1//===- SIInstrInfo.cpp - SI Instruction Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// SI Implementation of TargetInstrInfo.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIInstrInfo.h"
15#include "AMDGPU.h"
16#include "AMDGPUInstrInfo.h"
17#include "GCNHazardRecognizer.h"
18#include "GCNSubtarget.h"
19#include "SIMachineFunctionInfo.h"
20#include "Utils/AMDGPUBaseInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
23#include "llvm/CodeGen/LiveIntervals.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineScheduler.h"
28#include "llvm/CodeGen/RegisterScavenging.h"
29#include "llvm/CodeGen/ScheduleDAG.h"
30#include "llvm/IR/DiagnosticInfo.h"
31#include "llvm/IR/IntrinsicsAMDGPU.h"
32#include "llvm/MC/MCContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Target/TargetMachine.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE "si-instr-info"
39
40#define GET_INSTRINFO_CTOR_DTOR
41#include "AMDGPUGenInstrInfo.inc"
42
43namespace llvm {
44namespace AMDGPU {
45#define GET_D16ImageDimIntrinsics_IMPL
46#define GET_ImageDimIntrinsicTable_IMPL
47#define GET_RsrcIntrinsics_IMPL
48#include "AMDGPUGenSearchableTables.inc"
49}
50}
51
52
53// Must be at least 4 to be able to branch over minimum unconditional branch
54// code. This is only for making it possible to write reasonably small tests for
55// long branches.
56static cl::opt<unsigned>
57BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(Val: 16),
58 cl::desc("Restrict range of branch instructions (DEBUG)"));
59
60static cl::opt<bool> Fix16BitCopies(
61 "amdgpu-fix-16-bit-physreg-copies",
62 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"),
63 cl::init(Val: true),
64 cl::ReallyHidden);
65
66SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST)
67 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN),
68 RI(ST), ST(ST) {
69 SchedModel.init(&ST);
70}
71
72//===----------------------------------------------------------------------===//
73// TargetInstrInfo callbacks
74//===----------------------------------------------------------------------===//
75
76static unsigned getNumOperandsNoGlue(SDNode *Node) {
77 unsigned N = Node->getNumOperands();
78 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
79 --N;
80 return N;
81}
82
83/// Returns true if both nodes have the same value for the given
84/// operand \p Op, or if both nodes do not have this operand.
85static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
86 unsigned Opc0 = N0->getMachineOpcode();
87 unsigned Opc1 = N1->getMachineOpcode();
88
89 int Op0Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc0, NamedIdx: OpName);
90 int Op1Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc1, NamedIdx: OpName);
91
92 if (Op0Idx == -1 && Op1Idx == -1)
93 return true;
94
95
96 if ((Op0Idx == -1 && Op1Idx != -1) ||
97 (Op1Idx == -1 && Op0Idx != -1))
98 return false;
99
100 // getNamedOperandIdx returns the index for the MachineInstr's operands,
101 // which includes the result as the first operand. We are indexing into the
102 // MachineSDNode's operands, so we need to skip the result operand to get
103 // the real index.
104 --Op0Idx;
105 --Op1Idx;
106
107 return N0->getOperand(Num: Op0Idx) == N1->getOperand(Num: Op1Idx);
108}
109
110static bool canRemat(const MachineInstr &MI) {
111
112 if (SIInstrInfo::isVOP1(MI) || SIInstrInfo::isVOP2(MI) ||
113 SIInstrInfo::isVOP3(MI) || SIInstrInfo::isSDWA(MI) ||
114 SIInstrInfo::isSALU(MI))
115 return true;
116
117 if (SIInstrInfo::isSMRD(MI)) {
118 return !MI.memoperands_empty() &&
119 llvm::all_of(Range: MI.memoperands(), P: [](const MachineMemOperand *MMO) {
120 return MMO->isLoad() && MMO->isInvariant();
121 });
122 }
123
124 return false;
125}
126
127bool SIInstrInfo::isReallyTriviallyReMaterializable(
128 const MachineInstr &MI) const {
129
130 if (canRemat(MI)) {
131 // Normally VALU use of exec would block the rematerialization, but that
132 // is OK in this case to have an implicit exec read as all VALU do.
133 // We really want all of the generic logic for this except for this.
134
135 // Another potential implicit use is mode register. The core logic of
136 // the RA will not attempt rematerialization if mode is set anywhere
137 // in the function, otherwise it is safe since mode is not changed.
138
139 // There is difference to generic method which does not allow
140 // rematerialization if there are virtual register uses. We allow this,
141 // therefore this method includes SOP instructions as well.
142 if (!MI.hasImplicitDef() &&
143 MI.getNumImplicitOperands() == MI.getDesc().implicit_uses().size() &&
144 !MI.mayRaiseFPException())
145 return true;
146 }
147
148 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
149}
150
151// Returns true if the scalar result of a VALU instruction depends on exec.
152static bool resultDependsOnExec(const MachineInstr &MI) {
153 // Ignore comparisons which are only used masked with exec.
154 // This allows some hoisting/sinking of VALU comparisons.
155 if (MI.isCompare()) {
156 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
157 Register DstReg = MI.getOperand(i: 0).getReg();
158 if (!DstReg.isVirtual())
159 return true;
160 for (MachineInstr &Use : MRI.use_nodbg_instructions(Reg: DstReg)) {
161 switch (Use.getOpcode()) {
162 case AMDGPU::S_AND_SAVEEXEC_B32:
163 case AMDGPU::S_AND_SAVEEXEC_B64:
164 break;
165 case AMDGPU::S_AND_B32:
166 case AMDGPU::S_AND_B64:
167 if (!Use.readsRegister(AMDGPU::EXEC))
168 return true;
169 break;
170 default:
171 return true;
172 }
173 }
174 return false;
175 }
176
177 switch (MI.getOpcode()) {
178 default:
179 break;
180 case AMDGPU::V_READFIRSTLANE_B32:
181 return true;
182 }
183
184 return false;
185}
186
187bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const {
188 // Any implicit use of exec by VALU is not a real register read.
189 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() &&
190 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent());
191}
192
193bool SIInstrInfo::isSafeToSink(MachineInstr &MI,
194 MachineBasicBlock *SuccToSinkTo,
195 MachineCycleInfo *CI) const {
196 // Allow sinking if MI edits lane mask (divergent i1 in sgpr).
197 if (MI.getOpcode() == AMDGPU::SI_IF_BREAK)
198 return true;
199
200 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
201 // Check if sinking of MI would create temporal divergent use.
202 for (auto Op : MI.uses()) {
203 if (Op.isReg() && Op.getReg().isVirtual() &&
204 RI.isSGPRClass(MRI.getRegClass(Reg: Op.getReg()))) {
205 MachineInstr *SgprDef = MRI.getVRegDef(Reg: Op.getReg());
206
207 // SgprDef defined inside cycle
208 MachineCycle *FromCycle = CI->getCycle(Block: SgprDef->getParent());
209 if (FromCycle == nullptr)
210 continue;
211
212 MachineCycle *ToCycle = CI->getCycle(Block: SuccToSinkTo);
213 // Check if there is a FromCycle that contains SgprDef's basic block but
214 // does not contain SuccToSinkTo and also has divergent exit condition.
215 while (FromCycle && !FromCycle->contains(C: ToCycle)) {
216 // After structurize-cfg, there should be exactly one cycle exit.
217 SmallVector<MachineBasicBlock *, 1> ExitBlocks;
218 FromCycle->getExitBlocks(TmpStorage&: ExitBlocks);
219 assert(ExitBlocks.size() == 1);
220 assert(ExitBlocks[0]->getSinglePredecessor());
221
222 // FromCycle has divergent exit condition.
223 if (hasDivergentBranch(MBB: ExitBlocks[0]->getSinglePredecessor())) {
224 return false;
225 }
226
227 FromCycle = FromCycle->getParentCycle();
228 }
229 }
230 }
231
232 return true;
233}
234
235bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
236 int64_t &Offset0,
237 int64_t &Offset1) const {
238 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
239 return false;
240
241 unsigned Opc0 = Load0->getMachineOpcode();
242 unsigned Opc1 = Load1->getMachineOpcode();
243
244 // Make sure both are actually loads.
245 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
246 return false;
247
248 // A mayLoad instruction without a def is not a load. Likely a prefetch.
249 if (!get(Opc0).getNumDefs() || !get(Opc1).getNumDefs())
250 return false;
251
252 if (isDS(Opcode: Opc0) && isDS(Opcode: Opc1)) {
253
254 // FIXME: Handle this case:
255 if (getNumOperandsNoGlue(Node: Load0) != getNumOperandsNoGlue(Node: Load1))
256 return false;
257
258 // Check base reg.
259 if (Load0->getOperand(Num: 0) != Load1->getOperand(Num: 0))
260 return false;
261
262 // Skip read2 / write2 variants for simplicity.
263 // TODO: We should report true if the used offsets are adjacent (excluded
264 // st64 versions).
265 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
266 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
267 if (Offset0Idx == -1 || Offset1Idx == -1)
268 return false;
269
270 // XXX - be careful of dataless loads
271 // getNamedOperandIdx returns the index for MachineInstrs. Since they
272 // include the output in the operand list, but SDNodes don't, we need to
273 // subtract the index by one.
274 Offset0Idx -= get(Opc0).NumDefs;
275 Offset1Idx -= get(Opc1).NumDefs;
276 Offset0 = Load0->getConstantOperandVal(Num: Offset0Idx);
277 Offset1 = Load1->getConstantOperandVal(Num: Offset1Idx);
278 return true;
279 }
280
281 if (isSMRD(Opcode: Opc0) && isSMRD(Opcode: Opc1)) {
282 // Skip time and cache invalidation instructions.
283 if (!AMDGPU::hasNamedOperand(Opc0, AMDGPU::OpName::sbase) ||
284 !AMDGPU::hasNamedOperand(Opc1, AMDGPU::OpName::sbase))
285 return false;
286
287 unsigned NumOps = getNumOperandsNoGlue(Node: Load0);
288 if (NumOps != getNumOperandsNoGlue(Node: Load1))
289 return false;
290
291 // Check base reg.
292 if (Load0->getOperand(Num: 0) != Load1->getOperand(Num: 0))
293 return false;
294
295 // Match register offsets, if both register and immediate offsets present.
296 assert(NumOps == 4 || NumOps == 5);
297 if (NumOps == 5 && Load0->getOperand(Num: 1) != Load1->getOperand(Num: 1))
298 return false;
299
300 const ConstantSDNode *Load0Offset =
301 dyn_cast<ConstantSDNode>(Val: Load0->getOperand(Num: NumOps - 3));
302 const ConstantSDNode *Load1Offset =
303 dyn_cast<ConstantSDNode>(Val: Load1->getOperand(Num: NumOps - 3));
304
305 if (!Load0Offset || !Load1Offset)
306 return false;
307
308 Offset0 = Load0Offset->getZExtValue();
309 Offset1 = Load1Offset->getZExtValue();
310 return true;
311 }
312
313 // MUBUF and MTBUF can access the same addresses.
314 if ((isMUBUF(Opcode: Opc0) || isMTBUF(Opcode: Opc0)) && (isMUBUF(Opcode: Opc1) || isMTBUF(Opcode: Opc1))) {
315
316 // MUBUF and MTBUF have vaddr at different indices.
317 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
318 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
319 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
320 return false;
321
322 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
323 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
324
325 if (OffIdx0 == -1 || OffIdx1 == -1)
326 return false;
327
328 // getNamedOperandIdx returns the index for MachineInstrs. Since they
329 // include the output in the operand list, but SDNodes don't, we need to
330 // subtract the index by one.
331 OffIdx0 -= get(Opc0).NumDefs;
332 OffIdx1 -= get(Opc1).NumDefs;
333
334 SDValue Off0 = Load0->getOperand(Num: OffIdx0);
335 SDValue Off1 = Load1->getOperand(Num: OffIdx1);
336
337 // The offset might be a FrameIndexSDNode.
338 if (!isa<ConstantSDNode>(Val: Off0) || !isa<ConstantSDNode>(Val: Off1))
339 return false;
340
341 Offset0 = Off0->getAsZExtVal();
342 Offset1 = Off1->getAsZExtVal();
343 return true;
344 }
345
346 return false;
347}
348
349static bool isStride64(unsigned Opc) {
350 switch (Opc) {
351 case AMDGPU::DS_READ2ST64_B32:
352 case AMDGPU::DS_READ2ST64_B64:
353 case AMDGPU::DS_WRITE2ST64_B32:
354 case AMDGPU::DS_WRITE2ST64_B64:
355 return true;
356 default:
357 return false;
358 }
359}
360
361bool SIInstrInfo::getMemOperandsWithOffsetWidth(
362 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
363 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
364 const TargetRegisterInfo *TRI) const {
365 if (!LdSt.mayLoadOrStore())
366 return false;
367
368 unsigned Opc = LdSt.getOpcode();
369 OffsetIsScalable = false;
370 const MachineOperand *BaseOp, *OffsetOp;
371 int DataOpIdx;
372
373 if (isDS(MI: LdSt)) {
374 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr);
375 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
376 if (OffsetOp) {
377 // Normal, single offset LDS instruction.
378 if (!BaseOp) {
379 // DS_CONSUME/DS_APPEND use M0 for the base address.
380 // TODO: find the implicit use operand for M0 and use that as BaseOp?
381 return false;
382 }
383 BaseOps.push_back(Elt: BaseOp);
384 Offset = OffsetOp->getImm();
385 // Get appropriate operand, and compute width accordingly.
386 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
387 if (DataOpIdx == -1)
388 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
389 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
390 } else {
391 // The 2 offset instructions use offset0 and offset1 instead. We can treat
392 // these as a load with a single offset if the 2 offsets are consecutive.
393 // We will use this for some partially aligned loads.
394 const MachineOperand *Offset0Op =
395 getNamedOperand(LdSt, AMDGPU::OpName::offset0);
396 const MachineOperand *Offset1Op =
397 getNamedOperand(LdSt, AMDGPU::OpName::offset1);
398
399 unsigned Offset0 = Offset0Op->getImm() & 0xff;
400 unsigned Offset1 = Offset1Op->getImm() & 0xff;
401 if (Offset0 + 1 != Offset1)
402 return false;
403
404 // Each of these offsets is in element sized units, so we need to convert
405 // to bytes of the individual reads.
406
407 unsigned EltSize;
408 if (LdSt.mayLoad())
409 EltSize = TRI->getRegSizeInBits(RC: *getOpRegClass(MI: LdSt, OpNo: 0)) / 16;
410 else {
411 assert(LdSt.mayStore());
412 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
413 EltSize = TRI->getRegSizeInBits(RC: *getOpRegClass(MI: LdSt, OpNo: Data0Idx)) / 8;
414 }
415
416 if (isStride64(Opc))
417 EltSize *= 64;
418
419 BaseOps.push_back(Elt: BaseOp);
420 Offset = EltSize * Offset0;
421 // Get appropriate operand(s), and compute width accordingly.
422 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
423 if (DataOpIdx == -1) {
424 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
425 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
426 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
427 Width += getOpSize(MI: LdSt, OpNo: DataOpIdx);
428 } else {
429 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
430 }
431 }
432 return true;
433 }
434
435 if (isMUBUF(MI: LdSt) || isMTBUF(MI: LdSt)) {
436 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc);
437 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL
438 return false;
439 BaseOps.push_back(Elt: RSrc);
440 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
441 if (BaseOp && !BaseOp->isFI())
442 BaseOps.push_back(Elt: BaseOp);
443 const MachineOperand *OffsetImm =
444 getNamedOperand(LdSt, AMDGPU::OpName::offset);
445 Offset = OffsetImm->getImm();
446 const MachineOperand *SOffset =
447 getNamedOperand(LdSt, AMDGPU::OpName::soffset);
448 if (SOffset) {
449 if (SOffset->isReg())
450 BaseOps.push_back(Elt: SOffset);
451 else
452 Offset += SOffset->getImm();
453 }
454 // Get appropriate operand, and compute width accordingly.
455 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
456 if (DataOpIdx == -1)
457 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
458 if (DataOpIdx == -1) // LDS DMA
459 return false;
460 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
461 return true;
462 }
463
464 if (isMIMG(MI: LdSt)) {
465 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
466 BaseOps.push_back(Elt: &LdSt.getOperand(i: SRsrcIdx));
467 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
468 if (VAddr0Idx >= 0) {
469 // GFX10 possible NSA encoding.
470 for (int I = VAddr0Idx; I < SRsrcIdx; ++I)
471 BaseOps.push_back(Elt: &LdSt.getOperand(i: I));
472 } else {
473 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr));
474 }
475 Offset = 0;
476 // Get appropriate operand, and compute width accordingly.
477 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
478 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
479 return true;
480 }
481
482 if (isSMRD(MI: LdSt)) {
483 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase);
484 if (!BaseOp) // e.g. S_MEMTIME
485 return false;
486 BaseOps.push_back(Elt: BaseOp);
487 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
488 Offset = OffsetOp ? OffsetOp->getImm() : 0;
489 // Get appropriate operand, and compute width accordingly.
490 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst);
491 if (DataOpIdx == -1)
492 return false;
493 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
494 return true;
495 }
496
497 if (isFLAT(MI: LdSt)) {
498 // Instructions have either vaddr or saddr or both or none.
499 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
500 if (BaseOp)
501 BaseOps.push_back(Elt: BaseOp);
502 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr);
503 if (BaseOp)
504 BaseOps.push_back(Elt: BaseOp);
505 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm();
506 // Get appropriate operand, and compute width accordingly.
507 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
508 if (DataOpIdx == -1)
509 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
510 if (DataOpIdx == -1) // LDS DMA
511 return false;
512 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
513 return true;
514 }
515
516 return false;
517}
518
519static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
520 ArrayRef<const MachineOperand *> BaseOps1,
521 const MachineInstr &MI2,
522 ArrayRef<const MachineOperand *> BaseOps2) {
523 // Only examine the first "base" operand of each instruction, on the
524 // assumption that it represents the real base address of the memory access.
525 // Other operands are typically offsets or indices from this base address.
526 if (BaseOps1.front()->isIdenticalTo(Other: *BaseOps2.front()))
527 return true;
528
529 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
530 return false;
531
532 auto MO1 = *MI1.memoperands_begin();
533 auto MO2 = *MI2.memoperands_begin();
534 if (MO1->getAddrSpace() != MO2->getAddrSpace())
535 return false;
536
537 auto Base1 = MO1->getValue();
538 auto Base2 = MO2->getValue();
539 if (!Base1 || !Base2)
540 return false;
541 Base1 = getUnderlyingObject(V: Base1);
542 Base2 = getUnderlyingObject(V: Base2);
543
544 if (isa<UndefValue>(Val: Base1) || isa<UndefValue>(Val: Base2))
545 return false;
546
547 return Base1 == Base2;
548}
549
550bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
551 int64_t Offset1, bool OffsetIsScalable1,
552 ArrayRef<const MachineOperand *> BaseOps2,
553 int64_t Offset2, bool OffsetIsScalable2,
554 unsigned ClusterSize,
555 unsigned NumBytes) const {
556 // If the mem ops (to be clustered) do not have the same base ptr, then they
557 // should not be clustered
558 if (!BaseOps1.empty() && !BaseOps2.empty()) {
559 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
560 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
561 if (!memOpsHaveSameBasePtr(MI1: FirstLdSt, BaseOps1, MI2: SecondLdSt, BaseOps2))
562 return false;
563 } else if (!BaseOps1.empty() || !BaseOps2.empty()) {
564 // If only one base op is empty, they do not have the same base ptr
565 return false;
566 }
567
568 // In order to avoid register pressure, on an average, the number of DWORDS
569 // loaded together by all clustered mem ops should not exceed 8. This is an
570 // empirical value based on certain observations and performance related
571 // experiments.
572 // The good thing about this heuristic is - it avoids clustering of too many
573 // sub-word loads, and also avoids clustering of wide loads. Below is the
574 // brief summary of how the heuristic behaves for various `LoadSize`.
575 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops
576 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops
577 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops
578 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops
579 // (5) LoadSize >= 17: do not cluster
580 const unsigned LoadSize = NumBytes / ClusterSize;
581 const unsigned NumDWORDs = ((LoadSize + 3) / 4) * ClusterSize;
582 return NumDWORDs <= 8;
583}
584
585// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
586// the first 16 loads will be interleaved with the stores, and the next 16 will
587// be clustered as expected. It should really split into 2 16 store batches.
588//
589// Loads are clustered until this returns false, rather than trying to schedule
590// groups of stores. This also means we have to deal with saying different
591// address space loads should be clustered, and ones which might cause bank
592// conflicts.
593//
594// This might be deprecated so it might not be worth that much effort to fix.
595bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
596 int64_t Offset0, int64_t Offset1,
597 unsigned NumLoads) const {
598 assert(Offset1 > Offset0 &&
599 "Second offset should be larger than first offset!");
600 // If we have less than 16 loads in a row, and the offsets are within 64
601 // bytes, then schedule together.
602
603 // A cacheline is 64 bytes (for global memory).
604 return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
605}
606
607static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB,
608 MachineBasicBlock::iterator MI,
609 const DebugLoc &DL, MCRegister DestReg,
610 MCRegister SrcReg, bool KillSrc,
611 const char *Msg = "illegal VGPR to SGPR copy") {
612 MachineFunction *MF = MBB.getParent();
613 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error);
614 LLVMContext &C = MF->getFunction().getContext();
615 C.diagnose(DI: IllegalCopy);
616
617 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg)
618 .addReg(SrcReg, getKillRegState(KillSrc));
619}
620
621/// Handle copying from SGPR to AGPR, or from AGPR to AGPR on GFX908. It is not
622/// possible to have a direct copy in these cases on GFX908, so an intermediate
623/// VGPR copy is required.
624static void indirectCopyToAGPR(const SIInstrInfo &TII,
625 MachineBasicBlock &MBB,
626 MachineBasicBlock::iterator MI,
627 const DebugLoc &DL, MCRegister DestReg,
628 MCRegister SrcReg, bool KillSrc,
629 RegScavenger &RS, bool RegsOverlap,
630 Register ImpDefSuperReg = Register(),
631 Register ImpUseSuperReg = Register()) {
632 assert((TII.getSubtarget().hasMAIInsts() &&
633 !TII.getSubtarget().hasGFX90AInsts()) &&
634 "Expected GFX908 subtarget.");
635
636 assert((AMDGPU::SReg_32RegClass.contains(SrcReg) ||
637 AMDGPU::AGPR_32RegClass.contains(SrcReg)) &&
638 "Source register of the copy should be either an SGPR or an AGPR.");
639
640 assert(AMDGPU::AGPR_32RegClass.contains(DestReg) &&
641 "Destination register of the copy should be an AGPR.");
642
643 const SIRegisterInfo &RI = TII.getRegisterInfo();
644
645 // First try to find defining accvgpr_write to avoid temporary registers.
646 // In the case of copies of overlapping AGPRs, we conservatively do not
647 // reuse previous accvgpr_writes. Otherwise, we may incorrectly pick up
648 // an accvgpr_write used for this same copy due to implicit-defs
649 if (!RegsOverlap) {
650 for (auto Def = MI, E = MBB.begin(); Def != E; ) {
651 --Def;
652
653 if (!Def->modifiesRegister(SrcReg, &RI))
654 continue;
655
656 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
657 Def->getOperand(0).getReg() != SrcReg)
658 break;
659
660 MachineOperand &DefOp = Def->getOperand(i: 1);
661 assert(DefOp.isReg() || DefOp.isImm());
662
663 if (DefOp.isReg()) {
664 bool SafeToPropagate = true;
665 // Check that register source operand is not clobbered before MI.
666 // Immediate operands are always safe to propagate.
667 for (auto I = Def; I != MI && SafeToPropagate; ++I)
668 if (I->modifiesRegister(DefOp.getReg(), &RI))
669 SafeToPropagate = false;
670
671 if (!SafeToPropagate)
672 break;
673
674 DefOp.setIsKill(false);
675 }
676
677 MachineInstrBuilder Builder =
678 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
679 .add(DefOp);
680 if (ImpDefSuperReg)
681 Builder.addReg(RegNo: ImpDefSuperReg, flags: RegState::Define | RegState::Implicit);
682
683 if (ImpUseSuperReg) {
684 Builder.addReg(RegNo: ImpUseSuperReg,
685 flags: getKillRegState(B: KillSrc) | RegState::Implicit);
686 }
687
688 return;
689 }
690 }
691
692 RS.enterBasicBlockEnd(MBB);
693 RS.backward(I: std::next(x: MI));
694
695 // Ideally we want to have three registers for a long reg_sequence copy
696 // to hide 2 waitstates between v_mov_b32 and accvgpr_write.
697 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
698 *MBB.getParent());
699
700 // Registers in the sequence are allocated contiguously so we can just
701 // use register number to pick one of three round-robin temps.
702 unsigned RegNo = (DestReg - AMDGPU::AGPR0) % 3;
703 Register Tmp =
704 MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getVGPRForAGPRCopy();
705 assert(MBB.getParent()->getRegInfo().isReserved(Tmp) &&
706 "VGPR used for an intermediate copy should have been reserved.");
707
708 // Only loop through if there are any free registers left. We don't want to
709 // spill.
710 while (RegNo--) {
711 Register Tmp2 = RS.scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI,
712 /* RestoreAfter */ false, 0,
713 /* AllowSpill */ false);
714 if (!Tmp2 || RI.getHWRegIndex(Reg: Tmp2) >= MaxVGPRs)
715 break;
716 Tmp = Tmp2;
717 RS.setRegUsed(Reg: Tmp);
718 }
719
720 // Insert copy to temporary VGPR.
721 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32;
722 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) {
723 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64;
724 } else {
725 assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
726 }
727
728 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp)
729 .addReg(SrcReg, getKillRegState(B: KillSrc));
730 if (ImpUseSuperReg) {
731 UseBuilder.addReg(RegNo: ImpUseSuperReg,
732 flags: getKillRegState(B: KillSrc) | RegState::Implicit);
733 }
734
735 MachineInstrBuilder DefBuilder
736 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
737 .addReg(Tmp, RegState::Kill);
738
739 if (ImpDefSuperReg)
740 DefBuilder.addReg(RegNo: ImpDefSuperReg, flags: RegState::Define | RegState::Implicit);
741}
742
743static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB,
744 MachineBasicBlock::iterator MI, const DebugLoc &DL,
745 MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
746 const TargetRegisterClass *RC, bool Forward) {
747 const SIRegisterInfo &RI = TII.getRegisterInfo();
748 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4);
749 MachineBasicBlock::iterator I = MI;
750 MachineInstr *FirstMI = nullptr, *LastMI = nullptr;
751
752 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) {
753 int16_t SubIdx = BaseIndices[Idx];
754 Register DestSubReg = RI.getSubReg(DestReg, SubIdx);
755 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
756 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
757 unsigned Opcode = AMDGPU::S_MOV_B32;
758
759 // Is SGPR aligned? If so try to combine with next.
760 bool AlignedDest = ((DestSubReg - AMDGPU::SGPR0) % 2) == 0;
761 bool AlignedSrc = ((SrcSubReg - AMDGPU::SGPR0) % 2) == 0;
762 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) {
763 // Can use SGPR64 copy
764 unsigned Channel = RI.getChannelFromSubReg(SubReg: SubIdx);
765 SubIdx = RI.getSubRegFromChannel(Channel, NumRegs: 2);
766 DestSubReg = RI.getSubReg(DestReg, SubIdx);
767 SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
768 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
769 Opcode = AMDGPU::S_MOV_B64;
770 Idx++;
771 }
772
773 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), DestSubReg)
774 .addReg(SrcSubReg)
775 .addReg(SrcReg, RegState::Implicit);
776
777 if (!FirstMI)
778 FirstMI = LastMI;
779
780 if (!Forward)
781 I--;
782 }
783
784 assert(FirstMI && LastMI);
785 if (!Forward)
786 std::swap(a&: FirstMI, b&: LastMI);
787
788 FirstMI->addOperand(
789 Op: MachineOperand::CreateReg(Reg: DestReg, isDef: true /*IsDef*/, isImp: true /*IsImp*/));
790
791 if (KillSrc)
792 LastMI->addRegisterKilled(SrcReg, &RI);
793}
794
795void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
796 MachineBasicBlock::iterator MI,
797 const DebugLoc &DL, MCRegister DestReg,
798 MCRegister SrcReg, bool KillSrc) const {
799 const TargetRegisterClass *RC = RI.getPhysRegBaseClass(DestReg);
800 unsigned Size = RI.getRegSizeInBits(*RC);
801 const TargetRegisterClass *SrcRC = RI.getPhysRegBaseClass(SrcReg);
802 unsigned SrcSize = RI.getRegSizeInBits(*SrcRC);
803
804 // The rest of copyPhysReg assumes Src and Dst size are the same size.
805 // TODO-GFX11_16BIT If all true 16 bit instruction patterns are completed can
806 // we remove Fix16BitCopies and this code block?
807 if (Fix16BitCopies) {
808 if (((Size == 16) != (SrcSize == 16))) {
809 // Non-VGPR Src and Dst will later be expanded back to 32 bits.
810 assert(ST.hasTrue16BitInsts());
811 MCRegister &RegToFix = (Size == 32) ? DestReg : SrcReg;
812 MCRegister SubReg = RI.getSubReg(RegToFix, AMDGPU::lo16);
813 RegToFix = SubReg;
814
815 if (DestReg == SrcReg) {
816 // Identity copy. Insert empty bundle since ExpandPostRA expects an
817 // instruction here.
818 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE));
819 return;
820 }
821 RC = RI.getPhysRegBaseClass(DestReg);
822 Size = RI.getRegSizeInBits(*RC);
823 SrcRC = RI.getPhysRegBaseClass(SrcReg);
824 SrcSize = RI.getRegSizeInBits(*SrcRC);
825 }
826 }
827
828 if (RC == &AMDGPU::VGPR_32RegClass) {
829 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
830 AMDGPU::SReg_32RegClass.contains(SrcReg) ||
831 AMDGPU::AGPR_32RegClass.contains(SrcReg));
832 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ?
833 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32;
834 BuildMI(MBB, MI, DL, get(Opc), DestReg)
835 .addReg(SrcReg, getKillRegState(B: KillSrc));
836 return;
837 }
838
839 if (RC == &AMDGPU::SReg_32_XM0RegClass ||
840 RC == &AMDGPU::SReg_32RegClass) {
841 if (SrcReg == AMDGPU::SCC) {
842 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg)
843 .addImm(1)
844 .addImm(0);
845 return;
846 }
847
848 if (DestReg == AMDGPU::VCC_LO) {
849 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) {
850 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO)
851 .addReg(SrcReg, getKillRegState(KillSrc));
852 } else {
853 // FIXME: Hack until VReg_1 removed.
854 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
855 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
856 .addImm(0)
857 .addReg(SrcReg, getKillRegState(KillSrc));
858 }
859
860 return;
861 }
862
863 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) {
864 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
865 return;
866 }
867
868 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
869 .addReg(SrcReg, getKillRegState(KillSrc));
870 return;
871 }
872
873 if (RC == &AMDGPU::SReg_64RegClass) {
874 if (SrcReg == AMDGPU::SCC) {
875 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg)
876 .addImm(1)
877 .addImm(0);
878 return;
879 }
880
881 if (DestReg == AMDGPU::VCC) {
882 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
883 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
884 .addReg(SrcReg, getKillRegState(KillSrc));
885 } else {
886 // FIXME: Hack until VReg_1 removed.
887 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
888 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
889 .addImm(0)
890 .addReg(SrcReg, getKillRegState(KillSrc));
891 }
892
893 return;
894 }
895
896 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) {
897 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
898 return;
899 }
900
901 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
902 .addReg(SrcReg, getKillRegState(KillSrc));
903 return;
904 }
905
906 if (DestReg == AMDGPU::SCC) {
907 // Copying 64-bit or 32-bit sources to SCC barely makes sense,
908 // but SelectionDAG emits such copies for i1 sources.
909 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
910 // This copy can only be produced by patterns
911 // with explicit SCC, which are known to be enabled
912 // only for subtargets with S_CMP_LG_U64 present.
913 assert(ST.hasScalarCompareEq64());
914 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64))
915 .addReg(SrcReg, getKillRegState(KillSrc))
916 .addImm(0);
917 } else {
918 assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
919 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32))
920 .addReg(SrcReg, getKillRegState(KillSrc))
921 .addImm(0);
922 }
923
924 return;
925 }
926
927 if (RC == &AMDGPU::AGPR_32RegClass) {
928 if (AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
929 (ST.hasGFX90AInsts() && AMDGPU::SReg_32RegClass.contains(SrcReg))) {
930 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
931 .addReg(SrcReg, getKillRegState(KillSrc));
932 return;
933 }
934
935 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) {
936 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg)
937 .addReg(SrcReg, getKillRegState(KillSrc));
938 return;
939 }
940
941 // FIXME: Pass should maintain scavenger to avoid scan through the block on
942 // every AGPR spill.
943 RegScavenger RS;
944 const bool Overlap = RI.regsOverlap(SrcReg, DestReg);
945 indirectCopyToAGPR(TII: *this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS, RegsOverlap: Overlap);
946 return;
947 }
948
949 if (Size == 16) {
950 assert(AMDGPU::VGPR_16RegClass.contains(SrcReg) ||
951 AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
952 AMDGPU::AGPR_LO16RegClass.contains(SrcReg));
953
954 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg);
955 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg);
956 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg);
957 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
958 bool DstLow = !AMDGPU::isHi(DestReg, RI);
959 bool SrcLow = !AMDGPU::isHi(SrcReg, RI);
960 MCRegister NewDestReg = RI.get32BitRegister(Reg: DestReg);
961 MCRegister NewSrcReg = RI.get32BitRegister(Reg: SrcReg);
962
963 if (IsSGPRDst) {
964 if (!IsSGPRSrc) {
965 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
966 return;
967 }
968
969 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg)
970 .addReg(NewSrcReg, getKillRegState(KillSrc));
971 return;
972 }
973
974 if (IsAGPRDst || IsAGPRSrc) {
975 if (!DstLow || !SrcLow) {
976 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
977 Msg: "Cannot use hi16 subreg with an AGPR!");
978 }
979
980 copyPhysReg(MBB, MI, DL, DestReg: NewDestReg, SrcReg: NewSrcReg, KillSrc);
981 return;
982 }
983
984 if (ST.hasTrue16BitInsts()) {
985 if (IsSGPRSrc) {
986 assert(SrcLow);
987 SrcReg = NewSrcReg;
988 }
989 // Use the smaller instruction encoding if possible.
990 if (AMDGPU::VGPR_16_Lo128RegClass.contains(DestReg) &&
991 (IsSGPRSrc || AMDGPU::VGPR_16_Lo128RegClass.contains(SrcReg))) {
992 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e32), DestReg)
993 .addReg(SrcReg);
994 } else {
995 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e64), DestReg)
996 .addImm(0) // src0_modifiers
997 .addReg(SrcReg)
998 .addImm(0); // op_sel
999 }
1000 return;
1001 }
1002
1003 if (IsSGPRSrc && !ST.hasSDWAScalar()) {
1004 if (!DstLow || !SrcLow) {
1005 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
1006 Msg: "Cannot use hi16 subreg on VI!");
1007 }
1008
1009 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg)
1010 .addReg(NewSrcReg, getKillRegState(KillSrc));
1011 return;
1012 }
1013
1014 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg)
1015 .addImm(0) // src0_modifiers
1016 .addReg(NewSrcReg)
1017 .addImm(0) // clamp
1018 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0
1019 : AMDGPU::SDWA::SdwaSel::WORD_1)
1020 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE)
1021 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0
1022 : AMDGPU::SDWA::SdwaSel::WORD_1)
1023 .addReg(NewDestReg, RegState::Implicit | RegState::Undef);
1024 // First implicit operand is $exec.
1025 MIB->tieOperands(0, MIB->getNumOperands() - 1);
1026 return;
1027 }
1028
1029 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) {
1030 if (ST.hasMovB64()) {
1031 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg)
1032 .addReg(SrcReg, getKillRegState(KillSrc));
1033 return;
1034 }
1035 if (ST.hasPkMovB32()) {
1036 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg)
1037 .addImm(SISrcMods::OP_SEL_1)
1038 .addReg(SrcReg)
1039 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
1040 .addReg(SrcReg)
1041 .addImm(0) // op_sel_lo
1042 .addImm(0) // op_sel_hi
1043 .addImm(0) // neg_lo
1044 .addImm(0) // neg_hi
1045 .addImm(0) // clamp
1046 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
1047 return;
1048 }
1049 }
1050
1051 const bool Forward = RI.getHWRegIndex(Reg: DestReg) <= RI.getHWRegIndex(Reg: SrcReg);
1052 if (RI.isSGPRClass(RC)) {
1053 if (!RI.isSGPRClass(SrcRC)) {
1054 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
1055 return;
1056 }
1057 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg);
1058 expandSGPRCopy(TII: *this, MBB, MI, DL, DestReg, SrcReg, KillSrc: CanKillSuperReg, RC,
1059 Forward);
1060 return;
1061 }
1062
1063 unsigned EltSize = 4;
1064 unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1065 if (RI.isAGPRClass(RC)) {
1066 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC))
1067 Opcode = AMDGPU::V_ACCVGPR_MOV_B32;
1068 else if (RI.hasVGPRs(SrcRC) ||
1069 (ST.hasGFX90AInsts() && RI.isSGPRClass(SrcRC)))
1070 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
1071 else
1072 Opcode = AMDGPU::INSTRUCTION_LIST_END;
1073 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) {
1074 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64;
1075 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) &&
1076 (RI.isProperlyAlignedRC(*RC) &&
1077 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) {
1078 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov.
1079 if (ST.hasMovB64()) {
1080 Opcode = AMDGPU::V_MOV_B64_e32;
1081 EltSize = 8;
1082 } else if (ST.hasPkMovB32()) {
1083 Opcode = AMDGPU::V_PK_MOV_B32;
1084 EltSize = 8;
1085 }
1086 }
1087
1088 // For the cases where we need an intermediate instruction/temporary register
1089 // (destination is an AGPR), we need a scavenger.
1090 //
1091 // FIXME: The pass should maintain this for us so we don't have to re-scan the
1092 // whole block for every handled copy.
1093 std::unique_ptr<RegScavenger> RS;
1094 if (Opcode == AMDGPU::INSTRUCTION_LIST_END)
1095 RS.reset(p: new RegScavenger());
1096
1097 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize);
1098
1099 // If there is an overlap, we can't kill the super-register on the last
1100 // instruction, since it will also kill the components made live by this def.
1101 const bool Overlap = RI.regsOverlap(SrcReg, DestReg);
1102 const bool CanKillSuperReg = KillSrc && !Overlap;
1103
1104 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
1105 unsigned SubIdx;
1106 if (Forward)
1107 SubIdx = SubIndices[Idx];
1108 else
1109 SubIdx = SubIndices[SubIndices.size() - Idx - 1];
1110 Register DestSubReg = RI.getSubReg(DestReg, SubIdx);
1111 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
1112 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
1113
1114 bool IsFirstSubreg = Idx == 0;
1115 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1;
1116
1117 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) {
1118 Register ImpDefSuper = IsFirstSubreg ? Register(DestReg) : Register();
1119 Register ImpUseSuper = SrcReg;
1120 indirectCopyToAGPR(TII: *this, MBB, MI, DL, DestReg: DestSubReg, SrcReg: SrcSubReg, KillSrc: UseKill,
1121 RS&: *RS, RegsOverlap: Overlap, ImpDefSuperReg: ImpDefSuper, ImpUseSuperReg: ImpUseSuper);
1122 } else if (Opcode == AMDGPU::V_PK_MOV_B32) {
1123 MachineInstrBuilder MIB =
1124 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestSubReg)
1125 .addImm(SISrcMods::OP_SEL_1)
1126 .addReg(SrcSubReg)
1127 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
1128 .addReg(SrcSubReg)
1129 .addImm(0) // op_sel_lo
1130 .addImm(0) // op_sel_hi
1131 .addImm(0) // neg_lo
1132 .addImm(0) // neg_hi
1133 .addImm(0) // clamp
1134 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
1135 if (IsFirstSubreg)
1136 MIB.addReg(RegNo: DestReg, flags: RegState::Define | RegState::Implicit);
1137 } else {
1138 MachineInstrBuilder Builder =
1139 BuildMI(MBB, MI, DL, get(Opcode), DestSubReg).addReg(SrcSubReg);
1140 if (IsFirstSubreg)
1141 Builder.addReg(RegNo: DestReg, flags: RegState::Define | RegState::Implicit);
1142
1143 Builder.addReg(RegNo: SrcReg, flags: getKillRegState(B: UseKill) | RegState::Implicit);
1144 }
1145 }
1146}
1147
1148int SIInstrInfo::commuteOpcode(unsigned Opcode) const {
1149 int NewOpc;
1150
1151 // Try to map original to commuted opcode
1152 NewOpc = AMDGPU::getCommuteRev(Opcode);
1153 if (NewOpc != -1)
1154 // Check if the commuted (REV) opcode exists on the target.
1155 return pseudoToMCOpcode(Opcode: NewOpc) != -1 ? NewOpc : -1;
1156
1157 // Try to map commuted to original opcode
1158 NewOpc = AMDGPU::getCommuteOrig(Opcode);
1159 if (NewOpc != -1)
1160 // Check if the original (non-REV) opcode exists on the target.
1161 return pseudoToMCOpcode(Opcode: NewOpc) != -1 ? NewOpc : -1;
1162
1163 return Opcode;
1164}
1165
1166void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB,
1167 MachineBasicBlock::iterator MI,
1168 const DebugLoc &DL, Register DestReg,
1169 int64_t Value) const {
1170 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1171 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg: DestReg);
1172 if (RegClass == &AMDGPU::SReg_32RegClass ||
1173 RegClass == &AMDGPU::SGPR_32RegClass ||
1174 RegClass == &AMDGPU::SReg_32_XM0RegClass ||
1175 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) {
1176 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
1177 .addImm(Value);
1178 return;
1179 }
1180
1181 if (RegClass == &AMDGPU::SReg_64RegClass ||
1182 RegClass == &AMDGPU::SGPR_64RegClass ||
1183 RegClass == &AMDGPU::SReg_64_XEXECRegClass) {
1184 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
1185 .addImm(Value);
1186 return;
1187 }
1188
1189 if (RegClass == &AMDGPU::VGPR_32RegClass) {
1190 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
1191 .addImm(Value);
1192 return;
1193 }
1194 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) {
1195 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg)
1196 .addImm(Value);
1197 return;
1198 }
1199
1200 unsigned EltSize = 4;
1201 unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1202 if (RI.isSGPRClass(RegClass)) {
1203 if (RI.getRegSizeInBits(*RegClass) > 32) {
1204 Opcode = AMDGPU::S_MOV_B64;
1205 EltSize = 8;
1206 } else {
1207 Opcode = AMDGPU::S_MOV_B32;
1208 EltSize = 4;
1209 }
1210 }
1211
1212 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize);
1213 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
1214 int64_t IdxValue = Idx == 0 ? Value : 0;
1215
1216 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
1217 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx]));
1218 Builder.addImm(Val: IdxValue);
1219 }
1220}
1221
1222const TargetRegisterClass *
1223SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const {
1224 return &AMDGPU::VGPR_32RegClass;
1225}
1226
1227void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB,
1228 MachineBasicBlock::iterator I,
1229 const DebugLoc &DL, Register DstReg,
1230 ArrayRef<MachineOperand> Cond,
1231 Register TrueReg,
1232 Register FalseReg) const {
1233 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1234 const TargetRegisterClass *BoolXExecRC =
1235 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
1236 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass &&
1237 "Not a VGPR32 reg");
1238
1239 if (Cond.size() == 1) {
1240 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1241 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1242 .add(Cond[0]);
1243 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1244 .addImm(0)
1245 .addReg(FalseReg)
1246 .addImm(0)
1247 .addReg(TrueReg)
1248 .addReg(SReg);
1249 } else if (Cond.size() == 2) {
1250 assert(Cond[0].isImm() && "Cond[0] is not an immediate");
1251 switch (Cond[0].getImm()) {
1252 case SIInstrInfo::SCC_TRUE: {
1253 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1254 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1255 : AMDGPU::S_CSELECT_B64), SReg)
1256 .addImm(1)
1257 .addImm(0);
1258 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1259 .addImm(0)
1260 .addReg(FalseReg)
1261 .addImm(0)
1262 .addReg(TrueReg)
1263 .addReg(SReg);
1264 break;
1265 }
1266 case SIInstrInfo::SCC_FALSE: {
1267 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1268 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1269 : AMDGPU::S_CSELECT_B64), SReg)
1270 .addImm(0)
1271 .addImm(1);
1272 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1273 .addImm(0)
1274 .addReg(FalseReg)
1275 .addImm(0)
1276 .addReg(TrueReg)
1277 .addReg(SReg);
1278 break;
1279 }
1280 case SIInstrInfo::VCCNZ: {
1281 MachineOperand RegOp = Cond[1];
1282 RegOp.setImplicit(false);
1283 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1284 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1285 .add(RegOp);
1286 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1287 .addImm(0)
1288 .addReg(FalseReg)
1289 .addImm(0)
1290 .addReg(TrueReg)
1291 .addReg(SReg);
1292 break;
1293 }
1294 case SIInstrInfo::VCCZ: {
1295 MachineOperand RegOp = Cond[1];
1296 RegOp.setImplicit(false);
1297 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1298 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1299 .add(RegOp);
1300 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1301 .addImm(0)
1302 .addReg(TrueReg)
1303 .addImm(0)
1304 .addReg(FalseReg)
1305 .addReg(SReg);
1306 break;
1307 }
1308 case SIInstrInfo::EXECNZ: {
1309 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1310 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
1311 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
1312 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
1313 .addImm(0);
1314 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1315 : AMDGPU::S_CSELECT_B64), SReg)
1316 .addImm(1)
1317 .addImm(0);
1318 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1319 .addImm(0)
1320 .addReg(FalseReg)
1321 .addImm(0)
1322 .addReg(TrueReg)
1323 .addReg(SReg);
1324 break;
1325 }
1326 case SIInstrInfo::EXECZ: {
1327 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1328 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
1329 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
1330 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
1331 .addImm(0);
1332 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1333 : AMDGPU::S_CSELECT_B64), SReg)
1334 .addImm(0)
1335 .addImm(1);
1336 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1337 .addImm(0)
1338 .addReg(FalseReg)
1339 .addImm(0)
1340 .addReg(TrueReg)
1341 .addReg(SReg);
1342 llvm_unreachable("Unhandled branch predicate EXECZ");
1343 break;
1344 }
1345 default:
1346 llvm_unreachable("invalid branch predicate");
1347 }
1348 } else {
1349 llvm_unreachable("Can only handle Cond size 1 or 2");
1350 }
1351}
1352
1353Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB,
1354 MachineBasicBlock::iterator I,
1355 const DebugLoc &DL,
1356 Register SrcReg, int Value) const {
1357 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1358 Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
1359 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg)
1360 .addImm(Value)
1361 .addReg(SrcReg);
1362
1363 return Reg;
1364}
1365
1366Register SIInstrInfo::insertNE(MachineBasicBlock *MBB,
1367 MachineBasicBlock::iterator I,
1368 const DebugLoc &DL,
1369 Register SrcReg, int Value) const {
1370 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1371 Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
1372 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg)
1373 .addImm(Value)
1374 .addReg(SrcReg);
1375
1376 return Reg;
1377}
1378
1379unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
1380
1381 if (RI.isAGPRClass(DstRC))
1382 return AMDGPU::COPY;
1383 if (RI.getRegSizeInBits(*DstRC) == 16) {
1384 // Assume hi bits are unneeded. Only _e64 true16 instructions are legal
1385 // before RA.
1386 return RI.isSGPRClass(DstRC) ? AMDGPU::COPY : AMDGPU::V_MOV_B16_t16_e64;
1387 } else if (RI.getRegSizeInBits(*DstRC) == 32) {
1388 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1389 } else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) {
1390 return AMDGPU::S_MOV_B64;
1391 } else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) {
1392 return AMDGPU::V_MOV_B64_PSEUDO;
1393 }
1394 return AMDGPU::COPY;
1395}
1396
1397const MCInstrDesc &
1398SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize,
1399 bool IsIndirectSrc) const {
1400 if (IsIndirectSrc) {
1401 if (VecSize <= 32) // 4 bytes
1402 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1);
1403 if (VecSize <= 64) // 8 bytes
1404 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2);
1405 if (VecSize <= 96) // 12 bytes
1406 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3);
1407 if (VecSize <= 128) // 16 bytes
1408 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4);
1409 if (VecSize <= 160) // 20 bytes
1410 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5);
1411 if (VecSize <= 256) // 32 bytes
1412 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8);
1413 if (VecSize <= 288) // 36 bytes
1414 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9);
1415 if (VecSize <= 320) // 40 bytes
1416 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10);
1417 if (VecSize <= 352) // 44 bytes
1418 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11);
1419 if (VecSize <= 384) // 48 bytes
1420 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12);
1421 if (VecSize <= 512) // 64 bytes
1422 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16);
1423 if (VecSize <= 1024) // 128 bytes
1424 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32);
1425
1426 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos");
1427 }
1428
1429 if (VecSize <= 32) // 4 bytes
1430 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1);
1431 if (VecSize <= 64) // 8 bytes
1432 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2);
1433 if (VecSize <= 96) // 12 bytes
1434 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3);
1435 if (VecSize <= 128) // 16 bytes
1436 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4);
1437 if (VecSize <= 160) // 20 bytes
1438 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5);
1439 if (VecSize <= 256) // 32 bytes
1440 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8);
1441 if (VecSize <= 288) // 36 bytes
1442 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9);
1443 if (VecSize <= 320) // 40 bytes
1444 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10);
1445 if (VecSize <= 352) // 44 bytes
1446 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11);
1447 if (VecSize <= 384) // 48 bytes
1448 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12);
1449 if (VecSize <= 512) // 64 bytes
1450 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16);
1451 if (VecSize <= 1024) // 128 bytes
1452 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32);
1453
1454 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos");
1455}
1456
1457static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) {
1458 if (VecSize <= 32) // 4 bytes
1459 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1;
1460 if (VecSize <= 64) // 8 bytes
1461 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2;
1462 if (VecSize <= 96) // 12 bytes
1463 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3;
1464 if (VecSize <= 128) // 16 bytes
1465 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4;
1466 if (VecSize <= 160) // 20 bytes
1467 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5;
1468 if (VecSize <= 256) // 32 bytes
1469 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8;
1470 if (VecSize <= 288) // 36 bytes
1471 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9;
1472 if (VecSize <= 320) // 40 bytes
1473 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10;
1474 if (VecSize <= 352) // 44 bytes
1475 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11;
1476 if (VecSize <= 384) // 48 bytes
1477 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12;
1478 if (VecSize <= 512) // 64 bytes
1479 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16;
1480 if (VecSize <= 1024) // 128 bytes
1481 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32;
1482
1483 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1484}
1485
1486static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) {
1487 if (VecSize <= 32) // 4 bytes
1488 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1;
1489 if (VecSize <= 64) // 8 bytes
1490 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2;
1491 if (VecSize <= 96) // 12 bytes
1492 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3;
1493 if (VecSize <= 128) // 16 bytes
1494 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4;
1495 if (VecSize <= 160) // 20 bytes
1496 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5;
1497 if (VecSize <= 256) // 32 bytes
1498 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8;
1499 if (VecSize <= 288) // 36 bytes
1500 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9;
1501 if (VecSize <= 320) // 40 bytes
1502 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10;
1503 if (VecSize <= 352) // 44 bytes
1504 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11;
1505 if (VecSize <= 384) // 48 bytes
1506 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12;
1507 if (VecSize <= 512) // 64 bytes
1508 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16;
1509 if (VecSize <= 1024) // 128 bytes
1510 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32;
1511
1512 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1513}
1514
1515static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) {
1516 if (VecSize <= 64) // 8 bytes
1517 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1;
1518 if (VecSize <= 128) // 16 bytes
1519 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2;
1520 if (VecSize <= 256) // 32 bytes
1521 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4;
1522 if (VecSize <= 512) // 64 bytes
1523 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8;
1524 if (VecSize <= 1024) // 128 bytes
1525 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16;
1526
1527 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1528}
1529
1530const MCInstrDesc &
1531SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize,
1532 bool IsSGPR) const {
1533 if (IsSGPR) {
1534 switch (EltSize) {
1535 case 32:
1536 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize));
1537 case 64:
1538 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize));
1539 default:
1540 llvm_unreachable("invalid reg indexing elt size");
1541 }
1542 }
1543
1544 assert(EltSize == 32 && "invalid reg indexing elt size");
1545 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize));
1546}
1547
1548static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
1549 switch (Size) {
1550 case 4:
1551 return AMDGPU::SI_SPILL_S32_SAVE;
1552 case 8:
1553 return AMDGPU::SI_SPILL_S64_SAVE;
1554 case 12:
1555 return AMDGPU::SI_SPILL_S96_SAVE;
1556 case 16:
1557 return AMDGPU::SI_SPILL_S128_SAVE;
1558 case 20:
1559 return AMDGPU::SI_SPILL_S160_SAVE;
1560 case 24:
1561 return AMDGPU::SI_SPILL_S192_SAVE;
1562 case 28:
1563 return AMDGPU::SI_SPILL_S224_SAVE;
1564 case 32:
1565 return AMDGPU::SI_SPILL_S256_SAVE;
1566 case 36:
1567 return AMDGPU::SI_SPILL_S288_SAVE;
1568 case 40:
1569 return AMDGPU::SI_SPILL_S320_SAVE;
1570 case 44:
1571 return AMDGPU::SI_SPILL_S352_SAVE;
1572 case 48:
1573 return AMDGPU::SI_SPILL_S384_SAVE;
1574 case 64:
1575 return AMDGPU::SI_SPILL_S512_SAVE;
1576 case 128:
1577 return AMDGPU::SI_SPILL_S1024_SAVE;
1578 default:
1579 llvm_unreachable("unknown register size");
1580 }
1581}
1582
1583static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
1584 switch (Size) {
1585 case 4:
1586 return AMDGPU::SI_SPILL_V32_SAVE;
1587 case 8:
1588 return AMDGPU::SI_SPILL_V64_SAVE;
1589 case 12:
1590 return AMDGPU::SI_SPILL_V96_SAVE;
1591 case 16:
1592 return AMDGPU::SI_SPILL_V128_SAVE;
1593 case 20:
1594 return AMDGPU::SI_SPILL_V160_SAVE;
1595 case 24:
1596 return AMDGPU::SI_SPILL_V192_SAVE;
1597 case 28:
1598 return AMDGPU::SI_SPILL_V224_SAVE;
1599 case 32:
1600 return AMDGPU::SI_SPILL_V256_SAVE;
1601 case 36:
1602 return AMDGPU::SI_SPILL_V288_SAVE;
1603 case 40:
1604 return AMDGPU::SI_SPILL_V320_SAVE;
1605 case 44:
1606 return AMDGPU::SI_SPILL_V352_SAVE;
1607 case 48:
1608 return AMDGPU::SI_SPILL_V384_SAVE;
1609 case 64:
1610 return AMDGPU::SI_SPILL_V512_SAVE;
1611 case 128:
1612 return AMDGPU::SI_SPILL_V1024_SAVE;
1613 default:
1614 llvm_unreachable("unknown register size");
1615 }
1616}
1617
1618static unsigned getAGPRSpillSaveOpcode(unsigned Size) {
1619 switch (Size) {
1620 case 4:
1621 return AMDGPU::SI_SPILL_A32_SAVE;
1622 case 8:
1623 return AMDGPU::SI_SPILL_A64_SAVE;
1624 case 12:
1625 return AMDGPU::SI_SPILL_A96_SAVE;
1626 case 16:
1627 return AMDGPU::SI_SPILL_A128_SAVE;
1628 case 20:
1629 return AMDGPU::SI_SPILL_A160_SAVE;
1630 case 24:
1631 return AMDGPU::SI_SPILL_A192_SAVE;
1632 case 28:
1633 return AMDGPU::SI_SPILL_A224_SAVE;
1634 case 32:
1635 return AMDGPU::SI_SPILL_A256_SAVE;
1636 case 36:
1637 return AMDGPU::SI_SPILL_A288_SAVE;
1638 case 40:
1639 return AMDGPU::SI_SPILL_A320_SAVE;
1640 case 44:
1641 return AMDGPU::SI_SPILL_A352_SAVE;
1642 case 48:
1643 return AMDGPU::SI_SPILL_A384_SAVE;
1644 case 64:
1645 return AMDGPU::SI_SPILL_A512_SAVE;
1646 case 128:
1647 return AMDGPU::SI_SPILL_A1024_SAVE;
1648 default:
1649 llvm_unreachable("unknown register size");
1650 }
1651}
1652
1653static unsigned getAVSpillSaveOpcode(unsigned Size) {
1654 switch (Size) {
1655 case 4:
1656 return AMDGPU::SI_SPILL_AV32_SAVE;
1657 case 8:
1658 return AMDGPU::SI_SPILL_AV64_SAVE;
1659 case 12:
1660 return AMDGPU::SI_SPILL_AV96_SAVE;
1661 case 16:
1662 return AMDGPU::SI_SPILL_AV128_SAVE;
1663 case 20:
1664 return AMDGPU::SI_SPILL_AV160_SAVE;
1665 case 24:
1666 return AMDGPU::SI_SPILL_AV192_SAVE;
1667 case 28:
1668 return AMDGPU::SI_SPILL_AV224_SAVE;
1669 case 32:
1670 return AMDGPU::SI_SPILL_AV256_SAVE;
1671 case 36:
1672 return AMDGPU::SI_SPILL_AV288_SAVE;
1673 case 40:
1674 return AMDGPU::SI_SPILL_AV320_SAVE;
1675 case 44:
1676 return AMDGPU::SI_SPILL_AV352_SAVE;
1677 case 48:
1678 return AMDGPU::SI_SPILL_AV384_SAVE;
1679 case 64:
1680 return AMDGPU::SI_SPILL_AV512_SAVE;
1681 case 128:
1682 return AMDGPU::SI_SPILL_AV1024_SAVE;
1683 default:
1684 llvm_unreachable("unknown register size");
1685 }
1686}
1687
1688static unsigned getWWMRegSpillSaveOpcode(unsigned Size,
1689 bool IsVectorSuperClass) {
1690 // Currently, there is only 32-bit WWM register spills needed.
1691 if (Size != 4)
1692 llvm_unreachable("unknown wwm register spill size");
1693
1694 if (IsVectorSuperClass)
1695 return AMDGPU::SI_SPILL_WWM_AV32_SAVE;
1696
1697 return AMDGPU::SI_SPILL_WWM_V32_SAVE;
1698}
1699
1700static unsigned getVectorRegSpillSaveOpcode(Register Reg,
1701 const TargetRegisterClass *RC,
1702 unsigned Size,
1703 const SIRegisterInfo &TRI,
1704 const SIMachineFunctionInfo &MFI) {
1705 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC);
1706
1707 // Choose the right opcode if spilling a WWM register.
1708 if (MFI.checkFlag(Reg, Flag: AMDGPU::VirtRegFlag::WWM_REG))
1709 return getWWMRegSpillSaveOpcode(Size, IsVectorSuperClass);
1710
1711 if (IsVectorSuperClass)
1712 return getAVSpillSaveOpcode(Size);
1713
1714 return TRI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(Size)
1715 : getVGPRSpillSaveOpcode(Size);
1716}
1717
1718void SIInstrInfo::storeRegToStackSlot(
1719 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1720 bool isKill, int FrameIndex, const TargetRegisterClass *RC,
1721 const TargetRegisterInfo *TRI, Register VReg) const {
1722 MachineFunction *MF = MBB.getParent();
1723 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1724 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
1725 const DebugLoc &DL = MBB.findDebugLoc(MBBI: MI);
1726
1727 MachinePointerInfo PtrInfo
1728 = MachinePointerInfo::getFixedStack(MF&: *MF, FI: FrameIndex);
1729 MachineMemOperand *MMO = MF->getMachineMemOperand(
1730 PtrInfo, f: MachineMemOperand::MOStore, s: FrameInfo.getObjectSize(ObjectIdx: FrameIndex),
1731 base_alignment: FrameInfo.getObjectAlign(ObjectIdx: FrameIndex));
1732 unsigned SpillSize = TRI->getSpillSize(RC: *RC);
1733
1734 MachineRegisterInfo &MRI = MF->getRegInfo();
1735 if (RI.isSGPRClass(RC)) {
1736 MFI->setHasSpilledSGPRs();
1737 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled");
1738 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI &&
1739 SrcReg != AMDGPU::EXEC && "exec should not be spilled");
1740
1741 // We are only allowed to create one new instruction when spilling
1742 // registers, so we need to use pseudo instruction for spilling SGPRs.
1743 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(Size: SpillSize));
1744
1745 // The SGPR spill/restore instructions only work on number sgprs, so we need
1746 // to make sure we are using the correct register class.
1747 if (SrcReg.isVirtual() && SpillSize == 4) {
1748 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
1749 }
1750
1751 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: OpDesc)
1752 .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)) // data
1753 .addFrameIndex(Idx: FrameIndex) // addr
1754 .addMemOperand(MMO)
1755 .addReg(RegNo: MFI->getStackPtrOffsetReg(), flags: RegState::Implicit);
1756
1757 if (RI.spillSGPRToVGPR())
1758 FrameInfo.setStackID(ObjectIdx: FrameIndex, ID: TargetStackID::SGPRSpill);
1759 return;
1760 }
1761
1762 unsigned Opcode = getVectorRegSpillSaveOpcode(Reg: VReg ? VReg : SrcReg, RC,
1763 Size: SpillSize, TRI: RI, MFI: *MFI);
1764 MFI->setHasSpilledVGPRs();
1765
1766 BuildMI(MBB, MI, DL, get(Opcode))
1767 .addReg(SrcReg, getKillRegState(B: isKill)) // data
1768 .addFrameIndex(FrameIndex) // addr
1769 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
1770 .addImm(0) // offset
1771 .addMemOperand(MMO);
1772}
1773
1774static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
1775 switch (Size) {
1776 case 4:
1777 return AMDGPU::SI_SPILL_S32_RESTORE;
1778 case 8:
1779 return AMDGPU::SI_SPILL_S64_RESTORE;
1780 case 12:
1781 return AMDGPU::SI_SPILL_S96_RESTORE;
1782 case 16:
1783 return AMDGPU::SI_SPILL_S128_RESTORE;
1784 case 20:
1785 return AMDGPU::SI_SPILL_S160_RESTORE;
1786 case 24:
1787 return AMDGPU::SI_SPILL_S192_RESTORE;
1788 case 28:
1789 return AMDGPU::SI_SPILL_S224_RESTORE;
1790 case 32:
1791 return AMDGPU::SI_SPILL_S256_RESTORE;
1792 case 36:
1793 return AMDGPU::SI_SPILL_S288_RESTORE;
1794 case 40:
1795 return AMDGPU::SI_SPILL_S320_RESTORE;
1796 case 44:
1797 return AMDGPU::SI_SPILL_S352_RESTORE;
1798 case 48:
1799 return AMDGPU::SI_SPILL_S384_RESTORE;
1800 case 64:
1801 return AMDGPU::SI_SPILL_S512_RESTORE;
1802 case 128:
1803 return AMDGPU::SI_SPILL_S1024_RESTORE;
1804 default:
1805 llvm_unreachable("unknown register size");
1806 }
1807}
1808
1809static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
1810 switch (Size) {
1811 case 4:
1812 return AMDGPU::SI_SPILL_V32_RESTORE;
1813 case 8:
1814 return AMDGPU::SI_SPILL_V64_RESTORE;
1815 case 12:
1816 return AMDGPU::SI_SPILL_V96_RESTORE;
1817 case 16:
1818 return AMDGPU::SI_SPILL_V128_RESTORE;
1819 case 20:
1820 return AMDGPU::SI_SPILL_V160_RESTORE;
1821 case 24:
1822 return AMDGPU::SI_SPILL_V192_RESTORE;
1823 case 28:
1824 return AMDGPU::SI_SPILL_V224_RESTORE;
1825 case 32:
1826 return AMDGPU::SI_SPILL_V256_RESTORE;
1827 case 36:
1828 return AMDGPU::SI_SPILL_V288_RESTORE;
1829 case 40:
1830 return AMDGPU::SI_SPILL_V320_RESTORE;
1831 case 44:
1832 return AMDGPU::SI_SPILL_V352_RESTORE;
1833 case 48:
1834 return AMDGPU::SI_SPILL_V384_RESTORE;
1835 case 64:
1836 return AMDGPU::SI_SPILL_V512_RESTORE;
1837 case 128:
1838 return AMDGPU::SI_SPILL_V1024_RESTORE;
1839 default:
1840 llvm_unreachable("unknown register size");
1841 }
1842}
1843
1844static unsigned getAGPRSpillRestoreOpcode(unsigned Size) {
1845 switch (Size) {
1846 case 4:
1847 return AMDGPU::SI_SPILL_A32_RESTORE;
1848 case 8:
1849 return AMDGPU::SI_SPILL_A64_RESTORE;
1850 case 12:
1851 return AMDGPU::SI_SPILL_A96_RESTORE;
1852 case 16:
1853 return AMDGPU::SI_SPILL_A128_RESTORE;
1854 case 20:
1855 return AMDGPU::SI_SPILL_A160_RESTORE;
1856 case 24:
1857 return AMDGPU::SI_SPILL_A192_RESTORE;
1858 case 28:
1859 return AMDGPU::SI_SPILL_A224_RESTORE;
1860 case 32:
1861 return AMDGPU::SI_SPILL_A256_RESTORE;
1862 case 36:
1863 return AMDGPU::SI_SPILL_A288_RESTORE;
1864 case 40:
1865 return AMDGPU::SI_SPILL_A320_RESTORE;
1866 case 44:
1867 return AMDGPU::SI_SPILL_A352_RESTORE;
1868 case 48:
1869 return AMDGPU::SI_SPILL_A384_RESTORE;
1870 case 64:
1871 return AMDGPU::SI_SPILL_A512_RESTORE;
1872 case 128:
1873 return AMDGPU::SI_SPILL_A1024_RESTORE;
1874 default:
1875 llvm_unreachable("unknown register size");
1876 }
1877}
1878
1879static unsigned getAVSpillRestoreOpcode(unsigned Size) {
1880 switch (Size) {
1881 case 4:
1882 return AMDGPU::SI_SPILL_AV32_RESTORE;
1883 case 8:
1884 return AMDGPU::SI_SPILL_AV64_RESTORE;
1885 case 12:
1886 return AMDGPU::SI_SPILL_AV96_RESTORE;
1887 case 16:
1888 return AMDGPU::SI_SPILL_AV128_RESTORE;
1889 case 20:
1890 return AMDGPU::SI_SPILL_AV160_RESTORE;
1891 case 24:
1892 return AMDGPU::SI_SPILL_AV192_RESTORE;
1893 case 28:
1894 return AMDGPU::SI_SPILL_AV224_RESTORE;
1895 case 32:
1896 return AMDGPU::SI_SPILL_AV256_RESTORE;
1897 case 36:
1898 return AMDGPU::SI_SPILL_AV288_RESTORE;
1899 case 40:
1900 return AMDGPU::SI_SPILL_AV320_RESTORE;
1901 case 44:
1902 return AMDGPU::SI_SPILL_AV352_RESTORE;
1903 case 48:
1904 return AMDGPU::SI_SPILL_AV384_RESTORE;
1905 case 64:
1906 return AMDGPU::SI_SPILL_AV512_RESTORE;
1907 case 128:
1908 return AMDGPU::SI_SPILL_AV1024_RESTORE;
1909 default:
1910 llvm_unreachable("unknown register size");
1911 }
1912}
1913
1914static unsigned getWWMRegSpillRestoreOpcode(unsigned Size,
1915 bool IsVectorSuperClass) {
1916 // Currently, there is only 32-bit WWM register spills needed.
1917 if (Size != 4)
1918 llvm_unreachable("unknown wwm register spill size");
1919
1920 if (IsVectorSuperClass)
1921 return AMDGPU::SI_SPILL_WWM_AV32_RESTORE;
1922
1923 return AMDGPU::SI_SPILL_WWM_V32_RESTORE;
1924}
1925
1926static unsigned
1927getVectorRegSpillRestoreOpcode(Register Reg, const TargetRegisterClass *RC,
1928 unsigned Size, const SIRegisterInfo &TRI,
1929 const SIMachineFunctionInfo &MFI) {
1930 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC);
1931
1932 // Choose the right opcode if restoring a WWM register.
1933 if (MFI.checkFlag(Reg, Flag: AMDGPU::VirtRegFlag::WWM_REG))
1934 return getWWMRegSpillRestoreOpcode(Size, IsVectorSuperClass);
1935
1936 if (IsVectorSuperClass)
1937 return getAVSpillRestoreOpcode(Size);
1938
1939 return TRI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(Size)
1940 : getVGPRSpillRestoreOpcode(Size);
1941}
1942
1943void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1944 MachineBasicBlock::iterator MI,
1945 Register DestReg, int FrameIndex,
1946 const TargetRegisterClass *RC,
1947 const TargetRegisterInfo *TRI,
1948 Register VReg) const {
1949 MachineFunction *MF = MBB.getParent();
1950 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1951 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
1952 const DebugLoc &DL = MBB.findDebugLoc(MBBI: MI);
1953 unsigned SpillSize = TRI->getSpillSize(RC: *RC);
1954
1955 MachinePointerInfo PtrInfo
1956 = MachinePointerInfo::getFixedStack(MF&: *MF, FI: FrameIndex);
1957
1958 MachineMemOperand *MMO = MF->getMachineMemOperand(
1959 PtrInfo, f: MachineMemOperand::MOLoad, s: FrameInfo.getObjectSize(ObjectIdx: FrameIndex),
1960 base_alignment: FrameInfo.getObjectAlign(ObjectIdx: FrameIndex));
1961
1962 if (RI.isSGPRClass(RC)) {
1963 MFI->setHasSpilledSGPRs();
1964 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into");
1965 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI &&
1966 DestReg != AMDGPU::EXEC && "exec should not be spilled");
1967
1968 // FIXME: Maybe this should not include a memoperand because it will be
1969 // lowered to non-memory instructions.
1970 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(Size: SpillSize));
1971 if (DestReg.isVirtual() && SpillSize == 4) {
1972 MachineRegisterInfo &MRI = MF->getRegInfo();
1973 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
1974 }
1975
1976 if (RI.spillSGPRToVGPR())
1977 FrameInfo.setStackID(ObjectIdx: FrameIndex, ID: TargetStackID::SGPRSpill);
1978 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: OpDesc, DestReg)
1979 .addFrameIndex(Idx: FrameIndex) // addr
1980 .addMemOperand(MMO)
1981 .addReg(RegNo: MFI->getStackPtrOffsetReg(), flags: RegState::Implicit);
1982
1983 return;
1984 }
1985
1986 unsigned Opcode = getVectorRegSpillRestoreOpcode(Reg: VReg ? VReg : DestReg, RC,
1987 Size: SpillSize, TRI: RI, MFI: *MFI);
1988 BuildMI(MBB, MI, DL, get(Opcode), DestReg)
1989 .addFrameIndex(FrameIndex) // vaddr
1990 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
1991 .addImm(0) // offset
1992 .addMemOperand(MMO);
1993}
1994
1995void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
1996 MachineBasicBlock::iterator MI) const {
1997 insertNoops(MBB, MI, Quantity: 1);
1998}
1999
2000void SIInstrInfo::insertNoops(MachineBasicBlock &MBB,
2001 MachineBasicBlock::iterator MI,
2002 unsigned Quantity) const {
2003 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2004 while (Quantity > 0) {
2005 unsigned Arg = std::min(a: Quantity, b: 8u);
2006 Quantity -= Arg;
2007 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1);
2008 }
2009}
2010
2011void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const {
2012 auto MF = MBB.getParent();
2013 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2014
2015 assert(Info->isEntryFunction());
2016
2017 if (MBB.succ_empty()) {
2018 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end();
2019 if (HasNoTerminator) {
2020 if (Info->returnsVoid()) {
2021 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0);
2022 } else {
2023 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG));
2024 }
2025 }
2026 }
2027}
2028
2029unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) {
2030 switch (MI.getOpcode()) {
2031 default:
2032 if (MI.isMetaInstruction())
2033 return 0;
2034 return 1; // FIXME: Do wait states equal cycles?
2035
2036 case AMDGPU::S_NOP:
2037 return MI.getOperand(i: 0).getImm() + 1;
2038 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The
2039 // hazard, even if one exist, won't really be visible. Should we handle it?
2040 }
2041}
2042
2043bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2044 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2045 MachineBasicBlock &MBB = *MI.getParent();
2046 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2047 switch (MI.getOpcode()) {
2048 default: return TargetInstrInfo::expandPostRAPseudo(MI);
2049 case AMDGPU::S_MOV_B64_term:
2050 // This is only a terminator to get the correct spill code placement during
2051 // register allocation.
2052 MI.setDesc(get(AMDGPU::S_MOV_B64));
2053 break;
2054
2055 case AMDGPU::S_MOV_B32_term:
2056 // This is only a terminator to get the correct spill code placement during
2057 // register allocation.
2058 MI.setDesc(get(AMDGPU::S_MOV_B32));
2059 break;
2060
2061 case AMDGPU::S_XOR_B64_term:
2062 // This is only a terminator to get the correct spill code placement during
2063 // register allocation.
2064 MI.setDesc(get(AMDGPU::S_XOR_B64));
2065 break;
2066
2067 case AMDGPU::S_XOR_B32_term:
2068 // This is only a terminator to get the correct spill code placement during
2069 // register allocation.
2070 MI.setDesc(get(AMDGPU::S_XOR_B32));
2071 break;
2072 case AMDGPU::S_OR_B64_term:
2073 // This is only a terminator to get the correct spill code placement during
2074 // register allocation.
2075 MI.setDesc(get(AMDGPU::S_OR_B64));
2076 break;
2077 case AMDGPU::S_OR_B32_term:
2078 // This is only a terminator to get the correct spill code placement during
2079 // register allocation.
2080 MI.setDesc(get(AMDGPU::S_OR_B32));
2081 break;
2082
2083 case AMDGPU::S_ANDN2_B64_term:
2084 // This is only a terminator to get the correct spill code placement during
2085 // register allocation.
2086 MI.setDesc(get(AMDGPU::S_ANDN2_B64));
2087 break;
2088
2089 case AMDGPU::S_ANDN2_B32_term:
2090 // This is only a terminator to get the correct spill code placement during
2091 // register allocation.
2092 MI.setDesc(get(AMDGPU::S_ANDN2_B32));
2093 break;
2094
2095 case AMDGPU::S_AND_B64_term:
2096 // This is only a terminator to get the correct spill code placement during
2097 // register allocation.
2098 MI.setDesc(get(AMDGPU::S_AND_B64));
2099 break;
2100
2101 case AMDGPU::S_AND_B32_term:
2102 // This is only a terminator to get the correct spill code placement during
2103 // register allocation.
2104 MI.setDesc(get(AMDGPU::S_AND_B32));
2105 break;
2106
2107 case AMDGPU::S_AND_SAVEEXEC_B64_term:
2108 // This is only a terminator to get the correct spill code placement during
2109 // register allocation.
2110 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B64));
2111 break;
2112
2113 case AMDGPU::S_AND_SAVEEXEC_B32_term:
2114 // This is only a terminator to get the correct spill code placement during
2115 // register allocation.
2116 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B32));
2117 break;
2118
2119 case AMDGPU::SI_SPILL_S32_TO_VGPR:
2120 MI.setDesc(get(AMDGPU::V_WRITELANE_B32));
2121 break;
2122
2123 case AMDGPU::SI_RESTORE_S32_FROM_VGPR:
2124 MI.setDesc(get(AMDGPU::V_READLANE_B32));
2125 break;
2126
2127 case AMDGPU::V_MOV_B64_PSEUDO: {
2128 Register Dst = MI.getOperand(i: 0).getReg();
2129 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
2130 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2131
2132 const MachineOperand &SrcOp = MI.getOperand(i: 1);
2133 // FIXME: Will this work for 64-bit floating point immediates?
2134 assert(!SrcOp.isFPImm());
2135 if (ST.hasMovB64()) {
2136 MI.setDesc(get(AMDGPU::V_MOV_B64_e32));
2137 if (SrcOp.isReg() || isInlineConstant(MI, OpIdx: 1) ||
2138 isUInt<32>(x: SrcOp.getImm()))
2139 break;
2140 }
2141 if (SrcOp.isImm()) {
2142 APInt Imm(64, SrcOp.getImm());
2143 APInt Lo(32, Imm.getLoBits(numBits: 32).getZExtValue());
2144 APInt Hi(32, Imm.getHiBits(numBits: 32).getZExtValue());
2145 if (ST.hasPkMovB32() && Lo == Hi && isInlineConstant(Imm: Lo)) {
2146 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
2147 .addImm(SISrcMods::OP_SEL_1)
2148 .addImm(Lo.getSExtValue())
2149 .addImm(SISrcMods::OP_SEL_1)
2150 .addImm(Lo.getSExtValue())
2151 .addImm(0) // op_sel_lo
2152 .addImm(0) // op_sel_hi
2153 .addImm(0) // neg_lo
2154 .addImm(0) // neg_hi
2155 .addImm(0); // clamp
2156 } else {
2157 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
2158 .addImm(Lo.getSExtValue())
2159 .addReg(Dst, RegState::Implicit | RegState::Define);
2160 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
2161 .addImm(Hi.getSExtValue())
2162 .addReg(Dst, RegState::Implicit | RegState::Define);
2163 }
2164 } else {
2165 assert(SrcOp.isReg());
2166 if (ST.hasPkMovB32() &&
2167 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) {
2168 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
2169 .addImm(SISrcMods::OP_SEL_1) // src0_mod
2170 .addReg(SrcOp.getReg())
2171 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod
2172 .addReg(SrcOp.getReg())
2173 .addImm(0) // op_sel_lo
2174 .addImm(0) // op_sel_hi
2175 .addImm(0) // neg_lo
2176 .addImm(0) // neg_hi
2177 .addImm(0); // clamp
2178 } else {
2179 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
2180 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
2181 .addReg(Dst, RegState::Implicit | RegState::Define);
2182 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
2183 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
2184 .addReg(Dst, RegState::Implicit | RegState::Define);
2185 }
2186 }
2187 MI.eraseFromParent();
2188 break;
2189 }
2190 case AMDGPU::V_MOV_B64_DPP_PSEUDO: {
2191 expandMovDPP64(MI);
2192 break;
2193 }
2194 case AMDGPU::S_MOV_B64_IMM_PSEUDO: {
2195 const MachineOperand &SrcOp = MI.getOperand(i: 1);
2196 assert(!SrcOp.isFPImm());
2197 APInt Imm(64, SrcOp.getImm());
2198 if (Imm.isIntN(N: 32) || isInlineConstant(Imm)) {
2199 MI.setDesc(get(AMDGPU::S_MOV_B64));
2200 break;
2201 }
2202
2203 Register Dst = MI.getOperand(i: 0).getReg();
2204 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
2205 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2206
2207 APInt Lo(32, Imm.getLoBits(numBits: 32).getZExtValue());
2208 APInt Hi(32, Imm.getHiBits(numBits: 32).getZExtValue());
2209 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo)
2210 .addImm(Lo.getSExtValue())
2211 .addReg(Dst, RegState::Implicit | RegState::Define);
2212 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi)
2213 .addImm(Hi.getSExtValue())
2214 .addReg(Dst, RegState::Implicit | RegState::Define);
2215 MI.eraseFromParent();
2216 break;
2217 }
2218 case AMDGPU::V_SET_INACTIVE_B32: {
2219 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
2220 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2221 // FIXME: We may possibly optimize the COPY once we find ways to make LLVM
2222 // optimizations (mainly Register Coalescer) aware of WWM register liveness.
2223 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
2224 .add(MI.getOperand(1));
2225 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
2226 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
2227 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
2228 .add(MI.getOperand(2));
2229 BuildMI(MBB, MI, DL, get(NotOpc), Exec)
2230 .addReg(Exec);
2231 MI.eraseFromParent();
2232 break;
2233 }
2234 case AMDGPU::V_SET_INACTIVE_B64: {
2235 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
2236 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2237 MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
2238 MI.getOperand(0).getReg())
2239 .add(MI.getOperand(1));
2240 expandPostRAPseudo(MI&: *Copy);
2241 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
2242 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
2243 Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
2244 MI.getOperand(0).getReg())
2245 .add(MI.getOperand(2));
2246 expandPostRAPseudo(MI&: *Copy);
2247 BuildMI(MBB, MI, DL, get(NotOpc), Exec)
2248 .addReg(Exec);
2249 MI.eraseFromParent();
2250 break;
2251 }
2252 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1:
2253 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2:
2254 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3:
2255 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4:
2256 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5:
2257 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8:
2258 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9:
2259 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10:
2260 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11:
2261 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12:
2262 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16:
2263 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32:
2264 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1:
2265 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2:
2266 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3:
2267 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4:
2268 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5:
2269 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8:
2270 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9:
2271 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10:
2272 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11:
2273 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12:
2274 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16:
2275 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32:
2276 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1:
2277 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2:
2278 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4:
2279 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8:
2280 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: {
2281 const TargetRegisterClass *EltRC = getOpRegClass(MI, OpNo: 2);
2282
2283 unsigned Opc;
2284 if (RI.hasVGPRs(EltRC)) {
2285 Opc = AMDGPU::V_MOVRELD_B32_e32;
2286 } else {
2287 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64
2288 : AMDGPU::S_MOVRELD_B32;
2289 }
2290
2291 const MCInstrDesc &OpDesc = get(Opc);
2292 Register VecReg = MI.getOperand(i: 0).getReg();
2293 bool IsUndef = MI.getOperand(i: 1).isUndef();
2294 unsigned SubReg = MI.getOperand(i: 3).getImm();
2295 assert(VecReg == MI.getOperand(1).getReg());
2296
2297 MachineInstrBuilder MIB =
2298 BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: OpDesc)
2299 .addReg(RegNo: RI.getSubReg(VecReg, SubReg), flags: RegState::Undef)
2300 .add(MI.getOperand(i: 2))
2301 .addReg(VecReg, RegState::ImplicitDefine)
2302 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2303
2304 const int ImpDefIdx =
2305 OpDesc.getNumOperands() + OpDesc.implicit_uses().size();
2306 const int ImpUseIdx = ImpDefIdx + 1;
2307 MIB->tieOperands(DefIdx: ImpDefIdx, UseIdx: ImpUseIdx);
2308 MI.eraseFromParent();
2309 break;
2310 }
2311 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1:
2312 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2:
2313 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3:
2314 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4:
2315 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5:
2316 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8:
2317 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9:
2318 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10:
2319 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11:
2320 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12:
2321 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16:
2322 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: {
2323 assert(ST.useVGPRIndexMode());
2324 Register VecReg = MI.getOperand(i: 0).getReg();
2325 bool IsUndef = MI.getOperand(i: 1).isUndef();
2326 Register Idx = MI.getOperand(i: 3).getReg();
2327 Register SubReg = MI.getOperand(i: 4).getImm();
2328
2329 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
2330 .addReg(Idx)
2331 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
2332 SetOn->getOperand(i: 3).setIsUndef();
2333
2334 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write);
2335 MachineInstrBuilder MIB =
2336 BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: OpDesc)
2337 .addReg(RegNo: RI.getSubReg(VecReg, SubReg), flags: RegState::Undef)
2338 .add(MI.getOperand(i: 2))
2339 .addReg(VecReg, RegState::ImplicitDefine)
2340 .addReg(VecReg,
2341 RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2342
2343 const int ImpDefIdx =
2344 OpDesc.getNumOperands() + OpDesc.implicit_uses().size();
2345 const int ImpUseIdx = ImpDefIdx + 1;
2346 MIB->tieOperands(DefIdx: ImpDefIdx, UseIdx: ImpUseIdx);
2347
2348 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
2349
2350 finalizeBundle(MBB, FirstMI: SetOn->getIterator(), LastMI: std::next(x: SetOff->getIterator()));
2351
2352 MI.eraseFromParent();
2353 break;
2354 }
2355 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1:
2356 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2:
2357 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3:
2358 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4:
2359 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5:
2360 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8:
2361 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9:
2362 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10:
2363 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11:
2364 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12:
2365 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16:
2366 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: {
2367 assert(ST.useVGPRIndexMode());
2368 Register Dst = MI.getOperand(i: 0).getReg();
2369 Register VecReg = MI.getOperand(i: 1).getReg();
2370 bool IsUndef = MI.getOperand(i: 1).isUndef();
2371 Register Idx = MI.getOperand(i: 2).getReg();
2372 Register SubReg = MI.getOperand(i: 3).getImm();
2373
2374 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
2375 .addReg(Idx)
2376 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
2377 SetOn->getOperand(i: 3).setIsUndef();
2378
2379 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read))
2380 .addDef(Dst)
2381 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
2382 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2383
2384 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
2385
2386 finalizeBundle(MBB, FirstMI: SetOn->getIterator(), LastMI: std::next(x: SetOff->getIterator()));
2387
2388 MI.eraseFromParent();
2389 break;
2390 }
2391 case AMDGPU::SI_PC_ADD_REL_OFFSET: {
2392 MachineFunction &MF = *MBB.getParent();
2393 Register Reg = MI.getOperand(i: 0).getReg();
2394 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
2395 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
2396 MachineOperand OpLo = MI.getOperand(i: 1);
2397 MachineOperand OpHi = MI.getOperand(i: 2);
2398
2399 // Create a bundle so these instructions won't be re-ordered by the
2400 // post-RA scheduler.
2401 MIBundleBuilder Bundler(MBB, MI);
2402 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
2403
2404 // What we want here is an offset from the value returned by s_getpc (which
2405 // is the address of the s_add_u32 instruction) to the global variable, but
2406 // since the encoding of $symbol starts 4 bytes after the start of the
2407 // s_add_u32 instruction, we end up with an offset that is 4 bytes too
2408 // small. This requires us to add 4 to the global variable offset in order
2409 // to compute the correct address. Similarly for the s_addc_u32 instruction,
2410 // the encoding of $symbol starts 12 bytes after the start of the s_add_u32
2411 // instruction.
2412
2413 int64_t Adjust = 0;
2414 if (ST.hasGetPCZeroExtension()) {
2415 // Fix up hardware that does not sign-extend the 48-bit PC value by
2416 // inserting: s_sext_i32_i16 reghi, reghi
2417 Bundler.append(
2418 BuildMI(MF, DL, get(AMDGPU::S_SEXT_I32_I16), RegHi).addReg(RegHi));
2419 Adjust += 4;
2420 }
2421
2422 if (OpLo.isGlobal())
2423 OpLo.setOffset(OpLo.getOffset() + Adjust + 4);
2424 Bundler.append(
2425 BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo).addReg(RegLo).add(OpLo));
2426
2427 if (OpHi.isGlobal())
2428 OpHi.setOffset(OpHi.getOffset() + Adjust + 12);
2429 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
2430 .addReg(RegHi)
2431 .add(OpHi));
2432
2433 finalizeBundle(MBB, FirstMI: Bundler.begin());
2434
2435 MI.eraseFromParent();
2436 break;
2437 }
2438 case AMDGPU::ENTER_STRICT_WWM: {
2439 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2440 // Whole Wave Mode is entered.
2441 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
2442 : AMDGPU::S_OR_SAVEEXEC_B64));
2443 break;
2444 }
2445 case AMDGPU::ENTER_STRICT_WQM: {
2446 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2447 // STRICT_WQM is entered.
2448 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2449 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64;
2450 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
2451 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(i: 0).getReg()).addReg(Exec);
2452 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec);
2453
2454 MI.eraseFromParent();
2455 break;
2456 }
2457 case AMDGPU::EXIT_STRICT_WWM:
2458 case AMDGPU::EXIT_STRICT_WQM: {
2459 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2460 // WWM/STICT_WQM is exited.
2461 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64));
2462 break;
2463 }
2464 case AMDGPU::ENTER_PSEUDO_WM:
2465 case AMDGPU::EXIT_PSEUDO_WM: {
2466 // These do nothing.
2467 MI.eraseFromParent();
2468 break;
2469 }
2470 case AMDGPU::SI_RETURN: {
2471 const MachineFunction *MF = MBB.getParent();
2472 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
2473 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2474 // Hiding the return address use with SI_RETURN may lead to extra kills in
2475 // the function and missing live-ins. We are fine in practice because callee
2476 // saved register handling ensures the register value is restored before
2477 // RET, but we need the undef flag here to appease the MachineVerifier
2478 // liveness checks.
2479 MachineInstrBuilder MIB =
2480 BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return))
2481 .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef);
2482
2483 MIB.copyImplicitOps(OtherMI: MI);
2484 MI.eraseFromParent();
2485 break;
2486 }
2487
2488 case AMDGPU::S_MUL_U64_U32_PSEUDO:
2489 case AMDGPU::S_MUL_I64_I32_PSEUDO:
2490 MI.setDesc(get(AMDGPU::S_MUL_U64));
2491 break;
2492
2493 case AMDGPU::S_GETPC_B64_pseudo:
2494 MI.setDesc(get(AMDGPU::S_GETPC_B64));
2495 if (ST.hasGetPCZeroExtension()) {
2496 Register Dst = MI.getOperand(i: 0).getReg();
2497 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2498 // Fix up hardware that does not sign-extend the 48-bit PC value by
2499 // inserting: s_sext_i32_i16 dsthi, dsthi
2500 BuildMI(MBB, std::next(MI.getIterator()), DL, get(AMDGPU::S_SEXT_I32_I16),
2501 DstHi)
2502 .addReg(DstHi);
2503 }
2504 break;
2505 }
2506 return true;
2507}
2508
2509void SIInstrInfo::reMaterialize(MachineBasicBlock &MBB,
2510 MachineBasicBlock::iterator I, Register DestReg,
2511 unsigned SubIdx, const MachineInstr &Orig,
2512 const TargetRegisterInfo &RI) const {
2513
2514 // Try shrinking the instruction to remat only the part needed for current
2515 // context.
2516 // TODO: Handle more cases.
2517 unsigned Opcode = Orig.getOpcode();
2518 switch (Opcode) {
2519 case AMDGPU::S_LOAD_DWORDX16_IMM:
2520 case AMDGPU::S_LOAD_DWORDX8_IMM: {
2521 if (SubIdx != 0)
2522 break;
2523
2524 if (I == MBB.end())
2525 break;
2526
2527 if (I->isBundled())
2528 break;
2529
2530 // Look for a single use of the register that is also a subreg.
2531 Register RegToFind = Orig.getOperand(i: 0).getReg();
2532 MachineOperand *UseMO = nullptr;
2533 for (auto &CandMO : I->operands()) {
2534 if (!CandMO.isReg() || CandMO.getReg() != RegToFind || CandMO.isDef())
2535 continue;
2536 if (UseMO) {
2537 UseMO = nullptr;
2538 break;
2539 }
2540 UseMO = &CandMO;
2541 }
2542 if (!UseMO || UseMO->getSubReg() == AMDGPU::NoSubRegister)
2543 break;
2544
2545 unsigned Offset = RI.getSubRegIdxOffset(Idx: UseMO->getSubReg());
2546 unsigned SubregSize = RI.getSubRegIdxSize(Idx: UseMO->getSubReg());
2547
2548 MachineFunction *MF = MBB.getParent();
2549 MachineRegisterInfo &MRI = MF->getRegInfo();
2550 assert(MRI.use_nodbg_empty(DestReg) && "DestReg should have no users yet.");
2551
2552 unsigned NewOpcode = -1;
2553 if (SubregSize == 256)
2554 NewOpcode = AMDGPU::S_LOAD_DWORDX8_IMM;
2555 else if (SubregSize == 128)
2556 NewOpcode = AMDGPU::S_LOAD_DWORDX4_IMM;
2557 else
2558 break;
2559
2560 const MCInstrDesc &TID = get(NewOpcode);
2561 const TargetRegisterClass *NewRC =
2562 RI.getAllocatableClass(RC: getRegClass(TID, OpNum: 0, TRI: &RI, MF: *MF));
2563 MRI.setRegClass(Reg: DestReg, RC: NewRC);
2564
2565 UseMO->setReg(DestReg);
2566 UseMO->setSubReg(AMDGPU::NoSubRegister);
2567
2568 // Use a smaller load with the desired size, possibly with updated offset.
2569 MachineInstr *MI = MF->CloneMachineInstr(Orig: &Orig);
2570 MI->setDesc(TID);
2571 MI->getOperand(i: 0).setReg(DestReg);
2572 MI->getOperand(0).setSubReg(AMDGPU::NoSubRegister);
2573 if (Offset) {
2574 MachineOperand *OffsetMO = getNamedOperand(*MI, AMDGPU::OpName::offset);
2575 int64_t FinalOffset = OffsetMO->getImm() + Offset / 8;
2576 OffsetMO->setImm(FinalOffset);
2577 }
2578 SmallVector<MachineMemOperand *> NewMMOs;
2579 for (const MachineMemOperand *MemOp : Orig.memoperands())
2580 NewMMOs.push_back(Elt: MF->getMachineMemOperand(MMO: MemOp, PtrInfo: MemOp->getPointerInfo(),
2581 Size: SubregSize / 8));
2582 MI->setMemRefs(MF&: *MF, MemRefs: NewMMOs);
2583
2584 MBB.insert(I, MI);
2585 return;
2586 }
2587
2588 default:
2589 break;
2590 }
2591
2592 TargetInstrInfo::reMaterialize(MBB, I, DestReg, SubIdx, Orig, RI);
2593}
2594
2595std::pair<MachineInstr*, MachineInstr*>
2596SIInstrInfo::expandMovDPP64(MachineInstr &MI) const {
2597 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO);
2598
2599 if (ST.hasMovB64() &&
2600 AMDGPU::isLegalDPALU_DPPControl(
2601 getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) {
2602 MI.setDesc(get(AMDGPU::V_MOV_B64_dpp));
2603 return std::pair(&MI, nullptr);
2604 }
2605
2606 MachineBasicBlock &MBB = *MI.getParent();
2607 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2608 MachineFunction *MF = MBB.getParent();
2609 MachineRegisterInfo &MRI = MF->getRegInfo();
2610 Register Dst = MI.getOperand(i: 0).getReg();
2611 unsigned Part = 0;
2612 MachineInstr *Split[2];
2613
2614 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) {
2615 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp));
2616 if (Dst.isPhysical()) {
2617 MovDPP.addDef(RI.getSubReg(Dst, Sub));
2618 } else {
2619 assert(MRI.isSSA());
2620 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2621 MovDPP.addDef(Tmp);
2622 }
2623
2624 for (unsigned I = 1; I <= 2; ++I) { // old and src operands.
2625 const MachineOperand &SrcOp = MI.getOperand(I);
2626 assert(!SrcOp.isFPImm());
2627 if (SrcOp.isImm()) {
2628 APInt Imm(64, SrcOp.getImm());
2629 Imm.ashrInPlace(Part * 32);
2630 MovDPP.addImm(Imm.getLoBits(32).getZExtValue());
2631 } else {
2632 assert(SrcOp.isReg());
2633 Register Src = SrcOp.getReg();
2634 if (Src.isPhysical())
2635 MovDPP.addReg(RI.getSubReg(Src, Sub));
2636 else
2637 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub);
2638 }
2639 }
2640
2641 for (const MachineOperand &MO : llvm::drop_begin(MI.explicit_operands(), 3))
2642 MovDPP.addImm(MO.getImm());
2643
2644 Split[Part] = MovDPP;
2645 ++Part;
2646 }
2647
2648 if (Dst.isVirtual())
2649 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst)
2650 .addReg(Split[0]->getOperand(0).getReg())
2651 .addImm(AMDGPU::sub0)
2652 .addReg(Split[1]->getOperand(0).getReg())
2653 .addImm(AMDGPU::sub1);
2654
2655 MI.eraseFromParent();
2656 return std::pair(Split[0], Split[1]);
2657}
2658
2659std::optional<DestSourcePair>
2660SIInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
2661 if (MI.getOpcode() == AMDGPU::WWM_COPY)
2662 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
2663
2664 return std::nullopt;
2665}
2666
2667bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI,
2668 MachineOperand &Src0,
2669 unsigned Src0OpName,
2670 MachineOperand &Src1,
2671 unsigned Src1OpName) const {
2672 MachineOperand *Src0Mods = getNamedOperand(MI, OperandName: Src0OpName);
2673 if (!Src0Mods)
2674 return false;
2675
2676 MachineOperand *Src1Mods = getNamedOperand(MI, OperandName: Src1OpName);
2677 assert(Src1Mods &&
2678 "All commutable instructions have both src0 and src1 modifiers");
2679
2680 int Src0ModsVal = Src0Mods->getImm();
2681 int Src1ModsVal = Src1Mods->getImm();
2682
2683 Src1Mods->setImm(Src0ModsVal);
2684 Src0Mods->setImm(Src1ModsVal);
2685 return true;
2686}
2687
2688static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI,
2689 MachineOperand &RegOp,
2690 MachineOperand &NonRegOp) {
2691 Register Reg = RegOp.getReg();
2692 unsigned SubReg = RegOp.getSubReg();
2693 bool IsKill = RegOp.isKill();
2694 bool IsDead = RegOp.isDead();
2695 bool IsUndef = RegOp.isUndef();
2696 bool IsDebug = RegOp.isDebug();
2697
2698 if (NonRegOp.isImm())
2699 RegOp.ChangeToImmediate(ImmVal: NonRegOp.getImm());
2700 else if (NonRegOp.isFI())
2701 RegOp.ChangeToFrameIndex(Idx: NonRegOp.getIndex());
2702 else if (NonRegOp.isGlobal()) {
2703 RegOp.ChangeToGA(GV: NonRegOp.getGlobal(), Offset: NonRegOp.getOffset(),
2704 TargetFlags: NonRegOp.getTargetFlags());
2705 } else
2706 return nullptr;
2707
2708 // Make sure we don't reinterpret a subreg index in the target flags.
2709 RegOp.setTargetFlags(NonRegOp.getTargetFlags());
2710
2711 NonRegOp.ChangeToRegister(Reg, isDef: false, isImp: false, isKill: IsKill, isDead: IsDead, isUndef: IsUndef, isDebug: IsDebug);
2712 NonRegOp.setSubReg(SubReg);
2713
2714 return &MI;
2715}
2716
2717MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2718 unsigned Src0Idx,
2719 unsigned Src1Idx) const {
2720 assert(!NewMI && "this should never be used");
2721
2722 unsigned Opc = MI.getOpcode();
2723 int CommutedOpcode = commuteOpcode(Opcode: Opc);
2724 if (CommutedOpcode == -1)
2725 return nullptr;
2726
2727 if (Src0Idx > Src1Idx)
2728 std::swap(a&: Src0Idx, b&: Src1Idx);
2729
2730 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) ==
2731 static_cast<int>(Src0Idx) &&
2732 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) ==
2733 static_cast<int>(Src1Idx) &&
2734 "inconsistency with findCommutedOpIndices");
2735
2736 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
2737 MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
2738
2739 MachineInstr *CommutedMI = nullptr;
2740 if (Src0.isReg() && Src1.isReg()) {
2741 if (isOperandLegal(MI, OpIdx: Src1Idx, MO: &Src0)) {
2742 // Be sure to copy the source modifiers to the right place.
2743 CommutedMI
2744 = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx);
2745 }
2746
2747 } else if (Src0.isReg() && !Src1.isReg()) {
2748 // src0 should always be able to support any operand type, so no need to
2749 // check operand legality.
2750 CommutedMI = swapRegAndNonRegOperand(MI, RegOp&: Src0, NonRegOp&: Src1);
2751 } else if (!Src0.isReg() && Src1.isReg()) {
2752 if (isOperandLegal(MI, OpIdx: Src1Idx, MO: &Src0))
2753 CommutedMI = swapRegAndNonRegOperand(MI, RegOp&: Src1, NonRegOp&: Src0);
2754 } else {
2755 // FIXME: Found two non registers to commute. This does happen.
2756 return nullptr;
2757 }
2758
2759 if (CommutedMI) {
2760 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers,
2761 Src1, AMDGPU::OpName::src1_modifiers);
2762
2763 CommutedMI->setDesc(get(CommutedOpcode));
2764 }
2765
2766 return CommutedMI;
2767}
2768
2769// This needs to be implemented because the source modifiers may be inserted
2770// between the true commutable operands, and the base
2771// TargetInstrInfo::commuteInstruction uses it.
2772bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2773 unsigned &SrcOpIdx0,
2774 unsigned &SrcOpIdx1) const {
2775 return findCommutedOpIndices(Desc: MI.getDesc(), SrcOpIdx0, SrcOpIdx1);
2776}
2777
2778bool SIInstrInfo::findCommutedOpIndices(const MCInstrDesc &Desc,
2779 unsigned &SrcOpIdx0,
2780 unsigned &SrcOpIdx1) const {
2781 if (!Desc.isCommutable())
2782 return false;
2783
2784 unsigned Opc = Desc.getOpcode();
2785 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2786 if (Src0Idx == -1)
2787 return false;
2788
2789 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
2790 if (Src1Idx == -1)
2791 return false;
2792
2793 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
2794}
2795
2796bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
2797 int64_t BrOffset) const {
2798 // BranchRelaxation should never have to check s_setpc_b64 because its dest
2799 // block is unanalyzable.
2800 assert(BranchOp != AMDGPU::S_SETPC_B64);
2801
2802 // Convert to dwords.
2803 BrOffset /= 4;
2804
2805 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is
2806 // from the next instruction.
2807 BrOffset -= 1;
2808
2809 return isIntN(N: BranchOffsetBits, x: BrOffset);
2810}
2811
2812MachineBasicBlock *
2813SIInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
2814 return MI.getOperand(i: 0).getMBB();
2815}
2816
2817bool SIInstrInfo::hasDivergentBranch(const MachineBasicBlock *MBB) const {
2818 for (const MachineInstr &MI : MBB->terminators()) {
2819 if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO ||
2820 MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE ||
2821 MI.getOpcode() == AMDGPU::SI_LOOP)
2822 return true;
2823 }
2824 return false;
2825}
2826
2827void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
2828 MachineBasicBlock &DestBB,
2829 MachineBasicBlock &RestoreBB,
2830 const DebugLoc &DL, int64_t BrOffset,
2831 RegScavenger *RS) const {
2832 assert(RS && "RegScavenger required for long branching");
2833 assert(MBB.empty() &&
2834 "new block should be inserted for expanding unconditional branch");
2835 assert(MBB.pred_size() == 1);
2836 assert(RestoreBB.empty() &&
2837 "restore block should be inserted for restoring clobbered registers");
2838
2839 MachineFunction *MF = MBB.getParent();
2840 MachineRegisterInfo &MRI = MF->getRegInfo();
2841 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
2842
2843 // FIXME: Virtual register workaround for RegScavenger not working with empty
2844 // blocks.
2845 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2846
2847 auto I = MBB.end();
2848
2849 // We need to compute the offset relative to the instruction immediately after
2850 // s_getpc_b64. Insert pc arithmetic code before last terminator.
2851 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg);
2852
2853 auto &MCCtx = MF->getContext();
2854 MCSymbol *PostGetPCLabel =
2855 MCCtx.createTempSymbol(Name: "post_getpc", /*AlwaysAddSuffix=*/true);
2856 GetPC->setPostInstrSymbol(MF&: *MF, Symbol: PostGetPCLabel);
2857
2858 MCSymbol *OffsetLo =
2859 MCCtx.createTempSymbol(Name: "offset_lo", /*AlwaysAddSuffix=*/true);
2860 MCSymbol *OffsetHi =
2861 MCCtx.createTempSymbol(Name: "offset_hi", /*AlwaysAddSuffix=*/true);
2862 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32))
2863 .addReg(PCReg, RegState::Define, AMDGPU::sub0)
2864 .addReg(PCReg, 0, AMDGPU::sub0)
2865 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET);
2866 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32))
2867 .addReg(PCReg, RegState::Define, AMDGPU::sub1)
2868 .addReg(PCReg, 0, AMDGPU::sub1)
2869 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET);
2870
2871 // Insert the indirect branch after the other terminator.
2872 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64))
2873 .addReg(PCReg);
2874
2875 // If a spill is needed for the pc register pair, we need to insert a spill
2876 // restore block right before the destination block, and insert a short branch
2877 // into the old destination block's fallthrough predecessor.
2878 // e.g.:
2879 //
2880 // s_cbranch_scc0 skip_long_branch:
2881 //
2882 // long_branch_bb:
2883 // spill s[8:9]
2884 // s_getpc_b64 s[8:9]
2885 // s_add_u32 s8, s8, restore_bb
2886 // s_addc_u32 s9, s9, 0
2887 // s_setpc_b64 s[8:9]
2888 //
2889 // skip_long_branch:
2890 // foo;
2891 //
2892 // .....
2893 //
2894 // dest_bb_fallthrough_predecessor:
2895 // bar;
2896 // s_branch dest_bb
2897 //
2898 // restore_bb:
2899 // restore s[8:9]
2900 // fallthrough dest_bb
2901 ///
2902 // dest_bb:
2903 // buzz;
2904
2905 Register LongBranchReservedReg = MFI->getLongBranchReservedReg();
2906 Register Scav;
2907
2908 // If we've previously reserved a register for long branches
2909 // avoid running the scavenger and just use those registers
2910 if (LongBranchReservedReg) {
2911 RS->enterBasicBlock(MBB);
2912 Scav = LongBranchReservedReg;
2913 } else {
2914 RS->enterBasicBlockEnd(MBB);
2915 Scav = RS->scavengeRegisterBackwards(
2916 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC),
2917 /* RestoreAfter */ false, 0, /* AllowSpill */ false);
2918 }
2919 if (Scav) {
2920 RS->setRegUsed(Reg: Scav);
2921 MRI.replaceRegWith(FromReg: PCReg, ToReg: Scav);
2922 MRI.clearVirtRegs();
2923 } else {
2924 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for
2925 // SGPR spill.
2926 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
2927 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2928 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS);
2929 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1);
2930 MRI.clearVirtRegs();
2931 }
2932
2933 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol();
2934 // Now, the distance could be defined.
2935 auto *Offset = MCBinaryExpr::createSub(
2936 LHS: MCSymbolRefExpr::create(Symbol: DestLabel, Ctx&: MCCtx),
2937 RHS: MCSymbolRefExpr::create(Symbol: PostGetPCLabel, Ctx&: MCCtx), Ctx&: MCCtx);
2938 // Add offset assignments.
2939 auto *Mask = MCConstantExpr::create(Value: 0xFFFFFFFFULL, Ctx&: MCCtx);
2940 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(LHS: Offset, RHS: Mask, Ctx&: MCCtx));
2941 auto *ShAmt = MCConstantExpr::create(Value: 32, Ctx&: MCCtx);
2942 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(LHS: Offset, RHS: ShAmt, Ctx&: MCCtx));
2943}
2944
2945unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
2946 switch (Cond) {
2947 case SIInstrInfo::SCC_TRUE:
2948 return AMDGPU::S_CBRANCH_SCC1;
2949 case SIInstrInfo::SCC_FALSE:
2950 return AMDGPU::S_CBRANCH_SCC0;
2951 case SIInstrInfo::VCCNZ:
2952 return AMDGPU::S_CBRANCH_VCCNZ;
2953 case SIInstrInfo::VCCZ:
2954 return AMDGPU::S_CBRANCH_VCCZ;
2955 case SIInstrInfo::EXECNZ:
2956 return AMDGPU::S_CBRANCH_EXECNZ;
2957 case SIInstrInfo::EXECZ:
2958 return AMDGPU::S_CBRANCH_EXECZ;
2959 default:
2960 llvm_unreachable("invalid branch predicate");
2961 }
2962}
2963
2964SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
2965 switch (Opcode) {
2966 case AMDGPU::S_CBRANCH_SCC0:
2967 return SCC_FALSE;
2968 case AMDGPU::S_CBRANCH_SCC1:
2969 return SCC_TRUE;
2970 case AMDGPU::S_CBRANCH_VCCNZ:
2971 return VCCNZ;
2972 case AMDGPU::S_CBRANCH_VCCZ:
2973 return VCCZ;
2974 case AMDGPU::S_CBRANCH_EXECNZ:
2975 return EXECNZ;
2976 case AMDGPU::S_CBRANCH_EXECZ:
2977 return EXECZ;
2978 default:
2979 return INVALID_BR;
2980 }
2981}
2982
2983bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB,
2984 MachineBasicBlock::iterator I,
2985 MachineBasicBlock *&TBB,
2986 MachineBasicBlock *&FBB,
2987 SmallVectorImpl<MachineOperand> &Cond,
2988 bool AllowModify) const {
2989 if (I->getOpcode() == AMDGPU::S_BRANCH) {
2990 // Unconditional Branch
2991 TBB = I->getOperand(i: 0).getMBB();
2992 return false;
2993 }
2994
2995 MachineBasicBlock *CondBB = nullptr;
2996
2997 if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
2998 CondBB = I->getOperand(i: 1).getMBB();
2999 Cond.push_back(Elt: I->getOperand(i: 0));
3000 } else {
3001 BranchPredicate Pred = getBranchPredicate(Opcode: I->getOpcode());
3002 if (Pred == INVALID_BR)
3003 return true;
3004
3005 CondBB = I->getOperand(i: 0).getMBB();
3006 Cond.push_back(Elt: MachineOperand::CreateImm(Val: Pred));
3007 Cond.push_back(Elt: I->getOperand(i: 1)); // Save the branch register.
3008 }
3009 ++I;
3010
3011 if (I == MBB.end()) {
3012 // Conditional branch followed by fall-through.
3013 TBB = CondBB;
3014 return false;
3015 }
3016
3017 if (I->getOpcode() == AMDGPU::S_BRANCH) {
3018 TBB = CondBB;
3019 FBB = I->getOperand(i: 0).getMBB();
3020 return false;
3021 }
3022
3023 return true;
3024}
3025
3026bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
3027 MachineBasicBlock *&FBB,
3028 SmallVectorImpl<MachineOperand> &Cond,
3029 bool AllowModify) const {
3030 MachineBasicBlock::iterator I = MBB.getFirstTerminator();
3031 auto E = MBB.end();
3032 if (I == E)
3033 return false;
3034
3035 // Skip over the instructions that are artificially terminators for special
3036 // exec management.
3037 while (I != E && !I->isBranch() && !I->isReturn()) {
3038 switch (I->getOpcode()) {
3039 case AMDGPU::S_MOV_B64_term:
3040 case AMDGPU::S_XOR_B64_term:
3041 case AMDGPU::S_OR_B64_term:
3042 case AMDGPU::S_ANDN2_B64_term:
3043 case AMDGPU::S_AND_B64_term:
3044 case AMDGPU::S_AND_SAVEEXEC_B64_term:
3045 case AMDGPU::S_MOV_B32_term:
3046 case AMDGPU::S_XOR_B32_term:
3047 case AMDGPU::S_OR_B32_term:
3048 case AMDGPU::S_ANDN2_B32_term:
3049 case AMDGPU::S_AND_B32_term:
3050 case AMDGPU::S_AND_SAVEEXEC_B32_term:
3051 break;
3052 case AMDGPU::SI_IF:
3053 case AMDGPU::SI_ELSE:
3054 case AMDGPU::SI_KILL_I1_TERMINATOR:
3055 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
3056 // FIXME: It's messy that these need to be considered here at all.
3057 return true;
3058 default:
3059 llvm_unreachable("unexpected non-branch terminator inst");
3060 }
3061
3062 ++I;
3063 }
3064
3065 if (I == E)
3066 return false;
3067
3068 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify);
3069}
3070
3071unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB,
3072 int *BytesRemoved) const {
3073 unsigned Count = 0;
3074 unsigned RemovedSize = 0;
3075 for (MachineInstr &MI : llvm::make_early_inc_range(Range: MBB.terminators())) {
3076 // Skip over artificial terminators when removing instructions.
3077 if (MI.isBranch() || MI.isReturn()) {
3078 RemovedSize += getInstSizeInBytes(MI);
3079 MI.eraseFromParent();
3080 ++Count;
3081 }
3082 }
3083
3084 if (BytesRemoved)
3085 *BytesRemoved = RemovedSize;
3086
3087 return Count;
3088}
3089
3090// Copy the flags onto the implicit condition register operand.
3091static void preserveCondRegFlags(MachineOperand &CondReg,
3092 const MachineOperand &OrigCond) {
3093 CondReg.setIsUndef(OrigCond.isUndef());
3094 CondReg.setIsKill(OrigCond.isKill());
3095}
3096
3097unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB,
3098 MachineBasicBlock *TBB,
3099 MachineBasicBlock *FBB,
3100 ArrayRef<MachineOperand> Cond,
3101 const DebugLoc &DL,
3102 int *BytesAdded) const {
3103 if (!FBB && Cond.empty()) {
3104 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
3105 .addMBB(TBB);
3106 if (BytesAdded)
3107 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
3108 return 1;
3109 }
3110
3111 if(Cond.size() == 1 && Cond[0].isReg()) {
3112 BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO))
3113 .add(Cond[0])
3114 .addMBB(TBB);
3115 return 1;
3116 }
3117
3118 assert(TBB && Cond[0].isImm());
3119
3120 unsigned Opcode
3121 = getBranchOpcode(Cond: static_cast<BranchPredicate>(Cond[0].getImm()));
3122
3123 if (!FBB) {
3124 MachineInstr *CondBr =
3125 BuildMI(&MBB, DL, get(Opcode))
3126 .addMBB(TBB);
3127
3128 // Copy the flags onto the implicit condition register operand.
3129 preserveCondRegFlags(CondReg&: CondBr->getOperand(i: 1), OrigCond: Cond[1]);
3130 fixImplicitOperands(MI&: *CondBr);
3131
3132 if (BytesAdded)
3133 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
3134 return 1;
3135 }
3136
3137 assert(TBB && FBB);
3138
3139 MachineInstr *CondBr =
3140 BuildMI(&MBB, DL, get(Opcode))
3141 .addMBB(TBB);
3142 fixImplicitOperands(MI&: *CondBr);
3143 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
3144 .addMBB(FBB);
3145
3146 MachineOperand &CondReg = CondBr->getOperand(i: 1);
3147 CondReg.setIsUndef(Cond[1].isUndef());
3148 CondReg.setIsKill(Cond[1].isKill());
3149
3150 if (BytesAdded)
3151 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8;
3152
3153 return 2;
3154}
3155
3156bool SIInstrInfo::reverseBranchCondition(
3157 SmallVectorImpl<MachineOperand> &Cond) const {
3158 if (Cond.size() != 2) {
3159 return true;
3160 }
3161
3162 if (Cond[0].isImm()) {
3163 Cond[0].setImm(-Cond[0].getImm());
3164 return false;
3165 }
3166
3167 return true;
3168}
3169
3170bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3171 ArrayRef<MachineOperand> Cond,
3172 Register DstReg, Register TrueReg,
3173 Register FalseReg, int &CondCycles,
3174 int &TrueCycles, int &FalseCycles) const {
3175 switch (Cond[0].getImm()) {
3176 case VCCNZ:
3177 case VCCZ: {
3178 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3179 const TargetRegisterClass *RC = MRI.getRegClass(Reg: TrueReg);
3180 if (MRI.getRegClass(Reg: FalseReg) != RC)
3181 return false;
3182
3183 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32;
3184 CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
3185
3186 // Limit to equal cost for branch vs. N v_cndmask_b32s.
3187 return RI.hasVGPRs(RC) && NumInsts <= 6;
3188 }
3189 case SCC_TRUE:
3190 case SCC_FALSE: {
3191 // FIXME: We could insert for VGPRs if we could replace the original compare
3192 // with a vector one.
3193 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3194 const TargetRegisterClass *RC = MRI.getRegClass(Reg: TrueReg);
3195 if (MRI.getRegClass(Reg: FalseReg) != RC)
3196 return false;
3197
3198 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32;
3199
3200 // Multiples of 8 can do s_cselect_b64
3201 if (NumInsts % 2 == 0)
3202 NumInsts /= 2;
3203
3204 CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
3205 return RI.isSGPRClass(RC);
3206 }
3207 default:
3208 return false;
3209 }
3210}
3211
3212void SIInstrInfo::insertSelect(MachineBasicBlock &MBB,
3213 MachineBasicBlock::iterator I, const DebugLoc &DL,
3214 Register DstReg, ArrayRef<MachineOperand> Cond,
3215 Register TrueReg, Register FalseReg) const {
3216 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm());
3217 if (Pred == VCCZ || Pred == SCC_FALSE) {
3218 Pred = static_cast<BranchPredicate>(-Pred);
3219 std::swap(a&: TrueReg, b&: FalseReg);
3220 }
3221
3222 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3223 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: DstReg);
3224 unsigned DstSize = RI.getRegSizeInBits(*DstRC);
3225
3226 if (DstSize == 32) {
3227 MachineInstr *Select;
3228 if (Pred == SCC_TRUE) {
3229 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg)
3230 .addReg(TrueReg)
3231 .addReg(FalseReg);
3232 } else {
3233 // Instruction's operands are backwards from what is expected.
3234 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg)
3235 .addReg(FalseReg)
3236 .addReg(TrueReg);
3237 }
3238
3239 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3240 return;
3241 }
3242
3243 if (DstSize == 64 && Pred == SCC_TRUE) {
3244 MachineInstr *Select =
3245 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg)
3246 .addReg(TrueReg)
3247 .addReg(FalseReg);
3248
3249 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3250 return;
3251 }
3252
3253 static const int16_t Sub0_15[] = {
3254 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
3255 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
3256 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
3257 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
3258 };
3259
3260 static const int16_t Sub0_15_64[] = {
3261 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
3262 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
3263 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
3264 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
3265 };
3266
3267 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32;
3268 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass;
3269 const int16_t *SubIndices = Sub0_15;
3270 int NElts = DstSize / 32;
3271
3272 // 64-bit select is only available for SALU.
3273 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit.
3274 if (Pred == SCC_TRUE) {
3275 if (NElts % 2) {
3276 SelOp = AMDGPU::S_CSELECT_B32;
3277 EltRC = &AMDGPU::SGPR_32RegClass;
3278 } else {
3279 SelOp = AMDGPU::S_CSELECT_B64;
3280 EltRC = &AMDGPU::SGPR_64RegClass;
3281 SubIndices = Sub0_15_64;
3282 NElts /= 2;
3283 }
3284 }
3285
3286 MachineInstrBuilder MIB = BuildMI(
3287 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg);
3288
3289 I = MIB->getIterator();
3290
3291 SmallVector<Register, 8> Regs;
3292 for (int Idx = 0; Idx != NElts; ++Idx) {
3293 Register DstElt = MRI.createVirtualRegister(RegClass: EltRC);
3294 Regs.push_back(Elt: DstElt);
3295
3296 unsigned SubIdx = SubIndices[Idx];
3297
3298 MachineInstr *Select;
3299 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) {
3300 Select =
3301 BuildMI(MBB, I, DL, get(SelOp), DstElt)
3302 .addReg(FalseReg, 0, SubIdx)
3303 .addReg(TrueReg, 0, SubIdx);
3304 } else {
3305 Select =
3306 BuildMI(MBB, I, DL, get(SelOp), DstElt)
3307 .addReg(TrueReg, 0, SubIdx)
3308 .addReg(FalseReg, 0, SubIdx);
3309 }
3310
3311 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3312 fixImplicitOperands(MI&: *Select);
3313
3314 MIB.addReg(RegNo: DstElt)
3315 .addImm(Val: SubIdx);
3316 }
3317}
3318
3319bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) {
3320 switch (MI.getOpcode()) {
3321 case AMDGPU::V_MOV_B32_e32:
3322 case AMDGPU::V_MOV_B32_e64:
3323 case AMDGPU::V_MOV_B64_PSEUDO:
3324 case AMDGPU::V_MOV_B64_e32:
3325 case AMDGPU::V_MOV_B64_e64:
3326 case AMDGPU::S_MOV_B32:
3327 case AMDGPU::S_MOV_B64:
3328 case AMDGPU::S_MOV_B64_IMM_PSEUDO:
3329 case AMDGPU::COPY:
3330 case AMDGPU::WWM_COPY:
3331 case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
3332 case AMDGPU::V_ACCVGPR_READ_B32_e64:
3333 case AMDGPU::V_ACCVGPR_MOV_B32:
3334 return true;
3335 default:
3336 return false;
3337 }
3338}
3339
3340static constexpr unsigned ModifierOpNames[] = {
3341 AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers,
3342 AMDGPU::OpName::src2_modifiers, AMDGPU::OpName::clamp,
3343 AMDGPU::OpName::omod, AMDGPU::OpName::op_sel};
3344
3345void SIInstrInfo::removeModOperands(MachineInstr &MI) const {
3346 unsigned Opc = MI.getOpcode();
3347 for (unsigned Name : reverse(ModifierOpNames)) {
3348 int Idx = AMDGPU::getNamedOperandIdx(Opc, Name);
3349 if (Idx >= 0)
3350 MI.removeOperand(Idx);
3351 }
3352}
3353
3354bool SIInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3355 Register Reg, MachineRegisterInfo *MRI) const {
3356 if (!MRI->hasOneNonDBGUse(RegNo: Reg))
3357 return false;
3358
3359 switch (DefMI.getOpcode()) {
3360 default:
3361 return false;
3362 case AMDGPU::V_MOV_B64_e32:
3363 case AMDGPU::S_MOV_B64:
3364 case AMDGPU::V_MOV_B64_PSEUDO:
3365 case AMDGPU::S_MOV_B64_IMM_PSEUDO:
3366 case AMDGPU::V_MOV_B32_e32:
3367 case AMDGPU::S_MOV_B32:
3368 case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
3369 break;
3370 }
3371
3372 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0);
3373 assert(ImmOp);
3374 // FIXME: We could handle FrameIndex values here.
3375 if (!ImmOp->isImm())
3376 return false;
3377
3378 auto getImmFor = [ImmOp](const MachineOperand &UseOp) -> int64_t {
3379 int64_t Imm = ImmOp->getImm();
3380 switch (UseOp.getSubReg()) {
3381 default:
3382 return Imm;
3383 case AMDGPU::sub0:
3384 return Lo_32(Value: Imm);
3385 case AMDGPU::sub1:
3386 return Hi_32(Value: Imm);
3387 case AMDGPU::lo16:
3388 return APInt(16, Imm).getSExtValue();
3389 case AMDGPU::hi16:
3390 return APInt(32, Imm).ashr(ShiftAmt: 16).getSExtValue();
3391 case AMDGPU::sub1_lo16:
3392 return APInt(16, Hi_32(Value: Imm)).getSExtValue();
3393 case AMDGPU::sub1_hi16:
3394 return APInt(32, Hi_32(Value: Imm)).ashr(ShiftAmt: 16).getSExtValue();
3395 }
3396 };
3397
3398 assert(!DefMI.getOperand(0).getSubReg() && "Expected SSA form");
3399
3400 unsigned Opc = UseMI.getOpcode();
3401 if (Opc == AMDGPU::COPY) {
3402 assert(!UseMI.getOperand(0).getSubReg() && "Expected SSA form");
3403
3404 Register DstReg = UseMI.getOperand(i: 0).getReg();
3405 unsigned OpSize = getOpSize(MI: UseMI, OpNo: 0);
3406 bool Is16Bit = OpSize == 2;
3407 bool Is64Bit = OpSize == 8;
3408 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg);
3409 unsigned NewOpc = isVGPRCopy ? Is64Bit ? AMDGPU::V_MOV_B64_PSEUDO
3410 : AMDGPU::V_MOV_B32_e32
3411 : Is64Bit ? AMDGPU::S_MOV_B64_IMM_PSEUDO
3412 : AMDGPU::S_MOV_B32;
3413 APInt Imm(Is64Bit ? 64 : 32, getImmFor(UseMI.getOperand(i: 1)));
3414
3415 if (RI.isAGPR(*MRI, DstReg)) {
3416 if (Is64Bit || !isInlineConstant(Imm))
3417 return false;
3418 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
3419 }
3420
3421 if (Is16Bit) {
3422 if (isVGPRCopy)
3423 return false; // Do not clobber vgpr_hi16
3424
3425 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16)
3426 return false;
3427
3428 UseMI.getOperand(i: 0).setSubReg(0);
3429 if (DstReg.isPhysical()) {
3430 DstReg = RI.get32BitRegister(Reg: DstReg);
3431 UseMI.getOperand(i: 0).setReg(DstReg);
3432 }
3433 assert(UseMI.getOperand(1).getReg().isVirtual());
3434 }
3435
3436 const MCInstrDesc &NewMCID = get(NewOpc);
3437 if (DstReg.isPhysical() &&
3438 !RI.getRegClass(NewMCID.operands()[0].RegClass)->contains(DstReg))
3439 return false;
3440
3441 UseMI.setDesc(NewMCID);
3442 UseMI.getOperand(i: 1).ChangeToImmediate(ImmVal: Imm.getSExtValue());
3443 UseMI.addImplicitDefUseOperands(MF&: *UseMI.getParent()->getParent());
3444 return true;
3445 }
3446
3447 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
3448 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3449 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3450 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3451 Opc == AMDGPU::V_FMAC_F16_t16_e64) {
3452 // Don't fold if we are using source or output modifiers. The new VOP2
3453 // instructions don't have them.
3454 if (hasAnyModifiersSet(MI: UseMI))
3455 return false;
3456
3457 // If this is a free constant, there's no reason to do this.
3458 // TODO: We could fold this here instead of letting SIFoldOperands do it
3459 // later.
3460 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
3461
3462 // Any src operand can be used for the legality check.
3463 if (isInlineConstant(MI: UseMI, UseMO: *Src0, DefMO: *ImmOp))
3464 return false;
3465
3466 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
3467 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64;
3468 bool IsFMA =
3469 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3470 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3471 Opc == AMDGPU::V_FMAC_F16_t16_e64;
3472 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
3473 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
3474
3475 // Multiplied part is the constant: Use v_madmk_{f16, f32}.
3476 if ((Src0->isReg() && Src0->getReg() == Reg) ||
3477 (Src1->isReg() && Src1->getReg() == Reg)) {
3478 MachineOperand *RegSrc =
3479 Src1->isReg() && Src1->getReg() == Reg ? Src0 : Src1;
3480 if (!RegSrc->isReg())
3481 return false;
3482 if (RI.isSGPRClass(MRI->getRegClass(Reg: RegSrc->getReg())) &&
3483 ST.getConstantBusLimit(Opcode: Opc) < 2)
3484 return false;
3485
3486 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Reg: Src2->getReg())))
3487 return false;
3488
3489 // If src2 is also a literal constant then we have to choose which one to
3490 // fold. In general it is better to choose madak so that the other literal
3491 // can be materialized in an sgpr instead of a vgpr:
3492 // s_mov_b32 s0, literal
3493 // v_madak_f32 v0, s0, v0, literal
3494 // Instead of:
3495 // v_mov_b32 v1, literal
3496 // v_madmk_f32 v0, v0, literal, v1
3497 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src2->getReg());
3498 if (Def && Def->isMoveImmediate() &&
3499 !isInlineConstant(MO: Def->getOperand(i: 1)))
3500 return false;
3501
3502 unsigned NewOpc =
3503 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32
3504 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16
3505 : AMDGPU::V_FMAMK_F16)
3506 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16);
3507 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
3508 return false;
3509
3510 // V_FMAMK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite
3511 // would also require restricting their register classes. For now
3512 // just bail out.
3513 if (NewOpc == AMDGPU::V_FMAMK_F16_t16)
3514 return false;
3515
3516 const int64_t Imm = getImmFor(RegSrc == Src1 ? *Src0 : *Src1);
3517
3518 // FIXME: This would be a lot easier if we could return a new instruction
3519 // instead of having to modify in place.
3520
3521 Register SrcReg = RegSrc->getReg();
3522 unsigned SrcSubReg = RegSrc->getSubReg();
3523 Src0->setReg(SrcReg);
3524 Src0->setSubReg(SrcSubReg);
3525 Src0->setIsKill(RegSrc->isKill());
3526
3527 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3528 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3529 Opc == AMDGPU::V_FMAC_F16_e64)
3530 UseMI.untieRegOperand(
3531 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
3532
3533 Src1->ChangeToImmediate(ImmVal: Imm);
3534
3535 removeModOperands(MI&: UseMI);
3536 UseMI.setDesc(get(NewOpc));
3537
3538 bool DeleteDef = MRI->use_nodbg_empty(RegNo: Reg);
3539 if (DeleteDef)
3540 DefMI.eraseFromParent();
3541
3542 return true;
3543 }
3544
3545 // Added part is the constant: Use v_madak_{f16, f32}.
3546 if (Src2->isReg() && Src2->getReg() == Reg) {
3547 if (ST.getConstantBusLimit(Opcode: Opc) < 2) {
3548 // Not allowed to use constant bus for another operand.
3549 // We can however allow an inline immediate as src0.
3550 bool Src0Inlined = false;
3551 if (Src0->isReg()) {
3552 // Try to inline constant if possible.
3553 // If the Def moves immediate and the use is single
3554 // We are saving VGPR here.
3555 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src0->getReg());
3556 if (Def && Def->isMoveImmediate() &&
3557 isInlineConstant(MO: Def->getOperand(i: 1)) &&
3558 MRI->hasOneUse(RegNo: Src0->getReg())) {
3559 Src0->ChangeToImmediate(ImmVal: Def->getOperand(i: 1).getImm());
3560 Src0Inlined = true;
3561 } else if (ST.getConstantBusLimit(Opcode: Opc) <= 1 &&
3562 RI.isSGPRReg(*MRI, Src0->getReg())) {
3563 return false;
3564 }
3565 // VGPR is okay as Src0 - fallthrough
3566 }
3567
3568 if (Src1->isReg() && !Src0Inlined) {
3569 // We have one slot for inlinable constant so far - try to fill it
3570 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src1->getReg());
3571 if (Def && Def->isMoveImmediate() &&
3572 isInlineConstant(MO: Def->getOperand(i: 1)) &&
3573 MRI->hasOneUse(RegNo: Src1->getReg()) && commuteInstruction(UseMI))
3574 Src0->ChangeToImmediate(ImmVal: Def->getOperand(i: 1).getImm());
3575 else if (RI.isSGPRReg(*MRI, Src1->getReg()))
3576 return false;
3577 // VGPR is okay as Src1 - fallthrough
3578 }
3579 }
3580
3581 unsigned NewOpc =
3582 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32
3583 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16
3584 : AMDGPU::V_FMAAK_F16)
3585 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16);
3586 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
3587 return false;
3588
3589 // V_FMAAK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite
3590 // would also require restricting their register classes. For now
3591 // just bail out.
3592 if (NewOpc == AMDGPU::V_FMAAK_F16_t16)
3593 return false;
3594
3595 // FIXME: This would be a lot easier if we could return a new instruction
3596 // instead of having to modify in place.
3597
3598 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3599 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3600 Opc == AMDGPU::V_FMAC_F16_e64)
3601 UseMI.untieRegOperand(
3602 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
3603
3604 // ChangingToImmediate adds Src2 back to the instruction.
3605 Src2->ChangeToImmediate(ImmVal: getImmFor(*Src2));
3606
3607 // These come before src2.
3608 removeModOperands(MI&: UseMI);
3609 UseMI.setDesc(get(NewOpc));
3610 // It might happen that UseMI was commuted
3611 // and we now have SGPR as SRC1. If so 2 inlined
3612 // constant and SGPR are illegal.
3613 legalizeOperands(MI&: UseMI);
3614
3615 bool DeleteDef = MRI->use_nodbg_empty(RegNo: Reg);
3616 if (DeleteDef)
3617 DefMI.eraseFromParent();
3618
3619 return true;
3620 }
3621 }
3622
3623 return false;
3624}
3625
3626static bool
3627memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1,
3628 ArrayRef<const MachineOperand *> BaseOps2) {
3629 if (BaseOps1.size() != BaseOps2.size())
3630 return false;
3631 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) {
3632 if (!BaseOps1[I]->isIdenticalTo(Other: *BaseOps2[I]))
3633 return false;
3634 }
3635 return true;
3636}
3637
3638static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
3639 int WidthB, int OffsetB) {
3640 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
3641 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
3642 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
3643 return LowOffset + LowWidth <= HighOffset;
3644}
3645
3646bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
3647 const MachineInstr &MIb) const {
3648 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1;
3649 int64_t Offset0, Offset1;
3650 unsigned Dummy0, Dummy1;
3651 bool Offset0IsScalable, Offset1IsScalable;
3652 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable,
3653 Dummy0, &RI) ||
3654 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable,
3655 Dummy1, &RI))
3656 return false;
3657
3658 if (!memOpsHaveSameBaseOperands(BaseOps1: BaseOps0, BaseOps2: BaseOps1))
3659 return false;
3660
3661 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
3662 // FIXME: Handle ds_read2 / ds_write2.
3663 return false;
3664 }
3665 unsigned Width0 = MIa.memoperands().front()->getSize();
3666 unsigned Width1 = MIb.memoperands().front()->getSize();
3667 return offsetsDoNotOverlap(WidthA: Width0, OffsetA: Offset0, WidthB: Width1, OffsetB: Offset1);
3668}
3669
3670bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
3671 const MachineInstr &MIb) const {
3672 assert(MIa.mayLoadOrStore() &&
3673 "MIa must load from or modify a memory location");
3674 assert(MIb.mayLoadOrStore() &&
3675 "MIb must load from or modify a memory location");
3676
3677 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
3678 return false;
3679
3680 // XXX - Can we relax this between address spaces?
3681 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
3682 return false;
3683
3684 if (isLDSDMA(MI: MIa) || isLDSDMA(MI: MIb))
3685 return false;
3686
3687 // TODO: Should we check the address space from the MachineMemOperand? That
3688 // would allow us to distinguish objects we know don't alias based on the
3689 // underlying address space, even if it was lowered to a different one,
3690 // e.g. private accesses lowered to use MUBUF instructions on a scratch
3691 // buffer.
3692 if (isDS(MI: MIa)) {
3693 if (isDS(MI: MIb))
3694 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3695
3696 return !isFLAT(MI: MIb) || isSegmentSpecificFLAT(MI: MIb);
3697 }
3698
3699 if (isMUBUF(MI: MIa) || isMTBUF(MI: MIa)) {
3700 if (isMUBUF(MI: MIb) || isMTBUF(MI: MIb))
3701 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3702
3703 if (isFLAT(MI: MIb))
3704 return isFLATScratch(MI: MIb);
3705
3706 return !isSMRD(MI: MIb);
3707 }
3708
3709 if (isSMRD(MI: MIa)) {
3710 if (isSMRD(MI: MIb))
3711 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3712
3713 if (isFLAT(MI: MIb))
3714 return isFLATScratch(MI: MIb);
3715
3716 return !isMUBUF(MI: MIb) && !isMTBUF(MI: MIb);
3717 }
3718
3719 if (isFLAT(MI: MIa)) {
3720 if (isFLAT(MI: MIb)) {
3721 if ((isFLATScratch(MI: MIa) && isFLATGlobal(MI: MIb)) ||
3722 (isFLATGlobal(MI: MIa) && isFLATScratch(MI: MIb)))
3723 return true;
3724
3725 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3726 }
3727
3728 return false;
3729 }
3730
3731 return false;
3732}
3733
3734static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI,
3735 int64_t &Imm, MachineInstr **DefMI = nullptr) {
3736 if (Reg.isPhysical())
3737 return false;
3738 auto *Def = MRI.getUniqueVRegDef(Reg);
3739 if (Def && SIInstrInfo::isFoldableCopy(MI: *Def) && Def->getOperand(i: 1).isImm()) {
3740 Imm = Def->getOperand(i: 1).getImm();
3741 if (DefMI)
3742 *DefMI = Def;
3743 return true;
3744 }
3745 return false;
3746}
3747
3748static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm,
3749 MachineInstr **DefMI = nullptr) {
3750 if (!MO->isReg())
3751 return false;
3752 const MachineFunction *MF = MO->getParent()->getParent()->getParent();
3753 const MachineRegisterInfo &MRI = MF->getRegInfo();
3754 return getFoldableImm(Reg: MO->getReg(), MRI, Imm, DefMI);
3755}
3756
3757static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI,
3758 MachineInstr &NewMI) {
3759 if (LV) {
3760 unsigned NumOps = MI.getNumOperands();
3761 for (unsigned I = 1; I < NumOps; ++I) {
3762 MachineOperand &Op = MI.getOperand(i: I);
3763 if (Op.isReg() && Op.isKill())
3764 LV->replaceKillInstruction(Reg: Op.getReg(), OldMI&: MI, NewMI);
3765 }
3766 }
3767}
3768
3769MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI,
3770 LiveVariables *LV,
3771 LiveIntervals *LIS) const {
3772 MachineBasicBlock &MBB = *MI.getParent();
3773 unsigned Opc = MI.getOpcode();
3774
3775 // Handle MFMA.
3776 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opcode: Opc);
3777 if (NewMFMAOpc != -1) {
3778 MachineInstrBuilder MIB =
3779 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc));
3780 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3781 MIB.add(MO: MI.getOperand(i: I));
3782 updateLiveVariables(LV, MI, NewMI&: *MIB);
3783 if (LIS)
3784 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3785 return MIB;
3786 }
3787
3788 if (SIInstrInfo::isWMMA(MI)) {
3789 unsigned NewOpc = AMDGPU::mapWMMA2AddrTo3AddrOpcode(Opc: MI.getOpcode());
3790 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3791 .setMIFlags(MI.getFlags());
3792 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3793 MIB->addOperand(Op: MI.getOperand(i: I));
3794
3795 updateLiveVariables(LV, MI, NewMI&: *MIB);
3796 if (LIS)
3797 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3798
3799 return MIB;
3800 }
3801
3802 assert(Opc != AMDGPU::V_FMAC_F16_t16_e32 &&
3803 "V_FMAC_F16_t16_e32 is not supported and not expected to be present "
3804 "pre-RA");
3805
3806 // Handle MAC/FMAC.
3807 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 ||
3808 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3809 Opc == AMDGPU::V_FMAC_F16_t16_e64;
3810 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3811 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 ||
3812 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 ||
3813 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3814 Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3815 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
3816 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
3817 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 ||
3818 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 ||
3819 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 ||
3820 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64;
3821 bool Src0Literal = false;
3822
3823 switch (Opc) {
3824 default:
3825 return nullptr;
3826 case AMDGPU::V_MAC_F16_e64:
3827 case AMDGPU::V_FMAC_F16_e64:
3828 case AMDGPU::V_FMAC_F16_t16_e64:
3829 case AMDGPU::V_MAC_F32_e64:
3830 case AMDGPU::V_MAC_LEGACY_F32_e64:
3831 case AMDGPU::V_FMAC_F32_e64:
3832 case AMDGPU::V_FMAC_LEGACY_F32_e64:
3833 case AMDGPU::V_FMAC_F64_e64:
3834 break;
3835 case AMDGPU::V_MAC_F16_e32:
3836 case AMDGPU::V_FMAC_F16_e32:
3837 case AMDGPU::V_MAC_F32_e32:
3838 case AMDGPU::V_MAC_LEGACY_F32_e32:
3839 case AMDGPU::V_FMAC_F32_e32:
3840 case AMDGPU::V_FMAC_LEGACY_F32_e32:
3841 case AMDGPU::V_FMAC_F64_e32: {
3842 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
3843 AMDGPU::OpName::src0);
3844 const MachineOperand *Src0 = &MI.getOperand(i: Src0Idx);
3845 if (!Src0->isReg() && !Src0->isImm())
3846 return nullptr;
3847
3848 if (Src0->isImm() && !isInlineConstant(MI, OpIdx: Src0Idx, MO: *Src0))
3849 Src0Literal = true;
3850
3851 break;
3852 }
3853 }
3854
3855 MachineInstrBuilder MIB;
3856 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
3857 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
3858 const MachineOperand *Src0Mods =
3859 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
3860 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
3861 const MachineOperand *Src1Mods =
3862 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
3863 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
3864 const MachineOperand *Src2Mods =
3865 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers);
3866 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
3867 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod);
3868 const MachineOperand *OpSel = getNamedOperand(MI, AMDGPU::OpName::op_sel);
3869
3870 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 &&
3871 !IsLegacy &&
3872 // If we have an SGPR input, we will violate the constant bus restriction.
3873 (ST.getConstantBusLimit(Opcode: Opc) > 1 || !Src0->isReg() ||
3874 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) {
3875 MachineInstr *DefMI;
3876 const auto killDef = [&]() -> void {
3877 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3878 // The only user is the instruction which will be killed.
3879 Register DefReg = DefMI->getOperand(i: 0).getReg();
3880 if (!MRI.hasOneNonDBGUse(RegNo: DefReg))
3881 return;
3882 // We cannot just remove the DefMI here, calling pass will crash.
3883 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF));
3884 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I)
3885 DefMI->removeOperand(OpNo: I);
3886 if (LV)
3887 LV->getVarInfo(Reg: DefReg).AliveBlocks.clear();
3888 };
3889
3890 int64_t Imm;
3891 if (!Src0Literal && getFoldableImm(MO: Src2, Imm, DefMI: &DefMI)) {
3892 unsigned NewOpc =
3893 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16
3894 : AMDGPU::V_FMAAK_F16)
3895 : AMDGPU::V_FMAAK_F32)
3896 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32);
3897 if (pseudoToMCOpcode(Opcode: NewOpc) != -1) {
3898 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3899 .add(*Dst)
3900 .add(*Src0)
3901 .add(*Src1)
3902 .addImm(Imm);
3903 updateLiveVariables(LV, MI, NewMI&: *MIB);
3904 if (LIS)
3905 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3906 killDef();
3907 return MIB;
3908 }
3909 }
3910 unsigned NewOpc =
3911 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16
3912 : AMDGPU::V_FMAMK_F16)
3913 : AMDGPU::V_FMAMK_F32)
3914 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32);
3915 if (!Src0Literal && getFoldableImm(MO: Src1, Imm, DefMI: &DefMI)) {
3916 if (pseudoToMCOpcode(Opcode: NewOpc) != -1) {
3917 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3918 .add(*Dst)
3919 .add(*Src0)
3920 .addImm(Imm)
3921 .add(*Src2);
3922 updateLiveVariables(LV, MI, NewMI&: *MIB);
3923 if (LIS)
3924 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3925 killDef();
3926 return MIB;
3927 }
3928 }
3929 if (Src0Literal || getFoldableImm(MO: Src0, Imm, DefMI: &DefMI)) {
3930 if (Src0Literal) {
3931 Imm = Src0->getImm();
3932 DefMI = nullptr;
3933 }
3934 if (pseudoToMCOpcode(NewOpc) != -1 &&
3935 isOperandLegal(
3936 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0),
3937 Src1)) {
3938 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3939 .add(*Dst)
3940 .add(*Src1)
3941 .addImm(Imm)
3942 .add(*Src2);
3943 updateLiveVariables(LV, MI, NewMI&: *MIB);
3944 if (LIS)
3945 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3946 if (DefMI)
3947 killDef();
3948 return MIB;
3949 }
3950 }
3951 }
3952
3953 // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma
3954 // if VOP3 does not allow a literal operand.
3955 if (Src0Literal && !ST.hasVOP3Literal())
3956 return nullptr;
3957
3958 unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64
3959 : IsF64 ? AMDGPU::V_FMA_F64_e64
3960 : IsLegacy
3961 ? AMDGPU::V_FMA_LEGACY_F32_e64
3962 : AMDGPU::V_FMA_F32_e64
3963 : IsF16 ? AMDGPU::V_MAD_F16_e64
3964 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64
3965 : AMDGPU::V_MAD_F32_e64;
3966 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
3967 return nullptr;
3968
3969 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3970 .add(*Dst)
3971 .addImm(Src0Mods ? Src0Mods->getImm() : 0)
3972 .add(*Src0)
3973 .addImm(Src1Mods ? Src1Mods->getImm() : 0)
3974 .add(*Src1)
3975 .addImm(Src2Mods ? Src2Mods->getImm() : 0)
3976 .add(*Src2)
3977 .addImm(Clamp ? Clamp->getImm() : 0)
3978 .addImm(Omod ? Omod->getImm() : 0);
3979 if (AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel))
3980 MIB.addImm(Val: OpSel ? OpSel->getImm() : 0);
3981 updateLiveVariables(LV, MI, NewMI&: *MIB);
3982 if (LIS)
3983 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3984 return MIB;
3985}
3986
3987// It's not generally safe to move VALU instructions across these since it will
3988// start using the register as a base index rather than directly.
3989// XXX - Why isn't hasSideEffects sufficient for these?
3990static bool changesVGPRIndexingMode(const MachineInstr &MI) {
3991 switch (MI.getOpcode()) {
3992 case AMDGPU::S_SET_GPR_IDX_ON:
3993 case AMDGPU::S_SET_GPR_IDX_MODE:
3994 case AMDGPU::S_SET_GPR_IDX_OFF:
3995 return true;
3996 default:
3997 return false;
3998 }
3999}
4000
4001bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
4002 const MachineBasicBlock *MBB,
4003 const MachineFunction &MF) const {
4004 // Skipping the check for SP writes in the base implementation. The reason it
4005 // was added was apparently due to compile time concerns.
4006 //
4007 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops
4008 // but is probably avoidable.
4009
4010 // Copied from base implementation.
4011 // Terminators and labels can't be scheduled around.
4012 if (MI.isTerminator() || MI.isPosition())
4013 return true;
4014
4015 // INLINEASM_BR can jump to another block
4016 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
4017 return true;
4018
4019 if (MI.getOpcode() == AMDGPU::SCHED_BARRIER && MI.getOperand(0).getImm() == 0)
4020 return true;
4021
4022 // Target-independent instructions do not have an implicit-use of EXEC, even
4023 // when they operate on VGPRs. Treating EXEC modifications as scheduling
4024 // boundaries prevents incorrect movements of such instructions.
4025 return MI.modifiesRegister(AMDGPU::EXEC, &RI) ||
4026 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
4027 MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
4028 MI.getOpcode() == AMDGPU::S_SETPRIO ||
4029 changesVGPRIndexingMode(MI);
4030}
4031
4032bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const {
4033 return Opcode == AMDGPU::DS_ORDERED_COUNT || isGWS(Opcode);
4034}
4035
4036bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) {
4037 // Skip the full operand and register alias search modifiesRegister
4038 // does. There's only a handful of instructions that touch this, it's only an
4039 // implicit def, and doesn't alias any other registers.
4040 return is_contained(MI.getDesc().implicit_defs(), AMDGPU::MODE);
4041}
4042
4043bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const {
4044 unsigned Opcode = MI.getOpcode();
4045
4046 if (MI.mayStore() && isSMRD(MI))
4047 return true; // scalar store or atomic
4048
4049 // This will terminate the function when other lanes may need to continue.
4050 if (MI.isReturn())
4051 return true;
4052
4053 // These instructions cause shader I/O that may cause hardware lockups
4054 // when executed with an empty EXEC mask.
4055 //
4056 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when
4057 // EXEC = 0, but checking for that case here seems not worth it
4058 // given the typical code patterns.
4059 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT ||
4060 isEXP(Opcode) ||
4061 Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP ||
4062 Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER)
4063 return true;
4064
4065 if (MI.isCall() || MI.isInlineAsm())
4066 return true; // conservative assumption
4067
4068 // A mode change is a scalar operation that influences vector instructions.
4069 if (modifiesModeRegister(MI))
4070 return true;
4071
4072 // These are like SALU instructions in terms of effects, so it's questionable
4073 // whether we should return true for those.
4074 //
4075 // However, executing them with EXEC = 0 causes them to operate on undefined
4076 // data, which we avoid by returning true here.
4077 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 ||
4078 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32 ||
4079 Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR ||
4080 Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR)
4081 return true;
4082
4083 return false;
4084}
4085
4086bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI,
4087 const MachineInstr &MI) const {
4088 if (MI.isMetaInstruction())
4089 return false;
4090
4091 // This won't read exec if this is an SGPR->SGPR copy.
4092 if (MI.isCopyLike()) {
4093 if (!RI.isSGPRReg(MRI, MI.getOperand(i: 0).getReg()))
4094 return true;
4095
4096 // Make sure this isn't copying exec as a normal operand
4097 return MI.readsRegister(AMDGPU::EXEC, &RI);
4098 }
4099
4100 // Make a conservative assumption about the callee.
4101 if (MI.isCall())
4102 return true;
4103
4104 // Be conservative with any unhandled generic opcodes.
4105 if (!isTargetSpecificOpcode(Opcode: MI.getOpcode()))
4106 return true;
4107
4108 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI);
4109}
4110
4111bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
4112 switch (Imm.getBitWidth()) {
4113 case 1: // This likely will be a condition code mask.
4114 return true;
4115
4116 case 32:
4117 return AMDGPU::isInlinableLiteral32(Literal: Imm.getSExtValue(),
4118 HasInv2Pi: ST.hasInv2PiInlineImm());
4119 case 64:
4120 return AMDGPU::isInlinableLiteral64(Literal: Imm.getSExtValue(),
4121 HasInv2Pi: ST.hasInv2PiInlineImm());
4122 case 16:
4123 return ST.has16BitInsts() &&
4124 AMDGPU::isInlinableLiteral16(Literal: Imm.getSExtValue(),
4125 HasInv2Pi: ST.hasInv2PiInlineImm());
4126 default:
4127 llvm_unreachable("invalid bitwidth");
4128 }
4129}
4130
4131bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
4132 uint8_t OperandType) const {
4133 assert(!MO.isReg() && "isInlineConstant called on register operand!");
4134 if (!MO.isImm())
4135 return false;
4136
4137 // MachineOperand provides no way to tell the true operand size, since it only
4138 // records a 64-bit value. We need to know the size to determine if a 32-bit
4139 // floating point immediate bit pattern is legal for an integer immediate. It
4140 // would be for any 32-bit integer operand, but would not be for a 64-bit one.
4141
4142 int64_t Imm = MO.getImm();
4143 switch (OperandType) {
4144 case AMDGPU::OPERAND_REG_IMM_INT32:
4145 case AMDGPU::OPERAND_REG_IMM_FP32:
4146 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
4147 case AMDGPU::OPERAND_REG_INLINE_C_INT32:
4148 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
4149 case AMDGPU::OPERAND_REG_IMM_V2FP32:
4150 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
4151 case AMDGPU::OPERAND_REG_IMM_V2INT32:
4152 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32:
4153 case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
4154 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
4155 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: {
4156 int32_t Trunc = static_cast<int32_t>(Imm);
4157 return AMDGPU::isInlinableLiteral32(Literal: Trunc, HasInv2Pi: ST.hasInv2PiInlineImm());
4158 }
4159 case AMDGPU::OPERAND_REG_IMM_INT64:
4160 case AMDGPU::OPERAND_REG_IMM_FP64:
4161 case AMDGPU::OPERAND_REG_INLINE_C_INT64:
4162 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
4163 case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
4164 return AMDGPU::isInlinableLiteral64(Literal: MO.getImm(),
4165 HasInv2Pi: ST.hasInv2PiInlineImm());
4166 case AMDGPU::OPERAND_REG_IMM_INT16:
4167 case AMDGPU::OPERAND_REG_INLINE_C_INT16:
4168 case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
4169 // We would expect inline immediates to not be concerned with an integer/fp
4170 // distinction. However, in the case of 16-bit integer operations, the
4171 // "floating point" values appear to not work. It seems read the low 16-bits
4172 // of 32-bit immediates, which happens to always work for the integer
4173 // values.
4174 //
4175 // See llvm bugzilla 46302.
4176 //
4177 // TODO: Theoretically we could use op-sel to use the high bits of the
4178 // 32-bit FP values.
4179 return AMDGPU::isInlinableIntLiteral(Literal: Imm);
4180 case AMDGPU::OPERAND_REG_IMM_V2INT16:
4181 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
4182 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
4183 return AMDGPU::isInlinableLiteralV2I16(Literal: Imm);
4184 case AMDGPU::OPERAND_REG_IMM_V2FP16:
4185 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
4186 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
4187 return AMDGPU::isInlinableLiteralV2F16(Literal: Imm);
4188 case AMDGPU::OPERAND_REG_IMM_FP16:
4189 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
4190 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
4191 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: {
4192 if (isInt<16>(x: Imm) || isUInt<16>(x: Imm)) {
4193 // A few special case instructions have 16-bit operands on subtargets
4194 // where 16-bit instructions are not legal.
4195 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle
4196 // constants in these cases
4197 int16_t Trunc = static_cast<int16_t>(Imm);
4198 return ST.has16BitInsts() &&
4199 AMDGPU::isInlinableLiteral16(Literal: Trunc, HasInv2Pi: ST.hasInv2PiInlineImm());
4200 }
4201
4202 return false;
4203 }
4204 case AMDGPU::OPERAND_KIMM32:
4205 case AMDGPU::OPERAND_KIMM16:
4206 return false;
4207 case AMDGPU::OPERAND_INPUT_MODS:
4208 case MCOI::OPERAND_IMMEDIATE:
4209 // Always embedded in the instruction for free.
4210 return true;
4211 case MCOI::OPERAND_UNKNOWN:
4212 case MCOI::OPERAND_REGISTER:
4213 case MCOI::OPERAND_PCREL:
4214 case MCOI::OPERAND_GENERIC_0:
4215 case MCOI::OPERAND_GENERIC_1:
4216 case MCOI::OPERAND_GENERIC_2:
4217 case MCOI::OPERAND_GENERIC_3:
4218 case MCOI::OPERAND_GENERIC_4:
4219 case MCOI::OPERAND_GENERIC_5:
4220 // Just ignore anything else.
4221 return true;
4222 default:
4223 llvm_unreachable("invalid operand type");
4224 }
4225}
4226
4227static bool compareMachineOp(const MachineOperand &Op0,
4228 const MachineOperand &Op1) {
4229 if (Op0.getType() != Op1.getType())
4230 return false;
4231
4232 switch (Op0.getType()) {
4233 case MachineOperand::MO_Register:
4234 return Op0.getReg() == Op1.getReg();
4235 case MachineOperand::MO_Immediate:
4236 return Op0.getImm() == Op1.getImm();
4237 default:
4238 llvm_unreachable("Didn't expect to be comparing these operand types");
4239 }
4240}
4241
4242bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
4243 const MachineOperand &MO) const {
4244 const MCInstrDesc &InstDesc = MI.getDesc();
4245 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
4246
4247 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
4248
4249 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
4250 return true;
4251
4252 if (OpInfo.RegClass < 0)
4253 return false;
4254
4255 if (MO.isImm() && isInlineConstant(MO, OpInfo)) {
4256 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() &&
4257 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(),
4258 AMDGPU::OpName::src2))
4259 return false;
4260 return RI.opCanUseInlineConstant(OpType: OpInfo.OperandType);
4261 }
4262
4263 if (!RI.opCanUseLiteralConstant(OpType: OpInfo.OperandType))
4264 return false;
4265
4266 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(Desc: InstDesc, OpNo))
4267 return true;
4268
4269 return ST.hasVOP3Literal();
4270}
4271
4272bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
4273 // GFX90A does not have V_MUL_LEGACY_F32_e32.
4274 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts())
4275 return false;
4276
4277 int Op32 = AMDGPU::getVOPe32(Opcode);
4278 if (Op32 == -1)
4279 return false;
4280
4281 return pseudoToMCOpcode(Opcode: Op32) != -1;
4282}
4283
4284bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
4285 // The src0_modifier operand is present on all instructions
4286 // that have modifiers.
4287
4288 return AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src0_modifiers);
4289}
4290
4291bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
4292 unsigned OpName) const {
4293 const MachineOperand *Mods = getNamedOperand(MI, OpName);
4294 return Mods && Mods->getImm();
4295}
4296
4297bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const {
4298 return any_of(Range: ModifierOpNames,
4299 P: [&](unsigned Name) { return hasModifiersSet(MI, OpName: Name); });
4300}
4301
4302bool SIInstrInfo::canShrink(const MachineInstr &MI,
4303 const MachineRegisterInfo &MRI) const {
4304 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
4305 // Can't shrink instruction with three operands.
4306 if (Src2) {
4307 switch (MI.getOpcode()) {
4308 default: return false;
4309
4310 case AMDGPU::V_ADDC_U32_e64:
4311 case AMDGPU::V_SUBB_U32_e64:
4312 case AMDGPU::V_SUBBREV_U32_e64: {
4313 const MachineOperand *Src1
4314 = getNamedOperand(MI, AMDGPU::OpName::src1);
4315 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()))
4316 return false;
4317 // Additional verification is needed for sdst/src2.
4318 return true;
4319 }
4320 case AMDGPU::V_MAC_F16_e64:
4321 case AMDGPU::V_MAC_F32_e64:
4322 case AMDGPU::V_MAC_LEGACY_F32_e64:
4323 case AMDGPU::V_FMAC_F16_e64:
4324 case AMDGPU::V_FMAC_F16_t16_e64:
4325 case AMDGPU::V_FMAC_F32_e64:
4326 case AMDGPU::V_FMAC_F64_e64:
4327 case AMDGPU::V_FMAC_LEGACY_F32_e64:
4328 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) ||
4329 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
4330 return false;
4331 break;
4332
4333 case AMDGPU::V_CNDMASK_B32_e64:
4334 break;
4335 }
4336 }
4337
4338 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
4339 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) ||
4340 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
4341 return false;
4342
4343 // We don't need to check src0, all input types are legal, so just make sure
4344 // src0 isn't using any modifiers.
4345 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
4346 return false;
4347
4348 // Can it be shrunk to a valid 32 bit opcode?
4349 if (!hasVALU32BitEncoding(Opcode: MI.getOpcode()))
4350 return false;
4351
4352 // Check output modifiers
4353 return !hasModifiersSet(MI, AMDGPU::OpName::omod) &&
4354 !hasModifiersSet(MI, AMDGPU::OpName::clamp);
4355}
4356
4357// Set VCC operand with all flags from \p Orig, except for setting it as
4358// implicit.
4359static void copyFlagsToImplicitVCC(MachineInstr &MI,
4360 const MachineOperand &Orig) {
4361
4362 for (MachineOperand &Use : MI.implicit_operands()) {
4363 if (Use.isUse() &&
4364 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) {
4365 Use.setIsUndef(Orig.isUndef());
4366 Use.setIsKill(Orig.isKill());
4367 return;
4368 }
4369 }
4370}
4371
4372MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI,
4373 unsigned Op32) const {
4374 MachineBasicBlock *MBB = MI.getParent();
4375 MachineInstrBuilder Inst32 =
4376 BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32))
4377 .setMIFlags(MI.getFlags());
4378
4379 // Add the dst operand if the 32-bit encoding also has an explicit $vdst.
4380 // For VOPC instructions, this is replaced by an implicit def of vcc.
4381 if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::vdst)) {
4382 // dst
4383 Inst32.add(MO: MI.getOperand(i: 0));
4384 } else if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::sdst)) {
4385 // VOPCX instructions won't be writing to an explicit dst, so this should
4386 // not fail for these instructions.
4387 assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) ||
4388 (MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) &&
4389 "Unexpected case");
4390 }
4391
4392 Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0));
4393
4394 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
4395 if (Src1)
4396 Inst32.add(MO: *Src1);
4397
4398 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
4399
4400 if (Src2) {
4401 int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
4402 if (Op32Src2Idx != -1) {
4403 Inst32.add(MO: *Src2);
4404 } else {
4405 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
4406 // replaced with an implicit read of vcc or vcc_lo. The implicit read
4407 // of vcc was already added during the initial BuildMI, but we
4408 // 1) may need to change vcc to vcc_lo to preserve the original register
4409 // 2) have to preserve the original flags.
4410 fixImplicitOperands(MI&: *Inst32);
4411 copyFlagsToImplicitVCC(MI&: *Inst32, Orig: *Src2);
4412 }
4413 }
4414
4415 return Inst32;
4416}
4417
4418bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
4419 const MachineOperand &MO,
4420 const MCOperandInfo &OpInfo) const {
4421 // Literal constants use the constant bus.
4422 if (!MO.isReg())
4423 return !isInlineConstant(MO, OpInfo);
4424
4425 if (!MO.isUse())
4426 return false;
4427
4428 if (MO.getReg().isVirtual())
4429 return RI.isSGPRClass(MRI.getRegClass(Reg: MO.getReg()));
4430
4431 // Null is free
4432 if (MO.getReg() == AMDGPU::SGPR_NULL || MO.getReg() == AMDGPU::SGPR_NULL64)
4433 return false;
4434
4435 // SGPRs use the constant bus
4436 if (MO.isImplicit()) {
4437 return MO.getReg() == AMDGPU::M0 ||
4438 MO.getReg() == AMDGPU::VCC ||
4439 MO.getReg() == AMDGPU::VCC_LO;
4440 } else {
4441 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) ||
4442 AMDGPU::SReg_64RegClass.contains(MO.getReg());
4443 }
4444}
4445
4446static Register findImplicitSGPRRead(const MachineInstr &MI) {
4447 for (const MachineOperand &MO : MI.implicit_operands()) {
4448 // We only care about reads.
4449 if (MO.isDef())
4450 continue;
4451
4452 switch (MO.getReg()) {
4453 case AMDGPU::VCC:
4454 case AMDGPU::VCC_LO:
4455 case AMDGPU::VCC_HI:
4456 case AMDGPU::M0:
4457 case AMDGPU::FLAT_SCR:
4458 return MO.getReg();
4459
4460 default:
4461 break;
4462 }
4463 }
4464
4465 return Register();
4466}
4467
4468static bool shouldReadExec(const MachineInstr &MI) {
4469 if (SIInstrInfo::isVALU(MI)) {
4470 switch (MI.getOpcode()) {
4471 case AMDGPU::V_READLANE_B32:
4472 case AMDGPU::SI_RESTORE_S32_FROM_VGPR:
4473 case AMDGPU::V_WRITELANE_B32:
4474 case AMDGPU::SI_SPILL_S32_TO_VGPR:
4475 return false;
4476 }
4477
4478 return true;
4479 }
4480
4481 if (MI.isPreISelOpcode() ||
4482 SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
4483 SIInstrInfo::isSALU(MI) ||
4484 SIInstrInfo::isSMRD(MI))
4485 return false;
4486
4487 return true;
4488}
4489
4490static bool isSubRegOf(const SIRegisterInfo &TRI,
4491 const MachineOperand &SuperVec,
4492 const MachineOperand &SubReg) {
4493 if (SubReg.getReg().isPhysical())
4494 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg());
4495
4496 return SubReg.getSubReg() != AMDGPU::NoSubRegister &&
4497 SubReg.getReg() == SuperVec.getReg();
4498}
4499
4500bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
4501 StringRef &ErrInfo) const {
4502 uint16_t Opcode = MI.getOpcode();
4503 if (SIInstrInfo::isGenericOpcode(MI.getOpcode()))
4504 return true;
4505
4506 const MachineFunction *MF = MI.getParent()->getParent();
4507 const MachineRegisterInfo &MRI = MF->getRegInfo();
4508
4509 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
4510 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
4511 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
4512 int Src3Idx = -1;
4513 if (Src0Idx == -1) {
4514 // VOPD V_DUAL_* instructions use different operand names.
4515 Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0X);
4516 Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1X);
4517 Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0Y);
4518 Src3Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1Y);
4519 }
4520
4521 // Make sure the number of operands is correct.
4522 const MCInstrDesc &Desc = get(Opcode);
4523 if (!Desc.isVariadic() &&
4524 Desc.getNumOperands() != MI.getNumExplicitOperands()) {
4525 ErrInfo = "Instruction has wrong number of operands.";
4526 return false;
4527 }
4528
4529 if (MI.isInlineAsm()) {
4530 // Verify register classes for inlineasm constraints.
4531 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands();
4532 I != E; ++I) {
4533 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI);
4534 if (!RC)
4535 continue;
4536
4537 const MachineOperand &Op = MI.getOperand(i: I);
4538 if (!Op.isReg())
4539 continue;
4540
4541 Register Reg = Op.getReg();
4542 if (!Reg.isVirtual() && !RC->contains(Reg)) {
4543 ErrInfo = "inlineasm operand has incorrect register class.";
4544 return false;
4545 }
4546 }
4547
4548 return true;
4549 }
4550
4551 if (isImage(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) {
4552 ErrInfo = "missing memory operand from image instruction.";
4553 return false;
4554 }
4555
4556 // Make sure the register classes are correct.
4557 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
4558 const MachineOperand &MO = MI.getOperand(i);
4559 if (MO.isFPImm()) {
4560 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
4561 "all fp values to integers.";
4562 return false;
4563 }
4564
4565 int RegClass = Desc.operands()[i].RegClass;
4566
4567 switch (Desc.operands()[i].OperandType) {
4568 case MCOI::OPERAND_REGISTER:
4569 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) {
4570 ErrInfo = "Illegal immediate value for operand.";
4571 return false;
4572 }
4573 break;
4574 case AMDGPU::OPERAND_REG_IMM_INT32:
4575 case AMDGPU::OPERAND_REG_IMM_FP32:
4576 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
4577 case AMDGPU::OPERAND_REG_IMM_V2FP32:
4578 break;
4579 case AMDGPU::OPERAND_REG_INLINE_C_INT32:
4580 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
4581 case AMDGPU::OPERAND_REG_INLINE_C_INT64:
4582 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
4583 case AMDGPU::OPERAND_REG_INLINE_C_INT16:
4584 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
4585 case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
4586 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
4587 case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
4588 case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
4589 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: {
4590 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, OpIdx: i))) {
4591 ErrInfo = "Illegal immediate value for operand.";
4592 return false;
4593 }
4594 break;
4595 }
4596 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32:
4597 if (!MI.getOperand(i).isImm() || !isInlineConstant(MI, OpIdx: i)) {
4598 ErrInfo = "Expected inline constant for operand.";
4599 return false;
4600 }
4601 break;
4602 case MCOI::OPERAND_IMMEDIATE:
4603 case AMDGPU::OPERAND_KIMM32:
4604 // Check if this operand is an immediate.
4605 // FrameIndex operands will be replaced by immediates, so they are
4606 // allowed.
4607 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
4608 ErrInfo = "Expected immediate, but got non-immediate";
4609 return false;
4610 }
4611 [[fallthrough]];
4612 default:
4613 continue;
4614 }
4615
4616 if (!MO.isReg())
4617 continue;
4618 Register Reg = MO.getReg();
4619 if (!Reg)
4620 continue;
4621
4622 // FIXME: Ideally we would have separate instruction definitions with the
4623 // aligned register constraint.
4624 // FIXME: We do not verify inline asm operands, but custom inline asm
4625 // verification is broken anyway
4626 if (ST.needsAlignedVGPRs()) {
4627 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg);
4628 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) {
4629 const TargetRegisterClass *SubRC =
4630 RI.getSubRegisterClass(RC, MO.getSubReg());
4631 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg());
4632 if (RC)
4633 RC = SubRC;
4634 }
4635
4636 // Check that this is the aligned version of the class.
4637 if (!RC || !RI.isProperlyAlignedRC(*RC)) {
4638 ErrInfo = "Subtarget requires even aligned vector registers";
4639 return false;
4640 }
4641 }
4642
4643 if (RegClass != -1) {
4644 if (Reg.isVirtual())
4645 continue;
4646
4647 const TargetRegisterClass *RC = RI.getRegClass(RegClass);
4648 if (!RC->contains(Reg)) {
4649 ErrInfo = "Operand has incorrect register class.";
4650 return false;
4651 }
4652 }
4653 }
4654
4655 // Verify SDWA
4656 if (isSDWA(MI)) {
4657 if (!ST.hasSDWA()) {
4658 ErrInfo = "SDWA is not supported on this target";
4659 return false;
4660 }
4661
4662 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
4663
4664 for (int OpIdx : {DstIdx, Src0Idx, Src1Idx, Src2Idx}) {
4665 if (OpIdx == -1)
4666 continue;
4667 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4668
4669 if (!ST.hasSDWAScalar()) {
4670 // Only VGPRS on VI
4671 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) {
4672 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI";
4673 return false;
4674 }
4675 } else {
4676 // No immediates on GFX9
4677 if (!MO.isReg()) {
4678 ErrInfo =
4679 "Only reg allowed as operands in SDWA instructions on GFX9+";
4680 return false;
4681 }
4682 }
4683 }
4684
4685 if (!ST.hasSDWAOmod()) {
4686 // No omod allowed on VI
4687 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
4688 if (OMod != nullptr &&
4689 (!OMod->isImm() || OMod->getImm() != 0)) {
4690 ErrInfo = "OMod not allowed in SDWA instructions on VI";
4691 return false;
4692 }
4693 }
4694
4695 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode);
4696 if (isVOPC(Opcode: BasicOpcode)) {
4697 if (!ST.hasSDWASdst() && DstIdx != -1) {
4698 // Only vcc allowed as dst on VI for VOPC
4699 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4700 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) {
4701 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI";
4702 return false;
4703 }
4704 } else if (!ST.hasSDWAOutModsVOPC()) {
4705 // No clamp allowed on GFX9 for VOPC
4706 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
4707 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) {
4708 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI";
4709 return false;
4710 }
4711
4712 // No omod allowed on GFX9 for VOPC
4713 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
4714 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) {
4715 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI";
4716 return false;
4717 }
4718 }
4719 }
4720
4721 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused);
4722 if (DstUnused && DstUnused->isImm() &&
4723 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) {
4724 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4725 if (!Dst.isReg() || !Dst.isTied()) {
4726 ErrInfo = "Dst register should have tied register";
4727 return false;
4728 }
4729
4730 const MachineOperand &TiedMO =
4731 MI.getOperand(i: MI.findTiedOperandIdx(OpIdx: DstIdx));
4732 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) {
4733 ErrInfo =
4734 "Dst register should be tied to implicit use of preserved register";
4735 return false;
4736 } else if (TiedMO.getReg().isPhysical() &&
4737 Dst.getReg() != TiedMO.getReg()) {
4738 ErrInfo = "Dst register should use same physical register as preserved";
4739 return false;
4740 }
4741 }
4742 }
4743
4744 // Verify MIMG / VIMAGE / VSAMPLE
4745 if (isImage(Opcode: MI.getOpcode()) && !MI.mayStore()) {
4746 // Ensure that the return type used is large enough for all the options
4747 // being used TFE/LWE require an extra result register.
4748 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask);
4749 if (DMask) {
4750 uint64_t DMaskImm = DMask->getImm();
4751 uint32_t RegCount =
4752 isGather4(Opcode: MI.getOpcode()) ? 4 : llvm::popcount(Value: DMaskImm);
4753 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe);
4754 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe);
4755 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16);
4756
4757 // Adjust for packed 16 bit values
4758 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem())
4759 RegCount = divideCeil(Numerator: RegCount, Denominator: 2);
4760
4761 // Adjust if using LWE or TFE
4762 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm()))
4763 RegCount += 1;
4764
4765 const uint32_t DstIdx =
4766 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
4767 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4768 if (Dst.isReg()) {
4769 const TargetRegisterClass *DstRC = getOpRegClass(MI, OpNo: DstIdx);
4770 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32;
4771 if (RegCount > DstSize) {
4772 ErrInfo = "Image instruction returns too many registers for dst "
4773 "register class";
4774 return false;
4775 }
4776 }
4777 }
4778 }
4779
4780 // Verify VOP*. Ignore multiple sgpr operands on writelane.
4781 if (isVALU(MI) && Desc.getOpcode() != AMDGPU::V_WRITELANE_B32) {
4782 unsigned ConstantBusCount = 0;
4783 bool UsesLiteral = false;
4784 const MachineOperand *LiteralVal = nullptr;
4785
4786 int ImmIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm);
4787 if (ImmIdx != -1) {
4788 ++ConstantBusCount;
4789 UsesLiteral = true;
4790 LiteralVal = &MI.getOperand(i: ImmIdx);
4791 }
4792
4793 SmallVector<Register, 2> SGPRsUsed;
4794 Register SGPRUsed;
4795
4796 // Only look at the true operands. Only a real operand can use the constant
4797 // bus, and we don't want to check pseudo-operands like the source modifier
4798 // flags.
4799 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx, Src3Idx}) {
4800 if (OpIdx == -1)
4801 continue;
4802 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4803 if (usesConstantBus(MRI, MO, OpInfo: MI.getDesc().operands()[OpIdx])) {
4804 if (MO.isReg()) {
4805 SGPRUsed = MO.getReg();
4806 if (!llvm::is_contained(Range&: SGPRsUsed, Element: SGPRUsed)) {
4807 ++ConstantBusCount;
4808 SGPRsUsed.push_back(Elt: SGPRUsed);
4809 }
4810 } else {
4811 if (!UsesLiteral) {
4812 ++ConstantBusCount;
4813 UsesLiteral = true;
4814 LiteralVal = &MO;
4815 } else if (!MO.isIdenticalTo(Other: *LiteralVal)) {
4816 assert(isVOP2(MI) || isVOP3(MI));
4817 ErrInfo = "VOP2/VOP3 instruction uses more than one literal";
4818 return false;
4819 }
4820 }
4821 }
4822 }
4823
4824 SGPRUsed = findImplicitSGPRRead(MI);
4825 if (SGPRUsed) {
4826 // Implicit uses may safely overlap true operands
4827 if (llvm::all_of(Range&: SGPRsUsed, P: [this, SGPRUsed](unsigned SGPR) {
4828 return !RI.regsOverlap(SGPRUsed, SGPR);
4829 })) {
4830 ++ConstantBusCount;
4831 SGPRsUsed.push_back(Elt: SGPRUsed);
4832 }
4833 }
4834
4835 // v_writelane_b32 is an exception from constant bus restriction:
4836 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const
4837 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) &&
4838 Opcode != AMDGPU::V_WRITELANE_B32) {
4839 ErrInfo = "VOP* instruction violates constant bus restriction";
4840 return false;
4841 }
4842
4843 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) {
4844 ErrInfo = "VOP3 instruction uses literal";
4845 return false;
4846 }
4847 }
4848
4849 // Special case for writelane - this can break the multiple constant bus rule,
4850 // but still can't use more than one SGPR register
4851 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) {
4852 unsigned SGPRCount = 0;
4853 Register SGPRUsed;
4854
4855 for (int OpIdx : {Src0Idx, Src1Idx}) {
4856 if (OpIdx == -1)
4857 break;
4858
4859 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4860
4861 if (usesConstantBus(MRI, MO, OpInfo: MI.getDesc().operands()[OpIdx])) {
4862 if (MO.isReg() && MO.getReg() != AMDGPU::M0) {
4863 if (MO.getReg() != SGPRUsed)
4864 ++SGPRCount;
4865 SGPRUsed = MO.getReg();
4866 }
4867 }
4868 if (SGPRCount > ST.getConstantBusLimit(Opcode)) {
4869 ErrInfo = "WRITELANE instruction violates constant bus restriction";
4870 return false;
4871 }
4872 }
4873 }
4874
4875 // Verify misc. restrictions on specific instructions.
4876 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 ||
4877 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) {
4878 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
4879 const MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
4880 const MachineOperand &Src2 = MI.getOperand(i: Src2Idx);
4881 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
4882 if (!compareMachineOp(Op0: Src0, Op1: Src1) &&
4883 !compareMachineOp(Op0: Src0, Op1: Src2)) {
4884 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
4885 return false;
4886 }
4887 }
4888 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() &
4889 SISrcMods::ABS) ||
4890 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() &
4891 SISrcMods::ABS) ||
4892 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() &
4893 SISrcMods::ABS)) {
4894 ErrInfo = "ABS not allowed in VOP3B instructions";
4895 return false;
4896 }
4897 }
4898
4899 if (isSOP2(MI) || isSOPC(MI)) {
4900 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
4901 const MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
4902
4903 if (!Src0.isReg() && !Src1.isReg() &&
4904 !isInlineConstant(MO: Src0, OpInfo: Desc.operands()[Src0Idx]) &&
4905 !isInlineConstant(MO: Src1, OpInfo: Desc.operands()[Src1Idx]) &&
4906 !Src0.isIdenticalTo(Other: Src1)) {
4907 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants";
4908 return false;
4909 }
4910 }
4911
4912 if (isSOPK(MI)) {
4913 auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16);
4914 if (Desc.isBranch()) {
4915 if (!Op->isMBB()) {
4916 ErrInfo = "invalid branch target for SOPK instruction";
4917 return false;
4918 }
4919 } else {
4920 uint64_t Imm = Op->getImm();
4921 if (sopkIsZext(Opcode)) {
4922 if (!isUInt<16>(x: Imm)) {
4923 ErrInfo = "invalid immediate for SOPK instruction";
4924 return false;
4925 }
4926 } else {
4927 if (!isInt<16>(x: Imm)) {
4928 ErrInfo = "invalid immediate for SOPK instruction";
4929 return false;
4930 }
4931 }
4932 }
4933 }
4934
4935 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 ||
4936 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 ||
4937 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
4938 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) {
4939 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
4940 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64;
4941
4942 const unsigned StaticNumOps =
4943 Desc.getNumOperands() + Desc.implicit_uses().size();
4944 const unsigned NumImplicitOps = IsDst ? 2 : 1;
4945
4946 // Allow additional implicit operands. This allows a fixup done by the post
4947 // RA scheduler where the main implicit operand is killed and implicit-defs
4948 // are added for sub-registers that remain live after this instruction.
4949 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) {
4950 ErrInfo = "missing implicit register operands";
4951 return false;
4952 }
4953
4954 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
4955 if (IsDst) {
4956 if (!Dst->isUse()) {
4957 ErrInfo = "v_movreld_b32 vdst should be a use operand";
4958 return false;
4959 }
4960
4961 unsigned UseOpIdx;
4962 if (!MI.isRegTiedToUseOperand(DefOpIdx: StaticNumOps, UseOpIdx: &UseOpIdx) ||
4963 UseOpIdx != StaticNumOps + 1) {
4964 ErrInfo = "movrel implicit operands should be tied";
4965 return false;
4966 }
4967 }
4968
4969 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
4970 const MachineOperand &ImpUse
4971 = MI.getOperand(i: StaticNumOps + NumImplicitOps - 1);
4972 if (!ImpUse.isReg() || !ImpUse.isUse() ||
4973 !isSubRegOf(TRI: RI, SuperVec: ImpUse, SubReg: IsDst ? *Dst : Src0)) {
4974 ErrInfo = "src0 should be subreg of implicit vector use";
4975 return false;
4976 }
4977 }
4978
4979 // Make sure we aren't losing exec uses in the td files. This mostly requires
4980 // being careful when using let Uses to try to add other use registers.
4981 if (shouldReadExec(MI)) {
4982 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
4983 ErrInfo = "VALU instruction does not implicitly read exec mask";
4984 return false;
4985 }
4986 }
4987
4988 if (isSMRD(MI)) {
4989 if (MI.mayStore() &&
4990 ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
4991 // The register offset form of scalar stores may only use m0 as the
4992 // soffset register.
4993 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soffset);
4994 if (Soff && Soff->getReg() != AMDGPU::M0) {
4995 ErrInfo = "scalar stores must use m0 as offset register";
4996 return false;
4997 }
4998 }
4999 }
5000
5001 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) {
5002 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
5003 if (Offset->getImm() != 0) {
5004 ErrInfo = "subtarget does not support offsets in flat instructions";
5005 return false;
5006 }
5007 }
5008
5009 if (isDS(MI) && !ST.hasGDS()) {
5010 const MachineOperand *GDSOp = getNamedOperand(MI, AMDGPU::OpName::gds);
5011 if (GDSOp && GDSOp->getImm() != 0) {
5012 ErrInfo = "GDS is not supported on this subtarget";
5013 return false;
5014 }
5015 }
5016
5017 if (isImage(MI)) {
5018 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim);
5019 if (DimOp) {
5020 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode,
5021 AMDGPU::OpName::vaddr0);
5022 int RSrcOpName =
5023 isMIMG(MI) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc;
5024 int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, NamedIdx: RSrcOpName);
5025 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: Opcode);
5026 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5027 AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode);
5028 const AMDGPU::MIMGDimInfo *Dim =
5029 AMDGPU::getMIMGDimInfoByEncoding(DimEnc: DimOp->getImm());
5030
5031 if (!Dim) {
5032 ErrInfo = "dim is out of range";
5033 return false;
5034 }
5035
5036 bool IsA16 = false;
5037 if (ST.hasR128A16()) {
5038 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128);
5039 IsA16 = R128A16->getImm() != 0;
5040 } else if (ST.hasA16()) {
5041 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16);
5042 IsA16 = A16->getImm() != 0;
5043 }
5044
5045 bool IsNSA = RsrcIdx - VAddr0Idx > 1;
5046
5047 unsigned AddrWords =
5048 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, IsG16Supported: ST.hasG16());
5049
5050 unsigned VAddrWords;
5051 if (IsNSA) {
5052 VAddrWords = RsrcIdx - VAddr0Idx;
5053 if (ST.hasPartialNSAEncoding() &&
5054 AddrWords > ST.getNSAMaxSize(HasSampler: isVSAMPLE(MI))) {
5055 unsigned LastVAddrIdx = RsrcIdx - 1;
5056 VAddrWords += getOpSize(MI, OpNo: LastVAddrIdx) / 4 - 1;
5057 }
5058 } else {
5059 VAddrWords = getOpSize(MI, OpNo: VAddr0Idx) / 4;
5060 if (AddrWords > 12)
5061 AddrWords = 16;
5062 }
5063
5064 if (VAddrWords != AddrWords) {
5065 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords
5066 << " but got " << VAddrWords << "\n");
5067 ErrInfo = "bad vaddr size";
5068 return false;
5069 }
5070 }
5071 }
5072
5073 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl);
5074 if (DppCt) {
5075 using namespace AMDGPU::DPP;
5076
5077 unsigned DC = DppCt->getImm();
5078 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 ||
5079 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST ||
5080 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) ||
5081 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) ||
5082 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) ||
5083 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) ||
5084 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) {
5085 ErrInfo = "Invalid dpp_ctrl value";
5086 return false;
5087 }
5088 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 &&
5089 ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
5090 ErrInfo = "Invalid dpp_ctrl value: "
5091 "wavefront shifts are not supported on GFX10+";
5092 return false;
5093 }
5094 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 &&
5095 ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
5096 ErrInfo = "Invalid dpp_ctrl value: "
5097 "broadcasts are not supported on GFX10+";
5098 return false;
5099 }
5100 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST &&
5101 ST.getGeneration() < AMDGPUSubtarget::GFX10) {
5102 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST &&
5103 DC <= DppCtrl::ROW_NEWBCAST_LAST &&
5104 !ST.hasGFX90AInsts()) {
5105 ErrInfo = "Invalid dpp_ctrl value: "
5106 "row_newbroadcast/row_share is not supported before "
5107 "GFX90A/GFX10";
5108 return false;
5109 } else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) {
5110 ErrInfo = "Invalid dpp_ctrl value: "
5111 "row_share and row_xmask are not supported before GFX10";
5112 return false;
5113 }
5114 }
5115
5116 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO &&
5117 !AMDGPU::isLegalDPALU_DPPControl(DC) && AMDGPU::isDPALU_DPP(Desc)) {
5118 ErrInfo = "Invalid dpp_ctrl value: "
5119 "DP ALU dpp only support row_newbcast";
5120 return false;
5121 }
5122 }
5123
5124 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) {
5125 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
5126 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0
5127 : AMDGPU::OpName::vdata;
5128 const MachineOperand *Data = getNamedOperand(MI, OpName: DataNameIdx);
5129 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1);
5130 if (Data && !Data->isReg())
5131 Data = nullptr;
5132
5133 if (ST.hasGFX90AInsts()) {
5134 if (Dst && Data &&
5135 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) {
5136 ErrInfo = "Invalid register class: "
5137 "vdata and vdst should be both VGPR or AGPR";
5138 return false;
5139 }
5140 if (Data && Data2 &&
5141 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) {
5142 ErrInfo = "Invalid register class: "
5143 "both data operands should be VGPR or AGPR";
5144 return false;
5145 }
5146 } else {
5147 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) ||
5148 (Data && RI.isAGPR(MRI, Data->getReg())) ||
5149 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) {
5150 ErrInfo = "Invalid register class: "
5151 "agpr loads and stores not supported on this GPU";
5152 return false;
5153 }
5154 }
5155 }
5156
5157 if (ST.needsAlignedVGPRs()) {
5158 const auto isAlignedReg = [&MI, &MRI, this](unsigned OpName) -> bool {
5159 const MachineOperand *Op = getNamedOperand(MI, OpName);
5160 if (!Op)
5161 return true;
5162 Register Reg = Op->getReg();
5163 if (Reg.isPhysical())
5164 return !(RI.getHWRegIndex(Reg) & 1);
5165 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
5166 return RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) &&
5167 !(RI.getChannelFromSubReg(SubReg: Op->getSubReg()) & 1);
5168 };
5169
5170 if (MI.getOpcode() == AMDGPU::DS_GWS_INIT ||
5171 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
5172 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
5173
5174 if (!isAlignedReg(AMDGPU::OpName::data0)) {
5175 ErrInfo = "Subtarget requires even aligned vector registers "
5176 "for DS_GWS instructions";
5177 return false;
5178 }
5179 }
5180
5181 if (isMIMG(MI)) {
5182 if (!isAlignedReg(AMDGPU::OpName::vaddr)) {
5183 ErrInfo = "Subtarget requires even aligned vector registers "
5184 "for vaddr operand of image instructions";
5185 return false;
5186 }
5187 }
5188 }
5189
5190 if (MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
5191 !ST.hasGFX90AInsts()) {
5192 const MachineOperand *Src = getNamedOperand(MI, AMDGPU::OpName::src0);
5193 if (Src->isReg() && RI.isSGPRReg(MRI, Src->getReg())) {
5194 ErrInfo = "Invalid register class: "
5195 "v_accvgpr_write with an SGPR is not supported on this GPU";
5196 return false;
5197 }
5198 }
5199
5200 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) {
5201 const MachineOperand &SrcOp = MI.getOperand(i: 1);
5202 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) {
5203 ErrInfo = "pseudo expects only physical SGPRs";
5204 return false;
5205 }
5206 }
5207
5208 return true;
5209}
5210
5211// It is more readable to list mapped opcodes on the same line.
5212// clang-format off
5213
5214unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const {
5215 switch (MI.getOpcode()) {
5216 default: return AMDGPU::INSTRUCTION_LIST_END;
5217 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
5218 case AMDGPU::COPY: return AMDGPU::COPY;
5219 case AMDGPU::PHI: return AMDGPU::PHI;
5220 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
5221 case AMDGPU::WQM: return AMDGPU::WQM;
5222 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM;
5223 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM;
5224 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM;
5225 case AMDGPU::S_MOV_B32: {
5226 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5227 return MI.getOperand(1).isReg() ||
5228 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ?
5229 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
5230 }
5231 case AMDGPU::S_ADD_I32:
5232 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
5233 case AMDGPU::S_ADDC_U32:
5234 return AMDGPU::V_ADDC_U32_e32;
5235 case AMDGPU::S_SUB_I32:
5236 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32;
5237 // FIXME: These are not consistently handled, and selected when the carry is
5238 // used.
5239 case AMDGPU::S_ADD_U32:
5240 return AMDGPU::V_ADD_CO_U32_e32;
5241 case AMDGPU::S_SUB_U32:
5242 return AMDGPU::V_SUB_CO_U32_e32;
5243 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
5244 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64;
5245 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64;
5246 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64;
5247 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64;
5248 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64;
5249 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64;
5250 case AMDGPU::S_XNOR_B32:
5251 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END;
5252 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64;
5253 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64;
5254 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64;
5255 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64;
5256 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
5257 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64;
5258 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
5259 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64;
5260 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
5261 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64;
5262 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64;
5263 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64;
5264 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64;
5265 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64;
5266 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
5267 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
5268 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
5269 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
5270 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64;
5271 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64;
5272 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64;
5273 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64;
5274 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64;
5275 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64;
5276 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64;
5277 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64;
5278 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64;
5279 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64;
5280 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64;
5281 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64;
5282 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64;
5283 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64;
5284 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
5285 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
5286 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
5287 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
5288 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
5289 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
5290 case AMDGPU::S_CVT_F32_I32: return AMDGPU::V_CVT_F32_I32_e64;
5291 case AMDGPU::S_CVT_F32_U32: return AMDGPU::V_CVT_F32_U32_e64;
5292 case AMDGPU::S_CVT_I32_F32: return AMDGPU::V_CVT_I32_F32_e64;
5293 case AMDGPU::S_CVT_U32_F32: return AMDGPU::V_CVT_U32_F32_e64;
5294 case AMDGPU::S_CVT_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64;
5295 case AMDGPU::S_CVT_HI_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64;
5296 case AMDGPU::S_CVT_F16_F32: return AMDGPU::V_CVT_F16_F32_t16_e64;
5297 case AMDGPU::S_CEIL_F32: return AMDGPU::V_CEIL_F32_e64;
5298 case AMDGPU::S_FLOOR_F32: return AMDGPU::V_FLOOR_F32_e64;
5299 case AMDGPU::S_TRUNC_F32: return AMDGPU::V_TRUNC_F32_e64;
5300 case AMDGPU::S_RNDNE_F32: return AMDGPU::V_RNDNE_F32_e64;
5301 case AMDGPU::S_CEIL_F16:
5302 return ST.useRealTrue16Insts() ? AMDGPU::V_CEIL_F16_t16_e64
5303 : AMDGPU::V_CEIL_F16_fake16_e64;
5304 case AMDGPU::S_FLOOR_F16:
5305 return ST.useRealTrue16Insts() ? AMDGPU::V_FLOOR_F16_t16_e64
5306 : AMDGPU::V_FLOOR_F16_fake16_e64;
5307 case AMDGPU::S_TRUNC_F16:
5308 return AMDGPU::V_TRUNC_F16_fake16_e64;
5309 case AMDGPU::S_RNDNE_F16:
5310 return AMDGPU::V_RNDNE_F16_fake16_e64;
5311 case AMDGPU::S_ADD_F32: return AMDGPU::V_ADD_F32_e64;
5312 case AMDGPU::S_SUB_F32: return AMDGPU::V_SUB_F32_e64;
5313 case AMDGPU::S_MIN_F32: return AMDGPU::V_MIN_F32_e64;
5314 case AMDGPU::S_MAX_F32: return AMDGPU::V_MAX_F32_e64;
5315 case AMDGPU::S_MINIMUM_F32: return AMDGPU::V_MINIMUM_F32_e64;
5316 case AMDGPU::S_MAXIMUM_F32: return AMDGPU::V_MAXIMUM_F32_e64;
5317 case AMDGPU::S_MUL_F32: return AMDGPU::V_MUL_F32_e64;
5318 case AMDGPU::S_ADD_F16: return AMDGPU::V_ADD_F16_fake16_e64;
5319 case AMDGPU::S_SUB_F16: return AMDGPU::V_SUB_F16_fake16_e64;
5320 case AMDGPU::S_MIN_F16: return AMDGPU::V_MIN_F16_fake16_e64;
5321 case AMDGPU::S_MAX_F16: return AMDGPU::V_MAX_F16_fake16_e64;
5322 case AMDGPU::S_MINIMUM_F16: return AMDGPU::V_MINIMUM_F16_e64;
5323 case AMDGPU::S_MAXIMUM_F16: return AMDGPU::V_MAXIMUM_F16_e64;
5324 case AMDGPU::S_MUL_F16: return AMDGPU::V_MUL_F16_fake16_e64;
5325 case AMDGPU::S_CVT_PK_RTZ_F16_F32: return AMDGPU::V_CVT_PKRTZ_F16_F32_e64;
5326 case AMDGPU::S_FMAC_F32: return AMDGPU::V_FMAC_F32_e64;
5327 case AMDGPU::S_FMAC_F16: return AMDGPU::V_FMAC_F16_t16_e64;
5328 case AMDGPU::S_FMAMK_F32: return AMDGPU::V_FMAMK_F32;
5329 case AMDGPU::S_FMAAK_F32: return AMDGPU::V_FMAAK_F32;
5330 case AMDGPU::S_CMP_LT_F32: return AMDGPU::V_CMP_LT_F32_e64;
5331 case AMDGPU::S_CMP_EQ_F32: return AMDGPU::V_CMP_EQ_F32_e64;
5332 case AMDGPU::S_CMP_LE_F32: return AMDGPU::V_CMP_LE_F32_e64;
5333 case AMDGPU::S_CMP_GT_F32: return AMDGPU::V_CMP_GT_F32_e64;
5334 case AMDGPU::S_CMP_LG_F32: return AMDGPU::V_CMP_LG_F32_e64;
5335 case AMDGPU::S_CMP_GE_F32: return AMDGPU::V_CMP_GE_F32_e64;
5336 case AMDGPU::S_CMP_O_F32: return AMDGPU::V_CMP_O_F32_e64;
5337 case AMDGPU::S_CMP_U_F32: return AMDGPU::V_CMP_U_F32_e64;
5338 case AMDGPU::S_CMP_NGE_F32: return AMDGPU::V_CMP_NGE_F32_e64;
5339 case AMDGPU::S_CMP_NLG_F32: return AMDGPU::V_CMP_NLG_F32_e64;
5340 case AMDGPU::S_CMP_NGT_F32: return AMDGPU::V_CMP_NGT_F32_e64;
5341 case AMDGPU::S_CMP_NLE_F32: return AMDGPU::V_CMP_NLE_F32_e64;
5342 case AMDGPU::S_CMP_NEQ_F32: return AMDGPU::V_CMP_NEQ_F32_e64;
5343 case AMDGPU::S_CMP_NLT_F32: return AMDGPU::V_CMP_NLT_F32_e64;
5344 case AMDGPU::S_CMP_LT_F16: return AMDGPU::V_CMP_LT_F16_t16_e64;
5345 case AMDGPU::S_CMP_EQ_F16: return AMDGPU::V_CMP_EQ_F16_t16_e64;
5346 case AMDGPU::S_CMP_LE_F16: return AMDGPU::V_CMP_LE_F16_t16_e64;
5347 case AMDGPU::S_CMP_GT_F16: return AMDGPU::V_CMP_GT_F16_t16_e64;
5348 case AMDGPU::S_CMP_LG_F16: return AMDGPU::V_CMP_LG_F16_t16_e64;
5349 case AMDGPU::S_CMP_GE_F16: return AMDGPU::V_CMP_GE_F16_t16_e64;
5350 case AMDGPU::S_CMP_O_F16: return AMDGPU::V_CMP_O_F16_t16_e64;
5351 case AMDGPU::S_CMP_U_F16: return AMDGPU::V_CMP_U_F16_t16_e64;
5352 case AMDGPU::S_CMP_NGE_F16: return AMDGPU::V_CMP_NGE_F16_t16_e64;
5353 case AMDGPU::S_CMP_NLG_F16: return AMDGPU::V_CMP_NLG_F16_t16_e64;
5354 case AMDGPU::S_CMP_NGT_F16: return AMDGPU::V_CMP_NGT_F16_t16_e64;
5355 case AMDGPU::S_CMP_NLE_F16: return AMDGPU::V_CMP_NLE_F16_t16_e64;
5356 case AMDGPU::S_CMP_NEQ_F16: return AMDGPU::V_CMP_NEQ_F16_t16_e64;
5357 case AMDGPU::S_CMP_NLT_F16: return AMDGPU::V_CMP_NLT_F16_t16_e64;
5358 case AMDGPU::V_S_EXP_F32_e64: return AMDGPU::V_EXP_F32_e64;
5359 case AMDGPU::V_S_EXP_F16_e64: return AMDGPU::V_EXP_F16_fake16_e64;
5360 case AMDGPU::V_S_LOG_F32_e64: return AMDGPU::V_LOG_F32_e64;
5361 case AMDGPU::V_S_LOG_F16_e64: return AMDGPU::V_LOG_F16_fake16_e64;
5362 case AMDGPU::V_S_RCP_F32_e64: return AMDGPU::V_RCP_F32_e64;
5363 case AMDGPU::V_S_RCP_F16_e64: return AMDGPU::V_RCP_F16_fake16_e64;
5364 case AMDGPU::V_S_RSQ_F32_e64: return AMDGPU::V_RSQ_F32_e64;
5365 case AMDGPU::V_S_RSQ_F16_e64: return AMDGPU::V_RSQ_F16_fake16_e64;
5366 case AMDGPU::V_S_SQRT_F32_e64: return AMDGPU::V_SQRT_F32_e64;
5367 case AMDGPU::V_S_SQRT_F16_e64: return AMDGPU::V_SQRT_F16_fake16_e64;
5368 }
5369 llvm_unreachable(
5370 "Unexpected scalar opcode without corresponding vector one!");
5371}
5372
5373// clang-format on
5374
5375void SIInstrInfo::insertScratchExecCopy(MachineFunction &MF,
5376 MachineBasicBlock &MBB,
5377 MachineBasicBlock::iterator MBBI,
5378 const DebugLoc &DL, Register Reg,
5379 bool IsSCCLive,
5380 SlotIndexes *Indexes) const {
5381 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
5382 const SIInstrInfo *TII = ST.getInstrInfo();
5383 bool IsWave32 = ST.isWave32();
5384 if (IsSCCLive) {
5385 // Insert two move instructions, one to save the original value of EXEC and
5386 // the other to turn on all bits in EXEC. This is required as we can't use
5387 // the single instruction S_OR_SAVEEXEC that clobbers SCC.
5388 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5389 MCRegister Exec = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5390 auto StoreExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Reg)
5391 .addReg(Exec, RegState::Kill);
5392 auto FlipExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Exec).addImm(-1);
5393 if (Indexes) {
5394 Indexes->insertMachineInstrInMaps(MI&: *StoreExecMI);
5395 Indexes->insertMachineInstrInMaps(MI&: *FlipExecMI);
5396 }
5397 } else {
5398 const unsigned OrSaveExec =
5399 IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64;
5400 auto SaveExec =
5401 BuildMI(MBB, MBBI, DL, TII->get(OrSaveExec), Reg).addImm(-1);
5402 SaveExec->getOperand(3).setIsDead(); // Mark SCC as dead.
5403 if (Indexes)
5404 Indexes->insertMachineInstrInMaps(MI&: *SaveExec);
5405 }
5406}
5407
5408void SIInstrInfo::restoreExec(MachineFunction &MF, MachineBasicBlock &MBB,
5409 MachineBasicBlock::iterator MBBI,
5410 const DebugLoc &DL, Register Reg,
5411 SlotIndexes *Indexes) const {
5412 unsigned ExecMov = isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5413 MCRegister Exec = isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5414 auto ExecRestoreMI =
5415 BuildMI(MBB, MBBI, DL, get(ExecMov), Exec).addReg(Reg, RegState::Kill);
5416 if (Indexes)
5417 Indexes->insertMachineInstrInMaps(MI&: *ExecRestoreMI);
5418}
5419
5420static const TargetRegisterClass *
5421adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI,
5422 const MachineRegisterInfo &MRI,
5423 const MCInstrDesc &TID, unsigned RCID,
5424 bool IsAllocatable) {
5425 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
5426 (((TID.mayLoad() || TID.mayStore()) &&
5427 !(TID.TSFlags & SIInstrFlags::VGPRSpill)) ||
5428 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) {
5429 switch (RCID) {
5430 case AMDGPU::AV_32RegClassID:
5431 RCID = AMDGPU::VGPR_32RegClassID;
5432 break;
5433 case AMDGPU::AV_64RegClassID:
5434 RCID = AMDGPU::VReg_64RegClassID;
5435 break;
5436 case AMDGPU::AV_96RegClassID:
5437 RCID = AMDGPU::VReg_96RegClassID;
5438 break;
5439 case AMDGPU::AV_128RegClassID:
5440 RCID = AMDGPU::VReg_128RegClassID;
5441 break;
5442 case AMDGPU::AV_160RegClassID:
5443 RCID = AMDGPU::VReg_160RegClassID;
5444 break;
5445 case AMDGPU::AV_512RegClassID:
5446 RCID = AMDGPU::VReg_512RegClassID;
5447 break;
5448 default:
5449 break;
5450 }
5451 }
5452
5453 return RI.getProperlyAlignedRC(RI.getRegClass(RCID));
5454}
5455
5456const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID,
5457 unsigned OpNum, const TargetRegisterInfo *TRI,
5458 const MachineFunction &MF)
5459 const {
5460 if (OpNum >= TID.getNumOperands())
5461 return nullptr;
5462 auto RegClass = TID.operands()[OpNum].RegClass;
5463 bool IsAllocatable = false;
5464 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) {
5465 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions
5466 // with two data operands. Request register class constrained to VGPR only
5467 // of both operands present as Machine Copy Propagation can not check this
5468 // constraint and possibly other passes too.
5469 //
5470 // The check is limited to FLAT and DS because atomics in non-flat encoding
5471 // have their vdst and vdata tied to be the same register.
5472 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
5473 AMDGPU::OpName::vdst);
5474 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
5475 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
5476 : AMDGPU::OpName::vdata);
5477 if (DataIdx != -1) {
5478 IsAllocatable = VDstIdx != -1 || AMDGPU::hasNamedOperand(
5479 TID.Opcode, AMDGPU::OpName::data1);
5480 }
5481 }
5482 return adjustAllocatableRegClass(ST, RI, MRI: MF.getRegInfo(), TID, RCID: RegClass,
5483 IsAllocatable);
5484}
5485
5486const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
5487 unsigned OpNo) const {
5488 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5489 const MCInstrDesc &Desc = get(MI.getOpcode());
5490 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
5491 Desc.operands()[OpNo].RegClass == -1) {
5492 Register Reg = MI.getOperand(i: OpNo).getReg();
5493
5494 if (Reg.isVirtual())
5495 return MRI.getRegClass(Reg);
5496 return RI.getPhysRegBaseClass(Reg);
5497 }
5498
5499 unsigned RCID = Desc.operands()[OpNo].RegClass;
5500 return adjustAllocatableRegClass(ST, RI, MRI, TID: Desc, RCID, IsAllocatable: true);
5501}
5502
5503void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
5504 MachineBasicBlock::iterator I = MI;
5505 MachineBasicBlock *MBB = MI.getParent();
5506 MachineOperand &MO = MI.getOperand(i: OpIdx);
5507 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
5508 unsigned RCID = get(MI.getOpcode()).operands()[OpIdx].RegClass;
5509 const TargetRegisterClass *RC = RI.getRegClass(RCID);
5510 unsigned Size = RI.getRegSizeInBits(*RC);
5511 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32;
5512 if (MO.isReg())
5513 Opcode = AMDGPU::COPY;
5514 else if (RI.isSGPRClass(RC))
5515 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32;
5516
5517 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
5518 Register Reg = MRI.createVirtualRegister(RegClass: VRC);
5519 DebugLoc DL = MBB->findDebugLoc(MBBI: I);
5520 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO);
5521 MO.ChangeToRegister(Reg, isDef: false);
5522}
5523
5524unsigned SIInstrInfo::buildExtractSubReg(
5525 MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI,
5526 const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC,
5527 unsigned SubIdx, const TargetRegisterClass *SubRC) const {
5528 MachineBasicBlock *MBB = MI->getParent();
5529 DebugLoc DL = MI->getDebugLoc();
5530 Register SubReg = MRI.createVirtualRegister(RegClass: SubRC);
5531
5532 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
5533 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
5534 .addReg(SuperReg.getReg(), 0, SubIdx);
5535 return SubReg;
5536 }
5537
5538 // Just in case the super register is itself a sub-register, copy it to a new
5539 // value so we don't need to worry about merging its subreg index with the
5540 // SubIdx passed to this function. The register coalescer should be able to
5541 // eliminate this extra copy.
5542 Register NewSuperReg = MRI.createVirtualRegister(RegClass: SuperRC);
5543
5544 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
5545 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
5546
5547 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
5548 .addReg(NewSuperReg, 0, SubIdx);
5549
5550 return SubReg;
5551}
5552
5553MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
5554 MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI,
5555 const MachineOperand &Op, const TargetRegisterClass *SuperRC,
5556 unsigned SubIdx, const TargetRegisterClass *SubRC) const {
5557 if (Op.isImm()) {
5558 if (SubIdx == AMDGPU::sub0)
5559 return MachineOperand::CreateImm(Val: static_cast<int32_t>(Op.getImm()));
5560 if (SubIdx == AMDGPU::sub1)
5561 return MachineOperand::CreateImm(Val: static_cast<int32_t>(Op.getImm() >> 32));
5562
5563 llvm_unreachable("Unhandled register index for immediate");
5564 }
5565
5566 unsigned SubReg = buildExtractSubReg(MI: MII, MRI, SuperReg: Op, SuperRC,
5567 SubIdx, SubRC);
5568 return MachineOperand::CreateReg(Reg: SubReg, isDef: false);
5569}
5570
5571// Change the order of operands from (0, 1, 2) to (0, 2, 1)
5572void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
5573 assert(Inst.getNumExplicitOperands() == 3);
5574 MachineOperand Op1 = Inst.getOperand(i: 1);
5575 Inst.removeOperand(OpNo: 1);
5576 Inst.addOperand(Op: Op1);
5577}
5578
5579bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
5580 const MCOperandInfo &OpInfo,
5581 const MachineOperand &MO) const {
5582 if (!MO.isReg())
5583 return false;
5584
5585 Register Reg = MO.getReg();
5586
5587 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass);
5588 if (Reg.isPhysical())
5589 return DRC->contains(Reg);
5590
5591 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
5592
5593 if (MO.getSubReg()) {
5594 const MachineFunction *MF = MO.getParent()->getParent()->getParent();
5595 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF);
5596 if (!SuperRC)
5597 return false;
5598
5599 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg());
5600 if (!DRC)
5601 return false;
5602 }
5603 return RC->hasSuperClassEq(RC: DRC);
5604}
5605
5606bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
5607 const MCOperandInfo &OpInfo,
5608 const MachineOperand &MO) const {
5609 if (MO.isReg())
5610 return isLegalRegOperand(MRI, OpInfo, MO);
5611
5612 // Handle non-register types that are treated like immediates.
5613 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
5614 return true;
5615}
5616
5617bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
5618 const MachineOperand *MO) const {
5619 const MachineFunction &MF = *MI.getParent()->getParent();
5620 const MachineRegisterInfo &MRI = MF.getRegInfo();
5621 const MCInstrDesc &InstDesc = MI.getDesc();
5622 const MCOperandInfo &OpInfo = InstDesc.operands()[OpIdx];
5623 const TargetRegisterClass *DefinedRC =
5624 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
5625 if (!MO)
5626 MO = &MI.getOperand(i: OpIdx);
5627
5628 int ConstantBusLimit = ST.getConstantBusLimit(Opcode: MI.getOpcode());
5629 int LiteralLimit = !isVOP3(MI) || ST.hasVOP3Literal() ? 1 : 0;
5630 if (isVALU(MI) && usesConstantBus(MRI, MO: *MO, OpInfo)) {
5631 if (!MO->isReg() && !isInlineConstant(MO: *MO, OpInfo) && !LiteralLimit--)
5632 return false;
5633
5634 SmallDenseSet<RegSubRegPair> SGPRsUsed;
5635 if (MO->isReg())
5636 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg()));
5637
5638 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5639 if (i == OpIdx)
5640 continue;
5641 const MachineOperand &Op = MI.getOperand(i);
5642 if (Op.isReg()) {
5643 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg());
5644 if (!SGPRsUsed.count(SGPR) &&
5645 // FIXME: This can access off the end of the operands() array.
5646 usesConstantBus(MRI, MO: Op, OpInfo: InstDesc.operands().begin()[i])) {
5647 if (--ConstantBusLimit <= 0)
5648 return false;
5649 SGPRsUsed.insert(SGPR);
5650 }
5651 } else if (AMDGPU::isSISrcOperand(Desc: InstDesc, OpNo: i) &&
5652 !isInlineConstant(MO: Op, OpInfo: InstDesc.operands()[i])) {
5653 if (!LiteralLimit--)
5654 return false;
5655 if (--ConstantBusLimit <= 0)
5656 return false;
5657 }
5658 }
5659 }
5660
5661 if (MO->isReg()) {
5662 if (!DefinedRC)
5663 return OpInfo.OperandType == MCOI::OPERAND_UNKNOWN;
5664 if (!isLegalRegOperand(MRI, OpInfo, MO: *MO))
5665 return false;
5666 bool IsAGPR = RI.isAGPR(MRI, MO->getReg());
5667 if (IsAGPR && !ST.hasMAIInsts())
5668 return false;
5669 unsigned Opc = MI.getOpcode();
5670 if (IsAGPR &&
5671 (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
5672 (MI.mayLoad() || MI.mayStore() || isDS(Opcode: Opc) || isMIMG(Opcode: Opc)))
5673 return false;
5674 // Atomics should have both vdst and vdata either vgpr or agpr.
5675 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
5676 const int DataIdx = AMDGPU::getNamedOperandIdx(Opc,
5677 isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata);
5678 if ((int)OpIdx == VDstIdx && DataIdx != -1 &&
5679 MI.getOperand(i: DataIdx).isReg() &&
5680 RI.isAGPR(MRI, MI.getOperand(i: DataIdx).getReg()) != IsAGPR)
5681 return false;
5682 if ((int)OpIdx == DataIdx) {
5683 if (VDstIdx != -1 &&
5684 RI.isAGPR(MRI, MI.getOperand(i: VDstIdx).getReg()) != IsAGPR)
5685 return false;
5686 // DS instructions with 2 src operands also must have tied RC.
5687 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc,
5688 AMDGPU::OpName::data1);
5689 if (Data1Idx != -1 && MI.getOperand(i: Data1Idx).isReg() &&
5690 RI.isAGPR(MRI, MI.getOperand(i: Data1Idx).getReg()) != IsAGPR)
5691 return false;
5692 }
5693 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts() &&
5694 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) &&
5695 RI.isSGPRReg(MRI, MO->getReg()))
5696 return false;
5697 return true;
5698 }
5699
5700 if (MO->isImm()) {
5701 uint64_t Imm = MO->getImm();
5702 bool Is64BitFPOp = OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_FP64;
5703 bool Is64BitOp = Is64BitFPOp ||
5704 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_INT64 ||
5705 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2INT32 ||
5706 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32;
5707 if (Is64BitOp &&
5708 !AMDGPU::isInlinableLiteral64(Literal: Imm, HasInv2Pi: ST.hasInv2PiInlineImm())) {
5709 if (!AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: Is64BitFPOp))
5710 return false;
5711
5712 // FIXME: We can use sign extended 64-bit literals, but only for signed
5713 // operands. At the moment we do not know if an operand is signed.
5714 // Such operand will be encoded as its low 32 bits and then either
5715 // correctly sign extended or incorrectly zero extended by HW.
5716 if (!Is64BitFPOp && (int32_t)Imm < 0)
5717 return false;
5718 }
5719 }
5720
5721 // Handle non-register types that are treated like immediates.
5722 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal());
5723
5724 if (!DefinedRC) {
5725 // This operand expects an immediate.
5726 return true;
5727 }
5728
5729 return isImmOperandLegal(MI, OpNo: OpIdx, MO: *MO);
5730}
5731
5732void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
5733 MachineInstr &MI) const {
5734 unsigned Opc = MI.getOpcode();
5735 const MCInstrDesc &InstrDesc = get(Opc);
5736
5737 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
5738 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
5739
5740 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
5741 MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
5742
5743 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
5744 // we need to only have one constant bus use before GFX10.
5745 bool HasImplicitSGPR = findImplicitSGPRRead(MI);
5746 if (HasImplicitSGPR && ST.getConstantBusLimit(Opcode: Opc) <= 1 && Src0.isReg() &&
5747 RI.isSGPRReg(MRI, Src0.getReg()))
5748 legalizeOpWithMove(MI, OpIdx: Src0Idx);
5749
5750 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for
5751 // both the value to write (src0) and lane select (src1). Fix up non-SGPR
5752 // src0/src1 with V_READFIRSTLANE.
5753 if (Opc == AMDGPU::V_WRITELANE_B32) {
5754 const DebugLoc &DL = MI.getDebugLoc();
5755 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) {
5756 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5757 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5758 .add(Src0);
5759 Src0.ChangeToRegister(Reg, isDef: false);
5760 }
5761 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) {
5762 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5763 const DebugLoc &DL = MI.getDebugLoc();
5764 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5765 .add(Src1);
5766 Src1.ChangeToRegister(Reg, isDef: false);
5767 }
5768 return;
5769 }
5770
5771 // No VOP2 instructions support AGPRs.
5772 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg()))
5773 legalizeOpWithMove(MI, OpIdx: Src0Idx);
5774
5775 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg()))
5776 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5777
5778 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2.
5779 if (Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F16_e32) {
5780 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
5781 if (!RI.isVGPR(MRI, MI.getOperand(i: Src2Idx).getReg()))
5782 legalizeOpWithMove(MI, OpIdx: Src2Idx);
5783 }
5784
5785 // VOP2 src0 instructions support all operand types, so we don't need to check
5786 // their legality. If src1 is already legal, we don't need to do anything.
5787 if (isLegalRegOperand(MRI, OpInfo: InstrDesc.operands()[Src1Idx], MO: Src1))
5788 return;
5789
5790 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for
5791 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane
5792 // select is uniform.
5793 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() &&
5794 RI.isVGPR(MRI, Src1.getReg())) {
5795 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5796 const DebugLoc &DL = MI.getDebugLoc();
5797 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5798 .add(Src1);
5799 Src1.ChangeToRegister(Reg, isDef: false);
5800 return;
5801 }
5802
5803 // We do not use commuteInstruction here because it is too aggressive and will
5804 // commute if it is possible. We only want to commute here if it improves
5805 // legality. This can be called a fairly large number of times so don't waste
5806 // compile time pointlessly swapping and checking legality again.
5807 if (HasImplicitSGPR || !MI.isCommutable()) {
5808 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5809 return;
5810 }
5811
5812 // If src0 can be used as src1, commuting will make the operands legal.
5813 // Otherwise we have to give up and insert a move.
5814 //
5815 // TODO: Other immediate-like operand kinds could be commuted if there was a
5816 // MachineOperand::ChangeTo* for them.
5817 if ((!Src1.isImm() && !Src1.isReg()) ||
5818 !isLegalRegOperand(MRI, OpInfo: InstrDesc.operands()[Src1Idx], MO: Src0)) {
5819 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5820 return;
5821 }
5822
5823 int CommutedOpc = commuteOpcode(MI);
5824 if (CommutedOpc == -1) {
5825 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5826 return;
5827 }
5828
5829 MI.setDesc(get(CommutedOpc));
5830
5831 Register Src0Reg = Src0.getReg();
5832 unsigned Src0SubReg = Src0.getSubReg();
5833 bool Src0Kill = Src0.isKill();
5834
5835 if (Src1.isImm())
5836 Src0.ChangeToImmediate(ImmVal: Src1.getImm());
5837 else if (Src1.isReg()) {
5838 Src0.ChangeToRegister(Reg: Src1.getReg(), isDef: false, isImp: false, isKill: Src1.isKill());
5839 Src0.setSubReg(Src1.getSubReg());
5840 } else
5841 llvm_unreachable("Should only have register or immediate operands");
5842
5843 Src1.ChangeToRegister(Reg: Src0Reg, isDef: false, isImp: false, isKill: Src0Kill);
5844 Src1.setSubReg(Src0SubReg);
5845 fixImplicitOperands(MI);
5846}
5847
5848// Legalize VOP3 operands. All operand types are supported for any operand
5849// but only one literal constant and only starting from GFX10.
5850void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
5851 MachineInstr &MI) const {
5852 unsigned Opc = MI.getOpcode();
5853
5854 int VOP3Idx[3] = {
5855 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
5856 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
5857 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
5858 };
5859
5860 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 ||
5861 Opc == AMDGPU::V_PERMLANEX16_B32_e64) {
5862 // src1 and src2 must be scalar
5863 MachineOperand &Src1 = MI.getOperand(i: VOP3Idx[1]);
5864 MachineOperand &Src2 = MI.getOperand(i: VOP3Idx[2]);
5865 const DebugLoc &DL = MI.getDebugLoc();
5866 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Src1.getReg()))) {
5867 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5868 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5869 .add(Src1);
5870 Src1.ChangeToRegister(Reg, isDef: false);
5871 }
5872 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Src2.getReg()))) {
5873 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5874 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5875 .add(Src2);
5876 Src2.ChangeToRegister(Reg, isDef: false);
5877 }
5878 }
5879
5880 // Find the one SGPR operand we are allowed to use.
5881 int ConstantBusLimit = ST.getConstantBusLimit(Opcode: Opc);
5882 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
5883 SmallDenseSet<unsigned> SGPRsUsed;
5884 Register SGPRReg = findUsedSGPR(MI, OpIndices: VOP3Idx);
5885 if (SGPRReg) {
5886 SGPRsUsed.insert(V: SGPRReg);
5887 --ConstantBusLimit;
5888 }
5889
5890 for (int Idx : VOP3Idx) {
5891 if (Idx == -1)
5892 break;
5893 MachineOperand &MO = MI.getOperand(i: Idx);
5894
5895 if (!MO.isReg()) {
5896 if (isInlineConstant(MO, get(Opc).operands()[Idx]))
5897 continue;
5898
5899 if (LiteralLimit > 0 && ConstantBusLimit > 0) {
5900 --LiteralLimit;
5901 --ConstantBusLimit;
5902 continue;
5903 }
5904
5905 --LiteralLimit;
5906 --ConstantBusLimit;
5907 legalizeOpWithMove(MI, OpIdx: Idx);
5908 continue;
5909 }
5910
5911 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) &&
5912 !isOperandLegal(MI, OpIdx: Idx, MO: &MO)) {
5913 legalizeOpWithMove(MI, OpIdx: Idx);
5914 continue;
5915 }
5916
5917 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg())))
5918 continue; // VGPRs are legal
5919
5920 // We can use one SGPR in each VOP3 instruction prior to GFX10
5921 // and two starting from GFX10.
5922 if (SGPRsUsed.count(V: MO.getReg()))
5923 continue;
5924 if (ConstantBusLimit > 0) {
5925 SGPRsUsed.insert(V: MO.getReg());
5926 --ConstantBusLimit;
5927 continue;
5928 }
5929
5930 // If we make it this far, then the operand is not legal and we must
5931 // legalize it.
5932 legalizeOpWithMove(MI, OpIdx: Idx);
5933 }
5934
5935 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2 tied to vdst.
5936 if ((Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
5937 !RI.isVGPR(MRI, MI.getOperand(VOP3Idx[2]).getReg()))
5938 legalizeOpWithMove(MI, OpIdx: VOP3Idx[2]);
5939}
5940
5941Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
5942 MachineRegisterInfo &MRI) const {
5943 const TargetRegisterClass *VRC = MRI.getRegClass(Reg: SrcReg);
5944 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
5945 Register DstReg = MRI.createVirtualRegister(RegClass: SRC);
5946 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32;
5947
5948 if (RI.hasAGPRs(VRC)) {
5949 VRC = RI.getEquivalentVGPRClass(VRC);
5950 Register NewSrcReg = MRI.createVirtualRegister(RegClass: VRC);
5951 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
5952 get(TargetOpcode::COPY), NewSrcReg)
5953 .addReg(SrcReg);
5954 SrcReg = NewSrcReg;
5955 }
5956
5957 if (SubRegs == 1) {
5958 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
5959 get(AMDGPU::V_READFIRSTLANE_B32), DstReg)
5960 .addReg(SrcReg);
5961 return DstReg;
5962 }
5963
5964 SmallVector<Register, 8> SRegs;
5965 for (unsigned i = 0; i < SubRegs; ++i) {
5966 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
5967 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
5968 get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
5969 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
5970 SRegs.push_back(Elt: SGPR);
5971 }
5972
5973 MachineInstrBuilder MIB =
5974 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
5975 get(AMDGPU::REG_SEQUENCE), DstReg);
5976 for (unsigned i = 0; i < SubRegs; ++i) {
5977 MIB.addReg(RegNo: SRegs[i]);
5978 MIB.addImm(Val: RI.getSubRegFromChannel(Channel: i));
5979 }
5980 return DstReg;
5981}
5982
5983void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
5984 MachineInstr &MI) const {
5985
5986 // If the pointer is store in VGPRs, then we need to move them to
5987 // SGPRs using v_readfirstlane. This is safe because we only select
5988 // loads with uniform pointers to SMRD instruction so we know the
5989 // pointer value is uniform.
5990 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
5991 if (SBase && !RI.isSGPRClass(MRI.getRegClass(Reg: SBase->getReg()))) {
5992 Register SGPR = readlaneVGPRToSGPR(SrcReg: SBase->getReg(), UseMI&: MI, MRI);
5993 SBase->setReg(SGPR);
5994 }
5995 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soffset);
5996 if (SOff && !RI.isSGPRClass(MRI.getRegClass(Reg: SOff->getReg()))) {
5997 Register SGPR = readlaneVGPRToSGPR(SrcReg: SOff->getReg(), UseMI&: MI, MRI);
5998 SOff->setReg(SGPR);
5999 }
6000}
6001
6002bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const {
6003 unsigned Opc = Inst.getOpcode();
6004 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
6005 if (OldSAddrIdx < 0)
6006 return false;
6007
6008 assert(isSegmentSpecificFLAT(Inst));
6009
6010 int NewOpc = AMDGPU::getGlobalVaddrOp(Opcode: Opc);
6011 if (NewOpc < 0)
6012 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opcode: Opc);
6013 if (NewOpc < 0)
6014 return false;
6015
6016 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
6017 MachineOperand &SAddr = Inst.getOperand(i: OldSAddrIdx);
6018 if (RI.isSGPRReg(MRI, SAddr.getReg()))
6019 return false;
6020
6021 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr);
6022 if (NewVAddrIdx < 0)
6023 return false;
6024
6025 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
6026
6027 // Check vaddr, it shall be zero or absent.
6028 MachineInstr *VAddrDef = nullptr;
6029 if (OldVAddrIdx >= 0) {
6030 MachineOperand &VAddr = Inst.getOperand(i: OldVAddrIdx);
6031 VAddrDef = MRI.getUniqueVRegDef(Reg: VAddr.getReg());
6032 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 ||
6033 !VAddrDef->getOperand(1).isImm() ||
6034 VAddrDef->getOperand(1).getImm() != 0)
6035 return false;
6036 }
6037
6038 const MCInstrDesc &NewDesc = get(NewOpc);
6039 Inst.setDesc(NewDesc);
6040
6041 // Callers expect iterator to be valid after this call, so modify the
6042 // instruction in place.
6043 if (OldVAddrIdx == NewVAddrIdx) {
6044 MachineOperand &NewVAddr = Inst.getOperand(i: NewVAddrIdx);
6045 // Clear use list from the old vaddr holding a zero register.
6046 MRI.removeRegOperandFromUseList(MO: &NewVAddr);
6047 MRI.moveOperands(Dst: &NewVAddr, Src: &SAddr, NumOps: 1);
6048 Inst.removeOperand(OpNo: OldSAddrIdx);
6049 // Update the use list with the pointer we have just moved from vaddr to
6050 // saddr position. Otherwise new vaddr will be missing from the use list.
6051 MRI.removeRegOperandFromUseList(MO: &NewVAddr);
6052 MRI.addRegOperandToUseList(MO: &NewVAddr);
6053 } else {
6054 assert(OldSAddrIdx == NewVAddrIdx);
6055
6056 if (OldVAddrIdx >= 0) {
6057 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc,
6058 AMDGPU::OpName::vdst_in);
6059
6060 // removeOperand doesn't try to fixup tied operand indexes at it goes, so
6061 // it asserts. Untie the operands for now and retie them afterwards.
6062 if (NewVDstIn != -1) {
6063 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in);
6064 Inst.untieRegOperand(OpIdx: OldVDstIn);
6065 }
6066
6067 Inst.removeOperand(OpNo: OldVAddrIdx);
6068
6069 if (NewVDstIn != -1) {
6070 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
6071 Inst.tieOperands(DefIdx: NewVDst, UseIdx: NewVDstIn);
6072 }
6073 }
6074 }
6075
6076 if (VAddrDef && MRI.use_nodbg_empty(RegNo: VAddrDef->getOperand(i: 0).getReg()))
6077 VAddrDef->eraseFromParent();
6078
6079 return true;
6080}
6081
6082// FIXME: Remove this when SelectionDAG is obsoleted.
6083void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI,
6084 MachineInstr &MI) const {
6085 if (!isSegmentSpecificFLAT(MI))
6086 return;
6087
6088 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence
6089 // thinks they are uniform, so a readfirstlane should be valid.
6090 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr);
6091 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(Reg: SAddr->getReg())))
6092 return;
6093
6094 if (moveFlatAddrToVGPR(Inst&: MI))
6095 return;
6096
6097 Register ToSGPR = readlaneVGPRToSGPR(SrcReg: SAddr->getReg(), UseMI&: MI, MRI);
6098 SAddr->setReg(ToSGPR);
6099}
6100
6101void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB,
6102 MachineBasicBlock::iterator I,
6103 const TargetRegisterClass *DstRC,
6104 MachineOperand &Op,
6105 MachineRegisterInfo &MRI,
6106 const DebugLoc &DL) const {
6107 Register OpReg = Op.getReg();
6108 unsigned OpSubReg = Op.getSubReg();
6109
6110 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg(
6111 RI.getRegClassForReg(MRI, OpReg), OpSubReg);
6112
6113 // Check if operand is already the correct register class.
6114 if (DstRC == OpRC)
6115 return;
6116
6117 Register DstReg = MRI.createVirtualRegister(RegClass: DstRC);
6118 auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op);
6119
6120 Op.setReg(DstReg);
6121 Op.setSubReg(0);
6122
6123 MachineInstr *Def = MRI.getVRegDef(Reg: OpReg);
6124 if (!Def)
6125 return;
6126
6127 // Try to eliminate the copy if it is copying an immediate value.
6128 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass)
6129 foldImmediate(UseMI&: *Copy, DefMI&: *Def, Reg: OpReg, MRI: &MRI);
6130
6131 bool ImpDef = Def->isImplicitDef();
6132 while (!ImpDef && Def && Def->isCopy()) {
6133 if (Def->getOperand(i: 1).getReg().isPhysical())
6134 break;
6135 Def = MRI.getUniqueVRegDef(Reg: Def->getOperand(i: 1).getReg());
6136 ImpDef = Def && Def->isImplicitDef();
6137 }
6138 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) &&
6139 !ImpDef)
6140 Copy.addReg(AMDGPU::EXEC, RegState::Implicit);
6141}
6142
6143// Emit the actual waterfall loop, executing the wrapped instruction for each
6144// unique value of \p ScalarOps across all lanes. In the best case we execute 1
6145// iteration, in the worst case we execute 64 (once per lane).
6146static void emitLoadScalarOpsFromVGPRLoop(
6147 const SIInstrInfo &TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB,
6148 MachineBasicBlock &LoopBB, MachineBasicBlock &BodyBB, const DebugLoc &DL,
6149 ArrayRef<MachineOperand *> ScalarOps) {
6150 MachineFunction &MF = *OrigBB.getParent();
6151 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6152 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6153 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
6154 unsigned SaveExecOpc =
6155 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
6156 unsigned XorTermOpc =
6157 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
6158 unsigned AndOpc =
6159 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
6160 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6161
6162 MachineBasicBlock::iterator I = LoopBB.begin();
6163
6164 SmallVector<Register, 8> ReadlanePieces;
6165 Register CondReg;
6166
6167 for (MachineOperand *ScalarOp : ScalarOps) {
6168 unsigned RegSize = TRI->getRegSizeInBits(ScalarOp->getReg(), MRI);
6169 unsigned NumSubRegs = RegSize / 32;
6170 Register VScalarOp = ScalarOp->getReg();
6171
6172 if (NumSubRegs == 1) {
6173 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6174
6175 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurReg)
6176 .addReg(VScalarOp);
6177
6178 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
6179
6180 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U32_e64), NewCondReg)
6181 .addReg(CurReg)
6182 .addReg(VScalarOp);
6183
6184 // Combine the comparison results with AND.
6185 if (!CondReg) // First.
6186 CondReg = NewCondReg;
6187 else { // If not the first, we create an AND.
6188 Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
6189 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
6190 .addReg(CondReg)
6191 .addReg(NewCondReg);
6192 CondReg = AndReg;
6193 }
6194
6195 // Update ScalarOp operand to use the SGPR ScalarOp.
6196 ScalarOp->setReg(CurReg);
6197 ScalarOp->setIsKill();
6198 } else {
6199 unsigned VScalarOpUndef = getUndefRegState(B: ScalarOp->isUndef());
6200 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 &&
6201 "Unhandled register size");
6202
6203 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) {
6204 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6205 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6206
6207 // Read the next variant <- also loop target.
6208 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo)
6209 .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx));
6210
6211 // Read the next variant <- also loop target.
6212 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi)
6213 .addReg(VScalarOp, VScalarOpUndef,
6214 TRI->getSubRegFromChannel(Idx + 1));
6215
6216 ReadlanePieces.push_back(Elt: CurRegLo);
6217 ReadlanePieces.push_back(Elt: CurRegHi);
6218
6219 // Comparison is to be done as 64-bit.
6220 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
6221 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg)
6222 .addReg(CurRegLo)
6223 .addImm(AMDGPU::sub0)
6224 .addReg(CurRegHi)
6225 .addImm(AMDGPU::sub1);
6226
6227 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
6228 auto Cmp = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64),
6229 NewCondReg)
6230 .addReg(CurReg);
6231 if (NumSubRegs <= 2)
6232 Cmp.addReg(VScalarOp);
6233 else
6234 Cmp.addReg(VScalarOp, VScalarOpUndef,
6235 TRI->getSubRegFromChannel(Channel: Idx, NumRegs: 2));
6236
6237 // Combine the comparison results with AND.
6238 if (!CondReg) // First.
6239 CondReg = NewCondReg;
6240 else { // If not the first, we create an AND.
6241 Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
6242 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
6243 .addReg(CondReg)
6244 .addReg(NewCondReg);
6245 CondReg = AndReg;
6246 }
6247 } // End for loop.
6248
6249 auto SScalarOpRC =
6250 TRI->getEquivalentSGPRClass(MRI.getRegClass(Reg: VScalarOp));
6251 Register SScalarOp = MRI.createVirtualRegister(SScalarOpRC);
6252
6253 // Build scalar ScalarOp.
6254 auto Merge =
6255 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SScalarOp);
6256 unsigned Channel = 0;
6257 for (Register Piece : ReadlanePieces) {
6258 Merge.addReg(Piece).addImm(TRI->getSubRegFromChannel(Channel: Channel++));
6259 }
6260
6261 // Update ScalarOp operand to use the SGPR ScalarOp.
6262 ScalarOp->setReg(SScalarOp);
6263 ScalarOp->setIsKill();
6264 }
6265 }
6266
6267 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
6268 MRI.setSimpleHint(VReg: SaveExec, PrefReg: CondReg);
6269
6270 // Update EXEC to matching lanes, saving original to SaveExec.
6271 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec)
6272 .addReg(CondReg, RegState::Kill);
6273
6274 // The original instruction is here; we insert the terminators after it.
6275 I = BodyBB.end();
6276
6277 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
6278 BuildMI(BodyBB, I, DL, TII.get(XorTermOpc), Exec)
6279 .addReg(Exec)
6280 .addReg(SaveExec);
6281
6282 BuildMI(BodyBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB);
6283}
6284
6285// Build a waterfall loop around \p MI, replacing the VGPR \p ScalarOp register
6286// with SGPRs by iterating over all unique values across all lanes.
6287// Returns the loop basic block that now contains \p MI.
6288static MachineBasicBlock *
6289loadMBUFScalarOperandsFromVGPR(const SIInstrInfo &TII, MachineInstr &MI,
6290 ArrayRef<MachineOperand *> ScalarOps,
6291 MachineDominatorTree *MDT,
6292 MachineBasicBlock::iterator Begin = nullptr,
6293 MachineBasicBlock::iterator End = nullptr) {
6294 MachineBasicBlock &MBB = *MI.getParent();
6295 MachineFunction &MF = *MBB.getParent();
6296 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6297 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6298 MachineRegisterInfo &MRI = MF.getRegInfo();
6299 if (!Begin.isValid())
6300 Begin = &MI;
6301 if (!End.isValid()) {
6302 End = &MI;
6303 ++End;
6304 }
6305 const DebugLoc &DL = MI.getDebugLoc();
6306 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
6307 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
6308 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6309
6310 // Save SCC. Waterfall Loop may overwrite SCC.
6311 Register SaveSCCReg;
6312 bool SCCNotDead = (MBB.computeRegisterLiveness(TRI, AMDGPU::SCC, MI, 30) !=
6313 MachineBasicBlock::LQR_Dead);
6314 if (SCCNotDead) {
6315 SaveSCCReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6316 BuildMI(MBB, Begin, DL, TII.get(AMDGPU::S_CSELECT_B32), SaveSCCReg)
6317 .addImm(1)
6318 .addImm(0);
6319 }
6320
6321 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
6322
6323 // Save the EXEC mask
6324 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec);
6325
6326 // Killed uses in the instruction we are waterfalling around will be
6327 // incorrect due to the added control-flow.
6328 MachineBasicBlock::iterator AfterMI = MI;
6329 ++AfterMI;
6330 for (auto I = Begin; I != AfterMI; I++) {
6331 for (auto &MO : I->all_uses())
6332 MRI.clearKillFlags(Reg: MO.getReg());
6333 }
6334
6335 // To insert the loop we need to split the block. Move everything after this
6336 // point to a new block, and insert a new empty block between the two.
6337 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
6338 MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock();
6339 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
6340 MachineFunction::iterator MBBI(MBB);
6341 ++MBBI;
6342
6343 MF.insert(MBBI, MBB: LoopBB);
6344 MF.insert(MBBI, MBB: BodyBB);
6345 MF.insert(MBBI, MBB: RemainderBB);
6346
6347 LoopBB->addSuccessor(Succ: BodyBB);
6348 BodyBB->addSuccessor(Succ: LoopBB);
6349 BodyBB->addSuccessor(Succ: RemainderBB);
6350
6351 // Move Begin to MI to the BodyBB, and the remainder of the block to
6352 // RemainderBB.
6353 RemainderBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB);
6354 RemainderBB->splice(Where: RemainderBB->begin(), Other: &MBB, From: End, To: MBB.end());
6355 BodyBB->splice(Where: BodyBB->begin(), Other: &MBB, From: Begin, To: MBB.end());
6356
6357 MBB.addSuccessor(Succ: LoopBB);
6358
6359 // Update dominators. We know that MBB immediately dominates LoopBB, that
6360 // LoopBB immediately dominates BodyBB, and BodyBB immediately dominates
6361 // RemainderBB. RemainderBB immediately dominates all of the successors
6362 // transferred to it from MBB that MBB used to properly dominate.
6363 if (MDT) {
6364 MDT->addNewBlock(BB: LoopBB, DomBB: &MBB);
6365 MDT->addNewBlock(BB: BodyBB, DomBB: LoopBB);
6366 MDT->addNewBlock(BB: RemainderBB, DomBB: BodyBB);
6367 for (auto &Succ : RemainderBB->successors()) {
6368 if (MDT->properlyDominates(A: &MBB, B: Succ)) {
6369 MDT->changeImmediateDominator(N: Succ, NewIDom: RemainderBB);
6370 }
6371 }
6372 }
6373
6374 emitLoadScalarOpsFromVGPRLoop(TII, MRI, OrigBB&: MBB, LoopBB&: *LoopBB, BodyBB&: *BodyBB, DL, ScalarOps);
6375
6376 MachineBasicBlock::iterator First = RemainderBB->begin();
6377 // Restore SCC
6378 if (SCCNotDead) {
6379 BuildMI(*RemainderBB, First, DL, TII.get(AMDGPU::S_CMP_LG_U32))
6380 .addReg(SaveSCCReg, RegState::Kill)
6381 .addImm(0);
6382 }
6383
6384 // Restore the EXEC mask
6385 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec);
6386 return BodyBB;
6387}
6388
6389// Extract pointer from Rsrc and return a zero-value Rsrc replacement.
6390static std::tuple<unsigned, unsigned>
6391extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) {
6392 MachineBasicBlock &MBB = *MI.getParent();
6393 MachineFunction &MF = *MBB.getParent();
6394 MachineRegisterInfo &MRI = MF.getRegInfo();
6395
6396 // Extract the ptr from the resource descriptor.
6397 unsigned RsrcPtr =
6398 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass,
6399 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
6400
6401 // Create an empty resource descriptor
6402 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
6403 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6404 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6405 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
6406 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat();
6407
6408 // Zero64 = 0
6409 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64)
6410 .addImm(0);
6411
6412 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
6413 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
6414 .addImm(RsrcDataFormat & 0xFFFFFFFF);
6415
6416 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
6417 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
6418 .addImm(RsrcDataFormat >> 32);
6419
6420 // NewSRsrc = {Zero64, SRsrcFormat}
6421 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc)
6422 .addReg(Zero64)
6423 .addImm(AMDGPU::sub0_sub1)
6424 .addReg(SRsrcFormatLo)
6425 .addImm(AMDGPU::sub2)
6426 .addReg(SRsrcFormatHi)
6427 .addImm(AMDGPU::sub3);
6428
6429 return std::tuple(RsrcPtr, NewSRsrc);
6430}
6431
6432MachineBasicBlock *
6433SIInstrInfo::legalizeOperands(MachineInstr &MI,
6434 MachineDominatorTree *MDT) const {
6435 MachineFunction &MF = *MI.getParent()->getParent();
6436 MachineRegisterInfo &MRI = MF.getRegInfo();
6437 MachineBasicBlock *CreatedBB = nullptr;
6438
6439 // Legalize VOP2
6440 if (isVOP2(MI) || isVOPC(MI)) {
6441 legalizeOperandsVOP2(MRI, MI);
6442 return CreatedBB;
6443 }
6444
6445 // Legalize VOP3
6446 if (isVOP3(MI)) {
6447 legalizeOperandsVOP3(MRI, MI);
6448 return CreatedBB;
6449 }
6450
6451 // Legalize SMRD
6452 if (isSMRD(MI)) {
6453 legalizeOperandsSMRD(MRI, MI);
6454 return CreatedBB;
6455 }
6456
6457 // Legalize FLAT
6458 if (isFLAT(MI)) {
6459 legalizeOperandsFLAT(MRI, MI);
6460 return CreatedBB;
6461 }
6462
6463 // Legalize REG_SEQUENCE and PHI
6464 // The register class of the operands much be the same type as the register
6465 // class of the output.
6466 if (MI.getOpcode() == AMDGPU::PHI) {
6467 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
6468 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
6469 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual())
6470 continue;
6471 const TargetRegisterClass *OpRC =
6472 MRI.getRegClass(Reg: MI.getOperand(i).getReg());
6473 if (RI.hasVectorRegisters(OpRC)) {
6474 VRC = OpRC;
6475 } else {
6476 SRC = OpRC;
6477 }
6478 }
6479
6480 // If any of the operands are VGPR registers, then they all most be
6481 // otherwise we will create illegal VGPR->SGPR copies when legalizing
6482 // them.
6483 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, OpNo: 0))) {
6484 if (!VRC) {
6485 assert(SRC);
6486 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) {
6487 VRC = &AMDGPU::VReg_1RegClass;
6488 } else
6489 VRC = RI.isAGPRClass(getOpRegClass(MI, OpNo: 0))
6490 ? RI.getEquivalentAGPRClass(SRC)
6491 : RI.getEquivalentVGPRClass(SRC);
6492 } else {
6493 VRC = RI.isAGPRClass(getOpRegClass(MI, OpNo: 0))
6494 ? RI.getEquivalentAGPRClass(VRC)
6495 : RI.getEquivalentVGPRClass(VRC);
6496 }
6497 RC = VRC;
6498 } else {
6499 RC = SRC;
6500 }
6501
6502 // Update all the operands so they have the same type.
6503 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
6504 MachineOperand &Op = MI.getOperand(i: I);
6505 if (!Op.isReg() || !Op.getReg().isVirtual())
6506 continue;
6507
6508 // MI is a PHI instruction.
6509 MachineBasicBlock *InsertBB = MI.getOperand(i: I + 1).getMBB();
6510 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
6511
6512 // Avoid creating no-op copies with the same src and dst reg class. These
6513 // confuse some of the machine passes.
6514 legalizeGenericOperand(InsertMBB&: *InsertBB, I: Insert, DstRC: RC, Op, MRI, DL: MI.getDebugLoc());
6515 }
6516 }
6517
6518 // REG_SEQUENCE doesn't really require operand legalization, but if one has a
6519 // VGPR dest type and SGPR sources, insert copies so all operands are
6520 // VGPRs. This seems to help operand folding / the register coalescer.
6521 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
6522 MachineBasicBlock *MBB = MI.getParent();
6523 const TargetRegisterClass *DstRC = getOpRegClass(MI, OpNo: 0);
6524 if (RI.hasVGPRs(DstRC)) {
6525 // Update all the operands so they are VGPR register classes. These may
6526 // not be the same register class because REG_SEQUENCE supports mixing
6527 // subregister index types e.g. sub0_sub1 + sub2 + sub3
6528 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
6529 MachineOperand &Op = MI.getOperand(i: I);
6530 if (!Op.isReg() || !Op.getReg().isVirtual())
6531 continue;
6532
6533 const TargetRegisterClass *OpRC = MRI.getRegClass(Reg: Op.getReg());
6534 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
6535 if (VRC == OpRC)
6536 continue;
6537
6538 legalizeGenericOperand(InsertMBB&: *MBB, I: MI, DstRC: VRC, Op, MRI, DL: MI.getDebugLoc());
6539 Op.setIsKill();
6540 }
6541 }
6542
6543 return CreatedBB;
6544 }
6545
6546 // Legalize INSERT_SUBREG
6547 // src0 must have the same register class as dst
6548 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
6549 Register Dst = MI.getOperand(i: 0).getReg();
6550 Register Src0 = MI.getOperand(i: 1).getReg();
6551 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: Dst);
6552 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0);
6553 if (DstRC != Src0RC) {
6554 MachineBasicBlock *MBB = MI.getParent();
6555 MachineOperand &Op = MI.getOperand(i: 1);
6556 legalizeGenericOperand(InsertMBB&: *MBB, I: MI, DstRC, Op, MRI, DL: MI.getDebugLoc());
6557 }
6558 return CreatedBB;
6559 }
6560
6561 // Legalize SI_INIT_M0
6562 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) {
6563 MachineOperand &Src = MI.getOperand(i: 0);
6564 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Reg: Src.getReg())))
6565 Src.setReg(readlaneVGPRToSGPR(SrcReg: Src.getReg(), UseMI&: MI, MRI));
6566 return CreatedBB;
6567 }
6568
6569 // Legalize S_BITREPLICATE, S_QUADMASK and S_WQM
6570 if (MI.getOpcode() == AMDGPU::S_BITREPLICATE_B64_B32 ||
6571 MI.getOpcode() == AMDGPU::S_QUADMASK_B32 ||
6572 MI.getOpcode() == AMDGPU::S_QUADMASK_B64 ||
6573 MI.getOpcode() == AMDGPU::S_WQM_B32 ||
6574 MI.getOpcode() == AMDGPU::S_WQM_B64) {
6575 MachineOperand &Src = MI.getOperand(i: 1);
6576 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Reg: Src.getReg())))
6577 Src.setReg(readlaneVGPRToSGPR(SrcReg: Src.getReg(), UseMI&: MI, MRI));
6578 return CreatedBB;
6579 }
6580
6581 // Legalize MIMG/VIMAGE/VSAMPLE and MUBUF/MTBUF for shaders.
6582 //
6583 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via
6584 // scratch memory access. In both cases, the legalization never involves
6585 // conversion to the addr64 form.
6586 if (isImage(MI) || (AMDGPU::isGraphics(CC: MF.getFunction().getCallingConv()) &&
6587 (isMUBUF(MI) || isMTBUF(MI)))) {
6588 int RSrcOpName = (isVIMAGE(MI) || isVSAMPLE(MI)) ? AMDGPU::OpName::rsrc
6589 : AMDGPU::OpName::srsrc;
6590 MachineOperand *SRsrc = getNamedOperand(MI, OperandName: RSrcOpName);
6591 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(Reg: SRsrc->getReg())))
6592 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {SRsrc}, MDT);
6593
6594 int SampOpName = isMIMG(MI) ? AMDGPU::OpName::ssamp : AMDGPU::OpName::samp;
6595 MachineOperand *SSamp = getNamedOperand(MI, OperandName: SampOpName);
6596 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(Reg: SSamp->getReg())))
6597 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {SSamp}, MDT);
6598
6599 return CreatedBB;
6600 }
6601
6602 // Legalize SI_CALL
6603 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
6604 MachineOperand *Dest = &MI.getOperand(i: 0);
6605 if (!RI.isSGPRClass(MRI.getRegClass(Reg: Dest->getReg()))) {
6606 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and
6607 // following copies, we also need to move copies from and to physical
6608 // registers into the loop block.
6609 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
6610 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
6611
6612 // Also move the copies to physical registers into the loop block
6613 MachineBasicBlock &MBB = *MI.getParent();
6614 MachineBasicBlock::iterator Start(&MI);
6615 while (Start->getOpcode() != FrameSetupOpcode)
6616 --Start;
6617 MachineBasicBlock::iterator End(&MI);
6618 while (End->getOpcode() != FrameDestroyOpcode)
6619 ++End;
6620 // Also include following copies of the return value
6621 ++End;
6622 while (End != MBB.end() && End->isCopy() && End->getOperand(i: 1).isReg() &&
6623 MI.definesRegister(Reg: End->getOperand(i: 1).getReg()))
6624 ++End;
6625 CreatedBB =
6626 loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Dest}, MDT, Begin: Start, End);
6627 }
6628 }
6629
6630 // Legalize s_sleep_var.
6631 if (MI.getOpcode() == AMDGPU::S_SLEEP_VAR) {
6632 const DebugLoc &DL = MI.getDebugLoc();
6633 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6634 int Src0Idx =
6635 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
6636 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
6637 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
6638 .add(Src0);
6639 Src0.ChangeToRegister(Reg, isDef: false);
6640 return nullptr;
6641 }
6642
6643 // Legalize MUBUF instructions.
6644 bool isSoffsetLegal = true;
6645 int SoffsetIdx =
6646 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::soffset);
6647 if (SoffsetIdx != -1) {
6648 MachineOperand *Soffset = &MI.getOperand(i: SoffsetIdx);
6649 if (Soffset->isReg() && Soffset->getReg().isVirtual() &&
6650 !RI.isSGPRClass(MRI.getRegClass(Reg: Soffset->getReg()))) {
6651 isSoffsetLegal = false;
6652 }
6653 }
6654
6655 bool isRsrcLegal = true;
6656 int RsrcIdx =
6657 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
6658 if (RsrcIdx != -1) {
6659 MachineOperand *Rsrc = &MI.getOperand(i: RsrcIdx);
6660 if (Rsrc->isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Rsrc->getReg()))) {
6661 isRsrcLegal = false;
6662 }
6663 }
6664
6665 // The operands are legal.
6666 if (isRsrcLegal && isSoffsetLegal)
6667 return CreatedBB;
6668
6669 if (!isRsrcLegal) {
6670 // Legalize a VGPR Rsrc
6671 //
6672 // If the instruction is _ADDR64, we can avoid a waterfall by extracting
6673 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using
6674 // a zero-value SRsrc.
6675 //
6676 // If the instruction is _OFFSET (both idxen and offen disabled), and we
6677 // support ADDR64 instructions, we can convert to ADDR64 and do the same as
6678 // above.
6679 //
6680 // Otherwise we are on non-ADDR64 hardware, and/or we have
6681 // idxen/offen/bothen and we fall back to a waterfall loop.
6682
6683 MachineOperand *Rsrc = &MI.getOperand(i: RsrcIdx);
6684 MachineBasicBlock &MBB = *MI.getParent();
6685
6686 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
6687 if (VAddr && AMDGPU::getIfAddr64Inst(Opcode: MI.getOpcode()) != -1) {
6688 // This is already an ADDR64 instruction so we need to add the pointer
6689 // extracted from the resource descriptor to the current value of VAddr.
6690 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6691 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6692 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
6693
6694 const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6695 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC);
6696 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC);
6697
6698 unsigned RsrcPtr, NewSRsrc;
6699 std::tie(args&: RsrcPtr, args&: NewSRsrc) = extractRsrcPtr(TII: *this, MI, Rsrc&: *Rsrc);
6700
6701 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0
6702 const DebugLoc &DL = MI.getDebugLoc();
6703 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo)
6704 .addDef(CondReg0)
6705 .addReg(RsrcPtr, 0, AMDGPU::sub0)
6706 .addReg(VAddr->getReg(), 0, AMDGPU::sub0)
6707 .addImm(0);
6708
6709 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1
6710 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi)
6711 .addDef(CondReg1, RegState::Dead)
6712 .addReg(RsrcPtr, 0, AMDGPU::sub1)
6713 .addReg(VAddr->getReg(), 0, AMDGPU::sub1)
6714 .addReg(CondReg0, RegState::Kill)
6715 .addImm(0);
6716
6717 // NewVaddr = {NewVaddrHi, NewVaddrLo}
6718 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
6719 .addReg(NewVAddrLo)
6720 .addImm(AMDGPU::sub0)
6721 .addReg(NewVAddrHi)
6722 .addImm(AMDGPU::sub1);
6723
6724 VAddr->setReg(NewVAddr);
6725 Rsrc->setReg(NewSRsrc);
6726 } else if (!VAddr && ST.hasAddr64()) {
6727 // This instructions is the _OFFSET variant, so we need to convert it to
6728 // ADDR64.
6729 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS &&
6730 "FIXME: Need to emit flat atomics here");
6731
6732 unsigned RsrcPtr, NewSRsrc;
6733 std::tie(args&: RsrcPtr, args&: NewSRsrc) = extractRsrcPtr(TII: *this, MI, Rsrc&: *Rsrc);
6734
6735 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
6736 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
6737 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
6738 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6739 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(Opcode: MI.getOpcode());
6740
6741 // Atomics with return have an additional tied operand and are
6742 // missing some of the special bits.
6743 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
6744 MachineInstr *Addr64;
6745
6746 if (!VDataIn) {
6747 // Regular buffer load / store.
6748 MachineInstrBuilder MIB =
6749 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
6750 .add(*VData)
6751 .addReg(NewVAddr)
6752 .addReg(NewSRsrc)
6753 .add(*SOffset)
6754 .add(*Offset);
6755
6756 if (const MachineOperand *CPol =
6757 getNamedOperand(MI, AMDGPU::OpName::cpol)) {
6758 MIB.addImm(Val: CPol->getImm());
6759 }
6760
6761 if (const MachineOperand *TFE =
6762 getNamedOperand(MI, AMDGPU::OpName::tfe)) {
6763 MIB.addImm(Val: TFE->getImm());
6764 }
6765
6766 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz));
6767
6768 MIB.cloneMemRefs(OtherMI: MI);
6769 Addr64 = MIB;
6770 } else {
6771 // Atomics with return.
6772 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
6773 .add(*VData)
6774 .add(*VDataIn)
6775 .addReg(NewVAddr)
6776 .addReg(NewSRsrc)
6777 .add(*SOffset)
6778 .add(*Offset)
6779 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol))
6780 .cloneMemRefs(MI);
6781 }
6782
6783 MI.removeFromParent();
6784
6785 // NewVaddr = {NewVaddrHi, NewVaddrLo}
6786 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
6787 NewVAddr)
6788 .addReg(RsrcPtr, 0, AMDGPU::sub0)
6789 .addImm(AMDGPU::sub0)
6790 .addReg(RsrcPtr, 0, AMDGPU::sub1)
6791 .addImm(AMDGPU::sub1);
6792 } else {
6793 // Legalize a VGPR Rsrc and soffset together.
6794 if (!isSoffsetLegal) {
6795 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6796 CreatedBB =
6797 loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Rsrc, Soffset}, MDT);
6798 return CreatedBB;
6799 }
6800 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Rsrc}, MDT);
6801 return CreatedBB;
6802 }
6803 }
6804
6805 // Legalize a VGPR soffset.
6806 if (!isSoffsetLegal) {
6807 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6808 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Soffset}, MDT);
6809 return CreatedBB;
6810 }
6811 return CreatedBB;
6812}
6813
6814void SIInstrWorklist::insert(MachineInstr *MI) {
6815 InstrList.insert(MI);
6816 // Add MBUF instructiosn to deferred list.
6817 int RsrcIdx =
6818 AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
6819 if (RsrcIdx != -1) {
6820 DeferredList.insert(MI);
6821 }
6822}
6823
6824bool SIInstrWorklist::isDeferred(MachineInstr *MI) {
6825 return DeferredList.contains(MI);
6826}
6827
6828void SIInstrInfo::moveToVALU(SIInstrWorklist &Worklist,
6829 MachineDominatorTree *MDT) const {
6830
6831 while (!Worklist.empty()) {
6832 MachineInstr &Inst = *Worklist.top();
6833 Worklist.erase_top();
6834 // Skip MachineInstr in the deferred list.
6835 if (Worklist.isDeferred(MI: &Inst))
6836 continue;
6837 moveToVALUImpl(Worklist, MDT, Inst);
6838 }
6839
6840 // Deferred list of instructions will be processed once
6841 // all the MachineInstr in the worklist are done.
6842 for (MachineInstr *Inst : Worklist.getDeferredList()) {
6843 moveToVALUImpl(Worklist, MDT, *Inst);
6844 assert(Worklist.empty() &&
6845 "Deferred MachineInstr are not supposed to re-populate worklist");
6846 }
6847}
6848
6849void SIInstrInfo::moveToVALUImpl(SIInstrWorklist &Worklist,
6850 MachineDominatorTree *MDT,
6851 MachineInstr &Inst) const {
6852
6853 MachineBasicBlock *MBB = Inst.getParent();
6854 if (!MBB)
6855 return;
6856 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
6857 unsigned Opcode = Inst.getOpcode();
6858 unsigned NewOpcode = getVALUOp(MI: Inst);
6859 // Handle some special cases
6860 switch (Opcode) {
6861 default:
6862 break;
6863 case AMDGPU::S_ADD_U64_PSEUDO:
6864 NewOpcode = AMDGPU::V_ADD_U64_PSEUDO;
6865 break;
6866 case AMDGPU::S_SUB_U64_PSEUDO:
6867 NewOpcode = AMDGPU::V_SUB_U64_PSEUDO;
6868 break;
6869 case AMDGPU::S_ADD_I32:
6870 case AMDGPU::S_SUB_I32: {
6871 // FIXME: The u32 versions currently selected use the carry.
6872 bool Changed;
6873 MachineBasicBlock *CreatedBBTmp = nullptr;
6874 std::tie(args&: Changed, args&: CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT);
6875 if (Changed)
6876 return;
6877
6878 // Default handling
6879 break;
6880 }
6881
6882 case AMDGPU::S_MUL_U64:
6883 // Split s_mul_u64 in 32-bit vector multiplications.
6884 splitScalarSMulU64(Worklist, Inst, MDT);
6885 Inst.eraseFromParent();
6886 return;
6887
6888 case AMDGPU::S_MUL_U64_U32_PSEUDO:
6889 case AMDGPU::S_MUL_I64_I32_PSEUDO:
6890 // This is a special case of s_mul_u64 where all the operands are either
6891 // zero extended or sign extended.
6892 splitScalarSMulPseudo(Worklist, Inst, MDT);
6893 Inst.eraseFromParent();
6894 return;
6895
6896 case AMDGPU::S_AND_B64:
6897 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT);
6898 Inst.eraseFromParent();
6899 return;
6900
6901 case AMDGPU::S_OR_B64:
6902 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT);
6903 Inst.eraseFromParent();
6904 return;
6905
6906 case AMDGPU::S_XOR_B64:
6907 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT);
6908 Inst.eraseFromParent();
6909 return;
6910
6911 case AMDGPU::S_NAND_B64:
6912 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT);
6913 Inst.eraseFromParent();
6914 return;
6915
6916 case AMDGPU::S_NOR_B64:
6917 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT);
6918 Inst.eraseFromParent();
6919 return;
6920
6921 case AMDGPU::S_XNOR_B64:
6922 if (ST.hasDLInsts())
6923 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT);
6924 else
6925 splitScalar64BitXnor(Worklist, Inst, MDT);
6926 Inst.eraseFromParent();
6927 return;
6928
6929 case AMDGPU::S_ANDN2_B64:
6930 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT);
6931 Inst.eraseFromParent();
6932 return;
6933
6934 case AMDGPU::S_ORN2_B64:
6935 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT);
6936 Inst.eraseFromParent();
6937 return;
6938
6939 case AMDGPU::S_BREV_B64:
6940 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true);
6941 Inst.eraseFromParent();
6942 return;
6943
6944 case AMDGPU::S_NOT_B64:
6945 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
6946 Inst.eraseFromParent();
6947 return;
6948
6949 case AMDGPU::S_BCNT1_I32_B64:
6950 splitScalar64BitBCNT(Worklist, Inst);
6951 Inst.eraseFromParent();
6952 return;
6953
6954 case AMDGPU::S_BFE_I64:
6955 splitScalar64BitBFE(Worklist, Inst);
6956 Inst.eraseFromParent();
6957 return;
6958
6959 case AMDGPU::S_FLBIT_I32_B64:
6960 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBH_U32_e32);
6961 Inst.eraseFromParent();
6962 return;
6963 case AMDGPU::S_FF1_I32_B64:
6964 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBL_B32_e32);
6965 Inst.eraseFromParent();
6966 return;
6967
6968 case AMDGPU::S_LSHL_B32:
6969 if (ST.hasOnlyRevVALUShifts()) {
6970 NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
6971 swapOperands(Inst);
6972 }
6973 break;
6974 case AMDGPU::S_ASHR_I32:
6975 if (ST.hasOnlyRevVALUShifts()) {
6976 NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
6977 swapOperands(Inst);
6978 }
6979 break;
6980 case AMDGPU::S_LSHR_B32:
6981 if (ST.hasOnlyRevVALUShifts()) {
6982 NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
6983 swapOperands(Inst);
6984 }
6985 break;
6986 case AMDGPU::S_LSHL_B64:
6987 if (ST.hasOnlyRevVALUShifts()) {
6988 NewOpcode = ST.getGeneration() >= AMDGPUSubtarget::GFX12
6989 ? AMDGPU::V_LSHLREV_B64_pseudo_e64
6990 : AMDGPU::V_LSHLREV_B64_e64;
6991 swapOperands(Inst);
6992 }
6993 break;
6994 case AMDGPU::S_ASHR_I64:
6995 if (ST.hasOnlyRevVALUShifts()) {
6996 NewOpcode = AMDGPU::V_ASHRREV_I64_e64;
6997 swapOperands(Inst);
6998 }
6999 break;
7000 case AMDGPU::S_LSHR_B64:
7001 if (ST.hasOnlyRevVALUShifts()) {
7002 NewOpcode = AMDGPU::V_LSHRREV_B64_e64;
7003 swapOperands(Inst);
7004 }
7005 break;
7006
7007 case AMDGPU::S_ABS_I32:
7008 lowerScalarAbs(Worklist, Inst);
7009 Inst.eraseFromParent();
7010 return;
7011
7012 case AMDGPU::S_CBRANCH_SCC0:
7013 case AMDGPU::S_CBRANCH_SCC1: {
7014 // Clear unused bits of vcc
7015 Register CondReg = Inst.getOperand(i: 1).getReg();
7016 bool IsSCC = CondReg == AMDGPU::SCC;
7017 Register VCC = RI.getVCC();
7018 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
7019 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
7020 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC)
7021 .addReg(EXEC)
7022 .addReg(IsSCC ? VCC : CondReg);
7023 Inst.removeOperand(OpNo: 1);
7024 } break;
7025
7026 case AMDGPU::S_BFE_U64:
7027 case AMDGPU::S_BFM_B64:
7028 llvm_unreachable("Moving this op to VALU not implemented");
7029
7030 case AMDGPU::S_PACK_LL_B32_B16:
7031 case AMDGPU::S_PACK_LH_B32_B16:
7032 case AMDGPU::S_PACK_HL_B32_B16:
7033 case AMDGPU::S_PACK_HH_B32_B16:
7034 movePackToVALU(Worklist, MRI, Inst);
7035 Inst.eraseFromParent();
7036 return;
7037
7038 case AMDGPU::S_XNOR_B32:
7039 lowerScalarXnor(Worklist, Inst);
7040 Inst.eraseFromParent();
7041 return;
7042
7043 case AMDGPU::S_NAND_B32:
7044 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32);
7045 Inst.eraseFromParent();
7046 return;
7047
7048 case AMDGPU::S_NOR_B32:
7049 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32);
7050 Inst.eraseFromParent();
7051 return;
7052
7053 case AMDGPU::S_ANDN2_B32:
7054 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32);
7055 Inst.eraseFromParent();
7056 return;
7057
7058 case AMDGPU::S_ORN2_B32:
7059 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32);
7060 Inst.eraseFromParent();
7061 return;
7062
7063 // TODO: remove as soon as everything is ready
7064 // to replace VGPR to SGPR copy with V_READFIRSTLANEs.
7065 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO
7066 // can only be selected from the uniform SDNode.
7067 case AMDGPU::S_ADD_CO_PSEUDO:
7068 case AMDGPU::S_SUB_CO_PSEUDO: {
7069 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
7070 ? AMDGPU::V_ADDC_U32_e64
7071 : AMDGPU::V_SUBB_U32_e64;
7072 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
7073
7074 Register CarryInReg = Inst.getOperand(i: 4).getReg();
7075 if (!MRI.constrainRegClass(Reg: CarryInReg, RC: CarryRC)) {
7076 Register NewCarryReg = MRI.createVirtualRegister(CarryRC);
7077 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg)
7078 .addReg(CarryInReg);
7079 }
7080
7081 Register CarryOutReg = Inst.getOperand(i: 1).getReg();
7082
7083 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass(
7084 MRI.getRegClass(Reg: Inst.getOperand(i: 0).getReg())));
7085 MachineInstr *CarryOp =
7086 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg)
7087 .addReg(CarryOutReg, RegState::Define)
7088 .add(Inst.getOperand(i: 2))
7089 .add(Inst.getOperand(i: 3))
7090 .addReg(CarryInReg)
7091 .addImm(0);
7092 legalizeOperands(MI&: *CarryOp);
7093 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: DestReg);
7094 addUsersToMoveToVALUWorklist(Reg: DestReg, MRI, Worklist);
7095 Inst.eraseFromParent();
7096 }
7097 return;
7098 case AMDGPU::S_UADDO_PSEUDO:
7099 case AMDGPU::S_USUBO_PSEUDO: {
7100 const DebugLoc &DL = Inst.getDebugLoc();
7101 MachineOperand &Dest0 = Inst.getOperand(i: 0);
7102 MachineOperand &Dest1 = Inst.getOperand(i: 1);
7103 MachineOperand &Src0 = Inst.getOperand(i: 2);
7104 MachineOperand &Src1 = Inst.getOperand(i: 3);
7105
7106 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
7107 ? AMDGPU::V_ADD_CO_U32_e64
7108 : AMDGPU::V_SUB_CO_U32_e64;
7109 const TargetRegisterClass *NewRC =
7110 RI.getEquivalentVGPRClass(MRI.getRegClass(Reg: Dest0.getReg()));
7111 Register DestReg = MRI.createVirtualRegister(RegClass: NewRC);
7112 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg)
7113 .addReg(Dest1.getReg(), RegState::Define)
7114 .add(Src0)
7115 .add(Src1)
7116 .addImm(0); // clamp bit
7117
7118 legalizeOperands(MI&: *NewInstr, MDT);
7119 MRI.replaceRegWith(FromReg: Dest0.getReg(), ToReg: DestReg);
7120 addUsersToMoveToVALUWorklist(Reg: NewInstr->getOperand(i: 0).getReg(), MRI,
7121 Worklist);
7122 Inst.eraseFromParent();
7123 }
7124 return;
7125
7126 case AMDGPU::S_CSELECT_B32:
7127 case AMDGPU::S_CSELECT_B64:
7128 lowerSelect(Worklist, Inst, MDT);
7129 Inst.eraseFromParent();
7130 return;
7131 case AMDGPU::S_CMP_EQ_I32:
7132 case AMDGPU::S_CMP_LG_I32:
7133 case AMDGPU::S_CMP_GT_I32:
7134 case AMDGPU::S_CMP_GE_I32:
7135 case AMDGPU::S_CMP_LT_I32:
7136 case AMDGPU::S_CMP_LE_I32:
7137 case AMDGPU::S_CMP_EQ_U32:
7138 case AMDGPU::S_CMP_LG_U32:
7139 case AMDGPU::S_CMP_GT_U32:
7140 case AMDGPU::S_CMP_GE_U32:
7141 case AMDGPU::S_CMP_LT_U32:
7142 case AMDGPU::S_CMP_LE_U32:
7143 case AMDGPU::S_CMP_EQ_U64:
7144 case AMDGPU::S_CMP_LG_U64:
7145 case AMDGPU::S_CMP_LT_F32:
7146 case AMDGPU::S_CMP_EQ_F32:
7147 case AMDGPU::S_CMP_LE_F32:
7148 case AMDGPU::S_CMP_GT_F32:
7149 case AMDGPU::S_CMP_LG_F32:
7150 case AMDGPU::S_CMP_GE_F32:
7151 case AMDGPU::S_CMP_O_F32:
7152 case AMDGPU::S_CMP_U_F32:
7153 case AMDGPU::S_CMP_NGE_F32:
7154 case AMDGPU::S_CMP_NLG_F32:
7155 case AMDGPU::S_CMP_NGT_F32:
7156 case AMDGPU::S_CMP_NLE_F32:
7157 case AMDGPU::S_CMP_NEQ_F32:
7158 case AMDGPU::S_CMP_NLT_F32:
7159 case AMDGPU::S_CMP_LT_F16:
7160 case AMDGPU::S_CMP_EQ_F16:
7161 case AMDGPU::S_CMP_LE_F16:
7162 case AMDGPU::S_CMP_GT_F16:
7163 case AMDGPU::S_CMP_LG_F16:
7164 case AMDGPU::S_CMP_GE_F16:
7165 case AMDGPU::S_CMP_O_F16:
7166 case AMDGPU::S_CMP_U_F16:
7167 case AMDGPU::S_CMP_NGE_F16:
7168 case AMDGPU::S_CMP_NLG_F16:
7169 case AMDGPU::S_CMP_NGT_F16:
7170 case AMDGPU::S_CMP_NLE_F16:
7171 case AMDGPU::S_CMP_NEQ_F16:
7172 case AMDGPU::S_CMP_NLT_F16: {
7173 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass());
7174 auto NewInstr =
7175 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg)
7176 .setMIFlags(Inst.getFlags());
7177 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7178 AMDGPU::OpName::src0_modifiers) >= 0) {
7179 NewInstr
7180 .addImm(0) // src0_modifiers
7181 .add(Inst.getOperand(i: 0)) // src0
7182 .addImm(0) // src1_modifiers
7183 .add(Inst.getOperand(i: 1)) // src1
7184 .addImm(0); // clamp
7185 } else {
7186 NewInstr
7187 .add(Inst.getOperand(i: 0))
7188 .add(Inst.getOperand(i: 1));
7189 }
7190 legalizeOperands(MI&: *NewInstr, MDT);
7191 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC);
7192 MachineOperand SCCOp = Inst.getOperand(i: SCCIdx);
7193 addSCCDefUsersToVALUWorklist(Op&: SCCOp, SCCDefInst&: Inst, Worklist, NewCond: CondReg);
7194 Inst.eraseFromParent();
7195 return;
7196 }
7197 case AMDGPU::S_CVT_HI_F32_F16: {
7198 const DebugLoc &DL = Inst.getDebugLoc();
7199 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7200 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7201 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
7202 .addImm(16)
7203 .add(Inst.getOperand(1));
7204 BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst)
7205 .addImm(0) // src0_modifiers
7206 .addReg(TmpReg)
7207 .addImm(0) // clamp
7208 .addImm(0); // omod
7209
7210 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: NewDst);
7211 addUsersToMoveToVALUWorklist(Reg: NewDst, MRI, Worklist);
7212 Inst.eraseFromParent();
7213 return;
7214 }
7215 case AMDGPU::S_MINIMUM_F32:
7216 case AMDGPU::S_MAXIMUM_F32:
7217 case AMDGPU::S_MINIMUM_F16:
7218 case AMDGPU::S_MAXIMUM_F16: {
7219 const DebugLoc &DL = Inst.getDebugLoc();
7220 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7221 MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst)
7222 .addImm(0) // src0_modifiers
7223 .add(Inst.getOperand(i: 1))
7224 .addImm(0) // src1_modifiers
7225 .add(Inst.getOperand(i: 2))
7226 .addImm(0) // clamp
7227 .addImm(0); // omod
7228 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: NewDst);
7229
7230 legalizeOperands(MI&: *NewInstr, MDT);
7231 addUsersToMoveToVALUWorklist(Reg: NewDst, MRI, Worklist);
7232 Inst.eraseFromParent();
7233 return;
7234 }
7235 }
7236
7237 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
7238 // We cannot move this instruction to the VALU, so we should try to
7239 // legalize its operands instead.
7240 legalizeOperands(MI&: Inst, MDT);
7241 return;
7242 }
7243 // Handle converting generic instructions like COPY-to-SGPR into
7244 // COPY-to-VGPR.
7245 if (NewOpcode == Opcode) {
7246 Register DstReg = Inst.getOperand(i: 0).getReg();
7247 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
7248
7249 // If it's a copy of a VGPR to a physical SGPR, insert a V_READFIRSTLANE and
7250 // hope for the best.
7251 if (Inst.isCopy() && DstReg.isPhysical() &&
7252 RI.isVGPR(MRI, Inst.getOperand(i: 1).getReg())) {
7253 // TODO: Only works for 32 bit registers.
7254 BuildMI(*Inst.getParent(), &Inst, Inst.getDebugLoc(),
7255 get(AMDGPU::V_READFIRSTLANE_B32), Inst.getOperand(0).getReg())
7256 .add(Inst.getOperand(1));
7257 Inst.eraseFromParent();
7258 return;
7259 }
7260
7261 if (Inst.isCopy() && Inst.getOperand(i: 1).getReg().isVirtual() &&
7262 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(i: 1).getReg())) {
7263 // Instead of creating a copy where src and dst are the same register
7264 // class, we just replace all uses of dst with src. These kinds of
7265 // copies interfere with the heuristics MachineSink uses to decide
7266 // whether or not to split a critical edge. Since the pass assumes
7267 // that copies will end up as machine instructions and not be
7268 // eliminated.
7269 addUsersToMoveToVALUWorklist(Reg: DstReg, MRI, Worklist);
7270 MRI.replaceRegWith(FromReg: DstReg, ToReg: Inst.getOperand(i: 1).getReg());
7271 MRI.clearKillFlags(Reg: Inst.getOperand(i: 1).getReg());
7272 Inst.getOperand(i: 0).setReg(DstReg);
7273 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally
7274 // these are deleted later, but at -O0 it would leave a suspicious
7275 // looking illegal copy of an undef register.
7276 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I)
7277 Inst.removeOperand(OpNo: I);
7278 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF));
7279 return;
7280 }
7281 Register NewDstReg = MRI.createVirtualRegister(RegClass: NewDstRC);
7282 MRI.replaceRegWith(FromReg: DstReg, ToReg: NewDstReg);
7283 legalizeOperands(MI&: Inst, MDT);
7284 addUsersToMoveToVALUWorklist(Reg: NewDstReg, MRI, Worklist);
7285 return;
7286 }
7287
7288 // Use the new VALU Opcode.
7289 auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode))
7290 .setMIFlags(Inst.getFlags());
7291 if (isVOP3(Opcode: NewOpcode) && !isVOP3(Opcode)) {
7292 // Intersperse VOP3 modifiers among the SALU operands.
7293 NewInstr->addOperand(Inst.getOperand(i: 0));
7294 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7295 AMDGPU::OpName::src0_modifiers) >= 0)
7296 NewInstr.addImm(0);
7297 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0)) {
7298 MachineOperand Src = Inst.getOperand(i: 1);
7299 if (AMDGPU::isTrue16Inst(Opc: NewOpcode) && ST.useRealTrue16Insts() &&
7300 Src.isReg() && RI.isVGPR(MRI, Src.getReg()))
7301 NewInstr.addReg(Src.getReg(), 0, AMDGPU::lo16);
7302 else
7303 NewInstr->addOperand(Src);
7304 }
7305
7306 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
7307 // We are converting these to a BFE, so we need to add the missing
7308 // operands for the size and offset.
7309 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
7310 NewInstr.addImm(0);
7311 NewInstr.addImm(Size);
7312 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
7313 // The VALU version adds the second operand to the result, so insert an
7314 // extra 0 operand.
7315 NewInstr.addImm(0);
7316 } else if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
7317 const MachineOperand &OffsetWidthOp = Inst.getOperand(i: 2);
7318 // If we need to move this to VGPRs, we need to unpack the second
7319 // operand back into the 2 separate ones for bit offset and width.
7320 assert(OffsetWidthOp.isImm() &&
7321 "Scalar BFE is only implemented for constant width and offset");
7322 uint32_t Imm = OffsetWidthOp.getImm();
7323
7324 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
7325 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
7326 NewInstr.addImm(Offset);
7327 NewInstr.addImm(BitWidth);
7328 } else {
7329 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7330 AMDGPU::OpName::src1_modifiers) >= 0)
7331 NewInstr.addImm(0);
7332 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1) >= 0)
7333 NewInstr->addOperand(Inst.getOperand(i: 2));
7334 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7335 AMDGPU::OpName::src2_modifiers) >= 0)
7336 NewInstr.addImm(0);
7337 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2) >= 0)
7338 NewInstr->addOperand(Inst.getOperand(i: 3));
7339 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) >= 0)
7340 NewInstr.addImm(0);
7341 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::omod) >= 0)
7342 NewInstr.addImm(0);
7343 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::op_sel) >= 0)
7344 NewInstr.addImm(0);
7345 }
7346 } else {
7347 // Just copy the SALU operands.
7348 for (const MachineOperand &Op : Inst.explicit_operands())
7349 NewInstr->addOperand(Op);
7350 }
7351
7352 // Remove any references to SCC. Vector instructions can't read from it, and
7353 // We're just about to add the implicit use / defs of VCC, and we don't want
7354 // both.
7355 for (MachineOperand &Op : Inst.implicit_operands()) {
7356 if (Op.getReg() == AMDGPU::SCC) {
7357 // Only propagate through live-def of SCC.
7358 if (Op.isDef() && !Op.isDead())
7359 addSCCDefUsersToVALUWorklist(Op, SCCDefInst&: Inst, Worklist);
7360 if (Op.isUse())
7361 addSCCDefsToVALUWorklist(SCCUseInst: NewInstr, Worklist);
7362 }
7363 }
7364 Inst.eraseFromParent();
7365 Register NewDstReg;
7366 if (NewInstr->getOperand(0).isReg() && NewInstr->getOperand(0).isDef()) {
7367 Register DstReg = NewInstr->getOperand(0).getReg();
7368 assert(DstReg.isVirtual());
7369 // Update the destination register class.
7370 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst: *NewInstr);
7371 assert(NewDstRC);
7372 NewDstReg = MRI.createVirtualRegister(RegClass: NewDstRC);
7373 MRI.replaceRegWith(FromReg: DstReg, ToReg: NewDstReg);
7374 }
7375 fixImplicitOperands(MI&: *NewInstr);
7376 // Legalize the operands
7377 legalizeOperands(MI&: *NewInstr, MDT);
7378 if (NewDstReg)
7379 addUsersToMoveToVALUWorklist(Reg: NewDstReg, MRI, Worklist);
7380}
7381
7382// Add/sub require special handling to deal with carry outs.
7383std::pair<bool, MachineBasicBlock *>
7384SIInstrInfo::moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst,
7385 MachineDominatorTree *MDT) const {
7386 if (ST.hasAddNoCarry()) {
7387 // Assume there is no user of scc since we don't select this in that case.
7388 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant
7389 // is used.
7390
7391 MachineBasicBlock &MBB = *Inst.getParent();
7392 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7393
7394 Register OldDstReg = Inst.getOperand(i: 0).getReg();
7395 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7396
7397 unsigned Opc = Inst.getOpcode();
7398 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32);
7399
7400 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ?
7401 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64;
7402
7403 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC);
7404 Inst.removeOperand(OpNo: 3);
7405
7406 Inst.setDesc(get(NewOpc));
7407 Inst.addOperand(Op: MachineOperand::CreateImm(Val: 0)); // clamp bit
7408 Inst.addImplicitDefUseOperands(MF&: *MBB.getParent());
7409 MRI.replaceRegWith(FromReg: OldDstReg, ToReg: ResultReg);
7410 MachineBasicBlock *NewBB = legalizeOperands(MI&: Inst, MDT);
7411
7412 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
7413 return std::pair(true, NewBB);
7414 }
7415
7416 return std::pair(false, nullptr);
7417}
7418
7419void SIInstrInfo::lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst,
7420 MachineDominatorTree *MDT) const {
7421
7422 MachineBasicBlock &MBB = *Inst.getParent();
7423 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7424 MachineBasicBlock::iterator MII = Inst;
7425 DebugLoc DL = Inst.getDebugLoc();
7426
7427 MachineOperand &Dest = Inst.getOperand(i: 0);
7428 MachineOperand &Src0 = Inst.getOperand(i: 1);
7429 MachineOperand &Src1 = Inst.getOperand(i: 2);
7430 MachineOperand &Cond = Inst.getOperand(i: 3);
7431
7432 Register CondReg = Cond.getReg();
7433 bool IsSCC = (CondReg == AMDGPU::SCC);
7434
7435 // If this is a trivial select where the condition is effectively not SCC
7436 // (CondReg is a source of copy to SCC), then the select is semantically
7437 // equivalent to copying CondReg. Hence, there is no need to create
7438 // V_CNDMASK, we can just use that and bail out.
7439 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() &&
7440 (Src1.getImm() == 0)) {
7441 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: CondReg);
7442 return;
7443 }
7444
7445 Register NewCondReg = CondReg;
7446 if (IsSCC) {
7447 const TargetRegisterClass *TC =
7448 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
7449 NewCondReg = MRI.createVirtualRegister(RegClass: TC);
7450
7451 // Now look for the closest SCC def if it is a copy
7452 // replacing the CondReg with the COPY source register
7453 bool CopyFound = false;
7454 for (MachineInstr &CandI :
7455 make_range(x: std::next(x: MachineBasicBlock::reverse_iterator(Inst)),
7456 y: Inst.getParent()->rend())) {
7457 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) !=
7458 -1) {
7459 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) {
7460 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), NewCondReg)
7461 .addReg(CandI.getOperand(1).getReg());
7462 CopyFound = true;
7463 }
7464 break;
7465 }
7466 }
7467 if (!CopyFound) {
7468 // SCC def is not a copy
7469 // Insert a trivial select instead of creating a copy, because a copy from
7470 // SCC would semantically mean just copying a single bit, but we may need
7471 // the result to be a vector condition mask that needs preserving.
7472 unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64
7473 : AMDGPU::S_CSELECT_B32;
7474 auto NewSelect =
7475 BuildMI(MBB, MII, DL, get(Opcode), NewCondReg).addImm(-1).addImm(0);
7476 NewSelect->getOperand(3).setIsUndef(Cond.isUndef());
7477 }
7478 }
7479
7480 Register NewDestReg = MRI.createVirtualRegister(
7481 RI.getEquivalentVGPRClass(MRI.getRegClass(Reg: Dest.getReg())));
7482 MachineInstr *NewInst;
7483 if (Inst.getOpcode() == AMDGPU::S_CSELECT_B32) {
7484 NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), NewDestReg)
7485 .addImm(0)
7486 .add(Src1) // False
7487 .addImm(0)
7488 .add(Src0) // True
7489 .addReg(NewCondReg);
7490 } else {
7491 NewInst =
7492 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B64_PSEUDO), NewDestReg)
7493 .add(Src1) // False
7494 .add(Src0) // True
7495 .addReg(NewCondReg);
7496 }
7497 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDestReg);
7498 legalizeOperands(MI&: *NewInst, MDT);
7499 addUsersToMoveToVALUWorklist(Reg: NewDestReg, MRI, Worklist);
7500}
7501
7502void SIInstrInfo::lowerScalarAbs(SIInstrWorklist &Worklist,
7503 MachineInstr &Inst) const {
7504 MachineBasicBlock &MBB = *Inst.getParent();
7505 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7506 MachineBasicBlock::iterator MII = Inst;
7507 DebugLoc DL = Inst.getDebugLoc();
7508
7509 MachineOperand &Dest = Inst.getOperand(i: 0);
7510 MachineOperand &Src = Inst.getOperand(i: 1);
7511 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7512 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7513
7514 unsigned SubOp = ST.hasAddNoCarry() ?
7515 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32;
7516
7517 BuildMI(MBB, MII, DL, get(SubOp), TmpReg)
7518 .addImm(0)
7519 .addReg(Src.getReg());
7520
7521 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
7522 .addReg(Src.getReg())
7523 .addReg(TmpReg);
7524
7525 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
7526 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
7527}
7528
7529void SIInstrInfo::lowerScalarXnor(SIInstrWorklist &Worklist,
7530 MachineInstr &Inst) const {
7531 MachineBasicBlock &MBB = *Inst.getParent();
7532 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7533 MachineBasicBlock::iterator MII = Inst;
7534 const DebugLoc &DL = Inst.getDebugLoc();
7535
7536 MachineOperand &Dest = Inst.getOperand(i: 0);
7537 MachineOperand &Src0 = Inst.getOperand(i: 1);
7538 MachineOperand &Src1 = Inst.getOperand(i: 2);
7539
7540 if (ST.hasDLInsts()) {
7541 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7542 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL);
7543 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL);
7544
7545 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest)
7546 .add(Src0)
7547 .add(Src1);
7548
7549 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7550 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7551 } else {
7552 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can
7553 // invert either source and then perform the XOR. If either source is a
7554 // scalar register, then we can leave the inversion on the scalar unit to
7555 // achieve a better distribution of scalar and vector instructions.
7556 bool Src0IsSGPR = Src0.isReg() &&
7557 RI.isSGPRClass(MRI.getRegClass(Reg: Src0.getReg()));
7558 bool Src1IsSGPR = Src1.isReg() &&
7559 RI.isSGPRClass(MRI.getRegClass(Reg: Src1.getReg()));
7560 MachineInstr *Xor;
7561 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7562 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7563
7564 // Build a pair of scalar instructions and add them to the work list.
7565 // The next iteration over the work list will lower these to the vector
7566 // unit as necessary.
7567 if (Src0IsSGPR) {
7568 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0);
7569 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
7570 .addReg(Temp)
7571 .add(Src1);
7572 } else if (Src1IsSGPR) {
7573 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1);
7574 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
7575 .add(Src0)
7576 .addReg(Temp);
7577 } else {
7578 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp)
7579 .add(Src0)
7580 .add(Src1);
7581 MachineInstr *Not =
7582 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp);
7583 Worklist.insert(MI: Not);
7584 }
7585
7586 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7587
7588 Worklist.insert(MI: Xor);
7589
7590 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7591 }
7592}
7593
7594void SIInstrInfo::splitScalarNotBinop(SIInstrWorklist &Worklist,
7595 MachineInstr &Inst,
7596 unsigned Opcode) const {
7597 MachineBasicBlock &MBB = *Inst.getParent();
7598 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7599 MachineBasicBlock::iterator MII = Inst;
7600 const DebugLoc &DL = Inst.getDebugLoc();
7601
7602 MachineOperand &Dest = Inst.getOperand(i: 0);
7603 MachineOperand &Src0 = Inst.getOperand(i: 1);
7604 MachineOperand &Src1 = Inst.getOperand(i: 2);
7605
7606 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7607 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7608
7609 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm)
7610 .add(Src0)
7611 .add(Src1);
7612
7613 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest)
7614 .addReg(Interm);
7615
7616 Worklist.insert(MI: &Op);
7617 Worklist.insert(MI: &Not);
7618
7619 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7620 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7621}
7622
7623void SIInstrInfo::splitScalarBinOpN2(SIInstrWorklist &Worklist,
7624 MachineInstr &Inst,
7625 unsigned Opcode) const {
7626 MachineBasicBlock &MBB = *Inst.getParent();
7627 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7628 MachineBasicBlock::iterator MII = Inst;
7629 const DebugLoc &DL = Inst.getDebugLoc();
7630
7631 MachineOperand &Dest = Inst.getOperand(i: 0);
7632 MachineOperand &Src0 = Inst.getOperand(i: 1);
7633 MachineOperand &Src1 = Inst.getOperand(i: 2);
7634
7635 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
7636 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
7637
7638 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm)
7639 .add(Src1);
7640
7641 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest)
7642 .add(Src0)
7643 .addReg(Interm);
7644
7645 Worklist.insert(MI: &Not);
7646 Worklist.insert(MI: &Op);
7647
7648 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7649 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7650}
7651
7652void SIInstrInfo::splitScalar64BitUnaryOp(SIInstrWorklist &Worklist,
7653 MachineInstr &Inst, unsigned Opcode,
7654 bool Swap) const {
7655 MachineBasicBlock &MBB = *Inst.getParent();
7656 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7657
7658 MachineOperand &Dest = Inst.getOperand(i: 0);
7659 MachineOperand &Src0 = Inst.getOperand(i: 1);
7660 DebugLoc DL = Inst.getDebugLoc();
7661
7662 MachineBasicBlock::iterator MII = Inst;
7663
7664 const MCInstrDesc &InstDesc = get(Opcode);
7665 const TargetRegisterClass *Src0RC = Src0.isReg() ?
7666 MRI.getRegClass(Src0.getReg()) :
7667 &AMDGPU::SGPR_32RegClass;
7668
7669 const TargetRegisterClass *Src0SubRC =
7670 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7671
7672 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7673 AMDGPU::sub0, Src0SubRC);
7674
7675 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
7676 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
7677 const TargetRegisterClass *NewDestSubRC =
7678 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0);
7679
7680 Register DestSub0 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7681 MachineInstr &LoHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub0).add(MO: SrcReg0Sub0);
7682
7683 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7684 AMDGPU::sub1, Src0SubRC);
7685
7686 Register DestSub1 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7687 MachineInstr &HiHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub1).add(MO: SrcReg0Sub1);
7688
7689 if (Swap)
7690 std::swap(a&: DestSub0, b&: DestSub1);
7691
7692 Register FullDestReg = MRI.createVirtualRegister(RegClass: NewDestRC);
7693 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7694 .addReg(DestSub0)
7695 .addImm(AMDGPU::sub0)
7696 .addReg(DestSub1)
7697 .addImm(AMDGPU::sub1);
7698
7699 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7700
7701 Worklist.insert(MI: &LoHalf);
7702 Worklist.insert(MI: &HiHalf);
7703
7704 // We don't need to legalizeOperands here because for a single operand, src0
7705 // will support any kind of input.
7706
7707 // Move all users of this moved value.
7708 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7709}
7710
7711// There is not a vector equivalent of s_mul_u64. For this reason, we need to
7712// split the s_mul_u64 in 32-bit vector multiplications.
7713void SIInstrInfo::splitScalarSMulU64(SIInstrWorklist &Worklist,
7714 MachineInstr &Inst,
7715 MachineDominatorTree *MDT) const {
7716 MachineBasicBlock &MBB = *Inst.getParent();
7717 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7718
7719 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
7720 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7721 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7722
7723 MachineOperand &Dest = Inst.getOperand(i: 0);
7724 MachineOperand &Src0 = Inst.getOperand(i: 1);
7725 MachineOperand &Src1 = Inst.getOperand(i: 2);
7726 const DebugLoc &DL = Inst.getDebugLoc();
7727 MachineBasicBlock::iterator MII = Inst;
7728
7729 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0.getReg());
7730 const TargetRegisterClass *Src1RC = MRI.getRegClass(Reg: Src1.getReg());
7731 const TargetRegisterClass *Src0SubRC =
7732 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7733 if (RI.isSGPRClass(Src0SubRC))
7734 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC);
7735 const TargetRegisterClass *Src1SubRC =
7736 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
7737 if (RI.isSGPRClass(Src1SubRC))
7738 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC);
7739
7740 // First, we extract the low 32-bit and high 32-bit values from each of the
7741 // operands.
7742 MachineOperand Op0L =
7743 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
7744 MachineOperand Op1L =
7745 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
7746 MachineOperand Op0H =
7747 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
7748 MachineOperand Op1H =
7749 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
7750
7751 // The multilication is done as follows:
7752 //
7753 // Op1H Op1L
7754 // * Op0H Op0L
7755 // --------------------
7756 // Op1H*Op0L Op1L*Op0L
7757 // + Op1H*Op0H Op1L*Op0H
7758 // -----------------------------------------
7759 // (Op1H*Op0L + Op1L*Op0H + carry) Op1L*Op0L
7760 //
7761 // We drop Op1H*Op0H because the result of the multiplication is a 64-bit
7762 // value and that would overflow.
7763 // The low 32-bit value is Op1L*Op0L.
7764 // The high 32-bit value is Op1H*Op0L + Op1L*Op0H + carry (from Op1L*Op0L).
7765
7766 Register Op1L_Op0H_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7767 MachineInstr *Op1L_Op0H =
7768 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1L_Op0H_Reg)
7769 .add(Op1L)
7770 .add(Op0H);
7771
7772 Register Op1H_Op0L_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7773 MachineInstr *Op1H_Op0L =
7774 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1H_Op0L_Reg)
7775 .add(Op1H)
7776 .add(Op0L);
7777
7778 Register CarryReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7779 MachineInstr *Carry =
7780 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_HI_U32_e64), CarryReg)
7781 .add(Op1L)
7782 .add(Op0L);
7783
7784 MachineInstr *LoHalf =
7785 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0)
7786 .add(Op1L)
7787 .add(Op0L);
7788
7789 Register AddReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7790 MachineInstr *Add = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), AddReg)
7791 .addReg(Op1L_Op0H_Reg)
7792 .addReg(Op1H_Op0L_Reg);
7793
7794 MachineInstr *HiHalf =
7795 BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), DestSub1)
7796 .addReg(AddReg)
7797 .addReg(CarryReg);
7798
7799 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7800 .addReg(DestSub0)
7801 .addImm(AMDGPU::sub0)
7802 .addReg(DestSub1)
7803 .addImm(AMDGPU::sub1);
7804
7805 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7806
7807 // Try to legalize the operands in case we need to swap the order to keep it
7808 // valid.
7809 legalizeOperands(MI&: *Op1L_Op0H, MDT);
7810 legalizeOperands(MI&: *Op1H_Op0L, MDT);
7811 legalizeOperands(MI&: *Carry, MDT);
7812 legalizeOperands(MI&: *LoHalf, MDT);
7813 legalizeOperands(MI&: *Add, MDT);
7814 legalizeOperands(MI&: *HiHalf, MDT);
7815
7816 // Move all users of this moved value.
7817 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7818}
7819
7820// Lower S_MUL_U64_U32_PSEUDO/S_MUL_I64_I32_PSEUDO in two 32-bit vector
7821// multiplications.
7822void SIInstrInfo::splitScalarSMulPseudo(SIInstrWorklist &Worklist,
7823 MachineInstr &Inst,
7824 MachineDominatorTree *MDT) const {
7825 MachineBasicBlock &MBB = *Inst.getParent();
7826 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7827
7828 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
7829 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7830 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7831
7832 MachineOperand &Dest = Inst.getOperand(i: 0);
7833 MachineOperand &Src0 = Inst.getOperand(i: 1);
7834 MachineOperand &Src1 = Inst.getOperand(i: 2);
7835 const DebugLoc &DL = Inst.getDebugLoc();
7836 MachineBasicBlock::iterator MII = Inst;
7837
7838 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0.getReg());
7839 const TargetRegisterClass *Src1RC = MRI.getRegClass(Reg: Src1.getReg());
7840 const TargetRegisterClass *Src0SubRC =
7841 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7842 if (RI.isSGPRClass(Src0SubRC))
7843 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC);
7844 const TargetRegisterClass *Src1SubRC =
7845 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
7846 if (RI.isSGPRClass(Src1SubRC))
7847 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC);
7848
7849 // First, we extract the low 32-bit and high 32-bit values from each of the
7850 // operands.
7851 MachineOperand Op0L =
7852 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
7853 MachineOperand Op1L =
7854 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
7855
7856 unsigned Opc = Inst.getOpcode();
7857 unsigned NewOpc = Opc == AMDGPU::S_MUL_U64_U32_PSEUDO
7858 ? AMDGPU::V_MUL_HI_U32_e64
7859 : AMDGPU::V_MUL_HI_I32_e64;
7860 MachineInstr *HiHalf =
7861 BuildMI(MBB, MII, DL, get(NewOpc), DestSub1).add(Op1L).add(Op0L);
7862
7863 MachineInstr *LoHalf =
7864 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0)
7865 .add(Op1L)
7866 .add(Op0L);
7867
7868 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7869 .addReg(DestSub0)
7870 .addImm(AMDGPU::sub0)
7871 .addReg(DestSub1)
7872 .addImm(AMDGPU::sub1);
7873
7874 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7875
7876 // Try to legalize the operands in case we need to swap the order to keep it
7877 // valid.
7878 legalizeOperands(MI&: *HiHalf, MDT);
7879 legalizeOperands(MI&: *LoHalf, MDT);
7880
7881 // Move all users of this moved value.
7882 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7883}
7884
7885void SIInstrInfo::splitScalar64BitBinaryOp(SIInstrWorklist &Worklist,
7886 MachineInstr &Inst, unsigned Opcode,
7887 MachineDominatorTree *MDT) const {
7888 MachineBasicBlock &MBB = *Inst.getParent();
7889 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7890
7891 MachineOperand &Dest = Inst.getOperand(i: 0);
7892 MachineOperand &Src0 = Inst.getOperand(i: 1);
7893 MachineOperand &Src1 = Inst.getOperand(i: 2);
7894 DebugLoc DL = Inst.getDebugLoc();
7895
7896 MachineBasicBlock::iterator MII = Inst;
7897
7898 const MCInstrDesc &InstDesc = get(Opcode);
7899 const TargetRegisterClass *Src0RC = Src0.isReg() ?
7900 MRI.getRegClass(Src0.getReg()) :
7901 &AMDGPU::SGPR_32RegClass;
7902
7903 const TargetRegisterClass *Src0SubRC =
7904 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7905 const TargetRegisterClass *Src1RC = Src1.isReg() ?
7906 MRI.getRegClass(Src1.getReg()) :
7907 &AMDGPU::SGPR_32RegClass;
7908
7909 const TargetRegisterClass *Src1SubRC =
7910 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
7911
7912 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7913 AMDGPU::sub0, Src0SubRC);
7914 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
7915 AMDGPU::sub0, Src1SubRC);
7916 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7917 AMDGPU::sub1, Src0SubRC);
7918 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
7919 AMDGPU::sub1, Src1SubRC);
7920
7921 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
7922 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
7923 const TargetRegisterClass *NewDestSubRC =
7924 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0);
7925
7926 Register DestSub0 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7927 MachineInstr &LoHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub0)
7928 .add(MO: SrcReg0Sub0)
7929 .add(MO: SrcReg1Sub0);
7930
7931 Register DestSub1 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7932 MachineInstr &HiHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub1)
7933 .add(MO: SrcReg0Sub1)
7934 .add(MO: SrcReg1Sub1);
7935
7936 Register FullDestReg = MRI.createVirtualRegister(RegClass: NewDestRC);
7937 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7938 .addReg(DestSub0)
7939 .addImm(AMDGPU::sub0)
7940 .addReg(DestSub1)
7941 .addImm(AMDGPU::sub1);
7942
7943 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7944
7945 Worklist.insert(MI: &LoHalf);
7946 Worklist.insert(MI: &HiHalf);
7947
7948 // Move all users of this moved value.
7949 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7950}
7951
7952void SIInstrInfo::splitScalar64BitXnor(SIInstrWorklist &Worklist,
7953 MachineInstr &Inst,
7954 MachineDominatorTree *MDT) const {
7955 MachineBasicBlock &MBB = *Inst.getParent();
7956 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7957
7958 MachineOperand &Dest = Inst.getOperand(i: 0);
7959 MachineOperand &Src0 = Inst.getOperand(i: 1);
7960 MachineOperand &Src1 = Inst.getOperand(i: 2);
7961 const DebugLoc &DL = Inst.getDebugLoc();
7962
7963 MachineBasicBlock::iterator MII = Inst;
7964
7965 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
7966
7967 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
7968
7969 MachineOperand* Op0;
7970 MachineOperand* Op1;
7971
7972 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) {
7973 Op0 = &Src0;
7974 Op1 = &Src1;
7975 } else {
7976 Op0 = &Src1;
7977 Op1 = &Src0;
7978 }
7979
7980 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm)
7981 .add(*Op0);
7982
7983 Register NewDest = MRI.createVirtualRegister(RegClass: DestRC);
7984
7985 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest)
7986 .addReg(Interm)
7987 .add(*Op1);
7988
7989 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7990
7991 Worklist.insert(MI: &Xor);
7992}
7993
7994void SIInstrInfo::splitScalar64BitBCNT(SIInstrWorklist &Worklist,
7995 MachineInstr &Inst) const {
7996 MachineBasicBlock &MBB = *Inst.getParent();
7997 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7998
7999 MachineBasicBlock::iterator MII = Inst;
8000 const DebugLoc &DL = Inst.getDebugLoc();
8001
8002 MachineOperand &Dest = Inst.getOperand(i: 0);
8003 MachineOperand &Src = Inst.getOperand(i: 1);
8004
8005 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
8006 const TargetRegisterClass *SrcRC = Src.isReg() ?
8007 MRI.getRegClass(Src.getReg()) :
8008 &AMDGPU::SGPR_32RegClass;
8009
8010 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8011 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8012
8013 const TargetRegisterClass *SrcSubRC =
8014 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0);
8015
8016 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
8017 AMDGPU::sub0, SrcSubRC);
8018 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
8019 AMDGPU::sub1, SrcSubRC);
8020
8021 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg).add(MO: SrcRegSub0).addImm(Val: 0);
8022
8023 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: ResultReg).add(MO: SrcRegSub1).addReg(RegNo: MidReg);
8024
8025 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8026
8027 // We don't need to legalize operands here. src0 for either instruction can be
8028 // an SGPR, and the second input is unused or determined here.
8029 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8030}
8031
8032void SIInstrInfo::splitScalar64BitBFE(SIInstrWorklist &Worklist,
8033 MachineInstr &Inst) const {
8034 MachineBasicBlock &MBB = *Inst.getParent();
8035 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8036 MachineBasicBlock::iterator MII = Inst;
8037 const DebugLoc &DL = Inst.getDebugLoc();
8038
8039 MachineOperand &Dest = Inst.getOperand(i: 0);
8040 uint32_t Imm = Inst.getOperand(i: 2).getImm();
8041 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
8042 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
8043
8044 (void) Offset;
8045
8046 // Only sext_inreg cases handled.
8047 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
8048 Offset == 0 && "Not implemented");
8049
8050 if (BitWidth < 32) {
8051 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8052 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8053 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
8054
8055 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo)
8056 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
8057 .addImm(0)
8058 .addImm(BitWidth);
8059
8060 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
8061 .addImm(31)
8062 .addReg(MidRegLo);
8063
8064 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
8065 .addReg(MidRegLo)
8066 .addImm(AMDGPU::sub0)
8067 .addReg(MidRegHi)
8068 .addImm(AMDGPU::sub1);
8069
8070 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8071 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8072 return;
8073 }
8074
8075 MachineOperand &Src = Inst.getOperand(i: 1);
8076 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8077 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
8078
8079 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
8080 .addImm(31)
8081 .addReg(Src.getReg(), 0, AMDGPU::sub0);
8082
8083 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
8084 .addReg(Src.getReg(), 0, AMDGPU::sub0)
8085 .addImm(AMDGPU::sub0)
8086 .addReg(TmpReg)
8087 .addImm(AMDGPU::sub1);
8088
8089 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8090 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8091}
8092
8093void SIInstrInfo::splitScalar64BitCountOp(SIInstrWorklist &Worklist,
8094 MachineInstr &Inst, unsigned Opcode,
8095 MachineDominatorTree *MDT) const {
8096 // (S_FLBIT_I32_B64 hi:lo) ->
8097 // -> (umin (V_FFBH_U32_e32 hi), (uaddsat (V_FFBH_U32_e32 lo), 32))
8098 // (S_FF1_I32_B64 hi:lo) ->
8099 // ->(umin (uaddsat (V_FFBL_B32_e32 hi), 32) (V_FFBL_B32_e32 lo))
8100
8101 MachineBasicBlock &MBB = *Inst.getParent();
8102 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8103 MachineBasicBlock::iterator MII = Inst;
8104 const DebugLoc &DL = Inst.getDebugLoc();
8105
8106 MachineOperand &Dest = Inst.getOperand(i: 0);
8107 MachineOperand &Src = Inst.getOperand(i: 1);
8108
8109 const MCInstrDesc &InstDesc = get(Opcode);
8110
8111 bool IsCtlz = Opcode == AMDGPU::V_FFBH_U32_e32;
8112 unsigned OpcodeAdd =
8113 ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
8114
8115 const TargetRegisterClass *SrcRC =
8116 Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass;
8117 const TargetRegisterClass *SrcSubRC =
8118 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0);
8119
8120 MachineOperand SrcRegSub0 =
8121 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC);
8122 MachineOperand SrcRegSub1 =
8123 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC);
8124
8125 Register MidReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8126 Register MidReg2 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8127 Register MidReg3 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8128 Register MidReg4 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8129
8130 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg1).add(MO: SrcRegSub0);
8131
8132 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg2).add(MO: SrcRegSub1);
8133
8134 BuildMI(MBB, MII, DL, get(OpcodeAdd), MidReg3)
8135 .addReg(IsCtlz ? MidReg1 : MidReg2)
8136 .addImm(32)
8137 .addImm(1); // enable clamp
8138
8139 BuildMI(MBB, MII, DL, get(AMDGPU::V_MIN_U32_e64), MidReg4)
8140 .addReg(MidReg3)
8141 .addReg(IsCtlz ? MidReg2 : MidReg1);
8142
8143 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: MidReg4);
8144
8145 addUsersToMoveToVALUWorklist(Reg: MidReg4, MRI, Worklist);
8146}
8147
8148void SIInstrInfo::addUsersToMoveToVALUWorklist(
8149 Register DstReg, MachineRegisterInfo &MRI,
8150 SIInstrWorklist &Worklist) const {
8151 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(RegNo: DstReg),
8152 E = MRI.use_end(); I != E;) {
8153 MachineInstr &UseMI = *I->getParent();
8154
8155 unsigned OpNo = 0;
8156
8157 switch (UseMI.getOpcode()) {
8158 case AMDGPU::COPY:
8159 case AMDGPU::WQM:
8160 case AMDGPU::SOFT_WQM:
8161 case AMDGPU::STRICT_WWM:
8162 case AMDGPU::STRICT_WQM:
8163 case AMDGPU::REG_SEQUENCE:
8164 case AMDGPU::PHI:
8165 case AMDGPU::INSERT_SUBREG:
8166 break;
8167 default:
8168 OpNo = I.getOperandNo();
8169 break;
8170 }
8171
8172 if (!RI.hasVectorRegisters(getOpRegClass(MI: UseMI, OpNo))) {
8173 Worklist.insert(MI: &UseMI);
8174
8175 do {
8176 ++I;
8177 } while (I != E && I->getParent() == &UseMI);
8178 } else {
8179 ++I;
8180 }
8181 }
8182}
8183
8184void SIInstrInfo::movePackToVALU(SIInstrWorklist &Worklist,
8185 MachineRegisterInfo &MRI,
8186 MachineInstr &Inst) const {
8187 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8188 MachineBasicBlock *MBB = Inst.getParent();
8189 MachineOperand &Src0 = Inst.getOperand(i: 1);
8190 MachineOperand &Src1 = Inst.getOperand(i: 2);
8191 const DebugLoc &DL = Inst.getDebugLoc();
8192
8193 switch (Inst.getOpcode()) {
8194 case AMDGPU::S_PACK_LL_B32_B16: {
8195 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8196 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8197
8198 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are
8199 // 0.
8200 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8201 .addImm(0xffff);
8202
8203 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg)
8204 .addReg(ImmReg, RegState::Kill)
8205 .add(Src0);
8206
8207 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
8208 .add(Src1)
8209 .addImm(16)
8210 .addReg(TmpReg, RegState::Kill);
8211 break;
8212 }
8213 case AMDGPU::S_PACK_LH_B32_B16: {
8214 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8215 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8216 .addImm(0xffff);
8217 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg)
8218 .addReg(ImmReg, RegState::Kill)
8219 .add(Src0)
8220 .add(Src1);
8221 break;
8222 }
8223 case AMDGPU::S_PACK_HL_B32_B16: {
8224 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8225 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
8226 .addImm(16)
8227 .add(Src0);
8228 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
8229 .add(Src1)
8230 .addImm(16)
8231 .addReg(TmpReg, RegState::Kill);
8232 break;
8233 }
8234 case AMDGPU::S_PACK_HH_B32_B16: {
8235 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8236 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8237 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
8238 .addImm(16)
8239 .add(Src0);
8240 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8241 .addImm(0xffff0000);
8242 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg)
8243 .add(Src1)
8244 .addReg(ImmReg, RegState::Kill)
8245 .addReg(TmpReg, RegState::Kill);
8246 break;
8247 }
8248 default:
8249 llvm_unreachable("unhandled s_pack_* instruction");
8250 }
8251
8252 MachineOperand &Dest = Inst.getOperand(i: 0);
8253 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8254 addUsersToMoveToVALUWorklist(DstReg: ResultReg, MRI, Worklist);
8255}
8256
8257void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op,
8258 MachineInstr &SCCDefInst,
8259 SIInstrWorklist &Worklist,
8260 Register NewCond) const {
8261
8262 // Ensure that def inst defines SCC, which is still live.
8263 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() &&
8264 !Op.isDead() && Op.getParent() == &SCCDefInst);
8265 SmallVector<MachineInstr *, 4> CopyToDelete;
8266 // This assumes that all the users of SCC are in the same block
8267 // as the SCC def.
8268 for (MachineInstr &MI : // Skip the def inst itself.
8269 make_range(x: std::next(x: MachineBasicBlock::iterator(SCCDefInst)),
8270 y: SCCDefInst.getParent()->end())) {
8271 // Check if SCC is used first.
8272 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI);
8273 if (SCCIdx != -1) {
8274 if (MI.isCopy()) {
8275 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8276 Register DestReg = MI.getOperand(i: 0).getReg();
8277
8278 MRI.replaceRegWith(FromReg: DestReg, ToReg: NewCond);
8279 CopyToDelete.push_back(Elt: &MI);
8280 } else {
8281
8282 if (NewCond.isValid())
8283 MI.getOperand(i: SCCIdx).setReg(NewCond);
8284
8285 Worklist.insert(MI: &MI);
8286 }
8287 }
8288 // Exit if we find another SCC def.
8289 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1)
8290 break;
8291 }
8292 for (auto &Copy : CopyToDelete)
8293 Copy->eraseFromParent();
8294}
8295
8296// Instructions that use SCC may be converted to VALU instructions. When that
8297// happens, the SCC register is changed to VCC_LO. The instruction that defines
8298// SCC must be changed to an instruction that defines VCC. This function makes
8299// sure that the instruction that defines SCC is added to the moveToVALU
8300// worklist.
8301void SIInstrInfo::addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst,
8302 SIInstrWorklist &Worklist) const {
8303 // Look for a preceding instruction that either defines VCC or SCC. If VCC
8304 // then there is nothing to do because the defining instruction has been
8305 // converted to a VALU already. If SCC then that instruction needs to be
8306 // converted to a VALU.
8307 for (MachineInstr &MI :
8308 make_range(x: std::next(x: MachineBasicBlock::reverse_iterator(SCCUseInst)),
8309 y: SCCUseInst->getParent()->rend())) {
8310 if (MI.modifiesRegister(AMDGPU::VCC, &RI))
8311 break;
8312 if (MI.definesRegister(AMDGPU::SCC, &RI)) {
8313 Worklist.insert(MI: &MI);
8314 break;
8315 }
8316 }
8317}
8318
8319const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
8320 const MachineInstr &Inst) const {
8321 const TargetRegisterClass *NewDstRC = getOpRegClass(MI: Inst, OpNo: 0);
8322
8323 switch (Inst.getOpcode()) {
8324 // For target instructions, getOpRegClass just returns the virtual register
8325 // class associated with the operand, so we need to find an equivalent VGPR
8326 // register class in order to move the instruction to the VALU.
8327 case AMDGPU::COPY:
8328 case AMDGPU::PHI:
8329 case AMDGPU::REG_SEQUENCE:
8330 case AMDGPU::INSERT_SUBREG:
8331 case AMDGPU::WQM:
8332 case AMDGPU::SOFT_WQM:
8333 case AMDGPU::STRICT_WWM:
8334 case AMDGPU::STRICT_WQM: {
8335 const TargetRegisterClass *SrcRC = getOpRegClass(MI: Inst, OpNo: 1);
8336 if (RI.isAGPRClass(SrcRC)) {
8337 if (RI.isAGPRClass(NewDstRC))
8338 return nullptr;
8339
8340 switch (Inst.getOpcode()) {
8341 case AMDGPU::PHI:
8342 case AMDGPU::REG_SEQUENCE:
8343 case AMDGPU::INSERT_SUBREG:
8344 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC);
8345 break;
8346 default:
8347 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
8348 }
8349
8350 if (!NewDstRC)
8351 return nullptr;
8352 } else {
8353 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass)
8354 return nullptr;
8355
8356 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
8357 if (!NewDstRC)
8358 return nullptr;
8359 }
8360
8361 return NewDstRC;
8362 }
8363 default:
8364 return NewDstRC;
8365 }
8366}
8367
8368// Find the one SGPR operand we are allowed to use.
8369Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
8370 int OpIndices[3]) const {
8371 const MCInstrDesc &Desc = MI.getDesc();
8372
8373 // Find the one SGPR operand we are allowed to use.
8374 //
8375 // First we need to consider the instruction's operand requirements before
8376 // legalizing. Some operands are required to be SGPRs, such as implicit uses
8377 // of VCC, but we are still bound by the constant bus requirement to only use
8378 // one.
8379 //
8380 // If the operand's class is an SGPR, we can never move it.
8381
8382 Register SGPRReg = findImplicitSGPRRead(MI);
8383 if (SGPRReg)
8384 return SGPRReg;
8385
8386 Register UsedSGPRs[3] = {Register()};
8387 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8388
8389 for (unsigned i = 0; i < 3; ++i) {
8390 int Idx = OpIndices[i];
8391 if (Idx == -1)
8392 break;
8393
8394 const MachineOperand &MO = MI.getOperand(i: Idx);
8395 if (!MO.isReg())
8396 continue;
8397
8398 // Is this operand statically required to be an SGPR based on the operand
8399 // constraints?
8400 const TargetRegisterClass *OpRC =
8401 RI.getRegClass(Desc.operands()[Idx].RegClass);
8402 bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
8403 if (IsRequiredSGPR)
8404 return MO.getReg();
8405
8406 // If this could be a VGPR or an SGPR, Check the dynamic register class.
8407 Register Reg = MO.getReg();
8408 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
8409 if (RI.isSGPRClass(RegRC))
8410 UsedSGPRs[i] = Reg;
8411 }
8412
8413 // We don't have a required SGPR operand, so we have a bit more freedom in
8414 // selecting operands to move.
8415
8416 // Try to select the most used SGPR. If an SGPR is equal to one of the
8417 // others, we choose that.
8418 //
8419 // e.g.
8420 // V_FMA_F32 v0, s0, s0, s0 -> No moves
8421 // V_FMA_F32 v0, s0, s1, s0 -> Move s1
8422
8423 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should
8424 // prefer those.
8425
8426 if (UsedSGPRs[0]) {
8427 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
8428 SGPRReg = UsedSGPRs[0];
8429 }
8430
8431 if (!SGPRReg && UsedSGPRs[1]) {
8432 if (UsedSGPRs[1] == UsedSGPRs[2])
8433 SGPRReg = UsedSGPRs[1];
8434 }
8435
8436 return SGPRReg;
8437}
8438
8439MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
8440 unsigned OperandName) const {
8441 int Idx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: OperandName);
8442 if (Idx == -1)
8443 return nullptr;
8444
8445 return &MI.getOperand(i: Idx);
8446}
8447
8448uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
8449 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
8450 int64_t Format = ST.getGeneration() >= AMDGPUSubtarget::GFX11
8451 ? (int64_t)AMDGPU::UfmtGFX11::UFMT_32_FLOAT
8452 : (int64_t)AMDGPU::UfmtGFX10::UFMT_32_FLOAT;
8453 return (Format << 44) |
8454 (1ULL << 56) | // RESOURCE_LEVEL = 1
8455 (3ULL << 60); // OOB_SELECT = 3
8456 }
8457
8458 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
8459 if (ST.isAmdHsaOS()) {
8460 // Set ATC = 1. GFX9 doesn't have this bit.
8461 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8462 RsrcDataFormat |= (1ULL << 56);
8463
8464 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this.
8465 // BTW, it disables TC L2 and therefore decreases performance.
8466 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS)
8467 RsrcDataFormat |= (2ULL << 59);
8468 }
8469
8470 return RsrcDataFormat;
8471}
8472
8473uint64_t SIInstrInfo::getScratchRsrcWords23() const {
8474 uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
8475 AMDGPU::RSRC_TID_ENABLE |
8476 0xffffffff; // Size;
8477
8478 // GFX9 doesn't have ELEMENT_SIZE.
8479 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
8480 uint64_t EltSizeValue = Log2_32(Value: ST.getMaxPrivateElementSize(ForBufferRSrc: true)) - 1;
8481 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT;
8482 }
8483
8484 // IndexStride = 64 / 32.
8485 uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2;
8486 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT;
8487
8488 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
8489 // Clear them unless we want a huge stride.
8490 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
8491 ST.getGeneration() <= AMDGPUSubtarget::GFX9)
8492 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
8493
8494 return Rsrc23;
8495}
8496
8497bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
8498 unsigned Opc = MI.getOpcode();
8499
8500 return isSMRD(Opcode: Opc);
8501}
8502
8503bool SIInstrInfo::isHighLatencyDef(int Opc) const {
8504 return get(Opc).mayLoad() &&
8505 (isMUBUF(Opcode: Opc) || isMTBUF(Opcode: Opc) || isMIMG(Opcode: Opc) || isFLAT(Opcode: Opc));
8506}
8507
8508unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI,
8509 int &FrameIndex) const {
8510 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
8511 if (!Addr || !Addr->isFI())
8512 return Register();
8513
8514 assert(!MI.memoperands_empty() &&
8515 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS);
8516
8517 FrameIndex = Addr->getIndex();
8518 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg();
8519}
8520
8521unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI,
8522 int &FrameIndex) const {
8523 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr);
8524 assert(Addr && Addr->isFI());
8525 FrameIndex = Addr->getIndex();
8526 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg();
8527}
8528
8529Register SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
8530 int &FrameIndex) const {
8531 if (!MI.mayLoad())
8532 return Register();
8533
8534 if (isMUBUF(MI) || isVGPRSpill(MI))
8535 return isStackAccess(MI, FrameIndex);
8536
8537 if (isSGPRSpill(MI))
8538 return isSGPRStackAccess(MI, FrameIndex);
8539
8540 return Register();
8541}
8542
8543Register SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
8544 int &FrameIndex) const {
8545 if (!MI.mayStore())
8546 return Register();
8547
8548 if (isMUBUF(MI) || isVGPRSpill(MI))
8549 return isStackAccess(MI, FrameIndex);
8550
8551 if (isSGPRSpill(MI))
8552 return isSGPRStackAccess(MI, FrameIndex);
8553
8554 return Register();
8555}
8556
8557unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const {
8558 unsigned Size = 0;
8559 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
8560 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
8561 while (++I != E && I->isInsideBundle()) {
8562 assert(!I->isBundle() && "No nested bundle!");
8563 Size += getInstSizeInBytes(MI: *I);
8564 }
8565
8566 return Size;
8567}
8568
8569unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
8570 unsigned Opc = MI.getOpcode();
8571 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opcode: Opc);
8572 unsigned DescSize = Desc.getSize();
8573
8574 // If we have a definitive size, we can use it. Otherwise we need to inspect
8575 // the operands to know the size.
8576 if (isFixedSize(MI)) {
8577 unsigned Size = DescSize;
8578
8579 // If we hit the buggy offset, an extra nop will be inserted in MC so
8580 // estimate the worst case.
8581 if (MI.isBranch() && ST.hasOffset3fBug())
8582 Size += 4;
8583
8584 return Size;
8585 }
8586
8587 // Instructions may have a 32-bit literal encoded after them. Check
8588 // operands that could ever be literals.
8589 if (isVALU(MI) || isSALU(MI)) {
8590 if (isDPP(MI))
8591 return DescSize;
8592 bool HasLiteral = false;
8593 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) {
8594 const MachineOperand &Op = MI.getOperand(i: I);
8595 const MCOperandInfo &OpInfo = Desc.operands()[I];
8596 if (!Op.isReg() && !isInlineConstant(MO: Op, OpInfo)) {
8597 HasLiteral = true;
8598 break;
8599 }
8600 }
8601 return HasLiteral ? DescSize + 4 : DescSize;
8602 }
8603
8604 // Check whether we have extra NSA words.
8605 if (isMIMG(MI)) {
8606 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
8607 if (VAddr0Idx < 0)
8608 return 8;
8609
8610 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
8611 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4);
8612 }
8613
8614 switch (Opc) {
8615 case TargetOpcode::BUNDLE:
8616 return getInstBundleSize(MI);
8617 case TargetOpcode::INLINEASM:
8618 case TargetOpcode::INLINEASM_BR: {
8619 const MachineFunction *MF = MI.getParent()->getParent();
8620 const char *AsmStr = MI.getOperand(i: 0).getSymbolName();
8621 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST);
8622 }
8623 default:
8624 if (MI.isMetaInstruction())
8625 return 0;
8626 return DescSize;
8627 }
8628}
8629
8630bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const {
8631 if (!isFLAT(MI))
8632 return false;
8633
8634 if (MI.memoperands_empty())
8635 return true;
8636
8637 for (const MachineMemOperand *MMO : MI.memoperands()) {
8638 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS)
8639 return true;
8640 }
8641 return false;
8642}
8643
8644bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const {
8645 return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO;
8646}
8647
8648void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
8649 MachineBasicBlock *IfEnd) const {
8650 MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator();
8651 assert(TI != IfEntry->end());
8652
8653 MachineInstr *Branch = &(*TI);
8654 MachineFunction *MF = IfEntry->getParent();
8655 MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo();
8656
8657 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
8658 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
8659 MachineInstr *SIIF =
8660 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg)
8661 .add(Branch->getOperand(0))
8662 .add(Branch->getOperand(1));
8663 MachineInstr *SIEND =
8664 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF))
8665 .addReg(DstReg);
8666
8667 IfEntry->erase(I: TI);
8668 IfEntry->insert(I: IfEntry->end(), MI: SIIF);
8669 IfEnd->insert(I: IfEnd->getFirstNonPHI(), MI: SIEND);
8670 }
8671}
8672
8673void SIInstrInfo::convertNonUniformLoopRegion(
8674 MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const {
8675 MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator();
8676 // We expect 2 terminators, one conditional and one unconditional.
8677 assert(TI != LoopEnd->end());
8678
8679 MachineInstr *Branch = &(*TI);
8680 MachineFunction *MF = LoopEnd->getParent();
8681 MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo();
8682
8683 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
8684
8685 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
8686 Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC());
8687 MachineInstrBuilder HeaderPHIBuilder =
8688 BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg);
8689 for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) {
8690 if (PMBB == LoopEnd) {
8691 HeaderPHIBuilder.addReg(RegNo: BackEdgeReg);
8692 } else {
8693 Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC());
8694 materializeImmediate(MBB&: *PMBB, MI: PMBB->getFirstTerminator(), DL: DebugLoc(),
8695 DestReg: ZeroReg, Value: 0);
8696 HeaderPHIBuilder.addReg(RegNo: ZeroReg);
8697 }
8698 HeaderPHIBuilder.addMBB(MBB: PMBB);
8699 }
8700 MachineInstr *HeaderPhi = HeaderPHIBuilder;
8701 MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(),
8702 get(AMDGPU::SI_IF_BREAK), BackEdgeReg)
8703 .addReg(DstReg)
8704 .add(Branch->getOperand(0));
8705 MachineInstr *SILOOP =
8706 BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP))
8707 .addReg(BackEdgeReg)
8708 .addMBB(LoopEntry);
8709
8710 LoopEntry->insert(I: LoopEntry->begin(), MI: HeaderPhi);
8711 LoopEnd->erase(I: TI);
8712 LoopEnd->insert(I: LoopEnd->end(), MI: SIIFBREAK);
8713 LoopEnd->insert(I: LoopEnd->end(), MI: SILOOP);
8714 }
8715}
8716
8717ArrayRef<std::pair<int, const char *>>
8718SIInstrInfo::getSerializableTargetIndices() const {
8719 static const std::pair<int, const char *> TargetIndices[] = {
8720 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
8721 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
8722 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
8723 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
8724 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
8725 return ArrayRef(TargetIndices);
8726}
8727
8728/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
8729/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
8730ScheduleHazardRecognizer *
8731SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
8732 const ScheduleDAG *DAG) const {
8733 return new GCNHazardRecognizer(DAG->MF);
8734}
8735
8736/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
8737/// pass.
8738ScheduleHazardRecognizer *
8739SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
8740 return new GCNHazardRecognizer(MF);
8741}
8742
8743// Called during:
8744// - pre-RA scheduling and post-RA scheduling
8745ScheduleHazardRecognizer *
8746SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
8747 const ScheduleDAGMI *DAG) const {
8748 // Borrowed from Arm Target
8749 // We would like to restrict this hazard recognizer to only
8750 // post-RA scheduling; we can tell that we're post-RA because we don't
8751 // track VRegLiveness.
8752 if (!DAG->hasVRegLiveness())
8753 return new GCNHazardRecognizer(DAG->MF);
8754 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
8755}
8756
8757std::pair<unsigned, unsigned>
8758SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8759 return std::pair(TF & MO_MASK, TF & ~MO_MASK);
8760}
8761
8762ArrayRef<std::pair<unsigned, const char *>>
8763SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8764 static const std::pair<unsigned, const char *> TargetFlags[] = {
8765 { MO_GOTPCREL, "amdgpu-gotprel" },
8766 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" },
8767 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" },
8768 { MO_REL32_LO, "amdgpu-rel32-lo" },
8769 { MO_REL32_HI, "amdgpu-rel32-hi" },
8770 { MO_ABS32_LO, "amdgpu-abs32-lo" },
8771 { MO_ABS32_HI, "amdgpu-abs32-hi" },
8772 };
8773
8774 return ArrayRef(TargetFlags);
8775}
8776
8777ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
8778SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const {
8779 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
8780 {
8781 {MONoClobber, "amdgpu-noclobber"},
8782 {MOLastUse, "amdgpu-last-use"},
8783 };
8784
8785 return ArrayRef(TargetFlags);
8786}
8787
8788unsigned SIInstrInfo::getLiveRangeSplitOpcode(Register SrcReg,
8789 const MachineFunction &MF) const {
8790 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8791 assert(SrcReg.isVirtual());
8792 if (MFI->checkFlag(SrcReg, AMDGPU::VirtRegFlag::WWM_REG))
8793 return AMDGPU::WWM_COPY;
8794
8795 return AMDGPU::COPY;
8796}
8797
8798bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI,
8799 Register Reg) const {
8800 // We need to handle instructions which may be inserted during register
8801 // allocation to handle the prolog. The initial prolog instruction may have
8802 // been separated from the start of the block by spills and copies inserted
8803 // needed by the prolog. However, the insertions for scalar registers can
8804 // always be placed at the BB top as they are independent of the exec mask
8805 // value.
8806 bool IsNullOrVectorRegister = true;
8807 if (Reg) {
8808 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8809 IsNullOrVectorRegister = !RI.isSGPRClass(RI.getRegClassForReg(MRI, Reg));
8810 }
8811
8812 uint16_t Opc = MI.getOpcode();
8813 // FIXME: Copies inserted in the block prolog for live-range split should also
8814 // be included.
8815 return IsNullOrVectorRegister &&
8816 (isSpillOpcode(Opc) || (!MI.isTerminator() && Opc != AMDGPU::COPY &&
8817 MI.modifiesRegister(AMDGPU::EXEC, &RI)));
8818}
8819
8820MachineInstrBuilder
8821SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
8822 MachineBasicBlock::iterator I,
8823 const DebugLoc &DL,
8824 Register DestReg) const {
8825 if (ST.hasAddNoCarry())
8826 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg);
8827
8828 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8829 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC());
8830 MRI.setRegAllocationHint(VReg: UnusedCarry, Type: 0, PrefReg: RI.getVCC());
8831
8832 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
8833 .addReg(UnusedCarry, RegState::Define | RegState::Dead);
8834}
8835
8836MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
8837 MachineBasicBlock::iterator I,
8838 const DebugLoc &DL,
8839 Register DestReg,
8840 RegScavenger &RS) const {
8841 if (ST.hasAddNoCarry())
8842 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg);
8843
8844 // If available, prefer to use vcc.
8845 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC)
8846 ? Register(RI.getVCC())
8847 : RS.scavengeRegisterBackwards(
8848 *RI.getBoolRC(), I, /* RestoreAfter */ false,
8849 0, /* AllowSpill */ false);
8850
8851 // TODO: Users need to deal with this.
8852 if (!UnusedCarry.isValid())
8853 return MachineInstrBuilder();
8854
8855 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
8856 .addReg(UnusedCarry, RegState::Define | RegState::Dead);
8857}
8858
8859bool SIInstrInfo::isKillTerminator(unsigned Opcode) {
8860 switch (Opcode) {
8861 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
8862 case AMDGPU::SI_KILL_I1_TERMINATOR:
8863 return true;
8864 default:
8865 return false;
8866 }
8867}
8868
8869const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const {
8870 switch (Opcode) {
8871 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
8872 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR);
8873 case AMDGPU::SI_KILL_I1_PSEUDO:
8874 return get(AMDGPU::SI_KILL_I1_TERMINATOR);
8875 default:
8876 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO");
8877 }
8878}
8879
8880bool SIInstrInfo::isLegalMUBUFImmOffset(unsigned Imm) const {
8881 return Imm <= getMaxMUBUFImmOffset(ST);
8882}
8883
8884unsigned SIInstrInfo::getMaxMUBUFImmOffset(const GCNSubtarget &ST) {
8885 // GFX12 field is non-negative 24-bit signed byte offset.
8886 const unsigned OffsetBits =
8887 ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? 23 : 12;
8888 return (1 << OffsetBits) - 1;
8889}
8890
8891void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const {
8892 if (!ST.isWave32())
8893 return;
8894
8895 if (MI.isInlineAsm())
8896 return;
8897
8898 for (auto &Op : MI.implicit_operands()) {
8899 if (Op.isReg() && Op.getReg() == AMDGPU::VCC)
8900 Op.setReg(AMDGPU::VCC_LO);
8901 }
8902}
8903
8904bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const {
8905 if (!isSMRD(MI))
8906 return false;
8907
8908 // Check that it is using a buffer resource.
8909 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase);
8910 if (Idx == -1) // e.g. s_memtime
8911 return false;
8912
8913 const auto RCID = MI.getDesc().operands()[Idx].RegClass;
8914 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass);
8915}
8916
8917// Given Imm, split it into the values to put into the SOffset and ImmOffset
8918// fields in an MUBUF instruction. Return false if it is not possible (due to a
8919// hardware bug needing a workaround).
8920//
8921// The required alignment ensures that individual address components remain
8922// aligned if they are aligned to begin with. It also ensures that additional
8923// offsets within the given alignment can be added to the resulting ImmOffset.
8924bool SIInstrInfo::splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset,
8925 uint32_t &ImmOffset, Align Alignment) const {
8926 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST);
8927 const uint32_t MaxImm = alignDown(Value: MaxOffset, Align: Alignment.value());
8928 uint32_t Overflow = 0;
8929
8930 if (Imm > MaxImm) {
8931 if (Imm <= MaxImm + 64) {
8932 // Use an SOffset inline constant for 4..64
8933 Overflow = Imm - MaxImm;
8934 Imm = MaxImm;
8935 } else {
8936 // Try to keep the same value in SOffset for adjacent loads, so that
8937 // the corresponding register contents can be re-used.
8938 //
8939 // Load values with all low-bits (except for alignment bits) set into
8940 // SOffset, so that a larger range of values can be covered using
8941 // s_movk_i32.
8942 //
8943 // Atomic operations fail to work correctly when individual address
8944 // components are unaligned, even if their sum is aligned.
8945 uint32_t High = (Imm + Alignment.value()) & ~MaxOffset;
8946 uint32_t Low = (Imm + Alignment.value()) & MaxOffset;
8947 Imm = Low;
8948 Overflow = High - Alignment.value();
8949 }
8950 }
8951
8952 if (Overflow > 0) {
8953 // There is a hardware bug in SI and CI which prevents address clamping in
8954 // MUBUF instructions from working correctly with SOffsets. The immediate
8955 // offset is unaffected.
8956 if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
8957 return false;
8958
8959 // It is not possible to set immediate in SOffset field on some targets.
8960 if (ST.hasRestrictedSOffset())
8961 return false;
8962 }
8963
8964 ImmOffset = Imm;
8965 SOffset = Overflow;
8966 return true;
8967}
8968
8969// Depending on the used address space and instructions, some immediate offsets
8970// are allowed and some are not.
8971// Pre-GFX12, flat instruction offsets can only be non-negative, global and
8972// scratch instruction offsets can also be negative. On GFX12, offsets can be
8973// negative for all variants.
8974//
8975// There are several bugs related to these offsets:
8976// On gfx10.1, flat instructions that go into the global address space cannot
8977// use an offset.
8978//
8979// For scratch instructions, the address can be either an SGPR or a VGPR.
8980// The following offsets can be used, depending on the architecture (x means
8981// cannot be used):
8982// +----------------------------+------+------+
8983// | Address-Mode | SGPR | VGPR |
8984// +----------------------------+------+------+
8985// | gfx9 | | |
8986// | negative, 4-aligned offset | x | ok |
8987// | negative, unaligned offset | x | ok |
8988// +----------------------------+------+------+
8989// | gfx10 | | |
8990// | negative, 4-aligned offset | ok | ok |
8991// | negative, unaligned offset | ok | x |
8992// +----------------------------+------+------+
8993// | gfx10.3 | | |
8994// | negative, 4-aligned offset | ok | ok |
8995// | negative, unaligned offset | ok | ok |
8996// +----------------------------+------+------+
8997//
8998// This function ignores the addressing mode, so if an offset cannot be used in
8999// one addressing mode, it is considered illegal.
9000bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
9001 uint64_t FlatVariant) const {
9002 // TODO: Should 0 be special cased?
9003 if (!ST.hasFlatInstOffsets())
9004 return false;
9005
9006 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT &&
9007 (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
9008 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS))
9009 return false;
9010
9011 if (ST.hasNegativeUnalignedScratchOffsetBug() &&
9012 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 &&
9013 (Offset % 4) != 0) {
9014 return false;
9015 }
9016
9017 bool AllowNegative = allowNegativeFlatOffset(FlatVariant);
9018 unsigned N = AMDGPU::getNumFlatOffsetBits(ST);
9019 return isIntN(N, x: Offset) && (AllowNegative || Offset >= 0);
9020}
9021
9022// See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not.
9023std::pair<int64_t, int64_t>
9024SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace,
9025 uint64_t FlatVariant) const {
9026 int64_t RemainderOffset = COffsetVal;
9027 int64_t ImmField = 0;
9028
9029 bool AllowNegative = allowNegativeFlatOffset(FlatVariant);
9030 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST) - 1;
9031
9032 if (AllowNegative) {
9033 // Use signed division by a power of two to truncate towards 0.
9034 int64_t D = 1LL << NumBits;
9035 RemainderOffset = (COffsetVal / D) * D;
9036 ImmField = COffsetVal - RemainderOffset;
9037
9038 if (ST.hasNegativeUnalignedScratchOffsetBug() &&
9039 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 &&
9040 (ImmField % 4) != 0) {
9041 // Make ImmField a multiple of 4
9042 RemainderOffset += ImmField % 4;
9043 ImmField -= ImmField % 4;
9044 }
9045 } else if (COffsetVal >= 0) {
9046 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(N: NumBits);
9047 RemainderOffset = COffsetVal - ImmField;
9048 }
9049
9050 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant));
9051 assert(RemainderOffset + ImmField == COffsetVal);
9052 return {ImmField, RemainderOffset};
9053}
9054
9055bool SIInstrInfo::allowNegativeFlatOffset(uint64_t FlatVariant) const {
9056 if (ST.hasNegativeScratchOffsetBug() &&
9057 FlatVariant == SIInstrFlags::FlatScratch)
9058 return false;
9059
9060 return FlatVariant != SIInstrFlags::FLAT || AMDGPU::isGFX12Plus(ST);
9061}
9062
9063static unsigned subtargetEncodingFamily(const GCNSubtarget &ST) {
9064 switch (ST.getGeneration()) {
9065 default:
9066 break;
9067 case AMDGPUSubtarget::SOUTHERN_ISLANDS:
9068 case AMDGPUSubtarget::SEA_ISLANDS:
9069 return SIEncodingFamily::SI;
9070 case AMDGPUSubtarget::VOLCANIC_ISLANDS:
9071 case AMDGPUSubtarget::GFX9:
9072 return SIEncodingFamily::VI;
9073 case AMDGPUSubtarget::GFX10:
9074 return SIEncodingFamily::GFX10;
9075 case AMDGPUSubtarget::GFX11:
9076 return SIEncodingFamily::GFX11;
9077 case AMDGPUSubtarget::GFX12:
9078 return SIEncodingFamily::GFX12;
9079 }
9080 llvm_unreachable("Unknown subtarget generation!");
9081}
9082
9083bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const {
9084 switch(MCOp) {
9085 // These opcodes use indirect register addressing so
9086 // they need special handling by codegen (currently missing).
9087 // Therefore it is too risky to allow these opcodes
9088 // to be selected by dpp combiner or sdwa peepholer.
9089 case AMDGPU::V_MOVRELS_B32_dpp_gfx10:
9090 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10:
9091 case AMDGPU::V_MOVRELD_B32_dpp_gfx10:
9092 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10:
9093 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10:
9094 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10:
9095 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10:
9096 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10:
9097 return true;
9098 default:
9099 return false;
9100 }
9101}
9102
9103int SIInstrInfo::pseudoToMCOpcode(int Opcode) const {
9104 Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode);
9105
9106 unsigned Gen = subtargetEncodingFamily(ST);
9107
9108 if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 &&
9109 ST.getGeneration() == AMDGPUSubtarget::GFX9)
9110 Gen = SIEncodingFamily::GFX9;
9111
9112 // Adjust the encoding family to GFX80 for D16 buffer instructions when the
9113 // subtarget has UnpackedD16VMem feature.
9114 // TODO: remove this when we discard GFX80 encoding.
9115 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf))
9116 Gen = SIEncodingFamily::GFX80;
9117
9118 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) {
9119 switch (ST.getGeneration()) {
9120 default:
9121 Gen = SIEncodingFamily::SDWA;
9122 break;
9123 case AMDGPUSubtarget::GFX9:
9124 Gen = SIEncodingFamily::SDWA9;
9125 break;
9126 case AMDGPUSubtarget::GFX10:
9127 Gen = SIEncodingFamily::SDWA10;
9128 break;
9129 }
9130 }
9131
9132 if (isMAI(Opcode)) {
9133 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode);
9134 if (MFMAOp != -1)
9135 Opcode = MFMAOp;
9136 }
9137
9138 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen);
9139
9140 // -1 means that Opcode is already a native instruction.
9141 if (MCOp == -1)
9142 return Opcode;
9143
9144 if (ST.hasGFX90AInsts()) {
9145 uint16_t NMCOp = (uint16_t)-1;
9146 if (ST.hasGFX940Insts())
9147 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX940);
9148 if (NMCOp == (uint16_t)-1)
9149 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX90A);
9150 if (NMCOp == (uint16_t)-1)
9151 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX9);
9152 if (NMCOp != (uint16_t)-1)
9153 MCOp = NMCOp;
9154 }
9155
9156 // (uint16_t)-1 means that Opcode is a pseudo instruction that has
9157 // no encoding in the given subtarget generation.
9158 if (MCOp == (uint16_t)-1)
9159 return -1;
9160
9161 if (isAsmOnlyOpcode(MCOp))
9162 return -1;
9163
9164 return MCOp;
9165}
9166
9167static
9168TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) {
9169 assert(RegOpnd.isReg());
9170 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() :
9171 getRegSubRegPair(O: RegOpnd);
9172}
9173
9174TargetInstrInfo::RegSubRegPair
9175llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) {
9176 assert(MI.isRegSequence());
9177 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I)
9178 if (MI.getOperand(i: 1 + 2 * I + 1).getImm() == SubReg) {
9179 auto &RegOp = MI.getOperand(i: 1 + 2 * I);
9180 return getRegOrUndef(RegOpnd: RegOp);
9181 }
9182 return TargetInstrInfo::RegSubRegPair();
9183}
9184
9185// Try to find the definition of reg:subreg in subreg-manipulation pseudos
9186// Following a subreg of reg:subreg isn't supported
9187static bool followSubRegDef(MachineInstr &MI,
9188 TargetInstrInfo::RegSubRegPair &RSR) {
9189 if (!RSR.SubReg)
9190 return false;
9191 switch (MI.getOpcode()) {
9192 default: break;
9193 case AMDGPU::REG_SEQUENCE:
9194 RSR = getRegSequenceSubReg(MI, SubReg: RSR.SubReg);
9195 return true;
9196 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg
9197 case AMDGPU::INSERT_SUBREG:
9198 if (RSR.SubReg == (unsigned)MI.getOperand(i: 3).getImm())
9199 // inserted the subreg we're looking for
9200 RSR = getRegOrUndef(RegOpnd: MI.getOperand(i: 2));
9201 else { // the subreg in the rest of the reg
9202 auto R1 = getRegOrUndef(RegOpnd: MI.getOperand(i: 1));
9203 if (R1.SubReg) // subreg of subreg isn't supported
9204 return false;
9205 RSR.Reg = R1.Reg;
9206 }
9207 return true;
9208 }
9209 return false;
9210}
9211
9212MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
9213 MachineRegisterInfo &MRI) {
9214 assert(MRI.isSSA());
9215 if (!P.Reg.isVirtual())
9216 return nullptr;
9217
9218 auto RSR = P;
9219 auto *DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9220 while (auto *MI = DefInst) {
9221 DefInst = nullptr;
9222 switch (MI->getOpcode()) {
9223 case AMDGPU::COPY:
9224 case AMDGPU::V_MOV_B32_e32: {
9225 auto &Op1 = MI->getOperand(i: 1);
9226 if (Op1.isReg() && Op1.getReg().isVirtual()) {
9227 if (Op1.isUndef())
9228 return nullptr;
9229 RSR = getRegSubRegPair(O: Op1);
9230 DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9231 }
9232 break;
9233 }
9234 default:
9235 if (followSubRegDef(MI&: *MI, RSR)) {
9236 if (!RSR.Reg)
9237 return nullptr;
9238 DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9239 }
9240 }
9241 if (!DefInst)
9242 return MI;
9243 }
9244 return nullptr;
9245}
9246
9247bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
9248 Register VReg,
9249 const MachineInstr &DefMI,
9250 const MachineInstr &UseMI) {
9251 assert(MRI.isSSA() && "Must be run on SSA");
9252
9253 auto *TRI = MRI.getTargetRegisterInfo();
9254 auto *DefBB = DefMI.getParent();
9255
9256 // Don't bother searching between blocks, although it is possible this block
9257 // doesn't modify exec.
9258 if (UseMI.getParent() != DefBB)
9259 return true;
9260
9261 const int MaxInstScan = 20;
9262 int NumInst = 0;
9263
9264 // Stop scan at the use.
9265 auto E = UseMI.getIterator();
9266 for (auto I = std::next(x: DefMI.getIterator()); I != E; ++I) {
9267 if (I->isDebugInstr())
9268 continue;
9269
9270 if (++NumInst > MaxInstScan)
9271 return true;
9272
9273 if (I->modifiesRegister(AMDGPU::EXEC, TRI))
9274 return true;
9275 }
9276
9277 return false;
9278}
9279
9280bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
9281 Register VReg,
9282 const MachineInstr &DefMI) {
9283 assert(MRI.isSSA() && "Must be run on SSA");
9284
9285 auto *TRI = MRI.getTargetRegisterInfo();
9286 auto *DefBB = DefMI.getParent();
9287
9288 const int MaxUseScan = 10;
9289 int NumUse = 0;
9290
9291 for (auto &Use : MRI.use_nodbg_operands(Reg: VReg)) {
9292 auto &UseInst = *Use.getParent();
9293 // Don't bother searching between blocks, although it is possible this block
9294 // doesn't modify exec.
9295 if (UseInst.getParent() != DefBB || UseInst.isPHI())
9296 return true;
9297
9298 if (++NumUse > MaxUseScan)
9299 return true;
9300 }
9301
9302 if (NumUse == 0)
9303 return false;
9304
9305 const int MaxInstScan = 20;
9306 int NumInst = 0;
9307
9308 // Stop scan when we have seen all the uses.
9309 for (auto I = std::next(x: DefMI.getIterator()); ; ++I) {
9310 assert(I != DefBB->end());
9311
9312 if (I->isDebugInstr())
9313 continue;
9314
9315 if (++NumInst > MaxInstScan)
9316 return true;
9317
9318 for (const MachineOperand &Op : I->operands()) {
9319 // We don't check reg masks here as they're used only on calls:
9320 // 1. EXEC is only considered const within one BB
9321 // 2. Call should be a terminator instruction if present in a BB
9322
9323 if (!Op.isReg())
9324 continue;
9325
9326 Register Reg = Op.getReg();
9327 if (Op.isUse()) {
9328 if (Reg == VReg && --NumUse == 0)
9329 return false;
9330 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC))
9331 return true;
9332 }
9333 }
9334}
9335
9336MachineInstr *SIInstrInfo::createPHIDestinationCopy(
9337 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt,
9338 const DebugLoc &DL, Register Src, Register Dst) const {
9339 auto Cur = MBB.begin();
9340 if (Cur != MBB.end())
9341 do {
9342 if (!Cur->isPHI() && Cur->readsRegister(Reg: Dst))
9343 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src);
9344 ++Cur;
9345 } while (Cur != MBB.end() && Cur != LastPHIIt);
9346
9347 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src,
9348 Dst);
9349}
9350
9351MachineInstr *SIInstrInfo::createPHISourceCopy(
9352 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
9353 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const {
9354 if (InsPt != MBB.end() &&
9355 (InsPt->getOpcode() == AMDGPU::SI_IF ||
9356 InsPt->getOpcode() == AMDGPU::SI_ELSE ||
9357 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) &&
9358 InsPt->definesRegister(Src)) {
9359 InsPt++;
9360 return BuildMI(MBB, InsPt, DL,
9361 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term
9362 : AMDGPU::S_MOV_B64_term),
9363 Dst)
9364 .addReg(Src, 0, SrcSubReg)
9365 .addReg(AMDGPU::EXEC, RegState::Implicit);
9366 }
9367 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg,
9368 Dst);
9369}
9370
9371bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); }
9372
9373MachineInstr *SIInstrInfo::foldMemoryOperandImpl(
9374 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
9375 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
9376 VirtRegMap *VRM) const {
9377 // This is a bit of a hack (copied from AArch64). Consider this instruction:
9378 //
9379 // %0:sreg_32 = COPY $m0
9380 //
9381 // We explicitly chose SReg_32 for the virtual register so such a copy might
9382 // be eliminated by RegisterCoalescer. However, that may not be possible, and
9383 // %0 may even spill. We can't spill $m0 normally (it would require copying to
9384 // a numbered SGPR anyway), and since it is in the SReg_32 register class,
9385 // TargetInstrInfo::foldMemoryOperand() is going to try.
9386 // A similar issue also exists with spilling and reloading $exec registers.
9387 //
9388 // To prevent that, constrain the %0 register class here.
9389 if (isFullCopyInstr(MI)) {
9390 Register DstReg = MI.getOperand(i: 0).getReg();
9391 Register SrcReg = MI.getOperand(i: 1).getReg();
9392 if ((DstReg.isVirtual() || SrcReg.isVirtual()) &&
9393 (DstReg.isVirtual() != SrcReg.isVirtual())) {
9394 MachineRegisterInfo &MRI = MF.getRegInfo();
9395 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg;
9396 const TargetRegisterClass *RC = MRI.getRegClass(Reg: VirtReg);
9397 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) {
9398 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
9399 return nullptr;
9400 } else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) {
9401 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass);
9402 return nullptr;
9403 }
9404 }
9405 }
9406
9407 return nullptr;
9408}
9409
9410unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
9411 const MachineInstr &MI,
9412 unsigned *PredCost) const {
9413 if (MI.isBundle()) {
9414 MachineBasicBlock::const_instr_iterator I(MI.getIterator());
9415 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end());
9416 unsigned Lat = 0, Count = 0;
9417 for (++I; I != E && I->isBundledWithPred(); ++I) {
9418 ++Count;
9419 Lat = std::max(a: Lat, b: SchedModel.computeInstrLatency(MI: &*I));
9420 }
9421 return Lat + Count - 1;
9422 }
9423
9424 return SchedModel.computeInstrLatency(MI: &MI);
9425}
9426
9427InstructionUniformity
9428SIInstrInfo::getGenericInstructionUniformity(const MachineInstr &MI) const {
9429 unsigned opcode = MI.getOpcode();
9430 if (auto *GI = dyn_cast<GIntrinsic>(Val: &MI)) {
9431 auto IID = GI->getIntrinsicID();
9432 if (AMDGPU::isIntrinsicSourceOfDivergence(IntrID: IID))
9433 return InstructionUniformity::NeverUniform;
9434 if (AMDGPU::isIntrinsicAlwaysUniform(IntrID: IID))
9435 return InstructionUniformity::AlwaysUniform;
9436
9437 switch (IID) {
9438 case Intrinsic::amdgcn_if:
9439 case Intrinsic::amdgcn_else:
9440 // FIXME: Uniform if second result
9441 break;
9442 }
9443
9444 return InstructionUniformity::Default;
9445 }
9446
9447 // Loads from the private and flat address spaces are divergent, because
9448 // threads can execute the load instruction with the same inputs and get
9449 // different results.
9450 //
9451 // All other loads are not divergent, because if threads issue loads with the
9452 // same arguments, they will always get the same result.
9453 if (opcode == AMDGPU::G_LOAD) {
9454 if (MI.memoperands_empty())
9455 return InstructionUniformity::NeverUniform; // conservative assumption
9456
9457 if (llvm::any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *mmo) {
9458 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
9459 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS;
9460 })) {
9461 // At least one MMO in a non-global address space.
9462 return InstructionUniformity::NeverUniform;
9463 }
9464 return InstructionUniformity::Default;
9465 }
9466
9467 if (SIInstrInfo::isGenericAtomicRMWOpcode(opcode) ||
9468 opcode == AMDGPU::G_ATOMIC_CMPXCHG ||
9469 opcode == AMDGPU::G_ATOMIC_CMPXCHG_WITH_SUCCESS ||
9470 AMDGPU::isGenericAtomic(opcode)) {
9471 return InstructionUniformity::NeverUniform;
9472 }
9473 return InstructionUniformity::Default;
9474}
9475
9476InstructionUniformity
9477SIInstrInfo::getInstructionUniformity(const MachineInstr &MI) const {
9478
9479 if (isNeverUniform(MI))
9480 return InstructionUniformity::NeverUniform;
9481
9482 unsigned opcode = MI.getOpcode();
9483 if (opcode == AMDGPU::V_READLANE_B32 ||
9484 opcode == AMDGPU::V_READFIRSTLANE_B32 ||
9485 opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR)
9486 return InstructionUniformity::AlwaysUniform;
9487
9488 if (isCopyInstr(MI)) {
9489 const MachineOperand &srcOp = MI.getOperand(i: 1);
9490 if (srcOp.isReg() && srcOp.getReg().isPhysical()) {
9491 const TargetRegisterClass *regClass =
9492 RI.getPhysRegBaseClass(srcOp.getReg());
9493 return RI.isSGPRClass(regClass) ? InstructionUniformity::AlwaysUniform
9494 : InstructionUniformity::NeverUniform;
9495 }
9496 return InstructionUniformity::Default;
9497 }
9498
9499 // GMIR handling
9500 if (MI.isPreISelOpcode())
9501 return SIInstrInfo::getGenericInstructionUniformity(MI);
9502
9503 // Atomics are divergent because they are executed sequentially: when an
9504 // atomic operation refers to the same address in each thread, then each
9505 // thread after the first sees the value written by the previous thread as
9506 // original value.
9507
9508 if (isAtomic(MI))
9509 return InstructionUniformity::NeverUniform;
9510
9511 // Loads from the private and flat address spaces are divergent, because
9512 // threads can execute the load instruction with the same inputs and get
9513 // different results.
9514 if (isFLAT(MI) && MI.mayLoad()) {
9515 if (MI.memoperands_empty())
9516 return InstructionUniformity::NeverUniform; // conservative assumption
9517
9518 if (llvm::any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *mmo) {
9519 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
9520 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS;
9521 })) {
9522 // At least one MMO in a non-global address space.
9523 return InstructionUniformity::NeverUniform;
9524 }
9525
9526 return InstructionUniformity::Default;
9527 }
9528
9529 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
9530 const AMDGPURegisterBankInfo *RBI = ST.getRegBankInfo();
9531
9532 // FIXME: It's conceptually broken to report this for an instruction, and not
9533 // a specific def operand. For inline asm in particular, there could be mixed
9534 // uniform and divergent results.
9535 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
9536 const MachineOperand &SrcOp = MI.getOperand(i: I);
9537 if (!SrcOp.isReg())
9538 continue;
9539
9540 Register Reg = SrcOp.getReg();
9541 if (!Reg || !SrcOp.readsReg())
9542 continue;
9543
9544 // If RegBank is null, this is unassigned or an unallocatable special
9545 // register, which are all scalars.
9546 const RegisterBank *RegBank = RBI->getRegBank(Reg, MRI, RI);
9547 if (RegBank && RegBank->getID() != AMDGPU::SGPRRegBankID)
9548 return InstructionUniformity::NeverUniform;
9549 }
9550
9551 // TODO: Uniformity check condtions above can be rearranged for more
9552 // redability
9553
9554 // TODO: amdgcn.{ballot, [if]cmp} should be AlwaysUniform, but they are
9555 // currently turned into no-op COPYs by SelectionDAG ISel and are
9556 // therefore no longer recognizable.
9557
9558 return InstructionUniformity::Default;
9559}
9560
9561unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) {
9562 switch (MF.getFunction().getCallingConv()) {
9563 case CallingConv::AMDGPU_PS:
9564 return 1;
9565 case CallingConv::AMDGPU_VS:
9566 return 2;
9567 case CallingConv::AMDGPU_GS:
9568 return 3;
9569 case CallingConv::AMDGPU_HS:
9570 case CallingConv::AMDGPU_LS:
9571 case CallingConv::AMDGPU_ES:
9572 report_fatal_error(reason: "ds_ordered_count unsupported for this calling conv");
9573 case CallingConv::AMDGPU_CS:
9574 case CallingConv::AMDGPU_KERNEL:
9575 case CallingConv::C:
9576 case CallingConv::Fast:
9577 default:
9578 // Assume other calling conventions are various compute callable functions
9579 return 0;
9580 }
9581}
9582
9583bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
9584 Register &SrcReg2, int64_t &CmpMask,
9585 int64_t &CmpValue) const {
9586 if (!MI.getOperand(i: 0).isReg() || MI.getOperand(i: 0).getSubReg())
9587 return false;
9588
9589 switch (MI.getOpcode()) {
9590 default:
9591 break;
9592 case AMDGPU::S_CMP_EQ_U32:
9593 case AMDGPU::S_CMP_EQ_I32:
9594 case AMDGPU::S_CMP_LG_U32:
9595 case AMDGPU::S_CMP_LG_I32:
9596 case AMDGPU::S_CMP_LT_U32:
9597 case AMDGPU::S_CMP_LT_I32:
9598 case AMDGPU::S_CMP_GT_U32:
9599 case AMDGPU::S_CMP_GT_I32:
9600 case AMDGPU::S_CMP_LE_U32:
9601 case AMDGPU::S_CMP_LE_I32:
9602 case AMDGPU::S_CMP_GE_U32:
9603 case AMDGPU::S_CMP_GE_I32:
9604 case AMDGPU::S_CMP_EQ_U64:
9605 case AMDGPU::S_CMP_LG_U64:
9606 SrcReg = MI.getOperand(i: 0).getReg();
9607 if (MI.getOperand(i: 1).isReg()) {
9608 if (MI.getOperand(i: 1).getSubReg())
9609 return false;
9610 SrcReg2 = MI.getOperand(i: 1).getReg();
9611 CmpValue = 0;
9612 } else if (MI.getOperand(i: 1).isImm()) {
9613 SrcReg2 = Register();
9614 CmpValue = MI.getOperand(i: 1).getImm();
9615 } else {
9616 return false;
9617 }
9618 CmpMask = ~0;
9619 return true;
9620 case AMDGPU::S_CMPK_EQ_U32:
9621 case AMDGPU::S_CMPK_EQ_I32:
9622 case AMDGPU::S_CMPK_LG_U32:
9623 case AMDGPU::S_CMPK_LG_I32:
9624 case AMDGPU::S_CMPK_LT_U32:
9625 case AMDGPU::S_CMPK_LT_I32:
9626 case AMDGPU::S_CMPK_GT_U32:
9627 case AMDGPU::S_CMPK_GT_I32:
9628 case AMDGPU::S_CMPK_LE_U32:
9629 case AMDGPU::S_CMPK_LE_I32:
9630 case AMDGPU::S_CMPK_GE_U32:
9631 case AMDGPU::S_CMPK_GE_I32:
9632 SrcReg = MI.getOperand(i: 0).getReg();
9633 SrcReg2 = Register();
9634 CmpValue = MI.getOperand(i: 1).getImm();
9635 CmpMask = ~0;
9636 return true;
9637 }
9638
9639 return false;
9640}
9641
9642bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
9643 Register SrcReg2, int64_t CmpMask,
9644 int64_t CmpValue,
9645 const MachineRegisterInfo *MRI) const {
9646 if (!SrcReg || SrcReg.isPhysical())
9647 return false;
9648
9649 if (SrcReg2 && !getFoldableImm(Reg: SrcReg2, MRI: *MRI, Imm&: CmpValue))
9650 return false;
9651
9652 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI,
9653 this](int64_t ExpectedValue, unsigned SrcSize,
9654 bool IsReversible, bool IsSigned) -> bool {
9655 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9656 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9657 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9658 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9659 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n
9660 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9661 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9662 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9663 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9664 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n
9665 //
9666 // Signed ge/gt are not used for the sign bit.
9667 //
9668 // If result of the AND is unused except in the compare:
9669 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n
9670 //
9671 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
9672 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
9673 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n
9674 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
9675 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
9676 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n
9677
9678 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: SrcReg);
9679 if (!Def || Def->getParent() != CmpInstr.getParent())
9680 return false;
9681
9682 if (Def->getOpcode() != AMDGPU::S_AND_B32 &&
9683 Def->getOpcode() != AMDGPU::S_AND_B64)
9684 return false;
9685
9686 int64_t Mask;
9687 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool {
9688 if (MO->isImm())
9689 Mask = MO->getImm();
9690 else if (!getFoldableImm(MO, Imm&: Mask))
9691 return false;
9692 Mask &= maxUIntN(N: SrcSize);
9693 return isPowerOf2_64(Value: Mask);
9694 };
9695
9696 MachineOperand *SrcOp = &Def->getOperand(i: 1);
9697 if (isMask(SrcOp))
9698 SrcOp = &Def->getOperand(i: 2);
9699 else if (isMask(&Def->getOperand(i: 2)))
9700 SrcOp = &Def->getOperand(i: 1);
9701 else
9702 return false;
9703
9704 unsigned BitNo = llvm::countr_zero(Val: (uint64_t)Mask);
9705 if (IsSigned && BitNo == SrcSize - 1)
9706 return false;
9707
9708 ExpectedValue <<= BitNo;
9709
9710 bool IsReversedCC = false;
9711 if (CmpValue != ExpectedValue) {
9712 if (!IsReversible)
9713 return false;
9714 IsReversedCC = CmpValue == (ExpectedValue ^ Mask);
9715 if (!IsReversedCC)
9716 return false;
9717 }
9718
9719 Register DefReg = Def->getOperand(i: 0).getReg();
9720 if (IsReversedCC && !MRI->hasOneNonDBGUse(RegNo: DefReg))
9721 return false;
9722
9723 for (auto I = std::next(x: Def->getIterator()), E = CmpInstr.getIterator();
9724 I != E; ++I) {
9725 if (I->modifiesRegister(AMDGPU::SCC, &RI) ||
9726 I->killsRegister(AMDGPU::SCC, &RI))
9727 return false;
9728 }
9729
9730 MachineOperand *SccDef = Def->findRegisterDefOperand(AMDGPU::SCC);
9731 SccDef->setIsDead(false);
9732 CmpInstr.eraseFromParent();
9733
9734 if (!MRI->use_nodbg_empty(RegNo: DefReg)) {
9735 assert(!IsReversedCC);
9736 return true;
9737 }
9738
9739 // Replace AND with unused result with a S_BITCMP.
9740 MachineBasicBlock *MBB = Def->getParent();
9741
9742 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32
9743 : AMDGPU::S_BITCMP1_B32
9744 : IsReversedCC ? AMDGPU::S_BITCMP0_B64
9745 : AMDGPU::S_BITCMP1_B64;
9746
9747 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc))
9748 .add(*SrcOp)
9749 .addImm(BitNo);
9750 Def->eraseFromParent();
9751
9752 return true;
9753 };
9754
9755 switch (CmpInstr.getOpcode()) {
9756 default:
9757 break;
9758 case AMDGPU::S_CMP_EQ_U32:
9759 case AMDGPU::S_CMP_EQ_I32:
9760 case AMDGPU::S_CMPK_EQ_U32:
9761 case AMDGPU::S_CMPK_EQ_I32:
9762 return optimizeCmpAnd(1, 32, true, false);
9763 case AMDGPU::S_CMP_GE_U32:
9764 case AMDGPU::S_CMPK_GE_U32:
9765 return optimizeCmpAnd(1, 32, false, false);
9766 case AMDGPU::S_CMP_GE_I32:
9767 case AMDGPU::S_CMPK_GE_I32:
9768 return optimizeCmpAnd(1, 32, false, true);
9769 case AMDGPU::S_CMP_EQ_U64:
9770 return optimizeCmpAnd(1, 64, true, false);
9771 case AMDGPU::S_CMP_LG_U32:
9772 case AMDGPU::S_CMP_LG_I32:
9773 case AMDGPU::S_CMPK_LG_U32:
9774 case AMDGPU::S_CMPK_LG_I32:
9775 return optimizeCmpAnd(0, 32, true, false);
9776 case AMDGPU::S_CMP_GT_U32:
9777 case AMDGPU::S_CMPK_GT_U32:
9778 return optimizeCmpAnd(0, 32, false, false);
9779 case AMDGPU::S_CMP_GT_I32:
9780 case AMDGPU::S_CMPK_GT_I32:
9781 return optimizeCmpAnd(0, 32, false, true);
9782 case AMDGPU::S_CMP_LG_U64:
9783 return optimizeCmpAnd(0, 64, true, false);
9784 }
9785
9786 return false;
9787}
9788
9789void SIInstrInfo::enforceOperandRCAlignment(MachineInstr &MI,
9790 unsigned OpName) const {
9791 if (!ST.needsAlignedVGPRs())
9792 return;
9793
9794 int OpNo = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: OpName);
9795 if (OpNo < 0)
9796 return;
9797 MachineOperand &Op = MI.getOperand(i: OpNo);
9798 if (getOpSize(MI, OpNo) > 4)
9799 return;
9800
9801 // Add implicit aligned super-reg to force alignment on the data operand.
9802 const DebugLoc &DL = MI.getDebugLoc();
9803 MachineBasicBlock *BB = MI.getParent();
9804 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9805 Register DataReg = Op.getReg();
9806 bool IsAGPR = RI.isAGPR(MRI, DataReg);
9807 Register Undef = MRI.createVirtualRegister(
9808 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
9809 BuildMI(*BB, MI, DL, get(AMDGPU::IMPLICIT_DEF), Undef);
9810 Register NewVR =
9811 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
9812 : &AMDGPU::VReg_64_Align2RegClass);
9813 BuildMI(*BB, MI, DL, get(AMDGPU::REG_SEQUENCE), NewVR)
9814 .addReg(DataReg, 0, Op.getSubReg())
9815 .addImm(AMDGPU::sub0)
9816 .addReg(Undef)
9817 .addImm(AMDGPU::sub1);
9818 Op.setReg(NewVR);
9819 Op.setSubReg(AMDGPU::sub0);
9820 MI.addOperand(Op: MachineOperand::CreateReg(Reg: NewVR, isDef: false, isImp: true));
9821}
9822

source code of llvm/lib/Target/AMDGPU/SIInstrInfo.cpp