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent |
| 2826 | * do_set_cpus_allowed(). |
| 2827 | */ |
| 2828 | raw_spin_lock_irqsave(&src->pi_lock, flags); |
| 2829 | if (src->user_cpus_ptr) { |
| 2830 | swap(dst->user_cpus_ptr, user_mask); |
| 2831 | cpumask_copy(dstp: dst->user_cpus_ptr, srcp: src->user_cpus_ptr); |
| 2832 | } |
| 2833 | raw_spin_unlock_irqrestore(&src->pi_lock, flags); |
| 2834 | |
| 2835 | if (unlikely(user_mask)) |
| 2836 | kfree(objp: user_mask); |
| 2837 | |
| 2838 | return 0; |
| 2839 | } |
| 2840 | |
| 2841 | static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) |
| 2842 | { |
| 2843 | struct cpumask *user_mask = NULL; |
| 2844 | |
| 2845 | swap(p->user_cpus_ptr, user_mask); |
| 2846 | |
| 2847 | return user_mask; |
| 2848 | } |
| 2849 | |
| 2850 | void release_user_cpus_ptr(struct task_struct *p) |
| 2851 | { |
| 2852 | kfree(objp: clear_user_cpus_ptr(p)); |
| 2853 | } |
| 2854 | |
| 2855 | /* |
| 2856 | * This function is wildly self concurrent; here be dragons. |
| 2857 | * |
| 2858 | * |
| 2859 | * When given a valid mask, __set_cpus_allowed_ptr() must block until the |
| 2860 | * designated task is enqueued on an allowed CPU. If that task is currently |
| 2861 | * running, we have to kick it out using the CPU stopper. |
| 2862 | * |
| 2863 | * Migrate-Disable comes along and tramples all over our nice sandcastle. |
| 2864 | * Consider: |
| 2865 | * |
| 2866 | * Initial conditions: P0->cpus_mask = [0, 1] |
| 2867 | * |
| 2868 | * P0@CPU0 P1 |
| 2869 | * |
| 2870 | * migrate_disable(); |
| 2871 | * <preempted> |
| 2872 | * set_cpus_allowed_ptr(P0, [1]); |
| 2873 | * |
| 2874 | * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes |
| 2875 | * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). |
| 2876 | * This means we need the following scheme: |
| 2877 | * |
| 2878 | * P0@CPU0 P1 |
| 2879 | * |
| 2880 | * migrate_disable(); |
| 2881 | * <preempted> |
| 2882 | * set_cpus_allowed_ptr(P0, [1]); |
| 2883 | * <blocks> |
| 2884 | * <resumes> |
| 2885 | * migrate_enable(); |
| 2886 | * __set_cpus_allowed_ptr(); |
| 2887 | * <wakes local stopper> |
| 2888 | * `--> <woken on migration completion> |
| 2889 | * |
| 2890 | * Now the fun stuff: there may be several P1-like tasks, i.e. multiple |
| 2891 | * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any |
| 2892 | * task p are serialized by p->pi_lock, which we can leverage: the one that |
| 2893 | * should come into effect at the end of the Migrate-Disable region is the last |
| 2894 | * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), |
| 2895 | * but we still need to properly signal those waiting tasks at the appropriate |
| 2896 | * moment. |
| 2897 | * |
| 2898 | * This is implemented using struct set_affinity_pending. The first |
| 2899 | * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will |
| 2900 | * setup an instance of that struct and install it on the targeted task_struct. |
| 2901 | * Any and all further callers will reuse that instance. Those then wait for |
| 2902 | * a completion signaled at the tail of the CPU stopper callback (1), triggered |
| 2903 | * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). |
| 2904 | * |
| 2905 | * |
| 2906 | * (1) In the cases covered above. There is one more where the completion is |
| 2907 | * signaled within affine_move_task() itself: when a subsequent affinity request |
| 2908 | * occurs after the stopper bailed out due to the targeted task still being |
| 2909 | * Migrate-Disable. Consider: |
| 2910 | * |
| 2911 | * Initial conditions: P0->cpus_mask = [0, 1] |
| 2912 | * |
| 2913 | * CPU0 P1 P2 |
| 2914 | * <P0> |
| 2915 | * migrate_disable(); |
| 2916 | * <preempted> |
| 2917 | * set_cpus_allowed_ptr(P0, [1]); |
| 2918 | * <blocks> |
| 2919 | * <migration/0> |
| 2920 | * migration_cpu_stop() |
| 2921 | * is_migration_disabled() |
| 2922 | * <bails> |
| 2923 | * set_cpus_allowed_ptr(P0, [0, 1]); |
| 2924 | * <signal completion> |
| 2925 | * <awakes> |
| 2926 | * |
| 2927 | * Note that the above is safe vs a concurrent migrate_enable(), as any |
| 2928 | * pending affinity completion is preceded by an uninstallation of |
| 2929 | * p->migration_pending done with p->pi_lock held. |
| 2930 | */ |
| 2931 | static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, |
| 2932 | int dest_cpu, unsigned int flags) |
| 2933 | __releases(rq->lock) |
| 2934 | __releases(p->pi_lock) |
| 2935 | { |
| 2936 | struct set_affinity_pending my_pending = { }, *pending = NULL; |
| 2937 | bool stop_pending, complete = false; |
| 2938 | |
| 2939 | /* Can the task run on the task's current CPU? If so, we're done */ |
| 2940 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask)) { |
| 2941 | struct task_struct *push_task = NULL; |
| 2942 | |
| 2943 | if ((flags & SCA_MIGRATE_ENABLE) && |
| 2944 | (p->migration_flags & MDF_PUSH) && !rq->push_busy) { |
| 2945 | rq->push_busy = true; |
| 2946 | push_task = get_task_struct(t: p); |
| 2947 | } |
| 2948 | |
| 2949 | /* |
| 2950 | * If there are pending waiters, but no pending stop_work, |
| 2951 | * then complete now. |
| 2952 | */ |
| 2953 | pending = p->migration_pending; |
| 2954 | if (pending && !pending->stop_pending) { |
| 2955 | p->migration_pending = NULL; |
| 2956 | complete = true; |
| 2957 | } |
| 2958 | |
| 2959 | preempt_disable(); |
| 2960 | task_rq_unlock(rq, p, rf); |
| 2961 | if (push_task) { |
| 2962 | stop_one_cpu_nowait(cpu: rq->cpu, fn: push_cpu_stop, |
| 2963 | arg: p, work_buf: &rq->push_work); |
| 2964 | } |
| 2965 | preempt_enable(); |
| 2966 | |
| 2967 | if (complete) |
| 2968 | complete_all(&pending->done); |
| 2969 | |
| 2970 | return 0; |
| 2971 | } |
| 2972 | |
| 2973 | if (!(flags & SCA_MIGRATE_ENABLE)) { |
| 2974 | /* serialized by p->pi_lock */ |
| 2975 | if (!p->migration_pending) { |
| 2976 | /* Install the request */ |
| 2977 | refcount_set(r: &my_pending.refs, n: 1); |
| 2978 | init_completion(x: &my_pending.done); |
| 2979 | my_pending.arg = (struct migration_arg) { |
| 2980 | .task = p, |
| 2981 | .dest_cpu = dest_cpu, |
| 2982 | .pending = &my_pending, |
| 2983 | }; |
| 2984 | |
| 2985 | p->migration_pending = &my_pending; |
| 2986 | } else { |
| 2987 | pending = p->migration_pending; |
| 2988 | refcount_inc(r: &pending->refs); |
| 2989 | /* |
| 2990 | * Affinity has changed, but we've already installed a |
| 2991 | * pending. migration_cpu_stop() *must* see this, else |
| 2992 | * we risk a completion of the pending despite having a |
| 2993 | * task on a disallowed CPU. |
| 2994 | * |
| 2995 | * Serialized by p->pi_lock, so this is safe. |
| 2996 | */ |
| 2997 | pending->arg.dest_cpu = dest_cpu; |
| 2998 | } |
| 2999 | } |
| 3000 | pending = p->migration_pending; |
| 3001 | /* |
| 3002 | * - !MIGRATE_ENABLE: |
| 3003 | * we'll have installed a pending if there wasn't one already. |
| 3004 | * |
| 3005 | * - MIGRATE_ENABLE: |
| 3006 | * we're here because the current CPU isn't matching anymore, |
| 3007 | * the only way that can happen is because of a concurrent |
| 3008 | * set_cpus_allowed_ptr() call, which should then still be |
| 3009 | * pending completion. |
| 3010 | * |
| 3011 | * Either way, we really should have a @pending here. |
| 3012 | */ |
| 3013 | if (WARN_ON_ONCE(!pending)) { |
| 3014 | task_rq_unlock(rq, p, rf); |
| 3015 | return -EINVAL; |
| 3016 | } |
| 3017 | |
| 3018 | if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { |
| 3019 | /* |
| 3020 | * MIGRATE_ENABLE gets here because 'p == current', but for |
| 3021 | * anything else we cannot do is_migration_disabled(), punt |
| 3022 | * and have the stopper function handle it all race-free. |
| 3023 | */ |
| 3024 | stop_pending = pending->stop_pending; |
| 3025 | if (!stop_pending) |
| 3026 | pending->stop_pending = true; |
| 3027 | |
| 3028 | if (flags & SCA_MIGRATE_ENABLE) |
| 3029 | p->migration_flags &= ~MDF_PUSH; |
| 3030 | |
| 3031 | preempt_disable(); |
| 3032 | task_rq_unlock(rq, p, rf); |
| 3033 | if (!stop_pending) { |
| 3034 | stop_one_cpu_nowait(cpu: cpu_of(rq), fn: migration_cpu_stop, |
| 3035 | arg: &pending->arg, work_buf: &pending->stop_work); |
| 3036 | } |
| 3037 | preempt_enable(); |
| 3038 | |
| 3039 | if (flags & SCA_MIGRATE_ENABLE) |
| 3040 | return 0; |
| 3041 | } else { |
| 3042 | |
| 3043 | if (!is_migration_disabled(p)) { |
| 3044 | if (task_on_rq_queued(p)) |
| 3045 | rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu); |
| 3046 | |
| 3047 | if (!pending->stop_pending) { |
| 3048 | p->migration_pending = NULL; |
| 3049 | complete = true; |
| 3050 | } |
| 3051 | } |
| 3052 | task_rq_unlock(rq, p, rf); |
| 3053 | |
| 3054 | if (complete) |
| 3055 | complete_all(&pending->done); |
| 3056 | } |
| 3057 | |
| 3058 | wait_for_completion(&pending->done); |
| 3059 | |
| 3060 | if (refcount_dec_and_test(r: &pending->refs)) |
| 3061 | wake_up_var(var: &pending->refs); /* No UaF, just an address */ |
| 3062 | |
| 3063 | /* |
| 3064 | * Block the original owner of &pending until all subsequent callers |
| 3065 | * have seen the completion and decremented the refcount |
| 3066 | */ |
| 3067 | wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); |
| 3068 | |
| 3069 | /* ARGH */ |
| 3070 | WARN_ON_ONCE(my_pending.stop_pending); |
| 3071 | |
| 3072 | return 0; |
| 3073 | } |
| 3074 | |
| 3075 | /* |
| 3076 | * Called with both p->pi_lock and rq->lock held; drops both before returning. |
| 3077 | */ |
| 3078 | static int __set_cpus_allowed_ptr_locked(struct task_struct *p, |
| 3079 | struct affinity_context *ctx, |
| 3080 | struct rq *rq, |
| 3081 | struct rq_flags *rf) |
| 3082 | __releases(rq->lock) |
| 3083 | __releases(p->pi_lock) |
| 3084 | { |
| 3085 | const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); |
| 3086 | const struct cpumask *cpu_valid_mask = cpu_active_mask; |
| 3087 | bool kthread = p->flags & PF_KTHREAD; |
| 3088 | unsigned int dest_cpu; |
| 3089 | int ret = 0; |
| 3090 | |
| 3091 | update_rq_clock(rq); |
| 3092 | |
| 3093 | if (kthread || is_migration_disabled(p)) { |
| 3094 | /* |
| 3095 | * Kernel threads are allowed on online && !active CPUs, |
| 3096 | * however, during cpu-hot-unplug, even these might get pushed |
| 3097 | * away if not KTHREAD_IS_PER_CPU. |
| 3098 | * |
| 3099 | * Specifically, migration_disabled() tasks must not fail the |
| 3100 | * cpumask_any_and_distribute() pick below, esp. so on |
| 3101 | * SCA_MIGRATE_ENABLE, otherwise we'll not call |
| 3102 | * set_cpus_allowed_common() and actually reset p->cpus_ptr. |
| 3103 | */ |
| 3104 | cpu_valid_mask = cpu_online_mask; |
| 3105 | } |
| 3106 | |
| 3107 | if (!kthread && !cpumask_subset(src1p: ctx->new_mask, src2p: cpu_allowed_mask)) { |
| 3108 | ret = -EINVAL; |
| 3109 | goto out; |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | * Must re-check here, to close a race against __kthread_bind(), |
| 3114 | * sched_setaffinity() is not guaranteed to observe the flag. |
| 3115 | */ |
| 3116 | if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { |
| 3117 | ret = -EINVAL; |
| 3118 | goto out; |
| 3119 | } |
| 3120 | |
| 3121 | if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { |
| 3122 | if (cpumask_equal(src1p: &p->cpus_mask, src2p: ctx->new_mask)) { |
| 3123 | if (ctx->flags & SCA_USER) |
| 3124 | swap(p->user_cpus_ptr, ctx->user_mask); |
| 3125 | goto out; |
| 3126 | } |
| 3127 | |
| 3128 | if (WARN_ON_ONCE(p == current && |
| 3129 | is_migration_disabled(p) && |
| 3130 | !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { |
| 3131 | ret = -EBUSY; |
| 3132 | goto out; |
| 3133 | } |
| 3134 | } |
| 3135 | |
| 3136 | /* |
| 3137 | * Picking a ~random cpu helps in cases where we are changing affinity |
| 3138 | * for groups of tasks (ie. cpuset), so that load balancing is not |
| 3139 | * immediately required to distribute the tasks within their new mask. |
| 3140 | */ |
| 3141 | dest_cpu = cpumask_any_and_distribute(src1p: cpu_valid_mask, src2p: ctx->new_mask); |
| 3142 | if (dest_cpu >= nr_cpu_ids) { |
| 3143 | ret = -EINVAL; |
| 3144 | goto out; |
| 3145 | } |
| 3146 | |
| 3147 | __do_set_cpus_allowed(p, ctx); |
| 3148 | |
| 3149 | return affine_move_task(rq, p, rf, dest_cpu, flags: ctx->flags); |
| 3150 | |
| 3151 | out: |
| 3152 | task_rq_unlock(rq, p, rf); |
| 3153 | |
| 3154 | return ret; |
| 3155 | } |
| 3156 | |
| 3157 | /* |
| 3158 | * Change a given task's CPU affinity. Migrate the thread to a |
| 3159 | * proper CPU and schedule it away if the CPU it's executing on |
| 3160 | * is removed from the allowed bitmask. |
| 3161 | * |
| 3162 | * NOTE: the caller must have a valid reference to the task, the |
| 3163 | * task must not exit() & deallocate itself prematurely. The |
| 3164 | * call is not atomic; no spinlocks may be held. |
| 3165 | */ |
| 3166 | int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) |
| 3167 | { |
| 3168 | struct rq_flags rf; |
| 3169 | struct rq *rq; |
| 3170 | |
| 3171 | rq = task_rq_lock(p, rf: &rf); |
| 3172 | /* |
| 3173 | * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* |
| 3174 | * flags are set. |
| 3175 | */ |
| 3176 | if (p->user_cpus_ptr && |
| 3177 | !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && |
| 3178 | cpumask_and(dstp: rq->scratch_mask, src1p: ctx->new_mask, src2p: p->user_cpus_ptr)) |
| 3179 | ctx->new_mask = rq->scratch_mask; |
| 3180 | |
| 3181 | return __set_cpus_allowed_ptr_locked(p, ctx, rq, rf: &rf); |
| 3182 | } |
| 3183 | |
| 3184 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| 3185 | { |
| 3186 | struct affinity_context ac = { |
| 3187 | .new_mask = new_mask, |
| 3188 | .flags = 0, |
| 3189 | }; |
| 3190 | |
| 3191 | return __set_cpus_allowed_ptr(p, ctx: &ac); |
| 3192 | } |
| 3193 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
| 3194 | |
| 3195 | /* |
| 3196 | * Change a given task's CPU affinity to the intersection of its current |
| 3197 | * affinity mask and @subset_mask, writing the resulting mask to @new_mask. |
| 3198 | * If user_cpus_ptr is defined, use it as the basis for restricting CPU |
| 3199 | * affinity or use cpu_online_mask instead. |
| 3200 | * |
| 3201 | * If the resulting mask is empty, leave the affinity unchanged and return |
| 3202 | * -EINVAL. |
| 3203 | */ |
| 3204 | static int restrict_cpus_allowed_ptr(struct task_struct *p, |
| 3205 | struct cpumask *new_mask, |
| 3206 | const struct cpumask *subset_mask) |
| 3207 | { |
| 3208 | struct affinity_context ac = { |
| 3209 | .new_mask = new_mask, |
| 3210 | .flags = 0, |
| 3211 | }; |
| 3212 | struct rq_flags rf; |
| 3213 | struct rq *rq; |
| 3214 | int err; |
| 3215 | |
| 3216 | rq = task_rq_lock(p, rf: &rf); |
| 3217 | |
| 3218 | /* |
| 3219 | * Forcefully restricting the affinity of a deadline task is |
| 3220 | * likely to cause problems, so fail and noisily override the |
| 3221 | * mask entirely. |
| 3222 | */ |
| 3223 | if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { |
| 3224 | err = -EPERM; |
| 3225 | goto err_unlock; |
| 3226 | } |
| 3227 | |
| 3228 | if (!cpumask_and(dstp: new_mask, src1p: task_user_cpus(p), src2p: subset_mask)) { |
| 3229 | err = -EINVAL; |
| 3230 | goto err_unlock; |
| 3231 | } |
| 3232 | |
| 3233 | return __set_cpus_allowed_ptr_locked(p, ctx: &ac, rq, rf: &rf); |
| 3234 | |
| 3235 | err_unlock: |
| 3236 | task_rq_unlock(rq, p, rf: &rf); |
| 3237 | return err; |
| 3238 | } |
| 3239 | |
| 3240 | /* |
| 3241 | * Restrict the CPU affinity of task @p so that it is a subset of |
| 3242 | * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the |
| 3243 | * old affinity mask. If the resulting mask is empty, we warn and walk |
| 3244 | * up the cpuset hierarchy until we find a suitable mask. |
| 3245 | */ |
| 3246 | void force_compatible_cpus_allowed_ptr(struct task_struct *p) |
| 3247 | { |
| 3248 | cpumask_var_t new_mask; |
| 3249 | const struct cpumask *override_mask = task_cpu_possible_mask(p); |
| 3250 | |
| 3251 | alloc_cpumask_var(mask: &new_mask, GFP_KERNEL); |
| 3252 | |
| 3253 | /* |
| 3254 | * __migrate_task() can fail silently in the face of concurrent |
| 3255 | * offlining of the chosen destination CPU, so take the hotplug |
| 3256 | * lock to ensure that the migration succeeds. |
| 3257 | */ |
| 3258 | cpus_read_lock(); |
| 3259 | if (!cpumask_available(mask: new_mask)) |
| 3260 | goto out_set_mask; |
| 3261 | |
| 3262 | if (!restrict_cpus_allowed_ptr(p, new_mask, subset_mask: override_mask)) |
| 3263 | goto out_free_mask; |
| 3264 | |
| 3265 | /* |
| 3266 | * We failed to find a valid subset of the affinity mask for the |
| 3267 | * task, so override it based on its cpuset hierarchy. |
| 3268 | */ |
| 3269 | cpuset_cpus_allowed(p, mask: new_mask); |
| 3270 | override_mask = new_mask; |
| 3271 | |
| 3272 | out_set_mask: |
| 3273 | if (printk_ratelimit()) { |
| 3274 | printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n" , |
| 3275 | task_pid_nr(p), p->comm, |
| 3276 | cpumask_pr_args(override_mask)); |
| 3277 | } |
| 3278 | |
| 3279 | WARN_ON(set_cpus_allowed_ptr(p, override_mask)); |
| 3280 | out_free_mask: |
| 3281 | cpus_read_unlock(); |
| 3282 | free_cpumask_var(mask: new_mask); |
| 3283 | } |
| 3284 | |
| 3285 | /* |
| 3286 | * Restore the affinity of a task @p which was previously restricted by a |
| 3287 | * call to force_compatible_cpus_allowed_ptr(). |
| 3288 | * |
| 3289 | * It is the caller's responsibility to serialise this with any calls to |
| 3290 | * force_compatible_cpus_allowed_ptr(@p). |
| 3291 | */ |
| 3292 | void relax_compatible_cpus_allowed_ptr(struct task_struct *p) |
| 3293 | { |
| 3294 | struct affinity_context ac = { |
| 3295 | .new_mask = task_user_cpus(p), |
| 3296 | .flags = 0, |
| 3297 | }; |
| 3298 | int ret; |
| 3299 | |
| 3300 | /* |
| 3301 | * Try to restore the old affinity mask with __sched_setaffinity(). |
| 3302 | * Cpuset masking will be done there too. |
| 3303 | */ |
| 3304 | ret = __sched_setaffinity(p, ctx: &ac); |
| 3305 | WARN_ON_ONCE(ret); |
| 3306 | } |
| 3307 | |
| 3308 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
| 3309 | { |
| 3310 | unsigned int state = READ_ONCE(p->__state); |
| 3311 | |
| 3312 | /* |
| 3313 | * We should never call set_task_cpu() on a blocked task, |
| 3314 | * ttwu() will sort out the placement. |
| 3315 | */ |
| 3316 | WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); |
| 3317 | |
| 3318 | /* |
| 3319 | * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, |
| 3320 | * because schedstat_wait_{start,end} rebase migrating task's wait_start |
| 3321 | * time relying on p->on_rq. |
| 3322 | */ |
| 3323 | WARN_ON_ONCE(state == TASK_RUNNING && |
| 3324 | p->sched_class == &fair_sched_class && |
| 3325 | (p->on_rq && !task_on_rq_migrating(p))); |
| 3326 | |
| 3327 | #ifdef CONFIG_LOCKDEP |
| 3328 | /* |
| 3329 | * The caller should hold either p->pi_lock or rq->lock, when changing |
| 3330 | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. |
| 3331 | * |
| 3332 | * sched_move_task() holds both and thus holding either pins the cgroup, |
| 3333 | * see task_group(). |
| 3334 | * |
| 3335 | * Furthermore, all task_rq users should acquire both locks, see |
| 3336 | * task_rq_lock(). |
| 3337 | */ |
| 3338 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || |
| 3339 | lockdep_is_held(__rq_lockp(task_rq(p))))); |
| 3340 | #endif |
| 3341 | /* |
| 3342 | * Clearly, migrating tasks to offline CPUs is a fairly daft thing. |
| 3343 | */ |
| 3344 | WARN_ON_ONCE(!cpu_online(new_cpu)); |
| 3345 | |
| 3346 | WARN_ON_ONCE(is_migration_disabled(p)); |
| 3347 | |
| 3348 | trace_sched_migrate_task(p, dest_cpu: new_cpu); |
| 3349 | |
| 3350 | if (task_cpu(p) != new_cpu) { |
| 3351 | if (p->sched_class->migrate_task_rq) |
| 3352 | p->sched_class->migrate_task_rq(p, new_cpu); |
| 3353 | p->se.nr_migrations++; |
| 3354 | rseq_migrate(t: p); |
| 3355 | sched_mm_cid_migrate_from(t: p); |
| 3356 | perf_event_task_migrate(task: p); |
| 3357 | } |
| 3358 | |
| 3359 | __set_task_cpu(p, cpu: new_cpu); |
| 3360 | } |
| 3361 | |
| 3362 | #ifdef CONFIG_NUMA_BALANCING |
| 3363 | static void __migrate_swap_task(struct task_struct *p, int cpu) |
| 3364 | { |
| 3365 | __schedstat_inc(p->stats.numa_task_swapped); |
| 3366 | count_vm_numa_event(NUMA_TASK_SWAP); |
| 3367 | count_memcg_event_mm(mm: p->mm, idx: NUMA_TASK_SWAP); |
| 3368 | |
| 3369 | if (task_on_rq_queued(p)) { |
| 3370 | struct rq *src_rq, *dst_rq; |
| 3371 | struct rq_flags srf, drf; |
| 3372 | |
| 3373 | src_rq = task_rq(p); |
| 3374 | dst_rq = cpu_rq(cpu); |
| 3375 | |
| 3376 | rq_pin_lock(rq: src_rq, rf: &srf); |
| 3377 | rq_pin_lock(rq: dst_rq, rf: &drf); |
| 3378 | |
| 3379 | move_queued_task_locked(src_rq, dst_rq, task: p); |
| 3380 | wakeup_preempt(rq: dst_rq, p, flags: 0); |
| 3381 | |
| 3382 | rq_unpin_lock(rq: dst_rq, rf: &drf); |
| 3383 | rq_unpin_lock(rq: src_rq, rf: &srf); |
| 3384 | |
| 3385 | } else { |
| 3386 | /* |
| 3387 | * Task isn't running anymore; make it appear like we migrated |
| 3388 | * it before it went to sleep. This means on wakeup we make the |
| 3389 | * previous CPU our target instead of where it really is. |
| 3390 | */ |
| 3391 | p->wake_cpu = cpu; |
| 3392 | } |
| 3393 | } |
| 3394 | |
| 3395 | struct migration_swap_arg { |
| 3396 | struct task_struct *src_task, *dst_task; |
| 3397 | int src_cpu, dst_cpu; |
| 3398 | }; |
| 3399 | |
| 3400 | static int migrate_swap_stop(void *data) |
| 3401 | { |
| 3402 | struct migration_swap_arg *arg = data; |
| 3403 | struct rq *src_rq, *dst_rq; |
| 3404 | |
| 3405 | if (!cpu_active(cpu: arg->src_cpu) || !cpu_active(cpu: arg->dst_cpu)) |
| 3406 | return -EAGAIN; |
| 3407 | |
| 3408 | src_rq = cpu_rq(arg->src_cpu); |
| 3409 | dst_rq = cpu_rq(arg->dst_cpu); |
| 3410 | |
| 3411 | guard(double_raw_spinlock)(lock: &arg->src_task->pi_lock, lock2: &arg->dst_task->pi_lock); |
| 3412 | guard(double_rq_lock)(lock: src_rq, lock2: dst_rq); |
| 3413 | |
| 3414 | if (task_cpu(p: arg->dst_task) != arg->dst_cpu) |
| 3415 | return -EAGAIN; |
| 3416 | |
| 3417 | if (task_cpu(p: arg->src_task) != arg->src_cpu) |
| 3418 | return -EAGAIN; |
| 3419 | |
| 3420 | if (!cpumask_test_cpu(cpu: arg->dst_cpu, cpumask: arg->src_task->cpus_ptr)) |
| 3421 | return -EAGAIN; |
| 3422 | |
| 3423 | if (!cpumask_test_cpu(cpu: arg->src_cpu, cpumask: arg->dst_task->cpus_ptr)) |
| 3424 | return -EAGAIN; |
| 3425 | |
| 3426 | __migrate_swap_task(p: arg->src_task, cpu: arg->dst_cpu); |
| 3427 | __migrate_swap_task(p: arg->dst_task, cpu: arg->src_cpu); |
| 3428 | |
| 3429 | return 0; |
| 3430 | } |
| 3431 | |
| 3432 | /* |
| 3433 | * Cross migrate two tasks |
| 3434 | */ |
| 3435 | int migrate_swap(struct task_struct *cur, struct task_struct *p, |
| 3436 | int target_cpu, int curr_cpu) |
| 3437 | { |
| 3438 | struct migration_swap_arg arg; |
| 3439 | int ret = -EINVAL; |
| 3440 | |
| 3441 | arg = (struct migration_swap_arg){ |
| 3442 | .src_task = cur, |
| 3443 | .src_cpu = curr_cpu, |
| 3444 | .dst_task = p, |
| 3445 | .dst_cpu = target_cpu, |
| 3446 | }; |
| 3447 | |
| 3448 | if (arg.src_cpu == arg.dst_cpu) |
| 3449 | goto out; |
| 3450 | |
| 3451 | /* |
| 3452 | * These three tests are all lockless; this is OK since all of them |
| 3453 | * will be re-checked with proper locks held further down the line. |
| 3454 | */ |
| 3455 | if (!cpu_active(cpu: arg.src_cpu) || !cpu_active(cpu: arg.dst_cpu)) |
| 3456 | goto out; |
| 3457 | |
| 3458 | if (!cpumask_test_cpu(cpu: arg.dst_cpu, cpumask: arg.src_task->cpus_ptr)) |
| 3459 | goto out; |
| 3460 | |
| 3461 | if (!cpumask_test_cpu(cpu: arg.src_cpu, cpumask: arg.dst_task->cpus_ptr)) |
| 3462 | goto out; |
| 3463 | |
| 3464 | trace_sched_swap_numa(src_tsk: cur, src_cpu: arg.src_cpu, dst_tsk: p, dst_cpu: arg.dst_cpu); |
| 3465 | ret = stop_two_cpus(cpu1: arg.dst_cpu, cpu2: arg.src_cpu, fn: migrate_swap_stop, arg: &arg); |
| 3466 | |
| 3467 | out: |
| 3468 | return ret; |
| 3469 | } |
| 3470 | #endif /* CONFIG_NUMA_BALANCING */ |
| 3471 | |
| 3472 | /*** |
| 3473 | * kick_process - kick a running thread to enter/exit the kernel |
| 3474 | * @p: the to-be-kicked thread |
| 3475 | * |
| 3476 | * Cause a process which is running on another CPU to enter |
| 3477 | * kernel-mode, without any delay. (to get signals handled.) |
| 3478 | * |
| 3479 | * NOTE: this function doesn't have to take the runqueue lock, |
| 3480 | * because all it wants to ensure is that the remote task enters |
| 3481 | * the kernel. If the IPI races and the task has been migrated |
| 3482 | * to another CPU then no harm is done and the purpose has been |
| 3483 | * achieved as well. |
| 3484 | */ |
| 3485 | void kick_process(struct task_struct *p) |
| 3486 | { |
| 3487 | guard(preempt)(); |
| 3488 | int cpu = task_cpu(p); |
| 3489 | |
| 3490 | if ((cpu != smp_processor_id()) && task_curr(p)) |
| 3491 | smp_send_reschedule(cpu); |
| 3492 | } |
| 3493 | EXPORT_SYMBOL_GPL(kick_process); |
| 3494 | |
| 3495 | /* |
| 3496 | * ->cpus_ptr is protected by both rq->lock and p->pi_lock |
| 3497 | * |
| 3498 | * A few notes on cpu_active vs cpu_online: |
| 3499 | * |
| 3500 | * - cpu_active must be a subset of cpu_online |
| 3501 | * |
| 3502 | * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, |
| 3503 | * see __set_cpus_allowed_ptr(). At this point the newly online |
| 3504 | * CPU isn't yet part of the sched domains, and balancing will not |
| 3505 | * see it. |
| 3506 | * |
| 3507 | * - on CPU-down we clear cpu_active() to mask the sched domains and |
| 3508 | * avoid the load balancer to place new tasks on the to be removed |
| 3509 | * CPU. Existing tasks will remain running there and will be taken |
| 3510 | * off. |
| 3511 | * |
| 3512 | * This means that fallback selection must not select !active CPUs. |
| 3513 | * And can assume that any active CPU must be online. Conversely |
| 3514 | * select_task_rq() below may allow selection of !active CPUs in order |
| 3515 | * to satisfy the above rules. |
| 3516 | */ |
| 3517 | static int select_fallback_rq(int cpu, struct task_struct *p) |
| 3518 | { |
| 3519 | int nid = cpu_to_node(cpu); |
| 3520 | const struct cpumask *nodemask = NULL; |
| 3521 | enum { cpuset, possible, fail } state = cpuset; |
| 3522 | int dest_cpu; |
| 3523 | |
| 3524 | /* |
| 3525 | * If the node that the CPU is on has been offlined, cpu_to_node() |
| 3526 | * will return -1. There is no CPU on the node, and we should |
| 3527 | * select the CPU on the other node. |
| 3528 | */ |
| 3529 | if (nid != -1) { |
| 3530 | nodemask = cpumask_of_node(node: nid); |
| 3531 | |
| 3532 | /* Look for allowed, online CPU in same node. */ |
| 3533 | for_each_cpu(dest_cpu, nodemask) { |
| 3534 | if (is_cpu_allowed(p, cpu: dest_cpu)) |
| 3535 | return dest_cpu; |
| 3536 | } |
| 3537 | } |
| 3538 | |
| 3539 | for (;;) { |
| 3540 | /* Any allowed, online CPU? */ |
| 3541 | for_each_cpu(dest_cpu, p->cpus_ptr) { |
| 3542 | if (!is_cpu_allowed(p, cpu: dest_cpu)) |
| 3543 | continue; |
| 3544 | |
| 3545 | goto out; |
| 3546 | } |
| 3547 | |
| 3548 | /* No more Mr. Nice Guy. */ |
| 3549 | switch (state) { |
| 3550 | case cpuset: |
| 3551 | if (cpuset_cpus_allowed_fallback(p)) { |
| 3552 | state = possible; |
| 3553 | break; |
| 3554 | } |
| 3555 | fallthrough; |
| 3556 | case possible: |
| 3557 | /* |
| 3558 | * XXX When called from select_task_rq() we only |
| 3559 | * hold p->pi_lock and again violate locking order. |
| 3560 | * |
| 3561 | * More yuck to audit. |
| 3562 | */ |
| 3563 | do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); |
| 3564 | state = fail; |
| 3565 | break; |
| 3566 | case fail: |
| 3567 | BUG(); |
| 3568 | break; |
| 3569 | } |
| 3570 | } |
| 3571 | |
| 3572 | out: |
| 3573 | if (state != cpuset) { |
| 3574 | /* |
| 3575 | * Don't tell them about moving exiting tasks or |
| 3576 | * kernel threads (both mm NULL), since they never |
| 3577 | * leave kernel. |
| 3578 | */ |
| 3579 | if (p->mm && printk_ratelimit()) { |
| 3580 | printk_deferred("process %d (%s) no longer affine to cpu%d\n" , |
| 3581 | task_pid_nr(p), p->comm, cpu); |
| 3582 | } |
| 3583 | } |
| 3584 | |
| 3585 | return dest_cpu; |
| 3586 | } |
| 3587 | |
| 3588 | /* |
| 3589 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. |
| 3590 | */ |
| 3591 | static inline |
| 3592 | int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) |
| 3593 | { |
| 3594 | lockdep_assert_held(&p->pi_lock); |
| 3595 | |
| 3596 | if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { |
| 3597 | cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); |
| 3598 | *wake_flags |= WF_RQ_SELECTED; |
| 3599 | } else { |
| 3600 | cpu = cpumask_any(p->cpus_ptr); |
| 3601 | } |
| 3602 | |
| 3603 | /* |
| 3604 | * In order not to call set_task_cpu() on a blocking task we need |
| 3605 | * to rely on ttwu() to place the task on a valid ->cpus_ptr |
| 3606 | * CPU. |
| 3607 | * |
| 3608 | * Since this is common to all placement strategies, this lives here. |
| 3609 | * |
| 3610 | * [ this allows ->select_task() to simply return task_cpu(p) and |
| 3611 | * not worry about this generic constraint ] |
| 3612 | */ |
| 3613 | if (unlikely(!is_cpu_allowed(p, cpu))) |
| 3614 | cpu = select_fallback_rq(cpu: task_cpu(p), p); |
| 3615 | |
| 3616 | return cpu; |
| 3617 | } |
| 3618 | |
| 3619 | void sched_set_stop_task(int cpu, struct task_struct *stop) |
| 3620 | { |
| 3621 | static struct lock_class_key stop_pi_lock; |
| 3622 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
| 3623 | struct task_struct *old_stop = cpu_rq(cpu)->stop; |
| 3624 | |
| 3625 | if (stop) { |
| 3626 | /* |
| 3627 | * Make it appear like a SCHED_FIFO task, its something |
| 3628 | * userspace knows about and won't get confused about. |
| 3629 | * |
| 3630 | * Also, it will make PI more or less work without too |
| 3631 | * much confusion -- but then, stop work should not |
| 3632 | * rely on PI working anyway. |
| 3633 | */ |
| 3634 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); |
| 3635 | |
| 3636 | stop->sched_class = &stop_sched_class; |
| 3637 | |
| 3638 | /* |
| 3639 | * The PI code calls rt_mutex_setprio() with ->pi_lock held to |
| 3640 | * adjust the effective priority of a task. As a result, |
| 3641 | * rt_mutex_setprio() can trigger (RT) balancing operations, |
| 3642 | * which can then trigger wakeups of the stop thread to push |
| 3643 | * around the current task. |
| 3644 | * |
| 3645 | * The stop task itself will never be part of the PI-chain, it |
| 3646 | * never blocks, therefore that ->pi_lock recursion is safe. |
| 3647 | * Tell lockdep about this by placing the stop->pi_lock in its |
| 3648 | * own class. |
| 3649 | */ |
| 3650 | lockdep_set_class(&stop->pi_lock, &stop_pi_lock); |
| 3651 | } |
| 3652 | |
| 3653 | cpu_rq(cpu)->stop = stop; |
| 3654 | |
| 3655 | if (old_stop) { |
| 3656 | /* |
| 3657 | * Reset it back to a normal scheduling class so that |
| 3658 | * it can die in pieces. |
| 3659 | */ |
| 3660 | old_stop->sched_class = &rt_sched_class; |
| 3661 | } |
| 3662 | } |
| 3663 | |
| 3664 | #else /* CONFIG_SMP */ |
| 3665 | |
| 3666 | static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } |
| 3667 | |
| 3668 | static inline bool rq_has_pinned_tasks(struct rq *rq) |
| 3669 | { |
| 3670 | return false; |
| 3671 | } |
| 3672 | |
| 3673 | #endif /* !CONFIG_SMP */ |
| 3674 | |
| 3675 | static void |
| 3676 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) |
| 3677 | { |
| 3678 | struct rq *rq; |
| 3679 | |
| 3680 | if (!schedstat_enabled()) |
| 3681 | return; |
| 3682 | |
| 3683 | rq = this_rq(); |
| 3684 | |
| 3685 | #ifdef CONFIG_SMP |
| 3686 | if (cpu == rq->cpu) { |
| 3687 | __schedstat_inc(rq->ttwu_local); |
| 3688 | __schedstat_inc(p->stats.nr_wakeups_local); |
| 3689 | } else { |
| 3690 | struct sched_domain *sd; |
| 3691 | |
| 3692 | __schedstat_inc(p->stats.nr_wakeups_remote); |
| 3693 | |
| 3694 | guard(rcu)(); |
| 3695 | for_each_domain(rq->cpu, sd) { |
| 3696 | if (cpumask_test_cpu(cpu, cpumask: sched_domain_span(sd))) { |
| 3697 | __schedstat_inc(sd->ttwu_wake_remote); |
| 3698 | break; |
| 3699 | } |
| 3700 | } |
| 3701 | } |
| 3702 | |
| 3703 | if (wake_flags & WF_MIGRATED) |
| 3704 | __schedstat_inc(p->stats.nr_wakeups_migrate); |
| 3705 | #endif /* CONFIG_SMP */ |
| 3706 | |
| 3707 | __schedstat_inc(rq->ttwu_count); |
| 3708 | __schedstat_inc(p->stats.nr_wakeups); |
| 3709 | |
| 3710 | if (wake_flags & WF_SYNC) |
| 3711 | __schedstat_inc(p->stats.nr_wakeups_sync); |
| 3712 | } |
| 3713 | |
| 3714 | /* |
| 3715 | * Mark the task runnable. |
| 3716 | */ |
| 3717 | static inline void ttwu_do_wakeup(struct task_struct *p) |
| 3718 | { |
| 3719 | WRITE_ONCE(p->__state, TASK_RUNNING); |
| 3720 | trace_sched_wakeup(p); |
| 3721 | } |
| 3722 | |
| 3723 | static void |
| 3724 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, |
| 3725 | struct rq_flags *rf) |
| 3726 | { |
| 3727 | int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; |
| 3728 | |
| 3729 | lockdep_assert_rq_held(rq); |
| 3730 | |
| 3731 | if (p->sched_contributes_to_load) |
| 3732 | rq->nr_uninterruptible--; |
| 3733 | |
| 3734 | #ifdef CONFIG_SMP |
| 3735 | if (wake_flags & WF_RQ_SELECTED) |
| 3736 | en_flags |= ENQUEUE_RQ_SELECTED; |
| 3737 | if (wake_flags & WF_MIGRATED) |
| 3738 | en_flags |= ENQUEUE_MIGRATED; |
| 3739 | else |
| 3740 | #endif |
| 3741 | if (p->in_iowait) { |
| 3742 | delayacct_blkio_end(p); |
| 3743 | atomic_dec(v: &task_rq(p)->nr_iowait); |
| 3744 | } |
| 3745 | |
| 3746 | activate_task(rq, p, flags: en_flags); |
| 3747 | wakeup_preempt(rq, p, flags: wake_flags); |
| 3748 | |
| 3749 | ttwu_do_wakeup(p); |
| 3750 | |
| 3751 | #ifdef CONFIG_SMP |
| 3752 | if (p->sched_class->task_woken) { |
| 3753 | /* |
| 3754 | * Our task @p is fully woken up and running; so it's safe to |
| 3755 | * drop the rq->lock, hereafter rq is only used for statistics. |
| 3756 | */ |
| 3757 | rq_unpin_lock(rq, rf); |
| 3758 | p->sched_class->task_woken(rq, p); |
| 3759 | rq_repin_lock(rq, rf); |
| 3760 | } |
| 3761 | |
| 3762 | if (rq->idle_stamp) { |
| 3763 | u64 delta = rq_clock(rq) - rq->idle_stamp; |
| 3764 | u64 max = 2*rq->max_idle_balance_cost; |
| 3765 | |
| 3766 | update_avg(avg: &rq->avg_idle, sample: delta); |
| 3767 | |
| 3768 | if (rq->avg_idle > max) |
| 3769 | rq->avg_idle = max; |
| 3770 | |
| 3771 | rq->idle_stamp = 0; |
| 3772 | } |
| 3773 | #endif |
| 3774 | } |
| 3775 | |
| 3776 | /* |
| 3777 | * Consider @p being inside a wait loop: |
| 3778 | * |
| 3779 | * for (;;) { |
| 3780 | * set_current_state(TASK_UNINTERRUPTIBLE); |
| 3781 | * |
| 3782 | * if (CONDITION) |
| 3783 | * break; |
| 3784 | * |
| 3785 | * schedule(); |
| 3786 | * } |
| 3787 | * __set_current_state(TASK_RUNNING); |
| 3788 | * |
| 3789 | * between set_current_state() and schedule(). In this case @p is still |
| 3790 | * runnable, so all that needs doing is change p->state back to TASK_RUNNING in |
| 3791 | * an atomic manner. |
| 3792 | * |
| 3793 | * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq |
| 3794 | * then schedule() must still happen and p->state can be changed to |
| 3795 | * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we |
| 3796 | * need to do a full wakeup with enqueue. |
| 3797 | * |
| 3798 | * Returns: %true when the wakeup is done, |
| 3799 | * %false otherwise. |
| 3800 | */ |
| 3801 | static int ttwu_runnable(struct task_struct *p, int wake_flags) |
| 3802 | { |
| 3803 | struct rq_flags rf; |
| 3804 | struct rq *rq; |
| 3805 | int ret = 0; |
| 3806 | |
| 3807 | rq = __task_rq_lock(p, rf: &rf); |
| 3808 | if (task_on_rq_queued(p)) { |
| 3809 | update_rq_clock(rq); |
| 3810 | if (p->se.sched_delayed) |
| 3811 | enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); |
| 3812 | if (!task_on_cpu(rq, p)) { |
| 3813 | /* |
| 3814 | * When on_rq && !on_cpu the task is preempted, see if |
| 3815 | * it should preempt the task that is current now. |
| 3816 | */ |
| 3817 | wakeup_preempt(rq, p, flags: wake_flags); |
| 3818 | } |
| 3819 | ttwu_do_wakeup(p); |
| 3820 | ret = 1; |
| 3821 | } |
| 3822 | __task_rq_unlock(rq, rf: &rf); |
| 3823 | |
| 3824 | return ret; |
| 3825 | } |
| 3826 | |
| 3827 | #ifdef CONFIG_SMP |
| 3828 | void sched_ttwu_pending(void *arg) |
| 3829 | { |
| 3830 | struct llist_node *llist = arg; |
| 3831 | struct rq *rq = this_rq(); |
| 3832 | struct task_struct *p, *t; |
| 3833 | struct rq_flags rf; |
| 3834 | |
| 3835 | if (!llist) |
| 3836 | return; |
| 3837 | |
| 3838 | rq_lock_irqsave(rq, rf: &rf); |
| 3839 | update_rq_clock(rq); |
| 3840 | |
| 3841 | llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { |
| 3842 | if (WARN_ON_ONCE(p->on_cpu)) |
| 3843 | smp_cond_load_acquire(&p->on_cpu, !VAL); |
| 3844 | |
| 3845 | if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) |
| 3846 | set_task_cpu(p, new_cpu: cpu_of(rq)); |
| 3847 | |
| 3848 | ttwu_do_activate(rq, p, wake_flags: p->sched_remote_wakeup ? WF_MIGRATED : 0, rf: &rf); |
| 3849 | } |
| 3850 | |
| 3851 | /* |
| 3852 | * Must be after enqueueing at least once task such that |
| 3853 | * idle_cpu() does not observe a false-negative -- if it does, |
| 3854 | * it is possible for select_idle_siblings() to stack a number |
| 3855 | * of tasks on this CPU during that window. |
| 3856 | * |
| 3857 | * It is OK to clear ttwu_pending when another task pending. |
| 3858 | * We will receive IPI after local IRQ enabled and then enqueue it. |
| 3859 | * Since now nr_running > 0, idle_cpu() will always get correct result. |
| 3860 | */ |
| 3861 | WRITE_ONCE(rq->ttwu_pending, 0); |
| 3862 | rq_unlock_irqrestore(rq, rf: &rf); |
| 3863 | } |
| 3864 | |
| 3865 | /* |
| 3866 | * Prepare the scene for sending an IPI for a remote smp_call |
| 3867 | * |
| 3868 | * Returns true if the caller can proceed with sending the IPI. |
| 3869 | * Returns false otherwise. |
| 3870 | */ |
| 3871 | bool call_function_single_prep_ipi(int cpu) |
| 3872 | { |
| 3873 | if (set_nr_if_polling(cpu_rq(cpu)->idle)) { |
| 3874 | trace_sched_wake_idle_without_ipi(cpu); |
| 3875 | return false; |
| 3876 | } |
| 3877 | |
| 3878 | return true; |
| 3879 | } |
| 3880 | |
| 3881 | /* |
| 3882 | * Queue a task on the target CPUs wake_list and wake the CPU via IPI if |
| 3883 | * necessary. The wakee CPU on receipt of the IPI will queue the task |
| 3884 | * via sched_ttwu_wakeup() for activation so the wakee incurs the cost |
| 3885 | * of the wakeup instead of the waker. |
| 3886 | */ |
| 3887 | static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| 3888 | { |
| 3889 | struct rq *rq = cpu_rq(cpu); |
| 3890 | |
| 3891 | p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); |
| 3892 | |
| 3893 | WRITE_ONCE(rq->ttwu_pending, 1); |
| 3894 | __smp_call_single_queue(cpu, node: &p->wake_entry.llist); |
| 3895 | } |
| 3896 | |
| 3897 | void wake_up_if_idle(int cpu) |
| 3898 | { |
| 3899 | struct rq *rq = cpu_rq(cpu); |
| 3900 | |
| 3901 | guard(rcu)(); |
| 3902 | if (is_idle_task(rcu_dereference(rq->curr))) { |
| 3903 | guard(rq_lock_irqsave)(l: rq); |
| 3904 | if (is_idle_task(p: rq->curr)) |
| 3905 | resched_curr(rq); |
| 3906 | } |
| 3907 | } |
| 3908 | |
| 3909 | bool cpus_equal_capacity(int this_cpu, int that_cpu) |
| 3910 | { |
| 3911 | if (!sched_asym_cpucap_active()) |
| 3912 | return true; |
| 3913 | |
| 3914 | if (this_cpu == that_cpu) |
| 3915 | return true; |
| 3916 | |
| 3917 | return arch_scale_cpu_capacity(cpu: this_cpu) == arch_scale_cpu_capacity(cpu: that_cpu); |
| 3918 | } |
| 3919 | |
| 3920 | bool cpus_share_cache(int this_cpu, int that_cpu) |
| 3921 | { |
| 3922 | if (this_cpu == that_cpu) |
| 3923 | return true; |
| 3924 | |
| 3925 | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); |
| 3926 | } |
| 3927 | |
| 3928 | /* |
| 3929 | * Whether CPUs are share cache resources, which means LLC on non-cluster |
| 3930 | * machines and LLC tag or L2 on machines with clusters. |
| 3931 | */ |
| 3932 | bool cpus_share_resources(int this_cpu, int that_cpu) |
| 3933 | { |
| 3934 | if (this_cpu == that_cpu) |
| 3935 | return true; |
| 3936 | |
| 3937 | return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); |
| 3938 | } |
| 3939 | |
| 3940 | static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) |
| 3941 | { |
| 3942 | /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ |
| 3943 | if (!scx_allow_ttwu_queue(p)) |
| 3944 | return false; |
| 3945 | |
| 3946 | /* |
| 3947 | * Do not complicate things with the async wake_list while the CPU is |
| 3948 | * in hotplug state. |
| 3949 | */ |
| 3950 | if (!cpu_active(cpu)) |
| 3951 | return false; |
| 3952 | |
| 3953 | /* Ensure the task will still be allowed to run on the CPU. */ |
| 3954 | if (!cpumask_test_cpu(cpu, cpumask: p->cpus_ptr)) |
| 3955 | return false; |
| 3956 | |
| 3957 | /* |
| 3958 | * If the CPU does not share cache, then queue the task on the |
| 3959 | * remote rqs wakelist to avoid accessing remote data. |
| 3960 | */ |
| 3961 | if (!cpus_share_cache(smp_processor_id(), that_cpu: cpu)) |
| 3962 | return true; |
| 3963 | |
| 3964 | if (cpu == smp_processor_id()) |
| 3965 | return false; |
| 3966 | |
| 3967 | /* |
| 3968 | * If the wakee cpu is idle, or the task is descheduling and the |
| 3969 | * only running task on the CPU, then use the wakelist to offload |
| 3970 | * the task activation to the idle (or soon-to-be-idle) CPU as |
| 3971 | * the current CPU is likely busy. nr_running is checked to |
| 3972 | * avoid unnecessary task stacking. |
| 3973 | * |
| 3974 | * Note that we can only get here with (wakee) p->on_rq=0, |
| 3975 | * p->on_cpu can be whatever, we've done the dequeue, so |
| 3976 | * the wakee has been accounted out of ->nr_running. |
| 3977 | */ |
| 3978 | if (!cpu_rq(cpu)->nr_running) |
| 3979 | return true; |
| 3980 | |
| 3981 | return false; |
| 3982 | } |
| 3983 | |
| 3984 | static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| 3985 | { |
| 3986 | if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { |
| 3987 | sched_clock_cpu(cpu); /* Sync clocks across CPUs */ |
| 3988 | __ttwu_queue_wakelist(p, cpu, wake_flags); |
| 3989 | return true; |
| 3990 | } |
| 3991 | |
| 3992 | return false; |
| 3993 | } |
| 3994 | |
| 3995 | #else /* !CONFIG_SMP */ |
| 3996 | |
| 3997 | static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) |
| 3998 | { |
| 3999 | return false; |
| 4000 | } |
| 4001 | |
| 4002 | #endif /* CONFIG_SMP */ |
| 4003 | |
| 4004 | static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) |
| 4005 | { |
| 4006 | struct rq *rq = cpu_rq(cpu); |
| 4007 | struct rq_flags rf; |
| 4008 | |
| 4009 | if (ttwu_queue_wakelist(p, cpu, wake_flags)) |
| 4010 | return; |
| 4011 | |
| 4012 | rq_lock(rq, rf: &rf); |
| 4013 | update_rq_clock(rq); |
| 4014 | ttwu_do_activate(rq, p, wake_flags, rf: &rf); |
| 4015 | rq_unlock(rq, rf: &rf); |
| 4016 | } |
| 4017 | |
| 4018 | /* |
| 4019 | * Invoked from try_to_wake_up() to check whether the task can be woken up. |
| 4020 | * |
| 4021 | * The caller holds p::pi_lock if p != current or has preemption |
| 4022 | * disabled when p == current. |
| 4023 | * |
| 4024 | * The rules of saved_state: |
| 4025 | * |
| 4026 | * The related locking code always holds p::pi_lock when updating |
| 4027 | * p::saved_state, which means the code is fully serialized in both cases. |
| 4028 | * |
| 4029 | * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. |
| 4030 | * No other bits set. This allows to distinguish all wakeup scenarios. |
| 4031 | * |
| 4032 | * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This |
| 4033 | * allows us to prevent early wakeup of tasks before they can be run on |
| 4034 | * asymmetric ISA architectures (eg ARMv9). |
| 4035 | */ |
| 4036 | static __always_inline |
| 4037 | bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) |
| 4038 | { |
| 4039 | int match; |
| 4040 | |
| 4041 | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { |
| 4042 | WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && |
| 4043 | state != TASK_RTLOCK_WAIT); |
| 4044 | } |
| 4045 | |
| 4046 | *success = !!(match = __task_state_match(p, state)); |
| 4047 | |
| 4048 | /* |
| 4049 | * Saved state preserves the task state across blocking on |
| 4050 | * an RT lock or TASK_FREEZABLE tasks. If the state matches, |
| 4051 | * set p::saved_state to TASK_RUNNING, but do not wake the task |
| 4052 | * because it waits for a lock wakeup or __thaw_task(). Also |
| 4053 | * indicate success because from the regular waker's point of |
| 4054 | * view this has succeeded. |
| 4055 | * |
| 4056 | * After acquiring the lock the task will restore p::__state |
| 4057 | * from p::saved_state which ensures that the regular |
| 4058 | * wakeup is not lost. The restore will also set |
| 4059 | * p::saved_state to TASK_RUNNING so any further tests will |
| 4060 | * not result in false positives vs. @success |
| 4061 | */ |
| 4062 | if (match < 0) |
| 4063 | p->saved_state = TASK_RUNNING; |
| 4064 | |
| 4065 | return match > 0; |
| 4066 | } |
| 4067 | |
| 4068 | /* |
| 4069 | * Notes on Program-Order guarantees on SMP systems. |
| 4070 | * |
| 4071 | * MIGRATION |
| 4072 | * |
| 4073 | * The basic program-order guarantee on SMP systems is that when a task [t] |
| 4074 | * migrates, all its activity on its old CPU [c0] happens-before any subsequent |
| 4075 | * execution on its new CPU [c1]. |
| 4076 | * |
| 4077 | * For migration (of runnable tasks) this is provided by the following means: |
| 4078 | * |
| 4079 | * A) UNLOCK of the rq(c0)->lock scheduling out task t |
| 4080 | * B) migration for t is required to synchronize *both* rq(c0)->lock and |
| 4081 | * rq(c1)->lock (if not at the same time, then in that order). |
| 4082 | * C) LOCK of the rq(c1)->lock scheduling in task |
| 4083 | * |
| 4084 | * Release/acquire chaining guarantees that B happens after A and C after B. |
| 4085 | * Note: the CPU doing B need not be c0 or c1 |
| 4086 | * |
| 4087 | * Example: |
| 4088 | * |
| 4089 | * CPU0 CPU1 CPU2 |
| 4090 | * |
| 4091 | * LOCK rq(0)->lock |
| 4092 | * sched-out X |
| 4093 | * sched-in Y |
| 4094 | * UNLOCK rq(0)->lock |
| 4095 | * |
| 4096 | * LOCK rq(0)->lock // orders against CPU0 |
| 4097 | * dequeue X |
| 4098 | * UNLOCK rq(0)->lock |
| 4099 | * |
| 4100 | * LOCK rq(1)->lock |
| 4101 | * enqueue X |
| 4102 | * UNLOCK rq(1)->lock |
| 4103 | * |
| 4104 | * LOCK rq(1)->lock // orders against CPU2 |
| 4105 | * sched-out Z |
| 4106 | * sched-in X |
| 4107 | * UNLOCK rq(1)->lock |
| 4108 | * |
| 4109 | * |
| 4110 | * BLOCKING -- aka. SLEEP + WAKEUP |
| 4111 | * |
| 4112 | * For blocking we (obviously) need to provide the same guarantee as for |
| 4113 | * migration. However the means are completely different as there is no lock |
| 4114 | * chain to provide order. Instead we do: |
| 4115 | * |
| 4116 | * 1) smp_store_release(X->on_cpu, 0) -- finish_task() |
| 4117 | * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() |
| 4118 | * |
| 4119 | * Example: |
| 4120 | * |
| 4121 | * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) |
| 4122 | * |
| 4123 | * LOCK rq(0)->lock LOCK X->pi_lock |
| 4124 | * dequeue X |
| 4125 | * sched-out X |
| 4126 | * smp_store_release(X->on_cpu, 0); |
| 4127 | * |
| 4128 | * smp_cond_load_acquire(&X->on_cpu, !VAL); |
| 4129 | * X->state = WAKING |
| 4130 | * set_task_cpu(X,2) |
| 4131 | * |
| 4132 | * LOCK rq(2)->lock |
| 4133 | * enqueue X |
| 4134 | * X->state = RUNNING |
| 4135 | * UNLOCK rq(2)->lock |
| 4136 | * |
| 4137 | * LOCK rq(2)->lock // orders against CPU1 |
| 4138 | * sched-out Z |
| 4139 | * sched-in X |
| 4140 | * UNLOCK rq(2)->lock |
| 4141 | * |
| 4142 | * UNLOCK X->pi_lock |
| 4143 | * UNLOCK rq(0)->lock |
| 4144 | * |
| 4145 | * |
| 4146 | * However, for wakeups there is a second guarantee we must provide, namely we |
| 4147 | * must ensure that CONDITION=1 done by the caller can not be reordered with |
| 4148 | * accesses to the task state; see try_to_wake_up() and set_current_state(). |
| 4149 | */ |
| 4150 | |
| 4151 | /** |
| 4152 | * try_to_wake_up - wake up a thread |
| 4153 | * @p: the thread to be awakened |
| 4154 | * @state: the mask of task states that can be woken |
| 4155 | * @wake_flags: wake modifier flags (WF_*) |
| 4156 | * |
| 4157 | * Conceptually does: |
| 4158 | * |
| 4159 | * If (@state & @p->state) @p->state = TASK_RUNNING. |
| 4160 | * |
| 4161 | * If the task was not queued/runnable, also place it back on a runqueue. |
| 4162 | * |
| 4163 | * This function is atomic against schedule() which would dequeue the task. |
| 4164 | * |
| 4165 | * It issues a full memory barrier before accessing @p->state, see the comment |
| 4166 | * with set_current_state(). |
| 4167 | * |
| 4168 | * Uses p->pi_lock to serialize against concurrent wake-ups. |
| 4169 | * |
| 4170 | * Relies on p->pi_lock stabilizing: |
| 4171 | * - p->sched_class |
| 4172 | * - p->cpus_ptr |
| 4173 | * - p->sched_task_group |
| 4174 | * in order to do migration, see its use of select_task_rq()/set_task_cpu(). |
| 4175 | * |
| 4176 | * Tries really hard to only take one task_rq(p)->lock for performance. |
| 4177 | * Takes rq->lock in: |
| 4178 | * - ttwu_runnable() -- old rq, unavoidable, see comment there; |
| 4179 | * - ttwu_queue() -- new rq, for enqueue of the task; |
| 4180 | * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. |
| 4181 | * |
| 4182 | * As a consequence we race really badly with just about everything. See the |
| 4183 | * many memory barriers and their comments for details. |
| 4184 | * |
| 4185 | * Return: %true if @p->state changes (an actual wakeup was done), |
| 4186 | * %false otherwise. |
| 4187 | */ |
| 4188 | int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) |
| 4189 | { |
| 4190 | guard(preempt)(); |
| 4191 | int cpu, success = 0; |
| 4192 | |
| 4193 | wake_flags |= WF_TTWU; |
| 4194 | |
| 4195 | if (p == current) { |
| 4196 | /* |
| 4197 | * We're waking current, this means 'p->on_rq' and 'task_cpu(p) |
| 4198 | * == smp_processor_id()'. Together this means we can special |
| 4199 | * case the whole 'p->on_rq && ttwu_runnable()' case below |
| 4200 | * without taking any locks. |
| 4201 | * |
| 4202 | * Specifically, given current runs ttwu() we must be before |
| 4203 | * schedule()'s block_task(), as such this must not observe |
| 4204 | * sched_delayed. |
| 4205 | * |
| 4206 | * In particular: |
| 4207 | * - we rely on Program-Order guarantees for all the ordering, |
| 4208 | * - we're serialized against set_special_state() by virtue of |
| 4209 | * it disabling IRQs (this allows not taking ->pi_lock). |
| 4210 | */ |
| 4211 | WARN_ON_ONCE(p->se.sched_delayed); |
| 4212 | if (!ttwu_state_match(p, state, success: &success)) |
| 4213 | goto out; |
| 4214 | |
| 4215 | trace_sched_waking(p); |
| 4216 | ttwu_do_wakeup(p); |
| 4217 | goto out; |
| 4218 | } |
| 4219 | |
| 4220 | /* |
| 4221 | * If we are going to wake up a thread waiting for CONDITION we |
| 4222 | * need to ensure that CONDITION=1 done by the caller can not be |
| 4223 | * reordered with p->state check below. This pairs with smp_store_mb() |
| 4224 | * in set_current_state() that the waiting thread does. |
| 4225 | */ |
| 4226 | scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { |
| 4227 | smp_mb__after_spinlock(); |
| 4228 | if (!ttwu_state_match(p, state, success: &success)) |
| 4229 | break; |
| 4230 | |
| 4231 | trace_sched_waking(p); |
| 4232 | |
| 4233 | /* |
| 4234 | * Ensure we load p->on_rq _after_ p->state, otherwise it would |
| 4235 | * be possible to, falsely, observe p->on_rq == 0 and get stuck |
| 4236 | * in smp_cond_load_acquire() below. |
| 4237 | * |
| 4238 | * sched_ttwu_pending() try_to_wake_up() |
| 4239 | * STORE p->on_rq = 1 LOAD p->state |
| 4240 | * UNLOCK rq->lock |
| 4241 | * |
| 4242 | * __schedule() (switch to task 'p') |
| 4243 | * LOCK rq->lock smp_rmb(); |
| 4244 | * smp_mb__after_spinlock(); |
| 4245 | * UNLOCK rq->lock |
| 4246 | * |
| 4247 | * [task p] |
| 4248 | * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq |
| 4249 | * |
| 4250 | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in |
| 4251 | * __schedule(). See the comment for smp_mb__after_spinlock(). |
| 4252 | * |
| 4253 | * A similar smp_rmb() lives in __task_needs_rq_lock(). |
| 4254 | */ |
| 4255 | smp_rmb(); |
| 4256 | if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) |
| 4257 | break; |
| 4258 | |
| 4259 | #ifdef CONFIG_SMP |
| 4260 | /* |
| 4261 | * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be |
| 4262 | * possible to, falsely, observe p->on_cpu == 0. |
| 4263 | * |
| 4264 | * One must be running (->on_cpu == 1) in order to remove oneself |
| 4265 | * from the runqueue. |
| 4266 | * |
| 4267 | * __schedule() (switch to task 'p') try_to_wake_up() |
| 4268 | * STORE p->on_cpu = 1 LOAD p->on_rq |
| 4269 | * UNLOCK rq->lock |
| 4270 | * |
| 4271 | * __schedule() (put 'p' to sleep) |
| 4272 | * LOCK rq->lock smp_rmb(); |
| 4273 | * smp_mb__after_spinlock(); |
| 4274 | * STORE p->on_rq = 0 LOAD p->on_cpu |
| 4275 | * |
| 4276 | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in |
| 4277 | * __schedule(). See the comment for smp_mb__after_spinlock(). |
| 4278 | * |
| 4279 | * Form a control-dep-acquire with p->on_rq == 0 above, to ensure |
| 4280 | * schedule()'s deactivate_task() has 'happened' and p will no longer |
| 4281 | * care about it's own p->state. See the comment in __schedule(). |
| 4282 | */ |
| 4283 | smp_acquire__after_ctrl_dep(); |
| 4284 | |
| 4285 | /* |
| 4286 | * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq |
| 4287 | * == 0), which means we need to do an enqueue, change p->state to |
| 4288 | * TASK_WAKING such that we can unlock p->pi_lock before doing the |
| 4289 | * enqueue, such as ttwu_queue_wakelist(). |
| 4290 | */ |
| 4291 | WRITE_ONCE(p->__state, TASK_WAKING); |
| 4292 | |
| 4293 | /* |
| 4294 | * If the owning (remote) CPU is still in the middle of schedule() with |
| 4295 | * this task as prev, considering queueing p on the remote CPUs wake_list |
| 4296 | * which potentially sends an IPI instead of spinning on p->on_cpu to |
| 4297 | * let the waker make forward progress. This is safe because IRQs are |
| 4298 | * disabled and the IPI will deliver after on_cpu is cleared. |
| 4299 | * |
| 4300 | * Ensure we load task_cpu(p) after p->on_cpu: |
| 4301 | * |
| 4302 | * set_task_cpu(p, cpu); |
| 4303 | * STORE p->cpu = @cpu |
| 4304 | * __schedule() (switch to task 'p') |
| 4305 | * LOCK rq->lock |
| 4306 | * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) |
| 4307 | * STORE p->on_cpu = 1 LOAD p->cpu |
| 4308 | * |
| 4309 | * to ensure we observe the correct CPU on which the task is currently |
| 4310 | * scheduling. |
| 4311 | */ |
| 4312 | if (smp_load_acquire(&p->on_cpu) && |
| 4313 | ttwu_queue_wakelist(p, cpu: task_cpu(p), wake_flags)) |
| 4314 | break; |
| 4315 | |
| 4316 | /* |
| 4317 | * If the owning (remote) CPU is still in the middle of schedule() with |
| 4318 | * this task as prev, wait until it's done referencing the task. |
| 4319 | * |
| 4320 | * Pairs with the smp_store_release() in finish_task(). |
| 4321 | * |
| 4322 | * This ensures that tasks getting woken will be fully ordered against |
| 4323 | * their previous state and preserve Program Order. |
| 4324 | */ |
| 4325 | smp_cond_load_acquire(&p->on_cpu, !VAL); |
| 4326 | |
| 4327 | cpu = select_task_rq(p, cpu: p->wake_cpu, wake_flags: &wake_flags); |
| 4328 | if (task_cpu(p) != cpu) { |
| 4329 | if (p->in_iowait) { |
| 4330 | delayacct_blkio_end(p); |
| 4331 | atomic_dec(v: &task_rq(p)->nr_iowait); |
| 4332 | } |
| 4333 | |
| 4334 | wake_flags |= WF_MIGRATED; |
| 4335 | psi_ttwu_dequeue(p); |
| 4336 | set_task_cpu(p, new_cpu: cpu); |
| 4337 | } |
| 4338 | #else |
| 4339 | cpu = task_cpu(p); |
| 4340 | #endif /* CONFIG_SMP */ |
| 4341 | |
| 4342 | ttwu_queue(p, cpu, wake_flags); |
| 4343 | } |
| 4344 | out: |
| 4345 | if (success) |
| 4346 | ttwu_stat(p, cpu: task_cpu(p), wake_flags); |
| 4347 | |
| 4348 | return success; |
| 4349 | } |
| 4350 | |
| 4351 | static bool __task_needs_rq_lock(struct task_struct *p) |
| 4352 | { |
| 4353 | unsigned int state = READ_ONCE(p->__state); |
| 4354 | |
| 4355 | /* |
| 4356 | * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when |
| 4357 | * the task is blocked. Make sure to check @state since ttwu() can drop |
| 4358 | * locks at the end, see ttwu_queue_wakelist(). |
| 4359 | */ |
| 4360 | if (state == TASK_RUNNING || state == TASK_WAKING) |
| 4361 | return true; |
| 4362 | |
| 4363 | /* |
| 4364 | * Ensure we load p->on_rq after p->__state, otherwise it would be |
| 4365 | * possible to, falsely, observe p->on_rq == 0. |
| 4366 | * |
| 4367 | * See try_to_wake_up() for a longer comment. |
| 4368 | */ |
| 4369 | smp_rmb(); |
| 4370 | if (p->on_rq) |
| 4371 | return true; |
| 4372 | |
| 4373 | #ifdef CONFIG_SMP |
| 4374 | /* |
| 4375 | * Ensure the task has finished __schedule() and will not be referenced |
| 4376 | * anymore. Again, see try_to_wake_up() for a longer comment. |
| 4377 | */ |
| 4378 | smp_rmb(); |
| 4379 | smp_cond_load_acquire(&p->on_cpu, !VAL); |
| 4380 | #endif |
| 4381 | |
| 4382 | return false; |
| 4383 | } |
| 4384 | |
| 4385 | /** |
| 4386 | * task_call_func - Invoke a function on task in fixed state |
| 4387 | * @p: Process for which the function is to be invoked, can be @current. |
| 4388 | * @func: Function to invoke. |
| 4389 | * @arg: Argument to function. |
| 4390 | * |
| 4391 | * Fix the task in it's current state by avoiding wakeups and or rq operations |
| 4392 | * and call @func(@arg) on it. This function can use task_is_runnable() and |
| 4393 | * task_curr() to work out what the state is, if required. Given that @func |
| 4394 | * can be invoked with a runqueue lock held, it had better be quite |
| 4395 | * lightweight. |
| 4396 | * |
| 4397 | * Returns: |
| 4398 | * Whatever @func returns |
| 4399 | */ |
| 4400 | int task_call_func(struct task_struct *p, task_call_f func, void *arg) |
| 4401 | { |
| 4402 | struct rq *rq = NULL; |
| 4403 | struct rq_flags rf; |
| 4404 | int ret; |
| 4405 | |
| 4406 | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); |
| 4407 | |
| 4408 | if (__task_needs_rq_lock(p)) |
| 4409 | rq = __task_rq_lock(p, rf: &rf); |
| 4410 | |
| 4411 | /* |
| 4412 | * At this point the task is pinned; either: |
| 4413 | * - blocked and we're holding off wakeups (pi->lock) |
| 4414 | * - woken, and we're holding off enqueue (rq->lock) |
| 4415 | * - queued, and we're holding off schedule (rq->lock) |
| 4416 | * - running, and we're holding off de-schedule (rq->lock) |
| 4417 | * |
| 4418 | * The called function (@func) can use: task_curr(), p->on_rq and |
| 4419 | * p->__state to differentiate between these states. |
| 4420 | */ |
| 4421 | ret = func(p, arg); |
| 4422 | |
| 4423 | if (rq) |
| 4424 | rq_unlock(rq, rf: &rf); |
| 4425 | |
| 4426 | raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); |
| 4427 | return ret; |
| 4428 | } |
| 4429 | |
| 4430 | /** |
| 4431 | * cpu_curr_snapshot - Return a snapshot of the currently running task |
| 4432 | * @cpu: The CPU on which to snapshot the task. |
| 4433 | * |
| 4434 | * Returns the task_struct pointer of the task "currently" running on |
| 4435 | * the specified CPU. |
| 4436 | * |
| 4437 | * If the specified CPU was offline, the return value is whatever it |
| 4438 | * is, perhaps a pointer to the task_struct structure of that CPU's idle |
| 4439 | * task, but there is no guarantee. Callers wishing a useful return |
| 4440 | * value must take some action to ensure that the specified CPU remains |
| 4441 | * online throughout. |
| 4442 | * |
| 4443 | * This function executes full memory barriers before and after fetching |
| 4444 | * the pointer, which permits the caller to confine this function's fetch |
| 4445 | * with respect to the caller's accesses to other shared variables. |
| 4446 | */ |
| 4447 | struct task_struct *cpu_curr_snapshot(int cpu) |
| 4448 | { |
| 4449 | struct rq *rq = cpu_rq(cpu); |
| 4450 | struct task_struct *t; |
| 4451 | struct rq_flags rf; |
| 4452 | |
| 4453 | rq_lock_irqsave(rq, rf: &rf); |
| 4454 | smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ |
| 4455 | t = rcu_dereference(cpu_curr(cpu)); |
| 4456 | rq_unlock_irqrestore(rq, rf: &rf); |
| 4457 | smp_mb(); /* Pairing determined by caller's synchronization design. */ |
| 4458 | |
| 4459 | return t; |
| 4460 | } |
| 4461 | |
| 4462 | /** |
| 4463 | * wake_up_process - Wake up a specific process |
| 4464 | * @p: The process to be woken up. |
| 4465 | * |
| 4466 | * Attempt to wake up the nominated process and move it to the set of runnable |
| 4467 | * processes. |
| 4468 | * |
| 4469 | * Return: 1 if the process was woken up, 0 if it was already running. |
| 4470 | * |
| 4471 | * This function executes a full memory barrier before accessing the task state. |
| 4472 | */ |
| 4473 | int wake_up_process(struct task_struct *p) |
| 4474 | { |
| 4475 | return try_to_wake_up(p, TASK_NORMAL, wake_flags: 0); |
| 4476 | } |
| 4477 | EXPORT_SYMBOL(wake_up_process); |
| 4478 | |
| 4479 | int wake_up_state(struct task_struct *p, unsigned int state) |
| 4480 | { |
| 4481 | return try_to_wake_up(p, state, wake_flags: 0); |
| 4482 | } |
| 4483 | |
| 4484 | /* |
| 4485 | * Perform scheduler related setup for a newly forked process p. |
| 4486 | * p is forked by current. |
| 4487 | * |
| 4488 | * __sched_fork() is basic setup which is also used by sched_init() to |
| 4489 | * initialize the boot CPU's idle task. |
| 4490 | */ |
| 4491 | static void __sched_fork(unsigned long clone_flags, struct task_struct *p) |
| 4492 | { |
| 4493 | p->on_rq = 0; |
| 4494 | |
| 4495 | p->se.on_rq = 0; |
| 4496 | p->se.exec_start = 0; |
| 4497 | p->se.sum_exec_runtime = 0; |
| 4498 | p->se.prev_sum_exec_runtime = 0; |
| 4499 | p->se.nr_migrations = 0; |
| 4500 | p->se.vruntime = 0; |
| 4501 | p->se.vlag = 0; |
| 4502 | INIT_LIST_HEAD(list: &p->se.group_node); |
| 4503 | |
| 4504 | /* A delayed task cannot be in clone(). */ |
| 4505 | WARN_ON_ONCE(p->se.sched_delayed); |
| 4506 | |
| 4507 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 4508 | p->se.cfs_rq = NULL; |
| 4509 | #endif |
| 4510 | |
| 4511 | #ifdef CONFIG_SCHEDSTATS |
| 4512 | /* Even if schedstat is disabled, there should not be garbage */ |
| 4513 | memset(&p->stats, 0, sizeof(p->stats)); |
| 4514 | #endif |
| 4515 | |
| 4516 | init_dl_entity(dl_se: &p->dl); |
| 4517 | |
| 4518 | INIT_LIST_HEAD(list: &p->rt.run_list); |
| 4519 | p->rt.timeout = 0; |
| 4520 | p->rt.time_slice = sched_rr_timeslice; |
| 4521 | p->rt.on_rq = 0; |
| 4522 | p->rt.on_list = 0; |
| 4523 | |
| 4524 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 4525 | init_scx_entity(&p->scx); |
| 4526 | #endif |
| 4527 | |
| 4528 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 4529 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
| 4530 | #endif |
| 4531 | |
| 4532 | #ifdef CONFIG_COMPACTION |
| 4533 | p->capture_control = NULL; |
| 4534 | #endif |
| 4535 | init_numa_balancing(clone_flags, p); |
| 4536 | #ifdef CONFIG_SMP |
| 4537 | p->wake_entry.u_flags = CSD_TYPE_TTWU; |
| 4538 | p->migration_pending = NULL; |
| 4539 | #endif |
| 4540 | init_sched_mm_cid(t: p); |
| 4541 | } |
| 4542 | |
| 4543 | DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); |
| 4544 | |
| 4545 | #ifdef CONFIG_NUMA_BALANCING |
| 4546 | |
| 4547 | int sysctl_numa_balancing_mode; |
| 4548 | |
| 4549 | static void __set_numabalancing_state(bool enabled) |
| 4550 | { |
| 4551 | if (enabled) |
| 4552 | static_branch_enable(&sched_numa_balancing); |
| 4553 | else |
| 4554 | static_branch_disable(&sched_numa_balancing); |
| 4555 | } |
| 4556 | |
| 4557 | void set_numabalancing_state(bool enabled) |
| 4558 | { |
| 4559 | if (enabled) |
| 4560 | sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; |
| 4561 | else |
| 4562 | sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; |
| 4563 | __set_numabalancing_state(enabled); |
| 4564 | } |
| 4565 | |
| 4566 | #ifdef CONFIG_PROC_SYSCTL |
| 4567 | static void reset_memory_tiering(void) |
| 4568 | { |
| 4569 | struct pglist_data *pgdat; |
| 4570 | |
| 4571 | for_each_online_pgdat(pgdat) { |
| 4572 | pgdat->nbp_threshold = 0; |
| 4573 | pgdat->nbp_th_nr_cand = node_page_state(pgdat, item: PGPROMOTE_CANDIDATE); |
| 4574 | pgdat->nbp_th_start = jiffies_to_msecs(j: jiffies); |
| 4575 | } |
| 4576 | } |
| 4577 | |
| 4578 | static int sysctl_numa_balancing(const struct ctl_table *table, int write, |
| 4579 | void *buffer, size_t *lenp, loff_t *ppos) |
| 4580 | { |
| 4581 | struct ctl_table t; |
| 4582 | int err; |
| 4583 | int state = sysctl_numa_balancing_mode; |
| 4584 | |
| 4585 | if (write && !capable(CAP_SYS_ADMIN)) |
| 4586 | return -EPERM; |
| 4587 | |
| 4588 | t = *table; |
| 4589 | t.data = &state; |
| 4590 | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); |
| 4591 | if (err < 0) |
| 4592 | return err; |
| 4593 | if (write) { |
| 4594 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
| 4595 | (state & NUMA_BALANCING_MEMORY_TIERING)) |
| 4596 | reset_memory_tiering(); |
| 4597 | sysctl_numa_balancing_mode = state; |
| 4598 | __set_numabalancing_state(enabled: state); |
| 4599 | } |
| 4600 | return err; |
| 4601 | } |
| 4602 | #endif |
| 4603 | #endif |
| 4604 | |
| 4605 | #ifdef CONFIG_SCHEDSTATS |
| 4606 | |
| 4607 | DEFINE_STATIC_KEY_FALSE(sched_schedstats); |
| 4608 | |
| 4609 | static void set_schedstats(bool enabled) |
| 4610 | { |
| 4611 | if (enabled) |
| 4612 | static_branch_enable(&sched_schedstats); |
| 4613 | else |
| 4614 | static_branch_disable(&sched_schedstats); |
| 4615 | } |
| 4616 | |
| 4617 | void force_schedstat_enabled(void) |
| 4618 | { |
| 4619 | if (!schedstat_enabled()) { |
| 4620 | pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n" ); |
| 4621 | static_branch_enable(&sched_schedstats); |
| 4622 | } |
| 4623 | } |
| 4624 | |
| 4625 | static int __init setup_schedstats(char *str) |
| 4626 | { |
| 4627 | int ret = 0; |
| 4628 | if (!str) |
| 4629 | goto out; |
| 4630 | |
| 4631 | if (!strcmp(str, "enable" )) { |
| 4632 | set_schedstats(true); |
| 4633 | ret = 1; |
| 4634 | } else if (!strcmp(str, "disable" )) { |
| 4635 | set_schedstats(false); |
| 4636 | ret = 1; |
| 4637 | } |
| 4638 | out: |
| 4639 | if (!ret) |
| 4640 | pr_warn("Unable to parse schedstats=\n" ); |
| 4641 | |
| 4642 | return ret; |
| 4643 | } |
| 4644 | __setup("schedstats=" , setup_schedstats); |
| 4645 | |
| 4646 | #ifdef CONFIG_PROC_SYSCTL |
| 4647 | static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, |
| 4648 | size_t *lenp, loff_t *ppos) |
| 4649 | { |
| 4650 | struct ctl_table t; |
| 4651 | int err; |
| 4652 | int state = static_branch_likely(&sched_schedstats); |
| 4653 | |
| 4654 | if (write && !capable(CAP_SYS_ADMIN)) |
| 4655 | return -EPERM; |
| 4656 | |
| 4657 | t = *table; |
| 4658 | t.data = &state; |
| 4659 | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); |
| 4660 | if (err < 0) |
| 4661 | return err; |
| 4662 | if (write) |
| 4663 | set_schedstats(state); |
| 4664 | return err; |
| 4665 | } |
| 4666 | #endif /* CONFIG_PROC_SYSCTL */ |
| 4667 | #endif /* CONFIG_SCHEDSTATS */ |
| 4668 | |
| 4669 | #ifdef CONFIG_SYSCTL |
| 4670 | static const struct ctl_table sched_core_sysctls[] = { |
| 4671 | #ifdef CONFIG_SCHEDSTATS |
| 4672 | { |
| 4673 | .procname = "sched_schedstats" , |
| 4674 | .data = NULL, |
| 4675 | .maxlen = sizeof(unsigned int), |
| 4676 | .mode = 0644, |
| 4677 | .proc_handler = sysctl_schedstats, |
| 4678 | .extra1 = SYSCTL_ZERO, |
| 4679 | .extra2 = SYSCTL_ONE, |
| 4680 | }, |
| 4681 | #endif /* CONFIG_SCHEDSTATS */ |
| 4682 | #ifdef CONFIG_UCLAMP_TASK |
| 4683 | { |
| 4684 | .procname = "sched_util_clamp_min" , |
| 4685 | .data = &sysctl_sched_uclamp_util_min, |
| 4686 | .maxlen = sizeof(unsigned int), |
| 4687 | .mode = 0644, |
| 4688 | .proc_handler = sysctl_sched_uclamp_handler, |
| 4689 | }, |
| 4690 | { |
| 4691 | .procname = "sched_util_clamp_max" , |
| 4692 | .data = &sysctl_sched_uclamp_util_max, |
| 4693 | .maxlen = sizeof(unsigned int), |
| 4694 | .mode = 0644, |
| 4695 | .proc_handler = sysctl_sched_uclamp_handler, |
| 4696 | }, |
| 4697 | { |
| 4698 | .procname = "sched_util_clamp_min_rt_default" , |
| 4699 | .data = &sysctl_sched_uclamp_util_min_rt_default, |
| 4700 | .maxlen = sizeof(unsigned int), |
| 4701 | .mode = 0644, |
| 4702 | .proc_handler = sysctl_sched_uclamp_handler, |
| 4703 | }, |
| 4704 | #endif /* CONFIG_UCLAMP_TASK */ |
| 4705 | #ifdef CONFIG_NUMA_BALANCING |
| 4706 | { |
| 4707 | .procname = "numa_balancing" , |
| 4708 | .data = NULL, /* filled in by handler */ |
| 4709 | .maxlen = sizeof(unsigned int), |
| 4710 | .mode = 0644, |
| 4711 | .proc_handler = sysctl_numa_balancing, |
| 4712 | .extra1 = SYSCTL_ZERO, |
| 4713 | .extra2 = SYSCTL_FOUR, |
| 4714 | }, |
| 4715 | #endif /* CONFIG_NUMA_BALANCING */ |
| 4716 | }; |
| 4717 | static int __init sched_core_sysctl_init(void) |
| 4718 | { |
| 4719 | register_sysctl_init("kernel" , sched_core_sysctls); |
| 4720 | return 0; |
| 4721 | } |
| 4722 | late_initcall(sched_core_sysctl_init); |
| 4723 | #endif /* CONFIG_SYSCTL */ |
| 4724 | |
| 4725 | /* |
| 4726 | * fork()/clone()-time setup: |
| 4727 | */ |
| 4728 | int sched_fork(unsigned long clone_flags, struct task_struct *p) |
| 4729 | { |
| 4730 | __sched_fork(clone_flags, p); |
| 4731 | /* |
| 4732 | * We mark the process as NEW here. This guarantees that |
| 4733 | * nobody will actually run it, and a signal or other external |
| 4734 | * event cannot wake it up and insert it on the runqueue either. |
| 4735 | */ |
| 4736 | p->__state = TASK_NEW; |
| 4737 | |
| 4738 | /* |
| 4739 | * Make sure we do not leak PI boosting priority to the child. |
| 4740 | */ |
| 4741 | p->prio = current->normal_prio; |
| 4742 | |
| 4743 | uclamp_fork(p); |
| 4744 | |
| 4745 | /* |
| 4746 | * Revert to default priority/policy on fork if requested. |
| 4747 | */ |
| 4748 | if (unlikely(p->sched_reset_on_fork)) { |
| 4749 | if (task_has_dl_policy(p) || task_has_rt_policy(p)) { |
| 4750 | p->policy = SCHED_NORMAL; |
| 4751 | p->static_prio = NICE_TO_PRIO(0); |
| 4752 | p->rt_priority = 0; |
| 4753 | } else if (PRIO_TO_NICE(p->static_prio) < 0) |
| 4754 | p->static_prio = NICE_TO_PRIO(0); |
| 4755 | |
| 4756 | p->prio = p->normal_prio = p->static_prio; |
| 4757 | set_load_weight(p, update_load: false); |
| 4758 | p->se.custom_slice = 0; |
| 4759 | p->se.slice = sysctl_sched_base_slice; |
| 4760 | |
| 4761 | /* |
| 4762 | * We don't need the reset flag anymore after the fork. It has |
| 4763 | * fulfilled its duty: |
| 4764 | */ |
| 4765 | p->sched_reset_on_fork = 0; |
| 4766 | } |
| 4767 | |
| 4768 | if (dl_prio(prio: p->prio)) |
| 4769 | return -EAGAIN; |
| 4770 | |
| 4771 | scx_pre_fork(p); |
| 4772 | |
| 4773 | if (rt_prio(prio: p->prio)) { |
| 4774 | p->sched_class = &rt_sched_class; |
| 4775 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 4776 | } else if (task_should_scx(p->policy)) { |
| 4777 | p->sched_class = &ext_sched_class; |
| 4778 | #endif |
| 4779 | } else { |
| 4780 | p->sched_class = &fair_sched_class; |
| 4781 | } |
| 4782 | |
| 4783 | init_entity_runnable_average(se: &p->se); |
| 4784 | |
| 4785 | |
| 4786 | #ifdef CONFIG_SCHED_INFO |
| 4787 | if (likely(sched_info_on())) |
| 4788 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| 4789 | #endif |
| 4790 | #if defined(CONFIG_SMP) |
| 4791 | p->on_cpu = 0; |
| 4792 | #endif |
| 4793 | init_task_preempt_count(p); |
| 4794 | #ifdef CONFIG_SMP |
| 4795 | plist_node_init(node: &p->pushable_tasks, MAX_PRIO); |
| 4796 | RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| 4797 | #endif |
| 4798 | return 0; |
| 4799 | } |
| 4800 | |
| 4801 | int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) |
| 4802 | { |
| 4803 | unsigned long flags; |
| 4804 | |
| 4805 | /* |
| 4806 | * Because we're not yet on the pid-hash, p->pi_lock isn't strictly |
| 4807 | * required yet, but lockdep gets upset if rules are violated. |
| 4808 | */ |
| 4809 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
| 4810 | #ifdef CONFIG_CGROUP_SCHED |
| 4811 | if (1) { |
| 4812 | struct task_group *tg; |
| 4813 | tg = container_of(kargs->cset->subsys[cpu_cgrp_id], |
| 4814 | struct task_group, css); |
| 4815 | tg = autogroup_task_group(p, tg); |
| 4816 | p->sched_task_group = tg; |
| 4817 | } |
| 4818 | #endif |
| 4819 | rseq_migrate(t: p); |
| 4820 | /* |
| 4821 | * We're setting the CPU for the first time, we don't migrate, |
| 4822 | * so use __set_task_cpu(). |
| 4823 | */ |
| 4824 | __set_task_cpu(p, smp_processor_id()); |
| 4825 | if (p->sched_class->task_fork) |
| 4826 | p->sched_class->task_fork(p); |
| 4827 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| 4828 | |
| 4829 | return scx_fork(p); |
| 4830 | } |
| 4831 | |
| 4832 | void sched_cancel_fork(struct task_struct *p) |
| 4833 | { |
| 4834 | scx_cancel_fork(p); |
| 4835 | } |
| 4836 | |
| 4837 | void sched_post_fork(struct task_struct *p) |
| 4838 | { |
| 4839 | uclamp_post_fork(p); |
| 4840 | scx_post_fork(p); |
| 4841 | } |
| 4842 | |
| 4843 | unsigned long to_ratio(u64 period, u64 runtime) |
| 4844 | { |
| 4845 | if (runtime == RUNTIME_INF) |
| 4846 | return BW_UNIT; |
| 4847 | |
| 4848 | /* |
| 4849 | * Doing this here saves a lot of checks in all |
| 4850 | * the calling paths, and returning zero seems |
| 4851 | * safe for them anyway. |
| 4852 | */ |
| 4853 | if (period == 0) |
| 4854 | return 0; |
| 4855 | |
| 4856 | return div64_u64(dividend: runtime << BW_SHIFT, divisor: period); |
| 4857 | } |
| 4858 | |
| 4859 | /* |
| 4860 | * wake_up_new_task - wake up a newly created task for the first time. |
| 4861 | * |
| 4862 | * This function will do some initial scheduler statistics housekeeping |
| 4863 | * that must be done for every newly created context, then puts the task |
| 4864 | * on the runqueue and wakes it. |
| 4865 | */ |
| 4866 | void wake_up_new_task(struct task_struct *p) |
| 4867 | { |
| 4868 | struct rq_flags rf; |
| 4869 | struct rq *rq; |
| 4870 | int wake_flags = WF_FORK; |
| 4871 | |
| 4872 | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); |
| 4873 | WRITE_ONCE(p->__state, TASK_RUNNING); |
| 4874 | #ifdef CONFIG_SMP |
| 4875 | /* |
| 4876 | * Fork balancing, do it here and not earlier because: |
| 4877 | * - cpus_ptr can change in the fork path |
| 4878 | * - any previously selected CPU might disappear through hotplug |
| 4879 | * |
| 4880 | * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, |
| 4881 | * as we're not fully set-up yet. |
| 4882 | */ |
| 4883 | p->recent_used_cpu = task_cpu(p); |
| 4884 | rseq_migrate(t: p); |
| 4885 | __set_task_cpu(p, cpu: select_task_rq(p, cpu: task_cpu(p), wake_flags: &wake_flags)); |
| 4886 | #endif |
| 4887 | rq = __task_rq_lock(p, rf: &rf); |
| 4888 | update_rq_clock(rq); |
| 4889 | post_init_entity_util_avg(p); |
| 4890 | |
| 4891 | activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); |
| 4892 | trace_sched_wakeup_new(p); |
| 4893 | wakeup_preempt(rq, p, flags: wake_flags); |
| 4894 | #ifdef CONFIG_SMP |
| 4895 | if (p->sched_class->task_woken) { |
| 4896 | /* |
| 4897 | * Nothing relies on rq->lock after this, so it's fine to |
| 4898 | * drop it. |
| 4899 | */ |
| 4900 | rq_unpin_lock(rq, rf: &rf); |
| 4901 | p->sched_class->task_woken(rq, p); |
| 4902 | rq_repin_lock(rq, rf: &rf); |
| 4903 | } |
| 4904 | #endif |
| 4905 | task_rq_unlock(rq, p, rf: &rf); |
| 4906 | } |
| 4907 | |
| 4908 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 4909 | |
| 4910 | static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); |
| 4911 | |
| 4912 | void preempt_notifier_inc(void) |
| 4913 | { |
| 4914 | static_branch_inc(&preempt_notifier_key); |
| 4915 | } |
| 4916 | EXPORT_SYMBOL_GPL(preempt_notifier_inc); |
| 4917 | |
| 4918 | void preempt_notifier_dec(void) |
| 4919 | { |
| 4920 | static_branch_dec(&preempt_notifier_key); |
| 4921 | } |
| 4922 | EXPORT_SYMBOL_GPL(preempt_notifier_dec); |
| 4923 | |
| 4924 | /** |
| 4925 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| 4926 | * @notifier: notifier struct to register |
| 4927 | */ |
| 4928 | void preempt_notifier_register(struct preempt_notifier *notifier) |
| 4929 | { |
| 4930 | if (!static_branch_unlikely(&preempt_notifier_key)) |
| 4931 | WARN(1, "registering preempt_notifier while notifiers disabled\n" ); |
| 4932 | |
| 4933 | hlist_add_head(n: ¬ifier->link, h: ¤t->preempt_notifiers); |
| 4934 | } |
| 4935 | EXPORT_SYMBOL_GPL(preempt_notifier_register); |
| 4936 | |
| 4937 | /** |
| 4938 | * preempt_notifier_unregister - no longer interested in preemption notifications |
| 4939 | * @notifier: notifier struct to unregister |
| 4940 | * |
| 4941 | * This is *not* safe to call from within a preemption notifier. |
| 4942 | */ |
| 4943 | void preempt_notifier_unregister(struct preempt_notifier *notifier) |
| 4944 | { |
| 4945 | hlist_del(n: ¬ifier->link); |
| 4946 | } |
| 4947 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
| 4948 | |
| 4949 | static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| 4950 | { |
| 4951 | struct preempt_notifier *notifier; |
| 4952 | |
| 4953 | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| 4954 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
| 4955 | } |
| 4956 | |
| 4957 | static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| 4958 | { |
| 4959 | if (static_branch_unlikely(&preempt_notifier_key)) |
| 4960 | __fire_sched_in_preempt_notifiers(curr); |
| 4961 | } |
| 4962 | |
| 4963 | static void |
| 4964 | __fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| 4965 | struct task_struct *next) |
| 4966 | { |
| 4967 | struct preempt_notifier *notifier; |
| 4968 | |
| 4969 | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| 4970 | notifier->ops->sched_out(notifier, next); |
| 4971 | } |
| 4972 | |
| 4973 | static __always_inline void |
| 4974 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| 4975 | struct task_struct *next) |
| 4976 | { |
| 4977 | if (static_branch_unlikely(&preempt_notifier_key)) |
| 4978 | __fire_sched_out_preempt_notifiers(curr, next); |
| 4979 | } |
| 4980 | |
| 4981 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
| 4982 | |
| 4983 | static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| 4984 | { |
| 4985 | } |
| 4986 | |
| 4987 | static inline void |
| 4988 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| 4989 | struct task_struct *next) |
| 4990 | { |
| 4991 | } |
| 4992 | |
| 4993 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
| 4994 | |
| 4995 | static inline void prepare_task(struct task_struct *next) |
| 4996 | { |
| 4997 | #ifdef CONFIG_SMP |
| 4998 | /* |
| 4999 | * Claim the task as running, we do this before switching to it |
| 5000 | * such that any running task will have this set. |
| 5001 | * |
| 5002 | * See the smp_load_acquire(&p->on_cpu) case in ttwu() and |
| 5003 | * its ordering comment. |
| 5004 | */ |
| 5005 | WRITE_ONCE(next->on_cpu, 1); |
| 5006 | #endif |
| 5007 | } |
| 5008 | |
| 5009 | static inline void finish_task(struct task_struct *prev) |
| 5010 | { |
| 5011 | #ifdef CONFIG_SMP |
| 5012 | /* |
| 5013 | * This must be the very last reference to @prev from this CPU. After |
| 5014 | * p->on_cpu is cleared, the task can be moved to a different CPU. We |
| 5015 | * must ensure this doesn't happen until the switch is completely |
| 5016 | * finished. |
| 5017 | * |
| 5018 | * In particular, the load of prev->state in finish_task_switch() must |
| 5019 | * happen before this. |
| 5020 | * |
| 5021 | * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). |
| 5022 | */ |
| 5023 | smp_store_release(&prev->on_cpu, 0); |
| 5024 | #endif |
| 5025 | } |
| 5026 | |
| 5027 | #ifdef CONFIG_SMP |
| 5028 | |
| 5029 | static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) |
| 5030 | { |
| 5031 | void (*func)(struct rq *rq); |
| 5032 | struct balance_callback *next; |
| 5033 | |
| 5034 | lockdep_assert_rq_held(rq); |
| 5035 | |
| 5036 | while (head) { |
| 5037 | func = (void (*)(struct rq *))head->func; |
| 5038 | next = head->next; |
| 5039 | head->next = NULL; |
| 5040 | head = next; |
| 5041 | |
| 5042 | func(rq); |
| 5043 | } |
| 5044 | } |
| 5045 | |
| 5046 | static void balance_push(struct rq *rq); |
| 5047 | |
| 5048 | /* |
| 5049 | * balance_push_callback is a right abuse of the callback interface and plays |
| 5050 | * by significantly different rules. |
| 5051 | * |
| 5052 | * Where the normal balance_callback's purpose is to be ran in the same context |
| 5053 | * that queued it (only later, when it's safe to drop rq->lock again), |
| 5054 | * balance_push_callback is specifically targeted at __schedule(). |
| 5055 | * |
| 5056 | * This abuse is tolerated because it places all the unlikely/odd cases behind |
| 5057 | * a single test, namely: rq->balance_callback == NULL. |
| 5058 | */ |
| 5059 | struct balance_callback balance_push_callback = { |
| 5060 | .next = NULL, |
| 5061 | .func = balance_push, |
| 5062 | }; |
| 5063 | |
| 5064 | static inline struct balance_callback * |
| 5065 | __splice_balance_callbacks(struct rq *rq, bool split) |
| 5066 | { |
| 5067 | struct balance_callback *head = rq->balance_callback; |
| 5068 | |
| 5069 | if (likely(!head)) |
| 5070 | return NULL; |
| 5071 | |
| 5072 | lockdep_assert_rq_held(rq); |
| 5073 | /* |
| 5074 | * Must not take balance_push_callback off the list when |
| 5075 | * splice_balance_callbacks() and balance_callbacks() are not |
| 5076 | * in the same rq->lock section. |
| 5077 | * |
| 5078 | * In that case it would be possible for __schedule() to interleave |
| 5079 | * and observe the list empty. |
| 5080 | */ |
| 5081 | if (split && head == &balance_push_callback) |
| 5082 | head = NULL; |
| 5083 | else |
| 5084 | rq->balance_callback = NULL; |
| 5085 | |
| 5086 | return head; |
| 5087 | } |
| 5088 | |
| 5089 | struct balance_callback *splice_balance_callbacks(struct rq *rq) |
| 5090 | { |
| 5091 | return __splice_balance_callbacks(rq, split: true); |
| 5092 | } |
| 5093 | |
| 5094 | static void __balance_callbacks(struct rq *rq) |
| 5095 | { |
| 5096 | do_balance_callbacks(rq, head: __splice_balance_callbacks(rq, split: false)); |
| 5097 | } |
| 5098 | |
| 5099 | void balance_callbacks(struct rq *rq, struct balance_callback *head) |
| 5100 | { |
| 5101 | unsigned long flags; |
| 5102 | |
| 5103 | if (unlikely(head)) { |
| 5104 | raw_spin_rq_lock_irqsave(rq, flags); |
| 5105 | do_balance_callbacks(rq, head); |
| 5106 | raw_spin_rq_unlock_irqrestore(rq, flags); |
| 5107 | } |
| 5108 | } |
| 5109 | |
| 5110 | #else |
| 5111 | |
| 5112 | static inline void __balance_callbacks(struct rq *rq) |
| 5113 | { |
| 5114 | } |
| 5115 | |
| 5116 | #endif |
| 5117 | |
| 5118 | static inline void |
| 5119 | prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) |
| 5120 | { |
| 5121 | /* |
| 5122 | * Since the runqueue lock will be released by the next |
| 5123 | * task (which is an invalid locking op but in the case |
| 5124 | * of the scheduler it's an obvious special-case), so we |
| 5125 | * do an early lockdep release here: |
| 5126 | */ |
| 5127 | rq_unpin_lock(rq, rf); |
| 5128 | spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); |
| 5129 | #ifdef CONFIG_DEBUG_SPINLOCK |
| 5130 | /* this is a valid case when another task releases the spinlock */ |
| 5131 | rq_lockp(rq)->owner = next; |
| 5132 | #endif |
| 5133 | } |
| 5134 | |
| 5135 | static inline void finish_lock_switch(struct rq *rq) |
| 5136 | { |
| 5137 | /* |
| 5138 | * If we are tracking spinlock dependencies then we have to |
| 5139 | * fix up the runqueue lock - which gets 'carried over' from |
| 5140 | * prev into current: |
| 5141 | */ |
| 5142 | spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); |
| 5143 | __balance_callbacks(rq); |
| 5144 | raw_spin_rq_unlock_irq(rq); |
| 5145 | } |
| 5146 | |
| 5147 | /* |
| 5148 | * NOP if the arch has not defined these: |
| 5149 | */ |
| 5150 | |
| 5151 | #ifndef prepare_arch_switch |
| 5152 | # define prepare_arch_switch(next) do { } while (0) |
| 5153 | #endif |
| 5154 | |
| 5155 | #ifndef finish_arch_post_lock_switch |
| 5156 | # define finish_arch_post_lock_switch() do { } while (0) |
| 5157 | #endif |
| 5158 | |
| 5159 | static inline void kmap_local_sched_out(void) |
| 5160 | { |
| 5161 | #ifdef CONFIG_KMAP_LOCAL |
| 5162 | if (unlikely(current->kmap_ctrl.idx)) |
| 5163 | __kmap_local_sched_out(); |
| 5164 | #endif |
| 5165 | } |
| 5166 | |
| 5167 | static inline void kmap_local_sched_in(void) |
| 5168 | { |
| 5169 | #ifdef CONFIG_KMAP_LOCAL |
| 5170 | if (unlikely(current->kmap_ctrl.idx)) |
| 5171 | __kmap_local_sched_in(); |
| 5172 | #endif |
| 5173 | } |
| 5174 | |
| 5175 | /** |
| 5176 | * prepare_task_switch - prepare to switch tasks |
| 5177 | * @rq: the runqueue preparing to switch |
| 5178 | * @prev: the current task that is being switched out |
| 5179 | * @next: the task we are going to switch to. |
| 5180 | * |
| 5181 | * This is called with the rq lock held and interrupts off. It must |
| 5182 | * be paired with a subsequent finish_task_switch after the context |
| 5183 | * switch. |
| 5184 | * |
| 5185 | * prepare_task_switch sets up locking and calls architecture specific |
| 5186 | * hooks. |
| 5187 | */ |
| 5188 | static inline void |
| 5189 | prepare_task_switch(struct rq *rq, struct task_struct *prev, |
| 5190 | struct task_struct *next) |
| 5191 | { |
| 5192 | kcov_prepare_switch(prev); |
| 5193 | sched_info_switch(rq, prev, next); |
| 5194 | perf_event_task_sched_out(prev, next); |
| 5195 | rseq_preempt(t: prev); |
| 5196 | fire_sched_out_preempt_notifiers(curr: prev, next); |
| 5197 | kmap_local_sched_out(); |
| 5198 | prepare_task(next); |
| 5199 | prepare_arch_switch(next); |
| 5200 | } |
| 5201 | |
| 5202 | /** |
| 5203 | * finish_task_switch - clean up after a task-switch |
| 5204 | * @prev: the thread we just switched away from. |
| 5205 | * |
| 5206 | * finish_task_switch must be called after the context switch, paired |
| 5207 | * with a prepare_task_switch call before the context switch. |
| 5208 | * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| 5209 | * and do any other architecture-specific cleanup actions. |
| 5210 | * |
| 5211 | * Note that we may have delayed dropping an mm in context_switch(). If |
| 5212 | * so, we finish that here outside of the runqueue lock. (Doing it |
| 5213 | * with the lock held can cause deadlocks; see schedule() for |
| 5214 | * details.) |
| 5215 | * |
| 5216 | * The context switch have flipped the stack from under us and restored the |
| 5217 | * local variables which were saved when this task called schedule() in the |
| 5218 | * past. 'prev == current' is still correct but we need to recalculate this_rq |
| 5219 | * because prev may have moved to another CPU. |
| 5220 | */ |
| 5221 | static struct rq *finish_task_switch(struct task_struct *prev) |
| 5222 | __releases(rq->lock) |
| 5223 | { |
| 5224 | struct rq *rq = this_rq(); |
| 5225 | struct mm_struct *mm = rq->prev_mm; |
| 5226 | unsigned int prev_state; |
| 5227 | |
| 5228 | /* |
| 5229 | * The previous task will have left us with a preempt_count of 2 |
| 5230 | * because it left us after: |
| 5231 | * |
| 5232 | * schedule() |
| 5233 | * preempt_disable(); // 1 |
| 5234 | * __schedule() |
| 5235 | * raw_spin_lock_irq(&rq->lock) // 2 |
| 5236 | * |
| 5237 | * Also, see FORK_PREEMPT_COUNT. |
| 5238 | */ |
| 5239 | if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, |
| 5240 | "corrupted preempt_count: %s/%d/0x%x\n" , |
| 5241 | current->comm, current->pid, preempt_count())) |
| 5242 | preempt_count_set(FORK_PREEMPT_COUNT); |
| 5243 | |
| 5244 | rq->prev_mm = NULL; |
| 5245 | |
| 5246 | /* |
| 5247 | * A task struct has one reference for the use as "current". |
| 5248 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
| 5249 | * schedule one last time. The schedule call will never return, and |
| 5250 | * the scheduled task must drop that reference. |
| 5251 | * |
| 5252 | * We must observe prev->state before clearing prev->on_cpu (in |
| 5253 | * finish_task), otherwise a concurrent wakeup can get prev |
| 5254 | * running on another CPU and we could rave with its RUNNING -> DEAD |
| 5255 | * transition, resulting in a double drop. |
| 5256 | */ |
| 5257 | prev_state = READ_ONCE(prev->__state); |
| 5258 | vtime_task_switch(prev); |
| 5259 | perf_event_task_sched_in(prev, current); |
| 5260 | finish_task(prev); |
| 5261 | tick_nohz_task_switch(); |
| 5262 | finish_lock_switch(rq); |
| 5263 | finish_arch_post_lock_switch(); |
| 5264 | kcov_finish_switch(current); |
| 5265 | /* |
| 5266 | * kmap_local_sched_out() is invoked with rq::lock held and |
| 5267 | * interrupts disabled. There is no requirement for that, but the |
| 5268 | * sched out code does not have an interrupt enabled section. |
| 5269 | * Restoring the maps on sched in does not require interrupts being |
| 5270 | * disabled either. |
| 5271 | */ |
| 5272 | kmap_local_sched_in(); |
| 5273 | |
| 5274 | fire_sched_in_preempt_notifiers(current); |
| 5275 | /* |
| 5276 | * When switching through a kernel thread, the loop in |
| 5277 | * membarrier_{private,global}_expedited() may have observed that |
| 5278 | * kernel thread and not issued an IPI. It is therefore possible to |
| 5279 | * schedule between user->kernel->user threads without passing though |
| 5280 | * switch_mm(). Membarrier requires a barrier after storing to |
| 5281 | * rq->curr, before returning to userspace, so provide them here: |
| 5282 | * |
| 5283 | * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly |
| 5284 | * provided by mmdrop_lazy_tlb(), |
| 5285 | * - a sync_core for SYNC_CORE. |
| 5286 | */ |
| 5287 | if (mm) { |
| 5288 | membarrier_mm_sync_core_before_usermode(mm); |
| 5289 | mmdrop_lazy_tlb_sched(mm); |
| 5290 | } |
| 5291 | |
| 5292 | if (unlikely(prev_state == TASK_DEAD)) { |
| 5293 | if (prev->sched_class->task_dead) |
| 5294 | prev->sched_class->task_dead(prev); |
| 5295 | |
| 5296 | /* Task is done with its stack. */ |
| 5297 | put_task_stack(tsk: prev); |
| 5298 | |
| 5299 | put_task_struct_rcu_user(task: prev); |
| 5300 | } |
| 5301 | |
| 5302 | return rq; |
| 5303 | } |
| 5304 | |
| 5305 | /** |
| 5306 | * schedule_tail - first thing a freshly forked thread must call. |
| 5307 | * @prev: the thread we just switched away from. |
| 5308 | */ |
| 5309 | asmlinkage __visible void schedule_tail(struct task_struct *prev) |
| 5310 | __releases(rq->lock) |
| 5311 | { |
| 5312 | /* |
| 5313 | * New tasks start with FORK_PREEMPT_COUNT, see there and |
| 5314 | * finish_task_switch() for details. |
| 5315 | * |
| 5316 | * finish_task_switch() will drop rq->lock() and lower preempt_count |
| 5317 | * and the preempt_enable() will end up enabling preemption (on |
| 5318 | * PREEMPT_COUNT kernels). |
| 5319 | */ |
| 5320 | |
| 5321 | finish_task_switch(prev); |
| 5322 | /* |
| 5323 | * This is a special case: the newly created task has just |
| 5324 | * switched the context for the first time. It is returning from |
| 5325 | * schedule for the first time in this path. |
| 5326 | */ |
| 5327 | trace_sched_exit_tp(is_switch: true, CALLER_ADDR0); |
| 5328 | preempt_enable(); |
| 5329 | |
| 5330 | if (current->set_child_tid) |
| 5331 | put_user(task_pid_vnr(current), current->set_child_tid); |
| 5332 | |
| 5333 | calculate_sigpending(); |
| 5334 | } |
| 5335 | |
| 5336 | /* |
| 5337 | * context_switch - switch to the new MM and the new thread's register state. |
| 5338 | */ |
| 5339 | static __always_inline struct rq * |
| 5340 | context_switch(struct rq *rq, struct task_struct *prev, |
| 5341 | struct task_struct *next, struct rq_flags *rf) |
| 5342 | { |
| 5343 | prepare_task_switch(rq, prev, next); |
| 5344 | |
| 5345 | /* |
| 5346 | * For paravirt, this is coupled with an exit in switch_to to |
| 5347 | * combine the page table reload and the switch backend into |
| 5348 | * one hypercall. |
| 5349 | */ |
| 5350 | arch_start_context_switch(prev); |
| 5351 | |
| 5352 | /* |
| 5353 | * kernel -> kernel lazy + transfer active |
| 5354 | * user -> kernel lazy + mmgrab_lazy_tlb() active |
| 5355 | * |
| 5356 | * kernel -> user switch + mmdrop_lazy_tlb() active |
| 5357 | * user -> user switch |
| 5358 | * |
| 5359 | * switch_mm_cid() needs to be updated if the barriers provided |
| 5360 | * by context_switch() are modified. |
| 5361 | */ |
| 5362 | if (!next->mm) { // to kernel |
| 5363 | enter_lazy_tlb(mm: prev->active_mm, tsk: next); |
| 5364 | |
| 5365 | next->active_mm = prev->active_mm; |
| 5366 | if (prev->mm) // from user |
| 5367 | mmgrab_lazy_tlb(mm: prev->active_mm); |
| 5368 | else |
| 5369 | prev->active_mm = NULL; |
| 5370 | } else { // to user |
| 5371 | membarrier_switch_mm(rq, prev_mm: prev->active_mm, next_mm: next->mm); |
| 5372 | /* |
| 5373 | * sys_membarrier() requires an smp_mb() between setting |
| 5374 | * rq->curr / membarrier_switch_mm() and returning to userspace. |
| 5375 | * |
| 5376 | * The below provides this either through switch_mm(), or in |
| 5377 | * case 'prev->active_mm == next->mm' through |
| 5378 | * finish_task_switch()'s mmdrop(). |
| 5379 | */ |
| 5380 | switch_mm_irqs_off(prev: prev->active_mm, next: next->mm, tsk: next); |
| 5381 | lru_gen_use_mm(mm: next->mm); |
| 5382 | |
| 5383 | if (!prev->mm) { // from kernel |
| 5384 | /* will mmdrop_lazy_tlb() in finish_task_switch(). */ |
| 5385 | rq->prev_mm = prev->active_mm; |
| 5386 | prev->active_mm = NULL; |
| 5387 | } |
| 5388 | } |
| 5389 | |
| 5390 | /* switch_mm_cid() requires the memory barriers above. */ |
| 5391 | switch_mm_cid(rq, prev, next); |
| 5392 | |
| 5393 | prepare_lock_switch(rq, next, rf); |
| 5394 | |
| 5395 | /* Here we just switch the register state and the stack. */ |
| 5396 | switch_to(prev, next, prev); |
| 5397 | barrier(); |
| 5398 | |
| 5399 | return finish_task_switch(prev); |
| 5400 | } |
| 5401 | |
| 5402 | /* |
| 5403 | * nr_running and nr_context_switches: |
| 5404 | * |
| 5405 | * externally visible scheduler statistics: current number of runnable |
| 5406 | * threads, total number of context switches performed since bootup. |
| 5407 | */ |
| 5408 | unsigned int nr_running(void) |
| 5409 | { |
| 5410 | unsigned int i, sum = 0; |
| 5411 | |
| 5412 | for_each_online_cpu(i) |
| 5413 | sum += cpu_rq(i)->nr_running; |
| 5414 | |
| 5415 | return sum; |
| 5416 | } |
| 5417 | |
| 5418 | /* |
| 5419 | * Check if only the current task is running on the CPU. |
| 5420 | * |
| 5421 | * Caution: this function does not check that the caller has disabled |
| 5422 | * preemption, thus the result might have a time-of-check-to-time-of-use |
| 5423 | * race. The caller is responsible to use it correctly, for example: |
| 5424 | * |
| 5425 | * - from a non-preemptible section (of course) |
| 5426 | * |
| 5427 | * - from a thread that is bound to a single CPU |
| 5428 | * |
| 5429 | * - in a loop with very short iterations (e.g. a polling loop) |
| 5430 | */ |
| 5431 | bool single_task_running(void) |
| 5432 | { |
| 5433 | return raw_rq()->nr_running == 1; |
| 5434 | } |
| 5435 | EXPORT_SYMBOL(single_task_running); |
| 5436 | |
| 5437 | unsigned long long nr_context_switches_cpu(int cpu) |
| 5438 | { |
| 5439 | return cpu_rq(cpu)->nr_switches; |
| 5440 | } |
| 5441 | |
| 5442 | unsigned long long nr_context_switches(void) |
| 5443 | { |
| 5444 | int i; |
| 5445 | unsigned long long sum = 0; |
| 5446 | |
| 5447 | for_each_possible_cpu(i) |
| 5448 | sum += cpu_rq(i)->nr_switches; |
| 5449 | |
| 5450 | return sum; |
| 5451 | } |
| 5452 | |
| 5453 | /* |
| 5454 | * Consumers of these two interfaces, like for example the cpuidle menu |
| 5455 | * governor, are using nonsensical data. Preferring shallow idle state selection |
| 5456 | * for a CPU that has IO-wait which might not even end up running the task when |
| 5457 | * it does become runnable. |
| 5458 | */ |
| 5459 | |
| 5460 | unsigned int nr_iowait_cpu(int cpu) |
| 5461 | { |
| 5462 | return atomic_read(v: &cpu_rq(cpu)->nr_iowait); |
| 5463 | } |
| 5464 | |
| 5465 | /* |
| 5466 | * IO-wait accounting, and how it's mostly bollocks (on SMP). |
| 5467 | * |
| 5468 | * The idea behind IO-wait account is to account the idle time that we could |
| 5469 | * have spend running if it were not for IO. That is, if we were to improve the |
| 5470 | * storage performance, we'd have a proportional reduction in IO-wait time. |
| 5471 | * |
| 5472 | * This all works nicely on UP, where, when a task blocks on IO, we account |
| 5473 | * idle time as IO-wait, because if the storage were faster, it could've been |
| 5474 | * running and we'd not be idle. |
| 5475 | * |
| 5476 | * This has been extended to SMP, by doing the same for each CPU. This however |
| 5477 | * is broken. |
| 5478 | * |
| 5479 | * Imagine for instance the case where two tasks block on one CPU, only the one |
| 5480 | * CPU will have IO-wait accounted, while the other has regular idle. Even |
| 5481 | * though, if the storage were faster, both could've ran at the same time, |
| 5482 | * utilising both CPUs. |
| 5483 | * |
| 5484 | * This means, that when looking globally, the current IO-wait accounting on |
| 5485 | * SMP is a lower bound, by reason of under accounting. |
| 5486 | * |
| 5487 | * Worse, since the numbers are provided per CPU, they are sometimes |
| 5488 | * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly |
| 5489 | * associated with any one particular CPU, it can wake to another CPU than it |
| 5490 | * blocked on. This means the per CPU IO-wait number is meaningless. |
| 5491 | * |
| 5492 | * Task CPU affinities can make all that even more 'interesting'. |
| 5493 | */ |
| 5494 | |
| 5495 | unsigned int nr_iowait(void) |
| 5496 | { |
| 5497 | unsigned int i, sum = 0; |
| 5498 | |
| 5499 | for_each_possible_cpu(i) |
| 5500 | sum += nr_iowait_cpu(cpu: i); |
| 5501 | |
| 5502 | return sum; |
| 5503 | } |
| 5504 | |
| 5505 | #ifdef CONFIG_SMP |
| 5506 | |
| 5507 | /* |
| 5508 | * sched_exec - execve() is a valuable balancing opportunity, because at |
| 5509 | * this point the task has the smallest effective memory and cache footprint. |
| 5510 | */ |
| 5511 | void sched_exec(void) |
| 5512 | { |
| 5513 | struct task_struct *p = current; |
| 5514 | struct migration_arg arg; |
| 5515 | int dest_cpu; |
| 5516 | |
| 5517 | scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { |
| 5518 | dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); |
| 5519 | if (dest_cpu == smp_processor_id()) |
| 5520 | return; |
| 5521 | |
| 5522 | if (unlikely(!cpu_active(dest_cpu))) |
| 5523 | return; |
| 5524 | |
| 5525 | arg = (struct migration_arg){ p, dest_cpu }; |
| 5526 | } |
| 5527 | stop_one_cpu(cpu: task_cpu(p), fn: migration_cpu_stop, arg: &arg); |
| 5528 | } |
| 5529 | |
| 5530 | #endif |
| 5531 | |
| 5532 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
| 5533 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); |
| 5534 | |
| 5535 | EXPORT_PER_CPU_SYMBOL(kstat); |
| 5536 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); |
| 5537 | |
| 5538 | /* |
| 5539 | * The function fair_sched_class.update_curr accesses the struct curr |
| 5540 | * and its field curr->exec_start; when called from task_sched_runtime(), |
| 5541 | * we observe a high rate of cache misses in practice. |
| 5542 | * Prefetching this data results in improved performance. |
| 5543 | */ |
| 5544 | static inline void prefetch_curr_exec_start(struct task_struct *p) |
| 5545 | { |
| 5546 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 5547 | struct sched_entity *curr = p->se.cfs_rq->curr; |
| 5548 | #else |
| 5549 | struct sched_entity *curr = task_rq(p)->cfs.curr; |
| 5550 | #endif |
| 5551 | prefetch(curr); |
| 5552 | prefetch(&curr->exec_start); |
| 5553 | } |
| 5554 | |
| 5555 | /* |
| 5556 | * Return accounted runtime for the task. |
| 5557 | * In case the task is currently running, return the runtime plus current's |
| 5558 | * pending runtime that have not been accounted yet. |
| 5559 | */ |
| 5560 | unsigned long long task_sched_runtime(struct task_struct *p) |
| 5561 | { |
| 5562 | struct rq_flags rf; |
| 5563 | struct rq *rq; |
| 5564 | u64 ns; |
| 5565 | |
| 5566 | #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) |
| 5567 | /* |
| 5568 | * 64-bit doesn't need locks to atomically read a 64-bit value. |
| 5569 | * So we have a optimization chance when the task's delta_exec is 0. |
| 5570 | * Reading ->on_cpu is racy, but this is OK. |
| 5571 | * |
| 5572 | * If we race with it leaving CPU, we'll take a lock. So we're correct. |
| 5573 | * If we race with it entering CPU, unaccounted time is 0. This is |
| 5574 | * indistinguishable from the read occurring a few cycles earlier. |
| 5575 | * If we see ->on_cpu without ->on_rq, the task is leaving, and has |
| 5576 | * been accounted, so we're correct here as well. |
| 5577 | */ |
| 5578 | if (!p->on_cpu || !task_on_rq_queued(p)) |
| 5579 | return p->se.sum_exec_runtime; |
| 5580 | #endif |
| 5581 | |
| 5582 | rq = task_rq_lock(p, rf: &rf); |
| 5583 | /* |
| 5584 | * Must be ->curr _and_ ->on_rq. If dequeued, we would |
| 5585 | * project cycles that may never be accounted to this |
| 5586 | * thread, breaking clock_gettime(). |
| 5587 | */ |
| 5588 | if (task_current_donor(rq, p) && task_on_rq_queued(p)) { |
| 5589 | prefetch_curr_exec_start(p); |
| 5590 | update_rq_clock(rq); |
| 5591 | p->sched_class->update_curr(rq); |
| 5592 | } |
| 5593 | ns = p->se.sum_exec_runtime; |
| 5594 | task_rq_unlock(rq, p, rf: &rf); |
| 5595 | |
| 5596 | return ns; |
| 5597 | } |
| 5598 | |
| 5599 | static u64 cpu_resched_latency(struct rq *rq) |
| 5600 | { |
| 5601 | int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); |
| 5602 | u64 resched_latency, now = rq_clock(rq); |
| 5603 | static bool warned_once; |
| 5604 | |
| 5605 | if (sysctl_resched_latency_warn_once && warned_once) |
| 5606 | return 0; |
| 5607 | |
| 5608 | if (!need_resched() || !latency_warn_ms) |
| 5609 | return 0; |
| 5610 | |
| 5611 | if (system_state == SYSTEM_BOOTING) |
| 5612 | return 0; |
| 5613 | |
| 5614 | if (!rq->last_seen_need_resched_ns) { |
| 5615 | rq->last_seen_need_resched_ns = now; |
| 5616 | rq->ticks_without_resched = 0; |
| 5617 | return 0; |
| 5618 | } |
| 5619 | |
| 5620 | rq->ticks_without_resched++; |
| 5621 | resched_latency = now - rq->last_seen_need_resched_ns; |
| 5622 | if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) |
| 5623 | return 0; |
| 5624 | |
| 5625 | warned_once = true; |
| 5626 | |
| 5627 | return resched_latency; |
| 5628 | } |
| 5629 | |
| 5630 | static int __init setup_resched_latency_warn_ms(char *str) |
| 5631 | { |
| 5632 | long val; |
| 5633 | |
| 5634 | if ((kstrtol(s: str, base: 0, res: &val))) { |
| 5635 | pr_warn("Unable to set resched_latency_warn_ms\n" ); |
| 5636 | return 1; |
| 5637 | } |
| 5638 | |
| 5639 | sysctl_resched_latency_warn_ms = val; |
| 5640 | return 1; |
| 5641 | } |
| 5642 | __setup("resched_latency_warn_ms=" , setup_resched_latency_warn_ms); |
| 5643 | |
| 5644 | /* |
| 5645 | * This function gets called by the timer code, with HZ frequency. |
| 5646 | * We call it with interrupts disabled. |
| 5647 | */ |
| 5648 | void sched_tick(void) |
| 5649 | { |
| 5650 | int cpu = smp_processor_id(); |
| 5651 | struct rq *rq = cpu_rq(cpu); |
| 5652 | /* accounting goes to the donor task */ |
| 5653 | struct task_struct *donor; |
| 5654 | struct rq_flags rf; |
| 5655 | unsigned long hw_pressure; |
| 5656 | u64 resched_latency; |
| 5657 | |
| 5658 | if (housekeeping_cpu(cpu, type: HK_TYPE_KERNEL_NOISE)) |
| 5659 | arch_scale_freq_tick(); |
| 5660 | |
| 5661 | sched_clock_tick(); |
| 5662 | |
| 5663 | rq_lock(rq, rf: &rf); |
| 5664 | donor = rq->donor; |
| 5665 | |
| 5666 | psi_account_irqtime(rq, curr: donor, NULL); |
| 5667 | |
| 5668 | update_rq_clock(rq); |
| 5669 | hw_pressure = arch_scale_hw_pressure(cpu: cpu_of(rq)); |
| 5670 | update_hw_load_avg(now: rq_clock_task(rq), rq, capacity: hw_pressure); |
| 5671 | |
| 5672 | if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) |
| 5673 | resched_curr(rq); |
| 5674 | |
| 5675 | donor->sched_class->task_tick(rq, donor, 0); |
| 5676 | if (sched_feat(LATENCY_WARN)) |
| 5677 | resched_latency = cpu_resched_latency(rq); |
| 5678 | calc_global_load_tick(this_rq: rq); |
| 5679 | sched_core_tick(rq); |
| 5680 | task_tick_mm_cid(rq, curr: donor); |
| 5681 | scx_tick(rq); |
| 5682 | |
| 5683 | rq_unlock(rq, rf: &rf); |
| 5684 | |
| 5685 | if (sched_feat(LATENCY_WARN) && resched_latency) |
| 5686 | resched_latency_warn(cpu, latency: resched_latency); |
| 5687 | |
| 5688 | perf_event_task_tick(); |
| 5689 | |
| 5690 | if (donor->flags & PF_WQ_WORKER) |
| 5691 | wq_worker_tick(task: donor); |
| 5692 | |
| 5693 | #ifdef CONFIG_SMP |
| 5694 | if (!scx_switched_all()) { |
| 5695 | rq->idle_balance = idle_cpu(cpu); |
| 5696 | sched_balance_trigger(rq); |
| 5697 | } |
| 5698 | #endif |
| 5699 | } |
| 5700 | |
| 5701 | #ifdef CONFIG_NO_HZ_FULL |
| 5702 | |
| 5703 | struct tick_work { |
| 5704 | int cpu; |
| 5705 | atomic_t state; |
| 5706 | struct delayed_work work; |
| 5707 | }; |
| 5708 | /* Values for ->state, see diagram below. */ |
| 5709 | #define TICK_SCHED_REMOTE_OFFLINE 0 |
| 5710 | #define TICK_SCHED_REMOTE_OFFLINING 1 |
| 5711 | #define TICK_SCHED_REMOTE_RUNNING 2 |
| 5712 | |
| 5713 | /* |
| 5714 | * State diagram for ->state: |
| 5715 | * |
| 5716 | * |
| 5717 | * TICK_SCHED_REMOTE_OFFLINE |
| 5718 | * | ^ |
| 5719 | * | | |
| 5720 | * | | sched_tick_remote() |
| 5721 | * | | |
| 5722 | * | | |
| 5723 | * +--TICK_SCHED_REMOTE_OFFLINING |
| 5724 | * | ^ |
| 5725 | * | | |
| 5726 | * sched_tick_start() | | sched_tick_stop() |
| 5727 | * | | |
| 5728 | * V | |
| 5729 | * TICK_SCHED_REMOTE_RUNNING |
| 5730 | * |
| 5731 | * |
| 5732 | * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() |
| 5733 | * and sched_tick_start() are happy to leave the state in RUNNING. |
| 5734 | */ |
| 5735 | |
| 5736 | static struct tick_work __percpu *tick_work_cpu; |
| 5737 | |
| 5738 | static void sched_tick_remote(struct work_struct *work) |
| 5739 | { |
| 5740 | struct delayed_work *dwork = to_delayed_work(work); |
| 5741 | struct tick_work *twork = container_of(dwork, struct tick_work, work); |
| 5742 | int cpu = twork->cpu; |
| 5743 | struct rq *rq = cpu_rq(cpu); |
| 5744 | int os; |
| 5745 | |
| 5746 | /* |
| 5747 | * Handle the tick only if it appears the remote CPU is running in full |
| 5748 | * dynticks mode. The check is racy by nature, but missing a tick or |
| 5749 | * having one too much is no big deal because the scheduler tick updates |
| 5750 | * statistics and checks timeslices in a time-independent way, regardless |
| 5751 | * of when exactly it is running. |
| 5752 | */ |
| 5753 | if (tick_nohz_tick_stopped_cpu(cpu)) { |
| 5754 | guard(rq_lock_irq)(rq); |
| 5755 | struct task_struct *curr = rq->curr; |
| 5756 | |
| 5757 | if (cpu_online(cpu)) { |
| 5758 | /* |
| 5759 | * Since this is a remote tick for full dynticks mode, |
| 5760 | * we are always sure that there is no proxy (only a |
| 5761 | * single task is running). |
| 5762 | */ |
| 5763 | WARN_ON_ONCE(rq->curr != rq->donor); |
| 5764 | update_rq_clock(rq); |
| 5765 | |
| 5766 | if (!is_idle_task(curr)) { |
| 5767 | /* |
| 5768 | * Make sure the next tick runs within a |
| 5769 | * reasonable amount of time. |
| 5770 | */ |
| 5771 | u64 delta = rq_clock_task(rq) - curr->se.exec_start; |
| 5772 | WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); |
| 5773 | } |
| 5774 | curr->sched_class->task_tick(rq, curr, 0); |
| 5775 | |
| 5776 | calc_load_nohz_remote(rq); |
| 5777 | } |
| 5778 | } |
| 5779 | |
| 5780 | /* |
| 5781 | * Run the remote tick once per second (1Hz). This arbitrary |
| 5782 | * frequency is large enough to avoid overload but short enough |
| 5783 | * to keep scheduler internal stats reasonably up to date. But |
| 5784 | * first update state to reflect hotplug activity if required. |
| 5785 | */ |
| 5786 | os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); |
| 5787 | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); |
| 5788 | if (os == TICK_SCHED_REMOTE_RUNNING) |
| 5789 | queue_delayed_work(system_unbound_wq, dwork, HZ); |
| 5790 | } |
| 5791 | |
| 5792 | static void sched_tick_start(int cpu) |
| 5793 | { |
| 5794 | int os; |
| 5795 | struct tick_work *twork; |
| 5796 | |
| 5797 | if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) |
| 5798 | return; |
| 5799 | |
| 5800 | WARN_ON_ONCE(!tick_work_cpu); |
| 5801 | |
| 5802 | twork = per_cpu_ptr(tick_work_cpu, cpu); |
| 5803 | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); |
| 5804 | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); |
| 5805 | if (os == TICK_SCHED_REMOTE_OFFLINE) { |
| 5806 | twork->cpu = cpu; |
| 5807 | INIT_DELAYED_WORK(&twork->work, sched_tick_remote); |
| 5808 | queue_delayed_work(system_unbound_wq, &twork->work, HZ); |
| 5809 | } |
| 5810 | } |
| 5811 | |
| 5812 | #ifdef CONFIG_HOTPLUG_CPU |
| 5813 | static void sched_tick_stop(int cpu) |
| 5814 | { |
| 5815 | struct tick_work *twork; |
| 5816 | int os; |
| 5817 | |
| 5818 | if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) |
| 5819 | return; |
| 5820 | |
| 5821 | WARN_ON_ONCE(!tick_work_cpu); |
| 5822 | |
| 5823 | twork = per_cpu_ptr(tick_work_cpu, cpu); |
| 5824 | /* There cannot be competing actions, but don't rely on stop-machine. */ |
| 5825 | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); |
| 5826 | WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); |
| 5827 | /* Don't cancel, as this would mess up the state machine. */ |
| 5828 | } |
| 5829 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 5830 | |
| 5831 | int __init sched_tick_offload_init(void) |
| 5832 | { |
| 5833 | tick_work_cpu = alloc_percpu(struct tick_work); |
| 5834 | BUG_ON(!tick_work_cpu); |
| 5835 | return 0; |
| 5836 | } |
| 5837 | |
| 5838 | #else /* !CONFIG_NO_HZ_FULL */ |
| 5839 | static inline void sched_tick_start(int cpu) { } |
| 5840 | static inline void sched_tick_stop(int cpu) { } |
| 5841 | #endif |
| 5842 | |
| 5843 | #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
| 5844 | defined(CONFIG_TRACE_PREEMPT_TOGGLE)) |
| 5845 | /* |
| 5846 | * If the value passed in is equal to the current preempt count |
| 5847 | * then we just disabled preemption. Start timing the latency. |
| 5848 | */ |
| 5849 | static inline void preempt_latency_start(int val) |
| 5850 | { |
| 5851 | if (preempt_count() == val) { |
| 5852 | unsigned long ip = get_lock_parent_ip(); |
| 5853 | #ifdef CONFIG_DEBUG_PREEMPT |
| 5854 | current->preempt_disable_ip = ip; |
| 5855 | #endif |
| 5856 | trace_preempt_off(CALLER_ADDR0, a1: ip); |
| 5857 | } |
| 5858 | } |
| 5859 | |
| 5860 | void preempt_count_add(int val) |
| 5861 | { |
| 5862 | #ifdef CONFIG_DEBUG_PREEMPT |
| 5863 | /* |
| 5864 | * Underflow? |
| 5865 | */ |
| 5866 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
| 5867 | return; |
| 5868 | #endif |
| 5869 | __preempt_count_add(val); |
| 5870 | #ifdef CONFIG_DEBUG_PREEMPT |
| 5871 | /* |
| 5872 | * Spinlock count overflowing soon? |
| 5873 | */ |
| 5874 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
| 5875 | PREEMPT_MASK - 10); |
| 5876 | #endif |
| 5877 | preempt_latency_start(val); |
| 5878 | } |
| 5879 | EXPORT_SYMBOL(preempt_count_add); |
| 5880 | NOKPROBE_SYMBOL(preempt_count_add); |
| 5881 | |
| 5882 | /* |
| 5883 | * If the value passed in equals to the current preempt count |
| 5884 | * then we just enabled preemption. Stop timing the latency. |
| 5885 | */ |
| 5886 | static inline void preempt_latency_stop(int val) |
| 5887 | { |
| 5888 | if (preempt_count() == val) |
| 5889 | trace_preempt_on(CALLER_ADDR0, a1: get_lock_parent_ip()); |
| 5890 | } |
| 5891 | |
| 5892 | void preempt_count_sub(int val) |
| 5893 | { |
| 5894 | #ifdef CONFIG_DEBUG_PREEMPT |
| 5895 | /* |
| 5896 | * Underflow? |
| 5897 | */ |
| 5898 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
| 5899 | return; |
| 5900 | /* |
| 5901 | * Is the spinlock portion underflowing? |
| 5902 | */ |
| 5903 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
| 5904 | !(preempt_count() & PREEMPT_MASK))) |
| 5905 | return; |
| 5906 | #endif |
| 5907 | |
| 5908 | preempt_latency_stop(val); |
| 5909 | __preempt_count_sub(val); |
| 5910 | } |
| 5911 | EXPORT_SYMBOL(preempt_count_sub); |
| 5912 | NOKPROBE_SYMBOL(preempt_count_sub); |
| 5913 | |
| 5914 | #else |
| 5915 | static inline void preempt_latency_start(int val) { } |
| 5916 | static inline void preempt_latency_stop(int val) { } |
| 5917 | #endif |
| 5918 | |
| 5919 | static inline unsigned long get_preempt_disable_ip(struct task_struct *p) |
| 5920 | { |
| 5921 | #ifdef CONFIG_DEBUG_PREEMPT |
| 5922 | return p->preempt_disable_ip; |
| 5923 | #else |
| 5924 | return 0; |
| 5925 | #endif |
| 5926 | } |
| 5927 | |
| 5928 | /* |
| 5929 | * Print scheduling while atomic bug: |
| 5930 | */ |
| 5931 | static noinline void __schedule_bug(struct task_struct *prev) |
| 5932 | { |
| 5933 | /* Save this before calling printk(), since that will clobber it */ |
| 5934 | unsigned long preempt_disable_ip = get_preempt_disable_ip(current); |
| 5935 | |
| 5936 | if (oops_in_progress) |
| 5937 | return; |
| 5938 | |
| 5939 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n" , |
| 5940 | prev->comm, prev->pid, preempt_count()); |
| 5941 | |
| 5942 | debug_show_held_locks(task: prev); |
| 5943 | print_modules(); |
| 5944 | if (irqs_disabled()) |
| 5945 | print_irqtrace_events(curr: prev); |
| 5946 | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { |
| 5947 | pr_err("Preemption disabled at:" ); |
| 5948 | print_ip_sym(KERN_ERR, ip: preempt_disable_ip); |
| 5949 | } |
| 5950 | check_panic_on_warn(origin: "scheduling while atomic" ); |
| 5951 | |
| 5952 | dump_stack(); |
| 5953 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| 5954 | } |
| 5955 | |
| 5956 | /* |
| 5957 | * Various schedule()-time debugging checks and statistics: |
| 5958 | */ |
| 5959 | static inline void schedule_debug(struct task_struct *prev, bool preempt) |
| 5960 | { |
| 5961 | #ifdef CONFIG_SCHED_STACK_END_CHECK |
| 5962 | if (task_stack_end_corrupted(prev)) |
| 5963 | panic(fmt: "corrupted stack end detected inside scheduler\n" ); |
| 5964 | |
| 5965 | if (task_scs_end_corrupted(tsk: prev)) |
| 5966 | panic(fmt: "corrupted shadow stack detected inside scheduler\n" ); |
| 5967 | #endif |
| 5968 | |
| 5969 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 5970 | if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { |
| 5971 | printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n" , |
| 5972 | prev->comm, prev->pid, prev->non_block_count); |
| 5973 | dump_stack(); |
| 5974 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| 5975 | } |
| 5976 | #endif |
| 5977 | |
| 5978 | if (unlikely(in_atomic_preempt_off())) { |
| 5979 | __schedule_bug(prev); |
| 5980 | preempt_count_set(PREEMPT_DISABLED); |
| 5981 | } |
| 5982 | rcu_sleep_check(); |
| 5983 | WARN_ON_ONCE(ct_state() == CT_STATE_USER); |
| 5984 | |
| 5985 | profile_hit(SCHED_PROFILING, ip: __builtin_return_address(0)); |
| 5986 | |
| 5987 | schedstat_inc(this_rq()->sched_count); |
| 5988 | } |
| 5989 | |
| 5990 | static void prev_balance(struct rq *rq, struct task_struct *prev, |
| 5991 | struct rq_flags *rf) |
| 5992 | { |
| 5993 | const struct sched_class *start_class = prev->sched_class; |
| 5994 | const struct sched_class *class; |
| 5995 | |
| 5996 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 5997 | /* |
| 5998 | * SCX requires a balance() call before every pick_task() including when |
| 5999 | * waking up from SCHED_IDLE. If @start_class is below SCX, start from |
| 6000 | * SCX instead. Also, set a flag to detect missing balance() call. |
| 6001 | */ |
| 6002 | if (scx_enabled()) { |
| 6003 | rq->scx.flags |= SCX_RQ_BAL_PENDING; |
| 6004 | if (sched_class_above(&ext_sched_class, start_class)) |
| 6005 | start_class = &ext_sched_class; |
| 6006 | } |
| 6007 | #endif |
| 6008 | |
| 6009 | /* |
| 6010 | * We must do the balancing pass before put_prev_task(), such |
| 6011 | * that when we release the rq->lock the task is in the same |
| 6012 | * state as before we took rq->lock. |
| 6013 | * |
| 6014 | * We can terminate the balance pass as soon as we know there is |
| 6015 | * a runnable task of @class priority or higher. |
| 6016 | */ |
| 6017 | for_active_class_range(class, start_class, &idle_sched_class) { |
| 6018 | if (class->balance && class->balance(rq, prev, rf)) |
| 6019 | break; |
| 6020 | } |
| 6021 | } |
| 6022 | |
| 6023 | /* |
| 6024 | * Pick up the highest-prio task: |
| 6025 | */ |
| 6026 | static inline struct task_struct * |
| 6027 | __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 6028 | { |
| 6029 | const struct sched_class *class; |
| 6030 | struct task_struct *p; |
| 6031 | |
| 6032 | rq->dl_server = NULL; |
| 6033 | |
| 6034 | if (scx_enabled()) |
| 6035 | goto restart; |
| 6036 | |
| 6037 | /* |
| 6038 | * Optimization: we know that if all tasks are in the fair class we can |
| 6039 | * call that function directly, but only if the @prev task wasn't of a |
| 6040 | * higher scheduling class, because otherwise those lose the |
| 6041 | * opportunity to pull in more work from other CPUs. |
| 6042 | */ |
| 6043 | if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && |
| 6044 | rq->nr_running == rq->cfs.h_nr_queued)) { |
| 6045 | |
| 6046 | p = pick_next_task_fair(rq, prev, rf); |
| 6047 | if (unlikely(p == RETRY_TASK)) |
| 6048 | goto restart; |
| 6049 | |
| 6050 | /* Assume the next prioritized class is idle_sched_class */ |
| 6051 | if (!p) { |
| 6052 | p = pick_task_idle(rq); |
| 6053 | put_prev_set_next_task(rq, prev, next: p); |
| 6054 | } |
| 6055 | |
| 6056 | return p; |
| 6057 | } |
| 6058 | |
| 6059 | restart: |
| 6060 | prev_balance(rq, prev, rf); |
| 6061 | |
| 6062 | for_each_active_class(class) { |
| 6063 | if (class->pick_next_task) { |
| 6064 | p = class->pick_next_task(rq, prev); |
| 6065 | if (p) |
| 6066 | return p; |
| 6067 | } else { |
| 6068 | p = class->pick_task(rq); |
| 6069 | if (p) { |
| 6070 | put_prev_set_next_task(rq, prev, next: p); |
| 6071 | return p; |
| 6072 | } |
| 6073 | } |
| 6074 | } |
| 6075 | |
| 6076 | BUG(); /* The idle class should always have a runnable task. */ |
| 6077 | } |
| 6078 | |
| 6079 | #ifdef CONFIG_SCHED_CORE |
| 6080 | static inline bool is_task_rq_idle(struct task_struct *t) |
| 6081 | { |
| 6082 | return (task_rq(t)->idle == t); |
| 6083 | } |
| 6084 | |
| 6085 | static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) |
| 6086 | { |
| 6087 | return is_task_rq_idle(t: a) || (a->core_cookie == cookie); |
| 6088 | } |
| 6089 | |
| 6090 | static inline bool cookie_match(struct task_struct *a, struct task_struct *b) |
| 6091 | { |
| 6092 | if (is_task_rq_idle(t: a) || is_task_rq_idle(t: b)) |
| 6093 | return true; |
| 6094 | |
| 6095 | return a->core_cookie == b->core_cookie; |
| 6096 | } |
| 6097 | |
| 6098 | static inline struct task_struct *pick_task(struct rq *rq) |
| 6099 | { |
| 6100 | const struct sched_class *class; |
| 6101 | struct task_struct *p; |
| 6102 | |
| 6103 | rq->dl_server = NULL; |
| 6104 | |
| 6105 | for_each_active_class(class) { |
| 6106 | p = class->pick_task(rq); |
| 6107 | if (p) |
| 6108 | return p; |
| 6109 | } |
| 6110 | |
| 6111 | BUG(); /* The idle class should always have a runnable task. */ |
| 6112 | } |
| 6113 | |
| 6114 | extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); |
| 6115 | |
| 6116 | static void queue_core_balance(struct rq *rq); |
| 6117 | |
| 6118 | static struct task_struct * |
| 6119 | pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 6120 | { |
| 6121 | struct task_struct *next, *p, *max = NULL; |
| 6122 | const struct cpumask *smt_mask; |
| 6123 | bool fi_before = false; |
| 6124 | bool core_clock_updated = (rq == rq->core); |
| 6125 | unsigned long cookie; |
| 6126 | int i, cpu, occ = 0; |
| 6127 | struct rq *rq_i; |
| 6128 | bool need_sync; |
| 6129 | |
| 6130 | if (!sched_core_enabled(rq)) |
| 6131 | return __pick_next_task(rq, prev, rf); |
| 6132 | |
| 6133 | cpu = cpu_of(rq); |
| 6134 | |
| 6135 | /* Stopper task is switching into idle, no need core-wide selection. */ |
| 6136 | if (cpu_is_offline(cpu)) { |
| 6137 | /* |
| 6138 | * Reset core_pick so that we don't enter the fastpath when |
| 6139 | * coming online. core_pick would already be migrated to |
| 6140 | * another cpu during offline. |
| 6141 | */ |
| 6142 | rq->core_pick = NULL; |
| 6143 | rq->core_dl_server = NULL; |
| 6144 | return __pick_next_task(rq, prev, rf); |
| 6145 | } |
| 6146 | |
| 6147 | /* |
| 6148 | * If there were no {en,de}queues since we picked (IOW, the task |
| 6149 | * pointers are all still valid), and we haven't scheduled the last |
| 6150 | * pick yet, do so now. |
| 6151 | * |
| 6152 | * rq->core_pick can be NULL if no selection was made for a CPU because |
| 6153 | * it was either offline or went offline during a sibling's core-wide |
| 6154 | * selection. In this case, do a core-wide selection. |
| 6155 | */ |
| 6156 | if (rq->core->core_pick_seq == rq->core->core_task_seq && |
| 6157 | rq->core->core_pick_seq != rq->core_sched_seq && |
| 6158 | rq->core_pick) { |
| 6159 | WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); |
| 6160 | |
| 6161 | next = rq->core_pick; |
| 6162 | rq->dl_server = rq->core_dl_server; |
| 6163 | rq->core_pick = NULL; |
| 6164 | rq->core_dl_server = NULL; |
| 6165 | goto out_set_next; |
| 6166 | } |
| 6167 | |
| 6168 | prev_balance(rq, prev, rf); |
| 6169 | |
| 6170 | smt_mask = cpu_smt_mask(cpu); |
| 6171 | need_sync = !!rq->core->core_cookie; |
| 6172 | |
| 6173 | /* reset state */ |
| 6174 | rq->core->core_cookie = 0UL; |
| 6175 | if (rq->core->core_forceidle_count) { |
| 6176 | if (!core_clock_updated) { |
| 6177 | update_rq_clock(rq: rq->core); |
| 6178 | core_clock_updated = true; |
| 6179 | } |
| 6180 | sched_core_account_forceidle(rq); |
| 6181 | /* reset after accounting force idle */ |
| 6182 | rq->core->core_forceidle_start = 0; |
| 6183 | rq->core->core_forceidle_count = 0; |
| 6184 | rq->core->core_forceidle_occupation = 0; |
| 6185 | need_sync = true; |
| 6186 | fi_before = true; |
| 6187 | } |
| 6188 | |
| 6189 | /* |
| 6190 | * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq |
| 6191 | * |
| 6192 | * @task_seq guards the task state ({en,de}queues) |
| 6193 | * @pick_seq is the @task_seq we did a selection on |
| 6194 | * @sched_seq is the @pick_seq we scheduled |
| 6195 | * |
| 6196 | * However, preemptions can cause multiple picks on the same task set. |
| 6197 | * 'Fix' this by also increasing @task_seq for every pick. |
| 6198 | */ |
| 6199 | rq->core->core_task_seq++; |
| 6200 | |
| 6201 | /* |
| 6202 | * Optimize for common case where this CPU has no cookies |
| 6203 | * and there are no cookied tasks running on siblings. |
| 6204 | */ |
| 6205 | if (!need_sync) { |
| 6206 | next = pick_task(rq); |
| 6207 | if (!next->core_cookie) { |
| 6208 | rq->core_pick = NULL; |
| 6209 | rq->core_dl_server = NULL; |
| 6210 | /* |
| 6211 | * For robustness, update the min_vruntime_fi for |
| 6212 | * unconstrained picks as well. |
| 6213 | */ |
| 6214 | WARN_ON_ONCE(fi_before); |
| 6215 | task_vruntime_update(rq, p: next, in_fi: false); |
| 6216 | goto out_set_next; |
| 6217 | } |
| 6218 | } |
| 6219 | |
| 6220 | /* |
| 6221 | * For each thread: do the regular task pick and find the max prio task |
| 6222 | * amongst them. |
| 6223 | * |
| 6224 | * Tie-break prio towards the current CPU |
| 6225 | */ |
| 6226 | for_each_cpu_wrap(i, smt_mask, cpu) { |
| 6227 | rq_i = cpu_rq(i); |
| 6228 | |
| 6229 | /* |
| 6230 | * Current cpu always has its clock updated on entrance to |
| 6231 | * pick_next_task(). If the current cpu is not the core, |
| 6232 | * the core may also have been updated above. |
| 6233 | */ |
| 6234 | if (i != cpu && (rq_i != rq->core || !core_clock_updated)) |
| 6235 | update_rq_clock(rq: rq_i); |
| 6236 | |
| 6237 | rq_i->core_pick = p = pick_task(rq: rq_i); |
| 6238 | rq_i->core_dl_server = rq_i->dl_server; |
| 6239 | |
| 6240 | if (!max || prio_less(a: max, b: p, in_fi: fi_before)) |
| 6241 | max = p; |
| 6242 | } |
| 6243 | |
| 6244 | cookie = rq->core->core_cookie = max->core_cookie; |
| 6245 | |
| 6246 | /* |
| 6247 | * For each thread: try and find a runnable task that matches @max or |
| 6248 | * force idle. |
| 6249 | */ |
| 6250 | for_each_cpu(i, smt_mask) { |
| 6251 | rq_i = cpu_rq(i); |
| 6252 | p = rq_i->core_pick; |
| 6253 | |
| 6254 | if (!cookie_equals(a: p, cookie)) { |
| 6255 | p = NULL; |
| 6256 | if (cookie) |
| 6257 | p = sched_core_find(rq: rq_i, cookie); |
| 6258 | if (!p) |
| 6259 | p = idle_sched_class.pick_task(rq_i); |
| 6260 | } |
| 6261 | |
| 6262 | rq_i->core_pick = p; |
| 6263 | rq_i->core_dl_server = NULL; |
| 6264 | |
| 6265 | if (p == rq_i->idle) { |
| 6266 | if (rq_i->nr_running) { |
| 6267 | rq->core->core_forceidle_count++; |
| 6268 | if (!fi_before) |
| 6269 | rq->core->core_forceidle_seq++; |
| 6270 | } |
| 6271 | } else { |
| 6272 | occ++; |
| 6273 | } |
| 6274 | } |
| 6275 | |
| 6276 | if (schedstat_enabled() && rq->core->core_forceidle_count) { |
| 6277 | rq->core->core_forceidle_start = rq_clock(rq: rq->core); |
| 6278 | rq->core->core_forceidle_occupation = occ; |
| 6279 | } |
| 6280 | |
| 6281 | rq->core->core_pick_seq = rq->core->core_task_seq; |
| 6282 | next = rq->core_pick; |
| 6283 | rq->core_sched_seq = rq->core->core_pick_seq; |
| 6284 | |
| 6285 | /* Something should have been selected for current CPU */ |
| 6286 | WARN_ON_ONCE(!next); |
| 6287 | |
| 6288 | /* |
| 6289 | * Reschedule siblings |
| 6290 | * |
| 6291 | * NOTE: L1TF -- at this point we're no longer running the old task and |
| 6292 | * sending an IPI (below) ensures the sibling will no longer be running |
| 6293 | * their task. This ensures there is no inter-sibling overlap between |
| 6294 | * non-matching user state. |
| 6295 | */ |
| 6296 | for_each_cpu(i, smt_mask) { |
| 6297 | rq_i = cpu_rq(i); |
| 6298 | |
| 6299 | /* |
| 6300 | * An online sibling might have gone offline before a task |
| 6301 | * could be picked for it, or it might be offline but later |
| 6302 | * happen to come online, but its too late and nothing was |
| 6303 | * picked for it. That's Ok - it will pick tasks for itself, |
| 6304 | * so ignore it. |
| 6305 | */ |
| 6306 | if (!rq_i->core_pick) |
| 6307 | continue; |
| 6308 | |
| 6309 | /* |
| 6310 | * Update for new !FI->FI transitions, or if continuing to be in !FI: |
| 6311 | * fi_before fi update? |
| 6312 | * 0 0 1 |
| 6313 | * 0 1 1 |
| 6314 | * 1 0 1 |
| 6315 | * 1 1 0 |
| 6316 | */ |
| 6317 | if (!(fi_before && rq->core->core_forceidle_count)) |
| 6318 | task_vruntime_update(rq: rq_i, p: rq_i->core_pick, in_fi: !!rq->core->core_forceidle_count); |
| 6319 | |
| 6320 | rq_i->core_pick->core_occupation = occ; |
| 6321 | |
| 6322 | if (i == cpu) { |
| 6323 | rq_i->core_pick = NULL; |
| 6324 | rq_i->core_dl_server = NULL; |
| 6325 | continue; |
| 6326 | } |
| 6327 | |
| 6328 | /* Did we break L1TF mitigation requirements? */ |
| 6329 | WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); |
| 6330 | |
| 6331 | if (rq_i->curr == rq_i->core_pick) { |
| 6332 | rq_i->core_pick = NULL; |
| 6333 | rq_i->core_dl_server = NULL; |
| 6334 | continue; |
| 6335 | } |
| 6336 | |
| 6337 | resched_curr(rq: rq_i); |
| 6338 | } |
| 6339 | |
| 6340 | out_set_next: |
| 6341 | put_prev_set_next_task(rq, prev, next); |
| 6342 | if (rq->core->core_forceidle_count && next == rq->idle) |
| 6343 | queue_core_balance(rq); |
| 6344 | |
| 6345 | return next; |
| 6346 | } |
| 6347 | |
| 6348 | static bool try_steal_cookie(int this, int that) |
| 6349 | { |
| 6350 | struct rq *dst = cpu_rq(this), *src = cpu_rq(that); |
| 6351 | struct task_struct *p; |
| 6352 | unsigned long cookie; |
| 6353 | bool success = false; |
| 6354 | |
| 6355 | guard(irq)(); |
| 6356 | guard(double_rq_lock)(lock: dst, lock2: src); |
| 6357 | |
| 6358 | cookie = dst->core->core_cookie; |
| 6359 | if (!cookie) |
| 6360 | return false; |
| 6361 | |
| 6362 | if (dst->curr != dst->idle) |
| 6363 | return false; |
| 6364 | |
| 6365 | p = sched_core_find(rq: src, cookie); |
| 6366 | if (!p) |
| 6367 | return false; |
| 6368 | |
| 6369 | do { |
| 6370 | if (p == src->core_pick || p == src->curr) |
| 6371 | goto next; |
| 6372 | |
| 6373 | if (!is_cpu_allowed(p, cpu: this)) |
| 6374 | goto next; |
| 6375 | |
| 6376 | if (p->core_occupation > dst->idle->core_occupation) |
| 6377 | goto next; |
| 6378 | /* |
| 6379 | * sched_core_find() and sched_core_next() will ensure |
| 6380 | * that task @p is not throttled now, we also need to |
| 6381 | * check whether the runqueue of the destination CPU is |
| 6382 | * being throttled. |
| 6383 | */ |
| 6384 | if (sched_task_is_throttled(p, cpu: this)) |
| 6385 | goto next; |
| 6386 | |
| 6387 | move_queued_task_locked(src_rq: src, dst_rq: dst, task: p); |
| 6388 | resched_curr(rq: dst); |
| 6389 | |
| 6390 | success = true; |
| 6391 | break; |
| 6392 | |
| 6393 | next: |
| 6394 | p = sched_core_next(p, cookie); |
| 6395 | } while (p); |
| 6396 | |
| 6397 | return success; |
| 6398 | } |
| 6399 | |
| 6400 | static bool steal_cookie_task(int cpu, struct sched_domain *sd) |
| 6401 | { |
| 6402 | int i; |
| 6403 | |
| 6404 | for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { |
| 6405 | if (i == cpu) |
| 6406 | continue; |
| 6407 | |
| 6408 | if (need_resched()) |
| 6409 | break; |
| 6410 | |
| 6411 | if (try_steal_cookie(this: cpu, that: i)) |
| 6412 | return true; |
| 6413 | } |
| 6414 | |
| 6415 | return false; |
| 6416 | } |
| 6417 | |
| 6418 | static void sched_core_balance(struct rq *rq) |
| 6419 | { |
| 6420 | struct sched_domain *sd; |
| 6421 | int cpu = cpu_of(rq); |
| 6422 | |
| 6423 | guard(preempt)(); |
| 6424 | guard(rcu)(); |
| 6425 | |
| 6426 | raw_spin_rq_unlock_irq(rq); |
| 6427 | for_each_domain(cpu, sd) { |
| 6428 | if (need_resched()) |
| 6429 | break; |
| 6430 | |
| 6431 | if (steal_cookie_task(cpu, sd)) |
| 6432 | break; |
| 6433 | } |
| 6434 | raw_spin_rq_lock_irq(rq); |
| 6435 | } |
| 6436 | |
| 6437 | static DEFINE_PER_CPU(struct balance_callback, core_balance_head); |
| 6438 | |
| 6439 | static void queue_core_balance(struct rq *rq) |
| 6440 | { |
| 6441 | if (!sched_core_enabled(rq)) |
| 6442 | return; |
| 6443 | |
| 6444 | if (!rq->core->core_cookie) |
| 6445 | return; |
| 6446 | |
| 6447 | if (!rq->nr_running) /* not forced idle */ |
| 6448 | return; |
| 6449 | |
| 6450 | queue_balance_callback(rq, head: &per_cpu(core_balance_head, rq->cpu), func: sched_core_balance); |
| 6451 | } |
| 6452 | |
| 6453 | DEFINE_LOCK_GUARD_1(core_lock, int, |
| 6454 | sched_core_lock(*_T->lock, &_T->flags), |
| 6455 | sched_core_unlock(*_T->lock, &_T->flags), |
| 6456 | unsigned long flags) |
| 6457 | |
| 6458 | static void sched_core_cpu_starting(unsigned int cpu) |
| 6459 | { |
| 6460 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 6461 | struct rq *rq = cpu_rq(cpu), *core_rq = NULL; |
| 6462 | int t; |
| 6463 | |
| 6464 | guard(core_lock)(l: &cpu); |
| 6465 | |
| 6466 | WARN_ON_ONCE(rq->core != rq); |
| 6467 | |
| 6468 | /* if we're the first, we'll be our own leader */ |
| 6469 | if (cpumask_weight(srcp: smt_mask) == 1) |
| 6470 | return; |
| 6471 | |
| 6472 | /* find the leader */ |
| 6473 | for_each_cpu(t, smt_mask) { |
| 6474 | if (t == cpu) |
| 6475 | continue; |
| 6476 | rq = cpu_rq(t); |
| 6477 | if (rq->core == rq) { |
| 6478 | core_rq = rq; |
| 6479 | break; |
| 6480 | } |
| 6481 | } |
| 6482 | |
| 6483 | if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ |
| 6484 | return; |
| 6485 | |
| 6486 | /* install and validate core_rq */ |
| 6487 | for_each_cpu(t, smt_mask) { |
| 6488 | rq = cpu_rq(t); |
| 6489 | |
| 6490 | if (t == cpu) |
| 6491 | rq->core = core_rq; |
| 6492 | |
| 6493 | WARN_ON_ONCE(rq->core != core_rq); |
| 6494 | } |
| 6495 | } |
| 6496 | |
| 6497 | static void sched_core_cpu_deactivate(unsigned int cpu) |
| 6498 | { |
| 6499 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 6500 | struct rq *rq = cpu_rq(cpu), *core_rq = NULL; |
| 6501 | int t; |
| 6502 | |
| 6503 | guard(core_lock)(l: &cpu); |
| 6504 | |
| 6505 | /* if we're the last man standing, nothing to do */ |
| 6506 | if (cpumask_weight(srcp: smt_mask) == 1) { |
| 6507 | WARN_ON_ONCE(rq->core != rq); |
| 6508 | return; |
| 6509 | } |
| 6510 | |
| 6511 | /* if we're not the leader, nothing to do */ |
| 6512 | if (rq->core != rq) |
| 6513 | return; |
| 6514 | |
| 6515 | /* find a new leader */ |
| 6516 | for_each_cpu(t, smt_mask) { |
| 6517 | if (t == cpu) |
| 6518 | continue; |
| 6519 | core_rq = cpu_rq(t); |
| 6520 | break; |
| 6521 | } |
| 6522 | |
| 6523 | if (WARN_ON_ONCE(!core_rq)) /* impossible */ |
| 6524 | return; |
| 6525 | |
| 6526 | /* copy the shared state to the new leader */ |
| 6527 | core_rq->core_task_seq = rq->core_task_seq; |
| 6528 | core_rq->core_pick_seq = rq->core_pick_seq; |
| 6529 | core_rq->core_cookie = rq->core_cookie; |
| 6530 | core_rq->core_forceidle_count = rq->core_forceidle_count; |
| 6531 | core_rq->core_forceidle_seq = rq->core_forceidle_seq; |
| 6532 | core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; |
| 6533 | |
| 6534 | /* |
| 6535 | * Accounting edge for forced idle is handled in pick_next_task(). |
| 6536 | * Don't need another one here, since the hotplug thread shouldn't |
| 6537 | * have a cookie. |
| 6538 | */ |
| 6539 | core_rq->core_forceidle_start = 0; |
| 6540 | |
| 6541 | /* install new leader */ |
| 6542 | for_each_cpu(t, smt_mask) { |
| 6543 | rq = cpu_rq(t); |
| 6544 | rq->core = core_rq; |
| 6545 | } |
| 6546 | } |
| 6547 | |
| 6548 | static inline void sched_core_cpu_dying(unsigned int cpu) |
| 6549 | { |
| 6550 | struct rq *rq = cpu_rq(cpu); |
| 6551 | |
| 6552 | if (rq->core != rq) |
| 6553 | rq->core = rq; |
| 6554 | } |
| 6555 | |
| 6556 | #else /* !CONFIG_SCHED_CORE */ |
| 6557 | |
| 6558 | static inline void sched_core_cpu_starting(unsigned int cpu) {} |
| 6559 | static inline void sched_core_cpu_deactivate(unsigned int cpu) {} |
| 6560 | static inline void sched_core_cpu_dying(unsigned int cpu) {} |
| 6561 | |
| 6562 | static struct task_struct * |
| 6563 | pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 6564 | { |
| 6565 | return __pick_next_task(rq, prev, rf); |
| 6566 | } |
| 6567 | |
| 6568 | #endif /* CONFIG_SCHED_CORE */ |
| 6569 | |
| 6570 | /* |
| 6571 | * Constants for the sched_mode argument of __schedule(). |
| 6572 | * |
| 6573 | * The mode argument allows RT enabled kernels to differentiate a |
| 6574 | * preemption from blocking on an 'sleeping' spin/rwlock. |
| 6575 | */ |
| 6576 | #define SM_IDLE (-1) |
| 6577 | #define SM_NONE 0 |
| 6578 | #define SM_PREEMPT 1 |
| 6579 | #define SM_RTLOCK_WAIT 2 |
| 6580 | |
| 6581 | /* |
| 6582 | * Helper function for __schedule() |
| 6583 | * |
| 6584 | * If a task does not have signals pending, deactivate it |
| 6585 | * Otherwise marks the task's __state as RUNNING |
| 6586 | */ |
| 6587 | static bool try_to_block_task(struct rq *rq, struct task_struct *p, |
| 6588 | unsigned long *task_state_p) |
| 6589 | { |
| 6590 | unsigned long task_state = *task_state_p; |
| 6591 | int flags = DEQUEUE_NOCLOCK; |
| 6592 | |
| 6593 | if (signal_pending_state(state: task_state, p)) { |
| 6594 | WRITE_ONCE(p->__state, TASK_RUNNING); |
| 6595 | *task_state_p = TASK_RUNNING; |
| 6596 | return false; |
| 6597 | } |
| 6598 | |
| 6599 | p->sched_contributes_to_load = |
| 6600 | (task_state & TASK_UNINTERRUPTIBLE) && |
| 6601 | !(task_state & TASK_NOLOAD) && |
| 6602 | !(task_state & TASK_FROZEN); |
| 6603 | |
| 6604 | if (unlikely(is_special_task_state(task_state))) |
| 6605 | flags |= DEQUEUE_SPECIAL; |
| 6606 | |
| 6607 | /* |
| 6608 | * __schedule() ttwu() |
| 6609 | * prev_state = prev->state; if (p->on_rq && ...) |
| 6610 | * if (prev_state) goto out; |
| 6611 | * p->on_rq = 0; smp_acquire__after_ctrl_dep(); |
| 6612 | * p->state = TASK_WAKING |
| 6613 | * |
| 6614 | * Where __schedule() and ttwu() have matching control dependencies. |
| 6615 | * |
| 6616 | * After this, schedule() must not care about p->state any more. |
| 6617 | */ |
| 6618 | block_task(rq, p, flags); |
| 6619 | return true; |
| 6620 | } |
| 6621 | |
| 6622 | /* |
| 6623 | * __schedule() is the main scheduler function. |
| 6624 | * |
| 6625 | * The main means of driving the scheduler and thus entering this function are: |
| 6626 | * |
| 6627 | * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. |
| 6628 | * |
| 6629 | * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return |
| 6630 | * paths. For example, see arch/x86/entry_64.S. |
| 6631 | * |
| 6632 | * To drive preemption between tasks, the scheduler sets the flag in timer |
| 6633 | * interrupt handler sched_tick(). |
| 6634 | * |
| 6635 | * 3. Wakeups don't really cause entry into schedule(). They add a |
| 6636 | * task to the run-queue and that's it. |
| 6637 | * |
| 6638 | * Now, if the new task added to the run-queue preempts the current |
| 6639 | * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets |
| 6640 | * called on the nearest possible occasion: |
| 6641 | * |
| 6642 | * - If the kernel is preemptible (CONFIG_PREEMPTION=y): |
| 6643 | * |
| 6644 | * - in syscall or exception context, at the next outmost |
| 6645 | * preempt_enable(). (this might be as soon as the wake_up()'s |
| 6646 | * spin_unlock()!) |
| 6647 | * |
| 6648 | * - in IRQ context, return from interrupt-handler to |
| 6649 | * preemptible context |
| 6650 | * |
| 6651 | * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) |
| 6652 | * then at the next: |
| 6653 | * |
| 6654 | * - cond_resched() call |
| 6655 | * - explicit schedule() call |
| 6656 | * - return from syscall or exception to user-space |
| 6657 | * - return from interrupt-handler to user-space |
| 6658 | * |
| 6659 | * WARNING: must be called with preemption disabled! |
| 6660 | */ |
| 6661 | static void __sched notrace __schedule(int sched_mode) |
| 6662 | { |
| 6663 | struct task_struct *prev, *next; |
| 6664 | /* |
| 6665 | * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted |
| 6666 | * as a preemption by schedule_debug() and RCU. |
| 6667 | */ |
| 6668 | bool preempt = sched_mode > SM_NONE; |
| 6669 | bool is_switch = false; |
| 6670 | unsigned long *switch_count; |
| 6671 | unsigned long prev_state; |
| 6672 | struct rq_flags rf; |
| 6673 | struct rq *rq; |
| 6674 | int cpu; |
| 6675 | |
| 6676 | trace_sched_entry_tp(preempt, CALLER_ADDR0); |
| 6677 | |
| 6678 | cpu = smp_processor_id(); |
| 6679 | rq = cpu_rq(cpu); |
| 6680 | prev = rq->curr; |
| 6681 | |
| 6682 | schedule_debug(prev, preempt); |
| 6683 | |
| 6684 | if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) |
| 6685 | hrtick_clear(rq); |
| 6686 | |
| 6687 | klp_sched_try_switch(curr: prev); |
| 6688 | |
| 6689 | local_irq_disable(); |
| 6690 | rcu_note_context_switch(preempt); |
| 6691 | |
| 6692 | /* |
| 6693 | * Make sure that signal_pending_state()->signal_pending() below |
| 6694 | * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) |
| 6695 | * done by the caller to avoid the race with signal_wake_up(): |
| 6696 | * |
| 6697 | * __set_current_state(@state) signal_wake_up() |
| 6698 | * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) |
| 6699 | * wake_up_state(p, state) |
| 6700 | * LOCK rq->lock LOCK p->pi_state |
| 6701 | * smp_mb__after_spinlock() smp_mb__after_spinlock() |
| 6702 | * if (signal_pending_state()) if (p->state & @state) |
| 6703 | * |
| 6704 | * Also, the membarrier system call requires a full memory barrier |
| 6705 | * after coming from user-space, before storing to rq->curr; this |
| 6706 | * barrier matches a full barrier in the proximity of the membarrier |
| 6707 | * system call exit. |
| 6708 | */ |
| 6709 | rq_lock(rq, rf: &rf); |
| 6710 | smp_mb__after_spinlock(); |
| 6711 | |
| 6712 | /* Promote REQ to ACT */ |
| 6713 | rq->clock_update_flags <<= 1; |
| 6714 | update_rq_clock(rq); |
| 6715 | rq->clock_update_flags = RQCF_UPDATED; |
| 6716 | |
| 6717 | switch_count = &prev->nivcsw; |
| 6718 | |
| 6719 | /* Task state changes only considers SM_PREEMPT as preemption */ |
| 6720 | preempt = sched_mode == SM_PREEMPT; |
| 6721 | |
| 6722 | /* |
| 6723 | * We must load prev->state once (task_struct::state is volatile), such |
| 6724 | * that we form a control dependency vs deactivate_task() below. |
| 6725 | */ |
| 6726 | prev_state = READ_ONCE(prev->__state); |
| 6727 | if (sched_mode == SM_IDLE) { |
| 6728 | /* SCX must consult the BPF scheduler to tell if rq is empty */ |
| 6729 | if (!rq->nr_running && !scx_enabled()) { |
| 6730 | next = prev; |
| 6731 | goto picked; |
| 6732 | } |
| 6733 | } else if (!preempt && prev_state) { |
| 6734 | try_to_block_task(rq, p: prev, task_state_p: &prev_state); |
| 6735 | switch_count = &prev->nvcsw; |
| 6736 | } |
| 6737 | |
| 6738 | next = pick_next_task(rq, prev, rf: &rf); |
| 6739 | rq_set_donor(rq, t: next); |
| 6740 | picked: |
| 6741 | clear_tsk_need_resched(tsk: prev); |
| 6742 | clear_preempt_need_resched(); |
| 6743 | rq->last_seen_need_resched_ns = 0; |
| 6744 | |
| 6745 | is_switch = prev != next; |
| 6746 | if (likely(is_switch)) { |
| 6747 | rq->nr_switches++; |
| 6748 | /* |
| 6749 | * RCU users of rcu_dereference(rq->curr) may not see |
| 6750 | * changes to task_struct made by pick_next_task(). |
| 6751 | */ |
| 6752 | RCU_INIT_POINTER(rq->curr, next); |
| 6753 | /* |
| 6754 | * The membarrier system call requires each architecture |
| 6755 | * to have a full memory barrier after updating |
| 6756 | * rq->curr, before returning to user-space. |
| 6757 | * |
| 6758 | * Here are the schemes providing that barrier on the |
| 6759 | * various architectures: |
| 6760 | * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, |
| 6761 | * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() |
| 6762 | * on PowerPC and on RISC-V. |
| 6763 | * - finish_lock_switch() for weakly-ordered |
| 6764 | * architectures where spin_unlock is a full barrier, |
| 6765 | * - switch_to() for arm64 (weakly-ordered, spin_unlock |
| 6766 | * is a RELEASE barrier), |
| 6767 | * |
| 6768 | * The barrier matches a full barrier in the proximity of |
| 6769 | * the membarrier system call entry. |
| 6770 | * |
| 6771 | * On RISC-V, this barrier pairing is also needed for the |
| 6772 | * SYNC_CORE command when switching between processes, cf. |
| 6773 | * the inline comments in membarrier_arch_switch_mm(). |
| 6774 | */ |
| 6775 | ++*switch_count; |
| 6776 | |
| 6777 | migrate_disable_switch(rq, p: prev); |
| 6778 | psi_account_irqtime(rq, curr: prev, prev: next); |
| 6779 | psi_sched_switch(prev, next, sleep: !task_on_rq_queued(p: prev) || |
| 6780 | prev->se.sched_delayed); |
| 6781 | |
| 6782 | trace_sched_switch(preempt, prev, next, prev_state); |
| 6783 | |
| 6784 | /* Also unlocks the rq: */ |
| 6785 | rq = context_switch(rq, prev, next, rf: &rf); |
| 6786 | } else { |
| 6787 | rq_unpin_lock(rq, rf: &rf); |
| 6788 | __balance_callbacks(rq); |
| 6789 | raw_spin_rq_unlock_irq(rq); |
| 6790 | } |
| 6791 | trace_sched_exit_tp(is_switch, CALLER_ADDR0); |
| 6792 | } |
| 6793 | |
| 6794 | void __noreturn do_task_dead(void) |
| 6795 | { |
| 6796 | /* Causes final put_task_struct in finish_task_switch(): */ |
| 6797 | set_special_state(TASK_DEAD); |
| 6798 | |
| 6799 | /* Tell freezer to ignore us: */ |
| 6800 | current->flags |= PF_NOFREEZE; |
| 6801 | |
| 6802 | __schedule(SM_NONE); |
| 6803 | BUG(); |
| 6804 | |
| 6805 | /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ |
| 6806 | for (;;) |
| 6807 | cpu_relax(); |
| 6808 | } |
| 6809 | |
| 6810 | static inline void sched_submit_work(struct task_struct *tsk) |
| 6811 | { |
| 6812 | static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); |
| 6813 | unsigned int task_flags; |
| 6814 | |
| 6815 | /* |
| 6816 | * Establish LD_WAIT_CONFIG context to ensure none of the code called |
| 6817 | * will use a blocking primitive -- which would lead to recursion. |
| 6818 | */ |
| 6819 | lock_map_acquire_try(&sched_map); |
| 6820 | |
| 6821 | task_flags = tsk->flags; |
| 6822 | /* |
| 6823 | * If a worker goes to sleep, notify and ask workqueue whether it |
| 6824 | * wants to wake up a task to maintain concurrency. |
| 6825 | */ |
| 6826 | if (task_flags & PF_WQ_WORKER) |
| 6827 | wq_worker_sleeping(task: tsk); |
| 6828 | else if (task_flags & PF_IO_WORKER) |
| 6829 | io_wq_worker_sleeping(tsk); |
| 6830 | |
| 6831 | /* |
| 6832 | * spinlock and rwlock must not flush block requests. This will |
| 6833 | * deadlock if the callback attempts to acquire a lock which is |
| 6834 | * already acquired. |
| 6835 | */ |
| 6836 | WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); |
| 6837 | |
| 6838 | /* |
| 6839 | * If we are going to sleep and we have plugged IO queued, |
| 6840 | * make sure to submit it to avoid deadlocks. |
| 6841 | */ |
| 6842 | blk_flush_plug(plug: tsk->plug, async: true); |
| 6843 | |
| 6844 | lock_map_release(&sched_map); |
| 6845 | } |
| 6846 | |
| 6847 | static void sched_update_worker(struct task_struct *tsk) |
| 6848 | { |
| 6849 | if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { |
| 6850 | if (tsk->flags & PF_BLOCK_TS) |
| 6851 | blk_plug_invalidate_ts(tsk); |
| 6852 | if (tsk->flags & PF_WQ_WORKER) |
| 6853 | wq_worker_running(task: tsk); |
| 6854 | else if (tsk->flags & PF_IO_WORKER) |
| 6855 | io_wq_worker_running(tsk); |
| 6856 | } |
| 6857 | } |
| 6858 | |
| 6859 | static __always_inline void __schedule_loop(int sched_mode) |
| 6860 | { |
| 6861 | do { |
| 6862 | preempt_disable(); |
| 6863 | __schedule(sched_mode); |
| 6864 | sched_preempt_enable_no_resched(); |
| 6865 | } while (need_resched()); |
| 6866 | } |
| 6867 | |
| 6868 | asmlinkage __visible void __sched schedule(void) |
| 6869 | { |
| 6870 | struct task_struct *tsk = current; |
| 6871 | |
| 6872 | #ifdef CONFIG_RT_MUTEXES |
| 6873 | lockdep_assert(!tsk->sched_rt_mutex); |
| 6874 | #endif |
| 6875 | |
| 6876 | if (!task_is_running(tsk)) |
| 6877 | sched_submit_work(tsk); |
| 6878 | __schedule_loop(SM_NONE); |
| 6879 | sched_update_worker(tsk); |
| 6880 | } |
| 6881 | EXPORT_SYMBOL(schedule); |
| 6882 | |
| 6883 | /* |
| 6884 | * synchronize_rcu_tasks() makes sure that no task is stuck in preempted |
| 6885 | * state (have scheduled out non-voluntarily) by making sure that all |
| 6886 | * tasks have either left the run queue or have gone into user space. |
| 6887 | * As idle tasks do not do either, they must not ever be preempted |
| 6888 | * (schedule out non-voluntarily). |
| 6889 | * |
| 6890 | * schedule_idle() is similar to schedule_preempt_disable() except that it |
| 6891 | * never enables preemption because it does not call sched_submit_work(). |
| 6892 | */ |
| 6893 | void __sched schedule_idle(void) |
| 6894 | { |
| 6895 | /* |
| 6896 | * As this skips calling sched_submit_work(), which the idle task does |
| 6897 | * regardless because that function is a NOP when the task is in a |
| 6898 | * TASK_RUNNING state, make sure this isn't used someplace that the |
| 6899 | * current task can be in any other state. Note, idle is always in the |
| 6900 | * TASK_RUNNING state. |
| 6901 | */ |
| 6902 | WARN_ON_ONCE(current->__state); |
| 6903 | do { |
| 6904 | __schedule(SM_IDLE); |
| 6905 | } while (need_resched()); |
| 6906 | } |
| 6907 | |
| 6908 | #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) |
| 6909 | asmlinkage __visible void __sched schedule_user(void) |
| 6910 | { |
| 6911 | /* |
| 6912 | * If we come here after a random call to set_need_resched(), |
| 6913 | * or we have been woken up remotely but the IPI has not yet arrived, |
| 6914 | * we haven't yet exited the RCU idle mode. Do it here manually until |
| 6915 | * we find a better solution. |
| 6916 | * |
| 6917 | * NB: There are buggy callers of this function. Ideally we |
| 6918 | * should warn if prev_state != CT_STATE_USER, but that will trigger |
| 6919 | * too frequently to make sense yet. |
| 6920 | */ |
| 6921 | enum ctx_state prev_state = exception_enter(); |
| 6922 | schedule(); |
| 6923 | exception_exit(prev_state); |
| 6924 | } |
| 6925 | #endif |
| 6926 | |
| 6927 | /** |
| 6928 | * schedule_preempt_disabled - called with preemption disabled |
| 6929 | * |
| 6930 | * Returns with preemption disabled. Note: preempt_count must be 1 |
| 6931 | */ |
| 6932 | void __sched schedule_preempt_disabled(void) |
| 6933 | { |
| 6934 | sched_preempt_enable_no_resched(); |
| 6935 | schedule(); |
| 6936 | preempt_disable(); |
| 6937 | } |
| 6938 | |
| 6939 | #ifdef CONFIG_PREEMPT_RT |
| 6940 | void __sched notrace schedule_rtlock(void) |
| 6941 | { |
| 6942 | __schedule_loop(SM_RTLOCK_WAIT); |
| 6943 | } |
| 6944 | NOKPROBE_SYMBOL(schedule_rtlock); |
| 6945 | #endif |
| 6946 | |
| 6947 | static void __sched notrace preempt_schedule_common(void) |
| 6948 | { |
| 6949 | do { |
| 6950 | /* |
| 6951 | * Because the function tracer can trace preempt_count_sub() |
| 6952 | * and it also uses preempt_enable/disable_notrace(), if |
| 6953 | * NEED_RESCHED is set, the preempt_enable_notrace() called |
| 6954 | * by the function tracer will call this function again and |
| 6955 | * cause infinite recursion. |
| 6956 | * |
| 6957 | * Preemption must be disabled here before the function |
| 6958 | * tracer can trace. Break up preempt_disable() into two |
| 6959 | * calls. One to disable preemption without fear of being |
| 6960 | * traced. The other to still record the preemption latency, |
| 6961 | * which can also be traced by the function tracer. |
| 6962 | */ |
| 6963 | preempt_disable_notrace(); |
| 6964 | preempt_latency_start(val: 1); |
| 6965 | __schedule(SM_PREEMPT); |
| 6966 | preempt_latency_stop(val: 1); |
| 6967 | preempt_enable_no_resched_notrace(); |
| 6968 | |
| 6969 | /* |
| 6970 | * Check again in case we missed a preemption opportunity |
| 6971 | * between schedule and now. |
| 6972 | */ |
| 6973 | } while (need_resched()); |
| 6974 | } |
| 6975 | |
| 6976 | #ifdef CONFIG_PREEMPTION |
| 6977 | /* |
| 6978 | * This is the entry point to schedule() from in-kernel preemption |
| 6979 | * off of preempt_enable. |
| 6980 | */ |
| 6981 | asmlinkage __visible void __sched notrace preempt_schedule(void) |
| 6982 | { |
| 6983 | /* |
| 6984 | * If there is a non-zero preempt_count or interrupts are disabled, |
| 6985 | * we do not want to preempt the current task. Just return.. |
| 6986 | */ |
| 6987 | if (likely(!preemptible())) |
| 6988 | return; |
| 6989 | preempt_schedule_common(); |
| 6990 | } |
| 6991 | NOKPROBE_SYMBOL(preempt_schedule); |
| 6992 | EXPORT_SYMBOL(preempt_schedule); |
| 6993 | |
| 6994 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 6995 | #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| 6996 | #ifndef preempt_schedule_dynamic_enabled |
| 6997 | #define preempt_schedule_dynamic_enabled preempt_schedule |
| 6998 | #define preempt_schedule_dynamic_disabled NULL |
| 6999 | #endif |
| 7000 | DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); |
| 7001 | EXPORT_STATIC_CALL_TRAMP(preempt_schedule); |
| 7002 | #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| 7003 | static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); |
| 7004 | void __sched notrace dynamic_preempt_schedule(void) |
| 7005 | { |
| 7006 | if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) |
| 7007 | return; |
| 7008 | preempt_schedule(); |
| 7009 | } |
| 7010 | NOKPROBE_SYMBOL(dynamic_preempt_schedule); |
| 7011 | EXPORT_SYMBOL(dynamic_preempt_schedule); |
| 7012 | #endif |
| 7013 | #endif |
| 7014 | |
| 7015 | /** |
| 7016 | * preempt_schedule_notrace - preempt_schedule called by tracing |
| 7017 | * |
| 7018 | * The tracing infrastructure uses preempt_enable_notrace to prevent |
| 7019 | * recursion and tracing preempt enabling caused by the tracing |
| 7020 | * infrastructure itself. But as tracing can happen in areas coming |
| 7021 | * from userspace or just about to enter userspace, a preempt enable |
| 7022 | * can occur before user_exit() is called. This will cause the scheduler |
| 7023 | * to be called when the system is still in usermode. |
| 7024 | * |
| 7025 | * To prevent this, the preempt_enable_notrace will use this function |
| 7026 | * instead of preempt_schedule() to exit user context if needed before |
| 7027 | * calling the scheduler. |
| 7028 | */ |
| 7029 | asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) |
| 7030 | { |
| 7031 | enum ctx_state prev_ctx; |
| 7032 | |
| 7033 | if (likely(!preemptible())) |
| 7034 | return; |
| 7035 | |
| 7036 | do { |
| 7037 | /* |
| 7038 | * Because the function tracer can trace preempt_count_sub() |
| 7039 | * and it also uses preempt_enable/disable_notrace(), if |
| 7040 | * NEED_RESCHED is set, the preempt_enable_notrace() called |
| 7041 | * by the function tracer will call this function again and |
| 7042 | * cause infinite recursion. |
| 7043 | * |
| 7044 | * Preemption must be disabled here before the function |
| 7045 | * tracer can trace. Break up preempt_disable() into two |
| 7046 | * calls. One to disable preemption without fear of being |
| 7047 | * traced. The other to still record the preemption latency, |
| 7048 | * which can also be traced by the function tracer. |
| 7049 | */ |
| 7050 | preempt_disable_notrace(); |
| 7051 | preempt_latency_start(val: 1); |
| 7052 | /* |
| 7053 | * Needs preempt disabled in case user_exit() is traced |
| 7054 | * and the tracer calls preempt_enable_notrace() causing |
| 7055 | * an infinite recursion. |
| 7056 | */ |
| 7057 | prev_ctx = exception_enter(); |
| 7058 | __schedule(SM_PREEMPT); |
| 7059 | exception_exit(prev_ctx); |
| 7060 | |
| 7061 | preempt_latency_stop(val: 1); |
| 7062 | preempt_enable_no_resched_notrace(); |
| 7063 | } while (need_resched()); |
| 7064 | } |
| 7065 | EXPORT_SYMBOL_GPL(preempt_schedule_notrace); |
| 7066 | |
| 7067 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 7068 | #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| 7069 | #ifndef preempt_schedule_notrace_dynamic_enabled |
| 7070 | #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace |
| 7071 | #define preempt_schedule_notrace_dynamic_disabled NULL |
| 7072 | #endif |
| 7073 | DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); |
| 7074 | EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); |
| 7075 | #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| 7076 | static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); |
| 7077 | void __sched notrace dynamic_preempt_schedule_notrace(void) |
| 7078 | { |
| 7079 | if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) |
| 7080 | return; |
| 7081 | preempt_schedule_notrace(); |
| 7082 | } |
| 7083 | NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); |
| 7084 | EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); |
| 7085 | #endif |
| 7086 | #endif |
| 7087 | |
| 7088 | #endif /* CONFIG_PREEMPTION */ |
| 7089 | |
| 7090 | /* |
| 7091 | * This is the entry point to schedule() from kernel preemption |
| 7092 | * off of IRQ context. |
| 7093 | * Note, that this is called and return with IRQs disabled. This will |
| 7094 | * protect us against recursive calling from IRQ contexts. |
| 7095 | */ |
| 7096 | asmlinkage __visible void __sched preempt_schedule_irq(void) |
| 7097 | { |
| 7098 | enum ctx_state prev_state; |
| 7099 | |
| 7100 | /* Catch callers which need to be fixed */ |
| 7101 | BUG_ON(preempt_count() || !irqs_disabled()); |
| 7102 | |
| 7103 | prev_state = exception_enter(); |
| 7104 | |
| 7105 | do { |
| 7106 | preempt_disable(); |
| 7107 | local_irq_enable(); |
| 7108 | __schedule(SM_PREEMPT); |
| 7109 | local_irq_disable(); |
| 7110 | sched_preempt_enable_no_resched(); |
| 7111 | } while (need_resched()); |
| 7112 | |
| 7113 | exception_exit(prev_ctx: prev_state); |
| 7114 | } |
| 7115 | |
| 7116 | int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, |
| 7117 | void *key) |
| 7118 | { |
| 7119 | WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); |
| 7120 | return try_to_wake_up(p: curr->private, state: mode, wake_flags); |
| 7121 | } |
| 7122 | EXPORT_SYMBOL(default_wake_function); |
| 7123 | |
| 7124 | const struct sched_class *__setscheduler_class(int policy, int prio) |
| 7125 | { |
| 7126 | if (dl_prio(prio)) |
| 7127 | return &dl_sched_class; |
| 7128 | |
| 7129 | if (rt_prio(prio)) |
| 7130 | return &rt_sched_class; |
| 7131 | |
| 7132 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 7133 | if (task_should_scx(policy)) |
| 7134 | return &ext_sched_class; |
| 7135 | #endif |
| 7136 | |
| 7137 | return &fair_sched_class; |
| 7138 | } |
| 7139 | |
| 7140 | #ifdef CONFIG_RT_MUTEXES |
| 7141 | |
| 7142 | /* |
| 7143 | * Would be more useful with typeof()/auto_type but they don't mix with |
| 7144 | * bit-fields. Since it's a local thing, use int. Keep the generic sounding |
| 7145 | * name such that if someone were to implement this function we get to compare |
| 7146 | * notes. |
| 7147 | */ |
| 7148 | #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) |
| 7149 | |
| 7150 | void rt_mutex_pre_schedule(void) |
| 7151 | { |
| 7152 | lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); |
| 7153 | sched_submit_work(current); |
| 7154 | } |
| 7155 | |
| 7156 | void rt_mutex_schedule(void) |
| 7157 | { |
| 7158 | lockdep_assert(current->sched_rt_mutex); |
| 7159 | __schedule_loop(SM_NONE); |
| 7160 | } |
| 7161 | |
| 7162 | void rt_mutex_post_schedule(void) |
| 7163 | { |
| 7164 | sched_update_worker(current); |
| 7165 | lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); |
| 7166 | } |
| 7167 | |
| 7168 | /* |
| 7169 | * rt_mutex_setprio - set the current priority of a task |
| 7170 | * @p: task to boost |
| 7171 | * @pi_task: donor task |
| 7172 | * |
| 7173 | * This function changes the 'effective' priority of a task. It does |
| 7174 | * not touch ->normal_prio like __setscheduler(). |
| 7175 | * |
| 7176 | * Used by the rt_mutex code to implement priority inheritance |
| 7177 | * logic. Call site only calls if the priority of the task changed. |
| 7178 | */ |
| 7179 | void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) |
| 7180 | { |
| 7181 | int prio, oldprio, queued, running, queue_flag = |
| 7182 | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| 7183 | const struct sched_class *prev_class, *next_class; |
| 7184 | struct rq_flags rf; |
| 7185 | struct rq *rq; |
| 7186 | |
| 7187 | /* XXX used to be waiter->prio, not waiter->task->prio */ |
| 7188 | prio = __rt_effective_prio(pi_task, prio: p->normal_prio); |
| 7189 | |
| 7190 | /* |
| 7191 | * If nothing changed; bail early. |
| 7192 | */ |
| 7193 | if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) |
| 7194 | return; |
| 7195 | |
| 7196 | rq = __task_rq_lock(p, rf: &rf); |
| 7197 | update_rq_clock(rq); |
| 7198 | /* |
| 7199 | * Set under pi_lock && rq->lock, such that the value can be used under |
| 7200 | * either lock. |
| 7201 | * |
| 7202 | * Note that there is loads of tricky to make this pointer cache work |
| 7203 | * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to |
| 7204 | * ensure a task is de-boosted (pi_task is set to NULL) before the |
| 7205 | * task is allowed to run again (and can exit). This ensures the pointer |
| 7206 | * points to a blocked task -- which guarantees the task is present. |
| 7207 | */ |
| 7208 | p->pi_top_task = pi_task; |
| 7209 | |
| 7210 | /* |
| 7211 | * For FIFO/RR we only need to set prio, if that matches we're done. |
| 7212 | */ |
| 7213 | if (prio == p->prio && !dl_prio(prio)) |
| 7214 | goto out_unlock; |
| 7215 | |
| 7216 | /* |
| 7217 | * Idle task boosting is a no-no in general. There is one |
| 7218 | * exception, when PREEMPT_RT and NOHZ is active: |
| 7219 | * |
| 7220 | * The idle task calls get_next_timer_interrupt() and holds |
| 7221 | * the timer wheel base->lock on the CPU and another CPU wants |
| 7222 | * to access the timer (probably to cancel it). We can safely |
| 7223 | * ignore the boosting request, as the idle CPU runs this code |
| 7224 | * with interrupts disabled and will complete the lock |
| 7225 | * protected section without being interrupted. So there is no |
| 7226 | * real need to boost. |
| 7227 | */ |
| 7228 | if (unlikely(p == rq->idle)) { |
| 7229 | WARN_ON(p != rq->curr); |
| 7230 | WARN_ON(p->pi_blocked_on); |
| 7231 | goto out_unlock; |
| 7232 | } |
| 7233 | |
| 7234 | trace_sched_pi_setprio(tsk: p, pi_task); |
| 7235 | oldprio = p->prio; |
| 7236 | |
| 7237 | if (oldprio == prio) |
| 7238 | queue_flag &= ~DEQUEUE_MOVE; |
| 7239 | |
| 7240 | prev_class = p->sched_class; |
| 7241 | next_class = __setscheduler_class(policy: p->policy, prio); |
| 7242 | |
| 7243 | if (prev_class != next_class && p->se.sched_delayed) |
| 7244 | dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); |
| 7245 | |
| 7246 | queued = task_on_rq_queued(p); |
| 7247 | running = task_current_donor(rq, p); |
| 7248 | if (queued) |
| 7249 | dequeue_task(rq, p, flags: queue_flag); |
| 7250 | if (running) |
| 7251 | put_prev_task(rq, prev: p); |
| 7252 | |
| 7253 | /* |
| 7254 | * Boosting condition are: |
| 7255 | * 1. -rt task is running and holds mutex A |
| 7256 | * --> -dl task blocks on mutex A |
| 7257 | * |
| 7258 | * 2. -dl task is running and holds mutex A |
| 7259 | * --> -dl task blocks on mutex A and could preempt the |
| 7260 | * running task |
| 7261 | */ |
| 7262 | if (dl_prio(prio)) { |
| 7263 | if (!dl_prio(prio: p->normal_prio) || |
| 7264 | (pi_task && dl_prio(prio: pi_task->prio) && |
| 7265 | dl_entity_preempt(a: &pi_task->dl, b: &p->dl))) { |
| 7266 | p->dl.pi_se = pi_task->dl.pi_se; |
| 7267 | queue_flag |= ENQUEUE_REPLENISH; |
| 7268 | } else { |
| 7269 | p->dl.pi_se = &p->dl; |
| 7270 | } |
| 7271 | } else if (rt_prio(prio)) { |
| 7272 | if (dl_prio(prio: oldprio)) |
| 7273 | p->dl.pi_se = &p->dl; |
| 7274 | if (oldprio < prio) |
| 7275 | queue_flag |= ENQUEUE_HEAD; |
| 7276 | } else { |
| 7277 | if (dl_prio(prio: oldprio)) |
| 7278 | p->dl.pi_se = &p->dl; |
| 7279 | if (rt_prio(prio: oldprio)) |
| 7280 | p->rt.timeout = 0; |
| 7281 | } |
| 7282 | |
| 7283 | p->sched_class = next_class; |
| 7284 | p->prio = prio; |
| 7285 | |
| 7286 | check_class_changing(rq, p, prev_class); |
| 7287 | |
| 7288 | if (queued) |
| 7289 | enqueue_task(rq, p, flags: queue_flag); |
| 7290 | if (running) |
| 7291 | set_next_task(rq, next: p); |
| 7292 | |
| 7293 | check_class_changed(rq, p, prev_class, oldprio); |
| 7294 | out_unlock: |
| 7295 | /* Avoid rq from going away on us: */ |
| 7296 | preempt_disable(); |
| 7297 | |
| 7298 | rq_unpin_lock(rq, rf: &rf); |
| 7299 | __balance_callbacks(rq); |
| 7300 | raw_spin_rq_unlock(rq); |
| 7301 | |
| 7302 | preempt_enable(); |
| 7303 | } |
| 7304 | #endif |
| 7305 | |
| 7306 | #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) |
| 7307 | int __sched __cond_resched(void) |
| 7308 | { |
| 7309 | if (should_resched(preempt_offset: 0) && !irqs_disabled()) { |
| 7310 | preempt_schedule_common(); |
| 7311 | return 1; |
| 7312 | } |
| 7313 | /* |
| 7314 | * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick |
| 7315 | * whether the current CPU is in an RCU read-side critical section, |
| 7316 | * so the tick can report quiescent states even for CPUs looping |
| 7317 | * in kernel context. In contrast, in non-preemptible kernels, |
| 7318 | * RCU readers leave no in-memory hints, which means that CPU-bound |
| 7319 | * processes executing in kernel context might never report an |
| 7320 | * RCU quiescent state. Therefore, the following code causes |
| 7321 | * cond_resched() to report a quiescent state, but only when RCU |
| 7322 | * is in urgent need of one. |
| 7323 | * A third case, preemptible, but non-PREEMPT_RCU provides for |
| 7324 | * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). |
| 7325 | */ |
| 7326 | #ifndef CONFIG_PREEMPT_RCU |
| 7327 | rcu_all_qs(); |
| 7328 | #endif |
| 7329 | return 0; |
| 7330 | } |
| 7331 | EXPORT_SYMBOL(__cond_resched); |
| 7332 | #endif |
| 7333 | |
| 7334 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 7335 | #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| 7336 | #define cond_resched_dynamic_enabled __cond_resched |
| 7337 | #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) |
| 7338 | DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); |
| 7339 | EXPORT_STATIC_CALL_TRAMP(cond_resched); |
| 7340 | |
| 7341 | #define might_resched_dynamic_enabled __cond_resched |
| 7342 | #define might_resched_dynamic_disabled ((void *)&__static_call_return0) |
| 7343 | DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); |
| 7344 | EXPORT_STATIC_CALL_TRAMP(might_resched); |
| 7345 | #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| 7346 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); |
| 7347 | int __sched dynamic_cond_resched(void) |
| 7348 | { |
| 7349 | if (!static_branch_unlikely(&sk_dynamic_cond_resched)) |
| 7350 | return 0; |
| 7351 | return __cond_resched(); |
| 7352 | } |
| 7353 | EXPORT_SYMBOL(dynamic_cond_resched); |
| 7354 | |
| 7355 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); |
| 7356 | int __sched dynamic_might_resched(void) |
| 7357 | { |
| 7358 | if (!static_branch_unlikely(&sk_dynamic_might_resched)) |
| 7359 | return 0; |
| 7360 | return __cond_resched(); |
| 7361 | } |
| 7362 | EXPORT_SYMBOL(dynamic_might_resched); |
| 7363 | #endif |
| 7364 | #endif |
| 7365 | |
| 7366 | /* |
| 7367 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
| 7368 | * call schedule, and on return reacquire the lock. |
| 7369 | * |
| 7370 | * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level |
| 7371 | * operations here to prevent schedule() from being called twice (once via |
| 7372 | * spin_unlock(), once by hand). |
| 7373 | */ |
| 7374 | int __cond_resched_lock(spinlock_t *lock) |
| 7375 | { |
| 7376 | int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| 7377 | int ret = 0; |
| 7378 | |
| 7379 | lockdep_assert_held(lock); |
| 7380 | |
| 7381 | if (spin_needbreak(lock) || resched) { |
| 7382 | spin_unlock(lock); |
| 7383 | if (!_cond_resched()) |
| 7384 | cpu_relax(); |
| 7385 | ret = 1; |
| 7386 | spin_lock(lock); |
| 7387 | } |
| 7388 | return ret; |
| 7389 | } |
| 7390 | EXPORT_SYMBOL(__cond_resched_lock); |
| 7391 | |
| 7392 | int __cond_resched_rwlock_read(rwlock_t *lock) |
| 7393 | { |
| 7394 | int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| 7395 | int ret = 0; |
| 7396 | |
| 7397 | lockdep_assert_held_read(lock); |
| 7398 | |
| 7399 | if (rwlock_needbreak(lock) || resched) { |
| 7400 | read_unlock(lock); |
| 7401 | if (!_cond_resched()) |
| 7402 | cpu_relax(); |
| 7403 | ret = 1; |
| 7404 | read_lock(lock); |
| 7405 | } |
| 7406 | return ret; |
| 7407 | } |
| 7408 | EXPORT_SYMBOL(__cond_resched_rwlock_read); |
| 7409 | |
| 7410 | int __cond_resched_rwlock_write(rwlock_t *lock) |
| 7411 | { |
| 7412 | int resched = should_resched(PREEMPT_LOCK_OFFSET); |
| 7413 | int ret = 0; |
| 7414 | |
| 7415 | lockdep_assert_held_write(lock); |
| 7416 | |
| 7417 | if (rwlock_needbreak(lock) || resched) { |
| 7418 | write_unlock(lock); |
| 7419 | if (!_cond_resched()) |
| 7420 | cpu_relax(); |
| 7421 | ret = 1; |
| 7422 | write_lock(lock); |
| 7423 | } |
| 7424 | return ret; |
| 7425 | } |
| 7426 | EXPORT_SYMBOL(__cond_resched_rwlock_write); |
| 7427 | |
| 7428 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 7429 | |
| 7430 | #ifdef CONFIG_GENERIC_ENTRY |
| 7431 | #include <linux/entry-common.h> |
| 7432 | #endif |
| 7433 | |
| 7434 | /* |
| 7435 | * SC:cond_resched |
| 7436 | * SC:might_resched |
| 7437 | * SC:preempt_schedule |
| 7438 | * SC:preempt_schedule_notrace |
| 7439 | * SC:irqentry_exit_cond_resched |
| 7440 | * |
| 7441 | * |
| 7442 | * NONE: |
| 7443 | * cond_resched <- __cond_resched |
| 7444 | * might_resched <- RET0 |
| 7445 | * preempt_schedule <- NOP |
| 7446 | * preempt_schedule_notrace <- NOP |
| 7447 | * irqentry_exit_cond_resched <- NOP |
| 7448 | * dynamic_preempt_lazy <- false |
| 7449 | * |
| 7450 | * VOLUNTARY: |
| 7451 | * cond_resched <- __cond_resched |
| 7452 | * might_resched <- __cond_resched |
| 7453 | * preempt_schedule <- NOP |
| 7454 | * preempt_schedule_notrace <- NOP |
| 7455 | * irqentry_exit_cond_resched <- NOP |
| 7456 | * dynamic_preempt_lazy <- false |
| 7457 | * |
| 7458 | * FULL: |
| 7459 | * cond_resched <- RET0 |
| 7460 | * might_resched <- RET0 |
| 7461 | * preempt_schedule <- preempt_schedule |
| 7462 | * preempt_schedule_notrace <- preempt_schedule_notrace |
| 7463 | * irqentry_exit_cond_resched <- irqentry_exit_cond_resched |
| 7464 | * dynamic_preempt_lazy <- false |
| 7465 | * |
| 7466 | * LAZY: |
| 7467 | * cond_resched <- RET0 |
| 7468 | * might_resched <- RET0 |
| 7469 | * preempt_schedule <- preempt_schedule |
| 7470 | * preempt_schedule_notrace <- preempt_schedule_notrace |
| 7471 | * irqentry_exit_cond_resched <- irqentry_exit_cond_resched |
| 7472 | * dynamic_preempt_lazy <- true |
| 7473 | */ |
| 7474 | |
| 7475 | enum { |
| 7476 | preempt_dynamic_undefined = -1, |
| 7477 | preempt_dynamic_none, |
| 7478 | preempt_dynamic_voluntary, |
| 7479 | preempt_dynamic_full, |
| 7480 | preempt_dynamic_lazy, |
| 7481 | }; |
| 7482 | |
| 7483 | int preempt_dynamic_mode = preempt_dynamic_undefined; |
| 7484 | |
| 7485 | int sched_dynamic_mode(const char *str) |
| 7486 | { |
| 7487 | #ifndef CONFIG_PREEMPT_RT |
| 7488 | if (!strcmp(str, "none" )) |
| 7489 | return preempt_dynamic_none; |
| 7490 | |
| 7491 | if (!strcmp(str, "voluntary" )) |
| 7492 | return preempt_dynamic_voluntary; |
| 7493 | #endif |
| 7494 | |
| 7495 | if (!strcmp(str, "full" )) |
| 7496 | return preempt_dynamic_full; |
| 7497 | |
| 7498 | #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY |
| 7499 | if (!strcmp(str, "lazy" )) |
| 7500 | return preempt_dynamic_lazy; |
| 7501 | #endif |
| 7502 | |
| 7503 | return -EINVAL; |
| 7504 | } |
| 7505 | |
| 7506 | #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) |
| 7507 | #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) |
| 7508 | |
| 7509 | #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| 7510 | #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) |
| 7511 | #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) |
| 7512 | #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| 7513 | #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) |
| 7514 | #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) |
| 7515 | #else |
| 7516 | #error "Unsupported PREEMPT_DYNAMIC mechanism" |
| 7517 | #endif |
| 7518 | |
| 7519 | static DEFINE_MUTEX(sched_dynamic_mutex); |
| 7520 | |
| 7521 | static void __sched_dynamic_update(int mode) |
| 7522 | { |
| 7523 | /* |
| 7524 | * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in |
| 7525 | * the ZERO state, which is invalid. |
| 7526 | */ |
| 7527 | preempt_dynamic_enable(cond_resched); |
| 7528 | preempt_dynamic_enable(might_resched); |
| 7529 | preempt_dynamic_enable(preempt_schedule); |
| 7530 | preempt_dynamic_enable(preempt_schedule_notrace); |
| 7531 | preempt_dynamic_enable(irqentry_exit_cond_resched); |
| 7532 | preempt_dynamic_key_disable(preempt_lazy); |
| 7533 | |
| 7534 | switch (mode) { |
| 7535 | case preempt_dynamic_none: |
| 7536 | preempt_dynamic_enable(cond_resched); |
| 7537 | preempt_dynamic_disable(might_resched); |
| 7538 | preempt_dynamic_disable(preempt_schedule); |
| 7539 | preempt_dynamic_disable(preempt_schedule_notrace); |
| 7540 | preempt_dynamic_disable(irqentry_exit_cond_resched); |
| 7541 | preempt_dynamic_key_disable(preempt_lazy); |
| 7542 | if (mode != preempt_dynamic_mode) |
| 7543 | pr_info("Dynamic Preempt: none\n" ); |
| 7544 | break; |
| 7545 | |
| 7546 | case preempt_dynamic_voluntary: |
| 7547 | preempt_dynamic_enable(cond_resched); |
| 7548 | preempt_dynamic_enable(might_resched); |
| 7549 | preempt_dynamic_disable(preempt_schedule); |
| 7550 | preempt_dynamic_disable(preempt_schedule_notrace); |
| 7551 | preempt_dynamic_disable(irqentry_exit_cond_resched); |
| 7552 | preempt_dynamic_key_disable(preempt_lazy); |
| 7553 | if (mode != preempt_dynamic_mode) |
| 7554 | pr_info("Dynamic Preempt: voluntary\n" ); |
| 7555 | break; |
| 7556 | |
| 7557 | case preempt_dynamic_full: |
| 7558 | preempt_dynamic_disable(cond_resched); |
| 7559 | preempt_dynamic_disable(might_resched); |
| 7560 | preempt_dynamic_enable(preempt_schedule); |
| 7561 | preempt_dynamic_enable(preempt_schedule_notrace); |
| 7562 | preempt_dynamic_enable(irqentry_exit_cond_resched); |
| 7563 | preempt_dynamic_key_disable(preempt_lazy); |
| 7564 | if (mode != preempt_dynamic_mode) |
| 7565 | pr_info("Dynamic Preempt: full\n" ); |
| 7566 | break; |
| 7567 | |
| 7568 | case preempt_dynamic_lazy: |
| 7569 | preempt_dynamic_disable(cond_resched); |
| 7570 | preempt_dynamic_disable(might_resched); |
| 7571 | preempt_dynamic_enable(preempt_schedule); |
| 7572 | preempt_dynamic_enable(preempt_schedule_notrace); |
| 7573 | preempt_dynamic_enable(irqentry_exit_cond_resched); |
| 7574 | preempt_dynamic_key_enable(preempt_lazy); |
| 7575 | if (mode != preempt_dynamic_mode) |
| 7576 | pr_info("Dynamic Preempt: lazy\n" ); |
| 7577 | break; |
| 7578 | } |
| 7579 | |
| 7580 | preempt_dynamic_mode = mode; |
| 7581 | } |
| 7582 | |
| 7583 | void sched_dynamic_update(int mode) |
| 7584 | { |
| 7585 | mutex_lock(&sched_dynamic_mutex); |
| 7586 | __sched_dynamic_update(mode); |
| 7587 | mutex_unlock(lock: &sched_dynamic_mutex); |
| 7588 | } |
| 7589 | |
| 7590 | static int __init setup_preempt_mode(char *str) |
| 7591 | { |
| 7592 | int mode = sched_dynamic_mode(str); |
| 7593 | if (mode < 0) { |
| 7594 | pr_warn("Dynamic Preempt: unsupported mode: %s\n" , str); |
| 7595 | return 0; |
| 7596 | } |
| 7597 | |
| 7598 | sched_dynamic_update(mode); |
| 7599 | return 1; |
| 7600 | } |
| 7601 | __setup("preempt=" , setup_preempt_mode); |
| 7602 | |
| 7603 | static void __init preempt_dynamic_init(void) |
| 7604 | { |
| 7605 | if (preempt_dynamic_mode == preempt_dynamic_undefined) { |
| 7606 | if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { |
| 7607 | sched_dynamic_update(mode: preempt_dynamic_none); |
| 7608 | } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { |
| 7609 | sched_dynamic_update(mode: preempt_dynamic_voluntary); |
| 7610 | } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { |
| 7611 | sched_dynamic_update(mode: preempt_dynamic_lazy); |
| 7612 | } else { |
| 7613 | /* Default static call setting, nothing to do */ |
| 7614 | WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); |
| 7615 | preempt_dynamic_mode = preempt_dynamic_full; |
| 7616 | pr_info("Dynamic Preempt: full\n" ); |
| 7617 | } |
| 7618 | } |
| 7619 | } |
| 7620 | |
| 7621 | #define PREEMPT_MODEL_ACCESSOR(mode) \ |
| 7622 | bool preempt_model_##mode(void) \ |
| 7623 | { \ |
| 7624 | WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ |
| 7625 | return preempt_dynamic_mode == preempt_dynamic_##mode; \ |
| 7626 | } \ |
| 7627 | EXPORT_SYMBOL_GPL(preempt_model_##mode) |
| 7628 | |
| 7629 | PREEMPT_MODEL_ACCESSOR(none); |
| 7630 | PREEMPT_MODEL_ACCESSOR(voluntary); |
| 7631 | PREEMPT_MODEL_ACCESSOR(full); |
| 7632 | PREEMPT_MODEL_ACCESSOR(lazy); |
| 7633 | |
| 7634 | #else /* !CONFIG_PREEMPT_DYNAMIC: */ |
| 7635 | |
| 7636 | #define preempt_dynamic_mode -1 |
| 7637 | |
| 7638 | static inline void preempt_dynamic_init(void) { } |
| 7639 | |
| 7640 | #endif /* CONFIG_PREEMPT_DYNAMIC */ |
| 7641 | |
| 7642 | const char *preempt_modes[] = { |
| 7643 | "none" , "voluntary" , "full" , "lazy" , NULL, |
| 7644 | }; |
| 7645 | |
| 7646 | const char *preempt_model_str(void) |
| 7647 | { |
| 7648 | bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && |
| 7649 | (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || |
| 7650 | IS_ENABLED(CONFIG_PREEMPT_LAZY)); |
| 7651 | static char buf[128]; |
| 7652 | |
| 7653 | if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { |
| 7654 | struct seq_buf s; |
| 7655 | |
| 7656 | seq_buf_init(s: &s, buf, size: sizeof(buf)); |
| 7657 | seq_buf_puts(s: &s, str: "PREEMPT" ); |
| 7658 | |
| 7659 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 7660 | seq_buf_printf(s: &s, fmt: "%sRT%s" , |
| 7661 | brace ? "_{" : "_" , |
| 7662 | brace ? "," : "" ); |
| 7663 | |
| 7664 | if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { |
| 7665 | seq_buf_printf(s: &s, fmt: "(%s)%s" , |
| 7666 | preempt_dynamic_mode > 0 ? |
| 7667 | preempt_modes[preempt_dynamic_mode] : "undef" , |
| 7668 | brace ? "}" : "" ); |
| 7669 | return seq_buf_str(s: &s); |
| 7670 | } |
| 7671 | |
| 7672 | if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { |
| 7673 | seq_buf_printf(s: &s, fmt: "LAZY%s" , |
| 7674 | brace ? "}" : "" ); |
| 7675 | return seq_buf_str(s: &s); |
| 7676 | } |
| 7677 | |
| 7678 | return seq_buf_str(s: &s); |
| 7679 | } |
| 7680 | |
| 7681 | if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) |
| 7682 | return "VOLUNTARY" ; |
| 7683 | |
| 7684 | return "NONE" ; |
| 7685 | } |
| 7686 | |
| 7687 | int io_schedule_prepare(void) |
| 7688 | { |
| 7689 | int old_iowait = current->in_iowait; |
| 7690 | |
| 7691 | current->in_iowait = 1; |
| 7692 | blk_flush_plug(current->plug, async: true); |
| 7693 | return old_iowait; |
| 7694 | } |
| 7695 | |
| 7696 | void io_schedule_finish(int token) |
| 7697 | { |
| 7698 | current->in_iowait = token; |
| 7699 | } |
| 7700 | |
| 7701 | /* |
| 7702 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
| 7703 | * that process accounting knows that this is a task in IO wait state. |
| 7704 | */ |
| 7705 | long __sched io_schedule_timeout(long timeout) |
| 7706 | { |
| 7707 | int token; |
| 7708 | long ret; |
| 7709 | |
| 7710 | token = io_schedule_prepare(); |
| 7711 | ret = schedule_timeout(timeout); |
| 7712 | io_schedule_finish(token); |
| 7713 | |
| 7714 | return ret; |
| 7715 | } |
| 7716 | EXPORT_SYMBOL(io_schedule_timeout); |
| 7717 | |
| 7718 | void __sched io_schedule(void) |
| 7719 | { |
| 7720 | int token; |
| 7721 | |
| 7722 | token = io_schedule_prepare(); |
| 7723 | schedule(); |
| 7724 | io_schedule_finish(token); |
| 7725 | } |
| 7726 | EXPORT_SYMBOL(io_schedule); |
| 7727 | |
| 7728 | void sched_show_task(struct task_struct *p) |
| 7729 | { |
| 7730 | unsigned long free; |
| 7731 | int ppid; |
| 7732 | |
| 7733 | if (!try_get_task_stack(tsk: p)) |
| 7734 | return; |
| 7735 | |
| 7736 | pr_info("task:%-15.15s state:%c" , p->comm, task_state_to_char(p)); |
| 7737 | |
| 7738 | if (task_is_running(p)) |
| 7739 | pr_cont(" running task " ); |
| 7740 | free = stack_not_used(p); |
| 7741 | ppid = 0; |
| 7742 | rcu_read_lock(); |
| 7743 | if (pid_alive(p)) |
| 7744 | ppid = task_pid_nr(rcu_dereference(p->real_parent)); |
| 7745 | rcu_read_unlock(); |
| 7746 | pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n" , |
| 7747 | free, task_pid_nr(p), task_tgid_nr(p), |
| 7748 | ppid, p->flags, read_task_thread_flags(p)); |
| 7749 | |
| 7750 | print_worker_info(KERN_INFO, task: p); |
| 7751 | print_stop_info(KERN_INFO, task: p); |
| 7752 | print_scx_info(KERN_INFO, p); |
| 7753 | show_stack(task: p, NULL, KERN_INFO); |
| 7754 | put_task_stack(tsk: p); |
| 7755 | } |
| 7756 | EXPORT_SYMBOL_GPL(sched_show_task); |
| 7757 | |
| 7758 | static inline bool |
| 7759 | state_filter_match(unsigned long state_filter, struct task_struct *p) |
| 7760 | { |
| 7761 | unsigned int state = READ_ONCE(p->__state); |
| 7762 | |
| 7763 | /* no filter, everything matches */ |
| 7764 | if (!state_filter) |
| 7765 | return true; |
| 7766 | |
| 7767 | /* filter, but doesn't match */ |
| 7768 | if (!(state & state_filter)) |
| 7769 | return false; |
| 7770 | |
| 7771 | /* |
| 7772 | * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows |
| 7773 | * TASK_KILLABLE). |
| 7774 | */ |
| 7775 | if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) |
| 7776 | return false; |
| 7777 | |
| 7778 | return true; |
| 7779 | } |
| 7780 | |
| 7781 | |
| 7782 | void show_state_filter(unsigned int state_filter) |
| 7783 | { |
| 7784 | struct task_struct *g, *p; |
| 7785 | |
| 7786 | rcu_read_lock(); |
| 7787 | for_each_process_thread(g, p) { |
| 7788 | /* |
| 7789 | * reset the NMI-timeout, listing all files on a slow |
| 7790 | * console might take a lot of time: |
| 7791 | * Also, reset softlockup watchdogs on all CPUs, because |
| 7792 | * another CPU might be blocked waiting for us to process |
| 7793 | * an IPI. |
| 7794 | */ |
| 7795 | touch_nmi_watchdog(); |
| 7796 | touch_all_softlockup_watchdogs(); |
| 7797 | if (state_filter_match(state_filter, p)) |
| 7798 | sched_show_task(p); |
| 7799 | } |
| 7800 | |
| 7801 | if (!state_filter) |
| 7802 | sysrq_sched_debug_show(); |
| 7803 | |
| 7804 | rcu_read_unlock(); |
| 7805 | /* |
| 7806 | * Only show locks if all tasks are dumped: |
| 7807 | */ |
| 7808 | if (!state_filter) |
| 7809 | debug_show_all_locks(); |
| 7810 | } |
| 7811 | |
| 7812 | /** |
| 7813 | * init_idle - set up an idle thread for a given CPU |
| 7814 | * @idle: task in question |
| 7815 | * @cpu: CPU the idle task belongs to |
| 7816 | * |
| 7817 | * NOTE: this function does not set the idle thread's NEED_RESCHED |
| 7818 | * flag, to make booting more robust. |
| 7819 | */ |
| 7820 | void __init init_idle(struct task_struct *idle, int cpu) |
| 7821 | { |
| 7822 | #ifdef CONFIG_SMP |
| 7823 | struct affinity_context ac = (struct affinity_context) { |
| 7824 | .new_mask = cpumask_of(cpu), |
| 7825 | .flags = 0, |
| 7826 | }; |
| 7827 | #endif |
| 7828 | struct rq *rq = cpu_rq(cpu); |
| 7829 | unsigned long flags; |
| 7830 | |
| 7831 | raw_spin_lock_irqsave(&idle->pi_lock, flags); |
| 7832 | raw_spin_rq_lock(rq); |
| 7833 | |
| 7834 | idle->__state = TASK_RUNNING; |
| 7835 | idle->se.exec_start = sched_clock(); |
| 7836 | /* |
| 7837 | * PF_KTHREAD should already be set at this point; regardless, make it |
| 7838 | * look like a proper per-CPU kthread. |
| 7839 | */ |
| 7840 | idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; |
| 7841 | kthread_set_per_cpu(k: idle, cpu); |
| 7842 | |
| 7843 | #ifdef CONFIG_SMP |
| 7844 | /* |
| 7845 | * No validation and serialization required at boot time and for |
| 7846 | * setting up the idle tasks of not yet online CPUs. |
| 7847 | */ |
| 7848 | set_cpus_allowed_common(p: idle, ctx: &ac); |
| 7849 | #endif |
| 7850 | /* |
| 7851 | * We're having a chicken and egg problem, even though we are |
| 7852 | * holding rq->lock, the CPU isn't yet set to this CPU so the |
| 7853 | * lockdep check in task_group() will fail. |
| 7854 | * |
| 7855 | * Similar case to sched_fork(). / Alternatively we could |
| 7856 | * use task_rq_lock() here and obtain the other rq->lock. |
| 7857 | * |
| 7858 | * Silence PROVE_RCU |
| 7859 | */ |
| 7860 | rcu_read_lock(); |
| 7861 | __set_task_cpu(p: idle, cpu); |
| 7862 | rcu_read_unlock(); |
| 7863 | |
| 7864 | rq->idle = idle; |
| 7865 | rq_set_donor(rq, t: idle); |
| 7866 | rcu_assign_pointer(rq->curr, idle); |
| 7867 | idle->on_rq = TASK_ON_RQ_QUEUED; |
| 7868 | #ifdef CONFIG_SMP |
| 7869 | idle->on_cpu = 1; |
| 7870 | #endif |
| 7871 | raw_spin_rq_unlock(rq); |
| 7872 | raw_spin_unlock_irqrestore(&idle->pi_lock, flags); |
| 7873 | |
| 7874 | /* Set the preempt count _outside_ the spinlocks! */ |
| 7875 | init_idle_preempt_count(idle, cpu); |
| 7876 | |
| 7877 | /* |
| 7878 | * The idle tasks have their own, simple scheduling class: |
| 7879 | */ |
| 7880 | idle->sched_class = &idle_sched_class; |
| 7881 | ftrace_graph_init_idle_task(t: idle, cpu); |
| 7882 | vtime_init_idle(tsk: idle, cpu); |
| 7883 | #ifdef CONFIG_SMP |
| 7884 | sprintf(buf: idle->comm, fmt: "%s/%d" , INIT_TASK_COMM, cpu); |
| 7885 | #endif |
| 7886 | } |
| 7887 | |
| 7888 | #ifdef CONFIG_SMP |
| 7889 | |
| 7890 | int cpuset_cpumask_can_shrink(const struct cpumask *cur, |
| 7891 | const struct cpumask *trial) |
| 7892 | { |
| 7893 | int ret = 1; |
| 7894 | |
| 7895 | if (cpumask_empty(srcp: cur)) |
| 7896 | return ret; |
| 7897 | |
| 7898 | ret = dl_cpuset_cpumask_can_shrink(cur, trial); |
| 7899 | |
| 7900 | return ret; |
| 7901 | } |
| 7902 | |
| 7903 | int task_can_attach(struct task_struct *p) |
| 7904 | { |
| 7905 | int ret = 0; |
| 7906 | |
| 7907 | /* |
| 7908 | * Kthreads which disallow setaffinity shouldn't be moved |
| 7909 | * to a new cpuset; we don't want to change their CPU |
| 7910 | * affinity and isolating such threads by their set of |
| 7911 | * allowed nodes is unnecessary. Thus, cpusets are not |
| 7912 | * applicable for such threads. This prevents checking for |
| 7913 | * success of set_cpus_allowed_ptr() on all attached tasks |
| 7914 | * before cpus_mask may be changed. |
| 7915 | */ |
| 7916 | if (p->flags & PF_NO_SETAFFINITY) |
| 7917 | ret = -EINVAL; |
| 7918 | |
| 7919 | return ret; |
| 7920 | } |
| 7921 | |
| 7922 | bool sched_smp_initialized __read_mostly; |
| 7923 | |
| 7924 | #ifdef CONFIG_NUMA_BALANCING |
| 7925 | /* Migrate current task p to target_cpu */ |
| 7926 | int migrate_task_to(struct task_struct *p, int target_cpu) |
| 7927 | { |
| 7928 | struct migration_arg arg = { p, target_cpu }; |
| 7929 | int curr_cpu = task_cpu(p); |
| 7930 | |
| 7931 | if (curr_cpu == target_cpu) |
| 7932 | return 0; |
| 7933 | |
| 7934 | if (!cpumask_test_cpu(cpu: target_cpu, cpumask: p->cpus_ptr)) |
| 7935 | return -EINVAL; |
| 7936 | |
| 7937 | __schedstat_inc(p->stats.numa_task_migrated); |
| 7938 | count_vm_numa_event(NUMA_TASK_MIGRATE); |
| 7939 | count_memcg_event_mm(mm: p->mm, idx: NUMA_TASK_MIGRATE); |
| 7940 | trace_sched_move_numa(tsk: p, src_cpu: curr_cpu, dst_cpu: target_cpu); |
| 7941 | return stop_one_cpu(cpu: curr_cpu, fn: migration_cpu_stop, arg: &arg); |
| 7942 | } |
| 7943 | |
| 7944 | /* |
| 7945 | * Requeue a task on a given node and accurately track the number of NUMA |
| 7946 | * tasks on the runqueues |
| 7947 | */ |
| 7948 | void sched_setnuma(struct task_struct *p, int nid) |
| 7949 | { |
| 7950 | bool queued, running; |
| 7951 | struct rq_flags rf; |
| 7952 | struct rq *rq; |
| 7953 | |
| 7954 | rq = task_rq_lock(p, rf: &rf); |
| 7955 | queued = task_on_rq_queued(p); |
| 7956 | running = task_current_donor(rq, p); |
| 7957 | |
| 7958 | if (queued) |
| 7959 | dequeue_task(rq, p, DEQUEUE_SAVE); |
| 7960 | if (running) |
| 7961 | put_prev_task(rq, prev: p); |
| 7962 | |
| 7963 | p->numa_preferred_nid = nid; |
| 7964 | |
| 7965 | if (queued) |
| 7966 | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| 7967 | if (running) |
| 7968 | set_next_task(rq, next: p); |
| 7969 | task_rq_unlock(rq, p, rf: &rf); |
| 7970 | } |
| 7971 | #endif /* CONFIG_NUMA_BALANCING */ |
| 7972 | |
| 7973 | #ifdef CONFIG_HOTPLUG_CPU |
| 7974 | /* |
| 7975 | * Invoked on the outgoing CPU in context of the CPU hotplug thread |
| 7976 | * after ensuring that there are no user space tasks left on the CPU. |
| 7977 | * |
| 7978 | * If there is a lazy mm in use on the hotplug thread, drop it and |
| 7979 | * switch to init_mm. |
| 7980 | * |
| 7981 | * The reference count on init_mm is dropped in finish_cpu(). |
| 7982 | */ |
| 7983 | static void sched_force_init_mm(void) |
| 7984 | { |
| 7985 | struct mm_struct *mm = current->active_mm; |
| 7986 | |
| 7987 | if (mm != &init_mm) { |
| 7988 | mmgrab_lazy_tlb(mm: &init_mm); |
| 7989 | local_irq_disable(); |
| 7990 | current->active_mm = &init_mm; |
| 7991 | switch_mm_irqs_off(prev: mm, next: &init_mm, current); |
| 7992 | local_irq_enable(); |
| 7993 | finish_arch_post_lock_switch(); |
| 7994 | mmdrop_lazy_tlb(mm); |
| 7995 | } |
| 7996 | |
| 7997 | /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ |
| 7998 | } |
| 7999 | |
| 8000 | static int __balance_push_cpu_stop(void *arg) |
| 8001 | { |
| 8002 | struct task_struct *p = arg; |
| 8003 | struct rq *rq = this_rq(); |
| 8004 | struct rq_flags rf; |
| 8005 | int cpu; |
| 8006 | |
| 8007 | raw_spin_lock_irq(&p->pi_lock); |
| 8008 | rq_lock(rq, rf: &rf); |
| 8009 | |
| 8010 | update_rq_clock(rq); |
| 8011 | |
| 8012 | if (task_rq(p) == rq && task_on_rq_queued(p)) { |
| 8013 | cpu = select_fallback_rq(cpu: rq->cpu, p); |
| 8014 | rq = __migrate_task(rq, rf: &rf, p, dest_cpu: cpu); |
| 8015 | } |
| 8016 | |
| 8017 | rq_unlock(rq, rf: &rf); |
| 8018 | raw_spin_unlock_irq(&p->pi_lock); |
| 8019 | |
| 8020 | put_task_struct(t: p); |
| 8021 | |
| 8022 | return 0; |
| 8023 | } |
| 8024 | |
| 8025 | static DEFINE_PER_CPU(struct cpu_stop_work, push_work); |
| 8026 | |
| 8027 | /* |
| 8028 | * Ensure we only run per-cpu kthreads once the CPU goes !active. |
| 8029 | * |
| 8030 | * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only |
| 8031 | * effective when the hotplug motion is down. |
| 8032 | */ |
| 8033 | static void balance_push(struct rq *rq) |
| 8034 | { |
| 8035 | struct task_struct *push_task = rq->curr; |
| 8036 | |
| 8037 | lockdep_assert_rq_held(rq); |
| 8038 | |
| 8039 | /* |
| 8040 | * Ensure the thing is persistent until balance_push_set(.on = false); |
| 8041 | */ |
| 8042 | rq->balance_callback = &balance_push_callback; |
| 8043 | |
| 8044 | /* |
| 8045 | * Only active while going offline and when invoked on the outgoing |
| 8046 | * CPU. |
| 8047 | */ |
| 8048 | if (!cpu_dying(cpu: rq->cpu) || rq != this_rq()) |
| 8049 | return; |
| 8050 | |
| 8051 | /* |
| 8052 | * Both the cpu-hotplug and stop task are in this case and are |
| 8053 | * required to complete the hotplug process. |
| 8054 | */ |
| 8055 | if (kthread_is_per_cpu(k: push_task) || |
| 8056 | is_migration_disabled(p: push_task)) { |
| 8057 | |
| 8058 | /* |
| 8059 | * If this is the idle task on the outgoing CPU try to wake |
| 8060 | * up the hotplug control thread which might wait for the |
| 8061 | * last task to vanish. The rcuwait_active() check is |
| 8062 | * accurate here because the waiter is pinned on this CPU |
| 8063 | * and can't obviously be running in parallel. |
| 8064 | * |
| 8065 | * On RT kernels this also has to check whether there are |
| 8066 | * pinned and scheduled out tasks on the runqueue. They |
| 8067 | * need to leave the migrate disabled section first. |
| 8068 | */ |
| 8069 | if (!rq->nr_running && !rq_has_pinned_tasks(rq) && |
| 8070 | rcuwait_active(w: &rq->hotplug_wait)) { |
| 8071 | raw_spin_rq_unlock(rq); |
| 8072 | rcuwait_wake_up(w: &rq->hotplug_wait); |
| 8073 | raw_spin_rq_lock(rq); |
| 8074 | } |
| 8075 | return; |
| 8076 | } |
| 8077 | |
| 8078 | get_task_struct(t: push_task); |
| 8079 | /* |
| 8080 | * Temporarily drop rq->lock such that we can wake-up the stop task. |
| 8081 | * Both preemption and IRQs are still disabled. |
| 8082 | */ |
| 8083 | preempt_disable(); |
| 8084 | raw_spin_rq_unlock(rq); |
| 8085 | stop_one_cpu_nowait(cpu: rq->cpu, fn: __balance_push_cpu_stop, arg: push_task, |
| 8086 | this_cpu_ptr(&push_work)); |
| 8087 | preempt_enable(); |
| 8088 | /* |
| 8089 | * At this point need_resched() is true and we'll take the loop in |
| 8090 | * schedule(). The next pick is obviously going to be the stop task |
| 8091 | * which kthread_is_per_cpu() and will push this task away. |
| 8092 | */ |
| 8093 | raw_spin_rq_lock(rq); |
| 8094 | } |
| 8095 | |
| 8096 | static void balance_push_set(int cpu, bool on) |
| 8097 | { |
| 8098 | struct rq *rq = cpu_rq(cpu); |
| 8099 | struct rq_flags rf; |
| 8100 | |
| 8101 | rq_lock_irqsave(rq, rf: &rf); |
| 8102 | if (on) { |
| 8103 | WARN_ON_ONCE(rq->balance_callback); |
| 8104 | rq->balance_callback = &balance_push_callback; |
| 8105 | } else if (rq->balance_callback == &balance_push_callback) { |
| 8106 | rq->balance_callback = NULL; |
| 8107 | } |
| 8108 | rq_unlock_irqrestore(rq, rf: &rf); |
| 8109 | } |
| 8110 | |
| 8111 | /* |
| 8112 | * Invoked from a CPUs hotplug control thread after the CPU has been marked |
| 8113 | * inactive. All tasks which are not per CPU kernel threads are either |
| 8114 | * pushed off this CPU now via balance_push() or placed on a different CPU |
| 8115 | * during wakeup. Wait until the CPU is quiescent. |
| 8116 | */ |
| 8117 | static void balance_hotplug_wait(void) |
| 8118 | { |
| 8119 | struct rq *rq = this_rq(); |
| 8120 | |
| 8121 | rcuwait_wait_event(&rq->hotplug_wait, |
| 8122 | rq->nr_running == 1 && !rq_has_pinned_tasks(rq), |
| 8123 | TASK_UNINTERRUPTIBLE); |
| 8124 | } |
| 8125 | |
| 8126 | #else |
| 8127 | |
| 8128 | static inline void balance_push(struct rq *rq) |
| 8129 | { |
| 8130 | } |
| 8131 | |
| 8132 | static inline void balance_push_set(int cpu, bool on) |
| 8133 | { |
| 8134 | } |
| 8135 | |
| 8136 | static inline void balance_hotplug_wait(void) |
| 8137 | { |
| 8138 | } |
| 8139 | |
| 8140 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 8141 | |
| 8142 | void set_rq_online(struct rq *rq) |
| 8143 | { |
| 8144 | if (!rq->online) { |
| 8145 | const struct sched_class *class; |
| 8146 | |
| 8147 | cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->online); |
| 8148 | rq->online = 1; |
| 8149 | |
| 8150 | for_each_class(class) { |
| 8151 | if (class->rq_online) |
| 8152 | class->rq_online(rq); |
| 8153 | } |
| 8154 | } |
| 8155 | } |
| 8156 | |
| 8157 | void set_rq_offline(struct rq *rq) |
| 8158 | { |
| 8159 | if (rq->online) { |
| 8160 | const struct sched_class *class; |
| 8161 | |
| 8162 | update_rq_clock(rq); |
| 8163 | for_each_class(class) { |
| 8164 | if (class->rq_offline) |
| 8165 | class->rq_offline(rq); |
| 8166 | } |
| 8167 | |
| 8168 | cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->online); |
| 8169 | rq->online = 0; |
| 8170 | } |
| 8171 | } |
| 8172 | |
| 8173 | static inline void sched_set_rq_online(struct rq *rq, int cpu) |
| 8174 | { |
| 8175 | struct rq_flags rf; |
| 8176 | |
| 8177 | rq_lock_irqsave(rq, rf: &rf); |
| 8178 | if (rq->rd) { |
| 8179 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| 8180 | set_rq_online(rq); |
| 8181 | } |
| 8182 | rq_unlock_irqrestore(rq, rf: &rf); |
| 8183 | } |
| 8184 | |
| 8185 | static inline void sched_set_rq_offline(struct rq *rq, int cpu) |
| 8186 | { |
| 8187 | struct rq_flags rf; |
| 8188 | |
| 8189 | rq_lock_irqsave(rq, rf: &rf); |
| 8190 | if (rq->rd) { |
| 8191 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| 8192 | set_rq_offline(rq); |
| 8193 | } |
| 8194 | rq_unlock_irqrestore(rq, rf: &rf); |
| 8195 | } |
| 8196 | |
| 8197 | /* |
| 8198 | * used to mark begin/end of suspend/resume: |
| 8199 | */ |
| 8200 | static int num_cpus_frozen; |
| 8201 | |
| 8202 | /* |
| 8203 | * Update cpusets according to cpu_active mask. If cpusets are |
| 8204 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper |
| 8205 | * around partition_sched_domains(). |
| 8206 | * |
| 8207 | * If we come here as part of a suspend/resume, don't touch cpusets because we |
| 8208 | * want to restore it back to its original state upon resume anyway. |
| 8209 | */ |
| 8210 | static void cpuset_cpu_active(void) |
| 8211 | { |
| 8212 | if (cpuhp_tasks_frozen) { |
| 8213 | /* |
| 8214 | * num_cpus_frozen tracks how many CPUs are involved in suspend |
| 8215 | * resume sequence. As long as this is not the last online |
| 8216 | * operation in the resume sequence, just build a single sched |
| 8217 | * domain, ignoring cpusets. |
| 8218 | */ |
| 8219 | cpuset_reset_sched_domains(); |
| 8220 | if (--num_cpus_frozen) |
| 8221 | return; |
| 8222 | /* |
| 8223 | * This is the last CPU online operation. So fall through and |
| 8224 | * restore the original sched domains by considering the |
| 8225 | * cpuset configurations. |
| 8226 | */ |
| 8227 | cpuset_force_rebuild(); |
| 8228 | } |
| 8229 | cpuset_update_active_cpus(); |
| 8230 | } |
| 8231 | |
| 8232 | static void cpuset_cpu_inactive(unsigned int cpu) |
| 8233 | { |
| 8234 | if (!cpuhp_tasks_frozen) { |
| 8235 | cpuset_update_active_cpus(); |
| 8236 | } else { |
| 8237 | num_cpus_frozen++; |
| 8238 | cpuset_reset_sched_domains(); |
| 8239 | } |
| 8240 | } |
| 8241 | |
| 8242 | static inline void sched_smt_present_inc(int cpu) |
| 8243 | { |
| 8244 | #ifdef CONFIG_SCHED_SMT |
| 8245 | if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2) |
| 8246 | static_branch_inc_cpuslocked(&sched_smt_present); |
| 8247 | #endif |
| 8248 | } |
| 8249 | |
| 8250 | static inline void sched_smt_present_dec(int cpu) |
| 8251 | { |
| 8252 | #ifdef CONFIG_SCHED_SMT |
| 8253 | if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2) |
| 8254 | static_branch_dec_cpuslocked(&sched_smt_present); |
| 8255 | #endif |
| 8256 | } |
| 8257 | |
| 8258 | int sched_cpu_activate(unsigned int cpu) |
| 8259 | { |
| 8260 | struct rq *rq = cpu_rq(cpu); |
| 8261 | |
| 8262 | /* |
| 8263 | * Clear the balance_push callback and prepare to schedule |
| 8264 | * regular tasks. |
| 8265 | */ |
| 8266 | balance_push_set(cpu, on: false); |
| 8267 | |
| 8268 | /* |
| 8269 | * When going up, increment the number of cores with SMT present. |
| 8270 | */ |
| 8271 | sched_smt_present_inc(cpu); |
| 8272 | set_cpu_active(cpu, true); |
| 8273 | |
| 8274 | if (sched_smp_initialized) { |
| 8275 | sched_update_numa(cpu, online: true); |
| 8276 | sched_domains_numa_masks_set(cpu); |
| 8277 | cpuset_cpu_active(); |
| 8278 | } |
| 8279 | |
| 8280 | scx_rq_activate(rq); |
| 8281 | |
| 8282 | /* |
| 8283 | * Put the rq online, if not already. This happens: |
| 8284 | * |
| 8285 | * 1) In the early boot process, because we build the real domains |
| 8286 | * after all CPUs have been brought up. |
| 8287 | * |
| 8288 | * 2) At runtime, if cpuset_cpu_active() fails to rebuild the |
| 8289 | * domains. |
| 8290 | */ |
| 8291 | sched_set_rq_online(rq, cpu); |
| 8292 | |
| 8293 | return 0; |
| 8294 | } |
| 8295 | |
| 8296 | int sched_cpu_deactivate(unsigned int cpu) |
| 8297 | { |
| 8298 | struct rq *rq = cpu_rq(cpu); |
| 8299 | int ret; |
| 8300 | |
| 8301 | ret = dl_bw_deactivate(cpu); |
| 8302 | |
| 8303 | if (ret) |
| 8304 | return ret; |
| 8305 | |
| 8306 | /* |
| 8307 | * Remove CPU from nohz.idle_cpus_mask to prevent participating in |
| 8308 | * load balancing when not active |
| 8309 | */ |
| 8310 | nohz_balance_exit_idle(rq); |
| 8311 | |
| 8312 | set_cpu_active(cpu, false); |
| 8313 | |
| 8314 | /* |
| 8315 | * From this point forward, this CPU will refuse to run any task that |
| 8316 | * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively |
| 8317 | * push those tasks away until this gets cleared, see |
| 8318 | * sched_cpu_dying(). |
| 8319 | */ |
| 8320 | balance_push_set(cpu, on: true); |
| 8321 | |
| 8322 | /* |
| 8323 | * We've cleared cpu_active_mask / set balance_push, wait for all |
| 8324 | * preempt-disabled and RCU users of this state to go away such that |
| 8325 | * all new such users will observe it. |
| 8326 | * |
| 8327 | * Specifically, we rely on ttwu to no longer target this CPU, see |
| 8328 | * ttwu_queue_cond() and is_cpu_allowed(). |
| 8329 | * |
| 8330 | * Do sync before park smpboot threads to take care the RCU boost case. |
| 8331 | */ |
| 8332 | synchronize_rcu(); |
| 8333 | |
| 8334 | sched_set_rq_offline(rq, cpu); |
| 8335 | |
| 8336 | scx_rq_deactivate(rq); |
| 8337 | |
| 8338 | /* |
| 8339 | * When going down, decrement the number of cores with SMT present. |
| 8340 | */ |
| 8341 | sched_smt_present_dec(cpu); |
| 8342 | |
| 8343 | #ifdef CONFIG_SCHED_SMT |
| 8344 | sched_core_cpu_deactivate(cpu); |
| 8345 | #endif |
| 8346 | |
| 8347 | if (!sched_smp_initialized) |
| 8348 | return 0; |
| 8349 | |
| 8350 | sched_update_numa(cpu, online: false); |
| 8351 | cpuset_cpu_inactive(cpu); |
| 8352 | sched_domains_numa_masks_clear(cpu); |
| 8353 | return 0; |
| 8354 | } |
| 8355 | |
| 8356 | static void sched_rq_cpu_starting(unsigned int cpu) |
| 8357 | { |
| 8358 | struct rq *rq = cpu_rq(cpu); |
| 8359 | |
| 8360 | rq->calc_load_update = calc_load_update; |
| 8361 | update_max_interval(); |
| 8362 | } |
| 8363 | |
| 8364 | int sched_cpu_starting(unsigned int cpu) |
| 8365 | { |
| 8366 | sched_core_cpu_starting(cpu); |
| 8367 | sched_rq_cpu_starting(cpu); |
| 8368 | sched_tick_start(cpu); |
| 8369 | return 0; |
| 8370 | } |
| 8371 | |
| 8372 | #ifdef CONFIG_HOTPLUG_CPU |
| 8373 | |
| 8374 | /* |
| 8375 | * Invoked immediately before the stopper thread is invoked to bring the |
| 8376 | * CPU down completely. At this point all per CPU kthreads except the |
| 8377 | * hotplug thread (current) and the stopper thread (inactive) have been |
| 8378 | * either parked or have been unbound from the outgoing CPU. Ensure that |
| 8379 | * any of those which might be on the way out are gone. |
| 8380 | * |
| 8381 | * If after this point a bound task is being woken on this CPU then the |
| 8382 | * responsible hotplug callback has failed to do it's job. |
| 8383 | * sched_cpu_dying() will catch it with the appropriate fireworks. |
| 8384 | */ |
| 8385 | int sched_cpu_wait_empty(unsigned int cpu) |
| 8386 | { |
| 8387 | balance_hotplug_wait(); |
| 8388 | sched_force_init_mm(); |
| 8389 | return 0; |
| 8390 | } |
| 8391 | |
| 8392 | /* |
| 8393 | * Since this CPU is going 'away' for a while, fold any nr_active delta we |
| 8394 | * might have. Called from the CPU stopper task after ensuring that the |
| 8395 | * stopper is the last running task on the CPU, so nr_active count is |
| 8396 | * stable. We need to take the tear-down thread which is calling this into |
| 8397 | * account, so we hand in adjust = 1 to the load calculation. |
| 8398 | * |
| 8399 | * Also see the comment "Global load-average calculations". |
| 8400 | */ |
| 8401 | static void calc_load_migrate(struct rq *rq) |
| 8402 | { |
| 8403 | long delta = calc_load_fold_active(this_rq: rq, adjust: 1); |
| 8404 | |
| 8405 | if (delta) |
| 8406 | atomic_long_add(i: delta, v: &calc_load_tasks); |
| 8407 | } |
| 8408 | |
| 8409 | static void dump_rq_tasks(struct rq *rq, const char *loglvl) |
| 8410 | { |
| 8411 | struct task_struct *g, *p; |
| 8412 | int cpu = cpu_of(rq); |
| 8413 | |
| 8414 | lockdep_assert_rq_held(rq); |
| 8415 | |
| 8416 | printk("%sCPU%d enqueued tasks (%u total):\n" , loglvl, cpu, rq->nr_running); |
| 8417 | for_each_process_thread(g, p) { |
| 8418 | if (task_cpu(p) != cpu) |
| 8419 | continue; |
| 8420 | |
| 8421 | if (!task_on_rq_queued(p)) |
| 8422 | continue; |
| 8423 | |
| 8424 | printk("%s\tpid: %d, name: %s\n" , loglvl, p->pid, p->comm); |
| 8425 | } |
| 8426 | } |
| 8427 | |
| 8428 | int sched_cpu_dying(unsigned int cpu) |
| 8429 | { |
| 8430 | struct rq *rq = cpu_rq(cpu); |
| 8431 | struct rq_flags rf; |
| 8432 | |
| 8433 | /* Handle pending wakeups and then migrate everything off */ |
| 8434 | sched_tick_stop(cpu); |
| 8435 | |
| 8436 | rq_lock_irqsave(rq, rf: &rf); |
| 8437 | if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { |
| 8438 | WARN(true, "Dying CPU not properly vacated!" ); |
| 8439 | dump_rq_tasks(rq, KERN_WARNING); |
| 8440 | } |
| 8441 | rq_unlock_irqrestore(rq, rf: &rf); |
| 8442 | |
| 8443 | calc_load_migrate(rq); |
| 8444 | update_max_interval(); |
| 8445 | hrtick_clear(rq); |
| 8446 | sched_core_cpu_dying(cpu); |
| 8447 | return 0; |
| 8448 | } |
| 8449 | #endif |
| 8450 | |
| 8451 | void __init sched_init_smp(void) |
| 8452 | { |
| 8453 | sched_init_numa(NUMA_NO_NODE); |
| 8454 | |
| 8455 | /* |
| 8456 | * There's no userspace yet to cause hotplug operations; hence all the |
| 8457 | * CPU masks are stable and all blatant races in the below code cannot |
| 8458 | * happen. |
| 8459 | */ |
| 8460 | sched_domains_mutex_lock(); |
| 8461 | sched_init_domains(cpu_active_mask); |
| 8462 | sched_domains_mutex_unlock(); |
| 8463 | |
| 8464 | /* Move init over to a non-isolated CPU */ |
| 8465 | if (set_cpus_allowed_ptr(current, housekeeping_cpumask(type: HK_TYPE_DOMAIN)) < 0) |
| 8466 | BUG(); |
| 8467 | current->flags &= ~PF_NO_SETAFFINITY; |
| 8468 | sched_init_granularity(); |
| 8469 | |
| 8470 | init_sched_rt_class(); |
| 8471 | init_sched_dl_class(); |
| 8472 | |
| 8473 | sched_smp_initialized = true; |
| 8474 | } |
| 8475 | |
| 8476 | static int __init migration_init(void) |
| 8477 | { |
| 8478 | sched_cpu_starting(smp_processor_id()); |
| 8479 | return 0; |
| 8480 | } |
| 8481 | early_initcall(migration_init); |
| 8482 | |
| 8483 | #else |
| 8484 | void __init sched_init_smp(void) |
| 8485 | { |
| 8486 | sched_init_granularity(); |
| 8487 | } |
| 8488 | #endif /* CONFIG_SMP */ |
| 8489 | |
| 8490 | int in_sched_functions(unsigned long addr) |
| 8491 | { |
| 8492 | return in_lock_functions(addr) || |
| 8493 | (addr >= (unsigned long)__sched_text_start |
| 8494 | && addr < (unsigned long)__sched_text_end); |
| 8495 | } |
| 8496 | |
| 8497 | #ifdef CONFIG_CGROUP_SCHED |
| 8498 | /* |
| 8499 | * Default task group. |
| 8500 | * Every task in system belongs to this group at bootup. |
| 8501 | */ |
| 8502 | struct task_group root_task_group; |
| 8503 | LIST_HEAD(task_groups); |
| 8504 | |
| 8505 | /* Cacheline aligned slab cache for task_group */ |
| 8506 | static struct kmem_cache *task_group_cache __ro_after_init; |
| 8507 | #endif |
| 8508 | |
| 8509 | void __init sched_init(void) |
| 8510 | { |
| 8511 | unsigned long ptr = 0; |
| 8512 | int i; |
| 8513 | |
| 8514 | /* Make sure the linker didn't screw up */ |
| 8515 | #ifdef CONFIG_SMP |
| 8516 | BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); |
| 8517 | #endif |
| 8518 | BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); |
| 8519 | BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); |
| 8520 | BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); |
| 8521 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 8522 | BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); |
| 8523 | BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); |
| 8524 | #endif |
| 8525 | |
| 8526 | wait_bit_init(); |
| 8527 | |
| 8528 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8529 | ptr += 2 * nr_cpu_ids * sizeof(void **); |
| 8530 | #endif |
| 8531 | #ifdef CONFIG_RT_GROUP_SCHED |
| 8532 | ptr += 2 * nr_cpu_ids * sizeof(void **); |
| 8533 | #endif |
| 8534 | if (ptr) { |
| 8535 | ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); |
| 8536 | |
| 8537 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8538 | root_task_group.se = (struct sched_entity **)ptr; |
| 8539 | ptr += nr_cpu_ids * sizeof(void **); |
| 8540 | |
| 8541 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
| 8542 | ptr += nr_cpu_ids * sizeof(void **); |
| 8543 | |
| 8544 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; |
| 8545 | init_cfs_bandwidth(cfs_b: &root_task_group.cfs_bandwidth, NULL); |
| 8546 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 8547 | #ifdef CONFIG_EXT_GROUP_SCHED |
| 8548 | root_task_group.scx_weight = CGROUP_WEIGHT_DFL; |
| 8549 | #endif /* CONFIG_EXT_GROUP_SCHED */ |
| 8550 | #ifdef CONFIG_RT_GROUP_SCHED |
| 8551 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
| 8552 | ptr += nr_cpu_ids * sizeof(void **); |
| 8553 | |
| 8554 | root_task_group.rt_rq = (struct rt_rq **)ptr; |
| 8555 | ptr += nr_cpu_ids * sizeof(void **); |
| 8556 | |
| 8557 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 8558 | } |
| 8559 | |
| 8560 | #ifdef CONFIG_SMP |
| 8561 | init_defrootdomain(); |
| 8562 | #endif |
| 8563 | |
| 8564 | #ifdef CONFIG_RT_GROUP_SCHED |
| 8565 | init_rt_bandwidth(rt_b: &root_task_group.rt_bandwidth, |
| 8566 | period: global_rt_period(), runtime: global_rt_runtime()); |
| 8567 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 8568 | |
| 8569 | #ifdef CONFIG_CGROUP_SCHED |
| 8570 | task_group_cache = KMEM_CACHE(task_group, 0); |
| 8571 | |
| 8572 | list_add(new: &root_task_group.list, head: &task_groups); |
| 8573 | INIT_LIST_HEAD(list: &root_task_group.children); |
| 8574 | INIT_LIST_HEAD(list: &root_task_group.siblings); |
| 8575 | autogroup_init(init_task: &init_task); |
| 8576 | #endif /* CONFIG_CGROUP_SCHED */ |
| 8577 | |
| 8578 | for_each_possible_cpu(i) { |
| 8579 | struct rq *rq; |
| 8580 | |
| 8581 | rq = cpu_rq(i); |
| 8582 | raw_spin_lock_init(&rq->__lock); |
| 8583 | rq->nr_running = 0; |
| 8584 | rq->calc_load_active = 0; |
| 8585 | rq->calc_load_update = jiffies + LOAD_FREQ; |
| 8586 | init_cfs_rq(cfs_rq: &rq->cfs); |
| 8587 | init_rt_rq(rt_rq: &rq->rt); |
| 8588 | init_dl_rq(dl_rq: &rq->dl); |
| 8589 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8590 | INIT_LIST_HEAD(list: &rq->leaf_cfs_rq_list); |
| 8591 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; |
| 8592 | /* |
| 8593 | * How much CPU bandwidth does root_task_group get? |
| 8594 | * |
| 8595 | * In case of task-groups formed through the cgroup filesystem, it |
| 8596 | * gets 100% of the CPU resources in the system. This overall |
| 8597 | * system CPU resource is divided among the tasks of |
| 8598 | * root_task_group and its child task-groups in a fair manner, |
| 8599 | * based on each entity's (task or task-group's) weight |
| 8600 | * (se->load.weight). |
| 8601 | * |
| 8602 | * In other words, if root_task_group has 10 tasks of weight |
| 8603 | * 1024) and two child groups A0 and A1 (of weight 1024 each), |
| 8604 | * then A0's share of the CPU resource is: |
| 8605 | * |
| 8606 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
| 8607 | * |
| 8608 | * We achieve this by letting root_task_group's tasks sit |
| 8609 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). |
| 8610 | */ |
| 8611 | init_tg_cfs_entry(tg: &root_task_group, cfs_rq: &rq->cfs, NULL, cpu: i, NULL); |
| 8612 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 8613 | |
| 8614 | #ifdef CONFIG_RT_GROUP_SCHED |
| 8615 | /* |
| 8616 | * This is required for init cpu because rt.c:__enable_runtime() |
| 8617 | * starts working after scheduler_running, which is not the case |
| 8618 | * yet. |
| 8619 | */ |
| 8620 | rq->rt.rt_runtime = global_rt_runtime(); |
| 8621 | init_tg_rt_entry(tg: &root_task_group, rt_rq: &rq->rt, NULL, cpu: i, NULL); |
| 8622 | #endif |
| 8623 | #ifdef CONFIG_SMP |
| 8624 | rq->sd = NULL; |
| 8625 | rq->rd = NULL; |
| 8626 | rq->cpu_capacity = SCHED_CAPACITY_SCALE; |
| 8627 | rq->balance_callback = &balance_push_callback; |
| 8628 | rq->active_balance = 0; |
| 8629 | rq->next_balance = jiffies; |
| 8630 | rq->push_cpu = 0; |
| 8631 | rq->cpu = i; |
| 8632 | rq->online = 0; |
| 8633 | rq->idle_stamp = 0; |
| 8634 | rq->avg_idle = 2*sysctl_sched_migration_cost; |
| 8635 | rq->max_idle_balance_cost = sysctl_sched_migration_cost; |
| 8636 | |
| 8637 | INIT_LIST_HEAD(list: &rq->cfs_tasks); |
| 8638 | |
| 8639 | rq_attach_root(rq, rd: &def_root_domain); |
| 8640 | #ifdef CONFIG_NO_HZ_COMMON |
| 8641 | rq->last_blocked_load_update_tick = jiffies; |
| 8642 | atomic_set(v: &rq->nohz_flags, i: 0); |
| 8643 | |
| 8644 | INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); |
| 8645 | #endif |
| 8646 | #ifdef CONFIG_HOTPLUG_CPU |
| 8647 | rcuwait_init(w: &rq->hotplug_wait); |
| 8648 | #endif |
| 8649 | #endif /* CONFIG_SMP */ |
| 8650 | hrtick_rq_init(rq); |
| 8651 | atomic_set(v: &rq->nr_iowait, i: 0); |
| 8652 | fair_server_init(rq); |
| 8653 | |
| 8654 | #ifdef CONFIG_SCHED_CORE |
| 8655 | rq->core = rq; |
| 8656 | rq->core_pick = NULL; |
| 8657 | rq->core_dl_server = NULL; |
| 8658 | rq->core_enabled = 0; |
| 8659 | rq->core_tree = RB_ROOT; |
| 8660 | rq->core_forceidle_count = 0; |
| 8661 | rq->core_forceidle_occupation = 0; |
| 8662 | rq->core_forceidle_start = 0; |
| 8663 | |
| 8664 | rq->core_cookie = 0UL; |
| 8665 | #endif |
| 8666 | zalloc_cpumask_var_node(mask: &rq->scratch_mask, GFP_KERNEL, cpu_to_node(cpu: i)); |
| 8667 | } |
| 8668 | |
| 8669 | set_load_weight(p: &init_task, update_load: false); |
| 8670 | init_task.se.slice = sysctl_sched_base_slice, |
| 8671 | |
| 8672 | /* |
| 8673 | * The boot idle thread does lazy MMU switching as well: |
| 8674 | */ |
| 8675 | mmgrab_lazy_tlb(mm: &init_mm); |
| 8676 | enter_lazy_tlb(mm: &init_mm, current); |
| 8677 | |
| 8678 | /* |
| 8679 | * The idle task doesn't need the kthread struct to function, but it |
| 8680 | * is dressed up as a per-CPU kthread and thus needs to play the part |
| 8681 | * if we want to avoid special-casing it in code that deals with per-CPU |
| 8682 | * kthreads. |
| 8683 | */ |
| 8684 | WARN_ON(!set_kthread_struct(current)); |
| 8685 | |
| 8686 | /* |
| 8687 | * Make us the idle thread. Technically, schedule() should not be |
| 8688 | * called from this thread, however somewhere below it might be, |
| 8689 | * but because we are the idle thread, we just pick up running again |
| 8690 | * when this runqueue becomes "idle". |
| 8691 | */ |
| 8692 | __sched_fork(clone_flags: 0, current); |
| 8693 | init_idle(current, smp_processor_id()); |
| 8694 | |
| 8695 | calc_load_update = jiffies + LOAD_FREQ; |
| 8696 | |
| 8697 | #ifdef CONFIG_SMP |
| 8698 | idle_thread_set_boot_cpu(); |
| 8699 | balance_push_set(smp_processor_id(), on: false); |
| 8700 | #endif |
| 8701 | init_sched_fair_class(); |
| 8702 | init_sched_ext_class(); |
| 8703 | |
| 8704 | psi_init(); |
| 8705 | |
| 8706 | init_uclamp(); |
| 8707 | |
| 8708 | preempt_dynamic_init(); |
| 8709 | |
| 8710 | scheduler_running = 1; |
| 8711 | } |
| 8712 | |
| 8713 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 8714 | |
| 8715 | void __might_sleep(const char *file, int line) |
| 8716 | { |
| 8717 | unsigned int state = get_current_state(); |
| 8718 | /* |
| 8719 | * Blocking primitives will set (and therefore destroy) current->state, |
| 8720 | * since we will exit with TASK_RUNNING make sure we enter with it, |
| 8721 | * otherwise we will destroy state. |
| 8722 | */ |
| 8723 | WARN_ONCE(state != TASK_RUNNING && current->task_state_change, |
| 8724 | "do not call blocking ops when !TASK_RUNNING; " |
| 8725 | "state=%x set at [<%p>] %pS\n" , state, |
| 8726 | (void *)current->task_state_change, |
| 8727 | (void *)current->task_state_change); |
| 8728 | |
| 8729 | __might_resched(file, line, offsets: 0); |
| 8730 | } |
| 8731 | EXPORT_SYMBOL(__might_sleep); |
| 8732 | |
| 8733 | static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) |
| 8734 | { |
| 8735 | if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) |
| 8736 | return; |
| 8737 | |
| 8738 | if (preempt_count() == preempt_offset) |
| 8739 | return; |
| 8740 | |
| 8741 | pr_err("Preemption disabled at:" ); |
| 8742 | print_ip_sym(KERN_ERR, ip); |
| 8743 | } |
| 8744 | |
| 8745 | static inline bool resched_offsets_ok(unsigned int offsets) |
| 8746 | { |
| 8747 | unsigned int nested = preempt_count(); |
| 8748 | |
| 8749 | nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; |
| 8750 | |
| 8751 | return nested == offsets; |
| 8752 | } |
| 8753 | |
| 8754 | void __might_resched(const char *file, int line, unsigned int offsets) |
| 8755 | { |
| 8756 | /* Ratelimiting timestamp: */ |
| 8757 | static unsigned long prev_jiffy; |
| 8758 | |
| 8759 | unsigned long preempt_disable_ip; |
| 8760 | |
| 8761 | /* WARN_ON_ONCE() by default, no rate limit required: */ |
| 8762 | rcu_sleep_check(); |
| 8763 | |
| 8764 | if ((resched_offsets_ok(offsets) && !irqs_disabled() && |
| 8765 | !is_idle_task(current) && !current->non_block_count) || |
| 8766 | system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || |
| 8767 | oops_in_progress) |
| 8768 | return; |
| 8769 | |
| 8770 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| 8771 | return; |
| 8772 | prev_jiffy = jiffies; |
| 8773 | |
| 8774 | /* Save this before calling printk(), since that will clobber it: */ |
| 8775 | preempt_disable_ip = get_preempt_disable_ip(current); |
| 8776 | |
| 8777 | pr_err("BUG: sleeping function called from invalid context at %s:%d\n" , |
| 8778 | file, line); |
| 8779 | pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n" , |
| 8780 | in_atomic(), irqs_disabled(), current->non_block_count, |
| 8781 | current->pid, current->comm); |
| 8782 | pr_err("preempt_count: %x, expected: %x\n" , preempt_count(), |
| 8783 | offsets & MIGHT_RESCHED_PREEMPT_MASK); |
| 8784 | |
| 8785 | if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { |
| 8786 | pr_err("RCU nest depth: %d, expected: %u\n" , |
| 8787 | rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); |
| 8788 | } |
| 8789 | |
| 8790 | if (task_stack_end_corrupted(current)) |
| 8791 | pr_emerg("Thread overran stack, or stack corrupted\n" ); |
| 8792 | |
| 8793 | debug_show_held_locks(current); |
| 8794 | if (irqs_disabled()) |
| 8795 | print_irqtrace_events(current); |
| 8796 | |
| 8797 | print_preempt_disable_ip(preempt_offset: offsets & MIGHT_RESCHED_PREEMPT_MASK, |
| 8798 | ip: preempt_disable_ip); |
| 8799 | |
| 8800 | dump_stack(); |
| 8801 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| 8802 | } |
| 8803 | EXPORT_SYMBOL(__might_resched); |
| 8804 | |
| 8805 | void __cant_sleep(const char *file, int line, int preempt_offset) |
| 8806 | { |
| 8807 | static unsigned long prev_jiffy; |
| 8808 | |
| 8809 | if (irqs_disabled()) |
| 8810 | return; |
| 8811 | |
| 8812 | if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| 8813 | return; |
| 8814 | |
| 8815 | if (preempt_count() > preempt_offset) |
| 8816 | return; |
| 8817 | |
| 8818 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| 8819 | return; |
| 8820 | prev_jiffy = jiffies; |
| 8821 | |
| 8822 | printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n" , file, line); |
| 8823 | printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n" , |
| 8824 | in_atomic(), irqs_disabled(), |
| 8825 | current->pid, current->comm); |
| 8826 | |
| 8827 | debug_show_held_locks(current); |
| 8828 | dump_stack(); |
| 8829 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| 8830 | } |
| 8831 | EXPORT_SYMBOL_GPL(__cant_sleep); |
| 8832 | |
| 8833 | #ifdef CONFIG_SMP |
| 8834 | void __cant_migrate(const char *file, int line) |
| 8835 | { |
| 8836 | static unsigned long prev_jiffy; |
| 8837 | |
| 8838 | if (irqs_disabled()) |
| 8839 | return; |
| 8840 | |
| 8841 | if (is_migration_disabled(current)) |
| 8842 | return; |
| 8843 | |
| 8844 | if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| 8845 | return; |
| 8846 | |
| 8847 | if (preempt_count() > 0) |
| 8848 | return; |
| 8849 | |
| 8850 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| 8851 | return; |
| 8852 | prev_jiffy = jiffies; |
| 8853 | |
| 8854 | pr_err("BUG: assuming non migratable context at %s:%d\n" , file, line); |
| 8855 | pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n" , |
| 8856 | in_atomic(), irqs_disabled(), is_migration_disabled(current), |
| 8857 | current->pid, current->comm); |
| 8858 | |
| 8859 | debug_show_held_locks(current); |
| 8860 | dump_stack(); |
| 8861 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| 8862 | } |
| 8863 | EXPORT_SYMBOL_GPL(__cant_migrate); |
| 8864 | #endif |
| 8865 | #endif |
| 8866 | |
| 8867 | #ifdef CONFIG_MAGIC_SYSRQ |
| 8868 | void normalize_rt_tasks(void) |
| 8869 | { |
| 8870 | struct task_struct *g, *p; |
| 8871 | struct sched_attr attr = { |
| 8872 | .sched_policy = SCHED_NORMAL, |
| 8873 | }; |
| 8874 | |
| 8875 | read_lock(&tasklist_lock); |
| 8876 | for_each_process_thread(g, p) { |
| 8877 | /* |
| 8878 | * Only normalize user tasks: |
| 8879 | */ |
| 8880 | if (p->flags & PF_KTHREAD) |
| 8881 | continue; |
| 8882 | |
| 8883 | p->se.exec_start = 0; |
| 8884 | schedstat_set(p->stats.wait_start, 0); |
| 8885 | schedstat_set(p->stats.sleep_start, 0); |
| 8886 | schedstat_set(p->stats.block_start, 0); |
| 8887 | |
| 8888 | if (!rt_or_dl_task(p)) { |
| 8889 | /* |
| 8890 | * Renice negative nice level userspace |
| 8891 | * tasks back to 0: |
| 8892 | */ |
| 8893 | if (task_nice(p) < 0) |
| 8894 | set_user_nice(p, nice: 0); |
| 8895 | continue; |
| 8896 | } |
| 8897 | |
| 8898 | __sched_setscheduler(p, attr: &attr, user: false, pi: false); |
| 8899 | } |
| 8900 | read_unlock(&tasklist_lock); |
| 8901 | } |
| 8902 | |
| 8903 | #endif /* CONFIG_MAGIC_SYSRQ */ |
| 8904 | |
| 8905 | #if defined(CONFIG_KGDB_KDB) |
| 8906 | /* |
| 8907 | * These functions are only useful for KDB. |
| 8908 | * |
| 8909 | * They can only be called when the whole system has been |
| 8910 | * stopped - every CPU needs to be quiescent, and no scheduling |
| 8911 | * activity can take place. Using them for anything else would |
| 8912 | * be a serious bug, and as a result, they aren't even visible |
| 8913 | * under any other configuration. |
| 8914 | */ |
| 8915 | |
| 8916 | /** |
| 8917 | * curr_task - return the current task for a given CPU. |
| 8918 | * @cpu: the processor in question. |
| 8919 | * |
| 8920 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| 8921 | * |
| 8922 | * Return: The current task for @cpu. |
| 8923 | */ |
| 8924 | struct task_struct *curr_task(int cpu) |
| 8925 | { |
| 8926 | return cpu_curr(cpu); |
| 8927 | } |
| 8928 | |
| 8929 | #endif /* defined(CONFIG_KGDB_KDB) */ |
| 8930 | |
| 8931 | #ifdef CONFIG_CGROUP_SCHED |
| 8932 | /* task_group_lock serializes the addition/removal of task groups */ |
| 8933 | static DEFINE_SPINLOCK(task_group_lock); |
| 8934 | |
| 8935 | static inline void alloc_uclamp_sched_group(struct task_group *tg, |
| 8936 | struct task_group *parent) |
| 8937 | { |
| 8938 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 8939 | enum uclamp_id clamp_id; |
| 8940 | |
| 8941 | for_each_clamp_id(clamp_id) { |
| 8942 | uclamp_se_set(uc_se: &tg->uclamp_req[clamp_id], |
| 8943 | value: uclamp_none(clamp_id), user_defined: false); |
| 8944 | tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; |
| 8945 | } |
| 8946 | #endif |
| 8947 | } |
| 8948 | |
| 8949 | static void sched_free_group(struct task_group *tg) |
| 8950 | { |
| 8951 | free_fair_sched_group(tg); |
| 8952 | free_rt_sched_group(tg); |
| 8953 | autogroup_free(tg); |
| 8954 | kmem_cache_free(s: task_group_cache, objp: tg); |
| 8955 | } |
| 8956 | |
| 8957 | static void sched_free_group_rcu(struct rcu_head *rcu) |
| 8958 | { |
| 8959 | sched_free_group(container_of(rcu, struct task_group, rcu)); |
| 8960 | } |
| 8961 | |
| 8962 | static void sched_unregister_group(struct task_group *tg) |
| 8963 | { |
| 8964 | unregister_fair_sched_group(tg); |
| 8965 | unregister_rt_sched_group(tg); |
| 8966 | /* |
| 8967 | * We have to wait for yet another RCU grace period to expire, as |
| 8968 | * print_cfs_stats() might run concurrently. |
| 8969 | */ |
| 8970 | call_rcu(head: &tg->rcu, func: sched_free_group_rcu); |
| 8971 | } |
| 8972 | |
| 8973 | /* allocate runqueue etc for a new task group */ |
| 8974 | struct task_group *sched_create_group(struct task_group *parent) |
| 8975 | { |
| 8976 | struct task_group *tg; |
| 8977 | |
| 8978 | tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); |
| 8979 | if (!tg) |
| 8980 | return ERR_PTR(error: -ENOMEM); |
| 8981 | |
| 8982 | if (!alloc_fair_sched_group(tg, parent)) |
| 8983 | goto err; |
| 8984 | |
| 8985 | if (!alloc_rt_sched_group(tg, parent)) |
| 8986 | goto err; |
| 8987 | |
| 8988 | scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); |
| 8989 | alloc_uclamp_sched_group(tg, parent); |
| 8990 | |
| 8991 | return tg; |
| 8992 | |
| 8993 | err: |
| 8994 | sched_free_group(tg); |
| 8995 | return ERR_PTR(error: -ENOMEM); |
| 8996 | } |
| 8997 | |
| 8998 | void sched_online_group(struct task_group *tg, struct task_group *parent) |
| 8999 | { |
| 9000 | unsigned long flags; |
| 9001 | |
| 9002 | spin_lock_irqsave(&task_group_lock, flags); |
| 9003 | list_add_tail_rcu(new: &tg->list, head: &task_groups); |
| 9004 | |
| 9005 | /* Root should already exist: */ |
| 9006 | WARN_ON(!parent); |
| 9007 | |
| 9008 | tg->parent = parent; |
| 9009 | INIT_LIST_HEAD(list: &tg->children); |
| 9010 | list_add_rcu(new: &tg->siblings, head: &parent->children); |
| 9011 | spin_unlock_irqrestore(lock: &task_group_lock, flags); |
| 9012 | |
| 9013 | online_fair_sched_group(tg); |
| 9014 | } |
| 9015 | |
| 9016 | /* RCU callback to free various structures associated with a task group */ |
| 9017 | static void sched_unregister_group_rcu(struct rcu_head *rhp) |
| 9018 | { |
| 9019 | /* Now it should be safe to free those cfs_rqs: */ |
| 9020 | sched_unregister_group(container_of(rhp, struct task_group, rcu)); |
| 9021 | } |
| 9022 | |
| 9023 | void sched_destroy_group(struct task_group *tg) |
| 9024 | { |
| 9025 | /* Wait for possible concurrent references to cfs_rqs complete: */ |
| 9026 | call_rcu(head: &tg->rcu, func: sched_unregister_group_rcu); |
| 9027 | } |
| 9028 | |
| 9029 | void sched_release_group(struct task_group *tg) |
| 9030 | { |
| 9031 | unsigned long flags; |
| 9032 | |
| 9033 | /* |
| 9034 | * Unlink first, to avoid walk_tg_tree_from() from finding us (via |
| 9035 | * sched_cfs_period_timer()). |
| 9036 | * |
| 9037 | * For this to be effective, we have to wait for all pending users of |
| 9038 | * this task group to leave their RCU critical section to ensure no new |
| 9039 | * user will see our dying task group any more. Specifically ensure |
| 9040 | * that tg_unthrottle_up() won't add decayed cfs_rq's to it. |
| 9041 | * |
| 9042 | * We therefore defer calling unregister_fair_sched_group() to |
| 9043 | * sched_unregister_group() which is guarantied to get called only after the |
| 9044 | * current RCU grace period has expired. |
| 9045 | */ |
| 9046 | spin_lock_irqsave(&task_group_lock, flags); |
| 9047 | list_del_rcu(entry: &tg->list); |
| 9048 | list_del_rcu(entry: &tg->siblings); |
| 9049 | spin_unlock_irqrestore(lock: &task_group_lock, flags); |
| 9050 | } |
| 9051 | |
| 9052 | static void sched_change_group(struct task_struct *tsk) |
| 9053 | { |
| 9054 | struct task_group *tg; |
| 9055 | |
| 9056 | /* |
| 9057 | * All callers are synchronized by task_rq_lock(); we do not use RCU |
| 9058 | * which is pointless here. Thus, we pass "true" to task_css_check() |
| 9059 | * to prevent lockdep warnings. |
| 9060 | */ |
| 9061 | tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), |
| 9062 | struct task_group, css); |
| 9063 | tg = autogroup_task_group(p: tsk, tg); |
| 9064 | tsk->sched_task_group = tg; |
| 9065 | |
| 9066 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 9067 | if (tsk->sched_class->task_change_group) |
| 9068 | tsk->sched_class->task_change_group(tsk); |
| 9069 | else |
| 9070 | #endif |
| 9071 | set_task_rq(p: tsk, cpu: task_cpu(p: tsk)); |
| 9072 | } |
| 9073 | |
| 9074 | /* |
| 9075 | * Change task's runqueue when it moves between groups. |
| 9076 | * |
| 9077 | * The caller of this function should have put the task in its new group by |
| 9078 | * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect |
| 9079 | * its new group. |
| 9080 | */ |
| 9081 | void sched_move_task(struct task_struct *tsk, bool for_autogroup) |
| 9082 | { |
| 9083 | int queued, running, queue_flags = |
| 9084 | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| 9085 | struct rq *rq; |
| 9086 | |
| 9087 | CLASS(task_rq_lock, rq_guard)(l: tsk); |
| 9088 | rq = rq_guard.rq; |
| 9089 | |
| 9090 | update_rq_clock(rq); |
| 9091 | |
| 9092 | running = task_current_donor(rq, p: tsk); |
| 9093 | queued = task_on_rq_queued(p: tsk); |
| 9094 | |
| 9095 | if (queued) |
| 9096 | dequeue_task(rq, p: tsk, flags: queue_flags); |
| 9097 | if (running) |
| 9098 | put_prev_task(rq, prev: tsk); |
| 9099 | |
| 9100 | sched_change_group(tsk); |
| 9101 | if (!for_autogroup) |
| 9102 | scx_cgroup_move_task(p: tsk); |
| 9103 | |
| 9104 | if (queued) |
| 9105 | enqueue_task(rq, p: tsk, flags: queue_flags); |
| 9106 | if (running) { |
| 9107 | set_next_task(rq, next: tsk); |
| 9108 | /* |
| 9109 | * After changing group, the running task may have joined a |
| 9110 | * throttled one but it's still the running task. Trigger a |
| 9111 | * resched to make sure that task can still run. |
| 9112 | */ |
| 9113 | resched_curr(rq); |
| 9114 | } |
| 9115 | } |
| 9116 | |
| 9117 | static struct cgroup_subsys_state * |
| 9118 | cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
| 9119 | { |
| 9120 | struct task_group *parent = css_tg(css: parent_css); |
| 9121 | struct task_group *tg; |
| 9122 | |
| 9123 | if (!parent) { |
| 9124 | /* This is early initialization for the top cgroup */ |
| 9125 | return &root_task_group.css; |
| 9126 | } |
| 9127 | |
| 9128 | tg = sched_create_group(parent); |
| 9129 | if (IS_ERR(ptr: tg)) |
| 9130 | return ERR_PTR(error: -ENOMEM); |
| 9131 | |
| 9132 | return &tg->css; |
| 9133 | } |
| 9134 | |
| 9135 | /* Expose task group only after completing cgroup initialization */ |
| 9136 | static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) |
| 9137 | { |
| 9138 | struct task_group *tg = css_tg(css); |
| 9139 | struct task_group *parent = css_tg(css: css->parent); |
| 9140 | int ret; |
| 9141 | |
| 9142 | ret = scx_tg_online(tg); |
| 9143 | if (ret) |
| 9144 | return ret; |
| 9145 | |
| 9146 | if (parent) |
| 9147 | sched_online_group(tg, parent); |
| 9148 | |
| 9149 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 9150 | /* Propagate the effective uclamp value for the new group */ |
| 9151 | guard(mutex)(T: &uclamp_mutex); |
| 9152 | guard(rcu)(); |
| 9153 | cpu_util_update_eff(css); |
| 9154 | #endif |
| 9155 | |
| 9156 | return 0; |
| 9157 | } |
| 9158 | |
| 9159 | static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) |
| 9160 | { |
| 9161 | struct task_group *tg = css_tg(css); |
| 9162 | |
| 9163 | scx_tg_offline(tg); |
| 9164 | } |
| 9165 | |
| 9166 | static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) |
| 9167 | { |
| 9168 | struct task_group *tg = css_tg(css); |
| 9169 | |
| 9170 | sched_release_group(tg); |
| 9171 | } |
| 9172 | |
| 9173 | static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) |
| 9174 | { |
| 9175 | struct task_group *tg = css_tg(css); |
| 9176 | |
| 9177 | /* |
| 9178 | * Relies on the RCU grace period between css_released() and this. |
| 9179 | */ |
| 9180 | sched_unregister_group(tg); |
| 9181 | } |
| 9182 | |
| 9183 | static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) |
| 9184 | { |
| 9185 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9186 | struct task_struct *task; |
| 9187 | struct cgroup_subsys_state *css; |
| 9188 | |
| 9189 | if (!rt_group_sched_enabled()) |
| 9190 | goto scx_check; |
| 9191 | |
| 9192 | cgroup_taskset_for_each(task, css, tset) { |
| 9193 | if (!sched_rt_can_attach(tg: css_tg(css), tsk: task)) |
| 9194 | return -EINVAL; |
| 9195 | } |
| 9196 | scx_check: |
| 9197 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9198 | return scx_cgroup_can_attach(tset); |
| 9199 | } |
| 9200 | |
| 9201 | static void cpu_cgroup_attach(struct cgroup_taskset *tset) |
| 9202 | { |
| 9203 | struct task_struct *task; |
| 9204 | struct cgroup_subsys_state *css; |
| 9205 | |
| 9206 | cgroup_taskset_for_each(task, css, tset) |
| 9207 | sched_move_task(tsk: task, for_autogroup: false); |
| 9208 | |
| 9209 | scx_cgroup_finish_attach(); |
| 9210 | } |
| 9211 | |
| 9212 | static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) |
| 9213 | { |
| 9214 | scx_cgroup_cancel_attach(tset); |
| 9215 | } |
| 9216 | |
| 9217 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 9218 | static void cpu_util_update_eff(struct cgroup_subsys_state *css) |
| 9219 | { |
| 9220 | struct cgroup_subsys_state *top_css = css; |
| 9221 | struct uclamp_se *uc_parent = NULL; |
| 9222 | struct uclamp_se *uc_se = NULL; |
| 9223 | unsigned int eff[UCLAMP_CNT]; |
| 9224 | enum uclamp_id clamp_id; |
| 9225 | unsigned int clamps; |
| 9226 | |
| 9227 | lockdep_assert_held(&uclamp_mutex); |
| 9228 | WARN_ON_ONCE(!rcu_read_lock_held()); |
| 9229 | |
| 9230 | css_for_each_descendant_pre(css, top_css) { |
| 9231 | uc_parent = css_tg(css)->parent |
| 9232 | ? css_tg(css)->parent->uclamp : NULL; |
| 9233 | |
| 9234 | for_each_clamp_id(clamp_id) { |
| 9235 | /* Assume effective clamps matches requested clamps */ |
| 9236 | eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; |
| 9237 | /* Cap effective clamps with parent's effective clamps */ |
| 9238 | if (uc_parent && |
| 9239 | eff[clamp_id] > uc_parent[clamp_id].value) { |
| 9240 | eff[clamp_id] = uc_parent[clamp_id].value; |
| 9241 | } |
| 9242 | } |
| 9243 | /* Ensure protection is always capped by limit */ |
| 9244 | eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); |
| 9245 | |
| 9246 | /* Propagate most restrictive effective clamps */ |
| 9247 | clamps = 0x0; |
| 9248 | uc_se = css_tg(css)->uclamp; |
| 9249 | for_each_clamp_id(clamp_id) { |
| 9250 | if (eff[clamp_id] == uc_se[clamp_id].value) |
| 9251 | continue; |
| 9252 | uc_se[clamp_id].value = eff[clamp_id]; |
| 9253 | uc_se[clamp_id].bucket_id = uclamp_bucket_id(clamp_value: eff[clamp_id]); |
| 9254 | clamps |= (0x1 << clamp_id); |
| 9255 | } |
| 9256 | if (!clamps) { |
| 9257 | css = css_rightmost_descendant(pos: css); |
| 9258 | continue; |
| 9259 | } |
| 9260 | |
| 9261 | /* Immediately update descendants RUNNABLE tasks */ |
| 9262 | uclamp_update_active_tasks(css); |
| 9263 | } |
| 9264 | } |
| 9265 | |
| 9266 | /* |
| 9267 | * Integer 10^N with a given N exponent by casting to integer the literal "1eN" |
| 9268 | * C expression. Since there is no way to convert a macro argument (N) into a |
| 9269 | * character constant, use two levels of macros. |
| 9270 | */ |
| 9271 | #define _POW10(exp) ((unsigned int)1e##exp) |
| 9272 | #define POW10(exp) _POW10(exp) |
| 9273 | |
| 9274 | struct uclamp_request { |
| 9275 | #define UCLAMP_PERCENT_SHIFT 2 |
| 9276 | #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) |
| 9277 | s64 percent; |
| 9278 | u64 util; |
| 9279 | int ret; |
| 9280 | }; |
| 9281 | |
| 9282 | static inline struct uclamp_request |
| 9283 | capacity_from_percent(char *buf) |
| 9284 | { |
| 9285 | struct uclamp_request req = { |
| 9286 | .percent = UCLAMP_PERCENT_SCALE, |
| 9287 | .util = SCHED_CAPACITY_SCALE, |
| 9288 | .ret = 0, |
| 9289 | }; |
| 9290 | |
| 9291 | buf = strim(buf); |
| 9292 | if (strcmp(buf, "max" )) { |
| 9293 | req.ret = cgroup_parse_float(input: buf, UCLAMP_PERCENT_SHIFT, |
| 9294 | v: &req.percent); |
| 9295 | if (req.ret) |
| 9296 | return req; |
| 9297 | if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { |
| 9298 | req.ret = -ERANGE; |
| 9299 | return req; |
| 9300 | } |
| 9301 | |
| 9302 | req.util = req.percent << SCHED_CAPACITY_SHIFT; |
| 9303 | req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); |
| 9304 | } |
| 9305 | |
| 9306 | return req; |
| 9307 | } |
| 9308 | |
| 9309 | static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, |
| 9310 | size_t nbytes, loff_t off, |
| 9311 | enum uclamp_id clamp_id) |
| 9312 | { |
| 9313 | struct uclamp_request req; |
| 9314 | struct task_group *tg; |
| 9315 | |
| 9316 | req = capacity_from_percent(buf); |
| 9317 | if (req.ret) |
| 9318 | return req.ret; |
| 9319 | |
| 9320 | sched_uclamp_enable(); |
| 9321 | |
| 9322 | guard(mutex)(T: &uclamp_mutex); |
| 9323 | guard(rcu)(); |
| 9324 | |
| 9325 | tg = css_tg(css: of_css(of)); |
| 9326 | if (tg->uclamp_req[clamp_id].value != req.util) |
| 9327 | uclamp_se_set(uc_se: &tg->uclamp_req[clamp_id], value: req.util, user_defined: false); |
| 9328 | |
| 9329 | /* |
| 9330 | * Because of not recoverable conversion rounding we keep track of the |
| 9331 | * exact requested value |
| 9332 | */ |
| 9333 | tg->uclamp_pct[clamp_id] = req.percent; |
| 9334 | |
| 9335 | /* Update effective clamps to track the most restrictive value */ |
| 9336 | cpu_util_update_eff(css: of_css(of)); |
| 9337 | |
| 9338 | return nbytes; |
| 9339 | } |
| 9340 | |
| 9341 | static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, |
| 9342 | char *buf, size_t nbytes, |
| 9343 | loff_t off) |
| 9344 | { |
| 9345 | return cpu_uclamp_write(of, buf, nbytes, off, clamp_id: UCLAMP_MIN); |
| 9346 | } |
| 9347 | |
| 9348 | static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, |
| 9349 | char *buf, size_t nbytes, |
| 9350 | loff_t off) |
| 9351 | { |
| 9352 | return cpu_uclamp_write(of, buf, nbytes, off, clamp_id: UCLAMP_MAX); |
| 9353 | } |
| 9354 | |
| 9355 | static inline void cpu_uclamp_print(struct seq_file *sf, |
| 9356 | enum uclamp_id clamp_id) |
| 9357 | { |
| 9358 | struct task_group *tg; |
| 9359 | u64 util_clamp; |
| 9360 | u64 percent; |
| 9361 | u32 rem; |
| 9362 | |
| 9363 | scoped_guard (rcu) { |
| 9364 | tg = css_tg(css: seq_css(seq: sf)); |
| 9365 | util_clamp = tg->uclamp_req[clamp_id].value; |
| 9366 | } |
| 9367 | |
| 9368 | if (util_clamp == SCHED_CAPACITY_SCALE) { |
| 9369 | seq_puts(m: sf, s: "max\n" ); |
| 9370 | return; |
| 9371 | } |
| 9372 | |
| 9373 | percent = tg->uclamp_pct[clamp_id]; |
| 9374 | percent = div_u64_rem(dividend: percent, POW10(UCLAMP_PERCENT_SHIFT), remainder: &rem); |
| 9375 | seq_printf(m: sf, fmt: "%llu.%0*u\n" , percent, UCLAMP_PERCENT_SHIFT, rem); |
| 9376 | } |
| 9377 | |
| 9378 | static int cpu_uclamp_min_show(struct seq_file *sf, void *v) |
| 9379 | { |
| 9380 | cpu_uclamp_print(sf, clamp_id: UCLAMP_MIN); |
| 9381 | return 0; |
| 9382 | } |
| 9383 | |
| 9384 | static int cpu_uclamp_max_show(struct seq_file *sf, void *v) |
| 9385 | { |
| 9386 | cpu_uclamp_print(sf, clamp_id: UCLAMP_MAX); |
| 9387 | return 0; |
| 9388 | } |
| 9389 | #endif /* CONFIG_UCLAMP_TASK_GROUP */ |
| 9390 | |
| 9391 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 9392 | static unsigned long tg_weight(struct task_group *tg) |
| 9393 | { |
| 9394 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 9395 | return scale_load_down(tg->shares); |
| 9396 | #else |
| 9397 | return sched_weight_from_cgroup(tg->scx_weight); |
| 9398 | #endif |
| 9399 | } |
| 9400 | |
| 9401 | static int cpu_shares_write_u64(struct cgroup_subsys_state *css, |
| 9402 | struct cftype *cftype, u64 shareval) |
| 9403 | { |
| 9404 | int ret; |
| 9405 | |
| 9406 | if (shareval > scale_load_down(ULONG_MAX)) |
| 9407 | shareval = MAX_SHARES; |
| 9408 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(shareval)); |
| 9409 | if (!ret) |
| 9410 | scx_group_set_weight(tg: css_tg(css), |
| 9411 | cgrp_weight: sched_weight_to_cgroup(weight: shareval)); |
| 9412 | return ret; |
| 9413 | } |
| 9414 | |
| 9415 | static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, |
| 9416 | struct cftype *cft) |
| 9417 | { |
| 9418 | return tg_weight(tg: css_tg(css)); |
| 9419 | } |
| 9420 | #endif /* CONFIG_GROUP_SCHED_WEIGHT */ |
| 9421 | |
| 9422 | #ifdef CONFIG_CFS_BANDWIDTH |
| 9423 | static DEFINE_MUTEX(cfs_constraints_mutex); |
| 9424 | |
| 9425 | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ |
| 9426 | static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ |
| 9427 | /* More than 203 days if BW_SHIFT equals 20. */ |
| 9428 | static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; |
| 9429 | |
| 9430 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); |
| 9431 | |
| 9432 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, |
| 9433 | u64 burst) |
| 9434 | { |
| 9435 | int i, ret = 0, runtime_enabled, runtime_was_enabled; |
| 9436 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| 9437 | |
| 9438 | if (tg == &root_task_group) |
| 9439 | return -EINVAL; |
| 9440 | |
| 9441 | /* |
| 9442 | * Ensure we have at some amount of bandwidth every period. This is |
| 9443 | * to prevent reaching a state of large arrears when throttled via |
| 9444 | * entity_tick() resulting in prolonged exit starvation. |
| 9445 | */ |
| 9446 | if (quota < min_cfs_quota_period || period < min_cfs_quota_period) |
| 9447 | return -EINVAL; |
| 9448 | |
| 9449 | /* |
| 9450 | * Likewise, bound things on the other side by preventing insane quota |
| 9451 | * periods. This also allows us to normalize in computing quota |
| 9452 | * feasibility. |
| 9453 | */ |
| 9454 | if (period > max_cfs_quota_period) |
| 9455 | return -EINVAL; |
| 9456 | |
| 9457 | /* |
| 9458 | * Bound quota to defend quota against overflow during bandwidth shift. |
| 9459 | */ |
| 9460 | if (quota != RUNTIME_INF && quota > max_cfs_runtime) |
| 9461 | return -EINVAL; |
| 9462 | |
| 9463 | if (quota != RUNTIME_INF && (burst > quota || |
| 9464 | burst + quota > max_cfs_runtime)) |
| 9465 | return -EINVAL; |
| 9466 | |
| 9467 | /* |
| 9468 | * Prevent race between setting of cfs_rq->runtime_enabled and |
| 9469 | * unthrottle_offline_cfs_rqs(). |
| 9470 | */ |
| 9471 | guard(cpus_read_lock)(); |
| 9472 | guard(mutex)(T: &cfs_constraints_mutex); |
| 9473 | |
| 9474 | ret = __cfs_schedulable(tg, period, runtime: quota); |
| 9475 | if (ret) |
| 9476 | return ret; |
| 9477 | |
| 9478 | runtime_enabled = quota != RUNTIME_INF; |
| 9479 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; |
| 9480 | /* |
| 9481 | * If we need to toggle cfs_bandwidth_used, off->on must occur |
| 9482 | * before making related changes, and on->off must occur afterwards |
| 9483 | */ |
| 9484 | if (runtime_enabled && !runtime_was_enabled) |
| 9485 | cfs_bandwidth_usage_inc(); |
| 9486 | |
| 9487 | scoped_guard (raw_spinlock_irq, &cfs_b->lock) { |
| 9488 | cfs_b->period = ns_to_ktime(ns: period); |
| 9489 | cfs_b->quota = quota; |
| 9490 | cfs_b->burst = burst; |
| 9491 | |
| 9492 | __refill_cfs_bandwidth_runtime(cfs_b); |
| 9493 | |
| 9494 | /* |
| 9495 | * Restart the period timer (if active) to handle new |
| 9496 | * period expiry: |
| 9497 | */ |
| 9498 | if (runtime_enabled) |
| 9499 | start_cfs_bandwidth(cfs_b); |
| 9500 | } |
| 9501 | |
| 9502 | for_each_online_cpu(i) { |
| 9503 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; |
| 9504 | struct rq *rq = cfs_rq->rq; |
| 9505 | |
| 9506 | guard(rq_lock_irq)(l: rq); |
| 9507 | cfs_rq->runtime_enabled = runtime_enabled; |
| 9508 | cfs_rq->runtime_remaining = 0; |
| 9509 | |
| 9510 | if (cfs_rq->throttled) |
| 9511 | unthrottle_cfs_rq(cfs_rq); |
| 9512 | } |
| 9513 | |
| 9514 | if (runtime_was_enabled && !runtime_enabled) |
| 9515 | cfs_bandwidth_usage_dec(); |
| 9516 | |
| 9517 | return 0; |
| 9518 | } |
| 9519 | |
| 9520 | static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) |
| 9521 | { |
| 9522 | u64 quota, period, burst; |
| 9523 | |
| 9524 | period = ktime_to_ns(kt: tg->cfs_bandwidth.period); |
| 9525 | burst = tg->cfs_bandwidth.burst; |
| 9526 | if (cfs_quota_us < 0) |
| 9527 | quota = RUNTIME_INF; |
| 9528 | else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) |
| 9529 | quota = (u64)cfs_quota_us * NSEC_PER_USEC; |
| 9530 | else |
| 9531 | return -EINVAL; |
| 9532 | |
| 9533 | return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| 9534 | } |
| 9535 | |
| 9536 | static long tg_get_cfs_quota(struct task_group *tg) |
| 9537 | { |
| 9538 | u64 quota_us; |
| 9539 | |
| 9540 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) |
| 9541 | return -1; |
| 9542 | |
| 9543 | quota_us = tg->cfs_bandwidth.quota; |
| 9544 | do_div(quota_us, NSEC_PER_USEC); |
| 9545 | |
| 9546 | return quota_us; |
| 9547 | } |
| 9548 | |
| 9549 | static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) |
| 9550 | { |
| 9551 | u64 quota, period, burst; |
| 9552 | |
| 9553 | if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) |
| 9554 | return -EINVAL; |
| 9555 | |
| 9556 | period = (u64)cfs_period_us * NSEC_PER_USEC; |
| 9557 | quota = tg->cfs_bandwidth.quota; |
| 9558 | burst = tg->cfs_bandwidth.burst; |
| 9559 | |
| 9560 | return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| 9561 | } |
| 9562 | |
| 9563 | static long tg_get_cfs_period(struct task_group *tg) |
| 9564 | { |
| 9565 | u64 cfs_period_us; |
| 9566 | |
| 9567 | cfs_period_us = ktime_to_ns(kt: tg->cfs_bandwidth.period); |
| 9568 | do_div(cfs_period_us, NSEC_PER_USEC); |
| 9569 | |
| 9570 | return cfs_period_us; |
| 9571 | } |
| 9572 | |
| 9573 | static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) |
| 9574 | { |
| 9575 | u64 quota, period, burst; |
| 9576 | |
| 9577 | if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) |
| 9578 | return -EINVAL; |
| 9579 | |
| 9580 | burst = (u64)cfs_burst_us * NSEC_PER_USEC; |
| 9581 | period = ktime_to_ns(kt: tg->cfs_bandwidth.period); |
| 9582 | quota = tg->cfs_bandwidth.quota; |
| 9583 | |
| 9584 | return tg_set_cfs_bandwidth(tg, period, quota, burst); |
| 9585 | } |
| 9586 | |
| 9587 | static long tg_get_cfs_burst(struct task_group *tg) |
| 9588 | { |
| 9589 | u64 burst_us; |
| 9590 | |
| 9591 | burst_us = tg->cfs_bandwidth.burst; |
| 9592 | do_div(burst_us, NSEC_PER_USEC); |
| 9593 | |
| 9594 | return burst_us; |
| 9595 | } |
| 9596 | |
| 9597 | static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, |
| 9598 | struct cftype *cft) |
| 9599 | { |
| 9600 | return tg_get_cfs_quota(tg: css_tg(css)); |
| 9601 | } |
| 9602 | |
| 9603 | static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, |
| 9604 | struct cftype *cftype, s64 cfs_quota_us) |
| 9605 | { |
| 9606 | return tg_set_cfs_quota(tg: css_tg(css), cfs_quota_us); |
| 9607 | } |
| 9608 | |
| 9609 | static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, |
| 9610 | struct cftype *cft) |
| 9611 | { |
| 9612 | return tg_get_cfs_period(tg: css_tg(css)); |
| 9613 | } |
| 9614 | |
| 9615 | static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, |
| 9616 | struct cftype *cftype, u64 cfs_period_us) |
| 9617 | { |
| 9618 | return tg_set_cfs_period(tg: css_tg(css), cfs_period_us); |
| 9619 | } |
| 9620 | |
| 9621 | static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, |
| 9622 | struct cftype *cft) |
| 9623 | { |
| 9624 | return tg_get_cfs_burst(tg: css_tg(css)); |
| 9625 | } |
| 9626 | |
| 9627 | static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, |
| 9628 | struct cftype *cftype, u64 cfs_burst_us) |
| 9629 | { |
| 9630 | return tg_set_cfs_burst(tg: css_tg(css), cfs_burst_us); |
| 9631 | } |
| 9632 | |
| 9633 | struct cfs_schedulable_data { |
| 9634 | struct task_group *tg; |
| 9635 | u64 period, quota; |
| 9636 | }; |
| 9637 | |
| 9638 | /* |
| 9639 | * normalize group quota/period to be quota/max_period |
| 9640 | * note: units are usecs |
| 9641 | */ |
| 9642 | static u64 normalize_cfs_quota(struct task_group *tg, |
| 9643 | struct cfs_schedulable_data *d) |
| 9644 | { |
| 9645 | u64 quota, period; |
| 9646 | |
| 9647 | if (tg == d->tg) { |
| 9648 | period = d->period; |
| 9649 | quota = d->quota; |
| 9650 | } else { |
| 9651 | period = tg_get_cfs_period(tg); |
| 9652 | quota = tg_get_cfs_quota(tg); |
| 9653 | } |
| 9654 | |
| 9655 | /* note: these should typically be equivalent */ |
| 9656 | if (quota == RUNTIME_INF || quota == -1) |
| 9657 | return RUNTIME_INF; |
| 9658 | |
| 9659 | return to_ratio(period, runtime: quota); |
| 9660 | } |
| 9661 | |
| 9662 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) |
| 9663 | { |
| 9664 | struct cfs_schedulable_data *d = data; |
| 9665 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| 9666 | s64 quota = 0, parent_quota = -1; |
| 9667 | |
| 9668 | if (!tg->parent) { |
| 9669 | quota = RUNTIME_INF; |
| 9670 | } else { |
| 9671 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; |
| 9672 | |
| 9673 | quota = normalize_cfs_quota(tg, d); |
| 9674 | parent_quota = parent_b->hierarchical_quota; |
| 9675 | |
| 9676 | /* |
| 9677 | * Ensure max(child_quota) <= parent_quota. On cgroup2, |
| 9678 | * always take the non-RUNTIME_INF min. On cgroup1, only |
| 9679 | * inherit when no limit is set. In both cases this is used |
| 9680 | * by the scheduler to determine if a given CFS task has a |
| 9681 | * bandwidth constraint at some higher level. |
| 9682 | */ |
| 9683 | if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { |
| 9684 | if (quota == RUNTIME_INF) |
| 9685 | quota = parent_quota; |
| 9686 | else if (parent_quota != RUNTIME_INF) |
| 9687 | quota = min(quota, parent_quota); |
| 9688 | } else { |
| 9689 | if (quota == RUNTIME_INF) |
| 9690 | quota = parent_quota; |
| 9691 | else if (parent_quota != RUNTIME_INF && quota > parent_quota) |
| 9692 | return -EINVAL; |
| 9693 | } |
| 9694 | } |
| 9695 | cfs_b->hierarchical_quota = quota; |
| 9696 | |
| 9697 | return 0; |
| 9698 | } |
| 9699 | |
| 9700 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) |
| 9701 | { |
| 9702 | struct cfs_schedulable_data data = { |
| 9703 | .tg = tg, |
| 9704 | .period = period, |
| 9705 | .quota = quota, |
| 9706 | }; |
| 9707 | |
| 9708 | if (quota != RUNTIME_INF) { |
| 9709 | do_div(data.period, NSEC_PER_USEC); |
| 9710 | do_div(data.quota, NSEC_PER_USEC); |
| 9711 | } |
| 9712 | |
| 9713 | guard(rcu)(); |
| 9714 | return walk_tg_tree(down: tg_cfs_schedulable_down, up: tg_nop, data: &data); |
| 9715 | } |
| 9716 | |
| 9717 | static int cpu_cfs_stat_show(struct seq_file *sf, void *v) |
| 9718 | { |
| 9719 | struct task_group *tg = css_tg(css: seq_css(seq: sf)); |
| 9720 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| 9721 | |
| 9722 | seq_printf(m: sf, fmt: "nr_periods %d\n" , cfs_b->nr_periods); |
| 9723 | seq_printf(m: sf, fmt: "nr_throttled %d\n" , cfs_b->nr_throttled); |
| 9724 | seq_printf(m: sf, fmt: "throttled_time %llu\n" , cfs_b->throttled_time); |
| 9725 | |
| 9726 | if (schedstat_enabled() && tg != &root_task_group) { |
| 9727 | struct sched_statistics *stats; |
| 9728 | u64 ws = 0; |
| 9729 | int i; |
| 9730 | |
| 9731 | for_each_possible_cpu(i) { |
| 9732 | stats = __schedstats_from_se(se: tg->se[i]); |
| 9733 | ws += schedstat_val(stats->wait_sum); |
| 9734 | } |
| 9735 | |
| 9736 | seq_printf(m: sf, fmt: "wait_sum %llu\n" , ws); |
| 9737 | } |
| 9738 | |
| 9739 | seq_printf(m: sf, fmt: "nr_bursts %d\n" , cfs_b->nr_burst); |
| 9740 | seq_printf(m: sf, fmt: "burst_time %llu\n" , cfs_b->burst_time); |
| 9741 | |
| 9742 | return 0; |
| 9743 | } |
| 9744 | |
| 9745 | static u64 throttled_time_self(struct task_group *tg) |
| 9746 | { |
| 9747 | int i; |
| 9748 | u64 total = 0; |
| 9749 | |
| 9750 | for_each_possible_cpu(i) { |
| 9751 | total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); |
| 9752 | } |
| 9753 | |
| 9754 | return total; |
| 9755 | } |
| 9756 | |
| 9757 | static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) |
| 9758 | { |
| 9759 | struct task_group *tg = css_tg(css: seq_css(seq: sf)); |
| 9760 | |
| 9761 | seq_printf(m: sf, fmt: "throttled_time %llu\n" , throttled_time_self(tg)); |
| 9762 | |
| 9763 | return 0; |
| 9764 | } |
| 9765 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 9766 | |
| 9767 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9768 | static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, |
| 9769 | struct cftype *cft, s64 val) |
| 9770 | { |
| 9771 | return sched_group_set_rt_runtime(tg: css_tg(css), rt_runtime_us: val); |
| 9772 | } |
| 9773 | |
| 9774 | static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, |
| 9775 | struct cftype *cft) |
| 9776 | { |
| 9777 | return sched_group_rt_runtime(tg: css_tg(css)); |
| 9778 | } |
| 9779 | |
| 9780 | static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, |
| 9781 | struct cftype *cftype, u64 rt_period_us) |
| 9782 | { |
| 9783 | return sched_group_set_rt_period(tg: css_tg(css), rt_period_us); |
| 9784 | } |
| 9785 | |
| 9786 | static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, |
| 9787 | struct cftype *cft) |
| 9788 | { |
| 9789 | return sched_group_rt_period(tg: css_tg(css)); |
| 9790 | } |
| 9791 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9792 | |
| 9793 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 9794 | static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, |
| 9795 | struct cftype *cft) |
| 9796 | { |
| 9797 | return css_tg(css)->idle; |
| 9798 | } |
| 9799 | |
| 9800 | static int cpu_idle_write_s64(struct cgroup_subsys_state *css, |
| 9801 | struct cftype *cft, s64 idle) |
| 9802 | { |
| 9803 | int ret; |
| 9804 | |
| 9805 | ret = sched_group_set_idle(tg: css_tg(css), idle); |
| 9806 | if (!ret) |
| 9807 | scx_group_set_idle(tg: css_tg(css), idle); |
| 9808 | return ret; |
| 9809 | } |
| 9810 | #endif |
| 9811 | |
| 9812 | static struct cftype cpu_legacy_files[] = { |
| 9813 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 9814 | { |
| 9815 | .name = "shares" , |
| 9816 | .read_u64 = cpu_shares_read_u64, |
| 9817 | .write_u64 = cpu_shares_write_u64, |
| 9818 | }, |
| 9819 | { |
| 9820 | .name = "idle" , |
| 9821 | .read_s64 = cpu_idle_read_s64, |
| 9822 | .write_s64 = cpu_idle_write_s64, |
| 9823 | }, |
| 9824 | #endif |
| 9825 | #ifdef CONFIG_CFS_BANDWIDTH |
| 9826 | { |
| 9827 | .name = "cfs_quota_us" , |
| 9828 | .read_s64 = cpu_cfs_quota_read_s64, |
| 9829 | .write_s64 = cpu_cfs_quota_write_s64, |
| 9830 | }, |
| 9831 | { |
| 9832 | .name = "cfs_period_us" , |
| 9833 | .read_u64 = cpu_cfs_period_read_u64, |
| 9834 | .write_u64 = cpu_cfs_period_write_u64, |
| 9835 | }, |
| 9836 | { |
| 9837 | .name = "cfs_burst_us" , |
| 9838 | .read_u64 = cpu_cfs_burst_read_u64, |
| 9839 | .write_u64 = cpu_cfs_burst_write_u64, |
| 9840 | }, |
| 9841 | { |
| 9842 | .name = "stat" , |
| 9843 | .seq_show = cpu_cfs_stat_show, |
| 9844 | }, |
| 9845 | { |
| 9846 | .name = "stat.local" , |
| 9847 | .seq_show = cpu_cfs_local_stat_show, |
| 9848 | }, |
| 9849 | #endif |
| 9850 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 9851 | { |
| 9852 | .name = "uclamp.min" , |
| 9853 | .flags = CFTYPE_NOT_ON_ROOT, |
| 9854 | .seq_show = cpu_uclamp_min_show, |
| 9855 | .write = cpu_uclamp_min_write, |
| 9856 | }, |
| 9857 | { |
| 9858 | .name = "uclamp.max" , |
| 9859 | .flags = CFTYPE_NOT_ON_ROOT, |
| 9860 | .seq_show = cpu_uclamp_max_show, |
| 9861 | .write = cpu_uclamp_max_write, |
| 9862 | }, |
| 9863 | #endif |
| 9864 | { } /* Terminate */ |
| 9865 | }; |
| 9866 | |
| 9867 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9868 | static struct cftype rt_group_files[] = { |
| 9869 | { |
| 9870 | .name = "rt_runtime_us" , |
| 9871 | .read_s64 = cpu_rt_runtime_read, |
| 9872 | .write_s64 = cpu_rt_runtime_write, |
| 9873 | }, |
| 9874 | { |
| 9875 | .name = "rt_period_us" , |
| 9876 | .read_u64 = cpu_rt_period_read_uint, |
| 9877 | .write_u64 = cpu_rt_period_write_uint, |
| 9878 | }, |
| 9879 | { } /* Terminate */ |
| 9880 | }; |
| 9881 | |
| 9882 | # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED |
| 9883 | DEFINE_STATIC_KEY_FALSE(rt_group_sched); |
| 9884 | # else |
| 9885 | DEFINE_STATIC_KEY_TRUE(rt_group_sched); |
| 9886 | # endif |
| 9887 | |
| 9888 | static int __init setup_rt_group_sched(char *str) |
| 9889 | { |
| 9890 | long val; |
| 9891 | |
| 9892 | if (kstrtol(s: str, base: 0, res: &val) || val < 0 || val > 1) { |
| 9893 | pr_warn("Unable to set rt_group_sched\n" ); |
| 9894 | return 1; |
| 9895 | } |
| 9896 | if (val) |
| 9897 | static_branch_enable(&rt_group_sched); |
| 9898 | else |
| 9899 | static_branch_disable(&rt_group_sched); |
| 9900 | |
| 9901 | return 1; |
| 9902 | } |
| 9903 | __setup("rt_group_sched=" , setup_rt_group_sched); |
| 9904 | |
| 9905 | static int __init cpu_rt_group_init(void) |
| 9906 | { |
| 9907 | if (!rt_group_sched_enabled()) |
| 9908 | return 0; |
| 9909 | |
| 9910 | WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); |
| 9911 | return 0; |
| 9912 | } |
| 9913 | subsys_initcall(cpu_rt_group_init); |
| 9914 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9915 | |
| 9916 | static int (struct seq_file *sf, |
| 9917 | struct cgroup_subsys_state *css) |
| 9918 | { |
| 9919 | #ifdef CONFIG_CFS_BANDWIDTH |
| 9920 | { |
| 9921 | struct task_group *tg = css_tg(css); |
| 9922 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| 9923 | u64 throttled_usec, burst_usec; |
| 9924 | |
| 9925 | throttled_usec = cfs_b->throttled_time; |
| 9926 | do_div(throttled_usec, NSEC_PER_USEC); |
| 9927 | burst_usec = cfs_b->burst_time; |
| 9928 | do_div(burst_usec, NSEC_PER_USEC); |
| 9929 | |
| 9930 | seq_printf(m: sf, fmt: "nr_periods %d\n" |
| 9931 | "nr_throttled %d\n" |
| 9932 | "throttled_usec %llu\n" |
| 9933 | "nr_bursts %d\n" |
| 9934 | "burst_usec %llu\n" , |
| 9935 | cfs_b->nr_periods, cfs_b->nr_throttled, |
| 9936 | throttled_usec, cfs_b->nr_burst, burst_usec); |
| 9937 | } |
| 9938 | #endif |
| 9939 | return 0; |
| 9940 | } |
| 9941 | |
| 9942 | static int cpu_local_stat_show(struct seq_file *sf, |
| 9943 | struct cgroup_subsys_state *css) |
| 9944 | { |
| 9945 | #ifdef CONFIG_CFS_BANDWIDTH |
| 9946 | { |
| 9947 | struct task_group *tg = css_tg(css); |
| 9948 | u64 throttled_self_usec; |
| 9949 | |
| 9950 | throttled_self_usec = throttled_time_self(tg); |
| 9951 | do_div(throttled_self_usec, NSEC_PER_USEC); |
| 9952 | |
| 9953 | seq_printf(m: sf, fmt: "throttled_usec %llu\n" , |
| 9954 | throttled_self_usec); |
| 9955 | } |
| 9956 | #endif |
| 9957 | return 0; |
| 9958 | } |
| 9959 | |
| 9960 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 9961 | |
| 9962 | static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, |
| 9963 | struct cftype *cft) |
| 9964 | { |
| 9965 | return sched_weight_to_cgroup(weight: tg_weight(tg: css_tg(css))); |
| 9966 | } |
| 9967 | |
| 9968 | static int cpu_weight_write_u64(struct cgroup_subsys_state *css, |
| 9969 | struct cftype *cft, u64 cgrp_weight) |
| 9970 | { |
| 9971 | unsigned long weight; |
| 9972 | int ret; |
| 9973 | |
| 9974 | if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) |
| 9975 | return -ERANGE; |
| 9976 | |
| 9977 | weight = sched_weight_from_cgroup(cgrp_weight); |
| 9978 | |
| 9979 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(weight)); |
| 9980 | if (!ret) |
| 9981 | scx_group_set_weight(tg: css_tg(css), cgrp_weight); |
| 9982 | return ret; |
| 9983 | } |
| 9984 | |
| 9985 | static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, |
| 9986 | struct cftype *cft) |
| 9987 | { |
| 9988 | unsigned long weight = tg_weight(tg: css_tg(css)); |
| 9989 | int last_delta = INT_MAX; |
| 9990 | int prio, delta; |
| 9991 | |
| 9992 | /* find the closest nice value to the current weight */ |
| 9993 | for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { |
| 9994 | delta = abs(sched_prio_to_weight[prio] - weight); |
| 9995 | if (delta >= last_delta) |
| 9996 | break; |
| 9997 | last_delta = delta; |
| 9998 | } |
| 9999 | |
| 10000 | return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); |
| 10001 | } |
| 10002 | |
| 10003 | static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, |
| 10004 | struct cftype *cft, s64 nice) |
| 10005 | { |
| 10006 | unsigned long weight; |
| 10007 | int idx, ret; |
| 10008 | |
| 10009 | if (nice < MIN_NICE || nice > MAX_NICE) |
| 10010 | return -ERANGE; |
| 10011 | |
| 10012 | idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; |
| 10013 | idx = array_index_nospec(idx, 40); |
| 10014 | weight = sched_prio_to_weight[idx]; |
| 10015 | |
| 10016 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(weight)); |
| 10017 | if (!ret) |
| 10018 | scx_group_set_weight(tg: css_tg(css), |
| 10019 | cgrp_weight: sched_weight_to_cgroup(weight)); |
| 10020 | return ret; |
| 10021 | } |
| 10022 | #endif /* CONFIG_GROUP_SCHED_WEIGHT */ |
| 10023 | |
| 10024 | static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, |
| 10025 | long period, long quota) |
| 10026 | { |
| 10027 | if (quota < 0) |
| 10028 | seq_puts(m: sf, s: "max" ); |
| 10029 | else |
| 10030 | seq_printf(m: sf, fmt: "%ld" , quota); |
| 10031 | |
| 10032 | seq_printf(m: sf, fmt: " %ld\n" , period); |
| 10033 | } |
| 10034 | |
| 10035 | /* caller should put the current value in *@periodp before calling */ |
| 10036 | static int __maybe_unused cpu_period_quota_parse(char *buf, |
| 10037 | u64 *periodp, u64 *quotap) |
| 10038 | { |
| 10039 | char tok[21]; /* U64_MAX */ |
| 10040 | |
| 10041 | if (sscanf(buf, "%20s %llu" , tok, periodp) < 1) |
| 10042 | return -EINVAL; |
| 10043 | |
| 10044 | *periodp *= NSEC_PER_USEC; |
| 10045 | |
| 10046 | if (sscanf(tok, "%llu" , quotap)) |
| 10047 | *quotap *= NSEC_PER_USEC; |
| 10048 | else if (!strcmp(tok, "max" )) |
| 10049 | *quotap = RUNTIME_INF; |
| 10050 | else |
| 10051 | return -EINVAL; |
| 10052 | |
| 10053 | return 0; |
| 10054 | } |
| 10055 | |
| 10056 | #ifdef CONFIG_CFS_BANDWIDTH |
| 10057 | static int cpu_max_show(struct seq_file *sf, void *v) |
| 10058 | { |
| 10059 | struct task_group *tg = css_tg(css: seq_css(seq: sf)); |
| 10060 | |
| 10061 | cpu_period_quota_print(sf, period: tg_get_cfs_period(tg), quota: tg_get_cfs_quota(tg)); |
| 10062 | return 0; |
| 10063 | } |
| 10064 | |
| 10065 | static ssize_t cpu_max_write(struct kernfs_open_file *of, |
| 10066 | char *buf, size_t nbytes, loff_t off) |
| 10067 | { |
| 10068 | struct task_group *tg = css_tg(css: of_css(of)); |
| 10069 | u64 period = tg_get_cfs_period(tg); |
| 10070 | u64 burst = tg->cfs_bandwidth.burst; |
| 10071 | u64 quota; |
| 10072 | int ret; |
| 10073 | |
| 10074 | ret = cpu_period_quota_parse(buf, periodp: &period, quotap: "a); |
| 10075 | if (!ret) |
| 10076 | ret = tg_set_cfs_bandwidth(tg, period, quota, burst); |
| 10077 | return ret ?: nbytes; |
| 10078 | } |
| 10079 | #endif |
| 10080 | |
| 10081 | static struct cftype cpu_files[] = { |
| 10082 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 10083 | { |
| 10084 | .name = "weight" , |
| 10085 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10086 | .read_u64 = cpu_weight_read_u64, |
| 10087 | .write_u64 = cpu_weight_write_u64, |
| 10088 | }, |
| 10089 | { |
| 10090 | .name = "weight.nice" , |
| 10091 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10092 | .read_s64 = cpu_weight_nice_read_s64, |
| 10093 | .write_s64 = cpu_weight_nice_write_s64, |
| 10094 | }, |
| 10095 | { |
| 10096 | .name = "idle" , |
| 10097 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10098 | .read_s64 = cpu_idle_read_s64, |
| 10099 | .write_s64 = cpu_idle_write_s64, |
| 10100 | }, |
| 10101 | #endif |
| 10102 | #ifdef CONFIG_CFS_BANDWIDTH |
| 10103 | { |
| 10104 | .name = "max" , |
| 10105 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10106 | .seq_show = cpu_max_show, |
| 10107 | .write = cpu_max_write, |
| 10108 | }, |
| 10109 | { |
| 10110 | .name = "max.burst" , |
| 10111 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10112 | .read_u64 = cpu_cfs_burst_read_u64, |
| 10113 | .write_u64 = cpu_cfs_burst_write_u64, |
| 10114 | }, |
| 10115 | #endif |
| 10116 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 10117 | { |
| 10118 | .name = "uclamp.min" , |
| 10119 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10120 | .seq_show = cpu_uclamp_min_show, |
| 10121 | .write = cpu_uclamp_min_write, |
| 10122 | }, |
| 10123 | { |
| 10124 | .name = "uclamp.max" , |
| 10125 | .flags = CFTYPE_NOT_ON_ROOT, |
| 10126 | .seq_show = cpu_uclamp_max_show, |
| 10127 | .write = cpu_uclamp_max_write, |
| 10128 | }, |
| 10129 | #endif |
| 10130 | { } /* terminate */ |
| 10131 | }; |
| 10132 | |
| 10133 | struct cgroup_subsys cpu_cgrp_subsys = { |
| 10134 | .css_alloc = cpu_cgroup_css_alloc, |
| 10135 | .css_online = cpu_cgroup_css_online, |
| 10136 | .css_offline = cpu_cgroup_css_offline, |
| 10137 | .css_released = cpu_cgroup_css_released, |
| 10138 | .css_free = cpu_cgroup_css_free, |
| 10139 | .css_extra_stat_show = cpu_extra_stat_show, |
| 10140 | .css_local_stat_show = cpu_local_stat_show, |
| 10141 | .can_attach = cpu_cgroup_can_attach, |
| 10142 | .attach = cpu_cgroup_attach, |
| 10143 | .cancel_attach = cpu_cgroup_cancel_attach, |
| 10144 | .legacy_cftypes = cpu_legacy_files, |
| 10145 | .dfl_cftypes = cpu_files, |
| 10146 | .early_init = true, |
| 10147 | .threaded = true, |
| 10148 | }; |
| 10149 | |
| 10150 | #endif /* CONFIG_CGROUP_SCHED */ |
| 10151 | |
| 10152 | void dump_cpu_task(int cpu) |
| 10153 | { |
| 10154 | if (in_hardirq() && cpu == smp_processor_id()) { |
| 10155 | struct pt_regs *regs; |
| 10156 | |
| 10157 | regs = get_irq_regs(); |
| 10158 | if (regs) { |
| 10159 | show_regs(regs); |
| 10160 | return; |
| 10161 | } |
| 10162 | } |
| 10163 | |
| 10164 | if (trigger_single_cpu_backtrace(cpu)) |
| 10165 | return; |
| 10166 | |
| 10167 | pr_info("Task dump for CPU %d:\n" , cpu); |
| 10168 | sched_show_task(cpu_curr(cpu)); |
| 10169 | } |
| 10170 | |
| 10171 | /* |
| 10172 | * Nice levels are multiplicative, with a gentle 10% change for every |
| 10173 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
| 10174 | * nice 1, it will get ~10% less CPU time than another CPU-bound task |
| 10175 | * that remained on nice 0. |
| 10176 | * |
| 10177 | * The "10% effect" is relative and cumulative: from _any_ nice level, |
| 10178 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
| 10179 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
| 10180 | * If a task goes up by ~10% and another task goes down by ~10% then |
| 10181 | * the relative distance between them is ~25%.) |
| 10182 | */ |
| 10183 | const int sched_prio_to_weight[40] = { |
| 10184 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
| 10185 | /* -15 */ 29154, 23254, 18705, 14949, 11916, |
| 10186 | /* -10 */ 9548, 7620, 6100, 4904, 3906, |
| 10187 | /* -5 */ 3121, 2501, 1991, 1586, 1277, |
| 10188 | /* 0 */ 1024, 820, 655, 526, 423, |
| 10189 | /* 5 */ 335, 272, 215, 172, 137, |
| 10190 | /* 10 */ 110, 87, 70, 56, 45, |
| 10191 | /* 15 */ 36, 29, 23, 18, 15, |
| 10192 | }; |
| 10193 | |
| 10194 | /* |
| 10195 | * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. |
| 10196 | * |
| 10197 | * In cases where the weight does not change often, we can use the |
| 10198 | * pre-calculated inverse to speed up arithmetics by turning divisions |
| 10199 | * into multiplications: |
| 10200 | */ |
| 10201 | const u32 sched_prio_to_wmult[40] = { |
| 10202 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
| 10203 | /* -15 */ 147320, 184698, 229616, 287308, 360437, |
| 10204 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
| 10205 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
| 10206 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
| 10207 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
| 10208 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
| 10209 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| 10210 | }; |
| 10211 | |
| 10212 | void call_trace_sched_update_nr_running(struct rq *rq, int count) |
| 10213 | { |
| 10214 | trace_sched_update_nr_running_tp(rq, change: count); |
| 10215 | } |
| 10216 | |
| 10217 | #ifdef CONFIG_SCHED_MM_CID |
| 10218 | |
| 10219 | /* |
| 10220 | * @cid_lock: Guarantee forward-progress of cid allocation. |
| 10221 | * |
| 10222 | * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock |
| 10223 | * is only used when contention is detected by the lock-free allocation so |
| 10224 | * forward progress can be guaranteed. |
| 10225 | */ |
| 10226 | DEFINE_RAW_SPINLOCK(cid_lock); |
| 10227 | |
| 10228 | /* |
| 10229 | * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. |
| 10230 | * |
| 10231 | * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is |
| 10232 | * detected, it is set to 1 to ensure that all newly coming allocations are |
| 10233 | * serialized by @cid_lock until the allocation which detected contention |
| 10234 | * completes and sets @use_cid_lock back to 0. This guarantees forward progress |
| 10235 | * of a cid allocation. |
| 10236 | */ |
| 10237 | int use_cid_lock; |
| 10238 | |
| 10239 | /* |
| 10240 | * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid |
| 10241 | * concurrently with respect to the execution of the source runqueue context |
| 10242 | * switch. |
| 10243 | * |
| 10244 | * There is one basic properties we want to guarantee here: |
| 10245 | * |
| 10246 | * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively |
| 10247 | * used by a task. That would lead to concurrent allocation of the cid and |
| 10248 | * userspace corruption. |
| 10249 | * |
| 10250 | * Provide this guarantee by introducing a Dekker memory ordering to guarantee |
| 10251 | * that a pair of loads observe at least one of a pair of stores, which can be |
| 10252 | * shown as: |
| 10253 | * |
| 10254 | * X = Y = 0 |
| 10255 | * |
| 10256 | * w[X]=1 w[Y]=1 |
| 10257 | * MB MB |
| 10258 | * r[Y]=y r[X]=x |
| 10259 | * |
| 10260 | * Which guarantees that x==0 && y==0 is impossible. But rather than using |
| 10261 | * values 0 and 1, this algorithm cares about specific state transitions of the |
| 10262 | * runqueue current task (as updated by the scheduler context switch), and the |
| 10263 | * per-mm/cpu cid value. |
| 10264 | * |
| 10265 | * Let's introduce task (Y) which has task->mm == mm and task (N) which has |
| 10266 | * task->mm != mm for the rest of the discussion. There are two scheduler state |
| 10267 | * transitions on context switch we care about: |
| 10268 | * |
| 10269 | * (TSA) Store to rq->curr with transition from (N) to (Y) |
| 10270 | * |
| 10271 | * (TSB) Store to rq->curr with transition from (Y) to (N) |
| 10272 | * |
| 10273 | * On the remote-clear side, there is one transition we care about: |
| 10274 | * |
| 10275 | * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag |
| 10276 | * |
| 10277 | * There is also a transition to UNSET state which can be performed from all |
| 10278 | * sides (scheduler, remote-clear). It is always performed with a cmpxchg which |
| 10279 | * guarantees that only a single thread will succeed: |
| 10280 | * |
| 10281 | * (TMB) cmpxchg to *pcpu_cid to mark UNSET |
| 10282 | * |
| 10283 | * Just to be clear, what we do _not_ want to happen is a transition to UNSET |
| 10284 | * when a thread is actively using the cid (property (1)). |
| 10285 | * |
| 10286 | * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. |
| 10287 | * |
| 10288 | * Scenario A) (TSA)+(TMA) (from next task perspective) |
| 10289 | * |
| 10290 | * CPU0 CPU1 |
| 10291 | * |
| 10292 | * Context switch CS-1 Remote-clear |
| 10293 | * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) |
| 10294 | * (implied barrier after cmpxchg) |
| 10295 | * - switch_mm_cid() |
| 10296 | * - memory barrier (see switch_mm_cid() |
| 10297 | * comment explaining how this barrier |
| 10298 | * is combined with other scheduler |
| 10299 | * barriers) |
| 10300 | * - mm_cid_get (next) |
| 10301 | * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) |
| 10302 | * |
| 10303 | * This Dekker ensures that either task (Y) is observed by the |
| 10304 | * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are |
| 10305 | * observed. |
| 10306 | * |
| 10307 | * If task (Y) store is observed by rcu_dereference(), it means that there is |
| 10308 | * still an active task on the cpu. Remote-clear will therefore not transition |
| 10309 | * to UNSET, which fulfills property (1). |
| 10310 | * |
| 10311 | * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), |
| 10312 | * it will move its state to UNSET, which clears the percpu cid perhaps |
| 10313 | * uselessly (which is not an issue for correctness). Because task (Y) is not |
| 10314 | * observed, CPU1 can move ahead to set the state to UNSET. Because moving |
| 10315 | * state to UNSET is done with a cmpxchg expecting that the old state has the |
| 10316 | * LAZY flag set, only one thread will successfully UNSET. |
| 10317 | * |
| 10318 | * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 |
| 10319 | * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and |
| 10320 | * CPU1 will observe task (Y) and do nothing more, which is fine. |
| 10321 | * |
| 10322 | * What we are effectively preventing with this Dekker is a scenario where |
| 10323 | * neither LAZY flag nor store (Y) are observed, which would fail property (1) |
| 10324 | * because this would UNSET a cid which is actively used. |
| 10325 | */ |
| 10326 | |
| 10327 | void sched_mm_cid_migrate_from(struct task_struct *t) |
| 10328 | { |
| 10329 | t->migrate_from_cpu = task_cpu(p: t); |
| 10330 | } |
| 10331 | |
| 10332 | static |
| 10333 | int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, |
| 10334 | struct task_struct *t, |
| 10335 | struct mm_cid *src_pcpu_cid) |
| 10336 | { |
| 10337 | struct mm_struct *mm = t->mm; |
| 10338 | struct task_struct *src_task; |
| 10339 | int src_cid, last_mm_cid; |
| 10340 | |
| 10341 | if (!mm) |
| 10342 | return -1; |
| 10343 | |
| 10344 | last_mm_cid = t->last_mm_cid; |
| 10345 | /* |
| 10346 | * If the migrated task has no last cid, or if the current |
| 10347 | * task on src rq uses the cid, it means the source cid does not need |
| 10348 | * to be moved to the destination cpu. |
| 10349 | */ |
| 10350 | if (last_mm_cid == -1) |
| 10351 | return -1; |
| 10352 | src_cid = READ_ONCE(src_pcpu_cid->cid); |
| 10353 | if (!mm_cid_is_valid(cid: src_cid) || last_mm_cid != src_cid) |
| 10354 | return -1; |
| 10355 | |
| 10356 | /* |
| 10357 | * If we observe an active task using the mm on this rq, it means we |
| 10358 | * are not the last task to be migrated from this cpu for this mm, so |
| 10359 | * there is no need to move src_cid to the destination cpu. |
| 10360 | */ |
| 10361 | guard(rcu)(); |
| 10362 | src_task = rcu_dereference(src_rq->curr); |
| 10363 | if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { |
| 10364 | t->last_mm_cid = -1; |
| 10365 | return -1; |
| 10366 | } |
| 10367 | |
| 10368 | return src_cid; |
| 10369 | } |
| 10370 | |
| 10371 | static |
| 10372 | int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, |
| 10373 | struct task_struct *t, |
| 10374 | struct mm_cid *src_pcpu_cid, |
| 10375 | int src_cid) |
| 10376 | { |
| 10377 | struct task_struct *src_task; |
| 10378 | struct mm_struct *mm = t->mm; |
| 10379 | int lazy_cid; |
| 10380 | |
| 10381 | if (src_cid == -1) |
| 10382 | return -1; |
| 10383 | |
| 10384 | /* |
| 10385 | * Attempt to clear the source cpu cid to move it to the destination |
| 10386 | * cpu. |
| 10387 | */ |
| 10388 | lazy_cid = mm_cid_set_lazy_put(cid: src_cid); |
| 10389 | if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) |
| 10390 | return -1; |
| 10391 | |
| 10392 | /* |
| 10393 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| 10394 | * rq->curr->mm matches the scheduler barrier in context_switch() |
| 10395 | * between store to rq->curr and load of prev and next task's |
| 10396 | * per-mm/cpu cid. |
| 10397 | * |
| 10398 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| 10399 | * rq->curr->mm_cid_active matches the barrier in |
| 10400 | * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and |
| 10401 | * sched_mm_cid_after_execve() between store to t->mm_cid_active and |
| 10402 | * load of per-mm/cpu cid. |
| 10403 | */ |
| 10404 | |
| 10405 | /* |
| 10406 | * If we observe an active task using the mm on this rq after setting |
| 10407 | * the lazy-put flag, this task will be responsible for transitioning |
| 10408 | * from lazy-put flag set to MM_CID_UNSET. |
| 10409 | */ |
| 10410 | scoped_guard (rcu) { |
| 10411 | src_task = rcu_dereference(src_rq->curr); |
| 10412 | if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { |
| 10413 | /* |
| 10414 | * We observed an active task for this mm, there is therefore |
| 10415 | * no point in moving this cid to the destination cpu. |
| 10416 | */ |
| 10417 | t->last_mm_cid = -1; |
| 10418 | return -1; |
| 10419 | } |
| 10420 | } |
| 10421 | |
| 10422 | /* |
| 10423 | * The src_cid is unused, so it can be unset. |
| 10424 | */ |
| 10425 | if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) |
| 10426 | return -1; |
| 10427 | WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); |
| 10428 | return src_cid; |
| 10429 | } |
| 10430 | |
| 10431 | /* |
| 10432 | * Migration to dst cpu. Called with dst_rq lock held. |
| 10433 | * Interrupts are disabled, which keeps the window of cid ownership without the |
| 10434 | * source rq lock held small. |
| 10435 | */ |
| 10436 | void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) |
| 10437 | { |
| 10438 | struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; |
| 10439 | struct mm_struct *mm = t->mm; |
| 10440 | int src_cid, src_cpu; |
| 10441 | bool dst_cid_is_set; |
| 10442 | struct rq *src_rq; |
| 10443 | |
| 10444 | lockdep_assert_rq_held(rq: dst_rq); |
| 10445 | |
| 10446 | if (!mm) |
| 10447 | return; |
| 10448 | src_cpu = t->migrate_from_cpu; |
| 10449 | if (src_cpu == -1) { |
| 10450 | t->last_mm_cid = -1; |
| 10451 | return; |
| 10452 | } |
| 10453 | /* |
| 10454 | * Move the src cid if the dst cid is unset. This keeps id |
| 10455 | * allocation closest to 0 in cases where few threads migrate around |
| 10456 | * many CPUs. |
| 10457 | * |
| 10458 | * If destination cid or recent cid is already set, we may have |
| 10459 | * to just clear the src cid to ensure compactness in frequent |
| 10460 | * migrations scenarios. |
| 10461 | * |
| 10462 | * It is not useful to clear the src cid when the number of threads is |
| 10463 | * greater or equal to the number of allowed CPUs, because user-space |
| 10464 | * can expect that the number of allowed cids can reach the number of |
| 10465 | * allowed CPUs. |
| 10466 | */ |
| 10467 | dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); |
| 10468 | dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || |
| 10469 | !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); |
| 10470 | if (dst_cid_is_set && atomic_read(v: &mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) |
| 10471 | return; |
| 10472 | src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); |
| 10473 | src_rq = cpu_rq(src_cpu); |
| 10474 | src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); |
| 10475 | if (src_cid == -1) |
| 10476 | return; |
| 10477 | src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, |
| 10478 | src_cid); |
| 10479 | if (src_cid == -1) |
| 10480 | return; |
| 10481 | if (dst_cid_is_set) { |
| 10482 | __mm_cid_put(mm, cid: src_cid); |
| 10483 | return; |
| 10484 | } |
| 10485 | /* Move src_cid to dst cpu. */ |
| 10486 | mm_cid_snapshot_time(rq: dst_rq, mm); |
| 10487 | WRITE_ONCE(dst_pcpu_cid->cid, src_cid); |
| 10488 | WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); |
| 10489 | } |
| 10490 | |
| 10491 | static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, |
| 10492 | int cpu) |
| 10493 | { |
| 10494 | struct rq *rq = cpu_rq(cpu); |
| 10495 | struct task_struct *t; |
| 10496 | int cid, lazy_cid; |
| 10497 | |
| 10498 | cid = READ_ONCE(pcpu_cid->cid); |
| 10499 | if (!mm_cid_is_valid(cid)) |
| 10500 | return; |
| 10501 | |
| 10502 | /* |
| 10503 | * Clear the cpu cid if it is set to keep cid allocation compact. If |
| 10504 | * there happens to be other tasks left on the source cpu using this |
| 10505 | * mm, the next task using this mm will reallocate its cid on context |
| 10506 | * switch. |
| 10507 | */ |
| 10508 | lazy_cid = mm_cid_set_lazy_put(cid); |
| 10509 | if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) |
| 10510 | return; |
| 10511 | |
| 10512 | /* |
| 10513 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| 10514 | * rq->curr->mm matches the scheduler barrier in context_switch() |
| 10515 | * between store to rq->curr and load of prev and next task's |
| 10516 | * per-mm/cpu cid. |
| 10517 | * |
| 10518 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading |
| 10519 | * rq->curr->mm_cid_active matches the barrier in |
| 10520 | * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and |
| 10521 | * sched_mm_cid_after_execve() between store to t->mm_cid_active and |
| 10522 | * load of per-mm/cpu cid. |
| 10523 | */ |
| 10524 | |
| 10525 | /* |
| 10526 | * If we observe an active task using the mm on this rq after setting |
| 10527 | * the lazy-put flag, that task will be responsible for transitioning |
| 10528 | * from lazy-put flag set to MM_CID_UNSET. |
| 10529 | */ |
| 10530 | scoped_guard (rcu) { |
| 10531 | t = rcu_dereference(rq->curr); |
| 10532 | if (READ_ONCE(t->mm_cid_active) && t->mm == mm) |
| 10533 | return; |
| 10534 | } |
| 10535 | |
| 10536 | /* |
| 10537 | * The cid is unused, so it can be unset. |
| 10538 | * Disable interrupts to keep the window of cid ownership without rq |
| 10539 | * lock small. |
| 10540 | */ |
| 10541 | scoped_guard (irqsave) { |
| 10542 | if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) |
| 10543 | __mm_cid_put(mm, cid); |
| 10544 | } |
| 10545 | } |
| 10546 | |
| 10547 | static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) |
| 10548 | { |
| 10549 | struct rq *rq = cpu_rq(cpu); |
| 10550 | struct mm_cid *pcpu_cid; |
| 10551 | struct task_struct *curr; |
| 10552 | u64 rq_clock; |
| 10553 | |
| 10554 | /* |
| 10555 | * rq->clock load is racy on 32-bit but one spurious clear once in a |
| 10556 | * while is irrelevant. |
| 10557 | */ |
| 10558 | rq_clock = READ_ONCE(rq->clock); |
| 10559 | pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); |
| 10560 | |
| 10561 | /* |
| 10562 | * In order to take care of infrequently scheduled tasks, bump the time |
| 10563 | * snapshot associated with this cid if an active task using the mm is |
| 10564 | * observed on this rq. |
| 10565 | */ |
| 10566 | scoped_guard (rcu) { |
| 10567 | curr = rcu_dereference(rq->curr); |
| 10568 | if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { |
| 10569 | WRITE_ONCE(pcpu_cid->time, rq_clock); |
| 10570 | return; |
| 10571 | } |
| 10572 | } |
| 10573 | |
| 10574 | if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) |
| 10575 | return; |
| 10576 | sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); |
| 10577 | } |
| 10578 | |
| 10579 | static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, |
| 10580 | int weight) |
| 10581 | { |
| 10582 | struct mm_cid *pcpu_cid; |
| 10583 | int cid; |
| 10584 | |
| 10585 | pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); |
| 10586 | cid = READ_ONCE(pcpu_cid->cid); |
| 10587 | if (!mm_cid_is_valid(cid) || cid < weight) |
| 10588 | return; |
| 10589 | sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); |
| 10590 | } |
| 10591 | |
| 10592 | static void task_mm_cid_work(struct callback_head *work) |
| 10593 | { |
| 10594 | unsigned long now = jiffies, old_scan, next_scan; |
| 10595 | struct task_struct *t = current; |
| 10596 | struct cpumask *cidmask; |
| 10597 | struct mm_struct *mm; |
| 10598 | int weight, cpu; |
| 10599 | |
| 10600 | WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); |
| 10601 | |
| 10602 | work->next = work; /* Prevent double-add */ |
| 10603 | if (t->flags & PF_EXITING) |
| 10604 | return; |
| 10605 | mm = t->mm; |
| 10606 | if (!mm) |
| 10607 | return; |
| 10608 | old_scan = READ_ONCE(mm->mm_cid_next_scan); |
| 10609 | next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); |
| 10610 | if (!old_scan) { |
| 10611 | unsigned long res; |
| 10612 | |
| 10613 | res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); |
| 10614 | if (res != old_scan) |
| 10615 | old_scan = res; |
| 10616 | else |
| 10617 | old_scan = next_scan; |
| 10618 | } |
| 10619 | if (time_before(now, old_scan)) |
| 10620 | return; |
| 10621 | if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) |
| 10622 | return; |
| 10623 | cidmask = mm_cidmask(mm); |
| 10624 | /* Clear cids that were not recently used. */ |
| 10625 | for_each_possible_cpu(cpu) |
| 10626 | sched_mm_cid_remote_clear_old(mm, cpu); |
| 10627 | weight = cpumask_weight(srcp: cidmask); |
| 10628 | /* |
| 10629 | * Clear cids that are greater or equal to the cidmask weight to |
| 10630 | * recompact it. |
| 10631 | */ |
| 10632 | for_each_possible_cpu(cpu) |
| 10633 | sched_mm_cid_remote_clear_weight(mm, cpu, weight); |
| 10634 | } |
| 10635 | |
| 10636 | void init_sched_mm_cid(struct task_struct *t) |
| 10637 | { |
| 10638 | struct mm_struct *mm = t->mm; |
| 10639 | int mm_users = 0; |
| 10640 | |
| 10641 | if (mm) { |
| 10642 | mm_users = atomic_read(v: &mm->mm_users); |
| 10643 | if (mm_users == 1) |
| 10644 | mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); |
| 10645 | } |
| 10646 | t->cid_work.next = &t->cid_work; /* Protect against double add */ |
| 10647 | init_task_work(twork: &t->cid_work, func: task_mm_cid_work); |
| 10648 | } |
| 10649 | |
| 10650 | void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) |
| 10651 | { |
| 10652 | struct callback_head *work = &curr->cid_work; |
| 10653 | unsigned long now = jiffies; |
| 10654 | |
| 10655 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || |
| 10656 | work->next != work) |
| 10657 | return; |
| 10658 | if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) |
| 10659 | return; |
| 10660 | |
| 10661 | /* No page allocation under rq lock */ |
| 10662 | task_work_add(task: curr, twork: work, mode: TWA_RESUME); |
| 10663 | } |
| 10664 | |
| 10665 | void sched_mm_cid_exit_signals(struct task_struct *t) |
| 10666 | { |
| 10667 | struct mm_struct *mm = t->mm; |
| 10668 | struct rq *rq; |
| 10669 | |
| 10670 | if (!mm) |
| 10671 | return; |
| 10672 | |
| 10673 | preempt_disable(); |
| 10674 | rq = this_rq(); |
| 10675 | guard(rq_lock_irqsave)(l: rq); |
| 10676 | preempt_enable_no_resched(); /* holding spinlock */ |
| 10677 | WRITE_ONCE(t->mm_cid_active, 0); |
| 10678 | /* |
| 10679 | * Store t->mm_cid_active before loading per-mm/cpu cid. |
| 10680 | * Matches barrier in sched_mm_cid_remote_clear_old(). |
| 10681 | */ |
| 10682 | smp_mb(); |
| 10683 | mm_cid_put(mm); |
| 10684 | t->last_mm_cid = t->mm_cid = -1; |
| 10685 | } |
| 10686 | |
| 10687 | void sched_mm_cid_before_execve(struct task_struct *t) |
| 10688 | { |
| 10689 | struct mm_struct *mm = t->mm; |
| 10690 | struct rq *rq; |
| 10691 | |
| 10692 | if (!mm) |
| 10693 | return; |
| 10694 | |
| 10695 | preempt_disable(); |
| 10696 | rq = this_rq(); |
| 10697 | guard(rq_lock_irqsave)(l: rq); |
| 10698 | preempt_enable_no_resched(); /* holding spinlock */ |
| 10699 | WRITE_ONCE(t->mm_cid_active, 0); |
| 10700 | /* |
| 10701 | * Store t->mm_cid_active before loading per-mm/cpu cid. |
| 10702 | * Matches barrier in sched_mm_cid_remote_clear_old(). |
| 10703 | */ |
| 10704 | smp_mb(); |
| 10705 | mm_cid_put(mm); |
| 10706 | t->last_mm_cid = t->mm_cid = -1; |
| 10707 | } |
| 10708 | |
| 10709 | void sched_mm_cid_after_execve(struct task_struct *t) |
| 10710 | { |
| 10711 | struct mm_struct *mm = t->mm; |
| 10712 | struct rq *rq; |
| 10713 | |
| 10714 | if (!mm) |
| 10715 | return; |
| 10716 | |
| 10717 | preempt_disable(); |
| 10718 | rq = this_rq(); |
| 10719 | scoped_guard (rq_lock_irqsave, rq) { |
| 10720 | preempt_enable_no_resched(); /* holding spinlock */ |
| 10721 | WRITE_ONCE(t->mm_cid_active, 1); |
| 10722 | /* |
| 10723 | * Store t->mm_cid_active before loading per-mm/cpu cid. |
| 10724 | * Matches barrier in sched_mm_cid_remote_clear_old(). |
| 10725 | */ |
| 10726 | smp_mb(); |
| 10727 | t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); |
| 10728 | } |
| 10729 | } |
| 10730 | |
| 10731 | void sched_mm_cid_fork(struct task_struct *t) |
| 10732 | { |
| 10733 | WARN_ON_ONCE(!t->mm || t->mm_cid != -1); |
| 10734 | t->mm_cid_active = 1; |
| 10735 | } |
| 10736 | #endif |
| 10737 | |
| 10738 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 10739 | void sched_deq_and_put_task(struct task_struct *p, int queue_flags, |
| 10740 | struct sched_enq_and_set_ctx *ctx) |
| 10741 | { |
| 10742 | struct rq *rq = task_rq(p); |
| 10743 | |
| 10744 | lockdep_assert_rq_held(rq); |
| 10745 | |
| 10746 | *ctx = (struct sched_enq_and_set_ctx){ |
| 10747 | .p = p, |
| 10748 | .queue_flags = queue_flags, |
| 10749 | .queued = task_on_rq_queued(p), |
| 10750 | .running = task_current(rq, p), |
| 10751 | }; |
| 10752 | |
| 10753 | update_rq_clock(rq); |
| 10754 | if (ctx->queued) |
| 10755 | dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); |
| 10756 | if (ctx->running) |
| 10757 | put_prev_task(rq, p); |
| 10758 | } |
| 10759 | |
| 10760 | void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) |
| 10761 | { |
| 10762 | struct rq *rq = task_rq(ctx->p); |
| 10763 | |
| 10764 | lockdep_assert_rq_held(rq); |
| 10765 | |
| 10766 | if (ctx->queued) |
| 10767 | enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); |
| 10768 | if (ctx->running) |
| 10769 | set_next_task(rq, ctx->p); |
| 10770 | } |
| 10771 | #endif /* CONFIG_SCHED_CLASS_EXT */ |
| 10772 | |