| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #include "geometry/PxSphereGeometry.h" |
| 31 | #include "geometry/PxBoxGeometry.h" |
| 32 | #include "geometry/PxCapsuleGeometry.h" |
| 33 | #include "geometry/PxPlaneGeometry.h" |
| 34 | #include "geometry/PxConvexMeshGeometry.h" |
| 35 | |
| 36 | #include "PsIntrinsics.h" |
| 37 | #include "PsAllocator.h" |
| 38 | #include "PsUtilities.h" |
| 39 | #include "PsVecMath.h" |
| 40 | |
| 41 | #include "GuOverlapTests.h" |
| 42 | #include "GuHeightFieldUtil.h" |
| 43 | #include "GuIntersectionBoxBox.h" |
| 44 | #include "GuIntersectionTriangleBox.h" |
| 45 | #include "GuDistancePointSegment.h" |
| 46 | #include "GuDistanceSegmentBox.h" |
| 47 | #include "GuDistanceSegmentSegment.h" |
| 48 | #include "GuDistanceSegmentSegmentSIMD.h" |
| 49 | #include "GuCapsule.h" |
| 50 | #include "GuEdgeCache.h" |
| 51 | #include "GuBoxConversion.h" |
| 52 | #include "GuInternal.h" |
| 53 | #include "GuConvexUtilsInternal.h" |
| 54 | #include "GuVecTriangle.h" |
| 55 | #include "GuVecSphere.h" |
| 56 | #include "GuVecCapsule.h" |
| 57 | #include "GuVecConvexHull.h" |
| 58 | #include "GuConvexMesh.h" |
| 59 | |
| 60 | using namespace physx; |
| 61 | using namespace Cm; |
| 62 | using namespace Gu; |
| 63 | using namespace Ps::aos; |
| 64 | |
| 65 | static bool intersectHeightFieldSphere(const HeightFieldUtil& hfUtil, const Sphere& sphereInHfShape) |
| 66 | { |
| 67 | const HeightField& hf = hfUtil.getHeightField(); |
| 68 | |
| 69 | // sample the sphere center in the heightfield to find out |
| 70 | // if we have penetration with more than the sphere radius |
| 71 | if(hfUtil.isShapePointOnHeightField(x: sphereInHfShape.center.x, z: sphereInHfShape.center.z)) |
| 72 | { |
| 73 | // The sphere origin projects within the bounds of the heightfield in the X-Z plane |
| 74 | PxReal sampleHeight = hfUtil.getHeightAtShapePoint(x: sphereInHfShape.center.x, z: sphereInHfShape.center.z); |
| 75 | PxReal deltaHeight = sphereInHfShape.center.y - sampleHeight; |
| 76 | if(hf.isDeltaHeightInsideExtent(dy: deltaHeight)) |
| 77 | { |
| 78 | // The sphere origin is 'below' the heightfield surface |
| 79 | PxU32 faceIndex = hfUtil.getFaceIndexAtShapePoint(x: sphereInHfShape.center.x, z: sphereInHfShape.center.z); |
| 80 | if(faceIndex != 0xffffffff) |
| 81 | { |
| 82 | return true; |
| 83 | } |
| 84 | return false; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | const PxReal radiusSquared = sphereInHfShape.radius * sphereInHfShape.radius; |
| 89 | |
| 90 | const PxVec3 sphereInHF = hfUtil.shape2hfp(v: sphereInHfShape.center); |
| 91 | |
| 92 | const PxReal radiusOverRowScale = sphereInHfShape.radius * PxAbs(a: hfUtil.getOneOverRowScale()); |
| 93 | const PxReal radiusOverColumnScale = sphereInHfShape.radius * PxAbs(a: hfUtil.getOneOverColumnScale()); |
| 94 | |
| 95 | const PxU32 minRow = hf.getMinRow(x: sphereInHF.x - radiusOverRowScale); |
| 96 | const PxU32 maxRow = hf.getMaxRow(x: sphereInHF.x + radiusOverRowScale); |
| 97 | const PxU32 minColumn = hf.getMinColumn(z: sphereInHF.z - radiusOverColumnScale); |
| 98 | const PxU32 maxColumn = hf.getMaxColumn(z: sphereInHF.z + radiusOverColumnScale); |
| 99 | |
| 100 | for(PxU32 r = minRow; r < maxRow; r++) |
| 101 | { |
| 102 | for(PxU32 c = minColumn; c < maxColumn; c++) |
| 103 | { |
| 104 | |
| 105 | // x--x--x |
| 106 | // | x | |
| 107 | // x x x |
| 108 | // | x | |
| 109 | // x--x--x |
| 110 | PxVec3 pcp[11]; |
| 111 | PxU32 npcp = 0; |
| 112 | npcp = hfUtil.findClosestPointsOnCell(row: r, column: c, point: sphereInHfShape.center, closestPoints: pcp, NULL, testFaces: true, testEdges: true, skipEdgesIfFaceHits: true); |
| 113 | |
| 114 | for(PxU32 pi = 0; pi < npcp; pi++) |
| 115 | { |
| 116 | PxVec3 d = sphereInHfShape.center - pcp[pi]; |
| 117 | |
| 118 | PxReal ll = d.magnitudeSquared(); |
| 119 | |
| 120 | if(ll > radiusSquared) |
| 121 | // Too far |
| 122 | continue; |
| 123 | |
| 124 | return true; |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | return false; |
| 129 | } |
| 130 | |
| 131 | static bool intersectHeightFieldCapsule(const HeightFieldUtil& hfUtil, const PxCapsuleGeometry& capsuleGeom, const PxTransform& capsulePose) |
| 132 | { |
| 133 | const HeightField& hf = hfUtil.getHeightField(); |
| 134 | |
| 135 | PxVec3 verticesInHfShape[2]; |
| 136 | PxVec3 capsuleOrigin, capsuleExtent; |
| 137 | { |
| 138 | const PxVec3 capsuleHalfHeightVector = getCapsuleHalfHeightVector(transform: capsulePose, capsuleGeom); |
| 139 | |
| 140 | capsuleOrigin = capsulePose.p + capsuleHalfHeightVector; |
| 141 | capsuleExtent = -capsuleHalfHeightVector*2.0f; |
| 142 | |
| 143 | verticesInHfShape[0] = capsuleOrigin; |
| 144 | verticesInHfShape[1] = capsulePose.p - capsuleHalfHeightVector; |
| 145 | } |
| 146 | |
| 147 | const PxReal radius = capsuleGeom.radius; |
| 148 | const PxReal radiusOverRowScale = radius * PxAbs(a: hfUtil.getOneOverRowScale()); |
| 149 | const PxReal radiusOverColumnScale = radius * PxAbs(a: hfUtil.getOneOverColumnScale()); |
| 150 | |
| 151 | PxU32 absMinRow = 0xffffffff; |
| 152 | PxU32 absMaxRow = 0; |
| 153 | PxU32 absMinColumn = 0xffffffff; |
| 154 | PxU32 absMaxColumn = 0; |
| 155 | |
| 156 | PxReal radiusSquared = radius * radius; |
| 157 | |
| 158 | // test both of capsule's corner vertices+radius for HF overlap |
| 159 | for(PxU32 i = 0; i<2; i++) |
| 160 | { |
| 161 | const PxVec3& sphereInHfShape = verticesInHfShape[i]; |
| 162 | |
| 163 | // we have to do this first to update the absMin / absMax correctly even if |
| 164 | // we decide to continue from inside the deep penetration code. |
| 165 | |
| 166 | const PxVec3 sphereInHF = hfUtil.shape2hfp(v: sphereInHfShape); |
| 167 | |
| 168 | const PxU32 minRow = hf.getMinRow(x: sphereInHF.x - radiusOverRowScale); |
| 169 | const PxU32 maxRow = hf.getMaxRow(x: sphereInHF.x + radiusOverRowScale); |
| 170 | const PxU32 minColumn = hf.getMinColumn(z: sphereInHF.z - radiusOverColumnScale); |
| 171 | const PxU32 maxColumn = hf.getMaxColumn(z: sphereInHF.z + radiusOverColumnScale); |
| 172 | |
| 173 | if(minRow < absMinRow) absMinRow = minRow; |
| 174 | if(minColumn < absMinColumn) absMinColumn = minColumn; |
| 175 | if(maxRow > absMaxRow) absMaxRow = maxRow; |
| 176 | if(maxColumn > absMaxColumn) absMaxColumn = maxColumn; |
| 177 | |
| 178 | if(hfUtil.isShapePointOnHeightField(x: sphereInHfShape.x, z: sphereInHfShape.z)) |
| 179 | { |
| 180 | // The sphere origin projects within the bounds of the heightfield in the X-Z plane |
| 181 | const PxReal sampleHeight = hfUtil.getHeightAtShapePoint(x: sphereInHfShape.x, z: sphereInHfShape.z); |
| 182 | const PxReal deltaHeight = sphereInHfShape.y - sampleHeight; |
| 183 | if(hf.isDeltaHeightInsideExtent(dy: deltaHeight)) |
| 184 | { |
| 185 | // The sphere origin is 'below' the heightfield surface |
| 186 | const PxU32 faceIndex = hfUtil.getFaceIndexAtShapePoint(x: sphereInHfShape.x, z: sphereInHfShape.z); |
| 187 | if(faceIndex != 0xffffffff) |
| 188 | { |
| 189 | return true; |
| 190 | } |
| 191 | continue; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | for(PxU32 r = minRow; r < maxRow; r++) |
| 196 | { |
| 197 | for(PxU32 c = minColumn; c < maxColumn; c++) |
| 198 | { |
| 199 | |
| 200 | // x--x--x |
| 201 | // | x | |
| 202 | // x x x |
| 203 | // | x | |
| 204 | // x--x--x |
| 205 | PxVec3 pcp[11]; |
| 206 | PxU32 npcp = 0; |
| 207 | npcp = hfUtil.findClosestPointsOnCell(row: r, column: c, point: sphereInHfShape, closestPoints: pcp, NULL, testFaces: true, testEdges: true, skipEdgesIfFaceHits: true); |
| 208 | |
| 209 | for(PxU32 pi = 0; pi < npcp; pi++) |
| 210 | { |
| 211 | const PxVec3 d = sphereInHfShape - pcp[pi]; |
| 212 | |
| 213 | if(hf.isDeltaHeightOppositeExtent(dy: d.y)) |
| 214 | { |
| 215 | // We are 'above' the heightfield |
| 216 | |
| 217 | const PxReal ll = d.magnitudeSquared(); |
| 218 | if(ll > radiusSquared) |
| 219 | // Too far above |
| 220 | continue; |
| 221 | |
| 222 | return true; |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | const Vec3V p1 = V3LoadU(f: capsuleOrigin); |
| 230 | const Vec3V d1 = V3LoadU(f: capsuleExtent); |
| 231 | |
| 232 | // now test capsule's inflated segment for overlap with HF edges |
| 233 | PxU32 row, column; |
| 234 | for(row = absMinRow; row <= absMaxRow; row++) |
| 235 | { |
| 236 | for(column = absMinColumn; column <= absMaxColumn; column++) |
| 237 | { |
| 238 | const PxU32 vertexIndex = row * hf.getNbColumnsFast() + column; |
| 239 | const PxU32 firstEdge = 3 * vertexIndex; |
| 240 | // omg I am sorry about this code but I can't find a simpler way: |
| 241 | // last column will only test edge 2 |
| 242 | // last row will only test edge 0 |
| 243 | // and most importantly last row and column will not go inside the for |
| 244 | const PxU32 minEi = (column == absMaxColumn) ? 2u : 0; |
| 245 | const PxU32 maxEi = (row == absMaxRow ) ? 1u : 3u; |
| 246 | for(PxU32 ei = minEi; ei < maxEi; ei++) |
| 247 | { |
| 248 | const PxU32 edgeIndex = firstEdge + ei; |
| 249 | |
| 250 | const PxU32 cell = vertexIndex; |
| 251 | PX_ASSERT(cell == edgeIndex / 3); |
| 252 | const PxU32 row_ = row; |
| 253 | PX_ASSERT(row_ == cell / hf.getNbColumnsFast()); |
| 254 | const PxU32 column_ = column; |
| 255 | PX_ASSERT(column_ == cell % hf.getNbColumnsFast()); |
| 256 | |
| 257 | const PxU32 faceIndex = hfUtil.getEdgeFaceIndex(edgeIndex, cell, row: row_, column: column_); |
| 258 | if(faceIndex != 0xffffffff) |
| 259 | { |
| 260 | PxVec3 origin; |
| 261 | PxVec3 direction; |
| 262 | hfUtil.getEdge(edgeIndex, cell, row: row_, column: column_, origin, extent&: direction); |
| 263 | |
| 264 | const Vec3V p2 = V3LoadU(f: origin); |
| 265 | const Vec3V d2 = V3LoadU(f: direction); |
| 266 | FloatV s, t; |
| 267 | const FloatV llV = Gu::distanceSegmentSegmentSquared(p1, d1, p2, d2, param0&: s, param1&: t); |
| 268 | |
| 269 | PxReal ll; |
| 270 | FStore(a: llV, f: &ll); |
| 271 | |
| 272 | if(ll < radiusSquared) |
| 273 | return true; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | return false; |
| 279 | } |
| 280 | |
| 281 | namespace physx |
| 282 | { |
| 283 | namespace Gu |
| 284 | { |
| 285 | const PxReal signs[24] = |
| 286 | { |
| 287 | -1,-1,-1, |
| 288 | -1,-1, 1, |
| 289 | -1, 1,-1, |
| 290 | -1, 1, 1, |
| 291 | 1,-1,-1, |
| 292 | 1,-1, 1, |
| 293 | 1, 1,-1, |
| 294 | 1, 1, 1, |
| 295 | }; |
| 296 | |
| 297 | const char edges[24] = |
| 298 | { |
| 299 | 0,1, |
| 300 | 1,3, |
| 301 | 3,2, |
| 302 | 2,0, |
| 303 | 4,5, |
| 304 | 5,7, |
| 305 | 7,6, |
| 306 | 6,4, |
| 307 | 0,4, |
| 308 | 1,5, |
| 309 | 2,6, |
| 310 | 3,7, |
| 311 | }; |
| 312 | |
| 313 | struct TriggerTraceSegmentCallback |
| 314 | { |
| 315 | bool intersection; |
| 316 | |
| 317 | PX_INLINE TriggerTraceSegmentCallback() : intersection(false) |
| 318 | { |
| 319 | } |
| 320 | |
| 321 | PX_INLINE bool underFaceHit( |
| 322 | const HeightFieldUtil&, const PxVec3&, |
| 323 | const PxVec3&, PxF32, PxF32, PxF32, PxU32) |
| 324 | { |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | PX_INLINE bool faceHit(const HeightFieldUtil&, const PxVec3&, PxU32, PxReal, PxReal) |
| 329 | { |
| 330 | intersection = true; |
| 331 | return false; |
| 332 | } |
| 333 | bool onEvent(PxU32 , PxU32* ) |
| 334 | { |
| 335 | return true; |
| 336 | } |
| 337 | }; |
| 338 | |
| 339 | |
| 340 | class OverlapHeightfieldTraceSegmentHelper |
| 341 | { |
| 342 | PX_NOCOPY(OverlapHeightfieldTraceSegmentHelper) |
| 343 | public: |
| 344 | OverlapHeightfieldTraceSegmentHelper(const HeightFieldTraceUtil& hfUtil) : mHfUtil(hfUtil) |
| 345 | { |
| 346 | mHfUtil.computeLocalBounds(bounds&: mLocalBounds); |
| 347 | } |
| 348 | |
| 349 | PX_INLINE void traceSegment(const PxVec3& aP0, const PxVec3& aP1, TriggerTraceSegmentCallback* aCallback) const |
| 350 | { |
| 351 | mHfUtil.traceSegment<TriggerTraceSegmentCallback, false, false>(aP0, rayDir: aP1 - aP0, rayLength: 1.0f, aCallback, hfLocalBounds: mLocalBounds, backfaceCull: false, NULL); |
| 352 | } |
| 353 | |
| 354 | private: |
| 355 | const HeightFieldTraceUtil& mHfUtil; |
| 356 | PxBounds3 mLocalBounds; |
| 357 | }; |
| 358 | |
| 359 | } // namespace |
| 360 | } |
| 361 | |
| 362 | static bool intersectHeightFieldBox(const HeightFieldTraceUtil& hfUtil, const Box& boxInHfShape) |
| 363 | { |
| 364 | const HeightField& hf = hfUtil.getHeightField(); |
| 365 | |
| 366 | // Get box vertices |
| 367 | PxVec3 boxVertices[8]; |
| 368 | for(PxU32 i=0; i<8; i++) |
| 369 | boxVertices[i] = PxVec3(boxInHfShape.extents.x*signs[3*i], boxInHfShape.extents.y*signs[3*i+1], boxInHfShape.extents.z*signs[3*i+2]); |
| 370 | |
| 371 | // Transform box vertices to HeightFieldShape space |
| 372 | PxVec3 boxVerticesInHfShape[8]; |
| 373 | for(PxU32 i=0; i<8; i++) |
| 374 | boxVerticesInHfShape[i] = boxInHfShape.transform(src: boxVertices[i]); |
| 375 | |
| 376 | // Test box vertices. |
| 377 | { |
| 378 | for(PxU32 i=0; i<8; i++) |
| 379 | { |
| 380 | const PxVec3& boxVertexInHfShape = boxVerticesInHfShape[i]; |
| 381 | if(hfUtil.isShapePointOnHeightField(x: boxVertexInHfShape.x, z: boxVertexInHfShape.z)) |
| 382 | { |
| 383 | const PxReal y = hfUtil.getHeightAtShapePoint(x: boxVertexInHfShape.x, z: boxVertexInHfShape.z); |
| 384 | const PxReal dy = boxVertexInHfShape.y - y; |
| 385 | if(hf.isDeltaHeightInsideExtent(dy)) |
| 386 | { |
| 387 | PxU32 faceIndex = hfUtil.getFaceIndexAtShapePoint(x: boxVertexInHfShape.x, z: boxVertexInHfShape.z); |
| 388 | if(faceIndex != 0xffffffff) |
| 389 | { |
| 390 | return true; |
| 391 | } |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | // Test box edges. |
| 398 | { |
| 399 | OverlapHeightfieldTraceSegmentHelper traceSegmentHelper(hfUtil); |
| 400 | |
| 401 | for(PxU32 i=0; i<12; i++) |
| 402 | { |
| 403 | const PxVec3 v0 = boxVerticesInHfShape[PxU8(edges[2*i])]; |
| 404 | const PxVec3 v1 = boxVerticesInHfShape[PxU8(edges[2*i+1])]; |
| 405 | TriggerTraceSegmentCallback cb; |
| 406 | traceSegmentHelper.traceSegment(aP0: v0, aP1: v1, aCallback: &cb); |
| 407 | if(cb.intersection) |
| 408 | return true; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | // Test HeightField vertices. |
| 413 | { |
| 414 | PsTransformV _hfShape2BoxShape; |
| 415 | const PxQuat bq(boxInHfShape.rot); |
| 416 | const QuatV q1 = QuatVLoadU(v: &bq.x); |
| 417 | const Vec3V p1 = V3LoadU(i: &boxInHfShape.center.x); |
| 418 | const PsTransformV _boxPose(p1, q1); |
| 419 | _hfShape2BoxShape = _boxPose.getInverse(); |
| 420 | |
| 421 | PxReal minx(PX_MAX_REAL); |
| 422 | PxReal minz(PX_MAX_REAL); |
| 423 | PxReal maxx(-PX_MAX_REAL); |
| 424 | PxReal maxz(-PX_MAX_REAL); |
| 425 | |
| 426 | for(PxU32 i=0; i<8; i++) |
| 427 | { |
| 428 | const PxVec3& boxVertexInHfShape = boxVerticesInHfShape[i]; |
| 429 | |
| 430 | /* if(boxVertexInHfShape.x < minx) minx = boxVertexInHfShape.x; |
| 431 | if(boxVertexInHfShape.z < minz) minz = boxVertexInHfShape.z; |
| 432 | if(boxVertexInHfShape.x > maxx) maxx = boxVertexInHfShape.x; |
| 433 | if(boxVertexInHfShape.z > maxz) maxz = boxVertexInHfShape.z;*/ |
| 434 | minx = physx::intrinsics::selectMin(a: boxVertexInHfShape.x, b: minx); |
| 435 | minz = physx::intrinsics::selectMin(a: boxVertexInHfShape.z, b: minz); |
| 436 | maxx = physx::intrinsics::selectMax(a: boxVertexInHfShape.x, b: maxx); |
| 437 | maxz = physx::intrinsics::selectMax(a: boxVertexInHfShape.z, b: maxz); |
| 438 | } |
| 439 | |
| 440 | const PxReal oneOverRowScale = hfUtil.getOneOverRowScale(); |
| 441 | const PxReal oneOverColumnScale = hfUtil.getOneOverColumnScale(); |
| 442 | const PxU32 minRow = hf.getMinRow(x: minx * oneOverRowScale); |
| 443 | const PxU32 maxRow = hf.getMaxRow(x: maxx * oneOverRowScale); |
| 444 | const PxU32 minColumn = hf.getMinColumn(z: minz * oneOverColumnScale); |
| 445 | const PxU32 maxColumn = hf.getMaxColumn(z: maxz * oneOverColumnScale); |
| 446 | |
| 447 | const Vec4V extentV = V4LoadXYZW(x: boxInHfShape.extents.x, y: boxInHfShape.extents.y, z: boxInHfShape.extents.z, PX_MAX_REAL); |
| 448 | const PxHeightFieldGeometry& geom = hfUtil.getHeightFieldGeometry(); |
| 449 | |
| 450 | for(PxU32 row = minRow; row <= maxRow; row++) |
| 451 | { |
| 452 | for(PxU32 column = minColumn; column <= maxColumn; column++) |
| 453 | { |
| 454 | PxU32 vertexIndex = row * hf.getNbColumnsFast() + column; |
| 455 | if(hfUtil.isQueryVertex(vertexIndex, row, column)) |
| 456 | { |
| 457 | // check if hf vertex is inside the box |
| 458 | const Vec4V hfVertex = V4LoadXYZW(x: geom.rowScale * row, y: geom.heightScale * hf.getHeight(vertexIndex), z: geom.columnScale * column, w: 0.0f); |
| 459 | const Vec4V hfVertexInBoxShape = Vec4V_From_Vec3V(f: _hfShape2BoxShape.transform(input: Vec3V_From_Vec4V(v: hfVertex))); |
| 460 | const Vec4V hfVertexInBoxShapeAbs = V4Abs(a: hfVertexInBoxShape); |
| 461 | |
| 462 | if(V4AllGrtr(a: extentV, b: hfVertexInBoxShapeAbs)) |
| 463 | { |
| 464 | return true; |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | return false; |
| 471 | } |
| 472 | |
| 473 | static Matrix34 multiplyInverseRTLeft(const Matrix34& left, const Matrix34& right) |
| 474 | { |
| 475 | // t = left.M % (right.t - left.t); |
| 476 | PxVec3 t = left.rotateTranspose(other: right.p - left.p); |
| 477 | |
| 478 | // M.setMultiplyTransposeLeft(left.M, right.M); |
| 479 | const PxMat33& left33 = left.m; |
| 480 | const PxMat33& right33 = right.m; |
| 481 | PxMat33 multiplyTransposeLeft33 = (left33.getTranspose()) * right33; |
| 482 | |
| 483 | return Matrix34(multiplyTransposeLeft33, t); |
| 484 | } |
| 485 | |
| 486 | static bool intersectHeightFieldConvex( |
| 487 | const HeightFieldTraceUtil& hfUtil, const PxTransform& _hfAbsPose, const ConvexMesh& convexMesh, |
| 488 | const PxTransform& _convexAbsPose, const PxMeshScale& convexMeshScaling) |
| 489 | { |
| 490 | const Matrix34 hfAbsPose34(_hfAbsPose); |
| 491 | const Matrix34 convexAbsPose34(_convexAbsPose); |
| 492 | const Matrix34 vertexToShapeSkew34(convexMeshScaling.toMat33()); |
| 493 | const Matrix34 temp34 = convexAbsPose34 * vertexToShapeSkew34; |
| 494 | const Matrix34 convexShape2HfShapeSkew34 = multiplyInverseRTLeft(left: hfAbsPose34, right: temp34); |
| 495 | |
| 496 | const ConvexHullData* hull = &convexMesh.getHull(); |
| 497 | |
| 498 | // Allocate space for transformed vertices. |
| 499 | PxVec3* convexVerticesInHfShape = reinterpret_cast<PxVec3*>(PxAlloca(hull->mNbHullVertices*sizeof(PxVec3))); |
| 500 | |
| 501 | // Transform vertices to height field shape |
| 502 | const PxVec3* hullVerts = hull->getHullVertices(); |
| 503 | for(PxU32 i=0; i<hull->mNbHullVertices; i++) |
| 504 | convexVerticesInHfShape[i] = convexShape2HfShapeSkew34.transform(other: hullVerts[i]); |
| 505 | |
| 506 | // Compute bounds of convex in hf space |
| 507 | PxBounds3 convexBoundsInHfShape; |
| 508 | computeBoundsAroundVertices(bounds&: convexBoundsInHfShape, nbVerts: hull->mNbHullVertices, verts: convexVerticesInHfShape); |
| 509 | |
| 510 | // Compute the height field extreme over the bounds area. |
| 511 | const HeightField& hf = hfUtil.getHeightField(); |
| 512 | PxReal hfExtreme = -PX_MAX_REAL; |
| 513 | const PxReal oneOverRowScale = hfUtil.getOneOverRowScale(); |
| 514 | const PxReal oneOverColumnScale = hfUtil.getOneOverColumnScale(); |
| 515 | const PxReal rowScale = (1.0f / hfUtil.getOneOverRowScale()); |
| 516 | const PxReal columnScale = (1.0f / hfUtil.getOneOverColumnScale()); |
| 517 | const PxReal heightScale = (1.0f / hfUtil.getOneOverHeightScale()); |
| 518 | |
| 519 | // negative scale support |
| 520 | PxU32 minRow; |
| 521 | PxU32 maxRow; |
| 522 | if(oneOverRowScale > 0.0f) |
| 523 | { |
| 524 | minRow = hf.getMinRow(x: convexBoundsInHfShape.minimum.x * oneOverRowScale); |
| 525 | maxRow = hf.getMaxRow(x: convexBoundsInHfShape.maximum.x * oneOverRowScale); |
| 526 | } |
| 527 | else |
| 528 | { |
| 529 | minRow = hf.getMinRow(x: convexBoundsInHfShape.maximum.x * oneOverRowScale); |
| 530 | maxRow = hf.getMaxRow(x: convexBoundsInHfShape.minimum.x * oneOverRowScale); |
| 531 | } |
| 532 | |
| 533 | PxU32 minColumn; |
| 534 | PxU32 maxColumn; |
| 535 | if(oneOverColumnScale > 0.0f) |
| 536 | { |
| 537 | minColumn = hf.getMinColumn(z: convexBoundsInHfShape.minimum.z * oneOverColumnScale); |
| 538 | maxColumn = hf.getMaxColumn(z: convexBoundsInHfShape.maximum.z * oneOverColumnScale); |
| 539 | } |
| 540 | else |
| 541 | { |
| 542 | minColumn = hf.getMinColumn(z: convexBoundsInHfShape.maximum.z * oneOverColumnScale); |
| 543 | maxColumn = hf.getMaxColumn(z: convexBoundsInHfShape.minimum.z * oneOverColumnScale); |
| 544 | } |
| 545 | |
| 546 | for(PxU32 row = minRow; row <= maxRow; row++) |
| 547 | { |
| 548 | for(PxU32 column = minColumn; column <= maxColumn; column++) |
| 549 | { |
| 550 | const PxReal h = hf.getHeight(vertexIndex: row * hf.getNbColumnsFast() + column); |
| 551 | hfExtreme = PxMax(a: hfExtreme, b: h); |
| 552 | } |
| 553 | } |
| 554 | hfExtreme *= heightScale; |
| 555 | |
| 556 | |
| 557 | // Return if convex is on the wrong side of the extreme. |
| 558 | if(convexBoundsInHfShape.minimum.y > hfExtreme) |
| 559 | return false; |
| 560 | |
| 561 | // Test convex vertices |
| 562 | { |
| 563 | for(PxU32 i=0; i<hull->mNbHullVertices; i++) |
| 564 | { |
| 565 | const PxVec3& convexVertexInHfShape = convexVerticesInHfShape[i]; |
| 566 | bool insideExtreme = convexVertexInHfShape.y < hfExtreme; |
| 567 | if(insideExtreme && hfUtil.isShapePointOnHeightField(x: convexVertexInHfShape.x, z: convexVertexInHfShape.z)) |
| 568 | { |
| 569 | const PxReal y = hfUtil.getHeightAtShapePoint(x: convexVertexInHfShape.x, z: convexVertexInHfShape.z); |
| 570 | const PxReal dy = convexVertexInHfShape.y - y; |
| 571 | if(hf.isDeltaHeightInsideExtent(dy)) |
| 572 | { |
| 573 | const PxU32 faceIndex = hfUtil.getFaceIndexAtShapePoint(x: convexVertexInHfShape.x, z: convexVertexInHfShape.z); |
| 574 | if(faceIndex != 0xffffffff) |
| 575 | return true; |
| 576 | } |
| 577 | } |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // Test convex edges. |
| 582 | { |
| 583 | EdgeCache edgeCache; |
| 584 | PxU32 numPolygons = hull->mNbPolygons; |
| 585 | const HullPolygonData* polygons = hull->mPolygons; |
| 586 | const PxU8* const vertexData = hull->getVertexData8(); |
| 587 | |
| 588 | OverlapHeightfieldTraceSegmentHelper traceSegmentHelper(hfUtil); |
| 589 | |
| 590 | while(numPolygons--) |
| 591 | { |
| 592 | const HullPolygonData& polygon = *polygons++; |
| 593 | |
| 594 | const PxU8* verts = vertexData + polygon.mVRef8; |
| 595 | |
| 596 | PxU32 numEdges = polygon.mNbVerts; |
| 597 | |
| 598 | PxU32 a = numEdges - 1; |
| 599 | PxU32 b = 0; |
| 600 | while(numEdges--) |
| 601 | { |
| 602 | PxU8 vi0 = verts[a]; |
| 603 | PxU8 vi1 = verts[b]; |
| 604 | |
| 605 | if(vi1 < vi0) |
| 606 | { |
| 607 | PxU8 tmp = vi0; |
| 608 | vi0 = vi1; |
| 609 | vi1 = tmp; |
| 610 | } |
| 611 | |
| 612 | if(edgeCache.isInCache(vertex0: vi0, vertex1: vi1)) //avoid processing edges 2x if possible (this will typically have cache misses about 5% of the time leading to 5% redundant work. |
| 613 | continue; |
| 614 | |
| 615 | const PxVec3& sv0 = convexVerticesInHfShape[vi0]; |
| 616 | const PxVec3& sv1 = convexVerticesInHfShape[vi1]; |
| 617 | a = b; |
| 618 | b++; |
| 619 | |
| 620 | |
| 621 | if((sv0.y > hfExtreme) && (sv1.y > hfExtreme)) |
| 622 | continue; |
| 623 | |
| 624 | const PxVec3 v0 = sv0; |
| 625 | const PxVec3 v1 = sv1; |
| 626 | TriggerTraceSegmentCallback cb; |
| 627 | traceSegmentHelper.traceSegment(aP0: v0, aP1: v1, aCallback: &cb); |
| 628 | if(cb.intersection) |
| 629 | return true; |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | // Test HeightField vertices |
| 635 | { |
| 636 | const Matrix34 tmp34 = multiplyInverseRTLeft(left: convexAbsPose34, right: hfAbsPose34); |
| 637 | const Matrix34 hfShape2ConvexShapeSkew34 = vertexToShapeSkew34 * tmp34; |
| 638 | |
| 639 | for(PxU32 row = minRow; row <= maxRow; row++) |
| 640 | { |
| 641 | for(PxU32 column = minColumn; column <= maxColumn; column++) |
| 642 | { |
| 643 | const PxU32 hfVertexIndex = row * hf.getNbColumnsFast() + column; |
| 644 | if(hfUtil.isQueryVertex(vertexIndex: hfVertexIndex, row, column)) |
| 645 | { |
| 646 | // Check if hf vertex is inside the convex |
| 647 | const PxVec3 hfVertex(rowScale * row, heightScale * hf.getHeight(vertexIndex: hfVertexIndex), columnScale * column); |
| 648 | const PxVec3 hfVertexInConvexShape = hfShape2ConvexShapeSkew34.transform(other: hfVertex); |
| 649 | |
| 650 | bool inside = true; |
| 651 | for(PxU32 poly = 0; poly < hull->mNbPolygons; poly++) |
| 652 | { |
| 653 | PxReal d = hull->mPolygons[poly].mPlane.distance(p: hfVertexInConvexShape); |
| 654 | if(d >= 0) |
| 655 | { |
| 656 | inside = false; |
| 657 | break; |
| 658 | } |
| 659 | } |
| 660 | if(inside) |
| 661 | return true; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | return false; |
| 667 | } |
| 668 | |
| 669 | bool Gu::checkOverlapAABB_heightFieldGeom(const PxGeometry& geom, const PxTransform& pose, const PxBounds3& box) |
| 670 | { |
| 671 | PX_ASSERT(geom.getType() == PxGeometryType::eHEIGHTFIELD); |
| 672 | const PxHeightFieldGeometry& hfGeom = static_cast<const PxHeightFieldGeometry&>(geom); |
| 673 | |
| 674 | const Matrix34 invAbsPose(pose.getInverse()); |
| 675 | |
| 676 | const Box boxInHfShape( |
| 677 | invAbsPose.transform(other: box.getCenter()), |
| 678 | box.getExtents(), |
| 679 | invAbsPose.m); |
| 680 | |
| 681 | HeightFieldTraceUtil hfUtil(hfGeom); |
| 682 | return intersectHeightFieldBox(hfUtil, boxInHfShape); |
| 683 | } |
| 684 | |
| 685 | bool GeomOverlapCallback_SphereHeightfield(GU_OVERLAP_FUNC_PARAMS) |
| 686 | { |
| 687 | PX_ASSERT(geom0.getType()==PxGeometryType::eSPHERE); |
| 688 | PX_ASSERT(geom1.getType()==PxGeometryType::eHEIGHTFIELD); |
| 689 | PX_UNUSED(cache); |
| 690 | |
| 691 | const PxSphereGeometry& sphereGeom = static_cast<const PxSphereGeometry&>(geom0); |
| 692 | const PxHeightFieldGeometry& hfGeom = static_cast<const PxHeightFieldGeometry&>(geom1); |
| 693 | |
| 694 | const Sphere sphereInHf(pose1.transformInv(input: pose0.p), sphereGeom.radius); |
| 695 | |
| 696 | HeightFieldUtil hfUtil(hfGeom); |
| 697 | return intersectHeightFieldSphere(hfUtil, sphereInHfShape: sphereInHf); |
| 698 | } |
| 699 | |
| 700 | bool GeomOverlapCallback_CapsuleHeightfield(GU_OVERLAP_FUNC_PARAMS) |
| 701 | { |
| 702 | PX_ASSERT(geom0.getType()==PxGeometryType::eCAPSULE); |
| 703 | PX_ASSERT(geom1.getType()==PxGeometryType::eHEIGHTFIELD); |
| 704 | PX_UNUSED(cache); |
| 705 | |
| 706 | const PxCapsuleGeometry& capsuleGeom = static_cast<const PxCapsuleGeometry&>(geom0); |
| 707 | const PxHeightFieldGeometry& hfGeom = static_cast<const PxHeightFieldGeometry&>(geom1); |
| 708 | |
| 709 | const PxTransform capsuleShapeToHfShape = pose1.transformInv(src: pose0); |
| 710 | |
| 711 | const HeightFieldUtil hfUtil(hfGeom); |
| 712 | return intersectHeightFieldCapsule(hfUtil, capsuleGeom, capsulePose: capsuleShapeToHfShape); |
| 713 | } |
| 714 | |
| 715 | bool GeomOverlapCallback_BoxHeightfield(GU_OVERLAP_FUNC_PARAMS) |
| 716 | { |
| 717 | PX_ASSERT(geom0.getType()==PxGeometryType::eBOX); |
| 718 | PX_ASSERT(geom1.getType()==PxGeometryType::eHEIGHTFIELD); |
| 719 | PX_UNUSED(cache); |
| 720 | |
| 721 | const PxBoxGeometry& boxGeom = static_cast<const PxBoxGeometry&>(geom0); |
| 722 | const PxHeightFieldGeometry& hfGeom = static_cast<const PxHeightFieldGeometry&>(geom1); |
| 723 | |
| 724 | const PxTransform boxShape2HfShape = pose1.transformInv(src: pose0); |
| 725 | |
| 726 | Box box; |
| 727 | buildFrom(dst&: box, center: boxShape2HfShape.p, extents: boxGeom.halfExtents, q: boxShape2HfShape.q); |
| 728 | |
| 729 | HeightFieldTraceUtil hfUtil(hfGeom); |
| 730 | return intersectHeightFieldBox(hfUtil, boxInHfShape: box); |
| 731 | } |
| 732 | |
| 733 | /////////////////////////////////////////////////////////////////////////////// |
| 734 | bool GeomOverlapCallback_ConvexHeightfield(GU_OVERLAP_FUNC_PARAMS) |
| 735 | { |
| 736 | PX_ASSERT(geom0.getType()==PxGeometryType::eCONVEXMESH); |
| 737 | PX_ASSERT(geom1.getType()==PxGeometryType::eHEIGHTFIELD); |
| 738 | PX_UNUSED(cache); |
| 739 | |
| 740 | const PxConvexMeshGeometry& convexGeom = static_cast<const PxConvexMeshGeometry&>(geom0); |
| 741 | const PxHeightFieldGeometry& hfGeom = static_cast<const PxHeightFieldGeometry&>(geom1); |
| 742 | |
| 743 | ConvexMesh* cm = static_cast<ConvexMesh*>(convexGeom.convexMesh); |
| 744 | |
| 745 | HeightFieldTraceUtil hfUtil(hfGeom); |
| 746 | return intersectHeightFieldConvex(hfUtil, hfAbsPose: pose1, convexMesh: *cm, convexAbsPose: pose0, convexMeshScaling: convexGeom.scale); |
| 747 | } |
| 748 | |