| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 4 | * operating system. INET is implemented using the BSD Socket |
| 5 | * interface as the means of communication with the user level. |
| 6 | * |
| 7 | * Generic socket support routines. Memory allocators, socket lock/release |
| 8 | * handler for protocols to use and generic option handler. |
| 9 | * |
| 10 | * Authors: Ross Biro |
| 11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 12 | * Florian La Roche, <flla@stud.uni-sb.de> |
| 13 | * Alan Cox, <A.Cox@swansea.ac.uk> |
| 14 | * |
| 15 | * Fixes: |
| 16 | * Alan Cox : Numerous verify_area() problems |
| 17 | * Alan Cox : Connecting on a connecting socket |
| 18 | * now returns an error for tcp. |
| 19 | * Alan Cox : sock->protocol is set correctly. |
| 20 | * and is not sometimes left as 0. |
| 21 | * Alan Cox : connect handles icmp errors on a |
| 22 | * connect properly. Unfortunately there |
| 23 | * is a restart syscall nasty there. I |
| 24 | * can't match BSD without hacking the C |
| 25 | * library. Ideas urgently sought! |
| 26 | * Alan Cox : Disallow bind() to addresses that are |
| 27 | * not ours - especially broadcast ones!! |
| 28 | * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) |
| 29 | * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, |
| 30 | * instead they leave that for the DESTROY timer. |
| 31 | * Alan Cox : Clean up error flag in accept |
| 32 | * Alan Cox : TCP ack handling is buggy, the DESTROY timer |
| 33 | * was buggy. Put a remove_sock() in the handler |
| 34 | * for memory when we hit 0. Also altered the timer |
| 35 | * code. The ACK stuff can wait and needs major |
| 36 | * TCP layer surgery. |
| 37 | * Alan Cox : Fixed TCP ack bug, removed remove sock |
| 38 | * and fixed timer/inet_bh race. |
| 39 | * Alan Cox : Added zapped flag for TCP |
| 40 | * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code |
| 41 | * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb |
| 42 | * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources |
| 43 | * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. |
| 44 | * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... |
| 45 | * Rick Sladkey : Relaxed UDP rules for matching packets. |
| 46 | * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support |
| 47 | * Pauline Middelink : identd support |
| 48 | * Alan Cox : Fixed connect() taking signals I think. |
| 49 | * Alan Cox : SO_LINGER supported |
| 50 | * Alan Cox : Error reporting fixes |
| 51 | * Anonymous : inet_create tidied up (sk->reuse setting) |
| 52 | * Alan Cox : inet sockets don't set sk->type! |
| 53 | * Alan Cox : Split socket option code |
| 54 | * Alan Cox : Callbacks |
| 55 | * Alan Cox : Nagle flag for Charles & Johannes stuff |
| 56 | * Alex : Removed restriction on inet fioctl |
| 57 | * Alan Cox : Splitting INET from NET core |
| 58 | * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() |
| 59 | * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code |
| 60 | * Alan Cox : Split IP from generic code |
| 61 | * Alan Cox : New kfree_skbmem() |
| 62 | * Alan Cox : Make SO_DEBUG superuser only. |
| 63 | * Alan Cox : Allow anyone to clear SO_DEBUG |
| 64 | * (compatibility fix) |
| 65 | * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. |
| 66 | * Alan Cox : Allocator for a socket is settable. |
| 67 | * Alan Cox : SO_ERROR includes soft errors. |
| 68 | * Alan Cox : Allow NULL arguments on some SO_ opts |
| 69 | * Alan Cox : Generic socket allocation to make hooks |
| 70 | * easier (suggested by Craig Metz). |
| 71 | * Michael Pall : SO_ERROR returns positive errno again |
| 72 | * Steve Whitehouse: Added default destructor to free |
| 73 | * protocol private data. |
| 74 | * Steve Whitehouse: Added various other default routines |
| 75 | * common to several socket families. |
| 76 | * Chris Evans : Call suser() check last on F_SETOWN |
| 77 | * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. |
| 78 | * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() |
| 79 | * Andi Kleen : Fix write_space callback |
| 80 | * Chris Evans : Security fixes - signedness again |
| 81 | * Arnaldo C. Melo : cleanups, use skb_queue_purge |
| 82 | * |
| 83 | * To Fix: |
| 84 | */ |
| 85 | |
| 86 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 87 | |
| 88 | #include <linux/unaligned.h> |
| 89 | #include <linux/capability.h> |
| 90 | #include <linux/errno.h> |
| 91 | #include <linux/errqueue.h> |
| 92 | #include <linux/types.h> |
| 93 | #include <linux/socket.h> |
| 94 | #include <linux/in.h> |
| 95 | #include <linux/kernel.h> |
| 96 | #include <linux/module.h> |
| 97 | #include <linux/proc_fs.h> |
| 98 | #include <linux/seq_file.h> |
| 99 | #include <linux/sched.h> |
| 100 | #include <linux/sched/mm.h> |
| 101 | #include <linux/timer.h> |
| 102 | #include <linux/string.h> |
| 103 | #include <linux/sockios.h> |
| 104 | #include <linux/net.h> |
| 105 | #include <linux/mm.h> |
| 106 | #include <linux/slab.h> |
| 107 | #include <linux/interrupt.h> |
| 108 | #include <linux/poll.h> |
| 109 | #include <linux/tcp.h> |
| 110 | #include <linux/udp.h> |
| 111 | #include <linux/init.h> |
| 112 | #include <linux/highmem.h> |
| 113 | #include <linux/user_namespace.h> |
| 114 | #include <linux/static_key.h> |
| 115 | #include <linux/memcontrol.h> |
| 116 | #include <linux/prefetch.h> |
| 117 | #include <linux/compat.h> |
| 118 | #include <linux/mroute.h> |
| 119 | #include <linux/mroute6.h> |
| 120 | #include <linux/icmpv6.h> |
| 121 | |
| 122 | #include <linux/uaccess.h> |
| 123 | |
| 124 | #include <linux/netdevice.h> |
| 125 | #include <net/protocol.h> |
| 126 | #include <linux/skbuff.h> |
| 127 | #include <linux/skbuff_ref.h> |
| 128 | #include <net/net_namespace.h> |
| 129 | #include <net/request_sock.h> |
| 130 | #include <net/sock.h> |
| 131 | #include <net/proto_memory.h> |
| 132 | #include <linux/net_tstamp.h> |
| 133 | #include <net/xfrm.h> |
| 134 | #include <linux/ipsec.h> |
| 135 | #include <net/cls_cgroup.h> |
| 136 | #include <net/netprio_cgroup.h> |
| 137 | #include <linux/sock_diag.h> |
| 138 | |
| 139 | #include <linux/filter.h> |
| 140 | #include <net/sock_reuseport.h> |
| 141 | #include <net/bpf_sk_storage.h> |
| 142 | |
| 143 | #include <trace/events/sock.h> |
| 144 | |
| 145 | #include <net/tcp.h> |
| 146 | #include <net/busy_poll.h> |
| 147 | #include <net/phonet/phonet.h> |
| 148 | |
| 149 | #include <linux/ethtool.h> |
| 150 | |
| 151 | #include <uapi/linux/pidfd.h> |
| 152 | |
| 153 | #include "dev.h" |
| 154 | |
| 155 | static DEFINE_MUTEX(proto_list_mutex); |
| 156 | static LIST_HEAD(proto_list); |
| 157 | |
| 158 | static void sock_def_write_space_wfree(struct sock *sk); |
| 159 | static void sock_def_write_space(struct sock *sk); |
| 160 | |
| 161 | /** |
| 162 | * sk_ns_capable - General socket capability test |
| 163 | * @sk: Socket to use a capability on or through |
| 164 | * @user_ns: The user namespace of the capability to use |
| 165 | * @cap: The capability to use |
| 166 | * |
| 167 | * Test to see if the opener of the socket had when the socket was |
| 168 | * created and the current process has the capability @cap in the user |
| 169 | * namespace @user_ns. |
| 170 | */ |
| 171 | bool sk_ns_capable(const struct sock *sk, |
| 172 | struct user_namespace *user_ns, int cap) |
| 173 | { |
| 174 | return file_ns_capable(file: sk->sk_socket->file, ns: user_ns, cap) && |
| 175 | ns_capable(ns: user_ns, cap); |
| 176 | } |
| 177 | EXPORT_SYMBOL(sk_ns_capable); |
| 178 | |
| 179 | /** |
| 180 | * sk_capable - Socket global capability test |
| 181 | * @sk: Socket to use a capability on or through |
| 182 | * @cap: The global capability to use |
| 183 | * |
| 184 | * Test to see if the opener of the socket had when the socket was |
| 185 | * created and the current process has the capability @cap in all user |
| 186 | * namespaces. |
| 187 | */ |
| 188 | bool sk_capable(const struct sock *sk, int cap) |
| 189 | { |
| 190 | return sk_ns_capable(sk, &init_user_ns, cap); |
| 191 | } |
| 192 | EXPORT_SYMBOL(sk_capable); |
| 193 | |
| 194 | /** |
| 195 | * sk_net_capable - Network namespace socket capability test |
| 196 | * @sk: Socket to use a capability on or through |
| 197 | * @cap: The capability to use |
| 198 | * |
| 199 | * Test to see if the opener of the socket had when the socket was created |
| 200 | * and the current process has the capability @cap over the network namespace |
| 201 | * the socket is a member of. |
| 202 | */ |
| 203 | bool sk_net_capable(const struct sock *sk, int cap) |
| 204 | { |
| 205 | return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); |
| 206 | } |
| 207 | EXPORT_SYMBOL(sk_net_capable); |
| 208 | |
| 209 | /* |
| 210 | * Each address family might have different locking rules, so we have |
| 211 | * one slock key per address family and separate keys for internal and |
| 212 | * userspace sockets. |
| 213 | */ |
| 214 | static struct lock_class_key af_family_keys[AF_MAX]; |
| 215 | static struct lock_class_key af_family_kern_keys[AF_MAX]; |
| 216 | static struct lock_class_key af_family_slock_keys[AF_MAX]; |
| 217 | static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; |
| 218 | |
| 219 | /* |
| 220 | * Make lock validator output more readable. (we pre-construct these |
| 221 | * strings build-time, so that runtime initialization of socket |
| 222 | * locks is fast): |
| 223 | */ |
| 224 | |
| 225 | #define _sock_locks(x) \ |
| 226 | x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ |
| 227 | x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ |
| 228 | x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ |
| 229 | x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ |
| 230 | x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ |
| 231 | x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ |
| 232 | x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ |
| 233 | x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ |
| 234 | x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ |
| 235 | x "27" , x "28" , x "AF_CAN" , \ |
| 236 | x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ |
| 237 | x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ |
| 238 | x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ |
| 239 | x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ |
| 240 | x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ |
| 241 | x "AF_MCTP" , \ |
| 242 | x "AF_MAX" |
| 243 | |
| 244 | static const char *const af_family_key_strings[AF_MAX+1] = { |
| 245 | _sock_locks("sk_lock-" ) |
| 246 | }; |
| 247 | static const char *const af_family_slock_key_strings[AF_MAX+1] = { |
| 248 | _sock_locks("slock-" ) |
| 249 | }; |
| 250 | static const char *const af_family_clock_key_strings[AF_MAX+1] = { |
| 251 | _sock_locks("clock-" ) |
| 252 | }; |
| 253 | |
| 254 | static const char *const af_family_kern_key_strings[AF_MAX+1] = { |
| 255 | _sock_locks("k-sk_lock-" ) |
| 256 | }; |
| 257 | static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { |
| 258 | _sock_locks("k-slock-" ) |
| 259 | }; |
| 260 | static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { |
| 261 | _sock_locks("k-clock-" ) |
| 262 | }; |
| 263 | static const char *const af_family_rlock_key_strings[AF_MAX+1] = { |
| 264 | _sock_locks("rlock-" ) |
| 265 | }; |
| 266 | static const char *const af_family_wlock_key_strings[AF_MAX+1] = { |
| 267 | _sock_locks("wlock-" ) |
| 268 | }; |
| 269 | static const char *const af_family_elock_key_strings[AF_MAX+1] = { |
| 270 | _sock_locks("elock-" ) |
| 271 | }; |
| 272 | |
| 273 | /* |
| 274 | * sk_callback_lock and sk queues locking rules are per-address-family, |
| 275 | * so split the lock classes by using a per-AF key: |
| 276 | */ |
| 277 | static struct lock_class_key af_callback_keys[AF_MAX]; |
| 278 | static struct lock_class_key af_rlock_keys[AF_MAX]; |
| 279 | static struct lock_class_key af_wlock_keys[AF_MAX]; |
| 280 | static struct lock_class_key af_elock_keys[AF_MAX]; |
| 281 | static struct lock_class_key af_kern_callback_keys[AF_MAX]; |
| 282 | |
| 283 | /* Run time adjustable parameters. */ |
| 284 | __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; |
| 285 | EXPORT_SYMBOL(sysctl_wmem_max); |
| 286 | __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; |
| 287 | EXPORT_SYMBOL(sysctl_rmem_max); |
| 288 | __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; |
| 289 | __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; |
| 290 | |
| 291 | DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); |
| 292 | EXPORT_SYMBOL_GPL(memalloc_socks_key); |
| 293 | |
| 294 | /** |
| 295 | * sk_set_memalloc - sets %SOCK_MEMALLOC |
| 296 | * @sk: socket to set it on |
| 297 | * |
| 298 | * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. |
| 299 | * It's the responsibility of the admin to adjust min_free_kbytes |
| 300 | * to meet the requirements |
| 301 | */ |
| 302 | void sk_set_memalloc(struct sock *sk) |
| 303 | { |
| 304 | sock_set_flag(sk, flag: SOCK_MEMALLOC); |
| 305 | sk->sk_allocation |= __GFP_MEMALLOC; |
| 306 | static_branch_inc(&memalloc_socks_key); |
| 307 | } |
| 308 | EXPORT_SYMBOL_GPL(sk_set_memalloc); |
| 309 | |
| 310 | void sk_clear_memalloc(struct sock *sk) |
| 311 | { |
| 312 | sock_reset_flag(sk, flag: SOCK_MEMALLOC); |
| 313 | sk->sk_allocation &= ~__GFP_MEMALLOC; |
| 314 | static_branch_dec(&memalloc_socks_key); |
| 315 | |
| 316 | /* |
| 317 | * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward |
| 318 | * progress of swapping. SOCK_MEMALLOC may be cleared while |
| 319 | * it has rmem allocations due to the last swapfile being deactivated |
| 320 | * but there is a risk that the socket is unusable due to exceeding |
| 321 | * the rmem limits. Reclaim the reserves and obey rmem limits again. |
| 322 | */ |
| 323 | sk_mem_reclaim(sk); |
| 324 | } |
| 325 | EXPORT_SYMBOL_GPL(sk_clear_memalloc); |
| 326 | |
| 327 | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
| 328 | { |
| 329 | int ret; |
| 330 | unsigned int noreclaim_flag; |
| 331 | |
| 332 | /* these should have been dropped before queueing */ |
| 333 | BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); |
| 334 | |
| 335 | noreclaim_flag = memalloc_noreclaim_save(); |
| 336 | ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
| 337 | tcp_v6_do_rcv, |
| 338 | tcp_v4_do_rcv, |
| 339 | sk, skb); |
| 340 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
| 341 | |
| 342 | return ret; |
| 343 | } |
| 344 | EXPORT_SYMBOL(__sk_backlog_rcv); |
| 345 | |
| 346 | void sk_error_report(struct sock *sk) |
| 347 | { |
| 348 | sk->sk_error_report(sk); |
| 349 | |
| 350 | switch (sk->sk_family) { |
| 351 | case AF_INET: |
| 352 | fallthrough; |
| 353 | case AF_INET6: |
| 354 | trace_inet_sk_error_report(sk); |
| 355 | break; |
| 356 | default: |
| 357 | break; |
| 358 | } |
| 359 | } |
| 360 | EXPORT_SYMBOL(sk_error_report); |
| 361 | |
| 362 | int sock_get_timeout(long timeo, void *optval, bool old_timeval) |
| 363 | { |
| 364 | struct __kernel_sock_timeval tv; |
| 365 | |
| 366 | if (timeo == MAX_SCHEDULE_TIMEOUT) { |
| 367 | tv.tv_sec = 0; |
| 368 | tv.tv_usec = 0; |
| 369 | } else { |
| 370 | tv.tv_sec = timeo / HZ; |
| 371 | tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; |
| 372 | } |
| 373 | |
| 374 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
| 375 | struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; |
| 376 | *(struct old_timeval32 *)optval = tv32; |
| 377 | return sizeof(tv32); |
| 378 | } |
| 379 | |
| 380 | if (old_timeval) { |
| 381 | struct __kernel_old_timeval old_tv; |
| 382 | old_tv.tv_sec = tv.tv_sec; |
| 383 | old_tv.tv_usec = tv.tv_usec; |
| 384 | *(struct __kernel_old_timeval *)optval = old_tv; |
| 385 | return sizeof(old_tv); |
| 386 | } |
| 387 | |
| 388 | *(struct __kernel_sock_timeval *)optval = tv; |
| 389 | return sizeof(tv); |
| 390 | } |
| 391 | EXPORT_SYMBOL(sock_get_timeout); |
| 392 | |
| 393 | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
| 394 | sockptr_t optval, int optlen, bool old_timeval) |
| 395 | { |
| 396 | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
| 397 | struct old_timeval32 tv32; |
| 398 | |
| 399 | if (optlen < sizeof(tv32)) |
| 400 | return -EINVAL; |
| 401 | |
| 402 | if (copy_from_sockptr(dst: &tv32, src: optval, size: sizeof(tv32))) |
| 403 | return -EFAULT; |
| 404 | tv->tv_sec = tv32.tv_sec; |
| 405 | tv->tv_usec = tv32.tv_usec; |
| 406 | } else if (old_timeval) { |
| 407 | struct __kernel_old_timeval old_tv; |
| 408 | |
| 409 | if (optlen < sizeof(old_tv)) |
| 410 | return -EINVAL; |
| 411 | if (copy_from_sockptr(dst: &old_tv, src: optval, size: sizeof(old_tv))) |
| 412 | return -EFAULT; |
| 413 | tv->tv_sec = old_tv.tv_sec; |
| 414 | tv->tv_usec = old_tv.tv_usec; |
| 415 | } else { |
| 416 | if (optlen < sizeof(*tv)) |
| 417 | return -EINVAL; |
| 418 | if (copy_from_sockptr(dst: tv, src: optval, size: sizeof(*tv))) |
| 419 | return -EFAULT; |
| 420 | } |
| 421 | |
| 422 | return 0; |
| 423 | } |
| 424 | EXPORT_SYMBOL(sock_copy_user_timeval); |
| 425 | |
| 426 | static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, |
| 427 | bool old_timeval) |
| 428 | { |
| 429 | struct __kernel_sock_timeval tv; |
| 430 | int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); |
| 431 | long val; |
| 432 | |
| 433 | if (err) |
| 434 | return err; |
| 435 | |
| 436 | if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) |
| 437 | return -EDOM; |
| 438 | |
| 439 | if (tv.tv_sec < 0) { |
| 440 | static int warned __read_mostly; |
| 441 | |
| 442 | WRITE_ONCE(*timeo_p, 0); |
| 443 | if (warned < 10 && net_ratelimit()) { |
| 444 | warned++; |
| 445 | pr_info("%s: `%s' (pid %d) tries to set negative timeout\n" , |
| 446 | __func__, current->comm, task_pid_nr(current)); |
| 447 | } |
| 448 | return 0; |
| 449 | } |
| 450 | val = MAX_SCHEDULE_TIMEOUT; |
| 451 | if ((tv.tv_sec || tv.tv_usec) && |
| 452 | (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) |
| 453 | val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, |
| 454 | USEC_PER_SEC / HZ); |
| 455 | WRITE_ONCE(*timeo_p, val); |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | static bool sk_set_prio_allowed(const struct sock *sk, int val) |
| 460 | { |
| 461 | return ((val >= TC_PRIO_BESTEFFORT && val <= TC_PRIO_INTERACTIVE) || |
| 462 | sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) || |
| 463 | sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN)); |
| 464 | } |
| 465 | |
| 466 | static bool sock_needs_netstamp(const struct sock *sk) |
| 467 | { |
| 468 | switch (sk->sk_family) { |
| 469 | case AF_UNSPEC: |
| 470 | case AF_UNIX: |
| 471 | return false; |
| 472 | default: |
| 473 | return true; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | static void sock_disable_timestamp(struct sock *sk, unsigned long flags) |
| 478 | { |
| 479 | if (sk->sk_flags & flags) { |
| 480 | sk->sk_flags &= ~flags; |
| 481 | if (sock_needs_netstamp(sk) && |
| 482 | !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) |
| 483 | net_disable_timestamp(); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | |
| 488 | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| 489 | { |
| 490 | unsigned long flags; |
| 491 | struct sk_buff_head *list = &sk->sk_receive_queue; |
| 492 | |
| 493 | if (atomic_read(v: &sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { |
| 494 | atomic_inc(v: &sk->sk_drops); |
| 495 | trace_sock_rcvqueue_full(sk, skb); |
| 496 | return -ENOMEM; |
| 497 | } |
| 498 | |
| 499 | if (!sk_rmem_schedule(sk, skb, size: skb->truesize)) { |
| 500 | atomic_inc(v: &sk->sk_drops); |
| 501 | return -ENOBUFS; |
| 502 | } |
| 503 | |
| 504 | skb->dev = NULL; |
| 505 | skb_set_owner_r(skb, sk); |
| 506 | |
| 507 | /* we escape from rcu protected region, make sure we dont leak |
| 508 | * a norefcounted dst |
| 509 | */ |
| 510 | skb_dst_force(skb); |
| 511 | |
| 512 | spin_lock_irqsave(&list->lock, flags); |
| 513 | sock_skb_set_dropcount(sk, skb); |
| 514 | __skb_queue_tail(list, newsk: skb); |
| 515 | spin_unlock_irqrestore(lock: &list->lock, flags); |
| 516 | |
| 517 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
| 518 | sk->sk_data_ready(sk); |
| 519 | return 0; |
| 520 | } |
| 521 | EXPORT_SYMBOL(__sock_queue_rcv_skb); |
| 522 | |
| 523 | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
| 524 | enum skb_drop_reason *reason) |
| 525 | { |
| 526 | enum skb_drop_reason drop_reason; |
| 527 | int err; |
| 528 | |
| 529 | err = sk_filter(sk, skb); |
| 530 | if (err) { |
| 531 | drop_reason = SKB_DROP_REASON_SOCKET_FILTER; |
| 532 | goto out; |
| 533 | } |
| 534 | err = __sock_queue_rcv_skb(sk, skb); |
| 535 | switch (err) { |
| 536 | case -ENOMEM: |
| 537 | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; |
| 538 | break; |
| 539 | case -ENOBUFS: |
| 540 | drop_reason = SKB_DROP_REASON_PROTO_MEM; |
| 541 | break; |
| 542 | default: |
| 543 | drop_reason = SKB_NOT_DROPPED_YET; |
| 544 | break; |
| 545 | } |
| 546 | out: |
| 547 | if (reason) |
| 548 | *reason = drop_reason; |
| 549 | return err; |
| 550 | } |
| 551 | EXPORT_SYMBOL(sock_queue_rcv_skb_reason); |
| 552 | |
| 553 | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
| 554 | const int nested, unsigned int trim_cap, bool refcounted) |
| 555 | { |
| 556 | int rc = NET_RX_SUCCESS; |
| 557 | |
| 558 | if (sk_filter_trim_cap(sk, skb, cap: trim_cap)) |
| 559 | goto discard_and_relse; |
| 560 | |
| 561 | skb->dev = NULL; |
| 562 | |
| 563 | if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { |
| 564 | atomic_inc(v: &sk->sk_drops); |
| 565 | goto discard_and_relse; |
| 566 | } |
| 567 | if (nested) |
| 568 | bh_lock_sock_nested(sk); |
| 569 | else |
| 570 | bh_lock_sock(sk); |
| 571 | if (!sock_owned_by_user(sk)) { |
| 572 | /* |
| 573 | * trylock + unlock semantics: |
| 574 | */ |
| 575 | mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); |
| 576 | |
| 577 | rc = sk_backlog_rcv(sk, skb); |
| 578 | |
| 579 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| 580 | } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { |
| 581 | bh_unlock_sock(sk); |
| 582 | atomic_inc(v: &sk->sk_drops); |
| 583 | goto discard_and_relse; |
| 584 | } |
| 585 | |
| 586 | bh_unlock_sock(sk); |
| 587 | out: |
| 588 | if (refcounted) |
| 589 | sock_put(sk); |
| 590 | return rc; |
| 591 | discard_and_relse: |
| 592 | kfree_skb(skb); |
| 593 | goto out; |
| 594 | } |
| 595 | EXPORT_SYMBOL(__sk_receive_skb); |
| 596 | |
| 597 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, |
| 598 | u32)); |
| 599 | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, |
| 600 | u32)); |
| 601 | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) |
| 602 | { |
| 603 | struct dst_entry *dst = __sk_dst_get(sk); |
| 604 | |
| 605 | if (dst && dst->obsolete && |
| 606 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
| 607 | dst, cookie) == NULL) { |
| 608 | sk_tx_queue_clear(sk); |
| 609 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| 610 | RCU_INIT_POINTER(sk->sk_dst_cache, NULL); |
| 611 | dst_release(dst); |
| 612 | return NULL; |
| 613 | } |
| 614 | |
| 615 | return dst; |
| 616 | } |
| 617 | EXPORT_SYMBOL(__sk_dst_check); |
| 618 | |
| 619 | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) |
| 620 | { |
| 621 | struct dst_entry *dst = sk_dst_get(sk); |
| 622 | |
| 623 | if (dst && dst->obsolete && |
| 624 | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
| 625 | dst, cookie) == NULL) { |
| 626 | sk_dst_reset(sk); |
| 627 | dst_release(dst); |
| 628 | return NULL; |
| 629 | } |
| 630 | |
| 631 | return dst; |
| 632 | } |
| 633 | EXPORT_SYMBOL(sk_dst_check); |
| 634 | |
| 635 | static int sock_bindtoindex_locked(struct sock *sk, int ifindex) |
| 636 | { |
| 637 | int ret = -ENOPROTOOPT; |
| 638 | #ifdef CONFIG_NETDEVICES |
| 639 | struct net *net = sock_net(sk); |
| 640 | |
| 641 | /* Sorry... */ |
| 642 | ret = -EPERM; |
| 643 | if (sk->sk_bound_dev_if && !ns_capable(ns: net->user_ns, CAP_NET_RAW)) |
| 644 | goto out; |
| 645 | |
| 646 | ret = -EINVAL; |
| 647 | if (ifindex < 0) |
| 648 | goto out; |
| 649 | |
| 650 | /* Paired with all READ_ONCE() done locklessly. */ |
| 651 | WRITE_ONCE(sk->sk_bound_dev_if, ifindex); |
| 652 | |
| 653 | if (sk->sk_prot->rehash) |
| 654 | sk->sk_prot->rehash(sk); |
| 655 | sk_dst_reset(sk); |
| 656 | |
| 657 | ret = 0; |
| 658 | |
| 659 | out: |
| 660 | #endif |
| 661 | |
| 662 | return ret; |
| 663 | } |
| 664 | |
| 665 | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) |
| 666 | { |
| 667 | int ret; |
| 668 | |
| 669 | if (lock_sk) |
| 670 | lock_sock(sk); |
| 671 | ret = sock_bindtoindex_locked(sk, ifindex); |
| 672 | if (lock_sk) |
| 673 | release_sock(sk); |
| 674 | |
| 675 | return ret; |
| 676 | } |
| 677 | EXPORT_SYMBOL(sock_bindtoindex); |
| 678 | |
| 679 | static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) |
| 680 | { |
| 681 | int ret = -ENOPROTOOPT; |
| 682 | #ifdef CONFIG_NETDEVICES |
| 683 | struct net *net = sock_net(sk); |
| 684 | char devname[IFNAMSIZ]; |
| 685 | int index; |
| 686 | |
| 687 | ret = -EINVAL; |
| 688 | if (optlen < 0) |
| 689 | goto out; |
| 690 | |
| 691 | /* Bind this socket to a particular device like "eth0", |
| 692 | * as specified in the passed interface name. If the |
| 693 | * name is "" or the option length is zero the socket |
| 694 | * is not bound. |
| 695 | */ |
| 696 | if (optlen > IFNAMSIZ - 1) |
| 697 | optlen = IFNAMSIZ - 1; |
| 698 | memset(devname, 0, sizeof(devname)); |
| 699 | |
| 700 | ret = -EFAULT; |
| 701 | if (copy_from_sockptr(dst: devname, src: optval, size: optlen)) |
| 702 | goto out; |
| 703 | |
| 704 | index = 0; |
| 705 | if (devname[0] != '\0') { |
| 706 | struct net_device *dev; |
| 707 | |
| 708 | rcu_read_lock(); |
| 709 | dev = dev_get_by_name_rcu(net, name: devname); |
| 710 | if (dev) |
| 711 | index = dev->ifindex; |
| 712 | rcu_read_unlock(); |
| 713 | ret = -ENODEV; |
| 714 | if (!dev) |
| 715 | goto out; |
| 716 | } |
| 717 | |
| 718 | sockopt_lock_sock(sk); |
| 719 | ret = sock_bindtoindex_locked(sk, ifindex: index); |
| 720 | sockopt_release_sock(sk); |
| 721 | out: |
| 722 | #endif |
| 723 | |
| 724 | return ret; |
| 725 | } |
| 726 | |
| 727 | static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, |
| 728 | sockptr_t optlen, int len) |
| 729 | { |
| 730 | int ret = -ENOPROTOOPT; |
| 731 | #ifdef CONFIG_NETDEVICES |
| 732 | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
| 733 | struct net *net = sock_net(sk); |
| 734 | char devname[IFNAMSIZ]; |
| 735 | |
| 736 | if (bound_dev_if == 0) { |
| 737 | len = 0; |
| 738 | goto zero; |
| 739 | } |
| 740 | |
| 741 | ret = -EINVAL; |
| 742 | if (len < IFNAMSIZ) |
| 743 | goto out; |
| 744 | |
| 745 | ret = netdev_get_name(net, name: devname, ifindex: bound_dev_if); |
| 746 | if (ret) |
| 747 | goto out; |
| 748 | |
| 749 | len = strlen(devname) + 1; |
| 750 | |
| 751 | ret = -EFAULT; |
| 752 | if (copy_to_sockptr(dst: optval, src: devname, size: len)) |
| 753 | goto out; |
| 754 | |
| 755 | zero: |
| 756 | ret = -EFAULT; |
| 757 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 758 | goto out; |
| 759 | |
| 760 | ret = 0; |
| 761 | |
| 762 | out: |
| 763 | #endif |
| 764 | |
| 765 | return ret; |
| 766 | } |
| 767 | |
| 768 | bool sk_mc_loop(const struct sock *sk) |
| 769 | { |
| 770 | if (dev_recursion_level()) |
| 771 | return false; |
| 772 | if (!sk) |
| 773 | return true; |
| 774 | /* IPV6_ADDRFORM can change sk->sk_family under us. */ |
| 775 | switch (READ_ONCE(sk->sk_family)) { |
| 776 | case AF_INET: |
| 777 | return inet_test_bit(MC_LOOP, sk); |
| 778 | #if IS_ENABLED(CONFIG_IPV6) |
| 779 | case AF_INET6: |
| 780 | return inet6_test_bit(MC6_LOOP, sk); |
| 781 | #endif |
| 782 | } |
| 783 | WARN_ON_ONCE(1); |
| 784 | return true; |
| 785 | } |
| 786 | EXPORT_SYMBOL(sk_mc_loop); |
| 787 | |
| 788 | void sock_set_reuseaddr(struct sock *sk) |
| 789 | { |
| 790 | lock_sock(sk); |
| 791 | sk->sk_reuse = SK_CAN_REUSE; |
| 792 | release_sock(sk); |
| 793 | } |
| 794 | EXPORT_SYMBOL(sock_set_reuseaddr); |
| 795 | |
| 796 | void sock_set_reuseport(struct sock *sk) |
| 797 | { |
| 798 | lock_sock(sk); |
| 799 | sk->sk_reuseport = true; |
| 800 | release_sock(sk); |
| 801 | } |
| 802 | EXPORT_SYMBOL(sock_set_reuseport); |
| 803 | |
| 804 | void sock_no_linger(struct sock *sk) |
| 805 | { |
| 806 | lock_sock(sk); |
| 807 | WRITE_ONCE(sk->sk_lingertime, 0); |
| 808 | sock_set_flag(sk, flag: SOCK_LINGER); |
| 809 | release_sock(sk); |
| 810 | } |
| 811 | EXPORT_SYMBOL(sock_no_linger); |
| 812 | |
| 813 | void sock_set_priority(struct sock *sk, u32 priority) |
| 814 | { |
| 815 | WRITE_ONCE(sk->sk_priority, priority); |
| 816 | } |
| 817 | EXPORT_SYMBOL(sock_set_priority); |
| 818 | |
| 819 | void sock_set_sndtimeo(struct sock *sk, s64 secs) |
| 820 | { |
| 821 | lock_sock(sk); |
| 822 | if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) |
| 823 | WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); |
| 824 | else |
| 825 | WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); |
| 826 | release_sock(sk); |
| 827 | } |
| 828 | EXPORT_SYMBOL(sock_set_sndtimeo); |
| 829 | |
| 830 | static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) |
| 831 | { |
| 832 | sock_valbool_flag(sk, bit: SOCK_RCVTSTAMP, valbool: val); |
| 833 | sock_valbool_flag(sk, bit: SOCK_RCVTSTAMPNS, valbool: val && ns); |
| 834 | if (val) { |
| 835 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: new); |
| 836 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | void sock_enable_timestamps(struct sock *sk) |
| 841 | { |
| 842 | lock_sock(sk); |
| 843 | __sock_set_timestamps(sk, val: true, new: false, ns: true); |
| 844 | release_sock(sk); |
| 845 | } |
| 846 | EXPORT_SYMBOL(sock_enable_timestamps); |
| 847 | |
| 848 | void sock_set_timestamp(struct sock *sk, int optname, bool valbool) |
| 849 | { |
| 850 | switch (optname) { |
| 851 | case SO_TIMESTAMP_OLD: |
| 852 | __sock_set_timestamps(sk, val: valbool, new: false, ns: false); |
| 853 | break; |
| 854 | case SO_TIMESTAMP_NEW: |
| 855 | __sock_set_timestamps(sk, val: valbool, new: true, ns: false); |
| 856 | break; |
| 857 | case SO_TIMESTAMPNS_OLD: |
| 858 | __sock_set_timestamps(sk, val: valbool, new: false, ns: true); |
| 859 | break; |
| 860 | case SO_TIMESTAMPNS_NEW: |
| 861 | __sock_set_timestamps(sk, val: valbool, new: true, ns: true); |
| 862 | break; |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) |
| 867 | { |
| 868 | struct net *net = sock_net(sk); |
| 869 | struct net_device *dev = NULL; |
| 870 | bool match = false; |
| 871 | int *vclock_index; |
| 872 | int i, num; |
| 873 | |
| 874 | if (sk->sk_bound_dev_if) |
| 875 | dev = dev_get_by_index(net, ifindex: sk->sk_bound_dev_if); |
| 876 | |
| 877 | if (!dev) { |
| 878 | pr_err("%s: sock not bind to device\n" , __func__); |
| 879 | return -EOPNOTSUPP; |
| 880 | } |
| 881 | |
| 882 | num = ethtool_get_phc_vclocks(dev, vclock_index: &vclock_index); |
| 883 | dev_put(dev); |
| 884 | |
| 885 | for (i = 0; i < num; i++) { |
| 886 | if (*(vclock_index + i) == phc_index) { |
| 887 | match = true; |
| 888 | break; |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | if (num > 0) |
| 893 | kfree(objp: vclock_index); |
| 894 | |
| 895 | if (!match) |
| 896 | return -EINVAL; |
| 897 | |
| 898 | WRITE_ONCE(sk->sk_bind_phc, phc_index); |
| 899 | |
| 900 | return 0; |
| 901 | } |
| 902 | |
| 903 | int sock_set_timestamping(struct sock *sk, int optname, |
| 904 | struct so_timestamping timestamping) |
| 905 | { |
| 906 | int val = timestamping.flags; |
| 907 | int ret; |
| 908 | |
| 909 | if (val & ~SOF_TIMESTAMPING_MASK) |
| 910 | return -EINVAL; |
| 911 | |
| 912 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP && |
| 913 | !(val & SOF_TIMESTAMPING_OPT_ID)) |
| 914 | return -EINVAL; |
| 915 | |
| 916 | if (val & SOF_TIMESTAMPING_OPT_ID && |
| 917 | !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { |
| 918 | if (sk_is_tcp(sk)) { |
| 919 | if ((1 << sk->sk_state) & |
| 920 | (TCPF_CLOSE | TCPF_LISTEN)) |
| 921 | return -EINVAL; |
| 922 | if (val & SOF_TIMESTAMPING_OPT_ID_TCP) |
| 923 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->write_seq); |
| 924 | else |
| 925 | atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->snd_una); |
| 926 | } else { |
| 927 | atomic_set(v: &sk->sk_tskey, i: 0); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | if (val & SOF_TIMESTAMPING_OPT_STATS && |
| 932 | !(val & SOF_TIMESTAMPING_OPT_TSONLY)) |
| 933 | return -EINVAL; |
| 934 | |
| 935 | if (val & SOF_TIMESTAMPING_BIND_PHC) { |
| 936 | ret = sock_timestamping_bind_phc(sk, phc_index: timestamping.bind_phc); |
| 937 | if (ret) |
| 938 | return ret; |
| 939 | } |
| 940 | |
| 941 | WRITE_ONCE(sk->sk_tsflags, val); |
| 942 | sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: optname == SO_TIMESTAMPING_NEW); |
| 943 | sock_valbool_flag(sk, bit: SOCK_TIMESTAMPING_ANY, valbool: !!(val & TSFLAGS_ANY)); |
| 944 | |
| 945 | if (val & SOF_TIMESTAMPING_RX_SOFTWARE) |
| 946 | sock_enable_timestamp(sk, |
| 947 | flag: SOCK_TIMESTAMPING_RX_SOFTWARE); |
| 948 | else |
| 949 | sock_disable_timestamp(sk, |
| 950 | flags: (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | #if defined(CONFIG_CGROUP_BPF) |
| 955 | void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) |
| 956 | { |
| 957 | struct bpf_sock_ops_kern sock_ops; |
| 958 | |
| 959 | memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); |
| 960 | sock_ops.op = op; |
| 961 | sock_ops.is_fullsock = 1; |
| 962 | sock_ops.sk = sk; |
| 963 | bpf_skops_init_skb(skops: &sock_ops, skb, end_offset: 0); |
| 964 | __cgroup_bpf_run_filter_sock_ops(sk, sock_ops: &sock_ops, atype: CGROUP_SOCK_OPS); |
| 965 | } |
| 966 | #endif |
| 967 | |
| 968 | void sock_set_keepalive(struct sock *sk) |
| 969 | { |
| 970 | lock_sock(sk); |
| 971 | if (sk->sk_prot->keepalive) |
| 972 | sk->sk_prot->keepalive(sk, true); |
| 973 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool: true); |
| 974 | release_sock(sk); |
| 975 | } |
| 976 | EXPORT_SYMBOL(sock_set_keepalive); |
| 977 | |
| 978 | static void __sock_set_rcvbuf(struct sock *sk, int val) |
| 979 | { |
| 980 | /* Ensure val * 2 fits into an int, to prevent max_t() from treating it |
| 981 | * as a negative value. |
| 982 | */ |
| 983 | val = min_t(int, val, INT_MAX / 2); |
| 984 | sk->sk_userlocks |= SOCK_RCVBUF_LOCK; |
| 985 | |
| 986 | /* We double it on the way in to account for "struct sk_buff" etc. |
| 987 | * overhead. Applications assume that the SO_RCVBUF setting they make |
| 988 | * will allow that much actual data to be received on that socket. |
| 989 | * |
| 990 | * Applications are unaware that "struct sk_buff" and other overheads |
| 991 | * allocate from the receive buffer during socket buffer allocation. |
| 992 | * |
| 993 | * And after considering the possible alternatives, returning the value |
| 994 | * we actually used in getsockopt is the most desirable behavior. |
| 995 | */ |
| 996 | WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); |
| 997 | } |
| 998 | |
| 999 | void sock_set_rcvbuf(struct sock *sk, int val) |
| 1000 | { |
| 1001 | lock_sock(sk); |
| 1002 | __sock_set_rcvbuf(sk, val); |
| 1003 | release_sock(sk); |
| 1004 | } |
| 1005 | EXPORT_SYMBOL(sock_set_rcvbuf); |
| 1006 | |
| 1007 | static void __sock_set_mark(struct sock *sk, u32 val) |
| 1008 | { |
| 1009 | if (val != sk->sk_mark) { |
| 1010 | WRITE_ONCE(sk->sk_mark, val); |
| 1011 | sk_dst_reset(sk); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | void sock_set_mark(struct sock *sk, u32 val) |
| 1016 | { |
| 1017 | lock_sock(sk); |
| 1018 | __sock_set_mark(sk, val); |
| 1019 | release_sock(sk); |
| 1020 | } |
| 1021 | EXPORT_SYMBOL(sock_set_mark); |
| 1022 | |
| 1023 | static void sock_release_reserved_memory(struct sock *sk, int bytes) |
| 1024 | { |
| 1025 | /* Round down bytes to multiple of pages */ |
| 1026 | bytes = round_down(bytes, PAGE_SIZE); |
| 1027 | |
| 1028 | WARN_ON(bytes > sk->sk_reserved_mem); |
| 1029 | WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); |
| 1030 | sk_mem_reclaim(sk); |
| 1031 | } |
| 1032 | |
| 1033 | static int sock_reserve_memory(struct sock *sk, int bytes) |
| 1034 | { |
| 1035 | long allocated; |
| 1036 | bool charged; |
| 1037 | int pages; |
| 1038 | |
| 1039 | if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) |
| 1040 | return -EOPNOTSUPP; |
| 1041 | |
| 1042 | if (!bytes) |
| 1043 | return 0; |
| 1044 | |
| 1045 | pages = sk_mem_pages(amt: bytes); |
| 1046 | |
| 1047 | /* pre-charge to memcg */ |
| 1048 | charged = mem_cgroup_charge_skmem(memcg: sk->sk_memcg, nr_pages: pages, |
| 1049 | GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
| 1050 | if (!charged) |
| 1051 | return -ENOMEM; |
| 1052 | |
| 1053 | /* pre-charge to forward_alloc */ |
| 1054 | sk_memory_allocated_add(sk, val: pages); |
| 1055 | allocated = sk_memory_allocated(sk); |
| 1056 | /* If the system goes into memory pressure with this |
| 1057 | * precharge, give up and return error. |
| 1058 | */ |
| 1059 | if (allocated > sk_prot_mem_limits(sk, index: 1)) { |
| 1060 | sk_memory_allocated_sub(sk, val: pages); |
| 1061 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: pages); |
| 1062 | return -ENOMEM; |
| 1063 | } |
| 1064 | sk_forward_alloc_add(sk, val: pages << PAGE_SHIFT); |
| 1065 | |
| 1066 | WRITE_ONCE(sk->sk_reserved_mem, |
| 1067 | sk->sk_reserved_mem + (pages << PAGE_SHIFT)); |
| 1068 | |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | #ifdef CONFIG_PAGE_POOL |
| 1073 | |
| 1074 | /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED |
| 1075 | * in 1 syscall. The limit exists to limit the amount of memory the kernel |
| 1076 | * allocates to copy these tokens, and to prevent looping over the frags for |
| 1077 | * too long. |
| 1078 | */ |
| 1079 | #define MAX_DONTNEED_TOKENS 128 |
| 1080 | #define MAX_DONTNEED_FRAGS 1024 |
| 1081 | |
| 1082 | static noinline_for_stack int |
| 1083 | sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) |
| 1084 | { |
| 1085 | unsigned int num_tokens, i, j, k, netmem_num = 0; |
| 1086 | struct dmabuf_token *tokens; |
| 1087 | int ret = 0, num_frags = 0; |
| 1088 | netmem_ref netmems[16]; |
| 1089 | |
| 1090 | if (!sk_is_tcp(sk)) |
| 1091 | return -EBADF; |
| 1092 | |
| 1093 | if (optlen % sizeof(*tokens) || |
| 1094 | optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) |
| 1095 | return -EINVAL; |
| 1096 | |
| 1097 | num_tokens = optlen / sizeof(*tokens); |
| 1098 | tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); |
| 1099 | if (!tokens) |
| 1100 | return -ENOMEM; |
| 1101 | |
| 1102 | if (copy_from_sockptr(dst: tokens, src: optval, size: optlen)) { |
| 1103 | kvfree(addr: tokens); |
| 1104 | return -EFAULT; |
| 1105 | } |
| 1106 | |
| 1107 | xa_lock_bh(&sk->sk_user_frags); |
| 1108 | for (i = 0; i < num_tokens; i++) { |
| 1109 | for (j = 0; j < tokens[i].token_count; j++) { |
| 1110 | if (++num_frags > MAX_DONTNEED_FRAGS) |
| 1111 | goto frag_limit_reached; |
| 1112 | |
| 1113 | netmem_ref netmem = (__force netmem_ref)__xa_erase( |
| 1114 | &sk->sk_user_frags, index: tokens[i].token_start + j); |
| 1115 | |
| 1116 | if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) |
| 1117 | continue; |
| 1118 | |
| 1119 | netmems[netmem_num++] = netmem; |
| 1120 | if (netmem_num == ARRAY_SIZE(netmems)) { |
| 1121 | xa_unlock_bh(&sk->sk_user_frags); |
| 1122 | for (k = 0; k < netmem_num; k++) |
| 1123 | WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
| 1124 | netmem_num = 0; |
| 1125 | xa_lock_bh(&sk->sk_user_frags); |
| 1126 | } |
| 1127 | ret++; |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | frag_limit_reached: |
| 1132 | xa_unlock_bh(&sk->sk_user_frags); |
| 1133 | for (k = 0; k < netmem_num; k++) |
| 1134 | WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
| 1135 | |
| 1136 | kvfree(addr: tokens); |
| 1137 | return ret; |
| 1138 | } |
| 1139 | #endif |
| 1140 | |
| 1141 | void sockopt_lock_sock(struct sock *sk) |
| 1142 | { |
| 1143 | /* When current->bpf_ctx is set, the setsockopt is called from |
| 1144 | * a bpf prog. bpf has ensured the sk lock has been |
| 1145 | * acquired before calling setsockopt(). |
| 1146 | */ |
| 1147 | if (has_current_bpf_ctx()) |
| 1148 | return; |
| 1149 | |
| 1150 | lock_sock(sk); |
| 1151 | } |
| 1152 | EXPORT_SYMBOL(sockopt_lock_sock); |
| 1153 | |
| 1154 | void sockopt_release_sock(struct sock *sk) |
| 1155 | { |
| 1156 | if (has_current_bpf_ctx()) |
| 1157 | return; |
| 1158 | |
| 1159 | release_sock(sk); |
| 1160 | } |
| 1161 | EXPORT_SYMBOL(sockopt_release_sock); |
| 1162 | |
| 1163 | bool sockopt_ns_capable(struct user_namespace *ns, int cap) |
| 1164 | { |
| 1165 | return has_current_bpf_ctx() || ns_capable(ns, cap); |
| 1166 | } |
| 1167 | EXPORT_SYMBOL(sockopt_ns_capable); |
| 1168 | |
| 1169 | bool sockopt_capable(int cap) |
| 1170 | { |
| 1171 | return has_current_bpf_ctx() || capable(cap); |
| 1172 | } |
| 1173 | EXPORT_SYMBOL(sockopt_capable); |
| 1174 | |
| 1175 | static int sockopt_validate_clockid(__kernel_clockid_t value) |
| 1176 | { |
| 1177 | switch (value) { |
| 1178 | case CLOCK_REALTIME: |
| 1179 | case CLOCK_MONOTONIC: |
| 1180 | case CLOCK_TAI: |
| 1181 | return 0; |
| 1182 | } |
| 1183 | return -EINVAL; |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * This is meant for all protocols to use and covers goings on |
| 1188 | * at the socket level. Everything here is generic. |
| 1189 | */ |
| 1190 | |
| 1191 | int sk_setsockopt(struct sock *sk, int level, int optname, |
| 1192 | sockptr_t optval, unsigned int optlen) |
| 1193 | { |
| 1194 | struct so_timestamping timestamping; |
| 1195 | struct socket *sock = sk->sk_socket; |
| 1196 | struct sock_txtime sk_txtime; |
| 1197 | int val; |
| 1198 | int valbool; |
| 1199 | struct linger ling; |
| 1200 | int ret = 0; |
| 1201 | |
| 1202 | /* |
| 1203 | * Options without arguments |
| 1204 | */ |
| 1205 | |
| 1206 | if (optname == SO_BINDTODEVICE) |
| 1207 | return sock_setbindtodevice(sk, optval, optlen); |
| 1208 | |
| 1209 | if (optlen < sizeof(int)) |
| 1210 | return -EINVAL; |
| 1211 | |
| 1212 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
| 1213 | return -EFAULT; |
| 1214 | |
| 1215 | valbool = val ? 1 : 0; |
| 1216 | |
| 1217 | /* handle options which do not require locking the socket. */ |
| 1218 | switch (optname) { |
| 1219 | case SO_PRIORITY: |
| 1220 | if (sk_set_prio_allowed(sk, val)) { |
| 1221 | sock_set_priority(sk, val); |
| 1222 | return 0; |
| 1223 | } |
| 1224 | return -EPERM; |
| 1225 | case SO_TYPE: |
| 1226 | case SO_PROTOCOL: |
| 1227 | case SO_DOMAIN: |
| 1228 | case SO_ERROR: |
| 1229 | return -ENOPROTOOPT; |
| 1230 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 1231 | case SO_BUSY_POLL: |
| 1232 | if (val < 0) |
| 1233 | return -EINVAL; |
| 1234 | WRITE_ONCE(sk->sk_ll_usec, val); |
| 1235 | return 0; |
| 1236 | case SO_PREFER_BUSY_POLL: |
| 1237 | if (valbool && !sockopt_capable(CAP_NET_ADMIN)) |
| 1238 | return -EPERM; |
| 1239 | WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); |
| 1240 | return 0; |
| 1241 | case SO_BUSY_POLL_BUDGET: |
| 1242 | if (val > READ_ONCE(sk->sk_busy_poll_budget) && |
| 1243 | !sockopt_capable(CAP_NET_ADMIN)) |
| 1244 | return -EPERM; |
| 1245 | if (val < 0 || val > U16_MAX) |
| 1246 | return -EINVAL; |
| 1247 | WRITE_ONCE(sk->sk_busy_poll_budget, val); |
| 1248 | return 0; |
| 1249 | #endif |
| 1250 | case SO_MAX_PACING_RATE: |
| 1251 | { |
| 1252 | unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; |
| 1253 | unsigned long pacing_rate; |
| 1254 | |
| 1255 | if (sizeof(ulval) != sizeof(val) && |
| 1256 | optlen >= sizeof(ulval) && |
| 1257 | copy_from_sockptr(dst: &ulval, src: optval, size: sizeof(ulval))) { |
| 1258 | return -EFAULT; |
| 1259 | } |
| 1260 | if (ulval != ~0UL) |
| 1261 | cmpxchg(&sk->sk_pacing_status, |
| 1262 | SK_PACING_NONE, |
| 1263 | SK_PACING_NEEDED); |
| 1264 | /* Pairs with READ_ONCE() from sk_getsockopt() */ |
| 1265 | WRITE_ONCE(sk->sk_max_pacing_rate, ulval); |
| 1266 | pacing_rate = READ_ONCE(sk->sk_pacing_rate); |
| 1267 | if (ulval < pacing_rate) |
| 1268 | WRITE_ONCE(sk->sk_pacing_rate, ulval); |
| 1269 | return 0; |
| 1270 | } |
| 1271 | case SO_TXREHASH: |
| 1272 | if (!sk_is_tcp(sk)) |
| 1273 | return -EOPNOTSUPP; |
| 1274 | if (val < -1 || val > 1) |
| 1275 | return -EINVAL; |
| 1276 | if ((u8)val == SOCK_TXREHASH_DEFAULT) |
| 1277 | val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); |
| 1278 | /* Paired with READ_ONCE() in tcp_rtx_synack() |
| 1279 | * and sk_getsockopt(). |
| 1280 | */ |
| 1281 | WRITE_ONCE(sk->sk_txrehash, (u8)val); |
| 1282 | return 0; |
| 1283 | case SO_PEEK_OFF: |
| 1284 | { |
| 1285 | int (*set_peek_off)(struct sock *sk, int val); |
| 1286 | |
| 1287 | set_peek_off = READ_ONCE(sock->ops)->set_peek_off; |
| 1288 | if (set_peek_off) |
| 1289 | ret = set_peek_off(sk, val); |
| 1290 | else |
| 1291 | ret = -EOPNOTSUPP; |
| 1292 | return ret; |
| 1293 | } |
| 1294 | #ifdef CONFIG_PAGE_POOL |
| 1295 | case SO_DEVMEM_DONTNEED: |
| 1296 | return sock_devmem_dontneed(sk, optval, optlen); |
| 1297 | #endif |
| 1298 | } |
| 1299 | |
| 1300 | sockopt_lock_sock(sk); |
| 1301 | |
| 1302 | switch (optname) { |
| 1303 | case SO_DEBUG: |
| 1304 | if (val && !sockopt_capable(CAP_NET_ADMIN)) |
| 1305 | ret = -EACCES; |
| 1306 | else |
| 1307 | sock_valbool_flag(sk, bit: SOCK_DBG, valbool); |
| 1308 | break; |
| 1309 | case SO_REUSEADDR: |
| 1310 | sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); |
| 1311 | break; |
| 1312 | case SO_REUSEPORT: |
| 1313 | if (valbool && !sk_is_inet(sk)) |
| 1314 | ret = -EOPNOTSUPP; |
| 1315 | else |
| 1316 | sk->sk_reuseport = valbool; |
| 1317 | break; |
| 1318 | case SO_DONTROUTE: |
| 1319 | sock_valbool_flag(sk, bit: SOCK_LOCALROUTE, valbool); |
| 1320 | sk_dst_reset(sk); |
| 1321 | break; |
| 1322 | case SO_BROADCAST: |
| 1323 | sock_valbool_flag(sk, bit: SOCK_BROADCAST, valbool); |
| 1324 | break; |
| 1325 | case SO_SNDBUF: |
| 1326 | /* Don't error on this BSD doesn't and if you think |
| 1327 | * about it this is right. Otherwise apps have to |
| 1328 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
| 1329 | * are treated in BSD as hints |
| 1330 | */ |
| 1331 | val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); |
| 1332 | set_sndbuf: |
| 1333 | /* Ensure val * 2 fits into an int, to prevent max_t() |
| 1334 | * from treating it as a negative value. |
| 1335 | */ |
| 1336 | val = min_t(int, val, INT_MAX / 2); |
| 1337 | sk->sk_userlocks |= SOCK_SNDBUF_LOCK; |
| 1338 | WRITE_ONCE(sk->sk_sndbuf, |
| 1339 | max_t(int, val * 2, SOCK_MIN_SNDBUF)); |
| 1340 | /* Wake up sending tasks if we upped the value. */ |
| 1341 | sk->sk_write_space(sk); |
| 1342 | break; |
| 1343 | |
| 1344 | case SO_SNDBUFFORCE: |
| 1345 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
| 1346 | ret = -EPERM; |
| 1347 | break; |
| 1348 | } |
| 1349 | |
| 1350 | /* No negative values (to prevent underflow, as val will be |
| 1351 | * multiplied by 2). |
| 1352 | */ |
| 1353 | if (val < 0) |
| 1354 | val = 0; |
| 1355 | goto set_sndbuf; |
| 1356 | |
| 1357 | case SO_RCVBUF: |
| 1358 | /* Don't error on this BSD doesn't and if you think |
| 1359 | * about it this is right. Otherwise apps have to |
| 1360 | * play 'guess the biggest size' games. RCVBUF/SNDBUF |
| 1361 | * are treated in BSD as hints |
| 1362 | */ |
| 1363 | __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); |
| 1364 | break; |
| 1365 | |
| 1366 | case SO_RCVBUFFORCE: |
| 1367 | if (!sockopt_capable(CAP_NET_ADMIN)) { |
| 1368 | ret = -EPERM; |
| 1369 | break; |
| 1370 | } |
| 1371 | |
| 1372 | /* No negative values (to prevent underflow, as val will be |
| 1373 | * multiplied by 2). |
| 1374 | */ |
| 1375 | __sock_set_rcvbuf(sk, max(val, 0)); |
| 1376 | break; |
| 1377 | |
| 1378 | case SO_KEEPALIVE: |
| 1379 | if (sk->sk_prot->keepalive) |
| 1380 | sk->sk_prot->keepalive(sk, valbool); |
| 1381 | sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool); |
| 1382 | break; |
| 1383 | |
| 1384 | case SO_OOBINLINE: |
| 1385 | sock_valbool_flag(sk, bit: SOCK_URGINLINE, valbool); |
| 1386 | break; |
| 1387 | |
| 1388 | case SO_NO_CHECK: |
| 1389 | sk->sk_no_check_tx = valbool; |
| 1390 | break; |
| 1391 | |
| 1392 | case SO_LINGER: |
| 1393 | if (optlen < sizeof(ling)) { |
| 1394 | ret = -EINVAL; /* 1003.1g */ |
| 1395 | break; |
| 1396 | } |
| 1397 | if (copy_from_sockptr(dst: &ling, src: optval, size: sizeof(ling))) { |
| 1398 | ret = -EFAULT; |
| 1399 | break; |
| 1400 | } |
| 1401 | if (!ling.l_onoff) { |
| 1402 | sock_reset_flag(sk, flag: SOCK_LINGER); |
| 1403 | } else { |
| 1404 | unsigned long t_sec = ling.l_linger; |
| 1405 | |
| 1406 | if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) |
| 1407 | WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); |
| 1408 | else |
| 1409 | WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); |
| 1410 | sock_set_flag(sk, flag: SOCK_LINGER); |
| 1411 | } |
| 1412 | break; |
| 1413 | |
| 1414 | case SO_BSDCOMPAT: |
| 1415 | break; |
| 1416 | |
| 1417 | case SO_TIMESTAMP_OLD: |
| 1418 | case SO_TIMESTAMP_NEW: |
| 1419 | case SO_TIMESTAMPNS_OLD: |
| 1420 | case SO_TIMESTAMPNS_NEW: |
| 1421 | sock_set_timestamp(sk, optname, valbool); |
| 1422 | break; |
| 1423 | |
| 1424 | case SO_TIMESTAMPING_NEW: |
| 1425 | case SO_TIMESTAMPING_OLD: |
| 1426 | if (optlen == sizeof(timestamping)) { |
| 1427 | if (copy_from_sockptr(dst: ×tamping, src: optval, |
| 1428 | size: sizeof(timestamping))) { |
| 1429 | ret = -EFAULT; |
| 1430 | break; |
| 1431 | } |
| 1432 | } else { |
| 1433 | memset(×tamping, 0, sizeof(timestamping)); |
| 1434 | timestamping.flags = val; |
| 1435 | } |
| 1436 | ret = sock_set_timestamping(sk, optname, timestamping); |
| 1437 | break; |
| 1438 | |
| 1439 | case SO_RCVLOWAT: |
| 1440 | { |
| 1441 | int (*set_rcvlowat)(struct sock *sk, int val) = NULL; |
| 1442 | |
| 1443 | if (val < 0) |
| 1444 | val = INT_MAX; |
| 1445 | if (sock) |
| 1446 | set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; |
| 1447 | if (set_rcvlowat) |
| 1448 | ret = set_rcvlowat(sk, val); |
| 1449 | else |
| 1450 | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
| 1451 | break; |
| 1452 | } |
| 1453 | case SO_RCVTIMEO_OLD: |
| 1454 | case SO_RCVTIMEO_NEW: |
| 1455 | ret = sock_set_timeout(timeo_p: &sk->sk_rcvtimeo, optval, |
| 1456 | optlen, old_timeval: optname == SO_RCVTIMEO_OLD); |
| 1457 | break; |
| 1458 | |
| 1459 | case SO_SNDTIMEO_OLD: |
| 1460 | case SO_SNDTIMEO_NEW: |
| 1461 | ret = sock_set_timeout(timeo_p: &sk->sk_sndtimeo, optval, |
| 1462 | optlen, old_timeval: optname == SO_SNDTIMEO_OLD); |
| 1463 | break; |
| 1464 | |
| 1465 | case SO_ATTACH_FILTER: { |
| 1466 | struct sock_fprog fprog; |
| 1467 | |
| 1468 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
| 1469 | if (!ret) |
| 1470 | ret = sk_attach_filter(fprog: &fprog, sk); |
| 1471 | break; |
| 1472 | } |
| 1473 | case SO_ATTACH_BPF: |
| 1474 | ret = -EINVAL; |
| 1475 | if (optlen == sizeof(u32)) { |
| 1476 | u32 ufd; |
| 1477 | |
| 1478 | ret = -EFAULT; |
| 1479 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
| 1480 | break; |
| 1481 | |
| 1482 | ret = sk_attach_bpf(ufd, sk); |
| 1483 | } |
| 1484 | break; |
| 1485 | |
| 1486 | case SO_ATTACH_REUSEPORT_CBPF: { |
| 1487 | struct sock_fprog fprog; |
| 1488 | |
| 1489 | ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen); |
| 1490 | if (!ret) |
| 1491 | ret = sk_reuseport_attach_filter(fprog: &fprog, sk); |
| 1492 | break; |
| 1493 | } |
| 1494 | case SO_ATTACH_REUSEPORT_EBPF: |
| 1495 | ret = -EINVAL; |
| 1496 | if (optlen == sizeof(u32)) { |
| 1497 | u32 ufd; |
| 1498 | |
| 1499 | ret = -EFAULT; |
| 1500 | if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd))) |
| 1501 | break; |
| 1502 | |
| 1503 | ret = sk_reuseport_attach_bpf(ufd, sk); |
| 1504 | } |
| 1505 | break; |
| 1506 | |
| 1507 | case SO_DETACH_REUSEPORT_BPF: |
| 1508 | ret = reuseport_detach_prog(sk); |
| 1509 | break; |
| 1510 | |
| 1511 | case SO_DETACH_FILTER: |
| 1512 | ret = sk_detach_filter(sk); |
| 1513 | break; |
| 1514 | |
| 1515 | case SO_LOCK_FILTER: |
| 1516 | if (sock_flag(sk, flag: SOCK_FILTER_LOCKED) && !valbool) |
| 1517 | ret = -EPERM; |
| 1518 | else |
| 1519 | sock_valbool_flag(sk, bit: SOCK_FILTER_LOCKED, valbool); |
| 1520 | break; |
| 1521 | |
| 1522 | case SO_MARK: |
| 1523 | if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && |
| 1524 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
| 1525 | ret = -EPERM; |
| 1526 | break; |
| 1527 | } |
| 1528 | |
| 1529 | __sock_set_mark(sk, val); |
| 1530 | break; |
| 1531 | case SO_RCVMARK: |
| 1532 | sock_valbool_flag(sk, bit: SOCK_RCVMARK, valbool); |
| 1533 | break; |
| 1534 | |
| 1535 | case SO_RCVPRIORITY: |
| 1536 | sock_valbool_flag(sk, bit: SOCK_RCVPRIORITY, valbool); |
| 1537 | break; |
| 1538 | |
| 1539 | case SO_RXQ_OVFL: |
| 1540 | sock_valbool_flag(sk, bit: SOCK_RXQ_OVFL, valbool); |
| 1541 | break; |
| 1542 | |
| 1543 | case SO_WIFI_STATUS: |
| 1544 | sock_valbool_flag(sk, bit: SOCK_WIFI_STATUS, valbool); |
| 1545 | break; |
| 1546 | |
| 1547 | case SO_NOFCS: |
| 1548 | sock_valbool_flag(sk, bit: SOCK_NOFCS, valbool); |
| 1549 | break; |
| 1550 | |
| 1551 | case SO_SELECT_ERR_QUEUE: |
| 1552 | sock_valbool_flag(sk, bit: SOCK_SELECT_ERR_QUEUE, valbool); |
| 1553 | break; |
| 1554 | |
| 1555 | case SO_PASSCRED: |
| 1556 | if (sk_may_scm_recv(sk)) |
| 1557 | sk->sk_scm_credentials = valbool; |
| 1558 | else |
| 1559 | ret = -EOPNOTSUPP; |
| 1560 | break; |
| 1561 | |
| 1562 | case SO_PASSSEC: |
| 1563 | if (IS_ENABLED(CONFIG_SECURITY_NETWORK) && sk_may_scm_recv(sk)) |
| 1564 | sk->sk_scm_security = valbool; |
| 1565 | else |
| 1566 | ret = -EOPNOTSUPP; |
| 1567 | break; |
| 1568 | |
| 1569 | case SO_PASSPIDFD: |
| 1570 | if (sk_is_unix(sk)) |
| 1571 | sk->sk_scm_pidfd = valbool; |
| 1572 | else |
| 1573 | ret = -EOPNOTSUPP; |
| 1574 | break; |
| 1575 | |
| 1576 | case SO_PASSRIGHTS: |
| 1577 | if (sk_is_unix(sk)) |
| 1578 | sk->sk_scm_rights = valbool; |
| 1579 | else |
| 1580 | ret = -EOPNOTSUPP; |
| 1581 | break; |
| 1582 | |
| 1583 | case SO_INCOMING_CPU: |
| 1584 | reuseport_update_incoming_cpu(sk, val); |
| 1585 | break; |
| 1586 | |
| 1587 | case SO_CNX_ADVICE: |
| 1588 | if (val == 1) |
| 1589 | dst_negative_advice(sk); |
| 1590 | break; |
| 1591 | |
| 1592 | case SO_ZEROCOPY: |
| 1593 | if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { |
| 1594 | if (!(sk_is_tcp(sk) || |
| 1595 | (sk->sk_type == SOCK_DGRAM && |
| 1596 | sk->sk_protocol == IPPROTO_UDP))) |
| 1597 | ret = -EOPNOTSUPP; |
| 1598 | } else if (sk->sk_family != PF_RDS) { |
| 1599 | ret = -EOPNOTSUPP; |
| 1600 | } |
| 1601 | if (!ret) { |
| 1602 | if (val < 0 || val > 1) |
| 1603 | ret = -EINVAL; |
| 1604 | else |
| 1605 | sock_valbool_flag(sk, bit: SOCK_ZEROCOPY, valbool); |
| 1606 | } |
| 1607 | break; |
| 1608 | |
| 1609 | case SO_TXTIME: |
| 1610 | if (optlen != sizeof(struct sock_txtime)) { |
| 1611 | ret = -EINVAL; |
| 1612 | break; |
| 1613 | } else if (copy_from_sockptr(dst: &sk_txtime, src: optval, |
| 1614 | size: sizeof(struct sock_txtime))) { |
| 1615 | ret = -EFAULT; |
| 1616 | break; |
| 1617 | } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { |
| 1618 | ret = -EINVAL; |
| 1619 | break; |
| 1620 | } |
| 1621 | /* CLOCK_MONOTONIC is only used by sch_fq, and this packet |
| 1622 | * scheduler has enough safe guards. |
| 1623 | */ |
| 1624 | if (sk_txtime.clockid != CLOCK_MONOTONIC && |
| 1625 | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
| 1626 | ret = -EPERM; |
| 1627 | break; |
| 1628 | } |
| 1629 | |
| 1630 | ret = sockopt_validate_clockid(value: sk_txtime.clockid); |
| 1631 | if (ret) |
| 1632 | break; |
| 1633 | |
| 1634 | sock_valbool_flag(sk, bit: SOCK_TXTIME, valbool: true); |
| 1635 | sk->sk_clockid = sk_txtime.clockid; |
| 1636 | sk->sk_txtime_deadline_mode = |
| 1637 | !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); |
| 1638 | sk->sk_txtime_report_errors = |
| 1639 | !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); |
| 1640 | break; |
| 1641 | |
| 1642 | case SO_BINDTOIFINDEX: |
| 1643 | ret = sock_bindtoindex_locked(sk, ifindex: val); |
| 1644 | break; |
| 1645 | |
| 1646 | case SO_BUF_LOCK: |
| 1647 | if (val & ~SOCK_BUF_LOCK_MASK) { |
| 1648 | ret = -EINVAL; |
| 1649 | break; |
| 1650 | } |
| 1651 | sk->sk_userlocks = val | (sk->sk_userlocks & |
| 1652 | ~SOCK_BUF_LOCK_MASK); |
| 1653 | break; |
| 1654 | |
| 1655 | case SO_RESERVE_MEM: |
| 1656 | { |
| 1657 | int delta; |
| 1658 | |
| 1659 | if (val < 0) { |
| 1660 | ret = -EINVAL; |
| 1661 | break; |
| 1662 | } |
| 1663 | |
| 1664 | delta = val - sk->sk_reserved_mem; |
| 1665 | if (delta < 0) |
| 1666 | sock_release_reserved_memory(sk, bytes: -delta); |
| 1667 | else |
| 1668 | ret = sock_reserve_memory(sk, bytes: delta); |
| 1669 | break; |
| 1670 | } |
| 1671 | |
| 1672 | default: |
| 1673 | ret = -ENOPROTOOPT; |
| 1674 | break; |
| 1675 | } |
| 1676 | sockopt_release_sock(sk); |
| 1677 | return ret; |
| 1678 | } |
| 1679 | |
| 1680 | int sock_setsockopt(struct socket *sock, int level, int optname, |
| 1681 | sockptr_t optval, unsigned int optlen) |
| 1682 | { |
| 1683 | return sk_setsockopt(sk: sock->sk, level, optname, |
| 1684 | optval, optlen); |
| 1685 | } |
| 1686 | EXPORT_SYMBOL(sock_setsockopt); |
| 1687 | |
| 1688 | static const struct cred *sk_get_peer_cred(struct sock *sk) |
| 1689 | { |
| 1690 | const struct cred *cred; |
| 1691 | |
| 1692 | spin_lock(lock: &sk->sk_peer_lock); |
| 1693 | cred = get_cred(cred: sk->sk_peer_cred); |
| 1694 | spin_unlock(lock: &sk->sk_peer_lock); |
| 1695 | |
| 1696 | return cred; |
| 1697 | } |
| 1698 | |
| 1699 | static void cred_to_ucred(struct pid *pid, const struct cred *cred, |
| 1700 | struct ucred *ucred) |
| 1701 | { |
| 1702 | ucred->pid = pid_vnr(pid); |
| 1703 | ucred->uid = ucred->gid = -1; |
| 1704 | if (cred) { |
| 1705 | struct user_namespace *current_ns = current_user_ns(); |
| 1706 | |
| 1707 | ucred->uid = from_kuid_munged(to: current_ns, uid: cred->euid); |
| 1708 | ucred->gid = from_kgid_munged(to: current_ns, gid: cred->egid); |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | static int groups_to_user(sockptr_t dst, const struct group_info *src) |
| 1713 | { |
| 1714 | struct user_namespace *user_ns = current_user_ns(); |
| 1715 | int i; |
| 1716 | |
| 1717 | for (i = 0; i < src->ngroups; i++) { |
| 1718 | gid_t gid = from_kgid_munged(to: user_ns, gid: src->gid[i]); |
| 1719 | |
| 1720 | if (copy_to_sockptr_offset(dst, offset: i * sizeof(gid), src: &gid, size: sizeof(gid))) |
| 1721 | return -EFAULT; |
| 1722 | } |
| 1723 | |
| 1724 | return 0; |
| 1725 | } |
| 1726 | |
| 1727 | int sk_getsockopt(struct sock *sk, int level, int optname, |
| 1728 | sockptr_t optval, sockptr_t optlen) |
| 1729 | { |
| 1730 | struct socket *sock = sk->sk_socket; |
| 1731 | |
| 1732 | union { |
| 1733 | int val; |
| 1734 | u64 val64; |
| 1735 | unsigned long ulval; |
| 1736 | struct linger ling; |
| 1737 | struct old_timeval32 tm32; |
| 1738 | struct __kernel_old_timeval tm; |
| 1739 | struct __kernel_sock_timeval stm; |
| 1740 | struct sock_txtime txtime; |
| 1741 | struct so_timestamping timestamping; |
| 1742 | } v; |
| 1743 | |
| 1744 | int lv = sizeof(int); |
| 1745 | int len; |
| 1746 | |
| 1747 | if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int))) |
| 1748 | return -EFAULT; |
| 1749 | if (len < 0) |
| 1750 | return -EINVAL; |
| 1751 | |
| 1752 | memset(&v, 0, sizeof(v)); |
| 1753 | |
| 1754 | switch (optname) { |
| 1755 | case SO_DEBUG: |
| 1756 | v.val = sock_flag(sk, flag: SOCK_DBG); |
| 1757 | break; |
| 1758 | |
| 1759 | case SO_DONTROUTE: |
| 1760 | v.val = sock_flag(sk, flag: SOCK_LOCALROUTE); |
| 1761 | break; |
| 1762 | |
| 1763 | case SO_BROADCAST: |
| 1764 | v.val = sock_flag(sk, flag: SOCK_BROADCAST); |
| 1765 | break; |
| 1766 | |
| 1767 | case SO_SNDBUF: |
| 1768 | v.val = READ_ONCE(sk->sk_sndbuf); |
| 1769 | break; |
| 1770 | |
| 1771 | case SO_RCVBUF: |
| 1772 | v.val = READ_ONCE(sk->sk_rcvbuf); |
| 1773 | break; |
| 1774 | |
| 1775 | case SO_REUSEADDR: |
| 1776 | v.val = sk->sk_reuse; |
| 1777 | break; |
| 1778 | |
| 1779 | case SO_REUSEPORT: |
| 1780 | v.val = sk->sk_reuseport; |
| 1781 | break; |
| 1782 | |
| 1783 | case SO_KEEPALIVE: |
| 1784 | v.val = sock_flag(sk, flag: SOCK_KEEPOPEN); |
| 1785 | break; |
| 1786 | |
| 1787 | case SO_TYPE: |
| 1788 | v.val = sk->sk_type; |
| 1789 | break; |
| 1790 | |
| 1791 | case SO_PROTOCOL: |
| 1792 | v.val = sk->sk_protocol; |
| 1793 | break; |
| 1794 | |
| 1795 | case SO_DOMAIN: |
| 1796 | v.val = sk->sk_family; |
| 1797 | break; |
| 1798 | |
| 1799 | case SO_ERROR: |
| 1800 | v.val = -sock_error(sk); |
| 1801 | if (v.val == 0) |
| 1802 | v.val = xchg(&sk->sk_err_soft, 0); |
| 1803 | break; |
| 1804 | |
| 1805 | case SO_OOBINLINE: |
| 1806 | v.val = sock_flag(sk, flag: SOCK_URGINLINE); |
| 1807 | break; |
| 1808 | |
| 1809 | case SO_NO_CHECK: |
| 1810 | v.val = sk->sk_no_check_tx; |
| 1811 | break; |
| 1812 | |
| 1813 | case SO_PRIORITY: |
| 1814 | v.val = READ_ONCE(sk->sk_priority); |
| 1815 | break; |
| 1816 | |
| 1817 | case SO_LINGER: |
| 1818 | lv = sizeof(v.ling); |
| 1819 | v.ling.l_onoff = sock_flag(sk, flag: SOCK_LINGER); |
| 1820 | v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; |
| 1821 | break; |
| 1822 | |
| 1823 | case SO_BSDCOMPAT: |
| 1824 | break; |
| 1825 | |
| 1826 | case SO_TIMESTAMP_OLD: |
| 1827 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && |
| 1828 | !sock_flag(sk, flag: SOCK_TSTAMP_NEW) && |
| 1829 | !sock_flag(sk, flag: SOCK_RCVTSTAMPNS); |
| 1830 | break; |
| 1831 | |
| 1832 | case SO_TIMESTAMPNS_OLD: |
| 1833 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && !sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
| 1834 | break; |
| 1835 | |
| 1836 | case SO_TIMESTAMP_NEW: |
| 1837 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
| 1838 | break; |
| 1839 | |
| 1840 | case SO_TIMESTAMPNS_NEW: |
| 1841 | v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && sock_flag(sk, flag: SOCK_TSTAMP_NEW); |
| 1842 | break; |
| 1843 | |
| 1844 | case SO_TIMESTAMPING_OLD: |
| 1845 | case SO_TIMESTAMPING_NEW: |
| 1846 | lv = sizeof(v.timestamping); |
| 1847 | /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only |
| 1848 | * returning the flags when they were set through the same option. |
| 1849 | * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. |
| 1850 | */ |
| 1851 | if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, flag: SOCK_TSTAMP_NEW)) { |
| 1852 | v.timestamping.flags = READ_ONCE(sk->sk_tsflags); |
| 1853 | v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); |
| 1854 | } |
| 1855 | break; |
| 1856 | |
| 1857 | case SO_RCVTIMEO_OLD: |
| 1858 | case SO_RCVTIMEO_NEW: |
| 1859 | lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, |
| 1860 | SO_RCVTIMEO_OLD == optname); |
| 1861 | break; |
| 1862 | |
| 1863 | case SO_SNDTIMEO_OLD: |
| 1864 | case SO_SNDTIMEO_NEW: |
| 1865 | lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, |
| 1866 | SO_SNDTIMEO_OLD == optname); |
| 1867 | break; |
| 1868 | |
| 1869 | case SO_RCVLOWAT: |
| 1870 | v.val = READ_ONCE(sk->sk_rcvlowat); |
| 1871 | break; |
| 1872 | |
| 1873 | case SO_SNDLOWAT: |
| 1874 | v.val = 1; |
| 1875 | break; |
| 1876 | |
| 1877 | case SO_PASSCRED: |
| 1878 | if (!sk_may_scm_recv(sk)) |
| 1879 | return -EOPNOTSUPP; |
| 1880 | |
| 1881 | v.val = sk->sk_scm_credentials; |
| 1882 | break; |
| 1883 | |
| 1884 | case SO_PASSPIDFD: |
| 1885 | if (!sk_is_unix(sk)) |
| 1886 | return -EOPNOTSUPP; |
| 1887 | |
| 1888 | v.val = sk->sk_scm_pidfd; |
| 1889 | break; |
| 1890 | |
| 1891 | case SO_PASSRIGHTS: |
| 1892 | if (!sk_is_unix(sk)) |
| 1893 | return -EOPNOTSUPP; |
| 1894 | |
| 1895 | v.val = sk->sk_scm_rights; |
| 1896 | break; |
| 1897 | |
| 1898 | case SO_PEERCRED: |
| 1899 | { |
| 1900 | struct ucred peercred; |
| 1901 | if (len > sizeof(peercred)) |
| 1902 | len = sizeof(peercred); |
| 1903 | |
| 1904 | spin_lock(lock: &sk->sk_peer_lock); |
| 1905 | cred_to_ucred(pid: sk->sk_peer_pid, cred: sk->sk_peer_cred, ucred: &peercred); |
| 1906 | spin_unlock(lock: &sk->sk_peer_lock); |
| 1907 | |
| 1908 | if (copy_to_sockptr(dst: optval, src: &peercred, size: len)) |
| 1909 | return -EFAULT; |
| 1910 | goto lenout; |
| 1911 | } |
| 1912 | |
| 1913 | case SO_PEERPIDFD: |
| 1914 | { |
| 1915 | struct pid *peer_pid; |
| 1916 | struct file *pidfd_file = NULL; |
| 1917 | unsigned int flags = 0; |
| 1918 | int pidfd; |
| 1919 | |
| 1920 | if (len > sizeof(pidfd)) |
| 1921 | len = sizeof(pidfd); |
| 1922 | |
| 1923 | spin_lock(lock: &sk->sk_peer_lock); |
| 1924 | peer_pid = get_pid(pid: sk->sk_peer_pid); |
| 1925 | spin_unlock(lock: &sk->sk_peer_lock); |
| 1926 | |
| 1927 | if (!peer_pid) |
| 1928 | return -ENODATA; |
| 1929 | |
| 1930 | /* The use of PIDFD_STALE requires stashing of struct pid |
| 1931 | * on pidfs with pidfs_register_pid() and only AF_UNIX |
| 1932 | * were prepared for this. |
| 1933 | */ |
| 1934 | if (sk->sk_family == AF_UNIX) |
| 1935 | flags = PIDFD_STALE; |
| 1936 | |
| 1937 | pidfd = pidfd_prepare(pid: peer_pid, flags, ret_file: &pidfd_file); |
| 1938 | put_pid(pid: peer_pid); |
| 1939 | if (pidfd < 0) |
| 1940 | return pidfd; |
| 1941 | |
| 1942 | if (copy_to_sockptr(dst: optval, src: &pidfd, size: len) || |
| 1943 | copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) { |
| 1944 | put_unused_fd(fd: pidfd); |
| 1945 | fput(pidfd_file); |
| 1946 | |
| 1947 | return -EFAULT; |
| 1948 | } |
| 1949 | |
| 1950 | fd_install(fd: pidfd, file: pidfd_file); |
| 1951 | return 0; |
| 1952 | } |
| 1953 | |
| 1954 | case SO_PEERGROUPS: |
| 1955 | { |
| 1956 | const struct cred *cred; |
| 1957 | int ret, n; |
| 1958 | |
| 1959 | cred = sk_get_peer_cred(sk); |
| 1960 | if (!cred) |
| 1961 | return -ENODATA; |
| 1962 | |
| 1963 | n = cred->group_info->ngroups; |
| 1964 | if (len < n * sizeof(gid_t)) { |
| 1965 | len = n * sizeof(gid_t); |
| 1966 | put_cred(cred); |
| 1967 | return copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)) ? -EFAULT : -ERANGE; |
| 1968 | } |
| 1969 | len = n * sizeof(gid_t); |
| 1970 | |
| 1971 | ret = groups_to_user(dst: optval, src: cred->group_info); |
| 1972 | put_cred(cred); |
| 1973 | if (ret) |
| 1974 | return ret; |
| 1975 | goto lenout; |
| 1976 | } |
| 1977 | |
| 1978 | case SO_PEERNAME: |
| 1979 | { |
| 1980 | struct sockaddr_storage address; |
| 1981 | |
| 1982 | lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); |
| 1983 | if (lv < 0) |
| 1984 | return -ENOTCONN; |
| 1985 | if (lv < len) |
| 1986 | return -EINVAL; |
| 1987 | if (copy_to_sockptr(dst: optval, src: &address, size: len)) |
| 1988 | return -EFAULT; |
| 1989 | goto lenout; |
| 1990 | } |
| 1991 | |
| 1992 | /* Dubious BSD thing... Probably nobody even uses it, but |
| 1993 | * the UNIX standard wants it for whatever reason... -DaveM |
| 1994 | */ |
| 1995 | case SO_ACCEPTCONN: |
| 1996 | v.val = sk->sk_state == TCP_LISTEN; |
| 1997 | break; |
| 1998 | |
| 1999 | case SO_PASSSEC: |
| 2000 | if (!IS_ENABLED(CONFIG_SECURITY_NETWORK) || !sk_may_scm_recv(sk)) |
| 2001 | return -EOPNOTSUPP; |
| 2002 | |
| 2003 | v.val = sk->sk_scm_security; |
| 2004 | break; |
| 2005 | |
| 2006 | case SO_PEERSEC: |
| 2007 | return security_socket_getpeersec_stream(sock, |
| 2008 | optval, optlen, len); |
| 2009 | |
| 2010 | case SO_MARK: |
| 2011 | v.val = READ_ONCE(sk->sk_mark); |
| 2012 | break; |
| 2013 | |
| 2014 | case SO_RCVMARK: |
| 2015 | v.val = sock_flag(sk, flag: SOCK_RCVMARK); |
| 2016 | break; |
| 2017 | |
| 2018 | case SO_RCVPRIORITY: |
| 2019 | v.val = sock_flag(sk, flag: SOCK_RCVPRIORITY); |
| 2020 | break; |
| 2021 | |
| 2022 | case SO_RXQ_OVFL: |
| 2023 | v.val = sock_flag(sk, flag: SOCK_RXQ_OVFL); |
| 2024 | break; |
| 2025 | |
| 2026 | case SO_WIFI_STATUS: |
| 2027 | v.val = sock_flag(sk, flag: SOCK_WIFI_STATUS); |
| 2028 | break; |
| 2029 | |
| 2030 | case SO_PEEK_OFF: |
| 2031 | if (!READ_ONCE(sock->ops)->set_peek_off) |
| 2032 | return -EOPNOTSUPP; |
| 2033 | |
| 2034 | v.val = READ_ONCE(sk->sk_peek_off); |
| 2035 | break; |
| 2036 | case SO_NOFCS: |
| 2037 | v.val = sock_flag(sk, flag: SOCK_NOFCS); |
| 2038 | break; |
| 2039 | |
| 2040 | case SO_BINDTODEVICE: |
| 2041 | return sock_getbindtodevice(sk, optval, optlen, len); |
| 2042 | |
| 2043 | case SO_GET_FILTER: |
| 2044 | len = sk_get_filter(sk, optval, len); |
| 2045 | if (len < 0) |
| 2046 | return len; |
| 2047 | |
| 2048 | goto lenout; |
| 2049 | |
| 2050 | case SO_LOCK_FILTER: |
| 2051 | v.val = sock_flag(sk, flag: SOCK_FILTER_LOCKED); |
| 2052 | break; |
| 2053 | |
| 2054 | case SO_BPF_EXTENSIONS: |
| 2055 | v.val = bpf_tell_extensions(); |
| 2056 | break; |
| 2057 | |
| 2058 | case SO_SELECT_ERR_QUEUE: |
| 2059 | v.val = sock_flag(sk, flag: SOCK_SELECT_ERR_QUEUE); |
| 2060 | break; |
| 2061 | |
| 2062 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 2063 | case SO_BUSY_POLL: |
| 2064 | v.val = READ_ONCE(sk->sk_ll_usec); |
| 2065 | break; |
| 2066 | case SO_PREFER_BUSY_POLL: |
| 2067 | v.val = READ_ONCE(sk->sk_prefer_busy_poll); |
| 2068 | break; |
| 2069 | #endif |
| 2070 | |
| 2071 | case SO_MAX_PACING_RATE: |
| 2072 | /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ |
| 2073 | if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { |
| 2074 | lv = sizeof(v.ulval); |
| 2075 | v.ulval = READ_ONCE(sk->sk_max_pacing_rate); |
| 2076 | } else { |
| 2077 | /* 32bit version */ |
| 2078 | v.val = min_t(unsigned long, ~0U, |
| 2079 | READ_ONCE(sk->sk_max_pacing_rate)); |
| 2080 | } |
| 2081 | break; |
| 2082 | |
| 2083 | case SO_INCOMING_CPU: |
| 2084 | v.val = READ_ONCE(sk->sk_incoming_cpu); |
| 2085 | break; |
| 2086 | |
| 2087 | case SO_MEMINFO: |
| 2088 | { |
| 2089 | u32 meminfo[SK_MEMINFO_VARS]; |
| 2090 | |
| 2091 | sk_get_meminfo(sk, meminfo); |
| 2092 | |
| 2093 | len = min_t(unsigned int, len, sizeof(meminfo)); |
| 2094 | if (copy_to_sockptr(dst: optval, src: &meminfo, size: len)) |
| 2095 | return -EFAULT; |
| 2096 | |
| 2097 | goto lenout; |
| 2098 | } |
| 2099 | |
| 2100 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 2101 | case SO_INCOMING_NAPI_ID: |
| 2102 | v.val = READ_ONCE(sk->sk_napi_id); |
| 2103 | |
| 2104 | /* aggregate non-NAPI IDs down to 0 */ |
| 2105 | if (!napi_id_valid(napi_id: v.val)) |
| 2106 | v.val = 0; |
| 2107 | |
| 2108 | break; |
| 2109 | #endif |
| 2110 | |
| 2111 | case SO_COOKIE: |
| 2112 | lv = sizeof(u64); |
| 2113 | if (len < lv) |
| 2114 | return -EINVAL; |
| 2115 | v.val64 = sock_gen_cookie(sk); |
| 2116 | break; |
| 2117 | |
| 2118 | case SO_ZEROCOPY: |
| 2119 | v.val = sock_flag(sk, flag: SOCK_ZEROCOPY); |
| 2120 | break; |
| 2121 | |
| 2122 | case SO_TXTIME: |
| 2123 | lv = sizeof(v.txtime); |
| 2124 | v.txtime.clockid = sk->sk_clockid; |
| 2125 | v.txtime.flags |= sk->sk_txtime_deadline_mode ? |
| 2126 | SOF_TXTIME_DEADLINE_MODE : 0; |
| 2127 | v.txtime.flags |= sk->sk_txtime_report_errors ? |
| 2128 | SOF_TXTIME_REPORT_ERRORS : 0; |
| 2129 | break; |
| 2130 | |
| 2131 | case SO_BINDTOIFINDEX: |
| 2132 | v.val = READ_ONCE(sk->sk_bound_dev_if); |
| 2133 | break; |
| 2134 | |
| 2135 | case SO_NETNS_COOKIE: |
| 2136 | lv = sizeof(u64); |
| 2137 | if (len != lv) |
| 2138 | return -EINVAL; |
| 2139 | v.val64 = sock_net(sk)->net_cookie; |
| 2140 | break; |
| 2141 | |
| 2142 | case SO_BUF_LOCK: |
| 2143 | v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; |
| 2144 | break; |
| 2145 | |
| 2146 | case SO_RESERVE_MEM: |
| 2147 | v.val = READ_ONCE(sk->sk_reserved_mem); |
| 2148 | break; |
| 2149 | |
| 2150 | case SO_TXREHASH: |
| 2151 | if (!sk_is_tcp(sk)) |
| 2152 | return -EOPNOTSUPP; |
| 2153 | |
| 2154 | /* Paired with WRITE_ONCE() in sk_setsockopt() */ |
| 2155 | v.val = READ_ONCE(sk->sk_txrehash); |
| 2156 | break; |
| 2157 | |
| 2158 | default: |
| 2159 | /* We implement the SO_SNDLOWAT etc to not be settable |
| 2160 | * (1003.1g 7). |
| 2161 | */ |
| 2162 | return -ENOPROTOOPT; |
| 2163 | } |
| 2164 | |
| 2165 | if (len > lv) |
| 2166 | len = lv; |
| 2167 | if (copy_to_sockptr(dst: optval, src: &v, size: len)) |
| 2168 | return -EFAULT; |
| 2169 | lenout: |
| 2170 | if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) |
| 2171 | return -EFAULT; |
| 2172 | return 0; |
| 2173 | } |
| 2174 | |
| 2175 | /* |
| 2176 | * Initialize an sk_lock. |
| 2177 | * |
| 2178 | * (We also register the sk_lock with the lock validator.) |
| 2179 | */ |
| 2180 | static inline void sock_lock_init(struct sock *sk) |
| 2181 | { |
| 2182 | sk_owner_clear(sk); |
| 2183 | |
| 2184 | if (sk->sk_kern_sock) |
| 2185 | sock_lock_init_class_and_name( |
| 2186 | sk, |
| 2187 | af_family_kern_slock_key_strings[sk->sk_family], |
| 2188 | af_family_kern_slock_keys + sk->sk_family, |
| 2189 | af_family_kern_key_strings[sk->sk_family], |
| 2190 | af_family_kern_keys + sk->sk_family); |
| 2191 | else |
| 2192 | sock_lock_init_class_and_name( |
| 2193 | sk, |
| 2194 | af_family_slock_key_strings[sk->sk_family], |
| 2195 | af_family_slock_keys + sk->sk_family, |
| 2196 | af_family_key_strings[sk->sk_family], |
| 2197 | af_family_keys + sk->sk_family); |
| 2198 | } |
| 2199 | |
| 2200 | /* |
| 2201 | * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, |
| 2202 | * even temporarily, because of RCU lookups. sk_node should also be left as is. |
| 2203 | * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end |
| 2204 | */ |
| 2205 | static void sock_copy(struct sock *nsk, const struct sock *osk) |
| 2206 | { |
| 2207 | const struct proto *prot = READ_ONCE(osk->sk_prot); |
| 2208 | #ifdef CONFIG_SECURITY_NETWORK |
| 2209 | void *sptr = nsk->sk_security; |
| 2210 | #endif |
| 2211 | |
| 2212 | /* If we move sk_tx_queue_mapping out of the private section, |
| 2213 | * we must check if sk_tx_queue_clear() is called after |
| 2214 | * sock_copy() in sk_clone_lock(). |
| 2215 | */ |
| 2216 | BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < |
| 2217 | offsetof(struct sock, sk_dontcopy_begin) || |
| 2218 | offsetof(struct sock, sk_tx_queue_mapping) >= |
| 2219 | offsetof(struct sock, sk_dontcopy_end)); |
| 2220 | |
| 2221 | memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); |
| 2222 | |
| 2223 | unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, |
| 2224 | prot->obj_size - offsetof(struct sock, sk_dontcopy_end), |
| 2225 | /* alloc is larger than struct, see sk_prot_alloc() */); |
| 2226 | |
| 2227 | #ifdef CONFIG_SECURITY_NETWORK |
| 2228 | nsk->sk_security = sptr; |
| 2229 | security_sk_clone(sk: osk, newsk: nsk); |
| 2230 | #endif |
| 2231 | } |
| 2232 | |
| 2233 | static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, |
| 2234 | int family) |
| 2235 | { |
| 2236 | struct sock *sk; |
| 2237 | struct kmem_cache *slab; |
| 2238 | |
| 2239 | slab = prot->slab; |
| 2240 | if (slab != NULL) { |
| 2241 | sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); |
| 2242 | if (!sk) |
| 2243 | return sk; |
| 2244 | if (want_init_on_alloc(flags: priority)) |
| 2245 | sk_prot_clear_nulls(sk, size: prot->obj_size); |
| 2246 | } else |
| 2247 | sk = kmalloc(prot->obj_size, priority); |
| 2248 | |
| 2249 | if (sk != NULL) { |
| 2250 | if (security_sk_alloc(sk, family, priority)) |
| 2251 | goto out_free; |
| 2252 | |
| 2253 | if (!try_module_get(module: prot->owner)) |
| 2254 | goto out_free_sec; |
| 2255 | } |
| 2256 | |
| 2257 | return sk; |
| 2258 | |
| 2259 | out_free_sec: |
| 2260 | security_sk_free(sk); |
| 2261 | out_free: |
| 2262 | if (slab != NULL) |
| 2263 | kmem_cache_free(s: slab, objp: sk); |
| 2264 | else |
| 2265 | kfree(objp: sk); |
| 2266 | return NULL; |
| 2267 | } |
| 2268 | |
| 2269 | static void sk_prot_free(struct proto *prot, struct sock *sk) |
| 2270 | { |
| 2271 | struct kmem_cache *slab; |
| 2272 | struct module *owner; |
| 2273 | |
| 2274 | owner = prot->owner; |
| 2275 | slab = prot->slab; |
| 2276 | |
| 2277 | cgroup_sk_free(skcd: &sk->sk_cgrp_data); |
| 2278 | mem_cgroup_sk_free(sk); |
| 2279 | security_sk_free(sk); |
| 2280 | |
| 2281 | sk_owner_put(sk); |
| 2282 | |
| 2283 | if (slab != NULL) |
| 2284 | kmem_cache_free(s: slab, objp: sk); |
| 2285 | else |
| 2286 | kfree(objp: sk); |
| 2287 | module_put(module: owner); |
| 2288 | } |
| 2289 | |
| 2290 | /** |
| 2291 | * sk_alloc - All socket objects are allocated here |
| 2292 | * @net: the applicable net namespace |
| 2293 | * @family: protocol family |
| 2294 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
| 2295 | * @prot: struct proto associated with this new sock instance |
| 2296 | * @kern: is this to be a kernel socket? |
| 2297 | */ |
| 2298 | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
| 2299 | struct proto *prot, int kern) |
| 2300 | { |
| 2301 | struct sock *sk; |
| 2302 | |
| 2303 | sk = sk_prot_alloc(prot, priority: priority | __GFP_ZERO, family); |
| 2304 | if (sk) { |
| 2305 | sk->sk_family = family; |
| 2306 | /* |
| 2307 | * See comment in struct sock definition to understand |
| 2308 | * why we need sk_prot_creator -acme |
| 2309 | */ |
| 2310 | sk->sk_prot = sk->sk_prot_creator = prot; |
| 2311 | sk->sk_kern_sock = kern; |
| 2312 | sock_lock_init(sk); |
| 2313 | sk->sk_net_refcnt = kern ? 0 : 1; |
| 2314 | if (likely(sk->sk_net_refcnt)) { |
| 2315 | get_net_track(net, tracker: &sk->ns_tracker, gfp: priority); |
| 2316 | sock_inuse_add(net, val: 1); |
| 2317 | } else { |
| 2318 | net_passive_inc(net); |
| 2319 | __netns_tracker_alloc(net, tracker: &sk->ns_tracker, |
| 2320 | refcounted: false, gfp: priority); |
| 2321 | } |
| 2322 | |
| 2323 | sock_net_set(sk, net); |
| 2324 | refcount_set(r: &sk->sk_wmem_alloc, n: 1); |
| 2325 | |
| 2326 | mem_cgroup_sk_alloc(sk); |
| 2327 | cgroup_sk_alloc(skcd: &sk->sk_cgrp_data); |
| 2328 | sock_update_classid(skcd: &sk->sk_cgrp_data); |
| 2329 | sock_update_netprioidx(skcd: &sk->sk_cgrp_data); |
| 2330 | sk_tx_queue_clear(sk); |
| 2331 | } |
| 2332 | |
| 2333 | return sk; |
| 2334 | } |
| 2335 | EXPORT_SYMBOL(sk_alloc); |
| 2336 | |
| 2337 | /* Sockets having SOCK_RCU_FREE will call this function after one RCU |
| 2338 | * grace period. This is the case for UDP sockets and TCP listeners. |
| 2339 | */ |
| 2340 | static void __sk_destruct(struct rcu_head *head) |
| 2341 | { |
| 2342 | struct sock *sk = container_of(head, struct sock, sk_rcu); |
| 2343 | struct net *net = sock_net(sk); |
| 2344 | struct sk_filter *filter; |
| 2345 | |
| 2346 | if (sk->sk_destruct) |
| 2347 | sk->sk_destruct(sk); |
| 2348 | |
| 2349 | filter = rcu_dereference_check(sk->sk_filter, |
| 2350 | refcount_read(&sk->sk_wmem_alloc) == 0); |
| 2351 | if (filter) { |
| 2352 | sk_filter_uncharge(sk, fp: filter); |
| 2353 | RCU_INIT_POINTER(sk->sk_filter, NULL); |
| 2354 | } |
| 2355 | |
| 2356 | sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); |
| 2357 | |
| 2358 | #ifdef CONFIG_BPF_SYSCALL |
| 2359 | bpf_sk_storage_free(sk); |
| 2360 | #endif |
| 2361 | |
| 2362 | if (atomic_read(v: &sk->sk_omem_alloc)) |
| 2363 | pr_debug("%s: optmem leakage (%d bytes) detected\n" , |
| 2364 | __func__, atomic_read(&sk->sk_omem_alloc)); |
| 2365 | |
| 2366 | if (sk->sk_frag.page) { |
| 2367 | put_page(page: sk->sk_frag.page); |
| 2368 | sk->sk_frag.page = NULL; |
| 2369 | } |
| 2370 | |
| 2371 | /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ |
| 2372 | put_cred(cred: sk->sk_peer_cred); |
| 2373 | put_pid(pid: sk->sk_peer_pid); |
| 2374 | |
| 2375 | if (likely(sk->sk_net_refcnt)) { |
| 2376 | put_net_track(net, tracker: &sk->ns_tracker); |
| 2377 | } else { |
| 2378 | __netns_tracker_free(net, tracker: &sk->ns_tracker, refcounted: false); |
| 2379 | net_passive_dec(net); |
| 2380 | } |
| 2381 | sk_prot_free(prot: sk->sk_prot_creator, sk); |
| 2382 | } |
| 2383 | |
| 2384 | void sk_net_refcnt_upgrade(struct sock *sk) |
| 2385 | { |
| 2386 | struct net *net = sock_net(sk); |
| 2387 | |
| 2388 | WARN_ON_ONCE(sk->sk_net_refcnt); |
| 2389 | __netns_tracker_free(net, tracker: &sk->ns_tracker, refcounted: false); |
| 2390 | net_passive_dec(net); |
| 2391 | sk->sk_net_refcnt = 1; |
| 2392 | get_net_track(net, tracker: &sk->ns_tracker, GFP_KERNEL); |
| 2393 | sock_inuse_add(net, val: 1); |
| 2394 | } |
| 2395 | EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade); |
| 2396 | |
| 2397 | void sk_destruct(struct sock *sk) |
| 2398 | { |
| 2399 | bool use_call_rcu = sock_flag(sk, flag: SOCK_RCU_FREE); |
| 2400 | |
| 2401 | if (rcu_access_pointer(sk->sk_reuseport_cb)) { |
| 2402 | reuseport_detach_sock(sk); |
| 2403 | use_call_rcu = true; |
| 2404 | } |
| 2405 | |
| 2406 | if (use_call_rcu) |
| 2407 | call_rcu(head: &sk->sk_rcu, func: __sk_destruct); |
| 2408 | else |
| 2409 | __sk_destruct(head: &sk->sk_rcu); |
| 2410 | } |
| 2411 | |
| 2412 | static void __sk_free(struct sock *sk) |
| 2413 | { |
| 2414 | if (likely(sk->sk_net_refcnt)) |
| 2415 | sock_inuse_add(net: sock_net(sk), val: -1); |
| 2416 | |
| 2417 | if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) |
| 2418 | sock_diag_broadcast_destroy(sk); |
| 2419 | else |
| 2420 | sk_destruct(sk); |
| 2421 | } |
| 2422 | |
| 2423 | void sk_free(struct sock *sk) |
| 2424 | { |
| 2425 | /* |
| 2426 | * We subtract one from sk_wmem_alloc and can know if |
| 2427 | * some packets are still in some tx queue. |
| 2428 | * If not null, sock_wfree() will call __sk_free(sk) later |
| 2429 | */ |
| 2430 | if (refcount_dec_and_test(r: &sk->sk_wmem_alloc)) |
| 2431 | __sk_free(sk); |
| 2432 | } |
| 2433 | EXPORT_SYMBOL(sk_free); |
| 2434 | |
| 2435 | static void sk_init_common(struct sock *sk) |
| 2436 | { |
| 2437 | skb_queue_head_init(list: &sk->sk_receive_queue); |
| 2438 | skb_queue_head_init(list: &sk->sk_write_queue); |
| 2439 | skb_queue_head_init(list: &sk->sk_error_queue); |
| 2440 | |
| 2441 | rwlock_init(&sk->sk_callback_lock); |
| 2442 | lockdep_set_class_and_name(&sk->sk_receive_queue.lock, |
| 2443 | af_rlock_keys + sk->sk_family, |
| 2444 | af_family_rlock_key_strings[sk->sk_family]); |
| 2445 | lockdep_set_class_and_name(&sk->sk_write_queue.lock, |
| 2446 | af_wlock_keys + sk->sk_family, |
| 2447 | af_family_wlock_key_strings[sk->sk_family]); |
| 2448 | lockdep_set_class_and_name(&sk->sk_error_queue.lock, |
| 2449 | af_elock_keys + sk->sk_family, |
| 2450 | af_family_elock_key_strings[sk->sk_family]); |
| 2451 | if (sk->sk_kern_sock) |
| 2452 | lockdep_set_class_and_name(&sk->sk_callback_lock, |
| 2453 | af_kern_callback_keys + sk->sk_family, |
| 2454 | af_family_kern_clock_key_strings[sk->sk_family]); |
| 2455 | else |
| 2456 | lockdep_set_class_and_name(&sk->sk_callback_lock, |
| 2457 | af_callback_keys + sk->sk_family, |
| 2458 | af_family_clock_key_strings[sk->sk_family]); |
| 2459 | } |
| 2460 | |
| 2461 | /** |
| 2462 | * sk_clone_lock - clone a socket, and lock its clone |
| 2463 | * @sk: the socket to clone |
| 2464 | * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
| 2465 | * |
| 2466 | * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) |
| 2467 | */ |
| 2468 | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) |
| 2469 | { |
| 2470 | struct proto *prot = READ_ONCE(sk->sk_prot); |
| 2471 | struct sk_filter *filter; |
| 2472 | bool is_charged = true; |
| 2473 | struct sock *newsk; |
| 2474 | |
| 2475 | newsk = sk_prot_alloc(prot, priority, family: sk->sk_family); |
| 2476 | if (!newsk) |
| 2477 | goto out; |
| 2478 | |
| 2479 | sock_copy(nsk: newsk, osk: sk); |
| 2480 | |
| 2481 | newsk->sk_prot_creator = prot; |
| 2482 | |
| 2483 | /* SANITY */ |
| 2484 | if (likely(newsk->sk_net_refcnt)) { |
| 2485 | get_net_track(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, gfp: priority); |
| 2486 | sock_inuse_add(net: sock_net(sk: newsk), val: 1); |
| 2487 | } else { |
| 2488 | /* Kernel sockets are not elevating the struct net refcount. |
| 2489 | * Instead, use a tracker to more easily detect if a layer |
| 2490 | * is not properly dismantling its kernel sockets at netns |
| 2491 | * destroy time. |
| 2492 | */ |
| 2493 | net_passive_inc(net: sock_net(sk: newsk)); |
| 2494 | __netns_tracker_alloc(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, |
| 2495 | refcounted: false, gfp: priority); |
| 2496 | } |
| 2497 | sk_node_init(node: &newsk->sk_node); |
| 2498 | sock_lock_init(sk: newsk); |
| 2499 | bh_lock_sock(newsk); |
| 2500 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
| 2501 | newsk->sk_backlog.len = 0; |
| 2502 | |
| 2503 | atomic_set(v: &newsk->sk_rmem_alloc, i: 0); |
| 2504 | |
| 2505 | /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ |
| 2506 | refcount_set(r: &newsk->sk_wmem_alloc, n: 1); |
| 2507 | |
| 2508 | atomic_set(v: &newsk->sk_omem_alloc, i: 0); |
| 2509 | sk_init_common(sk: newsk); |
| 2510 | |
| 2511 | newsk->sk_dst_cache = NULL; |
| 2512 | newsk->sk_dst_pending_confirm = 0; |
| 2513 | newsk->sk_wmem_queued = 0; |
| 2514 | newsk->sk_forward_alloc = 0; |
| 2515 | newsk->sk_reserved_mem = 0; |
| 2516 | atomic_set(v: &newsk->sk_drops, i: 0); |
| 2517 | newsk->sk_send_head = NULL; |
| 2518 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
| 2519 | atomic_set(v: &newsk->sk_zckey, i: 0); |
| 2520 | |
| 2521 | sock_reset_flag(sk: newsk, flag: SOCK_DONE); |
| 2522 | |
| 2523 | /* sk->sk_memcg will be populated at accept() time */ |
| 2524 | newsk->sk_memcg = NULL; |
| 2525 | |
| 2526 | cgroup_sk_clone(skcd: &newsk->sk_cgrp_data); |
| 2527 | |
| 2528 | rcu_read_lock(); |
| 2529 | filter = rcu_dereference(sk->sk_filter); |
| 2530 | if (filter != NULL) |
| 2531 | /* though it's an empty new sock, the charging may fail |
| 2532 | * if sysctl_optmem_max was changed between creation of |
| 2533 | * original socket and cloning |
| 2534 | */ |
| 2535 | is_charged = sk_filter_charge(sk: newsk, fp: filter); |
| 2536 | RCU_INIT_POINTER(newsk->sk_filter, filter); |
| 2537 | rcu_read_unlock(); |
| 2538 | |
| 2539 | if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { |
| 2540 | /* We need to make sure that we don't uncharge the new |
| 2541 | * socket if we couldn't charge it in the first place |
| 2542 | * as otherwise we uncharge the parent's filter. |
| 2543 | */ |
| 2544 | if (!is_charged) |
| 2545 | RCU_INIT_POINTER(newsk->sk_filter, NULL); |
| 2546 | |
| 2547 | goto free; |
| 2548 | } |
| 2549 | |
| 2550 | RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); |
| 2551 | |
| 2552 | if (bpf_sk_storage_clone(sk, newsk)) |
| 2553 | goto free; |
| 2554 | |
| 2555 | /* Clear sk_user_data if parent had the pointer tagged |
| 2556 | * as not suitable for copying when cloning. |
| 2557 | */ |
| 2558 | if (sk_user_data_is_nocopy(sk: newsk)) |
| 2559 | newsk->sk_user_data = NULL; |
| 2560 | |
| 2561 | newsk->sk_err = 0; |
| 2562 | newsk->sk_err_soft = 0; |
| 2563 | newsk->sk_priority = 0; |
| 2564 | newsk->sk_incoming_cpu = raw_smp_processor_id(); |
| 2565 | |
| 2566 | /* Before updating sk_refcnt, we must commit prior changes to memory |
| 2567 | * (Documentation/RCU/rculist_nulls.rst for details) |
| 2568 | */ |
| 2569 | smp_wmb(); |
| 2570 | refcount_set(r: &newsk->sk_refcnt, n: 2); |
| 2571 | |
| 2572 | sk_set_socket(sk: newsk, NULL); |
| 2573 | sk_tx_queue_clear(sk: newsk); |
| 2574 | RCU_INIT_POINTER(newsk->sk_wq, NULL); |
| 2575 | |
| 2576 | if (newsk->sk_prot->sockets_allocated) |
| 2577 | sk_sockets_allocated_inc(sk: newsk); |
| 2578 | |
| 2579 | if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) |
| 2580 | net_enable_timestamp(); |
| 2581 | out: |
| 2582 | return newsk; |
| 2583 | free: |
| 2584 | /* It is still raw copy of parent, so invalidate |
| 2585 | * destructor and make plain sk_free() |
| 2586 | */ |
| 2587 | newsk->sk_destruct = NULL; |
| 2588 | bh_unlock_sock(newsk); |
| 2589 | sk_free(newsk); |
| 2590 | newsk = NULL; |
| 2591 | goto out; |
| 2592 | } |
| 2593 | EXPORT_SYMBOL_GPL(sk_clone_lock); |
| 2594 | |
| 2595 | static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) |
| 2596 | { |
| 2597 | bool is_ipv6 = false; |
| 2598 | u32 max_size; |
| 2599 | |
| 2600 | #if IS_ENABLED(CONFIG_IPV6) |
| 2601 | is_ipv6 = (sk->sk_family == AF_INET6 && |
| 2602 | !ipv6_addr_v4mapped(a: &sk->sk_v6_rcv_saddr)); |
| 2603 | #endif |
| 2604 | /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ |
| 2605 | max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : |
| 2606 | READ_ONCE(dst->dev->gso_ipv4_max_size); |
| 2607 | if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) |
| 2608 | max_size = GSO_LEGACY_MAX_SIZE; |
| 2609 | |
| 2610 | return max_size - (MAX_TCP_HEADER + 1); |
| 2611 | } |
| 2612 | |
| 2613 | void sk_setup_caps(struct sock *sk, struct dst_entry *dst) |
| 2614 | { |
| 2615 | u32 max_segs = 1; |
| 2616 | |
| 2617 | sk->sk_route_caps = dst->dev->features; |
| 2618 | if (sk_is_tcp(sk)) { |
| 2619 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 2620 | |
| 2621 | sk->sk_route_caps |= NETIF_F_GSO; |
| 2622 | icsk->icsk_ack.dst_quick_ack = dst_metric(dst, RTAX_QUICKACK); |
| 2623 | } |
| 2624 | if (sk->sk_route_caps & NETIF_F_GSO) |
| 2625 | sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; |
| 2626 | if (unlikely(sk->sk_gso_disabled)) |
| 2627 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| 2628 | if (sk_can_gso(sk)) { |
| 2629 | if (dst->header_len && !xfrm_dst_offload_ok(dst)) { |
| 2630 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| 2631 | } else { |
| 2632 | sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; |
| 2633 | sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); |
| 2634 | /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ |
| 2635 | max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); |
| 2636 | } |
| 2637 | } |
| 2638 | sk->sk_gso_max_segs = max_segs; |
| 2639 | sk_dst_set(sk, dst); |
| 2640 | } |
| 2641 | EXPORT_SYMBOL_GPL(sk_setup_caps); |
| 2642 | |
| 2643 | /* |
| 2644 | * Simple resource managers for sockets. |
| 2645 | */ |
| 2646 | |
| 2647 | |
| 2648 | /* |
| 2649 | * Write buffer destructor automatically called from kfree_skb. |
| 2650 | */ |
| 2651 | void sock_wfree(struct sk_buff *skb) |
| 2652 | { |
| 2653 | struct sock *sk = skb->sk; |
| 2654 | unsigned int len = skb->truesize; |
| 2655 | bool free; |
| 2656 | |
| 2657 | if (!sock_flag(sk, flag: SOCK_USE_WRITE_QUEUE)) { |
| 2658 | if (sock_flag(sk, flag: SOCK_RCU_FREE) && |
| 2659 | sk->sk_write_space == sock_def_write_space) { |
| 2660 | rcu_read_lock(); |
| 2661 | free = refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc); |
| 2662 | sock_def_write_space_wfree(sk); |
| 2663 | rcu_read_unlock(); |
| 2664 | if (unlikely(free)) |
| 2665 | __sk_free(sk); |
| 2666 | return; |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * Keep a reference on sk_wmem_alloc, this will be released |
| 2671 | * after sk_write_space() call |
| 2672 | */ |
| 2673 | WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); |
| 2674 | sk->sk_write_space(sk); |
| 2675 | len = 1; |
| 2676 | } |
| 2677 | /* |
| 2678 | * if sk_wmem_alloc reaches 0, we must finish what sk_free() |
| 2679 | * could not do because of in-flight packets |
| 2680 | */ |
| 2681 | if (refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc)) |
| 2682 | __sk_free(sk); |
| 2683 | } |
| 2684 | EXPORT_SYMBOL(sock_wfree); |
| 2685 | |
| 2686 | /* This variant of sock_wfree() is used by TCP, |
| 2687 | * since it sets SOCK_USE_WRITE_QUEUE. |
| 2688 | */ |
| 2689 | void __sock_wfree(struct sk_buff *skb) |
| 2690 | { |
| 2691 | struct sock *sk = skb->sk; |
| 2692 | |
| 2693 | if (refcount_sub_and_test(i: skb->truesize, r: &sk->sk_wmem_alloc)) |
| 2694 | __sk_free(sk); |
| 2695 | } |
| 2696 | |
| 2697 | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) |
| 2698 | { |
| 2699 | skb_orphan(skb); |
| 2700 | #ifdef CONFIG_INET |
| 2701 | if (unlikely(!sk_fullsock(sk))) |
| 2702 | return skb_set_owner_edemux(skb, sk); |
| 2703 | #endif |
| 2704 | skb->sk = sk; |
| 2705 | skb->destructor = sock_wfree; |
| 2706 | skb_set_hash_from_sk(skb, sk); |
| 2707 | /* |
| 2708 | * We used to take a refcount on sk, but following operation |
| 2709 | * is enough to guarantee sk_free() won't free this sock until |
| 2710 | * all in-flight packets are completed |
| 2711 | */ |
| 2712 | refcount_add(i: skb->truesize, r: &sk->sk_wmem_alloc); |
| 2713 | } |
| 2714 | EXPORT_SYMBOL(skb_set_owner_w); |
| 2715 | |
| 2716 | static bool can_skb_orphan_partial(const struct sk_buff *skb) |
| 2717 | { |
| 2718 | /* Drivers depend on in-order delivery for crypto offload, |
| 2719 | * partial orphan breaks out-of-order-OK logic. |
| 2720 | */ |
| 2721 | if (skb_is_decrypted(skb)) |
| 2722 | return false; |
| 2723 | |
| 2724 | return (skb->destructor == sock_wfree || |
| 2725 | (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); |
| 2726 | } |
| 2727 | |
| 2728 | /* This helper is used by netem, as it can hold packets in its |
| 2729 | * delay queue. We want to allow the owner socket to send more |
| 2730 | * packets, as if they were already TX completed by a typical driver. |
| 2731 | * But we also want to keep skb->sk set because some packet schedulers |
| 2732 | * rely on it (sch_fq for example). |
| 2733 | */ |
| 2734 | void skb_orphan_partial(struct sk_buff *skb) |
| 2735 | { |
| 2736 | if (skb_is_tcp_pure_ack(skb)) |
| 2737 | return; |
| 2738 | |
| 2739 | if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, sk: skb->sk)) |
| 2740 | return; |
| 2741 | |
| 2742 | skb_orphan(skb); |
| 2743 | } |
| 2744 | EXPORT_SYMBOL(skb_orphan_partial); |
| 2745 | |
| 2746 | /* |
| 2747 | * Read buffer destructor automatically called from kfree_skb. |
| 2748 | */ |
| 2749 | void sock_rfree(struct sk_buff *skb) |
| 2750 | { |
| 2751 | struct sock *sk = skb->sk; |
| 2752 | unsigned int len = skb->truesize; |
| 2753 | |
| 2754 | atomic_sub(i: len, v: &sk->sk_rmem_alloc); |
| 2755 | sk_mem_uncharge(sk, size: len); |
| 2756 | } |
| 2757 | EXPORT_SYMBOL(sock_rfree); |
| 2758 | |
| 2759 | /* |
| 2760 | * Buffer destructor for skbs that are not used directly in read or write |
| 2761 | * path, e.g. for error handler skbs. Automatically called from kfree_skb. |
| 2762 | */ |
| 2763 | void sock_efree(struct sk_buff *skb) |
| 2764 | { |
| 2765 | sock_put(sk: skb->sk); |
| 2766 | } |
| 2767 | EXPORT_SYMBOL(sock_efree); |
| 2768 | |
| 2769 | /* Buffer destructor for prefetch/receive path where reference count may |
| 2770 | * not be held, e.g. for listen sockets. |
| 2771 | */ |
| 2772 | #ifdef CONFIG_INET |
| 2773 | void sock_pfree(struct sk_buff *skb) |
| 2774 | { |
| 2775 | struct sock *sk = skb->sk; |
| 2776 | |
| 2777 | if (!sk_is_refcounted(sk)) |
| 2778 | return; |
| 2779 | |
| 2780 | if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { |
| 2781 | inet_reqsk(sk)->rsk_listener = NULL; |
| 2782 | reqsk_free(req: inet_reqsk(sk)); |
| 2783 | return; |
| 2784 | } |
| 2785 | |
| 2786 | sock_gen_put(sk); |
| 2787 | } |
| 2788 | EXPORT_SYMBOL(sock_pfree); |
| 2789 | #endif /* CONFIG_INET */ |
| 2790 | |
| 2791 | kuid_t sock_i_uid(struct sock *sk) |
| 2792 | { |
| 2793 | kuid_t uid; |
| 2794 | |
| 2795 | read_lock_bh(&sk->sk_callback_lock); |
| 2796 | uid = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; |
| 2797 | read_unlock_bh(&sk->sk_callback_lock); |
| 2798 | return uid; |
| 2799 | } |
| 2800 | EXPORT_SYMBOL(sock_i_uid); |
| 2801 | |
| 2802 | unsigned long __sock_i_ino(struct sock *sk) |
| 2803 | { |
| 2804 | unsigned long ino; |
| 2805 | |
| 2806 | read_lock(&sk->sk_callback_lock); |
| 2807 | ino = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_ino : 0; |
| 2808 | read_unlock(&sk->sk_callback_lock); |
| 2809 | return ino; |
| 2810 | } |
| 2811 | EXPORT_SYMBOL(__sock_i_ino); |
| 2812 | |
| 2813 | unsigned long sock_i_ino(struct sock *sk) |
| 2814 | { |
| 2815 | unsigned long ino; |
| 2816 | |
| 2817 | local_bh_disable(); |
| 2818 | ino = __sock_i_ino(sk); |
| 2819 | local_bh_enable(); |
| 2820 | return ino; |
| 2821 | } |
| 2822 | EXPORT_SYMBOL(sock_i_ino); |
| 2823 | |
| 2824 | /* |
| 2825 | * Allocate a skb from the socket's send buffer. |
| 2826 | */ |
| 2827 | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
| 2828 | gfp_t priority) |
| 2829 | { |
| 2830 | if (force || |
| 2831 | refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { |
| 2832 | struct sk_buff *skb = alloc_skb(size, priority); |
| 2833 | |
| 2834 | if (skb) { |
| 2835 | skb_set_owner_w(skb, sk); |
| 2836 | return skb; |
| 2837 | } |
| 2838 | } |
| 2839 | return NULL; |
| 2840 | } |
| 2841 | EXPORT_SYMBOL(sock_wmalloc); |
| 2842 | |
| 2843 | static void sock_ofree(struct sk_buff *skb) |
| 2844 | { |
| 2845 | struct sock *sk = skb->sk; |
| 2846 | |
| 2847 | atomic_sub(i: skb->truesize, v: &sk->sk_omem_alloc); |
| 2848 | } |
| 2849 | |
| 2850 | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
| 2851 | gfp_t priority) |
| 2852 | { |
| 2853 | struct sk_buff *skb; |
| 2854 | |
| 2855 | /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ |
| 2856 | if (atomic_read(v: &sk->sk_omem_alloc) + SKB_TRUESIZE(size) > |
| 2857 | READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) |
| 2858 | return NULL; |
| 2859 | |
| 2860 | skb = alloc_skb(size, priority); |
| 2861 | if (!skb) |
| 2862 | return NULL; |
| 2863 | |
| 2864 | atomic_add(i: skb->truesize, v: &sk->sk_omem_alloc); |
| 2865 | skb->sk = sk; |
| 2866 | skb->destructor = sock_ofree; |
| 2867 | return skb; |
| 2868 | } |
| 2869 | |
| 2870 | /* |
| 2871 | * Allocate a memory block from the socket's option memory buffer. |
| 2872 | */ |
| 2873 | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) |
| 2874 | { |
| 2875 | int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); |
| 2876 | |
| 2877 | if ((unsigned int)size <= optmem_max && |
| 2878 | atomic_read(v: &sk->sk_omem_alloc) + size < optmem_max) { |
| 2879 | void *mem; |
| 2880 | /* First do the add, to avoid the race if kmalloc |
| 2881 | * might sleep. |
| 2882 | */ |
| 2883 | atomic_add(i: size, v: &sk->sk_omem_alloc); |
| 2884 | mem = kmalloc(size, priority); |
| 2885 | if (mem) |
| 2886 | return mem; |
| 2887 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
| 2888 | } |
| 2889 | return NULL; |
| 2890 | } |
| 2891 | EXPORT_SYMBOL(sock_kmalloc); |
| 2892 | |
| 2893 | /* |
| 2894 | * Duplicate the input "src" memory block using the socket's |
| 2895 | * option memory buffer. |
| 2896 | */ |
| 2897 | void *sock_kmemdup(struct sock *sk, const void *src, |
| 2898 | int size, gfp_t priority) |
| 2899 | { |
| 2900 | void *mem; |
| 2901 | |
| 2902 | mem = sock_kmalloc(sk, size, priority); |
| 2903 | if (mem) |
| 2904 | memcpy(mem, src, size); |
| 2905 | return mem; |
| 2906 | } |
| 2907 | EXPORT_SYMBOL(sock_kmemdup); |
| 2908 | |
| 2909 | /* Free an option memory block. Note, we actually want the inline |
| 2910 | * here as this allows gcc to detect the nullify and fold away the |
| 2911 | * condition entirely. |
| 2912 | */ |
| 2913 | static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, |
| 2914 | const bool nullify) |
| 2915 | { |
| 2916 | if (WARN_ON_ONCE(!mem)) |
| 2917 | return; |
| 2918 | if (nullify) |
| 2919 | kfree_sensitive(objp: mem); |
| 2920 | else |
| 2921 | kfree(objp: mem); |
| 2922 | atomic_sub(i: size, v: &sk->sk_omem_alloc); |
| 2923 | } |
| 2924 | |
| 2925 | void sock_kfree_s(struct sock *sk, void *mem, int size) |
| 2926 | { |
| 2927 | __sock_kfree_s(sk, mem, size, nullify: false); |
| 2928 | } |
| 2929 | EXPORT_SYMBOL(sock_kfree_s); |
| 2930 | |
| 2931 | void sock_kzfree_s(struct sock *sk, void *mem, int size) |
| 2932 | { |
| 2933 | __sock_kfree_s(sk, mem, size, nullify: true); |
| 2934 | } |
| 2935 | EXPORT_SYMBOL(sock_kzfree_s); |
| 2936 | |
| 2937 | /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. |
| 2938 | I think, these locks should be removed for datagram sockets. |
| 2939 | */ |
| 2940 | static long sock_wait_for_wmem(struct sock *sk, long timeo) |
| 2941 | { |
| 2942 | DEFINE_WAIT(wait); |
| 2943 | |
| 2944 | sk_clear_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
| 2945 | for (;;) { |
| 2946 | if (!timeo) |
| 2947 | break; |
| 2948 | if (signal_pending(current)) |
| 2949 | break; |
| 2950 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
| 2951 | prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE); |
| 2952 | if (refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) |
| 2953 | break; |
| 2954 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
| 2955 | break; |
| 2956 | if (READ_ONCE(sk->sk_err)) |
| 2957 | break; |
| 2958 | timeo = schedule_timeout(timeout: timeo); |
| 2959 | } |
| 2960 | finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait); |
| 2961 | return timeo; |
| 2962 | } |
| 2963 | |
| 2964 | |
| 2965 | /* |
| 2966 | * Generic send/receive buffer handlers |
| 2967 | */ |
| 2968 | |
| 2969 | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long , |
| 2970 | unsigned long data_len, int noblock, |
| 2971 | int *errcode, int max_page_order) |
| 2972 | { |
| 2973 | struct sk_buff *skb; |
| 2974 | long timeo; |
| 2975 | int err; |
| 2976 | |
| 2977 | timeo = sock_sndtimeo(sk, noblock); |
| 2978 | for (;;) { |
| 2979 | err = sock_error(sk); |
| 2980 | if (err != 0) |
| 2981 | goto failure; |
| 2982 | |
| 2983 | err = -EPIPE; |
| 2984 | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
| 2985 | goto failure; |
| 2986 | |
| 2987 | if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) |
| 2988 | break; |
| 2989 | |
| 2990 | sk_set_bit(nr: SOCKWQ_ASYNC_NOSPACE, sk); |
| 2991 | set_bit(nr: SOCK_NOSPACE, addr: &sk->sk_socket->flags); |
| 2992 | err = -EAGAIN; |
| 2993 | if (!timeo) |
| 2994 | goto failure; |
| 2995 | if (signal_pending(current)) |
| 2996 | goto interrupted; |
| 2997 | timeo = sock_wait_for_wmem(sk, timeo); |
| 2998 | } |
| 2999 | skb = alloc_skb_with_frags(header_len, data_len, max_page_order, |
| 3000 | errcode, gfp_mask: sk->sk_allocation); |
| 3001 | if (skb) |
| 3002 | skb_set_owner_w(skb, sk); |
| 3003 | return skb; |
| 3004 | |
| 3005 | interrupted: |
| 3006 | err = sock_intr_errno(timeo); |
| 3007 | failure: |
| 3008 | *errcode = err; |
| 3009 | return NULL; |
| 3010 | } |
| 3011 | EXPORT_SYMBOL(sock_alloc_send_pskb); |
| 3012 | |
| 3013 | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
| 3014 | struct sockcm_cookie *sockc) |
| 3015 | { |
| 3016 | u32 tsflags; |
| 3017 | |
| 3018 | BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); |
| 3019 | |
| 3020 | switch (cmsg->cmsg_type) { |
| 3021 | case SO_MARK: |
| 3022 | if (!ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) && |
| 3023 | !ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN)) |
| 3024 | return -EPERM; |
| 3025 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| 3026 | return -EINVAL; |
| 3027 | sockc->mark = *(u32 *)CMSG_DATA(cmsg); |
| 3028 | break; |
| 3029 | case SO_TIMESTAMPING_OLD: |
| 3030 | case SO_TIMESTAMPING_NEW: |
| 3031 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| 3032 | return -EINVAL; |
| 3033 | |
| 3034 | tsflags = *(u32 *)CMSG_DATA(cmsg); |
| 3035 | if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) |
| 3036 | return -EINVAL; |
| 3037 | |
| 3038 | sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; |
| 3039 | sockc->tsflags |= tsflags; |
| 3040 | break; |
| 3041 | case SCM_TXTIME: |
| 3042 | if (!sock_flag(sk, flag: SOCK_TXTIME)) |
| 3043 | return -EINVAL; |
| 3044 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) |
| 3045 | return -EINVAL; |
| 3046 | sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); |
| 3047 | break; |
| 3048 | case SCM_TS_OPT_ID: |
| 3049 | if (sk_is_tcp(sk)) |
| 3050 | return -EINVAL; |
| 3051 | tsflags = READ_ONCE(sk->sk_tsflags); |
| 3052 | if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) |
| 3053 | return -EINVAL; |
| 3054 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| 3055 | return -EINVAL; |
| 3056 | sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); |
| 3057 | sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; |
| 3058 | break; |
| 3059 | /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ |
| 3060 | case SCM_RIGHTS: |
| 3061 | case SCM_CREDENTIALS: |
| 3062 | break; |
| 3063 | case SO_PRIORITY: |
| 3064 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| 3065 | return -EINVAL; |
| 3066 | if (!sk_set_prio_allowed(sk, val: *(u32 *)CMSG_DATA(cmsg))) |
| 3067 | return -EPERM; |
| 3068 | sockc->priority = *(u32 *)CMSG_DATA(cmsg); |
| 3069 | break; |
| 3070 | case SCM_DEVMEM_DMABUF: |
| 3071 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| 3072 | return -EINVAL; |
| 3073 | sockc->dmabuf_id = *(u32 *)CMSG_DATA(cmsg); |
| 3074 | break; |
| 3075 | default: |
| 3076 | return -EINVAL; |
| 3077 | } |
| 3078 | return 0; |
| 3079 | } |
| 3080 | EXPORT_SYMBOL(__sock_cmsg_send); |
| 3081 | |
| 3082 | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
| 3083 | struct sockcm_cookie *sockc) |
| 3084 | { |
| 3085 | struct cmsghdr *cmsg; |
| 3086 | int ret; |
| 3087 | |
| 3088 | for_each_cmsghdr(cmsg, msg) { |
| 3089 | if (!CMSG_OK(msg, cmsg)) |
| 3090 | return -EINVAL; |
| 3091 | if (cmsg->cmsg_level != SOL_SOCKET) |
| 3092 | continue; |
| 3093 | ret = __sock_cmsg_send(sk, cmsg, sockc); |
| 3094 | if (ret) |
| 3095 | return ret; |
| 3096 | } |
| 3097 | return 0; |
| 3098 | } |
| 3099 | EXPORT_SYMBOL(sock_cmsg_send); |
| 3100 | |
| 3101 | static void sk_enter_memory_pressure(struct sock *sk) |
| 3102 | { |
| 3103 | if (!sk->sk_prot->enter_memory_pressure) |
| 3104 | return; |
| 3105 | |
| 3106 | sk->sk_prot->enter_memory_pressure(sk); |
| 3107 | } |
| 3108 | |
| 3109 | static void sk_leave_memory_pressure(struct sock *sk) |
| 3110 | { |
| 3111 | if (sk->sk_prot->leave_memory_pressure) { |
| 3112 | INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, |
| 3113 | tcp_leave_memory_pressure, sk); |
| 3114 | } else { |
| 3115 | unsigned long *memory_pressure = sk->sk_prot->memory_pressure; |
| 3116 | |
| 3117 | if (memory_pressure && READ_ONCE(*memory_pressure)) |
| 3118 | WRITE_ONCE(*memory_pressure, 0); |
| 3119 | } |
| 3120 | } |
| 3121 | |
| 3122 | DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
| 3123 | |
| 3124 | /** |
| 3125 | * skb_page_frag_refill - check that a page_frag contains enough room |
| 3126 | * @sz: minimum size of the fragment we want to get |
| 3127 | * @pfrag: pointer to page_frag |
| 3128 | * @gfp: priority for memory allocation |
| 3129 | * |
| 3130 | * Note: While this allocator tries to use high order pages, there is |
| 3131 | * no guarantee that allocations succeed. Therefore, @sz MUST be |
| 3132 | * less or equal than PAGE_SIZE. |
| 3133 | */ |
| 3134 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) |
| 3135 | { |
| 3136 | if (pfrag->page) { |
| 3137 | if (page_ref_count(page: pfrag->page) == 1) { |
| 3138 | pfrag->offset = 0; |
| 3139 | return true; |
| 3140 | } |
| 3141 | if (pfrag->offset + sz <= pfrag->size) |
| 3142 | return true; |
| 3143 | put_page(page: pfrag->page); |
| 3144 | } |
| 3145 | |
| 3146 | pfrag->offset = 0; |
| 3147 | if (SKB_FRAG_PAGE_ORDER && |
| 3148 | !static_branch_unlikely(&net_high_order_alloc_disable_key)) { |
| 3149 | /* Avoid direct reclaim but allow kswapd to wake */ |
| 3150 | pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | |
| 3151 | __GFP_COMP | __GFP_NOWARN | |
| 3152 | __GFP_NORETRY, |
| 3153 | SKB_FRAG_PAGE_ORDER); |
| 3154 | if (likely(pfrag->page)) { |
| 3155 | pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; |
| 3156 | return true; |
| 3157 | } |
| 3158 | } |
| 3159 | pfrag->page = alloc_page(gfp); |
| 3160 | if (likely(pfrag->page)) { |
| 3161 | pfrag->size = PAGE_SIZE; |
| 3162 | return true; |
| 3163 | } |
| 3164 | return false; |
| 3165 | } |
| 3166 | EXPORT_SYMBOL(skb_page_frag_refill); |
| 3167 | |
| 3168 | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) |
| 3169 | { |
| 3170 | if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) |
| 3171 | return true; |
| 3172 | |
| 3173 | sk_enter_memory_pressure(sk); |
| 3174 | sk_stream_moderate_sndbuf(sk); |
| 3175 | return false; |
| 3176 | } |
| 3177 | EXPORT_SYMBOL(sk_page_frag_refill); |
| 3178 | |
| 3179 | void __lock_sock(struct sock *sk) |
| 3180 | __releases(&sk->sk_lock.slock) |
| 3181 | __acquires(&sk->sk_lock.slock) |
| 3182 | { |
| 3183 | DEFINE_WAIT(wait); |
| 3184 | |
| 3185 | for (;;) { |
| 3186 | prepare_to_wait_exclusive(wq_head: &sk->sk_lock.wq, wq_entry: &wait, |
| 3187 | TASK_UNINTERRUPTIBLE); |
| 3188 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3189 | schedule(); |
| 3190 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3191 | if (!sock_owned_by_user(sk)) |
| 3192 | break; |
| 3193 | } |
| 3194 | finish_wait(wq_head: &sk->sk_lock.wq, wq_entry: &wait); |
| 3195 | } |
| 3196 | |
| 3197 | void __release_sock(struct sock *sk) |
| 3198 | __releases(&sk->sk_lock.slock) |
| 3199 | __acquires(&sk->sk_lock.slock) |
| 3200 | { |
| 3201 | struct sk_buff *skb, *next; |
| 3202 | |
| 3203 | while ((skb = sk->sk_backlog.head) != NULL) { |
| 3204 | sk->sk_backlog.head = sk->sk_backlog.tail = NULL; |
| 3205 | |
| 3206 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3207 | |
| 3208 | do { |
| 3209 | next = skb->next; |
| 3210 | prefetch(next); |
| 3211 | DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); |
| 3212 | skb_mark_not_on_list(skb); |
| 3213 | sk_backlog_rcv(sk, skb); |
| 3214 | |
| 3215 | cond_resched(); |
| 3216 | |
| 3217 | skb = next; |
| 3218 | } while (skb != NULL); |
| 3219 | |
| 3220 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3221 | } |
| 3222 | |
| 3223 | /* |
| 3224 | * Doing the zeroing here guarantee we can not loop forever |
| 3225 | * while a wild producer attempts to flood us. |
| 3226 | */ |
| 3227 | sk->sk_backlog.len = 0; |
| 3228 | } |
| 3229 | |
| 3230 | void __sk_flush_backlog(struct sock *sk) |
| 3231 | { |
| 3232 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3233 | __release_sock(sk); |
| 3234 | |
| 3235 | if (sk->sk_prot->release_cb) |
| 3236 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
| 3237 | tcp_release_cb, sk); |
| 3238 | |
| 3239 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3240 | } |
| 3241 | EXPORT_SYMBOL_GPL(__sk_flush_backlog); |
| 3242 | |
| 3243 | /** |
| 3244 | * sk_wait_data - wait for data to arrive at sk_receive_queue |
| 3245 | * @sk: sock to wait on |
| 3246 | * @timeo: for how long |
| 3247 | * @skb: last skb seen on sk_receive_queue |
| 3248 | * |
| 3249 | * Now socket state including sk->sk_err is changed only under lock, |
| 3250 | * hence we may omit checks after joining wait queue. |
| 3251 | * We check receive queue before schedule() only as optimization; |
| 3252 | * it is very likely that release_sock() added new data. |
| 3253 | */ |
| 3254 | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) |
| 3255 | { |
| 3256 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| 3257 | int rc; |
| 3258 | |
| 3259 | add_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
| 3260 | sk_set_bit(nr: SOCKWQ_ASYNC_WAITDATA, sk); |
| 3261 | rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); |
| 3262 | sk_clear_bit(nr: SOCKWQ_ASYNC_WAITDATA, sk); |
| 3263 | remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait); |
| 3264 | return rc; |
| 3265 | } |
| 3266 | EXPORT_SYMBOL(sk_wait_data); |
| 3267 | |
| 3268 | /** |
| 3269 | * __sk_mem_raise_allocated - increase memory_allocated |
| 3270 | * @sk: socket |
| 3271 | * @size: memory size to allocate |
| 3272 | * @amt: pages to allocate |
| 3273 | * @kind: allocation type |
| 3274 | * |
| 3275 | * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. |
| 3276 | * |
| 3277 | * Unlike the globally shared limits among the sockets under same protocol, |
| 3278 | * consuming the budget of a memcg won't have direct effect on other ones. |
| 3279 | * So be optimistic about memcg's tolerance, and leave the callers to decide |
| 3280 | * whether or not to raise allocated through sk_under_memory_pressure() or |
| 3281 | * its variants. |
| 3282 | */ |
| 3283 | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) |
| 3284 | { |
| 3285 | struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; |
| 3286 | struct proto *prot = sk->sk_prot; |
| 3287 | bool charged = true; |
| 3288 | long allocated; |
| 3289 | |
| 3290 | sk_memory_allocated_add(sk, val: amt); |
| 3291 | allocated = sk_memory_allocated(sk); |
| 3292 | |
| 3293 | if (memcg) { |
| 3294 | charged = mem_cgroup_charge_skmem(memcg, nr_pages: amt, gfp_mask: gfp_memcg_charge()); |
| 3295 | if (!charged) |
| 3296 | goto suppress_allocation; |
| 3297 | } |
| 3298 | |
| 3299 | /* Under limit. */ |
| 3300 | if (allocated <= sk_prot_mem_limits(sk, index: 0)) { |
| 3301 | sk_leave_memory_pressure(sk); |
| 3302 | return 1; |
| 3303 | } |
| 3304 | |
| 3305 | /* Under pressure. */ |
| 3306 | if (allocated > sk_prot_mem_limits(sk, index: 1)) |
| 3307 | sk_enter_memory_pressure(sk); |
| 3308 | |
| 3309 | /* Over hard limit. */ |
| 3310 | if (allocated > sk_prot_mem_limits(sk, index: 2)) |
| 3311 | goto suppress_allocation; |
| 3312 | |
| 3313 | /* Guarantee minimum buffer size under pressure (either global |
| 3314 | * or memcg) to make sure features described in RFC 7323 (TCP |
| 3315 | * Extensions for High Performance) work properly. |
| 3316 | * |
| 3317 | * This rule does NOT stand when exceeds global or memcg's hard |
| 3318 | * limit, or else a DoS attack can be taken place by spawning |
| 3319 | * lots of sockets whose usage are under minimum buffer size. |
| 3320 | */ |
| 3321 | if (kind == SK_MEM_RECV) { |
| 3322 | if (atomic_read(v: &sk->sk_rmem_alloc) < sk_get_rmem0(sk, proto: prot)) |
| 3323 | return 1; |
| 3324 | |
| 3325 | } else { /* SK_MEM_SEND */ |
| 3326 | int wmem0 = sk_get_wmem0(sk, proto: prot); |
| 3327 | |
| 3328 | if (sk->sk_type == SOCK_STREAM) { |
| 3329 | if (sk->sk_wmem_queued < wmem0) |
| 3330 | return 1; |
| 3331 | } else if (refcount_read(r: &sk->sk_wmem_alloc) < wmem0) { |
| 3332 | return 1; |
| 3333 | } |
| 3334 | } |
| 3335 | |
| 3336 | if (sk_has_memory_pressure(sk)) { |
| 3337 | u64 alloc; |
| 3338 | |
| 3339 | /* The following 'average' heuristic is within the |
| 3340 | * scope of global accounting, so it only makes |
| 3341 | * sense for global memory pressure. |
| 3342 | */ |
| 3343 | if (!sk_under_global_memory_pressure(sk)) |
| 3344 | return 1; |
| 3345 | |
| 3346 | /* Try to be fair among all the sockets under global |
| 3347 | * pressure by allowing the ones that below average |
| 3348 | * usage to raise. |
| 3349 | */ |
| 3350 | alloc = sk_sockets_allocated_read_positive(sk); |
| 3351 | if (sk_prot_mem_limits(sk, index: 2) > alloc * |
| 3352 | sk_mem_pages(amt: sk->sk_wmem_queued + |
| 3353 | atomic_read(v: &sk->sk_rmem_alloc) + |
| 3354 | sk->sk_forward_alloc)) |
| 3355 | return 1; |
| 3356 | } |
| 3357 | |
| 3358 | suppress_allocation: |
| 3359 | |
| 3360 | if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { |
| 3361 | sk_stream_moderate_sndbuf(sk); |
| 3362 | |
| 3363 | /* Fail only if socket is _under_ its sndbuf. |
| 3364 | * In this case we cannot block, so that we have to fail. |
| 3365 | */ |
| 3366 | if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { |
| 3367 | /* Force charge with __GFP_NOFAIL */ |
| 3368 | if (memcg && !charged) { |
| 3369 | mem_cgroup_charge_skmem(memcg, nr_pages: amt, |
| 3370 | gfp_mask: gfp_memcg_charge() | __GFP_NOFAIL); |
| 3371 | } |
| 3372 | return 1; |
| 3373 | } |
| 3374 | } |
| 3375 | |
| 3376 | if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) |
| 3377 | trace_sock_exceed_buf_limit(sk, prot, allocated, kind); |
| 3378 | |
| 3379 | sk_memory_allocated_sub(sk, val: amt); |
| 3380 | |
| 3381 | if (memcg && charged) |
| 3382 | mem_cgroup_uncharge_skmem(memcg, nr_pages: amt); |
| 3383 | |
| 3384 | return 0; |
| 3385 | } |
| 3386 | |
| 3387 | /** |
| 3388 | * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated |
| 3389 | * @sk: socket |
| 3390 | * @size: memory size to allocate |
| 3391 | * @kind: allocation type |
| 3392 | * |
| 3393 | * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means |
| 3394 | * rmem allocation. This function assumes that protocols which have |
| 3395 | * memory_pressure use sk_wmem_queued as write buffer accounting. |
| 3396 | */ |
| 3397 | int __sk_mem_schedule(struct sock *sk, int size, int kind) |
| 3398 | { |
| 3399 | int ret, amt = sk_mem_pages(amt: size); |
| 3400 | |
| 3401 | sk_forward_alloc_add(sk, val: amt << PAGE_SHIFT); |
| 3402 | ret = __sk_mem_raise_allocated(sk, size, amt, kind); |
| 3403 | if (!ret) |
| 3404 | sk_forward_alloc_add(sk, val: -(amt << PAGE_SHIFT)); |
| 3405 | return ret; |
| 3406 | } |
| 3407 | EXPORT_SYMBOL(__sk_mem_schedule); |
| 3408 | |
| 3409 | /** |
| 3410 | * __sk_mem_reduce_allocated - reclaim memory_allocated |
| 3411 | * @sk: socket |
| 3412 | * @amount: number of quanta |
| 3413 | * |
| 3414 | * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc |
| 3415 | */ |
| 3416 | void __sk_mem_reduce_allocated(struct sock *sk, int amount) |
| 3417 | { |
| 3418 | sk_memory_allocated_sub(sk, val: amount); |
| 3419 | |
| 3420 | if (mem_cgroup_sockets_enabled && sk->sk_memcg) |
| 3421 | mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: amount); |
| 3422 | |
| 3423 | if (sk_under_global_memory_pressure(sk) && |
| 3424 | (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, index: 0))) |
| 3425 | sk_leave_memory_pressure(sk); |
| 3426 | } |
| 3427 | |
| 3428 | /** |
| 3429 | * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated |
| 3430 | * @sk: socket |
| 3431 | * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) |
| 3432 | */ |
| 3433 | void __sk_mem_reclaim(struct sock *sk, int amount) |
| 3434 | { |
| 3435 | amount >>= PAGE_SHIFT; |
| 3436 | sk_forward_alloc_add(sk, val: -(amount << PAGE_SHIFT)); |
| 3437 | __sk_mem_reduce_allocated(sk, amount); |
| 3438 | } |
| 3439 | EXPORT_SYMBOL(__sk_mem_reclaim); |
| 3440 | |
| 3441 | int sk_set_peek_off(struct sock *sk, int val) |
| 3442 | { |
| 3443 | WRITE_ONCE(sk->sk_peek_off, val); |
| 3444 | return 0; |
| 3445 | } |
| 3446 | EXPORT_SYMBOL_GPL(sk_set_peek_off); |
| 3447 | |
| 3448 | /* |
| 3449 | * Set of default routines for initialising struct proto_ops when |
| 3450 | * the protocol does not support a particular function. In certain |
| 3451 | * cases where it makes no sense for a protocol to have a "do nothing" |
| 3452 | * function, some default processing is provided. |
| 3453 | */ |
| 3454 | |
| 3455 | int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) |
| 3456 | { |
| 3457 | return -EOPNOTSUPP; |
| 3458 | } |
| 3459 | EXPORT_SYMBOL(sock_no_bind); |
| 3460 | |
| 3461 | int sock_no_connect(struct socket *sock, struct sockaddr *saddr, |
| 3462 | int len, int flags) |
| 3463 | { |
| 3464 | return -EOPNOTSUPP; |
| 3465 | } |
| 3466 | EXPORT_SYMBOL(sock_no_connect); |
| 3467 | |
| 3468 | int sock_no_socketpair(struct socket *sock1, struct socket *sock2) |
| 3469 | { |
| 3470 | return -EOPNOTSUPP; |
| 3471 | } |
| 3472 | EXPORT_SYMBOL(sock_no_socketpair); |
| 3473 | |
| 3474 | int sock_no_accept(struct socket *sock, struct socket *newsock, |
| 3475 | struct proto_accept_arg *arg) |
| 3476 | { |
| 3477 | return -EOPNOTSUPP; |
| 3478 | } |
| 3479 | EXPORT_SYMBOL(sock_no_accept); |
| 3480 | |
| 3481 | int sock_no_getname(struct socket *sock, struct sockaddr *saddr, |
| 3482 | int peer) |
| 3483 | { |
| 3484 | return -EOPNOTSUPP; |
| 3485 | } |
| 3486 | EXPORT_SYMBOL(sock_no_getname); |
| 3487 | |
| 3488 | int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
| 3489 | { |
| 3490 | return -EOPNOTSUPP; |
| 3491 | } |
| 3492 | EXPORT_SYMBOL(sock_no_ioctl); |
| 3493 | |
| 3494 | int sock_no_listen(struct socket *sock, int backlog) |
| 3495 | { |
| 3496 | return -EOPNOTSUPP; |
| 3497 | } |
| 3498 | EXPORT_SYMBOL(sock_no_listen); |
| 3499 | |
| 3500 | int sock_no_shutdown(struct socket *sock, int how) |
| 3501 | { |
| 3502 | return -EOPNOTSUPP; |
| 3503 | } |
| 3504 | EXPORT_SYMBOL(sock_no_shutdown); |
| 3505 | |
| 3506 | int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) |
| 3507 | { |
| 3508 | return -EOPNOTSUPP; |
| 3509 | } |
| 3510 | EXPORT_SYMBOL(sock_no_sendmsg); |
| 3511 | |
| 3512 | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) |
| 3513 | { |
| 3514 | return -EOPNOTSUPP; |
| 3515 | } |
| 3516 | EXPORT_SYMBOL(sock_no_sendmsg_locked); |
| 3517 | |
| 3518 | int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, |
| 3519 | int flags) |
| 3520 | { |
| 3521 | return -EOPNOTSUPP; |
| 3522 | } |
| 3523 | EXPORT_SYMBOL(sock_no_recvmsg); |
| 3524 | |
| 3525 | int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) |
| 3526 | { |
| 3527 | /* Mirror missing mmap method error code */ |
| 3528 | return -ENODEV; |
| 3529 | } |
| 3530 | EXPORT_SYMBOL(sock_no_mmap); |
| 3531 | |
| 3532 | /* |
| 3533 | * When a file is received (via SCM_RIGHTS, etc), we must bump the |
| 3534 | * various sock-based usage counts. |
| 3535 | */ |
| 3536 | void __receive_sock(struct file *file) |
| 3537 | { |
| 3538 | struct socket *sock; |
| 3539 | |
| 3540 | sock = sock_from_file(file); |
| 3541 | if (sock) { |
| 3542 | sock_update_netprioidx(skcd: &sock->sk->sk_cgrp_data); |
| 3543 | sock_update_classid(skcd: &sock->sk->sk_cgrp_data); |
| 3544 | } |
| 3545 | } |
| 3546 | |
| 3547 | /* |
| 3548 | * Default Socket Callbacks |
| 3549 | */ |
| 3550 | |
| 3551 | static void sock_def_wakeup(struct sock *sk) |
| 3552 | { |
| 3553 | struct socket_wq *wq; |
| 3554 | |
| 3555 | rcu_read_lock(); |
| 3556 | wq = rcu_dereference(sk->sk_wq); |
| 3557 | if (skwq_has_sleeper(wq)) |
| 3558 | wake_up_interruptible_all(&wq->wait); |
| 3559 | rcu_read_unlock(); |
| 3560 | } |
| 3561 | |
| 3562 | static void sock_def_error_report(struct sock *sk) |
| 3563 | { |
| 3564 | struct socket_wq *wq; |
| 3565 | |
| 3566 | rcu_read_lock(); |
| 3567 | wq = rcu_dereference(sk->sk_wq); |
| 3568 | if (skwq_has_sleeper(wq)) |
| 3569 | wake_up_interruptible_poll(&wq->wait, EPOLLERR); |
| 3570 | sk_wake_async_rcu(sk, how: SOCK_WAKE_IO, POLL_ERR); |
| 3571 | rcu_read_unlock(); |
| 3572 | } |
| 3573 | |
| 3574 | void sock_def_readable(struct sock *sk) |
| 3575 | { |
| 3576 | struct socket_wq *wq; |
| 3577 | |
| 3578 | trace_sk_data_ready(sk); |
| 3579 | |
| 3580 | rcu_read_lock(); |
| 3581 | wq = rcu_dereference(sk->sk_wq); |
| 3582 | if (skwq_has_sleeper(wq)) |
| 3583 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | |
| 3584 | EPOLLRDNORM | EPOLLRDBAND); |
| 3585 | sk_wake_async_rcu(sk, how: SOCK_WAKE_WAITD, POLL_IN); |
| 3586 | rcu_read_unlock(); |
| 3587 | } |
| 3588 | |
| 3589 | static void sock_def_write_space(struct sock *sk) |
| 3590 | { |
| 3591 | struct socket_wq *wq; |
| 3592 | |
| 3593 | rcu_read_lock(); |
| 3594 | |
| 3595 | /* Do not wake up a writer until he can make "significant" |
| 3596 | * progress. --DaveM |
| 3597 | */ |
| 3598 | if (sock_writeable(sk)) { |
| 3599 | wq = rcu_dereference(sk->sk_wq); |
| 3600 | if (skwq_has_sleeper(wq)) |
| 3601 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
| 3602 | EPOLLWRNORM | EPOLLWRBAND); |
| 3603 | |
| 3604 | /* Should agree with poll, otherwise some programs break */ |
| 3605 | sk_wake_async_rcu(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
| 3606 | } |
| 3607 | |
| 3608 | rcu_read_unlock(); |
| 3609 | } |
| 3610 | |
| 3611 | /* An optimised version of sock_def_write_space(), should only be called |
| 3612 | * for SOCK_RCU_FREE sockets under RCU read section and after putting |
| 3613 | * ->sk_wmem_alloc. |
| 3614 | */ |
| 3615 | static void sock_def_write_space_wfree(struct sock *sk) |
| 3616 | { |
| 3617 | /* Do not wake up a writer until he can make "significant" |
| 3618 | * progress. --DaveM |
| 3619 | */ |
| 3620 | if (sock_writeable(sk)) { |
| 3621 | struct socket_wq *wq = rcu_dereference(sk->sk_wq); |
| 3622 | |
| 3623 | /* rely on refcount_sub from sock_wfree() */ |
| 3624 | smp_mb__after_atomic(); |
| 3625 | if (wq && waitqueue_active(wq_head: &wq->wait)) |
| 3626 | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
| 3627 | EPOLLWRNORM | EPOLLWRBAND); |
| 3628 | |
| 3629 | /* Should agree with poll, otherwise some programs break */ |
| 3630 | sk_wake_async_rcu(sk, how: SOCK_WAKE_SPACE, POLL_OUT); |
| 3631 | } |
| 3632 | } |
| 3633 | |
| 3634 | static void sock_def_destruct(struct sock *sk) |
| 3635 | { |
| 3636 | } |
| 3637 | |
| 3638 | void sk_send_sigurg(struct sock *sk) |
| 3639 | { |
| 3640 | if (sk->sk_socket && sk->sk_socket->file) |
| 3641 | if (send_sigurg(file: sk->sk_socket->file)) |
| 3642 | sk_wake_async(sk, how: SOCK_WAKE_URG, POLL_PRI); |
| 3643 | } |
| 3644 | EXPORT_SYMBOL(sk_send_sigurg); |
| 3645 | |
| 3646 | void sk_reset_timer(struct sock *sk, struct timer_list* timer, |
| 3647 | unsigned long expires) |
| 3648 | { |
| 3649 | if (!mod_timer(timer, expires)) |
| 3650 | sock_hold(sk); |
| 3651 | } |
| 3652 | EXPORT_SYMBOL(sk_reset_timer); |
| 3653 | |
| 3654 | void sk_stop_timer(struct sock *sk, struct timer_list* timer) |
| 3655 | { |
| 3656 | if (timer_delete(timer)) |
| 3657 | __sock_put(sk); |
| 3658 | } |
| 3659 | EXPORT_SYMBOL(sk_stop_timer); |
| 3660 | |
| 3661 | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) |
| 3662 | { |
| 3663 | if (timer_delete_sync(timer)) |
| 3664 | __sock_put(sk); |
| 3665 | } |
| 3666 | EXPORT_SYMBOL(sk_stop_timer_sync); |
| 3667 | |
| 3668 | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) |
| 3669 | { |
| 3670 | sk_init_common(sk); |
| 3671 | sk->sk_send_head = NULL; |
| 3672 | |
| 3673 | timer_setup(&sk->sk_timer, NULL, 0); |
| 3674 | |
| 3675 | sk->sk_allocation = GFP_KERNEL; |
| 3676 | sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); |
| 3677 | sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); |
| 3678 | sk->sk_state = TCP_CLOSE; |
| 3679 | sk->sk_use_task_frag = true; |
| 3680 | sk_set_socket(sk, sock); |
| 3681 | |
| 3682 | sock_set_flag(sk, flag: SOCK_ZAPPED); |
| 3683 | |
| 3684 | if (sock) { |
| 3685 | sk->sk_type = sock->type; |
| 3686 | RCU_INIT_POINTER(sk->sk_wq, &sock->wq); |
| 3687 | sock->sk = sk; |
| 3688 | } else { |
| 3689 | RCU_INIT_POINTER(sk->sk_wq, NULL); |
| 3690 | } |
| 3691 | sk->sk_uid = uid; |
| 3692 | |
| 3693 | sk->sk_state_change = sock_def_wakeup; |
| 3694 | sk->sk_data_ready = sock_def_readable; |
| 3695 | sk->sk_write_space = sock_def_write_space; |
| 3696 | sk->sk_error_report = sock_def_error_report; |
| 3697 | sk->sk_destruct = sock_def_destruct; |
| 3698 | |
| 3699 | sk->sk_frag.page = NULL; |
| 3700 | sk->sk_frag.offset = 0; |
| 3701 | sk->sk_peek_off = -1; |
| 3702 | |
| 3703 | sk->sk_peer_pid = NULL; |
| 3704 | sk->sk_peer_cred = NULL; |
| 3705 | spin_lock_init(&sk->sk_peer_lock); |
| 3706 | |
| 3707 | sk->sk_write_pending = 0; |
| 3708 | sk->sk_rcvlowat = 1; |
| 3709 | sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; |
| 3710 | sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
| 3711 | |
| 3712 | sk->sk_stamp = SK_DEFAULT_STAMP; |
| 3713 | #if BITS_PER_LONG==32 |
| 3714 | seqlock_init(&sk->sk_stamp_seq); |
| 3715 | #endif |
| 3716 | atomic_set(v: &sk->sk_zckey, i: 0); |
| 3717 | |
| 3718 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 3719 | sk->sk_napi_id = 0; |
| 3720 | sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); |
| 3721 | #endif |
| 3722 | |
| 3723 | sk->sk_max_pacing_rate = ~0UL; |
| 3724 | sk->sk_pacing_rate = ~0UL; |
| 3725 | WRITE_ONCE(sk->sk_pacing_shift, 10); |
| 3726 | sk->sk_incoming_cpu = -1; |
| 3727 | |
| 3728 | sk_rx_queue_clear(sk); |
| 3729 | /* |
| 3730 | * Before updating sk_refcnt, we must commit prior changes to memory |
| 3731 | * (Documentation/RCU/rculist_nulls.rst for details) |
| 3732 | */ |
| 3733 | smp_wmb(); |
| 3734 | refcount_set(r: &sk->sk_refcnt, n: 1); |
| 3735 | atomic_set(v: &sk->sk_drops, i: 0); |
| 3736 | } |
| 3737 | EXPORT_SYMBOL(sock_init_data_uid); |
| 3738 | |
| 3739 | void sock_init_data(struct socket *sock, struct sock *sk) |
| 3740 | { |
| 3741 | kuid_t uid = sock ? |
| 3742 | SOCK_INODE(socket: sock)->i_uid : |
| 3743 | make_kuid(from: sock_net(sk)->user_ns, uid: 0); |
| 3744 | |
| 3745 | sock_init_data_uid(sock, sk, uid); |
| 3746 | } |
| 3747 | EXPORT_SYMBOL(sock_init_data); |
| 3748 | |
| 3749 | void lock_sock_nested(struct sock *sk, int subclass) |
| 3750 | { |
| 3751 | /* The sk_lock has mutex_lock() semantics here. */ |
| 3752 | mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); |
| 3753 | |
| 3754 | might_sleep(); |
| 3755 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3756 | if (sock_owned_by_user_nocheck(sk)) |
| 3757 | __lock_sock(sk); |
| 3758 | sk->sk_lock.owned = 1; |
| 3759 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3760 | } |
| 3761 | EXPORT_SYMBOL(lock_sock_nested); |
| 3762 | |
| 3763 | void release_sock(struct sock *sk) |
| 3764 | { |
| 3765 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3766 | if (sk->sk_backlog.tail) |
| 3767 | __release_sock(sk); |
| 3768 | |
| 3769 | if (sk->sk_prot->release_cb) |
| 3770 | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
| 3771 | tcp_release_cb, sk); |
| 3772 | |
| 3773 | sock_release_ownership(sk); |
| 3774 | if (waitqueue_active(wq_head: &sk->sk_lock.wq)) |
| 3775 | wake_up(&sk->sk_lock.wq); |
| 3776 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3777 | } |
| 3778 | EXPORT_SYMBOL(release_sock); |
| 3779 | |
| 3780 | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) |
| 3781 | { |
| 3782 | might_sleep(); |
| 3783 | spin_lock_bh(lock: &sk->sk_lock.slock); |
| 3784 | |
| 3785 | if (!sock_owned_by_user_nocheck(sk)) { |
| 3786 | /* |
| 3787 | * Fast path return with bottom halves disabled and |
| 3788 | * sock::sk_lock.slock held. |
| 3789 | * |
| 3790 | * The 'mutex' is not contended and holding |
| 3791 | * sock::sk_lock.slock prevents all other lockers to |
| 3792 | * proceed so the corresponding unlock_sock_fast() can |
| 3793 | * avoid the slow path of release_sock() completely and |
| 3794 | * just release slock. |
| 3795 | * |
| 3796 | * From a semantical POV this is equivalent to 'acquiring' |
| 3797 | * the 'mutex', hence the corresponding lockdep |
| 3798 | * mutex_release() has to happen in the fast path of |
| 3799 | * unlock_sock_fast(). |
| 3800 | */ |
| 3801 | return false; |
| 3802 | } |
| 3803 | |
| 3804 | __lock_sock(sk); |
| 3805 | sk->sk_lock.owned = 1; |
| 3806 | __acquire(&sk->sk_lock.slock); |
| 3807 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 3808 | return true; |
| 3809 | } |
| 3810 | EXPORT_SYMBOL(__lock_sock_fast); |
| 3811 | |
| 3812 | int sock_gettstamp(struct socket *sock, void __user *userstamp, |
| 3813 | bool timeval, bool time32) |
| 3814 | { |
| 3815 | struct sock *sk = sock->sk; |
| 3816 | struct timespec64 ts; |
| 3817 | |
| 3818 | sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP); |
| 3819 | ts = ktime_to_timespec64(sock_read_timestamp(sk)); |
| 3820 | if (ts.tv_sec == -1) |
| 3821 | return -ENOENT; |
| 3822 | if (ts.tv_sec == 0) { |
| 3823 | ktime_t kt = ktime_get_real(); |
| 3824 | sock_write_timestamp(sk, kt); |
| 3825 | ts = ktime_to_timespec64(kt); |
| 3826 | } |
| 3827 | |
| 3828 | if (timeval) |
| 3829 | ts.tv_nsec /= 1000; |
| 3830 | |
| 3831 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 3832 | if (time32) |
| 3833 | return put_old_timespec32(&ts, userstamp); |
| 3834 | #endif |
| 3835 | #ifdef CONFIG_SPARC64 |
| 3836 | /* beware of padding in sparc64 timeval */ |
| 3837 | if (timeval && !in_compat_syscall()) { |
| 3838 | struct __kernel_old_timeval __user tv = { |
| 3839 | .tv_sec = ts.tv_sec, |
| 3840 | .tv_usec = ts.tv_nsec, |
| 3841 | }; |
| 3842 | if (copy_to_user(userstamp, &tv, sizeof(tv))) |
| 3843 | return -EFAULT; |
| 3844 | return 0; |
| 3845 | } |
| 3846 | #endif |
| 3847 | return put_timespec64(ts: &ts, uts: userstamp); |
| 3848 | } |
| 3849 | EXPORT_SYMBOL(sock_gettstamp); |
| 3850 | |
| 3851 | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) |
| 3852 | { |
| 3853 | if (!sock_flag(sk, flag)) { |
| 3854 | unsigned long previous_flags = sk->sk_flags; |
| 3855 | |
| 3856 | sock_set_flag(sk, flag); |
| 3857 | /* |
| 3858 | * we just set one of the two flags which require net |
| 3859 | * time stamping, but time stamping might have been on |
| 3860 | * already because of the other one |
| 3861 | */ |
| 3862 | if (sock_needs_netstamp(sk) && |
| 3863 | !(previous_flags & SK_FLAGS_TIMESTAMP)) |
| 3864 | net_enable_timestamp(); |
| 3865 | } |
| 3866 | } |
| 3867 | |
| 3868 | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, |
| 3869 | int level, int type) |
| 3870 | { |
| 3871 | struct sock_exterr_skb *serr; |
| 3872 | struct sk_buff *skb; |
| 3873 | int copied, err; |
| 3874 | |
| 3875 | err = -EAGAIN; |
| 3876 | skb = sock_dequeue_err_skb(sk); |
| 3877 | if (skb == NULL) |
| 3878 | goto out; |
| 3879 | |
| 3880 | copied = skb->len; |
| 3881 | if (copied > len) { |
| 3882 | msg->msg_flags |= MSG_TRUNC; |
| 3883 | copied = len; |
| 3884 | } |
| 3885 | err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied); |
| 3886 | if (err) |
| 3887 | goto out_free_skb; |
| 3888 | |
| 3889 | sock_recv_timestamp(msg, sk, skb); |
| 3890 | |
| 3891 | serr = SKB_EXT_ERR(skb); |
| 3892 | put_cmsg(msg, level, type, len: sizeof(serr->ee), data: &serr->ee); |
| 3893 | |
| 3894 | msg->msg_flags |= MSG_ERRQUEUE; |
| 3895 | err = copied; |
| 3896 | |
| 3897 | out_free_skb: |
| 3898 | kfree_skb(skb); |
| 3899 | out: |
| 3900 | return err; |
| 3901 | } |
| 3902 | EXPORT_SYMBOL(sock_recv_errqueue); |
| 3903 | |
| 3904 | /* |
| 3905 | * Get a socket option on an socket. |
| 3906 | * |
| 3907 | * FIX: POSIX 1003.1g is very ambiguous here. It states that |
| 3908 | * asynchronous errors should be reported by getsockopt. We assume |
| 3909 | * this means if you specify SO_ERROR (otherwise what is the point of it). |
| 3910 | */ |
| 3911 | int sock_common_getsockopt(struct socket *sock, int level, int optname, |
| 3912 | char __user *optval, int __user *optlen) |
| 3913 | { |
| 3914 | struct sock *sk = sock->sk; |
| 3915 | |
| 3916 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
| 3917 | return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); |
| 3918 | } |
| 3919 | EXPORT_SYMBOL(sock_common_getsockopt); |
| 3920 | |
| 3921 | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
| 3922 | int flags) |
| 3923 | { |
| 3924 | struct sock *sk = sock->sk; |
| 3925 | int addr_len = 0; |
| 3926 | int err; |
| 3927 | |
| 3928 | err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); |
| 3929 | if (err >= 0) |
| 3930 | msg->msg_namelen = addr_len; |
| 3931 | return err; |
| 3932 | } |
| 3933 | EXPORT_SYMBOL(sock_common_recvmsg); |
| 3934 | |
| 3935 | /* |
| 3936 | * Set socket options on an inet socket. |
| 3937 | */ |
| 3938 | int sock_common_setsockopt(struct socket *sock, int level, int optname, |
| 3939 | sockptr_t optval, unsigned int optlen) |
| 3940 | { |
| 3941 | struct sock *sk = sock->sk; |
| 3942 | |
| 3943 | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
| 3944 | return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); |
| 3945 | } |
| 3946 | EXPORT_SYMBOL(sock_common_setsockopt); |
| 3947 | |
| 3948 | void sk_common_release(struct sock *sk) |
| 3949 | { |
| 3950 | if (sk->sk_prot->destroy) |
| 3951 | sk->sk_prot->destroy(sk); |
| 3952 | |
| 3953 | /* |
| 3954 | * Observation: when sk_common_release is called, processes have |
| 3955 | * no access to socket. But net still has. |
| 3956 | * Step one, detach it from networking: |
| 3957 | * |
| 3958 | * A. Remove from hash tables. |
| 3959 | */ |
| 3960 | |
| 3961 | sk->sk_prot->unhash(sk); |
| 3962 | |
| 3963 | /* |
| 3964 | * In this point socket cannot receive new packets, but it is possible |
| 3965 | * that some packets are in flight because some CPU runs receiver and |
| 3966 | * did hash table lookup before we unhashed socket. They will achieve |
| 3967 | * receive queue and will be purged by socket destructor. |
| 3968 | * |
| 3969 | * Also we still have packets pending on receive queue and probably, |
| 3970 | * our own packets waiting in device queues. sock_destroy will drain |
| 3971 | * receive queue, but transmitted packets will delay socket destruction |
| 3972 | * until the last reference will be released. |
| 3973 | */ |
| 3974 | |
| 3975 | sock_orphan(sk); |
| 3976 | |
| 3977 | xfrm_sk_free_policy(sk); |
| 3978 | |
| 3979 | sock_put(sk); |
| 3980 | } |
| 3981 | EXPORT_SYMBOL(sk_common_release); |
| 3982 | |
| 3983 | void sk_get_meminfo(const struct sock *sk, u32 *mem) |
| 3984 | { |
| 3985 | memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); |
| 3986 | |
| 3987 | mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); |
| 3988 | mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); |
| 3989 | mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); |
| 3990 | mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); |
| 3991 | mem[SK_MEMINFO_FWD_ALLOC] = READ_ONCE(sk->sk_forward_alloc); |
| 3992 | mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); |
| 3993 | mem[SK_MEMINFO_OPTMEM] = atomic_read(v: &sk->sk_omem_alloc); |
| 3994 | mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); |
| 3995 | mem[SK_MEMINFO_DROPS] = atomic_read(v: &sk->sk_drops); |
| 3996 | } |
| 3997 | |
| 3998 | #ifdef CONFIG_PROC_FS |
| 3999 | static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); |
| 4000 | |
| 4001 | int sock_prot_inuse_get(struct net *net, struct proto *prot) |
| 4002 | { |
| 4003 | int cpu, idx = prot->inuse_idx; |
| 4004 | int res = 0; |
| 4005 | |
| 4006 | for_each_possible_cpu(cpu) |
| 4007 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; |
| 4008 | |
| 4009 | return res >= 0 ? res : 0; |
| 4010 | } |
| 4011 | EXPORT_SYMBOL_GPL(sock_prot_inuse_get); |
| 4012 | |
| 4013 | int sock_inuse_get(struct net *net) |
| 4014 | { |
| 4015 | int cpu, res = 0; |
| 4016 | |
| 4017 | for_each_possible_cpu(cpu) |
| 4018 | res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; |
| 4019 | |
| 4020 | return res; |
| 4021 | } |
| 4022 | |
| 4023 | EXPORT_SYMBOL_GPL(sock_inuse_get); |
| 4024 | |
| 4025 | static int __net_init sock_inuse_init_net(struct net *net) |
| 4026 | { |
| 4027 | net->core.prot_inuse = alloc_percpu(struct prot_inuse); |
| 4028 | if (net->core.prot_inuse == NULL) |
| 4029 | return -ENOMEM; |
| 4030 | return 0; |
| 4031 | } |
| 4032 | |
| 4033 | static void __net_exit sock_inuse_exit_net(struct net *net) |
| 4034 | { |
| 4035 | free_percpu(pdata: net->core.prot_inuse); |
| 4036 | } |
| 4037 | |
| 4038 | static struct pernet_operations net_inuse_ops = { |
| 4039 | .init = sock_inuse_init_net, |
| 4040 | .exit = sock_inuse_exit_net, |
| 4041 | }; |
| 4042 | |
| 4043 | static __init int net_inuse_init(void) |
| 4044 | { |
| 4045 | if (register_pernet_subsys(&net_inuse_ops)) |
| 4046 | panic(fmt: "Cannot initialize net inuse counters" ); |
| 4047 | |
| 4048 | return 0; |
| 4049 | } |
| 4050 | |
| 4051 | core_initcall(net_inuse_init); |
| 4052 | |
| 4053 | static int assign_proto_idx(struct proto *prot) |
| 4054 | { |
| 4055 | prot->inuse_idx = find_first_zero_bit(addr: proto_inuse_idx, PROTO_INUSE_NR); |
| 4056 | |
| 4057 | if (unlikely(prot->inuse_idx == PROTO_INUSE_NR)) { |
| 4058 | pr_err("PROTO_INUSE_NR exhausted\n" ); |
| 4059 | return -ENOSPC; |
| 4060 | } |
| 4061 | |
| 4062 | set_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
| 4063 | return 0; |
| 4064 | } |
| 4065 | |
| 4066 | static void release_proto_idx(struct proto *prot) |
| 4067 | { |
| 4068 | if (prot->inuse_idx != PROTO_INUSE_NR) |
| 4069 | clear_bit(nr: prot->inuse_idx, addr: proto_inuse_idx); |
| 4070 | } |
| 4071 | #else |
| 4072 | static inline int assign_proto_idx(struct proto *prot) |
| 4073 | { |
| 4074 | return 0; |
| 4075 | } |
| 4076 | |
| 4077 | static inline void release_proto_idx(struct proto *prot) |
| 4078 | { |
| 4079 | } |
| 4080 | |
| 4081 | #endif |
| 4082 | |
| 4083 | static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) |
| 4084 | { |
| 4085 | if (!twsk_prot) |
| 4086 | return; |
| 4087 | kfree(objp: twsk_prot->twsk_slab_name); |
| 4088 | twsk_prot->twsk_slab_name = NULL; |
| 4089 | kmem_cache_destroy(s: twsk_prot->twsk_slab); |
| 4090 | twsk_prot->twsk_slab = NULL; |
| 4091 | } |
| 4092 | |
| 4093 | static int tw_prot_init(const struct proto *prot) |
| 4094 | { |
| 4095 | struct timewait_sock_ops *twsk_prot = prot->twsk_prot; |
| 4096 | |
| 4097 | if (!twsk_prot) |
| 4098 | return 0; |
| 4099 | |
| 4100 | twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, fmt: "tw_sock_%s" , |
| 4101 | prot->name); |
| 4102 | if (!twsk_prot->twsk_slab_name) |
| 4103 | return -ENOMEM; |
| 4104 | |
| 4105 | twsk_prot->twsk_slab = |
| 4106 | kmem_cache_create(twsk_prot->twsk_slab_name, |
| 4107 | twsk_prot->twsk_obj_size, 0, |
| 4108 | SLAB_ACCOUNT | prot->slab_flags, |
| 4109 | NULL); |
| 4110 | if (!twsk_prot->twsk_slab) { |
| 4111 | pr_crit("%s: Can't create timewait sock SLAB cache!\n" , |
| 4112 | prot->name); |
| 4113 | return -ENOMEM; |
| 4114 | } |
| 4115 | |
| 4116 | return 0; |
| 4117 | } |
| 4118 | |
| 4119 | static void req_prot_cleanup(struct request_sock_ops *rsk_prot) |
| 4120 | { |
| 4121 | if (!rsk_prot) |
| 4122 | return; |
| 4123 | kfree(objp: rsk_prot->slab_name); |
| 4124 | rsk_prot->slab_name = NULL; |
| 4125 | kmem_cache_destroy(s: rsk_prot->slab); |
| 4126 | rsk_prot->slab = NULL; |
| 4127 | } |
| 4128 | |
| 4129 | static int req_prot_init(const struct proto *prot) |
| 4130 | { |
| 4131 | struct request_sock_ops *rsk_prot = prot->rsk_prot; |
| 4132 | |
| 4133 | if (!rsk_prot) |
| 4134 | return 0; |
| 4135 | |
| 4136 | rsk_prot->slab_name = kasprintf(GFP_KERNEL, fmt: "request_sock_%s" , |
| 4137 | prot->name); |
| 4138 | if (!rsk_prot->slab_name) |
| 4139 | return -ENOMEM; |
| 4140 | |
| 4141 | rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, |
| 4142 | rsk_prot->obj_size, 0, |
| 4143 | SLAB_ACCOUNT | prot->slab_flags, |
| 4144 | NULL); |
| 4145 | |
| 4146 | if (!rsk_prot->slab) { |
| 4147 | pr_crit("%s: Can't create request sock SLAB cache!\n" , |
| 4148 | prot->name); |
| 4149 | return -ENOMEM; |
| 4150 | } |
| 4151 | return 0; |
| 4152 | } |
| 4153 | |
| 4154 | int proto_register(struct proto *prot, int alloc_slab) |
| 4155 | { |
| 4156 | int ret = -ENOBUFS; |
| 4157 | |
| 4158 | if (prot->memory_allocated && !prot->sysctl_mem) { |
| 4159 | pr_err("%s: missing sysctl_mem\n" , prot->name); |
| 4160 | return -EINVAL; |
| 4161 | } |
| 4162 | if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { |
| 4163 | pr_err("%s: missing per_cpu_fw_alloc\n" , prot->name); |
| 4164 | return -EINVAL; |
| 4165 | } |
| 4166 | if (alloc_slab) { |
| 4167 | prot->slab = kmem_cache_create_usercopy(name: prot->name, |
| 4168 | size: prot->obj_size, align: 0, |
| 4169 | SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | |
| 4170 | prot->slab_flags, |
| 4171 | useroffset: prot->useroffset, usersize: prot->usersize, |
| 4172 | NULL); |
| 4173 | |
| 4174 | if (prot->slab == NULL) { |
| 4175 | pr_crit("%s: Can't create sock SLAB cache!\n" , |
| 4176 | prot->name); |
| 4177 | goto out; |
| 4178 | } |
| 4179 | |
| 4180 | if (req_prot_init(prot)) |
| 4181 | goto out_free_request_sock_slab; |
| 4182 | |
| 4183 | if (tw_prot_init(prot)) |
| 4184 | goto out_free_timewait_sock_slab; |
| 4185 | } |
| 4186 | |
| 4187 | mutex_lock(&proto_list_mutex); |
| 4188 | ret = assign_proto_idx(prot); |
| 4189 | if (ret) { |
| 4190 | mutex_unlock(lock: &proto_list_mutex); |
| 4191 | goto out_free_timewait_sock_slab; |
| 4192 | } |
| 4193 | list_add(new: &prot->node, head: &proto_list); |
| 4194 | mutex_unlock(lock: &proto_list_mutex); |
| 4195 | return ret; |
| 4196 | |
| 4197 | out_free_timewait_sock_slab: |
| 4198 | if (alloc_slab) |
| 4199 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
| 4200 | out_free_request_sock_slab: |
| 4201 | if (alloc_slab) { |
| 4202 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
| 4203 | |
| 4204 | kmem_cache_destroy(s: prot->slab); |
| 4205 | prot->slab = NULL; |
| 4206 | } |
| 4207 | out: |
| 4208 | return ret; |
| 4209 | } |
| 4210 | EXPORT_SYMBOL(proto_register); |
| 4211 | |
| 4212 | void proto_unregister(struct proto *prot) |
| 4213 | { |
| 4214 | mutex_lock(&proto_list_mutex); |
| 4215 | release_proto_idx(prot); |
| 4216 | list_del(entry: &prot->node); |
| 4217 | mutex_unlock(lock: &proto_list_mutex); |
| 4218 | |
| 4219 | kmem_cache_destroy(s: prot->slab); |
| 4220 | prot->slab = NULL; |
| 4221 | |
| 4222 | req_prot_cleanup(rsk_prot: prot->rsk_prot); |
| 4223 | tw_prot_cleanup(twsk_prot: prot->twsk_prot); |
| 4224 | } |
| 4225 | EXPORT_SYMBOL(proto_unregister); |
| 4226 | |
| 4227 | int sock_load_diag_module(int family, int protocol) |
| 4228 | { |
| 4229 | if (!protocol) { |
| 4230 | if (!sock_is_registered(family)) |
| 4231 | return -ENOENT; |
| 4232 | |
| 4233 | return request_module("net-pf-%d-proto-%d-type-%d" , PF_NETLINK, |
| 4234 | NETLINK_SOCK_DIAG, family); |
| 4235 | } |
| 4236 | |
| 4237 | #ifdef CONFIG_INET |
| 4238 | if (family == AF_INET && |
| 4239 | protocol != IPPROTO_RAW && |
| 4240 | protocol < MAX_INET_PROTOS && |
| 4241 | !rcu_access_pointer(inet_protos[protocol])) |
| 4242 | return -ENOENT; |
| 4243 | #endif |
| 4244 | |
| 4245 | return request_module("net-pf-%d-proto-%d-type-%d-%d" , PF_NETLINK, |
| 4246 | NETLINK_SOCK_DIAG, family, protocol); |
| 4247 | } |
| 4248 | EXPORT_SYMBOL(sock_load_diag_module); |
| 4249 | |
| 4250 | #ifdef CONFIG_PROC_FS |
| 4251 | static void *proto_seq_start(struct seq_file *seq, loff_t *pos) |
| 4252 | __acquires(proto_list_mutex) |
| 4253 | { |
| 4254 | mutex_lock(&proto_list_mutex); |
| 4255 | return seq_list_start_head(head: &proto_list, pos: *pos); |
| 4256 | } |
| 4257 | |
| 4258 | static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 4259 | { |
| 4260 | return seq_list_next(v, head: &proto_list, ppos: pos); |
| 4261 | } |
| 4262 | |
| 4263 | static void proto_seq_stop(struct seq_file *seq, void *v) |
| 4264 | __releases(proto_list_mutex) |
| 4265 | { |
| 4266 | mutex_unlock(lock: &proto_list_mutex); |
| 4267 | } |
| 4268 | |
| 4269 | static char proto_method_implemented(const void *method) |
| 4270 | { |
| 4271 | return method == NULL ? 'n' : 'y'; |
| 4272 | } |
| 4273 | static long sock_prot_memory_allocated(struct proto *proto) |
| 4274 | { |
| 4275 | return proto->memory_allocated != NULL ? proto_memory_allocated(prot: proto) : -1L; |
| 4276 | } |
| 4277 | |
| 4278 | static const char *sock_prot_memory_pressure(struct proto *proto) |
| 4279 | { |
| 4280 | return proto->memory_pressure != NULL ? |
| 4281 | proto_memory_pressure(prot: proto) ? "yes" : "no" : "NI" ; |
| 4282 | } |
| 4283 | |
| 4284 | static void proto_seq_printf(struct seq_file *seq, struct proto *proto) |
| 4285 | { |
| 4286 | |
| 4287 | seq_printf(m: seq, fmt: "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " |
| 4288 | "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n" , |
| 4289 | proto->name, |
| 4290 | proto->obj_size, |
| 4291 | sock_prot_inuse_get(seq_file_net(seq), proto), |
| 4292 | sock_prot_memory_allocated(proto), |
| 4293 | sock_prot_memory_pressure(proto), |
| 4294 | proto->max_header, |
| 4295 | proto->slab == NULL ? "no" : "yes" , |
| 4296 | module_name(proto->owner), |
| 4297 | proto_method_implemented(method: proto->close), |
| 4298 | proto_method_implemented(method: proto->connect), |
| 4299 | proto_method_implemented(method: proto->disconnect), |
| 4300 | proto_method_implemented(method: proto->accept), |
| 4301 | proto_method_implemented(method: proto->ioctl), |
| 4302 | proto_method_implemented(method: proto->init), |
| 4303 | proto_method_implemented(method: proto->destroy), |
| 4304 | proto_method_implemented(method: proto->shutdown), |
| 4305 | proto_method_implemented(method: proto->setsockopt), |
| 4306 | proto_method_implemented(method: proto->getsockopt), |
| 4307 | proto_method_implemented(method: proto->sendmsg), |
| 4308 | proto_method_implemented(method: proto->recvmsg), |
| 4309 | proto_method_implemented(method: proto->bind), |
| 4310 | proto_method_implemented(method: proto->backlog_rcv), |
| 4311 | proto_method_implemented(method: proto->hash), |
| 4312 | proto_method_implemented(method: proto->unhash), |
| 4313 | proto_method_implemented(method: proto->get_port), |
| 4314 | proto_method_implemented(method: proto->enter_memory_pressure)); |
| 4315 | } |
| 4316 | |
| 4317 | static int proto_seq_show(struct seq_file *seq, void *v) |
| 4318 | { |
| 4319 | if (v == &proto_list) |
| 4320 | seq_printf(m: seq, fmt: "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s" , |
| 4321 | "protocol" , |
| 4322 | "size" , |
| 4323 | "sockets" , |
| 4324 | "memory" , |
| 4325 | "press" , |
| 4326 | "maxhdr" , |
| 4327 | "slab" , |
| 4328 | "module" , |
| 4329 | "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n" ); |
| 4330 | else |
| 4331 | proto_seq_printf(seq, list_entry(v, struct proto, node)); |
| 4332 | return 0; |
| 4333 | } |
| 4334 | |
| 4335 | static const struct seq_operations proto_seq_ops = { |
| 4336 | .start = proto_seq_start, |
| 4337 | .next = proto_seq_next, |
| 4338 | .stop = proto_seq_stop, |
| 4339 | .show = proto_seq_show, |
| 4340 | }; |
| 4341 | |
| 4342 | static __net_init int proto_init_net(struct net *net) |
| 4343 | { |
| 4344 | if (!proc_create_net("protocols" , 0444, net->proc_net, &proto_seq_ops, |
| 4345 | sizeof(struct seq_net_private))) |
| 4346 | return -ENOMEM; |
| 4347 | |
| 4348 | return 0; |
| 4349 | } |
| 4350 | |
| 4351 | static __net_exit void proto_exit_net(struct net *net) |
| 4352 | { |
| 4353 | remove_proc_entry("protocols" , net->proc_net); |
| 4354 | } |
| 4355 | |
| 4356 | |
| 4357 | static __net_initdata struct pernet_operations proto_net_ops = { |
| 4358 | .init = proto_init_net, |
| 4359 | .exit = proto_exit_net, |
| 4360 | }; |
| 4361 | |
| 4362 | static int __init proto_init(void) |
| 4363 | { |
| 4364 | return register_pernet_subsys(&proto_net_ops); |
| 4365 | } |
| 4366 | |
| 4367 | subsys_initcall(proto_init); |
| 4368 | |
| 4369 | #endif /* PROC_FS */ |
| 4370 | |
| 4371 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 4372 | bool sk_busy_loop_end(void *p, unsigned long start_time) |
| 4373 | { |
| 4374 | struct sock *sk = p; |
| 4375 | |
| 4376 | if (!skb_queue_empty_lockless(list: &sk->sk_receive_queue)) |
| 4377 | return true; |
| 4378 | |
| 4379 | if (sk_is_udp(sk) && |
| 4380 | !skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue)) |
| 4381 | return true; |
| 4382 | |
| 4383 | return sk_busy_loop_timeout(sk, start_time); |
| 4384 | } |
| 4385 | EXPORT_SYMBOL(sk_busy_loop_end); |
| 4386 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| 4387 | |
| 4388 | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) |
| 4389 | { |
| 4390 | if (!sk->sk_prot->bind_add) |
| 4391 | return -EOPNOTSUPP; |
| 4392 | return sk->sk_prot->bind_add(sk, addr, addr_len); |
| 4393 | } |
| 4394 | EXPORT_SYMBOL(sock_bind_add); |
| 4395 | |
| 4396 | /* Copy 'size' bytes from userspace and return `size` back to userspace */ |
| 4397 | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
| 4398 | void __user *arg, void *karg, size_t size) |
| 4399 | { |
| 4400 | int ret; |
| 4401 | |
| 4402 | if (copy_from_user(to: karg, from: arg, n: size)) |
| 4403 | return -EFAULT; |
| 4404 | |
| 4405 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); |
| 4406 | if (ret) |
| 4407 | return ret; |
| 4408 | |
| 4409 | if (copy_to_user(to: arg, from: karg, n: size)) |
| 4410 | return -EFAULT; |
| 4411 | |
| 4412 | return 0; |
| 4413 | } |
| 4414 | EXPORT_SYMBOL(sock_ioctl_inout); |
| 4415 | |
| 4416 | /* This is the most common ioctl prep function, where the result (4 bytes) is |
| 4417 | * copied back to userspace if the ioctl() returns successfully. No input is |
| 4418 | * copied from userspace as input argument. |
| 4419 | */ |
| 4420 | static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) |
| 4421 | { |
| 4422 | int ret, karg = 0; |
| 4423 | |
| 4424 | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); |
| 4425 | if (ret) |
| 4426 | return ret; |
| 4427 | |
| 4428 | return put_user(karg, (int __user *)arg); |
| 4429 | } |
| 4430 | |
| 4431 | /* A wrapper around sock ioctls, which copies the data from userspace |
| 4432 | * (depending on the protocol/ioctl), and copies back the result to userspace. |
| 4433 | * The main motivation for this function is to pass kernel memory to the |
| 4434 | * protocol ioctl callbacks, instead of userspace memory. |
| 4435 | */ |
| 4436 | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) |
| 4437 | { |
| 4438 | int rc = 1; |
| 4439 | |
| 4440 | if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) |
| 4441 | rc = ipmr_sk_ioctl(sk, cmd, arg); |
| 4442 | else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) |
| 4443 | rc = ip6mr_sk_ioctl(sk, cmd, arg); |
| 4444 | else if (sk_is_phonet(sk)) |
| 4445 | rc = phonet_sk_ioctl(sk, cmd, arg); |
| 4446 | |
| 4447 | /* If ioctl was processed, returns its value */ |
| 4448 | if (rc <= 0) |
| 4449 | return rc; |
| 4450 | |
| 4451 | /* Otherwise call the default handler */ |
| 4452 | return sock_ioctl_out(sk, cmd, arg); |
| 4453 | } |
| 4454 | EXPORT_SYMBOL(sk_ioctl); |
| 4455 | |
| 4456 | static int __init sock_struct_check(void) |
| 4457 | { |
| 4458 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); |
| 4459 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); |
| 4460 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); |
| 4461 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); |
| 4462 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); |
| 4463 | |
| 4464 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); |
| 4465 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); |
| 4466 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); |
| 4467 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); |
| 4468 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); |
| 4469 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); |
| 4470 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); |
| 4471 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); |
| 4472 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); |
| 4473 | |
| 4474 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); |
| 4475 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); |
| 4476 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); |
| 4477 | |
| 4478 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); |
| 4479 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); |
| 4480 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); |
| 4481 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); |
| 4482 | |
| 4483 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
| 4484 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
| 4485 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); |
| 4486 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); |
| 4487 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); |
| 4488 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); |
| 4489 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); |
| 4490 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); |
| 4491 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); |
| 4492 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); |
| 4493 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); |
| 4494 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); |
| 4495 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); |
| 4496 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); |
| 4497 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); |
| 4498 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); |
| 4499 | |
| 4500 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); |
| 4501 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); |
| 4502 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); |
| 4503 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); |
| 4504 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); |
| 4505 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); |
| 4506 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); |
| 4507 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); |
| 4508 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); |
| 4509 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); |
| 4510 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); |
| 4511 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); |
| 4512 | CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); |
| 4513 | return 0; |
| 4514 | } |
| 4515 | |
| 4516 | core_initcall(sock_struct_check); |
| 4517 | |