1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * Generic socket support routines. Memory allocators, socket lock/release |
8 | * handler for protocols to use and generic option handler. |
9 | * |
10 | * Authors: Ross Biro |
11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
12 | * Florian La Roche, <flla@stud.uni-sb.de> |
13 | * Alan Cox, <A.Cox@swansea.ac.uk> |
14 | * |
15 | * Fixes: |
16 | * Alan Cox : Numerous verify_area() problems |
17 | * Alan Cox : Connecting on a connecting socket |
18 | * now returns an error for tcp. |
19 | * Alan Cox : sock->protocol is set correctly. |
20 | * and is not sometimes left as 0. |
21 | * Alan Cox : connect handles icmp errors on a |
22 | * connect properly. Unfortunately there |
23 | * is a restart syscall nasty there. I |
24 | * can't match BSD without hacking the C |
25 | * library. Ideas urgently sought! |
26 | * Alan Cox : Disallow bind() to addresses that are |
27 | * not ours - especially broadcast ones!! |
28 | * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) |
29 | * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, |
30 | * instead they leave that for the DESTROY timer. |
31 | * Alan Cox : Clean up error flag in accept |
32 | * Alan Cox : TCP ack handling is buggy, the DESTROY timer |
33 | * was buggy. Put a remove_sock() in the handler |
34 | * for memory when we hit 0. Also altered the timer |
35 | * code. The ACK stuff can wait and needs major |
36 | * TCP layer surgery. |
37 | * Alan Cox : Fixed TCP ack bug, removed remove sock |
38 | * and fixed timer/inet_bh race. |
39 | * Alan Cox : Added zapped flag for TCP |
40 | * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code |
41 | * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb |
42 | * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources |
43 | * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. |
44 | * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... |
45 | * Rick Sladkey : Relaxed UDP rules for matching packets. |
46 | * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support |
47 | * Pauline Middelink : identd support |
48 | * Alan Cox : Fixed connect() taking signals I think. |
49 | * Alan Cox : SO_LINGER supported |
50 | * Alan Cox : Error reporting fixes |
51 | * Anonymous : inet_create tidied up (sk->reuse setting) |
52 | * Alan Cox : inet sockets don't set sk->type! |
53 | * Alan Cox : Split socket option code |
54 | * Alan Cox : Callbacks |
55 | * Alan Cox : Nagle flag for Charles & Johannes stuff |
56 | * Alex : Removed restriction on inet fioctl |
57 | * Alan Cox : Splitting INET from NET core |
58 | * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() |
59 | * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code |
60 | * Alan Cox : Split IP from generic code |
61 | * Alan Cox : New kfree_skbmem() |
62 | * Alan Cox : Make SO_DEBUG superuser only. |
63 | * Alan Cox : Allow anyone to clear SO_DEBUG |
64 | * (compatibility fix) |
65 | * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. |
66 | * Alan Cox : Allocator for a socket is settable. |
67 | * Alan Cox : SO_ERROR includes soft errors. |
68 | * Alan Cox : Allow NULL arguments on some SO_ opts |
69 | * Alan Cox : Generic socket allocation to make hooks |
70 | * easier (suggested by Craig Metz). |
71 | * Michael Pall : SO_ERROR returns positive errno again |
72 | * Steve Whitehouse: Added default destructor to free |
73 | * protocol private data. |
74 | * Steve Whitehouse: Added various other default routines |
75 | * common to several socket families. |
76 | * Chris Evans : Call suser() check last on F_SETOWN |
77 | * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. |
78 | * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() |
79 | * Andi Kleen : Fix write_space callback |
80 | * Chris Evans : Security fixes - signedness again |
81 | * Arnaldo C. Melo : cleanups, use skb_queue_purge |
82 | * |
83 | * To Fix: |
84 | */ |
85 | |
86 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
87 | |
88 | #include <asm/unaligned.h> |
89 | #include <linux/capability.h> |
90 | #include <linux/errno.h> |
91 | #include <linux/errqueue.h> |
92 | #include <linux/types.h> |
93 | #include <linux/socket.h> |
94 | #include <linux/in.h> |
95 | #include <linux/kernel.h> |
96 | #include <linux/module.h> |
97 | #include <linux/proc_fs.h> |
98 | #include <linux/seq_file.h> |
99 | #include <linux/sched.h> |
100 | #include <linux/sched/mm.h> |
101 | #include <linux/timer.h> |
102 | #include <linux/string.h> |
103 | #include <linux/sockios.h> |
104 | #include <linux/net.h> |
105 | #include <linux/mm.h> |
106 | #include <linux/slab.h> |
107 | #include <linux/interrupt.h> |
108 | #include <linux/poll.h> |
109 | #include <linux/tcp.h> |
110 | #include <linux/udp.h> |
111 | #include <linux/init.h> |
112 | #include <linux/highmem.h> |
113 | #include <linux/user_namespace.h> |
114 | #include <linux/static_key.h> |
115 | #include <linux/memcontrol.h> |
116 | #include <linux/prefetch.h> |
117 | #include <linux/compat.h> |
118 | #include <linux/mroute.h> |
119 | #include <linux/mroute6.h> |
120 | #include <linux/icmpv6.h> |
121 | |
122 | #include <linux/uaccess.h> |
123 | |
124 | #include <linux/netdevice.h> |
125 | #include <net/protocol.h> |
126 | #include <linux/skbuff.h> |
127 | #include <net/net_namespace.h> |
128 | #include <net/request_sock.h> |
129 | #include <net/sock.h> |
130 | #include <linux/net_tstamp.h> |
131 | #include <net/xfrm.h> |
132 | #include <linux/ipsec.h> |
133 | #include <net/cls_cgroup.h> |
134 | #include <net/netprio_cgroup.h> |
135 | #include <linux/sock_diag.h> |
136 | |
137 | #include <linux/filter.h> |
138 | #include <net/sock_reuseport.h> |
139 | #include <net/bpf_sk_storage.h> |
140 | |
141 | #include <trace/events/sock.h> |
142 | |
143 | #include <net/tcp.h> |
144 | #include <net/busy_poll.h> |
145 | #include <net/phonet/phonet.h> |
146 | |
147 | #include <linux/ethtool.h> |
148 | |
149 | #include "dev.h" |
150 | |
151 | static DEFINE_MUTEX(proto_list_mutex); |
152 | static LIST_HEAD(proto_list); |
153 | |
154 | static void sock_def_write_space_wfree(struct sock *sk); |
155 | static void sock_def_write_space(struct sock *sk); |
156 | |
157 | /** |
158 | * sk_ns_capable - General socket capability test |
159 | * @sk: Socket to use a capability on or through |
160 | * @user_ns: The user namespace of the capability to use |
161 | * @cap: The capability to use |
162 | * |
163 | * Test to see if the opener of the socket had when the socket was |
164 | * created and the current process has the capability @cap in the user |
165 | * namespace @user_ns. |
166 | */ |
167 | bool sk_ns_capable(const struct sock *sk, |
168 | struct user_namespace *user_ns, int cap) |
169 | { |
170 | return file_ns_capable(file: sk->sk_socket->file, ns: user_ns, cap) && |
171 | ns_capable(ns: user_ns, cap); |
172 | } |
173 | EXPORT_SYMBOL(sk_ns_capable); |
174 | |
175 | /** |
176 | * sk_capable - Socket global capability test |
177 | * @sk: Socket to use a capability on or through |
178 | * @cap: The global capability to use |
179 | * |
180 | * Test to see if the opener of the socket had when the socket was |
181 | * created and the current process has the capability @cap in all user |
182 | * namespaces. |
183 | */ |
184 | bool sk_capable(const struct sock *sk, int cap) |
185 | { |
186 | return sk_ns_capable(sk, &init_user_ns, cap); |
187 | } |
188 | EXPORT_SYMBOL(sk_capable); |
189 | |
190 | /** |
191 | * sk_net_capable - Network namespace socket capability test |
192 | * @sk: Socket to use a capability on or through |
193 | * @cap: The capability to use |
194 | * |
195 | * Test to see if the opener of the socket had when the socket was created |
196 | * and the current process has the capability @cap over the network namespace |
197 | * the socket is a member of. |
198 | */ |
199 | bool sk_net_capable(const struct sock *sk, int cap) |
200 | { |
201 | return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); |
202 | } |
203 | EXPORT_SYMBOL(sk_net_capable); |
204 | |
205 | /* |
206 | * Each address family might have different locking rules, so we have |
207 | * one slock key per address family and separate keys for internal and |
208 | * userspace sockets. |
209 | */ |
210 | static struct lock_class_key af_family_keys[AF_MAX]; |
211 | static struct lock_class_key af_family_kern_keys[AF_MAX]; |
212 | static struct lock_class_key af_family_slock_keys[AF_MAX]; |
213 | static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; |
214 | |
215 | /* |
216 | * Make lock validator output more readable. (we pre-construct these |
217 | * strings build-time, so that runtime initialization of socket |
218 | * locks is fast): |
219 | */ |
220 | |
221 | #define _sock_locks(x) \ |
222 | x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ |
223 | x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ |
224 | x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ |
225 | x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ |
226 | x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ |
227 | x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ |
228 | x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ |
229 | x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ |
230 | x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ |
231 | x "27" , x "28" , x "AF_CAN" , \ |
232 | x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ |
233 | x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ |
234 | x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ |
235 | x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ |
236 | x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ |
237 | x "AF_MCTP" , \ |
238 | x "AF_MAX" |
239 | |
240 | static const char *const af_family_key_strings[AF_MAX+1] = { |
241 | _sock_locks("sk_lock-") |
242 | }; |
243 | static const char *const af_family_slock_key_strings[AF_MAX+1] = { |
244 | _sock_locks("slock-") |
245 | }; |
246 | static const char *const af_family_clock_key_strings[AF_MAX+1] = { |
247 | _sock_locks("clock-") |
248 | }; |
249 | |
250 | static const char *const af_family_kern_key_strings[AF_MAX+1] = { |
251 | _sock_locks("k-sk_lock-") |
252 | }; |
253 | static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { |
254 | _sock_locks("k-slock-") |
255 | }; |
256 | static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { |
257 | _sock_locks("k-clock-") |
258 | }; |
259 | static const char *const af_family_rlock_key_strings[AF_MAX+1] = { |
260 | _sock_locks("rlock-") |
261 | }; |
262 | static const char *const af_family_wlock_key_strings[AF_MAX+1] = { |
263 | _sock_locks("wlock-") |
264 | }; |
265 | static const char *const af_family_elock_key_strings[AF_MAX+1] = { |
266 | _sock_locks("elock-") |
267 | }; |
268 | |
269 | /* |
270 | * sk_callback_lock and sk queues locking rules are per-address-family, |
271 | * so split the lock classes by using a per-AF key: |
272 | */ |
273 | static struct lock_class_key af_callback_keys[AF_MAX]; |
274 | static struct lock_class_key af_rlock_keys[AF_MAX]; |
275 | static struct lock_class_key af_wlock_keys[AF_MAX]; |
276 | static struct lock_class_key af_elock_keys[AF_MAX]; |
277 | static struct lock_class_key af_kern_callback_keys[AF_MAX]; |
278 | |
279 | /* Run time adjustable parameters. */ |
280 | __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; |
281 | EXPORT_SYMBOL(sysctl_wmem_max); |
282 | __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; |
283 | EXPORT_SYMBOL(sysctl_rmem_max); |
284 | __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; |
285 | __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; |
286 | int sysctl_mem_pcpu_rsv __read_mostly = SK_MEMORY_PCPU_RESERVE; |
287 | |
288 | int sysctl_tstamp_allow_data __read_mostly = 1; |
289 | |
290 | DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); |
291 | EXPORT_SYMBOL_GPL(memalloc_socks_key); |
292 | |
293 | /** |
294 | * sk_set_memalloc - sets %SOCK_MEMALLOC |
295 | * @sk: socket to set it on |
296 | * |
297 | * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. |
298 | * It's the responsibility of the admin to adjust min_free_kbytes |
299 | * to meet the requirements |
300 | */ |
301 | void sk_set_memalloc(struct sock *sk) |
302 | { |
303 | sock_set_flag(sk, flag: SOCK_MEMALLOC); |
304 | sk->sk_allocation |= __GFP_MEMALLOC; |
305 | static_branch_inc(&memalloc_socks_key); |
306 | } |
307 | EXPORT_SYMBOL_GPL(sk_set_memalloc); |
308 | |
309 | void sk_clear_memalloc(struct sock *sk) |
310 | { |
311 | sock_reset_flag(sk, flag: SOCK_MEMALLOC); |
312 | sk->sk_allocation &= ~__GFP_MEMALLOC; |
313 | static_branch_dec(&memalloc_socks_key); |
314 | |
315 | /* |
316 | * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward |
317 | * progress of swapping. SOCK_MEMALLOC may be cleared while |
318 | * it has rmem allocations due to the last swapfile being deactivated |
319 | * but there is a risk that the socket is unusable due to exceeding |
320 | * the rmem limits. Reclaim the reserves and obey rmem limits again. |
321 | */ |
322 | sk_mem_reclaim(sk); |
323 | } |
324 | EXPORT_SYMBOL_GPL(sk_clear_memalloc); |
325 | |
326 | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
327 | { |
328 | int ret; |
329 | unsigned int noreclaim_flag; |
330 | |
331 | /* these should have been dropped before queueing */ |
332 | BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); |
333 | |
334 | noreclaim_flag = memalloc_noreclaim_save(); |
335 | ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
336 | tcp_v6_do_rcv, |
337 | tcp_v4_do_rcv, |
338 | sk, skb); |
339 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
340 | |
341 | return ret; |
342 | } |
343 | EXPORT_SYMBOL(__sk_backlog_rcv); |
344 | |
345 | void sk_error_report(struct sock *sk) |
346 | { |
347 | sk->sk_error_report(sk); |
348 | |
349 | switch (sk->sk_family) { |
350 | case AF_INET: |
351 | fallthrough; |
352 | case AF_INET6: |
353 | trace_inet_sk_error_report(sk); |
354 | break; |
355 | default: |
356 | break; |
357 | } |
358 | } |
359 | EXPORT_SYMBOL(sk_error_report); |
360 | |
361 | int sock_get_timeout(long timeo, void *optval, bool old_timeval) |
362 | { |
363 | struct __kernel_sock_timeval tv; |
364 | |
365 | if (timeo == MAX_SCHEDULE_TIMEOUT) { |
366 | tv.tv_sec = 0; |
367 | tv.tv_usec = 0; |
368 | } else { |
369 | tv.tv_sec = timeo / HZ; |
370 | tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; |
371 | } |
372 | |
373 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
374 | struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; |
375 | *(struct old_timeval32 *)optval = tv32; |
376 | return sizeof(tv32); |
377 | } |
378 | |
379 | if (old_timeval) { |
380 | struct __kernel_old_timeval old_tv; |
381 | old_tv.tv_sec = tv.tv_sec; |
382 | old_tv.tv_usec = tv.tv_usec; |
383 | *(struct __kernel_old_timeval *)optval = old_tv; |
384 | return sizeof(old_tv); |
385 | } |
386 | |
387 | *(struct __kernel_sock_timeval *)optval = tv; |
388 | return sizeof(tv); |
389 | } |
390 | EXPORT_SYMBOL(sock_get_timeout); |
391 | |
392 | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
393 | sockptr_t optval, int optlen, bool old_timeval) |
394 | { |
395 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
396 | struct old_timeval32 tv32; |
397 | |
398 | if (optlen < sizeof(tv32)) |
399 | return -EINVAL; |
400 | |
401 | if (copy_from_sockptr(dst: &tv32, src: optval, size: sizeof(tv32))) |
402 | return -EFAULT; |
403 | tv->tv_sec = tv32.tv_sec; |
404 | tv->tv_usec = tv32.tv_usec; |
405 | } else if (old_timeval) { |
406 | struct __kernel_old_timeval old_tv; |
407 | |
408 | if (optlen < sizeof(old_tv)) |
409 | return -EINVAL; |
410 | if (copy_from_sockptr(dst: &old_tv, src: optval, size: sizeof(old_tv))) |
411 | return -EFAULT; |
412 | tv->tv_sec = old_tv.tv_sec; |
413 | tv->tv_usec = old_tv.tv_usec; |
414 | } else { |
415 | if (optlen < sizeof(*tv)) |
416 | return -EINVAL; |
417 | if (copy_from_sockptr(dst: tv, src: optval, size: sizeof(*tv))) |
418 | return -EFAULT; |
419 | } |
420 | |
421 | return 0; |
422 | } |
423 | EXPORT_SYMBOL(sock_copy_user_timeval); |
424 | |
425 | static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, |
426 | bool old_timeval) |
427 | { |
428 | struct __kernel_sock_timeval tv; |
429 | int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); |
430 | long val; |
431 | |
432 | if (err) |
433 | return err; |
434 | |
435 | if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) |
436 | return -EDOM; |
437 | |
438 | if (tv.tv_sec < 0) { |
439 | static int warned __read_mostly; |
440 | |
441 | WRITE_ONCE(*timeo_p, 0); |
442 | if (warned < 10 && net_ratelimit()) { |
443 | warned++; |
444 | pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", |
445 | __func__, current->comm, task_pid_nr(current)); |
446 | } |
447 | return 0; |
448 | } |
449 | val = MAX_SCHEDULE_TIMEOUT; |
450 | if ((tv.tv_sec || tv.tv_usec) && |
451 | (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) |
452 | val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, |
453 | USEC_PER_SEC / HZ); |
454 | WRITE_ONCE(*timeo_p, val); |
455 | return 0; |
456 | } |
457 | |
458 | static bool sock_needs_netstamp(const struct sock *sk) |
459 | { |
460 | switch (sk->sk_family) { |
461 | case AF_UNSPEC: |
462 | case AF_UNIX: |
463 | return false; |
464 | default: |
465 | return true; |
466 | } |
467 | } |
468 | |
469 | static void sock_disable_timestamp(struct sock *sk, unsigned long flags) |
470 | { |
471 | if (sk->sk_flags & flags) { |
472 | sk->sk_flags &= ~flags; |
473 | if (sock_needs_netstamp(sk) && |
474 | !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) |
475 | net_disable_timestamp(); |
476 | } |
477 | } |
478 | |
479 | |
480 | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
481 | { |
482 | unsigned long flags; |
483 | struct sk_buff_head *list = &sk->sk_receive_queue; |
484 | |
485 | if (atomic_read(v: &sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { |
486 | atomic_inc(v: &sk->sk_drops); |
487 | trace_sock_rcvqueue_full(sk, skb); |
488 | return -ENOMEM; |
489 | } |
490 | |
491 | if (!sk_rmem_schedule(sk, skb, size: skb->truesize)) { |
492 | atomic_inc(v: &sk->sk_drops); |
493 | return -ENOBUFS; |
494 | } |
495 | |
496 | skb->dev = NULL; |
497 | skb_set_owner_r(skb, sk); |
498 | |
499 | /* we escape from rcu protected region, make sure we dont leak |
500 | * a norefcounted dst |
501 | */ |
502 | skb_dst_force(skb); |
503 | |
504 | spin_lock_irqsave(&list->lock, flags); |
505 | sock_skb_set_dropcount(sk, skb); |
506 | __skb_queue_tail(list, newsk: skb); |
507 | spin_unlock_irqrestore(lock: &list->lock, flags); |
508 | |
509 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
510 | sk->sk_data_ready(sk); |
511 | return 0; |
512 | } |
513 | EXPORT_SYMBOL(__sock_queue_rcv_skb); |
514 | |
515 | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
516 | enum skb_drop_reason *reason) |
517 | { |
518 | enum skb_drop_reason drop_reason; |
519 | int err; |
520 | |
521 | err = sk_filter(sk, skb); |
522 | if (err) { |
523 | drop_reason = SKB_DROP_REASON_SOCKET_FILTER; |
524 | goto out; |
525 | } |
526 | err = __sock_queue_rcv_skb(sk, skb); |
527 | switch (err) { |
528 | case -ENOMEM: |
529 | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; |
530 | break; |
531 | case -ENOBUFS: |
532 | drop_reason = SKB_DROP_REASON_PROTO_MEM; |
533 | break; |
534 | default: |
535 | drop_reason = SKB_NOT_DROPPED_YET; |
536 | break; |
537 | } |
538 | out: |
539 | if (reason) |
540 | *reason = drop_reason; |
541 | return err; |
542 | } |
543 | EXPORT_SYMBOL(sock_queue_rcv_skb_reason); |
544 | |
545 | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
546 | const int nested, unsigned int trim_cap, bool refcounted) |
547 | { |
548 | int rc = NET_RX_SUCCESS; |
549 | |
550 | if (sk_filter_trim_cap(sk, skb, cap: trim_cap)) |
551 | goto discard_and_relse; |
552 | |
553 | skb->dev = NULL; |
554 | |
555 | if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { |
556 | atomic_inc(v: &sk->sk_drops); |
557 | goto discard_and_relse; |
558 | } |
559 | if (nested) |
560 | bh_lock_sock_nested(sk); |
561 | else |
562 | bh_lock_sock(sk); |
563 | if (!sock_owned_by_user(sk)) { |
564 | /* |
565 | * trylock + unlock semantics: |
566 | */ |
567 | mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); |
568 | |
569 | rc = sk_backlog_rcv(sk, skb); |
570 | |
571 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
572 | } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { |
573 | bh_unlock_sock(sk); |
574 | atomic_inc(v: &sk->sk_drops); |
575 | goto discard_and_relse; |
576 | } |
577 | |
578 | bh_unlock_sock(sk); |
579 | out: |
580 | if (refcounted) |
581 | sock_put(sk); |
582 | return rc; |
583 | discard_and_relse: |
584 | kfree_skb(skb); |
585 | goto out; |
586 | } |
587 | EXPORT_SYMBOL(__sk_receive_skb); |
588 | |
589 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, |
590 | u32)); |
591 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, |
592 | u32)); |
593 | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) |
594 | { |
595 | struct dst_entry *dst = __sk_dst_get(sk); |
596 | |
597 | if (dst && dst->obsolete && |
598 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
599 | dst, cookie) == NULL) { |
600 | sk_tx_queue_clear(sk); |
601 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
602 | RCU_INIT_POINTER(sk->sk_dst_cache, NULL); |
603 | dst_release(dst); |
604 | return NULL; |
605 | } |
606 | |
607 | return dst; |
608 | } |
609 | EXPORT_SYMBOL(__sk_dst_check); |
610 | |
611 | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) |
612 | { |
613 | struct dst_entry *dst = sk_dst_get(sk); |
614 | |
615 | if (dst && dst->obsolete && |
616 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
617 | dst, cookie) == NULL) { |
618 | sk_dst_reset(sk); |
619 | dst_release(dst); |
620 | return NULL; |
621 | } |
622 | |
623 | return dst; |
624 | } |
625 | EXPORT_SYMBOL(sk_dst_check); |
626 | |
627 | static int sock_bindtoindex_locked(struct sock *sk, int ifindex) |
628 | { |
629 | int ret = -ENOPROTOOPT; |
630 | #ifdef CONFIG_NETDEVICES |
631 | struct net *net = sock_net(sk); |
632 | |
633 | /* Sorry... */ |
634 | ret = -EPERM; |
635 | if (sk->sk_bound_dev_if && !ns_capable(ns: net->user_ns, CAP_NET_RAW)) |
636 | goto out; |
637 | |
638 | ret = -EINVAL; |
639 | if (ifindex < 0) |
640 | goto out; |
641 | |
642 | /* Paired with all READ_ONCE() done locklessly. */ |
643 | WRITE_ONCE(sk->sk_bound_dev_if, ifindex); |
644 | |
645 | if (sk->sk_prot->rehash) |
646 | sk->sk_prot->rehash(sk); |
647 | sk_dst_reset(sk); |
648 | |
649 | ret = 0; |
650 | |
651 | out: |
652 | #endif |
653 | |
654 | return ret; |
655 | } |
656 | |
657 | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) |
658 | { |
659 | int ret; |
660 | |
661 | if (lock_sk) |
662 | lock_sock(sk); |
663 | ret = sock_bindtoindex_locked(sk, ifindex); |
664 | if (lock_sk) |
665 | release_sock(sk); |
666 | |
667 | return ret; |
668 | } |
669 | EXPORT_SYMBOL(sock_bindtoindex); |
670 | |
671 | static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) |
672 | { |
673 | int ret = -ENOPROTOOPT; |
674 | #ifdef CONFIG_NETDEVICES |
675 | struct net *net = sock_net(sk); |
676 | char devname[IFNAMSIZ]; |
677 | int index; |
678 | |
679 | ret = -EINVAL; |
680 | if (optlen < 0) |
681 | goto out; |
682 | |
683 | /* Bind this socket to a particular device like "eth0", |
684 | * as specified in the passed interface name. If the |
685 | * name is "" or the option length is zero the socket |
686 | * is not bound. |
687 | */ |
688 | if (optlen > IFNAMSIZ - 1) |
689 | optlen = IFNAMSIZ - 1; |
690 | memset(devname, 0, sizeof(devname)); |
691 | |
692 | ret = -EFAULT; |
693 | if (copy_from_sockptr(dst: devname, src: optval, size: optlen)) |
694 | goto out; |
695 | |
696 | index = 0; |
697 | if (devname[0] != '\0') { |
698 | struct net_device *dev; |
699 | |
700 | rcu_read_lock(); |
701 | dev = dev_get_by_name_rcu(net, name: devname); |
702 | if (dev) |
703 | index = dev->ifindex; |
704 | rcu_read_unlock(); |
705 | ret = -ENODEV; |
706 | if (!dev) |
707 | goto out; |
708 | } |
709 | |
710 | sockopt_lock_sock(sk); |
711 | ret = sock_bindtoindex_locked(sk, ifindex: index); |
712 | sockopt_release_sock(sk); |
713 | out: |
714 | #endif |
715 | |
716 | return ret; |
717 | } |
718 | |
719 | static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, |
720 | sockptr_t optlen, int len) |
721 | { |
722 | int ret = -ENOPROTOOPT; |
723 | #ifdef CONFIG_NETDEVICES |
724 | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
725 | struct net *net = sock_net(sk); |
726 | char devname[IFNAMSIZ]; |
727 | |
728 | if (bound_dev_if == 0) { |
729 | len = 0; |
730 | goto zero; |
731 | } |
732 | |
733 | ret = -EINVAL; |
734 | if (len < IFNAMSIZ) |
735 | goto out; |
736 | |
737 | ret = netdev_get_name(net, name: devname, ifindex: bound_dev_if); |
738 | if (ret) |
739 | goto out; |
740 | |
741 | len = strlen(devname) + 1; |
742 | |
743 | ret = -EFAULT; |
744 | if (copy_to_sockptr(dst: optval, src: devname, size: len)) |
745 | goto out; |
746 | |
747 | zero: |
748 | ret = -EFAULT; |
749 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
750 | goto out; |
751 | |
752 | ret = 0; |
753 | |
754 | out: |
755 | #endif |
756 | |
757 | return ret; |
758 | } |
759 | |
760 | bool sk_mc_loop(const struct sock *sk) |
761 | { |
762 | if (dev_recursion_level()) |
763 | return false; |
764 | if (!sk) |
765 | return true; |
766 | /* IPV6_ADDRFORM can change sk->sk_family under us. */ |
767 | switch (READ_ONCE(sk->sk_family)) { |
768 | case AF_INET: |
769 | return inet_test_bit(MC_LOOP, sk); |
770 | #if IS_ENABLED(CONFIG_IPV6) |
771 | case AF_INET6: |
772 | return inet6_test_bit(MC6_LOOP, sk); |
773 | #endif |
774 | } |
775 | WARN_ON_ONCE(1); |
776 | return true; |
777 | } |
778 | EXPORT_SYMBOL(sk_mc_loop); |
779 | |
780 | void sock_set_reuseaddr(struct sock *sk) |
781 | { |
782 | lock_sock(sk); |
783 | sk->sk_reuse = SK_CAN_REUSE; |
784 | release_sock(sk); |
785 | } |
786 | EXPORT_SYMBOL(sock_set_reuseaddr); |
787 | |
788 | void sock_set_reuseport(struct sock *sk) |
789 | { |
790 | lock_sock(sk); |
791 | sk->sk_reuseport = true; |
792 | release_sock(sk); |
793 | } |
794 | EXPORT_SYMBOL(sock_set_reuseport); |
795 | |
796 | void sock_no_linger(struct sock *sk) |
797 | { |
798 | lock_sock(sk); |
799 | WRITE_ONCE(sk->sk_lingertime, 0); |
800 | sock_set_flag(sk, flag: SOCK_LINGER); |
801 | release_sock(sk); |
802 | } |
803 | EXPORT_SYMBOL(sock_no_linger); |
804 | |
805 | void sock_set_priority(struct sock *sk, u32 priority) |
806 | { |
807 | WRITE_ONCE(sk->sk_priority, priority); |
808 | } |
809 | EXPORT_SYMBOL(sock_set_priority); |
810 | |
811 | void sock_set_sndtimeo(struct sock *sk, s64 secs) |
812 | { |
813 | lock_sock(sk); |
814 | if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) |
815 | WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); |
816 | else |
817 | WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); |
818 | release_sock(sk); |
819 | } |
820 | EXPORT_SYMBOL(sock_set_sndtimeo); |
821 | |
822 | static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) |
823 | { |
824 | if (val) { |
825 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: new); |
826 | sock_valbool_flag(sk, bit: SOCK_RCVTSTAMPNS, valbool: ns); |
827 | sock_set_flag(sk, flag: SOCK_RCVTSTAMP); |
828 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
829 | } else { |
830 | sock_reset_flag(sk, flag: SOCK_RCVTSTAMP); |
831 | sock_reset_flag(sk, flag: SOCK_RCVTSTAMPNS); |
832 | } |
833 | } |
834 | |
835 | void sock_enable_timestamps(struct sock *sk) |
836 | { |
837 | lock_sock(sk); |
838 | __sock_set_timestamps(sk, val: true, new: false, ns: true); |
839 | release_sock(sk); |
840 | } |
841 | EXPORT_SYMBOL(sock_enable_timestamps); |
842 | |
843 | void sock_set_timestamp(struct sock *sk, int optname, bool valbool) |
844 | { |
845 | switch (optname) { |
846 | case SO_TIMESTAMP_OLD: |
847 | __sock_set_timestamps(sk, val: valbool, new: false, ns: false); |
848 | break; |
849 | case SO_TIMESTAMP_NEW: |
850 | __sock_set_timestamps(sk, val: valbool, new: true, ns: false); |
851 | break; |
852 | case SO_TIMESTAMPNS_OLD: |
853 | __sock_set_timestamps(sk, val: valbool, new: false, ns: true); |
854 | break; |
855 | case SO_TIMESTAMPNS_NEW: |
856 | __sock_set_timestamps(sk, val: valbool, new: true, ns: true); |
857 | break; |
858 | } |
859 | } |
860 | |
861 | static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) |
862 | { |
863 | struct net *net = sock_net(sk); |
864 | struct net_device *dev = NULL; |
865 | bool match = false; |
866 | int *vclock_index; |
867 | int i, num; |
868 | |
869 | if (sk->sk_bound_dev_if) |
870 | dev = dev_get_by_index(net, ifindex: sk->sk_bound_dev_if); |
871 | |
872 | if (!dev) { |
873 | pr_err("%s: sock not bind to device\n", __func__); |
874 | return -EOPNOTSUPP; |
875 | } |
876 | |
877 | num = ethtool_get_phc_vclocks(dev, vclock_index: &vclock_index); |
878 | dev_put(dev); |
879 | |
880 | for (i = 0; i < num; i++) { |
881 | if (*(vclock_index + i) == phc_index) { |
882 | match = true; |
883 | break; |
884 | } |
885 | } |
886 | |
887 | if (num > 0) |
888 | kfree(objp: vclock_index); |
889 | |
890 | if (!match) |
891 | return -EINVAL; |
892 | |
893 | WRITE_ONCE(sk->sk_bind_phc, phc_index); |
894 | |
895 | return 0; |
896 | } |
897 | |
898 | int sock_set_timestamping(struct sock *sk, int optname, |
899 | struct so_timestamping timestamping) |
900 | { |
901 | int val = timestamping.flags; |
902 | int ret; |
903 | |
904 | if (val & ~SOF_TIMESTAMPING_MASK) |
905 | return -EINVAL; |
906 | |
907 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP && |
908 | !(val & SOF_TIMESTAMPING_OPT_ID)) |
909 | return -EINVAL; |
910 | |
911 | if (val & SOF_TIMESTAMPING_OPT_ID && |
912 | !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { |
913 | if (sk_is_tcp(sk)) { |
914 | if ((1 << sk->sk_state) & |
915 | (TCPF_CLOSE | TCPF_LISTEN)) |
916 | return -EINVAL; |
917 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP) |
918 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->write_seq); |
919 | else |
920 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->snd_una); |
921 | } else { |
922 | atomic_set(v: &sk->sk_tskey, i: 0); |
923 | } |
924 | } |
925 | |
926 | if (val & SOF_TIMESTAMPING_OPT_STATS && |
927 | !(val & SOF_TIMESTAMPING_OPT_TSONLY)) |
928 | return -EINVAL; |
929 | |
930 | if (val & SOF_TIMESTAMPING_BIND_PHC) { |
931 | ret = sock_timestamping_bind_phc(sk, phc_index: timestamping.bind_phc); |
932 | if (ret) |
933 | return ret; |
934 | } |
935 | |
936 | WRITE_ONCE(sk->sk_tsflags, val); |
937 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: optname == SO_TIMESTAMPING_NEW); |
938 | |
939 | if (val & SOF_TIMESTAMPING_RX_SOFTWARE) |
940 | sock_enable_timestamp(sk, |
941 | flag: SOCK_TIMESTAMPING_RX_SOFTWARE); |
942 | else |
943 | sock_disable_timestamp(sk, |
944 | flags: (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); |
945 | return 0; |
946 | } |
947 | |
948 | void sock_set_keepalive(struct sock *sk) |
949 | { |
950 | lock_sock(sk); |
951 | if (sk->sk_prot->keepalive) |
952 | sk->sk_prot->keepalive(sk, true); |
953 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool: true); |
954 | release_sock(sk); |
955 | } |
956 | EXPORT_SYMBOL(sock_set_keepalive); |
957 | |
958 | static void __sock_set_rcvbuf(struct sock *sk, int val) |
959 | { |
960 | /* Ensure val * 2 fits into an int, to prevent max_t() from treating it |
961 | * as a negative value. |
962 | */ |
963 | val = min_t(int, val, INT_MAX / 2); |
964 | sk->sk_userlocks |= SOCK_RCVBUF_LOCK; |
965 | |
966 | /* We double it on the way in to account for "struct sk_buff" etc. |
967 | * overhead. Applications assume that the SO_RCVBUF setting they make |
968 | * will allow that much actual data to be received on that socket. |
969 | * |
970 | * Applications are unaware that "struct sk_buff" and other overheads |
971 | * allocate from the receive buffer during socket buffer allocation. |
972 | * |
973 | * And after considering the possible alternatives, returning the value |
974 | * we actually used in getsockopt is the most desirable behavior. |
975 | */ |
976 | WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); |
977 | } |
978 | |
979 | void sock_set_rcvbuf(struct sock *sk, int val) |
980 | { |
981 | lock_sock(sk); |
982 | __sock_set_rcvbuf(sk, val); |
983 | release_sock(sk); |
984 | } |
985 | EXPORT_SYMBOL(sock_set_rcvbuf); |
986 | |
987 | static void __sock_set_mark(struct sock *sk, u32 val) |
988 | { |
989 | if (val != sk->sk_mark) { |
990 | WRITE_ONCE(sk->sk_mark, val); |
991 | sk_dst_reset(sk); |
992 | } |
993 | } |
994 | |
995 | void sock_set_mark(struct sock *sk, u32 val) |
996 | { |
997 | lock_sock(sk); |
998 | __sock_set_mark(sk, val); |
999 | release_sock(sk); |
1000 | } |
1001 | EXPORT_SYMBOL(sock_set_mark); |
1002 | |
1003 | static void sock_release_reserved_memory(struct sock *sk, int bytes) |
1004 | { |
1005 | /* Round down bytes to multiple of pages */ |
1006 | bytes = round_down(bytes, PAGE_SIZE); |
1007 | |
1008 | WARN_ON(bytes > sk->sk_reserved_mem); |
1009 | WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); |
1010 | sk_mem_reclaim(sk); |
1011 | } |
1012 | |
1013 | static int sock_reserve_memory(struct sock *sk, int bytes) |
1014 | { |
1015 | long allocated; |
1016 | bool charged; |
1017 | int pages; |
1018 | |
1019 | if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) |
1020 | return -EOPNOTSUPP; |
1021 | |
1022 | if (!bytes) |
1023 | return 0; |
1024 | |
1025 | pages = sk_mem_pages(amt: bytes); |
1026 | |
1027 | /* pre-charge to memcg */ |
1028 | charged = mem_cgroup_charge_skmem(memcg: sk->sk_memcg, nr_pages: pages, |
1029 | GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
1030 | if (!charged) |
1031 | return -ENOMEM; |
1032 | |
1033 | /* pre-charge to forward_alloc */ |
1034 | sk_memory_allocated_add(sk, amt: pages); |
1035 | allocated = sk_memory_allocated(sk); |
1036 | /* If the system goes into memory pressure with this |
1037 | * precharge, give up and return error. |
1038 | */ |
1039 | if (allocated > sk_prot_mem_limits(sk, index: 1)) { |
1040 | sk_memory_allocated_sub(sk, amt: pages); |
1041 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: pages); |
1042 | return -ENOMEM; |
1043 | } |
1044 | sk_forward_alloc_add(sk, val: pages << PAGE_SHIFT); |
1045 | |
1046 | WRITE_ONCE(sk->sk_reserved_mem, |
1047 | sk->sk_reserved_mem + (pages << PAGE_SHIFT)); |
1048 | |
1049 | return 0; |
1050 | } |
1051 | |
1052 | void sockopt_lock_sock(struct sock *sk) |
1053 | { |
1054 | /* When current->bpf_ctx is set, the setsockopt is called from |
1055 | * a bpf prog. bpf has ensured the sk lock has been |
1056 | * acquired before calling setsockopt(). |
1057 | */ |
1058 | if (has_current_bpf_ctx()) |
1059 | return; |
1060 | |
1061 | lock_sock(sk); |
1062 | } |
1063 | EXPORT_SYMBOL(sockopt_lock_sock); |
1064 | |
1065 | void sockopt_release_sock(struct sock *sk) |
1066 | { |
1067 | if (has_current_bpf_ctx()) |
1068 | return; |
1069 | |
1070 | release_sock(sk); |
1071 | } |
1072 | EXPORT_SYMBOL(sockopt_release_sock); |
1073 | |
1074 | bool sockopt_ns_capable(struct user_namespace *ns, int cap) |
1075 | { |
1076 | return has_current_bpf_ctx() || ns_capable(ns, cap); |
1077 | } |
1078 | EXPORT_SYMBOL(sockopt_ns_capable); |
1079 | |
1080 | bool sockopt_capable(int cap) |
1081 | { |
1082 | return has_current_bpf_ctx() || capable(cap); |
1083 | } |
1084 | EXPORT_SYMBOL(sockopt_capable); |
1085 | |
1086 | /* |
1087 | * This is meant for all protocols to use and covers goings on |
1088 | * at the socket level. Everything here is generic. |
1089 | */ |
1090 | |
1091 | int sk_setsockopt(struct sock *sk, int level, int optname, |
1092 | sockptr_t optval, unsigned int optlen) |
1093 | { |
1094 | struct so_timestamping timestamping; |
1095 | struct socket *sock = sk->sk_socket; |
1096 | struct sock_txtime sk_txtime; |
1097 | int val; |
1098 | int valbool; |
1099 | struct linger ling; |
1100 | int ret = 0; |
1101 | |
1102 | /* |
1103 | * Options without arguments |
1104 | */ |
1105 | |
1106 | if (optname == SO_BINDTODEVICE) |
1107 | return sock_setbindtodevice(sk, optval, optlen); |
1108 | |
1109 | if (optlen < sizeof(int)) |
1110 | return -EINVAL; |
1111 | |
1112 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
1113 | return -EFAULT; |
1114 | |
1115 | valbool = val ? 1 : 0; |
1116 | |
1117 | /* handle options which do not require locking the socket. */ |
1118 | switch (optname) { |
1119 | case SO_PRIORITY: |
1120 | if ((val >= 0 && val <= 6) || |
1121 | sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || |
1122 | sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
1123 | sock_set_priority(sk, val); |
1124 | return 0; |
1125 | } |
1126 | return -EPERM; |
1127 | case SO_PASSSEC: |
1128 | assign_bit(SOCK_PASSSEC, addr: &sock->flags, value: valbool); |
1129 | return 0; |
1130 | case SO_PASSCRED: |
1131 | assign_bit(SOCK_PASSCRED, addr: &sock->flags, value: valbool); |
1132 | return 0; |
1133 | case SO_PASSPIDFD: |
1134 | assign_bit(SOCK_PASSPIDFD, addr: &sock->flags, value: valbool); |
1135 | return 0; |
1136 | case SO_TYPE: |
1137 | case SO_PROTOCOL: |
1138 | case SO_DOMAIN: |
1139 | case SO_ERROR: |
1140 | return -ENOPROTOOPT; |
1141 | #ifdef CONFIG_NET_RX_BUSY_POLL |
1142 | case SO_BUSY_POLL: |
1143 | if (val < 0) |
1144 | return -EINVAL; |
1145 | WRITE_ONCE(sk->sk_ll_usec, val); |
1146 | return 0; |
1147 | case SO_PREFER_BUSY_POLL: |
1148 | if (valbool && !sockopt_capable(CAP_NET_ADMIN)) |
1149 | return -EPERM; |
1150 | WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); |
1151 | return 0; |
1152 | case SO_BUSY_POLL_BUDGET: |
1153 | if (val > READ_ONCE(sk->sk_busy_poll_budget) && |
1154 | !sockopt_capable(CAP_NET_ADMIN)) |
1155 | return -EPERM; |
1156 | if (val < 0 || val > U16_MAX) |
1157 | return -EINVAL; |
1158 | WRITE_ONCE(sk->sk_busy_poll_budget, val); |
1159 | return 0; |
1160 | #endif |
1161 | case SO_MAX_PACING_RATE: |
1162 | { |
1163 | unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; |
1164 | unsigned long pacing_rate; |
1165 | |
1166 | if (sizeof(ulval) != sizeof(val) && |
1167 | optlen >= sizeof(ulval) && |
1168 | copy_from_sockptr(dst: &ulval, src: optval, size: sizeof(ulval))) { |
1169 | return -EFAULT; |
1170 | } |
1171 | if (ulval != ~0UL) |
1172 | cmpxchg(&sk->sk_pacing_status, |
1173 | SK_PACING_NONE, |
1174 | SK_PACING_NEEDED); |
1175 | /* Pairs with READ_ONCE() from sk_getsockopt() */ |
1176 | WRITE_ONCE(sk->sk_max_pacing_rate, ulval); |
1177 | pacing_rate = READ_ONCE(sk->sk_pacing_rate); |
1178 | if (ulval < pacing_rate) |
1179 | WRITE_ONCE(sk->sk_pacing_rate, ulval); |
1180 | return 0; |
1181 | } |
1182 | case SO_TXREHASH: |
1183 | if (val < -1 || val > 1) |
1184 | return -EINVAL; |
1185 | if ((u8)val == SOCK_TXREHASH_DEFAULT) |
1186 | val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); |
1187 | /* Paired with READ_ONCE() in tcp_rtx_synack() |
1188 | * and sk_getsockopt(). |
1189 | */ |
1190 | WRITE_ONCE(sk->sk_txrehash, (u8)val); |
1191 | return 0; |
1192 | case SO_PEEK_OFF: |
1193 | { |
1194 | int (*set_peek_off)(struct sock *sk, int val); |
1195 | |
1196 | set_peek_off = READ_ONCE(sock->ops)->set_peek_off; |
1197 | if (set_peek_off) |
1198 | ret = set_peek_off(sk, val); |
1199 | else |
1200 | ret = -EOPNOTSUPP; |
1201 | return ret; |
1202 | } |
1203 | } |
1204 | |
1205 | sockopt_lock_sock(sk); |
1206 | |
1207 | switch (optname) { |
1208 | case SO_DEBUG: |
1209 | if (val && !sockopt_capable(CAP_NET_ADMIN)) |
1210 | ret = -EACCES; |
1211 | else |
1212 | sock_valbool_flag(sk, bit: SOCK_DBG, valbool); |
1213 | break; |
1214 | case SO_REUSEADDR: |
1215 | sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); |
1216 | break; |
1217 | case SO_REUSEPORT: |
1218 | sk->sk_reuseport = valbool; |
1219 | break; |
1220 | case SO_DONTROUTE: |
1221 | sock_valbool_flag(sk, bit: SOCK_LOCALROUTE, valbool); |
1222 | sk_dst_reset(sk); |
1223 | break; |
1224 | case SO_BROADCAST: |
1225 | sock_valbool_flag(sk, bit: SOCK_BROADCAST, valbool); |
1226 | break; |
1227 | case SO_SNDBUF: |
1228 | /* Don't error on this BSD doesn't and if you think |
1229 | * about it this is right. Otherwise apps have to |
1230 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
1231 | * are treated in BSD as hints |
1232 | */ |
1233 | val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); |
1234 | set_sndbuf: |
1235 | /* Ensure val * 2 fits into an int, to prevent max_t() |
1236 | * from treating it as a negative value. |
1237 | */ |
1238 | val = min_t(int, val, INT_MAX / 2); |
1239 | sk->sk_userlocks |= SOCK_SNDBUF_LOCK; |
1240 | WRITE_ONCE(sk->sk_sndbuf, |
1241 | max_t(int, val * 2, SOCK_MIN_SNDBUF)); |
1242 | /* Wake up sending tasks if we upped the value. */ |
1243 | sk->sk_write_space(sk); |
1244 | break; |
1245 | |
1246 | case SO_SNDBUFFORCE: |
1247 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
1248 | ret = -EPERM; |
1249 | break; |
1250 | } |
1251 | |
1252 | /* No negative values (to prevent underflow, as val will be |
1253 | * multiplied by 2). |
1254 | */ |
1255 | if (val < 0) |
1256 | val = 0; |
1257 | goto set_sndbuf; |
1258 | |
1259 | case SO_RCVBUF: |
1260 | /* Don't error on this BSD doesn't and if you think |
1261 | * about it this is right. Otherwise apps have to |
1262 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
1263 | * are treated in BSD as hints |
1264 | */ |
1265 | __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); |
1266 | break; |
1267 | |
1268 | case SO_RCVBUFFORCE: |
1269 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
1270 | ret = -EPERM; |
1271 | break; |
1272 | } |
1273 | |
1274 | /* No negative values (to prevent underflow, as val will be |
1275 | * multiplied by 2). |
1276 | */ |
1277 | __sock_set_rcvbuf(sk, max(val, 0)); |
1278 | break; |
1279 | |
1280 | case SO_KEEPALIVE: |
1281 | if (sk->sk_prot->keepalive) |
1282 | sk->sk_prot->keepalive(sk, valbool); |
1283 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool); |
1284 | break; |
1285 | |
1286 | case SO_OOBINLINE: |
1287 | sock_valbool_flag(sk, bit: SOCK_URGINLINE, valbool); |
1288 | break; |
1289 | |
1290 | case SO_NO_CHECK: |
1291 | sk->sk_no_check_tx = valbool; |
1292 | break; |
1293 | |
1294 | case SO_LINGER: |
1295 | if (optlen < sizeof(ling)) { |
1296 | ret = -EINVAL; /* 1003.1g */ |
1297 | break; |
1298 | } |
1299 | if (copy_from_sockptr(dst: &ling, src: optval, size: sizeof(ling))) { |
1300 | ret = -EFAULT; |
1301 | break; |
1302 | } |
1303 | if (!ling.l_onoff) { |
1304 | sock_reset_flag(sk, flag: SOCK_LINGER); |
1305 | } else { |
1306 | unsigned long t_sec = ling.l_linger; |
1307 | |
1308 | if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) |
1309 | WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); |
1310 | else |
1311 | WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); |
1312 | sock_set_flag(sk, flag: SOCK_LINGER); |
1313 | } |
1314 | break; |
1315 | |
1316 | case SO_BSDCOMPAT: |
1317 | break; |
1318 | |
1319 | case SO_TIMESTAMP_OLD: |
1320 | case SO_TIMESTAMP_NEW: |
1321 | case SO_TIMESTAMPNS_OLD: |
1322 | case SO_TIMESTAMPNS_NEW: |
1323 | sock_set_timestamp(sk, optname, valbool); |
1324 | break; |
1325 | |
1326 | case SO_TIMESTAMPING_NEW: |
1327 | case SO_TIMESTAMPING_OLD: |
1328 | if (optlen == sizeof(timestamping)) { |
1329 | if (copy_from_sockptr(dst: ×tamping, src: optval, |
1330 | size: sizeof(timestamping))) { |
1331 | ret = -EFAULT; |
1332 | break; |
1333 | } |
1334 | } else { |
1335 | memset(×tamping, 0, sizeof(timestamping)); |
1336 | timestamping.flags = val; |
1337 | } |
1338 | ret = sock_set_timestamping(sk, optname, timestamping); |
1339 | break; |
1340 | |
1341 | case SO_RCVLOWAT: |
1342 | { |
1343 | int (*set_rcvlowat)(struct sock *sk, int val) = NULL; |
1344 | |
1345 | if (val < 0) |
1346 | val = INT_MAX; |
1347 | if (sock) |
1348 | set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; |
1349 | if (set_rcvlowat) |
1350 | ret = set_rcvlowat(sk, val); |
1351 | else |
1352 | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
1353 | break; |
1354 | } |
1355 | case SO_RCVTIMEO_OLD: |
1356 | case SO_RCVTIMEO_NEW: |
1357 | ret = sock_set_timeout(timeo_p: &sk->sk_rcvtimeo, optval, |
1358 | optlen, old_timeval: optname == SO_RCVTIMEO_OLD); |
1359 | break; |
1360 | |
1361 | case SO_SNDTIMEO_OLD: |
1362 | case SO_SNDTIMEO_NEW: |
1363 | ret = sock_set_timeout(timeo_p: &sk->sk_sndtimeo, optval, |
1364 | optlen, old_timeval: optname == SO_SNDTIMEO_OLD); |
1365 | break; |
1366 | |
1367 | case SO_ATTACH_FILTER: { |
1368 | struct sock_fprog fprog; |
1369 | |
1370 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
1371 | if (!ret) |
1372 | ret = sk_attach_filter(fprog: &fprog, sk); |
1373 | break; |
1374 | } |
1375 | case SO_ATTACH_BPF: |
1376 | ret = -EINVAL; |
1377 | if (optlen == sizeof(u32)) { |
1378 | u32 ufd; |
1379 | |
1380 | ret = -EFAULT; |
1381 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
1382 | break; |
1383 | |
1384 | ret = sk_attach_bpf(ufd, sk); |
1385 | } |
1386 | break; |
1387 | |
1388 | case SO_ATTACH_REUSEPORT_CBPF: { |
1389 | struct sock_fprog fprog; |
1390 | |
1391 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
1392 | if (!ret) |
1393 | ret = sk_reuseport_attach_filter(fprog: &fprog, sk); |
1394 | break; |
1395 | } |
1396 | case SO_ATTACH_REUSEPORT_EBPF: |
1397 | ret = -EINVAL; |
1398 | if (optlen == sizeof(u32)) { |
1399 | u32 ufd; |
1400 | |
1401 | ret = -EFAULT; |
1402 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
1403 | break; |
1404 | |
1405 | ret = sk_reuseport_attach_bpf(ufd, sk); |
1406 | } |
1407 | break; |
1408 | |
1409 | case SO_DETACH_REUSEPORT_BPF: |
1410 | ret = reuseport_detach_prog(sk); |
1411 | break; |
1412 | |
1413 | case SO_DETACH_FILTER: |
1414 | ret = sk_detach_filter(sk); |
1415 | break; |
1416 | |
1417 | case SO_LOCK_FILTER: |
1418 | if (sock_flag(sk, flag: SOCK_FILTER_LOCKED) && !valbool) |
1419 | ret = -EPERM; |
1420 | else |
1421 | sock_valbool_flag(sk, bit: SOCK_FILTER_LOCKED, valbool); |
1422 | break; |
1423 | |
1424 | case SO_MARK: |
1425 | if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && |
1426 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
1427 | ret = -EPERM; |
1428 | break; |
1429 | } |
1430 | |
1431 | __sock_set_mark(sk, val); |
1432 | break; |
1433 | case SO_RCVMARK: |
1434 | sock_valbool_flag(sk, bit: SOCK_RCVMARK, valbool); |
1435 | break; |
1436 | |
1437 | case SO_RXQ_OVFL: |
1438 | sock_valbool_flag(sk, bit: SOCK_RXQ_OVFL, valbool); |
1439 | break; |
1440 | |
1441 | case SO_WIFI_STATUS: |
1442 | sock_valbool_flag(sk, bit: SOCK_WIFI_STATUS, valbool); |
1443 | break; |
1444 | |
1445 | case SO_NOFCS: |
1446 | sock_valbool_flag(sk, bit: SOCK_NOFCS, valbool); |
1447 | break; |
1448 | |
1449 | case SO_SELECT_ERR_QUEUE: |
1450 | sock_valbool_flag(sk, bit: SOCK_SELECT_ERR_QUEUE, valbool); |
1451 | break; |
1452 | |
1453 | |
1454 | case SO_INCOMING_CPU: |
1455 | reuseport_update_incoming_cpu(sk, val); |
1456 | break; |
1457 | |
1458 | case SO_CNX_ADVICE: |
1459 | if (val == 1) |
1460 | dst_negative_advice(sk); |
1461 | break; |
1462 | |
1463 | case SO_ZEROCOPY: |
1464 | if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { |
1465 | if (!(sk_is_tcp(sk) || |
1466 | (sk->sk_type == SOCK_DGRAM && |
1467 | sk->sk_protocol == IPPROTO_UDP))) |
1468 | ret = -EOPNOTSUPP; |
1469 | } else if (sk->sk_family != PF_RDS) { |
1470 | ret = -EOPNOTSUPP; |
1471 | } |
1472 | if (!ret) { |
1473 | if (val < 0 || val > 1) |
1474 | ret = -EINVAL; |
1475 | else |
1476 | sock_valbool_flag(sk, bit: SOCK_ZEROCOPY, valbool); |
1477 | } |
1478 | break; |
1479 | |
1480 | case SO_TXTIME: |
1481 | if (optlen != sizeof(struct sock_txtime)) { |
1482 | ret = -EINVAL; |
1483 | break; |
1484 | } else if (copy_from_sockptr(dst: &sk_txtime, src: optval, |
1485 | size: sizeof(struct sock_txtime))) { |
1486 | ret = -EFAULT; |
1487 | break; |
1488 | } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { |
1489 | ret = -EINVAL; |
1490 | break; |
1491 | } |
1492 | /* CLOCK_MONOTONIC is only used by sch_fq, and this packet |
1493 | * scheduler has enough safe guards. |
1494 | */ |
1495 | if (sk_txtime.clockid != CLOCK_MONOTONIC && |
1496 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
1497 | ret = -EPERM; |
1498 | break; |
1499 | } |
1500 | sock_valbool_flag(sk, bit: SOCK_TXTIME, valbool: true); |
1501 | sk->sk_clockid = sk_txtime.clockid; |
1502 | sk->sk_txtime_deadline_mode = |
1503 | !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); |
1504 | sk->sk_txtime_report_errors = |
1505 | !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); |
1506 | break; |
1507 | |
1508 | case SO_BINDTOIFINDEX: |
1509 | ret = sock_bindtoindex_locked(sk, ifindex: val); |
1510 | break; |
1511 | |
1512 | case SO_BUF_LOCK: |
1513 | if (val & ~SOCK_BUF_LOCK_MASK) { |
1514 | ret = -EINVAL; |
1515 | break; |
1516 | } |
1517 | sk->sk_userlocks = val | (sk->sk_userlocks & |
1518 | ~SOCK_BUF_LOCK_MASK); |
1519 | break; |
1520 | |
1521 | case SO_RESERVE_MEM: |
1522 | { |
1523 | int delta; |
1524 | |
1525 | if (val < 0) { |
1526 | ret = -EINVAL; |
1527 | break; |
1528 | } |
1529 | |
1530 | delta = val - sk->sk_reserved_mem; |
1531 | if (delta < 0) |
1532 | sock_release_reserved_memory(sk, bytes: -delta); |
1533 | else |
1534 | ret = sock_reserve_memory(sk, bytes: delta); |
1535 | break; |
1536 | } |
1537 | |
1538 | default: |
1539 | ret = -ENOPROTOOPT; |
1540 | break; |
1541 | } |
1542 | sockopt_release_sock(sk); |
1543 | return ret; |
1544 | } |
1545 | |
1546 | int sock_setsockopt(struct socket *sock, int level, int optname, |
1547 | sockptr_t optval, unsigned int optlen) |
1548 | { |
1549 | return sk_setsockopt(sk: sock->sk, level, optname, |
1550 | optval, optlen); |
1551 | } |
1552 | EXPORT_SYMBOL(sock_setsockopt); |
1553 | |
1554 | static const struct cred *sk_get_peer_cred(struct sock *sk) |
1555 | { |
1556 | const struct cred *cred; |
1557 | |
1558 | spin_lock(lock: &sk->sk_peer_lock); |
1559 | cred = get_cred(cred: sk->sk_peer_cred); |
1560 | spin_unlock(lock: &sk->sk_peer_lock); |
1561 | |
1562 | return cred; |
1563 | } |
1564 | |
1565 | static void cred_to_ucred(struct pid *pid, const struct cred *cred, |
1566 | struct ucred *ucred) |
1567 | { |
1568 | ucred->pid = pid_vnr(pid); |
1569 | ucred->uid = ucred->gid = -1; |
1570 | if (cred) { |
1571 | struct user_namespace *current_ns = current_user_ns(); |
1572 | |
1573 | ucred->uid = from_kuid_munged(to: current_ns, uid: cred->euid); |
1574 | ucred->gid = from_kgid_munged(to: current_ns, gid: cred->egid); |
1575 | } |
1576 | } |
1577 | |
1578 | static int groups_to_user(sockptr_t dst, const struct group_info *src) |
1579 | { |
1580 | struct user_namespace *user_ns = current_user_ns(); |
1581 | int i; |
1582 | |
1583 | for (i = 0; i < src->ngroups; i++) { |
1584 | gid_t gid = from_kgid_munged(to: user_ns, gid: src->gid[i]); |
1585 | |
1586 | if (copy_to_sockptr_offset(dst, offset: i * sizeof(gid), src: &gid, size: sizeof(gid))) |
1587 | return -EFAULT; |
1588 | } |
1589 | |
1590 | return 0; |
1591 | } |
1592 | |
1593 | int sk_getsockopt(struct sock *sk, int level, int optname, |
1594 | sockptr_t optval, sockptr_t optlen) |
1595 | { |
1596 | struct socket *sock = sk->sk_socket; |
1597 | |
1598 | union { |
1599 | int val; |
1600 | u64 val64; |
1601 | unsigned long ulval; |
1602 | struct linger ling; |
1603 | struct old_timeval32 tm32; |
1604 | struct __kernel_old_timeval tm; |
1605 | struct __kernel_sock_timeval stm; |
1606 | struct sock_txtime txtime; |
1607 | struct so_timestamping timestamping; |
1608 | } v; |
1609 | |
1610 | int lv = sizeof(int); |
1611 | int len; |
1612 | |
1613 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
1614 | return -EFAULT; |
1615 | if (len < 0) |
1616 | return -EINVAL; |
1617 | |
1618 | memset(&v, 0, sizeof(v)); |
1619 | |
1620 | switch (optname) { |
1621 | case SO_DEBUG: |
1622 | v.val = sock_flag(sk, flag: SOCK_DBG); |
1623 | break; |
1624 | |
1625 | case SO_DONTROUTE: |
1626 | v.val = sock_flag(sk, flag: SOCK_LOCALROUTE); |
1627 | break; |
1628 | |
1629 | case SO_BROADCAST: |
1630 | v.val = sock_flag(sk, flag: SOCK_BROADCAST); |
1631 | break; |
1632 | |
1633 | case SO_SNDBUF: |
1634 | v.val = READ_ONCE(sk->sk_sndbuf); |
1635 | break; |
1636 | |
1637 | case SO_RCVBUF: |
1638 | v.val = READ_ONCE(sk->sk_rcvbuf); |
1639 | break; |
1640 | |
1641 | case SO_REUSEADDR: |
1642 | v.val = sk->sk_reuse; |
1643 | break; |
1644 | |
1645 | case SO_REUSEPORT: |
1646 | v.val = sk->sk_reuseport; |
1647 | break; |
1648 | |
1649 | case SO_KEEPALIVE: |
1650 | v.val = sock_flag(sk, flag: SOCK_KEEPOPEN); |
1651 | break; |
1652 | |
1653 | case SO_TYPE: |
1654 | v.val = sk->sk_type; |
1655 | break; |
1656 | |
1657 | case SO_PROTOCOL: |
1658 | v.val = sk->sk_protocol; |
1659 | break; |
1660 | |
1661 | case SO_DOMAIN: |
1662 | v.val = sk->sk_family; |
1663 | break; |
1664 | |
1665 | case SO_ERROR: |
1666 | v.val = -sock_error(sk); |
1667 | if (v.val == 0) |
1668 | v.val = xchg(&sk->sk_err_soft, 0); |
1669 | break; |
1670 | |
1671 | case SO_OOBINLINE: |
1672 | v.val = sock_flag(sk, flag: SOCK_URGINLINE); |
1673 | break; |
1674 | |
1675 | case SO_NO_CHECK: |
1676 | v.val = sk->sk_no_check_tx; |
1677 | break; |
1678 | |
1679 | case SO_PRIORITY: |
1680 | v.val = READ_ONCE(sk->sk_priority); |
1681 | break; |
1682 | |
1683 | case SO_LINGER: |
1684 | lv = sizeof(v.ling); |
1685 | v.ling.l_onoff = sock_flag(sk, flag: SOCK_LINGER); |
1686 | v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; |
1687 | break; |
1688 | |
1689 | case SO_BSDCOMPAT: |
1690 | break; |
1691 | |
1692 | case SO_TIMESTAMP_OLD: |
1693 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && |
1694 | !sock_flag(sk, flag: SOCK_TSTAMP_NEW) && |
1695 | !sock_flag(sk, flag: SOCK_RCVTSTAMPNS); |
1696 | break; |
1697 | |
1698 | case SO_TIMESTAMPNS_OLD: |
1699 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && !sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1700 | break; |
1701 | |
1702 | case SO_TIMESTAMP_NEW: |
1703 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1704 | break; |
1705 | |
1706 | case SO_TIMESTAMPNS_NEW: |
1707 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
1708 | break; |
1709 | |
1710 | case SO_TIMESTAMPING_OLD: |
1711 | case SO_TIMESTAMPING_NEW: |
1712 | lv = sizeof(v.timestamping); |
1713 | /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only |
1714 | * returning the flags when they were set through the same option. |
1715 | * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. |
1716 | */ |
1717 | if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, flag: SOCK_TSTAMP_NEW)) { |
1718 | v.timestamping.flags = READ_ONCE(sk->sk_tsflags); |
1719 | v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); |
1720 | } |
1721 | break; |
1722 | |
1723 | case SO_RCVTIMEO_OLD: |
1724 | case SO_RCVTIMEO_NEW: |
1725 | lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, |
1726 | SO_RCVTIMEO_OLD == optname); |
1727 | break; |
1728 | |
1729 | case SO_SNDTIMEO_OLD: |
1730 | case SO_SNDTIMEO_NEW: |
1731 | lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, |
1732 | SO_SNDTIMEO_OLD == optname); |
1733 | break; |
1734 | |
1735 | case SO_RCVLOWAT: |
1736 | v.val = READ_ONCE(sk->sk_rcvlowat); |
1737 | break; |
1738 | |
1739 | case SO_SNDLOWAT: |
1740 | v.val = 1; |
1741 | break; |
1742 | |
1743 | case SO_PASSCRED: |
1744 | v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); |
1745 | break; |
1746 | |
1747 | case SO_PASSPIDFD: |
1748 | v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); |
1749 | break; |
1750 | |
1751 | case SO_PEERCRED: |
1752 | { |
1753 | struct ucred peercred; |
1754 | if (len > sizeof(peercred)) |
1755 | len = sizeof(peercred); |
1756 | |
1757 | spin_lock(lock: &sk->sk_peer_lock); |
1758 | cred_to_ucred(pid: sk->sk_peer_pid, cred: sk->sk_peer_cred, ucred: &peercred); |
1759 | spin_unlock(lock: &sk->sk_peer_lock); |
1760 | |
1761 | if (copy_to_sockptr(dst: optval, src: &peercred, size: len)) |
1762 | return -EFAULT; |
1763 | goto lenout; |
1764 | } |
1765 | |
1766 | case SO_PEERPIDFD: |
1767 | { |
1768 | struct pid *peer_pid; |
1769 | struct file *pidfd_file = NULL; |
1770 | int pidfd; |
1771 | |
1772 | if (len > sizeof(pidfd)) |
1773 | len = sizeof(pidfd); |
1774 | |
1775 | spin_lock(lock: &sk->sk_peer_lock); |
1776 | peer_pid = get_pid(pid: sk->sk_peer_pid); |
1777 | spin_unlock(lock: &sk->sk_peer_lock); |
1778 | |
1779 | if (!peer_pid) |
1780 | return -ENODATA; |
1781 | |
1782 | pidfd = pidfd_prepare(pid: peer_pid, flags: 0, ret: &pidfd_file); |
1783 | put_pid(pid: peer_pid); |
1784 | if (pidfd < 0) |
1785 | return pidfd; |
1786 | |
1787 | if (copy_to_sockptr(dst: optval, src: &pidfd, size: len) || |
1788 | copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
1789 | put_unused_fd(fd: pidfd); |
1790 | fput(pidfd_file); |
1791 | |
1792 | return -EFAULT; |
1793 | } |
1794 | |
1795 | fd_install(fd: pidfd, file: pidfd_file); |
1796 | return 0; |
1797 | } |
1798 | |
1799 | case SO_PEERGROUPS: |
1800 | { |
1801 | const struct cred *cred; |
1802 | int ret, n; |
1803 | |
1804 | cred = sk_get_peer_cred(sk); |
1805 | if (!cred) |
1806 | return -ENODATA; |
1807 | |
1808 | n = cred->group_info->ngroups; |
1809 | if (len < n * sizeof(gid_t)) { |
1810 | len = n * sizeof(gid_t); |
1811 | put_cred(cred); |
1812 | return copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)) ? -EFAULT : -ERANGE; |
1813 | } |
1814 | len = n * sizeof(gid_t); |
1815 | |
1816 | ret = groups_to_user(dst: optval, src: cred->group_info); |
1817 | put_cred(cred); |
1818 | if (ret) |
1819 | return ret; |
1820 | goto lenout; |
1821 | } |
1822 | |
1823 | case SO_PEERNAME: |
1824 | { |
1825 | struct sockaddr_storage address; |
1826 | |
1827 | lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); |
1828 | if (lv < 0) |
1829 | return -ENOTCONN; |
1830 | if (lv < len) |
1831 | return -EINVAL; |
1832 | if (copy_to_sockptr(dst: optval, src: &address, size: len)) |
1833 | return -EFAULT; |
1834 | goto lenout; |
1835 | } |
1836 | |
1837 | /* Dubious BSD thing... Probably nobody even uses it, but |
1838 | * the UNIX standard wants it for whatever reason... -DaveM |
1839 | */ |
1840 | case SO_ACCEPTCONN: |
1841 | v.val = sk->sk_state == TCP_LISTEN; |
1842 | break; |
1843 | |
1844 | case SO_PASSSEC: |
1845 | v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); |
1846 | break; |
1847 | |
1848 | case SO_PEERSEC: |
1849 | return security_socket_getpeersec_stream(sock, |
1850 | optval, optlen, len); |
1851 | |
1852 | case SO_MARK: |
1853 | v.val = READ_ONCE(sk->sk_mark); |
1854 | break; |
1855 | |
1856 | case SO_RCVMARK: |
1857 | v.val = sock_flag(sk, flag: SOCK_RCVMARK); |
1858 | break; |
1859 | |
1860 | case SO_RXQ_OVFL: |
1861 | v.val = sock_flag(sk, flag: SOCK_RXQ_OVFL); |
1862 | break; |
1863 | |
1864 | case SO_WIFI_STATUS: |
1865 | v.val = sock_flag(sk, flag: SOCK_WIFI_STATUS); |
1866 | break; |
1867 | |
1868 | case SO_PEEK_OFF: |
1869 | if (!READ_ONCE(sock->ops)->set_peek_off) |
1870 | return -EOPNOTSUPP; |
1871 | |
1872 | v.val = READ_ONCE(sk->sk_peek_off); |
1873 | break; |
1874 | case SO_NOFCS: |
1875 | v.val = sock_flag(sk, flag: SOCK_NOFCS); |
1876 | break; |
1877 | |
1878 | case SO_BINDTODEVICE: |
1879 | return sock_getbindtodevice(sk, optval, optlen, len); |
1880 | |
1881 | case SO_GET_FILTER: |
1882 | len = sk_get_filter(sk, optval, len); |
1883 | if (len < 0) |
1884 | return len; |
1885 | |
1886 | goto lenout; |
1887 | |
1888 | case SO_LOCK_FILTER: |
1889 | v.val = sock_flag(sk, flag: SOCK_FILTER_LOCKED); |
1890 | break; |
1891 | |
1892 | case SO_BPF_EXTENSIONS: |
1893 | v.val = bpf_tell_extensions(); |
1894 | break; |
1895 | |
1896 | case SO_SELECT_ERR_QUEUE: |
1897 | v.val = sock_flag(sk, flag: SOCK_SELECT_ERR_QUEUE); |
1898 | break; |
1899 | |
1900 | #ifdef CONFIG_NET_RX_BUSY_POLL |
1901 | case SO_BUSY_POLL: |
1902 | v.val = READ_ONCE(sk->sk_ll_usec); |
1903 | break; |
1904 | case SO_PREFER_BUSY_POLL: |
1905 | v.val = READ_ONCE(sk->sk_prefer_busy_poll); |
1906 | break; |
1907 | #endif |
1908 | |
1909 | case SO_MAX_PACING_RATE: |
1910 | /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ |
1911 | if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { |
1912 | lv = sizeof(v.ulval); |
1913 | v.ulval = READ_ONCE(sk->sk_max_pacing_rate); |
1914 | } else { |
1915 | /* 32bit version */ |
1916 | v.val = min_t(unsigned long, ~0U, |
1917 | READ_ONCE(sk->sk_max_pacing_rate)); |
1918 | } |
1919 | break; |
1920 | |
1921 | case SO_INCOMING_CPU: |
1922 | v.val = READ_ONCE(sk->sk_incoming_cpu); |
1923 | break; |
1924 | |
1925 | case SO_MEMINFO: |
1926 | { |
1927 | u32 meminfo[SK_MEMINFO_VARS]; |
1928 | |
1929 | sk_get_meminfo(sk, meminfo); |
1930 | |
1931 | len = min_t(unsigned int, len, sizeof(meminfo)); |
1932 | if (copy_to_sockptr(dst: optval, src: &meminfo, size: len)) |
1933 | return -EFAULT; |
1934 | |
1935 | goto lenout; |
1936 | } |
1937 | |
1938 | #ifdef CONFIG_NET_RX_BUSY_POLL |
1939 | case SO_INCOMING_NAPI_ID: |
1940 | v.val = READ_ONCE(sk->sk_napi_id); |
1941 | |
1942 | /* aggregate non-NAPI IDs down to 0 */ |
1943 | if (v.val < MIN_NAPI_ID) |
1944 | v.val = 0; |
1945 | |
1946 | break; |
1947 | #endif |
1948 | |
1949 | case SO_COOKIE: |
1950 | lv = sizeof(u64); |
1951 | if (len < lv) |
1952 | return -EINVAL; |
1953 | v.val64 = sock_gen_cookie(sk); |
1954 | break; |
1955 | |
1956 | case SO_ZEROCOPY: |
1957 | v.val = sock_flag(sk, flag: SOCK_ZEROCOPY); |
1958 | break; |
1959 | |
1960 | case SO_TXTIME: |
1961 | lv = sizeof(v.txtime); |
1962 | v.txtime.clockid = sk->sk_clockid; |
1963 | v.txtime.flags |= sk->sk_txtime_deadline_mode ? |
1964 | SOF_TXTIME_DEADLINE_MODE : 0; |
1965 | v.txtime.flags |= sk->sk_txtime_report_errors ? |
1966 | SOF_TXTIME_REPORT_ERRORS : 0; |
1967 | break; |
1968 | |
1969 | case SO_BINDTOIFINDEX: |
1970 | v.val = READ_ONCE(sk->sk_bound_dev_if); |
1971 | break; |
1972 | |
1973 | case SO_NETNS_COOKIE: |
1974 | lv = sizeof(u64); |
1975 | if (len != lv) |
1976 | return -EINVAL; |
1977 | v.val64 = sock_net(sk)->net_cookie; |
1978 | break; |
1979 | |
1980 | case SO_BUF_LOCK: |
1981 | v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; |
1982 | break; |
1983 | |
1984 | case SO_RESERVE_MEM: |
1985 | v.val = READ_ONCE(sk->sk_reserved_mem); |
1986 | break; |
1987 | |
1988 | case SO_TXREHASH: |
1989 | /* Paired with WRITE_ONCE() in sk_setsockopt() */ |
1990 | v.val = READ_ONCE(sk->sk_txrehash); |
1991 | break; |
1992 | |
1993 | default: |
1994 | /* We implement the SO_SNDLOWAT etc to not be settable |
1995 | * (1003.1g 7). |
1996 | */ |
1997 | return -ENOPROTOOPT; |
1998 | } |
1999 | |
2000 | if (len > lv) |
2001 | len = lv; |
2002 | if (copy_to_sockptr(dst: optval, src: &v, size: len)) |
2003 | return -EFAULT; |
2004 | lenout: |
2005 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
2006 | return -EFAULT; |
2007 | return 0; |
2008 | } |
2009 | |
2010 | /* |
2011 | * Initialize an sk_lock. |
2012 | * |
2013 | * (We also register the sk_lock with the lock validator.) |
2014 | */ |
2015 | static inline void sock_lock_init(struct sock *sk) |
2016 | { |
2017 | if (sk->sk_kern_sock) |
2018 | sock_lock_init_class_and_name( |
2019 | sk, |
2020 | af_family_kern_slock_key_strings[sk->sk_family], |
2021 | af_family_kern_slock_keys + sk->sk_family, |
2022 | af_family_kern_key_strings[sk->sk_family], |
2023 | af_family_kern_keys + sk->sk_family); |
2024 | else |
2025 | sock_lock_init_class_and_name( |
2026 | sk, |
2027 | af_family_slock_key_strings[sk->sk_family], |
2028 | af_family_slock_keys + sk->sk_family, |
2029 | af_family_key_strings[sk->sk_family], |
2030 | af_family_keys + sk->sk_family); |
2031 | } |
2032 | |
2033 | /* |
2034 | * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, |
2035 | * even temporarly, because of RCU lookups. sk_node should also be left as is. |
2036 | * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end |
2037 | */ |
2038 | static void sock_copy(struct sock *nsk, const struct sock *osk) |
2039 | { |
2040 | const struct proto *prot = READ_ONCE(osk->sk_prot); |
2041 | #ifdef CONFIG_SECURITY_NETWORK |
2042 | void *sptr = nsk->sk_security; |
2043 | #endif |
2044 | |
2045 | /* If we move sk_tx_queue_mapping out of the private section, |
2046 | * we must check if sk_tx_queue_clear() is called after |
2047 | * sock_copy() in sk_clone_lock(). |
2048 | */ |
2049 | BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < |
2050 | offsetof(struct sock, sk_dontcopy_begin) || |
2051 | offsetof(struct sock, sk_tx_queue_mapping) >= |
2052 | offsetof(struct sock, sk_dontcopy_end)); |
2053 | |
2054 | memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); |
2055 | |
2056 | unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, |
2057 | prot->obj_size - offsetof(struct sock, sk_dontcopy_end), |
2058 | /* alloc is larger than struct, see sk_prot_alloc() */); |
2059 | |
2060 | #ifdef CONFIG_SECURITY_NETWORK |
2061 | nsk->sk_security = sptr; |
2062 | security_sk_clone(sk: osk, newsk: nsk); |
2063 | #endif |
2064 | } |
2065 | |
2066 | static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, |
2067 | int family) |
2068 | { |
2069 | struct sock *sk; |
2070 | struct kmem_cache *slab; |
2071 | |
2072 | slab = prot->slab; |
2073 | if (slab != NULL) { |
2074 | sk = kmem_cache_alloc(cachep: slab, flags: priority & ~__GFP_ZERO); |
2075 | if (!sk) |
2076 | return sk; |
2077 | if (want_init_on_alloc(flags: priority)) |
2078 | sk_prot_clear_nulls(sk, size: prot->obj_size); |
2079 | } else |
2080 | sk = kmalloc(size: prot->obj_size, flags: priority); |
2081 | |
2082 | if (sk != NULL) { |
2083 | if (security_sk_alloc(sk, family, priority)) |
2084 | goto out_free; |
2085 | |
2086 | if (!try_module_get(module: prot->owner)) |
2087 | goto out_free_sec; |
2088 | } |
2089 | |
2090 | return sk; |
2091 | |
2092 | out_free_sec: |
2093 | security_sk_free(sk); |
2094 | out_free: |
2095 | if (slab != NULL) |
2096 | kmem_cache_free(s: slab, objp: sk); |
2097 | else |
2098 | kfree(objp: sk); |
2099 | return NULL; |
2100 | } |
2101 | |
2102 | static void sk_prot_free(struct proto *prot, struct sock *sk) |
2103 | { |
2104 | struct kmem_cache *slab; |
2105 | struct module *owner; |
2106 | |
2107 | owner = prot->owner; |
2108 | slab = prot->slab; |
2109 | |
2110 | cgroup_sk_free(skcd: &sk->sk_cgrp_data); |
2111 | mem_cgroup_sk_free(sk); |
2112 | security_sk_free(sk); |
2113 | if (slab != NULL) |
2114 | kmem_cache_free(s: slab, objp: sk); |
2115 | else |
2116 | kfree(objp: sk); |
2117 | module_put(module: owner); |
2118 | } |
2119 | |
2120 | /** |
2121 | * sk_alloc - All socket objects are allocated here |
2122 | * @net: the applicable net namespace |
2123 | * @family: protocol family |
2124 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
2125 | * @prot: struct proto associated with this new sock instance |
2126 | * @kern: is this to be a kernel socket? |
2127 | */ |
2128 | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
2129 | struct proto *prot, int kern) |
2130 | { |
2131 | struct sock *sk; |
2132 | |
2133 | sk = sk_prot_alloc(prot, priority: priority | __GFP_ZERO, family); |
2134 | if (sk) { |
2135 | sk->sk_family = family; |
2136 | /* |
2137 | * See comment in struct sock definition to understand |
2138 | * why we need sk_prot_creator -acme |
2139 | */ |
2140 | sk->sk_prot = sk->sk_prot_creator = prot; |
2141 | sk->sk_kern_sock = kern; |
2142 | sock_lock_init(sk); |
2143 | sk->sk_net_refcnt = kern ? 0 : 1; |
2144 | if (likely(sk->sk_net_refcnt)) { |
2145 | get_net_track(net, tracker: &sk->ns_tracker, gfp: priority); |
2146 | sock_inuse_add(net, val: 1); |
2147 | } else { |
2148 | __netns_tracker_alloc(net, tracker: &sk->ns_tracker, |
2149 | refcounted: false, gfp: priority); |
2150 | } |
2151 | |
2152 | sock_net_set(sk, net); |
2153 | refcount_set(r: &sk->sk_wmem_alloc, n: 1); |
2154 | |
2155 | mem_cgroup_sk_alloc(sk); |
2156 | cgroup_sk_alloc(skcd: &sk->sk_cgrp_data); |
2157 | sock_update_classid(skcd: &sk->sk_cgrp_data); |
2158 | sock_update_netprioidx(skcd: &sk->sk_cgrp_data); |
2159 | sk_tx_queue_clear(sk); |
2160 | } |
2161 | |
2162 | return sk; |
2163 | } |
2164 | EXPORT_SYMBOL(sk_alloc); |
2165 | |
2166 | /* Sockets having SOCK_RCU_FREE will call this function after one RCU |
2167 | * grace period. This is the case for UDP sockets and TCP listeners. |
2168 | */ |
2169 | static void __sk_destruct(struct rcu_head *head) |
2170 | { |
2171 | struct sock *sk = container_of(head, struct sock, sk_rcu); |
2172 | struct sk_filter *filter; |
2173 | |
2174 | if (sk->sk_destruct) |
2175 | sk->sk_destruct(sk); |
2176 | |
2177 | filter = rcu_dereference_check(sk->sk_filter, |
2178 | refcount_read(&sk->sk_wmem_alloc) == 0); |
2179 | if (filter) { |
2180 | sk_filter_uncharge(sk, fp: filter); |
2181 | RCU_INIT_POINTER(sk->sk_filter, NULL); |
2182 | } |
2183 | |
2184 | sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); |
2185 | |
2186 | #ifdef CONFIG_BPF_SYSCALL |
2187 | bpf_sk_storage_free(sk); |
2188 | #endif |
2189 | |
2190 | if (atomic_read(v: &sk->sk_omem_alloc)) |
2191 | pr_debug("%s: optmem leakage (%d bytes) detected\n", |
2192 | __func__, atomic_read(&sk->sk_omem_alloc)); |
2193 | |
2194 | if (sk->sk_frag.page) { |
2195 | put_page(page: sk->sk_frag.page); |
2196 | sk->sk_frag.page = NULL; |
2197 | } |
2198 | |
2199 | /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ |
2200 | put_cred(cred: sk->sk_peer_cred); |
2201 | put_pid(pid: sk->sk_peer_pid); |
2202 | |
2203 | if (likely(sk->sk_net_refcnt)) |
2204 | put_net_track(net: sock_net(sk), tracker: &sk->ns_tracker); |
2205 | else |
2206 | __netns_tracker_free(net: sock_net(sk), tracker: &sk->ns_tracker, refcounted: false); |
2207 | |
2208 | sk_prot_free(prot: sk->sk_prot_creator, sk); |
2209 | } |
2210 | |
2211 | void sk_destruct(struct sock *sk) |
2212 | { |
2213 | bool use_call_rcu = sock_flag(sk, flag: SOCK_RCU_FREE); |
2214 | |
2215 | if (rcu_access_pointer(sk->sk_reuseport_cb)) { |
2216 | reuseport_detach_sock(sk); |
2217 | use_call_rcu = true; |
2218 | } |
2219 | |
2220 | if (use_call_rcu) |
2221 | call_rcu(head: &sk->sk_rcu, func: __sk_destruct); |
2222 | else |
2223 | __sk_destruct(head: &sk->sk_rcu); |
2224 | } |
2225 | |
2226 | static void __sk_free(struct sock *sk) |
2227 | { |
2228 | if (likely(sk->sk_net_refcnt)) |
2229 | sock_inuse_add(net: sock_net(sk), val: -1); |
2230 | |
2231 | if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) |
2232 | sock_diag_broadcast_destroy(sk); |
2233 | else |
2234 | sk_destruct(sk); |
2235 | } |
2236 | |
2237 | void sk_free(struct sock *sk) |
2238 | { |
2239 | /* |
2240 | * We subtract one from sk_wmem_alloc and can know if |
2241 | * some packets are still in some tx queue. |
2242 | * If not null, sock_wfree() will call __sk_free(sk) later |
2243 | */ |
2244 | if (refcount_dec_and_test(r: &sk->sk_wmem_alloc)) |
2245 | __sk_free(sk); |
2246 | } |
2247 | EXPORT_SYMBOL(sk_free); |
2248 | |
2249 | static void sk_init_common(struct sock *sk) |
2250 | { |
2251 | skb_queue_head_init(list: &sk->sk_receive_queue); |
2252 | skb_queue_head_init(list: &sk->sk_write_queue); |
2253 | skb_queue_head_init(list: &sk->sk_error_queue); |
2254 | |
2255 | rwlock_init(&sk->sk_callback_lock); |
2256 | lockdep_set_class_and_name(&sk->sk_receive_queue.lock, |
2257 | af_rlock_keys + sk->sk_family, |
2258 | af_family_rlock_key_strings[sk->sk_family]); |
2259 | lockdep_set_class_and_name(&sk->sk_write_queue.lock, |
2260 | af_wlock_keys + sk->sk_family, |
2261 | af_family_wlock_key_strings[sk->sk_family]); |
2262 | lockdep_set_class_and_name(&sk->sk_error_queue.lock, |
2263 | af_elock_keys + sk->sk_family, |
2264 | af_family_elock_key_strings[sk->sk_family]); |
2265 | lockdep_set_class_and_name(&sk->sk_callback_lock, |
2266 | af_callback_keys + sk->sk_family, |
2267 | af_family_clock_key_strings[sk->sk_family]); |
2268 | } |
2269 | |
2270 | /** |
2271 | * sk_clone_lock - clone a socket, and lock its clone |
2272 | * @sk: the socket to clone |
2273 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
2274 | * |
2275 | * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) |
2276 | */ |
2277 | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) |
2278 | { |
2279 | struct proto *prot = READ_ONCE(sk->sk_prot); |
2280 | struct sk_filter *filter; |
2281 | bool is_charged = true; |
2282 | struct sock *newsk; |
2283 | |
2284 | newsk = sk_prot_alloc(prot, priority, family: sk->sk_family); |
2285 | if (!newsk) |
2286 | goto out; |
2287 | |
2288 | sock_copy(nsk: newsk, osk: sk); |
2289 | |
2290 | newsk->sk_prot_creator = prot; |
2291 | |
2292 | /* SANITY */ |
2293 | if (likely(newsk->sk_net_refcnt)) { |
2294 | get_net_track(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, gfp: priority); |
2295 | sock_inuse_add(net: sock_net(sk: newsk), val: 1); |
2296 | } else { |
2297 | /* Kernel sockets are not elevating the struct net refcount. |
2298 | * Instead, use a tracker to more easily detect if a layer |
2299 | * is not properly dismantling its kernel sockets at netns |
2300 | * destroy time. |
2301 | */ |
2302 | __netns_tracker_alloc(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, |
2303 | refcounted: false, gfp: priority); |
2304 | } |
2305 | sk_node_init(node: &newsk->sk_node); |
2306 | sock_lock_init(sk: newsk); |
2307 | bh_lock_sock(newsk); |
2308 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
2309 | newsk->sk_backlog.len = 0; |
2310 | |
2311 | atomic_set(v: &newsk->sk_rmem_alloc, i: 0); |
2312 | |
2313 | /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ |
2314 | refcount_set(r: &newsk->sk_wmem_alloc, n: 1); |
2315 | |
2316 | atomic_set(v: &newsk->sk_omem_alloc, i: 0); |
2317 | sk_init_common(sk: newsk); |
2318 | |
2319 | newsk->sk_dst_cache = NULL; |
2320 | newsk->sk_dst_pending_confirm = 0; |
2321 | newsk->sk_wmem_queued = 0; |
2322 | newsk->sk_forward_alloc = 0; |
2323 | newsk->sk_reserved_mem = 0; |
2324 | atomic_set(v: &newsk->sk_drops, i: 0); |
2325 | newsk->sk_send_head = NULL; |
2326 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
2327 | atomic_set(v: &newsk->sk_zckey, i: 0); |
2328 | |
2329 | sock_reset_flag(sk: newsk, flag: SOCK_DONE); |
2330 | |
2331 | /* sk->sk_memcg will be populated at accept() time */ |
2332 | newsk->sk_memcg = NULL; |
2333 | |
2334 | cgroup_sk_clone(skcd: &newsk->sk_cgrp_data); |
2335 | |
2336 | rcu_read_lock(); |
2337 | filter = rcu_dereference(sk->sk_filter); |
2338 | if (filter != NULL) |
2339 | /* though it's an empty new sock, the charging may fail |
2340 | * if sysctl_optmem_max was changed between creation of |
2341 | * original socket and cloning |
2342 | */ |
2343 | is_charged = sk_filter_charge(sk: newsk, fp: filter); |
2344 | RCU_INIT_POINTER(newsk->sk_filter, filter); |
2345 | rcu_read_unlock(); |
2346 | |
2347 | if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { |
2348 | /* We need to make sure that we don't uncharge the new |
2349 | * socket if we couldn't charge it in the first place |
2350 | * as otherwise we uncharge the parent's filter. |
2351 | */ |
2352 | if (!is_charged) |
2353 | RCU_INIT_POINTER(newsk->sk_filter, NULL); |
2354 | sk_free_unlock_clone(sk: newsk); |
2355 | newsk = NULL; |
2356 | goto out; |
2357 | } |
2358 | RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); |
2359 | |
2360 | if (bpf_sk_storage_clone(sk, newsk)) { |
2361 | sk_free_unlock_clone(sk: newsk); |
2362 | newsk = NULL; |
2363 | goto out; |
2364 | } |
2365 | |
2366 | /* Clear sk_user_data if parent had the pointer tagged |
2367 | * as not suitable for copying when cloning. |
2368 | */ |
2369 | if (sk_user_data_is_nocopy(sk: newsk)) |
2370 | newsk->sk_user_data = NULL; |
2371 | |
2372 | newsk->sk_err = 0; |
2373 | newsk->sk_err_soft = 0; |
2374 | newsk->sk_priority = 0; |
2375 | newsk->sk_incoming_cpu = raw_smp_processor_id(); |
2376 | |
2377 | /* Before updating sk_refcnt, we must commit prior changes to memory |
2378 | * (Documentation/RCU/rculist_nulls.rst for details) |
2379 | */ |
2380 | smp_wmb(); |
2381 | refcount_set(r: &newsk->sk_refcnt, n: 2); |
2382 | |
2383 | sk_set_socket(sk: newsk, NULL); |
2384 | sk_tx_queue_clear(sk: newsk); |
2385 | RCU_INIT_POINTER(newsk->sk_wq, NULL); |
2386 | |
2387 | if (newsk->sk_prot->sockets_allocated) |
2388 | sk_sockets_allocated_inc(sk: newsk); |
2389 | |
2390 | if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) |
2391 | net_enable_timestamp(); |
2392 | out: |
2393 | return newsk; |
2394 | } |
2395 | EXPORT_SYMBOL_GPL(sk_clone_lock); |
2396 | |
2397 | void sk_free_unlock_clone(struct sock *sk) |
2398 | { |
2399 | /* It is still raw copy of parent, so invalidate |
2400 | * destructor and make plain sk_free() */ |
2401 | sk->sk_destruct = NULL; |
2402 | bh_unlock_sock(sk); |
2403 | sk_free(sk); |
2404 | } |
2405 | EXPORT_SYMBOL_GPL(sk_free_unlock_clone); |
2406 | |
2407 | static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) |
2408 | { |
2409 | bool is_ipv6 = false; |
2410 | u32 max_size; |
2411 | |
2412 | #if IS_ENABLED(CONFIG_IPV6) |
2413 | is_ipv6 = (sk->sk_family == AF_INET6 && |
2414 | !ipv6_addr_v4mapped(a: &sk->sk_v6_rcv_saddr)); |
2415 | #endif |
2416 | /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ |
2417 | max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : |
2418 | READ_ONCE(dst->dev->gso_ipv4_max_size); |
2419 | if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) |
2420 | max_size = GSO_LEGACY_MAX_SIZE; |
2421 | |
2422 | return max_size - (MAX_TCP_HEADER + 1); |
2423 | } |
2424 | |
2425 | void sk_setup_caps(struct sock *sk, struct dst_entry *dst) |
2426 | { |
2427 | u32 max_segs = 1; |
2428 | |
2429 | sk->sk_route_caps = dst->dev->features; |
2430 | if (sk_is_tcp(sk)) |
2431 | sk->sk_route_caps |= NETIF_F_GSO; |
2432 | if (sk->sk_route_caps & NETIF_F_GSO) |
2433 | sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; |
2434 | if (unlikely(sk->sk_gso_disabled)) |
2435 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
2436 | if (sk_can_gso(sk)) { |
2437 | if (dst->header_len && !xfrm_dst_offload_ok(dst)) { |
2438 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
2439 | } else { |
2440 | sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; |
2441 | sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); |
2442 | /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ |
2443 | max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); |
2444 | } |
2445 | } |
2446 | sk->sk_gso_max_segs = max_segs; |
2447 | sk_dst_set(sk, dst); |
2448 | } |
2449 | EXPORT_SYMBOL_GPL(sk_setup_caps); |
2450 | |
2451 | /* |
2452 | * Simple resource managers for sockets. |
2453 | */ |
2454 | |
2455 | |
2456 | /* |
2457 | * Write buffer destructor automatically called from kfree_skb. |
2458 | */ |
2459 | void sock_wfree(struct sk_buff *skb) |
2460 | { |
2461 | struct sock *sk = skb->sk; |
2462 | unsigned int len = skb->truesize; |
2463 | bool free; |
2464 | |
2465 | if (!sock_flag(sk, flag: SOCK_USE_WRITE_QUEUE)) { |
2466 | if (sock_flag(sk, flag: SOCK_RCU_FREE) && |
2467 | sk->sk_write_space == sock_def_write_space) { |
2468 | rcu_read_lock(); |
2469 | free = refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc); |
2470 | sock_def_write_space_wfree(sk); |
2471 | rcu_read_unlock(); |
2472 | if (unlikely(free)) |
2473 | __sk_free(sk); |
2474 | return; |
2475 | } |
2476 | |
2477 | /* |
2478 | * Keep a reference on sk_wmem_alloc, this will be released |
2479 | * after sk_write_space() call |
2480 | */ |
2481 | WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); |
2482 | sk->sk_write_space(sk); |
2483 | len = 1; |
2484 | } |
2485 | /* |
2486 | * if sk_wmem_alloc reaches 0, we must finish what sk_free() |
2487 | * could not do because of in-flight packets |
2488 | */ |
2489 | if (refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc)) |
2490 | __sk_free(sk); |
2491 | } |
2492 | EXPORT_SYMBOL(sock_wfree); |
2493 | |
2494 | /* This variant of sock_wfree() is used by TCP, |
2495 | * since it sets SOCK_USE_WRITE_QUEUE. |
2496 | */ |
2497 | void __sock_wfree(struct sk_buff *skb) |
2498 | { |
2499 | struct sock *sk = skb->sk; |
2500 | |
2501 | if (refcount_sub_and_test(i: skb->truesize, r: &sk->sk_wmem_alloc)) |
2502 | __sk_free(sk); |
2503 | } |
2504 | |
2505 | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) |
2506 | { |
2507 | skb_orphan(skb); |
2508 | skb->sk = sk; |
2509 | #ifdef CONFIG_INET |
2510 | if (unlikely(!sk_fullsock(sk))) { |
2511 | skb->destructor = sock_edemux; |
2512 | sock_hold(sk); |
2513 | return; |
2514 | } |
2515 | #endif |
2516 | skb->destructor = sock_wfree; |
2517 | skb_set_hash_from_sk(skb, sk); |
2518 | /* |
2519 | * We used to take a refcount on sk, but following operation |
2520 | * is enough to guarantee sk_free() wont free this sock until |
2521 | * all in-flight packets are completed |
2522 | */ |
2523 | refcount_add(i: skb->truesize, r: &sk->sk_wmem_alloc); |
2524 | } |
2525 | EXPORT_SYMBOL(skb_set_owner_w); |
2526 | |
2527 | static bool can_skb_orphan_partial(const struct sk_buff *skb) |
2528 | { |
2529 | #ifdef CONFIG_TLS_DEVICE |
2530 | /* Drivers depend on in-order delivery for crypto offload, |
2531 | * partial orphan breaks out-of-order-OK logic. |
2532 | */ |
2533 | if (skb->decrypted) |
2534 | return false; |
2535 | #endif |
2536 | return (skb->destructor == sock_wfree || |
2537 | (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); |
2538 | } |
2539 | |
2540 | /* This helper is used by netem, as it can hold packets in its |
2541 | * delay queue. We want to allow the owner socket to send more |
2542 | * packets, as if they were already TX completed by a typical driver. |
2543 | * But we also want to keep skb->sk set because some packet schedulers |
2544 | * rely on it (sch_fq for example). |
2545 | */ |
2546 | void skb_orphan_partial(struct sk_buff *skb) |
2547 | { |
2548 | if (skb_is_tcp_pure_ack(skb)) |
2549 | return; |
2550 | |
2551 | if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, sk: skb->sk)) |
2552 | return; |
2553 | |
2554 | skb_orphan(skb); |
2555 | } |
2556 | EXPORT_SYMBOL(skb_orphan_partial); |
2557 | |
2558 | /* |
2559 | * Read buffer destructor automatically called from kfree_skb. |
2560 | */ |
2561 | void sock_rfree(struct sk_buff *skb) |
2562 | { |
2563 | struct sock *sk = skb->sk; |
2564 | unsigned int len = skb->truesize; |
2565 | |
2566 | atomic_sub(i: len, v: &sk->sk_rmem_alloc); |
2567 | sk_mem_uncharge(sk, size: len); |
2568 | } |
2569 | EXPORT_SYMBOL(sock_rfree); |
2570 | |
2571 | /* |
2572 | * Buffer destructor for skbs that are not used directly in read or write |
2573 | * path, e.g. for error handler skbs. Automatically called from kfree_skb. |
2574 | */ |
2575 | void sock_efree(struct sk_buff *skb) |
2576 | { |
2577 | sock_put(sk: skb->sk); |
2578 | } |
2579 | EXPORT_SYMBOL(sock_efree); |
2580 | |
2581 | /* Buffer destructor for prefetch/receive path where reference count may |
2582 | * not be held, e.g. for listen sockets. |
2583 | */ |
2584 | #ifdef CONFIG_INET |
2585 | void sock_pfree(struct sk_buff *skb) |
2586 | { |
2587 | struct sock *sk = skb->sk; |
2588 | |
2589 | if (!sk_is_refcounted(sk)) |
2590 | return; |
2591 | |
2592 | if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { |
2593 | inet_reqsk(sk)->rsk_listener = NULL; |
2594 | reqsk_free(req: inet_reqsk(sk)); |
2595 | return; |
2596 | } |
2597 | |
2598 | sock_gen_put(sk); |
2599 | } |
2600 | EXPORT_SYMBOL(sock_pfree); |
2601 | #endif /* CONFIG_INET */ |
2602 | |
2603 | kuid_t sock_i_uid(struct sock *sk) |
2604 | { |
2605 | kuid_t uid; |
2606 | |
2607 | read_lock_bh(&sk->sk_callback_lock); |
2608 | uid = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; |
2609 | read_unlock_bh(&sk->sk_callback_lock); |
2610 | return uid; |
2611 | } |
2612 | EXPORT_SYMBOL(sock_i_uid); |
2613 | |
2614 | unsigned long __sock_i_ino(struct sock *sk) |
2615 | { |
2616 | unsigned long ino; |
2617 | |
2618 | read_lock(&sk->sk_callback_lock); |
2619 | ino = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_ino : 0; |
2620 | read_unlock(&sk->sk_callback_lock); |
2621 | return ino; |
2622 | } |
2623 | EXPORT_SYMBOL(__sock_i_ino); |
2624 | |
2625 | unsigned long sock_i_ino(struct sock *sk) |
2626 | { |
2627 | unsigned long ino; |
2628 | |
2629 | local_bh_disable(); |
2630 | ino = __sock_i_ino(sk); |
2631 | local_bh_enable(); |
2632 | return ino; |
2633 | } |
2634 | EXPORT_SYMBOL(sock_i_ino); |
2635 | |
2636 | /* |
2637 | * Allocate a skb from the socket's send buffer. |
2638 | */ |
2639 | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
2640 | gfp_t priority) |
2641 | { |
2642 | if (force || |
2643 | refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { |
2644 | struct sk_buff *skb = alloc_skb(size, priority); |
2645 | |
2646 | if (skb) { |
2647 | skb_set_owner_w(skb, sk); |
2648 | return skb; |
2649 | } |
2650 | } |
2651 | return NULL; |
2652 | } |
2653 | EXPORT_SYMBOL(sock_wmalloc); |
2654 | |
2655 | static void sock_ofree(struct sk_buff *skb) |
2656 | { |
2657 | struct sock *sk = skb->sk; |
2658 | |
2659 | atomic_sub(i: skb->truesize, v: &sk->sk_omem_alloc); |
2660 | } |
2661 | |
2662 | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
2663 | gfp_t priority) |
2664 | { |
2665 | struct sk_buff *skb; |
2666 | |
2667 | /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ |
2668 | if (atomic_read(v: &sk->sk_omem_alloc) + SKB_TRUESIZE(size) > |
2669 | READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) |
2670 | return NULL; |
2671 | |
2672 | skb = alloc_skb(size, priority); |
2673 | if (!skb) |
2674 | return NULL; |
2675 | |
2676 | atomic_add(i: skb->truesize, v: &sk->sk_omem_alloc); |
2677 | skb->sk = sk; |
2678 | skb->destructor = sock_ofree; |
2679 | return skb; |
2680 | } |
2681 | |
2682 | /* |
2683 | * Allocate a memory block from the socket's option memory buffer. |
2684 | */ |
2685 | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) |
2686 | { |
2687 | int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); |
2688 | |
2689 | if ((unsigned int)size <= optmem_max && |
2690 | atomic_read(v: &sk->sk_omem_alloc) + size < optmem_max) { |
2691 | void *mem; |
2692 | /* First do the add, to avoid the race if kmalloc |
2693 | * might sleep. |
2694 | */ |
2695 | atomic_add(i: size, v: &sk->sk_omem_alloc); |
2696 | mem = kmalloc(size, flags: priority); |
2697 | if (mem) |
2698 | return mem; |
2699 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
2700 | } |
2701 | return NULL; |
2702 | } |
2703 | EXPORT_SYMBOL(sock_kmalloc); |
2704 | |
2705 | /* Free an option memory block. Note, we actually want the inline |
2706 | * here as this allows gcc to detect the nullify and fold away the |
2707 | * condition entirely. |
2708 | */ |
2709 | static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, |
2710 | const bool nullify) |
2711 | { |
2712 | if (WARN_ON_ONCE(!mem)) |
2713 | return; |
2714 | if (nullify) |
2715 | kfree_sensitive(objp: mem); |
2716 | else |
2717 | kfree(objp: mem); |
2718 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
2719 | } |
2720 | |
2721 | void sock_kfree_s(struct sock *sk, void *mem, int size) |
2722 | { |
2723 | __sock_kfree_s(sk, mem, size, nullify: false); |
2724 | } |
2725 | EXPORT_SYMBOL(sock_kfree_s); |
2726 | |
2727 | void sock_kzfree_s(struct sock *sk, void *mem, int size) |
2728 | { |
2729 | __sock_kfree_s(sk, mem, size, nullify: true); |
2730 | } |
2731 | EXPORT_SYMBOL(sock_kzfree_s); |
2732 | |
2733 | /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. |
2734 | I think, these locks should be removed for datagram sockets. |
2735 | */ |
2736 | static long sock_wait_for_wmem(struct sock *sk, long timeo) |
2737 | { |
2738 | DEFINE_WAIT(wait); |
2739 | |
2740 | sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
2741 | for (;;) { |
2742 | if (!timeo) |
2743 | break; |
2744 | if (signal_pending(current)) |
2745 | break; |
2746 | set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
2747 | prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE); |
2748 | if (refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) |
2749 | break; |
2750 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
2751 | break; |
2752 | if (READ_ONCE(sk->sk_err)) |
2753 | break; |
2754 | timeo = schedule_timeout(timeout: timeo); |
2755 | } |
2756 | finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait); |
2757 | return timeo; |
2758 | } |
2759 | |
2760 | |
2761 | /* |
2762 | * Generic send/receive buffer handlers |
2763 | */ |
2764 | |
2765 | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, |
2766 | unsigned long data_len, int noblock, |
2767 | int *errcode, int max_page_order) |
2768 | { |
2769 | struct sk_buff *skb; |
2770 | long timeo; |
2771 | int err; |
2772 | |
2773 | timeo = sock_sndtimeo(sk, noblock); |
2774 | for (;;) { |
2775 | err = sock_error(sk); |
2776 | if (err != 0) |
2777 | goto failure; |
2778 | |
2779 | err = -EPIPE; |
2780 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
2781 | goto failure; |
2782 | |
2783 | if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) |
2784 | break; |
2785 | |
2786 | sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
2787 | set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
2788 | err = -EAGAIN; |
2789 | if (!timeo) |
2790 | goto failure; |
2791 | if (signal_pending(current)) |
2792 | goto interrupted; |
2793 | timeo = sock_wait_for_wmem(sk, timeo); |
2794 | } |
2795 | skb = alloc_skb_with_frags(header_len, data_len, max_page_order, |
2796 | errcode, gfp_mask: sk->sk_allocation); |
2797 | if (skb) |
2798 | skb_set_owner_w(skb, sk); |
2799 | return skb; |
2800 | |
2801 | interrupted: |
2802 | err = sock_intr_errno(timeo); |
2803 | failure: |
2804 | *errcode = err; |
2805 | return NULL; |
2806 | } |
2807 | EXPORT_SYMBOL(sock_alloc_send_pskb); |
2808 | |
2809 | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
2810 | struct sockcm_cookie *sockc) |
2811 | { |
2812 | u32 tsflags; |
2813 | |
2814 | switch (cmsg->cmsg_type) { |
2815 | case SO_MARK: |
2816 | if (!ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) && |
2817 | !ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN)) |
2818 | return -EPERM; |
2819 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
2820 | return -EINVAL; |
2821 | sockc->mark = *(u32 *)CMSG_DATA(cmsg); |
2822 | break; |
2823 | case SO_TIMESTAMPING_OLD: |
2824 | case SO_TIMESTAMPING_NEW: |
2825 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
2826 | return -EINVAL; |
2827 | |
2828 | tsflags = *(u32 *)CMSG_DATA(cmsg); |
2829 | if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) |
2830 | return -EINVAL; |
2831 | |
2832 | sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; |
2833 | sockc->tsflags |= tsflags; |
2834 | break; |
2835 | case SCM_TXTIME: |
2836 | if (!sock_flag(sk, flag: SOCK_TXTIME)) |
2837 | return -EINVAL; |
2838 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) |
2839 | return -EINVAL; |
2840 | sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); |
2841 | break; |
2842 | /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ |
2843 | case SCM_RIGHTS: |
2844 | case SCM_CREDENTIALS: |
2845 | break; |
2846 | default: |
2847 | return -EINVAL; |
2848 | } |
2849 | return 0; |
2850 | } |
2851 | EXPORT_SYMBOL(__sock_cmsg_send); |
2852 | |
2853 | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
2854 | struct sockcm_cookie *sockc) |
2855 | { |
2856 | struct cmsghdr *cmsg; |
2857 | int ret; |
2858 | |
2859 | for_each_cmsghdr(cmsg, msg) { |
2860 | if (!CMSG_OK(msg, cmsg)) |
2861 | return -EINVAL; |
2862 | if (cmsg->cmsg_level != SOL_SOCKET) |
2863 | continue; |
2864 | ret = __sock_cmsg_send(sk, cmsg, sockc); |
2865 | if (ret) |
2866 | return ret; |
2867 | } |
2868 | return 0; |
2869 | } |
2870 | EXPORT_SYMBOL(sock_cmsg_send); |
2871 | |
2872 | static void sk_enter_memory_pressure(struct sock *sk) |
2873 | { |
2874 | if (!sk->sk_prot->enter_memory_pressure) |
2875 | return; |
2876 | |
2877 | sk->sk_prot->enter_memory_pressure(sk); |
2878 | } |
2879 | |
2880 | static void sk_leave_memory_pressure(struct sock *sk) |
2881 | { |
2882 | if (sk->sk_prot->leave_memory_pressure) { |
2883 | INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, |
2884 | tcp_leave_memory_pressure, sk); |
2885 | } else { |
2886 | unsigned long *memory_pressure = sk->sk_prot->memory_pressure; |
2887 | |
2888 | if (memory_pressure && READ_ONCE(*memory_pressure)) |
2889 | WRITE_ONCE(*memory_pressure, 0); |
2890 | } |
2891 | } |
2892 | |
2893 | DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
2894 | |
2895 | /** |
2896 | * skb_page_frag_refill - check that a page_frag contains enough room |
2897 | * @sz: minimum size of the fragment we want to get |
2898 | * @pfrag: pointer to page_frag |
2899 | * @gfp: priority for memory allocation |
2900 | * |
2901 | * Note: While this allocator tries to use high order pages, there is |
2902 | * no guarantee that allocations succeed. Therefore, @sz MUST be |
2903 | * less or equal than PAGE_SIZE. |
2904 | */ |
2905 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) |
2906 | { |
2907 | if (pfrag->page) { |
2908 | if (page_ref_count(page: pfrag->page) == 1) { |
2909 | pfrag->offset = 0; |
2910 | return true; |
2911 | } |
2912 | if (pfrag->offset + sz <= pfrag->size) |
2913 | return true; |
2914 | put_page(page: pfrag->page); |
2915 | } |
2916 | |
2917 | pfrag->offset = 0; |
2918 | if (SKB_FRAG_PAGE_ORDER && |
2919 | !static_branch_unlikely(&net_high_order_alloc_disable_key)) { |
2920 | /* Avoid direct reclaim but allow kswapd to wake */ |
2921 | pfrag->page = alloc_pages(gfp: (gfp & ~__GFP_DIRECT_RECLAIM) | |
2922 | __GFP_COMP | __GFP_NOWARN | |
2923 | __GFP_NORETRY, |
2924 | SKB_FRAG_PAGE_ORDER); |
2925 | if (likely(pfrag->page)) { |
2926 | pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; |
2927 | return true; |
2928 | } |
2929 | } |
2930 | pfrag->page = alloc_page(gfp); |
2931 | if (likely(pfrag->page)) { |
2932 | pfrag->size = PAGE_SIZE; |
2933 | return true; |
2934 | } |
2935 | return false; |
2936 | } |
2937 | EXPORT_SYMBOL(skb_page_frag_refill); |
2938 | |
2939 | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) |
2940 | { |
2941 | if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) |
2942 | return true; |
2943 | |
2944 | sk_enter_memory_pressure(sk); |
2945 | sk_stream_moderate_sndbuf(sk); |
2946 | return false; |
2947 | } |
2948 | EXPORT_SYMBOL(sk_page_frag_refill); |
2949 | |
2950 | void __lock_sock(struct sock *sk) |
2951 | __releases(&sk->sk_lock.slock) |
2952 | __acquires(&sk->sk_lock.slock) |
2953 | { |
2954 | DEFINE_WAIT(wait); |
2955 | |
2956 | for (;;) { |
2957 | prepare_to_wait_exclusive(wq_head: &sk->sk_lock.wq, wq_entry: &wait, |
2958 | TASK_UNINTERRUPTIBLE); |
2959 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
2960 | schedule(); |
2961 | spin_lock_bh(lock: &sk->sk_lock.slock); |
2962 | if (!sock_owned_by_user(sk)) |
2963 | break; |
2964 | } |
2965 | finish_wait(wq_head: &sk->sk_lock.wq, wq_entry: &wait); |
2966 | } |
2967 | |
2968 | void __release_sock(struct sock *sk) |
2969 | __releases(&sk->sk_lock.slock) |
2970 | __acquires(&sk->sk_lock.slock) |
2971 | { |
2972 | struct sk_buff *skb, *next; |
2973 | |
2974 | while ((skb = sk->sk_backlog.head) != NULL) { |
2975 | sk->sk_backlog.head = sk->sk_backlog.tail = NULL; |
2976 | |
2977 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
2978 | |
2979 | do { |
2980 | next = skb->next; |
2981 | prefetch(next); |
2982 | DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); |
2983 | skb_mark_not_on_list(skb); |
2984 | sk_backlog_rcv(sk, skb); |
2985 | |
2986 | cond_resched(); |
2987 | |
2988 | skb = next; |
2989 | } while (skb != NULL); |
2990 | |
2991 | spin_lock_bh(lock: &sk->sk_lock.slock); |
2992 | } |
2993 | |
2994 | /* |
2995 | * Doing the zeroing here guarantee we can not loop forever |
2996 | * while a wild producer attempts to flood us. |
2997 | */ |
2998 | sk->sk_backlog.len = 0; |
2999 | } |
3000 | |
3001 | void __sk_flush_backlog(struct sock *sk) |
3002 | { |
3003 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3004 | __release_sock(sk); |
3005 | |
3006 | if (sk->sk_prot->release_cb) |
3007 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
3008 | tcp_release_cb, sk); |
3009 | |
3010 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3011 | } |
3012 | EXPORT_SYMBOL_GPL(__sk_flush_backlog); |
3013 | |
3014 | /** |
3015 | * sk_wait_data - wait for data to arrive at sk_receive_queue |
3016 | * @sk: sock to wait on |
3017 | * @timeo: for how long |
3018 | * @skb: last skb seen on sk_receive_queue |
3019 | * |
3020 | * Now socket state including sk->sk_err is changed only under lock, |
3021 | * hence we may omit checks after joining wait queue. |
3022 | * We check receive queue before schedule() only as optimization; |
3023 | * it is very likely that release_sock() added new data. |
3024 | */ |
3025 | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) |
3026 | { |
3027 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
3028 | int rc; |
3029 | |
3030 | add_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
3031 | sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
3032 | rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); |
3033 | sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
3034 | remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
3035 | return rc; |
3036 | } |
3037 | EXPORT_SYMBOL(sk_wait_data); |
3038 | |
3039 | /** |
3040 | * __sk_mem_raise_allocated - increase memory_allocated |
3041 | * @sk: socket |
3042 | * @size: memory size to allocate |
3043 | * @amt: pages to allocate |
3044 | * @kind: allocation type |
3045 | * |
3046 | * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. |
3047 | * |
3048 | * Unlike the globally shared limits among the sockets under same protocol, |
3049 | * consuming the budget of a memcg won't have direct effect on other ones. |
3050 | * So be optimistic about memcg's tolerance, and leave the callers to decide |
3051 | * whether or not to raise allocated through sk_under_memory_pressure() or |
3052 | * its variants. |
3053 | */ |
3054 | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) |
3055 | { |
3056 | struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; |
3057 | struct proto *prot = sk->sk_prot; |
3058 | bool charged = false; |
3059 | long allocated; |
3060 | |
3061 | sk_memory_allocated_add(sk, amt); |
3062 | allocated = sk_memory_allocated(sk); |
3063 | |
3064 | if (memcg) { |
3065 | if (!mem_cgroup_charge_skmem(memcg, nr_pages: amt, gfp_mask: gfp_memcg_charge())) |
3066 | goto suppress_allocation; |
3067 | charged = true; |
3068 | } |
3069 | |
3070 | /* Under limit. */ |
3071 | if (allocated <= sk_prot_mem_limits(sk, index: 0)) { |
3072 | sk_leave_memory_pressure(sk); |
3073 | return 1; |
3074 | } |
3075 | |
3076 | /* Under pressure. */ |
3077 | if (allocated > sk_prot_mem_limits(sk, index: 1)) |
3078 | sk_enter_memory_pressure(sk); |
3079 | |
3080 | /* Over hard limit. */ |
3081 | if (allocated > sk_prot_mem_limits(sk, index: 2)) |
3082 | goto suppress_allocation; |
3083 | |
3084 | /* Guarantee minimum buffer size under pressure (either global |
3085 | * or memcg) to make sure features described in RFC 7323 (TCP |
3086 | * Extensions for High Performance) work properly. |
3087 | * |
3088 | * This rule does NOT stand when exceeds global or memcg's hard |
3089 | * limit, or else a DoS attack can be taken place by spawning |
3090 | * lots of sockets whose usage are under minimum buffer size. |
3091 | */ |
3092 | if (kind == SK_MEM_RECV) { |
3093 | if (atomic_read(v: &sk->sk_rmem_alloc) < sk_get_rmem0(sk, proto: prot)) |
3094 | return 1; |
3095 | |
3096 | } else { /* SK_MEM_SEND */ |
3097 | int wmem0 = sk_get_wmem0(sk, proto: prot); |
3098 | |
3099 | if (sk->sk_type == SOCK_STREAM) { |
3100 | if (sk->sk_wmem_queued < wmem0) |
3101 | return 1; |
3102 | } else if (refcount_read(r: &sk->sk_wmem_alloc) < wmem0) { |
3103 | return 1; |
3104 | } |
3105 | } |
3106 | |
3107 | if (sk_has_memory_pressure(sk)) { |
3108 | u64 alloc; |
3109 | |
3110 | /* The following 'average' heuristic is within the |
3111 | * scope of global accounting, so it only makes |
3112 | * sense for global memory pressure. |
3113 | */ |
3114 | if (!sk_under_global_memory_pressure(sk)) |
3115 | return 1; |
3116 | |
3117 | /* Try to be fair among all the sockets under global |
3118 | * pressure by allowing the ones that below average |
3119 | * usage to raise. |
3120 | */ |
3121 | alloc = sk_sockets_allocated_read_positive(sk); |
3122 | if (sk_prot_mem_limits(sk, index: 2) > alloc * |
3123 | sk_mem_pages(amt: sk->sk_wmem_queued + |
3124 | atomic_read(v: &sk->sk_rmem_alloc) + |
3125 | sk->sk_forward_alloc)) |
3126 | return 1; |
3127 | } |
3128 | |
3129 | suppress_allocation: |
3130 | |
3131 | if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { |
3132 | sk_stream_moderate_sndbuf(sk); |
3133 | |
3134 | /* Fail only if socket is _under_ its sndbuf. |
3135 | * In this case we cannot block, so that we have to fail. |
3136 | */ |
3137 | if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { |
3138 | /* Force charge with __GFP_NOFAIL */ |
3139 | if (memcg && !charged) { |
3140 | mem_cgroup_charge_skmem(memcg, nr_pages: amt, |
3141 | gfp_mask: gfp_memcg_charge() | __GFP_NOFAIL); |
3142 | } |
3143 | return 1; |
3144 | } |
3145 | } |
3146 | |
3147 | if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) |
3148 | trace_sock_exceed_buf_limit(sk, prot, allocated, kind); |
3149 | |
3150 | sk_memory_allocated_sub(sk, amt); |
3151 | |
3152 | if (charged) |
3153 | mem_cgroup_uncharge_skmem(memcg, nr_pages: amt); |
3154 | |
3155 | return 0; |
3156 | } |
3157 | |
3158 | /** |
3159 | * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated |
3160 | * @sk: socket |
3161 | * @size: memory size to allocate |
3162 | * @kind: allocation type |
3163 | * |
3164 | * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means |
3165 | * rmem allocation. This function assumes that protocols which have |
3166 | * memory_pressure use sk_wmem_queued as write buffer accounting. |
3167 | */ |
3168 | int __sk_mem_schedule(struct sock *sk, int size, int kind) |
3169 | { |
3170 | int ret, amt = sk_mem_pages(amt: size); |
3171 | |
3172 | sk_forward_alloc_add(sk, val: amt << PAGE_SHIFT); |
3173 | ret = __sk_mem_raise_allocated(sk, size, amt, kind); |
3174 | if (!ret) |
3175 | sk_forward_alloc_add(sk, val: -(amt << PAGE_SHIFT)); |
3176 | return ret; |
3177 | } |
3178 | EXPORT_SYMBOL(__sk_mem_schedule); |
3179 | |
3180 | /** |
3181 | * __sk_mem_reduce_allocated - reclaim memory_allocated |
3182 | * @sk: socket |
3183 | * @amount: number of quanta |
3184 | * |
3185 | * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc |
3186 | */ |
3187 | void __sk_mem_reduce_allocated(struct sock *sk, int amount) |
3188 | { |
3189 | sk_memory_allocated_sub(sk, amt: amount); |
3190 | |
3191 | if (mem_cgroup_sockets_enabled && sk->sk_memcg) |
3192 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: amount); |
3193 | |
3194 | if (sk_under_global_memory_pressure(sk) && |
3195 | (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, index: 0))) |
3196 | sk_leave_memory_pressure(sk); |
3197 | } |
3198 | |
3199 | /** |
3200 | * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated |
3201 | * @sk: socket |
3202 | * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) |
3203 | */ |
3204 | void __sk_mem_reclaim(struct sock *sk, int amount) |
3205 | { |
3206 | amount >>= PAGE_SHIFT; |
3207 | sk_forward_alloc_add(sk, val: -(amount << PAGE_SHIFT)); |
3208 | __sk_mem_reduce_allocated(sk, amount); |
3209 | } |
3210 | EXPORT_SYMBOL(__sk_mem_reclaim); |
3211 | |
3212 | int sk_set_peek_off(struct sock *sk, int val) |
3213 | { |
3214 | WRITE_ONCE(sk->sk_peek_off, val); |
3215 | return 0; |
3216 | } |
3217 | EXPORT_SYMBOL_GPL(sk_set_peek_off); |
3218 | |
3219 | /* |
3220 | * Set of default routines for initialising struct proto_ops when |
3221 | * the protocol does not support a particular function. In certain |
3222 | * cases where it makes no sense for a protocol to have a "do nothing" |
3223 | * function, some default processing is provided. |
3224 | */ |
3225 | |
3226 | int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) |
3227 | { |
3228 | return -EOPNOTSUPP; |
3229 | } |
3230 | EXPORT_SYMBOL(sock_no_bind); |
3231 | |
3232 | int sock_no_connect(struct socket *sock, struct sockaddr *saddr, |
3233 | int len, int flags) |
3234 | { |
3235 | return -EOPNOTSUPP; |
3236 | } |
3237 | EXPORT_SYMBOL(sock_no_connect); |
3238 | |
3239 | int sock_no_socketpair(struct socket *sock1, struct socket *sock2) |
3240 | { |
3241 | return -EOPNOTSUPP; |
3242 | } |
3243 | EXPORT_SYMBOL(sock_no_socketpair); |
3244 | |
3245 | int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, |
3246 | bool kern) |
3247 | { |
3248 | return -EOPNOTSUPP; |
3249 | } |
3250 | EXPORT_SYMBOL(sock_no_accept); |
3251 | |
3252 | int sock_no_getname(struct socket *sock, struct sockaddr *saddr, |
3253 | int peer) |
3254 | { |
3255 | return -EOPNOTSUPP; |
3256 | } |
3257 | EXPORT_SYMBOL(sock_no_getname); |
3258 | |
3259 | int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
3260 | { |
3261 | return -EOPNOTSUPP; |
3262 | } |
3263 | EXPORT_SYMBOL(sock_no_ioctl); |
3264 | |
3265 | int sock_no_listen(struct socket *sock, int backlog) |
3266 | { |
3267 | return -EOPNOTSUPP; |
3268 | } |
3269 | EXPORT_SYMBOL(sock_no_listen); |
3270 | |
3271 | int sock_no_shutdown(struct socket *sock, int how) |
3272 | { |
3273 | return -EOPNOTSUPP; |
3274 | } |
3275 | EXPORT_SYMBOL(sock_no_shutdown); |
3276 | |
3277 | int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) |
3278 | { |
3279 | return -EOPNOTSUPP; |
3280 | } |
3281 | EXPORT_SYMBOL(sock_no_sendmsg); |
3282 | |
3283 | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) |
3284 | { |
3285 | return -EOPNOTSUPP; |
3286 | } |
3287 | EXPORT_SYMBOL(sock_no_sendmsg_locked); |
3288 | |
3289 | int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, |
3290 | int flags) |
3291 | { |
3292 | return -EOPNOTSUPP; |
3293 | } |
3294 | EXPORT_SYMBOL(sock_no_recvmsg); |
3295 | |
3296 | int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) |
3297 | { |
3298 | /* Mirror missing mmap method error code */ |
3299 | return -ENODEV; |
3300 | } |
3301 | EXPORT_SYMBOL(sock_no_mmap); |
3302 | |
3303 | /* |
3304 | * When a file is received (via SCM_RIGHTS, etc), we must bump the |
3305 | * various sock-based usage counts. |
3306 | */ |
3307 | void __receive_sock(struct file *file) |
3308 | { |
3309 | struct socket *sock; |
3310 | |
3311 | sock = sock_from_file(file); |
3312 | if (sock) { |
3313 | sock_update_netprioidx(skcd: &sock->sk->sk_cgrp_data); |
3314 | sock_update_classid(skcd: &sock->sk->sk_cgrp_data); |
3315 | } |
3316 | } |
3317 | |
3318 | /* |
3319 | * Default Socket Callbacks |
3320 | */ |
3321 | |
3322 | static void sock_def_wakeup(struct sock *sk) |
3323 | { |
3324 | struct socket_wq *wq; |
3325 | |
3326 | rcu_read_lock(); |
3327 | wq = rcu_dereference(sk->sk_wq); |
3328 | if (skwq_has_sleeper(wq)) |
3329 | wake_up_interruptible_all(&wq->wait); |
3330 | rcu_read_unlock(); |
3331 | } |
3332 | |
3333 | static void sock_def_error_report(struct sock *sk) |
3334 | { |
3335 | struct socket_wq *wq; |
3336 | |
3337 | rcu_read_lock(); |
3338 | wq = rcu_dereference(sk->sk_wq); |
3339 | if (skwq_has_sleeper(wq)) |
3340 | wake_up_interruptible_poll(&wq->wait, EPOLLERR); |
3341 | sk_wake_async(sk, how: SOCK_WAKE_IO, POLL_ERR); |
3342 | rcu_read_unlock(); |
3343 | } |
3344 | |
3345 | void sock_def_readable(struct sock *sk) |
3346 | { |
3347 | struct socket_wq *wq; |
3348 | |
3349 | trace_sk_data_ready(sk); |
3350 | |
3351 | rcu_read_lock(); |
3352 | wq = rcu_dereference(sk->sk_wq); |
3353 | if (skwq_has_sleeper(wq)) |
3354 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | |
3355 | EPOLLRDNORM | EPOLLRDBAND); |
3356 | sk_wake_async(sk, how: SOCK_WAKE_WAITD, POLL_IN); |
3357 | rcu_read_unlock(); |
3358 | } |
3359 | |
3360 | static void sock_def_write_space(struct sock *sk) |
3361 | { |
3362 | struct socket_wq *wq; |
3363 | |
3364 | rcu_read_lock(); |
3365 | |
3366 | /* Do not wake up a writer until he can make "significant" |
3367 | * progress. --DaveM |
3368 | */ |
3369 | if (sock_writeable(sk)) { |
3370 | wq = rcu_dereference(sk->sk_wq); |
3371 | if (skwq_has_sleeper(wq)) |
3372 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
3373 | EPOLLWRNORM | EPOLLWRBAND); |
3374 | |
3375 | /* Should agree with poll, otherwise some programs break */ |
3376 | sk_wake_async(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
3377 | } |
3378 | |
3379 | rcu_read_unlock(); |
3380 | } |
3381 | |
3382 | /* An optimised version of sock_def_write_space(), should only be called |
3383 | * for SOCK_RCU_FREE sockets under RCU read section and after putting |
3384 | * ->sk_wmem_alloc. |
3385 | */ |
3386 | static void sock_def_write_space_wfree(struct sock *sk) |
3387 | { |
3388 | /* Do not wake up a writer until he can make "significant" |
3389 | * progress. --DaveM |
3390 | */ |
3391 | if (sock_writeable(sk)) { |
3392 | struct socket_wq *wq = rcu_dereference(sk->sk_wq); |
3393 | |
3394 | /* rely on refcount_sub from sock_wfree() */ |
3395 | smp_mb__after_atomic(); |
3396 | if (wq && waitqueue_active(wq_head: &wq->wait)) |
3397 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
3398 | EPOLLWRNORM | EPOLLWRBAND); |
3399 | |
3400 | /* Should agree with poll, otherwise some programs break */ |
3401 | sk_wake_async(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
3402 | } |
3403 | } |
3404 | |
3405 | static void sock_def_destruct(struct sock *sk) |
3406 | { |
3407 | } |
3408 | |
3409 | void sk_send_sigurg(struct sock *sk) |
3410 | { |
3411 | if (sk->sk_socket && sk->sk_socket->file) |
3412 | if (send_sigurg(fown: &sk->sk_socket->file->f_owner)) |
3413 | sk_wake_async(sk, how: SOCK_WAKE_URG, POLL_PRI); |
3414 | } |
3415 | EXPORT_SYMBOL(sk_send_sigurg); |
3416 | |
3417 | void sk_reset_timer(struct sock *sk, struct timer_list* timer, |
3418 | unsigned long expires) |
3419 | { |
3420 | if (!mod_timer(timer, expires)) |
3421 | sock_hold(sk); |
3422 | } |
3423 | EXPORT_SYMBOL(sk_reset_timer); |
3424 | |
3425 | void sk_stop_timer(struct sock *sk, struct timer_list* timer) |
3426 | { |
3427 | if (del_timer(timer)) |
3428 | __sock_put(sk); |
3429 | } |
3430 | EXPORT_SYMBOL(sk_stop_timer); |
3431 | |
3432 | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) |
3433 | { |
3434 | if (del_timer_sync(timer)) |
3435 | __sock_put(sk); |
3436 | } |
3437 | EXPORT_SYMBOL(sk_stop_timer_sync); |
3438 | |
3439 | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) |
3440 | { |
3441 | sk_init_common(sk); |
3442 | sk->sk_send_head = NULL; |
3443 | |
3444 | timer_setup(&sk->sk_timer, NULL, 0); |
3445 | |
3446 | sk->sk_allocation = GFP_KERNEL; |
3447 | sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); |
3448 | sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); |
3449 | sk->sk_state = TCP_CLOSE; |
3450 | sk->sk_use_task_frag = true; |
3451 | sk_set_socket(sk, sock); |
3452 | |
3453 | sock_set_flag(sk, flag: SOCK_ZAPPED); |
3454 | |
3455 | if (sock) { |
3456 | sk->sk_type = sock->type; |
3457 | RCU_INIT_POINTER(sk->sk_wq, &sock->wq); |
3458 | sock->sk = sk; |
3459 | } else { |
3460 | RCU_INIT_POINTER(sk->sk_wq, NULL); |
3461 | } |
3462 | sk->sk_uid = uid; |
3463 | |
3464 | rwlock_init(&sk->sk_callback_lock); |
3465 | if (sk->sk_kern_sock) |
3466 | lockdep_set_class_and_name( |
3467 | &sk->sk_callback_lock, |
3468 | af_kern_callback_keys + sk->sk_family, |
3469 | af_family_kern_clock_key_strings[sk->sk_family]); |
3470 | else |
3471 | lockdep_set_class_and_name( |
3472 | &sk->sk_callback_lock, |
3473 | af_callback_keys + sk->sk_family, |
3474 | af_family_clock_key_strings[sk->sk_family]); |
3475 | |
3476 | sk->sk_state_change = sock_def_wakeup; |
3477 | sk->sk_data_ready = sock_def_readable; |
3478 | sk->sk_write_space = sock_def_write_space; |
3479 | sk->sk_error_report = sock_def_error_report; |
3480 | sk->sk_destruct = sock_def_destruct; |
3481 | |
3482 | sk->sk_frag.page = NULL; |
3483 | sk->sk_frag.offset = 0; |
3484 | sk->sk_peek_off = -1; |
3485 | |
3486 | sk->sk_peer_pid = NULL; |
3487 | sk->sk_peer_cred = NULL; |
3488 | spin_lock_init(&sk->sk_peer_lock); |
3489 | |
3490 | sk->sk_write_pending = 0; |
3491 | sk->sk_rcvlowat = 1; |
3492 | sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; |
3493 | sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
3494 | |
3495 | sk->sk_stamp = SK_DEFAULT_STAMP; |
3496 | #if BITS_PER_LONG==32 |
3497 | seqlock_init(&sk->sk_stamp_seq); |
3498 | #endif |
3499 | atomic_set(v: &sk->sk_zckey, i: 0); |
3500 | |
3501 | #ifdef CONFIG_NET_RX_BUSY_POLL |
3502 | sk->sk_napi_id = 0; |
3503 | sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); |
3504 | #endif |
3505 | |
3506 | sk->sk_max_pacing_rate = ~0UL; |
3507 | sk->sk_pacing_rate = ~0UL; |
3508 | WRITE_ONCE(sk->sk_pacing_shift, 10); |
3509 | sk->sk_incoming_cpu = -1; |
3510 | |
3511 | sk_rx_queue_clear(sk); |
3512 | /* |
3513 | * Before updating sk_refcnt, we must commit prior changes to memory |
3514 | * (Documentation/RCU/rculist_nulls.rst for details) |
3515 | */ |
3516 | smp_wmb(); |
3517 | refcount_set(r: &sk->sk_refcnt, n: 1); |
3518 | atomic_set(v: &sk->sk_drops, i: 0); |
3519 | } |
3520 | EXPORT_SYMBOL(sock_init_data_uid); |
3521 | |
3522 | void sock_init_data(struct socket *sock, struct sock *sk) |
3523 | { |
3524 | kuid_t uid = sock ? |
3525 | SOCK_INODE(socket: sock)->i_uid : |
3526 | make_kuid(from: sock_net(sk)->user_ns, uid: 0); |
3527 | |
3528 | sock_init_data_uid(sock, sk, uid); |
3529 | } |
3530 | EXPORT_SYMBOL(sock_init_data); |
3531 | |
3532 | void lock_sock_nested(struct sock *sk, int subclass) |
3533 | { |
3534 | /* The sk_lock has mutex_lock() semantics here. */ |
3535 | mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); |
3536 | |
3537 | might_sleep(); |
3538 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3539 | if (sock_owned_by_user_nocheck(sk)) |
3540 | __lock_sock(sk); |
3541 | sk->sk_lock.owned = 1; |
3542 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3543 | } |
3544 | EXPORT_SYMBOL(lock_sock_nested); |
3545 | |
3546 | void release_sock(struct sock *sk) |
3547 | { |
3548 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3549 | if (sk->sk_backlog.tail) |
3550 | __release_sock(sk); |
3551 | |
3552 | if (sk->sk_prot->release_cb) |
3553 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
3554 | tcp_release_cb, sk); |
3555 | |
3556 | sock_release_ownership(sk); |
3557 | if (waitqueue_active(wq_head: &sk->sk_lock.wq)) |
3558 | wake_up(&sk->sk_lock.wq); |
3559 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3560 | } |
3561 | EXPORT_SYMBOL(release_sock); |
3562 | |
3563 | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) |
3564 | { |
3565 | might_sleep(); |
3566 | spin_lock_bh(lock: &sk->sk_lock.slock); |
3567 | |
3568 | if (!sock_owned_by_user_nocheck(sk)) { |
3569 | /* |
3570 | * Fast path return with bottom halves disabled and |
3571 | * sock::sk_lock.slock held. |
3572 | * |
3573 | * The 'mutex' is not contended and holding |
3574 | * sock::sk_lock.slock prevents all other lockers to |
3575 | * proceed so the corresponding unlock_sock_fast() can |
3576 | * avoid the slow path of release_sock() completely and |
3577 | * just release slock. |
3578 | * |
3579 | * From a semantical POV this is equivalent to 'acquiring' |
3580 | * the 'mutex', hence the corresponding lockdep |
3581 | * mutex_release() has to happen in the fast path of |
3582 | * unlock_sock_fast(). |
3583 | */ |
3584 | return false; |
3585 | } |
3586 | |
3587 | __lock_sock(sk); |
3588 | sk->sk_lock.owned = 1; |
3589 | __acquire(&sk->sk_lock.slock); |
3590 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
3591 | return true; |
3592 | } |
3593 | EXPORT_SYMBOL(__lock_sock_fast); |
3594 | |
3595 | int sock_gettstamp(struct socket *sock, void __user *userstamp, |
3596 | bool timeval, bool time32) |
3597 | { |
3598 | struct sock *sk = sock->sk; |
3599 | struct timespec64 ts; |
3600 | |
3601 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
3602 | ts = ktime_to_timespec64(sock_read_timestamp(sk)); |
3603 | if (ts.tv_sec == -1) |
3604 | return -ENOENT; |
3605 | if (ts.tv_sec == 0) { |
3606 | ktime_t kt = ktime_get_real(); |
3607 | sock_write_timestamp(sk, kt); |
3608 | ts = ktime_to_timespec64(kt); |
3609 | } |
3610 | |
3611 | if (timeval) |
3612 | ts.tv_nsec /= 1000; |
3613 | |
3614 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3615 | if (time32) |
3616 | return put_old_timespec32(&ts, userstamp); |
3617 | #endif |
3618 | #ifdef CONFIG_SPARC64 |
3619 | /* beware of padding in sparc64 timeval */ |
3620 | if (timeval && !in_compat_syscall()) { |
3621 | struct __kernel_old_timeval __user tv = { |
3622 | .tv_sec = ts.tv_sec, |
3623 | .tv_usec = ts.tv_nsec, |
3624 | }; |
3625 | if (copy_to_user(userstamp, &tv, sizeof(tv))) |
3626 | return -EFAULT; |
3627 | return 0; |
3628 | } |
3629 | #endif |
3630 | return put_timespec64(ts: &ts, uts: userstamp); |
3631 | } |
3632 | EXPORT_SYMBOL(sock_gettstamp); |
3633 | |
3634 | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) |
3635 | { |
3636 | if (!sock_flag(sk, flag)) { |
3637 | unsigned long previous_flags = sk->sk_flags; |
3638 | |
3639 | sock_set_flag(sk, flag); |
3640 | /* |
3641 | * we just set one of the two flags which require net |
3642 | * time stamping, but time stamping might have been on |
3643 | * already because of the other one |
3644 | */ |
3645 | if (sock_needs_netstamp(sk) && |
3646 | !(previous_flags & SK_FLAGS_TIMESTAMP)) |
3647 | net_enable_timestamp(); |
3648 | } |
3649 | } |
3650 | |
3651 | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, |
3652 | int level, int type) |
3653 | { |
3654 | struct sock_exterr_skb *serr; |
3655 | struct sk_buff *skb; |
3656 | int copied, err; |
3657 | |
3658 | err = -EAGAIN; |
3659 | skb = sock_dequeue_err_skb(sk); |
3660 | if (skb == NULL) |
3661 | goto out; |
3662 | |
3663 | copied = skb->len; |
3664 | if (copied > len) { |
3665 | msg->msg_flags |= MSG_TRUNC; |
3666 | copied = len; |
3667 | } |
3668 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied); |
3669 | if (err) |
3670 | goto out_free_skb; |
3671 | |
3672 | sock_recv_timestamp(msg, sk, skb); |
3673 | |
3674 | serr = SKB_EXT_ERR(skb); |
3675 | put_cmsg(msg, level, type, len: sizeof(serr->ee), data: &serr->ee); |
3676 | |
3677 | msg->msg_flags |= MSG_ERRQUEUE; |
3678 | err = copied; |
3679 | |
3680 | out_free_skb: |
3681 | kfree_skb(skb); |
3682 | out: |
3683 | return err; |
3684 | } |
3685 | EXPORT_SYMBOL(sock_recv_errqueue); |
3686 | |
3687 | /* |
3688 | * Get a socket option on an socket. |
3689 | * |
3690 | * FIX: POSIX 1003.1g is very ambiguous here. It states that |
3691 | * asynchronous errors should be reported by getsockopt. We assume |
3692 | * this means if you specify SO_ERROR (otherwise whats the point of it). |
3693 | */ |
3694 | int sock_common_getsockopt(struct socket *sock, int level, int optname, |
3695 | char __user *optval, int __user *optlen) |
3696 | { |
3697 | struct sock *sk = sock->sk; |
3698 | |
3699 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
3700 | return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); |
3701 | } |
3702 | EXPORT_SYMBOL(sock_common_getsockopt); |
3703 | |
3704 | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
3705 | int flags) |
3706 | { |
3707 | struct sock *sk = sock->sk; |
3708 | int addr_len = 0; |
3709 | int err; |
3710 | |
3711 | err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); |
3712 | if (err >= 0) |
3713 | msg->msg_namelen = addr_len; |
3714 | return err; |
3715 | } |
3716 | EXPORT_SYMBOL(sock_common_recvmsg); |
3717 | |
3718 | /* |
3719 | * Set socket options on an inet socket. |
3720 | */ |
3721 | int sock_common_setsockopt(struct socket *sock, int level, int optname, |
3722 | sockptr_t optval, unsigned int optlen) |
3723 | { |
3724 | struct sock *sk = sock->sk; |
3725 | |
3726 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
3727 | return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); |
3728 | } |
3729 | EXPORT_SYMBOL(sock_common_setsockopt); |
3730 | |
3731 | void sk_common_release(struct sock *sk) |
3732 | { |
3733 | if (sk->sk_prot->destroy) |
3734 | sk->sk_prot->destroy(sk); |
3735 | |
3736 | /* |
3737 | * Observation: when sk_common_release is called, processes have |
3738 | * no access to socket. But net still has. |
3739 | * Step one, detach it from networking: |
3740 | * |
3741 | * A. Remove from hash tables. |
3742 | */ |
3743 | |
3744 | sk->sk_prot->unhash(sk); |
3745 | |
3746 | /* |
3747 | * In this point socket cannot receive new packets, but it is possible |
3748 | * that some packets are in flight because some CPU runs receiver and |
3749 | * did hash table lookup before we unhashed socket. They will achieve |
3750 | * receive queue and will be purged by socket destructor. |
3751 | * |
3752 | * Also we still have packets pending on receive queue and probably, |
3753 | * our own packets waiting in device queues. sock_destroy will drain |
3754 | * receive queue, but transmitted packets will delay socket destruction |
3755 | * until the last reference will be released. |
3756 | */ |
3757 | |
3758 | sock_orphan(sk); |
3759 | |
3760 | xfrm_sk_free_policy(sk); |
3761 | |
3762 | sock_put(sk); |
3763 | } |
3764 | EXPORT_SYMBOL(sk_common_release); |
3765 | |
3766 | void sk_get_meminfo(const struct sock *sk, u32 *mem) |
3767 | { |
3768 | memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); |
3769 | |
3770 | mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); |
3771 | mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); |
3772 | mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); |
3773 | mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); |
3774 | mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); |
3775 | mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); |
3776 | mem[SK_MEMINFO_OPTMEM] = atomic_read(v: &sk->sk_omem_alloc); |
3777 | mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); |
3778 | mem[SK_MEMINFO_DROPS] = atomic_read(v: &sk->sk_drops); |
3779 | } |
3780 | |
3781 | #ifdef CONFIG_PROC_FS |
3782 | static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); |
3783 | |
3784 | int sock_prot_inuse_get(struct net *net, struct proto *prot) |
3785 | { |
3786 | int cpu, idx = prot->inuse_idx; |
3787 | int res = 0; |
3788 | |
3789 | for_each_possible_cpu(cpu) |
3790 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; |
3791 | |
3792 | return res >= 0 ? res : 0; |
3793 | } |
3794 | EXPORT_SYMBOL_GPL(sock_prot_inuse_get); |
3795 | |
3796 | int sock_inuse_get(struct net *net) |
3797 | { |
3798 | int cpu, res = 0; |
3799 | |
3800 | for_each_possible_cpu(cpu) |
3801 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; |
3802 | |
3803 | return res; |
3804 | } |
3805 | |
3806 | EXPORT_SYMBOL_GPL(sock_inuse_get); |
3807 | |
3808 | static int __net_init sock_inuse_init_net(struct net *net) |
3809 | { |
3810 | net->core.prot_inuse = alloc_percpu(struct prot_inuse); |
3811 | if (net->core.prot_inuse == NULL) |
3812 | return -ENOMEM; |
3813 | return 0; |
3814 | } |
3815 | |
3816 | static void __net_exit sock_inuse_exit_net(struct net *net) |
3817 | { |
3818 | free_percpu(pdata: net->core.prot_inuse); |
3819 | } |
3820 | |
3821 | static struct pernet_operations net_inuse_ops = { |
3822 | .init = sock_inuse_init_net, |
3823 | .exit = sock_inuse_exit_net, |
3824 | }; |
3825 | |
3826 | static __init int net_inuse_init(void) |
3827 | { |
3828 | if (register_pernet_subsys(&net_inuse_ops)) |
3829 | panic(fmt: "Cannot initialize net inuse counters"); |
3830 | |
3831 | return 0; |
3832 | } |
3833 | |
3834 | core_initcall(net_inuse_init); |
3835 | |
3836 | static int assign_proto_idx(struct proto *prot) |
3837 | { |
3838 | prot->inuse_idx = find_first_zero_bit(addr: proto_inuse_idx, PROTO_INUSE_NR); |
3839 | |
3840 | if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { |
3841 | pr_err("PROTO_INUSE_NR exhausted\n"); |
3842 | return -ENOSPC; |
3843 | } |
3844 | |
3845 | set_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
3846 | return 0; |
3847 | } |
3848 | |
3849 | static void release_proto_idx(struct proto *prot) |
3850 | { |
3851 | if (prot->inuse_idx != PROTO_INUSE_NR - 1) |
3852 | clear_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
3853 | } |
3854 | #else |
3855 | static inline int assign_proto_idx(struct proto *prot) |
3856 | { |
3857 | return 0; |
3858 | } |
3859 | |
3860 | static inline void release_proto_idx(struct proto *prot) |
3861 | { |
3862 | } |
3863 | |
3864 | #endif |
3865 | |
3866 | static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) |
3867 | { |
3868 | if (!twsk_prot) |
3869 | return; |
3870 | kfree(objp: twsk_prot->twsk_slab_name); |
3871 | twsk_prot->twsk_slab_name = NULL; |
3872 | kmem_cache_destroy(s: twsk_prot->twsk_slab); |
3873 | twsk_prot->twsk_slab = NULL; |
3874 | } |
3875 | |
3876 | static int tw_prot_init(const struct proto *prot) |
3877 | { |
3878 | struct timewait_sock_ops *twsk_prot = prot->twsk_prot; |
3879 | |
3880 | if (!twsk_prot) |
3881 | return 0; |
3882 | |
3883 | twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, fmt: "tw_sock_%s", |
3884 | prot->name); |
3885 | if (!twsk_prot->twsk_slab_name) |
3886 | return -ENOMEM; |
3887 | |
3888 | twsk_prot->twsk_slab = |
3889 | kmem_cache_create(name: twsk_prot->twsk_slab_name, |
3890 | size: twsk_prot->twsk_obj_size, align: 0, |
3891 | SLAB_ACCOUNT | prot->slab_flags, |
3892 | NULL); |
3893 | if (!twsk_prot->twsk_slab) { |
3894 | pr_crit("%s: Can't create timewait sock SLAB cache!\n", |
3895 | prot->name); |
3896 | return -ENOMEM; |
3897 | } |
3898 | |
3899 | return 0; |
3900 | } |
3901 | |
3902 | static void req_prot_cleanup(struct request_sock_ops *rsk_prot) |
3903 | { |
3904 | if (!rsk_prot) |
3905 | return; |
3906 | kfree(objp: rsk_prot->slab_name); |
3907 | rsk_prot->slab_name = NULL; |
3908 | kmem_cache_destroy(s: rsk_prot->slab); |
3909 | rsk_prot->slab = NULL; |
3910 | } |
3911 | |
3912 | static int req_prot_init(const struct proto *prot) |
3913 | { |
3914 | struct request_sock_ops *rsk_prot = prot->rsk_prot; |
3915 | |
3916 | if (!rsk_prot) |
3917 | return 0; |
3918 | |
3919 | rsk_prot->slab_name = kasprintf(GFP_KERNEL, fmt: "request_sock_%s", |
3920 | prot->name); |
3921 | if (!rsk_prot->slab_name) |
3922 | return -ENOMEM; |
3923 | |
3924 | rsk_prot->slab = kmem_cache_create(name: rsk_prot->slab_name, |
3925 | size: rsk_prot->obj_size, align: 0, |
3926 | SLAB_ACCOUNT | prot->slab_flags, |
3927 | NULL); |
3928 | |
3929 | if (!rsk_prot->slab) { |
3930 | pr_crit("%s: Can't create request sock SLAB cache!\n", |
3931 | prot->name); |
3932 | return -ENOMEM; |
3933 | } |
3934 | return 0; |
3935 | } |
3936 | |
3937 | int proto_register(struct proto *prot, int alloc_slab) |
3938 | { |
3939 | int ret = -ENOBUFS; |
3940 | |
3941 | if (prot->memory_allocated && !prot->sysctl_mem) { |
3942 | pr_err("%s: missing sysctl_mem\n", prot->name); |
3943 | return -EINVAL; |
3944 | } |
3945 | if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { |
3946 | pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); |
3947 | return -EINVAL; |
3948 | } |
3949 | if (alloc_slab) { |
3950 | prot->slab = kmem_cache_create_usercopy(name: prot->name, |
3951 | size: prot->obj_size, align: 0, |
3952 | SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | |
3953 | prot->slab_flags, |
3954 | useroffset: prot->useroffset, usersize: prot->usersize, |
3955 | NULL); |
3956 | |
3957 | if (prot->slab == NULL) { |
3958 | pr_crit("%s: Can't create sock SLAB cache!\n", |
3959 | prot->name); |
3960 | goto out; |
3961 | } |
3962 | |
3963 | if (req_prot_init(prot)) |
3964 | goto out_free_request_sock_slab; |
3965 | |
3966 | if (tw_prot_init(prot)) |
3967 | goto out_free_timewait_sock_slab; |
3968 | } |
3969 | |
3970 | mutex_lock(&proto_list_mutex); |
3971 | ret = assign_proto_idx(prot); |
3972 | if (ret) { |
3973 | mutex_unlock(lock: &proto_list_mutex); |
3974 | goto out_free_timewait_sock_slab; |
3975 | } |
3976 | list_add(new: &prot->node, head: &proto_list); |
3977 | mutex_unlock(lock: &proto_list_mutex); |
3978 | return ret; |
3979 | |
3980 | out_free_timewait_sock_slab: |
3981 | if (alloc_slab) |
3982 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
3983 | out_free_request_sock_slab: |
3984 | if (alloc_slab) { |
3985 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
3986 | |
3987 | kmem_cache_destroy(s: prot->slab); |
3988 | prot->slab = NULL; |
3989 | } |
3990 | out: |
3991 | return ret; |
3992 | } |
3993 | EXPORT_SYMBOL(proto_register); |
3994 | |
3995 | void proto_unregister(struct proto *prot) |
3996 | { |
3997 | mutex_lock(&proto_list_mutex); |
3998 | release_proto_idx(prot); |
3999 | list_del(entry: &prot->node); |
4000 | mutex_unlock(lock: &proto_list_mutex); |
4001 | |
4002 | kmem_cache_destroy(s: prot->slab); |
4003 | prot->slab = NULL; |
4004 | |
4005 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
4006 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
4007 | } |
4008 | EXPORT_SYMBOL(proto_unregister); |
4009 | |
4010 | int sock_load_diag_module(int family, int protocol) |
4011 | { |
4012 | if (!protocol) { |
4013 | if (!sock_is_registered(family)) |
4014 | return -ENOENT; |
4015 | |
4016 | return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, |
4017 | NETLINK_SOCK_DIAG, family); |
4018 | } |
4019 | |
4020 | #ifdef CONFIG_INET |
4021 | if (family == AF_INET && |
4022 | protocol != IPPROTO_RAW && |
4023 | protocol < MAX_INET_PROTOS && |
4024 | !rcu_access_pointer(inet_protos[protocol])) |
4025 | return -ENOENT; |
4026 | #endif |
4027 | |
4028 | return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, |
4029 | NETLINK_SOCK_DIAG, family, protocol); |
4030 | } |
4031 | EXPORT_SYMBOL(sock_load_diag_module); |
4032 | |
4033 | #ifdef CONFIG_PROC_FS |
4034 | static void *proto_seq_start(struct seq_file *seq, loff_t *pos) |
4035 | __acquires(proto_list_mutex) |
4036 | { |
4037 | mutex_lock(&proto_list_mutex); |
4038 | return seq_list_start_head(head: &proto_list, pos: *pos); |
4039 | } |
4040 | |
4041 | static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
4042 | { |
4043 | return seq_list_next(v, head: &proto_list, ppos: pos); |
4044 | } |
4045 | |
4046 | static void proto_seq_stop(struct seq_file *seq, void *v) |
4047 | __releases(proto_list_mutex) |
4048 | { |
4049 | mutex_unlock(lock: &proto_list_mutex); |
4050 | } |
4051 | |
4052 | static char proto_method_implemented(const void *method) |
4053 | { |
4054 | return method == NULL ? 'n' : 'y'; |
4055 | } |
4056 | static long sock_prot_memory_allocated(struct proto *proto) |
4057 | { |
4058 | return proto->memory_allocated != NULL ? proto_memory_allocated(prot: proto) : -1L; |
4059 | } |
4060 | |
4061 | static const char *sock_prot_memory_pressure(struct proto *proto) |
4062 | { |
4063 | return proto->memory_pressure != NULL ? |
4064 | proto_memory_pressure(prot: proto) ? "yes": "no": "NI"; |
4065 | } |
4066 | |
4067 | static void proto_seq_printf(struct seq_file *seq, struct proto *proto) |
4068 | { |
4069 | |
4070 | seq_printf(m: seq, fmt: "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " |
4071 | "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", |
4072 | proto->name, |
4073 | proto->obj_size, |
4074 | sock_prot_inuse_get(seq_file_net(seq), proto), |
4075 | sock_prot_memory_allocated(proto), |
4076 | sock_prot_memory_pressure(proto), |
4077 | proto->max_header, |
4078 | proto->slab == NULL ? "no": "yes", |
4079 | module_name(proto->owner), |
4080 | proto_method_implemented(method: proto->close), |
4081 | proto_method_implemented(method: proto->connect), |
4082 | proto_method_implemented(method: proto->disconnect), |
4083 | proto_method_implemented(method: proto->accept), |
4084 | proto_method_implemented(method: proto->ioctl), |
4085 | proto_method_implemented(method: proto->init), |
4086 | proto_method_implemented(method: proto->destroy), |
4087 | proto_method_implemented(method: proto->shutdown), |
4088 | proto_method_implemented(method: proto->setsockopt), |
4089 | proto_method_implemented(method: proto->getsockopt), |
4090 | proto_method_implemented(method: proto->sendmsg), |
4091 | proto_method_implemented(method: proto->recvmsg), |
4092 | proto_method_implemented(method: proto->bind), |
4093 | proto_method_implemented(method: proto->backlog_rcv), |
4094 | proto_method_implemented(method: proto->hash), |
4095 | proto_method_implemented(method: proto->unhash), |
4096 | proto_method_implemented(method: proto->get_port), |
4097 | proto_method_implemented(method: proto->enter_memory_pressure)); |
4098 | } |
4099 | |
4100 | static int proto_seq_show(struct seq_file *seq, void *v) |
4101 | { |
4102 | if (v == &proto_list) |
4103 | seq_printf(m: seq, fmt: "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", |
4104 | "protocol", |
4105 | "size", |
4106 | "sockets", |
4107 | "memory", |
4108 | "press", |
4109 | "maxhdr", |
4110 | "slab", |
4111 | "module", |
4112 | "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); |
4113 | else |
4114 | proto_seq_printf(seq, list_entry(v, struct proto, node)); |
4115 | return 0; |
4116 | } |
4117 | |
4118 | static const struct seq_operations proto_seq_ops = { |
4119 | .start = proto_seq_start, |
4120 | .next = proto_seq_next, |
4121 | .stop = proto_seq_stop, |
4122 | .show = proto_seq_show, |
4123 | }; |
4124 | |
4125 | static __net_init int proto_init_net(struct net *net) |
4126 | { |
4127 | if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, |
4128 | sizeof(struct seq_net_private))) |
4129 | return -ENOMEM; |
4130 | |
4131 | return 0; |
4132 | } |
4133 | |
4134 | static __net_exit void proto_exit_net(struct net *net) |
4135 | { |
4136 | remove_proc_entry("protocols", net->proc_net); |
4137 | } |
4138 | |
4139 | |
4140 | static __net_initdata struct pernet_operations proto_net_ops = { |
4141 | .init = proto_init_net, |
4142 | .exit = proto_exit_net, |
4143 | }; |
4144 | |
4145 | static int __init proto_init(void) |
4146 | { |
4147 | return register_pernet_subsys(&proto_net_ops); |
4148 | } |
4149 | |
4150 | subsys_initcall(proto_init); |
4151 | |
4152 | #endif /* PROC_FS */ |
4153 | |
4154 | #ifdef CONFIG_NET_RX_BUSY_POLL |
4155 | bool sk_busy_loop_end(void *p, unsigned long start_time) |
4156 | { |
4157 | struct sock *sk = p; |
4158 | |
4159 | if (!skb_queue_empty_lockless(list: &sk->sk_receive_queue)) |
4160 | return true; |
4161 | |
4162 | if (sk_is_udp(sk) && |
4163 | !skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue)) |
4164 | return true; |
4165 | |
4166 | return sk_busy_loop_timeout(sk, start_time); |
4167 | } |
4168 | EXPORT_SYMBOL(sk_busy_loop_end); |
4169 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
4170 | |
4171 | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) |
4172 | { |
4173 | if (!sk->sk_prot->bind_add) |
4174 | return -EOPNOTSUPP; |
4175 | return sk->sk_prot->bind_add(sk, addr, addr_len); |
4176 | } |
4177 | EXPORT_SYMBOL(sock_bind_add); |
4178 | |
4179 | /* Copy 'size' bytes from userspace and return `size` back to userspace */ |
4180 | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
4181 | void __user *arg, void *karg, size_t size) |
4182 | { |
4183 | int ret; |
4184 | |
4185 | if (copy_from_user(to: karg, from: arg, n: size)) |
4186 | return -EFAULT; |
4187 | |
4188 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); |
4189 | if (ret) |
4190 | return ret; |
4191 | |
4192 | if (copy_to_user(to: arg, from: karg, n: size)) |
4193 | return -EFAULT; |
4194 | |
4195 | return 0; |
4196 | } |
4197 | EXPORT_SYMBOL(sock_ioctl_inout); |
4198 | |
4199 | /* This is the most common ioctl prep function, where the result (4 bytes) is |
4200 | * copied back to userspace if the ioctl() returns successfully. No input is |
4201 | * copied from userspace as input argument. |
4202 | */ |
4203 | static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) |
4204 | { |
4205 | int ret, karg = 0; |
4206 | |
4207 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); |
4208 | if (ret) |
4209 | return ret; |
4210 | |
4211 | return put_user(karg, (int __user *)arg); |
4212 | } |
4213 | |
4214 | /* A wrapper around sock ioctls, which copies the data from userspace |
4215 | * (depending on the protocol/ioctl), and copies back the result to userspace. |
4216 | * The main motivation for this function is to pass kernel memory to the |
4217 | * protocol ioctl callbacks, instead of userspace memory. |
4218 | */ |
4219 | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) |
4220 | { |
4221 | int rc = 1; |
4222 | |
4223 | if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) |
4224 | rc = ipmr_sk_ioctl(sk, cmd, arg); |
4225 | else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) |
4226 | rc = ip6mr_sk_ioctl(sk, cmd, arg); |
4227 | else if (sk_is_phonet(sk)) |
4228 | rc = phonet_sk_ioctl(sk, cmd, arg); |
4229 | |
4230 | /* If ioctl was processed, returns its value */ |
4231 | if (rc <= 0) |
4232 | return rc; |
4233 | |
4234 | /* Otherwise call the default handler */ |
4235 | return sock_ioctl_out(sk, cmd, arg); |
4236 | } |
4237 | EXPORT_SYMBOL(sk_ioctl); |
4238 | |
4239 | static int __init sock_struct_check(void) |
4240 | { |
4241 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); |
4242 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); |
4243 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); |
4244 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); |
4245 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); |
4246 | |
4247 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); |
4248 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); |
4249 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); |
4250 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); |
4251 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); |
4252 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); |
4253 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); |
4254 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); |
4255 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); |
4256 | |
4257 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); |
4258 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); |
4259 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); |
4260 | |
4261 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); |
4262 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); |
4263 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); |
4264 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); |
4265 | |
4266 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
4267 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
4268 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); |
4269 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); |
4270 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); |
4271 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); |
4272 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); |
4273 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); |
4274 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); |
4275 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); |
4276 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); |
4277 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); |
4278 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); |
4279 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); |
4280 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); |
4281 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); |
4282 | |
4283 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); |
4284 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); |
4285 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); |
4286 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); |
4287 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); |
4288 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); |
4289 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); |
4290 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); |
4291 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); |
4292 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); |
4293 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); |
4294 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); |
4295 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); |
4296 | return 0; |
4297 | } |
4298 | |
4299 | core_initcall(sock_struct_check); |
4300 |
Definitions
- proto_list_mutex
- proto_list
- sk_ns_capable
- sk_capable
- sk_net_capable
- af_family_keys
- af_family_kern_keys
- af_family_slock_keys
- af_family_kern_slock_keys
- af_family_key_strings
- af_family_slock_key_strings
- af_family_clock_key_strings
- af_family_kern_key_strings
- af_family_kern_slock_key_strings
- af_family_kern_clock_key_strings
- af_family_rlock_key_strings
- af_family_wlock_key_strings
- af_family_elock_key_strings
- af_callback_keys
- af_rlock_keys
- af_wlock_keys
- af_elock_keys
- af_kern_callback_keys
- sysctl_wmem_max
- sysctl_rmem_max
- sysctl_wmem_default
- sysctl_rmem_default
- sysctl_mem_pcpu_rsv
- sysctl_tstamp_allow_data
- memalloc_socks_key
- sk_set_memalloc
- sk_clear_memalloc
- __sk_backlog_rcv
- sk_error_report
- sock_get_timeout
- sock_copy_user_timeval
- sock_set_timeout
- sock_needs_netstamp
- sock_disable_timestamp
- __sock_queue_rcv_skb
- sock_queue_rcv_skb_reason
- __sk_receive_skb
- __sk_dst_check
- sk_dst_check
- sock_bindtoindex_locked
- sock_bindtoindex
- sock_setbindtodevice
- sock_getbindtodevice
- sk_mc_loop
- sock_set_reuseaddr
- sock_set_reuseport
- sock_no_linger
- sock_set_priority
- sock_set_sndtimeo
- __sock_set_timestamps
- sock_enable_timestamps
- sock_set_timestamp
- sock_timestamping_bind_phc
- sock_set_timestamping
- sock_set_keepalive
- __sock_set_rcvbuf
- sock_set_rcvbuf
- __sock_set_mark
- sock_set_mark
- sock_release_reserved_memory
- sock_reserve_memory
- sockopt_lock_sock
- sockopt_release_sock
- sockopt_ns_capable
- sockopt_capable
- sk_setsockopt
- sock_setsockopt
- sk_get_peer_cred
- cred_to_ucred
- groups_to_user
- sk_getsockopt
- sock_lock_init
- sock_copy
- sk_prot_alloc
- sk_prot_free
- sk_alloc
- __sk_destruct
- sk_destruct
- __sk_free
- sk_free
- sk_init_common
- sk_clone_lock
- sk_free_unlock_clone
- sk_dst_gso_max_size
- sk_setup_caps
- sock_wfree
- __sock_wfree
- skb_set_owner_w
- can_skb_orphan_partial
- skb_orphan_partial
- sock_rfree
- sock_efree
- sock_pfree
- sock_i_uid
- __sock_i_ino
- sock_i_ino
- sock_wmalloc
- sock_ofree
- sock_omalloc
- sock_kmalloc
- __sock_kfree_s
- sock_kfree_s
- sock_kzfree_s
- sock_wait_for_wmem
- sock_alloc_send_pskb
- __sock_cmsg_send
- sock_cmsg_send
- sk_enter_memory_pressure
- sk_leave_memory_pressure
- net_high_order_alloc_disable_key
- skb_page_frag_refill
- sk_page_frag_refill
- __lock_sock
- __release_sock
- __sk_flush_backlog
- sk_wait_data
- __sk_mem_raise_allocated
- __sk_mem_schedule
- __sk_mem_reduce_allocated
- __sk_mem_reclaim
- sk_set_peek_off
- sock_no_bind
- sock_no_connect
- sock_no_socketpair
- sock_no_accept
- sock_no_getname
- sock_no_ioctl
- sock_no_listen
- sock_no_shutdown
- sock_no_sendmsg
- sock_no_sendmsg_locked
- sock_no_recvmsg
- sock_no_mmap
- __receive_sock
- sock_def_wakeup
- sock_def_error_report
- sock_def_readable
- sock_def_write_space
- sock_def_write_space_wfree
- sock_def_destruct
- sk_send_sigurg
- sk_reset_timer
- sk_stop_timer
- sk_stop_timer_sync
- sock_init_data_uid
- sock_init_data
- lock_sock_nested
- release_sock
- __lock_sock_fast
- sock_gettstamp
- sock_enable_timestamp
- sock_recv_errqueue
- sock_common_getsockopt
- sock_common_recvmsg
- sock_common_setsockopt
- sk_common_release
- sk_get_meminfo
- proto_inuse_idx
- sock_prot_inuse_get
- sock_inuse_get
- sock_inuse_init_net
- sock_inuse_exit_net
- net_inuse_ops
- net_inuse_init
- assign_proto_idx
- release_proto_idx
- tw_prot_cleanup
- tw_prot_init
- req_prot_cleanup
- req_prot_init
- proto_register
- proto_unregister
- sock_load_diag_module
- proto_seq_start
- proto_seq_next
- proto_seq_stop
- proto_method_implemented
- sock_prot_memory_allocated
- sock_prot_memory_pressure
- proto_seq_printf
- proto_seq_show
- proto_seq_ops
- proto_init_net
- proto_exit_net
- proto_net_ops
- proto_init
- sk_busy_loop_end
- sock_bind_add
- sock_ioctl_inout
- sock_ioctl_out
- sk_ioctl
Improve your Profiling and Debugging skills
Find out more