1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
4 | * |
5 | * Swap reorganised 29.12.95, Stephen Tweedie. |
6 | * kswapd added: 7.1.96 sct |
7 | * Removed kswapd_ctl limits, and swap out as many pages as needed |
8 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. |
9 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). |
10 | * Multiqueue VM started 5.8.00, Rik van Riel. |
11 | */ |
12 | |
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
14 | |
15 | #include <linux/mm.h> |
16 | #include <linux/sched/mm.h> |
17 | #include <linux/module.h> |
18 | #include <linux/gfp.h> |
19 | #include <linux/kernel_stat.h> |
20 | #include <linux/swap.h> |
21 | #include <linux/pagemap.h> |
22 | #include <linux/init.h> |
23 | #include <linux/highmem.h> |
24 | #include <linux/vmpressure.h> |
25 | #include <linux/vmstat.h> |
26 | #include <linux/file.h> |
27 | #include <linux/writeback.h> |
28 | #include <linux/blkdev.h> |
29 | #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ |
30 | #include <linux/mm_inline.h> |
31 | #include <linux/backing-dev.h> |
32 | #include <linux/rmap.h> |
33 | #include <linux/topology.h> |
34 | #include <linux/cpu.h> |
35 | #include <linux/cpuset.h> |
36 | #include <linux/compaction.h> |
37 | #include <linux/notifier.h> |
38 | #include <linux/delay.h> |
39 | #include <linux/kthread.h> |
40 | #include <linux/freezer.h> |
41 | #include <linux/memcontrol.h> |
42 | #include <linux/migrate.h> |
43 | #include <linux/delayacct.h> |
44 | #include <linux/sysctl.h> |
45 | #include <linux/memory-tiers.h> |
46 | #include <linux/oom.h> |
47 | #include <linux/pagevec.h> |
48 | #include <linux/prefetch.h> |
49 | #include <linux/printk.h> |
50 | #include <linux/dax.h> |
51 | #include <linux/psi.h> |
52 | #include <linux/pagewalk.h> |
53 | #include <linux/shmem_fs.h> |
54 | #include <linux/ctype.h> |
55 | #include <linux/debugfs.h> |
56 | #include <linux/khugepaged.h> |
57 | #include <linux/rculist_nulls.h> |
58 | #include <linux/random.h> |
59 | #include <linux/mmu_notifier.h> |
60 | |
61 | #include <asm/tlbflush.h> |
62 | #include <asm/div64.h> |
63 | |
64 | #include <linux/swapops.h> |
65 | #include <linux/balloon_compaction.h> |
66 | #include <linux/sched/sysctl.h> |
67 | |
68 | #include "internal.h" |
69 | #include "swap.h" |
70 | |
71 | #define CREATE_TRACE_POINTS |
72 | #include <trace/events/vmscan.h> |
73 | |
74 | struct scan_control { |
75 | /* How many pages shrink_list() should reclaim */ |
76 | unsigned long nr_to_reclaim; |
77 | |
78 | /* |
79 | * Nodemask of nodes allowed by the caller. If NULL, all nodes |
80 | * are scanned. |
81 | */ |
82 | nodemask_t *nodemask; |
83 | |
84 | /* |
85 | * The memory cgroup that hit its limit and as a result is the |
86 | * primary target of this reclaim invocation. |
87 | */ |
88 | struct mem_cgroup *target_mem_cgroup; |
89 | |
90 | /* |
91 | * Scan pressure balancing between anon and file LRUs |
92 | */ |
93 | unsigned long anon_cost; |
94 | unsigned long file_cost; |
95 | |
96 | #ifdef CONFIG_MEMCG |
97 | /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ |
98 | int *proactive_swappiness; |
99 | #endif |
100 | |
101 | /* Can active folios be deactivated as part of reclaim? */ |
102 | #define DEACTIVATE_ANON 1 |
103 | #define DEACTIVATE_FILE 2 |
104 | unsigned int may_deactivate:2; |
105 | unsigned int force_deactivate:1; |
106 | unsigned int skipped_deactivate:1; |
107 | |
108 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ |
109 | unsigned int may_writepage:1; |
110 | |
111 | /* Can mapped folios be reclaimed? */ |
112 | unsigned int may_unmap:1; |
113 | |
114 | /* Can folios be swapped as part of reclaim? */ |
115 | unsigned int may_swap:1; |
116 | |
117 | /* Not allow cache_trim_mode to be turned on as part of reclaim? */ |
118 | unsigned int no_cache_trim_mode:1; |
119 | |
120 | /* Has cache_trim_mode failed at least once? */ |
121 | unsigned int cache_trim_mode_failed:1; |
122 | |
123 | /* Proactive reclaim invoked by userspace through memory.reclaim */ |
124 | unsigned int proactive:1; |
125 | |
126 | /* |
127 | * Cgroup memory below memory.low is protected as long as we |
128 | * don't threaten to OOM. If any cgroup is reclaimed at |
129 | * reduced force or passed over entirely due to its memory.low |
130 | * setting (memcg_low_skipped), and nothing is reclaimed as a |
131 | * result, then go back for one more cycle that reclaims the protected |
132 | * memory (memcg_low_reclaim) to avert OOM. |
133 | */ |
134 | unsigned int memcg_low_reclaim:1; |
135 | unsigned int memcg_low_skipped:1; |
136 | |
137 | /* Shared cgroup tree walk failed, rescan the whole tree */ |
138 | unsigned int memcg_full_walk:1; |
139 | |
140 | unsigned int hibernation_mode:1; |
141 | |
142 | /* One of the zones is ready for compaction */ |
143 | unsigned int compaction_ready:1; |
144 | |
145 | /* There is easily reclaimable cold cache in the current node */ |
146 | unsigned int cache_trim_mode:1; |
147 | |
148 | /* The file folios on the current node are dangerously low */ |
149 | unsigned int file_is_tiny:1; |
150 | |
151 | /* Always discard instead of demoting to lower tier memory */ |
152 | unsigned int no_demotion:1; |
153 | |
154 | /* Allocation order */ |
155 | s8 order; |
156 | |
157 | /* Scan (total_size >> priority) pages at once */ |
158 | s8 priority; |
159 | |
160 | /* The highest zone to isolate folios for reclaim from */ |
161 | s8 reclaim_idx; |
162 | |
163 | /* This context's GFP mask */ |
164 | gfp_t gfp_mask; |
165 | |
166 | /* Incremented by the number of inactive pages that were scanned */ |
167 | unsigned long nr_scanned; |
168 | |
169 | /* Number of pages freed so far during a call to shrink_zones() */ |
170 | unsigned long nr_reclaimed; |
171 | |
172 | struct { |
173 | unsigned int dirty; |
174 | unsigned int unqueued_dirty; |
175 | unsigned int congested; |
176 | unsigned int writeback; |
177 | unsigned int immediate; |
178 | unsigned int file_taken; |
179 | unsigned int taken; |
180 | } nr; |
181 | |
182 | /* for recording the reclaimed slab by now */ |
183 | struct reclaim_state reclaim_state; |
184 | }; |
185 | |
186 | #ifdef ARCH_HAS_PREFETCHW |
187 | #define prefetchw_prev_lru_folio(_folio, _base, _field) \ |
188 | do { \ |
189 | if ((_folio)->lru.prev != _base) { \ |
190 | struct folio *prev; \ |
191 | \ |
192 | prev = lru_to_folio(&(_folio->lru)); \ |
193 | prefetchw(&prev->_field); \ |
194 | } \ |
195 | } while (0) |
196 | #else |
197 | #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) |
198 | #endif |
199 | |
200 | /* |
201 | * From 0 .. MAX_SWAPPINESS. Higher means more swappy. |
202 | */ |
203 | int vm_swappiness = 60; |
204 | |
205 | #ifdef CONFIG_MEMCG |
206 | |
207 | /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ |
208 | static bool cgroup_reclaim(struct scan_control *sc) |
209 | { |
210 | return sc->target_mem_cgroup; |
211 | } |
212 | |
213 | /* |
214 | * Returns true for reclaim on the root cgroup. This is true for direct |
215 | * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. |
216 | */ |
217 | static bool root_reclaim(struct scan_control *sc) |
218 | { |
219 | return !sc->target_mem_cgroup || mem_cgroup_is_root(memcg: sc->target_mem_cgroup); |
220 | } |
221 | |
222 | /** |
223 | * writeback_throttling_sane - is the usual dirty throttling mechanism available? |
224 | * @sc: scan_control in question |
225 | * |
226 | * The normal page dirty throttling mechanism in balance_dirty_pages() is |
227 | * completely broken with the legacy memcg and direct stalling in |
228 | * shrink_folio_list() is used for throttling instead, which lacks all the |
229 | * niceties such as fairness, adaptive pausing, bandwidth proportional |
230 | * allocation and configurability. |
231 | * |
232 | * This function tests whether the vmscan currently in progress can assume |
233 | * that the normal dirty throttling mechanism is operational. |
234 | */ |
235 | static bool writeback_throttling_sane(struct scan_control *sc) |
236 | { |
237 | if (!cgroup_reclaim(sc)) |
238 | return true; |
239 | #ifdef CONFIG_CGROUP_WRITEBACK |
240 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
241 | return true; |
242 | #endif |
243 | return false; |
244 | } |
245 | |
246 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) |
247 | { |
248 | if (sc->proactive && sc->proactive_swappiness) |
249 | return *sc->proactive_swappiness; |
250 | return mem_cgroup_swappiness(memcg); |
251 | } |
252 | #else |
253 | static bool cgroup_reclaim(struct scan_control *sc) |
254 | { |
255 | return false; |
256 | } |
257 | |
258 | static bool root_reclaim(struct scan_control *sc) |
259 | { |
260 | return true; |
261 | } |
262 | |
263 | static bool writeback_throttling_sane(struct scan_control *sc) |
264 | { |
265 | return true; |
266 | } |
267 | |
268 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) |
269 | { |
270 | return READ_ONCE(vm_swappiness); |
271 | } |
272 | #endif |
273 | |
274 | /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to |
275 | * and including the specified highidx |
276 | * @zone: The current zone in the iterator |
277 | * @pgdat: The pgdat which node_zones are being iterated |
278 | * @idx: The index variable |
279 | * @highidx: The index of the highest zone to return |
280 | * |
281 | * This macro iterates through all managed zones up to and including the specified highidx. |
282 | * The zone iterator enters an invalid state after macro call and must be reinitialized |
283 | * before it can be used again. |
284 | */ |
285 | #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ |
286 | for ((idx) = 0, (zone) = (pgdat)->node_zones; \ |
287 | (idx) <= (highidx); \ |
288 | (idx)++, (zone)++) \ |
289 | if (!managed_zone(zone)) \ |
290 | continue; \ |
291 | else |
292 | |
293 | static void set_task_reclaim_state(struct task_struct *task, |
294 | struct reclaim_state *rs) |
295 | { |
296 | /* Check for an overwrite */ |
297 | WARN_ON_ONCE(rs && task->reclaim_state); |
298 | |
299 | /* Check for the nulling of an already-nulled member */ |
300 | WARN_ON_ONCE(!rs && !task->reclaim_state); |
301 | |
302 | task->reclaim_state = rs; |
303 | } |
304 | |
305 | /* |
306 | * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to |
307 | * scan_control->nr_reclaimed. |
308 | */ |
309 | static void flush_reclaim_state(struct scan_control *sc) |
310 | { |
311 | /* |
312 | * Currently, reclaim_state->reclaimed includes three types of pages |
313 | * freed outside of vmscan: |
314 | * (1) Slab pages. |
315 | * (2) Clean file pages from pruned inodes (on highmem systems). |
316 | * (3) XFS freed buffer pages. |
317 | * |
318 | * For all of these cases, we cannot universally link the pages to a |
319 | * single memcg. For example, a memcg-aware shrinker can free one object |
320 | * charged to the target memcg, causing an entire page to be freed. |
321 | * If we count the entire page as reclaimed from the memcg, we end up |
322 | * overestimating the reclaimed amount (potentially under-reclaiming). |
323 | * |
324 | * Only count such pages for global reclaim to prevent under-reclaiming |
325 | * from the target memcg; preventing unnecessary retries during memcg |
326 | * charging and false positives from proactive reclaim. |
327 | * |
328 | * For uncommon cases where the freed pages were actually mostly |
329 | * charged to the target memcg, we end up underestimating the reclaimed |
330 | * amount. This should be fine. The freed pages will be uncharged |
331 | * anyway, even if they are not counted here properly, and we will be |
332 | * able to make forward progress in charging (which is usually in a |
333 | * retry loop). |
334 | * |
335 | * We can go one step further, and report the uncharged objcg pages in |
336 | * memcg reclaim, to make reporting more accurate and reduce |
337 | * underestimation, but it's probably not worth the complexity for now. |
338 | */ |
339 | if (current->reclaim_state && root_reclaim(sc)) { |
340 | sc->nr_reclaimed += current->reclaim_state->reclaimed; |
341 | current->reclaim_state->reclaimed = 0; |
342 | } |
343 | } |
344 | |
345 | static bool can_demote(int nid, struct scan_control *sc, |
346 | struct mem_cgroup *memcg) |
347 | { |
348 | int demotion_nid; |
349 | |
350 | if (!numa_demotion_enabled) |
351 | return false; |
352 | if (sc && sc->no_demotion) |
353 | return false; |
354 | |
355 | demotion_nid = next_demotion_node(node: nid); |
356 | if (demotion_nid == NUMA_NO_NODE) |
357 | return false; |
358 | |
359 | /* If demotion node isn't in the cgroup's mems_allowed, fall back */ |
360 | return mem_cgroup_node_allowed(memcg, nid: demotion_nid); |
361 | } |
362 | |
363 | static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, |
364 | int nid, |
365 | struct scan_control *sc) |
366 | { |
367 | if (memcg == NULL) { |
368 | /* |
369 | * For non-memcg reclaim, is there |
370 | * space in any swap device? |
371 | */ |
372 | if (get_nr_swap_pages() > 0) |
373 | return true; |
374 | } else { |
375 | /* Is the memcg below its swap limit? */ |
376 | if (mem_cgroup_get_nr_swap_pages(memcg) > 0) |
377 | return true; |
378 | } |
379 | |
380 | /* |
381 | * The page can not be swapped. |
382 | * |
383 | * Can it be reclaimed from this node via demotion? |
384 | */ |
385 | return can_demote(nid, sc, memcg); |
386 | } |
387 | |
388 | /* |
389 | * This misses isolated folios which are not accounted for to save counters. |
390 | * As the data only determines if reclaim or compaction continues, it is |
391 | * not expected that isolated folios will be a dominating factor. |
392 | */ |
393 | unsigned long zone_reclaimable_pages(struct zone *zone) |
394 | { |
395 | unsigned long nr; |
396 | |
397 | nr = zone_page_state_snapshot(zone, item: NR_ZONE_INACTIVE_FILE) + |
398 | zone_page_state_snapshot(zone, item: NR_ZONE_ACTIVE_FILE); |
399 | if (can_reclaim_anon_pages(NULL, nid: zone_to_nid(zone), NULL)) |
400 | nr += zone_page_state_snapshot(zone, item: NR_ZONE_INACTIVE_ANON) + |
401 | zone_page_state_snapshot(zone, item: NR_ZONE_ACTIVE_ANON); |
402 | /* |
403 | * If there are no reclaimable file-backed or anonymous pages, |
404 | * ensure zones with sufficient free pages are not skipped. |
405 | * This prevents zones like DMA32 from being ignored in reclaim |
406 | * scenarios where they can still help alleviate memory pressure. |
407 | */ |
408 | if (nr == 0) |
409 | nr = zone_page_state_snapshot(zone, item: NR_FREE_PAGES); |
410 | return nr; |
411 | } |
412 | |
413 | /** |
414 | * lruvec_lru_size - Returns the number of pages on the given LRU list. |
415 | * @lruvec: lru vector |
416 | * @lru: lru to use |
417 | * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) |
418 | */ |
419 | static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, |
420 | int zone_idx) |
421 | { |
422 | unsigned long size = 0; |
423 | int zid; |
424 | struct zone *zone; |
425 | |
426 | for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { |
427 | if (!mem_cgroup_disabled()) |
428 | size += mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx: zid); |
429 | else |
430 | size += zone_page_state(zone, item: NR_ZONE_LRU_BASE + lru); |
431 | } |
432 | return size; |
433 | } |
434 | |
435 | static unsigned long drop_slab_node(int nid) |
436 | { |
437 | unsigned long freed = 0; |
438 | struct mem_cgroup *memcg = NULL; |
439 | |
440 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
441 | do { |
442 | freed += shrink_slab(GFP_KERNEL, nid, memcg, priority: 0); |
443 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); |
444 | |
445 | return freed; |
446 | } |
447 | |
448 | void drop_slab(void) |
449 | { |
450 | int nid; |
451 | int shift = 0; |
452 | unsigned long freed; |
453 | |
454 | do { |
455 | freed = 0; |
456 | for_each_online_node(nid) { |
457 | if (fatal_signal_pending(current)) |
458 | return; |
459 | |
460 | freed += drop_slab_node(nid); |
461 | } |
462 | } while ((freed >> shift++) > 1); |
463 | } |
464 | |
465 | #define CHECK_RECLAIMER_OFFSET(type) \ |
466 | do { \ |
467 | BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ |
468 | PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ |
469 | BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ |
470 | PGSCAN_##type - PGSCAN_KSWAPD); \ |
471 | } while (0) |
472 | |
473 | static int reclaimer_offset(struct scan_control *sc) |
474 | { |
475 | CHECK_RECLAIMER_OFFSET(DIRECT); |
476 | CHECK_RECLAIMER_OFFSET(KHUGEPAGED); |
477 | CHECK_RECLAIMER_OFFSET(PROACTIVE); |
478 | |
479 | if (current_is_kswapd()) |
480 | return 0; |
481 | if (current_is_khugepaged()) |
482 | return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; |
483 | if (sc->proactive) |
484 | return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; |
485 | return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; |
486 | } |
487 | |
488 | static inline int is_page_cache_freeable(struct folio *folio) |
489 | { |
490 | /* |
491 | * A freeable page cache folio is referenced only by the caller |
492 | * that isolated the folio, the page cache and optional filesystem |
493 | * private data at folio->private. |
494 | */ |
495 | return folio_ref_count(folio) - folio_test_private(folio) == |
496 | 1 + folio_nr_pages(folio); |
497 | } |
498 | |
499 | /* |
500 | * We detected a synchronous write error writing a folio out. Probably |
501 | * -ENOSPC. We need to propagate that into the address_space for a subsequent |
502 | * fsync(), msync() or close(). |
503 | * |
504 | * The tricky part is that after writepage we cannot touch the mapping: nothing |
505 | * prevents it from being freed up. But we have a ref on the folio and once |
506 | * that folio is locked, the mapping is pinned. |
507 | * |
508 | * We're allowed to run sleeping folio_lock() here because we know the caller has |
509 | * __GFP_FS. |
510 | */ |
511 | static void handle_write_error(struct address_space *mapping, |
512 | struct folio *folio, int error) |
513 | { |
514 | folio_lock(folio); |
515 | if (folio_mapping(folio) == mapping) |
516 | mapping_set_error(mapping, error); |
517 | folio_unlock(folio); |
518 | } |
519 | |
520 | static bool skip_throttle_noprogress(pg_data_t *pgdat) |
521 | { |
522 | int reclaimable = 0, write_pending = 0; |
523 | int i; |
524 | struct zone *zone; |
525 | /* |
526 | * If kswapd is disabled, reschedule if necessary but do not |
527 | * throttle as the system is likely near OOM. |
528 | */ |
529 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
530 | return true; |
531 | |
532 | /* |
533 | * If there are a lot of dirty/writeback folios then do not |
534 | * throttle as throttling will occur when the folios cycle |
535 | * towards the end of the LRU if still under writeback. |
536 | */ |
537 | for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { |
538 | reclaimable += zone_reclaimable_pages(zone); |
539 | write_pending += zone_page_state_snapshot(zone, |
540 | item: NR_ZONE_WRITE_PENDING); |
541 | } |
542 | if (2 * write_pending <= reclaimable) |
543 | return true; |
544 | |
545 | return false; |
546 | } |
547 | |
548 | void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) |
549 | { |
550 | wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; |
551 | long timeout, ret; |
552 | DEFINE_WAIT(wait); |
553 | |
554 | /* |
555 | * Do not throttle user workers, kthreads other than kswapd or |
556 | * workqueues. They may be required for reclaim to make |
557 | * forward progress (e.g. journalling workqueues or kthreads). |
558 | */ |
559 | if (!current_is_kswapd() && |
560 | current->flags & (PF_USER_WORKER|PF_KTHREAD)) { |
561 | cond_resched(); |
562 | return; |
563 | } |
564 | |
565 | /* |
566 | * These figures are pulled out of thin air. |
567 | * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many |
568 | * parallel reclaimers which is a short-lived event so the timeout is |
569 | * short. Failing to make progress or waiting on writeback are |
570 | * potentially long-lived events so use a longer timeout. This is shaky |
571 | * logic as a failure to make progress could be due to anything from |
572 | * writeback to a slow device to excessive referenced folios at the tail |
573 | * of the inactive LRU. |
574 | */ |
575 | switch(reason) { |
576 | case VMSCAN_THROTTLE_WRITEBACK: |
577 | timeout = HZ/10; |
578 | |
579 | if (atomic_inc_return(v: &pgdat->nr_writeback_throttled) == 1) { |
580 | WRITE_ONCE(pgdat->nr_reclaim_start, |
581 | node_page_state(pgdat, NR_THROTTLED_WRITTEN)); |
582 | } |
583 | |
584 | break; |
585 | case VMSCAN_THROTTLE_CONGESTED: |
586 | fallthrough; |
587 | case VMSCAN_THROTTLE_NOPROGRESS: |
588 | if (skip_throttle_noprogress(pgdat)) { |
589 | cond_resched(); |
590 | return; |
591 | } |
592 | |
593 | timeout = 1; |
594 | |
595 | break; |
596 | case VMSCAN_THROTTLE_ISOLATED: |
597 | timeout = HZ/50; |
598 | break; |
599 | default: |
600 | WARN_ON_ONCE(1); |
601 | timeout = HZ; |
602 | break; |
603 | } |
604 | |
605 | prepare_to_wait(wq_head: wqh, wq_entry: &wait, TASK_UNINTERRUPTIBLE); |
606 | ret = schedule_timeout(timeout); |
607 | finish_wait(wq_head: wqh, wq_entry: &wait); |
608 | |
609 | if (reason == VMSCAN_THROTTLE_WRITEBACK) |
610 | atomic_dec(v: &pgdat->nr_writeback_throttled); |
611 | |
612 | trace_mm_vmscan_throttled(nid: pgdat->node_id, usec_timeout: jiffies_to_usecs(j: timeout), |
613 | usec_delayed: jiffies_to_usecs(j: timeout - ret), |
614 | reason); |
615 | } |
616 | |
617 | /* |
618 | * Account for folios written if tasks are throttled waiting on dirty |
619 | * folios to clean. If enough folios have been cleaned since throttling |
620 | * started then wakeup the throttled tasks. |
621 | */ |
622 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, |
623 | int nr_throttled) |
624 | { |
625 | unsigned long nr_written; |
626 | |
627 | node_stat_add_folio(folio, item: NR_THROTTLED_WRITTEN); |
628 | |
629 | /* |
630 | * This is an inaccurate read as the per-cpu deltas may not |
631 | * be synchronised. However, given that the system is |
632 | * writeback throttled, it is not worth taking the penalty |
633 | * of getting an accurate count. At worst, the throttle |
634 | * timeout guarantees forward progress. |
635 | */ |
636 | nr_written = node_page_state(pgdat, item: NR_THROTTLED_WRITTEN) - |
637 | READ_ONCE(pgdat->nr_reclaim_start); |
638 | |
639 | if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) |
640 | wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); |
641 | } |
642 | |
643 | /* possible outcome of pageout() */ |
644 | typedef enum { |
645 | /* failed to write folio out, folio is locked */ |
646 | PAGE_KEEP, |
647 | /* move folio to the active list, folio is locked */ |
648 | PAGE_ACTIVATE, |
649 | /* folio has been sent to the disk successfully, folio is unlocked */ |
650 | PAGE_SUCCESS, |
651 | /* folio is clean and locked */ |
652 | PAGE_CLEAN, |
653 | } pageout_t; |
654 | |
655 | /* |
656 | * pageout is called by shrink_folio_list() for each dirty folio. |
657 | */ |
658 | static pageout_t pageout(struct folio *folio, struct address_space *mapping, |
659 | struct swap_iocb **plug, struct list_head *folio_list) |
660 | { |
661 | int (*writeout)(struct folio *, struct writeback_control *); |
662 | |
663 | /* |
664 | * We no longer attempt to writeback filesystem folios here, other |
665 | * than tmpfs/shmem. That's taken care of in page-writeback. |
666 | * If we find a dirty filesystem folio at the end of the LRU list, |
667 | * typically that means the filesystem is saturating the storage |
668 | * with contiguous writes and telling it to write a folio here |
669 | * would only make the situation worse by injecting an element |
670 | * of random access. |
671 | * |
672 | * If the folio is swapcache, write it back even if that would |
673 | * block, for some throttling. This happens by accident, because |
674 | * swap_backing_dev_info is bust: it doesn't reflect the |
675 | * congestion state of the swapdevs. Easy to fix, if needed. |
676 | */ |
677 | if (!is_page_cache_freeable(folio)) |
678 | return PAGE_KEEP; |
679 | if (!mapping) { |
680 | /* |
681 | * Some data journaling orphaned folios can have |
682 | * folio->mapping == NULL while being dirty with clean buffers. |
683 | */ |
684 | if (folio_test_private(folio)) { |
685 | if (try_to_free_buffers(folio)) { |
686 | folio_clear_dirty(folio); |
687 | pr_info("%s: orphaned folio\n", __func__); |
688 | return PAGE_CLEAN; |
689 | } |
690 | } |
691 | return PAGE_KEEP; |
692 | } |
693 | if (shmem_mapping(mapping)) |
694 | writeout = shmem_writeout; |
695 | else if (folio_test_anon(folio)) |
696 | writeout = swap_writeout; |
697 | else |
698 | return PAGE_ACTIVATE; |
699 | |
700 | if (folio_clear_dirty_for_io(folio)) { |
701 | int res; |
702 | struct writeback_control wbc = { |
703 | .sync_mode = WB_SYNC_NONE, |
704 | .nr_to_write = SWAP_CLUSTER_MAX, |
705 | .range_start = 0, |
706 | .range_end = LLONG_MAX, |
707 | .for_reclaim = 1, |
708 | .swap_plug = plug, |
709 | }; |
710 | |
711 | /* |
712 | * The large shmem folio can be split if CONFIG_THP_SWAP is |
713 | * not enabled or contiguous swap entries are failed to |
714 | * allocate. |
715 | */ |
716 | if (shmem_mapping(mapping) && folio_test_large(folio)) |
717 | wbc.list = folio_list; |
718 | |
719 | folio_set_reclaim(folio); |
720 | res = writeout(folio, &wbc); |
721 | if (res < 0) |
722 | handle_write_error(mapping, folio, error: res); |
723 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
724 | folio_clear_reclaim(folio); |
725 | return PAGE_ACTIVATE; |
726 | } |
727 | |
728 | if (!folio_test_writeback(folio)) { |
729 | /* synchronous write? */ |
730 | folio_clear_reclaim(folio); |
731 | } |
732 | trace_mm_vmscan_write_folio(folio); |
733 | node_stat_add_folio(folio, item: NR_VMSCAN_WRITE); |
734 | return PAGE_SUCCESS; |
735 | } |
736 | |
737 | return PAGE_CLEAN; |
738 | } |
739 | |
740 | /* |
741 | * Same as remove_mapping, but if the folio is removed from the mapping, it |
742 | * gets returned with a refcount of 0. |
743 | */ |
744 | static int __remove_mapping(struct address_space *mapping, struct folio *folio, |
745 | bool reclaimed, struct mem_cgroup *target_memcg) |
746 | { |
747 | int refcount; |
748 | void *shadow = NULL; |
749 | |
750 | BUG_ON(!folio_test_locked(folio)); |
751 | BUG_ON(mapping != folio_mapping(folio)); |
752 | |
753 | if (!folio_test_swapcache(folio)) |
754 | spin_lock(lock: &mapping->host->i_lock); |
755 | xa_lock_irq(&mapping->i_pages); |
756 | /* |
757 | * The non racy check for a busy folio. |
758 | * |
759 | * Must be careful with the order of the tests. When someone has |
760 | * a ref to the folio, it may be possible that they dirty it then |
761 | * drop the reference. So if the dirty flag is tested before the |
762 | * refcount here, then the following race may occur: |
763 | * |
764 | * get_user_pages(&page); |
765 | * [user mapping goes away] |
766 | * write_to(page); |
767 | * !folio_test_dirty(folio) [good] |
768 | * folio_set_dirty(folio); |
769 | * folio_put(folio); |
770 | * !refcount(folio) [good, discard it] |
771 | * |
772 | * [oops, our write_to data is lost] |
773 | * |
774 | * Reversing the order of the tests ensures such a situation cannot |
775 | * escape unnoticed. The smp_rmb is needed to ensure the folio->flags |
776 | * load is not satisfied before that of folio->_refcount. |
777 | * |
778 | * Note that if the dirty flag is always set via folio_mark_dirty, |
779 | * and thus under the i_pages lock, then this ordering is not required. |
780 | */ |
781 | refcount = 1 + folio_nr_pages(folio); |
782 | if (!folio_ref_freeze(folio, count: refcount)) |
783 | goto cannot_free; |
784 | /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ |
785 | if (unlikely(folio_test_dirty(folio))) { |
786 | folio_ref_unfreeze(folio, count: refcount); |
787 | goto cannot_free; |
788 | } |
789 | |
790 | if (folio_test_swapcache(folio)) { |
791 | swp_entry_t swap = folio->swap; |
792 | |
793 | if (reclaimed && !mapping_exiting(mapping)) |
794 | shadow = workingset_eviction(folio, target_memcg); |
795 | __delete_from_swap_cache(folio, entry: swap, shadow); |
796 | memcg1_swapout(folio, entry: swap); |
797 | xa_unlock_irq(&mapping->i_pages); |
798 | put_swap_folio(folio, entry: swap); |
799 | } else { |
800 | void (*free_folio)(struct folio *); |
801 | |
802 | free_folio = mapping->a_ops->free_folio; |
803 | /* |
804 | * Remember a shadow entry for reclaimed file cache in |
805 | * order to detect refaults, thus thrashing, later on. |
806 | * |
807 | * But don't store shadows in an address space that is |
808 | * already exiting. This is not just an optimization, |
809 | * inode reclaim needs to empty out the radix tree or |
810 | * the nodes are lost. Don't plant shadows behind its |
811 | * back. |
812 | * |
813 | * We also don't store shadows for DAX mappings because the |
814 | * only page cache folios found in these are zero pages |
815 | * covering holes, and because we don't want to mix DAX |
816 | * exceptional entries and shadow exceptional entries in the |
817 | * same address_space. |
818 | */ |
819 | if (reclaimed && folio_is_file_lru(folio) && |
820 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
821 | shadow = workingset_eviction(folio, target_memcg); |
822 | __filemap_remove_folio(folio, shadow); |
823 | xa_unlock_irq(&mapping->i_pages); |
824 | if (mapping_shrinkable(mapping)) |
825 | inode_add_lru(inode: mapping->host); |
826 | spin_unlock(lock: &mapping->host->i_lock); |
827 | |
828 | if (free_folio) |
829 | free_folio(folio); |
830 | } |
831 | |
832 | return 1; |
833 | |
834 | cannot_free: |
835 | xa_unlock_irq(&mapping->i_pages); |
836 | if (!folio_test_swapcache(folio)) |
837 | spin_unlock(lock: &mapping->host->i_lock); |
838 | return 0; |
839 | } |
840 | |
841 | /** |
842 | * remove_mapping() - Attempt to remove a folio from its mapping. |
843 | * @mapping: The address space. |
844 | * @folio: The folio to remove. |
845 | * |
846 | * If the folio is dirty, under writeback or if someone else has a ref |
847 | * on it, removal will fail. |
848 | * Return: The number of pages removed from the mapping. 0 if the folio |
849 | * could not be removed. |
850 | * Context: The caller should have a single refcount on the folio and |
851 | * hold its lock. |
852 | */ |
853 | long remove_mapping(struct address_space *mapping, struct folio *folio) |
854 | { |
855 | if (__remove_mapping(mapping, folio, reclaimed: false, NULL)) { |
856 | /* |
857 | * Unfreezing the refcount with 1 effectively |
858 | * drops the pagecache ref for us without requiring another |
859 | * atomic operation. |
860 | */ |
861 | folio_ref_unfreeze(folio, count: 1); |
862 | return folio_nr_pages(folio); |
863 | } |
864 | return 0; |
865 | } |
866 | |
867 | /** |
868 | * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. |
869 | * @folio: Folio to be returned to an LRU list. |
870 | * |
871 | * Add previously isolated @folio to appropriate LRU list. |
872 | * The folio may still be unevictable for other reasons. |
873 | * |
874 | * Context: lru_lock must not be held, interrupts must be enabled. |
875 | */ |
876 | void folio_putback_lru(struct folio *folio) |
877 | { |
878 | folio_add_lru(folio); |
879 | folio_put(folio); /* drop ref from isolate */ |
880 | } |
881 | |
882 | enum folio_references { |
883 | FOLIOREF_RECLAIM, |
884 | FOLIOREF_RECLAIM_CLEAN, |
885 | FOLIOREF_KEEP, |
886 | FOLIOREF_ACTIVATE, |
887 | }; |
888 | |
889 | #ifdef CONFIG_LRU_GEN |
890 | /* |
891 | * Only used on a mapped folio in the eviction (rmap walk) path, where promotion |
892 | * needs to be done by taking the folio off the LRU list and then adding it back |
893 | * with PG_active set. In contrast, the aging (page table walk) path uses |
894 | * folio_update_gen(). |
895 | */ |
896 | static bool lru_gen_set_refs(struct folio *folio) |
897 | { |
898 | /* see the comment on LRU_REFS_FLAGS */ |
899 | if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { |
900 | set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); |
901 | return false; |
902 | } |
903 | |
904 | set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); |
905 | return true; |
906 | } |
907 | #else |
908 | static bool lru_gen_set_refs(struct folio *folio) |
909 | { |
910 | return false; |
911 | } |
912 | #endif /* CONFIG_LRU_GEN */ |
913 | |
914 | static enum folio_references folio_check_references(struct folio *folio, |
915 | struct scan_control *sc) |
916 | { |
917 | int referenced_ptes, referenced_folio; |
918 | unsigned long vm_flags; |
919 | |
920 | referenced_ptes = folio_referenced(folio, is_locked: 1, memcg: sc->target_mem_cgroup, |
921 | vm_flags: &vm_flags); |
922 | |
923 | /* |
924 | * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. |
925 | * Let the folio, now marked Mlocked, be moved to the unevictable list. |
926 | */ |
927 | if (vm_flags & VM_LOCKED) |
928 | return FOLIOREF_ACTIVATE; |
929 | |
930 | /* |
931 | * There are two cases to consider. |
932 | * 1) Rmap lock contention: rotate. |
933 | * 2) Skip the non-shared swapbacked folio mapped solely by |
934 | * the exiting or OOM-reaped process. |
935 | */ |
936 | if (referenced_ptes == -1) |
937 | return FOLIOREF_KEEP; |
938 | |
939 | if (lru_gen_enabled()) { |
940 | if (!referenced_ptes) |
941 | return FOLIOREF_RECLAIM; |
942 | |
943 | return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; |
944 | } |
945 | |
946 | referenced_folio = folio_test_clear_referenced(folio); |
947 | |
948 | if (referenced_ptes) { |
949 | /* |
950 | * All mapped folios start out with page table |
951 | * references from the instantiating fault, so we need |
952 | * to look twice if a mapped file/anon folio is used more |
953 | * than once. |
954 | * |
955 | * Mark it and spare it for another trip around the |
956 | * inactive list. Another page table reference will |
957 | * lead to its activation. |
958 | * |
959 | * Note: the mark is set for activated folios as well |
960 | * so that recently deactivated but used folios are |
961 | * quickly recovered. |
962 | */ |
963 | folio_set_referenced(folio); |
964 | |
965 | if (referenced_folio || referenced_ptes > 1) |
966 | return FOLIOREF_ACTIVATE; |
967 | |
968 | /* |
969 | * Activate file-backed executable folios after first usage. |
970 | */ |
971 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) |
972 | return FOLIOREF_ACTIVATE; |
973 | |
974 | return FOLIOREF_KEEP; |
975 | } |
976 | |
977 | /* Reclaim if clean, defer dirty folios to writeback */ |
978 | if (referenced_folio && folio_is_file_lru(folio)) |
979 | return FOLIOREF_RECLAIM_CLEAN; |
980 | |
981 | return FOLIOREF_RECLAIM; |
982 | } |
983 | |
984 | /* Check if a folio is dirty or under writeback */ |
985 | static void folio_check_dirty_writeback(struct folio *folio, |
986 | bool *dirty, bool *writeback) |
987 | { |
988 | struct address_space *mapping; |
989 | |
990 | /* |
991 | * Anonymous folios are not handled by flushers and must be written |
992 | * from reclaim context. Do not stall reclaim based on them. |
993 | * MADV_FREE anonymous folios are put into inactive file list too. |
994 | * They could be mistakenly treated as file lru. So further anon |
995 | * test is needed. |
996 | */ |
997 | if (!folio_is_file_lru(folio) || |
998 | (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { |
999 | *dirty = false; |
1000 | *writeback = false; |
1001 | return; |
1002 | } |
1003 | |
1004 | /* By default assume that the folio flags are accurate */ |
1005 | *dirty = folio_test_dirty(folio); |
1006 | *writeback = folio_test_writeback(folio); |
1007 | |
1008 | /* Verify dirty/writeback state if the filesystem supports it */ |
1009 | if (!folio_test_private(folio)) |
1010 | return; |
1011 | |
1012 | mapping = folio_mapping(folio); |
1013 | if (mapping && mapping->a_ops->is_dirty_writeback) |
1014 | mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); |
1015 | } |
1016 | |
1017 | struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) |
1018 | { |
1019 | struct folio *dst; |
1020 | nodemask_t *allowed_mask; |
1021 | struct migration_target_control *mtc; |
1022 | |
1023 | mtc = (struct migration_target_control *)private; |
1024 | |
1025 | allowed_mask = mtc->nmask; |
1026 | /* |
1027 | * make sure we allocate from the target node first also trying to |
1028 | * demote or reclaim pages from the target node via kswapd if we are |
1029 | * low on free memory on target node. If we don't do this and if |
1030 | * we have free memory on the slower(lower) memtier, we would start |
1031 | * allocating pages from slower(lower) memory tiers without even forcing |
1032 | * a demotion of cold pages from the target memtier. This can result |
1033 | * in the kernel placing hot pages in slower(lower) memory tiers. |
1034 | */ |
1035 | mtc->nmask = NULL; |
1036 | mtc->gfp_mask |= __GFP_THISNODE; |
1037 | dst = alloc_migration_target(src, private: (unsigned long)mtc); |
1038 | if (dst) |
1039 | return dst; |
1040 | |
1041 | mtc->gfp_mask &= ~__GFP_THISNODE; |
1042 | mtc->nmask = allowed_mask; |
1043 | |
1044 | return alloc_migration_target(src, private: (unsigned long)mtc); |
1045 | } |
1046 | |
1047 | /* |
1048 | * Take folios on @demote_folios and attempt to demote them to another node. |
1049 | * Folios which are not demoted are left on @demote_folios. |
1050 | */ |
1051 | static unsigned int demote_folio_list(struct list_head *demote_folios, |
1052 | struct pglist_data *pgdat) |
1053 | { |
1054 | int target_nid = next_demotion_node(node: pgdat->node_id); |
1055 | unsigned int nr_succeeded; |
1056 | nodemask_t allowed_mask; |
1057 | |
1058 | struct migration_target_control mtc = { |
1059 | /* |
1060 | * Allocate from 'node', or fail quickly and quietly. |
1061 | * When this happens, 'page' will likely just be discarded |
1062 | * instead of migrated. |
1063 | */ |
1064 | .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | |
1065 | __GFP_NOMEMALLOC | GFP_NOWAIT, |
1066 | .nid = target_nid, |
1067 | .nmask = &allowed_mask, |
1068 | .reason = MR_DEMOTION, |
1069 | }; |
1070 | |
1071 | if (list_empty(head: demote_folios)) |
1072 | return 0; |
1073 | |
1074 | if (target_nid == NUMA_NO_NODE) |
1075 | return 0; |
1076 | |
1077 | node_get_allowed_targets(pgdat, targets: &allowed_mask); |
1078 | |
1079 | /* Demotion ignores all cpuset and mempolicy settings */ |
1080 | migrate_pages(l: demote_folios, new: alloc_migrate_folio, NULL, |
1081 | private: (unsigned long)&mtc, mode: MIGRATE_ASYNC, reason: MR_DEMOTION, |
1082 | ret_succeeded: &nr_succeeded); |
1083 | |
1084 | return nr_succeeded; |
1085 | } |
1086 | |
1087 | static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) |
1088 | { |
1089 | if (gfp_mask & __GFP_FS) |
1090 | return true; |
1091 | if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) |
1092 | return false; |
1093 | /* |
1094 | * We can "enter_fs" for swap-cache with only __GFP_IO |
1095 | * providing this isn't SWP_FS_OPS. |
1096 | * ->flags can be updated non-atomicially (scan_swap_map_slots), |
1097 | * but that will never affect SWP_FS_OPS, so the data_race |
1098 | * is safe. |
1099 | */ |
1100 | return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); |
1101 | } |
1102 | |
1103 | /* |
1104 | * shrink_folio_list() returns the number of reclaimed pages |
1105 | */ |
1106 | static unsigned int shrink_folio_list(struct list_head *folio_list, |
1107 | struct pglist_data *pgdat, struct scan_control *sc, |
1108 | struct reclaim_stat *stat, bool ignore_references, |
1109 | struct mem_cgroup *memcg) |
1110 | { |
1111 | struct folio_batch free_folios; |
1112 | LIST_HEAD(ret_folios); |
1113 | LIST_HEAD(demote_folios); |
1114 | unsigned int nr_reclaimed = 0, nr_demoted = 0; |
1115 | unsigned int pgactivate = 0; |
1116 | bool do_demote_pass; |
1117 | struct swap_iocb *plug = NULL; |
1118 | |
1119 | folio_batch_init(fbatch: &free_folios); |
1120 | memset(stat, 0, sizeof(*stat)); |
1121 | cond_resched(); |
1122 | do_demote_pass = can_demote(nid: pgdat->node_id, sc, memcg); |
1123 | |
1124 | retry: |
1125 | while (!list_empty(head: folio_list)) { |
1126 | struct address_space *mapping; |
1127 | struct folio *folio; |
1128 | enum folio_references references = FOLIOREF_RECLAIM; |
1129 | bool dirty, writeback; |
1130 | unsigned int nr_pages; |
1131 | |
1132 | cond_resched(); |
1133 | |
1134 | folio = lru_to_folio(head: folio_list); |
1135 | list_del(entry: &folio->lru); |
1136 | |
1137 | if (!folio_trylock(folio)) |
1138 | goto keep; |
1139 | |
1140 | if (folio_contain_hwpoisoned_page(folio)) { |
1141 | unmap_poisoned_folio(folio, pfn: folio_pfn(folio), must_kill: false); |
1142 | folio_unlock(folio); |
1143 | folio_put(folio); |
1144 | continue; |
1145 | } |
1146 | |
1147 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); |
1148 | |
1149 | nr_pages = folio_nr_pages(folio); |
1150 | |
1151 | /* Account the number of base pages */ |
1152 | sc->nr_scanned += nr_pages; |
1153 | |
1154 | if (unlikely(!folio_evictable(folio))) |
1155 | goto activate_locked; |
1156 | |
1157 | if (!sc->may_unmap && folio_mapped(folio)) |
1158 | goto keep_locked; |
1159 | |
1160 | /* |
1161 | * The number of dirty pages determines if a node is marked |
1162 | * reclaim_congested. kswapd will stall and start writing |
1163 | * folios if the tail of the LRU is all dirty unqueued folios. |
1164 | */ |
1165 | folio_check_dirty_writeback(folio, dirty: &dirty, writeback: &writeback); |
1166 | if (dirty || writeback) |
1167 | stat->nr_dirty += nr_pages; |
1168 | |
1169 | if (dirty && !writeback) |
1170 | stat->nr_unqueued_dirty += nr_pages; |
1171 | |
1172 | /* |
1173 | * Treat this folio as congested if folios are cycling |
1174 | * through the LRU so quickly that the folios marked |
1175 | * for immediate reclaim are making it to the end of |
1176 | * the LRU a second time. |
1177 | */ |
1178 | if (writeback && folio_test_reclaim(folio)) |
1179 | stat->nr_congested += nr_pages; |
1180 | |
1181 | /* |
1182 | * If a folio at the tail of the LRU is under writeback, there |
1183 | * are three cases to consider. |
1184 | * |
1185 | * 1) If reclaim is encountering an excessive number |
1186 | * of folios under writeback and this folio has both |
1187 | * the writeback and reclaim flags set, then it |
1188 | * indicates that folios are being queued for I/O but |
1189 | * are being recycled through the LRU before the I/O |
1190 | * can complete. Waiting on the folio itself risks an |
1191 | * indefinite stall if it is impossible to writeback |
1192 | * the folio due to I/O error or disconnected storage |
1193 | * so instead note that the LRU is being scanned too |
1194 | * quickly and the caller can stall after the folio |
1195 | * list has been processed. |
1196 | * |
1197 | * 2) Global or new memcg reclaim encounters a folio that is |
1198 | * not marked for immediate reclaim, or the caller does not |
1199 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, |
1200 | * not to fs), or the folio belongs to a mapping where |
1201 | * waiting on writeback during reclaim may lead to a deadlock. |
1202 | * In this case mark the folio for immediate reclaim and |
1203 | * continue scanning. |
1204 | * |
1205 | * Require may_enter_fs() because we would wait on fs, which |
1206 | * may not have submitted I/O yet. And the loop driver might |
1207 | * enter reclaim, and deadlock if it waits on a folio for |
1208 | * which it is needed to do the write (loop masks off |
1209 | * __GFP_IO|__GFP_FS for this reason); but more thought |
1210 | * would probably show more reasons. |
1211 | * |
1212 | * 3) Legacy memcg encounters a folio that already has the |
1213 | * reclaim flag set. memcg does not have any dirty folio |
1214 | * throttling so we could easily OOM just because too many |
1215 | * folios are in writeback and there is nothing else to |
1216 | * reclaim. Wait for the writeback to complete. |
1217 | * |
1218 | * In cases 1) and 2) we activate the folios to get them out of |
1219 | * the way while we continue scanning for clean folios on the |
1220 | * inactive list and refilling from the active list. The |
1221 | * observation here is that waiting for disk writes is more |
1222 | * expensive than potentially causing reloads down the line. |
1223 | * Since they're marked for immediate reclaim, they won't put |
1224 | * memory pressure on the cache working set any longer than it |
1225 | * takes to write them to disk. |
1226 | */ |
1227 | if (folio_test_writeback(folio)) { |
1228 | mapping = folio_mapping(folio); |
1229 | |
1230 | /* Case 1 above */ |
1231 | if (current_is_kswapd() && |
1232 | folio_test_reclaim(folio) && |
1233 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { |
1234 | stat->nr_immediate += nr_pages; |
1235 | goto activate_locked; |
1236 | |
1237 | /* Case 2 above */ |
1238 | } else if (writeback_throttling_sane(sc) || |
1239 | !folio_test_reclaim(folio) || |
1240 | !may_enter_fs(folio, gfp_mask: sc->gfp_mask) || |
1241 | (mapping && |
1242 | mapping_writeback_may_deadlock_on_reclaim(mapping))) { |
1243 | /* |
1244 | * This is slightly racy - |
1245 | * folio_end_writeback() might have |
1246 | * just cleared the reclaim flag, then |
1247 | * setting the reclaim flag here ends up |
1248 | * interpreted as the readahead flag - but |
1249 | * that does not matter enough to care. |
1250 | * What we do want is for this folio to |
1251 | * have the reclaim flag set next time |
1252 | * memcg reclaim reaches the tests above, |
1253 | * so it will then wait for writeback to |
1254 | * avoid OOM; and it's also appropriate |
1255 | * in global reclaim. |
1256 | */ |
1257 | folio_set_reclaim(folio); |
1258 | stat->nr_writeback += nr_pages; |
1259 | goto activate_locked; |
1260 | |
1261 | /* Case 3 above */ |
1262 | } else { |
1263 | folio_unlock(folio); |
1264 | folio_wait_writeback(folio); |
1265 | /* then go back and try same folio again */ |
1266 | list_add_tail(new: &folio->lru, head: folio_list); |
1267 | continue; |
1268 | } |
1269 | } |
1270 | |
1271 | if (!ignore_references) |
1272 | references = folio_check_references(folio, sc); |
1273 | |
1274 | switch (references) { |
1275 | case FOLIOREF_ACTIVATE: |
1276 | goto activate_locked; |
1277 | case FOLIOREF_KEEP: |
1278 | stat->nr_ref_keep += nr_pages; |
1279 | goto keep_locked; |
1280 | case FOLIOREF_RECLAIM: |
1281 | case FOLIOREF_RECLAIM_CLEAN: |
1282 | ; /* try to reclaim the folio below */ |
1283 | } |
1284 | |
1285 | /* |
1286 | * Before reclaiming the folio, try to relocate |
1287 | * its contents to another node. |
1288 | */ |
1289 | if (do_demote_pass && |
1290 | (thp_migration_supported() || !folio_test_large(folio))) { |
1291 | list_add(new: &folio->lru, head: &demote_folios); |
1292 | folio_unlock(folio); |
1293 | continue; |
1294 | } |
1295 | |
1296 | /* |
1297 | * Anonymous process memory has backing store? |
1298 | * Try to allocate it some swap space here. |
1299 | * Lazyfree folio could be freed directly |
1300 | */ |
1301 | if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { |
1302 | if (!folio_test_swapcache(folio)) { |
1303 | if (!(sc->gfp_mask & __GFP_IO)) |
1304 | goto keep_locked; |
1305 | if (folio_maybe_dma_pinned(folio)) |
1306 | goto keep_locked; |
1307 | if (folio_test_large(folio)) { |
1308 | /* cannot split folio, skip it */ |
1309 | if (!can_split_folio(folio, caller_pins: 1, NULL)) |
1310 | goto activate_locked; |
1311 | /* |
1312 | * Split partially mapped folios right away. |
1313 | * We can free the unmapped pages without IO. |
1314 | */ |
1315 | if (data_race(!list_empty(&folio->_deferred_list) && |
1316 | folio_test_partially_mapped(folio)) && |
1317 | split_folio_to_list(folio, list: folio_list)) |
1318 | goto activate_locked; |
1319 | } |
1320 | if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { |
1321 | int __maybe_unused order = folio_order(folio); |
1322 | |
1323 | if (!folio_test_large(folio)) |
1324 | goto activate_locked_split; |
1325 | /* Fallback to swap normal pages */ |
1326 | if (split_folio_to_list(folio, list: folio_list)) |
1327 | goto activate_locked; |
1328 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1329 | if (nr_pages >= HPAGE_PMD_NR) { |
1330 | count_memcg_folio_events(folio, |
1331 | idx: THP_SWPOUT_FALLBACK, nr: 1); |
1332 | count_vm_event(item: THP_SWPOUT_FALLBACK); |
1333 | } |
1334 | #endif |
1335 | count_mthp_stat(order, item: MTHP_STAT_SWPOUT_FALLBACK); |
1336 | if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) |
1337 | goto activate_locked_split; |
1338 | } |
1339 | /* |
1340 | * Normally the folio will be dirtied in unmap because its |
1341 | * pte should be dirty. A special case is MADV_FREE page. The |
1342 | * page's pte could have dirty bit cleared but the folio's |
1343 | * SwapBacked flag is still set because clearing the dirty bit |
1344 | * and SwapBacked flag has no lock protected. For such folio, |
1345 | * unmap will not set dirty bit for it, so folio reclaim will |
1346 | * not write the folio out. This can cause data corruption when |
1347 | * the folio is swapped in later. Always setting the dirty flag |
1348 | * for the folio solves the problem. |
1349 | */ |
1350 | folio_mark_dirty(folio); |
1351 | } |
1352 | } |
1353 | |
1354 | /* |
1355 | * If the folio was split above, the tail pages will make |
1356 | * their own pass through this function and be accounted |
1357 | * then. |
1358 | */ |
1359 | if ((nr_pages > 1) && !folio_test_large(folio)) { |
1360 | sc->nr_scanned -= (nr_pages - 1); |
1361 | nr_pages = 1; |
1362 | } |
1363 | |
1364 | /* |
1365 | * The folio is mapped into the page tables of one or more |
1366 | * processes. Try to unmap it here. |
1367 | */ |
1368 | if (folio_mapped(folio)) { |
1369 | enum ttu_flags flags = TTU_BATCH_FLUSH; |
1370 | bool was_swapbacked = folio_test_swapbacked(folio); |
1371 | |
1372 | if (folio_test_pmd_mappable(folio)) |
1373 | flags |= TTU_SPLIT_HUGE_PMD; |
1374 | /* |
1375 | * Without TTU_SYNC, try_to_unmap will only begin to |
1376 | * hold PTL from the first present PTE within a large |
1377 | * folio. Some initial PTEs might be skipped due to |
1378 | * races with parallel PTE writes in which PTEs can be |
1379 | * cleared temporarily before being written new present |
1380 | * values. This will lead to a large folio is still |
1381 | * mapped while some subpages have been partially |
1382 | * unmapped after try_to_unmap; TTU_SYNC helps |
1383 | * try_to_unmap acquire PTL from the first PTE, |
1384 | * eliminating the influence of temporary PTE values. |
1385 | */ |
1386 | if (folio_test_large(folio)) |
1387 | flags |= TTU_SYNC; |
1388 | |
1389 | try_to_unmap(folio, flags); |
1390 | if (folio_mapped(folio)) { |
1391 | stat->nr_unmap_fail += nr_pages; |
1392 | if (!was_swapbacked && |
1393 | folio_test_swapbacked(folio)) |
1394 | stat->nr_lazyfree_fail += nr_pages; |
1395 | goto activate_locked; |
1396 | } |
1397 | } |
1398 | |
1399 | /* |
1400 | * Folio is unmapped now so it cannot be newly pinned anymore. |
1401 | * No point in trying to reclaim folio if it is pinned. |
1402 | * Furthermore we don't want to reclaim underlying fs metadata |
1403 | * if the folio is pinned and thus potentially modified by the |
1404 | * pinning process as that may upset the filesystem. |
1405 | */ |
1406 | if (folio_maybe_dma_pinned(folio)) |
1407 | goto activate_locked; |
1408 | |
1409 | mapping = folio_mapping(folio); |
1410 | if (folio_test_dirty(folio)) { |
1411 | /* |
1412 | * Only kswapd can writeback filesystem folios |
1413 | * to avoid risk of stack overflow. But avoid |
1414 | * injecting inefficient single-folio I/O into |
1415 | * flusher writeback as much as possible: only |
1416 | * write folios when we've encountered many |
1417 | * dirty folios, and when we've already scanned |
1418 | * the rest of the LRU for clean folios and see |
1419 | * the same dirty folios again (with the reclaim |
1420 | * flag set). |
1421 | */ |
1422 | if (folio_is_file_lru(folio) && |
1423 | (!current_is_kswapd() || |
1424 | !folio_test_reclaim(folio) || |
1425 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { |
1426 | /* |
1427 | * Immediately reclaim when written back. |
1428 | * Similar in principle to folio_deactivate() |
1429 | * except we already have the folio isolated |
1430 | * and know it's dirty |
1431 | */ |
1432 | node_stat_mod_folio(folio, item: NR_VMSCAN_IMMEDIATE, |
1433 | nr: nr_pages); |
1434 | folio_set_reclaim(folio); |
1435 | |
1436 | goto activate_locked; |
1437 | } |
1438 | |
1439 | if (references == FOLIOREF_RECLAIM_CLEAN) |
1440 | goto keep_locked; |
1441 | if (!may_enter_fs(folio, gfp_mask: sc->gfp_mask)) |
1442 | goto keep_locked; |
1443 | if (!sc->may_writepage) |
1444 | goto keep_locked; |
1445 | |
1446 | /* |
1447 | * Folio is dirty. Flush the TLB if a writable entry |
1448 | * potentially exists to avoid CPU writes after I/O |
1449 | * starts and then write it out here. |
1450 | */ |
1451 | try_to_unmap_flush_dirty(); |
1452 | switch (pageout(folio, mapping, plug: &plug, folio_list)) { |
1453 | case PAGE_KEEP: |
1454 | goto keep_locked; |
1455 | case PAGE_ACTIVATE: |
1456 | /* |
1457 | * If shmem folio is split when writeback to swap, |
1458 | * the tail pages will make their own pass through |
1459 | * this function and be accounted then. |
1460 | */ |
1461 | if (nr_pages > 1 && !folio_test_large(folio)) { |
1462 | sc->nr_scanned -= (nr_pages - 1); |
1463 | nr_pages = 1; |
1464 | } |
1465 | goto activate_locked; |
1466 | case PAGE_SUCCESS: |
1467 | if (nr_pages > 1 && !folio_test_large(folio)) { |
1468 | sc->nr_scanned -= (nr_pages - 1); |
1469 | nr_pages = 1; |
1470 | } |
1471 | stat->nr_pageout += nr_pages; |
1472 | |
1473 | if (folio_test_writeback(folio)) |
1474 | goto keep; |
1475 | if (folio_test_dirty(folio)) |
1476 | goto keep; |
1477 | |
1478 | /* |
1479 | * A synchronous write - probably a ramdisk. Go |
1480 | * ahead and try to reclaim the folio. |
1481 | */ |
1482 | if (!folio_trylock(folio)) |
1483 | goto keep; |
1484 | if (folio_test_dirty(folio) || |
1485 | folio_test_writeback(folio)) |
1486 | goto keep_locked; |
1487 | mapping = folio_mapping(folio); |
1488 | fallthrough; |
1489 | case PAGE_CLEAN: |
1490 | ; /* try to free the folio below */ |
1491 | } |
1492 | } |
1493 | |
1494 | /* |
1495 | * If the folio has buffers, try to free the buffer |
1496 | * mappings associated with this folio. If we succeed |
1497 | * we try to free the folio as well. |
1498 | * |
1499 | * We do this even if the folio is dirty. |
1500 | * filemap_release_folio() does not perform I/O, but it |
1501 | * is possible for a folio to have the dirty flag set, |
1502 | * but it is actually clean (all its buffers are clean). |
1503 | * This happens if the buffers were written out directly, |
1504 | * with submit_bh(). ext3 will do this, as well as |
1505 | * the blockdev mapping. filemap_release_folio() will |
1506 | * discover that cleanness and will drop the buffers |
1507 | * and mark the folio clean - it can be freed. |
1508 | * |
1509 | * Rarely, folios can have buffers and no ->mapping. |
1510 | * These are the folios which were not successfully |
1511 | * invalidated in truncate_cleanup_folio(). We try to |
1512 | * drop those buffers here and if that worked, and the |
1513 | * folio is no longer mapped into process address space |
1514 | * (refcount == 1) it can be freed. Otherwise, leave |
1515 | * the folio on the LRU so it is swappable. |
1516 | */ |
1517 | if (folio_needs_release(folio)) { |
1518 | if (!filemap_release_folio(folio, gfp: sc->gfp_mask)) |
1519 | goto activate_locked; |
1520 | if (!mapping && folio_ref_count(folio) == 1) { |
1521 | folio_unlock(folio); |
1522 | if (folio_put_testzero(folio)) |
1523 | goto free_it; |
1524 | else { |
1525 | /* |
1526 | * rare race with speculative reference. |
1527 | * the speculative reference will free |
1528 | * this folio shortly, so we may |
1529 | * increment nr_reclaimed here (and |
1530 | * leave it off the LRU). |
1531 | */ |
1532 | nr_reclaimed += nr_pages; |
1533 | continue; |
1534 | } |
1535 | } |
1536 | } |
1537 | |
1538 | if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { |
1539 | /* follow __remove_mapping for reference */ |
1540 | if (!folio_ref_freeze(folio, count: 1)) |
1541 | goto keep_locked; |
1542 | /* |
1543 | * The folio has only one reference left, which is |
1544 | * from the isolation. After the caller puts the |
1545 | * folio back on the lru and drops the reference, the |
1546 | * folio will be freed anyway. It doesn't matter |
1547 | * which lru it goes on. So we don't bother checking |
1548 | * the dirty flag here. |
1549 | */ |
1550 | count_vm_events(item: PGLAZYFREED, delta: nr_pages); |
1551 | count_memcg_folio_events(folio, idx: PGLAZYFREED, nr: nr_pages); |
1552 | } else if (!mapping || !__remove_mapping(mapping, folio, reclaimed: true, |
1553 | target_memcg: sc->target_mem_cgroup)) |
1554 | goto keep_locked; |
1555 | |
1556 | folio_unlock(folio); |
1557 | free_it: |
1558 | /* |
1559 | * Folio may get swapped out as a whole, need to account |
1560 | * all pages in it. |
1561 | */ |
1562 | nr_reclaimed += nr_pages; |
1563 | |
1564 | folio_unqueue_deferred_split(folio); |
1565 | if (folio_batch_add(fbatch: &free_folios, folio) == 0) { |
1566 | mem_cgroup_uncharge_folios(folios: &free_folios); |
1567 | try_to_unmap_flush(); |
1568 | free_unref_folios(fbatch: &free_folios); |
1569 | } |
1570 | continue; |
1571 | |
1572 | activate_locked_split: |
1573 | /* |
1574 | * The tail pages that are failed to add into swap cache |
1575 | * reach here. Fixup nr_scanned and nr_pages. |
1576 | */ |
1577 | if (nr_pages > 1) { |
1578 | sc->nr_scanned -= (nr_pages - 1); |
1579 | nr_pages = 1; |
1580 | } |
1581 | activate_locked: |
1582 | /* Not a candidate for swapping, so reclaim swap space. */ |
1583 | if (folio_test_swapcache(folio) && |
1584 | (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) |
1585 | folio_free_swap(folio); |
1586 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); |
1587 | if (!folio_test_mlocked(folio)) { |
1588 | int type = folio_is_file_lru(folio); |
1589 | folio_set_active(folio); |
1590 | stat->nr_activate[type] += nr_pages; |
1591 | count_memcg_folio_events(folio, idx: PGACTIVATE, nr: nr_pages); |
1592 | } |
1593 | keep_locked: |
1594 | folio_unlock(folio); |
1595 | keep: |
1596 | list_add(new: &folio->lru, head: &ret_folios); |
1597 | VM_BUG_ON_FOLIO(folio_test_lru(folio) || |
1598 | folio_test_unevictable(folio), folio); |
1599 | } |
1600 | /* 'folio_list' is always empty here */ |
1601 | |
1602 | /* Migrate folios selected for demotion */ |
1603 | nr_demoted = demote_folio_list(demote_folios: &demote_folios, pgdat); |
1604 | nr_reclaimed += nr_demoted; |
1605 | stat->nr_demoted += nr_demoted; |
1606 | /* Folios that could not be demoted are still in @demote_folios */ |
1607 | if (!list_empty(head: &demote_folios)) { |
1608 | /* Folios which weren't demoted go back on @folio_list */ |
1609 | list_splice_init(list: &demote_folios, head: folio_list); |
1610 | |
1611 | /* |
1612 | * goto retry to reclaim the undemoted folios in folio_list if |
1613 | * desired. |
1614 | * |
1615 | * Reclaiming directly from top tier nodes is not often desired |
1616 | * due to it breaking the LRU ordering: in general memory |
1617 | * should be reclaimed from lower tier nodes and demoted from |
1618 | * top tier nodes. |
1619 | * |
1620 | * However, disabling reclaim from top tier nodes entirely |
1621 | * would cause ooms in edge scenarios where lower tier memory |
1622 | * is unreclaimable for whatever reason, eg memory being |
1623 | * mlocked or too hot to reclaim. We can disable reclaim |
1624 | * from top tier nodes in proactive reclaim though as that is |
1625 | * not real memory pressure. |
1626 | */ |
1627 | if (!sc->proactive) { |
1628 | do_demote_pass = false; |
1629 | goto retry; |
1630 | } |
1631 | } |
1632 | |
1633 | pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; |
1634 | |
1635 | mem_cgroup_uncharge_folios(folios: &free_folios); |
1636 | try_to_unmap_flush(); |
1637 | free_unref_folios(fbatch: &free_folios); |
1638 | |
1639 | list_splice(list: &ret_folios, head: folio_list); |
1640 | count_vm_events(item: PGACTIVATE, delta: pgactivate); |
1641 | |
1642 | if (plug) |
1643 | swap_write_unplug(sio: plug); |
1644 | return nr_reclaimed; |
1645 | } |
1646 | |
1647 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, |
1648 | struct list_head *folio_list) |
1649 | { |
1650 | struct scan_control sc = { |
1651 | .gfp_mask = GFP_KERNEL, |
1652 | .may_unmap = 1, |
1653 | }; |
1654 | struct reclaim_stat stat; |
1655 | unsigned int nr_reclaimed; |
1656 | struct folio *folio, *next; |
1657 | LIST_HEAD(clean_folios); |
1658 | unsigned int noreclaim_flag; |
1659 | |
1660 | list_for_each_entry_safe(folio, next, folio_list, lru) { |
1661 | if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && |
1662 | !folio_test_dirty(folio) && !__folio_test_movable(folio) && |
1663 | !folio_test_unevictable(folio)) { |
1664 | folio_clear_active(folio); |
1665 | list_move(list: &folio->lru, head: &clean_folios); |
1666 | } |
1667 | } |
1668 | |
1669 | /* |
1670 | * We should be safe here since we are only dealing with file pages and |
1671 | * we are not kswapd and therefore cannot write dirty file pages. But |
1672 | * call memalloc_noreclaim_save() anyway, just in case these conditions |
1673 | * change in the future. |
1674 | */ |
1675 | noreclaim_flag = memalloc_noreclaim_save(); |
1676 | nr_reclaimed = shrink_folio_list(folio_list: &clean_folios, pgdat: zone->zone_pgdat, sc: &sc, |
1677 | stat: &stat, ignore_references: true, NULL); |
1678 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
1679 | |
1680 | list_splice(list: &clean_folios, head: folio_list); |
1681 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, |
1682 | -(long)nr_reclaimed); |
1683 | /* |
1684 | * Since lazyfree pages are isolated from file LRU from the beginning, |
1685 | * they will rotate back to anonymous LRU in the end if it failed to |
1686 | * discard so isolated count will be mismatched. |
1687 | * Compensate the isolated count for both LRU lists. |
1688 | */ |
1689 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, |
1690 | stat.nr_lazyfree_fail); |
1691 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, |
1692 | -(long)stat.nr_lazyfree_fail); |
1693 | return nr_reclaimed; |
1694 | } |
1695 | |
1696 | /* |
1697 | * Update LRU sizes after isolating pages. The LRU size updates must |
1698 | * be complete before mem_cgroup_update_lru_size due to a sanity check. |
1699 | */ |
1700 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, |
1701 | enum lru_list lru, unsigned long *nr_zone_taken) |
1702 | { |
1703 | int zid; |
1704 | |
1705 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1706 | if (!nr_zone_taken[zid]) |
1707 | continue; |
1708 | |
1709 | update_lru_size(lruvec, lru, zid, nr_pages: -nr_zone_taken[zid]); |
1710 | } |
1711 | |
1712 | } |
1713 | |
1714 | /* |
1715 | * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. |
1716 | * |
1717 | * lruvec->lru_lock is heavily contended. Some of the functions that |
1718 | * shrink the lists perform better by taking out a batch of pages |
1719 | * and working on them outside the LRU lock. |
1720 | * |
1721 | * For pagecache intensive workloads, this function is the hottest |
1722 | * spot in the kernel (apart from copy_*_user functions). |
1723 | * |
1724 | * Lru_lock must be held before calling this function. |
1725 | * |
1726 | * @nr_to_scan: The number of eligible pages to look through on the list. |
1727 | * @lruvec: The LRU vector to pull pages from. |
1728 | * @dst: The temp list to put pages on to. |
1729 | * @nr_scanned: The number of pages that were scanned. |
1730 | * @sc: The scan_control struct for this reclaim session |
1731 | * @lru: LRU list id for isolating |
1732 | * |
1733 | * returns how many pages were moved onto *@dst. |
1734 | */ |
1735 | static unsigned long isolate_lru_folios(unsigned long nr_to_scan, |
1736 | struct lruvec *lruvec, struct list_head *dst, |
1737 | unsigned long *nr_scanned, struct scan_control *sc, |
1738 | enum lru_list lru) |
1739 | { |
1740 | struct list_head *src = &lruvec->lists[lru]; |
1741 | unsigned long nr_taken = 0; |
1742 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; |
1743 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; |
1744 | unsigned long skipped = 0, total_scan = 0, scan = 0; |
1745 | unsigned long nr_pages; |
1746 | unsigned long max_nr_skipped = 0; |
1747 | LIST_HEAD(folios_skipped); |
1748 | |
1749 | while (scan < nr_to_scan && !list_empty(head: src)) { |
1750 | struct list_head *move_to = src; |
1751 | struct folio *folio; |
1752 | |
1753 | folio = lru_to_folio(head: src); |
1754 | prefetchw_prev_lru_folio(folio, src, flags); |
1755 | |
1756 | nr_pages = folio_nr_pages(folio); |
1757 | total_scan += nr_pages; |
1758 | |
1759 | /* Using max_nr_skipped to prevent hard LOCKUP*/ |
1760 | if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && |
1761 | (folio_zonenum(folio) > sc->reclaim_idx)) { |
1762 | nr_skipped[folio_zonenum(folio)] += nr_pages; |
1763 | move_to = &folios_skipped; |
1764 | max_nr_skipped++; |
1765 | goto move; |
1766 | } |
1767 | |
1768 | /* |
1769 | * Do not count skipped folios because that makes the function |
1770 | * return with no isolated folios if the LRU mostly contains |
1771 | * ineligible folios. This causes the VM to not reclaim any |
1772 | * folios, triggering a premature OOM. |
1773 | * Account all pages in a folio. |
1774 | */ |
1775 | scan += nr_pages; |
1776 | |
1777 | if (!folio_test_lru(folio)) |
1778 | goto move; |
1779 | if (!sc->may_unmap && folio_mapped(folio)) |
1780 | goto move; |
1781 | |
1782 | /* |
1783 | * Be careful not to clear the lru flag until after we're |
1784 | * sure the folio is not being freed elsewhere -- the |
1785 | * folio release code relies on it. |
1786 | */ |
1787 | if (unlikely(!folio_try_get(folio))) |
1788 | goto move; |
1789 | |
1790 | if (!folio_test_clear_lru(folio)) { |
1791 | /* Another thread is already isolating this folio */ |
1792 | folio_put(folio); |
1793 | goto move; |
1794 | } |
1795 | |
1796 | nr_taken += nr_pages; |
1797 | nr_zone_taken[folio_zonenum(folio)] += nr_pages; |
1798 | move_to = dst; |
1799 | move: |
1800 | list_move(list: &folio->lru, head: move_to); |
1801 | } |
1802 | |
1803 | /* |
1804 | * Splice any skipped folios to the start of the LRU list. Note that |
1805 | * this disrupts the LRU order when reclaiming for lower zones but |
1806 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX |
1807 | * scanning would soon rescan the same folios to skip and waste lots |
1808 | * of cpu cycles. |
1809 | */ |
1810 | if (!list_empty(head: &folios_skipped)) { |
1811 | int zid; |
1812 | |
1813 | list_splice(list: &folios_skipped, head: src); |
1814 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1815 | if (!nr_skipped[zid]) |
1816 | continue; |
1817 | |
1818 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); |
1819 | skipped += nr_skipped[zid]; |
1820 | } |
1821 | } |
1822 | *nr_scanned = total_scan; |
1823 | trace_mm_vmscan_lru_isolate(highest_zoneidx: sc->reclaim_idx, order: sc->order, nr_requested: nr_to_scan, |
1824 | nr_scanned: total_scan, nr_skipped: skipped, nr_taken, lru); |
1825 | update_lru_sizes(lruvec, lru, nr_zone_taken); |
1826 | return nr_taken; |
1827 | } |
1828 | |
1829 | /** |
1830 | * folio_isolate_lru() - Try to isolate a folio from its LRU list. |
1831 | * @folio: Folio to isolate from its LRU list. |
1832 | * |
1833 | * Isolate a @folio from an LRU list and adjust the vmstat statistic |
1834 | * corresponding to whatever LRU list the folio was on. |
1835 | * |
1836 | * The folio will have its LRU flag cleared. If it was found on the |
1837 | * active list, it will have the Active flag set. If it was found on the |
1838 | * unevictable list, it will have the Unevictable flag set. These flags |
1839 | * may need to be cleared by the caller before letting the page go. |
1840 | * |
1841 | * Context: |
1842 | * |
1843 | * (1) Must be called with an elevated refcount on the folio. This is a |
1844 | * fundamental difference from isolate_lru_folios() (which is called |
1845 | * without a stable reference). |
1846 | * (2) The lru_lock must not be held. |
1847 | * (3) Interrupts must be enabled. |
1848 | * |
1849 | * Return: true if the folio was removed from an LRU list. |
1850 | * false if the folio was not on an LRU list. |
1851 | */ |
1852 | bool folio_isolate_lru(struct folio *folio) |
1853 | { |
1854 | bool ret = false; |
1855 | |
1856 | VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); |
1857 | |
1858 | if (folio_test_clear_lru(folio)) { |
1859 | struct lruvec *lruvec; |
1860 | |
1861 | folio_get(folio); |
1862 | lruvec = folio_lruvec_lock_irq(folio); |
1863 | lruvec_del_folio(lruvec, folio); |
1864 | unlock_page_lruvec_irq(lruvec); |
1865 | ret = true; |
1866 | } |
1867 | |
1868 | return ret; |
1869 | } |
1870 | |
1871 | /* |
1872 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1873 | * then get rescheduled. When there are massive number of tasks doing page |
1874 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, |
1875 | * the LRU list will go small and be scanned faster than necessary, leading to |
1876 | * unnecessary swapping, thrashing and OOM. |
1877 | */ |
1878 | static bool too_many_isolated(struct pglist_data *pgdat, int file, |
1879 | struct scan_control *sc) |
1880 | { |
1881 | unsigned long inactive, isolated; |
1882 | bool too_many; |
1883 | |
1884 | if (current_is_kswapd()) |
1885 | return false; |
1886 | |
1887 | if (!writeback_throttling_sane(sc)) |
1888 | return false; |
1889 | |
1890 | if (file) { |
1891 | inactive = node_page_state(pgdat, item: NR_INACTIVE_FILE); |
1892 | isolated = node_page_state(pgdat, item: NR_ISOLATED_FILE); |
1893 | } else { |
1894 | inactive = node_page_state(pgdat, item: NR_INACTIVE_ANON); |
1895 | isolated = node_page_state(pgdat, item: NR_ISOLATED_ANON); |
1896 | } |
1897 | |
1898 | /* |
1899 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they |
1900 | * won't get blocked by normal direct-reclaimers, forming a circular |
1901 | * deadlock. |
1902 | */ |
1903 | if (gfp_has_io_fs(gfp: sc->gfp_mask)) |
1904 | inactive >>= 3; |
1905 | |
1906 | too_many = isolated > inactive; |
1907 | |
1908 | /* Wake up tasks throttled due to too_many_isolated. */ |
1909 | if (!too_many) |
1910 | wake_throttle_isolated(pgdat); |
1911 | |
1912 | return too_many; |
1913 | } |
1914 | |
1915 | /* |
1916 | * move_folios_to_lru() moves folios from private @list to appropriate LRU list. |
1917 | * |
1918 | * Returns the number of pages moved to the given lruvec. |
1919 | */ |
1920 | static unsigned int move_folios_to_lru(struct lruvec *lruvec, |
1921 | struct list_head *list) |
1922 | { |
1923 | int nr_pages, nr_moved = 0; |
1924 | struct folio_batch free_folios; |
1925 | |
1926 | folio_batch_init(fbatch: &free_folios); |
1927 | while (!list_empty(head: list)) { |
1928 | struct folio *folio = lru_to_folio(head: list); |
1929 | |
1930 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
1931 | list_del(entry: &folio->lru); |
1932 | if (unlikely(!folio_evictable(folio))) { |
1933 | spin_unlock_irq(lock: &lruvec->lru_lock); |
1934 | folio_putback_lru(folio); |
1935 | spin_lock_irq(lock: &lruvec->lru_lock); |
1936 | continue; |
1937 | } |
1938 | |
1939 | /* |
1940 | * The folio_set_lru needs to be kept here for list integrity. |
1941 | * Otherwise: |
1942 | * #0 move_folios_to_lru #1 release_pages |
1943 | * if (!folio_put_testzero()) |
1944 | * if (folio_put_testzero()) |
1945 | * !lru //skip lru_lock |
1946 | * folio_set_lru() |
1947 | * list_add(&folio->lru,) |
1948 | * list_add(&folio->lru,) |
1949 | */ |
1950 | folio_set_lru(folio); |
1951 | |
1952 | if (unlikely(folio_put_testzero(folio))) { |
1953 | __folio_clear_lru_flags(folio); |
1954 | |
1955 | folio_unqueue_deferred_split(folio); |
1956 | if (folio_batch_add(fbatch: &free_folios, folio) == 0) { |
1957 | spin_unlock_irq(lock: &lruvec->lru_lock); |
1958 | mem_cgroup_uncharge_folios(folios: &free_folios); |
1959 | free_unref_folios(fbatch: &free_folios); |
1960 | spin_lock_irq(lock: &lruvec->lru_lock); |
1961 | } |
1962 | |
1963 | continue; |
1964 | } |
1965 | |
1966 | /* |
1967 | * All pages were isolated from the same lruvec (and isolation |
1968 | * inhibits memcg migration). |
1969 | */ |
1970 | VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); |
1971 | lruvec_add_folio(lruvec, folio); |
1972 | nr_pages = folio_nr_pages(folio); |
1973 | nr_moved += nr_pages; |
1974 | if (folio_test_active(folio)) |
1975 | workingset_age_nonresident(lruvec, nr_pages); |
1976 | } |
1977 | |
1978 | if (free_folios.nr) { |
1979 | spin_unlock_irq(lock: &lruvec->lru_lock); |
1980 | mem_cgroup_uncharge_folios(folios: &free_folios); |
1981 | free_unref_folios(fbatch: &free_folios); |
1982 | spin_lock_irq(lock: &lruvec->lru_lock); |
1983 | } |
1984 | |
1985 | return nr_moved; |
1986 | } |
1987 | |
1988 | /* |
1989 | * If a kernel thread (such as nfsd for loop-back mounts) services a backing |
1990 | * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case |
1991 | * we should not throttle. Otherwise it is safe to do so. |
1992 | */ |
1993 | static int current_may_throttle(void) |
1994 | { |
1995 | return !(current->flags & PF_LOCAL_THROTTLE); |
1996 | } |
1997 | |
1998 | /* |
1999 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number |
2000 | * of reclaimed pages |
2001 | */ |
2002 | static unsigned long shrink_inactive_list(unsigned long nr_to_scan, |
2003 | struct lruvec *lruvec, struct scan_control *sc, |
2004 | enum lru_list lru) |
2005 | { |
2006 | LIST_HEAD(folio_list); |
2007 | unsigned long nr_scanned; |
2008 | unsigned int nr_reclaimed = 0; |
2009 | unsigned long nr_taken; |
2010 | struct reclaim_stat stat; |
2011 | bool file = is_file_lru(lru); |
2012 | enum vm_event_item item; |
2013 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2014 | bool stalled = false; |
2015 | |
2016 | while (unlikely(too_many_isolated(pgdat, file, sc))) { |
2017 | if (stalled) |
2018 | return 0; |
2019 | |
2020 | /* wait a bit for the reclaimer. */ |
2021 | stalled = true; |
2022 | reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_ISOLATED); |
2023 | |
2024 | /* We are about to die and free our memory. Return now. */ |
2025 | if (fatal_signal_pending(current)) |
2026 | return SWAP_CLUSTER_MAX; |
2027 | } |
2028 | |
2029 | lru_add_drain(); |
2030 | |
2031 | spin_lock_irq(lock: &lruvec->lru_lock); |
2032 | |
2033 | nr_taken = isolate_lru_folios(nr_to_scan, lruvec, dst: &folio_list, |
2034 | nr_scanned: &nr_scanned, sc, lru); |
2035 | |
2036 | __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, nr_taken); |
2037 | item = PGSCAN_KSWAPD + reclaimer_offset(sc); |
2038 | if (!cgroup_reclaim(sc)) |
2039 | __count_vm_events(item, delta: nr_scanned); |
2040 | count_memcg_events(memcg: lruvec_memcg(lruvec), idx: item, count: nr_scanned); |
2041 | __count_vm_events(item: PGSCAN_ANON + file, delta: nr_scanned); |
2042 | |
2043 | spin_unlock_irq(lock: &lruvec->lru_lock); |
2044 | |
2045 | if (nr_taken == 0) |
2046 | return 0; |
2047 | |
2048 | nr_reclaimed = shrink_folio_list(folio_list: &folio_list, pgdat, sc, stat: &stat, ignore_references: false, |
2049 | memcg: lruvec_memcg(lruvec)); |
2050 | |
2051 | spin_lock_irq(lock: &lruvec->lru_lock); |
2052 | move_folios_to_lru(lruvec, list: &folio_list); |
2053 | |
2054 | __mod_lruvec_state(lruvec, idx: PGDEMOTE_KSWAPD + reclaimer_offset(sc), |
2055 | val: stat.nr_demoted); |
2056 | __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, -nr_taken); |
2057 | item = PGSTEAL_KSWAPD + reclaimer_offset(sc); |
2058 | if (!cgroup_reclaim(sc)) |
2059 | __count_vm_events(item, delta: nr_reclaimed); |
2060 | count_memcg_events(memcg: lruvec_memcg(lruvec), idx: item, count: nr_reclaimed); |
2061 | __count_vm_events(item: PGSTEAL_ANON + file, delta: nr_reclaimed); |
2062 | spin_unlock_irq(lock: &lruvec->lru_lock); |
2063 | |
2064 | lru_note_cost(lruvec, file, nr_io: stat.nr_pageout, nr_rotated: nr_scanned - nr_reclaimed); |
2065 | |
2066 | /* |
2067 | * If dirty folios are scanned that are not queued for IO, it |
2068 | * implies that flushers are not doing their job. This can |
2069 | * happen when memory pressure pushes dirty folios to the end of |
2070 | * the LRU before the dirty limits are breached and the dirty |
2071 | * data has expired. It can also happen when the proportion of |
2072 | * dirty folios grows not through writes but through memory |
2073 | * pressure reclaiming all the clean cache. And in some cases, |
2074 | * the flushers simply cannot keep up with the allocation |
2075 | * rate. Nudge the flusher threads in case they are asleep. |
2076 | */ |
2077 | if (stat.nr_unqueued_dirty == nr_taken) { |
2078 | wakeup_flusher_threads(reason: WB_REASON_VMSCAN); |
2079 | /* |
2080 | * For cgroupv1 dirty throttling is achieved by waking up |
2081 | * the kernel flusher here and later waiting on folios |
2082 | * which are in writeback to finish (see shrink_folio_list()). |
2083 | * |
2084 | * Flusher may not be able to issue writeback quickly |
2085 | * enough for cgroupv1 writeback throttling to work |
2086 | * on a large system. |
2087 | */ |
2088 | if (!writeback_throttling_sane(sc)) |
2089 | reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_WRITEBACK); |
2090 | } |
2091 | |
2092 | sc->nr.dirty += stat.nr_dirty; |
2093 | sc->nr.congested += stat.nr_congested; |
2094 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; |
2095 | sc->nr.writeback += stat.nr_writeback; |
2096 | sc->nr.immediate += stat.nr_immediate; |
2097 | sc->nr.taken += nr_taken; |
2098 | if (file) |
2099 | sc->nr.file_taken += nr_taken; |
2100 | |
2101 | trace_mm_vmscan_lru_shrink_inactive(nid: pgdat->node_id, |
2102 | nr_scanned, nr_reclaimed, stat: &stat, priority: sc->priority, file); |
2103 | return nr_reclaimed; |
2104 | } |
2105 | |
2106 | /* |
2107 | * shrink_active_list() moves folios from the active LRU to the inactive LRU. |
2108 | * |
2109 | * We move them the other way if the folio is referenced by one or more |
2110 | * processes. |
2111 | * |
2112 | * If the folios are mostly unmapped, the processing is fast and it is |
2113 | * appropriate to hold lru_lock across the whole operation. But if |
2114 | * the folios are mapped, the processing is slow (folio_referenced()), so |
2115 | * we should drop lru_lock around each folio. It's impossible to balance |
2116 | * this, so instead we remove the folios from the LRU while processing them. |
2117 | * It is safe to rely on the active flag against the non-LRU folios in here |
2118 | * because nobody will play with that bit on a non-LRU folio. |
2119 | * |
2120 | * The downside is that we have to touch folio->_refcount against each folio. |
2121 | * But we had to alter folio->flags anyway. |
2122 | */ |
2123 | static void shrink_active_list(unsigned long nr_to_scan, |
2124 | struct lruvec *lruvec, |
2125 | struct scan_control *sc, |
2126 | enum lru_list lru) |
2127 | { |
2128 | unsigned long nr_taken; |
2129 | unsigned long nr_scanned; |
2130 | unsigned long vm_flags; |
2131 | LIST_HEAD(l_hold); /* The folios which were snipped off */ |
2132 | LIST_HEAD(l_active); |
2133 | LIST_HEAD(l_inactive); |
2134 | unsigned nr_deactivate, nr_activate; |
2135 | unsigned nr_rotated = 0; |
2136 | bool file = is_file_lru(lru); |
2137 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2138 | |
2139 | lru_add_drain(); |
2140 | |
2141 | spin_lock_irq(lock: &lruvec->lru_lock); |
2142 | |
2143 | nr_taken = isolate_lru_folios(nr_to_scan, lruvec, dst: &l_hold, |
2144 | nr_scanned: &nr_scanned, sc, lru); |
2145 | |
2146 | __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, nr_taken); |
2147 | |
2148 | if (!cgroup_reclaim(sc)) |
2149 | __count_vm_events(item: PGREFILL, delta: nr_scanned); |
2150 | count_memcg_events(memcg: lruvec_memcg(lruvec), idx: PGREFILL, count: nr_scanned); |
2151 | |
2152 | spin_unlock_irq(lock: &lruvec->lru_lock); |
2153 | |
2154 | while (!list_empty(head: &l_hold)) { |
2155 | struct folio *folio; |
2156 | |
2157 | cond_resched(); |
2158 | folio = lru_to_folio(head: &l_hold); |
2159 | list_del(entry: &folio->lru); |
2160 | |
2161 | if (unlikely(!folio_evictable(folio))) { |
2162 | folio_putback_lru(folio); |
2163 | continue; |
2164 | } |
2165 | |
2166 | if (unlikely(buffer_heads_over_limit)) { |
2167 | if (folio_needs_release(folio) && |
2168 | folio_trylock(folio)) { |
2169 | filemap_release_folio(folio, gfp: 0); |
2170 | folio_unlock(folio); |
2171 | } |
2172 | } |
2173 | |
2174 | /* Referenced or rmap lock contention: rotate */ |
2175 | if (folio_referenced(folio, is_locked: 0, memcg: sc->target_mem_cgroup, |
2176 | vm_flags: &vm_flags) != 0) { |
2177 | /* |
2178 | * Identify referenced, file-backed active folios and |
2179 | * give them one more trip around the active list. So |
2180 | * that executable code get better chances to stay in |
2181 | * memory under moderate memory pressure. Anon folios |
2182 | * are not likely to be evicted by use-once streaming |
2183 | * IO, plus JVM can create lots of anon VM_EXEC folios, |
2184 | * so we ignore them here. |
2185 | */ |
2186 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { |
2187 | nr_rotated += folio_nr_pages(folio); |
2188 | list_add(new: &folio->lru, head: &l_active); |
2189 | continue; |
2190 | } |
2191 | } |
2192 | |
2193 | folio_clear_active(folio); /* we are de-activating */ |
2194 | folio_set_workingset(folio); |
2195 | list_add(new: &folio->lru, head: &l_inactive); |
2196 | } |
2197 | |
2198 | /* |
2199 | * Move folios back to the lru list. |
2200 | */ |
2201 | spin_lock_irq(lock: &lruvec->lru_lock); |
2202 | |
2203 | nr_activate = move_folios_to_lru(lruvec, list: &l_active); |
2204 | nr_deactivate = move_folios_to_lru(lruvec, list: &l_inactive); |
2205 | |
2206 | __count_vm_events(item: PGDEACTIVATE, delta: nr_deactivate); |
2207 | count_memcg_events(memcg: lruvec_memcg(lruvec), idx: PGDEACTIVATE, count: nr_deactivate); |
2208 | |
2209 | __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, -nr_taken); |
2210 | spin_unlock_irq(lock: &lruvec->lru_lock); |
2211 | |
2212 | if (nr_rotated) |
2213 | lru_note_cost(lruvec, file, nr_io: 0, nr_rotated); |
2214 | trace_mm_vmscan_lru_shrink_active(nid: pgdat->node_id, nr_taken, nr_active: nr_activate, |
2215 | nr_deactivated: nr_deactivate, nr_referenced: nr_rotated, priority: sc->priority, file); |
2216 | } |
2217 | |
2218 | static unsigned int reclaim_folio_list(struct list_head *folio_list, |
2219 | struct pglist_data *pgdat) |
2220 | { |
2221 | struct reclaim_stat stat; |
2222 | unsigned int nr_reclaimed; |
2223 | struct folio *folio; |
2224 | struct scan_control sc = { |
2225 | .gfp_mask = GFP_KERNEL, |
2226 | .may_writepage = 1, |
2227 | .may_unmap = 1, |
2228 | .may_swap = 1, |
2229 | .no_demotion = 1, |
2230 | }; |
2231 | |
2232 | nr_reclaimed = shrink_folio_list(folio_list, pgdat, sc: &sc, stat: &stat, ignore_references: true, NULL); |
2233 | while (!list_empty(head: folio_list)) { |
2234 | folio = lru_to_folio(head: folio_list); |
2235 | list_del(entry: &folio->lru); |
2236 | folio_putback_lru(folio); |
2237 | } |
2238 | trace_mm_vmscan_reclaim_pages(nid: pgdat->node_id, nr_scanned: sc.nr_scanned, nr_reclaimed, stat: &stat); |
2239 | |
2240 | return nr_reclaimed; |
2241 | } |
2242 | |
2243 | unsigned long reclaim_pages(struct list_head *folio_list) |
2244 | { |
2245 | int nid; |
2246 | unsigned int nr_reclaimed = 0; |
2247 | LIST_HEAD(node_folio_list); |
2248 | unsigned int noreclaim_flag; |
2249 | |
2250 | if (list_empty(head: folio_list)) |
2251 | return nr_reclaimed; |
2252 | |
2253 | noreclaim_flag = memalloc_noreclaim_save(); |
2254 | |
2255 | nid = folio_nid(folio: lru_to_folio(head: folio_list)); |
2256 | do { |
2257 | struct folio *folio = lru_to_folio(head: folio_list); |
2258 | |
2259 | if (nid == folio_nid(folio)) { |
2260 | folio_clear_active(folio); |
2261 | list_move(list: &folio->lru, head: &node_folio_list); |
2262 | continue; |
2263 | } |
2264 | |
2265 | nr_reclaimed += reclaim_folio_list(folio_list: &node_folio_list, NODE_DATA(nid)); |
2266 | nid = folio_nid(folio: lru_to_folio(head: folio_list)); |
2267 | } while (!list_empty(head: folio_list)); |
2268 | |
2269 | nr_reclaimed += reclaim_folio_list(folio_list: &node_folio_list, NODE_DATA(nid)); |
2270 | |
2271 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
2272 | |
2273 | return nr_reclaimed; |
2274 | } |
2275 | |
2276 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
2277 | struct lruvec *lruvec, struct scan_control *sc) |
2278 | { |
2279 | if (is_active_lru(lru)) { |
2280 | if (sc->may_deactivate & (1 << is_file_lru(lru))) |
2281 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
2282 | else |
2283 | sc->skipped_deactivate = 1; |
2284 | return 0; |
2285 | } |
2286 | |
2287 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
2288 | } |
2289 | |
2290 | /* |
2291 | * The inactive anon list should be small enough that the VM never has |
2292 | * to do too much work. |
2293 | * |
2294 | * The inactive file list should be small enough to leave most memory |
2295 | * to the established workingset on the scan-resistant active list, |
2296 | * but large enough to avoid thrashing the aggregate readahead window. |
2297 | * |
2298 | * Both inactive lists should also be large enough that each inactive |
2299 | * folio has a chance to be referenced again before it is reclaimed. |
2300 | * |
2301 | * If that fails and refaulting is observed, the inactive list grows. |
2302 | * |
2303 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios |
2304 | * on this LRU, maintained by the pageout code. An inactive_ratio |
2305 | * of 3 means 3:1 or 25% of the folios are kept on the inactive list. |
2306 | * |
2307 | * total target max |
2308 | * memory ratio inactive |
2309 | * ------------------------------------- |
2310 | * 10MB 1 5MB |
2311 | * 100MB 1 50MB |
2312 | * 1GB 3 250MB |
2313 | * 10GB 10 0.9GB |
2314 | * 100GB 31 3GB |
2315 | * 1TB 101 10GB |
2316 | * 10TB 320 32GB |
2317 | */ |
2318 | static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) |
2319 | { |
2320 | enum lru_list active_lru = inactive_lru + LRU_ACTIVE; |
2321 | unsigned long inactive, active; |
2322 | unsigned long inactive_ratio; |
2323 | unsigned long gb; |
2324 | |
2325 | inactive = lruvec_page_state(lruvec, idx: NR_LRU_BASE + inactive_lru); |
2326 | active = lruvec_page_state(lruvec, idx: NR_LRU_BASE + active_lru); |
2327 | |
2328 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
2329 | if (gb) |
2330 | inactive_ratio = int_sqrt(10 * gb); |
2331 | else |
2332 | inactive_ratio = 1; |
2333 | |
2334 | return inactive * inactive_ratio < active; |
2335 | } |
2336 | |
2337 | enum scan_balance { |
2338 | SCAN_EQUAL, |
2339 | SCAN_FRACT, |
2340 | SCAN_ANON, |
2341 | SCAN_FILE, |
2342 | }; |
2343 | |
2344 | static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) |
2345 | { |
2346 | unsigned long file; |
2347 | struct lruvec *target_lruvec; |
2348 | |
2349 | if (lru_gen_enabled()) |
2350 | return; |
2351 | |
2352 | target_lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup, pgdat); |
2353 | |
2354 | /* |
2355 | * Flush the memory cgroup stats in rate-limited way as we don't need |
2356 | * most accurate stats here. We may switch to regular stats flushing |
2357 | * in the future once it is cheap enough. |
2358 | */ |
2359 | mem_cgroup_flush_stats_ratelimited(memcg: sc->target_mem_cgroup); |
2360 | |
2361 | /* |
2362 | * Determine the scan balance between anon and file LRUs. |
2363 | */ |
2364 | spin_lock_irq(lock: &target_lruvec->lru_lock); |
2365 | sc->anon_cost = target_lruvec->anon_cost; |
2366 | sc->file_cost = target_lruvec->file_cost; |
2367 | spin_unlock_irq(lock: &target_lruvec->lru_lock); |
2368 | |
2369 | /* |
2370 | * Target desirable inactive:active list ratios for the anon |
2371 | * and file LRU lists. |
2372 | */ |
2373 | if (!sc->force_deactivate) { |
2374 | unsigned long refaults; |
2375 | |
2376 | /* |
2377 | * When refaults are being observed, it means a new |
2378 | * workingset is being established. Deactivate to get |
2379 | * rid of any stale active pages quickly. |
2380 | */ |
2381 | refaults = lruvec_page_state(lruvec: target_lruvec, |
2382 | idx: WORKINGSET_ACTIVATE_ANON); |
2383 | if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || |
2384 | inactive_is_low(lruvec: target_lruvec, inactive_lru: LRU_INACTIVE_ANON)) |
2385 | sc->may_deactivate |= DEACTIVATE_ANON; |
2386 | else |
2387 | sc->may_deactivate &= ~DEACTIVATE_ANON; |
2388 | |
2389 | refaults = lruvec_page_state(lruvec: target_lruvec, |
2390 | idx: WORKINGSET_ACTIVATE_FILE); |
2391 | if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || |
2392 | inactive_is_low(lruvec: target_lruvec, inactive_lru: LRU_INACTIVE_FILE)) |
2393 | sc->may_deactivate |= DEACTIVATE_FILE; |
2394 | else |
2395 | sc->may_deactivate &= ~DEACTIVATE_FILE; |
2396 | } else |
2397 | sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; |
2398 | |
2399 | /* |
2400 | * If we have plenty of inactive file pages that aren't |
2401 | * thrashing, try to reclaim those first before touching |
2402 | * anonymous pages. |
2403 | */ |
2404 | file = lruvec_page_state(lruvec: target_lruvec, idx: NR_INACTIVE_FILE); |
2405 | if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && |
2406 | !sc->no_cache_trim_mode) |
2407 | sc->cache_trim_mode = 1; |
2408 | else |
2409 | sc->cache_trim_mode = 0; |
2410 | |
2411 | /* |
2412 | * Prevent the reclaimer from falling into the cache trap: as |
2413 | * cache pages start out inactive, every cache fault will tip |
2414 | * the scan balance towards the file LRU. And as the file LRU |
2415 | * shrinks, so does the window for rotation from references. |
2416 | * This means we have a runaway feedback loop where a tiny |
2417 | * thrashing file LRU becomes infinitely more attractive than |
2418 | * anon pages. Try to detect this based on file LRU size. |
2419 | */ |
2420 | if (!cgroup_reclaim(sc)) { |
2421 | unsigned long total_high_wmark = 0; |
2422 | unsigned long free, anon; |
2423 | int z; |
2424 | struct zone *zone; |
2425 | |
2426 | free = sum_zone_node_page_state(node: pgdat->node_id, item: NR_FREE_PAGES); |
2427 | file = node_page_state(pgdat, item: NR_ACTIVE_FILE) + |
2428 | node_page_state(pgdat, item: NR_INACTIVE_FILE); |
2429 | |
2430 | for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { |
2431 | total_high_wmark += high_wmark_pages(z: zone); |
2432 | } |
2433 | |
2434 | /* |
2435 | * Consider anon: if that's low too, this isn't a |
2436 | * runaway file reclaim problem, but rather just |
2437 | * extreme pressure. Reclaim as per usual then. |
2438 | */ |
2439 | anon = node_page_state(pgdat, item: NR_INACTIVE_ANON); |
2440 | |
2441 | sc->file_is_tiny = |
2442 | file + free <= total_high_wmark && |
2443 | !(sc->may_deactivate & DEACTIVATE_ANON) && |
2444 | anon >> sc->priority; |
2445 | } |
2446 | } |
2447 | |
2448 | static inline void calculate_pressure_balance(struct scan_control *sc, |
2449 | int swappiness, u64 *fraction, u64 *denominator) |
2450 | { |
2451 | unsigned long anon_cost, file_cost, total_cost; |
2452 | unsigned long ap, fp; |
2453 | |
2454 | /* |
2455 | * Calculate the pressure balance between anon and file pages. |
2456 | * |
2457 | * The amount of pressure we put on each LRU is inversely |
2458 | * proportional to the cost of reclaiming each list, as |
2459 | * determined by the share of pages that are refaulting, times |
2460 | * the relative IO cost of bringing back a swapped out |
2461 | * anonymous page vs reloading a filesystem page (swappiness). |
2462 | * |
2463 | * Although we limit that influence to ensure no list gets |
2464 | * left behind completely: at least a third of the pressure is |
2465 | * applied, before swappiness. |
2466 | * |
2467 | * With swappiness at 100, anon and file have equal IO cost. |
2468 | */ |
2469 | total_cost = sc->anon_cost + sc->file_cost; |
2470 | anon_cost = total_cost + sc->anon_cost; |
2471 | file_cost = total_cost + sc->file_cost; |
2472 | total_cost = anon_cost + file_cost; |
2473 | |
2474 | ap = swappiness * (total_cost + 1); |
2475 | ap /= anon_cost + 1; |
2476 | |
2477 | fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); |
2478 | fp /= file_cost + 1; |
2479 | |
2480 | fraction[WORKINGSET_ANON] = ap; |
2481 | fraction[WORKINGSET_FILE] = fp; |
2482 | *denominator = ap + fp; |
2483 | } |
2484 | |
2485 | /* |
2486 | * Determine how aggressively the anon and file LRU lists should be |
2487 | * scanned. |
2488 | * |
2489 | * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan |
2490 | * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan |
2491 | */ |
2492 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
2493 | unsigned long *nr) |
2494 | { |
2495 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2496 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
2497 | int swappiness = sc_swappiness(sc, memcg); |
2498 | u64 fraction[ANON_AND_FILE]; |
2499 | u64 denominator = 0; /* gcc */ |
2500 | enum scan_balance scan_balance; |
2501 | enum lru_list lru; |
2502 | |
2503 | /* If we have no swap space, do not bother scanning anon folios. */ |
2504 | if (!sc->may_swap || !can_reclaim_anon_pages(memcg, nid: pgdat->node_id, sc)) { |
2505 | scan_balance = SCAN_FILE; |
2506 | goto out; |
2507 | } |
2508 | |
2509 | /* |
2510 | * Global reclaim will swap to prevent OOM even with no |
2511 | * swappiness, but memcg users want to use this knob to |
2512 | * disable swapping for individual groups completely when |
2513 | * using the memory controller's swap limit feature would be |
2514 | * too expensive. |
2515 | */ |
2516 | if (cgroup_reclaim(sc) && !swappiness) { |
2517 | scan_balance = SCAN_FILE; |
2518 | goto out; |
2519 | } |
2520 | |
2521 | /* Proactive reclaim initiated by userspace for anonymous memory only */ |
2522 | if (swappiness == SWAPPINESS_ANON_ONLY) { |
2523 | WARN_ON_ONCE(!sc->proactive); |
2524 | scan_balance = SCAN_ANON; |
2525 | goto out; |
2526 | } |
2527 | |
2528 | /* |
2529 | * Do not apply any pressure balancing cleverness when the |
2530 | * system is close to OOM, scan both anon and file equally |
2531 | * (unless the swappiness setting disagrees with swapping). |
2532 | */ |
2533 | if (!sc->priority && swappiness) { |
2534 | scan_balance = SCAN_EQUAL; |
2535 | goto out; |
2536 | } |
2537 | |
2538 | /* |
2539 | * If the system is almost out of file pages, force-scan anon. |
2540 | */ |
2541 | if (sc->file_is_tiny) { |
2542 | scan_balance = SCAN_ANON; |
2543 | goto out; |
2544 | } |
2545 | |
2546 | /* |
2547 | * If there is enough inactive page cache, we do not reclaim |
2548 | * anything from the anonymous working right now to make sure |
2549 | * a streaming file access pattern doesn't cause swapping. |
2550 | */ |
2551 | if (sc->cache_trim_mode) { |
2552 | scan_balance = SCAN_FILE; |
2553 | goto out; |
2554 | } |
2555 | |
2556 | scan_balance = SCAN_FRACT; |
2557 | calculate_pressure_balance(sc, swappiness, fraction, denominator: &denominator); |
2558 | |
2559 | out: |
2560 | for_each_evictable_lru(lru) { |
2561 | bool file = is_file_lru(lru); |
2562 | unsigned long lruvec_size; |
2563 | unsigned long low, min; |
2564 | unsigned long scan; |
2565 | |
2566 | lruvec_size = lruvec_lru_size(lruvec, lru, zone_idx: sc->reclaim_idx); |
2567 | mem_cgroup_protection(root: sc->target_mem_cgroup, memcg, |
2568 | min: &min, low: &low); |
2569 | |
2570 | if (min || low) { |
2571 | /* |
2572 | * Scale a cgroup's reclaim pressure by proportioning |
2573 | * its current usage to its memory.low or memory.min |
2574 | * setting. |
2575 | * |
2576 | * This is important, as otherwise scanning aggression |
2577 | * becomes extremely binary -- from nothing as we |
2578 | * approach the memory protection threshold, to totally |
2579 | * nominal as we exceed it. This results in requiring |
2580 | * setting extremely liberal protection thresholds. It |
2581 | * also means we simply get no protection at all if we |
2582 | * set it too low, which is not ideal. |
2583 | * |
2584 | * If there is any protection in place, we reduce scan |
2585 | * pressure by how much of the total memory used is |
2586 | * within protection thresholds. |
2587 | * |
2588 | * There is one special case: in the first reclaim pass, |
2589 | * we skip over all groups that are within their low |
2590 | * protection. If that fails to reclaim enough pages to |
2591 | * satisfy the reclaim goal, we come back and override |
2592 | * the best-effort low protection. However, we still |
2593 | * ideally want to honor how well-behaved groups are in |
2594 | * that case instead of simply punishing them all |
2595 | * equally. As such, we reclaim them based on how much |
2596 | * memory they are using, reducing the scan pressure |
2597 | * again by how much of the total memory used is under |
2598 | * hard protection. |
2599 | */ |
2600 | unsigned long cgroup_size = mem_cgroup_size(memcg); |
2601 | unsigned long protection; |
2602 | |
2603 | /* memory.low scaling, make sure we retry before OOM */ |
2604 | if (!sc->memcg_low_reclaim && low > min) { |
2605 | protection = low; |
2606 | sc->memcg_low_skipped = 1; |
2607 | } else { |
2608 | protection = min; |
2609 | } |
2610 | |
2611 | /* Avoid TOCTOU with earlier protection check */ |
2612 | cgroup_size = max(cgroup_size, protection); |
2613 | |
2614 | scan = lruvec_size - lruvec_size * protection / |
2615 | (cgroup_size + 1); |
2616 | |
2617 | /* |
2618 | * Minimally target SWAP_CLUSTER_MAX pages to keep |
2619 | * reclaim moving forwards, avoiding decrementing |
2620 | * sc->priority further than desirable. |
2621 | */ |
2622 | scan = max(scan, SWAP_CLUSTER_MAX); |
2623 | } else { |
2624 | scan = lruvec_size; |
2625 | } |
2626 | |
2627 | scan >>= sc->priority; |
2628 | |
2629 | /* |
2630 | * If the cgroup's already been deleted, make sure to |
2631 | * scrape out the remaining cache. |
2632 | */ |
2633 | if (!scan && !mem_cgroup_online(memcg)) |
2634 | scan = min(lruvec_size, SWAP_CLUSTER_MAX); |
2635 | |
2636 | switch (scan_balance) { |
2637 | case SCAN_EQUAL: |
2638 | /* Scan lists relative to size */ |
2639 | break; |
2640 | case SCAN_FRACT: |
2641 | /* |
2642 | * Scan types proportional to swappiness and |
2643 | * their relative recent reclaim efficiency. |
2644 | * Make sure we don't miss the last page on |
2645 | * the offlined memory cgroups because of a |
2646 | * round-off error. |
2647 | */ |
2648 | scan = mem_cgroup_online(memcg) ? |
2649 | div64_u64(dividend: scan * fraction[file], divisor: denominator) : |
2650 | DIV64_U64_ROUND_UP(scan * fraction[file], |
2651 | denominator); |
2652 | break; |
2653 | case SCAN_FILE: |
2654 | case SCAN_ANON: |
2655 | /* Scan one type exclusively */ |
2656 | if ((scan_balance == SCAN_FILE) != file) |
2657 | scan = 0; |
2658 | break; |
2659 | default: |
2660 | /* Look ma, no brain */ |
2661 | BUG(); |
2662 | } |
2663 | |
2664 | nr[lru] = scan; |
2665 | } |
2666 | } |
2667 | |
2668 | /* |
2669 | * Anonymous LRU management is a waste if there is |
2670 | * ultimately no way to reclaim the memory. |
2671 | */ |
2672 | static bool can_age_anon_pages(struct lruvec *lruvec, |
2673 | struct scan_control *sc) |
2674 | { |
2675 | /* Aging the anon LRU is valuable if swap is present: */ |
2676 | if (total_swap_pages > 0) |
2677 | return true; |
2678 | |
2679 | /* Also valuable if anon pages can be demoted: */ |
2680 | return can_demote(nid: lruvec_pgdat(lruvec)->node_id, sc, |
2681 | memcg: lruvec_memcg(lruvec)); |
2682 | } |
2683 | |
2684 | #ifdef CONFIG_LRU_GEN |
2685 | |
2686 | #ifdef CONFIG_LRU_GEN_ENABLED |
2687 | DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); |
2688 | #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) |
2689 | #else |
2690 | DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); |
2691 | #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) |
2692 | #endif |
2693 | |
2694 | static bool should_walk_mmu(void) |
2695 | { |
2696 | return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); |
2697 | } |
2698 | |
2699 | static bool should_clear_pmd_young(void) |
2700 | { |
2701 | return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); |
2702 | } |
2703 | |
2704 | /****************************************************************************** |
2705 | * shorthand helpers |
2706 | ******************************************************************************/ |
2707 | |
2708 | #define DEFINE_MAX_SEQ(lruvec) \ |
2709 | unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) |
2710 | |
2711 | #define DEFINE_MIN_SEQ(lruvec) \ |
2712 | unsigned long min_seq[ANON_AND_FILE] = { \ |
2713 | READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ |
2714 | READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ |
2715 | } |
2716 | |
2717 | /* Get the min/max evictable type based on swappiness */ |
2718 | #define min_type(swappiness) (!(swappiness)) |
2719 | #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) |
2720 | |
2721 | #define evictable_min_seq(min_seq, swappiness) \ |
2722 | min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) |
2723 | |
2724 | #define for_each_gen_type_zone(gen, type, zone) \ |
2725 | for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ |
2726 | for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ |
2727 | for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) |
2728 | |
2729 | #define for_each_evictable_type(type, swappiness) \ |
2730 | for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) |
2731 | |
2732 | #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) |
2733 | #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) |
2734 | |
2735 | static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) |
2736 | { |
2737 | struct pglist_data *pgdat = NODE_DATA(nid); |
2738 | |
2739 | #ifdef CONFIG_MEMCG |
2740 | if (memcg) { |
2741 | struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; |
2742 | |
2743 | /* see the comment in mem_cgroup_lruvec() */ |
2744 | if (!lruvec->pgdat) |
2745 | lruvec->pgdat = pgdat; |
2746 | |
2747 | return lruvec; |
2748 | } |
2749 | #endif |
2750 | VM_WARN_ON_ONCE(!mem_cgroup_disabled()); |
2751 | |
2752 | return &pgdat->__lruvec; |
2753 | } |
2754 | |
2755 | static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) |
2756 | { |
2757 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
2758 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2759 | |
2760 | if (!sc->may_swap) |
2761 | return 0; |
2762 | |
2763 | if (!can_demote(nid: pgdat->node_id, sc, memcg) && |
2764 | mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) |
2765 | return 0; |
2766 | |
2767 | return sc_swappiness(sc, memcg); |
2768 | } |
2769 | |
2770 | static int get_nr_gens(struct lruvec *lruvec, int type) |
2771 | { |
2772 | return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; |
2773 | } |
2774 | |
2775 | static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) |
2776 | { |
2777 | int type; |
2778 | |
2779 | for (type = 0; type < ANON_AND_FILE; type++) { |
2780 | int n = get_nr_gens(lruvec, type); |
2781 | |
2782 | if (n < MIN_NR_GENS || n > MAX_NR_GENS) |
2783 | return false; |
2784 | } |
2785 | |
2786 | return true; |
2787 | } |
2788 | |
2789 | /****************************************************************************** |
2790 | * Bloom filters |
2791 | ******************************************************************************/ |
2792 | |
2793 | /* |
2794 | * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when |
2795 | * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of |
2796 | * bits in a bitmap, k is the number of hash functions and n is the number of |
2797 | * inserted items. |
2798 | * |
2799 | * Page table walkers use one of the two filters to reduce their search space. |
2800 | * To get rid of non-leaf entries that no longer have enough leaf entries, the |
2801 | * aging uses the double-buffering technique to flip to the other filter each |
2802 | * time it produces a new generation. For non-leaf entries that have enough |
2803 | * leaf entries, the aging carries them over to the next generation in |
2804 | * walk_pmd_range(); the eviction also report them when walking the rmap |
2805 | * in lru_gen_look_around(). |
2806 | * |
2807 | * For future optimizations: |
2808 | * 1. It's not necessary to keep both filters all the time. The spare one can be |
2809 | * freed after the RCU grace period and reallocated if needed again. |
2810 | * 2. And when reallocating, it's worth scaling its size according to the number |
2811 | * of inserted entries in the other filter, to reduce the memory overhead on |
2812 | * small systems and false positives on large systems. |
2813 | * 3. Jenkins' hash function is an alternative to Knuth's. |
2814 | */ |
2815 | #define BLOOM_FILTER_SHIFT 15 |
2816 | |
2817 | static inline int filter_gen_from_seq(unsigned long seq) |
2818 | { |
2819 | return seq % NR_BLOOM_FILTERS; |
2820 | } |
2821 | |
2822 | static void get_item_key(void *item, int *key) |
2823 | { |
2824 | u32 hash = hash_ptr(ptr: item, BLOOM_FILTER_SHIFT * 2); |
2825 | |
2826 | BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); |
2827 | |
2828 | key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); |
2829 | key[1] = hash >> BLOOM_FILTER_SHIFT; |
2830 | } |
2831 | |
2832 | static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, |
2833 | void *item) |
2834 | { |
2835 | int key[2]; |
2836 | unsigned long *filter; |
2837 | int gen = filter_gen_from_seq(seq); |
2838 | |
2839 | filter = READ_ONCE(mm_state->filters[gen]); |
2840 | if (!filter) |
2841 | return true; |
2842 | |
2843 | get_item_key(item, key); |
2844 | |
2845 | return test_bit(key[0], filter) && test_bit(key[1], filter); |
2846 | } |
2847 | |
2848 | static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, |
2849 | void *item) |
2850 | { |
2851 | int key[2]; |
2852 | unsigned long *filter; |
2853 | int gen = filter_gen_from_seq(seq); |
2854 | |
2855 | filter = READ_ONCE(mm_state->filters[gen]); |
2856 | if (!filter) |
2857 | return; |
2858 | |
2859 | get_item_key(item, key); |
2860 | |
2861 | if (!test_bit(key[0], filter)) |
2862 | set_bit(nr: key[0], addr: filter); |
2863 | if (!test_bit(key[1], filter)) |
2864 | set_bit(nr: key[1], addr: filter); |
2865 | } |
2866 | |
2867 | static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) |
2868 | { |
2869 | unsigned long *filter; |
2870 | int gen = filter_gen_from_seq(seq); |
2871 | |
2872 | filter = mm_state->filters[gen]; |
2873 | if (filter) { |
2874 | bitmap_clear(map: filter, start: 0, BIT(BLOOM_FILTER_SHIFT)); |
2875 | return; |
2876 | } |
2877 | |
2878 | filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), |
2879 | __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); |
2880 | WRITE_ONCE(mm_state->filters[gen], filter); |
2881 | } |
2882 | |
2883 | /****************************************************************************** |
2884 | * mm_struct list |
2885 | ******************************************************************************/ |
2886 | |
2887 | #ifdef CONFIG_LRU_GEN_WALKS_MMU |
2888 | |
2889 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) |
2890 | { |
2891 | static struct lru_gen_mm_list mm_list = { |
2892 | .fifo = LIST_HEAD_INIT(mm_list.fifo), |
2893 | .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), |
2894 | }; |
2895 | |
2896 | #ifdef CONFIG_MEMCG |
2897 | if (memcg) |
2898 | return &memcg->mm_list; |
2899 | #endif |
2900 | VM_WARN_ON_ONCE(!mem_cgroup_disabled()); |
2901 | |
2902 | return &mm_list; |
2903 | } |
2904 | |
2905 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) |
2906 | { |
2907 | return &lruvec->mm_state; |
2908 | } |
2909 | |
2910 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) |
2911 | { |
2912 | int key; |
2913 | struct mm_struct *mm; |
2914 | struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec); |
2915 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec: walk->lruvec); |
2916 | |
2917 | mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); |
2918 | key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); |
2919 | |
2920 | if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) |
2921 | return NULL; |
2922 | |
2923 | clear_bit(nr: key, addr: &mm->lru_gen.bitmap); |
2924 | |
2925 | return mmget_not_zero(mm) ? mm : NULL; |
2926 | } |
2927 | |
2928 | void lru_gen_add_mm(struct mm_struct *mm) |
2929 | { |
2930 | int nid; |
2931 | struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); |
2932 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); |
2933 | |
2934 | VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); |
2935 | #ifdef CONFIG_MEMCG |
2936 | VM_WARN_ON_ONCE(mm->lru_gen.memcg); |
2937 | mm->lru_gen.memcg = memcg; |
2938 | #endif |
2939 | spin_lock(lock: &mm_list->lock); |
2940 | |
2941 | for_each_node_state(nid, N_MEMORY) { |
2942 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
2943 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
2944 | |
2945 | /* the first addition since the last iteration */ |
2946 | if (mm_state->tail == &mm_list->fifo) |
2947 | mm_state->tail = &mm->lru_gen.list; |
2948 | } |
2949 | |
2950 | list_add_tail(new: &mm->lru_gen.list, head: &mm_list->fifo); |
2951 | |
2952 | spin_unlock(lock: &mm_list->lock); |
2953 | } |
2954 | |
2955 | void lru_gen_del_mm(struct mm_struct *mm) |
2956 | { |
2957 | int nid; |
2958 | struct lru_gen_mm_list *mm_list; |
2959 | struct mem_cgroup *memcg = NULL; |
2960 | |
2961 | if (list_empty(head: &mm->lru_gen.list)) |
2962 | return; |
2963 | |
2964 | #ifdef CONFIG_MEMCG |
2965 | memcg = mm->lru_gen.memcg; |
2966 | #endif |
2967 | mm_list = get_mm_list(memcg); |
2968 | |
2969 | spin_lock(lock: &mm_list->lock); |
2970 | |
2971 | for_each_node(nid) { |
2972 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
2973 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
2974 | |
2975 | /* where the current iteration continues after */ |
2976 | if (mm_state->head == &mm->lru_gen.list) |
2977 | mm_state->head = mm_state->head->prev; |
2978 | |
2979 | /* where the last iteration ended before */ |
2980 | if (mm_state->tail == &mm->lru_gen.list) |
2981 | mm_state->tail = mm_state->tail->next; |
2982 | } |
2983 | |
2984 | list_del_init(entry: &mm->lru_gen.list); |
2985 | |
2986 | spin_unlock(lock: &mm_list->lock); |
2987 | |
2988 | #ifdef CONFIG_MEMCG |
2989 | mem_cgroup_put(memcg: mm->lru_gen.memcg); |
2990 | mm->lru_gen.memcg = NULL; |
2991 | #endif |
2992 | } |
2993 | |
2994 | #ifdef CONFIG_MEMCG |
2995 | void lru_gen_migrate_mm(struct mm_struct *mm) |
2996 | { |
2997 | struct mem_cgroup *memcg; |
2998 | struct task_struct *task = rcu_dereference_protected(mm->owner, true); |
2999 | |
3000 | VM_WARN_ON_ONCE(task->mm != mm); |
3001 | lockdep_assert_held(&task->alloc_lock); |
3002 | |
3003 | /* for mm_update_next_owner() */ |
3004 | if (mem_cgroup_disabled()) |
3005 | return; |
3006 | |
3007 | /* migration can happen before addition */ |
3008 | if (!mm->lru_gen.memcg) |
3009 | return; |
3010 | |
3011 | rcu_read_lock(); |
3012 | memcg = mem_cgroup_from_task(p: task); |
3013 | rcu_read_unlock(); |
3014 | if (memcg == mm->lru_gen.memcg) |
3015 | return; |
3016 | |
3017 | VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); |
3018 | |
3019 | lru_gen_del_mm(mm); |
3020 | lru_gen_add_mm(mm); |
3021 | } |
3022 | #endif |
3023 | |
3024 | #else /* !CONFIG_LRU_GEN_WALKS_MMU */ |
3025 | |
3026 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) |
3027 | { |
3028 | return NULL; |
3029 | } |
3030 | |
3031 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) |
3032 | { |
3033 | return NULL; |
3034 | } |
3035 | |
3036 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) |
3037 | { |
3038 | return NULL; |
3039 | } |
3040 | |
3041 | #endif |
3042 | |
3043 | static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) |
3044 | { |
3045 | int i; |
3046 | int hist; |
3047 | struct lruvec *lruvec = walk->lruvec; |
3048 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
3049 | |
3050 | lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); |
3051 | |
3052 | hist = lru_hist_from_seq(seq: walk->seq); |
3053 | |
3054 | for (i = 0; i < NR_MM_STATS; i++) { |
3055 | WRITE_ONCE(mm_state->stats[hist][i], |
3056 | mm_state->stats[hist][i] + walk->mm_stats[i]); |
3057 | walk->mm_stats[i] = 0; |
3058 | } |
3059 | |
3060 | if (NR_HIST_GENS > 1 && last) { |
3061 | hist = lru_hist_from_seq(seq: walk->seq + 1); |
3062 | |
3063 | for (i = 0; i < NR_MM_STATS; i++) |
3064 | WRITE_ONCE(mm_state->stats[hist][i], 0); |
3065 | } |
3066 | } |
3067 | |
3068 | static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) |
3069 | { |
3070 | bool first = false; |
3071 | bool last = false; |
3072 | struct mm_struct *mm = NULL; |
3073 | struct lruvec *lruvec = walk->lruvec; |
3074 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
3075 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); |
3076 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
3077 | |
3078 | /* |
3079 | * mm_state->seq is incremented after each iteration of mm_list. There |
3080 | * are three interesting cases for this page table walker: |
3081 | * 1. It tries to start a new iteration with a stale max_seq: there is |
3082 | * nothing left to do. |
3083 | * 2. It started the next iteration: it needs to reset the Bloom filter |
3084 | * so that a fresh set of PTE tables can be recorded. |
3085 | * 3. It ended the current iteration: it needs to reset the mm stats |
3086 | * counters and tell its caller to increment max_seq. |
3087 | */ |
3088 | spin_lock(lock: &mm_list->lock); |
3089 | |
3090 | VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); |
3091 | |
3092 | if (walk->seq <= mm_state->seq) |
3093 | goto done; |
3094 | |
3095 | if (!mm_state->head) |
3096 | mm_state->head = &mm_list->fifo; |
3097 | |
3098 | if (mm_state->head == &mm_list->fifo) |
3099 | first = true; |
3100 | |
3101 | do { |
3102 | mm_state->head = mm_state->head->next; |
3103 | if (mm_state->head == &mm_list->fifo) { |
3104 | WRITE_ONCE(mm_state->seq, mm_state->seq + 1); |
3105 | last = true; |
3106 | break; |
3107 | } |
3108 | |
3109 | /* force scan for those added after the last iteration */ |
3110 | if (!mm_state->tail || mm_state->tail == mm_state->head) { |
3111 | mm_state->tail = mm_state->head->next; |
3112 | walk->force_scan = true; |
3113 | } |
3114 | } while (!(mm = get_next_mm(walk))); |
3115 | done: |
3116 | if (*iter || last) |
3117 | reset_mm_stats(walk, last); |
3118 | |
3119 | spin_unlock(lock: &mm_list->lock); |
3120 | |
3121 | if (mm && first) |
3122 | reset_bloom_filter(mm_state, seq: walk->seq + 1); |
3123 | |
3124 | if (*iter) |
3125 | mmput_async(*iter); |
3126 | |
3127 | *iter = mm; |
3128 | |
3129 | return last; |
3130 | } |
3131 | |
3132 | static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) |
3133 | { |
3134 | bool success = false; |
3135 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
3136 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); |
3137 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
3138 | |
3139 | spin_lock(lock: &mm_list->lock); |
3140 | |
3141 | VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); |
3142 | |
3143 | if (seq > mm_state->seq) { |
3144 | mm_state->head = NULL; |
3145 | mm_state->tail = NULL; |
3146 | WRITE_ONCE(mm_state->seq, mm_state->seq + 1); |
3147 | success = true; |
3148 | } |
3149 | |
3150 | spin_unlock(lock: &mm_list->lock); |
3151 | |
3152 | return success; |
3153 | } |
3154 | |
3155 | /****************************************************************************** |
3156 | * PID controller |
3157 | ******************************************************************************/ |
3158 | |
3159 | /* |
3160 | * A feedback loop based on Proportional-Integral-Derivative (PID) controller. |
3161 | * |
3162 | * The P term is refaulted/(evicted+protected) from a tier in the generation |
3163 | * currently being evicted; the I term is the exponential moving average of the |
3164 | * P term over the generations previously evicted, using the smoothing factor |
3165 | * 1/2; the D term isn't supported. |
3166 | * |
3167 | * The setpoint (SP) is always the first tier of one type; the process variable |
3168 | * (PV) is either any tier of the other type or any other tier of the same |
3169 | * type. |
3170 | * |
3171 | * The error is the difference between the SP and the PV; the correction is to |
3172 | * turn off protection when SP>PV or turn on protection when SP<PV. |
3173 | * |
3174 | * For future optimizations: |
3175 | * 1. The D term may discount the other two terms over time so that long-lived |
3176 | * generations can resist stale information. |
3177 | */ |
3178 | struct ctrl_pos { |
3179 | unsigned long refaulted; |
3180 | unsigned long total; |
3181 | int gain; |
3182 | }; |
3183 | |
3184 | static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, |
3185 | struct ctrl_pos *pos) |
3186 | { |
3187 | int i; |
3188 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3189 | int hist = lru_hist_from_seq(seq: lrugen->min_seq[type]); |
3190 | |
3191 | pos->gain = gain; |
3192 | pos->refaulted = pos->total = 0; |
3193 | |
3194 | for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { |
3195 | pos->refaulted += lrugen->avg_refaulted[type][i] + |
3196 | atomic_long_read(v: &lrugen->refaulted[hist][type][i]); |
3197 | pos->total += lrugen->avg_total[type][i] + |
3198 | lrugen->protected[hist][type][i] + |
3199 | atomic_long_read(v: &lrugen->evicted[hist][type][i]); |
3200 | } |
3201 | } |
3202 | |
3203 | static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) |
3204 | { |
3205 | int hist, tier; |
3206 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3207 | bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; |
3208 | unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; |
3209 | |
3210 | lockdep_assert_held(&lruvec->lru_lock); |
3211 | |
3212 | if (!carryover && !clear) |
3213 | return; |
3214 | |
3215 | hist = lru_hist_from_seq(seq); |
3216 | |
3217 | for (tier = 0; tier < MAX_NR_TIERS; tier++) { |
3218 | if (carryover) { |
3219 | unsigned long sum; |
3220 | |
3221 | sum = lrugen->avg_refaulted[type][tier] + |
3222 | atomic_long_read(v: &lrugen->refaulted[hist][type][tier]); |
3223 | WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); |
3224 | |
3225 | sum = lrugen->avg_total[type][tier] + |
3226 | lrugen->protected[hist][type][tier] + |
3227 | atomic_long_read(v: &lrugen->evicted[hist][type][tier]); |
3228 | WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); |
3229 | } |
3230 | |
3231 | if (clear) { |
3232 | atomic_long_set(v: &lrugen->refaulted[hist][type][tier], i: 0); |
3233 | atomic_long_set(v: &lrugen->evicted[hist][type][tier], i: 0); |
3234 | WRITE_ONCE(lrugen->protected[hist][type][tier], 0); |
3235 | } |
3236 | } |
3237 | } |
3238 | |
3239 | static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) |
3240 | { |
3241 | /* |
3242 | * Return true if the PV has a limited number of refaults or a lower |
3243 | * refaulted/total than the SP. |
3244 | */ |
3245 | return pv->refaulted < MIN_LRU_BATCH || |
3246 | pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= |
3247 | (sp->refaulted + 1) * pv->total * pv->gain; |
3248 | } |
3249 | |
3250 | /****************************************************************************** |
3251 | * the aging |
3252 | ******************************************************************************/ |
3253 | |
3254 | /* promote pages accessed through page tables */ |
3255 | static int folio_update_gen(struct folio *folio, int gen) |
3256 | { |
3257 | unsigned long new_flags, old_flags = READ_ONCE(folio->flags); |
3258 | |
3259 | VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); |
3260 | |
3261 | /* see the comment on LRU_REFS_FLAGS */ |
3262 | if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { |
3263 | set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); |
3264 | return -1; |
3265 | } |
3266 | |
3267 | do { |
3268 | /* lru_gen_del_folio() has isolated this page? */ |
3269 | if (!(old_flags & LRU_GEN_MASK)) |
3270 | return -1; |
3271 | |
3272 | new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); |
3273 | new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); |
3274 | } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); |
3275 | |
3276 | return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; |
3277 | } |
3278 | |
3279 | /* protect pages accessed multiple times through file descriptors */ |
3280 | static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) |
3281 | { |
3282 | int type = folio_is_file_lru(folio); |
3283 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3284 | int new_gen, old_gen = lru_gen_from_seq(seq: lrugen->min_seq[type]); |
3285 | unsigned long new_flags, old_flags = READ_ONCE(folio->flags); |
3286 | |
3287 | VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); |
3288 | |
3289 | do { |
3290 | new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; |
3291 | /* folio_update_gen() has promoted this page? */ |
3292 | if (new_gen >= 0 && new_gen != old_gen) |
3293 | return new_gen; |
3294 | |
3295 | new_gen = (old_gen + 1) % MAX_NR_GENS; |
3296 | |
3297 | new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); |
3298 | new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; |
3299 | /* for folio_end_writeback() */ |
3300 | if (reclaiming) |
3301 | new_flags |= BIT(PG_reclaim); |
3302 | } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); |
3303 | |
3304 | lru_gen_update_size(lruvec, folio, old_gen, new_gen); |
3305 | |
3306 | return new_gen; |
3307 | } |
3308 | |
3309 | static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, |
3310 | int old_gen, int new_gen) |
3311 | { |
3312 | int type = folio_is_file_lru(folio); |
3313 | int zone = folio_zonenum(folio); |
3314 | int delta = folio_nr_pages(folio); |
3315 | |
3316 | VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); |
3317 | VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); |
3318 | |
3319 | walk->batched++; |
3320 | |
3321 | walk->nr_pages[old_gen][type][zone] -= delta; |
3322 | walk->nr_pages[new_gen][type][zone] += delta; |
3323 | } |
3324 | |
3325 | static void reset_batch_size(struct lru_gen_mm_walk *walk) |
3326 | { |
3327 | int gen, type, zone; |
3328 | struct lruvec *lruvec = walk->lruvec; |
3329 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3330 | |
3331 | walk->batched = 0; |
3332 | |
3333 | for_each_gen_type_zone(gen, type, zone) { |
3334 | enum lru_list lru = type * LRU_INACTIVE_FILE; |
3335 | int delta = walk->nr_pages[gen][type][zone]; |
3336 | |
3337 | if (!delta) |
3338 | continue; |
3339 | |
3340 | walk->nr_pages[gen][type][zone] = 0; |
3341 | WRITE_ONCE(lrugen->nr_pages[gen][type][zone], |
3342 | lrugen->nr_pages[gen][type][zone] + delta); |
3343 | |
3344 | if (lru_gen_is_active(lruvec, gen)) |
3345 | lru += LRU_ACTIVE; |
3346 | __update_lru_size(lruvec, lru, zone, delta); |
3347 | } |
3348 | } |
3349 | |
3350 | static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) |
3351 | { |
3352 | struct address_space *mapping; |
3353 | struct vm_area_struct *vma = args->vma; |
3354 | struct lru_gen_mm_walk *walk = args->private; |
3355 | |
3356 | if (!vma_is_accessible(vma)) |
3357 | return true; |
3358 | |
3359 | if (is_vm_hugetlb_page(vma)) |
3360 | return true; |
3361 | |
3362 | if (!vma_has_recency(vma)) |
3363 | return true; |
3364 | |
3365 | if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) |
3366 | return true; |
3367 | |
3368 | if (vma == get_gate_vma(mm: vma->vm_mm)) |
3369 | return true; |
3370 | |
3371 | if (vma_is_anonymous(vma)) |
3372 | return !walk->swappiness; |
3373 | |
3374 | if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) |
3375 | return true; |
3376 | |
3377 | mapping = vma->vm_file->f_mapping; |
3378 | if (mapping_unevictable(mapping)) |
3379 | return true; |
3380 | |
3381 | if (shmem_mapping(mapping)) |
3382 | return !walk->swappiness; |
3383 | |
3384 | if (walk->swappiness > MAX_SWAPPINESS) |
3385 | return true; |
3386 | |
3387 | /* to exclude special mappings like dax, etc. */ |
3388 | return !mapping->a_ops->read_folio; |
3389 | } |
3390 | |
3391 | /* |
3392 | * Some userspace memory allocators map many single-page VMAs. Instead of |
3393 | * returning back to the PGD table for each of such VMAs, finish an entire PMD |
3394 | * table to reduce zigzags and improve cache performance. |
3395 | */ |
3396 | static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, |
3397 | unsigned long *vm_start, unsigned long *vm_end) |
3398 | { |
3399 | unsigned long start = round_up(*vm_end, size); |
3400 | unsigned long end = (start | ~mask) + 1; |
3401 | VMA_ITERATOR(vmi, args->mm, start); |
3402 | |
3403 | VM_WARN_ON_ONCE(mask & size); |
3404 | VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); |
3405 | |
3406 | for_each_vma(vmi, args->vma) { |
3407 | if (end && end <= args->vma->vm_start) |
3408 | return false; |
3409 | |
3410 | if (should_skip_vma(start: args->vma->vm_start, end: args->vma->vm_end, args)) |
3411 | continue; |
3412 | |
3413 | *vm_start = max(start, args->vma->vm_start); |
3414 | *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; |
3415 | |
3416 | return true; |
3417 | } |
3418 | |
3419 | return false; |
3420 | } |
3421 | |
3422 | static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, |
3423 | struct pglist_data *pgdat) |
3424 | { |
3425 | unsigned long pfn = pte_pfn(pte); |
3426 | |
3427 | VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); |
3428 | |
3429 | if (!pte_present(a: pte) || is_zero_pfn(pfn)) |
3430 | return -1; |
3431 | |
3432 | if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) |
3433 | return -1; |
3434 | |
3435 | if (!pte_young(pte) && !mm_has_notifiers(mm: vma->vm_mm)) |
3436 | return -1; |
3437 | |
3438 | if (WARN_ON_ONCE(!pfn_valid(pfn))) |
3439 | return -1; |
3440 | |
3441 | if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) |
3442 | return -1; |
3443 | |
3444 | return pfn; |
3445 | } |
3446 | |
3447 | static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, |
3448 | struct pglist_data *pgdat) |
3449 | { |
3450 | unsigned long pfn = pmd_pfn(pmd); |
3451 | |
3452 | VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); |
3453 | |
3454 | if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) |
3455 | return -1; |
3456 | |
3457 | if (WARN_ON_ONCE(pmd_devmap(pmd))) |
3458 | return -1; |
3459 | |
3460 | if (!pmd_young(pmd) && !mm_has_notifiers(mm: vma->vm_mm)) |
3461 | return -1; |
3462 | |
3463 | if (WARN_ON_ONCE(!pfn_valid(pfn))) |
3464 | return -1; |
3465 | |
3466 | if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) |
3467 | return -1; |
3468 | |
3469 | return pfn; |
3470 | } |
3471 | |
3472 | static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, |
3473 | struct pglist_data *pgdat) |
3474 | { |
3475 | struct folio *folio = pfn_folio(pfn); |
3476 | |
3477 | if (folio_lru_gen(folio) < 0) |
3478 | return NULL; |
3479 | |
3480 | if (folio_nid(folio) != pgdat->node_id) |
3481 | return NULL; |
3482 | |
3483 | if (folio_memcg(folio) != memcg) |
3484 | return NULL; |
3485 | |
3486 | return folio; |
3487 | } |
3488 | |
3489 | static bool suitable_to_scan(int total, int young) |
3490 | { |
3491 | int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); |
3492 | |
3493 | /* suitable if the average number of young PTEs per cacheline is >=1 */ |
3494 | return young * n >= total; |
3495 | } |
3496 | |
3497 | static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, |
3498 | int new_gen, bool dirty) |
3499 | { |
3500 | int old_gen; |
3501 | |
3502 | if (!folio) |
3503 | return; |
3504 | |
3505 | if (dirty && !folio_test_dirty(folio) && |
3506 | !(folio_test_anon(folio) && folio_test_swapbacked(folio) && |
3507 | !folio_test_swapcache(folio))) |
3508 | folio_mark_dirty(folio); |
3509 | |
3510 | if (walk) { |
3511 | old_gen = folio_update_gen(folio, gen: new_gen); |
3512 | if (old_gen >= 0 && old_gen != new_gen) |
3513 | update_batch_size(walk, folio, old_gen, new_gen); |
3514 | } else if (lru_gen_set_refs(folio)) { |
3515 | old_gen = folio_lru_gen(folio); |
3516 | if (old_gen >= 0 && old_gen != new_gen) |
3517 | folio_activate(folio); |
3518 | } |
3519 | } |
3520 | |
3521 | static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, |
3522 | struct mm_walk *args) |
3523 | { |
3524 | int i; |
3525 | bool dirty; |
3526 | pte_t *pte; |
3527 | spinlock_t *ptl; |
3528 | unsigned long addr; |
3529 | int total = 0; |
3530 | int young = 0; |
3531 | struct folio *last = NULL; |
3532 | struct lru_gen_mm_walk *walk = args->private; |
3533 | struct mem_cgroup *memcg = lruvec_memcg(lruvec: walk->lruvec); |
3534 | struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec); |
3535 | DEFINE_MAX_SEQ(walk->lruvec); |
3536 | int gen = lru_gen_from_seq(seq: max_seq); |
3537 | pmd_t pmdval; |
3538 | |
3539 | pte = pte_offset_map_rw_nolock(mm: args->mm, pmd, addr: start & PMD_MASK, pmdvalp: &pmdval, ptlp: &ptl); |
3540 | if (!pte) |
3541 | return false; |
3542 | |
3543 | if (!spin_trylock(lock: ptl)) { |
3544 | pte_unmap(pte); |
3545 | return true; |
3546 | } |
3547 | |
3548 | if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { |
3549 | pte_unmap_unlock(pte, ptl); |
3550 | return false; |
3551 | } |
3552 | |
3553 | arch_enter_lazy_mmu_mode(); |
3554 | restart: |
3555 | for (i = pte_index(address: start), addr = start; addr != end; i++, addr += PAGE_SIZE) { |
3556 | unsigned long pfn; |
3557 | struct folio *folio; |
3558 | pte_t ptent = ptep_get(ptep: pte + i); |
3559 | |
3560 | total++; |
3561 | walk->mm_stats[MM_LEAF_TOTAL]++; |
3562 | |
3563 | pfn = get_pte_pfn(pte: ptent, vma: args->vma, addr, pgdat); |
3564 | if (pfn == -1) |
3565 | continue; |
3566 | |
3567 | folio = get_pfn_folio(pfn, memcg, pgdat); |
3568 | if (!folio) |
3569 | continue; |
3570 | |
3571 | if (!ptep_clear_young_notify(args->vma, addr, pte + i)) |
3572 | continue; |
3573 | |
3574 | if (last != folio) { |
3575 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
3576 | |
3577 | last = folio; |
3578 | dirty = false; |
3579 | } |
3580 | |
3581 | if (pte_dirty(pte: ptent)) |
3582 | dirty = true; |
3583 | |
3584 | young++; |
3585 | walk->mm_stats[MM_LEAF_YOUNG]++; |
3586 | } |
3587 | |
3588 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
3589 | last = NULL; |
3590 | |
3591 | if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, vm_start: &start, vm_end: &end)) |
3592 | goto restart; |
3593 | |
3594 | arch_leave_lazy_mmu_mode(); |
3595 | pte_unmap_unlock(pte, ptl); |
3596 | |
3597 | return suitable_to_scan(total, young); |
3598 | } |
3599 | |
3600 | static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, |
3601 | struct mm_walk *args, unsigned long *bitmap, unsigned long *first) |
3602 | { |
3603 | int i; |
3604 | bool dirty; |
3605 | pmd_t *pmd; |
3606 | spinlock_t *ptl; |
3607 | struct folio *last = NULL; |
3608 | struct lru_gen_mm_walk *walk = args->private; |
3609 | struct mem_cgroup *memcg = lruvec_memcg(lruvec: walk->lruvec); |
3610 | struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec); |
3611 | DEFINE_MAX_SEQ(walk->lruvec); |
3612 | int gen = lru_gen_from_seq(seq: max_seq); |
3613 | |
3614 | VM_WARN_ON_ONCE(pud_leaf(*pud)); |
3615 | |
3616 | /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ |
3617 | if (*first == -1) { |
3618 | *first = addr; |
3619 | bitmap_zero(dst: bitmap, MIN_LRU_BATCH); |
3620 | return; |
3621 | } |
3622 | |
3623 | i = addr == -1 ? 0 : pmd_index(address: addr) - pmd_index(address: *first); |
3624 | if (i && i <= MIN_LRU_BATCH) { |
3625 | __set_bit(i - 1, bitmap); |
3626 | return; |
3627 | } |
3628 | |
3629 | pmd = pmd_offset(pud, address: *first); |
3630 | |
3631 | ptl = pmd_lockptr(mm: args->mm, pmd); |
3632 | if (!spin_trylock(lock: ptl)) |
3633 | goto done; |
3634 | |
3635 | arch_enter_lazy_mmu_mode(); |
3636 | |
3637 | do { |
3638 | unsigned long pfn; |
3639 | struct folio *folio; |
3640 | |
3641 | /* don't round down the first address */ |
3642 | addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; |
3643 | |
3644 | if (!pmd_present(pmd: pmd[i])) |
3645 | goto next; |
3646 | |
3647 | if (!pmd_trans_huge(pmd: pmd[i])) { |
3648 | if (!walk->force_scan && should_clear_pmd_young() && |
3649 | !mm_has_notifiers(mm: args->mm)) |
3650 | pmdp_test_and_clear_young(vma, addr, pmdp: pmd + i); |
3651 | goto next; |
3652 | } |
3653 | |
3654 | pfn = get_pmd_pfn(pmd: pmd[i], vma, addr, pgdat); |
3655 | if (pfn == -1) |
3656 | goto next; |
3657 | |
3658 | folio = get_pfn_folio(pfn, memcg, pgdat); |
3659 | if (!folio) |
3660 | goto next; |
3661 | |
3662 | if (!pmdp_clear_young_notify(vma, addr, pmd + i)) |
3663 | goto next; |
3664 | |
3665 | if (last != folio) { |
3666 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
3667 | |
3668 | last = folio; |
3669 | dirty = false; |
3670 | } |
3671 | |
3672 | if (pmd_dirty(pmd: pmd[i])) |
3673 | dirty = true; |
3674 | |
3675 | walk->mm_stats[MM_LEAF_YOUNG]++; |
3676 | next: |
3677 | i = i > MIN_LRU_BATCH ? 0 : find_next_bit(addr: bitmap, MIN_LRU_BATCH, offset: i) + 1; |
3678 | } while (i <= MIN_LRU_BATCH); |
3679 | |
3680 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
3681 | |
3682 | arch_leave_lazy_mmu_mode(); |
3683 | spin_unlock(lock: ptl); |
3684 | done: |
3685 | *first = -1; |
3686 | } |
3687 | |
3688 | static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, |
3689 | struct mm_walk *args) |
3690 | { |
3691 | int i; |
3692 | pmd_t *pmd; |
3693 | unsigned long next; |
3694 | unsigned long addr; |
3695 | struct vm_area_struct *vma; |
3696 | DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); |
3697 | unsigned long first = -1; |
3698 | struct lru_gen_mm_walk *walk = args->private; |
3699 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec: walk->lruvec); |
3700 | |
3701 | VM_WARN_ON_ONCE(pud_leaf(*pud)); |
3702 | |
3703 | /* |
3704 | * Finish an entire PMD in two passes: the first only reaches to PTE |
3705 | * tables to avoid taking the PMD lock; the second, if necessary, takes |
3706 | * the PMD lock to clear the accessed bit in PMD entries. |
3707 | */ |
3708 | pmd = pmd_offset(pud, address: start & PUD_MASK); |
3709 | restart: |
3710 | /* walk_pte_range() may call get_next_vma() */ |
3711 | vma = args->vma; |
3712 | for (i = pmd_index(address: start), addr = start; addr != end; i++, addr = next) { |
3713 | pmd_t val = pmdp_get_lockless(pmdp: pmd + i); |
3714 | |
3715 | next = pmd_addr_end(addr, end); |
3716 | |
3717 | if (!pmd_present(pmd: val) || is_huge_zero_pmd(pmd: val)) { |
3718 | walk->mm_stats[MM_LEAF_TOTAL]++; |
3719 | continue; |
3720 | } |
3721 | |
3722 | if (pmd_trans_huge(pmd: val)) { |
3723 | struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec); |
3724 | unsigned long pfn = get_pmd_pfn(pmd: val, vma, addr, pgdat); |
3725 | |
3726 | walk->mm_stats[MM_LEAF_TOTAL]++; |
3727 | |
3728 | if (pfn != -1) |
3729 | walk_pmd_range_locked(pud, addr, vma, args, bitmap, first: &first); |
3730 | continue; |
3731 | } |
3732 | |
3733 | if (!walk->force_scan && should_clear_pmd_young() && |
3734 | !mm_has_notifiers(mm: args->mm)) { |
3735 | if (!pmd_young(pmd: val)) |
3736 | continue; |
3737 | |
3738 | walk_pmd_range_locked(pud, addr, vma, args, bitmap, first: &first); |
3739 | } |
3740 | |
3741 | if (!walk->force_scan && !test_bloom_filter(mm_state, seq: walk->seq, item: pmd + i)) |
3742 | continue; |
3743 | |
3744 | walk->mm_stats[MM_NONLEAF_FOUND]++; |
3745 | |
3746 | if (!walk_pte_range(pmd: &val, start: addr, end: next, args)) |
3747 | continue; |
3748 | |
3749 | walk->mm_stats[MM_NONLEAF_ADDED]++; |
3750 | |
3751 | /* carry over to the next generation */ |
3752 | update_bloom_filter(mm_state, seq: walk->seq + 1, item: pmd + i); |
3753 | } |
3754 | |
3755 | walk_pmd_range_locked(pud, addr: -1, vma, args, bitmap, first: &first); |
3756 | |
3757 | if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, vm_start: &start, vm_end: &end)) |
3758 | goto restart; |
3759 | } |
3760 | |
3761 | static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, |
3762 | struct mm_walk *args) |
3763 | { |
3764 | int i; |
3765 | pud_t *pud; |
3766 | unsigned long addr; |
3767 | unsigned long next; |
3768 | struct lru_gen_mm_walk *walk = args->private; |
3769 | |
3770 | VM_WARN_ON_ONCE(p4d_leaf(*p4d)); |
3771 | |
3772 | pud = pud_offset(p4d, address: start & P4D_MASK); |
3773 | restart: |
3774 | for (i = pud_index(address: start), addr = start; addr != end; i++, addr = next) { |
3775 | pud_t val = READ_ONCE(pud[i]); |
3776 | |
3777 | next = pud_addr_end(addr, end); |
3778 | |
3779 | if (!pud_present(pud: val) || WARN_ON_ONCE(pud_leaf(val))) |
3780 | continue; |
3781 | |
3782 | walk_pmd_range(pud: &val, start: addr, end: next, args); |
3783 | |
3784 | if (need_resched() || walk->batched >= MAX_LRU_BATCH) { |
3785 | end = (addr | ~PUD_MASK) + 1; |
3786 | goto done; |
3787 | } |
3788 | } |
3789 | |
3790 | if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, vm_start: &start, vm_end: &end)) |
3791 | goto restart; |
3792 | |
3793 | end = round_up(end, P4D_SIZE); |
3794 | done: |
3795 | if (!end || !args->vma) |
3796 | return 1; |
3797 | |
3798 | walk->next_addr = max(end, args->vma->vm_start); |
3799 | |
3800 | return -EAGAIN; |
3801 | } |
3802 | |
3803 | static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) |
3804 | { |
3805 | static const struct mm_walk_ops mm_walk_ops = { |
3806 | .test_walk = should_skip_vma, |
3807 | .p4d_entry = walk_pud_range, |
3808 | .walk_lock = PGWALK_RDLOCK, |
3809 | }; |
3810 | int err; |
3811 | struct lruvec *lruvec = walk->lruvec; |
3812 | |
3813 | walk->next_addr = FIRST_USER_ADDRESS; |
3814 | |
3815 | do { |
3816 | DEFINE_MAX_SEQ(lruvec); |
3817 | |
3818 | err = -EBUSY; |
3819 | |
3820 | /* another thread might have called inc_max_seq() */ |
3821 | if (walk->seq != max_seq) |
3822 | break; |
3823 | |
3824 | /* the caller might be holding the lock for write */ |
3825 | if (mmap_read_trylock(mm)) { |
3826 | err = walk_page_range(mm, start: walk->next_addr, ULONG_MAX, ops: &mm_walk_ops, private: walk); |
3827 | |
3828 | mmap_read_unlock(mm); |
3829 | } |
3830 | |
3831 | if (walk->batched) { |
3832 | spin_lock_irq(lock: &lruvec->lru_lock); |
3833 | reset_batch_size(walk); |
3834 | spin_unlock_irq(lock: &lruvec->lru_lock); |
3835 | } |
3836 | |
3837 | cond_resched(); |
3838 | } while (err == -EAGAIN); |
3839 | } |
3840 | |
3841 | static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) |
3842 | { |
3843 | struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; |
3844 | |
3845 | if (pgdat && current_is_kswapd()) { |
3846 | VM_WARN_ON_ONCE(walk); |
3847 | |
3848 | walk = &pgdat->mm_walk; |
3849 | } else if (!walk && force_alloc) { |
3850 | VM_WARN_ON_ONCE(current_is_kswapd()); |
3851 | |
3852 | walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); |
3853 | } |
3854 | |
3855 | current->reclaim_state->mm_walk = walk; |
3856 | |
3857 | return walk; |
3858 | } |
3859 | |
3860 | static void clear_mm_walk(void) |
3861 | { |
3862 | struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; |
3863 | |
3864 | VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); |
3865 | VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); |
3866 | |
3867 | current->reclaim_state->mm_walk = NULL; |
3868 | |
3869 | if (!current_is_kswapd()) |
3870 | kfree(objp: walk); |
3871 | } |
3872 | |
3873 | static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) |
3874 | { |
3875 | int zone; |
3876 | int remaining = MAX_LRU_BATCH; |
3877 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3878 | int hist = lru_hist_from_seq(seq: lrugen->min_seq[type]); |
3879 | int new_gen, old_gen = lru_gen_from_seq(seq: lrugen->min_seq[type]); |
3880 | |
3881 | /* For file type, skip the check if swappiness is anon only */ |
3882 | if (type && (swappiness == SWAPPINESS_ANON_ONLY)) |
3883 | goto done; |
3884 | |
3885 | /* For anon type, skip the check if swappiness is zero (file only) */ |
3886 | if (!type && !swappiness) |
3887 | goto done; |
3888 | |
3889 | /* prevent cold/hot inversion if the type is evictable */ |
3890 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
3891 | struct list_head *head = &lrugen->folios[old_gen][type][zone]; |
3892 | |
3893 | while (!list_empty(head)) { |
3894 | struct folio *folio = lru_to_folio(head); |
3895 | int refs = folio_lru_refs(folio); |
3896 | bool workingset = folio_test_workingset(folio); |
3897 | |
3898 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); |
3899 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); |
3900 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); |
3901 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); |
3902 | |
3903 | new_gen = folio_inc_gen(lruvec, folio, false); |
3904 | list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); |
3905 | |
3906 | /* don't count the workingset being lazily promoted */ |
3907 | if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { |
3908 | int tier = lru_tier_from_refs(refs, workingset); |
3909 | int delta = folio_nr_pages(folio); |
3910 | |
3911 | WRITE_ONCE(lrugen->protected[hist][type][tier], |
3912 | lrugen->protected[hist][type][tier] + delta); |
3913 | } |
3914 | |
3915 | if (!--remaining) |
3916 | return false; |
3917 | } |
3918 | } |
3919 | done: |
3920 | reset_ctrl_pos(lruvec, type, carryover: true); |
3921 | WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); |
3922 | |
3923 | return true; |
3924 | } |
3925 | |
3926 | static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) |
3927 | { |
3928 | int gen, type, zone; |
3929 | bool success = false; |
3930 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3931 | DEFINE_MIN_SEQ(lruvec); |
3932 | |
3933 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); |
3934 | |
3935 | /* find the oldest populated generation */ |
3936 | for_each_evictable_type(type, swappiness) { |
3937 | while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { |
3938 | gen = lru_gen_from_seq(seq: min_seq[type]); |
3939 | |
3940 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
3941 | if (!list_empty(&lrugen->folios[gen][type][zone])) |
3942 | goto next; |
3943 | } |
3944 | |
3945 | min_seq[type]++; |
3946 | } |
3947 | next: |
3948 | ; |
3949 | } |
3950 | |
3951 | /* see the comment on lru_gen_folio */ |
3952 | if (swappiness && swappiness <= MAX_SWAPPINESS) { |
3953 | unsigned long seq = lrugen->max_seq - MIN_NR_GENS; |
3954 | |
3955 | if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) |
3956 | min_seq[LRU_GEN_ANON] = seq; |
3957 | else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) |
3958 | min_seq[LRU_GEN_FILE] = seq; |
3959 | } |
3960 | |
3961 | for_each_evictable_type(type, swappiness) { |
3962 | if (min_seq[type] <= lrugen->min_seq[type]) |
3963 | continue; |
3964 | |
3965 | reset_ctrl_pos(lruvec, type, carryover: true); |
3966 | WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); |
3967 | success = true; |
3968 | } |
3969 | |
3970 | return success; |
3971 | } |
3972 | |
3973 | static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) |
3974 | { |
3975 | bool success; |
3976 | int prev, next; |
3977 | int type, zone; |
3978 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
3979 | restart: |
3980 | if (seq < READ_ONCE(lrugen->max_seq)) |
3981 | return false; |
3982 | |
3983 | spin_lock_irq(lock: &lruvec->lru_lock); |
3984 | |
3985 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); |
3986 | |
3987 | success = seq == lrugen->max_seq; |
3988 | if (!success) |
3989 | goto unlock; |
3990 | |
3991 | for (type = 0; type < ANON_AND_FILE; type++) { |
3992 | if (get_nr_gens(lruvec, type) != MAX_NR_GENS) |
3993 | continue; |
3994 | |
3995 | if (inc_min_seq(lruvec, type, swappiness)) |
3996 | continue; |
3997 | |
3998 | spin_unlock_irq(lock: &lruvec->lru_lock); |
3999 | cond_resched(); |
4000 | goto restart; |
4001 | } |
4002 | |
4003 | /* |
4004 | * Update the active/inactive LRU sizes for compatibility. Both sides of |
4005 | * the current max_seq need to be covered, since max_seq+1 can overlap |
4006 | * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do |
4007 | * overlap, cold/hot inversion happens. |
4008 | */ |
4009 | prev = lru_gen_from_seq(seq: lrugen->max_seq - 1); |
4010 | next = lru_gen_from_seq(seq: lrugen->max_seq + 1); |
4011 | |
4012 | for (type = 0; type < ANON_AND_FILE; type++) { |
4013 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4014 | enum lru_list lru = type * LRU_INACTIVE_FILE; |
4015 | long delta = lrugen->nr_pages[prev][type][zone] - |
4016 | lrugen->nr_pages[next][type][zone]; |
4017 | |
4018 | if (!delta) |
4019 | continue; |
4020 | |
4021 | __update_lru_size(lruvec, lru, zone, delta); |
4022 | __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); |
4023 | } |
4024 | } |
4025 | |
4026 | for (type = 0; type < ANON_AND_FILE; type++) |
4027 | reset_ctrl_pos(lruvec, type, carryover: false); |
4028 | |
4029 | WRITE_ONCE(lrugen->timestamps[next], jiffies); |
4030 | /* make sure preceding modifications appear */ |
4031 | smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); |
4032 | unlock: |
4033 | spin_unlock_irq(lock: &lruvec->lru_lock); |
4034 | |
4035 | return success; |
4036 | } |
4037 | |
4038 | static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, |
4039 | int swappiness, bool force_scan) |
4040 | { |
4041 | bool success; |
4042 | struct lru_gen_mm_walk *walk; |
4043 | struct mm_struct *mm = NULL; |
4044 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4045 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
4046 | |
4047 | VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); |
4048 | |
4049 | if (!mm_state) |
4050 | return inc_max_seq(lruvec, seq, swappiness); |
4051 | |
4052 | /* see the comment in iterate_mm_list() */ |
4053 | if (seq <= READ_ONCE(mm_state->seq)) |
4054 | return false; |
4055 | |
4056 | /* |
4057 | * If the hardware doesn't automatically set the accessed bit, fallback |
4058 | * to lru_gen_look_around(), which only clears the accessed bit in a |
4059 | * handful of PTEs. Spreading the work out over a period of time usually |
4060 | * is less efficient, but it avoids bursty page faults. |
4061 | */ |
4062 | if (!should_walk_mmu()) { |
4063 | success = iterate_mm_list_nowalk(lruvec, seq); |
4064 | goto done; |
4065 | } |
4066 | |
4067 | walk = set_mm_walk(NULL, force_alloc: true); |
4068 | if (!walk) { |
4069 | success = iterate_mm_list_nowalk(lruvec, seq); |
4070 | goto done; |
4071 | } |
4072 | |
4073 | walk->lruvec = lruvec; |
4074 | walk->seq = seq; |
4075 | walk->swappiness = swappiness; |
4076 | walk->force_scan = force_scan; |
4077 | |
4078 | do { |
4079 | success = iterate_mm_list(walk, iter: &mm); |
4080 | if (mm) |
4081 | walk_mm(mm, walk); |
4082 | } while (mm); |
4083 | done: |
4084 | if (success) { |
4085 | success = inc_max_seq(lruvec, seq, swappiness); |
4086 | WARN_ON_ONCE(!success); |
4087 | } |
4088 | |
4089 | return success; |
4090 | } |
4091 | |
4092 | /****************************************************************************** |
4093 | * working set protection |
4094 | ******************************************************************************/ |
4095 | |
4096 | static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) |
4097 | { |
4098 | int priority; |
4099 | unsigned long reclaimable; |
4100 | |
4101 | if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) |
4102 | return; |
4103 | /* |
4104 | * Determine the initial priority based on |
4105 | * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, |
4106 | * where reclaimed_to_scanned_ratio = inactive / total. |
4107 | */ |
4108 | reclaimable = node_page_state(pgdat, item: NR_INACTIVE_FILE); |
4109 | if (can_reclaim_anon_pages(NULL, nid: pgdat->node_id, sc)) |
4110 | reclaimable += node_page_state(pgdat, item: NR_INACTIVE_ANON); |
4111 | |
4112 | /* round down reclaimable and round up sc->nr_to_reclaim */ |
4113 | priority = fls_long(l: reclaimable) - 1 - fls_long(l: sc->nr_to_reclaim - 1); |
4114 | |
4115 | /* |
4116 | * The estimation is based on LRU pages only, so cap it to prevent |
4117 | * overshoots of shrinker objects by large margins. |
4118 | */ |
4119 | sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); |
4120 | } |
4121 | |
4122 | static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) |
4123 | { |
4124 | int gen, type, zone; |
4125 | unsigned long total = 0; |
4126 | int swappiness = get_swappiness(lruvec, sc); |
4127 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4128 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4129 | DEFINE_MAX_SEQ(lruvec); |
4130 | DEFINE_MIN_SEQ(lruvec); |
4131 | |
4132 | for_each_evictable_type(type, swappiness) { |
4133 | unsigned long seq; |
4134 | |
4135 | for (seq = min_seq[type]; seq <= max_seq; seq++) { |
4136 | gen = lru_gen_from_seq(seq); |
4137 | |
4138 | for (zone = 0; zone < MAX_NR_ZONES; zone++) |
4139 | total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); |
4140 | } |
4141 | } |
4142 | |
4143 | /* whether the size is big enough to be helpful */ |
4144 | return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; |
4145 | } |
4146 | |
4147 | static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, |
4148 | unsigned long min_ttl) |
4149 | { |
4150 | int gen; |
4151 | unsigned long birth; |
4152 | int swappiness = get_swappiness(lruvec, sc); |
4153 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4154 | DEFINE_MIN_SEQ(lruvec); |
4155 | |
4156 | if (mem_cgroup_below_min(NULL, memcg)) |
4157 | return false; |
4158 | |
4159 | if (!lruvec_is_sizable(lruvec, sc)) |
4160 | return false; |
4161 | |
4162 | gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); |
4163 | birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); |
4164 | |
4165 | return time_is_before_jiffies(birth + min_ttl); |
4166 | } |
4167 | |
4168 | /* to protect the working set of the last N jiffies */ |
4169 | static unsigned long lru_gen_min_ttl __read_mostly; |
4170 | |
4171 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) |
4172 | { |
4173 | struct mem_cgroup *memcg; |
4174 | unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); |
4175 | bool reclaimable = !min_ttl; |
4176 | |
4177 | VM_WARN_ON_ONCE(!current_is_kswapd()); |
4178 | |
4179 | set_initial_priority(pgdat, sc); |
4180 | |
4181 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
4182 | do { |
4183 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
4184 | |
4185 | mem_cgroup_calculate_protection(NULL, memcg); |
4186 | |
4187 | if (!reclaimable) |
4188 | reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); |
4189 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); |
4190 | |
4191 | /* |
4192 | * The main goal is to OOM kill if every generation from all memcgs is |
4193 | * younger than min_ttl. However, another possibility is all memcgs are |
4194 | * either too small or below min. |
4195 | */ |
4196 | if (!reclaimable && mutex_trylock(&oom_lock)) { |
4197 | struct oom_control oc = { |
4198 | .gfp_mask = sc->gfp_mask, |
4199 | }; |
4200 | |
4201 | out_of_memory(oc: &oc); |
4202 | |
4203 | mutex_unlock(lock: &oom_lock); |
4204 | } |
4205 | } |
4206 | |
4207 | /****************************************************************************** |
4208 | * rmap/PT walk feedback |
4209 | ******************************************************************************/ |
4210 | |
4211 | /* |
4212 | * This function exploits spatial locality when shrink_folio_list() walks the |
4213 | * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If |
4214 | * the scan was done cacheline efficiently, it adds the PMD entry pointing to |
4215 | * the PTE table to the Bloom filter. This forms a feedback loop between the |
4216 | * eviction and the aging. |
4217 | */ |
4218 | bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) |
4219 | { |
4220 | int i; |
4221 | bool dirty; |
4222 | unsigned long start; |
4223 | unsigned long end; |
4224 | struct lru_gen_mm_walk *walk; |
4225 | struct folio *last = NULL; |
4226 | int young = 1; |
4227 | pte_t *pte = pvmw->pte; |
4228 | unsigned long addr = pvmw->address; |
4229 | struct vm_area_struct *vma = pvmw->vma; |
4230 | struct folio *folio = pfn_folio(pfn: pvmw->pfn); |
4231 | struct mem_cgroup *memcg = folio_memcg(folio); |
4232 | struct pglist_data *pgdat = folio_pgdat(folio); |
4233 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
4234 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
4235 | DEFINE_MAX_SEQ(lruvec); |
4236 | int gen = lru_gen_from_seq(seq: max_seq); |
4237 | |
4238 | lockdep_assert_held(pvmw->ptl); |
4239 | VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); |
4240 | |
4241 | if (!ptep_clear_young_notify(vma, addr, pte)) |
4242 | return false; |
4243 | |
4244 | if (spin_is_contended(lock: pvmw->ptl)) |
4245 | return true; |
4246 | |
4247 | /* exclude special VMAs containing anon pages from COW */ |
4248 | if (vma->vm_flags & VM_SPECIAL) |
4249 | return true; |
4250 | |
4251 | /* avoid taking the LRU lock under the PTL when possible */ |
4252 | walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; |
4253 | |
4254 | start = max(addr & PMD_MASK, vma->vm_start); |
4255 | end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; |
4256 | |
4257 | if (end - start == PAGE_SIZE) |
4258 | return true; |
4259 | |
4260 | if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { |
4261 | if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) |
4262 | end = start + MIN_LRU_BATCH * PAGE_SIZE; |
4263 | else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) |
4264 | start = end - MIN_LRU_BATCH * PAGE_SIZE; |
4265 | else { |
4266 | start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; |
4267 | end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; |
4268 | } |
4269 | } |
4270 | |
4271 | arch_enter_lazy_mmu_mode(); |
4272 | |
4273 | pte -= (addr - start) / PAGE_SIZE; |
4274 | |
4275 | for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { |
4276 | unsigned long pfn; |
4277 | pte_t ptent = ptep_get(ptep: pte + i); |
4278 | |
4279 | pfn = get_pte_pfn(pte: ptent, vma, addr, pgdat); |
4280 | if (pfn == -1) |
4281 | continue; |
4282 | |
4283 | folio = get_pfn_folio(pfn, memcg, pgdat); |
4284 | if (!folio) |
4285 | continue; |
4286 | |
4287 | if (!ptep_clear_young_notify(vma, addr, pte + i)) |
4288 | continue; |
4289 | |
4290 | if (last != folio) { |
4291 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
4292 | |
4293 | last = folio; |
4294 | dirty = false; |
4295 | } |
4296 | |
4297 | if (pte_dirty(pte: ptent)) |
4298 | dirty = true; |
4299 | |
4300 | young++; |
4301 | } |
4302 | |
4303 | walk_update_folio(walk, folio: last, new_gen: gen, dirty); |
4304 | |
4305 | arch_leave_lazy_mmu_mode(); |
4306 | |
4307 | /* feedback from rmap walkers to page table walkers */ |
4308 | if (mm_state && suitable_to_scan(total: i, young)) |
4309 | update_bloom_filter(mm_state, seq: max_seq, item: pvmw->pmd); |
4310 | |
4311 | return true; |
4312 | } |
4313 | |
4314 | /****************************************************************************** |
4315 | * memcg LRU |
4316 | ******************************************************************************/ |
4317 | |
4318 | /* see the comment on MEMCG_NR_GENS */ |
4319 | enum { |
4320 | MEMCG_LRU_NOP, |
4321 | MEMCG_LRU_HEAD, |
4322 | MEMCG_LRU_TAIL, |
4323 | MEMCG_LRU_OLD, |
4324 | MEMCG_LRU_YOUNG, |
4325 | }; |
4326 | |
4327 | static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) |
4328 | { |
4329 | int seg; |
4330 | int old, new; |
4331 | unsigned long flags; |
4332 | int bin = get_random_u32_below(MEMCG_NR_BINS); |
4333 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
4334 | |
4335 | spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); |
4336 | |
4337 | VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); |
4338 | |
4339 | seg = 0; |
4340 | new = old = lruvec->lrugen.gen; |
4341 | |
4342 | /* see the comment on MEMCG_NR_GENS */ |
4343 | if (op == MEMCG_LRU_HEAD) |
4344 | seg = MEMCG_LRU_HEAD; |
4345 | else if (op == MEMCG_LRU_TAIL) |
4346 | seg = MEMCG_LRU_TAIL; |
4347 | else if (op == MEMCG_LRU_OLD) |
4348 | new = get_memcg_gen(pgdat->memcg_lru.seq); |
4349 | else if (op == MEMCG_LRU_YOUNG) |
4350 | new = get_memcg_gen(pgdat->memcg_lru.seq + 1); |
4351 | else |
4352 | VM_WARN_ON_ONCE(true); |
4353 | |
4354 | WRITE_ONCE(lruvec->lrugen.seg, seg); |
4355 | WRITE_ONCE(lruvec->lrugen.gen, new); |
4356 | |
4357 | hlist_nulls_del_rcu(n: &lruvec->lrugen.list); |
4358 | |
4359 | if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) |
4360 | hlist_nulls_add_head_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[new][bin]); |
4361 | else |
4362 | hlist_nulls_add_tail_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[new][bin]); |
4363 | |
4364 | pgdat->memcg_lru.nr_memcgs[old]--; |
4365 | pgdat->memcg_lru.nr_memcgs[new]++; |
4366 | |
4367 | if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) |
4368 | WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); |
4369 | |
4370 | spin_unlock_irqrestore(lock: &pgdat->memcg_lru.lock, flags); |
4371 | } |
4372 | |
4373 | #ifdef CONFIG_MEMCG |
4374 | |
4375 | void lru_gen_online_memcg(struct mem_cgroup *memcg) |
4376 | { |
4377 | int gen; |
4378 | int nid; |
4379 | int bin = get_random_u32_below(MEMCG_NR_BINS); |
4380 | |
4381 | for_each_node(nid) { |
4382 | struct pglist_data *pgdat = NODE_DATA(nid); |
4383 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
4384 | |
4385 | spin_lock_irq(lock: &pgdat->memcg_lru.lock); |
4386 | |
4387 | VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); |
4388 | |
4389 | gen = get_memcg_gen(pgdat->memcg_lru.seq); |
4390 | |
4391 | lruvec->lrugen.gen = gen; |
4392 | |
4393 | hlist_nulls_add_tail_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[gen][bin]); |
4394 | pgdat->memcg_lru.nr_memcgs[gen]++; |
4395 | |
4396 | spin_unlock_irq(lock: &pgdat->memcg_lru.lock); |
4397 | } |
4398 | } |
4399 | |
4400 | void lru_gen_offline_memcg(struct mem_cgroup *memcg) |
4401 | { |
4402 | int nid; |
4403 | |
4404 | for_each_node(nid) { |
4405 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
4406 | |
4407 | lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_OLD); |
4408 | } |
4409 | } |
4410 | |
4411 | void lru_gen_release_memcg(struct mem_cgroup *memcg) |
4412 | { |
4413 | int gen; |
4414 | int nid; |
4415 | |
4416 | for_each_node(nid) { |
4417 | struct pglist_data *pgdat = NODE_DATA(nid); |
4418 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
4419 | |
4420 | spin_lock_irq(lock: &pgdat->memcg_lru.lock); |
4421 | |
4422 | if (hlist_nulls_unhashed(h: &lruvec->lrugen.list)) |
4423 | goto unlock; |
4424 | |
4425 | gen = lruvec->lrugen.gen; |
4426 | |
4427 | hlist_nulls_del_init_rcu(n: &lruvec->lrugen.list); |
4428 | pgdat->memcg_lru.nr_memcgs[gen]--; |
4429 | |
4430 | if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) |
4431 | WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); |
4432 | unlock: |
4433 | spin_unlock_irq(lock: &pgdat->memcg_lru.lock); |
4434 | } |
4435 | } |
4436 | |
4437 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) |
4438 | { |
4439 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
4440 | |
4441 | /* see the comment on MEMCG_NR_GENS */ |
4442 | if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) |
4443 | lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_HEAD); |
4444 | } |
4445 | |
4446 | #endif /* CONFIG_MEMCG */ |
4447 | |
4448 | /****************************************************************************** |
4449 | * the eviction |
4450 | ******************************************************************************/ |
4451 | |
4452 | static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, |
4453 | int tier_idx) |
4454 | { |
4455 | bool success; |
4456 | bool dirty, writeback; |
4457 | int gen = folio_lru_gen(folio); |
4458 | int type = folio_is_file_lru(folio); |
4459 | int zone = folio_zonenum(folio); |
4460 | int delta = folio_nr_pages(folio); |
4461 | int refs = folio_lru_refs(folio); |
4462 | bool workingset = folio_test_workingset(folio); |
4463 | int tier = lru_tier_from_refs(refs, workingset); |
4464 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4465 | |
4466 | VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); |
4467 | |
4468 | /* unevictable */ |
4469 | if (!folio_evictable(folio)) { |
4470 | success = lru_gen_del_folio(lruvec, folio, reclaiming: true); |
4471 | VM_WARN_ON_ONCE_FOLIO(!success, folio); |
4472 | folio_set_unevictable(folio); |
4473 | lruvec_add_folio(lruvec, folio); |
4474 | __count_vm_events(item: UNEVICTABLE_PGCULLED, delta); |
4475 | return true; |
4476 | } |
4477 | |
4478 | /* promoted */ |
4479 | if (gen != lru_gen_from_seq(seq: lrugen->min_seq[type])) { |
4480 | list_move(list: &folio->lru, head: &lrugen->folios[gen][type][zone]); |
4481 | return true; |
4482 | } |
4483 | |
4484 | /* protected */ |
4485 | if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { |
4486 | gen = folio_inc_gen(lruvec, folio, reclaiming: false); |
4487 | list_move(list: &folio->lru, head: &lrugen->folios[gen][type][zone]); |
4488 | |
4489 | /* don't count the workingset being lazily promoted */ |
4490 | if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { |
4491 | int hist = lru_hist_from_seq(seq: lrugen->min_seq[type]); |
4492 | |
4493 | WRITE_ONCE(lrugen->protected[hist][type][tier], |
4494 | lrugen->protected[hist][type][tier] + delta); |
4495 | } |
4496 | return true; |
4497 | } |
4498 | |
4499 | /* ineligible */ |
4500 | if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { |
4501 | gen = folio_inc_gen(lruvec, folio, reclaiming: false); |
4502 | list_move_tail(list: &folio->lru, head: &lrugen->folios[gen][type][zone]); |
4503 | return true; |
4504 | } |
4505 | |
4506 | dirty = folio_test_dirty(folio); |
4507 | writeback = folio_test_writeback(folio); |
4508 | if (type == LRU_GEN_FILE && dirty) { |
4509 | sc->nr.file_taken += delta; |
4510 | if (!writeback) |
4511 | sc->nr.unqueued_dirty += delta; |
4512 | } |
4513 | |
4514 | /* waiting for writeback */ |
4515 | if (writeback || (type == LRU_GEN_FILE && dirty)) { |
4516 | gen = folio_inc_gen(lruvec, folio, reclaiming: true); |
4517 | list_move(list: &folio->lru, head: &lrugen->folios[gen][type][zone]); |
4518 | return true; |
4519 | } |
4520 | |
4521 | return false; |
4522 | } |
4523 | |
4524 | static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) |
4525 | { |
4526 | bool success; |
4527 | |
4528 | /* swap constrained */ |
4529 | if (!(sc->gfp_mask & __GFP_IO) && |
4530 | (folio_test_dirty(folio) || |
4531 | (folio_test_anon(folio) && !folio_test_swapcache(folio)))) |
4532 | return false; |
4533 | |
4534 | /* raced with release_pages() */ |
4535 | if (!folio_try_get(folio)) |
4536 | return false; |
4537 | |
4538 | /* raced with another isolation */ |
4539 | if (!folio_test_clear_lru(folio)) { |
4540 | folio_put(folio); |
4541 | return false; |
4542 | } |
4543 | |
4544 | /* see the comment on LRU_REFS_FLAGS */ |
4545 | if (!folio_test_referenced(folio)) |
4546 | set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); |
4547 | |
4548 | /* for shrink_folio_list() */ |
4549 | folio_clear_reclaim(folio); |
4550 | |
4551 | success = lru_gen_del_folio(lruvec, folio, reclaiming: true); |
4552 | VM_WARN_ON_ONCE_FOLIO(!success, folio); |
4553 | |
4554 | return true; |
4555 | } |
4556 | |
4557 | static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, |
4558 | int type, int tier, struct list_head *list) |
4559 | { |
4560 | int i; |
4561 | int gen; |
4562 | enum vm_event_item item; |
4563 | int sorted = 0; |
4564 | int scanned = 0; |
4565 | int isolated = 0; |
4566 | int skipped = 0; |
4567 | int remaining = MAX_LRU_BATCH; |
4568 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4569 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4570 | |
4571 | VM_WARN_ON_ONCE(!list_empty(list)); |
4572 | |
4573 | if (get_nr_gens(lruvec, type) == MIN_NR_GENS) |
4574 | return 0; |
4575 | |
4576 | gen = lru_gen_from_seq(seq: lrugen->min_seq[type]); |
4577 | |
4578 | for (i = MAX_NR_ZONES; i > 0; i--) { |
4579 | LIST_HEAD(moved); |
4580 | int skipped_zone = 0; |
4581 | int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; |
4582 | struct list_head *head = &lrugen->folios[gen][type][zone]; |
4583 | |
4584 | while (!list_empty(head)) { |
4585 | struct folio *folio = lru_to_folio(head); |
4586 | int delta = folio_nr_pages(folio); |
4587 | |
4588 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); |
4589 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); |
4590 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); |
4591 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); |
4592 | |
4593 | scanned += delta; |
4594 | |
4595 | if (sort_folio(lruvec, folio, sc, tier_idx: tier)) |
4596 | sorted += delta; |
4597 | else if (isolate_folio(lruvec, folio, sc)) { |
4598 | list_add(new: &folio->lru, head: list); |
4599 | isolated += delta; |
4600 | } else { |
4601 | list_move(list: &folio->lru, head: &moved); |
4602 | skipped_zone += delta; |
4603 | } |
4604 | |
4605 | if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) |
4606 | break; |
4607 | } |
4608 | |
4609 | if (skipped_zone) { |
4610 | list_splice(list: &moved, head); |
4611 | __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); |
4612 | skipped += skipped_zone; |
4613 | } |
4614 | |
4615 | if (!remaining || isolated >= MIN_LRU_BATCH) |
4616 | break; |
4617 | } |
4618 | |
4619 | item = PGSCAN_KSWAPD + reclaimer_offset(sc); |
4620 | if (!cgroup_reclaim(sc)) { |
4621 | __count_vm_events(item, delta: isolated); |
4622 | __count_vm_events(item: PGREFILL, delta: sorted); |
4623 | } |
4624 | count_memcg_events(memcg, idx: item, count: isolated); |
4625 | count_memcg_events(memcg, idx: PGREFILL, count: sorted); |
4626 | __count_vm_events(item: PGSCAN_ANON + type, delta: isolated); |
4627 | trace_mm_vmscan_lru_isolate(highest_zoneidx: sc->reclaim_idx, order: sc->order, MAX_LRU_BATCH, |
4628 | nr_scanned: scanned, nr_skipped: skipped, nr_taken: isolated, |
4629 | lru: type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); |
4630 | if (type == LRU_GEN_FILE) |
4631 | sc->nr.file_taken += isolated; |
4632 | /* |
4633 | * There might not be eligible folios due to reclaim_idx. Check the |
4634 | * remaining to prevent livelock if it's not making progress. |
4635 | */ |
4636 | return isolated || !remaining ? scanned : 0; |
4637 | } |
4638 | |
4639 | static int get_tier_idx(struct lruvec *lruvec, int type) |
4640 | { |
4641 | int tier; |
4642 | struct ctrl_pos sp, pv; |
4643 | |
4644 | /* |
4645 | * To leave a margin for fluctuations, use a larger gain factor (2:3). |
4646 | * This value is chosen because any other tier would have at least twice |
4647 | * as many refaults as the first tier. |
4648 | */ |
4649 | read_ctrl_pos(lruvec, type, tier: 0, gain: 2, pos: &sp); |
4650 | for (tier = 1; tier < MAX_NR_TIERS; tier++) { |
4651 | read_ctrl_pos(lruvec, type, tier, gain: 3, pos: &pv); |
4652 | if (!positive_ctrl_err(sp: &sp, pv: &pv)) |
4653 | break; |
4654 | } |
4655 | |
4656 | return tier - 1; |
4657 | } |
4658 | |
4659 | static int get_type_to_scan(struct lruvec *lruvec, int swappiness) |
4660 | { |
4661 | struct ctrl_pos sp, pv; |
4662 | |
4663 | if (swappiness <= MIN_SWAPPINESS + 1) |
4664 | return LRU_GEN_FILE; |
4665 | |
4666 | if (swappiness >= MAX_SWAPPINESS) |
4667 | return LRU_GEN_ANON; |
4668 | /* |
4669 | * Compare the sum of all tiers of anon with that of file to determine |
4670 | * which type to scan. |
4671 | */ |
4672 | read_ctrl_pos(lruvec, type: LRU_GEN_ANON, MAX_NR_TIERS, gain: swappiness, pos: &sp); |
4673 | read_ctrl_pos(lruvec, type: LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, pos: &pv); |
4674 | |
4675 | return positive_ctrl_err(sp: &sp, pv: &pv); |
4676 | } |
4677 | |
4678 | static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, |
4679 | int *type_scanned, struct list_head *list) |
4680 | { |
4681 | int i; |
4682 | int type = get_type_to_scan(lruvec, swappiness); |
4683 | |
4684 | for_each_evictable_type(i, swappiness) { |
4685 | int scanned; |
4686 | int tier = get_tier_idx(lruvec, type); |
4687 | |
4688 | *type_scanned = type; |
4689 | |
4690 | scanned = scan_folios(lruvec, sc, type, tier, list); |
4691 | if (scanned) |
4692 | return scanned; |
4693 | |
4694 | type = !type; |
4695 | } |
4696 | |
4697 | return 0; |
4698 | } |
4699 | |
4700 | static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) |
4701 | { |
4702 | int type; |
4703 | int scanned; |
4704 | int reclaimed; |
4705 | LIST_HEAD(list); |
4706 | LIST_HEAD(clean); |
4707 | struct folio *folio; |
4708 | struct folio *next; |
4709 | enum vm_event_item item; |
4710 | struct reclaim_stat stat; |
4711 | struct lru_gen_mm_walk *walk; |
4712 | bool skip_retry = false; |
4713 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4714 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4715 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
4716 | |
4717 | spin_lock_irq(lock: &lruvec->lru_lock); |
4718 | |
4719 | scanned = isolate_folios(lruvec, sc, swappiness, type_scanned: &type, list: &list); |
4720 | |
4721 | scanned += try_to_inc_min_seq(lruvec, swappiness); |
4722 | |
4723 | if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) |
4724 | scanned = 0; |
4725 | |
4726 | spin_unlock_irq(lock: &lruvec->lru_lock); |
4727 | |
4728 | if (list_empty(head: &list)) |
4729 | return scanned; |
4730 | retry: |
4731 | reclaimed = shrink_folio_list(folio_list: &list, pgdat, sc, stat: &stat, ignore_references: false, memcg); |
4732 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; |
4733 | sc->nr_reclaimed += reclaimed; |
4734 | trace_mm_vmscan_lru_shrink_inactive(nid: pgdat->node_id, |
4735 | nr_scanned: scanned, nr_reclaimed: reclaimed, stat: &stat, priority: sc->priority, |
4736 | file: type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); |
4737 | |
4738 | list_for_each_entry_safe_reverse(folio, next, &list, lru) { |
4739 | DEFINE_MIN_SEQ(lruvec); |
4740 | |
4741 | if (!folio_evictable(folio)) { |
4742 | list_del(entry: &folio->lru); |
4743 | folio_putback_lru(folio); |
4744 | continue; |
4745 | } |
4746 | |
4747 | /* retry folios that may have missed folio_rotate_reclaimable() */ |
4748 | if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && |
4749 | !folio_test_dirty(folio) && !folio_test_writeback(folio)) { |
4750 | list_move(list: &folio->lru, head: &clean); |
4751 | continue; |
4752 | } |
4753 | |
4754 | /* don't add rejected folios to the oldest generation */ |
4755 | if (lru_gen_folio_seq(lruvec, folio, reclaiming: false) == min_seq[type]) |
4756 | set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); |
4757 | } |
4758 | |
4759 | spin_lock_irq(lock: &lruvec->lru_lock); |
4760 | |
4761 | move_folios_to_lru(lruvec, list: &list); |
4762 | |
4763 | walk = current->reclaim_state->mm_walk; |
4764 | if (walk && walk->batched) { |
4765 | walk->lruvec = lruvec; |
4766 | reset_batch_size(walk); |
4767 | } |
4768 | |
4769 | __mod_lruvec_state(lruvec, idx: PGDEMOTE_KSWAPD + reclaimer_offset(sc), |
4770 | val: stat.nr_demoted); |
4771 | |
4772 | item = PGSTEAL_KSWAPD + reclaimer_offset(sc); |
4773 | if (!cgroup_reclaim(sc)) |
4774 | __count_vm_events(item, delta: reclaimed); |
4775 | count_memcg_events(memcg, idx: item, count: reclaimed); |
4776 | __count_vm_events(item: PGSTEAL_ANON + type, delta: reclaimed); |
4777 | |
4778 | spin_unlock_irq(lock: &lruvec->lru_lock); |
4779 | |
4780 | list_splice_init(list: &clean, head: &list); |
4781 | |
4782 | if (!list_empty(head: &list)) { |
4783 | skip_retry = true; |
4784 | goto retry; |
4785 | } |
4786 | |
4787 | return scanned; |
4788 | } |
4789 | |
4790 | static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, |
4791 | int swappiness, unsigned long *nr_to_scan) |
4792 | { |
4793 | int gen, type, zone; |
4794 | unsigned long size = 0; |
4795 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
4796 | DEFINE_MIN_SEQ(lruvec); |
4797 | |
4798 | *nr_to_scan = 0; |
4799 | /* have to run aging, since eviction is not possible anymore */ |
4800 | if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) |
4801 | return true; |
4802 | |
4803 | for_each_evictable_type(type, swappiness) { |
4804 | unsigned long seq; |
4805 | |
4806 | for (seq = min_seq[type]; seq <= max_seq; seq++) { |
4807 | gen = lru_gen_from_seq(seq); |
4808 | |
4809 | for (zone = 0; zone < MAX_NR_ZONES; zone++) |
4810 | size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); |
4811 | } |
4812 | } |
4813 | |
4814 | *nr_to_scan = size; |
4815 | /* better to run aging even though eviction is still possible */ |
4816 | return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; |
4817 | } |
4818 | |
4819 | /* |
4820 | * For future optimizations: |
4821 | * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg |
4822 | * reclaim. |
4823 | */ |
4824 | static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) |
4825 | { |
4826 | bool success; |
4827 | unsigned long nr_to_scan; |
4828 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4829 | DEFINE_MAX_SEQ(lruvec); |
4830 | |
4831 | if (mem_cgroup_below_min(target: sc->target_mem_cgroup, memcg)) |
4832 | return -1; |
4833 | |
4834 | success = should_run_aging(lruvec, max_seq, swappiness, nr_to_scan: &nr_to_scan); |
4835 | |
4836 | /* try to scrape all its memory if this memcg was deleted */ |
4837 | if (nr_to_scan && !mem_cgroup_online(memcg)) |
4838 | return nr_to_scan; |
4839 | |
4840 | /* try to get away with not aging at the default priority */ |
4841 | if (!success || sc->priority == DEF_PRIORITY) |
4842 | return nr_to_scan >> sc->priority; |
4843 | |
4844 | /* stop scanning this lruvec as it's low on cold folios */ |
4845 | return try_to_inc_max_seq(lruvec, seq: max_seq, swappiness, force_scan: false) ? -1 : 0; |
4846 | } |
4847 | |
4848 | static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) |
4849 | { |
4850 | int i; |
4851 | enum zone_watermarks mark; |
4852 | |
4853 | /* don't abort memcg reclaim to ensure fairness */ |
4854 | if (!root_reclaim(sc)) |
4855 | return false; |
4856 | |
4857 | if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) |
4858 | return true; |
4859 | |
4860 | /* check the order to exclude compaction-induced reclaim */ |
4861 | if (!current_is_kswapd() || sc->order) |
4862 | return false; |
4863 | |
4864 | mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? |
4865 | WMARK_PROMO : WMARK_HIGH; |
4866 | |
4867 | for (i = 0; i <= sc->reclaim_idx; i++) { |
4868 | struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; |
4869 | unsigned long size = wmark_pages(z: zone, w: mark) + MIN_LRU_BATCH; |
4870 | |
4871 | if (managed_zone(zone) && !zone_watermark_ok(z: zone, order: 0, mark: size, highest_zoneidx: sc->reclaim_idx, alloc_flags: 0)) |
4872 | return false; |
4873 | } |
4874 | |
4875 | /* kswapd should abort if all eligible zones are safe */ |
4876 | return true; |
4877 | } |
4878 | |
4879 | static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
4880 | { |
4881 | long nr_to_scan; |
4882 | unsigned long scanned = 0; |
4883 | int swappiness = get_swappiness(lruvec, sc); |
4884 | |
4885 | while (true) { |
4886 | int delta; |
4887 | |
4888 | nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); |
4889 | if (nr_to_scan <= 0) |
4890 | break; |
4891 | |
4892 | delta = evict_folios(lruvec, sc, swappiness); |
4893 | if (!delta) |
4894 | break; |
4895 | |
4896 | scanned += delta; |
4897 | if (scanned >= nr_to_scan) |
4898 | break; |
4899 | |
4900 | if (should_abort_scan(lruvec, sc)) |
4901 | break; |
4902 | |
4903 | cond_resched(); |
4904 | } |
4905 | |
4906 | /* |
4907 | * If too many file cache in the coldest generation can't be evicted |
4908 | * due to being dirty, wake up the flusher. |
4909 | */ |
4910 | if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) |
4911 | wakeup_flusher_threads(reason: WB_REASON_VMSCAN); |
4912 | |
4913 | /* whether this lruvec should be rotated */ |
4914 | return nr_to_scan < 0; |
4915 | } |
4916 | |
4917 | static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) |
4918 | { |
4919 | bool success; |
4920 | unsigned long scanned = sc->nr_scanned; |
4921 | unsigned long reclaimed = sc->nr_reclaimed; |
4922 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
4923 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
4924 | |
4925 | /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ |
4926 | if (mem_cgroup_below_min(NULL, memcg)) |
4927 | return MEMCG_LRU_YOUNG; |
4928 | |
4929 | if (mem_cgroup_below_low(NULL, memcg)) { |
4930 | /* see the comment on MEMCG_NR_GENS */ |
4931 | if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) |
4932 | return MEMCG_LRU_TAIL; |
4933 | |
4934 | memcg_memory_event(memcg, event: MEMCG_LOW); |
4935 | } |
4936 | |
4937 | success = try_to_shrink_lruvec(lruvec, sc); |
4938 | |
4939 | shrink_slab(gfp_mask: sc->gfp_mask, nid: pgdat->node_id, memcg, priority: sc->priority); |
4940 | |
4941 | if (!sc->proactive) |
4942 | vmpressure(gfp: sc->gfp_mask, memcg, tree: false, scanned: sc->nr_scanned - scanned, |
4943 | reclaimed: sc->nr_reclaimed - reclaimed); |
4944 | |
4945 | flush_reclaim_state(sc); |
4946 | |
4947 | if (success && mem_cgroup_online(memcg)) |
4948 | return MEMCG_LRU_YOUNG; |
4949 | |
4950 | if (!success && lruvec_is_sizable(lruvec, sc)) |
4951 | return 0; |
4952 | |
4953 | /* one retry if offlined or too small */ |
4954 | return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? |
4955 | MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; |
4956 | } |
4957 | |
4958 | static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) |
4959 | { |
4960 | int op; |
4961 | int gen; |
4962 | int bin; |
4963 | int first_bin; |
4964 | struct lruvec *lruvec; |
4965 | struct lru_gen_folio *lrugen; |
4966 | struct mem_cgroup *memcg; |
4967 | struct hlist_nulls_node *pos; |
4968 | |
4969 | gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); |
4970 | bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); |
4971 | restart: |
4972 | op = 0; |
4973 | memcg = NULL; |
4974 | |
4975 | rcu_read_lock(); |
4976 | |
4977 | hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { |
4978 | if (op) { |
4979 | lru_gen_rotate_memcg(lruvec, op); |
4980 | op = 0; |
4981 | } |
4982 | |
4983 | mem_cgroup_put(memcg); |
4984 | memcg = NULL; |
4985 | |
4986 | if (gen != READ_ONCE(lrugen->gen)) |
4987 | continue; |
4988 | |
4989 | lruvec = container_of(lrugen, struct lruvec, lrugen); |
4990 | memcg = lruvec_memcg(lruvec); |
4991 | |
4992 | if (!mem_cgroup_tryget(memcg)) { |
4993 | lru_gen_release_memcg(memcg); |
4994 | memcg = NULL; |
4995 | continue; |
4996 | } |
4997 | |
4998 | rcu_read_unlock(); |
4999 | |
5000 | op = shrink_one(lruvec, sc); |
5001 | |
5002 | rcu_read_lock(); |
5003 | |
5004 | if (should_abort_scan(lruvec, sc)) |
5005 | break; |
5006 | } |
5007 | |
5008 | rcu_read_unlock(); |
5009 | |
5010 | if (op) |
5011 | lru_gen_rotate_memcg(lruvec, op); |
5012 | |
5013 | mem_cgroup_put(memcg); |
5014 | |
5015 | if (!is_a_nulls(ptr: pos)) |
5016 | return; |
5017 | |
5018 | /* restart if raced with lru_gen_rotate_memcg() */ |
5019 | if (gen != get_nulls_value(ptr: pos)) |
5020 | goto restart; |
5021 | |
5022 | /* try the rest of the bins of the current generation */ |
5023 | bin = get_memcg_bin(bin + 1); |
5024 | if (bin != first_bin) |
5025 | goto restart; |
5026 | } |
5027 | |
5028 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
5029 | { |
5030 | struct blk_plug plug; |
5031 | |
5032 | VM_WARN_ON_ONCE(root_reclaim(sc)); |
5033 | VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); |
5034 | |
5035 | lru_add_drain(); |
5036 | |
5037 | blk_start_plug(&plug); |
5038 | |
5039 | set_mm_walk(NULL, force_alloc: sc->proactive); |
5040 | |
5041 | if (try_to_shrink_lruvec(lruvec, sc)) |
5042 | lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_YOUNG); |
5043 | |
5044 | clear_mm_walk(); |
5045 | |
5046 | blk_finish_plug(&plug); |
5047 | } |
5048 | |
5049 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) |
5050 | { |
5051 | struct blk_plug plug; |
5052 | unsigned long reclaimed = sc->nr_reclaimed; |
5053 | |
5054 | VM_WARN_ON_ONCE(!root_reclaim(sc)); |
5055 | |
5056 | /* |
5057 | * Unmapped clean folios are already prioritized. Scanning for more of |
5058 | * them is likely futile and can cause high reclaim latency when there |
5059 | * is a large number of memcgs. |
5060 | */ |
5061 | if (!sc->may_writepage || !sc->may_unmap) |
5062 | goto done; |
5063 | |
5064 | lru_add_drain(); |
5065 | |
5066 | blk_start_plug(&plug); |
5067 | |
5068 | set_mm_walk(pgdat, force_alloc: sc->proactive); |
5069 | |
5070 | set_initial_priority(pgdat, sc); |
5071 | |
5072 | if (current_is_kswapd()) |
5073 | sc->nr_reclaimed = 0; |
5074 | |
5075 | if (mem_cgroup_disabled()) |
5076 | shrink_one(lruvec: &pgdat->__lruvec, sc); |
5077 | else |
5078 | shrink_many(pgdat, sc); |
5079 | |
5080 | if (current_is_kswapd()) |
5081 | sc->nr_reclaimed += reclaimed; |
5082 | |
5083 | clear_mm_walk(); |
5084 | |
5085 | blk_finish_plug(&plug); |
5086 | done: |
5087 | if (sc->nr_reclaimed > reclaimed) |
5088 | pgdat->kswapd_failures = 0; |
5089 | } |
5090 | |
5091 | /****************************************************************************** |
5092 | * state change |
5093 | ******************************************************************************/ |
5094 | |
5095 | static bool __maybe_unused state_is_valid(struct lruvec *lruvec) |
5096 | { |
5097 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
5098 | |
5099 | if (lrugen->enabled) { |
5100 | enum lru_list lru; |
5101 | |
5102 | for_each_evictable_lru(lru) { |
5103 | if (!list_empty(head: &lruvec->lists[lru])) |
5104 | return false; |
5105 | } |
5106 | } else { |
5107 | int gen, type, zone; |
5108 | |
5109 | for_each_gen_type_zone(gen, type, zone) { |
5110 | if (!list_empty(&lrugen->folios[gen][type][zone])) |
5111 | return false; |
5112 | } |
5113 | } |
5114 | |
5115 | return true; |
5116 | } |
5117 | |
5118 | static bool fill_evictable(struct lruvec *lruvec) |
5119 | { |
5120 | enum lru_list lru; |
5121 | int remaining = MAX_LRU_BATCH; |
5122 | |
5123 | for_each_evictable_lru(lru) { |
5124 | int type = is_file_lru(lru); |
5125 | bool active = is_active_lru(lru); |
5126 | struct list_head *head = &lruvec->lists[lru]; |
5127 | |
5128 | while (!list_empty(head)) { |
5129 | bool success; |
5130 | struct folio *folio = lru_to_folio(head); |
5131 | |
5132 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); |
5133 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); |
5134 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); |
5135 | VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); |
5136 | |
5137 | lruvec_del_folio(lruvec, folio); |
5138 | success = lru_gen_add_folio(lruvec, folio, reclaiming: false); |
5139 | VM_WARN_ON_ONCE(!success); |
5140 | |
5141 | if (!--remaining) |
5142 | return false; |
5143 | } |
5144 | } |
5145 | |
5146 | return true; |
5147 | } |
5148 | |
5149 | static bool drain_evictable(struct lruvec *lruvec) |
5150 | { |
5151 | int gen, type, zone; |
5152 | int remaining = MAX_LRU_BATCH; |
5153 | |
5154 | for_each_gen_type_zone(gen, type, zone) { |
5155 | struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; |
5156 | |
5157 | while (!list_empty(head)) { |
5158 | bool success; |
5159 | struct folio *folio = lru_to_folio(head); |
5160 | |
5161 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); |
5162 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); |
5163 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); |
5164 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); |
5165 | |
5166 | success = lru_gen_del_folio(lruvec, folio, false); |
5167 | VM_WARN_ON_ONCE(!success); |
5168 | lruvec_add_folio(lruvec, folio); |
5169 | |
5170 | if (!--remaining) |
5171 | return false; |
5172 | } |
5173 | } |
5174 | |
5175 | return true; |
5176 | } |
5177 | |
5178 | static void lru_gen_change_state(bool enabled) |
5179 | { |
5180 | static DEFINE_MUTEX(state_mutex); |
5181 | |
5182 | struct mem_cgroup *memcg; |
5183 | |
5184 | cgroup_lock(); |
5185 | cpus_read_lock(); |
5186 | get_online_mems(); |
5187 | mutex_lock(&state_mutex); |
5188 | |
5189 | if (enabled == lru_gen_enabled()) |
5190 | goto unlock; |
5191 | |
5192 | if (enabled) |
5193 | static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); |
5194 | else |
5195 | static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); |
5196 | |
5197 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
5198 | do { |
5199 | int nid; |
5200 | |
5201 | for_each_node(nid) { |
5202 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
5203 | |
5204 | spin_lock_irq(lock: &lruvec->lru_lock); |
5205 | |
5206 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); |
5207 | VM_WARN_ON_ONCE(!state_is_valid(lruvec)); |
5208 | |
5209 | lruvec->lrugen.enabled = enabled; |
5210 | |
5211 | while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { |
5212 | spin_unlock_irq(lock: &lruvec->lru_lock); |
5213 | cond_resched(); |
5214 | spin_lock_irq(lock: &lruvec->lru_lock); |
5215 | } |
5216 | |
5217 | spin_unlock_irq(lock: &lruvec->lru_lock); |
5218 | } |
5219 | |
5220 | cond_resched(); |
5221 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); |
5222 | unlock: |
5223 | mutex_unlock(lock: &state_mutex); |
5224 | put_online_mems(); |
5225 | cpus_read_unlock(); |
5226 | cgroup_unlock(); |
5227 | } |
5228 | |
5229 | /****************************************************************************** |
5230 | * sysfs interface |
5231 | ******************************************************************************/ |
5232 | |
5233 | static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
5234 | { |
5235 | return sysfs_emit(buf, fmt: "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); |
5236 | } |
5237 | |
5238 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ |
5239 | static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, |
5240 | const char *buf, size_t len) |
5241 | { |
5242 | unsigned int msecs; |
5243 | |
5244 | if (kstrtouint(s: buf, base: 0, res: &msecs)) |
5245 | return -EINVAL; |
5246 | |
5247 | WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); |
5248 | |
5249 | return len; |
5250 | } |
5251 | |
5252 | static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); |
5253 | |
5254 | static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
5255 | { |
5256 | unsigned int caps = 0; |
5257 | |
5258 | if (get_cap(LRU_GEN_CORE)) |
5259 | caps |= BIT(LRU_GEN_CORE); |
5260 | |
5261 | if (should_walk_mmu()) |
5262 | caps |= BIT(LRU_GEN_MM_WALK); |
5263 | |
5264 | if (should_clear_pmd_young()) |
5265 | caps |= BIT(LRU_GEN_NONLEAF_YOUNG); |
5266 | |
5267 | return sysfs_emit(buf, fmt: "0x%04x\n", caps); |
5268 | } |
5269 | |
5270 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ |
5271 | static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, |
5272 | const char *buf, size_t len) |
5273 | { |
5274 | int i; |
5275 | unsigned int caps; |
5276 | |
5277 | if (tolower(*buf) == 'n') |
5278 | caps = 0; |
5279 | else if (tolower(*buf) == 'y') |
5280 | caps = -1; |
5281 | else if (kstrtouint(s: buf, base: 0, res: &caps)) |
5282 | return -EINVAL; |
5283 | |
5284 | for (i = 0; i < NR_LRU_GEN_CAPS; i++) { |
5285 | bool enabled = caps & BIT(i); |
5286 | |
5287 | if (i == LRU_GEN_CORE) |
5288 | lru_gen_change_state(enabled); |
5289 | else if (enabled) |
5290 | static_branch_enable(&lru_gen_caps[i]); |
5291 | else |
5292 | static_branch_disable(&lru_gen_caps[i]); |
5293 | } |
5294 | |
5295 | return len; |
5296 | } |
5297 | |
5298 | static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); |
5299 | |
5300 | static struct attribute *lru_gen_attrs[] = { |
5301 | &lru_gen_min_ttl_attr.attr, |
5302 | &lru_gen_enabled_attr.attr, |
5303 | NULL |
5304 | }; |
5305 | |
5306 | static const struct attribute_group lru_gen_attr_group = { |
5307 | .name = "lru_gen", |
5308 | .attrs = lru_gen_attrs, |
5309 | }; |
5310 | |
5311 | /****************************************************************************** |
5312 | * debugfs interface |
5313 | ******************************************************************************/ |
5314 | |
5315 | static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) |
5316 | { |
5317 | struct mem_cgroup *memcg; |
5318 | loff_t nr_to_skip = *pos; |
5319 | |
5320 | m->private = kvmalloc(PATH_MAX, GFP_KERNEL); |
5321 | if (!m->private) |
5322 | return ERR_PTR(error: -ENOMEM); |
5323 | |
5324 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
5325 | do { |
5326 | int nid; |
5327 | |
5328 | for_each_node_state(nid, N_MEMORY) { |
5329 | if (!nr_to_skip--) |
5330 | return get_lruvec(memcg, nid); |
5331 | } |
5332 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); |
5333 | |
5334 | return NULL; |
5335 | } |
5336 | |
5337 | static void lru_gen_seq_stop(struct seq_file *m, void *v) |
5338 | { |
5339 | if (!IS_ERR_OR_NULL(ptr: v)) |
5340 | mem_cgroup_iter_break(NULL, lruvec_memcg(lruvec: v)); |
5341 | |
5342 | kvfree(addr: m->private); |
5343 | m->private = NULL; |
5344 | } |
5345 | |
5346 | static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) |
5347 | { |
5348 | int nid = lruvec_pgdat(lruvec: v)->node_id; |
5349 | struct mem_cgroup *memcg = lruvec_memcg(lruvec: v); |
5350 | |
5351 | ++*pos; |
5352 | |
5353 | nid = next_memory_node(nid); |
5354 | if (nid == MAX_NUMNODES) { |
5355 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
5356 | if (!memcg) |
5357 | return NULL; |
5358 | |
5359 | nid = first_memory_node; |
5360 | } |
5361 | |
5362 | return get_lruvec(memcg, nid); |
5363 | } |
5364 | |
5365 | static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, |
5366 | unsigned long max_seq, unsigned long *min_seq, |
5367 | unsigned long seq) |
5368 | { |
5369 | int i; |
5370 | int type, tier; |
5371 | int hist = lru_hist_from_seq(seq); |
5372 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
5373 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
5374 | |
5375 | for (tier = 0; tier < MAX_NR_TIERS; tier++) { |
5376 | seq_printf(m, fmt: " %10d", tier); |
5377 | for (type = 0; type < ANON_AND_FILE; type++) { |
5378 | const char *s = "xxx"; |
5379 | unsigned long n[3] = {}; |
5380 | |
5381 | if (seq == max_seq) { |
5382 | s = "RTx"; |
5383 | n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); |
5384 | n[1] = READ_ONCE(lrugen->avg_total[type][tier]); |
5385 | } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { |
5386 | s = "rep"; |
5387 | n[0] = atomic_long_read(v: &lrugen->refaulted[hist][type][tier]); |
5388 | n[1] = atomic_long_read(v: &lrugen->evicted[hist][type][tier]); |
5389 | n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); |
5390 | } |
5391 | |
5392 | for (i = 0; i < 3; i++) |
5393 | seq_printf(m, fmt: " %10lu%c", n[i], s[i]); |
5394 | } |
5395 | seq_putc(m, c: '\n'); |
5396 | } |
5397 | |
5398 | if (!mm_state) |
5399 | return; |
5400 | |
5401 | seq_puts(m, s: " "); |
5402 | for (i = 0; i < NR_MM_STATS; i++) { |
5403 | const char *s = "xxxx"; |
5404 | unsigned long n = 0; |
5405 | |
5406 | if (seq == max_seq && NR_HIST_GENS == 1) { |
5407 | s = "TYFA"; |
5408 | n = READ_ONCE(mm_state->stats[hist][i]); |
5409 | } else if (seq != max_seq && NR_HIST_GENS > 1) { |
5410 | s = "tyfa"; |
5411 | n = READ_ONCE(mm_state->stats[hist][i]); |
5412 | } |
5413 | |
5414 | seq_printf(m, fmt: " %10lu%c", n, s[i]); |
5415 | } |
5416 | seq_putc(m, c: '\n'); |
5417 | } |
5418 | |
5419 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ |
5420 | static int lru_gen_seq_show(struct seq_file *m, void *v) |
5421 | { |
5422 | unsigned long seq; |
5423 | bool full = !debugfs_real_fops(filp: m->file)->write; |
5424 | struct lruvec *lruvec = v; |
5425 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
5426 | int nid = lruvec_pgdat(lruvec)->node_id; |
5427 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
5428 | DEFINE_MAX_SEQ(lruvec); |
5429 | DEFINE_MIN_SEQ(lruvec); |
5430 | |
5431 | if (nid == first_memory_node) { |
5432 | const char *path = memcg ? m->private : ""; |
5433 | |
5434 | #ifdef CONFIG_MEMCG |
5435 | if (memcg) |
5436 | cgroup_path(cgrp: memcg->css.cgroup, buf: m->private, PATH_MAX); |
5437 | #endif |
5438 | seq_printf(m, fmt: "memcg %5hu %s\n", mem_cgroup_id(memcg), path); |
5439 | } |
5440 | |
5441 | seq_printf(m, fmt: " node %5d\n", nid); |
5442 | |
5443 | if (!full) |
5444 | seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); |
5445 | else if (max_seq >= MAX_NR_GENS) |
5446 | seq = max_seq - MAX_NR_GENS + 1; |
5447 | else |
5448 | seq = 0; |
5449 | |
5450 | for (; seq <= max_seq; seq++) { |
5451 | int type, zone; |
5452 | int gen = lru_gen_from_seq(seq); |
5453 | unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); |
5454 | |
5455 | seq_printf(m, fmt: " %10lu %10u", seq, jiffies_to_msecs(j: jiffies - birth)); |
5456 | |
5457 | for (type = 0; type < ANON_AND_FILE; type++) { |
5458 | unsigned long size = 0; |
5459 | char mark = full && seq < min_seq[type] ? 'x' : ' '; |
5460 | |
5461 | for (zone = 0; zone < MAX_NR_ZONES; zone++) |
5462 | size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); |
5463 | |
5464 | seq_printf(m, fmt: " %10lu%c", size, mark); |
5465 | } |
5466 | |
5467 | seq_putc(m, c: '\n'); |
5468 | |
5469 | if (full) |
5470 | lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); |
5471 | } |
5472 | |
5473 | return 0; |
5474 | } |
5475 | |
5476 | static const struct seq_operations lru_gen_seq_ops = { |
5477 | .start = lru_gen_seq_start, |
5478 | .stop = lru_gen_seq_stop, |
5479 | .next = lru_gen_seq_next, |
5480 | .show = lru_gen_seq_show, |
5481 | }; |
5482 | |
5483 | static int run_aging(struct lruvec *lruvec, unsigned long seq, |
5484 | int swappiness, bool force_scan) |
5485 | { |
5486 | DEFINE_MAX_SEQ(lruvec); |
5487 | |
5488 | if (seq > max_seq) |
5489 | return -EINVAL; |
5490 | |
5491 | return try_to_inc_max_seq(lruvec, seq: max_seq, swappiness, force_scan) ? 0 : -EEXIST; |
5492 | } |
5493 | |
5494 | static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, |
5495 | int swappiness, unsigned long nr_to_reclaim) |
5496 | { |
5497 | DEFINE_MAX_SEQ(lruvec); |
5498 | |
5499 | if (seq + MIN_NR_GENS > max_seq) |
5500 | return -EINVAL; |
5501 | |
5502 | sc->nr_reclaimed = 0; |
5503 | |
5504 | while (!signal_pending(current)) { |
5505 | DEFINE_MIN_SEQ(lruvec); |
5506 | |
5507 | if (seq < evictable_min_seq(min_seq, swappiness)) |
5508 | return 0; |
5509 | |
5510 | if (sc->nr_reclaimed >= nr_to_reclaim) |
5511 | return 0; |
5512 | |
5513 | if (!evict_folios(lruvec, sc, swappiness)) |
5514 | return 0; |
5515 | |
5516 | cond_resched(); |
5517 | } |
5518 | |
5519 | return -EINTR; |
5520 | } |
5521 | |
5522 | static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, |
5523 | struct scan_control *sc, int swappiness, unsigned long opt) |
5524 | { |
5525 | struct lruvec *lruvec; |
5526 | int err = -EINVAL; |
5527 | struct mem_cgroup *memcg = NULL; |
5528 | |
5529 | if (nid < 0 || nid >= MAX_NUMNODES || !node_state(node: nid, state: N_MEMORY)) |
5530 | return -EINVAL; |
5531 | |
5532 | if (!mem_cgroup_disabled()) { |
5533 | rcu_read_lock(); |
5534 | |
5535 | memcg = mem_cgroup_from_id(id: memcg_id); |
5536 | if (!mem_cgroup_tryget(memcg)) |
5537 | memcg = NULL; |
5538 | |
5539 | rcu_read_unlock(); |
5540 | |
5541 | if (!memcg) |
5542 | return -EINVAL; |
5543 | } |
5544 | |
5545 | if (memcg_id != mem_cgroup_id(memcg)) |
5546 | goto done; |
5547 | |
5548 | lruvec = get_lruvec(memcg, nid); |
5549 | |
5550 | if (swappiness < MIN_SWAPPINESS) |
5551 | swappiness = get_swappiness(lruvec, sc); |
5552 | else if (swappiness > SWAPPINESS_ANON_ONLY) |
5553 | goto done; |
5554 | |
5555 | switch (cmd) { |
5556 | case '+': |
5557 | err = run_aging(lruvec, seq, swappiness, force_scan: opt); |
5558 | break; |
5559 | case '-': |
5560 | err = run_eviction(lruvec, seq, sc, swappiness, nr_to_reclaim: opt); |
5561 | break; |
5562 | } |
5563 | done: |
5564 | mem_cgroup_put(memcg); |
5565 | |
5566 | return err; |
5567 | } |
5568 | |
5569 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ |
5570 | static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, |
5571 | size_t len, loff_t *pos) |
5572 | { |
5573 | void *buf; |
5574 | char *cur, *next; |
5575 | unsigned int flags; |
5576 | struct blk_plug plug; |
5577 | int err = -EINVAL; |
5578 | struct scan_control sc = { |
5579 | .may_writepage = true, |
5580 | .may_unmap = true, |
5581 | .may_swap = true, |
5582 | .reclaim_idx = MAX_NR_ZONES - 1, |
5583 | .gfp_mask = GFP_KERNEL, |
5584 | }; |
5585 | |
5586 | buf = kvmalloc(len + 1, GFP_KERNEL); |
5587 | if (!buf) |
5588 | return -ENOMEM; |
5589 | |
5590 | if (copy_from_user(to: buf, from: src, n: len)) { |
5591 | kvfree(addr: buf); |
5592 | return -EFAULT; |
5593 | } |
5594 | |
5595 | set_task_reclaim_state(current, rs: &sc.reclaim_state); |
5596 | flags = memalloc_noreclaim_save(); |
5597 | blk_start_plug(&plug); |
5598 | if (!set_mm_walk(NULL, force_alloc: true)) { |
5599 | err = -ENOMEM; |
5600 | goto done; |
5601 | } |
5602 | |
5603 | next = buf; |
5604 | next[len] = '\0'; |
5605 | |
5606 | while ((cur = strsep(&next, ",;\n"))) { |
5607 | int n; |
5608 | int end; |
5609 | char cmd, swap_string[5]; |
5610 | unsigned int memcg_id; |
5611 | unsigned int nid; |
5612 | unsigned long seq; |
5613 | unsigned int swappiness; |
5614 | unsigned long opt = -1; |
5615 | |
5616 | cur = skip_spaces(cur); |
5617 | if (!*cur) |
5618 | continue; |
5619 | |
5620 | n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, |
5621 | &seq, &end, swap_string, &end, &opt, &end); |
5622 | if (n < 4 || cur[end]) { |
5623 | err = -EINVAL; |
5624 | break; |
5625 | } |
5626 | |
5627 | if (n == 4) { |
5628 | swappiness = -1; |
5629 | } else if (!strcmp("max", swap_string)) { |
5630 | /* set by userspace for anonymous memory only */ |
5631 | swappiness = SWAPPINESS_ANON_ONLY; |
5632 | } else { |
5633 | err = kstrtouint(s: swap_string, base: 0, res: &swappiness); |
5634 | if (err) |
5635 | break; |
5636 | } |
5637 | |
5638 | err = run_cmd(cmd, memcg_id, nid, seq, sc: &sc, swappiness, opt); |
5639 | if (err) |
5640 | break; |
5641 | } |
5642 | done: |
5643 | clear_mm_walk(); |
5644 | blk_finish_plug(&plug); |
5645 | memalloc_noreclaim_restore(flags); |
5646 | set_task_reclaim_state(current, NULL); |
5647 | |
5648 | kvfree(addr: buf); |
5649 | |
5650 | return err ? : len; |
5651 | } |
5652 | |
5653 | static int lru_gen_seq_open(struct inode *inode, struct file *file) |
5654 | { |
5655 | return seq_open(file, &lru_gen_seq_ops); |
5656 | } |
5657 | |
5658 | static const struct file_operations lru_gen_rw_fops = { |
5659 | .open = lru_gen_seq_open, |
5660 | .read = seq_read, |
5661 | .write = lru_gen_seq_write, |
5662 | .llseek = seq_lseek, |
5663 | .release = seq_release, |
5664 | }; |
5665 | |
5666 | static const struct file_operations lru_gen_ro_fops = { |
5667 | .open = lru_gen_seq_open, |
5668 | .read = seq_read, |
5669 | .llseek = seq_lseek, |
5670 | .release = seq_release, |
5671 | }; |
5672 | |
5673 | /****************************************************************************** |
5674 | * initialization |
5675 | ******************************************************************************/ |
5676 | |
5677 | void lru_gen_init_pgdat(struct pglist_data *pgdat) |
5678 | { |
5679 | int i, j; |
5680 | |
5681 | spin_lock_init(&pgdat->memcg_lru.lock); |
5682 | |
5683 | for (i = 0; i < MEMCG_NR_GENS; i++) { |
5684 | for (j = 0; j < MEMCG_NR_BINS; j++) |
5685 | INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); |
5686 | } |
5687 | } |
5688 | |
5689 | void lru_gen_init_lruvec(struct lruvec *lruvec) |
5690 | { |
5691 | int i; |
5692 | int gen, type, zone; |
5693 | struct lru_gen_folio *lrugen = &lruvec->lrugen; |
5694 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
5695 | |
5696 | lrugen->max_seq = MIN_NR_GENS + 1; |
5697 | lrugen->enabled = lru_gen_enabled(); |
5698 | |
5699 | for (i = 0; i <= MIN_NR_GENS + 1; i++) |
5700 | lrugen->timestamps[i] = jiffies; |
5701 | |
5702 | for_each_gen_type_zone(gen, type, zone) |
5703 | INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); |
5704 | |
5705 | if (mm_state) |
5706 | mm_state->seq = MIN_NR_GENS; |
5707 | } |
5708 | |
5709 | #ifdef CONFIG_MEMCG |
5710 | |
5711 | void lru_gen_init_memcg(struct mem_cgroup *memcg) |
5712 | { |
5713 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); |
5714 | |
5715 | if (!mm_list) |
5716 | return; |
5717 | |
5718 | INIT_LIST_HEAD(list: &mm_list->fifo); |
5719 | spin_lock_init(&mm_list->lock); |
5720 | } |
5721 | |
5722 | void lru_gen_exit_memcg(struct mem_cgroup *memcg) |
5723 | { |
5724 | int i; |
5725 | int nid; |
5726 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); |
5727 | |
5728 | VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); |
5729 | |
5730 | for_each_node(nid) { |
5731 | struct lruvec *lruvec = get_lruvec(memcg, nid); |
5732 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); |
5733 | |
5734 | VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, |
5735 | sizeof(lruvec->lrugen.nr_pages))); |
5736 | |
5737 | lruvec->lrugen.list.next = LIST_POISON1; |
5738 | |
5739 | if (!mm_state) |
5740 | continue; |
5741 | |
5742 | for (i = 0; i < NR_BLOOM_FILTERS; i++) { |
5743 | bitmap_free(bitmap: mm_state->filters[i]); |
5744 | mm_state->filters[i] = NULL; |
5745 | } |
5746 | } |
5747 | } |
5748 | |
5749 | #endif /* CONFIG_MEMCG */ |
5750 | |
5751 | static int __init init_lru_gen(void) |
5752 | { |
5753 | BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); |
5754 | BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); |
5755 | |
5756 | if (sysfs_create_group(kobj: mm_kobj, grp: &lru_gen_attr_group)) |
5757 | pr_err("lru_gen: failed to create sysfs group\n"); |
5758 | |
5759 | debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); |
5760 | debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); |
5761 | |
5762 | return 0; |
5763 | }; |
5764 | late_initcall(init_lru_gen); |
5765 | |
5766 | #else /* !CONFIG_LRU_GEN */ |
5767 | |
5768 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) |
5769 | { |
5770 | BUILD_BUG(); |
5771 | } |
5772 | |
5773 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
5774 | { |
5775 | BUILD_BUG(); |
5776 | } |
5777 | |
5778 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) |
5779 | { |
5780 | BUILD_BUG(); |
5781 | } |
5782 | |
5783 | #endif /* CONFIG_LRU_GEN */ |
5784 | |
5785 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
5786 | { |
5787 | unsigned long nr[NR_LRU_LISTS]; |
5788 | unsigned long targets[NR_LRU_LISTS]; |
5789 | unsigned long nr_to_scan; |
5790 | enum lru_list lru; |
5791 | unsigned long nr_reclaimed = 0; |
5792 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; |
5793 | bool proportional_reclaim; |
5794 | struct blk_plug plug; |
5795 | |
5796 | if (lru_gen_enabled() && !root_reclaim(sc)) { |
5797 | lru_gen_shrink_lruvec(lruvec, sc); |
5798 | return; |
5799 | } |
5800 | |
5801 | get_scan_count(lruvec, sc, nr); |
5802 | |
5803 | /* Record the original scan target for proportional adjustments later */ |
5804 | memcpy(targets, nr, sizeof(nr)); |
5805 | |
5806 | /* |
5807 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal |
5808 | * event that can occur when there is little memory pressure e.g. |
5809 | * multiple streaming readers/writers. Hence, we do not abort scanning |
5810 | * when the requested number of pages are reclaimed when scanning at |
5811 | * DEF_PRIORITY on the assumption that the fact we are direct |
5812 | * reclaiming implies that kswapd is not keeping up and it is best to |
5813 | * do a batch of work at once. For memcg reclaim one check is made to |
5814 | * abort proportional reclaim if either the file or anon lru has already |
5815 | * dropped to zero at the first pass. |
5816 | */ |
5817 | proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && |
5818 | sc->priority == DEF_PRIORITY); |
5819 | |
5820 | blk_start_plug(&plug); |
5821 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
5822 | nr[LRU_INACTIVE_FILE]) { |
5823 | unsigned long nr_anon, nr_file, percentage; |
5824 | unsigned long nr_scanned; |
5825 | |
5826 | for_each_evictable_lru(lru) { |
5827 | if (nr[lru]) { |
5828 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); |
5829 | nr[lru] -= nr_to_scan; |
5830 | |
5831 | nr_reclaimed += shrink_list(lru, nr_to_scan, |
5832 | lruvec, sc); |
5833 | } |
5834 | } |
5835 | |
5836 | cond_resched(); |
5837 | |
5838 | if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) |
5839 | continue; |
5840 | |
5841 | /* |
5842 | * For kswapd and memcg, reclaim at least the number of pages |
5843 | * requested. Ensure that the anon and file LRUs are scanned |
5844 | * proportionally what was requested by get_scan_count(). We |
5845 | * stop reclaiming one LRU and reduce the amount scanning |
5846 | * proportional to the original scan target. |
5847 | */ |
5848 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; |
5849 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; |
5850 | |
5851 | /* |
5852 | * It's just vindictive to attack the larger once the smaller |
5853 | * has gone to zero. And given the way we stop scanning the |
5854 | * smaller below, this makes sure that we only make one nudge |
5855 | * towards proportionality once we've got nr_to_reclaim. |
5856 | */ |
5857 | if (!nr_file || !nr_anon) |
5858 | break; |
5859 | |
5860 | if (nr_file > nr_anon) { |
5861 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + |
5862 | targets[LRU_ACTIVE_ANON] + 1; |
5863 | lru = LRU_BASE; |
5864 | percentage = nr_anon * 100 / scan_target; |
5865 | } else { |
5866 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + |
5867 | targets[LRU_ACTIVE_FILE] + 1; |
5868 | lru = LRU_FILE; |
5869 | percentage = nr_file * 100 / scan_target; |
5870 | } |
5871 | |
5872 | /* Stop scanning the smaller of the LRU */ |
5873 | nr[lru] = 0; |
5874 | nr[lru + LRU_ACTIVE] = 0; |
5875 | |
5876 | /* |
5877 | * Recalculate the other LRU scan count based on its original |
5878 | * scan target and the percentage scanning already complete |
5879 | */ |
5880 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; |
5881 | nr_scanned = targets[lru] - nr[lru]; |
5882 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
5883 | nr[lru] -= min(nr[lru], nr_scanned); |
5884 | |
5885 | lru += LRU_ACTIVE; |
5886 | nr_scanned = targets[lru] - nr[lru]; |
5887 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
5888 | nr[lru] -= min(nr[lru], nr_scanned); |
5889 | } |
5890 | blk_finish_plug(&plug); |
5891 | sc->nr_reclaimed += nr_reclaimed; |
5892 | |
5893 | /* |
5894 | * Even if we did not try to evict anon pages at all, we want to |
5895 | * rebalance the anon lru active/inactive ratio. |
5896 | */ |
5897 | if (can_age_anon_pages(lruvec, sc) && |
5898 | inactive_is_low(lruvec, inactive_lru: LRU_INACTIVE_ANON)) |
5899 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
5900 | sc, lru: LRU_ACTIVE_ANON); |
5901 | } |
5902 | |
5903 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
5904 | static bool in_reclaim_compaction(struct scan_control *sc) |
5905 | { |
5906 | if (gfp_compaction_allowed(gfp_mask: sc->gfp_mask) && sc->order && |
5907 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
5908 | sc->priority < DEF_PRIORITY - 2)) |
5909 | return true; |
5910 | |
5911 | return false; |
5912 | } |
5913 | |
5914 | /* |
5915 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
5916 | * order-0 pages before compacting the zone. should_continue_reclaim() returns |
5917 | * true if more pages should be reclaimed such that when the page allocator |
5918 | * calls try_to_compact_pages() that it will have enough free pages to succeed. |
5919 | * It will give up earlier than that if there is difficulty reclaiming pages. |
5920 | */ |
5921 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, |
5922 | unsigned long nr_reclaimed, |
5923 | struct scan_control *sc) |
5924 | { |
5925 | unsigned long pages_for_compaction; |
5926 | unsigned long inactive_lru_pages; |
5927 | int z; |
5928 | struct zone *zone; |
5929 | |
5930 | /* If not in reclaim/compaction mode, stop */ |
5931 | if (!in_reclaim_compaction(sc)) |
5932 | return false; |
5933 | |
5934 | /* |
5935 | * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX |
5936 | * number of pages that were scanned. This will return to the caller |
5937 | * with the risk reclaim/compaction and the resulting allocation attempt |
5938 | * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL |
5939 | * allocations through requiring that the full LRU list has been scanned |
5940 | * first, by assuming that zero delta of sc->nr_scanned means full LRU |
5941 | * scan, but that approximation was wrong, and there were corner cases |
5942 | * where always a non-zero amount of pages were scanned. |
5943 | */ |
5944 | if (!nr_reclaimed) |
5945 | return false; |
5946 | |
5947 | /* If compaction would go ahead or the allocation would succeed, stop */ |
5948 | for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { |
5949 | unsigned long watermark = min_wmark_pages(z: zone); |
5950 | |
5951 | /* Allocation can already succeed, nothing to do */ |
5952 | if (zone_watermark_ok(z: zone, order: sc->order, mark: watermark, |
5953 | highest_zoneidx: sc->reclaim_idx, alloc_flags: 0)) |
5954 | return false; |
5955 | |
5956 | if (compaction_suitable(zone, order: sc->order, watermark, |
5957 | highest_zoneidx: sc->reclaim_idx)) |
5958 | return false; |
5959 | } |
5960 | |
5961 | /* |
5962 | * If we have not reclaimed enough pages for compaction and the |
5963 | * inactive lists are large enough, continue reclaiming |
5964 | */ |
5965 | pages_for_compaction = compact_gap(order: sc->order); |
5966 | inactive_lru_pages = node_page_state(pgdat, item: NR_INACTIVE_FILE); |
5967 | if (can_reclaim_anon_pages(NULL, nid: pgdat->node_id, sc)) |
5968 | inactive_lru_pages += node_page_state(pgdat, item: NR_INACTIVE_ANON); |
5969 | |
5970 | return inactive_lru_pages > pages_for_compaction; |
5971 | } |
5972 | |
5973 | static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) |
5974 | { |
5975 | struct mem_cgroup *target_memcg = sc->target_mem_cgroup; |
5976 | struct mem_cgroup_reclaim_cookie reclaim = { |
5977 | .pgdat = pgdat, |
5978 | }; |
5979 | struct mem_cgroup_reclaim_cookie *partial = &reclaim; |
5980 | struct mem_cgroup *memcg; |
5981 | |
5982 | /* |
5983 | * In most cases, direct reclaimers can do partial walks |
5984 | * through the cgroup tree, using an iterator state that |
5985 | * persists across invocations. This strikes a balance between |
5986 | * fairness and allocation latency. |
5987 | * |
5988 | * For kswapd, reliable forward progress is more important |
5989 | * than a quick return to idle. Always do full walks. |
5990 | */ |
5991 | if (current_is_kswapd() || sc->memcg_full_walk) |
5992 | partial = NULL; |
5993 | |
5994 | memcg = mem_cgroup_iter(target_memcg, NULL, partial); |
5995 | do { |
5996 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
5997 | unsigned long reclaimed; |
5998 | unsigned long scanned; |
5999 | |
6000 | /* |
6001 | * This loop can become CPU-bound when target memcgs |
6002 | * aren't eligible for reclaim - either because they |
6003 | * don't have any reclaimable pages, or because their |
6004 | * memory is explicitly protected. Avoid soft lockups. |
6005 | */ |
6006 | cond_resched(); |
6007 | |
6008 | mem_cgroup_calculate_protection(root: target_memcg, memcg); |
6009 | |
6010 | if (mem_cgroup_below_min(target: target_memcg, memcg)) { |
6011 | /* |
6012 | * Hard protection. |
6013 | * If there is no reclaimable memory, OOM. |
6014 | */ |
6015 | continue; |
6016 | } else if (mem_cgroup_below_low(target: target_memcg, memcg)) { |
6017 | /* |
6018 | * Soft protection. |
6019 | * Respect the protection only as long as |
6020 | * there is an unprotected supply |
6021 | * of reclaimable memory from other cgroups. |
6022 | */ |
6023 | if (!sc->memcg_low_reclaim) { |
6024 | sc->memcg_low_skipped = 1; |
6025 | continue; |
6026 | } |
6027 | memcg_memory_event(memcg, event: MEMCG_LOW); |
6028 | } |
6029 | |
6030 | reclaimed = sc->nr_reclaimed; |
6031 | scanned = sc->nr_scanned; |
6032 | |
6033 | shrink_lruvec(lruvec, sc); |
6034 | |
6035 | shrink_slab(gfp_mask: sc->gfp_mask, nid: pgdat->node_id, memcg, |
6036 | priority: sc->priority); |
6037 | |
6038 | /* Record the group's reclaim efficiency */ |
6039 | if (!sc->proactive) |
6040 | vmpressure(gfp: sc->gfp_mask, memcg, tree: false, |
6041 | scanned: sc->nr_scanned - scanned, |
6042 | reclaimed: sc->nr_reclaimed - reclaimed); |
6043 | |
6044 | /* If partial walks are allowed, bail once goal is reached */ |
6045 | if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { |
6046 | mem_cgroup_iter_break(target_memcg, memcg); |
6047 | break; |
6048 | } |
6049 | } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); |
6050 | } |
6051 | |
6052 | static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) |
6053 | { |
6054 | unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; |
6055 | struct lruvec *target_lruvec; |
6056 | bool reclaimable = false; |
6057 | |
6058 | if (lru_gen_enabled() && root_reclaim(sc)) { |
6059 | memset(&sc->nr, 0, sizeof(sc->nr)); |
6060 | lru_gen_shrink_node(pgdat, sc); |
6061 | return; |
6062 | } |
6063 | |
6064 | target_lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup, pgdat); |
6065 | |
6066 | again: |
6067 | memset(&sc->nr, 0, sizeof(sc->nr)); |
6068 | |
6069 | nr_reclaimed = sc->nr_reclaimed; |
6070 | nr_scanned = sc->nr_scanned; |
6071 | |
6072 | prepare_scan_control(pgdat, sc); |
6073 | |
6074 | shrink_node_memcgs(pgdat, sc); |
6075 | |
6076 | flush_reclaim_state(sc); |
6077 | |
6078 | nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; |
6079 | |
6080 | /* Record the subtree's reclaim efficiency */ |
6081 | if (!sc->proactive) |
6082 | vmpressure(gfp: sc->gfp_mask, memcg: sc->target_mem_cgroup, tree: true, |
6083 | scanned: sc->nr_scanned - nr_scanned, reclaimed: nr_node_reclaimed); |
6084 | |
6085 | if (nr_node_reclaimed) |
6086 | reclaimable = true; |
6087 | |
6088 | if (current_is_kswapd()) { |
6089 | /* |
6090 | * If reclaim is isolating dirty pages under writeback, |
6091 | * it implies that the long-lived page allocation rate |
6092 | * is exceeding the page laundering rate. Either the |
6093 | * global limits are not being effective at throttling |
6094 | * processes due to the page distribution throughout |
6095 | * zones or there is heavy usage of a slow backing |
6096 | * device. The only option is to throttle from reclaim |
6097 | * context which is not ideal as there is no guarantee |
6098 | * the dirtying process is throttled in the same way |
6099 | * balance_dirty_pages() manages. |
6100 | * |
6101 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will |
6102 | * count the number of pages under pages flagged for |
6103 | * immediate reclaim and stall if any are encountered |
6104 | * in the nr_immediate check below. |
6105 | */ |
6106 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) |
6107 | set_bit(nr: PGDAT_WRITEBACK, addr: &pgdat->flags); |
6108 | |
6109 | /* Allow kswapd to start writing pages during reclaim.*/ |
6110 | if (sc->nr.unqueued_dirty && |
6111 | sc->nr.unqueued_dirty == sc->nr.file_taken) |
6112 | set_bit(nr: PGDAT_DIRTY, addr: &pgdat->flags); |
6113 | |
6114 | /* |
6115 | * If kswapd scans pages marked for immediate |
6116 | * reclaim and under writeback (nr_immediate), it |
6117 | * implies that pages are cycling through the LRU |
6118 | * faster than they are written so forcibly stall |
6119 | * until some pages complete writeback. |
6120 | */ |
6121 | if (sc->nr.immediate) |
6122 | reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_WRITEBACK); |
6123 | } |
6124 | |
6125 | /* |
6126 | * Tag a node/memcg as congested if all the dirty pages were marked |
6127 | * for writeback and immediate reclaim (counted in nr.congested). |
6128 | * |
6129 | * Legacy memcg will stall in page writeback so avoid forcibly |
6130 | * stalling in reclaim_throttle(). |
6131 | */ |
6132 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { |
6133 | if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) |
6134 | set_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &target_lruvec->flags); |
6135 | |
6136 | if (current_is_kswapd()) |
6137 | set_bit(nr: LRUVEC_NODE_CONGESTED, addr: &target_lruvec->flags); |
6138 | } |
6139 | |
6140 | /* |
6141 | * Stall direct reclaim for IO completions if the lruvec is |
6142 | * node is congested. Allow kswapd to continue until it |
6143 | * starts encountering unqueued dirty pages or cycling through |
6144 | * the LRU too quickly. |
6145 | */ |
6146 | if (!current_is_kswapd() && current_may_throttle() && |
6147 | !sc->hibernation_mode && |
6148 | (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || |
6149 | test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) |
6150 | reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_CONGESTED); |
6151 | |
6152 | if (should_continue_reclaim(pgdat, nr_reclaimed: nr_node_reclaimed, sc)) |
6153 | goto again; |
6154 | |
6155 | /* |
6156 | * Kswapd gives up on balancing particular nodes after too |
6157 | * many failures to reclaim anything from them and goes to |
6158 | * sleep. On reclaim progress, reset the failure counter. A |
6159 | * successful direct reclaim run will revive a dormant kswapd. |
6160 | */ |
6161 | if (reclaimable) |
6162 | pgdat->kswapd_failures = 0; |
6163 | else if (sc->cache_trim_mode) |
6164 | sc->cache_trim_mode_failed = 1; |
6165 | } |
6166 | |
6167 | /* |
6168 | * Returns true if compaction should go ahead for a costly-order request, or |
6169 | * the allocation would already succeed without compaction. Return false if we |
6170 | * should reclaim first. |
6171 | */ |
6172 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
6173 | { |
6174 | unsigned long watermark; |
6175 | |
6176 | if (!gfp_compaction_allowed(gfp_mask: sc->gfp_mask)) |
6177 | return false; |
6178 | |
6179 | /* Allocation can already succeed, nothing to do */ |
6180 | if (zone_watermark_ok(z: zone, order: sc->order, mark: min_wmark_pages(z: zone), |
6181 | highest_zoneidx: sc->reclaim_idx, alloc_flags: 0)) |
6182 | return true; |
6183 | |
6184 | /* |
6185 | * Direct reclaim usually targets the min watermark, but compaction |
6186 | * takes time to run and there are potentially other callers using the |
6187 | * pages just freed. So target a higher buffer to give compaction a |
6188 | * reasonable chance of completing and allocating the pages. |
6189 | * |
6190 | * Note that we won't actually reclaim the whole buffer in one attempt |
6191 | * as the target watermark in should_continue_reclaim() is lower. But if |
6192 | * we are already above the high+gap watermark, don't reclaim at all. |
6193 | */ |
6194 | watermark = high_wmark_pages(z: zone); |
6195 | if (compaction_suitable(zone, order: sc->order, watermark, highest_zoneidx: sc->reclaim_idx)) |
6196 | return true; |
6197 | |
6198 | return false; |
6199 | } |
6200 | |
6201 | static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) |
6202 | { |
6203 | /* |
6204 | * If reclaim is making progress greater than 12% efficiency then |
6205 | * wake all the NOPROGRESS throttled tasks. |
6206 | */ |
6207 | if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { |
6208 | wait_queue_head_t *wqh; |
6209 | |
6210 | wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; |
6211 | if (waitqueue_active(wq_head: wqh)) |
6212 | wake_up(wqh); |
6213 | |
6214 | return; |
6215 | } |
6216 | |
6217 | /* |
6218 | * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will |
6219 | * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages |
6220 | * under writeback and marked for immediate reclaim at the tail of the |
6221 | * LRU. |
6222 | */ |
6223 | if (current_is_kswapd() || cgroup_reclaim(sc)) |
6224 | return; |
6225 | |
6226 | /* Throttle if making no progress at high prioities. */ |
6227 | if (sc->priority == 1 && !sc->nr_reclaimed) |
6228 | reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_NOPROGRESS); |
6229 | } |
6230 | |
6231 | /* |
6232 | * This is the direct reclaim path, for page-allocating processes. We only |
6233 | * try to reclaim pages from zones which will satisfy the caller's allocation |
6234 | * request. |
6235 | * |
6236 | * If a zone is deemed to be full of pinned pages then just give it a light |
6237 | * scan then give up on it. |
6238 | */ |
6239 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
6240 | { |
6241 | struct zoneref *z; |
6242 | struct zone *zone; |
6243 | unsigned long nr_soft_reclaimed; |
6244 | unsigned long nr_soft_scanned; |
6245 | gfp_t orig_mask; |
6246 | pg_data_t *last_pgdat = NULL; |
6247 | pg_data_t *first_pgdat = NULL; |
6248 | |
6249 | /* |
6250 | * If the number of buffer_heads in the machine exceeds the maximum |
6251 | * allowed level, force direct reclaim to scan the highmem zone as |
6252 | * highmem pages could be pinning lowmem pages storing buffer_heads |
6253 | */ |
6254 | orig_mask = sc->gfp_mask; |
6255 | if (buffer_heads_over_limit) { |
6256 | sc->gfp_mask |= __GFP_HIGHMEM; |
6257 | sc->reclaim_idx = gfp_zone(flags: sc->gfp_mask); |
6258 | } |
6259 | |
6260 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
6261 | sc->reclaim_idx, sc->nodemask) { |
6262 | /* |
6263 | * Take care memory controller reclaiming has small influence |
6264 | * to global LRU. |
6265 | */ |
6266 | if (!cgroup_reclaim(sc)) { |
6267 | if (!cpuset_zone_allowed(z: zone, |
6268 | GFP_KERNEL | __GFP_HARDWALL)) |
6269 | continue; |
6270 | |
6271 | /* |
6272 | * If we already have plenty of memory free for |
6273 | * compaction in this zone, don't free any more. |
6274 | * Even though compaction is invoked for any |
6275 | * non-zero order, only frequent costly order |
6276 | * reclamation is disruptive enough to become a |
6277 | * noticeable problem, like transparent huge |
6278 | * page allocations. |
6279 | */ |
6280 | if (IS_ENABLED(CONFIG_COMPACTION) && |
6281 | sc->order > PAGE_ALLOC_COSTLY_ORDER && |
6282 | compaction_ready(zone, sc)) { |
6283 | sc->compaction_ready = true; |
6284 | continue; |
6285 | } |
6286 | |
6287 | /* |
6288 | * Shrink each node in the zonelist once. If the |
6289 | * zonelist is ordered by zone (not the default) then a |
6290 | * node may be shrunk multiple times but in that case |
6291 | * the user prefers lower zones being preserved. |
6292 | */ |
6293 | if (zone->zone_pgdat == last_pgdat) |
6294 | continue; |
6295 | |
6296 | /* |
6297 | * This steals pages from memory cgroups over softlimit |
6298 | * and returns the number of reclaimed pages and |
6299 | * scanned pages. This works for global memory pressure |
6300 | * and balancing, not for a memcg's limit. |
6301 | */ |
6302 | nr_soft_scanned = 0; |
6303 | nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat: zone->zone_pgdat, |
6304 | order: sc->order, gfp_mask: sc->gfp_mask, |
6305 | total_scanned: &nr_soft_scanned); |
6306 | sc->nr_reclaimed += nr_soft_reclaimed; |
6307 | sc->nr_scanned += nr_soft_scanned; |
6308 | /* need some check for avoid more shrink_zone() */ |
6309 | } |
6310 | |
6311 | if (!first_pgdat) |
6312 | first_pgdat = zone->zone_pgdat; |
6313 | |
6314 | /* See comment about same check for global reclaim above */ |
6315 | if (zone->zone_pgdat == last_pgdat) |
6316 | continue; |
6317 | last_pgdat = zone->zone_pgdat; |
6318 | shrink_node(pgdat: zone->zone_pgdat, sc); |
6319 | } |
6320 | |
6321 | if (first_pgdat) |
6322 | consider_reclaim_throttle(pgdat: first_pgdat, sc); |
6323 | |
6324 | /* |
6325 | * Restore to original mask to avoid the impact on the caller if we |
6326 | * promoted it to __GFP_HIGHMEM. |
6327 | */ |
6328 | sc->gfp_mask = orig_mask; |
6329 | } |
6330 | |
6331 | static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) |
6332 | { |
6333 | struct lruvec *target_lruvec; |
6334 | unsigned long refaults; |
6335 | |
6336 | if (lru_gen_enabled()) |
6337 | return; |
6338 | |
6339 | target_lruvec = mem_cgroup_lruvec(memcg: target_memcg, pgdat); |
6340 | refaults = lruvec_page_state(lruvec: target_lruvec, idx: WORKINGSET_ACTIVATE_ANON); |
6341 | target_lruvec->refaults[WORKINGSET_ANON] = refaults; |
6342 | refaults = lruvec_page_state(lruvec: target_lruvec, idx: WORKINGSET_ACTIVATE_FILE); |
6343 | target_lruvec->refaults[WORKINGSET_FILE] = refaults; |
6344 | } |
6345 | |
6346 | /* |
6347 | * This is the main entry point to direct page reclaim. |
6348 | * |
6349 | * If a full scan of the inactive list fails to free enough memory then we |
6350 | * are "out of memory" and something needs to be killed. |
6351 | * |
6352 | * If the caller is !__GFP_FS then the probability of a failure is reasonably |
6353 | * high - the zone may be full of dirty or under-writeback pages, which this |
6354 | * caller can't do much about. We kick the writeback threads and take explicit |
6355 | * naps in the hope that some of these pages can be written. But if the |
6356 | * allocating task holds filesystem locks which prevent writeout this might not |
6357 | * work, and the allocation attempt will fail. |
6358 | * |
6359 | * returns: 0, if no pages reclaimed |
6360 | * else, the number of pages reclaimed |
6361 | */ |
6362 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
6363 | struct scan_control *sc) |
6364 | { |
6365 | int initial_priority = sc->priority; |
6366 | pg_data_t *last_pgdat; |
6367 | struct zoneref *z; |
6368 | struct zone *zone; |
6369 | retry: |
6370 | delayacct_freepages_start(); |
6371 | |
6372 | if (!cgroup_reclaim(sc)) |
6373 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); |
6374 | |
6375 | do { |
6376 | if (!sc->proactive) |
6377 | vmpressure_prio(gfp: sc->gfp_mask, memcg: sc->target_mem_cgroup, |
6378 | prio: sc->priority); |
6379 | sc->nr_scanned = 0; |
6380 | shrink_zones(zonelist, sc); |
6381 | |
6382 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
6383 | break; |
6384 | |
6385 | if (sc->compaction_ready) |
6386 | break; |
6387 | |
6388 | /* |
6389 | * If we're getting trouble reclaiming, start doing |
6390 | * writepage even in laptop mode. |
6391 | */ |
6392 | if (sc->priority < DEF_PRIORITY - 2) |
6393 | sc->may_writepage = 1; |
6394 | } while (--sc->priority >= 0); |
6395 | |
6396 | last_pgdat = NULL; |
6397 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, |
6398 | sc->nodemask) { |
6399 | if (zone->zone_pgdat == last_pgdat) |
6400 | continue; |
6401 | last_pgdat = zone->zone_pgdat; |
6402 | |
6403 | snapshot_refaults(target_memcg: sc->target_mem_cgroup, pgdat: zone->zone_pgdat); |
6404 | |
6405 | if (cgroup_reclaim(sc)) { |
6406 | struct lruvec *lruvec; |
6407 | |
6408 | lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup, |
6409 | pgdat: zone->zone_pgdat); |
6410 | clear_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &lruvec->flags); |
6411 | } |
6412 | } |
6413 | |
6414 | delayacct_freepages_end(); |
6415 | |
6416 | if (sc->nr_reclaimed) |
6417 | return sc->nr_reclaimed; |
6418 | |
6419 | /* Aborted reclaim to try compaction? don't OOM, then */ |
6420 | if (sc->compaction_ready) |
6421 | return 1; |
6422 | |
6423 | /* |
6424 | * In most cases, direct reclaimers can do partial walks |
6425 | * through the cgroup tree to meet the reclaim goal while |
6426 | * keeping latency low. Since the iterator state is shared |
6427 | * among all direct reclaim invocations (to retain fairness |
6428 | * among cgroups), though, high concurrency can result in |
6429 | * individual threads not seeing enough cgroups to make |
6430 | * meaningful forward progress. Avoid false OOMs in this case. |
6431 | */ |
6432 | if (!sc->memcg_full_walk) { |
6433 | sc->priority = initial_priority; |
6434 | sc->memcg_full_walk = 1; |
6435 | goto retry; |
6436 | } |
6437 | |
6438 | /* |
6439 | * We make inactive:active ratio decisions based on the node's |
6440 | * composition of memory, but a restrictive reclaim_idx or a |
6441 | * memory.low cgroup setting can exempt large amounts of |
6442 | * memory from reclaim. Neither of which are very common, so |
6443 | * instead of doing costly eligibility calculations of the |
6444 | * entire cgroup subtree up front, we assume the estimates are |
6445 | * good, and retry with forcible deactivation if that fails. |
6446 | */ |
6447 | if (sc->skipped_deactivate) { |
6448 | sc->priority = initial_priority; |
6449 | sc->force_deactivate = 1; |
6450 | sc->skipped_deactivate = 0; |
6451 | goto retry; |
6452 | } |
6453 | |
6454 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
6455 | if (sc->memcg_low_skipped) { |
6456 | sc->priority = initial_priority; |
6457 | sc->force_deactivate = 0; |
6458 | sc->memcg_low_reclaim = 1; |
6459 | sc->memcg_low_skipped = 0; |
6460 | goto retry; |
6461 | } |
6462 | |
6463 | return 0; |
6464 | } |
6465 | |
6466 | static bool allow_direct_reclaim(pg_data_t *pgdat) |
6467 | { |
6468 | struct zone *zone; |
6469 | unsigned long pfmemalloc_reserve = 0; |
6470 | unsigned long free_pages = 0; |
6471 | int i; |
6472 | bool wmark_ok; |
6473 | |
6474 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
6475 | return true; |
6476 | |
6477 | for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { |
6478 | if (!zone_reclaimable_pages(zone)) |
6479 | continue; |
6480 | |
6481 | pfmemalloc_reserve += min_wmark_pages(z: zone); |
6482 | free_pages += zone_page_state_snapshot(zone, item: NR_FREE_PAGES); |
6483 | } |
6484 | |
6485 | /* If there are no reserves (unexpected config) then do not throttle */ |
6486 | if (!pfmemalloc_reserve) |
6487 | return true; |
6488 | |
6489 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
6490 | |
6491 | /* kswapd must be awake if processes are being throttled */ |
6492 | if (!wmark_ok && waitqueue_active(wq_head: &pgdat->kswapd_wait)) { |
6493 | if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) |
6494 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); |
6495 | |
6496 | wake_up_interruptible(&pgdat->kswapd_wait); |
6497 | } |
6498 | |
6499 | return wmark_ok; |
6500 | } |
6501 | |
6502 | /* |
6503 | * Throttle direct reclaimers if backing storage is backed by the network |
6504 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously |
6505 | * depleted. kswapd will continue to make progress and wake the processes |
6506 | * when the low watermark is reached. |
6507 | * |
6508 | * Returns true if a fatal signal was delivered during throttling. If this |
6509 | * happens, the page allocator should not consider triggering the OOM killer. |
6510 | */ |
6511 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
6512 | nodemask_t *nodemask) |
6513 | { |
6514 | struct zoneref *z; |
6515 | struct zone *zone; |
6516 | pg_data_t *pgdat = NULL; |
6517 | |
6518 | /* |
6519 | * Kernel threads should not be throttled as they may be indirectly |
6520 | * responsible for cleaning pages necessary for reclaim to make forward |
6521 | * progress. kjournald for example may enter direct reclaim while |
6522 | * committing a transaction where throttling it could forcing other |
6523 | * processes to block on log_wait_commit(). |
6524 | */ |
6525 | if (current->flags & PF_KTHREAD) |
6526 | goto out; |
6527 | |
6528 | /* |
6529 | * If a fatal signal is pending, this process should not throttle. |
6530 | * It should return quickly so it can exit and free its memory |
6531 | */ |
6532 | if (fatal_signal_pending(current)) |
6533 | goto out; |
6534 | |
6535 | /* |
6536 | * Check if the pfmemalloc reserves are ok by finding the first node |
6537 | * with a usable ZONE_NORMAL or lower zone. The expectation is that |
6538 | * GFP_KERNEL will be required for allocating network buffers when |
6539 | * swapping over the network so ZONE_HIGHMEM is unusable. |
6540 | * |
6541 | * Throttling is based on the first usable node and throttled processes |
6542 | * wait on a queue until kswapd makes progress and wakes them. There |
6543 | * is an affinity then between processes waking up and where reclaim |
6544 | * progress has been made assuming the process wakes on the same node. |
6545 | * More importantly, processes running on remote nodes will not compete |
6546 | * for remote pfmemalloc reserves and processes on different nodes |
6547 | * should make reasonable progress. |
6548 | */ |
6549 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
6550 | gfp_zone(gfp_mask), nodemask) { |
6551 | if (zone_idx(zone) > ZONE_NORMAL) |
6552 | continue; |
6553 | |
6554 | /* Throttle based on the first usable node */ |
6555 | pgdat = zone->zone_pgdat; |
6556 | if (allow_direct_reclaim(pgdat)) |
6557 | goto out; |
6558 | break; |
6559 | } |
6560 | |
6561 | /* If no zone was usable by the allocation flags then do not throttle */ |
6562 | if (!pgdat) |
6563 | goto out; |
6564 | |
6565 | /* Account for the throttling */ |
6566 | count_vm_event(item: PGSCAN_DIRECT_THROTTLE); |
6567 | |
6568 | /* |
6569 | * If the caller cannot enter the filesystem, it's possible that it |
6570 | * is due to the caller holding an FS lock or performing a journal |
6571 | * transaction in the case of a filesystem like ext[3|4]. In this case, |
6572 | * it is not safe to block on pfmemalloc_wait as kswapd could be |
6573 | * blocked waiting on the same lock. Instead, throttle for up to a |
6574 | * second before continuing. |
6575 | */ |
6576 | if (!(gfp_mask & __GFP_FS)) |
6577 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, |
6578 | allow_direct_reclaim(pgdat), HZ); |
6579 | else |
6580 | /* Throttle until kswapd wakes the process */ |
6581 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, |
6582 | allow_direct_reclaim(pgdat)); |
6583 | |
6584 | if (fatal_signal_pending(current)) |
6585 | return true; |
6586 | |
6587 | out: |
6588 | return false; |
6589 | } |
6590 | |
6591 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
6592 | gfp_t gfp_mask, nodemask_t *nodemask) |
6593 | { |
6594 | unsigned long nr_reclaimed; |
6595 | struct scan_control sc = { |
6596 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
6597 | .gfp_mask = current_gfp_context(flags: gfp_mask), |
6598 | .reclaim_idx = gfp_zone(flags: gfp_mask), |
6599 | .order = order, |
6600 | .nodemask = nodemask, |
6601 | .priority = DEF_PRIORITY, |
6602 | .may_writepage = !laptop_mode, |
6603 | .may_unmap = 1, |
6604 | .may_swap = 1, |
6605 | }; |
6606 | |
6607 | /* |
6608 | * scan_control uses s8 fields for order, priority, and reclaim_idx. |
6609 | * Confirm they are large enough for max values. |
6610 | */ |
6611 | BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); |
6612 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); |
6613 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); |
6614 | |
6615 | /* |
6616 | * Do not enter reclaim if fatal signal was delivered while throttled. |
6617 | * 1 is returned so that the page allocator does not OOM kill at this |
6618 | * point. |
6619 | */ |
6620 | if (throttle_direct_reclaim(gfp_mask: sc.gfp_mask, zonelist, nodemask)) |
6621 | return 1; |
6622 | |
6623 | set_task_reclaim_state(current, rs: &sc.reclaim_state); |
6624 | trace_mm_vmscan_direct_reclaim_begin(order, gfp_flags: sc.gfp_mask); |
6625 | |
6626 | nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc); |
6627 | |
6628 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); |
6629 | set_task_reclaim_state(current, NULL); |
6630 | |
6631 | return nr_reclaimed; |
6632 | } |
6633 | |
6634 | #ifdef CONFIG_MEMCG |
6635 | |
6636 | /* Only used by soft limit reclaim. Do not reuse for anything else. */ |
6637 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, |
6638 | gfp_t gfp_mask, bool noswap, |
6639 | pg_data_t *pgdat, |
6640 | unsigned long *nr_scanned) |
6641 | { |
6642 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
6643 | struct scan_control sc = { |
6644 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
6645 | .target_mem_cgroup = memcg, |
6646 | .may_writepage = !laptop_mode, |
6647 | .may_unmap = 1, |
6648 | .reclaim_idx = MAX_NR_ZONES - 1, |
6649 | .may_swap = !noswap, |
6650 | }; |
6651 | |
6652 | WARN_ON_ONCE(!current->reclaim_state); |
6653 | |
6654 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
6655 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
6656 | |
6657 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(order: sc.order, |
6658 | gfp_flags: sc.gfp_mask); |
6659 | |
6660 | /* |
6661 | * NOTE: Although we can get the priority field, using it |
6662 | * here is not a good idea, since it limits the pages we can scan. |
6663 | * if we don't reclaim here, the shrink_node from balance_pgdat |
6664 | * will pick up pages from other mem cgroup's as well. We hack |
6665 | * the priority and make it zero. |
6666 | */ |
6667 | shrink_lruvec(lruvec, sc: &sc); |
6668 | |
6669 | trace_mm_vmscan_memcg_softlimit_reclaim_end(nr_reclaimed: sc.nr_reclaimed); |
6670 | |
6671 | *nr_scanned = sc.nr_scanned; |
6672 | |
6673 | return sc.nr_reclaimed; |
6674 | } |
6675 | |
6676 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
6677 | unsigned long nr_pages, |
6678 | gfp_t gfp_mask, |
6679 | unsigned int reclaim_options, |
6680 | int *swappiness) |
6681 | { |
6682 | unsigned long nr_reclaimed; |
6683 | unsigned int noreclaim_flag; |
6684 | struct scan_control sc = { |
6685 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
6686 | .proactive_swappiness = swappiness, |
6687 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | |
6688 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
6689 | .reclaim_idx = MAX_NR_ZONES - 1, |
6690 | .target_mem_cgroup = memcg, |
6691 | .priority = DEF_PRIORITY, |
6692 | .may_writepage = !laptop_mode, |
6693 | .may_unmap = 1, |
6694 | .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), |
6695 | .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), |
6696 | }; |
6697 | /* |
6698 | * Traverse the ZONELIST_FALLBACK zonelist of the current node to put |
6699 | * equal pressure on all the nodes. This is based on the assumption that |
6700 | * the reclaim does not bail out early. |
6701 | */ |
6702 | struct zonelist *zonelist = node_zonelist(nid: numa_node_id(), flags: sc.gfp_mask); |
6703 | |
6704 | set_task_reclaim_state(current, rs: &sc.reclaim_state); |
6705 | trace_mm_vmscan_memcg_reclaim_begin(order: 0, gfp_flags: sc.gfp_mask); |
6706 | noreclaim_flag = memalloc_noreclaim_save(); |
6707 | |
6708 | nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc); |
6709 | |
6710 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
6711 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); |
6712 | set_task_reclaim_state(current, NULL); |
6713 | |
6714 | return nr_reclaimed; |
6715 | } |
6716 | #endif |
6717 | |
6718 | static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) |
6719 | { |
6720 | struct mem_cgroup *memcg; |
6721 | struct lruvec *lruvec; |
6722 | |
6723 | if (lru_gen_enabled()) { |
6724 | lru_gen_age_node(pgdat, sc); |
6725 | return; |
6726 | } |
6727 | |
6728 | lruvec = mem_cgroup_lruvec(NULL, pgdat); |
6729 | if (!can_age_anon_pages(lruvec, sc)) |
6730 | return; |
6731 | |
6732 | if (!inactive_is_low(lruvec, inactive_lru: LRU_INACTIVE_ANON)) |
6733 | return; |
6734 | |
6735 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
6736 | do { |
6737 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
6738 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
6739 | sc, lru: LRU_ACTIVE_ANON); |
6740 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
6741 | } while (memcg); |
6742 | } |
6743 | |
6744 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) |
6745 | { |
6746 | int i; |
6747 | struct zone *zone; |
6748 | |
6749 | /* |
6750 | * Check for watermark boosts top-down as the higher zones |
6751 | * are more likely to be boosted. Both watermarks and boosts |
6752 | * should not be checked at the same time as reclaim would |
6753 | * start prematurely when there is no boosting and a lower |
6754 | * zone is balanced. |
6755 | */ |
6756 | for (i = highest_zoneidx; i >= 0; i--) { |
6757 | zone = pgdat->node_zones + i; |
6758 | if (!managed_zone(zone)) |
6759 | continue; |
6760 | |
6761 | if (zone->watermark_boost) |
6762 | return true; |
6763 | } |
6764 | |
6765 | return false; |
6766 | } |
6767 | |
6768 | /* |
6769 | * Returns true if there is an eligible zone balanced for the request order |
6770 | * and highest_zoneidx |
6771 | */ |
6772 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) |
6773 | { |
6774 | int i; |
6775 | unsigned long mark = -1; |
6776 | struct zone *zone; |
6777 | |
6778 | /* |
6779 | * Check watermarks bottom-up as lower zones are more likely to |
6780 | * meet watermarks. |
6781 | */ |
6782 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { |
6783 | enum zone_stat_item item; |
6784 | unsigned long free_pages; |
6785 | |
6786 | if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) |
6787 | mark = promo_wmark_pages(z: zone); |
6788 | else |
6789 | mark = high_wmark_pages(z: zone); |
6790 | |
6791 | /* |
6792 | * In defrag_mode, watermarks must be met in whole |
6793 | * blocks to avoid polluting allocator fallbacks. |
6794 | * |
6795 | * However, kswapd usually cannot accomplish this on |
6796 | * its own and needs kcompactd support. Once it's |
6797 | * reclaimed a compaction gap, and kswapd_shrink_node |
6798 | * has dropped order, simply ensure there are enough |
6799 | * base pages for compaction, wake kcompactd & sleep. |
6800 | */ |
6801 | if (defrag_mode && order) |
6802 | item = NR_FREE_PAGES_BLOCKS; |
6803 | else |
6804 | item = NR_FREE_PAGES; |
6805 | |
6806 | /* |
6807 | * When there is a high number of CPUs in the system, |
6808 | * the cumulative error from the vmstat per-cpu cache |
6809 | * can blur the line between the watermarks. In that |
6810 | * case, be safe and get an accurate snapshot. |
6811 | * |
6812 | * TODO: NR_FREE_PAGES_BLOCKS moves in steps of |
6813 | * pageblock_nr_pages, while the vmstat pcp threshold |
6814 | * is limited to 125. On many configurations that |
6815 | * counter won't actually be per-cpu cached. But keep |
6816 | * things simple for now; revisit when somebody cares. |
6817 | */ |
6818 | free_pages = zone_page_state(zone, item); |
6819 | if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) |
6820 | free_pages = zone_page_state_snapshot(zone, item); |
6821 | |
6822 | if (__zone_watermark_ok(z: zone, order, mark, highest_zoneidx, |
6823 | alloc_flags: 0, free_pages)) |
6824 | return true; |
6825 | } |
6826 | |
6827 | /* |
6828 | * If a node has no managed zone within highest_zoneidx, it does not |
6829 | * need balancing by definition. This can happen if a zone-restricted |
6830 | * allocation tries to wake a remote kswapd. |
6831 | */ |
6832 | if (mark == -1) |
6833 | return true; |
6834 | |
6835 | return false; |
6836 | } |
6837 | |
6838 | /* Clear pgdat state for congested, dirty or under writeback. */ |
6839 | static void clear_pgdat_congested(pg_data_t *pgdat) |
6840 | { |
6841 | struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); |
6842 | |
6843 | clear_bit(nr: LRUVEC_NODE_CONGESTED, addr: &lruvec->flags); |
6844 | clear_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &lruvec->flags); |
6845 | clear_bit(nr: PGDAT_DIRTY, addr: &pgdat->flags); |
6846 | clear_bit(nr: PGDAT_WRITEBACK, addr: &pgdat->flags); |
6847 | } |
6848 | |
6849 | /* |
6850 | * Prepare kswapd for sleeping. This verifies that there are no processes |
6851 | * waiting in throttle_direct_reclaim() and that watermarks have been met. |
6852 | * |
6853 | * Returns true if kswapd is ready to sleep |
6854 | */ |
6855 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, |
6856 | int highest_zoneidx) |
6857 | { |
6858 | /* |
6859 | * The throttled processes are normally woken up in balance_pgdat() as |
6860 | * soon as allow_direct_reclaim() is true. But there is a potential |
6861 | * race between when kswapd checks the watermarks and a process gets |
6862 | * throttled. There is also a potential race if processes get |
6863 | * throttled, kswapd wakes, a large process exits thereby balancing the |
6864 | * zones, which causes kswapd to exit balance_pgdat() before reaching |
6865 | * the wake up checks. If kswapd is going to sleep, no process should |
6866 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If |
6867 | * the wake up is premature, processes will wake kswapd and get |
6868 | * throttled again. The difference from wake ups in balance_pgdat() is |
6869 | * that here we are under prepare_to_wait(). |
6870 | */ |
6871 | if (waitqueue_active(wq_head: &pgdat->pfmemalloc_wait)) |
6872 | wake_up_all(&pgdat->pfmemalloc_wait); |
6873 | |
6874 | /* Hopeless node, leave it to direct reclaim */ |
6875 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
6876 | return true; |
6877 | |
6878 | if (pgdat_balanced(pgdat, order, highest_zoneidx)) { |
6879 | clear_pgdat_congested(pgdat); |
6880 | return true; |
6881 | } |
6882 | |
6883 | return false; |
6884 | } |
6885 | |
6886 | /* |
6887 | * kswapd shrinks a node of pages that are at or below the highest usable |
6888 | * zone that is currently unbalanced. |
6889 | * |
6890 | * Returns true if kswapd scanned at least the requested number of pages to |
6891 | * reclaim or if the lack of progress was due to pages under writeback. |
6892 | * This is used to determine if the scanning priority needs to be raised. |
6893 | */ |
6894 | static bool kswapd_shrink_node(pg_data_t *pgdat, |
6895 | struct scan_control *sc) |
6896 | { |
6897 | struct zone *zone; |
6898 | int z; |
6899 | unsigned long nr_reclaimed = sc->nr_reclaimed; |
6900 | |
6901 | /* Reclaim a number of pages proportional to the number of zones */ |
6902 | sc->nr_to_reclaim = 0; |
6903 | for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { |
6904 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); |
6905 | } |
6906 | |
6907 | /* |
6908 | * Historically care was taken to put equal pressure on all zones but |
6909 | * now pressure is applied based on node LRU order. |
6910 | */ |
6911 | shrink_node(pgdat, sc); |
6912 | |
6913 | /* |
6914 | * Fragmentation may mean that the system cannot be rebalanced for |
6915 | * high-order allocations. If twice the allocation size has been |
6916 | * reclaimed then recheck watermarks only at order-0 to prevent |
6917 | * excessive reclaim. Assume that a process requested a high-order |
6918 | * can direct reclaim/compact. |
6919 | */ |
6920 | if (sc->order && sc->nr_reclaimed >= compact_gap(order: sc->order)) |
6921 | sc->order = 0; |
6922 | |
6923 | /* account for progress from mm_account_reclaimed_pages() */ |
6924 | return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; |
6925 | } |
6926 | |
6927 | /* Page allocator PCP high watermark is lowered if reclaim is active. */ |
6928 | static inline void |
6929 | update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) |
6930 | { |
6931 | int i; |
6932 | struct zone *zone; |
6933 | |
6934 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { |
6935 | if (active) |
6936 | set_bit(nr: ZONE_RECLAIM_ACTIVE, addr: &zone->flags); |
6937 | else |
6938 | clear_bit(nr: ZONE_RECLAIM_ACTIVE, addr: &zone->flags); |
6939 | } |
6940 | } |
6941 | |
6942 | static inline void |
6943 | set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) |
6944 | { |
6945 | update_reclaim_active(pgdat, highest_zoneidx, active: true); |
6946 | } |
6947 | |
6948 | static inline void |
6949 | clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) |
6950 | { |
6951 | update_reclaim_active(pgdat, highest_zoneidx, active: false); |
6952 | } |
6953 | |
6954 | /* |
6955 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones |
6956 | * that are eligible for use by the caller until at least one zone is |
6957 | * balanced. |
6958 | * |
6959 | * Returns the order kswapd finished reclaiming at. |
6960 | * |
6961 | * kswapd scans the zones in the highmem->normal->dma direction. It skips |
6962 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
6963 | * found to have free_pages <= high_wmark_pages(zone), any page in that zone |
6964 | * or lower is eligible for reclaim until at least one usable zone is |
6965 | * balanced. |
6966 | */ |
6967 | static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) |
6968 | { |
6969 | int i; |
6970 | unsigned long nr_soft_reclaimed; |
6971 | unsigned long nr_soft_scanned; |
6972 | unsigned long pflags; |
6973 | unsigned long nr_boost_reclaim; |
6974 | unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; |
6975 | bool boosted; |
6976 | struct zone *zone; |
6977 | struct scan_control sc = { |
6978 | .gfp_mask = GFP_KERNEL, |
6979 | .order = order, |
6980 | .may_unmap = 1, |
6981 | }; |
6982 | |
6983 | set_task_reclaim_state(current, rs: &sc.reclaim_state); |
6984 | psi_memstall_enter(flags: &pflags); |
6985 | __fs_reclaim_acquire(_THIS_IP_); |
6986 | |
6987 | count_vm_event(item: PAGEOUTRUN); |
6988 | |
6989 | /* |
6990 | * Account for the reclaim boost. Note that the zone boost is left in |
6991 | * place so that parallel allocations that are near the watermark will |
6992 | * stall or direct reclaim until kswapd is finished. |
6993 | */ |
6994 | nr_boost_reclaim = 0; |
6995 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { |
6996 | nr_boost_reclaim += zone->watermark_boost; |
6997 | zone_boosts[i] = zone->watermark_boost; |
6998 | } |
6999 | boosted = nr_boost_reclaim; |
7000 | |
7001 | restart: |
7002 | set_reclaim_active(pgdat, highest_zoneidx); |
7003 | sc.priority = DEF_PRIORITY; |
7004 | do { |
7005 | unsigned long nr_reclaimed = sc.nr_reclaimed; |
7006 | bool raise_priority = true; |
7007 | bool balanced; |
7008 | bool ret; |
7009 | bool was_frozen; |
7010 | |
7011 | sc.reclaim_idx = highest_zoneidx; |
7012 | |
7013 | /* |
7014 | * If the number of buffer_heads exceeds the maximum allowed |
7015 | * then consider reclaiming from all zones. This has a dual |
7016 | * purpose -- on 64-bit systems it is expected that |
7017 | * buffer_heads are stripped during active rotation. On 32-bit |
7018 | * systems, highmem pages can pin lowmem memory and shrinking |
7019 | * buffers can relieve lowmem pressure. Reclaim may still not |
7020 | * go ahead if all eligible zones for the original allocation |
7021 | * request are balanced to avoid excessive reclaim from kswapd. |
7022 | */ |
7023 | if (buffer_heads_over_limit) { |
7024 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { |
7025 | zone = pgdat->node_zones + i; |
7026 | if (!managed_zone(zone)) |
7027 | continue; |
7028 | |
7029 | sc.reclaim_idx = i; |
7030 | break; |
7031 | } |
7032 | } |
7033 | |
7034 | /* |
7035 | * If the pgdat is imbalanced then ignore boosting and preserve |
7036 | * the watermarks for a later time and restart. Note that the |
7037 | * zone watermarks will be still reset at the end of balancing |
7038 | * on the grounds that the normal reclaim should be enough to |
7039 | * re-evaluate if boosting is required when kswapd next wakes. |
7040 | */ |
7041 | balanced = pgdat_balanced(pgdat, order: sc.order, highest_zoneidx); |
7042 | if (!balanced && nr_boost_reclaim) { |
7043 | nr_boost_reclaim = 0; |
7044 | goto restart; |
7045 | } |
7046 | |
7047 | /* |
7048 | * If boosting is not active then only reclaim if there are no |
7049 | * eligible zones. Note that sc.reclaim_idx is not used as |
7050 | * buffer_heads_over_limit may have adjusted it. |
7051 | */ |
7052 | if (!nr_boost_reclaim && balanced) |
7053 | goto out; |
7054 | |
7055 | /* Limit the priority of boosting to avoid reclaim writeback */ |
7056 | if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) |
7057 | raise_priority = false; |
7058 | |
7059 | /* |
7060 | * Do not writeback or swap pages for boosted reclaim. The |
7061 | * intent is to relieve pressure not issue sub-optimal IO |
7062 | * from reclaim context. If no pages are reclaimed, the |
7063 | * reclaim will be aborted. |
7064 | */ |
7065 | sc.may_writepage = !laptop_mode && !nr_boost_reclaim; |
7066 | sc.may_swap = !nr_boost_reclaim; |
7067 | |
7068 | /* |
7069 | * Do some background aging, to give pages a chance to be |
7070 | * referenced before reclaiming. All pages are rotated |
7071 | * regardless of classzone as this is about consistent aging. |
7072 | */ |
7073 | kswapd_age_node(pgdat, sc: &sc); |
7074 | |
7075 | /* |
7076 | * If we're getting trouble reclaiming, start doing writepage |
7077 | * even in laptop mode. |
7078 | */ |
7079 | if (sc.priority < DEF_PRIORITY - 2) |
7080 | sc.may_writepage = 1; |
7081 | |
7082 | /* Call soft limit reclaim before calling shrink_node. */ |
7083 | sc.nr_scanned = 0; |
7084 | nr_soft_scanned = 0; |
7085 | nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, order: sc.order, |
7086 | gfp_mask: sc.gfp_mask, total_scanned: &nr_soft_scanned); |
7087 | sc.nr_reclaimed += nr_soft_reclaimed; |
7088 | |
7089 | /* |
7090 | * There should be no need to raise the scanning priority if |
7091 | * enough pages are already being scanned that that high |
7092 | * watermark would be met at 100% efficiency. |
7093 | */ |
7094 | if (kswapd_shrink_node(pgdat, sc: &sc)) |
7095 | raise_priority = false; |
7096 | |
7097 | /* |
7098 | * If the low watermark is met there is no need for processes |
7099 | * to be throttled on pfmemalloc_wait as they should not be |
7100 | * able to safely make forward progress. Wake them |
7101 | */ |
7102 | if (waitqueue_active(wq_head: &pgdat->pfmemalloc_wait) && |
7103 | allow_direct_reclaim(pgdat)) |
7104 | wake_up_all(&pgdat->pfmemalloc_wait); |
7105 | |
7106 | /* Check if kswapd should be suspending */ |
7107 | __fs_reclaim_release(_THIS_IP_); |
7108 | ret = kthread_freezable_should_stop(was_frozen: &was_frozen); |
7109 | __fs_reclaim_acquire(_THIS_IP_); |
7110 | if (was_frozen || ret) |
7111 | break; |
7112 | |
7113 | /* |
7114 | * Raise priority if scanning rate is too low or there was no |
7115 | * progress in reclaiming pages |
7116 | */ |
7117 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; |
7118 | nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); |
7119 | |
7120 | /* |
7121 | * If reclaim made no progress for a boost, stop reclaim as |
7122 | * IO cannot be queued and it could be an infinite loop in |
7123 | * extreme circumstances. |
7124 | */ |
7125 | if (nr_boost_reclaim && !nr_reclaimed) |
7126 | break; |
7127 | |
7128 | if (raise_priority || !nr_reclaimed) |
7129 | sc.priority--; |
7130 | } while (sc.priority >= 1); |
7131 | |
7132 | /* |
7133 | * Restart only if it went through the priority loop all the way, |
7134 | * but cache_trim_mode didn't work. |
7135 | */ |
7136 | if (!sc.nr_reclaimed && sc.priority < 1 && |
7137 | !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { |
7138 | sc.no_cache_trim_mode = 1; |
7139 | goto restart; |
7140 | } |
7141 | |
7142 | if (!sc.nr_reclaimed) |
7143 | pgdat->kswapd_failures++; |
7144 | |
7145 | out: |
7146 | clear_reclaim_active(pgdat, highest_zoneidx); |
7147 | |
7148 | /* If reclaim was boosted, account for the reclaim done in this pass */ |
7149 | if (boosted) { |
7150 | unsigned long flags; |
7151 | |
7152 | for (i = 0; i <= highest_zoneidx; i++) { |
7153 | if (!zone_boosts[i]) |
7154 | continue; |
7155 | |
7156 | /* Increments are under the zone lock */ |
7157 | zone = pgdat->node_zones + i; |
7158 | spin_lock_irqsave(&zone->lock, flags); |
7159 | zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); |
7160 | spin_unlock_irqrestore(lock: &zone->lock, flags); |
7161 | } |
7162 | |
7163 | /* |
7164 | * As there is now likely space, wakeup kcompact to defragment |
7165 | * pageblocks. |
7166 | */ |
7167 | wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); |
7168 | } |
7169 | |
7170 | snapshot_refaults(NULL, pgdat); |
7171 | __fs_reclaim_release(_THIS_IP_); |
7172 | psi_memstall_leave(flags: &pflags); |
7173 | set_task_reclaim_state(current, NULL); |
7174 | |
7175 | /* |
7176 | * Return the order kswapd stopped reclaiming at as |
7177 | * prepare_kswapd_sleep() takes it into account. If another caller |
7178 | * entered the allocator slow path while kswapd was awake, order will |
7179 | * remain at the higher level. |
7180 | */ |
7181 | return sc.order; |
7182 | } |
7183 | |
7184 | /* |
7185 | * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to |
7186 | * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is |
7187 | * not a valid index then either kswapd runs for first time or kswapd couldn't |
7188 | * sleep after previous reclaim attempt (node is still unbalanced). In that |
7189 | * case return the zone index of the previous kswapd reclaim cycle. |
7190 | */ |
7191 | static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, |
7192 | enum zone_type prev_highest_zoneidx) |
7193 | { |
7194 | enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); |
7195 | |
7196 | return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; |
7197 | } |
7198 | |
7199 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, |
7200 | unsigned int highest_zoneidx) |
7201 | { |
7202 | long remaining = 0; |
7203 | DEFINE_WAIT(wait); |
7204 | |
7205 | if (freezing(current) || kthread_should_stop()) |
7206 | return; |
7207 | |
7208 | prepare_to_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait, TASK_INTERRUPTIBLE); |
7209 | |
7210 | /* |
7211 | * Try to sleep for a short interval. Note that kcompactd will only be |
7212 | * woken if it is possible to sleep for a short interval. This is |
7213 | * deliberate on the assumption that if reclaim cannot keep an |
7214 | * eligible zone balanced that it's also unlikely that compaction will |
7215 | * succeed. |
7216 | */ |
7217 | if (prepare_kswapd_sleep(pgdat, order: reclaim_order, highest_zoneidx)) { |
7218 | /* |
7219 | * Compaction records what page blocks it recently failed to |
7220 | * isolate pages from and skips them in the future scanning. |
7221 | * When kswapd is going to sleep, it is reasonable to assume |
7222 | * that pages and compaction may succeed so reset the cache. |
7223 | */ |
7224 | reset_isolation_suitable(pgdat); |
7225 | |
7226 | /* |
7227 | * We have freed the memory, now we should compact it to make |
7228 | * allocation of the requested order possible. |
7229 | */ |
7230 | wakeup_kcompactd(pgdat, order: alloc_order, highest_zoneidx); |
7231 | |
7232 | remaining = schedule_timeout(HZ/10); |
7233 | |
7234 | /* |
7235 | * If woken prematurely then reset kswapd_highest_zoneidx and |
7236 | * order. The values will either be from a wakeup request or |
7237 | * the previous request that slept prematurely. |
7238 | */ |
7239 | if (remaining) { |
7240 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, |
7241 | kswapd_highest_zoneidx(pgdat, |
7242 | highest_zoneidx)); |
7243 | |
7244 | if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) |
7245 | WRITE_ONCE(pgdat->kswapd_order, reclaim_order); |
7246 | } |
7247 | |
7248 | finish_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait); |
7249 | prepare_to_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait, TASK_INTERRUPTIBLE); |
7250 | } |
7251 | |
7252 | /* |
7253 | * After a short sleep, check if it was a premature sleep. If not, then |
7254 | * go fully to sleep until explicitly woken up. |
7255 | */ |
7256 | if (!remaining && |
7257 | prepare_kswapd_sleep(pgdat, order: reclaim_order, highest_zoneidx)) { |
7258 | trace_mm_vmscan_kswapd_sleep(nid: pgdat->node_id); |
7259 | |
7260 | /* |
7261 | * vmstat counters are not perfectly accurate and the estimated |
7262 | * value for counters such as NR_FREE_PAGES can deviate from the |
7263 | * true value by nr_online_cpus * threshold. To avoid the zone |
7264 | * watermarks being breached while under pressure, we reduce the |
7265 | * per-cpu vmstat threshold while kswapd is awake and restore |
7266 | * them before going back to sleep. |
7267 | */ |
7268 | set_pgdat_percpu_threshold(pgdat, calculate_pressure: calculate_normal_threshold); |
7269 | |
7270 | if (!kthread_should_stop()) |
7271 | schedule(); |
7272 | |
7273 | set_pgdat_percpu_threshold(pgdat, calculate_pressure: calculate_pressure_threshold); |
7274 | } else { |
7275 | if (remaining) |
7276 | count_vm_event(item: KSWAPD_LOW_WMARK_HIT_QUICKLY); |
7277 | else |
7278 | count_vm_event(item: KSWAPD_HIGH_WMARK_HIT_QUICKLY); |
7279 | } |
7280 | finish_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait); |
7281 | } |
7282 | |
7283 | /* |
7284 | * The background pageout daemon, started as a kernel thread |
7285 | * from the init process. |
7286 | * |
7287 | * This basically trickles out pages so that we have _some_ |
7288 | * free memory available even if there is no other activity |
7289 | * that frees anything up. This is needed for things like routing |
7290 | * etc, where we otherwise might have all activity going on in |
7291 | * asynchronous contexts that cannot page things out. |
7292 | * |
7293 | * If there are applications that are active memory-allocators |
7294 | * (most normal use), this basically shouldn't matter. |
7295 | */ |
7296 | static int kswapd(void *p) |
7297 | { |
7298 | unsigned int alloc_order, reclaim_order; |
7299 | unsigned int highest_zoneidx = MAX_NR_ZONES - 1; |
7300 | pg_data_t *pgdat = (pg_data_t *)p; |
7301 | struct task_struct *tsk = current; |
7302 | |
7303 | /* |
7304 | * Tell the memory management that we're a "memory allocator", |
7305 | * and that if we need more memory we should get access to it |
7306 | * regardless (see "__alloc_pages()"). "kswapd" should |
7307 | * never get caught in the normal page freeing logic. |
7308 | * |
7309 | * (Kswapd normally doesn't need memory anyway, but sometimes |
7310 | * you need a small amount of memory in order to be able to |
7311 | * page out something else, and this flag essentially protects |
7312 | * us from recursively trying to free more memory as we're |
7313 | * trying to free the first piece of memory in the first place). |
7314 | */ |
7315 | tsk->flags |= PF_MEMALLOC | PF_KSWAPD; |
7316 | set_freezable(); |
7317 | |
7318 | WRITE_ONCE(pgdat->kswapd_order, 0); |
7319 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); |
7320 | atomic_set(v: &pgdat->nr_writeback_throttled, i: 0); |
7321 | for ( ; ; ) { |
7322 | bool was_frozen; |
7323 | |
7324 | alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); |
7325 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, |
7326 | prev_highest_zoneidx: highest_zoneidx); |
7327 | |
7328 | kswapd_try_sleep: |
7329 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, |
7330 | highest_zoneidx); |
7331 | |
7332 | /* Read the new order and highest_zoneidx */ |
7333 | alloc_order = READ_ONCE(pgdat->kswapd_order); |
7334 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, |
7335 | prev_highest_zoneidx: highest_zoneidx); |
7336 | WRITE_ONCE(pgdat->kswapd_order, 0); |
7337 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); |
7338 | |
7339 | if (kthread_freezable_should_stop(was_frozen: &was_frozen)) |
7340 | break; |
7341 | |
7342 | /* |
7343 | * We can speed up thawing tasks if we don't call balance_pgdat |
7344 | * after returning from the refrigerator |
7345 | */ |
7346 | if (was_frozen) |
7347 | continue; |
7348 | |
7349 | /* |
7350 | * Reclaim begins at the requested order but if a high-order |
7351 | * reclaim fails then kswapd falls back to reclaiming for |
7352 | * order-0. If that happens, kswapd will consider sleeping |
7353 | * for the order it finished reclaiming at (reclaim_order) |
7354 | * but kcompactd is woken to compact for the original |
7355 | * request (alloc_order). |
7356 | */ |
7357 | trace_mm_vmscan_kswapd_wake(nid: pgdat->node_id, zid: highest_zoneidx, |
7358 | order: alloc_order); |
7359 | reclaim_order = balance_pgdat(pgdat, order: alloc_order, |
7360 | highest_zoneidx); |
7361 | if (reclaim_order < alloc_order) |
7362 | goto kswapd_try_sleep; |
7363 | } |
7364 | |
7365 | tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); |
7366 | |
7367 | return 0; |
7368 | } |
7369 | |
7370 | /* |
7371 | * A zone is low on free memory or too fragmented for high-order memory. If |
7372 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's |
7373 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim |
7374 | * has failed or is not needed, still wake up kcompactd if only compaction is |
7375 | * needed. |
7376 | */ |
7377 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, |
7378 | enum zone_type highest_zoneidx) |
7379 | { |
7380 | pg_data_t *pgdat; |
7381 | enum zone_type curr_idx; |
7382 | |
7383 | if (!managed_zone(zone)) |
7384 | return; |
7385 | |
7386 | if (!cpuset_zone_allowed(z: zone, gfp_mask: gfp_flags)) |
7387 | return; |
7388 | |
7389 | pgdat = zone->zone_pgdat; |
7390 | curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); |
7391 | |
7392 | if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) |
7393 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); |
7394 | |
7395 | if (READ_ONCE(pgdat->kswapd_order) < order) |
7396 | WRITE_ONCE(pgdat->kswapd_order, order); |
7397 | |
7398 | if (!waitqueue_active(wq_head: &pgdat->kswapd_wait)) |
7399 | return; |
7400 | |
7401 | /* Hopeless node, leave it to direct reclaim if possible */ |
7402 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || |
7403 | (pgdat_balanced(pgdat, order, highest_zoneidx) && |
7404 | !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { |
7405 | /* |
7406 | * There may be plenty of free memory available, but it's too |
7407 | * fragmented for high-order allocations. Wake up kcompactd |
7408 | * and rely on compaction_suitable() to determine if it's |
7409 | * needed. If it fails, it will defer subsequent attempts to |
7410 | * ratelimit its work. |
7411 | */ |
7412 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) |
7413 | wakeup_kcompactd(pgdat, order, highest_zoneidx); |
7414 | return; |
7415 | } |
7416 | |
7417 | trace_mm_vmscan_wakeup_kswapd(nid: pgdat->node_id, zid: highest_zoneidx, order, |
7418 | gfp_flags); |
7419 | wake_up_interruptible(&pgdat->kswapd_wait); |
7420 | } |
7421 | |
7422 | #ifdef CONFIG_HIBERNATION |
7423 | /* |
7424 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
7425 | * freed pages. |
7426 | * |
7427 | * Rather than trying to age LRUs the aim is to preserve the overall |
7428 | * LRU order by reclaiming preferentially |
7429 | * inactive > active > active referenced > active mapped |
7430 | */ |
7431 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
7432 | { |
7433 | struct scan_control sc = { |
7434 | .nr_to_reclaim = nr_to_reclaim, |
7435 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
7436 | .reclaim_idx = MAX_NR_ZONES - 1, |
7437 | .priority = DEF_PRIORITY, |
7438 | .may_writepage = 1, |
7439 | .may_unmap = 1, |
7440 | .may_swap = 1, |
7441 | .hibernation_mode = 1, |
7442 | }; |
7443 | struct zonelist *zonelist = node_zonelist(nid: numa_node_id(), flags: sc.gfp_mask); |
7444 | unsigned long nr_reclaimed; |
7445 | unsigned int noreclaim_flag; |
7446 | |
7447 | fs_reclaim_acquire(gfp_mask: sc.gfp_mask); |
7448 | noreclaim_flag = memalloc_noreclaim_save(); |
7449 | set_task_reclaim_state(current, rs: &sc.reclaim_state); |
7450 | |
7451 | nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc); |
7452 | |
7453 | set_task_reclaim_state(current, NULL); |
7454 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
7455 | fs_reclaim_release(gfp_mask: sc.gfp_mask); |
7456 | |
7457 | return nr_reclaimed; |
7458 | } |
7459 | #endif /* CONFIG_HIBERNATION */ |
7460 | |
7461 | /* |
7462 | * This kswapd start function will be called by init and node-hot-add. |
7463 | */ |
7464 | void __meminit kswapd_run(int nid) |
7465 | { |
7466 | pg_data_t *pgdat = NODE_DATA(nid); |
7467 | |
7468 | pgdat_kswapd_lock(pgdat); |
7469 | if (!pgdat->kswapd) { |
7470 | pgdat->kswapd = kthread_create_on_node(threadfn: kswapd, data: pgdat, node: nid, namefmt: "kswapd%d", nid); |
7471 | if (IS_ERR(ptr: pgdat->kswapd)) { |
7472 | /* failure at boot is fatal */ |
7473 | pr_err("Failed to start kswapd on node %d,ret=%ld\n", |
7474 | nid, PTR_ERR(pgdat->kswapd)); |
7475 | BUG_ON(system_state < SYSTEM_RUNNING); |
7476 | pgdat->kswapd = NULL; |
7477 | } else { |
7478 | wake_up_process(tsk: pgdat->kswapd); |
7479 | } |
7480 | } |
7481 | pgdat_kswapd_unlock(pgdat); |
7482 | } |
7483 | |
7484 | /* |
7485 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
7486 | * be holding mem_hotplug_begin/done(). |
7487 | */ |
7488 | void __meminit kswapd_stop(int nid) |
7489 | { |
7490 | pg_data_t *pgdat = NODE_DATA(nid); |
7491 | struct task_struct *kswapd; |
7492 | |
7493 | pgdat_kswapd_lock(pgdat); |
7494 | kswapd = pgdat->kswapd; |
7495 | if (kswapd) { |
7496 | kthread_stop(k: kswapd); |
7497 | pgdat->kswapd = NULL; |
7498 | } |
7499 | pgdat_kswapd_unlock(pgdat); |
7500 | } |
7501 | |
7502 | static const struct ctl_table vmscan_sysctl_table[] = { |
7503 | { |
7504 | .procname = "swappiness", |
7505 | .data = &vm_swappiness, |
7506 | .maxlen = sizeof(vm_swappiness), |
7507 | .mode = 0644, |
7508 | .proc_handler = proc_dointvec_minmax, |
7509 | .extra1 = SYSCTL_ZERO, |
7510 | .extra2 = SYSCTL_TWO_HUNDRED, |
7511 | }, |
7512 | #ifdef CONFIG_NUMA |
7513 | { |
7514 | .procname = "zone_reclaim_mode", |
7515 | .data = &node_reclaim_mode, |
7516 | .maxlen = sizeof(node_reclaim_mode), |
7517 | .mode = 0644, |
7518 | .proc_handler = proc_dointvec_minmax, |
7519 | .extra1 = SYSCTL_ZERO, |
7520 | } |
7521 | #endif |
7522 | }; |
7523 | |
7524 | static int __init kswapd_init(void) |
7525 | { |
7526 | int nid; |
7527 | |
7528 | swap_setup(); |
7529 | for_each_node_state(nid, N_MEMORY) |
7530 | kswapd_run(nid); |
7531 | register_sysctl_init("vm", vmscan_sysctl_table); |
7532 | return 0; |
7533 | } |
7534 | |
7535 | module_init(kswapd_init) |
7536 | |
7537 | #ifdef CONFIG_NUMA |
7538 | /* |
7539 | * Node reclaim mode |
7540 | * |
7541 | * If non-zero call node_reclaim when the number of free pages falls below |
7542 | * the watermarks. |
7543 | */ |
7544 | int node_reclaim_mode __read_mostly; |
7545 | |
7546 | /* |
7547 | * Priority for NODE_RECLAIM. This determines the fraction of pages |
7548 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
7549 | * a zone. |
7550 | */ |
7551 | #define NODE_RECLAIM_PRIORITY 4 |
7552 | |
7553 | /* |
7554 | * Percentage of pages in a zone that must be unmapped for node_reclaim to |
7555 | * occur. |
7556 | */ |
7557 | int sysctl_min_unmapped_ratio = 1; |
7558 | |
7559 | /* |
7560 | * If the number of slab pages in a zone grows beyond this percentage then |
7561 | * slab reclaim needs to occur. |
7562 | */ |
7563 | int sysctl_min_slab_ratio = 5; |
7564 | |
7565 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) |
7566 | { |
7567 | unsigned long file_mapped = node_page_state(pgdat, item: NR_FILE_MAPPED); |
7568 | unsigned long file_lru = node_page_state(pgdat, item: NR_INACTIVE_FILE) + |
7569 | node_page_state(pgdat, item: NR_ACTIVE_FILE); |
7570 | |
7571 | /* |
7572 | * It's possible for there to be more file mapped pages than |
7573 | * accounted for by the pages on the file LRU lists because |
7574 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED |
7575 | */ |
7576 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; |
7577 | } |
7578 | |
7579 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ |
7580 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) |
7581 | { |
7582 | unsigned long nr_pagecache_reclaimable; |
7583 | unsigned long delta = 0; |
7584 | |
7585 | /* |
7586 | * If RECLAIM_UNMAP is set, then all file pages are considered |
7587 | * potentially reclaimable. Otherwise, we have to worry about |
7588 | * pages like swapcache and node_unmapped_file_pages() provides |
7589 | * a better estimate |
7590 | */ |
7591 | if (node_reclaim_mode & RECLAIM_UNMAP) |
7592 | nr_pagecache_reclaimable = node_page_state(pgdat, item: NR_FILE_PAGES); |
7593 | else |
7594 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); |
7595 | |
7596 | /* If we can't clean pages, remove dirty pages from consideration */ |
7597 | if (!(node_reclaim_mode & RECLAIM_WRITE)) |
7598 | delta += node_page_state(pgdat, item: NR_FILE_DIRTY); |
7599 | |
7600 | /* Watch for any possible underflows due to delta */ |
7601 | if (unlikely(delta > nr_pagecache_reclaimable)) |
7602 | delta = nr_pagecache_reclaimable; |
7603 | |
7604 | return nr_pagecache_reclaimable - delta; |
7605 | } |
7606 | |
7607 | /* |
7608 | * Try to free up some pages from this node through reclaim. |
7609 | */ |
7610 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
7611 | { |
7612 | /* Minimum pages needed in order to stay on node */ |
7613 | const unsigned long nr_pages = 1 << order; |
7614 | struct task_struct *p = current; |
7615 | unsigned int noreclaim_flag; |
7616 | struct scan_control sc = { |
7617 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
7618 | .gfp_mask = current_gfp_context(flags: gfp_mask), |
7619 | .order = order, |
7620 | .priority = NODE_RECLAIM_PRIORITY, |
7621 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), |
7622 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), |
7623 | .may_swap = 1, |
7624 | .reclaim_idx = gfp_zone(flags: gfp_mask), |
7625 | }; |
7626 | unsigned long pflags; |
7627 | |
7628 | trace_mm_vmscan_node_reclaim_begin(nid: pgdat->node_id, order, |
7629 | gfp_flags: sc.gfp_mask); |
7630 | |
7631 | cond_resched(); |
7632 | psi_memstall_enter(flags: &pflags); |
7633 | delayacct_freepages_start(); |
7634 | fs_reclaim_acquire(gfp_mask: sc.gfp_mask); |
7635 | /* |
7636 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
7637 | */ |
7638 | noreclaim_flag = memalloc_noreclaim_save(); |
7639 | set_task_reclaim_state(task: p, rs: &sc.reclaim_state); |
7640 | |
7641 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || |
7642 | node_page_state_pages(pgdat, item: NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { |
7643 | /* |
7644 | * Free memory by calling shrink node with increasing |
7645 | * priorities until we have enough memory freed. |
7646 | */ |
7647 | do { |
7648 | shrink_node(pgdat, sc: &sc); |
7649 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
7650 | } |
7651 | |
7652 | set_task_reclaim_state(task: p, NULL); |
7653 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
7654 | fs_reclaim_release(gfp_mask: sc.gfp_mask); |
7655 | psi_memstall_leave(flags: &pflags); |
7656 | delayacct_freepages_end(); |
7657 | |
7658 | trace_mm_vmscan_node_reclaim_end(nr_reclaimed: sc.nr_reclaimed); |
7659 | |
7660 | return sc.nr_reclaimed >= nr_pages; |
7661 | } |
7662 | |
7663 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
7664 | { |
7665 | int ret; |
7666 | |
7667 | /* |
7668 | * Node reclaim reclaims unmapped file backed pages and |
7669 | * slab pages if we are over the defined limits. |
7670 | * |
7671 | * A small portion of unmapped file backed pages is needed for |
7672 | * file I/O otherwise pages read by file I/O will be immediately |
7673 | * thrown out if the node is overallocated. So we do not reclaim |
7674 | * if less than a specified percentage of the node is used by |
7675 | * unmapped file backed pages. |
7676 | */ |
7677 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && |
7678 | node_page_state_pages(pgdat, item: NR_SLAB_RECLAIMABLE_B) <= |
7679 | pgdat->min_slab_pages) |
7680 | return NODE_RECLAIM_FULL; |
7681 | |
7682 | /* |
7683 | * Do not scan if the allocation should not be delayed. |
7684 | */ |
7685 | if (!gfpflags_allow_blocking(gfp_flags: gfp_mask) || (current->flags & PF_MEMALLOC)) |
7686 | return NODE_RECLAIM_NOSCAN; |
7687 | |
7688 | /* |
7689 | * Only run node reclaim on the local node or on nodes that do not |
7690 | * have associated processors. This will favor the local processor |
7691 | * over remote processors and spread off node memory allocations |
7692 | * as wide as possible. |
7693 | */ |
7694 | if (node_state(node: pgdat->node_id, state: N_CPU) && pgdat->node_id != numa_node_id()) |
7695 | return NODE_RECLAIM_NOSCAN; |
7696 | |
7697 | if (test_and_set_bit_lock(nr: PGDAT_RECLAIM_LOCKED, addr: &pgdat->flags)) |
7698 | return NODE_RECLAIM_NOSCAN; |
7699 | |
7700 | ret = __node_reclaim(pgdat, gfp_mask, order); |
7701 | clear_bit_unlock(nr: PGDAT_RECLAIM_LOCKED, addr: &pgdat->flags); |
7702 | |
7703 | if (ret) |
7704 | count_vm_event(item: PGSCAN_ZONE_RECLAIM_SUCCESS); |
7705 | else |
7706 | count_vm_event(item: PGSCAN_ZONE_RECLAIM_FAILED); |
7707 | |
7708 | return ret; |
7709 | } |
7710 | #endif |
7711 | |
7712 | /** |
7713 | * check_move_unevictable_folios - Move evictable folios to appropriate zone |
7714 | * lru list |
7715 | * @fbatch: Batch of lru folios to check. |
7716 | * |
7717 | * Checks folios for evictability, if an evictable folio is in the unevictable |
7718 | * lru list, moves it to the appropriate evictable lru list. This function |
7719 | * should be only used for lru folios. |
7720 | */ |
7721 | void check_move_unevictable_folios(struct folio_batch *fbatch) |
7722 | { |
7723 | struct lruvec *lruvec = NULL; |
7724 | int pgscanned = 0; |
7725 | int pgrescued = 0; |
7726 | int i; |
7727 | |
7728 | for (i = 0; i < fbatch->nr; i++) { |
7729 | struct folio *folio = fbatch->folios[i]; |
7730 | int nr_pages = folio_nr_pages(folio); |
7731 | |
7732 | pgscanned += nr_pages; |
7733 | |
7734 | /* block memcg migration while the folio moves between lrus */ |
7735 | if (!folio_test_clear_lru(folio)) |
7736 | continue; |
7737 | |
7738 | lruvec = folio_lruvec_relock_irq(folio, locked_lruvec: lruvec); |
7739 | if (folio_evictable(folio) && folio_test_unevictable(folio)) { |
7740 | lruvec_del_folio(lruvec, folio); |
7741 | folio_clear_unevictable(folio); |
7742 | lruvec_add_folio(lruvec, folio); |
7743 | pgrescued += nr_pages; |
7744 | } |
7745 | folio_set_lru(folio); |
7746 | } |
7747 | |
7748 | if (lruvec) { |
7749 | __count_vm_events(item: UNEVICTABLE_PGRESCUED, delta: pgrescued); |
7750 | __count_vm_events(item: UNEVICTABLE_PGSCANNED, delta: pgscanned); |
7751 | unlock_page_lruvec_irq(lruvec); |
7752 | } else if (pgscanned) { |
7753 | count_vm_events(item: UNEVICTABLE_PGSCANNED, delta: pgscanned); |
7754 | } |
7755 | } |
7756 | EXPORT_SYMBOL_GPL(check_move_unevictable_folios); |
7757 |
Definitions
- scan_control
- vm_swappiness
- cgroup_reclaim
- root_reclaim
- writeback_throttling_sane
- sc_swappiness
- set_task_reclaim_state
- flush_reclaim_state
- can_demote
- can_reclaim_anon_pages
- zone_reclaimable_pages
- lruvec_lru_size
- drop_slab_node
- drop_slab
- reclaimer_offset
- is_page_cache_freeable
- handle_write_error
- skip_throttle_noprogress
- reclaim_throttle
- __acct_reclaim_writeback
- pageout
- __remove_mapping
- remove_mapping
- folio_putback_lru
- folio_references
- lru_gen_set_refs
- folio_check_references
- folio_check_dirty_writeback
- alloc_migrate_folio
- demote_folio_list
- may_enter_fs
- shrink_folio_list
- reclaim_clean_pages_from_list
- update_lru_sizes
- isolate_lru_folios
- folio_isolate_lru
- too_many_isolated
- move_folios_to_lru
- current_may_throttle
- shrink_inactive_list
- shrink_active_list
- reclaim_folio_list
- reclaim_pages
- shrink_list
- inactive_is_low
- scan_balance
- prepare_scan_control
- calculate_pressure_balance
- get_scan_count
- can_age_anon_pages
- lru_gen_caps
- should_walk_mmu
- should_clear_pmd_young
- get_lruvec
- get_swappiness
- get_nr_gens
- seq_is_valid
- filter_gen_from_seq
- get_item_key
- test_bloom_filter
- update_bloom_filter
- reset_bloom_filter
- get_mm_list
- get_mm_state
- get_next_mm
- lru_gen_add_mm
- lru_gen_del_mm
- lru_gen_migrate_mm
- reset_mm_stats
- iterate_mm_list
- iterate_mm_list_nowalk
- ctrl_pos
- read_ctrl_pos
- reset_ctrl_pos
- positive_ctrl_err
- folio_update_gen
- folio_inc_gen
- update_batch_size
- reset_batch_size
- should_skip_vma
- get_next_vma
- get_pte_pfn
- get_pmd_pfn
- get_pfn_folio
- suitable_to_scan
- walk_update_folio
- walk_pte_range
- walk_pmd_range_locked
- walk_pmd_range
- walk_pud_range
- walk_mm
- set_mm_walk
- clear_mm_walk
- inc_min_seq
- try_to_inc_min_seq
- inc_max_seq
- try_to_inc_max_seq
- set_initial_priority
- lruvec_is_sizable
- lruvec_is_reclaimable
- lru_gen_min_ttl
- lru_gen_age_node
- lru_gen_look_around
- lru_gen_rotate_memcg
- lru_gen_online_memcg
- lru_gen_offline_memcg
- lru_gen_release_memcg
- lru_gen_soft_reclaim
- sort_folio
- isolate_folio
- scan_folios
- get_tier_idx
- get_type_to_scan
- isolate_folios
- evict_folios
- should_run_aging
- get_nr_to_scan
- should_abort_scan
- try_to_shrink_lruvec
- shrink_one
- shrink_many
- lru_gen_shrink_lruvec
- lru_gen_shrink_node
- state_is_valid
- fill_evictable
- drain_evictable
- lru_gen_change_state
- min_ttl_ms_show
- min_ttl_ms_store
- lru_gen_min_ttl_attr
- enabled_show
- enabled_store
- lru_gen_enabled_attr
- lru_gen_attrs
- lru_gen_attr_group
- lru_gen_seq_start
- lru_gen_seq_stop
- lru_gen_seq_next
- lru_gen_seq_show_full
- lru_gen_seq_show
- lru_gen_seq_ops
- run_aging
- run_eviction
- run_cmd
- lru_gen_seq_write
- lru_gen_seq_open
- lru_gen_rw_fops
- lru_gen_ro_fops
- lru_gen_init_pgdat
- lru_gen_init_lruvec
- lru_gen_init_memcg
- lru_gen_exit_memcg
- init_lru_gen
- shrink_lruvec
- in_reclaim_compaction
- should_continue_reclaim
- shrink_node_memcgs
- shrink_node
- compaction_ready
- consider_reclaim_throttle
- shrink_zones
- snapshot_refaults
- do_try_to_free_pages
- allow_direct_reclaim
- throttle_direct_reclaim
- try_to_free_pages
- mem_cgroup_shrink_node
- try_to_free_mem_cgroup_pages
- kswapd_age_node
- pgdat_watermark_boosted
- pgdat_balanced
- clear_pgdat_congested
- prepare_kswapd_sleep
- kswapd_shrink_node
- update_reclaim_active
- set_reclaim_active
- clear_reclaim_active
- balance_pgdat
- kswapd_highest_zoneidx
- kswapd_try_to_sleep
- kswapd
- wakeup_kswapd
- shrink_all_memory
- kswapd_run
- kswapd_stop
- vmscan_sysctl_table
- kswapd_init
- node_reclaim_mode
- sysctl_min_unmapped_ratio
- sysctl_min_slab_ratio
- node_unmapped_file_pages
- node_pagecache_reclaimable
- __node_reclaim
- node_reclaim
Improve your Profiling and Debugging skills
Find out more