1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * Generic socket support routines. Memory allocators, socket lock/release |
8 | * handler for protocols to use and generic option handler. |
9 | * |
10 | * Authors: Ross Biro |
11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
12 | * Florian La Roche, <flla@stud.uni-sb.de> |
13 | * Alan Cox, <A.Cox@swansea.ac.uk> |
14 | * |
15 | * Fixes: |
16 | * Alan Cox : Numerous verify_area() problems |
17 | * Alan Cox : Connecting on a connecting socket |
18 | * now returns an error for tcp. |
19 | * Alan Cox : sock->protocol is set correctly. |
20 | * and is not sometimes left as 0. |
21 | * Alan Cox : connect handles icmp errors on a |
22 | * connect properly. Unfortunately there |
23 | * is a restart syscall nasty there. I |
24 | * can't match BSD without hacking the C |
25 | * library. Ideas urgently sought! |
26 | * Alan Cox : Disallow bind() to addresses that are |
27 | * not ours - especially broadcast ones!! |
28 | * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) |
29 | * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, |
30 | * instead they leave that for the DESTROY timer. |
31 | * Alan Cox : Clean up error flag in accept |
32 | * Alan Cox : TCP ack handling is buggy, the DESTROY timer |
33 | * was buggy. Put a remove_sock() in the handler |
34 | * for memory when we hit 0. Also altered the timer |
35 | * code. The ACK stuff can wait and needs major |
36 | * TCP layer surgery. |
37 | * Alan Cox : Fixed TCP ack bug, removed remove sock |
38 | * and fixed timer/inet_bh race. |
39 | * Alan Cox : Added zapped flag for TCP |
40 | * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code |
41 | * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb |
42 | * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources |
43 | * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. |
44 | * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... |
45 | * Rick Sladkey : Relaxed UDP rules for matching packets. |
46 | * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support |
47 | * Pauline Middelink : identd support |
48 | * Alan Cox : Fixed connect() taking signals I think. |
49 | * Alan Cox : SO_LINGER supported |
50 | * Alan Cox : Error reporting fixes |
51 | * Anonymous : inet_create tidied up (sk->reuse setting) |
52 | * Alan Cox : inet sockets don't set sk->type! |
53 | * Alan Cox : Split socket option code |
54 | * Alan Cox : Callbacks |
55 | * Alan Cox : Nagle flag for Charles & Johannes stuff |
56 | * Alex : Removed restriction on inet fioctl |
57 | * Alan Cox : Splitting INET from NET core |
58 | * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() |
59 | * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code |
60 | * Alan Cox : Split IP from generic code |
61 | * Alan Cox : New kfree_skbmem() |
62 | * Alan Cox : Make SO_DEBUG superuser only. |
63 | * Alan Cox : Allow anyone to clear SO_DEBUG |
64 | * (compatibility fix) |
65 | * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. |
66 | * Alan Cox : Allocator for a socket is settable. |
67 | * Alan Cox : SO_ERROR includes soft errors. |
68 | * Alan Cox : Allow NULL arguments on some SO_ opts |
69 | * Alan Cox : Generic socket allocation to make hooks |
70 | * easier (suggested by Craig Metz). |
71 | * Michael Pall : SO_ERROR returns positive errno again |
72 | * Steve Whitehouse: Added default destructor to free |
73 | * protocol private data. |
74 | * Steve Whitehouse: Added various other default routines |
75 | * common to several socket families. |
76 | * Chris Evans : Call suser() check last on F_SETOWN |
77 | * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. |
78 | * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() |
79 | * Andi Kleen : Fix write_space callback |
80 | * Chris Evans : Security fixes - signedness again |
81 | * Arnaldo C. Melo : cleanups, use skb_queue_purge |
82 | * |
83 | * To Fix: |
84 | */ |
85 | |
86 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
87 | |
88 | #include <linux/unaligned.h> |
89 | #include <linux/capability.h> |
90 | #include <linux/errno.h> |
91 | #include <linux/errqueue.h> |
92 | #include <linux/types.h> |
93 | #include <linux/socket.h> |
94 | #include <linux/in.h> |
95 | #include <linux/kernel.h> |
96 | #include <linux/module.h> |
97 | #include <linux/proc_fs.h> |
98 | #include <linux/seq_file.h> |
99 | #include <linux/sched.h> |
100 | #include <linux/sched/mm.h> |
101 | #include <linux/timer.h> |
102 | #include <linux/string.h> |
103 | #include <linux/sockios.h> |
104 | #include <linux/net.h> |
105 | #include <linux/mm.h> |
106 | #include <linux/slab.h> |
107 | #include <linux/interrupt.h> |
108 | #include <linux/poll.h> |
109 | #include <linux/tcp.h> |
110 | #include <linux/udp.h> |
111 | #include <linux/init.h> |
112 | #include <linux/highmem.h> |
113 | #include <linux/user_namespace.h> |
114 | #include <linux/static_key.h> |
115 | #include <linux/memcontrol.h> |
116 | #include <linux/prefetch.h> |
117 | #include <linux/compat.h> |
118 | #include <linux/mroute.h> |
119 | #include <linux/mroute6.h> |
120 | #include <linux/icmpv6.h> |
121 | |
122 | #include <linux/uaccess.h> |
123 | |
124 | #include <linux/netdevice.h> |
125 | #include <net/protocol.h> |
126 | #include <linux/skbuff.h> |
127 | #include <linux/skbuff_ref.h> |
128 | #include <net/net_namespace.h> |
129 | #include <net/request_sock.h> |
130 | #include <net/sock.h> |
131 | #include <net/proto_memory.h> |
132 | #include <linux/net_tstamp.h> |
133 | #include <net/xfrm.h> |
134 | #include <linux/ipsec.h> |
135 | #include <net/cls_cgroup.h> |
136 | #include <net/netprio_cgroup.h> |
137 | #include <linux/sock_diag.h> |
138 | |
139 | #include <linux/filter.h> |
140 | #include <net/sock_reuseport.h> |
141 | #include <net/bpf_sk_storage.h> |
142 | |
143 | #include <trace/events/sock.h> |
144 | |
145 | #include <net/tcp.h> |
146 | #include <net/busy_poll.h> |
147 | #include <net/phonet/phonet.h> |
148 | |
149 | #include <linux/ethtool.h> |
150 | |
151 | #include <uapi/linux/pidfd.h> |
152 | |
153 | #include "dev.h" |
154 | |
155 | static DEFINE_MUTEX(proto_list_mutex); |
156 | static LIST_HEAD(proto_list); |
157 | |
158 | static void sock_def_write_space_wfree(struct sock *sk); |
159 | static void sock_def_write_space(struct sock *sk); |
160 | |
161 | /** |
162 | * sk_ns_capable - General socket capability test |
163 | * @sk: Socket to use a capability on or through |
164 | * @user_ns: The user namespace of the capability to use |
165 | * @cap: The capability to use |
166 | * |
167 | * Test to see if the opener of the socket had when the socket was |
168 | * created and the current process has the capability @cap in the user |
169 | * namespace @user_ns. |
170 | */ |
171 | bool sk_ns_capable(const struct sock *sk, |
172 | struct user_namespace *user_ns, int cap) |
173 | { |
174 | return file_ns_capable(file: sk->sk_socket->file, ns: user_ns, cap) && |
175 | ns_capable(ns: user_ns, cap); |
176 | } |
177 | EXPORT_SYMBOL(sk_ns_capable); |
178 | |
179 | /** |
180 | * sk_capable - Socket global capability test |
181 | * @sk: Socket to use a capability on or through |
182 | * @cap: The global capability to use |
183 | * |
184 | * Test to see if the opener of the socket had when the socket was |
185 | * created and the current process has the capability @cap in all user |
186 | * namespaces. |
187 | */ |
188 | bool sk_capable(const struct sock *sk, int cap) |
189 | { |
190 | return sk_ns_capable(sk, &init_user_ns, cap); |
191 | } |
192 | EXPORT_SYMBOL(sk_capable); |
193 | |
194 | /** |
195 | * sk_net_capable - Network namespace socket capability test |
196 | * @sk: Socket to use a capability on or through |
197 | * @cap: The capability to use |
198 | * |
199 | * Test to see if the opener of the socket had when the socket was created |
200 | * and the current process has the capability @cap over the network namespace |
201 | * the socket is a member of. |
202 | */ |
203 | bool sk_net_capable(const struct sock *sk, int cap) |
204 | { |
205 | return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); |
206 | } |
207 | EXPORT_SYMBOL(sk_net_capable); |
208 | |
209 | /* |
210 | * Each address family might have different locking rules, so we have |
211 | * one slock key per address family and separate keys for internal and |
212 | * userspace sockets. |
213 | */ |
214 | static struct lock_class_key af_family_keys[AF_MAX]; |
215 | static struct lock_class_key af_family_kern_keys[AF_MAX]; |
216 | static struct lock_class_key af_family_slock_keys[AF_MAX]; |
217 | static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; |
218 | |
219 | /* |
220 | * Make lock validator output more readable. (we pre-construct these |
221 | * strings build-time, so that runtime initialization of socket |
222 | * locks is fast): |
223 | */ |
224 | |
225 | #define _sock_locks(x) \ |
226 | x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ |
227 | x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ |
228 | x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ |
229 | x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ |
230 | x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ |
231 | x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ |
232 | x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ |
233 | x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ |
234 | x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ |
235 | x "27" , x "28" , x "AF_CAN" , \ |
236 | x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ |
237 | x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ |
238 | x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ |
239 | x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ |
240 | x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ |
241 | x "AF_MCTP" , \ |
242 | x "AF_MAX" |
243 | |
244 | static const char *const af_family_key_strings[AF_MAX+1] = { |
245 | _sock_locks("sk_lock-") |
246 | }; |
247 | static const char *const af_family_slock_key_strings[AF_MAX+1] = { |
248 | _sock_locks("slock-") |
249 | }; |
250 | static const char *const af_family_clock_key_strings[AF_MAX+1] = { |
251 | _sock_locks("clock-") |
252 | }; |
253 | |
254 | static const char *const af_family_kern_key_strings[AF_MAX+1] = { |
255 | _sock_locks("k-sk_lock-") |
256 | }; |
257 | static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { |
258 | _sock_locks("k-slock-") |
259 | }; |
260 | static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { |
261 | _sock_locks("k-clock-") |
262 | }; |
263 | static const char *const af_family_rlock_key_strings[AF_MAX+1] = { |
264 | _sock_locks("rlock-") |
265 | }; |
266 | static const char *const af_family_wlock_key_strings[AF_MAX+1] = { |
267 | _sock_locks("wlock-") |
268 | }; |
269 | static const char *const af_family_elock_key_strings[AF_MAX+1] = { |
270 | _sock_locks("elock-") |
271 | }; |
272 | |
273 | /* |
274 | * sk_callback_lock and sk queues locking rules are per-address-family, |
275 | * so split the lock classes by using a per-AF key: |
276 | */ |
277 | static struct lock_class_key af_callback_keys[AF_MAX]; |
278 | static struct lock_class_key af_rlock_keys[AF_MAX]; |
279 | static struct lock_class_key af_wlock_keys[AF_MAX]; |
280 | static struct lock_class_key af_elock_keys[AF_MAX]; |
281 | static struct lock_class_key af_kern_callback_keys[AF_MAX]; |
282 | |
283 | /* Run time adjustable parameters. */ |
284 | __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; |
285 | EXPORT_SYMBOL(sysctl_wmem_max); |
286 | __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; |
287 | EXPORT_SYMBOL(sysctl_rmem_max); |
288 | __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; |
289 | __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; |
290 | |
291 | DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); |
292 | EXPORT_SYMBOL_GPL(memalloc_socks_key); |
293 | |
294 | /** |
295 | * sk_set_memalloc - sets %SOCK_MEMALLOC |
296 | * @sk: socket to set it on |
297 | * |
298 | * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. |
299 | * It's the responsibility of the admin to adjust min_free_kbytes |
300 | * to meet the requirements |
301 | */ |
302 | void sk_set_memalloc(struct sock *sk) |
303 | { |
304 | sock_set_flag(sk, flag: SOCK_MEMALLOC); |
305 | sk->sk_allocation |= __GFP_MEMALLOC; |
306 | static_branch_inc(&memalloc_socks_key); |
307 | } |
308 | EXPORT_SYMBOL_GPL(sk_set_memalloc); |
309 | |
310 | void sk_clear_memalloc(struct sock *sk) |
311 | { |
312 | sock_reset_flag(sk, flag: SOCK_MEMALLOC); |
313 | sk->sk_allocation &= ~__GFP_MEMALLOC; |
314 | static_branch_dec(&memalloc_socks_key); |
315 | |
316 | /* |
317 | * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward |
318 | * progress of swapping. SOCK_MEMALLOC may be cleared while |
319 | * it has rmem allocations due to the last swapfile being deactivated |
320 | * but there is a risk that the socket is unusable due to exceeding |
321 | * the rmem limits. Reclaim the reserves and obey rmem limits again. |
322 | */ |
323 | sk_mem_reclaim(sk); |
324 | } |
325 | EXPORT_SYMBOL_GPL(sk_clear_memalloc); |
326 | |
327 | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
328 | { |
329 | int ret; |
330 | unsigned int noreclaim_flag; |
331 | |
332 | /* these should have been dropped before queueing */ |
333 | BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); |
334 | |
335 | noreclaim_flag = memalloc_noreclaim_save(); |
336 | ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
337 | tcp_v6_do_rcv, |
338 | tcp_v4_do_rcv, |
339 | sk, skb); |
340 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
341 | |
342 | return ret; |
343 | } |
344 | EXPORT_SYMBOL(__sk_backlog_rcv); |
345 | |
346 | void sk_error_report(struct sock *sk) |
347 | { |
348 | sk->sk_error_report(sk); |
349 | |
350 | switch (sk->sk_family) { |
351 | case AF_INET: |
352 | fallthrough; |
353 | case AF_INET6: |
354 | trace_inet_sk_error_report(sk); |
355 | break; |
356 | default: |
357 | break; |
358 | } |
359 | } |
360 | EXPORT_SYMBOL(sk_error_report); |
361 | |
362 | int sock_get_timeout(long timeo, void *optval, bool old_timeval) |
363 | { |
364 | struct __kernel_sock_timeval tv; |
365 | |
366 | if (timeo == MAX_SCHEDULE_TIMEOUT) { |
367 | tv.tv_sec = 0; |
368 | tv.tv_usec = 0; |
369 | } else { |
370 | tv.tv_sec = timeo / HZ; |
371 | tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; |
372 | } |
373 | |
374 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
375 | struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; |
376 | *(struct old_timeval32 *)optval = tv32; |
377 | return sizeof(tv32); |
378 | } |
379 | |
380 | if (old_timeval) { |
381 | struct __kernel_old_timeval old_tv; |
382 | old_tv.tv_sec = tv.tv_sec; |
383 | old_tv.tv_usec = tv.tv_usec; |
384 | *(struct __kernel_old_timeval *)optval = old_tv; |
385 | return sizeof(old_tv); |
386 | } |
387 | |
388 | *(struct __kernel_sock_timeval *)optval = tv; |
389 | return sizeof(tv); |
390 | } |
391 | EXPORT_SYMBOL(sock_get_timeout); |
392 | |
393 | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
394 | sockptr_t optval, int optlen, bool old_timeval) |
395 | { |
396 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
397 | struct old_timeval32 tv32; |
398 | |
399 | if (optlen < sizeof(tv32)) |
400 | return -EINVAL; |
401 | |
402 | if (copy_from_sockptr(dst: &tv32, src: optval, size: sizeof(tv32))) |
403 | return -EFAULT; |
404 | tv->tv_sec = tv32.tv_sec; |
405 | tv->tv_usec = tv32.tv_usec; |
406 | } else if (old_timeval) { |
407 | struct __kernel_old_timeval old_tv; |
408 | |
409 | if (optlen < sizeof(old_tv)) |
410 | return -EINVAL; |
411 | if (copy_from_sockptr(dst: &old_tv, src: optval, size: sizeof(old_tv))) |
412 | return -EFAULT; |
413 | tv->tv_sec = old_tv.tv_sec; |
414 | tv->tv_usec = old_tv.tv_usec; |
415 | } else { |
416 | if (optlen < sizeof(*tv)) |
417 | return -EINVAL; |
418 | if (copy_from_sockptr(dst: tv, src: optval, size: sizeof(*tv))) |
419 | return -EFAULT; |
420 | } |
421 | |
422 | return 0; |
423 | } |
424 | EXPORT_SYMBOL(sock_copy_user_timeval); |
425 | |
426 | static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, |
427 | bool old_timeval) |
428 | { |
429 | struct __kernel_sock_timeval tv; |
430 | int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); |
431 | long val; |
432 | |
433 | if (err) |
434 | return err; |
435 | |
436 | if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) |
437 | return -EDOM; |
438 | |
439 | if (tv.tv_sec < 0) { |
440 | static int warned __read_mostly; |
441 | |
442 | WRITE_ONCE(*timeo_p, 0); |
443 | if (warned < 10 && net_ratelimit()) { |
444 | warned++; |
445 | pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", |
446 | __func__, current->comm, task_pid_nr(current)); |
447 | } |
448 | return 0; |
449 | } |
450 | val = MAX_SCHEDULE_TIMEOUT; |
451 | if ((tv.tv_sec || tv.tv_usec) && |
452 | (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) |
453 | val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, |
454 | USEC_PER_SEC / HZ); |
455 | WRITE_ONCE(*timeo_p, val); |
456 | return 0; |
457 | } |
458 | |
459 | static bool sk_set_prio_allowed(const struct sock *sk, int val) |
460 | { |
461 | return ((val >= TC_PRIO_BESTEFFORT && val <= TC_PRIO_INTERACTIVE) || |
462 | sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) || |
463 | sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN)); |
464 | } |
465 | |
466 | static bool sock_needs_netstamp(const struct sock *sk) |
467 | { |
468 | switch (sk->sk_family) { |
469 | case AF_UNSPEC: |
470 | case AF_UNIX: |
471 | return false; |
472 | default: |
473 | return true; |
474 | } |
475 | } |
476 | |
477 | static void sock_disable_timestamp(struct sock *sk, unsigned long flags) |
478 | { |
479 | if (sk->sk_flags & flags) { |
480 | sk->sk_flags &= ~flags; |
481 | if (sock_needs_netstamp(sk) && |
482 | !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) |
483 | net_disable_timestamp(); |
484 | } |
485 | } |
486 | |
487 | |
488 | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
489 | { |
490 | unsigned long flags; |
491 | struct sk_buff_head *list = &sk->sk_receive_queue; |
492 | |
493 | if (atomic_read(v: &sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { |
494 | atomic_inc(v: &sk->sk_drops); |
495 | trace_sock_rcvqueue_full(sk, skb); |
496 | return -ENOMEM; |
497 | } |
498 | |
499 | if (!sk_rmem_schedule(sk, skb, size: skb->truesize)) { |
500 | atomic_inc(v: &sk->sk_drops); |
501 | return -ENOBUFS; |
502 | } |
503 | |
504 | skb->dev = NULL; |
505 | skb_set_owner_r(skb, sk); |
506 | |
507 | /* we escape from rcu protected region, make sure we dont leak |
508 | * a norefcounted dst |
509 | */ |
510 | skb_dst_force(skb); |
511 | |
512 | spin_lock_irqsave(&list->lock, flags); |
513 | sock_skb_set_dropcount(sk, skb); |
514 | __skb_queue_tail(list, newsk: skb); |
515 | spin_unlock_irqrestore(lock: &list->lock, flags); |
516 | |
517 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
518 | sk->sk_data_ready(sk); |
519 | return 0; |
520 | } |
521 | EXPORT_SYMBOL(__sock_queue_rcv_skb); |
522 | |
523 | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
524 | enum skb_drop_reason *reason) |
525 | { |
526 | enum skb_drop_reason drop_reason; |
527 | int err; |
528 | |
529 | err = sk_filter(sk, skb); |
530 | if (err) { |
531 | drop_reason = SKB_DROP_REASON_SOCKET_FILTER; |
532 | goto out; |
533 | } |
534 | err = __sock_queue_rcv_skb(sk, skb); |
535 | switch (err) { |
536 | case -ENOMEM: |
537 | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; |
538 | break; |
539 | case -ENOBUFS: |
540 | drop_reason = SKB_DROP_REASON_PROTO_MEM; |
541 | break; |
542 | default: |
543 | drop_reason = SKB_NOT_DROPPED_YET; |
544 | break; |
545 | } |
546 | out: |
547 | if (reason) |
548 | *reason = drop_reason; |
549 | return err; |
550 | } |
551 | EXPORT_SYMBOL(sock_queue_rcv_skb_reason); |
552 | |
553 | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
554 | const int nested, unsigned int trim_cap, bool refcounted) |
555 | { |
556 | int rc = NET_RX_SUCCESS; |
557 | |
558 | if (sk_filter_trim_cap(sk, skb, cap: trim_cap)) |
559 | goto discard_and_relse; |
560 | |
561 | skb->dev = NULL; |
562 | |
563 | if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { |
564 | atomic_inc(v: &sk->sk_drops); |
565 | goto discard_and_relse; |
566 | } |
567 | if (nested) |
568 | bh_lock_sock_nested(sk); |
569 | else |
570 | bh_lock_sock(sk); |
571 | if (!sock_owned_by_user(sk)) { |
572 | /* |
573 | * trylock + unlock semantics: |
574 | */ |
575 | mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); |
576 | |
577 | rc = sk_backlog_rcv(sk, skb); |
578 | |
579 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
580 | } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { |
581 | bh_unlock_sock(sk); |
582 | atomic_inc(v: &sk->sk_drops); |
583 | goto discard_and_relse; |
584 | } |
585 | |
586 | bh_unlock_sock(sk); |
587 | out: |
588 | if (refcounted) |
589 | sock_put(sk); |
590 | return rc; |
591 | discard_and_relse: |
592 | kfree_skb(skb); |
593 | goto out; |
594 | } |
595 | EXPORT_SYMBOL(__sk_receive_skb); |
596 | |
597 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, |
598 | u32)); |
599 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, |
600 | u32)); |
601 | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) |
602 | { |
603 | struct dst_entry *dst = __sk_dst_get(sk); |
604 | |
605 | if (dst && dst->obsolete && |
606 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
607 | dst, cookie) == NULL) { |
608 | sk_tx_queue_clear(sk); |
609 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
610 | RCU_INIT_POINTER(sk->sk_dst_cache, NULL); |
611 | dst_release(dst); |
612 | return NULL; |
613 | } |
614 | |
615 | return dst; |
616 | } |
617 | EXPORT_SYMBOL(__sk_dst_check); |
618 | |
619 | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) |
620 | { |
621 | struct dst_entry *dst = sk_dst_get(sk); |
622 | |
623 | if (dst && dst->obsolete && |
624 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
625 | dst, cookie) == NULL) { |
626 | sk_dst_reset(sk); |
627 | dst_release(dst); |
628 | return NULL; |
629 | } |
630 | |
631 | return dst; |
632 | } |
633 | EXPORT_SYMBOL(sk_dst_check); |
634 | |
635 | static int sock_bindtoindex_locked(struct sock *sk, int ifindex) |
636 | { |
637 | int ret = -ENOPROTOOPT; |
638 | #ifdef CONFIG_NETDEVICES |
639 | struct net *net = sock_net(sk); |
640 | |
641 | /* Sorry... */ |
642 | ret = -EPERM; |
643 | if (sk->sk_bound_dev_if && !ns_capable(ns: net->user_ns, CAP_NET_RAW)) |
644 | goto out; |
645 | |
646 | ret = -EINVAL; |
647 | if (ifindex < 0) |
648 | goto out; |
649 | |
650 | /* Paired with all READ_ONCE() done locklessly. */ |
651 | WRITE_ONCE(sk->sk_bound_dev_if, ifindex); |
652 | |
653 | if (sk->sk_prot->rehash) |
654 | sk->sk_prot->rehash(sk); |
655 | sk_dst_reset(sk); |
656 | |
657 | ret = 0; |
658 | |
659 | out: |
660 | #endif |
661 | |
662 | return ret; |
663 | } |
664 | |
665 | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) |
666 | { |
667 | int ret; |
668 | |
669 | if (lock_sk) |
670 | lock_sock(sk); |
671 | ret = sock_bindtoindex_locked(sk, ifindex); |
672 | if (lock_sk) |
673 | release_sock(sk); |
674 | |
675 | return ret; |
676 | } |
677 | EXPORT_SYMBOL(sock_bindtoindex); |
678 | |
679 | static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) |
680 | { |
681 | int ret = -ENOPROTOOPT; |
682 | #ifdef CONFIG_NETDEVICES |
683 | struct net *net = sock_net(sk); |
684 | char devname[IFNAMSIZ]; |
685 | int index; |
686 | |
687 | ret = -EINVAL; |
688 | if (optlen < 0) |
689 | goto out; |
690 | |
691 | /* Bind this socket to a particular device like "eth0", |
692 | * as specified in the passed interface name. If the |
693 | * name is "" or the option length is zero the socket |
694 | * is not bound. |
695 | */ |
696 | if (optlen > IFNAMSIZ - 1) |
697 | optlen = IFNAMSIZ - 1; |
698 | memset(devname, 0, sizeof(devname)); |
699 | |
700 | ret = -EFAULT; |
701 | if (copy_from_sockptr(dst: devname, src: optval, size: optlen)) |
702 | goto out; |
703 | |
704 | index = 0; |
705 | if (devname[0] != '\0') { |
706 | struct net_device *dev; |
707 | |
708 | rcu_read_lock(); |
709 | dev = dev_get_by_name_rcu(net, name: devname); |
710 | if (dev) |
711 | index = dev->ifindex; |
712 | rcu_read_unlock(); |
713 | ret = -ENODEV; |
714 | if (!dev) |
715 | goto out; |
716 | } |
717 | |
718 | sockopt_lock_sock(sk); |
719 | ret = sock_bindtoindex_locked(sk, ifindex: index); |
720 | sockopt_release_sock(sk); |
721 | out: |
722 | #endif |
723 | |
724 | return ret; |
725 | } |
726 | |
727 | static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, |
728 | sockptr_t optlen, int len) |
729 | { |
730 | int ret = -ENOPROTOOPT; |
731 | #ifdef CONFIG_NETDEVICES |
732 | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
733 | struct net *net = sock_net(sk); |
734 | char devname[IFNAMSIZ]; |
735 | |
736 | if (bound_dev_if == 0) { |
737 | len = 0; |
738 | goto zero; |
739 | } |
740 | |
741 | ret = -EINVAL; |
742 | if (len < IFNAMSIZ) |
743 | goto out; |
744 | |
745 | ret = netdev_get_name(net, name: devname, ifindex: bound_dev_if); |
746 | if (ret) |
747 | goto out; |
748 | |
749 | len = strlen(devname) + 1; |
750 | |
751 | ret = -EFAULT; |
752 | if (copy_to_sockptr(dst: optval, src: devname, size: len)) |
753 | goto out; |
754 | |
755 | zero: |
756 | ret = -EFAULT; |
757 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
758 | goto out; |
759 | |
760 | ret = 0; |
761 | |
762 | out: |
763 | #endif |
764 | |
765 | return ret; |
766 | } |
767 | |
768 | bool sk_mc_loop(const struct sock *sk) |
769 | { |
770 | if (dev_recursion_level()) |
771 | return false; |
772 | if (!sk) |
773 | return true; |
774 | /* IPV6_ADDRFORM can change sk->sk_family under us. */ |
775 | switch (READ_ONCE(sk->sk_family)) { |
776 | case AF_INET: |
777 | return inet_test_bit(MC_LOOP, sk); |
778 | #if IS_ENABLED(CONFIG_IPV6) |
779 | case AF_INET6: |
780 | return inet6_test_bit(MC6_LOOP, sk); |
781 | #endif |
782 | } |
783 | WARN_ON_ONCE(1); |
784 | return true; |
785 | } |
786 | EXPORT_SYMBOL(sk_mc_loop); |
787 | |
788 | void sock_set_reuseaddr(struct sock *sk) |
789 | { |
790 | lock_sock(sk); |
791 | sk->sk_reuse = SK_CAN_REUSE; |
792 | release_sock(sk); |
793 | } |
794 | EXPORT_SYMBOL(sock_set_reuseaddr); |
795 | |
796 | void sock_set_reuseport(struct sock *sk) |
797 | { |
798 | lock_sock(sk); |
799 | sk->sk_reuseport = true; |
800 | release_sock(sk); |
801 | } |
802 | EXPORT_SYMBOL(sock_set_reuseport); |
803 | |
804 | void sock_no_linger(struct sock *sk) |
805 | { |
806 | lock_sock(sk); |
807 | WRITE_ONCE(sk->sk_lingertime, 0); |
808 | sock_set_flag(sk, flag: SOCK_LINGER); |
809 | release_sock(sk); |
810 | } |
811 | EXPORT_SYMBOL(sock_no_linger); |
812 | |
813 | void sock_set_priority(struct sock *sk, u32 priority) |
814 | { |
815 | WRITE_ONCE(sk->sk_priority, priority); |
816 | } |
817 | EXPORT_SYMBOL(sock_set_priority); |
818 | |
819 | void sock_set_sndtimeo(struct sock *sk, s64 secs) |
820 | { |
821 | lock_sock(sk); |
822 | if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) |
823 | WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); |
824 | else |
825 | WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); |
826 | release_sock(sk); |
827 | } |
828 | EXPORT_SYMBOL(sock_set_sndtimeo); |
829 | |
830 | static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) |
831 | { |
832 | sock_valbool_flag(sk, bit: SOCK_RCVTSTAMP, valbool: val); |
833 | sock_valbool_flag(sk, bit: SOCK_RCVTSTAMPNS, valbool: val && ns); |
834 | if (val) { |
835 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: new); |
836 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
837 | } |
838 | } |
839 | |
840 | void sock_enable_timestamps(struct sock *sk) |
841 | { |
842 | lock_sock(sk); |
843 | __sock_set_timestamps(sk, val: true, new: false, ns: true); |
844 | release_sock(sk); |
845 | } |
846 | EXPORT_SYMBOL(sock_enable_timestamps); |
847 | |
848 | void sock_set_timestamp(struct sock *sk, int optname, bool valbool) |
849 | { |
850 | switch (optname) { |
851 | case SO_TIMESTAMP_OLD: |
852 | __sock_set_timestamps(sk, val: valbool, new: false, ns: false); |
853 | break; |
854 | case SO_TIMESTAMP_NEW: |
855 | __sock_set_timestamps(sk, val: valbool, new: true, ns: false); |
856 | break; |
857 | case SO_TIMESTAMPNS_OLD: |
858 | __sock_set_timestamps(sk, val: valbool, new: false, ns: true); |
859 | break; |
860 | case SO_TIMESTAMPNS_NEW: |
861 | __sock_set_timestamps(sk, val: valbool, new: true, ns: true); |
862 | break; |
863 | } |
864 | } |
865 | |
866 | static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) |
867 | { |
868 | struct net *net = sock_net(sk); |
869 | struct net_device *dev = NULL; |
870 | bool match = false; |
871 | int *vclock_index; |
872 | int i, num; |
873 | |
874 | if (sk->sk_bound_dev_if) |
875 | dev = dev_get_by_index(net, ifindex: sk->sk_bound_dev_if); |
876 | |
877 | if (!dev) { |
878 | pr_err("%s: sock not bind to device\n", __func__); |
879 | return -EOPNOTSUPP; |
880 | } |
881 | |
882 | num = ethtool_get_phc_vclocks(dev, vclock_index: &vclock_index); |
883 | dev_put(dev); |
884 | |
885 | for (i = 0; i < num; i++) { |
886 | if (*(vclock_index + i) == phc_index) { |
887 | match = true; |
888 | break; |
889 | } |
890 | } |
891 | |
892 | if (num > 0) |
893 | kfree(objp: vclock_index); |
894 | |
895 | if (!match) |
896 | return -EINVAL; |
897 | |
898 | WRITE_ONCE(sk->sk_bind_phc, phc_index); |
899 | |
900 | return 0; |
901 | } |
902 | |
903 | int sock_set_timestamping(struct sock *sk, int optname, |
904 | struct so_timestamping timestamping) |
905 | { |
906 | int val = timestamping.flags; |
907 | int ret; |
908 | |
909 | if (val & ~SOF_TIMESTAMPING_MASK) |
910 | return -EINVAL; |
911 | |
912 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP && |
913 | !(val & SOF_TIMESTAMPING_OPT_ID)) |
914 | return -EINVAL; |
915 | |
916 | if (val & SOF_TIMESTAMPING_OPT_ID && |
917 | !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { |
918 | if (sk_is_tcp(sk)) { |
919 | if ((1 << sk->sk_state) & |
920 | (TCPF_CLOSE | TCPF_LISTEN)) |
921 | return -EINVAL; |
922 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP) |
923 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->write_seq); |
924 | else |
925 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->snd_una); |
926 | } else { |
927 | atomic_set(v: &sk->sk_tskey, i: 0); |
928 | } |
929 | } |
930 | |
931 | if (val & SOF_TIMESTAMPING_OPT_STATS && |
932 | !(val & SOF_TIMESTAMPING_OPT_TSONLY)) |
933 | return -EINVAL; |
934 | |
935 | if (val & SOF_TIMESTAMPING_BIND_PHC) { |
936 | ret = sock_timestamping_bind_phc(sk, phc_index: timestamping.bind_phc); |
937 | if (ret) |
938 | return ret; |
939 | } |
940 | |
941 | WRITE_ONCE(sk->sk_tsflags, val); |
942 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: optname == SO_TIMESTAMPING_NEW); |
943 | sock_valbool_flag(sk, bit: SOCK_TIMESTAMPING_ANY, valbool: !!(val & TSFLAGS_ANY)); |
944 | |
945 | if (val & SOF_TIMESTAMPING_RX_SOFTWARE) |
946 | sock_enable_timestamp(sk, |
947 | flag: SOCK_TIMESTAMPING_RX_SOFTWARE); |
948 | else |
949 | sock_disable_timestamp(sk, |
950 | flags: (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); |
951 | return 0; |
952 | } |
953 | |
954 | #if defined(CONFIG_CGROUP_BPF) |
955 | void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) |
956 | { |
957 | struct bpf_sock_ops_kern sock_ops; |
958 | |
959 | memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); |
960 | sock_ops.op = op; |
961 | sock_ops.is_fullsock = 1; |
962 | sock_ops.sk = sk; |
963 | bpf_skops_init_skb(skops: &sock_ops, skb, end_offset: 0); |
964 | __cgroup_bpf_run_filter_sock_ops(sk, sock_ops: &sock_ops, atype: CGROUP_SOCK_OPS); |
965 | } |
966 | #endif |
967 | |
968 | void sock_set_keepalive(struct sock *sk) |
969 | { |
970 | lock_sock(sk); |
971 | if (sk->sk_prot->keepalive) |
972 | sk->sk_prot->keepalive(sk, true); |
973 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool: true); |
974 | release_sock(sk); |
975 | } |
976 | EXPORT_SYMBOL(sock_set_keepalive); |
977 | |
978 | static void __sock_set_rcvbuf(struct sock *sk, int val) |
979 | { |
980 | /* Ensure val * 2 fits into an int, to prevent max_t() from treating it |
981 | * as a negative value. |
982 | */ |
983 | val = min_t(int, val, INT_MAX / 2); |
984 | sk->sk_userlocks |= SOCK_RCVBUF_LOCK; |
985 | |
986 | /* We double it on the way in to account for "struct sk_buff" etc. |
987 | * overhead. Applications assume that the SO_RCVBUF setting they make |
988 | * will allow that much actual data to be received on that socket. |
989 | * |
990 | * Applications are unaware that "struct sk_buff" and other overheads |
991 | * allocate from the receive buffer during socket buffer allocation. |
992 | * |
993 | * And after considering the possible alternatives, returning the value |
994 | * we actually used in getsockopt is the most desirable behavior. |
995 | */ |
996 | WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); |
997 | } |
998 | |
999 | void sock_set_rcvbuf(struct sock *sk, int val) |
1000 | { |
1001 | lock_sock(sk); |
1002 | __sock_set_rcvbuf(sk, val); |
1003 | release_sock(sk); |
1004 | } |
1005 | EXPORT_SYMBOL(sock_set_rcvbuf); |
1006 | |
1007 | static void __sock_set_mark(struct sock *sk, u32 val) |
1008 | { |
1009 | if (val != sk->sk_mark) { |
1010 | WRITE_ONCE(sk->sk_mark, val); |
1011 | sk_dst_reset(sk); |
1012 | } |
1013 | } |
1014 | |
1015 | void sock_set_mark(struct sock *sk, u32 val) |
1016 | { |
1017 | lock_sock(sk); |
1018 | __sock_set_mark(sk, val); |
1019 | release_sock(sk); |
1020 | } |
1021 | EXPORT_SYMBOL(sock_set_mark); |
1022 | |
1023 | static void sock_release_reserved_memory(struct sock *sk, int bytes) |
1024 | { |
1025 | /* Round down bytes to multiple of pages */ |
1026 | bytes = round_down(bytes, PAGE_SIZE); |
1027 | |
1028 | WARN_ON(bytes > sk->sk_reserved_mem); |
1029 | WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); |
1030 | sk_mem_reclaim(sk); |
1031 | } |
1032 | |
1033 | static int sock_reserve_memory(struct sock *sk, int bytes) |
1034 | { |
1035 | long allocated; |
1036 | bool charged; |
1037 | int pages; |
1038 | |
1039 | if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) |
1040 | return -EOPNOTSUPP; |
1041 | |
1042 | if (!bytes) |
1043 | return 0; |
1044 | |
1045 | pages = sk_mem_pages(amt: bytes); |
1046 | |
1047 | /* pre-charge to memcg */ |
1048 | charged = mem_cgroup_charge_skmem(memcg: sk->sk_memcg, nr_pages: pages, |
1049 | GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
1050 | if (!charged) |
1051 | return -ENOMEM; |
1052 | |
1053 | /* pre-charge to forward_alloc */ |
1054 | sk_memory_allocated_add(sk, val: pages); |
1055 | allocated = sk_memory_allocated(sk); |
1056 | /* If the system goes into memory pressure with this |
1057 | * precharge, give up and return error. |
1058 | */ |
1059 | if (allocated > sk_prot_mem_limits(sk, index: 1)) { |
1060 | sk_memory_allocated_sub(sk, val: pages); |
1061 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: pages); |
1062 | return -ENOMEM; |
1063 | } |
1064 | sk_forward_alloc_add(sk, val: pages << PAGE_SHIFT); |
1065 | |
1066 | WRITE_ONCE(sk->sk_reserved_mem, |
1067 | sk->sk_reserved_mem + (pages << PAGE_SHIFT)); |
1068 | |
1069 | return 0; |
1070 | } |
1071 | |
1072 | #ifdef CONFIG_PAGE_POOL |
1073 | |
1074 | /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED |
1075 | * in 1 syscall. The limit exists to limit the amount of memory the kernel |
1076 | * allocates to copy these tokens, and to prevent looping over the frags for |
1077 | * too long. |
1078 | */ |
1079 | #define MAX_DONTNEED_TOKENS 128 |
1080 | #define MAX_DONTNEED_FRAGS 1024 |
1081 | |
1082 | static noinline_for_stack int |
1083 | sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) |
1084 | { |
1085 | unsigned int num_tokens, i, j, k, netmem_num = 0; |
1086 | struct dmabuf_token *tokens; |
1087 | int ret = 0, num_frags = 0; |
1088 | netmem_ref netmems[16]; |
1089 | |
1090 | if (!sk_is_tcp(sk)) |
1091 | return -EBADF; |
1092 | |
1093 | if (optlen % sizeof(*tokens) || |
1094 | optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) |
1095 | return -EINVAL; |
1096 | |
1097 | num_tokens = optlen / sizeof(*tokens); |
1098 | tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); |
1099 | if (!tokens) |
1100 | return -ENOMEM; |
1101 | |
1102 | if (copy_from_sockptr(dst: tokens, src: optval, size: optlen)) { |
1103 | kvfree(addr: tokens); |
1104 | return -EFAULT; |
1105 | } |
1106 | |
1107 | xa_lock_bh(&sk->sk_user_frags); |
1108 | for (i = 0; i < num_tokens; i++) { |
1109 | for (j = 0; j < tokens[i].token_count; j++) { |
1110 | if (++num_frags > MAX_DONTNEED_FRAGS) |
1111 | goto frag_limit_reached; |
1112 | |
1113 | netmem_ref netmem = (__force netmem_ref)__xa_erase( |
1114 | &sk->sk_user_frags, index: tokens[i].token_start + j); |
1115 | |
1116 | if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) |
1117 | continue; |
1118 | |
1119 | netmems[netmem_num++] = netmem; |
1120 | if (netmem_num == ARRAY_SIZE(netmems)) { |
1121 | xa_unlock_bh(&sk->sk_user_frags); |
1122 | for (k = 0; k < netmem_num; k++) |
1123 | WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
1124 | netmem_num = 0; |
1125 | xa_lock_bh(&sk->sk_user_frags); |
1126 | } |
1127 | ret++; |
1128 | } |
1129 | } |
1130 | |
1131 | frag_limit_reached: |
1132 | xa_unlock_bh(&sk->sk_user_frags); |
1133 | for (k = 0; k < netmem_num; k++) |
1134 | WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
1135 | |
1136 | kvfree(addr: tokens); |
1137 | return ret; |
1138 | } |
1139 | #endif |
1140 | |
1141 | void sockopt_lock_sock(struct sock *sk) |
1142 | { |
1143 | /* When current->bpf_ctx is set, the setsockopt is called from |
1144 | * a bpf prog. bpf has ensured the sk lock has been |
1145 | * acquired before calling setsockopt(). |
1146 | */ |
1147 | if (has_current_bpf_ctx()) |
1148 | return; |
1149 | |
1150 | lock_sock(sk); |
1151 | } |
1152 | EXPORT_SYMBOL(sockopt_lock_sock); |
1153 | |
1154 | void sockopt_release_sock(struct sock *sk) |
1155 | { |
1156 | if (has_current_bpf_ctx()) |
1157 | return; |
1158 | |
1159 | release_sock(sk); |
1160 | } |
1161 | EXPORT_SYMBOL(sockopt_release_sock); |
1162 | |
1163 | bool sockopt_ns_capable(struct user_namespace *ns, int cap) |
1164 | { |
1165 | return has_current_bpf_ctx() || ns_capable(ns, cap); |
1166 | } |
1167 | EXPORT_SYMBOL(sockopt_ns_capable); |
1168 | |
1169 | bool sockopt_capable(int cap) |
1170 | { |
1171 | return has_current_bpf_ctx() || capable(cap); |
1172 | } |
1173 | EXPORT_SYMBOL(sockopt_capable); |
1174 | |
1175 | static int sockopt_validate_clockid(__kernel_clockid_t value) |
1176 | { |
1177 | switch (value) { |
1178 | case CLOCK_REALTIME: |
1179 | case CLOCK_MONOTONIC: |
1180 | case CLOCK_TAI: |
1181 | return 0; |
1182 | } |
1183 | return -EINVAL; |
1184 | } |
1185 | |
1186 | /* |
1187 | * This is meant for all protocols to use and covers goings on |
1188 | * at the socket level. Everything here is generic. |
1189 | */ |
1190 | |
1191 | int sk_setsockopt(struct sock *sk, int level, int optname, |
1192 | sockptr_t optval, unsigned int optlen) |
1193 | { |
1194 | struct so_timestamping timestamping; |
1195 | struct socket *sock = sk->sk_socket; |
1196 | struct sock_txtime sk_txtime; |
1197 | int val; |
1198 | int valbool; |
1199 | struct linger ling; |
1200 | int ret = 0; |
1201 | |
1202 | /* |
1203 | * Options without arguments |
1204 | */ |
1205 | |
1206 | if (optname == SO_BINDTODEVICE) |
1207 | return sock_setbindtodevice(sk, optval, optlen); |
1208 | |
1209 | if (optlen < sizeof(int)) |
1210 | return -EINVAL; |
1211 | |
1212 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
1213 | return -EFAULT; |
1214 | |
1215 | valbool = val ? 1 : 0; |
1216 | |
1217 | /* handle options which do not require locking the socket. */ |
1218 | switch (optname) { |
1219 | case SO_PRIORITY: |
1220 | if (sk_set_prio_allowed(sk, val)) { |
1221 | sock_set_priority(sk, val); |
1222 | return 0; |
1223 | } |
1224 | return -EPERM; |
1225 | case SO_TYPE: |
1226 | case SO_PROTOCOL: |
1227 | case SO_DOMAIN: |
1228 | case SO_ERROR: |
1229 | return -ENOPROTOOPT; |
1230 | #ifdef CONFIG_NET_RX_BUSY_POLL |
1231 | case SO_BUSY_POLL: |
1232 | if (val < 0) |
1233 | return -EINVAL; |
1234 | WRITE_ONCE(sk->sk_ll_usec, val); |
1235 | return 0; |
1236 | case SO_PREFER_BUSY_POLL: |
1237 | if (valbool && !sockopt_capable(CAP_NET_ADMIN)) |
1238 | return -EPERM; |
1239 | WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); |
1240 | return 0; |
1241 | case SO_BUSY_POLL_BUDGET: |
1242 | if (val > READ_ONCE(sk->sk_busy_poll_budget) && |
1243 | !sockopt_capable(CAP_NET_ADMIN)) |
1244 | return -EPERM; |
1245 | if (val < 0 || val > U16_MAX) |
1246 | return -EINVAL; |
1247 | WRITE_ONCE(sk->sk_busy_poll_budget, val); |
1248 | return 0; |
1249 | #endif |
1250 | case SO_MAX_PACING_RATE: |
1251 | { |
1252 | unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; |
1253 | unsigned long pacing_rate; |
1254 | |
1255 | if (sizeof(ulval) != sizeof(val) && |
1256 | optlen >= sizeof(ulval) && |
1257 | copy_from_sockptr(dst: &ulval, src: optval, size: sizeof(ulval))) { |
1258 | return -EFAULT; |
1259 | } |
1260 | if (ulval != ~0UL) |
1261 | cmpxchg(&sk->sk_pacing_status, |
1262 | SK_PACING_NONE, |
1263 | SK_PACING_NEEDED); |
1264 | /* Pairs with READ_ONCE() from sk_getsockopt() */ |
1265 | WRITE_ONCE(sk->sk_max_pacing_rate, ulval); |
1266 | pacing_rate = READ_ONCE(sk->sk_pacing_rate); |
1267 | if (ulval < pacing_rate) |
1268 | WRITE_ONCE(sk->sk_pacing_rate, ulval); |
1269 | return 0; |
1270 | } |
1271 | case SO_TXREHASH: |
1272 | if (!sk_is_tcp(sk)) |
1273 | return -EOPNOTSUPP; |
1274 | if (val < -1 || val > 1) |
1275 | return -EINVAL; |
1276 | if ((u8)val == SOCK_TXREHASH_DEFAULT) |
1277 | val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); |
1278 | /* Paired with READ_ONCE() in tcp_rtx_synack() |
1279 | * and sk_getsockopt(). |
1280 | */ |
1281 | WRITE_ONCE(sk->sk_txrehash, (u8)val); |
1282 | return 0; |
1283 | case SO_PEEK_OFF: |
1284 | { |
1285 | int (*set_peek_off)(struct sock *sk, int val); |
1286 | |
1287 | set_peek_off = READ_ONCE(sock->ops)->set_peek_off; |
1288 | if (set_peek_off) |
1289 | ret = set_peek_off(sk, val); |
1290 | else |
1291 | ret = -EOPNOTSUPP; |
1292 | return ret; |
1293 | } |
1294 | #ifdef CONFIG_PAGE_POOL |
1295 | case SO_DEVMEM_DONTNEED: |
1296 | return sock_devmem_dontneed(sk, optval, optlen); |
1297 | #endif |
1298 | } |
1299 | |
1300 | sockopt_lock_sock(sk); |
1301 | |
1302 | switch (optname) { |
1303 | case SO_DEBUG: |
1304 | if (val && !sockopt_capable(CAP_NET_ADMIN)) |
1305 | ret = -EACCES; |
1306 | else |
1307 | sock_valbool_flag(sk, bit: SOCK_DBG, valbool); |
1308 | break; |
1309 | case SO_REUSEADDR: |
1310 | sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); |
1311 | break; |
1312 | case SO_REUSEPORT: |
1313 | if (valbool && !sk_is_inet(sk)) |
1314 | ret = -EOPNOTSUPP; |
1315 | else |
1316 | sk->sk_reuseport = valbool; |
1317 | break; |
1318 | case SO_DONTROUTE: |
1319 | sock_valbool_flag(sk, bit: SOCK_LOCALROUTE, valbool); |
1320 | sk_dst_reset(sk); |
1321 | break; |
1322 | case SO_BROADCAST: |
1323 | sock_valbool_flag(sk, bit: SOCK_BROADCAST, valbool); |
1324 | break; |
1325 | case SO_SNDBUF: |
1326 | /* Don't error on this BSD doesn't and if you think |
1327 | * about it this is right. Otherwise apps have to |
1328 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
1329 | * are treated in BSD as hints |
1330 | */ |
1331 | val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); |
1332 | set_sndbuf: |
1333 | /* Ensure val * 2 fits into an int, to prevent max_t() |
1334 | * from treating it as a negative value. |
1335 | */ |
1336 | val = min_t(int, val, INT_MAX / 2); |
1337 | sk->sk_userlocks |= SOCK_SNDBUF_LOCK; |
1338 | WRITE_ONCE(sk->sk_sndbuf, |
1339 | max_t(int, val * 2, SOCK_MIN_SNDBUF)); |
1340 | /* Wake up sending tasks if we upped the value. */ |
1341 | sk->sk_write_space(sk); |
1342 | break; |
1343 | |
1344 | case SO_SNDBUFFORCE: |
1345 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
1346 | ret = -EPERM; |
1347 | break; |
1348 | } |
1349 | |
1350 | /* No negative values (to prevent underflow, as val will be |
1351 | * multiplied by 2). |
1352 | */ |
1353 | if (val < 0) |
1354 | val = 0; |
1355 | goto set_sndbuf; |
1356 | |
1357 | case SO_RCVBUF: |
1358 | /* Don't error on this BSD doesn't and if you think |
1359 | * about it this is right. Otherwise apps have to |
1360 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
1361 | * are treated in BSD as hints |
1362 | */ |
1363 | __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); |
1364 | break; |
1365 | |
1366 | case SO_RCVBUFFORCE: |
1367 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
1368 | ret = -EPERM; |
1369 | break; |
1370 | } |
1371 | |
1372 | /* No negative values (to prevent underflow, as val will be |
1373 | * multiplied by 2). |
1374 | */ |
1375 | __sock_set_rcvbuf(sk, max(val, 0)); |
1376 | break; |
1377 | |
1378 | case SO_KEEPALIVE: |
1379 | if (sk->sk_prot->keepalive) |
1380 | sk->sk_prot->keepalive(sk, valbool); |
1381 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool); |
1382 | break; |
1383 | |
1384 | case SO_OOBINLINE: |
1385 | sock_valbool_flag(sk, bit: SOCK_URGINLINE, valbool); |
1386 | break; |
1387 | |
1388 | case SO_NO_CHECK: |
1389 | sk->sk_no_check_tx = valbool; |
1390 | break; |
1391 | |
1392 | case SO_LINGER: |
1393 | if (optlen < sizeof(ling)) { |
1394 | ret = -EINVAL; /* 1003.1g */ |
1395 | break; |
1396 | } |
1397 | if (copy_from_sockptr(dst: &ling, src: optval, size: sizeof(ling))) { |
1398 | ret = -EFAULT; |
1399 | break; |
1400 | } |
1401 | if (!ling.l_onoff) { |
1402 | sock_reset_flag(sk, flag: SOCK_LINGER); |
1403 | } else { |
1404 | unsigned long t_sec = ling.l_linger; |
1405 | |
1406 | if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) |
1407 | WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); |
1408 | else |
1409 | WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); |
1410 | sock_set_flag(sk, flag: SOCK_LINGER); |
1411 | } |
1412 | break; |
1413 | |
1414 | case SO_BSDCOMPAT: |
1415 | break; |
1416 | |
1417 | case SO_TIMESTAMP_OLD: |
1418 | case SO_TIMESTAMP_NEW: |
1419 | case SO_TIMESTAMPNS_OLD: |
1420 | case SO_TIMESTAMPNS_NEW: |
1421 | sock_set_timestamp(sk, optname, valbool); |
1422 | break; |
1423 | |
1424 | case SO_TIMESTAMPING_NEW: |
1425 | case SO_TIMESTAMPING_OLD: |
1426 | if (optlen == sizeof(timestamping)) { |
1427 | if (copy_from_sockptr(dst: ×tamping, src: optval, |
1428 | size: sizeof(timestamping))) { |
1429 | ret = -EFAULT; |
1430 | break; |
1431 | } |
1432 | } else { |
1433 | memset(×tamping, 0, sizeof(timestamping)); |
1434 | timestamping.flags = val; |
1435 | } |
1436 | ret = sock_set_timestamping(sk, optname, timestamping); |
1437 | break; |
1438 | |
1439 | case SO_RCVLOWAT: |
1440 | { |
1441 | int (*set_rcvlowat)(struct sock *sk, int val) = NULL; |
1442 | |
1443 | if (val < 0) |
1444 | val = INT_MAX; |
1445 | if (sock) |
1446 | set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; |
1447 | if (set_rcvlowat) |
1448 | ret = set_rcvlowat(sk, val); |
1449 | else |
1450 | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
1451 | break; |
1452 | } |
1453 | case SO_RCVTIMEO_OLD: |
1454 | case SO_RCVTIMEO_NEW: |
1455 | ret = sock_set_timeout(timeo_p: &sk->sk_rcvtimeo, optval, |
1456 | optlen, old_timeval: optname == SO_RCVTIMEO_OLD); |
1457 | break; |
1458 | |
1459 | case SO_SNDTIMEO_OLD: |
1460 | case SO_SNDTIMEO_NEW: |
1461 | ret = sock_set_timeout(timeo_p: &sk->sk_sndtimeo, optval, |
1462 | optlen, old_timeval: optname == SO_SNDTIMEO_OLD); |
1463 | break; |
1464 | |
1465 | case SO_ATTACH_FILTER: { |
1466 | struct sock_fprog fprog; |
1467 | |
1468 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
1469 | if (!ret) |
1470 | ret = sk_attach_filter(fprog: &fprog, sk); |
1471 | break; |
1472 | } |
1473 | case SO_ATTACH_BPF: |
1474 | ret = -EINVAL; |
1475 | if (optlen == sizeof(u32)) { |
1476 | u32 ufd; |
1477 | |
1478 | ret = -EFAULT; |
1479 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
1480 | break; |
1481 | |
1482 | ret = sk_attach_bpf(ufd, sk); |
1483 | } |
1484 | break; |
1485 | |
1486 | case SO_ATTACH_REUSEPORT_CBPF: { |
1487 | struct sock_fprog fprog; |
1488 | |
1489 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
1490 | if (!ret) |
1491 | ret = sk_reuseport_attach_filter(fprog: &fprog, sk); |
1492 | break; |
1493 | } |
1494 | case SO_ATTACH_REUSEPORT_EBPF: |
1495 | ret = -EINVAL; |
1496 | if (optlen == sizeof(u32)) { |
1497 | u32 ufd; |
1498 | |
1499 | ret = -EFAULT; |
1500 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
1501 | break; |
1502 | |
1503 | ret = sk_reuseport_attach_bpf(ufd, sk); |
1504 | } |
1505 | break; |
1506 | |
1507 | case SO_DETACH_REUSEPORT_BPF: |
1508 | ret = reuseport_detach_prog(sk); |
1509 | break; |
1510 | |
1511 | case SO_DETACH_FILTER: |
1512 | ret = sk_detach_filter(sk); |
1513 | break; |
1514 | |
1515 | case SO_LOCK_FILTER: |
1516 | if (sock_flag(sk, flag: SOCK_FILTER_LOCKED) && !valbool) |
1517 | ret = -EPERM; |
1518 | else |
1519 | sock_valbool_flag(sk, bit: SOCK_FILTER_LOCKED, valbool); |
1520 | break; |
1521 | |
1522 | case SO_MARK: |
1523 | if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && |
1524 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
1525 | ret = -EPERM; |
1526 | break; |
1527 | } |
1528 | |
1529 | __sock_set_mark(sk, val); |
1530 | break; |
1531 | case SO_RCVMARK: |
1532 | sock_valbool_flag(sk, bit: SOCK_RCVMARK, valbool); |
1533 | break; |
1534 | |
1535 | case SO_RCVPRIORITY: |
1536 | sock_valbool_flag(sk, bit: SOCK_RCVPRIORITY, valbool); |
1537 | break; |
1538 | |
1539 | case SO_RXQ_OVFL: |
1540 | sock_valbool_flag(sk, bit: SOCK_RXQ_OVFL, valbool); |
1541 | break; |
1542 | |
1543 | case SO_WIFI_STATUS: |
1544 | sock_valbool_flag(sk, bit: SOCK_WIFI_STATUS, valbool); |
1545 | break; |
1546 | |
1547 | case SO_NOFCS: |
1548 | sock_valbool_flag(sk, bit: SOCK_NOFCS, valbool); |
1549 | break; |
1550 | |
1551 | case SO_SELECT_ERR_QUEUE: |
1552 | sock_valbool_flag(sk, bit: SOCK_SELECT_ERR_QUEUE, valbool); |
1553 | break; |
1554 | |
1555 | case SO_PASSCRED: |
1556 | if (sk_may_scm_recv(sk)) |
1557 | sk->sk_scm_credentials = valbool; |
1558 | else |
1559 | ret = -EOPNOTSUPP; |
1560 | break; |
1561 | |
1562 | case SO_PASSSEC: |
1563 | if (IS_ENABLED(CONFIG_SECURITY_NETWORK) && sk_may_scm_recv(sk)) |
1564 | sk->sk_scm_security = valbool; |
1565 | else |
1566 | ret = -EOPNOTSUPP; |
1567 | break; |
1568 | |
1569 | case SO_PASSPIDFD: |
1570 | if (sk_is_unix(sk)) |
1571 | sk->sk_scm_pidfd = valbool; |
1572 | else |
1573 | ret = -EOPNOTSUPP; |
1574 | break; |
1575 | |
1576 | case SO_PASSRIGHTS: |
1577 | if (sk_is_unix(sk)) |
1578 | sk->sk_scm_rights = valbool; |
1579 | else |
1580 | ret = -EOPNOTSUPP; |
1581 | break; |
1582 | |
1583 | case SO_INCOMING_CPU: |
1584 | reuseport_update_incoming_cpu(sk, val); |
1585 | break; |
1586 | |
1587 | case SO_CNX_ADVICE: |
1588 | if (val == 1) |
1589 | dst_negative_advice(sk); |
1590 | break; |
1591 | |
1592 | case SO_ZEROCOPY: |
1593 | if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { |
1594 | if (!(sk_is_tcp(sk) || |
1595 | (sk->sk_type == SOCK_DGRAM && |
1596 | sk->sk_protocol == IPPROTO_UDP))) |
1597 | ret = -EOPNOTSUPP; |
1598 | } else if (sk->sk_family != PF_RDS) { |
1599 | ret = -EOPNOTSUPP; |
1600 | } |
1601 | if (!ret) { |
1602 | if (val < 0 || val > 1) |
1603 | ret = -EINVAL; |
1604 | else |
1605 | sock_valbool_flag(sk, bit: SOCK_ZEROCOPY, valbool); |
1606 | } |
1607 | break; |
1608 | |
1609 | case SO_TXTIME: |
1610 | if (optlen != sizeof(struct sock_txtime)) { |
1611 | ret = -EINVAL; |
1612 | break; |
1613 | } else if (copy_from_sockptr(dst: &sk_txtime, src: optval, |
1614 | size: sizeof(struct sock_txtime))) { |
1615 | ret = -EFAULT; |
1616 | break; |
1617 | } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { |
1618 | ret = -EINVAL; |
1619 | break; |
1620 | } |
1621 | /* CLOCK_MONOTONIC is only used by sch_fq, and this packet |
1622 | * scheduler has enough safe guards. |
1623 | */ |
1624 | if (sk_txtime.clockid != CLOCK_MONOTONIC && |
1625 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
1626 | ret = -EPERM; |
1627 | break; |
1628 | } |
1629 | |
1630 | ret = sockopt_validate_clockid(value: sk_txtime.clockid); |
1631 | if (ret) |
1632 | break; |
1633 | |
1634 | sock_valbool_flag(sk, bit: SOCK_TXTIME, valbool: true); |
1635 | sk->sk_clockid = sk_txtime.clockid; |
1636 | sk->sk_txtime_deadline_mode = |
1637 | !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); |
1638 | sk->sk_txtime_report_errors = |
1639 | !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); |
1640 | break; |
1641 | |
1642 | case SO_BINDTOIFINDEX: |
1643 | ret = sock_bindtoindex_locked(sk, ifindex: val); |
1644 | break; |
1645 | |
1646 | case SO_BUF_LOCK: |
1647 | if (val & ~SOCK_BUF_LOCK_MASK) { |
1648 | ret = -EINVAL; |
1649 | break; |
1650 | } |
1651 | sk->sk_userlocks = val | (sk->sk_userlocks & |
1652 | ~SOCK_BUF_LOCK_MASK); |
1653 | break; |
1654 | |
1655 | case SO_RESERVE_MEM: |
1656 | { |
1657 | int delta; |
1658 | |
1659 | if (val < 0) { |
1660 | ret = -EINVAL; |
1661 | break; |
1662 | } |
1663 | |
1664 | delta = val - sk->sk_reserved_mem; |
1665 | if (delta < 0) |
1666 | sock_release_reserved_memory(sk, bytes: -delta); |
1667 | else |
1668 | ret = sock_reserve_memory(sk, bytes: delta); |
1669 | break; |
1670 | } |
1671 | |
1672 | default: |
1673 | ret = -ENOPROTOOPT; |
1674 | break; |
1675 | } |
1676 | sockopt_release_sock(sk); |
1677 | return ret; |
1678 | } |
1679 | |
1680 | int sock_setsockopt(struct socket *sock, int level, int optname, |
1681 | sockptr_t optval, unsigned int optlen) |
1682 | { |
1683 | return sk_setsockopt(sk: sock->sk, level, optname, |
1684 | optval, optlen); |
1685 | } |
1686 | EXPORT_SYMBOL(sock_setsockopt); |
1687 | |
1688 | static const struct cred *sk_get_peer_cred(struct sock *sk) |
1689 | { |
1690 | const struct cred *cred; |
1691 | |
1692 | spin_lock(lock: &sk->sk_peer_lock); |
1693 | cred = get_cred(cred: sk->sk_peer_cred); |
1694 | spin_unlock(lock: &sk->sk_peer_lock); |
1695 | |
1696 | return cred; |
1697 | } |
1698 | |
1699 | static void cred_to_ucred(struct pid *pid, const struct cred *cred, |
1700 | struct ucred *ucred) |
1701 | { |
1702 | ucred->pid = pid_vnr(pid); |
1703 | ucred->uid = ucred->gid = -1; |
1704 | if (cred) { |
1705 | struct user_namespace *current_ns = current_user_ns(); |
1706 | |
1707 | ucred->uid = from_kuid_munged(to: current_ns, uid: cred->euid); |
1708 | ucred->gid = from_kgid_munged(to: current_ns, gid: cred->egid); |
1709 | } |
1710 | } |
1711 | |
1712 | static int groups_to_user(sockptr_t dst, const struct group_info *src) |
1713 | { |
1714 | struct user_namespace *user_ns = current_user_ns(); |
1715 | int i; |
1716 | |
1717 | for (i = 0; i < src->ngroups; i++) { |
1718 | gid_t gid = from_kgid_munged(to: user_ns, gid: src->gid[i]); |
1719 | |
1720 | if (copy_to_sockptr_offset(dst, offset: i * sizeof(gid), src: &gid, size: sizeof(gid))) |
1721 | return -EFAULT; |
1722 | } |
1723 | |
1724 | return 0; |
1725 | } |
1726 | |
1727 | int sk_getsockopt(struct sock *sk, int level, int optname, |
1728 | sockptr_t optval, sockptr_t optlen) |
1729 | { |
1730 | struct socket *sock = sk->sk_socket; |
1731 | |
1732 | union { |
1733 | int val; |
1734 | u64 val64; |
1735 | unsigned long ulval; |
1736 | struct linger ling; |
1737 | struct old_timeval32 tm32; |
1738 | struct __kernel_old_timeval tm; |
1739 | struct __kernel_sock_timeval stm; |
1740 | struct sock_txtime txtime; |
1741 | struct so_timestamping timestamping; |
1742 | } v; |
1743 | |
1744 | int lv = sizeof(int); |
1745 | int len; |
1746 | |
1747 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
1748 | return -EFAULT; |
1749 | if (len < 0) |
1750 | return -EINVAL; |
1751 | |
1752 | memset(&v, 0, sizeof(v)); |
1753 | |
1754 | switch (optname) { |
1755 | case SO_DEBUG: |
1756 | v.val = sock_flag(sk, flag: SOCK_DBG); |
1757 | break; |
1758 | |
1759 | case SO_DONTROUTE: |
1760 | v.val = sock_flag(sk, flag: SOCK_LOCALROUTE); |
1761 | break; |
1762 | |
1763 | case SO_BROADCAST: |
1764 | v.val = sock_flag(sk, flag: SOCK_BROADCAST); |
1765 | break; |
1766 | |
1767 | case SO_SNDBUF: |
1768 | v.val = READ_ONCE(sk->sk_sndbuf); |
1769 | break; |
1770 | |
1771 | case SO_RCVBUF: |
1772 | v.val = READ_ONCE(sk->sk_rcvbuf); |
1773 | break; |
1774 | |
1775 | case SO_REUSEADDR: |
1776 | v.val = sk->sk_reuse; |
1777 | break; |
1778 | |
1779 | case SO_REUSEPORT: |
1780 | v.val = sk->sk_reuseport; |
1781 | break; |
1782 | |
1783 | case SO_KEEPALIVE: |
1784 | v.val = sock_flag(sk, flag: SOCK_KEEPOPEN); |
1785 | break; |
1786 | |
1787 | case SO_TYPE: |
1788 | v.val = sk->sk_type; |
1789 | break; |
1790 | |
1791 | case SO_PROTOCOL: |
1792 | v.val = sk->sk_protocol; |
1793 | break; |
1794 | |
1795 | case SO_DOMAIN: |
1796 | v.val = sk->sk_family; |
1797 | break; |
1798 | |
1799 | case SO_ERROR: |
1800 | v.val = -sock_error(sk); |
1801 | if (v.val == 0) |
1802 | v.val = xchg(&sk->sk_err_soft, 0); |
1803 | break; |
1804 | |
1805 | case SO_OOBINLINE: |
1806 | v.val = sock_flag(sk, flag: SOCK_URGINLINE); |
1807 | break; |
1808 | |
1809 | case SO_NO_CHECK: |
1810 | v.val = sk->sk_no_check_tx; |
1811 | break; |
1812 | |
1813 | case SO_PRIORITY: |
1814 | v.val = READ_ONCE(sk->sk_priority); |
1815 | break; |
1816 | |
1817 | case SO_LINGER: |
1818 | lv = sizeof(v.ling); |
1819 | v.ling.l_onoff = sock_flag(sk, flag: SOCK_LINGER); |
1820 | v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; |
1821 | break; |
1822 | |
1823 | case SO_BSDCOMPAT: |
1824 | break; |
1825 | |
1826 | case SO_TIMESTAMP_OLD: |
1827 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && |
1828 | !sock_flag(sk, flag: SOCK_TSTAMP_NEW) && |
1829 | !sock_flag(sk, flag: SOCK_RCVTSTAMPNS); |
1830 | break; |
1831 | |
1832 | case SO_TIMESTAMPNS_OLD: |
1833 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && !sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1834 | break; |
1835 | |
1836 | case SO_TIMESTAMP_NEW: |
1837 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1838 | break; |
1839 | |
1840 | case SO_TIMESTAMPNS_NEW: |
1841 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1842 | break; |
1843 | |
1844 | case SO_TIMESTAMPING_OLD: |
1845 | case SO_TIMESTAMPING_NEW: |
1846 | lv = sizeof(v.timestamping); |
1847 | /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only |
1848 | * returning the flags when they were set through the same option. |
1849 | * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. |
1850 | */ |
1851 | if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, flag: SOCK_TSTAMP_NEW)) { |
1852 | v.timestamping.flags = READ_ONCE(sk->sk_tsflags); |
1853 | v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); |
1854 | } |
1855 | break; |
1856 | |
1857 | case SO_RCVTIMEO_OLD: |
1858 | case SO_RCVTIMEO_NEW: |
1859 | lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, |
1860 | SO_RCVTIMEO_OLD == optname); |
1861 | break; |
1862 | |
1863 | case SO_SNDTIMEO_OLD: |
1864 | case SO_SNDTIMEO_NEW: |
1865 | lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, |
1866 | SO_SNDTIMEO_OLD == optname); |
1867 | break; |
1868 | |
1869 | case SO_RCVLOWAT: |
1870 | v.val = READ_ONCE(sk->sk_rcvlowat); |
1871 | break; |
1872 | |
1873 | case SO_SNDLOWAT: |
1874 | v.val = 1; |
1875 | break; |
1876 | |
1877 | case SO_PASSCRED: |
1878 | if (!sk_may_scm_recv(sk)) |
1879 | return -EOPNOTSUPP; |
1880 | |
1881 | v.val = sk->sk_scm_credentials; |
1882 | break; |
1883 | |
1884 | case SO_PASSPIDFD: |
1885 | if (!sk_is_unix(sk)) |
1886 | return -EOPNOTSUPP; |
1887 | |
1888 | v.val = sk->sk_scm_pidfd; |
1889 | break; |
1890 | |
1891 | case SO_PASSRIGHTS: |
1892 | if (!sk_is_unix(sk)) |
1893 | return -EOPNOTSUPP; |
1894 | |
1895 | v.val = sk->sk_scm_rights; |
1896 | break; |
1897 | |
1898 | case SO_PEERCRED: |
1899 | { |
1900 | struct ucred peercred; |
1901 | if (len > sizeof(peercred)) |
1902 | len = sizeof(peercred); |
1903 | |
1904 | spin_lock(lock: &sk->sk_peer_lock); |
1905 | cred_to_ucred(pid: sk->sk_peer_pid, cred: sk->sk_peer_cred, ucred: &peercred); |
1906 | spin_unlock(lock: &sk->sk_peer_lock); |
1907 | |
1908 | if (copy_to_sockptr(dst: optval, src: &peercred, size: len)) |
1909 | return -EFAULT; |
1910 | goto lenout; |
1911 | } |
1912 | |
1913 | case SO_PEERPIDFD: |
1914 | { |
1915 | struct pid *peer_pid; |
1916 | struct file *pidfd_file = NULL; |
1917 | unsigned int flags = 0; |
1918 | int pidfd; |
1919 | |
1920 | if (len > sizeof(pidfd)) |
1921 | len = sizeof(pidfd); |
1922 | |
1923 | spin_lock(lock: &sk->sk_peer_lock); |
1924 | peer_pid = get_pid(pid: sk->sk_peer_pid); |
1925 | spin_unlock(lock: &sk->sk_peer_lock); |
1926 | |
1927 | if (!peer_pid) |
1928 | return -ENODATA; |
1929 | |
1930 | /* The use of PIDFD_STALE requires stashing of struct pid |
1931 | * on pidfs with pidfs_register_pid() and only AF_UNIX |
1932 | * were prepared for this. |
1933 | */ |
1934 | if (sk->sk_family == AF_UNIX) |
1935 | flags = PIDFD_STALE; |
1936 | |
1937 | pidfd = pidfd_prepare(pid: peer_pid, flags, ret_file: &pidfd_file); |
1938 | put_pid(pid: peer_pid); |
1939 | if (pidfd < 0) |
1940 | return pidfd; |
1941 | |
1942 | if (copy_to_sockptr(dst: optval, src: &pidfd, size: len) || |
1943 | copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
1944 | put_unused_fd(fd: pidfd); |
1945 | fput(pidfd_file); |
1946 | |
1947 | return -EFAULT; |
1948 | } |
1949 | |
1950 | fd_install(fd: pidfd, file: pidfd_file); |
1951 | return 0; |
1952 | } |
1953 | |
1954 | case SO_PEERGROUPS: |
1955 | { |
1956 | const struct cred *cred; |
1957 | int ret, n; |
1958 | |
1959 | cred = sk_get_peer_cred(sk); |
1960 | if (!cred) |
1961 | return -ENODATA; |
1962 | |
1963 | n = cred->group_info->ngroups; |
1964 | if (len < n * sizeof(gid_t)) { |
1965 | len = n * sizeof(gid_t); |
1966 | put_cred(cred); |
1967 | return copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)) ? -EFAULT : -ERANGE; |
1968 | } |
1969 | len = n * sizeof(gid_t); |
1970 | |
1971 | ret = groups_to_user(dst: optval, src: cred->group_info); |
1972 | put_cred(cred); |
1973 | if (ret) |
1974 | return ret; |
1975 | goto lenout; |
1976 | } |
1977 | |
1978 | case SO_PEERNAME: |
1979 | { |
1980 | struct sockaddr_storage address; |
1981 | |
1982 | lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); |
1983 | if (lv < 0) |
1984 | return -ENOTCONN; |
1985 | if (lv < len) |
1986 | return -EINVAL; |
1987 | if (copy_to_sockptr(dst: optval, src: &address, size: len)) |
1988 | return -EFAULT; |
1989 | goto lenout; |
1990 | } |
1991 | |
1992 | /* Dubious BSD thing... Probably nobody even uses it, but |
1993 | * the UNIX standard wants it for whatever reason... -DaveM |
1994 | */ |
1995 | case SO_ACCEPTCONN: |
1996 | v.val = sk->sk_state == TCP_LISTEN; |
1997 | break; |
1998 | |
1999 | case SO_PASSSEC: |
2000 | if (!IS_ENABLED(CONFIG_SECURITY_NETWORK) || !sk_may_scm_recv(sk)) |
2001 | return -EOPNOTSUPP; |
2002 | |
2003 | v.val = sk->sk_scm_security; |
2004 | break; |
2005 | |
2006 | case SO_PEERSEC: |
2007 | return security_socket_getpeersec_stream(sock, |
2008 | optval, optlen, len); |
2009 | |
2010 | case SO_MARK: |
2011 | v.val = READ_ONCE(sk->sk_mark); |
2012 | break; |
2013 | |
2014 | case SO_RCVMARK: |
2015 | v.val = sock_flag(sk, flag: SOCK_RCVMARK); |
2016 | break; |
2017 | |
2018 | case SO_RCVPRIORITY: |
2019 | v.val = sock_flag(sk, flag: SOCK_RCVPRIORITY); |
2020 | break; |
2021 | |
2022 | case SO_RXQ_OVFL: |
2023 | v.val = sock_flag(sk, flag: SOCK_RXQ_OVFL); |
2024 | break; |
2025 | |
2026 | case SO_WIFI_STATUS: |
2027 | v.val = sock_flag(sk, flag: SOCK_WIFI_STATUS); |
2028 | break; |
2029 | |
2030 | case SO_PEEK_OFF: |
2031 | if (!READ_ONCE(sock->ops)->set_peek_off) |
2032 | return -EOPNOTSUPP; |
2033 | |
2034 | v.val = READ_ONCE(sk->sk_peek_off); |
2035 | break; |
2036 | case SO_NOFCS: |
2037 | v.val = sock_flag(sk, flag: SOCK_NOFCS); |
2038 | break; |
2039 | |
2040 | case SO_BINDTODEVICE: |
2041 | return sock_getbindtodevice(sk, optval, optlen, len); |
2042 | |
2043 | case SO_GET_FILTER: |
2044 | len = sk_get_filter(sk, optval, len); |
2045 | if (len < 0) |
2046 | return len; |
2047 | |
2048 | goto lenout; |
2049 | |
2050 | case SO_LOCK_FILTER: |
2051 | v.val = sock_flag(sk, flag: SOCK_FILTER_LOCKED); |
2052 | break; |
2053 | |
2054 | case SO_BPF_EXTENSIONS: |
2055 | v.val = bpf_tell_extensions(); |
2056 | break; |
2057 | |
2058 | case SO_SELECT_ERR_QUEUE: |
2059 | v.val = sock_flag(sk, flag: SOCK_SELECT_ERR_QUEUE); |
2060 | break; |
2061 | |
2062 | #ifdef CONFIG_NET_RX_BUSY_POLL |
2063 | case SO_BUSY_POLL: |
2064 | v.val = READ_ONCE(sk->sk_ll_usec); |
2065 | break; |
2066 | case SO_PREFER_BUSY_POLL: |
2067 | v.val = READ_ONCE(sk->sk_prefer_busy_poll); |
2068 | break; |
2069 | #endif |
2070 | |
2071 | case SO_MAX_PACING_RATE: |
2072 | /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ |
2073 | if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { |
2074 | lv = sizeof(v.ulval); |
2075 | v.ulval = READ_ONCE(sk->sk_max_pacing_rate); |
2076 | } else { |
2077 | /* 32bit version */ |
2078 | v.val = min_t(unsigned long, ~0U, |
2079 | READ_ONCE(sk->sk_max_pacing_rate)); |
2080 | } |
2081 | break; |
2082 | |
2083 | case SO_INCOMING_CPU: |
2084 | v.val = READ_ONCE(sk->sk_incoming_cpu); |
2085 | break; |
2086 | |
2087 | case SO_MEMINFO: |
2088 | { |
2089 | u32 meminfo[SK_MEMINFO_VARS]; |
2090 | |
2091 | sk_get_meminfo(sk, meminfo); |
2092 | |
2093 | len = min_t(unsigned int, len, sizeof(meminfo)); |
2094 | if (copy_to_sockptr(dst: optval, src: &meminfo, size: len)) |
2095 | return -EFAULT; |
2096 | |
2097 | goto lenout; |
2098 | } |
2099 | |
2100 | #ifdef CONFIG_NET_RX_BUSY_POLL |
2101 | case SO_INCOMING_NAPI_ID: |
2102 | v.val = READ_ONCE(sk->sk_napi_id); |
2103 | |
2104 | /* aggregate non-NAPI IDs down to 0 */ |
2105 | if (!napi_id_valid(napi_id: v.val)) |
2106 | v.val = 0; |
2107 | |
2108 | break; |
2109 | #endif |
2110 | |
2111 | case SO_COOKIE: |
2112 | lv = sizeof(u64); |
2113 | if (len < lv) |
2114 | return -EINVAL; |
2115 | v.val64 = sock_gen_cookie(sk); |
2116 | break; |
2117 | |
2118 | case SO_ZEROCOPY: |
2119 | v.val = sock_flag(sk, flag: SOCK_ZEROCOPY); |
2120 | break; |
2121 | |
2122 | case SO_TXTIME: |
2123 | lv = sizeof(v.txtime); |
2124 | v.txtime.clockid = sk->sk_clockid; |
2125 | v.txtime.flags |= sk->sk_txtime_deadline_mode ? |
2126 | SOF_TXTIME_DEADLINE_MODE : 0; |
2127 | v.txtime.flags |= sk->sk_txtime_report_errors ? |
2128 | SOF_TXTIME_REPORT_ERRORS : 0; |
2129 | break; |
2130 | |
2131 | case SO_BINDTOIFINDEX: |
2132 | v.val = READ_ONCE(sk->sk_bound_dev_if); |
2133 | break; |
2134 | |
2135 | case SO_NETNS_COOKIE: |
2136 | lv = sizeof(u64); |
2137 | if (len != lv) |
2138 | return -EINVAL; |
2139 | v.val64 = sock_net(sk)->net_cookie; |
2140 | break; |
2141 | |
2142 | case SO_BUF_LOCK: |
2143 | v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; |
2144 | break; |
2145 | |
2146 | case SO_RESERVE_MEM: |
2147 | v.val = READ_ONCE(sk->sk_reserved_mem); |
2148 | break; |
2149 | |
2150 | case SO_TXREHASH: |
2151 | if (!sk_is_tcp(sk)) |
2152 | return -EOPNOTSUPP; |
2153 | |
2154 | /* Paired with WRITE_ONCE() in sk_setsockopt() */ |
2155 | v.val = READ_ONCE(sk->sk_txrehash); |
2156 | break; |
2157 | |
2158 | default: |
2159 | /* We implement the SO_SNDLOWAT etc to not be settable |
2160 | * (1003.1g 7). |
2161 | */ |
2162 | return -ENOPROTOOPT; |
2163 | } |
2164 | |
2165 | if (len > lv) |
2166 | len = lv; |
2167 | if (copy_to_sockptr(dst: optval, src: &v, size: len)) |
2168 | return -EFAULT; |
2169 | lenout: |
2170 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
2171 | return -EFAULT; |
2172 | return 0; |
2173 | } |
2174 | |
2175 | /* |
2176 | * Initialize an sk_lock. |
2177 | * |
2178 | * (We also register the sk_lock with the lock validator.) |
2179 | */ |
2180 | static inline void sock_lock_init(struct sock *sk) |
2181 | { |
2182 | sk_owner_clear(sk); |
2183 | |
2184 | if (sk->sk_kern_sock) |
2185 | sock_lock_init_class_and_name( |
2186 | sk, |
2187 | af_family_kern_slock_key_strings[sk->sk_family], |
2188 | af_family_kern_slock_keys + sk->sk_family, |
2189 | af_family_kern_key_strings[sk->sk_family], |
2190 | af_family_kern_keys + sk->sk_family); |
2191 | else |
2192 | sock_lock_init_class_and_name( |
2193 | sk, |
2194 | af_family_slock_key_strings[sk->sk_family], |
2195 | af_family_slock_keys + sk->sk_family, |
2196 | af_family_key_strings[sk->sk_family], |
2197 | af_family_keys + sk->sk_family); |
2198 | } |
2199 | |
2200 | /* |
2201 | * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, |
2202 | * even temporarily, because of RCU lookups. sk_node should also be left as is. |
2203 | * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end |
2204 | */ |
2205 | static void sock_copy(struct sock *nsk, const struct sock *osk) |
2206 | { |
2207 | const struct proto *prot = READ_ONCE(osk->sk_prot); |
2208 | #ifdef CONFIG_SECURITY_NETWORK |
2209 | void *sptr = nsk->sk_security; |
2210 | #endif |
2211 | |
2212 | /* If we move sk_tx_queue_mapping out of the private section, |
2213 | * we must check if sk_tx_queue_clear() is called after |
2214 | * sock_copy() in sk_clone_lock(). |
2215 | */ |
2216 | BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < |
2217 | offsetof(struct sock, sk_dontcopy_begin) || |
2218 | offsetof(struct sock, sk_tx_queue_mapping) >= |
2219 | offsetof(struct sock, sk_dontcopy_end)); |
2220 | |
2221 | memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); |
2222 | |
2223 | unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, |
2224 | prot->obj_size - offsetof(struct sock, sk_dontcopy_end), |
2225 | /* alloc is larger than struct, see sk_prot_alloc() */); |
2226 | |
2227 | #ifdef CONFIG_SECURITY_NETWORK |
2228 | nsk->sk_security = sptr; |
2229 | security_sk_clone(sk: osk, newsk: nsk); |
2230 | #endif |
2231 | } |
2232 | |
2233 | static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, |
2234 | int family) |
2235 | { |
2236 | struct sock *sk; |
2237 | struct kmem_cache *slab; |
2238 | |
2239 | slab = prot->slab; |
2240 | if (slab != NULL) { |
2241 | sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); |
2242 | if (!sk) |
2243 | return sk; |
2244 | if (want_init_on_alloc(flags: priority)) |
2245 | sk_prot_clear_nulls(sk, size: prot->obj_size); |
2246 | } else |
2247 | sk = kmalloc(prot->obj_size, priority); |
2248 | |
2249 | if (sk != NULL) { |
2250 | if (security_sk_alloc(sk, family, priority)) |
2251 | goto out_free; |
2252 | |
2253 | if (!try_module_get(module: prot->owner)) |
2254 | goto out_free_sec; |
2255 | } |
2256 | |
2257 | return sk; |
2258 | |
2259 | out_free_sec: |
2260 | security_sk_free(sk); |
2261 | out_free: |
2262 | if (slab != NULL) |
2263 | kmem_cache_free(s: slab, objp: sk); |
2264 | else |
2265 | kfree(objp: sk); |
2266 | return NULL; |
2267 | } |
2268 | |
2269 | static void sk_prot_free(struct proto *prot, struct sock *sk) |
2270 | { |
2271 | struct kmem_cache *slab; |
2272 | struct module *owner; |
2273 | |
2274 | owner = prot->owner; |
2275 | slab = prot->slab; |
2276 | |
2277 | cgroup_sk_free(skcd: &sk->sk_cgrp_data); |
2278 | mem_cgroup_sk_free(sk); |
2279 | security_sk_free(sk); |
2280 | |
2281 | sk_owner_put(sk); |
2282 | |
2283 | if (slab != NULL) |
2284 | kmem_cache_free(s: slab, objp: sk); |
2285 | else |
2286 | kfree(objp: sk); |
2287 | module_put(module: owner); |
2288 | } |
2289 | |
2290 | /** |
2291 | * sk_alloc - All socket objects are allocated here |
2292 | * @net: the applicable net namespace |
2293 | * @family: protocol family |
2294 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
2295 | * @prot: struct proto associated with this new sock instance |
2296 | * @kern: is this to be a kernel socket? |
2297 | */ |
2298 | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
2299 | struct proto *prot, int kern) |
2300 | { |
2301 | struct sock *sk; |
2302 | |
2303 | sk = sk_prot_alloc(prot, priority: priority | __GFP_ZERO, family); |
2304 | if (sk) { |
2305 | sk->sk_family = family; |
2306 | /* |
2307 | * See comment in struct sock definition to understand |
2308 | * why we need sk_prot_creator -acme |
2309 | */ |
2310 | sk->sk_prot = sk->sk_prot_creator = prot; |
2311 | sk->sk_kern_sock = kern; |
2312 | sock_lock_init(sk); |
2313 | sk->sk_net_refcnt = kern ? 0 : 1; |
2314 | if (likely(sk->sk_net_refcnt)) { |
2315 | get_net_track(net, tracker: &sk->ns_tracker, gfp: priority); |
2316 | sock_inuse_add(net, val: 1); |
2317 | } else { |
2318 | net_passive_inc(net); |
2319 | __netns_tracker_alloc(net, tracker: &sk->ns_tracker, |
2320 | refcounted: false, gfp: priority); |
2321 | } |
2322 | |
2323 | sock_net_set(sk, net); |
2324 | refcount_set(r: &sk->sk_wmem_alloc, n: 1); |
2325 | |
2326 | mem_cgroup_sk_alloc(sk); |
2327 | cgroup_sk_alloc(skcd: &sk->sk_cgrp_data); |
2328 | sock_update_classid(skcd: &sk->sk_cgrp_data); |
2329 | sock_update_netprioidx(skcd: &sk->sk_cgrp_data); |
2330 | sk_tx_queue_clear(sk); |
2331 | } |
2332 | |
2333 | return sk; |
2334 | } |
2335 | EXPORT_SYMBOL(sk_alloc); |
2336 | |
2337 | /* Sockets having SOCK_RCU_FREE will call this function after one RCU |
2338 | * grace period. This is the case for UDP sockets and TCP listeners. |
2339 | */ |
2340 | static void __sk_destruct(struct rcu_head *head) |
2341 | { |
2342 | struct sock *sk = container_of(head, struct sock, sk_rcu); |
2343 | struct net *net = sock_net(sk); |
2344 | struct sk_filter *filter; |
2345 | |
2346 | if (sk->sk_destruct) |
2347 | sk->sk_destruct(sk); |
2348 | |
2349 | filter = rcu_dereference_check(sk->sk_filter, |
2350 | refcount_read(&sk->sk_wmem_alloc) == 0); |
2351 | if (filter) { |
2352 | sk_filter_uncharge(sk, fp: filter); |
2353 | RCU_INIT_POINTER(sk->sk_filter, NULL); |
2354 | } |
2355 | |
2356 | sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); |
2357 | |
2358 | #ifdef CONFIG_BPF_SYSCALL |
2359 | bpf_sk_storage_free(sk); |
2360 | #endif |
2361 | |
2362 | if (atomic_read(v: &sk->sk_omem_alloc)) |
2363 | pr_debug("%s: optmem leakage (%d bytes) detected\n", |
2364 | __func__, atomic_read(&sk->sk_omem_alloc)); |
2365 | |
2366 | if (sk->sk_frag.page) { |
2367 | put_page(page: sk->sk_frag.page); |
2368 | sk->sk_frag.page = NULL; |
2369 | } |
2370 | |
2371 | /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ |
2372 | put_cred(cred: sk->sk_peer_cred); |
2373 | put_pid(pid: sk->sk_peer_pid); |
2374 | |
2375 | if (likely(sk->sk_net_refcnt)) { |
2376 | put_net_track(net, tracker: &sk->ns_tracker); |
2377 | } else { |
2378 | __netns_tracker_free(net, tracker: &sk->ns_tracker, refcounted: false); |
2379 | net_passive_dec(net); |
2380 | } |
2381 | sk_prot_free(prot: sk->sk_prot_creator, sk); |
2382 | } |
2383 | |
2384 | void sk_net_refcnt_upgrade(struct sock *sk) |
2385 | { |
2386 | struct net *net = sock_net(sk); |
2387 | |
2388 | WARN_ON_ONCE(sk->sk_net_refcnt); |
2389 | __netns_tracker_free(net, tracker: &sk->ns_tracker, refcounted: false); |
2390 | net_passive_dec(net); |
2391 | sk->sk_net_refcnt = 1; |
2392 | get_net_track(net, tracker: &sk->ns_tracker, GFP_KERNEL); |
2393 | sock_inuse_add(net, val: 1); |
2394 | } |
2395 | EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade); |
2396 | |
2397 | void sk_destruct(struct sock *sk) |
2398 | { |
2399 | bool use_call_rcu = sock_flag(sk, flag: SOCK_RCU_FREE); |
2400 | |
2401 | if (rcu_access_pointer(sk->sk_reuseport_cb)) { |
2402 | reuseport_detach_sock(sk); |
2403 | use_call_rcu = true; |
2404 | } |
2405 | |
2406 | if (use_call_rcu) |
2407 | call_rcu(head: &sk->sk_rcu, func: __sk_destruct); |
2408 | else |
2409 | __sk_destruct(head: &sk->sk_rcu); |
2410 | } |
2411 | |
2412 | static void __sk_free(struct sock *sk) |
2413 | { |
2414 | if (likely(sk->sk_net_refcnt)) |
2415 | sock_inuse_add(net: sock_net(sk), val: -1); |
2416 | |
2417 | if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) |
2418 | sock_diag_broadcast_destroy(sk); |
2419 | else |
2420 | sk_destruct(sk); |
2421 | } |
2422 | |
2423 | void sk_free(struct sock *sk) |
2424 | { |
2425 | /* |
2426 | * We subtract one from sk_wmem_alloc and can know if |
2427 | * some packets are still in some tx queue. |
2428 | * If not null, sock_wfree() will call __sk_free(sk) later |
2429 | */ |
2430 | if (refcount_dec_and_test(r: &sk->sk_wmem_alloc)) |
2431 | __sk_free(sk); |
2432 | } |
2433 | EXPORT_SYMBOL(sk_free); |
2434 | |
2435 | static void sk_init_common(struct sock *sk) |
2436 | { |
2437 | skb_queue_head_init(list: &sk->sk_receive_queue); |
2438 | skb_queue_head_init(list: &sk->sk_write_queue); |
2439 | skb_queue_head_init(list: &sk->sk_error_queue); |
2440 | |
2441 | rwlock_init(&sk->sk_callback_lock); |
2442 | lockdep_set_class_and_name(&sk->sk_receive_queue.lock, |
2443 | af_rlock_keys + sk->sk_family, |
2444 | af_family_rlock_key_strings[sk->sk_family]); |
2445 | lockdep_set_class_and_name(&sk->sk_write_queue.lock, |
2446 | af_wlock_keys + sk->sk_family, |
2447 | af_family_wlock_key_strings[sk->sk_family]); |
2448 | lockdep_set_class_and_name(&sk->sk_error_queue.lock, |
2449 | af_elock_keys + sk->sk_family, |
2450 | af_family_elock_key_strings[sk->sk_family]); |
2451 | if (sk->sk_kern_sock) |
2452 | lockdep_set_class_and_name(&sk->sk_callback_lock, |
2453 | af_kern_callback_keys + sk->sk_family, |
2454 | af_family_kern_clock_key_strings[sk->sk_family]); |
2455 | else |
2456 | lockdep_set_class_and_name(&sk->sk_callback_lock, |
2457 | af_callback_keys + sk->sk_family, |
2458 | af_family_clock_key_strings[sk->sk_family]); |
2459 | } |
2460 | |
2461 | /** |
2462 | * sk_clone_lock - clone a socket, and lock its clone |
2463 | * @sk: the socket to clone |
2464 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
2465 | * |
2466 | * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) |
2467 | */ |
2468 | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) |
2469 | { |
2470 | struct proto *prot = READ_ONCE(sk->sk_prot); |
2471 | struct sk_filter *filter; |
2472 | bool is_charged = true; |
2473 | struct sock *newsk; |
2474 | |
2475 | newsk = sk_prot_alloc(prot, priority, family: sk->sk_family); |
2476 | if (!newsk) |
2477 | goto out; |
2478 | |
2479 | sock_copy(nsk: newsk, osk: sk); |
2480 | |
2481 | newsk->sk_prot_creator = prot; |
2482 | |
2483 | /* SANITY */ |
2484 | if (likely(newsk->sk_net_refcnt)) { |
2485 | get_net_track(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, gfp: priority); |
2486 | sock_inuse_add(net: sock_net(sk: newsk), val: 1); |
2487 | } else { |
2488 | /* Kernel sockets are not elevating the struct net refcount. |
2489 | * Instead, use a tracker to more easily detect if a layer |
2490 | * is not properly dismantling its kernel sockets at netns |
2491 | * destroy time. |
2492 | */ |
2493 | net_passive_inc(net: sock_net(sk: newsk)); |
2494 | __netns_tracker_alloc(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, |
2495 | refcounted: false, gfp: priority); |
2496 | } |
2497 | sk_node_init(node: &newsk->sk_node); |
2498 | sock_lock_init(sk: newsk); |
2499 | bh_lock_sock(newsk); |
2500 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
2501 | newsk->sk_backlog.len = 0; |
2502 | |
2503 | atomic_set(v: &newsk->sk_rmem_alloc, i: 0); |
2504 | |
2505 | /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ |
2506 | refcount_set(r: &newsk->sk_wmem_alloc, n: 1); |
2507 | |
2508 | atomic_set(v: &newsk->sk_omem_alloc, i: 0); |
2509 | sk_init_common(sk: newsk); |
2510 | |
2511 | newsk->sk_dst_cache = NULL; |
2512 | newsk->sk_dst_pending_confirm = 0; |
2513 | newsk->sk_wmem_queued = 0; |
2514 | newsk->sk_forward_alloc = 0; |
2515 | newsk->sk_reserved_mem = 0; |
2516 | atomic_set(v: &newsk->sk_drops, i: 0); |
2517 | newsk->sk_send_head = NULL; |
2518 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
2519 | atomic_set(v: &newsk->sk_zckey, i: 0); |
2520 | |
2521 | sock_reset_flag(sk: newsk, flag: SOCK_DONE); |
2522 | |
2523 | /* sk->sk_memcg will be populated at accept() time */ |
2524 | newsk->sk_memcg = NULL; |
2525 | |
2526 | cgroup_sk_clone(skcd: &newsk->sk_cgrp_data); |
2527 | |
2528 | rcu_read_lock(); |
2529 | filter = rcu_dereference(sk->sk_filter); |
2530 | if (filter != NULL) |
2531 | /* though it's an empty new sock, the charging may fail |
2532 | * if sysctl_optmem_max was changed between creation of |
2533 | * original socket and cloning |
2534 | */ |
2535 | is_charged = sk_filter_charge(sk: newsk, fp: filter); |
2536 | RCU_INIT_POINTER(newsk->sk_filter, filter); |
2537 | rcu_read_unlock(); |
2538 | |
2539 | if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { |
2540 | /* We need to make sure that we don't uncharge the new |
2541 | * socket if we couldn't charge it in the first place |
2542 | * as otherwise we uncharge the parent's filter. |
2543 | */ |
2544 | if (!is_charged) |
2545 | RCU_INIT_POINTER(newsk->sk_filter, NULL); |
2546 | |
2547 | goto free; |
2548 | } |
2549 | |
2550 | RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); |
2551 | |
2552 | if (bpf_sk_storage_clone(sk, newsk)) |
2553 | goto free; |
2554 | |
2555 | /* Clear sk_user_data if parent had the pointer tagged |
2556 | * as not suitable for copying when cloning. |
2557 | */ |
2558 | if (sk_user_data_is_nocopy(sk: newsk)) |
2559 | newsk->sk_user_data = NULL; |
2560 | |
2561 | newsk->sk_err = 0; |
2562 | newsk->sk_err_soft = 0; |
2563 | newsk->sk_priority = 0; |
2564 | newsk->sk_incoming_cpu = raw_smp_processor_id(); |
2565 | |
2566 | /* Before updating sk_refcnt, we must commit prior changes to memory |
2567 | * (Documentation/RCU/rculist_nulls.rst for details) |
2568 | */ |
2569 | smp_wmb(); |
2570 | refcount_set(r: &newsk->sk_refcnt, n: 2); |
2571 | |
2572 | sk_set_socket(sk: newsk, NULL); |
2573 | sk_tx_queue_clear(sk: newsk); |
2574 | RCU_INIT_POINTER(newsk->sk_wq, NULL); |
2575 | |
2576 | if (newsk->sk_prot->sockets_allocated) |
2577 | sk_sockets_allocated_inc(sk: newsk); |
2578 | |
2579 | if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) |
2580 | net_enable_timestamp(); |
2581 | out: |
2582 | return newsk; |
2583 | free: |
2584 | /* It is still raw copy of parent, so invalidate |
2585 | * destructor and make plain sk_free() |
2586 | */ |
2587 | newsk->sk_destruct = NULL; |
2588 | bh_unlock_sock(newsk); |
2589 | sk_free(newsk); |
2590 | newsk = NULL; |
2591 | goto out; |
2592 | } |
2593 | EXPORT_SYMBOL_GPL(sk_clone_lock); |
2594 | |
2595 | static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) |
2596 | { |
2597 | bool is_ipv6 = false; |
2598 | u32 max_size; |
2599 | |
2600 | #if IS_ENABLED(CONFIG_IPV6) |
2601 | is_ipv6 = (sk->sk_family == AF_INET6 && |
2602 | !ipv6_addr_v4mapped(a: &sk->sk_v6_rcv_saddr)); |
2603 | #endif |
2604 | /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ |
2605 | max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : |
2606 | READ_ONCE(dst->dev->gso_ipv4_max_size); |
2607 | if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) |
2608 | max_size = GSO_LEGACY_MAX_SIZE; |
2609 | |
2610 | return max_size - (MAX_TCP_HEADER + 1); |
2611 | } |
2612 | |
2613 | void sk_setup_caps(struct sock *sk, struct dst_entry *dst) |
2614 | { |
2615 | u32 max_segs = 1; |
2616 | |
2617 | sk->sk_route_caps = dst->dev->features; |
2618 | if (sk_is_tcp(sk)) { |
2619 | struct inet_connection_sock *icsk = inet_csk(sk); |
2620 | |
2621 | sk->sk_route_caps |= NETIF_F_GSO; |
2622 | icsk->icsk_ack.dst_quick_ack = dst_metric(dst, RTAX_QUICKACK); |
2623 | } |
2624 | if (sk->sk_route_caps & NETIF_F_GSO) |
2625 | sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; |
2626 | if (unlikely(sk->sk_gso_disabled)) |
2627 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
2628 | if (sk_can_gso(sk)) { |
2629 | if (dst->header_len && !xfrm_dst_offload_ok(dst)) { |
2630 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
2631 | } else { |
2632 | sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; |
2633 | sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); |
2634 | /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ |
2635 | max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); |
2636 | } |
2637 | } |
2638 | sk->sk_gso_max_segs = max_segs; |
2639 | sk_dst_set(sk, dst); |
2640 | } |
2641 | EXPORT_SYMBOL_GPL(sk_setup_caps); |
2642 | |
2643 | /* |
2644 | * Simple resource managers for sockets. |
2645 | */ |
2646 | |
2647 | |
2648 | /* |
2649 | * Write buffer destructor automatically called from kfree_skb. |
2650 | */ |
2651 | void sock_wfree(struct sk_buff *skb) |
2652 | { |
2653 | struct sock *sk = skb->sk; |
2654 | unsigned int len = skb->truesize; |
2655 | bool free; |
2656 | |
2657 | if (!sock_flag(sk, flag: SOCK_USE_WRITE_QUEUE)) { |
2658 | if (sock_flag(sk, flag: SOCK_RCU_FREE) && |
2659 | sk->sk_write_space == sock_def_write_space) { |
2660 | rcu_read_lock(); |
2661 | free = refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc); |
2662 | sock_def_write_space_wfree(sk); |
2663 | rcu_read_unlock(); |
2664 | if (unlikely(free)) |
2665 | __sk_free(sk); |
2666 | return; |
2667 | } |
2668 | |
2669 | /* |
2670 | * Keep a reference on sk_wmem_alloc, this will be released |
2671 | * after sk_write_space() call |
2672 | */ |
2673 | WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); |
2674 | sk->sk_write_space(sk); |
2675 | len = 1; |
2676 | } |
2677 | /* |
2678 | * if sk_wmem_alloc reaches 0, we must finish what sk_free() |
2679 | * could not do because of in-flight packets |
2680 | */ |
2681 | if (refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc)) |
2682 | __sk_free(sk); |
2683 | } |
2684 | EXPORT_SYMBOL(sock_wfree); |
2685 | |
2686 | /* This variant of sock_wfree() is used by TCP, |
2687 | * since it sets SOCK_USE_WRITE_QUEUE. |
2688 | */ |
2689 | void __sock_wfree(struct sk_buff *skb) |
2690 | { |
2691 | struct sock *sk = skb->sk; |
2692 | |
2693 | if (refcount_sub_and_test(i: skb->truesize, r: &sk->sk_wmem_alloc)) |
2694 | __sk_free(sk); |
2695 | } |
2696 | |
2697 | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) |
2698 | { |
2699 | skb_orphan(skb); |
2700 | #ifdef CONFIG_INET |
2701 | if (unlikely(!sk_fullsock(sk))) |
2702 | return skb_set_owner_edemux(skb, sk); |
2703 | #endif |
2704 | skb->sk = sk; |
2705 | skb->destructor = sock_wfree; |
2706 | skb_set_hash_from_sk(skb, sk); |
2707 | /* |
2708 | * We used to take a refcount on sk, but following operation |
2709 | * is enough to guarantee sk_free() won't free this sock until |
2710 | * all in-flight packets are completed |
2711 | */ |
2712 | refcount_add(i: skb->truesize, r: &sk->sk_wmem_alloc); |
2713 | } |
2714 | EXPORT_SYMBOL(skb_set_owner_w); |
2715 | |
2716 | static bool can_skb_orphan_partial(const struct sk_buff *skb) |
2717 | { |
2718 | /* Drivers depend on in-order delivery for crypto offload, |
2719 | * partial orphan breaks out-of-order-OK logic. |
2720 | */ |
2721 | if (skb_is_decrypted(skb)) |
2722 | return false; |
2723 | |
2724 | return (skb->destructor == sock_wfree || |
2725 | (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); |
2726 | } |
2727 | |
2728 | /* This helper is used by netem, as it can hold packets in its |
2729 | * delay queue. We want to allow the owner socket to send more |
2730 | * packets, as if they were already TX completed by a typical driver. |
2731 | * But we also want to keep skb->sk set because some packet schedulers |
2732 | * rely on it (sch_fq for example). |
2733 | */ |
2734 | void skb_orphan_partial(struct sk_buff *skb) |
2735 | { |
2736 | if (skb_is_tcp_pure_ack(skb)) |
2737 | return; |
2738 | |
2739 | if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, sk: skb->sk)) |
2740 | return; |
2741 | |
2742 | skb_orphan(skb); |
2743 | } |
2744 | EXPORT_SYMBOL(skb_orphan_partial); |
2745 | |
2746 | /* |
2747 | * Read buffer destructor automatically called from kfree_skb. |
2748 | */ |
2749 | void sock_rfree(struct sk_buff *skb) |
2750 | { |
2751 | struct sock *sk = skb->sk; |
2752 | unsigned int len = skb->truesize; |
2753 | |
2754 | atomic_sub(i: len, v: &sk->sk_rmem_alloc); |
2755 | sk_mem_uncharge(sk, size: len); |
2756 | } |
2757 | EXPORT_SYMBOL(sock_rfree); |
2758 | |
2759 | /* |
2760 | * Buffer destructor for skbs that are not used directly in read or write |
2761 | * path, e.g. for error handler skbs. Automatically called from kfree_skb. |
2762 | */ |
2763 | void sock_efree(struct sk_buff *skb) |
2764 | { |
2765 | sock_put(sk: skb->sk); |
2766 | } |
2767 | EXPORT_SYMBOL(sock_efree); |
2768 | |
2769 | /* Buffer destructor for prefetch/receive path where reference count may |
2770 | * not be held, e.g. for listen sockets. |
2771 | */ |
2772 | #ifdef CONFIG_INET |
2773 | void sock_pfree(struct sk_buff *skb) |
2774 | { |
2775 | struct sock *sk = skb->sk; |
2776 | |
2777 | if (!sk_is_refcounted(sk)) |
2778 | return; |
2779 | |
2780 | if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { |
2781 | inet_reqsk(sk)->rsk_listener = NULL; |
2782 | reqsk_free(req: inet_reqsk(sk)); |
2783 | return; |
2784 | } |
2785 | |
2786 | sock_gen_put(sk); |
2787 | } |
2788 | EXPORT_SYMBOL(sock_pfree); |
2789 | #endif /* CONFIG_INET */ |
2790 | |
2791 | kuid_t sock_i_uid(struct sock *sk) |
2792 | { |
2793 | kuid_t uid; |
2794 | |
2795 | read_lock_bh(&sk->sk_callback_lock); |
2796 | uid = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; |
2797 | read_unlock_bh(&sk->sk_callback_lock); |
2798 | return uid; |
2799 | } |
2800 | EXPORT_SYMBOL(sock_i_uid); |
2801 | |
2802 | unsigned long __sock_i_ino(struct sock *sk) |
2803 | { |
2804 | unsigned long ino; |
2805 | |
2806 | read_lock(&sk->sk_callback_lock); |
2807 | ino = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_ino : 0; |
2808 | read_unlock(&sk->sk_callback_lock); |
2809 | return ino; |
2810 | } |
2811 | EXPORT_SYMBOL(__sock_i_ino); |
2812 | |
2813 | unsigned long sock_i_ino(struct sock *sk) |
2814 | { |
2815 | unsigned long ino; |
2816 | |
2817 | local_bh_disable(); |
2818 | ino = __sock_i_ino(sk); |
2819 | local_bh_enable(); |
2820 | return ino; |
2821 | } |
2822 | EXPORT_SYMBOL(sock_i_ino); |
2823 | |
2824 | /* |
2825 | * Allocate a skb from the socket's send buffer. |
2826 | */ |
2827 | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
2828 | gfp_t priority) |
2829 | { |
2830 | if (force || |
2831 | refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { |
2832 | struct sk_buff *skb = alloc_skb(size, priority); |
2833 | |
2834 | if (skb) { |
2835 | skb_set_owner_w(skb, sk); |
2836 | return skb; |
2837 | } |
2838 | } |
2839 | return NULL; |
2840 | } |
2841 | EXPORT_SYMBOL(sock_wmalloc); |
2842 | |
2843 | static void sock_ofree(struct sk_buff *skb) |
2844 | { |
2845 | struct sock *sk = skb->sk; |
2846 | |
2847 | atomic_sub(i: skb->truesize, v: &sk->sk_omem_alloc); |
2848 | } |
2849 | |
2850 | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
2851 | gfp_t priority) |
2852 | { |
2853 | struct sk_buff *skb; |
2854 | |
2855 | /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ |
2856 | if (atomic_read(v: &sk->sk_omem_alloc) + SKB_TRUESIZE(size) > |
2857 | READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) |
2858 | return NULL; |
2859 | |
2860 | skb = alloc_skb(size, priority); |
2861 | if (!skb) |
2862 | return NULL; |
2863 | |
2864 | atomic_add(i: skb->truesize, v: &sk->sk_omem_alloc); |
2865 | skb->sk = sk; |
2866 | skb->destructor = sock_ofree; |
2867 | return skb; |
2868 | } |
2869 | |
2870 | /* |
2871 | * Allocate a memory block from the socket's option memory buffer. |
2872 | */ |
2873 | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) |
2874 | { |
2875 | int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); |
2876 | |
2877 | if ((unsigned int)size <= optmem_max && |
2878 | atomic_read(v: &sk->sk_omem_alloc) + size < optmem_max) { |
2879 | void *mem; |
2880 | /* First do the add, to avoid the race if kmalloc |
2881 | * might sleep. |
2882 | */ |
2883 | atomic_add(i: size, v: &sk->sk_omem_alloc); |
2884 | mem = kmalloc(size, priority); |
2885 | if (mem) |
2886 | return mem; |
2887 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
2888 | } |
2889 | return NULL; |
2890 | } |
2891 | EXPORT_SYMBOL(sock_kmalloc); |
2892 | |
2893 | /* |
2894 | * Duplicate the input "src" memory block using the socket's |
2895 | * option memory buffer. |
2896 | */ |
2897 | void *sock_kmemdup(struct sock *sk, const void *src, |
2898 | int size, gfp_t priority) |
2899 | { |
2900 | void *mem; |
2901 | |
2902 | mem = sock_kmalloc(sk, size, priority); |
2903 | if (mem) |
2904 | memcpy(mem, src, size); |
2905 | return mem; |
2906 | } |
2907 | EXPORT_SYMBOL(sock_kmemdup); |
2908 | |
2909 | /* Free an option memory block. Note, we actually want the inline |
2910 | * here as this allows gcc to detect the nullify and fold away the |
2911 | * condition entirely. |
2912 | */ |
2913 | static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, |
2914 | const bool nullify) |
2915 | { |
2916 | if (WARN_ON_ONCE(!mem)) |
2917 | return; |
2918 | if (nullify) |
2919 | kfree_sensitive(objp: mem); |
2920 | else |
2921 | kfree(objp: mem); |
2922 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
2923 | } |
2924 | |
2925 | void sock_kfree_s(struct sock *sk, void *mem, int size) |
2926 | { |
2927 | __sock_kfree_s(sk, mem, size, nullify: false); |
2928 | } |
2929 | EXPORT_SYMBOL(sock_kfree_s); |
2930 | |
2931 | void sock_kzfree_s(struct sock *sk, void *mem, int size) |
2932 | { |
2933 | __sock_kfree_s(sk, mem, size, nullify: true); |
2934 | } |
2935 | EXPORT_SYMBOL(sock_kzfree_s); |
2936 | |
2937 | /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. |
2938 | I think, these locks should be removed for datagram sockets. |
2939 | */ |
2940 | static long sock_wait_for_wmem(struct sock *sk, long timeo) |
2941 | { |
2942 | DEFINE_WAIT(wait); |
2943 | |
2944 | sk_clear_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
2945 | for (;;) { |
2946 | if (!timeo) |
2947 | break; |
2948 | if (signal_pending(current)) |
2949 | break; |
2950 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
2951 | prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE); |
2952 | if (refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) |
2953 | break; |
2954 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
2955 | break; |
2956 | if (READ_ONCE(sk->sk_err)) |
2957 | break; |
2958 | timeo = schedule_timeout(timeout: timeo); |
2959 | } |
2960 | finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait); |
2961 | return timeo; |
2962 | } |
2963 | |
2964 | |
2965 | /* |
2966 | * Generic send/receive buffer handlers |
2967 | */ |
2968 | |
2969 | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, |
2970 | unsigned long data_len, int noblock, |
2971 | int *errcode, int max_page_order) |
2972 | { |
2973 | struct sk_buff *skb; |
2974 | long timeo; |
2975 | int err; |
2976 | |
2977 | timeo = sock_sndtimeo(sk, noblock); |
2978 | for (;;) { |
2979 | err = sock_error(sk); |
2980 | if (err != 0) |
2981 | goto failure; |
2982 | |
2983 | err = -EPIPE; |
2984 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
2985 | goto failure; |
2986 | |
2987 | if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) |
2988 | break; |
2989 | |
2990 | sk_set_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
2991 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
2992 | err = -EAGAIN; |
2993 | if (!timeo) |
2994 | goto failure; |
2995 | if (signal_pending(current)) |
2996 | goto interrupted; |
2997 | timeo = sock_wait_for_wmem(sk, timeo); |
2998 | } |
2999 | skb = alloc_skb_with_frags(header_len, data_len, max_page_order, |
3000 | errcode, gfp_mask: sk->sk_allocation); |
3001 | if (skb) |
3002 | skb_set_owner_w(skb, sk); |
3003 | return skb; |
3004 | |
3005 | interrupted: |
3006 | err = sock_intr_errno(timeo); |
3007 | failure: |
3008 | *errcode = err; |
3009 | return NULL; |
3010 | } |
3011 | EXPORT_SYMBOL(sock_alloc_send_pskb); |
3012 | |
3013 | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
3014 | struct sockcm_cookie *sockc) |
3015 | { |
3016 | u32 tsflags; |
3017 | |
3018 | BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); |
3019 | |
3020 | switch (cmsg->cmsg_type) { |
3021 | case SO_MARK: |
3022 | if (!ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) && |
3023 | !ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN)) |
3024 | return -EPERM; |
3025 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
3026 | return -EINVAL; |
3027 | sockc->mark = *(u32 *)CMSG_DATA(cmsg); |
3028 | break; |
3029 | case SO_TIMESTAMPING_OLD: |
3030 | case SO_TIMESTAMPING_NEW: |
3031 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
3032 | return -EINVAL; |
3033 | |
3034 | tsflags = *(u32 *)CMSG_DATA(cmsg); |
3035 | if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) |
3036 | return -EINVAL; |
3037 | |
3038 | sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; |
3039 | sockc->tsflags |= tsflags; |
3040 | break; |
3041 | case SCM_TXTIME: |
3042 | if (!sock_flag(sk, flag: SOCK_TXTIME)) |
3043 | return -EINVAL; |
3044 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) |
3045 | return -EINVAL; |
3046 | sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); |
3047 | break; |
3048 | case SCM_TS_OPT_ID: |
3049 | if (sk_is_tcp(sk)) |
3050 | return -EINVAL; |
3051 | tsflags = READ_ONCE(sk->sk_tsflags); |
3052 | if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) |
3053 | return -EINVAL; |
3054 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
3055 | return -EINVAL; |
3056 | sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); |
3057 | sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; |
3058 | break; |
3059 | /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ |
3060 | case SCM_RIGHTS: |
3061 | case SCM_CREDENTIALS: |
3062 | break; |
3063 | case SO_PRIORITY: |
3064 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
3065 | return -EINVAL; |
3066 | if (!sk_set_prio_allowed(sk, val: *(u32 *)CMSG_DATA(cmsg))) |
3067 | return -EPERM; |
3068 | sockc->priority = *(u32 *)CMSG_DATA(cmsg); |
3069 | break; |
3070 | case SCM_DEVMEM_DMABUF: |
3071 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
3072 | return -EINVAL; |
3073 | sockc->dmabuf_id = *(u32 *)CMSG_DATA(cmsg); |
3074 | break; |
3075 | default: |
3076 | return -EINVAL; |
3077 | } |
3078 | return 0; |
3079 | } |
3080 | EXPORT_SYMBOL(__sock_cmsg_send); |
3081 | |
3082 | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
3083 | struct sockcm_cookie *sockc) |
3084 | { |
3085 | struct cmsghdr *cmsg; |
3086 | int ret; |
3087 | |
3088 | for_each_cmsghdr(cmsg, msg) { |
3089 | if (!CMSG_OK(msg, cmsg)) |
3090 | return -EINVAL; |
3091 | if (cmsg->cmsg_level != SOL_SOCKET) |
3092 | continue; |
3093 | ret = __sock_cmsg_send(sk, cmsg, sockc); |
3094 | if (ret) |
3095 | return ret; |
3096 | } |
3097 | return 0; |
3098 | } |
3099 | EXPORT_SYMBOL(sock_cmsg_send); |
3100 | |
3101 | static void sk_enter_memory_pressure(struct sock *sk) |
3102 | { |
3103 | if (!sk->sk_prot->enter_memory_pressure) |
3104 | return; |
3105 | |
3106 | sk->sk_prot->enter_memory_pressure(sk); |
3107 | } |
3108 | |
3109 | static void sk_leave_memory_pressure(struct sock *sk) |
3110 | { |
3111 | if (sk->sk_prot->leave_memory_pressure) { |
3112 | INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, |
3113 | tcp_leave_memory_pressure, sk); |
3114 | } else { |
3115 | unsigned long *memory_pressure = sk->sk_prot->memory_pressure; |
3116 | |
3117 | if (memory_pressure && READ_ONCE(*memory_pressure)) |
3118 | WRITE_ONCE(*memory_pressure, 0); |
3119 | } |
3120 | } |
3121 | |
3122 | DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
3123 | |
3124 | /** |
3125 | * skb_page_frag_refill - check that a page_frag contains enough room |
3126 | * @sz: minimum size of the fragment we want to get |
3127 | * @pfrag: pointer to page_frag |
3128 | * @gfp: priority for memory allocation |
3129 | * |
3130 | * Note: While this allocator tries to use high order pages, there is |
3131 | * no guarantee that allocations succeed. Therefore, @sz MUST be |
3132 | * less or equal than PAGE_SIZE. |
3133 | */ |
3134 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) |
3135 | { |
3136 | if (pfrag->page) { |
3137 | if (page_ref_count(page: pfrag->page) == 1) { |
3138 | pfrag->offset = 0; |
3139 | return true; |
3140 | } |
3141 | if (pfrag->offset + sz <= pfrag->size) |
3142 | return true; |
3143 | put_page(page: pfrag->page); |
3144 | } |
3145 | |
3146 | pfrag->offset = 0; |
3147 | if (SKB_FRAG_PAGE_ORDER && |
3148 | !static_branch_unlikely(&net_high_order_alloc_disable_key)) { |
3149 | /* Avoid direct reclaim but allow kswapd to wake */ |
3150 | pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | |
3151 | __GFP_COMP | __GFP_NOWARN | |
3152 | __GFP_NORETRY, |
3153 | SKB_FRAG_PAGE_ORDER); |
3154 | if (likely(pfrag->page)) { |
3155 | pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; |
3156 | return true; |
3157 | } |
3158 | } |
3159 | pfrag->page = alloc_page(gfp); |
3160 | if (likely(pfrag->page)) { |
3161 | pfrag->size = PAGE_SIZE; |
3162 | return true; |
3163 | } |
3164 | return false; |
3165 | } |
3166 | EXPORT_SYMBOL(skb_page_frag_refill); |
3167 | |
3168 | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) |
3169 | { |
3170 | if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) |
3171 | return true; |
3172 | |
3173 | sk_enter_memory_pressure(sk); |
3174 | sk_stream_moderate_sndbuf(sk); |
3175 | return false; |
3176 | } |
3177 | EXPORT_SYMBOL(sk_page_frag_refill); |
3178 | |
3179 | void __lock_sock(struct sock *sk) |
3180 | __releases(&sk->sk_lock.slock) |
3181 | __acquires(&sk->sk_lock.slock) |
3182 | { |
3183 | DEFINE_WAIT(wait); |
3184 | |
3185 | for (;;) { |
3186 | prepare_to_wait_exclusive(wq_head: &sk->sk_lock.wq, wq_entry: &wait, |
3187 | TASK_UNINTERRUPTIBLE); |
3188 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3189 | schedule(); |
3190 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3191 | if (!sock_owned_by_user(sk)) |
3192 | break; |
3193 | } |
3194 | finish_wait(wq_head: &sk->sk_lock.wq, wq_entry: &wait); |
3195 | } |
3196 | |
3197 | void __release_sock(struct sock *sk) |
3198 | __releases(&sk->sk_lock.slock) |
3199 | __acquires(&sk->sk_lock.slock) |
3200 | { |
3201 | struct sk_buff *skb, *next; |
3202 | |
3203 | while ((skb = sk->sk_backlog.head) != NULL) { |
3204 | sk->sk_backlog.head = sk->sk_backlog.tail = NULL; |
3205 | |
3206 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3207 | |
3208 | do { |
3209 | next = skb->next; |
3210 | prefetch(next); |
3211 | DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); |
3212 | skb_mark_not_on_list(skb); |
3213 | sk_backlog_rcv(sk, skb); |
3214 | |
3215 | cond_resched(); |
3216 | |
3217 | skb = next; |
3218 | } while (skb != NULL); |
3219 | |
3220 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3221 | } |
3222 | |
3223 | /* |
3224 | * Doing the zeroing here guarantee we can not loop forever |
3225 | * while a wild producer attempts to flood us. |
3226 | */ |
3227 | sk->sk_backlog.len = 0; |
3228 | } |
3229 | |
3230 | void __sk_flush_backlog(struct sock *sk) |
3231 | { |
3232 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3233 | __release_sock(sk); |
3234 | |
3235 | if (sk->sk_prot->release_cb) |
3236 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
3237 | tcp_release_cb, sk); |
3238 | |
3239 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3240 | } |
3241 | EXPORT_SYMBOL_GPL(__sk_flush_backlog); |
3242 | |
3243 | /** |
3244 | * sk_wait_data - wait for data to arrive at sk_receive_queue |
3245 | * @sk: sock to wait on |
3246 | * @timeo: for how long |
3247 | * @skb: last skb seen on sk_receive_queue |
3248 | * |
3249 | * Now socket state including sk->sk_err is changed only under lock, |
3250 | * hence we may omit checks after joining wait queue. |
3251 | * We check receive queue before schedule() only as optimization; |
3252 | * it is very likely that release_sock() added new data. |
3253 | */ |
3254 | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) |
3255 | { |
3256 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
3257 | int rc; |
3258 | |
3259 | add_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
3260 | sk_set_bit(nr: SOCKWQ_ASYNC_WAITDATA, sk); |
3261 | rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); |
3262 | sk_clear_bit(nr: SOCKWQ_ASYNC_WAITDATA, sk); |
3263 | remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
3264 | return rc; |
3265 | } |
3266 | EXPORT_SYMBOL(sk_wait_data); |
3267 | |
3268 | /** |
3269 | * __sk_mem_raise_allocated - increase memory_allocated |
3270 | * @sk: socket |
3271 | * @size: memory size to allocate |
3272 | * @amt: pages to allocate |
3273 | * @kind: allocation type |
3274 | * |
3275 | * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. |
3276 | * |
3277 | * Unlike the globally shared limits among the sockets under same protocol, |
3278 | * consuming the budget of a memcg won't have direct effect on other ones. |
3279 | * So be optimistic about memcg's tolerance, and leave the callers to decide |
3280 | * whether or not to raise allocated through sk_under_memory_pressure() or |
3281 | * its variants. |
3282 | */ |
3283 | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) |
3284 | { |
3285 | struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; |
3286 | struct proto *prot = sk->sk_prot; |
3287 | bool charged = true; |
3288 | long allocated; |
3289 | |
3290 | sk_memory_allocated_add(sk, val: amt); |
3291 | allocated = sk_memory_allocated(sk); |
3292 | |
3293 | if (memcg) { |
3294 | charged = mem_cgroup_charge_skmem(memcg, nr_pages: amt, gfp_mask: gfp_memcg_charge()); |
3295 | if (!charged) |
3296 | goto suppress_allocation; |
3297 | } |
3298 | |
3299 | /* Under limit. */ |
3300 | if (allocated <= sk_prot_mem_limits(sk, index: 0)) { |
3301 | sk_leave_memory_pressure(sk); |
3302 | return 1; |
3303 | } |
3304 | |
3305 | /* Under pressure. */ |
3306 | if (allocated > sk_prot_mem_limits(sk, index: 1)) |
3307 | sk_enter_memory_pressure(sk); |
3308 | |
3309 | /* Over hard limit. */ |
3310 | if (allocated > sk_prot_mem_limits(sk, index: 2)) |
3311 | goto suppress_allocation; |
3312 | |
3313 | /* Guarantee minimum buffer size under pressure (either global |
3314 | * or memcg) to make sure features described in RFC 7323 (TCP |
3315 | * Extensions for High Performance) work properly. |
3316 | * |
3317 | * This rule does NOT stand when exceeds global or memcg's hard |
3318 | * limit, or else a DoS attack can be taken place by spawning |
3319 | * lots of sockets whose usage are under minimum buffer size. |
3320 | */ |
3321 | if (kind == SK_MEM_RECV) { |
3322 | if (atomic_read(v: &sk->sk_rmem_alloc) < sk_get_rmem0(sk, proto: prot)) |
3323 | return 1; |
3324 | |
3325 | } else { /* SK_MEM_SEND */ |
3326 | int wmem0 = sk_get_wmem0(sk, proto: prot); |
3327 | |
3328 | if (sk->sk_type == SOCK_STREAM) { |
3329 | if (sk->sk_wmem_queued < wmem0) |
3330 | return 1; |
3331 | } else if (refcount_read(r: &sk->sk_wmem_alloc) < wmem0) { |
3332 | return 1; |
3333 | } |
3334 | } |
3335 | |
3336 | if (sk_has_memory_pressure(sk)) { |
3337 | u64 alloc; |
3338 | |
3339 | /* The following 'average' heuristic is within the |
3340 | * scope of global accounting, so it only makes |
3341 | * sense for global memory pressure. |
3342 | */ |
3343 | if (!sk_under_global_memory_pressure(sk)) |
3344 | return 1; |
3345 | |
3346 | /* Try to be fair among all the sockets under global |
3347 | * pressure by allowing the ones that below average |
3348 | * usage to raise. |
3349 | */ |
3350 | alloc = sk_sockets_allocated_read_positive(sk); |
3351 | if (sk_prot_mem_limits(sk, index: 2) > alloc * |
3352 | sk_mem_pages(amt: sk->sk_wmem_queued + |
3353 | atomic_read(v: &sk->sk_rmem_alloc) + |
3354 | sk->sk_forward_alloc)) |
3355 | return 1; |
3356 | } |
3357 | |
3358 | suppress_allocation: |
3359 | |
3360 | if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { |
3361 | sk_stream_moderate_sndbuf(sk); |
3362 | |
3363 | /* Fail only if socket is _under_ its sndbuf. |
3364 | * In this case we cannot block, so that we have to fail. |
3365 | */ |
3366 | if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { |
3367 | /* Force charge with __GFP_NOFAIL */ |
3368 | if (memcg && !charged) { |
3369 | mem_cgroup_charge_skmem(memcg, nr_pages: amt, |
3370 | gfp_mask: gfp_memcg_charge() | __GFP_NOFAIL); |
3371 | } |
3372 | return 1; |
3373 | } |
3374 | } |
3375 | |
3376 | if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) |
3377 | trace_sock_exceed_buf_limit(sk, prot, allocated, kind); |
3378 | |
3379 | sk_memory_allocated_sub(sk, val: amt); |
3380 | |
3381 | if (memcg && charged) |
3382 | mem_cgroup_uncharge_skmem(memcg, nr_pages: amt); |
3383 | |
3384 | return 0; |
3385 | } |
3386 | |
3387 | /** |
3388 | * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated |
3389 | * @sk: socket |
3390 | * @size: memory size to allocate |
3391 | * @kind: allocation type |
3392 | * |
3393 | * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means |
3394 | * rmem allocation. This function assumes that protocols which have |
3395 | * memory_pressure use sk_wmem_queued as write buffer accounting. |
3396 | */ |
3397 | int __sk_mem_schedule(struct sock *sk, int size, int kind) |
3398 | { |
3399 | int ret, amt = sk_mem_pages(amt: size); |
3400 | |
3401 | sk_forward_alloc_add(sk, val: amt << PAGE_SHIFT); |
3402 | ret = __sk_mem_raise_allocated(sk, size, amt, kind); |
3403 | if (!ret) |
3404 | sk_forward_alloc_add(sk, val: -(amt << PAGE_SHIFT)); |
3405 | return ret; |
3406 | } |
3407 | EXPORT_SYMBOL(__sk_mem_schedule); |
3408 | |
3409 | /** |
3410 | * __sk_mem_reduce_allocated - reclaim memory_allocated |
3411 | * @sk: socket |
3412 | * @amount: number of quanta |
3413 | * |
3414 | * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc |
3415 | */ |
3416 | void __sk_mem_reduce_allocated(struct sock *sk, int amount) |
3417 | { |
3418 | sk_memory_allocated_sub(sk, val: amount); |
3419 | |
3420 | if (mem_cgroup_sockets_enabled && sk->sk_memcg) |
3421 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: amount); |
3422 | |
3423 | if (sk_under_global_memory_pressure(sk) && |
3424 | (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, index: 0))) |
3425 | sk_leave_memory_pressure(sk); |
3426 | } |
3427 | |
3428 | /** |
3429 | * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated |
3430 | * @sk: socket |
3431 | * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) |
3432 | */ |
3433 | void __sk_mem_reclaim(struct sock *sk, int amount) |
3434 | { |
3435 | amount >>= PAGE_SHIFT; |
3436 | sk_forward_alloc_add(sk, val: -(amount << PAGE_SHIFT)); |
3437 | __sk_mem_reduce_allocated(sk, amount); |
3438 | } |
3439 | EXPORT_SYMBOL(__sk_mem_reclaim); |
3440 | |
3441 | int sk_set_peek_off(struct sock *sk, int val) |
3442 | { |
3443 | WRITE_ONCE(sk->sk_peek_off, val); |
3444 | return 0; |
3445 | } |
3446 | EXPORT_SYMBOL_GPL(sk_set_peek_off); |
3447 | |
3448 | /* |
3449 | * Set of default routines for initialising struct proto_ops when |
3450 | * the protocol does not support a particular function. In certain |
3451 | * cases where it makes no sense for a protocol to have a "do nothing" |
3452 | * function, some default processing is provided. |
3453 | */ |
3454 | |
3455 | int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) |
3456 | { |
3457 | return -EOPNOTSUPP; |
3458 | } |
3459 | EXPORT_SYMBOL(sock_no_bind); |
3460 | |
3461 | int sock_no_connect(struct socket *sock, struct sockaddr *saddr, |
3462 | int len, int flags) |
3463 | { |
3464 | return -EOPNOTSUPP; |
3465 | } |
3466 | EXPORT_SYMBOL(sock_no_connect); |
3467 | |
3468 | int sock_no_socketpair(struct socket *sock1, struct socket *sock2) |
3469 | { |
3470 | return -EOPNOTSUPP; |
3471 | } |
3472 | EXPORT_SYMBOL(sock_no_socketpair); |
3473 | |
3474 | int sock_no_accept(struct socket *sock, struct socket *newsock, |
3475 | struct proto_accept_arg *arg) |
3476 | { |
3477 | return -EOPNOTSUPP; |
3478 | } |
3479 | EXPORT_SYMBOL(sock_no_accept); |
3480 | |
3481 | int sock_no_getname(struct socket *sock, struct sockaddr *saddr, |
3482 | int peer) |
3483 | { |
3484 | return -EOPNOTSUPP; |
3485 | } |
3486 | EXPORT_SYMBOL(sock_no_getname); |
3487 | |
3488 | int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
3489 | { |
3490 | return -EOPNOTSUPP; |
3491 | } |
3492 | EXPORT_SYMBOL(sock_no_ioctl); |
3493 | |
3494 | int sock_no_listen(struct socket *sock, int backlog) |
3495 | { |
3496 | return -EOPNOTSUPP; |
3497 | } |
3498 | EXPORT_SYMBOL(sock_no_listen); |
3499 | |
3500 | int sock_no_shutdown(struct socket *sock, int how) |
3501 | { |
3502 | return -EOPNOTSUPP; |
3503 | } |
3504 | EXPORT_SYMBOL(sock_no_shutdown); |
3505 | |
3506 | int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) |
3507 | { |
3508 | return -EOPNOTSUPP; |
3509 | } |
3510 | EXPORT_SYMBOL(sock_no_sendmsg); |
3511 | |
3512 | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) |
3513 | { |
3514 | return -EOPNOTSUPP; |
3515 | } |
3516 | EXPORT_SYMBOL(sock_no_sendmsg_locked); |
3517 | |
3518 | int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, |
3519 | int flags) |
3520 | { |
3521 | return -EOPNOTSUPP; |
3522 | } |
3523 | EXPORT_SYMBOL(sock_no_recvmsg); |
3524 | |
3525 | int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) |
3526 | { |
3527 | /* Mirror missing mmap method error code */ |
3528 | return -ENODEV; |
3529 | } |
3530 | EXPORT_SYMBOL(sock_no_mmap); |
3531 | |
3532 | /* |
3533 | * When a file is received (via SCM_RIGHTS, etc), we must bump the |
3534 | * various sock-based usage counts. |
3535 | */ |
3536 | void __receive_sock(struct file *file) |
3537 | { |
3538 | struct socket *sock; |
3539 | |
3540 | sock = sock_from_file(file); |
3541 | if (sock) { |
3542 | sock_update_netprioidx(skcd: &sock->sk->sk_cgrp_data); |
3543 | sock_update_classid(skcd: &sock->sk->sk_cgrp_data); |
3544 | } |
3545 | } |
3546 | |
3547 | /* |
3548 | * Default Socket Callbacks |
3549 | */ |
3550 | |
3551 | static void sock_def_wakeup(struct sock *sk) |
3552 | { |
3553 | struct socket_wq *wq; |
3554 | |
3555 | rcu_read_lock(); |
3556 | wq = rcu_dereference(sk->sk_wq); |
3557 | if (skwq_has_sleeper(wq)) |
3558 | wake_up_interruptible_all(&wq->wait); |
3559 | rcu_read_unlock(); |
3560 | } |
3561 | |
3562 | static void sock_def_error_report(struct sock *sk) |
3563 | { |
3564 | struct socket_wq *wq; |
3565 | |
3566 | rcu_read_lock(); |
3567 | wq = rcu_dereference(sk->sk_wq); |
3568 | if (skwq_has_sleeper(wq)) |
3569 | wake_up_interruptible_poll(&wq->wait, EPOLLERR); |
3570 | sk_wake_async_rcu(sk, how: SOCK_WAKE_IO, POLL_ERR); |
3571 | rcu_read_unlock(); |
3572 | } |
3573 | |
3574 | void sock_def_readable(struct sock *sk) |
3575 | { |
3576 | struct socket_wq *wq; |
3577 | |
3578 | trace_sk_data_ready(sk); |
3579 | |
3580 | rcu_read_lock(); |
3581 | wq = rcu_dereference(sk->sk_wq); |
3582 | if (skwq_has_sleeper(wq)) |
3583 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | |
3584 | EPOLLRDNORM | EPOLLRDBAND); |
3585 | sk_wake_async_rcu(sk, how: SOCK_WAKE_WAITD, POLL_IN); |
3586 | rcu_read_unlock(); |
3587 | } |
3588 | |
3589 | static void sock_def_write_space(struct sock *sk) |
3590 | { |
3591 | struct socket_wq *wq; |
3592 | |
3593 | rcu_read_lock(); |
3594 | |
3595 | /* Do not wake up a writer until he can make "significant" |
3596 | * progress. --DaveM |
3597 | */ |
3598 | if (sock_writeable(sk)) { |
3599 | wq = rcu_dereference(sk->sk_wq); |
3600 | if (skwq_has_sleeper(wq)) |
3601 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
3602 | EPOLLWRNORM | EPOLLWRBAND); |
3603 | |
3604 | /* Should agree with poll, otherwise some programs break */ |
3605 | sk_wake_async_rcu(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
3606 | } |
3607 | |
3608 | rcu_read_unlock(); |
3609 | } |
3610 | |
3611 | /* An optimised version of sock_def_write_space(), should only be called |
3612 | * for SOCK_RCU_FREE sockets under RCU read section and after putting |
3613 | * ->sk_wmem_alloc. |
3614 | */ |
3615 | static void sock_def_write_space_wfree(struct sock *sk) |
3616 | { |
3617 | /* Do not wake up a writer until he can make "significant" |
3618 | * progress. --DaveM |
3619 | */ |
3620 | if (sock_writeable(sk)) { |
3621 | struct socket_wq *wq = rcu_dereference(sk->sk_wq); |
3622 | |
3623 | /* rely on refcount_sub from sock_wfree() */ |
3624 | smp_mb__after_atomic(); |
3625 | if (wq && waitqueue_active(wq_head: &wq->wait)) |
3626 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
3627 | EPOLLWRNORM | EPOLLWRBAND); |
3628 | |
3629 | /* Should agree with poll, otherwise some programs break */ |
3630 | sk_wake_async_rcu(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
3631 | } |
3632 | } |
3633 | |
3634 | static void sock_def_destruct(struct sock *sk) |
3635 | { |
3636 | } |
3637 | |
3638 | void sk_send_sigurg(struct sock *sk) |
3639 | { |
3640 | if (sk->sk_socket && sk->sk_socket->file) |
3641 | if (send_sigurg(file: sk->sk_socket->file)) |
3642 | sk_wake_async(sk, how: SOCK_WAKE_URG, POLL_PRI); |
3643 | } |
3644 | EXPORT_SYMBOL(sk_send_sigurg); |
3645 | |
3646 | void sk_reset_timer(struct sock *sk, struct timer_list* timer, |
3647 | unsigned long expires) |
3648 | { |
3649 | if (!mod_timer(timer, expires)) |
3650 | sock_hold(sk); |
3651 | } |
3652 | EXPORT_SYMBOL(sk_reset_timer); |
3653 | |
3654 | void sk_stop_timer(struct sock *sk, struct timer_list* timer) |
3655 | { |
3656 | if (timer_delete(timer)) |
3657 | __sock_put(sk); |
3658 | } |
3659 | EXPORT_SYMBOL(sk_stop_timer); |
3660 | |
3661 | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) |
3662 | { |
3663 | if (timer_delete_sync(timer)) |
3664 | __sock_put(sk); |
3665 | } |
3666 | EXPORT_SYMBOL(sk_stop_timer_sync); |
3667 | |
3668 | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) |
3669 | { |
3670 | sk_init_common(sk); |
3671 | sk->sk_send_head = NULL; |
3672 | |
3673 | timer_setup(&sk->sk_timer, NULL, 0); |
3674 | |
3675 | sk->sk_allocation = GFP_KERNEL; |
3676 | sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); |
3677 | sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); |
3678 | sk->sk_state = TCP_CLOSE; |
3679 | sk->sk_use_task_frag = true; |
3680 | sk_set_socket(sk, sock); |
3681 | |
3682 | sock_set_flag(sk, flag: SOCK_ZAPPED); |
3683 | |
3684 | if (sock) { |
3685 | sk->sk_type = sock->type; |
3686 | RCU_INIT_POINTER(sk->sk_wq, &sock->wq); |
3687 | sock->sk = sk; |
3688 | } else { |
3689 | RCU_INIT_POINTER(sk->sk_wq, NULL); |
3690 | } |
3691 | sk->sk_uid = uid; |
3692 | |
3693 | sk->sk_state_change = sock_def_wakeup; |
3694 | sk->sk_data_ready = sock_def_readable; |
3695 | sk->sk_write_space = sock_def_write_space; |
3696 | sk->sk_error_report = sock_def_error_report; |
3697 | sk->sk_destruct = sock_def_destruct; |
3698 | |
3699 | sk->sk_frag.page = NULL; |
3700 | sk->sk_frag.offset = 0; |
3701 | sk->sk_peek_off = -1; |
3702 | |
3703 | sk->sk_peer_pid = NULL; |
3704 | sk->sk_peer_cred = NULL; |
3705 | spin_lock_init(&sk->sk_peer_lock); |
3706 | |
3707 | sk->sk_write_pending = 0; |
3708 | sk->sk_rcvlowat = 1; |
3709 | sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; |
3710 | sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
3711 | |
3712 | sk->sk_stamp = SK_DEFAULT_STAMP; |
3713 | #if BITS_PER_LONG==32 |
3714 | seqlock_init(&sk->sk_stamp_seq); |
3715 | #endif |
3716 | atomic_set(v: &sk->sk_zckey, i: 0); |
3717 | |
3718 | #ifdef CONFIG_NET_RX_BUSY_POLL |
3719 | sk->sk_napi_id = 0; |
3720 | sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); |
3721 | #endif |
3722 | |
3723 | sk->sk_max_pacing_rate = ~0UL; |
3724 | sk->sk_pacing_rate = ~0UL; |
3725 | WRITE_ONCE(sk->sk_pacing_shift, 10); |
3726 | sk->sk_incoming_cpu = -1; |
3727 | |
3728 | sk_rx_queue_clear(sk); |
3729 | /* |
3730 | * Before updating sk_refcnt, we must commit prior changes to memory |
3731 | * (Documentation/RCU/rculist_nulls.rst for details) |
3732 | */ |
3733 | smp_wmb(); |
3734 | refcount_set(r: &sk->sk_refcnt, n: 1); |
3735 | atomic_set(v: &sk->sk_drops, i: 0); |
3736 | } |
3737 | EXPORT_SYMBOL(sock_init_data_uid); |
3738 | |
3739 | void sock_init_data(struct socket *sock, struct sock *sk) |
3740 | { |
3741 | kuid_t uid = sock ? |
3742 | SOCK_INODE(socket: sock)->i_uid : |
3743 | make_kuid(from: sock_net(sk)->user_ns, uid: 0); |
3744 | |
3745 | sock_init_data_uid(sock, sk, uid); |
3746 | } |
3747 | EXPORT_SYMBOL(sock_init_data); |
3748 | |
3749 | void lock_sock_nested(struct sock *sk, int subclass) |
3750 | { |
3751 | /* The sk_lock has mutex_lock() semantics here. */ |
3752 | mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); |
3753 | |
3754 | might_sleep(); |
3755 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3756 | if (sock_owned_by_user_nocheck(sk)) |
3757 | __lock_sock(sk); |
3758 | sk->sk_lock.owned = 1; |
3759 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3760 | } |
3761 | EXPORT_SYMBOL(lock_sock_nested); |
3762 | |
3763 | void release_sock(struct sock *sk) |
3764 | { |
3765 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3766 | if (sk->sk_backlog.tail) |
3767 | __release_sock(sk); |
3768 | |
3769 | if (sk->sk_prot->release_cb) |
3770 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
3771 | tcp_release_cb, sk); |
3772 | |
3773 | sock_release_ownership(sk); |
3774 | if (waitqueue_active(wq_head: &sk->sk_lock.wq)) |
3775 | wake_up(&sk->sk_lock.wq); |
3776 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3777 | } |
3778 | EXPORT_SYMBOL(release_sock); |
3779 | |
3780 | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) |
3781 | { |
3782 | might_sleep(); |
3783 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3784 | |
3785 | if (!sock_owned_by_user_nocheck(sk)) { |
3786 | /* |
3787 | * Fast path return with bottom halves disabled and |
3788 | * sock::sk_lock.slock held. |
3789 | * |
3790 | * The 'mutex' is not contended and holding |
3791 | * sock::sk_lock.slock prevents all other lockers to |
3792 | * proceed so the corresponding unlock_sock_fast() can |
3793 | * avoid the slow path of release_sock() completely and |
3794 | * just release slock. |
3795 | * |
3796 | * From a semantical POV this is equivalent to 'acquiring' |
3797 | * the 'mutex', hence the corresponding lockdep |
3798 | * mutex_release() has to happen in the fast path of |
3799 | * unlock_sock_fast(). |
3800 | */ |
3801 | return false; |
3802 | } |
3803 | |
3804 | __lock_sock(sk); |
3805 | sk->sk_lock.owned = 1; |
3806 | __acquire(&sk->sk_lock.slock); |
3807 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3808 | return true; |
3809 | } |
3810 | EXPORT_SYMBOL(__lock_sock_fast); |
3811 | |
3812 | int sock_gettstamp(struct socket *sock, void __user *userstamp, |
3813 | bool timeval, bool time32) |
3814 | { |
3815 | struct sock *sk = sock->sk; |
3816 | struct timespec64 ts; |
3817 | |
3818 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
3819 | ts = ktime_to_timespec64(sock_read_timestamp(sk)); |
3820 | if (ts.tv_sec == -1) |
3821 | return -ENOENT; |
3822 | if (ts.tv_sec == 0) { |
3823 | ktime_t kt = ktime_get_real(); |
3824 | sock_write_timestamp(sk, kt); |
3825 | ts = ktime_to_timespec64(kt); |
3826 | } |
3827 | |
3828 | if (timeval) |
3829 | ts.tv_nsec /= 1000; |
3830 | |
3831 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3832 | if (time32) |
3833 | return put_old_timespec32(&ts, userstamp); |
3834 | #endif |
3835 | #ifdef CONFIG_SPARC64 |
3836 | /* beware of padding in sparc64 timeval */ |
3837 | if (timeval && !in_compat_syscall()) { |
3838 | struct __kernel_old_timeval __user tv = { |
3839 | .tv_sec = ts.tv_sec, |
3840 | .tv_usec = ts.tv_nsec, |
3841 | }; |
3842 | if (copy_to_user(userstamp, &tv, sizeof(tv))) |
3843 | return -EFAULT; |
3844 | return 0; |
3845 | } |
3846 | #endif |
3847 | return put_timespec64(ts: &ts, uts: userstamp); |
3848 | } |
3849 | EXPORT_SYMBOL(sock_gettstamp); |
3850 | |
3851 | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) |
3852 | { |
3853 | if (!sock_flag(sk, flag)) { |
3854 | unsigned long previous_flags = sk->sk_flags; |
3855 | |
3856 | sock_set_flag(sk, flag); |
3857 | /* |
3858 | * we just set one of the two flags which require net |
3859 | * time stamping, but time stamping might have been on |
3860 | * already because of the other one |
3861 | */ |
3862 | if (sock_needs_netstamp(sk) && |
3863 | !(previous_flags & SK_FLAGS_TIMESTAMP)) |
3864 | net_enable_timestamp(); |
3865 | } |
3866 | } |
3867 | |
3868 | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, |
3869 | int level, int type) |
3870 | { |
3871 | struct sock_exterr_skb *serr; |
3872 | struct sk_buff *skb; |
3873 | int copied, err; |
3874 | |
3875 | err = -EAGAIN; |
3876 | skb = sock_dequeue_err_skb(sk); |
3877 | if (skb == NULL) |
3878 | goto out; |
3879 | |
3880 | copied = skb->len; |
3881 | if (copied > len) { |
3882 | msg->msg_flags |= MSG_TRUNC; |
3883 | copied = len; |
3884 | } |
3885 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied); |
3886 | if (err) |
3887 | goto out_free_skb; |
3888 | |
3889 | sock_recv_timestamp(msg, sk, skb); |
3890 | |
3891 | serr = SKB_EXT_ERR(skb); |
3892 | put_cmsg(msg, level, type, len: sizeof(serr->ee), data: &serr->ee); |
3893 | |
3894 | msg->msg_flags |= MSG_ERRQUEUE; |
3895 | err = copied; |
3896 | |
3897 | out_free_skb: |
3898 | kfree_skb(skb); |
3899 | out: |
3900 | return err; |
3901 | } |
3902 | EXPORT_SYMBOL(sock_recv_errqueue); |
3903 | |
3904 | /* |
3905 | * Get a socket option on an socket. |
3906 | * |
3907 | * FIX: POSIX 1003.1g is very ambiguous here. It states that |
3908 | * asynchronous errors should be reported by getsockopt. We assume |
3909 | * this means if you specify SO_ERROR (otherwise what is the point of it). |
3910 | */ |
3911 | int sock_common_getsockopt(struct socket *sock, int level, int optname, |
3912 | char __user *optval, int __user *optlen) |
3913 | { |
3914 | struct sock *sk = sock->sk; |
3915 | |
3916 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
3917 | return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); |
3918 | } |
3919 | EXPORT_SYMBOL(sock_common_getsockopt); |
3920 | |
3921 | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
3922 | int flags) |
3923 | { |
3924 | struct sock *sk = sock->sk; |
3925 | int addr_len = 0; |
3926 | int err; |
3927 | |
3928 | err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); |
3929 | if (err >= 0) |
3930 | msg->msg_namelen = addr_len; |
3931 | return err; |
3932 | } |
3933 | EXPORT_SYMBOL(sock_common_recvmsg); |
3934 | |
3935 | /* |
3936 | * Set socket options on an inet socket. |
3937 | */ |
3938 | int sock_common_setsockopt(struct socket *sock, int level, int optname, |
3939 | sockptr_t optval, unsigned int optlen) |
3940 | { |
3941 | struct sock *sk = sock->sk; |
3942 | |
3943 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
3944 | return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); |
3945 | } |
3946 | EXPORT_SYMBOL(sock_common_setsockopt); |
3947 | |
3948 | void sk_common_release(struct sock *sk) |
3949 | { |
3950 | if (sk->sk_prot->destroy) |
3951 | sk->sk_prot->destroy(sk); |
3952 | |
3953 | /* |
3954 | * Observation: when sk_common_release is called, processes have |
3955 | * no access to socket. But net still has. |
3956 | * Step one, detach it from networking: |
3957 | * |
3958 | * A. Remove from hash tables. |
3959 | */ |
3960 | |
3961 | sk->sk_prot->unhash(sk); |
3962 | |
3963 | /* |
3964 | * In this point socket cannot receive new packets, but it is possible |
3965 | * that some packets are in flight because some CPU runs receiver and |
3966 | * did hash table lookup before we unhashed socket. They will achieve |
3967 | * receive queue and will be purged by socket destructor. |
3968 | * |
3969 | * Also we still have packets pending on receive queue and probably, |
3970 | * our own packets waiting in device queues. sock_destroy will drain |
3971 | * receive queue, but transmitted packets will delay socket destruction |
3972 | * until the last reference will be released. |
3973 | */ |
3974 | |
3975 | sock_orphan(sk); |
3976 | |
3977 | xfrm_sk_free_policy(sk); |
3978 | |
3979 | sock_put(sk); |
3980 | } |
3981 | EXPORT_SYMBOL(sk_common_release); |
3982 | |
3983 | void sk_get_meminfo(const struct sock *sk, u32 *mem) |
3984 | { |
3985 | memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); |
3986 | |
3987 | mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); |
3988 | mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); |
3989 | mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); |
3990 | mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); |
3991 | mem[SK_MEMINFO_FWD_ALLOC] = READ_ONCE(sk->sk_forward_alloc); |
3992 | mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); |
3993 | mem[SK_MEMINFO_OPTMEM] = atomic_read(v: &sk->sk_omem_alloc); |
3994 | mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); |
3995 | mem[SK_MEMINFO_DROPS] = atomic_read(v: &sk->sk_drops); |
3996 | } |
3997 | |
3998 | #ifdef CONFIG_PROC_FS |
3999 | static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); |
4000 | |
4001 | int sock_prot_inuse_get(struct net *net, struct proto *prot) |
4002 | { |
4003 | int cpu, idx = prot->inuse_idx; |
4004 | int res = 0; |
4005 | |
4006 | for_each_possible_cpu(cpu) |
4007 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; |
4008 | |
4009 | return res >= 0 ? res : 0; |
4010 | } |
4011 | EXPORT_SYMBOL_GPL(sock_prot_inuse_get); |
4012 | |
4013 | int sock_inuse_get(struct net *net) |
4014 | { |
4015 | int cpu, res = 0; |
4016 | |
4017 | for_each_possible_cpu(cpu) |
4018 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; |
4019 | |
4020 | return res; |
4021 | } |
4022 | |
4023 | EXPORT_SYMBOL_GPL(sock_inuse_get); |
4024 | |
4025 | static int __net_init sock_inuse_init_net(struct net *net) |
4026 | { |
4027 | net->core.prot_inuse = alloc_percpu(struct prot_inuse); |
4028 | if (net->core.prot_inuse == NULL) |
4029 | return -ENOMEM; |
4030 | return 0; |
4031 | } |
4032 | |
4033 | static void __net_exit sock_inuse_exit_net(struct net *net) |
4034 | { |
4035 | free_percpu(pdata: net->core.prot_inuse); |
4036 | } |
4037 | |
4038 | static struct pernet_operations net_inuse_ops = { |
4039 | .init = sock_inuse_init_net, |
4040 | .exit = sock_inuse_exit_net, |
4041 | }; |
4042 | |
4043 | static __init int net_inuse_init(void) |
4044 | { |
4045 | if (register_pernet_subsys(&net_inuse_ops)) |
4046 | panic(fmt: "Cannot initialize net inuse counters"); |
4047 | |
4048 | return 0; |
4049 | } |
4050 | |
4051 | core_initcall(net_inuse_init); |
4052 | |
4053 | static int assign_proto_idx(struct proto *prot) |
4054 | { |
4055 | prot->inuse_idx = find_first_zero_bit(addr: proto_inuse_idx, PROTO_INUSE_NR); |
4056 | |
4057 | if (unlikely(prot->inuse_idx == PROTO_INUSE_NR)) { |
4058 | pr_err("PROTO_INUSE_NR exhausted\n"); |
4059 | return -ENOSPC; |
4060 | } |
4061 | |
4062 | set_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
4063 | return 0; |
4064 | } |
4065 | |
4066 | static void release_proto_idx(struct proto *prot) |
4067 | { |
4068 | if (prot->inuse_idx != PROTO_INUSE_NR) |
4069 | clear_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
4070 | } |
4071 | #else |
4072 | static inline int assign_proto_idx(struct proto *prot) |
4073 | { |
4074 | return 0; |
4075 | } |
4076 | |
4077 | static inline void release_proto_idx(struct proto *prot) |
4078 | { |
4079 | } |
4080 | |
4081 | #endif |
4082 | |
4083 | static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) |
4084 | { |
4085 | if (!twsk_prot) |
4086 | return; |
4087 | kfree(objp: twsk_prot->twsk_slab_name); |
4088 | twsk_prot->twsk_slab_name = NULL; |
4089 | kmem_cache_destroy(s: twsk_prot->twsk_slab); |
4090 | twsk_prot->twsk_slab = NULL; |
4091 | } |
4092 | |
4093 | static int tw_prot_init(const struct proto *prot) |
4094 | { |
4095 | struct timewait_sock_ops *twsk_prot = prot->twsk_prot; |
4096 | |
4097 | if (!twsk_prot) |
4098 | return 0; |
4099 | |
4100 | twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, fmt: "tw_sock_%s", |
4101 | prot->name); |
4102 | if (!twsk_prot->twsk_slab_name) |
4103 | return -ENOMEM; |
4104 | |
4105 | twsk_prot->twsk_slab = |
4106 | kmem_cache_create(twsk_prot->twsk_slab_name, |
4107 | twsk_prot->twsk_obj_size, 0, |
4108 | SLAB_ACCOUNT | prot->slab_flags, |
4109 | NULL); |
4110 | if (!twsk_prot->twsk_slab) { |
4111 | pr_crit("%s: Can't create timewait sock SLAB cache!\n", |
4112 | prot->name); |
4113 | return -ENOMEM; |
4114 | } |
4115 | |
4116 | return 0; |
4117 | } |
4118 | |
4119 | static void req_prot_cleanup(struct request_sock_ops *rsk_prot) |
4120 | { |
4121 | if (!rsk_prot) |
4122 | return; |
4123 | kfree(objp: rsk_prot->slab_name); |
4124 | rsk_prot->slab_name = NULL; |
4125 | kmem_cache_destroy(s: rsk_prot->slab); |
4126 | rsk_prot->slab = NULL; |
4127 | } |
4128 | |
4129 | static int req_prot_init(const struct proto *prot) |
4130 | { |
4131 | struct request_sock_ops *rsk_prot = prot->rsk_prot; |
4132 | |
4133 | if (!rsk_prot) |
4134 | return 0; |
4135 | |
4136 | rsk_prot->slab_name = kasprintf(GFP_KERNEL, fmt: "request_sock_%s", |
4137 | prot->name); |
4138 | if (!rsk_prot->slab_name) |
4139 | return -ENOMEM; |
4140 | |
4141 | rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, |
4142 | rsk_prot->obj_size, 0, |
4143 | SLAB_ACCOUNT | prot->slab_flags, |
4144 | NULL); |
4145 | |
4146 | if (!rsk_prot->slab) { |
4147 | pr_crit("%s: Can't create request sock SLAB cache!\n", |
4148 | prot->name); |
4149 | return -ENOMEM; |
4150 | } |
4151 | return 0; |
4152 | } |
4153 | |
4154 | int proto_register(struct proto *prot, int alloc_slab) |
4155 | { |
4156 | int ret = -ENOBUFS; |
4157 | |
4158 | if (prot->memory_allocated && !prot->sysctl_mem) { |
4159 | pr_err("%s: missing sysctl_mem\n", prot->name); |
4160 | return -EINVAL; |
4161 | } |
4162 | if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { |
4163 | pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); |
4164 | return -EINVAL; |
4165 | } |
4166 | if (alloc_slab) { |
4167 | prot->slab = kmem_cache_create_usercopy(name: prot->name, |
4168 | size: prot->obj_size, align: 0, |
4169 | SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | |
4170 | prot->slab_flags, |
4171 | useroffset: prot->useroffset, usersize: prot->usersize, |
4172 | NULL); |
4173 | |
4174 | if (prot->slab == NULL) { |
4175 | pr_crit("%s: Can't create sock SLAB cache!\n", |
4176 | prot->name); |
4177 | goto out; |
4178 | } |
4179 | |
4180 | if (req_prot_init(prot)) |
4181 | goto out_free_request_sock_slab; |
4182 | |
4183 | if (tw_prot_init(prot)) |
4184 | goto out_free_timewait_sock_slab; |
4185 | } |
4186 | |
4187 | mutex_lock(&proto_list_mutex); |
4188 | ret = assign_proto_idx(prot); |
4189 | if (ret) { |
4190 | mutex_unlock(lock: &proto_list_mutex); |
4191 | goto out_free_timewait_sock_slab; |
4192 | } |
4193 | list_add(new: &prot->node, head: &proto_list); |
4194 | mutex_unlock(lock: &proto_list_mutex); |
4195 | return ret; |
4196 | |
4197 | out_free_timewait_sock_slab: |
4198 | if (alloc_slab) |
4199 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
4200 | out_free_request_sock_slab: |
4201 | if (alloc_slab) { |
4202 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
4203 | |
4204 | kmem_cache_destroy(s: prot->slab); |
4205 | prot->slab = NULL; |
4206 | } |
4207 | out: |
4208 | return ret; |
4209 | } |
4210 | EXPORT_SYMBOL(proto_register); |
4211 | |
4212 | void proto_unregister(struct proto *prot) |
4213 | { |
4214 | mutex_lock(&proto_list_mutex); |
4215 | release_proto_idx(prot); |
4216 | list_del(entry: &prot->node); |
4217 | mutex_unlock(lock: &proto_list_mutex); |
4218 | |
4219 | kmem_cache_destroy(s: prot->slab); |
4220 | prot->slab = NULL; |
4221 | |
4222 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
4223 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
4224 | } |
4225 | EXPORT_SYMBOL(proto_unregister); |
4226 | |
4227 | int sock_load_diag_module(int family, int protocol) |
4228 | { |
4229 | if (!protocol) { |
4230 | if (!sock_is_registered(family)) |
4231 | return -ENOENT; |
4232 | |
4233 | return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, |
4234 | NETLINK_SOCK_DIAG, family); |
4235 | } |
4236 | |
4237 | #ifdef CONFIG_INET |
4238 | if (family == AF_INET && |
4239 | protocol != IPPROTO_RAW && |
4240 | protocol < MAX_INET_PROTOS && |
4241 | !rcu_access_pointer(inet_protos[protocol])) |
4242 | return -ENOENT; |
4243 | #endif |
4244 | |
4245 | return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, |
4246 | NETLINK_SOCK_DIAG, family, protocol); |
4247 | } |
4248 | EXPORT_SYMBOL(sock_load_diag_module); |
4249 | |
4250 | #ifdef CONFIG_PROC_FS |
4251 | static void *proto_seq_start(struct seq_file *seq, loff_t *pos) |
4252 | __acquires(proto_list_mutex) |
4253 | { |
4254 | mutex_lock(&proto_list_mutex); |
4255 | return seq_list_start_head(head: &proto_list, pos: *pos); |
4256 | } |
4257 | |
4258 | static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
4259 | { |
4260 | return seq_list_next(v, head: &proto_list, ppos: pos); |
4261 | } |
4262 | |
4263 | static void proto_seq_stop(struct seq_file *seq, void *v) |
4264 | __releases(proto_list_mutex) |
4265 | { |
4266 | mutex_unlock(lock: &proto_list_mutex); |
4267 | } |
4268 | |
4269 | static char proto_method_implemented(const void *method) |
4270 | { |
4271 | return method == NULL ? 'n' : 'y'; |
4272 | } |
4273 | static long sock_prot_memory_allocated(struct proto *proto) |
4274 | { |
4275 | return proto->memory_allocated != NULL ? proto_memory_allocated(prot: proto) : -1L; |
4276 | } |
4277 | |
4278 | static const char *sock_prot_memory_pressure(struct proto *proto) |
4279 | { |
4280 | return proto->memory_pressure != NULL ? |
4281 | proto_memory_pressure(prot: proto) ? "yes": "no": "NI"; |
4282 | } |
4283 | |
4284 | static void proto_seq_printf(struct seq_file *seq, struct proto *proto) |
4285 | { |
4286 | |
4287 | seq_printf(m: seq, fmt: "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " |
4288 | "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", |
4289 | proto->name, |
4290 | proto->obj_size, |
4291 | sock_prot_inuse_get(seq_file_net(seq), proto), |
4292 | sock_prot_memory_allocated(proto), |
4293 | sock_prot_memory_pressure(proto), |
4294 | proto->max_header, |
4295 | proto->slab == NULL ? "no": "yes", |
4296 | module_name(proto->owner), |
4297 | proto_method_implemented(method: proto->close), |
4298 | proto_method_implemented(method: proto->connect), |
4299 | proto_method_implemented(method: proto->disconnect), |
4300 | proto_method_implemented(method: proto->accept), |
4301 | proto_method_implemented(method: proto->ioctl), |
4302 | proto_method_implemented(method: proto->init), |
4303 | proto_method_implemented(method: proto->destroy), |
4304 | proto_method_implemented(method: proto->shutdown), |
4305 | proto_method_implemented(method: proto->setsockopt), |
4306 | proto_method_implemented(method: proto->getsockopt), |
4307 | proto_method_implemented(method: proto->sendmsg), |
4308 | proto_method_implemented(method: proto->recvmsg), |
4309 | proto_method_implemented(method: proto->bind), |
4310 | proto_method_implemented(method: proto->backlog_rcv), |
4311 | proto_method_implemented(method: proto->hash), |
4312 | proto_method_implemented(method: proto->unhash), |
4313 | proto_method_implemented(method: proto->get_port), |
4314 | proto_method_implemented(method: proto->enter_memory_pressure)); |
4315 | } |
4316 | |
4317 | static int proto_seq_show(struct seq_file *seq, void *v) |
4318 | { |
4319 | if (v == &proto_list) |
4320 | seq_printf(m: seq, fmt: "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", |
4321 | "protocol", |
4322 | "size", |
4323 | "sockets", |
4324 | "memory", |
4325 | "press", |
4326 | "maxhdr", |
4327 | "slab", |
4328 | "module", |
4329 | "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); |
4330 | else |
4331 | proto_seq_printf(seq, list_entry(v, struct proto, node)); |
4332 | return 0; |
4333 | } |
4334 | |
4335 | static const struct seq_operations proto_seq_ops = { |
4336 | .start = proto_seq_start, |
4337 | .next = proto_seq_next, |
4338 | .stop = proto_seq_stop, |
4339 | .show = proto_seq_show, |
4340 | }; |
4341 | |
4342 | static __net_init int proto_init_net(struct net *net) |
4343 | { |
4344 | if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, |
4345 | sizeof(struct seq_net_private))) |
4346 | return -ENOMEM; |
4347 | |
4348 | return 0; |
4349 | } |
4350 | |
4351 | static __net_exit void proto_exit_net(struct net *net) |
4352 | { |
4353 | remove_proc_entry("protocols", net->proc_net); |
4354 | } |
4355 | |
4356 | |
4357 | static __net_initdata struct pernet_operations proto_net_ops = { |
4358 | .init = proto_init_net, |
4359 | .exit = proto_exit_net, |
4360 | }; |
4361 | |
4362 | static int __init proto_init(void) |
4363 | { |
4364 | return register_pernet_subsys(&proto_net_ops); |
4365 | } |
4366 | |
4367 | subsys_initcall(proto_init); |
4368 | |
4369 | #endif /* PROC_FS */ |
4370 | |
4371 | #ifdef CONFIG_NET_RX_BUSY_POLL |
4372 | bool sk_busy_loop_end(void *p, unsigned long start_time) |
4373 | { |
4374 | struct sock *sk = p; |
4375 | |
4376 | if (!skb_queue_empty_lockless(list: &sk->sk_receive_queue)) |
4377 | return true; |
4378 | |
4379 | if (sk_is_udp(sk) && |
4380 | !skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue)) |
4381 | return true; |
4382 | |
4383 | return sk_busy_loop_timeout(sk, start_time); |
4384 | } |
4385 | EXPORT_SYMBOL(sk_busy_loop_end); |
4386 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
4387 | |
4388 | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) |
4389 | { |
4390 | if (!sk->sk_prot->bind_add) |
4391 | return -EOPNOTSUPP; |
4392 | return sk->sk_prot->bind_add(sk, addr, addr_len); |
4393 | } |
4394 | EXPORT_SYMBOL(sock_bind_add); |
4395 | |
4396 | /* Copy 'size' bytes from userspace and return `size` back to userspace */ |
4397 | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
4398 | void __user *arg, void *karg, size_t size) |
4399 | { |
4400 | int ret; |
4401 | |
4402 | if (copy_from_user(to: karg, from: arg, n: size)) |
4403 | return -EFAULT; |
4404 | |
4405 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); |
4406 | if (ret) |
4407 | return ret; |
4408 | |
4409 | if (copy_to_user(to: arg, from: karg, n: size)) |
4410 | return -EFAULT; |
4411 | |
4412 | return 0; |
4413 | } |
4414 | EXPORT_SYMBOL(sock_ioctl_inout); |
4415 | |
4416 | /* This is the most common ioctl prep function, where the result (4 bytes) is |
4417 | * copied back to userspace if the ioctl() returns successfully. No input is |
4418 | * copied from userspace as input argument. |
4419 | */ |
4420 | static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) |
4421 | { |
4422 | int ret, karg = 0; |
4423 | |
4424 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); |
4425 | if (ret) |
4426 | return ret; |
4427 | |
4428 | return put_user(karg, (int __user *)arg); |
4429 | } |
4430 | |
4431 | /* A wrapper around sock ioctls, which copies the data from userspace |
4432 | * (depending on the protocol/ioctl), and copies back the result to userspace. |
4433 | * The main motivation for this function is to pass kernel memory to the |
4434 | * protocol ioctl callbacks, instead of userspace memory. |
4435 | */ |
4436 | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) |
4437 | { |
4438 | int rc = 1; |
4439 | |
4440 | if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) |
4441 | rc = ipmr_sk_ioctl(sk, cmd, arg); |
4442 | else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) |
4443 | rc = ip6mr_sk_ioctl(sk, cmd, arg); |
4444 | else if (sk_is_phonet(sk)) |
4445 | rc = phonet_sk_ioctl(sk, cmd, arg); |
4446 | |
4447 | /* If ioctl was processed, returns its value */ |
4448 | if (rc <= 0) |
4449 | return rc; |
4450 | |
4451 | /* Otherwise call the default handler */ |
4452 | return sock_ioctl_out(sk, cmd, arg); |
4453 | } |
4454 | EXPORT_SYMBOL(sk_ioctl); |
4455 | |
4456 | static int __init sock_struct_check(void) |
4457 | { |
4458 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); |
4459 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); |
4460 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); |
4461 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); |
4462 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); |
4463 | |
4464 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); |
4465 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); |
4466 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); |
4467 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); |
4468 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); |
4469 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); |
4470 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); |
4471 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); |
4472 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); |
4473 | |
4474 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); |
4475 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); |
4476 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); |
4477 | |
4478 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); |
4479 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); |
4480 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); |
4481 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); |
4482 | |
4483 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
4484 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
4485 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); |
4486 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); |
4487 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); |
4488 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); |
4489 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); |
4490 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); |
4491 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); |
4492 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); |
4493 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); |
4494 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); |
4495 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); |
4496 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); |
4497 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); |
4498 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); |
4499 | |
4500 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); |
4501 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); |
4502 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); |
4503 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); |
4504 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); |
4505 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); |
4506 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); |
4507 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); |
4508 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); |
4509 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); |
4510 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); |
4511 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); |
4512 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); |
4513 | return 0; |
4514 | } |
4515 | |
4516 | core_initcall(sock_struct_check); |
4517 |
Definitions
- proto_list_mutex
- proto_list
- sk_ns_capable
- sk_capable
- sk_net_capable
- af_family_keys
- af_family_kern_keys
- af_family_slock_keys
- af_family_kern_slock_keys
- af_family_key_strings
- af_family_slock_key_strings
- af_family_clock_key_strings
- af_family_kern_key_strings
- af_family_kern_slock_key_strings
- af_family_kern_clock_key_strings
- af_family_rlock_key_strings
- af_family_wlock_key_strings
- af_family_elock_key_strings
- af_callback_keys
- af_rlock_keys
- af_wlock_keys
- af_elock_keys
- af_kern_callback_keys
- sysctl_wmem_max
- sysctl_rmem_max
- sysctl_wmem_default
- sysctl_rmem_default
- memalloc_socks_key
- sk_set_memalloc
- sk_clear_memalloc
- __sk_backlog_rcv
- sk_error_report
- sock_get_timeout
- sock_copy_user_timeval
- sock_set_timeout
- sk_set_prio_allowed
- sock_needs_netstamp
- sock_disable_timestamp
- __sock_queue_rcv_skb
- sock_queue_rcv_skb_reason
- __sk_receive_skb
- __sk_dst_check
- sk_dst_check
- sock_bindtoindex_locked
- sock_bindtoindex
- sock_setbindtodevice
- sock_getbindtodevice
- sk_mc_loop
- sock_set_reuseaddr
- sock_set_reuseport
- sock_no_linger
- sock_set_priority
- sock_set_sndtimeo
- __sock_set_timestamps
- sock_enable_timestamps
- sock_set_timestamp
- sock_timestamping_bind_phc
- sock_set_timestamping
- bpf_skops_tx_timestamping
- sock_set_keepalive
- __sock_set_rcvbuf
- sock_set_rcvbuf
- __sock_set_mark
- sock_set_mark
- sock_release_reserved_memory
- sock_reserve_memory
- sock_devmem_dontneed
- sockopt_lock_sock
- sockopt_release_sock
- sockopt_ns_capable
- sockopt_capable
- sockopt_validate_clockid
- sk_setsockopt
- sock_setsockopt
- sk_get_peer_cred
- cred_to_ucred
- groups_to_user
- sk_getsockopt
- sock_lock_init
- sock_copy
- sk_prot_alloc
- sk_prot_free
- sk_alloc
- __sk_destruct
- sk_net_refcnt_upgrade
- sk_destruct
- __sk_free
- sk_free
- sk_init_common
- sk_clone_lock
- sk_dst_gso_max_size
- sk_setup_caps
- sock_wfree
- __sock_wfree
- skb_set_owner_w
- can_skb_orphan_partial
- skb_orphan_partial
- sock_rfree
- sock_efree
- sock_pfree
- sock_i_uid
- __sock_i_ino
- sock_i_ino
- sock_wmalloc
- sock_ofree
- sock_omalloc
- sock_kmalloc
- sock_kmemdup
- __sock_kfree_s
- sock_kfree_s
- sock_kzfree_s
- sock_wait_for_wmem
- sock_alloc_send_pskb
- __sock_cmsg_send
- sock_cmsg_send
- sk_enter_memory_pressure
- sk_leave_memory_pressure
- net_high_order_alloc_disable_key
- skb_page_frag_refill
- sk_page_frag_refill
- __lock_sock
- __release_sock
- __sk_flush_backlog
- sk_wait_data
- __sk_mem_raise_allocated
- __sk_mem_schedule
- __sk_mem_reduce_allocated
- __sk_mem_reclaim
- sk_set_peek_off
- sock_no_bind
- sock_no_connect
- sock_no_socketpair
- sock_no_accept
- sock_no_getname
- sock_no_ioctl
- sock_no_listen
- sock_no_shutdown
- sock_no_sendmsg
- sock_no_sendmsg_locked
- sock_no_recvmsg
- sock_no_mmap
- __receive_sock
- sock_def_wakeup
- sock_def_error_report
- sock_def_readable
- sock_def_write_space
- sock_def_write_space_wfree
- sock_def_destruct
- sk_send_sigurg
- sk_reset_timer
- sk_stop_timer
- sk_stop_timer_sync
- sock_init_data_uid
- sock_init_data
- lock_sock_nested
- release_sock
- __lock_sock_fast
- sock_gettstamp
- sock_enable_timestamp
- sock_recv_errqueue
- sock_common_getsockopt
- sock_common_recvmsg
- sock_common_setsockopt
- sk_common_release
- sk_get_meminfo
- proto_inuse_idx
- sock_prot_inuse_get
- sock_inuse_get
- sock_inuse_init_net
- sock_inuse_exit_net
- net_inuse_ops
- net_inuse_init
- assign_proto_idx
- release_proto_idx
- tw_prot_cleanup
- tw_prot_init
- req_prot_cleanup
- req_prot_init
- proto_register
- proto_unregister
- sock_load_diag_module
- proto_seq_start
- proto_seq_next
- proto_seq_stop
- proto_method_implemented
- sock_prot_memory_allocated
- sock_prot_memory_pressure
- proto_seq_printf
- proto_seq_show
- proto_seq_ops
- proto_init_net
- proto_exit_net
- proto_net_ops
- proto_init
- sk_busy_loop_end
- sock_bind_add
- sock_ioctl_inout
- sock_ioctl_out
- sk_ioctl
Improve your Profiling and Debugging skills
Find out more