1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/kvm_host.h>
21#include "irq.h"
22#include "ioapic.h"
23#include "mmu.h"
24#include "i8254.h"
25#include "tss.h"
26#include "kvm_cache_regs.h"
27#include "kvm_emulate.h"
28#include "mmu/page_track.h"
29#include "x86.h"
30#include "cpuid.h"
31#include "pmu.h"
32#include "hyperv.h"
33#include "lapic.h"
34#include "xen.h"
35#include "smm.h"
36
37#include <linux/clocksource.h>
38#include <linux/interrupt.h>
39#include <linux/kvm.h>
40#include <linux/fs.h>
41#include <linux/vmalloc.h>
42#include <linux/export.h>
43#include <linux/moduleparam.h>
44#include <linux/mman.h>
45#include <linux/highmem.h>
46#include <linux/iommu.h>
47#include <linux/cpufreq.h>
48#include <linux/user-return-notifier.h>
49#include <linux/srcu.h>
50#include <linux/slab.h>
51#include <linux/perf_event.h>
52#include <linux/uaccess.h>
53#include <linux/hash.h>
54#include <linux/pci.h>
55#include <linux/timekeeper_internal.h>
56#include <linux/pvclock_gtod.h>
57#include <linux/kvm_irqfd.h>
58#include <linux/irqbypass.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/isolation.h>
61#include <linux/mem_encrypt.h>
62#include <linux/entry-kvm.h>
63#include <linux/suspend.h>
64#include <linux/smp.h>
65
66#include <trace/events/ipi.h>
67#include <trace/events/kvm.h>
68
69#include <asm/debugreg.h>
70#include <asm/msr.h>
71#include <asm/desc.h>
72#include <asm/mce.h>
73#include <asm/pkru.h>
74#include <linux/kernel_stat.h>
75#include <asm/fpu/api.h>
76#include <asm/fpu/xcr.h>
77#include <asm/fpu/xstate.h>
78#include <asm/pvclock.h>
79#include <asm/div64.h>
80#include <asm/irq_remapping.h>
81#include <asm/mshyperv.h>
82#include <asm/hypervisor.h>
83#include <asm/tlbflush.h>
84#include <asm/intel_pt.h>
85#include <asm/emulate_prefix.h>
86#include <asm/sgx.h>
87#include <clocksource/hyperv_timer.h>
88
89#define CREATE_TRACE_POINTS
90#include "trace.h"
91
92#define MAX_IO_MSRS 256
93#define KVM_MAX_MCE_BANKS 32
94
95struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97};
98EXPORT_SYMBOL_GPL(kvm_caps);
99
100#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102#define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105/* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109#ifdef CONFIG_X86_64
110static
111u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112#else
113static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114#endif
115
116static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126static void process_nmi(struct kvm_vcpu *vcpu);
127static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128static void store_regs(struct kvm_vcpu *vcpu);
129static int sync_regs(struct kvm_vcpu *vcpu);
130static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135static DEFINE_MUTEX(vendor_module_lock);
136struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138#define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141#define KVM_X86_OP_OPTIONAL KVM_X86_OP
142#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143#include <asm/kvm-x86-ops.h>
144EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147static bool __read_mostly ignore_msrs = 0;
148module_param(ignore_msrs, bool, 0644);
149
150bool __read_mostly report_ignored_msrs = true;
151module_param(report_ignored_msrs, bool, 0644);
152EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154unsigned int min_timer_period_us = 200;
155module_param(min_timer_period_us, uint, 0644);
156
157static bool __read_mostly kvmclock_periodic_sync = true;
158module_param(kvmclock_periodic_sync, bool, 0444);
159
160/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161static u32 __read_mostly tsc_tolerance_ppm = 250;
162module_param(tsc_tolerance_ppm, uint, 0644);
163
164/*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170static int __read_mostly lapic_timer_advance_ns = -1;
171module_param(lapic_timer_advance_ns, int, 0644);
172
173static bool __read_mostly vector_hashing = true;
174module_param(vector_hashing, bool, 0444);
175
176bool __read_mostly enable_vmware_backdoor = false;
177module_param(enable_vmware_backdoor, bool, 0444);
178EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180/*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185static int __read_mostly force_emulation_prefix;
186module_param(force_emulation_prefix, int, 0644);
187
188int __read_mostly pi_inject_timer = -1;
189module_param(pi_inject_timer, bint, 0644);
190
191/* Enable/disable PMU virtualization */
192bool __read_mostly enable_pmu = true;
193EXPORT_SYMBOL_GPL(enable_pmu);
194module_param(enable_pmu, bool, 0444);
195
196bool __read_mostly eager_page_split = true;
197module_param(eager_page_split, bool, 0644);
198
199/* Enable/disable SMT_RSB bug mitigation */
200static bool __read_mostly mitigate_smt_rsb;
201module_param(mitigate_smt_rsb, bool, 0444);
202
203/*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208#define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217};
218
219u32 __read_mostly kvm_nr_uret_msrs;
220EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229u64 __read_mostly host_efer;
230EXPORT_SYMBOL_GPL(host_efer);
231
232bool __read_mostly allow_smaller_maxphyaddr = 0;
233EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235bool __read_mostly enable_apicv = true;
236EXPORT_SYMBOL_GPL(enable_apicv);
237
238u64 __read_mostly host_xss;
239EXPORT_SYMBOL_GPL(host_xss);
240
241u64 __read_mostly host_arch_capabilities;
242EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259};
260
261const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268};
269
270const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306};
307
308const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315};
316
317u64 __read_mostly host_xcr0;
318
319static struct kmem_cache *x86_emulator_cache;
320
321/*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
325static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326{
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340}
341
342static struct kmem_cache *kvm_alloc_emulator_cache(void)
343{
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy(name: "x86_emulator", size,
348 align: __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 usersize: size - useroffset, NULL);
351}
352
353static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356{
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360}
361
362static void kvm_on_user_return(struct user_return_notifier *urn)
363{
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(msr: kvm_uret_msrs_list[slot], val: values->host);
384 values->curr = values->host;
385 }
386 }
387}
388
389static int kvm_probe_user_return_msr(u32 msr)
390{
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, p: &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399out:
400 preempt_enable();
401 return ret;
402}
403
404int kvm_add_user_return_msr(u32 msr)
405{
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413}
414EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416int kvm_find_user_return_msr(u32 msr)
417{
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425}
426EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428static void kvm_user_return_msr_cpu_online(void)
429{
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(msr: kvm_uret_msrs_list[i], p: &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440}
441
442int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443{
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(msr: kvm_uret_msrs_list[slot], val: value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(urn: &msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462}
463EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465static void drop_user_return_notifiers(void)
466{
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(urn: &msrs->urn);
472}
473
474u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475{
476 return vcpu->arch.apic_base;
477}
478
479enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480{
481 return kvm_apic_mode(apic_base: kvm_get_apic_base(vcpu));
482}
483EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486{
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(apic_base: msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, value: msr_info->data);
502 kvm_recalculate_apic_map(kvm: vcpu->kvm);
503 return 0;
504}
505
506/*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513noinstr void kvm_spurious_fault(void)
514{
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517}
518EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520#define EXCPT_BENIGN 0
521#define EXCPT_CONTRIBUTORY 1
522#define EXCPT_PF 2
523
524static int exception_class(int vector)
525{
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539}
540
541#define EXCPT_FAULT 0
542#define EXCPT_TRAP 1
543#define EXCPT_ABORT 2
544#define EXCPT_INTERRUPT 3
545#define EXCPT_DB 4
546
547static int exception_type(int vector)
548{
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571}
572
573void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575{
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622}
623EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628{
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638}
639
640/* Forcibly leave the nested mode in cases like a vCPU reset */
641static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642{
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644}
645
646static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649{
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, vector: nr, has_error_code: has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(vector: prev_nr);
712 class2 = exception_class(vector: nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, error_code: 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729}
730
731void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732{
733 kvm_multiple_exception(vcpu, nr, has_error: false, error_code: 0, has_payload: false, payload: 0, reinject: false);
734}
735EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738{
739 kvm_multiple_exception(vcpu, nr, has_error: false, error_code: 0, has_payload: false, payload: 0, reinject: true);
740}
741EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745{
746 kvm_multiple_exception(vcpu, nr, has_error: false, error_code: 0, has_payload: true, payload, reinject: false);
747}
748EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752{
753 kvm_multiple_exception(vcpu, nr, has_error: true, error_code,
754 has_payload: true, payload, reinject: false);
755}
756
757int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758{
759 if (err)
760 kvm_inject_gp(vcpu, error_code: 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765}
766EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769{
770 if (err) {
771 kvm_inject_gp(vcpu, error_code: 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777}
778
779void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780{
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 has_error_code: true, error_code: fault->error_code,
790 has_payload: true, payload: fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, error_code: fault->error_code,
793 payload: fault->address);
794}
795
796void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798{
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, mmu: fault_mmu, addr: fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815}
816EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819{
820 atomic_inc(v: &vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822}
823
824void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825{
826 kvm_multiple_exception(vcpu, nr, has_error: true, error_code, has_payload: false, payload: 0, reinject: false);
827}
828EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831{
832 kvm_multiple_exception(vcpu, nr, has_error: true, error_code, has_payload: false, payload: 0, reinject: true);
833}
834EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836/*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
840bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841{
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846}
847
848bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849{
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855}
856EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859{
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(s: 5, e: 8) | rsvd_bits(s: 1, e: 2);
861}
862
863/*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
866int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867{
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gpa: gfn_to_gpa(gfn: pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gfn: gpa_to_gfn(gpa: real_gpa), data: pdpte,
886 offset: cr3 & GENMASK(11, 5), len: sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(p: mmu->pdptrs, q: pdpte, size: sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(kvm: vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910}
911EXPORT_SYMBOL_GPL(load_pdptrs);
912
913static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914{
915#ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918#endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927}
928
929void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930{
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_mmu_honors_guest_mtrrs(kvm: vcpu->kvm) &&
966 !kvm_check_has_quirk(kvm: vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(kvm: vcpu->kvm, gfn_start: 0, gfn_end: ~0ULL);
968}
969EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972{
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983#ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994#endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013{
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, mask: ~0x0eul) | (msw & 0x0f));
1015}
1016EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019{
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, value: vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, val: vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(pkru: vcpu->arch.pkru);
1038}
1039EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042{
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(pkru: vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, value: host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, val: host_xss);
1062 }
1063
1064}
1065EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067#ifdef CONFIG_X86_64
1068static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069{
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071}
1072#endif
1073
1074static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075{
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117}
1118
1119int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120{
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, index: kvm_rcx_read(vcpu), xcr: kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, error_code: 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129}
1130EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133{
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141}
1142EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145{
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148}
1149
1150void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151{
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189}
1190EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193{
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220}
1221EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224{
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, cr3: mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(kvm: vcpu->kvm, mmu, roots_to_free);
1264}
1265
1266int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267{
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270#ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276#endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, new_pgd: cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312}
1313EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316{
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324}
1325EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328{
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333}
1334EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337{
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344}
1345
1346void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347{
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358}
1359EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362{
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371}
1372
1373int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374{
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(data: val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(data: val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399}
1400EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1403{
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 return vcpu->arch.db[array_index_nospec(dr, size)];
1409 case 4:
1410 case 6:
1411 return vcpu->arch.dr6;
1412 case 5:
1413 default: /* 7 */
1414 return vcpu->arch.dr7;
1415 }
1416}
1417EXPORT_SYMBOL_GPL(kvm_get_dr);
1418
1419int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1420{
1421 u32 ecx = kvm_rcx_read(vcpu);
1422 u64 data;
1423
1424 if (kvm_pmu_rdpmc(vcpu, pmc: ecx, data: &data)) {
1425 kvm_inject_gp(vcpu, error_code: 0);
1426 return 1;
1427 }
1428
1429 kvm_rax_write(vcpu, val: (u32)data);
1430 kvm_rdx_write(vcpu, val: data >> 32);
1431 return kvm_skip_emulated_instruction(vcpu);
1432}
1433EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1434
1435/*
1436 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1437 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1438 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1439 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1440 * MSRs that KVM emulates without strictly requiring host support.
1441 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1442 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1443 * msrs_to_save and emulated_msrs.
1444 */
1445
1446static const u32 msrs_to_save_base[] = {
1447 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1448 MSR_STAR,
1449#ifdef CONFIG_X86_64
1450 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1451#endif
1452 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1453 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1454 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1455 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1456 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1457 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1458 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1459 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1460 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1461 MSR_IA32_UMWAIT_CONTROL,
1462
1463 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1464};
1465
1466static const u32 msrs_to_save_pmu[] = {
1467 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1468 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1469 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1470 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1471 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1472
1473 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1474 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1475 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1476 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1477 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1478 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1479 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1480 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1481 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1482
1483 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1484 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1485
1486 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1487 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1488 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1489 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1490 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1491
1492 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1493 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1494 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1495};
1496
1497static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1498 ARRAY_SIZE(msrs_to_save_pmu)];
1499static unsigned num_msrs_to_save;
1500
1501static const u32 emulated_msrs_all[] = {
1502 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1503 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1504
1505#ifdef CONFIG_KVM_HYPERV
1506 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1507 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1508 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1509 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1510 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1511 HV_X64_MSR_RESET,
1512 HV_X64_MSR_VP_INDEX,
1513 HV_X64_MSR_VP_RUNTIME,
1514 HV_X64_MSR_SCONTROL,
1515 HV_X64_MSR_STIMER0_CONFIG,
1516 HV_X64_MSR_VP_ASSIST_PAGE,
1517 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1518 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1519 HV_X64_MSR_SYNDBG_OPTIONS,
1520 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1521 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1522 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1523#endif
1524
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1534 MSR_IA32_MCG_CTL,
1535 MSR_IA32_MCG_EXT_CTL,
1536 MSR_IA32_SMBASE,
1537 MSR_SMI_COUNT,
1538 MSR_PLATFORM_INFO,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1542 MSR_IA32_POWER_CTL,
1543 MSR_IA32_UCODE_REV,
1544
1545 /*
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1551 */
1552 MSR_IA32_VMX_BASIC,
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 MSR_IA32_VMX_MISC,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1564
1565 MSR_K7_HWCR,
1566 MSR_KVM_POLL_CONTROL,
1567};
1568
1569static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570static unsigned num_emulated_msrs;
1571
1572/*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577static const u32 msr_based_features_all_except_vmx[] = {
1578 MSR_AMD64_DE_CFG,
1579 MSR_IA32_UCODE_REV,
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1582};
1583
1584static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586static unsigned int num_msr_based_features;
1587
1588/*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
1592static bool kvm_is_immutable_feature_msr(u32 msr)
1593{
1594 int i;
1595
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 return true;
1598
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1602 }
1603
1604 return false;
1605}
1606
1607/*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1612 * 12 - DOITM
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1616 */
1617
1618#define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1625
1626static u64 kvm_get_arch_capabilities(void)
1627{
1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629
1630 /*
1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 * the nested hypervisor runs with NX huge pages. If it is not,
1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 * L1 guests, so it need not worry about its own (L2) guests.
1635 */
1636 data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638 /*
1639 * If we're doing cache flushes (either "always" or "cond")
1640 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 * If an outer hypervisor is doing the cache flush for us
1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 * capability to the guest too, and if EPT is disabled we're not
1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 * require a nested hypervisor to do a flush of its own.
1646 */
1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 data |= ARCH_CAP_RDCL_NO;
1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 data |= ARCH_CAP_SSB_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 data |= ARCH_CAP_MDS_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 data |= ARCH_CAP_RFDS_NO;
1658
1659 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 /*
1661 * If RTM=0 because the kernel has disabled TSX, the host might
1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1663 * and therefore knows that there cannot be TAA) but keep
1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 * and we want to allow migrating those guests to tsx=off hosts.
1666 */
1667 data &= ~ARCH_CAP_TAA_NO;
1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 data |= ARCH_CAP_TAA_NO;
1670 } else {
1671 /*
1672 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 * host so the guest can choose between disabling TSX or
1674 * using VERW to clear CPU buffers.
1675 */
1676 }
1677
1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 data |= ARCH_CAP_GDS_NO;
1680
1681 return data;
1682}
1683
1684static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685{
1686 switch (msr->index) {
1687 case MSR_IA32_ARCH_CAPABILITIES:
1688 msr->data = kvm_get_arch_capabilities();
1689 break;
1690 case MSR_IA32_PERF_CAPABILITIES:
1691 msr->data = kvm_caps.supported_perf_cap;
1692 break;
1693 case MSR_IA32_UCODE_REV:
1694 rdmsrl_safe(msr: msr->index, p: &msr->data);
1695 break;
1696 default:
1697 return static_call(kvm_x86_get_msr_feature)(msr);
1698 }
1699 return 0;
1700}
1701
1702static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703{
1704 struct kvm_msr_entry msr;
1705 int r;
1706
1707 /* Unconditionally clear the output for simplicity */
1708 msr.data = 0;
1709 msr.index = index;
1710 r = kvm_get_msr_feature(msr: &msr);
1711
1712 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(msr: index, data: 0, write: false))
1713 r = 0;
1714
1715 *data = msr.data;
1716
1717 return r;
1718}
1719
1720static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721{
1722 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1723 return false;
1724
1725 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1726 return false;
1727
1728 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1729 return false;
1730
1731 if (efer & (EFER_LME | EFER_LMA) &&
1732 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1733 return false;
1734
1735 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1736 return false;
1737
1738 return true;
1739
1740}
1741bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742{
1743 if (efer & efer_reserved_bits)
1744 return false;
1745
1746 return __kvm_valid_efer(vcpu, efer);
1747}
1748EXPORT_SYMBOL_GPL(kvm_valid_efer);
1749
1750static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751{
1752 u64 old_efer = vcpu->arch.efer;
1753 u64 efer = msr_info->data;
1754 int r;
1755
1756 if (efer & efer_reserved_bits)
1757 return 1;
1758
1759 if (!msr_info->host_initiated) {
1760 if (!__kvm_valid_efer(vcpu, efer))
1761 return 1;
1762
1763 if (is_paging(vcpu) &&
1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765 return 1;
1766 }
1767
1768 efer &= ~EFER_LMA;
1769 efer |= vcpu->arch.efer & EFER_LMA;
1770
1771 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1772 if (r) {
1773 WARN_ON(r > 0);
1774 return r;
1775 }
1776
1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778 kvm_mmu_reset_context(vcpu);
1779
1780 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781 (efer & EFER_SVME))
1782 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783
1784 return 0;
1785}
1786
1787void kvm_enable_efer_bits(u64 mask)
1788{
1789 efer_reserved_bits &= ~mask;
1790}
1791EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1792
1793bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794{
1795 struct kvm_x86_msr_filter *msr_filter;
1796 struct msr_bitmap_range *ranges;
1797 struct kvm *kvm = vcpu->kvm;
1798 bool allowed;
1799 int idx;
1800 u32 i;
1801
1802 /* x2APIC MSRs do not support filtering. */
1803 if (index >= 0x800 && index <= 0x8ff)
1804 return true;
1805
1806 idx = srcu_read_lock(ssp: &kvm->srcu);
1807
1808 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809 if (!msr_filter) {
1810 allowed = true;
1811 goto out;
1812 }
1813
1814 allowed = msr_filter->default_allow;
1815 ranges = msr_filter->ranges;
1816
1817 for (i = 0; i < msr_filter->count; i++) {
1818 u32 start = ranges[i].base;
1819 u32 end = start + ranges[i].nmsrs;
1820 u32 flags = ranges[i].flags;
1821 unsigned long *bitmap = ranges[i].bitmap;
1822
1823 if ((index >= start) && (index < end) && (flags & type)) {
1824 allowed = test_bit(index - start, bitmap);
1825 break;
1826 }
1827 }
1828
1829out:
1830 srcu_read_unlock(ssp: &kvm->srcu, idx);
1831
1832 return allowed;
1833}
1834EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1835
1836/*
1837 * Write @data into the MSR specified by @index. Select MSR specific fault
1838 * checks are bypassed if @host_initiated is %true.
1839 * Returns 0 on success, non-0 otherwise.
1840 * Assumes vcpu_load() was already called.
1841 */
1842static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843 bool host_initiated)
1844{
1845 struct msr_data msr;
1846
1847 switch (index) {
1848 case MSR_FS_BASE:
1849 case MSR_GS_BASE:
1850 case MSR_KERNEL_GS_BASE:
1851 case MSR_CSTAR:
1852 case MSR_LSTAR:
1853 if (is_noncanonical_address(la: data, vcpu))
1854 return 1;
1855 break;
1856 case MSR_IA32_SYSENTER_EIP:
1857 case MSR_IA32_SYSENTER_ESP:
1858 /*
1859 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860 * non-canonical address is written on Intel but not on
1861 * AMD (which ignores the top 32-bits, because it does
1862 * not implement 64-bit SYSENTER).
1863 *
1864 * 64-bit code should hence be able to write a non-canonical
1865 * value on AMD. Making the address canonical ensures that
1866 * vmentry does not fail on Intel after writing a non-canonical
1867 * value, and that something deterministic happens if the guest
1868 * invokes 64-bit SYSENTER.
1869 */
1870 data = __canonical_address(vaddr: data, vaddr_bits: vcpu_virt_addr_bits(vcpu));
1871 break;
1872 case MSR_TSC_AUX:
1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 return 1;
1875
1876 if (!host_initiated &&
1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879 return 1;
1880
1881 /*
1882 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883 * incomplete and conflicting architectural behavior. Current
1884 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885 * reserved and always read as zeros. Enforce Intel's reserved
1886 * bits check if and only if the guest CPU is Intel, and clear
1887 * the bits in all other cases. This ensures cross-vendor
1888 * migration will provide consistent behavior for the guest.
1889 */
1890 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1891 return 1;
1892
1893 data = (u32)data;
1894 break;
1895 }
1896
1897 msr.data = data;
1898 msr.index = index;
1899 msr.host_initiated = host_initiated;
1900
1901 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1902}
1903
1904static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1905 u32 index, u64 data, bool host_initiated)
1906{
1907 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1908
1909 if (ret == KVM_MSR_RET_INVALID)
1910 if (kvm_msr_ignored_check(msr: index, data, write: true))
1911 ret = 0;
1912
1913 return ret;
1914}
1915
1916/*
1917 * Read the MSR specified by @index into @data. Select MSR specific fault
1918 * checks are bypassed if @host_initiated is %true.
1919 * Returns 0 on success, non-0 otherwise.
1920 * Assumes vcpu_load() was already called.
1921 */
1922int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1923 bool host_initiated)
1924{
1925 struct msr_data msr;
1926 int ret;
1927
1928 switch (index) {
1929 case MSR_TSC_AUX:
1930 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1931 return 1;
1932
1933 if (!host_initiated &&
1934 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1936 return 1;
1937 break;
1938 }
1939
1940 msr.index = index;
1941 msr.host_initiated = host_initiated;
1942
1943 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1944 if (!ret)
1945 *data = msr.data;
1946 return ret;
1947}
1948
1949static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1950 u32 index, u64 *data, bool host_initiated)
1951{
1952 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1953
1954 if (ret == KVM_MSR_RET_INVALID) {
1955 /* Unconditionally clear *data for simplicity */
1956 *data = 0;
1957 if (kvm_msr_ignored_check(msr: index, data: 0, write: false))
1958 ret = 0;
1959 }
1960
1961 return ret;
1962}
1963
1964static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1965{
1966 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1967 return KVM_MSR_RET_FILTERED;
1968 return kvm_get_msr_ignored_check(vcpu, index, data, host_initiated: false);
1969}
1970
1971static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1972{
1973 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1974 return KVM_MSR_RET_FILTERED;
1975 return kvm_set_msr_ignored_check(vcpu, index, data, host_initiated: false);
1976}
1977
1978int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1979{
1980 return kvm_get_msr_ignored_check(vcpu, index, data, host_initiated: false);
1981}
1982EXPORT_SYMBOL_GPL(kvm_get_msr);
1983
1984int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1985{
1986 return kvm_set_msr_ignored_check(vcpu, index, data, host_initiated: false);
1987}
1988EXPORT_SYMBOL_GPL(kvm_set_msr);
1989
1990static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1991{
1992 if (!vcpu->run->msr.error) {
1993 kvm_rax_write(vcpu, val: (u32)vcpu->run->msr.data);
1994 kvm_rdx_write(vcpu, val: vcpu->run->msr.data >> 32);
1995 }
1996}
1997
1998static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1999{
2000 return complete_emulated_insn_gp(vcpu, err: vcpu->run->msr.error);
2001}
2002
2003static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2004{
2005 complete_userspace_rdmsr(vcpu);
2006 return complete_emulated_msr_access(vcpu);
2007}
2008
2009static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2010{
2011 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2012}
2013
2014static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2015{
2016 complete_userspace_rdmsr(vcpu);
2017 return complete_fast_msr_access(vcpu);
2018}
2019
2020static u64 kvm_msr_reason(int r)
2021{
2022 switch (r) {
2023 case KVM_MSR_RET_INVALID:
2024 return KVM_MSR_EXIT_REASON_UNKNOWN;
2025 case KVM_MSR_RET_FILTERED:
2026 return KVM_MSR_EXIT_REASON_FILTER;
2027 default:
2028 return KVM_MSR_EXIT_REASON_INVAL;
2029 }
2030}
2031
2032static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2033 u32 exit_reason, u64 data,
2034 int (*completion)(struct kvm_vcpu *vcpu),
2035 int r)
2036{
2037 u64 msr_reason = kvm_msr_reason(r);
2038
2039 /* Check if the user wanted to know about this MSR fault */
2040 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2041 return 0;
2042
2043 vcpu->run->exit_reason = exit_reason;
2044 vcpu->run->msr.error = 0;
2045 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2046 vcpu->run->msr.reason = msr_reason;
2047 vcpu->run->msr.index = index;
2048 vcpu->run->msr.data = data;
2049 vcpu->arch.complete_userspace_io = completion;
2050
2051 return 1;
2052}
2053
2054int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2055{
2056 u32 ecx = kvm_rcx_read(vcpu);
2057 u64 data;
2058 int r;
2059
2060 r = kvm_get_msr_with_filter(vcpu, index: ecx, data: &data);
2061
2062 if (!r) {
2063 trace_kvm_msr_read(ecx, data);
2064
2065 kvm_rax_write(vcpu, val: data & -1u);
2066 kvm_rdx_write(vcpu, val: (data >> 32) & -1u);
2067 } else {
2068 /* MSR read failed? See if we should ask user space */
2069 if (kvm_msr_user_space(vcpu, index: ecx, KVM_EXIT_X86_RDMSR, data: 0,
2070 completion: complete_fast_rdmsr, r))
2071 return 0;
2072 trace_kvm_msr_read_ex(ecx);
2073 }
2074
2075 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2076}
2077EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2078
2079int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2080{
2081 u32 ecx = kvm_rcx_read(vcpu);
2082 u64 data = kvm_read_edx_eax(vcpu);
2083 int r;
2084
2085 r = kvm_set_msr_with_filter(vcpu, index: ecx, data);
2086
2087 if (!r) {
2088 trace_kvm_msr_write(ecx, data);
2089 } else {
2090 /* MSR write failed? See if we should ask user space */
2091 if (kvm_msr_user_space(vcpu, index: ecx, KVM_EXIT_X86_WRMSR, data,
2092 completion: complete_fast_msr_access, r))
2093 return 0;
2094 /* Signal all other negative errors to userspace */
2095 if (r < 0)
2096 return r;
2097 trace_kvm_msr_write_ex(ecx, data);
2098 }
2099
2100 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2101}
2102EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2103
2104int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2105{
2106 return kvm_skip_emulated_instruction(vcpu);
2107}
2108
2109int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2110{
2111 /* Treat an INVD instruction as a NOP and just skip it. */
2112 return kvm_emulate_as_nop(vcpu);
2113}
2114EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2115
2116int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2117{
2118 kvm_queue_exception(vcpu, UD_VECTOR);
2119 return 1;
2120}
2121EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2122
2123
2124static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2125{
2126 if (!kvm_check_has_quirk(kvm: vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2127 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2128 return kvm_handle_invalid_op(vcpu);
2129
2130 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2131 return kvm_emulate_as_nop(vcpu);
2132}
2133int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2134{
2135 return kvm_emulate_monitor_mwait(vcpu, insn: "MWAIT");
2136}
2137EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2138
2139int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2140{
2141 return kvm_emulate_monitor_mwait(vcpu, insn: "MONITOR");
2142}
2143EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2144
2145static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2146{
2147 xfer_to_guest_mode_prepare();
2148 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2149 xfer_to_guest_mode_work_pending();
2150}
2151
2152/*
2153 * The fast path for frequent and performance sensitive wrmsr emulation,
2154 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2155 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2156 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2157 * other cases which must be called after interrupts are enabled on the host.
2158 */
2159static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2160{
2161 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic: vcpu->arch.apic))
2162 return 1;
2163
2164 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2165 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2166 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2167 ((u32)(data >> 32) != X2APIC_BROADCAST))
2168 return kvm_x2apic_icr_write(apic: vcpu->arch.apic, data);
2169
2170 return 1;
2171}
2172
2173static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2174{
2175 if (!kvm_can_use_hv_timer(vcpu))
2176 return 1;
2177
2178 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2179 return 0;
2180}
2181
2182fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2183{
2184 u32 msr = kvm_rcx_read(vcpu);
2185 u64 data;
2186 fastpath_t ret = EXIT_FASTPATH_NONE;
2187
2188 kvm_vcpu_srcu_read_lock(vcpu);
2189
2190 switch (msr) {
2191 case APIC_BASE_MSR + (APIC_ICR >> 4):
2192 data = kvm_read_edx_eax(vcpu);
2193 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2194 kvm_skip_emulated_instruction(vcpu);
2195 ret = EXIT_FASTPATH_EXIT_HANDLED;
2196 }
2197 break;
2198 case MSR_IA32_TSC_DEADLINE:
2199 data = kvm_read_edx_eax(vcpu);
2200 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2201 kvm_skip_emulated_instruction(vcpu);
2202 ret = EXIT_FASTPATH_REENTER_GUEST;
2203 }
2204 break;
2205 default:
2206 break;
2207 }
2208
2209 if (ret != EXIT_FASTPATH_NONE)
2210 trace_kvm_msr_write(msr, data);
2211
2212 kvm_vcpu_srcu_read_unlock(vcpu);
2213
2214 return ret;
2215}
2216EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2217
2218/*
2219 * Adapt set_msr() to msr_io()'s calling convention
2220 */
2221static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2222{
2223 return kvm_get_msr_ignored_check(vcpu, index, data, host_initiated: true);
2224}
2225
2226static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2227{
2228 u64 val;
2229
2230 /*
2231 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2232 * not support modifying the guest vCPU model on the fly, e.g. changing
2233 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2234 * writes of the same value, e.g. to allow userspace to blindly stuff
2235 * all MSRs when emulating RESET.
2236 */
2237 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(msr: index)) {
2238 if (do_get_msr(vcpu, index, data: &val) || *data != val)
2239 return -EINVAL;
2240
2241 return 0;
2242 }
2243
2244 return kvm_set_msr_ignored_check(vcpu, index, data: *data, host_initiated: true);
2245}
2246
2247#ifdef CONFIG_X86_64
2248struct pvclock_clock {
2249 int vclock_mode;
2250 u64 cycle_last;
2251 u64 mask;
2252 u32 mult;
2253 u32 shift;
2254 u64 base_cycles;
2255 u64 offset;
2256};
2257
2258struct pvclock_gtod_data {
2259 seqcount_t seq;
2260
2261 struct pvclock_clock clock; /* extract of a clocksource struct */
2262 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2263
2264 ktime_t offs_boot;
2265 u64 wall_time_sec;
2266};
2267
2268static struct pvclock_gtod_data pvclock_gtod_data;
2269
2270static void update_pvclock_gtod(struct timekeeper *tk)
2271{
2272 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2273
2274 write_seqcount_begin(&vdata->seq);
2275
2276 /* copy pvclock gtod data */
2277 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2278 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2279 vdata->clock.mask = tk->tkr_mono.mask;
2280 vdata->clock.mult = tk->tkr_mono.mult;
2281 vdata->clock.shift = tk->tkr_mono.shift;
2282 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2283 vdata->clock.offset = tk->tkr_mono.base;
2284
2285 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2286 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2287 vdata->raw_clock.mask = tk->tkr_raw.mask;
2288 vdata->raw_clock.mult = tk->tkr_raw.mult;
2289 vdata->raw_clock.shift = tk->tkr_raw.shift;
2290 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2291 vdata->raw_clock.offset = tk->tkr_raw.base;
2292
2293 vdata->wall_time_sec = tk->xtime_sec;
2294
2295 vdata->offs_boot = tk->offs_boot;
2296
2297 write_seqcount_end(&vdata->seq);
2298}
2299
2300static s64 get_kvmclock_base_ns(void)
2301{
2302 /* Count up from boot time, but with the frequency of the raw clock. */
2303 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304}
2305#else
2306static s64 get_kvmclock_base_ns(void)
2307{
2308 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2309 return ktime_get_boottime_ns();
2310}
2311#endif
2312
2313static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2314{
2315 int version;
2316 int r;
2317 struct pvclock_wall_clock wc;
2318 u32 wc_sec_hi;
2319 u64 wall_nsec;
2320
2321 if (!wall_clock)
2322 return;
2323
2324 r = kvm_read_guest(kvm, gpa: wall_clock, data: &version, len: sizeof(version));
2325 if (r)
2326 return;
2327
2328 if (version & 1)
2329 ++version; /* first time write, random junk */
2330
2331 ++version;
2332
2333 if (kvm_write_guest(kvm, gpa: wall_clock, data: &version, len: sizeof(version)))
2334 return;
2335
2336 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2337
2338 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2339 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2340 wc.version = version;
2341
2342 kvm_write_guest(kvm, gpa: wall_clock, data: &wc, len: sizeof(wc));
2343
2344 if (sec_hi_ofs) {
2345 wc_sec_hi = wall_nsec >> 32;
2346 kvm_write_guest(kvm, gpa: wall_clock + sec_hi_ofs,
2347 data: &wc_sec_hi, len: sizeof(wc_sec_hi));
2348 }
2349
2350 version++;
2351 kvm_write_guest(kvm, gpa: wall_clock, data: &version, len: sizeof(version));
2352}
2353
2354static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2355 bool old_msr, bool host_initiated)
2356{
2357 struct kvm_arch *ka = &vcpu->kvm->arch;
2358
2359 if (vcpu->vcpu_id == 0 && !host_initiated) {
2360 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2361 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2362
2363 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2364 }
2365
2366 vcpu->arch.time = system_time;
2367 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2368
2369 /* we verify if the enable bit is set... */
2370 if (system_time & 1)
2371 kvm_gpc_activate(gpc: &vcpu->arch.pv_time, gpa: system_time & ~1ULL,
2372 len: sizeof(struct pvclock_vcpu_time_info));
2373 else
2374 kvm_gpc_deactivate(gpc: &vcpu->arch.pv_time);
2375
2376 return;
2377}
2378
2379static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2380{
2381 do_shl32_div32(dividend, divisor);
2382 return dividend;
2383}
2384
2385static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2386 s8 *pshift, u32 *pmultiplier)
2387{
2388 uint64_t scaled64;
2389 int32_t shift = 0;
2390 uint64_t tps64;
2391 uint32_t tps32;
2392
2393 tps64 = base_hz;
2394 scaled64 = scaled_hz;
2395 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2396 tps64 >>= 1;
2397 shift--;
2398 }
2399
2400 tps32 = (uint32_t)tps64;
2401 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2402 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2403 scaled64 >>= 1;
2404 else
2405 tps32 <<= 1;
2406 shift++;
2407 }
2408
2409 *pshift = shift;
2410 *pmultiplier = div_frac(dividend: scaled64, divisor: tps32);
2411}
2412
2413#ifdef CONFIG_X86_64
2414static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2415#endif
2416
2417static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2418static unsigned long max_tsc_khz;
2419
2420static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2421{
2422 u64 v = (u64)khz * (1000000 + ppm);
2423 do_div(v, 1000000);
2424 return v;
2425}
2426
2427static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2428
2429static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2430{
2431 u64 ratio;
2432
2433 /* Guest TSC same frequency as host TSC? */
2434 if (!scale) {
2435 kvm_vcpu_write_tsc_multiplier(vcpu, l1_multiplier: kvm_caps.default_tsc_scaling_ratio);
2436 return 0;
2437 }
2438
2439 /* TSC scaling supported? */
2440 if (!kvm_caps.has_tsc_control) {
2441 if (user_tsc_khz > tsc_khz) {
2442 vcpu->arch.tsc_catchup = 1;
2443 vcpu->arch.tsc_always_catchup = 1;
2444 return 0;
2445 } else {
2446 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2447 return -1;
2448 }
2449 }
2450
2451 /* TSC scaling required - calculate ratio */
2452 ratio = mul_u64_u32_div(a: 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2453 mul: user_tsc_khz, div: tsc_khz);
2454
2455 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2456 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2457 user_tsc_khz);
2458 return -1;
2459 }
2460
2461 kvm_vcpu_write_tsc_multiplier(vcpu, l1_multiplier: ratio);
2462 return 0;
2463}
2464
2465static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2466{
2467 u32 thresh_lo, thresh_hi;
2468 int use_scaling = 0;
2469
2470 /* tsc_khz can be zero if TSC calibration fails */
2471 if (user_tsc_khz == 0) {
2472 /* set tsc_scaling_ratio to a safe value */
2473 kvm_vcpu_write_tsc_multiplier(vcpu, l1_multiplier: kvm_caps.default_tsc_scaling_ratio);
2474 return -1;
2475 }
2476
2477 /* Compute a scale to convert nanoseconds in TSC cycles */
2478 kvm_get_time_scale(scaled_hz: user_tsc_khz * 1000LL, NSEC_PER_SEC,
2479 pshift: &vcpu->arch.virtual_tsc_shift,
2480 pmultiplier: &vcpu->arch.virtual_tsc_mult);
2481 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2482
2483 /*
2484 * Compute the variation in TSC rate which is acceptable
2485 * within the range of tolerance and decide if the
2486 * rate being applied is within that bounds of the hardware
2487 * rate. If so, no scaling or compensation need be done.
2488 */
2489 thresh_lo = adjust_tsc_khz(khz: tsc_khz, ppm: -tsc_tolerance_ppm);
2490 thresh_hi = adjust_tsc_khz(khz: tsc_khz, ppm: tsc_tolerance_ppm);
2491 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2492 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2493 user_tsc_khz, thresh_lo, thresh_hi);
2494 use_scaling = 1;
2495 }
2496 return set_tsc_khz(vcpu, user_tsc_khz, scale: use_scaling);
2497}
2498
2499static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2500{
2501 u64 tsc = pvclock_scale_delta(delta: kernel_ns-vcpu->arch.this_tsc_nsec,
2502 mul_frac: vcpu->arch.virtual_tsc_mult,
2503 shift: vcpu->arch.virtual_tsc_shift);
2504 tsc += vcpu->arch.this_tsc_write;
2505 return tsc;
2506}
2507
2508#ifdef CONFIG_X86_64
2509static inline bool gtod_is_based_on_tsc(int mode)
2510{
2511 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2512}
2513#endif
2514
2515static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2516{
2517#ifdef CONFIG_X86_64
2518 struct kvm_arch *ka = &vcpu->kvm->arch;
2519 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2520
2521 /*
2522 * To use the masterclock, the host clocksource must be based on TSC
2523 * and all vCPUs must have matching TSCs. Note, the count for matching
2524 * vCPUs doesn't include the reference vCPU, hence "+1".
2525 */
2526 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2527 atomic_read(v: &vcpu->kvm->online_vcpus)) &&
2528 gtod_is_based_on_tsc(mode: gtod->clock.vclock_mode);
2529
2530 /*
2531 * Request a masterclock update if the masterclock needs to be toggled
2532 * on/off, or when starting a new generation and the masterclock is
2533 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2534 * taken _after_ the new generation is created).
2535 */
2536 if ((ka->use_master_clock && new_generation) ||
2537 (ka->use_master_clock != use_master_clock))
2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539
2540 trace_kvm_track_tsc(vcpu_id: vcpu->vcpu_id, nr_matched: ka->nr_vcpus_matched_tsc,
2541 online_vcpus: atomic_read(v: &vcpu->kvm->online_vcpus),
2542 use_master_clock: ka->use_master_clock, host_clock: gtod->clock.vclock_mode);
2543#endif
2544}
2545
2546/*
2547 * Multiply tsc by a fixed point number represented by ratio.
2548 *
2549 * The most significant 64-N bits (mult) of ratio represent the
2550 * integral part of the fixed point number; the remaining N bits
2551 * (frac) represent the fractional part, ie. ratio represents a fixed
2552 * point number (mult + frac * 2^(-N)).
2553 *
2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 */
2556static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557{
2558 return mul_u64_u64_shr(a: tsc, mul: ratio, shift: kvm_caps.tsc_scaling_ratio_frac_bits);
2559}
2560
2561u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562{
2563 u64 _tsc = tsc;
2564
2565 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 _tsc = __scale_tsc(ratio, tsc);
2567
2568 return _tsc;
2569}
2570
2571static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572{
2573 u64 tsc;
2574
2575 tsc = kvm_scale_tsc(tsc: rdtsc(), ratio: vcpu->arch.l1_tsc_scaling_ratio);
2576
2577 return target_tsc - tsc;
2578}
2579
2580u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581{
2582 return vcpu->arch.l1_tsc_offset +
2583 kvm_scale_tsc(tsc: host_tsc, ratio: vcpu->arch.l1_tsc_scaling_ratio);
2584}
2585EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586
2587u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588{
2589 u64 nested_offset;
2590
2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 nested_offset = l1_offset;
2593 else
2594 nested_offset = mul_s64_u64_shr(a: (s64) l1_offset, b: l2_multiplier,
2595 shift: kvm_caps.tsc_scaling_ratio_frac_bits);
2596
2597 nested_offset += l2_offset;
2598 return nested_offset;
2599}
2600EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601
2602u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603{
2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 return mul_u64_u64_shr(a: l1_multiplier, mul: l2_multiplier,
2606 shift: kvm_caps.tsc_scaling_ratio_frac_bits);
2607
2608 return l1_multiplier;
2609}
2610EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611
2612static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613{
2614 trace_kvm_write_tsc_offset(vcpu_id: vcpu->vcpu_id,
2615 previous_tsc_offset: vcpu->arch.l1_tsc_offset,
2616 next_tsc_offset: l1_offset);
2617
2618 vcpu->arch.l1_tsc_offset = l1_offset;
2619
2620 /*
2621 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 * according to the spec this should set L1's TSC (as opposed to
2623 * setting L1's offset for L2).
2624 */
2625 if (is_guest_mode(vcpu))
2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 l1_offset,
2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 else
2631 vcpu->arch.tsc_offset = l1_offset;
2632
2633 static_call(kvm_x86_write_tsc_offset)(vcpu);
2634}
2635
2636static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637{
2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639
2640 /* Userspace is changing the multiplier while L2 is active */
2641 if (is_guest_mode(vcpu))
2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 l1_multiplier,
2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 else
2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647
2648 if (kvm_caps.has_tsc_control)
2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650}
2651
2652static inline bool kvm_check_tsc_unstable(void)
2653{
2654#ifdef CONFIG_X86_64
2655 /*
2656 * TSC is marked unstable when we're running on Hyper-V,
2657 * 'TSC page' clocksource is good.
2658 */
2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 return false;
2661#endif
2662 return check_tsc_unstable();
2663}
2664
2665/*
2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668 * participates in.
2669 */
2670static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 u64 ns, bool matched)
2672{
2673 struct kvm *kvm = vcpu->kvm;
2674
2675 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676
2677 /*
2678 * We also track th most recent recorded KHZ, write and time to
2679 * allow the matching interval to be extended at each write.
2680 */
2681 kvm->arch.last_tsc_nsec = ns;
2682 kvm->arch.last_tsc_write = tsc;
2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 kvm->arch.last_tsc_offset = offset;
2685
2686 vcpu->arch.last_guest_tsc = tsc;
2687
2688 kvm_vcpu_write_tsc_offset(vcpu, l1_offset: offset);
2689
2690 if (!matched) {
2691 /*
2692 * We split periods of matched TSC writes into generations.
2693 * For each generation, we track the original measured
2694 * nanosecond time, offset, and write, so if TSCs are in
2695 * sync, we can match exact offset, and if not, we can match
2696 * exact software computation in compute_guest_tsc()
2697 *
2698 * These values are tracked in kvm->arch.cur_xxx variables.
2699 */
2700 kvm->arch.cur_tsc_generation++;
2701 kvm->arch.cur_tsc_nsec = ns;
2702 kvm->arch.cur_tsc_write = tsc;
2703 kvm->arch.cur_tsc_offset = offset;
2704 kvm->arch.nr_vcpus_matched_tsc = 0;
2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 kvm->arch.nr_vcpus_matched_tsc++;
2707 }
2708
2709 /* Keep track of which generation this VCPU has synchronized to */
2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713
2714 kvm_track_tsc_matching(vcpu, new_generation: !matched);
2715}
2716
2717static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2718{
2719 u64 data = user_value ? *user_value : 0;
2720 struct kvm *kvm = vcpu->kvm;
2721 u64 offset, ns, elapsed;
2722 unsigned long flags;
2723 bool matched = false;
2724 bool synchronizing = false;
2725
2726 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2727 offset = kvm_compute_l1_tsc_offset(vcpu, target_tsc: data);
2728 ns = get_kvmclock_base_ns();
2729 elapsed = ns - kvm->arch.last_tsc_nsec;
2730
2731 if (vcpu->arch.virtual_tsc_khz) {
2732 if (data == 0) {
2733 /*
2734 * Force synchronization when creating a vCPU, or when
2735 * userspace explicitly writes a zero value.
2736 */
2737 synchronizing = true;
2738 } else if (kvm->arch.user_set_tsc) {
2739 u64 tsc_exp = kvm->arch.last_tsc_write +
2740 nsec_to_cycles(vcpu, nsec: elapsed);
2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 /*
2743 * Here lies UAPI baggage: when a user-initiated TSC write has
2744 * a small delta (1 second) of virtual cycle time against the
2745 * previously set vCPU, we assume that they were intended to be
2746 * in sync and the delta was only due to the racy nature of the
2747 * legacy API.
2748 *
2749 * This trick falls down when restoring a guest which genuinely
2750 * has been running for less time than the 1 second of imprecision
2751 * which we allow for in the legacy API. In this case, the first
2752 * value written by userspace (on any vCPU) should not be subject
2753 * to this 'correction' to make it sync up with values that only
2754 * come from the kernel's default vCPU creation. Make the 1-second
2755 * slop hack only trigger if the user_set_tsc flag is already set.
2756 */
2757 synchronizing = data < tsc_exp + tsc_hz &&
2758 data + tsc_hz > tsc_exp;
2759 }
2760 }
2761
2762 if (user_value)
2763 kvm->arch.user_set_tsc = true;
2764
2765 /*
2766 * For a reliable TSC, we can match TSC offsets, and for an unstable
2767 * TSC, we add elapsed time in this computation. We could let the
2768 * compensation code attempt to catch up if we fall behind, but
2769 * it's better to try to match offsets from the beginning.
2770 */
2771 if (synchronizing &&
2772 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2773 if (!kvm_check_tsc_unstable()) {
2774 offset = kvm->arch.cur_tsc_offset;
2775 } else {
2776 u64 delta = nsec_to_cycles(vcpu, nsec: elapsed);
2777 data += delta;
2778 offset = kvm_compute_l1_tsc_offset(vcpu, target_tsc: data);
2779 }
2780 matched = true;
2781 }
2782
2783 __kvm_synchronize_tsc(vcpu, offset, tsc: data, ns, matched);
2784 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2785}
2786
2787static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2788 s64 adjustment)
2789{
2790 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2791 kvm_vcpu_write_tsc_offset(vcpu, l1_offset: tsc_offset + adjustment);
2792}
2793
2794static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2795{
2796 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2797 WARN_ON(adjustment < 0);
2798 adjustment = kvm_scale_tsc(tsc: (u64) adjustment,
2799 ratio: vcpu->arch.l1_tsc_scaling_ratio);
2800 adjust_tsc_offset_guest(vcpu, adjustment);
2801}
2802
2803#ifdef CONFIG_X86_64
2804
2805static u64 read_tsc(void)
2806{
2807 u64 ret = (u64)rdtsc_ordered();
2808 u64 last = pvclock_gtod_data.clock.cycle_last;
2809
2810 if (likely(ret >= last))
2811 return ret;
2812
2813 /*
2814 * GCC likes to generate cmov here, but this branch is extremely
2815 * predictable (it's just a function of time and the likely is
2816 * very likely) and there's a data dependence, so force GCC
2817 * to generate a branch instead. I don't barrier() because
2818 * we don't actually need a barrier, and if this function
2819 * ever gets inlined it will generate worse code.
2820 */
2821 asm volatile ("");
2822 return last;
2823}
2824
2825static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2826 int *mode)
2827{
2828 u64 tsc_pg_val;
2829 long v;
2830
2831 switch (clock->vclock_mode) {
2832 case VDSO_CLOCKMODE_HVCLOCK:
2833 if (hv_read_tsc_page_tsc(tsc_pg: hv_get_tsc_page(),
2834 cur_tsc: tsc_timestamp, time: &tsc_pg_val)) {
2835 /* TSC page valid */
2836 *mode = VDSO_CLOCKMODE_HVCLOCK;
2837 v = (tsc_pg_val - clock->cycle_last) &
2838 clock->mask;
2839 } else {
2840 /* TSC page invalid */
2841 *mode = VDSO_CLOCKMODE_NONE;
2842 }
2843 break;
2844 case VDSO_CLOCKMODE_TSC:
2845 *mode = VDSO_CLOCKMODE_TSC;
2846 *tsc_timestamp = read_tsc();
2847 v = (*tsc_timestamp - clock->cycle_last) &
2848 clock->mask;
2849 break;
2850 default:
2851 *mode = VDSO_CLOCKMODE_NONE;
2852 }
2853
2854 if (*mode == VDSO_CLOCKMODE_NONE)
2855 *tsc_timestamp = v = 0;
2856
2857 return v * clock->mult;
2858}
2859
2860/*
2861 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2862 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2863 */
2864static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2865{
2866 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 unsigned long seq;
2868 int mode;
2869 u64 ns;
2870
2871 do {
2872 seq = read_seqcount_begin(&gtod->seq);
2873 ns = gtod->raw_clock.base_cycles;
2874 ns += vgettsc(clock: &gtod->raw_clock, tsc_timestamp, mode: &mode);
2875 ns >>= gtod->raw_clock.shift;
2876 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2877 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2878 *t = ns;
2879
2880 return mode;
2881}
2882
2883/*
2884 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2885 * no boot time offset.
2886 */
2887static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2888{
2889 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2890 unsigned long seq;
2891 int mode;
2892 u64 ns;
2893
2894 do {
2895 seq = read_seqcount_begin(&gtod->seq);
2896 ns = gtod->clock.base_cycles;
2897 ns += vgettsc(clock: &gtod->clock, tsc_timestamp, mode: &mode);
2898 ns >>= gtod->clock.shift;
2899 ns += ktime_to_ns(kt: gtod->clock.offset);
2900 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2901 *t = ns;
2902
2903 return mode;
2904}
2905
2906static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2907{
2908 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2909 unsigned long seq;
2910 int mode;
2911 u64 ns;
2912
2913 do {
2914 seq = read_seqcount_begin(&gtod->seq);
2915 ts->tv_sec = gtod->wall_time_sec;
2916 ns = gtod->clock.base_cycles;
2917 ns += vgettsc(clock: &gtod->clock, tsc_timestamp, mode: &mode);
2918 ns >>= gtod->clock.shift;
2919 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2920
2921 ts->tv_sec += __iter_div_u64_rem(dividend: ns, NSEC_PER_SEC, remainder: &ns);
2922 ts->tv_nsec = ns;
2923
2924 return mode;
2925}
2926
2927/*
2928 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2929 * reports the TSC value from which it do so. Returns true if host is
2930 * using TSC based clocksource.
2931 */
2932static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2933{
2934 /* checked again under seqlock below */
2935 if (!gtod_is_based_on_tsc(mode: pvclock_gtod_data.clock.vclock_mode))
2936 return false;
2937
2938 return gtod_is_based_on_tsc(mode: do_kvmclock_base(t: kernel_ns,
2939 tsc_timestamp));
2940}
2941
2942/*
2943 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2944 * so. Returns true if host is using TSC based clocksource.
2945 */
2946bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2947{
2948 /* checked again under seqlock below */
2949 if (!gtod_is_based_on_tsc(mode: pvclock_gtod_data.clock.vclock_mode))
2950 return false;
2951
2952 return gtod_is_based_on_tsc(mode: do_monotonic(t: kernel_ns,
2953 tsc_timestamp));
2954}
2955
2956/*
2957 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2958 * so. Returns true if host is using TSC based clocksource.
2959 *
2960 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2961 * for that.
2962 */
2963static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2964 u64 *tsc_timestamp)
2965{
2966 /* checked again under seqlock below */
2967 if (!gtod_is_based_on_tsc(mode: pvclock_gtod_data.clock.vclock_mode))
2968 return false;
2969
2970 return gtod_is_based_on_tsc(mode: do_realtime(ts, tsc_timestamp));
2971}
2972#endif
2973
2974/*
2975 *
2976 * Assuming a stable TSC across physical CPUS, and a stable TSC
2977 * across virtual CPUs, the following condition is possible.
2978 * Each numbered line represents an event visible to both
2979 * CPUs at the next numbered event.
2980 *
2981 * "timespecX" represents host monotonic time. "tscX" represents
2982 * RDTSC value.
2983 *
2984 * VCPU0 on CPU0 | VCPU1 on CPU1
2985 *
2986 * 1. read timespec0,tsc0
2987 * 2. | timespec1 = timespec0 + N
2988 * | tsc1 = tsc0 + M
2989 * 3. transition to guest | transition to guest
2990 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2991 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2992 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2993 *
2994 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2995 *
2996 * - ret0 < ret1
2997 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2998 * ...
2999 * - 0 < N - M => M < N
3000 *
3001 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3002 * always the case (the difference between two distinct xtime instances
3003 * might be smaller then the difference between corresponding TSC reads,
3004 * when updating guest vcpus pvclock areas).
3005 *
3006 * To avoid that problem, do not allow visibility of distinct
3007 * system_timestamp/tsc_timestamp values simultaneously: use a master
3008 * copy of host monotonic time values. Update that master copy
3009 * in lockstep.
3010 *
3011 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3012 *
3013 */
3014
3015static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3016{
3017#ifdef CONFIG_X86_64
3018 struct kvm_arch *ka = &kvm->arch;
3019 int vclock_mode;
3020 bool host_tsc_clocksource, vcpus_matched;
3021
3022 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3023 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3024 atomic_read(v: &kvm->online_vcpus));
3025
3026 /*
3027 * If the host uses TSC clock, then passthrough TSC as stable
3028 * to the guest.
3029 */
3030 host_tsc_clocksource = kvm_get_time_and_clockread(
3031 kernel_ns: &ka->master_kernel_ns,
3032 tsc_timestamp: &ka->master_cycle_now);
3033
3034 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3035 && !ka->backwards_tsc_observed
3036 && !ka->boot_vcpu_runs_old_kvmclock;
3037
3038 if (ka->use_master_clock)
3039 atomic_set(v: &kvm_guest_has_master_clock, i: 1);
3040
3041 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3042 trace_kvm_update_master_clock(use_master_clock: ka->use_master_clock, host_clock: vclock_mode,
3043 offset_matched: vcpus_matched);
3044#endif
3045}
3046
3047static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3048{
3049 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3050}
3051
3052static void __kvm_start_pvclock_update(struct kvm *kvm)
3053{
3054 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3055 write_seqcount_begin(&kvm->arch.pvclock_sc);
3056}
3057
3058static void kvm_start_pvclock_update(struct kvm *kvm)
3059{
3060 kvm_make_mclock_inprogress_request(kvm);
3061
3062 /* no guest entries from this point */
3063 __kvm_start_pvclock_update(kvm);
3064}
3065
3066static void kvm_end_pvclock_update(struct kvm *kvm)
3067{
3068 struct kvm_arch *ka = &kvm->arch;
3069 struct kvm_vcpu *vcpu;
3070 unsigned long i;
3071
3072 write_seqcount_end(&ka->pvclock_sc);
3073 raw_spin_unlock_irq(&ka->tsc_write_lock);
3074 kvm_for_each_vcpu(i, vcpu, kvm)
3075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3076
3077 /* guest entries allowed */
3078 kvm_for_each_vcpu(i, vcpu, kvm)
3079 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3080}
3081
3082static void kvm_update_masterclock(struct kvm *kvm)
3083{
3084 kvm_hv_request_tsc_page_update(kvm);
3085 kvm_start_pvclock_update(kvm);
3086 pvclock_update_vm_gtod_copy(kvm);
3087 kvm_end_pvclock_update(kvm);
3088}
3089
3090/*
3091 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3092 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3093 * can change during boot even if the TSC is constant, as it's possible for KVM
3094 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3095 * notification when calibration completes, but practically speaking calibration
3096 * will complete before userspace is alive enough to create VMs.
3097 */
3098static unsigned long get_cpu_tsc_khz(void)
3099{
3100 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3101 return tsc_khz;
3102 else
3103 return __this_cpu_read(cpu_tsc_khz);
3104}
3105
3106/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3107static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3108{
3109 struct kvm_arch *ka = &kvm->arch;
3110 struct pvclock_vcpu_time_info hv_clock;
3111
3112 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3113 get_cpu();
3114
3115 data->flags = 0;
3116 if (ka->use_master_clock &&
3117 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3118#ifdef CONFIG_X86_64
3119 struct timespec64 ts;
3120
3121 if (kvm_get_walltime_and_clockread(ts: &ts, tsc_timestamp: &data->host_tsc)) {
3122 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3123 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3124 } else
3125#endif
3126 data->host_tsc = rdtsc();
3127
3128 data->flags |= KVM_CLOCK_TSC_STABLE;
3129 hv_clock.tsc_timestamp = ka->master_cycle_now;
3130 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3131 kvm_get_time_scale(NSEC_PER_SEC, base_hz: get_cpu_tsc_khz() * 1000LL,
3132 pshift: &hv_clock.tsc_shift,
3133 pmultiplier: &hv_clock.tsc_to_system_mul);
3134 data->clock = __pvclock_read_cycles(src: &hv_clock, tsc: data->host_tsc);
3135 } else {
3136 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3137 }
3138
3139 put_cpu();
3140}
3141
3142static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3143{
3144 struct kvm_arch *ka = &kvm->arch;
3145 unsigned seq;
3146
3147 do {
3148 seq = read_seqcount_begin(&ka->pvclock_sc);
3149 __get_kvmclock(kvm, data);
3150 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3151}
3152
3153u64 get_kvmclock_ns(struct kvm *kvm)
3154{
3155 struct kvm_clock_data data;
3156
3157 get_kvmclock(kvm, data: &data);
3158 return data.clock;
3159}
3160
3161static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3162 struct gfn_to_pfn_cache *gpc,
3163 unsigned int offset,
3164 bool force_tsc_unstable)
3165{
3166 struct kvm_vcpu_arch *vcpu = &v->arch;
3167 struct pvclock_vcpu_time_info *guest_hv_clock;
3168 unsigned long flags;
3169
3170 read_lock_irqsave(&gpc->lock, flags);
3171 while (!kvm_gpc_check(gpc, len: offset + sizeof(*guest_hv_clock))) {
3172 read_unlock_irqrestore(&gpc->lock, flags);
3173
3174 if (kvm_gpc_refresh(gpc, len: offset + sizeof(*guest_hv_clock)))
3175 return;
3176
3177 read_lock_irqsave(&gpc->lock, flags);
3178 }
3179
3180 guest_hv_clock = (void *)(gpc->khva + offset);
3181
3182 /*
3183 * This VCPU is paused, but it's legal for a guest to read another
3184 * VCPU's kvmclock, so we really have to follow the specification where
3185 * it says that version is odd if data is being modified, and even after
3186 * it is consistent.
3187 */
3188
3189 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3190 smp_wmb();
3191
3192 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3193 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3194
3195 if (vcpu->pvclock_set_guest_stopped_request) {
3196 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3197 vcpu->pvclock_set_guest_stopped_request = false;
3198 }
3199
3200 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3201
3202 if (force_tsc_unstable)
3203 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3204
3205 smp_wmb();
3206
3207 guest_hv_clock->version = ++vcpu->hv_clock.version;
3208
3209 kvm_gpc_mark_dirty_in_slot(gpc);
3210 read_unlock_irqrestore(&gpc->lock, flags);
3211
3212 trace_kvm_pvclock_update(vcpu_id: v->vcpu_id, pvclock: &vcpu->hv_clock);
3213}
3214
3215static int kvm_guest_time_update(struct kvm_vcpu *v)
3216{
3217 unsigned long flags, tgt_tsc_khz;
3218 unsigned seq;
3219 struct kvm_vcpu_arch *vcpu = &v->arch;
3220 struct kvm_arch *ka = &v->kvm->arch;
3221 s64 kernel_ns;
3222 u64 tsc_timestamp, host_tsc;
3223 u8 pvclock_flags;
3224 bool use_master_clock;
3225#ifdef CONFIG_KVM_XEN
3226 /*
3227 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3228 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3229 * This default behaviour led to bugs in some guest kernels which cause
3230 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3231 */
3232 bool xen_pvclock_tsc_unstable =
3233 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3234#endif
3235
3236 kernel_ns = 0;
3237 host_tsc = 0;
3238
3239 /*
3240 * If the host uses TSC clock, then passthrough TSC as stable
3241 * to the guest.
3242 */
3243 do {
3244 seq = read_seqcount_begin(&ka->pvclock_sc);
3245 use_master_clock = ka->use_master_clock;
3246 if (use_master_clock) {
3247 host_tsc = ka->master_cycle_now;
3248 kernel_ns = ka->master_kernel_ns;
3249 }
3250 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3251
3252 /* Keep irq disabled to prevent changes to the clock */
3253 local_irq_save(flags);
3254 tgt_tsc_khz = get_cpu_tsc_khz();
3255 if (unlikely(tgt_tsc_khz == 0)) {
3256 local_irq_restore(flags);
3257 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu: v);
3258 return 1;
3259 }
3260 if (!use_master_clock) {
3261 host_tsc = rdtsc();
3262 kernel_ns = get_kvmclock_base_ns();
3263 }
3264
3265 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3266
3267 /*
3268 * We may have to catch up the TSC to match elapsed wall clock
3269 * time for two reasons, even if kvmclock is used.
3270 * 1) CPU could have been running below the maximum TSC rate
3271 * 2) Broken TSC compensation resets the base at each VCPU
3272 * entry to avoid unknown leaps of TSC even when running
3273 * again on the same CPU. This may cause apparent elapsed
3274 * time to disappear, and the guest to stand still or run
3275 * very slowly.
3276 */
3277 if (vcpu->tsc_catchup) {
3278 u64 tsc = compute_guest_tsc(vcpu: v, kernel_ns);
3279 if (tsc > tsc_timestamp) {
3280 adjust_tsc_offset_guest(vcpu: v, adjustment: tsc - tsc_timestamp);
3281 tsc_timestamp = tsc;
3282 }
3283 }
3284
3285 local_irq_restore(flags);
3286
3287 /* With all the info we got, fill in the values */
3288
3289 if (kvm_caps.has_tsc_control)
3290 tgt_tsc_khz = kvm_scale_tsc(tsc: tgt_tsc_khz,
3291 ratio: v->arch.l1_tsc_scaling_ratio);
3292
3293 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3294 kvm_get_time_scale(NSEC_PER_SEC, base_hz: tgt_tsc_khz * 1000LL,
3295 pshift: &vcpu->hv_clock.tsc_shift,
3296 pmultiplier: &vcpu->hv_clock.tsc_to_system_mul);
3297 vcpu->hw_tsc_khz = tgt_tsc_khz;
3298 kvm_xen_update_tsc_info(vcpu: v);
3299 }
3300
3301 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3302 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3303 vcpu->last_guest_tsc = tsc_timestamp;
3304
3305 /* If the host uses TSC clocksource, then it is stable */
3306 pvclock_flags = 0;
3307 if (use_master_clock)
3308 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3309
3310 vcpu->hv_clock.flags = pvclock_flags;
3311
3312 if (vcpu->pv_time.active)
3313 kvm_setup_guest_pvclock(v, gpc: &vcpu->pv_time, offset: 0, force_tsc_unstable: false);
3314#ifdef CONFIG_KVM_XEN
3315 if (vcpu->xen.vcpu_info_cache.active)
3316 kvm_setup_guest_pvclock(v, gpc: &vcpu->xen.vcpu_info_cache,
3317 offsetof(struct compat_vcpu_info, time),
3318 force_tsc_unstable: xen_pvclock_tsc_unstable);
3319 if (vcpu->xen.vcpu_time_info_cache.active)
3320 kvm_setup_guest_pvclock(v, gpc: &vcpu->xen.vcpu_time_info_cache, offset: 0,
3321 force_tsc_unstable: xen_pvclock_tsc_unstable);
3322#endif
3323 kvm_hv_setup_tsc_page(kvm: v->kvm, hv_clock: &vcpu->hv_clock);
3324 return 0;
3325}
3326
3327/*
3328 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3329 * which it started (i.e. its epoch, when its kvmclock was zero).
3330 *
3331 * In fact those clocks are subtly different; wall clock frequency is
3332 * adjusted by NTP and has leap seconds, while the kvmclock is a
3333 * simple function of the TSC without any such adjustment.
3334 *
3335 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3336 * that and kvmclock, but even that would be subject to change over
3337 * time.
3338 *
3339 * Attempt to calculate the epoch at a given moment using the *same*
3340 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3341 * wallclock and kvmclock times, and subtracting one from the other.
3342 *
3343 * Fall back to using their values at slightly different moments by
3344 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3345 */
3346uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3347{
3348#ifdef CONFIG_X86_64
3349 struct pvclock_vcpu_time_info hv_clock;
3350 struct kvm_arch *ka = &kvm->arch;
3351 unsigned long seq, local_tsc_khz;
3352 struct timespec64 ts;
3353 uint64_t host_tsc;
3354
3355 do {
3356 seq = read_seqcount_begin(&ka->pvclock_sc);
3357
3358 local_tsc_khz = 0;
3359 if (!ka->use_master_clock)
3360 break;
3361
3362 /*
3363 * The TSC read and the call to get_cpu_tsc_khz() must happen
3364 * on the same CPU.
3365 */
3366 get_cpu();
3367
3368 local_tsc_khz = get_cpu_tsc_khz();
3369
3370 if (local_tsc_khz &&
3371 !kvm_get_walltime_and_clockread(ts: &ts, tsc_timestamp: &host_tsc))
3372 local_tsc_khz = 0; /* Fall back to old method */
3373
3374 put_cpu();
3375
3376 /*
3377 * These values must be snapshotted within the seqcount loop.
3378 * After that, it's just mathematics which can happen on any
3379 * CPU at any time.
3380 */
3381 hv_clock.tsc_timestamp = ka->master_cycle_now;
3382 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3383
3384 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3385
3386 /*
3387 * If the conditions were right, and obtaining the wallclock+TSC was
3388 * successful, calculate the KVM clock at the corresponding time and
3389 * subtract one from the other to get the guest's epoch in nanoseconds
3390 * since 1970-01-01.
3391 */
3392 if (local_tsc_khz) {
3393 kvm_get_time_scale(NSEC_PER_SEC, base_hz: local_tsc_khz * NSEC_PER_USEC,
3394 pshift: &hv_clock.tsc_shift,
3395 pmultiplier: &hv_clock.tsc_to_system_mul);
3396 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3397 __pvclock_read_cycles(src: &hv_clock, tsc: host_tsc);
3398 }
3399#endif
3400 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3401}
3402
3403/*
3404 * kvmclock updates which are isolated to a given vcpu, such as
3405 * vcpu->cpu migration, should not allow system_timestamp from
3406 * the rest of the vcpus to remain static. Otherwise ntp frequency
3407 * correction applies to one vcpu's system_timestamp but not
3408 * the others.
3409 *
3410 * So in those cases, request a kvmclock update for all vcpus.
3411 * We need to rate-limit these requests though, as they can
3412 * considerably slow guests that have a large number of vcpus.
3413 * The time for a remote vcpu to update its kvmclock is bound
3414 * by the delay we use to rate-limit the updates.
3415 */
3416
3417#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3418
3419static void kvmclock_update_fn(struct work_struct *work)
3420{
3421 unsigned long i;
3422 struct delayed_work *dwork = to_delayed_work(work);
3423 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3424 kvmclock_update_work);
3425 struct kvm *kvm = container_of(ka, struct kvm, arch);
3426 struct kvm_vcpu *vcpu;
3427
3428 kvm_for_each_vcpu(i, vcpu, kvm) {
3429 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3430 kvm_vcpu_kick(vcpu);
3431 }
3432}
3433
3434static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3435{
3436 struct kvm *kvm = v->kvm;
3437
3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu: v);
3439 schedule_delayed_work(dwork: &kvm->arch.kvmclock_update_work,
3440 KVMCLOCK_UPDATE_DELAY);
3441}
3442
3443#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3444
3445static void kvmclock_sync_fn(struct work_struct *work)
3446{
3447 struct delayed_work *dwork = to_delayed_work(work);
3448 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3449 kvmclock_sync_work);
3450 struct kvm *kvm = container_of(ka, struct kvm, arch);
3451
3452 schedule_delayed_work(dwork: &kvm->arch.kvmclock_update_work, delay: 0);
3453 schedule_delayed_work(dwork: &kvm->arch.kvmclock_sync_work,
3454 KVMCLOCK_SYNC_PERIOD);
3455}
3456
3457/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3458static bool is_mci_control_msr(u32 msr)
3459{
3460 return (msr & 3) == 0;
3461}
3462static bool is_mci_status_msr(u32 msr)
3463{
3464 return (msr & 3) == 1;
3465}
3466
3467/*
3468 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3469 */
3470static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3471{
3472 /* McStatusWrEn enabled? */
3473 if (guest_cpuid_is_amd_compatible(vcpu))
3474 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3475
3476 return false;
3477}
3478
3479static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3480{
3481 u64 mcg_cap = vcpu->arch.mcg_cap;
3482 unsigned bank_num = mcg_cap & 0xff;
3483 u32 msr = msr_info->index;
3484 u64 data = msr_info->data;
3485 u32 offset, last_msr;
3486
3487 switch (msr) {
3488 case MSR_IA32_MCG_STATUS:
3489 vcpu->arch.mcg_status = data;
3490 break;
3491 case MSR_IA32_MCG_CTL:
3492 if (!(mcg_cap & MCG_CTL_P) &&
3493 (data || !msr_info->host_initiated))
3494 return 1;
3495 if (data != 0 && data != ~(u64)0)
3496 return 1;
3497 vcpu->arch.mcg_ctl = data;
3498 break;
3499 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3500 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3501 if (msr > last_msr)
3502 return 1;
3503
3504 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3505 return 1;
3506 /* An attempt to write a 1 to a reserved bit raises #GP */
3507 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3508 return 1;
3509 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3510 last_msr + 1 - MSR_IA32_MC0_CTL2);
3511 vcpu->arch.mci_ctl2_banks[offset] = data;
3512 break;
3513 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3514 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3515 if (msr > last_msr)
3516 return 1;
3517
3518 /*
3519 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3520 * values are architecturally undefined. But, some Linux
3521 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3522 * issue on AMD K8s, allow bit 10 to be clear when setting all
3523 * other bits in order to avoid an uncaught #GP in the guest.
3524 *
3525 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3526 * single-bit ECC data errors.
3527 */
3528 if (is_mci_control_msr(msr) &&
3529 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3530 return 1;
3531
3532 /*
3533 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3534 * AMD-based CPUs allow non-zero values, but if and only if
3535 * HWCR[McStatusWrEn] is set.
3536 */
3537 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3538 data != 0 && !can_set_mci_status(vcpu))
3539 return 1;
3540
3541 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3542 last_msr + 1 - MSR_IA32_MC0_CTL);
3543 vcpu->arch.mce_banks[offset] = data;
3544 break;
3545 default:
3546 return 1;
3547 }
3548 return 0;
3549}
3550
3551static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3552{
3553 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3554
3555 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3556}
3557
3558static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3559{
3560 gpa_t gpa = data & ~0x3f;
3561
3562 /* Bits 4:5 are reserved, Should be zero */
3563 if (data & 0x30)
3564 return 1;
3565
3566 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3567 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3568 return 1;
3569
3570 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3571 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3572 return 1;
3573
3574 if (!lapic_in_kernel(vcpu))
3575 return data ? 1 : 0;
3576
3577 vcpu->arch.apf.msr_en_val = data;
3578
3579 if (!kvm_pv_async_pf_enabled(vcpu)) {
3580 kvm_clear_async_pf_completion_queue(vcpu);
3581 kvm_async_pf_hash_reset(vcpu);
3582 return 0;
3583 }
3584
3585 if (kvm_gfn_to_hva_cache_init(kvm: vcpu->kvm, ghc: &vcpu->arch.apf.data, gpa,
3586 len: sizeof(u64)))
3587 return 1;
3588
3589 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3590 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3591
3592 kvm_async_pf_wakeup_all(vcpu);
3593
3594 return 0;
3595}
3596
3597static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3598{
3599 /* Bits 8-63 are reserved */
3600 if (data >> 8)
3601 return 1;
3602
3603 if (!lapic_in_kernel(vcpu))
3604 return 1;
3605
3606 vcpu->arch.apf.msr_int_val = data;
3607
3608 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3609
3610 return 0;
3611}
3612
3613static void kvmclock_reset(struct kvm_vcpu *vcpu)
3614{
3615 kvm_gpc_deactivate(gpc: &vcpu->arch.pv_time);
3616 vcpu->arch.time = 0;
3617}
3618
3619static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3620{
3621 ++vcpu->stat.tlb_flush;
3622 static_call(kvm_x86_flush_tlb_all)(vcpu);
3623
3624 /* Flushing all ASIDs flushes the current ASID... */
3625 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3626}
3627
3628static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3629{
3630 ++vcpu->stat.tlb_flush;
3631
3632 if (!tdp_enabled) {
3633 /*
3634 * A TLB flush on behalf of the guest is equivalent to
3635 * INVPCID(all), toggling CR4.PGE, etc., which requires
3636 * a forced sync of the shadow page tables. Ensure all the
3637 * roots are synced and the guest TLB in hardware is clean.
3638 */
3639 kvm_mmu_sync_roots(vcpu);
3640 kvm_mmu_sync_prev_roots(vcpu);
3641 }
3642
3643 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3644
3645 /*
3646 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3647 * grained flushing.
3648 */
3649 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3650}
3651
3652
3653static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3654{
3655 ++vcpu->stat.tlb_flush;
3656 static_call(kvm_x86_flush_tlb_current)(vcpu);
3657}
3658
3659/*
3660 * Service "local" TLB flush requests, which are specific to the current MMU
3661 * context. In addition to the generic event handling in vcpu_enter_guest(),
3662 * TLB flushes that are targeted at an MMU context also need to be serviced
3663 * prior before nested VM-Enter/VM-Exit.
3664 */
3665void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3666{
3667 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3668 kvm_vcpu_flush_tlb_current(vcpu);
3669
3670 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3671 kvm_vcpu_flush_tlb_guest(vcpu);
3672}
3673EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3674
3675static void record_steal_time(struct kvm_vcpu *vcpu)
3676{
3677 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3678 struct kvm_steal_time __user *st;
3679 struct kvm_memslots *slots;
3680 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3681 u64 steal;
3682 u32 version;
3683
3684 if (kvm_xen_msr_enabled(kvm: vcpu->kvm)) {
3685 kvm_xen_runstate_set_running(vcpu);
3686 return;
3687 }
3688
3689 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3690 return;
3691
3692 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3693 return;
3694
3695 slots = kvm_memslots(kvm: vcpu->kvm);
3696
3697 if (unlikely(slots->generation != ghc->generation ||
3698 gpa != ghc->gpa ||
3699 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3700 /* We rely on the fact that it fits in a single page. */
3701 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3702
3703 if (kvm_gfn_to_hva_cache_init(kvm: vcpu->kvm, ghc, gpa, len: sizeof(*st)) ||
3704 kvm_is_error_hva(addr: ghc->hva) || !ghc->memslot)
3705 return;
3706 }
3707
3708 st = (struct kvm_steal_time __user *)ghc->hva;
3709 /*
3710 * Doing a TLB flush here, on the guest's behalf, can avoid
3711 * expensive IPIs.
3712 */
3713 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3714 u8 st_preempted = 0;
3715 int err = -EFAULT;
3716
3717 if (!user_access_begin(st, sizeof(*st)))
3718 return;
3719
3720 asm volatile("1: xchgb %0, %2\n"
3721 "xor %1, %1\n"
3722 "2:\n"
3723 _ASM_EXTABLE_UA(1b, 2b)
3724 : "+q" (st_preempted),
3725 "+&r" (err),
3726 "+m" (st->preempted));
3727 if (err)
3728 goto out;
3729
3730 user_access_end();
3731
3732 vcpu->arch.st.preempted = 0;
3733
3734 trace_kvm_pv_tlb_flush(vcpu_id: vcpu->vcpu_id,
3735 need_flush_tlb: st_preempted & KVM_VCPU_FLUSH_TLB);
3736 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3737 kvm_vcpu_flush_tlb_guest(vcpu);
3738
3739 if (!user_access_begin(st, sizeof(*st)))
3740 goto dirty;
3741 } else {
3742 if (!user_access_begin(st, sizeof(*st)))
3743 return;
3744
3745 unsafe_put_user(0, &st->preempted, out);
3746 vcpu->arch.st.preempted = 0;
3747 }
3748
3749 unsafe_get_user(version, &st->version, out);
3750 if (version & 1)
3751 version += 1; /* first time write, random junk */
3752
3753 version += 1;
3754 unsafe_put_user(version, &st->version, out);
3755
3756 smp_wmb();
3757
3758 unsafe_get_user(steal, &st->steal, out);
3759 steal += current->sched_info.run_delay -
3760 vcpu->arch.st.last_steal;
3761 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3762 unsafe_put_user(steal, &st->steal, out);
3763
3764 version += 1;
3765 unsafe_put_user(version, &st->version, out);
3766
3767 out:
3768 user_access_end();
3769 dirty:
3770 mark_page_dirty_in_slot(kvm: vcpu->kvm, memslot: ghc->memslot, gfn: gpa_to_gfn(gpa: ghc->gpa));
3771}
3772
3773static bool kvm_is_msr_to_save(u32 msr_index)
3774{
3775 unsigned int i;
3776
3777 for (i = 0; i < num_msrs_to_save; i++) {
3778 if (msrs_to_save[i] == msr_index)
3779 return true;
3780 }
3781
3782 return false;
3783}
3784
3785int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3786{
3787 u32 msr = msr_info->index;
3788 u64 data = msr_info->data;
3789
3790 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3791 return kvm_xen_write_hypercall_page(vcpu, data);
3792
3793 switch (msr) {
3794 case MSR_AMD64_NB_CFG:
3795 case MSR_IA32_UCODE_WRITE:
3796 case MSR_VM_HSAVE_PA:
3797 case MSR_AMD64_PATCH_LOADER:
3798 case MSR_AMD64_BU_CFG2:
3799 case MSR_AMD64_DC_CFG:
3800 case MSR_AMD64_TW_CFG:
3801 case MSR_F15H_EX_CFG:
3802 break;
3803
3804 case MSR_IA32_UCODE_REV:
3805 if (msr_info->host_initiated)
3806 vcpu->arch.microcode_version = data;
3807 break;
3808 case MSR_IA32_ARCH_CAPABILITIES:
3809 if (!msr_info->host_initiated)
3810 return 1;
3811 vcpu->arch.arch_capabilities = data;
3812 break;
3813 case MSR_IA32_PERF_CAPABILITIES:
3814 if (!msr_info->host_initiated)
3815 return 1;
3816 if (data & ~kvm_caps.supported_perf_cap)
3817 return 1;
3818
3819 /*
3820 * Note, this is not just a performance optimization! KVM
3821 * disallows changing feature MSRs after the vCPU has run; PMU
3822 * refresh will bug the VM if called after the vCPU has run.
3823 */
3824 if (vcpu->arch.perf_capabilities == data)
3825 break;
3826
3827 vcpu->arch.perf_capabilities = data;
3828 kvm_pmu_refresh(vcpu);
3829 break;
3830 case MSR_IA32_PRED_CMD: {
3831 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3832
3833 if (!msr_info->host_initiated) {
3834 if ((!guest_has_pred_cmd_msr(vcpu)))
3835 return 1;
3836
3837 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3838 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3839 reserved_bits |= PRED_CMD_IBPB;
3840
3841 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3842 reserved_bits |= PRED_CMD_SBPB;
3843 }
3844
3845 if (!boot_cpu_has(X86_FEATURE_IBPB))
3846 reserved_bits |= PRED_CMD_IBPB;
3847
3848 if (!boot_cpu_has(X86_FEATURE_SBPB))
3849 reserved_bits |= PRED_CMD_SBPB;
3850
3851 if (data & reserved_bits)
3852 return 1;
3853
3854 if (!data)
3855 break;
3856
3857 wrmsrl(MSR_IA32_PRED_CMD, val: data);
3858 break;
3859 }
3860 case MSR_IA32_FLUSH_CMD:
3861 if (!msr_info->host_initiated &&
3862 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3863 return 1;
3864
3865 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3866 return 1;
3867 if (!data)
3868 break;
3869
3870 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3871 break;
3872 case MSR_EFER:
3873 return set_efer(vcpu, msr_info);
3874 case MSR_K7_HWCR:
3875 data &= ~(u64)0x40; /* ignore flush filter disable */
3876 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3877 data &= ~(u64)0x8; /* ignore TLB cache disable */
3878
3879 /*
3880 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3881 * through at least v6.6 whine if TscFreqSel is clear,
3882 * depending on F/M/S.
3883 */
3884 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3885 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3886 return 1;
3887 }
3888 vcpu->arch.msr_hwcr = data;
3889 break;
3890 case MSR_FAM10H_MMIO_CONF_BASE:
3891 if (data != 0) {
3892 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3893 return 1;
3894 }
3895 break;
3896 case MSR_IA32_CR_PAT:
3897 if (!kvm_pat_valid(data))
3898 return 1;
3899
3900 vcpu->arch.pat = data;
3901 break;
3902 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3903 case MSR_MTRRdefType:
3904 return kvm_mtrr_set_msr(vcpu, msr, data);
3905 case MSR_IA32_APICBASE:
3906 return kvm_set_apic_base(vcpu, msr_info);
3907 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3908 return kvm_x2apic_msr_write(vcpu, msr, data);
3909 case MSR_IA32_TSC_DEADLINE:
3910 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3911 break;
3912 case MSR_IA32_TSC_ADJUST:
3913 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3914 if (!msr_info->host_initiated) {
3915 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3916 adjust_tsc_offset_guest(vcpu, adjustment: adj);
3917 /* Before back to guest, tsc_timestamp must be adjusted
3918 * as well, otherwise guest's percpu pvclock time could jump.
3919 */
3920 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3921 }
3922 vcpu->arch.ia32_tsc_adjust_msr = data;
3923 }
3924 break;
3925 case MSR_IA32_MISC_ENABLE: {
3926 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3927
3928 if (!msr_info->host_initiated) {
3929 /* RO bits */
3930 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3931 return 1;
3932
3933 /* R bits, i.e. writes are ignored, but don't fault. */
3934 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3935 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3936 }
3937
3938 if (!kvm_check_has_quirk(kvm: vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3939 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3941 return 1;
3942 vcpu->arch.ia32_misc_enable_msr = data;
3943 kvm_update_cpuid_runtime(vcpu);
3944 } else {
3945 vcpu->arch.ia32_misc_enable_msr = data;
3946 }
3947 break;
3948 }
3949 case MSR_IA32_SMBASE:
3950 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3951 return 1;
3952 vcpu->arch.smbase = data;
3953 break;
3954 case MSR_IA32_POWER_CTL:
3955 vcpu->arch.msr_ia32_power_ctl = data;
3956 break;
3957 case MSR_IA32_TSC:
3958 if (msr_info->host_initiated) {
3959 kvm_synchronize_tsc(vcpu, user_value: &data);
3960 } else {
3961 u64 adj = kvm_compute_l1_tsc_offset(vcpu, target_tsc: data) - vcpu->arch.l1_tsc_offset;
3962 adjust_tsc_offset_guest(vcpu, adjustment: adj);
3963 vcpu->arch.ia32_tsc_adjust_msr += adj;
3964 }
3965 break;
3966 case MSR_IA32_XSS:
3967 if (!msr_info->host_initiated &&
3968 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3969 return 1;
3970 /*
3971 * KVM supports exposing PT to the guest, but does not support
3972 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3973 * XSAVES/XRSTORS to save/restore PT MSRs.
3974 */
3975 if (data & ~kvm_caps.supported_xss)
3976 return 1;
3977 vcpu->arch.ia32_xss = data;
3978 kvm_update_cpuid_runtime(vcpu);
3979 break;
3980 case MSR_SMI_COUNT:
3981 if (!msr_info->host_initiated)
3982 return 1;
3983 vcpu->arch.smi_count = data;
3984 break;
3985 case MSR_KVM_WALL_CLOCK_NEW:
3986 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3987 return 1;
3988
3989 vcpu->kvm->arch.wall_clock = data;
3990 kvm_write_wall_clock(kvm: vcpu->kvm, wall_clock: data, sec_hi_ofs: 0);
3991 break;
3992 case MSR_KVM_WALL_CLOCK:
3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3994 return 1;
3995
3996 vcpu->kvm->arch.wall_clock = data;
3997 kvm_write_wall_clock(kvm: vcpu->kvm, wall_clock: data, sec_hi_ofs: 0);
3998 break;
3999 case MSR_KVM_SYSTEM_TIME_NEW:
4000 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4001 return 1;
4002
4003 kvm_write_system_time(vcpu, system_time: data, old_msr: false, host_initiated: msr_info->host_initiated);
4004 break;
4005 case MSR_KVM_SYSTEM_TIME:
4006 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4007 return 1;
4008
4009 kvm_write_system_time(vcpu, system_time: data, old_msr: true, host_initiated: msr_info->host_initiated);
4010 break;
4011 case MSR_KVM_ASYNC_PF_EN:
4012 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4013 return 1;
4014
4015 if (kvm_pv_enable_async_pf(vcpu, data))
4016 return 1;
4017 break;
4018 case MSR_KVM_ASYNC_PF_INT:
4019 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4020 return 1;
4021
4022 if (kvm_pv_enable_async_pf_int(vcpu, data))
4023 return 1;
4024 break;
4025 case MSR_KVM_ASYNC_PF_ACK:
4026 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4027 return 1;
4028 if (data & 0x1) {
4029 vcpu->arch.apf.pageready_pending = false;
4030 kvm_check_async_pf_completion(vcpu);
4031 }
4032 break;
4033 case MSR_KVM_STEAL_TIME:
4034 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4035 return 1;
4036
4037 if (unlikely(!sched_info_on()))
4038 return 1;
4039
4040 if (data & KVM_STEAL_RESERVED_MASK)
4041 return 1;
4042
4043 vcpu->arch.st.msr_val = data;
4044
4045 if (!(data & KVM_MSR_ENABLED))
4046 break;
4047
4048 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4049
4050 break;
4051 case MSR_KVM_PV_EOI_EN:
4052 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4053 return 1;
4054
4055 if (kvm_lapic_set_pv_eoi(vcpu, data, len: sizeof(u8)))
4056 return 1;
4057 break;
4058
4059 case MSR_KVM_POLL_CONTROL:
4060 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4061 return 1;
4062
4063 /* only enable bit supported */
4064 if (data & (-1ULL << 1))
4065 return 1;
4066
4067 vcpu->arch.msr_kvm_poll_control = data;
4068 break;
4069
4070 case MSR_IA32_MCG_CTL:
4071 case MSR_IA32_MCG_STATUS:
4072 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4073 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4074 return set_msr_mce(vcpu, msr_info);
4075
4076 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4077 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4078 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4079 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4080 if (kvm_pmu_is_valid_msr(vcpu, msr))
4081 return kvm_pmu_set_msr(vcpu, msr_info);
4082
4083 if (data)
4084 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4085 break;
4086 case MSR_K7_CLK_CTL:
4087 /*
4088 * Ignore all writes to this no longer documented MSR.
4089 * Writes are only relevant for old K7 processors,
4090 * all pre-dating SVM, but a recommended workaround from
4091 * AMD for these chips. It is possible to specify the
4092 * affected processor models on the command line, hence
4093 * the need to ignore the workaround.
4094 */
4095 break;
4096#ifdef CONFIG_KVM_HYPERV
4097 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4098 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4099 case HV_X64_MSR_SYNDBG_OPTIONS:
4100 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4101 case HV_X64_MSR_CRASH_CTL:
4102 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4103 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4104 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4105 case HV_X64_MSR_TSC_EMULATION_STATUS:
4106 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4107 return kvm_hv_set_msr_common(vcpu, msr, data,
4108 host: msr_info->host_initiated);
4109#endif
4110 case MSR_IA32_BBL_CR_CTL3:
4111 /* Drop writes to this legacy MSR -- see rdmsr
4112 * counterpart for further detail.
4113 */
4114 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4115 break;
4116 case MSR_AMD64_OSVW_ID_LENGTH:
4117 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4118 return 1;
4119 vcpu->arch.osvw.length = data;
4120 break;
4121 case MSR_AMD64_OSVW_STATUS:
4122 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4123 return 1;
4124 vcpu->arch.osvw.status = data;
4125 break;
4126 case MSR_PLATFORM_INFO:
4127 if (!msr_info->host_initiated ||
4128 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4129 cpuid_fault_enabled(vcpu)))
4130 return 1;
4131 vcpu->arch.msr_platform_info = data;
4132 break;
4133 case MSR_MISC_FEATURES_ENABLES:
4134 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4135 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4136 !supports_cpuid_fault(vcpu)))
4137 return 1;
4138 vcpu->arch.msr_misc_features_enables = data;
4139 break;
4140#ifdef CONFIG_X86_64
4141 case MSR_IA32_XFD:
4142 if (!msr_info->host_initiated &&
4143 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4144 return 1;
4145
4146 if (data & ~kvm_guest_supported_xfd(vcpu))
4147 return 1;
4148
4149 fpu_update_guest_xfd(guest_fpu: &vcpu->arch.guest_fpu, xfd: data);
4150 break;
4151 case MSR_IA32_XFD_ERR:
4152 if (!msr_info->host_initiated &&
4153 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4154 return 1;
4155
4156 if (data & ~kvm_guest_supported_xfd(vcpu))
4157 return 1;
4158
4159 vcpu->arch.guest_fpu.xfd_err = data;
4160 break;
4161#endif
4162 default:
4163 if (kvm_pmu_is_valid_msr(vcpu, msr))
4164 return kvm_pmu_set_msr(vcpu, msr_info);
4165
4166 /*
4167 * Userspace is allowed to write '0' to MSRs that KVM reports
4168 * as to-be-saved, even if an MSRs isn't fully supported.
4169 */
4170 if (msr_info->host_initiated && !data &&
4171 kvm_is_msr_to_save(msr_index: msr))
4172 break;
4173
4174 return KVM_MSR_RET_INVALID;
4175 }
4176 return 0;
4177}
4178EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4179
4180static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4181{
4182 u64 data;
4183 u64 mcg_cap = vcpu->arch.mcg_cap;
4184 unsigned bank_num = mcg_cap & 0xff;
4185 u32 offset, last_msr;
4186
4187 switch (msr) {
4188 case MSR_IA32_P5_MC_ADDR:
4189 case MSR_IA32_P5_MC_TYPE:
4190 data = 0;
4191 break;
4192 case MSR_IA32_MCG_CAP:
4193 data = vcpu->arch.mcg_cap;
4194 break;
4195 case MSR_IA32_MCG_CTL:
4196 if (!(mcg_cap & MCG_CTL_P) && !host)
4197 return 1;
4198 data = vcpu->arch.mcg_ctl;
4199 break;
4200 case MSR_IA32_MCG_STATUS:
4201 data = vcpu->arch.mcg_status;
4202 break;
4203 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4204 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4205 if (msr > last_msr)
4206 return 1;
4207
4208 if (!(mcg_cap & MCG_CMCI_P) && !host)
4209 return 1;
4210 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4211 last_msr + 1 - MSR_IA32_MC0_CTL2);
4212 data = vcpu->arch.mci_ctl2_banks[offset];
4213 break;
4214 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4215 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4216 if (msr > last_msr)
4217 return 1;
4218
4219 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4220 last_msr + 1 - MSR_IA32_MC0_CTL);
4221 data = vcpu->arch.mce_banks[offset];
4222 break;
4223 default:
4224 return 1;
4225 }
4226 *pdata = data;
4227 return 0;
4228}
4229
4230int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4231{
4232 switch (msr_info->index) {
4233 case MSR_IA32_PLATFORM_ID:
4234 case MSR_IA32_EBL_CR_POWERON:
4235 case MSR_IA32_LASTBRANCHFROMIP:
4236 case MSR_IA32_LASTBRANCHTOIP:
4237 case MSR_IA32_LASTINTFROMIP:
4238 case MSR_IA32_LASTINTTOIP:
4239 case MSR_AMD64_SYSCFG:
4240 case MSR_K8_TSEG_ADDR:
4241 case MSR_K8_TSEG_MASK:
4242 case MSR_VM_HSAVE_PA:
4243 case MSR_K8_INT_PENDING_MSG:
4244 case MSR_AMD64_NB_CFG:
4245 case MSR_FAM10H_MMIO_CONF_BASE:
4246 case MSR_AMD64_BU_CFG2:
4247 case MSR_IA32_PERF_CTL:
4248 case MSR_AMD64_DC_CFG:
4249 case MSR_AMD64_TW_CFG:
4250 case MSR_F15H_EX_CFG:
4251 /*
4252 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4253 * limit) MSRs. Just return 0, as we do not want to expose the host
4254 * data here. Do not conditionalize this on CPUID, as KVM does not do
4255 * so for existing CPU-specific MSRs.
4256 */
4257 case MSR_RAPL_POWER_UNIT:
4258 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4259 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4260 case MSR_PKG_ENERGY_STATUS: /* Total package */
4261 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4262 msr_info->data = 0;
4263 break;
4264 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4265 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4266 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4267 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4268 if (kvm_pmu_is_valid_msr(vcpu, msr: msr_info->index))
4269 return kvm_pmu_get_msr(vcpu, msr_info);
4270 msr_info->data = 0;
4271 break;
4272 case MSR_IA32_UCODE_REV:
4273 msr_info->data = vcpu->arch.microcode_version;
4274 break;
4275 case MSR_IA32_ARCH_CAPABILITIES:
4276 if (!msr_info->host_initiated &&
4277 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4278 return 1;
4279 msr_info->data = vcpu->arch.arch_capabilities;
4280 break;
4281 case MSR_IA32_PERF_CAPABILITIES:
4282 if (!msr_info->host_initiated &&
4283 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4284 return 1;
4285 msr_info->data = vcpu->arch.perf_capabilities;
4286 break;
4287 case MSR_IA32_POWER_CTL:
4288 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4289 break;
4290 case MSR_IA32_TSC: {
4291 /*
4292 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4293 * even when not intercepted. AMD manual doesn't explicitly
4294 * state this but appears to behave the same.
4295 *
4296 * On userspace reads and writes, however, we unconditionally
4297 * return L1's TSC value to ensure backwards-compatible
4298 * behavior for migration.
4299 */
4300 u64 offset, ratio;
4301
4302 if (msr_info->host_initiated) {
4303 offset = vcpu->arch.l1_tsc_offset;
4304 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4305 } else {
4306 offset = vcpu->arch.tsc_offset;
4307 ratio = vcpu->arch.tsc_scaling_ratio;
4308 }
4309
4310 msr_info->data = kvm_scale_tsc(tsc: rdtsc(), ratio) + offset;
4311 break;
4312 }
4313 case MSR_IA32_CR_PAT:
4314 msr_info->data = vcpu->arch.pat;
4315 break;
4316 case MSR_MTRRcap:
4317 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4318 case MSR_MTRRdefType:
4319 return kvm_mtrr_get_msr(vcpu, msr: msr_info->index, pdata: &msr_info->data);
4320 case 0xcd: /* fsb frequency */
4321 msr_info->data = 3;
4322 break;
4323 /*
4324 * MSR_EBC_FREQUENCY_ID
4325 * Conservative value valid for even the basic CPU models.
4326 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4327 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4328 * and 266MHz for model 3, or 4. Set Core Clock
4329 * Frequency to System Bus Frequency Ratio to 1 (bits
4330 * 31:24) even though these are only valid for CPU
4331 * models > 2, however guests may end up dividing or
4332 * multiplying by zero otherwise.
4333 */
4334 case MSR_EBC_FREQUENCY_ID:
4335 msr_info->data = 1 << 24;
4336 break;
4337 case MSR_IA32_APICBASE:
4338 msr_info->data = kvm_get_apic_base(vcpu);
4339 break;
4340 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4341 return kvm_x2apic_msr_read(vcpu, msr: msr_info->index, data: &msr_info->data);
4342 case MSR_IA32_TSC_DEADLINE:
4343 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4344 break;
4345 case MSR_IA32_TSC_ADJUST:
4346 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4347 break;
4348 case MSR_IA32_MISC_ENABLE:
4349 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4350 break;
4351 case MSR_IA32_SMBASE:
4352 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4353 return 1;
4354 msr_info->data = vcpu->arch.smbase;
4355 break;
4356 case MSR_SMI_COUNT:
4357 msr_info->data = vcpu->arch.smi_count;
4358 break;
4359 case MSR_IA32_PERF_STATUS:
4360 /* TSC increment by tick */
4361 msr_info->data = 1000ULL;
4362 /* CPU multiplier */
4363 msr_info->data |= (((uint64_t)4ULL) << 40);
4364 break;
4365 case MSR_EFER:
4366 msr_info->data = vcpu->arch.efer;
4367 break;
4368 case MSR_KVM_WALL_CLOCK:
4369 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4370 return 1;
4371
4372 msr_info->data = vcpu->kvm->arch.wall_clock;
4373 break;
4374 case MSR_KVM_WALL_CLOCK_NEW:
4375 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4376 return 1;
4377
4378 msr_info->data = vcpu->kvm->arch.wall_clock;
4379 break;
4380 case MSR_KVM_SYSTEM_TIME:
4381 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4382 return 1;
4383
4384 msr_info->data = vcpu->arch.time;
4385 break;
4386 case MSR_KVM_SYSTEM_TIME_NEW:
4387 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4388 return 1;
4389
4390 msr_info->data = vcpu->arch.time;
4391 break;
4392 case MSR_KVM_ASYNC_PF_EN:
4393 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4394 return 1;
4395
4396 msr_info->data = vcpu->arch.apf.msr_en_val;
4397 break;
4398 case MSR_KVM_ASYNC_PF_INT:
4399 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4400 return 1;
4401
4402 msr_info->data = vcpu->arch.apf.msr_int_val;
4403 break;
4404 case MSR_KVM_ASYNC_PF_ACK:
4405 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4406 return 1;
4407
4408 msr_info->data = 0;
4409 break;
4410 case MSR_KVM_STEAL_TIME:
4411 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4412 return 1;
4413
4414 msr_info->data = vcpu->arch.st.msr_val;
4415 break;
4416 case MSR_KVM_PV_EOI_EN:
4417 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4418 return 1;
4419
4420 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4421 break;
4422 case MSR_KVM_POLL_CONTROL:
4423 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4424 return 1;
4425
4426 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4427 break;
4428 case MSR_IA32_P5_MC_ADDR:
4429 case MSR_IA32_P5_MC_TYPE:
4430 case MSR_IA32_MCG_CAP:
4431 case MSR_IA32_MCG_CTL:
4432 case MSR_IA32_MCG_STATUS:
4433 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4434 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4435 return get_msr_mce(vcpu, msr: msr_info->index, pdata: &msr_info->data,
4436 host: msr_info->host_initiated);
4437 case MSR_IA32_XSS:
4438 if (!msr_info->host_initiated &&
4439 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4440 return 1;
4441 msr_info->data = vcpu->arch.ia32_xss;
4442 break;
4443 case MSR_K7_CLK_CTL:
4444 /*
4445 * Provide expected ramp-up count for K7. All other
4446 * are set to zero, indicating minimum divisors for
4447 * every field.
4448 *
4449 * This prevents guest kernels on AMD host with CPU
4450 * type 6, model 8 and higher from exploding due to
4451 * the rdmsr failing.
4452 */
4453 msr_info->data = 0x20000000;
4454 break;
4455#ifdef CONFIG_KVM_HYPERV
4456 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4457 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4458 case HV_X64_MSR_SYNDBG_OPTIONS:
4459 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4460 case HV_X64_MSR_CRASH_CTL:
4461 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4462 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4463 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4464 case HV_X64_MSR_TSC_EMULATION_STATUS:
4465 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4466 return kvm_hv_get_msr_common(vcpu,
4467 msr: msr_info->index, pdata: &msr_info->data,
4468 host: msr_info->host_initiated);
4469#endif
4470 case MSR_IA32_BBL_CR_CTL3:
4471 /* This legacy MSR exists but isn't fully documented in current
4472 * silicon. It is however accessed by winxp in very narrow
4473 * scenarios where it sets bit #19, itself documented as
4474 * a "reserved" bit. Best effort attempt to source coherent
4475 * read data here should the balance of the register be
4476 * interpreted by the guest:
4477 *
4478 * L2 cache control register 3: 64GB range, 256KB size,
4479 * enabled, latency 0x1, configured
4480 */
4481 msr_info->data = 0xbe702111;
4482 break;
4483 case MSR_AMD64_OSVW_ID_LENGTH:
4484 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4485 return 1;
4486 msr_info->data = vcpu->arch.osvw.length;
4487 break;
4488 case MSR_AMD64_OSVW_STATUS:
4489 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4490 return 1;
4491 msr_info->data = vcpu->arch.osvw.status;
4492 break;
4493 case MSR_PLATFORM_INFO:
4494 if (!msr_info->host_initiated &&
4495 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4496 return 1;
4497 msr_info->data = vcpu->arch.msr_platform_info;
4498 break;
4499 case MSR_MISC_FEATURES_ENABLES:
4500 msr_info->data = vcpu->arch.msr_misc_features_enables;
4501 break;
4502 case MSR_K7_HWCR:
4503 msr_info->data = vcpu->arch.msr_hwcr;
4504 break;
4505#ifdef CONFIG_X86_64
4506 case MSR_IA32_XFD:
4507 if (!msr_info->host_initiated &&
4508 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4509 return 1;
4510
4511 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4512 break;
4513 case MSR_IA32_XFD_ERR:
4514 if (!msr_info->host_initiated &&
4515 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4516 return 1;
4517
4518 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4519 break;
4520#endif
4521 default:
4522 if (kvm_pmu_is_valid_msr(vcpu, msr: msr_info->index))
4523 return kvm_pmu_get_msr(vcpu, msr_info);
4524
4525 /*
4526 * Userspace is allowed to read MSRs that KVM reports as
4527 * to-be-saved, even if an MSR isn't fully supported.
4528 */
4529 if (msr_info->host_initiated &&
4530 kvm_is_msr_to_save(msr_index: msr_info->index)) {
4531 msr_info->data = 0;
4532 break;
4533 }
4534
4535 return KVM_MSR_RET_INVALID;
4536 }
4537 return 0;
4538}
4539EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4540
4541/*
4542 * Read or write a bunch of msrs. All parameters are kernel addresses.
4543 *
4544 * @return number of msrs set successfully.
4545 */
4546static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4547 struct kvm_msr_entry *entries,
4548 int (*do_msr)(struct kvm_vcpu *vcpu,
4549 unsigned index, u64 *data))
4550{
4551 int i;
4552
4553 for (i = 0; i < msrs->nmsrs; ++i)
4554 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4555 break;
4556
4557 return i;
4558}
4559
4560/*
4561 * Read or write a bunch of msrs. Parameters are user addresses.
4562 *
4563 * @return number of msrs set successfully.
4564 */
4565static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4566 int (*do_msr)(struct kvm_vcpu *vcpu,
4567 unsigned index, u64 *data),
4568 int writeback)
4569{
4570 struct kvm_msrs msrs;
4571 struct kvm_msr_entry *entries;
4572 unsigned size;
4573 int r;
4574
4575 r = -EFAULT;
4576 if (copy_from_user(to: &msrs, from: user_msrs, n: sizeof(msrs)))
4577 goto out;
4578
4579 r = -E2BIG;
4580 if (msrs.nmsrs >= MAX_IO_MSRS)
4581 goto out;
4582
4583 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4584 entries = memdup_user(user_msrs->entries, size);
4585 if (IS_ERR(ptr: entries)) {
4586 r = PTR_ERR(ptr: entries);
4587 goto out;
4588 }
4589
4590 r = __msr_io(vcpu, msrs: &msrs, entries, do_msr);
4591
4592 if (writeback && copy_to_user(to: user_msrs->entries, from: entries, n: size))
4593 r = -EFAULT;
4594
4595 kfree(objp: entries);
4596out:
4597 return r;
4598}
4599
4600static inline bool kvm_can_mwait_in_guest(void)
4601{
4602 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4603 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4604 boot_cpu_has(X86_FEATURE_ARAT);
4605}
4606
4607#ifdef CONFIG_KVM_HYPERV
4608static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4609 struct kvm_cpuid2 __user *cpuid_arg)
4610{
4611 struct kvm_cpuid2 cpuid;
4612 int r;
4613
4614 r = -EFAULT;
4615 if (copy_from_user(to: &cpuid, from: cpuid_arg, n: sizeof(cpuid)))
4616 return r;
4617
4618 r = kvm_get_hv_cpuid(vcpu, cpuid: &cpuid, entries: cpuid_arg->entries);
4619 if (r)
4620 return r;
4621
4622 r = -EFAULT;
4623 if (copy_to_user(to: cpuid_arg, from: &cpuid, n: sizeof(cpuid)))
4624 return r;
4625
4626 return 0;
4627}
4628#endif
4629
4630static bool kvm_is_vm_type_supported(unsigned long type)
4631{
4632 return type == KVM_X86_DEFAULT_VM ||
4633 (type == KVM_X86_SW_PROTECTED_VM &&
4634 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4635}
4636
4637int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4638{
4639 int r = 0;
4640
4641 switch (ext) {
4642 case KVM_CAP_IRQCHIP:
4643 case KVM_CAP_HLT:
4644 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4645 case KVM_CAP_SET_TSS_ADDR:
4646 case KVM_CAP_EXT_CPUID:
4647 case KVM_CAP_EXT_EMUL_CPUID:
4648 case KVM_CAP_CLOCKSOURCE:
4649 case KVM_CAP_PIT:
4650 case KVM_CAP_NOP_IO_DELAY:
4651 case KVM_CAP_MP_STATE:
4652 case KVM_CAP_SYNC_MMU:
4653 case KVM_CAP_USER_NMI:
4654 case KVM_CAP_REINJECT_CONTROL:
4655 case KVM_CAP_IRQ_INJECT_STATUS:
4656 case KVM_CAP_IOEVENTFD:
4657 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4658 case KVM_CAP_PIT2:
4659 case KVM_CAP_PIT_STATE2:
4660 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4661 case KVM_CAP_VCPU_EVENTS:
4662#ifdef CONFIG_KVM_HYPERV
4663 case KVM_CAP_HYPERV:
4664 case KVM_CAP_HYPERV_VAPIC:
4665 case KVM_CAP_HYPERV_SPIN:
4666 case KVM_CAP_HYPERV_TIME:
4667 case KVM_CAP_HYPERV_SYNIC:
4668 case KVM_CAP_HYPERV_SYNIC2:
4669 case KVM_CAP_HYPERV_VP_INDEX:
4670 case KVM_CAP_HYPERV_EVENTFD:
4671 case KVM_CAP_HYPERV_TLBFLUSH:
4672 case KVM_CAP_HYPERV_SEND_IPI:
4673 case KVM_CAP_HYPERV_CPUID:
4674 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4675 case KVM_CAP_SYS_HYPERV_CPUID:
4676#endif
4677 case KVM_CAP_PCI_SEGMENT:
4678 case KVM_CAP_DEBUGREGS:
4679 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4680 case KVM_CAP_XSAVE:
4681 case KVM_CAP_ASYNC_PF:
4682 case KVM_CAP_ASYNC_PF_INT:
4683 case KVM_CAP_GET_TSC_KHZ:
4684 case KVM_CAP_KVMCLOCK_CTRL:
4685 case KVM_CAP_READONLY_MEM:
4686 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4687 case KVM_CAP_TSC_DEADLINE_TIMER:
4688 case KVM_CAP_DISABLE_QUIRKS:
4689 case KVM_CAP_SET_BOOT_CPU_ID:
4690 case KVM_CAP_SPLIT_IRQCHIP:
4691 case KVM_CAP_IMMEDIATE_EXIT:
4692 case KVM_CAP_PMU_EVENT_FILTER:
4693 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4694 case KVM_CAP_GET_MSR_FEATURES:
4695 case KVM_CAP_MSR_PLATFORM_INFO:
4696 case KVM_CAP_EXCEPTION_PAYLOAD:
4697 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4698 case KVM_CAP_SET_GUEST_DEBUG:
4699 case KVM_CAP_LAST_CPU:
4700 case KVM_CAP_X86_USER_SPACE_MSR:
4701 case KVM_CAP_X86_MSR_FILTER:
4702 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4703#ifdef CONFIG_X86_SGX_KVM
4704 case KVM_CAP_SGX_ATTRIBUTE:
4705#endif
4706 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4707 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4708 case KVM_CAP_SREGS2:
4709 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4710 case KVM_CAP_VCPU_ATTRIBUTES:
4711 case KVM_CAP_SYS_ATTRIBUTES:
4712 case KVM_CAP_VAPIC:
4713 case KVM_CAP_ENABLE_CAP:
4714 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4715 case KVM_CAP_IRQFD_RESAMPLE:
4716 case KVM_CAP_MEMORY_FAULT_INFO:
4717 r = 1;
4718 break;
4719 case KVM_CAP_EXIT_HYPERCALL:
4720 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4721 break;
4722 case KVM_CAP_SET_GUEST_DEBUG2:
4723 return KVM_GUESTDBG_VALID_MASK;
4724#ifdef CONFIG_KVM_XEN
4725 case KVM_CAP_XEN_HVM:
4726 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4727 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4728 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4729 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4730 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4731 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4732 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4733 if (sched_info_on())
4734 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4735 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4736 break;
4737#endif
4738 case KVM_CAP_SYNC_REGS:
4739 r = KVM_SYNC_X86_VALID_FIELDS;
4740 break;
4741 case KVM_CAP_ADJUST_CLOCK:
4742 r = KVM_CLOCK_VALID_FLAGS;
4743 break;
4744 case KVM_CAP_X86_DISABLE_EXITS:
4745 r = KVM_X86_DISABLE_EXITS_PAUSE;
4746
4747 if (!mitigate_smt_rsb) {
4748 r |= KVM_X86_DISABLE_EXITS_HLT |
4749 KVM_X86_DISABLE_EXITS_CSTATE;
4750
4751 if (kvm_can_mwait_in_guest())
4752 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4753 }
4754 break;
4755 case KVM_CAP_X86_SMM:
4756 if (!IS_ENABLED(CONFIG_KVM_SMM))
4757 break;
4758
4759 /* SMBASE is usually relocated above 1M on modern chipsets,
4760 * and SMM handlers might indeed rely on 4G segment limits,
4761 * so do not report SMM to be available if real mode is
4762 * emulated via vm86 mode. Still, do not go to great lengths
4763 * to avoid userspace's usage of the feature, because it is a
4764 * fringe case that is not enabled except via specific settings
4765 * of the module parameters.
4766 */
4767 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4768 break;
4769 case KVM_CAP_NR_VCPUS:
4770 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4771 break;
4772 case KVM_CAP_MAX_VCPUS:
4773 r = KVM_MAX_VCPUS;
4774 break;
4775 case KVM_CAP_MAX_VCPU_ID:
4776 r = KVM_MAX_VCPU_IDS;
4777 break;
4778 case KVM_CAP_PV_MMU: /* obsolete */
4779 r = 0;
4780 break;
4781 case KVM_CAP_MCE:
4782 r = KVM_MAX_MCE_BANKS;
4783 break;
4784 case KVM_CAP_XCRS:
4785 r = boot_cpu_has(X86_FEATURE_XSAVE);
4786 break;
4787 case KVM_CAP_TSC_CONTROL:
4788 case KVM_CAP_VM_TSC_CONTROL:
4789 r = kvm_caps.has_tsc_control;
4790 break;
4791 case KVM_CAP_X2APIC_API:
4792 r = KVM_X2APIC_API_VALID_FLAGS;
4793 break;
4794 case KVM_CAP_NESTED_STATE:
4795 r = kvm_x86_ops.nested_ops->get_state ?
4796 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4797 break;
4798#ifdef CONFIG_KVM_HYPERV
4799 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4800 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4801 break;
4802 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4803 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4804 break;
4805#endif
4806 case KVM_CAP_SMALLER_MAXPHYADDR:
4807 r = (int) allow_smaller_maxphyaddr;
4808 break;
4809 case KVM_CAP_STEAL_TIME:
4810 r = sched_info_on();
4811 break;
4812 case KVM_CAP_X86_BUS_LOCK_EXIT:
4813 if (kvm_caps.has_bus_lock_exit)
4814 r = KVM_BUS_LOCK_DETECTION_OFF |
4815 KVM_BUS_LOCK_DETECTION_EXIT;
4816 else
4817 r = 0;
4818 break;
4819 case KVM_CAP_XSAVE2: {
4820 r = xstate_required_size(xstate_bv: kvm_get_filtered_xcr0(), compacted: false);
4821 if (r < sizeof(struct kvm_xsave))
4822 r = sizeof(struct kvm_xsave);
4823 break;
4824 }
4825 case KVM_CAP_PMU_CAPABILITY:
4826 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4827 break;
4828 case KVM_CAP_DISABLE_QUIRKS2:
4829 r = KVM_X86_VALID_QUIRKS;
4830 break;
4831 case KVM_CAP_X86_NOTIFY_VMEXIT:
4832 r = kvm_caps.has_notify_vmexit;
4833 break;
4834 case KVM_CAP_VM_TYPES:
4835 r = BIT(KVM_X86_DEFAULT_VM);
4836 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4837 r |= BIT(KVM_X86_SW_PROTECTED_VM);
4838 break;
4839 default:
4840 break;
4841 }
4842 return r;
4843}
4844
4845static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4846{
4847 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4848
4849 if ((u64)(unsigned long)uaddr != attr->addr)
4850 return ERR_PTR_USR(-EFAULT);
4851 return uaddr;
4852}
4853
4854static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4855{
4856 u64 __user *uaddr = kvm_get_attr_addr(attr);
4857
4858 if (attr->group)
4859 return -ENXIO;
4860
4861 if (IS_ERR(ptr: uaddr))
4862 return PTR_ERR(ptr: uaddr);
4863
4864 switch (attr->attr) {
4865 case KVM_X86_XCOMP_GUEST_SUPP:
4866 if (put_user(kvm_caps.supported_xcr0, uaddr))
4867 return -EFAULT;
4868 return 0;
4869 default:
4870 return -ENXIO;
4871 }
4872}
4873
4874static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4875{
4876 if (attr->group)
4877 return -ENXIO;
4878
4879 switch (attr->attr) {
4880 case KVM_X86_XCOMP_GUEST_SUPP:
4881 return 0;
4882 default:
4883 return -ENXIO;
4884 }
4885}
4886
4887long kvm_arch_dev_ioctl(struct file *filp,
4888 unsigned int ioctl, unsigned long arg)
4889{
4890 void __user *argp = (void __user *)arg;
4891 long r;
4892
4893 switch (ioctl) {
4894 case KVM_GET_MSR_INDEX_LIST: {
4895 struct kvm_msr_list __user *user_msr_list = argp;
4896 struct kvm_msr_list msr_list;
4897 unsigned n;
4898
4899 r = -EFAULT;
4900 if (copy_from_user(to: &msr_list, from: user_msr_list, n: sizeof(msr_list)))
4901 goto out;
4902 n = msr_list.nmsrs;
4903 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4904 if (copy_to_user(to: user_msr_list, from: &msr_list, n: sizeof(msr_list)))
4905 goto out;
4906 r = -E2BIG;
4907 if (n < msr_list.nmsrs)
4908 goto out;
4909 r = -EFAULT;
4910 if (copy_to_user(to: user_msr_list->indices, from: &msrs_to_save,
4911 n: num_msrs_to_save * sizeof(u32)))
4912 goto out;
4913 if (copy_to_user(to: user_msr_list->indices + num_msrs_to_save,
4914 from: &emulated_msrs,
4915 n: num_emulated_msrs * sizeof(u32)))
4916 goto out;
4917 r = 0;
4918 break;
4919 }
4920 case KVM_GET_SUPPORTED_CPUID:
4921 case KVM_GET_EMULATED_CPUID: {
4922 struct kvm_cpuid2 __user *cpuid_arg = argp;
4923 struct kvm_cpuid2 cpuid;
4924
4925 r = -EFAULT;
4926 if (copy_from_user(to: &cpuid, from: cpuid_arg, n: sizeof(cpuid)))
4927 goto out;
4928
4929 r = kvm_dev_ioctl_get_cpuid(cpuid: &cpuid, entries: cpuid_arg->entries,
4930 type: ioctl);
4931 if (r)
4932 goto out;
4933
4934 r = -EFAULT;
4935 if (copy_to_user(to: cpuid_arg, from: &cpuid, n: sizeof(cpuid)))
4936 goto out;
4937 r = 0;
4938 break;
4939 }
4940 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4941 r = -EFAULT;
4942 if (copy_to_user(to: argp, from: &kvm_caps.supported_mce_cap,
4943 n: sizeof(kvm_caps.supported_mce_cap)))
4944 goto out;
4945 r = 0;
4946 break;
4947 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4948 struct kvm_msr_list __user *user_msr_list = argp;
4949 struct kvm_msr_list msr_list;
4950 unsigned int n;
4951
4952 r = -EFAULT;
4953 if (copy_from_user(to: &msr_list, from: user_msr_list, n: sizeof(msr_list)))
4954 goto out;
4955 n = msr_list.nmsrs;
4956 msr_list.nmsrs = num_msr_based_features;
4957 if (copy_to_user(to: user_msr_list, from: &msr_list, n: sizeof(msr_list)))
4958 goto out;
4959 r = -E2BIG;
4960 if (n < msr_list.nmsrs)
4961 goto out;
4962 r = -EFAULT;
4963 if (copy_to_user(to: user_msr_list->indices, from: &msr_based_features,
4964 n: num_msr_based_features * sizeof(u32)))
4965 goto out;
4966 r = 0;
4967 break;
4968 }
4969 case KVM_GET_MSRS:
4970 r = msr_io(NULL, user_msrs: argp, do_msr: do_get_msr_feature, writeback: 1);
4971 break;
4972#ifdef CONFIG_KVM_HYPERV
4973 case KVM_GET_SUPPORTED_HV_CPUID:
4974 r = kvm_ioctl_get_supported_hv_cpuid(NULL, cpuid_arg: argp);
4975 break;
4976#endif
4977 case KVM_GET_DEVICE_ATTR: {
4978 struct kvm_device_attr attr;
4979 r = -EFAULT;
4980 if (copy_from_user(to: &attr, from: (void __user *)arg, n: sizeof(attr)))
4981 break;
4982 r = kvm_x86_dev_get_attr(attr: &attr);
4983 break;
4984 }
4985 case KVM_HAS_DEVICE_ATTR: {
4986 struct kvm_device_attr attr;
4987 r = -EFAULT;
4988 if (copy_from_user(to: &attr, from: (void __user *)arg, n: sizeof(attr)))
4989 break;
4990 r = kvm_x86_dev_has_attr(attr: &attr);
4991 break;
4992 }
4993 default:
4994 r = -EINVAL;
4995 break;
4996 }
4997out:
4998 return r;
4999}
5000
5001static void wbinvd_ipi(void *garbage)
5002{
5003 wbinvd();
5004}
5005
5006static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5007{
5008 return kvm_arch_has_noncoherent_dma(kvm: vcpu->kvm);
5009}
5010
5011void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5012{
5013 /* Address WBINVD may be executed by guest */
5014 if (need_emulate_wbinvd(vcpu)) {
5015 if (static_call(kvm_x86_has_wbinvd_exit)())
5016 cpumask_set_cpu(cpu, dstp: vcpu->arch.wbinvd_dirty_mask);
5017 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5018 smp_call_function_single(cpuid: vcpu->cpu,
5019 func: wbinvd_ipi, NULL, wait: 1);
5020 }
5021
5022 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5023
5024 /* Save host pkru register if supported */
5025 vcpu->arch.host_pkru = read_pkru();
5026
5027 /* Apply any externally detected TSC adjustments (due to suspend) */
5028 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5029 adjust_tsc_offset_host(vcpu, adjustment: vcpu->arch.tsc_offset_adjustment);
5030 vcpu->arch.tsc_offset_adjustment = 0;
5031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5032 }
5033
5034 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5035 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5036 rdtsc() - vcpu->arch.last_host_tsc;
5037 if (tsc_delta < 0)
5038 mark_tsc_unstable(reason: "KVM discovered backwards TSC");
5039
5040 if (kvm_check_tsc_unstable()) {
5041 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5042 target_tsc: vcpu->arch.last_guest_tsc);
5043 kvm_vcpu_write_tsc_offset(vcpu, l1_offset: offset);
5044 vcpu->arch.tsc_catchup = 1;
5045 }
5046
5047 if (kvm_lapic_hv_timer_in_use(vcpu))
5048 kvm_lapic_restart_hv_timer(vcpu);
5049
5050 /*
5051 * On a host with synchronized TSC, there is no need to update
5052 * kvmclock on vcpu->cpu migration
5053 */
5054 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5055 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5056 if (vcpu->cpu != cpu)
5057 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5058 vcpu->cpu = cpu;
5059 }
5060
5061 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5062}
5063
5064static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5065{
5066 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5067 struct kvm_steal_time __user *st;
5068 struct kvm_memslots *slots;
5069 static const u8 preempted = KVM_VCPU_PREEMPTED;
5070 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5071
5072 /*
5073 * The vCPU can be marked preempted if and only if the VM-Exit was on
5074 * an instruction boundary and will not trigger guest emulation of any
5075 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5076 * when this is true, for example allowing the vCPU to be marked
5077 * preempted if and only if the VM-Exit was due to a host interrupt.
5078 */
5079 if (!vcpu->arch.at_instruction_boundary) {
5080 vcpu->stat.preemption_other++;
5081 return;
5082 }
5083
5084 vcpu->stat.preemption_reported++;
5085 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5086 return;
5087
5088 if (vcpu->arch.st.preempted)
5089 return;
5090
5091 /* This happens on process exit */
5092 if (unlikely(current->mm != vcpu->kvm->mm))
5093 return;
5094
5095 slots = kvm_memslots(kvm: vcpu->kvm);
5096
5097 if (unlikely(slots->generation != ghc->generation ||
5098 gpa != ghc->gpa ||
5099 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5100 return;
5101
5102 st = (struct kvm_steal_time __user *)ghc->hva;
5103 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5104
5105 if (!copy_to_user_nofault(dst: &st->preempted, src: &preempted, size: sizeof(preempted)))
5106 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5107
5108 mark_page_dirty_in_slot(kvm: vcpu->kvm, memslot: ghc->memslot, gfn: gpa_to_gfn(gpa: ghc->gpa));
5109}
5110
5111void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5112{
5113 int idx;
5114
5115 if (vcpu->preempted) {
5116 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5117
5118 /*
5119 * Take the srcu lock as memslots will be accessed to check the gfn
5120 * cache generation against the memslots generation.
5121 */
5122 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
5123 if (kvm_xen_msr_enabled(kvm: vcpu->kvm))
5124 kvm_xen_runstate_set_preempted(vcpu);
5125 else
5126 kvm_steal_time_set_preempted(vcpu);
5127 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
5128 }
5129
5130 static_call(kvm_x86_vcpu_put)(vcpu);
5131 vcpu->arch.last_host_tsc = rdtsc();
5132}
5133
5134static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5135 struct kvm_lapic_state *s)
5136{
5137 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5138
5139 return kvm_apic_get_state(vcpu, s);
5140}
5141
5142static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5143 struct kvm_lapic_state *s)
5144{
5145 int r;
5146
5147 r = kvm_apic_set_state(vcpu, s);
5148 if (r)
5149 return r;
5150 update_cr8_intercept(vcpu);
5151
5152 return 0;
5153}
5154
5155static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5156{
5157 /*
5158 * We can accept userspace's request for interrupt injection
5159 * as long as we have a place to store the interrupt number.
5160 * The actual injection will happen when the CPU is able to
5161 * deliver the interrupt.
5162 */
5163 if (kvm_cpu_has_extint(v: vcpu))
5164 return false;
5165
5166 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5167 return (!lapic_in_kernel(vcpu) ||
5168 kvm_apic_accept_pic_intr(vcpu));
5169}
5170
5171static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5172{
5173 /*
5174 * Do not cause an interrupt window exit if an exception
5175 * is pending or an event needs reinjection; userspace
5176 * might want to inject the interrupt manually using KVM_SET_REGS
5177 * or KVM_SET_SREGS. For that to work, we must be at an
5178 * instruction boundary and with no events half-injected.
5179 */
5180 return (kvm_arch_interrupt_allowed(vcpu) &&
5181 kvm_cpu_accept_dm_intr(vcpu) &&
5182 !kvm_event_needs_reinjection(vcpu) &&
5183 !kvm_is_exception_pending(vcpu));
5184}
5185
5186static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5187 struct kvm_interrupt *irq)
5188{
5189 if (irq->irq >= KVM_NR_INTERRUPTS)
5190 return -EINVAL;
5191
5192 if (!irqchip_in_kernel(kvm: vcpu->kvm)) {
5193 kvm_queue_interrupt(vcpu, vector: irq->irq, soft: false);
5194 kvm_make_request(KVM_REQ_EVENT, vcpu);
5195 return 0;
5196 }
5197
5198 /*
5199 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5200 * fail for in-kernel 8259.
5201 */
5202 if (pic_in_kernel(kvm: vcpu->kvm))
5203 return -ENXIO;
5204
5205 if (vcpu->arch.pending_external_vector != -1)
5206 return -EEXIST;
5207
5208 vcpu->arch.pending_external_vector = irq->irq;
5209 kvm_make_request(KVM_REQ_EVENT, vcpu);
5210 return 0;
5211}
5212
5213static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5214{
5215 kvm_inject_nmi(vcpu);
5216
5217 return 0;
5218}
5219
5220static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5221 struct kvm_tpr_access_ctl *tac)
5222{
5223 if (tac->flags)
5224 return -EINVAL;
5225 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5226 return 0;
5227}
5228
5229static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5230 u64 mcg_cap)
5231{
5232 int r;
5233 unsigned bank_num = mcg_cap & 0xff, bank;
5234
5235 r = -EINVAL;
5236 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5237 goto out;
5238 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5239 goto out;
5240 r = 0;
5241 vcpu->arch.mcg_cap = mcg_cap;
5242 /* Init IA32_MCG_CTL to all 1s */
5243 if (mcg_cap & MCG_CTL_P)
5244 vcpu->arch.mcg_ctl = ~(u64)0;
5245 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5246 for (bank = 0; bank < bank_num; bank++) {
5247 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5248 if (mcg_cap & MCG_CMCI_P)
5249 vcpu->arch.mci_ctl2_banks[bank] = 0;
5250 }
5251
5252 kvm_apic_after_set_mcg_cap(vcpu);
5253
5254 static_call(kvm_x86_setup_mce)(vcpu);
5255out:
5256 return r;
5257}
5258
5259/*
5260 * Validate this is an UCNA (uncorrectable no action) error by checking the
5261 * MCG_STATUS and MCi_STATUS registers:
5262 * - none of the bits for Machine Check Exceptions are set
5263 * - both the VAL (valid) and UC (uncorrectable) bits are set
5264 * MCI_STATUS_PCC - Processor Context Corrupted
5265 * MCI_STATUS_S - Signaled as a Machine Check Exception
5266 * MCI_STATUS_AR - Software recoverable Action Required
5267 */
5268static bool is_ucna(struct kvm_x86_mce *mce)
5269{
5270 return !mce->mcg_status &&
5271 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5272 (mce->status & MCI_STATUS_VAL) &&
5273 (mce->status & MCI_STATUS_UC);
5274}
5275
5276static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5277{
5278 u64 mcg_cap = vcpu->arch.mcg_cap;
5279
5280 banks[1] = mce->status;
5281 banks[2] = mce->addr;
5282 banks[3] = mce->misc;
5283 vcpu->arch.mcg_status = mce->mcg_status;
5284
5285 if (!(mcg_cap & MCG_CMCI_P) ||
5286 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5287 return 0;
5288
5289 if (lapic_in_kernel(vcpu))
5290 kvm_apic_local_deliver(apic: vcpu->arch.apic, APIC_LVTCMCI);
5291
5292 return 0;
5293}
5294
5295static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5296 struct kvm_x86_mce *mce)
5297{
5298 u64 mcg_cap = vcpu->arch.mcg_cap;
5299 unsigned bank_num = mcg_cap & 0xff;
5300 u64 *banks = vcpu->arch.mce_banks;
5301
5302 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5303 return -EINVAL;
5304
5305 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5306
5307 if (is_ucna(mce))
5308 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5309
5310 /*
5311 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5312 * reporting is disabled
5313 */
5314 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5315 vcpu->arch.mcg_ctl != ~(u64)0)
5316 return 0;
5317 /*
5318 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5319 * reporting is disabled for the bank
5320 */
5321 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5322 return 0;
5323 if (mce->status & MCI_STATUS_UC) {
5324 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5325 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5326 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5327 return 0;
5328 }
5329 if (banks[1] & MCI_STATUS_VAL)
5330 mce->status |= MCI_STATUS_OVER;
5331 banks[2] = mce->addr;
5332 banks[3] = mce->misc;
5333 vcpu->arch.mcg_status = mce->mcg_status;
5334 banks[1] = mce->status;
5335 kvm_queue_exception(vcpu, MC_VECTOR);
5336 } else if (!(banks[1] & MCI_STATUS_VAL)
5337 || !(banks[1] & MCI_STATUS_UC)) {
5338 if (banks[1] & MCI_STATUS_VAL)
5339 mce->status |= MCI_STATUS_OVER;
5340 banks[2] = mce->addr;
5341 banks[3] = mce->misc;
5342 banks[1] = mce->status;
5343 } else
5344 banks[1] |= MCI_STATUS_OVER;
5345 return 0;
5346}
5347
5348static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5349 struct kvm_vcpu_events *events)
5350{
5351 struct kvm_queued_exception *ex;
5352
5353 process_nmi(vcpu);
5354
5355#ifdef CONFIG_KVM_SMM
5356 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5357 process_smi(vcpu);
5358#endif
5359
5360 /*
5361 * KVM's ABI only allows for one exception to be migrated. Luckily,
5362 * the only time there can be two queued exceptions is if there's a
5363 * non-exiting _injected_ exception, and a pending exiting exception.
5364 * In that case, ignore the VM-Exiting exception as it's an extension
5365 * of the injected exception.
5366 */
5367 if (vcpu->arch.exception_vmexit.pending &&
5368 !vcpu->arch.exception.pending &&
5369 !vcpu->arch.exception.injected)
5370 ex = &vcpu->arch.exception_vmexit;
5371 else
5372 ex = &vcpu->arch.exception;
5373
5374 /*
5375 * In guest mode, payload delivery should be deferred if the exception
5376 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5377 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5378 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5379 * propagate the payload and so it cannot be safely deferred. Deliver
5380 * the payload if the capability hasn't been requested.
5381 */
5382 if (!vcpu->kvm->arch.exception_payload_enabled &&
5383 ex->pending && ex->has_payload)
5384 kvm_deliver_exception_payload(vcpu, ex);
5385
5386 memset(events, 0, sizeof(*events));
5387
5388 /*
5389 * The API doesn't provide the instruction length for software
5390 * exceptions, so don't report them. As long as the guest RIP
5391 * isn't advanced, we should expect to encounter the exception
5392 * again.
5393 */
5394 if (!kvm_exception_is_soft(nr: ex->vector)) {
5395 events->exception.injected = ex->injected;
5396 events->exception.pending = ex->pending;
5397 /*
5398 * For ABI compatibility, deliberately conflate
5399 * pending and injected exceptions when
5400 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5401 */
5402 if (!vcpu->kvm->arch.exception_payload_enabled)
5403 events->exception.injected |= ex->pending;
5404 }
5405 events->exception.nr = ex->vector;
5406 events->exception.has_error_code = ex->has_error_code;
5407 events->exception.error_code = ex->error_code;
5408 events->exception_has_payload = ex->has_payload;
5409 events->exception_payload = ex->payload;
5410
5411 events->interrupt.injected =
5412 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5413 events->interrupt.nr = vcpu->arch.interrupt.nr;
5414 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5415
5416 events->nmi.injected = vcpu->arch.nmi_injected;
5417 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5418 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5419
5420 /* events->sipi_vector is never valid when reporting to user space */
5421
5422#ifdef CONFIG_KVM_SMM
5423 events->smi.smm = is_smm(vcpu);
5424 events->smi.pending = vcpu->arch.smi_pending;
5425 events->smi.smm_inside_nmi =
5426 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5427#endif
5428 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5429
5430 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5431 | KVM_VCPUEVENT_VALID_SHADOW
5432 | KVM_VCPUEVENT_VALID_SMM);
5433 if (vcpu->kvm->arch.exception_payload_enabled)
5434 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5435 if (vcpu->kvm->arch.triple_fault_event) {
5436 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5437 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5438 }
5439}
5440
5441static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5442 struct kvm_vcpu_events *events)
5443{
5444 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5445 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5446 | KVM_VCPUEVENT_VALID_SHADOW
5447 | KVM_VCPUEVENT_VALID_SMM
5448 | KVM_VCPUEVENT_VALID_PAYLOAD
5449 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5450 return -EINVAL;
5451
5452 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5453 if (!vcpu->kvm->arch.exception_payload_enabled)
5454 return -EINVAL;
5455 if (events->exception.pending)
5456 events->exception.injected = 0;
5457 else
5458 events->exception_has_payload = 0;
5459 } else {
5460 events->exception.pending = 0;
5461 events->exception_has_payload = 0;
5462 }
5463
5464 if ((events->exception.injected || events->exception.pending) &&
5465 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5466 return -EINVAL;
5467
5468 /* INITs are latched while in SMM */
5469 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5470 (events->smi.smm || events->smi.pending) &&
5471 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5472 return -EINVAL;
5473
5474 process_nmi(vcpu);
5475
5476 /*
5477 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5478 * morph the exception to a VM-Exit if appropriate. Do this only for
5479 * pending exceptions, already-injected exceptions are not subject to
5480 * intercpetion. Note, userspace that conflates pending and injected
5481 * is hosed, and will incorrectly convert an injected exception into a
5482 * pending exception, which in turn may cause a spurious VM-Exit.
5483 */
5484 vcpu->arch.exception_from_userspace = events->exception.pending;
5485
5486 vcpu->arch.exception_vmexit.pending = false;
5487
5488 vcpu->arch.exception.injected = events->exception.injected;
5489 vcpu->arch.exception.pending = events->exception.pending;
5490 vcpu->arch.exception.vector = events->exception.nr;
5491 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5492 vcpu->arch.exception.error_code = events->exception.error_code;
5493 vcpu->arch.exception.has_payload = events->exception_has_payload;
5494 vcpu->arch.exception.payload = events->exception_payload;
5495
5496 vcpu->arch.interrupt.injected = events->interrupt.injected;
5497 vcpu->arch.interrupt.nr = events->interrupt.nr;
5498 vcpu->arch.interrupt.soft = events->interrupt.soft;
5499 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5500 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5501 events->interrupt.shadow);
5502
5503 vcpu->arch.nmi_injected = events->nmi.injected;
5504 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5505 vcpu->arch.nmi_pending = 0;
5506 atomic_set(v: &vcpu->arch.nmi_queued, i: events->nmi.pending);
5507 if (events->nmi.pending)
5508 kvm_make_request(KVM_REQ_NMI, vcpu);
5509 }
5510 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5511
5512 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5513 lapic_in_kernel(vcpu))
5514 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5515
5516 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5517#ifdef CONFIG_KVM_SMM
5518 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5519 kvm_leave_nested(vcpu);
5520 kvm_smm_changed(vcpu, in_smm: events->smi.smm);
5521 }
5522
5523 vcpu->arch.smi_pending = events->smi.pending;
5524
5525 if (events->smi.smm) {
5526 if (events->smi.smm_inside_nmi)
5527 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5528 else
5529 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5530 }
5531
5532#else
5533 if (events->smi.smm || events->smi.pending ||
5534 events->smi.smm_inside_nmi)
5535 return -EINVAL;
5536#endif
5537
5538 if (lapic_in_kernel(vcpu)) {
5539 if (events->smi.latched_init)
5540 set_bit(KVM_APIC_INIT, addr: &vcpu->arch.apic->pending_events);
5541 else
5542 clear_bit(KVM_APIC_INIT, addr: &vcpu->arch.apic->pending_events);
5543 }
5544 }
5545
5546 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5547 if (!vcpu->kvm->arch.triple_fault_event)
5548 return -EINVAL;
5549 if (events->triple_fault.pending)
5550 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5551 else
5552 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5553 }
5554
5555 kvm_make_request(KVM_REQ_EVENT, vcpu);
5556
5557 return 0;
5558}
5559
5560static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5561 struct kvm_debugregs *dbgregs)
5562{
5563 unsigned int i;
5564
5565 memset(dbgregs, 0, sizeof(*dbgregs));
5566
5567 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5568 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5569 dbgregs->db[i] = vcpu->arch.db[i];
5570
5571 dbgregs->dr6 = vcpu->arch.dr6;
5572 dbgregs->dr7 = vcpu->arch.dr7;
5573}
5574
5575static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5576 struct kvm_debugregs *dbgregs)
5577{
5578 unsigned int i;
5579
5580 if (dbgregs->flags)
5581 return -EINVAL;
5582
5583 if (!kvm_dr6_valid(data: dbgregs->dr6))
5584 return -EINVAL;
5585 if (!kvm_dr7_valid(data: dbgregs->dr7))
5586 return -EINVAL;
5587
5588 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5589 vcpu->arch.db[i] = dbgregs->db[i];
5590
5591 kvm_update_dr0123(vcpu);
5592 vcpu->arch.dr6 = dbgregs->dr6;
5593 vcpu->arch.dr7 = dbgregs->dr7;
5594 kvm_update_dr7(vcpu);
5595
5596 return 0;
5597}
5598
5599
5600static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5601 u8 *state, unsigned int size)
5602{
5603 /*
5604 * Only copy state for features that are enabled for the guest. The
5605 * state itself isn't problematic, but setting bits in the header for
5606 * features that are supported in *this* host but not exposed to the
5607 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5608 * compatible host without the features that are NOT exposed to the
5609 * guest.
5610 *
5611 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5612 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5613 * supported by the host.
5614 */
5615 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5616 XFEATURE_MASK_FPSSE;
5617
5618 if (fpstate_is_confidential(gfpu: &vcpu->arch.guest_fpu))
5619 return;
5620
5621 fpu_copy_guest_fpstate_to_uabi(gfpu: &vcpu->arch.guest_fpu, buf: state, size,
5622 xfeatures: supported_xcr0, pkru: vcpu->arch.pkru);
5623}
5624
5625static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5626 struct kvm_xsave *guest_xsave)
5627{
5628 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, state: (void *)guest_xsave->region,
5629 size: sizeof(guest_xsave->region));
5630}
5631
5632static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5633 struct kvm_xsave *guest_xsave)
5634{
5635 if (fpstate_is_confidential(gfpu: &vcpu->arch.guest_fpu))
5636 return 0;
5637
5638 return fpu_copy_uabi_to_guest_fpstate(gfpu: &vcpu->arch.guest_fpu,
5639 buf: guest_xsave->region,
5640 xcr0: kvm_caps.supported_xcr0,
5641 vpkru: &vcpu->arch.pkru);
5642}
5643
5644static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5645 struct kvm_xcrs *guest_xcrs)
5646{
5647 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5648 guest_xcrs->nr_xcrs = 0;
5649 return;
5650 }
5651
5652 guest_xcrs->nr_xcrs = 1;
5653 guest_xcrs->flags = 0;
5654 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5655 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5656}
5657
5658static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5659 struct kvm_xcrs *guest_xcrs)
5660{
5661 int i, r = 0;
5662
5663 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664 return -EINVAL;
5665
5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667 return -EINVAL;
5668
5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670 /* Only support XCR0 currently */
5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673 xcr: guest_xcrs->xcrs[i].value);
5674 break;
5675 }
5676 if (r)
5677 r = -EINVAL;
5678 return r;
5679}
5680
5681/*
5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683 * stopped by the hypervisor. This function will be called from the host only.
5684 * EINVAL is returned when the host attempts to set the flag for a guest that
5685 * does not support pv clocks.
5686 */
5687static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688{
5689 if (!vcpu->arch.pv_time.active)
5690 return -EINVAL;
5691 vcpu->arch.pvclock_set_guest_stopped_request = true;
5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693 return 0;
5694}
5695
5696static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697 struct kvm_device_attr *attr)
5698{
5699 int r;
5700
5701 switch (attr->attr) {
5702 case KVM_VCPU_TSC_OFFSET:
5703 r = 0;
5704 break;
5705 default:
5706 r = -ENXIO;
5707 }
5708
5709 return r;
5710}
5711
5712static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713 struct kvm_device_attr *attr)
5714{
5715 u64 __user *uaddr = kvm_get_attr_addr(attr);
5716 int r;
5717
5718 if (IS_ERR(ptr: uaddr))
5719 return PTR_ERR(ptr: uaddr);
5720
5721 switch (attr->attr) {
5722 case KVM_VCPU_TSC_OFFSET:
5723 r = -EFAULT;
5724 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5725 break;
5726 r = 0;
5727 break;
5728 default:
5729 r = -ENXIO;
5730 }
5731
5732 return r;
5733}
5734
5735static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5736 struct kvm_device_attr *attr)
5737{
5738 u64 __user *uaddr = kvm_get_attr_addr(attr);
5739 struct kvm *kvm = vcpu->kvm;
5740 int r;
5741
5742 if (IS_ERR(ptr: uaddr))
5743 return PTR_ERR(ptr: uaddr);
5744
5745 switch (attr->attr) {
5746 case KVM_VCPU_TSC_OFFSET: {
5747 u64 offset, tsc, ns;
5748 unsigned long flags;
5749 bool matched;
5750
5751 r = -EFAULT;
5752 if (get_user(offset, uaddr))
5753 break;
5754
5755 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5756
5757 matched = (vcpu->arch.virtual_tsc_khz &&
5758 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5759 kvm->arch.last_tsc_offset == offset);
5760
5761 tsc = kvm_scale_tsc(tsc: rdtsc(), ratio: vcpu->arch.l1_tsc_scaling_ratio) + offset;
5762 ns = get_kvmclock_base_ns();
5763
5764 kvm->arch.user_set_tsc = true;
5765 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5766 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5767
5768 r = 0;
5769 break;
5770 }
5771 default:
5772 r = -ENXIO;
5773 }
5774
5775 return r;
5776}
5777
5778static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5779 unsigned int ioctl,
5780 void __user *argp)
5781{
5782 struct kvm_device_attr attr;
5783 int r;
5784
5785 if (copy_from_user(to: &attr, from: argp, n: sizeof(attr)))
5786 return -EFAULT;
5787
5788 if (attr.group != KVM_VCPU_TSC_CTRL)
5789 return -ENXIO;
5790
5791 switch (ioctl) {
5792 case KVM_HAS_DEVICE_ATTR:
5793 r = kvm_arch_tsc_has_attr(vcpu, attr: &attr);
5794 break;
5795 case KVM_GET_DEVICE_ATTR:
5796 r = kvm_arch_tsc_get_attr(vcpu, attr: &attr);
5797 break;
5798 case KVM_SET_DEVICE_ATTR:
5799 r = kvm_arch_tsc_set_attr(vcpu, attr: &attr);
5800 break;
5801 }
5802
5803 return r;
5804}
5805
5806static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5807 struct kvm_enable_cap *cap)
5808{
5809 if (cap->flags)
5810 return -EINVAL;
5811
5812 switch (cap->cap) {
5813#ifdef CONFIG_KVM_HYPERV
5814 case KVM_CAP_HYPERV_SYNIC2:
5815 if (cap->args[0])
5816 return -EINVAL;
5817 fallthrough;
5818
5819 case KVM_CAP_HYPERV_SYNIC:
5820 if (!irqchip_in_kernel(kvm: vcpu->kvm))
5821 return -EINVAL;
5822 return kvm_hv_activate_synic(vcpu, dont_zero_synic_pages: cap->cap ==
5823 KVM_CAP_HYPERV_SYNIC2);
5824 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5825 {
5826 int r;
5827 uint16_t vmcs_version;
5828 void __user *user_ptr;
5829
5830 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5831 return -ENOTTY;
5832 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5833 if (!r) {
5834 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5835 if (copy_to_user(to: user_ptr, from: &vmcs_version,
5836 n: sizeof(vmcs_version)))
5837 r = -EFAULT;
5838 }
5839 return r;
5840 }
5841 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5842 if (!kvm_x86_ops.enable_l2_tlb_flush)
5843 return -ENOTTY;
5844
5845 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5846
5847 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5848 return kvm_hv_set_enforce_cpuid(vcpu, enforce: cap->args[0]);
5849#endif
5850
5851 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5852 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5853 if (vcpu->arch.pv_cpuid.enforce)
5854 kvm_update_pv_runtime(vcpu);
5855
5856 return 0;
5857 default:
5858 return -EINVAL;
5859 }
5860}
5861
5862long kvm_arch_vcpu_ioctl(struct file *filp,
5863 unsigned int ioctl, unsigned long arg)
5864{
5865 struct kvm_vcpu *vcpu = filp->private_data;
5866 void __user *argp = (void __user *)arg;
5867 int r;
5868 union {
5869 struct kvm_sregs2 *sregs2;
5870 struct kvm_lapic_state *lapic;
5871 struct kvm_xsave *xsave;
5872 struct kvm_xcrs *xcrs;
5873 void *buffer;
5874 } u;
5875
5876 vcpu_load(vcpu);
5877
5878 u.buffer = NULL;
5879 switch (ioctl) {
5880 case KVM_GET_LAPIC: {
5881 r = -EINVAL;
5882 if (!lapic_in_kernel(vcpu))
5883 goto out;
5884 u.lapic = kzalloc(size: sizeof(struct kvm_lapic_state),
5885 GFP_KERNEL_ACCOUNT);
5886
5887 r = -ENOMEM;
5888 if (!u.lapic)
5889 goto out;
5890 r = kvm_vcpu_ioctl_get_lapic(vcpu, s: u.lapic);
5891 if (r)
5892 goto out;
5893 r = -EFAULT;
5894 if (copy_to_user(to: argp, from: u.lapic, n: sizeof(struct kvm_lapic_state)))
5895 goto out;
5896 r = 0;
5897 break;
5898 }
5899 case KVM_SET_LAPIC: {
5900 r = -EINVAL;
5901 if (!lapic_in_kernel(vcpu))
5902 goto out;
5903 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5904 if (IS_ERR(ptr: u.lapic)) {
5905 r = PTR_ERR(ptr: u.lapic);
5906 goto out_nofree;
5907 }
5908
5909 r = kvm_vcpu_ioctl_set_lapic(vcpu, s: u.lapic);
5910 break;
5911 }
5912 case KVM_INTERRUPT: {
5913 struct kvm_interrupt irq;
5914
5915 r = -EFAULT;
5916 if (copy_from_user(to: &irq, from: argp, n: sizeof(irq)))
5917 goto out;
5918 r = kvm_vcpu_ioctl_interrupt(vcpu, irq: &irq);
5919 break;
5920 }
5921 case KVM_NMI: {
5922 r = kvm_vcpu_ioctl_nmi(vcpu);
5923 break;
5924 }
5925 case KVM_SMI: {
5926 r = kvm_inject_smi(vcpu);
5927 break;
5928 }
5929 case KVM_SET_CPUID: {
5930 struct kvm_cpuid __user *cpuid_arg = argp;
5931 struct kvm_cpuid cpuid;
5932
5933 r = -EFAULT;
5934 if (copy_from_user(to: &cpuid, from: cpuid_arg, n: sizeof(cpuid)))
5935 goto out;
5936 r = kvm_vcpu_ioctl_set_cpuid(vcpu, cpuid: &cpuid, entries: cpuid_arg->entries);
5937 break;
5938 }
5939 case KVM_SET_CPUID2: {
5940 struct kvm_cpuid2 __user *cpuid_arg = argp;
5941 struct kvm_cpuid2 cpuid;
5942
5943 r = -EFAULT;
5944 if (copy_from_user(to: &cpuid, from: cpuid_arg, n: sizeof(cpuid)))
5945 goto out;
5946 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, cpuid: &cpuid,
5947 entries: cpuid_arg->entries);
5948 break;
5949 }
5950 case KVM_GET_CPUID2: {
5951 struct kvm_cpuid2 __user *cpuid_arg = argp;
5952 struct kvm_cpuid2 cpuid;
5953
5954 r = -EFAULT;
5955 if (copy_from_user(to: &cpuid, from: cpuid_arg, n: sizeof(cpuid)))
5956 goto out;
5957 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, cpuid: &cpuid,
5958 entries: cpuid_arg->entries);
5959 if (r)
5960 goto out;
5961 r = -EFAULT;
5962 if (copy_to_user(to: cpuid_arg, from: &cpuid, n: sizeof(cpuid)))
5963 goto out;
5964 r = 0;
5965 break;
5966 }
5967 case KVM_GET_MSRS: {
5968 int idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
5969 r = msr_io(vcpu, user_msrs: argp, do_msr: do_get_msr, writeback: 1);
5970 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
5971 break;
5972 }
5973 case KVM_SET_MSRS: {
5974 int idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
5975 r = msr_io(vcpu, user_msrs: argp, do_msr: do_set_msr, writeback: 0);
5976 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
5977 break;
5978 }
5979 case KVM_TPR_ACCESS_REPORTING: {
5980 struct kvm_tpr_access_ctl tac;
5981
5982 r = -EFAULT;
5983 if (copy_from_user(to: &tac, from: argp, n: sizeof(tac)))
5984 goto out;
5985 r = vcpu_ioctl_tpr_access_reporting(vcpu, tac: &tac);
5986 if (r)
5987 goto out;
5988 r = -EFAULT;
5989 if (copy_to_user(to: argp, from: &tac, n: sizeof(tac)))
5990 goto out;
5991 r = 0;
5992 break;
5993 };
5994 case KVM_SET_VAPIC_ADDR: {
5995 struct kvm_vapic_addr va;
5996 int idx;
5997
5998 r = -EINVAL;
5999 if (!lapic_in_kernel(vcpu))
6000 goto out;
6001 r = -EFAULT;
6002 if (copy_from_user(to: &va, from: argp, n: sizeof(va)))
6003 goto out;
6004 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
6005 r = kvm_lapic_set_vapic_addr(vcpu, vapic_addr: va.vapic_addr);
6006 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
6007 break;
6008 }
6009 case KVM_X86_SETUP_MCE: {
6010 u64 mcg_cap;
6011
6012 r = -EFAULT;
6013 if (copy_from_user(to: &mcg_cap, from: argp, n: sizeof(mcg_cap)))
6014 goto out;
6015 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6016 break;
6017 }
6018 case KVM_X86_SET_MCE: {
6019 struct kvm_x86_mce mce;
6020
6021 r = -EFAULT;
6022 if (copy_from_user(to: &mce, from: argp, n: sizeof(mce)))
6023 goto out;
6024 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, mce: &mce);
6025 break;
6026 }
6027 case KVM_GET_VCPU_EVENTS: {
6028 struct kvm_vcpu_events events;
6029
6030 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, events: &events);
6031
6032 r = -EFAULT;
6033 if (copy_to_user(to: argp, from: &events, n: sizeof(struct kvm_vcpu_events)))
6034 break;
6035 r = 0;
6036 break;
6037 }
6038 case KVM_SET_VCPU_EVENTS: {
6039 struct kvm_vcpu_events events;
6040
6041 r = -EFAULT;
6042 if (copy_from_user(to: &events, from: argp, n: sizeof(struct kvm_vcpu_events)))
6043 break;
6044
6045 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, events: &events);
6046 break;
6047 }
6048 case KVM_GET_DEBUGREGS: {
6049 struct kvm_debugregs dbgregs;
6050
6051 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, dbgregs: &dbgregs);
6052
6053 r = -EFAULT;
6054 if (copy_to_user(to: argp, from: &dbgregs,
6055 n: sizeof(struct kvm_debugregs)))
6056 break;
6057 r = 0;
6058 break;
6059 }
6060 case KVM_SET_DEBUGREGS: {
6061 struct kvm_debugregs dbgregs;
6062
6063 r = -EFAULT;
6064 if (copy_from_user(to: &dbgregs, from: argp,
6065 n: sizeof(struct kvm_debugregs)))
6066 break;
6067
6068 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, dbgregs: &dbgregs);
6069 break;
6070 }
6071 case KVM_GET_XSAVE: {
6072 r = -EINVAL;
6073 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6074 break;
6075
6076 u.xsave = kzalloc(size: sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6077 r = -ENOMEM;
6078 if (!u.xsave)
6079 break;
6080
6081 kvm_vcpu_ioctl_x86_get_xsave(vcpu, guest_xsave: u.xsave);
6082
6083 r = -EFAULT;
6084 if (copy_to_user(to: argp, from: u.xsave, n: sizeof(struct kvm_xsave)))
6085 break;
6086 r = 0;
6087 break;
6088 }
6089 case KVM_SET_XSAVE: {
6090 int size = vcpu->arch.guest_fpu.uabi_size;
6091
6092 u.xsave = memdup_user(argp, size);
6093 if (IS_ERR(ptr: u.xsave)) {
6094 r = PTR_ERR(ptr: u.xsave);
6095 goto out_nofree;
6096 }
6097
6098 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, guest_xsave: u.xsave);
6099 break;
6100 }
6101
6102 case KVM_GET_XSAVE2: {
6103 int size = vcpu->arch.guest_fpu.uabi_size;
6104
6105 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6106 r = -ENOMEM;
6107 if (!u.xsave)
6108 break;
6109
6110 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, state: u.buffer, size);
6111
6112 r = -EFAULT;
6113 if (copy_to_user(to: argp, from: u.xsave, n: size))
6114 break;
6115
6116 r = 0;
6117 break;
6118 }
6119
6120 case KVM_GET_XCRS: {
6121 u.xcrs = kzalloc(size: sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6122 r = -ENOMEM;
6123 if (!u.xcrs)
6124 break;
6125
6126 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, guest_xcrs: u.xcrs);
6127
6128 r = -EFAULT;
6129 if (copy_to_user(to: argp, from: u.xcrs,
6130 n: sizeof(struct kvm_xcrs)))
6131 break;
6132 r = 0;
6133 break;
6134 }
6135 case KVM_SET_XCRS: {
6136 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6137 if (IS_ERR(ptr: u.xcrs)) {
6138 r = PTR_ERR(ptr: u.xcrs);
6139 goto out_nofree;
6140 }
6141
6142 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, guest_xcrs: u.xcrs);
6143 break;
6144 }
6145 case KVM_SET_TSC_KHZ: {
6146 u32 user_tsc_khz;
6147
6148 r = -EINVAL;
6149 user_tsc_khz = (u32)arg;
6150
6151 if (kvm_caps.has_tsc_control &&
6152 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6153 goto out;
6154
6155 if (user_tsc_khz == 0)
6156 user_tsc_khz = tsc_khz;
6157
6158 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6159 r = 0;
6160
6161 goto out;
6162 }
6163 case KVM_GET_TSC_KHZ: {
6164 r = vcpu->arch.virtual_tsc_khz;
6165 goto out;
6166 }
6167 case KVM_KVMCLOCK_CTRL: {
6168 r = kvm_set_guest_paused(vcpu);
6169 goto out;
6170 }
6171 case KVM_ENABLE_CAP: {
6172 struct kvm_enable_cap cap;
6173
6174 r = -EFAULT;
6175 if (copy_from_user(to: &cap, from: argp, n: sizeof(cap)))
6176 goto out;
6177 r = kvm_vcpu_ioctl_enable_cap(vcpu, cap: &cap);
6178 break;
6179 }
6180 case KVM_GET_NESTED_STATE: {
6181 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6182 u32 user_data_size;
6183
6184 r = -EINVAL;
6185 if (!kvm_x86_ops.nested_ops->get_state)
6186 break;
6187
6188 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6189 r = -EFAULT;
6190 if (get_user(user_data_size, &user_kvm_nested_state->size))
6191 break;
6192
6193 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6194 user_data_size);
6195 if (r < 0)
6196 break;
6197
6198 if (r > user_data_size) {
6199 if (put_user(r, &user_kvm_nested_state->size))
6200 r = -EFAULT;
6201 else
6202 r = -E2BIG;
6203 break;
6204 }
6205
6206 r = 0;
6207 break;
6208 }
6209 case KVM_SET_NESTED_STATE: {
6210 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6211 struct kvm_nested_state kvm_state;
6212 int idx;
6213
6214 r = -EINVAL;
6215 if (!kvm_x86_ops.nested_ops->set_state)
6216 break;
6217
6218 r = -EFAULT;
6219 if (copy_from_user(to: &kvm_state, from: user_kvm_nested_state, n: sizeof(kvm_state)))
6220 break;
6221
6222 r = -EINVAL;
6223 if (kvm_state.size < sizeof(kvm_state))
6224 break;
6225
6226 if (kvm_state.flags &
6227 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6228 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6229 | KVM_STATE_NESTED_GIF_SET))
6230 break;
6231
6232 /* nested_run_pending implies guest_mode. */
6233 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6234 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6235 break;
6236
6237 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
6238 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6239 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
6240 break;
6241 }
6242#ifdef CONFIG_KVM_HYPERV
6243 case KVM_GET_SUPPORTED_HV_CPUID:
6244 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, cpuid_arg: argp);
6245 break;
6246#endif
6247#ifdef CONFIG_KVM_XEN
6248 case KVM_XEN_VCPU_GET_ATTR: {
6249 struct kvm_xen_vcpu_attr xva;
6250
6251 r = -EFAULT;
6252 if (copy_from_user(to: &xva, from: argp, n: sizeof(xva)))
6253 goto out;
6254 r = kvm_xen_vcpu_get_attr(vcpu, data: &xva);
6255 if (!r && copy_to_user(to: argp, from: &xva, n: sizeof(xva)))
6256 r = -EFAULT;
6257 break;
6258 }
6259 case KVM_XEN_VCPU_SET_ATTR: {
6260 struct kvm_xen_vcpu_attr xva;
6261
6262 r = -EFAULT;
6263 if (copy_from_user(to: &xva, from: argp, n: sizeof(xva)))
6264 goto out;
6265 r = kvm_xen_vcpu_set_attr(vcpu, data: &xva);
6266 break;
6267 }
6268#endif
6269 case KVM_GET_SREGS2: {
6270 u.sregs2 = kzalloc(size: sizeof(struct kvm_sregs2), GFP_KERNEL);
6271 r = -ENOMEM;
6272 if (!u.sregs2)
6273 goto out;
6274 __get_sregs2(vcpu, sregs2: u.sregs2);
6275 r = -EFAULT;
6276 if (copy_to_user(to: argp, from: u.sregs2, n: sizeof(struct kvm_sregs2)))
6277 goto out;
6278 r = 0;
6279 break;
6280 }
6281 case KVM_SET_SREGS2: {
6282 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6283 if (IS_ERR(ptr: u.sregs2)) {
6284 r = PTR_ERR(ptr: u.sregs2);
6285 u.sregs2 = NULL;
6286 goto out;
6287 }
6288 r = __set_sregs2(vcpu, sregs2: u.sregs2);
6289 break;
6290 }
6291 case KVM_HAS_DEVICE_ATTR:
6292 case KVM_GET_DEVICE_ATTR:
6293 case KVM_SET_DEVICE_ATTR:
6294 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6295 break;
6296 default:
6297 r = -EINVAL;
6298 }
6299out:
6300 kfree(objp: u.buffer);
6301out_nofree:
6302 vcpu_put(vcpu);
6303 return r;
6304}
6305
6306vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6307{
6308 return VM_FAULT_SIGBUS;
6309}
6310
6311static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6312{
6313 int ret;
6314
6315 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6316 return -EINVAL;
6317 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6318 return ret;
6319}
6320
6321static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6322 u64 ident_addr)
6323{
6324 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6325}
6326
6327static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6328 unsigned long kvm_nr_mmu_pages)
6329{
6330 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6331 return -EINVAL;
6332
6333 mutex_lock(&kvm->slots_lock);
6334
6335 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6336 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6337
6338 mutex_unlock(lock: &kvm->slots_lock);
6339 return 0;
6340}
6341
6342static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6343{
6344 struct kvm_pic *pic = kvm->arch.vpic;
6345 int r;
6346
6347 r = 0;
6348 switch (chip->chip_id) {
6349 case KVM_IRQCHIP_PIC_MASTER:
6350 memcpy(&chip->chip.pic, &pic->pics[0],
6351 sizeof(struct kvm_pic_state));
6352 break;
6353 case KVM_IRQCHIP_PIC_SLAVE:
6354 memcpy(&chip->chip.pic, &pic->pics[1],
6355 sizeof(struct kvm_pic_state));
6356 break;
6357 case KVM_IRQCHIP_IOAPIC:
6358 kvm_get_ioapic(kvm, state: &chip->chip.ioapic);
6359 break;
6360 default:
6361 r = -EINVAL;
6362 break;
6363 }
6364 return r;
6365}
6366
6367static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6368{
6369 struct kvm_pic *pic = kvm->arch.vpic;
6370 int r;
6371
6372 r = 0;
6373 switch (chip->chip_id) {
6374 case KVM_IRQCHIP_PIC_MASTER:
6375 spin_lock(lock: &pic->lock);
6376 memcpy(&pic->pics[0], &chip->chip.pic,
6377 sizeof(struct kvm_pic_state));
6378 spin_unlock(lock: &pic->lock);
6379 break;
6380 case KVM_IRQCHIP_PIC_SLAVE:
6381 spin_lock(lock: &pic->lock);
6382 memcpy(&pic->pics[1], &chip->chip.pic,
6383 sizeof(struct kvm_pic_state));
6384 spin_unlock(lock: &pic->lock);
6385 break;
6386 case KVM_IRQCHIP_IOAPIC:
6387 kvm_set_ioapic(kvm, state: &chip->chip.ioapic);
6388 break;
6389 default:
6390 r = -EINVAL;
6391 break;
6392 }
6393 kvm_pic_update_irq(s: pic);
6394 return r;
6395}
6396
6397static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6398{
6399 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6400
6401 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6402
6403 mutex_lock(&kps->lock);
6404 memcpy(ps, &kps->channels, sizeof(*ps));
6405 mutex_unlock(lock: &kps->lock);
6406 return 0;
6407}
6408
6409static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6410{
6411 int i;
6412 struct kvm_pit *pit = kvm->arch.vpit;
6413
6414 mutex_lock(&pit->pit_state.lock);
6415 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6416 for (i = 0; i < 3; i++)
6417 kvm_pit_load_count(pit, channel: i, val: ps->channels[i].count, hpet_legacy_start: 0);
6418 mutex_unlock(lock: &pit->pit_state.lock);
6419 return 0;
6420}
6421
6422static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6423{
6424 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6425 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6426 sizeof(ps->channels));
6427 ps->flags = kvm->arch.vpit->pit_state.flags;
6428 mutex_unlock(lock: &kvm->arch.vpit->pit_state.lock);
6429 memset(&ps->reserved, 0, sizeof(ps->reserved));
6430 return 0;
6431}
6432
6433static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6434{
6435 int start = 0;
6436 int i;
6437 u32 prev_legacy, cur_legacy;
6438 struct kvm_pit *pit = kvm->arch.vpit;
6439
6440 mutex_lock(&pit->pit_state.lock);
6441 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6442 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6443 if (!prev_legacy && cur_legacy)
6444 start = 1;
6445 memcpy(&pit->pit_state.channels, &ps->channels,
6446 sizeof(pit->pit_state.channels));
6447 pit->pit_state.flags = ps->flags;
6448 for (i = 0; i < 3; i++)
6449 kvm_pit_load_count(pit, channel: i, val: pit->pit_state.channels[i].count,
6450 hpet_legacy_start: start && i == 0);
6451 mutex_unlock(lock: &pit->pit_state.lock);
6452 return 0;
6453}
6454
6455static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6456 struct kvm_reinject_control *control)
6457{
6458 struct kvm_pit *pit = kvm->arch.vpit;
6459
6460 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6461 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6462 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6463 */
6464 mutex_lock(&pit->pit_state.lock);
6465 kvm_pit_set_reinject(pit, reinject: control->pit_reinject);
6466 mutex_unlock(lock: &pit->pit_state.lock);
6467
6468 return 0;
6469}
6470
6471void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6472{
6473
6474 /*
6475 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6476 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6477 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6478 * VM-Exit.
6479 */
6480 struct kvm_vcpu *vcpu;
6481 unsigned long i;
6482
6483 if (!kvm_x86_ops.cpu_dirty_log_size)
6484 return;
6485
6486 kvm_for_each_vcpu(i, vcpu, kvm)
6487 kvm_vcpu_kick(vcpu);
6488}
6489
6490int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6491 bool line_status)
6492{
6493 if (!irqchip_in_kernel(kvm))
6494 return -ENXIO;
6495
6496 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6497 irq: irq_event->irq, level: irq_event->level,
6498 line_status);
6499 return 0;
6500}
6501
6502int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6503 struct kvm_enable_cap *cap)
6504{
6505 int r;
6506
6507 if (cap->flags)
6508 return -EINVAL;
6509
6510 switch (cap->cap) {
6511 case KVM_CAP_DISABLE_QUIRKS2:
6512 r = -EINVAL;
6513 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6514 break;
6515 fallthrough;
6516 case KVM_CAP_DISABLE_QUIRKS:
6517 kvm->arch.disabled_quirks = cap->args[0];
6518 r = 0;
6519 break;
6520 case KVM_CAP_SPLIT_IRQCHIP: {
6521 mutex_lock(&kvm->lock);
6522 r = -EINVAL;
6523 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6524 goto split_irqchip_unlock;
6525 r = -EEXIST;
6526 if (irqchip_in_kernel(kvm))
6527 goto split_irqchip_unlock;
6528 if (kvm->created_vcpus)
6529 goto split_irqchip_unlock;
6530 r = kvm_setup_empty_irq_routing(kvm);
6531 if (r)
6532 goto split_irqchip_unlock;
6533 /* Pairs with irqchip_in_kernel. */
6534 smp_wmb();
6535 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6536 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6537 kvm_clear_apicv_inhibit(kvm, reason: APICV_INHIBIT_REASON_ABSENT);
6538 r = 0;
6539split_irqchip_unlock:
6540 mutex_unlock(lock: &kvm->lock);
6541 break;
6542 }
6543 case KVM_CAP_X2APIC_API:
6544 r = -EINVAL;
6545 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6546 break;
6547
6548 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6549 kvm->arch.x2apic_format = true;
6550 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6551 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6552
6553 r = 0;
6554 break;
6555 case KVM_CAP_X86_DISABLE_EXITS:
6556 r = -EINVAL;
6557 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6558 break;
6559
6560 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6561 kvm->arch.pause_in_guest = true;
6562
6563#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6564 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6565
6566 if (!mitigate_smt_rsb) {
6567 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6568 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6569 pr_warn_once(SMT_RSB_MSG);
6570
6571 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6572 kvm_can_mwait_in_guest())
6573 kvm->arch.mwait_in_guest = true;
6574 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6575 kvm->arch.hlt_in_guest = true;
6576 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6577 kvm->arch.cstate_in_guest = true;
6578 }
6579
6580 r = 0;
6581 break;
6582 case KVM_CAP_MSR_PLATFORM_INFO:
6583 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6584 r = 0;
6585 break;
6586 case KVM_CAP_EXCEPTION_PAYLOAD:
6587 kvm->arch.exception_payload_enabled = cap->args[0];
6588 r = 0;
6589 break;
6590 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6591 kvm->arch.triple_fault_event = cap->args[0];
6592 r = 0;
6593 break;
6594 case KVM_CAP_X86_USER_SPACE_MSR:
6595 r = -EINVAL;
6596 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6597 break;
6598 kvm->arch.user_space_msr_mask = cap->args[0];
6599 r = 0;
6600 break;
6601 case KVM_CAP_X86_BUS_LOCK_EXIT:
6602 r = -EINVAL;
6603 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6604 break;
6605
6606 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6607 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6608 break;
6609
6610 if (kvm_caps.has_bus_lock_exit &&
6611 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6612 kvm->arch.bus_lock_detection_enabled = true;
6613 r = 0;
6614 break;
6615#ifdef CONFIG_X86_SGX_KVM
6616 case KVM_CAP_SGX_ATTRIBUTE: {
6617 unsigned long allowed_attributes = 0;
6618
6619 r = sgx_set_attribute(allowed_attributes: &allowed_attributes, attribute_fd: cap->args[0]);
6620 if (r)
6621 break;
6622
6623 /* KVM only supports the PROVISIONKEY privileged attribute. */
6624 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6625 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6626 kvm->arch.sgx_provisioning_allowed = true;
6627 else
6628 r = -EINVAL;
6629 break;
6630 }
6631#endif
6632 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6633 r = -EINVAL;
6634 if (!kvm_x86_ops.vm_copy_enc_context_from)
6635 break;
6636
6637 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6638 break;
6639 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6640 r = -EINVAL;
6641 if (!kvm_x86_ops.vm_move_enc_context_from)
6642 break;
6643
6644 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6645 break;
6646 case KVM_CAP_EXIT_HYPERCALL:
6647 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6648 r = -EINVAL;
6649 break;
6650 }
6651 kvm->arch.hypercall_exit_enabled = cap->args[0];
6652 r = 0;
6653 break;
6654 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6655 r = -EINVAL;
6656 if (cap->args[0] & ~1)
6657 break;
6658 kvm->arch.exit_on_emulation_error = cap->args[0];
6659 r = 0;
6660 break;
6661 case KVM_CAP_PMU_CAPABILITY:
6662 r = -EINVAL;
6663 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6664 break;
6665
6666 mutex_lock(&kvm->lock);
6667 if (!kvm->created_vcpus) {
6668 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6669 r = 0;
6670 }
6671 mutex_unlock(lock: &kvm->lock);
6672 break;
6673 case KVM_CAP_MAX_VCPU_ID:
6674 r = -EINVAL;
6675 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6676 break;
6677
6678 mutex_lock(&kvm->lock);
6679 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6680 r = 0;
6681 } else if (!kvm->arch.max_vcpu_ids) {
6682 kvm->arch.max_vcpu_ids = cap->args[0];
6683 r = 0;
6684 }
6685 mutex_unlock(lock: &kvm->lock);
6686 break;
6687 case KVM_CAP_X86_NOTIFY_VMEXIT:
6688 r = -EINVAL;
6689 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6690 break;
6691 if (!kvm_caps.has_notify_vmexit)
6692 break;
6693 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6694 break;
6695 mutex_lock(&kvm->lock);
6696 if (!kvm->created_vcpus) {
6697 kvm->arch.notify_window = cap->args[0] >> 32;
6698 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6699 r = 0;
6700 }
6701 mutex_unlock(lock: &kvm->lock);
6702 break;
6703 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6704 r = -EINVAL;
6705
6706 /*
6707 * Since the risk of disabling NX hugepages is a guest crashing
6708 * the system, ensure the userspace process has permission to
6709 * reboot the system.
6710 *
6711 * Note that unlike the reboot() syscall, the process must have
6712 * this capability in the root namespace because exposing
6713 * /dev/kvm into a container does not limit the scope of the
6714 * iTLB multihit bug to that container. In other words,
6715 * this must use capable(), not ns_capable().
6716 */
6717 if (!capable(CAP_SYS_BOOT)) {
6718 r = -EPERM;
6719 break;
6720 }
6721
6722 if (cap->args[0])
6723 break;
6724
6725 mutex_lock(&kvm->lock);
6726 if (!kvm->created_vcpus) {
6727 kvm->arch.disable_nx_huge_pages = true;
6728 r = 0;
6729 }
6730 mutex_unlock(lock: &kvm->lock);
6731 break;
6732 default:
6733 r = -EINVAL;
6734 break;
6735 }
6736 return r;
6737}
6738
6739static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6740{
6741 struct kvm_x86_msr_filter *msr_filter;
6742
6743 msr_filter = kzalloc(size: sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6744 if (!msr_filter)
6745 return NULL;
6746
6747 msr_filter->default_allow = default_allow;
6748 return msr_filter;
6749}
6750
6751static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6752{
6753 u32 i;
6754
6755 if (!msr_filter)
6756 return;
6757
6758 for (i = 0; i < msr_filter->count; i++)
6759 kfree(objp: msr_filter->ranges[i].bitmap);
6760
6761 kfree(objp: msr_filter);
6762}
6763
6764static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6765 struct kvm_msr_filter_range *user_range)
6766{
6767 unsigned long *bitmap;
6768 size_t bitmap_size;
6769
6770 if (!user_range->nmsrs)
6771 return 0;
6772
6773 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6774 return -EINVAL;
6775
6776 if (!user_range->flags)
6777 return -EINVAL;
6778
6779 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6780 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6781 return -EINVAL;
6782
6783 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6784 if (IS_ERR(ptr: bitmap))
6785 return PTR_ERR(ptr: bitmap);
6786
6787 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6788 .flags = user_range->flags,
6789 .base = user_range->base,
6790 .nmsrs = user_range->nmsrs,
6791 .bitmap = bitmap,
6792 };
6793
6794 msr_filter->count++;
6795 return 0;
6796}
6797
6798static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6799 struct kvm_msr_filter *filter)
6800{
6801 struct kvm_x86_msr_filter *new_filter, *old_filter;
6802 bool default_allow;
6803 bool empty = true;
6804 int r;
6805 u32 i;
6806
6807 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6808 return -EINVAL;
6809
6810 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6811 empty &= !filter->ranges[i].nmsrs;
6812
6813 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6814 if (empty && !default_allow)
6815 return -EINVAL;
6816
6817 new_filter = kvm_alloc_msr_filter(default_allow);
6818 if (!new_filter)
6819 return -ENOMEM;
6820
6821 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6822 r = kvm_add_msr_filter(msr_filter: new_filter, user_range: &filter->ranges[i]);
6823 if (r) {
6824 kvm_free_msr_filter(msr_filter: new_filter);
6825 return r;
6826 }
6827 }
6828
6829 mutex_lock(&kvm->lock);
6830 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6831 mutex_is_locked(&kvm->lock));
6832 mutex_unlock(lock: &kvm->lock);
6833 synchronize_srcu(ssp: &kvm->srcu);
6834
6835 kvm_free_msr_filter(msr_filter: old_filter);
6836
6837 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6838
6839 return 0;
6840}
6841
6842#ifdef CONFIG_KVM_COMPAT
6843/* for KVM_X86_SET_MSR_FILTER */
6844struct kvm_msr_filter_range_compat {
6845 __u32 flags;
6846 __u32 nmsrs;
6847 __u32 base;
6848 __u32 bitmap;
6849};
6850
6851struct kvm_msr_filter_compat {
6852 __u32 flags;
6853 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6854};
6855
6856#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6857
6858long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6859 unsigned long arg)
6860{
6861 void __user *argp = (void __user *)arg;
6862 struct kvm *kvm = filp->private_data;
6863 long r = -ENOTTY;
6864
6865 switch (ioctl) {
6866 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6867 struct kvm_msr_filter __user *user_msr_filter = argp;
6868 struct kvm_msr_filter_compat filter_compat;
6869 struct kvm_msr_filter filter;
6870 int i;
6871
6872 if (copy_from_user(to: &filter_compat, from: user_msr_filter,
6873 n: sizeof(filter_compat)))
6874 return -EFAULT;
6875
6876 filter.flags = filter_compat.flags;
6877 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6878 struct kvm_msr_filter_range_compat *cr;
6879
6880 cr = &filter_compat.ranges[i];
6881 filter.ranges[i] = (struct kvm_msr_filter_range) {
6882 .flags = cr->flags,
6883 .nmsrs = cr->nmsrs,
6884 .base = cr->base,
6885 .bitmap = (__u8 *)(ulong)cr->bitmap,
6886 };
6887 }
6888
6889 r = kvm_vm_ioctl_set_msr_filter(kvm, filter: &filter);
6890 break;
6891 }
6892 }
6893
6894 return r;
6895}
6896#endif
6897
6898#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6899static int kvm_arch_suspend_notifier(struct kvm *kvm)
6900{
6901 struct kvm_vcpu *vcpu;
6902 unsigned long i;
6903 int ret = 0;
6904
6905 mutex_lock(&kvm->lock);
6906 kvm_for_each_vcpu(i, vcpu, kvm) {
6907 if (!vcpu->arch.pv_time.active)
6908 continue;
6909
6910 ret = kvm_set_guest_paused(vcpu);
6911 if (ret) {
6912 kvm_err("Failed to pause guest VCPU%d: %d\n",
6913 vcpu->vcpu_id, ret);
6914 break;
6915 }
6916 }
6917 mutex_unlock(lock: &kvm->lock);
6918
6919 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6920}
6921
6922int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6923{
6924 switch (state) {
6925 case PM_HIBERNATION_PREPARE:
6926 case PM_SUSPEND_PREPARE:
6927 return kvm_arch_suspend_notifier(kvm);
6928 }
6929
6930 return NOTIFY_DONE;
6931}
6932#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6933
6934static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6935{
6936 struct kvm_clock_data data = { 0 };
6937
6938 get_kvmclock(kvm, data: &data);
6939 if (copy_to_user(to: argp, from: &data, n: sizeof(data)))
6940 return -EFAULT;
6941
6942 return 0;
6943}
6944
6945static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6946{
6947 struct kvm_arch *ka = &kvm->arch;
6948 struct kvm_clock_data data;
6949 u64 now_raw_ns;
6950
6951 if (copy_from_user(to: &data, from: argp, n: sizeof(data)))
6952 return -EFAULT;
6953
6954 /*
6955 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6956 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6957 */
6958 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6959 return -EINVAL;
6960
6961 kvm_hv_request_tsc_page_update(kvm);
6962 kvm_start_pvclock_update(kvm);
6963 pvclock_update_vm_gtod_copy(kvm);
6964
6965 /*
6966 * This pairs with kvm_guest_time_update(): when masterclock is
6967 * in use, we use master_kernel_ns + kvmclock_offset to set
6968 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6969 * is slightly ahead) here we risk going negative on unsigned
6970 * 'system_time' when 'data.clock' is very small.
6971 */
6972 if (data.flags & KVM_CLOCK_REALTIME) {
6973 u64 now_real_ns = ktime_get_real_ns();
6974
6975 /*
6976 * Avoid stepping the kvmclock backwards.
6977 */
6978 if (now_real_ns > data.realtime)
6979 data.clock += now_real_ns - data.realtime;
6980 }
6981
6982 if (ka->use_master_clock)
6983 now_raw_ns = ka->master_kernel_ns;
6984 else
6985 now_raw_ns = get_kvmclock_base_ns();
6986 ka->kvmclock_offset = data.clock - now_raw_ns;
6987 kvm_end_pvclock_update(kvm);
6988 return 0;
6989}
6990
6991int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6992{
6993 struct kvm *kvm = filp->private_data;
6994 void __user *argp = (void __user *)arg;
6995 int r = -ENOTTY;
6996 /*
6997 * This union makes it completely explicit to gcc-3.x
6998 * that these two variables' stack usage should be
6999 * combined, not added together.
7000 */
7001 union {
7002 struct kvm_pit_state ps;
7003 struct kvm_pit_state2 ps2;
7004 struct kvm_pit_config pit_config;
7005 } u;
7006
7007 switch (ioctl) {
7008 case KVM_SET_TSS_ADDR:
7009 r = kvm_vm_ioctl_set_tss_addr(kvm, addr: arg);
7010 break;
7011 case KVM_SET_IDENTITY_MAP_ADDR: {
7012 u64 ident_addr;
7013
7014 mutex_lock(&kvm->lock);
7015 r = -EINVAL;
7016 if (kvm->created_vcpus)
7017 goto set_identity_unlock;
7018 r = -EFAULT;
7019 if (copy_from_user(to: &ident_addr, from: argp, n: sizeof(ident_addr)))
7020 goto set_identity_unlock;
7021 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7022set_identity_unlock:
7023 mutex_unlock(lock: &kvm->lock);
7024 break;
7025 }
7026 case KVM_SET_NR_MMU_PAGES:
7027 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, kvm_nr_mmu_pages: arg);
7028 break;
7029 case KVM_CREATE_IRQCHIP: {
7030 mutex_lock(&kvm->lock);
7031
7032 r = -EEXIST;
7033 if (irqchip_in_kernel(kvm))
7034 goto create_irqchip_unlock;
7035
7036 r = -EINVAL;
7037 if (kvm->created_vcpus)
7038 goto create_irqchip_unlock;
7039
7040 r = kvm_pic_init(kvm);
7041 if (r)
7042 goto create_irqchip_unlock;
7043
7044 r = kvm_ioapic_init(kvm);
7045 if (r) {
7046 kvm_pic_destroy(kvm);
7047 goto create_irqchip_unlock;
7048 }
7049
7050 r = kvm_setup_default_irq_routing(kvm);
7051 if (r) {
7052 kvm_ioapic_destroy(kvm);
7053 kvm_pic_destroy(kvm);
7054 goto create_irqchip_unlock;
7055 }
7056 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7057 smp_wmb();
7058 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7059 kvm_clear_apicv_inhibit(kvm, reason: APICV_INHIBIT_REASON_ABSENT);
7060 create_irqchip_unlock:
7061 mutex_unlock(lock: &kvm->lock);
7062 break;
7063 }
7064 case KVM_CREATE_PIT:
7065 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7066 goto create_pit;
7067 case KVM_CREATE_PIT2:
7068 r = -EFAULT;
7069 if (copy_from_user(to: &u.pit_config, from: argp,
7070 n: sizeof(struct kvm_pit_config)))
7071 goto out;
7072 create_pit:
7073 mutex_lock(&kvm->lock);
7074 r = -EEXIST;
7075 if (kvm->arch.vpit)
7076 goto create_pit_unlock;
7077 r = -ENOENT;
7078 if (!pic_in_kernel(kvm))
7079 goto create_pit_unlock;
7080 r = -ENOMEM;
7081 kvm->arch.vpit = kvm_create_pit(kvm, flags: u.pit_config.flags);
7082 if (kvm->arch.vpit)
7083 r = 0;
7084 create_pit_unlock:
7085 mutex_unlock(lock: &kvm->lock);
7086 break;
7087 case KVM_GET_IRQCHIP: {
7088 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7089 struct kvm_irqchip *chip;
7090
7091 chip = memdup_user(argp, sizeof(*chip));
7092 if (IS_ERR(ptr: chip)) {
7093 r = PTR_ERR(ptr: chip);
7094 goto out;
7095 }
7096
7097 r = -ENXIO;
7098 if (!irqchip_kernel(kvm))
7099 goto get_irqchip_out;
7100 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7101 if (r)
7102 goto get_irqchip_out;
7103 r = -EFAULT;
7104 if (copy_to_user(to: argp, from: chip, n: sizeof(*chip)))
7105 goto get_irqchip_out;
7106 r = 0;
7107 get_irqchip_out:
7108 kfree(objp: chip);
7109 break;
7110 }
7111 case KVM_SET_IRQCHIP: {
7112 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7113 struct kvm_irqchip *chip;
7114
7115 chip = memdup_user(argp, sizeof(*chip));
7116 if (IS_ERR(ptr: chip)) {
7117 r = PTR_ERR(ptr: chip);
7118 goto out;
7119 }
7120
7121 r = -ENXIO;
7122 if (!irqchip_kernel(kvm))
7123 goto set_irqchip_out;
7124 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7125 set_irqchip_out:
7126 kfree(objp: chip);
7127 break;
7128 }
7129 case KVM_GET_PIT: {
7130 r = -EFAULT;
7131 if (copy_from_user(to: &u.ps, from: argp, n: sizeof(struct kvm_pit_state)))
7132 goto out;
7133 r = -ENXIO;
7134 if (!kvm->arch.vpit)
7135 goto out;
7136 r = kvm_vm_ioctl_get_pit(kvm, ps: &u.ps);
7137 if (r)
7138 goto out;
7139 r = -EFAULT;
7140 if (copy_to_user(to: argp, from: &u.ps, n: sizeof(struct kvm_pit_state)))
7141 goto out;
7142 r = 0;
7143 break;
7144 }
7145 case KVM_SET_PIT: {
7146 r = -EFAULT;
7147 if (copy_from_user(to: &u.ps, from: argp, n: sizeof(u.ps)))
7148 goto out;
7149 mutex_lock(&kvm->lock);
7150 r = -ENXIO;
7151 if (!kvm->arch.vpit)
7152 goto set_pit_out;
7153 r = kvm_vm_ioctl_set_pit(kvm, ps: &u.ps);
7154set_pit_out:
7155 mutex_unlock(lock: &kvm->lock);
7156 break;
7157 }
7158 case KVM_GET_PIT2: {
7159 r = -ENXIO;
7160 if (!kvm->arch.vpit)
7161 goto out;
7162 r = kvm_vm_ioctl_get_pit2(kvm, ps: &u.ps2);
7163 if (r)
7164 goto out;
7165 r = -EFAULT;
7166 if (copy_to_user(to: argp, from: &u.ps2, n: sizeof(u.ps2)))
7167 goto out;
7168 r = 0;
7169 break;
7170 }
7171 case KVM_SET_PIT2: {
7172 r = -EFAULT;
7173 if (copy_from_user(to: &u.ps2, from: argp, n: sizeof(u.ps2)))
7174 goto out;
7175 mutex_lock(&kvm->lock);
7176 r = -ENXIO;
7177 if (!kvm->arch.vpit)
7178 goto set_pit2_out;
7179 r = kvm_vm_ioctl_set_pit2(kvm, ps: &u.ps2);
7180set_pit2_out:
7181 mutex_unlock(lock: &kvm->lock);
7182 break;
7183 }
7184 case KVM_REINJECT_CONTROL: {
7185 struct kvm_reinject_control control;
7186 r = -EFAULT;
7187 if (copy_from_user(to: &control, from: argp, n: sizeof(control)))
7188 goto out;
7189 r = -ENXIO;
7190 if (!kvm->arch.vpit)
7191 goto out;
7192 r = kvm_vm_ioctl_reinject(kvm, control: &control);
7193 break;
7194 }
7195 case KVM_SET_BOOT_CPU_ID:
7196 r = 0;
7197 mutex_lock(&kvm->lock);
7198 if (kvm->created_vcpus)
7199 r = -EBUSY;
7200 else
7201 kvm->arch.bsp_vcpu_id = arg;
7202 mutex_unlock(lock: &kvm->lock);
7203 break;
7204#ifdef CONFIG_KVM_XEN
7205 case KVM_XEN_HVM_CONFIG: {
7206 struct kvm_xen_hvm_config xhc;
7207 r = -EFAULT;
7208 if (copy_from_user(to: &xhc, from: argp, n: sizeof(xhc)))
7209 goto out;
7210 r = kvm_xen_hvm_config(kvm, xhc: &xhc);
7211 break;
7212 }
7213 case KVM_XEN_HVM_GET_ATTR: {
7214 struct kvm_xen_hvm_attr xha;
7215
7216 r = -EFAULT;
7217 if (copy_from_user(to: &xha, from: argp, n: sizeof(xha)))
7218 goto out;
7219 r = kvm_xen_hvm_get_attr(kvm, data: &xha);
7220 if (!r && copy_to_user(to: argp, from: &xha, n: sizeof(xha)))
7221 r = -EFAULT;
7222 break;
7223 }
7224 case KVM_XEN_HVM_SET_ATTR: {
7225 struct kvm_xen_hvm_attr xha;
7226
7227 r = -EFAULT;
7228 if (copy_from_user(to: &xha, from: argp, n: sizeof(xha)))
7229 goto out;
7230 r = kvm_xen_hvm_set_attr(kvm, data: &xha);
7231 break;
7232 }
7233 case KVM_XEN_HVM_EVTCHN_SEND: {
7234 struct kvm_irq_routing_xen_evtchn uxe;
7235
7236 r = -EFAULT;
7237 if (copy_from_user(to: &uxe, from: argp, n: sizeof(uxe)))
7238 goto out;
7239 r = kvm_xen_hvm_evtchn_send(kvm, evt: &uxe);
7240 break;
7241 }
7242#endif
7243 case KVM_SET_CLOCK:
7244 r = kvm_vm_ioctl_set_clock(kvm, argp);
7245 break;
7246 case KVM_GET_CLOCK:
7247 r = kvm_vm_ioctl_get_clock(kvm, argp);
7248 break;
7249 case KVM_SET_TSC_KHZ: {
7250 u32 user_tsc_khz;
7251
7252 r = -EINVAL;
7253 user_tsc_khz = (u32)arg;
7254
7255 if (kvm_caps.has_tsc_control &&
7256 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7257 goto out;
7258
7259 if (user_tsc_khz == 0)
7260 user_tsc_khz = tsc_khz;
7261
7262 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7263 r = 0;
7264
7265 goto out;
7266 }
7267 case KVM_GET_TSC_KHZ: {
7268 r = READ_ONCE(kvm->arch.default_tsc_khz);
7269 goto out;
7270 }
7271 case KVM_MEMORY_ENCRYPT_OP: {
7272 r = -ENOTTY;
7273 if (!kvm_x86_ops.mem_enc_ioctl)
7274 goto out;
7275
7276 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7277 break;
7278 }
7279 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7280 struct kvm_enc_region region;
7281
7282 r = -EFAULT;
7283 if (copy_from_user(to: &region, from: argp, n: sizeof(region)))
7284 goto out;
7285
7286 r = -ENOTTY;
7287 if (!kvm_x86_ops.mem_enc_register_region)
7288 goto out;
7289
7290 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7291 break;
7292 }
7293 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7294 struct kvm_enc_region region;
7295
7296 r = -EFAULT;
7297 if (copy_from_user(to: &region, from: argp, n: sizeof(region)))
7298 goto out;
7299
7300 r = -ENOTTY;
7301 if (!kvm_x86_ops.mem_enc_unregister_region)
7302 goto out;
7303
7304 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7305 break;
7306 }
7307#ifdef CONFIG_KVM_HYPERV
7308 case KVM_HYPERV_EVENTFD: {
7309 struct kvm_hyperv_eventfd hvevfd;
7310
7311 r = -EFAULT;
7312 if (copy_from_user(to: &hvevfd, from: argp, n: sizeof(hvevfd)))
7313 goto out;
7314 r = kvm_vm_ioctl_hv_eventfd(kvm, args: &hvevfd);
7315 break;
7316 }
7317#endif
7318 case KVM_SET_PMU_EVENT_FILTER:
7319 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7320 break;
7321 case KVM_X86_SET_MSR_FILTER: {
7322 struct kvm_msr_filter __user *user_msr_filter = argp;
7323 struct kvm_msr_filter filter;
7324
7325 if (copy_from_user(to: &filter, from: user_msr_filter, n: sizeof(filter)))
7326 return -EFAULT;
7327
7328 r = kvm_vm_ioctl_set_msr_filter(kvm, filter: &filter);
7329 break;
7330 }
7331 default:
7332 r = -ENOTTY;
7333 }
7334out:
7335 return r;
7336}
7337
7338static void kvm_probe_feature_msr(u32 msr_index)
7339{
7340 struct kvm_msr_entry msr = {
7341 .index = msr_index,
7342 };
7343
7344 if (kvm_get_msr_feature(msr: &msr))
7345 return;
7346
7347 msr_based_features[num_msr_based_features++] = msr_index;
7348}
7349
7350static void kvm_probe_msr_to_save(u32 msr_index)
7351{
7352 u32 dummy[2];
7353
7354 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7355 return;
7356
7357 /*
7358 * Even MSRs that are valid in the host may not be exposed to guests in
7359 * some cases.
7360 */
7361 switch (msr_index) {
7362 case MSR_IA32_BNDCFGS:
7363 if (!kvm_mpx_supported())
7364 return;
7365 break;
7366 case MSR_TSC_AUX:
7367 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7368 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7369 return;
7370 break;
7371 case MSR_IA32_UMWAIT_CONTROL:
7372 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7373 return;
7374 break;
7375 case MSR_IA32_RTIT_CTL:
7376 case MSR_IA32_RTIT_STATUS:
7377 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7378 return;
7379 break;
7380 case MSR_IA32_RTIT_CR3_MATCH:
7381 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7382 !intel_pt_validate_hw_cap(cap: PT_CAP_cr3_filtering))
7383 return;
7384 break;
7385 case MSR_IA32_RTIT_OUTPUT_BASE:
7386 case MSR_IA32_RTIT_OUTPUT_MASK:
7387 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7388 (!intel_pt_validate_hw_cap(cap: PT_CAP_topa_output) &&
7389 !intel_pt_validate_hw_cap(cap: PT_CAP_single_range_output)))
7390 return;
7391 break;
7392 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7393 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7394 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7395 intel_pt_validate_hw_cap(cap: PT_CAP_num_address_ranges) * 2))
7396 return;
7397 break;
7398 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7399 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7400 kvm_pmu_cap.num_counters_gp)
7401 return;
7402 break;
7403 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7404 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7405 kvm_pmu_cap.num_counters_gp)
7406 return;
7407 break;
7408 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7409 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7410 kvm_pmu_cap.num_counters_fixed)
7411 return;
7412 break;
7413 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7414 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7415 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7416 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7417 return;
7418 break;
7419 case MSR_IA32_XFD:
7420 case MSR_IA32_XFD_ERR:
7421 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7422 return;
7423 break;
7424 case MSR_IA32_TSX_CTRL:
7425 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7426 return;
7427 break;
7428 default:
7429 break;
7430 }
7431
7432 msrs_to_save[num_msrs_to_save++] = msr_index;
7433}
7434
7435static void kvm_init_msr_lists(void)
7436{
7437 unsigned i;
7438
7439 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7440 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7441
7442 num_msrs_to_save = 0;
7443 num_emulated_msrs = 0;
7444 num_msr_based_features = 0;
7445
7446 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7447 kvm_probe_msr_to_save(msr_index: msrs_to_save_base[i]);
7448
7449 if (enable_pmu) {
7450 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7451 kvm_probe_msr_to_save(msr_index: msrs_to_save_pmu[i]);
7452 }
7453
7454 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7455 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7456 continue;
7457
7458 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7459 }
7460
7461 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7462 kvm_probe_feature_msr(msr_index: i);
7463
7464 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7465 kvm_probe_feature_msr(msr_index: msr_based_features_all_except_vmx[i]);
7466}
7467
7468static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7469 const void *v)
7470{
7471 int handled = 0;
7472 int n;
7473
7474 do {
7475 n = min(len, 8);
7476 if (!(lapic_in_kernel(vcpu) &&
7477 !kvm_iodevice_write(vcpu, dev: &vcpu->arch.apic->dev, addr, l: n, v))
7478 && kvm_io_bus_write(vcpu, bus_idx: KVM_MMIO_BUS, addr, len: n, val: v))
7479 break;
7480 handled += n;
7481 addr += n;
7482 len -= n;
7483 v += n;
7484 } while (len);
7485
7486 return handled;
7487}
7488
7489static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7490{
7491 int handled = 0;
7492 int n;
7493
7494 do {
7495 n = min(len, 8);
7496 if (!(lapic_in_kernel(vcpu) &&
7497 !kvm_iodevice_read(vcpu, dev: &vcpu->arch.apic->dev,
7498 addr, l: n, v))
7499 && kvm_io_bus_read(vcpu, bus_idx: KVM_MMIO_BUS, addr, len: n, val: v))
7500 break;
7501 trace_kvm_mmio(KVM_TRACE_MMIO_READ, len: n, gpa: addr, val: v);
7502 handled += n;
7503 addr += n;
7504 len -= n;
7505 v += n;
7506 } while (len);
7507
7508 return handled;
7509}
7510
7511void kvm_set_segment(struct kvm_vcpu *vcpu,
7512 struct kvm_segment *var, int seg)
7513{
7514 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7515}
7516
7517void kvm_get_segment(struct kvm_vcpu *vcpu,
7518 struct kvm_segment *var, int seg)
7519{
7520 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7521}
7522
7523gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7524 struct x86_exception *exception)
7525{
7526 struct kvm_mmu *mmu = vcpu->arch.mmu;
7527 gpa_t t_gpa;
7528
7529 BUG_ON(!mmu_is_nested(vcpu));
7530
7531 /* NPT walks are always user-walks */
7532 access |= PFERR_USER_MASK;
7533 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7534
7535 return t_gpa;
7536}
7537
7538gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7539 struct x86_exception *exception)
7540{
7541 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7542
7543 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7544 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7545}
7546EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7547
7548gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7549 struct x86_exception *exception)
7550{
7551 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552
7553 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7554 access |= PFERR_WRITE_MASK;
7555 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7556}
7557EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7558
7559/* uses this to access any guest's mapped memory without checking CPL */
7560gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7561 struct x86_exception *exception)
7562{
7563 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7564
7565 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7566}
7567
7568static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7569 struct kvm_vcpu *vcpu, u64 access,
7570 struct x86_exception *exception)
7571{
7572 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7573 void *data = val;
7574 int r = X86EMUL_CONTINUE;
7575
7576 while (bytes) {
7577 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7578 unsigned offset = addr & (PAGE_SIZE-1);
7579 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7580 int ret;
7581
7582 if (gpa == INVALID_GPA)
7583 return X86EMUL_PROPAGATE_FAULT;
7584 ret = kvm_vcpu_read_guest_page(vcpu, gfn: gpa >> PAGE_SHIFT, data,
7585 offset, len: toread);
7586 if (ret < 0) {
7587 r = X86EMUL_IO_NEEDED;
7588 goto out;
7589 }
7590
7591 bytes -= toread;
7592 data += toread;
7593 addr += toread;
7594 }
7595out:
7596 return r;
7597}
7598
7599/* used for instruction fetching */
7600static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7601 gva_t addr, void *val, unsigned int bytes,
7602 struct x86_exception *exception)
7603{
7604 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7605 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7606 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7607 unsigned offset;
7608 int ret;
7609
7610 /* Inline kvm_read_guest_virt_helper for speed. */
7611 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7612 exception);
7613 if (unlikely(gpa == INVALID_GPA))
7614 return X86EMUL_PROPAGATE_FAULT;
7615
7616 offset = addr & (PAGE_SIZE-1);
7617 if (WARN_ON(offset + bytes > PAGE_SIZE))
7618 bytes = (unsigned)PAGE_SIZE - offset;
7619 ret = kvm_vcpu_read_guest_page(vcpu, gfn: gpa >> PAGE_SHIFT, data: val,
7620 offset, len: bytes);
7621 if (unlikely(ret < 0))
7622 return X86EMUL_IO_NEEDED;
7623
7624 return X86EMUL_CONTINUE;
7625}
7626
7627int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7628 gva_t addr, void *val, unsigned int bytes,
7629 struct x86_exception *exception)
7630{
7631 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7632
7633 /*
7634 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7635 * is returned, but our callers are not ready for that and they blindly
7636 * call kvm_inject_page_fault. Ensure that they at least do not leak
7637 * uninitialized kernel stack memory into cr2 and error code.
7638 */
7639 memset(exception, 0, sizeof(*exception));
7640 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7641 exception);
7642}
7643EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7644
7645static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7646 gva_t addr, void *val, unsigned int bytes,
7647 struct x86_exception *exception, bool system)
7648{
7649 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7650 u64 access = 0;
7651
7652 if (system)
7653 access |= PFERR_IMPLICIT_ACCESS;
7654 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7655 access |= PFERR_USER_MASK;
7656
7657 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7658}
7659
7660static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7661 struct kvm_vcpu *vcpu, u64 access,
7662 struct x86_exception *exception)
7663{
7664 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7665 void *data = val;
7666 int r = X86EMUL_CONTINUE;
7667
7668 while (bytes) {
7669 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7670 unsigned offset = addr & (PAGE_SIZE-1);
7671 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7672 int ret;
7673
7674 if (gpa == INVALID_GPA)
7675 return X86EMUL_PROPAGATE_FAULT;
7676 ret = kvm_vcpu_write_guest(vcpu, gpa, data, len: towrite);
7677 if (ret < 0) {
7678 r = X86EMUL_IO_NEEDED;
7679 goto out;
7680 }
7681
7682 bytes -= towrite;
7683 data += towrite;
7684 addr += towrite;
7685 }
7686out:
7687 return r;
7688}
7689
7690static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7691 unsigned int bytes, struct x86_exception *exception,
7692 bool system)
7693{
7694 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7695 u64 access = PFERR_WRITE_MASK;
7696
7697 if (system)
7698 access |= PFERR_IMPLICIT_ACCESS;
7699 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7700 access |= PFERR_USER_MASK;
7701
7702 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7703 access, exception);
7704}
7705
7706int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7707 unsigned int bytes, struct x86_exception *exception)
7708{
7709 /* kvm_write_guest_virt_system can pull in tons of pages. */
7710 vcpu->arch.l1tf_flush_l1d = true;
7711
7712 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7713 PFERR_WRITE_MASK, exception);
7714}
7715EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7716
7717static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7718 void *insn, int insn_len)
7719{
7720 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7721 insn, insn_len);
7722}
7723
7724int handle_ud(struct kvm_vcpu *vcpu)
7725{
7726 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7727 int fep_flags = READ_ONCE(force_emulation_prefix);
7728 int emul_type = EMULTYPE_TRAP_UD;
7729 char sig[5]; /* ud2; .ascii "kvm" */
7730 struct x86_exception e;
7731 int r;
7732
7733 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, insn_len: 0);
7734 if (r != X86EMUL_CONTINUE)
7735 return 1;
7736
7737 if (fep_flags &&
7738 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7739 sig, sizeof(sig), &e) == 0 &&
7740 memcmp(p: sig, q: kvm_emulate_prefix, size: sizeof(sig)) == 0) {
7741 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7742 kvm_set_rflags(vcpu, rflags: kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7743 kvm_rip_write(vcpu, val: kvm_rip_read(vcpu) + sizeof(sig));
7744 emul_type = EMULTYPE_TRAP_UD_FORCED;
7745 }
7746
7747 return kvm_emulate_instruction(vcpu, emulation_type: emul_type);
7748}
7749EXPORT_SYMBOL_GPL(handle_ud);
7750
7751static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7752 gpa_t gpa, bool write)
7753{
7754 /* For APIC access vmexit */
7755 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7756 return 1;
7757
7758 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7759 trace_vcpu_match_mmio(gva, gpa, write, gpa_match: true);
7760 return 1;
7761 }
7762
7763 return 0;
7764}
7765
7766static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7767 gpa_t *gpa, struct x86_exception *exception,
7768 bool write)
7769{
7770 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7771 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7772 | (write ? PFERR_WRITE_MASK : 0);
7773
7774 /*
7775 * currently PKRU is only applied to ept enabled guest so
7776 * there is no pkey in EPT page table for L1 guest or EPT
7777 * shadow page table for L2 guest.
7778 */
7779 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7780 !permission_fault(vcpu, mmu: vcpu->arch.walk_mmu,
7781 pte_access: vcpu->arch.mmio_access, pte_pkey: 0, access))) {
7782 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7783 (gva & (PAGE_SIZE - 1));
7784 trace_vcpu_match_mmio(gva, gpa: *gpa, write, gpa_match: false);
7785 return 1;
7786 }
7787
7788 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7789
7790 if (*gpa == INVALID_GPA)
7791 return -1;
7792
7793 return vcpu_is_mmio_gpa(vcpu, gva, gpa: *gpa, write);
7794}
7795
7796int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7797 const void *val, int bytes)
7798{
7799 int ret;
7800
7801 ret = kvm_vcpu_write_guest(vcpu, gpa, data: val, len: bytes);
7802 if (ret < 0)
7803 return 0;
7804 kvm_page_track_write(vcpu, gpa, new: val, bytes);
7805 return 1;
7806}
7807
7808struct read_write_emulator_ops {
7809 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7810 int bytes);
7811 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7812 void *val, int bytes);
7813 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7814 int bytes, void *val);
7815 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7816 void *val, int bytes);
7817 bool write;
7818};
7819
7820static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7821{
7822 if (vcpu->mmio_read_completed) {
7823 trace_kvm_mmio(KVM_TRACE_MMIO_READ, len: bytes,
7824 gpa: vcpu->mmio_fragments[0].gpa, val);
7825 vcpu->mmio_read_completed = 0;
7826 return 1;
7827 }
7828
7829 return 0;
7830}
7831
7832static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7833 void *val, int bytes)
7834{
7835 return !kvm_vcpu_read_guest(vcpu, gpa, data: val, len: bytes);
7836}
7837
7838static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7839 void *val, int bytes)
7840{
7841 return emulator_write_phys(vcpu, gpa, val, bytes);
7842}
7843
7844static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7845{
7846 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len: bytes, gpa, val);
7847 return vcpu_mmio_write(vcpu, addr: gpa, len: bytes, v: val);
7848}
7849
7850static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7851 void *val, int bytes)
7852{
7853 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len: bytes, gpa, NULL);
7854 return X86EMUL_IO_NEEDED;
7855}
7856
7857static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7858 void *val, int bytes)
7859{
7860 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7861
7862 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7863 return X86EMUL_CONTINUE;
7864}
7865
7866static const struct read_write_emulator_ops read_emultor = {
7867 .read_write_prepare = read_prepare,
7868 .read_write_emulate = read_emulate,
7869 .read_write_mmio = vcpu_mmio_read,
7870 .read_write_exit_mmio = read_exit_mmio,
7871};
7872
7873static const struct read_write_emulator_ops write_emultor = {
7874 .read_write_emulate = write_emulate,
7875 .read_write_mmio = write_mmio,
7876 .read_write_exit_mmio = write_exit_mmio,
7877 .write = true,
7878};
7879
7880static int emulator_read_write_onepage(unsigned long addr, void *val,
7881 unsigned int bytes,
7882 struct x86_exception *exception,
7883 struct kvm_vcpu *vcpu,
7884 const struct read_write_emulator_ops *ops)
7885{
7886 gpa_t gpa;
7887 int handled, ret;
7888 bool write = ops->write;
7889 struct kvm_mmio_fragment *frag;
7890 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7891
7892 /*
7893 * If the exit was due to a NPF we may already have a GPA.
7894 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7895 * Note, this cannot be used on string operations since string
7896 * operation using rep will only have the initial GPA from the NPF
7897 * occurred.
7898 */
7899 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7900 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7901 gpa = ctxt->gpa_val;
7902 ret = vcpu_is_mmio_gpa(vcpu, gva: addr, gpa, write);
7903 } else {
7904 ret = vcpu_mmio_gva_to_gpa(vcpu, gva: addr, gpa: &gpa, exception, write);
7905 if (ret < 0)
7906 return X86EMUL_PROPAGATE_FAULT;
7907 }
7908
7909 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7910 return X86EMUL_CONTINUE;
7911
7912 /*
7913 * Is this MMIO handled locally?
7914 */
7915 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7916 if (handled == bytes)
7917 return X86EMUL_CONTINUE;
7918
7919 gpa += handled;
7920 bytes -= handled;
7921 val += handled;
7922
7923 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7924 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7925 frag->gpa = gpa;
7926 frag->data = val;
7927 frag->len = bytes;
7928 return X86EMUL_CONTINUE;
7929}
7930
7931static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7932 unsigned long addr,
7933 void *val, unsigned int bytes,
7934 struct x86_exception *exception,
7935 const struct read_write_emulator_ops *ops)
7936{
7937 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7938 gpa_t gpa;
7939 int rc;
7940
7941 if (ops->read_write_prepare &&
7942 ops->read_write_prepare(vcpu, val, bytes))
7943 return X86EMUL_CONTINUE;
7944
7945 vcpu->mmio_nr_fragments = 0;
7946
7947 /* Crossing a page boundary? */
7948 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7949 int now;
7950
7951 now = -addr & ~PAGE_MASK;
7952 rc = emulator_read_write_onepage(addr, val, bytes: now, exception,
7953 vcpu, ops);
7954
7955 if (rc != X86EMUL_CONTINUE)
7956 return rc;
7957 addr += now;
7958 if (ctxt->mode != X86EMUL_MODE_PROT64)
7959 addr = (u32)addr;
7960 val += now;
7961 bytes -= now;
7962 }
7963
7964 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7965 vcpu, ops);
7966 if (rc != X86EMUL_CONTINUE)
7967 return rc;
7968
7969 if (!vcpu->mmio_nr_fragments)
7970 return rc;
7971
7972 gpa = vcpu->mmio_fragments[0].gpa;
7973
7974 vcpu->mmio_needed = 1;
7975 vcpu->mmio_cur_fragment = 0;
7976
7977 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7978 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7979 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7980 vcpu->run->mmio.phys_addr = gpa;
7981
7982 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7983}
7984
7985static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7986 unsigned long addr,
7987 void *val,
7988 unsigned int bytes,
7989 struct x86_exception *exception)
7990{
7991 return emulator_read_write(ctxt, addr, val, bytes,
7992 exception, ops: &read_emultor);
7993}
7994
7995static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7996 unsigned long addr,
7997 const void *val,
7998 unsigned int bytes,
7999 struct x86_exception *exception)
8000{
8001 return emulator_read_write(ctxt, addr, val: (void *)val, bytes,
8002 exception, ops: &write_emultor);
8003}
8004
8005#define emulator_try_cmpxchg_user(t, ptr, old, new) \
8006 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8007
8008static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8009 unsigned long addr,
8010 const void *old,
8011 const void *new,
8012 unsigned int bytes,
8013 struct x86_exception *exception)
8014{
8015 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8016 u64 page_line_mask;
8017 unsigned long hva;
8018 gpa_t gpa;
8019 int r;
8020
8021 /* guests cmpxchg8b have to be emulated atomically */
8022 if (bytes > 8 || (bytes & (bytes - 1)))
8023 goto emul_write;
8024
8025 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8026
8027 if (gpa == INVALID_GPA ||
8028 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8029 goto emul_write;
8030
8031 /*
8032 * Emulate the atomic as a straight write to avoid #AC if SLD is
8033 * enabled in the host and the access splits a cache line.
8034 */
8035 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8036 page_line_mask = ~(cache_line_size() - 1);
8037 else
8038 page_line_mask = PAGE_MASK;
8039
8040 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8041 goto emul_write;
8042
8043 hva = kvm_vcpu_gfn_to_hva(vcpu, gfn: gpa_to_gfn(gpa));
8044 if (kvm_is_error_hva(addr: hva))
8045 goto emul_write;
8046
8047 hva += offset_in_page(gpa);
8048
8049 switch (bytes) {
8050 case 1:
8051 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8052 break;
8053 case 2:
8054 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8055 break;
8056 case 4:
8057 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8058 break;
8059 case 8:
8060 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8061 break;
8062 default:
8063 BUG();
8064 }
8065
8066 if (r < 0)
8067 return X86EMUL_UNHANDLEABLE;
8068
8069 /*
8070 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8071 * successful, as the old value is written back on failure. Note, for
8072 * live migration, this is unnecessarily conservative as CMPXCHG writes
8073 * back the original value and the access is atomic, but KVM's ABI is
8074 * that all writes are dirty logged, regardless of the value written.
8075 */
8076 kvm_vcpu_mark_page_dirty(vcpu, gfn: gpa_to_gfn(gpa));
8077
8078 if (r)
8079 return X86EMUL_CMPXCHG_FAILED;
8080
8081 kvm_page_track_write(vcpu, gpa, new, bytes);
8082
8083 return X86EMUL_CONTINUE;
8084
8085emul_write:
8086 pr_warn_once("emulating exchange as write\n");
8087
8088 return emulator_write_emulated(ctxt, addr, val: new, bytes, exception);
8089}
8090
8091static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8092 unsigned short port, void *data,
8093 unsigned int count, bool in)
8094{
8095 unsigned i;
8096 int r;
8097
8098 WARN_ON_ONCE(vcpu->arch.pio.count);
8099 for (i = 0; i < count; i++) {
8100 if (in)
8101 r = kvm_io_bus_read(vcpu, bus_idx: KVM_PIO_BUS, addr: port, len: size, val: data);
8102 else
8103 r = kvm_io_bus_write(vcpu, bus_idx: KVM_PIO_BUS, addr: port, len: size, val: data);
8104
8105 if (r) {
8106 if (i == 0)
8107 goto userspace_io;
8108
8109 /*
8110 * Userspace must have unregistered the device while PIO
8111 * was running. Drop writes / read as 0.
8112 */
8113 if (in)
8114 memset(data, 0, size * (count - i));
8115 break;
8116 }
8117
8118 data += size;
8119 }
8120 return 1;
8121
8122userspace_io:
8123 vcpu->arch.pio.port = port;
8124 vcpu->arch.pio.in = in;
8125 vcpu->arch.pio.count = count;
8126 vcpu->arch.pio.size = size;
8127
8128 if (in)
8129 memset(vcpu->arch.pio_data, 0, size * count);
8130 else
8131 memcpy(vcpu->arch.pio_data, data, size * count);
8132
8133 vcpu->run->exit_reason = KVM_EXIT_IO;
8134 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8135 vcpu->run->io.size = size;
8136 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8137 vcpu->run->io.count = count;
8138 vcpu->run->io.port = port;
8139 return 0;
8140}
8141
8142static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8143 unsigned short port, void *val, unsigned int count)
8144{
8145 int r = emulator_pio_in_out(vcpu, size, port, data: val, count, in: true);
8146 if (r)
8147 trace_kvm_pio(KVM_PIO_IN, port, size, count, data: val);
8148
8149 return r;
8150}
8151
8152static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8153{
8154 int size = vcpu->arch.pio.size;
8155 unsigned int count = vcpu->arch.pio.count;
8156 memcpy(val, vcpu->arch.pio_data, size * count);
8157 trace_kvm_pio(KVM_PIO_IN, port: vcpu->arch.pio.port, size, count, data: vcpu->arch.pio_data);
8158 vcpu->arch.pio.count = 0;
8159}
8160
8161static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8162 int size, unsigned short port, void *val,
8163 unsigned int count)
8164{
8165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166 if (vcpu->arch.pio.count) {
8167 /*
8168 * Complete a previous iteration that required userspace I/O.
8169 * Note, @count isn't guaranteed to match pio.count as userspace
8170 * can modify ECX before rerunning the vCPU. Ignore any such
8171 * shenanigans as KVM doesn't support modifying the rep count,
8172 * and the emulator ensures @count doesn't overflow the buffer.
8173 */
8174 complete_emulator_pio_in(vcpu, val);
8175 return 1;
8176 }
8177
8178 return emulator_pio_in(vcpu, size, port, val, count);
8179}
8180
8181static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8182 unsigned short port, const void *val,
8183 unsigned int count)
8184{
8185 trace_kvm_pio(KVM_PIO_OUT, port, size, count, data: val);
8186 return emulator_pio_in_out(vcpu, size, port, data: (void *)val, count, in: false);
8187}
8188
8189static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8190 int size, unsigned short port,
8191 const void *val, unsigned int count)
8192{
8193 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8194}
8195
8196static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8197{
8198 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8199}
8200
8201static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8202{
8203 kvm_mmu_invlpg(emul_to_vcpu(ctxt), gva: address);
8204}
8205
8206static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8207{
8208 if (!need_emulate_wbinvd(vcpu))
8209 return X86EMUL_CONTINUE;
8210
8211 if (static_call(kvm_x86_has_wbinvd_exit)()) {
8212 int cpu = get_cpu();
8213
8214 cpumask_set_cpu(cpu, dstp: vcpu->arch.wbinvd_dirty_mask);
8215 on_each_cpu_mask(mask: vcpu->arch.wbinvd_dirty_mask,
8216 func: wbinvd_ipi, NULL, wait: 1);
8217 put_cpu();
8218 cpumask_clear(dstp: vcpu->arch.wbinvd_dirty_mask);
8219 } else
8220 wbinvd();
8221 return X86EMUL_CONTINUE;
8222}
8223
8224int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8225{
8226 kvm_emulate_wbinvd_noskip(vcpu);
8227 return kvm_skip_emulated_instruction(vcpu);
8228}
8229EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8230
8231
8232
8233static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8234{
8235 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8236}
8237
8238static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8239{
8240 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8241}
8242
8243static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8244 unsigned long value)
8245{
8246
8247 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8248}
8249
8250static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8251{
8252 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8253}
8254
8255static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8256{
8257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258 unsigned long value;
8259
8260 switch (cr) {
8261 case 0:
8262 value = kvm_read_cr0(vcpu);
8263 break;
8264 case 2:
8265 value = vcpu->arch.cr2;
8266 break;
8267 case 3:
8268 value = kvm_read_cr3(vcpu);
8269 break;
8270 case 4:
8271 value = kvm_read_cr4(vcpu);
8272 break;
8273 case 8:
8274 value = kvm_get_cr8(vcpu);
8275 break;
8276 default:
8277 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8278 return 0;
8279 }
8280
8281 return value;
8282}
8283
8284static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8285{
8286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8287 int res = 0;
8288
8289 switch (cr) {
8290 case 0:
8291 res = kvm_set_cr0(vcpu, mk_cr_64(curr_cr: kvm_read_cr0(vcpu), new_val: val));
8292 break;
8293 case 2:
8294 vcpu->arch.cr2 = val;
8295 break;
8296 case 3:
8297 res = kvm_set_cr3(vcpu, val);
8298 break;
8299 case 4:
8300 res = kvm_set_cr4(vcpu, mk_cr_64(curr_cr: kvm_read_cr4(vcpu), new_val: val));
8301 break;
8302 case 8:
8303 res = kvm_set_cr8(vcpu, val);
8304 break;
8305 default:
8306 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8307 res = -1;
8308 }
8309
8310 return res;
8311}
8312
8313static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8314{
8315 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8316}
8317
8318static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8319{
8320 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8321}
8322
8323static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8324{
8325 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8326}
8327
8328static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8329{
8330 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8331}
8332
8333static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334{
8335 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8336}
8337
8338static unsigned long emulator_get_cached_segment_base(
8339 struct x86_emulate_ctxt *ctxt, int seg)
8340{
8341 return get_segment_base(emul_to_vcpu(ctxt), seg);
8342}
8343
8344static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8345 struct desc_struct *desc, u32 *base3,
8346 int seg)
8347{
8348 struct kvm_segment var;
8349
8350 kvm_get_segment(emul_to_vcpu(ctxt), var: &var, seg);
8351 *selector = var.selector;
8352
8353 if (var.unusable) {
8354 memset(desc, 0, sizeof(*desc));
8355 if (base3)
8356 *base3 = 0;
8357 return false;
8358 }
8359
8360 if (var.g)
8361 var.limit >>= 12;
8362 set_desc_limit(desc, limit: var.limit);
8363 set_desc_base(desc, base: (unsigned long)var.base);
8364#ifdef CONFIG_X86_64
8365 if (base3)
8366 *base3 = var.base >> 32;
8367#endif
8368 desc->type = var.type;
8369 desc->s = var.s;
8370 desc->dpl = var.dpl;
8371 desc->p = var.present;
8372 desc->avl = var.avl;
8373 desc->l = var.l;
8374 desc->d = var.db;
8375 desc->g = var.g;
8376
8377 return true;
8378}
8379
8380static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8381 struct desc_struct *desc, u32 base3,
8382 int seg)
8383{
8384 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8385 struct kvm_segment var;
8386
8387 var.selector = selector;
8388 var.base = get_desc_base(desc);
8389#ifdef CONFIG_X86_64
8390 var.base |= ((u64)base3) << 32;
8391#endif
8392 var.limit = get_desc_limit(desc);
8393 if (desc->g)
8394 var.limit = (var.limit << 12) | 0xfff;
8395 var.type = desc->type;
8396 var.dpl = desc->dpl;
8397 var.db = desc->d;
8398 var.s = desc->s;
8399 var.l = desc->l;
8400 var.g = desc->g;
8401 var.avl = desc->avl;
8402 var.present = desc->p;
8403 var.unusable = !var.present;
8404 var.padding = 0;
8405
8406 kvm_set_segment(vcpu, var: &var, seg);
8407 return;
8408}
8409
8410static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8411 u32 msr_index, u64 *pdata)
8412{
8413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8414 int r;
8415
8416 r = kvm_get_msr_with_filter(vcpu, index: msr_index, data: pdata);
8417 if (r < 0)
8418 return X86EMUL_UNHANDLEABLE;
8419
8420 if (r) {
8421 if (kvm_msr_user_space(vcpu, index: msr_index, KVM_EXIT_X86_RDMSR, data: 0,
8422 completion: complete_emulated_rdmsr, r))
8423 return X86EMUL_IO_NEEDED;
8424
8425 trace_kvm_msr_read_ex(msr_index);
8426 return X86EMUL_PROPAGATE_FAULT;
8427 }
8428
8429 trace_kvm_msr_read(msr_index, *pdata);
8430 return X86EMUL_CONTINUE;
8431}
8432
8433static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8434 u32 msr_index, u64 data)
8435{
8436 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8437 int r;
8438
8439 r = kvm_set_msr_with_filter(vcpu, index: msr_index, data);
8440 if (r < 0)
8441 return X86EMUL_UNHANDLEABLE;
8442
8443 if (r) {
8444 if (kvm_msr_user_space(vcpu, index: msr_index, KVM_EXIT_X86_WRMSR, data,
8445 completion: complete_emulated_msr_access, r))
8446 return X86EMUL_IO_NEEDED;
8447
8448 trace_kvm_msr_write_ex(msr_index, data);
8449 return X86EMUL_PROPAGATE_FAULT;
8450 }
8451
8452 trace_kvm_msr_write(msr_index, data);
8453 return X86EMUL_CONTINUE;
8454}
8455
8456static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8457 u32 msr_index, u64 *pdata)
8458{
8459 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8460}
8461
8462static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8463{
8464 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), idx: pmc);
8465}
8466
8467static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8468 u32 pmc, u64 *pdata)
8469{
8470 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, data: pdata);
8471}
8472
8473static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8474{
8475 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8476}
8477
8478static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8479 struct x86_instruction_info *info,
8480 enum x86_intercept_stage stage)
8481{
8482 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8483 &ctxt->exception);
8484}
8485
8486static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8487 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8488 bool exact_only)
8489{
8490 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8491}
8492
8493static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8494{
8495 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8496}
8497
8498static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8499{
8500 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8501}
8502
8503static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8504{
8505 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8506}
8507
8508static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8509{
8510 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8511}
8512
8513static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8514{
8515 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8516}
8517
8518static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8519{
8520 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8521}
8522
8523static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8524{
8525 return is_smm(emul_to_vcpu(ctxt));
8526}
8527
8528static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8529{
8530 return is_guest_mode(emul_to_vcpu(ctxt));
8531}
8532
8533#ifndef CONFIG_KVM_SMM
8534static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8535{
8536 WARN_ON_ONCE(1);
8537 return X86EMUL_UNHANDLEABLE;
8538}
8539#endif
8540
8541static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8542{
8543 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8544}
8545
8546static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8547{
8548 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8549}
8550
8551static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8552{
8553 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8554
8555 if (!kvm->vm_bugged)
8556 kvm_vm_bugged(kvm);
8557}
8558
8559static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8560 gva_t addr, unsigned int flags)
8561{
8562 if (!kvm_x86_ops.get_untagged_addr)
8563 return addr;
8564
8565 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8566}
8567
8568static const struct x86_emulate_ops emulate_ops = {
8569 .vm_bugged = emulator_vm_bugged,
8570 .read_gpr = emulator_read_gpr,
8571 .write_gpr = emulator_write_gpr,
8572 .read_std = emulator_read_std,
8573 .write_std = emulator_write_std,
8574 .fetch = kvm_fetch_guest_virt,
8575 .read_emulated = emulator_read_emulated,
8576 .write_emulated = emulator_write_emulated,
8577 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8578 .invlpg = emulator_invlpg,
8579 .pio_in_emulated = emulator_pio_in_emulated,
8580 .pio_out_emulated = emulator_pio_out_emulated,
8581 .get_segment = emulator_get_segment,
8582 .set_segment = emulator_set_segment,
8583 .get_cached_segment_base = emulator_get_cached_segment_base,
8584 .get_gdt = emulator_get_gdt,
8585 .get_idt = emulator_get_idt,
8586 .set_gdt = emulator_set_gdt,
8587 .set_idt = emulator_set_idt,
8588 .get_cr = emulator_get_cr,
8589 .set_cr = emulator_set_cr,
8590 .cpl = emulator_get_cpl,
8591 .get_dr = emulator_get_dr,
8592 .set_dr = emulator_set_dr,
8593 .set_msr_with_filter = emulator_set_msr_with_filter,
8594 .get_msr_with_filter = emulator_get_msr_with_filter,
8595 .get_msr = emulator_get_msr,
8596 .check_rdpmc_early = emulator_check_rdpmc_early,
8597 .read_pmc = emulator_read_pmc,
8598 .halt = emulator_halt,
8599 .wbinvd = emulator_wbinvd,
8600 .fix_hypercall = emulator_fix_hypercall,
8601 .intercept = emulator_intercept,
8602 .get_cpuid = emulator_get_cpuid,
8603 .guest_has_movbe = emulator_guest_has_movbe,
8604 .guest_has_fxsr = emulator_guest_has_fxsr,
8605 .guest_has_rdpid = emulator_guest_has_rdpid,
8606 .set_nmi_mask = emulator_set_nmi_mask,
8607 .is_smm = emulator_is_smm,
8608 .is_guest_mode = emulator_is_guest_mode,
8609 .leave_smm = emulator_leave_smm,
8610 .triple_fault = emulator_triple_fault,
8611 .set_xcr = emulator_set_xcr,
8612 .get_untagged_addr = emulator_get_untagged_addr,
8613};
8614
8615static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8616{
8617 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8618 /*
8619 * an sti; sti; sequence only disable interrupts for the first
8620 * instruction. So, if the last instruction, be it emulated or
8621 * not, left the system with the INT_STI flag enabled, it
8622 * means that the last instruction is an sti. We should not
8623 * leave the flag on in this case. The same goes for mov ss
8624 */
8625 if (int_shadow & mask)
8626 mask = 0;
8627 if (unlikely(int_shadow || mask)) {
8628 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8629 if (!mask)
8630 kvm_make_request(KVM_REQ_EVENT, vcpu);
8631 }
8632}
8633
8634static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8635{
8636 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8637
8638 if (ctxt->exception.vector == PF_VECTOR)
8639 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8640 else if (ctxt->exception.error_code_valid)
8641 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8642 ctxt->exception.error_code);
8643 else
8644 kvm_queue_exception(vcpu, ctxt->exception.vector);
8645}
8646
8647static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8648{
8649 struct x86_emulate_ctxt *ctxt;
8650
8651 ctxt = kmem_cache_zalloc(k: x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8652 if (!ctxt) {
8653 pr_err("failed to allocate vcpu's emulator\n");
8654 return NULL;
8655 }
8656
8657 ctxt->vcpu = vcpu;
8658 ctxt->ops = &emulate_ops;
8659 vcpu->arch.emulate_ctxt = ctxt;
8660
8661 return ctxt;
8662}
8663
8664static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8665{
8666 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8667 int cs_db, cs_l;
8668
8669 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8670
8671 ctxt->gpa_available = false;
8672 ctxt->eflags = kvm_get_rflags(vcpu);
8673 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8674
8675 ctxt->eip = kvm_rip_read(vcpu);
8676 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8677 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8678 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8679 cs_db ? X86EMUL_MODE_PROT32 :
8680 X86EMUL_MODE_PROT16;
8681 ctxt->interruptibility = 0;
8682 ctxt->have_exception = false;
8683 ctxt->exception.vector = -1;
8684 ctxt->perm_ok = false;
8685
8686 init_decode_cache(ctxt);
8687 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8688}
8689
8690void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8691{
8692 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8693 int ret;
8694
8695 init_emulate_ctxt(vcpu);
8696
8697 ctxt->op_bytes = 2;
8698 ctxt->ad_bytes = 2;
8699 ctxt->_eip = ctxt->eip + inc_eip;
8700 ret = emulate_int_real(ctxt, irq);
8701
8702 if (ret != X86EMUL_CONTINUE) {
8703 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8704 } else {
8705 ctxt->eip = ctxt->_eip;
8706 kvm_rip_write(vcpu, val: ctxt->eip);
8707 kvm_set_rflags(vcpu, rflags: ctxt->eflags);
8708 }
8709}
8710EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8711
8712static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8713 u8 ndata, u8 *insn_bytes, u8 insn_size)
8714{
8715 struct kvm_run *run = vcpu->run;
8716 u64 info[5];
8717 u8 info_start;
8718
8719 /*
8720 * Zero the whole array used to retrieve the exit info, as casting to
8721 * u32 for select entries will leave some chunks uninitialized.
8722 */
8723 memset(&info, 0, sizeof(info));
8724
8725 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8726 &info[2], (u32 *)&info[3],
8727 (u32 *)&info[4]);
8728
8729 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8730 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8731
8732 /*
8733 * There's currently space for 13 entries, but 5 are used for the exit
8734 * reason and info. Restrict to 4 to reduce the maintenance burden
8735 * when expanding kvm_run.emulation_failure in the future.
8736 */
8737 if (WARN_ON_ONCE(ndata > 4))
8738 ndata = 4;
8739
8740 /* Always include the flags as a 'data' entry. */
8741 info_start = 1;
8742 run->emulation_failure.flags = 0;
8743
8744 if (insn_size) {
8745 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8746 sizeof(run->emulation_failure.insn_bytes) != 16));
8747 info_start += 2;
8748 run->emulation_failure.flags |=
8749 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8750 run->emulation_failure.insn_size = insn_size;
8751 memset(run->emulation_failure.insn_bytes, 0x90,
8752 sizeof(run->emulation_failure.insn_bytes));
8753 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8754 }
8755
8756 memcpy(&run->internal.data[info_start], info, sizeof(info));
8757 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8758 ndata * sizeof(data[0]));
8759
8760 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8761}
8762
8763static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8764{
8765 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8766
8767 prepare_emulation_failure_exit(vcpu, NULL, ndata: 0, insn_bytes: ctxt->fetch.data,
8768 insn_size: ctxt->fetch.end - ctxt->fetch.data);
8769}
8770
8771void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8772 u8 ndata)
8773{
8774 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, insn_size: 0);
8775}
8776EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8777
8778void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8779{
8780 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8781}
8782EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8783
8784static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8785{
8786 struct kvm *kvm = vcpu->kvm;
8787
8788 ++vcpu->stat.insn_emulation_fail;
8789 trace_kvm_emulate_insn_failed(vcpu);
8790
8791 if (emulation_type & EMULTYPE_VMWARE_GP) {
8792 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8793 return 1;
8794 }
8795
8796 if (kvm->arch.exit_on_emulation_error ||
8797 (emulation_type & EMULTYPE_SKIP)) {
8798 prepare_emulation_ctxt_failure_exit(vcpu);
8799 return 0;
8800 }
8801
8802 kvm_queue_exception(vcpu, UD_VECTOR);
8803
8804 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8805 prepare_emulation_ctxt_failure_exit(vcpu);
8806 return 0;
8807 }
8808
8809 return 1;
8810}
8811
8812static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8813 int emulation_type)
8814{
8815 gpa_t gpa = cr2_or_gpa;
8816 kvm_pfn_t pfn;
8817
8818 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8819 return false;
8820
8821 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8822 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8823 return false;
8824
8825 if (!vcpu->arch.mmu->root_role.direct) {
8826 /*
8827 * Write permission should be allowed since only
8828 * write access need to be emulated.
8829 */
8830 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8831
8832 /*
8833 * If the mapping is invalid in guest, let cpu retry
8834 * it to generate fault.
8835 */
8836 if (gpa == INVALID_GPA)
8837 return true;
8838 }
8839
8840 /*
8841 * Do not retry the unhandleable instruction if it faults on the
8842 * readonly host memory, otherwise it will goto a infinite loop:
8843 * retry instruction -> write #PF -> emulation fail -> retry
8844 * instruction -> ...
8845 */
8846 pfn = gfn_to_pfn(kvm: vcpu->kvm, gfn: gpa_to_gfn(gpa));
8847
8848 /*
8849 * If the instruction failed on the error pfn, it can not be fixed,
8850 * report the error to userspace.
8851 */
8852 if (is_error_noslot_pfn(pfn))
8853 return false;
8854
8855 kvm_release_pfn_clean(pfn);
8856
8857 /*
8858 * If emulation may have been triggered by a write to a shadowed page
8859 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8860 * guest to let the CPU re-execute the instruction in the hope that the
8861 * CPU can cleanly execute the instruction that KVM failed to emulate.
8862 */
8863 if (vcpu->kvm->arch.indirect_shadow_pages)
8864 kvm_mmu_unprotect_page(kvm: vcpu->kvm, gfn: gpa_to_gfn(gpa));
8865
8866 /*
8867 * If the failed instruction faulted on an access to page tables that
8868 * are used to translate any part of the instruction, KVM can't resolve
8869 * the issue by unprotecting the gfn, as zapping the shadow page will
8870 * result in the instruction taking a !PRESENT page fault and thus put
8871 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8872 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873 * then zap the SPTE to unprotect the gfn, and then do it all over
8874 * again. Report the error to userspace.
8875 */
8876 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8877}
8878
8879static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8880 gpa_t cr2_or_gpa, int emulation_type)
8881{
8882 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8883 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8884
8885 last_retry_eip = vcpu->arch.last_retry_eip;
8886 last_retry_addr = vcpu->arch.last_retry_addr;
8887
8888 /*
8889 * If the emulation is caused by #PF and it is non-page_table
8890 * writing instruction, it means the VM-EXIT is caused by shadow
8891 * page protected, we can zap the shadow page and retry this
8892 * instruction directly.
8893 *
8894 * Note: if the guest uses a non-page-table modifying instruction
8895 * on the PDE that points to the instruction, then we will unmap
8896 * the instruction and go to an infinite loop. So, we cache the
8897 * last retried eip and the last fault address, if we meet the eip
8898 * and the address again, we can break out of the potential infinite
8899 * loop.
8900 */
8901 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8902
8903 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8904 return false;
8905
8906 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8907 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8908 return false;
8909
8910 if (x86_page_table_writing_insn(ctxt))
8911 return false;
8912
8913 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8914 return false;
8915
8916 vcpu->arch.last_retry_eip = ctxt->eip;
8917 vcpu->arch.last_retry_addr = cr2_or_gpa;
8918
8919 if (!vcpu->arch.mmu->root_role.direct)
8920 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8921
8922 kvm_mmu_unprotect_page(kvm: vcpu->kvm, gfn: gpa_to_gfn(gpa));
8923
8924 return true;
8925}
8926
8927static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8928static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8929
8930static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8931 unsigned long *db)
8932{
8933 u32 dr6 = 0;
8934 int i;
8935 u32 enable, rwlen;
8936
8937 enable = dr7;
8938 rwlen = dr7 >> 16;
8939 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8940 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8941 dr6 |= (1 << i);
8942 return dr6;
8943}
8944
8945static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8946{
8947 struct kvm_run *kvm_run = vcpu->run;
8948
8949 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8950 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8951 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8952 kvm_run->debug.arch.exception = DB_VECTOR;
8953 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8954 return 0;
8955 }
8956 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8957 return 1;
8958}
8959
8960int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8961{
8962 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8963 int r;
8964
8965 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8966 if (unlikely(!r))
8967 return 0;
8968
8969 kvm_pmu_trigger_event(vcpu, eventsel: kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8970
8971 /*
8972 * rflags is the old, "raw" value of the flags. The new value has
8973 * not been saved yet.
8974 *
8975 * This is correct even for TF set by the guest, because "the
8976 * processor will not generate this exception after the instruction
8977 * that sets the TF flag".
8978 */
8979 if (unlikely(rflags & X86_EFLAGS_TF))
8980 r = kvm_vcpu_do_singlestep(vcpu);
8981 return r;
8982}
8983EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8984
8985static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8986{
8987 u32 shadow;
8988
8989 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8990 return true;
8991
8992 /*
8993 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8994 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8995 * to avoid the relatively expensive CPUID lookup.
8996 */
8997 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8998 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8999 guest_cpuid_is_intel(vcpu);
9000}
9001
9002static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9003 int emulation_type, int *r)
9004{
9005 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9006
9007 /*
9008 * Do not check for code breakpoints if hardware has already done the
9009 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9010 * the instruction has passed all exception checks, and all intercepted
9011 * exceptions that trigger emulation have lower priority than code
9012 * breakpoints, i.e. the fact that the intercepted exception occurred
9013 * means any code breakpoints have already been serviced.
9014 *
9015 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9016 * hardware has checked the RIP of the magic prefix, but not the RIP of
9017 * the instruction being emulated. The intent of forced emulation is
9018 * to behave as if KVM intercepted the instruction without an exception
9019 * and without a prefix.
9020 */
9021 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9022 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9023 return false;
9024
9025 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9026 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9027 struct kvm_run *kvm_run = vcpu->run;
9028 unsigned long eip = kvm_get_linear_rip(vcpu);
9029 u32 dr6 = kvm_vcpu_check_hw_bp(addr: eip, type: 0,
9030 dr7: vcpu->arch.guest_debug_dr7,
9031 db: vcpu->arch.eff_db);
9032
9033 if (dr6 != 0) {
9034 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9035 kvm_run->debug.arch.pc = eip;
9036 kvm_run->debug.arch.exception = DB_VECTOR;
9037 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9038 *r = 0;
9039 return true;
9040 }
9041 }
9042
9043 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9044 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9045 unsigned long eip = kvm_get_linear_rip(vcpu);
9046 u32 dr6 = kvm_vcpu_check_hw_bp(addr: eip, type: 0,
9047 dr7: vcpu->arch.dr7,
9048 db: vcpu->arch.db);
9049
9050 if (dr6 != 0) {
9051 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9052 *r = 1;
9053 return true;
9054 }
9055 }
9056
9057 return false;
9058}
9059
9060static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9061{
9062 switch (ctxt->opcode_len) {
9063 case 1:
9064 switch (ctxt->b) {
9065 case 0xe4: /* IN */
9066 case 0xe5:
9067 case 0xec:
9068 case 0xed:
9069 case 0xe6: /* OUT */
9070 case 0xe7:
9071 case 0xee:
9072 case 0xef:
9073 case 0x6c: /* INS */
9074 case 0x6d:
9075 case 0x6e: /* OUTS */
9076 case 0x6f:
9077 return true;
9078 }
9079 break;
9080 case 2:
9081 switch (ctxt->b) {
9082 case 0x33: /* RDPMC */
9083 return true;
9084 }
9085 break;
9086 }
9087
9088 return false;
9089}
9090
9091/*
9092 * Decode an instruction for emulation. The caller is responsible for handling
9093 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9094 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9095 * code breakpoints have higher priority and thus have already been done by
9096 * hardware.
9097 *
9098 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9099 * response to a machine check.
9100 */
9101int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9102 void *insn, int insn_len)
9103{
9104 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9105 int r;
9106
9107 init_emulate_ctxt(vcpu);
9108
9109 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9110
9111 trace_kvm_emulate_insn_start(vcpu);
9112 ++vcpu->stat.insn_emulation;
9113
9114 return r;
9115}
9116EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9117
9118int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9119 int emulation_type, void *insn, int insn_len)
9120{
9121 int r;
9122 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9123 bool writeback = true;
9124
9125 r = kvm_check_emulate_insn(vcpu, emul_type: emulation_type, insn, insn_len);
9126 if (r != X86EMUL_CONTINUE) {
9127 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9128 return 1;
9129
9130 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9131 return handle_emulation_failure(vcpu, emulation_type);
9132 }
9133
9134 vcpu->arch.l1tf_flush_l1d = true;
9135
9136 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9137 kvm_clear_exception_queue(vcpu);
9138
9139 /*
9140 * Return immediately if RIP hits a code breakpoint, such #DBs
9141 * are fault-like and are higher priority than any faults on
9142 * the code fetch itself.
9143 */
9144 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, r: &r))
9145 return r;
9146
9147 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9148 insn, insn_len);
9149 if (r != EMULATION_OK) {
9150 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9151 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9152 kvm_queue_exception(vcpu, UD_VECTOR);
9153 return 1;
9154 }
9155 if (reexecute_instruction(vcpu, cr2_or_gpa,
9156 emulation_type))
9157 return 1;
9158
9159 if (ctxt->have_exception &&
9160 !(emulation_type & EMULTYPE_SKIP)) {
9161 /*
9162 * #UD should result in just EMULATION_FAILED, and trap-like
9163 * exception should not be encountered during decode.
9164 */
9165 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9166 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9167 inject_emulated_exception(vcpu);
9168 return 1;
9169 }
9170 return handle_emulation_failure(vcpu, emulation_type);
9171 }
9172 }
9173
9174 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9175 !is_vmware_backdoor_opcode(ctxt)) {
9176 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9177 return 1;
9178 }
9179
9180 /*
9181 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9182 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9183 * The caller is responsible for updating interruptibility state and
9184 * injecting single-step #DBs.
9185 */
9186 if (emulation_type & EMULTYPE_SKIP) {
9187 if (ctxt->mode != X86EMUL_MODE_PROT64)
9188 ctxt->eip = (u32)ctxt->_eip;
9189 else
9190 ctxt->eip = ctxt->_eip;
9191
9192 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9193 r = 1;
9194 goto writeback;
9195 }
9196
9197 kvm_rip_write(vcpu, val: ctxt->eip);
9198 if (ctxt->eflags & X86_EFLAGS_RF)
9199 kvm_set_rflags(vcpu, rflags: ctxt->eflags & ~X86_EFLAGS_RF);
9200 return 1;
9201 }
9202
9203 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9204 return 1;
9205
9206 /* this is needed for vmware backdoor interface to work since it
9207 changes registers values during IO operation */
9208 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9209 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9210 emulator_invalidate_register_cache(ctxt);
9211 }
9212
9213restart:
9214 if (emulation_type & EMULTYPE_PF) {
9215 /* Save the faulting GPA (cr2) in the address field */
9216 ctxt->exception.address = cr2_or_gpa;
9217
9218 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9219 if (vcpu->arch.mmu->root_role.direct) {
9220 ctxt->gpa_available = true;
9221 ctxt->gpa_val = cr2_or_gpa;
9222 }
9223 } else {
9224 /* Sanitize the address out of an abundance of paranoia. */
9225 ctxt->exception.address = 0;
9226 }
9227
9228 r = x86_emulate_insn(ctxt);
9229
9230 if (r == EMULATION_INTERCEPTED)
9231 return 1;
9232
9233 if (r == EMULATION_FAILED) {
9234 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9235 return 1;
9236
9237 return handle_emulation_failure(vcpu, emulation_type);
9238 }
9239
9240 if (ctxt->have_exception) {
9241 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9242 vcpu->mmio_needed = false;
9243 r = 1;
9244 inject_emulated_exception(vcpu);
9245 } else if (vcpu->arch.pio.count) {
9246 if (!vcpu->arch.pio.in) {
9247 /* FIXME: return into emulator if single-stepping. */
9248 vcpu->arch.pio.count = 0;
9249 } else {
9250 writeback = false;
9251 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9252 }
9253 r = 0;
9254 } else if (vcpu->mmio_needed) {
9255 ++vcpu->stat.mmio_exits;
9256
9257 if (!vcpu->mmio_is_write)
9258 writeback = false;
9259 r = 0;
9260 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9261 } else if (vcpu->arch.complete_userspace_io) {
9262 writeback = false;
9263 r = 0;
9264 } else if (r == EMULATION_RESTART)
9265 goto restart;
9266 else
9267 r = 1;
9268
9269writeback:
9270 if (writeback) {
9271 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9272 toggle_interruptibility(vcpu, mask: ctxt->interruptibility);
9273 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9274
9275 /*
9276 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9277 * only supports code breakpoints and general detect #DB, both
9278 * of which are fault-like.
9279 */
9280 if (!ctxt->have_exception ||
9281 exception_type(vector: ctxt->exception.vector) == EXCPT_TRAP) {
9282 kvm_pmu_trigger_event(vcpu, eventsel: kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9283 if (ctxt->is_branch)
9284 kvm_pmu_trigger_event(vcpu, eventsel: kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9285 kvm_rip_write(vcpu, val: ctxt->eip);
9286 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9287 r = kvm_vcpu_do_singlestep(vcpu);
9288 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9289 __kvm_set_rflags(vcpu, rflags: ctxt->eflags);
9290 }
9291
9292 /*
9293 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9294 * do nothing, and it will be requested again as soon as
9295 * the shadow expires. But we still need to check here,
9296 * because POPF has no interrupt shadow.
9297 */
9298 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9299 kvm_make_request(KVM_REQ_EVENT, vcpu);
9300 } else
9301 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9302
9303 return r;
9304}
9305
9306int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9307{
9308 return x86_emulate_instruction(vcpu, cr2_or_gpa: 0, emulation_type, NULL, insn_len: 0);
9309}
9310EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9311
9312int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9313 void *insn, int insn_len)
9314{
9315 return x86_emulate_instruction(vcpu, cr2_or_gpa: 0, emulation_type: 0, insn, insn_len);
9316}
9317EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9318
9319static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9320{
9321 vcpu->arch.pio.count = 0;
9322 return 1;
9323}
9324
9325static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9326{
9327 vcpu->arch.pio.count = 0;
9328
9329 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9330 return 1;
9331
9332 return kvm_skip_emulated_instruction(vcpu);
9333}
9334
9335static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9336 unsigned short port)
9337{
9338 unsigned long val = kvm_rax_read(vcpu);
9339 int ret = emulator_pio_out(vcpu, size, port, val: &val, count: 1);
9340
9341 if (ret)
9342 return ret;
9343
9344 /*
9345 * Workaround userspace that relies on old KVM behavior of %rip being
9346 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9347 */
9348 if (port == 0x7e &&
9349 kvm_check_has_quirk(kvm: vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9350 vcpu->arch.complete_userspace_io =
9351 complete_fast_pio_out_port_0x7e;
9352 kvm_skip_emulated_instruction(vcpu);
9353 } else {
9354 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9355 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9356 }
9357 return 0;
9358}
9359
9360static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9361{
9362 unsigned long val;
9363
9364 /* We should only ever be called with arch.pio.count equal to 1 */
9365 BUG_ON(vcpu->arch.pio.count != 1);
9366
9367 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9368 vcpu->arch.pio.count = 0;
9369 return 1;
9370 }
9371
9372 /* For size less than 4 we merge, else we zero extend */
9373 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9374
9375 complete_emulator_pio_in(vcpu, val: &val);
9376 kvm_rax_write(vcpu, val);
9377
9378 return kvm_skip_emulated_instruction(vcpu);
9379}
9380
9381static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9382 unsigned short port)
9383{
9384 unsigned long val;
9385 int ret;
9386
9387 /* For size less than 4 we merge, else we zero extend */
9388 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9389
9390 ret = emulator_pio_in(vcpu, size, port, val: &val, count: 1);
9391 if (ret) {
9392 kvm_rax_write(vcpu, val);
9393 return ret;
9394 }
9395
9396 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9397 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9398
9399 return 0;
9400}
9401
9402int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9403{
9404 int ret;
9405
9406 if (in)
9407 ret = kvm_fast_pio_in(vcpu, size, port);
9408 else
9409 ret = kvm_fast_pio_out(vcpu, size, port);
9410 return ret && kvm_skip_emulated_instruction(vcpu);
9411}
9412EXPORT_SYMBOL_GPL(kvm_fast_pio);
9413
9414static int kvmclock_cpu_down_prep(unsigned int cpu)
9415{
9416 __this_cpu_write(cpu_tsc_khz, 0);
9417 return 0;
9418}
9419
9420static void tsc_khz_changed(void *data)
9421{
9422 struct cpufreq_freqs *freq = data;
9423 unsigned long khz;
9424
9425 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9426
9427 if (data)
9428 khz = freq->new;
9429 else
9430 khz = cpufreq_quick_get(raw_smp_processor_id());
9431 if (!khz)
9432 khz = tsc_khz;
9433 __this_cpu_write(cpu_tsc_khz, khz);
9434}
9435
9436#ifdef CONFIG_X86_64
9437static void kvm_hyperv_tsc_notifier(void)
9438{
9439 struct kvm *kvm;
9440 int cpu;
9441
9442 mutex_lock(&kvm_lock);
9443 list_for_each_entry(kvm, &vm_list, vm_list)
9444 kvm_make_mclock_inprogress_request(kvm);
9445
9446 /* no guest entries from this point */
9447 hyperv_stop_tsc_emulation();
9448
9449 /* TSC frequency always matches when on Hyper-V */
9450 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9451 for_each_present_cpu(cpu)
9452 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9453 }
9454 kvm_caps.max_guest_tsc_khz = tsc_khz;
9455
9456 list_for_each_entry(kvm, &vm_list, vm_list) {
9457 __kvm_start_pvclock_update(kvm);
9458 pvclock_update_vm_gtod_copy(kvm);
9459 kvm_end_pvclock_update(kvm);
9460 }
9461
9462 mutex_unlock(lock: &kvm_lock);
9463}
9464#endif
9465
9466static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9467{
9468 struct kvm *kvm;
9469 struct kvm_vcpu *vcpu;
9470 int send_ipi = 0;
9471 unsigned long i;
9472
9473 /*
9474 * We allow guests to temporarily run on slowing clocks,
9475 * provided we notify them after, or to run on accelerating
9476 * clocks, provided we notify them before. Thus time never
9477 * goes backwards.
9478 *
9479 * However, we have a problem. We can't atomically update
9480 * the frequency of a given CPU from this function; it is
9481 * merely a notifier, which can be called from any CPU.
9482 * Changing the TSC frequency at arbitrary points in time
9483 * requires a recomputation of local variables related to
9484 * the TSC for each VCPU. We must flag these local variables
9485 * to be updated and be sure the update takes place with the
9486 * new frequency before any guests proceed.
9487 *
9488 * Unfortunately, the combination of hotplug CPU and frequency
9489 * change creates an intractable locking scenario; the order
9490 * of when these callouts happen is undefined with respect to
9491 * CPU hotplug, and they can race with each other. As such,
9492 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9493 * undefined; you can actually have a CPU frequency change take
9494 * place in between the computation of X and the setting of the
9495 * variable. To protect against this problem, all updates of
9496 * the per_cpu tsc_khz variable are done in an interrupt
9497 * protected IPI, and all callers wishing to update the value
9498 * must wait for a synchronous IPI to complete (which is trivial
9499 * if the caller is on the CPU already). This establishes the
9500 * necessary total order on variable updates.
9501 *
9502 * Note that because a guest time update may take place
9503 * anytime after the setting of the VCPU's request bit, the
9504 * correct TSC value must be set before the request. However,
9505 * to ensure the update actually makes it to any guest which
9506 * starts running in hardware virtualization between the set
9507 * and the acquisition of the spinlock, we must also ping the
9508 * CPU after setting the request bit.
9509 *
9510 */
9511
9512 smp_call_function_single(cpuid: cpu, func: tsc_khz_changed, info: freq, wait: 1);
9513
9514 mutex_lock(&kvm_lock);
9515 list_for_each_entry(kvm, &vm_list, vm_list) {
9516 kvm_for_each_vcpu(i, vcpu, kvm) {
9517 if (vcpu->cpu != cpu)
9518 continue;
9519 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9520 if (vcpu->cpu != raw_smp_processor_id())
9521 send_ipi = 1;
9522 }
9523 }
9524 mutex_unlock(lock: &kvm_lock);
9525
9526 if (freq->old < freq->new && send_ipi) {
9527 /*
9528 * We upscale the frequency. Must make the guest
9529 * doesn't see old kvmclock values while running with
9530 * the new frequency, otherwise we risk the guest sees
9531 * time go backwards.
9532 *
9533 * In case we update the frequency for another cpu
9534 * (which might be in guest context) send an interrupt
9535 * to kick the cpu out of guest context. Next time
9536 * guest context is entered kvmclock will be updated,
9537 * so the guest will not see stale values.
9538 */
9539 smp_call_function_single(cpuid: cpu, func: tsc_khz_changed, info: freq, wait: 1);
9540 }
9541}
9542
9543static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9544 void *data)
9545{
9546 struct cpufreq_freqs *freq = data;
9547 int cpu;
9548
9549 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9550 return 0;
9551 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9552 return 0;
9553
9554 for_each_cpu(cpu, freq->policy->cpus)
9555 __kvmclock_cpufreq_notifier(freq, cpu);
9556
9557 return 0;
9558}
9559
9560static struct notifier_block kvmclock_cpufreq_notifier_block = {
9561 .notifier_call = kvmclock_cpufreq_notifier
9562};
9563
9564static int kvmclock_cpu_online(unsigned int cpu)
9565{
9566 tsc_khz_changed(NULL);
9567 return 0;
9568}
9569
9570static void kvm_timer_init(void)
9571{
9572 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9573 max_tsc_khz = tsc_khz;
9574
9575 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9576 struct cpufreq_policy *policy;
9577 int cpu;
9578
9579 cpu = get_cpu();
9580 policy = cpufreq_cpu_get(cpu);
9581 if (policy) {
9582 if (policy->cpuinfo.max_freq)
9583 max_tsc_khz = policy->cpuinfo.max_freq;
9584 cpufreq_cpu_put(policy);
9585 }
9586 put_cpu();
9587 }
9588 cpufreq_register_notifier(nb: &kvmclock_cpufreq_notifier_block,
9589 CPUFREQ_TRANSITION_NOTIFIER);
9590
9591 cpuhp_setup_state(state: CPUHP_AP_X86_KVM_CLK_ONLINE, name: "x86/kvm/clk:online",
9592 startup: kvmclock_cpu_online, teardown: kvmclock_cpu_down_prep);
9593 }
9594}
9595
9596#ifdef CONFIG_X86_64
9597static void pvclock_gtod_update_fn(struct work_struct *work)
9598{
9599 struct kvm *kvm;
9600 struct kvm_vcpu *vcpu;
9601 unsigned long i;
9602
9603 mutex_lock(&kvm_lock);
9604 list_for_each_entry(kvm, &vm_list, vm_list)
9605 kvm_for_each_vcpu(i, vcpu, kvm)
9606 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9607 atomic_set(v: &kvm_guest_has_master_clock, i: 0);
9608 mutex_unlock(lock: &kvm_lock);
9609}
9610
9611static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9612
9613/*
9614 * Indirection to move queue_work() out of the tk_core.seq write held
9615 * region to prevent possible deadlocks against time accessors which
9616 * are invoked with work related locks held.
9617 */
9618static void pvclock_irq_work_fn(struct irq_work *w)
9619{
9620 queue_work(wq: system_long_wq, work: &pvclock_gtod_work);
9621}
9622
9623static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9624
9625/*
9626 * Notification about pvclock gtod data update.
9627 */
9628static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9629 void *priv)
9630{
9631 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9632 struct timekeeper *tk = priv;
9633
9634 update_pvclock_gtod(tk);
9635
9636 /*
9637 * Disable master clock if host does not trust, or does not use,
9638 * TSC based clocksource. Delegate queue_work() to irq_work as
9639 * this is invoked with tk_core.seq write held.
9640 */
9641 if (!gtod_is_based_on_tsc(mode: gtod->clock.vclock_mode) &&
9642 atomic_read(v: &kvm_guest_has_master_clock) != 0)
9643 irq_work_queue(work: &pvclock_irq_work);
9644 return 0;
9645}
9646
9647static struct notifier_block pvclock_gtod_notifier = {
9648 .notifier_call = pvclock_gtod_notify,
9649};
9650#endif
9651
9652static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9653{
9654 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9655
9656#define __KVM_X86_OP(func) \
9657 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9658#define KVM_X86_OP(func) \
9659 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9660#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9661#define KVM_X86_OP_OPTIONAL_RET0(func) \
9662 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9663 (void *)__static_call_return0);
9664#include <asm/kvm-x86-ops.h>
9665#undef __KVM_X86_OP
9666
9667 kvm_pmu_ops_update(pmu_ops: ops->pmu_ops);
9668}
9669
9670static int kvm_x86_check_processor_compatibility(void)
9671{
9672 int cpu = smp_processor_id();
9673 struct cpuinfo_x86 *c = &cpu_data(cpu);
9674
9675 /*
9676 * Compatibility checks are done when loading KVM and when enabling
9677 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9678 * compatible, i.e. KVM should never perform a compatibility check on
9679 * an offline CPU.
9680 */
9681 WARN_ON(!cpu_online(cpu));
9682
9683 if (__cr4_reserved_bits(cpu_has, c) !=
9684 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9685 return -EIO;
9686
9687 return static_call(kvm_x86_check_processor_compatibility)();
9688}
9689
9690static void kvm_x86_check_cpu_compat(void *ret)
9691{
9692 *(int *)ret = kvm_x86_check_processor_compatibility();
9693}
9694
9695int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9696{
9697 u64 host_pat;
9698 int r, cpu;
9699
9700 guard(mutex)(T: &vendor_module_lock);
9701
9702 if (kvm_x86_ops.hardware_enable) {
9703 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9704 return -EEXIST;
9705 }
9706
9707 /*
9708 * KVM explicitly assumes that the guest has an FPU and
9709 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9710 * vCPU's FPU state as a fxregs_state struct.
9711 */
9712 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9713 pr_err("inadequate fpu\n");
9714 return -EOPNOTSUPP;
9715 }
9716
9717 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9718 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9719 return -EOPNOTSUPP;
9720 }
9721
9722 /*
9723 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9724 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9725 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9726 * with an exception. PAT[0] is set to WB on RESET and also by the
9727 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9728 */
9729 if (rdmsrl_safe(MSR_IA32_CR_PAT, p: &host_pat) ||
9730 (host_pat & GENMASK(2, 0)) != 6) {
9731 pr_err("host PAT[0] is not WB\n");
9732 return -EIO;
9733 }
9734
9735 x86_emulator_cache = kvm_alloc_emulator_cache();
9736 if (!x86_emulator_cache) {
9737 pr_err("failed to allocate cache for x86 emulator\n");
9738 return -ENOMEM;
9739 }
9740
9741 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9742 if (!user_return_msrs) {
9743 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9744 r = -ENOMEM;
9745 goto out_free_x86_emulator_cache;
9746 }
9747 kvm_nr_uret_msrs = 0;
9748
9749 r = kvm_mmu_vendor_module_init();
9750 if (r)
9751 goto out_free_percpu;
9752
9753 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9754 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9755 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9756 }
9757
9758 rdmsrl_safe(MSR_EFER, p: &host_efer);
9759
9760 if (boot_cpu_has(X86_FEATURE_XSAVES))
9761 rdmsrl(MSR_IA32_XSS, host_xss);
9762
9763 kvm_init_pmu_capability(pmu_ops: ops->pmu_ops);
9764
9765 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9766 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9767
9768 r = ops->hardware_setup();
9769 if (r != 0)
9770 goto out_mmu_exit;
9771
9772 kvm_ops_update(ops);
9773
9774 for_each_online_cpu(cpu) {
9775 smp_call_function_single(cpuid: cpu, func: kvm_x86_check_cpu_compat, info: &r, wait: 1);
9776 if (r < 0)
9777 goto out_unwind_ops;
9778 }
9779
9780 /*
9781 * Point of no return! DO NOT add error paths below this point unless
9782 * absolutely necessary, as most operations from this point forward
9783 * require unwinding.
9784 */
9785 kvm_timer_init();
9786
9787 if (pi_inject_timer == -1)
9788 pi_inject_timer = housekeeping_enabled(type: HK_TYPE_TIMER);
9789#ifdef CONFIG_X86_64
9790 pvclock_gtod_register_notifier(nb: &pvclock_gtod_notifier);
9791
9792 if (hypervisor_is_type(type: X86_HYPER_MS_HYPERV))
9793 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9794#endif
9795
9796 kvm_register_perf_callbacks(pt_intr_handler: ops->handle_intel_pt_intr);
9797
9798 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9799 kvm_caps.supported_xss = 0;
9800
9801#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9802 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9803#undef __kvm_cpu_cap_has
9804
9805 if (kvm_caps.has_tsc_control) {
9806 /*
9807 * Make sure the user can only configure tsc_khz values that
9808 * fit into a signed integer.
9809 * A min value is not calculated because it will always
9810 * be 1 on all machines.
9811 */
9812 u64 max = min(0x7fffffffULL,
9813 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9814 kvm_caps.max_guest_tsc_khz = max;
9815 }
9816 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9817 kvm_init_msr_lists();
9818 return 0;
9819
9820out_unwind_ops:
9821 kvm_x86_ops.hardware_enable = NULL;
9822 static_call(kvm_x86_hardware_unsetup)();
9823out_mmu_exit:
9824 kvm_mmu_vendor_module_exit();
9825out_free_percpu:
9826 free_percpu(pdata: user_return_msrs);
9827out_free_x86_emulator_cache:
9828 kmem_cache_destroy(s: x86_emulator_cache);
9829 return r;
9830}
9831EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9832
9833void kvm_x86_vendor_exit(void)
9834{
9835 kvm_unregister_perf_callbacks();
9836
9837#ifdef CONFIG_X86_64
9838 if (hypervisor_is_type(type: X86_HYPER_MS_HYPERV))
9839 clear_hv_tscchange_cb();
9840#endif
9841 kvm_lapic_exit();
9842
9843 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9844 cpufreq_unregister_notifier(nb: &kvmclock_cpufreq_notifier_block,
9845 CPUFREQ_TRANSITION_NOTIFIER);
9846 cpuhp_remove_state_nocalls(state: CPUHP_AP_X86_KVM_CLK_ONLINE);
9847 }
9848#ifdef CONFIG_X86_64
9849 pvclock_gtod_unregister_notifier(nb: &pvclock_gtod_notifier);
9850 irq_work_sync(work: &pvclock_irq_work);
9851 cancel_work_sync(work: &pvclock_gtod_work);
9852#endif
9853 static_call(kvm_x86_hardware_unsetup)();
9854 kvm_mmu_vendor_module_exit();
9855 free_percpu(pdata: user_return_msrs);
9856 kmem_cache_destroy(s: x86_emulator_cache);
9857#ifdef CONFIG_KVM_XEN
9858 static_key_deferred_flush(&kvm_xen_enabled);
9859 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9860#endif
9861 mutex_lock(&vendor_module_lock);
9862 kvm_x86_ops.hardware_enable = NULL;
9863 mutex_unlock(lock: &vendor_module_lock);
9864}
9865EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9866
9867static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9868{
9869 /*
9870 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9871 * local APIC is in-kernel, the run loop will detect the non-runnable
9872 * state and halt the vCPU. Exit to userspace if the local APIC is
9873 * managed by userspace, in which case userspace is responsible for
9874 * handling wake events.
9875 */
9876 ++vcpu->stat.halt_exits;
9877 if (lapic_in_kernel(vcpu)) {
9878 vcpu->arch.mp_state = state;
9879 return 1;
9880 } else {
9881 vcpu->run->exit_reason = reason;
9882 return 0;
9883 }
9884}
9885
9886int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9887{
9888 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9889}
9890EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9891
9892int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9893{
9894 int ret = kvm_skip_emulated_instruction(vcpu);
9895 /*
9896 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9897 * KVM_EXIT_DEBUG here.
9898 */
9899 return kvm_emulate_halt_noskip(vcpu) && ret;
9900}
9901EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9902
9903int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9904{
9905 int ret = kvm_skip_emulated_instruction(vcpu);
9906
9907 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9908 KVM_EXIT_AP_RESET_HOLD) && ret;
9909}
9910EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9911
9912#ifdef CONFIG_X86_64
9913static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9914 unsigned long clock_type)
9915{
9916 struct kvm_clock_pairing clock_pairing;
9917 struct timespec64 ts;
9918 u64 cycle;
9919 int ret;
9920
9921 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9922 return -KVM_EOPNOTSUPP;
9923
9924 /*
9925 * When tsc is in permanent catchup mode guests won't be able to use
9926 * pvclock_read_retry loop to get consistent view of pvclock
9927 */
9928 if (vcpu->arch.tsc_always_catchup)
9929 return -KVM_EOPNOTSUPP;
9930
9931 if (!kvm_get_walltime_and_clockread(ts: &ts, tsc_timestamp: &cycle))
9932 return -KVM_EOPNOTSUPP;
9933
9934 clock_pairing.sec = ts.tv_sec;
9935 clock_pairing.nsec = ts.tv_nsec;
9936 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9937 clock_pairing.flags = 0;
9938 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9939
9940 ret = 0;
9941 if (kvm_write_guest(kvm: vcpu->kvm, gpa: paddr, data: &clock_pairing,
9942 len: sizeof(struct kvm_clock_pairing)))
9943 ret = -KVM_EFAULT;
9944
9945 return ret;
9946}
9947#endif
9948
9949/*
9950 * kvm_pv_kick_cpu_op: Kick a vcpu.
9951 *
9952 * @apicid - apicid of vcpu to be kicked.
9953 */
9954static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9955{
9956 /*
9957 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9958 * common code, e.g. for tracing. Defer initialization to the compiler.
9959 */
9960 struct kvm_lapic_irq lapic_irq = {
9961 .delivery_mode = APIC_DM_REMRD,
9962 .dest_mode = APIC_DEST_PHYSICAL,
9963 .shorthand = APIC_DEST_NOSHORT,
9964 .dest_id = apicid,
9965 };
9966
9967 kvm_irq_delivery_to_apic(kvm, NULL, irq: &lapic_irq, NULL);
9968}
9969
9970bool kvm_apicv_activated(struct kvm *kvm)
9971{
9972 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9973}
9974EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9975
9976bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9977{
9978 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9979 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9980
9981 return (vm_reasons | vcpu_reasons) == 0;
9982}
9983EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9984
9985static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9986 enum kvm_apicv_inhibit reason, bool set)
9987{
9988 if (set)
9989 __set_bit(reason, inhibits);
9990 else
9991 __clear_bit(reason, inhibits);
9992
9993 trace_kvm_apicv_inhibit_changed(reason, set, inhibits: *inhibits);
9994}
9995
9996static void kvm_apicv_init(struct kvm *kvm)
9997{
9998 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9999
10000 init_rwsem(&kvm->arch.apicv_update_lock);
10001
10002 set_or_clear_apicv_inhibit(inhibits, reason: APICV_INHIBIT_REASON_ABSENT, set: true);
10003
10004 if (!enable_apicv)
10005 set_or_clear_apicv_inhibit(inhibits,
10006 reason: APICV_INHIBIT_REASON_DISABLE, set: true);
10007}
10008
10009static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10010{
10011 struct kvm_vcpu *target = NULL;
10012 struct kvm_apic_map *map;
10013
10014 vcpu->stat.directed_yield_attempted++;
10015
10016 if (single_task_running())
10017 goto no_yield;
10018
10019 rcu_read_lock();
10020 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10021
10022 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10023 target = map->phys_map[dest_id]->vcpu;
10024
10025 rcu_read_unlock();
10026
10027 if (!target || !READ_ONCE(target->ready))
10028 goto no_yield;
10029
10030 /* Ignore requests to yield to self */
10031 if (vcpu == target)
10032 goto no_yield;
10033
10034 if (kvm_vcpu_yield_to(target) <= 0)
10035 goto no_yield;
10036
10037 vcpu->stat.directed_yield_successful++;
10038
10039no_yield:
10040 return;
10041}
10042
10043static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10044{
10045 u64 ret = vcpu->run->hypercall.ret;
10046
10047 if (!is_64_bit_mode(vcpu))
10048 ret = (u32)ret;
10049 kvm_rax_write(vcpu, val: ret);
10050 ++vcpu->stat.hypercalls;
10051 return kvm_skip_emulated_instruction(vcpu);
10052}
10053
10054int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10055{
10056 unsigned long nr, a0, a1, a2, a3, ret;
10057 int op_64_bit;
10058
10059 if (kvm_xen_hypercall_enabled(kvm: vcpu->kvm))
10060 return kvm_xen_hypercall(vcpu);
10061
10062 if (kvm_hv_hypercall_enabled(vcpu))
10063 return kvm_hv_hypercall(vcpu);
10064
10065 nr = kvm_rax_read(vcpu);
10066 a0 = kvm_rbx_read(vcpu);
10067 a1 = kvm_rcx_read(vcpu);
10068 a2 = kvm_rdx_read(vcpu);
10069 a3 = kvm_rsi_read(vcpu);
10070
10071 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10072
10073 op_64_bit = is_64_bit_hypercall(vcpu);
10074 if (!op_64_bit) {
10075 nr &= 0xFFFFFFFF;
10076 a0 &= 0xFFFFFFFF;
10077 a1 &= 0xFFFFFFFF;
10078 a2 &= 0xFFFFFFFF;
10079 a3 &= 0xFFFFFFFF;
10080 }
10081
10082 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10083 ret = -KVM_EPERM;
10084 goto out;
10085 }
10086
10087 ret = -KVM_ENOSYS;
10088
10089 switch (nr) {
10090 case KVM_HC_VAPIC_POLL_IRQ:
10091 ret = 0;
10092 break;
10093 case KVM_HC_KICK_CPU:
10094 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10095 break;
10096
10097 kvm_pv_kick_cpu_op(kvm: vcpu->kvm, apicid: a1);
10098 kvm_sched_yield(vcpu, dest_id: a1);
10099 ret = 0;
10100 break;
10101#ifdef CONFIG_X86_64
10102 case KVM_HC_CLOCK_PAIRING:
10103 ret = kvm_pv_clock_pairing(vcpu, paddr: a0, clock_type: a1);
10104 break;
10105#endif
10106 case KVM_HC_SEND_IPI:
10107 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10108 break;
10109
10110 ret = kvm_pv_send_ipi(kvm: vcpu->kvm, ipi_bitmap_low: a0, ipi_bitmap_high: a1, min: a2, icr: a3, op_64_bit);
10111 break;
10112 case KVM_HC_SCHED_YIELD:
10113 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10114 break;
10115
10116 kvm_sched_yield(vcpu, dest_id: a0);
10117 ret = 0;
10118 break;
10119 case KVM_HC_MAP_GPA_RANGE: {
10120 u64 gpa = a0, npages = a1, attrs = a2;
10121
10122 ret = -KVM_ENOSYS;
10123 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10124 break;
10125
10126 if (!PAGE_ALIGNED(gpa) || !npages ||
10127 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10128 ret = -KVM_EINVAL;
10129 break;
10130 }
10131
10132 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10133 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10134 vcpu->run->hypercall.args[0] = gpa;
10135 vcpu->run->hypercall.args[1] = npages;
10136 vcpu->run->hypercall.args[2] = attrs;
10137 vcpu->run->hypercall.flags = 0;
10138 if (op_64_bit)
10139 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10140
10141 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10142 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10143 return 0;
10144 }
10145 default:
10146 ret = -KVM_ENOSYS;
10147 break;
10148 }
10149out:
10150 if (!op_64_bit)
10151 ret = (u32)ret;
10152 kvm_rax_write(vcpu, val: ret);
10153
10154 ++vcpu->stat.hypercalls;
10155 return kvm_skip_emulated_instruction(vcpu);
10156}
10157EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10158
10159static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10160{
10161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10162 char instruction[3];
10163 unsigned long rip = kvm_rip_read(vcpu);
10164
10165 /*
10166 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10167 * the pieces.
10168 */
10169 if (!kvm_check_has_quirk(kvm: vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10170 ctxt->exception.error_code_valid = false;
10171 ctxt->exception.vector = UD_VECTOR;
10172 ctxt->have_exception = true;
10173 return X86EMUL_PROPAGATE_FAULT;
10174 }
10175
10176 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10177
10178 return emulator_write_emulated(ctxt, addr: rip, val: instruction, bytes: 3,
10179 exception: &ctxt->exception);
10180}
10181
10182static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10183{
10184 return vcpu->run->request_interrupt_window &&
10185 likely(!pic_in_kernel(vcpu->kvm));
10186}
10187
10188/* Called within kvm->srcu read side. */
10189static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10190{
10191 struct kvm_run *kvm_run = vcpu->run;
10192
10193 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10194 kvm_run->cr8 = kvm_get_cr8(vcpu);
10195 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10196
10197 kvm_run->ready_for_interrupt_injection =
10198 pic_in_kernel(kvm: vcpu->kvm) ||
10199 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10200
10201 if (is_smm(vcpu))
10202 kvm_run->flags |= KVM_RUN_X86_SMM;
10203}
10204
10205static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10206{
10207 int max_irr, tpr;
10208
10209 if (!kvm_x86_ops.update_cr8_intercept)
10210 return;
10211
10212 if (!lapic_in_kernel(vcpu))
10213 return;
10214
10215 if (vcpu->arch.apic->apicv_active)
10216 return;
10217
10218 if (!vcpu->arch.apic->vapic_addr)
10219 max_irr = kvm_lapic_find_highest_irr(vcpu);
10220 else
10221 max_irr = -1;
10222
10223 if (max_irr != -1)
10224 max_irr >>= 4;
10225
10226 tpr = kvm_lapic_get_cr8(vcpu);
10227
10228 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10229}
10230
10231
10232int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10233{
10234 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10235 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10236 return 1;
10237 }
10238
10239 return kvm_x86_ops.nested_ops->check_events(vcpu);
10240}
10241
10242static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10243{
10244 /*
10245 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10246 * exceptions don't report error codes. The presence of an error code
10247 * is carried with the exception and only stripped when the exception
10248 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10249 * report an error code despite the CPU being in Real Mode.
10250 */
10251 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10252
10253 trace_kvm_inj_exception(exception: vcpu->arch.exception.vector,
10254 has_error: vcpu->arch.exception.has_error_code,
10255 error_code: vcpu->arch.exception.error_code,
10256 reinjected: vcpu->arch.exception.injected);
10257
10258 static_call(kvm_x86_inject_exception)(vcpu);
10259}
10260
10261/*
10262 * Check for any event (interrupt or exception) that is ready to be injected,
10263 * and if there is at least one event, inject the event with the highest
10264 * priority. This handles both "pending" events, i.e. events that have never
10265 * been injected into the guest, and "injected" events, i.e. events that were
10266 * injected as part of a previous VM-Enter, but weren't successfully delivered
10267 * and need to be re-injected.
10268 *
10269 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10270 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10271 * be able to inject exceptions in the "middle" of an instruction, and so must
10272 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10273 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10274 * boundaries is necessary and correct.
10275 *
10276 * For simplicity, KVM uses a single path to inject all events (except events
10277 * that are injected directly from L1 to L2) and doesn't explicitly track
10278 * instruction boundaries for asynchronous events. However, because VM-Exits
10279 * that can occur during instruction execution typically result in KVM skipping
10280 * the instruction or injecting an exception, e.g. instruction and exception
10281 * intercepts, and because pending exceptions have higher priority than pending
10282 * interrupts, KVM still honors instruction boundaries in most scenarios.
10283 *
10284 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10285 * the instruction or inject an exception, then KVM can incorrecty inject a new
10286 * asynchronous event if the event became pending after the CPU fetched the
10287 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10288 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10289 * injected on the restarted instruction instead of being deferred until the
10290 * instruction completes.
10291 *
10292 * In practice, this virtualization hole is unlikely to be observed by the
10293 * guest, and even less likely to cause functional problems. To detect the
10294 * hole, the guest would have to trigger an event on a side effect of an early
10295 * phase of instruction execution, e.g. on the instruction fetch from memory.
10296 * And for it to be a functional problem, the guest would need to depend on the
10297 * ordering between that side effect, the instruction completing, _and_ the
10298 * delivery of the asynchronous event.
10299 */
10300static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10301 bool *req_immediate_exit)
10302{
10303 bool can_inject;
10304 int r;
10305
10306 /*
10307 * Process nested events first, as nested VM-Exit supersedes event
10308 * re-injection. If there's an event queued for re-injection, it will
10309 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10310 */
10311 if (is_guest_mode(vcpu))
10312 r = kvm_check_nested_events(vcpu);
10313 else
10314 r = 0;
10315
10316 /*
10317 * Re-inject exceptions and events *especially* if immediate entry+exit
10318 * to/from L2 is needed, as any event that has already been injected
10319 * into L2 needs to complete its lifecycle before injecting a new event.
10320 *
10321 * Don't re-inject an NMI or interrupt if there is a pending exception.
10322 * This collision arises if an exception occurred while vectoring the
10323 * injected event, KVM intercepted said exception, and KVM ultimately
10324 * determined the fault belongs to the guest and queues the exception
10325 * for injection back into the guest.
10326 *
10327 * "Injected" interrupts can also collide with pending exceptions if
10328 * userspace ignores the "ready for injection" flag and blindly queues
10329 * an interrupt. In that case, prioritizing the exception is correct,
10330 * as the exception "occurred" before the exit to userspace. Trap-like
10331 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10332 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10333 * priority, they're only generated (pended) during instruction
10334 * execution, and interrupts are recognized at instruction boundaries.
10335 * Thus a pending fault-like exception means the fault occurred on the
10336 * *previous* instruction and must be serviced prior to recognizing any
10337 * new events in order to fully complete the previous instruction.
10338 */
10339 if (vcpu->arch.exception.injected)
10340 kvm_inject_exception(vcpu);
10341 else if (kvm_is_exception_pending(vcpu))
10342 ; /* see above */
10343 else if (vcpu->arch.nmi_injected)
10344 static_call(kvm_x86_inject_nmi)(vcpu);
10345 else if (vcpu->arch.interrupt.injected)
10346 static_call(kvm_x86_inject_irq)(vcpu, true);
10347
10348 /*
10349 * Exceptions that morph to VM-Exits are handled above, and pending
10350 * exceptions on top of injected exceptions that do not VM-Exit should
10351 * either morph to #DF or, sadly, override the injected exception.
10352 */
10353 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10354 vcpu->arch.exception.pending);
10355
10356 /*
10357 * Bail if immediate entry+exit to/from the guest is needed to complete
10358 * nested VM-Enter or event re-injection so that a different pending
10359 * event can be serviced (or if KVM needs to exit to userspace).
10360 *
10361 * Otherwise, continue processing events even if VM-Exit occurred. The
10362 * VM-Exit will have cleared exceptions that were meant for L2, but
10363 * there may now be events that can be injected into L1.
10364 */
10365 if (r < 0)
10366 goto out;
10367
10368 /*
10369 * A pending exception VM-Exit should either result in nested VM-Exit
10370 * or force an immediate re-entry and exit to/from L2, and exception
10371 * VM-Exits cannot be injected (flag should _never_ be set).
10372 */
10373 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10374 vcpu->arch.exception_vmexit.pending);
10375
10376 /*
10377 * New events, other than exceptions, cannot be injected if KVM needs
10378 * to re-inject a previous event. See above comments on re-injecting
10379 * for why pending exceptions get priority.
10380 */
10381 can_inject = !kvm_event_needs_reinjection(vcpu);
10382
10383 if (vcpu->arch.exception.pending) {
10384 /*
10385 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10386 * value pushed on the stack. Trap-like exception and all #DBs
10387 * leave RF as-is (KVM follows Intel's behavior in this regard;
10388 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10389 *
10390 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10391 * describe the behavior of General Detect #DBs, which are
10392 * fault-like. They do _not_ set RF, a la code breakpoints.
10393 */
10394 if (exception_type(vector: vcpu->arch.exception.vector) == EXCPT_FAULT)
10395 __kvm_set_rflags(vcpu, rflags: kvm_get_rflags(vcpu) |
10396 X86_EFLAGS_RF);
10397
10398 if (vcpu->arch.exception.vector == DB_VECTOR) {
10399 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10400 if (vcpu->arch.dr7 & DR7_GD) {
10401 vcpu->arch.dr7 &= ~DR7_GD;
10402 kvm_update_dr7(vcpu);
10403 }
10404 }
10405
10406 kvm_inject_exception(vcpu);
10407
10408 vcpu->arch.exception.pending = false;
10409 vcpu->arch.exception.injected = true;
10410
10411 can_inject = false;
10412 }
10413
10414 /* Don't inject interrupts if the user asked to avoid doing so */
10415 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10416 return 0;
10417
10418 /*
10419 * Finally, inject interrupt events. If an event cannot be injected
10420 * due to architectural conditions (e.g. IF=0) a window-open exit
10421 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10422 * and can architecturally be injected, but we cannot do it right now:
10423 * an interrupt could have arrived just now and we have to inject it
10424 * as a vmexit, or there could already an event in the queue, which is
10425 * indicated by can_inject. In that case we request an immediate exit
10426 * in order to make progress and get back here for another iteration.
10427 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10428 */
10429#ifdef CONFIG_KVM_SMM
10430 if (vcpu->arch.smi_pending) {
10431 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10432 if (r < 0)
10433 goto out;
10434 if (r) {
10435 vcpu->arch.smi_pending = false;
10436 ++vcpu->arch.smi_count;
10437 enter_smm(vcpu);
10438 can_inject = false;
10439 } else
10440 static_call(kvm_x86_enable_smi_window)(vcpu);
10441 }
10442#endif
10443
10444 if (vcpu->arch.nmi_pending) {
10445 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10446 if (r < 0)
10447 goto out;
10448 if (r) {
10449 --vcpu->arch.nmi_pending;
10450 vcpu->arch.nmi_injected = true;
10451 static_call(kvm_x86_inject_nmi)(vcpu);
10452 can_inject = false;
10453 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10454 }
10455 if (vcpu->arch.nmi_pending)
10456 static_call(kvm_x86_enable_nmi_window)(vcpu);
10457 }
10458
10459 if (kvm_cpu_has_injectable_intr(v: vcpu)) {
10460 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10461 if (r < 0)
10462 goto out;
10463 if (r) {
10464 int irq = kvm_cpu_get_interrupt(v: vcpu);
10465
10466 if (!WARN_ON_ONCE(irq == -1)) {
10467 kvm_queue_interrupt(vcpu, vector: irq, soft: false);
10468 static_call(kvm_x86_inject_irq)(vcpu, false);
10469 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10470 }
10471 }
10472 if (kvm_cpu_has_injectable_intr(v: vcpu))
10473 static_call(kvm_x86_enable_irq_window)(vcpu);
10474 }
10475
10476 if (is_guest_mode(vcpu) &&
10477 kvm_x86_ops.nested_ops->has_events &&
10478 kvm_x86_ops.nested_ops->has_events(vcpu))
10479 *req_immediate_exit = true;
10480
10481 /*
10482 * KVM must never queue a new exception while injecting an event; KVM
10483 * is done emulating and should only propagate the to-be-injected event
10484 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10485 * infinite loop as KVM will bail from VM-Enter to inject the pending
10486 * exception and start the cycle all over.
10487 *
10488 * Exempt triple faults as they have special handling and won't put the
10489 * vCPU into an infinite loop. Triple fault can be queued when running
10490 * VMX without unrestricted guest, as that requires KVM to emulate Real
10491 * Mode events (see kvm_inject_realmode_interrupt()).
10492 */
10493 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10494 vcpu->arch.exception_vmexit.pending);
10495 return 0;
10496
10497out:
10498 if (r == -EBUSY) {
10499 *req_immediate_exit = true;
10500 r = 0;
10501 }
10502 return r;
10503}
10504
10505static void process_nmi(struct kvm_vcpu *vcpu)
10506{
10507 unsigned int limit;
10508
10509 /*
10510 * x86 is limited to one NMI pending, but because KVM can't react to
10511 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10512 * scheduled out, KVM needs to play nice with two queued NMIs showing
10513 * up at the same time. To handle this scenario, allow two NMIs to be
10514 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10515 * waiting for a previous NMI injection to complete (which effectively
10516 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10517 * will request an NMI window to handle the second NMI.
10518 */
10519 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10520 limit = 1;
10521 else
10522 limit = 2;
10523
10524 /*
10525 * Adjust the limit to account for pending virtual NMIs, which aren't
10526 * tracked in vcpu->arch.nmi_pending.
10527 */
10528 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10529 limit--;
10530
10531 vcpu->arch.nmi_pending += atomic_xchg(v: &vcpu->arch.nmi_queued, new: 0);
10532 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10533
10534 if (vcpu->arch.nmi_pending &&
10535 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10536 vcpu->arch.nmi_pending--;
10537
10538 if (vcpu->arch.nmi_pending)
10539 kvm_make_request(KVM_REQ_EVENT, vcpu);
10540}
10541
10542/* Return total number of NMIs pending injection to the VM */
10543int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10544{
10545 return vcpu->arch.nmi_pending +
10546 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10547}
10548
10549void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10550 unsigned long *vcpu_bitmap)
10551{
10552 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10553}
10554
10555void kvm_make_scan_ioapic_request(struct kvm *kvm)
10556{
10557 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10558}
10559
10560void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10561{
10562 struct kvm_lapic *apic = vcpu->arch.apic;
10563 bool activate;
10564
10565 if (!lapic_in_kernel(vcpu))
10566 return;
10567
10568 down_read(sem: &vcpu->kvm->arch.apicv_update_lock);
10569 preempt_disable();
10570
10571 /* Do not activate APICV when APIC is disabled */
10572 activate = kvm_vcpu_apicv_activated(vcpu) &&
10573 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10574
10575 if (apic->apicv_active == activate)
10576 goto out;
10577
10578 apic->apicv_active = activate;
10579 kvm_apic_update_apicv(vcpu);
10580 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10581
10582 /*
10583 * When APICv gets disabled, we may still have injected interrupts
10584 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10585 * still active when the interrupt got accepted. Make sure
10586 * kvm_check_and_inject_events() is called to check for that.
10587 */
10588 if (!apic->apicv_active)
10589 kvm_make_request(KVM_REQ_EVENT, vcpu);
10590
10591out:
10592 preempt_enable();
10593 up_read(sem: &vcpu->kvm->arch.apicv_update_lock);
10594}
10595EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10596
10597static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10598{
10599 if (!lapic_in_kernel(vcpu))
10600 return;
10601
10602 /*
10603 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10604 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10605 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10606 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10607 * this case so that KVM can the AVIC doorbell to inject interrupts to
10608 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10609 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10610 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10611 * access page is sticky.
10612 */
10613 if (apic_x2apic_mode(apic: vcpu->arch.apic) &&
10614 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10615 kvm_inhibit_apic_access_page(vcpu);
10616
10617 __kvm_vcpu_update_apicv(vcpu);
10618}
10619
10620void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10621 enum kvm_apicv_inhibit reason, bool set)
10622{
10623 unsigned long old, new;
10624
10625 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10626
10627 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10628 return;
10629
10630 old = new = kvm->arch.apicv_inhibit_reasons;
10631
10632 set_or_clear_apicv_inhibit(inhibits: &new, reason, set);
10633
10634 if (!!old != !!new) {
10635 /*
10636 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10637 * false positives in the sanity check WARN in svm_vcpu_run().
10638 * This task will wait for all vCPUs to ack the kick IRQ before
10639 * updating apicv_inhibit_reasons, and all other vCPUs will
10640 * block on acquiring apicv_update_lock so that vCPUs can't
10641 * redo svm_vcpu_run() without seeing the new inhibit state.
10642 *
10643 * Note, holding apicv_update_lock and taking it in the read
10644 * side (handling the request) also prevents other vCPUs from
10645 * servicing the request with a stale apicv_inhibit_reasons.
10646 */
10647 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10648 kvm->arch.apicv_inhibit_reasons = new;
10649 if (new) {
10650 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10651 int idx = srcu_read_lock(ssp: &kvm->srcu);
10652
10653 kvm_zap_gfn_range(kvm, gfn_start: gfn, gfn_end: gfn+1);
10654 srcu_read_unlock(ssp: &kvm->srcu, idx);
10655 }
10656 } else {
10657 kvm->arch.apicv_inhibit_reasons = new;
10658 }
10659}
10660
10661void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10662 enum kvm_apicv_inhibit reason, bool set)
10663{
10664 if (!enable_apicv)
10665 return;
10666
10667 down_write(sem: &kvm->arch.apicv_update_lock);
10668 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10669 up_write(sem: &kvm->arch.apicv_update_lock);
10670}
10671EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10672
10673static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10674{
10675 if (!kvm_apic_present(vcpu))
10676 return;
10677
10678 bitmap_zero(dst: vcpu->arch.ioapic_handled_vectors, nbits: 256);
10679
10680 if (irqchip_split(kvm: vcpu->kvm))
10681 kvm_scan_ioapic_routes(vcpu, ioapic_handled_vectors: vcpu->arch.ioapic_handled_vectors);
10682 else {
10683 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10684 if (ioapic_in_kernel(kvm: vcpu->kvm))
10685 kvm_ioapic_scan_entry(vcpu, ioapic_handled_vectors: vcpu->arch.ioapic_handled_vectors);
10686 }
10687
10688 if (is_guest_mode(vcpu))
10689 vcpu->arch.load_eoi_exitmap_pending = true;
10690 else
10691 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10692}
10693
10694static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10695{
10696 if (!kvm_apic_hw_enabled(apic: vcpu->arch.apic))
10697 return;
10698
10699#ifdef CONFIG_KVM_HYPERV
10700 if (to_hv_vcpu(vcpu)) {
10701 u64 eoi_exit_bitmap[4];
10702
10703 bitmap_or(dst: (ulong *)eoi_exit_bitmap,
10704 src1: vcpu->arch.ioapic_handled_vectors,
10705 src2: to_hv_synic(vcpu)->vec_bitmap, nbits: 256);
10706 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10707 return;
10708 }
10709#endif
10710 static_call_cond(kvm_x86_load_eoi_exitmap)(
10711 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10712}
10713
10714void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10715{
10716 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10717}
10718
10719static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10720{
10721 if (!lapic_in_kernel(vcpu))
10722 return;
10723
10724 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10725}
10726
10727/*
10728 * Called within kvm->srcu read side.
10729 * Returns 1 to let vcpu_run() continue the guest execution loop without
10730 * exiting to the userspace. Otherwise, the value will be returned to the
10731 * userspace.
10732 */
10733static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10734{
10735 int r;
10736 bool req_int_win =
10737 dm_request_for_irq_injection(vcpu) &&
10738 kvm_cpu_accept_dm_intr(vcpu);
10739 fastpath_t exit_fastpath;
10740
10741 bool req_immediate_exit = false;
10742
10743 if (kvm_request_pending(vcpu)) {
10744 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10745 r = -EIO;
10746 goto out;
10747 }
10748
10749 if (kvm_dirty_ring_check_request(vcpu)) {
10750 r = 0;
10751 goto out;
10752 }
10753
10754 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10755 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10756 r = 0;
10757 goto out;
10758 }
10759 }
10760 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10761 kvm_mmu_free_obsolete_roots(vcpu);
10762 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10763 __kvm_migrate_timers(vcpu);
10764 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10765 kvm_update_masterclock(kvm: vcpu->kvm);
10766 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10767 kvm_gen_kvmclock_update(v: vcpu);
10768 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10769 r = kvm_guest_time_update(v: vcpu);
10770 if (unlikely(r))
10771 goto out;
10772 }
10773 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10774 kvm_mmu_sync_roots(vcpu);
10775 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10776 kvm_mmu_load_pgd(vcpu);
10777
10778 /*
10779 * Note, the order matters here, as flushing "all" TLB entries
10780 * also flushes the "current" TLB entries, i.e. servicing the
10781 * flush "all" will clear any request to flush "current".
10782 */
10783 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10784 kvm_vcpu_flush_tlb_all(vcpu);
10785
10786 kvm_service_local_tlb_flush_requests(vcpu);
10787
10788 /*
10789 * Fall back to a "full" guest flush if Hyper-V's precise
10790 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10791 * the flushes are considered "remote" and not "local" because
10792 * the requests can be initiated from other vCPUs.
10793 */
10794#ifdef CONFIG_KVM_HYPERV
10795 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10796 kvm_hv_vcpu_flush_tlb(vcpu))
10797 kvm_vcpu_flush_tlb_guest(vcpu);
10798#endif
10799
10800 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10801 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10802 r = 0;
10803 goto out;
10804 }
10805 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10806 if (is_guest_mode(vcpu))
10807 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10808
10809 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10810 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10811 vcpu->mmio_needed = 0;
10812 r = 0;
10813 goto out;
10814 }
10815 }
10816 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10817 /* Page is swapped out. Do synthetic halt */
10818 vcpu->arch.apf.halted = true;
10819 r = 1;
10820 goto out;
10821 }
10822 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10823 record_steal_time(vcpu);
10824 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10825 kvm_pmu_handle_event(vcpu);
10826 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10827 kvm_pmu_deliver_pmi(vcpu);
10828#ifdef CONFIG_KVM_SMM
10829 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10830 process_smi(vcpu);
10831#endif
10832 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10833 process_nmi(vcpu);
10834 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10835 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10836 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10837 vcpu->arch.ioapic_handled_vectors)) {
10838 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10839 vcpu->run->eoi.vector =
10840 vcpu->arch.pending_ioapic_eoi;
10841 r = 0;
10842 goto out;
10843 }
10844 }
10845 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10846 vcpu_scan_ioapic(vcpu);
10847 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10848 vcpu_load_eoi_exitmap(vcpu);
10849 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10850 kvm_vcpu_reload_apic_access_page(vcpu);
10851#ifdef CONFIG_KVM_HYPERV
10852 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10853 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10854 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10855 vcpu->run->system_event.ndata = 0;
10856 r = 0;
10857 goto out;
10858 }
10859 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10860 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10861 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10862 vcpu->run->system_event.ndata = 0;
10863 r = 0;
10864 goto out;
10865 }
10866 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10867 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10868
10869 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10870 vcpu->run->hyperv = hv_vcpu->exit;
10871 r = 0;
10872 goto out;
10873 }
10874
10875 /*
10876 * KVM_REQ_HV_STIMER has to be processed after
10877 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10878 * depend on the guest clock being up-to-date
10879 */
10880 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10881 kvm_hv_process_stimers(vcpu);
10882#endif
10883 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10884 kvm_vcpu_update_apicv(vcpu);
10885 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10886 kvm_check_async_pf_completion(vcpu);
10887 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10888 static_call(kvm_x86_msr_filter_changed)(vcpu);
10889
10890 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10891 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10892 }
10893
10894 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10895 kvm_xen_has_interrupt(vcpu)) {
10896 ++vcpu->stat.req_event;
10897 r = kvm_apic_accept_events(vcpu);
10898 if (r < 0) {
10899 r = 0;
10900 goto out;
10901 }
10902 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10903 r = 1;
10904 goto out;
10905 }
10906
10907 r = kvm_check_and_inject_events(vcpu, req_immediate_exit: &req_immediate_exit);
10908 if (r < 0) {
10909 r = 0;
10910 goto out;
10911 }
10912 if (req_int_win)
10913 static_call(kvm_x86_enable_irq_window)(vcpu);
10914
10915 if (kvm_lapic_enabled(vcpu)) {
10916 update_cr8_intercept(vcpu);
10917 kvm_lapic_sync_to_vapic(vcpu);
10918 }
10919 }
10920
10921 r = kvm_mmu_reload(vcpu);
10922 if (unlikely(r)) {
10923 goto cancel_injection;
10924 }
10925
10926 preempt_disable();
10927
10928 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10929
10930 /*
10931 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10932 * IPI are then delayed after guest entry, which ensures that they
10933 * result in virtual interrupt delivery.
10934 */
10935 local_irq_disable();
10936
10937 /* Store vcpu->apicv_active before vcpu->mode. */
10938 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10939
10940 kvm_vcpu_srcu_read_unlock(vcpu);
10941
10942 /*
10943 * 1) We should set ->mode before checking ->requests. Please see
10944 * the comment in kvm_vcpu_exiting_guest_mode().
10945 *
10946 * 2) For APICv, we should set ->mode before checking PID.ON. This
10947 * pairs with the memory barrier implicit in pi_test_and_set_on
10948 * (see vmx_deliver_posted_interrupt).
10949 *
10950 * 3) This also orders the write to mode from any reads to the page
10951 * tables done while the VCPU is running. Please see the comment
10952 * in kvm_flush_remote_tlbs.
10953 */
10954 smp_mb__after_srcu_read_unlock();
10955
10956 /*
10957 * Process pending posted interrupts to handle the case where the
10958 * notification IRQ arrived in the host, or was never sent (because the
10959 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10960 * status, KVM doesn't update assigned devices when APICv is inhibited,
10961 * i.e. they can post interrupts even if APICv is temporarily disabled.
10962 */
10963 if (kvm_lapic_enabled(vcpu))
10964 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10965
10966 if (kvm_vcpu_exit_request(vcpu)) {
10967 vcpu->mode = OUTSIDE_GUEST_MODE;
10968 smp_wmb();
10969 local_irq_enable();
10970 preempt_enable();
10971 kvm_vcpu_srcu_read_lock(vcpu);
10972 r = 1;
10973 goto cancel_injection;
10974 }
10975
10976 if (req_immediate_exit)
10977 kvm_make_request(KVM_REQ_EVENT, vcpu);
10978
10979 fpregs_assert_state_consistent();
10980 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10981 switch_fpu_return();
10982
10983 if (vcpu->arch.guest_fpu.xfd_err)
10984 wrmsrl(MSR_IA32_XFD_ERR, val: vcpu->arch.guest_fpu.xfd_err);
10985
10986 if (unlikely(vcpu->arch.switch_db_regs)) {
10987 set_debugreg(val: 0, reg: 7);
10988 set_debugreg(val: vcpu->arch.eff_db[0], reg: 0);
10989 set_debugreg(val: vcpu->arch.eff_db[1], reg: 1);
10990 set_debugreg(val: vcpu->arch.eff_db[2], reg: 2);
10991 set_debugreg(val: vcpu->arch.eff_db[3], reg: 3);
10992 } else if (unlikely(hw_breakpoint_active())) {
10993 set_debugreg(val: 0, reg: 7);
10994 }
10995
10996 guest_timing_enter_irqoff();
10997
10998 for (;;) {
10999 /*
11000 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11001 * update must kick and wait for all vCPUs before toggling the
11002 * per-VM state, and responding vCPUs must wait for the update
11003 * to complete before servicing KVM_REQ_APICV_UPDATE.
11004 */
11005 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11006 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11007
11008 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11009 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11010 break;
11011
11012 if (kvm_lapic_enabled(vcpu))
11013 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11014
11015 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11016 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11017 break;
11018 }
11019
11020 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11021 ++vcpu->stat.exits;
11022 }
11023
11024 /*
11025 * Do this here before restoring debug registers on the host. And
11026 * since we do this before handling the vmexit, a DR access vmexit
11027 * can (a) read the correct value of the debug registers, (b) set
11028 * KVM_DEBUGREG_WONT_EXIT again.
11029 */
11030 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11031 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11032 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11033 kvm_update_dr0123(vcpu);
11034 kvm_update_dr7(vcpu);
11035 }
11036
11037 /*
11038 * If the guest has used debug registers, at least dr7
11039 * will be disabled while returning to the host.
11040 * If we don't have active breakpoints in the host, we don't
11041 * care about the messed up debug address registers. But if
11042 * we have some of them active, restore the old state.
11043 */
11044 if (hw_breakpoint_active())
11045 hw_breakpoint_restore();
11046
11047 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11048 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11049
11050 vcpu->mode = OUTSIDE_GUEST_MODE;
11051 smp_wmb();
11052
11053 /*
11054 * Sync xfd before calling handle_exit_irqoff() which may
11055 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11056 * in #NM irqoff handler).
11057 */
11058 if (vcpu->arch.xfd_no_write_intercept)
11059 fpu_sync_guest_vmexit_xfd_state();
11060
11061 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11062
11063 if (vcpu->arch.guest_fpu.xfd_err)
11064 wrmsrl(MSR_IA32_XFD_ERR, val: 0);
11065
11066 /*
11067 * Consume any pending interrupts, including the possible source of
11068 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11069 * An instruction is required after local_irq_enable() to fully unblock
11070 * interrupts on processors that implement an interrupt shadow, the
11071 * stat.exits increment will do nicely.
11072 */
11073 kvm_before_interrupt(vcpu, intr: KVM_HANDLING_IRQ);
11074 local_irq_enable();
11075 ++vcpu->stat.exits;
11076 local_irq_disable();
11077 kvm_after_interrupt(vcpu);
11078
11079 /*
11080 * Wait until after servicing IRQs to account guest time so that any
11081 * ticks that occurred while running the guest are properly accounted
11082 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11083 * of accounting via context tracking, but the loss of accuracy is
11084 * acceptable for all known use cases.
11085 */
11086 guest_timing_exit_irqoff();
11087
11088 local_irq_enable();
11089 preempt_enable();
11090
11091 kvm_vcpu_srcu_read_lock(vcpu);
11092
11093 /*
11094 * Profile KVM exit RIPs:
11095 */
11096 if (unlikely(prof_on == KVM_PROFILING)) {
11097 unsigned long rip = kvm_rip_read(vcpu);
11098 profile_hit(KVM_PROFILING, ip: (void *)rip);
11099 }
11100
11101 if (unlikely(vcpu->arch.tsc_always_catchup))
11102 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11103
11104 if (vcpu->arch.apic_attention)
11105 kvm_lapic_sync_from_vapic(vcpu);
11106
11107 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11108 return r;
11109
11110cancel_injection:
11111 if (req_immediate_exit)
11112 kvm_make_request(KVM_REQ_EVENT, vcpu);
11113 static_call(kvm_x86_cancel_injection)(vcpu);
11114 if (unlikely(vcpu->arch.apic_attention))
11115 kvm_lapic_sync_from_vapic(vcpu);
11116out:
11117 return r;
11118}
11119
11120/* Called within kvm->srcu read side. */
11121static inline int vcpu_block(struct kvm_vcpu *vcpu)
11122{
11123 bool hv_timer;
11124
11125 if (!kvm_arch_vcpu_runnable(vcpu)) {
11126 /*
11127 * Switch to the software timer before halt-polling/blocking as
11128 * the guest's timer may be a break event for the vCPU, and the
11129 * hypervisor timer runs only when the CPU is in guest mode.
11130 * Switch before halt-polling so that KVM recognizes an expired
11131 * timer before blocking.
11132 */
11133 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11134 if (hv_timer)
11135 kvm_lapic_switch_to_sw_timer(vcpu);
11136
11137 kvm_vcpu_srcu_read_unlock(vcpu);
11138 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11139 kvm_vcpu_halt(vcpu);
11140 else
11141 kvm_vcpu_block(vcpu);
11142 kvm_vcpu_srcu_read_lock(vcpu);
11143
11144 if (hv_timer)
11145 kvm_lapic_switch_to_hv_timer(vcpu);
11146
11147 /*
11148 * If the vCPU is not runnable, a signal or another host event
11149 * of some kind is pending; service it without changing the
11150 * vCPU's activity state.
11151 */
11152 if (!kvm_arch_vcpu_runnable(vcpu))
11153 return 1;
11154 }
11155
11156 /*
11157 * Evaluate nested events before exiting the halted state. This allows
11158 * the halt state to be recorded properly in the VMCS12's activity
11159 * state field (AMD does not have a similar field and a VM-Exit always
11160 * causes a spurious wakeup from HLT).
11161 */
11162 if (is_guest_mode(vcpu)) {
11163 if (kvm_check_nested_events(vcpu) < 0)
11164 return 0;
11165 }
11166
11167 if (kvm_apic_accept_events(vcpu) < 0)
11168 return 0;
11169 switch(vcpu->arch.mp_state) {
11170 case KVM_MP_STATE_HALTED:
11171 case KVM_MP_STATE_AP_RESET_HOLD:
11172 vcpu->arch.pv.pv_unhalted = false;
11173 vcpu->arch.mp_state =
11174 KVM_MP_STATE_RUNNABLE;
11175 fallthrough;
11176 case KVM_MP_STATE_RUNNABLE:
11177 vcpu->arch.apf.halted = false;
11178 break;
11179 case KVM_MP_STATE_INIT_RECEIVED:
11180 break;
11181 default:
11182 WARN_ON_ONCE(1);
11183 break;
11184 }
11185 return 1;
11186}
11187
11188static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11189{
11190 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11191 !vcpu->arch.apf.halted);
11192}
11193
11194/* Called within kvm->srcu read side. */
11195static int vcpu_run(struct kvm_vcpu *vcpu)
11196{
11197 int r;
11198
11199 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11200 vcpu->arch.l1tf_flush_l1d = true;
11201
11202 for (;;) {
11203 /*
11204 * If another guest vCPU requests a PV TLB flush in the middle
11205 * of instruction emulation, the rest of the emulation could
11206 * use a stale page translation. Assume that any code after
11207 * this point can start executing an instruction.
11208 */
11209 vcpu->arch.at_instruction_boundary = false;
11210 if (kvm_vcpu_running(vcpu)) {
11211 r = vcpu_enter_guest(vcpu);
11212 } else {
11213 r = vcpu_block(vcpu);
11214 }
11215
11216 if (r <= 0)
11217 break;
11218
11219 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11220 if (kvm_xen_has_pending_events(vcpu))
11221 kvm_xen_inject_pending_events(vcpu);
11222
11223 if (kvm_cpu_has_pending_timer(vcpu))
11224 kvm_inject_pending_timer_irqs(vcpu);
11225
11226 if (dm_request_for_irq_injection(vcpu) &&
11227 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11228 r = 0;
11229 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11230 ++vcpu->stat.request_irq_exits;
11231 break;
11232 }
11233
11234 if (__xfer_to_guest_mode_work_pending()) {
11235 kvm_vcpu_srcu_read_unlock(vcpu);
11236 r = xfer_to_guest_mode_handle_work(vcpu);
11237 kvm_vcpu_srcu_read_lock(vcpu);
11238 if (r)
11239 return r;
11240 }
11241 }
11242
11243 return r;
11244}
11245
11246static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11247{
11248 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11249}
11250
11251static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11252{
11253 BUG_ON(!vcpu->arch.pio.count);
11254
11255 return complete_emulated_io(vcpu);
11256}
11257
11258/*
11259 * Implements the following, as a state machine:
11260 *
11261 * read:
11262 * for each fragment
11263 * for each mmio piece in the fragment
11264 * write gpa, len
11265 * exit
11266 * copy data
11267 * execute insn
11268 *
11269 * write:
11270 * for each fragment
11271 * for each mmio piece in the fragment
11272 * write gpa, len
11273 * copy data
11274 * exit
11275 */
11276static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11277{
11278 struct kvm_run *run = vcpu->run;
11279 struct kvm_mmio_fragment *frag;
11280 unsigned len;
11281
11282 BUG_ON(!vcpu->mmio_needed);
11283
11284 /* Complete previous fragment */
11285 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11286 len = min(8u, frag->len);
11287 if (!vcpu->mmio_is_write)
11288 memcpy(frag->data, run->mmio.data, len);
11289
11290 if (frag->len <= 8) {
11291 /* Switch to the next fragment. */
11292 frag++;
11293 vcpu->mmio_cur_fragment++;
11294 } else {
11295 /* Go forward to the next mmio piece. */
11296 frag->data += len;
11297 frag->gpa += len;
11298 frag->len -= len;
11299 }
11300
11301 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11302 vcpu->mmio_needed = 0;
11303
11304 /* FIXME: return into emulator if single-stepping. */
11305 if (vcpu->mmio_is_write)
11306 return 1;
11307 vcpu->mmio_read_completed = 1;
11308 return complete_emulated_io(vcpu);
11309 }
11310
11311 run->exit_reason = KVM_EXIT_MMIO;
11312 run->mmio.phys_addr = frag->gpa;
11313 if (vcpu->mmio_is_write)
11314 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11315 run->mmio.len = min(8u, frag->len);
11316 run->mmio.is_write = vcpu->mmio_is_write;
11317 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11318 return 0;
11319}
11320
11321/* Swap (qemu) user FPU context for the guest FPU context. */
11322static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11323{
11324 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11325 fpu_swap_kvm_fpstate(gfpu: &vcpu->arch.guest_fpu, enter_guest: true);
11326 trace_kvm_fpu(load: 1);
11327}
11328
11329/* When vcpu_run ends, restore user space FPU context. */
11330static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11331{
11332 fpu_swap_kvm_fpstate(gfpu: &vcpu->arch.guest_fpu, enter_guest: false);
11333 ++vcpu->stat.fpu_reload;
11334 trace_kvm_fpu(load: 0);
11335}
11336
11337int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11338{
11339 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11340 struct kvm_run *kvm_run = vcpu->run;
11341 int r;
11342
11343 vcpu_load(vcpu);
11344 kvm_sigset_activate(vcpu);
11345 kvm_run->flags = 0;
11346 kvm_load_guest_fpu(vcpu);
11347
11348 kvm_vcpu_srcu_read_lock(vcpu);
11349 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11350 if (kvm_run->immediate_exit) {
11351 r = -EINTR;
11352 goto out;
11353 }
11354
11355 /*
11356 * Don't bother switching APIC timer emulation from the
11357 * hypervisor timer to the software timer, the only way for the
11358 * APIC timer to be active is if userspace stuffed vCPU state,
11359 * i.e. put the vCPU into a nonsensical state. Only an INIT
11360 * will transition the vCPU out of UNINITIALIZED (without more
11361 * state stuffing from userspace), which will reset the local
11362 * APIC and thus cancel the timer or drop the IRQ (if the timer
11363 * already expired).
11364 */
11365 kvm_vcpu_srcu_read_unlock(vcpu);
11366 kvm_vcpu_block(vcpu);
11367 kvm_vcpu_srcu_read_lock(vcpu);
11368
11369 if (kvm_apic_accept_events(vcpu) < 0) {
11370 r = 0;
11371 goto out;
11372 }
11373 r = -EAGAIN;
11374 if (signal_pending(current)) {
11375 r = -EINTR;
11376 kvm_run->exit_reason = KVM_EXIT_INTR;
11377 ++vcpu->stat.signal_exits;
11378 }
11379 goto out;
11380 }
11381
11382 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11383 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11384 r = -EINVAL;
11385 goto out;
11386 }
11387
11388 if (kvm_run->kvm_dirty_regs) {
11389 r = sync_regs(vcpu);
11390 if (r != 0)
11391 goto out;
11392 }
11393
11394 /* re-sync apic's tpr */
11395 if (!lapic_in_kernel(vcpu)) {
11396 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11397 r = -EINVAL;
11398 goto out;
11399 }
11400 }
11401
11402 /*
11403 * If userspace set a pending exception and L2 is active, convert it to
11404 * a pending VM-Exit if L1 wants to intercept the exception.
11405 */
11406 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11407 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11408 ex->error_code)) {
11409 kvm_queue_exception_vmexit(vcpu, vector: ex->vector,
11410 has_error_code: ex->has_error_code, error_code: ex->error_code,
11411 has_payload: ex->has_payload, payload: ex->payload);
11412 ex->injected = false;
11413 ex->pending = false;
11414 }
11415 vcpu->arch.exception_from_userspace = false;
11416
11417 if (unlikely(vcpu->arch.complete_userspace_io)) {
11418 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11419 vcpu->arch.complete_userspace_io = NULL;
11420 r = cui(vcpu);
11421 if (r <= 0)
11422 goto out;
11423 } else {
11424 WARN_ON_ONCE(vcpu->arch.pio.count);
11425 WARN_ON_ONCE(vcpu->mmio_needed);
11426 }
11427
11428 if (kvm_run->immediate_exit) {
11429 r = -EINTR;
11430 goto out;
11431 }
11432
11433 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11434 if (r <= 0)
11435 goto out;
11436
11437 r = vcpu_run(vcpu);
11438
11439out:
11440 kvm_put_guest_fpu(vcpu);
11441 if (kvm_run->kvm_valid_regs)
11442 store_regs(vcpu);
11443 post_kvm_run_save(vcpu);
11444 kvm_vcpu_srcu_read_unlock(vcpu);
11445
11446 kvm_sigset_deactivate(vcpu);
11447 vcpu_put(vcpu);
11448 return r;
11449}
11450
11451static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11452{
11453 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11454 /*
11455 * We are here if userspace calls get_regs() in the middle of
11456 * instruction emulation. Registers state needs to be copied
11457 * back from emulation context to vcpu. Userspace shouldn't do
11458 * that usually, but some bad designed PV devices (vmware
11459 * backdoor interface) need this to work
11460 */
11461 emulator_writeback_register_cache(ctxt: vcpu->arch.emulate_ctxt);
11462 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11463 }
11464 regs->rax = kvm_rax_read(vcpu);
11465 regs->rbx = kvm_rbx_read(vcpu);
11466 regs->rcx = kvm_rcx_read(vcpu);
11467 regs->rdx = kvm_rdx_read(vcpu);
11468 regs->rsi = kvm_rsi_read(vcpu);
11469 regs->rdi = kvm_rdi_read(vcpu);
11470 regs->rsp = kvm_rsp_read(vcpu);
11471 regs->rbp = kvm_rbp_read(vcpu);
11472#ifdef CONFIG_X86_64
11473 regs->r8 = kvm_r8_read(vcpu);
11474 regs->r9 = kvm_r9_read(vcpu);
11475 regs->r10 = kvm_r10_read(vcpu);
11476 regs->r11 = kvm_r11_read(vcpu);
11477 regs->r12 = kvm_r12_read(vcpu);
11478 regs->r13 = kvm_r13_read(vcpu);
11479 regs->r14 = kvm_r14_read(vcpu);
11480 regs->r15 = kvm_r15_read(vcpu);
11481#endif
11482
11483 regs->rip = kvm_rip_read(vcpu);
11484 regs->rflags = kvm_get_rflags(vcpu);
11485}
11486
11487int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11488{
11489 vcpu_load(vcpu);
11490 __get_regs(vcpu, regs);
11491 vcpu_put(vcpu);
11492 return 0;
11493}
11494
11495static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11496{
11497 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11498 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11499
11500 kvm_rax_write(vcpu, val: regs->rax);
11501 kvm_rbx_write(vcpu, val: regs->rbx);
11502 kvm_rcx_write(vcpu, val: regs->rcx);
11503 kvm_rdx_write(vcpu, val: regs->rdx);
11504 kvm_rsi_write(vcpu, val: regs->rsi);
11505 kvm_rdi_write(vcpu, val: regs->rdi);
11506 kvm_rsp_write(vcpu, val: regs->rsp);
11507 kvm_rbp_write(vcpu, val: regs->rbp);
11508#ifdef CONFIG_X86_64
11509 kvm_r8_write(vcpu, val: regs->r8);
11510 kvm_r9_write(vcpu, val: regs->r9);
11511 kvm_r10_write(vcpu, val: regs->r10);
11512 kvm_r11_write(vcpu, val: regs->r11);
11513 kvm_r12_write(vcpu, val: regs->r12);
11514 kvm_r13_write(vcpu, val: regs->r13);
11515 kvm_r14_write(vcpu, val: regs->r14);
11516 kvm_r15_write(vcpu, val: regs->r15);
11517#endif
11518
11519 kvm_rip_write(vcpu, val: regs->rip);
11520 kvm_set_rflags(vcpu, rflags: regs->rflags | X86_EFLAGS_FIXED);
11521
11522 vcpu->arch.exception.pending = false;
11523 vcpu->arch.exception_vmexit.pending = false;
11524
11525 kvm_make_request(KVM_REQ_EVENT, vcpu);
11526}
11527
11528int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11529{
11530 vcpu_load(vcpu);
11531 __set_regs(vcpu, regs);
11532 vcpu_put(vcpu);
11533 return 0;
11534}
11535
11536static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11537{
11538 struct desc_ptr dt;
11539
11540 if (vcpu->arch.guest_state_protected)
11541 goto skip_protected_regs;
11542
11543 kvm_get_segment(vcpu, var: &sregs->cs, seg: VCPU_SREG_CS);
11544 kvm_get_segment(vcpu, var: &sregs->ds, seg: VCPU_SREG_DS);
11545 kvm_get_segment(vcpu, var: &sregs->es, seg: VCPU_SREG_ES);
11546 kvm_get_segment(vcpu, var: &sregs->fs, seg: VCPU_SREG_FS);
11547 kvm_get_segment(vcpu, var: &sregs->gs, seg: VCPU_SREG_GS);
11548 kvm_get_segment(vcpu, var: &sregs->ss, seg: VCPU_SREG_SS);
11549
11550 kvm_get_segment(vcpu, var: &sregs->tr, seg: VCPU_SREG_TR);
11551 kvm_get_segment(vcpu, var: &sregs->ldt, seg: VCPU_SREG_LDTR);
11552
11553 static_call(kvm_x86_get_idt)(vcpu, &dt);
11554 sregs->idt.limit = dt.size;
11555 sregs->idt.base = dt.address;
11556 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11557 sregs->gdt.limit = dt.size;
11558 sregs->gdt.base = dt.address;
11559
11560 sregs->cr2 = vcpu->arch.cr2;
11561 sregs->cr3 = kvm_read_cr3(vcpu);
11562
11563skip_protected_regs:
11564 sregs->cr0 = kvm_read_cr0(vcpu);
11565 sregs->cr4 = kvm_read_cr4(vcpu);
11566 sregs->cr8 = kvm_get_cr8(vcpu);
11567 sregs->efer = vcpu->arch.efer;
11568 sregs->apic_base = kvm_get_apic_base(vcpu);
11569}
11570
11571static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11572{
11573 __get_sregs_common(vcpu, sregs);
11574
11575 if (vcpu->arch.guest_state_protected)
11576 return;
11577
11578 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11579 set_bit(nr: vcpu->arch.interrupt.nr,
11580 addr: (unsigned long *)sregs->interrupt_bitmap);
11581}
11582
11583static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11584{
11585 int i;
11586
11587 __get_sregs_common(vcpu, sregs: (struct kvm_sregs *)sregs2);
11588
11589 if (vcpu->arch.guest_state_protected)
11590 return;
11591
11592 if (is_pae_paging(vcpu)) {
11593 for (i = 0 ; i < 4 ; i++)
11594 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, index: i);
11595 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11596 }
11597}
11598
11599int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11600 struct kvm_sregs *sregs)
11601{
11602 vcpu_load(vcpu);
11603 __get_sregs(vcpu, sregs);
11604 vcpu_put(vcpu);
11605 return 0;
11606}
11607
11608int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11609 struct kvm_mp_state *mp_state)
11610{
11611 int r;
11612
11613 vcpu_load(vcpu);
11614 if (kvm_mpx_supported())
11615 kvm_load_guest_fpu(vcpu);
11616
11617 r = kvm_apic_accept_events(vcpu);
11618 if (r < 0)
11619 goto out;
11620 r = 0;
11621
11622 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11623 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11624 vcpu->arch.pv.pv_unhalted)
11625 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11626 else
11627 mp_state->mp_state = vcpu->arch.mp_state;
11628
11629out:
11630 if (kvm_mpx_supported())
11631 kvm_put_guest_fpu(vcpu);
11632 vcpu_put(vcpu);
11633 return r;
11634}
11635
11636int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11637 struct kvm_mp_state *mp_state)
11638{
11639 int ret = -EINVAL;
11640
11641 vcpu_load(vcpu);
11642
11643 switch (mp_state->mp_state) {
11644 case KVM_MP_STATE_UNINITIALIZED:
11645 case KVM_MP_STATE_HALTED:
11646 case KVM_MP_STATE_AP_RESET_HOLD:
11647 case KVM_MP_STATE_INIT_RECEIVED:
11648 case KVM_MP_STATE_SIPI_RECEIVED:
11649 if (!lapic_in_kernel(vcpu))
11650 goto out;
11651 break;
11652
11653 case KVM_MP_STATE_RUNNABLE:
11654 break;
11655
11656 default:
11657 goto out;
11658 }
11659
11660 /*
11661 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11662 * forcing the guest into INIT/SIPI if those events are supposed to be
11663 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11664 * if an SMI is pending as well.
11665 */
11666 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11667 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11668 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11669 goto out;
11670
11671 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11672 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11673 set_bit(KVM_APIC_SIPI, addr: &vcpu->arch.apic->pending_events);
11674 } else
11675 vcpu->arch.mp_state = mp_state->mp_state;
11676 kvm_make_request(KVM_REQ_EVENT, vcpu);
11677
11678 ret = 0;
11679out:
11680 vcpu_put(vcpu);
11681 return ret;
11682}
11683
11684int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11685 int reason, bool has_error_code, u32 error_code)
11686{
11687 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11688 int ret;
11689
11690 init_emulate_ctxt(vcpu);
11691
11692 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11693 has_error_code, error_code);
11694 if (ret) {
11695 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11696 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11697 vcpu->run->internal.ndata = 0;
11698 return 0;
11699 }
11700
11701 kvm_rip_write(vcpu, val: ctxt->eip);
11702 kvm_set_rflags(vcpu, rflags: ctxt->eflags);
11703 return 1;
11704}
11705EXPORT_SYMBOL_GPL(kvm_task_switch);
11706
11707static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11708{
11709 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11710 /*
11711 * When EFER.LME and CR0.PG are set, the processor is in
11712 * 64-bit mode (though maybe in a 32-bit code segment).
11713 * CR4.PAE and EFER.LMA must be set.
11714 */
11715 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11716 return false;
11717 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3: sregs->cr3))
11718 return false;
11719 } else {
11720 /*
11721 * Not in 64-bit mode: EFER.LMA is clear and the code
11722 * segment cannot be 64-bit.
11723 */
11724 if (sregs->efer & EFER_LMA || sregs->cs.l)
11725 return false;
11726 }
11727
11728 return kvm_is_valid_cr4(vcpu, cr4: sregs->cr4) &&
11729 kvm_is_valid_cr0(vcpu, cr0: sregs->cr0);
11730}
11731
11732static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11733 int *mmu_reset_needed, bool update_pdptrs)
11734{
11735 struct msr_data apic_base_msr;
11736 int idx;
11737 struct desc_ptr dt;
11738
11739 if (!kvm_is_valid_sregs(vcpu, sregs))
11740 return -EINVAL;
11741
11742 apic_base_msr.data = sregs->apic_base;
11743 apic_base_msr.host_initiated = true;
11744 if (kvm_set_apic_base(vcpu, msr_info: &apic_base_msr))
11745 return -EINVAL;
11746
11747 if (vcpu->arch.guest_state_protected)
11748 return 0;
11749
11750 dt.size = sregs->idt.limit;
11751 dt.address = sregs->idt.base;
11752 static_call(kvm_x86_set_idt)(vcpu, &dt);
11753 dt.size = sregs->gdt.limit;
11754 dt.address = sregs->gdt.base;
11755 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11756
11757 vcpu->arch.cr2 = sregs->cr2;
11758 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11759 vcpu->arch.cr3 = sregs->cr3;
11760 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_CR3);
11761 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11762
11763 kvm_set_cr8(vcpu, sregs->cr8);
11764
11765 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11766 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11767
11768 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11769 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11770
11771 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11772 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11773
11774 if (update_pdptrs) {
11775 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
11776 if (is_pae_paging(vcpu)) {
11777 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11778 *mmu_reset_needed = 1;
11779 }
11780 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
11781 }
11782
11783 kvm_set_segment(vcpu, var: &sregs->cs, seg: VCPU_SREG_CS);
11784 kvm_set_segment(vcpu, var: &sregs->ds, seg: VCPU_SREG_DS);
11785 kvm_set_segment(vcpu, var: &sregs->es, seg: VCPU_SREG_ES);
11786 kvm_set_segment(vcpu, var: &sregs->fs, seg: VCPU_SREG_FS);
11787 kvm_set_segment(vcpu, var: &sregs->gs, seg: VCPU_SREG_GS);
11788 kvm_set_segment(vcpu, var: &sregs->ss, seg: VCPU_SREG_SS);
11789
11790 kvm_set_segment(vcpu, var: &sregs->tr, seg: VCPU_SREG_TR);
11791 kvm_set_segment(vcpu, var: &sregs->ldt, seg: VCPU_SREG_LDTR);
11792
11793 update_cr8_intercept(vcpu);
11794
11795 /* Older userspace won't unhalt the vcpu on reset. */
11796 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11797 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11798 !is_protmode(vcpu))
11799 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11800
11801 return 0;
11802}
11803
11804static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11805{
11806 int pending_vec, max_bits;
11807 int mmu_reset_needed = 0;
11808 int ret = __set_sregs_common(vcpu, sregs, mmu_reset_needed: &mmu_reset_needed, update_pdptrs: true);
11809
11810 if (ret)
11811 return ret;
11812
11813 if (mmu_reset_needed) {
11814 kvm_mmu_reset_context(vcpu);
11815 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11816 }
11817
11818 max_bits = KVM_NR_INTERRUPTS;
11819 pending_vec = find_first_bit(
11820 addr: (const unsigned long *)sregs->interrupt_bitmap, size: max_bits);
11821
11822 if (pending_vec < max_bits) {
11823 kvm_queue_interrupt(vcpu, vector: pending_vec, soft: false);
11824 pr_debug("Set back pending irq %d\n", pending_vec);
11825 kvm_make_request(KVM_REQ_EVENT, vcpu);
11826 }
11827 return 0;
11828}
11829
11830static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11831{
11832 int mmu_reset_needed = 0;
11833 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11834 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11835 !(sregs2->efer & EFER_LMA);
11836 int i, ret;
11837
11838 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11839 return -EINVAL;
11840
11841 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11842 return -EINVAL;
11843
11844 ret = __set_sregs_common(vcpu, sregs: (struct kvm_sregs *)sregs2,
11845 mmu_reset_needed: &mmu_reset_needed, update_pdptrs: !valid_pdptrs);
11846 if (ret)
11847 return ret;
11848
11849 if (valid_pdptrs) {
11850 for (i = 0; i < 4 ; i++)
11851 kvm_pdptr_write(vcpu, index: i, value: sregs2->pdptrs[i]);
11852
11853 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_PDPTR);
11854 mmu_reset_needed = 1;
11855 vcpu->arch.pdptrs_from_userspace = true;
11856 }
11857 if (mmu_reset_needed) {
11858 kvm_mmu_reset_context(vcpu);
11859 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11860 }
11861 return 0;
11862}
11863
11864int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11865 struct kvm_sregs *sregs)
11866{
11867 int ret;
11868
11869 vcpu_load(vcpu);
11870 ret = __set_sregs(vcpu, sregs);
11871 vcpu_put(vcpu);
11872 return ret;
11873}
11874
11875static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11876{
11877 bool set = false;
11878 struct kvm_vcpu *vcpu;
11879 unsigned long i;
11880
11881 if (!enable_apicv)
11882 return;
11883
11884 down_write(sem: &kvm->arch.apicv_update_lock);
11885
11886 kvm_for_each_vcpu(i, vcpu, kvm) {
11887 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11888 set = true;
11889 break;
11890 }
11891 }
11892 __kvm_set_or_clear_apicv_inhibit(kvm, reason: APICV_INHIBIT_REASON_BLOCKIRQ, set);
11893 up_write(sem: &kvm->arch.apicv_update_lock);
11894}
11895
11896int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11897 struct kvm_guest_debug *dbg)
11898{
11899 unsigned long rflags;
11900 int i, r;
11901
11902 if (vcpu->arch.guest_state_protected)
11903 return -EINVAL;
11904
11905 vcpu_load(vcpu);
11906
11907 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11908 r = -EBUSY;
11909 if (kvm_is_exception_pending(vcpu))
11910 goto out;
11911 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11912 kvm_queue_exception(vcpu, DB_VECTOR);
11913 else
11914 kvm_queue_exception(vcpu, BP_VECTOR);
11915 }
11916
11917 /*
11918 * Read rflags as long as potentially injected trace flags are still
11919 * filtered out.
11920 */
11921 rflags = kvm_get_rflags(vcpu);
11922
11923 vcpu->guest_debug = dbg->control;
11924 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11925 vcpu->guest_debug = 0;
11926
11927 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11928 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11929 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11930 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11931 } else {
11932 for (i = 0; i < KVM_NR_DB_REGS; i++)
11933 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11934 }
11935 kvm_update_dr7(vcpu);
11936
11937 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11938 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11939
11940 /*
11941 * Trigger an rflags update that will inject or remove the trace
11942 * flags.
11943 */
11944 kvm_set_rflags(vcpu, rflags);
11945
11946 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11947
11948 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(kvm: vcpu->kvm);
11949
11950 r = 0;
11951
11952out:
11953 vcpu_put(vcpu);
11954 return r;
11955}
11956
11957/*
11958 * Translate a guest virtual address to a guest physical address.
11959 */
11960int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11961 struct kvm_translation *tr)
11962{
11963 unsigned long vaddr = tr->linear_address;
11964 gpa_t gpa;
11965 int idx;
11966
11967 vcpu_load(vcpu);
11968
11969 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
11970 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva: vaddr, NULL);
11971 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
11972 tr->physical_address = gpa;
11973 tr->valid = gpa != INVALID_GPA;
11974 tr->writeable = 1;
11975 tr->usermode = 0;
11976
11977 vcpu_put(vcpu);
11978 return 0;
11979}
11980
11981int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11982{
11983 struct fxregs_state *fxsave;
11984
11985 if (fpstate_is_confidential(gfpu: &vcpu->arch.guest_fpu))
11986 return 0;
11987
11988 vcpu_load(vcpu);
11989
11990 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11991 memcpy(fpu->fpr, fxsave->st_space, 128);
11992 fpu->fcw = fxsave->cwd;
11993 fpu->fsw = fxsave->swd;
11994 fpu->ftwx = fxsave->twd;
11995 fpu->last_opcode = fxsave->fop;
11996 fpu->last_ip = fxsave->rip;
11997 fpu->last_dp = fxsave->rdp;
11998 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11999
12000 vcpu_put(vcpu);
12001 return 0;
12002}
12003
12004int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12005{
12006 struct fxregs_state *fxsave;
12007
12008 if (fpstate_is_confidential(gfpu: &vcpu->arch.guest_fpu))
12009 return 0;
12010
12011 vcpu_load(vcpu);
12012
12013 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12014
12015 memcpy(fxsave->st_space, fpu->fpr, 128);
12016 fxsave->cwd = fpu->fcw;
12017 fxsave->swd = fpu->fsw;
12018 fxsave->twd = fpu->ftwx;
12019 fxsave->fop = fpu->last_opcode;
12020 fxsave->rip = fpu->last_ip;
12021 fxsave->rdp = fpu->last_dp;
12022 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12023
12024 vcpu_put(vcpu);
12025 return 0;
12026}
12027
12028static void store_regs(struct kvm_vcpu *vcpu)
12029{
12030 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12031
12032 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12033 __get_regs(vcpu, regs: &vcpu->run->s.regs.regs);
12034
12035 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12036 __get_sregs(vcpu, sregs: &vcpu->run->s.regs.sregs);
12037
12038 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12039 kvm_vcpu_ioctl_x86_get_vcpu_events(
12040 vcpu, events: &vcpu->run->s.regs.events);
12041}
12042
12043static int sync_regs(struct kvm_vcpu *vcpu)
12044{
12045 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12046 __set_regs(vcpu, regs: &vcpu->run->s.regs.regs);
12047 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12048 }
12049
12050 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12051 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12052
12053 if (__set_sregs(vcpu, sregs: &sregs))
12054 return -EINVAL;
12055
12056 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12057 }
12058
12059 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12060 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12061
12062 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, events: &events))
12063 return -EINVAL;
12064
12065 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12066 }
12067
12068 return 0;
12069}
12070
12071int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12072{
12073 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12074 pr_warn_once("SMP vm created on host with unstable TSC; "
12075 "guest TSC will not be reliable\n");
12076
12077 if (!kvm->arch.max_vcpu_ids)
12078 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12079
12080 if (id >= kvm->arch.max_vcpu_ids)
12081 return -EINVAL;
12082
12083 return static_call(kvm_x86_vcpu_precreate)(kvm);
12084}
12085
12086int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12087{
12088 struct page *page;
12089 int r;
12090
12091 vcpu->arch.last_vmentry_cpu = -1;
12092 vcpu->arch.regs_avail = ~0;
12093 vcpu->arch.regs_dirty = ~0;
12094
12095 kvm_gpc_init(gpc: &vcpu->arch.pv_time, kvm: vcpu->kvm);
12096
12097 if (!irqchip_in_kernel(kvm: vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12098 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12099 else
12100 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12101
12102 r = kvm_mmu_create(vcpu);
12103 if (r < 0)
12104 return r;
12105
12106 r = kvm_create_lapic(vcpu, timer_advance_ns: lapic_timer_advance_ns);
12107 if (r < 0)
12108 goto fail_mmu_destroy;
12109
12110 r = -ENOMEM;
12111
12112 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12113 if (!page)
12114 goto fail_free_lapic;
12115 vcpu->arch.pio_data = page_address(page);
12116
12117 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, size: sizeof(u64),
12118 GFP_KERNEL_ACCOUNT);
12119 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, size: sizeof(u64),
12120 GFP_KERNEL_ACCOUNT);
12121 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12122 goto fail_free_mce_banks;
12123 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12124
12125 if (!zalloc_cpumask_var(mask: &vcpu->arch.wbinvd_dirty_mask,
12126 GFP_KERNEL_ACCOUNT))
12127 goto fail_free_mce_banks;
12128
12129 if (!alloc_emulate_ctxt(vcpu))
12130 goto free_wbinvd_dirty_mask;
12131
12132 if (!fpu_alloc_guest_fpstate(gfpu: &vcpu->arch.guest_fpu)) {
12133 pr_err("failed to allocate vcpu's fpu\n");
12134 goto free_emulate_ctxt;
12135 }
12136
12137 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12138 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12139
12140 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12141
12142 kvm_async_pf_hash_reset(vcpu);
12143
12144 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12145 kvm_pmu_init(vcpu);
12146
12147 vcpu->arch.pending_external_vector = -1;
12148 vcpu->arch.preempted_in_kernel = false;
12149
12150#if IS_ENABLED(CONFIG_HYPERV)
12151 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12152#endif
12153
12154 r = static_call(kvm_x86_vcpu_create)(vcpu);
12155 if (r)
12156 goto free_guest_fpu;
12157
12158 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12159 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12160 kvm_xen_init_vcpu(vcpu);
12161 kvm_vcpu_mtrr_init(vcpu);
12162 vcpu_load(vcpu);
12163 kvm_set_tsc_khz(vcpu, user_tsc_khz: vcpu->kvm->arch.default_tsc_khz);
12164 kvm_vcpu_reset(vcpu, init_event: false);
12165 kvm_init_mmu(vcpu);
12166 vcpu_put(vcpu);
12167 return 0;
12168
12169free_guest_fpu:
12170 fpu_free_guest_fpstate(gfpu: &vcpu->arch.guest_fpu);
12171free_emulate_ctxt:
12172 kmem_cache_free(s: x86_emulator_cache, objp: vcpu->arch.emulate_ctxt);
12173free_wbinvd_dirty_mask:
12174 free_cpumask_var(mask: vcpu->arch.wbinvd_dirty_mask);
12175fail_free_mce_banks:
12176 kfree(objp: vcpu->arch.mce_banks);
12177 kfree(objp: vcpu->arch.mci_ctl2_banks);
12178 free_page((unsigned long)vcpu->arch.pio_data);
12179fail_free_lapic:
12180 kvm_free_lapic(vcpu);
12181fail_mmu_destroy:
12182 kvm_mmu_destroy(vcpu);
12183 return r;
12184}
12185
12186void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12187{
12188 struct kvm *kvm = vcpu->kvm;
12189
12190 if (mutex_lock_killable(&vcpu->mutex))
12191 return;
12192 vcpu_load(vcpu);
12193 kvm_synchronize_tsc(vcpu, NULL);
12194 vcpu_put(vcpu);
12195
12196 /* poll control enabled by default */
12197 vcpu->arch.msr_kvm_poll_control = 1;
12198
12199 mutex_unlock(lock: &vcpu->mutex);
12200
12201 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12202 schedule_delayed_work(dwork: &kvm->arch.kvmclock_sync_work,
12203 KVMCLOCK_SYNC_PERIOD);
12204}
12205
12206void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12207{
12208 int idx;
12209
12210 kvmclock_reset(vcpu);
12211
12212 static_call(kvm_x86_vcpu_free)(vcpu);
12213
12214 kmem_cache_free(s: x86_emulator_cache, objp: vcpu->arch.emulate_ctxt);
12215 free_cpumask_var(mask: vcpu->arch.wbinvd_dirty_mask);
12216 fpu_free_guest_fpstate(gfpu: &vcpu->arch.guest_fpu);
12217
12218 kvm_xen_destroy_vcpu(vcpu);
12219 kvm_hv_vcpu_uninit(vcpu);
12220 kvm_pmu_destroy(vcpu);
12221 kfree(objp: vcpu->arch.mce_banks);
12222 kfree(objp: vcpu->arch.mci_ctl2_banks);
12223 kvm_free_lapic(vcpu);
12224 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
12225 kvm_mmu_destroy(vcpu);
12226 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
12227 free_page((unsigned long)vcpu->arch.pio_data);
12228 kvfree(addr: vcpu->arch.cpuid_entries);
12229}
12230
12231void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12232{
12233 struct kvm_cpuid_entry2 *cpuid_0x1;
12234 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12235 unsigned long new_cr0;
12236
12237 /*
12238 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12239 * to handle side effects. RESET emulation hits those flows and relies
12240 * on emulated/virtualized registers, including those that are loaded
12241 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12242 * to detect improper or missing initialization.
12243 */
12244 WARN_ON_ONCE(!init_event &&
12245 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12246
12247 /*
12248 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12249 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12250 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12251 * bits), i.e. virtualization is disabled.
12252 */
12253 if (is_guest_mode(vcpu))
12254 kvm_leave_nested(vcpu);
12255
12256 kvm_lapic_reset(vcpu, init_event);
12257
12258 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12259 vcpu->arch.hflags = 0;
12260
12261 vcpu->arch.smi_pending = 0;
12262 vcpu->arch.smi_count = 0;
12263 atomic_set(v: &vcpu->arch.nmi_queued, i: 0);
12264 vcpu->arch.nmi_pending = 0;
12265 vcpu->arch.nmi_injected = false;
12266 kvm_clear_interrupt_queue(vcpu);
12267 kvm_clear_exception_queue(vcpu);
12268
12269 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12270 kvm_update_dr0123(vcpu);
12271 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12272 vcpu->arch.dr7 = DR7_FIXED_1;
12273 kvm_update_dr7(vcpu);
12274
12275 vcpu->arch.cr2 = 0;
12276
12277 kvm_make_request(KVM_REQ_EVENT, vcpu);
12278 vcpu->arch.apf.msr_en_val = 0;
12279 vcpu->arch.apf.msr_int_val = 0;
12280 vcpu->arch.st.msr_val = 0;
12281
12282 kvmclock_reset(vcpu);
12283
12284 kvm_clear_async_pf_completion_queue(vcpu);
12285 kvm_async_pf_hash_reset(vcpu);
12286 vcpu->arch.apf.halted = false;
12287
12288 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12289 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12290
12291 /*
12292 * All paths that lead to INIT are required to load the guest's
12293 * FPU state (because most paths are buried in KVM_RUN).
12294 */
12295 if (init_event)
12296 kvm_put_guest_fpu(vcpu);
12297
12298 fpstate_clear_xstate_component(fps: fpstate, xfeature: XFEATURE_BNDREGS);
12299 fpstate_clear_xstate_component(fps: fpstate, xfeature: XFEATURE_BNDCSR);
12300
12301 if (init_event)
12302 kvm_load_guest_fpu(vcpu);
12303 }
12304
12305 if (!init_event) {
12306 vcpu->arch.smbase = 0x30000;
12307
12308 vcpu->arch.msr_misc_features_enables = 0;
12309 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12310 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12311
12312 __kvm_set_xcr(vcpu, index: 0, XFEATURE_MASK_FP);
12313 __kvm_set_msr(vcpu, MSR_IA32_XSS, data: 0, host_initiated: true);
12314 }
12315
12316 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12317 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12318 kvm_register_mark_dirty(vcpu, reg: VCPU_REGS_RSP);
12319
12320 /*
12321 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12322 * if no CPUID match is found. Note, it's impossible to get a match at
12323 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12324 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12325 * on RESET. But, go through the motions in case that's ever remedied.
12326 */
12327 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, function: 1);
12328 kvm_rdx_write(vcpu, val: cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12329
12330 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12331
12332 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12333 kvm_rip_write(vcpu, val: 0xfff0);
12334
12335 vcpu->arch.cr3 = 0;
12336 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_CR3);
12337
12338 /*
12339 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12340 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12341 * (or qualify) that with a footnote stating that CD/NW are preserved.
12342 */
12343 new_cr0 = X86_CR0_ET;
12344 if (init_event)
12345 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12346 else
12347 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12348
12349 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12350 static_call(kvm_x86_set_cr4)(vcpu, 0);
12351 static_call(kvm_x86_set_efer)(vcpu, 0);
12352 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12353
12354 /*
12355 * On the standard CR0/CR4/EFER modification paths, there are several
12356 * complex conditions determining whether the MMU has to be reset and/or
12357 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12358 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12359 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12360 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12361 */
12362 if (old_cr0 & X86_CR0_PG) {
12363 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12364 kvm_mmu_reset_context(vcpu);
12365 }
12366
12367 /*
12368 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12369 * APM states the TLBs are untouched by INIT, but it also states that
12370 * the TLBs are flushed on "External initialization of the processor."
12371 * Flush the guest TLB regardless of vendor, there is no meaningful
12372 * benefit in relying on the guest to flush the TLB immediately after
12373 * INIT. A spurious TLB flush is benign and likely negligible from a
12374 * performance perspective.
12375 */
12376 if (init_event)
12377 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12378}
12379EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12380
12381void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12382{
12383 struct kvm_segment cs;
12384
12385 kvm_get_segment(vcpu, var: &cs, seg: VCPU_SREG_CS);
12386 cs.selector = vector << 8;
12387 cs.base = vector << 12;
12388 kvm_set_segment(vcpu, var: &cs, seg: VCPU_SREG_CS);
12389 kvm_rip_write(vcpu, val: 0);
12390}
12391EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12392
12393int kvm_arch_hardware_enable(void)
12394{
12395 struct kvm *kvm;
12396 struct kvm_vcpu *vcpu;
12397 unsigned long i;
12398 int ret;
12399 u64 local_tsc;
12400 u64 max_tsc = 0;
12401 bool stable, backwards_tsc = false;
12402
12403 kvm_user_return_msr_cpu_online();
12404
12405 ret = kvm_x86_check_processor_compatibility();
12406 if (ret)
12407 return ret;
12408
12409 ret = static_call(kvm_x86_hardware_enable)();
12410 if (ret != 0)
12411 return ret;
12412
12413 local_tsc = rdtsc();
12414 stable = !kvm_check_tsc_unstable();
12415 list_for_each_entry(kvm, &vm_list, vm_list) {
12416 kvm_for_each_vcpu(i, vcpu, kvm) {
12417 if (!stable && vcpu->cpu == smp_processor_id())
12418 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12419 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12420 backwards_tsc = true;
12421 if (vcpu->arch.last_host_tsc > max_tsc)
12422 max_tsc = vcpu->arch.last_host_tsc;
12423 }
12424 }
12425 }
12426
12427 /*
12428 * Sometimes, even reliable TSCs go backwards. This happens on
12429 * platforms that reset TSC during suspend or hibernate actions, but
12430 * maintain synchronization. We must compensate. Fortunately, we can
12431 * detect that condition here, which happens early in CPU bringup,
12432 * before any KVM threads can be running. Unfortunately, we can't
12433 * bring the TSCs fully up to date with real time, as we aren't yet far
12434 * enough into CPU bringup that we know how much real time has actually
12435 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12436 * variables that haven't been updated yet.
12437 *
12438 * So we simply find the maximum observed TSC above, then record the
12439 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12440 * the adjustment will be applied. Note that we accumulate
12441 * adjustments, in case multiple suspend cycles happen before some VCPU
12442 * gets a chance to run again. In the event that no KVM threads get a
12443 * chance to run, we will miss the entire elapsed period, as we'll have
12444 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12445 * loose cycle time. This isn't too big a deal, since the loss will be
12446 * uniform across all VCPUs (not to mention the scenario is extremely
12447 * unlikely). It is possible that a second hibernate recovery happens
12448 * much faster than a first, causing the observed TSC here to be
12449 * smaller; this would require additional padding adjustment, which is
12450 * why we set last_host_tsc to the local tsc observed here.
12451 *
12452 * N.B. - this code below runs only on platforms with reliable TSC,
12453 * as that is the only way backwards_tsc is set above. Also note
12454 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12455 * have the same delta_cyc adjustment applied if backwards_tsc
12456 * is detected. Note further, this adjustment is only done once,
12457 * as we reset last_host_tsc on all VCPUs to stop this from being
12458 * called multiple times (one for each physical CPU bringup).
12459 *
12460 * Platforms with unreliable TSCs don't have to deal with this, they
12461 * will be compensated by the logic in vcpu_load, which sets the TSC to
12462 * catchup mode. This will catchup all VCPUs to real time, but cannot
12463 * guarantee that they stay in perfect synchronization.
12464 */
12465 if (backwards_tsc) {
12466 u64 delta_cyc = max_tsc - local_tsc;
12467 list_for_each_entry(kvm, &vm_list, vm_list) {
12468 kvm->arch.backwards_tsc_observed = true;
12469 kvm_for_each_vcpu(i, vcpu, kvm) {
12470 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12471 vcpu->arch.last_host_tsc = local_tsc;
12472 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12473 }
12474
12475 /*
12476 * We have to disable TSC offset matching.. if you were
12477 * booting a VM while issuing an S4 host suspend....
12478 * you may have some problem. Solving this issue is
12479 * left as an exercise to the reader.
12480 */
12481 kvm->arch.last_tsc_nsec = 0;
12482 kvm->arch.last_tsc_write = 0;
12483 }
12484
12485 }
12486 return 0;
12487}
12488
12489void kvm_arch_hardware_disable(void)
12490{
12491 static_call(kvm_x86_hardware_disable)();
12492 drop_user_return_notifiers();
12493}
12494
12495bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12496{
12497 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12498}
12499
12500bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12501{
12502 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12503}
12504
12505void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12506{
12507 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12508
12509 vcpu->arch.l1tf_flush_l1d = true;
12510 if (pmu->version && unlikely(pmu->event_count)) {
12511 pmu->need_cleanup = true;
12512 kvm_make_request(KVM_REQ_PMU, vcpu);
12513 }
12514 static_call(kvm_x86_sched_in)(vcpu, cpu);
12515}
12516
12517void kvm_arch_free_vm(struct kvm *kvm)
12518{
12519#if IS_ENABLED(CONFIG_HYPERV)
12520 kfree(objp: kvm->arch.hv_pa_pg);
12521#endif
12522 __kvm_arch_free_vm(kvm);
12523}
12524
12525
12526int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12527{
12528 int ret;
12529 unsigned long flags;
12530
12531 if (!kvm_is_vm_type_supported(type))
12532 return -EINVAL;
12533
12534 kvm->arch.vm_type = type;
12535
12536 ret = kvm_page_track_init(kvm);
12537 if (ret)
12538 goto out;
12539
12540 kvm_mmu_init_vm(kvm);
12541
12542 ret = static_call(kvm_x86_vm_init)(kvm);
12543 if (ret)
12544 goto out_uninit_mmu;
12545
12546 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12547 atomic_set(v: &kvm->arch.noncoherent_dma_count, i: 0);
12548
12549 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12550 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, addr: &kvm->arch.irq_sources_bitmap);
12551 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12552 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12553 addr: &kvm->arch.irq_sources_bitmap);
12554
12555 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12556 mutex_init(&kvm->arch.apic_map_lock);
12557 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12558 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12559
12560 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12561 pvclock_update_vm_gtod_copy(kvm);
12562 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12563
12564 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12565 kvm->arch.guest_can_read_msr_platform_info = true;
12566 kvm->arch.enable_pmu = enable_pmu;
12567
12568#if IS_ENABLED(CONFIG_HYPERV)
12569 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12570 kvm->arch.hv_root_tdp = INVALID_PAGE;
12571#endif
12572
12573 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12574 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12575
12576 kvm_apicv_init(kvm);
12577 kvm_hv_init_vm(kvm);
12578 kvm_xen_init_vm(kvm);
12579
12580 return 0;
12581
12582out_uninit_mmu:
12583 kvm_mmu_uninit_vm(kvm);
12584 kvm_page_track_cleanup(kvm);
12585out:
12586 return ret;
12587}
12588
12589int kvm_arch_post_init_vm(struct kvm *kvm)
12590{
12591 return kvm_mmu_post_init_vm(kvm);
12592}
12593
12594static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12595{
12596 vcpu_load(vcpu);
12597 kvm_mmu_unload(vcpu);
12598 vcpu_put(vcpu);
12599}
12600
12601static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12602{
12603 unsigned long i;
12604 struct kvm_vcpu *vcpu;
12605
12606 kvm_for_each_vcpu(i, vcpu, kvm) {
12607 kvm_clear_async_pf_completion_queue(vcpu);
12608 kvm_unload_vcpu_mmu(vcpu);
12609 }
12610}
12611
12612void kvm_arch_sync_events(struct kvm *kvm)
12613{
12614 cancel_delayed_work_sync(dwork: &kvm->arch.kvmclock_sync_work);
12615 cancel_delayed_work_sync(dwork: &kvm->arch.kvmclock_update_work);
12616 kvm_free_pit(kvm);
12617}
12618
12619/**
12620 * __x86_set_memory_region: Setup KVM internal memory slot
12621 *
12622 * @kvm: the kvm pointer to the VM.
12623 * @id: the slot ID to setup.
12624 * @gpa: the GPA to install the slot (unused when @size == 0).
12625 * @size: the size of the slot. Set to zero to uninstall a slot.
12626 *
12627 * This function helps to setup a KVM internal memory slot. Specify
12628 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12629 * slot. The return code can be one of the following:
12630 *
12631 * HVA: on success (uninstall will return a bogus HVA)
12632 * -errno: on error
12633 *
12634 * The caller should always use IS_ERR() to check the return value
12635 * before use. Note, the KVM internal memory slots are guaranteed to
12636 * remain valid and unchanged until the VM is destroyed, i.e., the
12637 * GPA->HVA translation will not change. However, the HVA is a user
12638 * address, i.e. its accessibility is not guaranteed, and must be
12639 * accessed via __copy_{to,from}_user().
12640 */
12641void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12642 u32 size)
12643{
12644 int i, r;
12645 unsigned long hva, old_npages;
12646 struct kvm_memslots *slots = kvm_memslots(kvm);
12647 struct kvm_memory_slot *slot;
12648
12649 /* Called with kvm->slots_lock held. */
12650 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12651 return ERR_PTR_USR(-EINVAL);
12652
12653 slot = id_to_memslot(slots, id);
12654 if (size) {
12655 if (slot && slot->npages)
12656 return ERR_PTR_USR(-EEXIST);
12657
12658 /*
12659 * MAP_SHARED to prevent internal slot pages from being moved
12660 * by fork()/COW.
12661 */
12662 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12663 MAP_SHARED | MAP_ANONYMOUS, 0);
12664 if (IS_ERR_VALUE(hva))
12665 return (void __user *)hva;
12666 } else {
12667 if (!slot || !slot->npages)
12668 return NULL;
12669
12670 old_npages = slot->npages;
12671 hva = slot->userspace_addr;
12672 }
12673
12674 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12675 struct kvm_userspace_memory_region2 m;
12676
12677 m.slot = id | (i << 16);
12678 m.flags = 0;
12679 m.guest_phys_addr = gpa;
12680 m.userspace_addr = hva;
12681 m.memory_size = size;
12682 r = __kvm_set_memory_region(kvm, mem: &m);
12683 if (r < 0)
12684 return ERR_PTR_USR(r);
12685 }
12686
12687 if (!size)
12688 vm_munmap(hva, old_npages * PAGE_SIZE);
12689
12690 return (void __user *)hva;
12691}
12692EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12693
12694void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12695{
12696 kvm_mmu_pre_destroy_vm(kvm);
12697}
12698
12699void kvm_arch_destroy_vm(struct kvm *kvm)
12700{
12701 if (current->mm == kvm->mm) {
12702 /*
12703 * Free memory regions allocated on behalf of userspace,
12704 * unless the memory map has changed due to process exit
12705 * or fd copying.
12706 */
12707 mutex_lock(&kvm->slots_lock);
12708 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12709 0, 0);
12710 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12711 0, 0);
12712 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12713 mutex_unlock(lock: &kvm->slots_lock);
12714 }
12715 kvm_unload_vcpu_mmus(kvm);
12716 static_call_cond(kvm_x86_vm_destroy)(kvm);
12717 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12718 kvm_pic_destroy(kvm);
12719 kvm_ioapic_destroy(kvm);
12720 kvm_destroy_vcpus(kvm);
12721 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12722 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12723 kvm_mmu_uninit_vm(kvm);
12724 kvm_page_track_cleanup(kvm);
12725 kvm_xen_destroy_vm(kvm);
12726 kvm_hv_destroy_vm(kvm);
12727}
12728
12729static void memslot_rmap_free(struct kvm_memory_slot *slot)
12730{
12731 int i;
12732
12733 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12734 kvfree(addr: slot->arch.rmap[i]);
12735 slot->arch.rmap[i] = NULL;
12736 }
12737}
12738
12739void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12740{
12741 int i;
12742
12743 memslot_rmap_free(slot);
12744
12745 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12746 kvfree(addr: slot->arch.lpage_info[i - 1]);
12747 slot->arch.lpage_info[i - 1] = NULL;
12748 }
12749
12750 kvm_page_track_free_memslot(slot);
12751}
12752
12753int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12754{
12755 const int sz = sizeof(*slot->arch.rmap[0]);
12756 int i;
12757
12758 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12759 int level = i + 1;
12760 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12761
12762 if (slot->arch.rmap[i])
12763 continue;
12764
12765 slot->arch.rmap[i] = __vcalloc(n: lpages, size: sz, GFP_KERNEL_ACCOUNT);
12766 if (!slot->arch.rmap[i]) {
12767 memslot_rmap_free(slot);
12768 return -ENOMEM;
12769 }
12770 }
12771
12772 return 0;
12773}
12774
12775static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12776 struct kvm_memory_slot *slot)
12777{
12778 unsigned long npages = slot->npages;
12779 int i, r;
12780
12781 /*
12782 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12783 * old arrays will be freed by __kvm_set_memory_region() if installing
12784 * the new memslot is successful.
12785 */
12786 memset(&slot->arch, 0, sizeof(slot->arch));
12787
12788 if (kvm_memslots_have_rmaps(kvm)) {
12789 r = memslot_rmap_alloc(slot, npages);
12790 if (r)
12791 return r;
12792 }
12793
12794 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12795 struct kvm_lpage_info *linfo;
12796 unsigned long ugfn;
12797 int lpages;
12798 int level = i + 1;
12799
12800 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12801
12802 linfo = __vcalloc(n: lpages, size: sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12803 if (!linfo)
12804 goto out_free;
12805
12806 slot->arch.lpage_info[i - 1] = linfo;
12807
12808 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12809 linfo[0].disallow_lpage = 1;
12810 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12811 linfo[lpages - 1].disallow_lpage = 1;
12812 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12813 /*
12814 * If the gfn and userspace address are not aligned wrt each
12815 * other, disable large page support for this slot.
12816 */
12817 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12818 unsigned long j;
12819
12820 for (j = 0; j < lpages; ++j)
12821 linfo[j].disallow_lpage = 1;
12822 }
12823 }
12824
12825#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12826 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12827#endif
12828
12829 if (kvm_page_track_create_memslot(kvm, slot, npages))
12830 goto out_free;
12831
12832 return 0;
12833
12834out_free:
12835 memslot_rmap_free(slot);
12836
12837 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12838 kvfree(addr: slot->arch.lpage_info[i - 1]);
12839 slot->arch.lpage_info[i - 1] = NULL;
12840 }
12841 return -ENOMEM;
12842}
12843
12844void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12845{
12846 struct kvm_vcpu *vcpu;
12847 unsigned long i;
12848
12849 /*
12850 * memslots->generation has been incremented.
12851 * mmio generation may have reached its maximum value.
12852 */
12853 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12854
12855 /* Force re-initialization of steal_time cache */
12856 kvm_for_each_vcpu(i, vcpu, kvm)
12857 kvm_vcpu_kick(vcpu);
12858}
12859
12860int kvm_arch_prepare_memory_region(struct kvm *kvm,
12861 const struct kvm_memory_slot *old,
12862 struct kvm_memory_slot *new,
12863 enum kvm_mr_change change)
12864{
12865 /*
12866 * KVM doesn't support moving memslots when there are external page
12867 * trackers attached to the VM, i.e. if KVMGT is in use.
12868 */
12869 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12870 return -EINVAL;
12871
12872 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12873 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12874 return -EINVAL;
12875
12876 return kvm_alloc_memslot_metadata(kvm, slot: new);
12877 }
12878
12879 if (change == KVM_MR_FLAGS_ONLY)
12880 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12881 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12882 return -EIO;
12883
12884 return 0;
12885}
12886
12887
12888static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12889{
12890 int nr_slots;
12891
12892 if (!kvm_x86_ops.cpu_dirty_log_size)
12893 return;
12894
12895 nr_slots = atomic_read(v: &kvm->nr_memslots_dirty_logging);
12896 if ((enable && nr_slots == 1) || !nr_slots)
12897 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12898}
12899
12900static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12901 struct kvm_memory_slot *old,
12902 const struct kvm_memory_slot *new,
12903 enum kvm_mr_change change)
12904{
12905 u32 old_flags = old ? old->flags : 0;
12906 u32 new_flags = new ? new->flags : 0;
12907 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12908
12909 /*
12910 * Update CPU dirty logging if dirty logging is being toggled. This
12911 * applies to all operations.
12912 */
12913 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12914 kvm_mmu_update_cpu_dirty_logging(kvm, enable: log_dirty_pages);
12915
12916 /*
12917 * Nothing more to do for RO slots (which can't be dirtied and can't be
12918 * made writable) or CREATE/MOVE/DELETE of a slot.
12919 *
12920 * For a memslot with dirty logging disabled:
12921 * CREATE: No dirty mappings will already exist.
12922 * MOVE/DELETE: The old mappings will already have been cleaned up by
12923 * kvm_arch_flush_shadow_memslot()
12924 *
12925 * For a memslot with dirty logging enabled:
12926 * CREATE: No shadow pages exist, thus nothing to write-protect
12927 * and no dirty bits to clear.
12928 * MOVE/DELETE: The old mappings will already have been cleaned up by
12929 * kvm_arch_flush_shadow_memslot().
12930 */
12931 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12932 return;
12933
12934 /*
12935 * READONLY and non-flags changes were filtered out above, and the only
12936 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12937 * logging isn't being toggled on or off.
12938 */
12939 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12940 return;
12941
12942 if (!log_dirty_pages) {
12943 /*
12944 * Dirty logging tracks sptes in 4k granularity, meaning that
12945 * large sptes have to be split. If live migration succeeds,
12946 * the guest in the source machine will be destroyed and large
12947 * sptes will be created in the destination. However, if the
12948 * guest continues to run in the source machine (for example if
12949 * live migration fails), small sptes will remain around and
12950 * cause bad performance.
12951 *
12952 * Scan sptes if dirty logging has been stopped, dropping those
12953 * which can be collapsed into a single large-page spte. Later
12954 * page faults will create the large-page sptes.
12955 */
12956 kvm_mmu_zap_collapsible_sptes(kvm, memslot: new);
12957 } else {
12958 /*
12959 * Initially-all-set does not require write protecting any page,
12960 * because they're all assumed to be dirty.
12961 */
12962 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12963 return;
12964
12965 if (READ_ONCE(eager_page_split))
12966 kvm_mmu_slot_try_split_huge_pages(kvm, memslot: new, target_level: PG_LEVEL_4K);
12967
12968 if (kvm_x86_ops.cpu_dirty_log_size) {
12969 kvm_mmu_slot_leaf_clear_dirty(kvm, memslot: new);
12970 kvm_mmu_slot_remove_write_access(kvm, memslot: new, start_level: PG_LEVEL_2M);
12971 } else {
12972 kvm_mmu_slot_remove_write_access(kvm, memslot: new, start_level: PG_LEVEL_4K);
12973 }
12974
12975 /*
12976 * Unconditionally flush the TLBs after enabling dirty logging.
12977 * A flush is almost always going to be necessary (see below),
12978 * and unconditionally flushing allows the helpers to omit
12979 * the subtly complex checks when removing write access.
12980 *
12981 * Do the flush outside of mmu_lock to reduce the amount of
12982 * time mmu_lock is held. Flushing after dropping mmu_lock is
12983 * safe as KVM only needs to guarantee the slot is fully
12984 * write-protected before returning to userspace, i.e. before
12985 * userspace can consume the dirty status.
12986 *
12987 * Flushing outside of mmu_lock requires KVM to be careful when
12988 * making decisions based on writable status of an SPTE, e.g. a
12989 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12990 *
12991 * Specifically, KVM also write-protects guest page tables to
12992 * monitor changes when using shadow paging, and must guarantee
12993 * no CPUs can write to those page before mmu_lock is dropped.
12994 * Because CPUs may have stale TLB entries at this point, a
12995 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12996 *
12997 * KVM also allows making SPTES writable outside of mmu_lock,
12998 * e.g. to allow dirty logging without taking mmu_lock.
12999 *
13000 * To handle these scenarios, KVM uses a separate software-only
13001 * bit (MMU-writable) to track if a SPTE is !writable due to
13002 * a guest page table being write-protected (KVM clears the
13003 * MMU-writable flag when write-protecting for shadow paging).
13004 *
13005 * The use of MMU-writable is also the primary motivation for
13006 * the unconditional flush. Because KVM must guarantee that a
13007 * CPU doesn't contain stale, writable TLB entries for a
13008 * !MMU-writable SPTE, KVM must flush if it encounters any
13009 * MMU-writable SPTE regardless of whether the actual hardware
13010 * writable bit was set. I.e. KVM is almost guaranteed to need
13011 * to flush, while unconditionally flushing allows the "remove
13012 * write access" helpers to ignore MMU-writable entirely.
13013 *
13014 * See is_writable_pte() for more details (the case involving
13015 * access-tracked SPTEs is particularly relevant).
13016 */
13017 kvm_flush_remote_tlbs_memslot(kvm, memslot: new);
13018 }
13019}
13020
13021void kvm_arch_commit_memory_region(struct kvm *kvm,
13022 struct kvm_memory_slot *old,
13023 const struct kvm_memory_slot *new,
13024 enum kvm_mr_change change)
13025{
13026 if (change == KVM_MR_DELETE)
13027 kvm_page_track_delete_slot(kvm, slot: old);
13028
13029 if (!kvm->arch.n_requested_mmu_pages &&
13030 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13031 unsigned long nr_mmu_pages;
13032
13033 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13034 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13035 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages: nr_mmu_pages);
13036 }
13037
13038 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13039
13040 /* Free the arrays associated with the old memslot. */
13041 if (change == KVM_MR_MOVE)
13042 kvm_arch_free_memslot(kvm, slot: old);
13043}
13044
13045static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13046{
13047 return (is_guest_mode(vcpu) &&
13048 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13049}
13050
13051static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13052{
13053 if (!list_empty_careful(head: &vcpu->async_pf.done))
13054 return true;
13055
13056 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13057 kvm_apic_init_sipi_allowed(vcpu))
13058 return true;
13059
13060 if (vcpu->arch.pv.pv_unhalted)
13061 return true;
13062
13063 if (kvm_is_exception_pending(vcpu))
13064 return true;
13065
13066 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13067 (vcpu->arch.nmi_pending &&
13068 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13069 return true;
13070
13071#ifdef CONFIG_KVM_SMM
13072 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13073 (vcpu->arch.smi_pending &&
13074 static_call(kvm_x86_smi_allowed)(vcpu, false)))
13075 return true;
13076#endif
13077
13078 if (kvm_test_request(KVM_REQ_PMI, vcpu))
13079 return true;
13080
13081 if (kvm_arch_interrupt_allowed(vcpu) &&
13082 (kvm_cpu_has_interrupt(vcpu) ||
13083 kvm_guest_apic_has_interrupt(vcpu)))
13084 return true;
13085
13086 if (kvm_hv_has_stimer_pending(vcpu))
13087 return true;
13088
13089 if (is_guest_mode(vcpu) &&
13090 kvm_x86_ops.nested_ops->has_events &&
13091 kvm_x86_ops.nested_ops->has_events(vcpu))
13092 return true;
13093
13094 if (kvm_xen_has_pending_events(vcpu))
13095 return true;
13096
13097 return false;
13098}
13099
13100int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13101{
13102 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13103}
13104
13105bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13106{
13107 return kvm_vcpu_apicv_active(vcpu) &&
13108 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13109}
13110
13111bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13112{
13113 return vcpu->arch.preempted_in_kernel;
13114}
13115
13116bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13117{
13118 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13119 return true;
13120
13121 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13122#ifdef CONFIG_KVM_SMM
13123 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13124#endif
13125 kvm_test_request(KVM_REQ_EVENT, vcpu))
13126 return true;
13127
13128 return kvm_arch_dy_has_pending_interrupt(vcpu);
13129}
13130
13131bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13132{
13133 if (vcpu->arch.guest_state_protected)
13134 return true;
13135
13136 return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13137}
13138
13139unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13140{
13141 return kvm_rip_read(vcpu);
13142}
13143
13144int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13145{
13146 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13147}
13148
13149int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13150{
13151 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13152}
13153
13154unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13155{
13156 /* Can't read the RIP when guest state is protected, just return 0 */
13157 if (vcpu->arch.guest_state_protected)
13158 return 0;
13159
13160 if (is_64_bit_mode(vcpu))
13161 return kvm_rip_read(vcpu);
13162 return (u32)(get_segment_base(vcpu, seg: VCPU_SREG_CS) +
13163 kvm_rip_read(vcpu));
13164}
13165EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13166
13167bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13168{
13169 return kvm_get_linear_rip(vcpu) == linear_rip;
13170}
13171EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13172
13173unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13174{
13175 unsigned long rflags;
13176
13177 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13178 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13179 rflags &= ~X86_EFLAGS_TF;
13180 return rflags;
13181}
13182EXPORT_SYMBOL_GPL(kvm_get_rflags);
13183
13184static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13185{
13186 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13187 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13188 rflags |= X86_EFLAGS_TF;
13189 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13190}
13191
13192void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13193{
13194 __kvm_set_rflags(vcpu, rflags);
13195 kvm_make_request(KVM_REQ_EVENT, vcpu);
13196}
13197EXPORT_SYMBOL_GPL(kvm_set_rflags);
13198
13199static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13200{
13201 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13202
13203 return hash_32(val: gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13204}
13205
13206static inline u32 kvm_async_pf_next_probe(u32 key)
13207{
13208 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13209}
13210
13211static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13212{
13213 u32 key = kvm_async_pf_hash_fn(gfn);
13214
13215 while (vcpu->arch.apf.gfns[key] != ~0)
13216 key = kvm_async_pf_next_probe(key);
13217
13218 vcpu->arch.apf.gfns[key] = gfn;
13219}
13220
13221static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13222{
13223 int i;
13224 u32 key = kvm_async_pf_hash_fn(gfn);
13225
13226 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13227 (vcpu->arch.apf.gfns[key] != gfn &&
13228 vcpu->arch.apf.gfns[key] != ~0); i++)
13229 key = kvm_async_pf_next_probe(key);
13230
13231 return key;
13232}
13233
13234bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13235{
13236 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13237}
13238
13239static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13240{
13241 u32 i, j, k;
13242
13243 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13244
13245 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13246 return;
13247
13248 while (true) {
13249 vcpu->arch.apf.gfns[i] = ~0;
13250 do {
13251 j = kvm_async_pf_next_probe(key: j);
13252 if (vcpu->arch.apf.gfns[j] == ~0)
13253 return;
13254 k = kvm_async_pf_hash_fn(gfn: vcpu->arch.apf.gfns[j]);
13255 /*
13256 * k lies cyclically in ]i,j]
13257 * | i.k.j |
13258 * |....j i.k.| or |.k..j i...|
13259 */
13260 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13261 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13262 i = j;
13263 }
13264}
13265
13266static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13267{
13268 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13269
13270 return kvm_write_guest_cached(kvm: vcpu->kvm, ghc: &vcpu->arch.apf.data, data: &reason,
13271 len: sizeof(reason));
13272}
13273
13274static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13275{
13276 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13277
13278 return kvm_write_guest_offset_cached(kvm: vcpu->kvm, ghc: &vcpu->arch.apf.data,
13279 data: &token, offset, len: sizeof(token));
13280}
13281
13282static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13283{
13284 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13285 u32 val;
13286
13287 if (kvm_read_guest_offset_cached(kvm: vcpu->kvm, ghc: &vcpu->arch.apf.data,
13288 data: &val, offset, len: sizeof(val)))
13289 return false;
13290
13291 return !val;
13292}
13293
13294static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13295{
13296
13297 if (!kvm_pv_async_pf_enabled(vcpu))
13298 return false;
13299
13300 if (vcpu->arch.apf.send_user_only &&
13301 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13302 return false;
13303
13304 if (is_guest_mode(vcpu)) {
13305 /*
13306 * L1 needs to opt into the special #PF vmexits that are
13307 * used to deliver async page faults.
13308 */
13309 return vcpu->arch.apf.delivery_as_pf_vmexit;
13310 } else {
13311 /*
13312 * Play it safe in case the guest temporarily disables paging.
13313 * The real mode IDT in particular is unlikely to have a #PF
13314 * exception setup.
13315 */
13316 return is_paging(vcpu);
13317 }
13318}
13319
13320bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13321{
13322 if (unlikely(!lapic_in_kernel(vcpu) ||
13323 kvm_event_needs_reinjection(vcpu) ||
13324 kvm_is_exception_pending(vcpu)))
13325 return false;
13326
13327 if (kvm_hlt_in_guest(kvm: vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13328 return false;
13329
13330 /*
13331 * If interrupts are off we cannot even use an artificial
13332 * halt state.
13333 */
13334 return kvm_arch_interrupt_allowed(vcpu);
13335}
13336
13337bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13338 struct kvm_async_pf *work)
13339{
13340 struct x86_exception fault;
13341
13342 trace_kvm_async_pf_not_present(token: work->arch.token, gva: work->cr2_or_gpa);
13343 kvm_add_async_pf_gfn(vcpu, gfn: work->arch.gfn);
13344
13345 if (kvm_can_deliver_async_pf(vcpu) &&
13346 !apf_put_user_notpresent(vcpu)) {
13347 fault.vector = PF_VECTOR;
13348 fault.error_code_valid = true;
13349 fault.error_code = 0;
13350 fault.nested_page_fault = false;
13351 fault.address = work->arch.token;
13352 fault.async_page_fault = true;
13353 kvm_inject_page_fault(vcpu, fault: &fault);
13354 return true;
13355 } else {
13356 /*
13357 * It is not possible to deliver a paravirtualized asynchronous
13358 * page fault, but putting the guest in an artificial halt state
13359 * can be beneficial nevertheless: if an interrupt arrives, we
13360 * can deliver it timely and perhaps the guest will schedule
13361 * another process. When the instruction that triggered a page
13362 * fault is retried, hopefully the page will be ready in the host.
13363 */
13364 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13365 return false;
13366 }
13367}
13368
13369void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13370 struct kvm_async_pf *work)
13371{
13372 struct kvm_lapic_irq irq = {
13373 .delivery_mode = APIC_DM_FIXED,
13374 .vector = vcpu->arch.apf.vec
13375 };
13376
13377 if (work->wakeup_all)
13378 work->arch.token = ~0; /* broadcast wakeup */
13379 else
13380 kvm_del_async_pf_gfn(vcpu, gfn: work->arch.gfn);
13381 trace_kvm_async_pf_ready(token: work->arch.token, gva: work->cr2_or_gpa);
13382
13383 if ((work->wakeup_all || work->notpresent_injected) &&
13384 kvm_pv_async_pf_enabled(vcpu) &&
13385 !apf_put_user_ready(vcpu, token: work->arch.token)) {
13386 vcpu->arch.apf.pageready_pending = true;
13387 kvm_apic_set_irq(vcpu, irq: &irq, NULL);
13388 }
13389
13390 vcpu->arch.apf.halted = false;
13391 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13392}
13393
13394void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13395{
13396 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13397 if (!vcpu->arch.apf.pageready_pending)
13398 kvm_vcpu_kick(vcpu);
13399}
13400
13401bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13402{
13403 if (!kvm_pv_async_pf_enabled(vcpu))
13404 return true;
13405 else
13406 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13407}
13408
13409void kvm_arch_start_assignment(struct kvm *kvm)
13410{
13411 if (atomic_inc_return(v: &kvm->arch.assigned_device_count) == 1)
13412 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13413}
13414EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13415
13416void kvm_arch_end_assignment(struct kvm *kvm)
13417{
13418 atomic_dec(v: &kvm->arch.assigned_device_count);
13419}
13420EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13421
13422bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13423{
13424 return raw_atomic_read(v: &kvm->arch.assigned_device_count);
13425}
13426EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13427
13428static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13429{
13430 /*
13431 * Non-coherent DMA assignment and de-assignment will affect
13432 * whether KVM honors guest MTRRs and cause changes in memtypes
13433 * in TDP.
13434 * So, pass %true unconditionally to indicate non-coherent DMA was,
13435 * or will be involved, and that zapping SPTEs might be necessary.
13436 */
13437 if (__kvm_mmu_honors_guest_mtrrs(vm_has_noncoherent_dma: true))
13438 kvm_zap_gfn_range(kvm, gfn_start: gpa_to_gfn(gpa: 0), gfn_end: gpa_to_gfn(gpa: ~0ULL));
13439}
13440
13441void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13442{
13443 if (atomic_inc_return(v: &kvm->arch.noncoherent_dma_count) == 1)
13444 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13445}
13446EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13447
13448void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13449{
13450 if (!atomic_dec_return(v: &kvm->arch.noncoherent_dma_count))
13451 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13452}
13453EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13454
13455bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13456{
13457 return atomic_read(v: &kvm->arch.noncoherent_dma_count);
13458}
13459EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13460
13461bool kvm_arch_has_irq_bypass(void)
13462{
13463 return enable_apicv && irq_remapping_cap(cap: IRQ_POSTING_CAP);
13464}
13465
13466int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13467 struct irq_bypass_producer *prod)
13468{
13469 struct kvm_kernel_irqfd *irqfd =
13470 container_of(cons, struct kvm_kernel_irqfd, consumer);
13471 int ret;
13472
13473 irqfd->producer = prod;
13474 kvm_arch_start_assignment(irqfd->kvm);
13475 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13476 prod->irq, irqfd->gsi, 1);
13477
13478 if (ret)
13479 kvm_arch_end_assignment(irqfd->kvm);
13480
13481 return ret;
13482}
13483
13484void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13485 struct irq_bypass_producer *prod)
13486{
13487 int ret;
13488 struct kvm_kernel_irqfd *irqfd =
13489 container_of(cons, struct kvm_kernel_irqfd, consumer);
13490
13491 WARN_ON(irqfd->producer != prod);
13492 irqfd->producer = NULL;
13493
13494 /*
13495 * When producer of consumer is unregistered, we change back to
13496 * remapped mode, so we can re-use the current implementation
13497 * when the irq is masked/disabled or the consumer side (KVM
13498 * int this case doesn't want to receive the interrupts.
13499 */
13500 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13501 if (ret)
13502 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13503 " fails: %d\n", irqfd->consumer.token, ret);
13504
13505 kvm_arch_end_assignment(irqfd->kvm);
13506}
13507
13508int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13509 uint32_t guest_irq, bool set)
13510{
13511 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13512}
13513
13514bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13515 struct kvm_kernel_irq_routing_entry *new)
13516{
13517 if (new->type != KVM_IRQ_ROUTING_MSI)
13518 return true;
13519
13520 return !!memcmp(p: &old->msi, q: &new->msi, size: sizeof(new->msi));
13521}
13522
13523bool kvm_vector_hashing_enabled(void)
13524{
13525 return vector_hashing;
13526}
13527
13528bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13529{
13530 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13531}
13532EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13533
13534
13535int kvm_spec_ctrl_test_value(u64 value)
13536{
13537 /*
13538 * test that setting IA32_SPEC_CTRL to given value
13539 * is allowed by the host processor
13540 */
13541
13542 u64 saved_value;
13543 unsigned long flags;
13544 int ret = 0;
13545
13546 local_irq_save(flags);
13547
13548 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, p: &saved_value))
13549 ret = 1;
13550 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, val: value))
13551 ret = 1;
13552 else
13553 wrmsrl(MSR_IA32_SPEC_CTRL, val: saved_value);
13554
13555 local_irq_restore(flags);
13556
13557 return ret;
13558}
13559EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13560
13561void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13562{
13563 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13564 struct x86_exception fault;
13565 u64 access = error_code &
13566 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13567
13568 if (!(error_code & PFERR_PRESENT_MASK) ||
13569 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13570 /*
13571 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13572 * tables probably do not match the TLB. Just proceed
13573 * with the error code that the processor gave.
13574 */
13575 fault.vector = PF_VECTOR;
13576 fault.error_code_valid = true;
13577 fault.error_code = error_code;
13578 fault.nested_page_fault = false;
13579 fault.address = gva;
13580 fault.async_page_fault = false;
13581 }
13582 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13583}
13584EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13585
13586/*
13587 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13588 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13589 * indicates whether exit to userspace is needed.
13590 */
13591int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13592 struct x86_exception *e)
13593{
13594 if (r == X86EMUL_PROPAGATE_FAULT) {
13595 if (KVM_BUG_ON(!e, vcpu->kvm))
13596 return -EIO;
13597
13598 kvm_inject_emulated_page_fault(vcpu, e);
13599 return 1;
13600 }
13601
13602 /*
13603 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13604 * while handling a VMX instruction KVM could've handled the request
13605 * correctly by exiting to userspace and performing I/O but there
13606 * doesn't seem to be a real use-case behind such requests, just return
13607 * KVM_EXIT_INTERNAL_ERROR for now.
13608 */
13609 kvm_prepare_emulation_failure_exit(vcpu);
13610
13611 return 0;
13612}
13613EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13614
13615int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13616{
13617 bool pcid_enabled;
13618 struct x86_exception e;
13619 struct {
13620 u64 pcid;
13621 u64 gla;
13622 } operand;
13623 int r;
13624
13625 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13626 if (r != X86EMUL_CONTINUE)
13627 return kvm_handle_memory_failure(vcpu, r, &e);
13628
13629 if (operand.pcid >> 12 != 0) {
13630 kvm_inject_gp(vcpu, error_code: 0);
13631 return 1;
13632 }
13633
13634 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13635
13636 switch (type) {
13637 case INVPCID_TYPE_INDIV_ADDR:
13638 /*
13639 * LAM doesn't apply to addresses that are inputs to TLB
13640 * invalidation.
13641 */
13642 if ((!pcid_enabled && (operand.pcid != 0)) ||
13643 is_noncanonical_address(la: operand.gla, vcpu)) {
13644 kvm_inject_gp(vcpu, error_code: 0);
13645 return 1;
13646 }
13647 kvm_mmu_invpcid_gva(vcpu, gva: operand.gla, pcid: operand.pcid);
13648 return kvm_skip_emulated_instruction(vcpu);
13649
13650 case INVPCID_TYPE_SINGLE_CTXT:
13651 if (!pcid_enabled && (operand.pcid != 0)) {
13652 kvm_inject_gp(vcpu, error_code: 0);
13653 return 1;
13654 }
13655
13656 kvm_invalidate_pcid(vcpu, pcid: operand.pcid);
13657 return kvm_skip_emulated_instruction(vcpu);
13658
13659 case INVPCID_TYPE_ALL_NON_GLOBAL:
13660 /*
13661 * Currently, KVM doesn't mark global entries in the shadow
13662 * page tables, so a non-global flush just degenerates to a
13663 * global flush. If needed, we could optimize this later by
13664 * keeping track of global entries in shadow page tables.
13665 */
13666
13667 fallthrough;
13668 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13669 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13670 return kvm_skip_emulated_instruction(vcpu);
13671
13672 default:
13673 kvm_inject_gp(vcpu, error_code: 0);
13674 return 1;
13675 }
13676}
13677EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13678
13679static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13680{
13681 struct kvm_run *run = vcpu->run;
13682 struct kvm_mmio_fragment *frag;
13683 unsigned int len;
13684
13685 BUG_ON(!vcpu->mmio_needed);
13686
13687 /* Complete previous fragment */
13688 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13689 len = min(8u, frag->len);
13690 if (!vcpu->mmio_is_write)
13691 memcpy(frag->data, run->mmio.data, len);
13692
13693 if (frag->len <= 8) {
13694 /* Switch to the next fragment. */
13695 frag++;
13696 vcpu->mmio_cur_fragment++;
13697 } else {
13698 /* Go forward to the next mmio piece. */
13699 frag->data += len;
13700 frag->gpa += len;
13701 frag->len -= len;
13702 }
13703
13704 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13705 vcpu->mmio_needed = 0;
13706
13707 // VMG change, at this point, we're always done
13708 // RIP has already been advanced
13709 return 1;
13710 }
13711
13712 // More MMIO is needed
13713 run->mmio.phys_addr = frag->gpa;
13714 run->mmio.len = min(8u, frag->len);
13715 run->mmio.is_write = vcpu->mmio_is_write;
13716 if (run->mmio.is_write)
13717 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13718 run->exit_reason = KVM_EXIT_MMIO;
13719
13720 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13721
13722 return 0;
13723}
13724
13725int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13726 void *data)
13727{
13728 int handled;
13729 struct kvm_mmio_fragment *frag;
13730
13731 if (!data)
13732 return -EINVAL;
13733
13734 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13735 if (handled == bytes)
13736 return 1;
13737
13738 bytes -= handled;
13739 gpa += handled;
13740 data += handled;
13741
13742 /*TODO: Check if need to increment number of frags */
13743 frag = vcpu->mmio_fragments;
13744 vcpu->mmio_nr_fragments = 1;
13745 frag->len = bytes;
13746 frag->gpa = gpa;
13747 frag->data = data;
13748
13749 vcpu->mmio_needed = 1;
13750 vcpu->mmio_cur_fragment = 0;
13751
13752 vcpu->run->mmio.phys_addr = gpa;
13753 vcpu->run->mmio.len = min(8u, frag->len);
13754 vcpu->run->mmio.is_write = 1;
13755 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13756 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13757
13758 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13759
13760 return 0;
13761}
13762EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13763
13764int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13765 void *data)
13766{
13767 int handled;
13768 struct kvm_mmio_fragment *frag;
13769
13770 if (!data)
13771 return -EINVAL;
13772
13773 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13774 if (handled == bytes)
13775 return 1;
13776
13777 bytes -= handled;
13778 gpa += handled;
13779 data += handled;
13780
13781 /*TODO: Check if need to increment number of frags */
13782 frag = vcpu->mmio_fragments;
13783 vcpu->mmio_nr_fragments = 1;
13784 frag->len = bytes;
13785 frag->gpa = gpa;
13786 frag->data = data;
13787
13788 vcpu->mmio_needed = 1;
13789 vcpu->mmio_cur_fragment = 0;
13790
13791 vcpu->run->mmio.phys_addr = gpa;
13792 vcpu->run->mmio.len = min(8u, frag->len);
13793 vcpu->run->mmio.is_write = 0;
13794 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13795
13796 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13797
13798 return 0;
13799}
13800EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13801
13802static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13803{
13804 vcpu->arch.sev_pio_count -= count;
13805 vcpu->arch.sev_pio_data += count * size;
13806}
13807
13808static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13809 unsigned int port);
13810
13811static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13812{
13813 int size = vcpu->arch.pio.size;
13814 int port = vcpu->arch.pio.port;
13815
13816 vcpu->arch.pio.count = 0;
13817 if (vcpu->arch.sev_pio_count)
13818 return kvm_sev_es_outs(vcpu, size, port);
13819 return 1;
13820}
13821
13822static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13823 unsigned int port)
13824{
13825 for (;;) {
13826 unsigned int count =
13827 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13828 int ret = emulator_pio_out(vcpu, size, port, val: vcpu->arch.sev_pio_data, count);
13829
13830 /* memcpy done already by emulator_pio_out. */
13831 advance_sev_es_emulated_pio(vcpu, count, size);
13832 if (!ret)
13833 break;
13834
13835 /* Emulation done by the kernel. */
13836 if (!vcpu->arch.sev_pio_count)
13837 return 1;
13838 }
13839
13840 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13841 return 0;
13842}
13843
13844static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13845 unsigned int port);
13846
13847static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13848{
13849 unsigned count = vcpu->arch.pio.count;
13850 int size = vcpu->arch.pio.size;
13851 int port = vcpu->arch.pio.port;
13852
13853 complete_emulator_pio_in(vcpu, val: vcpu->arch.sev_pio_data);
13854 advance_sev_es_emulated_pio(vcpu, count, size);
13855 if (vcpu->arch.sev_pio_count)
13856 return kvm_sev_es_ins(vcpu, size, port);
13857 return 1;
13858}
13859
13860static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13861 unsigned int port)
13862{
13863 for (;;) {
13864 unsigned int count =
13865 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13866 if (!emulator_pio_in(vcpu, size, port, val: vcpu->arch.sev_pio_data, count))
13867 break;
13868
13869 /* Emulation done by the kernel. */
13870 advance_sev_es_emulated_pio(vcpu, count, size);
13871 if (!vcpu->arch.sev_pio_count)
13872 return 1;
13873 }
13874
13875 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13876 return 0;
13877}
13878
13879int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13880 unsigned int port, void *data, unsigned int count,
13881 int in)
13882{
13883 vcpu->arch.sev_pio_data = data;
13884 vcpu->arch.sev_pio_count = count;
13885 return in ? kvm_sev_es_ins(vcpu, size, port)
13886 : kvm_sev_es_outs(vcpu, size, port);
13887}
13888EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13889
13890EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13891EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13892EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13893EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13894EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13895EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13896EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13897EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13898EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13899EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13900EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13901EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13902EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13903EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13904EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13905EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13906EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13907EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13908EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13909EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13910EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13911EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13912EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13913EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13914EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13915EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13916EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13917EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13918EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13919
13920static int __init kvm_x86_init(void)
13921{
13922 kvm_mmu_x86_module_init();
13923 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13924 return 0;
13925}
13926module_init(kvm_x86_init);
13927
13928static void __exit kvm_x86_exit(void)
13929{
13930 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
13931}
13932module_exit(kvm_x86_exit);
13933

source code of linux/arch/x86/kvm/x86.c