1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* memcontrol.c - Memory Controller |
3 | * |
4 | * Copyright IBM Corporation, 2007 |
5 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
6 | * |
7 | * Copyright 2007 OpenVZ SWsoft Inc |
8 | * Author: Pavel Emelianov <xemul@openvz.org> |
9 | * |
10 | * Memory thresholds |
11 | * Copyright (C) 2009 Nokia Corporation |
12 | * Author: Kirill A. Shutemov |
13 | * |
14 | * Kernel Memory Controller |
15 | * Copyright (C) 2012 Parallels Inc. and Google Inc. |
16 | * Authors: Glauber Costa and Suleiman Souhlal |
17 | * |
18 | * Native page reclaim |
19 | * Charge lifetime sanitation |
20 | * Lockless page tracking & accounting |
21 | * Unified hierarchy configuration model |
22 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner |
23 | * |
24 | * Per memcg lru locking |
25 | * Copyright (C) 2020 Alibaba, Inc, Alex Shi |
26 | */ |
27 | |
28 | #include <linux/cgroup-defs.h> |
29 | #include <linux/page_counter.h> |
30 | #include <linux/memcontrol.h> |
31 | #include <linux/cgroup.h> |
32 | #include <linux/cpuset.h> |
33 | #include <linux/sched/mm.h> |
34 | #include <linux/shmem_fs.h> |
35 | #include <linux/hugetlb.h> |
36 | #include <linux/pagemap.h> |
37 | #include <linux/pagevec.h> |
38 | #include <linux/vm_event_item.h> |
39 | #include <linux/smp.h> |
40 | #include <linux/page-flags.h> |
41 | #include <linux/backing-dev.h> |
42 | #include <linux/bit_spinlock.h> |
43 | #include <linux/rcupdate.h> |
44 | #include <linux/limits.h> |
45 | #include <linux/export.h> |
46 | #include <linux/list.h> |
47 | #include <linux/mutex.h> |
48 | #include <linux/rbtree.h> |
49 | #include <linux/slab.h> |
50 | #include <linux/swapops.h> |
51 | #include <linux/spinlock.h> |
52 | #include <linux/fs.h> |
53 | #include <linux/seq_file.h> |
54 | #include <linux/parser.h> |
55 | #include <linux/vmpressure.h> |
56 | #include <linux/memremap.h> |
57 | #include <linux/mm_inline.h> |
58 | #include <linux/swap_cgroup.h> |
59 | #include <linux/cpu.h> |
60 | #include <linux/oom.h> |
61 | #include <linux/lockdep.h> |
62 | #include <linux/resume_user_mode.h> |
63 | #include <linux/psi.h> |
64 | #include <linux/seq_buf.h> |
65 | #include <linux/sched/isolation.h> |
66 | #include <linux/kmemleak.h> |
67 | #include "internal.h" |
68 | #include <net/sock.h> |
69 | #include <net/ip.h> |
70 | #include "slab.h" |
71 | #include "memcontrol-v1.h" |
72 | |
73 | #include <linux/uaccess.h> |
74 | |
75 | #define CREATE_TRACE_POINTS |
76 | #include <trace/events/memcg.h> |
77 | #undef CREATE_TRACE_POINTS |
78 | |
79 | #include <trace/events/vmscan.h> |
80 | |
81 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
82 | EXPORT_SYMBOL(memory_cgrp_subsys); |
83 | |
84 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
85 | |
86 | /* Active memory cgroup to use from an interrupt context */ |
87 | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); |
88 | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); |
89 | |
90 | /* Socket memory accounting disabled? */ |
91 | static bool cgroup_memory_nosocket __ro_after_init; |
92 | |
93 | /* Kernel memory accounting disabled? */ |
94 | static bool cgroup_memory_nokmem __ro_after_init; |
95 | |
96 | /* BPF memory accounting disabled? */ |
97 | static bool cgroup_memory_nobpf __ro_after_init; |
98 | |
99 | static struct kmem_cache *memcg_cachep; |
100 | static struct kmem_cache *memcg_pn_cachep; |
101 | |
102 | #ifdef CONFIG_CGROUP_WRITEBACK |
103 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); |
104 | #endif |
105 | |
106 | static inline bool task_is_dying(void) |
107 | { |
108 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || |
109 | (current->flags & PF_EXITING); |
110 | } |
111 | |
112 | /* Some nice accessors for the vmpressure. */ |
113 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) |
114 | { |
115 | if (!memcg) |
116 | memcg = root_mem_cgroup; |
117 | return &memcg->vmpressure; |
118 | } |
119 | |
120 | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) |
121 | { |
122 | return container_of(vmpr, struct mem_cgroup, vmpressure); |
123 | } |
124 | |
125 | #define SEQ_BUF_SIZE SZ_4K |
126 | #define CURRENT_OBJCG_UPDATE_BIT 0 |
127 | #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) |
128 | |
129 | static DEFINE_SPINLOCK(objcg_lock); |
130 | |
131 | bool mem_cgroup_kmem_disabled(void) |
132 | { |
133 | return cgroup_memory_nokmem; |
134 | } |
135 | |
136 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); |
137 | |
138 | static void obj_cgroup_release(struct percpu_ref *ref) |
139 | { |
140 | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); |
141 | unsigned int nr_bytes; |
142 | unsigned int nr_pages; |
143 | unsigned long flags; |
144 | |
145 | /* |
146 | * At this point all allocated objects are freed, and |
147 | * objcg->nr_charged_bytes can't have an arbitrary byte value. |
148 | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). |
149 | * |
150 | * The following sequence can lead to it: |
151 | * 1) CPU0: objcg == stock->cached_objcg |
152 | * 2) CPU1: we do a small allocation (e.g. 92 bytes), |
153 | * PAGE_SIZE bytes are charged |
154 | * 3) CPU1: a process from another memcg is allocating something, |
155 | * the stock if flushed, |
156 | * objcg->nr_charged_bytes = PAGE_SIZE - 92 |
157 | * 5) CPU0: we do release this object, |
158 | * 92 bytes are added to stock->nr_bytes |
159 | * 6) CPU0: stock is flushed, |
160 | * 92 bytes are added to objcg->nr_charged_bytes |
161 | * |
162 | * In the result, nr_charged_bytes == PAGE_SIZE. |
163 | * This page will be uncharged in obj_cgroup_release(). |
164 | */ |
165 | nr_bytes = atomic_read(v: &objcg->nr_charged_bytes); |
166 | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); |
167 | nr_pages = nr_bytes >> PAGE_SHIFT; |
168 | |
169 | if (nr_pages) { |
170 | struct mem_cgroup *memcg; |
171 | |
172 | memcg = get_mem_cgroup_from_objcg(objcg); |
173 | mod_memcg_state(memcg, idx: MEMCG_KMEM, val: -nr_pages); |
174 | memcg1_account_kmem(memcg, nr_pages: -nr_pages); |
175 | if (!mem_cgroup_is_root(memcg)) |
176 | memcg_uncharge(memcg, nr_pages); |
177 | mem_cgroup_put(memcg); |
178 | } |
179 | |
180 | spin_lock_irqsave(&objcg_lock, flags); |
181 | list_del(entry: &objcg->list); |
182 | spin_unlock_irqrestore(lock: &objcg_lock, flags); |
183 | |
184 | percpu_ref_exit(ref); |
185 | kfree_rcu(objcg, rcu); |
186 | } |
187 | |
188 | static struct obj_cgroup *obj_cgroup_alloc(void) |
189 | { |
190 | struct obj_cgroup *objcg; |
191 | int ret; |
192 | |
193 | objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); |
194 | if (!objcg) |
195 | return NULL; |
196 | |
197 | ret = percpu_ref_init(ref: &objcg->refcnt, release: obj_cgroup_release, flags: 0, |
198 | GFP_KERNEL); |
199 | if (ret) { |
200 | kfree(objp: objcg); |
201 | return NULL; |
202 | } |
203 | INIT_LIST_HEAD(list: &objcg->list); |
204 | return objcg; |
205 | } |
206 | |
207 | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, |
208 | struct mem_cgroup *parent) |
209 | { |
210 | struct obj_cgroup *objcg, *iter; |
211 | |
212 | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); |
213 | |
214 | spin_lock_irq(lock: &objcg_lock); |
215 | |
216 | /* 1) Ready to reparent active objcg. */ |
217 | list_add(new: &objcg->list, head: &memcg->objcg_list); |
218 | /* 2) Reparent active objcg and already reparented objcgs to parent. */ |
219 | list_for_each_entry(iter, &memcg->objcg_list, list) |
220 | WRITE_ONCE(iter->memcg, parent); |
221 | /* 3) Move already reparented objcgs to the parent's list */ |
222 | list_splice(list: &memcg->objcg_list, head: &parent->objcg_list); |
223 | |
224 | spin_unlock_irq(lock: &objcg_lock); |
225 | |
226 | percpu_ref_kill(ref: &objcg->refcnt); |
227 | } |
228 | |
229 | /* |
230 | * A lot of the calls to the cache allocation functions are expected to be |
231 | * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are |
232 | * conditional to this static branch, we'll have to allow modules that does |
233 | * kmem_cache_alloc and the such to see this symbol as well |
234 | */ |
235 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); |
236 | EXPORT_SYMBOL(memcg_kmem_online_key); |
237 | |
238 | DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); |
239 | EXPORT_SYMBOL(memcg_bpf_enabled_key); |
240 | |
241 | /** |
242 | * mem_cgroup_css_from_folio - css of the memcg associated with a folio |
243 | * @folio: folio of interest |
244 | * |
245 | * If memcg is bound to the default hierarchy, css of the memcg associated |
246 | * with @folio is returned. The returned css remains associated with @folio |
247 | * until it is released. |
248 | * |
249 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup |
250 | * is returned. |
251 | */ |
252 | struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) |
253 | { |
254 | struct mem_cgroup *memcg = folio_memcg(folio); |
255 | |
256 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
257 | memcg = root_mem_cgroup; |
258 | |
259 | return &memcg->css; |
260 | } |
261 | |
262 | /** |
263 | * page_cgroup_ino - return inode number of the memcg a page is charged to |
264 | * @page: the page |
265 | * |
266 | * Look up the closest online ancestor of the memory cgroup @page is charged to |
267 | * and return its inode number or 0 if @page is not charged to any cgroup. It |
268 | * is safe to call this function without holding a reference to @page. |
269 | * |
270 | * Note, this function is inherently racy, because there is nothing to prevent |
271 | * the cgroup inode from getting torn down and potentially reallocated a moment |
272 | * after page_cgroup_ino() returns, so it only should be used by callers that |
273 | * do not care (such as procfs interfaces). |
274 | */ |
275 | ino_t page_cgroup_ino(struct page *page) |
276 | { |
277 | struct mem_cgroup *memcg; |
278 | unsigned long ino = 0; |
279 | |
280 | rcu_read_lock(); |
281 | /* page_folio() is racy here, but the entire function is racy anyway */ |
282 | memcg = folio_memcg_check(page_folio(page)); |
283 | |
284 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) |
285 | memcg = parent_mem_cgroup(memcg); |
286 | if (memcg) |
287 | ino = cgroup_ino(cgrp: memcg->css.cgroup); |
288 | rcu_read_unlock(); |
289 | return ino; |
290 | } |
291 | |
292 | /* Subset of node_stat_item for memcg stats */ |
293 | static const unsigned int memcg_node_stat_items[] = { |
294 | NR_INACTIVE_ANON, |
295 | NR_ACTIVE_ANON, |
296 | NR_INACTIVE_FILE, |
297 | NR_ACTIVE_FILE, |
298 | NR_UNEVICTABLE, |
299 | NR_SLAB_RECLAIMABLE_B, |
300 | NR_SLAB_UNRECLAIMABLE_B, |
301 | WORKINGSET_REFAULT_ANON, |
302 | WORKINGSET_REFAULT_FILE, |
303 | WORKINGSET_ACTIVATE_ANON, |
304 | WORKINGSET_ACTIVATE_FILE, |
305 | WORKINGSET_RESTORE_ANON, |
306 | WORKINGSET_RESTORE_FILE, |
307 | WORKINGSET_NODERECLAIM, |
308 | NR_ANON_MAPPED, |
309 | NR_FILE_MAPPED, |
310 | NR_FILE_PAGES, |
311 | NR_FILE_DIRTY, |
312 | NR_WRITEBACK, |
313 | NR_SHMEM, |
314 | NR_SHMEM_THPS, |
315 | NR_FILE_THPS, |
316 | NR_ANON_THPS, |
317 | NR_KERNEL_STACK_KB, |
318 | NR_PAGETABLE, |
319 | NR_SECONDARY_PAGETABLE, |
320 | #ifdef CONFIG_SWAP |
321 | NR_SWAPCACHE, |
322 | #endif |
323 | #ifdef CONFIG_NUMA_BALANCING |
324 | PGPROMOTE_SUCCESS, |
325 | #endif |
326 | PGDEMOTE_KSWAPD, |
327 | PGDEMOTE_DIRECT, |
328 | PGDEMOTE_KHUGEPAGED, |
329 | PGDEMOTE_PROACTIVE, |
330 | #ifdef CONFIG_HUGETLB_PAGE |
331 | NR_HUGETLB, |
332 | #endif |
333 | }; |
334 | |
335 | static const unsigned int memcg_stat_items[] = { |
336 | MEMCG_SWAP, |
337 | MEMCG_SOCK, |
338 | MEMCG_PERCPU_B, |
339 | MEMCG_VMALLOC, |
340 | MEMCG_KMEM, |
341 | MEMCG_ZSWAP_B, |
342 | MEMCG_ZSWAPPED, |
343 | }; |
344 | |
345 | #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) |
346 | #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ |
347 | ARRAY_SIZE(memcg_stat_items)) |
348 | #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) |
349 | static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; |
350 | |
351 | static void init_memcg_stats(void) |
352 | { |
353 | u8 i, j = 0; |
354 | |
355 | BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); |
356 | |
357 | memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); |
358 | |
359 | for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) |
360 | mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; |
361 | |
362 | for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) |
363 | mem_cgroup_stats_index[memcg_stat_items[i]] = j; |
364 | } |
365 | |
366 | static inline int memcg_stats_index(int idx) |
367 | { |
368 | return mem_cgroup_stats_index[idx]; |
369 | } |
370 | |
371 | struct lruvec_stats_percpu { |
372 | /* Local (CPU and cgroup) state */ |
373 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
374 | |
375 | /* Delta calculation for lockless upward propagation */ |
376 | long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; |
377 | }; |
378 | |
379 | struct lruvec_stats { |
380 | /* Aggregated (CPU and subtree) state */ |
381 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
382 | |
383 | /* Non-hierarchical (CPU aggregated) state */ |
384 | long state_local[NR_MEMCG_NODE_STAT_ITEMS]; |
385 | |
386 | /* Pending child counts during tree propagation */ |
387 | long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; |
388 | }; |
389 | |
390 | unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) |
391 | { |
392 | struct mem_cgroup_per_node *pn; |
393 | long x; |
394 | int i; |
395 | |
396 | if (mem_cgroup_disabled()) |
397 | return node_page_state(pgdat: lruvec_pgdat(lruvec), item: idx); |
398 | |
399 | i = memcg_stats_index(idx); |
400 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
401 | return 0; |
402 | |
403 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
404 | x = READ_ONCE(pn->lruvec_stats->state[i]); |
405 | #ifdef CONFIG_SMP |
406 | if (x < 0) |
407 | x = 0; |
408 | #endif |
409 | return x; |
410 | } |
411 | |
412 | unsigned long lruvec_page_state_local(struct lruvec *lruvec, |
413 | enum node_stat_item idx) |
414 | { |
415 | struct mem_cgroup_per_node *pn; |
416 | long x; |
417 | int i; |
418 | |
419 | if (mem_cgroup_disabled()) |
420 | return node_page_state(pgdat: lruvec_pgdat(lruvec), item: idx); |
421 | |
422 | i = memcg_stats_index(idx); |
423 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
424 | return 0; |
425 | |
426 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
427 | x = READ_ONCE(pn->lruvec_stats->state_local[i]); |
428 | #ifdef CONFIG_SMP |
429 | if (x < 0) |
430 | x = 0; |
431 | #endif |
432 | return x; |
433 | } |
434 | |
435 | /* Subset of vm_event_item to report for memcg event stats */ |
436 | static const unsigned int memcg_vm_event_stat[] = { |
437 | #ifdef CONFIG_MEMCG_V1 |
438 | PGPGIN, |
439 | PGPGOUT, |
440 | #endif |
441 | PSWPIN, |
442 | PSWPOUT, |
443 | PGSCAN_KSWAPD, |
444 | PGSCAN_DIRECT, |
445 | PGSCAN_KHUGEPAGED, |
446 | PGSCAN_PROACTIVE, |
447 | PGSTEAL_KSWAPD, |
448 | PGSTEAL_DIRECT, |
449 | PGSTEAL_KHUGEPAGED, |
450 | PGSTEAL_PROACTIVE, |
451 | PGFAULT, |
452 | PGMAJFAULT, |
453 | PGREFILL, |
454 | PGACTIVATE, |
455 | PGDEACTIVATE, |
456 | PGLAZYFREE, |
457 | PGLAZYFREED, |
458 | #ifdef CONFIG_SWAP |
459 | SWPIN_ZERO, |
460 | SWPOUT_ZERO, |
461 | #endif |
462 | #ifdef CONFIG_ZSWAP |
463 | ZSWPIN, |
464 | ZSWPOUT, |
465 | ZSWPWB, |
466 | #endif |
467 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
468 | THP_FAULT_ALLOC, |
469 | THP_COLLAPSE_ALLOC, |
470 | THP_SWPOUT, |
471 | THP_SWPOUT_FALLBACK, |
472 | #endif |
473 | #ifdef CONFIG_NUMA_BALANCING |
474 | NUMA_PAGE_MIGRATE, |
475 | NUMA_PTE_UPDATES, |
476 | NUMA_HINT_FAULTS, |
477 | NUMA_TASK_MIGRATE, |
478 | NUMA_TASK_SWAP, |
479 | #endif |
480 | }; |
481 | |
482 | #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) |
483 | static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; |
484 | |
485 | static void init_memcg_events(void) |
486 | { |
487 | u8 i; |
488 | |
489 | BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); |
490 | |
491 | memset(mem_cgroup_events_index, U8_MAX, |
492 | sizeof(mem_cgroup_events_index)); |
493 | |
494 | for (i = 0; i < NR_MEMCG_EVENTS; ++i) |
495 | mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; |
496 | } |
497 | |
498 | static inline int memcg_events_index(enum vm_event_item idx) |
499 | { |
500 | return mem_cgroup_events_index[idx]; |
501 | } |
502 | |
503 | struct memcg_vmstats_percpu { |
504 | /* Stats updates since the last flush */ |
505 | unsigned int stats_updates; |
506 | |
507 | /* Cached pointers for fast iteration in memcg_rstat_updated() */ |
508 | struct memcg_vmstats_percpu __percpu *parent_pcpu; |
509 | struct memcg_vmstats *vmstats; |
510 | |
511 | /* The above should fit a single cacheline for memcg_rstat_updated() */ |
512 | |
513 | /* Local (CPU and cgroup) page state & events */ |
514 | long state[MEMCG_VMSTAT_SIZE]; |
515 | unsigned long events[NR_MEMCG_EVENTS]; |
516 | |
517 | /* Delta calculation for lockless upward propagation */ |
518 | long state_prev[MEMCG_VMSTAT_SIZE]; |
519 | unsigned long events_prev[NR_MEMCG_EVENTS]; |
520 | } ____cacheline_aligned; |
521 | |
522 | struct memcg_vmstats { |
523 | /* Aggregated (CPU and subtree) page state & events */ |
524 | long state[MEMCG_VMSTAT_SIZE]; |
525 | unsigned long events[NR_MEMCG_EVENTS]; |
526 | |
527 | /* Non-hierarchical (CPU aggregated) page state & events */ |
528 | long state_local[MEMCG_VMSTAT_SIZE]; |
529 | unsigned long events_local[NR_MEMCG_EVENTS]; |
530 | |
531 | /* Pending child counts during tree propagation */ |
532 | long state_pending[MEMCG_VMSTAT_SIZE]; |
533 | unsigned long events_pending[NR_MEMCG_EVENTS]; |
534 | |
535 | /* Stats updates since the last flush */ |
536 | atomic_t stats_updates; |
537 | }; |
538 | |
539 | /* |
540 | * memcg and lruvec stats flushing |
541 | * |
542 | * Many codepaths leading to stats update or read are performance sensitive and |
543 | * adding stats flushing in such codepaths is not desirable. So, to optimize the |
544 | * flushing the kernel does: |
545 | * |
546 | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let |
547 | * rstat update tree grow unbounded. |
548 | * |
549 | * 2) Flush the stats synchronously on reader side only when there are more than |
550 | * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization |
551 | * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but |
552 | * only for 2 seconds due to (1). |
553 | */ |
554 | static void flush_memcg_stats_dwork(struct work_struct *w); |
555 | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); |
556 | static u64 flush_last_time; |
557 | |
558 | #define FLUSH_TIME (2UL*HZ) |
559 | |
560 | static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) |
561 | { |
562 | return atomic_read(v: &vmstats->stats_updates) > |
563 | MEMCG_CHARGE_BATCH * num_online_cpus(); |
564 | } |
565 | |
566 | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, |
567 | int cpu) |
568 | { |
569 | struct memcg_vmstats_percpu __percpu *statc_pcpu; |
570 | struct memcg_vmstats_percpu *statc; |
571 | unsigned int stats_updates; |
572 | |
573 | if (!val) |
574 | return; |
575 | |
576 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
577 | if (!in_nmi()) |
578 | css_rstat_updated(css: &memcg->css, cpu); |
579 | statc_pcpu = memcg->vmstats_percpu; |
580 | for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { |
581 | statc = this_cpu_ptr(statc_pcpu); |
582 | /* |
583 | * If @memcg is already flushable then all its ancestors are |
584 | * flushable as well and also there is no need to increase |
585 | * stats_updates. |
586 | */ |
587 | if (memcg_vmstats_needs_flush(vmstats: statc->vmstats)) |
588 | break; |
589 | |
590 | stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, |
591 | abs(val)); |
592 | if (stats_updates < MEMCG_CHARGE_BATCH) |
593 | continue; |
594 | |
595 | stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); |
596 | atomic_add(i: stats_updates, v: &statc->vmstats->stats_updates); |
597 | } |
598 | } |
599 | |
600 | static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) |
601 | { |
602 | bool needs_flush = memcg_vmstats_needs_flush(vmstats: memcg->vmstats); |
603 | |
604 | trace_memcg_flush_stats(memcg, stats_updates: atomic_read(v: &memcg->vmstats->stats_updates), |
605 | force, needs_flush); |
606 | |
607 | if (!force && !needs_flush) |
608 | return; |
609 | |
610 | if (mem_cgroup_is_root(memcg)) |
611 | WRITE_ONCE(flush_last_time, jiffies_64); |
612 | |
613 | css_rstat_flush(css: &memcg->css); |
614 | } |
615 | |
616 | /* |
617 | * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree |
618 | * @memcg: root of the subtree to flush |
619 | * |
620 | * Flushing is serialized by the underlying global rstat lock. There is also a |
621 | * minimum amount of work to be done even if there are no stat updates to flush. |
622 | * Hence, we only flush the stats if the updates delta exceeds a threshold. This |
623 | * avoids unnecessary work and contention on the underlying lock. |
624 | */ |
625 | void mem_cgroup_flush_stats(struct mem_cgroup *memcg) |
626 | { |
627 | if (mem_cgroup_disabled()) |
628 | return; |
629 | |
630 | if (!memcg) |
631 | memcg = root_mem_cgroup; |
632 | |
633 | __mem_cgroup_flush_stats(memcg, force: false); |
634 | } |
635 | |
636 | void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) |
637 | { |
638 | /* Only flush if the periodic flusher is one full cycle late */ |
639 | if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) |
640 | mem_cgroup_flush_stats(memcg); |
641 | } |
642 | |
643 | static void flush_memcg_stats_dwork(struct work_struct *w) |
644 | { |
645 | /* |
646 | * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing |
647 | * in latency-sensitive paths is as cheap as possible. |
648 | */ |
649 | __mem_cgroup_flush_stats(memcg: root_mem_cgroup, force: true); |
650 | queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork, FLUSH_TIME); |
651 | } |
652 | |
653 | unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) |
654 | { |
655 | long x; |
656 | int i = memcg_stats_index(idx); |
657 | |
658 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
659 | return 0; |
660 | |
661 | x = READ_ONCE(memcg->vmstats->state[i]); |
662 | #ifdef CONFIG_SMP |
663 | if (x < 0) |
664 | x = 0; |
665 | #endif |
666 | return x; |
667 | } |
668 | |
669 | static int memcg_page_state_unit(int item); |
670 | |
671 | /* |
672 | * Normalize the value passed into memcg_rstat_updated() to be in pages. Round |
673 | * up non-zero sub-page updates to 1 page as zero page updates are ignored. |
674 | */ |
675 | static int memcg_state_val_in_pages(int idx, int val) |
676 | { |
677 | int unit = memcg_page_state_unit(item: idx); |
678 | |
679 | if (!val || unit == PAGE_SIZE) |
680 | return val; |
681 | else |
682 | return max(val * unit / PAGE_SIZE, 1UL); |
683 | } |
684 | |
685 | /** |
686 | * mod_memcg_state - update cgroup memory statistics |
687 | * @memcg: the memory cgroup |
688 | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item |
689 | * @val: delta to add to the counter, can be negative |
690 | */ |
691 | void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, |
692 | int val) |
693 | { |
694 | int i = memcg_stats_index(idx); |
695 | int cpu; |
696 | |
697 | if (mem_cgroup_disabled()) |
698 | return; |
699 | |
700 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
701 | return; |
702 | |
703 | cpu = get_cpu(); |
704 | |
705 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
706 | val = memcg_state_val_in_pages(idx, val); |
707 | memcg_rstat_updated(memcg, val, cpu); |
708 | trace_mod_memcg_state(memcg, item: idx, val); |
709 | |
710 | put_cpu(); |
711 | } |
712 | |
713 | #ifdef CONFIG_MEMCG_V1 |
714 | /* idx can be of type enum memcg_stat_item or node_stat_item. */ |
715 | unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) |
716 | { |
717 | long x; |
718 | int i = memcg_stats_index(idx); |
719 | |
720 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
721 | return 0; |
722 | |
723 | x = READ_ONCE(memcg->vmstats->state_local[i]); |
724 | #ifdef CONFIG_SMP |
725 | if (x < 0) |
726 | x = 0; |
727 | #endif |
728 | return x; |
729 | } |
730 | #endif |
731 | |
732 | static void mod_memcg_lruvec_state(struct lruvec *lruvec, |
733 | enum node_stat_item idx, |
734 | int val) |
735 | { |
736 | struct mem_cgroup_per_node *pn; |
737 | struct mem_cgroup *memcg; |
738 | int i = memcg_stats_index(idx); |
739 | int cpu; |
740 | |
741 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
742 | return; |
743 | |
744 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
745 | memcg = pn->memcg; |
746 | |
747 | cpu = get_cpu(); |
748 | |
749 | /* Update memcg */ |
750 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
751 | |
752 | /* Update lruvec */ |
753 | this_cpu_add(pn->lruvec_stats_percpu->state[i], val); |
754 | |
755 | val = memcg_state_val_in_pages(idx, val); |
756 | memcg_rstat_updated(memcg, val, cpu); |
757 | trace_mod_memcg_lruvec_state(memcg, item: idx, val); |
758 | |
759 | put_cpu(); |
760 | } |
761 | |
762 | /** |
763 | * __mod_lruvec_state - update lruvec memory statistics |
764 | * @lruvec: the lruvec |
765 | * @idx: the stat item |
766 | * @val: delta to add to the counter, can be negative |
767 | * |
768 | * The lruvec is the intersection of the NUMA node and a cgroup. This |
769 | * function updates the all three counters that are affected by a |
770 | * change of state at this level: per-node, per-cgroup, per-lruvec. |
771 | */ |
772 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, |
773 | int val) |
774 | { |
775 | /* Update node */ |
776 | __mod_node_page_state(lruvec_pgdat(lruvec), item: idx, val); |
777 | |
778 | /* Update memcg and lruvec */ |
779 | if (!mem_cgroup_disabled()) |
780 | mod_memcg_lruvec_state(lruvec, idx, val); |
781 | } |
782 | |
783 | void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, |
784 | int val) |
785 | { |
786 | struct mem_cgroup *memcg; |
787 | pg_data_t *pgdat = folio_pgdat(folio); |
788 | struct lruvec *lruvec; |
789 | |
790 | rcu_read_lock(); |
791 | memcg = folio_memcg(folio); |
792 | /* Untracked pages have no memcg, no lruvec. Update only the node */ |
793 | if (!memcg) { |
794 | rcu_read_unlock(); |
795 | __mod_node_page_state(pgdat, item: idx, val); |
796 | return; |
797 | } |
798 | |
799 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
800 | __mod_lruvec_state(lruvec, idx, val); |
801 | rcu_read_unlock(); |
802 | } |
803 | EXPORT_SYMBOL(__lruvec_stat_mod_folio); |
804 | |
805 | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) |
806 | { |
807 | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); |
808 | struct mem_cgroup *memcg; |
809 | struct lruvec *lruvec; |
810 | |
811 | rcu_read_lock(); |
812 | memcg = mem_cgroup_from_slab_obj(p); |
813 | |
814 | /* |
815 | * Untracked pages have no memcg, no lruvec. Update only the |
816 | * node. If we reparent the slab objects to the root memcg, |
817 | * when we free the slab object, we need to update the per-memcg |
818 | * vmstats to keep it correct for the root memcg. |
819 | */ |
820 | if (!memcg) { |
821 | __mod_node_page_state(pgdat, item: idx, val); |
822 | } else { |
823 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
824 | __mod_lruvec_state(lruvec, idx, val); |
825 | } |
826 | rcu_read_unlock(); |
827 | } |
828 | |
829 | /** |
830 | * count_memcg_events - account VM events in a cgroup |
831 | * @memcg: the memory cgroup |
832 | * @idx: the event item |
833 | * @count: the number of events that occurred |
834 | */ |
835 | void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, |
836 | unsigned long count) |
837 | { |
838 | int i = memcg_events_index(idx); |
839 | int cpu; |
840 | |
841 | if (mem_cgroup_disabled()) |
842 | return; |
843 | |
844 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, idx)) |
845 | return; |
846 | |
847 | cpu = get_cpu(); |
848 | |
849 | this_cpu_add(memcg->vmstats_percpu->events[i], count); |
850 | memcg_rstat_updated(memcg, val: count, cpu); |
851 | trace_count_memcg_events(memcg, item: idx, val: count); |
852 | |
853 | put_cpu(); |
854 | } |
855 | |
856 | unsigned long memcg_events(struct mem_cgroup *memcg, int event) |
857 | { |
858 | int i = memcg_events_index(idx: event); |
859 | |
860 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, event)) |
861 | return 0; |
862 | |
863 | return READ_ONCE(memcg->vmstats->events[i]); |
864 | } |
865 | |
866 | #ifdef CONFIG_MEMCG_V1 |
867 | unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) |
868 | { |
869 | int i = memcg_events_index(idx: event); |
870 | |
871 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n" , __func__, event)) |
872 | return 0; |
873 | |
874 | return READ_ONCE(memcg->vmstats->events_local[i]); |
875 | } |
876 | #endif |
877 | |
878 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
879 | { |
880 | /* |
881 | * mm_update_next_owner() may clear mm->owner to NULL |
882 | * if it races with swapoff, page migration, etc. |
883 | * So this can be called with p == NULL. |
884 | */ |
885 | if (unlikely(!p)) |
886 | return NULL; |
887 | |
888 | return mem_cgroup_from_css(css: task_css(task: p, subsys_id: memory_cgrp_id)); |
889 | } |
890 | EXPORT_SYMBOL(mem_cgroup_from_task); |
891 | |
892 | static __always_inline struct mem_cgroup *active_memcg(void) |
893 | { |
894 | if (!in_task()) |
895 | return this_cpu_read(int_active_memcg); |
896 | else |
897 | return current->active_memcg; |
898 | } |
899 | |
900 | /** |
901 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. |
902 | * @mm: mm from which memcg should be extracted. It can be NULL. |
903 | * |
904 | * Obtain a reference on mm->memcg and returns it if successful. If mm |
905 | * is NULL, then the memcg is chosen as follows: |
906 | * 1) The active memcg, if set. |
907 | * 2) current->mm->memcg, if available |
908 | * 3) root memcg |
909 | * If mem_cgroup is disabled, NULL is returned. |
910 | */ |
911 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
912 | { |
913 | struct mem_cgroup *memcg; |
914 | |
915 | if (mem_cgroup_disabled()) |
916 | return NULL; |
917 | |
918 | /* |
919 | * Page cache insertions can happen without an |
920 | * actual mm context, e.g. during disk probing |
921 | * on boot, loopback IO, acct() writes etc. |
922 | * |
923 | * No need to css_get on root memcg as the reference |
924 | * counting is disabled on the root level in the |
925 | * cgroup core. See CSS_NO_REF. |
926 | */ |
927 | if (unlikely(!mm)) { |
928 | memcg = active_memcg(); |
929 | if (unlikely(memcg)) { |
930 | /* remote memcg must hold a ref */ |
931 | css_get(css: &memcg->css); |
932 | return memcg; |
933 | } |
934 | mm = current->mm; |
935 | if (unlikely(!mm)) |
936 | return root_mem_cgroup; |
937 | } |
938 | |
939 | rcu_read_lock(); |
940 | do { |
941 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
942 | if (unlikely(!memcg)) |
943 | memcg = root_mem_cgroup; |
944 | } while (!css_tryget(css: &memcg->css)); |
945 | rcu_read_unlock(); |
946 | return memcg; |
947 | } |
948 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); |
949 | |
950 | /** |
951 | * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. |
952 | */ |
953 | struct mem_cgroup *get_mem_cgroup_from_current(void) |
954 | { |
955 | struct mem_cgroup *memcg; |
956 | |
957 | if (mem_cgroup_disabled()) |
958 | return NULL; |
959 | |
960 | again: |
961 | rcu_read_lock(); |
962 | memcg = mem_cgroup_from_task(current); |
963 | if (!css_tryget(css: &memcg->css)) { |
964 | rcu_read_unlock(); |
965 | goto again; |
966 | } |
967 | rcu_read_unlock(); |
968 | return memcg; |
969 | } |
970 | |
971 | /** |
972 | * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. |
973 | * @folio: folio from which memcg should be extracted. |
974 | */ |
975 | struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) |
976 | { |
977 | struct mem_cgroup *memcg = folio_memcg(folio); |
978 | |
979 | if (mem_cgroup_disabled()) |
980 | return NULL; |
981 | |
982 | rcu_read_lock(); |
983 | if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) |
984 | memcg = root_mem_cgroup; |
985 | rcu_read_unlock(); |
986 | return memcg; |
987 | } |
988 | |
989 | /** |
990 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
991 | * @root: hierarchy root |
992 | * @prev: previously returned memcg, NULL on first invocation |
993 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
994 | * |
995 | * Returns references to children of the hierarchy below @root, or |
996 | * @root itself, or %NULL after a full round-trip. |
997 | * |
998 | * Caller must pass the return value in @prev on subsequent |
999 | * invocations for reference counting, or use mem_cgroup_iter_break() |
1000 | * to cancel a hierarchy walk before the round-trip is complete. |
1001 | * |
1002 | * Reclaimers can specify a node in @reclaim to divide up the memcgs |
1003 | * in the hierarchy among all concurrent reclaimers operating on the |
1004 | * same node. |
1005 | */ |
1006 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
1007 | struct mem_cgroup *prev, |
1008 | struct mem_cgroup_reclaim_cookie *reclaim) |
1009 | { |
1010 | struct mem_cgroup_reclaim_iter *iter; |
1011 | struct cgroup_subsys_state *css; |
1012 | struct mem_cgroup *pos; |
1013 | struct mem_cgroup *next; |
1014 | |
1015 | if (mem_cgroup_disabled()) |
1016 | return NULL; |
1017 | |
1018 | if (!root) |
1019 | root = root_mem_cgroup; |
1020 | |
1021 | rcu_read_lock(); |
1022 | restart: |
1023 | next = NULL; |
1024 | |
1025 | if (reclaim) { |
1026 | int gen; |
1027 | int nid = reclaim->pgdat->node_id; |
1028 | |
1029 | iter = &root->nodeinfo[nid]->iter; |
1030 | gen = atomic_read(v: &iter->generation); |
1031 | |
1032 | /* |
1033 | * On start, join the current reclaim iteration cycle. |
1034 | * Exit when a concurrent walker completes it. |
1035 | */ |
1036 | if (!prev) |
1037 | reclaim->generation = gen; |
1038 | else if (reclaim->generation != gen) |
1039 | goto out_unlock; |
1040 | |
1041 | pos = READ_ONCE(iter->position); |
1042 | } else |
1043 | pos = prev; |
1044 | |
1045 | css = pos ? &pos->css : NULL; |
1046 | |
1047 | while ((css = css_next_descendant_pre(pos: css, css: &root->css))) { |
1048 | /* |
1049 | * Verify the css and acquire a reference. The root |
1050 | * is provided by the caller, so we know it's alive |
1051 | * and kicking, and don't take an extra reference. |
1052 | */ |
1053 | if (css == &root->css || css_tryget(css)) |
1054 | break; |
1055 | } |
1056 | |
1057 | next = mem_cgroup_from_css(css); |
1058 | |
1059 | if (reclaim) { |
1060 | /* |
1061 | * The position could have already been updated by a competing |
1062 | * thread, so check that the value hasn't changed since we read |
1063 | * it to avoid reclaiming from the same cgroup twice. |
1064 | */ |
1065 | if (cmpxchg(&iter->position, pos, next) != pos) { |
1066 | if (css && css != &root->css) |
1067 | css_put(css); |
1068 | goto restart; |
1069 | } |
1070 | |
1071 | if (!next) { |
1072 | atomic_inc(v: &iter->generation); |
1073 | |
1074 | /* |
1075 | * Reclaimers share the hierarchy walk, and a |
1076 | * new one might jump in right at the end of |
1077 | * the hierarchy - make sure they see at least |
1078 | * one group and restart from the beginning. |
1079 | */ |
1080 | if (!prev) |
1081 | goto restart; |
1082 | } |
1083 | } |
1084 | |
1085 | out_unlock: |
1086 | rcu_read_unlock(); |
1087 | if (prev && prev != root) |
1088 | css_put(css: &prev->css); |
1089 | |
1090 | return next; |
1091 | } |
1092 | |
1093 | /** |
1094 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
1095 | * @root: hierarchy root |
1096 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
1097 | */ |
1098 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
1099 | struct mem_cgroup *prev) |
1100 | { |
1101 | if (!root) |
1102 | root = root_mem_cgroup; |
1103 | if (prev && prev != root) |
1104 | css_put(css: &prev->css); |
1105 | } |
1106 | |
1107 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, |
1108 | struct mem_cgroup *dead_memcg) |
1109 | { |
1110 | struct mem_cgroup_reclaim_iter *iter; |
1111 | struct mem_cgroup_per_node *mz; |
1112 | int nid; |
1113 | |
1114 | for_each_node(nid) { |
1115 | mz = from->nodeinfo[nid]; |
1116 | iter = &mz->iter; |
1117 | cmpxchg(&iter->position, dead_memcg, NULL); |
1118 | } |
1119 | } |
1120 | |
1121 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) |
1122 | { |
1123 | struct mem_cgroup *memcg = dead_memcg; |
1124 | struct mem_cgroup *last; |
1125 | |
1126 | do { |
1127 | __invalidate_reclaim_iterators(from: memcg, dead_memcg); |
1128 | last = memcg; |
1129 | } while ((memcg = parent_mem_cgroup(memcg))); |
1130 | |
1131 | /* |
1132 | * When cgroup1 non-hierarchy mode is used, |
1133 | * parent_mem_cgroup() does not walk all the way up to the |
1134 | * cgroup root (root_mem_cgroup). So we have to handle |
1135 | * dead_memcg from cgroup root separately. |
1136 | */ |
1137 | if (!mem_cgroup_is_root(memcg: last)) |
1138 | __invalidate_reclaim_iterators(from: root_mem_cgroup, |
1139 | dead_memcg); |
1140 | } |
1141 | |
1142 | /** |
1143 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy |
1144 | * @memcg: hierarchy root |
1145 | * @fn: function to call for each task |
1146 | * @arg: argument passed to @fn |
1147 | * |
1148 | * This function iterates over tasks attached to @memcg or to any of its |
1149 | * descendants and calls @fn for each task. If @fn returns a non-zero |
1150 | * value, the function breaks the iteration loop. Otherwise, it will iterate |
1151 | * over all tasks and return 0. |
1152 | * |
1153 | * This function must not be called for the root memory cgroup. |
1154 | */ |
1155 | void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, |
1156 | int (*fn)(struct task_struct *, void *), void *arg) |
1157 | { |
1158 | struct mem_cgroup *iter; |
1159 | int ret = 0; |
1160 | |
1161 | BUG_ON(mem_cgroup_is_root(memcg)); |
1162 | |
1163 | for_each_mem_cgroup_tree(iter, memcg) { |
1164 | struct css_task_iter it; |
1165 | struct task_struct *task; |
1166 | |
1167 | css_task_iter_start(css: &iter->css, flags: CSS_TASK_ITER_PROCS, it: &it); |
1168 | while (!ret && (task = css_task_iter_next(it: &it))) { |
1169 | ret = fn(task, arg); |
1170 | /* Avoid potential softlockup warning */ |
1171 | cond_resched(); |
1172 | } |
1173 | css_task_iter_end(it: &it); |
1174 | if (ret) { |
1175 | mem_cgroup_iter_break(root: memcg, prev: iter); |
1176 | break; |
1177 | } |
1178 | } |
1179 | } |
1180 | |
1181 | #ifdef CONFIG_DEBUG_VM |
1182 | void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) |
1183 | { |
1184 | struct mem_cgroup *memcg; |
1185 | |
1186 | if (mem_cgroup_disabled()) |
1187 | return; |
1188 | |
1189 | memcg = folio_memcg(folio); |
1190 | |
1191 | if (!memcg) |
1192 | VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); |
1193 | else |
1194 | VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); |
1195 | } |
1196 | #endif |
1197 | |
1198 | /** |
1199 | * folio_lruvec_lock - Lock the lruvec for a folio. |
1200 | * @folio: Pointer to the folio. |
1201 | * |
1202 | * These functions are safe to use under any of the following conditions: |
1203 | * - folio locked |
1204 | * - folio_test_lru false |
1205 | * - folio frozen (refcount of 0) |
1206 | * |
1207 | * Return: The lruvec this folio is on with its lock held. |
1208 | */ |
1209 | struct lruvec *folio_lruvec_lock(struct folio *folio) |
1210 | { |
1211 | struct lruvec *lruvec = folio_lruvec(folio); |
1212 | |
1213 | spin_lock(lock: &lruvec->lru_lock); |
1214 | lruvec_memcg_debug(lruvec, folio); |
1215 | |
1216 | return lruvec; |
1217 | } |
1218 | |
1219 | /** |
1220 | * folio_lruvec_lock_irq - Lock the lruvec for a folio. |
1221 | * @folio: Pointer to the folio. |
1222 | * |
1223 | * These functions are safe to use under any of the following conditions: |
1224 | * - folio locked |
1225 | * - folio_test_lru false |
1226 | * - folio frozen (refcount of 0) |
1227 | * |
1228 | * Return: The lruvec this folio is on with its lock held and interrupts |
1229 | * disabled. |
1230 | */ |
1231 | struct lruvec *folio_lruvec_lock_irq(struct folio *folio) |
1232 | { |
1233 | struct lruvec *lruvec = folio_lruvec(folio); |
1234 | |
1235 | spin_lock_irq(lock: &lruvec->lru_lock); |
1236 | lruvec_memcg_debug(lruvec, folio); |
1237 | |
1238 | return lruvec; |
1239 | } |
1240 | |
1241 | /** |
1242 | * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. |
1243 | * @folio: Pointer to the folio. |
1244 | * @flags: Pointer to irqsave flags. |
1245 | * |
1246 | * These functions are safe to use under any of the following conditions: |
1247 | * - folio locked |
1248 | * - folio_test_lru false |
1249 | * - folio frozen (refcount of 0) |
1250 | * |
1251 | * Return: The lruvec this folio is on with its lock held and interrupts |
1252 | * disabled. |
1253 | */ |
1254 | struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, |
1255 | unsigned long *flags) |
1256 | { |
1257 | struct lruvec *lruvec = folio_lruvec(folio); |
1258 | |
1259 | spin_lock_irqsave(&lruvec->lru_lock, *flags); |
1260 | lruvec_memcg_debug(lruvec, folio); |
1261 | |
1262 | return lruvec; |
1263 | } |
1264 | |
1265 | /** |
1266 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1267 | * @lruvec: mem_cgroup per zone lru vector |
1268 | * @lru: index of lru list the page is sitting on |
1269 | * @zid: zone id of the accounted pages |
1270 | * @nr_pages: positive when adding or negative when removing |
1271 | * |
1272 | * This function must be called under lru_lock, just before a page is added |
1273 | * to or just after a page is removed from an lru list. |
1274 | */ |
1275 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1276 | int zid, int nr_pages) |
1277 | { |
1278 | struct mem_cgroup_per_node *mz; |
1279 | unsigned long *lru_size; |
1280 | long size; |
1281 | |
1282 | if (mem_cgroup_disabled()) |
1283 | return; |
1284 | |
1285 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
1286 | lru_size = &mz->lru_zone_size[zid][lru]; |
1287 | |
1288 | if (nr_pages < 0) |
1289 | *lru_size += nr_pages; |
1290 | |
1291 | size = *lru_size; |
1292 | if (WARN_ONCE(size < 0, |
1293 | "%s(%p, %d, %d): lru_size %ld\n" , |
1294 | __func__, lruvec, lru, nr_pages, size)) { |
1295 | VM_BUG_ON(1); |
1296 | *lru_size = 0; |
1297 | } |
1298 | |
1299 | if (nr_pages > 0) |
1300 | *lru_size += nr_pages; |
1301 | } |
1302 | |
1303 | /** |
1304 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1305 | * @memcg: the memory cgroup |
1306 | * |
1307 | * Returns the maximum amount of memory @mem can be charged with, in |
1308 | * pages. |
1309 | */ |
1310 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
1311 | { |
1312 | unsigned long margin = 0; |
1313 | unsigned long count; |
1314 | unsigned long limit; |
1315 | |
1316 | count = page_counter_read(counter: &memcg->memory); |
1317 | limit = READ_ONCE(memcg->memory.max); |
1318 | if (count < limit) |
1319 | margin = limit - count; |
1320 | |
1321 | if (do_memsw_account()) { |
1322 | count = page_counter_read(counter: &memcg->memsw); |
1323 | limit = READ_ONCE(memcg->memsw.max); |
1324 | if (count < limit) |
1325 | margin = min(margin, limit - count); |
1326 | else |
1327 | margin = 0; |
1328 | } |
1329 | |
1330 | return margin; |
1331 | } |
1332 | |
1333 | struct memory_stat { |
1334 | const char *name; |
1335 | unsigned int idx; |
1336 | }; |
1337 | |
1338 | static const struct memory_stat memory_stats[] = { |
1339 | { "anon" , NR_ANON_MAPPED }, |
1340 | { "file" , NR_FILE_PAGES }, |
1341 | { "kernel" , MEMCG_KMEM }, |
1342 | { "kernel_stack" , NR_KERNEL_STACK_KB }, |
1343 | { "pagetables" , NR_PAGETABLE }, |
1344 | { "sec_pagetables" , NR_SECONDARY_PAGETABLE }, |
1345 | { "percpu" , MEMCG_PERCPU_B }, |
1346 | { "sock" , MEMCG_SOCK }, |
1347 | { "vmalloc" , MEMCG_VMALLOC }, |
1348 | { "shmem" , NR_SHMEM }, |
1349 | #ifdef CONFIG_ZSWAP |
1350 | { "zswap" , MEMCG_ZSWAP_B }, |
1351 | { "zswapped" , MEMCG_ZSWAPPED }, |
1352 | #endif |
1353 | { "file_mapped" , NR_FILE_MAPPED }, |
1354 | { "file_dirty" , NR_FILE_DIRTY }, |
1355 | { "file_writeback" , NR_WRITEBACK }, |
1356 | #ifdef CONFIG_SWAP |
1357 | { "swapcached" , NR_SWAPCACHE }, |
1358 | #endif |
1359 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1360 | { "anon_thp" , NR_ANON_THPS }, |
1361 | { "file_thp" , NR_FILE_THPS }, |
1362 | { "shmem_thp" , NR_SHMEM_THPS }, |
1363 | #endif |
1364 | { "inactive_anon" , NR_INACTIVE_ANON }, |
1365 | { "active_anon" , NR_ACTIVE_ANON }, |
1366 | { "inactive_file" , NR_INACTIVE_FILE }, |
1367 | { "active_file" , NR_ACTIVE_FILE }, |
1368 | { "unevictable" , NR_UNEVICTABLE }, |
1369 | { "slab_reclaimable" , NR_SLAB_RECLAIMABLE_B }, |
1370 | { "slab_unreclaimable" , NR_SLAB_UNRECLAIMABLE_B }, |
1371 | #ifdef CONFIG_HUGETLB_PAGE |
1372 | { "hugetlb" , NR_HUGETLB }, |
1373 | #endif |
1374 | |
1375 | /* The memory events */ |
1376 | { "workingset_refault_anon" , WORKINGSET_REFAULT_ANON }, |
1377 | { "workingset_refault_file" , WORKINGSET_REFAULT_FILE }, |
1378 | { "workingset_activate_anon" , WORKINGSET_ACTIVATE_ANON }, |
1379 | { "workingset_activate_file" , WORKINGSET_ACTIVATE_FILE }, |
1380 | { "workingset_restore_anon" , WORKINGSET_RESTORE_ANON }, |
1381 | { "workingset_restore_file" , WORKINGSET_RESTORE_FILE }, |
1382 | { "workingset_nodereclaim" , WORKINGSET_NODERECLAIM }, |
1383 | |
1384 | { "pgdemote_kswapd" , PGDEMOTE_KSWAPD }, |
1385 | { "pgdemote_direct" , PGDEMOTE_DIRECT }, |
1386 | { "pgdemote_khugepaged" , PGDEMOTE_KHUGEPAGED }, |
1387 | { "pgdemote_proactive" , PGDEMOTE_PROACTIVE }, |
1388 | #ifdef CONFIG_NUMA_BALANCING |
1389 | { "pgpromote_success" , PGPROMOTE_SUCCESS }, |
1390 | #endif |
1391 | }; |
1392 | |
1393 | /* The actual unit of the state item, not the same as the output unit */ |
1394 | static int memcg_page_state_unit(int item) |
1395 | { |
1396 | switch (item) { |
1397 | case MEMCG_PERCPU_B: |
1398 | case MEMCG_ZSWAP_B: |
1399 | case NR_SLAB_RECLAIMABLE_B: |
1400 | case NR_SLAB_UNRECLAIMABLE_B: |
1401 | return 1; |
1402 | case NR_KERNEL_STACK_KB: |
1403 | return SZ_1K; |
1404 | default: |
1405 | return PAGE_SIZE; |
1406 | } |
1407 | } |
1408 | |
1409 | /* Translate stat items to the correct unit for memory.stat output */ |
1410 | static int memcg_page_state_output_unit(int item) |
1411 | { |
1412 | /* |
1413 | * Workingset state is actually in pages, but we export it to userspace |
1414 | * as a scalar count of events, so special case it here. |
1415 | * |
1416 | * Demotion and promotion activities are exported in pages, consistent |
1417 | * with their global counterparts. |
1418 | */ |
1419 | switch (item) { |
1420 | case WORKINGSET_REFAULT_ANON: |
1421 | case WORKINGSET_REFAULT_FILE: |
1422 | case WORKINGSET_ACTIVATE_ANON: |
1423 | case WORKINGSET_ACTIVATE_FILE: |
1424 | case WORKINGSET_RESTORE_ANON: |
1425 | case WORKINGSET_RESTORE_FILE: |
1426 | case WORKINGSET_NODERECLAIM: |
1427 | case PGDEMOTE_KSWAPD: |
1428 | case PGDEMOTE_DIRECT: |
1429 | case PGDEMOTE_KHUGEPAGED: |
1430 | case PGDEMOTE_PROACTIVE: |
1431 | #ifdef CONFIG_NUMA_BALANCING |
1432 | case PGPROMOTE_SUCCESS: |
1433 | #endif |
1434 | return 1; |
1435 | default: |
1436 | return memcg_page_state_unit(item); |
1437 | } |
1438 | } |
1439 | |
1440 | unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) |
1441 | { |
1442 | return memcg_page_state(memcg, idx: item) * |
1443 | memcg_page_state_output_unit(item); |
1444 | } |
1445 | |
1446 | #ifdef CONFIG_MEMCG_V1 |
1447 | unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) |
1448 | { |
1449 | return memcg_page_state_local(memcg, idx: item) * |
1450 | memcg_page_state_output_unit(item); |
1451 | } |
1452 | #endif |
1453 | |
1454 | #ifdef CONFIG_HUGETLB_PAGE |
1455 | static bool memcg_accounts_hugetlb(void) |
1456 | { |
1457 | return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; |
1458 | } |
1459 | #else /* CONFIG_HUGETLB_PAGE */ |
1460 | static bool memcg_accounts_hugetlb(void) |
1461 | { |
1462 | return false; |
1463 | } |
1464 | #endif /* CONFIG_HUGETLB_PAGE */ |
1465 | |
1466 | static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
1467 | { |
1468 | int i; |
1469 | |
1470 | /* |
1471 | * Provide statistics on the state of the memory subsystem as |
1472 | * well as cumulative event counters that show past behavior. |
1473 | * |
1474 | * This list is ordered following a combination of these gradients: |
1475 | * 1) generic big picture -> specifics and details |
1476 | * 2) reflecting userspace activity -> reflecting kernel heuristics |
1477 | * |
1478 | * Current memory state: |
1479 | */ |
1480 | mem_cgroup_flush_stats(memcg); |
1481 | |
1482 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
1483 | u64 size; |
1484 | |
1485 | #ifdef CONFIG_HUGETLB_PAGE |
1486 | if (unlikely(memory_stats[i].idx == NR_HUGETLB) && |
1487 | !memcg_accounts_hugetlb()) |
1488 | continue; |
1489 | #endif |
1490 | size = memcg_page_state_output(memcg, item: memory_stats[i].idx); |
1491 | seq_buf_printf(s, fmt: "%s %llu\n" , memory_stats[i].name, size); |
1492 | |
1493 | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { |
1494 | size += memcg_page_state_output(memcg, |
1495 | item: NR_SLAB_RECLAIMABLE_B); |
1496 | seq_buf_printf(s, fmt: "slab %llu\n" , size); |
1497 | } |
1498 | } |
1499 | |
1500 | /* Accumulated memory events */ |
1501 | seq_buf_printf(s, fmt: "pgscan %lu\n" , |
1502 | memcg_events(memcg, event: PGSCAN_KSWAPD) + |
1503 | memcg_events(memcg, event: PGSCAN_DIRECT) + |
1504 | memcg_events(memcg, event: PGSCAN_PROACTIVE) + |
1505 | memcg_events(memcg, event: PGSCAN_KHUGEPAGED)); |
1506 | seq_buf_printf(s, fmt: "pgsteal %lu\n" , |
1507 | memcg_events(memcg, event: PGSTEAL_KSWAPD) + |
1508 | memcg_events(memcg, event: PGSTEAL_DIRECT) + |
1509 | memcg_events(memcg, event: PGSTEAL_PROACTIVE) + |
1510 | memcg_events(memcg, event: PGSTEAL_KHUGEPAGED)); |
1511 | |
1512 | for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { |
1513 | #ifdef CONFIG_MEMCG_V1 |
1514 | if (memcg_vm_event_stat[i] == PGPGIN || |
1515 | memcg_vm_event_stat[i] == PGPGOUT) |
1516 | continue; |
1517 | #endif |
1518 | seq_buf_printf(s, fmt: "%s %lu\n" , |
1519 | vm_event_name(item: memcg_vm_event_stat[i]), |
1520 | memcg_events(memcg, event: memcg_vm_event_stat[i])); |
1521 | } |
1522 | } |
1523 | |
1524 | static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
1525 | { |
1526 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1527 | memcg_stat_format(memcg, s); |
1528 | else |
1529 | memcg1_stat_format(memcg, s); |
1530 | if (seq_buf_has_overflowed(s)) |
1531 | pr_warn("%s: Warning, stat buffer overflow, please report\n" , __func__); |
1532 | } |
1533 | |
1534 | /** |
1535 | * mem_cgroup_print_oom_context: Print OOM information relevant to |
1536 | * memory controller. |
1537 | * @memcg: The memory cgroup that went over limit |
1538 | * @p: Task that is going to be killed |
1539 | * |
1540 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
1541 | * enabled |
1542 | */ |
1543 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) |
1544 | { |
1545 | rcu_read_lock(); |
1546 | |
1547 | if (memcg) { |
1548 | pr_cont(",oom_memcg=" ); |
1549 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
1550 | } else |
1551 | pr_cont(",global_oom" ); |
1552 | if (p) { |
1553 | pr_cont(",task_memcg=" ); |
1554 | pr_cont_cgroup_path(cgrp: task_cgroup(task: p, subsys_id: memory_cgrp_id)); |
1555 | } |
1556 | rcu_read_unlock(); |
1557 | } |
1558 | |
1559 | /** |
1560 | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to |
1561 | * memory controller. |
1562 | * @memcg: The memory cgroup that went over limit |
1563 | */ |
1564 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) |
1565 | { |
1566 | /* Use static buffer, for the caller is holding oom_lock. */ |
1567 | static char buf[SEQ_BUF_SIZE]; |
1568 | struct seq_buf s; |
1569 | unsigned long memory_failcnt; |
1570 | |
1571 | lockdep_assert_held(&oom_lock); |
1572 | |
1573 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1574 | memory_failcnt = atomic_long_read(v: &memcg->memory_events[MEMCG_MAX]); |
1575 | else |
1576 | memory_failcnt = memcg->memory.failcnt; |
1577 | |
1578 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n" , |
1579 | K((u64)page_counter_read(&memcg->memory)), |
1580 | K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); |
1581 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1582 | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n" , |
1583 | K((u64)page_counter_read(&memcg->swap)), |
1584 | K((u64)READ_ONCE(memcg->swap.max)), |
1585 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); |
1586 | #ifdef CONFIG_MEMCG_V1 |
1587 | else { |
1588 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n" , |
1589 | K((u64)page_counter_read(&memcg->memsw)), |
1590 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); |
1591 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n" , |
1592 | K((u64)page_counter_read(&memcg->kmem)), |
1593 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); |
1594 | } |
1595 | #endif |
1596 | |
1597 | pr_info("Memory cgroup stats for " ); |
1598 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
1599 | pr_cont(":" ); |
1600 | seq_buf_init(s: &s, buf, SEQ_BUF_SIZE); |
1601 | memory_stat_format(memcg, s: &s); |
1602 | seq_buf_do_printk(s: &s, KERN_INFO); |
1603 | } |
1604 | |
1605 | /* |
1606 | * Return the memory (and swap, if configured) limit for a memcg. |
1607 | */ |
1608 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) |
1609 | { |
1610 | unsigned long max = READ_ONCE(memcg->memory.max); |
1611 | |
1612 | if (do_memsw_account()) { |
1613 | if (mem_cgroup_swappiness(memcg)) { |
1614 | /* Calculate swap excess capacity from memsw limit */ |
1615 | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; |
1616 | |
1617 | max += min(swap, (unsigned long)total_swap_pages); |
1618 | } |
1619 | } else { |
1620 | if (mem_cgroup_swappiness(memcg)) |
1621 | max += min(READ_ONCE(memcg->swap.max), |
1622 | (unsigned long)total_swap_pages); |
1623 | } |
1624 | return max; |
1625 | } |
1626 | |
1627 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) |
1628 | { |
1629 | return page_counter_read(counter: &memcg->memory); |
1630 | } |
1631 | |
1632 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1633 | int order) |
1634 | { |
1635 | struct oom_control oc = { |
1636 | .zonelist = NULL, |
1637 | .nodemask = NULL, |
1638 | .memcg = memcg, |
1639 | .gfp_mask = gfp_mask, |
1640 | .order = order, |
1641 | }; |
1642 | bool ret = true; |
1643 | |
1644 | if (mutex_lock_killable(&oom_lock)) |
1645 | return true; |
1646 | |
1647 | if (mem_cgroup_margin(memcg) >= (1 << order)) |
1648 | goto unlock; |
1649 | |
1650 | /* |
1651 | * A few threads which were not waiting at mutex_lock_killable() can |
1652 | * fail to bail out. Therefore, check again after holding oom_lock. |
1653 | */ |
1654 | ret = out_of_memory(oc: &oc); |
1655 | |
1656 | unlock: |
1657 | mutex_unlock(lock: &oom_lock); |
1658 | return ret; |
1659 | } |
1660 | |
1661 | /* |
1662 | * Returns true if successfully killed one or more processes. Though in some |
1663 | * corner cases it can return true even without killing any process. |
1664 | */ |
1665 | static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
1666 | { |
1667 | bool locked, ret; |
1668 | |
1669 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
1670 | return false; |
1671 | |
1672 | memcg_memory_event(memcg, event: MEMCG_OOM); |
1673 | |
1674 | if (!memcg1_oom_prepare(memcg, locked: &locked)) |
1675 | return false; |
1676 | |
1677 | ret = mem_cgroup_out_of_memory(memcg, gfp_mask: mask, order); |
1678 | |
1679 | memcg1_oom_finish(memcg, locked); |
1680 | |
1681 | return ret; |
1682 | } |
1683 | |
1684 | /** |
1685 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM |
1686 | * @victim: task to be killed by the OOM killer |
1687 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM |
1688 | * |
1689 | * Returns a pointer to a memory cgroup, which has to be cleaned up |
1690 | * by killing all belonging OOM-killable tasks. |
1691 | * |
1692 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. |
1693 | */ |
1694 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, |
1695 | struct mem_cgroup *oom_domain) |
1696 | { |
1697 | struct mem_cgroup *oom_group = NULL; |
1698 | struct mem_cgroup *memcg; |
1699 | |
1700 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1701 | return NULL; |
1702 | |
1703 | if (!oom_domain) |
1704 | oom_domain = root_mem_cgroup; |
1705 | |
1706 | rcu_read_lock(); |
1707 | |
1708 | memcg = mem_cgroup_from_task(victim); |
1709 | if (mem_cgroup_is_root(memcg)) |
1710 | goto out; |
1711 | |
1712 | /* |
1713 | * If the victim task has been asynchronously moved to a different |
1714 | * memory cgroup, we might end up killing tasks outside oom_domain. |
1715 | * In this case it's better to ignore memory.group.oom. |
1716 | */ |
1717 | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) |
1718 | goto out; |
1719 | |
1720 | /* |
1721 | * Traverse the memory cgroup hierarchy from the victim task's |
1722 | * cgroup up to the OOMing cgroup (or root) to find the |
1723 | * highest-level memory cgroup with oom.group set. |
1724 | */ |
1725 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
1726 | if (READ_ONCE(memcg->oom_group)) |
1727 | oom_group = memcg; |
1728 | |
1729 | if (memcg == oom_domain) |
1730 | break; |
1731 | } |
1732 | |
1733 | if (oom_group) |
1734 | css_get(css: &oom_group->css); |
1735 | out: |
1736 | rcu_read_unlock(); |
1737 | |
1738 | return oom_group; |
1739 | } |
1740 | |
1741 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) |
1742 | { |
1743 | pr_info("Tasks in " ); |
1744 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
1745 | pr_cont(" are going to be killed due to memory.oom.group set\n" ); |
1746 | } |
1747 | |
1748 | /* |
1749 | * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their |
1750 | * nr_pages in a single cacheline. This may change in future. |
1751 | */ |
1752 | #define NR_MEMCG_STOCK 7 |
1753 | #define FLUSHING_CACHED_CHARGE 0 |
1754 | struct memcg_stock_pcp { |
1755 | local_trylock_t lock; |
1756 | uint8_t nr_pages[NR_MEMCG_STOCK]; |
1757 | struct mem_cgroup *cached[NR_MEMCG_STOCK]; |
1758 | |
1759 | struct work_struct work; |
1760 | unsigned long flags; |
1761 | }; |
1762 | |
1763 | static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { |
1764 | .lock = INIT_LOCAL_TRYLOCK(lock), |
1765 | }; |
1766 | |
1767 | struct obj_stock_pcp { |
1768 | local_trylock_t lock; |
1769 | unsigned int nr_bytes; |
1770 | struct obj_cgroup *cached_objcg; |
1771 | struct pglist_data *cached_pgdat; |
1772 | int nr_slab_reclaimable_b; |
1773 | int nr_slab_unreclaimable_b; |
1774 | |
1775 | struct work_struct work; |
1776 | unsigned long flags; |
1777 | }; |
1778 | |
1779 | static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { |
1780 | .lock = INIT_LOCAL_TRYLOCK(lock), |
1781 | }; |
1782 | |
1783 | static DEFINE_MUTEX(percpu_charge_mutex); |
1784 | |
1785 | static void drain_obj_stock(struct obj_stock_pcp *stock); |
1786 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, |
1787 | struct mem_cgroup *root_memcg); |
1788 | |
1789 | /** |
1790 | * consume_stock: Try to consume stocked charge on this cpu. |
1791 | * @memcg: memcg to consume from. |
1792 | * @nr_pages: how many pages to charge. |
1793 | * |
1794 | * Consume the cached charge if enough nr_pages are present otherwise return |
1795 | * failure. Also return failure for charge request larger than |
1796 | * MEMCG_CHARGE_BATCH or if the local lock is already taken. |
1797 | * |
1798 | * returns true if successful, false otherwise. |
1799 | */ |
1800 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
1801 | { |
1802 | struct memcg_stock_pcp *stock; |
1803 | uint8_t stock_pages; |
1804 | bool ret = false; |
1805 | int i; |
1806 | |
1807 | if (nr_pages > MEMCG_CHARGE_BATCH || |
1808 | !local_trylock(&memcg_stock.lock)) |
1809 | return ret; |
1810 | |
1811 | stock = this_cpu_ptr(&memcg_stock); |
1812 | |
1813 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
1814 | if (memcg != READ_ONCE(stock->cached[i])) |
1815 | continue; |
1816 | |
1817 | stock_pages = READ_ONCE(stock->nr_pages[i]); |
1818 | if (stock_pages >= nr_pages) { |
1819 | WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); |
1820 | ret = true; |
1821 | } |
1822 | break; |
1823 | } |
1824 | |
1825 | local_unlock(&memcg_stock.lock); |
1826 | |
1827 | return ret; |
1828 | } |
1829 | |
1830 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) |
1831 | { |
1832 | page_counter_uncharge(counter: &memcg->memory, nr_pages); |
1833 | if (do_memsw_account()) |
1834 | page_counter_uncharge(counter: &memcg->memsw, nr_pages); |
1835 | } |
1836 | |
1837 | /* |
1838 | * Returns stocks cached in percpu and reset cached information. |
1839 | */ |
1840 | static void drain_stock(struct memcg_stock_pcp *stock, int i) |
1841 | { |
1842 | struct mem_cgroup *old = READ_ONCE(stock->cached[i]); |
1843 | uint8_t stock_pages; |
1844 | |
1845 | if (!old) |
1846 | return; |
1847 | |
1848 | stock_pages = READ_ONCE(stock->nr_pages[i]); |
1849 | if (stock_pages) { |
1850 | memcg_uncharge(memcg: old, nr_pages: stock_pages); |
1851 | WRITE_ONCE(stock->nr_pages[i], 0); |
1852 | } |
1853 | |
1854 | css_put(css: &old->css); |
1855 | WRITE_ONCE(stock->cached[i], NULL); |
1856 | } |
1857 | |
1858 | static void drain_stock_fully(struct memcg_stock_pcp *stock) |
1859 | { |
1860 | int i; |
1861 | |
1862 | for (i = 0; i < NR_MEMCG_STOCK; ++i) |
1863 | drain_stock(stock, i); |
1864 | } |
1865 | |
1866 | static void drain_local_memcg_stock(struct work_struct *dummy) |
1867 | { |
1868 | struct memcg_stock_pcp *stock; |
1869 | |
1870 | if (WARN_ONCE(!in_task(), "drain in non-task context" )) |
1871 | return; |
1872 | |
1873 | local_lock(&memcg_stock.lock); |
1874 | |
1875 | stock = this_cpu_ptr(&memcg_stock); |
1876 | drain_stock_fully(stock); |
1877 | clear_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags); |
1878 | |
1879 | local_unlock(&memcg_stock.lock); |
1880 | } |
1881 | |
1882 | static void drain_local_obj_stock(struct work_struct *dummy) |
1883 | { |
1884 | struct obj_stock_pcp *stock; |
1885 | |
1886 | if (WARN_ONCE(!in_task(), "drain in non-task context" )) |
1887 | return; |
1888 | |
1889 | local_lock(&obj_stock.lock); |
1890 | |
1891 | stock = this_cpu_ptr(&obj_stock); |
1892 | drain_obj_stock(stock); |
1893 | clear_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags); |
1894 | |
1895 | local_unlock(&obj_stock.lock); |
1896 | } |
1897 | |
1898 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
1899 | { |
1900 | struct memcg_stock_pcp *stock; |
1901 | struct mem_cgroup *cached; |
1902 | uint8_t stock_pages; |
1903 | bool success = false; |
1904 | int empty_slot = -1; |
1905 | int i; |
1906 | |
1907 | /* |
1908 | * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we |
1909 | * decide to increase it more than 127 then we will need more careful |
1910 | * handling of nr_pages[] in struct memcg_stock_pcp. |
1911 | */ |
1912 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); |
1913 | |
1914 | VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); |
1915 | |
1916 | if (nr_pages > MEMCG_CHARGE_BATCH || |
1917 | !local_trylock(&memcg_stock.lock)) { |
1918 | /* |
1919 | * In case of larger than batch refill or unlikely failure to |
1920 | * lock the percpu memcg_stock.lock, uncharge memcg directly. |
1921 | */ |
1922 | memcg_uncharge(memcg, nr_pages); |
1923 | return; |
1924 | } |
1925 | |
1926 | stock = this_cpu_ptr(&memcg_stock); |
1927 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
1928 | cached = READ_ONCE(stock->cached[i]); |
1929 | if (!cached && empty_slot == -1) |
1930 | empty_slot = i; |
1931 | if (memcg == READ_ONCE(stock->cached[i])) { |
1932 | stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; |
1933 | WRITE_ONCE(stock->nr_pages[i], stock_pages); |
1934 | if (stock_pages > MEMCG_CHARGE_BATCH) |
1935 | drain_stock(stock, i); |
1936 | success = true; |
1937 | break; |
1938 | } |
1939 | } |
1940 | |
1941 | if (!success) { |
1942 | i = empty_slot; |
1943 | if (i == -1) { |
1944 | i = get_random_u32_below(NR_MEMCG_STOCK); |
1945 | drain_stock(stock, i); |
1946 | } |
1947 | css_get(css: &memcg->css); |
1948 | WRITE_ONCE(stock->cached[i], memcg); |
1949 | WRITE_ONCE(stock->nr_pages[i], nr_pages); |
1950 | } |
1951 | |
1952 | local_unlock(&memcg_stock.lock); |
1953 | } |
1954 | |
1955 | static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, |
1956 | struct mem_cgroup *root_memcg) |
1957 | { |
1958 | struct mem_cgroup *memcg; |
1959 | bool flush = false; |
1960 | int i; |
1961 | |
1962 | rcu_read_lock(); |
1963 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
1964 | memcg = READ_ONCE(stock->cached[i]); |
1965 | if (!memcg) |
1966 | continue; |
1967 | |
1968 | if (READ_ONCE(stock->nr_pages[i]) && |
1969 | mem_cgroup_is_descendant(memcg, root: root_memcg)) { |
1970 | flush = true; |
1971 | break; |
1972 | } |
1973 | } |
1974 | rcu_read_unlock(); |
1975 | return flush; |
1976 | } |
1977 | |
1978 | /* |
1979 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
1980 | * of the hierarchy under it. |
1981 | */ |
1982 | void drain_all_stock(struct mem_cgroup *root_memcg) |
1983 | { |
1984 | int cpu, curcpu; |
1985 | |
1986 | /* If someone's already draining, avoid adding running more workers. */ |
1987 | if (!mutex_trylock(&percpu_charge_mutex)) |
1988 | return; |
1989 | /* |
1990 | * Notify other cpus that system-wide "drain" is running |
1991 | * We do not care about races with the cpu hotplug because cpu down |
1992 | * as well as workers from this path always operate on the local |
1993 | * per-cpu data. CPU up doesn't touch memcg_stock at all. |
1994 | */ |
1995 | migrate_disable(); |
1996 | curcpu = smp_processor_id(); |
1997 | for_each_online_cpu(cpu) { |
1998 | struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); |
1999 | struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); |
2000 | |
2001 | if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && |
2002 | is_memcg_drain_needed(stock: memcg_st, root_memcg) && |
2003 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, |
2004 | addr: &memcg_st->flags)) { |
2005 | if (cpu == curcpu) |
2006 | drain_local_memcg_stock(dummy: &memcg_st->work); |
2007 | else if (!cpu_is_isolated(cpu)) |
2008 | schedule_work_on(cpu, work: &memcg_st->work); |
2009 | } |
2010 | |
2011 | if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && |
2012 | obj_stock_flush_required(stock: obj_st, root_memcg) && |
2013 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, |
2014 | addr: &obj_st->flags)) { |
2015 | if (cpu == curcpu) |
2016 | drain_local_obj_stock(dummy: &obj_st->work); |
2017 | else if (!cpu_is_isolated(cpu)) |
2018 | schedule_work_on(cpu, work: &obj_st->work); |
2019 | } |
2020 | } |
2021 | migrate_enable(); |
2022 | mutex_unlock(lock: &percpu_charge_mutex); |
2023 | } |
2024 | |
2025 | static int memcg_hotplug_cpu_dead(unsigned int cpu) |
2026 | { |
2027 | /* no need for the local lock */ |
2028 | drain_obj_stock(stock: &per_cpu(obj_stock, cpu)); |
2029 | drain_stock_fully(stock: &per_cpu(memcg_stock, cpu)); |
2030 | |
2031 | return 0; |
2032 | } |
2033 | |
2034 | static unsigned long reclaim_high(struct mem_cgroup *memcg, |
2035 | unsigned int nr_pages, |
2036 | gfp_t gfp_mask) |
2037 | { |
2038 | unsigned long nr_reclaimed = 0; |
2039 | |
2040 | do { |
2041 | unsigned long pflags; |
2042 | |
2043 | if (page_counter_read(counter: &memcg->memory) <= |
2044 | READ_ONCE(memcg->memory.high)) |
2045 | continue; |
2046 | |
2047 | memcg_memory_event(memcg, event: MEMCG_HIGH); |
2048 | |
2049 | psi_memstall_enter(flags: &pflags); |
2050 | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, |
2051 | gfp_mask, |
2052 | MEMCG_RECLAIM_MAY_SWAP, |
2053 | NULL); |
2054 | psi_memstall_leave(flags: &pflags); |
2055 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2056 | !mem_cgroup_is_root(memcg)); |
2057 | |
2058 | return nr_reclaimed; |
2059 | } |
2060 | |
2061 | static void high_work_func(struct work_struct *work) |
2062 | { |
2063 | struct mem_cgroup *memcg; |
2064 | |
2065 | memcg = container_of(work, struct mem_cgroup, high_work); |
2066 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); |
2067 | } |
2068 | |
2069 | /* |
2070 | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is |
2071 | * enough to still cause a significant slowdown in most cases, while still |
2072 | * allowing diagnostics and tracing to proceed without becoming stuck. |
2073 | */ |
2074 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) |
2075 | |
2076 | /* |
2077 | * When calculating the delay, we use these either side of the exponentiation to |
2078 | * maintain precision and scale to a reasonable number of jiffies (see the table |
2079 | * below. |
2080 | * |
2081 | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the |
2082 | * overage ratio to a delay. |
2083 | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the |
2084 | * proposed penalty in order to reduce to a reasonable number of jiffies, and |
2085 | * to produce a reasonable delay curve. |
2086 | * |
2087 | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a |
2088 | * reasonable delay curve compared to precision-adjusted overage, not |
2089 | * penalising heavily at first, but still making sure that growth beyond the |
2090 | * limit penalises misbehaviour cgroups by slowing them down exponentially. For |
2091 | * example, with a high of 100 megabytes: |
2092 | * |
2093 | * +-------+------------------------+ |
2094 | * | usage | time to allocate in ms | |
2095 | * +-------+------------------------+ |
2096 | * | 100M | 0 | |
2097 | * | 101M | 6 | |
2098 | * | 102M | 25 | |
2099 | * | 103M | 57 | |
2100 | * | 104M | 102 | |
2101 | * | 105M | 159 | |
2102 | * | 106M | 230 | |
2103 | * | 107M | 313 | |
2104 | * | 108M | 409 | |
2105 | * | 109M | 518 | |
2106 | * | 110M | 639 | |
2107 | * | 111M | 774 | |
2108 | * | 112M | 921 | |
2109 | * | 113M | 1081 | |
2110 | * | 114M | 1254 | |
2111 | * | 115M | 1439 | |
2112 | * | 116M | 1638 | |
2113 | * | 117M | 1849 | |
2114 | * | 118M | 2000 | |
2115 | * | 119M | 2000 | |
2116 | * | 120M | 2000 | |
2117 | * +-------+------------------------+ |
2118 | */ |
2119 | #define MEMCG_DELAY_PRECISION_SHIFT 20 |
2120 | #define MEMCG_DELAY_SCALING_SHIFT 14 |
2121 | |
2122 | static u64 calculate_overage(unsigned long usage, unsigned long high) |
2123 | { |
2124 | u64 overage; |
2125 | |
2126 | if (usage <= high) |
2127 | return 0; |
2128 | |
2129 | /* |
2130 | * Prevent division by 0 in overage calculation by acting as if |
2131 | * it was a threshold of 1 page |
2132 | */ |
2133 | high = max(high, 1UL); |
2134 | |
2135 | overage = usage - high; |
2136 | overage <<= MEMCG_DELAY_PRECISION_SHIFT; |
2137 | return div64_u64(dividend: overage, divisor: high); |
2138 | } |
2139 | |
2140 | static u64 mem_find_max_overage(struct mem_cgroup *memcg) |
2141 | { |
2142 | u64 overage, max_overage = 0; |
2143 | |
2144 | do { |
2145 | overage = calculate_overage(usage: page_counter_read(counter: &memcg->memory), |
2146 | READ_ONCE(memcg->memory.high)); |
2147 | max_overage = max(overage, max_overage); |
2148 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2149 | !mem_cgroup_is_root(memcg)); |
2150 | |
2151 | return max_overage; |
2152 | } |
2153 | |
2154 | static u64 swap_find_max_overage(struct mem_cgroup *memcg) |
2155 | { |
2156 | u64 overage, max_overage = 0; |
2157 | |
2158 | do { |
2159 | overage = calculate_overage(usage: page_counter_read(counter: &memcg->swap), |
2160 | READ_ONCE(memcg->swap.high)); |
2161 | if (overage) |
2162 | memcg_memory_event(memcg, event: MEMCG_SWAP_HIGH); |
2163 | max_overage = max(overage, max_overage); |
2164 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2165 | !mem_cgroup_is_root(memcg)); |
2166 | |
2167 | return max_overage; |
2168 | } |
2169 | |
2170 | /* |
2171 | * Get the number of jiffies that we should penalise a mischievous cgroup which |
2172 | * is exceeding its memory.high by checking both it and its ancestors. |
2173 | */ |
2174 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, |
2175 | unsigned int nr_pages, |
2176 | u64 max_overage) |
2177 | { |
2178 | unsigned long penalty_jiffies; |
2179 | |
2180 | if (!max_overage) |
2181 | return 0; |
2182 | |
2183 | /* |
2184 | * We use overage compared to memory.high to calculate the number of |
2185 | * jiffies to sleep (penalty_jiffies). Ideally this value should be |
2186 | * fairly lenient on small overages, and increasingly harsh when the |
2187 | * memcg in question makes it clear that it has no intention of stopping |
2188 | * its crazy behaviour, so we exponentially increase the delay based on |
2189 | * overage amount. |
2190 | */ |
2191 | penalty_jiffies = max_overage * max_overage * HZ; |
2192 | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; |
2193 | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; |
2194 | |
2195 | /* |
2196 | * Factor in the task's own contribution to the overage, such that four |
2197 | * N-sized allocations are throttled approximately the same as one |
2198 | * 4N-sized allocation. |
2199 | * |
2200 | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or |
2201 | * larger the current charge patch is than that. |
2202 | */ |
2203 | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; |
2204 | } |
2205 | |
2206 | /* |
2207 | * Reclaims memory over the high limit. Called directly from |
2208 | * try_charge() (context permitting), as well as from the userland |
2209 | * return path where reclaim is always able to block. |
2210 | */ |
2211 | void mem_cgroup_handle_over_high(gfp_t gfp_mask) |
2212 | { |
2213 | unsigned long penalty_jiffies; |
2214 | unsigned long pflags; |
2215 | unsigned long nr_reclaimed; |
2216 | unsigned int nr_pages = current->memcg_nr_pages_over_high; |
2217 | int nr_retries = MAX_RECLAIM_RETRIES; |
2218 | struct mem_cgroup *memcg; |
2219 | bool in_retry = false; |
2220 | |
2221 | if (likely(!nr_pages)) |
2222 | return; |
2223 | |
2224 | memcg = get_mem_cgroup_from_mm(current->mm); |
2225 | current->memcg_nr_pages_over_high = 0; |
2226 | |
2227 | retry_reclaim: |
2228 | /* |
2229 | * Bail if the task is already exiting. Unlike memory.max, |
2230 | * memory.high enforcement isn't as strict, and there is no |
2231 | * OOM killer involved, which means the excess could already |
2232 | * be much bigger (and still growing) than it could for |
2233 | * memory.max; the dying task could get stuck in fruitless |
2234 | * reclaim for a long time, which isn't desirable. |
2235 | */ |
2236 | if (task_is_dying()) |
2237 | goto out; |
2238 | |
2239 | /* |
2240 | * The allocating task should reclaim at least the batch size, but for |
2241 | * subsequent retries we only want to do what's necessary to prevent oom |
2242 | * or breaching resource isolation. |
2243 | * |
2244 | * This is distinct from memory.max or page allocator behaviour because |
2245 | * memory.high is currently batched, whereas memory.max and the page |
2246 | * allocator run every time an allocation is made. |
2247 | */ |
2248 | nr_reclaimed = reclaim_high(memcg, |
2249 | nr_pages: in_retry ? SWAP_CLUSTER_MAX : nr_pages, |
2250 | gfp_mask); |
2251 | |
2252 | /* |
2253 | * memory.high is breached and reclaim is unable to keep up. Throttle |
2254 | * allocators proactively to slow down excessive growth. |
2255 | */ |
2256 | penalty_jiffies = calculate_high_delay(memcg, nr_pages, |
2257 | max_overage: mem_find_max_overage(memcg)); |
2258 | |
2259 | penalty_jiffies += calculate_high_delay(memcg, nr_pages, |
2260 | max_overage: swap_find_max_overage(memcg)); |
2261 | |
2262 | /* |
2263 | * Clamp the max delay per usermode return so as to still keep the |
2264 | * application moving forwards and also permit diagnostics, albeit |
2265 | * extremely slowly. |
2266 | */ |
2267 | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); |
2268 | |
2269 | /* |
2270 | * Don't sleep if the amount of jiffies this memcg owes us is so low |
2271 | * that it's not even worth doing, in an attempt to be nice to those who |
2272 | * go only a small amount over their memory.high value and maybe haven't |
2273 | * been aggressively reclaimed enough yet. |
2274 | */ |
2275 | if (penalty_jiffies <= HZ / 100) |
2276 | goto out; |
2277 | |
2278 | /* |
2279 | * If reclaim is making forward progress but we're still over |
2280 | * memory.high, we want to encourage that rather than doing allocator |
2281 | * throttling. |
2282 | */ |
2283 | if (nr_reclaimed || nr_retries--) { |
2284 | in_retry = true; |
2285 | goto retry_reclaim; |
2286 | } |
2287 | |
2288 | /* |
2289 | * Reclaim didn't manage to push usage below the limit, slow |
2290 | * this allocating task down. |
2291 | * |
2292 | * If we exit early, we're guaranteed to die (since |
2293 | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't |
2294 | * need to account for any ill-begotten jiffies to pay them off later. |
2295 | */ |
2296 | psi_memstall_enter(flags: &pflags); |
2297 | schedule_timeout_killable(timeout: penalty_jiffies); |
2298 | psi_memstall_leave(flags: &pflags); |
2299 | |
2300 | out: |
2301 | css_put(css: &memcg->css); |
2302 | } |
2303 | |
2304 | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2305 | unsigned int nr_pages) |
2306 | { |
2307 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); |
2308 | int nr_retries = MAX_RECLAIM_RETRIES; |
2309 | struct mem_cgroup *mem_over_limit; |
2310 | struct page_counter *counter; |
2311 | unsigned long nr_reclaimed; |
2312 | bool passed_oom = false; |
2313 | unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; |
2314 | bool drained = false; |
2315 | bool raised_max_event = false; |
2316 | unsigned long pflags; |
2317 | |
2318 | retry: |
2319 | if (consume_stock(memcg, nr_pages)) |
2320 | return 0; |
2321 | |
2322 | if (!gfpflags_allow_spinning(gfp_flags: gfp_mask)) |
2323 | /* Avoid the refill and flush of the older stock */ |
2324 | batch = nr_pages; |
2325 | |
2326 | if (!do_memsw_account() || |
2327 | page_counter_try_charge(counter: &memcg->memsw, nr_pages: batch, fail: &counter)) { |
2328 | if (page_counter_try_charge(counter: &memcg->memory, nr_pages: batch, fail: &counter)) |
2329 | goto done_restock; |
2330 | if (do_memsw_account()) |
2331 | page_counter_uncharge(counter: &memcg->memsw, nr_pages: batch); |
2332 | mem_over_limit = mem_cgroup_from_counter(counter, memory); |
2333 | } else { |
2334 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
2335 | reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; |
2336 | } |
2337 | |
2338 | if (batch > nr_pages) { |
2339 | batch = nr_pages; |
2340 | goto retry; |
2341 | } |
2342 | |
2343 | /* |
2344 | * Prevent unbounded recursion when reclaim operations need to |
2345 | * allocate memory. This might exceed the limits temporarily, |
2346 | * but we prefer facilitating memory reclaim and getting back |
2347 | * under the limit over triggering OOM kills in these cases. |
2348 | */ |
2349 | if (unlikely(current->flags & PF_MEMALLOC)) |
2350 | goto force; |
2351 | |
2352 | if (unlikely(task_in_memcg_oom(current))) |
2353 | goto nomem; |
2354 | |
2355 | if (!gfpflags_allow_blocking(gfp_flags: gfp_mask)) |
2356 | goto nomem; |
2357 | |
2358 | memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX); |
2359 | raised_max_event = true; |
2360 | |
2361 | psi_memstall_enter(flags: &pflags); |
2362 | nr_reclaimed = try_to_free_mem_cgroup_pages(memcg: mem_over_limit, nr_pages, |
2363 | gfp_mask, reclaim_options, NULL); |
2364 | psi_memstall_leave(flags: &pflags); |
2365 | |
2366 | if (mem_cgroup_margin(memcg: mem_over_limit) >= nr_pages) |
2367 | goto retry; |
2368 | |
2369 | if (!drained) { |
2370 | drain_all_stock(root_memcg: mem_over_limit); |
2371 | drained = true; |
2372 | goto retry; |
2373 | } |
2374 | |
2375 | if (gfp_mask & __GFP_NORETRY) |
2376 | goto nomem; |
2377 | /* |
2378 | * Even though the limit is exceeded at this point, reclaim |
2379 | * may have been able to free some pages. Retry the charge |
2380 | * before killing the task. |
2381 | * |
2382 | * Only for regular pages, though: huge pages are rather |
2383 | * unlikely to succeed so close to the limit, and we fall back |
2384 | * to regular pages anyway in case of failure. |
2385 | */ |
2386 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
2387 | goto retry; |
2388 | |
2389 | if (nr_retries--) |
2390 | goto retry; |
2391 | |
2392 | if (gfp_mask & __GFP_RETRY_MAYFAIL) |
2393 | goto nomem; |
2394 | |
2395 | /* Avoid endless loop for tasks bypassed by the oom killer */ |
2396 | if (passed_oom && task_is_dying()) |
2397 | goto nomem; |
2398 | |
2399 | /* |
2400 | * keep retrying as long as the memcg oom killer is able to make |
2401 | * a forward progress or bypass the charge if the oom killer |
2402 | * couldn't make any progress. |
2403 | */ |
2404 | if (mem_cgroup_oom(memcg: mem_over_limit, mask: gfp_mask, |
2405 | order: get_order(size: nr_pages * PAGE_SIZE))) { |
2406 | passed_oom = true; |
2407 | nr_retries = MAX_RECLAIM_RETRIES; |
2408 | goto retry; |
2409 | } |
2410 | nomem: |
2411 | /* |
2412 | * Memcg doesn't have a dedicated reserve for atomic |
2413 | * allocations. But like the global atomic pool, we need to |
2414 | * put the burden of reclaim on regular allocation requests |
2415 | * and let these go through as privileged allocations. |
2416 | */ |
2417 | if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) |
2418 | return -ENOMEM; |
2419 | force: |
2420 | /* |
2421 | * If the allocation has to be enforced, don't forget to raise |
2422 | * a MEMCG_MAX event. |
2423 | */ |
2424 | if (!raised_max_event) |
2425 | memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX); |
2426 | |
2427 | /* |
2428 | * The allocation either can't fail or will lead to more memory |
2429 | * being freed very soon. Allow memory usage go over the limit |
2430 | * temporarily by force charging it. |
2431 | */ |
2432 | page_counter_charge(counter: &memcg->memory, nr_pages); |
2433 | if (do_memsw_account()) |
2434 | page_counter_charge(counter: &memcg->memsw, nr_pages); |
2435 | |
2436 | return 0; |
2437 | |
2438 | done_restock: |
2439 | if (batch > nr_pages) |
2440 | refill_stock(memcg, nr_pages: batch - nr_pages); |
2441 | |
2442 | /* |
2443 | * If the hierarchy is above the normal consumption range, schedule |
2444 | * reclaim on returning to userland. We can perform reclaim here |
2445 | * if __GFP_RECLAIM but let's always punt for simplicity and so that |
2446 | * GFP_KERNEL can consistently be used during reclaim. @memcg is |
2447 | * not recorded as it most likely matches current's and won't |
2448 | * change in the meantime. As high limit is checked again before |
2449 | * reclaim, the cost of mismatch is negligible. |
2450 | */ |
2451 | do { |
2452 | bool mem_high, swap_high; |
2453 | |
2454 | mem_high = page_counter_read(counter: &memcg->memory) > |
2455 | READ_ONCE(memcg->memory.high); |
2456 | swap_high = page_counter_read(counter: &memcg->swap) > |
2457 | READ_ONCE(memcg->swap.high); |
2458 | |
2459 | /* Don't bother a random interrupted task */ |
2460 | if (!in_task()) { |
2461 | if (mem_high) { |
2462 | schedule_work(work: &memcg->high_work); |
2463 | break; |
2464 | } |
2465 | continue; |
2466 | } |
2467 | |
2468 | if (mem_high || swap_high) { |
2469 | /* |
2470 | * The allocating tasks in this cgroup will need to do |
2471 | * reclaim or be throttled to prevent further growth |
2472 | * of the memory or swap footprints. |
2473 | * |
2474 | * Target some best-effort fairness between the tasks, |
2475 | * and distribute reclaim work and delay penalties |
2476 | * based on how much each task is actually allocating. |
2477 | */ |
2478 | current->memcg_nr_pages_over_high += batch; |
2479 | set_notify_resume(current); |
2480 | break; |
2481 | } |
2482 | } while ((memcg = parent_mem_cgroup(memcg))); |
2483 | |
2484 | /* |
2485 | * Reclaim is set up above to be called from the userland |
2486 | * return path. But also attempt synchronous reclaim to avoid |
2487 | * excessive overrun while the task is still inside the |
2488 | * kernel. If this is successful, the return path will see it |
2489 | * when it rechecks the overage and simply bail out. |
2490 | */ |
2491 | if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && |
2492 | !(current->flags & PF_MEMALLOC) && |
2493 | gfpflags_allow_blocking(gfp_flags: gfp_mask)) |
2494 | mem_cgroup_handle_over_high(gfp_mask); |
2495 | return 0; |
2496 | } |
2497 | |
2498 | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2499 | unsigned int nr_pages) |
2500 | { |
2501 | if (mem_cgroup_is_root(memcg)) |
2502 | return 0; |
2503 | |
2504 | return try_charge_memcg(memcg, gfp_mask, nr_pages); |
2505 | } |
2506 | |
2507 | static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) |
2508 | { |
2509 | VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); |
2510 | /* |
2511 | * Any of the following ensures page's memcg stability: |
2512 | * |
2513 | * - the page lock |
2514 | * - LRU isolation |
2515 | * - exclusive reference |
2516 | */ |
2517 | folio->memcg_data = (unsigned long)memcg; |
2518 | } |
2519 | |
2520 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
2521 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, |
2522 | struct pglist_data *pgdat, |
2523 | enum node_stat_item idx, int nr) |
2524 | { |
2525 | struct lruvec *lruvec; |
2526 | |
2527 | if (likely(!in_nmi())) { |
2528 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
2529 | mod_memcg_lruvec_state(lruvec, idx, nr); |
2530 | } else { |
2531 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; |
2532 | |
2533 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
2534 | if (idx == NR_SLAB_RECLAIMABLE_B) |
2535 | atomic_add(nr, &pn->slab_reclaimable); |
2536 | else |
2537 | atomic_add(nr, &pn->slab_unreclaimable); |
2538 | } |
2539 | } |
2540 | #else |
2541 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, |
2542 | struct pglist_data *pgdat, |
2543 | enum node_stat_item idx, int nr) |
2544 | { |
2545 | struct lruvec *lruvec; |
2546 | |
2547 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
2548 | mod_memcg_lruvec_state(lruvec, idx, val: nr); |
2549 | } |
2550 | #endif |
2551 | |
2552 | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, |
2553 | struct pglist_data *pgdat, |
2554 | enum node_stat_item idx, int nr) |
2555 | { |
2556 | struct mem_cgroup *memcg; |
2557 | |
2558 | rcu_read_lock(); |
2559 | memcg = obj_cgroup_memcg(objcg); |
2560 | account_slab_nmi_safe(memcg, pgdat, idx, nr); |
2561 | rcu_read_unlock(); |
2562 | } |
2563 | |
2564 | static __always_inline |
2565 | struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) |
2566 | { |
2567 | /* |
2568 | * Slab objects are accounted individually, not per-page. |
2569 | * Memcg membership data for each individual object is saved in |
2570 | * slab->obj_exts. |
2571 | */ |
2572 | if (folio_test_slab(folio)) { |
2573 | struct slabobj_ext *obj_exts; |
2574 | struct slab *slab; |
2575 | unsigned int off; |
2576 | |
2577 | slab = folio_slab(folio); |
2578 | obj_exts = slab_obj_exts(slab); |
2579 | if (!obj_exts) |
2580 | return NULL; |
2581 | |
2582 | off = obj_to_index(cache: slab->slab_cache, slab, obj: p); |
2583 | if (obj_exts[off].objcg) |
2584 | return obj_cgroup_memcg(objcg: obj_exts[off].objcg); |
2585 | |
2586 | return NULL; |
2587 | } |
2588 | |
2589 | /* |
2590 | * folio_memcg_check() is used here, because in theory we can encounter |
2591 | * a folio where the slab flag has been cleared already, but |
2592 | * slab->obj_exts has not been freed yet |
2593 | * folio_memcg_check() will guarantee that a proper memory |
2594 | * cgroup pointer or NULL will be returned. |
2595 | */ |
2596 | return folio_memcg_check(folio); |
2597 | } |
2598 | |
2599 | /* |
2600 | * Returns a pointer to the memory cgroup to which the kernel object is charged. |
2601 | * It is not suitable for objects allocated using vmalloc(). |
2602 | * |
2603 | * A passed kernel object must be a slab object or a generic kernel page. |
2604 | * |
2605 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), |
2606 | * cgroup_mutex, etc. |
2607 | */ |
2608 | struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) |
2609 | { |
2610 | if (mem_cgroup_disabled()) |
2611 | return NULL; |
2612 | |
2613 | return mem_cgroup_from_obj_folio(folio: virt_to_folio(x: p), p); |
2614 | } |
2615 | |
2616 | static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) |
2617 | { |
2618 | struct obj_cgroup *objcg = NULL; |
2619 | |
2620 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
2621 | objcg = rcu_dereference(memcg->objcg); |
2622 | if (likely(objcg && obj_cgroup_tryget(objcg))) |
2623 | break; |
2624 | objcg = NULL; |
2625 | } |
2626 | return objcg; |
2627 | } |
2628 | |
2629 | static struct obj_cgroup *current_objcg_update(void) |
2630 | { |
2631 | struct mem_cgroup *memcg; |
2632 | struct obj_cgroup *old, *objcg = NULL; |
2633 | |
2634 | do { |
2635 | /* Atomically drop the update bit. */ |
2636 | old = xchg(¤t->objcg, NULL); |
2637 | if (old) { |
2638 | old = (struct obj_cgroup *) |
2639 | ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); |
2640 | obj_cgroup_put(objcg: old); |
2641 | |
2642 | old = NULL; |
2643 | } |
2644 | |
2645 | /* If new objcg is NULL, no reason for the second atomic update. */ |
2646 | if (!current->mm || (current->flags & PF_KTHREAD)) |
2647 | return NULL; |
2648 | |
2649 | /* |
2650 | * Release the objcg pointer from the previous iteration, |
2651 | * if try_cmpxcg() below fails. |
2652 | */ |
2653 | if (unlikely(objcg)) { |
2654 | obj_cgroup_put(objcg); |
2655 | objcg = NULL; |
2656 | } |
2657 | |
2658 | /* |
2659 | * Obtain the new objcg pointer. The current task can be |
2660 | * asynchronously moved to another memcg and the previous |
2661 | * memcg can be offlined. So let's get the memcg pointer |
2662 | * and try get a reference to objcg under a rcu read lock. |
2663 | */ |
2664 | |
2665 | rcu_read_lock(); |
2666 | memcg = mem_cgroup_from_task(current); |
2667 | objcg = __get_obj_cgroup_from_memcg(memcg); |
2668 | rcu_read_unlock(); |
2669 | |
2670 | /* |
2671 | * Try set up a new objcg pointer atomically. If it |
2672 | * fails, it means the update flag was set concurrently, so |
2673 | * the whole procedure should be repeated. |
2674 | */ |
2675 | } while (!try_cmpxchg(¤t->objcg, &old, objcg)); |
2676 | |
2677 | return objcg; |
2678 | } |
2679 | |
2680 | __always_inline struct obj_cgroup *current_obj_cgroup(void) |
2681 | { |
2682 | struct mem_cgroup *memcg; |
2683 | struct obj_cgroup *objcg; |
2684 | |
2685 | if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) |
2686 | return NULL; |
2687 | |
2688 | if (in_task()) { |
2689 | memcg = current->active_memcg; |
2690 | if (unlikely(memcg)) |
2691 | goto from_memcg; |
2692 | |
2693 | objcg = READ_ONCE(current->objcg); |
2694 | if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) |
2695 | objcg = current_objcg_update(); |
2696 | /* |
2697 | * Objcg reference is kept by the task, so it's safe |
2698 | * to use the objcg by the current task. |
2699 | */ |
2700 | return objcg; |
2701 | } |
2702 | |
2703 | memcg = this_cpu_read(int_active_memcg); |
2704 | if (unlikely(memcg)) |
2705 | goto from_memcg; |
2706 | |
2707 | return NULL; |
2708 | |
2709 | from_memcg: |
2710 | objcg = NULL; |
2711 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
2712 | /* |
2713 | * Memcg pointer is protected by scope (see set_active_memcg()) |
2714 | * and is pinning the corresponding objcg, so objcg can't go |
2715 | * away and can be used within the scope without any additional |
2716 | * protection. |
2717 | */ |
2718 | objcg = rcu_dereference_check(memcg->objcg, 1); |
2719 | if (likely(objcg)) |
2720 | break; |
2721 | } |
2722 | |
2723 | return objcg; |
2724 | } |
2725 | |
2726 | struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) |
2727 | { |
2728 | struct obj_cgroup *objcg; |
2729 | |
2730 | if (!memcg_kmem_online()) |
2731 | return NULL; |
2732 | |
2733 | if (folio_memcg_kmem(folio)) { |
2734 | objcg = __folio_objcg(folio); |
2735 | obj_cgroup_get(objcg); |
2736 | } else { |
2737 | struct mem_cgroup *memcg; |
2738 | |
2739 | rcu_read_lock(); |
2740 | memcg = __folio_memcg(folio); |
2741 | if (memcg) |
2742 | objcg = __get_obj_cgroup_from_memcg(memcg); |
2743 | else |
2744 | objcg = NULL; |
2745 | rcu_read_unlock(); |
2746 | } |
2747 | return objcg; |
2748 | } |
2749 | |
2750 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
2751 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) |
2752 | { |
2753 | if (likely(!in_nmi())) { |
2754 | mod_memcg_state(memcg, MEMCG_KMEM, val); |
2755 | } else { |
2756 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
2757 | atomic_add(val, &memcg->kmem_stat); |
2758 | } |
2759 | } |
2760 | #else |
2761 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) |
2762 | { |
2763 | mod_memcg_state(memcg, idx: MEMCG_KMEM, val); |
2764 | } |
2765 | #endif |
2766 | |
2767 | /* |
2768 | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg |
2769 | * @objcg: object cgroup to uncharge |
2770 | * @nr_pages: number of pages to uncharge |
2771 | */ |
2772 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, |
2773 | unsigned int nr_pages) |
2774 | { |
2775 | struct mem_cgroup *memcg; |
2776 | |
2777 | memcg = get_mem_cgroup_from_objcg(objcg); |
2778 | |
2779 | account_kmem_nmi_safe(memcg, val: -nr_pages); |
2780 | memcg1_account_kmem(memcg, nr_pages: -nr_pages); |
2781 | if (!mem_cgroup_is_root(memcg)) |
2782 | refill_stock(memcg, nr_pages); |
2783 | |
2784 | css_put(css: &memcg->css); |
2785 | } |
2786 | |
2787 | /* |
2788 | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg |
2789 | * @objcg: object cgroup to charge |
2790 | * @gfp: reclaim mode |
2791 | * @nr_pages: number of pages to charge |
2792 | * |
2793 | * Returns 0 on success, an error code on failure. |
2794 | */ |
2795 | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, |
2796 | unsigned int nr_pages) |
2797 | { |
2798 | struct mem_cgroup *memcg; |
2799 | int ret; |
2800 | |
2801 | memcg = get_mem_cgroup_from_objcg(objcg); |
2802 | |
2803 | ret = try_charge_memcg(memcg, gfp_mask: gfp, nr_pages); |
2804 | if (ret) |
2805 | goto out; |
2806 | |
2807 | account_kmem_nmi_safe(memcg, val: nr_pages); |
2808 | memcg1_account_kmem(memcg, nr_pages); |
2809 | out: |
2810 | css_put(css: &memcg->css); |
2811 | |
2812 | return ret; |
2813 | } |
2814 | |
2815 | static struct obj_cgroup *page_objcg(const struct page *page) |
2816 | { |
2817 | unsigned long memcg_data = page->memcg_data; |
2818 | |
2819 | if (mem_cgroup_disabled() || !memcg_data) |
2820 | return NULL; |
2821 | |
2822 | VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, |
2823 | page); |
2824 | return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); |
2825 | } |
2826 | |
2827 | static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) |
2828 | { |
2829 | page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; |
2830 | } |
2831 | |
2832 | /** |
2833 | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup |
2834 | * @page: page to charge |
2835 | * @gfp: reclaim mode |
2836 | * @order: allocation order |
2837 | * |
2838 | * Returns 0 on success, an error code on failure. |
2839 | */ |
2840 | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) |
2841 | { |
2842 | struct obj_cgroup *objcg; |
2843 | int ret = 0; |
2844 | |
2845 | objcg = current_obj_cgroup(); |
2846 | if (objcg) { |
2847 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages: 1 << order); |
2848 | if (!ret) { |
2849 | obj_cgroup_get(objcg); |
2850 | page_set_objcg(page, objcg); |
2851 | return 0; |
2852 | } |
2853 | } |
2854 | return ret; |
2855 | } |
2856 | |
2857 | /** |
2858 | * __memcg_kmem_uncharge_page: uncharge a kmem page |
2859 | * @page: page to uncharge |
2860 | * @order: allocation order |
2861 | */ |
2862 | void __memcg_kmem_uncharge_page(struct page *page, int order) |
2863 | { |
2864 | struct obj_cgroup *objcg = page_objcg(page); |
2865 | unsigned int nr_pages = 1 << order; |
2866 | |
2867 | if (!objcg) |
2868 | return; |
2869 | |
2870 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
2871 | page->memcg_data = 0; |
2872 | obj_cgroup_put(objcg); |
2873 | } |
2874 | |
2875 | static void __account_obj_stock(struct obj_cgroup *objcg, |
2876 | struct obj_stock_pcp *stock, int nr, |
2877 | struct pglist_data *pgdat, enum node_stat_item idx) |
2878 | { |
2879 | int *bytes; |
2880 | |
2881 | /* |
2882 | * Save vmstat data in stock and skip vmstat array update unless |
2883 | * accumulating over a page of vmstat data or when pgdat changes. |
2884 | */ |
2885 | if (stock->cached_pgdat != pgdat) { |
2886 | /* Flush the existing cached vmstat data */ |
2887 | struct pglist_data *oldpg = stock->cached_pgdat; |
2888 | |
2889 | if (stock->nr_slab_reclaimable_b) { |
2890 | mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_RECLAIMABLE_B, |
2891 | nr: stock->nr_slab_reclaimable_b); |
2892 | stock->nr_slab_reclaimable_b = 0; |
2893 | } |
2894 | if (stock->nr_slab_unreclaimable_b) { |
2895 | mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_UNRECLAIMABLE_B, |
2896 | nr: stock->nr_slab_unreclaimable_b); |
2897 | stock->nr_slab_unreclaimable_b = 0; |
2898 | } |
2899 | stock->cached_pgdat = pgdat; |
2900 | } |
2901 | |
2902 | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b |
2903 | : &stock->nr_slab_unreclaimable_b; |
2904 | /* |
2905 | * Even for large object >= PAGE_SIZE, the vmstat data will still be |
2906 | * cached locally at least once before pushing it out. |
2907 | */ |
2908 | if (!*bytes) { |
2909 | *bytes = nr; |
2910 | nr = 0; |
2911 | } else { |
2912 | *bytes += nr; |
2913 | if (abs(*bytes) > PAGE_SIZE) { |
2914 | nr = *bytes; |
2915 | *bytes = 0; |
2916 | } else { |
2917 | nr = 0; |
2918 | } |
2919 | } |
2920 | if (nr) |
2921 | mod_objcg_mlstate(objcg, pgdat, idx, nr); |
2922 | } |
2923 | |
2924 | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
2925 | struct pglist_data *pgdat, enum node_stat_item idx) |
2926 | { |
2927 | struct obj_stock_pcp *stock; |
2928 | bool ret = false; |
2929 | |
2930 | if (!local_trylock(&obj_stock.lock)) |
2931 | return ret; |
2932 | |
2933 | stock = this_cpu_ptr(&obj_stock); |
2934 | if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { |
2935 | stock->nr_bytes -= nr_bytes; |
2936 | ret = true; |
2937 | |
2938 | if (pgdat) |
2939 | __account_obj_stock(objcg, stock, nr: nr_bytes, pgdat, idx); |
2940 | } |
2941 | |
2942 | local_unlock(&obj_stock.lock); |
2943 | |
2944 | return ret; |
2945 | } |
2946 | |
2947 | static void drain_obj_stock(struct obj_stock_pcp *stock) |
2948 | { |
2949 | struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); |
2950 | |
2951 | if (!old) |
2952 | return; |
2953 | |
2954 | if (stock->nr_bytes) { |
2955 | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
2956 | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); |
2957 | |
2958 | if (nr_pages) { |
2959 | struct mem_cgroup *memcg; |
2960 | |
2961 | memcg = get_mem_cgroup_from_objcg(objcg: old); |
2962 | |
2963 | mod_memcg_state(memcg, idx: MEMCG_KMEM, val: -nr_pages); |
2964 | memcg1_account_kmem(memcg, nr_pages: -nr_pages); |
2965 | if (!mem_cgroup_is_root(memcg)) |
2966 | memcg_uncharge(memcg, nr_pages); |
2967 | |
2968 | css_put(css: &memcg->css); |
2969 | } |
2970 | |
2971 | /* |
2972 | * The leftover is flushed to the centralized per-memcg value. |
2973 | * On the next attempt to refill obj stock it will be moved |
2974 | * to a per-cpu stock (probably, on an other CPU), see |
2975 | * refill_obj_stock(). |
2976 | * |
2977 | * How often it's flushed is a trade-off between the memory |
2978 | * limit enforcement accuracy and potential CPU contention, |
2979 | * so it might be changed in the future. |
2980 | */ |
2981 | atomic_add(i: nr_bytes, v: &old->nr_charged_bytes); |
2982 | stock->nr_bytes = 0; |
2983 | } |
2984 | |
2985 | /* |
2986 | * Flush the vmstat data in current stock |
2987 | */ |
2988 | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { |
2989 | if (stock->nr_slab_reclaimable_b) { |
2990 | mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat, |
2991 | idx: NR_SLAB_RECLAIMABLE_B, |
2992 | nr: stock->nr_slab_reclaimable_b); |
2993 | stock->nr_slab_reclaimable_b = 0; |
2994 | } |
2995 | if (stock->nr_slab_unreclaimable_b) { |
2996 | mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat, |
2997 | idx: NR_SLAB_UNRECLAIMABLE_B, |
2998 | nr: stock->nr_slab_unreclaimable_b); |
2999 | stock->nr_slab_unreclaimable_b = 0; |
3000 | } |
3001 | stock->cached_pgdat = NULL; |
3002 | } |
3003 | |
3004 | WRITE_ONCE(stock->cached_objcg, NULL); |
3005 | obj_cgroup_put(objcg: old); |
3006 | } |
3007 | |
3008 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, |
3009 | struct mem_cgroup *root_memcg) |
3010 | { |
3011 | struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); |
3012 | struct mem_cgroup *memcg; |
3013 | bool flush = false; |
3014 | |
3015 | rcu_read_lock(); |
3016 | if (objcg) { |
3017 | memcg = obj_cgroup_memcg(objcg); |
3018 | if (memcg && mem_cgroup_is_descendant(memcg, root: root_memcg)) |
3019 | flush = true; |
3020 | } |
3021 | rcu_read_unlock(); |
3022 | |
3023 | return flush; |
3024 | } |
3025 | |
3026 | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
3027 | bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, |
3028 | enum node_stat_item idx) |
3029 | { |
3030 | struct obj_stock_pcp *stock; |
3031 | unsigned int nr_pages = 0; |
3032 | |
3033 | if (!local_trylock(&obj_stock.lock)) { |
3034 | if (pgdat) |
3035 | mod_objcg_mlstate(objcg, pgdat, idx, nr: nr_bytes); |
3036 | nr_pages = nr_bytes >> PAGE_SHIFT; |
3037 | nr_bytes = nr_bytes & (PAGE_SIZE - 1); |
3038 | atomic_add(i: nr_bytes, v: &objcg->nr_charged_bytes); |
3039 | goto out; |
3040 | } |
3041 | |
3042 | stock = this_cpu_ptr(&obj_stock); |
3043 | if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ |
3044 | drain_obj_stock(stock); |
3045 | obj_cgroup_get(objcg); |
3046 | stock->nr_bytes = atomic_read(v: &objcg->nr_charged_bytes) |
3047 | ? atomic_xchg(v: &objcg->nr_charged_bytes, new: 0) : 0; |
3048 | WRITE_ONCE(stock->cached_objcg, objcg); |
3049 | |
3050 | allow_uncharge = true; /* Allow uncharge when objcg changes */ |
3051 | } |
3052 | stock->nr_bytes += nr_bytes; |
3053 | |
3054 | if (pgdat) |
3055 | __account_obj_stock(objcg, stock, nr: nr_acct, pgdat, idx); |
3056 | |
3057 | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { |
3058 | nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
3059 | stock->nr_bytes &= (PAGE_SIZE - 1); |
3060 | } |
3061 | |
3062 | local_unlock(&obj_stock.lock); |
3063 | out: |
3064 | if (nr_pages) |
3065 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
3066 | } |
3067 | |
3068 | static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, |
3069 | struct pglist_data *pgdat, enum node_stat_item idx) |
3070 | { |
3071 | unsigned int nr_pages, nr_bytes; |
3072 | int ret; |
3073 | |
3074 | if (likely(consume_obj_stock(objcg, size, pgdat, idx))) |
3075 | return 0; |
3076 | |
3077 | /* |
3078 | * In theory, objcg->nr_charged_bytes can have enough |
3079 | * pre-charged bytes to satisfy the allocation. However, |
3080 | * flushing objcg->nr_charged_bytes requires two atomic |
3081 | * operations, and objcg->nr_charged_bytes can't be big. |
3082 | * The shared objcg->nr_charged_bytes can also become a |
3083 | * performance bottleneck if all tasks of the same memcg are |
3084 | * trying to update it. So it's better to ignore it and try |
3085 | * grab some new pages. The stock's nr_bytes will be flushed to |
3086 | * objcg->nr_charged_bytes later on when objcg changes. |
3087 | * |
3088 | * The stock's nr_bytes may contain enough pre-charged bytes |
3089 | * to allow one less page from being charged, but we can't rely |
3090 | * on the pre-charged bytes not being changed outside of |
3091 | * consume_obj_stock() or refill_obj_stock(). So ignore those |
3092 | * pre-charged bytes as well when charging pages. To avoid a |
3093 | * page uncharge right after a page charge, we set the |
3094 | * allow_uncharge flag to false when calling refill_obj_stock() |
3095 | * to temporarily allow the pre-charged bytes to exceed the page |
3096 | * size limit. The maximum reachable value of the pre-charged |
3097 | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data |
3098 | * race. |
3099 | */ |
3100 | nr_pages = size >> PAGE_SHIFT; |
3101 | nr_bytes = size & (PAGE_SIZE - 1); |
3102 | |
3103 | if (nr_bytes) |
3104 | nr_pages += 1; |
3105 | |
3106 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); |
3107 | if (!ret && (nr_bytes || pgdat)) |
3108 | refill_obj_stock(objcg, nr_bytes: nr_bytes ? PAGE_SIZE - nr_bytes : 0, |
3109 | allow_uncharge: false, nr_acct: size, pgdat, idx); |
3110 | |
3111 | return ret; |
3112 | } |
3113 | |
3114 | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) |
3115 | { |
3116 | return obj_cgroup_charge_account(objcg, gfp, size, NULL, idx: 0); |
3117 | } |
3118 | |
3119 | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) |
3120 | { |
3121 | refill_obj_stock(objcg, nr_bytes: size, allow_uncharge: true, nr_acct: 0, NULL, idx: 0); |
3122 | } |
3123 | |
3124 | static inline size_t obj_full_size(struct kmem_cache *s) |
3125 | { |
3126 | /* |
3127 | * For each accounted object there is an extra space which is used |
3128 | * to store obj_cgroup membership. Charge it too. |
3129 | */ |
3130 | return s->size + sizeof(struct obj_cgroup *); |
3131 | } |
3132 | |
3133 | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
3134 | gfp_t flags, size_t size, void **p) |
3135 | { |
3136 | struct obj_cgroup *objcg; |
3137 | struct slab *slab; |
3138 | unsigned long off; |
3139 | size_t i; |
3140 | |
3141 | /* |
3142 | * The obtained objcg pointer is safe to use within the current scope, |
3143 | * defined by current task or set_active_memcg() pair. |
3144 | * obj_cgroup_get() is used to get a permanent reference. |
3145 | */ |
3146 | objcg = current_obj_cgroup(); |
3147 | if (!objcg) |
3148 | return true; |
3149 | |
3150 | /* |
3151 | * slab_alloc_node() avoids the NULL check, so we might be called with a |
3152 | * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill |
3153 | * the whole requested size. |
3154 | * return success as there's nothing to free back |
3155 | */ |
3156 | if (unlikely(*p == NULL)) |
3157 | return true; |
3158 | |
3159 | flags &= gfp_allowed_mask; |
3160 | |
3161 | if (lru) { |
3162 | int ret; |
3163 | struct mem_cgroup *memcg; |
3164 | |
3165 | memcg = get_mem_cgroup_from_objcg(objcg); |
3166 | ret = memcg_list_lru_alloc(memcg, lru, gfp: flags); |
3167 | css_put(css: &memcg->css); |
3168 | |
3169 | if (ret) |
3170 | return false; |
3171 | } |
3172 | |
3173 | for (i = 0; i < size; i++) { |
3174 | slab = virt_to_slab(addr: p[i]); |
3175 | |
3176 | if (!slab_obj_exts(slab) && |
3177 | alloc_slab_obj_exts(slab, s, gfp: flags, new_slab: false)) { |
3178 | continue; |
3179 | } |
3180 | |
3181 | /* |
3182 | * if we fail and size is 1, memcg_alloc_abort_single() will |
3183 | * just free the object, which is ok as we have not assigned |
3184 | * objcg to its obj_ext yet |
3185 | * |
3186 | * for larger sizes, kmem_cache_free_bulk() will uncharge |
3187 | * any objects that were already charged and obj_ext assigned |
3188 | * |
3189 | * TODO: we could batch this until slab_pgdat(slab) changes |
3190 | * between iterations, with a more complicated undo |
3191 | */ |
3192 | if (obj_cgroup_charge_account(objcg, gfp: flags, size: obj_full_size(s), |
3193 | pgdat: slab_pgdat(slab), idx: cache_vmstat_idx(s))) |
3194 | return false; |
3195 | |
3196 | off = obj_to_index(cache: s, slab, obj: p[i]); |
3197 | obj_cgroup_get(objcg); |
3198 | slab_obj_exts(slab)[off].objcg = objcg; |
3199 | } |
3200 | |
3201 | return true; |
3202 | } |
3203 | |
3204 | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, |
3205 | void **p, int objects, struct slabobj_ext *obj_exts) |
3206 | { |
3207 | size_t obj_size = obj_full_size(s); |
3208 | |
3209 | for (int i = 0; i < objects; i++) { |
3210 | struct obj_cgroup *objcg; |
3211 | unsigned int off; |
3212 | |
3213 | off = obj_to_index(cache: s, slab, obj: p[i]); |
3214 | objcg = obj_exts[off].objcg; |
3215 | if (!objcg) |
3216 | continue; |
3217 | |
3218 | obj_exts[off].objcg = NULL; |
3219 | refill_obj_stock(objcg, nr_bytes: obj_size, allow_uncharge: true, nr_acct: -obj_size, |
3220 | pgdat: slab_pgdat(slab), idx: cache_vmstat_idx(s)); |
3221 | obj_cgroup_put(objcg); |
3222 | } |
3223 | } |
3224 | |
3225 | /* |
3226 | * The objcg is only set on the first page, so transfer it to all the |
3227 | * other pages. |
3228 | */ |
3229 | void split_page_memcg(struct page *page, unsigned order) |
3230 | { |
3231 | struct obj_cgroup *objcg = page_objcg(page); |
3232 | unsigned int i, nr = 1 << order; |
3233 | |
3234 | if (!objcg) |
3235 | return; |
3236 | |
3237 | for (i = 1; i < nr; i++) |
3238 | page_set_objcg(page: &page[i], objcg); |
3239 | |
3240 | obj_cgroup_get_many(objcg, nr: nr - 1); |
3241 | } |
3242 | |
3243 | void folio_split_memcg_refs(struct folio *folio, unsigned old_order, |
3244 | unsigned new_order) |
3245 | { |
3246 | unsigned new_refs; |
3247 | |
3248 | if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) |
3249 | return; |
3250 | |
3251 | new_refs = (1 << (old_order - new_order)) - 1; |
3252 | css_get_many(css: &__folio_memcg(folio)->css, n: new_refs); |
3253 | } |
3254 | |
3255 | unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
3256 | { |
3257 | unsigned long val; |
3258 | |
3259 | if (mem_cgroup_is_root(memcg)) { |
3260 | /* |
3261 | * Approximate root's usage from global state. This isn't |
3262 | * perfect, but the root usage was always an approximation. |
3263 | */ |
3264 | val = global_node_page_state(item: NR_FILE_PAGES) + |
3265 | global_node_page_state(item: NR_ANON_MAPPED); |
3266 | if (swap) |
3267 | val += total_swap_pages - get_nr_swap_pages(); |
3268 | } else { |
3269 | if (!swap) |
3270 | val = page_counter_read(counter: &memcg->memory); |
3271 | else |
3272 | val = page_counter_read(counter: &memcg->memsw); |
3273 | } |
3274 | return val; |
3275 | } |
3276 | |
3277 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
3278 | { |
3279 | struct obj_cgroup *objcg; |
3280 | |
3281 | if (mem_cgroup_kmem_disabled()) |
3282 | return 0; |
3283 | |
3284 | if (unlikely(mem_cgroup_is_root(memcg))) |
3285 | return 0; |
3286 | |
3287 | objcg = obj_cgroup_alloc(); |
3288 | if (!objcg) |
3289 | return -ENOMEM; |
3290 | |
3291 | objcg->memcg = memcg; |
3292 | rcu_assign_pointer(memcg->objcg, objcg); |
3293 | obj_cgroup_get(objcg); |
3294 | memcg->orig_objcg = objcg; |
3295 | |
3296 | static_branch_enable(&memcg_kmem_online_key); |
3297 | |
3298 | memcg->kmemcg_id = memcg->id.id; |
3299 | |
3300 | return 0; |
3301 | } |
3302 | |
3303 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
3304 | { |
3305 | struct mem_cgroup *parent; |
3306 | |
3307 | if (mem_cgroup_kmem_disabled()) |
3308 | return; |
3309 | |
3310 | if (unlikely(mem_cgroup_is_root(memcg))) |
3311 | return; |
3312 | |
3313 | parent = parent_mem_cgroup(memcg); |
3314 | if (!parent) |
3315 | parent = root_mem_cgroup; |
3316 | |
3317 | memcg_reparent_list_lrus(memcg, parent); |
3318 | |
3319 | /* |
3320 | * Objcg's reparenting must be after list_lru's, make sure list_lru |
3321 | * helpers won't use parent's list_lru until child is drained. |
3322 | */ |
3323 | memcg_reparent_objcgs(memcg, parent); |
3324 | } |
3325 | |
3326 | #ifdef CONFIG_CGROUP_WRITEBACK |
3327 | |
3328 | #include <trace/events/writeback.h> |
3329 | |
3330 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
3331 | { |
3332 | return wb_domain_init(dom: &memcg->cgwb_domain, gfp); |
3333 | } |
3334 | |
3335 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
3336 | { |
3337 | wb_domain_exit(dom: &memcg->cgwb_domain); |
3338 | } |
3339 | |
3340 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3341 | { |
3342 | wb_domain_size_changed(dom: &memcg->cgwb_domain); |
3343 | } |
3344 | |
3345 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) |
3346 | { |
3347 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
3348 | |
3349 | if (!memcg->css.parent) |
3350 | return NULL; |
3351 | |
3352 | return &memcg->cgwb_domain; |
3353 | } |
3354 | |
3355 | /** |
3356 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg |
3357 | * @wb: bdi_writeback in question |
3358 | * @pfilepages: out parameter for number of file pages |
3359 | * @pheadroom: out parameter for number of allocatable pages according to memcg |
3360 | * @pdirty: out parameter for number of dirty pages |
3361 | * @pwriteback: out parameter for number of pages under writeback |
3362 | * |
3363 | * Determine the numbers of file, headroom, dirty, and writeback pages in |
3364 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom |
3365 | * is a bit more involved. |
3366 | * |
3367 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the |
3368 | * headroom is calculated as the lowest headroom of itself and the |
3369 | * ancestors. Note that this doesn't consider the actual amount of |
3370 | * available memory in the system. The caller should further cap |
3371 | * *@pheadroom accordingly. |
3372 | */ |
3373 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, |
3374 | unsigned long *pheadroom, unsigned long *pdirty, |
3375 | unsigned long *pwriteback) |
3376 | { |
3377 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
3378 | struct mem_cgroup *parent; |
3379 | |
3380 | mem_cgroup_flush_stats_ratelimited(memcg); |
3381 | |
3382 | *pdirty = memcg_page_state(memcg, idx: NR_FILE_DIRTY); |
3383 | *pwriteback = memcg_page_state(memcg, idx: NR_WRITEBACK); |
3384 | *pfilepages = memcg_page_state(memcg, idx: NR_INACTIVE_FILE) + |
3385 | memcg_page_state(memcg, idx: NR_ACTIVE_FILE); |
3386 | |
3387 | *pheadroom = PAGE_COUNTER_MAX; |
3388 | while ((parent = parent_mem_cgroup(memcg))) { |
3389 | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), |
3390 | READ_ONCE(memcg->memory.high)); |
3391 | unsigned long used = page_counter_read(counter: &memcg->memory); |
3392 | |
3393 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); |
3394 | memcg = parent; |
3395 | } |
3396 | } |
3397 | |
3398 | /* |
3399 | * Foreign dirty flushing |
3400 | * |
3401 | * There's an inherent mismatch between memcg and writeback. The former |
3402 | * tracks ownership per-page while the latter per-inode. This was a |
3403 | * deliberate design decision because honoring per-page ownership in the |
3404 | * writeback path is complicated, may lead to higher CPU and IO overheads |
3405 | * and deemed unnecessary given that write-sharing an inode across |
3406 | * different cgroups isn't a common use-case. |
3407 | * |
3408 | * Combined with inode majority-writer ownership switching, this works well |
3409 | * enough in most cases but there are some pathological cases. For |
3410 | * example, let's say there are two cgroups A and B which keep writing to |
3411 | * different but confined parts of the same inode. B owns the inode and |
3412 | * A's memory is limited far below B's. A's dirty ratio can rise enough to |
3413 | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid |
3414 | * triggering background writeback. A will be slowed down without a way to |
3415 | * make writeback of the dirty pages happen. |
3416 | * |
3417 | * Conditions like the above can lead to a cgroup getting repeatedly and |
3418 | * severely throttled after making some progress after each |
3419 | * dirty_expire_interval while the underlying IO device is almost |
3420 | * completely idle. |
3421 | * |
3422 | * Solving this problem completely requires matching the ownership tracking |
3423 | * granularities between memcg and writeback in either direction. However, |
3424 | * the more egregious behaviors can be avoided by simply remembering the |
3425 | * most recent foreign dirtying events and initiating remote flushes on |
3426 | * them when local writeback isn't enough to keep the memory clean enough. |
3427 | * |
3428 | * The following two functions implement such mechanism. When a foreign |
3429 | * page - a page whose memcg and writeback ownerships don't match - is |
3430 | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning |
3431 | * bdi_writeback on the page owning memcg. When balance_dirty_pages() |
3432 | * decides that the memcg needs to sleep due to high dirty ratio, it calls |
3433 | * mem_cgroup_flush_foreign() which queues writeback on the recorded |
3434 | * foreign bdi_writebacks which haven't expired. Both the numbers of |
3435 | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are |
3436 | * limited to MEMCG_CGWB_FRN_CNT. |
3437 | * |
3438 | * The mechanism only remembers IDs and doesn't hold any object references. |
3439 | * As being wrong occasionally doesn't matter, updates and accesses to the |
3440 | * records are lockless and racy. |
3441 | */ |
3442 | void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, |
3443 | struct bdi_writeback *wb) |
3444 | { |
3445 | struct mem_cgroup *memcg = folio_memcg(folio); |
3446 | struct memcg_cgwb_frn *frn; |
3447 | u64 now = get_jiffies_64(); |
3448 | u64 oldest_at = now; |
3449 | int oldest = -1; |
3450 | int i; |
3451 | |
3452 | trace_track_foreign_dirty(folio, wb); |
3453 | |
3454 | /* |
3455 | * Pick the slot to use. If there is already a slot for @wb, keep |
3456 | * using it. If not replace the oldest one which isn't being |
3457 | * written out. |
3458 | */ |
3459 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
3460 | frn = &memcg->cgwb_frn[i]; |
3461 | if (frn->bdi_id == wb->bdi->id && |
3462 | frn->memcg_id == wb->memcg_css->id) |
3463 | break; |
3464 | if (time_before64(frn->at, oldest_at) && |
3465 | atomic_read(v: &frn->done.cnt) == 1) { |
3466 | oldest = i; |
3467 | oldest_at = frn->at; |
3468 | } |
3469 | } |
3470 | |
3471 | if (i < MEMCG_CGWB_FRN_CNT) { |
3472 | /* |
3473 | * Re-using an existing one. Update timestamp lazily to |
3474 | * avoid making the cacheline hot. We want them to be |
3475 | * reasonably up-to-date and significantly shorter than |
3476 | * dirty_expire_interval as that's what expires the record. |
3477 | * Use the shorter of 1s and dirty_expire_interval / 8. |
3478 | */ |
3479 | unsigned long update_intv = |
3480 | min_t(unsigned long, HZ, |
3481 | msecs_to_jiffies(dirty_expire_interval * 10) / 8); |
3482 | |
3483 | if (time_before64(frn->at, now - update_intv)) |
3484 | frn->at = now; |
3485 | } else if (oldest >= 0) { |
3486 | /* replace the oldest free one */ |
3487 | frn = &memcg->cgwb_frn[oldest]; |
3488 | frn->bdi_id = wb->bdi->id; |
3489 | frn->memcg_id = wb->memcg_css->id; |
3490 | frn->at = now; |
3491 | } |
3492 | } |
3493 | |
3494 | /* issue foreign writeback flushes for recorded foreign dirtying events */ |
3495 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) |
3496 | { |
3497 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
3498 | unsigned long intv = msecs_to_jiffies(m: dirty_expire_interval * 10); |
3499 | u64 now = jiffies_64; |
3500 | int i; |
3501 | |
3502 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
3503 | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; |
3504 | |
3505 | /* |
3506 | * If the record is older than dirty_expire_interval, |
3507 | * writeback on it has already started. No need to kick it |
3508 | * off again. Also, don't start a new one if there's |
3509 | * already one in flight. |
3510 | */ |
3511 | if (time_after64(frn->at, now - intv) && |
3512 | atomic_read(v: &frn->done.cnt) == 1) { |
3513 | frn->at = 0; |
3514 | trace_flush_foreign(wb, frn_bdi_id: frn->bdi_id, frn_memcg_id: frn->memcg_id); |
3515 | cgroup_writeback_by_id(bdi_id: frn->bdi_id, memcg_id: frn->memcg_id, |
3516 | reason: WB_REASON_FOREIGN_FLUSH, |
3517 | done: &frn->done); |
3518 | } |
3519 | } |
3520 | } |
3521 | |
3522 | #else /* CONFIG_CGROUP_WRITEBACK */ |
3523 | |
3524 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
3525 | { |
3526 | return 0; |
3527 | } |
3528 | |
3529 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
3530 | { |
3531 | } |
3532 | |
3533 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3534 | { |
3535 | } |
3536 | |
3537 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
3538 | |
3539 | /* |
3540 | * Private memory cgroup IDR |
3541 | * |
3542 | * Swap-out records and page cache shadow entries need to store memcg |
3543 | * references in constrained space, so we maintain an ID space that is |
3544 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of |
3545 | * memory-controlled cgroups to 64k. |
3546 | * |
3547 | * However, there usually are many references to the offline CSS after |
3548 | * the cgroup has been destroyed, such as page cache or reclaimable |
3549 | * slab objects, that don't need to hang on to the ID. We want to keep |
3550 | * those dead CSS from occupying IDs, or we might quickly exhaust the |
3551 | * relatively small ID space and prevent the creation of new cgroups |
3552 | * even when there are much fewer than 64k cgroups - possibly none. |
3553 | * |
3554 | * Maintain a private 16-bit ID space for memcg, and allow the ID to |
3555 | * be freed and recycled when it's no longer needed, which is usually |
3556 | * when the CSS is offlined. |
3557 | * |
3558 | * The only exception to that are records of swapped out tmpfs/shmem |
3559 | * pages that need to be attributed to live ancestors on swapin. But |
3560 | * those references are manageable from userspace. |
3561 | */ |
3562 | |
3563 | #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) |
3564 | static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); |
3565 | |
3566 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) |
3567 | { |
3568 | if (memcg->id.id > 0) { |
3569 | xa_erase(&mem_cgroup_ids, index: memcg->id.id); |
3570 | memcg->id.id = 0; |
3571 | } |
3572 | } |
3573 | |
3574 | void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, |
3575 | unsigned int n) |
3576 | { |
3577 | refcount_add(i: n, r: &memcg->id.ref); |
3578 | } |
3579 | |
3580 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) |
3581 | { |
3582 | if (refcount_sub_and_test(i: n, r: &memcg->id.ref)) { |
3583 | mem_cgroup_id_remove(memcg); |
3584 | |
3585 | /* Memcg ID pins CSS */ |
3586 | css_put(css: &memcg->css); |
3587 | } |
3588 | } |
3589 | |
3590 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) |
3591 | { |
3592 | mem_cgroup_id_put_many(memcg, n: 1); |
3593 | } |
3594 | |
3595 | struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) |
3596 | { |
3597 | while (!refcount_inc_not_zero(r: &memcg->id.ref)) { |
3598 | /* |
3599 | * The root cgroup cannot be destroyed, so it's refcount must |
3600 | * always be >= 1. |
3601 | */ |
3602 | if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { |
3603 | VM_BUG_ON(1); |
3604 | break; |
3605 | } |
3606 | memcg = parent_mem_cgroup(memcg); |
3607 | if (!memcg) |
3608 | memcg = root_mem_cgroup; |
3609 | } |
3610 | return memcg; |
3611 | } |
3612 | |
3613 | /** |
3614 | * mem_cgroup_from_id - look up a memcg from a memcg id |
3615 | * @id: the memcg id to look up |
3616 | * |
3617 | * Caller must hold rcu_read_lock(). |
3618 | */ |
3619 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) |
3620 | { |
3621 | WARN_ON_ONCE(!rcu_read_lock_held()); |
3622 | return xa_load(&mem_cgroup_ids, index: id); |
3623 | } |
3624 | |
3625 | #ifdef CONFIG_SHRINKER_DEBUG |
3626 | struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) |
3627 | { |
3628 | struct cgroup *cgrp; |
3629 | struct cgroup_subsys_state *css; |
3630 | struct mem_cgroup *memcg; |
3631 | |
3632 | cgrp = cgroup_get_from_id(id: ino); |
3633 | if (IS_ERR(ptr: cgrp)) |
3634 | return ERR_CAST(ptr: cgrp); |
3635 | |
3636 | css = cgroup_get_e_css(cgroup: cgrp, ss: &memory_cgrp_subsys); |
3637 | if (css) |
3638 | memcg = container_of(css, struct mem_cgroup, css); |
3639 | else |
3640 | memcg = ERR_PTR(error: -ENOENT); |
3641 | |
3642 | cgroup_put(cgrp); |
3643 | |
3644 | return memcg; |
3645 | } |
3646 | #endif |
3647 | |
3648 | static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) |
3649 | { |
3650 | if (!pn) |
3651 | return; |
3652 | |
3653 | free_percpu(pdata: pn->lruvec_stats_percpu); |
3654 | kfree(objp: pn->lruvec_stats); |
3655 | kfree(objp: pn); |
3656 | } |
3657 | |
3658 | static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
3659 | { |
3660 | struct mem_cgroup_per_node *pn; |
3661 | |
3662 | pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, |
3663 | node); |
3664 | if (!pn) |
3665 | return false; |
3666 | |
3667 | pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), |
3668 | GFP_KERNEL_ACCOUNT, node); |
3669 | if (!pn->lruvec_stats) |
3670 | goto fail; |
3671 | |
3672 | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, |
3673 | GFP_KERNEL_ACCOUNT); |
3674 | if (!pn->lruvec_stats_percpu) |
3675 | goto fail; |
3676 | |
3677 | lruvec_init(lruvec: &pn->lruvec); |
3678 | pn->memcg = memcg; |
3679 | |
3680 | memcg->nodeinfo[node] = pn; |
3681 | return true; |
3682 | fail: |
3683 | free_mem_cgroup_per_node_info(pn); |
3684 | return false; |
3685 | } |
3686 | |
3687 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
3688 | { |
3689 | int node; |
3690 | |
3691 | obj_cgroup_put(objcg: memcg->orig_objcg); |
3692 | |
3693 | for_each_node(node) |
3694 | free_mem_cgroup_per_node_info(pn: memcg->nodeinfo[node]); |
3695 | memcg1_free_events(memcg); |
3696 | kfree(objp: memcg->vmstats); |
3697 | free_percpu(pdata: memcg->vmstats_percpu); |
3698 | kfree(objp: memcg); |
3699 | } |
3700 | |
3701 | static void mem_cgroup_free(struct mem_cgroup *memcg) |
3702 | { |
3703 | lru_gen_exit_memcg(memcg); |
3704 | memcg_wb_domain_exit(memcg); |
3705 | __mem_cgroup_free(memcg); |
3706 | } |
3707 | |
3708 | static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) |
3709 | { |
3710 | struct memcg_vmstats_percpu *statc; |
3711 | struct memcg_vmstats_percpu __percpu *pstatc_pcpu; |
3712 | struct mem_cgroup *memcg; |
3713 | int node, cpu; |
3714 | int __maybe_unused i; |
3715 | long error; |
3716 | |
3717 | memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); |
3718 | if (!memcg) |
3719 | return ERR_PTR(error: -ENOMEM); |
3720 | |
3721 | error = xa_alloc(xa: &mem_cgroup_ids, id: &memcg->id.id, NULL, |
3722 | XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); |
3723 | if (error) |
3724 | goto fail; |
3725 | error = -ENOMEM; |
3726 | |
3727 | memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), |
3728 | GFP_KERNEL_ACCOUNT); |
3729 | if (!memcg->vmstats) |
3730 | goto fail; |
3731 | |
3732 | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, |
3733 | GFP_KERNEL_ACCOUNT); |
3734 | if (!memcg->vmstats_percpu) |
3735 | goto fail; |
3736 | |
3737 | if (!memcg1_alloc_events(memcg)) |
3738 | goto fail; |
3739 | |
3740 | for_each_possible_cpu(cpu) { |
3741 | if (parent) |
3742 | pstatc_pcpu = parent->vmstats_percpu; |
3743 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
3744 | statc->parent_pcpu = parent ? pstatc_pcpu : NULL; |
3745 | statc->vmstats = memcg->vmstats; |
3746 | } |
3747 | |
3748 | for_each_node(node) |
3749 | if (!alloc_mem_cgroup_per_node_info(memcg, node)) |
3750 | goto fail; |
3751 | |
3752 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) |
3753 | goto fail; |
3754 | |
3755 | INIT_WORK(&memcg->high_work, high_work_func); |
3756 | vmpressure_init(vmpr: &memcg->vmpressure); |
3757 | INIT_LIST_HEAD(list: &memcg->memory_peaks); |
3758 | INIT_LIST_HEAD(list: &memcg->swap_peaks); |
3759 | spin_lock_init(&memcg->peaks_lock); |
3760 | memcg->socket_pressure = jiffies; |
3761 | memcg1_memcg_init(memcg); |
3762 | memcg->kmemcg_id = -1; |
3763 | INIT_LIST_HEAD(list: &memcg->objcg_list); |
3764 | #ifdef CONFIG_CGROUP_WRITEBACK |
3765 | INIT_LIST_HEAD(list: &memcg->cgwb_list); |
3766 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
3767 | memcg->cgwb_frn[i].done = |
3768 | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); |
3769 | #endif |
3770 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
3771 | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); |
3772 | INIT_LIST_HEAD(list: &memcg->deferred_split_queue.split_queue); |
3773 | memcg->deferred_split_queue.split_queue_len = 0; |
3774 | #endif |
3775 | lru_gen_init_memcg(memcg); |
3776 | return memcg; |
3777 | fail: |
3778 | mem_cgroup_id_remove(memcg); |
3779 | __mem_cgroup_free(memcg); |
3780 | return ERR_PTR(error); |
3781 | } |
3782 | |
3783 | static struct cgroup_subsys_state * __ref |
3784 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
3785 | { |
3786 | struct mem_cgroup *parent = mem_cgroup_from_css(css: parent_css); |
3787 | struct mem_cgroup *memcg, *old_memcg; |
3788 | bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); |
3789 | |
3790 | old_memcg = set_active_memcg(parent); |
3791 | memcg = mem_cgroup_alloc(parent); |
3792 | set_active_memcg(old_memcg); |
3793 | if (IS_ERR(ptr: memcg)) |
3794 | return ERR_CAST(ptr: memcg); |
3795 | |
3796 | page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX); |
3797 | memcg1_soft_limit_reset(memcg); |
3798 | #ifdef CONFIG_ZSWAP |
3799 | memcg->zswap_max = PAGE_COUNTER_MAX; |
3800 | WRITE_ONCE(memcg->zswap_writeback, true); |
3801 | #endif |
3802 | page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX); |
3803 | if (parent) { |
3804 | WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); |
3805 | |
3806 | page_counter_init(counter: &memcg->memory, parent: &parent->memory, protection_support: memcg_on_dfl); |
3807 | page_counter_init(counter: &memcg->swap, parent: &parent->swap, protection_support: false); |
3808 | #ifdef CONFIG_MEMCG_V1 |
3809 | memcg->memory.track_failcnt = !memcg_on_dfl; |
3810 | WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); |
3811 | page_counter_init(counter: &memcg->kmem, parent: &parent->kmem, protection_support: false); |
3812 | page_counter_init(counter: &memcg->tcpmem, parent: &parent->tcpmem, protection_support: false); |
3813 | #endif |
3814 | } else { |
3815 | init_memcg_stats(); |
3816 | init_memcg_events(); |
3817 | page_counter_init(counter: &memcg->memory, NULL, protection_support: true); |
3818 | page_counter_init(counter: &memcg->swap, NULL, protection_support: false); |
3819 | #ifdef CONFIG_MEMCG_V1 |
3820 | page_counter_init(counter: &memcg->kmem, NULL, protection_support: false); |
3821 | page_counter_init(counter: &memcg->tcpmem, NULL, protection_support: false); |
3822 | #endif |
3823 | root_mem_cgroup = memcg; |
3824 | return &memcg->css; |
3825 | } |
3826 | |
3827 | if (memcg_on_dfl && !cgroup_memory_nosocket) |
3828 | static_branch_inc(&memcg_sockets_enabled_key); |
3829 | |
3830 | if (!cgroup_memory_nobpf) |
3831 | static_branch_inc(&memcg_bpf_enabled_key); |
3832 | |
3833 | return &memcg->css; |
3834 | } |
3835 | |
3836 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) |
3837 | { |
3838 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3839 | |
3840 | if (memcg_online_kmem(memcg)) |
3841 | goto remove_id; |
3842 | |
3843 | /* |
3844 | * A memcg must be visible for expand_shrinker_info() |
3845 | * by the time the maps are allocated. So, we allocate maps |
3846 | * here, when for_each_mem_cgroup() can't skip it. |
3847 | */ |
3848 | if (alloc_shrinker_info(memcg)) |
3849 | goto offline_kmem; |
3850 | |
3851 | if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) |
3852 | queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork, |
3853 | FLUSH_TIME); |
3854 | lru_gen_online_memcg(memcg); |
3855 | |
3856 | /* Online state pins memcg ID, memcg ID pins CSS */ |
3857 | refcount_set(r: &memcg->id.ref, n: 1); |
3858 | css_get(css); |
3859 | |
3860 | /* |
3861 | * Ensure mem_cgroup_from_id() works once we're fully online. |
3862 | * |
3863 | * We could do this earlier and require callers to filter with |
3864 | * css_tryget_online(). But right now there are no users that |
3865 | * need earlier access, and the workingset code relies on the |
3866 | * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So |
3867 | * publish it here at the end of onlining. This matches the |
3868 | * regular ID destruction during offlining. |
3869 | */ |
3870 | xa_store(&mem_cgroup_ids, index: memcg->id.id, entry: memcg, GFP_KERNEL); |
3871 | |
3872 | return 0; |
3873 | offline_kmem: |
3874 | memcg_offline_kmem(memcg); |
3875 | remove_id: |
3876 | mem_cgroup_id_remove(memcg); |
3877 | return -ENOMEM; |
3878 | } |
3879 | |
3880 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
3881 | { |
3882 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3883 | |
3884 | memcg1_css_offline(memcg); |
3885 | |
3886 | page_counter_set_min(counter: &memcg->memory, nr_pages: 0); |
3887 | page_counter_set_low(counter: &memcg->memory, nr_pages: 0); |
3888 | |
3889 | zswap_memcg_offline_cleanup(memcg); |
3890 | |
3891 | memcg_offline_kmem(memcg); |
3892 | reparent_shrinker_deferred(memcg); |
3893 | wb_memcg_offline(memcg); |
3894 | lru_gen_offline_memcg(memcg); |
3895 | |
3896 | drain_all_stock(root_memcg: memcg); |
3897 | |
3898 | mem_cgroup_id_put(memcg); |
3899 | } |
3900 | |
3901 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) |
3902 | { |
3903 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3904 | |
3905 | invalidate_reclaim_iterators(dead_memcg: memcg); |
3906 | lru_gen_release_memcg(memcg); |
3907 | } |
3908 | |
3909 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
3910 | { |
3911 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3912 | int __maybe_unused i; |
3913 | |
3914 | #ifdef CONFIG_CGROUP_WRITEBACK |
3915 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
3916 | wb_wait_for_completion(done: &memcg->cgwb_frn[i].done); |
3917 | #endif |
3918 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
3919 | static_branch_dec(&memcg_sockets_enabled_key); |
3920 | |
3921 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) |
3922 | static_branch_dec(&memcg_sockets_enabled_key); |
3923 | |
3924 | if (!cgroup_memory_nobpf) |
3925 | static_branch_dec(&memcg_bpf_enabled_key); |
3926 | |
3927 | vmpressure_cleanup(vmpr: &memcg->vmpressure); |
3928 | cancel_work_sync(work: &memcg->high_work); |
3929 | memcg1_remove_from_trees(memcg); |
3930 | free_shrinker_info(memcg); |
3931 | mem_cgroup_free(memcg); |
3932 | } |
3933 | |
3934 | /** |
3935 | * mem_cgroup_css_reset - reset the states of a mem_cgroup |
3936 | * @css: the target css |
3937 | * |
3938 | * Reset the states of the mem_cgroup associated with @css. This is |
3939 | * invoked when the userland requests disabling on the default hierarchy |
3940 | * but the memcg is pinned through dependency. The memcg should stop |
3941 | * applying policies and should revert to the vanilla state as it may be |
3942 | * made visible again. |
3943 | * |
3944 | * The current implementation only resets the essential configurations. |
3945 | * This needs to be expanded to cover all the visible parts. |
3946 | */ |
3947 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) |
3948 | { |
3949 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3950 | |
3951 | page_counter_set_max(counter: &memcg->memory, PAGE_COUNTER_MAX); |
3952 | page_counter_set_max(counter: &memcg->swap, PAGE_COUNTER_MAX); |
3953 | #ifdef CONFIG_MEMCG_V1 |
3954 | page_counter_set_max(counter: &memcg->kmem, PAGE_COUNTER_MAX); |
3955 | page_counter_set_max(counter: &memcg->tcpmem, PAGE_COUNTER_MAX); |
3956 | #endif |
3957 | page_counter_set_min(counter: &memcg->memory, nr_pages: 0); |
3958 | page_counter_set_low(counter: &memcg->memory, nr_pages: 0); |
3959 | page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX); |
3960 | memcg1_soft_limit_reset(memcg); |
3961 | page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX); |
3962 | memcg_wb_domain_size_changed(memcg); |
3963 | } |
3964 | |
3965 | struct aggregate_control { |
3966 | /* pointer to the aggregated (CPU and subtree aggregated) counters */ |
3967 | long *aggregate; |
3968 | /* pointer to the non-hierarchichal (CPU aggregated) counters */ |
3969 | long *local; |
3970 | /* pointer to the pending child counters during tree propagation */ |
3971 | long *pending; |
3972 | /* pointer to the parent's pending counters, could be NULL */ |
3973 | long *ppending; |
3974 | /* pointer to the percpu counters to be aggregated */ |
3975 | long *cstat; |
3976 | /* pointer to the percpu counters of the last aggregation*/ |
3977 | long *cstat_prev; |
3978 | /* size of the above counters */ |
3979 | int size; |
3980 | }; |
3981 | |
3982 | static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) |
3983 | { |
3984 | int i; |
3985 | long delta, delta_cpu, v; |
3986 | |
3987 | for (i = 0; i < ac->size; i++) { |
3988 | /* |
3989 | * Collect the aggregated propagation counts of groups |
3990 | * below us. We're in a per-cpu loop here and this is |
3991 | * a global counter, so the first cycle will get them. |
3992 | */ |
3993 | delta = ac->pending[i]; |
3994 | if (delta) |
3995 | ac->pending[i] = 0; |
3996 | |
3997 | /* Add CPU changes on this level since the last flush */ |
3998 | delta_cpu = 0; |
3999 | v = READ_ONCE(ac->cstat[i]); |
4000 | if (v != ac->cstat_prev[i]) { |
4001 | delta_cpu = v - ac->cstat_prev[i]; |
4002 | delta += delta_cpu; |
4003 | ac->cstat_prev[i] = v; |
4004 | } |
4005 | |
4006 | /* Aggregate counts on this level and propagate upwards */ |
4007 | if (delta_cpu) |
4008 | ac->local[i] += delta_cpu; |
4009 | |
4010 | if (delta) { |
4011 | ac->aggregate[i] += delta; |
4012 | if (ac->ppending) |
4013 | ac->ppending[i] += delta; |
4014 | } |
4015 | } |
4016 | } |
4017 | |
4018 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
4019 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, |
4020 | int cpu) |
4021 | { |
4022 | int nid; |
4023 | |
4024 | if (atomic_read(&memcg->kmem_stat)) { |
4025 | int kmem = atomic_xchg(&memcg->kmem_stat, 0); |
4026 | int index = memcg_stats_index(MEMCG_KMEM); |
4027 | |
4028 | memcg->vmstats->state[index] += kmem; |
4029 | if (parent) |
4030 | parent->vmstats->state_pending[index] += kmem; |
4031 | } |
4032 | |
4033 | for_each_node_state(nid, N_MEMORY) { |
4034 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; |
4035 | struct lruvec_stats *lstats = pn->lruvec_stats; |
4036 | struct lruvec_stats *plstats = NULL; |
4037 | |
4038 | if (parent) |
4039 | plstats = parent->nodeinfo[nid]->lruvec_stats; |
4040 | |
4041 | if (atomic_read(&pn->slab_reclaimable)) { |
4042 | int slab = atomic_xchg(&pn->slab_reclaimable, 0); |
4043 | int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); |
4044 | |
4045 | lstats->state[index] += slab; |
4046 | if (plstats) |
4047 | plstats->state_pending[index] += slab; |
4048 | } |
4049 | if (atomic_read(&pn->slab_unreclaimable)) { |
4050 | int slab = atomic_xchg(&pn->slab_unreclaimable, 0); |
4051 | int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); |
4052 | |
4053 | lstats->state[index] += slab; |
4054 | if (plstats) |
4055 | plstats->state_pending[index] += slab; |
4056 | } |
4057 | } |
4058 | } |
4059 | #else |
4060 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, |
4061 | int cpu) |
4062 | {} |
4063 | #endif |
4064 | |
4065 | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) |
4066 | { |
4067 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4068 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
4069 | struct memcg_vmstats_percpu *statc; |
4070 | struct aggregate_control ac; |
4071 | int nid; |
4072 | |
4073 | flush_nmi_stats(memcg, parent, cpu); |
4074 | |
4075 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
4076 | |
4077 | ac = (struct aggregate_control) { |
4078 | .aggregate = memcg->vmstats->state, |
4079 | .local = memcg->vmstats->state_local, |
4080 | .pending = memcg->vmstats->state_pending, |
4081 | .ppending = parent ? parent->vmstats->state_pending : NULL, |
4082 | .cstat = statc->state, |
4083 | .cstat_prev = statc->state_prev, |
4084 | .size = MEMCG_VMSTAT_SIZE, |
4085 | }; |
4086 | mem_cgroup_stat_aggregate(ac: &ac); |
4087 | |
4088 | ac = (struct aggregate_control) { |
4089 | .aggregate = memcg->vmstats->events, |
4090 | .local = memcg->vmstats->events_local, |
4091 | .pending = memcg->vmstats->events_pending, |
4092 | .ppending = parent ? parent->vmstats->events_pending : NULL, |
4093 | .cstat = statc->events, |
4094 | .cstat_prev = statc->events_prev, |
4095 | .size = NR_MEMCG_EVENTS, |
4096 | }; |
4097 | mem_cgroup_stat_aggregate(ac: &ac); |
4098 | |
4099 | for_each_node_state(nid, N_MEMORY) { |
4100 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; |
4101 | struct lruvec_stats *lstats = pn->lruvec_stats; |
4102 | struct lruvec_stats *plstats = NULL; |
4103 | struct lruvec_stats_percpu *lstatc; |
4104 | |
4105 | if (parent) |
4106 | plstats = parent->nodeinfo[nid]->lruvec_stats; |
4107 | |
4108 | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); |
4109 | |
4110 | ac = (struct aggregate_control) { |
4111 | .aggregate = lstats->state, |
4112 | .local = lstats->state_local, |
4113 | .pending = lstats->state_pending, |
4114 | .ppending = plstats ? plstats->state_pending : NULL, |
4115 | .cstat = lstatc->state, |
4116 | .cstat_prev = lstatc->state_prev, |
4117 | .size = NR_MEMCG_NODE_STAT_ITEMS, |
4118 | }; |
4119 | mem_cgroup_stat_aggregate(ac: &ac); |
4120 | |
4121 | } |
4122 | WRITE_ONCE(statc->stats_updates, 0); |
4123 | /* We are in a per-cpu loop here, only do the atomic write once */ |
4124 | if (atomic_read(v: &memcg->vmstats->stats_updates)) |
4125 | atomic_set(v: &memcg->vmstats->stats_updates, i: 0); |
4126 | } |
4127 | |
4128 | static void mem_cgroup_fork(struct task_struct *task) |
4129 | { |
4130 | /* |
4131 | * Set the update flag to cause task->objcg to be initialized lazily |
4132 | * on the first allocation. It can be done without any synchronization |
4133 | * because it's always performed on the current task, so does |
4134 | * current_objcg_update(). |
4135 | */ |
4136 | task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; |
4137 | } |
4138 | |
4139 | static void mem_cgroup_exit(struct task_struct *task) |
4140 | { |
4141 | struct obj_cgroup *objcg = task->objcg; |
4142 | |
4143 | objcg = (struct obj_cgroup *) |
4144 | ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); |
4145 | obj_cgroup_put(objcg); |
4146 | |
4147 | /* |
4148 | * Some kernel allocations can happen after this point, |
4149 | * but let's ignore them. It can be done without any synchronization |
4150 | * because it's always performed on the current task, so does |
4151 | * current_objcg_update(). |
4152 | */ |
4153 | task->objcg = NULL; |
4154 | } |
4155 | |
4156 | #ifdef CONFIG_LRU_GEN |
4157 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) |
4158 | { |
4159 | struct task_struct *task; |
4160 | struct cgroup_subsys_state *css; |
4161 | |
4162 | /* find the first leader if there is any */ |
4163 | cgroup_taskset_for_each_leader(task, css, tset) |
4164 | break; |
4165 | |
4166 | if (!task) |
4167 | return; |
4168 | |
4169 | task_lock(p: task); |
4170 | if (task->mm && READ_ONCE(task->mm->owner) == task) |
4171 | lru_gen_migrate_mm(mm: task->mm); |
4172 | task_unlock(p: task); |
4173 | } |
4174 | #else |
4175 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} |
4176 | #endif /* CONFIG_LRU_GEN */ |
4177 | |
4178 | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) |
4179 | { |
4180 | struct task_struct *task; |
4181 | struct cgroup_subsys_state *css; |
4182 | |
4183 | cgroup_taskset_for_each(task, css, tset) { |
4184 | /* atomically set the update bit */ |
4185 | set_bit(CURRENT_OBJCG_UPDATE_BIT, addr: (unsigned long *)&task->objcg); |
4186 | } |
4187 | } |
4188 | |
4189 | static void mem_cgroup_attach(struct cgroup_taskset *tset) |
4190 | { |
4191 | mem_cgroup_lru_gen_attach(tset); |
4192 | mem_cgroup_kmem_attach(tset); |
4193 | } |
4194 | |
4195 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) |
4196 | { |
4197 | if (value == PAGE_COUNTER_MAX) |
4198 | seq_puts(m, s: "max\n" ); |
4199 | else |
4200 | seq_printf(m, fmt: "%llu\n" , (u64)value * PAGE_SIZE); |
4201 | |
4202 | return 0; |
4203 | } |
4204 | |
4205 | static u64 memory_current_read(struct cgroup_subsys_state *css, |
4206 | struct cftype *cft) |
4207 | { |
4208 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4209 | |
4210 | return (u64)page_counter_read(counter: &memcg->memory) * PAGE_SIZE; |
4211 | } |
4212 | |
4213 | #define OFP_PEAK_UNSET (((-1UL))) |
4214 | |
4215 | static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) |
4216 | { |
4217 | struct cgroup_of_peak *ofp = of_peak(of: sf->private); |
4218 | u64 fd_peak = READ_ONCE(ofp->value), peak; |
4219 | |
4220 | /* User wants global or local peak? */ |
4221 | if (fd_peak == OFP_PEAK_UNSET) |
4222 | peak = pc->watermark; |
4223 | else |
4224 | peak = max(fd_peak, READ_ONCE(pc->local_watermark)); |
4225 | |
4226 | seq_printf(m: sf, fmt: "%llu\n" , peak * PAGE_SIZE); |
4227 | return 0; |
4228 | } |
4229 | |
4230 | static int memory_peak_show(struct seq_file *sf, void *v) |
4231 | { |
4232 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: seq_css(seq: sf)); |
4233 | |
4234 | return peak_show(sf, v, pc: &memcg->memory); |
4235 | } |
4236 | |
4237 | static int peak_open(struct kernfs_open_file *of) |
4238 | { |
4239 | struct cgroup_of_peak *ofp = of_peak(of); |
4240 | |
4241 | ofp->value = OFP_PEAK_UNSET; |
4242 | return 0; |
4243 | } |
4244 | |
4245 | static void peak_release(struct kernfs_open_file *of) |
4246 | { |
4247 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4248 | struct cgroup_of_peak *ofp = of_peak(of); |
4249 | |
4250 | if (ofp->value == OFP_PEAK_UNSET) { |
4251 | /* fast path (no writes on this fd) */ |
4252 | return; |
4253 | } |
4254 | spin_lock(lock: &memcg->peaks_lock); |
4255 | list_del(entry: &ofp->list); |
4256 | spin_unlock(lock: &memcg->peaks_lock); |
4257 | } |
4258 | |
4259 | static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, |
4260 | loff_t off, struct page_counter *pc, |
4261 | struct list_head *watchers) |
4262 | { |
4263 | unsigned long usage; |
4264 | struct cgroup_of_peak *peer_ctx; |
4265 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4266 | struct cgroup_of_peak *ofp = of_peak(of); |
4267 | |
4268 | spin_lock(lock: &memcg->peaks_lock); |
4269 | |
4270 | usage = page_counter_read(counter: pc); |
4271 | WRITE_ONCE(pc->local_watermark, usage); |
4272 | |
4273 | list_for_each_entry(peer_ctx, watchers, list) |
4274 | if (usage > peer_ctx->value) |
4275 | WRITE_ONCE(peer_ctx->value, usage); |
4276 | |
4277 | /* initial write, register watcher */ |
4278 | if (ofp->value == OFP_PEAK_UNSET) |
4279 | list_add(new: &ofp->list, head: watchers); |
4280 | |
4281 | WRITE_ONCE(ofp->value, usage); |
4282 | spin_unlock(lock: &memcg->peaks_lock); |
4283 | |
4284 | return nbytes; |
4285 | } |
4286 | |
4287 | static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, |
4288 | size_t nbytes, loff_t off) |
4289 | { |
4290 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4291 | |
4292 | return peak_write(of, buf, nbytes, off, pc: &memcg->memory, |
4293 | watchers: &memcg->memory_peaks); |
4294 | } |
4295 | |
4296 | #undef OFP_PEAK_UNSET |
4297 | |
4298 | static int memory_min_show(struct seq_file *m, void *v) |
4299 | { |
4300 | return seq_puts_memcg_tunable(m, |
4301 | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); |
4302 | } |
4303 | |
4304 | static ssize_t memory_min_write(struct kernfs_open_file *of, |
4305 | char *buf, size_t nbytes, loff_t off) |
4306 | { |
4307 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4308 | unsigned long min; |
4309 | int err; |
4310 | |
4311 | buf = strstrip(str: buf); |
4312 | err = page_counter_memparse(buf, max: "max" , nr_pages: &min); |
4313 | if (err) |
4314 | return err; |
4315 | |
4316 | page_counter_set_min(counter: &memcg->memory, nr_pages: min); |
4317 | |
4318 | return nbytes; |
4319 | } |
4320 | |
4321 | static int memory_low_show(struct seq_file *m, void *v) |
4322 | { |
4323 | return seq_puts_memcg_tunable(m, |
4324 | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); |
4325 | } |
4326 | |
4327 | static ssize_t memory_low_write(struct kernfs_open_file *of, |
4328 | char *buf, size_t nbytes, loff_t off) |
4329 | { |
4330 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4331 | unsigned long low; |
4332 | int err; |
4333 | |
4334 | buf = strstrip(str: buf); |
4335 | err = page_counter_memparse(buf, max: "max" , nr_pages: &low); |
4336 | if (err) |
4337 | return err; |
4338 | |
4339 | page_counter_set_low(counter: &memcg->memory, nr_pages: low); |
4340 | |
4341 | return nbytes; |
4342 | } |
4343 | |
4344 | static int memory_high_show(struct seq_file *m, void *v) |
4345 | { |
4346 | return seq_puts_memcg_tunable(m, |
4347 | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); |
4348 | } |
4349 | |
4350 | static ssize_t memory_high_write(struct kernfs_open_file *of, |
4351 | char *buf, size_t nbytes, loff_t off) |
4352 | { |
4353 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4354 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
4355 | bool drained = false; |
4356 | unsigned long high; |
4357 | int err; |
4358 | |
4359 | buf = strstrip(str: buf); |
4360 | err = page_counter_memparse(buf, max: "max" , nr_pages: &high); |
4361 | if (err) |
4362 | return err; |
4363 | |
4364 | page_counter_set_high(counter: &memcg->memory, nr_pages: high); |
4365 | |
4366 | if (of->file->f_flags & O_NONBLOCK) |
4367 | goto out; |
4368 | |
4369 | for (;;) { |
4370 | unsigned long nr_pages = page_counter_read(counter: &memcg->memory); |
4371 | unsigned long reclaimed; |
4372 | |
4373 | if (nr_pages <= high) |
4374 | break; |
4375 | |
4376 | if (signal_pending(current)) |
4377 | break; |
4378 | |
4379 | if (!drained) { |
4380 | drain_all_stock(root_memcg: memcg); |
4381 | drained = true; |
4382 | continue; |
4383 | } |
4384 | |
4385 | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - high, |
4386 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); |
4387 | |
4388 | if (!reclaimed && !nr_retries--) |
4389 | break; |
4390 | } |
4391 | out: |
4392 | memcg_wb_domain_size_changed(memcg); |
4393 | return nbytes; |
4394 | } |
4395 | |
4396 | static int memory_max_show(struct seq_file *m, void *v) |
4397 | { |
4398 | return seq_puts_memcg_tunable(m, |
4399 | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); |
4400 | } |
4401 | |
4402 | static ssize_t memory_max_write(struct kernfs_open_file *of, |
4403 | char *buf, size_t nbytes, loff_t off) |
4404 | { |
4405 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4406 | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; |
4407 | bool drained = false; |
4408 | unsigned long max; |
4409 | int err; |
4410 | |
4411 | buf = strstrip(str: buf); |
4412 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
4413 | if (err) |
4414 | return err; |
4415 | |
4416 | xchg(&memcg->memory.max, max); |
4417 | |
4418 | if (of->file->f_flags & O_NONBLOCK) |
4419 | goto out; |
4420 | |
4421 | for (;;) { |
4422 | unsigned long nr_pages = page_counter_read(counter: &memcg->memory); |
4423 | |
4424 | if (nr_pages <= max) |
4425 | break; |
4426 | |
4427 | if (signal_pending(current)) |
4428 | break; |
4429 | |
4430 | if (!drained) { |
4431 | drain_all_stock(root_memcg: memcg); |
4432 | drained = true; |
4433 | continue; |
4434 | } |
4435 | |
4436 | if (nr_reclaims) { |
4437 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - max, |
4438 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) |
4439 | nr_reclaims--; |
4440 | continue; |
4441 | } |
4442 | |
4443 | memcg_memory_event(memcg, event: MEMCG_OOM); |
4444 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, order: 0)) |
4445 | break; |
4446 | cond_resched(); |
4447 | } |
4448 | out: |
4449 | memcg_wb_domain_size_changed(memcg); |
4450 | return nbytes; |
4451 | } |
4452 | |
4453 | /* |
4454 | * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' |
4455 | * if any new events become available. |
4456 | */ |
4457 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) |
4458 | { |
4459 | seq_printf(m, fmt: "low %lu\n" , atomic_long_read(v: &events[MEMCG_LOW])); |
4460 | seq_printf(m, fmt: "high %lu\n" , atomic_long_read(v: &events[MEMCG_HIGH])); |
4461 | seq_printf(m, fmt: "max %lu\n" , atomic_long_read(v: &events[MEMCG_MAX])); |
4462 | seq_printf(m, fmt: "oom %lu\n" , atomic_long_read(v: &events[MEMCG_OOM])); |
4463 | seq_printf(m, fmt: "oom_kill %lu\n" , |
4464 | atomic_long_read(v: &events[MEMCG_OOM_KILL])); |
4465 | seq_printf(m, fmt: "oom_group_kill %lu\n" , |
4466 | atomic_long_read(v: &events[MEMCG_OOM_GROUP_KILL])); |
4467 | } |
4468 | |
4469 | static int memory_events_show(struct seq_file *m, void *v) |
4470 | { |
4471 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4472 | |
4473 | __memory_events_show(m, events: memcg->memory_events); |
4474 | return 0; |
4475 | } |
4476 | |
4477 | static int memory_events_local_show(struct seq_file *m, void *v) |
4478 | { |
4479 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4480 | |
4481 | __memory_events_show(m, events: memcg->memory_events_local); |
4482 | return 0; |
4483 | } |
4484 | |
4485 | int memory_stat_show(struct seq_file *m, void *v) |
4486 | { |
4487 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4488 | char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); |
4489 | struct seq_buf s; |
4490 | |
4491 | if (!buf) |
4492 | return -ENOMEM; |
4493 | seq_buf_init(s: &s, buf, SEQ_BUF_SIZE); |
4494 | memory_stat_format(memcg, s: &s); |
4495 | seq_puts(m, s: buf); |
4496 | kfree(objp: buf); |
4497 | return 0; |
4498 | } |
4499 | |
4500 | #ifdef CONFIG_NUMA |
4501 | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, |
4502 | int item) |
4503 | { |
4504 | return lruvec_page_state(lruvec, idx: item) * |
4505 | memcg_page_state_output_unit(item); |
4506 | } |
4507 | |
4508 | static int memory_numa_stat_show(struct seq_file *m, void *v) |
4509 | { |
4510 | int i; |
4511 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4512 | |
4513 | mem_cgroup_flush_stats(memcg); |
4514 | |
4515 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
4516 | int nid; |
4517 | |
4518 | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) |
4519 | continue; |
4520 | |
4521 | seq_printf(m, fmt: "%s" , memory_stats[i].name); |
4522 | for_each_node_state(nid, N_MEMORY) { |
4523 | u64 size; |
4524 | struct lruvec *lruvec; |
4525 | |
4526 | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); |
4527 | size = lruvec_page_state_output(lruvec, |
4528 | item: memory_stats[i].idx); |
4529 | seq_printf(m, fmt: " N%d=%llu" , nid, size); |
4530 | } |
4531 | seq_putc(m, c: '\n'); |
4532 | } |
4533 | |
4534 | return 0; |
4535 | } |
4536 | #endif |
4537 | |
4538 | static int memory_oom_group_show(struct seq_file *m, void *v) |
4539 | { |
4540 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4541 | |
4542 | seq_printf(m, fmt: "%d\n" , READ_ONCE(memcg->oom_group)); |
4543 | |
4544 | return 0; |
4545 | } |
4546 | |
4547 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, |
4548 | char *buf, size_t nbytes, loff_t off) |
4549 | { |
4550 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4551 | int ret, oom_group; |
4552 | |
4553 | buf = strstrip(str: buf); |
4554 | if (!buf) |
4555 | return -EINVAL; |
4556 | |
4557 | ret = kstrtoint(s: buf, base: 0, res: &oom_group); |
4558 | if (ret) |
4559 | return ret; |
4560 | |
4561 | if (oom_group != 0 && oom_group != 1) |
4562 | return -EINVAL; |
4563 | |
4564 | WRITE_ONCE(memcg->oom_group, oom_group); |
4565 | |
4566 | return nbytes; |
4567 | } |
4568 | |
4569 | enum { |
4570 | MEMORY_RECLAIM_SWAPPINESS = 0, |
4571 | MEMORY_RECLAIM_SWAPPINESS_MAX, |
4572 | MEMORY_RECLAIM_NULL, |
4573 | }; |
4574 | |
4575 | static const match_table_t tokens = { |
4576 | { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d" }, |
4577 | { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max" }, |
4578 | { MEMORY_RECLAIM_NULL, NULL }, |
4579 | }; |
4580 | |
4581 | static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, |
4582 | size_t nbytes, loff_t off) |
4583 | { |
4584 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4585 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
4586 | unsigned long nr_to_reclaim, nr_reclaimed = 0; |
4587 | int swappiness = -1; |
4588 | unsigned int reclaim_options; |
4589 | char *old_buf, *start; |
4590 | substring_t args[MAX_OPT_ARGS]; |
4591 | |
4592 | buf = strstrip(str: buf); |
4593 | |
4594 | old_buf = buf; |
4595 | nr_to_reclaim = memparse(ptr: buf, retptr: &buf) / PAGE_SIZE; |
4596 | if (buf == old_buf) |
4597 | return -EINVAL; |
4598 | |
4599 | buf = strstrip(str: buf); |
4600 | |
4601 | while ((start = strsep(&buf, " " )) != NULL) { |
4602 | if (!strlen(start)) |
4603 | continue; |
4604 | switch (match_token(start, table: tokens, args)) { |
4605 | case MEMORY_RECLAIM_SWAPPINESS: |
4606 | if (match_int(&args[0], result: &swappiness)) |
4607 | return -EINVAL; |
4608 | if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) |
4609 | return -EINVAL; |
4610 | break; |
4611 | case MEMORY_RECLAIM_SWAPPINESS_MAX: |
4612 | swappiness = SWAPPINESS_ANON_ONLY; |
4613 | break; |
4614 | default: |
4615 | return -EINVAL; |
4616 | } |
4617 | } |
4618 | |
4619 | reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; |
4620 | while (nr_reclaimed < nr_to_reclaim) { |
4621 | /* Will converge on zero, but reclaim enforces a minimum */ |
4622 | unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; |
4623 | unsigned long reclaimed; |
4624 | |
4625 | if (signal_pending(current)) |
4626 | return -EINTR; |
4627 | |
4628 | /* |
4629 | * This is the final attempt, drain percpu lru caches in the |
4630 | * hope of introducing more evictable pages for |
4631 | * try_to_free_mem_cgroup_pages(). |
4632 | */ |
4633 | if (!nr_retries) |
4634 | lru_add_drain_all(); |
4635 | |
4636 | reclaimed = try_to_free_mem_cgroup_pages(memcg, |
4637 | nr_pages: batch_size, GFP_KERNEL, |
4638 | reclaim_options, |
4639 | swappiness: swappiness == -1 ? NULL : &swappiness); |
4640 | |
4641 | if (!reclaimed && !nr_retries--) |
4642 | return -EAGAIN; |
4643 | |
4644 | nr_reclaimed += reclaimed; |
4645 | } |
4646 | |
4647 | return nbytes; |
4648 | } |
4649 | |
4650 | static struct cftype memory_files[] = { |
4651 | { |
4652 | .name = "current" , |
4653 | .flags = CFTYPE_NOT_ON_ROOT, |
4654 | .read_u64 = memory_current_read, |
4655 | }, |
4656 | { |
4657 | .name = "peak" , |
4658 | .flags = CFTYPE_NOT_ON_ROOT, |
4659 | .open = peak_open, |
4660 | .release = peak_release, |
4661 | .seq_show = memory_peak_show, |
4662 | .write = memory_peak_write, |
4663 | }, |
4664 | { |
4665 | .name = "min" , |
4666 | .flags = CFTYPE_NOT_ON_ROOT, |
4667 | .seq_show = memory_min_show, |
4668 | .write = memory_min_write, |
4669 | }, |
4670 | { |
4671 | .name = "low" , |
4672 | .flags = CFTYPE_NOT_ON_ROOT, |
4673 | .seq_show = memory_low_show, |
4674 | .write = memory_low_write, |
4675 | }, |
4676 | { |
4677 | .name = "high" , |
4678 | .flags = CFTYPE_NOT_ON_ROOT, |
4679 | .seq_show = memory_high_show, |
4680 | .write = memory_high_write, |
4681 | }, |
4682 | { |
4683 | .name = "max" , |
4684 | .flags = CFTYPE_NOT_ON_ROOT, |
4685 | .seq_show = memory_max_show, |
4686 | .write = memory_max_write, |
4687 | }, |
4688 | { |
4689 | .name = "events" , |
4690 | .flags = CFTYPE_NOT_ON_ROOT, |
4691 | .file_offset = offsetof(struct mem_cgroup, events_file), |
4692 | .seq_show = memory_events_show, |
4693 | }, |
4694 | { |
4695 | .name = "events.local" , |
4696 | .flags = CFTYPE_NOT_ON_ROOT, |
4697 | .file_offset = offsetof(struct mem_cgroup, events_local_file), |
4698 | .seq_show = memory_events_local_show, |
4699 | }, |
4700 | { |
4701 | .name = "stat" , |
4702 | .seq_show = memory_stat_show, |
4703 | }, |
4704 | #ifdef CONFIG_NUMA |
4705 | { |
4706 | .name = "numa_stat" , |
4707 | .seq_show = memory_numa_stat_show, |
4708 | }, |
4709 | #endif |
4710 | { |
4711 | .name = "oom.group" , |
4712 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, |
4713 | .seq_show = memory_oom_group_show, |
4714 | .write = memory_oom_group_write, |
4715 | }, |
4716 | { |
4717 | .name = "reclaim" , |
4718 | .flags = CFTYPE_NS_DELEGATABLE, |
4719 | .write = memory_reclaim, |
4720 | }, |
4721 | { } /* terminate */ |
4722 | }; |
4723 | |
4724 | struct cgroup_subsys memory_cgrp_subsys = { |
4725 | .css_alloc = mem_cgroup_css_alloc, |
4726 | .css_online = mem_cgroup_css_online, |
4727 | .css_offline = mem_cgroup_css_offline, |
4728 | .css_released = mem_cgroup_css_released, |
4729 | .css_free = mem_cgroup_css_free, |
4730 | .css_reset = mem_cgroup_css_reset, |
4731 | .css_rstat_flush = mem_cgroup_css_rstat_flush, |
4732 | .attach = mem_cgroup_attach, |
4733 | .fork = mem_cgroup_fork, |
4734 | .exit = mem_cgroup_exit, |
4735 | .dfl_cftypes = memory_files, |
4736 | #ifdef CONFIG_MEMCG_V1 |
4737 | .legacy_cftypes = mem_cgroup_legacy_files, |
4738 | #endif |
4739 | .early_init = 0, |
4740 | }; |
4741 | |
4742 | /** |
4743 | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range |
4744 | * @root: the top ancestor of the sub-tree being checked |
4745 | * @memcg: the memory cgroup to check |
4746 | * |
4747 | * WARNING: This function is not stateless! It can only be used as part |
4748 | * of a top-down tree iteration, not for isolated queries. |
4749 | */ |
4750 | void mem_cgroup_calculate_protection(struct mem_cgroup *root, |
4751 | struct mem_cgroup *memcg) |
4752 | { |
4753 | bool recursive_protection = |
4754 | cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; |
4755 | |
4756 | if (mem_cgroup_disabled()) |
4757 | return; |
4758 | |
4759 | if (!root) |
4760 | root = root_mem_cgroup; |
4761 | |
4762 | page_counter_calculate_protection(root: &root->memory, counter: &memcg->memory, recursive_protection); |
4763 | } |
4764 | |
4765 | static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, |
4766 | gfp_t gfp) |
4767 | { |
4768 | int ret; |
4769 | |
4770 | ret = try_charge(memcg, gfp_mask: gfp, nr_pages: folio_nr_pages(folio)); |
4771 | if (ret) |
4772 | goto out; |
4773 | |
4774 | css_get(css: &memcg->css); |
4775 | commit_charge(folio, memcg); |
4776 | memcg1_commit_charge(folio, memcg); |
4777 | out: |
4778 | return ret; |
4779 | } |
4780 | |
4781 | int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) |
4782 | { |
4783 | struct mem_cgroup *memcg; |
4784 | int ret; |
4785 | |
4786 | memcg = get_mem_cgroup_from_mm(mm); |
4787 | ret = charge_memcg(folio, memcg, gfp); |
4788 | css_put(css: &memcg->css); |
4789 | |
4790 | return ret; |
4791 | } |
4792 | |
4793 | /** |
4794 | * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio |
4795 | * @folio: folio being charged |
4796 | * @gfp: reclaim mode |
4797 | * |
4798 | * This function is called when allocating a huge page folio, after the page has |
4799 | * already been obtained and charged to the appropriate hugetlb cgroup |
4800 | * controller (if it is enabled). |
4801 | * |
4802 | * Returns ENOMEM if the memcg is already full. |
4803 | * Returns 0 if either the charge was successful, or if we skip the charging. |
4804 | */ |
4805 | int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) |
4806 | { |
4807 | struct mem_cgroup *memcg = get_mem_cgroup_from_current(); |
4808 | int ret = 0; |
4809 | |
4810 | /* |
4811 | * Even memcg does not account for hugetlb, we still want to update |
4812 | * system-level stats via lruvec_stat_mod_folio. Return 0, and skip |
4813 | * charging the memcg. |
4814 | */ |
4815 | if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || |
4816 | !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
4817 | goto out; |
4818 | |
4819 | if (charge_memcg(folio, memcg, gfp)) |
4820 | ret = -ENOMEM; |
4821 | |
4822 | out: |
4823 | mem_cgroup_put(memcg); |
4824 | return ret; |
4825 | } |
4826 | |
4827 | /** |
4828 | * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. |
4829 | * @folio: folio to charge. |
4830 | * @mm: mm context of the victim |
4831 | * @gfp: reclaim mode |
4832 | * @entry: swap entry for which the folio is allocated |
4833 | * |
4834 | * This function charges a folio allocated for swapin. Please call this before |
4835 | * adding the folio to the swapcache. |
4836 | * |
4837 | * Returns 0 on success. Otherwise, an error code is returned. |
4838 | */ |
4839 | int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, |
4840 | gfp_t gfp, swp_entry_t entry) |
4841 | { |
4842 | struct mem_cgroup *memcg; |
4843 | unsigned short id; |
4844 | int ret; |
4845 | |
4846 | if (mem_cgroup_disabled()) |
4847 | return 0; |
4848 | |
4849 | id = lookup_swap_cgroup_id(ent: entry); |
4850 | rcu_read_lock(); |
4851 | memcg = mem_cgroup_from_id(id); |
4852 | if (!memcg || !css_tryget_online(css: &memcg->css)) |
4853 | memcg = get_mem_cgroup_from_mm(mm); |
4854 | rcu_read_unlock(); |
4855 | |
4856 | ret = charge_memcg(folio, memcg, gfp); |
4857 | |
4858 | css_put(css: &memcg->css); |
4859 | return ret; |
4860 | } |
4861 | |
4862 | struct uncharge_gather { |
4863 | struct mem_cgroup *memcg; |
4864 | unsigned long nr_memory; |
4865 | unsigned long pgpgout; |
4866 | unsigned long nr_kmem; |
4867 | int nid; |
4868 | }; |
4869 | |
4870 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) |
4871 | { |
4872 | memset(ug, 0, sizeof(*ug)); |
4873 | } |
4874 | |
4875 | static void uncharge_batch(const struct uncharge_gather *ug) |
4876 | { |
4877 | if (ug->nr_memory) { |
4878 | memcg_uncharge(memcg: ug->memcg, nr_pages: ug->nr_memory); |
4879 | if (ug->nr_kmem) { |
4880 | mod_memcg_state(memcg: ug->memcg, idx: MEMCG_KMEM, val: -ug->nr_kmem); |
4881 | memcg1_account_kmem(memcg: ug->memcg, nr_pages: -ug->nr_kmem); |
4882 | } |
4883 | memcg1_oom_recover(memcg: ug->memcg); |
4884 | } |
4885 | |
4886 | memcg1_uncharge_batch(memcg: ug->memcg, pgpgout: ug->pgpgout, nr_memory: ug->nr_memory, nid: ug->nid); |
4887 | |
4888 | /* drop reference from uncharge_folio */ |
4889 | css_put(css: &ug->memcg->css); |
4890 | } |
4891 | |
4892 | static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) |
4893 | { |
4894 | long nr_pages; |
4895 | struct mem_cgroup *memcg; |
4896 | struct obj_cgroup *objcg; |
4897 | |
4898 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
4899 | |
4900 | /* |
4901 | * Nobody should be changing or seriously looking at |
4902 | * folio memcg or objcg at this point, we have fully |
4903 | * exclusive access to the folio. |
4904 | */ |
4905 | if (folio_memcg_kmem(folio)) { |
4906 | objcg = __folio_objcg(folio); |
4907 | /* |
4908 | * This get matches the put at the end of the function and |
4909 | * kmem pages do not hold memcg references anymore. |
4910 | */ |
4911 | memcg = get_mem_cgroup_from_objcg(objcg); |
4912 | } else { |
4913 | memcg = __folio_memcg(folio); |
4914 | } |
4915 | |
4916 | if (!memcg) |
4917 | return; |
4918 | |
4919 | if (ug->memcg != memcg) { |
4920 | if (ug->memcg) { |
4921 | uncharge_batch(ug); |
4922 | uncharge_gather_clear(ug); |
4923 | } |
4924 | ug->memcg = memcg; |
4925 | ug->nid = folio_nid(folio); |
4926 | |
4927 | /* pairs with css_put in uncharge_batch */ |
4928 | css_get(css: &memcg->css); |
4929 | } |
4930 | |
4931 | nr_pages = folio_nr_pages(folio); |
4932 | |
4933 | if (folio_memcg_kmem(folio)) { |
4934 | ug->nr_memory += nr_pages; |
4935 | ug->nr_kmem += nr_pages; |
4936 | |
4937 | folio->memcg_data = 0; |
4938 | obj_cgroup_put(objcg); |
4939 | } else { |
4940 | /* LRU pages aren't accounted at the root level */ |
4941 | if (!mem_cgroup_is_root(memcg)) |
4942 | ug->nr_memory += nr_pages; |
4943 | ug->pgpgout++; |
4944 | |
4945 | WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); |
4946 | folio->memcg_data = 0; |
4947 | } |
4948 | |
4949 | css_put(css: &memcg->css); |
4950 | } |
4951 | |
4952 | void __mem_cgroup_uncharge(struct folio *folio) |
4953 | { |
4954 | struct uncharge_gather ug; |
4955 | |
4956 | /* Don't touch folio->lru of any random page, pre-check: */ |
4957 | if (!folio_memcg_charged(folio)) |
4958 | return; |
4959 | |
4960 | uncharge_gather_clear(ug: &ug); |
4961 | uncharge_folio(folio, ug: &ug); |
4962 | uncharge_batch(ug: &ug); |
4963 | } |
4964 | |
4965 | void __mem_cgroup_uncharge_folios(struct folio_batch *folios) |
4966 | { |
4967 | struct uncharge_gather ug; |
4968 | unsigned int i; |
4969 | |
4970 | uncharge_gather_clear(ug: &ug); |
4971 | for (i = 0; i < folios->nr; i++) |
4972 | uncharge_folio(folio: folios->folios[i], ug: &ug); |
4973 | if (ug.memcg) |
4974 | uncharge_batch(ug: &ug); |
4975 | } |
4976 | |
4977 | /** |
4978 | * mem_cgroup_replace_folio - Charge a folio's replacement. |
4979 | * @old: Currently circulating folio. |
4980 | * @new: Replacement folio. |
4981 | * |
4982 | * Charge @new as a replacement folio for @old. @old will |
4983 | * be uncharged upon free. |
4984 | * |
4985 | * Both folios must be locked, @new->mapping must be set up. |
4986 | */ |
4987 | void mem_cgroup_replace_folio(struct folio *old, struct folio *new) |
4988 | { |
4989 | struct mem_cgroup *memcg; |
4990 | long nr_pages = folio_nr_pages(folio: new); |
4991 | |
4992 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
4993 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
4994 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
4995 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); |
4996 | |
4997 | if (mem_cgroup_disabled()) |
4998 | return; |
4999 | |
5000 | /* Page cache replacement: new folio already charged? */ |
5001 | if (folio_memcg_charged(folio: new)) |
5002 | return; |
5003 | |
5004 | memcg = folio_memcg(folio: old); |
5005 | VM_WARN_ON_ONCE_FOLIO(!memcg, old); |
5006 | if (!memcg) |
5007 | return; |
5008 | |
5009 | /* Force-charge the new page. The old one will be freed soon */ |
5010 | if (!mem_cgroup_is_root(memcg)) { |
5011 | page_counter_charge(counter: &memcg->memory, nr_pages); |
5012 | if (do_memsw_account()) |
5013 | page_counter_charge(counter: &memcg->memsw, nr_pages); |
5014 | } |
5015 | |
5016 | css_get(css: &memcg->css); |
5017 | commit_charge(folio: new, memcg); |
5018 | memcg1_commit_charge(folio: new, memcg); |
5019 | } |
5020 | |
5021 | /** |
5022 | * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. |
5023 | * @old: Currently circulating folio. |
5024 | * @new: Replacement folio. |
5025 | * |
5026 | * Transfer the memcg data from the old folio to the new folio for migration. |
5027 | * The old folio's data info will be cleared. Note that the memory counters |
5028 | * will remain unchanged throughout the process. |
5029 | * |
5030 | * Both folios must be locked, @new->mapping must be set up. |
5031 | */ |
5032 | void mem_cgroup_migrate(struct folio *old, struct folio *new) |
5033 | { |
5034 | struct mem_cgroup *memcg; |
5035 | |
5036 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
5037 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
5038 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
5039 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); |
5040 | VM_BUG_ON_FOLIO(folio_test_lru(old), old); |
5041 | |
5042 | if (mem_cgroup_disabled()) |
5043 | return; |
5044 | |
5045 | memcg = folio_memcg(folio: old); |
5046 | /* |
5047 | * Note that it is normal to see !memcg for a hugetlb folio. |
5048 | * For e.g, itt could have been allocated when memory_hugetlb_accounting |
5049 | * was not selected. |
5050 | */ |
5051 | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); |
5052 | if (!memcg) |
5053 | return; |
5054 | |
5055 | /* Transfer the charge and the css ref */ |
5056 | commit_charge(folio: new, memcg); |
5057 | |
5058 | /* Warning should never happen, so don't worry about refcount non-0 */ |
5059 | WARN_ON_ONCE(folio_unqueue_deferred_split(old)); |
5060 | old->memcg_data = 0; |
5061 | } |
5062 | |
5063 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); |
5064 | EXPORT_SYMBOL(memcg_sockets_enabled_key); |
5065 | |
5066 | void mem_cgroup_sk_alloc(struct sock *sk) |
5067 | { |
5068 | struct mem_cgroup *memcg; |
5069 | |
5070 | if (!mem_cgroup_sockets_enabled) |
5071 | return; |
5072 | |
5073 | /* Do not associate the sock with unrelated interrupted task's memcg. */ |
5074 | if (!in_task()) |
5075 | return; |
5076 | |
5077 | rcu_read_lock(); |
5078 | memcg = mem_cgroup_from_task(current); |
5079 | if (mem_cgroup_is_root(memcg)) |
5080 | goto out; |
5081 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) |
5082 | goto out; |
5083 | if (css_tryget(css: &memcg->css)) |
5084 | sk->sk_memcg = memcg; |
5085 | out: |
5086 | rcu_read_unlock(); |
5087 | } |
5088 | |
5089 | void mem_cgroup_sk_free(struct sock *sk) |
5090 | { |
5091 | if (sk->sk_memcg) |
5092 | css_put(css: &sk->sk_memcg->css); |
5093 | } |
5094 | |
5095 | /** |
5096 | * mem_cgroup_charge_skmem - charge socket memory |
5097 | * @memcg: memcg to charge |
5098 | * @nr_pages: number of pages to charge |
5099 | * @gfp_mask: reclaim mode |
5100 | * |
5101 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within |
5102 | * @memcg's configured limit, %false if it doesn't. |
5103 | */ |
5104 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, |
5105 | gfp_t gfp_mask) |
5106 | { |
5107 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
5108 | return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); |
5109 | |
5110 | if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { |
5111 | mod_memcg_state(memcg, idx: MEMCG_SOCK, val: nr_pages); |
5112 | return true; |
5113 | } |
5114 | |
5115 | return false; |
5116 | } |
5117 | |
5118 | /** |
5119 | * mem_cgroup_uncharge_skmem - uncharge socket memory |
5120 | * @memcg: memcg to uncharge |
5121 | * @nr_pages: number of pages to uncharge |
5122 | */ |
5123 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) |
5124 | { |
5125 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
5126 | memcg1_uncharge_skmem(memcg, nr_pages); |
5127 | return; |
5128 | } |
5129 | |
5130 | mod_memcg_state(memcg, idx: MEMCG_SOCK, val: -nr_pages); |
5131 | |
5132 | refill_stock(memcg, nr_pages); |
5133 | } |
5134 | |
5135 | static int __init cgroup_memory(char *s) |
5136 | { |
5137 | char *token; |
5138 | |
5139 | while ((token = strsep(&s, "," )) != NULL) { |
5140 | if (!*token) |
5141 | continue; |
5142 | if (!strcmp(token, "nosocket" )) |
5143 | cgroup_memory_nosocket = true; |
5144 | if (!strcmp(token, "nokmem" )) |
5145 | cgroup_memory_nokmem = true; |
5146 | if (!strcmp(token, "nobpf" )) |
5147 | cgroup_memory_nobpf = true; |
5148 | } |
5149 | return 1; |
5150 | } |
5151 | __setup("cgroup.memory=" , cgroup_memory); |
5152 | |
5153 | /* |
5154 | * Memory controller init before cgroup_init() initialize root_mem_cgroup. |
5155 | * |
5156 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this |
5157 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but |
5158 | * basically everything that doesn't depend on a specific mem_cgroup structure |
5159 | * should be initialized from here. |
5160 | */ |
5161 | int __init mem_cgroup_init(void) |
5162 | { |
5163 | unsigned int memcg_size; |
5164 | int cpu; |
5165 | |
5166 | /* |
5167 | * Currently s32 type (can refer to struct batched_lruvec_stat) is |
5168 | * used for per-memcg-per-cpu caching of per-node statistics. In order |
5169 | * to work fine, we should make sure that the overfill threshold can't |
5170 | * exceed S32_MAX / PAGE_SIZE. |
5171 | */ |
5172 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); |
5173 | |
5174 | cpuhp_setup_state_nocalls(state: CPUHP_MM_MEMCQ_DEAD, name: "mm/memctrl:dead" , NULL, |
5175 | teardown: memcg_hotplug_cpu_dead); |
5176 | |
5177 | for_each_possible_cpu(cpu) { |
5178 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, |
5179 | drain_local_memcg_stock); |
5180 | INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, |
5181 | drain_local_obj_stock); |
5182 | } |
5183 | |
5184 | memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); |
5185 | memcg_cachep = kmem_cache_create("mem_cgroup" , memcg_size, 0, |
5186 | SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); |
5187 | |
5188 | memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, |
5189 | SLAB_PANIC | SLAB_HWCACHE_ALIGN); |
5190 | |
5191 | return 0; |
5192 | } |
5193 | |
5194 | #ifdef CONFIG_SWAP |
5195 | /** |
5196 | * __mem_cgroup_try_charge_swap - try charging swap space for a folio |
5197 | * @folio: folio being added to swap |
5198 | * @entry: swap entry to charge |
5199 | * |
5200 | * Try to charge @folio's memcg for the swap space at @entry. |
5201 | * |
5202 | * Returns 0 on success, -ENOMEM on failure. |
5203 | */ |
5204 | int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) |
5205 | { |
5206 | unsigned int nr_pages = folio_nr_pages(folio); |
5207 | struct page_counter *counter; |
5208 | struct mem_cgroup *memcg; |
5209 | |
5210 | if (do_memsw_account()) |
5211 | return 0; |
5212 | |
5213 | memcg = folio_memcg(folio); |
5214 | |
5215 | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); |
5216 | if (!memcg) |
5217 | return 0; |
5218 | |
5219 | if (!entry.val) { |
5220 | memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL); |
5221 | return 0; |
5222 | } |
5223 | |
5224 | memcg = mem_cgroup_id_get_online(memcg); |
5225 | |
5226 | if (!mem_cgroup_is_root(memcg) && |
5227 | !page_counter_try_charge(counter: &memcg->swap, nr_pages, fail: &counter)) { |
5228 | memcg_memory_event(memcg, event: MEMCG_SWAP_MAX); |
5229 | memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL); |
5230 | mem_cgroup_id_put(memcg); |
5231 | return -ENOMEM; |
5232 | } |
5233 | |
5234 | /* Get references for the tail pages, too */ |
5235 | if (nr_pages > 1) |
5236 | mem_cgroup_id_get_many(memcg, n: nr_pages - 1); |
5237 | mod_memcg_state(memcg, idx: MEMCG_SWAP, val: nr_pages); |
5238 | |
5239 | swap_cgroup_record(folio, id: mem_cgroup_id(memcg), ent: entry); |
5240 | |
5241 | return 0; |
5242 | } |
5243 | |
5244 | /** |
5245 | * __mem_cgroup_uncharge_swap - uncharge swap space |
5246 | * @entry: swap entry to uncharge |
5247 | * @nr_pages: the amount of swap space to uncharge |
5248 | */ |
5249 | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) |
5250 | { |
5251 | struct mem_cgroup *memcg; |
5252 | unsigned short id; |
5253 | |
5254 | id = swap_cgroup_clear(ent: entry, nr_ents: nr_pages); |
5255 | rcu_read_lock(); |
5256 | memcg = mem_cgroup_from_id(id); |
5257 | if (memcg) { |
5258 | if (!mem_cgroup_is_root(memcg)) { |
5259 | if (do_memsw_account()) |
5260 | page_counter_uncharge(counter: &memcg->memsw, nr_pages); |
5261 | else |
5262 | page_counter_uncharge(counter: &memcg->swap, nr_pages); |
5263 | } |
5264 | mod_memcg_state(memcg, idx: MEMCG_SWAP, val: -nr_pages); |
5265 | mem_cgroup_id_put_many(memcg, n: nr_pages); |
5266 | } |
5267 | rcu_read_unlock(); |
5268 | } |
5269 | |
5270 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) |
5271 | { |
5272 | long nr_swap_pages = get_nr_swap_pages(); |
5273 | |
5274 | if (mem_cgroup_disabled() || do_memsw_account()) |
5275 | return nr_swap_pages; |
5276 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) |
5277 | nr_swap_pages = min_t(long, nr_swap_pages, |
5278 | READ_ONCE(memcg->swap.max) - |
5279 | page_counter_read(&memcg->swap)); |
5280 | return nr_swap_pages; |
5281 | } |
5282 | |
5283 | bool mem_cgroup_swap_full(struct folio *folio) |
5284 | { |
5285 | struct mem_cgroup *memcg; |
5286 | |
5287 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
5288 | |
5289 | if (vm_swap_full()) |
5290 | return true; |
5291 | if (do_memsw_account()) |
5292 | return false; |
5293 | |
5294 | memcg = folio_memcg(folio); |
5295 | if (!memcg) |
5296 | return false; |
5297 | |
5298 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
5299 | unsigned long usage = page_counter_read(counter: &memcg->swap); |
5300 | |
5301 | if (usage * 2 >= READ_ONCE(memcg->swap.high) || |
5302 | usage * 2 >= READ_ONCE(memcg->swap.max)) |
5303 | return true; |
5304 | } |
5305 | |
5306 | return false; |
5307 | } |
5308 | |
5309 | static int __init setup_swap_account(char *s) |
5310 | { |
5311 | bool res; |
5312 | |
5313 | if (!kstrtobool(s, res: &res) && !res) |
5314 | pr_warn_once("The swapaccount=0 commandline option is deprecated " |
5315 | "in favor of configuring swap control via cgroupfs. " |
5316 | "Please report your usecase to linux-mm@kvack.org if you " |
5317 | "depend on this functionality.\n" ); |
5318 | return 1; |
5319 | } |
5320 | __setup("swapaccount=" , setup_swap_account); |
5321 | |
5322 | static u64 swap_current_read(struct cgroup_subsys_state *css, |
5323 | struct cftype *cft) |
5324 | { |
5325 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5326 | |
5327 | return (u64)page_counter_read(counter: &memcg->swap) * PAGE_SIZE; |
5328 | } |
5329 | |
5330 | static int swap_peak_show(struct seq_file *sf, void *v) |
5331 | { |
5332 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: seq_css(seq: sf)); |
5333 | |
5334 | return peak_show(sf, v, pc: &memcg->swap); |
5335 | } |
5336 | |
5337 | static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, |
5338 | size_t nbytes, loff_t off) |
5339 | { |
5340 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
5341 | |
5342 | return peak_write(of, buf, nbytes, off, pc: &memcg->swap, |
5343 | watchers: &memcg->swap_peaks); |
5344 | } |
5345 | |
5346 | static int swap_high_show(struct seq_file *m, void *v) |
5347 | { |
5348 | return seq_puts_memcg_tunable(m, |
5349 | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); |
5350 | } |
5351 | |
5352 | static ssize_t swap_high_write(struct kernfs_open_file *of, |
5353 | char *buf, size_t nbytes, loff_t off) |
5354 | { |
5355 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
5356 | unsigned long high; |
5357 | int err; |
5358 | |
5359 | buf = strstrip(str: buf); |
5360 | err = page_counter_memparse(buf, max: "max" , nr_pages: &high); |
5361 | if (err) |
5362 | return err; |
5363 | |
5364 | page_counter_set_high(counter: &memcg->swap, nr_pages: high); |
5365 | |
5366 | return nbytes; |
5367 | } |
5368 | |
5369 | static int swap_max_show(struct seq_file *m, void *v) |
5370 | { |
5371 | return seq_puts_memcg_tunable(m, |
5372 | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); |
5373 | } |
5374 | |
5375 | static ssize_t swap_max_write(struct kernfs_open_file *of, |
5376 | char *buf, size_t nbytes, loff_t off) |
5377 | { |
5378 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
5379 | unsigned long max; |
5380 | int err; |
5381 | |
5382 | buf = strstrip(str: buf); |
5383 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
5384 | if (err) |
5385 | return err; |
5386 | |
5387 | xchg(&memcg->swap.max, max); |
5388 | |
5389 | return nbytes; |
5390 | } |
5391 | |
5392 | static int swap_events_show(struct seq_file *m, void *v) |
5393 | { |
5394 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
5395 | |
5396 | seq_printf(m, fmt: "high %lu\n" , |
5397 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_HIGH])); |
5398 | seq_printf(m, fmt: "max %lu\n" , |
5399 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_MAX])); |
5400 | seq_printf(m, fmt: "fail %lu\n" , |
5401 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_FAIL])); |
5402 | |
5403 | return 0; |
5404 | } |
5405 | |
5406 | static struct cftype swap_files[] = { |
5407 | { |
5408 | .name = "swap.current" , |
5409 | .flags = CFTYPE_NOT_ON_ROOT, |
5410 | .read_u64 = swap_current_read, |
5411 | }, |
5412 | { |
5413 | .name = "swap.high" , |
5414 | .flags = CFTYPE_NOT_ON_ROOT, |
5415 | .seq_show = swap_high_show, |
5416 | .write = swap_high_write, |
5417 | }, |
5418 | { |
5419 | .name = "swap.max" , |
5420 | .flags = CFTYPE_NOT_ON_ROOT, |
5421 | .seq_show = swap_max_show, |
5422 | .write = swap_max_write, |
5423 | }, |
5424 | { |
5425 | .name = "swap.peak" , |
5426 | .flags = CFTYPE_NOT_ON_ROOT, |
5427 | .open = peak_open, |
5428 | .release = peak_release, |
5429 | .seq_show = swap_peak_show, |
5430 | .write = swap_peak_write, |
5431 | }, |
5432 | { |
5433 | .name = "swap.events" , |
5434 | .flags = CFTYPE_NOT_ON_ROOT, |
5435 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), |
5436 | .seq_show = swap_events_show, |
5437 | }, |
5438 | { } /* terminate */ |
5439 | }; |
5440 | |
5441 | #ifdef CONFIG_ZSWAP |
5442 | /** |
5443 | * obj_cgroup_may_zswap - check if this cgroup can zswap |
5444 | * @objcg: the object cgroup |
5445 | * |
5446 | * Check if the hierarchical zswap limit has been reached. |
5447 | * |
5448 | * This doesn't check for specific headroom, and it is not atomic |
5449 | * either. But with zswap, the size of the allocation is only known |
5450 | * once compression has occurred, and this optimistic pre-check avoids |
5451 | * spending cycles on compression when there is already no room left |
5452 | * or zswap is disabled altogether somewhere in the hierarchy. |
5453 | */ |
5454 | bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) |
5455 | { |
5456 | struct mem_cgroup *memcg, *original_memcg; |
5457 | bool ret = true; |
5458 | |
5459 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
5460 | return true; |
5461 | |
5462 | original_memcg = get_mem_cgroup_from_objcg(objcg); |
5463 | for (memcg = original_memcg; !mem_cgroup_is_root(memcg); |
5464 | memcg = parent_mem_cgroup(memcg)) { |
5465 | unsigned long max = READ_ONCE(memcg->zswap_max); |
5466 | unsigned long pages; |
5467 | |
5468 | if (max == PAGE_COUNTER_MAX) |
5469 | continue; |
5470 | if (max == 0) { |
5471 | ret = false; |
5472 | break; |
5473 | } |
5474 | |
5475 | /* Force flush to get accurate stats for charging */ |
5476 | __mem_cgroup_flush_stats(memcg, force: true); |
5477 | pages = memcg_page_state(memcg, idx: MEMCG_ZSWAP_B) / PAGE_SIZE; |
5478 | if (pages < max) |
5479 | continue; |
5480 | ret = false; |
5481 | break; |
5482 | } |
5483 | mem_cgroup_put(memcg: original_memcg); |
5484 | return ret; |
5485 | } |
5486 | |
5487 | /** |
5488 | * obj_cgroup_charge_zswap - charge compression backend memory |
5489 | * @objcg: the object cgroup |
5490 | * @size: size of compressed object |
5491 | * |
5492 | * This forces the charge after obj_cgroup_may_zswap() allowed |
5493 | * compression and storage in zwap for this cgroup to go ahead. |
5494 | */ |
5495 | void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) |
5496 | { |
5497 | struct mem_cgroup *memcg; |
5498 | |
5499 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
5500 | return; |
5501 | |
5502 | VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); |
5503 | |
5504 | /* PF_MEMALLOC context, charging must succeed */ |
5505 | if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) |
5506 | VM_WARN_ON_ONCE(1); |
5507 | |
5508 | rcu_read_lock(); |
5509 | memcg = obj_cgroup_memcg(objcg); |
5510 | mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: size); |
5511 | mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: 1); |
5512 | rcu_read_unlock(); |
5513 | } |
5514 | |
5515 | /** |
5516 | * obj_cgroup_uncharge_zswap - uncharge compression backend memory |
5517 | * @objcg: the object cgroup |
5518 | * @size: size of compressed object |
5519 | * |
5520 | * Uncharges zswap memory on page in. |
5521 | */ |
5522 | void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) |
5523 | { |
5524 | struct mem_cgroup *memcg; |
5525 | |
5526 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
5527 | return; |
5528 | |
5529 | obj_cgroup_uncharge(objcg, size); |
5530 | |
5531 | rcu_read_lock(); |
5532 | memcg = obj_cgroup_memcg(objcg); |
5533 | mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: -size); |
5534 | mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: -1); |
5535 | rcu_read_unlock(); |
5536 | } |
5537 | |
5538 | bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) |
5539 | { |
5540 | /* if zswap is disabled, do not block pages going to the swapping device */ |
5541 | if (!zswap_is_enabled()) |
5542 | return true; |
5543 | |
5544 | for (; memcg; memcg = parent_mem_cgroup(memcg)) |
5545 | if (!READ_ONCE(memcg->zswap_writeback)) |
5546 | return false; |
5547 | |
5548 | return true; |
5549 | } |
5550 | |
5551 | static u64 zswap_current_read(struct cgroup_subsys_state *css, |
5552 | struct cftype *cft) |
5553 | { |
5554 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5555 | |
5556 | mem_cgroup_flush_stats(memcg); |
5557 | return memcg_page_state(memcg, idx: MEMCG_ZSWAP_B); |
5558 | } |
5559 | |
5560 | static int zswap_max_show(struct seq_file *m, void *v) |
5561 | { |
5562 | return seq_puts_memcg_tunable(m, |
5563 | READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); |
5564 | } |
5565 | |
5566 | static ssize_t zswap_max_write(struct kernfs_open_file *of, |
5567 | char *buf, size_t nbytes, loff_t off) |
5568 | { |
5569 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
5570 | unsigned long max; |
5571 | int err; |
5572 | |
5573 | buf = strstrip(str: buf); |
5574 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
5575 | if (err) |
5576 | return err; |
5577 | |
5578 | xchg(&memcg->zswap_max, max); |
5579 | |
5580 | return nbytes; |
5581 | } |
5582 | |
5583 | static int zswap_writeback_show(struct seq_file *m, void *v) |
5584 | { |
5585 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
5586 | |
5587 | seq_printf(m, fmt: "%d\n" , READ_ONCE(memcg->zswap_writeback)); |
5588 | return 0; |
5589 | } |
5590 | |
5591 | static ssize_t zswap_writeback_write(struct kernfs_open_file *of, |
5592 | char *buf, size_t nbytes, loff_t off) |
5593 | { |
5594 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
5595 | int zswap_writeback; |
5596 | ssize_t parse_ret = kstrtoint(s: strstrip(str: buf), base: 0, res: &zswap_writeback); |
5597 | |
5598 | if (parse_ret) |
5599 | return parse_ret; |
5600 | |
5601 | if (zswap_writeback != 0 && zswap_writeback != 1) |
5602 | return -EINVAL; |
5603 | |
5604 | WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); |
5605 | return nbytes; |
5606 | } |
5607 | |
5608 | static struct cftype zswap_files[] = { |
5609 | { |
5610 | .name = "zswap.current" , |
5611 | .flags = CFTYPE_NOT_ON_ROOT, |
5612 | .read_u64 = zswap_current_read, |
5613 | }, |
5614 | { |
5615 | .name = "zswap.max" , |
5616 | .flags = CFTYPE_NOT_ON_ROOT, |
5617 | .seq_show = zswap_max_show, |
5618 | .write = zswap_max_write, |
5619 | }, |
5620 | { |
5621 | .name = "zswap.writeback" , |
5622 | .seq_show = zswap_writeback_show, |
5623 | .write = zswap_writeback_write, |
5624 | }, |
5625 | { } /* terminate */ |
5626 | }; |
5627 | #endif /* CONFIG_ZSWAP */ |
5628 | |
5629 | static int __init mem_cgroup_swap_init(void) |
5630 | { |
5631 | if (mem_cgroup_disabled()) |
5632 | return 0; |
5633 | |
5634 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); |
5635 | #ifdef CONFIG_MEMCG_V1 |
5636 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); |
5637 | #endif |
5638 | #ifdef CONFIG_ZSWAP |
5639 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); |
5640 | #endif |
5641 | return 0; |
5642 | } |
5643 | subsys_initcall(mem_cgroup_swap_init); |
5644 | |
5645 | #endif /* CONFIG_SWAP */ |
5646 | |
5647 | bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) |
5648 | { |
5649 | return memcg ? cpuset_node_allowed(cgroup: memcg->css.cgroup, nid) : true; |
5650 | } |
5651 | |