1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62#include <trace/events/sock.h>
63
64#include <linux/socket.h> /* for sa_family_t */
65#include <linux/export.h>
66#include <net/sock.h>
67#include <net/sctp/sctp.h>
68#include <net/sctp/sm.h>
69#include <net/sctp/stream_sched.h>
70#include <net/rps.h>
71
72/* Forward declarations for internal helper functions. */
73static bool sctp_writeable(const struct sock *sk);
74static void sctp_wfree(struct sk_buff *skb);
75static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
76 size_t msg_len);
77static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
78static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
79static int sctp_wait_for_accept(struct sock *sk, long timeo);
80static void sctp_wait_for_close(struct sock *sk, long timeo);
81static void sctp_destruct_sock(struct sock *sk);
82static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
83 union sctp_addr *addr, int len);
84static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
85static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
87static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
88static int sctp_send_asconf(struct sctp_association *asoc,
89 struct sctp_chunk *chunk);
90static int sctp_do_bind(struct sock *, union sctp_addr *, int);
91static int sctp_autobind(struct sock *sk);
92static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
93 struct sctp_association *assoc,
94 enum sctp_socket_type type);
95
96static unsigned long sctp_memory_pressure;
97static atomic_long_t sctp_memory_allocated;
98static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
99struct percpu_counter sctp_sockets_allocated;
100
101static void sctp_enter_memory_pressure(struct sock *sk)
102{
103 WRITE_ONCE(sctp_memory_pressure, 1);
104}
105
106
107/* Get the sndbuf space available at the time on the association. */
108static inline int sctp_wspace(struct sctp_association *asoc)
109{
110 struct sock *sk = asoc->base.sk;
111
112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
113 : sk_stream_wspace(sk);
114}
115
116/* Increment the used sndbuf space count of the corresponding association by
117 * the size of the outgoing data chunk.
118 * Also, set the skb destructor for sndbuf accounting later.
119 *
120 * Since it is always 1-1 between chunk and skb, and also a new skb is always
121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
122 * destructor in the data chunk skb for the purpose of the sndbuf space
123 * tracking.
124 */
125static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
126{
127 struct sctp_association *asoc = chunk->asoc;
128 struct sock *sk = asoc->base.sk;
129
130 /* The sndbuf space is tracked per association. */
131 sctp_association_hold(asoc);
132
133 if (chunk->shkey)
134 sctp_auth_shkey_hold(sh_key: chunk->shkey);
135
136 skb_set_owner_w(skb: chunk->skb, sk);
137
138 chunk->skb->destructor = sctp_wfree;
139 /* Save the chunk pointer in skb for sctp_wfree to use later. */
140 skb_shinfo(chunk->skb)->destructor_arg = chunk;
141
142 refcount_add(i: sizeof(struct sctp_chunk), r: &sk->sk_wmem_alloc);
143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
144 sk_wmem_queued_add(sk, val: chunk->skb->truesize + sizeof(struct sctp_chunk));
145 sk_mem_charge(sk, size: chunk->skb->truesize);
146}
147
148static void sctp_clear_owner_w(struct sctp_chunk *chunk)
149{
150 skb_orphan(skb: chunk->skb);
151}
152
153#define traverse_and_process() \
154do { \
155 msg = chunk->msg; \
156 if (msg == prev_msg) \
157 continue; \
158 list_for_each_entry(c, &msg->chunks, frag_list) { \
159 if ((clear && asoc->base.sk == c->skb->sk) || \
160 (!clear && asoc->base.sk != c->skb->sk)) \
161 cb(c); \
162 } \
163 prev_msg = msg; \
164} while (0)
165
166static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
167 bool clear,
168 void (*cb)(struct sctp_chunk *))
169
170{
171 struct sctp_datamsg *msg, *prev_msg = NULL;
172 struct sctp_outq *q = &asoc->outqueue;
173 struct sctp_chunk *chunk, *c;
174 struct sctp_transport *t;
175
176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
177 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->sacked, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
187 traverse_and_process();
188
189 list_for_each_entry(chunk, &q->out_chunk_list, list)
190 traverse_and_process();
191}
192
193static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
194 void (*cb)(struct sk_buff *, struct sock *))
195
196{
197 struct sk_buff *skb, *tmp;
198
199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
203 cb(skb, sk);
204
205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
206 cb(skb, sk);
207}
208
209/* Verify that this is a valid address. */
210static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
211 int len)
212{
213 struct sctp_af *af;
214
215 /* Verify basic sockaddr. */
216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
217 if (!af)
218 return -EINVAL;
219
220 /* Is this a valid SCTP address? */
221 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
222 return -EINVAL;
223
224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
225 return -EINVAL;
226
227 return 0;
228}
229
230/* Look up the association by its id. If this is not a UDP-style
231 * socket, the ID field is always ignored.
232 */
233struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
234{
235 struct sctp_association *asoc = NULL;
236
237 /* If this is not a UDP-style socket, assoc id should be ignored. */
238 if (!sctp_style(sk, UDP)) {
239 /* Return NULL if the socket state is not ESTABLISHED. It
240 * could be a TCP-style listening socket or a socket which
241 * hasn't yet called connect() to establish an association.
242 */
243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
244 return NULL;
245
246 /* Get the first and the only association from the list. */
247 if (!list_empty(head: &sctp_sk(sk)->ep->asocs))
248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
249 struct sctp_association, asocs);
250 return asoc;
251 }
252
253 /* Otherwise this is a UDP-style socket. */
254 if (id <= SCTP_ALL_ASSOC)
255 return NULL;
256
257 spin_lock_bh(lock: &sctp_assocs_id_lock);
258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, id: (int)id);
259 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
260 asoc = NULL;
261 spin_unlock_bh(lock: &sctp_assocs_id_lock);
262
263 return asoc;
264}
265
266/* Look up the transport from an address and an assoc id. If both address and
267 * id are specified, the associations matching the address and the id should be
268 * the same.
269 */
270static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
271 struct sockaddr_storage *addr,
272 sctp_assoc_t id)
273{
274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
276 union sctp_addr *laddr = (union sctp_addr *)addr;
277 struct sctp_transport *transport;
278
279 if (!af || sctp_verify_addr(sk, addr: laddr, len: af->sockaddr_len))
280 return NULL;
281
282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
283 paddr: laddr,
284 &transport);
285
286 if (!addr_asoc)
287 return NULL;
288
289 id_asoc = sctp_id2assoc(sk, id);
290 if (id_asoc && (id_asoc != addr_asoc))
291 return NULL;
292
293 sctp_get_pf_specific(family: sk->sk_family)->addr_to_user(sctp_sk(sk),
294 (union sctp_addr *)addr);
295
296 return transport;
297}
298
299/* API 3.1.2 bind() - UDP Style Syntax
300 * The syntax of bind() is,
301 *
302 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
303 *
304 * sd - the socket descriptor returned by socket().
305 * addr - the address structure (struct sockaddr_in or struct
306 * sockaddr_in6 [RFC 2553]),
307 * addr_len - the size of the address structure.
308 */
309static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
310{
311 int retval = 0;
312
313 lock_sock(sk);
314
315 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
316 addr, addr_len);
317
318 /* Disallow binding twice. */
319 if (!sctp_sk(sk)->ep->base.bind_addr.port)
320 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
321 addr_len);
322 else
323 retval = -EINVAL;
324
325 release_sock(sk);
326
327 return retval;
328}
329
330static int sctp_get_port_local(struct sock *, union sctp_addr *);
331
332/* Verify this is a valid sockaddr. */
333static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
334 union sctp_addr *addr, int len)
335{
336 struct sctp_af *af;
337
338 /* Check minimum size. */
339 if (len < sizeof (struct sockaddr))
340 return NULL;
341
342 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
343 return NULL;
344
345 if (addr->sa.sa_family == AF_INET6) {
346 if (len < SIN6_LEN_RFC2133)
347 return NULL;
348 /* V4 mapped address are really of AF_INET family */
349 if (ipv6_addr_v4mapped(a: &addr->v6.sin6_addr) &&
350 !opt->pf->af_supported(AF_INET, opt))
351 return NULL;
352 }
353
354 /* If we get this far, af is valid. */
355 af = sctp_get_af_specific(addr->sa.sa_family);
356
357 if (len < af->sockaddr_len)
358 return NULL;
359
360 return af;
361}
362
363static void sctp_auto_asconf_init(struct sctp_sock *sp)
364{
365 struct net *net = sock_net(sk: &sp->inet.sk);
366
367 if (net->sctp.default_auto_asconf) {
368 spin_lock_bh(lock: &net->sctp.addr_wq_lock);
369 list_add_tail(new: &sp->auto_asconf_list, head: &net->sctp.auto_asconf_splist);
370 spin_unlock_bh(lock: &net->sctp.addr_wq_lock);
371 sp->do_auto_asconf = 1;
372 }
373}
374
375/* Bind a local address either to an endpoint or to an association. */
376static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
377{
378 struct net *net = sock_net(sk);
379 struct sctp_sock *sp = sctp_sk(sk);
380 struct sctp_endpoint *ep = sp->ep;
381 struct sctp_bind_addr *bp = &ep->base.bind_addr;
382 struct sctp_af *af;
383 unsigned short snum;
384 int ret = 0;
385
386 /* Common sockaddr verification. */
387 af = sctp_sockaddr_af(opt: sp, addr, len);
388 if (!af) {
389 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
390 __func__, sk, addr, len);
391 return -EINVAL;
392 }
393
394 snum = ntohs(addr->v4.sin_port);
395
396 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
397 __func__, sk, &addr->sa, bp->port, snum, len);
398
399 /* PF specific bind() address verification. */
400 if (!sp->pf->bind_verify(sp, addr))
401 return -EADDRNOTAVAIL;
402
403 /* We must either be unbound, or bind to the same port.
404 * It's OK to allow 0 ports if we are already bound.
405 * We'll just inhert an already bound port in this case
406 */
407 if (bp->port) {
408 if (!snum)
409 snum = bp->port;
410 else if (snum != bp->port) {
411 pr_debug("%s: new port %d doesn't match existing port "
412 "%d\n", __func__, snum, bp->port);
413 return -EINVAL;
414 }
415 }
416
417 if (snum && inet_port_requires_bind_service(net, port: snum) &&
418 !ns_capable(ns: net->user_ns, CAP_NET_BIND_SERVICE))
419 return -EACCES;
420
421 /* See if the address matches any of the addresses we may have
422 * already bound before checking against other endpoints.
423 */
424 if (sctp_bind_addr_match(bp, addr, sp))
425 return -EINVAL;
426
427 /* Make sure we are allowed to bind here.
428 * The function sctp_get_port_local() does duplicate address
429 * detection.
430 */
431 addr->v4.sin_port = htons(snum);
432 if (sctp_get_port_local(sk, addr))
433 return -EADDRINUSE;
434
435 /* Refresh ephemeral port. */
436 if (!bp->port) {
437 bp->port = inet_sk(sk)->inet_num;
438 sctp_auto_asconf_init(sp);
439 }
440
441 /* Add the address to the bind address list.
442 * Use GFP_ATOMIC since BHs will be disabled.
443 */
444 ret = sctp_add_bind_addr(bp, addr, new_size: af->sockaddr_len,
445 addr_state: SCTP_ADDR_SRC, GFP_ATOMIC);
446
447 if (ret) {
448 sctp_put_port(sk);
449 return ret;
450 }
451 /* Copy back into socket for getsockname() use. */
452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
453 sp->pf->to_sk_saddr(addr, sk);
454
455 return ret;
456}
457
458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
459 *
460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
461 * at any one time. If a sender, after sending an ASCONF chunk, decides
462 * it needs to transfer another ASCONF Chunk, it MUST wait until the
463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
464 * subsequent ASCONF. Note this restriction binds each side, so at any
465 * time two ASCONF may be in-transit on any given association (one sent
466 * from each endpoint).
467 */
468static int sctp_send_asconf(struct sctp_association *asoc,
469 struct sctp_chunk *chunk)
470{
471 int retval = 0;
472
473 /* If there is an outstanding ASCONF chunk, queue it for later
474 * transmission.
475 */
476 if (asoc->addip_last_asconf) {
477 list_add_tail(new: &chunk->list, head: &asoc->addip_chunk_list);
478 goto out;
479 }
480
481 /* Hold the chunk until an ASCONF_ACK is received. */
482 sctp_chunk_hold(chunk);
483 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, arg: chunk);
484 if (retval)
485 sctp_chunk_free(chunk);
486 else
487 asoc->addip_last_asconf = chunk;
488
489out:
490 return retval;
491}
492
493/* Add a list of addresses as bind addresses to local endpoint or
494 * association.
495 *
496 * Basically run through each address specified in the addrs/addrcnt
497 * array/length pair, determine if it is IPv6 or IPv4 and call
498 * sctp_do_bind() on it.
499 *
500 * If any of them fails, then the operation will be reversed and the
501 * ones that were added will be removed.
502 *
503 * Only sctp_setsockopt_bindx() is supposed to call this function.
504 */
505static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
506{
507 int cnt;
508 int retval = 0;
509 void *addr_buf;
510 struct sockaddr *sa_addr;
511 struct sctp_af *af;
512
513 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
514 addrs, addrcnt);
515
516 addr_buf = addrs;
517 for (cnt = 0; cnt < addrcnt; cnt++) {
518 /* The list may contain either IPv4 or IPv6 address;
519 * determine the address length for walking thru the list.
520 */
521 sa_addr = addr_buf;
522 af = sctp_get_af_specific(sa_addr->sa_family);
523 if (!af) {
524 retval = -EINVAL;
525 goto err_bindx_add;
526 }
527
528 retval = sctp_do_bind(sk, addr: (union sctp_addr *)sa_addr,
529 len: af->sockaddr_len);
530
531 addr_buf += af->sockaddr_len;
532
533err_bindx_add:
534 if (retval < 0) {
535 /* Failed. Cleanup the ones that have been added */
536 if (cnt > 0)
537 sctp_bindx_rem(sk, addrs, cnt);
538 return retval;
539 }
540 }
541
542 return retval;
543}
544
545/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
546 * associations that are part of the endpoint indicating that a list of local
547 * addresses are added to the endpoint.
548 *
549 * If any of the addresses is already in the bind address list of the
550 * association, we do not send the chunk for that association. But it will not
551 * affect other associations.
552 *
553 * Only sctp_setsockopt_bindx() is supposed to call this function.
554 */
555static int sctp_send_asconf_add_ip(struct sock *sk,
556 struct sockaddr *addrs,
557 int addrcnt)
558{
559 struct sctp_sock *sp;
560 struct sctp_endpoint *ep;
561 struct sctp_association *asoc;
562 struct sctp_bind_addr *bp;
563 struct sctp_chunk *chunk;
564 struct sctp_sockaddr_entry *laddr;
565 union sctp_addr *addr;
566 union sctp_addr saveaddr;
567 void *addr_buf;
568 struct sctp_af *af;
569 struct list_head *p;
570 int i;
571 int retval = 0;
572
573 sp = sctp_sk(sk);
574 ep = sp->ep;
575
576 if (!ep->asconf_enable)
577 return retval;
578
579 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
580 __func__, sk, addrs, addrcnt);
581
582 list_for_each_entry(asoc, &ep->asocs, asocs) {
583 if (!asoc->peer.asconf_capable)
584 continue;
585
586 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
587 continue;
588
589 if (!sctp_state(asoc, ESTABLISHED))
590 continue;
591
592 /* Check if any address in the packed array of addresses is
593 * in the bind address list of the association. If so,
594 * do not send the asconf chunk to its peer, but continue with
595 * other associations.
596 */
597 addr_buf = addrs;
598 for (i = 0; i < addrcnt; i++) {
599 addr = addr_buf;
600 af = sctp_get_af_specific(addr->v4.sin_family);
601 if (!af) {
602 retval = -EINVAL;
603 goto out;
604 }
605
606 if (sctp_assoc_lookup_laddr(asoc, laddr: addr))
607 break;
608
609 addr_buf += af->sockaddr_len;
610 }
611 if (i < addrcnt)
612 continue;
613
614 /* Use the first valid address in bind addr list of
615 * association as Address Parameter of ASCONF CHUNK.
616 */
617 bp = &asoc->base.bind_addr;
618 p = bp->address_list.next;
619 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
620 chunk = sctp_make_asconf_update_ip(asoc, laddr: &laddr->a, addrs,
621 addrcnt, flags: SCTP_PARAM_ADD_IP);
622 if (!chunk) {
623 retval = -ENOMEM;
624 goto out;
625 }
626
627 /* Add the new addresses to the bind address list with
628 * use_as_src set to 0.
629 */
630 addr_buf = addrs;
631 for (i = 0; i < addrcnt; i++) {
632 addr = addr_buf;
633 af = sctp_get_af_specific(addr->v4.sin_family);
634 memcpy(&saveaddr, addr, af->sockaddr_len);
635 retval = sctp_add_bind_addr(bp, &saveaddr,
636 new_size: sizeof(saveaddr),
637 addr_state: SCTP_ADDR_NEW, GFP_ATOMIC);
638 addr_buf += af->sockaddr_len;
639 }
640 if (asoc->src_out_of_asoc_ok) {
641 struct sctp_transport *trans;
642
643 list_for_each_entry(trans,
644 &asoc->peer.transport_addr_list, transports) {
645 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
646 2*asoc->pathmtu, 4380));
647 trans->ssthresh = asoc->peer.i.a_rwnd;
648 trans->rto = asoc->rto_initial;
649 sctp_max_rto(asoc, trans);
650 trans->rtt = trans->srtt = trans->rttvar = 0;
651 /* Clear the source and route cache */
652 sctp_transport_route(trans, NULL,
653 sctp_sk(asoc->base.sk));
654 }
655 }
656 retval = sctp_send_asconf(asoc, chunk);
657 }
658
659out:
660 return retval;
661}
662
663/* Remove a list of addresses from bind addresses list. Do not remove the
664 * last address.
665 *
666 * Basically run through each address specified in the addrs/addrcnt
667 * array/length pair, determine if it is IPv6 or IPv4 and call
668 * sctp_del_bind() on it.
669 *
670 * If any of them fails, then the operation will be reversed and the
671 * ones that were removed will be added back.
672 *
673 * At least one address has to be left; if only one address is
674 * available, the operation will return -EBUSY.
675 *
676 * Only sctp_setsockopt_bindx() is supposed to call this function.
677 */
678static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
679{
680 struct sctp_sock *sp = sctp_sk(sk);
681 struct sctp_endpoint *ep = sp->ep;
682 int cnt;
683 struct sctp_bind_addr *bp = &ep->base.bind_addr;
684 int retval = 0;
685 void *addr_buf;
686 union sctp_addr *sa_addr;
687 struct sctp_af *af;
688
689 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
690 __func__, sk, addrs, addrcnt);
691
692 addr_buf = addrs;
693 for (cnt = 0; cnt < addrcnt; cnt++) {
694 /* If the bind address list is empty or if there is only one
695 * bind address, there is nothing more to be removed (we need
696 * at least one address here).
697 */
698 if (list_empty(head: &bp->address_list) ||
699 (sctp_list_single_entry(head: &bp->address_list))) {
700 retval = -EBUSY;
701 goto err_bindx_rem;
702 }
703
704 sa_addr = addr_buf;
705 af = sctp_get_af_specific(sa_addr->sa.sa_family);
706 if (!af) {
707 retval = -EINVAL;
708 goto err_bindx_rem;
709 }
710
711 if (!af->addr_valid(sa_addr, sp, NULL)) {
712 retval = -EADDRNOTAVAIL;
713 goto err_bindx_rem;
714 }
715
716 if (sa_addr->v4.sin_port &&
717 sa_addr->v4.sin_port != htons(bp->port)) {
718 retval = -EINVAL;
719 goto err_bindx_rem;
720 }
721
722 if (!sa_addr->v4.sin_port)
723 sa_addr->v4.sin_port = htons(bp->port);
724
725 /* FIXME - There is probably a need to check if sk->sk_saddr and
726 * sk->sk_rcv_addr are currently set to one of the addresses to
727 * be removed. This is something which needs to be looked into
728 * when we are fixing the outstanding issues with multi-homing
729 * socket routing and failover schemes. Refer to comments in
730 * sctp_do_bind(). -daisy
731 */
732 retval = sctp_del_bind_addr(bp, sa_addr);
733
734 addr_buf += af->sockaddr_len;
735err_bindx_rem:
736 if (retval < 0) {
737 /* Failed. Add the ones that has been removed back */
738 if (cnt > 0)
739 sctp_bindx_add(sk, addrs, addrcnt: cnt);
740 return retval;
741 }
742 }
743
744 return retval;
745}
746
747/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
748 * the associations that are part of the endpoint indicating that a list of
749 * local addresses are removed from the endpoint.
750 *
751 * If any of the addresses is already in the bind address list of the
752 * association, we do not send the chunk for that association. But it will not
753 * affect other associations.
754 *
755 * Only sctp_setsockopt_bindx() is supposed to call this function.
756 */
757static int sctp_send_asconf_del_ip(struct sock *sk,
758 struct sockaddr *addrs,
759 int addrcnt)
760{
761 struct sctp_sock *sp;
762 struct sctp_endpoint *ep;
763 struct sctp_association *asoc;
764 struct sctp_transport *transport;
765 struct sctp_bind_addr *bp;
766 struct sctp_chunk *chunk;
767 union sctp_addr *laddr;
768 void *addr_buf;
769 struct sctp_af *af;
770 struct sctp_sockaddr_entry *saddr;
771 int i;
772 int retval = 0;
773 int stored = 0;
774
775 chunk = NULL;
776 sp = sctp_sk(sk);
777 ep = sp->ep;
778
779 if (!ep->asconf_enable)
780 return retval;
781
782 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
783 __func__, sk, addrs, addrcnt);
784
785 list_for_each_entry(asoc, &ep->asocs, asocs) {
786
787 if (!asoc->peer.asconf_capable)
788 continue;
789
790 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
791 continue;
792
793 if (!sctp_state(asoc, ESTABLISHED))
794 continue;
795
796 /* Check if any address in the packed array of addresses is
797 * not present in the bind address list of the association.
798 * If so, do not send the asconf chunk to its peer, but
799 * continue with other associations.
800 */
801 addr_buf = addrs;
802 for (i = 0; i < addrcnt; i++) {
803 laddr = addr_buf;
804 af = sctp_get_af_specific(laddr->v4.sin_family);
805 if (!af) {
806 retval = -EINVAL;
807 goto out;
808 }
809
810 if (!sctp_assoc_lookup_laddr(asoc, laddr))
811 break;
812
813 addr_buf += af->sockaddr_len;
814 }
815 if (i < addrcnt)
816 continue;
817
818 /* Find one address in the association's bind address list
819 * that is not in the packed array of addresses. This is to
820 * make sure that we do not delete all the addresses in the
821 * association.
822 */
823 bp = &asoc->base.bind_addr;
824 laddr = sctp_find_unmatch_addr(bp, addrs: (union sctp_addr *)addrs,
825 addrcnt, opt: sp);
826 if ((laddr == NULL) && (addrcnt == 1)) {
827 if (asoc->asconf_addr_del_pending)
828 continue;
829 asoc->asconf_addr_del_pending =
830 kzalloc(size: sizeof(union sctp_addr), GFP_ATOMIC);
831 if (asoc->asconf_addr_del_pending == NULL) {
832 retval = -ENOMEM;
833 goto out;
834 }
835 asoc->asconf_addr_del_pending->sa.sa_family =
836 addrs->sa_family;
837 asoc->asconf_addr_del_pending->v4.sin_port =
838 htons(bp->port);
839 if (addrs->sa_family == AF_INET) {
840 struct sockaddr_in *sin;
841
842 sin = (struct sockaddr_in *)addrs;
843 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
844 } else if (addrs->sa_family == AF_INET6) {
845 struct sockaddr_in6 *sin6;
846
847 sin6 = (struct sockaddr_in6 *)addrs;
848 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
849 }
850
851 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
852 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
853 asoc->asconf_addr_del_pending);
854
855 asoc->src_out_of_asoc_ok = 1;
856 stored = 1;
857 goto skip_mkasconf;
858 }
859
860 if (laddr == NULL)
861 return -EINVAL;
862
863 /* We do not need RCU protection throughout this loop
864 * because this is done under a socket lock from the
865 * setsockopt call.
866 */
867 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
868 flags: SCTP_PARAM_DEL_IP);
869 if (!chunk) {
870 retval = -ENOMEM;
871 goto out;
872 }
873
874skip_mkasconf:
875 /* Reset use_as_src flag for the addresses in the bind address
876 * list that are to be deleted.
877 */
878 addr_buf = addrs;
879 for (i = 0; i < addrcnt; i++) {
880 laddr = addr_buf;
881 af = sctp_get_af_specific(laddr->v4.sin_family);
882 list_for_each_entry(saddr, &bp->address_list, list) {
883 if (sctp_cmp_addr_exact(ss1: &saddr->a, ss2: laddr))
884 saddr->state = SCTP_ADDR_DEL;
885 }
886 addr_buf += af->sockaddr_len;
887 }
888
889 /* Update the route and saddr entries for all the transports
890 * as some of the addresses in the bind address list are
891 * about to be deleted and cannot be used as source addresses.
892 */
893 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
894 transports) {
895 sctp_transport_route(transport, NULL,
896 sctp_sk(asoc->base.sk));
897 }
898
899 if (stored)
900 /* We don't need to transmit ASCONF */
901 continue;
902 retval = sctp_send_asconf(asoc, chunk);
903 }
904out:
905 return retval;
906}
907
908/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
909int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
910{
911 struct sock *sk = sctp_opt2sk(sp);
912 union sctp_addr *addr;
913 struct sctp_af *af;
914
915 /* It is safe to write port space in caller. */
916 addr = &addrw->a;
917 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
918 af = sctp_get_af_specific(addr->sa.sa_family);
919 if (!af)
920 return -EINVAL;
921 if (sctp_verify_addr(sk, addr, len: af->sockaddr_len))
922 return -EINVAL;
923
924 if (addrw->state == SCTP_ADDR_NEW)
925 return sctp_send_asconf_add_ip(sk, addrs: (struct sockaddr *)addr, addrcnt: 1);
926 else
927 return sctp_send_asconf_del_ip(sk, addrs: (struct sockaddr *)addr, addrcnt: 1);
928}
929
930/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
931 *
932 * API 8.1
933 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
934 * int flags);
935 *
936 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
937 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
938 * or IPv6 addresses.
939 *
940 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
941 * Section 3.1.2 for this usage.
942 *
943 * addrs is a pointer to an array of one or more socket addresses. Each
944 * address is contained in its appropriate structure (i.e. struct
945 * sockaddr_in or struct sockaddr_in6) the family of the address type
946 * must be used to distinguish the address length (note that this
947 * representation is termed a "packed array" of addresses). The caller
948 * specifies the number of addresses in the array with addrcnt.
949 *
950 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
951 * -1, and sets errno to the appropriate error code.
952 *
953 * For SCTP, the port given in each socket address must be the same, or
954 * sctp_bindx() will fail, setting errno to EINVAL.
955 *
956 * The flags parameter is formed from the bitwise OR of zero or more of
957 * the following currently defined flags:
958 *
959 * SCTP_BINDX_ADD_ADDR
960 *
961 * SCTP_BINDX_REM_ADDR
962 *
963 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
964 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
965 * addresses from the association. The two flags are mutually exclusive;
966 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
967 * not remove all addresses from an association; sctp_bindx() will
968 * reject such an attempt with EINVAL.
969 *
970 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
971 * additional addresses with an endpoint after calling bind(). Or use
972 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
973 * socket is associated with so that no new association accepted will be
974 * associated with those addresses. If the endpoint supports dynamic
975 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
976 * endpoint to send the appropriate message to the peer to change the
977 * peers address lists.
978 *
979 * Adding and removing addresses from a connected association is
980 * optional functionality. Implementations that do not support this
981 * functionality should return EOPNOTSUPP.
982 *
983 * Basically do nothing but copying the addresses from user to kernel
984 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
985 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
986 * from userspace.
987 *
988 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
989 * it.
990 *
991 * sk The sk of the socket
992 * addrs The pointer to the addresses
993 * addrssize Size of the addrs buffer
994 * op Operation to perform (add or remove, see the flags of
995 * sctp_bindx)
996 *
997 * Returns 0 if ok, <0 errno code on error.
998 */
999static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
1000 int addrs_size, int op)
1001{
1002 int err;
1003 int addrcnt = 0;
1004 int walk_size = 0;
1005 struct sockaddr *sa_addr;
1006 void *addr_buf = addrs;
1007 struct sctp_af *af;
1008
1009 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1010 __func__, sk, addr_buf, addrs_size, op);
1011
1012 if (unlikely(addrs_size <= 0))
1013 return -EINVAL;
1014
1015 /* Walk through the addrs buffer and count the number of addresses. */
1016 while (walk_size < addrs_size) {
1017 if (walk_size + sizeof(sa_family_t) > addrs_size)
1018 return -EINVAL;
1019
1020 sa_addr = addr_buf;
1021 af = sctp_get_af_specific(sa_addr->sa_family);
1022
1023 /* If the address family is not supported or if this address
1024 * causes the address buffer to overflow return EINVAL.
1025 */
1026 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1027 return -EINVAL;
1028 addrcnt++;
1029 addr_buf += af->sockaddr_len;
1030 walk_size += af->sockaddr_len;
1031 }
1032
1033 /* Do the work. */
1034 switch (op) {
1035 case SCTP_BINDX_ADD_ADDR:
1036 /* Allow security module to validate bindx addresses. */
1037 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1038 address: addrs, addrlen: addrs_size);
1039 if (err)
1040 return err;
1041 err = sctp_bindx_add(sk, addrs, addrcnt);
1042 if (err)
1043 return err;
1044 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1045 case SCTP_BINDX_REM_ADDR:
1046 err = sctp_bindx_rem(sk, addrs, addrcnt);
1047 if (err)
1048 return err;
1049 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1050
1051 default:
1052 return -EINVAL;
1053 }
1054}
1055
1056static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1057 int addrlen)
1058{
1059 int err;
1060
1061 lock_sock(sk);
1062 err = sctp_setsockopt_bindx(sk, addrs, addrs_size: addrlen, SCTP_BINDX_ADD_ADDR);
1063 release_sock(sk);
1064 return err;
1065}
1066
1067static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1068 const union sctp_addr *daddr,
1069 const struct sctp_initmsg *init,
1070 struct sctp_transport **tp)
1071{
1072 struct sctp_association *asoc;
1073 struct sock *sk = ep->base.sk;
1074 struct net *net = sock_net(sk);
1075 enum sctp_scope scope;
1076 int err;
1077
1078 if (sctp_endpoint_is_peeled_off(ep, paddr: daddr))
1079 return -EADDRNOTAVAIL;
1080
1081 if (!ep->base.bind_addr.port) {
1082 if (sctp_autobind(sk))
1083 return -EAGAIN;
1084 } else {
1085 if (inet_port_requires_bind_service(net, port: ep->base.bind_addr.port) &&
1086 !ns_capable(ns: net->user_ns, CAP_NET_BIND_SERVICE))
1087 return -EACCES;
1088 }
1089
1090 scope = sctp_scope(addr: daddr);
1091 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1092 if (!asoc)
1093 return -ENOMEM;
1094
1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1096 if (err < 0)
1097 goto free;
1098
1099 *tp = sctp_assoc_add_peer(asoc, address: daddr, GFP_KERNEL, peer_state: SCTP_UNKNOWN);
1100 if (!*tp) {
1101 err = -ENOMEM;
1102 goto free;
1103 }
1104
1105 if (!init)
1106 return 0;
1107
1108 if (init->sinit_num_ostreams) {
1109 __u16 outcnt = init->sinit_num_ostreams;
1110
1111 asoc->c.sinit_num_ostreams = outcnt;
1112 /* outcnt has been changed, need to re-init stream */
1113 err = sctp_stream_init(stream: &asoc->stream, outcnt, incnt: 0, GFP_KERNEL);
1114 if (err)
1115 goto free;
1116 }
1117
1118 if (init->sinit_max_instreams)
1119 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1120
1121 if (init->sinit_max_attempts)
1122 asoc->max_init_attempts = init->sinit_max_attempts;
1123
1124 if (init->sinit_max_init_timeo)
1125 asoc->max_init_timeo =
1126 msecs_to_jiffies(m: init->sinit_max_init_timeo);
1127
1128 return 0;
1129free:
1130 sctp_association_free(asoc);
1131 return err;
1132}
1133
1134static int sctp_connect_add_peer(struct sctp_association *asoc,
1135 union sctp_addr *daddr, int addr_len)
1136{
1137 struct sctp_endpoint *ep = asoc->ep;
1138 struct sctp_association *old;
1139 struct sctp_transport *t;
1140 int err;
1141
1142 err = sctp_verify_addr(sk: ep->base.sk, addr: daddr, len: addr_len);
1143 if (err)
1144 return err;
1145
1146 old = sctp_endpoint_lookup_assoc(ep, paddr: daddr, &t);
1147 if (old && old != asoc)
1148 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1149 : -EALREADY;
1150
1151 if (sctp_endpoint_is_peeled_off(ep, paddr: daddr))
1152 return -EADDRNOTAVAIL;
1153
1154 t = sctp_assoc_add_peer(asoc, address: daddr, GFP_KERNEL, peer_state: SCTP_UNKNOWN);
1155 if (!t)
1156 return -ENOMEM;
1157
1158 return 0;
1159}
1160
1161/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1162 *
1163 * Common routine for handling connect() and sctp_connectx().
1164 * Connect will come in with just a single address.
1165 */
1166static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1167 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1168{
1169 struct sctp_sock *sp = sctp_sk(sk);
1170 struct sctp_endpoint *ep = sp->ep;
1171 struct sctp_transport *transport;
1172 struct sctp_association *asoc;
1173 void *addr_buf = kaddrs;
1174 union sctp_addr *daddr;
1175 struct sctp_af *af;
1176 int walk_size, err;
1177 long timeo;
1178
1179 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1180 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1181 return -EISCONN;
1182
1183 daddr = addr_buf;
1184 af = sctp_get_af_specific(daddr->sa.sa_family);
1185 if (!af || af->sockaddr_len > addrs_size)
1186 return -EINVAL;
1187
1188 err = sctp_verify_addr(sk, addr: daddr, len: af->sockaddr_len);
1189 if (err)
1190 return err;
1191
1192 asoc = sctp_endpoint_lookup_assoc(ep, paddr: daddr, &transport);
1193 if (asoc)
1194 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1195 : -EALREADY;
1196
1197 err = sctp_connect_new_asoc(ep, daddr, NULL, tp: &transport);
1198 if (err)
1199 return err;
1200 asoc = transport->asoc;
1201
1202 addr_buf += af->sockaddr_len;
1203 walk_size = af->sockaddr_len;
1204 while (walk_size < addrs_size) {
1205 err = -EINVAL;
1206 if (walk_size + sizeof(sa_family_t) > addrs_size)
1207 goto out_free;
1208
1209 daddr = addr_buf;
1210 af = sctp_get_af_specific(daddr->sa.sa_family);
1211 if (!af || af->sockaddr_len + walk_size > addrs_size)
1212 goto out_free;
1213
1214 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1215 goto out_free;
1216
1217 err = sctp_connect_add_peer(asoc, daddr, addr_len: af->sockaddr_len);
1218 if (err)
1219 goto out_free;
1220
1221 addr_buf += af->sockaddr_len;
1222 walk_size += af->sockaddr_len;
1223 }
1224
1225 /* In case the user of sctp_connectx() wants an association
1226 * id back, assign one now.
1227 */
1228 if (assoc_id) {
1229 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1230 if (err < 0)
1231 goto out_free;
1232 }
1233
1234 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1235 if (err < 0)
1236 goto out_free;
1237
1238 /* Initialize sk's dport and daddr for getpeername() */
1239 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1240 sp->pf->to_sk_daddr(daddr, sk);
1241 sk->sk_err = 0;
1242
1243 if (assoc_id)
1244 *assoc_id = asoc->assoc_id;
1245
1246 timeo = sock_sndtimeo(sk, noblock: flags & O_NONBLOCK);
1247 return sctp_wait_for_connect(asoc, timeo_p: &timeo);
1248
1249out_free:
1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 __func__, asoc, kaddrs, err);
1252 sctp_association_free(asoc);
1253 return err;
1254}
1255
1256/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1257 *
1258 * API 8.9
1259 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1260 * sctp_assoc_t *asoc);
1261 *
1262 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1263 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1264 * or IPv6 addresses.
1265 *
1266 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1267 * Section 3.1.2 for this usage.
1268 *
1269 * addrs is a pointer to an array of one or more socket addresses. Each
1270 * address is contained in its appropriate structure (i.e. struct
1271 * sockaddr_in or struct sockaddr_in6) the family of the address type
1272 * must be used to distengish the address length (note that this
1273 * representation is termed a "packed array" of addresses). The caller
1274 * specifies the number of addresses in the array with addrcnt.
1275 *
1276 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1277 * the association id of the new association. On failure, sctp_connectx()
1278 * returns -1, and sets errno to the appropriate error code. The assoc_id
1279 * is not touched by the kernel.
1280 *
1281 * For SCTP, the port given in each socket address must be the same, or
1282 * sctp_connectx() will fail, setting errno to EINVAL.
1283 *
1284 * An application can use sctp_connectx to initiate an association with
1285 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1286 * allows a caller to specify multiple addresses at which a peer can be
1287 * reached. The way the SCTP stack uses the list of addresses to set up
1288 * the association is implementation dependent. This function only
1289 * specifies that the stack will try to make use of all the addresses in
1290 * the list when needed.
1291 *
1292 * Note that the list of addresses passed in is only used for setting up
1293 * the association. It does not necessarily equal the set of addresses
1294 * the peer uses for the resulting association. If the caller wants to
1295 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1296 * retrieve them after the association has been set up.
1297 *
1298 * Basically do nothing but copying the addresses from user to kernel
1299 * land and invoking either sctp_connectx(). This is used for tunneling
1300 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1301 *
1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1303 * it.
1304 *
1305 * sk The sk of the socket
1306 * addrs The pointer to the addresses
1307 * addrssize Size of the addrs buffer
1308 *
1309 * Returns >=0 if ok, <0 errno code on error.
1310 */
1311static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1312 int addrs_size, sctp_assoc_t *assoc_id)
1313{
1314 int err = 0, flags = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, kaddrs, addrs_size);
1318
1319 /* make sure the 1st addr's sa_family is accessible later */
1320 if (unlikely(addrs_size < sizeof(sa_family_t)))
1321 return -EINVAL;
1322
1323 /* Allow security module to validate connectx addresses. */
1324 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1325 address: (struct sockaddr *)kaddrs,
1326 addrlen: addrs_size);
1327 if (err)
1328 return err;
1329
1330 /* in-kernel sockets don't generally have a file allocated to them
1331 * if all they do is call sock_create_kern().
1332 */
1333 if (sk->sk_socket->file)
1334 flags = sk->sk_socket->file->f_flags;
1335
1336 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1337}
1338
1339/*
1340 * This is an older interface. It's kept for backward compatibility
1341 * to the option that doesn't provide association id.
1342 */
1343static int sctp_setsockopt_connectx_old(struct sock *sk,
1344 struct sockaddr *kaddrs,
1345 int addrs_size)
1346{
1347 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1348}
1349
1350/*
1351 * New interface for the API. The since the API is done with a socket
1352 * option, to make it simple we feed back the association id is as a return
1353 * indication to the call. Error is always negative and association id is
1354 * always positive.
1355 */
1356static int sctp_setsockopt_connectx(struct sock *sk,
1357 struct sockaddr *kaddrs,
1358 int addrs_size)
1359{
1360 sctp_assoc_t assoc_id = 0;
1361 int err = 0;
1362
1363 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, assoc_id: &assoc_id);
1364
1365 if (err)
1366 return err;
1367 else
1368 return assoc_id;
1369}
1370
1371/*
1372 * New (hopefully final) interface for the API.
1373 * We use the sctp_getaddrs_old structure so that use-space library
1374 * can avoid any unnecessary allocations. The only different part
1375 * is that we store the actual length of the address buffer into the
1376 * addrs_num structure member. That way we can re-use the existing
1377 * code.
1378 */
1379#ifdef CONFIG_COMPAT
1380struct compat_sctp_getaddrs_old {
1381 sctp_assoc_t assoc_id;
1382 s32 addr_num;
1383 compat_uptr_t addrs; /* struct sockaddr * */
1384};
1385#endif
1386
1387static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1388 char __user *optval,
1389 int __user *optlen)
1390{
1391 struct sctp_getaddrs_old param;
1392 sctp_assoc_t assoc_id = 0;
1393 struct sockaddr *kaddrs;
1394 int err = 0;
1395
1396#ifdef CONFIG_COMPAT
1397 if (in_compat_syscall()) {
1398 struct compat_sctp_getaddrs_old param32;
1399
1400 if (len < sizeof(param32))
1401 return -EINVAL;
1402 if (copy_from_user(to: &param32, from: optval, n: sizeof(param32)))
1403 return -EFAULT;
1404
1405 param.assoc_id = param32.assoc_id;
1406 param.addr_num = param32.addr_num;
1407 param.addrs = compat_ptr(uptr: param32.addrs);
1408 } else
1409#endif
1410 {
1411 if (len < sizeof(param))
1412 return -EINVAL;
1413 if (copy_from_user(to: &param, from: optval, n: sizeof(param)))
1414 return -EFAULT;
1415 }
1416
1417 kaddrs = memdup_user(param.addrs, param.addr_num);
1418 if (IS_ERR(ptr: kaddrs))
1419 return PTR_ERR(ptr: kaddrs);
1420
1421 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size: param.addr_num, assoc_id: &assoc_id);
1422 kfree(objp: kaddrs);
1423 if (err == 0 || err == -EINPROGRESS) {
1424 if (copy_to_user(to: optval, from: &assoc_id, n: sizeof(assoc_id)))
1425 return -EFAULT;
1426 if (put_user(sizeof(assoc_id), optlen))
1427 return -EFAULT;
1428 }
1429
1430 return err;
1431}
1432
1433/* API 3.1.4 close() - UDP Style Syntax
1434 * Applications use close() to perform graceful shutdown (as described in
1435 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1436 * by a UDP-style socket.
1437 *
1438 * The syntax is
1439 *
1440 * ret = close(int sd);
1441 *
1442 * sd - the socket descriptor of the associations to be closed.
1443 *
1444 * To gracefully shutdown a specific association represented by the
1445 * UDP-style socket, an application should use the sendmsg() call,
1446 * passing no user data, but including the appropriate flag in the
1447 * ancillary data (see Section xxxx).
1448 *
1449 * If sd in the close() call is a branched-off socket representing only
1450 * one association, the shutdown is performed on that association only.
1451 *
1452 * 4.1.6 close() - TCP Style Syntax
1453 *
1454 * Applications use close() to gracefully close down an association.
1455 *
1456 * The syntax is:
1457 *
1458 * int close(int sd);
1459 *
1460 * sd - the socket descriptor of the association to be closed.
1461 *
1462 * After an application calls close() on a socket descriptor, no further
1463 * socket operations will succeed on that descriptor.
1464 *
1465 * API 7.1.4 SO_LINGER
1466 *
1467 * An application using the TCP-style socket can use this option to
1468 * perform the SCTP ABORT primitive. The linger option structure is:
1469 *
1470 * struct linger {
1471 * int l_onoff; // option on/off
1472 * int l_linger; // linger time
1473 * };
1474 *
1475 * To enable the option, set l_onoff to 1. If the l_linger value is set
1476 * to 0, calling close() is the same as the ABORT primitive. If the
1477 * value is set to a negative value, the setsockopt() call will return
1478 * an error. If the value is set to a positive value linger_time, the
1479 * close() can be blocked for at most linger_time ms. If the graceful
1480 * shutdown phase does not finish during this period, close() will
1481 * return but the graceful shutdown phase continues in the system.
1482 */
1483static void sctp_close(struct sock *sk, long timeout)
1484{
1485 struct net *net = sock_net(sk);
1486 struct sctp_endpoint *ep;
1487 struct sctp_association *asoc;
1488 struct list_head *pos, *temp;
1489 unsigned int data_was_unread;
1490
1491 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1492
1493 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1494 sk->sk_shutdown = SHUTDOWN_MASK;
1495 inet_sk_set_state(sk, state: SCTP_SS_CLOSING);
1496
1497 ep = sctp_sk(sk)->ep;
1498
1499 /* Clean up any skbs sitting on the receive queue. */
1500 data_was_unread = sctp_queue_purge_ulpevents(list: &sk->sk_receive_queue);
1501 data_was_unread += sctp_queue_purge_ulpevents(list: &sctp_sk(sk)->pd_lobby);
1502
1503 /* Walk all associations on an endpoint. */
1504 list_for_each_safe(pos, temp, &ep->asocs) {
1505 asoc = list_entry(pos, struct sctp_association, asocs);
1506
1507 if (sctp_style(sk, TCP)) {
1508 /* A closed association can still be in the list if
1509 * it belongs to a TCP-style listening socket that is
1510 * not yet accepted. If so, free it. If not, send an
1511 * ABORT or SHUTDOWN based on the linger options.
1512 */
1513 if (sctp_state(asoc, CLOSED)) {
1514 sctp_association_free(asoc);
1515 continue;
1516 }
1517 }
1518
1519 if (data_was_unread || !skb_queue_empty(list: &asoc->ulpq.lobby) ||
1520 !skb_queue_empty(list: &asoc->ulpq.reasm) ||
1521 !skb_queue_empty(list: &asoc->ulpq.reasm_uo) ||
1522 (sock_flag(sk, flag: SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, msg_len: 0);
1526 sctp_primitive_ABORT(net, asoc, arg: chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeo: timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(lock: &net->sctp.addr_wq_lock);
1544 bh_lock_sock_nested(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(lock: &net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558}
1559
1560/* Handle EPIPE error. */
1561static int sctp_error(struct sock *sk, int flags, int err)
1562{
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568}
1569
1570/* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593static int sctp_msghdr_parse(const struct msghdr *msg,
1594 struct sctp_cmsgs *cmsgs);
1595
1596static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1597 struct sctp_sndrcvinfo *srinfo,
1598 const struct msghdr *msg, size_t msg_len)
1599{
1600 __u16 sflags;
1601 int err;
1602
1603 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1604 return -EPIPE;
1605
1606 if (msg_len > sk->sk_sndbuf)
1607 return -EMSGSIZE;
1608
1609 memset(cmsgs, 0, sizeof(*cmsgs));
1610 err = sctp_msghdr_parse(msg, cmsgs);
1611 if (err) {
1612 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1613 return err;
1614 }
1615
1616 memset(srinfo, 0, sizeof(*srinfo));
1617 if (cmsgs->srinfo) {
1618 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1619 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1620 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1621 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1622 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1623 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1624 }
1625
1626 if (cmsgs->sinfo) {
1627 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1628 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1629 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1630 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1631 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1632 }
1633
1634 if (cmsgs->prinfo) {
1635 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1636 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1637 cmsgs->prinfo->pr_policy);
1638 }
1639
1640 sflags = srinfo->sinfo_flags;
1641 if (!sflags && msg_len)
1642 return 0;
1643
1644 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1645 return -EINVAL;
1646
1647 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1648 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1649 return -EINVAL;
1650
1651 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1652 return -EINVAL;
1653
1654 return 0;
1655}
1656
1657static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1658 struct sctp_cmsgs *cmsgs,
1659 union sctp_addr *daddr,
1660 struct sctp_transport **tp)
1661{
1662 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1663 struct sctp_association *asoc;
1664 struct cmsghdr *cmsg;
1665 __be32 flowinfo = 0;
1666 struct sctp_af *af;
1667 int err;
1668
1669 *tp = NULL;
1670
1671 if (sflags & (SCTP_EOF | SCTP_ABORT))
1672 return -EINVAL;
1673
1674 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1675 sctp_sstate(sk, CLOSING)))
1676 return -EADDRNOTAVAIL;
1677
1678 /* Label connection socket for first association 1-to-many
1679 * style for client sequence socket()->sendmsg(). This
1680 * needs to be done before sctp_assoc_add_peer() as that will
1681 * set up the initial packet that needs to account for any
1682 * security ip options (CIPSO/CALIPSO) added to the packet.
1683 */
1684 af = sctp_get_af_specific(daddr->sa.sa_family);
1685 if (!af)
1686 return -EINVAL;
1687 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1688 address: (struct sockaddr *)daddr,
1689 addrlen: af->sockaddr_len);
1690 if (err < 0)
1691 return err;
1692
1693 err = sctp_connect_new_asoc(ep, daddr, init: cmsgs->init, tp);
1694 if (err)
1695 return err;
1696 asoc = (*tp)->asoc;
1697
1698 if (!cmsgs->addrs_msg)
1699 return 0;
1700
1701 if (daddr->sa.sa_family == AF_INET6)
1702 flowinfo = daddr->v6.sin6_flowinfo;
1703
1704 /* sendv addr list parse */
1705 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1706 union sctp_addr _daddr;
1707 int dlen;
1708
1709 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1710 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1711 cmsg->cmsg_type != SCTP_DSTADDRV6))
1712 continue;
1713
1714 daddr = &_daddr;
1715 memset(daddr, 0, sizeof(*daddr));
1716 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1717 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1718 if (dlen < sizeof(struct in_addr)) {
1719 err = -EINVAL;
1720 goto free;
1721 }
1722
1723 dlen = sizeof(struct in_addr);
1724 daddr->v4.sin_family = AF_INET;
1725 daddr->v4.sin_port = htons(asoc->peer.port);
1726 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1727 } else {
1728 if (dlen < sizeof(struct in6_addr)) {
1729 err = -EINVAL;
1730 goto free;
1731 }
1732
1733 dlen = sizeof(struct in6_addr);
1734 daddr->v6.sin6_flowinfo = flowinfo;
1735 daddr->v6.sin6_family = AF_INET6;
1736 daddr->v6.sin6_port = htons(asoc->peer.port);
1737 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1738 }
1739
1740 err = sctp_connect_add_peer(asoc, daddr, addr_len: sizeof(*daddr));
1741 if (err)
1742 goto free;
1743 }
1744
1745 return 0;
1746
1747free:
1748 sctp_association_free(asoc);
1749 return err;
1750}
1751
1752static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1753 __u16 sflags, struct msghdr *msg,
1754 size_t msg_len)
1755{
1756 struct sock *sk = asoc->base.sk;
1757 struct net *net = sock_net(sk);
1758
1759 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1760 return -EPIPE;
1761
1762 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1763 !sctp_state(asoc, ESTABLISHED))
1764 return 0;
1765
1766 if (sflags & SCTP_EOF) {
1767 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1768 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1769
1770 return 0;
1771 }
1772
1773 if (sflags & SCTP_ABORT) {
1774 struct sctp_chunk *chunk;
1775
1776 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1777 if (!chunk)
1778 return -ENOMEM;
1779
1780 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1781 sctp_primitive_ABORT(net, asoc, arg: chunk);
1782 iov_iter_revert(i: &msg->msg_iter, bytes: msg_len);
1783
1784 return 0;
1785 }
1786
1787 return 1;
1788}
1789
1790static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1791 struct msghdr *msg, size_t msg_len,
1792 struct sctp_transport *transport,
1793 struct sctp_sndrcvinfo *sinfo)
1794{
1795 struct sock *sk = asoc->base.sk;
1796 struct sctp_sock *sp = sctp_sk(sk);
1797 struct net *net = sock_net(sk);
1798 struct sctp_datamsg *datamsg;
1799 bool wait_connect = false;
1800 struct sctp_chunk *chunk;
1801 long timeo;
1802 int err;
1803
1804 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1805 err = -EINVAL;
1806 goto err;
1807 }
1808
1809 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1810 err = sctp_stream_init_ext(stream: &asoc->stream, sid: sinfo->sinfo_stream);
1811 if (err)
1812 goto err;
1813 }
1814
1815 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1816 err = -EMSGSIZE;
1817 goto err;
1818 }
1819
1820 if (asoc->pmtu_pending) {
1821 if (sp->param_flags & SPP_PMTUD_ENABLE)
1822 sctp_assoc_sync_pmtu(asoc);
1823 asoc->pmtu_pending = 0;
1824 }
1825
1826 if (sctp_wspace(asoc) < (int)msg_len)
1827 sctp_prsctp_prune(asoc, sinfo, msg_len: msg_len - sctp_wspace(asoc));
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, size: msg_len)) {
1830 timeo = sock_sndtimeo(sk, noblock: msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, timeo_p: &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1835 err = -EINVAL;
1836 goto err;
1837 }
1838 }
1839
1840 if (sctp_state(asoc, CLOSED)) {
1841 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1842 if (err)
1843 goto err;
1844
1845 if (asoc->ep->intl_enable) {
1846 timeo = sock_sndtimeo(sk, noblock: 0);
1847 err = sctp_wait_for_connect(asoc, timeo_p: &timeo);
1848 if (err) {
1849 err = -ESRCH;
1850 goto err;
1851 }
1852 } else {
1853 wait_connect = true;
1854 }
1855
1856 pr_debug("%s: we associated primitively\n", __func__);
1857 }
1858
1859 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1860 if (IS_ERR(ptr: datamsg)) {
1861 err = PTR_ERR(ptr: datamsg);
1862 goto err;
1863 }
1864
1865 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1866
1867 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1868 sctp_chunk_hold(chunk);
1869 sctp_set_owner_w(chunk);
1870 chunk->transport = transport;
1871 }
1872
1873 err = sctp_primitive_SEND(net, asoc, arg: datamsg);
1874 if (err) {
1875 sctp_datamsg_free(datamsg);
1876 goto err;
1877 }
1878
1879 pr_debug("%s: we sent primitively\n", __func__);
1880
1881 sctp_datamsg_put(datamsg);
1882
1883 if (unlikely(wait_connect)) {
1884 timeo = sock_sndtimeo(sk, noblock: msg->msg_flags & MSG_DONTWAIT);
1885 sctp_wait_for_connect(asoc, timeo_p: &timeo);
1886 }
1887
1888 err = msg_len;
1889
1890err:
1891 return err;
1892}
1893
1894static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1895 const struct msghdr *msg,
1896 struct sctp_cmsgs *cmsgs)
1897{
1898 union sctp_addr *daddr = NULL;
1899 int err;
1900
1901 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1902 int len = msg->msg_namelen;
1903
1904 if (len > sizeof(*daddr))
1905 len = sizeof(*daddr);
1906
1907 daddr = (union sctp_addr *)msg->msg_name;
1908
1909 err = sctp_verify_addr(sk, addr: daddr, len);
1910 if (err)
1911 return ERR_PTR(error: err);
1912 }
1913
1914 return daddr;
1915}
1916
1917static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1918 struct sctp_sndrcvinfo *sinfo,
1919 struct sctp_cmsgs *cmsgs)
1920{
1921 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1922 sinfo->sinfo_stream = asoc->default_stream;
1923 sinfo->sinfo_ppid = asoc->default_ppid;
1924 sinfo->sinfo_context = asoc->default_context;
1925 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1926
1927 if (!cmsgs->prinfo)
1928 sinfo->sinfo_flags = asoc->default_flags;
1929 }
1930
1931 if (!cmsgs->srinfo && !cmsgs->prinfo)
1932 sinfo->sinfo_timetolive = asoc->default_timetolive;
1933
1934 if (cmsgs->authinfo) {
1935 /* Reuse sinfo_tsn to indicate that authinfo was set and
1936 * sinfo_ssn to save the keyid on tx path.
1937 */
1938 sinfo->sinfo_tsn = 1;
1939 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1940 }
1941}
1942
1943static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1944{
1945 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1946 struct sctp_transport *transport = NULL;
1947 struct sctp_sndrcvinfo _sinfo, *sinfo;
1948 struct sctp_association *asoc, *tmp;
1949 struct sctp_cmsgs cmsgs;
1950 union sctp_addr *daddr;
1951 bool new = false;
1952 __u16 sflags;
1953 int err;
1954
1955 /* Parse and get snd_info */
1956 err = sctp_sendmsg_parse(sk, cmsgs: &cmsgs, srinfo: &_sinfo, msg, msg_len);
1957 if (err)
1958 goto out;
1959
1960 sinfo = &_sinfo;
1961 sflags = sinfo->sinfo_flags;
1962
1963 /* Get daddr from msg */
1964 daddr = sctp_sendmsg_get_daddr(sk, msg, cmsgs: &cmsgs);
1965 if (IS_ERR(ptr: daddr)) {
1966 err = PTR_ERR(ptr: daddr);
1967 goto out;
1968 }
1969
1970 lock_sock(sk);
1971
1972 /* SCTP_SENDALL process */
1973 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1974 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1975 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1976 msg_len);
1977 if (err == 0)
1978 continue;
1979 if (err < 0)
1980 goto out_unlock;
1981
1982 sctp_sendmsg_update_sinfo(asoc, sinfo, cmsgs: &cmsgs);
1983
1984 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1985 NULL, sinfo);
1986 if (err < 0)
1987 goto out_unlock;
1988
1989 iov_iter_revert(i: &msg->msg_iter, bytes: err);
1990 }
1991
1992 goto out_unlock;
1993 }
1994
1995 /* Get and check or create asoc */
1996 if (daddr) {
1997 asoc = sctp_endpoint_lookup_assoc(ep, paddr: daddr, &transport);
1998 if (asoc) {
1999 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2000 msg_len);
2001 if (err <= 0)
2002 goto out_unlock;
2003 } else {
2004 err = sctp_sendmsg_new_asoc(sk, sflags, cmsgs: &cmsgs, daddr,
2005 tp: &transport);
2006 if (err)
2007 goto out_unlock;
2008
2009 asoc = transport->asoc;
2010 new = true;
2011 }
2012
2013 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2014 transport = NULL;
2015 } else {
2016 asoc = sctp_id2assoc(sk, id: sinfo->sinfo_assoc_id);
2017 if (!asoc) {
2018 err = -EPIPE;
2019 goto out_unlock;
2020 }
2021
2022 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2023 if (err <= 0)
2024 goto out_unlock;
2025 }
2026
2027 /* Update snd_info with the asoc */
2028 sctp_sendmsg_update_sinfo(asoc, sinfo, cmsgs: &cmsgs);
2029
2030 /* Send msg to the asoc */
2031 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2032 if (err < 0 && err != -ESRCH && new)
2033 sctp_association_free(asoc);
2034
2035out_unlock:
2036 release_sock(sk);
2037out:
2038 return sctp_error(sk, flags: msg->msg_flags, err);
2039}
2040
2041/* This is an extended version of skb_pull() that removes the data from the
2042 * start of a skb even when data is spread across the list of skb's in the
2043 * frag_list. len specifies the total amount of data that needs to be removed.
2044 * when 'len' bytes could be removed from the skb, it returns 0.
2045 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2046 * could not be removed.
2047 */
2048static int sctp_skb_pull(struct sk_buff *skb, int len)
2049{
2050 struct sk_buff *list;
2051 int skb_len = skb_headlen(skb);
2052 int rlen;
2053
2054 if (len <= skb_len) {
2055 __skb_pull(skb, len);
2056 return 0;
2057 }
2058 len -= skb_len;
2059 __skb_pull(skb, len: skb_len);
2060
2061 skb_walk_frags(skb, list) {
2062 rlen = sctp_skb_pull(skb: list, len);
2063 skb->len -= (len-rlen);
2064 skb->data_len -= (len-rlen);
2065
2066 if (!rlen)
2067 return 0;
2068
2069 len = rlen;
2070 }
2071
2072 return len;
2073}
2074
2075/* API 3.1.3 recvmsg() - UDP Style Syntax
2076 *
2077 * ssize_t recvmsg(int socket, struct msghdr *message,
2078 * int flags);
2079 *
2080 * socket - the socket descriptor of the endpoint.
2081 * message - pointer to the msghdr structure which contains a single
2082 * user message and possibly some ancillary data.
2083 *
2084 * See Section 5 for complete description of the data
2085 * structures.
2086 *
2087 * flags - flags sent or received with the user message, see Section
2088 * 5 for complete description of the flags.
2089 */
2090static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2091 int flags, int *addr_len)
2092{
2093 struct sctp_ulpevent *event = NULL;
2094 struct sctp_sock *sp = sctp_sk(sk);
2095 struct sk_buff *skb, *head_skb;
2096 int copied;
2097 int err = 0;
2098 int skb_len;
2099
2100 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2101 __func__, sk, msg, len, flags, addr_len);
2102
2103 if (unlikely(flags & MSG_ERRQUEUE))
2104 return inet_recv_error(sk, msg, len, addr_len);
2105
2106 if (sk_can_busy_loop(sk) &&
2107 skb_queue_empty_lockless(list: &sk->sk_receive_queue))
2108 sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT);
2109
2110 lock_sock(sk);
2111
2112 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2113 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2114 err = -ENOTCONN;
2115 goto out;
2116 }
2117
2118 skb = sctp_skb_recv_datagram(sk, flags, &err);
2119 if (!skb)
2120 goto out;
2121
2122 /* Get the total length of the skb including any skb's in the
2123 * frag_list.
2124 */
2125 skb_len = skb->len;
2126
2127 copied = skb_len;
2128 if (copied > len)
2129 copied = len;
2130
2131 err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied);
2132
2133 event = sctp_skb2event(skb);
2134
2135 if (err)
2136 goto out_free;
2137
2138 if (event->chunk && event->chunk->head_skb)
2139 head_skb = event->chunk->head_skb;
2140 else
2141 head_skb = skb;
2142 sock_recv_cmsgs(msg, sk, skb: head_skb);
2143 if (sctp_ulpevent_is_notification(event)) {
2144 msg->msg_flags |= MSG_NOTIFICATION;
2145 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2146 } else {
2147 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2148 }
2149
2150 /* Check if we allow SCTP_NXTINFO. */
2151 if (sp->recvnxtinfo)
2152 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2153 /* Check if we allow SCTP_RCVINFO. */
2154 if (sp->recvrcvinfo)
2155 sctp_ulpevent_read_rcvinfo(event, msg);
2156 /* Check if we allow SCTP_SNDRCVINFO. */
2157 if (sctp_ulpevent_type_enabled(subscribe: sp->subscribe, SCTP_DATA_IO_EVENT))
2158 sctp_ulpevent_read_sndrcvinfo(event, msg);
2159
2160 err = copied;
2161
2162 /* If skb's length exceeds the user's buffer, update the skb and
2163 * push it back to the receive_queue so that the next call to
2164 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2165 */
2166 if (skb_len > copied) {
2167 msg->msg_flags &= ~MSG_EOR;
2168 if (flags & MSG_PEEK)
2169 goto out_free;
2170 sctp_skb_pull(skb, len: copied);
2171 skb_queue_head(list: &sk->sk_receive_queue, newsk: skb);
2172
2173 /* When only partial message is copied to the user, increase
2174 * rwnd by that amount. If all the data in the skb is read,
2175 * rwnd is updated when the event is freed.
2176 */
2177 if (!sctp_ulpevent_is_notification(event))
2178 sctp_assoc_rwnd_increase(event->asoc, copied);
2179 goto out;
2180 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2181 (event->msg_flags & MSG_EOR))
2182 msg->msg_flags |= MSG_EOR;
2183 else
2184 msg->msg_flags &= ~MSG_EOR;
2185
2186out_free:
2187 if (flags & MSG_PEEK) {
2188 /* Release the skb reference acquired after peeking the skb in
2189 * sctp_skb_recv_datagram().
2190 */
2191 kfree_skb(skb);
2192 } else {
2193 /* Free the event which includes releasing the reference to
2194 * the owner of the skb, freeing the skb and updating the
2195 * rwnd.
2196 */
2197 sctp_ulpevent_free(event);
2198 }
2199out:
2200 release_sock(sk);
2201 return err;
2202}
2203
2204/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2205 *
2206 * This option is a on/off flag. If enabled no SCTP message
2207 * fragmentation will be performed. Instead if a message being sent
2208 * exceeds the current PMTU size, the message will NOT be sent and
2209 * instead a error will be indicated to the user.
2210 */
2211static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2212 unsigned int optlen)
2213{
2214 if (optlen < sizeof(int))
2215 return -EINVAL;
2216 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2217 return 0;
2218}
2219
2220static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2221 unsigned int optlen)
2222{
2223 struct sctp_sock *sp = sctp_sk(sk);
2224 struct sctp_association *asoc;
2225 int i;
2226
2227 if (optlen > sizeof(struct sctp_event_subscribe))
2228 return -EINVAL;
2229
2230 for (i = 0; i < optlen; i++)
2231 sctp_ulpevent_type_set(subscribe: &sp->subscribe, sn_type: SCTP_SN_TYPE_BASE + i,
2232 on: sn_type[i]);
2233
2234 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2235 asoc->subscribe = sctp_sk(sk)->subscribe;
2236
2237 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2238 * if there is no data to be sent or retransmit, the stack will
2239 * immediately send up this notification.
2240 */
2241 if (sctp_ulpevent_type_enabled(subscribe: sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2242 struct sctp_ulpevent *event;
2243
2244 asoc = sctp_id2assoc(sk, id: 0);
2245 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2246 event = sctp_ulpevent_make_sender_dry_event(asoc,
2247 GFP_USER | __GFP_NOWARN);
2248 if (!event)
2249 return -ENOMEM;
2250
2251 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2252 }
2253 }
2254
2255 return 0;
2256}
2257
2258/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2259 *
2260 * This socket option is applicable to the UDP-style socket only. When
2261 * set it will cause associations that are idle for more than the
2262 * specified number of seconds to automatically close. An association
2263 * being idle is defined an association that has NOT sent or received
2264 * user data. The special value of '0' indicates that no automatic
2265 * close of any associations should be performed. The option expects an
2266 * integer defining the number of seconds of idle time before an
2267 * association is closed.
2268 */
2269static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2270 unsigned int optlen)
2271{
2272 struct sctp_sock *sp = sctp_sk(sk);
2273 struct net *net = sock_net(sk);
2274
2275 /* Applicable to UDP-style socket only */
2276 if (sctp_style(sk, TCP))
2277 return -EOPNOTSUPP;
2278 if (optlen != sizeof(int))
2279 return -EINVAL;
2280
2281 sp->autoclose = *optval;
2282 if (sp->autoclose > net->sctp.max_autoclose)
2283 sp->autoclose = net->sctp.max_autoclose;
2284
2285 return 0;
2286}
2287
2288/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2289 *
2290 * Applications can enable or disable heartbeats for any peer address of
2291 * an association, modify an address's heartbeat interval, force a
2292 * heartbeat to be sent immediately, and adjust the address's maximum
2293 * number of retransmissions sent before an address is considered
2294 * unreachable. The following structure is used to access and modify an
2295 * address's parameters:
2296 *
2297 * struct sctp_paddrparams {
2298 * sctp_assoc_t spp_assoc_id;
2299 * struct sockaddr_storage spp_address;
2300 * uint32_t spp_hbinterval;
2301 * uint16_t spp_pathmaxrxt;
2302 * uint32_t spp_pathmtu;
2303 * uint32_t spp_sackdelay;
2304 * uint32_t spp_flags;
2305 * uint32_t spp_ipv6_flowlabel;
2306 * uint8_t spp_dscp;
2307 * };
2308 *
2309 * spp_assoc_id - (one-to-many style socket) This is filled in the
2310 * application, and identifies the association for
2311 * this query.
2312 * spp_address - This specifies which address is of interest.
2313 * spp_hbinterval - This contains the value of the heartbeat interval,
2314 * in milliseconds. If a value of zero
2315 * is present in this field then no changes are to
2316 * be made to this parameter.
2317 * spp_pathmaxrxt - This contains the maximum number of
2318 * retransmissions before this address shall be
2319 * considered unreachable. If a value of zero
2320 * is present in this field then no changes are to
2321 * be made to this parameter.
2322 * spp_pathmtu - When Path MTU discovery is disabled the value
2323 * specified here will be the "fixed" path mtu.
2324 * Note that if the spp_address field is empty
2325 * then all associations on this address will
2326 * have this fixed path mtu set upon them.
2327 *
2328 * spp_sackdelay - When delayed sack is enabled, this value specifies
2329 * the number of milliseconds that sacks will be delayed
2330 * for. This value will apply to all addresses of an
2331 * association if the spp_address field is empty. Note
2332 * also, that if delayed sack is enabled and this
2333 * value is set to 0, no change is made to the last
2334 * recorded delayed sack timer value.
2335 *
2336 * spp_flags - These flags are used to control various features
2337 * on an association. The flag field may contain
2338 * zero or more of the following options.
2339 *
2340 * SPP_HB_ENABLE - Enable heartbeats on the
2341 * specified address. Note that if the address
2342 * field is empty all addresses for the association
2343 * have heartbeats enabled upon them.
2344 *
2345 * SPP_HB_DISABLE - Disable heartbeats on the
2346 * speicifed address. Note that if the address
2347 * field is empty all addresses for the association
2348 * will have their heartbeats disabled. Note also
2349 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2350 * mutually exclusive, only one of these two should
2351 * be specified. Enabling both fields will have
2352 * undetermined results.
2353 *
2354 * SPP_HB_DEMAND - Request a user initiated heartbeat
2355 * to be made immediately.
2356 *
2357 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2358 * heartbeat delayis to be set to the value of 0
2359 * milliseconds.
2360 *
2361 * SPP_PMTUD_ENABLE - This field will enable PMTU
2362 * discovery upon the specified address. Note that
2363 * if the address feild is empty then all addresses
2364 * on the association are effected.
2365 *
2366 * SPP_PMTUD_DISABLE - This field will disable PMTU
2367 * discovery upon the specified address. Note that
2368 * if the address feild is empty then all addresses
2369 * on the association are effected. Not also that
2370 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2371 * exclusive. Enabling both will have undetermined
2372 * results.
2373 *
2374 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2375 * on delayed sack. The time specified in spp_sackdelay
2376 * is used to specify the sack delay for this address. Note
2377 * that if spp_address is empty then all addresses will
2378 * enable delayed sack and take on the sack delay
2379 * value specified in spp_sackdelay.
2380 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2381 * off delayed sack. If the spp_address field is blank then
2382 * delayed sack is disabled for the entire association. Note
2383 * also that this field is mutually exclusive to
2384 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2385 * results.
2386 *
2387 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2388 * setting of the IPV6 flow label value. The value is
2389 * contained in the spp_ipv6_flowlabel field.
2390 * Upon retrieval, this flag will be set to indicate that
2391 * the spp_ipv6_flowlabel field has a valid value returned.
2392 * If a specific destination address is set (in the
2393 * spp_address field), then the value returned is that of
2394 * the address. If just an association is specified (and
2395 * no address), then the association's default flow label
2396 * is returned. If neither an association nor a destination
2397 * is specified, then the socket's default flow label is
2398 * returned. For non-IPv6 sockets, this flag will be left
2399 * cleared.
2400 *
2401 * SPP_DSCP: Setting this flag enables the setting of the
2402 * Differentiated Services Code Point (DSCP) value
2403 * associated with either the association or a specific
2404 * address. The value is obtained in the spp_dscp field.
2405 * Upon retrieval, this flag will be set to indicate that
2406 * the spp_dscp field has a valid value returned. If a
2407 * specific destination address is set when called (in the
2408 * spp_address field), then that specific destination
2409 * address's DSCP value is returned. If just an association
2410 * is specified, then the association's default DSCP is
2411 * returned. If neither an association nor a destination is
2412 * specified, then the socket's default DSCP is returned.
2413 *
2414 * spp_ipv6_flowlabel
2415 * - This field is used in conjunction with the
2416 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2417 * The 20 least significant bits are used for the flow
2418 * label. This setting has precedence over any IPv6-layer
2419 * setting.
2420 *
2421 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2422 * and contains the DSCP. The 6 most significant bits are
2423 * used for the DSCP. This setting has precedence over any
2424 * IPv4- or IPv6- layer setting.
2425 */
2426static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2427 struct sctp_transport *trans,
2428 struct sctp_association *asoc,
2429 struct sctp_sock *sp,
2430 int hb_change,
2431 int pmtud_change,
2432 int sackdelay_change)
2433{
2434 int error;
2435
2436 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2437 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2438 trans->asoc, arg: trans);
2439 if (error)
2440 return error;
2441 }
2442
2443 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2444 * this field is ignored. Note also that a value of zero indicates
2445 * the current setting should be left unchanged.
2446 */
2447 if (params->spp_flags & SPP_HB_ENABLE) {
2448
2449 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2450 * set. This lets us use 0 value when this flag
2451 * is set.
2452 */
2453 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2454 params->spp_hbinterval = 0;
2455
2456 if (params->spp_hbinterval ||
2457 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2458 if (trans) {
2459 trans->hbinterval =
2460 msecs_to_jiffies(m: params->spp_hbinterval);
2461 sctp_transport_reset_hb_timer(trans);
2462 } else if (asoc) {
2463 asoc->hbinterval =
2464 msecs_to_jiffies(m: params->spp_hbinterval);
2465 } else {
2466 sp->hbinterval = params->spp_hbinterval;
2467 }
2468 }
2469 }
2470
2471 if (hb_change) {
2472 if (trans) {
2473 trans->param_flags =
2474 (trans->param_flags & ~SPP_HB) | hb_change;
2475 } else if (asoc) {
2476 asoc->param_flags =
2477 (asoc->param_flags & ~SPP_HB) | hb_change;
2478 } else {
2479 sp->param_flags =
2480 (sp->param_flags & ~SPP_HB) | hb_change;
2481 }
2482 }
2483
2484 /* When Path MTU discovery is disabled the value specified here will
2485 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2486 * include the flag SPP_PMTUD_DISABLE for this field to have any
2487 * effect).
2488 */
2489 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2490 if (trans) {
2491 trans->pathmtu = params->spp_pathmtu;
2492 sctp_assoc_sync_pmtu(asoc);
2493 } else if (asoc) {
2494 sctp_assoc_set_pmtu(asoc, pmtu: params->spp_pathmtu);
2495 } else {
2496 sp->pathmtu = params->spp_pathmtu;
2497 }
2498 }
2499
2500 if (pmtud_change) {
2501 if (trans) {
2502 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2503 (params->spp_flags & SPP_PMTUD_ENABLE);
2504 trans->param_flags =
2505 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 if (update) {
2507 sctp_transport_pmtu(trans, sk: sctp_opt2sk(sp));
2508 sctp_assoc_sync_pmtu(asoc);
2509 }
2510 sctp_transport_pl_reset(t: trans);
2511 } else if (asoc) {
2512 asoc->param_flags =
2513 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2514 } else {
2515 sp->param_flags =
2516 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2517 }
2518 }
2519
2520 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2521 * value of this field is ignored. Note also that a value of zero
2522 * indicates the current setting should be left unchanged.
2523 */
2524 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2525 if (trans) {
2526 trans->sackdelay =
2527 msecs_to_jiffies(m: params->spp_sackdelay);
2528 } else if (asoc) {
2529 asoc->sackdelay =
2530 msecs_to_jiffies(m: params->spp_sackdelay);
2531 } else {
2532 sp->sackdelay = params->spp_sackdelay;
2533 }
2534 }
2535
2536 if (sackdelay_change) {
2537 if (trans) {
2538 trans->param_flags =
2539 (trans->param_flags & ~SPP_SACKDELAY) |
2540 sackdelay_change;
2541 } else if (asoc) {
2542 asoc->param_flags =
2543 (asoc->param_flags & ~SPP_SACKDELAY) |
2544 sackdelay_change;
2545 } else {
2546 sp->param_flags =
2547 (sp->param_flags & ~SPP_SACKDELAY) |
2548 sackdelay_change;
2549 }
2550 }
2551
2552 /* Note that a value of zero indicates the current setting should be
2553 left unchanged.
2554 */
2555 if (params->spp_pathmaxrxt) {
2556 if (trans) {
2557 trans->pathmaxrxt = params->spp_pathmaxrxt;
2558 } else if (asoc) {
2559 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2560 } else {
2561 sp->pathmaxrxt = params->spp_pathmaxrxt;
2562 }
2563 }
2564
2565 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2566 if (trans) {
2567 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2568 trans->flowlabel = params->spp_ipv6_flowlabel &
2569 SCTP_FLOWLABEL_VAL_MASK;
2570 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2571 }
2572 } else if (asoc) {
2573 struct sctp_transport *t;
2574
2575 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2576 transports) {
2577 if (t->ipaddr.sa.sa_family != AF_INET6)
2578 continue;
2579 t->flowlabel = params->spp_ipv6_flowlabel &
2580 SCTP_FLOWLABEL_VAL_MASK;
2581 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2582 }
2583 asoc->flowlabel = params->spp_ipv6_flowlabel &
2584 SCTP_FLOWLABEL_VAL_MASK;
2585 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2586 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2587 sp->flowlabel = params->spp_ipv6_flowlabel &
2588 SCTP_FLOWLABEL_VAL_MASK;
2589 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2590 }
2591 }
2592
2593 if (params->spp_flags & SPP_DSCP) {
2594 if (trans) {
2595 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 trans->dscp |= SCTP_DSCP_SET_MASK;
2597 } else if (asoc) {
2598 struct sctp_transport *t;
2599
2600 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2601 transports) {
2602 t->dscp = params->spp_dscp &
2603 SCTP_DSCP_VAL_MASK;
2604 t->dscp |= SCTP_DSCP_SET_MASK;
2605 }
2606 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2607 asoc->dscp |= SCTP_DSCP_SET_MASK;
2608 } else {
2609 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2610 sp->dscp |= SCTP_DSCP_SET_MASK;
2611 }
2612 }
2613
2614 return 0;
2615}
2616
2617static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2618 struct sctp_paddrparams *params,
2619 unsigned int optlen)
2620{
2621 struct sctp_transport *trans = NULL;
2622 struct sctp_association *asoc = NULL;
2623 struct sctp_sock *sp = sctp_sk(sk);
2624 int error;
2625 int hb_change, pmtud_change, sackdelay_change;
2626
2627 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2628 spp_ipv6_flowlabel), 4)) {
2629 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2630 return -EINVAL;
2631 } else if (optlen != sizeof(*params)) {
2632 return -EINVAL;
2633 }
2634
2635 /* Validate flags and value parameters. */
2636 hb_change = params->spp_flags & SPP_HB;
2637 pmtud_change = params->spp_flags & SPP_PMTUD;
2638 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2639
2640 if (hb_change == SPP_HB ||
2641 pmtud_change == SPP_PMTUD ||
2642 sackdelay_change == SPP_SACKDELAY ||
2643 params->spp_sackdelay > 500 ||
2644 (params->spp_pathmtu &&
2645 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2646 return -EINVAL;
2647
2648 /* If an address other than INADDR_ANY is specified, and
2649 * no transport is found, then the request is invalid.
2650 */
2651 if (!sctp_is_any(sk, addr: (union sctp_addr *)&params->spp_address)) {
2652 trans = sctp_addr_id2transport(sk, addr: &params->spp_address,
2653 id: params->spp_assoc_id);
2654 if (!trans)
2655 return -EINVAL;
2656 }
2657
2658 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2659 * socket is a one to many style socket, and an association
2660 * was not found, then the id was invalid.
2661 */
2662 asoc = sctp_id2assoc(sk, id: params->spp_assoc_id);
2663 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2664 sctp_style(sk, UDP))
2665 return -EINVAL;
2666
2667 /* Heartbeat demand can only be sent on a transport or
2668 * association, but not a socket.
2669 */
2670 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2671 return -EINVAL;
2672
2673 /* Process parameters. */
2674 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2675 hb_change, pmtud_change,
2676 sackdelay_change);
2677
2678 if (error)
2679 return error;
2680
2681 /* If changes are for association, also apply parameters to each
2682 * transport.
2683 */
2684 if (!trans && asoc) {
2685 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2686 transports) {
2687 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2688 hb_change, pmtud_change,
2689 sackdelay_change);
2690 }
2691 }
2692
2693 return 0;
2694}
2695
2696static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2697{
2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2699}
2700
2701static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2702{
2703 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2704}
2705
2706static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2707 struct sctp_association *asoc)
2708{
2709 struct sctp_transport *trans;
2710
2711 if (params->sack_delay) {
2712 asoc->sackdelay = msecs_to_jiffies(m: params->sack_delay);
2713 asoc->param_flags =
2714 sctp_spp_sackdelay_enable(param_flags: asoc->param_flags);
2715 }
2716 if (params->sack_freq == 1) {
2717 asoc->param_flags =
2718 sctp_spp_sackdelay_disable(param_flags: asoc->param_flags);
2719 } else if (params->sack_freq > 1) {
2720 asoc->sackfreq = params->sack_freq;
2721 asoc->param_flags =
2722 sctp_spp_sackdelay_enable(param_flags: asoc->param_flags);
2723 }
2724
2725 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2726 transports) {
2727 if (params->sack_delay) {
2728 trans->sackdelay = msecs_to_jiffies(m: params->sack_delay);
2729 trans->param_flags =
2730 sctp_spp_sackdelay_enable(param_flags: trans->param_flags);
2731 }
2732 if (params->sack_freq == 1) {
2733 trans->param_flags =
2734 sctp_spp_sackdelay_disable(param_flags: trans->param_flags);
2735 } else if (params->sack_freq > 1) {
2736 trans->sackfreq = params->sack_freq;
2737 trans->param_flags =
2738 sctp_spp_sackdelay_enable(param_flags: trans->param_flags);
2739 }
2740 }
2741}
2742
2743/*
2744 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2745 *
2746 * This option will effect the way delayed acks are performed. This
2747 * option allows you to get or set the delayed ack time, in
2748 * milliseconds. It also allows changing the delayed ack frequency.
2749 * Changing the frequency to 1 disables the delayed sack algorithm. If
2750 * the assoc_id is 0, then this sets or gets the endpoints default
2751 * values. If the assoc_id field is non-zero, then the set or get
2752 * effects the specified association for the one to many model (the
2753 * assoc_id field is ignored by the one to one model). Note that if
2754 * sack_delay or sack_freq are 0 when setting this option, then the
2755 * current values will remain unchanged.
2756 *
2757 * struct sctp_sack_info {
2758 * sctp_assoc_t sack_assoc_id;
2759 * uint32_t sack_delay;
2760 * uint32_t sack_freq;
2761 * };
2762 *
2763 * sack_assoc_id - This parameter, indicates which association the user
2764 * is performing an action upon. Note that if this field's value is
2765 * zero then the endpoints default value is changed (effecting future
2766 * associations only).
2767 *
2768 * sack_delay - This parameter contains the number of milliseconds that
2769 * the user is requesting the delayed ACK timer be set to. Note that
2770 * this value is defined in the standard to be between 200 and 500
2771 * milliseconds.
2772 *
2773 * sack_freq - This parameter contains the number of packets that must
2774 * be received before a sack is sent without waiting for the delay
2775 * timer to expire. The default value for this is 2, setting this
2776 * value to 1 will disable the delayed sack algorithm.
2777 */
2778static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2779 struct sctp_sack_info *params)
2780{
2781 struct sctp_sock *sp = sctp_sk(sk);
2782 struct sctp_association *asoc;
2783
2784 /* Validate value parameter. */
2785 if (params->sack_delay > 500)
2786 return -EINVAL;
2787
2788 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2789 * socket is a one to many style socket, and an association
2790 * was not found, then the id was invalid.
2791 */
2792 asoc = sctp_id2assoc(sk, id: params->sack_assoc_id);
2793 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2794 sctp_style(sk, UDP))
2795 return -EINVAL;
2796
2797 if (asoc) {
2798 sctp_apply_asoc_delayed_ack(params, asoc);
2799
2800 return 0;
2801 }
2802
2803 if (sctp_style(sk, TCP))
2804 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2805
2806 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2807 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2808 if (params->sack_delay) {
2809 sp->sackdelay = params->sack_delay;
2810 sp->param_flags =
2811 sctp_spp_sackdelay_enable(param_flags: sp->param_flags);
2812 }
2813 if (params->sack_freq == 1) {
2814 sp->param_flags =
2815 sctp_spp_sackdelay_disable(param_flags: sp->param_flags);
2816 } else if (params->sack_freq > 1) {
2817 sp->sackfreq = params->sack_freq;
2818 sp->param_flags =
2819 sctp_spp_sackdelay_enable(param_flags: sp->param_flags);
2820 }
2821 }
2822
2823 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2824 params->sack_assoc_id == SCTP_ALL_ASSOC)
2825 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2826 sctp_apply_asoc_delayed_ack(params, asoc);
2827
2828 return 0;
2829}
2830
2831static int sctp_setsockopt_delayed_ack(struct sock *sk,
2832 struct sctp_sack_info *params,
2833 unsigned int optlen)
2834{
2835 if (optlen == sizeof(struct sctp_assoc_value)) {
2836 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2837 struct sctp_sack_info p;
2838
2839 pr_warn_ratelimited(DEPRECATED
2840 "%s (pid %d) "
2841 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2842 "Use struct sctp_sack_info instead\n",
2843 current->comm, task_pid_nr(current));
2844
2845 p.sack_assoc_id = v->assoc_id;
2846 p.sack_delay = v->assoc_value;
2847 p.sack_freq = v->assoc_value ? 0 : 1;
2848 return __sctp_setsockopt_delayed_ack(sk, params: &p);
2849 }
2850
2851 if (optlen != sizeof(struct sctp_sack_info))
2852 return -EINVAL;
2853 if (params->sack_delay == 0 && params->sack_freq == 0)
2854 return 0;
2855 return __sctp_setsockopt_delayed_ack(sk, params);
2856}
2857
2858/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2859 *
2860 * Applications can specify protocol parameters for the default association
2861 * initialization. The option name argument to setsockopt() and getsockopt()
2862 * is SCTP_INITMSG.
2863 *
2864 * Setting initialization parameters is effective only on an unconnected
2865 * socket (for UDP-style sockets only future associations are effected
2866 * by the change). With TCP-style sockets, this option is inherited by
2867 * sockets derived from a listener socket.
2868 */
2869static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2870 unsigned int optlen)
2871{
2872 struct sctp_sock *sp = sctp_sk(sk);
2873
2874 if (optlen != sizeof(struct sctp_initmsg))
2875 return -EINVAL;
2876
2877 if (sinit->sinit_num_ostreams)
2878 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2879 if (sinit->sinit_max_instreams)
2880 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2881 if (sinit->sinit_max_attempts)
2882 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2883 if (sinit->sinit_max_init_timeo)
2884 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2885
2886 return 0;
2887}
2888
2889/*
2890 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2891 *
2892 * Applications that wish to use the sendto() system call may wish to
2893 * specify a default set of parameters that would normally be supplied
2894 * through the inclusion of ancillary data. This socket option allows
2895 * such an application to set the default sctp_sndrcvinfo structure.
2896 * The application that wishes to use this socket option simply passes
2897 * in to this call the sctp_sndrcvinfo structure defined in Section
2898 * 5.2.2) The input parameters accepted by this call include
2899 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2900 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2901 * to this call if the caller is using the UDP model.
2902 */
2903static int sctp_setsockopt_default_send_param(struct sock *sk,
2904 struct sctp_sndrcvinfo *info,
2905 unsigned int optlen)
2906{
2907 struct sctp_sock *sp = sctp_sk(sk);
2908 struct sctp_association *asoc;
2909
2910 if (optlen != sizeof(*info))
2911 return -EINVAL;
2912 if (info->sinfo_flags &
2913 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2914 SCTP_ABORT | SCTP_EOF))
2915 return -EINVAL;
2916
2917 asoc = sctp_id2assoc(sk, id: info->sinfo_assoc_id);
2918 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2919 sctp_style(sk, UDP))
2920 return -EINVAL;
2921
2922 if (asoc) {
2923 asoc->default_stream = info->sinfo_stream;
2924 asoc->default_flags = info->sinfo_flags;
2925 asoc->default_ppid = info->sinfo_ppid;
2926 asoc->default_context = info->sinfo_context;
2927 asoc->default_timetolive = info->sinfo_timetolive;
2928
2929 return 0;
2930 }
2931
2932 if (sctp_style(sk, TCP))
2933 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2934
2935 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2936 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2937 sp->default_stream = info->sinfo_stream;
2938 sp->default_flags = info->sinfo_flags;
2939 sp->default_ppid = info->sinfo_ppid;
2940 sp->default_context = info->sinfo_context;
2941 sp->default_timetolive = info->sinfo_timetolive;
2942 }
2943
2944 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2945 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2946 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2947 asoc->default_stream = info->sinfo_stream;
2948 asoc->default_flags = info->sinfo_flags;
2949 asoc->default_ppid = info->sinfo_ppid;
2950 asoc->default_context = info->sinfo_context;
2951 asoc->default_timetolive = info->sinfo_timetolive;
2952 }
2953 }
2954
2955 return 0;
2956}
2957
2958/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2959 * (SCTP_DEFAULT_SNDINFO)
2960 */
2961static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2962 struct sctp_sndinfo *info,
2963 unsigned int optlen)
2964{
2965 struct sctp_sock *sp = sctp_sk(sk);
2966 struct sctp_association *asoc;
2967
2968 if (optlen != sizeof(*info))
2969 return -EINVAL;
2970 if (info->snd_flags &
2971 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2972 SCTP_ABORT | SCTP_EOF))
2973 return -EINVAL;
2974
2975 asoc = sctp_id2assoc(sk, id: info->snd_assoc_id);
2976 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2977 sctp_style(sk, UDP))
2978 return -EINVAL;
2979
2980 if (asoc) {
2981 asoc->default_stream = info->snd_sid;
2982 asoc->default_flags = info->snd_flags;
2983 asoc->default_ppid = info->snd_ppid;
2984 asoc->default_context = info->snd_context;
2985
2986 return 0;
2987 }
2988
2989 if (sctp_style(sk, TCP))
2990 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2991
2992 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2993 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2994 sp->default_stream = info->snd_sid;
2995 sp->default_flags = info->snd_flags;
2996 sp->default_ppid = info->snd_ppid;
2997 sp->default_context = info->snd_context;
2998 }
2999
3000 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
3001 info->snd_assoc_id == SCTP_ALL_ASSOC) {
3002 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3003 asoc->default_stream = info->snd_sid;
3004 asoc->default_flags = info->snd_flags;
3005 asoc->default_ppid = info->snd_ppid;
3006 asoc->default_context = info->snd_context;
3007 }
3008 }
3009
3010 return 0;
3011}
3012
3013/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3014 *
3015 * Requests that the local SCTP stack use the enclosed peer address as
3016 * the association primary. The enclosed address must be one of the
3017 * association peer's addresses.
3018 */
3019static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3020 unsigned int optlen)
3021{
3022 struct sctp_transport *trans;
3023 struct sctp_af *af;
3024 int err;
3025
3026 if (optlen != sizeof(struct sctp_prim))
3027 return -EINVAL;
3028
3029 /* Allow security module to validate address but need address len. */
3030 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3031 if (!af)
3032 return -EINVAL;
3033
3034 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3035 address: (struct sockaddr *)&prim->ssp_addr,
3036 addrlen: af->sockaddr_len);
3037 if (err)
3038 return err;
3039
3040 trans = sctp_addr_id2transport(sk, addr: &prim->ssp_addr, id: prim->ssp_assoc_id);
3041 if (!trans)
3042 return -EINVAL;
3043
3044 sctp_assoc_set_primary(trans->asoc, trans);
3045
3046 return 0;
3047}
3048
3049/*
3050 * 7.1.5 SCTP_NODELAY
3051 *
3052 * Turn on/off any Nagle-like algorithm. This means that packets are
3053 * generally sent as soon as possible and no unnecessary delays are
3054 * introduced, at the cost of more packets in the network. Expects an
3055 * integer boolean flag.
3056 */
3057static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3058 unsigned int optlen)
3059{
3060 if (optlen < sizeof(int))
3061 return -EINVAL;
3062 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3063 return 0;
3064}
3065
3066/*
3067 *
3068 * 7.1.1 SCTP_RTOINFO
3069 *
3070 * The protocol parameters used to initialize and bound retransmission
3071 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3072 * and modify these parameters.
3073 * All parameters are time values, in milliseconds. A value of 0, when
3074 * modifying the parameters, indicates that the current value should not
3075 * be changed.
3076 *
3077 */
3078static int sctp_setsockopt_rtoinfo(struct sock *sk,
3079 struct sctp_rtoinfo *rtoinfo,
3080 unsigned int optlen)
3081{
3082 struct sctp_association *asoc;
3083 unsigned long rto_min, rto_max;
3084 struct sctp_sock *sp = sctp_sk(sk);
3085
3086 if (optlen != sizeof (struct sctp_rtoinfo))
3087 return -EINVAL;
3088
3089 asoc = sctp_id2assoc(sk, id: rtoinfo->srto_assoc_id);
3090
3091 /* Set the values to the specific association */
3092 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3093 sctp_style(sk, UDP))
3094 return -EINVAL;
3095
3096 rto_max = rtoinfo->srto_max;
3097 rto_min = rtoinfo->srto_min;
3098
3099 if (rto_max)
3100 rto_max = asoc ? msecs_to_jiffies(m: rto_max) : rto_max;
3101 else
3102 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3103
3104 if (rto_min)
3105 rto_min = asoc ? msecs_to_jiffies(m: rto_min) : rto_min;
3106 else
3107 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3108
3109 if (rto_min > rto_max)
3110 return -EINVAL;
3111
3112 if (asoc) {
3113 if (rtoinfo->srto_initial != 0)
3114 asoc->rto_initial =
3115 msecs_to_jiffies(m: rtoinfo->srto_initial);
3116 asoc->rto_max = rto_max;
3117 asoc->rto_min = rto_min;
3118 } else {
3119 /* If there is no association or the association-id = 0
3120 * set the values to the endpoint.
3121 */
3122 if (rtoinfo->srto_initial != 0)
3123 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3124 sp->rtoinfo.srto_max = rto_max;
3125 sp->rtoinfo.srto_min = rto_min;
3126 }
3127
3128 return 0;
3129}
3130
3131/*
3132 *
3133 * 7.1.2 SCTP_ASSOCINFO
3134 *
3135 * This option is used to tune the maximum retransmission attempts
3136 * of the association.
3137 * Returns an error if the new association retransmission value is
3138 * greater than the sum of the retransmission value of the peer.
3139 * See [SCTP] for more information.
3140 *
3141 */
3142static int sctp_setsockopt_associnfo(struct sock *sk,
3143 struct sctp_assocparams *assocparams,
3144 unsigned int optlen)
3145{
3146
3147 struct sctp_association *asoc;
3148
3149 if (optlen != sizeof(struct sctp_assocparams))
3150 return -EINVAL;
3151
3152 asoc = sctp_id2assoc(sk, id: assocparams->sasoc_assoc_id);
3153
3154 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3155 sctp_style(sk, UDP))
3156 return -EINVAL;
3157
3158 /* Set the values to the specific association */
3159 if (asoc) {
3160 if (assocparams->sasoc_asocmaxrxt != 0) {
3161 __u32 path_sum = 0;
3162 int paths = 0;
3163 struct sctp_transport *peer_addr;
3164
3165 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3166 transports) {
3167 path_sum += peer_addr->pathmaxrxt;
3168 paths++;
3169 }
3170
3171 /* Only validate asocmaxrxt if we have more than
3172 * one path/transport. We do this because path
3173 * retransmissions are only counted when we have more
3174 * then one path.
3175 */
3176 if (paths > 1 &&
3177 assocparams->sasoc_asocmaxrxt > path_sum)
3178 return -EINVAL;
3179
3180 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3181 }
3182
3183 if (assocparams->sasoc_cookie_life != 0)
3184 asoc->cookie_life =
3185 ms_to_ktime(ms: assocparams->sasoc_cookie_life);
3186 } else {
3187 /* Set the values to the endpoint */
3188 struct sctp_sock *sp = sctp_sk(sk);
3189
3190 if (assocparams->sasoc_asocmaxrxt != 0)
3191 sp->assocparams.sasoc_asocmaxrxt =
3192 assocparams->sasoc_asocmaxrxt;
3193 if (assocparams->sasoc_cookie_life != 0)
3194 sp->assocparams.sasoc_cookie_life =
3195 assocparams->sasoc_cookie_life;
3196 }
3197 return 0;
3198}
3199
3200/*
3201 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3202 *
3203 * This socket option is a boolean flag which turns on or off mapped V4
3204 * addresses. If this option is turned on and the socket is type
3205 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3206 * If this option is turned off, then no mapping will be done of V4
3207 * addresses and a user will receive both PF_INET6 and PF_INET type
3208 * addresses on the socket.
3209 */
3210static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3211 unsigned int optlen)
3212{
3213 struct sctp_sock *sp = sctp_sk(sk);
3214
3215 if (optlen < sizeof(int))
3216 return -EINVAL;
3217 if (*val)
3218 sp->v4mapped = 1;
3219 else
3220 sp->v4mapped = 0;
3221
3222 return 0;
3223}
3224
3225/*
3226 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3227 * This option will get or set the maximum size to put in any outgoing
3228 * SCTP DATA chunk. If a message is larger than this size it will be
3229 * fragmented by SCTP into the specified size. Note that the underlying
3230 * SCTP implementation may fragment into smaller sized chunks when the
3231 * PMTU of the underlying association is smaller than the value set by
3232 * the user. The default value for this option is '0' which indicates
3233 * the user is NOT limiting fragmentation and only the PMTU will effect
3234 * SCTP's choice of DATA chunk size. Note also that values set larger
3235 * than the maximum size of an IP datagram will effectively let SCTP
3236 * control fragmentation (i.e. the same as setting this option to 0).
3237 *
3238 * The following structure is used to access and modify this parameter:
3239 *
3240 * struct sctp_assoc_value {
3241 * sctp_assoc_t assoc_id;
3242 * uint32_t assoc_value;
3243 * };
3244 *
3245 * assoc_id: This parameter is ignored for one-to-one style sockets.
3246 * For one-to-many style sockets this parameter indicates which
3247 * association the user is performing an action upon. Note that if
3248 * this field's value is zero then the endpoints default value is
3249 * changed (effecting future associations only).
3250 * assoc_value: This parameter specifies the maximum size in bytes.
3251 */
3252static int sctp_setsockopt_maxseg(struct sock *sk,
3253 struct sctp_assoc_value *params,
3254 unsigned int optlen)
3255{
3256 struct sctp_sock *sp = sctp_sk(sk);
3257 struct sctp_association *asoc;
3258 sctp_assoc_t assoc_id;
3259 int val;
3260
3261 if (optlen == sizeof(int)) {
3262 pr_warn_ratelimited(DEPRECATED
3263 "%s (pid %d) "
3264 "Use of int in maxseg socket option.\n"
3265 "Use struct sctp_assoc_value instead\n",
3266 current->comm, task_pid_nr(current));
3267 assoc_id = SCTP_FUTURE_ASSOC;
3268 val = *(int *)params;
3269 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3270 assoc_id = params->assoc_id;
3271 val = params->assoc_value;
3272 } else {
3273 return -EINVAL;
3274 }
3275
3276 asoc = sctp_id2assoc(sk, id: assoc_id);
3277 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3278 sctp_style(sk, UDP))
3279 return -EINVAL;
3280
3281 if (val) {
3282 int min_len, max_len;
3283 __u16 datasize = asoc ? sctp_datachk_len(stream: &asoc->stream) :
3284 sizeof(struct sctp_data_chunk);
3285
3286 min_len = sctp_min_frag_point(sp, datasize);
3287 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3288
3289 if (val < min_len || val > max_len)
3290 return -EINVAL;
3291 }
3292
3293 if (asoc) {
3294 asoc->user_frag = val;
3295 sctp_assoc_update_frag_point(asoc);
3296 } else {
3297 sp->user_frag = val;
3298 }
3299
3300 return 0;
3301}
3302
3303
3304/*
3305 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3306 *
3307 * Requests that the peer mark the enclosed address as the association
3308 * primary. The enclosed address must be one of the association's
3309 * locally bound addresses. The following structure is used to make a
3310 * set primary request:
3311 */
3312static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3313 struct sctp_setpeerprim *prim,
3314 unsigned int optlen)
3315{
3316 struct sctp_sock *sp;
3317 struct sctp_association *asoc = NULL;
3318 struct sctp_chunk *chunk;
3319 struct sctp_af *af;
3320 int err;
3321
3322 sp = sctp_sk(sk);
3323
3324 if (!sp->ep->asconf_enable)
3325 return -EPERM;
3326
3327 if (optlen != sizeof(struct sctp_setpeerprim))
3328 return -EINVAL;
3329
3330 asoc = sctp_id2assoc(sk, id: prim->sspp_assoc_id);
3331 if (!asoc)
3332 return -EINVAL;
3333
3334 if (!asoc->peer.asconf_capable)
3335 return -EPERM;
3336
3337 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3338 return -EPERM;
3339
3340 if (!sctp_state(asoc, ESTABLISHED))
3341 return -ENOTCONN;
3342
3343 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3344 if (!af)
3345 return -EINVAL;
3346
3347 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3348 return -EADDRNOTAVAIL;
3349
3350 if (!sctp_assoc_lookup_laddr(asoc, laddr: (union sctp_addr *)&prim->sspp_addr))
3351 return -EADDRNOTAVAIL;
3352
3353 /* Allow security module to validate address. */
3354 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3355 address: (struct sockaddr *)&prim->sspp_addr,
3356 addrlen: af->sockaddr_len);
3357 if (err)
3358 return err;
3359
3360 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3361 chunk = sctp_make_asconf_set_prim(asoc,
3362 addr: (union sctp_addr *)&prim->sspp_addr);
3363 if (!chunk)
3364 return -ENOMEM;
3365
3366 err = sctp_send_asconf(asoc, chunk);
3367
3368 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3369
3370 return err;
3371}
3372
3373static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3374 struct sctp_setadaptation *adapt,
3375 unsigned int optlen)
3376{
3377 if (optlen != sizeof(struct sctp_setadaptation))
3378 return -EINVAL;
3379
3380 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3381
3382 return 0;
3383}
3384
3385/*
3386 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3387 *
3388 * The context field in the sctp_sndrcvinfo structure is normally only
3389 * used when a failed message is retrieved holding the value that was
3390 * sent down on the actual send call. This option allows the setting of
3391 * a default context on an association basis that will be received on
3392 * reading messages from the peer. This is especially helpful in the
3393 * one-2-many model for an application to keep some reference to an
3394 * internal state machine that is processing messages on the
3395 * association. Note that the setting of this value only effects
3396 * received messages from the peer and does not effect the value that is
3397 * saved with outbound messages.
3398 */
3399static int sctp_setsockopt_context(struct sock *sk,
3400 struct sctp_assoc_value *params,
3401 unsigned int optlen)
3402{
3403 struct sctp_sock *sp = sctp_sk(sk);
3404 struct sctp_association *asoc;
3405
3406 if (optlen != sizeof(struct sctp_assoc_value))
3407 return -EINVAL;
3408
3409 asoc = sctp_id2assoc(sk, id: params->assoc_id);
3410 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3411 sctp_style(sk, UDP))
3412 return -EINVAL;
3413
3414 if (asoc) {
3415 asoc->default_rcv_context = params->assoc_value;
3416
3417 return 0;
3418 }
3419
3420 if (sctp_style(sk, TCP))
3421 params->assoc_id = SCTP_FUTURE_ASSOC;
3422
3423 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3424 params->assoc_id == SCTP_ALL_ASSOC)
3425 sp->default_rcv_context = params->assoc_value;
3426
3427 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3428 params->assoc_id == SCTP_ALL_ASSOC)
3429 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3430 asoc->default_rcv_context = params->assoc_value;
3431
3432 return 0;
3433}
3434
3435/*
3436 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3437 *
3438 * This options will at a minimum specify if the implementation is doing
3439 * fragmented interleave. Fragmented interleave, for a one to many
3440 * socket, is when subsequent calls to receive a message may return
3441 * parts of messages from different associations. Some implementations
3442 * may allow you to turn this value on or off. If so, when turned off,
3443 * no fragment interleave will occur (which will cause a head of line
3444 * blocking amongst multiple associations sharing the same one to many
3445 * socket). When this option is turned on, then each receive call may
3446 * come from a different association (thus the user must receive data
3447 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3448 * association each receive belongs to.
3449 *
3450 * This option takes a boolean value. A non-zero value indicates that
3451 * fragmented interleave is on. A value of zero indicates that
3452 * fragmented interleave is off.
3453 *
3454 * Note that it is important that an implementation that allows this
3455 * option to be turned on, have it off by default. Otherwise an unaware
3456 * application using the one to many model may become confused and act
3457 * incorrectly.
3458 */
3459static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3460 unsigned int optlen)
3461{
3462 if (optlen != sizeof(int))
3463 return -EINVAL;
3464
3465 sctp_sk(sk)->frag_interleave = !!*val;
3466
3467 if (!sctp_sk(sk)->frag_interleave)
3468 sctp_sk(sk)->ep->intl_enable = 0;
3469
3470 return 0;
3471}
3472
3473/*
3474 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3475 * (SCTP_PARTIAL_DELIVERY_POINT)
3476 *
3477 * This option will set or get the SCTP partial delivery point. This
3478 * point is the size of a message where the partial delivery API will be
3479 * invoked to help free up rwnd space for the peer. Setting this to a
3480 * lower value will cause partial deliveries to happen more often. The
3481 * calls argument is an integer that sets or gets the partial delivery
3482 * point. Note also that the call will fail if the user attempts to set
3483 * this value larger than the socket receive buffer size.
3484 *
3485 * Note that any single message having a length smaller than or equal to
3486 * the SCTP partial delivery point will be delivered in one single read
3487 * call as long as the user provided buffer is large enough to hold the
3488 * message.
3489 */
3490static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3491 unsigned int optlen)
3492{
3493 if (optlen != sizeof(u32))
3494 return -EINVAL;
3495
3496 /* Note: We double the receive buffer from what the user sets
3497 * it to be, also initial rwnd is based on rcvbuf/2.
3498 */
3499 if (*val > (sk->sk_rcvbuf >> 1))
3500 return -EINVAL;
3501
3502 sctp_sk(sk)->pd_point = *val;
3503
3504 return 0; /* is this the right error code? */
3505}
3506
3507/*
3508 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3509 *
3510 * This option will allow a user to change the maximum burst of packets
3511 * that can be emitted by this association. Note that the default value
3512 * is 4, and some implementations may restrict this setting so that it
3513 * can only be lowered.
3514 *
3515 * NOTE: This text doesn't seem right. Do this on a socket basis with
3516 * future associations inheriting the socket value.
3517 */
3518static int sctp_setsockopt_maxburst(struct sock *sk,
3519 struct sctp_assoc_value *params,
3520 unsigned int optlen)
3521{
3522 struct sctp_sock *sp = sctp_sk(sk);
3523 struct sctp_association *asoc;
3524 sctp_assoc_t assoc_id;
3525 u32 assoc_value;
3526
3527 if (optlen == sizeof(int)) {
3528 pr_warn_ratelimited(DEPRECATED
3529 "%s (pid %d) "
3530 "Use of int in max_burst socket option deprecated.\n"
3531 "Use struct sctp_assoc_value instead\n",
3532 current->comm, task_pid_nr(current));
3533 assoc_id = SCTP_FUTURE_ASSOC;
3534 assoc_value = *((int *)params);
3535 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3536 assoc_id = params->assoc_id;
3537 assoc_value = params->assoc_value;
3538 } else
3539 return -EINVAL;
3540
3541 asoc = sctp_id2assoc(sk, id: assoc_id);
3542 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3543 return -EINVAL;
3544
3545 if (asoc) {
3546 asoc->max_burst = assoc_value;
3547
3548 return 0;
3549 }
3550
3551 if (sctp_style(sk, TCP))
3552 assoc_id = SCTP_FUTURE_ASSOC;
3553
3554 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3555 sp->max_burst = assoc_value;
3556
3557 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3558 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3559 asoc->max_burst = assoc_value;
3560
3561 return 0;
3562}
3563
3564/*
3565 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3566 *
3567 * This set option adds a chunk type that the user is requesting to be
3568 * received only in an authenticated way. Changes to the list of chunks
3569 * will only effect future associations on the socket.
3570 */
3571static int sctp_setsockopt_auth_chunk(struct sock *sk,
3572 struct sctp_authchunk *val,
3573 unsigned int optlen)
3574{
3575 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3576
3577 if (!ep->auth_enable)
3578 return -EACCES;
3579
3580 if (optlen != sizeof(struct sctp_authchunk))
3581 return -EINVAL;
3582
3583 switch (val->sauth_chunk) {
3584 case SCTP_CID_INIT:
3585 case SCTP_CID_INIT_ACK:
3586 case SCTP_CID_SHUTDOWN_COMPLETE:
3587 case SCTP_CID_AUTH:
3588 return -EINVAL;
3589 }
3590
3591 /* add this chunk id to the endpoint */
3592 return sctp_auth_ep_add_chunkid(ep, chunk_id: val->sauth_chunk);
3593}
3594
3595/*
3596 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3597 *
3598 * This option gets or sets the list of HMAC algorithms that the local
3599 * endpoint requires the peer to use.
3600 */
3601static int sctp_setsockopt_hmac_ident(struct sock *sk,
3602 struct sctp_hmacalgo *hmacs,
3603 unsigned int optlen)
3604{
3605 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3606 u32 idents;
3607
3608 if (!ep->auth_enable)
3609 return -EACCES;
3610
3611 if (optlen < sizeof(struct sctp_hmacalgo))
3612 return -EINVAL;
3613 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3614 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3615
3616 idents = hmacs->shmac_num_idents;
3617 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3618 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3619 return -EINVAL;
3620
3621 return sctp_auth_ep_set_hmacs(ep, hmacs);
3622}
3623
3624/*
3625 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3626 *
3627 * This option will set a shared secret key which is used to build an
3628 * association shared key.
3629 */
3630static int sctp_setsockopt_auth_key(struct sock *sk,
3631 struct sctp_authkey *authkey,
3632 unsigned int optlen)
3633{
3634 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3635 struct sctp_association *asoc;
3636 int ret = -EINVAL;
3637
3638 if (optlen <= sizeof(struct sctp_authkey))
3639 return -EINVAL;
3640 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3641 * this.
3642 */
3643 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3644
3645 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3646 goto out;
3647
3648 asoc = sctp_id2assoc(sk, id: authkey->sca_assoc_id);
3649 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3650 sctp_style(sk, UDP))
3651 goto out;
3652
3653 if (asoc) {
3654 ret = sctp_auth_set_key(ep, asoc, auth_key: authkey);
3655 goto out;
3656 }
3657
3658 if (sctp_style(sk, TCP))
3659 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3660
3661 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3662 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3663 ret = sctp_auth_set_key(ep, asoc, auth_key: authkey);
3664 if (ret)
3665 goto out;
3666 }
3667
3668 ret = 0;
3669
3670 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3671 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3672 list_for_each_entry(asoc, &ep->asocs, asocs) {
3673 int res = sctp_auth_set_key(ep, asoc, auth_key: authkey);
3674
3675 if (res && !ret)
3676 ret = res;
3677 }
3678 }
3679
3680out:
3681 memzero_explicit(s: authkey, count: optlen);
3682 return ret;
3683}
3684
3685/*
3686 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3687 *
3688 * This option will get or set the active shared key to be used to build
3689 * the association shared key.
3690 */
3691static int sctp_setsockopt_active_key(struct sock *sk,
3692 struct sctp_authkeyid *val,
3693 unsigned int optlen)
3694{
3695 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3696 struct sctp_association *asoc;
3697 int ret = 0;
3698
3699 if (optlen != sizeof(struct sctp_authkeyid))
3700 return -EINVAL;
3701
3702 asoc = sctp_id2assoc(sk, id: val->scact_assoc_id);
3703 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3704 sctp_style(sk, UDP))
3705 return -EINVAL;
3706
3707 if (asoc)
3708 return sctp_auth_set_active_key(ep, asoc, key_id: val->scact_keynumber);
3709
3710 if (sctp_style(sk, TCP))
3711 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3712
3713 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3714 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3715 ret = sctp_auth_set_active_key(ep, asoc, key_id: val->scact_keynumber);
3716 if (ret)
3717 return ret;
3718 }
3719
3720 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3721 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3722 list_for_each_entry(asoc, &ep->asocs, asocs) {
3723 int res = sctp_auth_set_active_key(ep, asoc,
3724 key_id: val->scact_keynumber);
3725
3726 if (res && !ret)
3727 ret = res;
3728 }
3729 }
3730
3731 return ret;
3732}
3733
3734/*
3735 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3736 *
3737 * This set option will delete a shared secret key from use.
3738 */
3739static int sctp_setsockopt_del_key(struct sock *sk,
3740 struct sctp_authkeyid *val,
3741 unsigned int optlen)
3742{
3743 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3744 struct sctp_association *asoc;
3745 int ret = 0;
3746
3747 if (optlen != sizeof(struct sctp_authkeyid))
3748 return -EINVAL;
3749
3750 asoc = sctp_id2assoc(sk, id: val->scact_assoc_id);
3751 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3752 sctp_style(sk, UDP))
3753 return -EINVAL;
3754
3755 if (asoc)
3756 return sctp_auth_del_key_id(ep, asoc, key_id: val->scact_keynumber);
3757
3758 if (sctp_style(sk, TCP))
3759 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3760
3761 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3762 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3763 ret = sctp_auth_del_key_id(ep, asoc, key_id: val->scact_keynumber);
3764 if (ret)
3765 return ret;
3766 }
3767
3768 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3769 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3770 list_for_each_entry(asoc, &ep->asocs, asocs) {
3771 int res = sctp_auth_del_key_id(ep, asoc,
3772 key_id: val->scact_keynumber);
3773
3774 if (res && !ret)
3775 ret = res;
3776 }
3777 }
3778
3779 return ret;
3780}
3781
3782/*
3783 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3784 *
3785 * This set option will deactivate a shared secret key.
3786 */
3787static int sctp_setsockopt_deactivate_key(struct sock *sk,
3788 struct sctp_authkeyid *val,
3789 unsigned int optlen)
3790{
3791 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3792 struct sctp_association *asoc;
3793 int ret = 0;
3794
3795 if (optlen != sizeof(struct sctp_authkeyid))
3796 return -EINVAL;
3797
3798 asoc = sctp_id2assoc(sk, id: val->scact_assoc_id);
3799 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3800 sctp_style(sk, UDP))
3801 return -EINVAL;
3802
3803 if (asoc)
3804 return sctp_auth_deact_key_id(ep, asoc, key_id: val->scact_keynumber);
3805
3806 if (sctp_style(sk, TCP))
3807 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3808
3809 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3810 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3811 ret = sctp_auth_deact_key_id(ep, asoc, key_id: val->scact_keynumber);
3812 if (ret)
3813 return ret;
3814 }
3815
3816 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3817 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3818 list_for_each_entry(asoc, &ep->asocs, asocs) {
3819 int res = sctp_auth_deact_key_id(ep, asoc,
3820 key_id: val->scact_keynumber);
3821
3822 if (res && !ret)
3823 ret = res;
3824 }
3825 }
3826
3827 return ret;
3828}
3829
3830/*
3831 * 8.1.23 SCTP_AUTO_ASCONF
3832 *
3833 * This option will enable or disable the use of the automatic generation of
3834 * ASCONF chunks to add and delete addresses to an existing association. Note
3835 * that this option has two caveats namely: a) it only affects sockets that
3836 * are bound to all addresses available to the SCTP stack, and b) the system
3837 * administrator may have an overriding control that turns the ASCONF feature
3838 * off no matter what setting the socket option may have.
3839 * This option expects an integer boolean flag, where a non-zero value turns on
3840 * the option, and a zero value turns off the option.
3841 * Note. In this implementation, socket operation overrides default parameter
3842 * being set by sysctl as well as FreeBSD implementation
3843 */
3844static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3845 unsigned int optlen)
3846{
3847 struct sctp_sock *sp = sctp_sk(sk);
3848
3849 if (optlen < sizeof(int))
3850 return -EINVAL;
3851 if (!sctp_is_ep_boundall(sk) && *val)
3852 return -EINVAL;
3853 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3854 return 0;
3855
3856 spin_lock_bh(lock: &sock_net(sk)->sctp.addr_wq_lock);
3857 if (*val == 0 && sp->do_auto_asconf) {
3858 list_del(entry: &sp->auto_asconf_list);
3859 sp->do_auto_asconf = 0;
3860 } else if (*val && !sp->do_auto_asconf) {
3861 list_add_tail(new: &sp->auto_asconf_list,
3862 head: &sock_net(sk)->sctp.auto_asconf_splist);
3863 sp->do_auto_asconf = 1;
3864 }
3865 spin_unlock_bh(lock: &sock_net(sk)->sctp.addr_wq_lock);
3866 return 0;
3867}
3868
3869/*
3870 * SCTP_PEER_ADDR_THLDS
3871 *
3872 * This option allows us to alter the partially failed threshold for one or all
3873 * transports in an association. See Section 6.1 of:
3874 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3875 */
3876static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3877 struct sctp_paddrthlds_v2 *val,
3878 unsigned int optlen, bool v2)
3879{
3880 struct sctp_transport *trans;
3881 struct sctp_association *asoc;
3882 int len;
3883
3884 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3885 if (optlen < len)
3886 return -EINVAL;
3887
3888 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3889 return -EINVAL;
3890
3891 if (!sctp_is_any(sk, addr: (const union sctp_addr *)&val->spt_address)) {
3892 trans = sctp_addr_id2transport(sk, addr: &val->spt_address,
3893 id: val->spt_assoc_id);
3894 if (!trans)
3895 return -ENOENT;
3896
3897 if (val->spt_pathmaxrxt)
3898 trans->pathmaxrxt = val->spt_pathmaxrxt;
3899 if (v2)
3900 trans->ps_retrans = val->spt_pathcpthld;
3901 trans->pf_retrans = val->spt_pathpfthld;
3902
3903 return 0;
3904 }
3905
3906 asoc = sctp_id2assoc(sk, id: val->spt_assoc_id);
3907 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3908 sctp_style(sk, UDP))
3909 return -EINVAL;
3910
3911 if (asoc) {
3912 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3913 transports) {
3914 if (val->spt_pathmaxrxt)
3915 trans->pathmaxrxt = val->spt_pathmaxrxt;
3916 if (v2)
3917 trans->ps_retrans = val->spt_pathcpthld;
3918 trans->pf_retrans = val->spt_pathpfthld;
3919 }
3920
3921 if (val->spt_pathmaxrxt)
3922 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3923 if (v2)
3924 asoc->ps_retrans = val->spt_pathcpthld;
3925 asoc->pf_retrans = val->spt_pathpfthld;
3926 } else {
3927 struct sctp_sock *sp = sctp_sk(sk);
3928
3929 if (val->spt_pathmaxrxt)
3930 sp->pathmaxrxt = val->spt_pathmaxrxt;
3931 if (v2)
3932 sp->ps_retrans = val->spt_pathcpthld;
3933 sp->pf_retrans = val->spt_pathpfthld;
3934 }
3935
3936 return 0;
3937}
3938
3939static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3940 unsigned int optlen)
3941{
3942 if (optlen < sizeof(int))
3943 return -EINVAL;
3944
3945 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3946
3947 return 0;
3948}
3949
3950static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3951 unsigned int optlen)
3952{
3953 if (optlen < sizeof(int))
3954 return -EINVAL;
3955
3956 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3957
3958 return 0;
3959}
3960
3961static int sctp_setsockopt_pr_supported(struct sock *sk,
3962 struct sctp_assoc_value *params,
3963 unsigned int optlen)
3964{
3965 struct sctp_association *asoc;
3966
3967 if (optlen != sizeof(*params))
3968 return -EINVAL;
3969
3970 asoc = sctp_id2assoc(sk, id: params->assoc_id);
3971 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3972 sctp_style(sk, UDP))
3973 return -EINVAL;
3974
3975 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3976
3977 return 0;
3978}
3979
3980static int sctp_setsockopt_default_prinfo(struct sock *sk,
3981 struct sctp_default_prinfo *info,
3982 unsigned int optlen)
3983{
3984 struct sctp_sock *sp = sctp_sk(sk);
3985 struct sctp_association *asoc;
3986 int retval = -EINVAL;
3987
3988 if (optlen != sizeof(*info))
3989 goto out;
3990
3991 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3992 goto out;
3993
3994 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3995 info->pr_value = 0;
3996
3997 asoc = sctp_id2assoc(sk, id: info->pr_assoc_id);
3998 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3999 sctp_style(sk, UDP))
4000 goto out;
4001
4002 retval = 0;
4003
4004 if (asoc) {
4005 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
4006 asoc->default_timetolive = info->pr_value;
4007 goto out;
4008 }
4009
4010 if (sctp_style(sk, TCP))
4011 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4012
4013 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4014 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4015 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4016 sp->default_timetolive = info->pr_value;
4017 }
4018
4019 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4020 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4021 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4022 SCTP_PR_SET_POLICY(asoc->default_flags,
4023 info->pr_policy);
4024 asoc->default_timetolive = info->pr_value;
4025 }
4026 }
4027
4028out:
4029 return retval;
4030}
4031
4032static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4033 struct sctp_assoc_value *params,
4034 unsigned int optlen)
4035{
4036 struct sctp_association *asoc;
4037 int retval = -EINVAL;
4038
4039 if (optlen != sizeof(*params))
4040 goto out;
4041
4042 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4043 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4044 sctp_style(sk, UDP))
4045 goto out;
4046
4047 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4048
4049 retval = 0;
4050
4051out:
4052 return retval;
4053}
4054
4055static int sctp_setsockopt_enable_strreset(struct sock *sk,
4056 struct sctp_assoc_value *params,
4057 unsigned int optlen)
4058{
4059 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4060 struct sctp_association *asoc;
4061 int retval = -EINVAL;
4062
4063 if (optlen != sizeof(*params))
4064 goto out;
4065
4066 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4067 goto out;
4068
4069 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4070 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4071 sctp_style(sk, UDP))
4072 goto out;
4073
4074 retval = 0;
4075
4076 if (asoc) {
4077 asoc->strreset_enable = params->assoc_value;
4078 goto out;
4079 }
4080
4081 if (sctp_style(sk, TCP))
4082 params->assoc_id = SCTP_FUTURE_ASSOC;
4083
4084 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4085 params->assoc_id == SCTP_ALL_ASSOC)
4086 ep->strreset_enable = params->assoc_value;
4087
4088 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4089 params->assoc_id == SCTP_ALL_ASSOC)
4090 list_for_each_entry(asoc, &ep->asocs, asocs)
4091 asoc->strreset_enable = params->assoc_value;
4092
4093out:
4094 return retval;
4095}
4096
4097static int sctp_setsockopt_reset_streams(struct sock *sk,
4098 struct sctp_reset_streams *params,
4099 unsigned int optlen)
4100{
4101 struct sctp_association *asoc;
4102
4103 if (optlen < sizeof(*params))
4104 return -EINVAL;
4105 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4106 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4107 sizeof(__u16) * sizeof(*params));
4108
4109 if (params->srs_number_streams * sizeof(__u16) >
4110 optlen - sizeof(*params))
4111 return -EINVAL;
4112
4113 asoc = sctp_id2assoc(sk, id: params->srs_assoc_id);
4114 if (!asoc)
4115 return -EINVAL;
4116
4117 return sctp_send_reset_streams(asoc, params);
4118}
4119
4120static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4121 unsigned int optlen)
4122{
4123 struct sctp_association *asoc;
4124
4125 if (optlen != sizeof(*associd))
4126 return -EINVAL;
4127
4128 asoc = sctp_id2assoc(sk, id: *associd);
4129 if (!asoc)
4130 return -EINVAL;
4131
4132 return sctp_send_reset_assoc(asoc);
4133}
4134
4135static int sctp_setsockopt_add_streams(struct sock *sk,
4136 struct sctp_add_streams *params,
4137 unsigned int optlen)
4138{
4139 struct sctp_association *asoc;
4140
4141 if (optlen != sizeof(*params))
4142 return -EINVAL;
4143
4144 asoc = sctp_id2assoc(sk, id: params->sas_assoc_id);
4145 if (!asoc)
4146 return -EINVAL;
4147
4148 return sctp_send_add_streams(asoc, params);
4149}
4150
4151static int sctp_setsockopt_scheduler(struct sock *sk,
4152 struct sctp_assoc_value *params,
4153 unsigned int optlen)
4154{
4155 struct sctp_sock *sp = sctp_sk(sk);
4156 struct sctp_association *asoc;
4157 int retval = 0;
4158
4159 if (optlen < sizeof(*params))
4160 return -EINVAL;
4161
4162 if (params->assoc_value > SCTP_SS_MAX)
4163 return -EINVAL;
4164
4165 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4166 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4167 sctp_style(sk, UDP))
4168 return -EINVAL;
4169
4170 if (asoc)
4171 return sctp_sched_set_sched(asoc, sched: params->assoc_value);
4172
4173 if (sctp_style(sk, TCP))
4174 params->assoc_id = SCTP_FUTURE_ASSOC;
4175
4176 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4177 params->assoc_id == SCTP_ALL_ASSOC)
4178 sp->default_ss = params->assoc_value;
4179
4180 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4181 params->assoc_id == SCTP_ALL_ASSOC) {
4182 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4183 int ret = sctp_sched_set_sched(asoc,
4184 sched: params->assoc_value);
4185
4186 if (ret && !retval)
4187 retval = ret;
4188 }
4189 }
4190
4191 return retval;
4192}
4193
4194static int sctp_setsockopt_scheduler_value(struct sock *sk,
4195 struct sctp_stream_value *params,
4196 unsigned int optlen)
4197{
4198 struct sctp_association *asoc;
4199 int retval = -EINVAL;
4200
4201 if (optlen < sizeof(*params))
4202 goto out;
4203
4204 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4205 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4206 sctp_style(sk, UDP))
4207 goto out;
4208
4209 if (asoc) {
4210 retval = sctp_sched_set_value(asoc, sid: params->stream_id,
4211 value: params->stream_value, GFP_KERNEL);
4212 goto out;
4213 }
4214
4215 retval = 0;
4216
4217 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4218 int ret = sctp_sched_set_value(asoc, sid: params->stream_id,
4219 value: params->stream_value,
4220 GFP_KERNEL);
4221 if (ret && !retval) /* try to return the 1st error. */
4222 retval = ret;
4223 }
4224
4225out:
4226 return retval;
4227}
4228
4229static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4230 struct sctp_assoc_value *p,
4231 unsigned int optlen)
4232{
4233 struct sctp_sock *sp = sctp_sk(sk);
4234 struct sctp_association *asoc;
4235
4236 if (optlen < sizeof(*p))
4237 return -EINVAL;
4238
4239 asoc = sctp_id2assoc(sk, id: p->assoc_id);
4240 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4241 return -EINVAL;
4242
4243 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4244 return -EPERM;
4245 }
4246
4247 sp->ep->intl_enable = !!p->assoc_value;
4248 return 0;
4249}
4250
4251static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4252 unsigned int optlen)
4253{
4254 if (!sctp_style(sk, TCP))
4255 return -EOPNOTSUPP;
4256
4257 if (sctp_sk(sk)->ep->base.bind_addr.port)
4258 return -EFAULT;
4259
4260 if (optlen < sizeof(int))
4261 return -EINVAL;
4262
4263 sctp_sk(sk)->reuse = !!*val;
4264
4265 return 0;
4266}
4267
4268static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4269 struct sctp_association *asoc)
4270{
4271 struct sctp_ulpevent *event;
4272
4273 sctp_ulpevent_type_set(subscribe: &asoc->subscribe, sn_type: param->se_type, on: param->se_on);
4274
4275 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4276 if (sctp_outq_is_empty(&asoc->outqueue)) {
4277 event = sctp_ulpevent_make_sender_dry_event(asoc,
4278 GFP_USER | __GFP_NOWARN);
4279 if (!event)
4280 return -ENOMEM;
4281
4282 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4283 }
4284 }
4285
4286 return 0;
4287}
4288
4289static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4290 unsigned int optlen)
4291{
4292 struct sctp_sock *sp = sctp_sk(sk);
4293 struct sctp_association *asoc;
4294 int retval = 0;
4295
4296 if (optlen < sizeof(*param))
4297 return -EINVAL;
4298
4299 if (param->se_type < SCTP_SN_TYPE_BASE ||
4300 param->se_type > SCTP_SN_TYPE_MAX)
4301 return -EINVAL;
4302
4303 asoc = sctp_id2assoc(sk, id: param->se_assoc_id);
4304 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4305 sctp_style(sk, UDP))
4306 return -EINVAL;
4307
4308 if (asoc)
4309 return sctp_assoc_ulpevent_type_set(param, asoc);
4310
4311 if (sctp_style(sk, TCP))
4312 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4313
4314 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4315 param->se_assoc_id == SCTP_ALL_ASSOC)
4316 sctp_ulpevent_type_set(subscribe: &sp->subscribe,
4317 sn_type: param->se_type, on: param->se_on);
4318
4319 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4320 param->se_assoc_id == SCTP_ALL_ASSOC) {
4321 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4322 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4323
4324 if (ret && !retval)
4325 retval = ret;
4326 }
4327 }
4328
4329 return retval;
4330}
4331
4332static int sctp_setsockopt_asconf_supported(struct sock *sk,
4333 struct sctp_assoc_value *params,
4334 unsigned int optlen)
4335{
4336 struct sctp_association *asoc;
4337 struct sctp_endpoint *ep;
4338 int retval = -EINVAL;
4339
4340 if (optlen != sizeof(*params))
4341 goto out;
4342
4343 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4344 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4345 sctp_style(sk, UDP))
4346 goto out;
4347
4348 ep = sctp_sk(sk)->ep;
4349 ep->asconf_enable = !!params->assoc_value;
4350
4351 if (ep->asconf_enable && ep->auth_enable) {
4352 sctp_auth_ep_add_chunkid(ep, chunk_id: SCTP_CID_ASCONF);
4353 sctp_auth_ep_add_chunkid(ep, chunk_id: SCTP_CID_ASCONF_ACK);
4354 }
4355
4356 retval = 0;
4357
4358out:
4359 return retval;
4360}
4361
4362static int sctp_setsockopt_auth_supported(struct sock *sk,
4363 struct sctp_assoc_value *params,
4364 unsigned int optlen)
4365{
4366 struct sctp_association *asoc;
4367 struct sctp_endpoint *ep;
4368 int retval = -EINVAL;
4369
4370 if (optlen != sizeof(*params))
4371 goto out;
4372
4373 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4374 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4375 sctp_style(sk, UDP))
4376 goto out;
4377
4378 ep = sctp_sk(sk)->ep;
4379 if (params->assoc_value) {
4380 retval = sctp_auth_init(ep, GFP_KERNEL);
4381 if (retval)
4382 goto out;
4383 if (ep->asconf_enable) {
4384 sctp_auth_ep_add_chunkid(ep, chunk_id: SCTP_CID_ASCONF);
4385 sctp_auth_ep_add_chunkid(ep, chunk_id: SCTP_CID_ASCONF_ACK);
4386 }
4387 }
4388
4389 ep->auth_enable = !!params->assoc_value;
4390 retval = 0;
4391
4392out:
4393 return retval;
4394}
4395
4396static int sctp_setsockopt_ecn_supported(struct sock *sk,
4397 struct sctp_assoc_value *params,
4398 unsigned int optlen)
4399{
4400 struct sctp_association *asoc;
4401 int retval = -EINVAL;
4402
4403 if (optlen != sizeof(*params))
4404 goto out;
4405
4406 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4407 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4408 sctp_style(sk, UDP))
4409 goto out;
4410
4411 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4412 retval = 0;
4413
4414out:
4415 return retval;
4416}
4417
4418static int sctp_setsockopt_pf_expose(struct sock *sk,
4419 struct sctp_assoc_value *params,
4420 unsigned int optlen)
4421{
4422 struct sctp_association *asoc;
4423 int retval = -EINVAL;
4424
4425 if (optlen != sizeof(*params))
4426 goto out;
4427
4428 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4429 goto out;
4430
4431 asoc = sctp_id2assoc(sk, id: params->assoc_id);
4432 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4433 sctp_style(sk, UDP))
4434 goto out;
4435
4436 if (asoc)
4437 asoc->pf_expose = params->assoc_value;
4438 else
4439 sctp_sk(sk)->pf_expose = params->assoc_value;
4440 retval = 0;
4441
4442out:
4443 return retval;
4444}
4445
4446static int sctp_setsockopt_encap_port(struct sock *sk,
4447 struct sctp_udpencaps *encap,
4448 unsigned int optlen)
4449{
4450 struct sctp_association *asoc;
4451 struct sctp_transport *t;
4452 __be16 encap_port;
4453
4454 if (optlen != sizeof(*encap))
4455 return -EINVAL;
4456
4457 /* If an address other than INADDR_ANY is specified, and
4458 * no transport is found, then the request is invalid.
4459 */
4460 encap_port = (__force __be16)encap->sue_port;
4461 if (!sctp_is_any(sk, addr: (union sctp_addr *)&encap->sue_address)) {
4462 t = sctp_addr_id2transport(sk, addr: &encap->sue_address,
4463 id: encap->sue_assoc_id);
4464 if (!t)
4465 return -EINVAL;
4466
4467 t->encap_port = encap_port;
4468 return 0;
4469 }
4470
4471 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4472 * socket is a one to many style socket, and an association
4473 * was not found, then the id was invalid.
4474 */
4475 asoc = sctp_id2assoc(sk, id: encap->sue_assoc_id);
4476 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4477 sctp_style(sk, UDP))
4478 return -EINVAL;
4479
4480 /* If changes are for association, also apply encap_port to
4481 * each transport.
4482 */
4483 if (asoc) {
4484 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4485 transports)
4486 t->encap_port = encap_port;
4487
4488 asoc->encap_port = encap_port;
4489 return 0;
4490 }
4491
4492 sctp_sk(sk)->encap_port = encap_port;
4493 return 0;
4494}
4495
4496static int sctp_setsockopt_probe_interval(struct sock *sk,
4497 struct sctp_probeinterval *params,
4498 unsigned int optlen)
4499{
4500 struct sctp_association *asoc;
4501 struct sctp_transport *t;
4502 __u32 probe_interval;
4503
4504 if (optlen != sizeof(*params))
4505 return -EINVAL;
4506
4507 probe_interval = params->spi_interval;
4508 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4509 return -EINVAL;
4510
4511 /* If an address other than INADDR_ANY is specified, and
4512 * no transport is found, then the request is invalid.
4513 */
4514 if (!sctp_is_any(sk, addr: (union sctp_addr *)&params->spi_address)) {
4515 t = sctp_addr_id2transport(sk, addr: &params->spi_address,
4516 id: params->spi_assoc_id);
4517 if (!t)
4518 return -EINVAL;
4519
4520 t->probe_interval = msecs_to_jiffies(m: probe_interval);
4521 sctp_transport_pl_reset(t);
4522 return 0;
4523 }
4524
4525 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4526 * socket is a one to many style socket, and an association
4527 * was not found, then the id was invalid.
4528 */
4529 asoc = sctp_id2assoc(sk, id: params->spi_assoc_id);
4530 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4531 sctp_style(sk, UDP))
4532 return -EINVAL;
4533
4534 /* If changes are for association, also apply probe_interval to
4535 * each transport.
4536 */
4537 if (asoc) {
4538 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4539 t->probe_interval = msecs_to_jiffies(m: probe_interval);
4540 sctp_transport_pl_reset(t);
4541 }
4542
4543 asoc->probe_interval = msecs_to_jiffies(m: probe_interval);
4544 return 0;
4545 }
4546
4547 sctp_sk(sk)->probe_interval = probe_interval;
4548 return 0;
4549}
4550
4551/* API 6.2 setsockopt(), getsockopt()
4552 *
4553 * Applications use setsockopt() and getsockopt() to set or retrieve
4554 * socket options. Socket options are used to change the default
4555 * behavior of sockets calls. They are described in Section 7.
4556 *
4557 * The syntax is:
4558 *
4559 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4560 * int __user *optlen);
4561 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4562 * int optlen);
4563 *
4564 * sd - the socket descript.
4565 * level - set to IPPROTO_SCTP for all SCTP options.
4566 * optname - the option name.
4567 * optval - the buffer to store the value of the option.
4568 * optlen - the size of the buffer.
4569 */
4570static int sctp_setsockopt(struct sock *sk, int level, int optname,
4571 sockptr_t optval, unsigned int optlen)
4572{
4573 void *kopt = NULL;
4574 int retval = 0;
4575
4576 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4577
4578 /* I can hardly begin to describe how wrong this is. This is
4579 * so broken as to be worse than useless. The API draft
4580 * REALLY is NOT helpful here... I am not convinced that the
4581 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4582 * are at all well-founded.
4583 */
4584 if (level != SOL_SCTP) {
4585 struct sctp_af *af = sctp_sk(sk)->pf->af;
4586
4587 return af->setsockopt(sk, level, optname, optval, optlen);
4588 }
4589
4590 if (optlen > 0) {
4591 /* Trim it to the biggest size sctp sockopt may need if necessary */
4592 optlen = min_t(unsigned int, optlen,
4593 PAGE_ALIGN(USHRT_MAX +
4594 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4595 kopt = memdup_sockptr(src: optval, len: optlen);
4596 if (IS_ERR(ptr: kopt))
4597 return PTR_ERR(ptr: kopt);
4598 }
4599
4600 lock_sock(sk);
4601
4602 switch (optname) {
4603 case SCTP_SOCKOPT_BINDX_ADD:
4604 /* 'optlen' is the size of the addresses buffer. */
4605 retval = sctp_setsockopt_bindx(sk, addrs: kopt, addrs_size: optlen,
4606 SCTP_BINDX_ADD_ADDR);
4607 break;
4608
4609 case SCTP_SOCKOPT_BINDX_REM:
4610 /* 'optlen' is the size of the addresses buffer. */
4611 retval = sctp_setsockopt_bindx(sk, addrs: kopt, addrs_size: optlen,
4612 SCTP_BINDX_REM_ADDR);
4613 break;
4614
4615 case SCTP_SOCKOPT_CONNECTX_OLD:
4616 /* 'optlen' is the size of the addresses buffer. */
4617 retval = sctp_setsockopt_connectx_old(sk, kaddrs: kopt, addrs_size: optlen);
4618 break;
4619
4620 case SCTP_SOCKOPT_CONNECTX:
4621 /* 'optlen' is the size of the addresses buffer. */
4622 retval = sctp_setsockopt_connectx(sk, kaddrs: kopt, addrs_size: optlen);
4623 break;
4624
4625 case SCTP_DISABLE_FRAGMENTS:
4626 retval = sctp_setsockopt_disable_fragments(sk, val: kopt, optlen);
4627 break;
4628
4629 case SCTP_EVENTS:
4630 retval = sctp_setsockopt_events(sk, sn_type: kopt, optlen);
4631 break;
4632
4633 case SCTP_AUTOCLOSE:
4634 retval = sctp_setsockopt_autoclose(sk, optval: kopt, optlen);
4635 break;
4636
4637 case SCTP_PEER_ADDR_PARAMS:
4638 retval = sctp_setsockopt_peer_addr_params(sk, params: kopt, optlen);
4639 break;
4640
4641 case SCTP_DELAYED_SACK:
4642 retval = sctp_setsockopt_delayed_ack(sk, params: kopt, optlen);
4643 break;
4644 case SCTP_PARTIAL_DELIVERY_POINT:
4645 retval = sctp_setsockopt_partial_delivery_point(sk, val: kopt, optlen);
4646 break;
4647
4648 case SCTP_INITMSG:
4649 retval = sctp_setsockopt_initmsg(sk, sinit: kopt, optlen);
4650 break;
4651 case SCTP_DEFAULT_SEND_PARAM:
4652 retval = sctp_setsockopt_default_send_param(sk, info: kopt, optlen);
4653 break;
4654 case SCTP_DEFAULT_SNDINFO:
4655 retval = sctp_setsockopt_default_sndinfo(sk, info: kopt, optlen);
4656 break;
4657 case SCTP_PRIMARY_ADDR:
4658 retval = sctp_setsockopt_primary_addr(sk, prim: kopt, optlen);
4659 break;
4660 case SCTP_SET_PEER_PRIMARY_ADDR:
4661 retval = sctp_setsockopt_peer_primary_addr(sk, prim: kopt, optlen);
4662 break;
4663 case SCTP_NODELAY:
4664 retval = sctp_setsockopt_nodelay(sk, val: kopt, optlen);
4665 break;
4666 case SCTP_RTOINFO:
4667 retval = sctp_setsockopt_rtoinfo(sk, rtoinfo: kopt, optlen);
4668 break;
4669 case SCTP_ASSOCINFO:
4670 retval = sctp_setsockopt_associnfo(sk, assocparams: kopt, optlen);
4671 break;
4672 case SCTP_I_WANT_MAPPED_V4_ADDR:
4673 retval = sctp_setsockopt_mappedv4(sk, val: kopt, optlen);
4674 break;
4675 case SCTP_MAXSEG:
4676 retval = sctp_setsockopt_maxseg(sk, params: kopt, optlen);
4677 break;
4678 case SCTP_ADAPTATION_LAYER:
4679 retval = sctp_setsockopt_adaptation_layer(sk, adapt: kopt, optlen);
4680 break;
4681 case SCTP_CONTEXT:
4682 retval = sctp_setsockopt_context(sk, params: kopt, optlen);
4683 break;
4684 case SCTP_FRAGMENT_INTERLEAVE:
4685 retval = sctp_setsockopt_fragment_interleave(sk, val: kopt, optlen);
4686 break;
4687 case SCTP_MAX_BURST:
4688 retval = sctp_setsockopt_maxburst(sk, params: kopt, optlen);
4689 break;
4690 case SCTP_AUTH_CHUNK:
4691 retval = sctp_setsockopt_auth_chunk(sk, val: kopt, optlen);
4692 break;
4693 case SCTP_HMAC_IDENT:
4694 retval = sctp_setsockopt_hmac_ident(sk, hmacs: kopt, optlen);
4695 break;
4696 case SCTP_AUTH_KEY:
4697 retval = sctp_setsockopt_auth_key(sk, authkey: kopt, optlen);
4698 break;
4699 case SCTP_AUTH_ACTIVE_KEY:
4700 retval = sctp_setsockopt_active_key(sk, val: kopt, optlen);
4701 break;
4702 case SCTP_AUTH_DELETE_KEY:
4703 retval = sctp_setsockopt_del_key(sk, val: kopt, optlen);
4704 break;
4705 case SCTP_AUTH_DEACTIVATE_KEY:
4706 retval = sctp_setsockopt_deactivate_key(sk, val: kopt, optlen);
4707 break;
4708 case SCTP_AUTO_ASCONF:
4709 retval = sctp_setsockopt_auto_asconf(sk, val: kopt, optlen);
4710 break;
4711 case SCTP_PEER_ADDR_THLDS:
4712 retval = sctp_setsockopt_paddr_thresholds(sk, val: kopt, optlen,
4713 v2: false);
4714 break;
4715 case SCTP_PEER_ADDR_THLDS_V2:
4716 retval = sctp_setsockopt_paddr_thresholds(sk, val: kopt, optlen,
4717 v2: true);
4718 break;
4719 case SCTP_RECVRCVINFO:
4720 retval = sctp_setsockopt_recvrcvinfo(sk, val: kopt, optlen);
4721 break;
4722 case SCTP_RECVNXTINFO:
4723 retval = sctp_setsockopt_recvnxtinfo(sk, val: kopt, optlen);
4724 break;
4725 case SCTP_PR_SUPPORTED:
4726 retval = sctp_setsockopt_pr_supported(sk, params: kopt, optlen);
4727 break;
4728 case SCTP_DEFAULT_PRINFO:
4729 retval = sctp_setsockopt_default_prinfo(sk, info: kopt, optlen);
4730 break;
4731 case SCTP_RECONFIG_SUPPORTED:
4732 retval = sctp_setsockopt_reconfig_supported(sk, params: kopt, optlen);
4733 break;
4734 case SCTP_ENABLE_STREAM_RESET:
4735 retval = sctp_setsockopt_enable_strreset(sk, params: kopt, optlen);
4736 break;
4737 case SCTP_RESET_STREAMS:
4738 retval = sctp_setsockopt_reset_streams(sk, params: kopt, optlen);
4739 break;
4740 case SCTP_RESET_ASSOC:
4741 retval = sctp_setsockopt_reset_assoc(sk, associd: kopt, optlen);
4742 break;
4743 case SCTP_ADD_STREAMS:
4744 retval = sctp_setsockopt_add_streams(sk, params: kopt, optlen);
4745 break;
4746 case SCTP_STREAM_SCHEDULER:
4747 retval = sctp_setsockopt_scheduler(sk, params: kopt, optlen);
4748 break;
4749 case SCTP_STREAM_SCHEDULER_VALUE:
4750 retval = sctp_setsockopt_scheduler_value(sk, params: kopt, optlen);
4751 break;
4752 case SCTP_INTERLEAVING_SUPPORTED:
4753 retval = sctp_setsockopt_interleaving_supported(sk, p: kopt,
4754 optlen);
4755 break;
4756 case SCTP_REUSE_PORT:
4757 retval = sctp_setsockopt_reuse_port(sk, val: kopt, optlen);
4758 break;
4759 case SCTP_EVENT:
4760 retval = sctp_setsockopt_event(sk, param: kopt, optlen);
4761 break;
4762 case SCTP_ASCONF_SUPPORTED:
4763 retval = sctp_setsockopt_asconf_supported(sk, params: kopt, optlen);
4764 break;
4765 case SCTP_AUTH_SUPPORTED:
4766 retval = sctp_setsockopt_auth_supported(sk, params: kopt, optlen);
4767 break;
4768 case SCTP_ECN_SUPPORTED:
4769 retval = sctp_setsockopt_ecn_supported(sk, params: kopt, optlen);
4770 break;
4771 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4772 retval = sctp_setsockopt_pf_expose(sk, params: kopt, optlen);
4773 break;
4774 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4775 retval = sctp_setsockopt_encap_port(sk, encap: kopt, optlen);
4776 break;
4777 case SCTP_PLPMTUD_PROBE_INTERVAL:
4778 retval = sctp_setsockopt_probe_interval(sk, params: kopt, optlen);
4779 break;
4780 default:
4781 retval = -ENOPROTOOPT;
4782 break;
4783 }
4784
4785 release_sock(sk);
4786 kfree(objp: kopt);
4787 return retval;
4788}
4789
4790/* API 3.1.6 connect() - UDP Style Syntax
4791 *
4792 * An application may use the connect() call in the UDP model to initiate an
4793 * association without sending data.
4794 *
4795 * The syntax is:
4796 *
4797 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4798 *
4799 * sd: the socket descriptor to have a new association added to.
4800 *
4801 * nam: the address structure (either struct sockaddr_in or struct
4802 * sockaddr_in6 defined in RFC2553 [7]).
4803 *
4804 * len: the size of the address.
4805 */
4806static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4807 int addr_len, int flags)
4808{
4809 struct sctp_af *af;
4810 int err = -EINVAL;
4811
4812 lock_sock(sk);
4813 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4814 addr, addr_len);
4815
4816 /* Validate addr_len before calling common connect/connectx routine. */
4817 af = sctp_get_af_specific(addr->sa_family);
4818 if (af && addr_len >= af->sockaddr_len)
4819 err = __sctp_connect(sk, kaddrs: addr, addrs_size: af->sockaddr_len, flags, NULL);
4820
4821 release_sock(sk);
4822 return err;
4823}
4824
4825int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4826 int addr_len, int flags)
4827{
4828 if (addr_len < sizeof(uaddr->sa_family))
4829 return -EINVAL;
4830
4831 if (uaddr->sa_family == AF_UNSPEC)
4832 return -EOPNOTSUPP;
4833
4834 return sctp_connect(sk: sock->sk, addr: uaddr, addr_len, flags);
4835}
4836
4837/* FIXME: Write comments. */
4838static int sctp_disconnect(struct sock *sk, int flags)
4839{
4840 return -EOPNOTSUPP; /* STUB */
4841}
4842
4843/* 4.1.4 accept() - TCP Style Syntax
4844 *
4845 * Applications use accept() call to remove an established SCTP
4846 * association from the accept queue of the endpoint. A new socket
4847 * descriptor will be returned from accept() to represent the newly
4848 * formed association.
4849 */
4850static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4851{
4852 struct sctp_sock *sp;
4853 struct sctp_endpoint *ep;
4854 struct sock *newsk = NULL;
4855 struct sctp_association *asoc;
4856 long timeo;
4857 int error = 0;
4858
4859 lock_sock(sk);
4860
4861 sp = sctp_sk(sk);
4862 ep = sp->ep;
4863
4864 if (!sctp_style(sk, TCP)) {
4865 error = -EOPNOTSUPP;
4866 goto out;
4867 }
4868
4869 if (!sctp_sstate(sk, LISTENING)) {
4870 error = -EINVAL;
4871 goto out;
4872 }
4873
4874 timeo = sock_rcvtimeo(sk, noblock: flags & O_NONBLOCK);
4875
4876 error = sctp_wait_for_accept(sk, timeo);
4877 if (error)
4878 goto out;
4879
4880 /* We treat the list of associations on the endpoint as the accept
4881 * queue and pick the first association on the list.
4882 */
4883 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4884
4885 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4886 if (!newsk) {
4887 error = -ENOMEM;
4888 goto out;
4889 }
4890
4891 /* Populate the fields of the newsk from the oldsk and migrate the
4892 * asoc to the newsk.
4893 */
4894 error = sctp_sock_migrate(oldsk: sk, newsk, assoc: asoc, type: SCTP_SOCKET_TCP);
4895 if (error) {
4896 sk_common_release(sk: newsk);
4897 newsk = NULL;
4898 }
4899
4900out:
4901 release_sock(sk);
4902 *err = error;
4903 return newsk;
4904}
4905
4906/* The SCTP ioctl handler. */
4907static int sctp_ioctl(struct sock *sk, int cmd, int *karg)
4908{
4909 int rc = -ENOTCONN;
4910
4911 lock_sock(sk);
4912
4913 /*
4914 * SEQPACKET-style sockets in LISTENING state are valid, for
4915 * SCTP, so only discard TCP-style sockets in LISTENING state.
4916 */
4917 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4918 goto out;
4919
4920 switch (cmd) {
4921 case SIOCINQ: {
4922 struct sk_buff *skb;
4923 *karg = 0;
4924
4925 skb = skb_peek(list_: &sk->sk_receive_queue);
4926 if (skb != NULL) {
4927 /*
4928 * We will only return the amount of this packet since
4929 * that is all that will be read.
4930 */
4931 *karg = skb->len;
4932 }
4933 rc = 0;
4934 break;
4935 }
4936 default:
4937 rc = -ENOIOCTLCMD;
4938 break;
4939 }
4940out:
4941 release_sock(sk);
4942 return rc;
4943}
4944
4945/* This is the function which gets called during socket creation to
4946 * initialized the SCTP-specific portion of the sock.
4947 * The sock structure should already be zero-filled memory.
4948 */
4949static int sctp_init_sock(struct sock *sk)
4950{
4951 struct net *net = sock_net(sk);
4952 struct sctp_sock *sp;
4953
4954 pr_debug("%s: sk:%p\n", __func__, sk);
4955
4956 sp = sctp_sk(sk);
4957
4958 /* Initialize the SCTP per socket area. */
4959 switch (sk->sk_type) {
4960 case SOCK_SEQPACKET:
4961 sp->type = SCTP_SOCKET_UDP;
4962 break;
4963 case SOCK_STREAM:
4964 sp->type = SCTP_SOCKET_TCP;
4965 break;
4966 default:
4967 return -ESOCKTNOSUPPORT;
4968 }
4969
4970 sk->sk_gso_type = SKB_GSO_SCTP;
4971
4972 /* Initialize default send parameters. These parameters can be
4973 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4974 */
4975 sp->default_stream = 0;
4976 sp->default_ppid = 0;
4977 sp->default_flags = 0;
4978 sp->default_context = 0;
4979 sp->default_timetolive = 0;
4980
4981 sp->default_rcv_context = 0;
4982 sp->max_burst = net->sctp.max_burst;
4983
4984 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4985
4986 /* Initialize default setup parameters. These parameters
4987 * can be modified with the SCTP_INITMSG socket option or
4988 * overridden by the SCTP_INIT CMSG.
4989 */
4990 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4991 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4992 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4993 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4994
4995 /* Initialize default RTO related parameters. These parameters can
4996 * be modified for with the SCTP_RTOINFO socket option.
4997 */
4998 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4999 sp->rtoinfo.srto_max = net->sctp.rto_max;
5000 sp->rtoinfo.srto_min = net->sctp.rto_min;
5001
5002 /* Initialize default association related parameters. These parameters
5003 * can be modified with the SCTP_ASSOCINFO socket option.
5004 */
5005 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5006 sp->assocparams.sasoc_number_peer_destinations = 0;
5007 sp->assocparams.sasoc_peer_rwnd = 0;
5008 sp->assocparams.sasoc_local_rwnd = 0;
5009 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5010
5011 /* Initialize default event subscriptions. By default, all the
5012 * options are off.
5013 */
5014 sp->subscribe = 0;
5015
5016 /* Default Peer Address Parameters. These defaults can
5017 * be modified via SCTP_PEER_ADDR_PARAMS
5018 */
5019 sp->hbinterval = net->sctp.hb_interval;
5020 sp->udp_port = htons(net->sctp.udp_port);
5021 sp->encap_port = htons(net->sctp.encap_port);
5022 sp->pathmaxrxt = net->sctp.max_retrans_path;
5023 sp->pf_retrans = net->sctp.pf_retrans;
5024 sp->ps_retrans = net->sctp.ps_retrans;
5025 sp->pf_expose = net->sctp.pf_expose;
5026 sp->pathmtu = 0; /* allow default discovery */
5027 sp->sackdelay = net->sctp.sack_timeout;
5028 sp->sackfreq = 2;
5029 sp->param_flags = SPP_HB_ENABLE |
5030 SPP_PMTUD_ENABLE |
5031 SPP_SACKDELAY_ENABLE;
5032 sp->default_ss = SCTP_SS_DEFAULT;
5033
5034 /* If enabled no SCTP message fragmentation will be performed.
5035 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5036 */
5037 sp->disable_fragments = 0;
5038
5039 /* Enable Nagle algorithm by default. */
5040 sp->nodelay = 0;
5041
5042 sp->recvrcvinfo = 0;
5043 sp->recvnxtinfo = 0;
5044
5045 /* Enable by default. */
5046 sp->v4mapped = 1;
5047
5048 /* Auto-close idle associations after the configured
5049 * number of seconds. A value of 0 disables this
5050 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5051 * for UDP-style sockets only.
5052 */
5053 sp->autoclose = 0;
5054
5055 /* User specified fragmentation limit. */
5056 sp->user_frag = 0;
5057
5058 sp->adaptation_ind = 0;
5059
5060 sp->pf = sctp_get_pf_specific(family: sk->sk_family);
5061
5062 /* Control variables for partial data delivery. */
5063 atomic_set(v: &sp->pd_mode, i: 0);
5064 skb_queue_head_init(list: &sp->pd_lobby);
5065 sp->frag_interleave = 0;
5066 sp->probe_interval = net->sctp.probe_interval;
5067
5068 /* Create a per socket endpoint structure. Even if we
5069 * change the data structure relationships, this may still
5070 * be useful for storing pre-connect address information.
5071 */
5072 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5073 if (!sp->ep)
5074 return -ENOMEM;
5075
5076 sp->hmac = NULL;
5077
5078 sk->sk_destruct = sctp_destruct_sock;
5079
5080 SCTP_DBG_OBJCNT_INC(sock);
5081
5082 sk_sockets_allocated_inc(sk);
5083 sock_prot_inuse_add(net, prot: sk->sk_prot, val: 1);
5084
5085 return 0;
5086}
5087
5088/* Cleanup any SCTP per socket resources. Must be called with
5089 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5090 */
5091static void sctp_destroy_sock(struct sock *sk)
5092{
5093 struct sctp_sock *sp;
5094
5095 pr_debug("%s: sk:%p\n", __func__, sk);
5096
5097 /* Release our hold on the endpoint. */
5098 sp = sctp_sk(sk);
5099 /* This could happen during socket init, thus we bail out
5100 * early, since the rest of the below is not setup either.
5101 */
5102 if (sp->ep == NULL)
5103 return;
5104
5105 if (sp->do_auto_asconf) {
5106 sp->do_auto_asconf = 0;
5107 list_del(entry: &sp->auto_asconf_list);
5108 }
5109 sctp_endpoint_free(sp->ep);
5110 sk_sockets_allocated_dec(sk);
5111 sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: -1);
5112}
5113
5114/* Triggered when there are no references on the socket anymore */
5115static void sctp_destruct_common(struct sock *sk)
5116{
5117 struct sctp_sock *sp = sctp_sk(sk);
5118
5119 /* Free up the HMAC transform. */
5120 crypto_free_shash(tfm: sp->hmac);
5121}
5122
5123static void sctp_destruct_sock(struct sock *sk)
5124{
5125 sctp_destruct_common(sk);
5126 inet_sock_destruct(sk);
5127}
5128
5129/* API 4.1.7 shutdown() - TCP Style Syntax
5130 * int shutdown(int socket, int how);
5131 *
5132 * sd - the socket descriptor of the association to be closed.
5133 * how - Specifies the type of shutdown. The values are
5134 * as follows:
5135 * SHUT_RD
5136 * Disables further receive operations. No SCTP
5137 * protocol action is taken.
5138 * SHUT_WR
5139 * Disables further send operations, and initiates
5140 * the SCTP shutdown sequence.
5141 * SHUT_RDWR
5142 * Disables further send and receive operations
5143 * and initiates the SCTP shutdown sequence.
5144 */
5145static void sctp_shutdown(struct sock *sk, int how)
5146{
5147 struct net *net = sock_net(sk);
5148 struct sctp_endpoint *ep;
5149
5150 if (!sctp_style(sk, TCP))
5151 return;
5152
5153 ep = sctp_sk(sk)->ep;
5154 if (how & SEND_SHUTDOWN && !list_empty(head: &ep->asocs)) {
5155 struct sctp_association *asoc;
5156
5157 inet_sk_set_state(sk, state: SCTP_SS_CLOSING);
5158 asoc = list_entry(ep->asocs.next,
5159 struct sctp_association, asocs);
5160 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5161 }
5162}
5163
5164int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5165 struct sctp_info *info)
5166{
5167 struct sctp_transport *prim;
5168 struct list_head *pos;
5169 int mask;
5170
5171 memset(info, 0, sizeof(*info));
5172 if (!asoc) {
5173 struct sctp_sock *sp = sctp_sk(sk);
5174
5175 info->sctpi_s_autoclose = sp->autoclose;
5176 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5177 info->sctpi_s_pd_point = sp->pd_point;
5178 info->sctpi_s_nodelay = sp->nodelay;
5179 info->sctpi_s_disable_fragments = sp->disable_fragments;
5180 info->sctpi_s_v4mapped = sp->v4mapped;
5181 info->sctpi_s_frag_interleave = sp->frag_interleave;
5182 info->sctpi_s_type = sp->type;
5183
5184 return 0;
5185 }
5186
5187 info->sctpi_tag = asoc->c.my_vtag;
5188 info->sctpi_state = asoc->state;
5189 info->sctpi_rwnd = asoc->a_rwnd;
5190 info->sctpi_unackdata = asoc->unack_data;
5191 info->sctpi_penddata = sctp_tsnmap_pending(map: &asoc->peer.tsn_map);
5192 info->sctpi_instrms = asoc->stream.incnt;
5193 info->sctpi_outstrms = asoc->stream.outcnt;
5194 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5195 info->sctpi_inqueue++;
5196 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5197 info->sctpi_outqueue++;
5198 info->sctpi_overall_error = asoc->overall_error_count;
5199 info->sctpi_max_burst = asoc->max_burst;
5200 info->sctpi_maxseg = asoc->frag_point;
5201 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5202 info->sctpi_peer_tag = asoc->c.peer_vtag;
5203
5204 mask = asoc->peer.intl_capable << 1;
5205 mask = (mask | asoc->peer.ecn_capable) << 1;
5206 mask = (mask | asoc->peer.ipv4_address) << 1;
5207 mask = (mask | asoc->peer.ipv6_address) << 1;
5208 mask = (mask | asoc->peer.reconf_capable) << 1;
5209 mask = (mask | asoc->peer.asconf_capable) << 1;
5210 mask = (mask | asoc->peer.prsctp_capable) << 1;
5211 mask = (mask | asoc->peer.auth_capable);
5212 info->sctpi_peer_capable = mask;
5213 mask = asoc->peer.sack_needed << 1;
5214 mask = (mask | asoc->peer.sack_generation) << 1;
5215 mask = (mask | asoc->peer.zero_window_announced);
5216 info->sctpi_peer_sack = mask;
5217
5218 info->sctpi_isacks = asoc->stats.isacks;
5219 info->sctpi_osacks = asoc->stats.osacks;
5220 info->sctpi_opackets = asoc->stats.opackets;
5221 info->sctpi_ipackets = asoc->stats.ipackets;
5222 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5223 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5224 info->sctpi_idupchunks = asoc->stats.idupchunks;
5225 info->sctpi_gapcnt = asoc->stats.gapcnt;
5226 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5227 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5228 info->sctpi_oodchunks = asoc->stats.oodchunks;
5229 info->sctpi_iodchunks = asoc->stats.iodchunks;
5230 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5231 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5232
5233 prim = asoc->peer.primary_path;
5234 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5235 info->sctpi_p_state = prim->state;
5236 info->sctpi_p_cwnd = prim->cwnd;
5237 info->sctpi_p_srtt = prim->srtt;
5238 info->sctpi_p_rto = jiffies_to_msecs(j: prim->rto);
5239 info->sctpi_p_hbinterval = prim->hbinterval;
5240 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5241 info->sctpi_p_sackdelay = jiffies_to_msecs(j: prim->sackdelay);
5242 info->sctpi_p_ssthresh = prim->ssthresh;
5243 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5244 info->sctpi_p_flight_size = prim->flight_size;
5245 info->sctpi_p_error = prim->error_count;
5246
5247 return 0;
5248}
5249EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5250
5251/* use callback to avoid exporting the core structure */
5252void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5253{
5254 rhltable_walk_enter(hlt: &sctp_transport_hashtable, iter);
5255
5256 rhashtable_walk_start(iter);
5257}
5258
5259void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5260{
5261 rhashtable_walk_stop(iter);
5262 rhashtable_walk_exit(iter);
5263}
5264
5265struct sctp_transport *sctp_transport_get_next(struct net *net,
5266 struct rhashtable_iter *iter)
5267{
5268 struct sctp_transport *t;
5269
5270 t = rhashtable_walk_next(iter);
5271 for (; t; t = rhashtable_walk_next(iter)) {
5272 if (IS_ERR(ptr: t)) {
5273 if (PTR_ERR(ptr: t) == -EAGAIN)
5274 continue;
5275 break;
5276 }
5277
5278 if (!sctp_transport_hold(t))
5279 continue;
5280
5281 if (net_eq(net1: t->asoc->base.net, net2: net) &&
5282 t->asoc->peer.primary_path == t)
5283 break;
5284
5285 sctp_transport_put(t);
5286 }
5287
5288 return t;
5289}
5290
5291struct sctp_transport *sctp_transport_get_idx(struct net *net,
5292 struct rhashtable_iter *iter,
5293 int pos)
5294{
5295 struct sctp_transport *t;
5296
5297 if (!pos)
5298 return SEQ_START_TOKEN;
5299
5300 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(ptr: t)) {
5301 if (!--pos)
5302 break;
5303 sctp_transport_put(t);
5304 }
5305
5306 return t;
5307}
5308
5309int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5310 void *p) {
5311 int err = 0;
5312 int hash = 0;
5313 struct sctp_endpoint *ep;
5314 struct sctp_hashbucket *head;
5315
5316 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5317 hash++, head++) {
5318 read_lock_bh(&head->lock);
5319 sctp_for_each_hentry(ep, &head->chain) {
5320 err = cb(ep, p);
5321 if (err)
5322 break;
5323 }
5324 read_unlock_bh(&head->lock);
5325 }
5326
5327 return err;
5328}
5329EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5330
5331int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5332 const union sctp_addr *laddr,
5333 const union sctp_addr *paddr, void *p, int dif)
5334{
5335 struct sctp_transport *transport;
5336 struct sctp_endpoint *ep;
5337 int err = -ENOENT;
5338
5339 rcu_read_lock();
5340 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, sdif: dif);
5341 if (!transport) {
5342 rcu_read_unlock();
5343 return err;
5344 }
5345 ep = transport->asoc->ep;
5346 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5347 sctp_transport_put(transport);
5348 rcu_read_unlock();
5349 return err;
5350 }
5351 rcu_read_unlock();
5352
5353 err = cb(ep, transport, p);
5354 sctp_endpoint_put(ep);
5355 sctp_transport_put(transport);
5356 return err;
5357}
5358EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5359
5360int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5361 struct net *net, int *pos, void *p)
5362{
5363 struct rhashtable_iter hti;
5364 struct sctp_transport *tsp;
5365 struct sctp_endpoint *ep;
5366 int ret;
5367
5368again:
5369 ret = 0;
5370 sctp_transport_walk_start(iter: &hti);
5371
5372 tsp = sctp_transport_get_idx(net, iter: &hti, pos: *pos + 1);
5373 for (; !IS_ERR_OR_NULL(ptr: tsp); tsp = sctp_transport_get_next(net, iter: &hti)) {
5374 ep = tsp->asoc->ep;
5375 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5376 ret = cb(ep, tsp, p);
5377 if (ret)
5378 break;
5379 sctp_endpoint_put(ep);
5380 }
5381 (*pos)++;
5382 sctp_transport_put(tsp);
5383 }
5384 sctp_transport_walk_stop(iter: &hti);
5385
5386 if (ret) {
5387 if (cb_done && !cb_done(ep, tsp, p)) {
5388 (*pos)++;
5389 sctp_endpoint_put(ep);
5390 sctp_transport_put(tsp);
5391 goto again;
5392 }
5393 sctp_endpoint_put(ep);
5394 sctp_transport_put(tsp);
5395 }
5396
5397 return ret;
5398}
5399EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5400
5401/* 7.2.1 Association Status (SCTP_STATUS)
5402
5403 * Applications can retrieve current status information about an
5404 * association, including association state, peer receiver window size,
5405 * number of unacked data chunks, and number of data chunks pending
5406 * receipt. This information is read-only.
5407 */
5408static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5409 char __user *optval,
5410 int __user *optlen)
5411{
5412 struct sctp_status status;
5413 struct sctp_association *asoc = NULL;
5414 struct sctp_transport *transport;
5415 sctp_assoc_t associd;
5416 int retval = 0;
5417
5418 if (len < sizeof(status)) {
5419 retval = -EINVAL;
5420 goto out;
5421 }
5422
5423 len = sizeof(status);
5424 if (copy_from_user(to: &status, from: optval, n: len)) {
5425 retval = -EFAULT;
5426 goto out;
5427 }
5428
5429 associd = status.sstat_assoc_id;
5430 asoc = sctp_id2assoc(sk, id: associd);
5431 if (!asoc) {
5432 retval = -EINVAL;
5433 goto out;
5434 }
5435
5436 transport = asoc->peer.primary_path;
5437
5438 status.sstat_assoc_id = sctp_assoc2id(asoc);
5439 status.sstat_state = sctp_assoc_to_state(asoc);
5440 status.sstat_rwnd = asoc->peer.rwnd;
5441 status.sstat_unackdata = asoc->unack_data;
5442
5443 status.sstat_penddata = sctp_tsnmap_pending(map: &asoc->peer.tsn_map);
5444 status.sstat_instrms = asoc->stream.incnt;
5445 status.sstat_outstrms = asoc->stream.outcnt;
5446 status.sstat_fragmentation_point = asoc->frag_point;
5447 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(asoc: transport->asoc);
5448 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5449 transport->af_specific->sockaddr_len);
5450 /* Map ipv4 address into v4-mapped-on-v6 address. */
5451 sctp_get_pf_specific(family: sk->sk_family)->addr_to_user(sctp_sk(sk),
5452 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5453 status.sstat_primary.spinfo_state = transport->state;
5454 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5455 status.sstat_primary.spinfo_srtt = transport->srtt;
5456 status.sstat_primary.spinfo_rto = jiffies_to_msecs(j: transport->rto);
5457 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5458
5459 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5460 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5461
5462 if (put_user(len, optlen)) {
5463 retval = -EFAULT;
5464 goto out;
5465 }
5466
5467 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5468 __func__, len, status.sstat_state, status.sstat_rwnd,
5469 status.sstat_assoc_id);
5470
5471 if (copy_to_user(to: optval, from: &status, n: len)) {
5472 retval = -EFAULT;
5473 goto out;
5474 }
5475
5476out:
5477 return retval;
5478}
5479
5480
5481/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5482 *
5483 * Applications can retrieve information about a specific peer address
5484 * of an association, including its reachability state, congestion
5485 * window, and retransmission timer values. This information is
5486 * read-only.
5487 */
5488static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5489 char __user *optval,
5490 int __user *optlen)
5491{
5492 struct sctp_paddrinfo pinfo;
5493 struct sctp_transport *transport;
5494 int retval = 0;
5495
5496 if (len < sizeof(pinfo)) {
5497 retval = -EINVAL;
5498 goto out;
5499 }
5500
5501 len = sizeof(pinfo);
5502 if (copy_from_user(to: &pinfo, from: optval, n: len)) {
5503 retval = -EFAULT;
5504 goto out;
5505 }
5506
5507 transport = sctp_addr_id2transport(sk, addr: &pinfo.spinfo_address,
5508 id: pinfo.spinfo_assoc_id);
5509 if (!transport) {
5510 retval = -EINVAL;
5511 goto out;
5512 }
5513
5514 if (transport->state == SCTP_PF &&
5515 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5516 retval = -EACCES;
5517 goto out;
5518 }
5519
5520 pinfo.spinfo_assoc_id = sctp_assoc2id(asoc: transport->asoc);
5521 pinfo.spinfo_state = transport->state;
5522 pinfo.spinfo_cwnd = transport->cwnd;
5523 pinfo.spinfo_srtt = transport->srtt;
5524 pinfo.spinfo_rto = jiffies_to_msecs(j: transport->rto);
5525 pinfo.spinfo_mtu = transport->pathmtu;
5526
5527 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5528 pinfo.spinfo_state = SCTP_ACTIVE;
5529
5530 if (put_user(len, optlen)) {
5531 retval = -EFAULT;
5532 goto out;
5533 }
5534
5535 if (copy_to_user(to: optval, from: &pinfo, n: len)) {
5536 retval = -EFAULT;
5537 goto out;
5538 }
5539
5540out:
5541 return retval;
5542}
5543
5544/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5545 *
5546 * This option is a on/off flag. If enabled no SCTP message
5547 * fragmentation will be performed. Instead if a message being sent
5548 * exceeds the current PMTU size, the message will NOT be sent and
5549 * instead a error will be indicated to the user.
5550 */
5551static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5552 char __user *optval, int __user *optlen)
5553{
5554 int val;
5555
5556 if (len < sizeof(int))
5557 return -EINVAL;
5558
5559 len = sizeof(int);
5560 val = (sctp_sk(sk)->disable_fragments == 1);
5561 if (put_user(len, optlen))
5562 return -EFAULT;
5563 if (copy_to_user(to: optval, from: &val, n: len))
5564 return -EFAULT;
5565 return 0;
5566}
5567
5568/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5569 *
5570 * This socket option is used to specify various notifications and
5571 * ancillary data the user wishes to receive.
5572 */
5573static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5574 int __user *optlen)
5575{
5576 struct sctp_event_subscribe subscribe;
5577 __u8 *sn_type = (__u8 *)&subscribe;
5578 int i;
5579
5580 if (len == 0)
5581 return -EINVAL;
5582 if (len > sizeof(struct sctp_event_subscribe))
5583 len = sizeof(struct sctp_event_subscribe);
5584 if (put_user(len, optlen))
5585 return -EFAULT;
5586
5587 for (i = 0; i < len; i++)
5588 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5589 sn_type: SCTP_SN_TYPE_BASE + i);
5590
5591 if (copy_to_user(to: optval, from: &subscribe, n: len))
5592 return -EFAULT;
5593
5594 return 0;
5595}
5596
5597/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5598 *
5599 * This socket option is applicable to the UDP-style socket only. When
5600 * set it will cause associations that are idle for more than the
5601 * specified number of seconds to automatically close. An association
5602 * being idle is defined an association that has NOT sent or received
5603 * user data. The special value of '0' indicates that no automatic
5604 * close of any associations should be performed. The option expects an
5605 * integer defining the number of seconds of idle time before an
5606 * association is closed.
5607 */
5608static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5609{
5610 /* Applicable to UDP-style socket only */
5611 if (sctp_style(sk, TCP))
5612 return -EOPNOTSUPP;
5613 if (len < sizeof(int))
5614 return -EINVAL;
5615 len = sizeof(int);
5616 if (put_user(len, optlen))
5617 return -EFAULT;
5618 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5619 return -EFAULT;
5620 return 0;
5621}
5622
5623/* Helper routine to branch off an association to a new socket. */
5624int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5625{
5626 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5627 struct sctp_sock *sp = sctp_sk(sk);
5628 struct socket *sock;
5629 int err = 0;
5630
5631 /* Do not peel off from one netns to another one. */
5632 if (!net_eq(current->nsproxy->net_ns, net2: sock_net(sk)))
5633 return -EINVAL;
5634
5635 if (!asoc)
5636 return -EINVAL;
5637
5638 /* An association cannot be branched off from an already peeled-off
5639 * socket, nor is this supported for tcp style sockets.
5640 */
5641 if (!sctp_style(sk, UDP))
5642 return -EINVAL;
5643
5644 /* Create a new socket. */
5645 err = sock_create(family: sk->sk_family, type: SOCK_SEQPACKET, IPPROTO_SCTP, res: &sock);
5646 if (err < 0)
5647 return err;
5648
5649 sctp_copy_sock(newsk: sock->sk, sk, asoc);
5650
5651 /* Make peeled-off sockets more like 1-1 accepted sockets.
5652 * Set the daddr and initialize id to something more random and also
5653 * copy over any ip options.
5654 */
5655 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5656 sp->pf->copy_ip_options(sk, sock->sk);
5657
5658 /* Populate the fields of the newsk from the oldsk and migrate the
5659 * asoc to the newsk.
5660 */
5661 err = sctp_sock_migrate(oldsk: sk, newsk: sock->sk, assoc: asoc,
5662 type: SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5663 if (err) {
5664 sock_release(sock);
5665 sock = NULL;
5666 }
5667
5668 *sockp = sock;
5669
5670 return err;
5671}
5672EXPORT_SYMBOL(sctp_do_peeloff);
5673
5674static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5675 struct file **newfile, unsigned flags)
5676{
5677 struct socket *newsock;
5678 int retval;
5679
5680 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5681 if (retval < 0)
5682 goto out;
5683
5684 /* Map the socket to an unused fd that can be returned to the user. */
5685 retval = get_unused_fd_flags(flags: flags & SOCK_CLOEXEC);
5686 if (retval < 0) {
5687 sock_release(sock: newsock);
5688 goto out;
5689 }
5690
5691 *newfile = sock_alloc_file(sock: newsock, flags: 0, NULL);
5692 if (IS_ERR(ptr: *newfile)) {
5693 put_unused_fd(fd: retval);
5694 retval = PTR_ERR(ptr: *newfile);
5695 *newfile = NULL;
5696 return retval;
5697 }
5698
5699 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5700 retval);
5701
5702 peeloff->sd = retval;
5703
5704 if (flags & SOCK_NONBLOCK)
5705 (*newfile)->f_flags |= O_NONBLOCK;
5706out:
5707 return retval;
5708}
5709
5710static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5711{
5712 sctp_peeloff_arg_t peeloff;
5713 struct file *newfile = NULL;
5714 int retval = 0;
5715
5716 if (len < sizeof(sctp_peeloff_arg_t))
5717 return -EINVAL;
5718 len = sizeof(sctp_peeloff_arg_t);
5719 if (copy_from_user(to: &peeloff, from: optval, n: len))
5720 return -EFAULT;
5721
5722 retval = sctp_getsockopt_peeloff_common(sk, peeloff: &peeloff, newfile: &newfile, flags: 0);
5723 if (retval < 0)
5724 goto out;
5725
5726 /* Return the fd mapped to the new socket. */
5727 if (put_user(len, optlen)) {
5728 fput(newfile);
5729 put_unused_fd(fd: retval);
5730 return -EFAULT;
5731 }
5732
5733 if (copy_to_user(to: optval, from: &peeloff, n: len)) {
5734 fput(newfile);
5735 put_unused_fd(fd: retval);
5736 return -EFAULT;
5737 }
5738 fd_install(fd: retval, file: newfile);
5739out:
5740 return retval;
5741}
5742
5743static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5744 char __user *optval, int __user *optlen)
5745{
5746 sctp_peeloff_flags_arg_t peeloff;
5747 struct file *newfile = NULL;
5748 int retval = 0;
5749
5750 if (len < sizeof(sctp_peeloff_flags_arg_t))
5751 return -EINVAL;
5752 len = sizeof(sctp_peeloff_flags_arg_t);
5753 if (copy_from_user(to: &peeloff, from: optval, n: len))
5754 return -EFAULT;
5755
5756 retval = sctp_getsockopt_peeloff_common(sk, peeloff: &peeloff.p_arg,
5757 newfile: &newfile, flags: peeloff.flags);
5758 if (retval < 0)
5759 goto out;
5760
5761 /* Return the fd mapped to the new socket. */
5762 if (put_user(len, optlen)) {
5763 fput(newfile);
5764 put_unused_fd(fd: retval);
5765 return -EFAULT;
5766 }
5767
5768 if (copy_to_user(to: optval, from: &peeloff, n: len)) {
5769 fput(newfile);
5770 put_unused_fd(fd: retval);
5771 return -EFAULT;
5772 }
5773 fd_install(fd: retval, file: newfile);
5774out:
5775 return retval;
5776}
5777
5778/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5779 *
5780 * Applications can enable or disable heartbeats for any peer address of
5781 * an association, modify an address's heartbeat interval, force a
5782 * heartbeat to be sent immediately, and adjust the address's maximum
5783 * number of retransmissions sent before an address is considered
5784 * unreachable. The following structure is used to access and modify an
5785 * address's parameters:
5786 *
5787 * struct sctp_paddrparams {
5788 * sctp_assoc_t spp_assoc_id;
5789 * struct sockaddr_storage spp_address;
5790 * uint32_t spp_hbinterval;
5791 * uint16_t spp_pathmaxrxt;
5792 * uint32_t spp_pathmtu;
5793 * uint32_t spp_sackdelay;
5794 * uint32_t spp_flags;
5795 * };
5796 *
5797 * spp_assoc_id - (one-to-many style socket) This is filled in the
5798 * application, and identifies the association for
5799 * this query.
5800 * spp_address - This specifies which address is of interest.
5801 * spp_hbinterval - This contains the value of the heartbeat interval,
5802 * in milliseconds. If a value of zero
5803 * is present in this field then no changes are to
5804 * be made to this parameter.
5805 * spp_pathmaxrxt - This contains the maximum number of
5806 * retransmissions before this address shall be
5807 * considered unreachable. If a value of zero
5808 * is present in this field then no changes are to
5809 * be made to this parameter.
5810 * spp_pathmtu - When Path MTU discovery is disabled the value
5811 * specified here will be the "fixed" path mtu.
5812 * Note that if the spp_address field is empty
5813 * then all associations on this address will
5814 * have this fixed path mtu set upon them.
5815 *
5816 * spp_sackdelay - When delayed sack is enabled, this value specifies
5817 * the number of milliseconds that sacks will be delayed
5818 * for. This value will apply to all addresses of an
5819 * association if the spp_address field is empty. Note
5820 * also, that if delayed sack is enabled and this
5821 * value is set to 0, no change is made to the last
5822 * recorded delayed sack timer value.
5823 *
5824 * spp_flags - These flags are used to control various features
5825 * on an association. The flag field may contain
5826 * zero or more of the following options.
5827 *
5828 * SPP_HB_ENABLE - Enable heartbeats on the
5829 * specified address. Note that if the address
5830 * field is empty all addresses for the association
5831 * have heartbeats enabled upon them.
5832 *
5833 * SPP_HB_DISABLE - Disable heartbeats on the
5834 * speicifed address. Note that if the address
5835 * field is empty all addresses for the association
5836 * will have their heartbeats disabled. Note also
5837 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5838 * mutually exclusive, only one of these two should
5839 * be specified. Enabling both fields will have
5840 * undetermined results.
5841 *
5842 * SPP_HB_DEMAND - Request a user initiated heartbeat
5843 * to be made immediately.
5844 *
5845 * SPP_PMTUD_ENABLE - This field will enable PMTU
5846 * discovery upon the specified address. Note that
5847 * if the address feild is empty then all addresses
5848 * on the association are effected.
5849 *
5850 * SPP_PMTUD_DISABLE - This field will disable PMTU
5851 * discovery upon the specified address. Note that
5852 * if the address feild is empty then all addresses
5853 * on the association are effected. Not also that
5854 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5855 * exclusive. Enabling both will have undetermined
5856 * results.
5857 *
5858 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5859 * on delayed sack. The time specified in spp_sackdelay
5860 * is used to specify the sack delay for this address. Note
5861 * that if spp_address is empty then all addresses will
5862 * enable delayed sack and take on the sack delay
5863 * value specified in spp_sackdelay.
5864 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5865 * off delayed sack. If the spp_address field is blank then
5866 * delayed sack is disabled for the entire association. Note
5867 * also that this field is mutually exclusive to
5868 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5869 * results.
5870 *
5871 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5872 * setting of the IPV6 flow label value. The value is
5873 * contained in the spp_ipv6_flowlabel field.
5874 * Upon retrieval, this flag will be set to indicate that
5875 * the spp_ipv6_flowlabel field has a valid value returned.
5876 * If a specific destination address is set (in the
5877 * spp_address field), then the value returned is that of
5878 * the address. If just an association is specified (and
5879 * no address), then the association's default flow label
5880 * is returned. If neither an association nor a destination
5881 * is specified, then the socket's default flow label is
5882 * returned. For non-IPv6 sockets, this flag will be left
5883 * cleared.
5884 *
5885 * SPP_DSCP: Setting this flag enables the setting of the
5886 * Differentiated Services Code Point (DSCP) value
5887 * associated with either the association or a specific
5888 * address. The value is obtained in the spp_dscp field.
5889 * Upon retrieval, this flag will be set to indicate that
5890 * the spp_dscp field has a valid value returned. If a
5891 * specific destination address is set when called (in the
5892 * spp_address field), then that specific destination
5893 * address's DSCP value is returned. If just an association
5894 * is specified, then the association's default DSCP is
5895 * returned. If neither an association nor a destination is
5896 * specified, then the socket's default DSCP is returned.
5897 *
5898 * spp_ipv6_flowlabel
5899 * - This field is used in conjunction with the
5900 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5901 * The 20 least significant bits are used for the flow
5902 * label. This setting has precedence over any IPv6-layer
5903 * setting.
5904 *
5905 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5906 * and contains the DSCP. The 6 most significant bits are
5907 * used for the DSCP. This setting has precedence over any
5908 * IPv4- or IPv6- layer setting.
5909 */
5910static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5911 char __user *optval, int __user *optlen)
5912{
5913 struct sctp_paddrparams params;
5914 struct sctp_transport *trans = NULL;
5915 struct sctp_association *asoc = NULL;
5916 struct sctp_sock *sp = sctp_sk(sk);
5917
5918 if (len >= sizeof(params))
5919 len = sizeof(params);
5920 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5921 spp_ipv6_flowlabel), 4))
5922 len = ALIGN(offsetof(struct sctp_paddrparams,
5923 spp_ipv6_flowlabel), 4);
5924 else
5925 return -EINVAL;
5926
5927 if (copy_from_user(to: &params, from: optval, n: len))
5928 return -EFAULT;
5929
5930 /* If an address other than INADDR_ANY is specified, and
5931 * no transport is found, then the request is invalid.
5932 */
5933 if (!sctp_is_any(sk, addr: (union sctp_addr *)&params.spp_address)) {
5934 trans = sctp_addr_id2transport(sk, addr: &params.spp_address,
5935 id: params.spp_assoc_id);
5936 if (!trans) {
5937 pr_debug("%s: failed no transport\n", __func__);
5938 return -EINVAL;
5939 }
5940 }
5941
5942 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5943 * socket is a one to many style socket, and an association
5944 * was not found, then the id was invalid.
5945 */
5946 asoc = sctp_id2assoc(sk, id: params.spp_assoc_id);
5947 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5948 sctp_style(sk, UDP)) {
5949 pr_debug("%s: failed no association\n", __func__);
5950 return -EINVAL;
5951 }
5952
5953 if (trans) {
5954 /* Fetch transport values. */
5955 params.spp_hbinterval = jiffies_to_msecs(j: trans->hbinterval);
5956 params.spp_pathmtu = trans->pathmtu;
5957 params.spp_pathmaxrxt = trans->pathmaxrxt;
5958 params.spp_sackdelay = jiffies_to_msecs(j: trans->sackdelay);
5959
5960 /*draft-11 doesn't say what to return in spp_flags*/
5961 params.spp_flags = trans->param_flags;
5962 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5963 params.spp_ipv6_flowlabel = trans->flowlabel &
5964 SCTP_FLOWLABEL_VAL_MASK;
5965 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5966 }
5967 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5968 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5969 params.spp_flags |= SPP_DSCP;
5970 }
5971 } else if (asoc) {
5972 /* Fetch association values. */
5973 params.spp_hbinterval = jiffies_to_msecs(j: asoc->hbinterval);
5974 params.spp_pathmtu = asoc->pathmtu;
5975 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5976 params.spp_sackdelay = jiffies_to_msecs(j: asoc->sackdelay);
5977
5978 /*draft-11 doesn't say what to return in spp_flags*/
5979 params.spp_flags = asoc->param_flags;
5980 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5981 params.spp_ipv6_flowlabel = asoc->flowlabel &
5982 SCTP_FLOWLABEL_VAL_MASK;
5983 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5984 }
5985 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5986 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5987 params.spp_flags |= SPP_DSCP;
5988 }
5989 } else {
5990 /* Fetch socket values. */
5991 params.spp_hbinterval = sp->hbinterval;
5992 params.spp_pathmtu = sp->pathmtu;
5993 params.spp_sackdelay = sp->sackdelay;
5994 params.spp_pathmaxrxt = sp->pathmaxrxt;
5995
5996 /*draft-11 doesn't say what to return in spp_flags*/
5997 params.spp_flags = sp->param_flags;
5998 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5999 params.spp_ipv6_flowlabel = sp->flowlabel &
6000 SCTP_FLOWLABEL_VAL_MASK;
6001 params.spp_flags |= SPP_IPV6_FLOWLABEL;
6002 }
6003 if (sp->dscp & SCTP_DSCP_SET_MASK) {
6004 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
6005 params.spp_flags |= SPP_DSCP;
6006 }
6007 }
6008
6009 if (copy_to_user(to: optval, from: &params, n: len))
6010 return -EFAULT;
6011
6012 if (put_user(len, optlen))
6013 return -EFAULT;
6014
6015 return 0;
6016}
6017
6018/*
6019 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6020 *
6021 * This option will effect the way delayed acks are performed. This
6022 * option allows you to get or set the delayed ack time, in
6023 * milliseconds. It also allows changing the delayed ack frequency.
6024 * Changing the frequency to 1 disables the delayed sack algorithm. If
6025 * the assoc_id is 0, then this sets or gets the endpoints default
6026 * values. If the assoc_id field is non-zero, then the set or get
6027 * effects the specified association for the one to many model (the
6028 * assoc_id field is ignored by the one to one model). Note that if
6029 * sack_delay or sack_freq are 0 when setting this option, then the
6030 * current values will remain unchanged.
6031 *
6032 * struct sctp_sack_info {
6033 * sctp_assoc_t sack_assoc_id;
6034 * uint32_t sack_delay;
6035 * uint32_t sack_freq;
6036 * };
6037 *
6038 * sack_assoc_id - This parameter, indicates which association the user
6039 * is performing an action upon. Note that if this field's value is
6040 * zero then the endpoints default value is changed (effecting future
6041 * associations only).
6042 *
6043 * sack_delay - This parameter contains the number of milliseconds that
6044 * the user is requesting the delayed ACK timer be set to. Note that
6045 * this value is defined in the standard to be between 200 and 500
6046 * milliseconds.
6047 *
6048 * sack_freq - This parameter contains the number of packets that must
6049 * be received before a sack is sent without waiting for the delay
6050 * timer to expire. The default value for this is 2, setting this
6051 * value to 1 will disable the delayed sack algorithm.
6052 */
6053static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6054 char __user *optval,
6055 int __user *optlen)
6056{
6057 struct sctp_sack_info params;
6058 struct sctp_association *asoc = NULL;
6059 struct sctp_sock *sp = sctp_sk(sk);
6060
6061 if (len >= sizeof(struct sctp_sack_info)) {
6062 len = sizeof(struct sctp_sack_info);
6063
6064 if (copy_from_user(to: &params, from: optval, n: len))
6065 return -EFAULT;
6066 } else if (len == sizeof(struct sctp_assoc_value)) {
6067 pr_warn_ratelimited(DEPRECATED
6068 "%s (pid %d) "
6069 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6070 "Use struct sctp_sack_info instead\n",
6071 current->comm, task_pid_nr(current));
6072 if (copy_from_user(to: &params, from: optval, n: len))
6073 return -EFAULT;
6074 } else
6075 return -EINVAL;
6076
6077 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6078 * socket is a one to many style socket, and an association
6079 * was not found, then the id was invalid.
6080 */
6081 asoc = sctp_id2assoc(sk, id: params.sack_assoc_id);
6082 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6083 sctp_style(sk, UDP))
6084 return -EINVAL;
6085
6086 if (asoc) {
6087 /* Fetch association values. */
6088 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6089 params.sack_delay = jiffies_to_msecs(j: asoc->sackdelay);
6090 params.sack_freq = asoc->sackfreq;
6091
6092 } else {
6093 params.sack_delay = 0;
6094 params.sack_freq = 1;
6095 }
6096 } else {
6097 /* Fetch socket values. */
6098 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6099 params.sack_delay = sp->sackdelay;
6100 params.sack_freq = sp->sackfreq;
6101 } else {
6102 params.sack_delay = 0;
6103 params.sack_freq = 1;
6104 }
6105 }
6106
6107 if (copy_to_user(to: optval, from: &params, n: len))
6108 return -EFAULT;
6109
6110 if (put_user(len, optlen))
6111 return -EFAULT;
6112
6113 return 0;
6114}
6115
6116/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6117 *
6118 * Applications can specify protocol parameters for the default association
6119 * initialization. The option name argument to setsockopt() and getsockopt()
6120 * is SCTP_INITMSG.
6121 *
6122 * Setting initialization parameters is effective only on an unconnected
6123 * socket (for UDP-style sockets only future associations are effected
6124 * by the change). With TCP-style sockets, this option is inherited by
6125 * sockets derived from a listener socket.
6126 */
6127static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6128{
6129 if (len < sizeof(struct sctp_initmsg))
6130 return -EINVAL;
6131 len = sizeof(struct sctp_initmsg);
6132 if (put_user(len, optlen))
6133 return -EFAULT;
6134 if (copy_to_user(to: optval, from: &sctp_sk(sk)->initmsg, n: len))
6135 return -EFAULT;
6136 return 0;
6137}
6138
6139
6140static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6141 char __user *optval, int __user *optlen)
6142{
6143 struct sctp_association *asoc;
6144 int cnt = 0;
6145 struct sctp_getaddrs getaddrs;
6146 struct sctp_transport *from;
6147 void __user *to;
6148 union sctp_addr temp;
6149 struct sctp_sock *sp = sctp_sk(sk);
6150 int addrlen;
6151 size_t space_left;
6152 int bytes_copied;
6153
6154 if (len < sizeof(struct sctp_getaddrs))
6155 return -EINVAL;
6156
6157 if (copy_from_user(to: &getaddrs, from: optval, n: sizeof(struct sctp_getaddrs)))
6158 return -EFAULT;
6159
6160 /* For UDP-style sockets, id specifies the association to query. */
6161 asoc = sctp_id2assoc(sk, id: getaddrs.assoc_id);
6162 if (!asoc)
6163 return -EINVAL;
6164
6165 to = optval + offsetof(struct sctp_getaddrs, addrs);
6166 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6167
6168 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6169 transports) {
6170 memcpy(&temp, &from->ipaddr, sizeof(temp));
6171 addrlen = sctp_get_pf_specific(family: sk->sk_family)
6172 ->addr_to_user(sp, &temp);
6173 if (space_left < addrlen)
6174 return -ENOMEM;
6175 if (copy_to_user(to, from: &temp, n: addrlen))
6176 return -EFAULT;
6177 to += addrlen;
6178 cnt++;
6179 space_left -= addrlen;
6180 }
6181
6182 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6183 return -EFAULT;
6184 bytes_copied = ((char __user *)to) - optval;
6185 if (put_user(bytes_copied, optlen))
6186 return -EFAULT;
6187
6188 return 0;
6189}
6190
6191static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6192 size_t space_left, int *bytes_copied)
6193{
6194 struct sctp_sockaddr_entry *addr;
6195 union sctp_addr temp;
6196 int cnt = 0;
6197 int addrlen;
6198 struct net *net = sock_net(sk);
6199
6200 rcu_read_lock();
6201 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6202 if (!addr->valid)
6203 continue;
6204
6205 if ((PF_INET == sk->sk_family) &&
6206 (AF_INET6 == addr->a.sa.sa_family))
6207 continue;
6208 if ((PF_INET6 == sk->sk_family) &&
6209 inet_v6_ipv6only(sk) &&
6210 (AF_INET == addr->a.sa.sa_family))
6211 continue;
6212 memcpy(&temp, &addr->a, sizeof(temp));
6213 if (!temp.v4.sin_port)
6214 temp.v4.sin_port = htons(port);
6215
6216 addrlen = sctp_get_pf_specific(family: sk->sk_family)
6217 ->addr_to_user(sctp_sk(sk), &temp);
6218
6219 if (space_left < addrlen) {
6220 cnt = -ENOMEM;
6221 break;
6222 }
6223 memcpy(to, &temp, addrlen);
6224
6225 to += addrlen;
6226 cnt++;
6227 space_left -= addrlen;
6228 *bytes_copied += addrlen;
6229 }
6230 rcu_read_unlock();
6231
6232 return cnt;
6233}
6234
6235
6236static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6237 char __user *optval, int __user *optlen)
6238{
6239 struct sctp_bind_addr *bp;
6240 struct sctp_association *asoc;
6241 int cnt = 0;
6242 struct sctp_getaddrs getaddrs;
6243 struct sctp_sockaddr_entry *addr;
6244 void __user *to;
6245 union sctp_addr temp;
6246 struct sctp_sock *sp = sctp_sk(sk);
6247 int addrlen;
6248 int err = 0;
6249 size_t space_left;
6250 int bytes_copied = 0;
6251 void *addrs;
6252 void *buf;
6253
6254 if (len < sizeof(struct sctp_getaddrs))
6255 return -EINVAL;
6256
6257 if (copy_from_user(to: &getaddrs, from: optval, n: sizeof(struct sctp_getaddrs)))
6258 return -EFAULT;
6259
6260 /*
6261 * For UDP-style sockets, id specifies the association to query.
6262 * If the id field is set to the value '0' then the locally bound
6263 * addresses are returned without regard to any particular
6264 * association.
6265 */
6266 if (0 == getaddrs.assoc_id) {
6267 bp = &sctp_sk(sk)->ep->base.bind_addr;
6268 } else {
6269 asoc = sctp_id2assoc(sk, id: getaddrs.assoc_id);
6270 if (!asoc)
6271 return -EINVAL;
6272 bp = &asoc->base.bind_addr;
6273 }
6274
6275 to = optval + offsetof(struct sctp_getaddrs, addrs);
6276 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6277
6278 addrs = kmalloc(size: space_left, GFP_USER | __GFP_NOWARN);
6279 if (!addrs)
6280 return -ENOMEM;
6281
6282 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6283 * addresses from the global local address list.
6284 */
6285 if (sctp_list_single_entry(head: &bp->address_list)) {
6286 addr = list_entry(bp->address_list.next,
6287 struct sctp_sockaddr_entry, list);
6288 if (sctp_is_any(sk, addr: &addr->a)) {
6289 cnt = sctp_copy_laddrs(sk, port: bp->port, to: addrs,
6290 space_left, bytes_copied: &bytes_copied);
6291 if (cnt < 0) {
6292 err = cnt;
6293 goto out;
6294 }
6295 goto copy_getaddrs;
6296 }
6297 }
6298
6299 buf = addrs;
6300 /* Protection on the bound address list is not needed since
6301 * in the socket option context we hold a socket lock and
6302 * thus the bound address list can't change.
6303 */
6304 list_for_each_entry(addr, &bp->address_list, list) {
6305 memcpy(&temp, &addr->a, sizeof(temp));
6306 addrlen = sctp_get_pf_specific(family: sk->sk_family)
6307 ->addr_to_user(sp, &temp);
6308 if (space_left < addrlen) {
6309 err = -ENOMEM; /*fixme: right error?*/
6310 goto out;
6311 }
6312 memcpy(buf, &temp, addrlen);
6313 buf += addrlen;
6314 bytes_copied += addrlen;
6315 cnt++;
6316 space_left -= addrlen;
6317 }
6318
6319copy_getaddrs:
6320 if (copy_to_user(to, from: addrs, n: bytes_copied)) {
6321 err = -EFAULT;
6322 goto out;
6323 }
6324 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6325 err = -EFAULT;
6326 goto out;
6327 }
6328 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6329 * but we can't change it anymore.
6330 */
6331 if (put_user(bytes_copied, optlen))
6332 err = -EFAULT;
6333out:
6334 kfree(objp: addrs);
6335 return err;
6336}
6337
6338/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6339 *
6340 * Requests that the local SCTP stack use the enclosed peer address as
6341 * the association primary. The enclosed address must be one of the
6342 * association peer's addresses.
6343 */
6344static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6345 char __user *optval, int __user *optlen)
6346{
6347 struct sctp_prim prim;
6348 struct sctp_association *asoc;
6349 struct sctp_sock *sp = sctp_sk(sk);
6350
6351 if (len < sizeof(struct sctp_prim))
6352 return -EINVAL;
6353
6354 len = sizeof(struct sctp_prim);
6355
6356 if (copy_from_user(to: &prim, from: optval, n: len))
6357 return -EFAULT;
6358
6359 asoc = sctp_id2assoc(sk, id: prim.ssp_assoc_id);
6360 if (!asoc)
6361 return -EINVAL;
6362
6363 if (!asoc->peer.primary_path)
6364 return -ENOTCONN;
6365
6366 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6367 asoc->peer.primary_path->af_specific->sockaddr_len);
6368
6369 sctp_get_pf_specific(family: sk->sk_family)->addr_to_user(sp,
6370 (union sctp_addr *)&prim.ssp_addr);
6371
6372 if (put_user(len, optlen))
6373 return -EFAULT;
6374 if (copy_to_user(to: optval, from: &prim, n: len))
6375 return -EFAULT;
6376
6377 return 0;
6378}
6379
6380/*
6381 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6382 *
6383 * Requests that the local endpoint set the specified Adaptation Layer
6384 * Indication parameter for all future INIT and INIT-ACK exchanges.
6385 */
6386static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6387 char __user *optval, int __user *optlen)
6388{
6389 struct sctp_setadaptation adaptation;
6390
6391 if (len < sizeof(struct sctp_setadaptation))
6392 return -EINVAL;
6393
6394 len = sizeof(struct sctp_setadaptation);
6395
6396 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6397
6398 if (put_user(len, optlen))
6399 return -EFAULT;
6400 if (copy_to_user(to: optval, from: &adaptation, n: len))
6401 return -EFAULT;
6402
6403 return 0;
6404}
6405
6406/*
6407 *
6408 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6409 *
6410 * Applications that wish to use the sendto() system call may wish to
6411 * specify a default set of parameters that would normally be supplied
6412 * through the inclusion of ancillary data. This socket option allows
6413 * such an application to set the default sctp_sndrcvinfo structure.
6414
6415
6416 * The application that wishes to use this socket option simply passes
6417 * in to this call the sctp_sndrcvinfo structure defined in Section
6418 * 5.2.2) The input parameters accepted by this call include
6419 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6420 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6421 * to this call if the caller is using the UDP model.
6422 *
6423 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6424 */
6425static int sctp_getsockopt_default_send_param(struct sock *sk,
6426 int len, char __user *optval,
6427 int __user *optlen)
6428{
6429 struct sctp_sock *sp = sctp_sk(sk);
6430 struct sctp_association *asoc;
6431 struct sctp_sndrcvinfo info;
6432
6433 if (len < sizeof(info))
6434 return -EINVAL;
6435
6436 len = sizeof(info);
6437
6438 if (copy_from_user(to: &info, from: optval, n: len))
6439 return -EFAULT;
6440
6441 asoc = sctp_id2assoc(sk, id: info.sinfo_assoc_id);
6442 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6443 sctp_style(sk, UDP))
6444 return -EINVAL;
6445
6446 if (asoc) {
6447 info.sinfo_stream = asoc->default_stream;
6448 info.sinfo_flags = asoc->default_flags;
6449 info.sinfo_ppid = asoc->default_ppid;
6450 info.sinfo_context = asoc->default_context;
6451 info.sinfo_timetolive = asoc->default_timetolive;
6452 } else {
6453 info.sinfo_stream = sp->default_stream;
6454 info.sinfo_flags = sp->default_flags;
6455 info.sinfo_ppid = sp->default_ppid;
6456 info.sinfo_context = sp->default_context;
6457 info.sinfo_timetolive = sp->default_timetolive;
6458 }
6459
6460 if (put_user(len, optlen))
6461 return -EFAULT;
6462 if (copy_to_user(to: optval, from: &info, n: len))
6463 return -EFAULT;
6464
6465 return 0;
6466}
6467
6468/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6469 * (SCTP_DEFAULT_SNDINFO)
6470 */
6471static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6472 char __user *optval,
6473 int __user *optlen)
6474{
6475 struct sctp_sock *sp = sctp_sk(sk);
6476 struct sctp_association *asoc;
6477 struct sctp_sndinfo info;
6478
6479 if (len < sizeof(info))
6480 return -EINVAL;
6481
6482 len = sizeof(info);
6483
6484 if (copy_from_user(to: &info, from: optval, n: len))
6485 return -EFAULT;
6486
6487 asoc = sctp_id2assoc(sk, id: info.snd_assoc_id);
6488 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6489 sctp_style(sk, UDP))
6490 return -EINVAL;
6491
6492 if (asoc) {
6493 info.snd_sid = asoc->default_stream;
6494 info.snd_flags = asoc->default_flags;
6495 info.snd_ppid = asoc->default_ppid;
6496 info.snd_context = asoc->default_context;
6497 } else {
6498 info.snd_sid = sp->default_stream;
6499 info.snd_flags = sp->default_flags;
6500 info.snd_ppid = sp->default_ppid;
6501 info.snd_context = sp->default_context;
6502 }
6503
6504 if (put_user(len, optlen))
6505 return -EFAULT;
6506 if (copy_to_user(to: optval, from: &info, n: len))
6507 return -EFAULT;
6508
6509 return 0;
6510}
6511
6512/*
6513 *
6514 * 7.1.5 SCTP_NODELAY
6515 *
6516 * Turn on/off any Nagle-like algorithm. This means that packets are
6517 * generally sent as soon as possible and no unnecessary delays are
6518 * introduced, at the cost of more packets in the network. Expects an
6519 * integer boolean flag.
6520 */
6521
6522static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6523 char __user *optval, int __user *optlen)
6524{
6525 int val;
6526
6527 if (len < sizeof(int))
6528 return -EINVAL;
6529
6530 len = sizeof(int);
6531 val = (sctp_sk(sk)->nodelay == 1);
6532 if (put_user(len, optlen))
6533 return -EFAULT;
6534 if (copy_to_user(to: optval, from: &val, n: len))
6535 return -EFAULT;
6536 return 0;
6537}
6538
6539/*
6540 *
6541 * 7.1.1 SCTP_RTOINFO
6542 *
6543 * The protocol parameters used to initialize and bound retransmission
6544 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6545 * and modify these parameters.
6546 * All parameters are time values, in milliseconds. A value of 0, when
6547 * modifying the parameters, indicates that the current value should not
6548 * be changed.
6549 *
6550 */
6551static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6552 char __user *optval,
6553 int __user *optlen) {
6554 struct sctp_rtoinfo rtoinfo;
6555 struct sctp_association *asoc;
6556
6557 if (len < sizeof (struct sctp_rtoinfo))
6558 return -EINVAL;
6559
6560 len = sizeof(struct sctp_rtoinfo);
6561
6562 if (copy_from_user(to: &rtoinfo, from: optval, n: len))
6563 return -EFAULT;
6564
6565 asoc = sctp_id2assoc(sk, id: rtoinfo.srto_assoc_id);
6566
6567 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6568 sctp_style(sk, UDP))
6569 return -EINVAL;
6570
6571 /* Values corresponding to the specific association. */
6572 if (asoc) {
6573 rtoinfo.srto_initial = jiffies_to_msecs(j: asoc->rto_initial);
6574 rtoinfo.srto_max = jiffies_to_msecs(j: asoc->rto_max);
6575 rtoinfo.srto_min = jiffies_to_msecs(j: asoc->rto_min);
6576 } else {
6577 /* Values corresponding to the endpoint. */
6578 struct sctp_sock *sp = sctp_sk(sk);
6579
6580 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6581 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6582 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6583 }
6584
6585 if (put_user(len, optlen))
6586 return -EFAULT;
6587
6588 if (copy_to_user(to: optval, from: &rtoinfo, n: len))
6589 return -EFAULT;
6590
6591 return 0;
6592}
6593
6594/*
6595 *
6596 * 7.1.2 SCTP_ASSOCINFO
6597 *
6598 * This option is used to tune the maximum retransmission attempts
6599 * of the association.
6600 * Returns an error if the new association retransmission value is
6601 * greater than the sum of the retransmission value of the peer.
6602 * See [SCTP] for more information.
6603 *
6604 */
6605static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6606 char __user *optval,
6607 int __user *optlen)
6608{
6609
6610 struct sctp_assocparams assocparams;
6611 struct sctp_association *asoc;
6612 struct list_head *pos;
6613 int cnt = 0;
6614
6615 if (len < sizeof (struct sctp_assocparams))
6616 return -EINVAL;
6617
6618 len = sizeof(struct sctp_assocparams);
6619
6620 if (copy_from_user(to: &assocparams, from: optval, n: len))
6621 return -EFAULT;
6622
6623 asoc = sctp_id2assoc(sk, id: assocparams.sasoc_assoc_id);
6624
6625 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6626 sctp_style(sk, UDP))
6627 return -EINVAL;
6628
6629 /* Values correspoinding to the specific association */
6630 if (asoc) {
6631 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6632 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6633 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6634 assocparams.sasoc_cookie_life = ktime_to_ms(kt: asoc->cookie_life);
6635
6636 list_for_each(pos, &asoc->peer.transport_addr_list) {
6637 cnt++;
6638 }
6639
6640 assocparams.sasoc_number_peer_destinations = cnt;
6641 } else {
6642 /* Values corresponding to the endpoint */
6643 struct sctp_sock *sp = sctp_sk(sk);
6644
6645 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6646 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6647 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6648 assocparams.sasoc_cookie_life =
6649 sp->assocparams.sasoc_cookie_life;
6650 assocparams.sasoc_number_peer_destinations =
6651 sp->assocparams.
6652 sasoc_number_peer_destinations;
6653 }
6654
6655 if (put_user(len, optlen))
6656 return -EFAULT;
6657
6658 if (copy_to_user(to: optval, from: &assocparams, n: len))
6659 return -EFAULT;
6660
6661 return 0;
6662}
6663
6664/*
6665 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6666 *
6667 * This socket option is a boolean flag which turns on or off mapped V4
6668 * addresses. If this option is turned on and the socket is type
6669 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6670 * If this option is turned off, then no mapping will be done of V4
6671 * addresses and a user will receive both PF_INET6 and PF_INET type
6672 * addresses on the socket.
6673 */
6674static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6675 char __user *optval, int __user *optlen)
6676{
6677 int val;
6678 struct sctp_sock *sp = sctp_sk(sk);
6679
6680 if (len < sizeof(int))
6681 return -EINVAL;
6682
6683 len = sizeof(int);
6684 val = sp->v4mapped;
6685 if (put_user(len, optlen))
6686 return -EFAULT;
6687 if (copy_to_user(to: optval, from: &val, n: len))
6688 return -EFAULT;
6689
6690 return 0;
6691}
6692
6693/*
6694 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6695 * (chapter and verse is quoted at sctp_setsockopt_context())
6696 */
6697static int sctp_getsockopt_context(struct sock *sk, int len,
6698 char __user *optval, int __user *optlen)
6699{
6700 struct sctp_assoc_value params;
6701 struct sctp_association *asoc;
6702
6703 if (len < sizeof(struct sctp_assoc_value))
6704 return -EINVAL;
6705
6706 len = sizeof(struct sctp_assoc_value);
6707
6708 if (copy_from_user(to: &params, from: optval, n: len))
6709 return -EFAULT;
6710
6711 asoc = sctp_id2assoc(sk, id: params.assoc_id);
6712 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6713 sctp_style(sk, UDP))
6714 return -EINVAL;
6715
6716 params.assoc_value = asoc ? asoc->default_rcv_context
6717 : sctp_sk(sk)->default_rcv_context;
6718
6719 if (put_user(len, optlen))
6720 return -EFAULT;
6721 if (copy_to_user(to: optval, from: &params, n: len))
6722 return -EFAULT;
6723
6724 return 0;
6725}
6726
6727/*
6728 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6729 * This option will get or set the maximum size to put in any outgoing
6730 * SCTP DATA chunk. If a message is larger than this size it will be
6731 * fragmented by SCTP into the specified size. Note that the underlying
6732 * SCTP implementation may fragment into smaller sized chunks when the
6733 * PMTU of the underlying association is smaller than the value set by
6734 * the user. The default value for this option is '0' which indicates
6735 * the user is NOT limiting fragmentation and only the PMTU will effect
6736 * SCTP's choice of DATA chunk size. Note also that values set larger
6737 * than the maximum size of an IP datagram will effectively let SCTP
6738 * control fragmentation (i.e. the same as setting this option to 0).
6739 *
6740 * The following structure is used to access and modify this parameter:
6741 *
6742 * struct sctp_assoc_value {
6743 * sctp_assoc_t assoc_id;
6744 * uint32_t assoc_value;
6745 * };
6746 *
6747 * assoc_id: This parameter is ignored for one-to-one style sockets.
6748 * For one-to-many style sockets this parameter indicates which
6749 * association the user is performing an action upon. Note that if
6750 * this field's value is zero then the endpoints default value is
6751 * changed (effecting future associations only).
6752 * assoc_value: This parameter specifies the maximum size in bytes.
6753 */
6754static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6755 char __user *optval, int __user *optlen)
6756{
6757 struct sctp_assoc_value params;
6758 struct sctp_association *asoc;
6759
6760 if (len == sizeof(int)) {
6761 pr_warn_ratelimited(DEPRECATED
6762 "%s (pid %d) "
6763 "Use of int in maxseg socket option.\n"
6764 "Use struct sctp_assoc_value instead\n",
6765 current->comm, task_pid_nr(current));
6766 params.assoc_id = SCTP_FUTURE_ASSOC;
6767 } else if (len >= sizeof(struct sctp_assoc_value)) {
6768 len = sizeof(struct sctp_assoc_value);
6769 if (copy_from_user(to: &params, from: optval, n: len))
6770 return -EFAULT;
6771 } else
6772 return -EINVAL;
6773
6774 asoc = sctp_id2assoc(sk, id: params.assoc_id);
6775 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6776 sctp_style(sk, UDP))
6777 return -EINVAL;
6778
6779 if (asoc)
6780 params.assoc_value = asoc->frag_point;
6781 else
6782 params.assoc_value = sctp_sk(sk)->user_frag;
6783
6784 if (put_user(len, optlen))
6785 return -EFAULT;
6786 if (len == sizeof(int)) {
6787 if (copy_to_user(to: optval, from: &params.assoc_value, n: len))
6788 return -EFAULT;
6789 } else {
6790 if (copy_to_user(to: optval, from: &params, n: len))
6791 return -EFAULT;
6792 }
6793
6794 return 0;
6795}
6796
6797/*
6798 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6799 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6800 */
6801static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6802 char __user *optval, int __user *optlen)
6803{
6804 int val;
6805
6806 if (len < sizeof(int))
6807 return -EINVAL;
6808
6809 len = sizeof(int);
6810
6811 val = sctp_sk(sk)->frag_interleave;
6812 if (put_user(len, optlen))
6813 return -EFAULT;
6814 if (copy_to_user(to: optval, from: &val, n: len))
6815 return -EFAULT;
6816
6817 return 0;
6818}
6819
6820/*
6821 * 7.1.25. Set or Get the sctp partial delivery point
6822 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6823 */
6824static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6825 char __user *optval,
6826 int __user *optlen)
6827{
6828 u32 val;
6829
6830 if (len < sizeof(u32))
6831 return -EINVAL;
6832
6833 len = sizeof(u32);
6834
6835 val = sctp_sk(sk)->pd_point;
6836 if (put_user(len, optlen))
6837 return -EFAULT;
6838 if (copy_to_user(to: optval, from: &val, n: len))
6839 return -EFAULT;
6840
6841 return 0;
6842}
6843
6844/*
6845 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6846 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6847 */
6848static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6849 char __user *optval,
6850 int __user *optlen)
6851{
6852 struct sctp_assoc_value params;
6853 struct sctp_association *asoc;
6854
6855 if (len == sizeof(int)) {
6856 pr_warn_ratelimited(DEPRECATED
6857 "%s (pid %d) "
6858 "Use of int in max_burst socket option.\n"
6859 "Use struct sctp_assoc_value instead\n",
6860 current->comm, task_pid_nr(current));
6861 params.assoc_id = SCTP_FUTURE_ASSOC;
6862 } else if (len >= sizeof(struct sctp_assoc_value)) {
6863 len = sizeof(struct sctp_assoc_value);
6864 if (copy_from_user(to: &params, from: optval, n: len))
6865 return -EFAULT;
6866 } else
6867 return -EINVAL;
6868
6869 asoc = sctp_id2assoc(sk, id: params.assoc_id);
6870 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6871 sctp_style(sk, UDP))
6872 return -EINVAL;
6873
6874 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6875
6876 if (len == sizeof(int)) {
6877 if (copy_to_user(to: optval, from: &params.assoc_value, n: len))
6878 return -EFAULT;
6879 } else {
6880 if (copy_to_user(to: optval, from: &params, n: len))
6881 return -EFAULT;
6882 }
6883
6884 return 0;
6885
6886}
6887
6888static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6889 char __user *optval, int __user *optlen)
6890{
6891 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6892 struct sctp_hmacalgo __user *p = (void __user *)optval;
6893 struct sctp_hmac_algo_param *hmacs;
6894 __u16 data_len = 0;
6895 u32 num_idents;
6896 int i;
6897
6898 if (!ep->auth_enable)
6899 return -EACCES;
6900
6901 hmacs = ep->auth_hmacs_list;
6902 data_len = ntohs(hmacs->param_hdr.length) -
6903 sizeof(struct sctp_paramhdr);
6904
6905 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6906 return -EINVAL;
6907
6908 len = sizeof(struct sctp_hmacalgo) + data_len;
6909 num_idents = data_len / sizeof(u16);
6910
6911 if (put_user(len, optlen))
6912 return -EFAULT;
6913 if (put_user(num_idents, &p->shmac_num_idents))
6914 return -EFAULT;
6915 for (i = 0; i < num_idents; i++) {
6916 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6917
6918 if (copy_to_user(to: &p->shmac_idents[i], from: &hmacid, n: sizeof(__u16)))
6919 return -EFAULT;
6920 }
6921 return 0;
6922}
6923
6924static int sctp_getsockopt_active_key(struct sock *sk, int len,
6925 char __user *optval, int __user *optlen)
6926{
6927 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6928 struct sctp_authkeyid val;
6929 struct sctp_association *asoc;
6930
6931 if (len < sizeof(struct sctp_authkeyid))
6932 return -EINVAL;
6933
6934 len = sizeof(struct sctp_authkeyid);
6935 if (copy_from_user(to: &val, from: optval, n: len))
6936 return -EFAULT;
6937
6938 asoc = sctp_id2assoc(sk, id: val.scact_assoc_id);
6939 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6940 return -EINVAL;
6941
6942 if (asoc) {
6943 if (!asoc->peer.auth_capable)
6944 return -EACCES;
6945 val.scact_keynumber = asoc->active_key_id;
6946 } else {
6947 if (!ep->auth_enable)
6948 return -EACCES;
6949 val.scact_keynumber = ep->active_key_id;
6950 }
6951
6952 if (put_user(len, optlen))
6953 return -EFAULT;
6954 if (copy_to_user(to: optval, from: &val, n: len))
6955 return -EFAULT;
6956
6957 return 0;
6958}
6959
6960static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6961 char __user *optval, int __user *optlen)
6962{
6963 struct sctp_authchunks __user *p = (void __user *)optval;
6964 struct sctp_authchunks val;
6965 struct sctp_association *asoc;
6966 struct sctp_chunks_param *ch;
6967 u32 num_chunks = 0;
6968 char __user *to;
6969
6970 if (len < sizeof(struct sctp_authchunks))
6971 return -EINVAL;
6972
6973 if (copy_from_user(to: &val, from: optval, n: sizeof(val)))
6974 return -EFAULT;
6975
6976 to = p->gauth_chunks;
6977 asoc = sctp_id2assoc(sk, id: val.gauth_assoc_id);
6978 if (!asoc)
6979 return -EINVAL;
6980
6981 if (!asoc->peer.auth_capable)
6982 return -EACCES;
6983
6984 ch = asoc->peer.peer_chunks;
6985 if (!ch)
6986 goto num;
6987
6988 /* See if the user provided enough room for all the data */
6989 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6990 if (len < num_chunks)
6991 return -EINVAL;
6992
6993 if (copy_to_user(to, from: ch->chunks, n: num_chunks))
6994 return -EFAULT;
6995num:
6996 len = sizeof(struct sctp_authchunks) + num_chunks;
6997 if (put_user(len, optlen))
6998 return -EFAULT;
6999 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7000 return -EFAULT;
7001 return 0;
7002}
7003
7004static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7005 char __user *optval, int __user *optlen)
7006{
7007 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7008 struct sctp_authchunks __user *p = (void __user *)optval;
7009 struct sctp_authchunks val;
7010 struct sctp_association *asoc;
7011 struct sctp_chunks_param *ch;
7012 u32 num_chunks = 0;
7013 char __user *to;
7014
7015 if (len < sizeof(struct sctp_authchunks))
7016 return -EINVAL;
7017
7018 if (copy_from_user(to: &val, from: optval, n: sizeof(val)))
7019 return -EFAULT;
7020
7021 to = p->gauth_chunks;
7022 asoc = sctp_id2assoc(sk, id: val.gauth_assoc_id);
7023 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7024 sctp_style(sk, UDP))
7025 return -EINVAL;
7026
7027 if (asoc) {
7028 if (!asoc->peer.auth_capable)
7029 return -EACCES;
7030 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7031 } else {
7032 if (!ep->auth_enable)
7033 return -EACCES;
7034 ch = ep->auth_chunk_list;
7035 }
7036 if (!ch)
7037 goto num;
7038
7039 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7040 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7041 return -EINVAL;
7042
7043 if (copy_to_user(to, from: ch->chunks, n: num_chunks))
7044 return -EFAULT;
7045num:
7046 len = sizeof(struct sctp_authchunks) + num_chunks;
7047 if (put_user(len, optlen))
7048 return -EFAULT;
7049 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7050 return -EFAULT;
7051
7052 return 0;
7053}
7054
7055/*
7056 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7057 * This option gets the current number of associations that are attached
7058 * to a one-to-many style socket. The option value is an uint32_t.
7059 */
7060static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7061 char __user *optval, int __user *optlen)
7062{
7063 struct sctp_sock *sp = sctp_sk(sk);
7064 struct sctp_association *asoc;
7065 u32 val = 0;
7066
7067 if (sctp_style(sk, TCP))
7068 return -EOPNOTSUPP;
7069
7070 if (len < sizeof(u32))
7071 return -EINVAL;
7072
7073 len = sizeof(u32);
7074
7075 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7076 val++;
7077 }
7078
7079 if (put_user(len, optlen))
7080 return -EFAULT;
7081 if (copy_to_user(to: optval, from: &val, n: len))
7082 return -EFAULT;
7083
7084 return 0;
7085}
7086
7087/*
7088 * 8.1.23 SCTP_AUTO_ASCONF
7089 * See the corresponding setsockopt entry as description
7090 */
7091static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7092 char __user *optval, int __user *optlen)
7093{
7094 int val = 0;
7095
7096 if (len < sizeof(int))
7097 return -EINVAL;
7098
7099 len = sizeof(int);
7100 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7101 val = 1;
7102 if (put_user(len, optlen))
7103 return -EFAULT;
7104 if (copy_to_user(to: optval, from: &val, n: len))
7105 return -EFAULT;
7106 return 0;
7107}
7108
7109/*
7110 * 8.2.6. Get the Current Identifiers of Associations
7111 * (SCTP_GET_ASSOC_ID_LIST)
7112 *
7113 * This option gets the current list of SCTP association identifiers of
7114 * the SCTP associations handled by a one-to-many style socket.
7115 */
7116static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7117 char __user *optval, int __user *optlen)
7118{
7119 struct sctp_sock *sp = sctp_sk(sk);
7120 struct sctp_association *asoc;
7121 struct sctp_assoc_ids *ids;
7122 u32 num = 0;
7123
7124 if (sctp_style(sk, TCP))
7125 return -EOPNOTSUPP;
7126
7127 if (len < sizeof(struct sctp_assoc_ids))
7128 return -EINVAL;
7129
7130 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7131 num++;
7132 }
7133
7134 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7135 return -EINVAL;
7136
7137 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7138
7139 ids = kmalloc(size: len, GFP_USER | __GFP_NOWARN);
7140 if (unlikely(!ids))
7141 return -ENOMEM;
7142
7143 ids->gaids_number_of_ids = num;
7144 num = 0;
7145 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7146 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7147 }
7148
7149 if (put_user(len, optlen) || copy_to_user(to: optval, from: ids, n: len)) {
7150 kfree(objp: ids);
7151 return -EFAULT;
7152 }
7153
7154 kfree(objp: ids);
7155 return 0;
7156}
7157
7158/*
7159 * SCTP_PEER_ADDR_THLDS
7160 *
7161 * This option allows us to fetch the partially failed threshold for one or all
7162 * transports in an association. See Section 6.1 of:
7163 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7164 */
7165static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7166 char __user *optval, int len,
7167 int __user *optlen, bool v2)
7168{
7169 struct sctp_paddrthlds_v2 val;
7170 struct sctp_transport *trans;
7171 struct sctp_association *asoc;
7172 int min;
7173
7174 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7175 if (len < min)
7176 return -EINVAL;
7177 len = min;
7178 if (copy_from_user(to: &val, from: optval, n: len))
7179 return -EFAULT;
7180
7181 if (!sctp_is_any(sk, addr: (const union sctp_addr *)&val.spt_address)) {
7182 trans = sctp_addr_id2transport(sk, addr: &val.spt_address,
7183 id: val.spt_assoc_id);
7184 if (!trans)
7185 return -ENOENT;
7186
7187 val.spt_pathmaxrxt = trans->pathmaxrxt;
7188 val.spt_pathpfthld = trans->pf_retrans;
7189 val.spt_pathcpthld = trans->ps_retrans;
7190
7191 goto out;
7192 }
7193
7194 asoc = sctp_id2assoc(sk, id: val.spt_assoc_id);
7195 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7196 sctp_style(sk, UDP))
7197 return -EINVAL;
7198
7199 if (asoc) {
7200 val.spt_pathpfthld = asoc->pf_retrans;
7201 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7202 val.spt_pathcpthld = asoc->ps_retrans;
7203 } else {
7204 struct sctp_sock *sp = sctp_sk(sk);
7205
7206 val.spt_pathpfthld = sp->pf_retrans;
7207 val.spt_pathmaxrxt = sp->pathmaxrxt;
7208 val.spt_pathcpthld = sp->ps_retrans;
7209 }
7210
7211out:
7212 if (put_user(len, optlen) || copy_to_user(to: optval, from: &val, n: len))
7213 return -EFAULT;
7214
7215 return 0;
7216}
7217
7218/*
7219 * SCTP_GET_ASSOC_STATS
7220 *
7221 * This option retrieves local per endpoint statistics. It is modeled
7222 * after OpenSolaris' implementation
7223 */
7224static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7225 char __user *optval,
7226 int __user *optlen)
7227{
7228 struct sctp_assoc_stats sas;
7229 struct sctp_association *asoc = NULL;
7230
7231 /* User must provide at least the assoc id */
7232 if (len < sizeof(sctp_assoc_t))
7233 return -EINVAL;
7234
7235 /* Allow the struct to grow and fill in as much as possible */
7236 len = min_t(size_t, len, sizeof(sas));
7237
7238 if (copy_from_user(to: &sas, from: optval, n: len))
7239 return -EFAULT;
7240
7241 asoc = sctp_id2assoc(sk, id: sas.sas_assoc_id);
7242 if (!asoc)
7243 return -EINVAL;
7244
7245 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7246 sas.sas_gapcnt = asoc->stats.gapcnt;
7247 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7248 sas.sas_osacks = asoc->stats.osacks;
7249 sas.sas_isacks = asoc->stats.isacks;
7250 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7251 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7252 sas.sas_oodchunks = asoc->stats.oodchunks;
7253 sas.sas_iodchunks = asoc->stats.iodchunks;
7254 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7255 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7256 sas.sas_idupchunks = asoc->stats.idupchunks;
7257 sas.sas_opackets = asoc->stats.opackets;
7258 sas.sas_ipackets = asoc->stats.ipackets;
7259
7260 /* New high max rto observed, will return 0 if not a single
7261 * RTO update took place. obs_rto_ipaddr will be bogus
7262 * in such a case
7263 */
7264 sas.sas_maxrto = asoc->stats.max_obs_rto;
7265 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7266 sizeof(struct sockaddr_storage));
7267
7268 /* Mark beginning of a new observation period */
7269 asoc->stats.max_obs_rto = asoc->rto_min;
7270
7271 if (put_user(len, optlen))
7272 return -EFAULT;
7273
7274 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7275
7276 if (copy_to_user(to: optval, from: &sas, n: len))
7277 return -EFAULT;
7278
7279 return 0;
7280}
7281
7282static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7283 char __user *optval,
7284 int __user *optlen)
7285{
7286 int val = 0;
7287
7288 if (len < sizeof(int))
7289 return -EINVAL;
7290
7291 len = sizeof(int);
7292 if (sctp_sk(sk)->recvrcvinfo)
7293 val = 1;
7294 if (put_user(len, optlen))
7295 return -EFAULT;
7296 if (copy_to_user(to: optval, from: &val, n: len))
7297 return -EFAULT;
7298
7299 return 0;
7300}
7301
7302static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7303 char __user *optval,
7304 int __user *optlen)
7305{
7306 int val = 0;
7307
7308 if (len < sizeof(int))
7309 return -EINVAL;
7310
7311 len = sizeof(int);
7312 if (sctp_sk(sk)->recvnxtinfo)
7313 val = 1;
7314 if (put_user(len, optlen))
7315 return -EFAULT;
7316 if (copy_to_user(to: optval, from: &val, n: len))
7317 return -EFAULT;
7318
7319 return 0;
7320}
7321
7322static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7323 char __user *optval,
7324 int __user *optlen)
7325{
7326 struct sctp_assoc_value params;
7327 struct sctp_association *asoc;
7328 int retval = -EFAULT;
7329
7330 if (len < sizeof(params)) {
7331 retval = -EINVAL;
7332 goto out;
7333 }
7334
7335 len = sizeof(params);
7336 if (copy_from_user(to: &params, from: optval, n: len))
7337 goto out;
7338
7339 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7340 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7341 sctp_style(sk, UDP)) {
7342 retval = -EINVAL;
7343 goto out;
7344 }
7345
7346 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7347 : sctp_sk(sk)->ep->prsctp_enable;
7348
7349 if (put_user(len, optlen))
7350 goto out;
7351
7352 if (copy_to_user(to: optval, from: &params, n: len))
7353 goto out;
7354
7355 retval = 0;
7356
7357out:
7358 return retval;
7359}
7360
7361static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7362 char __user *optval,
7363 int __user *optlen)
7364{
7365 struct sctp_default_prinfo info;
7366 struct sctp_association *asoc;
7367 int retval = -EFAULT;
7368
7369 if (len < sizeof(info)) {
7370 retval = -EINVAL;
7371 goto out;
7372 }
7373
7374 len = sizeof(info);
7375 if (copy_from_user(to: &info, from: optval, n: len))
7376 goto out;
7377
7378 asoc = sctp_id2assoc(sk, id: info.pr_assoc_id);
7379 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7380 sctp_style(sk, UDP)) {
7381 retval = -EINVAL;
7382 goto out;
7383 }
7384
7385 if (asoc) {
7386 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7387 info.pr_value = asoc->default_timetolive;
7388 } else {
7389 struct sctp_sock *sp = sctp_sk(sk);
7390
7391 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7392 info.pr_value = sp->default_timetolive;
7393 }
7394
7395 if (put_user(len, optlen))
7396 goto out;
7397
7398 if (copy_to_user(to: optval, from: &info, n: len))
7399 goto out;
7400
7401 retval = 0;
7402
7403out:
7404 return retval;
7405}
7406
7407static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7408 char __user *optval,
7409 int __user *optlen)
7410{
7411 struct sctp_prstatus params;
7412 struct sctp_association *asoc;
7413 int policy;
7414 int retval = -EINVAL;
7415
7416 if (len < sizeof(params))
7417 goto out;
7418
7419 len = sizeof(params);
7420 if (copy_from_user(to: &params, from: optval, n: len)) {
7421 retval = -EFAULT;
7422 goto out;
7423 }
7424
7425 policy = params.sprstat_policy;
7426 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7427 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7428 goto out;
7429
7430 asoc = sctp_id2assoc(sk, id: params.sprstat_assoc_id);
7431 if (!asoc)
7432 goto out;
7433
7434 if (policy == SCTP_PR_SCTP_ALL) {
7435 params.sprstat_abandoned_unsent = 0;
7436 params.sprstat_abandoned_sent = 0;
7437 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7438 params.sprstat_abandoned_unsent +=
7439 asoc->abandoned_unsent[policy];
7440 params.sprstat_abandoned_sent +=
7441 asoc->abandoned_sent[policy];
7442 }
7443 } else {
7444 params.sprstat_abandoned_unsent =
7445 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7446 params.sprstat_abandoned_sent =
7447 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7448 }
7449
7450 if (put_user(len, optlen)) {
7451 retval = -EFAULT;
7452 goto out;
7453 }
7454
7455 if (copy_to_user(to: optval, from: &params, n: len)) {
7456 retval = -EFAULT;
7457 goto out;
7458 }
7459
7460 retval = 0;
7461
7462out:
7463 return retval;
7464}
7465
7466static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7467 char __user *optval,
7468 int __user *optlen)
7469{
7470 struct sctp_stream_out_ext *streamoute;
7471 struct sctp_association *asoc;
7472 struct sctp_prstatus params;
7473 int retval = -EINVAL;
7474 int policy;
7475
7476 if (len < sizeof(params))
7477 goto out;
7478
7479 len = sizeof(params);
7480 if (copy_from_user(to: &params, from: optval, n: len)) {
7481 retval = -EFAULT;
7482 goto out;
7483 }
7484
7485 policy = params.sprstat_policy;
7486 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7487 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7488 goto out;
7489
7490 asoc = sctp_id2assoc(sk, id: params.sprstat_assoc_id);
7491 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7492 goto out;
7493
7494 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7495 if (!streamoute) {
7496 /* Not allocated yet, means all stats are 0 */
7497 params.sprstat_abandoned_unsent = 0;
7498 params.sprstat_abandoned_sent = 0;
7499 retval = 0;
7500 goto out;
7501 }
7502
7503 if (policy == SCTP_PR_SCTP_ALL) {
7504 params.sprstat_abandoned_unsent = 0;
7505 params.sprstat_abandoned_sent = 0;
7506 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7507 params.sprstat_abandoned_unsent +=
7508 streamoute->abandoned_unsent[policy];
7509 params.sprstat_abandoned_sent +=
7510 streamoute->abandoned_sent[policy];
7511 }
7512 } else {
7513 params.sprstat_abandoned_unsent =
7514 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7515 params.sprstat_abandoned_sent =
7516 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7517 }
7518
7519 if (put_user(len, optlen) || copy_to_user(to: optval, from: &params, n: len)) {
7520 retval = -EFAULT;
7521 goto out;
7522 }
7523
7524 retval = 0;
7525
7526out:
7527 return retval;
7528}
7529
7530static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7531 char __user *optval,
7532 int __user *optlen)
7533{
7534 struct sctp_assoc_value params;
7535 struct sctp_association *asoc;
7536 int retval = -EFAULT;
7537
7538 if (len < sizeof(params)) {
7539 retval = -EINVAL;
7540 goto out;
7541 }
7542
7543 len = sizeof(params);
7544 if (copy_from_user(to: &params, from: optval, n: len))
7545 goto out;
7546
7547 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7548 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7549 sctp_style(sk, UDP)) {
7550 retval = -EINVAL;
7551 goto out;
7552 }
7553
7554 params.assoc_value = asoc ? asoc->peer.reconf_capable
7555 : sctp_sk(sk)->ep->reconf_enable;
7556
7557 if (put_user(len, optlen))
7558 goto out;
7559
7560 if (copy_to_user(to: optval, from: &params, n: len))
7561 goto out;
7562
7563 retval = 0;
7564
7565out:
7566 return retval;
7567}
7568
7569static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7570 char __user *optval,
7571 int __user *optlen)
7572{
7573 struct sctp_assoc_value params;
7574 struct sctp_association *asoc;
7575 int retval = -EFAULT;
7576
7577 if (len < sizeof(params)) {
7578 retval = -EINVAL;
7579 goto out;
7580 }
7581
7582 len = sizeof(params);
7583 if (copy_from_user(to: &params, from: optval, n: len))
7584 goto out;
7585
7586 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7587 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7588 sctp_style(sk, UDP)) {
7589 retval = -EINVAL;
7590 goto out;
7591 }
7592
7593 params.assoc_value = asoc ? asoc->strreset_enable
7594 : sctp_sk(sk)->ep->strreset_enable;
7595
7596 if (put_user(len, optlen))
7597 goto out;
7598
7599 if (copy_to_user(to: optval, from: &params, n: len))
7600 goto out;
7601
7602 retval = 0;
7603
7604out:
7605 return retval;
7606}
7607
7608static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7609 char __user *optval,
7610 int __user *optlen)
7611{
7612 struct sctp_assoc_value params;
7613 struct sctp_association *asoc;
7614 int retval = -EFAULT;
7615
7616 if (len < sizeof(params)) {
7617 retval = -EINVAL;
7618 goto out;
7619 }
7620
7621 len = sizeof(params);
7622 if (copy_from_user(to: &params, from: optval, n: len))
7623 goto out;
7624
7625 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7626 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7627 sctp_style(sk, UDP)) {
7628 retval = -EINVAL;
7629 goto out;
7630 }
7631
7632 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7633 : sctp_sk(sk)->default_ss;
7634
7635 if (put_user(len, optlen))
7636 goto out;
7637
7638 if (copy_to_user(to: optval, from: &params, n: len))
7639 goto out;
7640
7641 retval = 0;
7642
7643out:
7644 return retval;
7645}
7646
7647static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7648 char __user *optval,
7649 int __user *optlen)
7650{
7651 struct sctp_stream_value params;
7652 struct sctp_association *asoc;
7653 int retval = -EFAULT;
7654
7655 if (len < sizeof(params)) {
7656 retval = -EINVAL;
7657 goto out;
7658 }
7659
7660 len = sizeof(params);
7661 if (copy_from_user(to: &params, from: optval, n: len))
7662 goto out;
7663
7664 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7665 if (!asoc) {
7666 retval = -EINVAL;
7667 goto out;
7668 }
7669
7670 retval = sctp_sched_get_value(asoc, sid: params.stream_id,
7671 value: &params.stream_value);
7672 if (retval)
7673 goto out;
7674
7675 if (put_user(len, optlen)) {
7676 retval = -EFAULT;
7677 goto out;
7678 }
7679
7680 if (copy_to_user(to: optval, from: &params, n: len)) {
7681 retval = -EFAULT;
7682 goto out;
7683 }
7684
7685out:
7686 return retval;
7687}
7688
7689static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7690 char __user *optval,
7691 int __user *optlen)
7692{
7693 struct sctp_assoc_value params;
7694 struct sctp_association *asoc;
7695 int retval = -EFAULT;
7696
7697 if (len < sizeof(params)) {
7698 retval = -EINVAL;
7699 goto out;
7700 }
7701
7702 len = sizeof(params);
7703 if (copy_from_user(to: &params, from: optval, n: len))
7704 goto out;
7705
7706 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7707 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7708 sctp_style(sk, UDP)) {
7709 retval = -EINVAL;
7710 goto out;
7711 }
7712
7713 params.assoc_value = asoc ? asoc->peer.intl_capable
7714 : sctp_sk(sk)->ep->intl_enable;
7715
7716 if (put_user(len, optlen))
7717 goto out;
7718
7719 if (copy_to_user(to: optval, from: &params, n: len))
7720 goto out;
7721
7722 retval = 0;
7723
7724out:
7725 return retval;
7726}
7727
7728static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7729 char __user *optval,
7730 int __user *optlen)
7731{
7732 int val;
7733
7734 if (len < sizeof(int))
7735 return -EINVAL;
7736
7737 len = sizeof(int);
7738 val = sctp_sk(sk)->reuse;
7739 if (put_user(len, optlen))
7740 return -EFAULT;
7741
7742 if (copy_to_user(to: optval, from: &val, n: len))
7743 return -EFAULT;
7744
7745 return 0;
7746}
7747
7748static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7749 int __user *optlen)
7750{
7751 struct sctp_association *asoc;
7752 struct sctp_event param;
7753 __u16 subscribe;
7754
7755 if (len < sizeof(param))
7756 return -EINVAL;
7757
7758 len = sizeof(param);
7759 if (copy_from_user(to: &param, from: optval, n: len))
7760 return -EFAULT;
7761
7762 if (param.se_type < SCTP_SN_TYPE_BASE ||
7763 param.se_type > SCTP_SN_TYPE_MAX)
7764 return -EINVAL;
7765
7766 asoc = sctp_id2assoc(sk, id: param.se_assoc_id);
7767 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7768 sctp_style(sk, UDP))
7769 return -EINVAL;
7770
7771 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7772 param.se_on = sctp_ulpevent_type_enabled(subscribe, sn_type: param.se_type);
7773
7774 if (put_user(len, optlen))
7775 return -EFAULT;
7776
7777 if (copy_to_user(to: optval, from: &param, n: len))
7778 return -EFAULT;
7779
7780 return 0;
7781}
7782
7783static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7784 char __user *optval,
7785 int __user *optlen)
7786{
7787 struct sctp_assoc_value params;
7788 struct sctp_association *asoc;
7789 int retval = -EFAULT;
7790
7791 if (len < sizeof(params)) {
7792 retval = -EINVAL;
7793 goto out;
7794 }
7795
7796 len = sizeof(params);
7797 if (copy_from_user(to: &params, from: optval, n: len))
7798 goto out;
7799
7800 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7801 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7802 sctp_style(sk, UDP)) {
7803 retval = -EINVAL;
7804 goto out;
7805 }
7806
7807 params.assoc_value = asoc ? asoc->peer.asconf_capable
7808 : sctp_sk(sk)->ep->asconf_enable;
7809
7810 if (put_user(len, optlen))
7811 goto out;
7812
7813 if (copy_to_user(to: optval, from: &params, n: len))
7814 goto out;
7815
7816 retval = 0;
7817
7818out:
7819 return retval;
7820}
7821
7822static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7823 char __user *optval,
7824 int __user *optlen)
7825{
7826 struct sctp_assoc_value params;
7827 struct sctp_association *asoc;
7828 int retval = -EFAULT;
7829
7830 if (len < sizeof(params)) {
7831 retval = -EINVAL;
7832 goto out;
7833 }
7834
7835 len = sizeof(params);
7836 if (copy_from_user(to: &params, from: optval, n: len))
7837 goto out;
7838
7839 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7840 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7841 sctp_style(sk, UDP)) {
7842 retval = -EINVAL;
7843 goto out;
7844 }
7845
7846 params.assoc_value = asoc ? asoc->peer.auth_capable
7847 : sctp_sk(sk)->ep->auth_enable;
7848
7849 if (put_user(len, optlen))
7850 goto out;
7851
7852 if (copy_to_user(to: optval, from: &params, n: len))
7853 goto out;
7854
7855 retval = 0;
7856
7857out:
7858 return retval;
7859}
7860
7861static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7862 char __user *optval,
7863 int __user *optlen)
7864{
7865 struct sctp_assoc_value params;
7866 struct sctp_association *asoc;
7867 int retval = -EFAULT;
7868
7869 if (len < sizeof(params)) {
7870 retval = -EINVAL;
7871 goto out;
7872 }
7873
7874 len = sizeof(params);
7875 if (copy_from_user(to: &params, from: optval, n: len))
7876 goto out;
7877
7878 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7879 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7880 sctp_style(sk, UDP)) {
7881 retval = -EINVAL;
7882 goto out;
7883 }
7884
7885 params.assoc_value = asoc ? asoc->peer.ecn_capable
7886 : sctp_sk(sk)->ep->ecn_enable;
7887
7888 if (put_user(len, optlen))
7889 goto out;
7890
7891 if (copy_to_user(to: optval, from: &params, n: len))
7892 goto out;
7893
7894 retval = 0;
7895
7896out:
7897 return retval;
7898}
7899
7900static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7901 char __user *optval,
7902 int __user *optlen)
7903{
7904 struct sctp_assoc_value params;
7905 struct sctp_association *asoc;
7906 int retval = -EFAULT;
7907
7908 if (len < sizeof(params)) {
7909 retval = -EINVAL;
7910 goto out;
7911 }
7912
7913 len = sizeof(params);
7914 if (copy_from_user(to: &params, from: optval, n: len))
7915 goto out;
7916
7917 asoc = sctp_id2assoc(sk, id: params.assoc_id);
7918 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7919 sctp_style(sk, UDP)) {
7920 retval = -EINVAL;
7921 goto out;
7922 }
7923
7924 params.assoc_value = asoc ? asoc->pf_expose
7925 : sctp_sk(sk)->pf_expose;
7926
7927 if (put_user(len, optlen))
7928 goto out;
7929
7930 if (copy_to_user(to: optval, from: &params, n: len))
7931 goto out;
7932
7933 retval = 0;
7934
7935out:
7936 return retval;
7937}
7938
7939static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7940 char __user *optval, int __user *optlen)
7941{
7942 struct sctp_association *asoc;
7943 struct sctp_udpencaps encap;
7944 struct sctp_transport *t;
7945 __be16 encap_port;
7946
7947 if (len < sizeof(encap))
7948 return -EINVAL;
7949
7950 len = sizeof(encap);
7951 if (copy_from_user(to: &encap, from: optval, n: len))
7952 return -EFAULT;
7953
7954 /* If an address other than INADDR_ANY is specified, and
7955 * no transport is found, then the request is invalid.
7956 */
7957 if (!sctp_is_any(sk, addr: (union sctp_addr *)&encap.sue_address)) {
7958 t = sctp_addr_id2transport(sk, addr: &encap.sue_address,
7959 id: encap.sue_assoc_id);
7960 if (!t) {
7961 pr_debug("%s: failed no transport\n", __func__);
7962 return -EINVAL;
7963 }
7964
7965 encap_port = t->encap_port;
7966 goto out;
7967 }
7968
7969 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7970 * socket is a one to many style socket, and an association
7971 * was not found, then the id was invalid.
7972 */
7973 asoc = sctp_id2assoc(sk, id: encap.sue_assoc_id);
7974 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7975 sctp_style(sk, UDP)) {
7976 pr_debug("%s: failed no association\n", __func__);
7977 return -EINVAL;
7978 }
7979
7980 if (asoc) {
7981 encap_port = asoc->encap_port;
7982 goto out;
7983 }
7984
7985 encap_port = sctp_sk(sk)->encap_port;
7986
7987out:
7988 encap.sue_port = (__force uint16_t)encap_port;
7989 if (copy_to_user(to: optval, from: &encap, n: len))
7990 return -EFAULT;
7991
7992 if (put_user(len, optlen))
7993 return -EFAULT;
7994
7995 return 0;
7996}
7997
7998static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7999 char __user *optval,
8000 int __user *optlen)
8001{
8002 struct sctp_probeinterval params;
8003 struct sctp_association *asoc;
8004 struct sctp_transport *t;
8005 __u32 probe_interval;
8006
8007 if (len < sizeof(params))
8008 return -EINVAL;
8009
8010 len = sizeof(params);
8011 if (copy_from_user(to: &params, from: optval, n: len))
8012 return -EFAULT;
8013
8014 /* If an address other than INADDR_ANY is specified, and
8015 * no transport is found, then the request is invalid.
8016 */
8017 if (!sctp_is_any(sk, addr: (union sctp_addr *)&params.spi_address)) {
8018 t = sctp_addr_id2transport(sk, addr: &params.spi_address,
8019 id: params.spi_assoc_id);
8020 if (!t) {
8021 pr_debug("%s: failed no transport\n", __func__);
8022 return -EINVAL;
8023 }
8024
8025 probe_interval = jiffies_to_msecs(j: t->probe_interval);
8026 goto out;
8027 }
8028
8029 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8030 * socket is a one to many style socket, and an association
8031 * was not found, then the id was invalid.
8032 */
8033 asoc = sctp_id2assoc(sk, id: params.spi_assoc_id);
8034 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8035 sctp_style(sk, UDP)) {
8036 pr_debug("%s: failed no association\n", __func__);
8037 return -EINVAL;
8038 }
8039
8040 if (asoc) {
8041 probe_interval = jiffies_to_msecs(j: asoc->probe_interval);
8042 goto out;
8043 }
8044
8045 probe_interval = sctp_sk(sk)->probe_interval;
8046
8047out:
8048 params.spi_interval = probe_interval;
8049 if (copy_to_user(to: optval, from: &params, n: len))
8050 return -EFAULT;
8051
8052 if (put_user(len, optlen))
8053 return -EFAULT;
8054
8055 return 0;
8056}
8057
8058static int sctp_getsockopt(struct sock *sk, int level, int optname,
8059 char __user *optval, int __user *optlen)
8060{
8061 int retval = 0;
8062 int len;
8063
8064 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8065
8066 /* I can hardly begin to describe how wrong this is. This is
8067 * so broken as to be worse than useless. The API draft
8068 * REALLY is NOT helpful here... I am not convinced that the
8069 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8070 * are at all well-founded.
8071 */
8072 if (level != SOL_SCTP) {
8073 struct sctp_af *af = sctp_sk(sk)->pf->af;
8074
8075 retval = af->getsockopt(sk, level, optname, optval, optlen);
8076 return retval;
8077 }
8078
8079 if (get_user(len, optlen))
8080 return -EFAULT;
8081
8082 if (len < 0)
8083 return -EINVAL;
8084
8085 lock_sock(sk);
8086
8087 switch (optname) {
8088 case SCTP_STATUS:
8089 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8090 break;
8091 case SCTP_DISABLE_FRAGMENTS:
8092 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8093 optlen);
8094 break;
8095 case SCTP_EVENTS:
8096 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8097 break;
8098 case SCTP_AUTOCLOSE:
8099 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8100 break;
8101 case SCTP_SOCKOPT_PEELOFF:
8102 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8103 break;
8104 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8105 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8106 break;
8107 case SCTP_PEER_ADDR_PARAMS:
8108 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8109 optlen);
8110 break;
8111 case SCTP_DELAYED_SACK:
8112 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8113 optlen);
8114 break;
8115 case SCTP_INITMSG:
8116 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8117 break;
8118 case SCTP_GET_PEER_ADDRS:
8119 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8120 optlen);
8121 break;
8122 case SCTP_GET_LOCAL_ADDRS:
8123 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8124 optlen);
8125 break;
8126 case SCTP_SOCKOPT_CONNECTX3:
8127 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8128 break;
8129 case SCTP_DEFAULT_SEND_PARAM:
8130 retval = sctp_getsockopt_default_send_param(sk, len,
8131 optval, optlen);
8132 break;
8133 case SCTP_DEFAULT_SNDINFO:
8134 retval = sctp_getsockopt_default_sndinfo(sk, len,
8135 optval, optlen);
8136 break;
8137 case SCTP_PRIMARY_ADDR:
8138 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8139 break;
8140 case SCTP_NODELAY:
8141 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8142 break;
8143 case SCTP_RTOINFO:
8144 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8145 break;
8146 case SCTP_ASSOCINFO:
8147 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8148 break;
8149 case SCTP_I_WANT_MAPPED_V4_ADDR:
8150 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8151 break;
8152 case SCTP_MAXSEG:
8153 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8154 break;
8155 case SCTP_GET_PEER_ADDR_INFO:
8156 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8157 optlen);
8158 break;
8159 case SCTP_ADAPTATION_LAYER:
8160 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8161 optlen);
8162 break;
8163 case SCTP_CONTEXT:
8164 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8165 break;
8166 case SCTP_FRAGMENT_INTERLEAVE:
8167 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8168 optlen);
8169 break;
8170 case SCTP_PARTIAL_DELIVERY_POINT:
8171 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8172 optlen);
8173 break;
8174 case SCTP_MAX_BURST:
8175 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8176 break;
8177 case SCTP_AUTH_KEY:
8178 case SCTP_AUTH_CHUNK:
8179 case SCTP_AUTH_DELETE_KEY:
8180 case SCTP_AUTH_DEACTIVATE_KEY:
8181 retval = -EOPNOTSUPP;
8182 break;
8183 case SCTP_HMAC_IDENT:
8184 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8185 break;
8186 case SCTP_AUTH_ACTIVE_KEY:
8187 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8188 break;
8189 case SCTP_PEER_AUTH_CHUNKS:
8190 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8191 optlen);
8192 break;
8193 case SCTP_LOCAL_AUTH_CHUNKS:
8194 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8195 optlen);
8196 break;
8197 case SCTP_GET_ASSOC_NUMBER:
8198 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8199 break;
8200 case SCTP_GET_ASSOC_ID_LIST:
8201 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8202 break;
8203 case SCTP_AUTO_ASCONF:
8204 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8205 break;
8206 case SCTP_PEER_ADDR_THLDS:
8207 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8208 optlen, v2: false);
8209 break;
8210 case SCTP_PEER_ADDR_THLDS_V2:
8211 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8212 optlen, v2: true);
8213 break;
8214 case SCTP_GET_ASSOC_STATS:
8215 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8216 break;
8217 case SCTP_RECVRCVINFO:
8218 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8219 break;
8220 case SCTP_RECVNXTINFO:
8221 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8222 break;
8223 case SCTP_PR_SUPPORTED:
8224 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8225 break;
8226 case SCTP_DEFAULT_PRINFO:
8227 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8228 optlen);
8229 break;
8230 case SCTP_PR_ASSOC_STATUS:
8231 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8232 optlen);
8233 break;
8234 case SCTP_PR_STREAM_STATUS:
8235 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8236 optlen);
8237 break;
8238 case SCTP_RECONFIG_SUPPORTED:
8239 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8240 optlen);
8241 break;
8242 case SCTP_ENABLE_STREAM_RESET:
8243 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8244 optlen);
8245 break;
8246 case SCTP_STREAM_SCHEDULER:
8247 retval = sctp_getsockopt_scheduler(sk, len, optval,
8248 optlen);
8249 break;
8250 case SCTP_STREAM_SCHEDULER_VALUE:
8251 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8252 optlen);
8253 break;
8254 case SCTP_INTERLEAVING_SUPPORTED:
8255 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8256 optlen);
8257 break;
8258 case SCTP_REUSE_PORT:
8259 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8260 break;
8261 case SCTP_EVENT:
8262 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8263 break;
8264 case SCTP_ASCONF_SUPPORTED:
8265 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8266 optlen);
8267 break;
8268 case SCTP_AUTH_SUPPORTED:
8269 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8270 optlen);
8271 break;
8272 case SCTP_ECN_SUPPORTED:
8273 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8274 break;
8275 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8276 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8277 break;
8278 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8279 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8280 break;
8281 case SCTP_PLPMTUD_PROBE_INTERVAL:
8282 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8283 break;
8284 default:
8285 retval = -ENOPROTOOPT;
8286 break;
8287 }
8288
8289 release_sock(sk);
8290 return retval;
8291}
8292
8293static bool sctp_bpf_bypass_getsockopt(int level, int optname)
8294{
8295 if (level == SOL_SCTP) {
8296 switch (optname) {
8297 case SCTP_SOCKOPT_PEELOFF:
8298 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8299 case SCTP_SOCKOPT_CONNECTX3:
8300 return true;
8301 default:
8302 return false;
8303 }
8304 }
8305
8306 return false;
8307}
8308
8309static int sctp_hash(struct sock *sk)
8310{
8311 /* STUB */
8312 return 0;
8313}
8314
8315static void sctp_unhash(struct sock *sk)
8316{
8317 /* STUB */
8318}
8319
8320/* Check if port is acceptable. Possibly find first available port.
8321 *
8322 * The port hash table (contained in the 'global' SCTP protocol storage
8323 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8324 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8325 * list (the list number is the port number hashed out, so as you
8326 * would expect from a hash function, all the ports in a given list have
8327 * such a number that hashes out to the same list number; you were
8328 * expecting that, right?); so each list has a set of ports, with a
8329 * link to the socket (struct sock) that uses it, the port number and
8330 * a fastreuse flag (FIXME: NPI ipg).
8331 */
8332static struct sctp_bind_bucket *sctp_bucket_create(
8333 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8334
8335static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8336{
8337 struct sctp_sock *sp = sctp_sk(sk);
8338 bool reuse = (sk->sk_reuse || sp->reuse);
8339 struct sctp_bind_hashbucket *head; /* hash list */
8340 struct net *net = sock_net(sk);
8341 kuid_t uid = sock_i_uid(sk);
8342 struct sctp_bind_bucket *pp;
8343 unsigned short snum;
8344 int ret;
8345
8346 snum = ntohs(addr->v4.sin_port);
8347
8348 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8349
8350 if (snum == 0) {
8351 /* Search for an available port. */
8352 int low, high, remaining, index;
8353 unsigned int rover;
8354
8355 inet_sk_get_local_port_range(sk, low: &low, high: &high);
8356 remaining = (high - low) + 1;
8357 rover = get_random_u32_below(ceil: remaining) + low;
8358
8359 do {
8360 rover++;
8361 if ((rover < low) || (rover > high))
8362 rover = low;
8363 if (inet_is_local_reserved_port(net, port: rover))
8364 continue;
8365 index = sctp_phashfn(net, lport: rover);
8366 head = &sctp_port_hashtable[index];
8367 spin_lock_bh(lock: &head->lock);
8368 sctp_for_each_hentry(pp, &head->chain)
8369 if ((pp->port == rover) &&
8370 net_eq(net1: net, net2: pp->net))
8371 goto next;
8372 break;
8373 next:
8374 spin_unlock_bh(lock: &head->lock);
8375 cond_resched();
8376 } while (--remaining > 0);
8377
8378 /* Exhausted local port range during search? */
8379 ret = 1;
8380 if (remaining <= 0)
8381 return ret;
8382
8383 /* OK, here is the one we will use. HEAD (the port
8384 * hash table list entry) is non-NULL and we hold it's
8385 * mutex.
8386 */
8387 snum = rover;
8388 } else {
8389 /* We are given an specific port number; we verify
8390 * that it is not being used. If it is used, we will
8391 * exahust the search in the hash list corresponding
8392 * to the port number (snum) - we detect that with the
8393 * port iterator, pp being NULL.
8394 */
8395 head = &sctp_port_hashtable[sctp_phashfn(net, lport: snum)];
8396 spin_lock_bh(lock: &head->lock);
8397 sctp_for_each_hentry(pp, &head->chain) {
8398 if ((pp->port == snum) && net_eq(net1: pp->net, net2: net))
8399 goto pp_found;
8400 }
8401 }
8402 pp = NULL;
8403 goto pp_not_found;
8404pp_found:
8405 if (!hlist_empty(h: &pp->owner)) {
8406 /* We had a port hash table hit - there is an
8407 * available port (pp != NULL) and it is being
8408 * used by other socket (pp->owner not empty); that other
8409 * socket is going to be sk2.
8410 */
8411 struct sock *sk2;
8412
8413 pr_debug("%s: found a possible match\n", __func__);
8414
8415 if ((pp->fastreuse && reuse &&
8416 sk->sk_state != SCTP_SS_LISTENING) ||
8417 (pp->fastreuseport && sk->sk_reuseport &&
8418 uid_eq(left: pp->fastuid, right: uid)))
8419 goto success;
8420
8421 /* Run through the list of sockets bound to the port
8422 * (pp->port) [via the pointers bind_next and
8423 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8424 * we get the endpoint they describe and run through
8425 * the endpoint's list of IP (v4 or v6) addresses,
8426 * comparing each of the addresses with the address of
8427 * the socket sk. If we find a match, then that means
8428 * that this port/socket (sk) combination are already
8429 * in an endpoint.
8430 */
8431 sk_for_each_bound(sk2, &pp->owner) {
8432 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8433 struct sctp_sock *sp2 = sctp_sk(sk2);
8434 struct sctp_endpoint *ep2 = sp2->ep;
8435
8436 if (sk == sk2 ||
8437 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8438 sk2->sk_state != SCTP_SS_LISTENING) ||
8439 (sk->sk_reuseport && sk2->sk_reuseport &&
8440 uid_eq(left: uid, right: sock_i_uid(sk: sk2))))
8441 continue;
8442
8443 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8444 sk->sk_bound_dev_if == bound_dev_if2) &&
8445 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8446 addr, sp2, sp)) {
8447 ret = 1;
8448 goto fail_unlock;
8449 }
8450 }
8451
8452 pr_debug("%s: found a match\n", __func__);
8453 }
8454pp_not_found:
8455 /* If there was a hash table miss, create a new port. */
8456 ret = 1;
8457 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8458 goto fail_unlock;
8459
8460 /* In either case (hit or miss), make sure fastreuse is 1 only
8461 * if sk->sk_reuse is too (that is, if the caller requested
8462 * SO_REUSEADDR on this socket -sk-).
8463 */
8464 if (hlist_empty(h: &pp->owner)) {
8465 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8466 pp->fastreuse = 1;
8467 else
8468 pp->fastreuse = 0;
8469
8470 if (sk->sk_reuseport) {
8471 pp->fastreuseport = 1;
8472 pp->fastuid = uid;
8473 } else {
8474 pp->fastreuseport = 0;
8475 }
8476 } else {
8477 if (pp->fastreuse &&
8478 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8479 pp->fastreuse = 0;
8480
8481 if (pp->fastreuseport &&
8482 (!sk->sk_reuseport || !uid_eq(left: pp->fastuid, right: uid)))
8483 pp->fastreuseport = 0;
8484 }
8485
8486 /* We are set, so fill up all the data in the hash table
8487 * entry, tie the socket list information with the rest of the
8488 * sockets FIXME: Blurry, NPI (ipg).
8489 */
8490success:
8491 if (!sp->bind_hash) {
8492 inet_sk(sk)->inet_num = snum;
8493 sk_add_bind_node(sk, list: &pp->owner);
8494 sp->bind_hash = pp;
8495 }
8496 ret = 0;
8497
8498fail_unlock:
8499 spin_unlock_bh(lock: &head->lock);
8500 return ret;
8501}
8502
8503/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8504 * port is requested.
8505 */
8506static int sctp_get_port(struct sock *sk, unsigned short snum)
8507{
8508 union sctp_addr addr;
8509 struct sctp_af *af = sctp_sk(sk)->pf->af;
8510
8511 /* Set up a dummy address struct from the sk. */
8512 af->from_sk(&addr, sk);
8513 addr.v4.sin_port = htons(snum);
8514
8515 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8516 return sctp_get_port_local(sk, addr: &addr);
8517}
8518
8519/*
8520 * Move a socket to LISTENING state.
8521 */
8522static int sctp_listen_start(struct sock *sk, int backlog)
8523{
8524 struct sctp_sock *sp = sctp_sk(sk);
8525 struct sctp_endpoint *ep = sp->ep;
8526 struct crypto_shash *tfm = NULL;
8527 char alg[32];
8528
8529 /* Allocate HMAC for generating cookie. */
8530 if (!sp->hmac && sp->sctp_hmac_alg) {
8531 sprintf(buf: alg, fmt: "hmac(%s)", sp->sctp_hmac_alg);
8532 tfm = crypto_alloc_shash(alg_name: alg, type: 0, mask: 0);
8533 if (IS_ERR(ptr: tfm)) {
8534 net_info_ratelimited("failed to load transform for %s: %ld\n",
8535 sp->sctp_hmac_alg, PTR_ERR(tfm));
8536 return -ENOSYS;
8537 }
8538 sctp_sk(sk)->hmac = tfm;
8539 }
8540
8541 /*
8542 * If a bind() or sctp_bindx() is not called prior to a listen()
8543 * call that allows new associations to be accepted, the system
8544 * picks an ephemeral port and will choose an address set equivalent
8545 * to binding with a wildcard address.
8546 *
8547 * This is not currently spelled out in the SCTP sockets
8548 * extensions draft, but follows the practice as seen in TCP
8549 * sockets.
8550 *
8551 */
8552 inet_sk_set_state(sk, state: SCTP_SS_LISTENING);
8553 if (!ep->base.bind_addr.port) {
8554 if (sctp_autobind(sk))
8555 return -EAGAIN;
8556 } else {
8557 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8558 inet_sk_set_state(sk, state: SCTP_SS_CLOSED);
8559 return -EADDRINUSE;
8560 }
8561 }
8562
8563 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8564 return sctp_hash_endpoint(ep);
8565}
8566
8567/*
8568 * 4.1.3 / 5.1.3 listen()
8569 *
8570 * By default, new associations are not accepted for UDP style sockets.
8571 * An application uses listen() to mark a socket as being able to
8572 * accept new associations.
8573 *
8574 * On TCP style sockets, applications use listen() to ready the SCTP
8575 * endpoint for accepting inbound associations.
8576 *
8577 * On both types of endpoints a backlog of '0' disables listening.
8578 *
8579 * Move a socket to LISTENING state.
8580 */
8581int sctp_inet_listen(struct socket *sock, int backlog)
8582{
8583 struct sock *sk = sock->sk;
8584 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8585 int err = -EINVAL;
8586
8587 if (unlikely(backlog < 0))
8588 return err;
8589
8590 lock_sock(sk);
8591
8592 /* Peeled-off sockets are not allowed to listen(). */
8593 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8594 goto out;
8595
8596 if (sock->state != SS_UNCONNECTED)
8597 goto out;
8598
8599 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8600 goto out;
8601
8602 /* If backlog is zero, disable listening. */
8603 if (!backlog) {
8604 if (sctp_sstate(sk, CLOSED))
8605 goto out;
8606
8607 err = 0;
8608 sctp_unhash_endpoint(ep);
8609 sk->sk_state = SCTP_SS_CLOSED;
8610 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8611 sctp_sk(sk)->bind_hash->fastreuse = 1;
8612 goto out;
8613 }
8614
8615 /* If we are already listening, just update the backlog */
8616 if (sctp_sstate(sk, LISTENING))
8617 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8618 else {
8619 err = sctp_listen_start(sk, backlog);
8620 if (err)
8621 goto out;
8622 }
8623
8624 err = 0;
8625out:
8626 release_sock(sk);
8627 return err;
8628}
8629
8630/*
8631 * This function is done by modeling the current datagram_poll() and the
8632 * tcp_poll(). Note that, based on these implementations, we don't
8633 * lock the socket in this function, even though it seems that,
8634 * ideally, locking or some other mechanisms can be used to ensure
8635 * the integrity of the counters (sndbuf and wmem_alloc) used
8636 * in this place. We assume that we don't need locks either until proven
8637 * otherwise.
8638 *
8639 * Another thing to note is that we include the Async I/O support
8640 * here, again, by modeling the current TCP/UDP code. We don't have
8641 * a good way to test with it yet.
8642 */
8643__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8644{
8645 struct sock *sk = sock->sk;
8646 struct sctp_sock *sp = sctp_sk(sk);
8647 __poll_t mask;
8648
8649 poll_wait(filp: file, wait_address: sk_sleep(sk), p: wait);
8650
8651 sock_rps_record_flow(sk);
8652
8653 /* A TCP-style listening socket becomes readable when the accept queue
8654 * is not empty.
8655 */
8656 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8657 return (!list_empty(head: &sp->ep->asocs)) ?
8658 (EPOLLIN | EPOLLRDNORM) : 0;
8659
8660 mask = 0;
8661
8662 /* Is there any exceptional events? */
8663 if (sk->sk_err || !skb_queue_empty_lockless(list: &sk->sk_error_queue))
8664 mask |= EPOLLERR |
8665 (sock_flag(sk, flag: SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8666 if (sk->sk_shutdown & RCV_SHUTDOWN)
8667 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8668 if (sk->sk_shutdown == SHUTDOWN_MASK)
8669 mask |= EPOLLHUP;
8670
8671 /* Is it readable? Reconsider this code with TCP-style support. */
8672 if (!skb_queue_empty_lockless(list: &sk->sk_receive_queue))
8673 mask |= EPOLLIN | EPOLLRDNORM;
8674
8675 /* The association is either gone or not ready. */
8676 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8677 return mask;
8678
8679 /* Is it writable? */
8680 if (sctp_writeable(sk)) {
8681 mask |= EPOLLOUT | EPOLLWRNORM;
8682 } else {
8683 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8684 /*
8685 * Since the socket is not locked, the buffer
8686 * might be made available after the writeable check and
8687 * before the bit is set. This could cause a lost I/O
8688 * signal. tcp_poll() has a race breaker for this race
8689 * condition. Based on their implementation, we put
8690 * in the following code to cover it as well.
8691 */
8692 if (sctp_writeable(sk))
8693 mask |= EPOLLOUT | EPOLLWRNORM;
8694 }
8695 return mask;
8696}
8697
8698/********************************************************************
8699 * 2nd Level Abstractions
8700 ********************************************************************/
8701
8702static struct sctp_bind_bucket *sctp_bucket_create(
8703 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8704{
8705 struct sctp_bind_bucket *pp;
8706
8707 pp = kmem_cache_alloc(cachep: sctp_bucket_cachep, GFP_ATOMIC);
8708 if (pp) {
8709 SCTP_DBG_OBJCNT_INC(bind_bucket);
8710 pp->port = snum;
8711 pp->fastreuse = 0;
8712 INIT_HLIST_HEAD(&pp->owner);
8713 pp->net = net;
8714 hlist_add_head(n: &pp->node, h: &head->chain);
8715 }
8716 return pp;
8717}
8718
8719/* Caller must hold hashbucket lock for this tb with local BH disabled */
8720static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8721{
8722 if (pp && hlist_empty(h: &pp->owner)) {
8723 __hlist_del(n: &pp->node);
8724 kmem_cache_free(s: sctp_bucket_cachep, objp: pp);
8725 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8726 }
8727}
8728
8729/* Release this socket's reference to a local port. */
8730static inline void __sctp_put_port(struct sock *sk)
8731{
8732 struct sctp_bind_hashbucket *head =
8733 &sctp_port_hashtable[sctp_phashfn(net: sock_net(sk),
8734 inet_sk(sk)->inet_num)];
8735 struct sctp_bind_bucket *pp;
8736
8737 spin_lock(lock: &head->lock);
8738 pp = sctp_sk(sk)->bind_hash;
8739 __sk_del_bind_node(sk);
8740 sctp_sk(sk)->bind_hash = NULL;
8741 inet_sk(sk)->inet_num = 0;
8742 sctp_bucket_destroy(pp);
8743 spin_unlock(lock: &head->lock);
8744}
8745
8746void sctp_put_port(struct sock *sk)
8747{
8748 local_bh_disable();
8749 __sctp_put_port(sk);
8750 local_bh_enable();
8751}
8752
8753/*
8754 * The system picks an ephemeral port and choose an address set equivalent
8755 * to binding with a wildcard address.
8756 * One of those addresses will be the primary address for the association.
8757 * This automatically enables the multihoming capability of SCTP.
8758 */
8759static int sctp_autobind(struct sock *sk)
8760{
8761 union sctp_addr autoaddr;
8762 struct sctp_af *af;
8763 __be16 port;
8764
8765 /* Initialize a local sockaddr structure to INADDR_ANY. */
8766 af = sctp_sk(sk)->pf->af;
8767
8768 port = htons(inet_sk(sk)->inet_num);
8769 af->inaddr_any(&autoaddr, port);
8770
8771 return sctp_do_bind(sk, addr: &autoaddr, len: af->sockaddr_len);
8772}
8773
8774/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8775 *
8776 * From RFC 2292
8777 * 4.2 The cmsghdr Structure *
8778 *
8779 * When ancillary data is sent or received, any number of ancillary data
8780 * objects can be specified by the msg_control and msg_controllen members of
8781 * the msghdr structure, because each object is preceded by
8782 * a cmsghdr structure defining the object's length (the cmsg_len member).
8783 * Historically Berkeley-derived implementations have passed only one object
8784 * at a time, but this API allows multiple objects to be
8785 * passed in a single call to sendmsg() or recvmsg(). The following example
8786 * shows two ancillary data objects in a control buffer.
8787 *
8788 * |<--------------------------- msg_controllen -------------------------->|
8789 * | |
8790 *
8791 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8792 *
8793 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8794 * | | |
8795 *
8796 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8797 *
8798 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8799 * | | | | |
8800 *
8801 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8802 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8803 *
8804 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8805 *
8806 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8807 * ^
8808 * |
8809 *
8810 * msg_control
8811 * points here
8812 */
8813static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8814{
8815 struct msghdr *my_msg = (struct msghdr *)msg;
8816 struct cmsghdr *cmsg;
8817
8818 for_each_cmsghdr(cmsg, my_msg) {
8819 if (!CMSG_OK(my_msg, cmsg))
8820 return -EINVAL;
8821
8822 /* Should we parse this header or ignore? */
8823 if (cmsg->cmsg_level != IPPROTO_SCTP)
8824 continue;
8825
8826 /* Strictly check lengths following example in SCM code. */
8827 switch (cmsg->cmsg_type) {
8828 case SCTP_INIT:
8829 /* SCTP Socket API Extension
8830 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8831 *
8832 * This cmsghdr structure provides information for
8833 * initializing new SCTP associations with sendmsg().
8834 * The SCTP_INITMSG socket option uses this same data
8835 * structure. This structure is not used for
8836 * recvmsg().
8837 *
8838 * cmsg_level cmsg_type cmsg_data[]
8839 * ------------ ------------ ----------------------
8840 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8841 */
8842 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8843 return -EINVAL;
8844
8845 cmsgs->init = CMSG_DATA(cmsg);
8846 break;
8847
8848 case SCTP_SNDRCV:
8849 /* SCTP Socket API Extension
8850 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8851 *
8852 * This cmsghdr structure specifies SCTP options for
8853 * sendmsg() and describes SCTP header information
8854 * about a received message through recvmsg().
8855 *
8856 * cmsg_level cmsg_type cmsg_data[]
8857 * ------------ ------------ ----------------------
8858 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8859 */
8860 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8861 return -EINVAL;
8862
8863 cmsgs->srinfo = CMSG_DATA(cmsg);
8864
8865 if (cmsgs->srinfo->sinfo_flags &
8866 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8867 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8868 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8869 return -EINVAL;
8870 break;
8871
8872 case SCTP_SNDINFO:
8873 /* SCTP Socket API Extension
8874 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8875 *
8876 * This cmsghdr structure specifies SCTP options for
8877 * sendmsg(). This structure and SCTP_RCVINFO replaces
8878 * SCTP_SNDRCV which has been deprecated.
8879 *
8880 * cmsg_level cmsg_type cmsg_data[]
8881 * ------------ ------------ ---------------------
8882 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8883 */
8884 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8885 return -EINVAL;
8886
8887 cmsgs->sinfo = CMSG_DATA(cmsg);
8888
8889 if (cmsgs->sinfo->snd_flags &
8890 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8891 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8892 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8893 return -EINVAL;
8894 break;
8895 case SCTP_PRINFO:
8896 /* SCTP Socket API Extension
8897 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8898 *
8899 * This cmsghdr structure specifies SCTP options for sendmsg().
8900 *
8901 * cmsg_level cmsg_type cmsg_data[]
8902 * ------------ ------------ ---------------------
8903 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8904 */
8905 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8906 return -EINVAL;
8907
8908 cmsgs->prinfo = CMSG_DATA(cmsg);
8909 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8910 return -EINVAL;
8911
8912 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8913 cmsgs->prinfo->pr_value = 0;
8914 break;
8915 case SCTP_AUTHINFO:
8916 /* SCTP Socket API Extension
8917 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8918 *
8919 * This cmsghdr structure specifies SCTP options for sendmsg().
8920 *
8921 * cmsg_level cmsg_type cmsg_data[]
8922 * ------------ ------------ ---------------------
8923 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8924 */
8925 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8926 return -EINVAL;
8927
8928 cmsgs->authinfo = CMSG_DATA(cmsg);
8929 break;
8930 case SCTP_DSTADDRV4:
8931 case SCTP_DSTADDRV6:
8932 /* SCTP Socket API Extension
8933 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8934 *
8935 * This cmsghdr structure specifies SCTP options for sendmsg().
8936 *
8937 * cmsg_level cmsg_type cmsg_data[]
8938 * ------------ ------------ ---------------------
8939 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8940 * ------------ ------------ ---------------------
8941 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8942 */
8943 cmsgs->addrs_msg = my_msg;
8944 break;
8945 default:
8946 return -EINVAL;
8947 }
8948 }
8949
8950 return 0;
8951}
8952
8953/*
8954 * Wait for a packet..
8955 * Note: This function is the same function as in core/datagram.c
8956 * with a few modifications to make lksctp work.
8957 */
8958static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8959{
8960 int error;
8961 DEFINE_WAIT(wait);
8962
8963 prepare_to_wait_exclusive(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE);
8964
8965 /* Socket errors? */
8966 error = sock_error(sk);
8967 if (error)
8968 goto out;
8969
8970 if (!skb_queue_empty(list: &sk->sk_receive_queue))
8971 goto ready;
8972
8973 /* Socket shut down? */
8974 if (sk->sk_shutdown & RCV_SHUTDOWN)
8975 goto out;
8976
8977 /* Sequenced packets can come disconnected. If so we report the
8978 * problem.
8979 */
8980 error = -ENOTCONN;
8981
8982 /* Is there a good reason to think that we may receive some data? */
8983 if (list_empty(head: &sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8984 goto out;
8985
8986 /* Handle signals. */
8987 if (signal_pending(current))
8988 goto interrupted;
8989
8990 /* Let another process have a go. Since we are going to sleep
8991 * anyway. Note: This may cause odd behaviors if the message
8992 * does not fit in the user's buffer, but this seems to be the
8993 * only way to honor MSG_DONTWAIT realistically.
8994 */
8995 release_sock(sk);
8996 *timeo_p = schedule_timeout(timeout: *timeo_p);
8997 lock_sock(sk);
8998
8999ready:
9000 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
9001 return 0;
9002
9003interrupted:
9004 error = sock_intr_errno(timeo: *timeo_p);
9005
9006out:
9007 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
9008 *err = error;
9009 return error;
9010}
9011
9012/* Receive a datagram.
9013 * Note: This is pretty much the same routine as in core/datagram.c
9014 * with a few changes to make lksctp work.
9015 */
9016struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
9017{
9018 int error;
9019 struct sk_buff *skb;
9020 long timeo;
9021
9022 timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
9023
9024 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
9025 MAX_SCHEDULE_TIMEOUT);
9026
9027 do {
9028 /* Again only user level code calls this function,
9029 * so nothing interrupt level
9030 * will suddenly eat the receive_queue.
9031 *
9032 * Look at current nfs client by the way...
9033 * However, this function was correct in any case. 8)
9034 */
9035 if (flags & MSG_PEEK) {
9036 skb = skb_peek(list_: &sk->sk_receive_queue);
9037 if (skb)
9038 refcount_inc(r: &skb->users);
9039 } else {
9040 skb = __skb_dequeue(list: &sk->sk_receive_queue);
9041 }
9042
9043 if (skb)
9044 return skb;
9045
9046 /* Caller is allowed not to check sk->sk_err before calling. */
9047 error = sock_error(sk);
9048 if (error)
9049 goto no_packet;
9050
9051 if (sk->sk_shutdown & RCV_SHUTDOWN)
9052 break;
9053
9054
9055 /* User doesn't want to wait. */
9056 error = -EAGAIN;
9057 if (!timeo)
9058 goto no_packet;
9059 } while (sctp_wait_for_packet(sk, err, timeo_p: &timeo) == 0);
9060
9061 return NULL;
9062
9063no_packet:
9064 *err = error;
9065 return NULL;
9066}
9067
9068/* If sndbuf has changed, wake up per association sndbuf waiters. */
9069static void __sctp_write_space(struct sctp_association *asoc)
9070{
9071 struct sock *sk = asoc->base.sk;
9072
9073 if (sctp_wspace(asoc) <= 0)
9074 return;
9075
9076 if (waitqueue_active(wq_head: &asoc->wait))
9077 wake_up_interruptible(&asoc->wait);
9078
9079 if (sctp_writeable(sk)) {
9080 struct socket_wq *wq;
9081
9082 rcu_read_lock();
9083 wq = rcu_dereference(sk->sk_wq);
9084 if (wq) {
9085 if (waitqueue_active(wq_head: &wq->wait))
9086 wake_up_interruptible(&wq->wait);
9087
9088 /* Note that we try to include the Async I/O support
9089 * here by modeling from the current TCP/UDP code.
9090 * We have not tested with it yet.
9091 */
9092 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9093 sock_wake_async(sk_wq: wq, how: SOCK_WAKE_SPACE, POLL_OUT);
9094 }
9095 rcu_read_unlock();
9096 }
9097}
9098
9099static void sctp_wake_up_waiters(struct sock *sk,
9100 struct sctp_association *asoc)
9101{
9102 struct sctp_association *tmp = asoc;
9103
9104 /* We do accounting for the sndbuf space per association,
9105 * so we only need to wake our own association.
9106 */
9107 if (asoc->ep->sndbuf_policy)
9108 return __sctp_write_space(asoc);
9109
9110 /* If association goes down and is just flushing its
9111 * outq, then just normally notify others.
9112 */
9113 if (asoc->base.dead)
9114 return sctp_write_space(sk);
9115
9116 /* Accounting for the sndbuf space is per socket, so we
9117 * need to wake up others, try to be fair and in case of
9118 * other associations, let them have a go first instead
9119 * of just doing a sctp_write_space() call.
9120 *
9121 * Note that we reach sctp_wake_up_waiters() only when
9122 * associations free up queued chunks, thus we are under
9123 * lock and the list of associations on a socket is
9124 * guaranteed not to change.
9125 */
9126 for (tmp = list_next_entry(tmp, asocs); 1;
9127 tmp = list_next_entry(tmp, asocs)) {
9128 /* Manually skip the head element. */
9129 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9130 continue;
9131 /* Wake up association. */
9132 __sctp_write_space(asoc: tmp);
9133 /* We've reached the end. */
9134 if (tmp == asoc)
9135 break;
9136 }
9137}
9138
9139/* Do accounting for the sndbuf space.
9140 * Decrement the used sndbuf space of the corresponding association by the
9141 * data size which was just transmitted(freed).
9142 */
9143static void sctp_wfree(struct sk_buff *skb)
9144{
9145 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9146 struct sctp_association *asoc = chunk->asoc;
9147 struct sock *sk = asoc->base.sk;
9148
9149 sk_mem_uncharge(sk, size: skb->truesize);
9150 sk_wmem_queued_add(sk, val: -(skb->truesize + sizeof(struct sctp_chunk)));
9151 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9152 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9153 &sk->sk_wmem_alloc));
9154
9155 if (chunk->shkey) {
9156 struct sctp_shared_key *shkey = chunk->shkey;
9157
9158 /* refcnt == 2 and !list_empty mean after this release, it's
9159 * not being used anywhere, and it's time to notify userland
9160 * that this shkey can be freed if it's been deactivated.
9161 */
9162 if (shkey->deactivated && !list_empty(head: &shkey->key_list) &&
9163 refcount_read(r: &shkey->refcnt) == 2) {
9164 struct sctp_ulpevent *ev;
9165
9166 ev = sctp_ulpevent_make_authkey(asoc, key_id: shkey->key_id,
9167 indication: SCTP_AUTH_FREE_KEY,
9168 GFP_KERNEL);
9169 if (ev)
9170 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9171 }
9172 sctp_auth_shkey_release(sh_key: chunk->shkey);
9173 }
9174
9175 sock_wfree(skb);
9176 sctp_wake_up_waiters(sk, asoc);
9177
9178 sctp_association_put(asoc);
9179}
9180
9181/* Do accounting for the receive space on the socket.
9182 * Accounting for the association is done in ulpevent.c
9183 * We set this as a destructor for the cloned data skbs so that
9184 * accounting is done at the correct time.
9185 */
9186void sctp_sock_rfree(struct sk_buff *skb)
9187{
9188 struct sock *sk = skb->sk;
9189 struct sctp_ulpevent *event = sctp_skb2event(skb);
9190
9191 atomic_sub(i: event->rmem_len, v: &sk->sk_rmem_alloc);
9192
9193 /*
9194 * Mimic the behavior of sock_rfree
9195 */
9196 sk_mem_uncharge(sk, size: event->rmem_len);
9197}
9198
9199
9200/* Helper function to wait for space in the sndbuf. */
9201static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9202 size_t msg_len)
9203{
9204 struct sock *sk = asoc->base.sk;
9205 long current_timeo = *timeo_p;
9206 DEFINE_WAIT(wait);
9207 int err = 0;
9208
9209 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9210 *timeo_p, msg_len);
9211
9212 /* Increment the association's refcnt. */
9213 sctp_association_hold(asoc);
9214
9215 /* Wait on the association specific sndbuf space. */
9216 for (;;) {
9217 prepare_to_wait_exclusive(wq_head: &asoc->wait, wq_entry: &wait,
9218 TASK_INTERRUPTIBLE);
9219 if (asoc->base.dead)
9220 goto do_dead;
9221 if (!*timeo_p)
9222 goto do_nonblock;
9223 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9224 goto do_error;
9225 if (signal_pending(current))
9226 goto do_interrupted;
9227 if ((int)msg_len <= sctp_wspace(asoc) &&
9228 sk_wmem_schedule(sk, size: msg_len))
9229 break;
9230
9231 /* Let another process have a go. Since we are going
9232 * to sleep anyway.
9233 */
9234 release_sock(sk);
9235 current_timeo = schedule_timeout(timeout: current_timeo);
9236 lock_sock(sk);
9237 if (sk != asoc->base.sk)
9238 goto do_error;
9239
9240 *timeo_p = current_timeo;
9241 }
9242
9243out:
9244 finish_wait(wq_head: &asoc->wait, wq_entry: &wait);
9245
9246 /* Release the association's refcnt. */
9247 sctp_association_put(asoc);
9248
9249 return err;
9250
9251do_dead:
9252 err = -ESRCH;
9253 goto out;
9254
9255do_error:
9256 err = -EPIPE;
9257 goto out;
9258
9259do_interrupted:
9260 err = sock_intr_errno(timeo: *timeo_p);
9261 goto out;
9262
9263do_nonblock:
9264 err = -EAGAIN;
9265 goto out;
9266}
9267
9268void sctp_data_ready(struct sock *sk)
9269{
9270 struct socket_wq *wq;
9271
9272 trace_sk_data_ready(sk);
9273
9274 rcu_read_lock();
9275 wq = rcu_dereference(sk->sk_wq);
9276 if (skwq_has_sleeper(wq))
9277 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9278 EPOLLRDNORM | EPOLLRDBAND);
9279 sk_wake_async(sk, how: SOCK_WAKE_WAITD, POLL_IN);
9280 rcu_read_unlock();
9281}
9282
9283/* If socket sndbuf has changed, wake up all per association waiters. */
9284void sctp_write_space(struct sock *sk)
9285{
9286 struct sctp_association *asoc;
9287
9288 /* Wake up the tasks in each wait queue. */
9289 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9290 __sctp_write_space(asoc);
9291 }
9292}
9293
9294/* Is there any sndbuf space available on the socket?
9295 *
9296 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9297 * associations on the same socket. For a UDP-style socket with
9298 * multiple associations, it is possible for it to be "unwriteable"
9299 * prematurely. I assume that this is acceptable because
9300 * a premature "unwriteable" is better than an accidental "writeable" which
9301 * would cause an unwanted block under certain circumstances. For the 1-1
9302 * UDP-style sockets or TCP-style sockets, this code should work.
9303 * - Daisy
9304 */
9305static bool sctp_writeable(const struct sock *sk)
9306{
9307 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued);
9308}
9309
9310/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9311 * returns immediately with EINPROGRESS.
9312 */
9313static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9314{
9315 struct sock *sk = asoc->base.sk;
9316 int err = 0;
9317 long current_timeo = *timeo_p;
9318 DEFINE_WAIT(wait);
9319
9320 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9321
9322 /* Increment the association's refcnt. */
9323 sctp_association_hold(asoc);
9324
9325 for (;;) {
9326 prepare_to_wait_exclusive(wq_head: &asoc->wait, wq_entry: &wait,
9327 TASK_INTERRUPTIBLE);
9328 if (!*timeo_p)
9329 goto do_nonblock;
9330 if (sk->sk_shutdown & RCV_SHUTDOWN)
9331 break;
9332 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9333 asoc->base.dead)
9334 goto do_error;
9335 if (signal_pending(current))
9336 goto do_interrupted;
9337
9338 if (sctp_state(asoc, ESTABLISHED))
9339 break;
9340
9341 /* Let another process have a go. Since we are going
9342 * to sleep anyway.
9343 */
9344 release_sock(sk);
9345 current_timeo = schedule_timeout(timeout: current_timeo);
9346 lock_sock(sk);
9347
9348 *timeo_p = current_timeo;
9349 }
9350
9351out:
9352 finish_wait(wq_head: &asoc->wait, wq_entry: &wait);
9353
9354 /* Release the association's refcnt. */
9355 sctp_association_put(asoc);
9356
9357 return err;
9358
9359do_error:
9360 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9361 err = -ETIMEDOUT;
9362 else
9363 err = -ECONNREFUSED;
9364 goto out;
9365
9366do_interrupted:
9367 err = sock_intr_errno(timeo: *timeo_p);
9368 goto out;
9369
9370do_nonblock:
9371 err = -EINPROGRESS;
9372 goto out;
9373}
9374
9375static int sctp_wait_for_accept(struct sock *sk, long timeo)
9376{
9377 struct sctp_endpoint *ep;
9378 int err = 0;
9379 DEFINE_WAIT(wait);
9380
9381 ep = sctp_sk(sk)->ep;
9382
9383
9384 for (;;) {
9385 prepare_to_wait_exclusive(wq_head: sk_sleep(sk), wq_entry: &wait,
9386 TASK_INTERRUPTIBLE);
9387
9388 if (list_empty(head: &ep->asocs)) {
9389 release_sock(sk);
9390 timeo = schedule_timeout(timeout: timeo);
9391 lock_sock(sk);
9392 }
9393
9394 err = -EINVAL;
9395 if (!sctp_sstate(sk, LISTENING))
9396 break;
9397
9398 err = 0;
9399 if (!list_empty(head: &ep->asocs))
9400 break;
9401
9402 err = sock_intr_errno(timeo);
9403 if (signal_pending(current))
9404 break;
9405
9406 err = -EAGAIN;
9407 if (!timeo)
9408 break;
9409 }
9410
9411 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
9412
9413 return err;
9414}
9415
9416static void sctp_wait_for_close(struct sock *sk, long timeout)
9417{
9418 DEFINE_WAIT(wait);
9419
9420 do {
9421 prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE);
9422 if (list_empty(head: &sctp_sk(sk)->ep->asocs))
9423 break;
9424 release_sock(sk);
9425 timeout = schedule_timeout(timeout);
9426 lock_sock(sk);
9427 } while (!signal_pending(current) && timeout);
9428
9429 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
9430}
9431
9432static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9433{
9434 struct sk_buff *frag;
9435
9436 if (!skb->data_len)
9437 goto done;
9438
9439 /* Don't forget the fragments. */
9440 skb_walk_frags(skb, frag)
9441 sctp_skb_set_owner_r_frag(skb: frag, sk);
9442
9443done:
9444 sctp_skb_set_owner_r(skb, sk);
9445}
9446
9447void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9448 struct sctp_association *asoc)
9449{
9450 struct inet_sock *inet = inet_sk(sk);
9451 struct inet_sock *newinet;
9452 struct sctp_sock *sp = sctp_sk(sk);
9453
9454 newsk->sk_type = sk->sk_type;
9455 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9456 newsk->sk_flags = sk->sk_flags;
9457 newsk->sk_tsflags = sk->sk_tsflags;
9458 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9459 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9460 newsk->sk_reuse = sk->sk_reuse;
9461 sctp_sk(newsk)->reuse = sp->reuse;
9462
9463 newsk->sk_shutdown = sk->sk_shutdown;
9464 newsk->sk_destruct = sk->sk_destruct;
9465 newsk->sk_family = sk->sk_family;
9466 newsk->sk_protocol = IPPROTO_SCTP;
9467 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9468 newsk->sk_sndbuf = sk->sk_sndbuf;
9469 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9470 newsk->sk_lingertime = sk->sk_lingertime;
9471 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9472 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9473 newsk->sk_rxhash = sk->sk_rxhash;
9474
9475 newinet = inet_sk(newsk);
9476
9477 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9478 * getsockname() and getpeername()
9479 */
9480 newinet->inet_sport = inet->inet_sport;
9481 newinet->inet_saddr = inet->inet_saddr;
9482 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9483 newinet->inet_dport = htons(asoc->peer.port);
9484 newinet->pmtudisc = inet->pmtudisc;
9485 atomic_set(v: &newinet->inet_id, i: get_random_u16());
9486
9487 newinet->uc_ttl = inet->uc_ttl;
9488 inet_set_bit(MC_LOOP, newsk);
9489 newinet->mc_ttl = 1;
9490 newinet->mc_index = 0;
9491 newinet->mc_list = NULL;
9492
9493 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9494 net_enable_timestamp();
9495
9496 /* Set newsk security attributes from original sk and connection
9497 * security attribute from asoc.
9498 */
9499 security_sctp_sk_clone(asoc, sk, newsk);
9500}
9501
9502static inline void sctp_copy_descendant(struct sock *sk_to,
9503 const struct sock *sk_from)
9504{
9505 size_t ancestor_size = sizeof(struct inet_sock);
9506
9507 ancestor_size += sk_from->sk_prot->obj_size;
9508 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9509 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9510}
9511
9512/* Populate the fields of the newsk from the oldsk and migrate the assoc
9513 * and its messages to the newsk.
9514 */
9515static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9516 struct sctp_association *assoc,
9517 enum sctp_socket_type type)
9518{
9519 struct sctp_sock *oldsp = sctp_sk(oldsk);
9520 struct sctp_sock *newsp = sctp_sk(newsk);
9521 struct sctp_bind_bucket *pp; /* hash list port iterator */
9522 struct sctp_endpoint *newep = newsp->ep;
9523 struct sk_buff *skb, *tmp;
9524 struct sctp_ulpevent *event;
9525 struct sctp_bind_hashbucket *head;
9526 int err;
9527
9528 /* Migrate socket buffer sizes and all the socket level options to the
9529 * new socket.
9530 */
9531 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9532 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9533 /* Brute force copy old sctp opt. */
9534 sctp_copy_descendant(sk_to: newsk, sk_from: oldsk);
9535
9536 /* Restore the ep value that was overwritten with the above structure
9537 * copy.
9538 */
9539 newsp->ep = newep;
9540 newsp->hmac = NULL;
9541
9542 /* Hook this new socket in to the bind_hash list. */
9543 head = &sctp_port_hashtable[sctp_phashfn(net: sock_net(sk: oldsk),
9544 inet_sk(oldsk)->inet_num)];
9545 spin_lock_bh(lock: &head->lock);
9546 pp = sctp_sk(oldsk)->bind_hash;
9547 sk_add_bind_node(sk: newsk, list: &pp->owner);
9548 sctp_sk(newsk)->bind_hash = pp;
9549 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9550 spin_unlock_bh(lock: &head->lock);
9551
9552 /* Copy the bind_addr list from the original endpoint to the new
9553 * endpoint so that we can handle restarts properly
9554 */
9555 err = sctp_bind_addr_dup(dest: &newsp->ep->base.bind_addr,
9556 src: &oldsp->ep->base.bind_addr, GFP_KERNEL);
9557 if (err)
9558 return err;
9559
9560 /* New ep's auth_hmacs should be set if old ep's is set, in case
9561 * that net->sctp.auth_enable has been changed to 0 by users and
9562 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9563 */
9564 if (oldsp->ep->auth_hmacs) {
9565 err = sctp_auth_init_hmacs(ep: newsp->ep, GFP_KERNEL);
9566 if (err)
9567 return err;
9568 }
9569
9570 sctp_auto_asconf_init(sp: newsp);
9571
9572 /* Move any messages in the old socket's receive queue that are for the
9573 * peeled off association to the new socket's receive queue.
9574 */
9575 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9576 event = sctp_skb2event(skb);
9577 if (event->asoc == assoc) {
9578 __skb_unlink(skb, list: &oldsk->sk_receive_queue);
9579 __skb_queue_tail(list: &newsk->sk_receive_queue, newsk: skb);
9580 sctp_skb_set_owner_r_frag(skb, sk: newsk);
9581 }
9582 }
9583
9584 /* Clean up any messages pending delivery due to partial
9585 * delivery. Three cases:
9586 * 1) No partial deliver; no work.
9587 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9588 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9589 */
9590 atomic_set(v: &sctp_sk(newsk)->pd_mode, i: assoc->ulpq.pd_mode);
9591
9592 if (atomic_read(v: &sctp_sk(oldsk)->pd_mode)) {
9593 struct sk_buff_head *queue;
9594
9595 /* Decide which queue to move pd_lobby skbs to. */
9596 if (assoc->ulpq.pd_mode) {
9597 queue = &newsp->pd_lobby;
9598 } else
9599 queue = &newsk->sk_receive_queue;
9600
9601 /* Walk through the pd_lobby, looking for skbs that
9602 * need moved to the new socket.
9603 */
9604 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9605 event = sctp_skb2event(skb);
9606 if (event->asoc == assoc) {
9607 __skb_unlink(skb, list: &oldsp->pd_lobby);
9608 __skb_queue_tail(list: queue, newsk: skb);
9609 sctp_skb_set_owner_r_frag(skb, sk: newsk);
9610 }
9611 }
9612
9613 /* Clear up any skbs waiting for the partial
9614 * delivery to finish.
9615 */
9616 if (assoc->ulpq.pd_mode)
9617 sctp_clear_pd(sk: oldsk, NULL);
9618
9619 }
9620
9621 sctp_for_each_rx_skb(asoc: assoc, sk: newsk, cb: sctp_skb_set_owner_r_frag);
9622
9623 /* Set the type of socket to indicate that it is peeled off from the
9624 * original UDP-style socket or created with the accept() call on a
9625 * TCP-style socket..
9626 */
9627 newsp->type = type;
9628
9629 /* Mark the new socket "in-use" by the user so that any packets
9630 * that may arrive on the association after we've moved it are
9631 * queued to the backlog. This prevents a potential race between
9632 * backlog processing on the old socket and new-packet processing
9633 * on the new socket.
9634 *
9635 * The caller has just allocated newsk so we can guarantee that other
9636 * paths won't try to lock it and then oldsk.
9637 */
9638 lock_sock_nested(sk: newsk, SINGLE_DEPTH_NESTING);
9639 sctp_for_each_tx_datachunk(asoc: assoc, clear: true, cb: sctp_clear_owner_w);
9640 sctp_assoc_migrate(assoc, newsk);
9641 sctp_for_each_tx_datachunk(asoc: assoc, clear: false, cb: sctp_set_owner_w);
9642
9643 /* If the association on the newsk is already closed before accept()
9644 * is called, set RCV_SHUTDOWN flag.
9645 */
9646 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9647 inet_sk_set_state(sk: newsk, state: SCTP_SS_CLOSED);
9648 newsk->sk_shutdown |= RCV_SHUTDOWN;
9649 } else {
9650 inet_sk_set_state(sk: newsk, state: SCTP_SS_ESTABLISHED);
9651 }
9652
9653 release_sock(sk: newsk);
9654
9655 return 0;
9656}
9657
9658
9659/* This proto struct describes the ULP interface for SCTP. */
9660struct proto sctp_prot = {
9661 .name = "SCTP",
9662 .owner = THIS_MODULE,
9663 .close = sctp_close,
9664 .disconnect = sctp_disconnect,
9665 .accept = sctp_accept,
9666 .ioctl = sctp_ioctl,
9667 .init = sctp_init_sock,
9668 .destroy = sctp_destroy_sock,
9669 .shutdown = sctp_shutdown,
9670 .setsockopt = sctp_setsockopt,
9671 .getsockopt = sctp_getsockopt,
9672 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9673 .sendmsg = sctp_sendmsg,
9674 .recvmsg = sctp_recvmsg,
9675 .bind = sctp_bind,
9676 .bind_add = sctp_bind_add,
9677 .backlog_rcv = sctp_backlog_rcv,
9678 .hash = sctp_hash,
9679 .unhash = sctp_unhash,
9680 .no_autobind = true,
9681 .obj_size = sizeof(struct sctp_sock),
9682 .useroffset = offsetof(struct sctp_sock, subscribe),
9683 .usersize = offsetof(struct sctp_sock, initmsg) -
9684 offsetof(struct sctp_sock, subscribe) +
9685 sizeof_field(struct sctp_sock, initmsg),
9686 .sysctl_mem = sysctl_sctp_mem,
9687 .sysctl_rmem = sysctl_sctp_rmem,
9688 .sysctl_wmem = sysctl_sctp_wmem,
9689 .memory_pressure = &sctp_memory_pressure,
9690 .enter_memory_pressure = sctp_enter_memory_pressure,
9691
9692 .memory_allocated = &sctp_memory_allocated,
9693 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9694
9695 .sockets_allocated = &sctp_sockets_allocated,
9696};
9697
9698#if IS_ENABLED(CONFIG_IPV6)
9699
9700static void sctp_v6_destruct_sock(struct sock *sk)
9701{
9702 sctp_destruct_common(sk);
9703 inet6_sock_destruct(sk);
9704}
9705
9706static int sctp_v6_init_sock(struct sock *sk)
9707{
9708 int ret = sctp_init_sock(sk);
9709
9710 if (!ret)
9711 sk->sk_destruct = sctp_v6_destruct_sock;
9712
9713 return ret;
9714}
9715
9716struct proto sctpv6_prot = {
9717 .name = "SCTPv6",
9718 .owner = THIS_MODULE,
9719 .close = sctp_close,
9720 .disconnect = sctp_disconnect,
9721 .accept = sctp_accept,
9722 .ioctl = sctp_ioctl,
9723 .init = sctp_v6_init_sock,
9724 .destroy = sctp_destroy_sock,
9725 .shutdown = sctp_shutdown,
9726 .setsockopt = sctp_setsockopt,
9727 .getsockopt = sctp_getsockopt,
9728 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9729 .sendmsg = sctp_sendmsg,
9730 .recvmsg = sctp_recvmsg,
9731 .bind = sctp_bind,
9732 .bind_add = sctp_bind_add,
9733 .backlog_rcv = sctp_backlog_rcv,
9734 .hash = sctp_hash,
9735 .unhash = sctp_unhash,
9736 .no_autobind = true,
9737 .obj_size = sizeof(struct sctp6_sock),
9738 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6),
9739 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9740 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9741 offsetof(struct sctp6_sock, sctp.subscribe) +
9742 sizeof_field(struct sctp6_sock, sctp.initmsg),
9743 .sysctl_mem = sysctl_sctp_mem,
9744 .sysctl_rmem = sysctl_sctp_rmem,
9745 .sysctl_wmem = sysctl_sctp_wmem,
9746 .memory_pressure = &sctp_memory_pressure,
9747 .enter_memory_pressure = sctp_enter_memory_pressure,
9748
9749 .memory_allocated = &sctp_memory_allocated,
9750 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9751
9752 .sockets_allocated = &sctp_sockets_allocated,
9753};
9754#endif /* IS_ENABLED(CONFIG_IPV6) */
9755

source code of linux/net/sctp/socket.c