1 | // |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions |
4 | // are met: |
5 | // * Redistributions of source code must retain the above copyright |
6 | // notice, this list of conditions and the following disclaimer. |
7 | // * Redistributions in binary form must reproduce the above copyright |
8 | // notice, this list of conditions and the following disclaimer in the |
9 | // documentation and/or other materials provided with the distribution. |
10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
11 | // contributors may be used to endorse or promote products derived |
12 | // from this software without specific prior written permission. |
13 | // |
14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | // |
26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
29 | |
30 | |
31 | #include "PsMathUtils.h" |
32 | #include "CmConeLimitHelper.h" |
33 | #include "DySolverConstraint1D.h" |
34 | #include "DyFeatherstoneArticulation.h" |
35 | #include "PxsRigidBody.h" |
36 | #include "PxcConstraintBlockStream.h" |
37 | #include "DyArticulationContactPrep.h" |
38 | #include "DyDynamics.h" |
39 | #include "DyArticulationReference.h" |
40 | #include "DyArticulationPImpl.h" |
41 | #include "foundation/PxProfiler.h" |
42 | #include "DyArticulationFnsSimd.h" |
43 | #include "PsFoundation.h" |
44 | #include "extensions/PxContactJoint.h" |
45 | #include "DyFeatherstoneArticulationLink.h" |
46 | #include "DyFeatherstoneArticulationJointData.h" |
47 | #include "DyConstraint.h" |
48 | #include "DyConstraintPrep.h" |
49 | #include "DySolverContext.h" |
50 | |
51 | namespace physx |
52 | { |
53 | |
54 | namespace Dy |
55 | { |
56 | void PxcFsFlushVelocity(FeatherstoneArticulation& articulation, Cm::SpatialVectorF* deltaV); |
57 | |
58 | void FeatherstoneArticulation::computeLinkAccelerationInv(ArticulationData& data, ScratchData& scratchData) |
59 | { |
60 | Cm::SpatialVectorF* motionAccelerations = scratchData.motionAccelerations; |
61 | |
62 | Cm::SpatialVectorF* coriolisVectors = scratchData.coriolisVectors; |
63 | |
64 | PxReal* jointAccelerations = scratchData.jointAccelerations; |
65 | |
66 | motionAccelerations[0] = Cm::SpatialVectorF::Zero(); |
67 | |
68 | for (PxU32 linkID = 1; linkID < data.getLinkCount(); ++linkID) |
69 | { |
70 | ArticulationLink& link = data.getLink(index: linkID); |
71 | |
72 | Cm::SpatialVectorF pMotionAcceleration = translateSpatialVector(offset: -data.getLinkData(index: linkID).rw, vec: motionAccelerations[link.parent]); |
73 | |
74 | Cm::SpatialVectorF motionAcceleration(PxVec3(0.f), PxVec3(0.f)); |
75 | |
76 | if (jointAccelerations) |
77 | { |
78 | ArticulationJointCoreData& jointDatum = data.getJointData(index: linkID); |
79 | const PxReal* jAcceleration = &jointAccelerations[jointDatum.jointOffset]; |
80 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
81 | { |
82 | motionAcceleration.top += data.mWorldMotionMatrix[linkID][ind].top * jAcceleration[ind]; |
83 | motionAcceleration.bottom += data.mWorldMotionMatrix[linkID][ind].bottom * jAcceleration[ind]; |
84 | } |
85 | } |
86 | |
87 | motionAccelerations[linkID] = pMotionAcceleration + coriolisVectors[linkID] + motionAcceleration; |
88 | } |
89 | } |
90 | |
91 | //generalized force |
92 | void FeatherstoneArticulation::computeGeneralizedForceInv(ArticulationData& data, ScratchData& scratchData) |
93 | { |
94 | const PxU32 linkCount = data.getLinkCount(); |
95 | |
96 | Cm::SpatialVectorF* spatialZAForces = scratchData.spatialZAVectors; |
97 | PxReal* jointForces = scratchData.jointForces; |
98 | |
99 | for (PxU32 linkID = (linkCount - 1); linkID > 0; --linkID) |
100 | { |
101 | ArticulationLink& link = data.getLink(index: linkID); |
102 | |
103 | //joint force |
104 | |
105 | spatialZAForces[link.parent] += translateSpatialVector(offset: data.getLinkData(index: linkID).rw, vec: spatialZAForces[linkID]); |
106 | |
107 | ArticulationJointCoreData& jointDatum = data.getJointData(index: linkID); |
108 | //compute generalized force |
109 | PxReal* force = &jointForces[jointDatum.jointOffset]; |
110 | |
111 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
112 | { |
113 | force[ind] = data.mWorldMotionMatrix[linkID][ind].innerProduct(v: spatialZAForces[linkID]); |
114 | } |
115 | } |
116 | } |
117 | |
118 | void FeatherstoneArticulation::computeZAForceInv(ArticulationData& data, ScratchData& scratchData) |
119 | { |
120 | const PxU32 linkCount = data.getLinkCount(); |
121 | |
122 | Cm::SpatialVectorF* motionAccelerations = scratchData.motionAccelerations; |
123 | |
124 | Cm::SpatialVectorF* biasForce = scratchData.spatialZAVectors; |
125 | |
126 | for (PxU32 linkID = 0; linkID < linkCount; ++linkID) |
127 | { |
128 | ArticulationLink& link = data.getLink(index: linkID); |
129 | |
130 | PxsBodyCore& core = *link.bodyCore; |
131 | |
132 | const PxVec3& ii = core.inverseInertia; |
133 | |
134 | const PxReal m = core.inverseMass == 0.f ? 0.f : 1.0f / core.inverseMass; |
135 | const PxVec3 inertiaTensor = PxVec3(ii.x == 0.f ? 0.f : (1.f / ii.x), ii.y == 0.f ? 0.f : (1.f / ii.y), ii.z == 0.f ? 0.f : (1.f / ii.z)); |
136 | |
137 | |
138 | Cm::SpatialVectorF Ia; |
139 | Ia.bottom = core.body2World.rotate(input: core.body2World.rotateInv(input: motionAccelerations[linkID].top).multiply(a: inertiaTensor)); |
140 | Ia.top = motionAccelerations[linkID].bottom * m; |
141 | |
142 | biasForce[linkID] +=Ia; |
143 | } |
144 | } |
145 | |
146 | void FeatherstoneArticulation::initCompositeSpatialInertia(ArticulationData& data, Dy::SpatialMatrix* compositeSpatialInertia) |
147 | { |
148 | const PxU32 linkCount = data.getLinkCount(); |
149 | |
150 | for (PxU32 linkID = 0; linkID < linkCount; ++linkID) |
151 | { |
152 | SpatialMatrix& spatialInertia = compositeSpatialInertia[linkID]; |
153 | |
154 | ArticulationLink& link = data.getLink(index: linkID); |
155 | |
156 | PxsBodyCore& core = *link.bodyCore; |
157 | |
158 | const PxVec3& ii = core.inverseInertia; |
159 | |
160 | const PxReal m = core.inverseMass == 0.f ? 0.f : 1.0f / core.inverseMass; |
161 | |
162 | //construct mass matric |
163 | spatialInertia.topLeft = PxMat33(PxZero); |
164 | spatialInertia.topRight = PxMat33::createDiagonal(d: PxVec3(m)); |
165 | |
166 | //construct inertia matrix |
167 | PxMat33 rot(data.getLink(index: linkID).bodyCore->body2World.q); |
168 | PxMat33& I = spatialInertia.bottomLeft; |
169 | const PxVec3 inertiaTensor = PxVec3(ii.x == 0.f ? 0.f : (1.f / ii.x), ii.y == 0.f ? 0.f : (1.f / ii.y), ii.z == 0.f ? 0.f : (1.f / ii.z)); |
170 | Cm::transformInertiaTensor(invD: inertiaTensor, M: rot, mIInv&: I); |
171 | } |
172 | } |
173 | |
174 | void FeatherstoneArticulation::computeCompositeSpatialInertiaAndZAForceInv(ArticulationData& data, ScratchData& scratchData) |
175 | { |
176 | ArticulationLink* links = data.getLinks(); |
177 | const PxU32 linkCount = data.getLinkCount(); |
178 | const PxU32 startIndex = PxU32(linkCount - 1); |
179 | |
180 | Dy::SpatialMatrix* compositeSpatialInertia = scratchData.compositeSpatialInertias; |
181 | Cm::SpatialVectorF* zaForce = scratchData.spatialZAVectors; |
182 | |
183 | initCompositeSpatialInertia(data, compositeSpatialInertia); |
184 | |
185 | for (PxU32 linkID = startIndex; linkID > 0; --linkID) |
186 | { |
187 | ArticulationLink& link = links[linkID]; |
188 | |
189 | Dy::SpatialMatrix cSpatialInertia = compositeSpatialInertia[linkID]; |
190 | translateInertia(offset: FeatherstoneArticulation::constructSkewSymmetricMatrix(r: data.mLinksData[linkID].rw), inertia&: cSpatialInertia); |
191 | |
192 | //compute parent's composite spatial inertia |
193 | compositeSpatialInertia[link.parent] += cSpatialInertia; |
194 | |
195 | //compute zero acceleration force. This is the force that would be required to support the |
196 | //motion of all the bodies in childen set if root node acceleration happened to be zero |
197 | zaForce[link.parent] += translateSpatialVector(offset: data.getLinkData(index: linkID).rw, vec: zaForce[linkID]); |
198 | } |
199 | } |
200 | |
201 | void FeatherstoneArticulation::computeRelativeGeneralizedForceInv(ArticulationData& data, ScratchData& scratchData) |
202 | { |
203 | Cm::SpatialVectorF* motionAccelerations = scratchData.motionAccelerations; |
204 | Dy::SpatialMatrix* compositeSpatialInertia = scratchData.compositeSpatialInertias; |
205 | Cm::SpatialVectorF* zaForce = scratchData.spatialZAVectors; |
206 | PxReal* jointForces = scratchData.jointForces; |
207 | |
208 | Dy::SpatialMatrix invInertia = compositeSpatialInertia[0].invertInertia(); |
209 | motionAccelerations[0] = -(invInertia * zaForce[0]); |
210 | |
211 | const PxU32 linkCount = data.getLinkCount(); |
212 | ArticulationLink* links = data.getLinks(); |
213 | |
214 | for (PxU32 linkID = 1; linkID < linkCount; ++linkID) |
215 | { |
216 | ArticulationLink& link = links[linkID]; |
217 | |
218 | //const SpatialTransform p2c = data.mChildToParent[linkID].getTranspose(); |
219 | |
220 | motionAccelerations[linkID] = translateSpatialVector(offset: -data.mLinksData[linkID].rw, vec: motionAccelerations[link.parent]); |
221 | |
222 | |
223 | zaForce[linkID] = compositeSpatialInertia[linkID] * motionAccelerations[linkID] + zaForce[linkID]; |
224 | ArticulationJointCoreData& jointDatum = data.getJointData(index: linkID); |
225 | //compute generalized force |
226 | PxReal* jForce = &jointForces[jointDatum.jointOffset]; |
227 | |
228 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
229 | { |
230 | jForce[ind] = data.mWorldMotionMatrix[linkID][ind].innerProduct(v: zaForce[linkID]); |
231 | } |
232 | } |
233 | } |
234 | |
235 | void FeatherstoneArticulation::inverseDynamic(ArticulationData& data, const PxVec3& gravity, |
236 | ScratchData& scratchData, bool computeCoriolis) |
237 | { |
238 | //pass 1 |
239 | computeLinkVelocities(data, scratchData); |
240 | |
241 | if(computeCoriolis) |
242 | computeC(data, scratchData); |
243 | else |
244 | PxMemZero(dest: scratchData.coriolisVectors, count: sizeof(Cm::SpatialVectorF)*data.getLinkCount()); |
245 | |
246 | computeZ(data, gravity, scratchData); |
247 | |
248 | computeLinkAccelerationInv(data, scratchData); |
249 | |
250 | computeZAForceInv(data, scratchData); |
251 | |
252 | //pass 2 |
253 | computeGeneralizedForceInv(data, scratchData); |
254 | } |
255 | |
256 | void FeatherstoneArticulation::inverseDynamicFloatingBase(ArticulationData& data, const PxVec3& gravity, |
257 | ScratchData& scratchData, bool computeCoriolis) |
258 | { |
259 | //pass 1 |
260 | computeLinkVelocities(data, scratchData); |
261 | |
262 | if(computeCoriolis) |
263 | computeC(data, scratchData); |
264 | else |
265 | PxMemZero(dest: scratchData.coriolisVectors, count: sizeof(Cm::SpatialVectorF)*data.getLinkCount()); |
266 | |
267 | computeZ(data, gravity, scratchData); |
268 | //no gravity, no external accelerations because we have turned those in force in |
269 | //computeZ |
270 | computeLinkAccelerationInv(data, scratchData); |
271 | |
272 | computeZAForceInv(data, scratchData); |
273 | |
274 | //pass 2 |
275 | computeCompositeSpatialInertiaAndZAForceInv(data, scratchData); |
276 | |
277 | //pass 3 |
278 | computeRelativeGeneralizedForceInv(data, scratchData); |
279 | } |
280 | |
281 | |
282 | bool FeatherstoneArticulation::applyCacheToDest(ArticulationData& data, PxArticulationCache& cache, |
283 | PxReal* jVelocities, PxReal* jAccelerations, PxReal* jPositions, PxReal* jointForces, |
284 | const PxArticulationCacheFlags flag) |
285 | { |
286 | bool needsScheduling = !mGPUDirtyFlags; |
287 | |
288 | if (flag & PxArticulationCache::eVELOCITY) |
289 | { |
290 | copyJointData(data, toJointData: jVelocities, fromJointData: cache.jointVelocity); |
291 | mGPUDirtyFlags |= ArticulationDirtyFlag::eDIRTY_VELOCITIES; |
292 | } |
293 | |
294 | if (flag & PxArticulationCache::eACCELERATION) |
295 | { |
296 | copyJointData(data, toJointData: jAccelerations, fromJointData: cache.jointAcceleration); |
297 | mGPUDirtyFlags |= ArticulationDirtyFlag::eDIRTY_ACCELERATIONS; |
298 | } |
299 | |
300 | if (flag & PxArticulationCache::eROOT) |
301 | { |
302 | ArticulationLink& rLink = mArticulationData.getLink(index: 0); |
303 | if (flag & PxArticulationCache::ePOSITION) |
304 | rLink.bodyCore->body2World = cache.rootLinkData->transform * rLink.bodyCore->getBody2Actor(); |
305 | if (flag & PxArticulationCache::eVELOCITY) |
306 | { |
307 | rLink.bodyCore->linearVelocity = cache.rootLinkData->worldLinVel; |
308 | rLink.bodyCore->angularVelocity = cache.rootLinkData->worldAngVel; |
309 | } |
310 | mGPUDirtyFlags |= ArticulationDirtyFlag::eDIRTY_ROOT; |
311 | } |
312 | |
313 | if (flag & PxArticulationCache::ePOSITION) |
314 | { |
315 | copyJointData(data, toJointData: jPositions, fromJointData: cache.jointPosition); |
316 | //When we update the joint positions, we also have to update the link state, so need to make links |
317 | //dirty! |
318 | mGPUDirtyFlags |= (ArticulationDirtyFlag::eDIRTY_POSITIONS); |
319 | } |
320 | |
321 | if (flag & PxArticulationCache::eFORCE) |
322 | { |
323 | copyJointData(data, toJointData: jointForces, fromJointData: cache.jointForce); |
324 | mGPUDirtyFlags |= ArticulationDirtyFlag::eDIRTY_FORCES; |
325 | } |
326 | |
327 | if ((flag & PxArticulationCache::ePOSITION)) |
328 | { |
329 | //update link's position based on the joint position |
330 | teleportLinks(data); |
331 | } |
332 | |
333 | if ((flag & PxArticulationCache::eVELOCITY) || (flag & PxArticulationCache::ePOSITION)) |
334 | { |
335 | computeLinkVelocities(data); |
336 | } |
337 | |
338 | return needsScheduling; |
339 | } |
340 | |
341 | void FeatherstoneArticulation::packJointData(const PxReal* maximum, PxReal* reduced) |
342 | { |
343 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
344 | |
345 | for (PxU32 linkID = 1; linkID < linkCount; linkID++) |
346 | { |
347 | |
348 | ArticulationLink& linkDatum = mArticulationData.getLink(index: linkID); |
349 | ArticulationJointCore* joint = linkDatum.inboundJoint; |
350 | ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(index: linkID); |
351 | |
352 | const PxReal* maxJointData = &maximum[(linkID - 1) * DY_MAX_DOF]; |
353 | PxReal* reducedJointData = &reduced[jointDatum.jointOffset]; |
354 | |
355 | PxU32 count = 0; |
356 | for (PxU32 j = 0; j < DY_MAX_DOF; ++j) |
357 | { |
358 | PxArticulationMotions motion = PxArticulationMotions(joint->motion[j]); |
359 | if (motion != PxArticulationMotion::eLOCKED) |
360 | { |
361 | reducedJointData[count] = maxJointData[j]; |
362 | count++; |
363 | } |
364 | } |
365 | |
366 | PX_ASSERT(count == jointDatum.dof); |
367 | } |
368 | |
369 | } |
370 | |
371 | void FeatherstoneArticulation::unpackJointData(const PxReal* reduced, PxReal* maximum) |
372 | { |
373 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
374 | |
375 | for (PxU32 linkID = 1; linkID < linkCount; linkID++) |
376 | { |
377 | ArticulationLink& linkDatum = mArticulationData.getLink(index: linkID); |
378 | ArticulationJointCore* joint = linkDatum.inboundJoint; |
379 | ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(index: linkID); |
380 | |
381 | PxReal* maxJointData = &maximum[(linkID - 1) * DY_MAX_DOF]; |
382 | const PxReal* reducedJointData = &reduced[jointDatum.jointOffset]; |
383 | |
384 | PxU32 count = 0; |
385 | for (PxU32 j = 0; j < DY_MAX_DOF; ++j) |
386 | { |
387 | PxArticulationMotions motion = PxArticulationMotions(joint->motion[j]); |
388 | if (motion != PxArticulationMotion::eLOCKED) |
389 | { |
390 | maxJointData[j] = reducedJointData[count]; |
391 | count++; |
392 | } |
393 | else |
394 | { |
395 | maxJointData[j] = 0.f; |
396 | } |
397 | } |
398 | |
399 | PX_ASSERT(count == jointDatum.dof); |
400 | } |
401 | } |
402 | |
403 | void FeatherstoneArticulation::initializeCommonData() |
404 | { |
405 | jcalc(data&: mArticulationData); |
406 | computeRelativeTransformC2P(data&: mArticulationData); |
407 | |
408 | computeRelativeTransformC2B(data&: mArticulationData); |
409 | |
410 | computeSpatialInertia(data&: mArticulationData); |
411 | |
412 | mArticulationData.setDataDirty(false); |
413 | } |
414 | |
415 | void FeatherstoneArticulation::getGeneralizedGravityForce(const PxVec3& gravity, PxArticulationCache& cache) |
416 | { |
417 | |
418 | if (mArticulationData.getDataDirty()) |
419 | { |
420 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "Articulation::getGeneralisedGravityForce() commonInit need to be called first to initialize data!" ); |
421 | return; |
422 | } |
423 | |
424 | #if FEATHERSTONE_DEBUG |
425 | PxReal* jointForce = reinterpret_cast<PxReal*>(PX_ALLOC(sizeof(PxReal) * mArticulationData.getDofs(), "jointForce" )); |
426 | { |
427 | |
428 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
429 | |
430 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
431 | |
432 | ScratchData scratchData; |
433 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
434 | |
435 | scratchData.jointVelocities = NULL; |
436 | scratchData.jointAccelerations = NULL; |
437 | scratchData.jointForces = jointForce; |
438 | |
439 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
440 | if (fixBase) |
441 | inverseDynamic(mArticulationData, gravity, scratchData, false); |
442 | else |
443 | inverseDynamicFloatingBase(mArticulationData, gravity, scratchData, false); |
444 | |
445 | allocator->free(tempMemory); |
446 | } |
447 | #endif |
448 | |
449 | const PxVec3 tGravity = -gravity; |
450 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
451 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
452 | |
453 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
454 | if (fixBase) |
455 | { |
456 | Cm::SpatialVectorF* spatialZAForces = reinterpret_cast<Cm::SpatialVectorF*>(allocator->alloc(requestedSize: sizeof(Cm::SpatialVectorF) * linkCount)); |
457 | |
458 | for (PxU32 linkID = 0; linkID < linkCount; ++linkID) |
459 | { |
460 | ArticulationLink& link = mArticulationData.getLink(index: linkID); |
461 | |
462 | PxsBodyCore& core = *link.bodyCore; |
463 | |
464 | const PxReal m = 1.0f / core.inverseMass; |
465 | |
466 | const PxVec3 linkGravity = tGravity; |
467 | |
468 | spatialZAForces[linkID].top = m*linkGravity; |
469 | spatialZAForces[linkID].bottom = PxVec3(0.f); |
470 | } |
471 | |
472 | ScratchData scratchData; |
473 | scratchData.spatialZAVectors = spatialZAForces; |
474 | scratchData.jointForces = cache.jointForce; |
475 | |
476 | computeGeneralizedForceInv(data&: mArticulationData, scratchData); |
477 | |
478 | //release spatialZA vectors |
479 | allocator->free(addr: spatialZAForces); |
480 | } |
481 | else |
482 | { |
483 | ScratchData scratchData; |
484 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
485 | |
486 | scratchData.jointVelocities = NULL; |
487 | scratchData.jointAccelerations = NULL; |
488 | scratchData.jointForces = cache.jointForce; |
489 | scratchData.externalAccels = NULL; |
490 | |
491 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: tGravity, scratchData, computeCoriolis: false); |
492 | |
493 | allocator->free(addr: tempMemory); |
494 | } |
495 | |
496 | #if FEATHERSTONE_DEBUG |
497 | //compare joint force |
498 | const PxU32 totalDofs = mArticulationData.getDofs(); |
499 | for (PxU32 i = 0; i < totalDofs; ++i) |
500 | { |
501 | const PxReal dif = jointForce[i] - cache.jointForce[i]; |
502 | PX_ASSERT(PxAbs(dif) < 5e-3f); |
503 | } |
504 | |
505 | PX_FREE(jointForce); |
506 | #endif |
507 | |
508 | } |
509 | |
510 | //gravity, acceleration and external force(external acceleration) are zero |
511 | void FeatherstoneArticulation::getCoriolisAndCentrifugalForce(PxArticulationCache& cache) |
512 | { |
513 | if (mArticulationData.getDataDirty()) |
514 | { |
515 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "Articulation::getCoriolisAndCentrifugalForce() commonInit need to be called first to initialize data!" ); |
516 | return; |
517 | } |
518 | |
519 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
520 | |
521 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
522 | |
523 | ScratchData scratchData; |
524 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
525 | |
526 | scratchData.jointVelocities = cache.jointVelocity; |
527 | scratchData.jointAccelerations = NULL; |
528 | scratchData.jointForces = cache.jointForce; |
529 | scratchData.externalAccels = NULL; |
530 | |
531 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
532 | if (fixBase) |
533 | inverseDynamic(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: true); |
534 | else |
535 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: true); |
536 | |
537 | allocator->free(addr: tempMemory); |
538 | } |
539 | |
540 | //gravity, joint acceleration and joint velocity are zero |
541 | void FeatherstoneArticulation::getGeneralizedExternalForce(PxArticulationCache& cache) |
542 | { |
543 | if (mArticulationData.getDataDirty()) |
544 | { |
545 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "Articulation::getCoriolisAndCentrifugalForce() commonInit need to be called first to initialize data!" ); |
546 | return; |
547 | } |
548 | |
549 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
550 | |
551 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
552 | |
553 | ScratchData scratchData; |
554 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
555 | |
556 | scratchData.jointVelocities = NULL; |
557 | scratchData.jointAccelerations = NULL; |
558 | scratchData.jointForces = cache.jointForce; |
559 | |
560 | Cm::SpatialVector* accels = reinterpret_cast<Cm::SpatialVector*>(allocator->alloc(requestedSize: sizeof(Cm::SpatialVector) * linkCount)); |
561 | |
562 | //turn external forces to external accels |
563 | for (PxU32 i = 0; i < linkCount; ++i) |
564 | { |
565 | ArticulationLink& link = mArticulationData.getLink(index: i); |
566 | PxsBodyCore& core = *link.bodyCore; |
567 | |
568 | const PxSpatialForce& force = cache.externalForces[i]; |
569 | Cm::SpatialVector& accel = accels[i]; |
570 | |
571 | accel.linear = force.force * core.inverseMass; |
572 | |
573 | PxMat33 inverseInertiaWorldSpace; |
574 | Cm::transformInertiaTensor(invD: core.inverseInertia, M: PxMat33(core.body2World.q), mIInv&: inverseInertiaWorldSpace); |
575 | |
576 | accel.angular = inverseInertiaWorldSpace * force.torque; |
577 | } |
578 | |
579 | scratchData.externalAccels = accels; |
580 | |
581 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
582 | if (fixBase) |
583 | inverseDynamic(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
584 | else |
585 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
586 | |
587 | allocator->free(addr: tempMemory); |
588 | allocator->free(addr: accels); |
589 | } |
590 | |
591 | //provided joint acceleration, calculate joint force |
592 | void FeatherstoneArticulation::getJointForce(PxArticulationCache& cache) |
593 | { |
594 | if (mArticulationData.getDataDirty()) |
595 | { |
596 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "ArticulationHelper::getJointForce() commonInit need to be called first to initialize data!" ); |
597 | return; |
598 | } |
599 | |
600 | //const PxU32 size = sizeof(PxReal) * mArticulationData.getDofs(); |
601 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
602 | //PxReal* jointVelocities = reinterpret_cast<PxReal*>(allocator->alloc(size)); |
603 | |
604 | ScratchData scratchData; |
605 | scratchData.jointVelocities = NULL;//jont velocity will be zero |
606 | scratchData.jointAccelerations = cache.jointAcceleration; //input |
607 | scratchData.jointForces = cache.jointForce; //output |
608 | scratchData.externalAccels = NULL; |
609 | |
610 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount: mArticulationData.getLinkCount(), scratchData); |
611 | |
612 | //make sure joint velocity be zero |
613 | //PxMemZero(jointVelocities, sizeof(PxReal) * mArticulationData.getDofs()); |
614 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
615 | |
616 | if (fixBase) |
617 | inverseDynamic(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
618 | else |
619 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
620 | |
621 | //allocator->free(jointVelocities); |
622 | allocator->free(addr: tempMemory); |
623 | } |
624 | |
625 | void FeatherstoneArticulation::jcalcLoopJointSubspace(ArticulationJointCore* joint, |
626 | ArticulationJointCoreData& jointDatum, SpatialSubspaceMatrix& T) |
627 | { |
628 | const PxVec3 childOffset = -joint->childPose.p; |
629 | const PxVec3 zero(0.f); |
630 | |
631 | //if the column is free, we put zero for it, this is for computing K(coefficient matrix) |
632 | T.setNumColumns(6); |
633 | |
634 | //transpose(Tc)*S = 0 |
635 | //transpose(Ta)*S = 1 |
636 | switch (joint->jointType) |
637 | { |
638 | case PxArticulationJointType::ePRISMATIC: |
639 | { |
640 | PX_ASSERT(jointDatum.dof == 1); |
641 | |
642 | const PxVec3 rx = (joint->childPose.rotate(input: PxVec3(1.f, 0.f, 0.f))).getNormalized(); |
643 | const PxVec3 ry = (joint->childPose.rotate(input: PxVec3(0.f, 1.f, 0.f))).getNormalized(); |
644 | const PxVec3 rz = (joint->childPose.rotate(input: PxVec3(0.f, 0.f, 1.f))).getNormalized(); |
645 | |
646 | //joint->activeForceSubspace.setNumColumns(1); |
647 | |
648 | if (jointDatum.jointAxis[0][3] == 1.f) |
649 | { |
650 | //x is the free translation axis |
651 | T.setColumn(index: 0, top: rx, bottom: zero); |
652 | T.setColumn(index: 1, top: ry, bottom: zero); |
653 | T.setColumn(index: 2, top: rz, bottom: zero); |
654 | T.setColumn(index: 3, top: zero, bottom: zero); |
655 | T.setColumn(index: 4, top: zero, bottom: ry); |
656 | T.setColumn(index: 5, top: zero, bottom: rz); |
657 | |
658 | //joint->activeForceSubspace.setColumn(0, PxVec3(0.f), rx); |
659 | } |
660 | else if (jointDatum.jointAxis[0][4] == 1.f) |
661 | { |
662 | //y is the free translation axis |
663 | T.setColumn(index: 0, top: rx, bottom: zero); |
664 | T.setColumn(index: 1, top: ry, bottom: zero); |
665 | T.setColumn(index: 2, top: rz, bottom: zero); |
666 | T.setColumn(index: 3, top: zero, bottom: rx); |
667 | T.setColumn(index: 4, top: zero, bottom: zero); |
668 | T.setColumn(index: 5, top: zero, bottom: rz); |
669 | |
670 | //joint->activeForceSubspace.setColumn(0, PxVec3(0.f), ry); |
671 | } |
672 | else if (jointDatum.jointAxis[0][5] == 1.f) |
673 | { |
674 | //z is the free translation axis |
675 | T.setColumn(index: 0, top: rx, bottom: zero); |
676 | T.setColumn(index: 1, top: ry, bottom: zero); |
677 | T.setColumn(index: 2, top: rx, bottom: zero); |
678 | T.setColumn(index: 3, top: zero, bottom: rx); |
679 | T.setColumn(index: 4, top: zero, bottom: ry); |
680 | T.setColumn(index: 5, top: zero, bottom: zero); |
681 | |
682 | //joint->activeForceSubspace.setColumn(0, PxVec3(0.f), rz); |
683 | } |
684 | |
685 | break; |
686 | } |
687 | case PxArticulationJointType::eREVOLUTE: |
688 | { |
689 | //joint->activeForceSubspace.setNumColumns(1); |
690 | |
691 | const PxVec3 rx = (joint->childPose.rotate(input: PxVec3(1.f, 0.f, 0.f))).getNormalized(); |
692 | const PxVec3 ry = (joint->childPose.rotate(input: PxVec3(0.f, 1.f, 0.f))).getNormalized(); |
693 | const PxVec3 rz = (joint->childPose.rotate(input: PxVec3(0.f, 0.f, 1.f))).getNormalized(); |
694 | |
695 | const PxVec3 rxXd = rx.cross(v: childOffset); |
696 | const PxVec3 ryXd = ry.cross(v: childOffset); |
697 | const PxVec3 rzXd = rz.cross(v: childOffset); |
698 | |
699 | if (jointDatum.jointAxis[0][0] == 1.f) |
700 | { |
701 | //x is the free rotation axis |
702 | |
703 | T.setColumn(index: 0, top: zero, bottom: zero); |
704 | T.setColumn(index: 1, top: ry, bottom: zero); |
705 | T.setColumn(index: 2, top: rz, bottom: zero); |
706 | |
707 | //joint->activeForceSubspace.setColumn(0, rx, PxVec3(0.f)); |
708 | |
709 | } |
710 | else if (jointDatum.jointAxis[0][1] == 1.f) |
711 | { |
712 | //y is the free rotation axis |
713 | T.setColumn(index: 0, top: rx, bottom: zero); |
714 | T.setColumn(index: 1, top: zero, bottom: zero); |
715 | T.setColumn(index: 2, top: rz, bottom: zero); |
716 | |
717 | //joint->activeForceSubspace.setColumn(0, ry, PxVec3(0.f)); |
718 | } |
719 | else if (jointDatum.jointAxis[0][2] == 1.f) |
720 | { |
721 | //z is the rotation axis |
722 | T.setColumn(index: 0, top: rx, bottom: zero); |
723 | T.setColumn(index: 1, top: ry, bottom: zero); |
724 | T.setColumn(index: 2, top: zero, bottom: zero); |
725 | |
726 | //joint->activeForceSubspace.setColumn(0, rz, PxVec3(0.f)); |
727 | } |
728 | |
729 | T.setColumn(index: 3, top: rxXd, bottom: rx); |
730 | T.setColumn(index: 4, top: ryXd, bottom: ry); |
731 | T.setColumn(index: 5, top: rzXd, bottom: rz); |
732 | |
733 | break; |
734 | } |
735 | case PxArticulationJointType::eSPHERICAL: |
736 | { |
737 | //joint->activeForceSubspace.setNumColumns(3); |
738 | |
739 | const PxVec3 rx = (joint->childPose.rotate(input: PxVec3(1.f, 0.f, 0.f))).getNormalized(); |
740 | const PxVec3 ry = (joint->childPose.rotate(input: PxVec3(0.f, 1.f, 0.f))).getNormalized(); |
741 | const PxVec3 rz = (joint->childPose.rotate(input: PxVec3(0.f, 0.f, 1.f))).getNormalized(); |
742 | |
743 | const PxVec3 rxXd = rx.cross(v: childOffset); |
744 | const PxVec3 ryXd = ry.cross(v: childOffset); |
745 | const PxVec3 rzXd = rz.cross(v: childOffset); |
746 | |
747 | T.setColumn(index: 0, top: zero, bottom: zero); |
748 | T.setColumn(index: 1, top: zero, bottom: zero); |
749 | T.setColumn(index: 2, top: zero, bottom: zero); |
750 | |
751 | T.setColumn(index: 3, top: rxXd, bottom: rx); |
752 | T.setColumn(index: 4, top: ryXd, bottom: ry); |
753 | T.setColumn(index: 5, top: rzXd, bottom: rz); |
754 | |
755 | //need to implement constraint force subspace matrix and active force subspace matrix |
756 | |
757 | break; |
758 | } |
759 | case PxArticulationJointType::eFIX: |
760 | { |
761 | //joint->activeForceSubspace.setNumColumns(0); |
762 | //T.setNumColumns(6); |
763 | |
764 | /* const PxVec3 rx = (joint->childPose.rotate(PxVec3(1.f, 0.f, 0.f))).getNormalized(); |
765 | const PxVec3 ry = (joint->childPose.rotate(PxVec3(0.f, 1.f, 0.f))).getNormalized(); |
766 | const PxVec3 rz = (joint->childPose.rotate(PxVec3(0.f, 0.f, 1.f))).getNormalized(); |
767 | |
768 | T.setColumn(0, rx, PxVec3(0.f)); |
769 | T.setColumn(1, ry, PxVec3(0.f)); |
770 | T.setColumn(2, rz, PxVec3(0.f)); |
771 | T.setColumn(3, PxVec3(0.f), rx); |
772 | T.setColumn(4, PxVec3(0.f), ry); |
773 | T.setColumn(5, PxVec3(0.f), rz); |
774 | */ |
775 | |
776 | T.setColumn(index: 0, top: PxVec3(1.f, 0.f, 0.f), bottom: zero); |
777 | T.setColumn(index: 1, top: PxVec3(0.f, 1.f, 0.f), bottom: zero); |
778 | T.setColumn(index: 2, top: PxVec3(0.f, 0.f, 1.f), bottom: zero); |
779 | T.setColumn(index: 3, top: zero, bottom: PxVec3(1.f, 0.f, 0.f)); |
780 | T.setColumn(index: 4, top: zero, bottom: PxVec3(0.f, 1.f, 0.f)); |
781 | T.setColumn(index: 5, top: zero, bottom: PxVec3(0.f, 0.f, 1.f)); |
782 | |
783 | PX_ASSERT(jointDatum.dof == 0); |
784 | break; |
785 | } |
786 | default: |
787 | break; |
788 | |
789 | } |
790 | } |
791 | |
792 | //This method supports just one loopJoint |
793 | void FeatherstoneArticulation::getKMatrix(ArticulationJointCore* loopJoint, const PxU32 parentIndex, const PxU32 childIndex, PxArticulationCache& cache) |
794 | { |
795 | PX_UNUSED(loopJoint); |
796 | PX_UNUSED(parentIndex); |
797 | PX_UNUSED(childIndex); |
798 | PX_UNUSED(cache); |
799 | |
800 | ////initialize all tree links motion subspace matrix |
801 | //jcalc(mArticulationData); |
802 | |
803 | ////linkID is the parent link, ground is the child link so child link is the fix base |
804 | //ArticulationLinkData& pLinkDatum = mArticulationData.getLinkData(parentIndex); |
805 | |
806 | //ArticulationLink& cLink = mArticulationData.getLink(childIndex); |
807 | //ArticulationLinkData& cLinkDatum = mArticulationData.getLinkData(childIndex); |
808 | // |
809 | //ArticulationJointCoreData loopJointDatum; |
810 | //loopJointDatum.computeJointDof(loopJoint); |
811 | |
812 | ////this is constraintForceSubspace in child body space(T) |
813 | //SpatialSubspaceMatrix T; |
814 | |
815 | ////loop joint constraint subspace matrix(T) |
816 | //jcalcLoopJointSubspace(loopJoint, loopJointDatum, T); |
817 | |
818 | //const PxU32 linkCount = mArticulationData.getLinkCount(); |
819 | ////set Jacobian matrix to be zero |
820 | //PxMemZero(cache.jacobian, sizeof(PxKinematicJacobian) * linkCount); |
821 | |
822 | ////transform T to world space |
823 | //PxTransform& body2World = cLink.bodyCore->body2World; |
824 | |
825 | //for (PxU32 ind = 0; ind < T.getNumColumns(); ++ind) |
826 | //{ |
827 | // Cm::SpatialVectorF& column = T[ind]; |
828 | // T.setColumn(ind, body2World.rotate(column.top), body2World.rotate(column.bottom)); |
829 | //} |
830 | |
831 | //const Cm::SpatialVectorF& pAccel = pLinkDatum.motionAcceleration; |
832 | //const Cm::SpatialVectorF& cAccel = cLinkDatum.motionAcceleration; |
833 | |
834 | //const Cm::SpatialVectorF& pVel = pLinkDatum.motionVelocity; |
835 | //const Cm::SpatialVectorF& cVel = cLinkDatum.motionVelocity; |
836 | |
837 | //Cm::SpatialVectorF k = (pAccel - cAccel) + pVel.cross(cVel); |
838 | //k = T.transposeMultiply(k); |
839 | //k = -k; |
840 | |
841 | //PxU32 i = childIndex; |
842 | //PxU32 j = parentIndex; |
843 | |
844 | //PxU32* index = NULL; |
845 | |
846 | //while (i != j) |
847 | //{ |
848 | // if (i > j) |
849 | // index = &i; |
850 | // else |
851 | // index = &j; |
852 | |
853 | // const PxU32 linkIndex = *index; |
854 | |
855 | // PxKinematicJacobian* K = cache.jacobian + linkIndex; |
856 | |
857 | // ArticulationLink& link = mArticulationData.getLink(linkIndex); |
858 | |
859 | // ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(linkIndex); |
860 | |
861 | // SpatialSubspaceMatrix& S = jointDatum.motionMatrix; |
862 | |
863 | // PxTransform& tBody2World = link.bodyCore->body2World; |
864 | |
865 | // Cm::SpatialVectorF res; |
866 | // for (PxU32 ind = 0; ind < S.getNumColumns(); ++ind) |
867 | // { |
868 | // Cm::SpatialVectorF& sCol = S[ind]; |
869 | |
870 | // //transform spatial axis into world space |
871 | // sCol.top = tBody2World.rotate(sCol.top); |
872 | // sCol.bottom = tBody2World.rotate(sCol.bottom); |
873 | |
874 | // res = T.transposeMultiply(sCol); |
875 | // res = -res; |
876 | |
877 | // PxReal* kSubMatrix = K->j[ind]; |
878 | |
879 | // kSubMatrix[0] = res.top.x; kSubMatrix[1] = res.top.y; kSubMatrix[2] = res.top.z; |
880 | // kSubMatrix[3] = res.bottom.x; kSubMatrix[4] = res.bottom.y; kSubMatrix[5] = res.bottom.z; |
881 | // } |
882 | |
883 | // //overwrite either i or j to its parent index |
884 | // *index = link.parent; |
885 | //} |
886 | } |
887 | |
888 | |
889 | void FeatherstoneArticulation::getCoefficientMatrix(const PxReal dt, const PxU32 linkID, const PxContactJoint* contactJoints, const PxU32 nbContacts, PxArticulationCache& cache) |
890 | { |
891 | if (mArticulationData.getDataDirty()) |
892 | { |
893 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "ArticulationHelper::getCoefficientMatrix() commonInit need to be called first to initialize data!" ); |
894 | return; |
895 | } |
896 | |
897 | computeArticulatedSpatialInertia(data&: mArticulationData); |
898 | |
899 | ArticulationLink* links = mArticulationData.getLinks(); |
900 | |
901 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
902 | |
903 | PxReal* coefficientMatrix = cache.coefficientMatrix; |
904 | |
905 | const PxU32 elementCount = mArticulationData.getDofs(); |
906 | |
907 | //zero coefficient matrix |
908 | PxMemZero(dest: coefficientMatrix, count: sizeof(PxReal) * elementCount * nbContacts); |
909 | |
910 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
911 | |
912 | for (PxU32 a = 0; a < nbContacts; ++a) |
913 | { |
914 | PxJacobianRow row; |
915 | contactJoints[a].computeJacobians(jacobian: &row); |
916 | |
917 | //impulse lin is contact normal, and ang is raxn. R is body2World, R(t) is world2Body |
918 | //| R(t), 0 | |
919 | //| R(t)*r, R(t)| |
920 | //r is the vector from center of mass to contact point |
921 | //p(impluse) = |n| |
922 | // |0| |
923 | |
924 | //transform p(impluse) from work space to the local space of link |
925 | ArticulationLink& link = links[linkID]; |
926 | PxTransform& body2World = link.bodyCore->body2World; |
927 | |
928 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
929 | ScratchData scratchData; |
930 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
931 | |
932 | Cm::SpatialVectorF* Z = scratchData.spatialZAVectors; |
933 | |
934 | //make sure all links' spatial zero acceleration impulse are zero |
935 | PxMemZero(dest: Z, count: sizeof(Cm::SpatialVectorF) * linkCount); |
936 | |
937 | const Cm::SpatialVectorF impl(body2World.rotateInv(input: row.linear0), body2World.rotateInv(input: row.angular0)); |
938 | |
939 | getZ(linkID, data: mArticulationData, Z, impulse: impl); |
940 | |
941 | const PxU32 totalDofs = mArticulationData.getDofs(); |
942 | |
943 | const PxU32 size = sizeof(PxReal) * totalDofs; |
944 | |
945 | PxU8* tData = reinterpret_cast<PxU8*>(allocator->alloc(requestedSize: size * 2)); |
946 | |
947 | PxReal* jointVelocities = reinterpret_cast<PxReal*>(tData); |
948 | PxReal* jointAccelerations = reinterpret_cast<PxReal*>(tData + size); |
949 | //zero joint Velocites |
950 | PxMemZero(dest: jointVelocities, count: size); |
951 | |
952 | getDeltaVWithDeltaJV(fixBase, linkID, data: mArticulationData, Z, jointVelocities); |
953 | |
954 | const PxReal invDt = 1.f / dt; |
955 | //calculate joint acceleration due to velocity change |
956 | for (PxU32 i = 0; i < totalDofs; ++i) |
957 | { |
958 | jointAccelerations[i] = jointVelocities[i] * invDt; |
959 | } |
960 | |
961 | //compute individual link's spatial inertia tensor. This is very important |
962 | computeSpatialInertia(data&: mArticulationData); |
963 | |
964 | PxReal* coeCol = &coefficientMatrix[elementCount * a]; |
965 | |
966 | //this means the joint force calculated by the inverse dynamic |
967 | //will be just influenced by joint acceleration change |
968 | scratchData.jointVelocities = NULL; |
969 | scratchData.externalAccels = NULL; |
970 | |
971 | //Input |
972 | scratchData.jointAccelerations = jointAccelerations; |
973 | |
974 | //a column of the coefficient matrix is the joint force |
975 | scratchData.jointForces = coeCol; |
976 | |
977 | if (fixBase) |
978 | { |
979 | inverseDynamic(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
980 | } |
981 | else |
982 | { |
983 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
984 | } |
985 | |
986 | allocator->free(addr: tData); |
987 | allocator->free(addr: tempMemory); |
988 | } |
989 | } |
990 | |
991 | void FeatherstoneArticulation::getImpulseResponseSlowInv(Dy::ArticulationLink* links, |
992 | const ArticulationData& data, |
993 | PxU32 linkID0_, |
994 | const Cm::SpatialVector& impulse0, |
995 | Cm::SpatialVector& deltaV0, |
996 | PxU32 linkID1_, |
997 | const Cm::SpatialVector& impulse1, |
998 | Cm::SpatialVector& deltaV1, |
999 | PxReal* jointVelocities) |
1000 | { |
1001 | PX_UNUSED(jointVelocities); |
1002 | PxU32 stack[DY_ARTICULATION_MAX_SIZE]; |
1003 | Cm::SpatialVectorF Z[DY_ARTICULATION_MAX_SIZE]; |
1004 | //Cm::SpatialVectorF ZZV[DY_ARTICULATION_MAX_SIZE]; |
1005 | |
1006 | PxU32 i0, i1, ic; |
1007 | |
1008 | PxU32 linkID0 = linkID0_; |
1009 | PxU32 linkID1 = linkID1_; |
1010 | |
1011 | |
1012 | for (i0 = linkID0, i1 = linkID1; i0 != i1;) // find common path |
1013 | { |
1014 | if (i0<i1) |
1015 | i1 = links[i1].parent; |
1016 | else |
1017 | i0 = links[i0].parent; |
1018 | } |
1019 | |
1020 | PxU32 common = i0; |
1021 | |
1022 | Cm::SpatialVectorF Z0(-impulse0.linear, -impulse0.angular); |
1023 | Cm::SpatialVectorF Z1(-impulse1.linear, -impulse1.angular); |
1024 | |
1025 | Z[linkID0] = Z0; |
1026 | Z[linkID1] = Z1; |
1027 | |
1028 | //for (i0 = linkID0; i0 != common; i0 = links[i0].parent) |
1029 | for (i0 = 0; linkID0 != common; linkID0 = links[linkID0].parent) |
1030 | { |
1031 | Z0 = FeatherstoneArticulation::propagateImpulseW(isInvD: data.getWorldIsInvD(linkID: linkID0), childToParent: data.getLinkData(index: linkID0).rw, motionMatrix: data.getWorldMotionMatrix(linkID: linkID0), Z: Z0); |
1032 | Z[links[linkID0].parent] = Z0; |
1033 | stack[i0++] = linkID0; |
1034 | } |
1035 | |
1036 | for (i1 = i0; linkID1 != common; linkID1 = links[linkID1].parent) |
1037 | { |
1038 | Z1 = FeatherstoneArticulation::propagateImpulseW(isInvD: data.getWorldIsInvD(linkID: linkID1), childToParent: data.getLinkData(index: linkID1).rw, motionMatrix: data.getWorldMotionMatrix(linkID: linkID1), Z: Z1); |
1039 | Z[links[linkID1].parent] = Z1; |
1040 | stack[i1++] = linkID1; |
1041 | } |
1042 | |
1043 | //KS - we can replace the following section of code with the impulse response matrix - until next comment! |
1044 | |
1045 | Cm::SpatialVectorF ZZ = Z0 + Z1; |
1046 | Z[common] = ZZ; |
1047 | for (ic = i1; common; common = links[common].parent) |
1048 | { |
1049 | Z[links[common].parent] = FeatherstoneArticulation::propagateImpulseW(isInvD: data.getWorldIsInvD(linkID: common), childToParent: data.getLinkData(index: common).rw, motionMatrix: data.getMotionMatrix(linkID: common), Z: Z[common]); |
1050 | stack[ic++] = common; |
1051 | } |
1052 | |
1053 | if(data.getArticulationFlags() & PxArticulationFlag::eFIX_BASE) |
1054 | Z[0] = Cm::SpatialVectorF(PxVec3(0.f), PxVec3(0.f)); |
1055 | |
1056 | //SpatialMatrix inverseArticulatedInertia = data.getLinkData(0).spatialArticulatedInertia.getInverse(); |
1057 | const SpatialMatrix& inverseArticulatedInertia = data.getBaseInvSpatialArticulatedInertiaW(); |
1058 | Cm::SpatialVectorF v = inverseArticulatedInertia * (-Z[0]); |
1059 | |
1060 | for (PxU32 index = ic; (index--) > i1;) |
1061 | { |
1062 | const PxU32 id = stack[index]; |
1063 | v = FeatherstoneArticulation::propagateVelocityW(c2p: data.getLinkData(index: id).rw, spatialInertia: data.mWorldSpatialArticulatedInertia[id], |
1064 | invStIs: data.mInvStIs[id], motionMatrix: data.getWorldMotionMatrix(linkID: id), Z: Z[id], jointVelocity: jointVelocities, hDeltaV: v); |
1065 | } |
1066 | |
1067 | //Replace everything to here with the impulse response matrix multiply |
1068 | |
1069 | Cm::SpatialVectorF dv1 = v; |
1070 | for (PxU32 index = i1; (index--) > i0;) |
1071 | { |
1072 | const PxU32 id = stack[index]; |
1073 | dv1 = FeatherstoneArticulation::propagateVelocityW(c2p: data.getLinkData(index: id).rw, spatialInertia: data.mWorldSpatialArticulatedInertia[id], |
1074 | invStIs: data.mInvStIs[id], motionMatrix: data.getWorldMotionMatrix(linkID: id), Z: Z[id], jointVelocity: jointVelocities, hDeltaV: v); |
1075 | } |
1076 | |
1077 | Cm::SpatialVectorF dv0 = v; |
1078 | for (PxU32 index = i0; (index--) > 0;) |
1079 | { |
1080 | const PxU32 id = stack[index]; |
1081 | dv0 = FeatherstoneArticulation::propagateVelocityW(c2p: data.getLinkData(index: id).rw, spatialInertia: data.mWorldSpatialArticulatedInertia[id], |
1082 | invStIs: data.mInvStIs[id], motionMatrix: data.getWorldMotionMatrix(linkID: id), Z: Z[id], jointVelocity: jointVelocities, hDeltaV: v); |
1083 | } |
1084 | |
1085 | deltaV0.linear = dv0.bottom; |
1086 | deltaV0.angular = dv0.top; |
1087 | |
1088 | deltaV1.linear = dv1.bottom; |
1089 | deltaV1.angular = dv1.top; |
1090 | } |
1091 | |
1092 | void FeatherstoneArticulation::getImpulseSelfResponseInv(const bool fixBase, |
1093 | PxU32 linkID0, |
1094 | PxU32 linkID1, |
1095 | Cm::SpatialVectorF* Z, |
1096 | const Cm::SpatialVector& impulse0, |
1097 | const Cm::SpatialVector& impulse1, |
1098 | Cm::SpatialVector& deltaV0, |
1099 | Cm::SpatialVector& deltaV1, |
1100 | PxReal* jointVelocities) |
1101 | { |
1102 | ArticulationLink* links = mArticulationData.getLinks(); |
1103 | |
1104 | //transform p(impluse) from work space to the local space of link |
1105 | ArticulationLink& link = links[linkID1]; |
1106 | //ArticulationLinkData& linkDatum = mArticulationData.getLinkData(linkID1); |
1107 | |
1108 | if (link.parent == linkID0) |
1109 | { |
1110 | PX_ASSERT(linkID0 == link.parent); |
1111 | PX_ASSERT(linkID0 < linkID1); |
1112 | |
1113 | //impulse is in world space |
1114 | const Cm::SpatialVector& imp1 = impulse1; |
1115 | const Cm::SpatialVector& imp0 = impulse0; |
1116 | |
1117 | |
1118 | Cm::SpatialVectorF pImpulse(imp0.linear, imp0.angular); |
1119 | |
1120 | PX_ASSERT(linkID0 == link.parent); |
1121 | |
1122 | //initialize child link spatial zero acceleration impulse |
1123 | Cm::SpatialVectorF Z1(-imp1.linear, -imp1.angular); |
1124 | //this calculate parent link spatial zero acceleration impulse |
1125 | Cm::SpatialVectorF Z0 = FeatherstoneArticulation::propagateImpulseW(isInvD: mArticulationData.mIsInvDW[linkID1], childToParent: mArticulationData.getLinkData(index: linkID1).rw, motionMatrix: mArticulationData.mWorldMotionMatrix[linkID1], Z: Z1); |
1126 | |
1127 | //in parent space |
1128 | const Cm::SpatialVectorF impulseDif = pImpulse - Z0; |
1129 | |
1130 | Cm::SpatialVectorF delV0(PxVec3(0.f), PxVec3(0.f)); |
1131 | Cm::SpatialVectorF delV1(PxVec3(0.f), PxVec3(0.f)); |
1132 | |
1133 | //calculate velocity change start from the parent link to the root |
1134 | delV0 = FeatherstoneArticulation::getImpulseResponseWithJ(linkID: linkID0, fixBase, data: mArticulationData, Z, impulse: impulseDif, jointVelocities); |
1135 | |
1136 | //calculate velocity change for child link |
1137 | delV1 = FeatherstoneArticulation::propagateVelocityW(c2p: mArticulationData.getLinkData(index: linkID1).rw, |
1138 | spatialInertia: mArticulationData.mWorldSpatialArticulatedInertia[linkID1], invStIs: mArticulationData.mInvStIs[linkID1], |
1139 | motionMatrix: mArticulationData.mWorldMotionMatrix[linkID1], Z: Z1, jointVelocity: jointVelocities, hDeltaV: delV0); |
1140 | |
1141 | //translate delV0 and delV1 into world space again |
1142 | deltaV0.linear = delV0.bottom; |
1143 | deltaV0.angular = delV0.top; |
1144 | deltaV1.linear = delV1.bottom; |
1145 | deltaV1.angular = delV1.top; |
1146 | } |
1147 | else |
1148 | { |
1149 | getImpulseResponseSlowInv(links, data: mArticulationData, linkID0_: linkID0, impulse0, deltaV0, linkID1_: linkID1,impulse1, deltaV1, jointVelocities ); |
1150 | } |
1151 | } |
1152 | |
1153 | Cm::SpatialVectorF FeatherstoneArticulation::getImpulseResponseInv( |
1154 | const bool fixBase, const PxU32 linkID, |
1155 | Cm::SpatialVectorF* Z, |
1156 | const Cm::SpatialVector& impulse, |
1157 | PxReal* jointVelocities) |
1158 | { |
1159 | //impulse lin is contact normal, and ang is raxn. R is body2World, R(t) is world2Body |
1160 | //| R(t), 0 | |
1161 | //| R(t)*r, R(t)| |
1162 | //r is the vector from center of mass to contact point |
1163 | //p(impluse) = |n| |
1164 | // |0| |
1165 | |
1166 | ArticulationLink* links = mArticulationData.getLinks(); |
1167 | //ArticulationLinkData* linkData = mArticulationData.getLinkData(); |
1168 | ArticulationJointCoreData* jointData = mArticulationData.getJointData(); |
1169 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1170 | |
1171 | //make sure all links' spatial zero acceleration impulse are zero |
1172 | PxMemZero(dest: Z, count: sizeof(Cm::SpatialVectorF) * linkCount); |
1173 | |
1174 | Z[linkID] = Cm::SpatialVectorF(-impulse.linear, -impulse.angular); |
1175 | |
1176 | for (PxU32 i = linkID; i; i = links[i].parent) |
1177 | { |
1178 | ArticulationLink& tLink = links[i]; |
1179 | //ArticulationLinkData& tLinkDatum = linkData[i]; |
1180 | Z[tLink.parent] = propagateImpulseW(isInvD: mArticulationData.mIsInvDW[i], childToParent: mArticulationData.mLinksData[i].rw, |
1181 | motionMatrix: mArticulationData.mWorldMotionMatrix[i], Z: Z[i]); |
1182 | } |
1183 | |
1184 | //set velocity change of the root link to be zero |
1185 | Cm::SpatialVectorF deltaV = Cm::SpatialVectorF(PxVec3(0.f), PxVec3(0.f)); |
1186 | if (!fixBase) |
1187 | deltaV = mArticulationData.mBaseInvSpatialArticulatedInertiaW * (-Z[0]); |
1188 | |
1189 | for (ArticulationBitField i = links[linkID].pathToRoot - 1; i; i &= (i - 1)) |
1190 | { |
1191 | //index of child of link h on path to link linkID |
1192 | const PxU32 index = ArticulationLowestSetBit(val: i); |
1193 | ArticulationJointCoreData& tJointDatum = jointData[index]; |
1194 | |
1195 | PxReal* jVelocity = &jointVelocities[tJointDatum.jointOffset]; |
1196 | |
1197 | PX_ASSERT(links[index].parent < index); |
1198 | deltaV = propagateVelocityW(c2p: mArticulationData.mLinksData[index].rw, spatialInertia: mArticulationData.mWorldSpatialArticulatedInertia[index], |
1199 | invStIs: mArticulationData.mInvStIs[index], motionMatrix: mArticulationData.mWorldMotionMatrix[index], Z: Z[index], jointVelocity: jVelocity, hDeltaV: deltaV); |
1200 | } |
1201 | |
1202 | return deltaV; |
1203 | |
1204 | } |
1205 | |
1206 | |
1207 | void FeatherstoneArticulation::getCoefficientMatrixWithLoopJoints(ArticulationLoopConstraint* lConstraints, const PxU32 nbConstraints, PxArticulationCache& cache) |
1208 | { |
1209 | if (mArticulationData.getDataDirty()) |
1210 | { |
1211 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "ArticulationHelper::getCoefficientMatrix() commonInit need to be called first to initialize data!" ); |
1212 | return; |
1213 | } |
1214 | |
1215 | computeArticulatedSpatialInertia(data&: mArticulationData); |
1216 | |
1217 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1218 | |
1219 | PxReal* coefficientMatrix = cache.coefficientMatrix; |
1220 | |
1221 | const PxU32 elementCount = mArticulationData.getDofs(); |
1222 | |
1223 | //zero coefficient matrix |
1224 | PxMemZero(dest: coefficientMatrix, count: sizeof(PxReal) * elementCount * nbConstraints); |
1225 | |
1226 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
1227 | |
1228 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
1229 | ScratchData scratchData; |
1230 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
1231 | |
1232 | Cm::SpatialVectorF* Z = scratchData.spatialZAVectors; |
1233 | const PxU32 totalDofs = mArticulationData.getDofs(); |
1234 | |
1235 | const PxU32 size = sizeof(PxReal) * totalDofs; |
1236 | |
1237 | PxU8* tData = reinterpret_cast<PxU8*>(allocator->alloc(requestedSize: size * 2)); |
1238 | |
1239 | const PxReal invDt = 1.f / mArticulationData.getDt(); |
1240 | PxReal* jointVelocities = reinterpret_cast<PxReal*>(tData); |
1241 | PxReal* jointAccelerations = reinterpret_cast<PxReal*>(tData + size); |
1242 | |
1243 | for (PxU32 a = 0; a < nbConstraints; ++a) |
1244 | { |
1245 | ArticulationLoopConstraint& lConstraint = lConstraints[a]; |
1246 | Constraint* aConstraint = lConstraint.constraint; |
1247 | |
1248 | Px1DConstraint rows[MAX_CONSTRAINT_ROWS]; |
1249 | |
1250 | PxMemZero(dest: rows, count: sizeof(Px1DConstraint)*MAX_CONSTRAINT_ROWS); |
1251 | |
1252 | for (PxU32 i = 0; i<MAX_CONSTRAINT_ROWS; i++) |
1253 | { |
1254 | Px1DConstraint& c = rows[i]; |
1255 | //Px1DConstraintInit(c); |
1256 | c.minImpulse = -PX_MAX_REAL; |
1257 | c.maxImpulse = PX_MAX_REAL; |
1258 | } |
1259 | |
1260 | const PxTransform body2World0 = aConstraint->body0 ? aConstraint->bodyCore0->body2World : PxTransform(PxIdentity); |
1261 | const PxTransform body2World1 = aConstraint->body1 ? aConstraint->bodyCore1->body2World : PxTransform(PxIdentity); |
1262 | |
1263 | PxVec3 body0WorldOffset(0.f); |
1264 | PxVec3 ra, rb; |
1265 | PxConstraintInvMassScale invMassScales; |
1266 | PxU32 constraintCount = (*aConstraint->solverPrep)(rows, |
1267 | body0WorldOffset, |
1268 | MAX_CONSTRAINT_ROWS, |
1269 | invMassScales, |
1270 | aConstraint->constantBlock, |
1271 | body2World0, body2World1, !!(aConstraint->flags & PxConstraintFlag::eENABLE_EXTENDED_LIMITS), ra, rb); |
1272 | |
1273 | const PxU32 linkIndex0 = lConstraint.linkIndex0; |
1274 | const PxU32 linkIndex1 = lConstraint.linkIndex1; |
1275 | |
1276 | //zero joint Velocites |
1277 | PxMemZero(dest: jointVelocities, count: size); |
1278 | |
1279 | for (PxU32 j = 0; j < constraintCount; ++j) |
1280 | { |
1281 | Px1DConstraint& row = rows[j]; |
1282 | |
1283 | if (linkIndex0 != 0x80000000 && linkIndex1 != 0x80000000) |
1284 | { |
1285 | const bool flip = linkIndex0 > linkIndex1; |
1286 | |
1287 | Cm::SpatialVector impulse0(row.linear0, row.angular0); |
1288 | Cm::SpatialVector impulse1(row.linear1, row.angular1); |
1289 | |
1290 | Cm::SpatialVector deltaV0, deltaV1; |
1291 | |
1292 | if (flip) |
1293 | { |
1294 | getImpulseSelfResponseInv(fixBase, linkID0: linkIndex1, linkID1: linkIndex0, Z, impulse0: impulse1, impulse1: impulse0, |
1295 | deltaV0&: deltaV1, deltaV1&: deltaV0, jointVelocities); |
1296 | } |
1297 | else |
1298 | { |
1299 | getImpulseSelfResponseInv(fixBase, linkID0: linkIndex0, linkID1: linkIndex1, Z, impulse0, impulse1, |
1300 | deltaV0, deltaV1, jointVelocities); |
1301 | } |
1302 | } |
1303 | else |
1304 | { |
1305 | if (linkIndex0 == 0x80000000) |
1306 | { |
1307 | Cm::SpatialVector impulse1(row.linear1, row.angular1); |
1308 | getImpulseResponseInv(fixBase, linkID: linkIndex1, Z, impulse: impulse1, jointVelocities); |
1309 | } |
1310 | else |
1311 | { |
1312 | Cm::SpatialVector impulse0(row.linear0, row.angular0); |
1313 | getImpulseResponseInv(fixBase, linkID: linkIndex0, Z, impulse: impulse0, jointVelocities); |
1314 | } |
1315 | } |
1316 | } |
1317 | |
1318 | //calculate joint acceleration due to velocity change |
1319 | for (PxU32 i = 0; i < totalDofs; ++i) |
1320 | { |
1321 | jointAccelerations[i] = jointVelocities[i] * invDt; |
1322 | } |
1323 | |
1324 | //reset spatial inertia |
1325 | computeSpatialInertia(data&: mArticulationData); |
1326 | |
1327 | PxReal* coeCol = &coefficientMatrix[elementCount * a]; |
1328 | |
1329 | //this means the joint force calculated by the inverse dynamic |
1330 | //will be just influenced by joint acceleration change |
1331 | scratchData.jointVelocities = NULL; |
1332 | scratchData.externalAccels = NULL; |
1333 | |
1334 | //Input |
1335 | scratchData.jointAccelerations = jointAccelerations; |
1336 | |
1337 | //a column of the coefficient matrix is the joint force |
1338 | scratchData.jointForces = coeCol; |
1339 | |
1340 | if (fixBase) |
1341 | { |
1342 | inverseDynamic(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
1343 | } |
1344 | else |
1345 | { |
1346 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
1347 | } |
1348 | |
1349 | allocator->free(addr: tData); |
1350 | allocator->free(addr: tempMemory); |
1351 | } |
1352 | } |
1353 | |
1354 | void FeatherstoneArticulation::constraintPrep(ArticulationLoopConstraint* lConstraints, |
1355 | const PxU32 nbJoints, Cm::SpatialVectorF* Z, PxSolverConstraintPrepDesc& prepDesc, |
1356 | PxSolverBody& sBody, PxSolverBodyData& sBodyData, PxSolverConstraintDesc* descs, |
1357 | PxConstraintAllocator& allocator) |
1358 | { |
1359 | const PxReal dt = mArticulationData.getDt(); |
1360 | const PxReal invDt = 1.f / dt; |
1361 | //constraint prep |
1362 | for (PxU32 a = 0; a < nbJoints; ++a) |
1363 | { |
1364 | ArticulationLoopConstraint& lConstraint = lConstraints[a]; |
1365 | Constraint* aConstraint = lConstraint.constraint; |
1366 | |
1367 | PxSolverConstraintDesc& desc = descs[a]; |
1368 | prepDesc.desc = &desc; |
1369 | prepDesc.linBreakForce = aConstraint->linBreakForce; |
1370 | prepDesc.angBreakForce = aConstraint->angBreakForce; |
1371 | prepDesc.writeback = &mContext->getConstraintWriteBackPool()[aConstraint->index]; |
1372 | prepDesc.disablePreprocessing = !!(aConstraint->flags & PxConstraintFlag::eDISABLE_PREPROCESSING); |
1373 | prepDesc.improvedSlerp = !!(aConstraint->flags & PxConstraintFlag::eIMPROVED_SLERP); |
1374 | prepDesc.driveLimitsAreForces = !!(aConstraint->flags & PxConstraintFlag::eDRIVE_LIMITS_ARE_FORCES); |
1375 | prepDesc.extendedLimits = !!(aConstraint->flags & PxConstraintFlag::eENABLE_EXTENDED_LIMITS); |
1376 | prepDesc.minResponseThreshold = aConstraint->minResponseThreshold; |
1377 | |
1378 | Px1DConstraint rows[MAX_CONSTRAINT_ROWS]; |
1379 | |
1380 | PxMemZero(dest: rows, count: sizeof(Px1DConstraint)*MAX_CONSTRAINT_ROWS); |
1381 | |
1382 | for (PxU32 i = 0; i < MAX_CONSTRAINT_ROWS; i++) |
1383 | { |
1384 | Px1DConstraint& c = rows[i]; |
1385 | //Px1DConstraintInit(c); |
1386 | c.minImpulse = -PX_MAX_REAL; |
1387 | c.maxImpulse = PX_MAX_REAL; |
1388 | } |
1389 | |
1390 | prepDesc.invMassScales.linear0 = prepDesc.invMassScales.linear1 = prepDesc.invMassScales.angular0 = prepDesc.invMassScales.angular1 = 1.f; |
1391 | |
1392 | const PxTransform body2World0 = aConstraint->body0 ? aConstraint->bodyCore0->body2World : PxTransform(PxIdentity); |
1393 | const PxTransform body2World1 = aConstraint->body1 ? aConstraint->bodyCore1->body2World : PxTransform(PxIdentity); |
1394 | |
1395 | PxVec3 body0WorldOffset(0.f); |
1396 | PxVec3 ra, rb; |
1397 | PxConstraintInvMassScale invMassScales; |
1398 | PxU32 constraintCount = (*aConstraint->solverPrep)(rows, |
1399 | body0WorldOffset, |
1400 | MAX_CONSTRAINT_ROWS, |
1401 | invMassScales, |
1402 | aConstraint->constantBlock, |
1403 | body2World0, body2World1, !!(aConstraint->flags & PxConstraintFlag::eENABLE_EXTENDED_LIMITS), |
1404 | ra, rb); |
1405 | |
1406 | prepDesc.body0WorldOffset = body0WorldOffset; |
1407 | prepDesc.bodyFrame0 = body2World0; |
1408 | prepDesc.bodyFrame1 = body2World1; |
1409 | prepDesc.numRows = constraintCount; |
1410 | prepDesc.rows = rows; |
1411 | |
1412 | const PxU32 linkIndex0 = lConstraint.linkIndex0; |
1413 | const PxU32 linkIndex1 = lConstraint.linkIndex1; |
1414 | |
1415 | if (linkIndex0 != 0x80000000 && linkIndex1 != 0x80000000) |
1416 | { |
1417 | desc.articulationA = this; |
1418 | desc.articulationB = this; |
1419 | desc.linkIndexA = PxU16(linkIndex0); |
1420 | desc.linkIndexB = PxU16(linkIndex1); |
1421 | |
1422 | desc.bodyA = reinterpret_cast<PxSolverBody*>(this); |
1423 | desc.bodyB = reinterpret_cast<PxSolverBody*>(this); |
1424 | |
1425 | prepDesc.bodyState0 = PxSolverConstraintPrepDescBase::eARTICULATION; |
1426 | prepDesc.bodyState1 = PxSolverConstraintPrepDescBase::eARTICULATION; |
1427 | |
1428 | } |
1429 | else if (linkIndex0 == 0x80000000) |
1430 | { |
1431 | desc.articulationA = NULL; |
1432 | desc.articulationB = this; |
1433 | |
1434 | desc.linkIndexA = 0xffff; |
1435 | desc.linkIndexB = PxU16(linkIndex1); |
1436 | |
1437 | desc.bodyA = &sBody; |
1438 | desc.bodyB = reinterpret_cast<PxSolverBody*>(this); |
1439 | |
1440 | prepDesc.bodyState0 = PxSolverConstraintPrepDescBase::eSTATIC_BODY; |
1441 | prepDesc.bodyState1 = PxSolverConstraintPrepDescBase::eARTICULATION; |
1442 | } |
1443 | else if (linkIndex1 == 0x80000000) |
1444 | { |
1445 | desc.articulationA = this; |
1446 | desc.articulationB = NULL; |
1447 | |
1448 | desc.linkIndexA = PxU16(linkIndex0); |
1449 | desc.linkIndexB = 0xffff; |
1450 | |
1451 | desc.bodyA = reinterpret_cast<PxSolverBody*>(this); |
1452 | desc.bodyB = &sBody; |
1453 | |
1454 | prepDesc.bodyState0 = PxSolverConstraintPrepDescBase::eARTICULATION; |
1455 | prepDesc.bodyState1 = PxSolverConstraintPrepDescBase::eSTATIC_BODY; |
1456 | |
1457 | } |
1458 | |
1459 | prepDesc.body0 = desc.bodyA; |
1460 | prepDesc.body1 = desc.bodyB; |
1461 | prepDesc.data0 = &sBodyData; |
1462 | prepDesc.data1 = &sBodyData; |
1463 | |
1464 | ConstraintHelper::setupSolverConstraint(prepDesc, allocator, dt, invdt: invDt, Z); |
1465 | } |
1466 | |
1467 | } |
1468 | |
1469 | class BlockBasedAllocator |
1470 | { |
1471 | struct AllocationPage |
1472 | { |
1473 | static const PxU32 PageSize = 32 * 1024; |
1474 | PxU8 mPage[PageSize]; |
1475 | |
1476 | PxU32 currentIndex; |
1477 | |
1478 | AllocationPage() : currentIndex(0) {} |
1479 | |
1480 | PxU8* allocate(const PxU32 size) |
1481 | { |
1482 | PxU32 alignedSize = (size + 15)&(~15); |
1483 | if ((currentIndex + alignedSize) < PageSize) |
1484 | { |
1485 | PxU8* ret = &mPage[currentIndex]; |
1486 | currentIndex += alignedSize; |
1487 | return ret; |
1488 | } |
1489 | return NULL; |
1490 | } |
1491 | }; |
1492 | |
1493 | AllocationPage* currentPage; |
1494 | |
1495 | physx::shdfnd::Array<AllocationPage*> mAllocatedBlocks; |
1496 | PxU32 mCurrentIndex; |
1497 | |
1498 | public: |
1499 | BlockBasedAllocator() : currentPage(NULL), mCurrentIndex(0) |
1500 | { |
1501 | } |
1502 | |
1503 | virtual PxU8* allocate(const PxU32 byteSize) |
1504 | { |
1505 | if (currentPage) |
1506 | { |
1507 | PxU8* data = currentPage->allocate(size: byteSize); |
1508 | if (data) |
1509 | return data; |
1510 | } |
1511 | |
1512 | if (mCurrentIndex < mAllocatedBlocks.size()) |
1513 | { |
1514 | currentPage = mAllocatedBlocks[mCurrentIndex++]; |
1515 | currentPage->currentIndex = 0; |
1516 | return currentPage->allocate(size: byteSize); |
1517 | } |
1518 | currentPage = PX_PLACEMENT_NEW(PX_ALLOC(sizeof(AllocationPage), PX_DEBUG_EXP("AllocationPage" )), AllocationPage)(); |
1519 | mAllocatedBlocks.pushBack(a: currentPage); |
1520 | mCurrentIndex = mAllocatedBlocks.size(); |
1521 | |
1522 | return currentPage->allocate(size: byteSize); |
1523 | } |
1524 | |
1525 | void release() { for (PxU32 a = 0; a < mAllocatedBlocks.size(); ++a) PX_FREE(mAllocatedBlocks[a]); mAllocatedBlocks.clear(); currentPage = NULL; mCurrentIndex = 0; } |
1526 | |
1527 | void reset() { currentPage = NULL; mCurrentIndex = 0; } |
1528 | |
1529 | virtual ~BlockBasedAllocator() |
1530 | { |
1531 | release(); |
1532 | } |
1533 | }; |
1534 | |
1535 | class ArticulationBlockAllocator : public PxConstraintAllocator |
1536 | { |
1537 | BlockBasedAllocator mConstraintAllocator; |
1538 | BlockBasedAllocator mFrictionAllocator[2]; |
1539 | |
1540 | PxU32 currIdx; |
1541 | |
1542 | public: |
1543 | |
1544 | ArticulationBlockAllocator() : currIdx(0) |
1545 | { |
1546 | } |
1547 | |
1548 | virtual ~ArticulationBlockAllocator() {} |
1549 | |
1550 | virtual PxU8* reserveConstraintData(const PxU32 size) |
1551 | { |
1552 | return reinterpret_cast<PxU8*>(mConstraintAllocator.allocate(byteSize: size)); |
1553 | } |
1554 | |
1555 | virtual PxU8* reserveFrictionData(const PxU32 byteSize) |
1556 | { |
1557 | return reinterpret_cast<PxU8*>(mFrictionAllocator[currIdx].allocate(byteSize)); |
1558 | } |
1559 | |
1560 | void release() { currIdx = 1 - currIdx; mConstraintAllocator.release(); mFrictionAllocator[currIdx].release(); } |
1561 | |
1562 | PX_NOCOPY(ArticulationBlockAllocator) |
1563 | |
1564 | }; |
1565 | |
1566 | void solveExt1D(const PxSolverConstraintDesc& desc, SolverContext& cache); |
1567 | void writeBack1D(const PxSolverConstraintDesc& desc, SolverContext&, PxSolverBodyData&, PxSolverBodyData&); |
1568 | void conclude1D(const PxSolverConstraintDesc& desc, SolverContext& /*cache*/); |
1569 | void clearExt1D(const PxSolverConstraintDesc& desc, SolverContext& cache); |
1570 | |
1571 | bool FeatherstoneArticulation::getLambda(ArticulationLoopConstraint* lConstraints, const PxU32 nbJoints, |
1572 | PxArticulationCache& cache, PxArticulationCache& initialState, |
1573 | const PxReal* jointTorque, const PxVec3& gravity, const PxU32 maxIter) |
1574 | { |
1575 | const PxReal dt = mArticulationData.getDt(); |
1576 | const PxReal invDt = 1.f / dt; |
1577 | const PxU32 totalDofs = mArticulationData.getDofs(); |
1578 | |
1579 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1580 | |
1581 | ArticulationBlockAllocator bAlloc; |
1582 | |
1583 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
1584 | |
1585 | Cm::SpatialVectorF* Z = reinterpret_cast<Cm::SpatialVectorF*>(allocator->alloc(requestedSize: sizeof(Cm::SpatialVectorF) * linkCount, fallBackToHeap: true)); |
1586 | Cm::SpatialVectorF* deltaV = reinterpret_cast<Cm::SpatialVectorF*>(allocator->alloc(requestedSize: sizeof(Cm::SpatialVectorF) * linkCount, fallBackToHeap: true)); |
1587 | |
1588 | PxReal* prevoiusLambdas =reinterpret_cast<PxReal*>(allocator->alloc(requestedSize: sizeof(PxReal)*nbJoints * 2, fallBackToHeap: true)); |
1589 | PxReal* lambdas = cache.lambda; |
1590 | |
1591 | //this is the joint force changed caused by contact force based on impulse strength is 1 |
1592 | PxReal* J = cache.coefficientMatrix; |
1593 | |
1594 | PxSolverBody staticSolverBody; |
1595 | PxMemZero(dest: &staticSolverBody, count: sizeof(PxSolverBody)); |
1596 | PxSolverBodyData staticSolverBodyData; |
1597 | PxMemZero(dest: &staticSolverBodyData, count: sizeof(PxSolverBodyData)); |
1598 | staticSolverBodyData.maxContactImpulse = PX_MAX_F32; |
1599 | staticSolverBodyData.penBiasClamp = -PX_MAX_F32; |
1600 | staticSolverBodyData.body2World = PxTransform(PxIdentity); |
1601 | |
1602 | Dy::SolverContext context; |
1603 | context.Z = Z; |
1604 | context.deltaV = deltaV; |
1605 | context.doFriction = false; |
1606 | |
1607 | |
1608 | PxSolverConstraintDesc* desc = reinterpret_cast<PxSolverConstraintDesc*>(allocator->alloc(requestedSize: sizeof(PxSolverConstraintDesc) * nbJoints, fallBackToHeap: true)); |
1609 | ArticulationSolverDesc artiDesc; |
1610 | |
1611 | PxSolverConstraintDesc* constraintDescs = reinterpret_cast<PxSolverConstraintDesc*>(allocator->alloc(requestedSize: sizeof(PxSolverConstraintDesc) * mArticulationData.getLinkCount()-1, fallBackToHeap: true)); |
1612 | |
1613 | //run forward dynamic to calculate the lamba |
1614 | |
1615 | artiDesc.articulation = this; |
1616 | PxU32 acCount = 0; |
1617 | computeUnconstrainedVelocities(desc: artiDesc, dt, allocator&: bAlloc, constraintDesc: constraintDescs, acCount, |
1618 | gravity, contextID: 0, Z, deltaV); |
1619 | |
1620 | ScratchData scratchData; |
1621 | scratchData.motionVelocities = mArticulationData.getMotionVelocities(); |
1622 | scratchData.motionAccelerations = mArticulationData.getMotionAccelerations(); |
1623 | scratchData.coriolisVectors = mArticulationData.getCorioliseVectors(); |
1624 | scratchData.spatialZAVectors = mArticulationData.getSpatialZAVectors(); |
1625 | scratchData.jointAccelerations = mArticulationData.getJointAccelerations(); |
1626 | scratchData.jointVelocities = mArticulationData.getJointVelocities(); |
1627 | scratchData.jointPositions = mArticulationData.getJointPositions(); |
1628 | scratchData.jointForces = mArticulationData.getJointForces(); |
1629 | scratchData.externalAccels = mArticulationData.getExternalAccelerations(); |
1630 | |
1631 | //prepare constraint data |
1632 | PxSolverConstraintPrepDesc prepDesc; |
1633 | constraintPrep(lConstraints, nbJoints, Z, prepDesc, sBody&: staticSolverBody, |
1634 | sBodyData&: staticSolverBodyData, descs: desc, allocator&: bAlloc); |
1635 | |
1636 | for (PxU32 i = 0; i < nbJoints; ++i) |
1637 | { |
1638 | prevoiusLambdas[i] = PX_MAX_F32; |
1639 | } |
1640 | |
1641 | bool found = true; |
1642 | |
1643 | for (PxU32 iter = 0; iter < maxIter; ++iter) |
1644 | { |
1645 | found = true; |
1646 | for (PxU32 i = 0; i < nbJoints; ++i) |
1647 | { |
1648 | clearExt1D(desc: desc[i], cache&: context); |
1649 | } |
1650 | |
1651 | //solve |
1652 | for (PxU32 itr = 0; itr < 4; itr++) |
1653 | { |
1654 | for (PxU32 i = 0; i < nbJoints; ++i) |
1655 | { |
1656 | solveExt1D(desc: desc[i], cache&: context); |
1657 | } |
1658 | } |
1659 | for (PxU32 i = 0; i < nbJoints; ++i) |
1660 | { |
1661 | conclude1D(desc: desc[i], context); |
1662 | } |
1663 | |
1664 | PxcFsFlushVelocity(articulation&: *this, deltaV); |
1665 | |
1666 | for (PxU32 i = 0; i < nbJoints; ++i) |
1667 | { |
1668 | solveExt1D(desc: desc[i], cache&: context); |
1669 | writeBack1D(desc: desc[i], context, staticSolverBodyData, staticSolverBodyData); |
1670 | } |
1671 | |
1672 | PxReal eps = 1e-5f; |
1673 | for (PxU32 i = 0; i < nbJoints; ++i) |
1674 | { |
1675 | Dy::Constraint* constraint = lConstraints->constraint; |
1676 | |
1677 | Dy::ConstraintWriteback& solverOutput = mContext->getConstraintWriteBackPool()[constraint->index]; |
1678 | PxVec3 linearForce = solverOutput.linearImpulse * invDt; |
1679 | |
1680 | //linear force is normalize so lambda is the magnitude of linear force |
1681 | lambdas[i] = linearForce.magnitude() * dt; |
1682 | |
1683 | const PxReal dif = PxAbs(a: prevoiusLambdas[i] - lambdas[i]); |
1684 | if (dif > eps) |
1685 | found = false; |
1686 | |
1687 | prevoiusLambdas[i] = lambdas[i]; |
1688 | } |
1689 | |
1690 | if (found) |
1691 | break; |
1692 | |
1693 | //joint force |
1694 | PxReal* jf3 = cache.jointForce; |
1695 | |
1696 | //zero the joint force buffer |
1697 | PxMemZero(dest: jf3, count: sizeof(PxReal)*totalDofs); |
1698 | |
1699 | for (PxU32 colInd = 0; colInd < nbJoints; ++colInd) |
1700 | { |
1701 | PxReal* col = &J[colInd * totalDofs]; |
1702 | |
1703 | for (PxU32 j = 0; j < totalDofs; ++j) |
1704 | { |
1705 | jf3[j] += col[j] * lambdas[colInd]; |
1706 | } |
1707 | } |
1708 | |
1709 | //jointTorque is M(q)*qddot + C(q,qdot)t - g(q) |
1710 | //jointTorque - J*lambda. |
1711 | for (PxU32 j = 0; j < totalDofs; ++j) |
1712 | { |
1713 | jf3[j] = jointTorque[j] - jf3[j]; |
1714 | } |
1715 | |
1716 | //reset all joint velocities/ |
1717 | applyCache(cache&: initialState, flag: PxArticulationCache::eALL); |
1718 | |
1719 | //copy constraint torque to internal data |
1720 | applyCache(cache, flag: PxArticulationCache::eFORCE); |
1721 | |
1722 | mArticulationData.init(); |
1723 | |
1724 | computeLinkVelocities(data&: mArticulationData, scratchData); |
1725 | computeZ(data&: mArticulationData, gravity, scratchData); |
1726 | computeArticulatedSpatialZ(data&: mArticulationData, scratchData); |
1727 | computeLinkAcceleration(data&: mArticulationData, scratchData); |
1728 | |
1729 | //zero zero acceleration vector in the articulation data so that we can use this buffer to accumulated |
1730 | //impulse for the contacts/constraints in the PGS/TGS solvers |
1731 | PxMemZero(dest: mArticulationData.getSpatialZAVectors(), count: sizeof(Cm::SpatialVectorF) * linkCount); |
1732 | } |
1733 | |
1734 | allocator->free(addr: constraintDescs); |
1735 | allocator->free(addr: prevoiusLambdas); |
1736 | allocator->free(addr: Z); |
1737 | allocator->free(addr: deltaV); |
1738 | allocator->free(addr: desc); |
1739 | bAlloc.release(); |
1740 | |
1741 | //roll back to the current stage |
1742 | applyCache(cache&: initialState, flag: PxArticulationCache::eALL); |
1743 | |
1744 | return found; |
1745 | |
1746 | } |
1747 | |
1748 | //i is the current link ID, we need to compute the row/column related to the joint i with all the other joints |
1749 | PxU32 computeHi(ArticulationData& data, const PxU32 linkID, PxReal* massMatrix, Cm::SpatialVectorF* f) |
1750 | { |
1751 | ArticulationLink* links = data.getLinks(); |
1752 | |
1753 | ArticulationJointCoreData& jointDatum = data.getJointData(index: linkID); |
1754 | |
1755 | const PxU32 totalDofs = data.getDofs(); |
1756 | |
1757 | //Hii |
1758 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1759 | { |
1760 | const PxU32 row = (jointDatum.jointOffset + ind)* totalDofs; |
1761 | const Cm::SpatialVectorF& tf = f[ind]; |
1762 | for (PxU32 ind2 = 0; ind2 < jointDatum.dof; ++ind2) |
1763 | { |
1764 | const PxU32 col = jointDatum.jointOffset + ind2; |
1765 | const Cm::UnAlignedSpatialVector& sa = data.getWorldMotionMatrix(linkID)[ind2]; |
1766 | massMatrix[row + col] = sa.innerProduct(v: tf); |
1767 | } |
1768 | } |
1769 | |
1770 | PxU32 j = linkID; |
1771 | |
1772 | ArticulationLink* jLink = &links[j]; |
1773 | while (jLink->parent != 0) |
1774 | { |
1775 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1776 | { |
1777 | //f[ind] = data.getChildToParent(j) * f[ind]; |
1778 | f[ind] = FeatherstoneArticulation::translateSpatialVector(offset: data.getLinkData(index: j).rw, vec: f[ind]); |
1779 | } |
1780 | |
1781 | //assign j to the parent link |
1782 | j = jLink->parent; |
1783 | jLink = &links[j]; |
1784 | |
1785 | //Hij |
1786 | ArticulationJointCoreData& pJointDatum = data.getJointData(index: j); |
1787 | |
1788 | for (PxU32 ind = 0; ind < pJointDatum.dof; ++ind) |
1789 | { |
1790 | const Cm::UnAlignedSpatialVector& sa = data.getWorldMotionMatrix(linkID: j)[ind]; |
1791 | const PxU32 col = pJointDatum.jointOffset + ind; |
1792 | |
1793 | for (PxU32 ind2 = 0; ind2 < jointDatum.dof; ++ind2) |
1794 | { |
1795 | const PxU32 row = (jointDatum.jointOffset + ind2)* totalDofs; |
1796 | |
1797 | Cm::SpatialVectorF& fcol = f[ind2]; |
1798 | |
1799 | massMatrix[row + col] = sa.innerProduct(v: fcol); |
1800 | } |
1801 | } |
1802 | |
1803 | //Hji = transpose(Hij) |
1804 | { |
1805 | for (PxU32 ind = 0; ind < pJointDatum.dof; ++ind) |
1806 | { |
1807 | const PxU32 pRow = (pJointDatum.jointOffset + ind)* totalDofs; |
1808 | const PxU32 col = pJointDatum.jointOffset + ind; |
1809 | |
1810 | for (PxU32 ind2 = 0; ind2 < jointDatum.dof; ++ind2) |
1811 | { |
1812 | const PxU32 pCol = jointDatum.jointOffset + ind2; |
1813 | const PxU32 row = (jointDatum.jointOffset + ind2) * totalDofs; |
1814 | |
1815 | massMatrix[pRow + pCol] = massMatrix[row + col]; |
1816 | } |
1817 | } |
1818 | } |
1819 | |
1820 | } |
1821 | return j; |
1822 | } |
1823 | |
1824 | void FeatherstoneArticulation::calculateHFixBase(PxArticulationCache& cache) |
1825 | { |
1826 | const PxU32 elementCount = mArticulationData.getDofs(); |
1827 | |
1828 | PxReal* massMatrix = cache.massMatrix; |
1829 | |
1830 | PxMemZero(dest: massMatrix, count: sizeof(PxReal) * elementCount * elementCount); |
1831 | |
1832 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1833 | |
1834 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
1835 | |
1836 | ArticulationLink* links = mArticulationData.getLinks(); |
1837 | |
1838 | const PxU32 startIndex = PxU32(linkCount - 1); |
1839 | |
1840 | Dy::SpatialMatrix* compositeSpatialInertia = reinterpret_cast<Dy::SpatialMatrix*>(allocator->alloc(requestedSize: sizeof(Dy::SpatialMatrix) * linkCount)); |
1841 | |
1842 | //initialize composite spatial inertial |
1843 | initCompositeSpatialInertia(data&: mArticulationData, compositeSpatialInertia); |
1844 | |
1845 | Cm::SpatialVectorF F[6]; |
1846 | for (PxU32 i = startIndex; i > 0; --i) |
1847 | { |
1848 | ArticulationLink& link = links[i]; |
1849 | |
1850 | Dy::SpatialMatrix cSpatialInertia = compositeSpatialInertia[i]; |
1851 | //transform current link's spatial inertia to parent's space |
1852 | FeatherstoneArticulation::translateInertia(offset: FeatherstoneArticulation::constructSkewSymmetricMatrix(r: mArticulationData.mLinksData[i].rw), inertia&: cSpatialInertia); |
1853 | |
1854 | //compute parent's composite spatial inertia |
1855 | compositeSpatialInertia[link.parent] += cSpatialInertia; |
1856 | |
1857 | Dy::SpatialMatrix& tSpatialInertia = compositeSpatialInertia[i]; |
1858 | |
1859 | ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(index: i); |
1860 | |
1861 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1862 | { |
1863 | Cm::UnAlignedSpatialVector& sa = mArticulationData.mWorldMotionMatrix[i][ind]; |
1864 | Cm::UnAlignedSpatialVector tmp = tSpatialInertia* sa; |
1865 | F[ind].top = tmp.top; |
1866 | F[ind].bottom = tmp.bottom; |
1867 | } |
1868 | |
1869 | //Hii, Hij, Hji |
1870 | computeHi(data&: mArticulationData, linkID: i, massMatrix, f: F); |
1871 | } |
1872 | |
1873 | allocator->free(addr: compositeSpatialInertia); |
1874 | } |
1875 | |
1876 | |
1877 | void FeatherstoneArticulation::calculateHFloatingBase(PxArticulationCache& cache) |
1878 | { |
1879 | const PxU32 elementCount = mArticulationData.getDofs(); |
1880 | |
1881 | PxReal* massMatrix = cache.massMatrix; |
1882 | |
1883 | PxMemZero(dest: massMatrix, count: sizeof(PxReal) * elementCount * elementCount); |
1884 | |
1885 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1886 | |
1887 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
1888 | |
1889 | ArticulationLink* links = mArticulationData.getLinks(); |
1890 | ArticulationLinkData* linkData = mArticulationData.getLinkData(); |
1891 | |
1892 | const PxU32 startIndex = PxU32(linkCount - 1); |
1893 | |
1894 | Dy::SpatialMatrix* compositeSpatialInertia = reinterpret_cast<Dy::SpatialMatrix*>(allocator->alloc(requestedSize: sizeof(Dy::SpatialMatrix) * linkCount)); |
1895 | Cm::SpatialVectorF* F = reinterpret_cast<Cm::SpatialVectorF*>(allocator->alloc(requestedSize: sizeof(Cm::SpatialVectorF) * elementCount)); |
1896 | |
1897 | //initialize composite spatial inertial |
1898 | initCompositeSpatialInertia(data&: mArticulationData, compositeSpatialInertia); |
1899 | |
1900 | for (PxU32 i = startIndex; i > 0; --i) |
1901 | { |
1902 | ArticulationLink& link = links[i]; |
1903 | |
1904 | Dy::SpatialMatrix cSpatialInertia = compositeSpatialInertia[i]; |
1905 | //transform current link's spatial inertia to parent's space |
1906 | FeatherstoneArticulation::translateInertia(offset: FeatherstoneArticulation::constructSkewSymmetricMatrix(r: mArticulationData.mLinksData[i].rw), inertia&: cSpatialInertia); |
1907 | |
1908 | //compute parent's composite spatial inertia |
1909 | compositeSpatialInertia[link.parent] += cSpatialInertia; |
1910 | |
1911 | Dy::SpatialMatrix& tSpatialInertia = compositeSpatialInertia[i]; |
1912 | |
1913 | ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(index: i); |
1914 | |
1915 | Cm::SpatialVectorF* f = &F[jointDatum.jointOffset]; |
1916 | |
1917 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1918 | { |
1919 | Cm::UnAlignedSpatialVector& sa = mArticulationData.mWorldMotionMatrix[i][ind]; |
1920 | Cm::UnAlignedSpatialVector tmp = tSpatialInertia* sa; |
1921 | f[ind].top = tmp.top; |
1922 | f[ind].bottom = tmp.bottom; |
1923 | } |
1924 | |
1925 | //Hii, Hij, Hji |
1926 | const PxU32 j = computeHi(data&: mArticulationData, linkID: i, massMatrix, f); |
1927 | |
1928 | //transform F to the base link space |
1929 | ArticulationLinkData& fDatum = linkData[j]; |
1930 | |
1931 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1932 | { |
1933 | f[ind] = translateSpatialVector(offset: fDatum.childToBase, vec: f[ind]); |
1934 | } |
1935 | } |
1936 | |
1937 | //Ib = base link composite inertia tensor |
1938 | //compute transpose(F) * inv(Ib) *F |
1939 | Dy::SpatialMatrix invI0 = compositeSpatialInertia[0].invertInertia(); |
1940 | |
1941 | //H - transpose(F) * inv(Ib) * F; |
1942 | for (PxU32 row = 0; row < elementCount; ++row) |
1943 | { |
1944 | const Cm::SpatialVectorF& f = F[row]; |
1945 | for (PxU32 col = 0; col < elementCount; ++col) |
1946 | { |
1947 | const Cm::SpatialVectorF invIf = invI0 * F[col]; |
1948 | const PxReal v = f.innerProduct(v: invIf); |
1949 | const PxU32 index = row * elementCount + col; |
1950 | massMatrix[index] = massMatrix[index] - v; |
1951 | } |
1952 | } |
1953 | |
1954 | allocator->free(addr: compositeSpatialInertia); |
1955 | allocator->free(addr: F); |
1956 | |
1957 | } |
1958 | |
1959 | //calcualte a single column of H, jointForce is equal to a single column of H |
1960 | void FeatherstoneArticulation::calculateMassMatrixColInv(ScratchData& scratchData) |
1961 | { |
1962 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
1963 | |
1964 | Cm::SpatialVectorF* motionAccelerations = scratchData.motionAccelerations; |
1965 | Cm::SpatialVectorF* spatialZAForces = scratchData.spatialZAVectors; |
1966 | |
1967 | //Input |
1968 | PxReal* jointAccelerations = scratchData.jointAccelerations; |
1969 | |
1970 | //set base link motion acceleration to be zero because H should |
1971 | //be just affected by joint position/link position |
1972 | motionAccelerations[0] = Cm::SpatialVectorF::Zero(); |
1973 | spatialZAForces[0] = Cm::SpatialVectorF::Zero(); |
1974 | |
1975 | for (PxU32 linkID = 1; linkID < linkCount; ++linkID) |
1976 | { |
1977 | ArticulationLink& link = mArticulationData.getLink(index: linkID); |
1978 | ArticulationJointCoreData& jointDatum = mArticulationData.getJointData(index: linkID); |
1979 | |
1980 | //parent motion accelerations into child space |
1981 | Cm::SpatialVectorF accel = translateSpatialVector(offset: -mArticulationData.getLinkData(index: linkID).rw, vec: motionAccelerations[link.parent]); |
1982 | |
1983 | const PxReal* jAcceleration = &jointAccelerations[jointDatum.jointOffset]; |
1984 | |
1985 | for (PxU32 ind = 0; ind < jointDatum.dof; ++ind) |
1986 | { |
1987 | accel.top += mArticulationData.mWorldMotionMatrix[linkID][ind].top * jAcceleration[ind]; |
1988 | accel.bottom += mArticulationData.mWorldMotionMatrix[linkID][ind].bottom * jAcceleration[ind]; |
1989 | } |
1990 | |
1991 | motionAccelerations[linkID] = accel; |
1992 | |
1993 | spatialZAForces[linkID] = mArticulationData.mWorldSpatialArticulatedInertia[linkID] * accel; |
1994 | } |
1995 | |
1996 | computeGeneralizedForceInv(data&: mArticulationData, scratchData); |
1997 | |
1998 | } |
1999 | |
2000 | void FeatherstoneArticulation::getGeneralizedMassMatrixCRB(PxArticulationCache& cache) |
2001 | { |
2002 | if (mArticulationData.getDataDirty()) |
2003 | { |
2004 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "ArticulationHelper::getGeneralizedMassMatrix() commonInit need to be called first to initialize data!" ); |
2005 | return; |
2006 | } |
2007 | |
2008 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
2009 | if (fixBase) |
2010 | { |
2011 | calculateHFixBase(cache); |
2012 | } |
2013 | else |
2014 | { |
2015 | calculateHFloatingBase(cache); |
2016 | } |
2017 | |
2018 | } |
2019 | |
2020 | void FeatherstoneArticulation::getGeneralizedMassMatrix( PxArticulationCache& cache) |
2021 | { |
2022 | if (mArticulationData.getDataDirty()) |
2023 | { |
2024 | Ps::getFoundation().error(PxErrorCode::eINVALID_OPERATION, __FILE__, __LINE__, messageFmt: "ArticulationHelper::getGeneralizedMassMatrix() commonInit need to be called first to initialize data!" ); |
2025 | return; |
2026 | } |
2027 | |
2028 | |
2029 | //calculate each column for mass matrix |
2030 | PxReal* massMatrix = cache.massMatrix; |
2031 | |
2032 | const PxU32 linkCount = mArticulationData.getLinkCount(); |
2033 | |
2034 | const PxU32 elementCount = mArticulationData.getDofs(); |
2035 | |
2036 | const PxU32 size = sizeof(PxReal) * elementCount; |
2037 | PxcScratchAllocator* allocator = reinterpret_cast<PxcScratchAllocator*>(cache.scratchAllocator); |
2038 | |
2039 | ScratchData scratchData; |
2040 | PxU8* tempMemory = allocateScratchSpatialData(allocator, linkCount, scratchData); |
2041 | |
2042 | PxReal* jointAccelerations = reinterpret_cast<PxReal*>(allocator->alloc(requestedSize: size)); |
2043 | |
2044 | scratchData.jointAccelerations = jointAccelerations; |
2045 | scratchData.jointVelocities = NULL; |
2046 | scratchData.externalAccels = NULL; |
2047 | |
2048 | const bool fixBase = mArticulationData.getArticulationFlags() & PxArticulationFlag::eFIX_BASE; |
2049 | |
2050 | //initialize jointAcceleration to be zero |
2051 | PxMemZero(dest: jointAccelerations, count: size); |
2052 | |
2053 | for (PxU32 colInd = 0; colInd < elementCount; ++colInd) |
2054 | { |
2055 | PxReal* col = &massMatrix[colInd * elementCount]; |
2056 | |
2057 | scratchData.jointForces = col; |
2058 | |
2059 | //set joint acceleration 1 in the col + 1 and zero elsewhere |
2060 | jointAccelerations[colInd] = 1; |
2061 | |
2062 | if (fixBase) |
2063 | { |
2064 | //jointAcceleration is Q, HQ = ID(model, qdot, Q). |
2065 | calculateMassMatrixColInv(scratchData); |
2066 | } |
2067 | else |
2068 | { |
2069 | inverseDynamicFloatingBase(data&: mArticulationData, gravity: PxVec3(0.f), scratchData, computeCoriolis: false); |
2070 | } |
2071 | |
2072 | //reset joint acceleration to be zero |
2073 | jointAccelerations[colInd] = 0; |
2074 | } |
2075 | |
2076 | allocator->free(addr: jointAccelerations); |
2077 | allocator->free(addr: tempMemory); |
2078 | } |
2079 | |
2080 | |
2081 | |
2082 | } //namespace Dy |
2083 | |
2084 | } |
2085 | |