1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* memcontrol.c - Memory Controller |
3 | * |
4 | * Copyright IBM Corporation, 2007 |
5 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
6 | * |
7 | * Copyright 2007 OpenVZ SWsoft Inc |
8 | * Author: Pavel Emelianov <xemul@openvz.org> |
9 | * |
10 | * Memory thresholds |
11 | * Copyright (C) 2009 Nokia Corporation |
12 | * Author: Kirill A. Shutemov |
13 | * |
14 | * Kernel Memory Controller |
15 | * Copyright (C) 2012 Parallels Inc. and Google Inc. |
16 | * Authors: Glauber Costa and Suleiman Souhlal |
17 | * |
18 | * Native page reclaim |
19 | * Charge lifetime sanitation |
20 | * Lockless page tracking & accounting |
21 | * Unified hierarchy configuration model |
22 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner |
23 | * |
24 | * Per memcg lru locking |
25 | * Copyright (C) 2020 Alibaba, Inc, Alex Shi |
26 | */ |
27 | |
28 | #include <linux/page_counter.h> |
29 | #include <linux/memcontrol.h> |
30 | #include <linux/cgroup.h> |
31 | #include <linux/pagewalk.h> |
32 | #include <linux/sched/mm.h> |
33 | #include <linux/shmem_fs.h> |
34 | #include <linux/hugetlb.h> |
35 | #include <linux/pagemap.h> |
36 | #include <linux/pagevec.h> |
37 | #include <linux/vm_event_item.h> |
38 | #include <linux/smp.h> |
39 | #include <linux/page-flags.h> |
40 | #include <linux/backing-dev.h> |
41 | #include <linux/bit_spinlock.h> |
42 | #include <linux/rcupdate.h> |
43 | #include <linux/limits.h> |
44 | #include <linux/export.h> |
45 | #include <linux/mutex.h> |
46 | #include <linux/rbtree.h> |
47 | #include <linux/slab.h> |
48 | #include <linux/swap.h> |
49 | #include <linux/swapops.h> |
50 | #include <linux/spinlock.h> |
51 | #include <linux/eventfd.h> |
52 | #include <linux/poll.h> |
53 | #include <linux/sort.h> |
54 | #include <linux/fs.h> |
55 | #include <linux/seq_file.h> |
56 | #include <linux/vmpressure.h> |
57 | #include <linux/memremap.h> |
58 | #include <linux/mm_inline.h> |
59 | #include <linux/swap_cgroup.h> |
60 | #include <linux/cpu.h> |
61 | #include <linux/oom.h> |
62 | #include <linux/lockdep.h> |
63 | #include <linux/file.h> |
64 | #include <linux/resume_user_mode.h> |
65 | #include <linux/psi.h> |
66 | #include <linux/seq_buf.h> |
67 | #include <linux/sched/isolation.h> |
68 | #include <linux/kmemleak.h> |
69 | #include "internal.h" |
70 | #include <net/sock.h> |
71 | #include <net/ip.h> |
72 | #include "slab.h" |
73 | #include "swap.h" |
74 | |
75 | #include <linux/uaccess.h> |
76 | |
77 | #include <trace/events/vmscan.h> |
78 | |
79 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
80 | EXPORT_SYMBOL(memory_cgrp_subsys); |
81 | |
82 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
83 | |
84 | /* Active memory cgroup to use from an interrupt context */ |
85 | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); |
86 | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); |
87 | |
88 | /* Socket memory accounting disabled? */ |
89 | static bool cgroup_memory_nosocket __ro_after_init; |
90 | |
91 | /* Kernel memory accounting disabled? */ |
92 | static bool cgroup_memory_nokmem __ro_after_init; |
93 | |
94 | /* BPF memory accounting disabled? */ |
95 | static bool cgroup_memory_nobpf __ro_after_init; |
96 | |
97 | #ifdef CONFIG_CGROUP_WRITEBACK |
98 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); |
99 | #endif |
100 | |
101 | /* Whether legacy memory+swap accounting is active */ |
102 | static bool do_memsw_account(void) |
103 | { |
104 | return !cgroup_subsys_on_dfl(memory_cgrp_subsys); |
105 | } |
106 | |
107 | #define THRESHOLDS_EVENTS_TARGET 128 |
108 | #define SOFTLIMIT_EVENTS_TARGET 1024 |
109 | |
110 | /* |
111 | * Cgroups above their limits are maintained in a RB-Tree, independent of |
112 | * their hierarchy representation |
113 | */ |
114 | |
115 | struct mem_cgroup_tree_per_node { |
116 | struct rb_root rb_root; |
117 | struct rb_node *rb_rightmost; |
118 | spinlock_t lock; |
119 | }; |
120 | |
121 | struct mem_cgroup_tree { |
122 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; |
123 | }; |
124 | |
125 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; |
126 | |
127 | /* for OOM */ |
128 | struct mem_cgroup_eventfd_list { |
129 | struct list_head list; |
130 | struct eventfd_ctx *eventfd; |
131 | }; |
132 | |
133 | /* |
134 | * cgroup_event represents events which userspace want to receive. |
135 | */ |
136 | struct mem_cgroup_event { |
137 | /* |
138 | * memcg which the event belongs to. |
139 | */ |
140 | struct mem_cgroup *memcg; |
141 | /* |
142 | * eventfd to signal userspace about the event. |
143 | */ |
144 | struct eventfd_ctx *eventfd; |
145 | /* |
146 | * Each of these stored in a list by the cgroup. |
147 | */ |
148 | struct list_head list; |
149 | /* |
150 | * register_event() callback will be used to add new userspace |
151 | * waiter for changes related to this event. Use eventfd_signal() |
152 | * on eventfd to send notification to userspace. |
153 | */ |
154 | int (*register_event)(struct mem_cgroup *memcg, |
155 | struct eventfd_ctx *eventfd, const char *args); |
156 | /* |
157 | * unregister_event() callback will be called when userspace closes |
158 | * the eventfd or on cgroup removing. This callback must be set, |
159 | * if you want provide notification functionality. |
160 | */ |
161 | void (*unregister_event)(struct mem_cgroup *memcg, |
162 | struct eventfd_ctx *eventfd); |
163 | /* |
164 | * All fields below needed to unregister event when |
165 | * userspace closes eventfd. |
166 | */ |
167 | poll_table pt; |
168 | wait_queue_head_t *wqh; |
169 | wait_queue_entry_t wait; |
170 | struct work_struct remove; |
171 | }; |
172 | |
173 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
174 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); |
175 | |
176 | /* Stuffs for move charges at task migration. */ |
177 | /* |
178 | * Types of charges to be moved. |
179 | */ |
180 | #define MOVE_ANON 0x1U |
181 | #define MOVE_FILE 0x2U |
182 | #define MOVE_MASK (MOVE_ANON | MOVE_FILE) |
183 | |
184 | /* "mc" and its members are protected by cgroup_mutex */ |
185 | static struct move_charge_struct { |
186 | spinlock_t lock; /* for from, to */ |
187 | struct mm_struct *mm; |
188 | struct mem_cgroup *from; |
189 | struct mem_cgroup *to; |
190 | unsigned long flags; |
191 | unsigned long precharge; |
192 | unsigned long moved_charge; |
193 | unsigned long moved_swap; |
194 | struct task_struct *moving_task; /* a task moving charges */ |
195 | wait_queue_head_t waitq; /* a waitq for other context */ |
196 | } mc = { |
197 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
198 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
199 | }; |
200 | |
201 | /* |
202 | * Maximum loops in mem_cgroup_soft_reclaim(), used for soft |
203 | * limit reclaim to prevent infinite loops, if they ever occur. |
204 | */ |
205 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
206 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
207 | |
208 | /* for encoding cft->private value on file */ |
209 | enum res_type { |
210 | _MEM, |
211 | _MEMSWAP, |
212 | _KMEM, |
213 | _TCP, |
214 | }; |
215 | |
216 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
217 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) |
218 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
219 | |
220 | /* |
221 | * Iteration constructs for visiting all cgroups (under a tree). If |
222 | * loops are exited prematurely (break), mem_cgroup_iter_break() must |
223 | * be used for reference counting. |
224 | */ |
225 | #define for_each_mem_cgroup_tree(iter, root) \ |
226 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
227 | iter != NULL; \ |
228 | iter = mem_cgroup_iter(root, iter, NULL)) |
229 | |
230 | #define for_each_mem_cgroup(iter) \ |
231 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
232 | iter != NULL; \ |
233 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
234 | |
235 | static inline bool task_is_dying(void) |
236 | { |
237 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || |
238 | (current->flags & PF_EXITING); |
239 | } |
240 | |
241 | /* Some nice accessors for the vmpressure. */ |
242 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) |
243 | { |
244 | if (!memcg) |
245 | memcg = root_mem_cgroup; |
246 | return &memcg->vmpressure; |
247 | } |
248 | |
249 | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) |
250 | { |
251 | return container_of(vmpr, struct mem_cgroup, vmpressure); |
252 | } |
253 | |
254 | #define CURRENT_OBJCG_UPDATE_BIT 0 |
255 | #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) |
256 | |
257 | #ifdef CONFIG_MEMCG_KMEM |
258 | static DEFINE_SPINLOCK(objcg_lock); |
259 | |
260 | bool mem_cgroup_kmem_disabled(void) |
261 | { |
262 | return cgroup_memory_nokmem; |
263 | } |
264 | |
265 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, |
266 | unsigned int nr_pages); |
267 | |
268 | static void obj_cgroup_release(struct percpu_ref *ref) |
269 | { |
270 | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); |
271 | unsigned int nr_bytes; |
272 | unsigned int nr_pages; |
273 | unsigned long flags; |
274 | |
275 | /* |
276 | * At this point all allocated objects are freed, and |
277 | * objcg->nr_charged_bytes can't have an arbitrary byte value. |
278 | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). |
279 | * |
280 | * The following sequence can lead to it: |
281 | * 1) CPU0: objcg == stock->cached_objcg |
282 | * 2) CPU1: we do a small allocation (e.g. 92 bytes), |
283 | * PAGE_SIZE bytes are charged |
284 | * 3) CPU1: a process from another memcg is allocating something, |
285 | * the stock if flushed, |
286 | * objcg->nr_charged_bytes = PAGE_SIZE - 92 |
287 | * 5) CPU0: we do release this object, |
288 | * 92 bytes are added to stock->nr_bytes |
289 | * 6) CPU0: stock is flushed, |
290 | * 92 bytes are added to objcg->nr_charged_bytes |
291 | * |
292 | * In the result, nr_charged_bytes == PAGE_SIZE. |
293 | * This page will be uncharged in obj_cgroup_release(). |
294 | */ |
295 | nr_bytes = atomic_read(v: &objcg->nr_charged_bytes); |
296 | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); |
297 | nr_pages = nr_bytes >> PAGE_SHIFT; |
298 | |
299 | if (nr_pages) |
300 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
301 | |
302 | spin_lock_irqsave(&objcg_lock, flags); |
303 | list_del(entry: &objcg->list); |
304 | spin_unlock_irqrestore(lock: &objcg_lock, flags); |
305 | |
306 | percpu_ref_exit(ref); |
307 | kfree_rcu(objcg, rcu); |
308 | } |
309 | |
310 | static struct obj_cgroup *obj_cgroup_alloc(void) |
311 | { |
312 | struct obj_cgroup *objcg; |
313 | int ret; |
314 | |
315 | objcg = kzalloc(size: sizeof(struct obj_cgroup), GFP_KERNEL); |
316 | if (!objcg) |
317 | return NULL; |
318 | |
319 | ret = percpu_ref_init(ref: &objcg->refcnt, release: obj_cgroup_release, flags: 0, |
320 | GFP_KERNEL); |
321 | if (ret) { |
322 | kfree(objp: objcg); |
323 | return NULL; |
324 | } |
325 | INIT_LIST_HEAD(list: &objcg->list); |
326 | return objcg; |
327 | } |
328 | |
329 | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, |
330 | struct mem_cgroup *parent) |
331 | { |
332 | struct obj_cgroup *objcg, *iter; |
333 | |
334 | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); |
335 | |
336 | spin_lock_irq(lock: &objcg_lock); |
337 | |
338 | /* 1) Ready to reparent active objcg. */ |
339 | list_add(new: &objcg->list, head: &memcg->objcg_list); |
340 | /* 2) Reparent active objcg and already reparented objcgs to parent. */ |
341 | list_for_each_entry(iter, &memcg->objcg_list, list) |
342 | WRITE_ONCE(iter->memcg, parent); |
343 | /* 3) Move already reparented objcgs to the parent's list */ |
344 | list_splice(list: &memcg->objcg_list, head: &parent->objcg_list); |
345 | |
346 | spin_unlock_irq(lock: &objcg_lock); |
347 | |
348 | percpu_ref_kill(ref: &objcg->refcnt); |
349 | } |
350 | |
351 | /* |
352 | * A lot of the calls to the cache allocation functions are expected to be |
353 | * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are |
354 | * conditional to this static branch, we'll have to allow modules that does |
355 | * kmem_cache_alloc and the such to see this symbol as well |
356 | */ |
357 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); |
358 | EXPORT_SYMBOL(memcg_kmem_online_key); |
359 | |
360 | DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); |
361 | EXPORT_SYMBOL(memcg_bpf_enabled_key); |
362 | #endif |
363 | |
364 | /** |
365 | * mem_cgroup_css_from_folio - css of the memcg associated with a folio |
366 | * @folio: folio of interest |
367 | * |
368 | * If memcg is bound to the default hierarchy, css of the memcg associated |
369 | * with @folio is returned. The returned css remains associated with @folio |
370 | * until it is released. |
371 | * |
372 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup |
373 | * is returned. |
374 | */ |
375 | struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) |
376 | { |
377 | struct mem_cgroup *memcg = folio_memcg(folio); |
378 | |
379 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
380 | memcg = root_mem_cgroup; |
381 | |
382 | return &memcg->css; |
383 | } |
384 | |
385 | /** |
386 | * page_cgroup_ino - return inode number of the memcg a page is charged to |
387 | * @page: the page |
388 | * |
389 | * Look up the closest online ancestor of the memory cgroup @page is charged to |
390 | * and return its inode number or 0 if @page is not charged to any cgroup. It |
391 | * is safe to call this function without holding a reference to @page. |
392 | * |
393 | * Note, this function is inherently racy, because there is nothing to prevent |
394 | * the cgroup inode from getting torn down and potentially reallocated a moment |
395 | * after page_cgroup_ino() returns, so it only should be used by callers that |
396 | * do not care (such as procfs interfaces). |
397 | */ |
398 | ino_t page_cgroup_ino(struct page *page) |
399 | { |
400 | struct mem_cgroup *memcg; |
401 | unsigned long ino = 0; |
402 | |
403 | rcu_read_lock(); |
404 | /* page_folio() is racy here, but the entire function is racy anyway */ |
405 | memcg = folio_memcg_check(page_folio(page)); |
406 | |
407 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) |
408 | memcg = parent_mem_cgroup(memcg); |
409 | if (memcg) |
410 | ino = cgroup_ino(cgrp: memcg->css.cgroup); |
411 | rcu_read_unlock(); |
412 | return ino; |
413 | } |
414 | |
415 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, |
416 | struct mem_cgroup_tree_per_node *mctz, |
417 | unsigned long new_usage_in_excess) |
418 | { |
419 | struct rb_node **p = &mctz->rb_root.rb_node; |
420 | struct rb_node *parent = NULL; |
421 | struct mem_cgroup_per_node *mz_node; |
422 | bool rightmost = true; |
423 | |
424 | if (mz->on_tree) |
425 | return; |
426 | |
427 | mz->usage_in_excess = new_usage_in_excess; |
428 | if (!mz->usage_in_excess) |
429 | return; |
430 | while (*p) { |
431 | parent = *p; |
432 | mz_node = rb_entry(parent, struct mem_cgroup_per_node, |
433 | tree_node); |
434 | if (mz->usage_in_excess < mz_node->usage_in_excess) { |
435 | p = &(*p)->rb_left; |
436 | rightmost = false; |
437 | } else { |
438 | p = &(*p)->rb_right; |
439 | } |
440 | } |
441 | |
442 | if (rightmost) |
443 | mctz->rb_rightmost = &mz->tree_node; |
444 | |
445 | rb_link_node(node: &mz->tree_node, parent, rb_link: p); |
446 | rb_insert_color(&mz->tree_node, &mctz->rb_root); |
447 | mz->on_tree = true; |
448 | } |
449 | |
450 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
451 | struct mem_cgroup_tree_per_node *mctz) |
452 | { |
453 | if (!mz->on_tree) |
454 | return; |
455 | |
456 | if (&mz->tree_node == mctz->rb_rightmost) |
457 | mctz->rb_rightmost = rb_prev(&mz->tree_node); |
458 | |
459 | rb_erase(&mz->tree_node, &mctz->rb_root); |
460 | mz->on_tree = false; |
461 | } |
462 | |
463 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
464 | struct mem_cgroup_tree_per_node *mctz) |
465 | { |
466 | unsigned long flags; |
467 | |
468 | spin_lock_irqsave(&mctz->lock, flags); |
469 | __mem_cgroup_remove_exceeded(mz, mctz); |
470 | spin_unlock_irqrestore(lock: &mctz->lock, flags); |
471 | } |
472 | |
473 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) |
474 | { |
475 | unsigned long nr_pages = page_counter_read(counter: &memcg->memory); |
476 | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); |
477 | unsigned long excess = 0; |
478 | |
479 | if (nr_pages > soft_limit) |
480 | excess = nr_pages - soft_limit; |
481 | |
482 | return excess; |
483 | } |
484 | |
485 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) |
486 | { |
487 | unsigned long excess; |
488 | struct mem_cgroup_per_node *mz; |
489 | struct mem_cgroup_tree_per_node *mctz; |
490 | |
491 | if (lru_gen_enabled()) { |
492 | if (soft_limit_excess(memcg)) |
493 | lru_gen_soft_reclaim(memcg, nid); |
494 | return; |
495 | } |
496 | |
497 | mctz = soft_limit_tree.rb_tree_per_node[nid]; |
498 | if (!mctz) |
499 | return; |
500 | /* |
501 | * Necessary to update all ancestors when hierarchy is used. |
502 | * because their event counter is not touched. |
503 | */ |
504 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
505 | mz = memcg->nodeinfo[nid]; |
506 | excess = soft_limit_excess(memcg); |
507 | /* |
508 | * We have to update the tree if mz is on RB-tree or |
509 | * mem is over its softlimit. |
510 | */ |
511 | if (excess || mz->on_tree) { |
512 | unsigned long flags; |
513 | |
514 | spin_lock_irqsave(&mctz->lock, flags); |
515 | /* if on-tree, remove it */ |
516 | if (mz->on_tree) |
517 | __mem_cgroup_remove_exceeded(mz, mctz); |
518 | /* |
519 | * Insert again. mz->usage_in_excess will be updated. |
520 | * If excess is 0, no tree ops. |
521 | */ |
522 | __mem_cgroup_insert_exceeded(mz, mctz, new_usage_in_excess: excess); |
523 | spin_unlock_irqrestore(lock: &mctz->lock, flags); |
524 | } |
525 | } |
526 | } |
527 | |
528 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
529 | { |
530 | struct mem_cgroup_tree_per_node *mctz; |
531 | struct mem_cgroup_per_node *mz; |
532 | int nid; |
533 | |
534 | for_each_node(nid) { |
535 | mz = memcg->nodeinfo[nid]; |
536 | mctz = soft_limit_tree.rb_tree_per_node[nid]; |
537 | if (mctz) |
538 | mem_cgroup_remove_exceeded(mz, mctz); |
539 | } |
540 | } |
541 | |
542 | static struct mem_cgroup_per_node * |
543 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) |
544 | { |
545 | struct mem_cgroup_per_node *mz; |
546 | |
547 | retry: |
548 | mz = NULL; |
549 | if (!mctz->rb_rightmost) |
550 | goto done; /* Nothing to reclaim from */ |
551 | |
552 | mz = rb_entry(mctz->rb_rightmost, |
553 | struct mem_cgroup_per_node, tree_node); |
554 | /* |
555 | * Remove the node now but someone else can add it back, |
556 | * we will to add it back at the end of reclaim to its correct |
557 | * position in the tree. |
558 | */ |
559 | __mem_cgroup_remove_exceeded(mz, mctz); |
560 | if (!soft_limit_excess(memcg: mz->memcg) || |
561 | !css_tryget(css: &mz->memcg->css)) |
562 | goto retry; |
563 | done: |
564 | return mz; |
565 | } |
566 | |
567 | static struct mem_cgroup_per_node * |
568 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) |
569 | { |
570 | struct mem_cgroup_per_node *mz; |
571 | |
572 | spin_lock_irq(lock: &mctz->lock); |
573 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
574 | spin_unlock_irq(lock: &mctz->lock); |
575 | return mz; |
576 | } |
577 | |
578 | /* Subset of vm_event_item to report for memcg event stats */ |
579 | static const unsigned int memcg_vm_event_stat[] = { |
580 | PGPGIN, |
581 | PGPGOUT, |
582 | PGSCAN_KSWAPD, |
583 | PGSCAN_DIRECT, |
584 | PGSCAN_KHUGEPAGED, |
585 | PGSTEAL_KSWAPD, |
586 | PGSTEAL_DIRECT, |
587 | PGSTEAL_KHUGEPAGED, |
588 | PGFAULT, |
589 | PGMAJFAULT, |
590 | PGREFILL, |
591 | PGACTIVATE, |
592 | PGDEACTIVATE, |
593 | PGLAZYFREE, |
594 | PGLAZYFREED, |
595 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) |
596 | ZSWPIN, |
597 | ZSWPOUT, |
598 | ZSWPWB, |
599 | #endif |
600 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
601 | THP_FAULT_ALLOC, |
602 | THP_COLLAPSE_ALLOC, |
603 | THP_SWPOUT, |
604 | THP_SWPOUT_FALLBACK, |
605 | #endif |
606 | }; |
607 | |
608 | #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) |
609 | static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; |
610 | |
611 | static void init_memcg_events(void) |
612 | { |
613 | int i; |
614 | |
615 | for (i = 0; i < NR_MEMCG_EVENTS; ++i) |
616 | mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; |
617 | } |
618 | |
619 | static inline int memcg_events_index(enum vm_event_item idx) |
620 | { |
621 | return mem_cgroup_events_index[idx] - 1; |
622 | } |
623 | |
624 | struct memcg_vmstats_percpu { |
625 | /* Stats updates since the last flush */ |
626 | unsigned int stats_updates; |
627 | |
628 | /* Cached pointers for fast iteration in memcg_rstat_updated() */ |
629 | struct memcg_vmstats_percpu *parent; |
630 | struct memcg_vmstats *vmstats; |
631 | |
632 | /* The above should fit a single cacheline for memcg_rstat_updated() */ |
633 | |
634 | /* Local (CPU and cgroup) page state & events */ |
635 | long state[MEMCG_NR_STAT]; |
636 | unsigned long events[NR_MEMCG_EVENTS]; |
637 | |
638 | /* Delta calculation for lockless upward propagation */ |
639 | long state_prev[MEMCG_NR_STAT]; |
640 | unsigned long events_prev[NR_MEMCG_EVENTS]; |
641 | |
642 | /* Cgroup1: threshold notifications & softlimit tree updates */ |
643 | unsigned long nr_page_events; |
644 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
645 | } ____cacheline_aligned; |
646 | |
647 | struct memcg_vmstats { |
648 | /* Aggregated (CPU and subtree) page state & events */ |
649 | long state[MEMCG_NR_STAT]; |
650 | unsigned long events[NR_MEMCG_EVENTS]; |
651 | |
652 | /* Non-hierarchical (CPU aggregated) page state & events */ |
653 | long state_local[MEMCG_NR_STAT]; |
654 | unsigned long events_local[NR_MEMCG_EVENTS]; |
655 | |
656 | /* Pending child counts during tree propagation */ |
657 | long state_pending[MEMCG_NR_STAT]; |
658 | unsigned long events_pending[NR_MEMCG_EVENTS]; |
659 | |
660 | /* Stats updates since the last flush */ |
661 | atomic64_t stats_updates; |
662 | }; |
663 | |
664 | /* |
665 | * memcg and lruvec stats flushing |
666 | * |
667 | * Many codepaths leading to stats update or read are performance sensitive and |
668 | * adding stats flushing in such codepaths is not desirable. So, to optimize the |
669 | * flushing the kernel does: |
670 | * |
671 | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let |
672 | * rstat update tree grow unbounded. |
673 | * |
674 | * 2) Flush the stats synchronously on reader side only when there are more than |
675 | * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization |
676 | * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but |
677 | * only for 2 seconds due to (1). |
678 | */ |
679 | static void flush_memcg_stats_dwork(struct work_struct *w); |
680 | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); |
681 | static u64 flush_last_time; |
682 | |
683 | #define FLUSH_TIME (2UL*HZ) |
684 | |
685 | /* |
686 | * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can |
687 | * not rely on this as part of an acquired spinlock_t lock. These functions are |
688 | * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion |
689 | * is sufficient. |
690 | */ |
691 | static void memcg_stats_lock(void) |
692 | { |
693 | preempt_disable_nested(); |
694 | VM_WARN_ON_IRQS_ENABLED(); |
695 | } |
696 | |
697 | static void __memcg_stats_lock(void) |
698 | { |
699 | preempt_disable_nested(); |
700 | } |
701 | |
702 | static void memcg_stats_unlock(void) |
703 | { |
704 | preempt_enable_nested(); |
705 | } |
706 | |
707 | |
708 | static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) |
709 | { |
710 | return atomic64_read(v: &vmstats->stats_updates) > |
711 | MEMCG_CHARGE_BATCH * num_online_cpus(); |
712 | } |
713 | |
714 | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) |
715 | { |
716 | struct memcg_vmstats_percpu *statc; |
717 | int cpu = smp_processor_id(); |
718 | |
719 | if (!val) |
720 | return; |
721 | |
722 | cgroup_rstat_updated(cgrp: memcg->css.cgroup, cpu); |
723 | statc = this_cpu_ptr(memcg->vmstats_percpu); |
724 | for (; statc; statc = statc->parent) { |
725 | statc->stats_updates += abs(val); |
726 | if (statc->stats_updates < MEMCG_CHARGE_BATCH) |
727 | continue; |
728 | |
729 | /* |
730 | * If @memcg is already flush-able, increasing stats_updates is |
731 | * redundant. Avoid the overhead of the atomic update. |
732 | */ |
733 | if (!memcg_vmstats_needs_flush(vmstats: statc->vmstats)) |
734 | atomic64_add(i: statc->stats_updates, |
735 | v: &statc->vmstats->stats_updates); |
736 | statc->stats_updates = 0; |
737 | } |
738 | } |
739 | |
740 | static void do_flush_stats(struct mem_cgroup *memcg) |
741 | { |
742 | if (mem_cgroup_is_root(memcg)) |
743 | WRITE_ONCE(flush_last_time, jiffies_64); |
744 | |
745 | cgroup_rstat_flush(cgrp: memcg->css.cgroup); |
746 | } |
747 | |
748 | /* |
749 | * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree |
750 | * @memcg: root of the subtree to flush |
751 | * |
752 | * Flushing is serialized by the underlying global rstat lock. There is also a |
753 | * minimum amount of work to be done even if there are no stat updates to flush. |
754 | * Hence, we only flush the stats if the updates delta exceeds a threshold. This |
755 | * avoids unnecessary work and contention on the underlying lock. |
756 | */ |
757 | void mem_cgroup_flush_stats(struct mem_cgroup *memcg) |
758 | { |
759 | if (mem_cgroup_disabled()) |
760 | return; |
761 | |
762 | if (!memcg) |
763 | memcg = root_mem_cgroup; |
764 | |
765 | if (memcg_vmstats_needs_flush(vmstats: memcg->vmstats)) |
766 | do_flush_stats(memcg); |
767 | } |
768 | |
769 | void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) |
770 | { |
771 | /* Only flush if the periodic flusher is one full cycle late */ |
772 | if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) |
773 | mem_cgroup_flush_stats(memcg); |
774 | } |
775 | |
776 | static void flush_memcg_stats_dwork(struct work_struct *w) |
777 | { |
778 | /* |
779 | * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing |
780 | * in latency-sensitive paths is as cheap as possible. |
781 | */ |
782 | do_flush_stats(memcg: root_mem_cgroup); |
783 | queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork, FLUSH_TIME); |
784 | } |
785 | |
786 | unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) |
787 | { |
788 | long x = READ_ONCE(memcg->vmstats->state[idx]); |
789 | #ifdef CONFIG_SMP |
790 | if (x < 0) |
791 | x = 0; |
792 | #endif |
793 | return x; |
794 | } |
795 | |
796 | static int memcg_page_state_unit(int item); |
797 | |
798 | /* |
799 | * Normalize the value passed into memcg_rstat_updated() to be in pages. Round |
800 | * up non-zero sub-page updates to 1 page as zero page updates are ignored. |
801 | */ |
802 | static int memcg_state_val_in_pages(int idx, int val) |
803 | { |
804 | int unit = memcg_page_state_unit(item: idx); |
805 | |
806 | if (!val || unit == PAGE_SIZE) |
807 | return val; |
808 | else |
809 | return max(val * unit / PAGE_SIZE, 1UL); |
810 | } |
811 | |
812 | /** |
813 | * __mod_memcg_state - update cgroup memory statistics |
814 | * @memcg: the memory cgroup |
815 | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item |
816 | * @val: delta to add to the counter, can be negative |
817 | */ |
818 | void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) |
819 | { |
820 | if (mem_cgroup_disabled()) |
821 | return; |
822 | |
823 | __this_cpu_add(memcg->vmstats_percpu->state[idx], val); |
824 | memcg_rstat_updated(memcg, val: memcg_state_val_in_pages(idx, val)); |
825 | } |
826 | |
827 | /* idx can be of type enum memcg_stat_item or node_stat_item. */ |
828 | static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) |
829 | { |
830 | long x = READ_ONCE(memcg->vmstats->state_local[idx]); |
831 | |
832 | #ifdef CONFIG_SMP |
833 | if (x < 0) |
834 | x = 0; |
835 | #endif |
836 | return x; |
837 | } |
838 | |
839 | void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, |
840 | int val) |
841 | { |
842 | struct mem_cgroup_per_node *pn; |
843 | struct mem_cgroup *memcg; |
844 | |
845 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
846 | memcg = pn->memcg; |
847 | |
848 | /* |
849 | * The caller from rmap relies on disabled preemption because they never |
850 | * update their counter from in-interrupt context. For these two |
851 | * counters we check that the update is never performed from an |
852 | * interrupt context while other caller need to have disabled interrupt. |
853 | */ |
854 | __memcg_stats_lock(); |
855 | if (IS_ENABLED(CONFIG_DEBUG_VM)) { |
856 | switch (idx) { |
857 | case NR_ANON_MAPPED: |
858 | case NR_FILE_MAPPED: |
859 | case NR_ANON_THPS: |
860 | case NR_SHMEM_PMDMAPPED: |
861 | case NR_FILE_PMDMAPPED: |
862 | WARN_ON_ONCE(!in_task()); |
863 | break; |
864 | default: |
865 | VM_WARN_ON_IRQS_ENABLED(); |
866 | } |
867 | } |
868 | |
869 | /* Update memcg */ |
870 | __this_cpu_add(memcg->vmstats_percpu->state[idx], val); |
871 | |
872 | /* Update lruvec */ |
873 | __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); |
874 | |
875 | memcg_rstat_updated(memcg, val: memcg_state_val_in_pages(idx, val)); |
876 | memcg_stats_unlock(); |
877 | } |
878 | |
879 | /** |
880 | * __mod_lruvec_state - update lruvec memory statistics |
881 | * @lruvec: the lruvec |
882 | * @idx: the stat item |
883 | * @val: delta to add to the counter, can be negative |
884 | * |
885 | * The lruvec is the intersection of the NUMA node and a cgroup. This |
886 | * function updates the all three counters that are affected by a |
887 | * change of state at this level: per-node, per-cgroup, per-lruvec. |
888 | */ |
889 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, |
890 | int val) |
891 | { |
892 | /* Update node */ |
893 | __mod_node_page_state(lruvec_pgdat(lruvec), item: idx, val); |
894 | |
895 | /* Update memcg and lruvec */ |
896 | if (!mem_cgroup_disabled()) |
897 | __mod_memcg_lruvec_state(lruvec, idx, val); |
898 | } |
899 | |
900 | void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, |
901 | int val) |
902 | { |
903 | struct mem_cgroup *memcg; |
904 | pg_data_t *pgdat = folio_pgdat(folio); |
905 | struct lruvec *lruvec; |
906 | |
907 | rcu_read_lock(); |
908 | memcg = folio_memcg(folio); |
909 | /* Untracked pages have no memcg, no lruvec. Update only the node */ |
910 | if (!memcg) { |
911 | rcu_read_unlock(); |
912 | __mod_node_page_state(pgdat, item: idx, val); |
913 | return; |
914 | } |
915 | |
916 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
917 | __mod_lruvec_state(lruvec, idx, val); |
918 | rcu_read_unlock(); |
919 | } |
920 | EXPORT_SYMBOL(__lruvec_stat_mod_folio); |
921 | |
922 | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) |
923 | { |
924 | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); |
925 | struct mem_cgroup *memcg; |
926 | struct lruvec *lruvec; |
927 | |
928 | rcu_read_lock(); |
929 | memcg = mem_cgroup_from_slab_obj(p); |
930 | |
931 | /* |
932 | * Untracked pages have no memcg, no lruvec. Update only the |
933 | * node. If we reparent the slab objects to the root memcg, |
934 | * when we free the slab object, we need to update the per-memcg |
935 | * vmstats to keep it correct for the root memcg. |
936 | */ |
937 | if (!memcg) { |
938 | __mod_node_page_state(pgdat, item: idx, val); |
939 | } else { |
940 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
941 | __mod_lruvec_state(lruvec, idx, val); |
942 | } |
943 | rcu_read_unlock(); |
944 | } |
945 | |
946 | /** |
947 | * __count_memcg_events - account VM events in a cgroup |
948 | * @memcg: the memory cgroup |
949 | * @idx: the event item |
950 | * @count: the number of events that occurred |
951 | */ |
952 | void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, |
953 | unsigned long count) |
954 | { |
955 | int index = memcg_events_index(idx); |
956 | |
957 | if (mem_cgroup_disabled() || index < 0) |
958 | return; |
959 | |
960 | memcg_stats_lock(); |
961 | __this_cpu_add(memcg->vmstats_percpu->events[index], count); |
962 | memcg_rstat_updated(memcg, val: count); |
963 | memcg_stats_unlock(); |
964 | } |
965 | |
966 | static unsigned long memcg_events(struct mem_cgroup *memcg, int event) |
967 | { |
968 | int index = memcg_events_index(idx: event); |
969 | |
970 | if (index < 0) |
971 | return 0; |
972 | return READ_ONCE(memcg->vmstats->events[index]); |
973 | } |
974 | |
975 | static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) |
976 | { |
977 | int index = memcg_events_index(idx: event); |
978 | |
979 | if (index < 0) |
980 | return 0; |
981 | |
982 | return READ_ONCE(memcg->vmstats->events_local[index]); |
983 | } |
984 | |
985 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
986 | int nr_pages) |
987 | { |
988 | /* pagein of a big page is an event. So, ignore page size */ |
989 | if (nr_pages > 0) |
990 | __count_memcg_events(memcg, idx: PGPGIN, count: 1); |
991 | else { |
992 | __count_memcg_events(memcg, idx: PGPGOUT, count: 1); |
993 | nr_pages = -nr_pages; /* for event */ |
994 | } |
995 | |
996 | __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); |
997 | } |
998 | |
999 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
1000 | enum mem_cgroup_events_target target) |
1001 | { |
1002 | unsigned long val, next; |
1003 | |
1004 | val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); |
1005 | next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); |
1006 | /* from time_after() in jiffies.h */ |
1007 | if ((long)(next - val) < 0) { |
1008 | switch (target) { |
1009 | case MEM_CGROUP_TARGET_THRESH: |
1010 | next = val + THRESHOLDS_EVENTS_TARGET; |
1011 | break; |
1012 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
1013 | next = val + SOFTLIMIT_EVENTS_TARGET; |
1014 | break; |
1015 | default: |
1016 | break; |
1017 | } |
1018 | __this_cpu_write(memcg->vmstats_percpu->targets[target], next); |
1019 | return true; |
1020 | } |
1021 | return false; |
1022 | } |
1023 | |
1024 | /* |
1025 | * Check events in order. |
1026 | * |
1027 | */ |
1028 | static void memcg_check_events(struct mem_cgroup *memcg, int nid) |
1029 | { |
1030 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
1031 | return; |
1032 | |
1033 | /* threshold event is triggered in finer grain than soft limit */ |
1034 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
1035 | MEM_CGROUP_TARGET_THRESH))) { |
1036 | bool do_softlimit; |
1037 | |
1038 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
1039 | target: MEM_CGROUP_TARGET_SOFTLIMIT); |
1040 | mem_cgroup_threshold(memcg); |
1041 | if (unlikely(do_softlimit)) |
1042 | mem_cgroup_update_tree(memcg, nid); |
1043 | } |
1044 | } |
1045 | |
1046 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
1047 | { |
1048 | /* |
1049 | * mm_update_next_owner() may clear mm->owner to NULL |
1050 | * if it races with swapoff, page migration, etc. |
1051 | * So this can be called with p == NULL. |
1052 | */ |
1053 | if (unlikely(!p)) |
1054 | return NULL; |
1055 | |
1056 | return mem_cgroup_from_css(css: task_css(task: p, subsys_id: memory_cgrp_id)); |
1057 | } |
1058 | EXPORT_SYMBOL(mem_cgroup_from_task); |
1059 | |
1060 | static __always_inline struct mem_cgroup *active_memcg(void) |
1061 | { |
1062 | if (!in_task()) |
1063 | return this_cpu_read(int_active_memcg); |
1064 | else |
1065 | return current->active_memcg; |
1066 | } |
1067 | |
1068 | /** |
1069 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. |
1070 | * @mm: mm from which memcg should be extracted. It can be NULL. |
1071 | * |
1072 | * Obtain a reference on mm->memcg and returns it if successful. If mm |
1073 | * is NULL, then the memcg is chosen as follows: |
1074 | * 1) The active memcg, if set. |
1075 | * 2) current->mm->memcg, if available |
1076 | * 3) root memcg |
1077 | * If mem_cgroup is disabled, NULL is returned. |
1078 | */ |
1079 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
1080 | { |
1081 | struct mem_cgroup *memcg; |
1082 | |
1083 | if (mem_cgroup_disabled()) |
1084 | return NULL; |
1085 | |
1086 | /* |
1087 | * Page cache insertions can happen without an |
1088 | * actual mm context, e.g. during disk probing |
1089 | * on boot, loopback IO, acct() writes etc. |
1090 | * |
1091 | * No need to css_get on root memcg as the reference |
1092 | * counting is disabled on the root level in the |
1093 | * cgroup core. See CSS_NO_REF. |
1094 | */ |
1095 | if (unlikely(!mm)) { |
1096 | memcg = active_memcg(); |
1097 | if (unlikely(memcg)) { |
1098 | /* remote memcg must hold a ref */ |
1099 | css_get(css: &memcg->css); |
1100 | return memcg; |
1101 | } |
1102 | mm = current->mm; |
1103 | if (unlikely(!mm)) |
1104 | return root_mem_cgroup; |
1105 | } |
1106 | |
1107 | rcu_read_lock(); |
1108 | do { |
1109 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1110 | if (unlikely(!memcg)) |
1111 | memcg = root_mem_cgroup; |
1112 | } while (!css_tryget(css: &memcg->css)); |
1113 | rcu_read_unlock(); |
1114 | return memcg; |
1115 | } |
1116 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); |
1117 | |
1118 | /** |
1119 | * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. |
1120 | */ |
1121 | struct mem_cgroup *get_mem_cgroup_from_current(void) |
1122 | { |
1123 | struct mem_cgroup *memcg; |
1124 | |
1125 | if (mem_cgroup_disabled()) |
1126 | return NULL; |
1127 | |
1128 | again: |
1129 | rcu_read_lock(); |
1130 | memcg = mem_cgroup_from_task(current); |
1131 | if (!css_tryget(css: &memcg->css)) { |
1132 | rcu_read_unlock(); |
1133 | goto again; |
1134 | } |
1135 | rcu_read_unlock(); |
1136 | return memcg; |
1137 | } |
1138 | |
1139 | /** |
1140 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
1141 | * @root: hierarchy root |
1142 | * @prev: previously returned memcg, NULL on first invocation |
1143 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
1144 | * |
1145 | * Returns references to children of the hierarchy below @root, or |
1146 | * @root itself, or %NULL after a full round-trip. |
1147 | * |
1148 | * Caller must pass the return value in @prev on subsequent |
1149 | * invocations for reference counting, or use mem_cgroup_iter_break() |
1150 | * to cancel a hierarchy walk before the round-trip is complete. |
1151 | * |
1152 | * Reclaimers can specify a node in @reclaim to divide up the memcgs |
1153 | * in the hierarchy among all concurrent reclaimers operating on the |
1154 | * same node. |
1155 | */ |
1156 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
1157 | struct mem_cgroup *prev, |
1158 | struct mem_cgroup_reclaim_cookie *reclaim) |
1159 | { |
1160 | struct mem_cgroup_reclaim_iter *iter; |
1161 | struct cgroup_subsys_state *css = NULL; |
1162 | struct mem_cgroup *memcg = NULL; |
1163 | struct mem_cgroup *pos = NULL; |
1164 | |
1165 | if (mem_cgroup_disabled()) |
1166 | return NULL; |
1167 | |
1168 | if (!root) |
1169 | root = root_mem_cgroup; |
1170 | |
1171 | rcu_read_lock(); |
1172 | |
1173 | if (reclaim) { |
1174 | struct mem_cgroup_per_node *mz; |
1175 | |
1176 | mz = root->nodeinfo[reclaim->pgdat->node_id]; |
1177 | iter = &mz->iter; |
1178 | |
1179 | /* |
1180 | * On start, join the current reclaim iteration cycle. |
1181 | * Exit when a concurrent walker completes it. |
1182 | */ |
1183 | if (!prev) |
1184 | reclaim->generation = iter->generation; |
1185 | else if (reclaim->generation != iter->generation) |
1186 | goto out_unlock; |
1187 | |
1188 | while (1) { |
1189 | pos = READ_ONCE(iter->position); |
1190 | if (!pos || css_tryget(css: &pos->css)) |
1191 | break; |
1192 | /* |
1193 | * css reference reached zero, so iter->position will |
1194 | * be cleared by ->css_released. However, we should not |
1195 | * rely on this happening soon, because ->css_released |
1196 | * is called from a work queue, and by busy-waiting we |
1197 | * might block it. So we clear iter->position right |
1198 | * away. |
1199 | */ |
1200 | (void)cmpxchg(&iter->position, pos, NULL); |
1201 | } |
1202 | } else if (prev) { |
1203 | pos = prev; |
1204 | } |
1205 | |
1206 | if (pos) |
1207 | css = &pos->css; |
1208 | |
1209 | for (;;) { |
1210 | css = css_next_descendant_pre(pos: css, css: &root->css); |
1211 | if (!css) { |
1212 | /* |
1213 | * Reclaimers share the hierarchy walk, and a |
1214 | * new one might jump in right at the end of |
1215 | * the hierarchy - make sure they see at least |
1216 | * one group and restart from the beginning. |
1217 | */ |
1218 | if (!prev) |
1219 | continue; |
1220 | break; |
1221 | } |
1222 | |
1223 | /* |
1224 | * Verify the css and acquire a reference. The root |
1225 | * is provided by the caller, so we know it's alive |
1226 | * and kicking, and don't take an extra reference. |
1227 | */ |
1228 | if (css == &root->css || css_tryget(css)) { |
1229 | memcg = mem_cgroup_from_css(css); |
1230 | break; |
1231 | } |
1232 | } |
1233 | |
1234 | if (reclaim) { |
1235 | /* |
1236 | * The position could have already been updated by a competing |
1237 | * thread, so check that the value hasn't changed since we read |
1238 | * it to avoid reclaiming from the same cgroup twice. |
1239 | */ |
1240 | (void)cmpxchg(&iter->position, pos, memcg); |
1241 | |
1242 | if (pos) |
1243 | css_put(css: &pos->css); |
1244 | |
1245 | if (!memcg) |
1246 | iter->generation++; |
1247 | } |
1248 | |
1249 | out_unlock: |
1250 | rcu_read_unlock(); |
1251 | if (prev && prev != root) |
1252 | css_put(css: &prev->css); |
1253 | |
1254 | return memcg; |
1255 | } |
1256 | |
1257 | /** |
1258 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
1259 | * @root: hierarchy root |
1260 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
1261 | */ |
1262 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
1263 | struct mem_cgroup *prev) |
1264 | { |
1265 | if (!root) |
1266 | root = root_mem_cgroup; |
1267 | if (prev && prev != root) |
1268 | css_put(css: &prev->css); |
1269 | } |
1270 | |
1271 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, |
1272 | struct mem_cgroup *dead_memcg) |
1273 | { |
1274 | struct mem_cgroup_reclaim_iter *iter; |
1275 | struct mem_cgroup_per_node *mz; |
1276 | int nid; |
1277 | |
1278 | for_each_node(nid) { |
1279 | mz = from->nodeinfo[nid]; |
1280 | iter = &mz->iter; |
1281 | cmpxchg(&iter->position, dead_memcg, NULL); |
1282 | } |
1283 | } |
1284 | |
1285 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) |
1286 | { |
1287 | struct mem_cgroup *memcg = dead_memcg; |
1288 | struct mem_cgroup *last; |
1289 | |
1290 | do { |
1291 | __invalidate_reclaim_iterators(from: memcg, dead_memcg); |
1292 | last = memcg; |
1293 | } while ((memcg = parent_mem_cgroup(memcg))); |
1294 | |
1295 | /* |
1296 | * When cgroup1 non-hierarchy mode is used, |
1297 | * parent_mem_cgroup() does not walk all the way up to the |
1298 | * cgroup root (root_mem_cgroup). So we have to handle |
1299 | * dead_memcg from cgroup root separately. |
1300 | */ |
1301 | if (!mem_cgroup_is_root(memcg: last)) |
1302 | __invalidate_reclaim_iterators(from: root_mem_cgroup, |
1303 | dead_memcg); |
1304 | } |
1305 | |
1306 | /** |
1307 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy |
1308 | * @memcg: hierarchy root |
1309 | * @fn: function to call for each task |
1310 | * @arg: argument passed to @fn |
1311 | * |
1312 | * This function iterates over tasks attached to @memcg or to any of its |
1313 | * descendants and calls @fn for each task. If @fn returns a non-zero |
1314 | * value, the function breaks the iteration loop. Otherwise, it will iterate |
1315 | * over all tasks and return 0. |
1316 | * |
1317 | * This function must not be called for the root memory cgroup. |
1318 | */ |
1319 | void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, |
1320 | int (*fn)(struct task_struct *, void *), void *arg) |
1321 | { |
1322 | struct mem_cgroup *iter; |
1323 | int ret = 0; |
1324 | |
1325 | BUG_ON(mem_cgroup_is_root(memcg)); |
1326 | |
1327 | for_each_mem_cgroup_tree(iter, memcg) { |
1328 | struct css_task_iter it; |
1329 | struct task_struct *task; |
1330 | |
1331 | css_task_iter_start(css: &iter->css, flags: CSS_TASK_ITER_PROCS, it: &it); |
1332 | while (!ret && (task = css_task_iter_next(it: &it))) |
1333 | ret = fn(task, arg); |
1334 | css_task_iter_end(it: &it); |
1335 | if (ret) { |
1336 | mem_cgroup_iter_break(root: memcg, prev: iter); |
1337 | break; |
1338 | } |
1339 | } |
1340 | } |
1341 | |
1342 | #ifdef CONFIG_DEBUG_VM |
1343 | void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) |
1344 | { |
1345 | struct mem_cgroup *memcg; |
1346 | |
1347 | if (mem_cgroup_disabled()) |
1348 | return; |
1349 | |
1350 | memcg = folio_memcg(folio); |
1351 | |
1352 | if (!memcg) |
1353 | VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); |
1354 | else |
1355 | VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); |
1356 | } |
1357 | #endif |
1358 | |
1359 | /** |
1360 | * folio_lruvec_lock - Lock the lruvec for a folio. |
1361 | * @folio: Pointer to the folio. |
1362 | * |
1363 | * These functions are safe to use under any of the following conditions: |
1364 | * - folio locked |
1365 | * - folio_test_lru false |
1366 | * - folio_memcg_lock() |
1367 | * - folio frozen (refcount of 0) |
1368 | * |
1369 | * Return: The lruvec this folio is on with its lock held. |
1370 | */ |
1371 | struct lruvec *folio_lruvec_lock(struct folio *folio) |
1372 | { |
1373 | struct lruvec *lruvec = folio_lruvec(folio); |
1374 | |
1375 | spin_lock(lock: &lruvec->lru_lock); |
1376 | lruvec_memcg_debug(lruvec, folio); |
1377 | |
1378 | return lruvec; |
1379 | } |
1380 | |
1381 | /** |
1382 | * folio_lruvec_lock_irq - Lock the lruvec for a folio. |
1383 | * @folio: Pointer to the folio. |
1384 | * |
1385 | * These functions are safe to use under any of the following conditions: |
1386 | * - folio locked |
1387 | * - folio_test_lru false |
1388 | * - folio_memcg_lock() |
1389 | * - folio frozen (refcount of 0) |
1390 | * |
1391 | * Return: The lruvec this folio is on with its lock held and interrupts |
1392 | * disabled. |
1393 | */ |
1394 | struct lruvec *folio_lruvec_lock_irq(struct folio *folio) |
1395 | { |
1396 | struct lruvec *lruvec = folio_lruvec(folio); |
1397 | |
1398 | spin_lock_irq(lock: &lruvec->lru_lock); |
1399 | lruvec_memcg_debug(lruvec, folio); |
1400 | |
1401 | return lruvec; |
1402 | } |
1403 | |
1404 | /** |
1405 | * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. |
1406 | * @folio: Pointer to the folio. |
1407 | * @flags: Pointer to irqsave flags. |
1408 | * |
1409 | * These functions are safe to use under any of the following conditions: |
1410 | * - folio locked |
1411 | * - folio_test_lru false |
1412 | * - folio_memcg_lock() |
1413 | * - folio frozen (refcount of 0) |
1414 | * |
1415 | * Return: The lruvec this folio is on with its lock held and interrupts |
1416 | * disabled. |
1417 | */ |
1418 | struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, |
1419 | unsigned long *flags) |
1420 | { |
1421 | struct lruvec *lruvec = folio_lruvec(folio); |
1422 | |
1423 | spin_lock_irqsave(&lruvec->lru_lock, *flags); |
1424 | lruvec_memcg_debug(lruvec, folio); |
1425 | |
1426 | return lruvec; |
1427 | } |
1428 | |
1429 | /** |
1430 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1431 | * @lruvec: mem_cgroup per zone lru vector |
1432 | * @lru: index of lru list the page is sitting on |
1433 | * @zid: zone id of the accounted pages |
1434 | * @nr_pages: positive when adding or negative when removing |
1435 | * |
1436 | * This function must be called under lru_lock, just before a page is added |
1437 | * to or just after a page is removed from an lru list. |
1438 | */ |
1439 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1440 | int zid, int nr_pages) |
1441 | { |
1442 | struct mem_cgroup_per_node *mz; |
1443 | unsigned long *lru_size; |
1444 | long size; |
1445 | |
1446 | if (mem_cgroup_disabled()) |
1447 | return; |
1448 | |
1449 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
1450 | lru_size = &mz->lru_zone_size[zid][lru]; |
1451 | |
1452 | if (nr_pages < 0) |
1453 | *lru_size += nr_pages; |
1454 | |
1455 | size = *lru_size; |
1456 | if (WARN_ONCE(size < 0, |
1457 | "%s(%p, %d, %d): lru_size %ld\n" , |
1458 | __func__, lruvec, lru, nr_pages, size)) { |
1459 | VM_BUG_ON(1); |
1460 | *lru_size = 0; |
1461 | } |
1462 | |
1463 | if (nr_pages > 0) |
1464 | *lru_size += nr_pages; |
1465 | } |
1466 | |
1467 | /** |
1468 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1469 | * @memcg: the memory cgroup |
1470 | * |
1471 | * Returns the maximum amount of memory @mem can be charged with, in |
1472 | * pages. |
1473 | */ |
1474 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
1475 | { |
1476 | unsigned long margin = 0; |
1477 | unsigned long count; |
1478 | unsigned long limit; |
1479 | |
1480 | count = page_counter_read(counter: &memcg->memory); |
1481 | limit = READ_ONCE(memcg->memory.max); |
1482 | if (count < limit) |
1483 | margin = limit - count; |
1484 | |
1485 | if (do_memsw_account()) { |
1486 | count = page_counter_read(counter: &memcg->memsw); |
1487 | limit = READ_ONCE(memcg->memsw.max); |
1488 | if (count < limit) |
1489 | margin = min(margin, limit - count); |
1490 | else |
1491 | margin = 0; |
1492 | } |
1493 | |
1494 | return margin; |
1495 | } |
1496 | |
1497 | /* |
1498 | * A routine for checking "mem" is under move_account() or not. |
1499 | * |
1500 | * Checking a cgroup is mc.from or mc.to or under hierarchy of |
1501 | * moving cgroups. This is for waiting at high-memory pressure |
1502 | * caused by "move". |
1503 | */ |
1504 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
1505 | { |
1506 | struct mem_cgroup *from; |
1507 | struct mem_cgroup *to; |
1508 | bool ret = false; |
1509 | /* |
1510 | * Unlike task_move routines, we access mc.to, mc.from not under |
1511 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. |
1512 | */ |
1513 | spin_lock(lock: &mc.lock); |
1514 | from = mc.from; |
1515 | to = mc.to; |
1516 | if (!from) |
1517 | goto unlock; |
1518 | |
1519 | ret = mem_cgroup_is_descendant(memcg: from, root: memcg) || |
1520 | mem_cgroup_is_descendant(memcg: to, root: memcg); |
1521 | unlock: |
1522 | spin_unlock(lock: &mc.lock); |
1523 | return ret; |
1524 | } |
1525 | |
1526 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
1527 | { |
1528 | if (mc.moving_task && current != mc.moving_task) { |
1529 | if (mem_cgroup_under_move(memcg)) { |
1530 | DEFINE_WAIT(wait); |
1531 | prepare_to_wait(wq_head: &mc.waitq, wq_entry: &wait, TASK_INTERRUPTIBLE); |
1532 | /* moving charge context might have finished. */ |
1533 | if (mc.moving_task) |
1534 | schedule(); |
1535 | finish_wait(wq_head: &mc.waitq, wq_entry: &wait); |
1536 | return true; |
1537 | } |
1538 | } |
1539 | return false; |
1540 | } |
1541 | |
1542 | struct memory_stat { |
1543 | const char *name; |
1544 | unsigned int idx; |
1545 | }; |
1546 | |
1547 | static const struct memory_stat memory_stats[] = { |
1548 | { "anon" , NR_ANON_MAPPED }, |
1549 | { "file" , NR_FILE_PAGES }, |
1550 | { "kernel" , MEMCG_KMEM }, |
1551 | { "kernel_stack" , NR_KERNEL_STACK_KB }, |
1552 | { "pagetables" , NR_PAGETABLE }, |
1553 | { "sec_pagetables" , NR_SECONDARY_PAGETABLE }, |
1554 | { "percpu" , MEMCG_PERCPU_B }, |
1555 | { "sock" , MEMCG_SOCK }, |
1556 | { "vmalloc" , MEMCG_VMALLOC }, |
1557 | { "shmem" , NR_SHMEM }, |
1558 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) |
1559 | { "zswap" , MEMCG_ZSWAP_B }, |
1560 | { "zswapped" , MEMCG_ZSWAPPED }, |
1561 | #endif |
1562 | { "file_mapped" , NR_FILE_MAPPED }, |
1563 | { "file_dirty" , NR_FILE_DIRTY }, |
1564 | { "file_writeback" , NR_WRITEBACK }, |
1565 | #ifdef CONFIG_SWAP |
1566 | { "swapcached" , NR_SWAPCACHE }, |
1567 | #endif |
1568 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1569 | { "anon_thp" , NR_ANON_THPS }, |
1570 | { "file_thp" , NR_FILE_THPS }, |
1571 | { "shmem_thp" , NR_SHMEM_THPS }, |
1572 | #endif |
1573 | { "inactive_anon" , NR_INACTIVE_ANON }, |
1574 | { "active_anon" , NR_ACTIVE_ANON }, |
1575 | { "inactive_file" , NR_INACTIVE_FILE }, |
1576 | { "active_file" , NR_ACTIVE_FILE }, |
1577 | { "unevictable" , NR_UNEVICTABLE }, |
1578 | { "slab_reclaimable" , NR_SLAB_RECLAIMABLE_B }, |
1579 | { "slab_unreclaimable" , NR_SLAB_UNRECLAIMABLE_B }, |
1580 | |
1581 | /* The memory events */ |
1582 | { "workingset_refault_anon" , WORKINGSET_REFAULT_ANON }, |
1583 | { "workingset_refault_file" , WORKINGSET_REFAULT_FILE }, |
1584 | { "workingset_activate_anon" , WORKINGSET_ACTIVATE_ANON }, |
1585 | { "workingset_activate_file" , WORKINGSET_ACTIVATE_FILE }, |
1586 | { "workingset_restore_anon" , WORKINGSET_RESTORE_ANON }, |
1587 | { "workingset_restore_file" , WORKINGSET_RESTORE_FILE }, |
1588 | { "workingset_nodereclaim" , WORKINGSET_NODERECLAIM }, |
1589 | }; |
1590 | |
1591 | /* The actual unit of the state item, not the same as the output unit */ |
1592 | static int memcg_page_state_unit(int item) |
1593 | { |
1594 | switch (item) { |
1595 | case MEMCG_PERCPU_B: |
1596 | case MEMCG_ZSWAP_B: |
1597 | case NR_SLAB_RECLAIMABLE_B: |
1598 | case NR_SLAB_UNRECLAIMABLE_B: |
1599 | return 1; |
1600 | case NR_KERNEL_STACK_KB: |
1601 | return SZ_1K; |
1602 | default: |
1603 | return PAGE_SIZE; |
1604 | } |
1605 | } |
1606 | |
1607 | /* Translate stat items to the correct unit for memory.stat output */ |
1608 | static int memcg_page_state_output_unit(int item) |
1609 | { |
1610 | /* |
1611 | * Workingset state is actually in pages, but we export it to userspace |
1612 | * as a scalar count of events, so special case it here. |
1613 | */ |
1614 | switch (item) { |
1615 | case WORKINGSET_REFAULT_ANON: |
1616 | case WORKINGSET_REFAULT_FILE: |
1617 | case WORKINGSET_ACTIVATE_ANON: |
1618 | case WORKINGSET_ACTIVATE_FILE: |
1619 | case WORKINGSET_RESTORE_ANON: |
1620 | case WORKINGSET_RESTORE_FILE: |
1621 | case WORKINGSET_NODERECLAIM: |
1622 | return 1; |
1623 | default: |
1624 | return memcg_page_state_unit(item); |
1625 | } |
1626 | } |
1627 | |
1628 | static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, |
1629 | int item) |
1630 | { |
1631 | return memcg_page_state(memcg, idx: item) * |
1632 | memcg_page_state_output_unit(item); |
1633 | } |
1634 | |
1635 | static inline unsigned long memcg_page_state_local_output( |
1636 | struct mem_cgroup *memcg, int item) |
1637 | { |
1638 | return memcg_page_state_local(memcg, idx: item) * |
1639 | memcg_page_state_output_unit(item); |
1640 | } |
1641 | |
1642 | static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
1643 | { |
1644 | int i; |
1645 | |
1646 | /* |
1647 | * Provide statistics on the state of the memory subsystem as |
1648 | * well as cumulative event counters that show past behavior. |
1649 | * |
1650 | * This list is ordered following a combination of these gradients: |
1651 | * 1) generic big picture -> specifics and details |
1652 | * 2) reflecting userspace activity -> reflecting kernel heuristics |
1653 | * |
1654 | * Current memory state: |
1655 | */ |
1656 | mem_cgroup_flush_stats(memcg); |
1657 | |
1658 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
1659 | u64 size; |
1660 | |
1661 | size = memcg_page_state_output(memcg, item: memory_stats[i].idx); |
1662 | seq_buf_printf(s, fmt: "%s %llu\n" , memory_stats[i].name, size); |
1663 | |
1664 | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { |
1665 | size += memcg_page_state_output(memcg, |
1666 | item: NR_SLAB_RECLAIMABLE_B); |
1667 | seq_buf_printf(s, fmt: "slab %llu\n" , size); |
1668 | } |
1669 | } |
1670 | |
1671 | /* Accumulated memory events */ |
1672 | seq_buf_printf(s, fmt: "pgscan %lu\n" , |
1673 | memcg_events(memcg, event: PGSCAN_KSWAPD) + |
1674 | memcg_events(memcg, event: PGSCAN_DIRECT) + |
1675 | memcg_events(memcg, event: PGSCAN_KHUGEPAGED)); |
1676 | seq_buf_printf(s, fmt: "pgsteal %lu\n" , |
1677 | memcg_events(memcg, event: PGSTEAL_KSWAPD) + |
1678 | memcg_events(memcg, event: PGSTEAL_DIRECT) + |
1679 | memcg_events(memcg, event: PGSTEAL_KHUGEPAGED)); |
1680 | |
1681 | for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { |
1682 | if (memcg_vm_event_stat[i] == PGPGIN || |
1683 | memcg_vm_event_stat[i] == PGPGOUT) |
1684 | continue; |
1685 | |
1686 | seq_buf_printf(s, fmt: "%s %lu\n" , |
1687 | vm_event_name(item: memcg_vm_event_stat[i]), |
1688 | memcg_events(memcg, event: memcg_vm_event_stat[i])); |
1689 | } |
1690 | |
1691 | /* The above should easily fit into one page */ |
1692 | WARN_ON_ONCE(seq_buf_has_overflowed(s)); |
1693 | } |
1694 | |
1695 | static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); |
1696 | |
1697 | static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
1698 | { |
1699 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1700 | memcg_stat_format(memcg, s); |
1701 | else |
1702 | memcg1_stat_format(memcg, s); |
1703 | WARN_ON_ONCE(seq_buf_has_overflowed(s)); |
1704 | } |
1705 | |
1706 | /** |
1707 | * mem_cgroup_print_oom_context: Print OOM information relevant to |
1708 | * memory controller. |
1709 | * @memcg: The memory cgroup that went over limit |
1710 | * @p: Task that is going to be killed |
1711 | * |
1712 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
1713 | * enabled |
1714 | */ |
1715 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) |
1716 | { |
1717 | rcu_read_lock(); |
1718 | |
1719 | if (memcg) { |
1720 | pr_cont(",oom_memcg=" ); |
1721 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
1722 | } else |
1723 | pr_cont(",global_oom" ); |
1724 | if (p) { |
1725 | pr_cont(",task_memcg=" ); |
1726 | pr_cont_cgroup_path(cgrp: task_cgroup(task: p, subsys_id: memory_cgrp_id)); |
1727 | } |
1728 | rcu_read_unlock(); |
1729 | } |
1730 | |
1731 | /** |
1732 | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to |
1733 | * memory controller. |
1734 | * @memcg: The memory cgroup that went over limit |
1735 | */ |
1736 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) |
1737 | { |
1738 | /* Use static buffer, for the caller is holding oom_lock. */ |
1739 | static char buf[PAGE_SIZE]; |
1740 | struct seq_buf s; |
1741 | |
1742 | lockdep_assert_held(&oom_lock); |
1743 | |
1744 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n" , |
1745 | K((u64)page_counter_read(&memcg->memory)), |
1746 | K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); |
1747 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1748 | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n" , |
1749 | K((u64)page_counter_read(&memcg->swap)), |
1750 | K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); |
1751 | else { |
1752 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n" , |
1753 | K((u64)page_counter_read(&memcg->memsw)), |
1754 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); |
1755 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n" , |
1756 | K((u64)page_counter_read(&memcg->kmem)), |
1757 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); |
1758 | } |
1759 | |
1760 | pr_info("Memory cgroup stats for " ); |
1761 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
1762 | pr_cont(":" ); |
1763 | seq_buf_init(s: &s, buf, size: sizeof(buf)); |
1764 | memory_stat_format(memcg, s: &s); |
1765 | seq_buf_do_printk(s: &s, KERN_INFO); |
1766 | } |
1767 | |
1768 | /* |
1769 | * Return the memory (and swap, if configured) limit for a memcg. |
1770 | */ |
1771 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) |
1772 | { |
1773 | unsigned long max = READ_ONCE(memcg->memory.max); |
1774 | |
1775 | if (do_memsw_account()) { |
1776 | if (mem_cgroup_swappiness(memcg)) { |
1777 | /* Calculate swap excess capacity from memsw limit */ |
1778 | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; |
1779 | |
1780 | max += min(swap, (unsigned long)total_swap_pages); |
1781 | } |
1782 | } else { |
1783 | if (mem_cgroup_swappiness(memcg)) |
1784 | max += min(READ_ONCE(memcg->swap.max), |
1785 | (unsigned long)total_swap_pages); |
1786 | } |
1787 | return max; |
1788 | } |
1789 | |
1790 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) |
1791 | { |
1792 | return page_counter_read(counter: &memcg->memory); |
1793 | } |
1794 | |
1795 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1796 | int order) |
1797 | { |
1798 | struct oom_control oc = { |
1799 | .zonelist = NULL, |
1800 | .nodemask = NULL, |
1801 | .memcg = memcg, |
1802 | .gfp_mask = gfp_mask, |
1803 | .order = order, |
1804 | }; |
1805 | bool ret = true; |
1806 | |
1807 | if (mutex_lock_killable(&oom_lock)) |
1808 | return true; |
1809 | |
1810 | if (mem_cgroup_margin(memcg) >= (1 << order)) |
1811 | goto unlock; |
1812 | |
1813 | /* |
1814 | * A few threads which were not waiting at mutex_lock_killable() can |
1815 | * fail to bail out. Therefore, check again after holding oom_lock. |
1816 | */ |
1817 | ret = task_is_dying() || out_of_memory(oc: &oc); |
1818 | |
1819 | unlock: |
1820 | mutex_unlock(lock: &oom_lock); |
1821 | return ret; |
1822 | } |
1823 | |
1824 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1825 | pg_data_t *pgdat, |
1826 | gfp_t gfp_mask, |
1827 | unsigned long *total_scanned) |
1828 | { |
1829 | struct mem_cgroup *victim = NULL; |
1830 | int total = 0; |
1831 | int loop = 0; |
1832 | unsigned long excess; |
1833 | unsigned long nr_scanned; |
1834 | struct mem_cgroup_reclaim_cookie reclaim = { |
1835 | .pgdat = pgdat, |
1836 | }; |
1837 | |
1838 | excess = soft_limit_excess(memcg: root_memcg); |
1839 | |
1840 | while (1) { |
1841 | victim = mem_cgroup_iter(root: root_memcg, prev: victim, reclaim: &reclaim); |
1842 | if (!victim) { |
1843 | loop++; |
1844 | if (loop >= 2) { |
1845 | /* |
1846 | * If we have not been able to reclaim |
1847 | * anything, it might because there are |
1848 | * no reclaimable pages under this hierarchy |
1849 | */ |
1850 | if (!total) |
1851 | break; |
1852 | /* |
1853 | * We want to do more targeted reclaim. |
1854 | * excess >> 2 is not to excessive so as to |
1855 | * reclaim too much, nor too less that we keep |
1856 | * coming back to reclaim from this cgroup |
1857 | */ |
1858 | if (total >= (excess >> 2) || |
1859 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
1860 | break; |
1861 | } |
1862 | continue; |
1863 | } |
1864 | total += mem_cgroup_shrink_node(mem: victim, gfp_mask, noswap: false, |
1865 | pgdat, nr_scanned: &nr_scanned); |
1866 | *total_scanned += nr_scanned; |
1867 | if (!soft_limit_excess(memcg: root_memcg)) |
1868 | break; |
1869 | } |
1870 | mem_cgroup_iter_break(root: root_memcg, prev: victim); |
1871 | return total; |
1872 | } |
1873 | |
1874 | #ifdef CONFIG_LOCKDEP |
1875 | static struct lockdep_map memcg_oom_lock_dep_map = { |
1876 | .name = "memcg_oom_lock" , |
1877 | }; |
1878 | #endif |
1879 | |
1880 | static DEFINE_SPINLOCK(memcg_oom_lock); |
1881 | |
1882 | /* |
1883 | * Check OOM-Killer is already running under our hierarchy. |
1884 | * If someone is running, return false. |
1885 | */ |
1886 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
1887 | { |
1888 | struct mem_cgroup *iter, *failed = NULL; |
1889 | |
1890 | spin_lock(lock: &memcg_oom_lock); |
1891 | |
1892 | for_each_mem_cgroup_tree(iter, memcg) { |
1893 | if (iter->oom_lock) { |
1894 | /* |
1895 | * this subtree of our hierarchy is already locked |
1896 | * so we cannot give a lock. |
1897 | */ |
1898 | failed = iter; |
1899 | mem_cgroup_iter_break(root: memcg, prev: iter); |
1900 | break; |
1901 | } else |
1902 | iter->oom_lock = true; |
1903 | } |
1904 | |
1905 | if (failed) { |
1906 | /* |
1907 | * OK, we failed to lock the whole subtree so we have |
1908 | * to clean up what we set up to the failing subtree |
1909 | */ |
1910 | for_each_mem_cgroup_tree(iter, memcg) { |
1911 | if (iter == failed) { |
1912 | mem_cgroup_iter_break(root: memcg, prev: iter); |
1913 | break; |
1914 | } |
1915 | iter->oom_lock = false; |
1916 | } |
1917 | } else |
1918 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); |
1919 | |
1920 | spin_unlock(lock: &memcg_oom_lock); |
1921 | |
1922 | return !failed; |
1923 | } |
1924 | |
1925 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
1926 | { |
1927 | struct mem_cgroup *iter; |
1928 | |
1929 | spin_lock(lock: &memcg_oom_lock); |
1930 | mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); |
1931 | for_each_mem_cgroup_tree(iter, memcg) |
1932 | iter->oom_lock = false; |
1933 | spin_unlock(lock: &memcg_oom_lock); |
1934 | } |
1935 | |
1936 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
1937 | { |
1938 | struct mem_cgroup *iter; |
1939 | |
1940 | spin_lock(lock: &memcg_oom_lock); |
1941 | for_each_mem_cgroup_tree(iter, memcg) |
1942 | iter->under_oom++; |
1943 | spin_unlock(lock: &memcg_oom_lock); |
1944 | } |
1945 | |
1946 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
1947 | { |
1948 | struct mem_cgroup *iter; |
1949 | |
1950 | /* |
1951 | * Be careful about under_oom underflows because a child memcg |
1952 | * could have been added after mem_cgroup_mark_under_oom. |
1953 | */ |
1954 | spin_lock(lock: &memcg_oom_lock); |
1955 | for_each_mem_cgroup_tree(iter, memcg) |
1956 | if (iter->under_oom > 0) |
1957 | iter->under_oom--; |
1958 | spin_unlock(lock: &memcg_oom_lock); |
1959 | } |
1960 | |
1961 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
1962 | |
1963 | struct oom_wait_info { |
1964 | struct mem_cgroup *memcg; |
1965 | wait_queue_entry_t wait; |
1966 | }; |
1967 | |
1968 | static int memcg_oom_wake_function(wait_queue_entry_t *wait, |
1969 | unsigned mode, int sync, void *arg) |
1970 | { |
1971 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
1972 | struct mem_cgroup *oom_wait_memcg; |
1973 | struct oom_wait_info *oom_wait_info; |
1974 | |
1975 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); |
1976 | oom_wait_memcg = oom_wait_info->memcg; |
1977 | |
1978 | if (!mem_cgroup_is_descendant(memcg: wake_memcg, root: oom_wait_memcg) && |
1979 | !mem_cgroup_is_descendant(memcg: oom_wait_memcg, root: wake_memcg)) |
1980 | return 0; |
1981 | return autoremove_wake_function(wq_entry: wait, mode, sync, key: arg); |
1982 | } |
1983 | |
1984 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
1985 | { |
1986 | /* |
1987 | * For the following lockless ->under_oom test, the only required |
1988 | * guarantee is that it must see the state asserted by an OOM when |
1989 | * this function is called as a result of userland actions |
1990 | * triggered by the notification of the OOM. This is trivially |
1991 | * achieved by invoking mem_cgroup_mark_under_oom() before |
1992 | * triggering notification. |
1993 | */ |
1994 | if (memcg && memcg->under_oom) |
1995 | __wake_up(wq_head: &memcg_oom_waitq, TASK_NORMAL, nr: 0, key: memcg); |
1996 | } |
1997 | |
1998 | /* |
1999 | * Returns true if successfully killed one or more processes. Though in some |
2000 | * corner cases it can return true even without killing any process. |
2001 | */ |
2002 | static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
2003 | { |
2004 | bool locked, ret; |
2005 | |
2006 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2007 | return false; |
2008 | |
2009 | memcg_memory_event(memcg, event: MEMCG_OOM); |
2010 | |
2011 | /* |
2012 | * We are in the middle of the charge context here, so we |
2013 | * don't want to block when potentially sitting on a callstack |
2014 | * that holds all kinds of filesystem and mm locks. |
2015 | * |
2016 | * cgroup1 allows disabling the OOM killer and waiting for outside |
2017 | * handling until the charge can succeed; remember the context and put |
2018 | * the task to sleep at the end of the page fault when all locks are |
2019 | * released. |
2020 | * |
2021 | * On the other hand, in-kernel OOM killer allows for an async victim |
2022 | * memory reclaim (oom_reaper) and that means that we are not solely |
2023 | * relying on the oom victim to make a forward progress and we can |
2024 | * invoke the oom killer here. |
2025 | * |
2026 | * Please note that mem_cgroup_out_of_memory might fail to find a |
2027 | * victim and then we have to bail out from the charge path. |
2028 | */ |
2029 | if (READ_ONCE(memcg->oom_kill_disable)) { |
2030 | if (current->in_user_fault) { |
2031 | css_get(css: &memcg->css); |
2032 | current->memcg_in_oom = memcg; |
2033 | current->memcg_oom_gfp_mask = mask; |
2034 | current->memcg_oom_order = order; |
2035 | } |
2036 | return false; |
2037 | } |
2038 | |
2039 | mem_cgroup_mark_under_oom(memcg); |
2040 | |
2041 | locked = mem_cgroup_oom_trylock(memcg); |
2042 | |
2043 | if (locked) |
2044 | mem_cgroup_oom_notify(memcg); |
2045 | |
2046 | mem_cgroup_unmark_under_oom(memcg); |
2047 | ret = mem_cgroup_out_of_memory(memcg, gfp_mask: mask, order); |
2048 | |
2049 | if (locked) |
2050 | mem_cgroup_oom_unlock(memcg); |
2051 | |
2052 | return ret; |
2053 | } |
2054 | |
2055 | /** |
2056 | * mem_cgroup_oom_synchronize - complete memcg OOM handling |
2057 | * @handle: actually kill/wait or just clean up the OOM state |
2058 | * |
2059 | * This has to be called at the end of a page fault if the memcg OOM |
2060 | * handler was enabled. |
2061 | * |
2062 | * Memcg supports userspace OOM handling where failed allocations must |
2063 | * sleep on a waitqueue until the userspace task resolves the |
2064 | * situation. Sleeping directly in the charge context with all kinds |
2065 | * of locks held is not a good idea, instead we remember an OOM state |
2066 | * in the task and mem_cgroup_oom_synchronize() has to be called at |
2067 | * the end of the page fault to complete the OOM handling. |
2068 | * |
2069 | * Returns %true if an ongoing memcg OOM situation was detected and |
2070 | * completed, %false otherwise. |
2071 | */ |
2072 | bool mem_cgroup_oom_synchronize(bool handle) |
2073 | { |
2074 | struct mem_cgroup *memcg = current->memcg_in_oom; |
2075 | struct oom_wait_info owait; |
2076 | bool locked; |
2077 | |
2078 | /* OOM is global, do not handle */ |
2079 | if (!memcg) |
2080 | return false; |
2081 | |
2082 | if (!handle) |
2083 | goto cleanup; |
2084 | |
2085 | owait.memcg = memcg; |
2086 | owait.wait.flags = 0; |
2087 | owait.wait.func = memcg_oom_wake_function; |
2088 | owait.wait.private = current; |
2089 | INIT_LIST_HEAD(list: &owait.wait.entry); |
2090 | |
2091 | prepare_to_wait(wq_head: &memcg_oom_waitq, wq_entry: &owait.wait, TASK_KILLABLE); |
2092 | mem_cgroup_mark_under_oom(memcg); |
2093 | |
2094 | locked = mem_cgroup_oom_trylock(memcg); |
2095 | |
2096 | if (locked) |
2097 | mem_cgroup_oom_notify(memcg); |
2098 | |
2099 | schedule(); |
2100 | mem_cgroup_unmark_under_oom(memcg); |
2101 | finish_wait(wq_head: &memcg_oom_waitq, wq_entry: &owait.wait); |
2102 | |
2103 | if (locked) |
2104 | mem_cgroup_oom_unlock(memcg); |
2105 | cleanup: |
2106 | current->memcg_in_oom = NULL; |
2107 | css_put(css: &memcg->css); |
2108 | return true; |
2109 | } |
2110 | |
2111 | /** |
2112 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM |
2113 | * @victim: task to be killed by the OOM killer |
2114 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM |
2115 | * |
2116 | * Returns a pointer to a memory cgroup, which has to be cleaned up |
2117 | * by killing all belonging OOM-killable tasks. |
2118 | * |
2119 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. |
2120 | */ |
2121 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, |
2122 | struct mem_cgroup *oom_domain) |
2123 | { |
2124 | struct mem_cgroup *oom_group = NULL; |
2125 | struct mem_cgroup *memcg; |
2126 | |
2127 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
2128 | return NULL; |
2129 | |
2130 | if (!oom_domain) |
2131 | oom_domain = root_mem_cgroup; |
2132 | |
2133 | rcu_read_lock(); |
2134 | |
2135 | memcg = mem_cgroup_from_task(victim); |
2136 | if (mem_cgroup_is_root(memcg)) |
2137 | goto out; |
2138 | |
2139 | /* |
2140 | * If the victim task has been asynchronously moved to a different |
2141 | * memory cgroup, we might end up killing tasks outside oom_domain. |
2142 | * In this case it's better to ignore memory.group.oom. |
2143 | */ |
2144 | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) |
2145 | goto out; |
2146 | |
2147 | /* |
2148 | * Traverse the memory cgroup hierarchy from the victim task's |
2149 | * cgroup up to the OOMing cgroup (or root) to find the |
2150 | * highest-level memory cgroup with oom.group set. |
2151 | */ |
2152 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
2153 | if (READ_ONCE(memcg->oom_group)) |
2154 | oom_group = memcg; |
2155 | |
2156 | if (memcg == oom_domain) |
2157 | break; |
2158 | } |
2159 | |
2160 | if (oom_group) |
2161 | css_get(css: &oom_group->css); |
2162 | out: |
2163 | rcu_read_unlock(); |
2164 | |
2165 | return oom_group; |
2166 | } |
2167 | |
2168 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) |
2169 | { |
2170 | pr_info("Tasks in " ); |
2171 | pr_cont_cgroup_path(cgrp: memcg->css.cgroup); |
2172 | pr_cont(" are going to be killed due to memory.oom.group set\n" ); |
2173 | } |
2174 | |
2175 | /** |
2176 | * folio_memcg_lock - Bind a folio to its memcg. |
2177 | * @folio: The folio. |
2178 | * |
2179 | * This function prevents unlocked LRU folios from being moved to |
2180 | * another cgroup. |
2181 | * |
2182 | * It ensures lifetime of the bound memcg. The caller is responsible |
2183 | * for the lifetime of the folio. |
2184 | */ |
2185 | void folio_memcg_lock(struct folio *folio) |
2186 | { |
2187 | struct mem_cgroup *memcg; |
2188 | unsigned long flags; |
2189 | |
2190 | /* |
2191 | * The RCU lock is held throughout the transaction. The fast |
2192 | * path can get away without acquiring the memcg->move_lock |
2193 | * because page moving starts with an RCU grace period. |
2194 | */ |
2195 | rcu_read_lock(); |
2196 | |
2197 | if (mem_cgroup_disabled()) |
2198 | return; |
2199 | again: |
2200 | memcg = folio_memcg(folio); |
2201 | if (unlikely(!memcg)) |
2202 | return; |
2203 | |
2204 | #ifdef CONFIG_PROVE_LOCKING |
2205 | local_irq_save(flags); |
2206 | might_lock(&memcg->move_lock); |
2207 | local_irq_restore(flags); |
2208 | #endif |
2209 | |
2210 | if (atomic_read(v: &memcg->moving_account) <= 0) |
2211 | return; |
2212 | |
2213 | spin_lock_irqsave(&memcg->move_lock, flags); |
2214 | if (memcg != folio_memcg(folio)) { |
2215 | spin_unlock_irqrestore(lock: &memcg->move_lock, flags); |
2216 | goto again; |
2217 | } |
2218 | |
2219 | /* |
2220 | * When charge migration first begins, we can have multiple |
2221 | * critical sections holding the fast-path RCU lock and one |
2222 | * holding the slowpath move_lock. Track the task who has the |
2223 | * move_lock for folio_memcg_unlock(). |
2224 | */ |
2225 | memcg->move_lock_task = current; |
2226 | memcg->move_lock_flags = flags; |
2227 | } |
2228 | |
2229 | static void __folio_memcg_unlock(struct mem_cgroup *memcg) |
2230 | { |
2231 | if (memcg && memcg->move_lock_task == current) { |
2232 | unsigned long flags = memcg->move_lock_flags; |
2233 | |
2234 | memcg->move_lock_task = NULL; |
2235 | memcg->move_lock_flags = 0; |
2236 | |
2237 | spin_unlock_irqrestore(lock: &memcg->move_lock, flags); |
2238 | } |
2239 | |
2240 | rcu_read_unlock(); |
2241 | } |
2242 | |
2243 | /** |
2244 | * folio_memcg_unlock - Release the binding between a folio and its memcg. |
2245 | * @folio: The folio. |
2246 | * |
2247 | * This releases the binding created by folio_memcg_lock(). This does |
2248 | * not change the accounting of this folio to its memcg, but it does |
2249 | * permit others to change it. |
2250 | */ |
2251 | void folio_memcg_unlock(struct folio *folio) |
2252 | { |
2253 | __folio_memcg_unlock(memcg: folio_memcg(folio)); |
2254 | } |
2255 | |
2256 | struct memcg_stock_pcp { |
2257 | local_lock_t stock_lock; |
2258 | struct mem_cgroup *cached; /* this never be root cgroup */ |
2259 | unsigned int nr_pages; |
2260 | |
2261 | #ifdef CONFIG_MEMCG_KMEM |
2262 | struct obj_cgroup *cached_objcg; |
2263 | struct pglist_data *cached_pgdat; |
2264 | unsigned int nr_bytes; |
2265 | int nr_slab_reclaimable_b; |
2266 | int nr_slab_unreclaimable_b; |
2267 | #endif |
2268 | |
2269 | struct work_struct work; |
2270 | unsigned long flags; |
2271 | #define FLUSHING_CACHED_CHARGE 0 |
2272 | }; |
2273 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { |
2274 | .stock_lock = INIT_LOCAL_LOCK(stock_lock), |
2275 | }; |
2276 | static DEFINE_MUTEX(percpu_charge_mutex); |
2277 | |
2278 | #ifdef CONFIG_MEMCG_KMEM |
2279 | static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); |
2280 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, |
2281 | struct mem_cgroup *root_memcg); |
2282 | static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); |
2283 | |
2284 | #else |
2285 | static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) |
2286 | { |
2287 | return NULL; |
2288 | } |
2289 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, |
2290 | struct mem_cgroup *root_memcg) |
2291 | { |
2292 | return false; |
2293 | } |
2294 | static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) |
2295 | { |
2296 | } |
2297 | #endif |
2298 | |
2299 | /** |
2300 | * consume_stock: Try to consume stocked charge on this cpu. |
2301 | * @memcg: memcg to consume from. |
2302 | * @nr_pages: how many pages to charge. |
2303 | * |
2304 | * The charges will only happen if @memcg matches the current cpu's memcg |
2305 | * stock, and at least @nr_pages are available in that stock. Failure to |
2306 | * service an allocation will refill the stock. |
2307 | * |
2308 | * returns true if successful, false otherwise. |
2309 | */ |
2310 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2311 | { |
2312 | struct memcg_stock_pcp *stock; |
2313 | unsigned long flags; |
2314 | bool ret = false; |
2315 | |
2316 | if (nr_pages > MEMCG_CHARGE_BATCH) |
2317 | return ret; |
2318 | |
2319 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
2320 | |
2321 | stock = this_cpu_ptr(&memcg_stock); |
2322 | if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { |
2323 | stock->nr_pages -= nr_pages; |
2324 | ret = true; |
2325 | } |
2326 | |
2327 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
2328 | |
2329 | return ret; |
2330 | } |
2331 | |
2332 | /* |
2333 | * Returns stocks cached in percpu and reset cached information. |
2334 | */ |
2335 | static void drain_stock(struct memcg_stock_pcp *stock) |
2336 | { |
2337 | struct mem_cgroup *old = READ_ONCE(stock->cached); |
2338 | |
2339 | if (!old) |
2340 | return; |
2341 | |
2342 | if (stock->nr_pages) { |
2343 | page_counter_uncharge(counter: &old->memory, nr_pages: stock->nr_pages); |
2344 | if (do_memsw_account()) |
2345 | page_counter_uncharge(counter: &old->memsw, nr_pages: stock->nr_pages); |
2346 | stock->nr_pages = 0; |
2347 | } |
2348 | |
2349 | css_put(css: &old->css); |
2350 | WRITE_ONCE(stock->cached, NULL); |
2351 | } |
2352 | |
2353 | static void drain_local_stock(struct work_struct *dummy) |
2354 | { |
2355 | struct memcg_stock_pcp *stock; |
2356 | struct obj_cgroup *old = NULL; |
2357 | unsigned long flags; |
2358 | |
2359 | /* |
2360 | * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. |
2361 | * drain_stock races is that we always operate on local CPU stock |
2362 | * here with IRQ disabled |
2363 | */ |
2364 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
2365 | |
2366 | stock = this_cpu_ptr(&memcg_stock); |
2367 | old = drain_obj_stock(stock); |
2368 | drain_stock(stock); |
2369 | clear_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags); |
2370 | |
2371 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
2372 | if (old) |
2373 | obj_cgroup_put(objcg: old); |
2374 | } |
2375 | |
2376 | /* |
2377 | * Cache charges(val) to local per_cpu area. |
2378 | * This will be consumed by consume_stock() function, later. |
2379 | */ |
2380 | static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2381 | { |
2382 | struct memcg_stock_pcp *stock; |
2383 | |
2384 | stock = this_cpu_ptr(&memcg_stock); |
2385 | if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ |
2386 | drain_stock(stock); |
2387 | css_get(css: &memcg->css); |
2388 | WRITE_ONCE(stock->cached, memcg); |
2389 | } |
2390 | stock->nr_pages += nr_pages; |
2391 | |
2392 | if (stock->nr_pages > MEMCG_CHARGE_BATCH) |
2393 | drain_stock(stock); |
2394 | } |
2395 | |
2396 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2397 | { |
2398 | unsigned long flags; |
2399 | |
2400 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
2401 | __refill_stock(memcg, nr_pages); |
2402 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
2403 | } |
2404 | |
2405 | /* |
2406 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
2407 | * of the hierarchy under it. |
2408 | */ |
2409 | static void drain_all_stock(struct mem_cgroup *root_memcg) |
2410 | { |
2411 | int cpu, curcpu; |
2412 | |
2413 | /* If someone's already draining, avoid adding running more workers. */ |
2414 | if (!mutex_trylock(lock: &percpu_charge_mutex)) |
2415 | return; |
2416 | /* |
2417 | * Notify other cpus that system-wide "drain" is running |
2418 | * We do not care about races with the cpu hotplug because cpu down |
2419 | * as well as workers from this path always operate on the local |
2420 | * per-cpu data. CPU up doesn't touch memcg_stock at all. |
2421 | */ |
2422 | migrate_disable(); |
2423 | curcpu = smp_processor_id(); |
2424 | for_each_online_cpu(cpu) { |
2425 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2426 | struct mem_cgroup *memcg; |
2427 | bool flush = false; |
2428 | |
2429 | rcu_read_lock(); |
2430 | memcg = READ_ONCE(stock->cached); |
2431 | if (memcg && stock->nr_pages && |
2432 | mem_cgroup_is_descendant(memcg, root: root_memcg)) |
2433 | flush = true; |
2434 | else if (obj_stock_flush_required(stock, root_memcg)) |
2435 | flush = true; |
2436 | rcu_read_unlock(); |
2437 | |
2438 | if (flush && |
2439 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags)) { |
2440 | if (cpu == curcpu) |
2441 | drain_local_stock(dummy: &stock->work); |
2442 | else if (!cpu_is_isolated(cpu)) |
2443 | schedule_work_on(cpu, work: &stock->work); |
2444 | } |
2445 | } |
2446 | migrate_enable(); |
2447 | mutex_unlock(lock: &percpu_charge_mutex); |
2448 | } |
2449 | |
2450 | static int memcg_hotplug_cpu_dead(unsigned int cpu) |
2451 | { |
2452 | struct memcg_stock_pcp *stock; |
2453 | |
2454 | stock = &per_cpu(memcg_stock, cpu); |
2455 | drain_stock(stock); |
2456 | |
2457 | return 0; |
2458 | } |
2459 | |
2460 | static unsigned long reclaim_high(struct mem_cgroup *memcg, |
2461 | unsigned int nr_pages, |
2462 | gfp_t gfp_mask) |
2463 | { |
2464 | unsigned long nr_reclaimed = 0; |
2465 | |
2466 | do { |
2467 | unsigned long pflags; |
2468 | |
2469 | if (page_counter_read(counter: &memcg->memory) <= |
2470 | READ_ONCE(memcg->memory.high)) |
2471 | continue; |
2472 | |
2473 | memcg_memory_event(memcg, event: MEMCG_HIGH); |
2474 | |
2475 | psi_memstall_enter(flags: &pflags); |
2476 | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, |
2477 | gfp_mask, |
2478 | MEMCG_RECLAIM_MAY_SWAP); |
2479 | psi_memstall_leave(flags: &pflags); |
2480 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2481 | !mem_cgroup_is_root(memcg)); |
2482 | |
2483 | return nr_reclaimed; |
2484 | } |
2485 | |
2486 | static void high_work_func(struct work_struct *work) |
2487 | { |
2488 | struct mem_cgroup *memcg; |
2489 | |
2490 | memcg = container_of(work, struct mem_cgroup, high_work); |
2491 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); |
2492 | } |
2493 | |
2494 | /* |
2495 | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is |
2496 | * enough to still cause a significant slowdown in most cases, while still |
2497 | * allowing diagnostics and tracing to proceed without becoming stuck. |
2498 | */ |
2499 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) |
2500 | |
2501 | /* |
2502 | * When calculating the delay, we use these either side of the exponentiation to |
2503 | * maintain precision and scale to a reasonable number of jiffies (see the table |
2504 | * below. |
2505 | * |
2506 | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the |
2507 | * overage ratio to a delay. |
2508 | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the |
2509 | * proposed penalty in order to reduce to a reasonable number of jiffies, and |
2510 | * to produce a reasonable delay curve. |
2511 | * |
2512 | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a |
2513 | * reasonable delay curve compared to precision-adjusted overage, not |
2514 | * penalising heavily at first, but still making sure that growth beyond the |
2515 | * limit penalises misbehaviour cgroups by slowing them down exponentially. For |
2516 | * example, with a high of 100 megabytes: |
2517 | * |
2518 | * +-------+------------------------+ |
2519 | * | usage | time to allocate in ms | |
2520 | * +-------+------------------------+ |
2521 | * | 100M | 0 | |
2522 | * | 101M | 6 | |
2523 | * | 102M | 25 | |
2524 | * | 103M | 57 | |
2525 | * | 104M | 102 | |
2526 | * | 105M | 159 | |
2527 | * | 106M | 230 | |
2528 | * | 107M | 313 | |
2529 | * | 108M | 409 | |
2530 | * | 109M | 518 | |
2531 | * | 110M | 639 | |
2532 | * | 111M | 774 | |
2533 | * | 112M | 921 | |
2534 | * | 113M | 1081 | |
2535 | * | 114M | 1254 | |
2536 | * | 115M | 1439 | |
2537 | * | 116M | 1638 | |
2538 | * | 117M | 1849 | |
2539 | * | 118M | 2000 | |
2540 | * | 119M | 2000 | |
2541 | * | 120M | 2000 | |
2542 | * +-------+------------------------+ |
2543 | */ |
2544 | #define MEMCG_DELAY_PRECISION_SHIFT 20 |
2545 | #define MEMCG_DELAY_SCALING_SHIFT 14 |
2546 | |
2547 | static u64 calculate_overage(unsigned long usage, unsigned long high) |
2548 | { |
2549 | u64 overage; |
2550 | |
2551 | if (usage <= high) |
2552 | return 0; |
2553 | |
2554 | /* |
2555 | * Prevent division by 0 in overage calculation by acting as if |
2556 | * it was a threshold of 1 page |
2557 | */ |
2558 | high = max(high, 1UL); |
2559 | |
2560 | overage = usage - high; |
2561 | overage <<= MEMCG_DELAY_PRECISION_SHIFT; |
2562 | return div64_u64(dividend: overage, divisor: high); |
2563 | } |
2564 | |
2565 | static u64 mem_find_max_overage(struct mem_cgroup *memcg) |
2566 | { |
2567 | u64 overage, max_overage = 0; |
2568 | |
2569 | do { |
2570 | overage = calculate_overage(usage: page_counter_read(counter: &memcg->memory), |
2571 | READ_ONCE(memcg->memory.high)); |
2572 | max_overage = max(overage, max_overage); |
2573 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2574 | !mem_cgroup_is_root(memcg)); |
2575 | |
2576 | return max_overage; |
2577 | } |
2578 | |
2579 | static u64 swap_find_max_overage(struct mem_cgroup *memcg) |
2580 | { |
2581 | u64 overage, max_overage = 0; |
2582 | |
2583 | do { |
2584 | overage = calculate_overage(usage: page_counter_read(counter: &memcg->swap), |
2585 | READ_ONCE(memcg->swap.high)); |
2586 | if (overage) |
2587 | memcg_memory_event(memcg, event: MEMCG_SWAP_HIGH); |
2588 | max_overage = max(overage, max_overage); |
2589 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2590 | !mem_cgroup_is_root(memcg)); |
2591 | |
2592 | return max_overage; |
2593 | } |
2594 | |
2595 | /* |
2596 | * Get the number of jiffies that we should penalise a mischievous cgroup which |
2597 | * is exceeding its memory.high by checking both it and its ancestors. |
2598 | */ |
2599 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, |
2600 | unsigned int nr_pages, |
2601 | u64 max_overage) |
2602 | { |
2603 | unsigned long penalty_jiffies; |
2604 | |
2605 | if (!max_overage) |
2606 | return 0; |
2607 | |
2608 | /* |
2609 | * We use overage compared to memory.high to calculate the number of |
2610 | * jiffies to sleep (penalty_jiffies). Ideally this value should be |
2611 | * fairly lenient on small overages, and increasingly harsh when the |
2612 | * memcg in question makes it clear that it has no intention of stopping |
2613 | * its crazy behaviour, so we exponentially increase the delay based on |
2614 | * overage amount. |
2615 | */ |
2616 | penalty_jiffies = max_overage * max_overage * HZ; |
2617 | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; |
2618 | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; |
2619 | |
2620 | /* |
2621 | * Factor in the task's own contribution to the overage, such that four |
2622 | * N-sized allocations are throttled approximately the same as one |
2623 | * 4N-sized allocation. |
2624 | * |
2625 | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or |
2626 | * larger the current charge patch is than that. |
2627 | */ |
2628 | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; |
2629 | } |
2630 | |
2631 | /* |
2632 | * Reclaims memory over the high limit. Called directly from |
2633 | * try_charge() (context permitting), as well as from the userland |
2634 | * return path where reclaim is always able to block. |
2635 | */ |
2636 | void mem_cgroup_handle_over_high(gfp_t gfp_mask) |
2637 | { |
2638 | unsigned long penalty_jiffies; |
2639 | unsigned long pflags; |
2640 | unsigned long nr_reclaimed; |
2641 | unsigned int nr_pages = current->memcg_nr_pages_over_high; |
2642 | int nr_retries = MAX_RECLAIM_RETRIES; |
2643 | struct mem_cgroup *memcg; |
2644 | bool in_retry = false; |
2645 | |
2646 | if (likely(!nr_pages)) |
2647 | return; |
2648 | |
2649 | memcg = get_mem_cgroup_from_mm(current->mm); |
2650 | current->memcg_nr_pages_over_high = 0; |
2651 | |
2652 | retry_reclaim: |
2653 | /* |
2654 | * Bail if the task is already exiting. Unlike memory.max, |
2655 | * memory.high enforcement isn't as strict, and there is no |
2656 | * OOM killer involved, which means the excess could already |
2657 | * be much bigger (and still growing) than it could for |
2658 | * memory.max; the dying task could get stuck in fruitless |
2659 | * reclaim for a long time, which isn't desirable. |
2660 | */ |
2661 | if (task_is_dying()) |
2662 | goto out; |
2663 | |
2664 | /* |
2665 | * The allocating task should reclaim at least the batch size, but for |
2666 | * subsequent retries we only want to do what's necessary to prevent oom |
2667 | * or breaching resource isolation. |
2668 | * |
2669 | * This is distinct from memory.max or page allocator behaviour because |
2670 | * memory.high is currently batched, whereas memory.max and the page |
2671 | * allocator run every time an allocation is made. |
2672 | */ |
2673 | nr_reclaimed = reclaim_high(memcg, |
2674 | nr_pages: in_retry ? SWAP_CLUSTER_MAX : nr_pages, |
2675 | gfp_mask); |
2676 | |
2677 | /* |
2678 | * memory.high is breached and reclaim is unable to keep up. Throttle |
2679 | * allocators proactively to slow down excessive growth. |
2680 | */ |
2681 | penalty_jiffies = calculate_high_delay(memcg, nr_pages, |
2682 | max_overage: mem_find_max_overage(memcg)); |
2683 | |
2684 | penalty_jiffies += calculate_high_delay(memcg, nr_pages, |
2685 | max_overage: swap_find_max_overage(memcg)); |
2686 | |
2687 | /* |
2688 | * Clamp the max delay per usermode return so as to still keep the |
2689 | * application moving forwards and also permit diagnostics, albeit |
2690 | * extremely slowly. |
2691 | */ |
2692 | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); |
2693 | |
2694 | /* |
2695 | * Don't sleep if the amount of jiffies this memcg owes us is so low |
2696 | * that it's not even worth doing, in an attempt to be nice to those who |
2697 | * go only a small amount over their memory.high value and maybe haven't |
2698 | * been aggressively reclaimed enough yet. |
2699 | */ |
2700 | if (penalty_jiffies <= HZ / 100) |
2701 | goto out; |
2702 | |
2703 | /* |
2704 | * If reclaim is making forward progress but we're still over |
2705 | * memory.high, we want to encourage that rather than doing allocator |
2706 | * throttling. |
2707 | */ |
2708 | if (nr_reclaimed || nr_retries--) { |
2709 | in_retry = true; |
2710 | goto retry_reclaim; |
2711 | } |
2712 | |
2713 | /* |
2714 | * Reclaim didn't manage to push usage below the limit, slow |
2715 | * this allocating task down. |
2716 | * |
2717 | * If we exit early, we're guaranteed to die (since |
2718 | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't |
2719 | * need to account for any ill-begotten jiffies to pay them off later. |
2720 | */ |
2721 | psi_memstall_enter(flags: &pflags); |
2722 | schedule_timeout_killable(timeout: penalty_jiffies); |
2723 | psi_memstall_leave(flags: &pflags); |
2724 | |
2725 | out: |
2726 | css_put(css: &memcg->css); |
2727 | } |
2728 | |
2729 | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2730 | unsigned int nr_pages) |
2731 | { |
2732 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); |
2733 | int nr_retries = MAX_RECLAIM_RETRIES; |
2734 | struct mem_cgroup *mem_over_limit; |
2735 | struct page_counter *counter; |
2736 | unsigned long nr_reclaimed; |
2737 | bool passed_oom = false; |
2738 | unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; |
2739 | bool drained = false; |
2740 | bool raised_max_event = false; |
2741 | unsigned long pflags; |
2742 | |
2743 | retry: |
2744 | if (consume_stock(memcg, nr_pages)) |
2745 | return 0; |
2746 | |
2747 | if (!do_memsw_account() || |
2748 | page_counter_try_charge(counter: &memcg->memsw, nr_pages: batch, fail: &counter)) { |
2749 | if (page_counter_try_charge(counter: &memcg->memory, nr_pages: batch, fail: &counter)) |
2750 | goto done_restock; |
2751 | if (do_memsw_account()) |
2752 | page_counter_uncharge(counter: &memcg->memsw, nr_pages: batch); |
2753 | mem_over_limit = mem_cgroup_from_counter(counter, memory); |
2754 | } else { |
2755 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
2756 | reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; |
2757 | } |
2758 | |
2759 | if (batch > nr_pages) { |
2760 | batch = nr_pages; |
2761 | goto retry; |
2762 | } |
2763 | |
2764 | /* |
2765 | * Prevent unbounded recursion when reclaim operations need to |
2766 | * allocate memory. This might exceed the limits temporarily, |
2767 | * but we prefer facilitating memory reclaim and getting back |
2768 | * under the limit over triggering OOM kills in these cases. |
2769 | */ |
2770 | if (unlikely(current->flags & PF_MEMALLOC)) |
2771 | goto force; |
2772 | |
2773 | if (unlikely(task_in_memcg_oom(current))) |
2774 | goto nomem; |
2775 | |
2776 | if (!gfpflags_allow_blocking(gfp_flags: gfp_mask)) |
2777 | goto nomem; |
2778 | |
2779 | memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX); |
2780 | raised_max_event = true; |
2781 | |
2782 | psi_memstall_enter(flags: &pflags); |
2783 | nr_reclaimed = try_to_free_mem_cgroup_pages(memcg: mem_over_limit, nr_pages, |
2784 | gfp_mask, reclaim_options); |
2785 | psi_memstall_leave(flags: &pflags); |
2786 | |
2787 | if (mem_cgroup_margin(memcg: mem_over_limit) >= nr_pages) |
2788 | goto retry; |
2789 | |
2790 | if (!drained) { |
2791 | drain_all_stock(root_memcg: mem_over_limit); |
2792 | drained = true; |
2793 | goto retry; |
2794 | } |
2795 | |
2796 | if (gfp_mask & __GFP_NORETRY) |
2797 | goto nomem; |
2798 | /* |
2799 | * Even though the limit is exceeded at this point, reclaim |
2800 | * may have been able to free some pages. Retry the charge |
2801 | * before killing the task. |
2802 | * |
2803 | * Only for regular pages, though: huge pages are rather |
2804 | * unlikely to succeed so close to the limit, and we fall back |
2805 | * to regular pages anyway in case of failure. |
2806 | */ |
2807 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
2808 | goto retry; |
2809 | /* |
2810 | * At task move, charge accounts can be doubly counted. So, it's |
2811 | * better to wait until the end of task_move if something is going on. |
2812 | */ |
2813 | if (mem_cgroup_wait_acct_move(memcg: mem_over_limit)) |
2814 | goto retry; |
2815 | |
2816 | if (nr_retries--) |
2817 | goto retry; |
2818 | |
2819 | if (gfp_mask & __GFP_RETRY_MAYFAIL) |
2820 | goto nomem; |
2821 | |
2822 | /* Avoid endless loop for tasks bypassed by the oom killer */ |
2823 | if (passed_oom && task_is_dying()) |
2824 | goto nomem; |
2825 | |
2826 | /* |
2827 | * keep retrying as long as the memcg oom killer is able to make |
2828 | * a forward progress or bypass the charge if the oom killer |
2829 | * couldn't make any progress. |
2830 | */ |
2831 | if (mem_cgroup_oom(memcg: mem_over_limit, mask: gfp_mask, |
2832 | order: get_order(size: nr_pages * PAGE_SIZE))) { |
2833 | passed_oom = true; |
2834 | nr_retries = MAX_RECLAIM_RETRIES; |
2835 | goto retry; |
2836 | } |
2837 | nomem: |
2838 | /* |
2839 | * Memcg doesn't have a dedicated reserve for atomic |
2840 | * allocations. But like the global atomic pool, we need to |
2841 | * put the burden of reclaim on regular allocation requests |
2842 | * and let these go through as privileged allocations. |
2843 | */ |
2844 | if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) |
2845 | return -ENOMEM; |
2846 | force: |
2847 | /* |
2848 | * If the allocation has to be enforced, don't forget to raise |
2849 | * a MEMCG_MAX event. |
2850 | */ |
2851 | if (!raised_max_event) |
2852 | memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX); |
2853 | |
2854 | /* |
2855 | * The allocation either can't fail or will lead to more memory |
2856 | * being freed very soon. Allow memory usage go over the limit |
2857 | * temporarily by force charging it. |
2858 | */ |
2859 | page_counter_charge(counter: &memcg->memory, nr_pages); |
2860 | if (do_memsw_account()) |
2861 | page_counter_charge(counter: &memcg->memsw, nr_pages); |
2862 | |
2863 | return 0; |
2864 | |
2865 | done_restock: |
2866 | if (batch > nr_pages) |
2867 | refill_stock(memcg, nr_pages: batch - nr_pages); |
2868 | |
2869 | /* |
2870 | * If the hierarchy is above the normal consumption range, schedule |
2871 | * reclaim on returning to userland. We can perform reclaim here |
2872 | * if __GFP_RECLAIM but let's always punt for simplicity and so that |
2873 | * GFP_KERNEL can consistently be used during reclaim. @memcg is |
2874 | * not recorded as it most likely matches current's and won't |
2875 | * change in the meantime. As high limit is checked again before |
2876 | * reclaim, the cost of mismatch is negligible. |
2877 | */ |
2878 | do { |
2879 | bool mem_high, swap_high; |
2880 | |
2881 | mem_high = page_counter_read(counter: &memcg->memory) > |
2882 | READ_ONCE(memcg->memory.high); |
2883 | swap_high = page_counter_read(counter: &memcg->swap) > |
2884 | READ_ONCE(memcg->swap.high); |
2885 | |
2886 | /* Don't bother a random interrupted task */ |
2887 | if (!in_task()) { |
2888 | if (mem_high) { |
2889 | schedule_work(work: &memcg->high_work); |
2890 | break; |
2891 | } |
2892 | continue; |
2893 | } |
2894 | |
2895 | if (mem_high || swap_high) { |
2896 | /* |
2897 | * The allocating tasks in this cgroup will need to do |
2898 | * reclaim or be throttled to prevent further growth |
2899 | * of the memory or swap footprints. |
2900 | * |
2901 | * Target some best-effort fairness between the tasks, |
2902 | * and distribute reclaim work and delay penalties |
2903 | * based on how much each task is actually allocating. |
2904 | */ |
2905 | current->memcg_nr_pages_over_high += batch; |
2906 | set_notify_resume(current); |
2907 | break; |
2908 | } |
2909 | } while ((memcg = parent_mem_cgroup(memcg))); |
2910 | |
2911 | /* |
2912 | * Reclaim is set up above to be called from the userland |
2913 | * return path. But also attempt synchronous reclaim to avoid |
2914 | * excessive overrun while the task is still inside the |
2915 | * kernel. If this is successful, the return path will see it |
2916 | * when it rechecks the overage and simply bail out. |
2917 | */ |
2918 | if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && |
2919 | !(current->flags & PF_MEMALLOC) && |
2920 | gfpflags_allow_blocking(gfp_flags: gfp_mask)) |
2921 | mem_cgroup_handle_over_high(gfp_mask); |
2922 | return 0; |
2923 | } |
2924 | |
2925 | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2926 | unsigned int nr_pages) |
2927 | { |
2928 | if (mem_cgroup_is_root(memcg)) |
2929 | return 0; |
2930 | |
2931 | return try_charge_memcg(memcg, gfp_mask, nr_pages); |
2932 | } |
2933 | |
2934 | /** |
2935 | * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. |
2936 | * @memcg: memcg previously charged. |
2937 | * @nr_pages: number of pages previously charged. |
2938 | */ |
2939 | void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) |
2940 | { |
2941 | if (mem_cgroup_is_root(memcg)) |
2942 | return; |
2943 | |
2944 | page_counter_uncharge(counter: &memcg->memory, nr_pages); |
2945 | if (do_memsw_account()) |
2946 | page_counter_uncharge(counter: &memcg->memsw, nr_pages); |
2947 | } |
2948 | |
2949 | static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) |
2950 | { |
2951 | VM_BUG_ON_FOLIO(folio_memcg(folio), folio); |
2952 | /* |
2953 | * Any of the following ensures page's memcg stability: |
2954 | * |
2955 | * - the page lock |
2956 | * - LRU isolation |
2957 | * - folio_memcg_lock() |
2958 | * - exclusive reference |
2959 | * - mem_cgroup_trylock_pages() |
2960 | */ |
2961 | folio->memcg_data = (unsigned long)memcg; |
2962 | } |
2963 | |
2964 | /** |
2965 | * mem_cgroup_commit_charge - commit a previously successful try_charge(). |
2966 | * @folio: folio to commit the charge to. |
2967 | * @memcg: memcg previously charged. |
2968 | */ |
2969 | void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) |
2970 | { |
2971 | css_get(css: &memcg->css); |
2972 | commit_charge(folio, memcg); |
2973 | |
2974 | local_irq_disable(); |
2975 | mem_cgroup_charge_statistics(memcg, nr_pages: folio_nr_pages(folio)); |
2976 | memcg_check_events(memcg, nid: folio_nid(folio)); |
2977 | local_irq_enable(); |
2978 | } |
2979 | |
2980 | #ifdef CONFIG_MEMCG_KMEM |
2981 | /* |
2982 | * The allocated objcg pointers array is not accounted directly. |
2983 | * Moreover, it should not come from DMA buffer and is not readily |
2984 | * reclaimable. So those GFP bits should be masked off. |
2985 | */ |
2986 | #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ |
2987 | __GFP_ACCOUNT | __GFP_NOFAIL) |
2988 | |
2989 | /* |
2990 | * mod_objcg_mlstate() may be called with irq enabled, so |
2991 | * mod_memcg_lruvec_state() should be used. |
2992 | */ |
2993 | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, |
2994 | struct pglist_data *pgdat, |
2995 | enum node_stat_item idx, int nr) |
2996 | { |
2997 | struct mem_cgroup *memcg; |
2998 | struct lruvec *lruvec; |
2999 | |
3000 | rcu_read_lock(); |
3001 | memcg = obj_cgroup_memcg(objcg); |
3002 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
3003 | mod_memcg_lruvec_state(lruvec, idx, val: nr); |
3004 | rcu_read_unlock(); |
3005 | } |
3006 | |
3007 | int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, |
3008 | gfp_t gfp, bool new_slab) |
3009 | { |
3010 | unsigned int objects = objs_per_slab(cache: s, slab); |
3011 | unsigned long memcg_data; |
3012 | void *vec; |
3013 | |
3014 | gfp &= ~OBJCGS_CLEAR_MASK; |
3015 | vec = kcalloc_node(n: objects, size: sizeof(struct obj_cgroup *), flags: gfp, |
3016 | node: slab_nid(slab)); |
3017 | if (!vec) |
3018 | return -ENOMEM; |
3019 | |
3020 | memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; |
3021 | if (new_slab) { |
3022 | /* |
3023 | * If the slab is brand new and nobody can yet access its |
3024 | * memcg_data, no synchronization is required and memcg_data can |
3025 | * be simply assigned. |
3026 | */ |
3027 | slab->memcg_data = memcg_data; |
3028 | } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { |
3029 | /* |
3030 | * If the slab is already in use, somebody can allocate and |
3031 | * assign obj_cgroups in parallel. In this case the existing |
3032 | * objcg vector should be reused. |
3033 | */ |
3034 | kfree(objp: vec); |
3035 | return 0; |
3036 | } |
3037 | |
3038 | kmemleak_not_leak(ptr: vec); |
3039 | return 0; |
3040 | } |
3041 | |
3042 | static __always_inline |
3043 | struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) |
3044 | { |
3045 | /* |
3046 | * Slab objects are accounted individually, not per-page. |
3047 | * Memcg membership data for each individual object is saved in |
3048 | * slab->memcg_data. |
3049 | */ |
3050 | if (folio_test_slab(folio)) { |
3051 | struct obj_cgroup **objcgs; |
3052 | struct slab *slab; |
3053 | unsigned int off; |
3054 | |
3055 | slab = folio_slab(folio); |
3056 | objcgs = slab_objcgs(slab); |
3057 | if (!objcgs) |
3058 | return NULL; |
3059 | |
3060 | off = obj_to_index(cache: slab->slab_cache, slab, obj: p); |
3061 | if (objcgs[off]) |
3062 | return obj_cgroup_memcg(objcg: objcgs[off]); |
3063 | |
3064 | return NULL; |
3065 | } |
3066 | |
3067 | /* |
3068 | * folio_memcg_check() is used here, because in theory we can encounter |
3069 | * a folio where the slab flag has been cleared already, but |
3070 | * slab->memcg_data has not been freed yet |
3071 | * folio_memcg_check() will guarantee that a proper memory |
3072 | * cgroup pointer or NULL will be returned. |
3073 | */ |
3074 | return folio_memcg_check(folio); |
3075 | } |
3076 | |
3077 | /* |
3078 | * Returns a pointer to the memory cgroup to which the kernel object is charged. |
3079 | * |
3080 | * A passed kernel object can be a slab object, vmalloc object or a generic |
3081 | * kernel page, so different mechanisms for getting the memory cgroup pointer |
3082 | * should be used. |
3083 | * |
3084 | * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller |
3085 | * can not know for sure how the kernel object is implemented. |
3086 | * mem_cgroup_from_obj() can be safely used in such cases. |
3087 | * |
3088 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), |
3089 | * cgroup_mutex, etc. |
3090 | */ |
3091 | struct mem_cgroup *mem_cgroup_from_obj(void *p) |
3092 | { |
3093 | struct folio *folio; |
3094 | |
3095 | if (mem_cgroup_disabled()) |
3096 | return NULL; |
3097 | |
3098 | if (unlikely(is_vmalloc_addr(p))) |
3099 | folio = page_folio(vmalloc_to_page(p)); |
3100 | else |
3101 | folio = virt_to_folio(x: p); |
3102 | |
3103 | return mem_cgroup_from_obj_folio(folio, p); |
3104 | } |
3105 | |
3106 | /* |
3107 | * Returns a pointer to the memory cgroup to which the kernel object is charged. |
3108 | * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, |
3109 | * allocated using vmalloc(). |
3110 | * |
3111 | * A passed kernel object must be a slab object or a generic kernel page. |
3112 | * |
3113 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), |
3114 | * cgroup_mutex, etc. |
3115 | */ |
3116 | struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) |
3117 | { |
3118 | if (mem_cgroup_disabled()) |
3119 | return NULL; |
3120 | |
3121 | return mem_cgroup_from_obj_folio(folio: virt_to_folio(x: p), p); |
3122 | } |
3123 | |
3124 | static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) |
3125 | { |
3126 | struct obj_cgroup *objcg = NULL; |
3127 | |
3128 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
3129 | objcg = rcu_dereference(memcg->objcg); |
3130 | if (likely(objcg && obj_cgroup_tryget(objcg))) |
3131 | break; |
3132 | objcg = NULL; |
3133 | } |
3134 | return objcg; |
3135 | } |
3136 | |
3137 | static struct obj_cgroup *current_objcg_update(void) |
3138 | { |
3139 | struct mem_cgroup *memcg; |
3140 | struct obj_cgroup *old, *objcg = NULL; |
3141 | |
3142 | do { |
3143 | /* Atomically drop the update bit. */ |
3144 | old = xchg(¤t->objcg, NULL); |
3145 | if (old) { |
3146 | old = (struct obj_cgroup *) |
3147 | ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); |
3148 | if (old) |
3149 | obj_cgroup_put(objcg: old); |
3150 | |
3151 | old = NULL; |
3152 | } |
3153 | |
3154 | /* If new objcg is NULL, no reason for the second atomic update. */ |
3155 | if (!current->mm || (current->flags & PF_KTHREAD)) |
3156 | return NULL; |
3157 | |
3158 | /* |
3159 | * Release the objcg pointer from the previous iteration, |
3160 | * if try_cmpxcg() below fails. |
3161 | */ |
3162 | if (unlikely(objcg)) { |
3163 | obj_cgroup_put(objcg); |
3164 | objcg = NULL; |
3165 | } |
3166 | |
3167 | /* |
3168 | * Obtain the new objcg pointer. The current task can be |
3169 | * asynchronously moved to another memcg and the previous |
3170 | * memcg can be offlined. So let's get the memcg pointer |
3171 | * and try get a reference to objcg under a rcu read lock. |
3172 | */ |
3173 | |
3174 | rcu_read_lock(); |
3175 | memcg = mem_cgroup_from_task(current); |
3176 | objcg = __get_obj_cgroup_from_memcg(memcg); |
3177 | rcu_read_unlock(); |
3178 | |
3179 | /* |
3180 | * Try set up a new objcg pointer atomically. If it |
3181 | * fails, it means the update flag was set concurrently, so |
3182 | * the whole procedure should be repeated. |
3183 | */ |
3184 | } while (!try_cmpxchg(¤t->objcg, &old, objcg)); |
3185 | |
3186 | return objcg; |
3187 | } |
3188 | |
3189 | __always_inline struct obj_cgroup *current_obj_cgroup(void) |
3190 | { |
3191 | struct mem_cgroup *memcg; |
3192 | struct obj_cgroup *objcg; |
3193 | |
3194 | if (in_task()) { |
3195 | memcg = current->active_memcg; |
3196 | if (unlikely(memcg)) |
3197 | goto from_memcg; |
3198 | |
3199 | objcg = READ_ONCE(current->objcg); |
3200 | if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) |
3201 | objcg = current_objcg_update(); |
3202 | /* |
3203 | * Objcg reference is kept by the task, so it's safe |
3204 | * to use the objcg by the current task. |
3205 | */ |
3206 | return objcg; |
3207 | } |
3208 | |
3209 | memcg = this_cpu_read(int_active_memcg); |
3210 | if (unlikely(memcg)) |
3211 | goto from_memcg; |
3212 | |
3213 | return NULL; |
3214 | |
3215 | from_memcg: |
3216 | objcg = NULL; |
3217 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
3218 | /* |
3219 | * Memcg pointer is protected by scope (see set_active_memcg()) |
3220 | * and is pinning the corresponding objcg, so objcg can't go |
3221 | * away and can be used within the scope without any additional |
3222 | * protection. |
3223 | */ |
3224 | objcg = rcu_dereference_check(memcg->objcg, 1); |
3225 | if (likely(objcg)) |
3226 | break; |
3227 | } |
3228 | |
3229 | return objcg; |
3230 | } |
3231 | |
3232 | struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) |
3233 | { |
3234 | struct obj_cgroup *objcg; |
3235 | |
3236 | if (!memcg_kmem_online()) |
3237 | return NULL; |
3238 | |
3239 | if (folio_memcg_kmem(folio)) { |
3240 | objcg = __folio_objcg(folio); |
3241 | obj_cgroup_get(objcg); |
3242 | } else { |
3243 | struct mem_cgroup *memcg; |
3244 | |
3245 | rcu_read_lock(); |
3246 | memcg = __folio_memcg(folio); |
3247 | if (memcg) |
3248 | objcg = __get_obj_cgroup_from_memcg(memcg); |
3249 | else |
3250 | objcg = NULL; |
3251 | rcu_read_unlock(); |
3252 | } |
3253 | return objcg; |
3254 | } |
3255 | |
3256 | static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) |
3257 | { |
3258 | mod_memcg_state(memcg, idx: MEMCG_KMEM, val: nr_pages); |
3259 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
3260 | if (nr_pages > 0) |
3261 | page_counter_charge(counter: &memcg->kmem, nr_pages); |
3262 | else |
3263 | page_counter_uncharge(counter: &memcg->kmem, nr_pages: -nr_pages); |
3264 | } |
3265 | } |
3266 | |
3267 | |
3268 | /* |
3269 | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg |
3270 | * @objcg: object cgroup to uncharge |
3271 | * @nr_pages: number of pages to uncharge |
3272 | */ |
3273 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, |
3274 | unsigned int nr_pages) |
3275 | { |
3276 | struct mem_cgroup *memcg; |
3277 | |
3278 | memcg = get_mem_cgroup_from_objcg(objcg); |
3279 | |
3280 | memcg_account_kmem(memcg, nr_pages: -nr_pages); |
3281 | refill_stock(memcg, nr_pages); |
3282 | |
3283 | css_put(css: &memcg->css); |
3284 | } |
3285 | |
3286 | /* |
3287 | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg |
3288 | * @objcg: object cgroup to charge |
3289 | * @gfp: reclaim mode |
3290 | * @nr_pages: number of pages to charge |
3291 | * |
3292 | * Returns 0 on success, an error code on failure. |
3293 | */ |
3294 | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, |
3295 | unsigned int nr_pages) |
3296 | { |
3297 | struct mem_cgroup *memcg; |
3298 | int ret; |
3299 | |
3300 | memcg = get_mem_cgroup_from_objcg(objcg); |
3301 | |
3302 | ret = try_charge_memcg(memcg, gfp_mask: gfp, nr_pages); |
3303 | if (ret) |
3304 | goto out; |
3305 | |
3306 | memcg_account_kmem(memcg, nr_pages); |
3307 | out: |
3308 | css_put(css: &memcg->css); |
3309 | |
3310 | return ret; |
3311 | } |
3312 | |
3313 | /** |
3314 | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup |
3315 | * @page: page to charge |
3316 | * @gfp: reclaim mode |
3317 | * @order: allocation order |
3318 | * |
3319 | * Returns 0 on success, an error code on failure. |
3320 | */ |
3321 | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) |
3322 | { |
3323 | struct obj_cgroup *objcg; |
3324 | int ret = 0; |
3325 | |
3326 | objcg = current_obj_cgroup(); |
3327 | if (objcg) { |
3328 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages: 1 << order); |
3329 | if (!ret) { |
3330 | obj_cgroup_get(objcg); |
3331 | page->memcg_data = (unsigned long)objcg | |
3332 | MEMCG_DATA_KMEM; |
3333 | return 0; |
3334 | } |
3335 | } |
3336 | return ret; |
3337 | } |
3338 | |
3339 | /** |
3340 | * __memcg_kmem_uncharge_page: uncharge a kmem page |
3341 | * @page: page to uncharge |
3342 | * @order: allocation order |
3343 | */ |
3344 | void __memcg_kmem_uncharge_page(struct page *page, int order) |
3345 | { |
3346 | struct folio *folio = page_folio(page); |
3347 | struct obj_cgroup *objcg; |
3348 | unsigned int nr_pages = 1 << order; |
3349 | |
3350 | if (!folio_memcg_kmem(folio)) |
3351 | return; |
3352 | |
3353 | objcg = __folio_objcg(folio); |
3354 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
3355 | folio->memcg_data = 0; |
3356 | obj_cgroup_put(objcg); |
3357 | } |
3358 | |
3359 | void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, |
3360 | enum node_stat_item idx, int nr) |
3361 | { |
3362 | struct memcg_stock_pcp *stock; |
3363 | struct obj_cgroup *old = NULL; |
3364 | unsigned long flags; |
3365 | int *bytes; |
3366 | |
3367 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
3368 | stock = this_cpu_ptr(&memcg_stock); |
3369 | |
3370 | /* |
3371 | * Save vmstat data in stock and skip vmstat array update unless |
3372 | * accumulating over a page of vmstat data or when pgdat or idx |
3373 | * changes. |
3374 | */ |
3375 | if (READ_ONCE(stock->cached_objcg) != objcg) { |
3376 | old = drain_obj_stock(stock); |
3377 | obj_cgroup_get(objcg); |
3378 | stock->nr_bytes = atomic_read(v: &objcg->nr_charged_bytes) |
3379 | ? atomic_xchg(v: &objcg->nr_charged_bytes, new: 0) : 0; |
3380 | WRITE_ONCE(stock->cached_objcg, objcg); |
3381 | stock->cached_pgdat = pgdat; |
3382 | } else if (stock->cached_pgdat != pgdat) { |
3383 | /* Flush the existing cached vmstat data */ |
3384 | struct pglist_data *oldpg = stock->cached_pgdat; |
3385 | |
3386 | if (stock->nr_slab_reclaimable_b) { |
3387 | mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_RECLAIMABLE_B, |
3388 | nr: stock->nr_slab_reclaimable_b); |
3389 | stock->nr_slab_reclaimable_b = 0; |
3390 | } |
3391 | if (stock->nr_slab_unreclaimable_b) { |
3392 | mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_UNRECLAIMABLE_B, |
3393 | nr: stock->nr_slab_unreclaimable_b); |
3394 | stock->nr_slab_unreclaimable_b = 0; |
3395 | } |
3396 | stock->cached_pgdat = pgdat; |
3397 | } |
3398 | |
3399 | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b |
3400 | : &stock->nr_slab_unreclaimable_b; |
3401 | /* |
3402 | * Even for large object >= PAGE_SIZE, the vmstat data will still be |
3403 | * cached locally at least once before pushing it out. |
3404 | */ |
3405 | if (!*bytes) { |
3406 | *bytes = nr; |
3407 | nr = 0; |
3408 | } else { |
3409 | *bytes += nr; |
3410 | if (abs(*bytes) > PAGE_SIZE) { |
3411 | nr = *bytes; |
3412 | *bytes = 0; |
3413 | } else { |
3414 | nr = 0; |
3415 | } |
3416 | } |
3417 | if (nr) |
3418 | mod_objcg_mlstate(objcg, pgdat, idx, nr); |
3419 | |
3420 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
3421 | if (old) |
3422 | obj_cgroup_put(objcg: old); |
3423 | } |
3424 | |
3425 | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) |
3426 | { |
3427 | struct memcg_stock_pcp *stock; |
3428 | unsigned long flags; |
3429 | bool ret = false; |
3430 | |
3431 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
3432 | |
3433 | stock = this_cpu_ptr(&memcg_stock); |
3434 | if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { |
3435 | stock->nr_bytes -= nr_bytes; |
3436 | ret = true; |
3437 | } |
3438 | |
3439 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
3440 | |
3441 | return ret; |
3442 | } |
3443 | |
3444 | static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) |
3445 | { |
3446 | struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); |
3447 | |
3448 | if (!old) |
3449 | return NULL; |
3450 | |
3451 | if (stock->nr_bytes) { |
3452 | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
3453 | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); |
3454 | |
3455 | if (nr_pages) { |
3456 | struct mem_cgroup *memcg; |
3457 | |
3458 | memcg = get_mem_cgroup_from_objcg(objcg: old); |
3459 | |
3460 | memcg_account_kmem(memcg, nr_pages: -nr_pages); |
3461 | __refill_stock(memcg, nr_pages); |
3462 | |
3463 | css_put(css: &memcg->css); |
3464 | } |
3465 | |
3466 | /* |
3467 | * The leftover is flushed to the centralized per-memcg value. |
3468 | * On the next attempt to refill obj stock it will be moved |
3469 | * to a per-cpu stock (probably, on an other CPU), see |
3470 | * refill_obj_stock(). |
3471 | * |
3472 | * How often it's flushed is a trade-off between the memory |
3473 | * limit enforcement accuracy and potential CPU contention, |
3474 | * so it might be changed in the future. |
3475 | */ |
3476 | atomic_add(i: nr_bytes, v: &old->nr_charged_bytes); |
3477 | stock->nr_bytes = 0; |
3478 | } |
3479 | |
3480 | /* |
3481 | * Flush the vmstat data in current stock |
3482 | */ |
3483 | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { |
3484 | if (stock->nr_slab_reclaimable_b) { |
3485 | mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat, |
3486 | idx: NR_SLAB_RECLAIMABLE_B, |
3487 | nr: stock->nr_slab_reclaimable_b); |
3488 | stock->nr_slab_reclaimable_b = 0; |
3489 | } |
3490 | if (stock->nr_slab_unreclaimable_b) { |
3491 | mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat, |
3492 | idx: NR_SLAB_UNRECLAIMABLE_B, |
3493 | nr: stock->nr_slab_unreclaimable_b); |
3494 | stock->nr_slab_unreclaimable_b = 0; |
3495 | } |
3496 | stock->cached_pgdat = NULL; |
3497 | } |
3498 | |
3499 | WRITE_ONCE(stock->cached_objcg, NULL); |
3500 | /* |
3501 | * The `old' objects needs to be released by the caller via |
3502 | * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. |
3503 | */ |
3504 | return old; |
3505 | } |
3506 | |
3507 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, |
3508 | struct mem_cgroup *root_memcg) |
3509 | { |
3510 | struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); |
3511 | struct mem_cgroup *memcg; |
3512 | |
3513 | if (objcg) { |
3514 | memcg = obj_cgroup_memcg(objcg); |
3515 | if (memcg && mem_cgroup_is_descendant(memcg, root: root_memcg)) |
3516 | return true; |
3517 | } |
3518 | |
3519 | return false; |
3520 | } |
3521 | |
3522 | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
3523 | bool allow_uncharge) |
3524 | { |
3525 | struct memcg_stock_pcp *stock; |
3526 | struct obj_cgroup *old = NULL; |
3527 | unsigned long flags; |
3528 | unsigned int nr_pages = 0; |
3529 | |
3530 | local_lock_irqsave(&memcg_stock.stock_lock, flags); |
3531 | |
3532 | stock = this_cpu_ptr(&memcg_stock); |
3533 | if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ |
3534 | old = drain_obj_stock(stock); |
3535 | obj_cgroup_get(objcg); |
3536 | WRITE_ONCE(stock->cached_objcg, objcg); |
3537 | stock->nr_bytes = atomic_read(v: &objcg->nr_charged_bytes) |
3538 | ? atomic_xchg(v: &objcg->nr_charged_bytes, new: 0) : 0; |
3539 | allow_uncharge = true; /* Allow uncharge when objcg changes */ |
3540 | } |
3541 | stock->nr_bytes += nr_bytes; |
3542 | |
3543 | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { |
3544 | nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
3545 | stock->nr_bytes &= (PAGE_SIZE - 1); |
3546 | } |
3547 | |
3548 | local_unlock_irqrestore(&memcg_stock.stock_lock, flags); |
3549 | if (old) |
3550 | obj_cgroup_put(objcg: old); |
3551 | |
3552 | if (nr_pages) |
3553 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
3554 | } |
3555 | |
3556 | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) |
3557 | { |
3558 | unsigned int nr_pages, nr_bytes; |
3559 | int ret; |
3560 | |
3561 | if (consume_obj_stock(objcg, nr_bytes: size)) |
3562 | return 0; |
3563 | |
3564 | /* |
3565 | * In theory, objcg->nr_charged_bytes can have enough |
3566 | * pre-charged bytes to satisfy the allocation. However, |
3567 | * flushing objcg->nr_charged_bytes requires two atomic |
3568 | * operations, and objcg->nr_charged_bytes can't be big. |
3569 | * The shared objcg->nr_charged_bytes can also become a |
3570 | * performance bottleneck if all tasks of the same memcg are |
3571 | * trying to update it. So it's better to ignore it and try |
3572 | * grab some new pages. The stock's nr_bytes will be flushed to |
3573 | * objcg->nr_charged_bytes later on when objcg changes. |
3574 | * |
3575 | * The stock's nr_bytes may contain enough pre-charged bytes |
3576 | * to allow one less page from being charged, but we can't rely |
3577 | * on the pre-charged bytes not being changed outside of |
3578 | * consume_obj_stock() or refill_obj_stock(). So ignore those |
3579 | * pre-charged bytes as well when charging pages. To avoid a |
3580 | * page uncharge right after a page charge, we set the |
3581 | * allow_uncharge flag to false when calling refill_obj_stock() |
3582 | * to temporarily allow the pre-charged bytes to exceed the page |
3583 | * size limit. The maximum reachable value of the pre-charged |
3584 | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data |
3585 | * race. |
3586 | */ |
3587 | nr_pages = size >> PAGE_SHIFT; |
3588 | nr_bytes = size & (PAGE_SIZE - 1); |
3589 | |
3590 | if (nr_bytes) |
3591 | nr_pages += 1; |
3592 | |
3593 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); |
3594 | if (!ret && nr_bytes) |
3595 | refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, allow_uncharge: false); |
3596 | |
3597 | return ret; |
3598 | } |
3599 | |
3600 | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) |
3601 | { |
3602 | refill_obj_stock(objcg, nr_bytes: size, allow_uncharge: true); |
3603 | } |
3604 | |
3605 | #endif /* CONFIG_MEMCG_KMEM */ |
3606 | |
3607 | /* |
3608 | * Because page_memcg(head) is not set on tails, set it now. |
3609 | */ |
3610 | void split_page_memcg(struct page *head, int old_order, int new_order) |
3611 | { |
3612 | struct folio *folio = page_folio(head); |
3613 | struct mem_cgroup *memcg = folio_memcg(folio); |
3614 | int i; |
3615 | unsigned int old_nr = 1 << old_order; |
3616 | unsigned int new_nr = 1 << new_order; |
3617 | |
3618 | if (mem_cgroup_disabled() || !memcg) |
3619 | return; |
3620 | |
3621 | for (i = new_nr; i < old_nr; i += new_nr) |
3622 | folio_page(folio, i)->memcg_data = folio->memcg_data; |
3623 | |
3624 | if (folio_memcg_kmem(folio)) |
3625 | obj_cgroup_get_many(objcg: __folio_objcg(folio), nr: old_nr / new_nr - 1); |
3626 | else |
3627 | css_get_many(css: &memcg->css, n: old_nr / new_nr - 1); |
3628 | } |
3629 | |
3630 | #ifdef CONFIG_SWAP |
3631 | /** |
3632 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. |
3633 | * @entry: swap entry to be moved |
3634 | * @from: mem_cgroup which the entry is moved from |
3635 | * @to: mem_cgroup which the entry is moved to |
3636 | * |
3637 | * It succeeds only when the swap_cgroup's record for this entry is the same |
3638 | * as the mem_cgroup's id of @from. |
3639 | * |
3640 | * Returns 0 on success, -EINVAL on failure. |
3641 | * |
3642 | * The caller must have charged to @to, IOW, called page_counter_charge() about |
3643 | * both res and memsw, and called css_get(). |
3644 | */ |
3645 | static int mem_cgroup_move_swap_account(swp_entry_t entry, |
3646 | struct mem_cgroup *from, struct mem_cgroup *to) |
3647 | { |
3648 | unsigned short old_id, new_id; |
3649 | |
3650 | old_id = mem_cgroup_id(memcg: from); |
3651 | new_id = mem_cgroup_id(memcg: to); |
3652 | |
3653 | if (swap_cgroup_cmpxchg(ent: entry, old: old_id, new: new_id) == old_id) { |
3654 | mod_memcg_state(memcg: from, idx: MEMCG_SWAP, val: -1); |
3655 | mod_memcg_state(memcg: to, idx: MEMCG_SWAP, val: 1); |
3656 | return 0; |
3657 | } |
3658 | return -EINVAL; |
3659 | } |
3660 | #else |
3661 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, |
3662 | struct mem_cgroup *from, struct mem_cgroup *to) |
3663 | { |
3664 | return -EINVAL; |
3665 | } |
3666 | #endif |
3667 | |
3668 | static DEFINE_MUTEX(memcg_max_mutex); |
3669 | |
3670 | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, |
3671 | unsigned long max, bool memsw) |
3672 | { |
3673 | bool enlarge = false; |
3674 | bool drained = false; |
3675 | int ret; |
3676 | bool limits_invariant; |
3677 | struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; |
3678 | |
3679 | do { |
3680 | if (signal_pending(current)) { |
3681 | ret = -EINTR; |
3682 | break; |
3683 | } |
3684 | |
3685 | mutex_lock(&memcg_max_mutex); |
3686 | /* |
3687 | * Make sure that the new limit (memsw or memory limit) doesn't |
3688 | * break our basic invariant rule memory.max <= memsw.max. |
3689 | */ |
3690 | limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : |
3691 | max <= memcg->memsw.max; |
3692 | if (!limits_invariant) { |
3693 | mutex_unlock(lock: &memcg_max_mutex); |
3694 | ret = -EINVAL; |
3695 | break; |
3696 | } |
3697 | if (max > counter->max) |
3698 | enlarge = true; |
3699 | ret = page_counter_set_max(counter, nr_pages: max); |
3700 | mutex_unlock(lock: &memcg_max_mutex); |
3701 | |
3702 | if (!ret) |
3703 | break; |
3704 | |
3705 | if (!drained) { |
3706 | drain_all_stock(root_memcg: memcg); |
3707 | drained = true; |
3708 | continue; |
3709 | } |
3710 | |
3711 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: 1, GFP_KERNEL, |
3712 | reclaim_options: memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { |
3713 | ret = -EBUSY; |
3714 | break; |
3715 | } |
3716 | } while (true); |
3717 | |
3718 | if (!ret && enlarge) |
3719 | memcg_oom_recover(memcg); |
3720 | |
3721 | return ret; |
3722 | } |
3723 | |
3724 | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, |
3725 | gfp_t gfp_mask, |
3726 | unsigned long *total_scanned) |
3727 | { |
3728 | unsigned long nr_reclaimed = 0; |
3729 | struct mem_cgroup_per_node *mz, *next_mz = NULL; |
3730 | unsigned long reclaimed; |
3731 | int loop = 0; |
3732 | struct mem_cgroup_tree_per_node *mctz; |
3733 | unsigned long excess; |
3734 | |
3735 | if (lru_gen_enabled()) |
3736 | return 0; |
3737 | |
3738 | if (order > 0) |
3739 | return 0; |
3740 | |
3741 | mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; |
3742 | |
3743 | /* |
3744 | * Do not even bother to check the largest node if the root |
3745 | * is empty. Do it lockless to prevent lock bouncing. Races |
3746 | * are acceptable as soft limit is best effort anyway. |
3747 | */ |
3748 | if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) |
3749 | return 0; |
3750 | |
3751 | /* |
3752 | * This loop can run a while, specially if mem_cgroup's continuously |
3753 | * keep exceeding their soft limit and putting the system under |
3754 | * pressure |
3755 | */ |
3756 | do { |
3757 | if (next_mz) |
3758 | mz = next_mz; |
3759 | else |
3760 | mz = mem_cgroup_largest_soft_limit_node(mctz); |
3761 | if (!mz) |
3762 | break; |
3763 | |
3764 | reclaimed = mem_cgroup_soft_reclaim(root_memcg: mz->memcg, pgdat, |
3765 | gfp_mask, total_scanned); |
3766 | nr_reclaimed += reclaimed; |
3767 | spin_lock_irq(lock: &mctz->lock); |
3768 | |
3769 | /* |
3770 | * If we failed to reclaim anything from this memory cgroup |
3771 | * it is time to move on to the next cgroup |
3772 | */ |
3773 | next_mz = NULL; |
3774 | if (!reclaimed) |
3775 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); |
3776 | |
3777 | excess = soft_limit_excess(memcg: mz->memcg); |
3778 | /* |
3779 | * One school of thought says that we should not add |
3780 | * back the node to the tree if reclaim returns 0. |
3781 | * But our reclaim could return 0, simply because due |
3782 | * to priority we are exposing a smaller subset of |
3783 | * memory to reclaim from. Consider this as a longer |
3784 | * term TODO. |
3785 | */ |
3786 | /* If excess == 0, no tree ops */ |
3787 | __mem_cgroup_insert_exceeded(mz, mctz, new_usage_in_excess: excess); |
3788 | spin_unlock_irq(lock: &mctz->lock); |
3789 | css_put(css: &mz->memcg->css); |
3790 | loop++; |
3791 | /* |
3792 | * Could not reclaim anything and there are no more |
3793 | * mem cgroups to try or we seem to be looping without |
3794 | * reclaiming anything. |
3795 | */ |
3796 | if (!nr_reclaimed && |
3797 | (next_mz == NULL || |
3798 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) |
3799 | break; |
3800 | } while (!nr_reclaimed); |
3801 | if (next_mz) |
3802 | css_put(css: &next_mz->memcg->css); |
3803 | return nr_reclaimed; |
3804 | } |
3805 | |
3806 | /* |
3807 | * Reclaims as many pages from the given memcg as possible. |
3808 | * |
3809 | * Caller is responsible for holding css reference for memcg. |
3810 | */ |
3811 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) |
3812 | { |
3813 | int nr_retries = MAX_RECLAIM_RETRIES; |
3814 | |
3815 | /* we call try-to-free pages for make this cgroup empty */ |
3816 | lru_add_drain_all(); |
3817 | |
3818 | drain_all_stock(root_memcg: memcg); |
3819 | |
3820 | /* try to free all pages in this cgroup */ |
3821 | while (nr_retries && page_counter_read(counter: &memcg->memory)) { |
3822 | if (signal_pending(current)) |
3823 | return -EINTR; |
3824 | |
3825 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: 1, GFP_KERNEL, |
3826 | MEMCG_RECLAIM_MAY_SWAP)) |
3827 | nr_retries--; |
3828 | } |
3829 | |
3830 | return 0; |
3831 | } |
3832 | |
3833 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, |
3834 | char *buf, size_t nbytes, |
3835 | loff_t off) |
3836 | { |
3837 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
3838 | |
3839 | if (mem_cgroup_is_root(memcg)) |
3840 | return -EINVAL; |
3841 | return mem_cgroup_force_empty(memcg) ?: nbytes; |
3842 | } |
3843 | |
3844 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
3845 | struct cftype *cft) |
3846 | { |
3847 | return 1; |
3848 | } |
3849 | |
3850 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
3851 | struct cftype *cft, u64 val) |
3852 | { |
3853 | if (val == 1) |
3854 | return 0; |
3855 | |
3856 | pr_warn_once("Non-hierarchical mode is deprecated. " |
3857 | "Please report your usecase to linux-mm@kvack.org if you " |
3858 | "depend on this functionality.\n" ); |
3859 | |
3860 | return -EINVAL; |
3861 | } |
3862 | |
3863 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
3864 | { |
3865 | unsigned long val; |
3866 | |
3867 | if (mem_cgroup_is_root(memcg)) { |
3868 | /* |
3869 | * Approximate root's usage from global state. This isn't |
3870 | * perfect, but the root usage was always an approximation. |
3871 | */ |
3872 | val = global_node_page_state(item: NR_FILE_PAGES) + |
3873 | global_node_page_state(item: NR_ANON_MAPPED); |
3874 | if (swap) |
3875 | val += total_swap_pages - get_nr_swap_pages(); |
3876 | } else { |
3877 | if (!swap) |
3878 | val = page_counter_read(counter: &memcg->memory); |
3879 | else |
3880 | val = page_counter_read(counter: &memcg->memsw); |
3881 | } |
3882 | return val; |
3883 | } |
3884 | |
3885 | enum { |
3886 | RES_USAGE, |
3887 | RES_LIMIT, |
3888 | RES_MAX_USAGE, |
3889 | RES_FAILCNT, |
3890 | RES_SOFT_LIMIT, |
3891 | }; |
3892 | |
3893 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, |
3894 | struct cftype *cft) |
3895 | { |
3896 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3897 | struct page_counter *counter; |
3898 | |
3899 | switch (MEMFILE_TYPE(cft->private)) { |
3900 | case _MEM: |
3901 | counter = &memcg->memory; |
3902 | break; |
3903 | case _MEMSWAP: |
3904 | counter = &memcg->memsw; |
3905 | break; |
3906 | case _KMEM: |
3907 | counter = &memcg->kmem; |
3908 | break; |
3909 | case _TCP: |
3910 | counter = &memcg->tcpmem; |
3911 | break; |
3912 | default: |
3913 | BUG(); |
3914 | } |
3915 | |
3916 | switch (MEMFILE_ATTR(cft->private)) { |
3917 | case RES_USAGE: |
3918 | if (counter == &memcg->memory) |
3919 | return (u64)mem_cgroup_usage(memcg, swap: false) * PAGE_SIZE; |
3920 | if (counter == &memcg->memsw) |
3921 | return (u64)mem_cgroup_usage(memcg, swap: true) * PAGE_SIZE; |
3922 | return (u64)page_counter_read(counter) * PAGE_SIZE; |
3923 | case RES_LIMIT: |
3924 | return (u64)counter->max * PAGE_SIZE; |
3925 | case RES_MAX_USAGE: |
3926 | return (u64)counter->watermark * PAGE_SIZE; |
3927 | case RES_FAILCNT: |
3928 | return counter->failcnt; |
3929 | case RES_SOFT_LIMIT: |
3930 | return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; |
3931 | default: |
3932 | BUG(); |
3933 | } |
3934 | } |
3935 | |
3936 | /* |
3937 | * This function doesn't do anything useful. Its only job is to provide a read |
3938 | * handler for a file so that cgroup_file_mode() will add read permissions. |
3939 | */ |
3940 | static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, |
3941 | __always_unused void *v) |
3942 | { |
3943 | return -EINVAL; |
3944 | } |
3945 | |
3946 | #ifdef CONFIG_MEMCG_KMEM |
3947 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
3948 | { |
3949 | struct obj_cgroup *objcg; |
3950 | |
3951 | if (mem_cgroup_kmem_disabled()) |
3952 | return 0; |
3953 | |
3954 | if (unlikely(mem_cgroup_is_root(memcg))) |
3955 | return 0; |
3956 | |
3957 | objcg = obj_cgroup_alloc(); |
3958 | if (!objcg) |
3959 | return -ENOMEM; |
3960 | |
3961 | objcg->memcg = memcg; |
3962 | rcu_assign_pointer(memcg->objcg, objcg); |
3963 | obj_cgroup_get(objcg); |
3964 | memcg->orig_objcg = objcg; |
3965 | |
3966 | static_branch_enable(&memcg_kmem_online_key); |
3967 | |
3968 | memcg->kmemcg_id = memcg->id.id; |
3969 | |
3970 | return 0; |
3971 | } |
3972 | |
3973 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
3974 | { |
3975 | struct mem_cgroup *parent; |
3976 | |
3977 | if (mem_cgroup_kmem_disabled()) |
3978 | return; |
3979 | |
3980 | if (unlikely(mem_cgroup_is_root(memcg))) |
3981 | return; |
3982 | |
3983 | parent = parent_mem_cgroup(memcg); |
3984 | if (!parent) |
3985 | parent = root_mem_cgroup; |
3986 | |
3987 | memcg_reparent_objcgs(memcg, parent); |
3988 | |
3989 | /* |
3990 | * After we have finished memcg_reparent_objcgs(), all list_lrus |
3991 | * corresponding to this cgroup are guaranteed to remain empty. |
3992 | * The ordering is imposed by list_lru_node->lock taken by |
3993 | * memcg_reparent_list_lrus(). |
3994 | */ |
3995 | memcg_reparent_list_lrus(memcg, parent); |
3996 | } |
3997 | #else |
3998 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
3999 | { |
4000 | return 0; |
4001 | } |
4002 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
4003 | { |
4004 | } |
4005 | #endif /* CONFIG_MEMCG_KMEM */ |
4006 | |
4007 | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) |
4008 | { |
4009 | int ret; |
4010 | |
4011 | mutex_lock(&memcg_max_mutex); |
4012 | |
4013 | ret = page_counter_set_max(counter: &memcg->tcpmem, nr_pages: max); |
4014 | if (ret) |
4015 | goto out; |
4016 | |
4017 | if (!memcg->tcpmem_active) { |
4018 | /* |
4019 | * The active flag needs to be written after the static_key |
4020 | * update. This is what guarantees that the socket activation |
4021 | * function is the last one to run. See mem_cgroup_sk_alloc() |
4022 | * for details, and note that we don't mark any socket as |
4023 | * belonging to this memcg until that flag is up. |
4024 | * |
4025 | * We need to do this, because static_keys will span multiple |
4026 | * sites, but we can't control their order. If we mark a socket |
4027 | * as accounted, but the accounting functions are not patched in |
4028 | * yet, we'll lose accounting. |
4029 | * |
4030 | * We never race with the readers in mem_cgroup_sk_alloc(), |
4031 | * because when this value change, the code to process it is not |
4032 | * patched in yet. |
4033 | */ |
4034 | static_branch_inc(&memcg_sockets_enabled_key); |
4035 | memcg->tcpmem_active = true; |
4036 | } |
4037 | out: |
4038 | mutex_unlock(lock: &memcg_max_mutex); |
4039 | return ret; |
4040 | } |
4041 | |
4042 | /* |
4043 | * The user of this function is... |
4044 | * RES_LIMIT. |
4045 | */ |
4046 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, |
4047 | char *buf, size_t nbytes, loff_t off) |
4048 | { |
4049 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4050 | unsigned long nr_pages; |
4051 | int ret; |
4052 | |
4053 | buf = strstrip(str: buf); |
4054 | ret = page_counter_memparse(buf, max: "-1" , nr_pages: &nr_pages); |
4055 | if (ret) |
4056 | return ret; |
4057 | |
4058 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
4059 | case RES_LIMIT: |
4060 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
4061 | ret = -EINVAL; |
4062 | break; |
4063 | } |
4064 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
4065 | case _MEM: |
4066 | ret = mem_cgroup_resize_max(memcg, max: nr_pages, memsw: false); |
4067 | break; |
4068 | case _MEMSWAP: |
4069 | ret = mem_cgroup_resize_max(memcg, max: nr_pages, memsw: true); |
4070 | break; |
4071 | case _KMEM: |
4072 | pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " |
4073 | "Writing any value to this file has no effect. " |
4074 | "Please report your usecase to linux-mm@kvack.org if you " |
4075 | "depend on this functionality.\n" ); |
4076 | ret = 0; |
4077 | break; |
4078 | case _TCP: |
4079 | ret = memcg_update_tcp_max(memcg, max: nr_pages); |
4080 | break; |
4081 | } |
4082 | break; |
4083 | case RES_SOFT_LIMIT: |
4084 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
4085 | ret = -EOPNOTSUPP; |
4086 | } else { |
4087 | WRITE_ONCE(memcg->soft_limit, nr_pages); |
4088 | ret = 0; |
4089 | } |
4090 | break; |
4091 | } |
4092 | return ret ?: nbytes; |
4093 | } |
4094 | |
4095 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, |
4096 | size_t nbytes, loff_t off) |
4097 | { |
4098 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
4099 | struct page_counter *counter; |
4100 | |
4101 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
4102 | case _MEM: |
4103 | counter = &memcg->memory; |
4104 | break; |
4105 | case _MEMSWAP: |
4106 | counter = &memcg->memsw; |
4107 | break; |
4108 | case _KMEM: |
4109 | counter = &memcg->kmem; |
4110 | break; |
4111 | case _TCP: |
4112 | counter = &memcg->tcpmem; |
4113 | break; |
4114 | default: |
4115 | BUG(); |
4116 | } |
4117 | |
4118 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
4119 | case RES_MAX_USAGE: |
4120 | page_counter_reset_watermark(counter); |
4121 | break; |
4122 | case RES_FAILCNT: |
4123 | counter->failcnt = 0; |
4124 | break; |
4125 | default: |
4126 | BUG(); |
4127 | } |
4128 | |
4129 | return nbytes; |
4130 | } |
4131 | |
4132 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
4133 | struct cftype *cft) |
4134 | { |
4135 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
4136 | } |
4137 | |
4138 | #ifdef CONFIG_MMU |
4139 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
4140 | struct cftype *cft, u64 val) |
4141 | { |
4142 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4143 | |
4144 | pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " |
4145 | "Please report your usecase to linux-mm@kvack.org if you " |
4146 | "depend on this functionality.\n" ); |
4147 | |
4148 | if (val & ~MOVE_MASK) |
4149 | return -EINVAL; |
4150 | |
4151 | /* |
4152 | * No kind of locking is needed in here, because ->can_attach() will |
4153 | * check this value once in the beginning of the process, and then carry |
4154 | * on with stale data. This means that changes to this value will only |
4155 | * affect task migrations starting after the change. |
4156 | */ |
4157 | memcg->move_charge_at_immigrate = val; |
4158 | return 0; |
4159 | } |
4160 | #else |
4161 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
4162 | struct cftype *cft, u64 val) |
4163 | { |
4164 | return -ENOSYS; |
4165 | } |
4166 | #endif |
4167 | |
4168 | #ifdef CONFIG_NUMA |
4169 | |
4170 | #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) |
4171 | #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) |
4172 | #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) |
4173 | |
4174 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
4175 | int nid, unsigned int lru_mask, bool tree) |
4176 | { |
4177 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); |
4178 | unsigned long nr = 0; |
4179 | enum lru_list lru; |
4180 | |
4181 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
4182 | |
4183 | for_each_lru(lru) { |
4184 | if (!(BIT(lru) & lru_mask)) |
4185 | continue; |
4186 | if (tree) |
4187 | nr += lruvec_page_state(lruvec, idx: NR_LRU_BASE + lru); |
4188 | else |
4189 | nr += lruvec_page_state_local(lruvec, idx: NR_LRU_BASE + lru); |
4190 | } |
4191 | return nr; |
4192 | } |
4193 | |
4194 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
4195 | unsigned int lru_mask, |
4196 | bool tree) |
4197 | { |
4198 | unsigned long nr = 0; |
4199 | enum lru_list lru; |
4200 | |
4201 | for_each_lru(lru) { |
4202 | if (!(BIT(lru) & lru_mask)) |
4203 | continue; |
4204 | if (tree) |
4205 | nr += memcg_page_state(memcg, idx: NR_LRU_BASE + lru); |
4206 | else |
4207 | nr += memcg_page_state_local(memcg, idx: NR_LRU_BASE + lru); |
4208 | } |
4209 | return nr; |
4210 | } |
4211 | |
4212 | static int memcg_numa_stat_show(struct seq_file *m, void *v) |
4213 | { |
4214 | struct numa_stat { |
4215 | const char *name; |
4216 | unsigned int lru_mask; |
4217 | }; |
4218 | |
4219 | static const struct numa_stat stats[] = { |
4220 | { "total" , LRU_ALL }, |
4221 | { "file" , LRU_ALL_FILE }, |
4222 | { "anon" , LRU_ALL_ANON }, |
4223 | { "unevictable" , BIT(LRU_UNEVICTABLE) }, |
4224 | }; |
4225 | const struct numa_stat *stat; |
4226 | int nid; |
4227 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
4228 | |
4229 | mem_cgroup_flush_stats(memcg); |
4230 | |
4231 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
4232 | seq_printf(m, fmt: "%s=%lu" , stat->name, |
4233 | mem_cgroup_nr_lru_pages(memcg, lru_mask: stat->lru_mask, |
4234 | tree: false)); |
4235 | for_each_node_state(nid, N_MEMORY) |
4236 | seq_printf(m, fmt: " N%d=%lu" , nid, |
4237 | mem_cgroup_node_nr_lru_pages(memcg, nid, |
4238 | lru_mask: stat->lru_mask, tree: false)); |
4239 | seq_putc(m, c: '\n'); |
4240 | } |
4241 | |
4242 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
4243 | |
4244 | seq_printf(m, fmt: "hierarchical_%s=%lu" , stat->name, |
4245 | mem_cgroup_nr_lru_pages(memcg, lru_mask: stat->lru_mask, |
4246 | tree: true)); |
4247 | for_each_node_state(nid, N_MEMORY) |
4248 | seq_printf(m, fmt: " N%d=%lu" , nid, |
4249 | mem_cgroup_node_nr_lru_pages(memcg, nid, |
4250 | lru_mask: stat->lru_mask, tree: true)); |
4251 | seq_putc(m, c: '\n'); |
4252 | } |
4253 | |
4254 | return 0; |
4255 | } |
4256 | #endif /* CONFIG_NUMA */ |
4257 | |
4258 | static const unsigned int memcg1_stats[] = { |
4259 | NR_FILE_PAGES, |
4260 | NR_ANON_MAPPED, |
4261 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
4262 | NR_ANON_THPS, |
4263 | #endif |
4264 | NR_SHMEM, |
4265 | NR_FILE_MAPPED, |
4266 | NR_FILE_DIRTY, |
4267 | NR_WRITEBACK, |
4268 | WORKINGSET_REFAULT_ANON, |
4269 | WORKINGSET_REFAULT_FILE, |
4270 | #ifdef CONFIG_SWAP |
4271 | MEMCG_SWAP, |
4272 | NR_SWAPCACHE, |
4273 | #endif |
4274 | }; |
4275 | |
4276 | static const char *const memcg1_stat_names[] = { |
4277 | "cache" , |
4278 | "rss" , |
4279 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
4280 | "rss_huge" , |
4281 | #endif |
4282 | "shmem" , |
4283 | "mapped_file" , |
4284 | "dirty" , |
4285 | "writeback" , |
4286 | "workingset_refault_anon" , |
4287 | "workingset_refault_file" , |
4288 | #ifdef CONFIG_SWAP |
4289 | "swap" , |
4290 | "swapcached" , |
4291 | #endif |
4292 | }; |
4293 | |
4294 | /* Universal VM events cgroup1 shows, original sort order */ |
4295 | static const unsigned int memcg1_events[] = { |
4296 | PGPGIN, |
4297 | PGPGOUT, |
4298 | PGFAULT, |
4299 | PGMAJFAULT, |
4300 | }; |
4301 | |
4302 | static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
4303 | { |
4304 | unsigned long memory, memsw; |
4305 | struct mem_cgroup *mi; |
4306 | unsigned int i; |
4307 | |
4308 | BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); |
4309 | |
4310 | mem_cgroup_flush_stats(memcg); |
4311 | |
4312 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { |
4313 | unsigned long nr; |
4314 | |
4315 | nr = memcg_page_state_local_output(memcg, item: memcg1_stats[i]); |
4316 | seq_buf_printf(s, fmt: "%s %lu\n" , memcg1_stat_names[i], nr); |
4317 | } |
4318 | |
4319 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) |
4320 | seq_buf_printf(s, fmt: "%s %lu\n" , vm_event_name(item: memcg1_events[i]), |
4321 | memcg_events_local(memcg, event: memcg1_events[i])); |
4322 | |
4323 | for (i = 0; i < NR_LRU_LISTS; i++) |
4324 | seq_buf_printf(s, fmt: "%s %lu\n" , lru_list_name(lru: i), |
4325 | memcg_page_state_local(memcg, idx: NR_LRU_BASE + i) * |
4326 | PAGE_SIZE); |
4327 | |
4328 | /* Hierarchical information */ |
4329 | memory = memsw = PAGE_COUNTER_MAX; |
4330 | for (mi = memcg; mi; mi = parent_mem_cgroup(memcg: mi)) { |
4331 | memory = min(memory, READ_ONCE(mi->memory.max)); |
4332 | memsw = min(memsw, READ_ONCE(mi->memsw.max)); |
4333 | } |
4334 | seq_buf_printf(s, fmt: "hierarchical_memory_limit %llu\n" , |
4335 | (u64)memory * PAGE_SIZE); |
4336 | seq_buf_printf(s, fmt: "hierarchical_memsw_limit %llu\n" , |
4337 | (u64)memsw * PAGE_SIZE); |
4338 | |
4339 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { |
4340 | unsigned long nr; |
4341 | |
4342 | nr = memcg_page_state_output(memcg, item: memcg1_stats[i]); |
4343 | seq_buf_printf(s, fmt: "total_%s %llu\n" , memcg1_stat_names[i], |
4344 | (u64)nr); |
4345 | } |
4346 | |
4347 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) |
4348 | seq_buf_printf(s, fmt: "total_%s %llu\n" , |
4349 | vm_event_name(item: memcg1_events[i]), |
4350 | (u64)memcg_events(memcg, event: memcg1_events[i])); |
4351 | |
4352 | for (i = 0; i < NR_LRU_LISTS; i++) |
4353 | seq_buf_printf(s, fmt: "total_%s %llu\n" , lru_list_name(lru: i), |
4354 | (u64)memcg_page_state(memcg, idx: NR_LRU_BASE + i) * |
4355 | PAGE_SIZE); |
4356 | |
4357 | #ifdef CONFIG_DEBUG_VM |
4358 | { |
4359 | pg_data_t *pgdat; |
4360 | struct mem_cgroup_per_node *mz; |
4361 | unsigned long anon_cost = 0; |
4362 | unsigned long file_cost = 0; |
4363 | |
4364 | for_each_online_pgdat(pgdat) { |
4365 | mz = memcg->nodeinfo[pgdat->node_id]; |
4366 | |
4367 | anon_cost += mz->lruvec.anon_cost; |
4368 | file_cost += mz->lruvec.file_cost; |
4369 | } |
4370 | seq_buf_printf(s, fmt: "anon_cost %lu\n" , anon_cost); |
4371 | seq_buf_printf(s, fmt: "file_cost %lu\n" , file_cost); |
4372 | } |
4373 | #endif |
4374 | } |
4375 | |
4376 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
4377 | struct cftype *cft) |
4378 | { |
4379 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4380 | |
4381 | return mem_cgroup_swappiness(memcg); |
4382 | } |
4383 | |
4384 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
4385 | struct cftype *cft, u64 val) |
4386 | { |
4387 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4388 | |
4389 | if (val > 200) |
4390 | return -EINVAL; |
4391 | |
4392 | if (!mem_cgroup_is_root(memcg)) |
4393 | WRITE_ONCE(memcg->swappiness, val); |
4394 | else |
4395 | WRITE_ONCE(vm_swappiness, val); |
4396 | |
4397 | return 0; |
4398 | } |
4399 | |
4400 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
4401 | { |
4402 | struct mem_cgroup_threshold_ary *t; |
4403 | unsigned long usage; |
4404 | int i; |
4405 | |
4406 | rcu_read_lock(); |
4407 | if (!swap) |
4408 | t = rcu_dereference(memcg->thresholds.primary); |
4409 | else |
4410 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
4411 | |
4412 | if (!t) |
4413 | goto unlock; |
4414 | |
4415 | usage = mem_cgroup_usage(memcg, swap); |
4416 | |
4417 | /* |
4418 | * current_threshold points to threshold just below or equal to usage. |
4419 | * If it's not true, a threshold was crossed after last |
4420 | * call of __mem_cgroup_threshold(). |
4421 | */ |
4422 | i = t->current_threshold; |
4423 | |
4424 | /* |
4425 | * Iterate backward over array of thresholds starting from |
4426 | * current_threshold and check if a threshold is crossed. |
4427 | * If none of thresholds below usage is crossed, we read |
4428 | * only one element of the array here. |
4429 | */ |
4430 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) |
4431 | eventfd_signal(ctx: t->entries[i].eventfd); |
4432 | |
4433 | /* i = current_threshold + 1 */ |
4434 | i++; |
4435 | |
4436 | /* |
4437 | * Iterate forward over array of thresholds starting from |
4438 | * current_threshold+1 and check if a threshold is crossed. |
4439 | * If none of thresholds above usage is crossed, we read |
4440 | * only one element of the array here. |
4441 | */ |
4442 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) |
4443 | eventfd_signal(ctx: t->entries[i].eventfd); |
4444 | |
4445 | /* Update current_threshold */ |
4446 | t->current_threshold = i - 1; |
4447 | unlock: |
4448 | rcu_read_unlock(); |
4449 | } |
4450 | |
4451 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) |
4452 | { |
4453 | while (memcg) { |
4454 | __mem_cgroup_threshold(memcg, swap: false); |
4455 | if (do_memsw_account()) |
4456 | __mem_cgroup_threshold(memcg, swap: true); |
4457 | |
4458 | memcg = parent_mem_cgroup(memcg); |
4459 | } |
4460 | } |
4461 | |
4462 | static int compare_thresholds(const void *a, const void *b) |
4463 | { |
4464 | const struct mem_cgroup_threshold *_a = a; |
4465 | const struct mem_cgroup_threshold *_b = b; |
4466 | |
4467 | if (_a->threshold > _b->threshold) |
4468 | return 1; |
4469 | |
4470 | if (_a->threshold < _b->threshold) |
4471 | return -1; |
4472 | |
4473 | return 0; |
4474 | } |
4475 | |
4476 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
4477 | { |
4478 | struct mem_cgroup_eventfd_list *ev; |
4479 | |
4480 | spin_lock(lock: &memcg_oom_lock); |
4481 | |
4482 | list_for_each_entry(ev, &memcg->oom_notify, list) |
4483 | eventfd_signal(ctx: ev->eventfd); |
4484 | |
4485 | spin_unlock(lock: &memcg_oom_lock); |
4486 | return 0; |
4487 | } |
4488 | |
4489 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
4490 | { |
4491 | struct mem_cgroup *iter; |
4492 | |
4493 | for_each_mem_cgroup_tree(iter, memcg) |
4494 | mem_cgroup_oom_notify_cb(memcg: iter); |
4495 | } |
4496 | |
4497 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
4498 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) |
4499 | { |
4500 | struct mem_cgroup_thresholds *thresholds; |
4501 | struct mem_cgroup_threshold_ary *new; |
4502 | unsigned long threshold; |
4503 | unsigned long usage; |
4504 | int i, size, ret; |
4505 | |
4506 | ret = page_counter_memparse(buf: args, max: "-1" , nr_pages: &threshold); |
4507 | if (ret) |
4508 | return ret; |
4509 | |
4510 | mutex_lock(&memcg->thresholds_lock); |
4511 | |
4512 | if (type == _MEM) { |
4513 | thresholds = &memcg->thresholds; |
4514 | usage = mem_cgroup_usage(memcg, swap: false); |
4515 | } else if (type == _MEMSWAP) { |
4516 | thresholds = &memcg->memsw_thresholds; |
4517 | usage = mem_cgroup_usage(memcg, swap: true); |
4518 | } else |
4519 | BUG(); |
4520 | |
4521 | /* Check if a threshold crossed before adding a new one */ |
4522 | if (thresholds->primary) |
4523 | __mem_cgroup_threshold(memcg, swap: type == _MEMSWAP); |
4524 | |
4525 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
4526 | |
4527 | /* Allocate memory for new array of thresholds */ |
4528 | new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); |
4529 | if (!new) { |
4530 | ret = -ENOMEM; |
4531 | goto unlock; |
4532 | } |
4533 | new->size = size; |
4534 | |
4535 | /* Copy thresholds (if any) to new array */ |
4536 | if (thresholds->primary) |
4537 | memcpy(new->entries, thresholds->primary->entries, |
4538 | flex_array_size(new, entries, size - 1)); |
4539 | |
4540 | /* Add new threshold */ |
4541 | new->entries[size - 1].eventfd = eventfd; |
4542 | new->entries[size - 1].threshold = threshold; |
4543 | |
4544 | /* Sort thresholds. Registering of new threshold isn't time-critical */ |
4545 | sort(base: new->entries, num: size, size: sizeof(*new->entries), |
4546 | cmp_func: compare_thresholds, NULL); |
4547 | |
4548 | /* Find current threshold */ |
4549 | new->current_threshold = -1; |
4550 | for (i = 0; i < size; i++) { |
4551 | if (new->entries[i].threshold <= usage) { |
4552 | /* |
4553 | * new->current_threshold will not be used until |
4554 | * rcu_assign_pointer(), so it's safe to increment |
4555 | * it here. |
4556 | */ |
4557 | ++new->current_threshold; |
4558 | } else |
4559 | break; |
4560 | } |
4561 | |
4562 | /* Free old spare buffer and save old primary buffer as spare */ |
4563 | kfree(objp: thresholds->spare); |
4564 | thresholds->spare = thresholds->primary; |
4565 | |
4566 | rcu_assign_pointer(thresholds->primary, new); |
4567 | |
4568 | /* To be sure that nobody uses thresholds */ |
4569 | synchronize_rcu(); |
4570 | |
4571 | unlock: |
4572 | mutex_unlock(lock: &memcg->thresholds_lock); |
4573 | |
4574 | return ret; |
4575 | } |
4576 | |
4577 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
4578 | struct eventfd_ctx *eventfd, const char *args) |
4579 | { |
4580 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, type: _MEM); |
4581 | } |
4582 | |
4583 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, |
4584 | struct eventfd_ctx *eventfd, const char *args) |
4585 | { |
4586 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, type: _MEMSWAP); |
4587 | } |
4588 | |
4589 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
4590 | struct eventfd_ctx *eventfd, enum res_type type) |
4591 | { |
4592 | struct mem_cgroup_thresholds *thresholds; |
4593 | struct mem_cgroup_threshold_ary *new; |
4594 | unsigned long usage; |
4595 | int i, j, size, entries; |
4596 | |
4597 | mutex_lock(&memcg->thresholds_lock); |
4598 | |
4599 | if (type == _MEM) { |
4600 | thresholds = &memcg->thresholds; |
4601 | usage = mem_cgroup_usage(memcg, swap: false); |
4602 | } else if (type == _MEMSWAP) { |
4603 | thresholds = &memcg->memsw_thresholds; |
4604 | usage = mem_cgroup_usage(memcg, swap: true); |
4605 | } else |
4606 | BUG(); |
4607 | |
4608 | if (!thresholds->primary) |
4609 | goto unlock; |
4610 | |
4611 | /* Check if a threshold crossed before removing */ |
4612 | __mem_cgroup_threshold(memcg, swap: type == _MEMSWAP); |
4613 | |
4614 | /* Calculate new number of threshold */ |
4615 | size = entries = 0; |
4616 | for (i = 0; i < thresholds->primary->size; i++) { |
4617 | if (thresholds->primary->entries[i].eventfd != eventfd) |
4618 | size++; |
4619 | else |
4620 | entries++; |
4621 | } |
4622 | |
4623 | new = thresholds->spare; |
4624 | |
4625 | /* If no items related to eventfd have been cleared, nothing to do */ |
4626 | if (!entries) |
4627 | goto unlock; |
4628 | |
4629 | /* Set thresholds array to NULL if we don't have thresholds */ |
4630 | if (!size) { |
4631 | kfree(objp: new); |
4632 | new = NULL; |
4633 | goto swap_buffers; |
4634 | } |
4635 | |
4636 | new->size = size; |
4637 | |
4638 | /* Copy thresholds and find current threshold */ |
4639 | new->current_threshold = -1; |
4640 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { |
4641 | if (thresholds->primary->entries[i].eventfd == eventfd) |
4642 | continue; |
4643 | |
4644 | new->entries[j] = thresholds->primary->entries[i]; |
4645 | if (new->entries[j].threshold <= usage) { |
4646 | /* |
4647 | * new->current_threshold will not be used |
4648 | * until rcu_assign_pointer(), so it's safe to increment |
4649 | * it here. |
4650 | */ |
4651 | ++new->current_threshold; |
4652 | } |
4653 | j++; |
4654 | } |
4655 | |
4656 | swap_buffers: |
4657 | /* Swap primary and spare array */ |
4658 | thresholds->spare = thresholds->primary; |
4659 | |
4660 | rcu_assign_pointer(thresholds->primary, new); |
4661 | |
4662 | /* To be sure that nobody uses thresholds */ |
4663 | synchronize_rcu(); |
4664 | |
4665 | /* If all events are unregistered, free the spare array */ |
4666 | if (!new) { |
4667 | kfree(objp: thresholds->spare); |
4668 | thresholds->spare = NULL; |
4669 | } |
4670 | unlock: |
4671 | mutex_unlock(lock: &memcg->thresholds_lock); |
4672 | } |
4673 | |
4674 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
4675 | struct eventfd_ctx *eventfd) |
4676 | { |
4677 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, type: _MEM); |
4678 | } |
4679 | |
4680 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
4681 | struct eventfd_ctx *eventfd) |
4682 | { |
4683 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, type: _MEMSWAP); |
4684 | } |
4685 | |
4686 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, |
4687 | struct eventfd_ctx *eventfd, const char *args) |
4688 | { |
4689 | struct mem_cgroup_eventfd_list *event; |
4690 | |
4691 | event = kmalloc(size: sizeof(*event), GFP_KERNEL); |
4692 | if (!event) |
4693 | return -ENOMEM; |
4694 | |
4695 | spin_lock(lock: &memcg_oom_lock); |
4696 | |
4697 | event->eventfd = eventfd; |
4698 | list_add(new: &event->list, head: &memcg->oom_notify); |
4699 | |
4700 | /* already in OOM ? */ |
4701 | if (memcg->under_oom) |
4702 | eventfd_signal(ctx: eventfd); |
4703 | spin_unlock(lock: &memcg_oom_lock); |
4704 | |
4705 | return 0; |
4706 | } |
4707 | |
4708 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, |
4709 | struct eventfd_ctx *eventfd) |
4710 | { |
4711 | struct mem_cgroup_eventfd_list *ev, *tmp; |
4712 | |
4713 | spin_lock(lock: &memcg_oom_lock); |
4714 | |
4715 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
4716 | if (ev->eventfd == eventfd) { |
4717 | list_del(entry: &ev->list); |
4718 | kfree(objp: ev); |
4719 | } |
4720 | } |
4721 | |
4722 | spin_unlock(lock: &memcg_oom_lock); |
4723 | } |
4724 | |
4725 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) |
4726 | { |
4727 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m: sf); |
4728 | |
4729 | seq_printf(m: sf, fmt: "oom_kill_disable %d\n" , READ_ONCE(memcg->oom_kill_disable)); |
4730 | seq_printf(m: sf, fmt: "under_oom %d\n" , (bool)memcg->under_oom); |
4731 | seq_printf(m: sf, fmt: "oom_kill %lu\n" , |
4732 | atomic_long_read(v: &memcg->memory_events[MEMCG_OOM_KILL])); |
4733 | return 0; |
4734 | } |
4735 | |
4736 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
4737 | struct cftype *cft, u64 val) |
4738 | { |
4739 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4740 | |
4741 | /* cannot set to root cgroup and only 0 and 1 are allowed */ |
4742 | if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) |
4743 | return -EINVAL; |
4744 | |
4745 | WRITE_ONCE(memcg->oom_kill_disable, val); |
4746 | if (!val) |
4747 | memcg_oom_recover(memcg); |
4748 | |
4749 | return 0; |
4750 | } |
4751 | |
4752 | #ifdef CONFIG_CGROUP_WRITEBACK |
4753 | |
4754 | #include <trace/events/writeback.h> |
4755 | |
4756 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
4757 | { |
4758 | return wb_domain_init(dom: &memcg->cgwb_domain, gfp); |
4759 | } |
4760 | |
4761 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
4762 | { |
4763 | wb_domain_exit(dom: &memcg->cgwb_domain); |
4764 | } |
4765 | |
4766 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
4767 | { |
4768 | wb_domain_size_changed(dom: &memcg->cgwb_domain); |
4769 | } |
4770 | |
4771 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) |
4772 | { |
4773 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
4774 | |
4775 | if (!memcg->css.parent) |
4776 | return NULL; |
4777 | |
4778 | return &memcg->cgwb_domain; |
4779 | } |
4780 | |
4781 | /** |
4782 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg |
4783 | * @wb: bdi_writeback in question |
4784 | * @pfilepages: out parameter for number of file pages |
4785 | * @pheadroom: out parameter for number of allocatable pages according to memcg |
4786 | * @pdirty: out parameter for number of dirty pages |
4787 | * @pwriteback: out parameter for number of pages under writeback |
4788 | * |
4789 | * Determine the numbers of file, headroom, dirty, and writeback pages in |
4790 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom |
4791 | * is a bit more involved. |
4792 | * |
4793 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the |
4794 | * headroom is calculated as the lowest headroom of itself and the |
4795 | * ancestors. Note that this doesn't consider the actual amount of |
4796 | * available memory in the system. The caller should further cap |
4797 | * *@pheadroom accordingly. |
4798 | */ |
4799 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, |
4800 | unsigned long *pheadroom, unsigned long *pdirty, |
4801 | unsigned long *pwriteback) |
4802 | { |
4803 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
4804 | struct mem_cgroup *parent; |
4805 | |
4806 | mem_cgroup_flush_stats_ratelimited(memcg); |
4807 | |
4808 | *pdirty = memcg_page_state(memcg, idx: NR_FILE_DIRTY); |
4809 | *pwriteback = memcg_page_state(memcg, idx: NR_WRITEBACK); |
4810 | *pfilepages = memcg_page_state(memcg, idx: NR_INACTIVE_FILE) + |
4811 | memcg_page_state(memcg, idx: NR_ACTIVE_FILE); |
4812 | |
4813 | *pheadroom = PAGE_COUNTER_MAX; |
4814 | while ((parent = parent_mem_cgroup(memcg))) { |
4815 | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), |
4816 | READ_ONCE(memcg->memory.high)); |
4817 | unsigned long used = page_counter_read(counter: &memcg->memory); |
4818 | |
4819 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); |
4820 | memcg = parent; |
4821 | } |
4822 | } |
4823 | |
4824 | /* |
4825 | * Foreign dirty flushing |
4826 | * |
4827 | * There's an inherent mismatch between memcg and writeback. The former |
4828 | * tracks ownership per-page while the latter per-inode. This was a |
4829 | * deliberate design decision because honoring per-page ownership in the |
4830 | * writeback path is complicated, may lead to higher CPU and IO overheads |
4831 | * and deemed unnecessary given that write-sharing an inode across |
4832 | * different cgroups isn't a common use-case. |
4833 | * |
4834 | * Combined with inode majority-writer ownership switching, this works well |
4835 | * enough in most cases but there are some pathological cases. For |
4836 | * example, let's say there are two cgroups A and B which keep writing to |
4837 | * different but confined parts of the same inode. B owns the inode and |
4838 | * A's memory is limited far below B's. A's dirty ratio can rise enough to |
4839 | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid |
4840 | * triggering background writeback. A will be slowed down without a way to |
4841 | * make writeback of the dirty pages happen. |
4842 | * |
4843 | * Conditions like the above can lead to a cgroup getting repeatedly and |
4844 | * severely throttled after making some progress after each |
4845 | * dirty_expire_interval while the underlying IO device is almost |
4846 | * completely idle. |
4847 | * |
4848 | * Solving this problem completely requires matching the ownership tracking |
4849 | * granularities between memcg and writeback in either direction. However, |
4850 | * the more egregious behaviors can be avoided by simply remembering the |
4851 | * most recent foreign dirtying events and initiating remote flushes on |
4852 | * them when local writeback isn't enough to keep the memory clean enough. |
4853 | * |
4854 | * The following two functions implement such mechanism. When a foreign |
4855 | * page - a page whose memcg and writeback ownerships don't match - is |
4856 | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning |
4857 | * bdi_writeback on the page owning memcg. When balance_dirty_pages() |
4858 | * decides that the memcg needs to sleep due to high dirty ratio, it calls |
4859 | * mem_cgroup_flush_foreign() which queues writeback on the recorded |
4860 | * foreign bdi_writebacks which haven't expired. Both the numbers of |
4861 | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are |
4862 | * limited to MEMCG_CGWB_FRN_CNT. |
4863 | * |
4864 | * The mechanism only remembers IDs and doesn't hold any object references. |
4865 | * As being wrong occasionally doesn't matter, updates and accesses to the |
4866 | * records are lockless and racy. |
4867 | */ |
4868 | void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, |
4869 | struct bdi_writeback *wb) |
4870 | { |
4871 | struct mem_cgroup *memcg = folio_memcg(folio); |
4872 | struct memcg_cgwb_frn *frn; |
4873 | u64 now = get_jiffies_64(); |
4874 | u64 oldest_at = now; |
4875 | int oldest = -1; |
4876 | int i; |
4877 | |
4878 | trace_track_foreign_dirty(folio, wb); |
4879 | |
4880 | /* |
4881 | * Pick the slot to use. If there is already a slot for @wb, keep |
4882 | * using it. If not replace the oldest one which isn't being |
4883 | * written out. |
4884 | */ |
4885 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
4886 | frn = &memcg->cgwb_frn[i]; |
4887 | if (frn->bdi_id == wb->bdi->id && |
4888 | frn->memcg_id == wb->memcg_css->id) |
4889 | break; |
4890 | if (time_before64(frn->at, oldest_at) && |
4891 | atomic_read(v: &frn->done.cnt) == 1) { |
4892 | oldest = i; |
4893 | oldest_at = frn->at; |
4894 | } |
4895 | } |
4896 | |
4897 | if (i < MEMCG_CGWB_FRN_CNT) { |
4898 | /* |
4899 | * Re-using an existing one. Update timestamp lazily to |
4900 | * avoid making the cacheline hot. We want them to be |
4901 | * reasonably up-to-date and significantly shorter than |
4902 | * dirty_expire_interval as that's what expires the record. |
4903 | * Use the shorter of 1s and dirty_expire_interval / 8. |
4904 | */ |
4905 | unsigned long update_intv = |
4906 | min_t(unsigned long, HZ, |
4907 | msecs_to_jiffies(dirty_expire_interval * 10) / 8); |
4908 | |
4909 | if (time_before64(frn->at, now - update_intv)) |
4910 | frn->at = now; |
4911 | } else if (oldest >= 0) { |
4912 | /* replace the oldest free one */ |
4913 | frn = &memcg->cgwb_frn[oldest]; |
4914 | frn->bdi_id = wb->bdi->id; |
4915 | frn->memcg_id = wb->memcg_css->id; |
4916 | frn->at = now; |
4917 | } |
4918 | } |
4919 | |
4920 | /* issue foreign writeback flushes for recorded foreign dirtying events */ |
4921 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) |
4922 | { |
4923 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css); |
4924 | unsigned long intv = msecs_to_jiffies(m: dirty_expire_interval * 10); |
4925 | u64 now = jiffies_64; |
4926 | int i; |
4927 | |
4928 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
4929 | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; |
4930 | |
4931 | /* |
4932 | * If the record is older than dirty_expire_interval, |
4933 | * writeback on it has already started. No need to kick it |
4934 | * off again. Also, don't start a new one if there's |
4935 | * already one in flight. |
4936 | */ |
4937 | if (time_after64(frn->at, now - intv) && |
4938 | atomic_read(v: &frn->done.cnt) == 1) { |
4939 | frn->at = 0; |
4940 | trace_flush_foreign(wb, frn_bdi_id: frn->bdi_id, frn_memcg_id: frn->memcg_id); |
4941 | cgroup_writeback_by_id(bdi_id: frn->bdi_id, memcg_id: frn->memcg_id, |
4942 | reason: WB_REASON_FOREIGN_FLUSH, |
4943 | done: &frn->done); |
4944 | } |
4945 | } |
4946 | } |
4947 | |
4948 | #else /* CONFIG_CGROUP_WRITEBACK */ |
4949 | |
4950 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
4951 | { |
4952 | return 0; |
4953 | } |
4954 | |
4955 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
4956 | { |
4957 | } |
4958 | |
4959 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
4960 | { |
4961 | } |
4962 | |
4963 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
4964 | |
4965 | /* |
4966 | * DO NOT USE IN NEW FILES. |
4967 | * |
4968 | * "cgroup.event_control" implementation. |
4969 | * |
4970 | * This is way over-engineered. It tries to support fully configurable |
4971 | * events for each user. Such level of flexibility is completely |
4972 | * unnecessary especially in the light of the planned unified hierarchy. |
4973 | * |
4974 | * Please deprecate this and replace with something simpler if at all |
4975 | * possible. |
4976 | */ |
4977 | |
4978 | /* |
4979 | * Unregister event and free resources. |
4980 | * |
4981 | * Gets called from workqueue. |
4982 | */ |
4983 | static void memcg_event_remove(struct work_struct *work) |
4984 | { |
4985 | struct mem_cgroup_event *event = |
4986 | container_of(work, struct mem_cgroup_event, remove); |
4987 | struct mem_cgroup *memcg = event->memcg; |
4988 | |
4989 | remove_wait_queue(wq_head: event->wqh, wq_entry: &event->wait); |
4990 | |
4991 | event->unregister_event(memcg, event->eventfd); |
4992 | |
4993 | /* Notify userspace the event is going away. */ |
4994 | eventfd_signal(ctx: event->eventfd); |
4995 | |
4996 | eventfd_ctx_put(ctx: event->eventfd); |
4997 | kfree(objp: event); |
4998 | css_put(css: &memcg->css); |
4999 | } |
5000 | |
5001 | /* |
5002 | * Gets called on EPOLLHUP on eventfd when user closes it. |
5003 | * |
5004 | * Called with wqh->lock held and interrupts disabled. |
5005 | */ |
5006 | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, |
5007 | int sync, void *key) |
5008 | { |
5009 | struct mem_cgroup_event *event = |
5010 | container_of(wait, struct mem_cgroup_event, wait); |
5011 | struct mem_cgroup *memcg = event->memcg; |
5012 | __poll_t flags = key_to_poll(key); |
5013 | |
5014 | if (flags & EPOLLHUP) { |
5015 | /* |
5016 | * If the event has been detached at cgroup removal, we |
5017 | * can simply return knowing the other side will cleanup |
5018 | * for us. |
5019 | * |
5020 | * We can't race against event freeing since the other |
5021 | * side will require wqh->lock via remove_wait_queue(), |
5022 | * which we hold. |
5023 | */ |
5024 | spin_lock(lock: &memcg->event_list_lock); |
5025 | if (!list_empty(head: &event->list)) { |
5026 | list_del_init(entry: &event->list); |
5027 | /* |
5028 | * We are in atomic context, but cgroup_event_remove() |
5029 | * may sleep, so we have to call it in workqueue. |
5030 | */ |
5031 | schedule_work(work: &event->remove); |
5032 | } |
5033 | spin_unlock(lock: &memcg->event_list_lock); |
5034 | } |
5035 | |
5036 | return 0; |
5037 | } |
5038 | |
5039 | static void memcg_event_ptable_queue_proc(struct file *file, |
5040 | wait_queue_head_t *wqh, poll_table *pt) |
5041 | { |
5042 | struct mem_cgroup_event *event = |
5043 | container_of(pt, struct mem_cgroup_event, pt); |
5044 | |
5045 | event->wqh = wqh; |
5046 | add_wait_queue(wq_head: wqh, wq_entry: &event->wait); |
5047 | } |
5048 | |
5049 | /* |
5050 | * DO NOT USE IN NEW FILES. |
5051 | * |
5052 | * Parse input and register new cgroup event handler. |
5053 | * |
5054 | * Input must be in format '<event_fd> <control_fd> <args>'. |
5055 | * Interpretation of args is defined by control file implementation. |
5056 | */ |
5057 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, |
5058 | char *buf, size_t nbytes, loff_t off) |
5059 | { |
5060 | struct cgroup_subsys_state *css = of_css(of); |
5061 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5062 | struct mem_cgroup_event *event; |
5063 | struct cgroup_subsys_state *cfile_css; |
5064 | unsigned int efd, cfd; |
5065 | struct fd efile; |
5066 | struct fd cfile; |
5067 | struct dentry *cdentry; |
5068 | const char *name; |
5069 | char *endp; |
5070 | int ret; |
5071 | |
5072 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
5073 | return -EOPNOTSUPP; |
5074 | |
5075 | buf = strstrip(str: buf); |
5076 | |
5077 | efd = simple_strtoul(buf, &endp, 10); |
5078 | if (*endp != ' ') |
5079 | return -EINVAL; |
5080 | buf = endp + 1; |
5081 | |
5082 | cfd = simple_strtoul(buf, &endp, 10); |
5083 | if ((*endp != ' ') && (*endp != '\0')) |
5084 | return -EINVAL; |
5085 | buf = endp + 1; |
5086 | |
5087 | event = kzalloc(size: sizeof(*event), GFP_KERNEL); |
5088 | if (!event) |
5089 | return -ENOMEM; |
5090 | |
5091 | event->memcg = memcg; |
5092 | INIT_LIST_HEAD(list: &event->list); |
5093 | init_poll_funcptr(pt: &event->pt, qproc: memcg_event_ptable_queue_proc); |
5094 | init_waitqueue_func_entry(wq_entry: &event->wait, func: memcg_event_wake); |
5095 | INIT_WORK(&event->remove, memcg_event_remove); |
5096 | |
5097 | efile = fdget(fd: efd); |
5098 | if (!efile.file) { |
5099 | ret = -EBADF; |
5100 | goto out_kfree; |
5101 | } |
5102 | |
5103 | event->eventfd = eventfd_ctx_fileget(file: efile.file); |
5104 | if (IS_ERR(ptr: event->eventfd)) { |
5105 | ret = PTR_ERR(ptr: event->eventfd); |
5106 | goto out_put_efile; |
5107 | } |
5108 | |
5109 | cfile = fdget(fd: cfd); |
5110 | if (!cfile.file) { |
5111 | ret = -EBADF; |
5112 | goto out_put_eventfd; |
5113 | } |
5114 | |
5115 | /* the process need read permission on control file */ |
5116 | /* AV: shouldn't we check that it's been opened for read instead? */ |
5117 | ret = file_permission(file: cfile.file, MAY_READ); |
5118 | if (ret < 0) |
5119 | goto out_put_cfile; |
5120 | |
5121 | /* |
5122 | * The control file must be a regular cgroup1 file. As a regular cgroup |
5123 | * file can't be renamed, it's safe to access its name afterwards. |
5124 | */ |
5125 | cdentry = cfile.file->f_path.dentry; |
5126 | if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(dentry: cdentry)) { |
5127 | ret = -EINVAL; |
5128 | goto out_put_cfile; |
5129 | } |
5130 | |
5131 | /* |
5132 | * Determine the event callbacks and set them in @event. This used |
5133 | * to be done via struct cftype but cgroup core no longer knows |
5134 | * about these events. The following is crude but the whole thing |
5135 | * is for compatibility anyway. |
5136 | * |
5137 | * DO NOT ADD NEW FILES. |
5138 | */ |
5139 | name = cdentry->d_name.name; |
5140 | |
5141 | if (!strcmp(name, "memory.usage_in_bytes" )) { |
5142 | event->register_event = mem_cgroup_usage_register_event; |
5143 | event->unregister_event = mem_cgroup_usage_unregister_event; |
5144 | } else if (!strcmp(name, "memory.oom_control" )) { |
5145 | event->register_event = mem_cgroup_oom_register_event; |
5146 | event->unregister_event = mem_cgroup_oom_unregister_event; |
5147 | } else if (!strcmp(name, "memory.pressure_level" )) { |
5148 | event->register_event = vmpressure_register_event; |
5149 | event->unregister_event = vmpressure_unregister_event; |
5150 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes" )) { |
5151 | event->register_event = memsw_cgroup_usage_register_event; |
5152 | event->unregister_event = memsw_cgroup_usage_unregister_event; |
5153 | } else { |
5154 | ret = -EINVAL; |
5155 | goto out_put_cfile; |
5156 | } |
5157 | |
5158 | /* |
5159 | * Verify @cfile should belong to @css. Also, remaining events are |
5160 | * automatically removed on cgroup destruction but the removal is |
5161 | * asynchronous, so take an extra ref on @css. |
5162 | */ |
5163 | cfile_css = css_tryget_online_from_dir(dentry: cdentry->d_parent, |
5164 | ss: &memory_cgrp_subsys); |
5165 | ret = -EINVAL; |
5166 | if (IS_ERR(ptr: cfile_css)) |
5167 | goto out_put_cfile; |
5168 | if (cfile_css != css) { |
5169 | css_put(css: cfile_css); |
5170 | goto out_put_cfile; |
5171 | } |
5172 | |
5173 | ret = event->register_event(memcg, event->eventfd, buf); |
5174 | if (ret) |
5175 | goto out_put_css; |
5176 | |
5177 | vfs_poll(file: efile.file, pt: &event->pt); |
5178 | |
5179 | spin_lock_irq(lock: &memcg->event_list_lock); |
5180 | list_add(new: &event->list, head: &memcg->event_list); |
5181 | spin_unlock_irq(lock: &memcg->event_list_lock); |
5182 | |
5183 | fdput(fd: cfile); |
5184 | fdput(fd: efile); |
5185 | |
5186 | return nbytes; |
5187 | |
5188 | out_put_css: |
5189 | css_put(css); |
5190 | out_put_cfile: |
5191 | fdput(fd: cfile); |
5192 | out_put_eventfd: |
5193 | eventfd_ctx_put(ctx: event->eventfd); |
5194 | out_put_efile: |
5195 | fdput(fd: efile); |
5196 | out_kfree: |
5197 | kfree(objp: event); |
5198 | |
5199 | return ret; |
5200 | } |
5201 | |
5202 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) |
5203 | static int mem_cgroup_slab_show(struct seq_file *m, void *p) |
5204 | { |
5205 | /* |
5206 | * Deprecated. |
5207 | * Please, take a look at tools/cgroup/memcg_slabinfo.py . |
5208 | */ |
5209 | return 0; |
5210 | } |
5211 | #endif |
5212 | |
5213 | static int memory_stat_show(struct seq_file *m, void *v); |
5214 | |
5215 | static struct cftype mem_cgroup_legacy_files[] = { |
5216 | { |
5217 | .name = "usage_in_bytes" , |
5218 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
5219 | .read_u64 = mem_cgroup_read_u64, |
5220 | }, |
5221 | { |
5222 | .name = "max_usage_in_bytes" , |
5223 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
5224 | .write = mem_cgroup_reset, |
5225 | .read_u64 = mem_cgroup_read_u64, |
5226 | }, |
5227 | { |
5228 | .name = "limit_in_bytes" , |
5229 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
5230 | .write = mem_cgroup_write, |
5231 | .read_u64 = mem_cgroup_read_u64, |
5232 | }, |
5233 | { |
5234 | .name = "soft_limit_in_bytes" , |
5235 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), |
5236 | .write = mem_cgroup_write, |
5237 | .read_u64 = mem_cgroup_read_u64, |
5238 | }, |
5239 | { |
5240 | .name = "failcnt" , |
5241 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
5242 | .write = mem_cgroup_reset, |
5243 | .read_u64 = mem_cgroup_read_u64, |
5244 | }, |
5245 | { |
5246 | .name = "stat" , |
5247 | .seq_show = memory_stat_show, |
5248 | }, |
5249 | { |
5250 | .name = "force_empty" , |
5251 | .write = mem_cgroup_force_empty_write, |
5252 | }, |
5253 | { |
5254 | .name = "use_hierarchy" , |
5255 | .write_u64 = mem_cgroup_hierarchy_write, |
5256 | .read_u64 = mem_cgroup_hierarchy_read, |
5257 | }, |
5258 | { |
5259 | .name = "cgroup.event_control" , /* XXX: for compat */ |
5260 | .write = memcg_write_event_control, |
5261 | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, |
5262 | }, |
5263 | { |
5264 | .name = "swappiness" , |
5265 | .read_u64 = mem_cgroup_swappiness_read, |
5266 | .write_u64 = mem_cgroup_swappiness_write, |
5267 | }, |
5268 | { |
5269 | .name = "move_charge_at_immigrate" , |
5270 | .read_u64 = mem_cgroup_move_charge_read, |
5271 | .write_u64 = mem_cgroup_move_charge_write, |
5272 | }, |
5273 | { |
5274 | .name = "oom_control" , |
5275 | .seq_show = mem_cgroup_oom_control_read, |
5276 | .write_u64 = mem_cgroup_oom_control_write, |
5277 | }, |
5278 | { |
5279 | .name = "pressure_level" , |
5280 | .seq_show = mem_cgroup_dummy_seq_show, |
5281 | }, |
5282 | #ifdef CONFIG_NUMA |
5283 | { |
5284 | .name = "numa_stat" , |
5285 | .seq_show = memcg_numa_stat_show, |
5286 | }, |
5287 | #endif |
5288 | { |
5289 | .name = "kmem.limit_in_bytes" , |
5290 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), |
5291 | .write = mem_cgroup_write, |
5292 | .read_u64 = mem_cgroup_read_u64, |
5293 | }, |
5294 | { |
5295 | .name = "kmem.usage_in_bytes" , |
5296 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), |
5297 | .read_u64 = mem_cgroup_read_u64, |
5298 | }, |
5299 | { |
5300 | .name = "kmem.failcnt" , |
5301 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), |
5302 | .write = mem_cgroup_reset, |
5303 | .read_u64 = mem_cgroup_read_u64, |
5304 | }, |
5305 | { |
5306 | .name = "kmem.max_usage_in_bytes" , |
5307 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), |
5308 | .write = mem_cgroup_reset, |
5309 | .read_u64 = mem_cgroup_read_u64, |
5310 | }, |
5311 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) |
5312 | { |
5313 | .name = "kmem.slabinfo" , |
5314 | .seq_show = mem_cgroup_slab_show, |
5315 | }, |
5316 | #endif |
5317 | { |
5318 | .name = "kmem.tcp.limit_in_bytes" , |
5319 | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), |
5320 | .write = mem_cgroup_write, |
5321 | .read_u64 = mem_cgroup_read_u64, |
5322 | }, |
5323 | { |
5324 | .name = "kmem.tcp.usage_in_bytes" , |
5325 | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), |
5326 | .read_u64 = mem_cgroup_read_u64, |
5327 | }, |
5328 | { |
5329 | .name = "kmem.tcp.failcnt" , |
5330 | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), |
5331 | .write = mem_cgroup_reset, |
5332 | .read_u64 = mem_cgroup_read_u64, |
5333 | }, |
5334 | { |
5335 | .name = "kmem.tcp.max_usage_in_bytes" , |
5336 | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), |
5337 | .write = mem_cgroup_reset, |
5338 | .read_u64 = mem_cgroup_read_u64, |
5339 | }, |
5340 | { }, /* terminate */ |
5341 | }; |
5342 | |
5343 | /* |
5344 | * Private memory cgroup IDR |
5345 | * |
5346 | * Swap-out records and page cache shadow entries need to store memcg |
5347 | * references in constrained space, so we maintain an ID space that is |
5348 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of |
5349 | * memory-controlled cgroups to 64k. |
5350 | * |
5351 | * However, there usually are many references to the offline CSS after |
5352 | * the cgroup has been destroyed, such as page cache or reclaimable |
5353 | * slab objects, that don't need to hang on to the ID. We want to keep |
5354 | * those dead CSS from occupying IDs, or we might quickly exhaust the |
5355 | * relatively small ID space and prevent the creation of new cgroups |
5356 | * even when there are much fewer than 64k cgroups - possibly none. |
5357 | * |
5358 | * Maintain a private 16-bit ID space for memcg, and allow the ID to |
5359 | * be freed and recycled when it's no longer needed, which is usually |
5360 | * when the CSS is offlined. |
5361 | * |
5362 | * The only exception to that are records of swapped out tmpfs/shmem |
5363 | * pages that need to be attributed to live ancestors on swapin. But |
5364 | * those references are manageable from userspace. |
5365 | */ |
5366 | |
5367 | #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) |
5368 | static DEFINE_IDR(mem_cgroup_idr); |
5369 | |
5370 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) |
5371 | { |
5372 | if (memcg->id.id > 0) { |
5373 | idr_remove(&mem_cgroup_idr, id: memcg->id.id); |
5374 | memcg->id.id = 0; |
5375 | } |
5376 | } |
5377 | |
5378 | static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, |
5379 | unsigned int n) |
5380 | { |
5381 | refcount_add(i: n, r: &memcg->id.ref); |
5382 | } |
5383 | |
5384 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) |
5385 | { |
5386 | if (refcount_sub_and_test(i: n, r: &memcg->id.ref)) { |
5387 | mem_cgroup_id_remove(memcg); |
5388 | |
5389 | /* Memcg ID pins CSS */ |
5390 | css_put(css: &memcg->css); |
5391 | } |
5392 | } |
5393 | |
5394 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) |
5395 | { |
5396 | mem_cgroup_id_put_many(memcg, n: 1); |
5397 | } |
5398 | |
5399 | /** |
5400 | * mem_cgroup_from_id - look up a memcg from a memcg id |
5401 | * @id: the memcg id to look up |
5402 | * |
5403 | * Caller must hold rcu_read_lock(). |
5404 | */ |
5405 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) |
5406 | { |
5407 | WARN_ON_ONCE(!rcu_read_lock_held()); |
5408 | return idr_find(&mem_cgroup_idr, id); |
5409 | } |
5410 | |
5411 | #ifdef CONFIG_SHRINKER_DEBUG |
5412 | struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) |
5413 | { |
5414 | struct cgroup *cgrp; |
5415 | struct cgroup_subsys_state *css; |
5416 | struct mem_cgroup *memcg; |
5417 | |
5418 | cgrp = cgroup_get_from_id(id: ino); |
5419 | if (IS_ERR(ptr: cgrp)) |
5420 | return ERR_CAST(ptr: cgrp); |
5421 | |
5422 | css = cgroup_get_e_css(cgroup: cgrp, ss: &memory_cgrp_subsys); |
5423 | if (css) |
5424 | memcg = container_of(css, struct mem_cgroup, css); |
5425 | else |
5426 | memcg = ERR_PTR(error: -ENOENT); |
5427 | |
5428 | cgroup_put(cgrp); |
5429 | |
5430 | return memcg; |
5431 | } |
5432 | #endif |
5433 | |
5434 | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
5435 | { |
5436 | struct mem_cgroup_per_node *pn; |
5437 | |
5438 | pn = kzalloc_node(size: sizeof(*pn), GFP_KERNEL, node); |
5439 | if (!pn) |
5440 | return 1; |
5441 | |
5442 | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, |
5443 | GFP_KERNEL_ACCOUNT); |
5444 | if (!pn->lruvec_stats_percpu) { |
5445 | kfree(objp: pn); |
5446 | return 1; |
5447 | } |
5448 | |
5449 | lruvec_init(lruvec: &pn->lruvec); |
5450 | pn->memcg = memcg; |
5451 | |
5452 | memcg->nodeinfo[node] = pn; |
5453 | return 0; |
5454 | } |
5455 | |
5456 | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
5457 | { |
5458 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; |
5459 | |
5460 | if (!pn) |
5461 | return; |
5462 | |
5463 | free_percpu(pdata: pn->lruvec_stats_percpu); |
5464 | kfree(objp: pn); |
5465 | } |
5466 | |
5467 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
5468 | { |
5469 | int node; |
5470 | |
5471 | if (memcg->orig_objcg) |
5472 | obj_cgroup_put(objcg: memcg->orig_objcg); |
5473 | |
5474 | for_each_node(node) |
5475 | free_mem_cgroup_per_node_info(memcg, node); |
5476 | kfree(objp: memcg->vmstats); |
5477 | free_percpu(pdata: memcg->vmstats_percpu); |
5478 | kfree(objp: memcg); |
5479 | } |
5480 | |
5481 | static void mem_cgroup_free(struct mem_cgroup *memcg) |
5482 | { |
5483 | lru_gen_exit_memcg(memcg); |
5484 | memcg_wb_domain_exit(memcg); |
5485 | __mem_cgroup_free(memcg); |
5486 | } |
5487 | |
5488 | static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) |
5489 | { |
5490 | struct memcg_vmstats_percpu *statc, *pstatc; |
5491 | struct mem_cgroup *memcg; |
5492 | int node, cpu; |
5493 | int __maybe_unused i; |
5494 | long error = -ENOMEM; |
5495 | |
5496 | memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); |
5497 | if (!memcg) |
5498 | return ERR_PTR(error); |
5499 | |
5500 | memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, |
5501 | start: 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); |
5502 | if (memcg->id.id < 0) { |
5503 | error = memcg->id.id; |
5504 | goto fail; |
5505 | } |
5506 | |
5507 | memcg->vmstats = kzalloc(size: sizeof(struct memcg_vmstats), GFP_KERNEL); |
5508 | if (!memcg->vmstats) |
5509 | goto fail; |
5510 | |
5511 | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, |
5512 | GFP_KERNEL_ACCOUNT); |
5513 | if (!memcg->vmstats_percpu) |
5514 | goto fail; |
5515 | |
5516 | for_each_possible_cpu(cpu) { |
5517 | if (parent) |
5518 | pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); |
5519 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
5520 | statc->parent = parent ? pstatc : NULL; |
5521 | statc->vmstats = memcg->vmstats; |
5522 | } |
5523 | |
5524 | for_each_node(node) |
5525 | if (alloc_mem_cgroup_per_node_info(memcg, node)) |
5526 | goto fail; |
5527 | |
5528 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) |
5529 | goto fail; |
5530 | |
5531 | INIT_WORK(&memcg->high_work, high_work_func); |
5532 | INIT_LIST_HEAD(list: &memcg->oom_notify); |
5533 | mutex_init(&memcg->thresholds_lock); |
5534 | spin_lock_init(&memcg->move_lock); |
5535 | vmpressure_init(vmpr: &memcg->vmpressure); |
5536 | INIT_LIST_HEAD(list: &memcg->event_list); |
5537 | spin_lock_init(&memcg->event_list_lock); |
5538 | memcg->socket_pressure = jiffies; |
5539 | #ifdef CONFIG_MEMCG_KMEM |
5540 | memcg->kmemcg_id = -1; |
5541 | INIT_LIST_HEAD(list: &memcg->objcg_list); |
5542 | #endif |
5543 | #ifdef CONFIG_CGROUP_WRITEBACK |
5544 | INIT_LIST_HEAD(list: &memcg->cgwb_list); |
5545 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
5546 | memcg->cgwb_frn[i].done = |
5547 | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); |
5548 | #endif |
5549 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
5550 | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); |
5551 | INIT_LIST_HEAD(list: &memcg->deferred_split_queue.split_queue); |
5552 | memcg->deferred_split_queue.split_queue_len = 0; |
5553 | #endif |
5554 | lru_gen_init_memcg(memcg); |
5555 | return memcg; |
5556 | fail: |
5557 | mem_cgroup_id_remove(memcg); |
5558 | __mem_cgroup_free(memcg); |
5559 | return ERR_PTR(error); |
5560 | } |
5561 | |
5562 | static struct cgroup_subsys_state * __ref |
5563 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
5564 | { |
5565 | struct mem_cgroup *parent = mem_cgroup_from_css(css: parent_css); |
5566 | struct mem_cgroup *memcg, *old_memcg; |
5567 | |
5568 | old_memcg = set_active_memcg(parent); |
5569 | memcg = mem_cgroup_alloc(parent); |
5570 | set_active_memcg(old_memcg); |
5571 | if (IS_ERR(ptr: memcg)) |
5572 | return ERR_CAST(ptr: memcg); |
5573 | |
5574 | page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX); |
5575 | WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); |
5576 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) |
5577 | memcg->zswap_max = PAGE_COUNTER_MAX; |
5578 | WRITE_ONCE(memcg->zswap_writeback, |
5579 | !parent || READ_ONCE(parent->zswap_writeback)); |
5580 | #endif |
5581 | page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX); |
5582 | if (parent) { |
5583 | WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); |
5584 | WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); |
5585 | |
5586 | page_counter_init(counter: &memcg->memory, parent: &parent->memory); |
5587 | page_counter_init(counter: &memcg->swap, parent: &parent->swap); |
5588 | page_counter_init(counter: &memcg->kmem, parent: &parent->kmem); |
5589 | page_counter_init(counter: &memcg->tcpmem, parent: &parent->tcpmem); |
5590 | } else { |
5591 | init_memcg_events(); |
5592 | page_counter_init(counter: &memcg->memory, NULL); |
5593 | page_counter_init(counter: &memcg->swap, NULL); |
5594 | page_counter_init(counter: &memcg->kmem, NULL); |
5595 | page_counter_init(counter: &memcg->tcpmem, NULL); |
5596 | |
5597 | root_mem_cgroup = memcg; |
5598 | return &memcg->css; |
5599 | } |
5600 | |
5601 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
5602 | static_branch_inc(&memcg_sockets_enabled_key); |
5603 | |
5604 | #if defined(CONFIG_MEMCG_KMEM) |
5605 | if (!cgroup_memory_nobpf) |
5606 | static_branch_inc(&memcg_bpf_enabled_key); |
5607 | #endif |
5608 | |
5609 | return &memcg->css; |
5610 | } |
5611 | |
5612 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) |
5613 | { |
5614 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5615 | |
5616 | if (memcg_online_kmem(memcg)) |
5617 | goto remove_id; |
5618 | |
5619 | /* |
5620 | * A memcg must be visible for expand_shrinker_info() |
5621 | * by the time the maps are allocated. So, we allocate maps |
5622 | * here, when for_each_mem_cgroup() can't skip it. |
5623 | */ |
5624 | if (alloc_shrinker_info(memcg)) |
5625 | goto offline_kmem; |
5626 | |
5627 | if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) |
5628 | queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork, |
5629 | FLUSH_TIME); |
5630 | lru_gen_online_memcg(memcg); |
5631 | |
5632 | /* Online state pins memcg ID, memcg ID pins CSS */ |
5633 | refcount_set(r: &memcg->id.ref, n: 1); |
5634 | css_get(css); |
5635 | |
5636 | /* |
5637 | * Ensure mem_cgroup_from_id() works once we're fully online. |
5638 | * |
5639 | * We could do this earlier and require callers to filter with |
5640 | * css_tryget_online(). But right now there are no users that |
5641 | * need earlier access, and the workingset code relies on the |
5642 | * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So |
5643 | * publish it here at the end of onlining. This matches the |
5644 | * regular ID destruction during offlining. |
5645 | */ |
5646 | idr_replace(&mem_cgroup_idr, memcg, id: memcg->id.id); |
5647 | |
5648 | return 0; |
5649 | offline_kmem: |
5650 | memcg_offline_kmem(memcg); |
5651 | remove_id: |
5652 | mem_cgroup_id_remove(memcg); |
5653 | return -ENOMEM; |
5654 | } |
5655 | |
5656 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
5657 | { |
5658 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5659 | struct mem_cgroup_event *event, *tmp; |
5660 | |
5661 | /* |
5662 | * Unregister events and notify userspace. |
5663 | * Notify userspace about cgroup removing only after rmdir of cgroup |
5664 | * directory to avoid race between userspace and kernelspace. |
5665 | */ |
5666 | spin_lock_irq(lock: &memcg->event_list_lock); |
5667 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { |
5668 | list_del_init(entry: &event->list); |
5669 | schedule_work(work: &event->remove); |
5670 | } |
5671 | spin_unlock_irq(lock: &memcg->event_list_lock); |
5672 | |
5673 | page_counter_set_min(counter: &memcg->memory, nr_pages: 0); |
5674 | page_counter_set_low(counter: &memcg->memory, nr_pages: 0); |
5675 | |
5676 | zswap_memcg_offline_cleanup(memcg); |
5677 | |
5678 | memcg_offline_kmem(memcg); |
5679 | reparent_shrinker_deferred(memcg); |
5680 | wb_memcg_offline(memcg); |
5681 | lru_gen_offline_memcg(memcg); |
5682 | |
5683 | drain_all_stock(root_memcg: memcg); |
5684 | |
5685 | mem_cgroup_id_put(memcg); |
5686 | } |
5687 | |
5688 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) |
5689 | { |
5690 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5691 | |
5692 | invalidate_reclaim_iterators(dead_memcg: memcg); |
5693 | lru_gen_release_memcg(memcg); |
5694 | } |
5695 | |
5696 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
5697 | { |
5698 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5699 | int __maybe_unused i; |
5700 | |
5701 | #ifdef CONFIG_CGROUP_WRITEBACK |
5702 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
5703 | wb_wait_for_completion(done: &memcg->cgwb_frn[i].done); |
5704 | #endif |
5705 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
5706 | static_branch_dec(&memcg_sockets_enabled_key); |
5707 | |
5708 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) |
5709 | static_branch_dec(&memcg_sockets_enabled_key); |
5710 | |
5711 | #if defined(CONFIG_MEMCG_KMEM) |
5712 | if (!cgroup_memory_nobpf) |
5713 | static_branch_dec(&memcg_bpf_enabled_key); |
5714 | #endif |
5715 | |
5716 | vmpressure_cleanup(vmpr: &memcg->vmpressure); |
5717 | cancel_work_sync(work: &memcg->high_work); |
5718 | mem_cgroup_remove_from_trees(memcg); |
5719 | free_shrinker_info(memcg); |
5720 | mem_cgroup_free(memcg); |
5721 | } |
5722 | |
5723 | /** |
5724 | * mem_cgroup_css_reset - reset the states of a mem_cgroup |
5725 | * @css: the target css |
5726 | * |
5727 | * Reset the states of the mem_cgroup associated with @css. This is |
5728 | * invoked when the userland requests disabling on the default hierarchy |
5729 | * but the memcg is pinned through dependency. The memcg should stop |
5730 | * applying policies and should revert to the vanilla state as it may be |
5731 | * made visible again. |
5732 | * |
5733 | * The current implementation only resets the essential configurations. |
5734 | * This needs to be expanded to cover all the visible parts. |
5735 | */ |
5736 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) |
5737 | { |
5738 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5739 | |
5740 | page_counter_set_max(counter: &memcg->memory, PAGE_COUNTER_MAX); |
5741 | page_counter_set_max(counter: &memcg->swap, PAGE_COUNTER_MAX); |
5742 | page_counter_set_max(counter: &memcg->kmem, PAGE_COUNTER_MAX); |
5743 | page_counter_set_max(counter: &memcg->tcpmem, PAGE_COUNTER_MAX); |
5744 | page_counter_set_min(counter: &memcg->memory, nr_pages: 0); |
5745 | page_counter_set_low(counter: &memcg->memory, nr_pages: 0); |
5746 | page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX); |
5747 | WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); |
5748 | page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX); |
5749 | memcg_wb_domain_size_changed(memcg); |
5750 | } |
5751 | |
5752 | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) |
5753 | { |
5754 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5755 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
5756 | struct memcg_vmstats_percpu *statc; |
5757 | long delta, delta_cpu, v; |
5758 | int i, nid; |
5759 | |
5760 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
5761 | |
5762 | for (i = 0; i < MEMCG_NR_STAT; i++) { |
5763 | /* |
5764 | * Collect the aggregated propagation counts of groups |
5765 | * below us. We're in a per-cpu loop here and this is |
5766 | * a global counter, so the first cycle will get them. |
5767 | */ |
5768 | delta = memcg->vmstats->state_pending[i]; |
5769 | if (delta) |
5770 | memcg->vmstats->state_pending[i] = 0; |
5771 | |
5772 | /* Add CPU changes on this level since the last flush */ |
5773 | delta_cpu = 0; |
5774 | v = READ_ONCE(statc->state[i]); |
5775 | if (v != statc->state_prev[i]) { |
5776 | delta_cpu = v - statc->state_prev[i]; |
5777 | delta += delta_cpu; |
5778 | statc->state_prev[i] = v; |
5779 | } |
5780 | |
5781 | /* Aggregate counts on this level and propagate upwards */ |
5782 | if (delta_cpu) |
5783 | memcg->vmstats->state_local[i] += delta_cpu; |
5784 | |
5785 | if (delta) { |
5786 | memcg->vmstats->state[i] += delta; |
5787 | if (parent) |
5788 | parent->vmstats->state_pending[i] += delta; |
5789 | } |
5790 | } |
5791 | |
5792 | for (i = 0; i < NR_MEMCG_EVENTS; i++) { |
5793 | delta = memcg->vmstats->events_pending[i]; |
5794 | if (delta) |
5795 | memcg->vmstats->events_pending[i] = 0; |
5796 | |
5797 | delta_cpu = 0; |
5798 | v = READ_ONCE(statc->events[i]); |
5799 | if (v != statc->events_prev[i]) { |
5800 | delta_cpu = v - statc->events_prev[i]; |
5801 | delta += delta_cpu; |
5802 | statc->events_prev[i] = v; |
5803 | } |
5804 | |
5805 | if (delta_cpu) |
5806 | memcg->vmstats->events_local[i] += delta_cpu; |
5807 | |
5808 | if (delta) { |
5809 | memcg->vmstats->events[i] += delta; |
5810 | if (parent) |
5811 | parent->vmstats->events_pending[i] += delta; |
5812 | } |
5813 | } |
5814 | |
5815 | for_each_node_state(nid, N_MEMORY) { |
5816 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; |
5817 | struct mem_cgroup_per_node *ppn = NULL; |
5818 | struct lruvec_stats_percpu *lstatc; |
5819 | |
5820 | if (parent) |
5821 | ppn = parent->nodeinfo[nid]; |
5822 | |
5823 | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); |
5824 | |
5825 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
5826 | delta = pn->lruvec_stats.state_pending[i]; |
5827 | if (delta) |
5828 | pn->lruvec_stats.state_pending[i] = 0; |
5829 | |
5830 | delta_cpu = 0; |
5831 | v = READ_ONCE(lstatc->state[i]); |
5832 | if (v != lstatc->state_prev[i]) { |
5833 | delta_cpu = v - lstatc->state_prev[i]; |
5834 | delta += delta_cpu; |
5835 | lstatc->state_prev[i] = v; |
5836 | } |
5837 | |
5838 | if (delta_cpu) |
5839 | pn->lruvec_stats.state_local[i] += delta_cpu; |
5840 | |
5841 | if (delta) { |
5842 | pn->lruvec_stats.state[i] += delta; |
5843 | if (ppn) |
5844 | ppn->lruvec_stats.state_pending[i] += delta; |
5845 | } |
5846 | } |
5847 | } |
5848 | statc->stats_updates = 0; |
5849 | /* We are in a per-cpu loop here, only do the atomic write once */ |
5850 | if (atomic64_read(v: &memcg->vmstats->stats_updates)) |
5851 | atomic64_set(v: &memcg->vmstats->stats_updates, i: 0); |
5852 | } |
5853 | |
5854 | #ifdef CONFIG_MMU |
5855 | /* Handlers for move charge at task migration. */ |
5856 | static int mem_cgroup_do_precharge(unsigned long count) |
5857 | { |
5858 | int ret; |
5859 | |
5860 | /* Try a single bulk charge without reclaim first, kswapd may wake */ |
5861 | ret = try_charge(memcg: mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, nr_pages: count); |
5862 | if (!ret) { |
5863 | mc.precharge += count; |
5864 | return ret; |
5865 | } |
5866 | |
5867 | /* Try charges one by one with reclaim, but do not retry */ |
5868 | while (count--) { |
5869 | ret = try_charge(memcg: mc.to, GFP_KERNEL | __GFP_NORETRY, nr_pages: 1); |
5870 | if (ret) |
5871 | return ret; |
5872 | mc.precharge++; |
5873 | cond_resched(); |
5874 | } |
5875 | return 0; |
5876 | } |
5877 | |
5878 | union mc_target { |
5879 | struct folio *folio; |
5880 | swp_entry_t ent; |
5881 | }; |
5882 | |
5883 | enum mc_target_type { |
5884 | MC_TARGET_NONE = 0, |
5885 | MC_TARGET_PAGE, |
5886 | MC_TARGET_SWAP, |
5887 | MC_TARGET_DEVICE, |
5888 | }; |
5889 | |
5890 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
5891 | unsigned long addr, pte_t ptent) |
5892 | { |
5893 | struct page *page = vm_normal_page(vma, addr, pte: ptent); |
5894 | |
5895 | if (!page) |
5896 | return NULL; |
5897 | if (PageAnon(page)) { |
5898 | if (!(mc.flags & MOVE_ANON)) |
5899 | return NULL; |
5900 | } else { |
5901 | if (!(mc.flags & MOVE_FILE)) |
5902 | return NULL; |
5903 | } |
5904 | get_page(page); |
5905 | |
5906 | return page; |
5907 | } |
5908 | |
5909 | #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) |
5910 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5911 | pte_t ptent, swp_entry_t *entry) |
5912 | { |
5913 | struct page *page = NULL; |
5914 | swp_entry_t ent = pte_to_swp_entry(pte: ptent); |
5915 | |
5916 | if (!(mc.flags & MOVE_ANON)) |
5917 | return NULL; |
5918 | |
5919 | /* |
5920 | * Handle device private pages that are not accessible by the CPU, but |
5921 | * stored as special swap entries in the page table. |
5922 | */ |
5923 | if (is_device_private_entry(entry: ent)) { |
5924 | page = pfn_swap_entry_to_page(entry: ent); |
5925 | if (!get_page_unless_zero(page)) |
5926 | return NULL; |
5927 | return page; |
5928 | } |
5929 | |
5930 | if (non_swap_entry(entry: ent)) |
5931 | return NULL; |
5932 | |
5933 | /* |
5934 | * Because swap_cache_get_folio() updates some statistics counter, |
5935 | * we call find_get_page() with swapper_space directly. |
5936 | */ |
5937 | page = find_get_page(swap_address_space(ent), offset: swp_offset(entry: ent)); |
5938 | entry->val = ent.val; |
5939 | |
5940 | return page; |
5941 | } |
5942 | #else |
5943 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5944 | pte_t ptent, swp_entry_t *entry) |
5945 | { |
5946 | return NULL; |
5947 | } |
5948 | #endif |
5949 | |
5950 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
5951 | unsigned long addr, pte_t ptent) |
5952 | { |
5953 | unsigned long index; |
5954 | struct folio *folio; |
5955 | |
5956 | if (!vma->vm_file) /* anonymous vma */ |
5957 | return NULL; |
5958 | if (!(mc.flags & MOVE_FILE)) |
5959 | return NULL; |
5960 | |
5961 | /* folio is moved even if it's not RSS of this task(page-faulted). */ |
5962 | /* shmem/tmpfs may report page out on swap: account for that too. */ |
5963 | index = linear_page_index(vma, address: addr); |
5964 | folio = filemap_get_incore_folio(mapping: vma->vm_file->f_mapping, index); |
5965 | if (IS_ERR(ptr: folio)) |
5966 | return NULL; |
5967 | return folio_file_page(folio, index); |
5968 | } |
5969 | |
5970 | /** |
5971 | * mem_cgroup_move_account - move account of the folio |
5972 | * @folio: The folio. |
5973 | * @compound: charge the page as compound or small page |
5974 | * @from: mem_cgroup which the folio is moved from. |
5975 | * @to: mem_cgroup which the folio is moved to. @from != @to. |
5976 | * |
5977 | * The folio must be locked and not on the LRU. |
5978 | * |
5979 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
5980 | * from old cgroup. |
5981 | */ |
5982 | static int mem_cgroup_move_account(struct folio *folio, |
5983 | bool compound, |
5984 | struct mem_cgroup *from, |
5985 | struct mem_cgroup *to) |
5986 | { |
5987 | struct lruvec *from_vec, *to_vec; |
5988 | struct pglist_data *pgdat; |
5989 | unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; |
5990 | int nid, ret; |
5991 | |
5992 | VM_BUG_ON(from == to); |
5993 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
5994 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
5995 | VM_BUG_ON(compound && !folio_test_large(folio)); |
5996 | |
5997 | ret = -EINVAL; |
5998 | if (folio_memcg(folio) != from) |
5999 | goto out; |
6000 | |
6001 | pgdat = folio_pgdat(folio); |
6002 | from_vec = mem_cgroup_lruvec(memcg: from, pgdat); |
6003 | to_vec = mem_cgroup_lruvec(memcg: to, pgdat); |
6004 | |
6005 | folio_memcg_lock(folio); |
6006 | |
6007 | if (folio_test_anon(folio)) { |
6008 | if (folio_mapped(folio)) { |
6009 | __mod_lruvec_state(lruvec: from_vec, idx: NR_ANON_MAPPED, val: -nr_pages); |
6010 | __mod_lruvec_state(lruvec: to_vec, idx: NR_ANON_MAPPED, val: nr_pages); |
6011 | if (folio_test_pmd_mappable(folio)) { |
6012 | __mod_lruvec_state(lruvec: from_vec, idx: NR_ANON_THPS, |
6013 | val: -nr_pages); |
6014 | __mod_lruvec_state(lruvec: to_vec, idx: NR_ANON_THPS, |
6015 | val: nr_pages); |
6016 | } |
6017 | } |
6018 | } else { |
6019 | __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_PAGES, val: -nr_pages); |
6020 | __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_PAGES, val: nr_pages); |
6021 | |
6022 | if (folio_test_swapbacked(folio)) { |
6023 | __mod_lruvec_state(lruvec: from_vec, idx: NR_SHMEM, val: -nr_pages); |
6024 | __mod_lruvec_state(lruvec: to_vec, idx: NR_SHMEM, val: nr_pages); |
6025 | } |
6026 | |
6027 | if (folio_mapped(folio)) { |
6028 | __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_MAPPED, val: -nr_pages); |
6029 | __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_MAPPED, val: nr_pages); |
6030 | } |
6031 | |
6032 | if (folio_test_dirty(folio)) { |
6033 | struct address_space *mapping = folio_mapping(folio); |
6034 | |
6035 | if (mapping_can_writeback(mapping)) { |
6036 | __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_DIRTY, |
6037 | val: -nr_pages); |
6038 | __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_DIRTY, |
6039 | val: nr_pages); |
6040 | } |
6041 | } |
6042 | } |
6043 | |
6044 | #ifdef CONFIG_SWAP |
6045 | if (folio_test_swapcache(folio)) { |
6046 | __mod_lruvec_state(lruvec: from_vec, idx: NR_SWAPCACHE, val: -nr_pages); |
6047 | __mod_lruvec_state(lruvec: to_vec, idx: NR_SWAPCACHE, val: nr_pages); |
6048 | } |
6049 | #endif |
6050 | if (folio_test_writeback(folio)) { |
6051 | __mod_lruvec_state(lruvec: from_vec, idx: NR_WRITEBACK, val: -nr_pages); |
6052 | __mod_lruvec_state(lruvec: to_vec, idx: NR_WRITEBACK, val: nr_pages); |
6053 | } |
6054 | |
6055 | /* |
6056 | * All state has been migrated, let's switch to the new memcg. |
6057 | * |
6058 | * It is safe to change page's memcg here because the page |
6059 | * is referenced, charged, isolated, and locked: we can't race |
6060 | * with (un)charging, migration, LRU putback, or anything else |
6061 | * that would rely on a stable page's memory cgroup. |
6062 | * |
6063 | * Note that folio_memcg_lock is a memcg lock, not a page lock, |
6064 | * to save space. As soon as we switch page's memory cgroup to a |
6065 | * new memcg that isn't locked, the above state can change |
6066 | * concurrently again. Make sure we're truly done with it. |
6067 | */ |
6068 | smp_mb(); |
6069 | |
6070 | css_get(css: &to->css); |
6071 | css_put(css: &from->css); |
6072 | |
6073 | folio->memcg_data = (unsigned long)to; |
6074 | |
6075 | __folio_memcg_unlock(memcg: from); |
6076 | |
6077 | ret = 0; |
6078 | nid = folio_nid(folio); |
6079 | |
6080 | local_irq_disable(); |
6081 | mem_cgroup_charge_statistics(memcg: to, nr_pages); |
6082 | memcg_check_events(memcg: to, nid); |
6083 | mem_cgroup_charge_statistics(memcg: from, nr_pages: -nr_pages); |
6084 | memcg_check_events(memcg: from, nid); |
6085 | local_irq_enable(); |
6086 | out: |
6087 | return ret; |
6088 | } |
6089 | |
6090 | /** |
6091 | * get_mctgt_type - get target type of moving charge |
6092 | * @vma: the vma the pte to be checked belongs |
6093 | * @addr: the address corresponding to the pte to be checked |
6094 | * @ptent: the pte to be checked |
6095 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
6096 | * |
6097 | * Context: Called with pte lock held. |
6098 | * Return: |
6099 | * * MC_TARGET_NONE - If the pte is not a target for move charge. |
6100 | * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for |
6101 | * move charge. If @target is not NULL, the folio is stored in target->folio |
6102 | * with extra refcnt taken (Caller should release it). |
6103 | * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a |
6104 | * target for charge migration. If @target is not NULL, the entry is |
6105 | * stored in target->ent. |
6106 | * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and |
6107 | * thus not on the lru. For now such page is charged like a regular page |
6108 | * would be as it is just special memory taking the place of a regular page. |
6109 | * See Documentations/vm/hmm.txt and include/linux/hmm.h |
6110 | */ |
6111 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
6112 | unsigned long addr, pte_t ptent, union mc_target *target) |
6113 | { |
6114 | struct page *page = NULL; |
6115 | struct folio *folio; |
6116 | enum mc_target_type ret = MC_TARGET_NONE; |
6117 | swp_entry_t ent = { .val = 0 }; |
6118 | |
6119 | if (pte_present(a: ptent)) |
6120 | page = mc_handle_present_pte(vma, addr, ptent); |
6121 | else if (pte_none_mostly(pte: ptent)) |
6122 | /* |
6123 | * PTE markers should be treated as a none pte here, separated |
6124 | * from other swap handling below. |
6125 | */ |
6126 | page = mc_handle_file_pte(vma, addr, ptent); |
6127 | else if (is_swap_pte(pte: ptent)) |
6128 | page = mc_handle_swap_pte(vma, ptent, entry: &ent); |
6129 | |
6130 | if (page) |
6131 | folio = page_folio(page); |
6132 | if (target && page) { |
6133 | if (!folio_trylock(folio)) { |
6134 | folio_put(folio); |
6135 | return ret; |
6136 | } |
6137 | /* |
6138 | * page_mapped() must be stable during the move. This |
6139 | * pte is locked, so if it's present, the page cannot |
6140 | * become unmapped. If it isn't, we have only partial |
6141 | * control over the mapped state: the page lock will |
6142 | * prevent new faults against pagecache and swapcache, |
6143 | * so an unmapped page cannot become mapped. However, |
6144 | * if the page is already mapped elsewhere, it can |
6145 | * unmap, and there is nothing we can do about it. |
6146 | * Alas, skip moving the page in this case. |
6147 | */ |
6148 | if (!pte_present(a: ptent) && page_mapped(page)) { |
6149 | folio_unlock(folio); |
6150 | folio_put(folio); |
6151 | return ret; |
6152 | } |
6153 | } |
6154 | |
6155 | if (!page && !ent.val) |
6156 | return ret; |
6157 | if (page) { |
6158 | /* |
6159 | * Do only loose check w/o serialization. |
6160 | * mem_cgroup_move_account() checks the page is valid or |
6161 | * not under LRU exclusion. |
6162 | */ |
6163 | if (folio_memcg(folio) == mc.from) { |
6164 | ret = MC_TARGET_PAGE; |
6165 | if (folio_is_device_private(folio) || |
6166 | folio_is_device_coherent(folio)) |
6167 | ret = MC_TARGET_DEVICE; |
6168 | if (target) |
6169 | target->folio = folio; |
6170 | } |
6171 | if (!ret || !target) { |
6172 | if (target) |
6173 | folio_unlock(folio); |
6174 | folio_put(folio); |
6175 | } |
6176 | } |
6177 | /* |
6178 | * There is a swap entry and a page doesn't exist or isn't charged. |
6179 | * But we cannot move a tail-page in a THP. |
6180 | */ |
6181 | if (ent.val && !ret && (!page || !PageTransCompound(page)) && |
6182 | mem_cgroup_id(memcg: mc.from) == lookup_swap_cgroup_id(ent)) { |
6183 | ret = MC_TARGET_SWAP; |
6184 | if (target) |
6185 | target->ent = ent; |
6186 | } |
6187 | return ret; |
6188 | } |
6189 | |
6190 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6191 | /* |
6192 | * We don't consider PMD mapped swapping or file mapped pages because THP does |
6193 | * not support them for now. |
6194 | * Caller should make sure that pmd_trans_huge(pmd) is true. |
6195 | */ |
6196 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
6197 | unsigned long addr, pmd_t pmd, union mc_target *target) |
6198 | { |
6199 | struct page *page = NULL; |
6200 | struct folio *folio; |
6201 | enum mc_target_type ret = MC_TARGET_NONE; |
6202 | |
6203 | if (unlikely(is_swap_pmd(pmd))) { |
6204 | VM_BUG_ON(thp_migration_supported() && |
6205 | !is_pmd_migration_entry(pmd)); |
6206 | return ret; |
6207 | } |
6208 | page = pmd_page(pmd); |
6209 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); |
6210 | folio = page_folio(page); |
6211 | if (!(mc.flags & MOVE_ANON)) |
6212 | return ret; |
6213 | if (folio_memcg(folio) == mc.from) { |
6214 | ret = MC_TARGET_PAGE; |
6215 | if (target) { |
6216 | folio_get(folio); |
6217 | if (!folio_trylock(folio)) { |
6218 | folio_put(folio); |
6219 | return MC_TARGET_NONE; |
6220 | } |
6221 | target->folio = folio; |
6222 | } |
6223 | } |
6224 | return ret; |
6225 | } |
6226 | #else |
6227 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
6228 | unsigned long addr, pmd_t pmd, union mc_target *target) |
6229 | { |
6230 | return MC_TARGET_NONE; |
6231 | } |
6232 | #endif |
6233 | |
6234 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
6235 | unsigned long addr, unsigned long end, |
6236 | struct mm_walk *walk) |
6237 | { |
6238 | struct vm_area_struct *vma = walk->vma; |
6239 | pte_t *pte; |
6240 | spinlock_t *ptl; |
6241 | |
6242 | ptl = pmd_trans_huge_lock(pmd, vma); |
6243 | if (ptl) { |
6244 | /* |
6245 | * Note their can not be MC_TARGET_DEVICE for now as we do not |
6246 | * support transparent huge page with MEMORY_DEVICE_PRIVATE but |
6247 | * this might change. |
6248 | */ |
6249 | if (get_mctgt_type_thp(vma, addr, pmd: *pmd, NULL) == MC_TARGET_PAGE) |
6250 | mc.precharge += HPAGE_PMD_NR; |
6251 | spin_unlock(lock: ptl); |
6252 | return 0; |
6253 | } |
6254 | |
6255 | pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
6256 | if (!pte) |
6257 | return 0; |
6258 | for (; addr != end; pte++, addr += PAGE_SIZE) |
6259 | if (get_mctgt_type(vma, addr, ptent: ptep_get(ptep: pte), NULL)) |
6260 | mc.precharge++; /* increment precharge temporarily */ |
6261 | pte_unmap_unlock(pte - 1, ptl); |
6262 | cond_resched(); |
6263 | |
6264 | return 0; |
6265 | } |
6266 | |
6267 | static const struct mm_walk_ops precharge_walk_ops = { |
6268 | .pmd_entry = mem_cgroup_count_precharge_pte_range, |
6269 | .walk_lock = PGWALK_RDLOCK, |
6270 | }; |
6271 | |
6272 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
6273 | { |
6274 | unsigned long precharge; |
6275 | |
6276 | mmap_read_lock(mm); |
6277 | walk_page_range(mm, start: 0, ULONG_MAX, ops: &precharge_walk_ops, NULL); |
6278 | mmap_read_unlock(mm); |
6279 | |
6280 | precharge = mc.precharge; |
6281 | mc.precharge = 0; |
6282 | |
6283 | return precharge; |
6284 | } |
6285 | |
6286 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
6287 | { |
6288 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
6289 | |
6290 | VM_BUG_ON(mc.moving_task); |
6291 | mc.moving_task = current; |
6292 | return mem_cgroup_do_precharge(count: precharge); |
6293 | } |
6294 | |
6295 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
6296 | static void __mem_cgroup_clear_mc(void) |
6297 | { |
6298 | struct mem_cgroup *from = mc.from; |
6299 | struct mem_cgroup *to = mc.to; |
6300 | |
6301 | /* we must uncharge all the leftover precharges from mc.to */ |
6302 | if (mc.precharge) { |
6303 | mem_cgroup_cancel_charge(memcg: mc.to, nr_pages: mc.precharge); |
6304 | mc.precharge = 0; |
6305 | } |
6306 | /* |
6307 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
6308 | * we must uncharge here. |
6309 | */ |
6310 | if (mc.moved_charge) { |
6311 | mem_cgroup_cancel_charge(memcg: mc.from, nr_pages: mc.moved_charge); |
6312 | mc.moved_charge = 0; |
6313 | } |
6314 | /* we must fixup refcnts and charges */ |
6315 | if (mc.moved_swap) { |
6316 | /* uncharge swap account from the old cgroup */ |
6317 | if (!mem_cgroup_is_root(memcg: mc.from)) |
6318 | page_counter_uncharge(counter: &mc.from->memsw, nr_pages: mc.moved_swap); |
6319 | |
6320 | mem_cgroup_id_put_many(memcg: mc.from, n: mc.moved_swap); |
6321 | |
6322 | /* |
6323 | * we charged both to->memory and to->memsw, so we |
6324 | * should uncharge to->memory. |
6325 | */ |
6326 | if (!mem_cgroup_is_root(memcg: mc.to)) |
6327 | page_counter_uncharge(counter: &mc.to->memory, nr_pages: mc.moved_swap); |
6328 | |
6329 | mc.moved_swap = 0; |
6330 | } |
6331 | memcg_oom_recover(memcg: from); |
6332 | memcg_oom_recover(memcg: to); |
6333 | wake_up_all(&mc.waitq); |
6334 | } |
6335 | |
6336 | static void mem_cgroup_clear_mc(void) |
6337 | { |
6338 | struct mm_struct *mm = mc.mm; |
6339 | |
6340 | /* |
6341 | * we must clear moving_task before waking up waiters at the end of |
6342 | * task migration. |
6343 | */ |
6344 | mc.moving_task = NULL; |
6345 | __mem_cgroup_clear_mc(); |
6346 | spin_lock(lock: &mc.lock); |
6347 | mc.from = NULL; |
6348 | mc.to = NULL; |
6349 | mc.mm = NULL; |
6350 | spin_unlock(lock: &mc.lock); |
6351 | |
6352 | mmput(mm); |
6353 | } |
6354 | |
6355 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) |
6356 | { |
6357 | struct cgroup_subsys_state *css; |
6358 | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ |
6359 | struct mem_cgroup *from; |
6360 | struct task_struct *leader, *p; |
6361 | struct mm_struct *mm; |
6362 | unsigned long move_flags; |
6363 | int ret = 0; |
6364 | |
6365 | /* charge immigration isn't supported on the default hierarchy */ |
6366 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
6367 | return 0; |
6368 | |
6369 | /* |
6370 | * Multi-process migrations only happen on the default hierarchy |
6371 | * where charge immigration is not used. Perform charge |
6372 | * immigration if @tset contains a leader and whine if there are |
6373 | * multiple. |
6374 | */ |
6375 | p = NULL; |
6376 | cgroup_taskset_for_each_leader(leader, css, tset) { |
6377 | WARN_ON_ONCE(p); |
6378 | p = leader; |
6379 | memcg = mem_cgroup_from_css(css); |
6380 | } |
6381 | if (!p) |
6382 | return 0; |
6383 | |
6384 | /* |
6385 | * We are now committed to this value whatever it is. Changes in this |
6386 | * tunable will only affect upcoming migrations, not the current one. |
6387 | * So we need to save it, and keep it going. |
6388 | */ |
6389 | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); |
6390 | if (!move_flags) |
6391 | return 0; |
6392 | |
6393 | from = mem_cgroup_from_task(p); |
6394 | |
6395 | VM_BUG_ON(from == memcg); |
6396 | |
6397 | mm = get_task_mm(task: p); |
6398 | if (!mm) |
6399 | return 0; |
6400 | /* We move charges only when we move a owner of the mm */ |
6401 | if (mm->owner == p) { |
6402 | VM_BUG_ON(mc.from); |
6403 | VM_BUG_ON(mc.to); |
6404 | VM_BUG_ON(mc.precharge); |
6405 | VM_BUG_ON(mc.moved_charge); |
6406 | VM_BUG_ON(mc.moved_swap); |
6407 | |
6408 | spin_lock(lock: &mc.lock); |
6409 | mc.mm = mm; |
6410 | mc.from = from; |
6411 | mc.to = memcg; |
6412 | mc.flags = move_flags; |
6413 | spin_unlock(lock: &mc.lock); |
6414 | /* We set mc.moving_task later */ |
6415 | |
6416 | ret = mem_cgroup_precharge_mc(mm); |
6417 | if (ret) |
6418 | mem_cgroup_clear_mc(); |
6419 | } else { |
6420 | mmput(mm); |
6421 | } |
6422 | return ret; |
6423 | } |
6424 | |
6425 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) |
6426 | { |
6427 | if (mc.to) |
6428 | mem_cgroup_clear_mc(); |
6429 | } |
6430 | |
6431 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
6432 | unsigned long addr, unsigned long end, |
6433 | struct mm_walk *walk) |
6434 | { |
6435 | int ret = 0; |
6436 | struct vm_area_struct *vma = walk->vma; |
6437 | pte_t *pte; |
6438 | spinlock_t *ptl; |
6439 | enum mc_target_type target_type; |
6440 | union mc_target target; |
6441 | struct folio *folio; |
6442 | |
6443 | ptl = pmd_trans_huge_lock(pmd, vma); |
6444 | if (ptl) { |
6445 | if (mc.precharge < HPAGE_PMD_NR) { |
6446 | spin_unlock(lock: ptl); |
6447 | return 0; |
6448 | } |
6449 | target_type = get_mctgt_type_thp(vma, addr, pmd: *pmd, target: &target); |
6450 | if (target_type == MC_TARGET_PAGE) { |
6451 | folio = target.folio; |
6452 | if (folio_isolate_lru(folio)) { |
6453 | if (!mem_cgroup_move_account(folio, compound: true, |
6454 | from: mc.from, to: mc.to)) { |
6455 | mc.precharge -= HPAGE_PMD_NR; |
6456 | mc.moved_charge += HPAGE_PMD_NR; |
6457 | } |
6458 | folio_putback_lru(folio); |
6459 | } |
6460 | folio_unlock(folio); |
6461 | folio_put(folio); |
6462 | } else if (target_type == MC_TARGET_DEVICE) { |
6463 | folio = target.folio; |
6464 | if (!mem_cgroup_move_account(folio, compound: true, |
6465 | from: mc.from, to: mc.to)) { |
6466 | mc.precharge -= HPAGE_PMD_NR; |
6467 | mc.moved_charge += HPAGE_PMD_NR; |
6468 | } |
6469 | folio_unlock(folio); |
6470 | folio_put(folio); |
6471 | } |
6472 | spin_unlock(lock: ptl); |
6473 | return 0; |
6474 | } |
6475 | |
6476 | retry: |
6477 | pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
6478 | if (!pte) |
6479 | return 0; |
6480 | for (; addr != end; addr += PAGE_SIZE) { |
6481 | pte_t ptent = ptep_get(ptep: pte++); |
6482 | bool device = false; |
6483 | swp_entry_t ent; |
6484 | |
6485 | if (!mc.precharge) |
6486 | break; |
6487 | |
6488 | switch (get_mctgt_type(vma, addr, ptent, target: &target)) { |
6489 | case MC_TARGET_DEVICE: |
6490 | device = true; |
6491 | fallthrough; |
6492 | case MC_TARGET_PAGE: |
6493 | folio = target.folio; |
6494 | /* |
6495 | * We can have a part of the split pmd here. Moving it |
6496 | * can be done but it would be too convoluted so simply |
6497 | * ignore such a partial THP and keep it in original |
6498 | * memcg. There should be somebody mapping the head. |
6499 | */ |
6500 | if (folio_test_large(folio)) |
6501 | goto put; |
6502 | if (!device && !folio_isolate_lru(folio)) |
6503 | goto put; |
6504 | if (!mem_cgroup_move_account(folio, compound: false, |
6505 | from: mc.from, to: mc.to)) { |
6506 | mc.precharge--; |
6507 | /* we uncharge from mc.from later. */ |
6508 | mc.moved_charge++; |
6509 | } |
6510 | if (!device) |
6511 | folio_putback_lru(folio); |
6512 | put: /* get_mctgt_type() gets & locks the page */ |
6513 | folio_unlock(folio); |
6514 | folio_put(folio); |
6515 | break; |
6516 | case MC_TARGET_SWAP: |
6517 | ent = target.ent; |
6518 | if (!mem_cgroup_move_swap_account(entry: ent, from: mc.from, to: mc.to)) { |
6519 | mc.precharge--; |
6520 | mem_cgroup_id_get_many(memcg: mc.to, n: 1); |
6521 | /* we fixup other refcnts and charges later. */ |
6522 | mc.moved_swap++; |
6523 | } |
6524 | break; |
6525 | default: |
6526 | break; |
6527 | } |
6528 | } |
6529 | pte_unmap_unlock(pte - 1, ptl); |
6530 | cond_resched(); |
6531 | |
6532 | if (addr != end) { |
6533 | /* |
6534 | * We have consumed all precharges we got in can_attach(). |
6535 | * We try charge one by one, but don't do any additional |
6536 | * charges to mc.to if we have failed in charge once in attach() |
6537 | * phase. |
6538 | */ |
6539 | ret = mem_cgroup_do_precharge(count: 1); |
6540 | if (!ret) |
6541 | goto retry; |
6542 | } |
6543 | |
6544 | return ret; |
6545 | } |
6546 | |
6547 | static const struct mm_walk_ops charge_walk_ops = { |
6548 | .pmd_entry = mem_cgroup_move_charge_pte_range, |
6549 | .walk_lock = PGWALK_RDLOCK, |
6550 | }; |
6551 | |
6552 | static void mem_cgroup_move_charge(void) |
6553 | { |
6554 | lru_add_drain_all(); |
6555 | /* |
6556 | * Signal folio_memcg_lock() to take the memcg's move_lock |
6557 | * while we're moving its pages to another memcg. Then wait |
6558 | * for already started RCU-only updates to finish. |
6559 | */ |
6560 | atomic_inc(v: &mc.from->moving_account); |
6561 | synchronize_rcu(); |
6562 | retry: |
6563 | if (unlikely(!mmap_read_trylock(mc.mm))) { |
6564 | /* |
6565 | * Someone who are holding the mmap_lock might be waiting in |
6566 | * waitq. So we cancel all extra charges, wake up all waiters, |
6567 | * and retry. Because we cancel precharges, we might not be able |
6568 | * to move enough charges, but moving charge is a best-effort |
6569 | * feature anyway, so it wouldn't be a big problem. |
6570 | */ |
6571 | __mem_cgroup_clear_mc(); |
6572 | cond_resched(); |
6573 | goto retry; |
6574 | } |
6575 | /* |
6576 | * When we have consumed all precharges and failed in doing |
6577 | * additional charge, the page walk just aborts. |
6578 | */ |
6579 | walk_page_range(mm: mc.mm, start: 0, ULONG_MAX, ops: &charge_walk_ops, NULL); |
6580 | mmap_read_unlock(mm: mc.mm); |
6581 | atomic_dec(v: &mc.from->moving_account); |
6582 | } |
6583 | |
6584 | static void mem_cgroup_move_task(void) |
6585 | { |
6586 | if (mc.to) { |
6587 | mem_cgroup_move_charge(); |
6588 | mem_cgroup_clear_mc(); |
6589 | } |
6590 | } |
6591 | |
6592 | #else /* !CONFIG_MMU */ |
6593 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) |
6594 | { |
6595 | return 0; |
6596 | } |
6597 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) |
6598 | { |
6599 | } |
6600 | static void mem_cgroup_move_task(void) |
6601 | { |
6602 | } |
6603 | #endif |
6604 | |
6605 | #ifdef CONFIG_MEMCG_KMEM |
6606 | static void mem_cgroup_fork(struct task_struct *task) |
6607 | { |
6608 | /* |
6609 | * Set the update flag to cause task->objcg to be initialized lazily |
6610 | * on the first allocation. It can be done without any synchronization |
6611 | * because it's always performed on the current task, so does |
6612 | * current_objcg_update(). |
6613 | */ |
6614 | task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; |
6615 | } |
6616 | |
6617 | static void mem_cgroup_exit(struct task_struct *task) |
6618 | { |
6619 | struct obj_cgroup *objcg = task->objcg; |
6620 | |
6621 | objcg = (struct obj_cgroup *) |
6622 | ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); |
6623 | if (objcg) |
6624 | obj_cgroup_put(objcg); |
6625 | |
6626 | /* |
6627 | * Some kernel allocations can happen after this point, |
6628 | * but let's ignore them. It can be done without any synchronization |
6629 | * because it's always performed on the current task, so does |
6630 | * current_objcg_update(). |
6631 | */ |
6632 | task->objcg = NULL; |
6633 | } |
6634 | #endif |
6635 | |
6636 | #ifdef CONFIG_LRU_GEN |
6637 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) |
6638 | { |
6639 | struct task_struct *task; |
6640 | struct cgroup_subsys_state *css; |
6641 | |
6642 | /* find the first leader if there is any */ |
6643 | cgroup_taskset_for_each_leader(task, css, tset) |
6644 | break; |
6645 | |
6646 | if (!task) |
6647 | return; |
6648 | |
6649 | task_lock(p: task); |
6650 | if (task->mm && READ_ONCE(task->mm->owner) == task) |
6651 | lru_gen_migrate_mm(mm: task->mm); |
6652 | task_unlock(p: task); |
6653 | } |
6654 | #else |
6655 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} |
6656 | #endif /* CONFIG_LRU_GEN */ |
6657 | |
6658 | #ifdef CONFIG_MEMCG_KMEM |
6659 | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) |
6660 | { |
6661 | struct task_struct *task; |
6662 | struct cgroup_subsys_state *css; |
6663 | |
6664 | cgroup_taskset_for_each(task, css, tset) { |
6665 | /* atomically set the update bit */ |
6666 | set_bit(CURRENT_OBJCG_UPDATE_BIT, addr: (unsigned long *)&task->objcg); |
6667 | } |
6668 | } |
6669 | #else |
6670 | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} |
6671 | #endif /* CONFIG_MEMCG_KMEM */ |
6672 | |
6673 | #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) |
6674 | static void mem_cgroup_attach(struct cgroup_taskset *tset) |
6675 | { |
6676 | mem_cgroup_lru_gen_attach(tset); |
6677 | mem_cgroup_kmem_attach(tset); |
6678 | } |
6679 | #endif |
6680 | |
6681 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) |
6682 | { |
6683 | if (value == PAGE_COUNTER_MAX) |
6684 | seq_puts(m, s: "max\n" ); |
6685 | else |
6686 | seq_printf(m, fmt: "%llu\n" , (u64)value * PAGE_SIZE); |
6687 | |
6688 | return 0; |
6689 | } |
6690 | |
6691 | static u64 memory_current_read(struct cgroup_subsys_state *css, |
6692 | struct cftype *cft) |
6693 | { |
6694 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
6695 | |
6696 | return (u64)page_counter_read(counter: &memcg->memory) * PAGE_SIZE; |
6697 | } |
6698 | |
6699 | static u64 memory_peak_read(struct cgroup_subsys_state *css, |
6700 | struct cftype *cft) |
6701 | { |
6702 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
6703 | |
6704 | return (u64)memcg->memory.watermark * PAGE_SIZE; |
6705 | } |
6706 | |
6707 | static int memory_min_show(struct seq_file *m, void *v) |
6708 | { |
6709 | return seq_puts_memcg_tunable(m, |
6710 | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); |
6711 | } |
6712 | |
6713 | static ssize_t memory_min_write(struct kernfs_open_file *of, |
6714 | char *buf, size_t nbytes, loff_t off) |
6715 | { |
6716 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6717 | unsigned long min; |
6718 | int err; |
6719 | |
6720 | buf = strstrip(str: buf); |
6721 | err = page_counter_memparse(buf, max: "max" , nr_pages: &min); |
6722 | if (err) |
6723 | return err; |
6724 | |
6725 | page_counter_set_min(counter: &memcg->memory, nr_pages: min); |
6726 | |
6727 | return nbytes; |
6728 | } |
6729 | |
6730 | static int memory_low_show(struct seq_file *m, void *v) |
6731 | { |
6732 | return seq_puts_memcg_tunable(m, |
6733 | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); |
6734 | } |
6735 | |
6736 | static ssize_t memory_low_write(struct kernfs_open_file *of, |
6737 | char *buf, size_t nbytes, loff_t off) |
6738 | { |
6739 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6740 | unsigned long low; |
6741 | int err; |
6742 | |
6743 | buf = strstrip(str: buf); |
6744 | err = page_counter_memparse(buf, max: "max" , nr_pages: &low); |
6745 | if (err) |
6746 | return err; |
6747 | |
6748 | page_counter_set_low(counter: &memcg->memory, nr_pages: low); |
6749 | |
6750 | return nbytes; |
6751 | } |
6752 | |
6753 | static int memory_high_show(struct seq_file *m, void *v) |
6754 | { |
6755 | return seq_puts_memcg_tunable(m, |
6756 | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); |
6757 | } |
6758 | |
6759 | static ssize_t memory_high_write(struct kernfs_open_file *of, |
6760 | char *buf, size_t nbytes, loff_t off) |
6761 | { |
6762 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6763 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
6764 | bool drained = false; |
6765 | unsigned long high; |
6766 | int err; |
6767 | |
6768 | buf = strstrip(str: buf); |
6769 | err = page_counter_memparse(buf, max: "max" , nr_pages: &high); |
6770 | if (err) |
6771 | return err; |
6772 | |
6773 | page_counter_set_high(counter: &memcg->memory, nr_pages: high); |
6774 | |
6775 | for (;;) { |
6776 | unsigned long nr_pages = page_counter_read(counter: &memcg->memory); |
6777 | unsigned long reclaimed; |
6778 | |
6779 | if (nr_pages <= high) |
6780 | break; |
6781 | |
6782 | if (signal_pending(current)) |
6783 | break; |
6784 | |
6785 | if (!drained) { |
6786 | drain_all_stock(root_memcg: memcg); |
6787 | drained = true; |
6788 | continue; |
6789 | } |
6790 | |
6791 | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - high, |
6792 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); |
6793 | |
6794 | if (!reclaimed && !nr_retries--) |
6795 | break; |
6796 | } |
6797 | |
6798 | memcg_wb_domain_size_changed(memcg); |
6799 | return nbytes; |
6800 | } |
6801 | |
6802 | static int memory_max_show(struct seq_file *m, void *v) |
6803 | { |
6804 | return seq_puts_memcg_tunable(m, |
6805 | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); |
6806 | } |
6807 | |
6808 | static ssize_t memory_max_write(struct kernfs_open_file *of, |
6809 | char *buf, size_t nbytes, loff_t off) |
6810 | { |
6811 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6812 | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; |
6813 | bool drained = false; |
6814 | unsigned long max; |
6815 | int err; |
6816 | |
6817 | buf = strstrip(str: buf); |
6818 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
6819 | if (err) |
6820 | return err; |
6821 | |
6822 | xchg(&memcg->memory.max, max); |
6823 | |
6824 | for (;;) { |
6825 | unsigned long nr_pages = page_counter_read(counter: &memcg->memory); |
6826 | |
6827 | if (nr_pages <= max) |
6828 | break; |
6829 | |
6830 | if (signal_pending(current)) |
6831 | break; |
6832 | |
6833 | if (!drained) { |
6834 | drain_all_stock(root_memcg: memcg); |
6835 | drained = true; |
6836 | continue; |
6837 | } |
6838 | |
6839 | if (nr_reclaims) { |
6840 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - max, |
6841 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) |
6842 | nr_reclaims--; |
6843 | continue; |
6844 | } |
6845 | |
6846 | memcg_memory_event(memcg, event: MEMCG_OOM); |
6847 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, order: 0)) |
6848 | break; |
6849 | } |
6850 | |
6851 | memcg_wb_domain_size_changed(memcg); |
6852 | return nbytes; |
6853 | } |
6854 | |
6855 | /* |
6856 | * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' |
6857 | * if any new events become available. |
6858 | */ |
6859 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) |
6860 | { |
6861 | seq_printf(m, fmt: "low %lu\n" , atomic_long_read(v: &events[MEMCG_LOW])); |
6862 | seq_printf(m, fmt: "high %lu\n" , atomic_long_read(v: &events[MEMCG_HIGH])); |
6863 | seq_printf(m, fmt: "max %lu\n" , atomic_long_read(v: &events[MEMCG_MAX])); |
6864 | seq_printf(m, fmt: "oom %lu\n" , atomic_long_read(v: &events[MEMCG_OOM])); |
6865 | seq_printf(m, fmt: "oom_kill %lu\n" , |
6866 | atomic_long_read(v: &events[MEMCG_OOM_KILL])); |
6867 | seq_printf(m, fmt: "oom_group_kill %lu\n" , |
6868 | atomic_long_read(v: &events[MEMCG_OOM_GROUP_KILL])); |
6869 | } |
6870 | |
6871 | static int memory_events_show(struct seq_file *m, void *v) |
6872 | { |
6873 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
6874 | |
6875 | __memory_events_show(m, events: memcg->memory_events); |
6876 | return 0; |
6877 | } |
6878 | |
6879 | static int memory_events_local_show(struct seq_file *m, void *v) |
6880 | { |
6881 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
6882 | |
6883 | __memory_events_show(m, events: memcg->memory_events_local); |
6884 | return 0; |
6885 | } |
6886 | |
6887 | static int memory_stat_show(struct seq_file *m, void *v) |
6888 | { |
6889 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
6890 | char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
6891 | struct seq_buf s; |
6892 | |
6893 | if (!buf) |
6894 | return -ENOMEM; |
6895 | seq_buf_init(s: &s, buf, PAGE_SIZE); |
6896 | memory_stat_format(memcg, s: &s); |
6897 | seq_puts(m, s: buf); |
6898 | kfree(objp: buf); |
6899 | return 0; |
6900 | } |
6901 | |
6902 | #ifdef CONFIG_NUMA |
6903 | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, |
6904 | int item) |
6905 | { |
6906 | return lruvec_page_state(lruvec, idx: item) * |
6907 | memcg_page_state_output_unit(item); |
6908 | } |
6909 | |
6910 | static int memory_numa_stat_show(struct seq_file *m, void *v) |
6911 | { |
6912 | int i; |
6913 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
6914 | |
6915 | mem_cgroup_flush_stats(memcg); |
6916 | |
6917 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
6918 | int nid; |
6919 | |
6920 | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) |
6921 | continue; |
6922 | |
6923 | seq_printf(m, fmt: "%s" , memory_stats[i].name); |
6924 | for_each_node_state(nid, N_MEMORY) { |
6925 | u64 size; |
6926 | struct lruvec *lruvec; |
6927 | |
6928 | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); |
6929 | size = lruvec_page_state_output(lruvec, |
6930 | item: memory_stats[i].idx); |
6931 | seq_printf(m, fmt: " N%d=%llu" , nid, size); |
6932 | } |
6933 | seq_putc(m, c: '\n'); |
6934 | } |
6935 | |
6936 | return 0; |
6937 | } |
6938 | #endif |
6939 | |
6940 | static int memory_oom_group_show(struct seq_file *m, void *v) |
6941 | { |
6942 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
6943 | |
6944 | seq_printf(m, fmt: "%d\n" , READ_ONCE(memcg->oom_group)); |
6945 | |
6946 | return 0; |
6947 | } |
6948 | |
6949 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, |
6950 | char *buf, size_t nbytes, loff_t off) |
6951 | { |
6952 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6953 | int ret, oom_group; |
6954 | |
6955 | buf = strstrip(str: buf); |
6956 | if (!buf) |
6957 | return -EINVAL; |
6958 | |
6959 | ret = kstrtoint(s: buf, base: 0, res: &oom_group); |
6960 | if (ret) |
6961 | return ret; |
6962 | |
6963 | if (oom_group != 0 && oom_group != 1) |
6964 | return -EINVAL; |
6965 | |
6966 | WRITE_ONCE(memcg->oom_group, oom_group); |
6967 | |
6968 | return nbytes; |
6969 | } |
6970 | |
6971 | static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, |
6972 | size_t nbytes, loff_t off) |
6973 | { |
6974 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
6975 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
6976 | unsigned long nr_to_reclaim, nr_reclaimed = 0; |
6977 | unsigned int reclaim_options; |
6978 | int err; |
6979 | |
6980 | buf = strstrip(str: buf); |
6981 | err = page_counter_memparse(buf, max: "" , nr_pages: &nr_to_reclaim); |
6982 | if (err) |
6983 | return err; |
6984 | |
6985 | reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; |
6986 | while (nr_reclaimed < nr_to_reclaim) { |
6987 | /* Will converge on zero, but reclaim enforces a minimum */ |
6988 | unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; |
6989 | unsigned long reclaimed; |
6990 | |
6991 | if (signal_pending(current)) |
6992 | return -EINTR; |
6993 | |
6994 | /* |
6995 | * This is the final attempt, drain percpu lru caches in the |
6996 | * hope of introducing more evictable pages for |
6997 | * try_to_free_mem_cgroup_pages(). |
6998 | */ |
6999 | if (!nr_retries) |
7000 | lru_add_drain_all(); |
7001 | |
7002 | reclaimed = try_to_free_mem_cgroup_pages(memcg, |
7003 | nr_pages: batch_size, GFP_KERNEL, reclaim_options); |
7004 | |
7005 | if (!reclaimed && !nr_retries--) |
7006 | return -EAGAIN; |
7007 | |
7008 | nr_reclaimed += reclaimed; |
7009 | } |
7010 | |
7011 | return nbytes; |
7012 | } |
7013 | |
7014 | static struct cftype memory_files[] = { |
7015 | { |
7016 | .name = "current" , |
7017 | .flags = CFTYPE_NOT_ON_ROOT, |
7018 | .read_u64 = memory_current_read, |
7019 | }, |
7020 | { |
7021 | .name = "peak" , |
7022 | .flags = CFTYPE_NOT_ON_ROOT, |
7023 | .read_u64 = memory_peak_read, |
7024 | }, |
7025 | { |
7026 | .name = "min" , |
7027 | .flags = CFTYPE_NOT_ON_ROOT, |
7028 | .seq_show = memory_min_show, |
7029 | .write = memory_min_write, |
7030 | }, |
7031 | { |
7032 | .name = "low" , |
7033 | .flags = CFTYPE_NOT_ON_ROOT, |
7034 | .seq_show = memory_low_show, |
7035 | .write = memory_low_write, |
7036 | }, |
7037 | { |
7038 | .name = "high" , |
7039 | .flags = CFTYPE_NOT_ON_ROOT, |
7040 | .seq_show = memory_high_show, |
7041 | .write = memory_high_write, |
7042 | }, |
7043 | { |
7044 | .name = "max" , |
7045 | .flags = CFTYPE_NOT_ON_ROOT, |
7046 | .seq_show = memory_max_show, |
7047 | .write = memory_max_write, |
7048 | }, |
7049 | { |
7050 | .name = "events" , |
7051 | .flags = CFTYPE_NOT_ON_ROOT, |
7052 | .file_offset = offsetof(struct mem_cgroup, events_file), |
7053 | .seq_show = memory_events_show, |
7054 | }, |
7055 | { |
7056 | .name = "events.local" , |
7057 | .flags = CFTYPE_NOT_ON_ROOT, |
7058 | .file_offset = offsetof(struct mem_cgroup, events_local_file), |
7059 | .seq_show = memory_events_local_show, |
7060 | }, |
7061 | { |
7062 | .name = "stat" , |
7063 | .seq_show = memory_stat_show, |
7064 | }, |
7065 | #ifdef CONFIG_NUMA |
7066 | { |
7067 | .name = "numa_stat" , |
7068 | .seq_show = memory_numa_stat_show, |
7069 | }, |
7070 | #endif |
7071 | { |
7072 | .name = "oom.group" , |
7073 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, |
7074 | .seq_show = memory_oom_group_show, |
7075 | .write = memory_oom_group_write, |
7076 | }, |
7077 | { |
7078 | .name = "reclaim" , |
7079 | .flags = CFTYPE_NS_DELEGATABLE, |
7080 | .write = memory_reclaim, |
7081 | }, |
7082 | { } /* terminate */ |
7083 | }; |
7084 | |
7085 | struct cgroup_subsys memory_cgrp_subsys = { |
7086 | .css_alloc = mem_cgroup_css_alloc, |
7087 | .css_online = mem_cgroup_css_online, |
7088 | .css_offline = mem_cgroup_css_offline, |
7089 | .css_released = mem_cgroup_css_released, |
7090 | .css_free = mem_cgroup_css_free, |
7091 | .css_reset = mem_cgroup_css_reset, |
7092 | .css_rstat_flush = mem_cgroup_css_rstat_flush, |
7093 | .can_attach = mem_cgroup_can_attach, |
7094 | #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) |
7095 | .attach = mem_cgroup_attach, |
7096 | #endif |
7097 | .cancel_attach = mem_cgroup_cancel_attach, |
7098 | .post_attach = mem_cgroup_move_task, |
7099 | #ifdef CONFIG_MEMCG_KMEM |
7100 | .fork = mem_cgroup_fork, |
7101 | .exit = mem_cgroup_exit, |
7102 | #endif |
7103 | .dfl_cftypes = memory_files, |
7104 | .legacy_cftypes = mem_cgroup_legacy_files, |
7105 | .early_init = 0, |
7106 | }; |
7107 | |
7108 | /* |
7109 | * This function calculates an individual cgroup's effective |
7110 | * protection which is derived from its own memory.min/low, its |
7111 | * parent's and siblings' settings, as well as the actual memory |
7112 | * distribution in the tree. |
7113 | * |
7114 | * The following rules apply to the effective protection values: |
7115 | * |
7116 | * 1. At the first level of reclaim, effective protection is equal to |
7117 | * the declared protection in memory.min and memory.low. |
7118 | * |
7119 | * 2. To enable safe delegation of the protection configuration, at |
7120 | * subsequent levels the effective protection is capped to the |
7121 | * parent's effective protection. |
7122 | * |
7123 | * 3. To make complex and dynamic subtrees easier to configure, the |
7124 | * user is allowed to overcommit the declared protection at a given |
7125 | * level. If that is the case, the parent's effective protection is |
7126 | * distributed to the children in proportion to how much protection |
7127 | * they have declared and how much of it they are utilizing. |
7128 | * |
7129 | * This makes distribution proportional, but also work-conserving: |
7130 | * if one cgroup claims much more protection than it uses memory, |
7131 | * the unused remainder is available to its siblings. |
7132 | * |
7133 | * 4. Conversely, when the declared protection is undercommitted at a |
7134 | * given level, the distribution of the larger parental protection |
7135 | * budget is NOT proportional. A cgroup's protection from a sibling |
7136 | * is capped to its own memory.min/low setting. |
7137 | * |
7138 | * 5. However, to allow protecting recursive subtrees from each other |
7139 | * without having to declare each individual cgroup's fixed share |
7140 | * of the ancestor's claim to protection, any unutilized - |
7141 | * "floating" - protection from up the tree is distributed in |
7142 | * proportion to each cgroup's *usage*. This makes the protection |
7143 | * neutral wrt sibling cgroups and lets them compete freely over |
7144 | * the shared parental protection budget, but it protects the |
7145 | * subtree as a whole from neighboring subtrees. |
7146 | * |
7147 | * Note that 4. and 5. are not in conflict: 4. is about protecting |
7148 | * against immediate siblings whereas 5. is about protecting against |
7149 | * neighboring subtrees. |
7150 | */ |
7151 | static unsigned long effective_protection(unsigned long usage, |
7152 | unsigned long parent_usage, |
7153 | unsigned long setting, |
7154 | unsigned long parent_effective, |
7155 | unsigned long siblings_protected) |
7156 | { |
7157 | unsigned long protected; |
7158 | unsigned long ep; |
7159 | |
7160 | protected = min(usage, setting); |
7161 | /* |
7162 | * If all cgroups at this level combined claim and use more |
7163 | * protection than what the parent affords them, distribute |
7164 | * shares in proportion to utilization. |
7165 | * |
7166 | * We are using actual utilization rather than the statically |
7167 | * claimed protection in order to be work-conserving: claimed |
7168 | * but unused protection is available to siblings that would |
7169 | * otherwise get a smaller chunk than what they claimed. |
7170 | */ |
7171 | if (siblings_protected > parent_effective) |
7172 | return protected * parent_effective / siblings_protected; |
7173 | |
7174 | /* |
7175 | * Ok, utilized protection of all children is within what the |
7176 | * parent affords them, so we know whatever this child claims |
7177 | * and utilizes is effectively protected. |
7178 | * |
7179 | * If there is unprotected usage beyond this value, reclaim |
7180 | * will apply pressure in proportion to that amount. |
7181 | * |
7182 | * If there is unutilized protection, the cgroup will be fully |
7183 | * shielded from reclaim, but we do return a smaller value for |
7184 | * protection than what the group could enjoy in theory. This |
7185 | * is okay. With the overcommit distribution above, effective |
7186 | * protection is always dependent on how memory is actually |
7187 | * consumed among the siblings anyway. |
7188 | */ |
7189 | ep = protected; |
7190 | |
7191 | /* |
7192 | * If the children aren't claiming (all of) the protection |
7193 | * afforded to them by the parent, distribute the remainder in |
7194 | * proportion to the (unprotected) memory of each cgroup. That |
7195 | * way, cgroups that aren't explicitly prioritized wrt each |
7196 | * other compete freely over the allowance, but they are |
7197 | * collectively protected from neighboring trees. |
7198 | * |
7199 | * We're using unprotected memory for the weight so that if |
7200 | * some cgroups DO claim explicit protection, we don't protect |
7201 | * the same bytes twice. |
7202 | * |
7203 | * Check both usage and parent_usage against the respective |
7204 | * protected values. One should imply the other, but they |
7205 | * aren't read atomically - make sure the division is sane. |
7206 | */ |
7207 | if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) |
7208 | return ep; |
7209 | if (parent_effective > siblings_protected && |
7210 | parent_usage > siblings_protected && |
7211 | usage > protected) { |
7212 | unsigned long unclaimed; |
7213 | |
7214 | unclaimed = parent_effective - siblings_protected; |
7215 | unclaimed *= usage - protected; |
7216 | unclaimed /= parent_usage - siblings_protected; |
7217 | |
7218 | ep += unclaimed; |
7219 | } |
7220 | |
7221 | return ep; |
7222 | } |
7223 | |
7224 | /** |
7225 | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range |
7226 | * @root: the top ancestor of the sub-tree being checked |
7227 | * @memcg: the memory cgroup to check |
7228 | * |
7229 | * WARNING: This function is not stateless! It can only be used as part |
7230 | * of a top-down tree iteration, not for isolated queries. |
7231 | */ |
7232 | void mem_cgroup_calculate_protection(struct mem_cgroup *root, |
7233 | struct mem_cgroup *memcg) |
7234 | { |
7235 | unsigned long usage, parent_usage; |
7236 | struct mem_cgroup *parent; |
7237 | |
7238 | if (mem_cgroup_disabled()) |
7239 | return; |
7240 | |
7241 | if (!root) |
7242 | root = root_mem_cgroup; |
7243 | |
7244 | /* |
7245 | * Effective values of the reclaim targets are ignored so they |
7246 | * can be stale. Have a look at mem_cgroup_protection for more |
7247 | * details. |
7248 | * TODO: calculation should be more robust so that we do not need |
7249 | * that special casing. |
7250 | */ |
7251 | if (memcg == root) |
7252 | return; |
7253 | |
7254 | usage = page_counter_read(counter: &memcg->memory); |
7255 | if (!usage) |
7256 | return; |
7257 | |
7258 | parent = parent_mem_cgroup(memcg); |
7259 | |
7260 | if (parent == root) { |
7261 | memcg->memory.emin = READ_ONCE(memcg->memory.min); |
7262 | memcg->memory.elow = READ_ONCE(memcg->memory.low); |
7263 | return; |
7264 | } |
7265 | |
7266 | parent_usage = page_counter_read(counter: &parent->memory); |
7267 | |
7268 | WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, |
7269 | READ_ONCE(memcg->memory.min), |
7270 | READ_ONCE(parent->memory.emin), |
7271 | atomic_long_read(&parent->memory.children_min_usage))); |
7272 | |
7273 | WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, |
7274 | READ_ONCE(memcg->memory.low), |
7275 | READ_ONCE(parent->memory.elow), |
7276 | atomic_long_read(&parent->memory.children_low_usage))); |
7277 | } |
7278 | |
7279 | static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, |
7280 | gfp_t gfp) |
7281 | { |
7282 | int ret; |
7283 | |
7284 | ret = try_charge(memcg, gfp_mask: gfp, nr_pages: folio_nr_pages(folio)); |
7285 | if (ret) |
7286 | goto out; |
7287 | |
7288 | mem_cgroup_commit_charge(folio, memcg); |
7289 | out: |
7290 | return ret; |
7291 | } |
7292 | |
7293 | int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) |
7294 | { |
7295 | struct mem_cgroup *memcg; |
7296 | int ret; |
7297 | |
7298 | memcg = get_mem_cgroup_from_mm(mm); |
7299 | ret = charge_memcg(folio, memcg, gfp); |
7300 | css_put(css: &memcg->css); |
7301 | |
7302 | return ret; |
7303 | } |
7304 | |
7305 | /** |
7306 | * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio |
7307 | * @memcg: memcg to charge. |
7308 | * @gfp: reclaim mode. |
7309 | * @nr_pages: number of pages to charge. |
7310 | * |
7311 | * This function is called when allocating a huge page folio to determine if |
7312 | * the memcg has the capacity for it. It does not commit the charge yet, |
7313 | * as the hugetlb folio itself has not been obtained from the hugetlb pool. |
7314 | * |
7315 | * Once we have obtained the hugetlb folio, we can call |
7316 | * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the |
7317 | * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect |
7318 | * of try_charge(). |
7319 | * |
7320 | * Returns 0 on success. Otherwise, an error code is returned. |
7321 | */ |
7322 | int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, |
7323 | long nr_pages) |
7324 | { |
7325 | /* |
7326 | * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, |
7327 | * but do not attempt to commit charge later (or cancel on error) either. |
7328 | */ |
7329 | if (mem_cgroup_disabled() || !memcg || |
7330 | !cgroup_subsys_on_dfl(memory_cgrp_subsys) || |
7331 | !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) |
7332 | return -EOPNOTSUPP; |
7333 | |
7334 | if (try_charge(memcg, gfp_mask: gfp, nr_pages)) |
7335 | return -ENOMEM; |
7336 | |
7337 | return 0; |
7338 | } |
7339 | |
7340 | /** |
7341 | * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. |
7342 | * @folio: folio to charge. |
7343 | * @mm: mm context of the victim |
7344 | * @gfp: reclaim mode |
7345 | * @entry: swap entry for which the folio is allocated |
7346 | * |
7347 | * This function charges a folio allocated for swapin. Please call this before |
7348 | * adding the folio to the swapcache. |
7349 | * |
7350 | * Returns 0 on success. Otherwise, an error code is returned. |
7351 | */ |
7352 | int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, |
7353 | gfp_t gfp, swp_entry_t entry) |
7354 | { |
7355 | struct mem_cgroup *memcg; |
7356 | unsigned short id; |
7357 | int ret; |
7358 | |
7359 | if (mem_cgroup_disabled()) |
7360 | return 0; |
7361 | |
7362 | id = lookup_swap_cgroup_id(ent: entry); |
7363 | rcu_read_lock(); |
7364 | memcg = mem_cgroup_from_id(id); |
7365 | if (!memcg || !css_tryget_online(css: &memcg->css)) |
7366 | memcg = get_mem_cgroup_from_mm(mm); |
7367 | rcu_read_unlock(); |
7368 | |
7369 | ret = charge_memcg(folio, memcg, gfp); |
7370 | |
7371 | css_put(css: &memcg->css); |
7372 | return ret; |
7373 | } |
7374 | |
7375 | /* |
7376 | * mem_cgroup_swapin_uncharge_swap - uncharge swap slot |
7377 | * @entry: swap entry for which the page is charged |
7378 | * |
7379 | * Call this function after successfully adding the charged page to swapcache. |
7380 | * |
7381 | * Note: This function assumes the page for which swap slot is being uncharged |
7382 | * is order 0 page. |
7383 | */ |
7384 | void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) |
7385 | { |
7386 | /* |
7387 | * Cgroup1's unified memory+swap counter has been charged with the |
7388 | * new swapcache page, finish the transfer by uncharging the swap |
7389 | * slot. The swap slot would also get uncharged when it dies, but |
7390 | * it can stick around indefinitely and we'd count the page twice |
7391 | * the entire time. |
7392 | * |
7393 | * Cgroup2 has separate resource counters for memory and swap, |
7394 | * so this is a non-issue here. Memory and swap charge lifetimes |
7395 | * correspond 1:1 to page and swap slot lifetimes: we charge the |
7396 | * page to memory here, and uncharge swap when the slot is freed. |
7397 | */ |
7398 | if (!mem_cgroup_disabled() && do_memsw_account()) { |
7399 | /* |
7400 | * The swap entry might not get freed for a long time, |
7401 | * let's not wait for it. The page already received a |
7402 | * memory+swap charge, drop the swap entry duplicate. |
7403 | */ |
7404 | mem_cgroup_uncharge_swap(entry, nr_pages: 1); |
7405 | } |
7406 | } |
7407 | |
7408 | struct uncharge_gather { |
7409 | struct mem_cgroup *memcg; |
7410 | unsigned long nr_memory; |
7411 | unsigned long pgpgout; |
7412 | unsigned long nr_kmem; |
7413 | int nid; |
7414 | }; |
7415 | |
7416 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) |
7417 | { |
7418 | memset(ug, 0, sizeof(*ug)); |
7419 | } |
7420 | |
7421 | static void uncharge_batch(const struct uncharge_gather *ug) |
7422 | { |
7423 | unsigned long flags; |
7424 | |
7425 | if (ug->nr_memory) { |
7426 | page_counter_uncharge(counter: &ug->memcg->memory, nr_pages: ug->nr_memory); |
7427 | if (do_memsw_account()) |
7428 | page_counter_uncharge(counter: &ug->memcg->memsw, nr_pages: ug->nr_memory); |
7429 | if (ug->nr_kmem) |
7430 | memcg_account_kmem(memcg: ug->memcg, nr_pages: -ug->nr_kmem); |
7431 | memcg_oom_recover(memcg: ug->memcg); |
7432 | } |
7433 | |
7434 | local_irq_save(flags); |
7435 | __count_memcg_events(memcg: ug->memcg, idx: PGPGOUT, count: ug->pgpgout); |
7436 | __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); |
7437 | memcg_check_events(memcg: ug->memcg, nid: ug->nid); |
7438 | local_irq_restore(flags); |
7439 | |
7440 | /* drop reference from uncharge_folio */ |
7441 | css_put(css: &ug->memcg->css); |
7442 | } |
7443 | |
7444 | static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) |
7445 | { |
7446 | long nr_pages; |
7447 | struct mem_cgroup *memcg; |
7448 | struct obj_cgroup *objcg; |
7449 | |
7450 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
7451 | |
7452 | /* |
7453 | * Nobody should be changing or seriously looking at |
7454 | * folio memcg or objcg at this point, we have fully |
7455 | * exclusive access to the folio. |
7456 | */ |
7457 | if (folio_memcg_kmem(folio)) { |
7458 | objcg = __folio_objcg(folio); |
7459 | /* |
7460 | * This get matches the put at the end of the function and |
7461 | * kmem pages do not hold memcg references anymore. |
7462 | */ |
7463 | memcg = get_mem_cgroup_from_objcg(objcg); |
7464 | } else { |
7465 | memcg = __folio_memcg(folio); |
7466 | } |
7467 | |
7468 | if (!memcg) |
7469 | return; |
7470 | |
7471 | if (ug->memcg != memcg) { |
7472 | if (ug->memcg) { |
7473 | uncharge_batch(ug); |
7474 | uncharge_gather_clear(ug); |
7475 | } |
7476 | ug->memcg = memcg; |
7477 | ug->nid = folio_nid(folio); |
7478 | |
7479 | /* pairs with css_put in uncharge_batch */ |
7480 | css_get(css: &memcg->css); |
7481 | } |
7482 | |
7483 | nr_pages = folio_nr_pages(folio); |
7484 | |
7485 | if (folio_memcg_kmem(folio)) { |
7486 | ug->nr_memory += nr_pages; |
7487 | ug->nr_kmem += nr_pages; |
7488 | |
7489 | folio->memcg_data = 0; |
7490 | obj_cgroup_put(objcg); |
7491 | } else { |
7492 | /* LRU pages aren't accounted at the root level */ |
7493 | if (!mem_cgroup_is_root(memcg)) |
7494 | ug->nr_memory += nr_pages; |
7495 | ug->pgpgout++; |
7496 | |
7497 | folio->memcg_data = 0; |
7498 | } |
7499 | |
7500 | css_put(css: &memcg->css); |
7501 | } |
7502 | |
7503 | void __mem_cgroup_uncharge(struct folio *folio) |
7504 | { |
7505 | struct uncharge_gather ug; |
7506 | |
7507 | /* Don't touch folio->lru of any random page, pre-check: */ |
7508 | if (!folio_memcg(folio)) |
7509 | return; |
7510 | |
7511 | uncharge_gather_clear(ug: &ug); |
7512 | uncharge_folio(folio, ug: &ug); |
7513 | uncharge_batch(ug: &ug); |
7514 | } |
7515 | |
7516 | void __mem_cgroup_uncharge_folios(struct folio_batch *folios) |
7517 | { |
7518 | struct uncharge_gather ug; |
7519 | unsigned int i; |
7520 | |
7521 | uncharge_gather_clear(ug: &ug); |
7522 | for (i = 0; i < folios->nr; i++) |
7523 | uncharge_folio(folio: folios->folios[i], ug: &ug); |
7524 | if (ug.memcg) |
7525 | uncharge_batch(ug: &ug); |
7526 | } |
7527 | |
7528 | /** |
7529 | * mem_cgroup_replace_folio - Charge a folio's replacement. |
7530 | * @old: Currently circulating folio. |
7531 | * @new: Replacement folio. |
7532 | * |
7533 | * Charge @new as a replacement folio for @old. @old will |
7534 | * be uncharged upon free. This is only used by the page cache |
7535 | * (in replace_page_cache_folio()). |
7536 | * |
7537 | * Both folios must be locked, @new->mapping must be set up. |
7538 | */ |
7539 | void mem_cgroup_replace_folio(struct folio *old, struct folio *new) |
7540 | { |
7541 | struct mem_cgroup *memcg; |
7542 | long nr_pages = folio_nr_pages(folio: new); |
7543 | unsigned long flags; |
7544 | |
7545 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
7546 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
7547 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
7548 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); |
7549 | |
7550 | if (mem_cgroup_disabled()) |
7551 | return; |
7552 | |
7553 | /* Page cache replacement: new folio already charged? */ |
7554 | if (folio_memcg(folio: new)) |
7555 | return; |
7556 | |
7557 | memcg = folio_memcg(folio: old); |
7558 | VM_WARN_ON_ONCE_FOLIO(!memcg, old); |
7559 | if (!memcg) |
7560 | return; |
7561 | |
7562 | /* Force-charge the new page. The old one will be freed soon */ |
7563 | if (!mem_cgroup_is_root(memcg)) { |
7564 | page_counter_charge(counter: &memcg->memory, nr_pages); |
7565 | if (do_memsw_account()) |
7566 | page_counter_charge(counter: &memcg->memsw, nr_pages); |
7567 | } |
7568 | |
7569 | css_get(css: &memcg->css); |
7570 | commit_charge(folio: new, memcg); |
7571 | |
7572 | local_irq_save(flags); |
7573 | mem_cgroup_charge_statistics(memcg, nr_pages); |
7574 | memcg_check_events(memcg, nid: folio_nid(folio: new)); |
7575 | local_irq_restore(flags); |
7576 | } |
7577 | |
7578 | /** |
7579 | * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. |
7580 | * @old: Currently circulating folio. |
7581 | * @new: Replacement folio. |
7582 | * |
7583 | * Transfer the memcg data from the old folio to the new folio for migration. |
7584 | * The old folio's data info will be cleared. Note that the memory counters |
7585 | * will remain unchanged throughout the process. |
7586 | * |
7587 | * Both folios must be locked, @new->mapping must be set up. |
7588 | */ |
7589 | void mem_cgroup_migrate(struct folio *old, struct folio *new) |
7590 | { |
7591 | struct mem_cgroup *memcg; |
7592 | |
7593 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
7594 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
7595 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
7596 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); |
7597 | |
7598 | if (mem_cgroup_disabled()) |
7599 | return; |
7600 | |
7601 | memcg = folio_memcg(folio: old); |
7602 | /* |
7603 | * Note that it is normal to see !memcg for a hugetlb folio. |
7604 | * For e.g, itt could have been allocated when memory_hugetlb_accounting |
7605 | * was not selected. |
7606 | */ |
7607 | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); |
7608 | if (!memcg) |
7609 | return; |
7610 | |
7611 | /* Transfer the charge and the css ref */ |
7612 | commit_charge(folio: new, memcg); |
7613 | /* |
7614 | * If the old folio is a large folio and is in the split queue, it needs |
7615 | * to be removed from the split queue now, in case getting an incorrect |
7616 | * split queue in destroy_large_folio() after the memcg of the old folio |
7617 | * is cleared. |
7618 | * |
7619 | * In addition, the old folio is about to be freed after migration, so |
7620 | * removing from the split queue a bit earlier seems reasonable. |
7621 | */ |
7622 | if (folio_test_large(folio: old) && folio_test_large_rmappable(folio: old)) |
7623 | folio_undo_large_rmappable(folio: old); |
7624 | old->memcg_data = 0; |
7625 | } |
7626 | |
7627 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); |
7628 | EXPORT_SYMBOL(memcg_sockets_enabled_key); |
7629 | |
7630 | void mem_cgroup_sk_alloc(struct sock *sk) |
7631 | { |
7632 | struct mem_cgroup *memcg; |
7633 | |
7634 | if (!mem_cgroup_sockets_enabled) |
7635 | return; |
7636 | |
7637 | /* Do not associate the sock with unrelated interrupted task's memcg. */ |
7638 | if (!in_task()) |
7639 | return; |
7640 | |
7641 | rcu_read_lock(); |
7642 | memcg = mem_cgroup_from_task(current); |
7643 | if (mem_cgroup_is_root(memcg)) |
7644 | goto out; |
7645 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) |
7646 | goto out; |
7647 | if (css_tryget(css: &memcg->css)) |
7648 | sk->sk_memcg = memcg; |
7649 | out: |
7650 | rcu_read_unlock(); |
7651 | } |
7652 | |
7653 | void mem_cgroup_sk_free(struct sock *sk) |
7654 | { |
7655 | if (sk->sk_memcg) |
7656 | css_put(css: &sk->sk_memcg->css); |
7657 | } |
7658 | |
7659 | /** |
7660 | * mem_cgroup_charge_skmem - charge socket memory |
7661 | * @memcg: memcg to charge |
7662 | * @nr_pages: number of pages to charge |
7663 | * @gfp_mask: reclaim mode |
7664 | * |
7665 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within |
7666 | * @memcg's configured limit, %false if it doesn't. |
7667 | */ |
7668 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, |
7669 | gfp_t gfp_mask) |
7670 | { |
7671 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
7672 | struct page_counter *fail; |
7673 | |
7674 | if (page_counter_try_charge(counter: &memcg->tcpmem, nr_pages, fail: &fail)) { |
7675 | memcg->tcpmem_pressure = 0; |
7676 | return true; |
7677 | } |
7678 | memcg->tcpmem_pressure = 1; |
7679 | if (gfp_mask & __GFP_NOFAIL) { |
7680 | page_counter_charge(counter: &memcg->tcpmem, nr_pages); |
7681 | return true; |
7682 | } |
7683 | return false; |
7684 | } |
7685 | |
7686 | if (try_charge(memcg, gfp_mask, nr_pages) == 0) { |
7687 | mod_memcg_state(memcg, idx: MEMCG_SOCK, val: nr_pages); |
7688 | return true; |
7689 | } |
7690 | |
7691 | return false; |
7692 | } |
7693 | |
7694 | /** |
7695 | * mem_cgroup_uncharge_skmem - uncharge socket memory |
7696 | * @memcg: memcg to uncharge |
7697 | * @nr_pages: number of pages to uncharge |
7698 | */ |
7699 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) |
7700 | { |
7701 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
7702 | page_counter_uncharge(counter: &memcg->tcpmem, nr_pages); |
7703 | return; |
7704 | } |
7705 | |
7706 | mod_memcg_state(memcg, idx: MEMCG_SOCK, val: -nr_pages); |
7707 | |
7708 | refill_stock(memcg, nr_pages); |
7709 | } |
7710 | |
7711 | static int __init cgroup_memory(char *s) |
7712 | { |
7713 | char *token; |
7714 | |
7715 | while ((token = strsep(&s, "," )) != NULL) { |
7716 | if (!*token) |
7717 | continue; |
7718 | if (!strcmp(token, "nosocket" )) |
7719 | cgroup_memory_nosocket = true; |
7720 | if (!strcmp(token, "nokmem" )) |
7721 | cgroup_memory_nokmem = true; |
7722 | if (!strcmp(token, "nobpf" )) |
7723 | cgroup_memory_nobpf = true; |
7724 | } |
7725 | return 1; |
7726 | } |
7727 | __setup("cgroup.memory=" , cgroup_memory); |
7728 | |
7729 | /* |
7730 | * subsys_initcall() for memory controller. |
7731 | * |
7732 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this |
7733 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but |
7734 | * basically everything that doesn't depend on a specific mem_cgroup structure |
7735 | * should be initialized from here. |
7736 | */ |
7737 | static int __init mem_cgroup_init(void) |
7738 | { |
7739 | int cpu, node; |
7740 | |
7741 | /* |
7742 | * Currently s32 type (can refer to struct batched_lruvec_stat) is |
7743 | * used for per-memcg-per-cpu caching of per-node statistics. In order |
7744 | * to work fine, we should make sure that the overfill threshold can't |
7745 | * exceed S32_MAX / PAGE_SIZE. |
7746 | */ |
7747 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); |
7748 | |
7749 | cpuhp_setup_state_nocalls(state: CPUHP_MM_MEMCQ_DEAD, name: "mm/memctrl:dead" , NULL, |
7750 | teardown: memcg_hotplug_cpu_dead); |
7751 | |
7752 | for_each_possible_cpu(cpu) |
7753 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, |
7754 | drain_local_stock); |
7755 | |
7756 | for_each_node(node) { |
7757 | struct mem_cgroup_tree_per_node *rtpn; |
7758 | |
7759 | rtpn = kzalloc_node(size: sizeof(*rtpn), GFP_KERNEL, node); |
7760 | |
7761 | rtpn->rb_root = RB_ROOT; |
7762 | rtpn->rb_rightmost = NULL; |
7763 | spin_lock_init(&rtpn->lock); |
7764 | soft_limit_tree.rb_tree_per_node[node] = rtpn; |
7765 | } |
7766 | |
7767 | return 0; |
7768 | } |
7769 | subsys_initcall(mem_cgroup_init); |
7770 | |
7771 | #ifdef CONFIG_SWAP |
7772 | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) |
7773 | { |
7774 | while (!refcount_inc_not_zero(r: &memcg->id.ref)) { |
7775 | /* |
7776 | * The root cgroup cannot be destroyed, so it's refcount must |
7777 | * always be >= 1. |
7778 | */ |
7779 | if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { |
7780 | VM_BUG_ON(1); |
7781 | break; |
7782 | } |
7783 | memcg = parent_mem_cgroup(memcg); |
7784 | if (!memcg) |
7785 | memcg = root_mem_cgroup; |
7786 | } |
7787 | return memcg; |
7788 | } |
7789 | |
7790 | /** |
7791 | * mem_cgroup_swapout - transfer a memsw charge to swap |
7792 | * @folio: folio whose memsw charge to transfer |
7793 | * @entry: swap entry to move the charge to |
7794 | * |
7795 | * Transfer the memsw charge of @folio to @entry. |
7796 | */ |
7797 | void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) |
7798 | { |
7799 | struct mem_cgroup *memcg, *swap_memcg; |
7800 | unsigned int nr_entries; |
7801 | unsigned short oldid; |
7802 | |
7803 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
7804 | VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); |
7805 | |
7806 | if (mem_cgroup_disabled()) |
7807 | return; |
7808 | |
7809 | if (!do_memsw_account()) |
7810 | return; |
7811 | |
7812 | memcg = folio_memcg(folio); |
7813 | |
7814 | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); |
7815 | if (!memcg) |
7816 | return; |
7817 | |
7818 | /* |
7819 | * In case the memcg owning these pages has been offlined and doesn't |
7820 | * have an ID allocated to it anymore, charge the closest online |
7821 | * ancestor for the swap instead and transfer the memory+swap charge. |
7822 | */ |
7823 | swap_memcg = mem_cgroup_id_get_online(memcg); |
7824 | nr_entries = folio_nr_pages(folio); |
7825 | /* Get references for the tail pages, too */ |
7826 | if (nr_entries > 1) |
7827 | mem_cgroup_id_get_many(memcg: swap_memcg, n: nr_entries - 1); |
7828 | oldid = swap_cgroup_record(ent: entry, id: mem_cgroup_id(memcg: swap_memcg), |
7829 | nr_ents: nr_entries); |
7830 | VM_BUG_ON_FOLIO(oldid, folio); |
7831 | mod_memcg_state(memcg: swap_memcg, idx: MEMCG_SWAP, val: nr_entries); |
7832 | |
7833 | folio->memcg_data = 0; |
7834 | |
7835 | if (!mem_cgroup_is_root(memcg)) |
7836 | page_counter_uncharge(counter: &memcg->memory, nr_pages: nr_entries); |
7837 | |
7838 | if (memcg != swap_memcg) { |
7839 | if (!mem_cgroup_is_root(memcg: swap_memcg)) |
7840 | page_counter_charge(counter: &swap_memcg->memsw, nr_pages: nr_entries); |
7841 | page_counter_uncharge(counter: &memcg->memsw, nr_pages: nr_entries); |
7842 | } |
7843 | |
7844 | /* |
7845 | * Interrupts should be disabled here because the caller holds the |
7846 | * i_pages lock which is taken with interrupts-off. It is |
7847 | * important here to have the interrupts disabled because it is the |
7848 | * only synchronisation we have for updating the per-CPU variables. |
7849 | */ |
7850 | memcg_stats_lock(); |
7851 | mem_cgroup_charge_statistics(memcg, nr_pages: -nr_entries); |
7852 | memcg_stats_unlock(); |
7853 | memcg_check_events(memcg, nid: folio_nid(folio)); |
7854 | |
7855 | css_put(css: &memcg->css); |
7856 | } |
7857 | |
7858 | /** |
7859 | * __mem_cgroup_try_charge_swap - try charging swap space for a folio |
7860 | * @folio: folio being added to swap |
7861 | * @entry: swap entry to charge |
7862 | * |
7863 | * Try to charge @folio's memcg for the swap space at @entry. |
7864 | * |
7865 | * Returns 0 on success, -ENOMEM on failure. |
7866 | */ |
7867 | int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) |
7868 | { |
7869 | unsigned int nr_pages = folio_nr_pages(folio); |
7870 | struct page_counter *counter; |
7871 | struct mem_cgroup *memcg; |
7872 | unsigned short oldid; |
7873 | |
7874 | if (do_memsw_account()) |
7875 | return 0; |
7876 | |
7877 | memcg = folio_memcg(folio); |
7878 | |
7879 | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); |
7880 | if (!memcg) |
7881 | return 0; |
7882 | |
7883 | if (!entry.val) { |
7884 | memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL); |
7885 | return 0; |
7886 | } |
7887 | |
7888 | memcg = mem_cgroup_id_get_online(memcg); |
7889 | |
7890 | if (!mem_cgroup_is_root(memcg) && |
7891 | !page_counter_try_charge(counter: &memcg->swap, nr_pages, fail: &counter)) { |
7892 | memcg_memory_event(memcg, event: MEMCG_SWAP_MAX); |
7893 | memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL); |
7894 | mem_cgroup_id_put(memcg); |
7895 | return -ENOMEM; |
7896 | } |
7897 | |
7898 | /* Get references for the tail pages, too */ |
7899 | if (nr_pages > 1) |
7900 | mem_cgroup_id_get_many(memcg, n: nr_pages - 1); |
7901 | oldid = swap_cgroup_record(ent: entry, id: mem_cgroup_id(memcg), nr_ents: nr_pages); |
7902 | VM_BUG_ON_FOLIO(oldid, folio); |
7903 | mod_memcg_state(memcg, idx: MEMCG_SWAP, val: nr_pages); |
7904 | |
7905 | return 0; |
7906 | } |
7907 | |
7908 | /** |
7909 | * __mem_cgroup_uncharge_swap - uncharge swap space |
7910 | * @entry: swap entry to uncharge |
7911 | * @nr_pages: the amount of swap space to uncharge |
7912 | */ |
7913 | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) |
7914 | { |
7915 | struct mem_cgroup *memcg; |
7916 | unsigned short id; |
7917 | |
7918 | id = swap_cgroup_record(ent: entry, id: 0, nr_ents: nr_pages); |
7919 | rcu_read_lock(); |
7920 | memcg = mem_cgroup_from_id(id); |
7921 | if (memcg) { |
7922 | if (!mem_cgroup_is_root(memcg)) { |
7923 | if (do_memsw_account()) |
7924 | page_counter_uncharge(counter: &memcg->memsw, nr_pages); |
7925 | else |
7926 | page_counter_uncharge(counter: &memcg->swap, nr_pages); |
7927 | } |
7928 | mod_memcg_state(memcg, idx: MEMCG_SWAP, val: -nr_pages); |
7929 | mem_cgroup_id_put_many(memcg, n: nr_pages); |
7930 | } |
7931 | rcu_read_unlock(); |
7932 | } |
7933 | |
7934 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) |
7935 | { |
7936 | long nr_swap_pages = get_nr_swap_pages(); |
7937 | |
7938 | if (mem_cgroup_disabled() || do_memsw_account()) |
7939 | return nr_swap_pages; |
7940 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) |
7941 | nr_swap_pages = min_t(long, nr_swap_pages, |
7942 | READ_ONCE(memcg->swap.max) - |
7943 | page_counter_read(&memcg->swap)); |
7944 | return nr_swap_pages; |
7945 | } |
7946 | |
7947 | bool mem_cgroup_swap_full(struct folio *folio) |
7948 | { |
7949 | struct mem_cgroup *memcg; |
7950 | |
7951 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
7952 | |
7953 | if (vm_swap_full()) |
7954 | return true; |
7955 | if (do_memsw_account()) |
7956 | return false; |
7957 | |
7958 | memcg = folio_memcg(folio); |
7959 | if (!memcg) |
7960 | return false; |
7961 | |
7962 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
7963 | unsigned long usage = page_counter_read(counter: &memcg->swap); |
7964 | |
7965 | if (usage * 2 >= READ_ONCE(memcg->swap.high) || |
7966 | usage * 2 >= READ_ONCE(memcg->swap.max)) |
7967 | return true; |
7968 | } |
7969 | |
7970 | return false; |
7971 | } |
7972 | |
7973 | static int __init setup_swap_account(char *s) |
7974 | { |
7975 | bool res; |
7976 | |
7977 | if (!kstrtobool(s, res: &res) && !res) |
7978 | pr_warn_once("The swapaccount=0 commandline option is deprecated " |
7979 | "in favor of configuring swap control via cgroupfs. " |
7980 | "Please report your usecase to linux-mm@kvack.org if you " |
7981 | "depend on this functionality.\n" ); |
7982 | return 1; |
7983 | } |
7984 | __setup("swapaccount=" , setup_swap_account); |
7985 | |
7986 | static u64 swap_current_read(struct cgroup_subsys_state *css, |
7987 | struct cftype *cft) |
7988 | { |
7989 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
7990 | |
7991 | return (u64)page_counter_read(counter: &memcg->swap) * PAGE_SIZE; |
7992 | } |
7993 | |
7994 | static u64 swap_peak_read(struct cgroup_subsys_state *css, |
7995 | struct cftype *cft) |
7996 | { |
7997 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
7998 | |
7999 | return (u64)memcg->swap.watermark * PAGE_SIZE; |
8000 | } |
8001 | |
8002 | static int swap_high_show(struct seq_file *m, void *v) |
8003 | { |
8004 | return seq_puts_memcg_tunable(m, |
8005 | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); |
8006 | } |
8007 | |
8008 | static ssize_t swap_high_write(struct kernfs_open_file *of, |
8009 | char *buf, size_t nbytes, loff_t off) |
8010 | { |
8011 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
8012 | unsigned long high; |
8013 | int err; |
8014 | |
8015 | buf = strstrip(str: buf); |
8016 | err = page_counter_memparse(buf, max: "max" , nr_pages: &high); |
8017 | if (err) |
8018 | return err; |
8019 | |
8020 | page_counter_set_high(counter: &memcg->swap, nr_pages: high); |
8021 | |
8022 | return nbytes; |
8023 | } |
8024 | |
8025 | static int swap_max_show(struct seq_file *m, void *v) |
8026 | { |
8027 | return seq_puts_memcg_tunable(m, |
8028 | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); |
8029 | } |
8030 | |
8031 | static ssize_t swap_max_write(struct kernfs_open_file *of, |
8032 | char *buf, size_t nbytes, loff_t off) |
8033 | { |
8034 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
8035 | unsigned long max; |
8036 | int err; |
8037 | |
8038 | buf = strstrip(str: buf); |
8039 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
8040 | if (err) |
8041 | return err; |
8042 | |
8043 | xchg(&memcg->swap.max, max); |
8044 | |
8045 | return nbytes; |
8046 | } |
8047 | |
8048 | static int swap_events_show(struct seq_file *m, void *v) |
8049 | { |
8050 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
8051 | |
8052 | seq_printf(m, fmt: "high %lu\n" , |
8053 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_HIGH])); |
8054 | seq_printf(m, fmt: "max %lu\n" , |
8055 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_MAX])); |
8056 | seq_printf(m, fmt: "fail %lu\n" , |
8057 | atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_FAIL])); |
8058 | |
8059 | return 0; |
8060 | } |
8061 | |
8062 | static struct cftype swap_files[] = { |
8063 | { |
8064 | .name = "swap.current" , |
8065 | .flags = CFTYPE_NOT_ON_ROOT, |
8066 | .read_u64 = swap_current_read, |
8067 | }, |
8068 | { |
8069 | .name = "swap.high" , |
8070 | .flags = CFTYPE_NOT_ON_ROOT, |
8071 | .seq_show = swap_high_show, |
8072 | .write = swap_high_write, |
8073 | }, |
8074 | { |
8075 | .name = "swap.max" , |
8076 | .flags = CFTYPE_NOT_ON_ROOT, |
8077 | .seq_show = swap_max_show, |
8078 | .write = swap_max_write, |
8079 | }, |
8080 | { |
8081 | .name = "swap.peak" , |
8082 | .flags = CFTYPE_NOT_ON_ROOT, |
8083 | .read_u64 = swap_peak_read, |
8084 | }, |
8085 | { |
8086 | .name = "swap.events" , |
8087 | .flags = CFTYPE_NOT_ON_ROOT, |
8088 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), |
8089 | .seq_show = swap_events_show, |
8090 | }, |
8091 | { } /* terminate */ |
8092 | }; |
8093 | |
8094 | static struct cftype memsw_files[] = { |
8095 | { |
8096 | .name = "memsw.usage_in_bytes" , |
8097 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), |
8098 | .read_u64 = mem_cgroup_read_u64, |
8099 | }, |
8100 | { |
8101 | .name = "memsw.max_usage_in_bytes" , |
8102 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), |
8103 | .write = mem_cgroup_reset, |
8104 | .read_u64 = mem_cgroup_read_u64, |
8105 | }, |
8106 | { |
8107 | .name = "memsw.limit_in_bytes" , |
8108 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), |
8109 | .write = mem_cgroup_write, |
8110 | .read_u64 = mem_cgroup_read_u64, |
8111 | }, |
8112 | { |
8113 | .name = "memsw.failcnt" , |
8114 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), |
8115 | .write = mem_cgroup_reset, |
8116 | .read_u64 = mem_cgroup_read_u64, |
8117 | }, |
8118 | { }, /* terminate */ |
8119 | }; |
8120 | |
8121 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) |
8122 | /** |
8123 | * obj_cgroup_may_zswap - check if this cgroup can zswap |
8124 | * @objcg: the object cgroup |
8125 | * |
8126 | * Check if the hierarchical zswap limit has been reached. |
8127 | * |
8128 | * This doesn't check for specific headroom, and it is not atomic |
8129 | * either. But with zswap, the size of the allocation is only known |
8130 | * once compression has occurred, and this optimistic pre-check avoids |
8131 | * spending cycles on compression when there is already no room left |
8132 | * or zswap is disabled altogether somewhere in the hierarchy. |
8133 | */ |
8134 | bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) |
8135 | { |
8136 | struct mem_cgroup *memcg, *original_memcg; |
8137 | bool ret = true; |
8138 | |
8139 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
8140 | return true; |
8141 | |
8142 | original_memcg = get_mem_cgroup_from_objcg(objcg); |
8143 | for (memcg = original_memcg; !mem_cgroup_is_root(memcg); |
8144 | memcg = parent_mem_cgroup(memcg)) { |
8145 | unsigned long max = READ_ONCE(memcg->zswap_max); |
8146 | unsigned long pages; |
8147 | |
8148 | if (max == PAGE_COUNTER_MAX) |
8149 | continue; |
8150 | if (max == 0) { |
8151 | ret = false; |
8152 | break; |
8153 | } |
8154 | |
8155 | /* |
8156 | * mem_cgroup_flush_stats() ignores small changes. Use |
8157 | * do_flush_stats() directly to get accurate stats for charging. |
8158 | */ |
8159 | do_flush_stats(memcg); |
8160 | pages = memcg_page_state(memcg, idx: MEMCG_ZSWAP_B) / PAGE_SIZE; |
8161 | if (pages < max) |
8162 | continue; |
8163 | ret = false; |
8164 | break; |
8165 | } |
8166 | mem_cgroup_put(memcg: original_memcg); |
8167 | return ret; |
8168 | } |
8169 | |
8170 | /** |
8171 | * obj_cgroup_charge_zswap - charge compression backend memory |
8172 | * @objcg: the object cgroup |
8173 | * @size: size of compressed object |
8174 | * |
8175 | * This forces the charge after obj_cgroup_may_zswap() allowed |
8176 | * compression and storage in zwap for this cgroup to go ahead. |
8177 | */ |
8178 | void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) |
8179 | { |
8180 | struct mem_cgroup *memcg; |
8181 | |
8182 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
8183 | return; |
8184 | |
8185 | VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); |
8186 | |
8187 | /* PF_MEMALLOC context, charging must succeed */ |
8188 | if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) |
8189 | VM_WARN_ON_ONCE(1); |
8190 | |
8191 | rcu_read_lock(); |
8192 | memcg = obj_cgroup_memcg(objcg); |
8193 | mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: size); |
8194 | mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: 1); |
8195 | rcu_read_unlock(); |
8196 | } |
8197 | |
8198 | /** |
8199 | * obj_cgroup_uncharge_zswap - uncharge compression backend memory |
8200 | * @objcg: the object cgroup |
8201 | * @size: size of compressed object |
8202 | * |
8203 | * Uncharges zswap memory on page in. |
8204 | */ |
8205 | void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) |
8206 | { |
8207 | struct mem_cgroup *memcg; |
8208 | |
8209 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
8210 | return; |
8211 | |
8212 | obj_cgroup_uncharge(objcg, size); |
8213 | |
8214 | rcu_read_lock(); |
8215 | memcg = obj_cgroup_memcg(objcg); |
8216 | mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: -size); |
8217 | mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: -1); |
8218 | rcu_read_unlock(); |
8219 | } |
8220 | |
8221 | bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) |
8222 | { |
8223 | /* if zswap is disabled, do not block pages going to the swapping device */ |
8224 | return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); |
8225 | } |
8226 | |
8227 | static u64 zswap_current_read(struct cgroup_subsys_state *css, |
8228 | struct cftype *cft) |
8229 | { |
8230 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
8231 | |
8232 | mem_cgroup_flush_stats(memcg); |
8233 | return memcg_page_state(memcg, idx: MEMCG_ZSWAP_B); |
8234 | } |
8235 | |
8236 | static int zswap_max_show(struct seq_file *m, void *v) |
8237 | { |
8238 | return seq_puts_memcg_tunable(m, |
8239 | READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); |
8240 | } |
8241 | |
8242 | static ssize_t zswap_max_write(struct kernfs_open_file *of, |
8243 | char *buf, size_t nbytes, loff_t off) |
8244 | { |
8245 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
8246 | unsigned long max; |
8247 | int err; |
8248 | |
8249 | buf = strstrip(str: buf); |
8250 | err = page_counter_memparse(buf, max: "max" , nr_pages: &max); |
8251 | if (err) |
8252 | return err; |
8253 | |
8254 | xchg(&memcg->zswap_max, max); |
8255 | |
8256 | return nbytes; |
8257 | } |
8258 | |
8259 | static int zswap_writeback_show(struct seq_file *m, void *v) |
8260 | { |
8261 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
8262 | |
8263 | seq_printf(m, fmt: "%d\n" , READ_ONCE(memcg->zswap_writeback)); |
8264 | return 0; |
8265 | } |
8266 | |
8267 | static ssize_t zswap_writeback_write(struct kernfs_open_file *of, |
8268 | char *buf, size_t nbytes, loff_t off) |
8269 | { |
8270 | struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of)); |
8271 | int zswap_writeback; |
8272 | ssize_t parse_ret = kstrtoint(s: strstrip(str: buf), base: 0, res: &zswap_writeback); |
8273 | |
8274 | if (parse_ret) |
8275 | return parse_ret; |
8276 | |
8277 | if (zswap_writeback != 0 && zswap_writeback != 1) |
8278 | return -EINVAL; |
8279 | |
8280 | WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); |
8281 | return nbytes; |
8282 | } |
8283 | |
8284 | static struct cftype zswap_files[] = { |
8285 | { |
8286 | .name = "zswap.current" , |
8287 | .flags = CFTYPE_NOT_ON_ROOT, |
8288 | .read_u64 = zswap_current_read, |
8289 | }, |
8290 | { |
8291 | .name = "zswap.max" , |
8292 | .flags = CFTYPE_NOT_ON_ROOT, |
8293 | .seq_show = zswap_max_show, |
8294 | .write = zswap_max_write, |
8295 | }, |
8296 | { |
8297 | .name = "zswap.writeback" , |
8298 | .seq_show = zswap_writeback_show, |
8299 | .write = zswap_writeback_write, |
8300 | }, |
8301 | { } /* terminate */ |
8302 | }; |
8303 | #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ |
8304 | |
8305 | static int __init mem_cgroup_swap_init(void) |
8306 | { |
8307 | if (mem_cgroup_disabled()) |
8308 | return 0; |
8309 | |
8310 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); |
8311 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); |
8312 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) |
8313 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); |
8314 | #endif |
8315 | return 0; |
8316 | } |
8317 | subsys_initcall(mem_cgroup_swap_init); |
8318 | |
8319 | #endif /* CONFIG_SWAP */ |
8320 | |